
lecture 1

Topics:
What is physics?
What is classical mechanics?
Degrees of freedom
The Art of Theoretical Physics
Motion, trajectories andF = m a
F = ma⇔ two initial conditions/degree of freedom
Finding trajectories numerically
Forces of the formF (t)

What is physics?

According to Wikipedia

Physics (from the Greek,φυσιζ (physis), “nature” andφυσικoζ (physikos), “natural”)
is the science of Nature, from the quarks to the cosmos. Consequently, physics treats
of the fundamental constituents of the universe, the forces they exert on one another,
and the results produced by these forces. Sometimes, in modern physics, a more
sophisticated approach is taken that incorporates elements of the three areas listed
above; it relates to the laws of symmetry and conservation, such as those pertaining to
energy, momentum, charge, and parity.

As much as I like symmetry and conservation laws (which we will certainly talk a lot about
in this course) I am not sure that I like this definition much. It focuses a little too much on grand
theoretical principles and not enough on how useful physics is. Both poles of physics - the theo-
retical and the experimental/applied are crucial to the way physics works. True - physics addresses
the most fundamental questions in the universe - but we can address these questions usefully only
because we can use physics to build the tools required to answer the most difficult questions. And
the answers to these questions, in turn, allow us to build better tools and ask deeper questions. This
self-containedness - this cyclic give and take between mathematical theory and tool-building is the
glory of physics itself, and the reason why physics is important to all other areas of science. Physi-
cists build tools, both technological and mathematical, that are crucial to the pursuit of scientific
questions in all fields and which form the basis for much of our mathematics and technology.

And besides, physics is just a marvelously fun way of looking at the world.

What is classical mechanics?

Classical mechanics is a category defined by what it is not! It is not quantum mechanics. Aclassi-
cal mechanical systemis any collection of objects that we can describe to a good approximation
without worrying about quantum mechanics. This includes most of the systems you are used to in
everyday life (if you don’t worry too much about what goes on inside your computer or CD player
or TV set). In this course, we will discuss these mechanical systems, and we will push beyond
your everyday experience to discuss what happens when objects move at speeds close to the speed
of light. We won’t study quantum mechanics explicitly, but we will talk about it at times. The
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underlying laws of the Universe seem to be quantum mechanical, and it is fun, instructive, and
not at all trivial to think about how classical physics emerges as an approximation to the quantum
mechanical world.

Degrees of freedom

We will start slowly, with some useful definitions.

Coordinates — The coordinates of a physical system are the numbers (possibly dimensional)
that describe the system at a given fixed time.

Frame of reference — The coordinates we use to describe the system are always somewhat ar-
bitrary, depending on conventions. Mathematically, we should be able to change our system
of coordinates and still describe things. But in physical problems, it is usually easiest to
restrict the allowed coordinate systems. Fortunately, in physics, there is an obvious way of
specifying the conventions that we use in a physical problem. We simply describe in detail
how to measure the coordinates at any given time. Such a description is called aframe of
reference.We will not always mention theframe of referenceexplicitly, because we have
in mind something very intuitive and simple - the set of clocks, measuring sticks and other
stuff that we need to study classical phenomena in a laboratory. But we will see (particularly
when we discuss relativity in a few weeks) that it is important tohavea frame of reference
that fixes our conventions. Otherwise, we can get into all kinds of problems.

Configuration — Theconfiguration q(t) of a mechanical system is a number or vector consist-
ing of values of a set of independentcoordinatesthat completely describe the system at time
t.

We will call the configurationq, without specifying (at least for another few seconds) whetherq is
a single variable, or some kind of vector describing several coordinates at once. The word “inde-
pendent” in the definition means that none of the numbers in our set of coordinates is redundent or
dependent of the others. That is we asume that the coordinates in the configuration are indepen-
dent in the sense that each can in independently changed, and each different set of values describes
something physically different. Given a set of values of the coordinates at some particular time,
we can figure out what the configuration is and thuswhat the system looks likeat that time. Thus
a configuration is just a mathematical snapshot of the system at a given time.

One way of describing the underlying problem of classical mechanics is that we want to under-
stand how the configuration of the system evolves with time. That is we want to put the snapshots
together into a mathematical movie to describe how the system moves.

Degrees of freedom — The number of independent components of the configurationq is called
the number ofdegrees of freedomof the mechanical system.

The number of degrees of freedom is the number of independent ways in which the system can
move. Here are some examples. A point mass sliding on an airtrack, described by only a single co-
ordinate, has one degree of freedom. We get more degrees of freedom if we go to more dimensions
or to more complicated objects.
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system coordinate # of DOFs

point mass on a track ` (distance along the track) 1

point mass on a flat surface (x, y) 2

point mass in 3-d ~r = (x, y, z) 3

rigid body in 3-d ~r of center + 3 angles 6

2 masses + massless spring ~r1 and~r2 6

2 masses + massive spring ~r1, ~r2 and spring “∞”

A continuous massive spring formally has an infinite number of degrees of freedom, because to
specify its configuration we would have to give a continuous function describing how much every
point on the spring is stretched. Really, of course, a physical spring has a finite but very large
number of degrees of freedom, because it is not actually continuous, but is made up of atoms. But
the difference between∞ and Avogadro’s number is often not very important.

This brings up an important philosophical point. What the heck is a “point” mass? What is a
“rigid” body? What is a “massless” spring? Most of you have probably been dealing with physics
problems for so long that you are used to these phrases. But it is important to remember that
these are mathematical idealizations. Real physical systems are complicated, and in fact, what we
choose forq may depend on what kind of physical questions we want to ask, what level of accuracy
we need in the answer, and even how long we want to study the system.

So for example, for a hockey puck sliding on the ice at the Boston Garden, we might decide
that the configuration is specified by giving thex and y coordinates that determine the puck’s
position in the plane of the ice. Thenq would stand for the two dimensional vector,(x, y). But
if we do this, we have ignored many details. For example, for a shot that comes off the ice, we
would need to include thez coordinate to describe the motion of the puck. For some purposes,
we would also need to include descriptions of the puck itself. For example, we have not included
an angular variable that would allow us to specify how the puck is turned about its vertical axis.
This is probably good enough for most problems. But sometimes, more information is required
to give a good description of the physics. For example, if we wanted to understand how a rapidly
rotating puck moves, we might need this more detailed information. We could also go on and
describe how the puck might deform when hit by the stick, and so on. We could include more and
more information until we got down to the level where we begin to see the molecular structure of
the rubber of the puck. At this point, we begin to see quantum mechanical effects, and classical
mechanics is no longer enough to give an accurate description.

The Art of Theoretical Physics

This is a good lesson. The coordinates that we use to describe the system may depend on what
kind of information we want to get out of our mechanical model of the system, and how accurately
we want our model to reproduce reality. We usually will not go over these niceties each time we
discuss a system, but they are important to remember. There is really a very important point here.
In physics courses, we frequently discuss “toy” systems which are obviously oversimplified, in
which we have clearly left out features that are important in the “real world.” This is not something
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to apologize for. This is precisely the art of theoretical physics. We work hard to abstract the
essential physics of a system, without including things that don’t matter at the level of description
that we are interested in. This down-to-earth ability to focus on the crucial parameters is far more
important than fancy mathematical gymnastics.

In fact, I believe, getting better at this art is one of the most useful things you can get out of
this course. It is generally useful far beyond this or future physics courses. The ability to build
mathematical models of phenomena is crucial to many fields. But models can be as misleading as
they can be useful unless they focus on the right parameters, and unless the modeler is aware of the
model’s limitations. Physics is the paradigm for this kind of thinking. This is one of the reasons
why, over the years, trained physicists have been so much in demand in very different fields.

Motion, trajectories and F = m a

Trajectory — A trajectory is a possiblemotion of a physical system.

We describe a trajectory by giving the value,q(t) of the coordinates of the system as a function
of time. There are an infinite number of possible trajectories for any interesting physical system
(that is, unless everything is nailed down and completely fixed). Our everyday experience tells us
that knowing the configuration of the system at some time is not enough information to allow us
to calculate the trajectory. A snapshot doesn’t tell us how the system is moving. We also need to
know the velocity of the system — the derivative ofq with respect to time. We will sometimes use
the notation of a dot over an object to represent a time derivative:

q̇(t) ≡ d

dt
q(t) . (1)

If q describes more than one coordinate, thenq̇ describes the same number of independent veloci-
ties - but we will continue to call̇q the velocity, even if it has multiple components. Ifq is a vector,
q̇ is the same kind of vector. For the hockey puck,

q = (x, y) , q̇ = (ẋ, ẏ) . (2)

Then we can say that if we knowq and q̇ at a particular time, we should be able to calculate the
trajectory. For example, if we know where the hockey puck is and how fast and in what direction it
is moving, we can plot its trajectory by just assuming that it continues to move at a constant speed
along the line determined by its position and velocity.

Something important has happened. I have snuck in one of the critical assumptions of mechan-
ics. Let me say it with the formality it deserves.

A — The trajectory, or subsequent motion, of a mechanical system is com-
pletely determined if we know the configuration,q and the velocity, q̇ at some
given time.

(3)

Because the number of components ofq and of q̇ are both equal to the number of degrees of
freedom, this means that we have to specifytwo constants per degree of freedomin order to
specify how the system moves. This is a biggie. We will come back to this again and again, as you
will see.
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One of the central problems of mechanics is to calculate what these trajectories are for various
systems — that is to say, to figure out how things move. To begin, let us think about what this
process is like for a system specified by a single coordinate,x. Newton tells us that to figure out
how x changes as a function of time, we define our coordinates in an appropriate inertial frame
(we’ll talk much more about what this means later) and use his second law

F = m a (4)

whereF is the force on the object,m is its mass, anda is its acceleration (also sometimes written
asẍ — one dot for each time derivative)

a ≡ d2

dt2
x ≡ ẍ (5)

We will have much more to say about mass, but for now, we will just assume thatm is a fixed
property of the object. The force,F , is more complicated. In general,F will depend on what the
system is doing. Since we have already assumed that all we need to know about the system at a
given time isq and q̇, in this casex and ẋ, all F can depend on isq, q̇ andt. So in general,F
at timet is some function ofx andẋ, at that same time, andt, F

(
x(t), ẋ(t), t

)
. Then Newton’s

second law becomes a formula for the acceleration:

ẍ =
1

m
F (x, ẋ, t) (6)

Note that in general, in Newton’s second law, the force is a function of all three variables,x,
ẋ, andt. Because of things like this, we will often have to discuss the calculus of functions of
several variables. I realize that some of you are just beginning to study this subject formally in
math courses. In general, in this course, I will often make use of mathematics that many of you
have not seen. We won’t be using any deep properties of the subject, just things that you would
guess immediately from your knowledge of calculus of a single variable, vectors, and algebra. The
proofs can wait until (or if) you take the appropriate math course. The important thing is that you
try to understand the physics, and not faint when unfamiliar mathematics is thrown at you.

F = ma⇔ two initial conditions/degree of freedom

Now the first deep question I want to address is this: Why should the fundamental law of me-
chanics (which Newton’s second law certainly is) be a formula for acceleration? A partial answer
comes from the mathematics. A formula like (6) is called asecond order differential equation
because it involves a second derivative but no higher derivatives. Our mathematician friends tell
us that a second order differential equation forx has in general an infinite number of solutions,
which can be labeled by the values ofx andẋ at some given time. These conditions that specify
the solution are sometimes called theinitial conditions , and this is certainly appropriate for the
physics applications we have in mind. Once we specify the initial conditions, the initial position
and velocity, the solution of the differential equation, which is the trajectory, is completely spec-
ified. This means that if the fundamental law is a second order differential equation, like (6), the
mathematics guarantees that assumptionA is satisfied. Thus we have shown thatF = ma implies
A. This is a good thing.
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In general, I am not so interested in proofs in this course, at least not in the mathematical sense.
However, in the notes, and in lecture if I have time, I will give a “physicst’s proof” that the solution
of a second order differential equation is specified byq andq̇.

Here is a simple and probably very familiar example. Suppose that the force is constant,

F (x, ẋ, t) = F0 = m a = m
d2

dt2
x = m ẍ (7)

The solution forx(t) can be written in terms ofx andẋ at t = 0 as

x(t) =
F0

2m
t2 + ẋ(0) t + x(0) (8)

We will see one general way of getting this result later. But is easy to check that (6) is satisfied by
computing the second derivative.

ẋ(t) =
F0

m
t + ẋ(0) (9)

ẍ(t) =
F0

m
(10)

This shows that thet2 term is right. You can check that the other terms in (8) are correct by setting
t = 0 in (8) and (9).

The latest version of Mathematica has a fantastic function that allows you to input initial con-
ditions in real time. Check out the notebooklecture-1-1.nb.

There is nothing special aboutt = 0. We could just as well write the solution in terms of the
position and velocity at some arbitrary timet0, as

x(t) =
F0

2m
(t− t0)

2 + ẋ(t0) (t− t0) + x(t0) (11)

I hope that I have convinced you thatF = ma implies two initial conditions/degree of freedom.
That doesn’t mean that Newton’s second law is equivalent toA because we haven’t show that any
system that requires two initial conditions/degree of freedom satisfiesF = ma. But there is a
mathematical sense it which this true at least for one degree of freedom. I am not going to talk
about this in lecture, because the argument is a slightly intricate exercise in multivariable calculus.
But it may be fun for those of you who like that sort of thing, so I have included it as an appendix
to the lecture notes.

What have we really learned from this mathematical philosophy? I have argued that Newton’s
second law is actually equivalent to assumptionA— each implies the other. Of course, we haven’t
really understood whyF is equal toma, because we still don’t know why assumptionA is true.

That leads naturally to another question. MustA be true for some reason? Can we imagine a
world very different from our own in which it is not? Actually, I don’t thinkA must be true. In
fact, I don’t really think it is true. Like most of the things we teach as “physical laws”, it is only an
approximation to what is really going on. We will come back to this much later. But this is a nice
example of the kind of thinking that we will be doing a lot of in this course.
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Should you take Physics 16?

Because this is the first day of the class, you are all full of adrenaline and are paying close attention
to every word I say. But normally, at about this point in a 1.5 hour lecture, you would all be
falling asleep and would need a little something to perk you up. This is where we normally put
a miniexam, a small problem that you work on with a random group of other students. Since we
haven’t done enough yet to warrant a miniexam, I thought that instead, I would say a bit about the
course, and then see whether you have any questions and maybe ask you some questions myself.
There is a lot more detailed information on the information sheet on the web page. I work hard to
keep it updated, so please read it carefully.

Presumably you are all here because you have good preparation in physics and math and you
are afraid that Physics 15a would be boring. The first thing to say is that Physics 15a would
probably not be boring. It is a good rigorous course, and almost all of you would learn something.
However, for many of you, Physics 16 may be more fun.

As you may have guessed from what has happened so far, I will spend a lot less time on statics,
assuming you already know about adding up vector forces and torques on objects that are not
moving. We have already started looking at things moving around. In equations, I won’t spend
time thinking about~F = 0. We are going right to~F = m~a.

This will give us some time to do cool things that are not done in a good conventional college
physics course like Physics 15a, including the following:

1. linearity and normal modes

2. Lagrangian mechanics and Noether’s theorem

3. relativistic strings

4. the moment of inertia tensor

5. inflation before the big bang, dark matter and dark energy

We won’t explore any of these ideas in the depth that they deserve. For that you will have to take
more advanced physics courses. But neither will we look at them qualitatively or superficially.
From each of these subjects, we will try to extract some beautiful and important pieces that we can
analyze honestly and in detail.

I would make one request. Don’t take 16 because you think that it is going to be hard for you
and you want a challenge. And don’t drop it because you think it is going to be hard for you and
you don’t want a challenge. In fact, Physics 16 is in many ways a very humane course. We will
do civilized things like having a take-home component of our exams so that we can correct for
problems that some people have with time pressure on exams. And while the material is hard,
as long as you get the help that we are eager to give you, the work is really not very different
from that in 15a. For some of you it may take a little more time, so as I say at the end of the
information sheet, it is important to think about it in the context of your whole schedule, curricular
and extracurricular.
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Finding trajectories numerically

If you are given a complicated force law, depending (for one degree of freedom) onx, ẋ andt, you
will usually not be able to solve for the trajectories in terms of known functions. However, you
can always find them by brute force, solvingF = ma numerically. One simple way to do this is
to make small time steps and use the most important formula in Physics — the Taylor expansion.
Suppose that you are given the initial conditions,x(t0) and ẋ(t0). Then you can findx and ẋ
approximately for a slightly later time,t0 + ∆t, by Taylor expanding the functionx(t0 + ∆t)
aroundt0. The Taylor expansion looks like this:

x(t0 + ∆t) = x(t0) + ∆t ẋ(t0) + · · · (12)

where the· · · are terms with more powers of∆t. I love the Taylor expansion, and we are going
to come back to it many times in the course, and later we will talk about the higher order term.
But here, these can be ignored if∆t is sufficiently small. This first term in the Taylor expansion is
nothing more than the definition of the derivative:

x(t0 + ∆t) = x(t0) + ∆t ẋ(t0) + · · · ⇔ ẋ(t0) =
x(t0 + ∆t)− x(t0)

∆t
+ · · · (13)

How does this help us findx(t). This is fine as far as it goes, because we are given the initial
conditions forx(t0) andẋ(t0). But what we would like to do is to be able to iterate this procedure
and findx(t0 + n∆t) which would mean that we could findx(t) (at least approximately) at a
whole sequence of future times. And in the next step we have a problem because we don’t know
ẋ(t0 + ∆t) from the initial conditions. But now the key point is that we can also keep track ofẋ

ẋ(t0 + ∆t) = ẋ(t0) + ∆t ẍ(t0) + · · · (14)

And we knowẍ(t0) from F = ma:

ẍ(t0) = a(t0) =
1

m
F (x(t0), ẋ(t0), t0) (15)

You can always do this forF = m a. Given x and ẋ at some timet0, you can always findx
and ẋ for an infinitesimally later time, t0 + ∆t.

Now that you knowx andẋ for the later timet0+∆t, you can apply exactly the same procedure
again and compute them fort0 + 2∆t.

Then do it again and getx andẋ for t0 + 3∆t.
And so on!
This kind of iterative procedure is ideal for a computer — the computer just has to do the

same things over and over again to construct the approximate trajectory. And if you want your
approximation to be more accurate, you just have to make∆t smaller, so that the· · · that you
throw away in (12) and (14) are smaller. If you are doing this on a computer, it doesn’t matter
how complicated the functionF is. If we have time, we will play with theMathematicanotebook
lecture-1-2.nbwhere is process is carried out for some simple and not so simple force laws.

But sometimes, it is nice to have analytic expressions for the trajectories. You may be able
to find such things if the force is a simple enough function. For the rest of this lecture and on
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Thursday, we will give examples in which this can be done, both in general, using integration, and
in specific cases where the integrals can be done analytically.

Meanwhile, notice that the analysis we have just given really is a “physicist’s proof” of the
statement that a second order differential equation has a solution that is fixed when we knowq and
q̇ at some time. We have “proved” this by actually constructing the solution! This is the best kind
of proof for a physicist — one that not only tells you that the solution exists, but actually shows
you how to find it. Of course this would never satisfy a mathematician — too many loose ends?

But note that we can “prove” the general theorem this way — that ann-th order differential
equation requiresn initial conditions. Because our original equation was a second order differential
equation, we had to keep track of bothx(t) andẋ(t) while we take our small time steps. In a first
order differential equation, we would only have had to keep track ofx(t), because the differential
equation would tell uṡx(t) directly in terms ofx(t). Then we need only one initial condition. In
a third order differential equation, we would have to keep track ofx(t), ẋ(t) andẍ(t), because the
differential equation only tells us the third derivative. Then we would need three initial conditions.
And so on.

Forces of the formF (t)

The big general principle of mechanics that we have talked about today is that we need two initial
conditions per degree of freedom to specify how a system moves. Staple this in your brains. This
is something we will come back to and will try to understand better. But now and next time we
will spend a bit of time discussing some examples of the different ways these initial conditions can
appear. There are more in Chapter 2 of Dave Morin’s book. Depending on how we are doing on
time, I may move this discussion to the next lecture.

The simplest and least interesting example of a force law in which the trajectories can be found
formally using integration is a force depending only ont, not onx or ẋ. In this case, we can simply
use the fundamental theorem of integral calculus. The acceleration is the time derivative of the
velocity, so we can writeF = ma in this case as

a(t) =
d

dt
v(t) =

1

m
F (t) (16)

The fundamental theorem tells us that the general solution to (16) can be written as1

v(t) =
∫ t

t0

1

m
F (t′) dt′ + constant (17)

There are a number of things to note about (17):

1. We can easily verify that it works, because if we differentiate the left hand side with re-
spect tot, we just get the acceleration,a(t). On the right hand side, integral calculus tells

1Note thatt′ here is a dummy variable. We will discuss dummy variables in more detail below, but there is a
possible notational confusion. The symbolt′ does not mean “the derivative oft” but is just a symbol for a new
independent variable. We could have called its instead, but Dave’s book uses thet′ notation in this way, so I am trying
to do it in lecture as well. You will have keep your wits about you to figure out what is going on, but you can almost
always tell from the context. If a′ appears on a function, it is a derivative. If the′ appears on a variable, it is a new
variable. Thusf ′(x) means the derivative with respect tox of the functionf(x), but f(x′) means the functionf of
the variablex′ andf ′(x′) means the derivative with respect to the variablex′ of the functionf(x′).

9



us that differentiating the integral with respect tot gives the integrand evaluated att, and
differentiating the constant gives zero, so we get

a(t) =
1

m
F (t) (18)

which isF = ma.

2. We need to invent a new symbol for the argument of the integrand, because the previous
argument only works if the time dependence appears only as the upper limit of the integral,
so we have just put a prime ont. Thedt′ in (17) identifies the variablet′ as a completely
independent “dummy” variable. It is a “dummy” because in the expression (17), it doesn’t
have any particular value. It is just a symbol to indicate exactly what integral we are doing.
This is simple but important. It has a number of consequences. Nothing depends on a dummy
variable. For example in (17) ∫ t

t0

1

m
F (t′) dt′ (19)

we could just have well used some other symbol inside the integral:∫ t

t0

1

m
F (t′) dt′ =

∫ t

t0

1

m
F (s) ds =

∫ t

t0

1

m
F (α) dα (20)

A particularly important consequence of this is thatyou should never ever write an equa-
tion like

A(t) =
∫ t

t0
B(t) dt (21)

This doesn’t make sense because the variablet in (21) appears in two ways — as a real
variable and as a dummy variable — and it can’t be both.Thus (21) doesn’t mean anything
at all, and if we see it on one of your problem sets or tests we will deal sternly with it!

Also, the integral ∫ t

t0
B(t) dt′ (22)

is not the same as ∫ t

t0
B(t′) dt′ . (23)

Both of these expressions are sensible, they are just not the same. In fact, we can do the first
integral explicity because the integrandB(t) doesn’t depend on the integration variable, the
dummy variablet′, we can take it outside the integral and write -∫ t

t0
B(t) dt′ = B(t)

∫ t

t0
dt′ = (t− t0) B(t) . (24)

3. The integral needs some lower limit, and we have called thist0, expecting it to have some-
thing to do with the initial conditions.
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4. Finally, (17) appears to depend on botht0 and the unknown constant. But we can determine
the constant by just settingt = t0, which gives

v(t0) =
∫ t0

t0

1

m
F (t′) dt′ + constant (25)

The integral vanishes here because the range of integration is zero, so we know that

constant= v(t0) = ẋ(t0) . (26)

We sometimes call the initial conditioṅx(t0) an integration constant because of the way it
appears in (25).

Putting (26) back into (17) gives the final result for the velocity,

v(t) =
∫ t

t0

1

m
F (t′) dt′ + v(t0) (27)

Another way to think about the result (27) is from the following chain (really just going back-
wards through the same argument):

∫ t

t0

1

m
F (t′) dt′ =

∫ t

t0
a(t′) dt′ =

∫ t

t0

(
d

dt′ v(t′)

)
dt′ = v(t)− v(t0) (28)

which is equivalent to (27).
Now that we knowv(t) as a function oft (at least formally, in terms of an integral), we can

find x(t) by just repeating the procedure. Butv is the time derivative ofx, we can write

x(t) =
∫ t

t0
v(t′) dt′ + x(t0) (29)

where again, the initial condition appears as an integration constant. Then we can put (27) into
(29) to get

x(t) =
∫ t

t0

v(t′)︷ ︸︸ ︷[∫ t′

t0

1

m
F (t′′) dt′′ + v(t0)

]
dt′ + x(t0) (30)

Note the new variable of integration, again to keep from getting the integration variable confused
with the range of integration. Finally, we can do the integral for the term proportional tov(t0),
because it is just a constant, and get the result

x(t) =
∫ t

t0

∫ t′

t0

1

m
F (t′′) dt′′ dt′ + v(t0)(t− t0) + x(t0) (31)

The terms in (31) are easy to understand. The last term is where the object started — the initial
condition for the position. The middle term describes motion with constant velocityv(t0), which
is what the object would be doing if there were no force on it. And the first term is the effect of
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the force. Notice that (31) is valid for a constant forceF (t) = F0 (a constant is just a particularly
simple function oft). And sure enough, we can do the integral in that case and get (11).

x(t) =
∫ t

t0

∫ t′

t0

1

m
F (t′′) dt′′ dt′ + v(t0)(t− t0) + x(t0)

=
∫ t

t0

∫ t′

t0

F0

m
dt′′ dt′ + v(t0)(t− t0) + x(t0)

=
∫ t

t0

F0

m
(t′ − t0) dt′ + v(t0)(t− t0) + x(t0)

=
F0

2m
(t− t0)

2 + v(t0)(t− t0) + x(t0)

(32)

A A Implies F = ma

I am not going to talk about this in class, but here is a little mathematical appendix for those of you
who are interested. At least for a single degree of freedom, assumptionA actually implies, under
very mild assumptions, the existence of a second order differential equation like Newton’s second
law for the trajectories.

To see this, let us restateA in mathematics. Suppose that a system has one degree of freedom
so that the configuration of the system is given by the value of a single variablex (it won’t matter,
but it makes the language simpler to talk about only a single coordinate). SinceA is the statement
that the trajectory is determined byx andẋ at some given time, call the “given time”t0, thenA
implies that we can write any possible trajectoryx(t) as a function of four variables:t (of course);
the timet0 at which we specifyx andẋ; and of the “initial” valuesx(t0) = x0 andẋ(t0) = v0. A
is just the statement that such a function exists. Since it exists, we can give it a nameG and write
the statementA in mathematics as

A ⇔ x(t) = G
(
x0, v0, t0, t

)
(33)

Furthermore, because we can specifyx andẋ at any time we choose. We can use anyt0 in (33)
and get the same trajectory so long as we takex0 andv0 to be the values of the position and the
velocity on that trajectory at the timet0. This functionG contains everything about all possible
motions of the system!

The mild assumption we need to getF = ma from this is a smoothness assumption. We must
assume we can differentiate our functionx(t) with respect to time. Obviously, if we can’t do this,
we have no hope of getting to Newton. This assumption is really very mild.

Now here is the basic idea. Because of the meaning of the initial conditions, we can put
x0 = x(t0) andv0 = ẋ(t0) into (33) and rewrite it as

x(t) = G
(
x(t0), ẋ(t0), t0, t

)
(34)

This is a peculiar equation, because the trajectoryx(t) appears on both sides, on one side inside
the functionG. Because of this, the equation is telling us something about the functionx that
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describes the trajectory. It is still more complicated than it has to be though, because it involves
two different times,t andt0. But the other peculiar thing is that the right hand side of (34) must be
completely independent oft0, becauset0 doesn’t appear on the left had side at all. We can use this
to get information on the trajectory that only depends on a single time. In particular, now we can
start differentiating both sides of the equation with respect tot and afterwards, settingt0 equal to
t to get an equation that only depends on the the trajectory and its derivatives at a single time. We
will see that differentiating zero or one time doesn’t give us anything interesting - just tautologies.
But differentiating twice is interesting.

So here goes. First we sett0 → t in (34).

x(t) = G
(
x(t), ẋ(t), t, t

)
(35)

This is a tautology, because we can use the timet as the initial time to specify the trajectory, and
this just says that the particle is where it is supposed to be at timet. To put it another way, if I
change all thets tot0 in (35),

x(t0) = G
(
x(t0), ẋ(t0), t0, t0

)
= G

(
x(t0), ẋ(t0), t0, t

)∣∣∣
t=t0

= x(t)|t=t0
(36)

this is just the statement of the initial condition forx(t0).
Likewise, differentiating once with respect tot gives us nothing new.

ẋ(t) =
∂

∂t
G
(
x(t0), ẋ(t0), t0, t

)
=

∂

∂t
G
(
x(t0), ẋ(t0), t0, t

)∣∣∣
t0=t

(37)

Again we can sett0 → t because the left hand side doesn’t depend ont0. The equation (37) just
says that the particle is going as fast as it should be going at timet.

ẋ(t0) =
∂

∂t
G
(
x(t0), ẋ(t0), t0, t0

)
=

∂

∂t
G
(
x(t0), ẋ(t0), t0, t

)∣∣∣
t=t0

=
∂

∂t
x(t)|t=t0

(38)

But differentiating twice with respect tot gives us a second order differential equation that the
trajectory must satisfy. And this is Newton’s second law.

ẍ(t) =
∂2

∂t2
G
(
x(t0), ẋ(t0), t0, t

)
=

∂2

∂t2
G
(
x(t0), ẋ(t0), t0, t

)∣∣∣
t0=t

(39)

The right hand side of (39) is just some function ofx(t), ẋ(t) andt. Thus as promised, is a second
order differential equation forx(t). This is justF = ma with

F (x(t), ẋ(t), t) = m
∂2

∂t2
G
(
x(t0), ẋ(t0), t0, t

)∣∣∣
t0=t

(40)

From the function that is the mathematical description of the assumptionA that the trajectory is
determined by an initial position and velocity, we can find the force that makesF = ma work.
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lecture 2

Topics:
Where are we?
Forces of the formF (v)
Example:F (v) = −m Γ v
Another example:F (v) = −mβ v |v|
Review of the harmonic oscillator
Linearity and Time Translation Invariance
Back toF (v) = −m Γ v
Appendix - cross products - preview

Where are we?

Last time, we discussed Newton’s second law —F = ma. I tried to convince you that this is
essentially equivalent to the statement that the motion of any given classical mechanical system
is determined by a set ofinitial conditions , the values of the coordinates which specify its con-
figuration, and their first derivatives at any given time. I also suggested that this is a very deep
and interesting fact about the world, and promised that we would come back to it at the end of the
course and give at least a provisional explanation of it.

We also discussed how to solve for the motion of a system numerically by keeping track ofq
andq̇ as functions of time, and using the Taylor expansion andF = ma to calculate approximately
how they change in a small time step∆t. By putting together many small time steps, we can trace
out the trajectory of the system. This procedure works for any any number of degrees of freedom,
and it should convince you that in principle, giving a second order differential equation for the
configuration of a classical does just what expect - it determines the trajectory in terms a set of two
initial conditions per degree of freedom.

In a sense, our numerical analysis completely solves the problem - at least least your computer
can construct the solution to any problem. But for us people, it is nice to have analytic solutions that
we can use to develop our intuition. So we also talked about systems with one degree of freedom
in which the force depends only on time. In this VERY special case, we found that we could write
down the formal solution simply by integration. Then if the integral can be done analytically, we
get a completely analytic solution. We will go over this again quickly in lecture because we didn’t
get to talk about it last time.

Today, we will give some more examples of very special systems in which we can do more
than just solving numerically. In some sense, I will just be showing you a collection of dirty tricks,
because it is only in very special cases that they work. But more generally, today’s lecture should
be regarded as a bunch of examples of the different ways in which initial conditions can enter into
the solutions of classical mechanics problems. We always need two initial conditions per degree
of freedom. But they appear in the actual trajectories in many different ways. In fact, I have
something else in mind as well. At the end, when we come to discuss the harmonic oscillator, we
will see that there are some very important general principles at work. These will be very useful,
and we will come back to them many times.
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Forces of the formF (v)

Formally, it is almost as easy to solve for the trajectory for a system of one degree of freedom
in which the force depends only onv as for a force that depends only ont. For a forceF (v)
depending only onv, we writeF = ma as

m
dv

dt
= F (v) (1)

We can rewrite this as

dt =
m

F (v)

dv

dt
dt (2)

which we can simplify just by integration. Again we have to remember that the integration vari-
ables must be distinguished from the ranges of integration. Again I will use the notation in Morin’s
book and just put primes on them. Putting in all the steps very formally, we get

∫ t

t0
dt′ = t− t0 =

∫ t

t0

m

F (v′)
dv′

dt′
dt′ =

∫ v(t)

v(t0)

m

F (v′)
dv′ (3)

The last step is a change of variable in the integration fromt′ to v′ = v(t′). A quick and dirty way
of getting to (3) is to write

dt =
m

F (v)
dv (4)

and integrate both sides.1 This is a perfectly good way of looking at it. The equation (4) describes
how a small change int is related to the small change inv that takes place during the small change
in t. Integration adds the small changes up.

Equation (3) implicitly determinesv(t) in terms oft − t0 and the initial conditionv(t0). And
once we knowv(t), we can integrate to get the trajectoryx(t) (using the initial conditionx(t0) as
usual).

Let’s see how this works in an important example, describing a frictional force.

Example: F (v) = −β v = −m Γ v

If an object moves very slowly through a thick gas or a liquid, there is almost always a frictional
force approximately proportional to the velocity (and in the opposite direction). What “slowly”
means depends on the size of the object and the viscosity of the stuff it is moving through. We will
come back later in the lecture to why this force should exist. For now, let’s see how (3) works for
such force, which we can take to have the form2

F (v) = −β v = −m Γ v (5)

(3) becomes ∫ t

t0
dt′ = −

∫ v(t)

v(t0)

1

Γ v′
dv′ (6)

1When we do that, we must turn them into dummy variables, which we do, as usual, by putting primes on the.
2The factor ofm is just there to make the units of the constantΓ simpler. It makes thems cancel in (3). Physically,

the factor doesn’t really make any sense, because the frictional force on an object just depends on its size, shape and
surface properties — not on its mass. But of course the essential physics doesn’t change when you leave out them
and write things in terms ofβ - the formulas just look a bit more complicated.
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This looks nicer if we put theΓ on the other side

Γ
∫ t

t0
dt′ = −

∫ v(t)

v(t0)

1

v′
dv′ (7)

or
Γ (t− t0) = − ln v(t) + ln v(t0) (8)

or
ln v(t) = ln v(t0)− Γ (t− t0) (9)

or
eln v(t) = eln v(t0)−Γ (t−t0) (10)

or
v(t) = v(t0) e−Γ (t−t0) (11)

This makes sense. The constantΓ has units of1/T , so the exponent is dimensionless, as it should
be. Thus the units work in (11). We can also check this in the limitΓ → 0. In this limit, where
the frictional force disappears, the velocity goes to a constant, as it should. For nonzeroΓ, the
frictional force causes the velocity to gradually drop off. Because the force is proportional tov,
the drop-off gets slower and slower as the velocity gets smaller, in this case, exponentially. A plot
of the velocity (in units ofv0) as a function of time (in units of1/Γ) has an exponential shape that
I hope is familiar:

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

↑
v(t)

v(t0)

Γ (t− t0) →
Now let’s computex(t) by integrating (11).

x(t) = x(t0) +
∫ t

t0
v(t′) dt′ = x(t0) +

∫ t

t0
v(t0) e−Γ (t′−t0) dt′ (12)

Doing the integral is easier if we substitute

u = e−Γ (t′−t0) du = −Γ e−Γ (t′−t0) dt′ (13)
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we get

x(t) = x(t0)− v(t0)

Γ

∫ e−Γ (t−t0)

1
du (14)

which gives

x(t) = x(t0) +
v(t0)

Γ

(
1− e−Γ (t−t0)

)
(15)

Note that the object moves a finite distance,v(t0)/Γ, in infinite time. The distance traveled looks
like this, where for comparison, I have included the linear extrapolation of the initial velocity.

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

↑
x(t)− x(t0)

v(t0)/Γ

Γ (t− t0) →
As usual, it is really really fun to play with this in withMathematica. Check outlecture-2-1.nb
included with the lecture notes.

In Dave Morin’s book, he works out a slightly more interesting example in which there is also
a constant component of the force. This is relevant to objects falling in a gravitational field and
also subject to friction. If the force looks likeF (v) = F0 − m Γ v, the velocity as a function of
time is

v(t) = v(t0) e−Γ (t−t0) +
F0

m Γ

(
1− e−Γ (t−t0)

)
(16)

One interesting thing about this is thatv(∞) = F0

m Γ
independent ofv0. Whatever the initial condi-
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tions,v approaches the same “terminal” velocity, as illustrated in the graph below:

0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

↑
v(t)

F0/mΓ

Γ (t− t0) →

v0 > F0

mΓ

v0 < F0

mΓ

If Γ is very large, this gives a kind of Aristotelian physics.When you push on something, it
moves with a velocity proportional to the force. If Γ is large enough, you might not notice that
it takes a little time (1/Γ) to settle down to this terminal velocity.

Another example: F (v) = −mβ v |v|
If an object moves rapidly through a gas, there is a frictional force proportional tov |v|. The funny
form of the force with absolute value,|v|, is something that you will explore on the problem set,
so I won’t talk about it now. I will just assume thatv > 0 so thatv |v| → v2. The force arises
because the object knocks the gas molecules out of the way, and the force is proportional both to
momentum change of the knocked molecules (which contributes a factor of−v to the force) and to
the number of molecules that are knocked per unit time (a factor of|v|). Now let’s begin the same
analysis for such a force, of the form

F (v) = −mβ v2 (17)

Now (3) becomes ∫ t

t0
dt′ = −

∫ v(t)

v(t0)

1

β v′ 2
dv′ (18)

This looks nicer if we put theβ on the other side

β
∫ t

t0
dt′ = −

∫ v(t)

v(t0)

1

v′ 2
dv′ (19)

or

β (t− t0) =
1

v(t)
− 1

v(t0)
(20)

or
1

v(t)
=

1

v(t0)
+ β (t− t0) =

1

v(t0)
+

β v(t0) (t− t0)

v(t0)
=

1 + β v(t0) (t− t0)

v(t0)
(21)
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or

v(t) =
v(t0)

1 + β v(t0) (t− t0)
(22)

This looks a bit different from the exponential.

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

↑
v(t)

v(t0)

β v(t0) (t− t0) →
Compared to an exponential that initially falls at the same rate, this one falls off more slowly later,
because the the frictional force gets smaller faster as the velocity decreases.

0 1 2 3 4 5
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0.6
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1.0

↑
v(t)

v(t0)

Γ (t− t0) or β v(t0) (t− t0) →
I won’t work out the details here, but you can now integrate this again to get the position as a

function of time:

x(t) = x(t0) +
1

β
log

(
1 + β v(t0) (t− t0)

)
(23)

Again, we can uselecture-2-1.nbon theMathematicapage to see what this looks like.
I did another example basically just to show how differently the initial condition (the value

of v(t0) in this case) comes into to the final result in different cases [compare (22) and (23) with
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(11) and (15)]. The trajectories always depend on two initial conditions, but what that dependence
looks like depends on the form of the force. You have to think and keep your wits about you — if
you try to remember formulas for all the different possible force laws, you will just get confused.
Instead concentrate on understanding the derivations! But nevertheless the matra —two initial
conditions per degree of freedomwill be a useful check that you are doing sensible things.

Review of the harmonic oscillator

Dave Morin talks about forces of the formF (x) in his chapter 3, which are reading. But I am
going to postpone a general discussion of until after the problem set. The general treatment of
these forces is essentially just an application of the principle of conservation of energy, so it makes
sense to wait until we talk about energy. Instead, we will review the simplest example of such a
force - the harmonic oscillator with

F (x) = −K x . (24)

There is another good reason for thinking about this. In general, if the force depends on bothx
andv (or x, v andt), things are much harder. But by cleverly adding damping and driving to the
harmonic oscillator, (24), we can include bothx andv dependence, andt dependence as well, and
still say interesting things rather simply. We will talk about this starting next time.

The harmonic oscillator is a very important mechanical system. We will start today at the
beginning but will go on to try to explain why it is important. The simplest example of a harmonic
oscillator is a mass attached to a spring, shown here sitting on a surface, which I will assume is
frictionless.
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(25)

There is an equilibrium position in which the spring is neither stretched nor compressed. In
equilibrium, the spring produces no force on the mass. If the mass moves so that the spring is not
in equilibrium, the spring exerts a force on the mass that tends to move it back to equilibrium. If
the mass is released from out of equilibrium, it accelerates towards the equilibrium position. When
it gets to the equilibrium position, the force goes to zero, but it is moving, so inertia keeps it going
to the other side of equilibrium. This is the classic recipe for oscillation.

But so far, this is just oscillation. What makes this a harmonic oscillator is the special force law
of the ideal “Hooke’s Law” spring, in which the force is proportional to minus the displacement
from equilibrium. If the block moves in thex direction, and we choose a coordinate system in
whichx = 0 at equilibrium, then the force on the block looks like

F = −K x (26)

whereK is called the spring constant. The larger the spring constant, the stiffer the spring.
Now Newton says

F = ma = m
d2

dt2
x = m ẍ = −K x (27)
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You probably know that the general solution to the second order differential equation (27) is

x(t) = a cos ωt + b sin ωt (28)

where

ω ≡
√

K

m
(29)

If you don’t know this by heart, that is fine. Next time we will learn how to solve such things in
general in a very easy way. But meanwhile it is always possible to check that our solution works
even if we don’t know where it comes from. Differentiating (28) twice gives

ẋ(t) = −aω sin ωt + bω cos ωt (30)

ẍ(t) = −aω2 cos ωt− bω2 sin ωt = −ω2(a cos ωt + b sin ωt) = −ω2 x(t) (31)

so that

m ẍ(t) = −mω2 x(t) = −m
K

m
x(t) = −K x(t) (32)

The constantω is called theangular frequency. It is fixed by the physics - the values of the
mass and the spring constant. But as we expected because we need two initial conditions/degree of
freedom, there are an infinite number of possible trajectories, labeled by two constants, herea and
b. Again as expected, we can determinea andb by imposing initial conditions. The details of the
way the constants enter are different here than in our previous examples, but at least the number of
initial conditions is right — two constants for one degree of freedom. Settingt = 0 in (28) gives

x(0) = a cos 0 + b sin 0 = a (33)

Thusa is the position of the mass att = 0. Settingt = 0 in (30) gives

v(0) = ẋ(0) = −aω sin 0 + bω cos 0 = bω (34)

Thusbω is the velocity of the mass att = 0. Thus we can rewrite (28) as

x(t) = x(0) cos ωt +
v(0)

ω
sin ωt (35)

As we will discuss in more detail later, we can easily adapt (35) to use the initial conditions at any
time t = t0 as follows:

x(t) = x(t0) cos
[
ω(t− t0)

]
+

v(t0)

ω
sin

[
ω(t− t0)

]
(36)

This comes alive inlecture-2-2.nbon theMathematicapage.
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It is interesting to collect the various examples we have discussed in one table.

Force trajectoryx(t)

F0 ⇒ x(t0) + v(t0) (t− t0) +
F0

2m
(t− t0)

2

−m Γ v ⇒ x(t0) +
v(t0)

Γ

(
1− e−Γ (t−t0)

)

−mβ v2 ⇒ x(t0) +
1

β
log

(
1 + β v(t0) (t− t0)

)

−mω2 x ⇒ x(t0) cos
[
ω(t− t0)

]
+

v(t0)

ω
sin

[
ω(t− t0)

]

(37)

What I think is interesting about this is that it shows very clearly that while each of these force
laws requires two initial conditions, which we can take to be the position and velocity at the time
t0, the way in which these two constants appear differs dramatically from one force law to another.
This is an important lesson. There are always two initial conditions per degree of freedom, the way
the initial conditions appear in the trajectory depends on the force law.

There is a very different way of writing the solution (28). Using (I hope familiar) trigonometric
identities, we can write, with

t0 = 0 a ≡ x(0) b ≡ v(0)/ω (38)

x(t) = a cos ωt + b sin ωt = c cos(ωt− φ) (39)

= c (cos ωt cos φ + sin ωt sin φ) (40)

= c cos φ cos ωt + c sin φ sin ωt (41)

a = c cos φ b = c sin φ (42)

c =
√

a2 + b2 φ = arctan
b

a
(43)

The constantc is called theamplitude of the motion andφ is the phase of the oscillation. (40)-(43)
show that the two constantsc andφ carry the same information as the two constantsa andb. Both
pairs are determined by the initial conditions and either pair completely determines the trajectory.
The connection between these constants and the trajectory is illustrated in (44), a graph of the
trajectoryx(t) versust.
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Because thesin andcos functions are periodic with period2π,

x(t + 2π/ω) = c cos [ω(t + 2π/ω)− φ] = c cos(ωt− φ + 2π) = c cos(ωt− φ) = x(t) (45)

and thus the motion repeats after a time

τ = 2π/ω which is called “the period of the oscillation.” (46)

The frequency (as opposed to the angular frequency) is

ν =
ω

2π
=

1

τ
(47)

The productωt — the argument ofsin andcos is an angle.

Note that ν has units
cycles

sec
and ω has units

radians
sec

. (48)

These are really the same units in the sense of dimensional analysis because2π is dimensionless,
but thinking about the units as stated in (48) will help you remember the factor of2π which is just
the conversion factor between radians and cycles. It will make even more sense soon when we
make the connection between harmonic oscillation and uniform circular motion.

So what is it that is special about harmonic oscillation? — two general principles —

Linearity and Time Translation Invariance

Harmonic oscillation occurs almost everywhere. There are lots of physical systems whose motion
is described, at least approximately, by solutions to the same equation as the mass on a spring.
Why is that?

m
d2

dt2
x + K x = 0 (49)

There are two key features.
1: Time translation invariance — there is no explicit dependence on time. There aredts — in
the derivatives with respect to time. But there are nots. When the equation for motion has this
property, it follows thatif x(t) is a solution then so isx(t + a). You can easily prove this using
the chain rule.

Time translation invariance is particularly useful for the harmonic oscillator because of the
other special property of its force law.
2: Linearity — because all the terms are proportional to one power ofx or its derivatives, we can
make new solutions as linear combinations of old ones —if x1(t) and x2(t) are solutions then
so isAx1(t) + B x2(t). Again, this can be checked explicitly.

Time translation invariance is physically very reasonable. The laws of physics don’t change
with time. Or if they do, they do so very slowly (maybe on the scale of the age of the universe, 15
billion years or so), so that we can’t tell. There are lots of systems in which the coefficients (things
like mass, spring constant, inductance, capacitance, etc) are determined directly by the laws of
physics and are therefore independent of time.

Linearity may seem more like an obscure mathematical concept — what does it have to do
with physics? Why should there be so many systems that are approximately linear? The word
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“approximately” here is important. Probably, linearity is never exactly true for a classical system,
but it is often an excellent approximation.

So suppose that you are studying oscillations in some system, and all you know about it is that
it oscillates about a point of equilibrium. Let’s call the quantity that measures the displacement
from equilibriumx, to make it look like the mass on a spring. We expect that the time evolution
of the system can be described by the solutions to some second order differential equation (like
F = ma):

d2

dt2
x = F(x) (50)

whereF is the analog of theF/m in F = ma. Because I’ve assumed that we are in equilibrium
atx = 0, it must be that

F(0) = 0 (51)

Now, assuming thatF(x) is smooth, we can use the most important formula in physics — and you
can probably guess what that is — the Taylor expansion

F(x) = F(0) + xF ′(0) +
1

2
x2F ′′(0) + · · · = xF ′(0) +

1

2
x2F ′′(0) + · · · (52)

Then unlessF ′(0) is exactly zero, the first term will dominate for sufficiently smallx. This is
why linearity is so important. Most functions in physics are smooth. Most of the time, there is no
particular reason forF ′(0) to be zero, so it isn’t. Thus the equations of motion for most systems
are linear for sufficiently smallx.

I should perhaps just note that the most important example of linearity has little to do with
classical mechanics — it is quantum mechanics itself. Just as classical sound waves or electromag-
netic waves can add together and sometimes interfere constructively and sometimes destructively,
so also the mysterious quantum matter waves that describe quantum states can be added. As far
as we know, the linearity of quantum mechanics is exact, not an approximation. At least, very
sensitive experiments have failed to find any nonlinearities.

Next time, we will discuss the consequences of time translation invariance and linearity in
detail. We will see that when the physics of a system obeys these two general principles, the
trajectories can be written in a very simple form, as sums of exponentials. But sometimes, the
exponentials will be complex — that is they will involvei =

√−1. Furthermore the generality
of argument will allow us to extend this result to systems with arbitrary numbers of degrees of
freedom, with rather dramatic results.

Back to F (v) = −m Γ v

For now, let us now return to the force law that we considered at the beginning of this lecture,
F (v) = −m Γ v. What is the physics of this force law? We saw that when friction arises because
stuff gets knocked out of the way, we get av2 dependence on velocity. But thisv2 dependence is
not linear. Whenv2 is sufficiently small, we might expect that this effect will become negligible
compared to other effects that give a linear dependence on velocity. Indeed, in most liquids, we get
an approximately linear dependence of the frictional force on velocity for objects that are moving
slowing enough. Then the molecules of the liquid are not so much knocked as they are gently
pushed out of the way, so that the process is very smooth and reversible. This is a good excuse
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to show you one of my very favorite demos, illustrating the smoothness that one gets in a very
viscous medium, in which the linear regime is easy to reach.

Appendix - cross products - preview

The cross product is essentially just an antisymmetric combination of two vectors. This anti-
symmetric combination of two vectors in interesting because it defines a plane, and planes are
intimately connected with rotations. The particularly convenient thing about this combination in
three dimensional space is that it behaves like another vector. The cross product is the mathe-
matical statement of the fact the antisymmetric combination of two vectors in three dimensional
space defines a plane which in turn defines another vector. The geometrical definition of the cross
product is a good way to see that it behaves like a vector under rotations, so we will start with that.
Then I will indicate how we can show that this geometrical definition is equivalent to a definition
given in terms of components.

The geometrical definition is this:

Given two vectors, ~A and ~B, the object ~A × ~B is a vector with magnitude∣∣∣ ~A
∣∣∣
∣∣∣ ~B

∣∣∣ sin θ whereθ is the angle between~A and ~B defined as a positive angle

between 0 andπ. The direction of~A× ~B is perpendicular to the plane formed by~A
and ~B with the sign determined by the right-hand rule.

(53)

With this definition, it is easy to understand why~A× ~B behaves like a vector under rotations. The
magnitude doesn’t change under a rotation because

∣∣∣ ~A
∣∣∣,

∣∣∣ ~B
∣∣∣ andsin θ are all unchanged. And the

direction rotates properly because it is tied to the directions of~A and ~B.
It is crucial that the cross product~A× ~B is antisymmetric in the two vectors~A and ~B,

~A× ~B = − ~B × ~A (54)

In the geometrical definition, this follows from the application of the right hand rule. If you
interchange~A and ~B, the cross product changes direction because the right hand rule goes from
~B to ~A rather than from~A to ~B. This antisymmetry ensures that either the two vectors~A and ~B
define a plane or the antisymmetric combination vanishes. Then the fact that in three dimensional
space, there is a unique direction perpendicular to a given plane allows us to turn the antisymmetric
combination into a vector.

The geometrical definition, (53), is equivalent to the following component definition,
[
~A× ~B

]
x

= AyBz−AzBy ,
[
~A× ~B

]
y

= AzBx−AxBz ,
[
~A× ~B

]
z

= AxBy−AyBx , (55)

where we are using a notation for vector components in which
[
~A

]
x

= Ax ,
[
~A

]
y

= Ay ,
[
~A

]
z

= Az . (56)

If you have not seen cross products before in your math courses, you can look at the demonstration
of this equivalence below. We will be using cross products a lot later on in the course when we talk
about rotations in three dimensions.
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To prove that (53) and (55) are equivalent, we first show that
(

~A× ~B
)
· ~A =

(
~A× ~B

)
· ~B = 0 (57)

We can do this by explicit calculation. For example,
(

~A× ~B
)
· ~A = (AyBz − AzBy)Ax + (AzBx − AxBz)Ay + (AxBy − AyBx)Az = 0 (58)

The calculation for~B is similar (as it must be because of the antisymmetry of the cross product
- (58) just says that the dot product of the cross product with the first vector in the cross product
vanishes - and because of antisymmetry the same must be true for the second vector in the cross
product). Thus~A × ~B is perpendicular to bothA andB and therefore perpendicular to the plane
they form, just as in the geometrical definition.

You can see that the magnitude of the object given by (55) is right by explicitly calculating its
square.

(
~A× ~B

)
·
(

~A× ~B
)

= (AyBz − AzBy)
2 + (AzBx − AxBz)

2 + (AxBy − AyBx)
2 (59)

= A2
xB

2
y +A2

xB
2
z +A2

yB
2
x +A2

yB
2
z +A2

zB
2
x +A2

zB
2
y−2AxBx AyBy−2AxBx AzBz−2AyBy AzBz

(60)
If we add and subtractA2

xB
2
x + A2

yB
2
y + A2

zB
2
z to this, the positive terms can be factored into

(
A2

x + A2
y + A2

z

)(
B2

x + B2
y + B2

z

)
(61)

and the negative terms into

−
(
AxBx + AyBy + AzBz

)2
(62)

so we can write (59) as

(
~A× ~B

)
·
(

~A× ~B
)

=
∣∣∣ ~A

∣∣∣
2∣∣∣ ~B

∣∣∣
2 −

(
~A · ~B

)2
=

∣∣∣ ~A
∣∣∣
2∣∣∣ ~B

∣∣∣
2
(1− cos2 θ) =

∣∣∣ ~A
∣∣∣
2∣∣∣ ~B

∣∣∣
2
sin2 θ (63)

Finally, you can see the right-hand rule by calculating an example, likex̂ × ŷ = ẑ. Thus we have
checked that the component definition (55) is equivalent to the geometrical definition (53).
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lecture 3

Topics:
Where are we?
Consequences of Time Translation Invariance and Linearity
F = −mΓv again
The harmonic oscillator again
The damped harmonic oscillator
Uniform circular motion in the complex plane
Harmonic oscillation for more degrees of freedom
The double pendulum

Where are we?

Last time, we saw how initial conditions appeared in a number of different examples of force laws.
The last of these, the harmonic oscillator, is a particularly important system because it has two
general properties, time translation invariance and linearity, that appear in many many physical
systems.

Because linearity went by pretty quickly last time, let me briefly review how it works. The
equation of motion,F = ma, for the harmonic oscillator is linear because there is a singlex in
each term. It can be written as

m
d2x

dt2
+ K x = 0 (1)

We can think of this as a single “operator” acting onx.

=

(
m

d2

dt2
+ K

)
x = 0 (2)

In this form, it may be more clear why you can add solutions together to get new solutions. If you
have two solutions,x1(t) andx2(t), you can form an arbitrary linear combination of the two and
the result will be another solution.

(
m

d2

dt2
+ K

)
x1(t) = 0

(
m

d2

dt2
+ K

)
x2(t) = 0

⇒
(
m

d2

dt2
+ K

) (
a x1(t) + b x2(t)

)
= 0

(3)
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because (
m

d2

dt2
+ K

) (
a x1(t) + b x2(t)

)

=

(
m

d2

dt2
+ K

) (
a x1(t)

)

+

(
m

d2

dt2
+ K

) (
b x2(t)

)

= a

(
m

d2

dt2
+ K

)
x1(t)

+ b

(
m

d2

dt2
+ K

)
x2(t)

= 0

(4)

This fact has remarkable consequences, as we will see shortly.

Consequences of Time Translation Invariance and Linearity

Time translation invariance is an example of a symmetry. The physics of the harmonic oscillator
looks the same if all clocks are reset by the same amount. When a symmetry is combined with
the property of linearity, the result is an extremely powerful tool for studying the solutions of the
system’s equation of motion. The reason is that because of linearity, the solutions of the equation
of motion form what mathematicians call a linear space. You can add them together and multiply
them by constants and you still have solutions. Because of this, we can use the tools of linear
algebra to understand them. You should all be used to some of these tools even if you have not
studied much linear algebra, because you all familiar with one linear space - the space of vectors
in three dimensions. One of the really important things about linear spaces is that you are free to
choose any convenient basis - likex̂, ŷ andẑ in three dimensions.

In the linear space of solutions of the harmonic oscillator, we can choose a convenient set of
basissolutions that behave as simply as possible under time translations. For the symmetry of time
translation, it is a mathematical fact that the simplest basis solutions are just exponentials. We can
always find solutions of the form1

z(t) = z(0) eHt (5)

whereH is some constant. What is special about this form (and I am not going to discuss this in
detail - I hope that you will see this beautiful argument in more detail in Physics 15c) is that when
you change the setting of your clock by takingt → t + a, the exponential (5) is the only function
that just changes by a multiplicative constant,

z(t + a) = z(0) eH(t+a) = z(0) eHt eHa = eHa z(t) (6)

You can always use the linearity of the space of solutions to find particularly convenient solutions
that behave in this simple way under time translations - and then the result has to be an exponential.

1This is essentially equivalent to the statement that a linear differential equation with constant coefficients always
has an exponential solution — see Morin’s text.
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Once you realize that the solutions are just exponentials, you can find the possible values ofH
in a very simple way. If you do take (5) and put it into the equation of motion, time derivatives
acting oneHt just bring down factors ofH. This converts the differential equation into an algebraic
equation.

d

dt
→ H (7)

Then once we have the basis solutions, we can form linear combinations to satisfy the initial
conditions, in the same way that we can write a general vector in three dimensional space as a sum
of coordinates times basis vectors

~r = x x̂ + y ŷ + z ẑ

This simple dependence of~r on the coordinatesx, y andz is the power of linearity at work. We will
see that it works in a similarly simple way for the initial conditions in a linear and time translation
invariant mechanical system.

F = −mΓv again

Let’s do this for the linear frictional force we talked about last time, of the form

−m Γ v (8)

with
Γ ≥ 0 (9)

We know how to solve this directly by integrating, as we did last time, but you will notice, I hope
that this force law is also time translation invariant and linear. There is just a single factor ofx in

v =
dx

dt
(10)

andt enters only through derivatives. Therefore, we expect that the solution is a sum of exponen-
tials in time multiplied by constant coefficients that depend on the initial conditions. The equation
of motion has the form

m ẍ = −m Γ ẋ or m
(
ẍ + Γ ẋ

)
= 0 (11)

This allows us to solve the problem in a different way, by assuming that the solution is a linear
combination of exponentials. If we put in a trial solution of the form

x(t) = AeH t (12)

each dot becomes a factor ofH and we get

m
(
H2 AeH t + Γ H AeH t

)
= 0 = mA eH t

(
H2 + Γ H

)
= 0 (13)

The factorm AeH t never vanishes except for the uninteresting caseA = 0, so we can just cancel
it and conclude that

H2 + Γ H = (H + Γ) H = 0 ⇒ H = −Γ or H = 0 (14)
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so there are two simple solutions,

x(t) = Ae0 = A and x(t) = Ae−Γ t (15)

The general solution, because of linearity, is then a combination of these two solution with coeffi-
cients that depend on the initial conditions:

x(t) = A + B e−Γ t (16)

Comparing with the solution that we got by direct integration,

x(t) = x(t0) +
v(t0)

Γ

(
1− e−Γ (t−t0)

)
(17)

we see that it is equivalent to (16) with

A = x(t0) +
v(t0)

Γ
(18)

and

B = −v(t0)

Γ
eΓ t0 (19)

I hope you agree that this calculation was quite a bit easier and quicker than integrating. Using
these general principles of time translation invariance and linearity is not only cool, it saves you
work. As you will see in more complicated examples in a few minutes, it often saves you a LOT
of work!

The harmonic oscillator again

Before going on to the harmonic oscillator, let’s describe this process in the form oftwo simple
steps for dealing with systems with time translation invariance and linearity:2

1. Put a trial solution of the formAeHt into your equation of motion. The derivatives become
powers ofH and you can find the values ofH = hj that work by solving an algebraic
equation. This gives you your basis solutionsAehjt

2. Write a general solution by making a general linear combination of your basis solutions with
arbitrary values of theAs —

x(t) =
∑

j

Aj ehjt (20)

and find the constantsAj by imposing initial conditions, as usual.

Now let’s apply these two steps for the mass on the spring. Step 1 is straightforward.

m z̈(t) = −K z(t) (21)

z(t) → AeHt (22)

2The only time this procedure doesn’t work is when the algebraic equation you get has degenerate roots. We will
see what to do in this special case later.
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m
d2

dt2
AeHt = −K A eHt or m

d2

dt2
AeHt + K A eHt = 0 (23)

mH2 AeHt + K AeHt = 0 (24)(
mH2 + K

)
AeHt = 0 (25)

m H2 + K = 0 = m(H + iω)(H − iω) (26)

H = ±iω for i =
√−1 and ω =

√
K

M
(27)

So our two basis solutions are
eiωt and e−iωt (28)

The calculation in step 1 was very simple. The only curious thing here is that we are led to complex
numbers. While time translation invariance tells us that there are solutions of the formAeHt, it
doesn’t tell us thatH is real, and for oscillations, it isn’t.

Now in step 2, we form the general solution by forming a general linear combination of our
basis solutions. Thus the most general solution for the harmonic oscillator looks like this:

x(t) = c eiωt + d e−iωt (29)

Now this is a little peculiar. Unlike the situation with the frictional force, in (17), this doesn’t look
the same as the cosine and sine that we got by solving the differential equation. But in fact, it is the
same. The connection with sines and cosines is Euler’s formula, one of the more amusing relations
in mathematics:

eiθ = cos θ + i sin θ (30)

There are many ways of seeing this. Let’s just use the most important formula in physics again —
Taylor’s expansion

eiθ = 1 + (iθ) +
1

2
(iθ)2 +

1

3!
(iθ)3 +

1

4!
(iθ)4 + · · · (31)

=
(
1− 1

2
θ2 +

1

4!
(θ)4 + · · ·

)
+ i

(
θ − 1

3!
θ3 + · · ·

)
(32)

Because of Euler’s formula, you see that the general solution in terms of cosine and sine is
completely equivalent to the general solution in terms of complex exponentials.

x(t) = a cos ωt + b sin ωt

is equivalent to

x(t) = c eiωt + d e−iωt

= c (cos ωt + i sin ωt) + d (cos ωt− i sin ωt)

a = c + d b = i(c− d)

(33)

Notice again how linearity is at work here. Linearity is what guarantees that a linear combination
of two possible trajectories is another possible trajectory. This is what allows us to write the most
general solution as a combination of the two complex exponential solutions times constants:

x(t) = c eiωt + d e−iωt (34)
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It is the fact that the initial conditions appear in this extremely simple way as the coefficients of
simple basis solutions that makes all of this work.

If you haven’t seen this before, and perhaps even if you have, this probably looks really strange.
And you might also be asking yourself, if this is equivalent to the familiar solution in terms of
cosine and sine, what is the advantage of using these unfamiliar complex exponential. The right
answer, I think, is that once you get used to using complex exponentials, they will simplify your
life enormously. We will see this in a few minutes when we discuss damped oscillators, but the
message is really more general. We don’t have to use complex exponentials. We can do everything
using cosines and sines, using a combination of trigonometry and algebra. But with complex
exponentials, all we need is algebra!

In fact, Euler’s formula is the connection between algebra and trigonometry! You can define
the trigonometric functions this way:

cos θ ≡ eiθ + e−iθ

2
(35)

sin θ ≡ eiθ − e−iθ

2i
(36)

Now you can derive all trigonometric identities just using algebra, and you never have to do
trigonometry again.

Uniform circular motion in the complex plane

One very evocative way to think about these complex solutions is in what is called “the complex
plane.” Because a complex number has two real components, its real and its imaginary part, we
can think of a complex number as a real vector in a two dimensional space in which the real part
is thex component of a two dimensional vector and the imaginary part is they component. This
two dimensional space is the complex plane. Euler’s formula, (30), tells us that the basis solution
eiωt has real partcos ωt and imaginary partsin ωt, so its counterpart in the complex plane is the
two dimensional vector,(cos ωt, sin ωt),

eiωt = cos ωt + i sin ωt → (cos ωt, sin ωt) (37)

But this is a unit vector an angleωt from thex axis. Thus ast increases,eiωt executes uniform
circular motion in the complex plane. You can see this in theMathematicafile lecture-3-1.nb.

More generally, a complex numberz = x+ iy can be written equivalently as a positive number
R times a complex exponentialeiθ. Note the connection of this with the relation between Cartesian
and Polar coordinates in the complex plane.

z = x + iy = R eiθ → (x, y)Cartesian ⇔ (R, θ)Polar (38)

R = |z| =
√

x2 + y2 (39)

θ = arg(z) (40)

=





arctan(y/x) for x ≥ 0 ,

arctan(y/x) + π for x < 0 .
(41)
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This connection is used in many practical applications to convert from circular motion to back
and forth “reciprocating” motion, or vice versa.3

The damped harmonic oscillator

We have now seen what happens when we have friction with a spring or a spring without friction.
With a frictional term, the equation of motion for the mass on a spring becomes4

m
d2

dt2
x(t) = −mΓ

d

dt
x(t)−K x(t) (42)

d2

dt2
x(t) + Γ

d

dt
x(t) + ω2

0 x(t) = 0 (43)

whereω0 =
√

K/m. This interpolates between the two systems we have just analyzed. AsΓ → 0,
we recover the harmonic oscillator. AsK → 0, we get simple linear friction. But the general form
still satisfies the conditions of time translation invariance and linearity. Therefore we still expect
the solutions to be an exponentials and we can still use our two steps to construct the general
solution.

Step 1 is the usual. Because of time translation invariance and linearity, we can look for expo-
nential basis solutions:

z(t) = AeHt (44)

d2

dt2
AeHt + Γ

d

dt
A eHt + ω2

0 A eHt = 0 (45)

As usual, derivatives with respect tot just bring down factors ofH, so we can convert this to an
algebraic equation:

(H2 + ΓH + ω2
0) AeHt = 0 (46)

Notice that everything has gone exactly the same way here as in our two previous example. Indeed
the only difference here is that the algebraic equation, (46), is a little more complicated that the
previous examples. We need to use the quadratic formula to find the two solutions:

H = −Γ

2
±

√
Γ2

4
− ω2

0 ≡ H± (47)

where
Γ ≥ 0 ⇒ Re H < 0 ⇒ Re H± ≤ 0 (48)

z(t) oscillates ifω2
0 > Γ2/4 and it just dies out ifω2 < Γ2/4 —

z(t) ∝ eH±t =

↓ with t︷ ︸︸ ︷
e−Γt/2×

↓↑ if Γ/2>ω0︷ ︸︸ ︷
e±t
√

Γ2/4−ω2
0︸ ︷︷ ︸

© if Γ/2<ω0

(49)

3i.e. http://www.rpi.edu/dept/chem-eng/Biotech-Environ/PUMPS/reciprocating.html
4The littleγ that appears in the discussion in Dave’s book is justΓ/2.
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Step 2 is also the usual one. The general solution is a linear combination of the simple expo-
nential basis solutions:

x(t) = b+ eH+t + b− eH−t (50)

whereH± are defined in (47). The constantsb± contain the information about the initial conditions,
just as in the undamped harmonic oscillator. You can see this in theMathematicafile lecture-3-
2.nb.

The Mathematicafile starts by findingx(t) as a function ofω0, Γ, and the initial conditions,
x(0) andv(0). Then it graphsx(t) with all of these as knobs, starting withω0 = 0 — that is
pure damping with no spring. The mass is then moving back towards the origin (which is quite
arbitrary until we put in the spring). The mass just slows down and stops somewhere (that depends
on the initial conditions of course). Now look at what happens if you gradually increase the spring
constant, and therefore increaseω0 with Γ and the initial conditions held fixed. The graph also
shows the values of theH± that appear in the exponent of (50) and of the constantsb±.

Now as we turn on a smallω0 term by putting in a weak spring, you might think that each of
these components would start to oscillate. But that is not what happens. And it cannot possibly
work that way because oscillating terms necessarily come in pairs - proportional tosin ωt and
cos ωt or e±iωt and there cannot be two such pairs with different exponential dependence or we
would need more than two initial conditions to determine the trajectory. Instead, the small spring
term produces two terms with exponential decay and the decay constants get closer together as
ω0 increases. You can see that this must be so by reminding yourself about where the quadratic
formula comes from. The two exponentials,eH±t, are determined by (46) as follows:

inertial︷︸︸︷
H2 +

frictional︷︸︸︷
H Γ +

spring︷︸︸︷
ω2

0 = 0 = (H −H+)(H −H−) (51)

H+ + H− = −Γ H+H− = ω2
0 (52)

Evidently, the spring term determines the product of the twoΓs while the frictional term determines
the sum. The product starts at zero forω0 = 0 Not until the product of theHs get larger than a
quarter the square of the sum does real oscillation begin when theΓs develop an imaginary part. At
this point, the coefficientsb± also become complex. While the mathematics of this is unambiguous,
and it is very clear in theMathematicafile, I would like to be able describe this more physically.

At any rate, it is clear that the nature of the trajectories described by (50) depends on the
relative size of the two parameters,Γ andω0. If Γ > 2ω0, the damping is large (this is called
“overdamped”). In this case, bothH+ andH− are real and negative, and the trajectory is a sum of
decaying exponentials.

If Γ < 2ω0, the damping is small (this is called “underdamped”). In this case, bothH+ andH−
have a negative real part and an imaginary part (with opposites signs). In this case, the trajectory
oscillates (or circles in the complex plane), but also dies out with time exponentially int. You can
see this in theMathematicafile lecture-3-3.nb.

At the boundary between these two cases — ifΓ = 2ω0, the system is “critically damped.” In
this case, the general solution is

x(t) = (A + B t) e−Γ t/2 (53)
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Harmonic oscillation for more degrees of freedom

Because our analysis of the harmonic oscillator is very general, relying only on the general princi-
ples of linearity and time translation symmetry, the result of (5)

z(t) = z(0) eHt (5)

applies to any system satisfying these two principles. For example, it is not necessary to restrict
ourselves to a single degree of freedom. With more degrees of freedom,z(t) becomes a vector
with number of components equal to the number of degrees of freedom, as doesz(0) in (5). Thus
(5) implies that there are special solutions in which all the components ofz move in lockstep, with
the same angular frequency. Such a motion is called a “normal mode”. The same two steps suffice
to solve these more complicated problems, but now there are more basis solutions (because there
are more degrees of freedom) and each of the basis solutions describes a motion of ALL the parts
of the system. We are not going to explore this in detail in this course. It is the starting point for the
study of wave phenomena in Physics 15c. But it is such a useful way of talking about the motion
of so many classical systems that I will spend a little time on one important example.

