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Abstract

We present an overview of recent developments concerning modifications of the geometry of

space-time to describe various physical processes of interactions among classical and quantum

configurations. We concentrate in two main lines of research: the Metric Relativity and the

Dynamical Bridge. We describe the notion of equivalent (dragged) metric ĝµν which is responsible

to map the path of any accelerated body in Minkowski space-time onto a geodesic motion in such

associated ĝ geometry.

Only recently the method introduced by Einstein in general relativity was used beyond the

domain of gravitational forces to map arbitrary accelerated bodies submitted to non-Newtonian

attractions onto geodesics of a modified geometry. This process has its roots in the very ancient

idea to treat any dynamical problem in Classical Mechanics as nothing but a problem of static

where all forces acting on a body annihilates themselves including the inertial ones. This general

procedure, that concerns arbitrary forces – beyond the uses of General Relativity that is limited

only to gravitational processes – is nothing but the relativistic version of the d’Alembert method in

classical mechanics and consists in the principle of Metric Relativity. The main difference between

gravitational interaction and all other forces concerns the universality of gravity which added to the

interpretation of the Equivalence Principle allows all associated geometries – one for each different

body in the case of non-gravitational forces – to be unified into a unique Riemannian space-time

structure. The same geometrical description appears for electromagnetic waves in the optical limit

within the context of nonlinear theories or material medium. Once it is largely discussed in the

literature, the so-called analogue models of gravity, we will dedicate few sections on this emphasizing

their relation with the new concepts introduced here.

Then we pass to the description of the Dynamical Bridge formalism which states the dynamic

equivalence of non-linear theories (driven by arbitrary scalar, spinor or vector fields) that occur

in Minkowski background to theories described in associated curved geometries generated by each

one of these fields. We shall see that it is possible to map the dynamical properties of a theory, say

Maxwell electrodynamics in Minkowski space-time, into Born-Infeld electrodynamics described in

a curved space-time the metric of which is defined in terms of the electromagnetic field itself

in such way that it yields the same dynamics. It is clear that when considered in whatever

unique geometrical structure these two theories are not the same, they do not describe the same

phenomenon. However we shall see that by a convenient modification of the metric of space-time an
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equivalence appears that establishes a bridge between these two theories making they represent the

same phenomenon. This method was recently used to achieve a successful geometric scalar theory

of gravity. At the end we briefly review the proposal of geometrization of quantum mechanics in

the de Broglie-Bohm formulation using an enlarged non-Riemannian (Weyl) structure.
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I. PRELIMINARY COMMENTS

The success of general relativity (GR) led to the general acceptance that the introduction

of a geometry to describe a physical process yields a unique structure identified to the space-

time. However, this is a rather general mathematical procedure and one can applies the

modification of the background geometry to substitute the acceleration not only by gravity

but for any kind of force; introducing specific and limited geometries for different observers

in many distinct situations seems to be a very useful tool.

One could accept that the achievements of a given theory may depend on the uniqueness

of its representation. However, in more recent years we have learned that the possibility of

presenting an alternative equivalent description of a given phenomenon may be an important

theoretical tool. The presentation of a theory under distinct formulations has been of great

help in many occasions, as we will verify with direct examples in these notes. We shall

see how it is possible to modify the background geometry of space-time (intrinsic to the

description of gravitational interactions according to the rules and proposals of GR) to

describe the effect of forces of distinct and multiple natures. A well-known example concerns

the propagation of light inside moving dielectrics.

We shall describe how very different modifications of the space-time geometry have been

used to describe accelerated paths in Minkowski space-time as geodesics in an associated

curved Riemannian geometry and even to exhibit the equivalence dynamics of various fields

in distinct associated geometries.

An important step in the construction of the theory of special relativity was the hypothesis

that a specific proper time can be assigned for each body. Distinct observers establish distinct

times. This proposal highlights the importance of an individual body in the description of

its kinematics and stresses the importance of the global aspects of the physical description

in the domain of mechanics. Such an individualization was new in the standard program of

physics that usually is based, in a very broad sense, to develop formalisms that intended to
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be universal.

After the success of this procedure there has been a need to recover the global and unified

character of the theoretical framework. This has indeed come about through the next big

step made by the entrance of a dynamical scheme associated to the universal gravitational

interaction, which becomes identified to an attribute of the structure of space-time. There,

the geometry of space-time allows all test bodies to be considered as free particles in a curved

world and to follow the geodesics on this curved space-time, as far as gravity is taken into

account solely. If a body suffers a particular acceleration of non-gravitational character, this

freedom disappears and the body follows a non-geodesic path.

The purpose of these notes is to describe some new results that intend, in a very partic-

ularly and precise way, to extend the idea that it is possible to deal with any kind of force

through similar lines as suggested by GR. This means to introduce the idea that modifica-

tions of the geometry of space-time may describe a large variety of physical processes. In

other words, to generalize the approach of GR in order to represent all kind of acceleration

as nothing but a modification of the geometry. Along this line the path of any body on

which an arbitrary force has acted upon, can be described as if this body is free, without

any interaction, in a particular associated metric structure that depends on both, the charac-

teristics of the force and the kinematics of the body. Let us point out that there are obvious

distinctions between the case of GR and all other cases. This is due to the universality of

gravitational processes. Indeed, one of the postulates of GR states that there exists one and

only one geometric structure of space-time as perceived for all that exists. Besides that, the

uniqueness of the scenario where all events occurs lies on the hypothesis that its geometry

is controlled by the gravitational phenomena. This unification requires the neglect of all

other kind of interaction and must be interpreted as some sort of approximation related

to the degree of amplitude of its corresponding description. This beautiful requirement of

GR appears in each observation as specific examples of geometries obtained as a particular

solutions of its dynamics. In these notes we will analyze another possibility.

The original GR proposal was concerned with the possibility of eliminating the acceler-

ation induced on an arbitrary body A by a gravitational field by a convenient modification

of the metric associated to the space where A is propagating. GR shows that all gravita-

tional effects can be equivalently described in terms of such an universal modification of the

space-time geometry.
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However, from the technical point of view this is only one possibility. Indeed, as we shall

review in these notes, this should not be considered the only possibility and one could well

make other conventions to ascribe specific metrics to different events. According to this point

of view, to each interaction a particular modification of the metric environment in which a

body moves in such a way that any kind of force can be eliminated by this interpretation is

likely to be associated. After this characterization of its own metric structure, the body is

interpreted as realizing a free motion. In other words, the metric becomes just a convention

to eliminate the force that drives the motion of a body. The main direct consequence of this

is that, contrary to the principles of GR, these metrics do not need any additional constraint

associated to its dynamics.

The very fact that GR assumes that the universality of gravity is the origin to accept its

geometric interpretation and once this modification of the geometry is universal, completely

independent of any particular process, makes obligatory the existence of a specific dynamics

of the space-time metric. In the case of other forces, once each process has its own origin

that produces a metric in order to compensate the force, there is no room to impose an

extra dynamics for the geometry: its characterization is specified by the interaction.

It is clear that this strategy has a drawback: we lose the uniqueness of space-time.

However such uniqueness may be understood as nothing but a suitable and conventional

way to describe the universality of gravitational interaction. Let us remark that in the

original paper that generated the modern point of view of geometrical spaces, the great

mathematician B. Riemann163 supported such a proposal, which was not the point of view

emphasized and developed in the theory of general relativity. On the eve of his 150th death

anniversary, we intend to rescue the seminal ideas concerning the role of the Riemannian

geometries in Physics developed by him, which were not investigated before.

There is no better way to start such analysis than considering the analogy with the photon

propagation inside a moving dielectric. In general, we know that the light path acquires an

acceleration inside a medium. In the early twenties Gordon showed that it is possible to

describe this path as a geodesics in a modified metric. This means that a change of the

geometry can eliminate the acceleration in a very similar way as it is done in GR. It is clear

that such geometric description is not indispensable. The choice of such point of view yields

a new path of investigation which was named analogue models of gravity. This means to

mimic gravitational configurations by means of non-gravitational interactions. In the case
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of Gordon, he used electromagnetic forces to represent gravitational interactions. We shall

see that the interest on Gordon’s approach goes beyond its original proposal once it allows

a generalization to include all kinds of accelerated paths, independently of the origin of the

force that produced it and for any kind of massive or massless body. This result seemed to

be hidden and its importance diminished during more than half a century.

The main reason for this concerns the way gravity was related to the geometry of space-

time and the various unsuccessful proposals of unification of electrodynamics into an unique

geometric framework. We know that such unfruitful works were related to the non uni-

versality of the non-gravitational forces. However there is another component to be taken

into account as soon as we realize that this method is nothing but the relativistic version

of an ancient idea of d’Alembert’s to transform a dynamical problem into a static one. We

shall see that this reduction is made by a modification of the evaluation of distances in the

space-time through a change in its geometry. We call such procedure metric relativity (MR).

We shall finally enter the microphysics and the domain of quantum properties. We shall

see that an unexpected novelty on the structure of 3-D space may be hidden in the quantum

world. This will be described by using the de Broglie-Bohm causal formulation of quantum

mechanics. We shall be prepared to make another drastic change to our description of the

motion of bodies in space. According to Riemann in his Habilitation Dissertation, one should

wounder about the extension of our ideas of geometry beyond the observation limits of the

infinitely great and the infinitely small. In these notes we have made constant references to

GR and the modification on the structure of geometry that it proposes in our neighborhood

and in the immense regions of the universe. We will now look to the other direction, to the

one that consists the micro-world. How should we treat the geometry in these extremely

small regions?

Since ancient times, Euclidean geometry was considered the most adequate mathemati-

cal formulation to describe the physical space. However, its validity can only be established

a posteriori for its construction yields useful notions to connect physical quantities such

as the Euclidean distance between two given points. Special relativity modified the no-

tion of 3-dimensional Euclidean space to incorporate time in a four-dimensional continuum

(Minkowski space-time). Later on, GR generalized the absolute Minkowski space-time to

describe gravitational phenomena by considering the space-time manifold as a dynamical

structure constituting a Riemannian manifold.
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According to Riemann, the matter of which geometry is actually realized in Nature has

to be determined by physical experiments. Instead of imposing a priori that non-relativistic

quantum mechanics has to be constructed over a Euclidean 3-dimensional background as

it is traditionally done, we shall see that quantum effects can also be interpreted as a

manifestation of a non-Euclidean structure derived from a variational principle. We then

arrive at a special subclass of a more general structure than Riemannian geometries, known

as Weyl space which, in the de Broglie-Bohm vision of quantum phenomenon, should be

used to “determine the measure-relations of space”.
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II. BRIEF MATHEMATICAL COMPENDIUM

In this section we display some formula and definitions that will be used throughout this

paper. The lector interested in more details on the origin and developments that led to

these expressions can check the references, mainly the textbooks, in the bibliography at the

end2,6,164,178,186.

The Riemannian manifold is characterized by a second order symmetric tensor gµν and

a connection Γµ
αβ related by the formula

Γµ
αβ =

1

2
gµν (gνα,β + gνβ,α − gαβ,ν) .

The Minkowski metric γµν takes the following form when expressed in a Cartesian coordinate

system diag(1,−1,−1,−1). In this coordinate system it is denoted by ηµν . Greek indices

run from 0 to 3. The covariant derivative (;) is written as

vµ ; ν = vµ,ν − Γα
µνvα, (1)

where vµ,ν ≡ ∂νvµ denotes partial derivatives. The metricity Riemannian condition is ex-

pressed as

gµν ;λ = 0.

Then, it follows

vα;µ;ν − vα;ν;µ = Rα
βµν v

β,

where Rα
βµν is the Riemann curvature tensor. In terms of the connection we can write

Rµ
ǫαβ = Γµ

ǫα,β − Γµ
ǫβ,α + Γµ

βσ Γ
σ
ǫα − Γµ

ασ Γ
σ
βǫ.

The curvature tensor satisfies the algebraic identities Rµναβ = −Rµνβα = −Rνµαβ = Rαβµν ,

and the Bianchi identities

Rµν
αβ;λ +Rµν

λα;β +Rµν
βλ;α = 0.

Contacting indices, it then follows

Rµν
;ν −

1

2
R,ν g

µν = 0,

which implies, through the GR equations, the conservation of the energy-momentum tensor.

We note that this equation is obtained from Hilbert Lagrangian

δS = δ

∫ √− g R = 0,

where we use δ
√−g = −1

2

√−g gµν δgµν.
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A. Non metricity

We shall deal with a generalization of Riemannian geometry that was introduced by H.

Weyl189 defined by the non-metricity condition:

gµν ;λ = fλ gµν ,

where fλ is an arbitrary vector. It then follows that the affine connection is given by

Γλ
µν =

{
λ
µν

}
− 1

2

(
δλµ fν + δλν fµ − gµν f

λ
)
,

where {λµν} is the Christoffel symbol constructed with the metric tensor.

B. Duality

The Levi-Civita completely anti-symmetric object ǫαβµν takes the value 1 when indices

are (0123) or any even permutation, −1 for odd permutations and vanishes for repeated

indices. We can then construct the tensor

ηαβµν =
√−g εαβµν

where g is the determinant of gµν . Using this object we define a dual, that is, for any

anti-symmetric tensor Fµν = −Fνµ we construct its dual by the relation:

F ∗
µν ≡ 1

2
ηµναβ F

αβ .

Thus, F ∗∗
µν = −Fµν .

It is useful to construct the quantity gαβµν ≡ gαµgβν − gανgβµ that satisfy the symmetries

gαβµν = −gαβνµ = −gβαµν = gµναβ .

It is easy to see that gαβµν is the dual of η∗αβµν , i.e.,

η∗αβµν = − gαβµν

and inversely

g∗αβµν = ηαβµν .

Note that εαβµν is a pseudo-tensor, although ηαβµν is a true tensor, that is

ηµνρσ = gµαgνβgρεgσληαβελ.
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Thus, we obtain

ηαβµν = − 1√−g ε
αβµν .

All the contractions of the Levi-Civita tensor with itself are collected below:

ηαβµνηρσελ = −δαβµνρσελ ,

ησνρεηλαβε = −δσνρλαβ ,

ηαβελη
σνελ = −2δσναβ , (2)

ησνεληβνελ = −6δσβ ,

ηαβµνηαβµν = −24,

where

δµνβλαρ = det

∣∣∣∣∣∣∣∣∣

δµλ δµα δµρ

δνλ δνα δνρ

δβλ δβα δβρ

∣∣∣∣∣∣∣∣∣
.

C. Decomposition of an anti-symmetric tensor: the Faraday tensor

An arbitrary observer endowed with a normalized 4-velocity vµ can decompose any second

order anti-symmetric tensor Fµν into its electric and magnetic parts under the form:

Fµν = −vµEν + vνEµ + ηµν
ρσvρHσ,

where the electric (Eµ) and magnetic (Hµ) vectors are defined by

Eµ = Fµαv
α, and Hµ = F ∗

µαv
α =

1

2
η ρσ
µα FρσV

α

It then follows that these vectors are defined in the 3-space orthogonal to the observer with

velocity vµ, that is

Eµv
µ = 0 and Hµv

µ = 0

The six degrees of freedom of Fµν are represented by the 3 + 3 quantities Eµ e Hµ.

The gauge invariant scalars constructed with the electromagnetic field represented by the

Faraday tensor Fµν are given by

F ≡ Fµν F
µν and G ≡ F ∗

µν F
µν

13



The following algebraic identities hold

∗F µα ∗Fαν − F µαFαν =
1

2
Fδµ ν , (3)

∗

F µα Fαν = −1

4
Gδµ ν , (4)

F µ
αF

α
βF

β
ν = −G

4
∗F µ

ν −
F

2
F µ

ν , (5)

F µ
αF

α
βF

β
λF

λ
ν =

G2

16
δµν −

F

2
F µ

αF
α
ν . (6)

D. Weyl tensor

It is possible to decompose the Riemann curvature tensor Rαβµν in its irreducible parts:

the conformal Weyl tensor Wαβµν and its traces

Rαβµν =Wαβµν +Mαβµν −
1

6
Rgαβµν ,

where

2Mαβµν = Rαµgβν +Rβνgαµ −Rανgβµ −Rβµgαν .

The Weyl tensor has only ten independent components. The remaining ten components

of Riemann tensor are provided by the Ricci tensor Rµν = Rα
µαν and the scalar curvature

R = Rα
α.

The ten independent components of Weyl tensor are separated into its electric and mag-

netic parts according to any observer endowed with velocity vµ. Indeed we write

Eαβ = −Wαµβνv
µvν , and Hαβ = −W ∗

αµβνv
µvν .

Thus electric and magnetic tensors are symmetric, traceless and orthogonal to the ob-

server:

Eµν = Eνµ, Eµνv
µ = 0 and Eµνg

µν = 0

and

Hµν = Hνµ, Hµνv
µ = 0 and Hµνg

µν = 0.

From these symmetries it follows that the dual operation is independent of the indices

pair of Weyl tensor in which it is applied. Note that this is not the case for the Riemann

tensor, for which the condition of independence, that is,

R∗
αβµν = Rαβ

∗
µν
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occurs only in the Einstein spaces where

Rµν =
R

4
gµν .

E. Conformal transformation

A conformal transformation is the map from the metric gµν(x) into g̃µν(x) defined by

g̃µν (x
α) = Ω2 (xα) gµν (x

α),

where Ω2(xα) is an arbitrary function. Then,

g̃µν (xα) = Ω− 2 (xα) gµν (xα),

which yields for the affine connection

Γ̃α
µν = Γα

µν +
1

Ω

(
Ω,µδ

α
ν + Ω,νδ

α
µ − Ω,λg

αλgµν
)

and the curvature tensor

R̃αβ
µν = Ω− 2Rαβ

µν −
1

4
δ[α[µM

β ]
ν ]

where Mα
β ≡ 4Ω− 1 (Ω− 1), β; λg

αλ − 2 (Ω− 1), µ (Ω
− 1), ν g

µνδαβ . The squared brackets mean

anti-symmetrization. Contracting the indices of the above expression we obtain the trans-

formations of the Ricci tensor and the scalar curvature R, respectively

R̃α
µ = Ω− 2Rα

µ −
1

2
Mα

µ −
1

4
Mδαµ

and

R̃ = Ω− 2[R + 6Ω− 1�Ω ].

Finally, collecting these transformations we find the invariance of the Weyl conformal tensor

W̃ α
βµν = W α

βµν .

F. Projection tensor

Let vµ represent a normalized congruence in a given space-time endowed with a metric

gµν . The corresponding projector hµν is defined by

hµν ≡ gµν − vµ vν . (7)
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It projects quantities defined in space-time in the rest-frame of vµ. Indeed, it satisfies:

hαβh
β
ν = hαν , and hαβv

β = 0.

Note that hµν is a symmetric tensor hµν = hνµ. We can then write the distance from two

arbitrary points P and Q as

ds2(P,Q) = gµνdx
µdxν = hµνdx

µdxν + (vµdx
µ)2.

G. Kinematical parameters

Let us consider a congruence of curves Γ that can be assigned by parameters si on each

curve that will be called its proper time. We denote the displacement vector ~z, the vector

connecting two curves of Γ assigned by the same value of s.

Defining the tensorQαβ ≡ hα
µhβ

ν vµ;ν and decomposing it into its irreducible components,

we set

Qαβ =
θ

3
hαβ + σαβ + ωαβ,

where

θ ≡ hαλvα;λ = vα ;α

is the expansion factor, the traceless symmetric part

σαβ ≡ 1

2
hµ(α h

λ
β)vµ;λ −

1

3
θhαβ

is the shear tensor and the anti-symmetric part

ωαβ ≡ 1

2
h µ
[α h λ

β] vµ;λ

is the vorticity tensor.

The parentheses denote symmetrization. It follows that σµνv
µ = 0 and ωµνv

µ = 0. We

can then write

vµ ; ν = Qµν + aµ vν =
θ

3
hµν + σµν + ωµν + aµ vν ,

where the acceleration is defined by aµ ≡ v̇µ = vµ;νv
ν . From independent projections of Eq.

(1), we can obtain the evolution equations for the kinematical quantities139. In particular,

the evolution of the expansion coefficient θ is given by the Raychaudhuri equation

θ̇ +
θ2

3
+ 2(σ2 − ω2)− aα;α = Rµνv

µvν.
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Particular situation for this equation will be used afterwards when we discuss analogue

models of gravity.

H. The energy-momentum tensor

The energy-momentum tensor can be written in terms of a fluid by the choice of a

particular frame represented by an observer endowed with a four-velocity field vµ, yielding

the decomposition

Tµν = ρ vµ vν − p hµν + q(µ vν) + πµν ,

where the ten independent quantities ρ, p, qα and παβ are obtained through the projections

of Tµν onto vα and the space orthogonal to it.

Explicitly, the scalars ρ and p (energy density and pressure) are defined by ρ = T αβ vα vβ

and p = −1
3
hαβ T

αβ , the heat flux is qα = hαβ vγ Tβγ , and the traceless symmetric anisotropic

pressure is παβ = hαµ hβν Tµν + p hαβ.

I. The formula of the determinant

The determinant of the matrix representation of a mixed tensor T = T α
β may be calcu-

lated through its characteristic polynomial due to the Cayley-Hamilton theorem:

detT = −1

4

[
Tr(T4)− 4

3
Tr(T) Tr(T3)− 1

2

(
Tr(T2)

)2
+ (Tr(T))2 Tr(T2)− 1

6
(Tr(T))4

]
.

(8)

J. Dirac spinors and the Clifford algebra

We will deal here with fields Ψ that are four-components Dirac spinors63. The vector and

axial currents are constructed with Ψ namely,

Jµ ≡ ΨγµΨ, and Iµ ≡ Ψγµγ5Ψ.

For completeness we recall Ψ ≡ Ψ+γ0, where Ψ+ is the complex conjugate of Ψ. The

Clifford algebra is the algebra of the Dirac matrix γµ defined by its basic property

γµ γν + γν γµ = 2ηµν 1 (9)

where 1 is the identity of the Clifford algebra. We use the following notation

γ0 =


 I2 0

0 − I2


 , γk =


 0 σk

−σk 0


 , γ5 =


 0 I2

I2 0


 ,
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where I2 represents the 2 × 2 identity matrix and σk are the Pauli matrices, which satisfy

σi σj = i ǫijk σk + δij, and we set

σ1 =


 0 1

1 0


 , σ2 =


 0 −i
i 0


 , σ3 =


 1 0

0 −1


 .

The γ5-matrix anti-commutes with all γµ and is defined in terms of them by

γ5 =
i

4!
ηαβµν γαγβγµγν = iγ0γ1γ2γ3,

where the second equality is valid in a Cartesian coordinate system in the Minkowski back-

ground. The γ5 is Hermitian and the others γµ obey the self-adjoint relation

γ+µ = γ0γµγ
0.

Any spinor can be decomposed into its left- and right-handed parts through the identity

Ψ = ΨL +ΨR =
1

2
(1+ γ5)Ψ +

1

2
(1− γ5)Ψ (10)

Then

ΨL ΨL = 0, and ΨR ΨR = 0.

K. Pauli-Kofink identity

The properties needed to analyze nonlinear spinors are contained in the Pauli-Kofink

(PK) relation. These are identities that establish a set of relations concerning elements of

the four-dimensional Clifford algebra. The main property states that, for any element Q of

this algebra, the PK relation ensures the validity of the identity:

(ΨQγλΨ)γλΨ = (ΨQΨ)Ψ− (ΨQγ5Ψ)γ5Ψ. (11)

for Q equal to 1, γµ, γ5, γ
µγ5 and σ

µν ≡ (γµγν − γνγµ)/2. As a consequence of this relation

we obtain two extremely important facts: (i) the norm of the currents Jµ and Iµ have the

same value and opposite sign; (ii) vectors Jµ and Iµ are orthogonal. Thus, Jµ is a time-like

vector and Iµ is space-like.
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Pauli-Kofink formula also implies some identities which will be used later on:

Jµ γ
µ Ψ ≡ (A+ iBγ5) Ψ, (12a)

Iµ γ
µ γ5Ψ ≡ −(A + iBγ5) Ψ, (12b)

Iµ γ
µ Ψ ≡ (A+ iBγ5) γ5Ψ, (12c)

Jµ γ
µ γ5Ψ ≡ −(A + iBγ5) γ5Ψ, (12d)

where A ≡ ΨΨ and B ≡ iΨ γ5Ψ. Note that both quantities A and B are real.