The double pendulum

Here is a very simple example of normal modes that I hope will make the idea clear. Consider the
double pendulum, which looks like this:
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¡
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¡
¡

¡
¡

ªªªªªªªª­­­­­­­­
¤¡ ¤¡ ¤¡ ¤¡ ¤¡ ¤¡ ¤¡ ¤¡

(54)

Two identical pendulums are constrained to move in the plane of the paper and coupled together
by a massless spring with spring constantK. In this case the configuration can be labeled by two
numbers,x1 andx2 the displacements of block 1 and block 2 from equilibrium. Thus this is a
system with two degrees of freedom. The vectorq(t) that describes the configuration is just

q(t) =
(

x1(t)
x2(t)

)
(55)

Step 1 is now more complicated because we have to find the normal modes. Without the spring,
the two pendulums would oscillate independently. For small oscillation, the oscillation of a single
pendulum is harmonic with angular frequencyω =

√
g/`. The spring couples these motions

together. However, the normal modes are still harmonic. There are two basis solutions for each
normal mode.
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The normal modes look like this:
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(56)

There is one normal mode in which the blocks move together. In this mode, the spring in the
middle is never stretched from its equilibrium length. The angular frequency of this mode is just
the same as the angular frequency of a single pendulum, which (for small oscillations for which
the system is linear) isω1 =

√
g/` where` is the distance from the pivot to the mass. The basis

solutions that describe this normal mode are

z(t) =
(

1
1

)
eiω1t and z(t) =

(
1
1

)
e−iω1t (57)
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(58)

There is another normal mode in which the two pendulums move in precisely opposite directions.
The frequency of this mode is slightly higher than

√
g/`, because now the spring contributes to

the restoring force that produces the oscillation. In fact, in this case,ω2 =
√

2K + g/`. The basis
solutions that describe this normal mode are

z(t) =
(

1
−1

)
eiω2t and z(t) =

(
1
−1

)
e−iω2t (59)

The thing about a normal mode is that the ratios of the displacements of all the parts of the
system are fixed throughout the motion. In the double pendulum, in the motion (56),x1(t)/x2(t) =
1 throughout the motion, while in (58),x1(t)/x2(t) = −1.

You should have read a bit more about these in Morin’s book. In general, it is not easy to find
normal modes. In a case like this, you can guess them just from the symmetry of the system. The
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details of finding them in general involves heavy-duty linear algebra, and this can wait for Physics
15c. What I care about in this course is that you know what these things mean and how to use them
if someone tells you what they are.

The point is that step 2 is the same as before. The general solution is always obtained by taking
a general linear combination of the basis solutions:

(
x1(t)
x2(t)

)
= C1

(
1
1

)
eiω1t + D1

(
1
1

)
e−iω1t + C2

(
1
−1

)
eiω2t + D2

(
1
−1

)
e−iω2t (60)

This is short-hand notation for two equations,

x1(t) = C1 eiω1t + D1 e−iω1t + C2 eiω2t + D2 e−iω2t

x2(t) = C1 eiω1t + D1 e−iω1t − C2 eiω2t −D2 e−iω2t
(61)

As usual, we can use Euler’s equation to rewrite this in terms of sines and cosines.

(
x1(t)
x2(t)

)
= A1

(
1
1

)
cos ω1t + B1

(
1
1

)
sin ω1t + A2

(
1
−1

)
cos ω2t + B2

(
1
−1

)
sin ω2t (62)

Again, this is short-hand notation for two equations,

x1(t) = A1 cos ω1t + B1 sin ω1t + A2 cos ω2t + B2 sin ω2t

x2(t) = A1 cos ω1t + B1 sin ω1t− A2 cos ω2t−B2 sin ω2t
(63)
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lecture 4

Topics:
Where are we?
Conservation of Energy
Work and Energy and the second Law
Energy in the harmonic oscillator
More degrees of freedom
Forced oscillation and resonance
Harmonic driving forces
Energy in the driven oscillator
Breaking the wine glass

Where are we?

We have now seen a number of examples of the use ofF = ma. You should all be familiar at this
point with the techniques of determining the trajectory of a classical system that is picked out by a
given set of initial conditions.

We also discussed the beautiful and surprisingly general behavior of the harmonic oscillator,
and the particularly simple description of its motion that obtains when we allow our trajectories to
involve i =

√−1.
Now, we will start the process of going beyondF = ma to more general and powerful ap-

proaches. This will occupy us for the next two weeks. This week, we will discuss one of the great
conservation laws of classical mechanics — conservation of energy.

I also have some organizational remarks. First, a bit of good news — we have now seen all
the ways of solving differential equations that we are going to use. There are really only two of
them. One is integrating, perhaps after moving things around a little bit to separate variables on
two sides of the equation before integrating. The other is hoping that the solution is an exponential,
plugging in and checking to see whether it works! Nothing more complicated is going to happen!
We will, however, do a little more multivariable calculus today. Please please please stop me and
ask questions if you see something you don’t understand.

Now to work (literally and figuratively)!

Conservation of energy

It is somewhat unfortunate that “energy conservation” has come to mean two very different things.
When we read in a newspaper about energy conservation, the article is usually about using energy
carefully and not wasting it. What we mean in classical mechanics when we say energy conserva-
tion is something very different. We mean that there is a quantity called “energy” that is unchanged
with time for any possible trajectory of the classical system. And in fact this physical meaning of
energy conservation seems to be a basic law that survives beyond classical mechanics into the
quantum realm. I suppose that there is some connection between these two meanings. If energy
were not conserved in the physics sense, if we could simply make new energy whenever we need
it, then perhaps we would not have to be so worried about using it sparingly and efficiently. It is
the fact that energy is conserved in the physics sense that makes it such an important quantity.
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Today and next Tuesday, I will give some examples of the use of conservation of energy. In
the weeks that follow, we will address the general issue of conservations laws more systematically
and see where they come from at a deeper level. But before we can do that, we will have to learn
more about why classical mechanics looks the way it does. This will require that we reformulate
classical mechanics in a very beautiful way. And paradoxically, it will involve quantum mechanics
as well.

Work and Energy and the second Law

Let’s begin by considering a single degree of freedom and a trajectoryx(t) satisfyingF = ma for
some force law. We will often simplify the formulas by not writing the the(t) in x(t) explicitly,
but it is important to note that we are considering not a random function, but a trajectory, and if we
were to write things out in gory detail,F = ma would be the second order differential equation
thatx(t) satisfies:

F (x(t), ẋ(t), t) = m ẍ(t) (1)

Now we writeF = ma as

m
dv

dt
= F (2)

Multiplying both sides byv gives

v m
dv

dt
=

d

dt

(
1

2
m v2

)
= F v ≡ P (3)

We will define the kinetic energy of a particle of massm to be 1
2
m v2, thus the left hand side of (3)

is the rate of change of kinetic energy. The right hand side is another important quantity called the
power,P , supplied by the force to the particle. Thus (3) is the differential form of the work-energy
relation. The power supplied by the force acting on a particle is the rate of change of the particle’s
kinetic energy. This is always true whether there is a conserved energy or not — it follows for any
possible trajectory of the system, just fromF = ma. Integrating (3) with respect to time gives the
classic work-energy relation, that the change in kinetic energy equals the work done by the force
on the particle:

1

2
mv2

2 −
1

2
mv2

1 =
∫ t2

t1

d

dt

(
1

2
mv2

)
dt =

∫ t2

t1
P dt =

∫ t2

t1
v F dt =

∫ x2

x1

F dx (4)

The left hand side of (3) is a total time derivative. If the productF v is also a total time derivative,
then we can find a quantity that doesn’t change with time — its time derivative is zero. To see this,
call

F v = − d

dt
U (5)

then (3) becomes

0 =
d

dt

(
1

2
mv2

)
− F v =

d

dt

(
1

2
mv2

)
+

d

dt
U =

d

dt

(
1

2
mv2 + U

)
(6)

Then quantity in parenthesis doesn’t change with time and we give it a name, energy,

E =
1

2
mv2 + U (7)
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and we say that it is “conserved” because it doesn’t change with time.
A simple way in which (5) can happen is forF to be a function only ofx. Then we can takeU

in (5) to be

U(x) = −
∫ x

x0

F (x′) dx′ (8)

Physically, this makes sense because the integral in (8) keeps track of the work done by the force
in moving fromx0 to x. If this is negative, then to make the system move in this way, we would
have to do work against the force, and would get that energy back by letting the system move back
to x0. Mathematically this works because we can use the chain rule to write

d

dt
U(x) =

dx

dt

d

dx
U(x) = −dx

dt

d

dx

∫ x

x0

F (x′) dx′ = −v F (x) (9)

So thatv F is a total time derivative,

v F (x) = − d

dt
U(x) (10)

In this case, as I’m sure you know,U(x) is called the potential energy, and the force is just minus
the derivative ofU ,

F (x) = − d

dx
U(x) (11)

Note that it is crucial thatU depends only onx. Mathematically, you can see thatFv =
−dU/dt doesn’t work ifU is a function ofv or t. If U depends onv (like a frictional force), time
derivatives ofU give terms that depend on the accelerationa - which the force is not allowed to
do. If U doesn’t depend onv but does depend ont the derivative with respect tot has pieces with
no factor ofv. You needU to have onlyx dependence to always get the factor ofv from the chain
rule in (9).

Energy in the harmonic oscillator

For the harmonic oscillator, the potential energy is

U(x) = −
∫ x

x0

F (x′) dx′ = −
∫ x

x0

(
−Kx′

)
dx′ =

1

2
K x2 − 1

2
K x2

0 (12)

We can take the starting positionx0 to have any fixed value, so we might as well start at the
equilibrium position,x0 = 0 so the second term goes away. The second term in (12) doesn’t do
anything anyway, because it is a constant independent ofx so it just drops out when we differentiate
to get the force. Thus we can drop the second term and take the conserved energy in the harmonic
oscillator to be

E =
1

2
m ẋ2 +

1

2
K x2 (13)

It is instructive to see how this works for a general solution of the form

x(t) = c cos(ωt− φ) (14)

Putting (14) into (13), we get the following for the energy:

E =
1

2
mω2 c2 sin2(ωt− φ) +

1

2
K c2 cos2(ωt− φ) (15)
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Sinceω =
√

K/m, this is

E =
1

2
K c2 sin2(ωt− φ) +

1

2
K c2 cos2(ωt− φ) =

1

2
K c2 (16)

which is a constant, as we expected. But notice the way the mathematics manages to encode the
sloshing back and forth of energy between kinetic and potential.

More degrees of freedom

Consider a system with two degrees of freedom with the configuration specified by the two co-
ordinatesx1 andx2 with massesm1 andm2 respectively. Denote the forces on masses1 and2
by F1 andF2. We will begin by considering the situation in which the forces depend only on the
coordinates, not on their derivatives, so that that Newton’s second law is

m1ẍ1 = F1(x1, x2) m2ẍ2 = F2(x1, x2) (17)

With one degree of freedom, we saw that there is automatically a conserved energy if the force
depends only on position. Here we will see that the situation is more complicated. To see what the
issues are, let’s compute the time derivative of the kinetic energy,

d

dt

(
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2

)
= m1ẋ1ẍ1 + m2ẋ2ẍ2 = ẋ1F1(x1, x2) + ẋ2F2(x1, x2) = P (18)

P is the power fed into the system by the force. If the right hand side of (18) is the time derivative
of something,

ẋ1F1(x1, x2) + ẋ2F2(x1, x2)
?
= − d

dt
U (19)

then we can define an energy that doesn’t change with time

E =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 + U (20)

To see when there is aU satisfying (19), we need an important result from multivariable cal-
culus. The change in a function of several variable can be written as a sum of the changes in the
variables times the corresponding partial derivatives:

df(a, b, c, · · ·) = da
∂f

∂a
+ db

∂f

∂b
+ dc

∂f

∂c
+ · · · (21)

The reason is not too hard to understand. To find the change inf due to a change ina with the
other variables held fixed, you would multiply the change ina by the derivative off with respect
to a with the other variables held fixed (which is what the partial derivative means) to get the first
term in (21). Similarly, to find the change inf due to a change inb with the other variables held
fixed, you would multiply the change inb by the derivative off with respect tob with the other
variables held fixed to get the second term in (21). And so on! Then the total change inf is just
the sum of all of these independent changes. When you say it in words rather than writing it down
mathematically it makes perfect sense. If you want to know how something changes, you have to
add up all the possible sources of change!
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We can divide (21) bydt to get the total time derivative,

d

dt
f(a, b, c, · · ·) = ȧ

∂f

∂a
+ ḃ

∂f

∂b
+ ċ

∂f

∂c
+ · · · (22)

Here is an example of (22). Consider the volume of a cylinder with heighth and radiusr.

................................................. ................................... ..............r
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..............

.........................................................................................
......
........
......

h

.......................
................................................................................................................................................................................................................................................................................................................................
..............

....................................................................................................................................................................
...............

.........................................................................................................................................................................................................

......................................................................................................................................................................................................... V = π r2 h (23)

if both r andh are changing in time

dV

dt
= ṙ

∂V

∂r
+ ḣ

∂V

∂h
= ṙ 2π r h︸ ︷︷ ︸

change in r

+ ḣ π r2
︸ ︷︷ ︸

change in h

(24)

Now applying (22) to (19), we see thatU had better not depend on derivatives ofx1 andx2. If
it did, (22) would give terms involving̈x1 andẍ2, which we don’t want. And it should not depend
on t, because that would produce a term without anẋ1 or ẋ2 becausėt = 1. Thus we want

ẋ1F1(x1, x2) + ẋ2F2(x1, x2) = − d

dt
U(x1, x2) = −ẋ1

∂U

∂x1

− ẋ2
∂U

∂x2

(25)

which works if

F1(x1, x2) = − ∂U

∂x1

and F2(x1, x2) = − ∂U

∂x2

(26)

There is a conserved energy if we can get the force by taking partial derivatives of a single function.
The functionU is the “potential energy.”1 When the forces have the form (26), you can show that
the work done by the forces in a motion of the system from one configuration to another is the
difference between the initial potential energy and the final potential energy and therefore does not
depend on how the system gets from the initial configuration to the final configuration.

Let’s do an example of a collection of springs and two masses sliding on a straight frictionless
track, as shown in (27).
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.................................................................................

.................................................................................
.................................................................................

.................................................................................
.........................................................................................................................

................

................

........................................................................................................
1 ............................

.................................................................................
.................................................................................

.................................................................................
.................................................................................

.........................................................................................................................
................
................
........................................................................................................

2 ............................
.................................................................................

.................................................................................
.................................................................................

.................................................................................
.....................................................

K1 K3K2

| |x1 → x2 →

(27)

We can take the coordinatesx1 andx2 to be the (signed) distance along the track from the equilib-
rium positions of the two masses. The forces are2

F1(x1, x2) = −K1x1 −K2(x1 − x2) and F2(x1, x2) = −K2(x2 − x1)−K3x2 (28)

1There could also be contributions to the force that depend onẋ1 and ẋ2, but which cancel in the combination
ẋ1F1(x1, x2) + ẋ2F2(x1, x2). This is the way the magnetic force works.

2As always, the direction of “positive” force is the direction in which the coordinate is increasing.
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As we might guess from our previous discussion of a single spring, if we choose

U(x1, x2) =
K1

2
x2

1 +
K2

2
(x1 − x2)

2 +
K3

2
x2

2 (29)

then (26) is satisfied. So (29) is the potential energy and the total energy,

E =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 + U(x1, x2) (30)

is independent of time for any trajectory.
Nothing much changes if the number of degrees of freedom is greater than two, we just have

to keep track of more variables. Forn degrees of freedom, if we call the coordinatesxj for j = 1
to n, the kinetic energy is

n∑

j=1

mj

2
ẋ2

j (31)

The rate of change of (31) is

d

dt




n∑

j=1

mj

2
ẋ2

j


 =

n∑

j=1

mjẋjẍj =
n∑

j=1

ẋjFj(x1, · · · , xn) (32)

and if the force on thejth mass is

Fj(x1, · · · , xn) = − ∂

∂xj

U(x1, · · · , xn) (33)

then the total energy 


n∑

j=1

mj

2
ẋ2

j


 + U(x1, · · · , xn) (34)

is conserved — that is independent of time for any allowed trajectory,

x1(t) , · · · , xn(t) (35)

Forced oscillation and resonance

Suppose we “drive” our damped harmonic oscillator by adding a time dependent force, so the
equation of motion becomes

(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
x(t) = F (t)/m (36)

Let’s begin by discussing the linearity of this equation of motion. Because of the force term,
the situation is a bit different from that of an unforced oscillator. Suppose that I have a solution to
this equation,x1(t) and another onex2(t).

Now if I add them together, I don’t get a solution to the same differential equation
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(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
x1(t) = F1(t)/m

(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
x2(t) = F2(t)/m

⇒(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
[ax1(t) + bx2(t)]

= [aF1(t) + bF2(t)]/m

(37)

In words, which are not very useful in this case, when we take linear combinations of the solutions,
we must also take the same linear combinations of the driving forces, and vice versa.

In particular, this means that can we always add a solution of the homogeneous equation, with
no external force.

(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
x1(t) = F1(t)/m

(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
x0(t) = 0

⇒(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
[ax1(t) + bx0(t)] = aF1(t)/m

(38)

We can use this form of linearity to simplify the problem.

Harmonic driving forces

Life is much simpler if we look at forces of the form3

F (t) = F0 e−iωdt (39)

whereωd is called the “driving frequency.” Why is this an interesting thing to do? This force is
exponential — and therefore behaves very simply under time translations.

F (t + a) = e−iωda F (t) (40)

Thus we can look for solutions that are proportional toe−iωdt. There will also be terms in the
general solution which are just like those we found for the undriven oscillator. We can always add
these solutions because they do not contribute to the driving term. Thus the general solution will
be of the form

z(t) = A e−iωdt + b+e−Γ+t + b−e−Γ−t (41)

where the
e−Γ±t (42)

3We can actually use linearity to write any force as a linear combination of forces of this form using the mathemat-
ical technique of Fourier analysis. So if we solve the problem for all values ofωd, we have actually solved it for all
reasonable forces.
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with

Γ± =
Γ

2
±

√
Γ2

4
− ω2

0 (43)

are exponential solutions to the unforced oscillator problem. Just as in the case without damping,
the coefficients of the “homogeneous” solutions must be set by initial conditions, but that is not
true forA. It does not depend on initial conditions! This is what is called a “particular” solution
to the differential equation, and the general solution will also involve solutions to the equation
without any force, and the coefficients of the solutions will have to be determined by the initial
conditions.

One nice thing about the form (41) is that in certain cases, we do not care about the initial
conditions. This is because the homogeneous solutions die out exponentially so long as there is
any damping at all. If we wait long enough, only the term proportional toA survives.

Now let’s computeA. This is straightforward because we are working with exponentials.
(

d2

dt2
+ Γ

d

dt
+ ω2

0

)
A e−iωdt = F0 e−iωdt/m

(−ω2
d − iΓωd + ω2

0)A =
F0

m
(44)

A =
F0/m

ω2
0 − iΓωd − ω2

d

(45)

A =
F0/m

ω2
0 − ω2

d − iΓωd

(46)

A =
F0/m

ω2
0 − ω2

d − iΓωd

(47)

A =

(
F0/m

ω2
0 − ω2

d − iΓωd

) (
ω2

0 − ω2
d + iΓωd

ω2
0 − ω2

d + iΓωd

)
(48)

A =
(ω2

0 − ω2
d + iΓωd) F0/m

(ω2
0 − ω2

d)
2
+ Γ2ω2

d

(49)

Because we used the exponential solution, we got the solution just using algebra. It’s∝ F0.

A =
(ω2

0 − ω2
d + iΓωd) F0/m

(ω2
0 − ω2

d)
2
+ Γ2ω2

d

= A + iB (50)

A =
(ω2

0 − ω2
d) F0/m

(ω2
0 − ω2

d)
2
+ Γ2ω2

d

(51)

B =
Γωd F0/m

(ω2
0 − ω2

d)
2
+ Γ2ω2

d

(52)

Now what do we do with this complex solution. We are not really interested in the complex
force we started with. However, we are interested in forces of the form

F0 cos ωdt = Re(F0 e−iωdt) (53)
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This describes a real harmonic driving force. Now the point is that because of linearity, we can
find the solution for the real part of the force by just taking the real part of our complex solution.
Taking the real part gives

x(t) = Re
(
Ae−iωdt

)
= A cos ωdt + B sin ωdt (54)

Note the phase relations. The first term is in phase with the force ifω2
0 > ω2

d, that is when the
system is driven slowly. In this limit, inertia is irrelevant, and the mass just moves along with the
driving force.

If ω2
0 < ω2

d, when the system is driven rapidly, the first term is 180◦ out of phase with the force.
In this limit, inertia dominates.

In between, forω2
0 = ω2

d, the second term is crucial. It is 90◦ out of phase (behind) the driving
force. This is illustrated inMathematicafile lecture-4-1.nb.

A andB are called the elastic and absorptive amplitudes for reasons that we will discuss shortly.
Here are graphs ofA and B for Γ/ωd = 0.3, 0.1 and 0.05 For larger values ofΓ/ωd, the

resonance hardly shows up at all.
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Each of these starts at
F0

mω2
0

(55)

for small damping, and looks like
F0/m

ω2
0 − ω2

d

(56)

except near resonance.
Now, look atB for the same three values ofΓ
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Notice that as theΓ/ω0 decreases, the resonance gets sharper and the effect of theB term is
more and more concentrated near the resonance.

Energy in the driven oscillator

To see whyA andB in (51) and (52) are called the elastic and absorptive amplitudes, consider
the work done by the driving force. The power,P (t), which is the work per unit time done by the
driving force, is the force times the velocity of the system on which it acts —

P (t) = F (t) ẋ(t) = F0 cos ωdt · ∂

∂t
(A cos ωdt + B sin ωdt) (57)

Note that the power is a nonlinear function. For example, ifF0 doubles, bothF (t) andẋ(t) double,
so the power quadruples. Because of this nonlinearity, we cannot use the complex form forx(t)
because we could get contributions to the power from both the real and imaginary part, which
is not what we want physically. We must use real form forx(t), which is what we have done.
Continuing,

= P (t) = F0 cos ωdt · (−ωd A sin ωdt + ωd B cos ωdt) (58)

= −F0ωdA cos ωdt sin ωdt + F0ωdB cos2 ωdt (59)

The first term in (59) averages to zero over a complete half-period of oscillation because

cos ωdt sin ωdt =
1

2
sin 2ωdt (60)

and ∫ t0+π/ωd

t0
sin 2ωdt dt = −1

2
cos 2ωdt|t0+π/ωd

t0
= 0 (61)

This is whyA is called the elastic amplitude. IfA dominates, energy that goes in comes back
out, like an elastic.

The second term is always positive — it averages to

Paverage =
1

2
F0ωdB (62)

B is called the absorptive amplitude because it measures how fast energy is absorbed by the
system.Paverage, is maximum on resonance, atω0 = ωd. Furthermore, if the damping is small, the
peak is very very sharp. This is one good way to find resonances.

Breaking the wine glass

The concept of energy is quite useful even in situations where the energy is not obviously con-
served. Frictional forces, for example, eat up the energy. In fact, as you probably all know, the
energy doesn’t go away, but it is converted into heat, and this process cannot be easily reversed, so
that we cannot get the energy back into kinetic or potential energy. Thus for example in a damped
driven harmonic oscillator started from rest, at first, the work done by the external force goes into
increasing the amplitude of the oscillation, and the energy sloshes back and forth between kinetic
energy and potential energy. But as the amplitude and therefore the velocity increases, more and
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more of the power is eaten up by friction. When the system reaches its steady state and the free
oscillations have died away, all of the work done by the external force is eaten up by friction (at
least when averaged over a complete cycle of oscillation).

I will end with a demonstrations that illustrates quite dramatically the process of resonance in
damped, driven oscillation. We will do this in a system with many degrees of freedom — a crystal
wine glass. The wine glass is a very complicated system, but its physics is translation invariant
and for small oscillations, like almost any other oscillator, it is approximately linear. Thus it has
normal modes — motions in which all the parts oscillate with a single frequency. Each of the
normal mode frequencies corresponds to a particular way in which the wine glass can ring. The
lowest frequency is what dominates if we just ring it.

So what we are going to do is to feed energy into the wine glass at the frequency of its lowest
ringing mode. For a good wine glass, the damping is really pretty small — it rings for a long time
— so we can feed in a lot of energy and get the lowest mode very excited. So we will actually
see how the wine glass is deforming as it rings. In fact, of course, we wouldn’t be able to do this
without some help, because the frequency is very high, and the motion of the glass would just
look like a blur. But what we can do is to use a strobe light tied to the driving frequency so that
we illuminate the glass at the same point in the cycle each time, or at least very nearly so. The
astonishing thing to me about this demonstration is how much the glass actually deforms before it
breaks. If you have never seen this before, I think that you will also be surprised — so here goes.

break the wine glass
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lecture 4

Topics:
Where are we?
Work and Energy in three dimensions
Examples of potentials in 3-dimensions
1/r2 forces and field lines
The force between spheres
A particle on a frictionless track

Where are we?

Work and Energy in three dimensions

One of the most useful and interesting applications of the concept of energy is to the motion of a
single particle in three dimensions. In this case, the configuration of the system is described by the
position vector of particle,~r, and the velocity, the acceleration and the momentum are also vectors,
~v = ~̇r, ~a = ~̈r and~p = m~v.

In a sense, we have already dealt with this because we have talked about system with more than
one degree of freedom, and the particle in three dimensions is just a particular example of a system
with three degrees of freedom. But it is a very important one, and the fact that the coordinates
form a vector in three dimensional space has important consequences for both the physics and the
notation.

In three dimensions, Newton’s second law is a vector equation,

m~a = m~̇v = m~̈r = ~̇p = ~F (1)

We will have much more to say later about what it means to say that something like (1) is a
vector equation. For now, we will simply say that a 3-dimensional vector is an object with three
independent components, and we will denote the component of~r by (x, y, z) as you probably did
in high school, and the components of an arbitrary vector~A by (Ax, Ay, Az). A crucial concept
we will use often is the “dot product” of two vectors:

~A · ~B ≡ AxBx + AyBy + AzBz (2)

The dot product is important because it has the same value even if we change the components of
the individual vectors by rotating to another coordinate system. Here are a few of its most useful
properties:

The length of a vector~A is | ~A | =
√

~A · ~A (3)

~A · ~B = | ~A | | ~B | cos θAB whereθAB is the angle between the vectors (4)

1

| ~A |
~A · ~B = | ~B | cos θAB is the component of~B in the direction of~A (5)

Now let’s go back to (1). To get the time dependence of the kinetic energy, we take the dot
product of both sides with~v,

m~̇v · ~v =
d

dt

(
1

2
m~v 2

)
= m~v · ~a = ~v · ~F ≡ P (6)
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This is just the work-energy relation again. The only differences between this and the general
situation for many degrees of freedowm is that all three masses are the same, and because of that,
the sums can be replaced by dot products. This means that in the power, only the component of
the force in the direction of the velocity contributes.

Again, as with one degree of freedom, the time rate of change of the kinetic energy is equal to
the power,P = ~v · ~F , fed into the system by the force. There is a conserved energy if the power is
a total time derivative of a potential:

~v · ~F = − d

dt
U (7)

But now because the coordinates are the components of a vector, the condition that the forces are
the partial derivatives of a single functionU can be written as

~F (~r ) = − ∂

∂~r
U(~r ) = − ~∇ U(~r ) (8)

where
~∇=

∂

∂~r
(9)

is the “gradient” or “grad” of “div, grad and curl,” a vector with components
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
(10)

We won’t make a lot of use of this. You will do more in 15b. But in this case, there is a nice
geometrical way of understanding why it is that a force of this kind allows you to define a conserved
energy. The work done by the force in going from one point in space to another is independent of
the path — it just depends on the starting point and ending point. This is easy to prove, but we
won’t bother — you will see it later.

The second interesting thing about energy in three dimensions is that we can find velocity
dependent forces that still lead to a conserved energy in a very natural way. As long as the force is
perpendicular to~v, ~v · ~F is zero, and therefore it is the time derivative of zero, and (7) is satisfied.
One important way to do this to use the cross product (which we will discuss in more detail in a
few weeks). A force of the form

~F = ~v × ~B (11)

automatically satisfies~v · ~F = 0. This is the way magnetism works.

Examples of potentials in 3-dimensions

It is easy to go from a potential to the force. Equation (8) says that you just differentiate. In fact,
this step is so easy that we will often talk about finding the potential by running this backwards —
that is finding aU(x) such that (8) gives the force we want.

A familiar example of potential energy is the energy of a massive particle in the earth’s gravita-
tional field. Near the surface, the field is roughly constant and vertical, and the force is downward
with magnitudemg. The potential energy is thereforemg z, so that minus thez derivative is the
z component of the force,−mg, and the other components vanish.

U(~r ) = mg z (12)
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~F (~r ) = (0, 0,−m g) (13)

For another example, consider the potential

U(~r ) =
1

2
K ~r 2 =

1

2
K (x2 + y2 + z2) (14)

To get thex, y andz components of the force, we just differentiate and change the sign:

~F (~r ) = (−K x,−K y,−K z) (15)

This is a vector that points back towards the origin, so this describes a particle that has a stable
equilibrium point at the origin. This is called the three dimensional harmonic oscillator potential.

A more interesting question occurs when you are given a force and are asked to find the poten-
tial. It turns out that this is possible if and only if the components of the force satisfy1

∂

∂y
Fz − ∂

∂z
Fy = 0

∂

∂z
Fx − ∂

∂x
Fz = 0

∂

∂x
Fy − ∂

∂y
Fx = 0

(16)

So for example, the force
~F (~r ) = (yz, xz, xy) (17)

is associated with a potential because

∂

∂y
Fz − ∂

∂z
Fy = x− x = 0

∂

∂z
Fx − ∂

∂x
Fz = y − y = 0

∂

∂x
Fy − ∂

∂y
Fx = z − z = 0

(18)

The “only if” part of (16) is easy to understand. If the components of~F are minus the deriva-
tives of a potential, (16) must be satisfied because the order of differentiations doesn’t matter. The
“if” part is less obvious. It turns out that if (16) is satisfied, you can find the potential by integrat-
ing the force, and it doesn’t matter what path you choose to integrate along. This is discussed in
Morin’s book, and you will see much more of it in Physics 15b. That is enough for now.

1As you will see later, this can be written more compactly using the cross product or curl as~∇× ~F (~r ) = 0.
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1/r2 forces and field lines

Let us start our discussion of gravity by talking about what is so special about1/r2 forces? I will
talk both about gravity and also the1/r2 Coulomb force between electrically charged particles.
Gravity is really quite different from the Coulomb force. But the mathematics is pretty similar. The
potential energy associated with the gravitational force between two massive particles in Newton’s
theory of gravity is

V (~r1, ~r2 ) = −Gm1 m2

|~r1 − ~r2| (19)

where~r1 and~r2 are the positions of the particles andm1 andm2 are their masses. The force on
particle 1 from particle 2 is

~F from m2
on m1

= − ∂

∂~r1

V (~r1, ~r2 ) = −Gm1 m2
~r1 − ~r2

|~r1 − ~r2|3 (20)

Because the potential energy is invariant under space translation because (19) just depends on the
vector

~r12 = ~r1 − ~r2 (21)

from ~r2 to ~r1, the satisfies Newton’s third law:

~F from m1
on m2

= − ∂

∂~r2

V (~r1, ~r2 ) = −Gm1 m2
~r2 − ~r1

|~r1 − ~r2|3 = −~F from m2
on m1

(22)

It is also no surprise that the force vector in (20) points from particle 1 to particle 2 because the
potential just depends on the distance between the two particles and is therefore invariant under
rotations in addition to space translations. So the force has to be proportional to~r12 because there
is no other vector in the problem. Then because the force is attractive, pulling particle 1 towards
particle 2, the force is a positive factor times−~r12 = ~r21.

The potential energy associated with the Coulomb force between two charged particles is (in
cgs units)

q1 q2

|~r1 − ~r2| (23)

whereq1 and q2 are the charges. Clearly the dependence on the positions is exactly the same.
Both potentials lead to a1/r2 force. So we can understand some of the special properties of
the gravitational force by thinking about the Coulomb force instead. Before we start, perhaps
I should also emphasize the differences. The most obvious difference is that while the electric
charge can have either sign, the mass is always positive, so the gravitational force from (23) is
always attractive. Less obvious, but even more important, is the effect of the fact that the strength
of the gravitational force between two masses is proportional to the masses themselves.2 This has
far-reaching effects, a few of which we will see later.

Now for the similarities and special properties. Newtonian Gravity and the Coulomb force
share the crucial property of linearity.3 The force on a particle due to an arbitrary number of

2Note that we are talking here about Newtonian gravity rather than Einstein’s General Relativity. Both of these
statements must be made more carefully in General Relativity, as we will glimpse after break.

3Again this is true of Newtonian gravity but not General Relativity. In General Relativity, nonlinearities are present
because the gravitational field carries energy, which in turn produces gravity. We will come back to this later.
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masses or charges is just the sum over the forces from each of the other masses or charges. For
gravity

~Fon m1 =
∑

j 6=1

~F from mj
on m1

= −Gm1

∑

j 6=1

mj
~r1 − ~rj

|~r1 − ~rj|3 (24)

We can extend this in an obvious way to continuous distributions of masses or charges. The
sums simply become integrals. In fact, as far as we can tell today, all the masses and charges in
the universe are essentially point masses and charges. So our integrals really are approximations
to sums. But the individual masses and charges are so small that the so-called continuum ap-
proximation, in which we replace a collection of lots of tiny masses or charges with a continuous
distribution is often an essentially perfect approximation.

One thing I want to do today is to go over Newton’s theorem. It is sufficiently important that
it doesn’t hurt to look at it several times. In fact, you will see it again in a different and more
sophisticated form if you take Physics 15b next semester. The theorem is that the force on a point
mass or charge due to a uniform shell of mass or charge is zero inside the shell and outside the
shell is just what you would get if all the mass or charge were concentrated at the center. I am not
so much interested in a rigorous proof as in making it obvious why the theorem is true.

The key idea that we will use to understand the theorem is something we discussed when we
talked about the electromagnetic force. The idea there was “field lines.” The electromagnetic force
can be thought of in the following way. One charge produces an electromagnetic field that affects
other charges, producing the forces (of course, all charges produce these fields, and we don’t talk
about the effect of the part of the field due to a given charge on the charge that produces it —
we will come back to this later in the course). The electric field, in turn, can be thought of as
associated with field lines, which begin on positive charges and end on negative charges — they
never begin or end in empty space — only on charges. The field lines point in the direction of the
electric field, and the density of the field lines is proportional to the strength of the electric field. A
single charge sends out field lines symmetrically in all directions. Since the lines can never end if
there are no other charged particles around, they continue to spread. On a surface of radiusr, the
lines are spread out over an area4π r2. Thus the density of the field lines falls off as1/r2. Thus
the electric field and therefore the force falls off as1/r2. This is the basic reason for the Coulomb
force.
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For gravitation, field lines are very similar. Since there is only one kind of charge (which is just
mass) and like charges attract, we can think of field lines as coming in from infinity and ending on
masses. Like electric field lines, gravitational field lines cannot end where there is no mass. So all
the rest of the argument goes through in the same way.
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Now what does this mean for Newton’s theorem?
First let’s show directly that there is no force inside a shell on a point mass atP inside the

uniform sphere of mass and look at the the force fromP on some infinitesimal areaA anywhere
on the surface of the sphere. The point is that we can construct an infinitesimal areaA′ on the other
side of the sphere by drawing a straight line from every point on the boundary ofA through the
pointP . The locus of points where these lines intersect the sphere on the other side is the boundary
of A′.
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(25)

Now we can show that the force onA′ is equal and opposite to the force onA.
We can see this geometrically, using the fact that the force goes like1/r2. This is done in

problem 5.10 of Morin’s book. But field lines make it even more obvious. First look at the force
on little areas bounded by the cone at the positions ofA and A′ but perpendicular to the line
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betweenA andA′.
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AA′ •
P

(26)

The number of lines through each area is the same, and since the strength of the field is proportional
to the density of the lines and the mass of the little regions is proportional to their area, the number
of lines is proportional to the force.

Now the areas ofA andA′ are larger than this because they are slanted. But both are slanted
at exactly the same angle because the triangle formed by the center of sphere andA andA′ is
isosceles, and the tangents to the sphere are perpendicular to the radii toA andA′.
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θθ AA′ •
P

(27)

Thus both areas are larger than the area of the corresponding perpendicular regions by the same
factor of 1/ cos θ. The the forces are large by the same factor and they are therefore equal and
opposite.

But by Newton’s third law, the forces onP from the two regionsA and A′ are equal and
opposite.

This shows that for every infinitesimal area on the spherical shell, there is a region on the other
side that produces an equal and opposite force atP . This is not quite enough, because we need to
be sure that when we integrate over the whole sphere, each of these little areas appears only once.
Fortunately, this is easy. We can consider a plane throughP and the center of the circle. Then we
can find the total force atP by integrating only over the areas on one side of the plane. The areas
that cancel the force are all on the other side of the plane. Thus the whole sphere is accounted for,
and we have proven the first part of the theorem.

Consider now the field outside a uniform shell of mass. This mass distribution has spherical
symmetry. Let us first show that this implies that the force must be radial and equal in all direc-
tions. First consider the force at some point~r. This force must be the same if we rotate the mass
distribution around the~r axis, which implies that it must be in the~r direction because any trans-
verse component would rotate when we rotate the mass distribution. Once we know that the force
is radial, it is clear, again because of rotation invariance, that it is the same in all directions, with
the magnitude being only a function of|~r|.
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Since the force vanishes inside the shell, there is no gravitational field, and thus no field lines
inside. All the field lines go from infinity to the shell. But the total mass produces the same number
of field lines, whatever the radius of the shell. This must be true because very far away from the
shell, it looks just like a point mass, so the number of gravitational field lines coming in from
infinity must be the same independent of the radius of the shell. But the field line cannot appear or
disappear outside the shell, because there is no mass there. Thus outside the shell, the gravitational
field is completely independent of the radius of the shell, and therefore the same as that produced
by a point mass at the center. This finishes the theorem.

There are many important consequences of Newton’s theorem. One that we will come back
to soon is the gravitational force on a point massm inside a spherically symmetric distribution of
masses centered at the origin. If the point mass is at~r from the center of the distribution, Newton’s
theorem implies that the force is

−r̂
Gm M

r2
(28)

whereM is the massinside ~r. This will be very important for one of the more mysterious facts
about the universe — the existence of dark matter.

You can think about these arguments involving field lines in two different ways. What is more
fundamental - the field lines or the1/r2 force? The straightforward way to interpret this is to say
that we know that the force goes like1/r2 and that allows us to show that the field line picture
makes sense. Alternatively, we might say that the field lines are the fundamental things, and the
field line picture implies (because the field lines spread out over the surface of a sphere which
grows liker2) that the force falls off like1/r2. In fact, what we believe from a more fundamental
description of these forces is that the field lines give the more fundamental description. This
doesn’t matter at all if we stick to three dimensions. But it will be important when we talk later
about theories of extra dimensions. Inn dimensions, because the area of a sphere of radiusr
increases likern−1, the electric and gravitational forces fall like1/rn−1!

8



The force between spheres

Newton’s theorem implies the gravitational force between two spherically symmetric bodies is the
same as if all the mass were concentrated at their centers. This follows from linearity and Newton’s
third law. Consider two spherical bodies,A andB. The force on each of the point masses inB
due toA is the same as the force on due to a point at the center ofA with the same total mass. But
by Newton’s third law, this means that the force onA from each of the point masses inB is the
same as the force on a point mass of the center ofA. But we know that this is the same as a force
between a point mass at the center ofB and a point mass at the center ofA.

This means, among other important things, that spherical bodies exert no torques on one an-
other.

Before we leave (for now) the subject of field lines, I want to show you a couple of plots.
One set of field lines that you are probably familiar with is the “dipole” field between positive and
negative charges. It looks something like this in terms of field lines:

Gravity is different. Because the charges are always the same, the field lines around a pair of
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equal masses look this (same a electric field lines around a pair of equal negative charges):

The point in the middle is characteristic of a gravitational tidal force. Right in the middle, there is
no force. But above or below this point, you are pulled towards the middle, while on either side of
the middle, you are pushed away from it. We will come back to this in a couple of months.

A particle on a frictionless track

A system with one degree of freedom need not be one dimensional. You have seen examples of
this in the first problem set. Another nice one is a particle on a frictionless track in the earth’s
gravitational field. Suppose a particle of massm is constrained to move along a frictionless track
that curves around in 3-dimensional space. Because the particle is constrained to be on the track,
the configuration of the system is completely specified by the position on the track. It is convenient
to measure this in terms of the actual distance of the particle along the track from some reference
point on the track, which we will call̀(t). In terms of`(t), we can specify the position of the
particle in 3-dimensional space if we have mapped out thex, y andz components of each point on
the track as a function of̀. In other words, the vector~r(`) describes the shape of the track, and the
single variablè describes the position of the particle on the track.
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We haven’t learned any very simple way to directly write down the equations of motion for
such a particle (we will next week). But we can write down the equation for energy, which should
be the sum of the kinetic energy and the potential energy due to the earth’s gravity.

The speed of the particle is just˙̀, so the kinetic energy should be

1

2
m ( ˙̀)2 (29)

and the potential energy comes from the earth’s gravitational field,

U = mg z(`) (30)

so that the energy is
1

2
m ( ˙̀)2 + mg z(`) (31)

If you think about how difficult it would be to write down the equation of motion and solve it using
forces for a complicated shaped track, you will be begin to appreciate the power of conservation
of energy.
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lecture 6

Topics:
Where are we now?
Newton’s second law and momentum
The third law
Rocket motion
The Lagrangian and Euler-Lagrange equations
A better horizontal swing

Where are we?

Last week, we discussed conservation of energy. I will talk about another of the great conservation
laws of classical mechanics — conservation of momentum. We will see how it emerges from
F = ma and discuss some of its uses. discuss the notion of scattering.

Newton’s second law and momentum

Newton’s second law for a single particle of massm can be written as

~F =
d~p

dt
(1)

where the quantity~p is the momentum of the particle, and is given in Newtonian mechanics by

~p = m~v . (2)

The form (1) actually turns out to be a better and more general way of writing the second law than
the familiar ~F = m~a. In this form, (1) [but not (2)] is true even when the speed of the particle
approaches the speed of light, where as we will see in a few weeks, many of the common-sense
aspects of mechanics begin to break down. In addition, as we will see, (1) often allows us to deal
more easily with situations in which objects come apart, or coalesce.

The third law

So if force is always changing momentum according to (1), how is it that momentum is conserved?
The answer that you probably learned in high-school is Newton’s third law. For every action, there
is an equal and opposite reaction. If thing 1 produces a force on thing 2, then thing 2 produces
a force with equal magnitude and in the opposite direction on thing 1. If this is correct, then any
change of the momentum of something is always compensated by a change in the momentum of
the things that are producing the forces on it. The total momentum of any isolated system that has
no external forces acting on it is always conserved. For now, you should just accept this. Later in
the course (starting next week) we will talk more about why it is true. Here, we will be content to
see how it is useful.
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Rocket motion

The most important uses of conservation of momentum all have a couple of things in common. The
first is that using momentum conservation allows us to avoid thinking about incredibly complicated
details of how the forces work that turn out to be irrelevant in the end. In fact, I personally often
find (2) very confusing in situations where the system is changing. Trying to figure out the forces
can be very confusing.

It is usually easier and more reliable to make progress instead by comparing the system at two
different times and using the fact that the momentum is the same. These two times may be far
apart or close together. Sometimes we are interested in the initial condition of a system and the
final condition, and we don’t much care about what happens in between. But sometimes, we are
interested in comparing times that are very close together to use conservation of momentum to
analyze the dynamics of the system. In the latter case, we can almost always analyze the problem
by looking at the difference between the system at timet and timet + dt. A good example of
using momentum conservation to simplify the analysis of dynamics is rocket motion. The nozzle
of a rocket engine is a very complicated system. There are lots of forces acting on it as the rocket
fuel explodes in the nozzle and is forced out at high velocity. If you had to understand in detail the
forces acting on the stuff that is ejected from a rocket engine to see how the rocket would move, it
would be an impossible job.

But the point is that you never have to mention force at all. We are not interested in the force.
There is no good way to measure this force directly. So get rid of it. Conservation of momentum
ensures that all you need to know is the velocity,u, of the ejected material, and the rate at which
mass is being ejected,dm/dt. You can simply figure out the rate of change in velocity of the
rocket,dv/dt, by requiring that momentum be conserved.

First suppose that the rocket is at rest at timet = 0. Then att = 0 the momentum of both
the rocket,pf , and the momentum of the fuel,pf , are zero. An infinitesimal timedt later, the
momentum of the ejected material ispf = −u dm and this must be compensated by the change in
momentum of the rocket in the opposite direction,pr = mdv.
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Thus

m
dv

dt
=

dm

dt
u (3)

This is also true if the rocket is moving with velocityv.
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The changes in momentum are the same, though the total momentum has changed.
If you are really more comfortable talking about forces, you can use conservation of momentum

to calculate the total force on the rocket. then you know that the rate of change of momentum of the
ejected material isu dm/dt. Since this momentum is being produced, the rocket must be pushing
on the stuff with a force

F =
dp

dt
= u

dm

dt
(4)

F = u dm/dt. And therefore, according to Newton’s third law, the stuff is pushing back on the
rocket with a total resultant force of this magnitude.

Notice again that the rate of change of the rocket’s momentum is independent of how the
rocket is moving (remember thatu is the velocity of the ejected fuelwith respect to the rocket).
This means that the force on the rocket looks the same in any inertial frame. This is an example
of an important principle in Newtonian mechanics - Galilean Relativity. Galilean Relativity is
the statement that Newton’s laws are valid in any inertial frame. Forces cannot change in going
from one inertial frame to another, because the force is proportional to the acceleration, and the
acceleration depends only on the rate ofchangeof velocity. Any fixed velocity of the the inertial
frame just cancels out when we compute the acceleration.

Thus people in the rocket cannot tell how fast they are going without looking outside. Velocity
is only defined in a particular inertial frame. But acceleration is something that the people in the
rocket can feel because they can feel the force. The floor of the rocket is pushing against them to
accelerate them along with the ship and they feel that force in their bones. But it is the same in any
inertial frame. Thus the passengers can tell how they are accelerating, but they cannot tell how fast
they are going without looking out the window (or integrating the acceleration from the beginning
of the trip).

The Lagrangian and the Euler-Lagrange equations

In addition to discussing momentum conservation this week, we are going to begin our study
of a remarkable reformulation of classical mechanics, based on the Lagrangian and the Euler-
Lagrange equations. This will replaceF = ma as the equation of motion of a classical system with
something that is actually easier to use in most of the situations that really matter. This week, we
are just going to write down the answer. Next week, we will talk bit about why it works, and why
it is so interesting. Our reformulation is not just a great labor saving device, it is actually telling
us something very deep and important about the way the world work. This will move us closer to
understandingF = ma. But already this week, you should begin to see that the Lagrangian of a
classical system and the Euler-Lagrange equations that we derive from it arebetter thanF = ma
in many ways.

So without further ado, let me write down the answer for a single degree of freedom. We begin
by constructing theLagrangian, L.

L(x, ẋ, t) = T (x, ẋ, t)− U(x, ẋ, t) (5)

WhereT andU are the kinetic and potential energies, as functions of the variablex that describes
the configuration of the system, and its time derivative,ẋ. This time I have included the possibility
that these functions also depend explicitly ont. By explicit time dependence, I mean dependence

3



beyond that coming from the time dependence ofx(t). We will come back to this a little later when
we discuss energy. In terms ofL, the equation of motion of the system is

∂

∂x
L(x, ẋ, t)− d

dt

∂

∂ẋ
L(x, ẋ, t) = 0 (6)

Solving the differential equation (6) and imposing the initial conditions then gives us the classical
trajectoryx(t).

I will illustrate this today with two examples. The first is a problem you already how to deal
with - a massm moving in force derived from a potentialU(x). In this case the kinetic energy
depends only on the velocity

T (ẋ) =
1

2
mẋ2 (7)

and so the Lagrangian depends only onx andẋ:

L(x, ẋ) =
1

2
mẋ2 − U(x) (8)

So
∂

∂x
L(x, ẋ) = − d

dx
U(x) (9)

∂

∂ẋ
L(x, ẋ) = mẋ (10)

and the Euler-Lagrange equation is

∂

∂x
L(x, ẋ)− d

dt

∂

∂ẋ
L(x, ẋ) = − d

dx
U(x)− d

dt
mẋ = − d

dx
U(x)−mẍ = 0 (11)

or

− d

dx
U(x) = mẍ (12)

or, because minus the derivative of the potential is the force,

F = ma (13)

A better horizontal swing

OK, so we showed that our funny looking Euler-Lagrange equation is equivalent toF = ma. So
what? That and about ten bucks will get you dessert at Finales. But now let us do a more interesting
problem related to one of the problems you just did.
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.................................................................................

.................................................................................
.................................................................................

.................................................................................
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K/2 K/2

The system shown above is a cartoon of a different kind of horizontal swing set from the one you
studied in AS2. A cart with massµ slides without friction in thex direction, attached to springs as
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shown. You with massm sit on the cart. You and the cart are at rest in equilibrium untilt = 0. For
t > 0, by pushing and pulling on the handle with your arm (or arms if you prefer), you slide back
and forth on the cart, so that your horizontal position with respect to the handle is

` cos ωdt (14)

where

ωd =

√
K

µ + m
(15)

for some constant̀. Call the horizontal displacement of the cart from equilibriumx. Let’s find the
equation of motion for this system.

One of the differences between this system and the one you studied on the problem set is that
there is only one degree of freedom here —x. Your position with respect to the cart is completely
fixed by the statement of the problem, so once we have determinedx(t), we know everything.

Another difference is that the resonant frequency depends on the total massµ + m, rather than
just the mass of the cart.

Yet another difference is that we didn’t mention the force on you or the handle. We don’t need
to know it to do the problem. Since we don’t know the force, we can’t useF = ma directly
(though you with sufficient ingenuity, you can find a way to do it). The the Lagrangian technique
works just fine.

The potential energy of the system is due to the spring, and we can take it to be

1

2
Kx2 (16)

The kinetic energy of the system gets two contributions, one from the motion of the cart and one
from your motion. The kinetic energy of the cart is just

1

2
µẋ2 (17)

Your motion is a little more complicated. Up to a constant, your horizontal position fort > 0 is

x + ` cos ωdt (18)

and thus your velocity is
ẋ− `ωd sin ωdt (19)

and your kinetic energy is
1

2
m(ẋ− `ωd sin ωdt)

2 (20)

The total kinetic energy is then

1

2
µẋ2 +

1

2
m(ẋ− `ωd sin ωdt)

2 (21)

and the Lagrangian is

L(x, ẋ, t) =
1

2
µẋ2 +

1

2
m(ẋ− `ωd sin ωdt)

2 − 1

2
Kx2 (22)
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Now we can write down the Euler-Lagrange equation.

∂

∂ẋ
L = µẋ + m(ẋ− `ωd sin ωdt) (23)

∂

∂x
L = −Kx (24)

Thus the Euler-Lagrange equation is

d

dt
(µẋ + mẋ−m`ωd sin ωdt) = −Kx (25)

or
(µ + m)ẍ = −Kx + m`ω2

d cos ωdt (26)

So at the end of the day, we see that this is a forced oscillation problem like the problem on the
problem set, except that it involve the sum of the masses. This means that indeed we chose the right
driving frequency to get resonance in (15). We can now put in the same form for a trial particular
solution that you explored in the problem set:

x(t) = A t sin ωdt (27)

which satisfies
ẍ(t) = (−Aω2

d t sin ωdt + 2Aωd cos ωdt) (28)

So
(µ + m)(−Aω2

d t sin ωdt + 2Aωd cos ωdt) = −K At sin ωdt + m`ω2
d cos ωdt (29)

and

A =
m`ωd

2(µ + m)
(30)

This system is animated in theMathematicanotebookswing-horizontal2.nb bundled with
your lecture notes.
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lecture 7

Topics:
Where are we now?
Scattering and kinematics
Elastic collisions
Inelastic collisions
Generalized Force and Momentum
Example - bead on a expanding ring
Example - bead on a rotating rod
More degrees of freedom

Where are we now?

Momentum conservation and Lagrangians are two fantastic labor-saving devices. Next time we
will see how they are related. This time we will just do a lot of examples.

Scattering and kinematics

The idea of scattering is very important in many subfields of science (and pseudo-sciences like
economics for that matter). The idea is that one does not always have to follow the trajectories
of all the particles in a process in detail to learn something about the process. Often, important
information can be obtained by just looking at the initial state and the final state, and not asking
about the details of what happens in between. Here is an example. Suppose that we have two parti-
cles in three dimensional space interacting through a potential that depends only on the difference
between the position vectors of the two particle. The energy is then

m1

2
~̇r1

2
+

m2

2
~̇r2

2
+ V (~r1 − ~r2) (1)

We will discuss in more detail later in the course why such a system conserves energy and momen-
tum. For now, just note that this potential energy leads to forces that are consistent with Newton’s
third law. The force on particle 1 is

~F1 =
(
− ∂

∂x1

V (~r1 − ~r2),− ∂

∂y1

V (~r1 − ~r2),− ∂

∂z1

V (~r1 − ~r2)
)

(2)

The force on particle 2 is

~F2 =
(
− ∂

∂x2

V (~r1 − ~r2),− ∂

∂y2

V (~r1 − ~r2),− ∂

∂z2

V (~r1 − ~r2)
)

(3)

The chain rule implies that~F1 = −~F2, so that Newton’s third law is satisfied, and momentum is
conserved.

Let’s also assume thatV is “short-range” which means that

V (r) = 0 for large|r| (4)
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or at least thatV (r) goes to zero very rapidly as|r| → ∞. Even if we do not know whatV looks
like in detail, we can say interesting things about this system because energy and momentum are
conserved. Now suppose that we consider a process in which particle 2 is at rest at the origin and
particle 1 approaches from far away. Initially, the potential is irrelevant because the particles are
far apart. Particle 1 has velocity~v1i. After the interaction, the two particles will typically be far
apart again, so again the potential will be irrelevant. The importance of the fact that the potential
energy is irrelevant is that it means that the total kinetic energy long before the collision is the same
as the total kinetic energy long after the collision. At some intermediate time, when the particles
were close together, some kinetic energy was converted to potential, but it all comes back as the
particles separate. Thus, as long as one only asks about the initial and final states,kinetic energy
is conserved. And of course, because Newton’s third law is satisfied, momentum is conserved at
all times, and in particular for the initial and final states. This is a scattering process. We say that
the two particle have scattered from one another.

Now the point is that kinetic energy and momentum conservation put very strong constraints
on this process. Suppose that particle 1 has velocity~v1f after the interaction and particle 2 has
velocity~v2f .

Since the initial momentum and energy of particle 2 are zero, we can write:

m1 ~v1i = m1 ~v1f + m2 ~v2f
m1

2
~v 2

1i =
m1

2
~v 2

1f +
m2

2
~v 2

2f (5)

These constraints are very powerful. If you don’t know the mass of particle 2, for example, you can
calculate it from the three velocities. Scattering gives you information about the particles involved.

There is an interesting linguistic distinction that is made in calculations like this. We talk
about the features that follow from very general principles like conservation of kinetic energy and
momentum as the “kinematics” of the process. This is to be distinguished from the “dynamics”
of the process, which is everything else — in particular the details of the force law. At this point,
the distinction probably seems a little arbitrary, but in the next couple of weeks, as we begin to see
how general these conservations laws really are, this distinction will be more and more important.

Another place where the idea of scattering is crucial is in my own field of particle physics. I
study particles that are very small. We can detect them, we can see their tracks, measure their
velocities, and energies and momenta, just as we would with a larger object. But they are so small,
that we cannot follow what happens when two of them collide in detail. We simply cannot measure
the forces involved in the tiny fraction of a second during which colliding subatomic particles are
in “contact” with one another.1 What we do is scattering experiments, in which we measure the
initial energies and momenta of the particles before the collision, and then again after the collision.
Here, conservation of energy and momentum are really useful, because they put very strong limits
on what can happen. We will discuss this a bit now, and then in much more detail in a few weeks
when we discuss energy and momentum in relativity.

1In fact, the whole notion of these particles being in contact with one another is rather problematic. It is not clear
what it means.
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Elastic collisions

A familiar example of the use of kinematics is in elastic collisions of rigid bodies, like billiard
balls. The force in this case is certainly short-range, because it is only non-zero when the balls are
actually touching. “Elastic” is just a code word meaning that kinetic energy is conserved.

A famous and beautiful result that follows simply from conservation of kinetic energy and
momentum in an elastic collision is that if a moving particle with velocity~v collides elastically
with a particle at rest with the same mass, the dot product of the velocities,~v1 and~v2, of the two
particles in the final state vanish,~v1 ·~v2 = 0. Thus either one of the two velocities vanishes, or else
the two velocity vectors are perpendicular to one another. This is very neat result, and it is easy to
prove using conservation of kinetic energy and momentum. Conservation of kinetic energy gives

1

2
m~v 2 =

1

2
m~v 2

1 +
1

2
m~v 2

2 (6)

Conservation of momentum gives
m~v = m~v1 + m~v2 (7)

Eliminating thems and taking the dot product of each side of (7) with itself gives

~v 2 = (~v1 + ~v2) · (~v1 + ~v2) = ~v 2
1 + ~v 2

2 + 2~v1 · ~v2 (8)

Comparing this with (6) gives the desired result. No forces were ever mentioned. In fact, it does
not even matter here which of the two particles in the final state was initially at rest and which was
moving, because they have the same mass.

There is another way of thinking about this result that is rather neat. Suppose that we look at
the process in the zero momentum frame. We can get to this frame by moving all of our measuring
apparatus with velocity~v/2. In this new frame, particle that was moving now has velocity

~vCM = ~v/2 (9)

and the particle that was initially at rest has the opposite velocity,

−~vCM = −~v/2 (10)

so the sum of the momentum vectors is zero. After the collision, again the particles must be moving
with equal and opposite velocities, and energy conservation requires that the speeds be the same
as the initial speeds. That is all the particles can do is to change direction without changing speed.

~v1CM = −~v2CM with v2
CM = v2

1CM (11)

Now we can go back to the original frame by just adding back the~vCM from the motion of the
frame. Then you can see that

~v1 = ~v1CM + ~vCM ~v2 = ~v2CM + ~vCM = −~v1CM + ~vCM (12)

Then taking the dot product gives

~v1 · ~v2 =
(
~v1CM + ~vCM

)
·
(
−~v1CM + ~vCM

)
= −v2

1CM + v2
1CM = 0 (13)
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Inelastic collisions

One of the hard parts of doing physics is figuring out what principles to use in a particular prob-
lem. At some level, for example, we believe that energy and momentum are always conserved.
Sometimes, as in the example we just discussed, kinetic energy and momentum are obviously con-
served. But for example, when I take an egg and drop in on the floor, it is certainly not obvious.
Before it hits the floor, the egg has kinetic energy and momentum. After it hits the floor, it is just
a scrambled mess, sitting still, with no kinetic energy or momentum. What happened? Clearly the
problem with the eggs momentum is that the egg is not an isolated system. The floor pushed up on
the egg’s shell (and broke it), to change the eggs momentum. The problem with the egg’s energy
is that energy can get transformed from one form to another. In the process of breaking, the egg’s
parts actually heated up slightly, so slightly that we don’t notice it, but enough so that energy is
conserved.

Frequently, we are interested in collisions in which momentum is conserved, but kinetic energy
is not. These are called “inelastic” collisions. The classic inelastic collision is two lumps of clay
hitting and sticking. If the two lumps have massesm1 andm2 with velocitiesv1 andv2 respectively,
the final momentum is

m1~v1 + m2~v2 (14)

We can now compute the final velocity of the system by dividing by the total mass,

~vfinal =
m1~v1 + m2~v2

m1 + m2

(15)

There are two keys to obtaining (15). Notice that we have not used conservation of energy. What
we used instead is the physical picture of the event. The key word is “sticking.” This means
that the two lumps are moving with the same velocity after the collision. This allows us to use
conservation of momentum alone to find the final velocity. There is also an unspoken assumption
behind (15)— the common sense statement that mass is conserved, like energy and momentum —
that the mass of the system of two lumps stuck together is just the sum of the masses of the two
lumps. This is very reasonable, and it is consistent with what each of knows in our bones about
the world. However, it is wrong. We will see in a few weeks that when particles collides at speeds
close to the speed of light, conservation of mass may be completely wrong. Nevertheless, it is a
very good approximation as long as none of the particles are moving at close to the speed of light,
and because the speed of light is so enormous compared to what are used to, this is usually not
much of a restriction.

Since we haven’t used conservation of energy, it is of some interest to calculate how much
energy is lost in the collision. This is

m1

2
~v 2

1 +
m2

2
~v 2

2 −
m1 + m2

2

(
m1~v1 + m2~v2

m1 + m2

)2

=
µ

2
(~v1 − ~v2)

2 (16)

whereµ is an important quantity called the “reduced mass.” We will discuss more of this later.
Note that the energy loss never vanishes in this process unless the lumps were moving together in
the first place. Some energy is always lost whenever there is “sticking.”
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Generalized Force and Momentum

For a particle of massm moving in a potentialV (x), the Euler-Lagrange equation of motion can
be written as

dp

dt
=

d

dt
(mẋ) =

d

dt

∂L
∂ẋ

=
∂L
∂x

= −V ′(x) = F (x) (17)

— the rate of change of the momentum is equal to the force. In the more general situation, this
suggests that we might regard the Euler-Lagrange equations,

d

dt

∂L
∂q̇j

=
∂L
∂qj

(18)

as a generalization of this — we call
∂L
∂q̇j

(19)

the “generalized momentum” corresponding to the coordinateqj and

∂L
∂qj

(20)

the “generalized force” corresponding to the coordinateqj. Then the Lagrange equation says that
the rate of change of the generalized momentum equals the corresponding generalized force.

A particularly interesting case occurs when the Lagrangian does not depend at all on some
coordinateqj. In that case, (18) implies that the generalized momentum corresponding toqj is
constant. This statement becomes even more interesting when you realize that we have great
freedom to choose the coordinates any way we want to. Thus if there isany coordinate system in
which the Lagrangian does not depend on some coordinate, then there is a conservation law — the
corresponding generalized momentum is conserved.

Example - bead on an expanding ring

Let’s warm up by doing a couple of examples of Euler-Lagrange equations for systems with a
single degree of freedom. I’ll begin with a system that is mathematically very simple, but that I
don’t actually know how to build. Suppose we have a small bead with massm that slides without
friction on circular ring centered in thex − y plane, but whose radius grows as a function of time
as

r(t) = r0 + vrr t (21)

It will be most useful to analyze this in terms the polar angleθ in terms of which thex andy

coordinates of the bead are
x = r(t) cos θ y = r(t) sin θ (22)

We can find the kinetic energies by differentiating (22) to get the components of the velocity,

vx = vrr cos θ − θ̇ sin θ vy = vrr sin θ + θ̇ cos θ (23)
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We can also write the kinetic energy of the bead directly in terms ofθ using the fact that the radial
motion of the bead due to the expansion of the ring and tangential motion associated with changing
θ are instantaneously perpendicular. Either way se see that~v 2 can be written as

~v 2 = ẋ2 + ẏ2 = v2
rr + r(t)2 θ̇ 2 (24)

Remember here thatr(t) is not a dynamical variable — the time dependence ofr is imposed on
the system from the beginning. There is no potential energy because the system is in a horizontal
plane, so the Lagrangian is

L(θ, θ̇, t) =
m

2

(
v2

rr + r(t)2 θ̇ 2
)

(25)

The Euler-Lagrange equation here is particularly simple because the Lagrangian does not depend
at all onθ. Thus

0 =
∂

∂θ
L

(
θ, θ̇, t

)
− d

dt

∂

∂θ̇
L

(
θ, θ̇, t

)
= − d

dt

∂

∂θ̇
L

(
θ, θ̇, t

)
= − d

dt

(
mr(t)2 θ̇

)
(26)

What is nice about (26) is that the solution (or more properly the “first integral”) is really simple.

mr(t)2 θ̇ = a constant (27)

The relation (27) is an example of conservation of a generalized momentum. The Lagrangian does
not depend onθ, only onθ̇, so the generalized momentum

∂L
∂θ̇

(28)

is constant. In fact, as we will discuss in more detail later, this is the angular momentum, which is
conserved because there is no torque on the mass about the origin.

To find the constant, we need an initial condition. For example if the angular velocity att = 0

is θ̇(0) = ω0, then we can write
mr(t)2 θ̇ = mr2

0 ω0 (29)

thus

θ̇ =
dθ

dt
=

r2
0 ω0

(r0 + vrr t)2
(30)

We can now integrate this to findθ(t). Again we need an initial condition. If

θ(0) = θ0 (31)

then

θ(t) = θ0 +
∫ t

0
dt′

r2
0 ω0

(r0 + vrr t′)2
= θ0 +

ω0 r0 t

r0 + vrr t
(32)

There is another way of thinking about this which is slightly amusing. If I am a one dimensional
creature living on this expanding ring, the variable I care about is not the angle, but the actual
tangential distance I have traveled along the ring, which is

`(t) =
∫ t

0
r(t′) θ̇(t′) dt′ (33)
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so that differentiating to get the velocity gives just the tangential velocity

˙̀(t) = r(t) θ̇(t) (34)

Differentiating again to get the acceleration gives

῭(t) =
d

dt

(
r(t) θ̇(t)

)
=

d

dt

(
r(t)2 θ̇(t)/r(t)

)
(35)

But from (26), the product of the first two terms is a constant so

῭(t) = r(t)2 θ̇(t)
d

dt

(
1/r(t)

)
= r(t)2 θ̇(t)

−ṙ(t)

r(t)2
= r(t) θ̇(t)

−ṙ(t)

r(t)
= − ṙ(t)

r(t)
˙̀(t) (36)

or

m῭(t) = −m
ṙ(t)

r(t)
˙̀(t) (37)

Now the point is that this looks likeF = ma for a particle subject to a velocity dependent frictional
force,

−m
ṙ(t)

r(t)
˙̀ (38)

Creatures living on this expanding ring would feel this friction as a result of the expansion of their
“space.” It is very different from the frictional forces that we have talked about so far because
this is a conservative system. No energy is being lost to heat, but instead, something that looks
like friction is generated by the time dependence of the system. Something very much like this
is going on in our expanding universe - it is called “Hubble friction.” You see here that is it just
conservation of a momentum (in this case angular) in the expanding space.

This system is animated in theMathematicafile lecture-7-1.nb.

Example - bead on a rotating rod

Next, consider a bead with massm on a straight frictionless rod that rotates with constant angular
velocity ω. For simplicity, we will let it rotate around the origin in thex-y plane. Then gravity
plays no role. The angle with thex axis at timet is ωt. This would not be a trivial problem if we
were armed only with~F = m~a. But with a Lagrangian it is easy. For one thing, the Lagrangian
technique allows us to focus just on where the bead is on the wire. Let` (which can be negative)
be the distance along the rod where the bead sits at timet. This specifies the configuration of the
system. The position of the bead at timet is then

x = ` cos ωt y = ` sin ωt (39)

The velocity is
ẋ = ˙̀cos ωt− `ω sin ωt ẏ = ˙̀ sin ωt + `ω cos ωt (40)

Thus the kinetic energy is
1

2
m

(
ẋ2 + ẏ2

)
=

1

2
m

(
˙̀2 + `2ω2

)
(41)
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The explicit time dependence from (40) has gone away when we form the square of velocity. If
you think about the two terms on the right hand side of (41), you will realize that the first one is
related to the motion of the bead along the rod, and the second one with the rotation of the rod.
Because these two motions are perpendicular, there is no cross term and the total kinetic energy is
just a sum of the two effects.

In this case, there is no potential, so the Lagrangian is just given by the kinetic energy, (41),
and it doesn’t depend ont explicitly, so we don’t needt in the list of variables,

L(`, ˙̀) =
1

2
m

(
˙̀2 + `2ω2

)
(42)

and the Euler-Lagrange equation is

0 = m`ω2 − d

dt
(m ˙̀) (43)

or
῭= ω2` (44)

This is a differential equation we can solve easily because it is linear and TTI. The general solution
is

`(t) = C eωt + D e−ωt (45)

You are likely to see this general solution written as

`(t) = A cosh ωt + B sinh ωt (46)

in term of the so-called hyberbolic functions,

sinh x =
ex − e−x

2
cosh x =

ex + e−x

2
(47)

These are handy, because they have properties that are reminiscent of the more familiar trigonometic
functions,sin x andcos x. But if you are not used to them, you can always do everything in terms
of exponentials. At any rate, if the bead starts from rest at` = `0 at t = 0, the solution looks like

`(t) = `0 cosh ωt = `0
eωt + e−ωt

2
(48)

Exponentials get big quickly, so this bead gets going pretty fast. For example, in the timeπ/ω,
while the rod rotates through180◦, the distance from the origin increases by a factor of

cosh π ≈ 11.6 (49)

So this is at good way to launch things.
If instead, the rod rotates with constant angular velocityω around the origin in thex-z plane in

the earth’s gravitational field, then we have to include the effect of gravity - but this is easy. Again,
we take the angle with thex axis at timet is ωt.
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The configuration of the system looks the same except thatz replacesy. Thus the kinetic
energy looks the same. But now there is a gravitational contribution to the potential energy

U(`, t) = mgz = mg` sin ωt (50)

Thus the Lagrangian in this case depends explicitly ont. It looks like

L(`, ˙̀, t) =
1

2
m

(
˙̀2 + `2ω2

)
−mg` sin ωt (51)

and the Euler-Lagrange equation is

0 = m`ω2 −mg sin ωt− d

dt
(m ˙̀) (52)

or
῭= ω2`− g sin ωt (53)

More degrees of freedom

The Lagrangian works just as well for more particles, or in more dimensions. Suppose that there
aren particles, so that

T =
n∑

j=1

mj

2
ẋ2

j and U = V (x1, · · · , xn) (54)

Then it is easy to see by the same sort of arguments that

δS

δxj

= −mj ẍj − Vj

(
x1, · · · , xn

)
(55)

where

−Vj(x1, · · · , xn) ≡ − ∂

∂xj

V (x1, · · · , xn) (56)

is the force on particlej. ForS[x] to be an extremum, we must have (55) vanish for eachj, which
just givesF = ma for each particle.

If the Lagrangian depends on more degrees of freedom, there is an Euler-Lagrange equation
that must be satisfied for each coordinate:

∂

∂xj

L
(
x, ẋ, t

)
− d

dt

∂

∂ẋj

L
(
x, ẋ, t

)
= 0 (57)

where thexs andẋs in the functionL now indicate all the components — that isL(x, ẋ, t) is really
a shorthand for

L(x1, x2, · · · , ẋ1, ẋ2, · · · , t) (58)
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lecture 8
Topics:

Why Euler-Lagrange equations?
Hamilton’s principle
Functions of functions
Calculus of variations
Functional derivatives
Finding functional derivatives
Back to Hamilton’s principle
The Lagrangian and the action
Quantum mechanics and the classical trajectory
Appendix: On the functional Taylor series

Why Euler-Lagrange equations?

In the last week, you have done the really important part of your study of Lagrangians, at least
for this course. You have have learned how to construct them and to derive from them the Euler-
Lagrange equations that replace F = ma as our equations of motion. You have seen in a non-trivial
example (the second problem on as3) that the physical results are independent of the particular
choice of coordinates you use to write down the Lagrangian. Next time, we will see how this
gives a beautiful explanation of the great conservation laws of energy and momentum in terms of
fundamental symmetries of the world. I hope that all of this has convinced you that the Lagrangian
formulation of mechanics really simplifies your life. We won’t come close in this course to seeing
all the advantages of this beautiful way of doing mechanics (you can get a little sense of it by
reading though the sections of Morin that I have not assigned). You can see more in Physics 151 if
your appetite is whetted.

Nevertheless, as I expected, and indeed as I saw on the QA this week, most of you would kind
of like to understand why it works! This is not really fair of course. You don’t know why F = ma
works either. You are just so used to it that it seems reasonable. But there is something that we can
say about that, while it is hard, will help you understand some of the magic of Lagrangian. And, as
I will try to convince you, it is telling something about the way the world really works at a deeper
level.

To do this, I have to introduce some mathematics that will probably be hard for most you -
essentially the calculus of an infinite number of variables! This probably sounds really scary, and
it is scary. But DON’T PANIC! Remeber that you have already done the really important part.
This next week is mostly for your general education. But you will find, I hope, that this deeper
formulation not only increases your understanding, but will give you a useful bag of tricks for
dealing with practical problems.

Here is the deal. The Euler-Lagrange equations can be derived from something called “Hamil-
ton’s principle” which is the statement (which we will make more carefully in a moment) that the
classical trajectory is the path of the classical system through time for which small changes in the
path do not change a quantity called the “Action” which is obtained by integrating the Lagragian
over the path. Most of todays class will be taken you by trying to understand what this statement
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means and showing that it give rise to the Euler-Lagrange equations. At the end, I will try to give
you at least a hand-waving idea of how this is related to quantum mechanics.

Hamilton’s principle

We will start with the very simplest example - a mass moving in a potential in one dimension.
Consider the one dimensional motion of a particle with coordinate x in a potential V (x). Call the
particle’s kinetic energy

T (ẋ) =
m

2
ẋ2 (1)

Now we would like to find a particular trajectory x(t) are such that the particle moves from x1 at
time t1 to x2 at time t2 — or

x(t1) = x1 x(t2) = x2 (2)

Hamilton’s principle is the statement that if you compute the quantity S[x] (called the action —
I’m not really sure why) - the following integral of the Lagrangian:

S[x] ≡
∫ t2

t1

[
L

(
ẋ(t)

)]
dt =

∫ t2

t1

[
T

(
ẋ(t)

)
− V

(
x(t)

)]
dt (3)

depending on a function x(t) satisfying1 then the variation of S[x] with respect to the function
x(t) vanishes for the actual trajectory. The hard part of Hamilton’s principle will not be proving
this statement, but figuring out exactly what it means to talk about the variation of something with
respect to a function.

The first thing to notice is that the Lagrangian L = T − V is an ordinary function of two
variables, x and ẋ,2 but that S[x] is actually a function of a function — it depends on x(t) for all
values of t from t1 to t2 where x(t) can be any function satisfying (2) — something like

x1

x2

t1 t2

..................
.................
.................
................
................
................
................
................
................
.................
..................
...................
.....................
.........................
......................................

..................................................................................................................................................................................................................................................................................................................................................................................
..............................
.......................
...................
.................
...............
..............
.............
.............
............
...........
...........
..........
..........
..........
.........
.........
.........
.......

x(t)

1We will see later that the restriction to functions satisfying (2) is important and has to do with the initial conditions
that we have spent so much time talking about in the first couple of weeks.

2In the simple example we are working out now, T is a function of one of them and V of the other, but in general,
both T and V could depend on both x and ẋ.
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Thus S[x] is a function whose argument is itself a function (such an object is sometimes called a
functional and I may sometimes use that term). I have put the x in square brackets to remind you
that in this case x is a function rather than a number. The value of S[x], on the other hand, is just
a number. It doesn’t depend on t. The variable t in (3) is a dummy variable. Now Hamilton’s
principle is a statement about the variation of S[x] as we let x(t) vary over all possible functions
satisfying (2).3 We will find that when x(t) is very near to a solution to Newton’s second law, then
S[x] changes slowly as a function of whatever parameters you use to specify the function x(t).
When x(t) is a solution, S[x] is not varying at all.

Functions of functions

I imagine that the idea of a functional — that is a function of a function — is pretty unfamiliar to
most of you, but you shouldn’t get too worried about it. Most of you have learned or are beginning
to learn about the calculus of functions of several variables, and dealing with functionals is not
really much different. The main differences are in notation. In fact, I would argue that the big jump
is going from one or two variables to more than that. Once you have made it to three variables, it
really doesn’t get any harder to think about more — not even an infinite number more.

Here is what I mean by the peculiar statement that going from two variables to three variables
is what is hard. This has to do with visualization. As you have probably noticed, it gets harder to
make a mental picture of what a function means as the number of variables increase. A function
of a single variable is easy. We naturally associate a function f(x) with a graph of y = f(x).
This allows us to do things that bring the function alive to us, such as relating the derivative of the
function to the slope of the line in the graph. We can sort of do something similar with a function
of two variables f(x, y) by imagining a surface in three dimensional space with z = f(x, y). This
can be quite helpful, because it allows you to have a visual representation of features that only
appear with more than one variable, such as the gradiant vector, which for two variables x and y
looks like the two dimensional vector

~∇ =

(
∂

∂x
,

∂

∂y

)
(4)

The vector ~∇f(x, y) points in a direction that corresponds to going upwards on the surface z =
f(x, y).

But what do you do about visualizing functions of three variables, or more? There is really no
ideal way of doing this. So already by the time you get to functions of three variables, you have to
stop relying on visual crutches and just develop an analytic sense of what the function means.

A functional like S[x] is just a function of an infinite number of variables where the variables
are the values of x(t) at all possible values of t. The really peculiar new thing about a functional is
that the variables are labeled by a continuous parameter, rather than having different names like x,
y and z, or different discrete indices, like a1, a2, etc. This is why functionals look so different and
why we have to invent some new notation to deal with them.

3Really? All possible functions? One has to be reasonable here — it might be better to say all possible functions
for which the integral in (3) makes sense — differentiable functions in this example. We will ignore such issues and
leave them for the mathematicians.
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A mathematical example of a functional is the length of a path described by a curve, y = f(x).
The path length from x1 to x2 is

P [f ] =
∫ x2

x1

√
dx2 + dy2 =

∫ x2

x1

√√√√1 +

(
dy

dx

)2

dx =
∫ x2

x1

√
1 + f ′(x)2 dx (5)

The path length depends on the function f that defines the shape of the curve. This example is
particularly interesting because it depends on the endpoints in same way that (3) does.

A specific example of path length may be useful. Consider a graph y = f(x) for the function

f(x) =
√

R2 − x2 (6)

f ′(x) = −x/
√

R2 − x2 (7)

Then the path length from x1 to x2 is
∫ x2

x1

√
1 + f ′(x)2 dx =

∫ x2

x1

R/
√

R2 − x2 dx (8)

which with the substitution x = R sin θ becomes

R
∫ arcsin x2/R

arcsin x1/R
dθ = R

(
arcsin

x2

R
− arcsin

x1

R

)
(9)

And this is right because this is just the arc length along a circle, as show in the diagram below.
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Here is a more physical example. Suppose that the function y = f(x) in (5) describes the
height of the track of of roller coaster. If a roller car is moving along the track with mass m and
energy

E =
1

2
mv2 + mgy =

1

2
mv2 + mg f(x) (10)

the time the car takes to get from x to x + dx is the infinitesimal path length,
√

dx2 + dy2 =

dx
√

1 + f ′(x)2 divided by the speed v which from (10) is

v =

√
2
(
E −mg f(x)

)
/m (11)
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Thus the time the car takes to get from x1 to x2 is

τ [f ] =
∫ x2

x1

√
dx2 + dy2

v
=

∫ x2

x1

√
1 + f ′(x)2

√
2
(
E −mg f(x)

)
/m

dx (12)

The time (12) is a function of E, m and g, but it is a functional of the function f(x) that describes
the height of the track. This is an important example to understand and we will try to come back
to it several times over the next few weeks.

Calculus of variations

Now let’s return to Hamilton’s principle. The proof and indeed the more precise mathematical
statement of the principle is an exercise in what is called the calculus of variations, which is sort of
calculus with an infinite number of variables. It probably won’t surprise you that what we need to
do is to generalize the notion of a derivative to functionals and to explore the nature of the Taylor
series. After all, these are our main tools in understanding how things vary.

The actual example we are interested in is complicated because the integrand on the right hand
side of (3) depends on both x(t) and ẋ(t), so let us first discuss a couple of simpler examples.

Consider the quantity

W [x] =
∫ t2

t1

(
x(t)− vt

)2
dt (13)

for some constant v and find the value of x(t) for which the variation of W [x] with respect to x(t)
vanishes. We can do this by the following trick. Suppose that we have already found the soltuion
x(t). Now consider small variations about this particular function:

x(t) + δx(t) (14)

I’ve used the symbol δ rather than ∆ just to remind us that this is a “small” function rather than a
small number. Now look at (13) as function of x + δx,

W [x + δx] =
∫ t2

t1

(
x(t) + δx(t)− vt

)2
dt

=
∫ t2

t1

(
x(t)− vt

)2
dt +

∫ t2

t1
δx(t) 2

(
x(t)− vt

)
dt +

∫ t2

t1

(
δx(t)

)2
dt

= W [x] +
∫ t2

t1
δx(t) 2

(
x(t)− vt

)
dt +O(δx2)

(15)

Now we look at the coefficient of the linear term in δx(t), which is 2
(
x(t) − vt

)
. This vanishes

for all possible small functions δx(t) if

x(t) = vt (16)

and this is the answer we are looking for. Around the function x(t) = vt, there is no linear term
in the expansion of W [x]. Note that while t in (15) is a dummy variable, we can say something
about the t dependence because we require that the variation vanishes for any possible δx(t). We
will come back to this below when discuss functional derivatives.
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This result is quite reasonable and maybe obvious in this particular example because W [x]
is actually minimized for x(t) = vt. The variation of a functional at a minimum vanishes for
the same reason that the derivative of a smooth function vanishes at a minimum. If there were a
linear variation, then on one side or the other, the result would be larger, which is impossible at a
minimum value. But what we want to extract from this calculation is not the result, but the general
technique.

Functional derivatives

What we did to solve the variational problem for (13) was to set to zero the coefficient of the linear
term in δx(t) in W [x + δx]. It is useful to give this coefficient a name, so we call it a functional
derivative, and denote it by

δW

δx(t)
[x] or

δ

δx(t)
W [x] (17)

so in this case, we can write
δW

δx(t)
[x] = 2

(
x(t)− vt

)
(18)

Notice that the t dependence of the RHS of (18) comes from the t dependence of the differential
in the denominator of the LHS — again W [x] for some particular x is just a number with no t
dependence.

This definition of functional derivative is generally useful, so let’s discuss it in general:

δ

δx(t)
W [x] is the coefficient of the linear term in δx(t) in W [x + δx]. (19)

This is a reasonable definition because it makes the functional Taylor series work in the same way
that the ordinary Taylor series does. In terms of the functional derivative, the functional Taylor
series starts like this:

W [x + δx] = W [x] +
∫ t2

t1
δx(t)

δ

δx(t)
W [x] dt + · · · (20)

In words, this says that the total change in the functional is obtained by adding up (actually in-
tegrating because the variable is continuous) the small changes δx(t) in x(t) at each point times
the rate of change of the functional at that point. This is just what we always say, except that the
number of variables has become continuously infinite. (20) is precisely analogous to the Taylor
series for functions of several variables that we will discuss in the appendix and in future lectures:

F (x1 + ∆x1, x2 + ∆x2, · · ·) = F (x1, x2, · · ·) +
∑

j

∆xj
∂

∂xj

F (x1, x2, · · ·) + · · · (21)

The only difference is that instead of the sum over all the different variables that we have in (21),
in (20) we need an integral over t because in effect, the value of x(t) at each value of t is a separate
variable.
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Finding functional derivatives

In general, functional derivatives can be difficult to find, but it is easy to find them for functionals
like W [x] that have the form of an integral of an ordinary function —

W [x] =
∫ t2

t1
F

(
x(t)

)
dt (22)

In this case, the functional derivative of W [x] is related to the ordinary derivative of F —

δW

δx(t)
[x] = F ′(x(t)

)
(23)

The reason this is so simple is that we can calculate the functional Taylor expansion of W using
the ordinary Taylor expansion of F , and looking for the coefficient of δx(t). Let’s show how this
works.

W [x + δx] =
∫ t2

t1
F

(
x(t) + δx(t)

)
dt (24)

But using the ordinary Taylor expansion for the ordinary function F (x), the right hand side be-
comes

=
∫ t2

t1

[
F

(
x(t)

)
+ δx(t) F ′(x(t)

)
+ · · ·

]
dt (25)

Picking out the coefficient of δx(t) on the right hand side gives (23). Notice the way that the
variable t gets promoted from being a dummy variable in (22) and (24) to being a real variable in
(25). We single out a particular value of t when we find the coefficient of δx(t) for that t.

The function F in (22) may depend on other functions of t, in which case we can generalize
(22) as follows:

δ

δx(t)

∫ t2

t1
F

(
x(t′), y(t′), · · ·

)
dt′ =

∂

∂x
F (x, y(t), · · ·)|x=x(t) (26)

where . . . denotes and other functions that F depends on. Note that in (26), t′ is a dummy index,
integrated over so that it could be called anything except t. The dependence on t is real (not
dummy) because the process of functional differentiation picks out a value of t. Here are some
examples:

F [x] =
∫ t2

t1
x(t′)3 dt′ ⇒ δ

δx(t)
F [x] = 3 x(t)2

F [x] =
∫ t2

t1
sin

(
x(t′)

)
dt′ ⇒ δ

δx(t)
F [x] = cos

(
x(t)

)

F [x, y] =
∫ t2

t1

(
x(t′) y(t′)

)3
dt′ ⇒ δ

δx(t)
F [x, y] = 3 x(t)2y(t)3

F [x, y] =
∫ t2

t1
sin

(
x(t′) y(t′)

)
dt′ ⇒ δ

δx(t)
F [x, y] = y(t) cos

(
x(t) y(t)

)

(27)

We can summarize these ideas by saying that when the functional is the integral of an ordi-
nary function, what the functional derivative does is to eliminate the integral and differentiate the
function. Think about it in the context of the examples in (27).
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Back to Hamilton’s principle

With this new tool of the calculus of variations, we can go back and consider Hamilton’s principle.
Remember that what we want to do is to show that the functional S[x] has zero variation around
the same trajectory that we get by using F = ma.

According to our discussion, what we want to do to impose vanishing variation on S[x] is to
set the functional derivative of S[x],

δS

δx(t)
(28)

to zero. As in the simpler example, we calculate the functional derivative by performing a func-
tional Taylor series and picking out the coefficient of δx(t). For pedagogical purposes, we will
break this up into two pieces:

S = ST − SV (29)

where
ST [x] ≡

∫ t2

t1

[
T

(
ẋ(t)

)]
dt =

∫ t2

t1

m

2

(
ẋ(t)

)2
dt (30)

and
SV [x] ≡

∫ t2

t1

[
V

(
x(t)

)]
dt =

∫ t2

t1
V

(
x(t)

)
dt (31)

For the SV term, because V does not depend on ẋ, this is just like the W [x] example,

δSV

δx(t)
= V ′(x(t)

)
(32)

This is a good sign because the derivative of the potential is related to the force.
For the SV , term, we will need an extra step, so let’s write out the functional Taylor series in

detail.
ST [x + δx] =

∫ t2

t1

m

2

(
ẋ(t) + δẋ(t)

)2
dt (33)

=
∫ t2

t1

m

2

(
ẋ(t)

)2
dt +

∫ t2

t1
δẋ(t) m ẋ(t) dt +O(δx2) (34)

= ST [x] +
∫ t2

t1
δẋ(t) m ẋ(t) dt +O(δx2) (35)

But the δẋ(t) in (35) is the change in ẋ(t) when we make a change δx(t) in x(t). Thus since

d

dt

(
x(t) + δx(t)

)
= ẋ(t) +

d

dt
δx(t) (36)

δẋ(t) is given by

δẋ(t) =
d

dt
δx(t) . (37)
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The trouble with (35) is that it depends on δẋ(t), while we have defined the functional derivative
to be the coefficient of δx(t). To take care of that, we can integrate by parts:

∫ t2

t1
δẋ(t) m ẋ(t) dt =

∫ t2

t1

(
d

dt
δx(t)

)
m ẋ(t) dt

=
∫ t2

t1

d

dt

(
δx(t) mẋ(t)

)
dt−

∫ t2

t1
δx(t) m ẍ(t) dt

= −
∫ t2

t1
δx(t) m ẍ(t) dt + δx(t2) m ẋ(t2)− δx(t1) m ẋ(t1)

(38)

The last line in (38) has two terms from the endpoints of the integration. These don’t look like
everything else, and we want to get rid of them. This is where (2) comes in. We are supposed to
be restricting our attention to functions satisfying (2). But if x(t) and x(t) + δx(t) both satisfy (2),
then

δx(t1) = δx(t2) = 0 . (39)

In words, we are only interested in variations that vanish at the endpoints. These functions might
look something like this

x1

x2

t1 t2

..................
.................
.................
................
................
................
................
................
................
.................
..................
...................
.....................
.........................
......................................

..................................................................................................................................................................................................................................................................................................................................................................................
..............................
.......................
...................
.................
...............
..............
.............
.............
............
...........
...........
..........
..........
..........
.........
.........
.........
.......

.......................
.....................
...................
..................
.................
................
................
...............
...............
...............
...............
................
................
.................
..................
....................
.......................
................................

..........................................................................................................................................................................................................................................................................................................................
.........................
....................
..................
.................
................
...............
...............
...............
...............
................
................
.................
..................
...................
......................
..........................
..

.............................
...................................

...................................................
.................................................................................................................................................................................................................................................................................................................

x(t)

x(t) + δx(t)

δx(t)

So in fact, the funny looking terms vanish because of (2). Then (38) becomes
∫ t2

t1
δẋ(t) m ẋ(t) dt = −

∫ t2

t1
δx(t) m ẍ(t) dt (40)

Now we can pick out the coefficient of δx(t) and see that

δST

δx(t)
= −m ẍ(t) (41)

Now, finally, we can verify that Hamilton’s principle is correct. Putting (32) and (41) together,
we have that the condition for vanishing variation of S[x] is

δS

δx(t)
= −m ẍ(t)− V ′(x(t)

)
= 0 (42)
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or
m ẍ(t) = −V ′(x(t)

)
(43)

which, since F = −V ′, is just Newton’s second law, which in this case, we know, is also the
Euler-Lagrange equation.

The Lagrangian and the action

As we will see, Hamilton’s principle really captures more of what is going on in the world than
F = ma. Let’s see consequences of Hamilton’s principle again in a more general language in
terms of the Lagrangian, L. Again the action is

S[x] =
∫ t2

t1
L

(
x(t), ẋ(t)

)
dt (44)

Here, x might actually have indices that allows it to represent more than one particle or dimension
or both. We won’t write them explicitly in this formal derivation. Now we want the functional
derivative of S[x] with respect to x(t) to vanish. In general, the functional derivative is

δS

δx(t)
[x] =

∂

∂x(t)
L

(
x(t), ẋ(t)

)
− d

dt

∂

∂ẋ(t)
L

(
x(t), ẋ(t)

)
(45)

The first term arises from the Taylor expansion of the x(t) dependence. The second term arises in
the same way as (41), from the Taylor expansion of the ẋ(t) dependence, followed by an integration
by parts, which gives the minus sign. Thus Hamilton’s principle implies that the solution for the
motion satisfies the Euler-Lagrange equation(s)

∂

∂x(t)
L

(
x(t), ẋ(t)

)
− d

dt

∂

∂ẋ(t)
L

(
x(t), ẋ(t)

)
= 0 (46)

If x has several components, (46) must be true for each component separately.

Quantum mechanics and the classical trajectory

In my view, the most important reason that Hamilton’s principle and the Lagrangian are so im-
portant has to do not with classical mechanics alone, but with quantum mechanics and the way in
which classical physics emerges as an approximation to the quantum world.

From the classical point of view, Hamilton’s principle is actually a little peculiar. Why should
it matter to a classical particle what the value of the action is for paths that the particle does not
actually take? OK – - so Hamilton’s principle works to give the classical equation of motion, but
it is hard to figure out what it means physically. But in quantum mechanics, it has a very definite
meaning, because in quantum mechanics, the particle really takes all paths! This is absolutely
nutty, but this is really the way the world works. Roughly, the way it works is this. When a
quantum mechanical particle moves from point x1 at time t1 to point x2 at time t2, it takes all
trajectories from the starting point to the end simultaneously. But the different trajectories can add
together like the different ripples in a wave on a pond. Associated with each trajectory there is a
complex number A whose phase is the action divided by h̄, Planck’s constant over 2π.

eiS[x]/h̄ (47)
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The most likely trajectories are those that are near the classical trajectory, because the action is
changing very slowly for these trajectories, they have approximately the action of the classical
trajectory, and therefore all the As have the same phase and all the nearby trajectories add up
coherently. Trajectories very far from the classical trajectory are unlikely because the phase is
changing rapidly and nearby trajectories have different phases and add nearly to zero.

There is another way of putting this that is perhaps more interesting. Euler-Lagrange equations
are differential equation, but not every differential equation is an Euler-Lagrange equation. The
fact that the world is quantum mechanical explains why the classical physics that we see can
be described by the solutions not just to any old differential equation, but specifically to Euler-
Lagrange equations. We will see why this distinction is important as we go along.

Appendix: On the functional Taylor series

It might be useful for some of you if I expand on the statement of the functional Taylor series
because it a pretty piece of math. Some of you, on the other hand, may find this rather terrifying.
Please DON’T PANIC. This section is called an appendix because it is completely optional. I
won’t get to it at all in lecture. But for some of you it may be fun.

The picture of the functional Taylor series that I will give you is related to the following state-
ment that you may find useful. The t in a function x(t) can be thought of as a kind of index,
labeling components of an infinite dimensional vector. Or to put this the other way around, a vec-
tor ~r can be thought of as a function of the index that labels the component — rj is a number for
each j just like x(t) is a number for each t. In this way of thinking, a functional, W [x] is like a
function of several variables, f(r1, · · · , rn) (depending on an n-dimensional “vector”), except that
W [x] depends on an infinite number of variables, the values of x(t) for some range of t. Now what
does the Taylor expansion look like for a function of several variables, like f(r1, · · · , rn)? We can
build up the Taylor series by looking at one variable at a time:

f(r1 + a1, · · · , rn) =

(
1 + a1

∂

∂r1

+
1

2
a2

1

∂2

∂r2
1

+ · · ·
)

f(r1, · · · , rn)

f(r1 + a1, r2 + a2, · · · , rn) =

(
1 + a2

∂

∂r2

+
1

2
a2

2

∂2

∂r2
2

+ · · ·
)

f(r1 + a1, r2, · · · , rn)

and so on for all n variables

(48)

This looks complicated, but it can be simplified easily using a very beautiful form for the Taylor
expansion of one variable:

g(x + a) = exp

(
a

∂

∂x

)
g(x) =

∞∑

k=0

ak

k!

dk

dxk
g(x) (49)

The expansion of the exponential precisely reproduces the terms in the Taylor expansion. Using
(49), equation (48) becomes

f(r1 + a1, · · · , rn + an) =




n∏

j=1

exp

(
aj

∂

∂xj

)
 f(r1, · · · , rn) (50)
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But because the product of exponentials is the exponential of the sum of the exponents, this can be
written as

f(r1 + a1, · · · , rn + an) = exp




n∑

j=1

aj
∂

∂xj


 f(r1, · · · , rn) (51)

This is the Taylor series for more than one variable. It is rather neat that it looks just like the Taylor
series for a single variable, (49), except that we have to include derivatives with respect to all the
variables in the exponent. Now for an infinite number of variables labeled by a continuous variable
t, in some range t1 ≤ t ≤ t2, the argument goes the same way, but instead of summing over the
indices, as we do in (51), we must integrate over the continuous variable t, so that the functional
Taylor series looks like

W [x + δx] = exp

(∫ t2

t1
dt δx(t)

δ

δx(t)
dt

)
W [x] (52)

Note that if we expand the exponential, we get a first term which is just (20), as expected from
our earlier discussion.
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lecture 9

Topics:
Where are we now?
Energy again
Example - frictionless table
When isF the energy?
Symmetries and transformations
Example: space translations for one particle
Space translations for two particles
Space translations for many particles
Finding Symmetries
Rotations
Noether’s theorem
Momentum conservation from Noether’s theorem
More on rotations
What functions are invariant?
Example of functionals - Soap bubbles

Where are we now?

There is much more in these notes than we can possibly cover in class. But I thought I would
put them all up and then decide what to discuss in detail after I see your QA responses tomorrow
morning.

We have seen how conserved quantities can arise as the generalized momenta associated with
variables that do not appear in the Lagrangian. Here we will discuss a generalization of this fact,
that is an even more important principle. In Lagrangian mechanics, continuous symmetries lead
to conserved quantities. We have already seen one example of this in our discussion of energy,
and we will begin by making the connection with time translation invariance. We will go on to
discuss symmetries more generally, and also in more detail the specific example of space transla-
tion symmetry, which leads to the conservation of total momentum. Because we will be talking
about symmetry, at the risk of encouraging people to waste time, I have included aMathematica
file Kaleidoscope.nb that produces kaleidoscopic images with various different symmetries. I like
it both because I like symmetry, and because it was so simple to construct with complex numbers
(if only I could have worked in the Taylor expansion. . .).

Soap bubbles are a beautiful example of a functional minimization problem. The last sections
discusses a simple type of soap bubble for which the analysis is the same as in Hamilton’s principle.

Energy again

Now we are going to do a little math that will lead to a remarkable and beautiful result. If the
Lagrangian does not explicitly depend on time, we will find that we can construct a function of
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the coordinates and the velocities of the system that does not change with time for any solution
to the Euler-Lagrange equation. Often, we can identify this quantity with the energy. We will do
this first for a single degree of freedom, and then extend the result to systems with more degrees
of freedom.

Consider a system with a single degree of freedom described by the Lagrangian

L(q, q̇, t) (1)

for some single coordinateq, and construct the quantity

F = q̇
∂L
∂q̇

− L (2)

In general,F may depend onq, q̇ andt. Let us now ask howF changes with time, by taking the
total derivative

d

dt
F =

d

dt

(
q̇

∂L
∂q̇

)
− d

dt
L (3)

In the first term on the right hand side of (3), we use the product rule to write

d

dt

(
q̇

∂L
∂q̇

)
= q̈

∂L
∂q̇

+ q̇
d

dt

∂L
∂q̇

(4)

In the second term on the right hand side of (3), we use the fact that thet dependence ofL comes
from the explicitt dependence, and also from the implicit dependence ont throughq andq̇:

d

dt
L = q̈

∂L
∂q̇

+ q̇
∂L
∂q

+
∂L
∂t

(5)

The relation (5) is an example of one of those multivariable calculus things we have talked about
before that will make your eyes glaze over if you just stare at the symbols. But if you translate it
into words, it makes perfect sense. It says that the total rate of change ofF with t is the rate of
change ofq̇ times the rate at whichF changes withq̇ plus the rate of change ofq times the rate
at whichF changes withq plus the rate of change from the explicit time dependence. It is simply
a matter of adding up all the possible sources of time variation of the functionF . Subtracting (5)
from (4) and using the Lagrange equation

d

dt

∂L
∂q̇

=
∂L
∂q

(6)

we get
d

dt
F = −∂L

∂t
(7)

Thus ifL does not depend on time EXPLICITLY, but only implicitly through the time dependence
of q andq̇, the functionF is constant for the trajectory.

It is important to understand what is meant here by the words “explicit” and “implicit”. Explicit
time dependence occurs only if there is some physics in the problem that changes with time. On the
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other hand, ANY function ofq andq̇ depends implicitly on time, becauseq andq̇ for the trajectory
depend on time.

Usually, this functionF is the Energy! For example, suppose we look at the Lagrangian for a
particle moving in a potential

L(x, ẋ) =
m

2
ẋ2 − V (x) (8)

For this Lagrangian, the functionF is

ẋ
∂

∂ẋ
L(x, ẋ)− L(x, ẋ) = ẋm ẋ− L(x, ẋ) =

m

2
ẋ2 + V (x) (9)

which is the energy, as promised.
For example, in the example we discussed last time of the bead on the horizontally rotating

rod, where the Lagrangian is

L(`, ˙̀) =
1

2
m

(
˙̀2 + `2ω2

)
(10)

the construction of (2) gives

F = ˙̀m ˙̀− 1

2
m

(
˙̀2 + `2ω2

)
=

1

2
m

(
˙̀2 − `2ω2

)
(11)

These two examples are rather different. In the second, the fact that the Lagrangian has no
explicit time dependence is an accident, arising from the cancellation of theωt dependence that we
talked about earlier. This is related to the fact thatF in this case is not the kinetic plus the potential
energy, but rather a curious combinations of the terms in the kinetic energy. It is conserved, but the
physical interpretation is obscure.

In the first example, however, the particle moving in a potential, the Lagrangian does not de-
pend explicitly ont because there is a symmetry of the system. The symmetry in this case is time
translation invariance. In this case,F really is the physical energy. This is the first of several impor-
tant examples we will see in this course of the connection between a symmetry and conservation
law. We will explore this further next week.

For a vertically rotating rod,L depends on time explicitly because of the factor ofsin ωt in the
potential energy,F is not conserved.

The construction of the energy function makes it clear how to deal with more degrees of free-
dom. If q has an index,qj wherej goes from 1 ton, the analogous construction for the functionF

is

F =
∑

j

q̇j
∂L
∂q̇j

− L (12)

It must have this form for the analog of (3)-(7) to be valid, because the analog of (5) for more
degrees of freedom is

d

dt
L =

∑

j

q̈j
∂L
∂q̇j

+
∑

j

q̇j
∂L
∂qj

+
∂L
∂t

(13)

This requires that the same sum over degrees of freedom appears in the first term in (12). WithF

defined as in (12), (7) is still valid.
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Thus the construction (12) is very general. In fact, it reproduces the usual expression for the
energy as the kinetic plus the potential energy whenever the potential depends only onqj and
the kinetic energy is proportional to two powers of the velocity. However, it is really even more
general than that. For any Lagrangian that does not depend explicitly ont, (12) defines a conserved
quantity. And if the explicitt dependence vanishes because of time translation invariance, the
conserved quantity is the energy.

Example - frictionless table

Here is an example of a Lagrangian for a system with two degrees of freedom. Consider a friction-
less table in thex-y plane with a hole at the origin. A massm1 slides on the surface of the table,
but it is attached to a massless string of lengthR which goes through the hole in the center of the
table and hangs straight down where it is attached to a massm2. We can describe the configuration
of the system by giving the length,`, of string on the table and the angle,θ, of the string on the
table from thex axis. From above, this looks like this:

............................................
.........
........
........
.........
............

....................................................................
m1

..........................................................................................................................................................................................
....

..............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.....................
..............

`

........

.....
..........................

.............
............. .............

........◦ θ
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
............

4



From the side, it looks like

m1

.............................................................................................................................
...........
.........
........
........
.........
..........

.................
........

m2

........

........

........

........

........

........

........



The kinetic energy contains a term from the rate of change of`, proportional to the sum of
the masses (because both masses move when` changes), and a term from the rate of change ofθ,
proportional tom1 —

T (`, θ, ˙̀, θ̇) =
1

2
(m1 + m2) ˙̀2 +

1

2
m1`

2θ̇2 (14)
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............................................
.........
........
........
.........
............

....................................................................

..........................................................................................................................................................................................
....

..............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.....................
..............

`

.............
.............
.............
.............
.............
.............
........................
.............. ˙̀

..........
..........

..........
..........

..........
..........

..........
..........

......................
..............

` θ̇

........

.....
..........................

.............
............. .............

........◦ θ
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
............

There there is also a potential energy related to the height of the massm2,

U(`, θ, ˙̀, θ̇) = m2g` (15)

Now

L(`, θ, ˙̀, θ̇) =
1

2
(m1 + m2) ˙̀2 +

1

2
m1`

2θ̇2 −m2g` (16)

The Euler-Lagrange equations are

0 = m1`θ̇
2 −m2g − d

dt

(
(m1 + m2) ˙̀

)
(17)

and

0 = − d

dt

(
m1`

2θ̇
)

(18)

The relation (18) is another example of conservation of a generalized momentum.

L(`, θ, ˙̀, θ̇) =
1

2
(m1 + m2) ˙̀2 +

1

2
m1`

2θ̇2 −m2g` (19)
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doesn’t depend onθ. Thus the generalized momentum corresponding toθ,

∂L
∂θ̇

= m1`
2θ̇ (20)

is constant. This conserved generalized momentum is another example of angular momentum
about the origin, which is conserved because the system has a rotation symmetry about the origin.

For this system

L(`, θ, ˙̀, θ̇) =
1

2
(m1 + m2) ˙̀2 +

1

2
m1`

2θ̇2 −m2g` (21)

there is no explicit time dependence, so we expect a conserved energy. Because there are two
degrees of freedom, we have to use the construction (12), which gives for the conventional energy,
T + U ,

F = ˙̀ (m1 + m2) ˙̀ + θ̇ m1`
2θ̇ − 1

2
(m1 + m2) ˙̀2 − 1

2
m1`

2θ̇2 + m2g`

=
1

2
(m1 + m2) ˙̀2 +

1

2
m1`

2θ̇2 + m2g`
(22)

When isF the energy?

To even get started on this, we have to restrict ourselves to situations where there are no frictional
forces, and therefore nothing is converting kinetic and potential energy into heat. Since heat is just
kinetic energy of random particle motion, this really just means that we need to look at a system at
a sufficiently fundamental level to see all the kinetic energy explicitly. For now we will take care
of this by restricting ourselves to systems described by Lagrangians of the formT − V . Then the
first answer is thatF is the energy whenever the kinetic energyT is quadratic in the velocities,̇q
and the potential energyV does not depend on the velocities. The reason is that the differential
operator

z
∂

∂z
(23)

counts the degree inz, because

z
∂

∂z
zn = z n zn−1 = n zn (24)

That is, this operator acting on a term that is some power ofz just gives the term back multiplied
by the power. When we sum over all the velocities, the differential operator

∑

j

q̇j
∂

∂q̇j

(25)

adds up the powers of all the velocities. When this acts on a function quadratic in the velocities,
every term in the function just gets multiplied by2. For example

∑

j

q̇j
∂

∂q̇j

q̇2
1 = q̇1

∂

∂q̇1

q̇2
1 = 2q̇2

1 (26)
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and ∑

j

q̇j
∂

∂q̇j

q̇1 q̇2 = q̇1
∂

∂q̇1

q̇1 q̇2 + q̇2
∂

∂q̇2

q̇1 q̇2 = q̇1 q̇2 + q̇1 q̇2 = 2q̇1 q̇2 (27)

Thus ifT is quadratic in the velocities andV is independent of the velocities,

∑

j

q̇j
∂L
∂q̇j

=
∑

j

q̇j
∂

∂q̇j

(T − V ) = 2T (28)

and then

F =
∑

j

q̇j
∂L
∂q̇j

− L = 2T − (T − V ) = T + V = E (29)

and as promised,F is the energy.
At the fundamental level, the kinetic energy is always quadratic in the velocities, because it is

just a sum over all the parts of the system of1
2
mv2. But what can go wrong with this can be seen

in examples like the bead on a rod rotating with fixed angular velocityω. Sometimes, we have to
separate the variables that describe the system into those that are dynamical - like the position of
the bead along the rod - and those that are imposed by some “external” constraint - like the angle
of the rod, which is fixed whatever is causing the rod to rotate. Then we include in our list of
coordinates only the dynamical coordinates and put the effect of the others into the Lagrangian by
hand. Then if our external constraint is causing the motion, some of the velocities that appear in
the kinetic energy do not correspond to dynamical coordinates in our Lagrangian, and they are not
included in the sum,

∑

j

q̇j
∂

∂q̇j

(30)

In such a case, (29) is not correct, andF is not the energy.
In a system with time translation invariance, however, there can be no time dependent external

constraint. Such a thing would look different at different times and break time translation invari-
ance. Thus time translation invariance does two things. Not only does it ensure that the Lagrangian
does not depend explicitly on time - which implies thatF is conserved. But is also ensures that the
kinetic energy is quadratic in the dynamical velocities, which ensures thatF is the energy. In fact,
time translation invariance is the more general answer to the question. Even ifL is not in the form
T − V , time translation invariance implies thatF is the energy.

Symmetries and transformations

What is a symmetry? We have talked about several examples, so perhaps we should define pre-
cisely what we mean by it. Symmetry is a mathematical statement of some very specific regularity
in a system. A system has a symmetry if there is some transformation you can make that leaves the
system looking exactly as it did before. We tend to regard things with many symmetries as pretty,
like the kaleidoscope that we saw at the beginning of lecture, which has many planes of symmetry.

In the case of mechanics, we have an even more specific meaning in mind. Let us now consider
a class of symmetries in which we make some transformation of the coordinates describing a

8



system at a fixed time. What this means mathematically is that we define a new set of coordinates
as functions of the original coordinates. The transformation is then a symmetry if the physics looks
exactly the same in terms of the new coordinates as it did in the old coordinates.

We talked briefly about such a transformation when we discussed the double pendulum with
two equal masses in lecture 2. The Lagrangian for the double pendulum for small oscillations
looks approximately like

m

2

(
ẋ2

1 + ẋ2
2

)
− g

`
(x2

1 + x2
2)−

K

2
(x1 − x2)

2 (31)

This has the property that it is unchanged if we interchangex1 andx2. This is the mathematical
statement of the obvious physical symmetry of the system.

The symmetry of the double pendulum is an example of adiscretesymmetry, so-called because
the symmetry is an all or nothing sort of thing. The transformation cannot be made bigger or
smaller - it is fixed by the structure of the symmetry.

It is more even interesting to consider symmetries in which the symmetry transformation can be
made arbitrarily small. Such a thing is called acontinuoussymmetry, because the transformation
can change the system continuously. By putting arbitrarily small transformations together, we can
get a whole set of transformations which, unlike the symmetry of the double pendulum, depend on
a parameter that can be continuously varied.

An example is translations. We think that space probably looks the same everywhere, and we
could describe this by saying that there is a symmetry in which we move everything by the same
arbitrary vector and we would end up with a completely equivalent physical system.

Here is the general theoretical setup (we’ll discuss examples in more detail shortly). Consider
a system ofn degrees of freedom described by coordinatesqj for j = 1 to n. Let’s assume
that there is a symmetry in which each of the coordinates changes only a tiny bit, proportional
to an infinitesimal parameter,ε and that the changes involve only the current configuration of the
system. What we mean precisely byinfinitesimal is thatε is sufficiently small that we can always
ignore terms of orderε2. Translating what we have just assumed into mathematics, we consider a
symmetry in which the coordinatesqj are transformed as follows:

qj → q̃j = qj + ε κqj
(q) . (32)

That is each of the coordinates changes byε times a functionκqj
(q) of theqs. Theκqj

(q) tells you
how the variableqj changes under the transformation. The transformation (32) is a symmetry of
the Lagrangian if

L(q̃, ˙̃q) = L(q, q̇) (33)

Example: space translations for one particle

Here is a simple (perhaps even boring) example. Consider a particle with massm moving along
thex-axis in a potential. When does this system have a symmetry under the infinitesimal transfor-
mation

x → x̃ = x + ε ? (34)

9



This transformation has the form of (32) withκ(x) = 1. The Lagrangian looks like this:

L(x, ẋ) =
1

2
mẋ 2 − V (x) (35)

The condition that (34) is a symmetry is then

L(x̃, ˙̃x) = L(x, ẋ) (36)

Becauseκ(x) is just a constant, we have

˙̃x =
d

dt
x̃ = ẋ (37)

and so (36) becomes
L(x + ε, ẋ) = L(x, ẋ) (38)

for infinitesimalε. Because thėx doesn’t change and kinetic energy is the same on both sides, so
this condition only effectsV -

V (x + ε) = V (x) (39)

But because this is supposed to be true for any infinitesimalε, we can use the Taylor expansion
(surprise, surprise) to rewrite (39) as

V (x + ε) = V (x) + ε V ′(x) +O(ε2) = V (x) (40)

If this is to be satisfied for infinitesimalε, we must have

V ′(x) = 0 (41)

so thatV (x) is just a constant and the particle has no force on it at all. In this case,mv is a con-
served momentum. We will see how this connection between symmetry and conserved momentum
generalizes to more complicated (and more interesting) situations.

Another reason that I wanted to look at this simple system in detail is to emphasize the dif-
ference between continuous and discrete symmetries. Suppose that instead of being constant, the
potential in (35) is

V (x) = −E0 cos(x/`) (42)

whereE0 and` are constants. This system also has a symmetry under space translations of the
form

x → x̃ = x + 2πn` (43)

for any integern. But here we clearly cannot conclude thatV (x) is constant because we started
with an example with the symmetry that is not constant. Except at special points where the particle
is in equilibrium, there is a force on it. There is no conserved momentum (though energy is still
conserved because the Lagrangian does not depend explicitly ont). The difference between this
and the previous example is that this is a discrete symmetry. The changes inx that leave the
Lagrangian invariant are a discrete set. They cannot be varied continuously, and they cannot be
made infinitesimally small. Thus we cannot use the Taylor expansion argument to conclude that
V (x) is constant.
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Space translations for two particles

Space translation symmetry becomes interesting and important when there is more than one par-
ticle. Let us now consider a one-dimensional system of 2 particles, with positionsx1 andx2, so
thatqj = xj for j = 1 to 2. A space translation in thex direction just adds the same infinitesimal
constant,ε, to bothx1 andx2 — so the transformation has the form

x1 → x̃1 = x1 + ε , x2 → x̃2 = x2 + ε . (44)

Notice that this satisfies (32), withq1 = x1, q2 = x2 andκx1(x) = κx2(x) = 1. This is a symmetry
of any Lagrangian that depends only onẋ1 andẋ2 and the difference betweenx1−x2, for example

L(x, ẋ) =
m1

2
ẋ2

1 +
m2

2
ẋ2

2 − V (x1 − x2) (45)

The transformation (44) is a symmetry of the kinetic energy becauseε is a constant, so that

˙̃x1 = ẋ1 , ˙̃x2 = ẋ2 . (46)

It is a symmetry of the potential energy because theεs cancel when we subtract one coordinate
from another, so that

x̃1 − x̃2 = (x1 + ε)− (x2 + ε) = x1 − x2 . (47)

Putting (46) and (47) together implies

L(x̃, ˙̃x) = L(x, ẋ) . (48)

This system has a conserved momentum,

p = m1ẋ1 + m2ẋ2 (49)

because the forces that come from the potential energy obey Newton’s third law. This in turn is
related to the fact that the potential energy depends only onx1−x2, which in turn is related to the
symmetry. We will see that this connection between a continuous symmetry and the existence of a
conserved momentum is a general thing.

Space translations for many particles

Let us now consider a one-dimensional system ofn particles, with positionsxj, so thatqj = xj for
j = 1 to n. A space translation in thex direction adds the same infinitesimal constant,ε, to each
xj — so the transformation has the form

xj → x̃j = xj + ε ∀n . (50)

Notice that this satisfies (32), withqj = xj and all of theκxj
(x) = 1. This is a symmetry of any

Lagrangian that depends only onẋj and differences between twoxjs, for example

L(x, ẋ) =
∑

j

mj

2
ẋ2

j − V (x1−x2 , x2−x3 , · · · , xj−xj+1 , · · · , xn−1−xn) . (51)
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Again, (50) is a symmetry of the kinetic energy becauseε is a constant, so that

˙̃xj = ẋj . (52)

It is a symmetry of the potential energy because theεs cancel when we subtract one coordinate
from another, so that

x̃j − x̃j+1 = (xj + ε)− (xj+1 + ε) = xj − xj+1 . (53)

Here the total momentum, ∑

j

mjvj (54)

is conserved because the forces that come from the potential energy obey Newton’s third law.

Finding Symmetries

So far, we have looked at systems in which it is pretty obvious what the symmetry transformation
is. But when come upon some Lagrangian, you may want to findwhat transformation the La-
grangian is invariant under. The way to do this is to write down how your Lagrangian transforms
under a general infinitesimal transformation of the form

qj → q̃j = qj + ε κqj
(q) . (55)

and then require that it be invariant - that is that the coefficient of theε term in

L(q̃, ˙̃q)− L(q, q̇) (56)

vanishes. Here is a simple example, where you could probably guess the answer, but it will illus-
trate the technique.

L(x, ẋ) =
m1

2
ẋ2

1 +
m2

2
ẋ2

2 − V (x1 + 2x2) (57)

Does this Lagrangian has a symmetry? To see, we want to findL(x̃, ˙̃x) where

xj → x̃j = xj + ε κxj
(x) . (58)

L(x̃, ˙̃x) =
m1

2

(
ẋ1 + εκ̇x1

)2

+
m2

2

(
ẋ2 + εκ̇x2

)2

− V (x1 + εκx1 + 2x2 + 2εκx2) (59)

=
m1

2

(
ẋ2

1 + 2εx1κ̇x1 + · · ·
)

+
m2

2

(
ẋ2

2 + 2εx2κ̇x2 + · · ·
)
− V

(
x1 + 2x2 + ε(κx1 + 2κx2)

)
(60)

Theε term will vanish if
κ̇x1 = κ̇x2 = κx1 + 2κx2 = 0 (61)

One way to satisfy the first two conditions is to take theκs to be constant independent ofx (if they
depend onx, the time derivatives would be nonzero). Then the last condition implies that we can
take

κx1 = −2 κx2 = 1 (62)
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which gives a transformation of the form

x1 → x1 − 2ε x2 → x2 + ε (63)

You see that it is sometimes easy to find symmetry transformations. It is harder to show that you
have found them all. This depends on details, in this case the precise form of the functionV . We
won’t talk about that now.

Rotations

Another simple example can be found in the example we discussed earlier of the massm1 sliding
on a horizontal frictionless table, connected to a string that goes through a hole at the origin to
a massm2 hanging below the table with Lagrangian (16). This physical system has a symmetry
under rotations about thez axis, which add a constant to the angleθ without changing̀ ,

` → ˜̀= ` , θ → θ̃ = θ + ε . (64)

This symmetry is responsible for the fact that the Lagrangian does not depend onθ at all, but only
on θ̇, because the condition for symmetry, that

L(˜̀, θ̃, ˙̀̃, ˙̃θ) = L(`, θ, ˙̀, θ̇) (65)

in this case becomes
L(`, θ + ε, ˙̀, θ̇) = L(`, θ, ˙̀, θ̇) (66)

This just says that if we make a little change inθ in the function, nothing happens, so the function
must not depend onθ. If we wanted to say the same thing in fancier mathematics, we could say
that becauseε is infinitesimal, we can reliably Taylor expand the left-hand-side of (66) and keep
only the first two terms,

L(`, θ + ε, ˙̀, θ̇) = L(`, θ, ˙̀, θ̇) + ε
∂

∂θ
L(`, θ, ˙̀, θ̇) (67)

Putting (67) into (66) implies
∂

∂θ
L(`, θ, ˙̀, θ̇) = 0 (68)

which as promised is the statement thatL does not depend onθ.
As we saw in lecture 7, this system also has a conserved quantity, the angular momentum

L = m1`
2θ̇ . (69)

So again, we see a connection between a symmetry and a conserved quantity.
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Noether’s theorem

Having seen a correlation between symmetry and conservation laws in a couple of examples, let
us now consider how this works in more generality and see if we can pin down the connection
precisely. Putting (32) into (33) and Taylor expanding gives

L(q, q̇) = L(q + εκ, q̇ + εκ̇) = L(q, q̇) + ε
∑
qj

κ̇qj

∂L
∂q̇j

+ ε
∑
qj

κqj

∂L
∂qj

. (70)

Thus the condition that (32) is a symmetry of the Lagrangian is equivalent to

∑
qj

κ̇qj

∂L
∂q̇j

+
∑
qj

κqj

∂L
∂qj

= 0 (71)

For example, for space translations, (50),

κxj
= 1 (72)

for all j, because all thexjs are translated in the same way. Thusκ̇ = 0 and the condition of
symmetry becomes

∑
xj

κxj

∂L
∂xj

=
∑
xj

∂L
∂xj

= 0 (73)

This is equivalent to the statement thatL depends only on differencesxj − xk.
Now return to the general case and consider the quantity

∑
qj

κqj

∂L
∂q̇j

(74)

Consider the time derivative of this quantity

d

dt

∑
qj

(
κqj

∂L
∂q̇j

)
=

∑
qj

κ̇qj

∂L
∂q̇j

+
∑
qj

κqj

d

dt

∂L
∂q̇j

(75)

If we apply the Lagrange equations of motion to the second term, it becomes

d

dt

∑
qj

(
κqj

∂L
∂q̇j

)
=

∑
qj

κ̇qj

∂L
∂q̇j

+
∑
qj

κqj

∂L
∂qj

= 0 (76)

which vanishes because of the condition (71) that the Lagrangian is symmetric. This is a very
important general theorem. It is the precise connection between a continuous symmetry and a
conservation law. For every continuous symmetry of the form (32), there is a conservation law —
the quantity of the form (74) is constant.

Now we can find the conserved quantity for any symmetry. For example for the Lagrangian of
(57), where theκs are given by (62), the conserved quantity is

κx1

∂L
∂ẋ1

+ κx2

∂L
∂ẋ2

= −2m1ẋ1 + m2ẋ2 (77)
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This theorem is a special favorite of mine because a lot of my own work in particle physics
is based on it. It was worked out early in this century by the great woman mathematician and
theoretical physicist Emmy Noether.1

The quantity
∂L
∂q̇j

(78)

that appears in Noether’s theorem is a very important one in classical mechanics. It is the “gen-
eralized momentum” we talked about earlier, corresponding to the coordinateqj, we discussed in
the last lecture. Of course, ifqj is a normal space coordinate (likexj), and the kinetic energy has
the standard form, it is the momentum (or a component of it). In fact, one way of thinking about
(76) is to recognize that in a sense (which I will not explain in detail) (74) is the generalized mo-
mentum associated with,ε, the infinitesimal variable that describes how all theqjs change under
the symmetry.

Momentum conservation from Noether’s theorem

For space translation symmetry, because all theκxj
are equal to 1, the quantity (74) becomes

∑
xj

κxj

∂L
∂ẋj

=
∑
xj

∂L
∂ẋj

(79)

which is just the sum over the momenta of all the individual particles.Space translation invari-
ance implies that the total momentum is conserved.

This analysis can obviously be extended to three dimensions, where the coordinates and the
corresponding momenta become vectors.

More on rotations

Here is a more involved example that we can discuss if we have time. When we thought about
rotations for the bead sliding on the table, we were already using polar coordinates. This makes
rotations easy, because an infinitesimal rotation is just a translation ofθ,

θ → θ′ = θ + ε . (80)

This is an example with two particles in Cartesian coordinates. Consider two particles, with masses
m1 andm2, which move in a plane with coordinates~r1 = (x1, y1) and~r2 = (x2, y2). Consider the
following Lagrangian:

1

2
m1

(
ẋ 2

1 + ẏ 2
1

)
+

1

2
m2

(
ẋ 2

2 + ẏ 2
2

)
− V

(
x2

1 + y2
1 + x2

2 + y2
2 − 2(x1x2 + y1y2)

)
(81)

1For more information about Noether, seeThe Life and Times of Emmy Noether by Nina Byers —
http://xxx.lanl.gov/abs/hep-th/9411110 and on the 16 website in handouts/noether.pdf.
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This Lagrangian is invariant under the following infinitesimal transformation:

x1→ x̃1 = x1 − εy1 y1→ ỹ1 = y1 + εx1

x2→ x̃2 = x2 − εy2 y2→ ỹ2 = y2 + εx2

(82)

If you have never seen anything like this before, it is not obvious at all, but you can see it by explicit
calculation. For example, look at them1 terms in the kinetic energy. First note that

x1→ x̃1 = x1 − εy1 y1→ ỹ1 = y1 + εx1 (83)

then substitute

˙̃x
2

1 + ˙̃y
2

1 =
(
ẋ1 − εẏ1

) 2
+

(
ẏ1 + εẋ1

) 2
= ẋ 2

1 + ẏ 2
1 +O(ε2) (84)

The ε2 terms do not cancel, but we don’t care about them becauseε is infinitesimal - we only
consider linear terms in Noether’s theorem. So this is good enough. All the other terms work
similarly. You can see what the rotation looks like pictorially in the figure below.
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The heavy lines represent the vector~r = (x, y) from the origin to the original point, and the smaller
vector from~r to ~̃r = (x̃, ỹ). Becauseε is infinitesimal, these two are nearly perpendicular, and the
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ratio of their lengths is aboutε. It is helpful to complete these two lines into a similar triangle.
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Then blowing up the box, you can see that the change inx under the rotation is−εy and the change
in y is εx.
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Now let’s see what Noether’s theorem looks like. Theκs are

κx1 = −y1 , κy1 = x1 , κx2 = −y2 , κy2 = x2 . (85)

and the momenta are
∂L
∂ẋj

= mjẋj ,
∂L
∂ẏj

= mj ẏj . (86)
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Thus the conserved quantity is ∑

j

mj(xj ẏj − yjẋj) (87)

As we will see in more detail later in the course, this is the angular momentum.
Notice also that the complicated function of the variables that appears inV can be written as

(~r1 − ~r2 ) · (~r1 − ~r2 ) = |~r1 − ~r2 |2 (88)

just the square of the length of the difference~r1 − ~r2.

What functions are invariant?

We have seen some examples of functions that are invariant under transformations, such as the
potential in (51),

V (x1−x2 , x2−x3 , · · · , xj−xj+1 , · · · , xn−1−xn) . (89)

It always straightforward to check that a given function is invariant under a specific transforma-
tion. And we have seen how to find transformations that are symmetries, if they exist. It is also
important to be able to go the other way and to construct the most general function invariant under
a transformation or set of transformations.

To illustrate what I am talking about, let’s show that a function ofF (x1, x2) that is invariant
under the symmetry transformation

xj → xj + ε (90)

for j = 1 and2 actually only depends on the difference,x1 − x2. One way to do this is to change
variables to include the variablex1 − x2, and eliminatex1 —

y ≡ x1 − x2 x1 = x2 + y (91)

Then we can define a new function

G(y, x2) ≡ F (x2 + y, x2) (92)

in terms of the original function. But now, in terms of the new variables the transformation (90) is

y → y , x2 → x2 + ε . (93)

Now sinceF is invariant,G must be also, because we have only relabeled things. Thus

G(y, x2 + ε) = G(y, x2) (94)

for infinitesimalε. In words, this says that making an infinitesimal change inx2 doesn’t affect the
function, so it is probably obvious that this means thatG(y, x2) is independent ofx2. But if we
want to be more formal about it, we can use the Taylor expansion to get

G(y, x2 + ε) = G(y, x2) + ε
∂

∂x2

G(y, x2) + · · · = G(y, x2) (95)
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and thus
∂

∂x2

G(y, x2) = 0 (96)

which means thatG doesn’t depend onx2, so we can takex2 to be anything inG. Thus using (91)

F (x1, x2) = G(x1 − x2, x2) = G(x1 − x2, 0) = f(x1 − x2) . (97)

It is easy to extend this proof to show that the most general function invariant under the transfor-
mation (90) forn variables,xj for j = 1 to n is given by (89).

Notice that what we are doing here makes Noether’s theorem seem a little trivial. If all we
do with invariance is to show that there is some variable that the function doesn’t depend on,
then we could have changed variables first and then found the conserved quantity by just using
the statement that the generalized momentum associated with a variable that doesn’t appear in
the Lagrangian is conserved. And in fact, in this course, you can always do that. But there is
actually more to Noether’s theorem, because transformations that leave a system invariant have an
additional interesting property. They form what mathematicians form a group. The group property
is quite powerful and often allows you to extend the infinitesimal transformations that we start with
to a much larger set. For example, in the case of translations, group theory can be used to show
that if things are invariant under (90) for infinitesimalε, they are also invariant for finiteε. Then
we don’t need the Taylor expansion any more. For example, in (94), we could first setx2 to zero
to get

G(y, ε) = G(y, 0) (98)

and then relabelε → x2 to get
G(y, x2) = G(y, 0) (99)

which directly gives (97). We won’t pursue this approach much in the course but I may not be able
to restrain myself from talking more about it, because it forms the basis of much of the research
that I have done in my scientific career.

Example of functionals - Soap bubbles

I thought that it would be interesting to discuss further the pretty mathematics of calculus of vari-
ations in a slightly different context. I hope this may give you a better feel for it. There are many
examples of the use of the calculus of variations. One nice one is to the shape of soap bubbles. The
connection here is that soap bubbles have a surface tension, so they want to minimize their surface
area. But the surface area is a functional of the function that describes the shape of the bubble. So
this is a job for the calculus of variations. Here’s a specific problem that is kind of fun. Consider a
bubble formed between two circular loops of wire, both centered on thez axis, one in thez = z1

plane with radiusr1, and the other in thez = z2 plane with radiusr2. We’ll assume thatz1 < z2.
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So it looks something like this:
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(100)

The soap bubble will be some surface of revolution, because of the cylindrical symmetry of the
system , indicated by the dotted line in (100). Thus we can specify the shape of the bubble by
giving the radius as a function ofz, r(z), subject to the constraint

r(z1) = r1 r(z2) = r2 (101)

which is just the physical requirement that the bubble is attached to the frame — but it looks just
like the condition we impose on trajectories in Hamilton’s principle. Thus we can compute the
shape exactly by solving an Euler-Lagrange equation.

We want to minimize the area of the surface of revolution described byr(z) from z = z1 to
z = z2 subject to the constraint (101). First we must compute the area. Consider the area of a small
band of surface betweenz andz + dz. The circumference of the band is approximately2πr(z)

(the difference betweenr(z) andr(z + dz) does not matter here). The width of the band can be
computed by looking at a slice through thez axis, which looks like this:
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(102)

Evidently, the width of the slice is approximately

√
dz2 + dr2 = dz

√
1 + r′(z)2 (103)
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Thus the area of the slice is

dz α
(
r(z), r′(z)

)
where α(r, r′) ≡ 2πr

√
1 + r′2 (104)

and the total area is

A[r] =
∫ z2

z1

α
(
r(z), r′(z)

)
dz = 2π

∫ z2

z1

r(z)
√

1 + r′(z)2 dz (105)

Now we can use the calculus of variations. The mathematics of this problem is the same as in
finding the vanishing variation the action,S[x], so the condition is the analog of the Lagrange
equation,

δA[r]

δr(z)
= 0 (106)

We can do the functional differentiations in the same way as above to the analog of the Lagrange
equation —

∂

∂r
α(r, r′)− d

dz

∂

∂r′
α(r, r′) = 0 (107)

But rather than trying to solve the Euler-Lagrange equation directly, it is useful to extend the
analogy with Lagrangian mechanics and notice that becauseα does not depend explicitly onz,
there will be an analog of energy that is independent ofz:

q̇
∂L
∂q̇

− L → r′
∂α

∂r′
− α (108)

r′
∂α

∂r′
− α = r′

∂

∂r′

(
2πr

√
1 + r′2

)
− 2πr

√
1 + r′2 (109)

= r′ 2πr
r′√

1 + r′2
− 2πr

√
1 + r′2 (110)

= 2πr

(
r′2√

1 + r′2
− 1 + r′2√

1 + r′2

)
= − 2πr√

1 + r′2
(111)

r√
1 + r′2

= r0 for some constantr0 (112)

We could mess around with this — but it easier to guess the answer.

r(z) = r0 cosh z−b
r0

(113)

r′(z) = r0
1

r0

sinh z−b
r0

= sinh z−b
r0

(114)

Now the key step that might actually cause you to make this guess is the next one.

1 + r′(z)
2

= 1 + sinh2 z−b
r0

= cosh2 z−b
r0

(115)

r√
1 + r′2

=
r0 cosh z−b

r0

cosh z−b
r0

= r0 (116)
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In the demo I will show you, both rings have the same radius,r1 = r2 = R. Then we define the
z coordinate system so thatz = 0 is right in the middle. Then the fact thatcosh(x) = cosh(−x)

implies thatb = 0 so that
r(z) = r0 cosh(z/r0) (117)

and the situation looks like the diagram below (the red lines represent a side view of the rings and
the blue curves are a slice through the bubble):
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r(z) = r0 cosh z/r0

1 = R = r(Z) = r0 cosh Z/r0

solve forr0 in terms ofZ (units ofR)

....................................................

....................................................

One can analyze this analytically, but it is complicated, and since we haveMathematicaaround,
we may as well just find an numerical solution forr0 as a function of the ring separationZ for
fixed ring radiusR. This is shown below and in the notebooksoapbubble.nb.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.7

0.8

0.9

1.0

(118)

Note that something happens if you try to makeZ/R big. The maximum is≈ 0.6627 R, for which
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the bubble looks something like the blue curves:

For largeZ/R (as you can see analytically in the appendix), there is no real solution forR/r0,
which means that we cannot actually minimize the area in this way. Physically, what is going on
is that for largez it is always energetically favorable to just keep narrowing in the center until
the bubble actually breaks into two separate bubbles on the two rings. We should be able to see
this in the demo. You can also get a sense of what is happening by looking atsoapbubble.nb,
increasingZ/R to its maximum value, and then clicking on color 0, which toggles diagonal lines
that represent a cross-section of the cone through the two circles. The system is unstable when the
bubble gets beyond that cone.

A Analytic treatment of the bubble

Now
R/r0 = cosh(Z/r0) = cosh

(
(R/r0)(Z/R)

)
(119)

is a transcendental equation that can be solved numerically foraR in terms ofZ/R. Because, from
(117),

r(0) = r0 (120)

the physical interpretation ofr0 is that it is the radius of the bubble at its narrowest point, in the
center. When we are finished messing with the math, we will express things in term ofr0/R,
because that is easier to think about physically.

It is actually much easier to solve forZ/R in terms ofR/r0, because (119) can be rewritten as
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a quadratic equation fore(R/r0)(Z/R) —

R/r0 = cosh((R/r0)(Z/R)) =
(
e(R/r0)(Z/R)) + e−(R/r0)(Z/R))

)
/2

⇒ e2(R/r0)(Z/R) − 2R/r0 e(R/r0)(Z/R) + 1 = 0

(121)

with solution
e(R/r0)(Z/R) = R/r0 +

√
(R/r0)2 − 1 (122)

or

Z/R =
ln

(
R/r0 +

√
(R/r0)2 − 1

)

R/r0

(123)

Expressing this in terms ofr0 we have

Z

R
=

r0

R
ln

(
R/r0 +

√
(R/r0)2 − 1

)
(124)

This shows a plot ofZ/R versusr0/R

0.2 0.4 0.6 0.8 1
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0.6

Z/R

r0/R

The first thing to notice about thus graph is that there are two possible values ofr0/R for each
values ofZ/R. Physically, this doesn’t make sense. We can understand what is going by looking at
the ends of ther0/R axis on the first graph. The rightmost point on the graph corresponds toZ = 0

andr0 = R which is the right solution because in the limit of very smallZ the area is obviously
minimized by an almost flat ribbon between to two rings. Conversely, the leftmost point,z = 0

andr0 = 0 is obviously not a physical solution. While the variation vanishes there, the area is
not minimized. The leftmost point is some kind of saddle point. Now as we go up along theZ/R

axis, the same situation obtains. The point on the right corresponds to the minimum. Thus the
physical region of the first graph is only the part to the right of the maximum, which occurs for
r0 = rmin ≈ 0.5524 R.
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Now that we know what is happening, we can display just the physical solution by plotting
r0/R versusZ/R from rmin/R to 1.
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1

r0/R
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This is the analytic version of (118).
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lecture 10

Topics:
The structure of science and common sense
The speed of light
Time dilation
The twin paradox
The Doppler effect
The twin paradox and inertial frames

The structure of science and common sense

from www.raremaps.com

The beautiful edifice of Newtonian mechanics, which we have seen a bit of in the last few
weeks, provides a wonderful precise mathematical description of most of the things we see in our
everyday world. It is obviously right. But it is also wrong. We have discussed qualitatively the
underlying quantum mechanical reality from which Newton’s mechanics emerges as an approx-
imation. In the next few weeks, we will discuss in quantitative detail the bizarre things that go
wrong with Newton’s picture at large velocities. What is going on here? Newtonian mechan-
ics beautifully captures the mathematical essence of what we know about the world in which we
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have grown up. Once we get used to the mathematical language, it is perfectly in accord with our
common sense understanding of the world. We feel in our bones that it is right. How can it be
wrong?

But it is wrong. I am going to tell you today that it is wrong and what is right and you will
not understand me or believe it. Even if you have heard this before, and you think that you have
internalized it, you are still not going to really understand it or believe it. In fact, you will not even
have any sense of what it would mean to understand it or believe it. It is that strange. It doesn’t
make any sense.

The first thing to say is that there is no reason why our sense should have anything at all to do
with what happens at extreme conditions, far from what we are used to in everyday life. We have
some direct intuition about things that are about our size – and maybe a few powers of ten bigger
and smaller. We can feel in our bones what happens for accelerations not much different thang,
and velocities like those we are used to. But if we go far outside this familiar range of parameters,
it would be rather surprising if our common sense worked very well. We should be prepared for
surprises. If anything, what should surprise us is that our common sense works as far as it does.
We have to go to really enormous velocities, on our everyday scale, before Newtonian kinematics
starts to break down. And atoms, which exhibit quantum behavior in all its glory, are very small.
This is a theme that we will return to several times.

The wonderful thing about the discipline of modern science is that we can say sensible things
about phenomena even when our sense doesn’t work. We do this by keeping ourselves firmly
grounded in what we understand, but at the same time recognizing the limitations of our knowl-
edge. It is useful to think of science as a map of a peculiar space - the space of parameters that
describe physical phenomena, things like size, mass, speeds, temperatures, etc. We have all grown
up in a familiar, comfortable neighborhood described by a small region on this map. But we have
expanded our knowledge of the terrain in much the same way that ancient explorers improved their
maps of the known world. We work our way out from what we know into the unknown, exploring
and pushing the boundary of what we know farther and farther in different directions away from
the range of phenomena that we see in the everyday world. In the next few weeks, we are going to
discuss one of these directions — the realm of the very fast. When it is strange, don’t be surprised.
The reason that you don’t understand is very simple. It is that you are slow! Not mentally slow,
but physically slow. You have spent all your life moving at speeds very very tiny compared to
the speed of light, so nothing in your experience has prepared you for the phenomena that happen
all the time at large speeds (which we call “relativistic” speeds — a rather bizarre grammatical
construction if you think about it, but standard). Try to bear that in mind when it seems that what
we are doing doesn’t make any sense.

The speed of light

The speed of light is exactly 299,792,458 m/s. What “exactly” means in this case is just what it
says. Because the speed of light, as we will see, is is a kind of cosmic speed limit built into the
structure of space and time, it makes sense to use it todefineour unit of length (the meter) in terms
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of our unit of time (the second). This is what is done in SI, the International System of Units. It
is no longer necessary to keep a “standard” 1 meter bar in a vault someplace. The second is now
defined in terms of a particular oscillation of an atom in an atomic clock. The meter is then defined
as the distance that light travels in 1/299,792,458th of a second. I should say that when I talk about
the speed of light, I always mean the speed of light “in vacuum” — that is in empty space.1 Things
get more complicated in material like glass because the interactions of the light with the material
can slow the light down.

Now 299,792,458 m/s is fast. It is a heck of a lot faster than we can actually move ourselves.
But it is certainly not infinitely fast. With modern electronics, we can measure very short times, so
it is not impossible to see the effect of the finite speed of light even over fairly short distances. The
point I am trying to make here is that while motion at close to the speed of light is far beyond our
everyday experience, it is not science fiction. In fact, we routinely measure the speed of light, and
routinely see things (small things like electrons, but things nevertheless) moving at speeds very
close to the speed of light.

But the surprising thing about light in a vacuum is that the speed of light that we measure
doesn’t depend on the velocity of the object that produced the light, and it doesn’t depend on the
velocity of the measuring apparatus. Now if you think that you understand this, you obviously
have not been listening carefully enough, because this doesn’t make any sense at all. Nevertheless,
it is true. If, for example, I am running towards a light-bulb at speedv carrying a light-speed
meter, a device to measure the speed of light, all of you sitting at rest see the light from the bulb
approaching me at a speedv + c. But when I do the measurement, I get the same value for the
speed of light that I would get if I were standing still. In fact, I get the same value that you would
get measuring the same light beam in about the same place at about the same time, but standing
still. The same thing happens if I am running away from the light source.

c=299792458 v →

c=299792458← v

c=299792458
........................................................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................

(1)

This is absolutely crazy. Surely if I am moving towards the light beam, I should register a larger
speed on my light-speed meter. That is what common sense would say. However, that is not the
way the world works. The way the world works is that the speed of light in vacuum is constant,
period! It is not that something goes wrong with my light-speed meter. This bizarre fact is built
into the way the world works.