L. Dirac dynamics

We shall deal with two dynamics for the spinor fields: a linear and a non-linear. For the

linear case we take Dirac theory

iγµ∂µ Ψ− µΨ = 0, (13)

where µ is the mass. We use the conventional units where ~ = c = 1. The corresponding

Lagrangian is

L = LD − µ Ψ̄Ψ =

(
i

2
Ψ̄γµ∂µΨ− i

2
∂µΨ̄γ

µΨ

)
− µ Ψ̄Ψ (14)

Note that on-mass-shell Dirac Lagrangian vanishes L(oms) = 0. From the decomposition in

a right ΨR and left-handed ΨL helicity it follows that the mass-term mix both helicities:

iγµ∂µ ΨL − µΨR = 0, (15)

iγµ∂µ ΨR − µΨL = 0. (16)

M. Heisenberg dynamics

The Heisenberg self-interaction Lagrangian:

L = LD − V (Ψ). (17)

The potential V is constructed with the two scalars A and B :

V = s
(
A2 +B2

)
, (18)

where s is a real parameter of dimension [length]2. The corresponding equation of motion is

iγµ∂µΨ
H − 2s (A+ i Bγ5) Ψ

H = 0. (19)
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Correspondingly, we have

i∂µ Ψ
H
γµ + 2sΨ

H
(A+ iBγ5) = 0 (20)

The Heisenberg potential VH can be written in an equivalent and more suggestive form

in terms of the associated currents Jµ and Iµ. As a direct consequence of Pauli-Kofinki

identities, Heisenberg potential V is nothing but the norm of the four-vector current Jµ,

that is A2 +B2 = Jµ Jµ. Note that on-mass-shell, Heisenberg Lagrangian takes the value of

its potential L(oms) = VH .

N. Gauge invariance

The dynamics displayed by both Dirac and Heisenberg equations of motion are invariant

under the map

Ψ̃ = SΨ, (21)

where S is a unitary matrix satisfying S−1S,µ = cµ I. From Noether theorem this imply

that the current Jµ is conserved. When the transformation S is space-time dependent one

has to introduce a modification on the derivative as much the same as it occurs for tensors

in arbitrary coordinate transformation when a covariant derivative is defined. We shall deal

with this spinor covariant derivative latter on.

O. Chiral invariance

Chiral transformation is defined by the map

Ψ
′

= γ5Ψ.

Dirac equation is invariant under this map only for massless neutrino equation. On the other

hand, Heisenberg equation is invariant under chirality. Indeed, we have, for the conjugate

spinor:

Ψ
′

= −Ψγ5,

which implies

A
′

= −A, and B
′

= −B

consequently the Lagrangian remains the same. Although the constant s is not a “mass”,

it provides the similar mixing of Heisenberg spinors ΨL and ΨR. Indeed, we have

iγµ∂µ ΨL − 2s (A− iBγ5) ΨR = 0 (22)
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iγµ∂µ ΨR − 2s (A+ iBγ5) ΨL = 0 (23)

P. Current Conservation

Let us introduce an arbitrary parameter ǫ in the Heisenberg equation for Ψ

iγµ∂µ Ψ− 2s (A+ i ǫ Bγ5) Ψ = 0 (24)

and for Ψ

i∂µ Ψ γµ + 2sΨ(A+ i ǫ Bγ5) = 0 (25)

We will now show that the vector current Jµ is conserved for any value of ǫ, but the

axial vector current Iµ is conserved only for the Heisenberg equation when ǫ = 1. Thus,

multiplying by Ψ Eq. (24) and by Ψ Eq. (25) and adding these results, it follows that indeed

∂µ J
µ = 0.

Let us now do the similar procedure by multiplying further by a γ5. We have, respectively:

iΨ γµγ5∂µΨ = 2s i (1− ǫ)AB. (26)

and

i ∂µΨ γµγ5Ψ = 2s i (1− ǫ)AB. (27)

It then follows the result that the axial current satisfies the equation

∂µI
µ = 4s (1− ǫ)AB. (28)

which shows that only in the case of Heisenberg choice (ǫ = 1) the axial current is conserved.

Q. Weyl Integrable Space (WIS)

We shall see that it is possible to provide a geometric formulation of the non-relativistic

quantum mechanics in de Broglie-Bohm approach. For this we need some mathematical

properties of the 3-D WIS (which is called the quantum WIS or Q-WIS). Contrary to the

Riemannian geometry, which is completely specified by a metric tensor, the Weyl space

defines an affine geometry. This means that the covariant derivative which is defined in

terms of a connection Γm
ik depends not only on the metric coefficients but also on a vector

field fa(x). latin indeces run from 1 to 3.
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For instance, the covariant derivative of a given vector Xa is

Xa ;b = Xa , b − Γm
abXm. (29)

The non-metricity of the Weyl geometry implies that rulers, which are standards of length

measurement, changes while we transport it by a small displacement dxi. This means that

a ruler of length l will change by an amount

δ l = l fa dx
a. (30)

As a consequence, the covariant derivative of the metric tensor does not vanishes as in a

Riemannian geometry but instead it is given by

gab ; k = fk gab, (31)

which is the analogous of the 4-D equation (II). Using Cartesian coordinates, it follows that

the expression for the connection in terms of the vector fk takes the form

Γk
ab = − 1

2

(
δka fb + δkb fa − gab f

k
)
. (32)

The WIS case is provided by the condition that the vector fi is a gradient of a function,

i.e. fi ≡ f, i. This property ensures that the length does not change its value along a closed

path ∮
dl = 0. (33)

As a matter of convenience, we define

f = −4 ln Ω. (34)

Then the 3-D Ricci tensor is constructed with the affine connection (32) and is explicitly

given by

Rij = 2
Ω,ij

Ω
− 6

Ω,iΩ,j

Ω2
+ 2gij

[
∇2Ω

Ω
+
~∇Ω.~∇Ω

Ω2

]
.

The scalar of curvature R becomes

R = 8
∇2Ω

Ω
. (35)
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III. INTRODUCTION

The first attempts to interpret the motion of the bodies in classical mechanics geomet-

rically, i.e. in terms of geodesics, refer to the works of M. de Maupertuis129, in which the

principle of least action was formulated for the first time. The appearance of an effective

geometry describing the path of bodies becomes even more evident with Jacobi’s formulation

of Maupertuis’ principle113.

For the electromagnetism, such geometrical description appeared only in 1923, when

Gordon80 made a seminal suggestion to treat the propagation of electromagnetic waves in a

moving dielectric by a modification of the metric structure of the background. He showed

that the acceleration of the photons inside a dielectric medium can be eliminated by a

procedure similar to the one made in GR, that is, by changing the rules of distances in

space and time in the interior of the dielectric, at least in what concerns its propagation. He

proposed to interpret the propagation of electromagnetic waves inside a moving dielectric as

geodesics not in the standard background geometry γµν , but instead in the effective metric

gµν = γµν + (ǫµ− 1) vµ vν , (36)

where ǫ and µ are constant parameters that characterize the dielectric and vµ is the four-

velocity of the material under consideration (which is not necessarily constant). Later, it was

recognized that this interpretation could be used to describe nonlinear structures even when

ǫ and µ depend on the intensity of the electromagnetic field148 or more complicated functions

of the field strengths as we shall see later on. In all these cases, the causal cone, describing

the propagation of photons is associated to an effective metric, that does not coincide with

the null-cone of the background metric. The origin of this modification is due to the presence

of the moving dielectric, which changes the paths of the electromagnetic waves inside this

medium and shall be described in next sections. Before this, let us introduce a more general

question: could such particular description of the electromagnetic waves in moving dielectrics

be generalized for other cases, in which accelerated paths of arbitrary bodies submitted to

other kind of forces would be described as geodesic motions in an associated metric? We

shall see that the answer is affirmative and such kinematical map depends only upon the

acceleration of the body.

This method allows us to undertake the geometrization of any force in the sense that

arbitrary accelerated body in a given metric substratum γµν is equivalently described as
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geodesic motion in an effective geometry ĝµν . We shall call this proposal as the principle of

Metric Relativity (MR). When the acceleration is produced by gravity this procedure led to

the geometrization of the gravitational field as it was done by GR. According to the MR, the

effects of the particle acceleration caused by any kind of force can be described as geodesics

on the associated metric ĝµν . In the case of gravity this should be identified with Einstein’s

approach.

IV. THE PRINCIPLE OF METRIC RELATIVITY

The principle of metric relativity (MR) states that the motion of an arbitrarily acceler-

ated body in a flat Minkowski space-time can be equivalently described as free of any force

and following a geodesic in an associated geometry136, which we call dragged metric (DM).

Although the analysis we present in this section can be dealt with any underlying metric

structure, that is, flat or curved space-time, we limit this section to the case of process occur-

ring in the flat Minkowski background. Its generalization for arbitrary curved background

is a direct task and we will present some examples of it in a later section.

Let us start with the case in which the acceleration vector aµ is the gradient of a function,

that is, the force acting on the body under observation comes from a potential. We set

aµ = ∂µΨ. (37)

Using the freedom in the definition of the four-vector vµ of the body, we set ηµνv
µvν = 1

and the acceleration is orthogonal to the velocity aµ v
µ = 0.

Motivated by Gordon’s approach, where the effective metric depends on the external

vector field associated to the dielectric motion, here we consider that the associated DM,

for any congruence of curves Γ(v), takes the form

ĝµν = ηµν + β vµ vν . (38)

The covariant expression is

ĝµν = ηµν −
β

(1 + β)
vµ vν , (39)

in order to have δµν = ĝµαĝαν . The covariant derivative of an arbitrary vector Sµ in this

metric is defined in the standard way

Sα
;µ = Sα

, µ + Γ̂α
µν S

ν ,
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where the Christoffel symbol is constructed with metric (38). We set v̂µ ≡ ĝµνvν =
√
1 + βvµ.

In order to identify this congruence generated by v̂µ to the one associated with vµ, we require

that
√
1 + β be constant along the motion, that is vµ ∂µβ = 0. The congruence Γ(v̂) will be

geodesic if

v̂µ,ν v̂
ν − Γ̂ǫ

µν v̂ǫ v̂
ν = 0.

Note that the hat symbol denotes objects defined in the metric ĝµν .

The description of an accelerated curve in a flat space-time as a congruence of geodesics

in the DM can be rewritten as

(
vµ,ν − Γ̂ǫ

µν vǫ

)
vν = 0. (40)

Once the acceleration in the background is defined by aµ = vµ,ν v
ν and using equation (37),

the condition of geodesics in the DM takes the form

∂µΨ = Γ̂ǫ
µν vǫ v

ν .

The rhs can be written as

Γ̂ǫ
µν vǫ v

ν =
1 + β

2
vα vν ĝαν,µ.

Using Eqs. (38) and (39), we obtain that the coefficients of the DM are given in terms of

the acceleration

aµ +
1

2
∂µ ln(1 + β) = 0.

Thus, we have proved the following

Lemma 1 Given a congruence of accelerated curves Γ(v) in Minkowski space-time driven

by a potential, aµ = ∂µΨ, it is always possible to construct an associated DM of the form

ĝµν = ηµν + β vµ vν , (41)

such that the paths of the curves become geodesics in this DM and

1 + β = e−2Ψ.

Let us compare this method to the original proposal of the GR for the description of the

motion of a body around the weak gravitational field of the sun: they provide the same

metric. In other words, as far as we limit to weak fields, the motion of test particles in the
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framework of GR is the same as in the DM formulation: the accelerated paths are mapped

into geodesics of the DM.

The GR description

• Assume that only the v0 component matters and the other terms vi are very small in

comparison v0;

• The acceleration suffered by this velocity field is small and does not depend on time;

• Define a metric gµν ≈ ηµν + γµν ; then GR states that the body follows a geodesic in

this metric. At this regime, the only component of γµν that enters in the geodesic

equation is γ00 ≡ Ψ;

• Ψ satisfies the Laplace equation ∇2Ψ = 0.

The DM description

• Assume that only the v0 component matters and the other terms vi are very small in

comparison v0;

• The acceleration suffered by this velocity field is small and does not depend on time;

• The above Lemma states that the body follows a geodesic in the metric gµν ≈ ηµν +

β vµ vν , which yields β = exp (−2Ψ)− 1 and g00 = Ψ in the weak field limit;

• Ψ satisfies the Laplace equation ∇2Ψ = 0.

In respect to the motion of individual bodies, we see that the distinction from DM to GR

concerns the independence of the geometry on the actual motion of the body once in GR

the geodesics are constructed in a universal metric.

A. Kinematical parameters in the DM

Let us evaluate the modification that the passage from vµ to v̂µ implies for the kinematical

parameters. First, we set for the projector the formula (see Eq. 7)

ĥµν = ĝµν − v̂µ v̂ν . (42)
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Thus ĥµν = hµν . For the expansion factor

θ̂ =
1√
−ĝ

∂µ(
√
−ĝ v̂µ)

using
√
−ĝ =

√−η
(1 + β)1/2

we obtain the value θ̂ =
√
1 + β θ.

For the shear tensor, we get

σ̂µν =
√

1 + β σµν

and for the vorticity

ω̂µν =
ωµν√
1 + β

.

This procedure of eliminating the acceleration, modify the remaining kinematical parameters

only by a multiplicative factor.

Using the formula for the determinant of ĝµν and a convenient coordinate system, we can

rewrite the DM as

ĝµν = ηµν − (1 + ĝ) vµ vν .

We can equivalently state that the potential of the external force measures the logarithm of

the determinant of the DM, that is Ψ = ln
√

−ĝ.

B. The curvature of the DM

In the case the background metric is not flat or if we use an arbitrary coordinate system

the connection is given by the sum of the corresponding background one and a tensor, that

is

Γ̂ǫ
µν = Γǫ

µν +Kǫ
µν . (43)

In the case of the Minkowski background a direct calculation gives for the connection the

form

Γ̂ǫ
µν = Kǫ

µν = vǫ (aµ vν + aν vµ)− aǫ vµ vν , (44)

where we have considered Lorentzian coordinates and the particular case where the congru-

ence has no expansion, no shear and no vorticity, that is vµ,ν = aµ vν just to simplify the

calculations. Then, Kǫ
µǫ = aµ. The contracted Ricci curvature has the expression

R̂µν = aµ,ν − aµ aν + (aλ aλ + aα,α) vµ vν , (45)
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Noting that âµ = aν q̂
µν = aµ it follows that aµ aµ = aµ aν η

µν = aµ aν q̂
µν . The scalar of

curvature R̂ = R̂µν q̂
µν is

R̂ = (2 + b) aα,α. (46)

These expressions can be rewritten in a covariant way by noting that

aµ,ν ≡ aµ;ν + Γ̂ǫ
µν aǫ,

which yields

R̂µν = aµ ; ν − aµ aν − (aλ aλ − aα;α) vµ vν , (47)

and for the scalar curvature R̂ the form

R̂ = (2 + b) (aα;α − aλ aλ). (48)

C. Classical dynamics

A curious consequence of the above calculations can guide us in the possible equations

of motion for the classical long-range fields. Indeed, let us consider a congruence of curves

xµ = xµ(s) for an arbitrary parameter s. Restricted to the case in which the congruence has

no expansion (θ = 0), no shear (σµν = 0) and no vorticity (ω = 0), the remaining component

of the derivative of the velocity field, the acceleration, is given by the gradient of a function

as aµ = ∂µΨ. Thus, we have vµ,ν = ∂µΨ vν . Using the equation of the propagation of the

expansion

θ̇ +
θ2

3
+ 2 σ2 − 2ω2 − aα;α = Rµν v

µ vν

in the Minkowski background it follows that ∇2Ψ = 0, which is the Laplace equation for

the Newtonian potential.

In the next sections we present some applications of this procedure. We will apply, for

instance, the approach of the construction of the DM to obtain in a new perspective the

propagation of electromagnetic rays inside a moving dielectric and in the case of a scalar

field. Before this, however, let us consider a general case of accelerated paths.

V. GEOMETRIZING ACCELERATED PATHS

We turn now to the case in which the norm of the vector is not a constant of motion,

that is N ≡ vµ vν η
µν 6= 1. We restrict our analysis in this section to the case in which the
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congruence Γ(v) has no vorticity and set vµ = ∂µχ. Then for the acceleration it follows

aµ = vµ,ν v
ν =

1

2
∂µN.

The associated DM is given again by the formula

ĝµν = ηµν + β vµ vν , (49)

where we impose that the vector v̂µ = vµ is normalized: v̂µ v̂
µ = v̂µ v̂ν ĝ

µν = 1. Then, it

follows that

1 + β N =
1

N
.

The equation of the geodesics in the DM takes the form

(
v̂µ,ν − Γ̂ǫ

µν v̂ǫ

)
v̂ν = 0, (50)

which can be rewritten as
1

N
vµ,ν v

ν − 1

2
ĝαβ,µ v̂

α v̂β = 0

and, after a direct calculation, yields nothing but the previous condition

aµ =
1

2
∂µN.

This ends the proof of the following lemma:

Lemma 2 For any congruence Γ(v) of accelerated curves in Minkowski space-time such that

(vµ,ν − vν,µ) v
ν = 0

and vµ vν η
µν = N , it is always possible to construct an associated DM of the form

ĝµν = ηµν + β vµ vν ,

such that the paths of the curves become geodesics in this geometry. The parameters of the

metric satisfy the condition N(1 + β N) = 1.

We can then rewrite the metric under the form

ĝµν = ηµν +
(1−N)

N2
vµ vν . (51)

Note that the origin of the acceleration is not taken into account. For a unified treatment

of the body and the source of its acceleration we should look into the description of the

field responsible for this acceleration. Could this field of force to be described in this space

endowed with a DM too? We shall see that this is indeed possible.
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A. General case

In the precedent sections we limited our analysis to the case in which the acceleration is

given by a unique function. Let us now pass to more general situation. In order to geometrize

any kind of force we must deal with a larger class of geometries that are constructed not only

with the normalized velocity vµ but also in terms of its acceleration aµ. The most general

form of DM that allows the description of accelerated bodies as true geodesics in a modified

geometry has the form

ĝµν = ηµν + b vµ vν +maµ aν + na(µ vν), (52)

where we denoted a(µ vν) ≡ aµ vν + aν vµ. The three arbitrary parameters b,m, n are related

to the three degrees of freedom of the acceleration vector. The corresponding covariant form

of the metric is given by

ĝµν = ηµν +B vµ vν +M aµ aν +Na(µ vν), (53)

in which B,M,N are given in terms of b,m, n by

B = − b (1−ma2) + n2 a2

(1 + b) (1−ma2) + n2 a2
,

M =
n2 −m(1 + b)

(1 + b) (1−ma2) + n2 a2
,

N = − n

(1 + b) (1−ma2) + n2 a2
,

where a2 = −aµaµ. In this case the equation that generalizes the geodesic condition (40)

takes the form

aµ =
1

2

[
(1 + b) vλ vν + n aλ aν

]
(ĝλµ , ν + ĝλν , µ − ĝµν , λ). (54)

This equation can be cast in the following formal expression

aµ = − b,µ
2(1 + b)

− nωµν a
ν , (55)

where ωµν ≡ v[µ,ν] − a[µ vν] is the vorticity tensor. Solving this equation for these functions

provides the most general expression for any acceleration.

With these results, we can transform the path of any particle submitted to any kind of

force as a geodetic motion in the dragged metric. We can understand this method as a

relativistic extension of the d’Alembert principle, corresponding to all types of motion, i.e.,

the acceleration is geometrized through the DM approach.
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B. DM’s unchange orthogonal directions

Lemma 3 Let Zµ be tangent to a geodesic curve in space-time embodied with metric gµν and

consider ĝµν as the DM for a congruence of curves vµ. If vectors Zµ and vµ are orthogonal

in the sense of gµν, then Zµ will also be geodesic in the DM ĝµν.

The proof of this lemma is straightforward. Set ZµZνgµν = 1 and define Φ = Zµvνg
µν .

Consider Ẑµ = λZµ, then

Ẑµ = (ηµν + b vµ vν) λZν = λ (Zµ + bΦ vµ).

Then, for Φ = 0 it follows that λ = 1. Ẑµ will be a geodesic in the DM under the condition

Zµ ,ν Z
ν − Γ̂ε

µν Zε Z
ν = 0.

Now, using the expression of the Christoffel symbol in terms of ĝµν , we obtain

Γ̂ε
µν Zε Z

ν = −Zα Zν

[
b vα v

ν

2 (b+ 1)

]

, µ

= 0.

Thus if Zµ is geodesic in the metric gµν it will also be in the DM, which proves the lemma.

C. Distinct accelerated particles in the same dragged metric

In this section we face the problem to encounter other accelerated vector fields that

satisfy the same requirements to follow a geodesic motion in the same DM that a previously

given vector field. For it, consider an accelerated congruence vµ in Minkowski spacetime

following a geodetic motion in the metric (52). We have shown that aµ = ∂µΨ − nωµνa
ν ,

where 1 + b = e−2Ψ. Note that the intrinsic properties (mass, charge etc.) of the particle

represented by vµ are contained in Ψ and n.

Now, consider another four-vector ṽµ such that it follows a geodetic motion in a DM

q̂µν(ṽ) = ηµν + b̃ ṽµṽν . (56)

For convenience, suppose that ṽµṽµ = 1 and ṽµ,ν = ãµṽν . This last assumption implies that

ãµ = ∂µΨ̃, where Ψ̃ contains all information about kinematical features of ṽµ. We then ask

if it is possible that these congruences vµ and ṽµ could agree with the same metric structure.

In principle, we suppose that ṽµ lies on the plane generated by vµ and aµ, i.e.,
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ṽµ = p vµ + q aµ, (57)

where p and q are arbitrary functions. As we set ṽµṽµ = 1, this restricts the coefficients p

and q to p2 − q2a2 = 1. Therefore, from the equation of motion for ṽµ, i.e., ṽµ,ν ṽ
ν = ãµ, we

obtain

ãµ = (p ṗ+ q p′ + p q a2)vµ +

[
2− p2 +

p

q a2
(p ṗ+ q p′)

]
aµ. (58)

where ṗ ≡ p,µv
µ and p′ ≡ p,µa

µ. Now we look for the case ãµ ∝ aµ which implies that

pṗ + qp′ + pqa2 = 0. This assumption is made in order to answer if it is possible that

different particles subjected to the same force on the background can follow a geodetic

motion in the same DM. Under these considerations, Eq. (58) yields

ãµ = 2(1− p2)aµ. (59)

Eq. (59) implies that

∂µΨ̃ = 2(1− p2)(∂µΨ− nωµνa
ν). (60)

Note that the potential Ψ̃ must satisfy this equation in order that the acceleration of vµ be

proportional to the acceleration of ṽµ. If they follow geodesics in the same geometry, then

an extra proposition must be satisfied

q̂µν(ṽ) = q̂µν =⇒ b̃ ṽµṽν = b vµvν +maµaν + n a(µvν). (61)

Substituting (57) into (61), we obtain

p =

√
e−2Ψ − 1
e−2Ψ̃ − 1

,

q = n
[
(e−2Ψ − 1)(e−2Ψ̃ − 1)

]−1/2

,

m = n2

e−2Ψ − 1
.

(62)

Remark that we still have an arbitrariness in the choice of n. Once it is fixed, then we can

uniquely determine the DM in which vµ and ṽµ follow geodesics. This could be the case of

particles in a electromagnetic field with the same charge-mass ratio.
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All these analysis concerns the map that relates accelerated paths of a given background

metric, Minkowski or not, into geodesics of the modified DM. It is worth to note that this

map is independent on the other kinematical parameters of the congruence. Indeed, an

arbitrary congruence of curves are characterized by 10 parameters: the acceleration aµ,

the expansion θ, the shear σµν and the vorticity ωµν . The most general expression for the

derivative of vµ is provided by (see the definition of these quantities in Sec. [I])

vµ ,ν =
θ

3
hµν + σµν + ωµν + aµ vν .

in which we are considering the background metric as Minkowski just for simplicity. It can

be easily generalized for arbitrary Riemannian geometry. The condition to map an arbitrary

accelerated curve to a geodesic in a DM is given by Eq. (40), where the important term to

be analyzed is Γ̂ε
µν vε v̂

ν , that is

Γ̂ε
µν vε v̂

ν =

(
1 + b

2

)
vλ vν

(
ηλν −

b

(1 + b)
vλ vν

)

, µ

.

Using the properties of the kinematical quantities entering in the expression of the derivative

of vµ it follows that indeed only the acceleration survives in this formula.