The full power of this remarkable fact, the constancy of the speed of light, is unleashed when
we combine it with another, much more reasonable fact about the way the world works — the
principle of relativity. The principle of relativity says simply that all uniform motion is relative.

1The notion of “empty space” is itself rather problematic. Even classically, space is only completely empty at
absolute zero. And when we include the effects of quantum mechanics, as we will see much later, empty space begins
to look anything but empty. Nevertheless, there is a well-defined meaning to the notion of the speed in light in vacuum.
Its role as a cosmic speed limit survives all this extra complication.
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There is no absolute sense in which I can say I am moving. There is no preferred notion of standing
still. In a moment, we will formalize this idea with the notion of an inertial frame of reference.
Note that we can tell if our motion is not uniform. Acceleration is accompanied by forces that we
can feel in our bones. But uniform motion is not detectable, so long as everything else we need
is moving along with us. This, of course,is something that feel in our bones for the slow motions
that we are used to. We all know this very well from travel in vehicles, cars, trains, planes, and
whatnot. We are going to assume, with Einstein, that it remains true at relativistic speeds.

Inertial frames

The idea of aninertial frame of reference or just “inertial frame” for short, is one that already
plays an important role in non-relativistic mechanics. It is an attempt to formalize the notion that
motion is relative in an operational way. To do this, we must carefully describe what velocity
means by describing precisely what we need to measure it.

On the surface, the speed of light does not seem to be a complicated concept. You measure
it in the obvious way with clocks and meter sticks, by dividing the distance traveled by the time
taken. But first, you have to synchronize your clocks! This is where the idea of an inertial frame
comes in. Aninertial frame is a real or imaginary collection of clocks that are fixed with respect
to one another and synchronized, for example by requiring that some signal that originates midway
between each pair of clocks arrives at the two clocks at the same time.2 In addition, aninertial
frame must not be accelerating, which is easy to check because you can just demand that Newton’s
laws hold for small velocities — free particles travel in straight lines, that sort of thing.

So we have two fundamental principles.

A. That the laws of physics are the same in all inertial frames, and

B. That one of the laws of physics is that the velocity of light is a constant — with the same value
in all inertial frames,

As you will see in more detail in the notes, these two principles are amazingly powerful. They will
revolutionize our picture of space and time. Now let’s see some of the consequences of putting
these two ideas about the world together.

Time dilation

Let’s start with one of the strangest and most trivial of the consequences of relativity — time
dilation. The phenomena of time dilation can be stated precisely as follows. Observations done on
a single clock moving with speedv with respect to a number of clocks fixed in an inertial frame
show the ticking of the moving clock slowed down by a factor of

√
1− v2/c2. The standard way

2It doesn’t matter for this purpose whether we are using a light signal or the Pony Express, as long as the signal
travels at the same speed in both directions!
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of deriving this result is to consider an idealized clock made out of two parallel mirrors and a pulse
of light bouncing back and forth between them:
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A light-clock at rest

(2)

If the distance between the mirrors isL, the time for each tick of the clock, defined as the time for
the pulse to get from one mirror to the other, isL/c. Now suppose that the two mirrors of this light
clock are mounted on parallel tracks a distanceL apart and the two mirrors moved down the tracks
with velocityv. Now the system looks to observers in the fixed frame as shown below
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A light-clock in motion

(3)

Obviously, from the point of view of the many clocks in the inertial frame, the light pulse has to
go farther when the single light clock is moving. Thus if light always travels at the same velocity,
the ticks of the light clock take longer when it is moving. Call the factor by which the ticks are
longerγ. Then we can computeγ as follows. Each vertical transit of the light from one mirror
to the other in the moving frame takes timeγL/c (just from the definition ofγ - becauseL/c is
the time for a tick in the rest frame). And because light travels at the same speed,c, the length
of the path from one mirror to the next therefore must beγL. The light pulse moves vertically a
distanceL (because the tracks are a distanceL apart) and horizontally a distancev · γL/c (just the
velocity of the light clock multiplied by the time). Now we look at the geometry of the motion.
Then Pythagoras tells us that

(γL)2 = (γLv/c)2 + L2 (4)

which implies

γ =
1√

1− v2/c2
(5)
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So time is no longer sacred. And this can’t just be a special property of light clocks, because if we
used some other kind of clock to measure the time, and got a different result, then we would be
able to distinguish between the moving frame and the frame in which the light clock is fixed. But
this violates the principle that all frames are equivalent. Every kind of clock must tick out seconds
at the same rate in all inertial frames.

Incidentally, this factorγ is going to reappear all the time, so it pays to actually either memorize
it, or to be able to reproduce the light-clock argument in real time so you can get it whenever you
need it.

It is quite easy with modern electronics and atomic clocks to see relativistic effects like time
dilation. In fact, both special and general relativistic effects are very important in one very practical
application — the Global Positioning System which is based on a system of atomic clocks aboard
satelites. The relativistic corrections are small, because the satellites are traveling at “only” about
4000 m/s, but enormous accuracy is required to make GPS work and the relativistic effects must
be properly included. See for examplehttp://www.physicscentral.com/writers/2000/will.html.

Even more dramatic examples of time dilation occur all the time with elementary particles.
That seems like a lot to ask of tiny particles that are supposed to be elementary and have no
internal structure. But the fact is that quantum mechanics provides us with internal clocks for
many elementary particles because they are unstable, and when they are sitting still and evolving
in time, they have a constant probability per unit time of decaying into other lighter particles. We
can actually see these internal clocks ticking (at least in an average sense) by watching the particles
decay. The observed lifetime of unstable particles is a tangible measure of how fast these internal
clocks are ticking. We see this all the time in particle experiments. But we are relying on another
fact — all particles of a particular kind are exactly the same. We never actually measure the decay
rate of the same decaying particle in two different frames. But we can quite easily measure the
lifetime of a particle at rest, and then measure the lifetime of the same TYPE of particle in a
moving frame. We find that the ratio of the lifetimes isγ. Since all particles of a particular type
are identical, this is just as good.

Another important thing about time dilation is that although it is strange, it is probably the
easiest of the relativity principles to remember and use. The thing to remember is

The single clock measures the shorter time. (6)

If you keep this in mind, and just remember thatγ > 1, you will always be able to reconstruct the
right formula. Use time dilation whenever you can to solve problems!

The twin paradox

Now you may very well be thinking, at this point, that once you define what you are talking about
carefully, with inertial frames, that there isn’t anything particularly strange about motion at rela-
tivistic speeds, but that we have just confused the issue with a bizarre definition of measurement.
Even our experiment on decays of elementary particles might be just a matter of a bad definition
of what we mean by the ticking of their internal clocks. Perhaps, you think, that there is some
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other way of constructing our light-speed meters so that the speed of light is not constant and the
bizarre features of relativity go away. Think again! Perhaps the simplest way of making clear that
something totally bizarre is going on is to discuss the twin paradox. This is a classic thought exper-
iment in which one twin takes a trip on a rocket moving at relativistic speeds, while the other twin
remains at home. When the traveling twin returns, because his clocks have been ticking slowly, he
is younger than his twin. His biological clock is no different from any other clock. Relativity has
slowed down the aging process. If this is not strange, I don’t know what is.

Again, this experiment has not been done conclusively with people. Astronauts in MIR or the
space shuttle do age less rapidly than the rest of us, but the difference is sufficiently small at the
speeds of mere orbital motion that the don’t see a huge difference in biological clock (which aren’t
very accurate). The difference can be measured by atomic clocks. And a number of very accu-
rate experiments have been done showing exactly this effect with the internal clocks of unstable
elementary particles.

The twin paradox is so peculiar that I want to work out an example of how it looks to the two
twins who are aging differently. To do this, it is useful to first understand the relativistic Doppler
effect.

The Doppler effect

While the speed of a light beam does not change when we go from one inertial frame to another,
its frequency does change. This is not surprising, since the same thing happens for sound or any
other wave. It is called the Doppler effect and shows up, for example, in the change in sound of
a train whistle when the train goes by. First, let me remind you how the Doppler effect goes for
sound, or any other wave when we are moving at nonrelativistic speeds. Suppose that a train is
moving towards me at speedv and its whistle emits sound waves which, when the train is at rest,
have frequencyν0, and wavelengthλ0. The speed of sound,Vs, is the product of the frequency and
the wavelength:

Vs (m/s) = λ0 (m/cycle) · ν0 (cycles/s) (7)

The inverse of the frequency is the period of the sound wave, which is the time between successive
crests of the wave. So now let us look at two successive crests of the wave as the train moves
towards us — illustrated below:

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

................................................................................................................... ...............................................................................................................................................

.................................................... ........................................................................................................................ ....................................................................

Vs

ν0

v
ν0

Vs−v
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sound meter .......................................................................................................................................................................... | .......................................................................................................................................................................... | t = 1/ν0train

(8)

Because the train is moving forward as it emits the wave, the crests are closer together than they
would be if the train were standing still. The distance between crests for the train at rest is just the
wavelength,

λ0 =
Vs

ν0

(9)
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The distance between crests for the moving train is

λv =
Vs − v

ν0

(10)

Thus the wavelength of the sound as recorded at the sound meter is reduced by the nonrelativistic
Doppler factor

Vs − v

Vs

(11)

Because (7) must be satisfied, the frequency is increased by the inverse of (11), and the train whistle
has a higher pitch when it is moving towards us.

If the train is moving away, the argument is exactly the same — we just have to replacev → −v

in (11).
Now suppose we do a similar thing, but replace the train with a rocket moving at relativistic

speed, and replace sound with light. The speed of light is the product of the frequency and the
wavelength:

c (m/s) = λ0 (m/cycle) · ν0 (cycles/s) (12)

The inverse of the frequency is the period of the light wave, which is the time between successive
crests of the wave. In the diagram, almost everything is the same, except that because of time
dilation, the time between the emission of successive crests of the wave is longer than1/ν0 by the
ubiquitous factor ofγ, because the moving clock ticks more slowly. Thus the picture looks like
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light meter .......................................................................................................................................................................... | t = 0rocket
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(13)

Because the rocket is moving forward as it emits the wave, the crests are closer together than they
would be if the rocket were standing still. The distance between crests for the rocket at rest is just
the wavelength,

λ0 =
c

ν0

(14)

The distance between crests for the moving rocket is

λv =
γ(c− v)

ν0

(15)

Thus the wavelength of the light as recorded at the light meter is reduced by the relativistic Doppler
factor

γ(c− v)

c
=

1√
1− v2/c2

(1− v/c) =

√√√√1− v/c

1 + v/c
(16)
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Because (12) must be satisfied, the frequency is increased by the inverse of (16),
√√√√1 + v/c

1− v/c
(17)

and the light has higher frequency when the rocket is moving towards us. This is called blue-shift
because raising frequency in the optical spectrum is a shift towards the blue.

Again, if the rocket is moving away, the argument is exactly the same — we just have to replace
v → −v everywhere. This is called red-shift because lowering frequency in the optical spectrum
is a shift towards the red.

There is one very important distinction to note about the relativistic Doppler effect versus the
nonrelativistic version. In the relativistic version, it doesn’t matter whether the rocket is approach-
ing the observer at speedv or the observer is approaching the rocket at speedv. It can’t, because
of the principle of relativity. This is not true for the nonrelativistic Doppler effect because the air
in which sound moves defines a special frame.

The twin paradox and inertial frames

We can now use the Doppler effect to understand time dilation and the twin paradox, by keeping
track of every tick of the moving clock. So we have two twins, who are, as twins often are, the
same age. But one twin (called the “rocket twin”) takes a trip to planet X, at distanceL from earth,
staying in constant communication with the “earth twin” behind on earth. The communication
is done using radio waves, or some other electromagnetic waves that have fixed frequency in the
rocket twin’s frame (the rocket frame). We will assume the typical form of the twin paradox that
we discussed above, where the rocket twin goes out to planet X at speedv, quickly turns around,
and returns at the same speed.

Here are a series of snapshots showing the important times during the trip. the rocket twin
leaves the earth twin att = 0 traveling at constantv – staying in constant radio communication

t = 0
E

R v →
X

the rocket twin arrives at planet X att = L/v, turns around (quickly) and sends a turn-around
signal (shown as the open triangle/ in the diagrams) to the earth twin, indicating that he has
reached the planet.

t = L/v
E

←↩ v R
/
X
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The turn-around signal reaches the earth twin att = tX = L/v + L/c

t = tX
E
/

← v R

X

the rocket twin and the earth twin are reunited att = 2L/v

t = 2L/v
E

R

X

The radio transmitter is a clock – number of ticks (cycles) ist ν whereν is frequency of trans-
mitter. Thus the number of ticks sent by the rocket twin isT ν, whereT is the total time he aged
on the trip.

But the earth twin receives red shifted photons for a timetX = L/v + L/c and blue shifted for
2L/v − tX = L/v − L/c. Therefore, the number of cycles received by the earth twin is

ν

√√√√1− v/c

1 + v/c

(
L

v
+

L

c

)
+ ν

√√√√1 + v/c

1− v/c

(
L

v
− L

c

)
(18)

= ν

√√√√1− v/c

1 + v/c
L

(
1 + v/c

v

)
+ ν

√√√√1 + v/c

1− v/c
L

(
1− v/c

v

)

= ν
2L

v

√
1− v2/c2 = ν T (19)

Thus

T =
2L

v

√
1− v2/c2 (20)

Nonrelativistically, we would have expected

T =
2L

v
(21)

Thus the earth twin “sees” rocket clocks ticking more slowly by a factor of
√

1− v2/c2 = 1/γ (22)

This is time dilation. The moving clock ticks more slowly as seen by the clock at rest. This is also
the twin paradox. Because the rocket twin has sent out fewer ticks, he has also aged less. He is
younger than the earth twin when he returns.

There are a couple of other things to notice about (22). First note that the two terms in (22) are
equal. This had to be the case, because the rocket twin sent the same number of ticks on the way to
planet X as on the way back, so the earth twin received the same number of ticks in the red-shifted
signal from the trip out as in the blue-shifted signal from the trip back.
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But now, you say, why isn’t the situation symmetrical? After all, from the rocket twin’s point
of view, the earth twin (along with the rest of the earth) has moved away at speedv and then come
back at the same speed. Why is it that the rocket twin is younger at the end, rather than the earth
twin? Let’s look at the trip from the rocket twin’s point of view, assuming that it is the earth twin
who is sending out radio signals the whole time. Now things look a bit different. Here is the
chronology. Att = 0, the rocket twin watches the earth twin and the earth recede at constant
v. The rocket twin receives radio signals from the earth twin that are red-shifted until planet X
appears. Planet X is shown as dashed in the figure because it is not in the same inertial frame as
the rocket twin’s ship, so the rocket twin has to be a whiz at relativity to calculate its position.

t = 0
← v E

R

X

Planet X reaches the rocket twin att = T/2, turns around (quickly) and starts to recede again.
From this point on, the rocket twin receives blue-shifted signals until earth reappears and he is
reunited with the earth twin.

t = T/2
E

R

X v ↪→

the rocket twin and the earth twin are reunited att = T

t = T
E

R

X

Now we can check that the two pictures are consistent. The number of cycles that the rocket
twin receives is

T

2
ν




√√√√1− v/c

1 + v/c
+

√√√√1 + v/c

1− v/c


 =

T

2
ν




√√√√
(

1− v/c

1 + v/c

) (
1− v/c

1− v/c

)
+

√√√√
(

1 + v/c

1− v/c

) (
1 + v/c

1 + v/c

)


(23)
T

2
ν


 1− v/c√

1− v2/c2
+

1 + v/c√
1− v2/c2


 = Tν

1√
1− v2/c2

(24)

which using (20) is
2L

v
ν (25)

which is the frequency times the time elapsed on earth, as we expected. I hope you can guess from
this discussion what the asymmetry is. Of course I have not quite described this process the way
the rocket twin experiences it. He doesn’t just watch earth receding att = 0. He blasts off and
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accelerates. Similarly, he doesn’t just watch planet X turn around. He decelerates and accelerates
again in the opposite direction. He feels these accelerations in his bones! From the rocket twin’s
point of view, the switch from red-shift to blue-shift occurs the moment he turns around. This
makes sense. He knows that he has turned around. But from the earth twin’s point of view, nothing
special happens when the rocket twin reaches the planet. He has to wait until the turn-around signal
arrives to see the shift from red-shift to blue-shift.

Here is another way of saying what the difference is. The earth twin, remaining on earth, is at
rest in a single inertial frame the whole time. The rocket twin is not. He is in one frame on the way
out, and in a different frame on the way back. It is the fact that the rocket twin must switch from
one inertial frame to the other that makes his experience different.

Relativity may be strange, but it is consistent.
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lecture 11

Topics:
Where are we now?
Space-time events
The space-time interval
The invariant interval
Lorentz transformations
Invariance as a way of thinking
Varieties of space-time intervals
Interlude on relativistic units
The tip of tomorrow

Where are we?

We are lost in an odd 4-dimensional space! That’s where! I hope the last lecture and the readings in
Morin have convinced you that relativity is strange. We have discussed time dilation and the twin
paradox in the last lecture. You should have read about the relativity of simultaneity and Lorentz
contraction in David’s book. By next week, I will be able to explain why I am so sure that relativity
is true. For now, just try to accept that as strange as this is, there is absolutely convincing evidence
that the world really works this way. Since we are stuck with it, we should figure out how to make
sense of it, and how to avoid getting confused by the strangeness of it all. To do this, you must
train yourself to consider space and time together, because what is time in one inertial frame is a
combination of time and space in another. There are a number of closely related ways of dealing
with this. I will talk today about a few things that you have already read about in David Morin’s
book: space-time events, the space and time intervals and the invariant combination of the two,
and Lorentz transformations, because I want to try to put them in some perspective. At the end of
this lecture, I will try to put a lot of this together and discuss in more detail the question of why is
it that you are not used to thinking about space-time as a unified, 4-dimensional thing. Of course
it is because you are slow - but there is more to say that I think is rather interesting.

Space-time events

The concept of a space-time event is very simple. Even in non-relativistic physics, to describe an
event completely you must specify not only where it is but also when it takes place.What’s the
big deal?The importance of the space-time event in relativistic physics is really more of a negative
one. There are many things that don’t makeabsolutesense in the relativistic world because they
look different in different inertial frames. Time isrelative. Distance isrelative. Simultaneity is
relative. The space-time event gives us something to hang on to. The coincidence of space-time
events isNOT RELATIVE . If space-time events coincide, that is if they happen at the same place
and at the same time, they coincide in all inertial frames. Space-time events are thus the sensible
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things to talk about. Though the coordinates of a given space-time event will change depending on
what inertial frame you’re in, the event itself does not change.

The right analogy to keep in mind is that different inertial frames in space and time are like dif-
ferent coordinate systems in three-dimensional space. Time and distance change in going from one
inertial frame to another just as thex component of a point changes in going from one coordinate
system to another. But space-time events in space and time are like points in three-dimensional
space. If points coincide in one coordinate system, they coincide in all coordinate systems, just as
space-time events are coincident in all inertial frames if the coincide in any one.

One of the things that we will try to train you to do is to identify the important space-time
events in a process, and to be very suspicious of any statement or question that cannot be described
in terms of space-time events. Let me illustrate the difference in the twin paradox discussion we
gave in the last lecture, where twin 1 left twin 2 on earth and traveled to planet X and back. Here
the crucial space-time events were:
Twin 1 leaves twin 2 —x = 0, t = 0 in Earth’s frame, with Earth at the origin;

t = 0
2

1 v →∗ ∗ ∗
X

Twin 1 arrives at planet X —x = L, t = L/v in Earth’s frame;

t = L/v
2

←↩ v 1∗ / ∗
X

The turn-around signal reaches twin 2 —x = 0, t = L/v + L in Earth’s frame;

t = tX
2

∗ / ∗ ← v 1

X

Twin 1 and twin 2 are reunited —x = 0, t = 2L/v in Earth’s frame.

t = 2L/v
2

1∗ ∗ ∗
X

These events have an invariant meaning even though their coordinates, both their space and their
time coordinates, will change if they are viewed in a different coordinate system.

It is perfectly meaningful to put together events,so long as they occur at the same place and
at the same time. For example, again from the discussion of last lecture, “Twin 1 arrives at planet
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X at t = L/v, turns around (quickly) and sends a turn-around signal to twin 2, indicating that
he has reached the planet.” This describes two separate events — reaching the planet and sending
the signal — but because they happen at the same place and at the same time, their space and
time coordinates will be the same in all reference frames. Thus the statement makes sense in all
reference frames

If we don’t stick to space-time events, there are lots of questions that we can ask that don’t
mean anything at all unless we specify the reference frame. For example1

Meaningless questions

How far does twin 1 travel?

How long does it take twin 1 to get to Planet X?

Where is twin 1 when the turnaround signal reaches Earth?

How old is twin 2 when twin 1 reaches planet X?

The last two are a classic kind of pitfall, because they attempt to compare two events at different
places. Think about them carefully.

The space-time interval

Let me illustrate some of these issues by talking about a particularly useful sort of space-time event
— the tick of a clock. If I have a clock sitting at the origin of the reference frame of the lecture hall,
ticking everyT seconds, the ticks of the clock define a series of space-time events. In the frame
of reference of the lecture hall, all of these events have space coordinates 0, because they are all at
the origin, and their time coordinates are just 0,T , 2T , etc. Thus the time and space coordinates of
the series of ticks would look like

event E0 E1 E2 · · ·
(t, ~r ) (0, 0) (T, 0) (2T, 0) · · ·

(1)

In general, if we hadn’t put the first tick at the origin, the~r and t coordinates of the later ticks
would all just have the initial~r andt positions added on to them, so the sequence would look like

event E0 E1 E2 · · ·
(t, ~r ) (t0, ~r0) (t0 + T,~r0) (t0 + 2T,~r0) · · ·

(2)

We know that there is nothing very interesting about the~r0 and thet0, which can be changed by
moving to a different coordinate system by translations in space and time. Thus it is useful to

1The word “meaningless” in the table is a little strong. It might be fairer to say “questions whose answers depend
on the reference frame,” but we are trying to get your attention!
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get rid of this dependence. We can do this in a way that is completely independent of our choice
of origin of coordinates by considering thespace-time intervals, which are just the differences
between the coordinates of space-time events

∆E01 = E1 − E0 = (∆t01, ∆~r01) = (t1 − t0, ~r1 − ~r0) (3)

intervals ∆E01 ∆E02 · · ·
(∆t, ∆~r ) (T, 0) (2T, 0) · · ·

(4)

Events are the important underlying things, but have all this extraneous dependence on the origin
of the coordinate system in space and time, so it is almost always useful to think about space-time
intervals when you want to calculate something.

So far there is nothing relativistic about this, but here it comes. We also know from our discus-
sion of time dilation what these same events look like in a reference frame in which the clock is
moving. Suppose that the clock is moving with speedv in the+x direction. Now because of time
dilation, the ticks are spread out by a factor ofγ, so that (if we set our clocks so that the first tick
is at zero) the time coordinates are0, γT , 2γT , etc. Let us also assume that the space coordinates
are 0 for the first tick (att = 0). Then because we know the velocity of the clock, we can easily
work out the other~r coordinates –

event E0 E1 E2 · · ·
(t′, ~r ′ ) (0, 0) (γT, x̂vγT ) (2γT, 2x̂vγT ) · · ·

(5)

Notice where the asymmetry of time dilation comes from here. We get these factors ofγ for
the clock readings in our frame because we are using aseriesof our clocks at different places in
our frame to observe the ticks of thesingle moving clock. This is always the way time dilation
works.The single clock measures the shorter time!We in our frame see the

Again, if we hadn’t put the first tick at the origin in space and time, thex andt coordinates of
the later ticks would all just have the initial~r andt positions added on to them, so the sequence
would look like

event E0 E1 E2 · · ·
(t′, ~r ′ ) (t′0, ~r

′
0) (t′0 + γT,~r ′0 + x̂vγT ) (t′0 + 2γT,~r ′0 + 2x̂vγT ) · · ·

(6)

And again, we can get rid of the dependence on the origins in space and time by looking at the
intervals:

intervals ∆E01 ∆E02 · · ·
(∆t′, ∆~r ′ ) (γT, x̂vγT ) (2γT, 2x̂vγT ) · · ·

(7)
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Finally, there is nothing special about thex direction. For a different moving clock (or a different
choice of coordinate system), the motion might be rotated into a different direction,x̂ → v̂

intervals ∆E01 ∆E02 · · ·
(∆t′′, ∆~r ′′ ) (γT, v̂vγT ) (2γT, 2v̂vγT ) · · ·

(8)

While you are used to thinking of the difference between (1) and (2) or between (7) and (8) as a
change of coordinate system, you are probably not used to thinking about the difference between
(1) and (6) as a change of coordinate system. But what you see here is that these space-time
coordinates really can describe the same set of events, the ticks of a clock, in different reference
frames. Going from one reference frame to another IS like going from one coordinate system
to another — it is just that the time “coordinate” as well as the space coordinates are involved.
The events don’t change, but both the time and space coordinates change when we go from one
inertial frame to another. What this means is that we have gone from a 3-dimensional space to a
4-dimensional space-time.

The invariant interval

We can extend the analogy between going from one coordinate system to another and going from
one reference frame to another in the following way. When you make a change of coordinate
system in space, the distance between points doesn’t change. You can easily compute the square
of the distance between two points labeled by vectors~r1 and~r2 in terms of their coordinates,

`2 ≡
(
~r1 − ~r2

)
·
(
~r1 − ~r2

)
=

∑

j=x,y,z

(
rj
1 − rj

2

)2
(9)

Two things have happened here. First we have subtracted the coordinates of the two points. This
eliminates dependence on the origin of the coordinate system, which just cancels when we subtract.
Another way of putting this is that we are not interested in the length of the vectors themselves,
because this depends on the arbitrary position of the origin. But if we make the vector from~r2 to
~r1 by forming the combination~r1 − ~r2, it doesn’t depend on the origin. Then we sum the squares
of the coordinates to get something that doesn’t change when we make a rotation.

When you make a change of coordinate system in space-time, by going to a new reference
frame, there is a similar thing that doesn’t change. If I have two events, event 1 at timet1 and
position~r1 and event 2 at timet2 and position~r2, the following combination doesn’t change when
we go from one reference frame to another:

s2 ≡ c2
(
t1 − t2

)2 −
(
~r1 − ~r2

)
·
(
~r1 − ~r2

)
(10)

doesn’t change when we go from one reference frame to another. Again we have done two things.
The obvious one is to subtract the space and time coordinates of the two events, so thats2 doesn’t
depend on the origin of coordinates. The other, much less obvious one, is to combine the difference
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in time and the difference in space in a very particular way. You can see that this is the right thing
to do by looking at two successive clock ticks in any of (4), (7) or (8), we have

s2 = c2T 2 − 02 = c2T 2 (11)

In (6), we have

s2 = c2
(
γT

)2 −
(
vγT

)2
= (c2 − v2)T 2/(1− v2/c2) = c2T 2 (12)

This is independent ofv, so it looks the same in any frame of reference.
The quantitys2 in (10) looks a lot like the quantitỳ2 in (9). There are three differences. One

is that time is involved. The second is the minus sign in front of the second term. The third is the
factor ofc2 in the first term.

Let’s deal with the easy one first. The factor ofc2 is nature’s way of telling us that we are using
a really stupid system of units. Because time and space get mixed up in relativity, and because the
ratio v/c appears in many many of the relations of relativity, it makes sense to use units in which
c = 1. One way of doing this is to use seconds as your unit of time and light-seconds, that is the
distance light travels in a second, 299,792,458 meters. Of course, because we are so slow, this is
an inconveniently long distance (which is why we don’t adopt this convention as a standard part of
our metric system) but you will get used to it. Anyway, 1 is easier to remember than 299,792,458.
So from now on, we will follow nature’s advice and setc = 1, which we will call “relativistic
units.” This will make our formulas look simpler. We also lose something by doing this, but it is
not very important, and we will come back and discuss it at the end of the lecture today.

The other two differences betweens2 and`2 express the crucial strangeness of relativity. Time
is not quite the same as space — that is obvious from the minus sign. But it is not completely
different either, because it must be included to get something that looks the same in different
reference frames.

Notice that because of the minus sign,s2 can have either sign. It is positive in our example
of the interval between two ticks of a clock, but for other kinds of intervals, such as the interval
between two events that are in different places but at the same time in some frame,s2 can be
negative as well. The quantitys2 goes by various names. I will call it the “invariant interval.”

Lorentz transformations

You have read about a nice derivation of Lorentz transformation in David Morin’s text. I will write
them down and talk about them. They look much simpler withc = 1. So suppose that we have
two events

event 1 att1, ~r1 and

event 2 att2, ~r2.
(13)

The interesting thing is the interval in time and space between these two events:

∆t = t2 − t1 , ∆~r = ~r2 − ~r1 . (14)
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Now if we look at these same two events from a reference frame moving in the+x direction
with speedv, the coordinates of the events will change. We will get a new description of the events
in terms of new coordinates,

event 1 att′1, ~r1
′ and

event 2 att′2, ~r2
′.

(15)

Again, the interesting thing is the interval in time and space between these two events:

∆t′ = t′2 − t′1 ∆~r ′ = ~r2
′ − ~r1

′ (16)

Now the statement of the Lorentz transformation is that we find that we can choose a coordinate
system in which

∆x′ = γ(∆x− v∆t) ,

∆t′ = γ(∆t− v∆x) ,

∆y′ = ∆y , ∆z′ = ∆z .

(17)

If we set∆~r = 0 and look at∆x′ and∆t′ as a function of∆t, we can recognize the moving
clock. The condition∆~r = 0 means that we are looking at a series of events that are fixed in the
original frame. A pair of events with∆~r = 0 and time difference∆t could be two ticks of a fixed
clock a time∆t apart.

∆~r = 0

∆x′ = γ(−v∆t) ,

∆t′ = γ(∆t) ,

∆y′ = 0 , ∆z′ = 0 .

(18)

Theγ in
∆t′ = γ (∆t)

expresses time dilation. The−v in
∆x′ = γ( −v ∆t)

describes the clock moving withx velocity−v in the new frame.
The other terms in the Lorentz transformation can be understood in a similar way.
Notice that the Lorentz transformations are linear transformations. This is important for many

reasons, but one of the most obvious is that the time evolution of a clock in some reference frame
can be described by a straight line in space and time. The transformation from one frame to another
must take any such straight path into another straight path.

It very important to understand why Lorentz transformations exist. They are a kind of space-
time analog of rotations, but they look different because of the minus sign in (10). I recommend that
you learn about Lorentz transformations, that you learn how to use them, but that you actually use
them in a problem only if forced to do so (that is if the problem says “Use Lorentz transformations
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to ...”). There are usually easier ways of understanding any given problem. Lorentz transformation
will get you there in the end if you don’t make any mistakes, but you have to be very careful and
systematic to use them properly.

Invariance as a way of thinking

Throughout this course so far, I have been subtly (and sometimes not so subtly) trying to get
you to use symmetry arguments and invariance as a way of thinking about problems. In most
of what we do, this is just a convenience - it makes hard problems easier. But in relativity, it is
absolutely essential. The point of the principle of relativity after all is that inertial frames give
equivalent descriptions of the physics. It is pretty obvious that you should use this fact whenever
you can to understand what is going on. That is why so many of the problems you will do about
special relativity are much easier when you choose some particularly convenient inertial frame
and/or compute some appropriate invariant quantity. I want you to understand special relativity
as much more than a confusing collection of formulas. Even though you will never learn to feel
special relativity in your bones, you can learn to appreciate it as an interconnected web of relations
between different ways of looking at the same phenomena.

While Lorentz transformations are often not the best way to solve problems, they will never-
theless be very important to our understanding of relativity. Lorentz transformations are part of
the basic symmetry of space and time, along with rotations in space and translations in time and
space, and the invariant interval is invariant under all these transformations. The symmetry trans-
formations and the invariant quantities that they leave unchanged are two sides of the same coin.
We will very often use the fact that the invariant interval looks the same in all inertial frames. And
we will find other invariant quantities as well. So while we will not always be using Lorentz trans-
formations explicitly, they will be with us implicitly because we will often be using the quantities
that they leave invariant, like the invariant interval.

Varieties of space-time intervals

We spent a lot of time talking about the space-time interval(∆t, ∆~r ) between two ticks of a
moving clock. This is called a “time-like” interval, because there is a frame in which it has a time
component but no space component — the frame in which the clock is at rest. In fact, any space
and time interval with components

(∆t, ∆~r ) (19)

that satisfies
∆t >

∣∣∣∆~r
∣∣∣ (20)

has the property that there is a frame in which it looks like(∆τ, 0) with ∆τ > 0. Why? One way
to see this is to note that any interval that satisfies (20) could be the interval associated with a clock
moving with velocity

~v =
∆~r

∆t
(21)
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simply because if the clock moves with~v for a time∆t, it ends up translated by the vector∆~r,
reproducing (19). Thus if we go to a frame moving with velocity~v, we will be moving along with
the clock and in this new frame the intervals will have the form

(∆τ, 0) where ∆τ =

√(
∆t

)2 −
∣∣∣∆~r

∣∣∣
2

(22)

This relation incorporates the statement of time dilation.∆τ is always less than or equal to∆t.

Two events that are separated by a time-like interval are closest together
in time in the frame in which they occur at the same point in space.

(23)

The frame in which the two events occur at the same point in space is the frame in which the two
events could be two ticks of the same clock. Thus (23) is equivalent to the statement that a moving
clock ticks slowly. Two events that are separated by a time-like interval are sometimes referred to
as “time-like separated.”

On the other hand, if
∆t <

∣∣∣∆~r
∣∣∣ (24)

then it cannot represent the interval between two points on the path of a clock. As we will see in
more detail later, we cannot go to a frame moving with velocity~v = ∆~r/∆t, because|~v | > 1, so
the frame would have to moving at a speed greater than the speed of light, which is impossible for
clocks and meter sticks and all the other things we need to have a frame of reference. Then what
is this interval? Suppose that we look in a frame of reference moving with velocity

~u = ∆~r
∆t

∣∣∣∆~r
∣∣∣
2 (25)

To see what happens, let us rotate our coordinate system until∆~r is in thex direction

∆~r =
∣∣∣∆~r

∣∣∣ x̂ (26)

so that

~u = u x̂ where u =
∆t∣∣∣∆~r

∣∣∣
(27)

Now in a frame moving with velocity~u, they andz components of the interval remain zero, and
we can compute what the time andx components become using the Lorentz transformation,

∆t′ =
1√

1− u2

(
∆t− u

∣∣∣∆~r
∣∣∣
)

= 0

∆~r ′ =
1√

1− u2

(∣∣∣∆~r
∣∣∣− u ∆t

)

=
1√

1− u2

∣∣∣∆~r
∣∣∣


1− u

∆t∣∣∣∆~r
∣∣∣




=
1√

1− u2

∣∣∣∆~r
∣∣∣

(
1− u2

)

=
√

1− u2
∣∣∣∆~r

∣∣∣ =

√∣∣∣∆~r
∣∣∣
2 −

(
∆t

)2

(28)
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This is called a “space-like” interval, because there is a frame of reference in which it has a
space component but no time component. A very important example of a space-like interval is
the interval between two ends of a measuring stick at fixed time. This is what we define to be a
measurement of distance. Two objects are a distance one meter apart in a given reference frame at
time t if we can line up a meter stick so that the objects are at opposite ends of the stick at timet.
This distance is associated with a space-time interval with is the difference between two “events”
which are the space-time coordinates of the two ends of the meter stick at timet. This is obviously
a space-like interval, because the time component is zero. This corresponds to the primed frame in
(28). The properties of space-like intervals are then responsible for the phenomenon of “Lorentz
contraction”. In any other frame, the two events occur at different times. Therefore, (28) implies
that

∣∣∣∆~r
∣∣∣ >

∣∣∣∆~r ′
∣∣∣. The two events are closest together in the frame in which they occur at the

same time. This is generally true for any space-like interval.

Two events that are separated by a space-like interval are closest together
in space in the frame in which they occur at the same time.

(29)

Thus for example, if we measure the length of a moving train, the length we measure is the distance
between two events describing the positions of the front and back of the train at the same time in
our frame. But in the train frame, these two events do not occur at the same time, and thus the
distance between them is greater than what we measure (by a factor of1/

√
1− v2). This is Lorentz

contraction.
Two events that are separated by a space-like interval are sometimes referred to as “space-like

separated.”

Interlude on relativistic units

Let’s talk about the addition of velocity formula you saw in Morin

v1 + v2

1− v1v2/c2
. (30)

In sensible units in whichc = 1, this looks like

v1 + v2

1− v1v2

. (31)

One can ask, suppose, in sensible units, you get a result like (31). How would you know how to
put the factors ofc back into (31) to get (30)? This is a crucial step because it allows you to do
calculations withc = 1, to make things simple, but still get the full answer at the end of the day,
so you can talk to people who insist on using dumb units.

If you have done a calculation in relativistic units and you want to put the factors ofc back in
to translate the result to conventional units, you have to know the conventional units of the objects
you have calculated. Then you put in factors ofc to get the units right.

In the case of (31), we know that we are calculating a velocity, and the numerator is already a
velocity. So we can leave that alone and make the denominator dimensionless. The 1 term is OK,
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and we can make theuv term dimensionless by dividing by two factors ofc — and that is where
(30) comes from.

Another example: Suppose that you are calculating an energy in terms of a massm and a
velocityv and you get the result

6π m v4 (32)

The6π is a dimensionless number — we can forget about that. But the rest would not have units
of energy in conventional units (remember, for example, that Newtonian kinetic energy is1

2
mv2).

We have two too many factors ofv, so we must divide byc2 — thus the result in normal units is

6π m v4/c2 (33)

Here’s another one. For a system of two particles, with massesm1 andm2 and speedsv1 and
v2, suppose you calculate an object that is a mass, and the result is

m1/v1 + m2v2

m1/m2 + v1v2

(34)

Let us start with the denominator. We don’t know what the units should be of the denominator
alone (because we can always multiply numerator and denominator by a power ofc), but it is clear
that the two terms in the denominator must have thesamedimension. So for example, we can
divide the second term byc2. That makes the whole denominator dimensionless, so the numerator
must then have the dimensions of mass. We can arrange this by multiplying the first term byc and
dividing the second byc — thus the result in normal units is

m1c/v1 + m2v2/c

m1/m2 + v1v2/c2
(35)

The tip of tomorrow

So then why is it that you are not used to thinking about space-time as a 4-dimensional object? I
think that once again it is because you are slow, of course. But let’s look at this in a little more
detail in the light of space-time events and the varieties of space-time intervals. You are used
to thinking of time and space very differently. Space is spread out around you to infinity in all
directions. Time is not spread out at all. Time passes, and you live in the present on your way from
the past to the future. Here is a cartoon of our subjective picture of space and time, plotted just in
thex− t plane.
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But much of the difference between space and time is an illusion. Time and space are different,
to be sure, because of that crucial minus sign in the invariant interval. The passing of time is real.
But the spreading out of space is a fiction. It is a drastic oversimplification that has been built into
our brains and our sensory apparatus over thousands of generations because we are slow. What
we don’t think about or notice is that when we look out at the space spread out around us, we are
actually looking back into the past. And we cannot access the future around us instantaneously.
The real story looks more like this.
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The slight slope of the long almost horizontal arrows is the non-zero value of1/c - the effect of
the finite speed of light. If we were faster, we would recognize intuitively that the “space” that is
spread out on all sides of us between these arrows at this moment in time is just as inaccessible to
us as the future. This is the region of space-time events from which we are separated by space-like
intervals. We can’t get to these events, nor can they get to us. This region is neither the past nor the
future. There are three different regions of space-time - the past - the future - and the space-like
separated that is neither past nor future. If we were fast, then the picture would look more like this.
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The boundary between the space-like separated region and the time-like separated regions of our
past and future is a cone called our light cone. Our light cone consists of all the events in space-
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time that we could communicate with or receive communication from by means of a single light
signal, moving at the speed of light. In the figure, it looks like two crossed lines, but we can rotate
in space. If we rotate it just in thex − y plane and keepz = 0 (for example), we get an ordinary
three dimensional cone in the three dimensions,x, y andt. The light-cone of a given event, and
with it the division of space-time into three regions - past, future, and space-like separated - looks
the same in every reference frame because the speed of light does not change. The light cone is a
funnel from our past to our future. In natural units withc = 1, it looks like this:

Of course, if we make an arbitrary space rotation, we get a four dimensional cone, which is harder
to visualize, so I recommend just ignoringz for now.

The light-cone separates space-time into three regions, the time-like past which could have
affected us, the time-like future that we can affect, and space-like unknown on all sides that can
neither have affected us nor be affected by us. This picture doesn’t matter much to us in our
everyday life, because we are so slow. But it will be crucial when we try to understand the large-
scale structure of the universe later in the course.
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You can see in these pictures that our present is the singular tip where the past light cone meets
the future light cone. This is what I call “the tip of tomorrow” because it is the single point in
space-time that separates our past from our future.

As our present evolve into our future, our light-cone moves with us, further narrowing the
future, and opening us to effects from events that were space-like separated.
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For now, I hope that this picture helps you to understand why relativity seem so strange. And
maybe this will help you to avoid the wrong thinking than can so easily get you derailed thinking
about relativistic trains. Seen properly, through the lens of relativity, the “the present” is not in any
sense an infinite three dimensional space. The present is both right NOW and RIGHT HERE!
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lecture 12

Topics:
World lines and proper time
Massive particles
Energy and momentum
Example of inelastic process
Lorentz transformation of energy-momentum
Energy, momentum, velocity and mass
Massless particles
4-vectors and the invariant product

World lines and proper time

There is a nice relativistic analog of the concept of atrajectory in Newtonian physics - based on
the concept of aworld line . The idea is that as any massive particle evolves with time, whether
it is sitting still or moving, free or accelerating, it can always be described by some curve in 4-

dimensional space-time that is just the collection of the space-time events
(
t, ~r(t)

)
that describe

where the particle is at every time. The reason that it is useful to think about this in this funny
4-dimensional space (even though it is kind of hard to visuallize) is that the world line itself has
an invariant meaning because it is a collection of space time events that have invariant meaning
even though their coordinates will change depending on the inertial frame. The situation is similar
to that of a curve in three dimensional space. The curve consists of points that have an invariant
meaning, but their coordinates change depending on the coordinate system. Also, just as we can
label the points on a curve in three dimensional space by the distance along the curve from some
arbitrary point, so we can measure the distance along world line of a particle by measuring the
time ticked on the particles internal clock. This is called the proper time,τ . The change in proper
timedτ along any short segment of the world line is just

dτ = dt/γ = dt
√

1− v2 =
√

dt2 − d~r2 (1)

wheret andv are measured in whatever coordinate system and inertial frame you like. You can see
that this is independent of the inertial frame and the coordinate system by looking at the last term,
which is simply the invariant interval for the short line segment. It is crucial here that every short
line segment along the world line of a massive particle is time-like. This is true because massive
particles can never travel as fast as light. We will return to this again and again and understand it
various ways.

A good way of describing the world line is to give botht and~r as functions ofτ :

t(τ) ~r(τ) (2)

For example, for a particle at rest

t(τ) = τ ~r(τ) = 0 (3)
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and for a particle with velocity~v

t(τ) = γτ ~r(τ) = γ~vτ (4)

For travel in one dimension, we can plot world lines on a plane. For example, consider the twin
paradox. In their own frame of reference, the world lines of earth (and twin 2 on earth) and planet
X are vertical lines. The world line of twin 1 in the rocket has a kink where the rocket turns around
- in the curious geometry of spacetime - the kinked line takes the shorter time.
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Massive particles

I now want to change gears from talking about space and time to talking about energy and momen-
tum. I am going to write down the Lagrangian for a free relativistic massive particle. Because this
is a free particle, the Euler-Lagrange equation is not all that interesting. We know without thinking
about it that it is going to tell us that the particle moves at constant velocity. Nevertheless, finding
the right form for the Lagrangian can be instructive. It will allow to ask questions about what
would happen if we put in forces, for example. Also, it allows us to identify the quantities that we
expect to be conserved because of Noether’s theorem and translation invariance in time and space.
In fact, once we write down these quantities — better known as the energy and the momentum —
we will largely forget about the Lagrangian formulation. So don’t panic if this Lagrangian looks
so strange that you can’t deal with it. What will really matter is that you learn to deal with the
relativistic energy and momentum that come out of it from Noether’s theorem.

What principles should we use to write down the Lagrangian for the free massive particle
moving at relativistic speeds? Surely one important principle is that the Action should look the
same in all reference frames. This is reasonable, because if it were not true, Hamilton’s principle
would not necessarily give us equations of motion that give the same trajectories in all reference
frames. In addition, if we call the position of the particle~r, we expect that the Lagrangian is
independent of~r and oft, and depends only oṅ~r, because it should be invariant under translations
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in space and time. In a moment, I will show that the following Lagrangian gives rise to an action
that is independent of the reference frame:

L(r, ṙ) = −m

√
1− ~̇r

2
. (5)

We are using units withc = 1 as usual. Here are a few things to note. This looks a bit funny
because of the square-root. But as we will see, that is what relativity requires us to write down, so
we will just have to live with it. The constantm, which we will see in a moment is the mass of the
particle, must be there so that the Lagrangian has units of energy.

Now let us show what happens to the action

S = −m
∫

dt

√
1− ~̇r

2
(6)

under a Lorentz transformation. This is a little complicated because both the integrand and the
dt change under a Lorentz transformation. But we can make what is going on more obvious by
writing (6) as follows:

S = −m
∫

dt
√

1− (d~r/dt)2 = −m
∫ √

dt2 − (d~r )2 (7)

The second form is a very funny looking integral, but it makes sense because it is equivalent to
the previous form. The important point is that the last form is evidently unchanged by Lorentz
transformations. The infinitesimal interval

(dt, ~dr) (8)

is just a space-time interval. It transforms under Lorentz transformations just like(∆t, ∆~r). And
therefore, the combination

dt2 − (d~r )2 (9)

is just an infinitesimal version of the invariant interval, and it has the same value in all inertial
frames. To get something proportional todt (so that we can put it under an integral sign and get a
finite result), we must take the square-root of (9). That is why (6) looks the way it does, nutty as
that is.

Energy and momentum

Now that we have a Lagrangian, we can construct the conserved energy and momentum that we
expect for a relativistic particle. The energy is

E = ~̇r · ∂L

∂~̇r
− L = m

~̇r
2

√
1− ~̇r

2
+ m

√
1− ~̇r

2
=

m√
1− ~̇r

2
=

m√
1− v2

= mγ . (10)

The momentum is

~p =
∂L

∂~̇r
= m

~̇r√
1− ~̇r

2
=

m~v√
1− v2

= m~vγ . (11)
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These things look really funny, but these are the energy and momentum that we expect to be
conserved because of Noether’s theorem. Of course, for a single free particle, this is pretty trivial.
Nothing changes, so everything is conserved. But in fact, these objects (10) and (11) are conserved
in exactly the way non-relativistic energy and momentum are conserved at low speeds. If we have
a system with several particles and we add up all the energies or all the momenta, we get something
that doesn’t change as the system evolves in time. The energy and momentum may flow around
from one particle to another, but the total does not change.

Here is an example. Suppose we have a particle with massm traveling atv = 4
5
. Then

γ =
1√

1− (4/5)2
=

5√
52 − 42

=
5√

25− 16
=

5√
9

=
5

3
(12)

so

E = γm =
5

3
m p = vγm =

4

3
m (13)

You will observe that these do not look like the expressions for energy and momentum of a
Newtonian particle. Nevertheless, these are the objects that are really conserved. It is instructive
to look at them with the factors ofc put back in:

E =
mc2

√
1− v2/c2

(14)

~p =
m~v√

1− v2/c2
(15)

In this form, it is also useful to Taylor expand in powers ofv/c in order to see what they look like
at small velocity:

E =
mc2

√
1− v2/c2

= mc2 +
1

2
mv2 + · · · (16)

~p =
m~v√

1− v2/c2
= m~v + · · · (17)

As we expected, the Newtonian expressions for the kinetic energy and the momentum appear. But
in the expression for energy, (16), there is also a constant term, the famousmc2. Themc2 in (16)
is a constant that is irrelevant to the Euler-Lagrange equations, so at small velocities, the velocity
dependent part of (16) reduces to the non-relativistic Lagrangian, as we expect. What is actually
important about the extra term is that mass plays a very different role in relativistic processes
than it does at lower speeds. In Newtonian mechanics, mass, kinetic energy, and momentum are
separately conserved. But in relativistic physics, it is only the momentum~p and the total energy
E that are actually conserved in arbitrary collisions of elementary particles at any speed — even
in processes in which particles are created or annihilated. Mass is not conserved. The mass of
any one kind of particle is always the same, so mass is conserved in collisions that don’t change
the type of particle involved. For example if you accelerate an electron to speedv and it collides
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with an electron at rest, some of the time you will get a collision in which you end up with two
electrons going off in different directions and no other particles. We might represent this process
by the schematic “equation”

e− + e− → e− + e− (18)

In this case the sum of the masses of the particles before the collision is the same as the sum of the
masses of the particles after the collision. This is the analog in the relativistic world of an “elastic”
collision in nonrelativistic physics, and I will sometimes use the same word to describe it. But
other things can happen that don’t conserve mass. For example, in the process of the collision, you
may produce an extra electron (so there are three electrons in the final state) and a positron (an
anti-electron - with the same mass but opposite charge).

e− + e− → e− + e− + e− + e+ (19)

Here the sum of the masses before the collision is2me, and the sum after the collision is4me.
Mass is not conserved. In fact, there is no reason to compute the sum of the masses at all. It is
just not an interesting quantity. In fact, the words “elastic” and “inelastic” mean something a little
different when applied to relativistic collisions than the do they do in the nonrelativistic case. For
a nonrelativistic elastic collision, the total kinetic energy,

∑ 1
2
mv2, is conserved. For a relativistic

elastic collision, the total relativistic energy,
∑

mγ, is conserved. In both cases, the particles in the
initial state are the same as the particles in the initial state. For a nonrelativistic inelastic collision,
kinetic energy is not conserved. Some of the kinetic energy is converted to heat and effectively
lost. At the microscopic level, this is really a very complicated process in which kinetic energy
of the inital objects is converted to kinetic energy associated with random motion of their parts.
In relativistic physics, we use the term “inelastic” to mean something quite different — that new
particles are created or destroyed. In this case, while energy is conserved, mass is not. This is
summarized in the following table.

smallv largev

elastic KE =
∑ 1

2
mv2 is conserved

— mass is conserved —

E =
∑

mγ is conserved
particles are conserved

therefore
— mass is conserved —

inelastic KE =
∑ 1

2
mv2 not conserved

— mass is conserved —

E =
∑

mγ is conserved but
new particles are

produced or destroyed
— mass isnot conserved —

So once again, this shows that conservation of mass is just not something fundamental. Sometimes
mass is conserved. Sometimes it isn’t.
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Example of inelastic process

Here is an interesting and important particle decay process

J/ψ → e− + e+ (20)

wheree− is an electron,e+ is a positron, the antiparticle of the electron, andJ/ψ is a particle that
has two names for historical reasons. It was discovered allegedly independently at Brookhaven
and at SLAC. Anyway, it has a mass ofmJ/ψ ≈ 3097 MeV. You can make it in particle collisions
and it very quickly decays in one of various ways. Let’s summarize what energy and momentum
conservation implies forJ/ψ at rest decaying into an electron and a positron.

particle J/ψ e+ e−

~v 0 ~v+ ~v−

E mJ/ψ meγ+= mJ/ψ/2 meγ−= mJ/ψ/2

~p 0 meγ+~v+ meγ−~v−

(21)

energy
conservation ⇒ mJ/ψ = meγ+ + meγ−

momentum
conservation ⇒ 0 = meγ+~v+ + meγ−~v−

(22)

γ−~v− = −γ+~v+ ⇒ ~v− = −~v+ (23)

Lorentz transformation of energy-momentum

One of the important things about energy and momentum is that they behave under Lorentz trans-
formations very much like a space and time interval. Remember that this has to do with what
happens to their values when we go from one reference frame to another. The easiest way to un-
derstand what happens to energy-momentum is to imagine that the particle has a clock on it and
consider the space-time interval between two ticks of the particle’s clock, as we did in the last lec-
ture. Consider, then, the space-time interval between two ticks of a particle’s clock. A space-time
interval between two events has a time component,∆t, that is the time that elapses between the
two events, and a space component,∆~r, that is the vector from the position of one event to the po-
sition of the other. In relativistic units, of course, these two components have the same dimension.
If the particle is sitting still, this interval has a time component, call it∆τ , but its space component
vanishes.

Now suppose that the particle is moving with velocity~v. Then, because of time dilation, the
time interval between the same two ticks of the particle’s clock is

∆t = ∆τ
1√

1− v2
(24)
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But then, because

~v =
∆~r

∆t
(25)

we find

∆~r = ∆τ
~v√

1− v2
(26)

But then we can write
(E, ~p ) =

m

∆τ
(∆t, ∆~r ) (27)

But bothm andτ are invariants — constants — they are properties of the particles involved, not
of the frame. Thus we conclude that(E, ~p ) must transform just like(∆t, ∆~r ) because the two are
just proportional to one another.

4-vectors and the invariant product

I hope that by this time you are getting used to the idea of changes from one inertial frame to
another, and the accompanying Lorentz transformation, as a kind of 4-dimensional analog of what
we do in three dimensional space when we go from one coordinate system to another. After devel-
oping the analogy between 3-dimensional space and 4-dimensional spacetime, how can we not go
on to develop the analogy between 3-dimensional vectors and 4-dimensional vectors. Indeed, our
treatment of the invariant interval was the first step in developing this analogy. We saw there that
the invariant interval (this time withc = 1),

s2 ≡
(
t1 − t2

)2 −
(
~r1 − ~r2

)
·
(
~r1 − ~r2

)
(28)

is a kind of length. Like the length of a 3-dimensional vector, it has the same value in all coordinate
systems, but here of course, the idea of coordinate system is enlarged to include different inertial
frames, moving with different velocities.

The obvious way to go further is the find analogs in spacetime for the 3-vector,∆~r, and for the
dot product. The analog of the 3-vector is pretty obvious. It is a 4-vector, with 4 components, the
first of which (which we will call thet component, just to remind us that it is special) is the time.
So a 4-vector is a quartet of numbers,

A = (At, Ax, Ay, Az) (29)

whereAt is refered to as the time component, andAx, Ay andAz are the space components, which
are the three components of a 3-vector. We will sometimes write the 4-vector as

A = (At, ~A) (30)

recognizing that the last three components form an ordinary 3-vector.
Example: The difference between the components of two spacetime events forms a 4-vector

∆r = (∆t, ∆x, ∆y, ∆z) = (∆t, ∆~r) (31)
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I may sometimes refer to the four components of a 4-vector using different subscripts,

(A0, A1, A2, A3) ↔ (At, Ax, Ay, Az) (32)

I will try not to use this notation, but I may sometimes slip. So just remind me if I do, and remember
that these are simply two different notations for describing the same object.

Not any quartet of coordinates is a 4-vector. What makes a 4-vector a 4-vector is that it behaves
like the coordinate interval, (31), under a change from one inertial frame to another, that is under
a Lorentz transformation. Thus ifA is a 4-vector, then under a Lorentz transformation to a frame
moving with speedv in the+x direction, the components ofA go to a new set of componentsA′

related to the first by the Lorentz transformation

∆A′
x = γ(∆Ax − v∆At) ,

∆A′
t = γ(∆At − v∆Ax) ,

∆A′
y = ∆Ay , ∆A′

z = ∆Az .

(33)

A (very) little linear algebra makes it even more obvious why this is important.



∆t′

∆x′

∆y′

∆z′




=




γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1







∆t

∆x

∆y

∆z







A′
t

A′
x

A′
y

A′
z




=




γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1




︸ ︷︷ ︸
same linear

transformation




At

Ax

Ay

Az




(34)
The Lorentz transformation is described by the same matrix




γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1




(35)

for every 4-vector. The same thing happens with rotations and 3-vectors:




∆x′

∆y′

∆z′


 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







∆x

∆y

∆z







A′
x

A′
y

A′
z


 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




︸ ︷︷ ︸
same linear

transformation




Ax

Ay

Az


 (36)

The one “rotation matrix” 


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (37)
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describes a rotation by an angleθ aboutz axis forall possible vectors!This is at the heart of why
the idea of vectors is so important.

We have now seen two things that behave like 4-vectors - the space-time interval and the
energy-momentum. You will read about others in Chapter 12 of Dave Morin’s book.

Now for the analog of the dot product. If we have two 4-vectors,A, from (29), andB,

B = (Bt, Bx, By, Bz) (38)

then the combination
A ·B ≡ AtBt − ~A · ~B (39)

has the same value in any frame of reference (just as the ordinary dot product has the same value
in any coordinate system). The notation here is a bit condensed. If you see a dot product between
things that don’t have vector indices (or bold face in David Morin’s book), you should assume that
the things are 4-vectors and that the dot product is the 4-dimensional invariant product defined by
(39). You can check that a Lorentz transformation to a reference frame moving the inx direction
does not change the value of (39). It is also obviously unchanged by rotations because the space
vectors enter only through the ordinary dot product, which is unchanged by rotations. Note also
that if we setB = A, we recover the equation for the invariant interval,s2, and therefore we can
write the invariant interval, (28), as

s2 = ∆r ·∆r (40)

just as for 3-dimensional vectors, the square of the distance between two vectors is a dot product,

`2 = ∆~r ·∆~r (41)

Right now, 4-vectors and the invariant product probably look like just a pretty mathematical
analogy. But we will see shortly when we talk about using the constraints of energy and momentum
conservation that they are an indispensible part of our tool box for dealing with the relativistic
world.

Energy, momentum, velocity and mass

There are several ways of writing the relation between energy, momentum, velocity and mass. The
one that we started with,

E =
m√

1− v2
~p =

m~v√
1− v2

(42)

is actually not the most useful. It doesn’t make sense for massless particles, such as the particles
of light itself, because both the numerator and the denominators vanish asm → 0. However,
we can combine these into two relations that are even more general, and make sense for anym.
First consider the obvious one — form the invariant product of the energy-momentum with itself.
Explicit calculation gives

E2 − ~p 2 = m2 (43)
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As expected, the dependence onv has gone away, because the invariant on the left hand side
does not depend on the inertial frame, and thus cannot depend on how fast the particle is moving
(because the speed changes when we go from one frame to another).

We can also get a relation that makes sense asm → 0 by dividing the expression for momentum
by the expression for energy,

~v = ~p/E (44)

These two relations are the most general formulation of the relations among energy, momentum,
velocity and mass. I put boxes around them because they are very very very important. When
combined with the invariant scalar product, these relations are incredibly powerful.

Massless particles

Whenm = 0, (43) and (44) are perfectly sensible, but the result is a bit odd. Form = 0, (43)
implies that

|~p | = E (45)

Then (44) implies that
~v = ~p/|~p | = p̂ (46)

which means that a massless particle always travels at the speed of light. If you think about this for
a minute, it really makes your head hurt. For one thing, it means that there is no way that the state
of such a particle can be specified only by its position, because massless particles with different
energies move at the same speed, and thus cannot be distinguished by their speed. Thus unlike
the classical particles you are used to, massless particle with different energy can have exactly the
same trajectories. The resolution of this puzzle classically is to say that one shouldn’t talk about
massless particles at all, but just about classical waves like the electromagnetic waves you will
learn more about in Physics 15b. But quantum mechanically, these particles really exist. In fact,
what Einstein got the Nobel prize for was not relativity, but for his explanation of how light could
knock electrons out of a metal (the photoelectric effect) because a light wave of frequencyν can
be regarded of consisting of massless particles each with energyhν whereh is Planck’s constant.

There is a related issue that sometimes causes confusion. Some of you have probably seen
relativity before, and you may have been exposed to the rather idiotic notion of a “rest mass” that
is the actual mass of the particle and a “relativistic mass” that depends on velocity. This is not
useful! If you ask a physicist what the mass of the electron is, the response will be

me ≈ 9.11× 10−28 g (47)

or
me ≈ 0.511 MeV (48)

The response will certainly not be “Do you mean the rest mass of the electron?” or “How fast is
your electron moving?”

And of course, this doesn’t make any sense at all for massless particles like the photon.
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Not only do these silly notions of “rest mass” and “relativistic mass” not correspond to the way
physicists actually talk about these things, but the motivation for them (such as it is) is philosophi-
cally flawed. I think that the idea was to preserve the form of the equation

~F = m~a (49)

for large velocities. There are two problems with this. One is that it doesn’t work, even if you allow
m to depend on~v. You can still only preserve this form in certain special cases. But more impor-
tantly, you shouldn’t want to preserve this form anyway. We have seen that the more fundamental
form that arises naturally in a Lagrangian description of mechanics is

~F =
d

dt
~p (50)

We will see next week that this relation survives intact in relativistic physics. No silly definitions
are required.

So if you are used to using the term “rest mass” and “relativistic mass,” you should try to get
over this as soon as possible. They will only cause you grief and confusion in this course and
beyond. If all else fails, perhaps hypnosis might help.

As it happens, I recently received an email from the great Russion physicist Lev Okun, asking
me to comment on his paper “The mass versus relativistic and rest masses” in which he discusses
the history of this issue. His argument for many years is that the notion of the “relativistic mass”
m(v) obscures the underlying symmetry — the 4-vector nature of(E, ~p). In the fundamental
equation

E2 − ~p 2 = m2 (51)

m is constructed using the invariant product of the 4-vector(E, ~p) with itself. Thus the right hand
side of the equation is an invariant quantity that has the same value in all reference frames. In
4-d as in 3-d, we call such a quantity a scalar. Mass is a scalar and is not conserved. Energy is a
component of a 4-vector and is conserved. Don’t confuse them!

I have put Lev’s paper up with the lecture this week. If any of you have comments on the paper
or suggested improvements, please let me know and I will pass them along to Lev.
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lecture 13

Topics:
Where are we now?
Particle collisions
K+ decay
Neutrino scattering
Minimizing and maximizing
µ decay
Colliders

Where are we now?

Last time, we introduced the notion of 4-vectors and in particular, the 4-vector of energy and
momentum that is conserved if the laws of physics are invariant under Lorentz transformations and
translations in time and space. For free massive particles, these have the form

E =
m√

1− v2
~p =

m~v√
1− v2

(1)

But I suggested that more useful and general way to think about energy and momentum of a free
particle is think of the four quantities

energy E

momentum ~p

mass m

velocity ~v

(2)

as related by the two relations

E2 − ~p 2 = m2 (3)

and
~v = ~p/E (4)

From (3) and (4), you can derive (1) if the mass is not zero. But (3) and (4) are still true even when
the mass is zero and (1) doesn’t make sense.

In addition, we discussed the invariant product of 4-vectors, which has the same value in all
inertial frames.

Today, I now want to work through a bunch of examples of how these are useful. Most of these
examples are taken from my own field of elementary particle physics, because particle physicists
live with relativity every day.
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Particle collisions

The relativistic energy and momentum that we derived last time are incredibly important. We
derived these expressions by thinking about single free particles, but they are much more generally
useful. The reason is that in almost all interesting situations, we can think of particles as free
most of the time, except when they are actually colliding with one another. Then most of the
time, the energy and momentum is just given by the sum of the energies and momentum of the
particles. In a collision, the individual energies and momenta will change, but the total energy and
momentum will be the same before and after the collision, even when new particles are created or
when particles initially present are annihilated.

This is conservation of energy and momentum. Conservation means simply that when we add
up the energies and momenta of the particles in the initial state of some scattering process the result
is the same as if we add up the energies and momenta of the particles in the final state. The thing
that I want to try to convince you of today is that it is much easier to determine the constraints
that come from energy and momentum conservation if we think of the energy and momentum as a
4-vector, and use the fact that the invariant product of 4-vectors is independent of the frame.

Today, I want to do a lot of examples of the use of conservation of the energy-momentum 4-
vector to analyze the decay, scattering, and production of particles. There is a very simple general
idea that underlies all of these problems. The idea is to get rid of things that you don’t know by
using the relationE2 − ~p 2 = m2. Let’s jump right to examples.

K+ decay

There is a particle called theK+ (pronounced “kay plus”). It is called a “strange” particle for
historical reasons. This is not because it is peculiar (at least it doesn’t seem peculiar any more,
now that we know what it is), but because it carries a property called “strangeness”. Anyway,
it decays rather quickly into a pair of pions. Pions are the lightest of the particles made out of
quarks and antiquarks (generically called hadrons) so they show up often. TheK+ can decay into
one neutral pion (calledπ0 — “pi zero”), which has a mass of aboutmπ0 ≈ 135 MeV and one
charged pion (calledπ+ — “pi plus”), which has a mass of aboutmπ+ ≈ 140 MeV. TheK+ has
a mass ofmK+ ≈ 494 MeV. Now suppose that the decay of theK+ occurs at rest. What are
the energies of the two pions? This is a typical sort of question in what might be called decay
kinematics. To answer such questions, we think about 4-vectors and use conservation of energy
and momentum. Let us call the energy-momentum 4-vectorsK for the K+ andπ+ andπ0 for
the π+ andπ0 respectively. Conservation of energy and momentum is the statement that the 4-
dimensional vectors satisfy

K = π+ + π0 (5)

This is a short-hand for four equations, conservation of energy and conservation of each of the
three components of momentum. Note that it is true in any frame of reference. In the rest frame,
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the 4-vectors look like

K = (mK , 0)

π+ = (E+, ~p+)

π0 = (E0, ~p0)

(6)

We have used a standard trick here — one that you should be familiar with from our rules of
coherence. If you don’t know something, give it a name! Now (5) can be used to say things about
(6), for example,~p+ = −~p0. But let us try to resist this temptation. In problems like this, it is
often convenient to manipulate the 4-vectors symbolically for a while before actually doing the
calculation. The idea of such manipulations is to be able to use the invariant product to compute
what you want to know without having to calculate what we don’t care about. Here for example,
suppose that we first want to calculate the energy of theπ+, which we have calledE+. If we could
calculate the value of the invariant productK · π+ = mK E+, that would immediately give usE+.
So suppose that we rewrite (5) as

K − π+ = π0 (7)

Now if we take the invariant product of each side of this equality with itself, we will get terms
involving K · π+ = mK E+:

(K − π+) · (K − π+) = K ·K − 2 K · π+ + π+ · π+

= m2
K − 2 K · π+ + m2

π+ = π0 · π0 = m2
π0

(8)

Now we can solve this forK · π+

K · π+ =
m2

K + m2
π+ −m2

π0

2
(9)

or

E+ =
m2

K + m2
π+ −m2

π0

2mK

(10)

Easy, no? Now we can getE0 either by repeating the same calculation with + and 0 interchanged,
or by using energy conservation. The result is

E0 =
m2

K + m2
π0 −m2

π+

2mK

(11)

If you were asked to do so, you could now go on and calculate the magnitudes of the momenta
of the pions by usingE2 − ~p 2 = m2. From there, you could calculate the speeds, although this is
seldom very interesting in such collisions. You cannot calculate the direction of the momentum or
velocity, because this is actually quite random. TheK+ is a particle with no angular momentum.
When it is at rest, there is no vector associated with it. And therefore there is no direction picked
out for its decay products. They go off at random with equal probability in all directions. That is
quantum mechanics. God plays dice with the universe.
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Neutrino scattering

Here is an example of an interesting scattering process. Neutrinos are very light particles. Until
recently, we thought that they might be massless, like photons. But it now appears that the neutrinos
have tiny masses. Furthermore, these masses are very peculiar. There are three different kinds
of neutrinos:νe (an “electron neutrino”);νµ (a “mu neutrino”); andντ (a “tau neutrino”). The
names refer to the processes in which these neutrinos are produced, which involve respectively the
electron and the heavier versions of the electron, theµ (“mu”) and theτ (“tau”). The tiny masses
do not respect these distinctions, and they produce bizarre quantum mechanical mixing between
these different types of neutrinos. But if it were not for these weird quantum mechanical effects,
we could ignore the neutrino masses altogether. So that is what we will do in this course. We
will simply pretend that neutrinos are massless, which is an excellent approximation for the sort of
questions that we can ask and answer in this course.

In spite of the fact that neutrinos have no electric charge and almost no mass, it is possible to
make beams of neutrinos. In fact, one of my colleagues, Gary Feldman, is part of a large project
that involves making a neutrino beam at Fermilab outside Chicago and aiming it at a large detector
in an underground mine in northern Minnesota. This should tell us more about the peculiar neutrino
masses I mentioned earlier.

But here, I just want to note that with these beams, we can observe bizarre processes such as
the scattering of aνµ with energyE from an electron at rest to produce a final state consisting of a
νe and aµ. Theµ has a massmµ about 207 times the mass of the electron,me.

Now, a question that you might ask about this process is the following. Suppose that you see a
νe in the final state flying off at an angleφ from the initial direction of theνµ: as shown:

Initial state final state

••............................................................................. ..............
•

•

..................................
..................................................

..................................................................................... ..............

νµ e

νe

µ

θ

φ...................................................................

............. ............. ............. ............. .............

(12)

What does energy and momentum conservation tell you about the energy of theνe in the final
state?
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The 4-vectors look like

e = (me, 0, 0, 0)

νµ = (E,E, 0, 0)

νe = (E1, E1 cos φ,E1 sin φ, 0)

µ = (E2, p2 cos θ,−p2 sin θ, 0)

(13)

Some comments about this are in order. I have chosen to put the initialνµ momentum along the
x axis. That is no problem, because I can rotate my coordinate system to make it so. Likewise,
I have assumed that the scattering takes place in thex-y plane, which I can again do by just
rotating the coordinate system. I have put in the information that the neutrinos are massless by
taking the lengths of their momentum vectors to equal their energies. If I have not done this and
just given the momenta names, we would have quickly gotten to this point when we imposed
E2 − ~p 2 = m2 = 0 on these 4-momenta. I have also, in my head, imposed a little bit of energy
momentum conservation by writingµ in thex-y plane (although we won’t use this at all). Again,
if we had put in az component forµ, we would have quickly realized that it must be zero because
all the other 4-vectors have zeroz component by construction.