D. Accelerated particles in rotating frames in Minkowski space-time

Let us consider a simple example concerning the acceleration of a body in flat Minkowski

spacetime written in the cylindrical coordinate system (t, r, φ, z) to express the following

line element

ds2 = a2[dt2 − dr2 − dz2 + g(r)dφ2 + 2h(r)dφdt], (63)

where a is a constant. We choose the following local tetrad frame given implicitly by the

1-forms

θ0 = a(dt+ hdφ),

θ1 = adr,

θ2 = a∆dφ,

θ3 = adz,

(64)
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where we define ∆ =
√
h2 − g. The only non-identically zero components of the Riemann

tensor RA
BCD in the tetrad frame are

R0
101 =

1

4a2

(
h′

∆

)2

= R0
202,

R0
112 = − 1

2a2

(
h′′

∆
− h′∆′

∆2

)
,

R1
212 =

1

a2

[
∆′′

∆
− 3

4

(
h′

∆

)2
]
, (65)

where ( ′ ) means derivative with respect to the radial coordinate r. The equations of general

relativity for this geometry have two simple solutions that we shall analyze below.

In the case of RA
BCD=0, we get h′ = 0; ∆′′ = 0. Solving these equations, we find

h ≡ const. and ∆ ≡ ωr, where ω is a constant. Therefore, Eq. (63) takes the form

ds2 = a2[dt2 − dr2 − dz2 + (h2 − ω2r2)dφ2 + 2h dφdt].

This metric corresponds to the Minkowski one with a topological defect in the angular

coordinate.

If we consider the observer field

vµ =
1

a
√
h2 − ω2r2

δµ2 ,

with h2 − ω2r2 > 0, describing a closed time-like curve, this path corresponds to an acceler-

ation vector given by

aµ =

(
0,

ω2r

(h2 − ω2r2)
, 0, 0

)
.

This means that aµ = ∂µΨ, where

2Ψ = − ln(h2 − ω2r2).

We are in a situation similar to the previous lemma since the acceleration is a gradient.

The parameter b of the DM, given by the expression (63), can be written down as

1 + b = h2 − ω2r2,

and for the DM, we get
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ds2

a2
=
ω4r4 − ω2r2h2 + 1

(h2 − ω2r2)2
dt2 + dφ2 +

2h

h2 − ω2r2
dφ dt− dr2 − dz2.

Note that the accelerated closed time-like curves (CTC) in the original background are

mapped into closed time-like geodesics (CTG) in the DM. If one calculates the scalar cur-

vature of this metric it is possible to see that there exists a real singularity in r = h/ω and

that the 0− 0 component of the metric changes sign at

ω2 r2± =
h2 ±

√
h4 − 4

2
.

E. Accelerated particles in curved space-times

In this section we will show that the above method of eliminating the external force

by a change on the underlying geometry is a very general procedure and can be realized

in arbitrary background. We will consider some specific examples in certain curved space-

times that are solutions of the equation of motion of general relativity. We choose three well-

known geometries: Schwarzschild, Gödel universe and the Kerr solution in which accelerated

particles have very peculiar properties. In these Riemannian manifolds we analyze some

examples of accelerated paths that will be described as geodesics in the associated DM.

1. Schwarzschild geometry

We start with the Schwarzschild metric in the (t, r, θ, ϕ) coordinate system

ds2 =
(
1− rh

r

)
dt2 − 1(

1− rh
r

) dr2 − r2(dθ2 + sin2 θ dϕ2),

and choose the trajectory described by the four-velocity

vµ =

√
1− rh

r
δ0µ.

The corresponding acceleration is

aµ =

(
0,− rh

2(r2 − r rh)
, 0, 0

)
.

In this case the acceleration is gradient of the function Ψ given by

Ψ = − 1

2
ln
(
1− rh

r

)
,
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where the DM coefficient is b = −rh/r, and, therefore, the DM takes the form

d̂s
2
= dt2 − 1

(1− rh
r )

dr2 − r2(dθ2 + sin2 θ dϕ2).

Straightforwardly, the only non-vanishing Ricci tensor components of this metric are

R1
1 = −2R2

2 = −2R3
3 =

rh
r3
.

According to GR the energy-momentum tensor corresponding to this DM has only an

anisotropic pressure term (which is proportional to the components C0µ0ν of the conformal

tensor of this metric). Such fluid has no physical meaning because the energy density is

identically zero. In spite of the apparent singularity at r = rh, all Debever invariants are

finite everywhere except at the origin r = 0.

2. Gödel’s geometry

Let us now turn our analysis to the Gödel geometry78. In the cylindrical coordinate system

this metric is given by Eq. (63), where a is a constant related to the vorticity a = 2/ω2 and

h(r) =
√
2 sinh2 r, and g(r) = sinh2 r(sinh2 r − 1).

For the sake of completeness we note the nontrivial contravariant terms of this metric are

g00 =
1− sinh2 r

a2 cosh2 r
,

g02 =

√
2

a2 cosh2 r
, (66)

g22 =
− 1

a2 sinh2 r cosh2 r
.

Previously, it was pointed out the a-causal properties of a particle moving into a circular

orbit around the z−axis with four-velocity150

vµ =

(
0, 0,

1

a sinh r
√

sinh2 r − 1
, 0

)
.

This path corresponds to an acceleration given by

aµ =

(
0,

cosh r [2 sinh2 r − 1]

a2 sinh r [sinh2 r − 1]
, 0, 0

)
.
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This means that aµ = ∂µΨ, where

Ψ = − ln(sinh r
√

sinh2 r − 1).

We are again in the situation where the acceleration is a gradient. Therefore, the param-

eter of the DM is given by

1 + b = sinh2 r(sinh2 r − 1).

The DM has the following expression

d̂s
2

a2
=

3− sinh4 r

(sinh2 r − 1)2
dt2 + dφ2 + 2

√
2

sinh2 r − 1
dφ dt− dr2 − dz2.

From the analysis of geodesics in Gödel’s geometry the domain r < rc where sinh2 rc = 1

separates the causal from the non-causal regions of the spacetime. This is related to the fact

that a geodesic that reaches the value r = 0 will be confined within the domain Ωi defined

by the region 0 < r < rc
140. However, the gravitational field is finite in the region r = rc.

Nothing similar happens in the DM, since at sinh2 r = 1 there exists a real singularity in the

DM. Only the exterior domain is allowed. This means that for this kind of accelerated path

in Gödel geometry the allowed domain for the DM is precisely the whole non-causal region.

3. Kerr metric

Let us turn now to the DM approach in the case the background is the Kerr metric. In

the Boyer-Lindquist coordinate system this metric is given by

ds2 =

(
1− 2Mr

ρ2

)
dt2−ρ

2

Σ
dr2−ρ2dθ2+4Mra sin2 θ

ρ2
dtdφ−

[
(r2 + a2) sin2 θ +

2Mra2 sin4 θ

ρ2

]
dφ2,

where Σ = r2+a2−2Mr and ρ2 = r2+a2 cos2 θ. On the equatorial plane (θ = π/2) consider

the following vector field

vµ =

(
0, 0, 0,

r√
−(r2 + a2)2 + a2Σ

)
.

This path corresponds to an acceleration given by

aµ =

(
0,− r3 −Ma2

r4 + r2a2 + 2Mra2
, 0, 0

)
.
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This means that aµ = ∂µΨ, where

2Ψ = − ln

[
−
(
r2 + a2 +

2Ma2

r

)]
.

Over again, we choose an accelerated path that can be represented by a gradient. The

parameter b is given by

1 + b = −
(
r2 + a2 +

2Ma2

r

)
,

and the DM, on the equatorial plane, takes the form

d̂s
2

a2
=

1

(1 + b)2

(
1− 2M

r
− b

4M2a2

r2

)
dt2 + dφ2 +

4Ma

(1 + b)r
dtdφ− r2

∆
dr2.

These last cases (Gödel and Kerr metrics) show a very curious and intriguing property:

the accelerated CTC’s at their respective metrics are transformed into geodesic curves, that

is CTG’s. Moreover, the DMs display a real singularity excluding the causal domain in both

cases.
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VI. ACCELERATED PHOTONS IN MOVING DIELECTRICS

The suggestion to transform an accelerated path in Minkowski background into a

geodesics in an associated curved space comes from the analysis of the seminal work of

Gordon80. The description of this procedure becomes simpler and transparent using the

Hadamard’s method86. This will allow us to have a deep idea of Gordon’s approach and

will enlighten more complex cases that appear when we treat nonlinear dielectrics. This

method will be used also in the next sections for the analysis of photon propagation in

nonlinear electrodynamics. A worthwhile application of the analysis of the modification of

the geometry to deal with photon propagation inside the medium has been called “mimic

gravity”. This means to find specific electromagnetic configurations such that the photon

propagation is described by geodesics in geometries that are identical or at least similar to

specific solutions of GR. We shall deal in particular with two cases that concern spatially

homogeneous and isotropic cosmology and the rotating Gödel universe.

A. A short overview on Hadamard’s method

In the classical theory of hyperbolic partial differential equations, the analysis of propa-

gation phenomena is done using a method that was developed by the French mathematician

Jacques Hadamard and concerns the study of discontinuities across some given surfaces86.

According to his method, wave propagation can be studied by following the evolution of

wave fronts, through which the field is continuous, but some of its derivatives, in general,

are not. The method is sufficiently general to be applied to in arbitrary dimensions D.

Nevertheless, we will concentrate here only in D = 4.

To be specific, let Σ be a discontinuity hyper-surface, i.e. a definite boundary that clearly

characterizes the field disturbance and its surrounding field configurations in space-time. Let

Σ be defined by the equation

Σ(xµ) = 0. (67)

This surface locally outlines two regions 1 and 2 in space-time. The discontinuity [f ]
∣∣∣
Σ
of a

given space-time function f(xα) across Σ is defined as the limit

[f(x)]
∣∣∣
Σ
= lim

ǫ→0+

(
f (1)(x+ ǫ)− f (2)(x− ǫ)

)
, (68)
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where f (1) and f (2) are to be understood as the values of the function f in the domains 1

and 2 respectively. The basic idea of the method is to investigate the compatibility between

some assumed field discontinuities and the structure of a given partial differential equation.

We start by assuming that the field itself is continuous, but this is not true for the highest

order derivatives. Assuming, for instance that the first derivative is discontinuous across Σ

i.e.

[f,α]
∣∣∣
Σ
6= 0, (69)

Hadamard showed that the differentials of the function f in both domains df (1) = ∂αf
(1)dxα

and df (2) = ∂αf
(2)dxα have to be continuous. He then obtained the following crucial result

[df ]
∣∣∣
Σ
= [∂αf ]

∣∣∣
Σ
dxα = 0 (70)

which means that [∂αf ]
∣∣∣
Σ
is orthogonal to the hypersurface. In other words, there exist a

non-null scalar χ(x) such that

[∂αf ]
∣∣∣
Σ
= χ(x)kα (71)

where kα ≡ ∂αΣ is the gradient of the surface Σ = constant of discontinuity.

The type of discontinuity assumed depends on the order of the differential equation under

investigation. In the context of second order equations, derivatives of order D ≥ 2 will in

general be discontinuous. When we have a discontinuity of this type we say that there exist

a shock wave on the surface Σ. These shocks are always present when the fields are described

by hyperbolic PDE’s. It is important to stress that the discontinuities are propagated along

the surface Σ in a specific way that is determined by the equations of motion.

At this point it is instructive to show how the method works in the context of Maxwell’s

linear electrodynamics. We assume that the electromagnetic field tensor Fµν is such that

[Fµν ]
∣∣∣
Σ
= 0, and [Fµν,λ]

∣∣∣
Σ
= fµν(x)kλ, (72)

where fµν is a non-null antisymmetric tensor. Evaluating the discontinuities of Maxwell’s

equations in vacuum

F µν
;ν = 0 and

∗

F µν
;ν= 0 (73)

across Σ we obtain respectively

fµνkν = 0. (74)

fµνkλ + fνλkµ + fλµkν = 0. (75)
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Contracting Eq. (75) with kλ and using in Eq. (74), it results

gµνkµkν = 0 (76)

that is

gµν
∂Σ

∂xµ
∂Σ

∂xν
= 0 (77)

Taking the derivative of this expression and noting that kµ is a gradient it follows

kµ,λk
λ = 0. (78)

This result shows that the waves propagate through null geodesics in the metric background.

B. Light paths on moving dielectric: generalized Gordon method

Apart from the Faraday tensor Fµν , let us define the skew-symmetric object Pµν represent-

ing the electromagnetic field inside the material medium also. These tensors are expressed

in terms of the field strengths Eµ and Hν and field excitations Dµ and Bµ as follows

Fµν ≡ Eµ vν −Eν vµ + ηµν
αβ vαBβ ,

Pµν ≡ Dµvν −Dν vµ + ηµν
αβ vαHβ,

where vµ is a given four-vector comoving with the dielectric and ηµν
αβ is the Levi-Civita

tensor. We assume that the electromagnetic properties of the medium are characterized by

the constitutive relations where

Dα = ǫα
ν Eν , Bα = µα

ν Hν ,

where ǫα
ν and µα

ν are arbitrary tensors that depend on (E,H). Consider Maxwell equations

on dielectric media115 with permittivity ǫ and permeability µ that characterize the dielectric:

P µν
;ν = 0, and ∗F µν

;ν = 0. (79)

From now on, we take the background metric as flat Minkowski space-time and assume that

µ ≡ µ0 is a constant and ǫ = ǫ(E), where E ≡ √−Eα Eα and Eα is the electric field.

It is straightforward to generalize these equations to arbitrary curved space-time. Indeed,

suppose an observer with velocity vµ co-moving with the dielectric and such that vµ;ν = 0.

Then, Eqs. (79) written in terms of the displacement vectors Dµ and Bµ become
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Dµ
;ν v

ν −Dν
;ν v

µ + ηµναβ vαHβ;ν = 0,

Bµ
;ν v

ν − Bν
;ν v

µ − ηµναβ vαEβ;ν = 0.

(80)

The projection with respect to vµ yields the four independent non-linear equations of

motion describing the electromagnetic field inside the dielectric medium:

ǫEα
;α − ǫ′ EαEβ

E Eα;β = 0,

µ0H
α
;α = 0,

ǫ Ėλ − ǫ′Eλ vαEµ

E
Eµ;α + ηλβρσ vρHσ;β = 0,

µ0 Ḣ
λ − ηλβρσ vρEσ;β = 0.

(81)

We define the unitary vector lµ by setting Eµ ≡ E lµ, where lµ satisfies lα l
α = −1 and use

Hadamard conditions to obtain the propagation waves. Then, the discontinuities of Eqs.

(81) become [Eµ,λ]Σ = eµ kλ and [Hµ,λ]Σ = hµ kλ, where eµ(x) and hµ(x) are the amplitudes

of the discontinuities and kµ is the wave vector. Thus, it follows that

ǫ kα eα − ǫ′

E Eα eαE
β kβ = 0,

µ0 h
α kα = 0,

ǫ kα vα e
µ − ǫ′

E Eλ eλ v
α kαE

µ + ηµναβ kν vα hβ = 0,

µ0 kα v
α hλ − ηλβρσ kβ vρ eσ = 0,

(82)

where ǫ′ is the derivative of ǫ with respect to E. Combining these equations and multiplying

by Eµ, we obtain the dispersion relation
(
ηµν + (µ0 ǫ− 1 + µ0 ǫ

′E) vµ vν − ǫ′

ǫE
EµEν

)
kµ kν = 0. (83)

We see that the envelop of discontinuity propagates differently from Minkowski light-cone

of the linear Maxwell theory. In this case, the causal structure is given by an effective

Riemannian geometry. Mathematically, the metric tensor is a covariant tensor of rank 2 but

sometimes we shall call “metric” a contravariant tensor of rank 2. In particular, this is the

way the Gordon metric appears naturally as ĝµν . From this point of view, kµ is null-like in

ĝµν , namely,

ĝµν kµ kν = 0. (84)
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The expression of the effective geometry is given by

ĝµν = ηµν + (µ0 ǫ− 1 + µ0 ǫ
′E) vµ vν − ǫ′E

ǫ
lµ lν . (85)

A simple calculation show that its inverse is

ĝµν = ηµν −
(
1− 1

µ0 ǫ(1 + ξ)

)
vµ vν +

ξ

1 + ξ
lµ lν , (86)

where

ξ ≡ ǫ′E

ǫ
.

In particular, when ǫ is a constant, this formula reduces to Gordon metric

ĝµν = ηµν + (ǫµ0 − 1) vµ vν , (87)

which depends only on the dielectric properties µ0, ǫ and its velocity vµ. The magnitude

N ≡ ηµνvµvν of the wave vector in Minkowski space-time (written in terms of dielectric

properties) is determined by Gordon dispersion relation

ĝµνkµkν = (ηµν + (ǫµ0 − 1) vµvν) kµkν = 0,=⇒

=⇒ N = (1− µ0ǫ)(k
αvα)

2,

(88)

where kαvα ≡ kαvβη
αβ is evaluated in the Minkowski metric.

The analysis of the wave propagation in material media and the study of effective geome-

try are particularly interesting in the investigation of analogue model152 for the understand-

ing of kinematical properties at very small scale of astrophysical objects146.

C. Effective gravity

The property of the propagation of electromagnetic waves in a moving dielectric has

been used to analyze certain particularities of gravity (and vice-versa44). We then turn

our attention to the curved geometry that controls the photon propagation in a moving

dielectric. We start by noting that there is no restriction whatsoever on the particularities

of this motion. We can then choose particular displacements of the dielectrics to reproduce

specific geometries that could help in the investigation of specific metrics that are particular

solutions of GR. Let us show a simple example of this.
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Select a given congruence of curves that has no shear, no vorticity and no acceleration.

Thus we can set

vµ ,ν =
θ

3
hµν

where hµν = ηµν − vµ vν . Define v̂µ = vµ, thus

v̂µ = ǫ µ vµ

where vµ = ηµν vν and v̂µ = ĝµνvν . The Christoffel symbol for the effective metric are given

by

Γ̂λ
µν =

θ

3
(1− ǫ µ) vλ hµν .

For the contracted curvature this form yields

Rµν =
(ǫ µ− 1)

3
(θ̇ + θ2) hµν .

From the Raychaudhuri equation (see Sec. [II]), it follows

θ̇ +
θ2

3
= 0.

We can use these properties to combine such geometry with the equations of GR and

define the Einstein tensor Ĝµν ≡ R̂µν − 1
2
R̂ ĝµν that allows us to define an equivalent source

for this geometry defined by

T̂µν =
(ǫµ− 1)

9
θ2
(
ηµν +

(3− ǫµ)

ǫµ
vµ vν

)

That is, the motion of the photon inside the dielectric endowed with such effective metric

mimics situations that are obtained through solutions of Einstein’s equations.

D. The uses of effective metric

Let us now provide another simple example of a physical system where the exceptional

dynamics may be relevant to real practical situations and may be used to investigate dy-

namical aspects of fields in curved space-times. The basic system consists of Maxwell’s

electrodynamics inside (linear) dielectric medium in motion. The quantities we will deal

with consists in tensors Fµν and Pµν and a normalized time-like vector field vµ(x) that is
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ηµνv
µvν = 1 which represents the velocity field of the material. For pedagogical reasons we

restrict our analysis to the case of isotropic constitutive laws provided by

Dα = ǫ(x)Eα and Bα = µ(x)Hα. (89)

The equations of motion are (79) and the study of field discontinuities inside such material

leads to Gordon’s metric (87). Thus, the wave fronts inside an isotropic, heterogeneous and

linear material is described by a null vector kµ with respect to this effective metric, i.e.,

ĝµνkµkν = 0. Furthermore, we showed above that kµ is a geodesic with respect to ĝµν . This

result was obtained several times in the literature of analogue models, enabling the study

of kinematical aspects of fields that mimic the presence of gravitation. On the other hand,

there exist various situations, typical of certain class of materials, where it is possible to go

beyond this kinematical analogy. In these cases the field dynamics itself is described by its

dependence on the effective metric, as in the case of exceptional dynamics.

In fact, using the Cayley-Hamilton formula it follows that

ĝ ≡ det(ĝµν) = − 1

µǫ
. (90)

Also, from the definition of the effective metric we obtain the identity

F̂ µν ≡ ĝµαĝνβFαβ = µP µν . (91)

Using (90) and (91) simultaneously, it is possible to write the first of Maxwell equations (79)

in the form (
1

µ
F̂ µν

)

,ν

= 0. (92)

In the case of impedance matched materials where the ratio ǫ/µ is constant, we can rewrite

this equation in the very suggestive form

(
√
−ĝ F̂ µν),ν = 0, (93)

Finally the complete set of Maxwell equations (79) in this medium can be written as

∇̂νF̂
µν = 0 ∇̂[αF̂µν] = 0, (94)

where ∇̂α is the covariant derivative written in terms of ĝµν . This means that the effective

metric, that describes the characteristics, has an active part in the very description of
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the field dynamics. This situation can be used as a tool to investigate simultaneously

kinematical and dynamical aspects of fields interacting with gravity in laboratories. We

shall see afterwards that this dynamic equivalence can be useful to describe nonlinear field

theories in the context of equivalent metric.

E. Moving dielectrics: alternative expressions

Let us go back to Gordon’s paper and its generalization that is characterized by the

associated metric

ĝµν = ηµν + (ǫµ− 1) vµ vν , (95)

where ǫ and µ are parameters that characterize the dielectric and vµ is the four-velocity of

the dielectric. Note that this metric can also be used to describe non-linear structures when

ǫ and µ depends on the intensity of the field148.

We shall analyze this propagation under the new perspective presented in the previous

section. We start by noting that the net effect of the motion of a dielectric is to produce

an acceleration for the light ray that propagate inside it. Indeed, we note that the quantity

N = kµ kν η
µν is not null and varies through the motion of the dielectric. Once kµ is a

gradient we set kµ = ∂µΣ. Let us construct, following the expression of the DM defined

previously, the metric

q̂µν = ηµν + β kµ kν , (96)

where we set that k̂µ = kµ. Correspondingly, the contravariant expression is

k̂µ = (1 + β N) kµ.

Imposing that this vector has unit norm in the DM it follows that N(1 + β N) = 1. Thus,

the optic ray k̂µ becomes a geodesic in this DM. This is a trivial consequence of the fact

that this vector is both the gradient of a function and has constant norm. We then rewrite

the Gordon result in the form

Lemma 4 In a moving dielectric the optic rays propagate through geodesics in the associated

DM of the form

q̂µν = ηµν +
1−N

N2
kµ kν ,

where N = (1− µ0 ǫ) (kµ vν η
µν)2.
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There are two equivalent forms to define the DM for the path of photons in a moving

dielectric, that is:

• The Gordon metric

ĝµν = ηµν + (ǫ µ− 1) vµ vν ;

• The dragged form

q̂µν = ηµν +
1−N

N2
kµ kν . (97)

Note that we have used the fact that N is constant along the ray, that is N, µ k
µ = 0.

Thus the above Lemma is valid only for rays kµ such that its angle with the motion of the

dielectric is preserved along the ray.

The interesting remark concerns the fact that, although in the Gordon analysis the asso-

ciated metric depends explicitly on the velocity of the dielectric, in the present formulation

this dependence is hidden in the form of the scalar product (kµ vν η
µν) and the direction of

the ray kµ appears explicitly in the driven metric. This difference plays a very important role

in the cases of the search of the properties that mimics GR using electromagnetic effective

geometry, as for instance in the case of non-gravitational black-hole as we shall see later.

F. Polynomial Metrics

Gordon approach depends explicitly on the velocity vα of the dielectric. Nevertheless such

form of introducing an effective metric is not unique as we have shown in Eq. (97). Indeed, it

is possible to construct another metric q̂µν that allows to arrive at the same results obtained

by Gordon and besides reduces the dependence on the four-velocity vα. From practical

reasons, it might be useful to weaken this constraint of Gordon approach, once it is easier to

determine the shape of the electromagnetic wave packet in the laboratory than constructing

nonlinear dielectric media with arbitrary tensorial parameters ǫαβ and µαβ—despite of the

great advances in this research area recently170,175.

Let us now show that exists a class of geometries which play the same role as Gordon

metric depending only on the angle kαv
α between the wave vector kα and the dielectric

four-vector vα. This is achieved by generalizations of results of previous sections. Let us list

some examples:
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Case A: this approach corresponds to Sec. [VIE] where the metric is given by Eq. (96).

We transform there the non-normalized wave vector kµ in Minkowski background in a nor-

malized time-like vector in q̂µν , namely, N̂(q) = (1+β N)N ≡ 1. It does not violate Lorentz

invariance, because everything happens inside the dielectric. We note that it is not possible

to fix N̂ equal to zero, otherwise the metric is ill-defined. Therefore, kµ is not a null-like

vector in the Q̂-metric. Another feature is that the magnitude of the dielectric four-vector

q̂µν vµ vν = 1 + β (kµ vν η
µν)2,

is not necessarily positive definite allowing observers with velocity great than speed of light

inside the medium In the laboratory, the angle between these two vectors is easier to manip-

ulate than the dielectric velocity field only. We expect that this fact could be of reasonable

utility in the research of analog models. For instance, if we set

1 + β(kµ vν η
µν)2 = 0,

then, using Eq. (88), we obtain

β =
(µ0 ǫ− 1)

N
.

Substituting this result into the equation for the norm of kµ in q̂µν , yields

µ0 ǫN = 1.

Therefore, the metric q̂µν with this particular value of β produces the following outcome:

the wave vector kµ becomes a normalized and time-like vector, while the dielectric velocity

vµ, which was a time-like vector in the Minkowski background, becomes a null geodesic in

q̂µν . Thus, the causal structure is no more determined by kµ.

Remark that the metric q̂µν presented in the precedent sections is not unique. We can

enlarge the set of metrics that have the same properties showed above adding other terms

to q̂µν provided the condition (241) is valid. To exemplify these cases we consider:

Case B: the polynomial metric is given by

m̂µν = ηµν + β kµ kν + δaµaν .

It is straightforward to show that its inverse has an extra term

m̂µν = ηµν +B kµ kν +∆aµaν + Λa(µkν),
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where ( ) means symmetrization. The coefficients of the inverse metric are

B = −β(1− δa2)

X
, ∆ = −δ(1 + βN)

X
and Λ =

βδṄ

2X
.

Here, we defined a2 ≡ −aαaα, Ṅ ≡ N,µk
µ and

X = 1− δa2 + βN − βδ

(
Ṅ2

4
+Na2

)
.

The appearance of an extra term also happens with the inverse metric when we consider

instead of aµaν a term of the form a(µkν). In both cases an extra term is necessary breaking

the polynomial symmetry between the metric and its inverse. Nevertheless we will present

the calculations for this case focusing only on the metric containing the term aµaν and

indicating that the results are very similar when the other term is considered separately.

The geodetic motion condition for the wave vector leads to

N̂(m) = (1 + βN)N +
δ

4
Ṅ2 = 0.

Note that this approach permits a null geodesic motion for the wave vector kµ. This is the

simplest case in which we regain the main Gordon result (kµ as a null-like geodesic). The

sign of the norm of vµ is undetermined and may be chosen arbitrarily.

Case C: the most general case involving first order derivatives of kµ occurs when the

metric is expressed in the form (higher derivatives of kµ greater than that leads to a metric

tensor q̂µν ill-defined.)

n̂µν = ηµν + β kµ kν + δaµaν + λa(µkν)

and its inverse is

n̂µν = ηµν +B kµ kν +∆aµaν + Λa(µkν).

The covariant metric coefficients are given by

B = −β(1− δa2) + λa2

Z
, ∆ = −δ(1 + β N)− λ2N

Z
and Λ = −λ(2 + Ṅ λ)− 2 β δ Ṅ

2Z
,

where Z =
[
1− δ a2 + β N + Ṅ λ− (β δ − λ2)

(
1
4
Ṅ2 +N a2

)]
.

Once it involves more degrees of freedom, we can regain all outcomes presented before,

but with different algebraic relations of course. In particular, the magnitude of the wave

vector in n̂µν is set

N̂(n) = (1 + β N + λ Ṅ)N +
δ

4
Ṅ2.
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Remark that the metric and its inverse have the same number of polynomial terms as

required from the beginning. Following this reasoning, one can manipulate the cases A and

C in order to describe geometrically the kinematical aspects of a given theory. In particular,

it can be done with classical mechanics135,136 and the electromagnetic case is in progress.

G. Analogue spherical black holes

In this section we briefly review an example – from several presented in the literature11,91,109,184

– developed recently18 on how it is possible to generate a non-gravitational black-hole for

photons. Let us consider a dielectric medium moving with four-velocity vα = δα0 , subjected

to an electric field directed along the radial direction and no magnetic field. For the static

spherically symmetric situation we are dealing with, the current four-vector Jµ = (ρ, ~J)

presents only its time component, the charge density ρ. Maxwell equations written in flat

spherical coordinates adapted to the dielectric medium, then reduce to

∂r(
√−γǫE)√−γ = ρ, (98)

where γ = −r4 sin2 θ. In this case, the effective geometry generalizes the Gordon metric,

yielding

gαβ = diag

(
µ(ǫ+ ǫ′E), −ǫ+ ǫ′E

ǫ
, − 1

r2
, − 1

r2 sin2 θ

)
. (99)

This form allows one to seek for analogue spherically symmetric static black hole solutions

gαβ = diag

(
1

A
, −A, − 1

r2
, − 1

r2 sin2 θ

)
, (100)

where A = A(r) is a given radial function such that A(r) = 1−rh/r describes a Schwarzschild
black hole with a Schwarzschild radius rh. Equation (100) includes all spherically symmetric

black holes, such as Schwarzschild, Reissner-Nordström, de-Sitter or combinations thereof,

being characterized by the explicit form of the function A. The identification of Eqs. (99)

and (100) gives the two possible solutions

ǫ+ ǫ′E = ±
√
ǫ/µ. (101)

In order to integrate this equation, a two-parameter function µ = µ(ǫ, E) can arbitrarily be

chosen. Among all possibilities, we restrict ourselves here to the mathematically convenient

form

µ =
ǫ20
ǫ3
, (102)
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where ǫ0 is the vacuum permittivity constant (with µ0ǫ0 = 1). Equation (101) then reads

(ǫE)′ = ±ǫ2/ǫ0, whose integration immediately yields ǫ = ǫ±, where

ǫ± =
ǫ0

E
E0

± 1
, (103)

and A(r) = ±ǫ±/ǫ0 = 1/(1 ± E/E0), where E0 > 0 is a constant of integration; for ǫ = ǫ+

one has E = E0 at A = 1/2, while the solution ǫ = ǫ− is limited to E > E0 (since E < E0

would correspond to A > 1 in this case). The usual range −∞ < A < 1 of an effective

black hole can thus be obtained by joining the solution ǫ− inside horizon with the solution

ǫ+ outside horizon.

The expressions of the electric field E, the electric displacement D = ǫE, and the charge

density ρ in terms of A then give

E

E0

= ±(1− A)

A
, D = ǫ0E0 (1−A), and ρ = ǫ0E0

[
2(1− A)

r
− dA

dr

]
, (104)

which hold for either 0 < A < 1 or A < 0. In the case of a Schwarzschild analogue black

hole, these expressions reduce to E = ±E0rh/(r−rh) with a quadratic charge density profile

ρ = ǫ0E0rh/r
2 and a linear electric displacement D = ǫ0E0rh/r (note that ρ/D = 1/r in this

case). Therefore, E diverges at the horizon but remains finite everywhere else, while both D

and ρ are finite at the horizon but they both diverge at the center (except for A− 1 ∼ r−2,

which gives ρ = 0 everywhere). The inner solution should then be regularized near the

center. Our definite proposal to a spherically symmetric black hole analogue with radius R

is thus built with a medium whose permittivity is such that

ǫ

ǫ0
=

E0

E + E0
, if r > rh, (105)

ǫ

ǫ0
=

E0

E − E0
, if

1

2
rh < r < rh, (106)

ǫ

ǫ0
= 1, if r <

1

2
rh. (107)

When expressed in terms of the radial coordinate r, then Eq. (107) gives ǫ/ǫ0 = |A|, where
−1 < A < 1. We can compare this result with previous similar proposals: for example, which

rely upon postulating a core absorption coefficient132; here, no doping is required, but only

a variable volumetric density of the medium. Moreover, as already noted34, that was not
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a consistent solution of Einstein field equations; this latter instead deals with the cylindric

case, and proposed a non-diagonal structure for both ǫ and µ, while we treat these two

parameters both as scalars.

H. Reproducing metrics of GR through moving dielectrics

Mow let us show that the effective metric can mimic some properties of the geometry

discovered by Gödel, where closed causal paths in spacetime occur.

We start with the background Minkowski geometry written in a cylindrical coordinate

system

ds2 = dt2 − dr2 − r2 dϕ2 − dz2. (108)

The physical system we analyse consists on a variable magnetic field that induces an electric

field such that the component F 02 does not vanish. For our purposes here we do not need

to specify the field further. We choose the observer that is comoving with the dielectric

medium endowed with a normalized velocity vµ = γ
(
1, 0, ϕ̇

c
, 0
)
, where γ ≡

(
1− v2

c2

)− 1

2

is

the Lorentz factor and v ≡ rφ̇. It then follows that the non-null electric components Eµ

are E0 = − Eγrϕ̇
c

and E2 = − Eγ
r
. The photons propagate as null geodesics in the effective

geometry, whose the non null components of the metric are

g00 = 1 +
(
µ ǫ− 1 + µ ǫ

′

E
)
γ2 − ǫ

′

E

ǫ
γ2v, (109)

g11 = −1, (110)

g22 = −1 +
(
µ ǫ− 1 + µ ǫ

′

E
)
(γv)2 − ǫ

′

E

ǫ
γ2, (111)

g02 =
(
µ ǫ− 1 + µ ǫ

′

E
)
(γv)2 − ǫ

′

E

ǫ
γ2v, (112)

g33 = −1, (113)

Let us consider a curve defined by the equations t = constant, r = constant, and z =

constant. The length element of this curve is

ds2eff = g22 dϕ
2. (114)

This curve can be a photon path if the condition g22 = 0 is satisfied. In other words, if the

velocity of the dielectric is such that

v

c2
=

√
ǫµ. (115)
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Then, the photons follow along closed time-like geodesics in this effective metric. This

velocity is actually possible to be achieved by real materials, when the relative permittivity

is less than one, that is, when the electric susceptibility χ, defined as ǫ = ǫ0 (1 + χ), is

negative. An example of this is found in materials where the dielectric response of induced

dipoles is a resonant phenomenon. In this case, for frequencies above the characteristic

frequency of the material ωi, the electric susceptibility is negative and the equation for the

velocity becomes:
v2

c2
= c2µ0

(
ǫ0 −

4πNeffe
2

mωi(ω − ωi)

)
, (116)

where (m, e) are the mass and charge of a free electron respectively and Neff is the oscillator

strength times the total number of electrons per unit volume.
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VII. NONLINEAR ELECTROMAGNETIC FIELDS

As we mentioned before, in a dielectric medium the photon paths can be described as

geodesics in an effective metric. Such result can be generalized for nonlinear electrodynam-

ics. Indeed, the electromagnetic force a photon undergoes in a nonlinear regime can be

geometrized. This is a rather unexpected result and, at the same time, a beautiful con-

sequence of the analysis of the discontinuities of inhomogeneous nonlinear electromagnetic

field. We will show how such geometrization is possible. By the same token, we will show

that this property is not restricted to spin-1 fields, but, on the contrary, it is a rather general

property of nonlinear field theories.

A. General comments on nonlinear electrodynamics

Modifications of light propagation in different vacua states have recently been a subject

of interest. Such investigation shows that, under distinct non trivial vacua (related to

several circumstances such as temperature effects, particular boundary conditions, quantum

polarization etc.), the motion of light can be viewed as electromagnetic waves propagating

through a classical dispersive medium. This medium induces modifications on the equations

of motion, which are described in terms of nonlinearities of the field. In order to apply such

a medium interpretation we consider, from the microscopic point of view, modifications of

electrodynamics due to virtual pair creation. In this case the effects can be simulated by

an effective Lagrangian which depends only on the two gauge invariants F and G of the

electromagnetic field58,174.

One of the main achievements of such investigation is the understanding that, in such

nonlinear framework, photons propagate along geodesics that are no more null in the actual

Minkowski spacetime, but in another effective geometry. Although the basic understanding

of this fact — at least for the specific case of Born-Infeld electrodynamics24,25 — has been

known for a long time159, it has been scarcely noticed in the literature. Moreover, its conse-

quences were not exploited any further. In particular, we emphasize the general application

and the corresponding consequences of the method of the effective geometry outlined here.

The exam of the photon propagation beyond Maxwell electrodynamics has a rather diver-

sified history: it has been investigated in curved space-time, as a consequence of non-minimal
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coupling of electrodynamics with gravity49,60,145 and in nontrivial QED vacua, as an effective

modification induced by quantum fluctuations58,116,174. As a consequence of this examina-

tion some unexpected results appear. Just to point one out, we mention the possibility of

faster-than-light photons.

The general approach of all these theories is based on a gauge invariant effective action,

which takes into account modifications of Maxwell electrodynamics induced by different sorts

of processes. Such a procedure is intended to deal with the quantum vacuum as if it was

a classical medium. Another important consequence of such point of view is the possibility

to interpret all such vacua modifications–with respect to the photon propagation–as an

effective change of the spacetime metric properties. This result allows one to appeal to an

analogy with the electromagnetic wave propagation in curved spacetime due to gravitational

phenomena.

Once the modifications of the vacuum which will be dealt here do not break the gauge

invariance of the theory, the general form of the modified Lagrangian for electrodynamics

may be written as a functional of the invariants, that is,

L = L(F, G).

We will denote by LF and LG the derivatives of the Lagrangian L with respect to F and G,

respectively; and similarly for the higher order derivatives. We are particularly interested

in the derivation of the characteristic surfaces which guide the propagation of the field

discontinuities as described in the Hadamard’s method before.

B. The method of the effective geometry: one-parameter Lagrangians

In this section we will investigate the effects of nonlinearities in the equation of evolution

of electromagnetic waves. We consider in the first part to the simple class of gauge invariant

Lagrangians defined by L = L(F ). From the least action principle, we obtain the field

equation

∂µ (LFF
µν) = 0. (117)

Applying the Hadamard conditions for the discontinuity of the field equation (117)

through Σ we get

LFf
µν kν + 2LFF ξF

µνkν = 0, (118)
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where ξ
.
= F αβ fαβ . The consequence of such discontinuity in the cyclic identity is

fµνkλ + fνλkµ + fλµkν = 0. (119)

In order to obtain a scalar relation we contract this equation with kαη
αλF µν , resulting in

ξkνkµη
µν + 2F µνfν

λkλkµ = 0. (120)

Let us consider the case in which ξ does not vanish (cf. the case ξ = 0 directly in Lichnerow-

icz, 1958122). Substituting equation (120) in (118), we obtain the propagation equation for

the field discontinuities

(LFη
µν − 4LFFF

µαFα
ν) kµkν = 0. (121)

Expression (121) suggests that one can interpret the self-interaction of the background

field F µν , in what concerns the propagation of electromagnetic discontinuities, as if it had

induced a modification on the spacetime metric ηµν , leading to the effective geometry

gµν = LF η
µν − 4LFF F

µ
α F

αν . (122)

that is, gµν kµ kν = 0.

A simple inspection of this equation shows that only in the particular case of linear

Maxwell electrodynamics the discontinuity of the electromagnetic field propagates along

null paths in the Minkowski background.

The general expression of the effective geometry can be equivalently written in terms of

the vacuum expectation value of the energy-momentum tensor, which is

Tµν ≡ 2√−γ
δ Γ

δ γµν
, (123)

where Γ
.
=
∫
d4x

√−γ L is the effective action and γµν the is Minkowski metric written in

an arbitrary coordinate system. In the case of one-parameter Lagrangians, L = L(F ), we

obtain

Tµν = −4LF Fµ
α Fαν − Lγµν , (124)

In terms of this tensor, the effective geometry (122) can be rewritten as

gµν =

(
LF +

LLFF

LF

)
γµν +

LFF

LF
T µν . (125)
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We remark that once the modified geometry along which the photon propagates depends

upon the energy-momentum tensor distribution of the background electromagnetic field,

it is tempting to search for an analogy with the corresponding behavior of photons in a

gravitational field.

Therefore, the field discontinuities propagate along null geodesics in an effective geometry

which depends on the EM energy distribution. Let us point out that, as it is explicitly shown

from the above equation, the stress-energy distribution of the field is the actual responsible

for the deviation of the geometry from its Minkowskian form for the photons.

In order to show that the photon path is actually a geodesic curve, it is necessary to know

the inverse gµν of the effective metric gνλ, defined by

gµν gνλ = δµλ . (126)

This calculation is simplified if we take into account the well known properties:

F ∗
µν F

νλ = − 1

4
Gδλµ, (127)

and

F ∗
µλ F

∗λν − Fµλ F
λν =

1

2
F δνµ. (128)

Thus the covariant form of the metric can be written in the form:

gµν = a ηµν + b Tµν , (129)

in which a and b are given in terms of the Lagrangian and its corresponding derivatives by:

a = − b

(
L2
F

LFF
+ L+

1

2
T

)
, (130)

and

b = 16
LFF

LF

[(
F 2 +G2

)
L2
FF − 16 (LF + F LFF )

2 ]− 1
, (131)

where T = T α
α is the trace of the energy-momentum tensor.

C. Two-parameter Lagrangians

In this section we will go one step further and deal with the general case in which the

effective action depends upon both invariants, that is

L = L(F, G). (132)
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The equations of motion are

∂ν (LFF
µν + LGF

∗µν) = 0. (133)

Our aim is to examine the propagation of the discontinuities in such case. Following the

same procedure as presented in the previous section one gets

[LF f
µν + 2AF µν + 2B F ∗µν ] kν = 0, (134)

and contracting this expression with F α
µkα and F ∗α

µkα, respectively, yields
[
ξ LF +

1

2
BG

]
ηµν kµ kν − 2AF ν

α F
αµkνkµ = 0 (135)

and [
ζ LF − B F +

1

2
AG

]
ηµν kµ kν − 2BF ν

α F
αµkνkµ = 0. (136)

In these expressions we have set A
.
= 2 (ξ LFF + ζ LFG), B

.
= 2 (ξ LFG + ζ LGG), and

ζ
.
= F αβ f ∗

αβ .

In order to simplify our equations it is worth defining the quantity Ω
.
= ζ/ξ. From

equations (135) and (136), it follows that

Ω2 Ω1 + ΩΩ2 + Ω3 = 0, (137)

with the quantities Ωi, i = 1, 2, 3 given by

Ω1 = −LFLFG + 2FLFGLGG +G(L2
GG − L2

FG), (138)

Ω2 = (LF + 2GLFG)(LGG − LFF ) + 2F (LFFLGG + L2
FG), (139)

Ω3 = LFLFG + 2FLFFLFG +G(L2
FG − L2

FF ). (140)

The quantity Ω is then given by the algebraic expression

Ω =
−Ω2 ±

√
∆

2Ω1
, (141)

where ∆
.
= (Ω2)

2−4Ω1Ω3. Thus, in the general case we are concerned here, the photon path

is kinematically described by

gµν kµ kν = 0, (142)

where the effective metric gµν is given by

gµν = LFη
µν − 4

[
(LFF + ΩLFG)F

µ
λF

λν + (LFG + ΩLGG)F
µ
λF

∗λν
]
. (143)
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When the Lagrangian does not depend on the invariant G, expression (143) reduces to the

form (122).

From the general expression of the energy-momentum tensor for an electromagnetic the-

ory L = L(F, G) we have

Tµν = −4LF Fµ
α Fαν − (L−GLG) ηµν . (144)

The scale anomaly is given by the trace

T = 4 (−L+ F LF +GLG) . (145)

We can then rewrite the effective geometry in a more appealing form in terms of the energy

momentum tensor, that is,

gµν = M ηµν +N T µν , (146)

where the functions M and N are given by

M = LF +G (LFG + ΩLGG) +
1

LF
(LFF + ΩLFG) (L−GLG) , (147)

N =
1

LF
(LFF + ΩLFG) . (148)

As a consequence of this, the Minkowskian norm of the propagation vector kµ reads

ηµνkµ kν = −N
MT µνkµkν . (149)

D. The effective null geodesics

The geometrical relevance of the effective geometry goes beyond its immediate definition.

Indeed, as follows it will be shown that the integral curves of the vector kν (i.e., the photons

trajectories) are in fact geodesics. In order to achieve this result it will be required an

underlying Riemannian structure for the manifold associated with the effective geometry.

In other words this implies a set of Levi-Civita connection coefficients Γα
µν = Γα

νµ, by

means of which there exists a covariant differential operator ∇λ (the covariant derivative in

the effective metric) such that

∇λg
µν ≡ gµν ;λ ≡ gµν, λ + Γµ

σλg
σν + Γν

σλg
σµ = 0. (150)

From (150) it follows that the effective connection coefficients are completely determined

from the effective geometry by the usual Christoffel formula.
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Contracting (150) with kµkν yields

kµkνg
µν

, λ = −2kµkνΓ
µ
σλg

σν . (151)

Differentiating the dispersion relation we have

2kµ, λkνg
µν + kµkνg

µν
, λ = 0. (152)

Inserting this into the left hand side of (151), we obtain

gµνkµ; λkν ≡ gµν (kµ, λ − Γσ
µλkσ) kν = 0. (153)

As the propagation vector kµ = Σ, µ is an exact gradient one can write kµ;λ = kλ;µ. With

this identity and defining kµ
.
= gµνkν equation (153) reads

kµ;λk
λ = 0, (154)

which states that kµ is a null geodesic vector (with respect to the effective geometry gµν),

namely, its integral curves are therefore null geodesics.

E. Exceptional Lagrangians

It seems worth noting that equation (143) contains a remarkable result: the velocities of

the photon are, in general, doubled. There are some exceptional cases, however, for which

the uniqueness of the path is guaranteed by the equations of motion17,23. Such uniqueness

occurs for those dynamics described by Lagrangian L that satisfy the condition

∆ = 0.

The most known example of such uniqueness for the photon velocity in a nonlinear

theory is the Born-Infeld (BI) electrodynamics, which we will study in details next section.

Originally, the BI theory was an attempt to modify Maxwell’s electromagnetism that could

circumvent the self-energy divergence of the classical point-like charged particle. Hence,

one of its main motivations was to establish a consistent classical theory for the electron.

Notwithstanding, the BI theory has other interesting features that make it a distinguished

theory among non-linear electromagnetic theories: 1) excitations propagate without the

shocks, common to generic nonlinear models; 2) single characteristic surface equation, i.e.
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birefringence is absent 3) fulfills the positive energy density condition and 4) satisfies the

duality invariance141. Nowadays, there has been a renewed interest in BI theories and its

non-abelian generalizations in connection with the theory of strings, gauge fields on D-

branes, K-essence-like models in cosmology and others. Thus, BI theory is a good prototype

of a nonlinear theory with desirable physical properties.

F. The special case of Born-Infeld dynamics

Let us pause for a while in order to analyze the BI theory closely. Then, we start with

the BI Lagrangian in the form

L = β2
(
1−

√
U
)
, (155)

where

U ≡ 1 +
F

2β2
− G2

16β4
.

Note that the addition of a constant term in the lagrangian has the purpose to make the

energy-momentum tensor of the point-charge field goes to zero in the spatial infinity. In

a cosmological scenario it can be interpreted as a kind of cosmological constant. However,

here it plays no role whatsoever and can be omitted at will.

Born and Infeld had shown that such nonlinear dynamics may be written in terms of the

determinant of an object that has no symmetry Cµν constructed as

Cµν ≡ ηµν + Fµν .

Indeed they showed that the Lagrangian takes the form L ∼ det [Cµ
ν ].

We shall see that using the effective metric obtained through the path of photons in this

theory it is possible to describe the same Lagrangian using a symmetric tensor that appears

naturally in the causal structure of this theory. We have shown that the causal structure

represented by the effective metric of a given non-linear theory depends on the dynamics of

the field and non the other way round. However we could ask if there exists a particular

theory such that its dynamics is given as a functional of its effective geometry. We shall see

that BI is precisely such theory.