Now, we could simply impose energy and momentum conservation of the rest of (13), and
try to solve the equations. But it is better to think. For example, we can easily findE1, because
energy-momentum conservation

νµ + e = µ + νe (14)

implies
νµ + e− νe = µ (15)

This is a good way to write things, because when we take the invariant product of each side with
itself, all the nonsense inµ (which we don’t know yet), drops out, and we can write

(νµ + e− νe) · (νµ + e− νe) = µ · µ = m2
µ (16)

The left hand side of (16) is

νµ · νµ + e · e + νe · νe + 2 νµ · e− 2 νµ · νe − 2 e · νe (17)

which with (16) implies

m2
e + 2meE − 2E E1(1− cos φ)− 2meE1 = m2

µ (18)

so that

E1 =
m2

e + 2meE −m2
µ

2E (1− cos φ)− 2me

(19)

Practically speaking, this is a bit of a swindle. There is nothing wrong with the calculation
above, but a particle physicist would never ask you to calculate things in terms of the angle of the
final state neutrino. This is because neutrinos are very hard to see. They very seldom interact with
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anything. That is how they will manage to get from Chicago to northern Minnesota. But there
are many ways of making the direction of charged particle track show up, all making use of the
electric charge and its interactions. So it would make more sense physically to ask you to find
things in terms of theµ angle,θ, or its energy,E2, or momentum,p2. This is a little more involved
algebraically, but the principle is the same.

Minimizing and maximizing

There is an interesting and useful class of questions in which the kinematics does not completely
fix the interesting quantities, and you have to think about how to make them bigger or smaller.
Here is a typical situation. Suppose that a particle with massm1 and energyE collides with a
particle with massm2 and the collision produces a final state withn particles with massesµ1, µ2,
. . . µn. What is the minimum energyE required for a process that produces these particles in the
final state to take place? And what is the total energy of the process in the zero momentum frame?

First let me write down the answer, which is rather simple. The total energy of the process in
the zero momentum frame is at least

E~p=0 =
n∑

j=1

µj ≡ Mmin (20)

and the energyE of the particle with massm1 in the frame in which particle 2 is as rest is

M2
min −m2

1 −m2
2

2m2

(21)

Let us begin the proof by discussing the question in general. The key to problems like this is
to treat the whole final state as a single entity. The final state, whatever it is, will have some total
energy-momentum 4-vector

T = (ET , ~PT ) =
n∑

j=1

(Ej, ~pj) (22)

Then we can define a “total mass”MT for the final state using the fundamental relation between
energy, momentum and mass —

E2
T − ~P 2

T = M2
T (23)

Then in terms ofMT , this problem is formally equivalent to the problem of producing a particle
with massMT by colliding a particle with massm1 and energyE with a massm2 particle at rest.
Define the 4-momenta as

P1 = (E, p) P2 = (m2, 0) (24)

Then 4-momentum conservation implies

P1 + P2 = T (25)

Taking the invariant product of each side gives

P1 · P1 + 2P1 · P2 + P2 · P2 = m2
1 + 2m2 E + m2

2 = M2
T (26)
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E =
M2

T −m2
1 −m2

2

2m2

(27)

which should remind you of (21). Evidently, to minimizeE we need to minimizeMT , and if we
find that the minimum value ofMT is theMmin in (20), then we are done. So how do we do that?

The advantage of consideringMT is that it is an invariant quantity. It has the same value in
all frames of reference. In particular, it looks the same in the zero momentum frame. Thus in this
frame, the total energy is justMT

T ′ = (E ′
T , ~P ′

T ) =
n∑

j=1

(E ′
j, ~p

′
j)
′ = (E ′

T , 0) = (MT , 0) (28)

But (28) implies that

MT =
n∑

j=1

E ′
j (29)

Then since the energy of a particle is always greater than or equal to its mass, (29) implies

MT ≥
n∑

j=1

µj = Mmin (30)

If the particles in the final state are all massive — that is if they haveµj > 0 for all j, then the
bound (30) is saturated when all the particles are at rest in the zero momentum frame and this is
the best we can do in minimizingMT .

If there are massless particles, we cannot take their momenta to be zero, but we can take them
to be very very small. In this way, we can come arbitrarily close to the theoretical minimum.
If we now boost this final state by a Lorentz transformation, all of the massive particles will be
traveling with the same velocity, and the massless particles will still have arbitrarily small energy
and momentum. This is the best we can do.

Here is a simple (and classic) example. Suppose that you want to make antiprotons. You can
do this by hitting a proton at rest with a proton of energyE to produce a final state consisting of
three protons, each with massmp, and one antiproton (also with massmp). What is the minimum
energy required to make antiprotons this way? I should say that this is actually the way that
antiprotons are made at Fermilab and CERN (where for example Professor Gabrielse uses them to
make antihydrogen and study its properties). Because all of the final state particles are massive,
we can take all four particles to be moving with the same velocity,v, and the total mass will then
beMT = 4mp. Putting this into (27) gives the result:

E =
M2

T − 2m2
p

2mp

=
16m2

p − 2m2
p

2mp

= 7mp (31)

Note we have obtained a little bit more than the answer we were looking for. We actually know
something about the final state of the four particles when (31) is satisfied — that all the particles
are moving with the same velocity.

To think about this another way, imagine slowly cranking up the energy of our proton beam
until we start to produce antiprotons. When this first happens, at an energy given by (31), the four
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particles have the same velocities, but as we go to higher energy, the velocities are the same and
some of the energy of our original beam is wasted in producing the extra energy of that relative
motion, rather than just going into making antiprotons.

This result is sort of neat, but the point is the style of argument. The idea is to think of whole
collections of particles as having a “mass” — computed from the total energy momentum 4-vector.

µ decay

We have already talked about the fact that the heavy version of the electron called the muon,µ, is
unstable. It decays into an electron, a muon neutrino, and an electron antineutrino:

µ− → e− + νµ + ν̄e (32)

This process is actually very closely related to the inverse of the scattering process we discussed
earlier,

νe + µ− → νµ + e− (33)

There is a sense in which thēνe in (32) is related to aνe traveling backward in time. That is to say
that aν̄e in the final state is related to aνe in the initial state. If we made this change in (32), we
would get just the inverse of the process (33). In some sense, this is why antiparticles must exist
for every type of particle. This is actually related to a discrete symmetry called CPT which stands
for

Charge Conjugation-Parity-Time reversal

which might be an exact symmetry of the world.
At any rate, we can ask the usual sort of questions about this. Here is a modest list. Suppose

that theµ decays while it is at rest.

1. What is the minimum possible energy of the electron?

2. What is the maximum possible energy of the electron?

3. What is the minimum possible energy of one of the neutrinos? I really mean neutrino or
antineutrino here, but it takes too long to say that each time, and they are both nearly massless
anyway, so I won’t bother.

4. What is the maximum possible energy of one of the neutrinos?

5. Consider the total energy and momentum of the two neutrinos as a 4-vector. What is the
maximum possible value of the invariant product of this 4-vector with itself,E2 − ~p 2? Or
equivalently, what is the maximum “mass” of the two neutrino system?

6. What is the minimum “mass” of the two neutrino system?

The idea of all these can be found by thinking about the analysis we just did for the mass of a
system of particles. Let’s take them one at a time.
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1. What is the minimum possible energy of the electron?The smallest energy the electron
could possibly have isme, which it would have if it were at rest. Is this possible? Sure! We
can conserve energy and momentum if all the rest of the energy goes into two back-to-back
neutrinos, so the 4-momenta would look like

µ = (mµ, 0) e = (me, 0) νµ = (E, Ev̂) ν̄e = (E,−Ev̂) (34)

Conservation of energy and momentum works ifE = (mµ −me)/2.

2. What is the maximum possible energy of the electron?To get the maximum possible
energy for the electron, what we want is that the effective mass of the rest of the stuff in
the decay, the two neutrinos, should be as small as possible. But if the two neutrinos have
parallel momenta, the mass of the two-neutrino system is zero. That is the best we can do.
The process then looks like

µ = (mµ, 0) e = (E, pv̂) νµ = (xp,−xpv̂) ν̄e = (yp,−ypv̂) (35)

wherex + y = 1. We can calculateE easily as we have done in other problems if we note
thatµ− e has mass 0, so that

m2
µ − 2mµE + m2

e = 0 ⇒ E =
m2

µ + m2
e

2mµ

(36)

3. What is the minimum possible energy of one of the neutrinos?Either of the neutrinos
can have arbitrarily small energy and momentum. There is enough freedom to satisfy energy
and momentum conservation with the other two carrying the load.

4. What is the maximum possible energy of one of the neutrinos?This is actually related
to the previous question. The maximum neutrino energy arises when the neutrino recoils
against the minimum possible mass, which is the electron mass, with the other neutrino
carrying negligible energy and momentum:

µ = (mµ, 0) e = (E, pv̂) νµ = (p,−pv̂) ν̄e = (≈ 0,≈ 0) (37)

Now the mass of the 4-vectorµ− νµ is µe, so

m2
µ − 2mµp = m2

e ⇒ p =
m2

µ −m2
e

2mµ

(38)

5. What is the maximum “mass” of the two neutrino system?We have really done this one
already. The two-neutrino system has its maximum mass when it and the electron are both
at rest, and the mass of the two-neutrino system ismµ −me.

6. What is the minimum “mass” of the two neutrino system? We’ve done this one also. If
the two neutrino momenta are parallel, the mass is zero
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Colliders

Last time, we looked at the process
J/ψ → e− + e+ (39)

wheree− is an electron,e+ is a positron, the antiparticle of the electron, andJ/ψ is a particle that
has two names for historical reasons. It was discovered allegedly independently at Brookhaven
and at SLAC. Anyway, it has a mass ofmJ/ψ ≈ 3097 MeV.

e− + e+ → J/ψ (40)

Now suppose that we let positrons with energyE collide with electrons at rest to produceJ/ψs.
What energy is required? The 4-vectors are as follows:

e− = (me, 0) e+ = (E, ~p ) J/ψ = (E ′, ~p ′) (41)

Now we can use energy-momentum conservation

e− + e+ = J/ψ (42)

Taking the invariant product of each side with itself gives

m2
e + 2meE + m2

e = m2
J/ψ (43)

so that

E =
m2

J/ψ − 2m2
e

2me

≈ 9385 GeV (44)

This is a huge energy scale, beyond what is presently available at accelerators. The problem is that
the electron is very light. A collision between a very high energy electron and an electron at rest
is a bit like a nonrelativistic collision between a moving truck and a feather. Very little energy is
actually transfered in such a collision.

However, it is much easier to produce theJ/ψ in a collider, in which an electron and positron
collide with equal and opposite velocities and momenta. In this case, the 4-vectors look like

e− = (E, ~p ) e+ = (E,−~p ) J/ψ = (mJ/ψ, 0) (45)

Here, energy-momentum conservation implies

E = mJ/ψ/2 ≈ 1.55 GeV (46)

Colliding beams, in this case, make a huge difference. The difference is that in the collision with
a particle at rest, much of the energy of the incoming particle is wasted producing kinetic energy
of the collision products. This effect exists in Newtonian physics also, but it is much worse at high
energies where relativistic physics takes over. Note that the problem is particularly bad for the
electron, because it is the lightest particle with electric charge. As (44) shows, the energy required
to produce a heavy particle of massM in a fixed target collision between particles of massm, much
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less thanM is inversely proportional tom, so the lightness of the electron is a terrible problem.
But if you want to have the capability to produce the heaviest possible things, colliding beams are
essential no matter what you are colliding.

Why is this interesting? What are these heavy particles that particle physicists make, and why
would you want to make them? The first thing to say is that we don’t need heavy particles to
make heavy things. The things in the universe that are much heavier than protons and neutrons
and electrons - from molecules to galaxies - are made by putting many copies of these light things
together. This can be done in a practically infinite number of way and produces lots of interesting
physics. But the heavy particles of particle physics are very different. They are not just light things
put together in interesting ways. And there are only a very few of them, with completely well
defined masses and properties. To make one of these particles with massM , we must not only
have enough energy,M , in the zero momentum frame, but we must also concentrate that energy
in a tiny region of space and time, of size1/M (in particle physics units). They are genuinely new
indivisable degrees of freedom that appear only when look at the world at large energies and small
distances. They are not useful, unless you want to know how the world works.
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lecture 14

Topics:
Where are we now?
Causality and rigid bodies
Forces
Relativistic strings
Color force
A relativistic oscillator
The moving oscillator

Where are we now?

So far we have been discussing mostly the kinematics of special relativity. This week we will
talk a bit about dynamics. I will talk about forces and the work-energy theorem in relativity in
general. Then I will introduce the rather bizarre idea of relativistic strings. I have several reasons
for wanting to do this. The first is that relativistic strings will allow us to do a completely honest
analysis of a relativity “paradox” similar to some you have read about in David Morin’s notes. I
have avoided these until now. Most of them seem more paradoxical than they really are because
we are used to thinking of large objects as rigid. This makes no sense in relativity, and we will start
today by reviewing that argument. But with relativistic strings, we will be able to build objects
that get large, but can still be analyzed in a way completely consistent with special relativity. The
second reason for discussing relativistic strings is that they are an incredibly hot topic in theoretical
physics and mathematics these days. Needless to say, we won’t get very far along this path. But
I thought that you might enjoy seeing just a tiny bit of it. Believe it or not, the third reason for
introducing relativistic strings is that if you let youself go and really imagine that this stuff exists,
it will actually help you think about forces in relativity. In particular you can use it as a mnemonic
to help you remember how to Lorentz transform force.

Causality and rigid bodies

Some of our intuition about the way things work depends on the rigidity of solids. This leads to
some of the paradoxes in relativity, because the notion of a rigid body makes absolutely no sense
in relativity. This is a fun issue because it is related to the philosophical issue of causality — cause
and effect — and is closely tied to the fact that information cannot travel faster than light.1 The
point is this. Two events that are separated by a space-like interval cannot have any effect on one
another if we accept the principal that effects must come after their causes. For any two space-like
separated events, there exist frames of reference in which either event comes first. We have already
seen that given two space-like separated events, there exists a frame in which the two events occur
at the same time. From this frame, we can look at frames which are moving in the direction of the

1We will return to this important principle several time in various contexts.
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space separation between the two events. Then in a frame moving towards one event, that event
must come first. You can see this directly from the Lorentz transform — it is related to the minus
sign in (for a separation in the z direction)

∆t′ =
1√

1− v2
(∆t− v ∆z) (1)

Or we can see it qualitatively from the classic argument for relativity of simultanaeity in which we
send light pulses from the center to the two events.

Now the problem with the idea of a rigid body is this. If you push on one end of a rigid body, the
whole body starts to accelerate. This is impossible, because the two events that mark the beginning
of acceleration at the two ends of the rigid body are separated by a space-like interval. In some
frames, the beginning of acceleration of the far end of the rigid body comes before the beginning
of acceleration where you push. So your push cannot cause the acceleration at the far end. And
these are physical events. Both the push that causes the acceleration and the acceleration at the
other end involve non-zero forces that are not just artifacts of a particular inertial frame. Thus rigid
bodies are impossible unless effects can happen before their causes — which is not a good idea.

This is closely related to the fact that information cannot travel faster than light. We have just
argued that an effect and its cause cannot be separated by a space-like interval. They must therefore
be separated by light-like or time-like interval. If the interval is time-like, a massive particle can
travel at a velocity less than the speed of light from the spacetime coordinates of the effect (the
“effect event” if you like) and the spacetime coordinates of the cause (the “cause event”), because
these two events can be two ticks of the same clock. If the interval is light-like, light can travel
from the cause event to the effect event. But these are the only possibilities. If the information
travels from the cause event to the effect event at a speed greater than the speed of light, that means
that the distance L between the cause and the effect is greater than c times the time difference T

between the two events, which means that c2T 2 − L2 < 0 and the interval is spacelike. Thus the
far end of the body cannot possibly know that the body has been pushed any sooner than it takes
light to travel from the push to the other end. Otherwise there would be a frame in which the effect
happens before the cause.

What is really going on here is this. Even in non-relativistic mechanics, the idea of a rigid body
is an idealization. No real body is perfectly rigid. In fact, when you push on one end of a real
object, compression waves travel through the object to transmit the information to all the parts.
These waves travel at a characteristic speed (like “sound waves”) that depends on how heavy and
how stiff the body’s material is. The stiffness is like the spring constant of a spring, and the stiffer
the material, the faster the waves. But in non-relativistic physics, there is no reason why you
cannot imagine a material that is arbitrarily stiff, so that the speed of these waves goes to infinity
and in the limit, the body becomes truly rigid. In relativity, this is impossible, because these waves
carry information, and thus cannot travel faster than light.2 So the most accurate statement is that

2You will learn in Physics 15c, if you have not already, that it is really a bit complicated. What cannot be faster than
light is actually the group velocity, which is not necessarily the same as the velocity at which the wave crests move,
which is called the phase velocity. But it is the group velocity that describes how fast information can be transmitted,
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relativity makes it impossible to build arbitrarily stiff material. Even the forces that hold matter
together are built on the principle that information cannot travel faster than light.

The notion that information cannot travel faster than light will be very important when we talk
about the early universe, which I plan to do at the end of the course.

Forces

As we discussed when we talked about the Lagrangian for a massive relativistic particle, we can
add additional terms that describe forces, and then as usual, the force on the particle will be the
rate of change of the momentum. It is important to note that because the energy and momentum
in special relativity are derivable from a Lagrangian, we can use the same relation between force
on a particle, the particle’s momentum and the power transmitted to it by the force in relativistic
physics that we do in nonrelativistic physics,

~F =
d~p

dt
(2)

~v · ~F =
dE

dt
(3)

The first, (2), can be regarded as a definition of what we mean by force. It is just a rewriting of
the Euler-Lagrange equation. The second, (3), which says that the dot product of the force and
the velocity is the power supplied to the system, then follows from the definition of E. It is also
consistent with the fundamental relations between energy, momentum, velocity and mass,

E2 = p2 + m2 ~v = ~p/E (4)

We can see this consistency explicitly if we differentiate both sides of (4) with respect to t, to get

E
dE

dt
= ~p · d~p

dt
= ~p · ~F (5)

or
dE

dt
=

~p

E
· ~F = ~v · ~F (6)

This last can be rewritten by multiplying by dt as the relation between work done by the force and
the change in energy.

dE = d~r · ~F (7)

Again, this is not surprising. It had to work because the energy and momentum of the relativistic
particle are derivable from a Lagrangian.

Let’s discuss an example of all this. Suppose that a particle of mass m is subject to a constant
force F0 in the x direction. From (2) we can immediately conclude that

~p = x̂ F0 t (8)

which is what matters in this argument.
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Now suppose that we want to figure out the distance, x(t), the particle has traveled. We can do this
by using (4) and (7).

F0 x(t) =
∫ t

0
dt′

dE(t′)
dt′

= E(t)− E(0)

=
√

p2 + m2 −m =
√

F 2
0 t2 + m2 −m

(9)

Thus

x(t) =

√
F 2

0 t2 + m2 −m

F0

(10)

This kind of trick with the work-energy relation is often useful. Study it. On your own, as practice
with the Taylor expansion, you should verify that (10) reduces to the expected non-relativistic
result in the appropriate limit.

Relativistic strings

When you pull on an elastic material object, it stretches, and stores the energy you feed into it
in potential energy associated with the quantum mechanical electromagnetic interactions that hold
matter together. In relativistic physics, one can imagine a different scenario. Imagine stuff that
when you pull on it, creates more of itself. In this case, the energy is stored in the mass energy of
the new stuff that is created. This sounds absolutely crazy. But there are good reasons to believe
that this stuff really exists. It is called “relativistic string”. In particular, the glue that holds quarks
and antiquarks together seems to behave like a relativistic string. Let me discuss just a bit how this
goes.

The simplest state involving quarks is a state of one quark and one antiquark. In many ways,
this is like a bound state of an electron and its antiparticle, the positron, which is called positronium.
The force that holds quarks and antiquarks together not the same force that holds the electron and
the positron together in positronium. The force in positronium is just the Coulomb force that you
are familiar with between ordinary charged particles. The force between quark and antiquark is
much stronger and has other peculiar properties, as we will see. Nevertheless, both forces can
be described in terms of fields and “field lines”. Let me warm up by reminding you about our
discussion of field lines for the ordinary electric force.

Field lines begin at positive charges and end at negative charges, but otherwise are continuous.
The direction of the field lines at any point in space indicates the direction of the electric field
at that point. And the electric field is the force per unit charge on a charge placed at the point
in question. The density of the field lines indicates the magnitude of the electric field. So, for
example, a single positively charged particle at rest has field lines spreading out from the positive
charge in all directions, uniformly. The density of the fields lines drops off like 1/r2 because the
field lines at a distance r from the charge are spread out over a sphere of radius r. Thus the electric
field drops off like 1/r2, which in turn is the reason for the 1/r2 behavior of the Coulomb force.
Notice that this depends on being in 3 space dimensions. If I draw a two dimensional representation
of the field lines, it will give the general idea, but will be quantitatively wrong because the lines
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only spread out over the surface of a circle as they go out. Nevertheless, these two dimensional
pictures can help us to visualize what is happening with the field line, like so
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In positronium, it is the electric force associated with these field lines that holds the system
together. The electron and positron have opposite charges, so the force is attractive. When the
electron and the positron are pulled apart, the force decreases like 1/r2.

Color force

In the quark-antiquark system, the force is in some ways similar to the electric force — we call
it a “color” force. The term “color” is rather whimsical, having nothing to do with real colors.3

Very close to the quark and antiquark, there is a color field that spreads out from the charges like
the electric field from a positron or electron. But for reasons that are complicated and only partly
understood, at distances far from the quark and antiquark, the color electric field lines organize
themselves into a tube, as shown below:
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.........................................................................................................................................................................................................
(12)

This tube behaves approximately like a relativistic string (the difference is just the end effects
near the quark and antiquark, and we will always ignore these). When I pull the quarks farther
apart, the tube just gets longer. The energy is stored in the color electric field of the string, but that
just gives some fixed energy per unit length because the tube looks the same everywhere except at
its ends, as illustrated below:
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......................................................................................................................................................................................................................................................................................................................................

............................................................................... ................................................................. ..............x

(13)

The extra energy in the stretched string is xT where T is the energy per unit length of the string.
Because the energy of the string increases linearly with length, that means that the string exerts a

3It is actually based on an analogy with the way the primary colors can be combined to produce “colorless” white
light, but this won’t be important for what I am going to tell you.
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constant force T at its ends. Thus the energy per unit length of the string in its rest frame, T , is
called the “string tension”.

Relativistic strings are extremely complicated if you think about how they bend and oscillate.
But it is not too hard to understand how they move if they are stretched in a single dimension,
and if they have particles (like the quarks) stuck to their ends. This is the only thing we will do
in this course. In this case, we can just apply what we know about force and rate of change of
momentum to understand what is going on. The situation is easiest to understand if the particles
are only moving in the dimension in which the string is stretched, so the string has no transverse
motion. The system then looks like this (let’s assume that everything is in the x direction and from
here on, we will forget about any width to the string and just draw it as a fat line):

••
(E1, p1)(E2, p2)

x1x2

v1 = p1/E1v2 = p2/E2

(14)

where the momenta and velocities all refer only to the x component. Note that each of the particles
may be moving in either the plus or minus x direction.

Relativistic strings have an absolutely bizarre property. You cannot tell whether they are mov-
ing in the direction in which they are stretched. That is because they are completely featureless.
There is nothing to show you that they are moving. You may be able to see this for the string
we discussed above made out of a tube of field lines. If the system is moving, the field lines are
contracted, but as long as there is no transverse motion, the lines don’t get closer together, and
therefore the density doesn’t change. But it is the density that determines the strength of the field,
so that means that the field doesn’t change and the energy per unit length is the same.

So in (14), you need not think of the string as moving where it is attached to the particles at
the ends. Rather, you can just as well think of the string as just sitting there and getting created or
eaten up as the particles move. It doesn’t matter which picture you use. These two very different
sounding picture are actually physically equivalent!

Because the string is being created and eaten up as the particles move, there is a force on each
of the particles equal to the string tension, T , which is the mass per unit length of the string. Thus

dp1

dt
= −T

dp2

dt
= T (15)

where the signs work this way because the string is always trying to contract into nothingness to
reduce its energy, and

dE1

dt
= −T v1

dE2

dt
= T v2 (16)

or equivalently
dE1

dx1

= −T
dE2

dx2

= T (17)

Note that the total momentum is conserved, and the total energy is conserved if the energy stored
in the string is properly included. The energy change in (17) just comes from the string that is
eaten up or created.
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A relativistic oscillator

I will now give you what I find a very amusing puzzle. Imagine that I have piece of relativistic
string with string tension T stretched along the x axis, and that stuck to the two ends, there are
massless particles, a quark, q, and an antiquark, q̄, which also move along the x axis. If the total
momentum of the quark and antiquark is zero, this is a relativistic oscillator. Suppose that at time
t = 0 (in the lab frame), the quark and antiquark are both at x = 0, with the quark moving in the
+x direction with momentum κ and the antiquark moving in the −x direction with momentum
−κ. The corresponding energies are both κ, because these are massless particles. At this point,
there is no string, because both particles are at the origin, so the total energy and momentum of
this system is

(κ, κx̂) + (κ,−κx̂) = (2κ, 0) (18)

Now as the two particles fly outward at the speed of light, they leave string in their wake. As
they move they lose energy T per unit length because the string does work on the particles. The
magnitude of the momentum is always equal to the energy because the particles travel at the speed
of light. Thus the particles travel at the speed of light in the same direction until at t = κ/T , having
traveled a distance κ/T , they have lost all their energy and momentum, and they turn around and
start back in towards the origin at the speed of light. At the turn-around point, all their energy
is stored in the string, and the quark and antiquark carry negligible energy and momentum. At
t = 2κ/T , the two particles are back at the origin with the quark now moving in the −x direction
and the antiquark in the +x direction. We assume that they can pass right through each other
and continue on until at t = 3κ/T , they turn around again. At t = 4κ/T , the particles are back
where they started at, at x = 0, and the whole process repeats. Thus this is an oscillator with
period 4κ/T . This is summarized in the table below, where we describe these things in terms of
the relevant space-time events

events q q̄

together at t = 0, x = 0 (0, 0) (0, 0)

turn around
(

κ
T
, κ

T

) (
κ
T
,− κ

T

)

at x = 0 backwards
(
2 κ

T
, 0

) (
2 κ

T
, 0

)

turn around again
(
3 κ

T
,− κ

T

) (
3 κ

T
, κ

T

)

back at 0
(
4 κ

T
, 0

) (
4 κ

T
, 0

)

(19)

This object is animated in STRINGY.

The moving oscillator

This is a wonderful system to think about, because even though it gets big, we can understand
exactly how it looks in different frames, because we understand all the forces that hold the system
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together. But here is the puzzle. How can this thing possibly move? Massless particles always
travel at the speed of light in ANY frame. When we go to another frame, for example one moving
with velocity v in the +x direction, in which we are moving towards the oscillator, we should see
it moving with velocity −v. But at t = 0, the two quarks are both moving out from the origin at
the speed of light, in both frames, so the oscillator appears to be standing still! There is more string
growing on both sides - but symmetrically, so that the center of mass remains fixed at the origin.
What is going on?????

As with many relativity puzzles, the resolution lies in the relativity of simultaneity. Let us
see how this works by explicitly doing the Lorentz transformations of the events in (19) to a
frame moving with velocity v in the +x direction. The first thing you notice is that (19) is a
little misleading, because some of the rows refer to single events, when the quark and antiquark
are in the same place at the origin, but others actually refer to two events, when the quark and
antiquark turn around on opposite sides of the system. With this confusion corrected, the result
looks like this:

lab frame moving frame

q q̄ q q̄

(0, 0) (0, 0) (0, 0) (0, 0)
(

κ
T
, κ

T

)
γ

(
(1− v) κ

T
,−(v − 1) κ

T

)

(
κ
T
,− κ

T

)
γ

(
(1 + v) κ

T
,−(v + 1) κ

T

)

(
2 κ

T
, 0

) (
2 κ

T
, 0

)
γ

(
2 κ

T
,−2v κ

T

)
γ

(
2 κ

T
,−2v κ

T

)

(
3 κ

T
, κ

T

)
γ

(
(3− v) κ

T
,−(3v − 1) κ

T

)

(
3 κ

T
,− κ

T

)
γ

(
(3 + v) κ

T
,−(3v + 1) κ

T

)

(
4 κ

T
, 0

) (
4 κ

T
, 0

)
γ

(
4 κ

T
,−4v κ

T

)
γ

(
4 κ

T
,−4v κ

T

)

(20)

Now we see explicitly the fact that the turnaround times for the quark and antiquark, which were
the same in the lab frame, are different in the moving frame because these events take place at
different points in space. The simplest way to understand how this actually enables the object to
move is to see it in the animation, STRINGY.

We can also understand what is happening in (20) by thinking about the forces involved. At
t = 0 in the moving frame, while there is no apparent motion of the system because the quark and
antiquark are moving at the speed of light in opposite directions, they do have different momenta.
The quark momentum is red-shifted, because it is moving away from observers in the moving
frame, to

κ

√
1− v

1 + v
= (1− v) γ κ (21)

The antiquark momentum is blue-shifted, because it is moving towards observers in the moving
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frame, to

κ

√
1 + v

1− v
= (1 + v) γ κ (22)

The forces on these two quarks in the moving frame are exactly the same as in the lab frame!
The reason, as we discussed earlier, is that the relativistic string is completely featureless. Looking
at a straight piece of relativistic string, if you cannot see the ends, you cannot tell whether it is
moving or not. Thus the force on the particles is ±T . If you don’t believe this argument, you can
verify that it is correct (much more laboriously) by understanding how to Lorentz transform forces.
The result is that the component in the direction of the Lorentz transformation is unchanged, while
the components transverse to the direction are reduced by a factor of 1/γ (we will see this more
explicitly later). The consequence of all this is that the quark in the moving frame loses all its
energy and turns around in a time (1−v)γκ/T , in agreement with (20), while the antiquark, which
began with more energy, doesn’t lose it all and turn around until (1 + v)γκ/T . In the intervening
time, while both quark and antiquark are moving the −x direction, the string continues to pull in
the +x direction on the antiquark and in the −x direction on the quark, so energy is continuously
transferred from the antiquark to the quark until the antiquark turns around. I like to call this
system a relativistic push-me-pull-you, for obvious reasons.

Note that the comment about the “center of mass” on page 8 was designed only to confuse you.
Center of mass has no significance in a relativistic system. What matters is center of energy. You
will explore this further on the problem set.
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lecture 15

Topics:
Rocket motion
Review of circular motion
Spinning relativistic string
Relativistic traffic

Rocket motion

The surprising thing (to me) about relativistic rocket motion is that there is a sense in which it
looks just the same as nonrelativistic rocket motion - at least in the rest frame of the rocket. Non-
relativistic rocket motion looks like this if the fuel is ejected at speedu:

.................
.................

.................
.................

.................
.................


.................

.................
.................

.................
.................

..........dm m t = 0

pr = 0

pf = 0

.................
.................

.................
.................

.................
.................


.................

.................
.................

.................
.................

..........dm m dv → t = dt

pr = mdv

pf = −dm u

← u

momentum conservation⇒
dp

dt
= m

dv

dt
=

dm

dt
u = Force (1)

Relativistic rocket motion looks like this:
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.................

.................
.................

.................
.................


.................

.................
.................

.................
.................

..........dm m t = 0

pr = 0

pf = 0

Er = m

Ef = dm

.................
.................

.................
.................

.................
.................


.................

.................
.................

.................
.................

..........(Ef , pf ) m dv → t = dt

Er = m
pr = mdv

pf = u dm
Ef = dm

NOT dmγu

← u

momentum conservation⇒
dp

dt
= m

dv

dt
=

dm

dt
u = Force (2)

There are two compensating differences. Mass is no longer conserved in the relativistic situa-
tion, so it is not correct to say that the decrease in mass of the rocket is equal to the mass of the
fuel ejected. But itis correct to use energy conservation and say that the decrease in energy of
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the rocket (which in the rest frame is just the decrease in mass) is equal to the energy of the fuel
ejected. But then the momentum of the fuel ejected is notu times the mass, but ratheru times the
energy, which is the same as we got in the nonrelativistic case.

There are lots of differences that emerge as the velocity of the rocket becomes large, but these
are entirely the result of time dilation and the different relation in relativity between the momentum
p of the rocket and its speed,v.

Review of circular motion

You have all learned in previous physics courses about uniform circular motion. I thought that it
would be useful to review this before going on to discuss rotations in more generality. So let us
consider an object that is moving in a circle of radiusR centered at the origin with a constant speed,
v. This is motion in a single plane (because every circle lies in some plane), so it is convenient to
choose our coordinate system so that the motion is in thex-y plane withz = 0. We can also choose
to have the motion in the counterclockwise direction as seen from above (by choosing which is the
positivez direction). Then the motion of our particle can be written as

x(t) = R cos(ωt + φ) y(t) = R sin(ωt + φ) z(t) = 0 (3)

whereω is the angular velocity in radians per unit time. This defines the position vector of the
particle,~r (t), in the usual way:

~r (t) = x(t) x̂ + y(t) ŷ + z(t) ẑ = x̂ R cos(ωt + φ) + ŷ R sin(ωt + φ) (4)

This should be familiar. We saw it earlier in the course in another context when we were discussing
the connection between uniform circular motion and complex exponential. This motion in thex-y
plane is precisely the same as the motion of the complex exponential

R eiωt (5)

in the complex plane.
The velocity of the particle is the derivative

~v (t) = ~̇r (t) = −x̂ Rω sin(ωt + φ) + ŷ Rω cos(ωt + φ) (6)

Note that becausesin2 θ + cos2 θ = 1, the length of~v (t) is Rω, so sure enough, the speed of the
particle is constant,

v = |~v (t)| = Rω , (7)

even though the velocity vector is constantly changing.

2



The relation between (3) and (6) is illustrated below at timet (for ω > 0):
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~r (t)~v (t)

ωt + φ
(8)

Note that~v (t) is always perpendicular to~r (t) and still in thex-y plane (you can see this from the
diagram, but you can also see it by explicitly computing the dot product,~r (t) · ~v (t) and showing
that it is zero for allt).1

We can compute the acceleration of the particle by differentiating (6).

~a (t) = ~̇v (t) = −x̂ Rω2 cos(ωt + φ)− ŷ Rω2 sin(ωt + φ) = −ω2 ~r (t) . (9)

The accleration in (9) is always directed to the center of the circle and the magnitude of the accel-
eration isω2R, or, using (7), this gives the (I hope familiar) formula

a = |~a (t)| = ω2R =
v2

R
(10)

1In fact, ~r (t) · ~v (t) = 0 for any motion on a circle, centered at the origin, whether it is uniform or not. You can
see this by differentiating~r (t) · ~r (t) = R2.
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Here is (8) again with the acceleration shown this time.
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~r (t)~v (t)

~a (t)

ωt + φ
(11)

The moral of this is much more general than it appears. Note that for uniform circular motion, as
we go from~r to ~v = ~̇r to ~a = ~̇v = ~̈r, each time we turn the vector counterclockwise by90◦ and
multiply by ω. We have thought about this in the context of a position vector. But any other vector
(as we have already seen with~v ) that undergoes uniform circular motion behaves the same way.
We can get the time derivative by turning counterclockwise by90◦ and multiplying byω. This is
telling us something very deep and important not just uniform circular motion, but about rotations
and motion in general. We will begin to explore it in more generality in the next lecture.

Here is a simple application that is related to something that we know in various other ways.
Suppose that we have a force of the form

~F (r) = −α rβ r̂ (12)

directed toward the origin with magnituderβ. For what value ofβ do the circular orbits of a mass
subject to this force have the same angular frequency independent ofr? We want

~F (r) = −α rβ r̂ = m~a = −mω2 r r̂ (13)

so
ω2 =

α

m
rβ−1 (14)

and if β = 1 the angular frequency is independent ofr. This is just a harmonic oscillator in more
than one dimension.

Spinning relativistic string

Next time, we are going to start talking more seriously about the concept of angular momentum.
We will find that it arises from the general principle of rotation invariance, and as such applies just
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as well to relativistic systems as in nonrelativistic mechanics. Indeed, one of the ways we know
that relativistic string exists is by studying systems of quarks and antiquark that carry angular
momentum. Let us study such a system. Consider a system of a massless quark and antiquark
connected by relativistic string with tensionT in its rest frame. Let us determine the conditions
under which this system can rotate with the string straight and the quark and antiquark moving in
a circle of radius̀ as illustrated below:
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v = 1

••

The first thing to note is that the quark and antiquark must move at the speed of light because
they are massless, by assumption. This has three immediate consequences. One is that the angular
velocity of the system is (n relativistic units)

ω =
1

`
(16)

The second is that the quark and antiquark can carry only negligible momentum. This is be-
cause the force from the string at the end is Lorentz transformed to zero. You saw in Morin’s
book that the force from a string moving in the transverse direction with velocityv is reduced to
T
√

1− v2. This effect is simply time dilation. The transverse components of momentum do not
change under a Lorentz transformation. Because we see moving clocks tick slowly by a factor of
1/γ, we also see the rate of change of transverse momentum reduced by a factor of1/γ. In this
case, where the quark and antiquark at the end are massless and move at the speed of light,1/γ = 0

and thus the rate of change of the momentum of the quark and antiquark must vanish. But the rate

5



of change of momentum of a particle with momentum of magnitudep in uniform circular motion
is pω. Becauseω 6= 0, we must havep = 0. Thus all the momentum and angular momentum in
this system is carried by the string.

The third consequence is that at a point on the string a distancer from the center is moving
with velocity r/`, as shown in (15).

Next, let us check that the system can hold itself together. The force from the string at some
radiusr0 must be right to produce the appropriate rate of change of momentum, which is the change
of momentum associated with the uniform circular motion of the part of the string forr > r0. To
see that this works, let’s calculate the momentum carried by the portion of the string forr > r0.
The contribution from an infinitesimal bit of string betweenr andr + dr is

dm√
1− v2

v =
T dr√

1− r2/`2

r

`
(17)

Then the momentum carried by the string forr > r0 is
∫ `

r0

T dr√
1− r2/`2

r

`
(18)

If we change variables toz = r/`, this becomes

T`
∫ 1

r0/`

z dz√
1− z2

= −T`
∫ 1

r0/`
dz

d

dz

√
1− z2 = T`

√
1− r2/`2 (19)

The rate of change of momentum is then

pω = p/` = T
√

1− r2
0/`

2 (20)

This is right, because it reproduces the string force atr0

Now that we know how this object moves and that it hangs together, we can ask what its energy
and angular momentum are (it is at rest, so the total 3-momentum is zero). The energy from a small
bit of string is just like (17) but without the factor ofr/` at the end. The total energy is then

∫ `

−`
dr

T dr√
1− r2/`2

= T`
∫ 1

−1

dz√
1− z2

(21)

This should be a familiar integral — we can make the trigonometric substitution

z = sin θ dz = dθ cos θ (22)

to write it as

E = T`
∫ π/2

−π/2
dθ = πT` (23)

To compute the angular momentum, we need an additional factor ofrv = r2/` in the integrand
of (21): ∫ `

−`
dr

T r2 dr

`
√

1− r2/`2
= T`2

∫ 1

−1

z2 dz√
1− z2

(24)
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The same trigonometric substitution allows us to write this as

L = T`2
∫ π/2

−π/2
dθ sin2 θ =

1

2
πT`2 (25)

Now the point is that we can eliminate` from (23) and (25) and write this as a relation between the
energy and angular momentum

E2 = π2T 2`2 = 2πT L (26)

Sure enough, when we look at quark-antiquark bound states, we see families of particles with sim-
ilar properties in whichE2 grows linearly withL within each family.2 Here is some representative
data:

The data shows a slope of about

2πT ≈ 1 GeV2

h̄
(27)

From this we can extract an approximate value forT , which works out to about 15 tons! These
little particles are pulled by a rather strong force! That’s why quarks and antiquarks don’t get very
far apart!

2See for examplehttp://arxiv.org/abs/hep-ph/0103274.
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Relativistic traffic

Consider relativistic traffic on a Boston street. We will make the completely unrealistic assumption
that the traffic is flowing smoothly, with evenly spaced cars moving in opposite directions at speed
v as shown below.

v → v → v → v → v → v → v → v → v →

← v ← v ← v ← v ← v ← v ← v ← v ← v

(28)
You will notice that there is something else that is unrealistic about this picture. There are plentiful
parking spaces on the side of the road. This picture is animated in theMathematicaprogram
traffic.nb .

Now let us look at this picture from the inertial frame of a driver in the lower lane of traffic. In
the animation, you can change the inertial frame gradually. Try increasing the speed of the frame
gradually, until you to get to an inertial frame that is moving along with the lower cars. Of course,
as you increase the speed of the inertial frame, the parking spaces appear to move in the opposite
direction, and the cars in the other lane move by faster. But here, we also see a number of effects
of Lorentz contraction. The animation assumes that the initial speed of the cars is0.9c, so that
things are very relativistic and Lorentz contraction is a big effect (and likewise the cars moving
in the opposite direction don’t move much faster because they were already moving at close to
c in the original frame. I have done this to make the important effects show up better. In the
actual physical demo you will see, the effect is much smaller, but the qualitative message is the
same. Notice that as the lower cars slow down in the moving frame, they also appear longer. This
is because they appeared Lorentz contracted in the initial frame, and going to the moving frame
undoes some of the effect. The parking spaces and the upper cars going in the opposite direction
are Lorentz contracted more and more as the speed of the frame increases. Finally, we get to the
frame in which the lower cars are at rest, which looks sort of like this:

v = 0 v = 0 v = 0 v = 0 v = 0 v = 0

←V ←V ←V ←V ←V ←V ←V ←V ←V ←V ←V ←V ←V ←V ←V ←V

(29)
There are several things to notice about this. One is you see all the other cars in your lane farther
apart than they were in the frame of the road, and they don’t seem to fit into the parking spaces
anymore. This is just Lorentz contraction. This is the same thing that is going on the problem of
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the relativistic chocolate chip cookies in David Morin’s book. There you remember that the cookie
dough was moving at relativistic speed on a conveyor belt and a circular cookie press was stamping
out cookies - but the because the dough is Lorentz contracted, the cookies come out elongated.
The cars going in the other direction are Lorentz contracted even more, and look shorter and closer
together.

Something may be bothering you about this. How can the density of parking spaces change
relative to the density of the cars? Where do those extra parking spaces come from? If we can
harness this, we will be rich beyond the dreams of avarice. In fact, we can’t make any money on
it, because these extra parking spaces are coming in from the past and the future. This is possible
everywhere if we have an infinite line of them stretching out in both directions, but it is always
possible in some finite region of the roadway. The density in the rest frame is not the same as the
density in a moving frame because of the relativity of simultaneity (which is the culprit in most
such puzzles). But again, the effect is even larger for the cars going in the opposite direction.
Because they are moving faster, they are even more Lorentz contracted than the parking spaces.

Of course, I don’t really have any relativistic cars available to test these theories. But there
is a very interesting analogy. Instead of two opposing lanes of traffic, consider current in a wire
flowing up and back from a battery.
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In this analogy, the negatively charged electrons are the cars and the rest of the electrical structure
of the wire form positively charged parking spaces. Of course the actual motion is more chaotic —
more like real Boston traffic. But the net current is as shown. The whole system looks electrically
neutral because there is one car for each parking space. Now the question is, what forces do the
components of one of the wires feel do to the moving electrons in the other. We expect from the lab
frame where everything is neutral that there is no force on the fixed positive matrix - the parking
spaces. And since there is no force in the lab frame, there is no force in any frame. But what force
do the electrons feel. Now it is not so obvious, because the electrons are moving in the lab frame.
So even though everything is neutral, there might still be a force that depends on velocity. Thus
it is simplest to think about it in the inertial frame moving along with the electrons in one of the
wires. In this frame, any force on the electrons proportional to velocity goes away, because they
are at rest. But in this frame, as the animation or (29) shows, the electrons in the lower wire see
far more negatively charge electrons in the upper wire than they see positively charged parking
spaces for the electrons. Thus they experience a repulsive force. In the original frame, there is no
Coulomb force because everything is neutral. In this frame, the repulsive force is still there, but it
is interpreted as magnetism. When I connect the battery and get my two lanes of traffic moving,
there should be a repulsive force between them.

Thus as you will see in more detail in Physics 15b, magnetism is a relativistic effect. When
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you feel the mysterious force between two magnets, that I am sure has fascinated all of you at one
time or another, you are feeling in your bones the effect of special relativity.

10



lecture 16

Topics:
Where are we now?
Cross products - introduction
More general motion about an axis
Small rotations
The reference point
Rigid bodies rotating about a fixed axis
The three dumbbells
Appendix - cross products - details

Where are we now?

Now we are going to change gears and talk about angular momentum. We will see that conservation
of angular momentum is associated with the invariance of the laws of physics under rotations. In
that sense, the subject of angular momentum is not so different from relativity. Both are related to
symmetries of the laws of physics.

Cross products - introduction

Last time, we reviewed uniform circular motion. To get a deeper understanding of circular motion
in three dimensions, and to ready ourselves to study the more general problem of rigid body ro-
tations, we will reformulate the discussion of uniform circular motion in terms of cross products.
The advantage of this reformulation is that it makes the vector structure of the rotations more ex-
plicit. This is what we will need to take the next steps. Cross products are going to be particularly
convenient as we talk about rotations and angular momentum.
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~r (t)~v (t)

ωt + φ
(1)
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Look at (1), from last time. As we go from the position,~r , to the velocity,~v, to the acceleration,
~a, each time I just rotate the vector by90◦ and change the length by a factor. We can rewrite this
in a very useful way using cross products. The cross product can be defined by
[
~A× ~B

]
x

= AyBz −AzBy ,
[
~A× ~B

]
y

= AzBx−AxBz ,
[
~A× ~B

]
z

= AxBy −AyBx . (2)

This looks complicated (I hope that it will seem simpler after you have read the discussion in the
appendix). The key point is that the formula for the velocity can be written as

d

dt
~r (t) = ~̇r (t) = ω ẑ × ~r (t) (3)

because~r (t) satisfies
~r (t) · ẑ = 0 . (4)

Theẑ× produces the90◦ twist, and the factor ofω rescales the vector by a factor (necessary in this
case just to get the dimensions right).

You can see from the explicit definition in the appendix the following property:

If ~α is in thex-y plane, then̂z× ~α is also in the plane, it has the same magnitude as
~α, and its direction is that of~α rotated by90◦ counterclockwise about thez axis.

(5)

This is just the right-hand rule. If~α is not in thex-y plane (as you can see in more detail in the
appendix) then the cross product just throws away the component that is not in the plane and acts
in the usual way according to (5) of the component in the place.

The relation (3) is very general. Not only is the time derivative given by this cross product for
the position vector, but any vector undergoing uniform circular motion in thex-y plane behaves
the same way.

For any vector~u (t) undergoing uniform circular motion in thex-y plane, the time
derivative is given by the cross product

d

dt
~u (t) = ωẑ × ~u (t) .

(6)

In particular, this gives us another way of calculating the acceleration. The velocity vector is also
undergoing uniform circular motion. Thus

~a (t) = ω ẑ × ~v (t) = ω ẑ ×
(
ω ẑ × ~r (t)

)
= −ω2 ~r (t) (7)

Where the last step follows because each cross product withẑ just rotates~r by 90◦, so the two
cross products give a rotation by180◦, which is just a sign change.

One of the crucial things about describing uniform circular motion in this way with cross
products is that (3), (4) and (7) are vector equations. Thêz appears in (3), (4) and (7) because
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rotation in thex-y plane is rotation about thez axis. But because these are vector equations, we
can rotate them to an arbitrary coordinate system. Then we can describe uniform circular motion
in any plane through the origin, about an arbitrary axis through the origin. If the rotation is in some
other plane through the origin, say perpendicular to a unit vectorn̂ (it is then rotation about the
axis,n̂), then the rotated versions of (3), (4) and (7) are

~v (t) =
d

dt
~r (t) = ω n̂× ~r (t) , (8)

~r (t) · n̂ = 0 (9)

and

~a (t) =
d

dt
~v (t) = ω n̂×

(
ω n̂× ~r (t)

)
= −ω2 ~r (t) , (10)

where the last step follows because the cross product withn̂ on a vector perpendicular to it just
produces a rotation of90◦ in the plane perpendicular tôn. Remember that (8) works only for
motion that is circular! But still as we will see this is very powerful.

More general motion about an axis

Let’s go back to circular motion about thez axis and think briefly about what happens if the vector
r is not in thex-y plane. In this case, uniform circular motion about thez axis looks something
like this:

........

........

........

........

........

........

........

.....................

..............

.......................
.......................

.................................................

ẑ

~r
~v

..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
.................................. .................................................................................................................................. ............. ............. ............. ............. ............. ............. ............. ....

(11)

The velocity is in thex-y plane. What is going on is that the component of~r perpendicular tôz is
undergoing uniform circular motion in thex-y plane while nothing is happening to the component
of ~r in the ẑ direction. This is very elegantly encoded in the cross product formula, (3) if we just
drop the condition (4) that~r be perpendicular tôz and thus in thex-y plane. Thus

~v (t) = ω ẑ × ~r (t) (12)

is more general than we claimed above. Furthermore, there is really no reason to restrict ourselves
to uniform circular motion. If at some timet, the vector~r is instantaneously rotating about thez

axis with angular velocityω(t), the velocity is

d~r

dt
= ~v (t) = ω(t) ẑ × ~r (t) (13)
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Finally, again because (13) is a vector equation, we can describe instantaneous rotation about
an arbitrary axiŝn by just replacinĝz → n̂:

..........
..........

..........
..........

..........
..........

.................

..............

...............................................................................................

n̂

~r

~v

................
................
................
................
................
................
................
................
................
................
................
...................................... ..................................................................................................................... ............. ............. ............. ....

......... .....
........ ....

...........
...........
.............
....

(14)

Thus we can make the following very general and very important statement:

If at some timet, the vector~r is instantaneously rotating about then̂ axis through
the origin with angular velocityω(t), the velocity is

d~r

dt
= ~v (t) = ω(t) n̂× ~r (t)

(15)

This is a very general connection between a rotation and a cross product. Eventually, we will
discuss what happens if the rotation is about an axis that does not go through the origin - but this
is enough for now. We will use (15) very often so make sure that you understand it.

Small rotations

It will also be useful to rewrite (15) as an expression for the instantaneous change in a vector under
an infinitesimal rotation, which we can do by noting that

ω(t) =
dθ

dt
(16)

so that multiplying both sides of (15) by dt givesd~r, the infinitesimal change in the vector~r under
an infinitesimal rotationdθ,

d~r = dθ n̂× ~r (17)

One reason for thinking about infinitesimal rotations is that we know that infinitesimal symme-
try transformations lead to conserved quantities by Noether’s theorem. For infinitesimal rotations,
the corresponding conserved quantity is a component of the angular momentum.

For a 3-dimensional system described by some number of 3-vector coordinates~rj, the con-
served quantity associated with invariance under rotations about an axisn̂ is

~L · n̂ (18)

where
~L =

∑

j

~rj × ~pj (19)
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where~pj is the momentum of thejth particle,

~pj =
∂L
∂~̇rj

(20)

If the Lagrangian is invariant under all rotations, all components, and therefore the entire vector,~L

is conserved —~L is the angular momentum — this is angular momentum conservation.
What I think is worth understanding about this is the way that the appearance of the cross

product in rotations leads to the appearance of the cross product in the expression for the angular
momentum. This may have seemed mysterious to you, even as you followed the derivations in
previous physics courses showing that angular momentum is conserved under certain situations.
What is really going on is conservation of angular momentum appears naturally from Noether’s
theorem in a Lagrangion that is invariant under rotations. The mysterious cross product comes
simply from the mathematical description of infinitesimal rotations in 3-dimensional space.

The reference point

So far we have found the velocity of a vector rotating around an axis that goes through the origin
of the coordinate system. We used this to find the change in a vector due to a small rotation around
an axis through the origin and from this we derived the form of the conserved angular momentum
that follows from invariance under such a rotation. I now want to remove the restriction that the
axis goes through the origin, so that we know what happens for a totally arbitrary rotation. This is
not difficult. If the axis goes through some arbitrary point~R and the axis points in the direction̂n,
the velocity of the point~rj is given by

ω n̂× (~rj − ~R ) (21)

This must be right, because subtracting~R from every vector in the original coordinate system does
not affect the velocities (because~R is fixed) and takes us to a coordinate system in which~R is the
origin, in which (21) is equivalent the result we derived above. Notice that becausen̂× n̂ = 0, we
can add to~R any multiple ofn̂ without affecting (21):

ω n̂× (~rj − ~R ) = ω n̂× (~rj − ~R− αn̂ ) (22)

Following the same argument that we gave above, we see that if a LagrangianL(~r, ~̇r ) is invari-
ant under rotations about an axis through the point~R in the n̂ direction, then Noether’s theorem
implies that there is a conserved quantity of the form

n̂ · ~L~R = n̂ ·
(
(~r − ~R )× ~p

)
(23)

and ifL depends on several vectors, the conserved quantity is

n̂ · ~L~R = n̂ ·∑
j

(~rj − ~R )× ~pj (24)
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If the Lagrangian is invariant not just under rotations about the axisn̂ through ~R, but under
rotation aboutany axis through~R, then the entire angular momentum vector is conserved,

~L~R = (~r − ~R )× ~p (25)

and ifL depends on several vectors, the conserved quantity is

~L~R =
∑

j

(~rj − ~R )× ~pj (26)

In this case, the point~R is called the “reference point” and we talk about~L~R as “the angular
momentum about the point~R.” In this case, there is no ambigiuty in~R (that is there is no analog
of (22)). In (26) (and more trivially in (25)), you see that the~L~R is independent of~R if the total
momentum vanishes.

Rigid bodies rotating about a fixed axis

Now that we know from our study of relativity that rigid bodies don’t exist, we are going to study
them in detail. Of course, this is not quite as stupid as it sounds. What we mean by a hypothetical
rigid body is one in which the shape is completely fixed. Mathematically, we can describe this
by saying all the lengths of vectors between different parts of the system are fixed by the internal
dynamics of the system. We know that this can only be an approximation. Whatever the internal
dynamics is that keeps the system rigid, it will always be possible to deform the system slightly.
But it can be a very good approximation if we are concerned only with relatively slow motions of
the whole system. What we really mean when we say that a body is rigid is that all the modes that
correspond to deformations of the system have very large frequencies, and/or very large damping,
so that we can ignore them.

The most general continuous motions that preserve the shape of a rigid body are combinations
of translations and rotations. This crucial fact is proved in David Morin’s book, but I hope that it is
obvious to you. In fact, we can always describe the position of a rigid body by giving the position
of any convenient point on the body, and specifying the rotation required to get to its orientation
from some standard orientation. For bodies that rotate only about a single axis, the situation is
simpler, because we can specify the rotation by just giving the angleθ of the system from some
fixed position. Thus a rigid body rotating about a fixed axis is a system of one degree of freedom.

Suppose that the fixed axis is in then̂ direction, and that the axis goes through the origin of
our coordinate system. Then when the body rotates, every part of the rigid body executes circular
motion about some point on the axis, and every part moves with the same angular velocity. The
radius of the circular motion is the distance from the axis. This is illustrated below for a square
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(27)

The kinetic energy of such a rigid body is given by the sum of1
2
mv2 for each of the parts of

the system.1 We are going to compute the kinetic energy in terms of the angular velocity,θ̇, and
discuss it. I will do this for an arbitrary axiŝn, because I want you to get used to dealing with
arbitrary axes. But because I also want you to understand what I am talking about, I will repeat
some of the steps for the special case of rotations about thez axis — that iŝn = ẑ.

Suppose that the system is made up of point masses with positions at some timet given by the
vectors~rj = (xj, yj, zj), and that the angular velocity of the system aboutn̂ at timet is θ̇. Then
the velocity of the point with position~rj is

θ̇ n̂× ~rj (28)

It is perpendicular tôn and~rj because of the form of the cross product. Forn̂ = ẑ, this looks like

θ̇ ẑ × ~rj = θ̇ (−yj, xj, 0) (29)

— the velocity is in thex-y plane, perpendicular tôz.
Thus the kinetic energy for rotations about then̂ axis has the form

1

2

∑

j

mj θ̇ 2 |n̂× ~rj|2 =
1

2
I θ̇ 2 (30)

where
I ≡ ∑

j

mj |n̂× ~rj|2 (31)

For n̂ = ẑ, this looks like

I ≡ ∑

j

mj |ẑ × ~rj|2 =
∑

j

mj (x2
j + y2

j ) (32)

The quantityI in (30) and (31) is called the “moment of inertia” about the axisn̂. As you see,
it summarizes the behavior of the body under rotations about the axisn̂. The length

|n̂× ~rj| (33)

1If the system is continuous, we must replace the sum by an integral, but this doesn’t change anything important.
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(as you can see immediately forn̂ = ẑ) is just the perpendicular distance of thejth point mass
from the axisn̂. This remains constant as the body rotates, so we do not have to specify the time
dependence of this, andI is independent of time. It is a constant that just depends on the axis and
the masses in the rigid body and their positions.

The Lagrangian describing the motion of this system will involve the kinetic energy, (30). If
we differentiate this with respect tȯθ, we get the generalized momentum associated with the angle
θ that specifies the orientation of the rigid body. This is

L = I θ̇ (34)

For a rigid body rotating about thên axis, the “momentum”L in (34) is just the component of the
angular momentum about the axisn̂. Let’s prove this. In general, the angular momentum is

~L =
∑

j

~rj × ~pj =
∑

j

mj ~rj × ~̇rj =
∑

j

mj ~rj × θ̇ (n̂× ~rj) (35)

so the component in thên direction is

n̂ · ~L = n̂ ·∑
j

mj ~rj × θ̇ (n̂× ~rj) = θ̇
∑

j

mj n̂ · (~rj × (n̂× ~rj))

= θ̇
∑

j

mj (n̂× ~rj) · (n̂× ~rj) = θ̇
∑

j

mj |n̂× ~rj|2 = I θ̇
(36)

At the end of (36), we have used the cyclic property of the triple product (~a · (~b× ~c) = ~c · (~a×~b)

— an important fact that keeps coming up in the physics of rotations). The point is that if the
axis is fixed, it is only the component of angular momentum about the axis that matters. Whatever
is fixing the axis can provide torques that change the other components of angular momentum
anyway, so they are not very interesting. But the component in the direction of the fixed axis will
be conserved unless there is some physics that depends on the angleθ, or some other degree of
freedom that interacts with the rigid body.

Just to say this once more in a different way, if the rigid body is free to rotate about the fixed
axis n̂, then the Lagrangian is just (30) and (34) is the quantity that is conserved by virtue of
Noether’s theorem, or equivalently the fact that the Lagrangian is independent ofθ. It is clearly
related to the angular momentum, but it is not the angular momentum — just one component of
the angular momentum. We will see later that in general the other components are not conserved in
this kind of motion because the physics that is fixing the axis is supplying a torque. These relations
are very important. We will come back to them next week in a more general context.

The three dumbbells

A very simple system that shows some of the bewildering complexity of rotational motion is a
system of two equal massesm attached to one another by a string and free to rotate without friction
on a horizontal plane about their common center of mass. The configuration of this system for fixed
R just depends on the angle with angular velocityω = θ̇.
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If the distance between the objects is2R, so that both masses are a distanceR from the center
of mass, the angular momentum is perpendicular to the plane of the rotation and equal to

L = ẑ · ~L = ẑ ·
(
~r × ~p

)
= 2mR2ω (37)

so in this case the moment of inertia is
I = 2mR2 (38)

Now suppose the distance between the masses is variable -R(t) - where thet dependence is
imposed by pulling in or letting out the string. It is probably obvious that angular momentum is
conserved in this case, but let’s be pedantic about it and think about the Lagrangian. It is just the
kinetic energy

L = mR(t)2θ̇2 + mṘ(t)2 =
1

2
I θ̇2 + mṘ(t)2 (39)

Sure enough, the Lagrangian does not depend onθ, so the momentum associated withθ is con-
served - and this is justL

L =
∂L
∂θ̇

= 2mR(t)2θ̇ = 2mR(t)2ω (40)

So if, for example,R(t) is decreasing,ω must be increasing to keep the angular momentum con-
stant.

This is very familiar. This is the way an ice-skater gets spinning very fast. But it is easy to get
confused. When you pull on the rope, you are pulling perpendicular to the direction of motion of
the masses. How is it that this speeds up the masses? In this simple case, it is easy to see how
everything works. While the rope is being pulled in, there is a component of the motion of the
mass in the direction of the centripetal force, and thus the centripetal force feeds energy into the
kinetic energy of the masses, increasing their speed. But still this simple example is a taste of some
of the bizarre behavior of angular momentum in three dimensions. We will see a lot more of it in
the next few weeks.

A simple way to implement this system is to hold a weight in each hand and stand on a fric-
tionless turntable.

Appendix 1 - cross products - details

The cross product is essentially just an antisymmetric combination of two vectors. This anti-
symmetric combination of two vectors in interesting because it defines a plane, and planes are
intimately connected with rotations. The particularly convenient thing about this combination in
three dimensional space is that it behaves like another vector. The cross product is the mathe-
matical statement of the fact the antisymmetric combination of two vectors in three dimensional
space defines a plane which in turn defines another vector. The geometrical definition of the cross
product is a good way to see that it behaves like a vector under rotations, so we will start with that.
Then I will indicate how we can show that this geometrical definition is equivalent to a definition
given in terms of components.
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The geometrical definition is this:

Given two vectors, ~A and ~B, the object ~A × ~B is a vector with magnitude∣∣∣ ~A
∣∣∣
∣∣∣ ~B

∣∣∣ sin θ whereθ is the angle between~A and ~B defined as a positive angle

between 0 andπ. The direction of~A× ~B is perpendicular to the plane formed by~A
and ~B with the sign determined by the right-hand rule.

(41)

With this definition, it is easy to understand why~A× ~B behaves like a vector under rotations. The
magnitude doesn’t change under a rotation because

∣∣∣ ~A
∣∣∣,

∣∣∣ ~B
∣∣∣ andsin θ are all unchanged. And the

direction rotates properly because it is tied to the directions of~A and ~B.
It is crucial that the cross product~A× ~B is antisymmetric in the two vectors~A and ~B,

~A× ~B = − ~B × ~A (42)

In the geometrical definition, this follows from the application of the right hand rule. If you
interchange~A and ~B, the cross product changes direction because the right hand rule goes from
~B to ~A rather than from~A to ~B. This antisymmetry ensures that either the two vectors~A and ~B

define a plane or the antisymmetric combination vanishes. Then the fact that in three dimensional
space, there is a unique direction perpendicular to a given plane allows us to turn the antisymmetric
combination into a vector.

The geometrical definition, (41), is equivalent to the following component definition,
[
~A× ~B

]
x

= AyBz−AzBy ,
[
~A× ~B

]
y

= AzBx−AxBz ,
[
~A× ~B

]
z

= AxBy−AyBx , (43)

where we are using a notation for vector components in which
[
~A

]
x

= Ax ,
[
~A

]
y

= Ay ,
[
~A

]
z

= Az . (44)

If you have not seen cross products before in your math courses, you should look carefully at the
demonstration of this equivalence below. We will be using cross products a lot for the next couple
of months, so you might as well get used to them.

To prove that (41) and (43) are equivalent, we first show that
(

~A× ~B
)
· ~A =

(
~A× ~B

)
· ~B = 0 (45)

We can do this by explicit calculation. For example,
(

~A× ~B
)
· ~A = (AyBz − AzBy)Ax + (AzBx − AxBz)Ay + (AxBy − AyBx)Az = 0 (46)

The calculation for~B is similar (as it must be because of the antisymmetry of the cross product
- (46) just says that the dot product of the cross product with the first vector in the cross product
vanishes - and because of antisymmetry the same must be true for the second vector in the cross
product). Thus~A × ~B is perpendicular to bothA andB and therefore perpendicular to the plane
they form, just as in the geometrical definition.
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You can see that the magnitude of the object given by (43) is right by explicitly calculating its
square.

(
~A× ~B

)
·
(

~A× ~B
)

= (AyBz − AzBy)
2 + (AzBx − AxBz)

2 + (AxBy − AyBx)
2 (47)

= A2
xB

2
y +A2

xB
2
z +A2

yB
2
x +A2

yB
2
z +A2

zB
2
x +A2

zB
2
y−2AxBx AyBy−2AxBx AzBz−2AyBy AzBz

(48)
If we add and subtractA2

xB
2
x + A2

yB
2
y + A2

zB
2
z to this, the positive terms can be factored into

(
A2

x + A2
y + A2

z

)(
B2

x + B2
y + B2

z

)
(49)

and the negative terms into

−
(
AxBx + AyBy + AzBz

)2
(50)

so we can write (47) as
(

~A× ~B
)
·
(

~A× ~B
)

=
∣∣∣ ~A

∣∣∣
2∣∣∣ ~B

∣∣∣
2 −

(
~A · ~B

)2
=

∣∣∣ ~A
∣∣∣
2∣∣∣ ~B

∣∣∣
2
(1− cos2 θ) =

∣∣∣ ~A
∣∣∣
2∣∣∣ ~B

∣∣∣
2
sin2 θ (51)

Finally, you can see the right-hand rule by calculating an example, likex̂ × ŷ = ẑ. Thus we have
checked that the component definition (43) is equivalent to the geometrical definition (41).

We can use the cross product very efficiently to describe uniform circular motion about the
origin. First notice that the velocity

~v (t) = ~̇r (t) = −x̂ Rω sin(ωt + φ) + ŷ Rω cos(ωt + φ) (52)

can be written as
~v (t) = ω ẑ × ~r (t) (53)

where~r (t) satisfies
~r (t) · ẑ = 0 . (54)

Let’s see this explicitly:
[
~v (t)

]
x

= ω [ẑ × ~r (t)]x = ω
(
[ẑ]y[~r (t)]z − [ẑ]z[~r (t)]y

)
= −ω [~r (t)]y = −ω R sin(ωt + φ)

[
~v (t)

]
y

= ω [ẑ × ~r (t)]y = ω
(
[ẑ]z[~r (t)]x − [ẑ]x[~r (t)]z

)
= ω [~r (t)]x = ω R cos(ωt + φ)

[
~v (t)

]
z

= ω [ẑ × ~r (t)]z = ω
(
[ẑ]x[~r (t)]y − [ẑ]y[~r (t)]x

)
= 0

(55)
(4) is the statement that~r (t) is in thex-y plane and (3) describes the effect of the circular motion.
As we saw, what the cross product of the unit vectorẑ is doing on the vector~r in thex-y plane is
just rotating the vector counterclockwise by90◦.

Another useful quantity is the so-called “triple product”
(

~A× ~B
)
· ~C = AxByCz − AyBxCz + AyBzCx − AzByCx + AzBxCy − AxBzCy . (56)

You can see explicitly that this has the property ofcomplete antisymmetry. It changes sign if any
two of the vectors are interchanged. This means also that the triple product is “cyclic” —

(
~A× ~B

)
· ~C =

(
~B × ~C

)
· ~A =

(
~C × ~A

)
· ~B (57)

This is a good thing to remember.
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lecture 17

Topics:
Where are we now
Central forces
Energy and angular momentum
V (∞) = 0

The parallel axis theorem
Example - Planar bodies moving in a plane
Torque - fixed reference point
Example — oscillations of a hanging rod
Torque - moving reference point
Example — Rolling ring

Where are we now

Rotations are important for two reasons. The highfalutin theoretical reason is that the laws of
physics are apparently invariant under rotations. This leads to the important conservation law
of angular momentum. The down-to-earth practical reason is that things rotate — and when rigid
objects rotate, things get complicated and understanding the structure of rotational motion is crucial
to understanding what happens.

In the last lecture, we began by reviewing uniform circular motion. We used the connection
between uniform circular motion and the cross product to find the velocity of a vector rotating
around an axis through some arbitary point~R.

If at some timet, the vector~r is instantaneously rotating about then̂ axis through
some arbitary point~R with angular velocityω(t), the velocity is

d~r

dt
= ~v (t) = ω(t) n̂×

(
~r (t)− ~R

)

(1)

We used this to motivate the definition of angular momentum from Noether’s theorem, and to
define the moment of inertia of an object rotating about a fixed axis.

Today, after a quick review of central forces and the effective potential, we are going to go on
with our dicussion of moments of intertia about fixed axes, talk about the parallel axis theorem and
discuss torque.

Central forces

One of the most important examples of gravity in action is the solar system, where the sun is much
more massive than all the other bodies, so the center of mass is essentially at the position on the
sun. Then to a good approximation, all the other planets orbit the sun. The gravitational forces of
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the planets on each other are very small compared to the force of the sun and can be ignored to
first approximation. This means that we can put the sun at the origin and look at the orbit of one
planet at a time. This in turn is an example of a more general system with a central potential, with
Lagrangian

L(~̇r, ~r) =
1

2
m~̇r

2 − V (r) (2)

where
r =

∣∣∣~r
∣∣∣ (3)

This is invariant under rotations about any axis through the origin so there is a conserved angular
momentum,

~L = ~r × ~p = m~r × ~̇r = m~r × ~v (4)

While we know formally that the angular momentum is conserved because of Noether’s theorem,
it is instructive to see how the conservation arises in this particular case. Using the product rule,
we can write

d

dt
~L = m

d

dt
~r × ~̇r = m~̇r × ~̇r + m~r × ~̈r (5)

The first term vanishes trivially because~A× ~A = 0 for any vector~A because of the antisymmetry
of the cross product. The second term vanishes because

m~̈r = ~F = − ∂

∂~r
V (r) = −∂r

∂~r
V ′(r) = −1

r
~r V ′(r) = −r̂ V ′(r) (6)

so the second term is proportional to~r × ~r = 0. The crucial step here is

∂r

∂~r
=

1

r
~r (7)

We have talked about this relation before, but it is so important that I want to give you several ways
of remembering it. This can be seen in various ways. One of the nicest is to differentiate both sides
of the equationr2 = ~r · ~r,

∂

∂~r
r2 = 2r

∂r

∂~r
=

∂

∂~r
~r · ~r = 2~r (8)

from which (7) follows immediately. Another way of seeing this handy fact is to think about what
r looks like considered as a function of the components of~r. This is easier to visualize in two
dimensions, where we can plotr =

√
x2 + y2 versusx andy, and the result is a cone standing on
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its tip:
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(9)

with they axis going into the paper. Now∂
∂~r

is the gradiant operator~∇ that points in the direction
in which the function it acts on is increasing, and has magnitude equal to the rate of increase. But
ther function described by the cone increases linearly as one goes away from the origin in every
direction, which is another way of seeing (7).

Energy and angular momentum

One of the most important consequences of angular momentum conservation for motion in a central
force is that the motion is confined to a plane. This follows because~L = ~r × ~p = m~r × ~v, it is
perpendicular to both~r and~v:

~r · ~L = ~v · ~L = 0 (10)

Therefore both the position vector and the velocity are always in the plane through the origin
perpendicular to~L.

It is therefore very convenient to analyze the motion in polar coordinates in the plane of the
motion. Let us rotate our coordinate system until the motion is in thex-y plane. The angular
momentum is then in thez direction, and we can define our polar coordinates by

x = r cos θ y = r sin θ (11)

In this coordinate system, the problem of finding the motion reduces to an equivalent problem
in two dimensions. Because we know from the outset thatz is going to be zero throughout the
motion, we can ignorez completely and describe the system in terms ofr andθ.
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The square of the speed looks simple in both cartesian and in polar coordinates because

ẋ2 + ẏ2 = ṙ2 + r2 θ̇2 (12)

which you can see either directly by differentiating (11) or by staring at the picture below and
noting that the component of the velocity in the radial direction is perpendicular to the component
of the velocity in the angular direction.
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The Lagrangian for this equivalent two dimensional problem is

L(ṙ, θ̇, r, θ) =
1

2
m ṙ 2 +

1

2
mr 2 θ̇ 2 − V (r) (13)

The Lagrange equation for̈r is
d

dt

∂L
∂ṙ

=
∂L
∂r

(14)

or
m r̈ = mr θ̇ 2 − V ′(r) (15)

The Lagrange equation for̈θ is
d

dt

∂L
∂θ̇

=
∂L
∂θ

(16)

or
d

dt
m r2 θ̇ = 0 (17)

This expresses conservation of angular momentum in polar coordinates, because

mr2 θ̇ = mr vθ = [m~r × ~v]z (18)

Thus

mr2 θ̇ = L θ̇ =
L

mr2
(19)

whereL is the nonzeroz component of~L = L ẑ.
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So far, everything we have done is valid even ifV (r) depends on time explicitly. But usually,
we are interested in aV (r) that is time independent, in which case there is a conserved energy,

E =
1

2
m ṙ 2 +

1

2
mr 2 θ̇ 2 + V (r) (20)

Because the angular momentum,L, is constant, we knoẇθ if we knowr andL. Thus we can now
eliminateθ̇ from the energy and write

E =
1

2
m ṙ 2 +

1

2

L2

mr2
+ V (r) (21)

This is a very important equation. As with most important equations, I hope that you will not so
much memorize it as understand the logic so well that you can reproduce it instantly whenever you
need it. In this case, the logic is conservation of energy and angular momentum. Among other
things, (21) implies that a particle with nonzero angular momentum can never get to the origin,
unless the potential goes to minus infinity as fast as1/r2. The 1

2
L2

m r2 acts as a barrier (sometimes
called the “angular momentum barrier” — clever, no?) that keeps it away. Thus for reasonable
potentials, there is some radius of closest approach to the origin for any motion with nonzeroL.

V (∞) = 0

We can learn a certain amount about what goes on for a particular central force law just from (21).
Consider an attractive potential that goes to zero asr → ∞. For definiteness, lets consider a

class of potentials
V (r) = −α r−β (22)

for positiveα andβ. This is nice because it includes the gravitational potential. For potentials of
this form, (21) looks more of less like this:

0

0

r →

↑
V (r)
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...................................

...................................
......................................

..........................................
..............................................

.....................................................
.................................................................

..............................................................................
...............................................................................................

...........................................................................................................

(23)
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The nature of the orbit depends on the energy. IfE is positive, there is a point of closest
approach, but the particle then goes out to infinity with nonzero kinetic energy.

0

0

r →

↑
V (r)
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(24)

Basically, orbits with positive energy look pretty much the same so long as the potential is not
really weird. But ifE is negative, then things get more interesting. The particle cannot get out to
r = ∞ so the orbiting mass must move back and forth between a minimum and maximum radius.

0

0

r →

↑
V (r)
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(25)

But the details of what the orbit looks likes in two dimensions is very complicated in general.
For the−1/r potential, the orbit closes. But that is not true forβ 6= 1. We can look at these
numerically in central-force.exe.

Note that except forβ = 1, the point of closest approach to the origin (called the “perihelion”
— the point farthest away is called the “aphelion”, though this term is almost never used) moves
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or “precesses” as the mass orbits. The advance of the perihelion of mercury is a famous test of
Einstein’s theory of general relativity.

For the minimum possible energy, things get simple again. The minimum possible orbit for a
given angular momentum corresponds to a circular orbit.

0

0

r →

↑
V (r)
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The parallel axis theorem

Our expressions for moment of inertia and angular momentum about an axis have so far assumed
that the axis goes through the origin of the coordinate system. If instead, the axis goes through
some arbitrary pointR in the direction̂n, the velocity of the point~rj is given by

θ̇ n̂× (~rj − ~R) (26)

and the moment of inertia about this axis is

I~R =
∑

j

mj |n̂× (~rj − ~R)|2 (27)

This is valid for any point~R, but the result can be put into a particularly simple form if~R is the
center of mass, defined by

~R =

∑
j mj ~rj∑

j mj

=

∑
j mj ~rj

M
(28)

whereM =
∑

j mj is the total mass,

∑

j

mj rj = M ~R (29)
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Expanding (27) gives

ICM =
∑

j

mj |n̂× ~rj|2 − 2
∑

j

mj (n̂× ~rj) · (n̂× ~R) +
∑

j

mj |n̂× ~R|2

=
∑

j

mj |n̂× ~rj|2 − 2


n̂×

(∑

j

mj ~rj

)
 · (n̂× ~R) +

(∑

j

mj

)
|n̂× ~R|2

=
∑

j

mj |n̂× ~rj|2 − 2M(n̂× ~R) · (n̂× ~R) + M |n̂× ~R|2

= I −M |n̂× ~R|2 = I −M R2

(30)

whereR is the distance of the center of mass from the original axis. We can rewrite (30) as the
“parallel axis theorem”,

I = ICM + M R2 (31)

which in words says that the moment of inertia about an arbitrary axis is the moment of inertia
about an axis through the center of mass plus the moment of inertia of a point massM a distance
R from the axis.

Example — Planar bodies moving in a plane

A simple situation in which we can use similar ideas in a more general way is the motion of
planar rigid bodies in the plane. This sounds like a special situation, but in fact, it includes a lot
of interesting situations. The angular momentum in this situation is always perpendicular to the
plane. The important point here is that the configuration of a planar rigid body moving in a plane
can be specified by the angleθ that gives the orientation of the rigid body in the plane, plus the
position of the center of mass~r, where~r = (x, y) is a two dimensional vector in the plane. The
kinetic energy of such a body is

1

2
I θ̇ 2 +

1

2
m~̇r

2
(32)

wherem is the mass of the body andI is the moment of inertia of the body about an axis perpen-
dicular to the plane through its center of mass. If there are several such objects, the kinetic energy
will be a sum, and the interactions will typically conserve momentum in the plane and angular
momentum perpendicular to the plane.

Here is a simple example. Suppose a point massm slides with speedv in the plane in thex
direction aty = a and collides and sticks to a uniform rod of massµ of length` intially at rest
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centered at the origin and stretched along they axis fromy = −b to y = b, as shown below:
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(33)

The center of mass of the final system hasy coordinate

ycm =
1

m + µ
[ma + µ 0] =

ma

m + µ
(34)

After the collision, the point on the rod-mass system aty = ycm moves in thex direction with
constant velocity

mv

m + µ
(35)

To determine the rate at which the rod-mass system rotates about the center of mass, we first
note that the angular momentum about the center of mass is

I ω = −m v
µa

m + µ
(36)

The moment of inertia about the center of mass can be computed by adding the contribution from
the point mass

Im = m (a− ycm)2 = m

(
µ a

m + µ

)2

(37)

to that from the rod, which from the parallel axis theorem is

Iµ = I0 + µ y2
cm =

µ b2

3
+ µ

(
ma

m + µ

)2

(38)

where we have used the fact that the moment of inertial of the rod aboutits center of mass isµ b2/3.
Thus the moment of inertial of the rod-mass system about its center of mass is

I = m

(
µ a

m + µ

)2

+
µ b2

3
+ µ

(
m a

m + µ

)2

=
µ b2

3
+

mµa2

m + µ
(39)
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Putting all this together, we can work out how the system moves by putting together the uniform
motion of the center of mass with the rotation about the center of mass. This system is animated
in theMathematicanotebookrodball.nb on the web page. The animation allows you to vary the
parametersm anda, and also to make the center of mass visible, so you see more easily its uniform
motion and the rotation of the system around it. I hope that you will play with this one.

Torque - fixed reference point

We believe that at the deepest level, the Lagrangian of the world is rotation invariant, and that total
angular momentum is conserved (at least if the reference point is fixed), like total energy and total
momentum. But a system that is not isolated from the rest of the universe may have an angular
momentum that is not conserved, just as it may have a momentum or energy that is not conserved.
We describe this situation in terms of the concept of torque. The angular momentum of a rigid
body about a fixed reference point~r0 is

~Lr0 =
∑

j

(~rj − ~r0 )× ~pj =
∑

j

mj (~rj − ~r0 )× ~̇rj (40)

If we then define the torque as
~τr0 =

∑

j

(~rj − ~r0)× ~Fj (41)

Then
d

dt
~Lr0 =

∑

j

mj ~̇rj × ~̇rj +
∑

j

mj (~rj − ~r0 )× ~̈rj (42)

=
∑

j

(~rj − ~r0)× ~Fj = ~τr0 (43)

The first term on the right hand side of (42) vanishes because of the antisymmetry of the cross
product.

The fixed reference point~r0 is completely arbitrary. This just corresponds to our freedom to
choose the origin of the coordinate system. The vector~rj − ~r0 describes the position of thejth
mass in a coordinate system with origin~r0.

It is also worth noting that the the forces in (43) need only include the “external” forces that
prevent the body from being isolated and that break rotation invariance for the non-isolated system.
This must be true for general reasons, and we can also see it explicitly if we make some more
explicit assumptions.

The explicit calculational reason that Morin describes assumes that we can break up the force
into forces between “point particles,” that we all the forces involve only two particles at a time and
that the force between point particles is a central force. The central force assumption is not un-
reasonable because the rotation invariance of the underlying theory implies that the force between
two point particles in the system must be along the line between them because there is no other
vector along which it could point. Then we can use Newton’s third law. Thus if~Fab is the force on
particlea from particleb,

~Fab = −~Fba ∝ ~ra − ~rb (44)

10



The first equality is Newton’s third law, and the second comes from the assumption of central force.
But then the contribution to the torque from this pair of forces vanishes because

(~ra − ~r0 )× ~Fab + (~rb − ~r0 )× ~Fba ∝ (~ra − ~rb )× (~ra − ~rb ) = 0 (45)

This is the argument in Morin.
But we really don’t need to make such explicit assumptions. The general reason the torque from

internal forces vanishes is that, as we noted, we believe that in any really isolated system, rotation
invariance holds and angular momentum is really concerved. Any violation of angular momentum
conservation arises simply because we have not isolated the system. The internal forces that hold
the body together do not contribute to the torque, because what “internal” means is that they don’t
depend on what is going on outside the system. They are invariant under rotations if as we believe
the full theory of the system in isolation is invariant under rotations. The forces that hold the body
together simply rotate along with the body when it is rotated. If the external forces went away, the
internal forces would still be there holding the body together, but there would be no torque because
the body would be isolated and rotation invariance would not be broken.

In pictures, what we are doing is separating a part of our system that we call “internal.”
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If we rotate the internal and the external parts of the system together, that has no effect on the
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Lagrangian. The energy doesn’t change. There is no torque.
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But if we rotate the internal parts of the system, while keeping the external parts of the system
fixed, then the energy can change and there be a torque. But this depends only on the relative
orientation of what we have called internal and external. We haven’t changed the internal system
itself.
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In fact, we could get the same torque by keeping the internal system completely fixed, and rotating
the external system in the opposite direction because this doesn’t change therelative orientation of
internal and external, and because of overall rotation invariance, that is all that matters. Obviously,
in this case we have not changed the internal system at all, so there is no purely internal contribution
to the torque.
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external

Example — oscillations of a hanging rod

Here’s a simple example of using torque and moment of inertia — consider the small oscillations of
a system of a solid rod of length̀with uniform linear mass densityρ pivoted at the top and allowed
to rotate in a vertical plane in the earth’s gravitational field, as shown (with the rod constrained to
rotate in the plane of the paper about the pivot at the top):

•.........................................................................................................................................................................................................................................................................

θ

(46)

We can takeθ to be the angle of the rod from the vertical. The moment of inertiaI is given by

I =
∑

j

mj |n̂× ~rj|2 (47)
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To finish the job we must actually compute the moment of inertiaI. We can write the “sum” in
(47) as

I =
∫ `

0
ρ x2 =

1

3
ρ `3 dx (48)

Thus the angular momentum is (out of the paper)

L = Iθ̇ =
1

3
ρ `3 θ̇ (49)

To find the torque, we can use the fact that we can assume that the graviational force from the
uniform field acts on the center of mass. This is because torque is linear in the position, so the
integral would do to find the torque by adding up the contribution of all the little masses in the rod
is the same integral we would do to find the center of mass.

∫
~r × d~F =

∫
~r × (−gẑ) dm =

(∫
~r dm

)
× (−gẑ) = M ~R× (−gẑ) = ~R× ~F (50)

This is

τ = −ρ`g (`/2) sin θ = −1

2
ρ`2g sin θ (51)

again out of the paper. Thus using the fact the torque is rate of change of angular momentum, we
can write

d

dt
Iθ̇ = Iθ̈ =

1

3
ρ `3 θ̈ = −1

2
ρ`2g sin θ (52)

or

θ̈ = −3

2

g

`
sin θ (53)

For smallθ, this is a harmonic oscillator with angular frequency

ω =

√
3g

2`
(54)

Notice, however, that the result is quite different from what we would get for a simple pendulum
with a mass at the center of mass of the rod. That would have angular frequency

ω =

√
2g

`
(55)

The effect of the moment of inertia is to add some extra inertia to the system which decreases the
angular frequency and increases the period of oscillation.

We could do this somewhat more easily using the Lagrangian, without mentioning torque. The
kinetic energy is

1

2
Iθ̇2 (56)

The potential energy can be taken to be

ρ`g
`

2
(1− cos θ) (57)
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(the constant 1 is not important, but I guess it is nice to have the energy defined to be 0 atθ = 0).
Then the Lagrangian of the system is

L =
ρ`3

6
θ̇2 − ρ`2

2
(1− cos θ) (58)

and the Euler-Lagrange equation is

ρ`3

3
θ̈ = −ρg`2

2
sin θ (59)

Torque - moving reference point

Things are slightly more complicated when the reference point is moving - when~̇r0 6= 0. But only
a little, so long as we look at things in a reference frame that is moving along with the reference
point. The first thing to note is that this absolutely has to work the same way if

~̈r0 = 0 (60)

because in this case the frame in which reference point is fixed is moving with constant velocity
and is therefore an inertial frame, just as good as the one we started in. In the moving reference
frame, positions and velocities are different, but forces and accelerations are all the same, and
Newton’s laws work the same way.

The angular momentum in the moving frame in terms of the original~r looks like

~Lr0 =
∑

j

mj (~rj − ~r0 )× (~̇rj − ~̇r0 ) (61)

We get the second terms in the parentheses because we are measuring the position and velocity in
the moving frame and have to subtract the new reference point.

If the reference point is accelerating,~̈r0 6= 0, this is a dangerous thing to do, because Newton’s
laws don’t work quite the same way in an accelerating frame, but we will see how that works in a
moment. However, nothing prevents us from considering~Lr0 defined by (61) in this way, so let’s
try it. Now we can just differentiate and see what happens.

d

dt
~Lr0 =

∑

j

mj (~̇rj − ~̇r0 )× (~̇rj − ~̇r0 ) +
∑

j

mj (~rj − ~r0 )× (~̈rj − ~̈r0 ) (62)

Again the first term on the right hand side vanishes because of the antisymmetry of the cross
product and this looks just like (42) except for thë~r0 term.

d

dt
~Lr0 = ~τr0 −

∑

j

mj (~rj − ~r0 )× ~̈r0 (63)

There are a couple of important situations in which we can simply ignore the term proportional to
~̈r0. One, as we expected, is when the second derivative vanishes,

~̈r0 = 0 — that is if~r0 is not accelerating. (64)
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The other is more interesting. We can rewrite the~̈r0 term using the definition of the center of mass
as

−∑

j

mj (~rj − ~r0 )× ~̈r0 = −M (~R− ~r0 )× ~̈r0 (65)

Evidently this vanishes if

~r0 = ~R — that is if~r0 is the center of mass; (66)

or if
(~r0 − ~R) is parallel to~̈r0 so the cross product vanishes. (67)

Then
d

dt
~Lr0 = ~τr0 (68)

where the torqueτr0

~τr0 =
∑

j

(~rj − ~r0)× ~Fj (69)

is computed in terms of the forces in the lab frame.
Thus we can continue to use~τ = d~L/dt if we take the reference point to be the center of mass

even if the center of mass is accelerating!The best way of understanding this is something we
will discuss in more detail next month. We can actually use Newtonian physics in an accelerating
reference frame if we also introduce what is called a “fictitious force” to make up for the effect of
the acceleration. Next month, we will argue that we can simply put the~̈r0 on the other side of the
~F = m~a equation and associate it with such an “fictitious force.” This force behaves exactly like a
uniform gravitational force (indeed, Einstein would say that it is not really fictitious - it is entirely
equivalent to a gravitational force - this is the starting point for general relativity - but we won’t go
there right now). But a uniform gravitational force just acts on the center of mass, and it produces
no torque about the center of mass. That is why this works.

Thus if we take the reference point~r0 to be the center of mass~R, the rate of change of angular
momentum about~r0 is equal to the torque about~r0, even if~r0 is moving. This is a good thing, so I
will assume that the reference point is the center of mass unless explicitly stated. From now on, I
will drop the subscriptR.
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Example — Rolling ring

Here is another example — a ring of massm and radiusr rolling without slipping down an inclined
plane in a gravitational field.
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.........
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~Fg = −mgẑ

~r
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(70)

This is a system with one degree of freedom. We can specify the position of the ring either by the
distancè that the ring rolls, or by the angleθ through which the ring rolls, and these are related
by

` = rθ (71)

Let’s do this three ways. First let’s consider the torque and angular momentum about the
reference point defined by the point where the ring touches the plane. The nice thing about this
reference point is that the torque on the ring is independent of the force that the plane exerts on the
ring. It comes entirely from the gravitational force, which as usual we can take to act at the center
of mass. This point is instantaneously at rest, and the motion of the ring at the instant it is at rest is
a rotation about this reference point Then the torque is

mgr sin φ (72)

The moment of inertia is given by the parallel axis theoren as

I = mr2 + ICM = 2mr2 (73)

because the mass is all a distancer away from the center of mass. Thus we have

L̇ = Iθ̈ = 2mr2θ̈ = mgr sin φ (74)
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or
θ̈ =

g

2r
sin φ (75)

This describes uniform angular acceleration. In terms ofrθ, the distance down the inclined plane,
it is uniform acceleration withg sin φ/2. Note that there is an extra factor of 1/2 compared with
mass sliding down a frictionless plane with the same angle. This is the effect of the extra inertia
associated with the moment of inertia.

I glossed over an important point here, and let me now emphasize it. Our reference point in this
analysis is not moving. We are looking at the system at a particular time,t, and the reference point
is the fixed point where the ring touches the plane at that one time — not the moving point where
the ring touches the plane as a function of time. The way this shows up in the calculation is that
we computed the angular momentum in the lab frame. If we had been using a moving reference
frame, we would have had to measure the velocities of the parts of the system with respect to that
moving frame. That would have been more complicated - and also useless in this case, because the
point at which the ring touches the plane is accelerating as a function of time.

Now let’s do the problem using the Lagrangian. As the ring rolls without slipping, its center
of mass moves down the plane, and it also spins. Thus its kinetic energy is a sum of a linear and
a rotational term. If we describe the configuration of the system by the angleθ that the ring rolls,
the linear distance it moves isr θ. Thus the kinetic energy is

1

2
m (r θ̇)2 +

1

2
ICM θ̇2 (76)

andICM in this case is justmr2 because all the mass of the ring is a distancer from the center of
mass. The gravitational potential is

−mgrθ sin φ (77)

Thus the Lagrangian is
mr2 θ̇2 + mgrθ sin φ (78)

and the Euler-Lagrange equation is

2mr2 θ̈ = mgr sin φ (79)

which again gives
θ̈ =

g

2r
sin φ (80)

Another way to do the problem is in term of torque and rate of change of angular momentum
about the center of mass. But to do it this way, we need to consider the force~Fi that the inclined
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plane exerts on the ring, as shown below.

~Fg = −mgẑ

mg sin φ

mg cos φ

T

N

~Fi
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(81)

The normal component of~Fi (labeled byN in the diagram) just cancels the normal component of
the gravitational force,mg cos φ, because the ring doesn’t accelerate off the plane. The tangential
component of~Fi (labeled byT in the diagram) is the frictional force that keeps the ring from
sliding on the incline. Now the acceleration of the ring down the incline is determined by the
difference between the tangential component of the gravitational force andT ,

ma = mg sin φ− T . (82)

But the angular acceleration of the ring is governed by the moment of inertia,I = mr2, and the
torque about the center of mass, which is out of the plane of the paper with magnituderT ,

mr2θ̈ = rT (83)

Because the ring is rolling without slipping

a = rθ̈ (84)

so (82) becomes
mrθ̈ = mg sin φ− T . (85)

Multiplying (85) by r and adding it to (83), we can cancel the unknownT and find

2mr2θ̈ = mgr sin φ (86)

which agrees with (79) as it should.
As we have seen before in other contexts, the Lagrangian technique simplifies things. It allows

us to solve the problem without introducing and then eliminating the frictional force,T . But we
were able to do it just as easily by choosing the reference point appropriately

19



lecture 18

Topics:
Where are we now?
Impulse and elastic collisions
Rigid bodies are weird
The angular velocity vector
Impulse and rigid bodies
The moment of inertia tensor
An impulsive demo

Where are we now?

We began our discussion of rigid body rotations by discussing the simple case of rotations about a
fixed axis. Today, I will spend a little time discussing in general the important ideas of the angular
velocity vector and the reference point. I am also going to discuss a nice example of motion
in a plane, which introduces the idea of impulse that we will use to explore more complicated
situations.

Impulse and elastic collisions

The animation in theMathematicanotebookrodbounce.nb shows a rigid rod in they-z plane in a
gravitational field bouncing completely elastically on a frictionless surface. This problem is a nice
example of the use of impulsive forces and torques to solve problems. I will start by analyzing this
example to show you how the animation was produced.

We will assume that the rod is initially either not rotating at all (this is what is shown in the
animation) or rotating in a vertical plane. If so, the motion stays in the same vertical plane, as long
as the rod is perfectly symmetrical and the plane on which it bounces is perfectly flat. Thus we can
analyze it without worrying about the full three dimensional complexity of angular momentum.
Then we can just choose our coordinate system so thatẑ is vertical and the rod is bouncing in the
y-z plane, as we assumed.

Except when the rod is actually in contact with the frictionless surface, the motion is extremely
simple. The rod rotates with some fixed angular velocityωi — the subscript i is for “initial” (the
axisx̂ is out of the plane in thex direction) and the center of mass, in the center of the rod rises and
falls in the constant gravitational field, so that when one end of the rod hits the frictionless surface,
the center of mass is moving with some velocityvi in the vertical direction (~v = v ẑ), which will
usually be negative, but not always, because the rotation of the rod may cause a collision even if
the center of mass is rising. When a collision occurs, we get a new velocity and angular velocity,
vf andωf (subscript f for “final”). Our job is to calculatevf andωf in terms ofvi andωi — then we
can follow the system until the next collision and do it again, and so on until we get tired. Or better
still, we can simply program it into the animation and watch the pretty bouncing rod until we get
mesmerized.
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Suppose that the rod has massm and length2`. Suppose further that the collision occurs with
the rod at an angleθ (between 0 andπ) from the horizontal, as shown below.

∫ ~F dt
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..........................................................
..........................................................
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................
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.......................
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..........................
.......................................

~vi

x̂× ~r

θ (1)

Also shown is the translational velocity of the center of mass and the rotational motion,ωx̂ × ~r,
which gets added on to the motion of the center of mass to produce the full motion of the end of
the rod.

During the collision, there is a force,~F , on the rod from the frictionless surface. Because the
surface is frictionless, the force is purely vertical,~F = F ẑ. Now because the bounce happens
very quickly, we can ignore the motion of the rod while the bounce is taking place. Then all that
matters is the integral of the force over the period of the bounce,

∫

bounce
dt ~F = ẑ

∫

bounce
dt F (2)

This is called the “impulse.” Now the point is that the impulse does double duty. 1 — It changes the
linear momentum of the center of mass. Because the force is the rate of change of the momentum,
the impulse is the total change in the momentum:

m (vf − vi) =
∫

bounce
dt

dp

dt
=

∫

bounce
dt F (3)

2 — It also changes the angular momentum about the center of mass. Because the torque is the
rate of change of angular momentum, the cross product of the lever arm with the impulse is the
total change in the angular momentum. The rod has length2`, so this looks like

I (ωf − ωi) =
∫

bounce
dt (~r × ~F )x =

(
~r ×

∫

bounce
dt ~F

)

x
= −` cos θ

∫

bounce
dt F (4)

Let me emphasize again the key step here. Because we have assumed that the bounce takes place
very quickly, we can ignore the motion of the rod while the bounce is taking place. That allows us
to take the~r out of the integral in (4). This makes the problem doable because the change inv and
the change inω are related —

` cos θ m (vf − vi) + I (ωf − ωi) = 0 (5)

In addition to (5), we know that energy is conserved. The energy is the kinetic energy in motion
of the center of mass and rotation. Thus conservation of energy is

1

2
mv2

i +
1

2
I ω2

i =
1

2
mv2

f +
1

2
I ω2

f (6)
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At this point, we could plug this into Maple or Mathematica and ask the computer to solve forvf

andωf in terms ofvi andωi. But there is a useful trick involved in doing it by hand, so let’s go on
a while. First write energy conservation as

m (v2
f − v2

i ) + I (ω2
f − ω2

i ) = 0 (7)

Now we can factor this

m (vf − vi) (vf + vi) + I (ωf − ωi) (ωf + ωi) = 0 (8)

and now use (5) to write this as

m (vf − vi) (vf + vi)− ` cos θ m (vf − vi) (ωf + ωi)

= m (vf − vi)
(
(vf + vi)− ` cos θ (ωf + ωi)

)
= 0

(9)

The trick here is pretty general. We know there is a solution to the twin equations (5) and (6) of
the formvf = vi andωf = ωi because this satisfies (5) and if nothing changes, energy is conserved.
We have just written (6) so that this solution is manifest. Of course, we are not interested in the
case where nothing changes because this is not what happens in the collision. There must always
be some force on the rod during the collision, so we always get a non-trivial change inv andω.
But writing (6) this way allows us to eliminate the trivial solution and makes it easier to find the
interesting one. Thus for the physical solution we are interested in, we must have

(vf + vi)− ` cos θ (ωf + ωi) = 0 (10)

This is now another linear equation forvf andωf , so we can easily solve (5) and (10), and the result
is

vf =
(m`2 cos2 θ − I) vi + 2I` cos θ ωi

m`2 cos2 θ + I
ωf =

2m` cos θ vi − (m`2 cos2 θ − I) ωi

m`2 cos2 θ + I
(11)

It is this that we have used to construct the animation.
Nothing we have done depends on the precise value ofI. For a solid rod,I = m`2/3, but

we don’t have to look only at that case. It is interesting to look at this for variousIs. One very
interesting limit isI = m`2, which corresponds to a dumbbell, with the masses at the ends of
a light rod. This is animated in theMathematicanotebookdumbbellbounce.nb This actually
allows us to use our physical intuition to get a nice check of (11). Suppose that for a dumbbell,
cos θ is close to zero when the left mass hits the surface. Because the force of the rod on the
masses is nearly horizontal in this case, it has very little effect of the motion of the two masses.
Thus we expect the left mass to bounce and simply reverse its velocity, and the right mass to just
keep going. Now forθ ≈ 0, the motion of the masses is nearly in the vertical direction and the
vertical components are approximately

vleft ≈ v − ` ω vright ≈ v + ` ω (12)
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Thus to getvleft to change sign whilevright to remain unchanged, we want the bounce to approxi-
mately interchangev and` ω,

vf → ` ωi ` ωf → vi (13)

It is easy to see from (11) that this is what happens.
In the case of the rigid rod, with smaller moment of inertia, the other end of the rod actually

moves faster after such a nearly horizontal bound. Again a limit may make clearer what is going
on. The limitI → 0 corresponds to a mass in the center of the light rod. In this case, forθ ≈ 0,
we expect the center of mass to keep moving,vf ≈ vi, which again accords with (11).

Meanwhile, notice that when the rod is rotating a lot, it doesn’t go up as far — this is because
more of the energy is stored in rotational kinetic energy and there is less in center of mass motion
after the collision.

Rigid bodies are weird

So what’s the big deal about torque and angular momentum. Surely, this is just like force and
momentum. You push something and it moves (or accelerates, at least). You twist something and
it turns. But torque equals rate of change of angular momentum implies some pretty remarkable
things. When you twist a spinning rigid body carrying a large angular momentum, the twist does
very counter-intuitive things because the twist does not directly change the orientation of the body.
Instead, what a torque does is to change the direction of the angular momentum. And the direction
of the angular momentum is tied not to the orientation of the body, which is constantly changing,
but to the orientation of the rotation axis. A gyroscope is the most familiar example of this. A
torque that one would naively think would cause the body to fall instead causes it to precess. This
is very familiar, but it is worth seeing over and over again. Here it is for a simple top. Take a
bicycle wheel and weight the rim with lead. Get it spinning with speedv. The angular momentum
is then approximatelymvr wherer is the radius of the wheel andm is the total mass. This would
be exactly right if all of the mass were concentrated in the rim at radiusr.
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Now if we apply a torque to the handle, which is the axis of rotation, strange things happen because
we are actually changing the angular momentum. Precession is one example.

......................................................................................................................................................................................................................................................................... .............. ~L.............................................................................................................................................
~F

............................................................................................................................................ ..............
~r

(15)

The torque in the diagram is into the paper. Thus the change in the angular momentum is into the
paper. But the only way that can happen is if the direction of the angular momentum changes —
and the orientation of the handle must go with the angular momentum — so the system precesses.
You see that precession is easy to explain in terms of torque and angular momentum, but perhaps
not so easy to understand in your bones.

Here is another situation which is basically the same, but which I find even stranger. If I stand
on a turntable with the wheel axis horizontal, and I try to twist the handle so that the angular
momentum of the wheel points slightly down, to conserve angular momentum, I will have to start
spinning in the counterclockwise direction, and develop angular momentum upwards. This is
pretty weird, because it means that by trying to produce a torque in one direction (horizontal) I
have actually produced a torque in the vertical direction.

This is so strange that it seems magical, even though we have all seen it many times. What is
really going on here??????

I find this sufficiently strange that I want to show you how it comes about in a particular very
simple case.

Consider a light rigid frame of crossed bars with weights of equal massm on two of the
opposite ends. The two masses form a dumbbell rotating in thex-y plane. The cross piece is
supported in two frictionless sleeves that allow the system to rotate, but can be used to supply a
torque. This is shown below in thex-z plane:
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z

~

~

`
................
......................................

......................................................

velocityv ŷ
out of paper

velocity−v ŷ
into paper~L = 2mv` ẑ

................................................................. ..............

(16)

If at some timet = 0, the upper mass atx = ` is moving in the+y direction with speedv, and the
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lower one atx = −` in the−y direction with the same speed, then the angular momentum of the
system is2mv` ẑ.

Now suppose that at timet = 0, we apply a large torqueN in the+y direction for a very short
time ∆t, short enough that we can neglect the motion of the masses during the time. We actually
supply this torque by twisting the frictionless sleeve,

~

~
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........................................
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~F−~F (17)

but the effect is the same as applying the forces to the masses (because of the rigidity of the frame)

~

~

...............................................................................

................................................................. ..............

F ′ = N
2`

F ′ = N
2`

(18)

The magnitude of the force is fixed by the value of the torque.
Now the torque in (18) changes the direction of the motion of the two masses. The change in

the momentum isF ′ ∆t. From the top, in they-z plane, the resulting momentum looks like this
(with the momenta of the bottom mass dashed and the masses not shown)
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mv

N
2` .............
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.............
.............
.............
....................................

(19)

Now as the masses move in their new direction, they drag the rest of the rigid body along with
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them, establishing a new axis of rotation, shown as the dotted line below.
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new
rotation

axis
(20)

Thus the system must precess.
Of course, this all really happens at once, but it makes it easier for me to understand what is

going on in precession if I disarticulate things and think first about a very quick application of
torque changing the direction of the rotating masses, and then the rigid body forces that hold the
system together pulling the rest of the system along with them. Over the next couple of weeks (and
starting later today if I have time), I am going to use this trick in more complicated ways to ease
our way into the physics of rigid body rotations.

The angular velocity vector

We have seen that the velocity of point~rj on a rigid body rotating with angular velocityω about
an axisn̂ through a point~r0 is

ω n̂×
(
~rj − ~r0

)
(21)

The important point is thatω andn̂ always appear in combination, as the productω n̂. This is a
vector with direction̂n and magnitudeω. It is called the “angular velocity vector”

~ω ≡ ω n̂ (22)

Now here is a very important fact. Like any vector,~ω can be taken apart into components.
Angular velocity vectors can be added and subtracted. This may not sound very remarkable, but
in fact, ordinary rotations do not work this way. Unlike vector coordinates like the coordinates
of the center of mass, the quantities that describe the orientation of a rigid body are not vectors.
They are angles and they do not form a linear space. You can’t add them. The reason is simply
that the structure of rotations is more complicated than the structure of translations. The order in
which rotations are done matters to the final configuration. Because order doesn’t matter when you
add numbers or vectors, that means that rotations cannot simply add. They must compose in some
more complicated way.

Here’s a simple example. One good way to specify the orientation of a rigid body is by specify-
ing a reference orientation and specifying the rotation required to get from the reference orientation
to the actual orientation. A rotation, in turn, can be specified by giving the axis of rotation, and
the magnitude of the rotation in radians. If you put together two rotations about the same axis, the
magnitudes just add. But the trouble is that if the axes are different, the combination of the two
rotations is a rotation about some new axis, by some magnitude that is a complicated function of
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the angles and axes. Both the axis and the magnitude of the combined rotation depend on which
of the component rotations is performed first. This is what makes rotation of rigid bodies such a
complicated and interesting subject.

For example, consider a regular tetrahedon with the four vertices labeled by different numbers,
1-4. Looking down on this tetrahedron, it might look like this:
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where â, b̂ and ĉ represent axes through the center of the tetrahedron (each of these vectors is
coming slightly out of the plane of the paper).

If I do a rotation by2π/3 about thêa axis, the tetrahedron rotates into itself with the numbers
on the vertices rotated as1 → 2 → 4 → 1, as shown:
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If I now do a rotation by2π/3 about thêb axis, the tetrahedron rotates into itself with the numbers
on the vertices rotated as2 → 3 → 4 → 2, as shown:

24

3

1

........
.........
................

...................................................................................................
.........
........
................................................

.........
........
.........
.............................................

........
...........

.......................................................................................
.........
...

........
..........

........................................................................................
.........
...

...................................................................................

....................................................................................................................................................................................

........................................ .............. ĉ
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The result of these two rotations is equivalent to a single rotation by4π/3 (or−2π/3) around the
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ĉ axis, as shown below
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On the other hand, if I do the same two rotations in the opposite order, something different
happens. If I first do the rotation by2π/3 about thêb axis, the tetrahedron rotates into itself with
the numbers on the vertices rotated as1 → 3 → 2 → 1, as shown:
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â
...................................................................................

................
................

................
................

................
................

................
................

................
................

................
...

.................................
......
............
..

b̂

(27)

If I now do the rotation by2π/3 about thêa axis, the tetrahedron rotates into itself with the numbers
on the vertices rotated as1 → 4 → 3 → 1, as shown:
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The result of these two rotations is equivalent to a single rotation by4π/3 (or−2π/3) around an
axis pointed down into the plane, as shown below
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So you see that for finite rotations, the order of the rotations makes a difference. There is no
way that you can simply add the coordinates of vectors to get these results. Finite rotations are not
vectors!

The reason that angular velocities are simpler is that they really only refer to infinitesimal
rotations —ω is dθ/dt. And infinitesimal rotations can be added without causing confusion.
Technically, the reason that infinitesimal rotations are can be added like ordinary vectors is that
the depedence on the order of two infinitesimal rotations is proportional to the product of the two
infinitesimal angles, and can thus be ignored. Thusd~ω is a vector, even though a finite rotation is
not. The relation between the angular velocity vector and the motion of the parts of a rigid body,

~ω ×
(
~rj − ~r0

)
(30)

will be the crucial simple fact to hang onto as we explore the complicated world of rigid body
rotations. This depends on not only the direction of the axis, but exactly where the axis is, which
can be specified by specifying any point~r0 on the axis. Any other point on the axis gives the same
result, because, any other point has the form

~ra = ~r0 + an̂ (31)

The extra term proportional tôn doesn’t affect (30) because~ω andn̂ are in the same direction so
their cross product vanishes. You should remember that if you are going to add angular velocities,
they must be defined with respect to the same reference point~r0. Otherwise, things get messy.

Impulse and rigid bodies

So to follow up the notion that thinking about impulsive torques is easier to understand, we are
going to spend some time dealing with the following question. Suppose that we are out in space,
and we come upon a light rigid rectangular frame with masses at the corners, as shown:
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× ~F

(32)
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It is floating at rest, say in thex-y plane, when we hit one of the masses with a hammer, applying
a large force in the−z direction for a very short time, as shown. This produces an impulsive force
and torque on the rigid frame. The question is, immediately after the hammer blow, what is the
velocity of each of the masses? We will not actually solve this problem until next time, but today,
we will start to explore a crucial component of the answer — we will discuss the moment of inertia
tensor and the relation between the angular momentum~L and the angular velocity~ω.

But first you might ask — Why have I formulated the problem in this peculiar way? Why not
just ask for the trajectory of each of the masses for all time after the hammer blow? The answer is
that these trajectories are MUCH harder to find and to understand than the velocities I have asked
about. I will begin by explaining why this is so. You may guess that the answer has something to do
with impulse — the fact that we have applied the force in a very short time so that the frame does
not have a chance to move while the force is being applied. That is correct, but it is only part of the
difference. Complications arise because the direction of the angular momentum after the hammer
blow does not coincide with the instantaneous axis of rotation of the body. When we calculate~L

in terms of~ω and the parametersmj and~rj that describe the rigid body, it just turns out that except
in very special circumstances,~L and~ω are not in the same direction. This fact will cause us lots
of grief when we try to calculate the actual trajectories, and I want to postpone the worst of it. In
fact, in this course, we will not actually ever solve for the full trajectories in this case, although
we will do so in some interesting and very non-trivial examples. But just finding the velocities
of the masses right after the hammer strike is not so bad. We do this by studying carefully the
vectors~p (linear momentum),~L (angular momentum), and~ω (angular velocity) and understanding
the relationships between them in detail. We will find a peculiar relationship depending on a
complicated object called the moment of inertia tensor. We will explain this as cleverly as we can,
but this is one of those cases in which no amount of cleverness can make it look really simple.
There are times when you just have to be very careful and let the mathematics carry you along. I
hope that going over it in several different ways will help you get a feeling for this difficult subject.

The moment of inertia tensor

Let’s go back to our expression for the angular momentum of a rigid body about a point~R,

~L =
∑

j

(~rj − ~R )× ~pj =
∑

j

mj (~rj − ~R )× (~̇rj − ~̇R ) (33)

where the sum runs over the various massive parts of the system, labeled by the indexj. We will
most often be interested in the case where~R is the center of mass, but that is not necessary. All
we are going to assume in (33) is that the motion is entirely due to the rotation of the body about
the point~R. That is, we are calculating the angular momentum in a frame in which the point~R is
fixed. Now we can calculate this for a rigid body rotating with angular velocity vector~ω around~R

by using

(~̇rj − ~̇R ) = ~ω × (~rj − ~R ) (34)
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Putting (34) into (33) gives

~L =
∑

j

mj (~rj − ~R )×
(
~ω × (~rj − ~R )

)
(35)

Notice that the components of~L are just linear combinations of the components of~ω, but the
coefficients are some complicated looking sums.

To get a feel for these scary looking sums, let us begin by looking at a case when there is just
a single term.

~L = m1 (~r1 − ~R )×
(
~ω × (~r1 − ~R )

)
(36)

This describes the angular momentum of a single particle of massm1 at the point~r1 rotating about
the point ~R with angular velocity~ω. And let’s simplify further by putting~R = 0 (this is just a
choice of origin anyway, so it doesn’t cost anything). Then (36) becomes

~L = m1 ~r1 × (~ω × ~r1) = −m1 ~r1 × (~r1 × ~ω) (37)

We can understand what (37) is by decomposing~ω into pieces perpendicular to and parallel to~r1,

~ω = ~ω⊥ + ~ω‖ (38)

Now the parallel part does not contribute at all because of the cross products, so

~L = −m1 ~r1 × (~r1 × ~ω⊥) (39)

But now each of the cross products rotates the vector~ω⊥ by 90◦ in the plane perpendicular to~r1

and multiplies the magnitude by|~r1|. Thus if we do this twice we get−|~r1|2~ω⊥, so (39) becomes

~L = −m1 ~r1 × (~r1 × ~ω⊥) = m1 |~r1|2~ω⊥ = m1 (~r1 · ~r1) ~ω⊥ (40)

Thus the angular momentum is not so complicated in this case. It is justm1r
2
1 times the perpen-

dicular component of~ω. However, already in this simple case,~ω and~L arenot parallel! We saw
this in a prs question a few lectures ago.
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In the diagram,~ω is in theẑ direction, but~L is perpendicular to~r in plane formed bŷz and~r. For
the motion of a single point mass, while~ω determines the velocity of the mass, the velocity does
not uniquely determine~ω. ~ω⊥ gives the same velocity as~ω, and it is~ω⊥ that matters for~L because
it is perpendicular to~r.
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The notation is (40) is not good enough to allow us to generalize this to the case of more than
onej. The problem is that~ω⊥ depends implicitly on the direction of~r1. To put this back into (35)
we have to make this dependence explicit. To do that, note that the parallel component of~ω can be
written as

~ω‖ = r̂1 (r̂1 · ~ω) (41)

and thus from (38), we can write
~ω⊥ = ~ω − r̂1 (r̂1 · ~ω) (42)

Combining (40) and (42) gives

~L = m1 (~r1 · ~r1) ~ω⊥ = m1 (~r1 · ~r1)
(
~ω − r̂1 (r̂1 · ~ω)

)
= m1 (~r1 · ~r1) ~ω −m1 ~r1 (~r1 · ~ω) (43)

Putting the arbitrary reference point~R back in and factoring out the factor ofm1 gives

m1

[(
(~r1 − ~R ) · (~r1 − ~R )

)
~ω − (~r1 − ~R )

(
(~r1 − ~R ) · ~ω

)]
(44)

Now all the dependence on~r1 is completely explicit, and we can apply the same procedure to each
of the terms in the sum in (35). The result is

~L =
∑

j

mj

[(
(~rj − ~R ) · (~rj − ~R )

)
~ω − (~rj − ~R )

(
(~rj − ~R ) · ~ω

)]
(45)

Equation (45) is the desired relation between~L and~ω. However, it is useful to write it in a
different form. The first thing to notice is that both sides of (45) are vectors, and that the right hand
side is proportional to the vector~ω, but is not, in general, in the same direction as~ω. The second
thing to notice is that the second term in (45) involves a dot product. We can think of this as the
sum that appears in a matrix multiplication. This allows us to write (45) in a slightly more useful

form in matrix notation. First define a matrix~~B as follows:

~~B =
∑

j

mj (~rj − ~R ) (~rj − ~R ) =




Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz


 (46)

=
∑

j

mj




[~rj − ~R ]x [~rj − ~R ]x [~rj − ~R ]x [~rj − ~R ]y [~rj − ~R ]x [~rj − ~R ]z
[~rj − ~R ]y [~rj − ~R ]x [~rj − ~R ]y [~rj − ~R ]y [~rj − ~R ]y [~rj − ~R ]z
[~rj − ~R ]z [~rj − ~R ]x [~rj − ~R ]z [~rj − ~R ]y [~rj − ~R ]z [~rj − ~R ]z


 (47)

We have used a notation of two vector signs to indicated this matrix (Dave, in his book, just uses
bold face and you have to figure out from the context whether you are dealing with a vector or a
matrix). In general, this is not a good thing to do, but for our purposes in this course, it doesn’t
do any harm to use a slightly sloppy notation in which we think of our matrices as “bivectors.”
In fact, it will be kind of helpful. The reason is that the matrices we will have to deal with are
symmetric, so we don’t have to be careful to distinguish which vector index is which. You can see

the symmetry from the definition of~~B, because

Bxy = Byx , Bxz = Bzx , Byz = Bzy . (48)
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Then we can think of the dot product in (45) as matrix multiplication, and just indicate it as a
dot product (this is actually the notation thatMathematicauses). Then the second term in (45) can
be written as

− ~~B · ~ω (49)

The first term in (45) involves the trace of the matrix~~B

∑

j

mj (~rj − ~R )2 = Tr
~~B = Bxx + Byy + Bzz (50)

So we can combine the two terms in (45) as a single matrix equation,

~L =
~~I · ~ω (51)

where~~I is the matrix



Bxx + Byy + Bzz 0 0

0 Bxx + Byy + Bzz 0

0 0 Bxx + Byy + Bzz


−




Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz


 (52)

or

~~I =




Byy + Bzz −Bxy −Bxz

−Byx Bxx + Bzz −Byz

−Bzx −Bzy Bxx + Byy


 (53)

Like the matrix~~B, the matrix~~I is symmetric —

Ixy = Iyx , Ixz = Izx , Iyz = Izy . (54)

Thus~~I is completely determined by 6 numbers,

Ixx , Iyy , Izz , Ixy , Ixz , and Iyz . (55)

The object~~I is a thing called the “moment of inertia tensor.” The term “tensor” refers to a
large class of objects in mathematics that are generalizations of vectors. We are not going to get
into tensors in general. This particular tensor is fairly simple because it can be thought of as a
machine for taking linear combinations of the components of one vector (~ω) to get another vector

(~L). Equations (51) and (53) show that you can also think of~~I as a3 × 3 matrix, and think of the

right hand side of (51) as a matrix product of the matrix~~I and the vector~ω. Because (51) is an
equation for a vector, it has a meaning independent of the particular coordinate system in which

we describe the vectors. But like a vector, the tensor~~I will have different components in different
coordinate systems. What makes the moment of inertia tensor a tensor is that when we go from one

coordinate system to another, the components of~~I transform in the just the right way so that (51)

is still a correct vector equation. That is the meaning of the two vector signs on~~I. This is implicit
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in (51), in which one of the vector signs on~~I is associated with the vector nature of~L on the left
hand side, while the other vector index is combined by the dot product with the vector index of~ω

so that the right hand side behaves like a vector. This will be very important in our understanding
of rigid bodies.

The general point about tensors is that one can actually go backwards through this argument

and argue that~~I (because it takes a vector into another vector) behaves under rotations like a
product of two vectors. That doesn’t mean that it is a product of two vectors, just that it rotates the
way a product of two vectors rotates when we go from one coordinate system to another.

In term of~~I, we can quickly derive for rotation about a fixed axis,n̂, the component of angular
momentum in thên direction. In general, thên component of~L is

n̂ · ~L = n̂ · ~~I · ~ω (56)

but for a body that is rotating around then̂ axis,~ω = ω n̂ and so

n̂ · ~L = n̂ · ~~I · ~ω = n̂ · ~~I · ωn̂ = ω n̂ · ~~I · n̂ (57)

But we showed last week thatω times the moment of inertia about the axisn̂, In̂, is ω times the
component in thên direction of angular momentum associated with angular velocityω n̂. Thus
(57) implies that

In̂ = n̂ · ~~I · n̂ (58)

This means that our tensor~~I contains all the information about the moment of inertia about any
possible axis!

Let’s see what~~I looks like for the example system if we take the reference point~R to be the
center of mass. If the rectangular frame has sides of length` and` ′, and we center the object in the
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z = 0 plane, the positions of the mass are as shown below:
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(59)

The center of mass (the vector~R) is at the origin, by symmetry or explicit calculation

~R =
1

M

∑

j

mj ~rj = (0, 0, 0) (60)

Then we have
mj = m, ~rj − ~R = (±`/2,±` ′/2, 0) (61)

where the± signs in (61) are independent, running over all four possibilities asj runs from 1 to 4.
Now we can compute the various components of the moment of inertia tensor: For example

~~Ixx =
∑

j

mj

(
(~rj − ~R )2 − (rj −R)2

x

)

=
∑

j

mj

(
(rj −R)2

y + (rj −R)2
z

)
= m` ′ 2

~~Iyy =
∑

j

mj

(
(rj −R)2

x + (rj −R)2
z

)
= m` 2

~~Ixy =
~~Iyx = −∑

j

mj

(
(rj −R)x(rj −R)y

)
= 0

~~Izz =
~~Ixx +

~~Iyy
~~Ixz =

~~Iyz =
~~Izx =

~~Izy = 0

(62)
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In matrix form, this looks like

~~I =




m` ′2 0 0

0 m`2 0

0 0 m(`2 + ` ′2)


 (63)

Notice that the vanishing of~~Ixy is slightly of non-trivial. It follows from the form of (61), but
requires a cancelation between different terms in the sum. This happened only because we were
clever (or at least not stupid) in our choice of coordinate system.

An impulsive demo

An impulsive force is one that is applied for a very short time. To get a large change in momentum
in a very short time requires a very large impulsive force. Applying a very large force is a good
way of breaking things. Here is an example.
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lecture 19

Topics:
Where are we now?
The moment of inertia tensor~~I
~L and~ω

The body frame

Where are we now?

We are poised to take the next big step into understanding the motion of rigid bodies. By putting
together the ideas of impulsive torque and the angular velocity vector, we can solve some more
interesting problems. Last time, we introduced the moment of inertia tensor. This time we will
briefly review this and go on to apply it in interesting ways.

Last time, we introduced the following problem. Suppose that we are out in space, and we
come upon a light rigid rectangular frame with masses at the corners, as shown:
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× ~F

(1)

It is floating at rest, say in thex-y plane, when we hit one of the masses with a hammer, applying
a large force in the−z direction for a very short time, as shown. This produces an impulsive force
and torque on the rigid frame. The question is, immediately after the hammer blow, what is the
velocity of each of the masses? We began this analysis last time by defining the moment of inertia
tensor and the relation between the angular momentum~L and the angular velocity~ω.

The moment of inertia tensor

Let’s begin by reviewing what we said last time about the moment of inertia tensor. It may be
comforting to note that the scary definition we arrived at last time, and will look at again today is
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not the way we will usually calculate~~I. At the end of today’s lecture, we will begin to discuss
easier ways. But it is important to understand where it comes from so we will review it and apply
it to our floating frame problem.

Let’s go back to our expression for the angular momentum of a rigid body about a point~R,

~L =
∑

j

(~rj − ~R )× ~pj =
∑

j

mj (~rj − ~R )× (~̇rj − ~̇R ) (2)

We showed last time that we can rewrite this as

~L =
∑

j

mj

[(
(~rj − ~R ) · (~rj − ~R )

)
~ω − (~rj − ~R )

(
(~rj − ~R ) · ~ω

)]
(3)

Equation (3) is the desired relation between~L and~ω. However, it is useful to write it in a different
form. The first thing to notice is that both sides of (3) are vectors, and that the right hand side is
proportional to the vector~ω, but is not, in general, in the same direction as~ω. The second thing to
notice is that the second term in (3) involves a dot product. We can think of this as the sum that
appears in a matrix multiplication. This allows us to write (3) in a slightly more useful form in
matrix notation.

First define a matrix~~B as follows:

~~B =
∑

j

mj (~rj − ~R ) (~rj − ~R ) =




Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz


 (4)

=
∑

j

mj




[~rj − ~R ]x [~rj − ~R ]x [~rj − ~R ]x [~rj − ~R ]y [~rj − ~R ]x [~rj − ~R ]z
[~rj − ~R ]y [~rj − ~R ]x [~rj − ~R ]y [~rj − ~R ]y [~rj − ~R ]y [~rj − ~R ]z
[~rj − ~R ]z [~rj − ~R ]x [~rj − ~R ]z [~rj − ~R ]y [~rj − ~R ]z [~rj − ~R ]z


 (5)

We have used a notation of two vector signs to indicated this matrix (Dave, in his book, just uses
bold face and you have to figure out from the context whether you are dealing with a vector or a
matrix). In general, this is not a good thing to do, but for our purposes in this course, it doesn’t
do any harm to use a slightly sloppy notation in which we think of our matrices as “bivectors.”
In fact, it will be kind of helpful. The reason is that the matrices we will have to deal with are
symmetric, so we don’t have to be careful to distinguish which vector index is which. You can see

the symmetry from the definition of~~B, because

Bxy = Byx , Bxz = Bzx , Byz = Bzy . (6)

So we can combine the two terms in (3) as a single matrix equation,

~L =
~~I · ~ω (7)

where~~I is the matrix



Bxx + Byy + Bzz 0 0

0 Bxx + Byy + Bzz 0

0 0 Bxx + Byy + Bzz


−




Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz


 (8)
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or

~~I =




Byy + Bzz −Bxy −Bxz

−Byx Bxx + Bzz −Byz

−Bzx −Bzy Bxx + Byy


 (9)

Like the matrix~~B, the matrix~~I is symmetric —

Ixy = Iyx , Ixz = Izx , Iyz = Izy . (10)

Thus~~I is completely determined by 6 numbers,

Ixx , Iyy , Izz , Ixy , Ixz , and Iyz . (11)

The object~~I is a thing called the “moment of inertia tensor.” The term “tensor” refers to a
large class of objects in mathematics that are generalizations of vectors. I was not planning on
talking about tensors in general, but there were so many questions about the concept on the QA,
that I felt I had to say something about it. So here is a definition of “tensor” that makes sense to a
physicist (mathematicians would say things much more abstractly).A tensor is anything that can
be written as a linear combination (that is just a sum with coefficients) products of vectors.
We have talked a lot about what makes a vector a vector, which is the way it transforms under a
symmetry transformation. And we know that there are different kinds of vectors depending on what
symmetry we are talking about. The 3-vectors you are familiar with from high school transform
under rotations in 3-dimensional space, but we have also now seen 4-vectors that transform under
Lorentz transformations. And there are other things are useful as well. The moment of inertia
tensor is a sum of products of ordinary 3-vectors. There are different kinds of tensors depending
on how many vectors you multiply together. The number of vectors in the product is called the
“rank” of the tensor. A vector is a rank 1 tensor. Just like with vectors, you can add tensors of the
same rank together and they are still tensors of the same rank, and you can write tensor equations
in which both sides are tensors of the same rank. And indeed this is a good thing to do, because
then if the equation is true in one coordinate system, it is automatically correct in all coordinate
systems.

You can see how this works explicitly in (4) and (5) where you see that each component of~~B

(which is a rank 2 tensor) is a linear combination of products of components of the vectors~rj − ~R.
The reason that I didn’t want to spend time on this is that it is a little more complicate to explain

why the first term in (8),

~~A =




Bxx + Byy + Bzz 0 0

0 Bxx + Byy + Bzz 0

0 0 Bxx + Byy + Bzz


 (12)

is a tensor. This doesn’t look like a linear combination of products of two vectors, but actually we
can write it as

~~A = (Bxx + Byy + Bzz)(x̂ x̂ + ŷ ŷ + ẑ ẑ) (13)
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This is special and important feature of the identity matrix. So in fact, both terms in (8) are linear

combinations of products of two vectors, and so~~I is a rank 2 tensor.
Rank 2 tensors, like the moment of inertia tensor, are special because they can be written as

matrices and thought of as a machine for taking linear combinations of the components of one
vector (~ω) to get another vector (~L). “Matrix” is just a generic term for something with rows and
columns. The particular matrices that we care about are rank 2 tensors. Equations (7) and (9)

show that you can also think of~~I as a3 × 3 matrix, and think of the right hand side of (7) as a

matrix product of the matrix~~I and the vector~ω. Because (7) is an equation for a vector, it has a
meaning independent of the particular coordinate system in which we describe the vectors. But

like a vector, the tensor~~I will have different components in different coordinate systems. What
makes the moment of inertia tensor a tensor is that when we go from one coordinate system to

another, the components of~~I transform in the just the right way so that (7) is still a correct vector

equation. That is the meaning of the two vector signs on~~I. This is implicit in (7), in which one of

the vector signs on~~I is associated with the vector nature of~L on the left hand side, while the other
vector index is combined by the dot product with the vector index of~ω so that the right hand side
behaves like a vector. Incidentally, for the mathematically inclined, note that taking a dot product
in this way is general way of reducing the rank of a tensor. If we just multiplied the 9 components