In the case of the BI theory all quantities Ωi, i = 1, 2, 3 vanish identically. Hence, in

this situation we cannot obtain the effective geometry from equation (143). In this very

exceptional case we have to return to the original equation (135). The most direct way to
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prove this is to to try to solve the following problem. Given an arbitrary Lagrangian of the

form

L = L(F,G) (156)

Its corresponding effective geometry (that controls the path of its discontinuities) in the BI

particular case takes the form

gµν =
1

4β2 U
3

2

[
(β2 +

F

2
) ηµν + F µ

λ F
λν

]
(157)

Its inverse is

gµν = 4
√
U

[
ηµν −

1

β2
Fµ

λ Fλν

]
(158)

This correspond to a unique characteristic equation which does not show birefringence–this

was obtained by Plebanski159 for the first time. From the Cayley-Hamilton formula for

A ≡ ηµαgαν = I − (1/β2)F µ
α F

α
ν , we find the unexpected result that the lagrangian can

be written in terms of the determinant of the metric that drives the propagation of the

discontinuities:

detA = U2. (159)

Using this expression we can rewrite BI Lagrangian in the form in which only the determinant

of the effective metric appears:

LBI = β2

[
1− 1

2
(det[gµν ])

1

8

]
(160)

We can then state the following equivalent form of BI dynamics that exhibits a very curious

phenomenon of self-consistency in action: the BI dynamics of the electromagnetic field is

obtained by a variation of the effective metric that extremizes its determinant. This geometry

is related to the causal structure of the theory.

Let us now combine this non-linear electrodynamics to gravity within the description of

general relativity. From the expression of the determinant, we can write

det

(
δµν − 1

β2
F µ

α F
α
ν

)
= U2 (161)

or equivalently,

det

(
δµν +

1

β
F µ

ν

)
= U. (162)

In general the energy-momentum tensor for the nonlinear electrodynamics has the form

Tµν = −4LF Fµ
α Fαν + (GLG − L) gbµν , (163)
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where the index b in the metric tensor makes reference to the background geometry. For the

BI case we find

Tµν =
1√
U
Fµ

α Fαν +

(
G2

16β2
√
U

− β2 + β2
√
U

)
gbµν (164)

We can thus write

Fµ
α Fαν =

√
U Tµν −

(
F

2
+ β2 − β2

√
U

)
gbµν . (165)

Note that the trace is given by

T =
−F√
U

+
G2

4β2
√
U

− 4β2 + 4β2
√
U (166)

consequently the effective metric reduces to

gµν =
4U

β2

(
−Tµν +

1

2
T gbµν

)
(167)

from the equations of GR it becomes

gµν =
4U

β2
Rµν . (168)

We summarize this result in the following

Lemma 5 Let us combine the BI nonlinear theory minimally coupled to the gravitational

field obeying the equations of GR. Let lµ be a null vector for the background metric and kµ the

propagating vector for the discontinuities of the non-linear electrodynamics. We have shown

that linear photons follows null geodesics in the background geometry gbµν and the non-linear

photons follow geodesics in the effective geometry gµν .

Thus for the linear photons the propagation vector lν satisfies the condition gbµν l
µ lν = 0

and the BI photons obey Rb
µν l

µ lν = 0, where Rb
µν is the Ricci tensor of the background

geometry. This expression shows an unexpected relationship between the effective metric

and the curvature of the background metric.

G. Special Riemannian geometries

In this review we deal with many different kinds of geometry that belong to a specific

binomial structure. This form of geometry is typical of the effective geometry that controls
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the propagation of waves in non-linear field theories. However it appears in many other

situations and it is much more general as we shall see.

Let gµν be the Riemannian metric of space-time. We construct an associated geometry

through the definition

q̂µν ≡ a gµν + b φµν . (169)

We require that the inverse metric q̂µν defined by q̂µν q̂να = δµα must have the same binomial

form, that is

q̂µν ≡ Agµν +B φµν . (170)

Although parameters a and b are completely arbitrary, the associated ones A and B are

given in terms of a and b.

Thus, the tensor φµν which is constructed in terms of other fields - scalar, vector, for

instance - must satisfy the condition

φµν φ
νλ = mδλµ + nφλ

µ (171)

We will analyze in these notes some examples like

• Scalar field: where φµν = ∂µϕ∂νϕ, m = 0 and n = ω ≡ ∂µϕ∂
µϕ.

• Electromagnetic field: where φµν ≡ Fµ
αFαν , m = (1/16)G2 and n = −F/2.

• Spinor fields: φµν is given by a combination between the vector Jµ and axial Iµ

currents.

H. Some remarkable consequences: Closed null-like paths

The effective metric method to describe propagation of photons by modification of the

underlying metric can be used to mimic unusual solutions of the equations of GR. A particu-

lar situation concerns the rotating universe proposed by Gödel that contains closed time-like

paths, as we discussed before. We shall show the possibility of the existence of closed paths

for photons in space-time.

The physical system we will analyze consists of a charged wire running through a solenoid.

The flat Minkowskian background geometry is written in a (t, r, ϕ, z) coordinate system as

ds2 = dt2 − dr2 − r2 dϕ2 − dz2. (172)
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The non-null components of the Maxwell tensor F µν , compatible with the symmetry prop-

erties of the system are: F 01 = E(r) and F 12 = B(r). In this case the equation of motion

of the system reduces to

r LF F
01 = Q, (173)

r LF F
12 = µ, (174)

where Q and µ are constants that determine the charge density of the wire and the current

carried through the solenoid respectively. We are interested in the analysis of the propagation

of electromagnetic waves in the region inside the solenoid. Following our previous treatment

we can assert that the photons propagate as if the metric structure of space-time was changed

into an effective Riemannian geometry. From Eq. (143) we obtain the following components

of the effective metric

g00 = 1− ψE2, (175)

g11 = −1− ψ (B2 r2 − E2), (176)

g02 = ψ E B, (177)

g22 = −
(

1

r2
+ ψB2

)
, (178)

g33 = − 1, (179)

where Ψ = 4 LFF

LF
. The photon paths are null geodesics in this effective geometry. Consider

a curve defined by the equations t = const., r = const., and z = const. The length element

of this curve is given by

ds2eff = g22 dϕ
2. (180)

This curve can become a photon path if there is a radius r = rc such that g22(rc) = 0. In

terms of the contravariant components of the effective metric listed above this condition

results

(1−ΨE2) = 0. (181)

The solution for this equation is

rc =
2Q

LF

(
LFF

LF

)1/2

(182)

which implies that
LFF

LF

∣∣∣∣
rc

> 0. (183)

65



In order to present a simple example which exhibits closed curves, we work with a BI-like

Lagrangian

L =
β2

2

(√
1− F

β2
− 1

)
. (184)

Note that although highly speculative, this Lagrangian has the Maxwell limit for weak fields

(F ≪ β2). It also has an interesting property in the situation we are examining. Substituting

the Lagrangian (184) into equation (181) we find that the magnetic field in this case takes

the large value B = β/
√
2.

Other nonlinear Lagrangians such as the Heisenberg-Euler Lagrangian for QED, cannot

be analyzed with the formalism presented here since they depend on both invariants F and

G. The real interest in this phenomenon is that it might be possible to be observed in

the laboratory. This possibility rests in the analogy between the propagation of photons

described by nonlinear Lagrangians in vacuum and that of photons described by Maxwell’s

theory in the presence of a dielectric141

It has been known from more than half a century that gravitational processes allow the

existence of closed paths in space-time. This led to the belief that this strange situation

occurs uniquely under the effect of gravity. In the above example we have shown that

this is not the case. Indeed, photons can follow closed curves (CC’s) in space-time due to

electromagnetic forces in a nonlinear regime. In the limiting case in which the nonlinearities

are neglected, the presence of CC’s is no more possible. Thus we can state that this property

depends crucially on the nonlinearity of the electromagnetic processes and it does not exist

in Maxwell’s theory. In other words, the existence of closed paths in space-time is not an

exclusive property of the gravitational interaction: it appears also in pure electromagnetic

processes, depending on the nonlinearities of the background field. The existence of such

paths in both gravitational and electromagnetic processes asks for a deep review of the

causal structure as displayed by the geodesics of the photons.

I. Analogue model for Kasner Cosmology

Inside material media electrodynamics are described by nonlinear equations. Indeed, in

such situations Maxwell equations must be supplemented with constitutive relations which,

in general, are nonlinear and depend on the physical properties of the medium under the

66



action of external fields. As a consequence, several effects (non usual in the context of linear

Maxwell theory) are predicted. Of actual interest is the phenomenon of artificial birefrin-

gence: when an external field is applied in a medium with nonlinear dielectric properties,

an artificial optical axis may appear45–48,50–52,114,165.

Analogue models have been proposed in several branches of physics. It deals with

acoustics10,66,73,93,102,121,128,179,181, optics37,118,119,148,159,162,169,180 among others9,26,79,103,120,182,183

with experimental verification including quantum effects12,90,156,173,187,192, despite of contrary

claims14. These are only representative references; a complete review can be found in Barceló

et al (2011)11.

Particularly, nonlinear electrodynamics has been considered as a possible scenario to

construct analogue models for GR, either in the context of nonlinear Lagrangian or nonlinear

material media. As an example, let us show that homogeneous dielectric media at rest with

the dielectric coefficients εµν( ~E) and constant µ, in the limit of geometrical optics, can be

used to construct an analogue model for Kasner cosmology. In order to avoid ambiguities

with the wave velocity, dispersive effects were neglected by considering only monochromatic

waves. It is shown that naturally uniaxial media presenting nonlinear dielectric properties

can be operated by external fields in such way to induce anisotropy in the optical metric.

Recently the effective geometry for light rays in local anisotropic dielectric media was

obtained51, which can be presented in the symmetrized form:

gαβ± = µαV αV β +
1

2

[
Cν

ν −
1

µ(v±ϕ )
2

]
C(αβ) − 1

2
C(α

νC
νβ), (185)

where

Cα
τ
.
= εατ +

∂εαβ

∂Eτ
Eβ +

1

ω

∂εαβ

∂Bρ
ηρλγτE

βKλVγ (186)

and the phase velocities v±ϕ are

v±ϕ =

√
β

2α

(
1±

√
1 +

4αγ

β2

)
, (187)

with ω
.
= KαVα identified as the frequency of the electromagnetic wave and the coefficients

α, β and γ given by

α
.
=
1

6

[
(Cµ

µ)
3− 3Cµ

µC
α
βC

β
α+ 2Cα

βC
β
γC

γ
α

]
, (188)

β
.
=µ−1

(
Cλ

αC
αν − Cα

αC
λν
)
q̂λq̂ν , (189)

γ
.
=µ−2Cλν q̂λq̂ν . (190)
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In the last two equations (189-190) we introduced the 3-dimensional projection of the wave

vector Kα as qα = hαµK
µ = Kα − ωV α.

The symmetric tensors gµν± represent the optical metrics (also known as effective geome-

tries) associated with the wave propagation, and the symbol ± indicates the possible distinct

metrics, one for each polarization mode. Correspondingly to it Eq. (187) expresses the fact

that, in general, the phase velocity of the electromagnetic waves inside a material medium

may get two possible values (v+ϕ , v
−
ϕ ) which are associated with the two possible polarization

modes46. For the particular case of Maxwell linear theory in vacuum, both metrics gµν+ and

gµν− reduce to the Minkowski metric ηµν , as expected.

Now, let us consider a naturally uniaxial medium reacting nonlinearly when subjected to

an external electric field as εαβ = diag[0, ε‖(E), ε⊥(E), ε⊥(E)]. In this case, εαβ = εαβ(E)

and by setting ~E in the x-direction (optical axis) we obtain Cα
β = diag(0, ε‖+Eε′‖, ε⊥, ε⊥),

where ε′‖ = dε‖/dE. For this particular case C
αβ is a symmetric tensor. The phase velocities

reduce to

(v+ϕ )
2 =

1

µε⊥
, (191)

(v−ϕ )
2 =

1

µε⊥C1
1

[
ε⊥(1− q̂1

2) + C1
1q̂1

2
]
. (192)

Note that v−ϕ depends on the direction of propagation, as it should be expected for the

extraordinary ray. The two velocities coincide when either the propagation occurs along the

direction of the electric field (q̂1
2 = 1), or when the no-birefringence condition ε‖ +Eε′‖ = 0

holds51.

Let us also particularize to the model where

ε⊥ = ǫ⊥ − 3pE2, and ε‖ = ǫ‖ − sE2. (193)

where s and p are constants. Thus, Cα
β = diag(0, ǫ‖ − 3sE2, ǫ⊥ − 3pE2, ǫ⊥ − 3pE2).

For the ordinary ray the optical metric coefficients are

g00+ = µα (194)

gii+ = −ǫ‖ǫ⊥ + 3(sǫ⊥ + pǫ‖)E
2 − 9spE4 (195)

where

α = −27sp2E6 + 9p(pǫ‖ + 2sǫ⊥)E
4 − 3ǫ⊥(sǫ⊥ + 2pǫ‖)E

2 + ǫ‖ǫ
2
⊥. (196)
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Equations (194-195) show that for the ordinary ray there will be no anisotropy in the space

section.

For the extraordinary ray the optical metric coefficients are

g00− = µα (197)

g11− = −(χ− ǫ‖ + 3sE2)(ǫ‖ − 3sE2) (198)

g22− = g33− = −(χ− ǫ⊥ + 3pE2)(ǫ⊥ − 3pE2) (199)

where χ depends on the direction on wave propagation as

χ = − (ǫ‖ − 3sE2)(ǫ⊥ − 3pE2)

(ǫ⊥ − 3pE2)(1− q̂12) + (ǫ‖ − 3sE2)q̂12
+ (ǫ‖ − 3sE2) + 2(ǫ⊥ − 3pE2). (200)

Equations (197-199) show that for the extraordinary ray there will be anisotropy in the

space section (g11− 6= g22− = g33− ).

Before closing this section we note that when the propagation occurs in the direction

of the optical axes it follows χ |q̂12=1 = (ǫ‖ − 3sE2) + (ǫ⊥ − 3pE2) and g11− = g22− = g33− =

−(ǫ‖ − 3sE2)(ǫ⊥ − 3pE2). By the other hand, when the propagation occurs perpendicularly

to the optical axes it follows χ |q̂12=0 = 2(ǫ⊥ − 3pE2) and g11− 6= g22− = g33− .

Using results presented in the literature describing the propagation of monochromatic

electromagnetic waves inside naturally anisotropic material media with nonlinear dielectric

properties an analogue model for general relativity presenting anisotropy in the space section

has been constructed. Thus light propagation in local anisotropic media can be used as a

tool for testing kinematic aspects of Kasner cosmological model in laboratory.

VIII. REPRODUCING METRICS OF GR THROUGH SCALAR FIELDS

The phenomenon of induced metric that we have been analyzed for electrodynamics is

rather general and may occurs for any nonlinear theory independently of its spin properties.

In this section we consider the case of a non linear scalar field. We will show that a class

of theories that have been analyzed in the literature, having regular configuration in the

Minkowski space-time background is such that the field propagates like free waves in an ef-

fective de Sitter geometry. The observation of these waves would led us to infer, erroneously,

that we live in a de Sitter universe.
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A. The kinematical analogy

Let us give a simple example. Consider a scalar field ϕ propagating in a flat space-time

whose dynamics is provided by the non-linear Lagrangian

L = L(w),

where w ≡ ∂µϕ∂νϕ η
µν is the canonical kinematic term. The equation of motion for ϕ reads

∂µ

(
Lw ∂νϕ η

µν
)
= 0, (201)

where Lw denotes the first derivative of L with respect to w. By expanding the left hand

side we obtain the explicit form

Lw�ϕ+ 2Lww∂
µϕ∂νϕ∂µ∂νϕ = 0, (202)

with � ≡ ηµν∂µ∂ν . This constitutes a quasi-linear second order partial differential equation

for ϕ. We are interested in evaluating the characteristic surfaces of wave propagation in

this theory. The most direct and elegant way to pursue this goal is to use the Hadamard

formalism discussed in Sec. [VIA].

Let Σ be a surface of discontinuity of the scalar field ϕ. The field ϕ and its first derivative

∂µϕ are continuous across Σ, while the second derivative presents a discontinuity:

[ϕ]Σ = 0, [∂µϕ]Σ = 0, and [∂µ∂νϕ]Σ = kµkνξ(x), (203)

where kµ = ∂µΣ is the propagation vector and ξ(x) the amplitude of the discontinuity. From

the above conditions we obtain that both Lw and Lww are continuous functions across Σ.

Using these discontinuity properties in the equation of motion (202) it follows that only the

second order derivative terms contribute. We obtain the relation

Lwη
µν [∂µ∂νϕ]Σ + 2Lww ∂

µϕ∂νϕ [∂µ∂νϕ]Σ = 0. (204)

Thus, using Hadamard conditions it follows

kµkν

(
Lwη

µν + 2Lww∂
µϕ∂νϕ

)
= 0.

This equation suggests the introduction of the effective metric defined by

ĝµν ≡ Lwη
µν + 2Lww∂

µϕ∂νϕ. (205)
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Thus there are two distinct metrics in this framework: the Minkowskian ηµν that enters in

the dynamics of the field ϕ and the effective metric ĝµν that controls the propagation of the

waves. Note that, once the vector of discontinuity kµ is a gradient, discontinuities of the

field ϕ propagate through null geodesics in the effective metric ĝµν , i.e.

ĝµνkα;µkν = 0, (206)

where “;” stands here for the covariant derivative evaluated with the effective metric. The

inverse ĝµν of (205) is obtained through the condition ĝµαĝαν = δµν :

ĝµν =
1

Lw
ηµν −

2Lww

Lw (Lw + 2wLww)
∂µϕ∂νϕ. (207)

We remind that the determinant of a mixed tensor T = T α
β may be expressed in terms

of traces of its powers as we exhibited in the first section as an immediate consequence of

the Cayley-Hamilton theorem. Applying this formula to evaluate the determinant of the

effective metric (205) one obtains, after a straightforward calculation

√
−ĝ = L−2

w

(
1 + 2

Lww

Lw

w

)−1/2

, (208)

Note that, the square-root of the determinant is real only if the condition

1 + 2wLww/Lw > 0 (209)

is satisfied. This is the same as to guarantee the hyperbolicity of the equations of motion and

henceforth the existence of waves. Nevertheless, we remark that the effective metric that

controls the propagation of these waves is not unique and is determined up to a conformal

factor. However, as it occurs in typical nonlinear theory, the dynamics is not conformal-

invariant.

Since the scalar field “see” the effective geometry one can ask for nonlinear Lagrangians

leading to a given effective geometry in a fixed background. To this end one proceeds by

choosing a Lagrangian, determining the corresponding effective geometry and solving the

Euler-Lagrange equations for ϕ. Unfortunately, since the effective metric depends on the

field, such an approach is often intractable. A convenient means to simplify the problem is

to choose Lw + 2wLww, this allows to partly control the interplay between the Lagrangian

and the effective geometry (207). Let us examine the simplest case where Lw + 2wLww =
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1 = 1 which we use hereafter. This choice obviously simplify (207). This equation can be

straightforwardly integrated to yield

L = w + 2λ
√
w + C, (210)

where λ is a non-zero c-number and C a constant with respect to w, in particular one can

set C = −V (ϕ). This case is worth of considering in particular because of the properties it

provides for the effective metric, but besides this it can be understood as a perturbation of

the standard linear theory. Just to present a toy model that corresponds to a specific “fake

inflation” we will restrict the case in which the potential take the form70

V (ϕ) = −λ2e− 2H
λ

ϕ

(
1 +

e−
2H
λ

ϕ

2

)
. (211)

B. Effective FRW metric in a Minkowskian background

We consider the background metric as the Minkowski metric ηµν in Cartesian coordinates

and a field ϕ depending only on time ϕ = ϕ(t) and satisfying the Lagrangian (210). The

effective metric ĝµν felt by ϕ is a spatially flat FRW metric:

ds2 = dt2 − a2(t)
(
dr2 + r2dΩ2

)
. (212)

Since ϕ do not depends on spatial coordinates the Euler-Lagrange equations reduce simply

to:

ϕ̈
(
Lw + 2(ϕ̇)2Lww

)
= −1

2

δV

δϕ
,

where a dot means a derivative with respect to the time. Now, the effective invariant length

element reads

ds2 = ĝµνdx
µdxν = dt2 − 1

Lw

(
dr2 + r2dΩ2

)
. (213)

Note that 2Lww = 1 − Lw leads to ĝtt = 1. Let us set the expansion factor on the effective

FRW geometry to an inflationary form: a(t) = eHt, H being a real positive parameter. For

that choice the equation a(t)2 = 1/Lw leads to

√
w =

λ

e−2Ht − 1
. (214)

Since
√
w is positive λ must be negative. Assuming ϕ̇ 6 0 (calculations for ϕ̇ > 0 are

analogous) the above equation can be integrated to :

ϕ =
λ

2H
ln(e2Ht − 1) +K, (215)
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where K is a constant, which we set equal to zero. Solving (215) for t allows to obtain

precisely the form exhibited in equation (211) of the potential. In other words, observation

of the effective geometry ĝµν would led us to believe, erroneously, that we are in a de Sitter

geometry. Although it is a toy model144, a similar situation can occur for other nonlinear

theories.

We note that the covariant metric tensor of the effective metric defined by the relation

ĝµνg
νλ = δλµ, is given by

ĝµν =
1

Lw

gµν −
2Lww

Lw (Lw + 2wLww)
∇µϕ∇νϕ . (216)

A straightforward calculation shows that the evaluation of the determinant of the effective

metric yields

det ĝµν = L3
w (Lw + 2wLww) . (217)

It then follows that the unique theory that can be written in terms of its associated effective

metric is the one provided by the BI-like form

LBI = −
√
bw + e , (218)

where b and e are constants.

The energy density and pressure of the effective fluid description for the BI dynamics

(from Eq. 218)

ρ = e/
√
bW + e , p = −

√
bW + e (219)

are such that the equation of state takes a very simple form

p = −e
ρ
. (220)

A fluid with the above equation of state is known as Chaplygin gas104.

IX. THE METHOD OF THE DYNAMICAL BRIDGE

Linear Maxwell theory and Born-Infeld electrodynamics are distinct theories. Not only

they describe configurations that are not similar, they provide different answers for a same

problem. Although such trivial statement seems obvious, it is possible to bypass its con-

strains and define a framework that exhibits a dynamical equivalence of these two theories.
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How is it possible? The dynamical bridge consists precisely in a scheme in which such sim-

ilarity is present. The key point to understand such proposal is related to the distinction of

the background space-time structure. We shall see that it is possible to map the dynamical

properties of Maxwell theory written in a Minkowski space-time into the Born-Infeld electro-

dynamics described in a curved space-time, which is defined in terms of the electromagnetic

field itself. It is clear that when considered in whatever unique metrical structure these two

theories are not the same, they do not describe the same phenomena. However we shall see

that by a convenient modification of the metric of the background structure an unexpected

equivalence appears that establishes a bridge between these two theories making they rep-

resent the same situation. In other words we shall prove that a given dynamics described

in a space-time can be mapped in another theory in a modified metric structure. We shall

prove this for different kinds of fields, e.g., scalar, vector and spinors.

The main difference between the method of the equivalent metric and the one used in

GR concerns the uniqueness of the geometry. In the latter, due to the universality of the

metric, the gravitational field should also be described in the same and unique geometry

once the gravitational field is identified with this geometry. Let us now describe a distinct

situation in the equivalent DM and show how it is possible to represent the dynamics of the

scalar field in terms of the associated DM. To clarify our description we compare it with the

procedure used in GR.

A. Exceptional dynamics

In recent years, intense activity on analogue gravity has been developed152.This was

concentrated in nonlinear electrodynamics, acoustics, hydrodynamics, optics inside media

and various condensed matter systems. This term (analogue gravity) implies the description

of distinct physical processes as modifications of the geometrical structure of the background

space-time. Until now this analogy had been limited to perturbed aspects restricting it to the

propagation of excitations (photons and quasi-particles) through a medium or a background

field configuration. However it is possible to go one step ahead and provide an example

which goes beyond this limitation describing dynamical features of fields in terms of their

respective effective metric143.

We will analyze this in two steps. In the first moment we will deal with the effective
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metric that was used to represent the propagation of the discontinuities. This special case

is not very general and that is the reason to call the dynamics that are examples of this

method as exceptional. In a second stage we will deal with a far reaching structure that

concerns the complete equivalence without a stringent limitation of the dynamics. In other

words, we would like to stress that in this general case the dynamical aspect has nothing to

do with mimicking Einstein’s equations through effective metrics as we did before.

The main steps to achieve this result are the following:

• Consider a nonlinear field theory described in a flat Minkowski background;

• Note that the propagation of the discontinuities of the field leads to the raising of a

second metric ĝµν such that the path of the waves are null geodesics in this effective

geometry;

• There exists a special class of theories such that its corresponding dynamics (which we

will deserve the name exceptional) can be described alternatively as the gravitational

interaction of the field in a given curved geometry;

• The geometry of such gravitational space-time is precisely the effective metric ĝµν.

Thus it is possible to claim that the self-interaction described by exceptional dynamics is

described in an equivalent way as the gravitational interaction of the field with its own

effective metric. For pedagogical reasons we start our analysis with the simplest case of non

linear scalar fields. Generalization to other cases will be described later on.

Let us note that the discontinuities of the field propagate in a curved space-time, although

the field ϕ is described by a non-linear theory in Minkowski geometry143.

In the framework of GR it is the presence of gravity that allows the existence of curvature

in the geometry. This has led to the interpretation of the dispersion relation of non-linear

fields in terms of an effective metric as nothing but the simplification of its description, that

is, a matter of language.

At this point we face the following question: is it possible that among all non-linear

theories one can select a special class such that the dynamics of the field itself is described

in terms of the effective metric? That is, can the dynamics of the field be unified with the

propagation of its waves such that just one metric appears? Let us emphasize that this is

not equivalent to the known property — that occurs in hydrodynamics (and also in field
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theory) — that the characteristic propagation of the field coincides with the propagation of

its perturbations.

If such quality is possible, then the equation of evolution of ϕ is equivalent to a sort of

gravitational interaction between ϕ and its effective metric. This means that the equation

of motion (201) can be written under the equivalent form

�̂ϕ ≡ 1√
−ĝ

∂µ

(√
−ĝ ∂νϕ ĝµν

)
= 0. (221)

In general it is not possible to rewrite the nonlinear equation (201) in the above form for an

arbitrary lagrangian. However, we will show that there exist some special situations where

this implementation becomes feasible. We first note the following relation

∂νϕĝ
µν = (Lw + 2wLww)∂νϕη

µν . (222)

It then follows that the dynamics described by (201) and (221) will be the same, provided

the Lagrangian satisfies the condition

Lw =
√
−ĝ(Lw + 2wLww). (223)

Using the expression for the determinant (208) the equivalence is provided by the nonlinear

differential equation for the lagrangian

2wLww + Lw − L5
w = 0. (224)

We will call the system described by Lagrangians that satisfies condition (224) as Exceptional

Dynamics. In other words, non-linear systems described by exceptional dynamics may be

alternatively interpreted as fields gravitationally coupled to its own effective geometry. Thus

the field and the corresponding waves agree in the interpretation that the geometry of the

space-time is given by ĝµν .

Equation (224) is such that the first derivative of the lagrangian with respect to w may

be obtained explicitly. Indeed, one obtains that

Lw = ± 1

(1− λw2)
1

4

, (225)

where λ is an arbitrary real positive constant. The general solution of equation (224) may

be obtained as an infinite series given by the hypergeometric function

L(w) = ±w hypergeom

([
1

4
,
1

2

]
,

[
3

2

]
, λw2

)
. (226)
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We note that this dynamics is such that the admissible values of w are restricted to the

domain w2 < λ. Thus, the theory naturally avoids arbitrarily large values of the kinematical

term. Second, the lagrangian is a monotonic function of w as an immediate consequence of

equation (225). Third, it admits the linear theory as a limiting case for small values of w.

Lastly, the resulting function is odd, i.e., L(w) = −L(−w).
It is instructive to expand the exceptional lagrangian to obtain a clear idea of its behavior

in terms of λ, obtaining

L(w) = w +
λ

12
w3 +

λ2

32
w5 +

15λ3

896
w7 +O[x]9 (227)

For small values of the constant (λ ≪ 1) the exceptional lagrangian reduces to a cubic

expression. We can arrive at this result assuming from the beginning a lagrangian in the

vicinity of the linear theory of the form L(w) = w + ǫf(w) with ǫ2 ≪ ǫ and solving the

simplified equation wfww − 2fw = 0. The linear theory is obviously recovered when λ = 0,

implying that both the discontinuities and the field dynamics are represented in the same

effective metric structure, that is, ηµν .

Then, we have examined the case in which a self-interacting scalar field generates a

geometrical arena for its own propagation. A simple extension can be elaborated in such a

way that the original theory, describing the dynamics of the scalar field in a flat Minkowski

arena can be alternatively described as the gravitational interaction of the field. Then a non-

expected result appeared: the metric field that describes this gravitational effect is nothing

but the same effective metric that controls the wave propagation. In other words both the

propagation of the field discontinuities and the field dynamics are controlled by the same

metric structure. The nonlinearities are such that the equations in Minkowski space-time

mimic the dynamics of a “free-field” embedded in a curved space-time generated by the field

itself.

Let us summarize the novelty of such analysis:

• For any field theory described on a Minkowski background by a non-linear Lagrangian

L = L(w) the discontinuity of ϕ propagates as null geodesics in an effective metric

ĝµν ;

• As such, the theory presents a duplicity of metrics: the field is described in flat
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Minkowski space-time and its corresponding waves propagate as null geodesics in a

curved geometry;

• It is possible to unify the description of the dynamics of ϕ in such a way that only

one metric appears. This is possible for those Lagrangians that represent exceptional

dynamics;

• In this case, the self-interaction of ϕ is described equivalently as if it was interacting

minimally with its own effective geometry, allowing the interpretation in terms of an

emergent gravitational phenomenon.

The structure of the nonlinear equations of motion suggests that the previous procedure

can be adapted to other structures like nonlinear electrodynamics in a moving dielectric,

vector and tensor field theories.

B. Dynamical bridge: the case of scalar fields

In the precedent sections we have displayed the possibility of using the modification of

the geometry of space-time to describe paths of accelerated particles, massive or not, in flat

or curved backgrounds. These proposals are generically called analogue models of gravity,

once they use the main idea of GR to map accelerated bodies in a given metric structure

into geodesics of a curved geometry. In the next sections we enter in a distinct analysis

once we will deal not with forces in a given body but we will consider how different fields

obeying a given nonlinear equation of motion can be described in terms of modifications

of the background geometry generated by themselves. We emphasize that this is not a

gravitational framework, as we shall see.

We start by showing how a metric qµν naturally appears in nonlinear scalar field theories.

Let us set the following nonlinear Lagrangian in flat Minkowski space-time:

L = V (Φ)w, (228)

where w ≡ ηµν∂µΦ ∂νΦ. For V = 1/2 this is just the standard free massless Klein-Gordon

scalar field. In the general case, the usual kinetic term is re-scaled by a field dependent

amplitude (potential) V (Φ). Here we are using ηµν but we could have used an arbitrary
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coordinate system as well, since the theory is generally covariant and there is no privileged

reference frame. The field equation is

1√−η∂µ
(√−η ηµν ∂νΦ

)
+

1

2

V ′

V
w = 0, (229)

where V ′ ≡ dV/dΦ and η is the determinant of ηµν .

Now comes a remarkable result: the above field equation (229) can be seen as a massless

Klein-Gordon field propagating in a curved space-time whose geometry is governed by Φ

itself. In other words, the same dynamics can be written either in a Minkowski background or

in another geometry constructed in terms of the scalar field. Following the steps established

previously143, we introduce the contra-variant metric tensor qµν by the binomial formula

qµν = α ηµν +
β

w
∂µΦ ∂νΦ, (230)

where ∂µΦ ≡ ηµν ∂νΦ and α and β are dimensionless functions of Φ. The corresponding

covariant expression, defined as the inverse qµν q
νλ = δλµ, is also a binomial expression:

qµν =
1

α
ηµν −

β

α (α+ β)w
∂µΦ ∂νΦ. (231)

Now we ask whether it is possible to find α and β, in such a way that the dynamics of

the field (229) takes the form

�Φ = 0, (232)

where � is the Laplace-Beltrami operator relative to the metric qµν , that is

�Φ ≡ 1√−q∂µ(
√−q qµν ∂νΦ).

To answer this question we evaluate the determinant q of the metric qµν , for which a direct

calculation yields
√− q =

√− η

α
√
α (α + β)

. (233)

Using the fact that qµν∂νΦ = (α+β)ηµν∂νΦ, the final result is summarized in the following:

Lemma 6 Given the Lagrangian L = V (Φ)w with an arbitrary potential V (Φ), the field

theory satisfying Eq. (229) in Minkowski spacetime is equivalent to a massless Klein-Gordon

field �Φ = 0 in the metric qµν provided that the functions α(Φ) and β(Φ) satisfy the condition

α + β = α3 V. (234)

Remarkably, this equivalence is valid for any dynamics described in the Minkowski

background by the Lagrangian L. This fact can be extended to other kinds of nonlinear

Lagrangian81.
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C. Dynamical bridge: The case of electromagnetic field

Recently, it was shown that the Born-Infeld dynamics in a curved space-time endowed

with an associated metric êµν is dynamically equivalent to the linear Maxwell electrodynam-

ics described in a flat Minkowski background142. Namely, there is a map relating these two

dynamics in such a way that they are distinct representations of one and the same physics.

It means that any solution of the former will also be a solution of the latter, which is given

in terms of a preestablished map. This task is highly nontrivial and becomes possible only

if the space-time metric depends explicitly on the electromagnetic field. Due to the alge-

braic structure of the electromagnetic tensor Fµν and its dual ∗Fµν , there are some closure

relations that allow the existence of this map, generating a connection between those two

paradigmatic theories. The apparent disadvantage is to leave aside the simple Minkowski

background ηµν and to go to a specific curved space-time êµν , which is constructed solely

in terms of the background metric and the electromagnetic fields. In principle, one could

suspect that this map is useless because it links a very simple electromagnetic theory in

flat space to a nonlinear theory in a curved space-time. Notwithstanding, recently137 it was

shown that physical principles can guide us in the choice of the more appropriate represen-

tation to describe the system under consideration.

To describe a physical theory one has to specify not only the lagrangian that contains the

dynamics of the fields but also the space-time structure where the theory is defined. To avoid

notational cumbersomeness, we shall denote every object in the curved space-time defined

by the metric q̂µν with an upper hat. Thus, in Maxwell’s theory, every tensor is raised and

lowered by the Minkowski metric γµν while in the curved space-time representation, where

we will construct the Born-Infeld theory, shall be raised and lowered using the êµν metric.

Let us begin with Maxwell’s theory in Minkowski metric γµν is determined by the La-

grangian L = −F
4
. We set F µν ≡ Fαβγ

µαγνβ and F ≡ FµνFαβγ
µαγνβ. Born-Infeld theory

described in the curved metric êµν is determined by the Lagrangian L̂ = β2
(
1−

√
Û
)
,

where we thus have

Û = 1 +
F̂

2β2
− Ĝ

16β4
,

with

F̂ µν = Fαβ ê
µα êνβ, F̂ = Fµν Fαβ ê

µα êνβ , and Ĝ =

√−γ√
−ê

ηµναβ Fµν Fαβ = F̂
∗

µν Fµν .
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The dynamical equation for the electromagnetic field in the Born-Infeld theory is

∂ν

[√− ê

Û

(
F̂ µν − 1

4 β2
Ĝ ∗F̂ µν

)]
= 0, (235)

where ê is the determinant of the electromagnetic metric êµν , which is defined as

êµν ≡ a ηµν + bΦµν , (236)

and Φµν ≡ Fµα F
α
ν . Due to the algebraic relations of the Faraday tensor (3)-(6), there is a

unique way to define the electromagnetic metric where a and b are functions of the Lorentz

invariants F and G and Φµν ≡ F µαFα
ν .

The term electromagnetic metric is justified by the fact that êµν depends only on the

electromagnetic field. Note the very convenient property that the inverse of the above

structure, which in general is given by an infinite series but in the present case is again a

binomial quantity, also as a consequence of Eqs. (3)-(6), that is

êµν = Aηµν +B φµν , (237)

where A = (2 − nF )(2aQ)−1, B = −n(aQ)−1 and we are using the definitions n ≡ b/a and

Q ≡ 1− (1/2)nF − (1/16)n2G2.

The definition of F̂ µν and the choice of the metric êµν implies that these fields are related

through the expression




F̂ µν

a2

∗F̂ µν

a2


 =



p− nFq −nG q2

−nG q2 p







F µν

∗F µν


 , (238)

where p = 1 + n2G2

16 and q = 1− nF
4 .

We can interpret Eq. (238) as nothing but a map from (Fµν , F
∗
µν) into (F̂µν , F̂

∗
µν). Substi-

tuting this equation in Eq. (235) and making the requirement that Born-Infeld dynamics in

the êµν corresponds to the Maxwell dynamics in flat Minkowski space-time, we obtain the

following equations for the coefficient of the electromagnetic metric142





p− nFq + Ĝ
2β2 n q = −Q4 ,

−nG q + Ĝ p
2β2 = 0.

(239)
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The new invariants, for instance, reads

F̂ = a2
[
F − n

2
(F 2 +G2)

(
1− nF

2

)]
, and Ĝ = a2QG.

At this stage, the mapping of the two dynamical systems sum up to make the identification

term by term in both equations. In other words, choosing appropriately the unknown

function of the EM metric (236), Maxwell’s equation in Minkowski geometry and Born-Infeld

in this curved space-time êµν describes one and the same dynamics for the electromagnetic

field. Our task consists in a direct comparison of the Maxwell equations in the background

ηµν with Born-Infeld dynamics in the background êµν .

Equating terms proportional to F µν and to ∗F µν we find the following conditions to be

fulfilled in order to obtain the equality of the dynamics

a2Q2

2β2
= −nq (240)

p− nqF =

√
Û

Q
(241)

In the above equations we are considering a and n as the unknown functions and Q and Û as

functions of the formers. Having two equations and two unknown, one can solve to find the

two functions, hence, the metric (236). However, using equation (240), it follows immediately

that equation (241) trivialize to 1 = 1, i.e. if (240) is satisfied then (241) is also immediately

satisfied. Thus the proof of equivalence of both dynamics (Maxwell in Minkowski space-time

and Born-Infeld in ê metric) reduces to state that a and n satisfy the constraint (240). Note

that the Bianchi identities in the electromagnetic metric êµν is identically satisfied. Thus

we have shown that there exist a complete equivalence between the two representations,

i.e., Born-Infeld theory represented in the space-time with electromagnetic metric êµν is

equivalent dynamically to Maxwell’s theory in Minkowski background. We would like to

emphasize that although the two metrical structures are different, we are dealing with two

representations of the same and unique dynamical process.

Beside the freedom in one of the functions that define the metric êµν , which seems to be

related to the conformal invariance of Maxwell’s equations, there are still some conditions

that constrict these functions. A straightforward calculation using the Cayley-Hamilton

theorem (see the first section) shows that the determinant of the metric (237) is
√
−ê =

a−2Q−1
√−γ. Therefore, Q that is a function of n has to be positive definite, i.e. Q > 0.
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In addition, we want the map to be for any solution of Maxwell’s equations, hence for any

value of the two invariants F and G. Let us investigate some particular regimes.

i) case F = 0: In this case, equation (240) demands that n < 0. Furthermore, by its own

definition n = − 4
G

√
1−Q, which restrict Q to the domain 0 < Q ≤ 1.

ii) case G = 0: the relation between n and Q now gives n = 2
F
(1−Q). In addition, from

Eq. (240) we can solve for the function a as

a =
β

|Q|

√
2

F
(Q2 − 1). (242)

Since a is a real function, we have

G = 0 →




F > 0, and Q > 1

F < 0, and 0 < Q < 1

iii) case F = G = 0: the vanishing of both invariants simultaneously, which is the case for

plane waves, trivialize all conditions. In fact, we simply have Q = 1 and a2 = −2β2 n.

Thus, it suffice to have n < 0.

Having established the connections between Maxwell’s electromagnetism and Born-Infeld

theory, we can now analyze some examples of metrics generated by this mapping. Maybe

the most interesting class of examples are the G = 0, which includes the pure electrostatic

or magneto-static field case. Let us consider G = 0, i.e.

Q = eF/4β2

and a =
β

Q

√
2

F
(Q2 − 1).

There are three limiting cases: weak fields |F | ≪ 1, strong electric field F ≪ −1 and

strong magnetic field F ≫ 1. When (i) |F | ≪ 1, we expand Q and a in powers of F and

find the electromagnetic metric in first order corrections as

q̂µν = ηµν +
1

2β2
Fµ

αFαν ; (243)

for F ≪ −1 (ii), we have Q = eF/4β2

, a ≈ β
√

2
|F |
e−F/4β2

and the metric assumes the form

êµν ≈ 1

β

√
2

|F | Fµ
α Fαν . (244)
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Finally, (iii) for F ≫ 1, it gives a metric of the form

êµν ≈
√

F

2β2
ηµν (245)

Consider the regime in which the electromagnetic field is very low in comparison to

the critical field, i.e., F ≪ β2 (case i). Then, we perform a power series expansion in

terms of F/2β2 for the objects associated to the bridge and see that, in this regime, the

electromagnetic metric reduces to the form

êµν ≈ ηµν +
1

2 β2
Φµν . (246)

From now on, we keep this expression for the metric. Remark that it is possible to interpret

the presence of the lectromagnetic metric as a small deviation from the flat space-time

generated by the electromagnetic field. From the dynamical bridge between the equivalent

representations it follows that we can describe pure electromagnetic phenomenon either in

terms of Maxwell theory in flat Minkowski space-time or as Born-Infeld dynamics in the

electromagnetic curved geometry.

Henceforth we denote Maxwell-Minkowski (MM) representation the case where one

chooses to describe electromagnetic processes in the linear Maxwell theory in the flat

Minkowski space-time. On the other hand, when one applies the dynamical bridge approach

and describes the same processes in the nonlinear Born-Infeld theory in a curved space-time

driven by the metric êµν , it will be denoted as Ê− representation. Let us emphasize that

these representations describe one and the same dynamics.

The role of the electromagnetic metric. The presence of a curved structure of the

space-time in the realm of electromagnetic fields can be an important theoretical instrument

of analysis only if one introduces a prescription of how matter perceives this geometry.

Then, the question is: how matter interacts with the electromagnetic metric? This question

appears immediately as long as one wants to explore this metric formulation in the presence

of matter.

Recently137 the idea was proposed to interpret the action of electromagnetic metric in a

similar way as in gravitational processes assuming that through this geometric channel all

particles display the same behavior. The statement that defines a Universal Hypothesis of

electromagnetic interaction takes the following form: all kind of particles, charged or not

charged, interacts with the metric êµν in a universal and unique way.
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The simplest manner to realize this hypothesis is by using the minimal coupling principle

that we borrow from gravitational processes as they are described in GR. Although this

hypothesis may appears, at first glance, useless or even no sense for traditionalists, we shall

see that it contains a well-posed program with observational consequences that could prove

or disprove it. In order to proceed with this idea we examine the case of test spinor fields

in this background and investigate what new effects one can extract from this geometrical

scenario.

The extended dynamical bridge concerns the behavior of all kind of matter. In the Ê-

representation the assumption of complete democracy—that is, the idea that any kind of

matter, charged-or-not, lives in the geometry êµν—implies an equivalent effect in the MM-

representation. In particular, the equation of motion of the neutrino in the electromagnetic

geometry, provokes the need to assume a direct interaction between the neutrino and the

electromagnetic field in the MM-representation. Indeed, one is led to accept that in this

representation there should exist an extra term in the Lagrangian which is the analogue of

the minimal coupling principle between electromagnetic field and the neutrino embedded in

the metric êµν . We shall see that, for instance, the role of the parameter β that appears

explicitly in the Ê-representation, becomes the ratio between the magnetic moment of the

particle and its corresponding mass.

Minimal coupling principle. Let us describe the electromagnetic effects on the spinor

field equation in the Ê-representation. We explore the equivalence displayed by the dy-

namical bridge and deal with an extended version of the way matter interacts with the

electromagnetic field. It is a universal and well-accepted belief that only charged matter

is able to couple directly with the electromagnetic field. Nevertheless, from what we have

shown above, the analysis in the Ê−representation allows a new possibility of interaction.

The equivalence between the Born-Infeld theory in the Ê-representation and the Maxwell

dynamics in flat space was shown only in the case of free fields. We examine now the exten-

sion of such an equivalence by assuming that matter couples universally to the electromag-

netic field in the êµν framework. Following this approach, let us investigate the consequences

of the coupling in the Ê-representation. We start by noticing that it yields two possible forms

of interaction of the matter with the electromagnetic field, that is: (i) through the vector

potential Aµ; (ii) through the metric tensor êµν .

Once only the geometrical form of interaction was not considered before, we will con-
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centrate our analysis here on this second way. Let us point out that the existence of the

electromagnetic geometry makes sense and may have further consequences only if this ge-

ometry is perceived for all kind of matter. This means that a test particle can couple to the

electromagnetic field without having electric charge or, more precisely, if a particle has an

electric charge it couples with the electromagnetic field through the standard channel via

the potential Aµ. Otherwise, it interacts with the electromagnetic geometry in an unique

and the same way, according to the minimal coupling principle stated above. What are the

main consequences of this hypothesis? That is the purpose of the next section.

D. A proposal for the origin of the anomalous magnetic moment

Few years ago, a new form of contribution for the anomalous magnetic moment of all

particles was suggested137. This common origin is displayed in the framework of a recent

treatment of electrodynamics that is based in the introduction of an electromagnetic met-

ric which has no gravitational character as we commented above. This effective metric

constitutes a universal pure electromagnetic process perceived by all bodies, charged or

not charged. As a consequence it yields a complementary explanation for the existence of

anomalous magnetic moment for charged particles and even for non-charged particles like

neutrinos.

In the standard model of particle physics, neutrinos possess the most intriguing and

interesting behavior. It is understood that they have only gravitational and weak interaction,

although some extensions of the standard model allow that neutrinos could have an effective

magnetic moment13,16,117,126. For any charged particle the classical magnetic moment (µ)

is inversely proportional to the mass µ = e~/2m, where ~ is the reduced Planck constant,

e is the elementary charge and m is the mass of the particle. In the case of electrons, for

example, µ ≡ µB = e~/2me is the Bohr magneton. However, in the case of neutrinos ν,

it has been suggested that µν depends linearly on the neutrino mass. As a consequence,

this type of coupling between the spinor field and the electromagnetic field presents some

difficulties concerning the variational principle and the re-normalization process.

The idea proposed is that the magnetic moment of any particle is composed of two

very distinct parts: the standard one that depends on the charge of the particle—from

dimensional analysis, it is inversely proportional to the corresponding mass—and another

86



part (called the geometrical magnetic moment) that depends linearly on the mass. This

second case, which is many orders of magnitude lower than the standard one, is common for

all particles and does not depend on their charge. In other words, we shall see that part of

the anomalous magnetic moment of charged particles is a consequence of such geometrical

magnetic moment and for neutral particles, like neutrinos, such proposal provides a nonzero

magnetic moment. We shall compare the effects of both terms from experimental data.

Of course, this idea is based on the equivalence between the electromagnetic Born-Infeld

theory in a specific curved geometry and Maxwell’s theory in the Minkowski space-time, as

we have revisited previously. This means that any solution of the former is also a solution

of the latter, which is given in terms of a prescribed map. This is possible because the

associated curved space-time depends only on the electromagnetic fields. Indeed, due to

the algebraic structure of the electromagnetic two-form Fµν and its dual, there exist a kind

of closure relation that allows the existence of this mapping, thus generating a dynamical

bridge between these two paradigmatic theories.

The application of the dynamical bridge to specific situations suggests a new manner to

understand the origin of the anomalous magnetic moment, which depends linearly on the

mass, as a direct consequence of the electromagnetic geometry as we shall analyze next.

The Ê−metrical origin of the neutrino magnetic moment. In the case of neutri-

nos, which are uncharged, there is only the geometrical channel to couple with the electro-

magnetic field. We will apply the minimal coupling principle in the Ê-representation and

analyze the consequences of this in the Maxwell-Minkowski representation.