of ~~I with the 3 components of~ω in all possible ways, we would get 27 components of a rank 3
tensor

~~~C =
~~I ~ω (14)

But by taking the dot product, we can get rid of two vectors and make a rank 1 tensor - that is a
vector. This will be very important in our understanding of rigid bodies.

In term of~~I, we can quickly derive for rotation about a fixed axis,n̂, the component of angular
momentum in thên direction. In general, thên component of~L is

n̂ · ~L = n̂ · ~~I · ~ω (15)

but for a body that is rotating around then̂ axis,~ω = ω n̂ and so

n̂ · ~L = n̂ · ~~I · ~ω = n̂ · ~~I · ωn̂ = ω n̂ · ~~I · n̂ (16)

But we showed last week thatω times the moment of inertia about the axisn̂, In̂, is ω times the
component in thên direction of angular momentum associated with angular velocityω n̂. Thus
(16) implies that

In̂ = n̂ · ~~I · n̂ (17)

This means that our tensor~~I contains all the information about the moment of inertia about any
possible axis!

Let’s see what~~I looks like for the example system if we take the reference point~R to be the
center of mass. If the rectangular frame has sides of length` and` ′, and we center the object in the
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z = 0 plane, the positions of the mass are as shown below:
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(18)

The center of mass (the vector~R) is at the origin, by symmetry or explicit calculation

~R =
1

M

∑

j

mj ~rj = (0, 0, 0) (19)

Then we have
mj = m, ~rj − ~R = (±`/2,±` ′/2, 0) (20)

where the± signs in (20) are independent, running over all four possibilities asj runs from 1 to 4.
Now we can compute the various components of the moment of inertia tensor: For example

~~Ixx =
∑

j

mj

(
(~rj − ~R )2 − (rj −R)2

x

)

=
∑

j

mj

(
(rj −R)2

y + (rj −R)2
z

)
= m` ′ 2

~~Iyy =
∑

j

mj

(
(rj −R)2

x + (rj −R)2
z

)
= m` 2

~~Ixy =
~~Iyx = −∑

j

mj

(
(rj −R)x(rj −R)y

)
= 0

~~Izz =
~~Ixx +

~~Iyy
~~Ixz =

~~Iyz =
~~Izx =

~~Izy = 0

(21)
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In matrix form, this looks like

~~I =




m` ′2 0 0

0 m`2 0

0 0 m(`2 + ` ′2)


 (22)

Notice that the vanishing of~~Ixy is slightly of non-trivial. It follows from the form of (20), but
requires a cancelation between different terms in the sum. This happened only because we were
clever (or at least not stupid) in our choice of coordinate system.

~L and ~ω

The important thing about the moment of inertia tensor is equation (7), which describes the con-

nection between the angular momentum vector and the angular velocity vector. Because~~I is a
tensor, and not simply a number, (7) implies that these two vectors are generally not in the same

direction. There is a very nontrivial relation between them that depends on the form of~~I.
One example of the non-trivial connection between~L and~ω is the fact that if one of these

vectors is constant, the other is generally changing with time. For example, imagine that we take
the rectangular frame we have been discussing and run a frictionless rod through the centers of
masses 1 and 3, as shown below
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(23)
If we now set the frame rotating about the fixed rod by pushing mass 2 into the plane, the system
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will have an angular velocity vector along the rod, as shown below:
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(24)
Here~ω is in the direction(`, ` ′, 0), and in the figure,̀ > ` ′. But to find thex andy components

of ~L, we multiply~ω by ~~I,

~L =




Lx

Ly

Lz


 =




m` ′2 0 0

0 m`2 0

0 0 m(`2 + ` ′2)







ωx

ωy

ωz


 =




m` ′2ωx

m`2ωy

m(`2 + ` ′2)ωz


 (25)

In this case,ωz = 0, so this has the effect of multiplying thex andy components of~ω by different
constants,

Lx =
~~Ixxωx = m` ′ 2ωx , Ly =

~~Iyyωx = m` 2ωy , (26)
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and this implies that~L is in a different direction, proportional to(` ′, `, 0), as shown below:
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(27)
Now as the frame rotates about the frictionless rod, the angular momentum vector rotates with

it! The component of~L in the direction of the frictionless rod,L‖, does not change. Because
there is no friction, there can be no torque in the direction of the rod, and thus the rate of change
of this component of~L vanishes. That in turn means that the magnitude of~ω remains constant
as well. But the rod can and does produce forces on the frame perpendicular to the rod. These
forces, shown below, produce the torque that causes the perpendicular component of the angular
momentum vector,~L⊥, to change. This component executes uniform circular motion with angular
frequencyω = |~ω| in the plane perpendicular to~ω. Thus the magnitude of the torque is

|~ω × ~L| = ω|L⊥| (28)

This business of angular momentum and angular velocity being in different directions may not
make obvious sense to you. But you should be able to feel this torque in your bones. You should
be able to see that the accelerations required to keep this system in uniform circular motion are
in different planes, and that this must produce a torque. Since torque is rate of change of angular
momentum, you can go backwards and conclude that the angular momentum does not point along
the angular velocity. I hope this will help you develop intuition for the meaning of the moment of
inertia tensor.
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(29)

A practical example of the torque that result from angular momentum that is not in the direction
of the angular velocity is the process of balancing tires for your car. Here is a figure from the web
(at http://www.discounttire.com/dtc/brochure/info/tireBalance.jsp):

a vibration to be felt. The illustration below shows how an imbalance creates vibration.

Static Imbalance:

Occurs when there is a

heavy or light spot in the 

tire so that the tire won't 

roll evenly and the tire

Dynamic Imbalance:

Occurs when there is

unequal weight on one 

or both sides of the

tire/wheel assembly's 

The reason that a mechanic spins your tire during the balancing process is check for dynamic im-
balance, which results from mass that is balanced around the center of mass but is not symmetrical
with respect to the axis. When a tire with this imbalance spins on the axle, the angular momentum
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is not in the direction of the axle and the perpendicular component of~L undergoes uniform circular
motion with the tire. Thus there is a non-zero torque,~ω × ~L which causes the tire to shimmy.

Now back in the original problem of hitting the frame while it is floating in space, I hope that
you can now begin to see why in general it is hard to find the trajectories of our masses after the
system starts to rotate. In this case, after the hit, it is the angular momentum vector that is fixed,
rather than the angular velocity vector, but the relation between them is still changing in time.

Let me say this once more in more generality. If a rigid body is rotating freely, the angular
momentum vector~L is fixed in space (because this is an inertial frame - often called thespace
frame),, but the~rjs that determine the position of the masses in the rigid body are determined
by the orientation of the body, so they are all rotating about the center of mass and constantly
changing in some way that depends on the angular velocity vectorω. We can calculateω from ~L if

we know the moment of inertia tensor,~~I. But to find~~I, we need to know the~rjs that depend on the
orientation of the body. Therefore the form of the moment of inertia tensor is changing in time. It
depends on the orientation of the body, which itself is constantly changing. But this means that~ω

is constantly changing. So this is an incredible mess, and it seems circular. What are we going to
do to extricate ourselves?

The body frame

The way out of this dilemma is to think about a frame in which the moment of inertia tensor
remains simple. The moment of inertia tensor is constant in a coordinate system that is fixed on

the body, and rotates with it. The moment of inertia must be constant in this frame because~~I is
determined by the masses and position vectors that describe their positions within the body, and if
the body is at rest, these position vectors are all constant. This is called thebody frame. The body
frame is certainly not necessarily an inertial frame. In a week or so, we will see how this modifies
Newton’s laws in such a frame. But even though it is not an inertial frame, it will be useful to us
in our analysis of rigid body rotations.

In the body frame, there is a particularly simple choice of coordinate system that makes the
moment of inertial tensor look simple. For every body, there are three perpendicular directions,
described by unit vectorŝe1, ê2 and ê3, which have the nice property that for a rotation about
an axis in one of these directions, the angular momentum is in the same direction as the axis of
rotation. This is a general result from linear algebra.1 The axes in the directionŝe1, ê2 andê3 are
called the principal axes of the body. Then we say that the body has a moment of inertiaI1 about
the axisê1, a moment of inertiaI2 about the axiŝe2, and a moment of inertiaI3 about the axiŝe3.

We can write the tensor~~I in any coordinate system as a sum over the three principal axes,

~~I = I1 ê1 ê1 + I2 ê2 ê2 + I3 ê3 ê3 (30)

1Formally, this is the statement that we can always choose a coordinate system in which a given symmetric matrix
is diagonal.
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If we choose a coordinate system in whichê1, ê2 andê3 are the basis vectors, then~~I is diagonal.

~~I =




I1 0 0

0 I2 0

0 0 I3


 (31)

The momentsIj around the principal axes are called the principal moments. The directions of
the three principal axes completely specify the orientation of the body. The principal axes in our
example above are thex, y andz axes.

In matrix language, the principal axes have the following properties:

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1 , ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = 0 , (32)

and
~~I · ê1 = I1 ê1 ,

~~I · ê2 = I2 ê2 ,
~~I · ê3 = I3 ê3 . (33)

This is the mathematical statement of the physical properties that I just described. In linear algebra

lingo, the vectorŝej that describe the principal axes are theeigenvectorsof the matrix~~I, and the
principal moments,Ij, are the correspondingeigenvalues.

For rotation about a principal axis, the angular momentum is in the same direction as the
angular velocity and the moment of inertia is the principal moment. For example for rotation about
the axisê1, the angular velocity has the form~ω = ω ê1, so (33) gives

~L =
~~I · ~ω = ω

~~I · ê1 = ω I1 ê1 = I1 ~ω (34)

so that indeed the angular momentum is just the principal moment times the angular velocity vector.
You can also see explicitly from (30)-(33) that the principal moments are the moments of inertia
about the principal axes:

ê1 · ~~I · ê1 = I1 , ê2 · ~~I · ê2 = I2 , ê3 · ~~I · ê3 = I3 . (35)

This gives us an easy way to calculate the principal moments once we know the principal axes. We
can use the expression for the moment of inertia around a fixed axis

n̂ · ~~I · n̂ = In̂ =
∑

j

mj |n̂× (~rj − ~R )|2 (36)

to write

I1 =
∑

j

mj |ê1 × (~rj − ~R )|2

I2 =
∑

j

mj |ê2 × (~rj − ~R )|2

I3 =
∑

j

mj |ê3 × (~rj − ~R )|2

(37)
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If the three principal moments of the object have different values, then the principal axes are
unique (we will see later what happens with principal moments are equal). In this case, the prin-
cipal axes are a kind of built in coordinate system in the body frame. Giving the directions of the
principal axes in space specifies the orientation of the body in space.

Note that in the impulse problem that we started at the beginning of the lecture, we found that
for the choice of coordinate system we made,I was diagonal. That means that the principal axes
were the coordinate axes. This is what I meant by saying that we had chosen a coordinate system
that wasn’t stupid. In fact, we will see next time how to avoid stupid coordinate systems - and this
will be the best way of actually calculating the moment of inertia tensor in all the cases we discuss
in this course.

Finally, for the mathematicians in the class (and the Les Phys fans - which I hope is everybody),

note that we can regard~~I as abilinear form - that is a machine that takes two vectors~A and ~B

into a number, via the map
~A, ~B → ~A · ~~I · ~B (38)

Because the matrix~~I is symmetric, this is a symmetric bilinear form —

~A · ~~I · ~B = ~B · ~~I · ~A (39)

Finally, you can show that if the object is truly three dimensional, and not a mathematical abstrac-
tion like an infinitely thin rod or a point mass, then all the principal moments are greater than zero.
This means that this is a positive definite, nondegenerate, symmetric bilinear form.
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lecture 20

Topics:
Guessing principal axes - theorems
Another example - rectangular solids
Rotation about a principal axis
When principal moments are equal
Proof of the relection theorem
Finishing the impulse problem
The final velocities
After the impulse

Where are we now

Having described the moment of inertia tensor in the last lecture, we are now going to start to see
what to do with it. First, let us sum up the most important properties.

1. The angular momentum~L of a rigid body is related to its angular velocity vector~ω by the
matrix equation

~L =
~~I · ~ω (1)

where~~I is the moment of inertia tensor which in matrix form looks like

~~I =




Byy + Bzz −Bxy −Bxz

−Byx Bxx + Bzz −Byz

−Bzx −Bzy Bxx + Byy


 (2)

where the symmetric matrix~~B is defined as

~~B =
∑

j

mj (~rj − ~R ) (~rj − ~R ) (3)

This is physics. It follows from the definition of the angular momentum and the equation
for the motion of the parts of a rotating rigid body.

2. At any given time, there are three perpendicular axes

êj for j = 1 to 3 (4)

called the principal axes such that if~ω is in theêj direction, then~L is also —

~~I · ωêj = Ij ωêj (5)

We can write the tensor~~I in any coordinate system as a sum over the three principal axes,

~~I = I1 ê1 ê1 + I2 ê2 ê2 + I3 ê3 ê3 (6)
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If we choose a coordinate system in whichê1, ê2 and ê3 are the basis vectors, then~~I is
diagonal.

~~I =




I1 0 0

0 I2 0

0 0 I3


 (7)

The momentsIj around the principal axes are called the principal moments. The directions
of the three principal axes completely specify the orientation of the body. The principal axes
in our example above are thex, y andz axes.

This is mathematics.The principal axeŝe1, ê2 andê3 are the eigenvectors of the real sym-

metric matrix~~I, and the principal momentsI1, I2 andI3 are the corresponding eigenvalues.

3. The principal momentIj is the moment of inertia about the principal axisêj.

4. The principal axes are tied to the body — they rotate as the body rotates. This is one of the
things that makes rigid body rotations complicated if~ω is not along a principal axis.

Let us now return to our auto mechanic checking your tires for dynamic imbalance.
a vibration to be felt. The illustration below shows how an imbalance creates vibration.

Static Imbalance:

Occurs when there is a

heavy or light spot in the 

tire so that the tire won't 

roll evenly and the tire

Dynamic Imbalance:

Occurs when there is

unequal weight on one 

or both sides of the

tire/wheel assembly's 

What the auto mechanics is trying to do is to balance your tire so that the axle is a principal axis of
the tire. Once that is done, the angular momentum of the tire spinning around its axle is along the
axle and does not change as the tire spins. Therefore no torque is required to keep the tire spinning
on it axle, and there is no shimmy!

Guessing principal axes - theorems

Now that we know about principal axes, it is useful to discuss the question of finding the moment
of inertia tensor again. The general formula in (2) and (3) is certainly something you should know,
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but with any luck you will seldom have to use it. Instead, you can remember a couple of more
general things. The first thing to notice is that it is MUCH easier to find the moment of intertia
tensor if you already know what the principal axes are. My recommendation is that instead of
spending your time understanding the ins and outs of the general formula,

1. you should understand how to guess the principal axes, and

2. you should understand how to find the tensor if you already know the principal axes.

This is a far better way, in practice, to actually compute~~I.
Let’s look at step 2 first. Suppose that you know the principal axes. Then you can rotate to a

coordinate system in which the principal axes are the coordinate axes,ê1 = x̂, ê2 = ŷ, ê3 = ẑ. In

this coordinate system,~~I is diagonal and

~~Ixx = I1 ,
~~Iyy = I2 ,

~~Izz = I3 , (8)

So for example, in our rectagular example,
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j = 1

(`/2, `′/2, 0)

j = 2

(`/2,−`′/2, 0)

j = 4

(−`/2, `′/2, 0)

j = 3

(−`/2,−`′/2, 0)

(9)

if we know that thex, y andz axes are principal, we can immediately conclude that~~Ixx = m`′2

because there are four masses each of massm and each a distancè′/2 from thex axis.
Now let’s go back to step 1. The primary tool here (it will probably not surprise you) is

symmetry. There are three theorems that will be useful.

The equal-moment theorem: Any vector in the plane formed by two different principal
axes of a rigid body with equal moments is also a principal axis with the same moment.

The reflection theorem: If a rigid body is invariant under reflection in a plane, the vector
perpendicular to this plane is a principal axis.
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The rotation theorem: If a rigid body is invariant under a rotation of α < 2π about an axis
n̂, then (1) n̂ is a principal axis, and (2) if α 6= π, all vectors in the plane perpendicular
to n̂ are principal axes with the same principal moment.

We will prove these later. Let’s first see how to use the reflection theorem to guess the principal
axes of our frame example.

This theorem immediately implies that the principal axes in our example problem are thex,
y andz axes, because the system has three planes of symmetry, thex-z andy-z planes (shown
below) and thex-y plane (the plane of the paper)
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Another example - rectangular solids

Consider a rectangular solid with heighth, width w and depthd, with a uniform mass density,
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The principal axes are the obvious ones — parallel to the edges, perpendicular to the faces. Again
the reason is symmetry. The body is symmetrical under reflections through planes through the
center of the body, parallel to any of the faces. So by our theorem, the vectors perpendicular to the
faces are principal axes.

Now we can calculate the principal moments by calculating the moments of inertia about the
principal axes . For example, moment of inertia about the axisê1 can be written as an integral

∫ d/2

−d/2
dx

∫ w/2

−w/2
dy

∫ h/2

−h/2
dz ρ (y2 + z2) =

ρ dwh

12
(w2 + h2) =

m

12
(w2 + h2) (12)

Rotation about a principal axis

If a rigid body rotates freely about one of its principal axes, the angular momentum is in the same
direction as~ω. This makes it easy to understand the physics. Suppose that the principal axisê1 is
lined up with theẑ direction, and~ω is also in thêz. Then the angular momentum is also in theẑ

direction and is given by
~L = I1 ~ω = I1 |~ω| ẑ (13)

Conservation of angular momentum then tells you thatω remains constant as well. So the body just
rotates with constant angular velocity about its principal axis, which remains in the same direction
in the space frame. The other two principal axes, of course, are not fixed in the space frame. They
rotate around with the body. This is illustrated in theMathematicafile rectangle.nb, which shows
physically sensible motions of a rectangular rigid body. The blue line in the animation represents
the angular velocity vector and the angular momentum vector, which are in the same direction. No
problem!

But if at some time the angular velocity is not lined up with any of the principal axes, then the
situation is much more complicated. Now the fact that the angular momentum is constant doesn’t
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immediately tell you about the angular velocity, because the components of the moment of inertia

tensor~~I are changing with time in the space frame because of the rotation. But that in turn means
that~ω is changing with time. Later, we will try to understand this much more complicated motion
for a symmetric top.

Before we get started on this difficult path, I want to show you some allowed motions of rigid
bodies that LOOK complicated, but actually are not. We will do that in the next section.

When principal moments are equal

Something interesting happens when two of the principal moments are equal, as in a rectangle with
w = d 6= h. In this case,

I1 = I2 =
1

12
(h2 + d2) =

1

12
(h2 + w2) and I3 =

1

12
(d2 + w2) =

1

6
d2 (14)

In this case, the principal axis corresponding to the unequal moment is unique, but the body
is happy to rotate about any axis in the plane formed by the two principal axes corresponding to
equal moments. The reason is the equal moment theorem:Any vector in the plane formed by
two different principal axes of a rigid body with equal moments is also a principal axis with
the same moment.Let’s prove this. It follows because of the linearity of the fundamental equation
that defines the principal moments. Suppose for example thatI1 = I2 = I. Then

~~I · ê1 = I ê1 and ~~I · ê2 = I ê2 . (15)

but that means that any linear combination ofê1 andê2 satisfies the same equation:

~~I · (a1ê1 + a2ê2) = a1
~~I · ê1 + a2

~~I · ê2 = a1 I ê1 + a2 I ê2 = I (a1ê1 + a2ê2), . (16)

But with an arbitrary linear combination, we can get any vector in the plane spanned byê1 andê2.
This completes the proof of the equal moment theorem.

Notice that the same linearity argument, (16), works even if the principal axeŝe1 andê2 are not
orthogonal, that iŝe1 · ê2 6= 0, so long as the two vectors are not equal. Indeed, the only time one
can have principal axes that are not orthogonal is when they both have the same principal moment,
because only then can we take linear combinations using (16) to make orthogonal axes and thus
satisfy our general theorem that the momentum of inertial tensor can be made diagonal by going
to the right coordinate system. Actually, (16) shows that in this case, the coordinate system is not
unique. Any orthonormal pair of vectors in the plane formed byê1 andê2 is a perfectly good basis

and leads to the same form for~~I.
A corolary of this and the general fact that every body has three perpendicular principal axes

is that if you find two principal axes that are not perpendicular to one another, you know that their
principal moments must be equal even before you calculate them.

The rotation theorem is closely related to this.If a rigid body is invariant under a rotation
of α < 2π about an axisn̂, then (1) n̂ is a principal axis, and (2) if α 6= π, all vectors in the
plane perpendicular to n̂ are principal axes with the same principal moment.
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Let’s prove (1) first.
First note that there must be some principal axisê1 with a nonzero component in thên direc-

tions. Then we can write
ê1 = a n̂ + b p̂ (17)

wherep̂ is some unit vector in the plane perpendicular ton̂. Under the rotation byα aboutn̂, n̂

doesn’t change, but̂p rotates in the plane perpendicular ton̂. Because of the symmetry, each such
rotation must give a principal axis with the same moment asê1. Then there are three possibilities:

1. b = 0, in which casêe1 ∝ n̂ and (1) is true;

2. b 6= 0 andα = π, in which casêp changes sign under the rotation so thatê1 = a n̂ + b p̂ and
ê1 = a n̂ − b p̂ are both principal axes with the same moment - but theê1 is in the plane of
two principal axes with the same moment and is a principle axis, and again (1) is true;

3. b 6= 0 andα = π, in which case a seqence of rotations gives at least three linearly indepen-
dent principal axes with the same moment, so any vector is a principal axis, and again (1) is
true.

Then (2) follows because ifα 6= π, we can look at a principal moment perpendicular ton̂ and it
rotates into a linearly independent vector perpendicular ton̂, and then the equal moment theorem
gives the result.

A body with two equal principal moments is called a symmetric top because one simple way
to get two equal moments is to have acontinuoussymmetry that rotateŝe1 into ê2, as in a top like
that shown below:
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...................

..............

ê1

ê2

ê3

..................
.............................

.........................................................
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................
.....................
.............................................................................................................................

.................................................................................................................................................................................................................................................................................................
....................................

....................
......................

................

....
................
................
.......................................

...................................

...................................

.

...................................

................
(18)

In the case of a symmetric top, it is obvious that any vector in the plane of the disk is a principal
axis, because all these directions are physically equivalent. We can rotate one into another. Note,
however, that as we have seen above such a symmetry is not necessary. As long asI1 = I2, any
vector in the plane of̂e1 and ê2 is a principal axis. In the rectangular solid withd = w, these
directions don’t all look equivalent, but they are equivalent so far as rotations are concerned. Thus
for example a rectangular solid withd = w can rotate happily about any axis perpendicular to
its length. This rotation looks more complicated than the rotation about an axis perpendicular to a
face, but really it isn’t. An example is shown in theMathematicafile cylinder.nb, which illustrates
that the behavior of such a rectagular solid with respect to rotations is the same as that of a cylinder.
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A nice symmetrical body like a sphere has all three principal moments equal,

I1 = I2 = I3 = I =
2

5
mr2 (19)

wherem is the mass andr is the radius. For such a symmetrical object, the angular momentum is
always in the direction of the angular velocity

~L = I ~ω (20)

As with the symmetrical top, (20) does not depend on the body actually being rotationally sym-
metric. It depends only on the fact thatI1 = I2 = I3. For example, a solid cube is clearly not
invariant under arbitrary rotations. However, it does haveI1 = I2 = I3 because it is symmetric
underdiscreterotations by90◦ about lines perpendicular to the faces. This is enough to guarantee
that the angular momentum is parallel to the angular velocity for a cube. So a cube is happy to
rotate about any axis at constant angular velocity, whether or not the axis is lined up with one of
the special axes in the cube. The same is true of any other regular solid, as in theMathematicafile
regular-solid.nb. The three moments of inertia are equal.

Proof of the reflection theorem

Here is the theorem again.If a rigid body is invariant under reflection in a plane, the vector
perpendicular to this plane is a principal axis. Here is the proof. Suppose we have a plane of
reflection and we construct the vector perpendicular to the plane. Some principal axis must have
at least some component along this vector. But then because of the symmetry, we know that if we
reflect this axis in the symmetry plane, we must get another principal axis with the same principal
moment, as illustrated below:

symmetry
plane

................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
........... putative principal axis.................................................................................................................................................................................................................................................................................

reflected principal axis

(21)

Now there are two possibilities. One possibility is that the reflected axis coincides with the original.
The only way this can happen is for the original axis to be perpendicular to the symmetry plane,
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in which case the theorem is true. The other possibility is that the reflected axis is different.
But then there are two distinct axes with the same principal moment (because they are physically
equivalent due to the symmetry). But then any axis in the plane formed by these two is a perfectly
good principal axis — in particular the one perpendicular to the symmetry plane — so again the
theorem is true.

This is illustrated inMathematicafile axes2.nb. There is a slight subtlety that is also illustrated
in this file. A reflection is not equivalent to a rotation by180◦. And in fact, symmetry under a
rotation by180◦ doesn’t tell you anything about principal moments in the plane of the rotation.
Symmetry under a rotation by2π/n for n ≥ 3 is enough to guarantee that any vector in the plane
perpendicular to the axis of rotation is a principal axis with a principal moment independent of the
angle in the plane. But this is not true forn = 2 — symmetry under a rotation byπ or 180◦. This
only tells you that the axis is a principal moment.

Finishing the impulse problem

Let’s review where we are with the light rigid rectangular frame with masses at the corners, as
shown:
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× ~F

j = 1

(`/2, `′/2, 0)

j = 2

(`/2,−`′/2, 0)

j = 4

(−`/2, `′/2, 0)

j = 3

(−`/2,−`′/2, 0)

(22)
where the force acts for a very short time, and the impulse is into the paper, with the form

∫
dt ~F = −ẑ P (23)

for positiveP . Earlier, we found the center of mass to be at the origin and we found the moment
of inertia tensor for this object about its center of mass to be

~~Ixx = m`′2 ~~Iyy = m`2 ~~Izz =
~~Ixx +

~~Iyy
~~Ixy =

~~Ixz =
~~Iyz = 0 (24)
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To complete the story, we need to compute the velocity of the center of mass, and the angular
velocity about the center of mass. The velocity is easy. We know the impulse, and we know the
total mass, so we can compute the change in momentum and thus the final velocity. We’ll do this
in a minute. First we will do the interesting part and compute the angular velocity.

To do this, we first compute the impulsive torque about the center of mass — that is
∫

dt ~τ (25)

over the short period during which the force acts. This is
∫

dt (~r2 − ~R)× ~F = (`/2,−`′/2, 0)× (0, 0,−P ) = (P`′/2, P `/2, 0) (26)

where we have used the fact that the force acts for a very short time, so that~r2 and~R do not change
significantly while the force acts, and they are therefore effectively constants and can be taken
outside the integral in (26). This is equal to the change in angular momentum about the center of
mass, which is the final angular momentum about the center of mass.

~L = (P`′/2, P `/2, 0) (27)

But the angular momentum is related to the angular velocity by

~L =
~~I · ~ω (28)

Because~L is conserved after the force acts, (28) remains true for any time afterwards. But here
is the point. Immediately after the force acts, the body has still not had a chance to move from its
position in (22). Therefore, the moment of inertial tensor is given by (24), which implies (using
(24) and (27))

(P`′/2, P `/2, 0) = (m`′2 ωx,m`2 ωy,
~~Izzωz) (29)

which in turn implies

ωx =
P

2m`′
ωy =

P

2m`
ωz = 0 (30)

This is the desired result for the angular velocity about the center of mass immediately after the
hammer blow:

~ω =

(
P

2m `′
,

P

2m`
, 0

)
(31)

The directions of the vectors~L and~ω are shown below (in an arbitrary relative normalization,
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because they have different units).

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....................
..............

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
..................
..............

~L

~ω

............................................................................................................
................
....................

..............

..............................
................
.....................

...........................................................................................

............................................................................................................
................
....................

..............

..............................
................
.....................

...........................................................................................

m

m

m

m

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................


× ~F

j = 1

(`/2, `′/2, 0)

j = 2

(`/2,−`′/2, 0)

j = 4

(−`/2, `′/2, 0)

j = 3

(−`/2,−`′/2, 0)

(32)
It is amusing (though not particularly signficant) that~ω points at mass 1.

(31) is very easy to understand in the limit` = `′. In this case, the frame is a square, thex

andy principal moments are equal, so we can take the principal axes to be the diagonals, and (31)
simply describes rotation about the obvious diagonal, shown as the dashed line below:
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× ~F

(33)
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The final velocities

Now to get the velocities of the individual masses, we use the fact that the motion of the body is a
combination of the translational motion of the center of mass plus the rotational motion about the
center of mass. The final velocity of the center of mass is the impulse divided by the total mass:

~V =

(
0, 0,− P

4m

)
(34)

The velocity of massj is then given by

~V + ~ω × (~rj − ~R) (35)

where~ω is given by (31). Here they are:

~v1 =

(
0, 0,− P

4m

)
+

(
P

2m`′
,

P

2m`
, 0

)
×

(
`

2
,
`′

2
, 0

)

=

(
0, 0,− P

4m

) (36)

~v2 =

(
0, 0,− P

4m

)
+

(
P

2m`′
,

P

2m`
, 0

)
×

(
`

2
,−`′

2
, 0

)

=

(
0, 0,−3P

4m

) (37)

~v3 =

(
0, 0,− P

4m

)
+

(
P

2m`′
,

P

2m`
, 0

)
×

(
− `

2
,−`′

2
, 0

)

=

(
0, 0,− P

4m

) (38)

~v4 =

(
0, 0,− P

4m

)
+

(
P

2m`′
,

P

2m`
, 0

)
×

(
− `

2
,
`′

2
, 0

)

=

(
0, 0,

P

4m

) (39)

After the impulse

I keep saying that things get so complicated after the impulse that I don’t want to require you to
understand the general case. But I think it may be useful to see how we would useMathematicato
study it.Mathematicaallows us to follow the motion numerically in a pretty simple way, because it
gives us simple tools for dealing with rotations. Let’s look at the notebookafter-the-impulse.nb.

The key is to keep track of the rotation matrix~~R(t) (calledr in the notebook) that rotates the
body from its initial orientation to its orientation at timet. If we know this, and we know~ω(t)

(calledω in the notebook), then we can calculate~~R(t + dt) —

~~R(t + dt) = RotationMatrix[|~ω| dt, ~ω] · ~~R(t) (40)
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where RotationMatrix[θ,ω] (abbreviated asrm in the notebook) rotates byθ about the vector~ω.
This is just translation into matrix language of our cross product formula for the motion of a vector
rotating with angular velocity~ω. But we can also find~ω from the fixed angular momentum~L

because we can find the moment of inertia tensor in terms of~~R(t),

~~I(t) =
~~R(t) · ~~I(0) · ~~R(t)

T

(41)

Then

~ω(t) =
~~I(t)

−1

· ~L (42)

That is how the animation works. We look at the motion after the impulse in a frame moving along
with the center of mass. The green line shows~ω and the red line shows~L. AfterIt wanders all over
the place as the body tumbles out of control.
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lecture 20

Topics:
The free symmetric top in the space frame
Vectors in the body frame
The free symmetric top in the body frame
Euler’s equations
The free symmetric top ala Euler’s
The tennis racket theorem
As you know, a spinning top subject to a gravitational torque will precess. In fact, the situation

is a bit more complicated. If the top doesn’t get started quite right, the motion is more complicated.
The precession of the symmetry axis about the direction of the angular momentum that we saw in
our discussion of the free symmetric top gives wise to the phenomenon of nutation in precessing
symmetric tops. We will see how this works, and then go on to see what we can say about the
general case by looking at it in the body frame.

The free symmetric top in the space frame

Now we are finally going to face the music and try to figure out analytically what happens AF-
TER the initial impulse when the angular momentum and the angular velocity are not in the same
direction. However, I am not going to be so cruel as to try to completely solve the problem in
the case of a general rigid body. As I said, that is too hard. But we will analyze completely only
the case of the free precession of a symmetric top, with two equal moments of inertia. It not just
that I am taking pity on you. I think that it is possible to understand this in a way that is probably
impossible for the general case. Since I am interested in getting you to really understand things,
rather than just cramming facts into your head, I will focus on the simpler problem. I am going
to do this in a very slick way. We won’t need any complicated differential equations — just the

relation~L =
~~I · ~ω and the connection of the cross product to uniform circular motion. I hope that

you will find it so simple that you will be able easily to reproduce it yourself, though you may find
yourself wondering what happened.

Later, we will go back and do it the hard way.
Suppose that a rigid body with two equal principal moments (this makes it a symmetric top) is

floating out in space, and is rotating freely about its center of mass. Because there are no external
torques on the system, the angular momentum~L is conserved. If~L points along a principal axis
of the body, then the angular velocity vector~ω is parallel to~L and it also remains constant. The
interesting mathematical question is what happens to~ω when it is not parallel to~L. The physical
question is then what the resulting motion looks like!

You should not be surprised that the key is the connection between the angular momentum and
the angular velocity through the moment of inertia tensor —

~L =
~~I · ~ω (1)

1



The important point is that in the space frame, the principal axes of the top,ê1, ê2 andê3, are all
moving around as the body rotates, but at any given time, they form a complete orthonormal set of
vectors in terms of which we can expand any vector. For example

~ω = ê1 (ê1 · ~ω) + ê2 (ê2 · ~ω) + ê3 (ê3 · ~ω) = ω1 ê1 + ω2 ê2 + ω3 ê3 (2)

which just says that~ω can be expanded in the basis vectors,êj. Using (2) in this basis, (1) becomes

~L = I1 ω1 ê1 + I2 ω2 ê2 + I3 ω3 ê3 (3)

The relation (3) is entirely general, valid for an arbitrary moment of inertia, but here, we are dealing
with a symmetric top, for which two of the principal moments are equal. Let’s assume that the two
equal moments areI1 andI2, with corresponding principal axeŝe1 and ê2. As you know from
the equal-moment theorem, this means that any axis in the plane ofê1 andê2 (which is the plane
perpendicular tôe3) is a principal axis with the same principal moment. To remind you of this, I
will define I⊥ as

I⊥ = I1 = I2 (4)

Then we can write (3) as
~L = I⊥ ω1 ê1 + I⊥ ω2 ê2 + I3 ω3 ê3 (5)

Another way of deriving (5) is to use our dyadic expression for the moment of inertia tensor,

~~I = I1 ê1ê1 + I2 ê2ê2 + I3 ê3ê3 (6)

which for a free symmetric top looks like

~~I = I1 ê1ê1 + I⊥ ê2ê2 + I⊥ ê3ê3 (7)

Now because of (4), we can eliminate all reference toê1 andê2 which enormously simplifies
the problem. If we now multiply both sides of (2) byI⊥ and subtract both sides of the result from
(5), we get

~L = I⊥ ω1 ê1 + I⊥ ω2 ê2 + I3 ω3 ê3

− [ I⊥ ~ω = I⊥ ω1 ê1 + I⊥ ω2 ê2 + I⊥ ω3 ê3 ]

~L− I⊥ ~ω = (I3 − I⊥) ω3 ê3

(8)

or
~L = I⊥ ~ω + (I3 − I⊥) ω3 ê3 = I⊥ ~ω + I⊥ Ω ê3 (9)

where

Ω =
(I3 − I⊥) ω3

I⊥
(10)
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There is an ambiguity in the sign ofê3 because the symmetry axis is not directional, and we resolve
this by always takingω3 > 0. The constantΩ has units of angular velocity, and it always satisfies
the inequality

−ω3 ≤ Ω ≤ ω3 (11)

because
−I⊥ ≤ I3 − I⊥ ≤ I⊥ (12)

We will talk more about this in a general way soon.
It will sometimes be convenient to rewrite (9) as an equation forω,

~ω = ~L/I⊥ − Ωê3 (13)

The relations (9) and (13) have nothing in them beyond the connection between angular mo-
mentum and angular velocity and the fact thatI1 = I2 = I⊥. They are true at any time, but do not
tell us directly about time dependence. However, it is the simplicity of these relations that allows
us to solve this problem much more easily than we could for a general rigid body. Mathematically,
it is the equality ofI1 andI2 that allows us to eliminate botĥe1 andê2 from (9) and (13). Physi-
cally, this is particularly important because the one remaining principal axis in (9) and (13) is the
one we see in the typical symmetric top. The symmetry axis is special, and that makes (9) and (13)
particularly useful.

We can now get the time dependence by judiciously using the connection between rotation and
the cross product.

The first step is to notice that̂e3 is a principal axis fixed in the body, and it is therefore rotating
with the body. Like any other vector fixed in the body,ê3 has a time dependence given the the
cross product with the angular velocity vector~ω.

d

dt
ê3 = ~ω × ê3 (14)

The relation (14) is a differential equation for the time dependence ofê3, but it is not particularly
useful, because~ω is also changing with time in a way that we do not yet know. Instead of trying to
bull our way through this, we can use (13) to write

d

dt
ê3 =

(
~L/I⊥ − Ωê3

)
× ê3 =

~L

I⊥
× ê3 (15)

This is a much more useful equation, because~L is constant. In fact, we don’t even have to solve it,
because we already know exactly what it means geometrically. The time dependence ofê3 given
in (15) is what we expect if̂e3 is rotating about an axis in the direction of~L with angular velocity
~L/I⊥. Since~L is constant in the space frame, this must be what is actually going on for all times
— ê3 is undergoing uniform circular motion with angular velocity~L/I⊥. Now we are essentially
done. From this, we can calculate everything.

First notice that the component of the angular momentum in theê3 direction (along the symme-
try axis of the top),~L · ê3 is constant. Geometrically, this is becauseê3 is rotating around the fixed

3



vector~L, so while its component perpendicular to~L is constantly changing, its parallel component
is not. Analytically it follows from (15) as follows:

d

dt

(
~L · ê3

)
= ~L · d

dt
ê3 = ~L ·

(
~L

I⊥
× ê3

)
= 0 (16)

But ~L · ê3 is related toω3 by (5),
~L · ê3 = I3ω3 (17)

Thus (16) means thatω3 is constant,
d

dt
ω3 = 0 (18)

This in turn means thatΩ is constant also, so the coefficients in (9) and (13) are constant in time.
Note also that using (17),Ω can be written as

Ω =
|~L |
I⊥

I3 − I⊥
I3

cos θ (19)

whereθ is the angle between~L and the symmetry axis (between0 andπ/2).
Because of (13) and (18), we know that~ω is a fixed linear combination of~L and ê3, and

therefore sincêe3 is undergoing uniform circular motion with angular velocity~L/I⊥, then~ω is
also. We can see this geometrically because (9) or (13) and (16) imply that~L, ê3 and~ω are fixed
in a plane and then from (15) we can conclude that the plane formed by~L, ê3 and~ω rotates about
the fixed angular momentum with angular velocity~L/I⊥. We can also see this analytically

d

dt
~ω (20)

=
d

dt

(
~L/I⊥ − Ωê3

)
(21)

=
d

dt

(
−Ωê3

)
(22)

=
~L

I⊥
×

(
−Ωê3

)
(23)

=
~L

I⊥
×

(
~L/I⊥ − Ωê3

)
(24)

=
~L

I⊥
× ~ω (25)

Notice that we have still not figured out explicitly what the perpendicular axesê1 and ê2 are
doing. But this information is implicit in the relation (13). In words, this relation together with
(15) says that the angular velocity of the top can be taken apart into two components:

1. the rotation of the top around its symmetry axisê3 with angular velocity−Ω ê3; and

2. the rotation of̂e3 around the fixed angular momentum with angular velocity~L/I⊥.
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Let’s review the few key steps in this derivation. First we used the form of the moment of
inertia tensor to eliminate

Let us now look at the result in animated form in theMathematicaworksheetfreetop.nb This
is an animation of a rotating rectangular solid, with two opposite sides square, so that it has two
equal principal moments. This is an allowed free rotation of the body in space. The angular
momentum is~L = L ẑ and is constant. The ratio of the length in theê3 direction to that in thêe1,2

directions starts at 2 withI3/I⊥ = 0.4 less than one, corresponding to a prolate object — long and
thin along the symmetry axis. The angleθ is the angle between the angular momentum (theẑ axis)
andê3, the symmetry axis of the body. The initialθ is zero. Then~ω = ẑ L/I3.

Now work your way towards larger initial angles. If you switch from “solid” to “frame” you
see three lines representing vectors in addition to to rotating solid. The green line is the angular
velocity vector,~ω. The vertical purple line and the red line are the components of the~ω vector
along the directions of the angular momentum~L and the symmetry axiŝe3. Thus these vectors are
a visual representation of the fundamental relation between~L, ~ω andê3, expressed in (9) and (13).

I hope that these animations will help you to understand more deeply the connection between
(13) and (15). The rate of rotation of the plane is always|~L|/I⊥, which is fixed in the animations.
One way of describing the crucial relation (13) is that we have taken the angular velocity vector
apart into a component alonĝe3 that describes the rotation of the object around its symmetry
axis and the vertical component~L/I⊥ that describes the rotation of the plane of the symmetry
axis. Writing~ω this way is great, because you should be able to see both components physically.
Notice that for the prolate object, for an initial angle less thanπ/2, ~ω is longer than~L/I. This
is prolateness in action - the moment of inertial about the long axis is smaller thanI⊥, so (15)
implies that the magnitude of the angular momentum must be larger than|~L|/I⊥. The spin around
the axis and the spin around the axis of the angular momentum add positively to the total angular
velocity. For an oblate object, the opposite is true. The angular velocity vector is shorter than
|~L|/I⊥, which means that the spin around the axis is in the opposite direction. But in this case
as well, the plane of̂e3 andω rotates about the fixed angular momentum, which has the physical
effect that the symmetry axis precesses. It is worth staring at this animation for a long while.

Vectors in the body frame

The derivation we gave at the beginning of the lecture of the motion of the free symmetric top in
the space frame is slick and (I hope) easy to understand, but limited to the caseI1 = I2. While we
will not solve the more general problem completely, it is interesting to set it up mathematically in
the body frame, rotating along with this rigid body. At least, in this frame, the moments of inertia
do not change. We will take the origin to be the center of mass in both the space frame and the
body frame. We will also take our coordinate axes in the body frame to correspond to the three
principal axes of the rigid body. Then the equations that govern the motion of the body take a fairly
simple form. Of course, even if we can solve these equations, it doesn’t tell us everything, because
it will still take some more work to understand how the body is moving in the space frame. But at
least this is a start.
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Our starting point will be the relation between the change of a vector with respect to the space
frame and the change with respect to the rotating body frame. This is going to be important for
other things as well, so we will pause to go over it slowly.

Consider a vector~A. We will call the rate of change of the vector with respect to the body
frame

δ ~A

δt
. (26)

We have invented this funny symbolism to avoid getting this confused with the rate of change of
the vector with respect to the space frame, for which we continue to use the conventional symbols,

d ~A

dt
. (27)

By definition, if δ ~A
δt

= 0, the vector is fixed with respect to the body frame, and then we know
that its change with respect to the space frame is simply~ω × ~A where~ω is the angular velocity of
the body. If δ ~A

δt
6= 0, then the change with respect to the space frame is the sum of this and the

contribution from the body’s rotation:

d ~A

dt
=

δ ~A

δt
+ ~ω × ~A . (28)

What I find confusing about (28) is that it seems to refer to two different frames — the space frame
and the body frame. In which frame is it true? The answer is in either one! The quantities on
both sides of the equation are vectors that can be expressed either in the space frame or in the body
frame. The explicit coordinates of~A and its derivatives and~ω will change when we go from one
frame to another, but (28) is true in either. This is why I was careful to use the words “with respect
to” rather than the word “in” in definingd

~A
dt

and δ ~A
δt

. These objects are the change of the vector
~A with respect to the space frame and the body frame respectively, but they can be describedin
either frame (or for that matter, any other coordinate system).

There is something very subtle and interesting going on here which I often get confused about
myself. It is worth trying to say this in a few different ways because it gets into some issues that
are usually not discussed in enough detail. Bear with me, because I am still trying to figure out
the best way to say this. In Newtonian mechanics, we tend to use the terms “coordinate system”
and “frame” interchangeably, and for example talk about a “moving coordinate system.” This is
potentially confusing because we get into the problems we have just been discussing. I think that
a better way of saying things in nonrelativistic Newtonian mechanics is to talk about a coordinate
system only as the system we use to describe the components of vectors at on particular time. A
“frame” is then something that specifies what coordinate system to use at each time. If we try
to do this consistently, we see that it makes no sense to talk about the time derivative of a vector
without specifying the frame, because the components of the time derivative involve the difference
between to components of the vector at two neighboring times which must be specified in the
coordinate system that the frame tells you to use at those two different times.Any time we write
a time derivative of a vector (or tensor), we must specify a frame. However, the result of
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the differentiation in a particular frame at a particular time is a vector that has an invariant
meaning, and can be described in any coordinate system at that time.

Curiously, this almost comes more naturally in relativity. If we think of the notion of “frame”
more physically, as we are forced to do once velocities get close toc, we are naturally constrained
to do the right things, because we have to specifyHOW we actually measure the coordinates of our
vectors. Of course this means that we need to have a coordinate system that everyone in the frame
agrees on at each different time. The fact that time gets mixed up with space in relativity forced
us to this more physical picture of a frame, but in fact we really need it just to keep from getting
confused even at low speeds, at least if we are thinking about rotating or otherwise accelerating
frames.

Let’s discuss an example. Consider the vector~ω itself. Here (28) implies

d~ω

dt
=

δ~ω

δt
+ ~ω × ~ω =

δ~ω

δt
. (29)

The rate of change ofω with respect to the body frame is the same vector as the rate of change of
omega with respect to the space frame. First consider the situation in which~ω = ωn̂ is constant in
space. This means that the body is rotating about the fixed axisn̂ with constant angular velocityω.
In the body frame, this axis is fixed in the body, and again~ω is constant. Thus

d~ω

dt
= 0 ⇒ δ~ω

δt
= 0 (30)

But the relation (29) may seem a bit odd in general, so let’s see how it works in a nontrivial
example. Considering the object you studied in problem 9.1 will give us something specific to
think about and will also illustrate some of the curious features of angular velocity.
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(31)
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This is intended to show a rigid body made of two perpendicular rods rotating in the space frame
about one of its axeŝe1 (the long one — red if you can see the figure in color) with angular velocity

~ω1 = ω1ê1 (32)

which is constant in the body frame and with the axisê1 rotating about the vertical with angular
velocity

~ω2 = ω2ẑ (33)

constant in the space frame. The total angular velocity is the sum~ω = ~ω1 + ~ω2 and the component
of the angular velocity in the direction of the axis is executing uniform circular motion and the rate
of change of~ω is

d

dt
~ω = ~ω2 × ~ω = ~ω2 × (~ω1 + ~ω2) = ~ω2 × ~ω1 (34)

In the space frame, as the redê1 axis rotates around with angular velocity~ω2, you see the shorter
crosspiece rotating around the redê1 axis with angular velocity~ω1. For ω1 = 3Ω andω2 = Ω,
this is what was shown in theMathematicanotebookas9-rotations.nb that you studied on the
problem set.

The animation is based on the fact that our description in words of the angular velocity de-
scribes not just whatω looks like at a particular moment, but also how it evolves with time (at least
if we impose an initial position). For example, if the axisê1 is in thex̂ direction at timet = 0, then
at an arbitrary time

ê1 = x̂ cos ω2t + ŷ sin ω2t (35)

~ω1 = ω1x̂ cos ω2t + ω1ŷ sin ω2t (36)

~ω = ω1x̂ cos ω2t + ω1ŷ sin ω2t + ω2ẑ (37)

From this and (33), you can explicitly verify (34):

d

dt
~ω = −ω1ω2x̂ sin ω2t + ω1ω2ŷ cos ω2t = ω2ẑ × (ω1x̂ cos ω2t + ω1ŷ sin ω2t) (38)

Now what does this look like in the body frame? The two frames are shown side by side in
Mathematicanotebookas9-rotations-body-frame.nb. Stare at the animation and imagine that
you are moving around with the body and try to get a feeling for how you would see the blue line
representing~ω. Naturally, ê1 and therefore~ω1 doesn’t change, becauseê1 in defined to be fixed
in the body frame. But~ω2, which was fixed in the space frame, is not fixed in the body frame,
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precisely because of the nonzero~ω1, as shown below.
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(39)

In the body frame, att = 0, the~ω vector looks the same as it did in the space frame. But now at later
times, the~ω vector rotates around the redê1 axis with angular velocity−~ω1, so the perpendicular
component,~ω2 executes uniform circular motion about the redê1 axis with angular velocity−~ω1,
and the rate of change of the vector~ω is

δ

δt
~ω = −~ω1 × ~ω = −~ω1 × (~ω1 + ~ω2) = −~ω1 × ~ω2 (40)

which is the same as (34). Again, you can verify this explicitly. In the body frame

~ω1 = ω1x̂ ~ω2 = ω2ẑ cos ω1t + ω2ŷ sin ω1t (41)

~ω = ω1x̂ + ω2ẑ cos ω1t + ω2ŷ sin ω1t (42)

d

dt
~ω = −ω1ω2ẑ sin ω1t + ω1ω2ŷ cos ω1t = ~ω2 × ~ω1 (43)

Note that the actual functions oft in (42) (43) look different from those in (40) fort > 0, because
the coordinate systems only agree fort = 0. But they are describing the samevector relation,
(34).

Before going on, let me just remind you that what~ω in the body frame is isNOT the angular
velocity of the body in a coordinate system fixed in the body. That would of course be zero. Rather
~ω in the body frame is the true angular velocity of the body in the space frame but described
in terms the coordinates of the body frame. When I am talking about the body frame I will try
to remember to refer to~ω as the~ω vector rather than the “angular velocity” to emphasize this
important difference.

The free symmetric top in the body frame

I hope that it will not surprise you that our principal tool in analyzing the free symmetric top in the
body frame will be the general relation between the change of a vector with respect to the space
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frame and its change with respect to the body frame, (28)

d ~A

dt
=

δ ~A

δt
+ ~ω × ~A .

The other thing we need is the vector relation we derived in (13) and (10) between~L, ~ω andê3:

~ω = ~L/I⊥ − Ωê3 (13)

with Ω given by (10)

Ω =
(I3 − I⊥) ω3

I⊥
(10)

This vector relation is true in any coordinate system.
We can now calculate how~ω and~L change in the body frame. We will do this in two ways.

First we can use (13) and the fact we derived last time that with respect to the space frame the
plane of~ω andê3 is rotating about~L with angular velocity~L/I⊥ to write

δ~ω

δt
=

d~ω

dt
=

~L

I⊥
× ~ω (44)

Again this is a vector equation true in any coordinate system, so we can use it in the space frame,
together with (13) to write

δ~ω

δt
=

(
~ω + Ωê3

)
× ~ω (45)

= ~ω × ~ω + Ωê3 × ~ω = Ωê3 × ~ω (46)

But becausêe3 is fixed in the body frame, (46) implies that with respect to the body frame,~ω is
rotating about̂e3 with angular velocityΩê3. This is the same trick we used in the space frame,
except that now it iŝe3 that is fixed, so we want to think of the rotation as aboutê3. Note that (46)
implies thatω3 is constant just as in the space frame because

δ

δt
(ê3 · ~ω) = ê3 · δ~ω

δt
= ê3 ·

(
Ωê3 × ~ω

)
= 0 , (47)

so we can independently derive the fact that the coefficients in in the vector equations (13) are
fixed.

Alternatively, we can use the fact that~L is fixed in the space frame and write

0 =
δ~L

δt
+ ~ω × ~L , (48)

so that
δ~L

δt
= −~ω × ~L = −

(
~L/I⊥ − Ωê3

)
× ~L = Ωê3 × ~L (49)

This expresses the same physics. With respect to the body frame,~L, like ~ω must rotate about the
ê3 axis with angular velocityΩê3 because the entire plane in which~ω and~L are fixed is rotating.
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There is a nice way of understanding all this that may help to cement one of the important
lessons of the last few weeks — while rotations are complicated and do not add like ordinary
vectors, infinitesimal rotations and angular velocities do add. In this case, what we have with
respect to the body frame is that the plane formed by the three vectors~L, ~ω and ê3 rotates with
angular velocity

~ωpb = Ωê3 . (50)

With respect to the space frame, the plane formed by the three vectors~L, ~ω and ê3 rotates with
angular velocity

~ωps = ~L/I⊥ (51)

The relation between the space frame and the body frame is that the angular velocity of the plane
with respect to the space frame,~ωps, is the angular velocity of the plane with respect to the body
frame,~ωpb, plus the angular velocity of the body,~ω:

~ωps = ~ωpb + ~ω (52)

Indeed, because of (13), this works. Angular velocities add like ordinary vectors.

Euler’s equations

There is another approach to the problem of the free symmetric top, which is also more generally
useful. We can derive what are called “Euler’s equations” by considering (28) where~A is the
angular momentum,~L. We can then use the fact that the torque,~τ , is the rate of change of angular
momentum with respect to the space frame. Using (28), we can write this in terms of the rate of
change of~L with respect to the body frame. Then we can write

~τ =
d~L

dt
=

δ~L

δt
+ ~ω × ~L (53)

As we discussed last time, we can evaluate a vector equation in any coordinate system. It is

interesting to consider (53) in the body frame in which~~I is fixed. Then in the usual basis in which
we use the principal axes of our body,ê1 ê2 andê3, the moment of inertia tensor is

~~I =




I1 0 0

0 I2 0

0 0 I3


 (54)

and we can express the components of~L in this basis in terms of the components of~ω as

L1 = I1 ω1 L2 = I2 ω2 L3 = I3 ω3 (55)
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We now expand the cross product in (53) to get

τ1 =
δL1

δt
+ ω2 L3 − ω3 L2

τ2 =
δL2

δt
+ ω3 L1 − ω1 L3

τ3 =
δL3

δt
+ ω1 L2 − ω2 L1

(56)

Now use (55),L1 = I1 ω1 , L2 = I2 ω2 , L3 = I3 ω3 , to write

τ1 = I1
δω1

δt
+ ω2 I3 ω3 − ω3 I2 ω2

τ2 = I2
δω2

δt
+ ω3 I1 ω1 − ω1 I3 ω3

τ3 = I3
δω3

δt
+ ω1 I2 ω2 − ω2 I1 ω1

(57)

or simplifying slightly

τ1 = I1
δω1

δt
− (I2 − I3) ω2 ω3

τ2 = I2
δω2

δt
− (I3 − I1) ω3 ω1

τ3 = I3
δω3

δt
− (I1 − I2) ω1 ω2

(58)

These are Euler’s equations, relating the rate of change of the angular velocity in the body frame to
the torque and angular velocity in the body frame and the principal moments of inertia. We might
have expected that the right hand side would be proportional to products of two components of~ω.
This ensures that if the angular velocity is in the direction of one of the principal axes, the right
hand terms of all the Euler equations vanish because two of the components of~ω are zero. And
then if the torque vanishes,δ~ω/δt = 0, because as we know, the body can rotate freely about a
principal axis.
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The free symmetric top ala Euler

For the free symmetric top, floating out in space and rotating freely about its center of mass with
I1 = I2 = I⊥, the Euler’s equations take the following form:

I⊥
δω1

δt
= −(I3 − I⊥) ω3 ω2

I⊥
δω2

δt
= (I3 − I⊥) ω3 ω1

I3
δω3

δt
= 0

(59)

We immediately conclude thatω3, the component of angular velocity in the direction of the unequal
principal axis, is constant in time relative to the body frame. Withω3 then fixed, the other two
equations take the form

δω1

δt
= −(I3 − I⊥) ω3

I⊥
ω2 = −Ω ω2

δω2

δt
=

(I3 − I⊥) ω3

I⊥
ω1 = Ω ω1

(60)

where

Ω =
(I3 − I⊥) ω3

I⊥
(61)

andΩ is a constant.
We know that we can rewrite (60) as

δ~ω

δt
= (0, 0, Ω)× ~ω (62)

In agreement with the previous analysis in (46), this is what we expect for a vector~ω undergoing
uniform circular motion with angular velocityΩ about the3 axis.

You can also see this in a more boring way by solving the coupled differential equations. If we
put the second of the two equations in (60) into the first, we get an equation of motion forω1,

δ2ω1

δt2
= −Ω2 ω1 (63)

You can easily check thatω2 satisfies the same equation. (63) is just the equation for simple
harmonic motion, with the general solution

ω1(t) = a cos(Ωt + φ) (64)
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Then (60) implies
ω2(t) = a sin(Ωt + φ) (65)

As usual,a andφ must be set by the initial conditions. So, as we saw directly from (62), (64) and
(65) describe the two-dimensional vector,

(
ω1(t), ω2(t)

)
undergoing uniform circular motion with

angular velocityΩ. Note that the sign ofΩ is related to the sign ofω3, and also whetherI⊥ > I3

(which is what we would get for a prolate spheroid) orI⊥ < I3 (for an oblate spheroid like the
earth).

Thus the angular velocity in the body frame is fixed in magnitude, but changes direction, mov-
ing with constant angular velocity around a cone.

The tennis racket theorem

Euler’s equations can also be used to understand an interesting fact about rotating rigid bodies with
no two equal moments of inertia. I’m a tennis player, so the tennis racket theorem is a favorite of
mine. The tennis racket, in this case, is just a convenient example of a rigid body with three unequal
moments of inertia. We know that a tennis racket, like any rigid body, is happy to rotate freely about
any one of its principal axes. For such a rotation, the angular momentum and the angular velocity
vector are in the same direction. The theorem concerns the nature of free rotations (no torques) that
begin with an angular velocity almost, but not quite, along one of the principal axes. The statement
of the theorem is that if the axis has the largest or the smallest moment of inertia, the motion is
stable and the angular velocity precesses about the axis, never getting very far away. However,
if the axis has the intermediate moment of inertia, the motion is unstable. The angular velocity
moves away from the axis exponentially and the motion becomes rather complicated. Here is how
it goes. Suppose that we consider motion in which~ω in the body frame is nearly along principal
axis 3, so that in our nice body frame,ω1 andω2 are much smaller thanω3. Euler’s equations look
like

I1
δω1

δt
= (I2 − I3) ω2 ω3

I2
δω2

δt
= (I3 − I1) ω3 ω1

I3
δω3

δt
= (I1 − I2) ω1 ω2

(66)

For the assumed initial conditions, we can generally ignore the time dependence ofω3, because
its time derivative is proportional to the product of two small numbers,ω1 andω2. This argument
could go wrong ifI3 is very close to eitherI1 or I2, but for a tennis racket in which the three
principal moments are very different, it is a good approximation.

If we then treatω3 as a constant, the other two Euler equations are linear in the small quantities,
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ω1 andω2, and we can write them (approximately) as.

δω1

δt
=

1

I1

(I2 − I3) ω3 ω2

δω2

δt
=

1

I2

(I3 − I1) ω3 ω1

(67)

Differentiate the first of these and use the second to get

δ2ω1

δt2
=

1

I1

(I2 − I3) ω3
δω2

δt
=

1

I1I2

(I3 − I1) (I2 − I3) ω2
3 ω1 (68)

Now here is the point. IfI3 is the largest or smallest moment, then

1

I1I2

(I3 − I1) (I2 − I3) ω2
3 < 0 (69)

But then (68) describes an oscillation.ω1 oscillates about zero and remains small. The same thing
happens toω2. In this case, the motion of the system remains basically about axis 3 with small
oscillating wobbles. However ifI3 is the intermediate moment, then

1

I1I2

(I3 − I1) (I2 − I3) ω2
3 > 0 (70)

Then (68) describes an unstable equilibrium andω1 andω2 grow exponentially. Then our approx-
imation quickly breaks down. We can’t tell what happens next without a more detailed analysis.
But what is clear is that the motion around the axis with the intermediate moment of inertia is
much more complicated. You can easily see this yourself by playing with a tennis racket, or any
similarly shaped object.
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lecture 22

Topics:
Where are we now?
Derivation of fictitious forces
Precession of tops
Nutation
Tidal forces
Extra Dimensions

Where are we now?

This week, the general subject is gravity (and more generally “central” forces) and “fictitious
forces.” Fictitious forces are convenient constructions that allow us to continue to use~F = m~a

in non-inertial frames of reference. This is actually familiar to all of us. Our brain makes the
same kind of construction whenever we turn a corner in a moving car and we feel a centrifugal
force. Gravity is also familiar, but seems rather different. Einstein however, would tell us that the
difference between the two is not so obvious as it seems. It is not an accident, he would say, that
both forces are proportional to the mass of the particle on which they act. We will begin to see
why this is important when we talk about the tides. And it will come back again later when we talk
about cosmology.

We will probably not get to everthing in the notes in the lecture today, but some of it is better
to just read about. I will try to take a little time at the end to talk a bit about the subject of “extra
dimensions” and the connection with gravity, because this crazy idea is sort of fun and something
that many people are interested in today.

Derivation of fictitious forces

The crucial input to the study of fictitious forces is that the motion of an arbitrary accelerating
frame, like an arbitrarily moving rigid body, can be described at any time by the motion of its

origin, ~̇R, and by its angular velocity of rotation about the origin,~ω. Many of the same ideas that
go into thinking about the physics of rotating rigid bodies can be taken over directly to the study
of rotating reference frames. The frame of reference in which the rigid body is at rest is obviously
a good one to think about when discussing a rigid body, and if the body is rotating, then of course
this frame is rotating too.

The basic idea of fictitious forces is this. If I insist on using an accelerating and/or rotating
reference frame, then particles that are moving at constant velocity in free space will appear to be
accelerating. In order to make~F = m~a work in such an non-inertial frame, we simply interpret
this acceleration as being due to a force, called the fictitious force. More specifically, we breakma

up into a piece associated with the frame and all the rest and move the “frame” part to the other
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side of the equation, treating it as a force:

~F on body
wrto

inertial
frame

= m~a of body
wrto

inertial
frame

= m~a of body
wrto
accel.
frame

+ m~a accel.
frame

(1)

“ ~F on body
wrto
accel.
frame

” = ~F on body
wrto

inertial
frame

−m~a accel.
frame︸ ︷︷ ︸

fictitious
force

= m~a of body
wrto
accel.
frame

(2)

The fictitious force is always proportional to the mass of the particle, because of them in ~F = m~a.
There were two basic kinds of questions about this on the QA. Do we really have all the

fictional forces? AND Why do we call them “fictional”? These are closely related, it turns out.
We call these forces “fictional” because they can be eliminated completely everywhere by going
to an appropriate reference frame. If they can be completely elimnated in this way, then in some
sense they are just due to our poor choice of reference, and not to any “real” physics. But this is a
little tricky. The earth’s gravity is definitely “real” even though we don’t feel it if we are in a space
ship in orbit above the earth. What is the difference between a fictitious force and gravity? Both
of them give a force on a point particle proportional to the particle’s mass. This is why we don’t
feel gravity in orbit. It’s effect is canceled by the fictitous translational force. In fact, the only way
we can tell the difference is by looking at that form of the forceeverywhere. When we define
a coordinate system, we are laying down a grid that allows us (theoretically - we can’t really do
this of course) to find the coordinates of any point anywhere in space (remember that we are doing
Newtonian mechanics and ignoring general relativity). Then we define our frame by specifying
the coordinate systen at each time. Each coordinate system is a rigid thing — not physically, but
theoretically. So like a rigid body, it is specified by only six parameters, the three coordinates of
the origin, and the three angles that determine the orientation of the coordinate axes. This is why
we know that we have all the fictitious forces. We know from our study of rigid bodies that the
most general motion of the rigid coordinate system is equivalent to a translation and a rotation,
so we know the form of our fictitious forceseverywhereand we can eliminate themeverywhere
by going to an appropriate frame. Gravity doesn’t work this way. We can eliminate gravity at
any point by going to an accelerating coordinate frame in which our coordinate system is “falling”
along with us. But this cancellation of gravity only works at one point. That is why we say that
gravity is real.

Relativity (as usual) makes things even more complicated. Once we realize that gravity curves
space the whole notion of coordinate system is more complicated. But as long as we say away
from black holes and that sort of thing, we can coninue to use the Newtonian picture at least
approximately, and that is what we will do.

Here is a brief derivation of the fictitious forces. It is equivalent to what you will read about
in Morin’s book, but it breaks the transformation to the accelerating coordinate system up into two
steps, for me at least, this makes it a little simpler to understand. For a coordinate system that
is rotating with angular velocity~ω about its origin and whose origin is translated by a vector~R

(where~ω and ~R have arbitrary time dependence) with respect to some fixed point in an inertial
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frame, the fictitious force is the sum of four terms:

Centrifugal −m ~ω × (~ω × ~r )

Coriolis −2m ~ω × ~v

Azimuthal −m ~̇ω × ~r

Translational −m
d2 ~R

dt2

(3)

As I said, I think it is easiest to demonstrate (3) in two steps. To go from a coordinate system
fixed in space to one undergoing arbitrary acceleration and rotation, first go from the fixed coordi-
nate system to a translating coordinate system that is not rotating with respect to the fixed system,
but with its origin accelerating along with the moving coordinate system. We want to know what
happens to~F = m~a when we do this. Let’s call the original space frame force and coordinates~Fs

and~rs, and the translating frame force and coordinates~Ft and~r, so that we begin with

~Fs = m
d2

dt2
~rs (4)

Then the new coordinates are
~r = ~rs − ~R (5)

and we can write

m
d2

dt2
~r = m

d2

dt2

(
~rs − ~R

)
= ~Fs −m

d2

dt2
~rs (6)

So that
~Ft ≡ ~Fs −m

d2

dt2
~R = m

d2

dt2
~r (7)

Thus the equation of motion in the translating coordinate system is the same as in the space frame,
except that the force has a new piece – the fictitious translational force.

It may help to see the relation (5) represented pictorially. In the diagram below the solid axes
and arrow represent the coordinates of a point in the space frame,~rs. The dashed axes and arrow
represent the coordinates of a point in the translating frame,~r. The dotted arrow is~R, which as
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you can see describes the coordinates of the origin of the translating frame in the space frame.
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~rs is
space
frame
coord

~r is
moving
frame
coord

~R is
moving

frame origin
in space

frame coord

(8)

We can now do the rest of the job, and go from a coordinate system (that we will call the
translating frame) to another with the same origin, but that is rotating arbitrarily. We will continue
to call

d

dt
(9)

the derivative that describes how vectors change with respect to translating frame and will indicate
the rate of change of a vector in the arbitrary frame byδ/δt as we did in our study of rigid bodies.
Now we can use the relation that is familiar from our study of rigid bodies,

d ~A

dt
=

δ ~A

δt
+ ~ω × ~A . (10)

Let ~A = ~r and (10) becomes
d~r

dt
=

δ~r

δt
+ ~ω × ~r . (11)

Now we can differentiate again in the translating frame and repeatedly make use of (11) —

d2~r

dt2
=

d

dt

δ~r

δt
+

d

dt
(~ω × ~r ) . (12)

=
δ2~r

δt2
+ ~ω × δ~r

δt
+

(
d

dt
~ω

)
× ~r + ~ω × d

dt
~r . (13)

=
δ2~r

δt2
+ ~ω × δ~r

δt
+

δ~ω

δt
× ~r + ~ω × δ~r

δt
+ ~ω × (~ω × ~r) . (14)
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so finally
d2~r

dt2
=

δ2~r

δt2
+ 2~ω × ~v +

δ~ω

δt
× ~r + ~ω × (~ω × ~r) . (15)

Now we will replace theδ/δts by dots just to make it look simpler.

d2~r

dt2
= ~̈r + 2~ω × ~v + ~̇ω × ~r + ~ω × (~ω × ~r) . (16)

where we have used the fact that~v = ~̇r – the velocity with respect to the arbitrary frame.
Finally we just have to put (16) into (7) and move the “fictitious” terms to the other side to get

the equation of motion in the arbitrary frame,

~Fa = m~̈r (17)

where
~Fa = ~Fs −m ~ω × (~ω × ~r)− 2mω × ~v −m ~̇ω × ~r −m

d2

dt2
~R , (18)

which is what we mean by (3). We we spend a lot of time next week discussing the physics of each
of the terms in (18).

Precession of tops

Let’s first see how precession works in quantitative detail. The system is illustrated below:
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(19)

Suppose that at some angleθ, the torque isτ — into the paper in the figure. We will actually
ignore the dependence of the torque onθ and simply assume that the magnitude of the torque is
constant and equal toτ . This will allow us to understand what is happening more easily, and it
does not change the qualitative nature of the physics, just some boring details.

Now we will first consider a motion in which the top is started with exactly the right preces-
sional velocity to keep it at the angleθ. In this case, the angular velocity has two contributions.
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There is a large contribution,ωs, in the direction of the symmetry axis of the top — because the top
is rapidly spinning. There is a vertical contribution,ωp, due to the precession caused by the torque.
Typically, for a rapidly rotating top, the torque is small in the sense that the precession frequency
ωp is much smaller than the angular velocityωs associated with the spin of the top.
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(20)

From (20), we see that the component of angular momentum in the direction of the symmetry
axis is

L‖ = I3 ω3 (21)

whereω3 is the total component of angular velocity along the symmetry axis.

ω3 = ωs + ωp cos θ (22)

The quantityω3 is actually somewhat more interesting thanωs because it is conserved if the tip of
the top is frictionless. The component of angular momentum perpendicular to the symmetry axis
is

L⊥ = I⊥ ωp sin θ (23)

What we care about for the precession is the horizontal component of angular momentum,
which is

Lx = sin θ L‖ − cos θ L⊥ = sin θ I3 ω3 − sin θ cos θ I⊥ ωp (24)

Normally, we ignore the small second term on the right hand side of (24), and do not distinguish
betweenωs andω3. But I just wanted to show you that it is possible to take into account the con-
tribution from the precession if we want to. At any rate, the rate of change of angular momentum
for uniform precessional motion isωp Lx, and thus the condition for uniform precession is

τ = ωp Lx = ωp (sin θ I3 ω3 − sin θ cos θ I⊥ ωp) (25)

This is a quadratic equation forωp with solutions

ωp =
I3 ω3

2I⊥ cos θ
±

√√√√
(

I3 ω3

2I⊥ cos θ

)2

− τ

sin θ cos θ I⊥
(26)
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The plus sign here gives what is called fast precession, which is precession of the order of the
rotational velocity of the top. If the torque is small, we can write it as

ωp =
I3 ω3

2I⊥ cos θ
+

√√√√
(

I3 ω3

2I⊥ cos θ

)2

− τ

sin θ cos θ I⊥
≈ I3 ω3

I⊥ cos θ
(27)

This is just a slightly perturbed version of the free rotation of a symmetric top that we have just
understood in detail — the torque plays very little role in it. This is not what we usually see,
because the top usually doesn’t get started moving that fast. Instead, we are interested in slow
precession, the minus sign solution, which gives

ωp =
I3 ω3

2I⊥ cos θ
−

√√√√
(

I3 ω3

2I⊥ cos θ

)2

− τ

sin θ cos θ I⊥

=
I3 ω3

2I⊥ cos θ

(
1−

√
1− 4I⊥τ cos θ

sin θ ω2
3I

2
3

)

≈ I3 ω3

2I⊥ cos θ

(
1− 1 +

2I⊥τ cos θ

sin θ ω2
3I

2
3

)
=

τ

sin θ I3 ω3

(28)

This is the usual result in which the precession frequency is proportional to the torque and inversely
proportional to the angular momentum.

Nutation

So if the top is moving at exactly the right angular velocity, it precesses at constant angular velocity
and stays at the same angle. But what happens if things are not quite right? In particular, suppose
that we are holding the top at some fixed angle and suddenly drop it. This is a typical situation.
What happens?

The best way to understand what happens is to go to an accelerating frame that is rotating
around the pivot point of the top with angular velocityωp. This is not an inertial frame, of course,
which means that there are so-called fictitious forces that make up for the fact that the frame is
accelerating. We will talk about these in detail later. At any rate, in this frame, the motion with
constantθ and precession rateωp just looks like a top with its symmetry axis sitting still in space.
This means that in this frame there must be a fictitious force that exactly cancels the torque, so that
the angular momentum is conserved. I presume that this a basically a coriolis force, but it doesn’t
matter what it is because it must be there.

Now what does the process look like in this rotating frame if we drop the top from rest in the
space frame? In the moving frame, because the symmetry axis of the top was initially at rest in
the space frame, it is initially rotating with angular velocity−ωp in the rotating frame. But that
means that there is a small additional component to the angular velocity in the vertical direction,
and thus the angular velocity and the angular momentum of the top are slightly displaced from the
symmetry axis. Because there is no torque in this special frame, this just reduces the free rotation
problem that we have already analyzed. The symmetry axis of the top precesses rapidly around the
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angular momentum with frequencyL/I⊥. Back in the space frame, this motion is superimposed
on the generally much slower precession of the angular momentum produced by the torque. The
rapid motion is called nutation.

Not only is the nutational motion very rapid, but the amplitude is usually very small. In the
case we discussed in which the top is dropped from rest, the angle of the angular velocity in the
special frame to the symmetry axis is of orderωp/ω3. For a rapidly rotating top, the motion is often
to small and too rapid to see. But you can feel it or hear it under the right circumstances.

As I warned you I would, I have ignored the dependence of the torque onθ in discussing
nutation. I hope that you can now see why this doesn’t make much difference. The torque is a
very small effect that produces the slow precession of the plane ofê3. The nutation results if the
angular momentum is not quite lined up with the symmetry axis. These two effects have very little
to do with one another. Small changes in the torque asê3 precesses rapidly about~L will have a
very small effect on the motion.

Tidal forces

The phenomenon of tidal forces is rather special to gravitation. It is also both physically important
and a nice example of the Taylor expansion with several variables, so I can’t resist talking about
it (though I might skip it or put it off til next week if we get behind). The idea is to ask what the
gravity of a distant object does to a mass on the surface of an approximately spherical planet like
the earth (here we ignore the oblateness, which has only a tiny effect on this physics). Suppose
the center of the sphere is at a point~r0. Now by Newton’s theorem, we know that the gravitational
force from a distant body on a massm at~r is given by

−G M m
~r − ~ρ

|~r − ~ρ |3 (29)

where~ρ andM are the position and mass of the distant body, so you might think that all we have
to do is to evaluate (29) for ~r on the surface of a sphere, given by|~r − ~r0| = R, whereR is the
radius of the sphere. But that is not quite what we are interested in for the gravitational force. The
gravitational force acts not only on the massm, but also on the planet, where the forces acts on
the center. What we are actually interested in is the accelerated coordinate system that is moving
along with the planet, with the center~r0 fixed. Thus we must add to (29), the fictitious translational
force associated with the acceleration of the planet due to gravity. The acceleration is

−GM
~r0 − ~ρ

|~r0 − ~ρ |3 (30)

and the fictitious translational force is

GM m
~r0 − ~ρ

|~r0 − ~ρ |3 (31)

The interesting thing is that this is trying to cancel the effect of (29) and we are only interested in
the difference, which is very small.

~Ftidal = −GM m
~r − ~ρ

|~r − ~ρ |3 + GM m
~r0 − ~ρ

|~r0 − ~ρ |3 (32)
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Since in this accelerating coordinate system,~r0 is fixed, we might as well take it to be the
origin of our coordinate system, so we take~r0 = 0. This makes the formulas simpler. For this
more convenient choice, (32) becomes (moving some signs around to make things look simpler)

~Ftidal = GM m
~ρ− ~r

|~ρ− ~r |3 −GM m
~ρ

|~ρ |3 (33)

Now we can use the fact that|~r | ¿ |~ρ| and get an even simpler expression by Taylor expanding
the first term in powers of~r. This is easier if we first have some fun with vector calculus. We can
write

~Ftidal = −GM m ~∇ρ

(
1

|~ρ− ~r | −
1

|~ρ |

)
(34)

Where~∇ρ is the gradient operator for the vector variable~ρ ,

~∇ρ =

(
∂

∂ρx

,
∂

∂ρy

,
∂

∂ρz

)
(35)

Equation (34) may look scary, but actually it is the usual connection between a1/r2 force and a
1/r potential. We get the force by taking minus the gradient of the potential. In this case, we are
interested the difference between two forces - the real one from gravity and the fictitious one from
the earth’s acceleration, and that is minus the gradient of the difference between two potential. In
fact, this is a nice example of how a little bit of knowledge of vector calculus can simplify your
life a lot. If you had to apply the Taylor expansion separately to each component of (33), it would
be at least three times as much work and the result would be more cumbersome to write down.

Now we can Taylor expand the term in parentheses in (34), before we take the gradient - and
this is a lot easier

(
1

|~ρ− ~r | −
1

|~ρ |

)
=

((
ρ2 − 2~r · ~ρ + r2

)−1/2 − 1

|~ρ |

)
=

(
1

|~ρ | +
~r · ~ρ
|~ρ |3 + · · · − 1

|~ρ |

)
(36)

The lowest order term in the Taylor expansion of (36) cancels. That is the point — a constant
gravitational force does nothing if one is falling along with it. The first order term is

(
1

|~ρ− ~r | −
1

|~ρ |

)
≈ ~r · ~ρ
|~ρ |3 (37)

Putting this back into (34) gives

~Ftidal = −GM m ~∇ρ

[
~r · ~ρ
|~ρ |3

]
(38)

Acting on the~r in the numerator, the gradient operator in (38) gives

−GM m

[
~r

|~ρ |3
]

(39)
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while acting on the denominator it gives

GM m

[
3~ρ (~r · ~ρ )

|~ρ |5
]

(40)

Thus
~Ftidal =

GM m

ρ5

[
3(~r · ~ρ ) ~ρ− ρ2 ~r

]
=

GM m

ρ3

[
3(~r · ρ̂) ρ̂− ~r

]
(41)

What does this mean? Remember that we are using a coordinate system with the center of the
earth as the origin. Thus~r is a vector from the center of the earth — that is it is straight up out of
the ground. And~ρ is a vector from the earth to the body producing the tidal force. Notice that the
sign~ρ in (41) doesn’t matter. This slightly unintuitive result is one of the more amusing features
of the tidal force. It is the same on the side closest to the body producing it as on the other side.
We will come back to this and try to understand it qualitatively in a moment.

If ~r and~ρ are parallel, the force is in the positiver̂ direction — which means outward. If~r and
~ρ are perpendicular, it is in the negativer̂ — which means inward. Elsewhere, it is not parallel to
r̂. For

3(~r · ~ρ)2 = ρ2 r2 (42)

when the cosine of the angle between~r and~ρ is 1/
√

3, it is perpendicular tôr (the angle is about
55◦).

To get a more quantitative description, let us take~ρ in the ẑ direction and look in thex-z plane
through the center of the earth. Then we can write

r̂ = cos θ ẑ + sin θ x̂ (43)

and
~Ftidal ∝ 3(ρ̂ · r̂) ρ̂− r̂ = 3(ẑ · r̂) ẑ − r̂ = 2 cos θ ẑ − sin θ x̂ (44)

It looks something like this (this is a slice — I have tried to show what it looks like in 3D in
theMathematicafile tides.nb, but I am not sure this has been a real success):
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You can see how this produces the tides, pulling the ocean towards and directly away from the sun
or moon.

Let’s see if we can understand in our bones why it is that the tidal force is outward, away
from the center of the earth, both on the side of the earth closest to the sun, and on the side farthest
away.1 The point is that there are two effects — the gravitational force of the sun, and the “fictitious
force”, that is the effect of the accelerating coordinate system. At the center of the earth, the two
effects cancel, the1/r2 nature of the gravitational force implies that on the side close to the sun,
the gravitational attraction wins and the net tidal force is towards the sun, while on the other side,
because the gravitational force is weaker, the fictitious force wins, and the tidal force is away from
the sun.

This rather odd looking tidal force is characteristic of gravity in free space. It depends crucially
on the remarkable feature of gravity that the same quantity — mass — appears in the strength of
the force and in the inertial term in Newton’s law. It is this that causes us to subtract the force on
the center of the earth, to produce what we see in (45). It was this bit of magic that gave Einstein
the clue to construct gravity as a geometric theory.

Extra Dimensions

Extra dimensions are fun. We probably won’t have too much time to discuss this in lecture today,
so I thought I would refer you to an amusing journalistic description of what is called thebrane
world picture.2 A braneworld is a modern version of flatland. There are two ideas. The first is this.
Suppose that there are space dimensions beyond the usual three. It doesn’t make any sense that
they are just like the usual three because we would know about them, so suppose that while these
extra dimensions are there, we are stuck on the usual three. All the matter that we are made of, and
the electric (and strong and weak) forces that make us work the way we do, everything is confined
to the usual three dimensions. Now you should object that we have done nothing at all by positing
the existence of the extra dimensions, and you would be right. Such extra dimensions would be
uninteresting, because we would never see them. But let’s try to make something interesting about
the fact that we have mentioned before that gravity is much weaker than the other forces. Perhaps
matter and the non-gravitational forces - electromagnetism, the strong force and so on, are confined
to the usual three dimensions, but gravity gets out into the extra dimensions. This is potentially
interesting.

What we mean precisely by saying that gravity gets out into the extra dimensions is that the
field lines of gravity are not confined to our three dimensional space, but spread out into the extra
dimensions as well.

This is the basic picture of a “brane-world.” The term “brane” is sort of a generalization of
“membrane” and it refers to the usual three space dimensions living in a higher dimensional space.
Gravity lives in the full higher dimensional space because it is somehow related to the geometry
(this is a bit vague, I know).

1The argument is a little easier to give for the sun, so we will do that, though the moon works the same way.
2If the link doesn’t work for you, I have included the file on the web page as braneworlds.pdf.
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But now you should object for another reason. If the field lines of gravity spread out into the