We start by defining the Dirac matrices γ̂α associated to the curved space by the relation

{γ̂µ, γ̂ν} = 2 êµν 1, (247)

where 1 is the identity matrix of the Clifford algebra and the curly brackets means anti-

commutation. Analogously, in the MM-representation, we have

{γµ, γν} = 2 ηµν 1. (248)

It then follows that we can set

γ̂µ = γµ − 1

4 β2
Φµ

αγ
α (249)
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and the closure relations above are automatically satisfied. Therefore, the dynamical equa-

tion for the spinor field, in the metric êµν , becomes

i~c γ̂µ∇̂µΨ−mc2Ψ = 0. (250)

The covariant derivative ∇̂µ ≡ ∂µ − Γ̂FI
µ − V̂µ is given by the Fock-Ivanenko coefficients Γ̂FI

µ

plus an arbitrary element of the algebra134, which yields

∇̂µ γ̂
ν = [V̂µ, γ̂

ν ], (251)

still holding the metricity condition ∇̂α q̂
µν = 0. The presence of Vµ suggests that the

interaction between the electromagnetic field and Ψ occurs through the internal space. In

the absence of any kind of matter, we are free to assume that the commutator on the right-

hand side of Eq. (251) vanishes. However, when matter (of any kind) exists, V̂µ depends

simultaneously on the electromagnetic field and on the properties of the matter field and,

in the case of spinors, we set

V̂µ = i
m c

~ β
Fµν γ̂

νγ5, (252)

where m is the neutrino mass in the minimal extended version of the standard model.

In the general case, it was demonstrated that V̂ µ must transform like the Fock-Ivanenko

connection in order to verify the conservation laws71. Thus, according to the choice of V̂ µ

given by (252), that contains the anti-symmetric tensor Fµν , guarantees the conservation

law. In order to guarantee that we are dealing only with uncharged particles, we assume

that the Fock-Ivanenko connection does not have any term proportional to the identity 1. It

should be remarked that even if we consider massless neutrinos, we can rewrite V̂µ is terms of

the neutrino energy and then the coupling to the electromagnetic field is still present. This

replacement of m by E suggests that such interaction should be investigated in different

scenarios where the right-handed neutrinos could appear75,172.

Using Eqs. (246) and (252) into the equation of motion (250), we get

i ~c γµ∂µ Ψ+
mc2

β
Fµν σ

µνγ5Ψ−mc2Ψ = 0, (253)

which, according to the regime under consideration, corresponds to the first order approxi-

mation in F/2β2 where σµν = (γµγν − γνγµ)/2.

The effect of the universal minimal coupling between matter of any kind and the electro-

magnetic field using the metric êµν provides an effective magnetic moment that depends on
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the mass of the spinor field and on the parameter β, that is

µG
.
=
mc2

β
. (254)

Remarkably, the hypothesis of universality of êµν reveals the existence of an alternative

origin for the magnetic moment of all particles (charged or not) from first principles. If

we had applied the minimal coupling principle to the MM representation, we have never

obtained such term. In this representation, it corresponds to a non-minimal coupling, lead-

ing to some difficulties to be interpreted inside the standard approach, as pointed in the

literature. The compatibility of this result induced by the Ê-representation in the MM-

representation implies that the Lagrangian describing the interaction between the neutrino

and the electromagnetic field contains an extra term in the MM-representation which is

usually introduced by hand and without further justification. In other words, the presence

of a magnetic moment for the neutrino in the standard MM-representation should not be

viewed as an exotic surprise but instead should be understood—on the light of the Dy-

namical Bridge method—as a consequence of the universality of the geometry êµν in the

Ê-representation. Next section, we shall introduce this map for charged particles and then

compare with experiments.

The geometrical magnetic moment for charged particles. It is important to

emphasize that the value of the magnetic moment obtained in the previous section contains

only the general contribution for any particle. Charged particles have an extra source for

µ that is related to their charge, for instance, the Bohr magneton µB = e ~/2me for the

electron. Thus, the total value of the electron magnetic moment (µe) should be read as

µe = µB +
me c

2

β
+ quantum corrections.

The first part corresponds to the standard magnetic moment, the second one corresponds

to the Ê−metrical contribution and the last one comes from loop-quantum corrections. A

comparison with theoretical predictions and experiments8,35,39,87,110,124,155 is presented in the

original paper137.

E. Dynamical bridge: the case of spinor fields

In the precedent sections we have shown how fundamental fields can satisfy equivalent

dynamical equations in different background geometries. Namely, a given nonlinearity of
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the field in the flat space can be hidden in the curvature of an effective curved space.

This was shown to be true for spin 0 and 1 fields81,137,138,142,143 and can also be applied in

the kinematical context as we described in this review135,136. In this section we complete

our task and demonstrate that such procedure also holds for spinor fields. In particular,

we shall see that the self-interacting term of the Heisenberg-Nambu-Jona-Lasinio (HNJL)

model89,92,131–can be derived from the minimal coupling of a Dirac field with an effective

curved geometry. This Dynamical Bridge goes together with the chiral symmetry breaking

for massive and massless spinor fields if the coupling constant is sufficiently large. This

approach was suggested recently19 as providing a new geometrical explanation for the non

observation of the right-handed neutrinos.

Let Ψ be a massless spinor field satisfying the Dirac equation

iγ̂µ∇̂µΨ = 0

in a curved background (with no gravitational character) and assume that such curved

geometry represents the modification of the flat space caused by the field Ψ itself through

the specific form of the metric:

ĝµν = ηµν + 2αHµHν. (255)

The arbitrary function α depends on the scalars A ≡ Ψ̄Ψ and B ≡ iΨ̄γ5Ψ. The vector

Hµ is given in terms of the vector Jµ and axial Iµ currents. It was proved that the Dirac

equation in such curved space-time is dynamically equivalent to the dynamics of Nambu

Jona-Lasinio equation in the flat Minkowski space-time. Afterwards we rewrite this dynamics

in Minkowski space (equipped with the metric ηµν). This leads to the two following equations

iγµ∂µΨL = 0, (256)

iγµ∂µΨR + s(A+ iBγ5) ΨL = 0, (257)

where s depends on α and its derivatives, ΨL ≡ (1/2)(1− γ5)Ψ and ΨR ≡ (1/2)(1 + γ5)Ψ

are respectively the left-handed and right-handed chirality components of Ψ, with Ψ =

ΨL + ΨR. The left-handed component still obey the Dirac dynamics in Minkowski space

while the right-handed component verifies the equation (257), which is a generalization of

the HNJL dynamics. The curvature of the effective space goes to the nonlinearity of HNJL

dynamics in Minkowski space, but only for the right-handed component of the spinor field.
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This introduces a new answer to the experimentally observed chiral symmetry breaking of

neutrinos and stands as an alternative for the Standard Model interpretation which assumes

that right-handed neutrinos do not exist, i.e., they do not interact through the standard

model forces.

Overview on the mathematical tools for the DB. In order to properly construct

the Dynamical Bridge for spinor fields let us describe some mathematical ingredients. It is

well known that any metric tensor ĝµν can always be decomposed into

ĝµν = gµν + Σµν , (258)

where gµν is some background metric and Σµν is a rank two tensor field. As we discussed

before, this metric tensor admits an inverse with the same binomial form if we impose the

condition Σµν Σνλ = p δµλ + qΣµ
λ, where p and q are arbitrary functions of the coordinates.

For the sake of simplicity, we set the background metric gµν to be the Minkowski one ηµν in

arbitrary coordinate systems. For eventual generalizations concerning the background, we

refer to the Damião-Soares lectures176.

With a generic spinor field Ψ we construct two scalars A ≡ Ψ̄Ψ and B ≡ iΨ̄γ5Ψ and two

currents defined as Jµ ≡ Ψ̄γµΨ and Iµ ≡ Ψ̄γµγ5Ψ. The γµ’s are the Dirac matrices which

satisfy the closure relation of the Clifford algebra. Using the Pauli-Kofink identity for an

arbitrary element Q of the Clifford algebra

(Ψ̄QγλΨ)γλΨ = (Ψ̄QΨ)Ψ− (Ψ̄Qγ5Ψ)γ5Ψ, (259)

the following relations are easily derived J2 = −I2 = A2 + B2 and JµI
µ = 0, where X2 ≡

ηµν X
µXν for the vectorial objects.

Here the method consists in writing Σµν of the curved space-time metric (258) in terms

of the dynamical field, which is given by the spinor Ψ. The simplest way to do this is to set

Σµν .
= 2αHµHν , (260)

where Hµ .
= Jµ + ǫIµ is a linear combination of the currents, ǫ is an arbitrary constant and

α is an arbitrary function of A and B. Eq. (259) leads to the following identities

Hµγ
µΨ = (1+ ǫγ5)(A+ iBγ5)Ψ, and H2 = (1− ǫ2)J2. (261)
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Finally, using the relation ĝµν ĝνλ = δµλ, the metric tensor and its inverse can be written as

ĝµν = ηµν + 2αHµHν,

ĝµν = ηµν − 2α
1 + 2αH2 HµHν .

(262)

Introducing the Weyl-Cartan formalism33, we define two tetrad bases eµA and êµA which

relate the tangent space provided with the metric ηAB to the physical spaces endowed with

the two metrics ηµν and ĝµν . The two bases satisfy the following relations

ĝµν = ηAB êµA ê
ν
B, and ηµν = ηAB eµA e

ν
B, (263)

where once more Greek indices refer to the physical spaces and are manipulated with

ηµν or ĝµν , while Latin indices refer to the tangent space and are operated by ηAB =

diag(1,−1,−1,−1). The inverse tetrad bases eµ
A and êµ

A should satisfy eµ
A eνA = êµ

A êνA =

δνµ and eµ
A eµB = êµ

A êµB = δAB. Furthermore, any vector Xµ (or X̂µ) in the space-time ηµν

(or ĝµν) has a counterpart XA ≡ eAµX
µ (or X̂A ≡ êAµ X̂

µ) in the internal space. In particular,

for the Dirac matrices we assume that

γA = êµ
A γ̂µ = eµ

A γµ, (264)

where γA’s are the constant Dirac matrices. Note that the γ̂µ’s also verify the algebra related

to the curved space ĝµν .

For consistency with Eqs. (262), the two tetrad bases must obey a condition like

êµA = eµA + β HAH
µ, (265)

with the constraint α = 2β/(2 + βH2) in this case. Therefore, the inverse tetrad bases are

such that

êµ
A = eµ

A − β

1 + βH2 H
AHµ. (266)

Then we end the overview on the tetrad formalism we need to deal with the bridge between

the spinorial dynamics (a generalization of this approach can be found in20).

The hidden breaking of chiral symmetry. Now we describe how the Dynamical

Bridge works for spinor fields. As mentioned before, we start with the linear Dirac equation

in an effective curved background then we expand the formulas to reach a new and differ-

ent, though physically equivalent, dynamics in the Minkowski background. The resulting

equation is a generalization of the HNJL dynamics.

92



In the effective curved geometry given by (262), Dirac equation for the spinor field Ψ

reads

iγ̂µ∇̂µΨ = 0, (267)

where ∇̂ ≡ ∂µ − Γ̂µ and the Fock-Ivanenko connection. Introducing the tetrads allows to

rewrite Γ̂µ as

Γ̂A = êµA Γ̂µ = −1

8
γ̂BCA[γ

B, γC ], (268)

which is called spin connection and is defined by

γ̂ABC =
1

2
(ĈABC − ĈBCA − ĈCAB), and ĈABC = −êνAêµ[B êνC],µ. (269)

Note that ĈABC = −ĈACB and, consequently, γ̂ABC = −γ̂BAC .

Setting ǫ = −1 the spinor field equation (267) takes the following form in the flat space

i

(
γµ∂µ + βγµHµH

ν∂ν +
β

4
Ḣµγ

µ +
β̇

2
Hµγ

µ

)
Ψ = 0, (270)

where Xµ ≡ Xµ,νH
ν . This nonlinear dynamical equation for Ψ originates from the curved

space connection interpreted as self-interacting terms in the Minkowski space (for nonlinear

spinor equations see72 and references therein). In particular, there is a set of solutions of

Eq. (270) provided by the Inomata101 condition Ψ,µ = −(1/2)β̇HµΨ, will lead to the chiral

symmetry breaking without any assumption on β.

In the standard model the right-handed neutrinos are not present since weak interactions

couple only with the left-handed neutrinos. However, since 1998 various independent and

different experiments have detected their family oscillation15, indicating that neutrinos are

massive and break the chiral symmetry. A natural question appears: where are the right-

handed neutrinos? There are two possible answers: either neutrinos are of Majorana type or

they do not interact weakly. Several experiments have unsuccessfully tried direct or indirect

detection of such neutrinos28,59.

Notwithstanding, a third possible explanation is provided according to the above geo-

metrical arguments. Indeed, in the regime β̇ ≫ β, when the nonlinear propagating terms of

Eq. (270) can be neglected, it reduces to

iγµ∂µΨ+ i
β̇

2
(1− γ5)(A+ iBγ5) Ψ = 0, (271)

where we used Eq. (261). This equation is similar to the HNJL equation in Minkowski space-

time. This means that the nonlinear self-interacting term can be seen as a modification of
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the space-time structure. Up to this point, they are just two equivalent equations written

in two different spaces. However, let us decompose Ψ into its chiral components, that is

Ψ = ΨL +ΨR =
1

2
(1− γ5)Ψ +

1

2
(1+ γ5)Ψ,

where ΨL and ΨR represent the left and right-handed chiralities. Then Eq (271) splits into

two distinct parts

iγµ∂µΨL = 0, (272)

iγµ∂µΨR + iβ̇(A+ iBγ5) ΨL = 0. (273)

From these equations, it follows the remarkable result: each chiral component ΨL and

ΨR satisfies a different dynamical equation in the Minkowski space. The left-handed com-

ponent propagates as a free Dirac field when the right-handed component is trapped by

the self-interacting term. If the coupling parameter β̇ is sufficiently large, the right-handed

component needs very high energies to be detected. This leads to a new and geometrical

explanation for the non observation of the right-handed neutrinos19 .

X. THE THEORY OF THE GEOMETRIC SCALAR GRAVITY

Although the possibility to eliminate accelerations of arbitrary bodies can be described

equivalently by particular changes on the metric of space-time, one for each body, there is

interest in follow the main ideas of GR and unify all these geometries into a single one.

The path followed by Einstein was to describe the gravitational phenomenon in terms of a

unique universal metric. The prize to pay is to impose a dynamics for the geometry by its

own. Few years ago138 an alternative was proposed that received the name of Geometric

Scalar Gravity (GSG) that do not follow such procedure. We shall make an overview of

this theory and its main achievements, highlighting how it bypasses the main drawbacks

of the previous proposals76,77,153,161,171,177, describing well the local tests of gravity3,61,168,191

and can be constructed in the lines of a field theory formulation53,68,83,85. Let us start by

enumerating the main properties of GSG:

• The gravitational interaction is described by a scalar field Φ;

• The field Φ satisfies a nonlinear dynamics;
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• The theory satisfies the principle of general covariance. In other words, this is not a

theory restricted to the realm of flat spaces;

• All kind of matter and energy interact with Φ only through the pseudo-Riemannian

metric

qµν = α ηµν + β
∂µ Φ ∂νΦ

ηγδ∂γΦ∂δΦ
; (274)

• Test particles follow geodesics relative to the gravitational metric qµν ;

• Φ is related in a nontrivial way with the Newtonian potential ΦN ;

The quantities α and β are functionals of Φ which were specified by fixing the dynamics

of the scalar field. The auxiliary (Minkowski) metric ηµν is unobservable because the gravi-

tational field couples to matter only through qµν an hypothesis borrowed from GR where a

unique geometrical entity interacts with all forms of matter and energy and the geometry

underlying all events is controlled by the gravitational phenomena.

It is worthwhile to point out that the scalar field is not the (special) relativistic gener-

alization of the Newtonian potential. Indeed, following the scheme of GR62 and assuming

that the test particles follow geodesics relative to the geometry qµν , we have that

d2xi

dt2
= −Γi

00 = − ∂i ΦN , (275)

where we are assuming static weak field configuration and low velocities for test particles.

From Eq. (231), we have

Γi
00 ≈ − 1

2
∂i lnα.

It follows that the Newtonian potential ΦN is approximately given by

ΦN ≈ − 1

2
lnα,

which yields the relation between the metric and the Newtonian potential ΦN as

q00 =
1

α
≈ 1 + 2ΦN .

Using equation (232) one obtains the right (vacuum) Newtonian limit:

∇2ΦN = 0.
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This was the starting point of Einstein’s path in building his tensorial theory of gravity.

The geometric scalar gravity follows another path that we describe next. From now on we

will explore the consequences of extrapolating from the above approximation the general

expression

α = e−2Φ. (276)

The next task is to determine the functional dependence of β on Φ or either the form

of the potential V (Φ) as we have presented in the Lemma 6 concerning the DB for scalar

fields, that is

β = α (α2 V − 1). (277)

The dynamics of scalar gravity. In (GSG) the dynamics is controlled by the varia-

tional principle

δS1 = δ

∫ √−η d4xV (Φ)w,

we get:

δ S1 = −
∫ √−η d4x (V ′w + 2 V �MΦ) δΦ (278)

where �M is the d’Alembert operator in flat space. Again, using the Lemma 6, we rewrite

the equation above as

δ S1 = − 2

∫ √−q d4x
√
V �Φ δΦ. (279)

In presence of matter we add a corresponding term Lm to the total action:

Sm =

∫ √−q d4xLm. (280)

The first variation of this term as usual yields

δSm = − 1

2

∫ √−q d4xT µν δ qµν , (281)

where the energy-momentum tensor is given by its standard form

Tµν ≡ 2√−q
δ(
√−q Lm)

δqµν
.

General covariance leads to conservation of the energy-momentum tensor T µν
;ν = 0. The

equation of motion is obtained by the action principle δS1+δSm = 0. Up to this point we are

following the paths of GR. Here, however, in the GSG, the metric qµν is not the fundamental

quantity. We have to write the variation δqµν as function of δΦ. While we are using the
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unobservable background Minkowski metric for simplicity, at the end all expressions should

be written in terms of the gravitational metric qµν . Finally, the equation of motion for the

gravitational field Φ takes the form:

√
V �Φ = κχ, (282)

where

χ =
1

2

(
α′

2α
(T −E) +

Z ′

2Z
E −∇λC

λ

)
,

with Z ≡ α + β, T ≡ T µν qµν , E ≡ Tµν ∂µΦ∂νΦ
Z w

, Cλ ≡ β
αZ w

(
T λµ − E qλµ

)
∂µΦ and prime

means derivative w.r.t. Φ.

Substituting α = e−2Φ and using the expression for the potential derived in the original

paper138

V =
(α− 3)2

4α3

we rewrite the source term under the form

χ =
1

2

(
3 e2Φ + 1

3 e2Φ − 1
E − T −∇λC

λ

)
.

This equation describes the dynamics of GSG in the presence of matter. The quantity χ

involves a non-trivial coupling between the gradient of the scalar field ∇µΦ and the complete

energy-momentum tensor of the matter field Tµν and not uniquely its trace. This property

allows the electromagnetic field to interact with the gravitational field. The Newtonian limit

gives the identification

κ ≡ 8πG

c4
.

Natural decomposition. The form of the metric, containing the derivative of Φ sug-

gests a simplification in the description of the matter terms which is useful for exploring the

cosmological consequences of GSG. Suppose that ∂µΦ is time-like, that is Ω > 0. We then

define the normalized vector

Iµ =
∂µΦ√
Ω
. (283)

This vector can be used to decompose the energy-momentum tensor of a perfect fluid in

the ”co-moving” representation by setting

T µν = (̺+ p) Iµ Iν − p qµν , (284)
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it then follows

T µν ∂µΦ =
√
Ω ̺ Iµ,

and

T µν ∂µΦ ∂νΦ = Ω ̺.

Thus, in this frame the quantities E and T reduces to

E = ̺, T = ̺− 3p. (285)

Using these results it follows that Cµ = 0. In the natural frame associated to the gradient of

the gravitational field Φ the equation of motion for the scalar gravity, reduces to the form

√
V �Φ = −κ

2

(
2α

α− 3
̺− 3p

)
. (286)

This is the form of the dynamics of Φ when the source is a perfect fluid. In the next section

we provide a simple example of GSG in the analysis of the global properties of the universe.

XI. A GEOMETRICAL DESCRIPTION OF QUANTUM MECHANICS Q-WIS

In the literature, there are many attempts of a quantum theory formulation for the

space-time from which some are very successful, but none of them is complete. On the other

hand, the geometrical approaches for the quantum theory have also their remarkable results.

The most common is based on a Kähler structure of a complex projective Hilbert space,

where people have tried to derive a “natural” metric in the realm of the so-called geometric

quantum mechanics4,5,7,27,130,166,167. There are also other geometrization procedures where

quantum mechanics appears as a sort of an emergent theory1,67,106–108,133.

In this vein, one of us with collaborators have shown that Quantum Mechanics (QM) can

be indeed interpreted as a modification of the Euclidean nature of 3-dimensional space into a

particular Weyl affine space (called Q-WIS) by using the de Broglie-Bohm causal formulation

of QM149. In the Q-WIS geometry, the length of extended objects changes from point to

point, the deformation of the standard rulers used to measure physical distances are in the

core of quantum effects allowing a geometrical formulation of the uncertainty principle. How

is it possible? Several works have advocated a possible connection between non-Euclidean

geometry with quantum effects29,38,84,96–100,111,123,190 (see also30–32 and references therein) and,

in this section, we briefly present one of them in the realm of this review. The relativistic

generalization in the case of the Klein-Gordon equation was done in65.
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A. Weyl Geometry

In the early years of twenty century H. Weyl188,189 suggested a modification of the Eu-

clidean geometry that was an extension of the proposal made by Riemann. The main

motivation was related to the Unified Program that followed the geometrization of gravity

displayed by GR. Weyl proposed to identify the electromagnetic interaction as a modifica-

tion of the geometry of space-time along similar lines as it was made for gravity. For various

reasons this proposal did not succeeded. Neverthless, the result of this research achieved a

well-defined and consistent generalization of Riemannian geometry. In fact, a Riemannian

geometry can be understood as a special case of a Weyl geometry. In the first section of this

review, we have described in more details the properties of Weyl geometry, but it is worth

to mention here its main difference that is related to the notion of a standard ruler.

In a Weyl geometry the length of an extended object changes from point to point. This

means that a ruler of length l will change by an amount

δ l = l fa dx
a .

This effect may become an obstacle to the notion of a local ruler and thus to local measure-

ment of distance157. However, there is a special sub-class of Weyl geometries known as Weyl

Integrable Space (WIS) that is free of such difficulty. This is provided by the condition that

the vector fi is a gradient of a function, i.e., fa = f, a. The geometry WIS is distinguished

precisely by the fact that the length of the ruler transported along a closed curve does not

change. Hence, if the change of the ruler’s length is dl, for a closed path in WIS we have
∮

dl = 0 ,

which guarantees the uniqueness of any local measurement. The allowance of an intrinsic

modification of the standard rulers is the main geometrical hypothesis that allows to asso-

ciate this geometrical modification to the origin of quantum effects. We restrict this review

only to the case of an isolated point-like particle possibly subjected to an external potential.

B. Quantum Mechanics

In the end of last century, the development of quantum cosmological scenarios brought to

light some difficulties intrinsic to the Copenhagen interpretation21,22,36,56,74,82,94,95,105. More
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specifically, the measurement process in a quantum closed universe seems inconsistent54,55,158.

Fortunately, there are some alternative interpretations that can be applied simultaneously

to cosmology and to the micro-world, for instance the Many-Worlds interpretation64,185, the

Consistent Histories formulation88,154 and, in particular, the so-called causal interpretation

or also Bohm-de Broglie interpretation40–43,125, since it is amongst the well defined interpre-

tation that can be applied to any kind of system, including the universe as a whole, and up

to date it is completely equivalent to the Copenhagen interpretation when applied to the

micro-world.

QM has been seen as a modification of the classical laws of physics to incorporate the

uncontrolled disturbance caused by the macroscopic apparatus necessary to realize any kind

of measurement. This statement, known as Bohr’s complementary principle, contains the

main idea of the Copenhagen interpretation of QM. The quantization program continues

with the correspondence principle promoting the classical variables into operators and the

Poisson brackets into commutation relations.

In this non-relativistic scenario, the Schrödinger equation establishes the dynamics for

the wave function describing the system. Note that as in Newtonian mechanics time is

only a external parameter and the 3-d space is assumed to be endowed with the Euclidean

geometry.

Using the polar form for the wave function, Ψ = AeiS/~, the Schrödinger equation is

decomposed in two equations for the real functions A (x) and S (x)

∂S

∂t
+

1

2m
∇S · ∇S + V − ~

2

2m

∇2A

A
= 0 , (287)

∂A2

∂t
+∇

(
A2∇S

m

)
= 0 . (288)

Solving these two equations is completely analogous to solving the Schrödinger equation.