extra dimensions, you would expect the force to fall off faster than1/r2 as the distance increases.
But we know that gravity is a1/r2 force, don’t we?

This is where the second part of the brane-world idea comes in. The extra dimensions are
curled up. A useful picture of this space is a soda straw with a line on it, as shown below
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The thick black line is intended to represent the brane on which we live - that is ordinary three
dimensional space. Of course, the line is only one dimensional, but if we had more dimensions to
draw in, we could include the other two. The important thing is that these dimensions are flat and
infinite. We have only shown a segment of the infinitely long straw. The other dimension - around
the straw - represents the extra dimensions. Again, there might be more of them. But the important
thing is that these extra dimensions are curled up and finite. You have to remember when you stare
at this that we have shown just one real and one extra dimension, to make it easy to visualize. But
otherwise, it is a really helpful picture.

Now suppose we put two masses on the brane - representing two masses in our three dimen-
sional world. The situation is very different depending on whether the distancer between the
masses is large or small compared toD, the diameter of the extra dimensions.
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For r ¿ D, the field lines spread out into the extra dimensions. On this small scale, the multi-
dimensional surface of the soda straw looks approximately flat, and gravity looksn dimensional.
The force falls off like1/rn−1.
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over extra dimensions
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For r À D, the field lines spread out uniformly over extra the extra dimensions once you
get a distance much greater thanD from the masses. Then the force looks three dimensional,
proportional to1/r2.

One of the reasons that this may be interesting is that it provides an explanation for the weak-
ness of gravity. Gravity is week for masses on our brane world not because it is weak at short
distances, but because it is diluted by being spread over the “large” extra dimensions. What “large”
might mean is anybody’s guess. But it could certainly show up at the LHC if we are lucky.
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If this seems interesting to you may want to check out:
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lecture 24

Topics:
Disclaimer
The Cosmological Principle and the Hubble expansion
Newton’s theorem and the expansion of the Universe
Hubble dynamics
Dynamics of a flat universe
Newton’s theorem and dark matter

Disclaimer

I want spend a few lectures on cosmology. This is not an area that I have worked in, so I do not
know it in my bones the way I know particle physics. I will do my best to get across the big ideas,
but we won’t have to go very deeply into things before my understanding starts to get spotty. I’ll
try to remember to warn you when this is happening. I am certainly in no position to give the latest
values of interesting quantities like age of the universe or the Hubble constant from a position of
deep knowledge. When I do quote such a number, I will simply take it from the web page of an old
friend of mine, Ned Wright, an astrophysicist at UCLA and a leader on the COBE Collaboration.
Ned Wright’s Cosmology pageis a fun site, and I recommend for poking around. What I am going
to focus on is things that are directly connected to the stuff we have been talking about in this
course.

For the most part, we are going to focus of things that we can say without getting very rela-
tivistic. The main reason for this is that the discussion can be much simpler when we can avoid
confusing issues like relativity of simultanaity. To do things right would require general relativity
(which we will not discuss, though we will take one result when we need it). And it would take so
much time to get all the definitions straight that we wouldn’t have time left for the fun physics.

At the end of the last lecture on cosmology, which will be the last lecture in the course, I will
return to the question that we talked about at the beginning of the course. Why is Newton’s law
a formula for acceleration, rather than something else. We will then be in a position to give a
provisional answer to this question, or at least to relate it to another question, which in my view is
one of the central mysteries of the universe.

The Cosmological Principle and the Hubble expansion

The “Cosmological Principle” is the assumption that when we average over sufficiently large
scales, every place in the universe looks the same as every other place — there is no privileged
position — no “center” of the universe; and that all directions are equivalent — the universe is
isotropic. Ugh! This is Philosophy. And besides, I don’t believe it. One of the nice things that
has happened in recent years is that we can now at least imagine how the cosmological principle
might arise approximately from more physical principles. We will come back to this later, and also
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discuss the experimental status of the cosmological principle. For now, as cosmologists have done
for a long time, we will simply assume the cosmological principle to be true.

When astronomers look at distant galaxies, they see them, on the average, moving away from
us — receding. It is believed that the recession velocity is roughly proportional to the distance
from us, at least until we go out far enough that the recession velocities are not small compared to
the speed of light. This proportionality of recession velocity to distance is called the Hubble law.

Let me give a very impressionist view of the observational evidence for this. The measurement
of the recession velocity is not so difficult because astronomers can observe the Doppler shifts in
spectral lines. Spectral lines are sharp peaks in the frequency spectrum of light (or other elec-
tromagnetic radiation). They are associated with quantum mechanical jumps between particular
quantum states of atoms or molecules, and appear on top of the continuum spectrum emitted by
a hot object. The frequencies of these lines are determined just by quantum mechanics, so we
know what they are in the rest frame. Here is a spectrum for a quasar (which is presumably just
a distant galaxy doing strange things before its center settled down) spectrum, from a preprint in
1996,W. Zheng,et. al, “A Composite HST Spectrum of Quasars,” arXiv:astro-ph/9608198.

Figure 1:Composite FOS spectrum of 101 quasars, binned to 2◦A. Prominent emission lines and
the Lyman limit are labeled, and two possible emission features are marked. The continuum fitting
windows are marked with the bars near the bottom.

To lowest order in the recession velocity in units withc = 1, the fractional Doppler red-shift in
the light that reaches us from a receding object is just 1 minus the component of velocity directly
away from us. Here is a quick derivation. The diagrams show light coming from a distant galaxy
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reaching us in two frames — our frame and the rest frame of the galaxy.

.............................................................................
.............................................................................................................................. .................................................................. ..............••

us distant
galaxy

light

(m, 0) = p ` = (E,−Eê‖) P = (Mγ, Mγ ~v)

.................................................................................
.........................................................................................................................

................................................................................ ••
us distant

galaxylight

(mγ,−mγ ~v) = p′ `′ = (E ′,−E ′ê′‖) P ′ = (M, 0)

Also shown are the 4-momenta of an object on earth of massm and an object in the galaxy of mass
M .1 Using the invariance of the invariant product

P · ` = MγE −Mγ~v · (−Eê‖) = MEγ(1 + v‖) = ME ′ = P ′ · `′ (1)

And therefore

E/E ′ =
1

γ(1 + v‖)
≈ 1− v‖ (2)

This is just what we want to know to verify the Hubble law.
But the interpretation of the observations is not trivial because we do not have accurate ways of

measuring the distances to far-away galaxies. For things that are nearby on an astronomical scale,
we can measure the change in angle in the line of sight (compared to that for far away objects)
as the earth moves around the sun, and use trigonometry to relate the distance of the object to the
earth-sun distance (this is called parallax). Check outThe ABC’s of Distancesfor adiscussion of
parallax in Ned Wright’s Cosmology Tutorial.

But for more distant objects, we can only infer their distance if they are or they contain objects
whose intrinsic brightness we think we know. Such things are called “standard candles.” One
of the keys to this business is to find good standard candles. If we see distant standard candles,
and measure their observed brightness, we can calculate their distance by comparing the observed
brightness with the intrinsic brightness. In principle this should work, but in practice, it is a much
chancier proposition than using trigonometry. It will be accurate if we have a good theory of the
intrinsic brightness and if the observed brightness is not affected by junk in the universe between
the object and us. We will come back to this next week.

Hubble’s original data (figure2) was quite poor, but these days the Hubble law is known to
work well out to distance of hundreds of megaparsecs, where a parsec is about 3.26 light years.
Figure3 shows some data using Type Ia Supernovas as a standard candle from Riess, Press and
Kirshner (1996), quoted inNed Wright’s Cosmology Tutorial

Another reason that we believe the Hubble law is not experimental, but theoretical — it is the
only possibility consistent with the cosmological principle. Let us see why this is so. We will do

1The masses will cancel out, and it would be more elegant to use the 4-velocity 4-vector, which is the 4-momentum
divided by the mass — that since that is one more definition to remember, and we don’t really need it, I have not spent
much time discussing it.
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Figure 2:Original Hubble data (1996)

Figure 3:A Hubble plot using Type Ia SNe as a standard candle from Riess, Press and Kirshner
(1996)
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this assuming that the velocities are small compared to the speed of light — this will be valid in
some relatively large region around the origin, as we will see. Then we can do the whole analysis at
some fixed timet, and not worry about the changes in time that occur in Lorentz transformations.

The way the proof works is that we begin by writing the law that relates velocity and position
in a particular frame, defined by having the galaxy at the origin of the coordinate system at rest.
We look at a galaxy at position~r0 and find that it is moving with velocity~v0. Then we transform
to a new frame in which this galaxy is at the origin and at rest, and we demand that the law has the
same form.

Here is the proof. Suppose that at some timet there is some law that specifies the velocity of
each galaxy in terms of its position. This law can be expressed in terms of a function~H(~r) which
gives the vector velocity~v of the galaxy at position~r in the inertial frame in which the galaxy at
~r = 0 is at rest:

~v = ~H(~r ) (3)

Now suppose that we go an inertial frame in which the galaxy at~r0 is at rest and go to a coordinate
system in which this galaxy is at the origin. In the original coordinate system, this galaxy has
velocity~v0 = ~H(~r0). Thus in the new coordinate system, the positions and velocities are given by

~r ′ = ~r − ~r0 ~v ′ = ~v − ~v0 = ~H(~r )− ~H(~r0) (4)

Now according to the cosmological principle, we must have the same law in the new coordinate
system, so that

~v ′ = ~H(~r ′) (5)

Putting (4) and (5) together, you see that~H must satisfy

~H(~r − ~r0) = ~H(~r )− ~H(~r0) (6)

But this means that the function~H(~r ) must be linear — each component of~Hmust be just a linear
combination of the components of~r. This may be obvious, but let me belabor the point a little by
giving you a “proof.” Look at some component of~H, sayHx, and write (6) as

Hx(~r1 − ~r2) = Hx(~r1)−Hx(~r2) (7)

Now differentiate both sides with respect tox1 andx2 (or y or z). On the right hand side, this
gives zero because the two terms depend either onx1 or x2 but not both. The left hand side can be
written entirely in terms of the derivative with respect tox1 using the chain rule:

∂2

∂x1∂x2

Hx(~r1 − ~r2) = 0 ⇒ (8)

∂2

∂x2
1

Hx(~r1 − ~r2) = 0 (9)

(9) is true for all~r2, so we can set~r2 = 0 and rename~r1 → ~r, so

∂2

∂x2
Hx(~r) = 0 (10)
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This means thatHx(~r) is at most linear inx. The same argument works fory andz. But setting
~r1 = ~r2 in (7) givesHx(0) = 0, and so we can write

Hx(~r) = bxxx + bxyy + bxzz (11)

where thebs are constants. This works for the other components as well, so our proof is complete.
Now isotropy, the assumption that all directions are equivalent, implies that there is no special

direction. This implies that~H(~r ) behaves like a vector under rotation. The only function of~r

that is linear, behaves like a vector, and does not involve any other fixed vector (which would be
a special direction) is~r itself, possibly multiplied by a constant. The constant may depend on the
time t, but cannot depend on anything else. Thus

The cosmological principle⇒ ~v = H(t)~r (12)

This is the Hubble Law! If we put ourselves at the origin (which doesn’t matter because all points
are equivalent) it says that a galaxy at~r is moving with a velocity that is in thêr direction —
that is directly away from us — and with velocity proportional to|~r|. Notice that the function
H(t) has units of inverse time. The value ofH(t) today is called the Hubble constant,H0. It is
conventionally given in the rather ridiculous units of kilometers per second per megaparsec. It is
sometimes further expressed in terms of a dimensionless quantity,h, defined by

H0 ≡ 100 h
km/s
Mpc

(13)

whereh is measured to be0.71± 0.04. This means, for example, that for a galaxy at a distance of
100 Mpc, we expect a recession rate of7.1 × 103 kilometers per second, that is about 2% of the
speed of light. To convert these crazy units into an inverse time, we can convert all the distances to
light years, and the time to years, using the fact thatc ≈ 3× 105 km/s=1 light year/year:

H0 =

(
100 h

km/s
Mpc

) (
1 light year/year
3× 105 km/s

) (
1

106 × 3.26 light years/Mpc

)
≈ h

1010

1

years
(14)

Which implies that1/H0, which is called the Hubble time, is about13.7 billion years. You can
see on your PC what this looks like (though of course you can imagine) in theMathematicafile
hubble.nb.

Equation (12) describes what is called an expansion of the universe (at least ifH(t) is positive,
which it is today) because the distances between all pairs of galaxies grow in exactly the same
way. It is as if the space between the galaxies is expanding at the rateH(t). This is illustrated in
the animation inhubble.nb. The Hubble time,1/H0, is the time it would take for the universe to
expand by a significant factor (e) if the time dependence ofH(t) is ignored. The Hubble time is
thus a kind of approximate age of the universe — the time it has taken for the size of the universe
to change a lot.2 This gives rise to the notion of the observable universe, which is an imaginary

2To get a really accurate age, we have to understand howH(t) depends on time, which we will discuss later.

6



sphere with us at the center and radius of aboutc/H0 — that is13.7 billion light years.3 This radius
is just the distance that light has traveled since the universe was much smaller than it is today. This
also gives rise to the notion of the Big Bang. If we run the expansion backwards, we get to a point
where things start to get complicated! We will talk more about this later.

Of course, the Hubble law, (12), and the cosmological principle from which it follows are is
not really true. The universe is not really the same everywhere and the actual motions of galaxies
are more complicated than (12). Galaxies come in clusters and superclusters in which they orbit
around each others in complicated ways. But the idea is that this complicated local behavior is
superimposed on the simple Hubble expansion. Below is a very very rough guide to the sizes of
things:

The scales of the observable Universe

∼ 0.01 Mpc visible size of large galaxies

∼ 0.1 Mpc dark size of large galaxies

∼ 1 Mpc distance between galaxies

∼ 10 Mpc big clusters bound by gravity

∼ 100 Mpc largest regions of enhanced density

l cosmological principle applies in this region????l

∼ 104 Mpc ∼ c/H0 - the observable universe

Newton’s theorem and the expansion of the Universe

I’m sure you have all heard that general relativity implies that the universe might be curved, and
might be finite, rather like the two dimensional space on the surface of a balloon. This would
make it difficult for us to analyze it in purely Newtonian terms. Also, as we know only too well,
Newton’s picture of gravity cannot be exactly right because it does not account for special relativ-
ity. Nevertheless, at least if the universe is made of ordinary matter (an assumption that we will
question in later lectures) we can use Newtonian gravity to learn something about the evolution
of H(t). We can do this because of the cosmological principle. Since the universe is (assumed to
be) the same everywhere, we can analyze the evolution ofH(t) in a sufficiently small region that
the velocities never get relativistic, and the curvature of space is not important. Then we can use
Newtonian mechanics and Newtonian gravity to discuss not just the velocities of the galaxies, but

3mmm
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the evolution of their velocities. Let’s begin by adopting a coordinate system with us fixed at the
center, and asking about the motion of a distant galaxy at~r.

This subject contains some subtleties. We will start with a deceptively simple analysis, and
then go back and think about it. Consider the contribution to the forces on us and on the distant
galaxy from a spherical shell of mass (galaxies) centered at the origin. Such a shell never makes
any contribution to a force on us because of Newton’s theorem. So there is no force on us and we
remain fixed at the origin of the coordinate system. However, the distant galaxy feels a force from
every shell with radius less thanr = |~r |, pulling it towards us. The total force on the galaxy is
towards us with magnitude

4π r3

3

Gm ρ

r2
=

4π

3
Gm ρ r (15)

wherem is the mass of the galaxy andρ is the mass density of the universe at the time.
Now what does this mean? The obvious problem with the analysis is that it seems to depend on

choosing the center of the spheres to be where we are. Why not choose the center some place else.
If we do that, the force on us will not be zero, so how can we say that we are in an inertial frame?
It is true that if we do this the galaxies are moving in some complicated way through our spheres,
but that should make no difference to Newton’s theorem because in Newtonian mechanics, the
gravitational force depends only on the instantaneous positions of the various masses.

One problem here is one of infinity. If you think about the force on any galaxy in the universe
from all of the others, in Newton’s theory, the answer is simply undefined. Replacing the sum over
galaxies by an integral over the position of the galaxies (which should be a good approximation
for distances much larger than the typical distances between galaxies, or at least clusters) it is

~F = Gm ρ
∫

d3r′
~r ′ − ~r

|~r ′ − ~r |3 (16)

This integral is not well defined because it gets contributions from regions of the universe that are
infinitely far away. It depends on exactly how we take the limit that extends the integral over all
space. If we consider (16) as the limit of an integral over a large sphere as the radius of the sphere
goes to infinity, then this reduces to the previous discussion, and as we have seen, the answer
depends on where we choose the center of the spheres. In general, the limit depends on some
complicated way on how one takes the volume to infinity. This is not useful. So what is actually
going on?

First note that because of the equivalence principle, we can think about gravitational accelera-
tions, rather than forces — this is nice because the mass of the galaxy cancels out.

~a = Gρ
∫

d3r′
~r ′ − ~r

|~r ′ − ~r |3 (17)

However, this doesn’t help with the infinite volume problem — we don’t know the acceleration of
a given galaxy any more than we know the force on a given galaxy.

But fortunately, we are not really interested in the acceleration of any particular galaxy. What
we mean by a coordinate system with us fixed at the center is that the coordinate system is acceler-
ated by the local gravitational field at our position. Thus the situation is the same here as with the

8



tidal force. The actual acceleration that we care about on a distant galaxy is the difference between
the gravitational acceleration on the galaxy and the gravitational acceleration on us.

~arelative = Gρ
∫

d3r′
~r ′ − ~r

|~r ′ − ~r |3 −Gρ
∫

d3r′
~r ′ − ~r0

|~r ′ − ~r0 |3 (18)

In general relativity, we would simply say that we can go to a locally inertial frame in which there
is no gravitational field where we are.

While the gravitational acceleration on a particular galaxy is not well defined, thedifference
in the acceleration on any two galaxiesis much better defined. You still have to be careful about
how you take the limit of infinite volume. But unless you do something dumb the difference makes
sense. For example, it is easy to see that if we define the limit in (18) by taking a large sphere to
infinity, the difference is independent of where we take the center of the sphere.

Since we computed (15) by adding up the contributions of spheres centered on our position,
the acceleration of gravity on us computed in this way vanishes. Thus when we compute the
acceleration on the distance galaxy in the same way, we are actually computing the difference
between the acceleration of the galaxy and that of our own, which is what we want. Likewise, if
we compute the difference, then it will not matter where we put the center of our spheres — we
will always get (15). So, understood properly, the simple result is correct, though the argument is
inadequate!

Hubble dynamics

We can now follow the distant galaxy as it moves with the expansion of the universe. The acceler-
ation is

~̈r = −~r
4π

3
Gρ(t) (19)

(19) is consistent with the Hubble law in the following sense. If at some time, the Hubble law, (3),
is satisfied, the dynamics implied by (19) implies that it will be satisfied at subsequent times. To
see this explicitly, note that (19) can be written as

d

dt
~v = −~r

4π

3
Gρ(t) (20)

Thus the rate of change of~v is proportional to~r, so if ~v is proportional to~r at some time, it stays
that way.

To say more about the evolution of the expanding universe, it is convenient to rewrite (19) as
follows:

~̈r = −~r
4π

3
Gρ = −~r

G M

r3
(21)

where

M =
4π ρ r3

3
(22)

is the mass inside an imaginary sphere of radiusr = |~r|. That isM is the sum of the masses of all
the stuff that is closer to us than the galaxy of interest. The advantage of writing things in terms
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of M is thatM doesn’t change asr changes. The size of the imaginary sphere changes as the
galaxy we are looking at moves farther way, but on the average, because all parts of the universe
are expanding at the same rate, stuff doesn’t cross the surface of the imaginary sphere. SoM

remains constant. This is illustrated in theMathematicafile hubble.nb it you setsphere = 1.
Taking the dot product of both sides of (21) by ~̇r, we can write the left hand side as

~̇r · ~̈r =
d

dt

1

2

(
~̇r

)2
(23)

and the right hand side as

− ~̇r · ~r GM

r3
= −~̇r · ~r

r

GM

r2
= ~̇r · ∂r

∂~r

∂

∂r

GM

r
= ~̇r · ∂

∂~r

GM

r
=

d

dt

GM

r
(24)

or
d

dt

1

2

(
~̇r

)2
=

d

dt

GM

r
(25)

which implies that
1

2

(
~̇r

)2 − GM

r
= constant≡ 1

2
C (26)

or
1

2
(~v )2 − 4π Gρ

3
(~r )2 =

1

2
C (27)

The constantC in (26) and (27) depends on the initial conditions. There is a theoretical prej-
udice today in favor ofC = 0, for reasons that I will try to explain later.4 This means that the
universe lives in a flat space, which makes it somewhat easier to understand. However, it is still
possible thatC 6= 0, in which case general relativity implies that the universe is curved. We won’t
talk about this in detail, except to note that ifC is negative, the universe is finite and positively
curved, like the three dimensional analog of the surface of a sphere, while ifC is positive, the uni-
verse is negatively curved and infinite. We will assume thatC = 0, and just briefly discuss what
happens in the other cases. If we ignore relativity, the physical significance ofC can be easily seen
from (26). If C > 0, the expansion of the universe will go on forever, and as the distance to the
distant galaxyr goes to∞, the speed of the galaxy will go to a finite nonzero limit. IfC < 0,
there will be a largest value ofr at which the galaxy stops, and gravitational attraction turns the ex-
pansion of the universe into contraction. IfC = 0, the balance of kinetic energy and gravitational
attraction is such that the speed of the distant galaxy goes to zero asr →∞, but it never stops and
turns around.

Dynamics of a flat universe

Using the Hubble law, (3), in (27) gives

1

2
H(t)2 (~r )2 − 4π G ρ

3
(~r )2 =

1

2
C (28)

4In any event, there is a sense in which the universe is remarkably close toC = 0.
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Taking C = 0 in (28), dividing both sides byr2 and putting in the time dependence ofρ(t)

explicitly, we find

H(t)2 =
8π G ρ(t)

3
(29)

The density implied by (29),

ρc(t) =
3H(t)2

8πG
(30)

is called the critical density. Because bothρ(t) andH(t) are measurable, at least in principle, (29)
is a test of the flatness of the universe (assuming that the rest of our assumptions are correct). If the
measured density is greater than critical,ρ(t) > ρc(t), thenC in (27) is negative, and the universe
is closed and positively curved. If the measured density is less than critical,ρ(t) < ρc(t), thenC

in (27) is positive, and the universe is infinite and negatively curved.
The matter that we can actually see in the universe contributes only a very small fraction of the

critical density. However, this doesn’t mean that the universe is not flat.

Newton’s theorem and dark matter

There is a lot of evidence that galaxies contain much more matter than we can see. What we see
we see because it emits light — it is called luminous matter — mostly stars or gas clouds. The
most convincing evidence that there is a lot of other stuff comes from studies of the orbital velocity
of gas far from the galactic centers, beyond almost all of the visible matter. What one sees is that
the speed at which things orbits around the center of the galaxyremains roughly constant with
distance far beyond the radius at which you see significant visible matter.Newton says that
for a circular orbit at radiusr in a spherically symmetric collection of mass,

v2

r
=

GM(r)

r2
(31)

whereM(r) is the mass inside a sphere of radiusr. Thus one simple way of explaining the
constancy of the orbital velocity is to assume that there is a large spherically symmetric halo of
dark matter around each galaxy with a density that goes approximately like1/r2, wherer is the
radius. Then the amount of matter contained in a sphere of radiusr is

M(r) =
∫ r

0
4πr′ 2 dr′ ρ(r′) ∝

∫ r

0
dr′ ∝ r (32)

which cancels a1/r on the right hand side of (31), so that the rotation speedv remains constant.
This much of the subject you should understand.

Whatever it is that contributes this mass density proportional to1/r2 (except for the stars and
gas that we see) is called dark matter. So what is this stuff? Is it real? Is it matter that we know
about or something else?

Recently, another interesting way of looking at the effect of dark matter has emerged. The
rotation speed arguments we have just talked about involve the effect of the dark matter’s gravity on
ordinary matter. This has more-or-less convincingly established that there is dark matter associated
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with the luminous matter in galaxies. There are also indications that there is more dark matter
associated with clusters of galaxies. Weird as it sounds, one can also see the effect of dark matter’s
gravity on light. The idea here is to use so-called “gravitational lensing.” Because light can be
bent by a gravitational field, it is possible that a massive cluster of galaxies could bend the light
from an even more distant galaxy (or quasar) so that we on earth would see the light coming at
us from several directions.5 This has actually been seen, first in radio-telescope observations, and
more recently and spectacularly in Hubble Space Telescope images and other visual data. Figure4
shows one such image. In this Hubble photo, around the bright oval galaxies of a distant cluster,

Figure 4:Hubble images showing gravitational lensing.

we see the wispy arcs of a still more distant object, focused and distorted by the gravitational lens
produced by the dark matter of the cluster. One can use this phenomenon to study the distribution
of the dark matter. Figure5 dramatically shows the result of such a study of another cluster of
galaxies - a plot of the matter density in a cluster, showing high peaks at the visible galaxies, but
an enormous background of dark matter between them.6

If the dark matter really is some kind of matter, there are indirect but fairly convincing argu-
ments that it cannot be made out of normal stuff. The evidence comes from the fact that we have a
picture of how light nuclei are formed in the very early universe that works reasonably well, and a
lot more normal matter would mess up this nice picture (of what is called “primordial nucleosyn-

5or even, if the geometry is just right, from an “Einstein ring.”
6from a Bell-Labs new release in 1997.
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Figure 5:Mass distribution in a cluster of galaxies showing dark matter bakground.

thesis” — for example, if there were enough baryons to account for all the dark matter, the theory
predicts that there would be much less deuterium in the universe than we actually see!). So most
people assume that it is some kind of new particle! There are many ongoing experimental efforts
to see dark matter particles as the earth moves through the dark-matter halo of our galaxie. At
least one experimental group believes that that they have seen something, but the data so far is not
convincing, nor does it tell us much about what this stuff might be.

I am not going to talk about all this in detail. Here is a link to reviews on the web:
astron.berkeley.edu/∼mwhite/darkmatter/dm.html — A brief but up-to-date introduction with

additional links.
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lecture 24

Topics:
Where are we?
Running Hubble backwards
Relativistic cosmology
Back to the big bang
Thermal equilibrium
The hot bang and the CMBR
Temperature and phases

Where are we?

After our introduction to the Hubble expansion in the last lecture, we are now going to work our
way back towards the beginning of the universe. This is sort of fun, for its own sake, but it will
also, I claim, get us closer to an answer to the question we asked at the very beginning of the course
— why is Newton’s third law a formula for acceleration.

Running Hubble backwards

Let us start by going back to the laws we derived to describe the evolution of the Hubble expansion.
If we put ourselves at the origin and take~r to be the position of some distant galaxy, the Hubble
law can be written as

~̇r = H(t)~r (1)

whereH(t) is the Hubble parameter. Then, assuming that we can use Newton’s theory of gravity
and ignore relativity, we found that gravity slows the Hubble expansion

~̈r = −~r
4π

3
Gρ(t) (2)

Then by considering the conservation of the mass inside a sphere with radius|~r | (still ignoring
relativity), we found that we could integrate (2) to obtain

1

2
(~v )2 − 4π G ρ(~r )2

3
=

1

2
C (3)

where the constantC depends on the initial conditions. Again, this derivation was valid for a
universe dominated by slowly moving matter, so long as the cosmological principle is satisfied.

It is conventional and convenient to get rid of the vectors in (1)-(3). We can do this by defining
an (arbitrary) distance scalea between points in the universe. For example, we could takea = |~r |,
the distance between us and the distant galaxy. But the notion is more general, as it has to be
because we want to use it to describe the universe at earlier times, before we or even galaxies were
around.a is just an arbitrary scale that measures the relative size of the universe. The value ofa
doesn’t matter at all, but ifa doubles, that means that the distance between (far apart) things in the
universe has doubled!

Usinga = |~r | and that fact that the direction of~r doesn’t change with time, we can write

~r = a r̂ ~̇r = ȧ r̂ ~̈r = ä r̂ (4)
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and rewrite (1)-(3) as
ȧ

a
= H(t) (5)

ä

a
= −4π

3
Gρ(t) (6)

and
ȧ2

a2
= H2 =

8π G ρ

3
+

C

a2
(7)

Now for simplicity, let us assume thatC = 0. As I have said before, there are theoretical
reasons (that we will discuss next time) to think that this is a good approximation, and some ob-
servational support for the detailed picture that emerges. We can then follow the Hubble evolution
backwards towards the big bang, at least for a while.

ForC = 0, we can take the square root of (7) and write

ȧ

a
=

√
8π G ρ

3
(8)

Note that have taken the positive sign, corresponding to expansion.
To determine the time evolution ofa, we need a relation betweena andρ. This relation depends

on what kind of stuff our universe is made of at the time of interest. For slowly moving matter,
we can simply use the factρ a3 is a constant, because the density is inversely proportional to the
volume. Thus

0 =
d

dt
(ρ a3) = ρ̇ a3 + 3ρ a2 ȧ ⇒ ȧ

a
= −1

3

ρ̇

ρ
or ρ̇ = −3ρȧ/a (9)

Thus we can write (8) as

− 1

3

ρ̇

ρ
=

√
8π G ρ

3
(10)

This is a differential equation that we can solve forρ (or course, the result is only meaningful as
long as our assumptions are valid):

ρ̇ = −
√

24π Gρ3/2 (11)

ρ−1/2

−1/2
=

∫ dρ

ρ3/2
= −

√
24π G

∫
dt = −

√
24π G (t− t0) (12)

ρ−1/2 =
√

6π G (t− t0) (13)

ρ =
1

6π G (t− t0)2
(14)

wheret0 is a constant set by initial conditions. As expected, the density decreases as the universe
expands and increases as we run the tape backwards. Sinceρ a3 remains constant ast increases,
(14) implies thata grows as

a ∝ (t− t0)
2/3 (15)
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So if this were the whole story, the expansion of the universe would look something like this
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To recapitulate, two separate pieces of physics are required to understand how the scalea evolves
with time. One is the is the relation (7) (or (8) for C = 0) that describes the effect of gravity on the
expansion. The other is the relation (9) that describes how the densityρ changes with changes in
the scale factora. A third relation, (6), is not independent of these two. We can derive it from (7)
and (9). One way to do this is to multiply (7) by a2 and differentiate (going backwards through the
steps we used to get (7)) to get

2ȧä =
8πG

3
(ρ̇a2 + 2ρaȧ) =

8πG

3
(−3ρaȧ + 2ρaȧ) = −8πGρaȧ

3
(16)

Dividing by 2aȧ then gives (6).

Relativistic cosmology

The simple behavior implied by (14) and (15) is not consistent with the universe we actually
observe. A couple of important things have been left out. One of these has been known for a long
time. There is good evidence that the big bang was hot as well as dense. Heat complicates matters
in a couple of ways. Heat is the random motion of the constituents of matter. The higher the
temperature, the faster the motion. But once stuff is moving around, we have not only density, but
also pressure — we left pressure out of our simple analysis of the Hubble dynamics. Furthermore,
as we go back farther in time, the temperature gets higher and higher, and eventually, the random
motion of the particles approaches the speed of light. Then we cannot ignore relativity! In this
regime, as we know from our study of relativity, all sorts of bizarre things happen. Particles are
created and destroyed. Energy and momentum are conserved, but not mass. We must be careful.

A complete understanding of what happens when things get relativistic requires that we gener-
alize Newton’s theory of gravity to incorporate special relativity. The resulting theory is Einstein’s
general relativity. We are not going to discuss this here, except for one result, which will be all we
need. It turns out that (7) remains correct in general relativity ifρ is interpreted not as the mass
density, but as the relativistic energy density divided byc2, or just the energy density in sensible
units in whichc = 1. This makes sense in that if we go back to low temperatures and things come
to rest, the energy density just becomes the mass density. But in the relativistic regime, it just turns
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out that gravity affects all forms of energy, not just mass (that is rest energy), so we have to use the
energy density instead in (7). It is worth writing (7) again, now that we know how general it is:

ȧ2

a2
= H2 =

8π G ρ

3
+

C

a2
(17)

This is called the Friedmann equation. The parameterC here is related to the curvature of the
space of the universe.C = 0 corresponds to flat space.

Let’s see what becomes of (9) and (6) in the presence of pressure and relativity. First consider
(9). To think about how this changes, let’s consider the total energy in a cube with sidea, and see
how it changes with time in an expanding universe. Remember thata here is some distance that
changes along with the space of the universe. This cube is like the sphere inhubble.nb except
that now everything is bouncing around randomly and bumping into everything. On the average,
no stuff comes into or goes out of the cube, or at least as much stuff comes in as goes out. We
could think of it as having impermeable sides or pistons on all sides or something like that, so
that collisions with the sides take the place of particles going in and out of the cube. This isn’t
quite right for any particular collision, but it should work for averages. And since temperature
and pressure are the result of random processes, averaging over a very large number of individual
processes, this is really what we want. Because we are now intepretingρ as the energy density, the
energy isρ a3. Now in this picture with the impermeable sides, because of the pressure, the energy
changes with the volume — the pressurep does work on the boundary, which reduces the energy.

Let’s analyze this quantitatively in two ways - first for the cube, and then for a region of
arbitrary shape. Both will give the same result.

It is easiest to see what happens for the cube if we put one corner at the origin, so this corner
doesn’t move with the expansion. Then, as shown in the figure below, whena → a + da the three
sides that do not touch the origin each move out a distanceda. The area of each face isa2 (it
doesn’t matter whether we usea2 or (a + da)2 or something in between because the difference is
infinitesimal). Thus the force on the face isp a2 and the work done on each face isp a2 da. Because
there are three faces, the energy lost is3p a2 da, which is the change in energy in the cube. Then
because3a2 da = d(a3), we can write

d(ρ a3) = −3p a2 da = −p d(a3) (18)
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Now let us do the analysis for a region of arbitrary shape. The work done by the pressure in an
infinitesimal change of the boundary is a surface integral over the boundary of the forced~F dotted
into the change in the position of the boundary,d~b. The force of pressure has magnitude equal to
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the areadA times pressurep, and its direction is normal to the boundary. Thus the work done is
the pressure times the area times the perpendicular motion of boundary, which is equal top times
the change in the volume —

dE =
∫

A
d~F · d~b =

∫

A
p dA db⊥ = p dV (19)

Thus here becauseV = a3, (19) implies

d

dt
(ρ a3) = −p

d

dt
(a3) (20)

which agrees with (18).
(20) implies

ρ̇ a3 + 3ρ ȧ a2 = −3p ȧ a2 (21)

or

ρ̇ = −3
ȧ

a
(ρ + p) (22)

Notice that this reduces to (9) when the pressure vanishes, as it should.
Using (22), we can find the appropriate generalization of (6) by following the steps we used in

(16). Multiply (17) by a2, and differentiate with respect to time.

d

dt
ȧ2 =

d

dt

8π G ρ a2

3
(23)

2ȧä =
8π G

3

(
ρ̇ a2 + 2ρ ȧ a

)
=

8π G

3
(−3(ρ + p) ȧ a + 2ρ ȧ a) (24)

Dividing both sides by2aȧ gives
ä

a
= −4π G

3
(ρ + 3p) (25)

This is the relativistic generalization of (6), to which it reduces whenp = 0 andρ is the rest energy.
Note that it is not at all obvious why it is (7) that does not change when we go to the relativistic
limit, while (6) gets generalized to (25). This requires knowing that (7), with ρ reinterpreted at the
energy density, is the correct general relativistic result.

Back to the big bang

Armed with the results of the previous section, we can go back a bit further into the history of
the universe. But now that we have included the effect of pressure, we also have to understand
the relation between the energy densityρ and the pressurep for relativistic stuff. An important
example of relativistic stuff is a gas of photons — particles of light — radiation. We can compute
the pressure in any shape container, so consider the pressure of a gas of photons with energy density
ρ in a cubical container of sidea. The pressure of such a gas arises because the photons bounce
off the sides of the container. Suppose the sides are lined up with the coordinate axes. A photon
with energyE and momentum~p, if all the components of~p are nonzero, bounces around off all the
sides. Each time it hits a side, the component of momentum perpendicular to the side changes sign,
but the others remain unchanged. Consider the force on the sides perpendicular tox̂. When the
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photon bounces off this side, it imparts an impulse2|px|. The time it takes to get back to the same
side, because it must go a distance2a in thex direction, is2a/|vx|, wherevx is thex component
of the velocity, which ispx/E. The contribution of this photon to the impulse per unit time, which
is the force, is thus

2|px|
2a/|vx| =

E

a
v2

x (26)

The contribution to the pressure is the force (26) divided by the areaa2. Then we get the total
pressure by summing over all the photons

p =
∑ E

a3
v2

x (27)

But the pressure is the same on each side, so because the velocity of each photon is 1, the result
must be

p =
1

3

∑ E

a3
(v2

x + v2
y + v2

z) =
1

3

∑ E

a3
=

1

3
ρ (28)

The pressure of a relativistic gas is 1/3 the energy density (in relativistic units, withc = 1, of
course).

Now let us apply (28) to understand how the energy density of a gas of photons changes with
the Hubble expansion. Forp = ρ/3, (22) becomes

ρ̇ = −4
ȧ

a
ρ (29)

This implies thatρ a4 is constant. Thus the energy density of a relativistic gas falls likea−4 as
the universe expands, faster than the energy density of nonrelativistic matter, which falls likea−3.
It may help to understand this result to realize that this means that the energies of the individual
relativistic particles must be falling like1/a, because their number density clearly falls likea−3. In
the expanding box derivation above, the energies fall because they lose energy in the their collisions
with the sides of the box. In the universe, there isn’t any box, but if the relativistic particles are
in thermal equilibrium, they lose energy bouncing off the other particles around them which are
expanding away from them (just like the sides of the box).

An interesting thing about this is that the relation (29) remains true even when the density of
the relativistic particles becomes so low that they no longer bounce off one another very often. But
even in that case, (29) is satisfied in an expanding universe. What is happening is the that energies
are effectively red-shifted down as the universe expands. The larger the universe is, the farther
away the relativistic particles reaching some particular point are coming from. But the farther
away they came from, the more red-shifted they are (because of the Hubble expansion). If the
particles have mass, the process eventually stops when the particles become nonrelativistic. But
for photons, and other massless particles, it continues forever and (29) remains true as the density
goes to zero.

Furthermore, going in the other direction, this means that if we follow the history of a rela-
tivistic gas back in time, it not only gets more dense as we go back, but because the energies of
the individual particles are increasing, the temperature increases as well. It turns out (as we will
see below) that the average energy is proportional to the temperature, so the temperature of the
relativistic gas goes like1/a.
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Thermal equilibrium

There is one more component to the now standard picture of the hot big bang. One assumes that
at some time in the early history of the universe, all of the particles were in thermal equilibrium
at an enormously high temperature. What thermal equilibrium means is that the particles collide
frequently enough that their motions are thoroughly randomized. You might think that this ran-
domness would make it hard to understand how such a hot universe works. But in fact, exactly
the opposite is true. In thermal equilibrium, all the important properties are determined on the
average by a single parameter — the temperature. You can them follow the subsequent evolution
of the universe, at least on the average, using the tools we have developed above. This seemingly
paradoxical situation is beautifully explained in one of the best popular science books I know of,
Steven Weinberg’sThe First Three Minutes, which I recommend for any of you who have not
already read it. You will also learn (much) more about the connection between temperature and
randomness if you take Physics 181. But it is so beautiful that I want to take time out from our
study of the universe and talk just a little bit about thermal equilibrium and randomness.

A beautiful area of physics called “statistical mechanics” is the study of how random motion
of particles is related to classical notions like heat and temperature. “Thermal equilibrium” is one
of the basic concepts here. The idea is that randomness allows us to use probalistic arguments to
understand the physics. What makes this powerful is that the number of particles is very large.

I will give you one example of the power of this approach — the Boltzmann distribution.
Suppose that a system with a fixed, very large numberN of degrees of freedom is in thermal
equilibrium. The degrees of freedom may be the components of the position of single particles,
or they may include additional coordinates like the orientation of molecules. It doesn’t matter
what they are. But we will assume that these degrees of freedom are essentially free between
collisions, but that collisions happen frequently and randomly, so that each degree of freedom that
is in thermal equilibrium is thoroughly randomized with all the others.

The coordinate for each degree of freedomQj has a corresponding generalized momentumPj.
The only important facts that goes into the Boltzmann distributution are the thermal randomness
that makes each degree of freedom the same on the average, the fact thatN is very large, and the
fact that there is a conserved energy that is quadratic in each of the momenta. It is easiest to see
what is going on if we choose the normalizations of the momenta so that the energy is just the sum
of the squares,

Etot =
N∑

j=1

P2
j (30)

For example, for an ordinary space momentum, this just means absorbing a factor of1/
√

2m so
that

Pj =
1√
2m

pj (31)

This just makes the derivation easier because we don’t have to carry around the extra factors.
Now the statement of the Boltzmann distribution is that the probability of finding a degree

of freedom with momentum betweenP andP + dP is completely calculable in terms of the
temperature —

B(P) dP =
dP√
2π Eav

e−
P2

2Eav =
dP√
πkT

e−
P2

kT (32)
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The function

B(P) =
1√

2π Eav

e−
P2

2Eav =
1√
πkT

e−
P2

kT (33)

is the Boltzmann distribution, whereEav is the average energy per degree of freedom which is
related to the temperature by Boltzmann’s constant,

k = Boltzmann constant= 1.38× 10−23 J/◦K = 8.62× 10−5 eV/◦K (34)

according to

Eav =
kT

2
(35)

It is easy to understand the exponential factor in (33). The key to the probability argument is
simply conservation of energy, (30). Because of (30), any particular degree of freedom can have a
generalized momentum anywhere between−Pmax andPmax where

Pmax =
√

Etot (36)

But if one degree of freedom has generalized momentumP1, then the maximum possible value of
all the others is reduced to

P ′max =
√

Etot −P2
1 =

√
P2

max − P2
1 (37)

This is the basic physics. It is unlikely to find one degree of freedom with a very large generalized
momentumP1 because conservation of energy would then restrict the possible momentum values
for the very large number of other degrees of freedom. Because the possible range of each of the
other degrees of freedom is reduced by a factor of

P ′max

Pmax

=
√

1− P2
1/P2

max (38)

the probability of finding a valueP1 for one degree of freedom should contain a factor of

(P ′max

Pmax

)N−1

=
(
1− P2

1/P2
max

)(N−1)/2 ≈
(
1− P2

1/P2
max

)N/2
(39)

The limit that we are interested isN very large with the total energy growing linearly withN so
that the average energy per particle is fixed.

P2
max = Etot = N Eav (40)

so (39) becomes (
1− P2

1

N Eav

)N/2

(41)

In the limit of very largeN , the exponential factor (41) overwhelms any other dependence on the
particular degree of freedom and gives the exponential in the Boltzmann distribution:

lim
N→∞

(
1− P2

1

N Eav

)N/2

= e−
P2

1
2Eav ≡ e−

P2
1

kT (42)
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The rest is just a normalization factor to make the total probability equal to one. You can see from
this argument that the factor of1/2 in the relation betweenEav andkT , (35), comes from the fact
that the energy is a quadratic function ofP.

This is illustrated in theMathematicaworksheetboltzmann-dynamic.nb. Here we start with
a uniform random distribution of the momenta between−1 and1 (in some arbitrary units) of 5000
particles moving in 2 dimensions. The momenta are then randomized by a series of collisions, each
conserving energy and momentum. Particle 1 collides with 2, then 2 with 3 and so on to 1000. The
whole process is then repeated 10 times and you can watch as the momenta get randomized. You
can see dramatically how the initial uniform distribution gets converted in a Boltzmann distribution
by the power of probability.

The hot bang and the CMBR

Let’s assume that the hot big bang picture is correct, and think about what the universe looked
like when it was very hot. First of all, normal matter, made of neutral atoms certainly didn’t exist,
because the high energy collisions would have completely ionized all the atoms. The universe
would be a plasma. Furthermore, since particle number is not conserved in relativistic collisions,
particles and their antiparticles can be produced and destroyed. So for example, while it seems
that in the universe today, there are a lot more electrons than there were positrons, long ago when
the universe was less than a millionth its current size, there were almost as many positrons as
electrons. The small excess of electrons that eventually became the electrons in our atoms was
quite unimportant at early times. For the same reason, at even earlier times, there was a lot of other
stuff around in the early moments of the universe that we don’t see much of today — heavy unstable
particles which today we can make only at large accelerator laboratories and which quickly decay
back into ordinary stuff were as common in the very early universe as electrons. These heavy
particles disappear when the universe cools to a temperature such that the typical particle energy is
below their mass. It is all quite strange — but simple, in a funny way, because everything is more
or less fixed just by the temperature.

Now why would anyone believe this? We cannot, after all, go back and do experiments on the
early universe. Why is this discussion science? The answer is that we can almost see it! At least we
can look back toward the beginning of the universe by looking far away in the universe, because the
light from far away regions of the universe has taken a long time to get to us. But we can’t look back
all the way. Once the universe gets so hot that atoms dissociate into ions, photons cannot go very
far without colliding with electrons — the universe becomes opaque. Thinking about this in the
other direction is even more interesting. As the universe cools to below the temperature at which
atoms dissociate (a few thousand degrees C), it becomes transparent to photons, which means
that photons fall out of thermal equilibrium. From then on, most of the photons just move freely,
never colliding with anything again. This “gas” of photons continues to behave like relativistic
stuff, while the atoms are nonrelativistic. Thus as the universe continues to expand, the energy
density in the photons gets less and less important to the overall Hubble evolution, but the photons
are still there, getting more and more red shifted as time goes on. This gas of photons from the
formation of atoms, a few hundred thousand years after the big bang, is the Cosmic Microwave
Background Radiation (CMBR). A tiny fraction of these photons hit the earth and can be detected.
Much of what we actually know about the early universe comes from studies of the CMBR. The
first obvious thing to do is to measure the temperature, which turns out to be about 2.7◦C, which is
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about 1000 times smaller than the temperature at which atoms come apart into ions. This means,
since photon temperature and energy is inversely proportional toa, means that the universe today
is about 1000 times bigger today than it was when atoms first formed. There is actually much more
to this statement than meets the eye. It is an important prediction of the hot big bang model that
CMBR looks like it has a temperature at all. The reason it does, even though the photons are no
longer colliding very much, and are not in thermal equilibrium, is that the random distribution of
photon energies that was present when the universe first became transparent is still there — just all
the energies have been scaled down. This prediction has been confirmed by looking at the CMBR
in many different regions of photon energy, and checking that the distribution of energies is what
one would expect in a thermal distribution.

We cannot directly see the universe at scales smaller than 1/1000 the current scale. However,
we can use the tools we have discussed to follow the universe back to small sizes and higher
temperatures and energies. We can go back about a factor of a trillion (1012) before we get to
such high energies that have not directly seen the physics in laboratory experiments, so we are
reasonably confident that we have the picture right back that far. And there are some observable
consequences. For example, most of the nuclei of light elements (deuterium, helium, etc) were
formed back when the universe was a million times smaller and protons and neutrons first started to
stick together. The hot big bang picture predicts a specific pattern of abundances of these elements,
which can be checked by looking for them out in the universe. This is much less direct and more
problematic than direct observation, because one worries about what has happened to these nuclei
in the 10 billion years since they were formed. Nevertheless, there is interesting information to be
had in this way.1

Another area of recent progress comes from the observation of small but regular temperature
differences in the CMBR. These are associated with a funny kind of driven oscillation in the early
universe. I think that what is going on can be described as follows.2 The “oscillator” is the electron-
proton-photon plasma. Before “recombination” when the electrons and protons (or heavier nuclei)
form atoms, the electrons, protons and photons are tightly coupled together by collisions and form
a gas which like air has a pressure (provided by the photons) and inertia (provided mostly by
the photons but a little by the mass density the protons), and therefore a speed of sound. The
“driver” is the primordial density fluctuations and gravitational instability of the dark matter. These
fluctuations produce waves of density fluctuations in the plasma that propagate outward from a
region of enhanced dark matter density like ripples on the surface of a pond disturbed by a rock.
This wave propagation stops when the plasma recombines into atoms, gets frozen into the pattern
of the CMBR on the sky, showing up as a wave in the temperature of the CMBR photons. These
are known asacoustic peaks (check out the discussion and movie in this link). They are seen by

1Again, see Steven Weinberg’sThe First Three Minutes for more details.
2For a more detailed, but understandable description, see background.uchicago.edu/∼whu/intermediate/intermediate.html

on the web or the Scientific American article by Hu and White, background.uchicago.edu/∼whu/Papers/HuWhi04.pdf.
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instruments like the WMAP sattelite3

Eventually, we get back to such high temperatures that we really don’t know how the physics
works. But we suspect that one thing that shows up is interesting structure in the vacuum. We’ll
talk more about this in a moment.

Here is a web link to more information about the Cosmic Microwave Background:
http://background.uchicago.edu/
This is a very nice site maintained by a faculty member at Chicago.

Temperature and phases

The plasma that appears at high temperature in the early history of the big bang is an example
of a “phase” of matter The idea of “phase” is one of the most familiar concepts in the physics of
matter. You know from childhood about the three phases of H2O - water-ice-steam. And you know
that phases can change depending on temperature and pressure. This can have a big effect because
physical properties can change dramatically in a “phase transition” as you go from one phase to
another. I will close by showing you a couple of phase transitions.

3See http://www.astro.ucla.edu/∼wright/CMB-DT.html
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lecture 26

Topics:
Before the big bang
Inflation
The cosmological principle and the Taylor expansion
The cosmological constant
The laws of physics and the Taylor expansion

Before the big bang

One reason that the cosmological principle has historically been treated as a sort of philosophical
assumption is that until recently it was hard to imagine any sort of reasonable physics that could
give rise to it. The reason that it seems difficult is special relativity. To see the difficulty, let us first
think about the physics in a region of the universe that lies beyond the boundary of the observable
universe. By definition, this is a region that we cannot see, because light from this region has not
had time to reach us since the big bang. But according to special relativity, that means there is no
way that any information can have been transferred from here to there or vice versa. This makes
it hard to imagine any physical process that could establish the equivalence of this region of the
universe with ours. Yet the cosmological principle requires that these two regions be equivalent.
This does not mean that the cosmological principle is inconsistent. It just means that whatever
established the cosmological principle did so as a kind of initial condition — before the big bang
started the Hubble expansion. This makes the cosmological principle sound a bit fishy.

In fact, the situation is even worse. We don’t really much care about whether the cosmological
principle holds beyond the observable universe. But consider two regions on opposite sides of the
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observable universe.
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These are regions that we can see, and what we see is that the microwave background radiation
from these two regions looks the same to very high accuracy. We can see directly that the cosmo-
logical principle holds for these two regions. But since light has just barely had enough time to
reach us from these two regions, there is absolutely no way that light (and therefore information)
can have gotten from one of these regions to the other in the history of the universe as we know
it. Cosmologists refer this as the “Horizon Problem” because the boundary of the visible universe
is a kind of horizon, beyond which we cannot see. The problem is that the similarity of the CMB
from different regions of the cosmic horizon looks like a miracle, because no physics could have
established it without violating the precepts of special relativity. The similarity must have been
there as an initial condition before the big bang. Someone or something must have decreed that
these regions looked the same before the conventional Hubble expansion started. What is going on
here?

Inflation

One possible answer was suggested in the 80s by Alan Guth (now at MIT). I will describe the
orginal version of Alan’s idea, even though it is not exactly the modern view of what happens
because I think that it is the easiest to explain and is related to some interesting physics in the ev-
eryday world. Alan thought about the effect on cosmology of the funny structure of the relativistic,
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quantum mechanical vacuum. Like water, the vacuum is really a pretty complicated place. It has
different phases. It breaks symmetries of the underlying interactions because it has structure that
allows it to exist in different orientations in some odd quantum mechanical space. We have very
strong reasons to believe that the vacuum can exist in different phases, each Lorentz invariant, but
with different energy densities and other properties. At low temperatures, the phase we live in has
the lowest energy and is stable (we hope). But at the high temperature of the big bang, one of the
other phases might be the lowest energy state and be stable (like steam is more stable than liquid
water at high temperatures). Such a state, if it exists, is called a “false vacuum.”

Suppose that there is some continuous parameter (there may be many) that describes the config-
uration of vacuum. Then one way that multiple phases can happen is that energy of the vacuum as a
function of this parameter has a couple of local minima, but that the curve depends on temperature.
So at low temperatures it might look like

with the stable phase corresponding to the minimum on the right while at high temperatures it
might look like

with the stable phase corresponding to the minimum on the left. This is the situation with water
and steam in the real world. At high temperatures then right after the big bang, the vacuum state of
the universe would typically be in the high-temperature “false” vacuum, and as the universe cools,
there would come a time when the two vacuum states had the same energy, and after that, at lower
temperatures, the true vacuum would be more stable. But in this situation, there is still an energy
barrier between the two vacua so the transition from the false vacuum to the true vacuum is not
immediate. The false vacuum is said to be “meta-stable.” What happens then is that either as the
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result of a seed, or of random quantum mechanical fluctuations in the case of the universe, small
regions of true vacuum can form and if they are large enough, they realize that they are more stable
and grow and eventually permeate the whole space. Rain drops and the little bubbles that form
when you boil water are examples of the same kind of phenomenon.

But one might think that even if the vacuum were in a different phase in the early stages of
the big bang, that as the universe expands and cools, the usual vacuum would simply eventually
reappear when things got cool enough. There is the interesting physics of metastability associated
with the transition from one vacuum to another. But otherwise, the effect of the false vacuum
should simply disappear when the universe cools. What Guth and others gradually realized is
that this situation gets more complicated in the presence of gravity. It is true that eventually this
false vacuum will decay into ordinary particles moving in the “true” low temperature vacuum with
the minimum energy. But in the meantime, while the false vacuum fills space, something bizarre
happens — the space full of false vacuum expands incredibly rapidly! Strange as this behavior is,
we can actually understand it very simply from the equation for Hubble dynamics that we derived
last time and used to discuss the evolution of the expansion of the universe. For a flat universe,1

this can be written as follows:
ȧ

a
=

√
8π G ρ

3
(1)

where a is any distance between points in space (distance between galaxies, whatever). We derived
this assuming that ρ is the mass density of galaxies, but I assured you that it is true more generally
if ρ (in units with c = 1) is interpreted as the energy density — basically because any kind of
energy, not just rest energy (which is mass×c2) can produce and feel the force of gravity.

We have seen how this works if the energy density comes primarily from nonrelativistic matter
or from radiation. Now lets consider the surprising effect of gravity on a universe in which the
energy density is dominated by the energy of a “false vacuum.” Here the difference is that as the
universe expands, you just get more false vacuum, just as you get more true vacuum when the space
in our present universe expands. But if the energy density of the false vacuum is the dominant
contribution to ρ, that means that ρ does not fall off as a increases — it remains approximately
constant, determined by the energy density of the false vacuum.

This sounds a little crazy. It is worth checking it with the relation we derived last time for the
rate of change of the energy density,

ρ̇ = −3
ȧ

a
(ρ + p) (2)

To check this, we need to know the relation between energy density and pressure in the false
vacuum. Suppose that we have some false vacuum in a cylinder that we can expand with a piston

1We will discuss what happens if the universe is not flat shortly.
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When we pull out the piston a distance x, we make more false vacuum — with volume xA where
A is the area of the piston. But this costs energy ρxA.
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Thus the piston must be pulling back on us with a force ρA. But that means that the pressure
associated with the false vacuum is negative — equal to −ρ. This weird result makes sense,
because if we put p = −ρ into (2), we find that ρ̇ = 0 — which is just what we expect — the
energy density of the false vacuum is constant, independent of the volume of space.

So now that we are convinced that it makes a kind of weird physical sense to have ρ constant,
we can go back to (1), which becomes

ȧ

a
=

√
8π Gρ

3
= η (3)

where η is a constant! This is really easy to solve.

ȧ = η a ⇒ a ∝ eη t (4)

The expansion of the space is actually exponential in time!!!! As you know, exponentials can get
big quickly. This process is called “inflation” — during inflation, while the false vacuum lasts,
space, and the universe along with it expands by some enormous factor.

Wait a minute — this is even crazier than the constant ρ. Isn’t gravity supposed to slow down
the expansion of the universe? Let’s see by looking at the equation we derived last time for the
second derivative of a:

ä

a
= −4π G

3
(ρ + 3p) (5)

You see now that if we put in p = −ρ, the right hand side becomes positive (and you can check
that it has the right value, η2). This sign change is another effect of the negative pressure. This is
the crazy physics of inflation. Positive pressure contributes to the slowing down of expansion, like
energy density (only more so because of the factor of 3). But the false vacuum has NEGATIVE
pressure, which gives a kind of antigravity effect! It’s weird, but all the equations are consistent.
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It doesn’t really matter that we have used the flat-space (C = 0) version of the Hubble dynamics
in (1). If the space is not flat at the beginning of an inflationary interlude, the rapid inflation will
flatten it out, in the same way that the surface of a balloon gets flatter as we blow it up. Thus
one consequence of inflation is the prediction that after inflation, when the false vacuum decays
into normal vacuum and matter, the universe is very flat, so that the density must equal the critical
density to a very good approximation. This is the theoretical prejudice in favor of flatness that I
mentioned in the previous lectures.

The cosmological principle and the Taylor expansion

How does inflation help us with the Horizon Problem? Let’s think about our two regions on
opposite sides of the observable universe. In an inflationary universe, these two distant regions
were actually very close together before inflation, so it is very reasonable that they are surprisingly
similar. To put this another way, suppose that before inflation, the distance over which there was
significant variation of the physical properties of the universe was R. During inflation, as the space
expands, this distance scales up with the general expansion of the space. Thus the distance over
which there is significant variation, no matter what it was originally, becomes huge. But that means
that the derivative of any property of the universe (for example, the temperature, T ) with respect
to position becomes very small after inflation. Suppose that the temperature looks like this as a
function of some position variable before inflation.
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If the universe inflates by a factor of 10, then the little piece between the dotted lines gets blown
up to the same size as the original region, so the temperature looks like this.
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If the universe inflates by another factor of 10, this happens again.
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And so on. I hope that this rings a bell from our discussion long ago of the harmonic oscillator.
This is the Taylor expansion in action. The temperature, and any other important quantity, if it is
described by a function T̃ (~r) before inflation and doesn’t change during inflation of the space by a
factor of κ except due to the expansion of the space, then after inflation

T (~r ) = T̃ (~r/κ) (6)
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So that each derivative brings down a factor of 1/κ. Because the derivatives are tiny after inflation,
the function can be approximated by the first constant term in a Taylor expansion.

T (~r ) = T (0) + · · · (7)

Inflation makes all the higher terms tiny. As long as there is only a very tiny variation of these
quantities over the size of the visible universe, the visible universe looks to us as if it satisfies the
cosmological principle. In the inflationary universe, it is the exponential expansion and the Taylor
expansion that establishes the very smooth initial conditions of the big bang.

I think that inflation probably has something to do with very early history of the observable
universe but that there are a lot of pieces of the puzzle still missing. There are many confusing
issues involved in understanding how the inflationary era turns into the conventional big bang. It
is a pretty wild collection with names like “eternal chaotic inflation.” The idea is that the vacuum
energy fluctuates because of quantum mechanics, and if, in some region, the vacuum energy is
large enough, the negative gravity induced by its negative pressure causes it to inflate and grow
wildly. Because the inflating regions are growing so fast, at any given time most of the volume of
the universe is inflating. But in a few places, the vacuum energy settles down to its minimum value
and something like our universe results. Absolutely nuts! Suffice it to say that some of these issues
are actually being tested by the precise satellite studies of the cosmic microwave background. But
many others will likely remain mysterious. This is a creation myth after all. We shouldn’t expect
to understand everything!

I do think that the general picture of an inflated universe is interesting — even liberating.
Think for a minute about what this means. We have gotten used to thinking about our universe as
unimaginably big. But in the inflationary view, our visible universe is actually incredibly tiny. All
the billions of galaxies whose light has reached us since the beginning come from what was initially
a tiny spot in a much bigger system, and beyond the edge of our visible universe, the universe goes
on and on — whether it is infinite or not, it is definitely exponentially larger than what we can
see. The cosmological principle is no longer needed — instead an approximate uniformity arises
because of inflation. Every point in our visible universe is equivalent to every other because in
the cosmic scheme of things, they were once nearly the same point! But we should not assume
that distant parts of this inflated universe are similar to the little patch we live in. They may be
very different indeed. Who knows whether even the laws of physics itself are constant over the
absurdly large size of an inflated universe. Maybe if we could look sufficiently far away in various
directions, we would find an infinite variety of completely different laws. Some of these might
give rise to interesting but very different worlds. There is something about this picture that I find
appealing — but since all these issues are invisible inside the confines of the visible universe, these
questions are not very scientific. We will come back to this in a few minutes.

The cosmological constant

There is one more possibly very important thing to say about the energy density of the vacuum.
In the discussion above, we have implicitly assumed that the true vacuum, after it settles down
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to its equilibrium value, has zero energy density. But why should this be true? Why should the
true vacuum, the true lowest energy state of the universe, the state with absolutely nothing in it
— why should this vacuum have zero energy density. This question is only meaningful in the
presence of gravity. In Newtonian mechanics, as you know, only differences in energy make a
difference. We can always redefine the energy by subtracting a constant from everything. But as
we have seen with the false vacuum, in the presence of gravity, this is not true. The energy density
and the negative pressure associated with it have a gravitational effect. And no one has ever been
able to come up with a convincing reason why such an energy density should not be there. In
fact, it was suggested by Einstein himself, early in the history of general relativity. It is called the
‘cosmological constant.”

Einstein originally suggested the cosmological constant for what turned out to be the wrong
reason. He felt, for philosophical reasons, that the universe should not change with time. He didn’t
know about the Hubble expansion, which was discovered later. But with ordinary gravity, there is
no way to make a universe that stands still. If it starts at rest, gravity will cause it to contract. But
as we have seen, an energy density of the vacuum produces a repulsive gravitational effect because
of its negative pressure. This can, if properly chosen, exactly cancel the effect of gravity, allowing
for a stationary universe.

Of course this original motivation for the cosmological constant has long since gone away. It
is sometimes referred to as “Einstein’s mistake” because it seems very ugly to theorists like me.
I’ll come back below to why it seems so ugly. Nevertheless, a decade ago, astronomers published
evidence that it might not be a mistake after all. By studying type Ia supernovas2 in distant galaxies,
astronomers found evidence that the Hubble expansion is not slowing down as one would expect
if the energy density of the universe is dominated by any kind of matter. Rather, it looks as if the
expansion is speeding up!

One of the the things that astronomers actually see is that the brightness of distant supernovas
with red shifts between 0.3 and 1 is lower that what would be expected by computing their distance
using their red shift. This is interpreted to to mean billions of years ago when this light was
emitted, the relation between red shift and distance was different from what we would expect from
extrapolating back from what we see now. For a given red shift, the objects were further away then
than we would expect on the basis of the Hubble constant determined by looking at nearer (and
thus more recently viewed) objects. Since we have to to farther out to get the same red shift, that
means that the universe was expanding more slowly then. But that means that the expansion of the
universe has been speeding up since the light from these supernovas was emitted, billions of years
ago.

A picture may help. If the rate of Hubble expansion were constant, we could plot the position
of a distant galaxy as a function of time and get a straight line. But if the expansion of the universe

2These are supernovas that occur when a white dwarf star gobbles up matter and increases in mass beyond the
point where the pressure from atomic matter that keeps the star from collapsing can compete with the gravity that is
trying to squeeze it. When gravity finally wins, the result is a huge explosion that at least theoretically should always
produce about the same amount of energy and should therefore provide a “standard candle” that allows astronomers
to determine its distance by measuring its brightness.

9



is accelerating, we get something like this (with time going up):
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While this is going on, we are at the origin, just going up along the vertical axis. In fact, we
expect the expansion of the universe to decelerate initially, when the ordinary energy dominates,
but eventually to accelerate when the ordinary energy density falls below the constant dark energy
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of the vacuum, so the picture might look something like this:
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Let’s not worry about this complication for the moment, and just focus on just the last part
of this trajectory, where things are accelerating. I hope that the picture will make it clear what is
going on in this experiment. The dotted line represents the light ray reaching us from the distant
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supernova.
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Two groups have independently seen this effect. One is a local group (involving our department
chair Chris Stubbs): http://arxiv.org/abs/astro-ph/9805201. The other is a group from Berkeley:
http://arXiv.org/abs/astro-ph/9812133.

If all this is right, it implies that about 70% of the energy density of the universe, which it
seems is roughly equal to the critical density required for flatness, comes from the energy of the
vacuum. This is a bizarre, crazy result that I have a lot of trouble believing, for reasons that I will
come back to. However, it has been around for almost a decade now as the number of supernovas
on which the estimate is based has grown from a few to hundreds. There is also now considerable
indirect support for this view from the consistency of the measured anisotropy of the CMBR and
the gravitational lensing studies of dark matter with a model in which 30% of the energy density
of the universe is in the form of cold dark matter and the rest is energy density.

It is still hard to believe, but who knows.

The laws of physics and the Taylor expansion

Now finally, I want to return to the question that we discussed at the very beginning of the course.
Why is ~F = d~p/dt? Why is Newton’s law a formula for acceleration? Of course, we know that
Newton’s law is not right. It ignores special relativity and quantum mechanics, for example. But
in fact, our current theories of relativistic quantum mechanics are based on Lagrangians that are
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really rather straightforward generalizations of those that we use to derive Newton’s law. The
Lagrangians that we use to describe the world still depend just on coordinates and their first time
derivatives. The equations of motion are thus still equations for “acceleration.” So in a certain
sense, Newton has survived the revolutions of special relativity and quantum mechanics, and the
question still remains an interesting one. I certainly don’t know the answer to this question. But I
think that it is related to a much deeper question, which may be the central mystery about the way
the universe works.

This mystery takes a bit of explaining. We have already talked about the two constants, h̄ and
c, that are built into the way the world works. We are used to setting c = 1. But nature is also
telling us to set h̄ = 1. If we adopt these sensible units (which are sometimes called “particle
physics units” - you may have read about them in Morin’s book), then all dimensional quantities
can be related. For example, we can express everything in terms of mass. The properties of our
world are primarily determined by the masses of the electron and the proton, and a few numbers,
like the fine structure constant, α = e2

h̄c
≈ 1

137
. Almost all of the physics of the everyday world

involves combinations of these basic parameters. But one thing that is different is gravity. Gravity
is described by the gravitational constant G, which in particle physics units is proportional to
1/m2

Planck where the Planck mass is enormous, about 1019 times the mass of the proton. G, is very
very very tiny compared to any quantity with the same units that we might construct out of the
parameter that describe the rest of our everyday world.

Why should we care about gravity? Well, aside from the fact that it keeps us from flying off
into space, there is a theoretical problem associated with gravity. It seems to be impossible to put
special relativity, quantum mechanics, and gravity together consistently, without changing the rules
in some way. This suggests that the Planck mass is the basic scale at which really interesting new
physics, some change of the rules beyond special relativity and quantum mechanics, is happening.
This is a very dicey argument, for various reasons,3 but let’s assume that it is right. Then special
relativity and quantum mechanics, and with them Newton’s law, are just approximations that are
true for masses much smaller than the Planck mass.

Now the important point is this. Every dot in the Lagrangian, every derivative with respect to
time, in particle physics units, has units of mass (because a derivative is one over a distance). But
if the fundamental scale is the Planck mass, each dot should come generically with a power of
1/mPlanck. Because mPlanck is so huge, the terms with more than the minimum number of dots can
be ignored. They are there, but their effects are very small, and we don’t see them.

If this is right, then ~F = d~p/dt is just an approximation, but it is a very good one because
gravity is so weak. The central mystery, then, is why is gravity so weak? Why is the Planck mass
so very much larger than all the other masses that we care about in physics? This seems crazy.
Where does the tiny dimensionless ratio of the proton mass to the Planck mass, about 10−19 come
from? Who know? Maybe one of you will figure it out, or maybe you will show that it is not the

3For example, maybe someone will discover a clever way of doing it. People are trying. Maybe the string theorists
have already done it, but they have really changed the rules, so this would just be an example of what I am saying.
Or maybe the rules change again well before the Planck scale, and gravity emerges in some complicated way from
physics at smaller masses. There are also some interesting ideas of this sort on the market today.
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right question.
In closing, let me finally come back once more to the cosmological constant. If the recent

reports of a nonzero energy density of the vacuum are correct, this is ever crazier that the mystery
of the proton mass. To see this, lets convert this cosmological constant to particle physics units.
The statement is that the cosmological constant is about 70% of the critical density. The critical
density is given by (

ȧ

a

)2

=
1

T 2
=

8πGρc

3
(8)

where T is the Hubble time, very roughly 1010 yr. So

ρc ≈ 3

8πGT 2
(9)

The 1/G is just m2
Planck. One year is about π × 107 seconds. The way I remember how to do these

unit conversions is to convert things first to a funny unit of mass - billion electon volts - GeV -
which is about the mass of the proton. In these units, one second is about 1024 GeV−1. But the
Planck mass is even larger, about 1019 GeV, so 1 second is about 1043 m−1

Planck. Thus a year is about
1050 m−1

Planck (we can certainly drop the factor of π) and the Hubble time is about 1060 m−1
Planck.

Thus
ρc ≈ 10−120 m4

Planck (10)

This is an even smaller dimensional scale than the proton mass. That is why it seems so crazy.
Where does this tiny number come from? This situation is much worse even than the ratio of 1019

between the Planck mass and proton mass. If we had to guess from first principles the energy
density of the universe, we would guess that the scale is set by the Planck mass, so we would
guess m4

Planck. We missed it by about a factor of 10120. This wasn’t a very good guess! I think it
is probably the worst guess in the history of mathematical science. What went wrong? Nobody
knows. But it is suspcious that no only is it very small, but it is not so different from the critical
density of the universe today.

There are two kinds of ideas that people have discussed to try to explain away this puzzle. Many
theorists believe that it has something to do with an odd kind of symmetry - called supersymmetry
- which would imply an equivalence between matter particles and force particles. If this symmetry
were exact, the cosmological constant would be zero. Unfortunately, we don’t see this symmetry
- it is certainly broken in our world - and nobody have found a plausible explanation of how the
symmetry could be broken, and still force the cosmological constant to be small.

The other set of ideas is even crazier and goes by the term “Anthropic argument.” This is an
updated version of an old idea that the laws of physics are what they are because if they were
different, we wouldn’t be here to study them. The modern version of this goes something like this.
Suppose that vacuum is a much more complicated thing than I have described to you, and actually
the structure of the vacuum in which we live depends on many many parameters, and the energy of
the vacuum is a complicated “landscape” with lots of peaks and basins. A two dimensional verison
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really does look like a landscape —

but of course the multidimensional version is much more complicated and hard to visualize. If
the vacuum looks like this, and quantum mechanics is causing fluctuations in this complicated
structure, then most regions in the huge chaotic universe are somewhere up on a hill, inflating away
like mad because of negative gravity. but in some regions the universe settles down into one of the
basins, producing matter and radiation which dominates the energy density. Then this region stops
inflating, at least for a while, until the ordinary Hubble expansion of this region of the universe
dilutes the matter and radiation and the cosmological constant dominates the energy density. Then
the expansion accelerates at a rate determined by the value of the energy density at the bottom of the
basin. This happens a huge number of times in different regions of the universe, in a huge number
of different basins, at random. Each basin will have a different of the cosmological constant. This
kind of universe is a kind of huge experimental laboratory with different experiments going on each
of the regions where the universe settles down. One constraint that many people think is relevant
has to do with the formation of galaxies. If the cosmological constant is too big in a basin, then
the space continues to grow so fast that matter doesn’t have a chance to fall into separate galaxies.
Then stars don’t form, planets don’t develop, and nobody gets to teach Physics 16. If you believe
that this is necessary, it goes a ways towards explaining why the cosmological constant is so small.

I am not sure that this is science. But one could imagine getting enough information about
structure of this landscape to make predictions rather than just qualitatively explaining what we
see. That would be interesting.

At any rate, it seems clear that we need to understand the vacuum much better. If we are really
lucky, we will get some hints to what is going on by seeing some surprising property of the vacuum
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at the LHC in the next few years.

Above are a map and an arial photo of the CERN site, near the Geneva airport, where the LHC
is being constructed. This is a monster project involving many thousand scientists and engineers.
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Below is a photo in the tunnel - most of the 10 miles of it looks like this.

It is pure speculation at this point to think that the LHC may teach us something about the dark
energy. But it could happen. Certainly, the LHC will be our first opportunity to directly probe the
mysterious physics of the vacuum, of which the dark energy seems to be another manifestation.
That should make the next ten years an incredibly exciting time for fundamental physics.
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