The probabilistic interpretation of QM associate ‖Ψ‖2 = A2 with the probability distribu-

tion function on configuration space. Hence, Eq. (288) has exactly the form of a continuity

equation with A2∇S/m playing the role of current density.
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C. Short synthesis of Bohm-de Broglie interpretation

The causal interpretation of QM, propose that the wave function does not contain all the

information about the system. An isolated system describing a free particle (or a particle

subjected to a potential) is defined simultaneously by a wave function and a point-like

particle. In this case, the wave function still satisfies the Schrödinger equation but it should

also work as a guiding wave modifying the particle trajectory.

Note that Eq. (287) is a Hamilton-Jacobi-like equation with an extra term that is often

called quantum potential

Q ≡ − ~
2

2m

∇2A

A
, (289)

while, as already mentioned, Eq. (288) is a continuity-like equation. The Bohm-de Broglie

interpretation takes these analogies seriously and postulates an extra equation associating

the velocity of the point-like particle with the gradient of the phase of the wave function,

namely,

ẋ =
1

m
∇S . (290)

Integrating this equation yields the quantum Bohmian trajectories. The unknown or hidden

variables are the initial positions necessary to fix the constant of integration of the above

equation.

The quantum potential is the sole responsible for all novelties of quantum effects such as

non-locality or tunneling processes. As a matter of fact, the Bohm-de Broglie interpretation

has the theoretical advantage of having a well formulated classical limit. Classical behavior

is obtained as soon as the quantum potential, which has dimensions of energy, becomes

negligible compared to other energy scales of the system.

In what follows, we will show that it is possible to reinterpret QM as a manifestation of

non-Euclidean structure of the 3-dimensional space, leading to a geometrical interpretation

of the quantum effects.

DM for the Q-potential. The quantum force that a particle suffers has two important

properties:

• It is universal;

• It admits a potential.
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These properties are quite similar to Newtonian gravity. This means that it is possible to

follow a similar path as proposed in GR and in the formulation of DM (cf. previous sections)

to eliminate the Bohmian forces in terms of a Riemannian geometry. Instead of this, we will

follow another path by a different change on the geometry of the 3-dimensional space.

Instead of imposing a priori that QM has to be constructed over an Euclidean back-

ground as it is traditionally done, quantum effects can be interpreted as a manifestation

of a non-Euclidean structure derived from a variational principle. The validity of the spe-

cific geometrical structure proposed can be checked a posteriori comparing it to the usual

non-relativistic QM.

Thus, consider a point-like particle with velocity v = ∇S/m and subjected to a potential

V . Following Einstein’s idea to derive the geometrical structure of space from a variational

principle by considering the connection as an independent variable, we start with

I =

∫
dtd3x

√
gΩ2

(
λ2R− ∂S

∂t
−Hm

)
(291)

and consider the connection of the 3-d space Γi
jk, the Hamilton’s principal function S and

the scalar function Ω as independent variables. Note that indices i, j, ... run from 1 to 3.

Considering the line element in Cartesian coordinates

ds2 = gijdx
idxj = dx2 + dy2 + dz2,

with g = det gij, the Ricci curvature tensor is defined in terms of the connection through

Rij = Γm
mi ,j − Γm

ij ,m + Γl
miΓ

m
jl − Γl

ijΓ
m
lm

and its trace defines the scalar curvature R ≡ gijRij which has dimensions of inverse length

squared, [R] = L−2. The constant λ2 has dimension of energy times length squared, [λ2] =

E L2, and the ∂S
∂t

term is related to the particle’s energy. In the case of point-like particle,

the Hamiltonian is

Hm =
1

2m
∇S · ∇S + V .

Variations of the action I with respect to Γi
jk yield

gij;k = −4 (lnΩ),k gij , (292)

where “;” denotes covariant derivative and “,” simple derivative. Eq. (292) characterizes the

affine properties of the physical space. Hence, the variational principle naturally defines a
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WIS; variation with respect to Ω gives

λ2R =
∂S

∂t
+

1

2m
∇S · ∇S + V . (293)

The right-hand side of this equation has dimension of energy while the curvature scalar

has dimension of [R] = L−2. Furthermore, apart from the particle’s energy, the only extra

parameter of the system is the particle’s mass m. Thus, there is only one way to combine

the unknown constant λ2, which has dimension of [λ2] = E L2, with the particle’s mass such

as to form a physical quantity. Multiplying them, we find a quantity that has dimension of

angular momentum squared [mλ2] = ~
2.

In terms of the scalar function Ω, the curvature scalar is given by

R = 8
∇2Ω

Ω
. (294)

Hence, setting λ2 = ~
2/16m, equation (293) becomes

∂S

∂t
+

1

2m
∇S · ∇S + V − ~

2

2m

∇2Ω

Ω
= 0 , (295)

Finally, varying the Hamilton’s principal function S we find

∂Ω2

∂t
+∇

(
Ω2∇S

m

)
= 0. (296)

Equations (295) and (296) coincide with (287) and (288) if we identify Ω = A. Thus, the

“action” of a point-like particle non-minimally coupled to geometry given by

I =

∫
dtd3x

√
gΩ2

[
~
2

16m
R−

(
∂S

∂t
+Hm

)]
, (297)

exactly reproduces the Schrödinger equation and thus the quantum behavior.

The straightest way to compare this geometrical approach to the quantum theories is

through the Bohm-de Broglie interpretation. Note that this formulation has the advantage

of giving a physical explanation for the appearance of the quantum potential (289). In

Q-WIS (Q for quantum), this term is simply the curvature scalar of the WIS. The inverse

square root of the curvature scalar defines a typical length Lw (Weyl length) that can be

used to evaluate the strength of quantum effects

Lw ≡ 1√Rw

.

As we have already mentioned, the classical limit of Bohm-de Broglie interpretation is

achieved when the quantum potential is negligible compared to other energy scales of the
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system. In the scope of this geometrical approach, the classical behavior is recovered when

the length defined by the Weyl curvature scalar is small compared to the typical length

scale of the system. Once the Weyl curvature becomes non-negligible the system goes into

a quantum regime.

Geometrical uncertainty principle. As long as we accept that QM is a manifestation

of a non-Euclidean geometry, we are faced with the need of reinterpreting geometrically

all theoretical issues related to quantum effects. As a first step, we derive the uncertainty

principle as a break down of the classical notion of a standard ruler.

It is well known amongst relativistic physicists that there is no absolute notion of spatial

distance in curved spacetime. However, this is no longer true when there is an absolute

Newtonian time and only the spatial manifold is allowed to be curved. In this case, it is

possible to define distance as the smallest length between two given points calculated along

geodesics in 3-d space. This is a consistent definition since the 3-d space has a true metric in

the mathematical sense that its eigenvalues are all positives. However, this definition does

not encompass the classical definition of a standard ruler.

Hence, we are unable to perform a classical measurement to distances smaller than the

Weyl curvature length. In other words, the size of a measurement has to be bigger than the

Weyl length

∆L ≥ Lw =
1√Rw

. (298)

The quantum regime is extreme when the Weyl curvature term dominates. Thus, from

equations (294) and (295) we have

Rw = 2

(
2∆p

~

)2

− 16m

~2
(E − V ) ≤ 2

(
2∆p

~

)2

(299)

and finally combining equations (298) and (299) we obtain

∆L∆p ≥ ~

2
√
2
.

We should emphasize that now the Heisenberg’s uncertainty relation has a pure geomet-

rical meaning. This argument resembles Bohr’s complementary principle inasmuch as the

impossibility of applying the classical definitions of measurements.

Bohr’s complementary principle is based on the uncontrolled interference of a classical

apparatus of measurement. On the other hand, the notion of a classical standard ruler breaks

down because its meaning is intrinsically dependent on the validity of Euclidian geometry.
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Once it becomes necessary to include the Weyl curvature, we are no longer able to perform

a classical measurement of distance.

There is another way to interpret the uncertainty principle. For a given particle of mass

m and energy E there is only one combination with the free parameter of the theory (~)

that furnishes a quantity with dimensions of length. We take this value as a definition of

the classical size of the particle, namely

lpart ≡
√

~2

Em
. (300)

Note that this definition coincides with the Compton’s wavelength of the particle which

is related to the limits of validity of non-relativistic QM.

Considering a free stationary particle, from equation (293) we have

E =
~
2

16m
RW ⇒ lpart =

4√RW

,

and from equation (299)

lpart∆p ≥
√
2 ~ . (301)

From this point of view, the uncertainty principle indicates that it is impossible to perform

a measurement smaller than the classical size of the particle defined by equation (300). In

other words, it is impossible to perform a classical measurement inside the particle.

D. Additional Comments

It is well known that as soon as we consider high velocities or high energies one has

to abandon the Euclidean geometry as a good description of the physical space. These

brought two completely different modifications where the physical space loses its absolute

and universal character. In fact, these are the core of classical relativistic physical theories,

namely, Special relativity and GR.

In a similar way, one should be allowed to consider that the difficulties that appears while

going from classical to QM comes from an inappropriate extrapolation of the Euclidean

geometry to the micro-world. Hence, the unquestioned hypothesis of the validity of the 3-d

Euclidean geometry to all length scales might be intrinsically related to quantum effects.

We overview here the close connection between the Bohm-de Broglie interpretation of

QM and the modification of the geometry of space by passing from Euclidean 3-d to a
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3-d Q-WIS. The Bohmian quantum potential can be identified with the curvature scalar

of the Q-WIS and through a variational principle it is possible to reproduce the Bohmian

dynamical equations which are equivalent to Schrödinger’s QM.

The Palatini procedure, in which the connection acts as an independent variable while

varying the action, naturally endows the space with the appropriate Q-WIS structure. Thus,

this geometry enters into the theory less arbitrarily than the implicit ad hoc Euclidean hy-

pothesis of QM. The identification of the curvature scalar as the ultimate origin of quantum

effects leads to a geometrical version of the uncertainty principle. This geometrical descrip-

tion considers the uncertainty principle as a break down of the classical notion of standard

rulers. Thus, it arises an identification of quantum effects to the length variation of the

standard rulers.
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XII. COMMENTS AND CONCLUSIONS

In the realm of Special Relativity, the Newtonian idea of an absolute clock for all in-

ertial observer is replaced by the concept of a proper time for each observer, namely, the

particular measure of the physical time is different depending on the relative motion of a

given inertial observer with respect to a rest frame. Then, due to its universality, the grav-

itational interaction was interpreted as a modification of the geometry of space-time127. In

the electrodynamics of moving dielectrics, a similar result was made possible by Gordon’s

analysis of light rays inside a material media and its propagation was interpreted in terms

of an associated geometry.

Recently, the D’Alembert principle of Classical Mechanics –which transforms any dy-

namical problem into a statical one - was generalized by adopting as fundamental principle

that the acceleration induced by any kind of forces is eliminated through a modification of

the background metric. We can understand this procedure as an extension of the Special

Relativity idea of relative time to the geometry of space-time, once it follows that for each

body acted upon by arbitrary forces one can attribute a particular geometry such that it

is interpreted as following a free-motion. This property that allows the elimination of any

force by a change on the metric properties on the space-time is called Metric Relativity.

The second step presented here concerns the Dynamical Bridge (DB). Maxwell and Born-

Infeld’s theories in the same background correspond to different descriptions of the electro-

magnetic interaction. However, we have seen that the DB leads to an equivalence between

them, that is, they have the same dynamical properties when each one of these theories is

written in a distinct space-time geometry. The crucial point is related to the dependence

on the electromagnetic field of the associated metrics. This indicates that both theories can

be understood from a more fundamental point of view depending on which aspects of elec-

tromagnetism is to be emphasized. This general structure of maps between explicit distinct

theories allows connections which were not considered before and the physical phenomena

can thus be comprehended more deeply. In other words, distinct theories are seen only as

different languages representing the same phenomenon. This property of the DB can be en-

larged through other processes. In particular, we can point out the recent geometric scalar

gravity (GSG), that is, a theory initially written in flat Minkowski space is interpreted as a

nonlinear theory in an associated curved space-time. Finally, we described the geometriza-
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tion of Quantum Mechanics (QM), through the use of Weyl geometry, which structure is

the responsible for the origin of the quantum potential needed to properly describe QM in

the de Broglie-Bohm framework.

In practice, we elaborate in this report a thorough review on the following issues:

• From a kinematical point of view, we have shown that it is possible to display a

geometrical description of any kind of force assuming that the space-time metric is

not unique and not given a priori. In particular, for any accelerated vector field vµ

in a background metric gµν , it is always possible to find another metric tensor ĝµν in

which vµ follows a geodesic motion. As we have seen the procedure described in Sec.

[V] can be applied to any vector field lying in any space-time metric, for instance, we

selected the Schwarzschild, Gödel and Kerr solutions of GR equations to exemplify

the method. Furthermore, the generalization of Gordon’s results to arbitrary material

media and nonlinear EM theories in Sec. [VI] can also be considered as a consequence

of it.

• In Sec. [IX], we introduced the concept of DB and we applied this to the most relevant

cases involving scalar, vector or spinor fields, trying to explain with some details how

the DB can provide alternative explanations to current open problems in physics. Still

in the realm of the DB, we then present in Sec. [X] a recent attempt to describe the

gravitational interaction only in terms of a scalar field.

• Finally, we summarized the geometrical formulation of quantum mechanics according

to the de Broglie-Bohm interpretation, emphasizing that the quantum potential can

be seen as a consequence of a possible non-metricity of the Euclidean space. This

non-metricity is represented by a particular choice of the Weyl affine space called Q-

WIS. The main result is that the deformation of the standard rulers used to measure

physical distances allows a geometrical formulation of the uncertainty principle.

We conclude this review stating that the most adequate mathematical formulation to de-

scribe the geometry of the physical world should not be established a priori160; the physical

experiments indicate which space-time geometry (or class of) is actually realized in Nature

and in which scale (macrophysics or microphysics) it is relevant to develop a measur-

able/testable and useful theory.

108



Appendix A: Lanczos tensor

The Weyl tensor Wαβµν can be expressed in terms of the 3-index Fierz-Lanczos poten-

tial tensor69,112 that we will denote by Lαβµ. Let us summarize here some definitions and

properties of Lαβµ, since the literature has very few papers on this matter. This tensor was

introduced in the 30’s to provide, in a similar way as the symmetric tensor ϕµν does—in

a more used approach—an alternative description of spin-2 field in Minkowski background.

In the 60’s Lanczos rediscovered it—without recognizing he was dealing with the same

object—as a Lagrange multiplier in order to obtain the Bianchi identities in the context

of GR. However, a complete analysis of Fierz-Lanczos object was undertaken and it was

discovered that its generic (Fierz) version describes not only one but two spin-2 fields147.

The restriction to just a single spin-2 field is usually called the Lanczos tensor. We will limit

all our considerations here to this restricted quantity.

Basic Properties: In any 4-dimensional Riemannian geometry there is a 3-index tensor

Lαβµ which has the two following symmetries:

Lαβµ + Lβαµ = 0, and Lαβµ + Lβµα + Lµαβ = 0

and with such Lαβµ we write the Weyl tensor in the form of a homogeneous expression that

is

Wαβµν = Lαβ[µ;ν]+Lµν[α;β]+
1

2
[L(αν)gβµ+L(βµ)gαν−L(αµ)gβν−L(βν)gαµ]+

2

3
Lσλ

σ;λ gαβµν , (A1)

where Lαµ ≡ Lα
σ
µ;σ − Lα;µ and Lα ≡ Lα

σ
σ.

Let us point out that, due to the above symmetry properties, Lanczos tensor has 20

degrees of freedom. Since Weyl tensor has only 10 independent components, it follows that

there is a gauge symmetry involved. This gauge symmetry can be separated into two classes:

∆(1)Lαβµ =Mα gβµ −Mβ gαµ,

∆(2)Lαβµ =Wαβ;µ −
1

2
Wµα;β +

1

2
Wµβ;α +

1

2
gµαWβ

λ
;λ −

1

2
gµβWα

λ
;λ, (A2)

in which the vector Mα and the antisymmetric tensor Wαβ are arbitrary quantities. Then,

we can associate Lanczos tensor to the parameters of a congruence of curve for different
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geometries. This can be more clearly seen by stating certain Lemmas151 that we exhibit

here without proofs. The interested reader can find them in the quoted article.

Lemma 7 If in a given Riemannian geometry there is a congruence of observers vµ that

is shear-free and irrotational, then the magnetic part of Weyl tensor vanishes for these

observers.

Lemma 8 If in a given Riemannian geometry there is a congruence of observers vµ that is

shear-free and irrotational, then the Lanczos potential is given by (up to gauges)

Lαβµ = aα vβ vµ − aβ vα vµ

Lemma 9 If in a given Riemannian geometry there is a congruence of observers vµ that is

geodesic and irrotational, and such that Hµν vanishes, then the Lanczos potential is given by

(up to gauges)

Lαβµ = σµα vβ − σµβ vα.

An example is provided by Kasner metric

ds2 = dt2 − t2 p1 dx2 − t2 p2 dy2 − t2 p3 dz2,

where p1+p2+p3 = p21+p
2
2+p

2
3 = 1. Consider the velocity field vµ = δµ0 , which is irrotational

but has a non-null shear and the Lanczos potential is

L0ij =
(pi − 1/3)

3
t2 pi−1 δij .

Note that there is no sum on the 3-d indices.

Lemma 10 If in a given Riemannian geometry there is a congruence of observers vµ that

is geodesic, non-expanding and shear-free and such that the vorticity vector is constant then

the Lanczos potential is given by

Lαβµ = ωαβ vµ +
1

2
ωαµ vβ −

1

2
ωβµ vα.

An example is provided by Gödel geometry which can be written as

ds2 = dt2 − dx2 + 2 eax dt dy +
e2ax

2
dy2 − dz2,

where a is a constant. Set the velocity field as vµ = δµ0 , to obtain for the vorticity 2ω12 =

−a e2ax. It is straightforward to show that this vector has no shear and the vorticity is such

that ωµ ;ν = 0. The Lanczos potential is given by the formula expressed in this Lemma.
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Appendix B: Fluid description of the electromagnetic field: the Dirac gauge

Some years ago Dirac57 suggested to choose a specific gauge such that the potential Aµ

may be identified to the normalized velocity vµ of a fluid. This means to set

AµAν η
µν = 1.

We are interested here in the description of the energy-momentum distribution that one

obtains when using such Dirac choice for the gauge. Using the identification of the elec-

tromagnetic potential as the four-velocity of a fluid we set for the electromagnetic tensor

Fµν = Aµ ,ν −Aν ,µ = vµ ,ν − vν ,µ. From the standard decomposition of the velocity of a con-

gruence of curves we decompose the derivative of the velocity field in terms of its irreducible

components (see the first section). We set

vµ ,ν =
Θ

3
hµν + σµν + ωµν + aµ vν .

Thus it follows that the electromagnetic field, in the Dirac gauge, assumes the form

Fµν = 2ωµν + aµ vν − aν vµ,

where the acceleration aµ and the vorticity tensor ωµν are defined in the first section in the

standard way using the velocity field as the potential vector Aµ.

The electric Eµ and the magnetic Hµ vectors are defined as usual

Eµ = Fµν v
ν

Hµ = F ∗
µν v

ν .

In the Dirac gauge and under the identification of Aµ with the velocity of the fluid it follows

that the electric vector is given by the acceleration aµ and the magnetic field is the vorticity

ωµ, that is Eµ = aµ and Hµ = − 2wµ, where the vorticity vector wµ is related to the tensor

ωµν by the formula

wµ =
1

2
ηαβρµ ωαβ vρ.

The energy-momentum tensor

T µν = F µ
α F

αν +
F

4
ηµν ,
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where F ≡ Fµν F
µν , decomposed in its irreducible components yields respectively: the

density of energy ρ = − 1
2
(aµ a

µ + 4ωµ ω
µ); the pressure p = 1

3
ρ; the heat flux (Poynting

vector) qλ = ηλ
µρσ aµ v

σ ωρ and the anisotropic pressure

πµν = − aµ aν +
1

3
aτ a

τ hµν − 4ωµ ων +
4

3
ωλ ω

λ hµν .

We note that the shear σµν and the expansion coefficient θ are absent from these formulas,

only the acceleration and the vorticity appear.

Once in the Dirac gauge the electric field is identified to the acceleration in this fluid

description, from what we have learned in the previous sections it follows that it is possible

to introduce an auxiliary DM to annihilate the acceleration, that is, to eliminate the electric

field. Let us restrict the analysis here to the case the electric field is a gradient. We set

Eµ = ∂µΨ and once the acceleration is orthogonal to the velocity aµ v
µ = EµA

µ = 0,

following the Lemma 1, the condition that the path vµ be a geodesics in a DM is provided

by the standard condition

1 + b = exp(−2Ψ). (B1)

The generalization for an arbitrary electric field goes along the same lines.

Appendix C: Fluid description of Heisenberg-Nambu-Jona-Lasinio field

From the standard definition of the energy-momentum tensor we obtain the expression

of the Heisenberg dynamics in the fundamental solution as

Tµν = − a1 Jµ Jν − b1 Iµ Iν − s J2 ηµν .

Let us define the four-velocity field as the normalized current vµ = Jµ/
√
J2 and let us use

this velocity field to decompose the energy-momentum tensor in its irreducible parts and set

Tµν = ρvµvν − phµν + qµ( vν) + πµν (C1)

to obtain that there is no heat flux, that is qµ vanishes identically and the remaining quan-

tities are given by

ρ = − (a1 + s) J2, and p = λ J2

where λ = (s− a1) J
2/3 and

πµν =
b1
3
(Jµ Jν − 3 Iµ Iν − J2 ηµν)
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Before taking into account the conservation laws, let us examine the consequences of the

choice for the velocity fluid in terms of its irreducible quantities. From the definition of vµ

in terms of the current it follows

vα ,β = 2 a0
Iα Iβ√
J2

(C2)

where the comma represents partial derivative. It is straightforward to prove that vµ has

no acceleration. Therefore, although the field has a self-interaction term, the fluid does not

acquires a self-acceleration. Using the expression of the current, the shear in this case is

σµν =
− 2 a0

3
√
J2

(
Jµ Jν − 3 Iµ Iν − J2 ηµν

)
.

It then follows that the anisotropic pressure and the shear are proportional: πµν = ξ σµν ,

where ξ = −b1
√
J2/2a0. From the equation of evolution of the current we get ξ̇ = − b1 J

2.

In the case parameters a and b are such that b1 + 3 a1 = 0, then the fluid behaves as an

anisotropic vacuum, with ρ+ p = 0 and πµν = ξ σµν .

Appendix D: Fluid description of the scalar field

For an arbitrary non-linear dynamics driven by a Lagrangian L that depends on the

invariant W ≡ ∂µϕ∂
µϕ, the energy-momentum tensor is always given by

Tµν = −Lgµν + 2Lw ∂µϕ∂νϕ , (D1)

where Lw ≡ ∂L/∂W. In the comoving frame to the gradient of the field, defined by the

normalized vector

vµ ≡ ∂µϕ√
W

the energy-momentum tensor (D1) become equivalent to a perfect fluid, since the heat flux

qα and the anisotropic pressure πµν vanish identically. In this case, the non identically zero

quantities are only the energy density and pressure, given by:

ρ = −L+ 2LwW , p = L . (D2)

Moreover, since both p and ρ are given as functions of W only, we can write p = p (ρ). This

shows that the dynamics given by any purely kinetic Lagrangian is equivalent to a perfect

fluid with a specific equation of state that depends on the dynamics of the field.
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151 M. Novello and A.L. Velloso Gen. Rel. and Grav. 19 1251 (1987).

152 M. Novello, M. Visser and G. Volovik (Eds.), “Artificial Black Holes”, Proceedings of the

workshop: Analog Models of General Relativity, World Scientific (2002).

153 G. Nordström, Phys. Zeit. 13 1126 (1912).

154 R. Omnès, The interpretation of quantum mechanics, Princeton Univ. Press, UK (1994).

155 M. Passera, Nucl. Phys. Proc. Suppl. 169 213 (2007).

156 J.B. Pendry et al., Science 312 1780 (2006).

157 V. Perlick, Class. Quant. Grav. 8 1369 (1991).

158 N. Pinto-Neto, Cosmology and Gravitation II , ed. M. Novello, Editions Frontières, France,

(1996).

159 J. Plebanski, Phys. Rev. 118 1396 (1960).
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