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1 Schödinger’s Equation

According to the fourth postulate of quantum mechanics, the time evolution
of the state function ψ(x, t) is determined by the so-called time dependent
Schrödinger’s equation:

ih̄
∂

∂t
ψ(x, t) = Hψ(x, t). (1)

The operator H is the Hamiltonian of the system. If H is time-independent,
we can separate this equatioon into spatial and time-dependent components:

ψ(x, t) = φ(x)χ(t). (2)

By substituting into (1), we obtain:

ih̄
∂χ/t

χ
=
Hφ

φ
. (3)

This equation is satisfied if both sides are equal to a constant, that we call
E:

Hφ(x) = φ(x) (4)

(
∂

∂t
+
iE

h̄
)χ(t) = 0 (5)
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The first of these equations is the time-independent or stationary Schödinger’s
equation. As we can see, E is an eigenvalue of H , and therefore we conclude
that E is the energy of the system.

The second equation is simply solved to give us the oscillating form

χ(t) = A exp (
−iEt
h̄

) (6)

Suppose that we solve the time-independent Schödinger’s equation and
obtain the eigenvalues and eigenfunctions

Hφn = Enφn, (7)

For each such solution there is a corresponding solution to the time-dependent
Schödinger’s equation

ψn(x, t) = Aφn(x) exp (−iEnt

h̄
). (8)

In cases with a discrete set of solutions, such as in a finite system, the
subindex n is an integer. In cases where one obtains a continuum of so-
lutions, we typically use the letter k. For instance, in the case of a free
particle in one dimension we have:

H =
p2

2m
= − h̄2

2m
∇2. (9)

The time-independent Schrödinger’s solution becomes

− h̄2

2m

∂2

∂x2
φ(x) = Eφ(x). (10)

The corresponding free-particle solutions are given by

φk(x) = A exp(ikx), (11)

with eigenvalue (energy)

Ek =
h̄2k2

2m
=

p2

2m
, (12)

where the momentum of the particle is p = h̄2k2.
The solution to the time-dependent Schrödinger’s equation will be given

by
φk(x, t) = A exp i(kx− ωt), (13)

where we have labeled
h̄ω = Ek. (14)
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2 Variational Methods

The variational method is an approximate method used in quantum mechan-
ics. Compared to perturbation theory, the variational method can be more
robust in situations where it is hard to determine a good unperturbed Hamil-
tonian (i.e., one which makes the perturbation small but is still solvable). On
the other hand, in cases where there is a good unperturbed Hamiltonian, per-
turbation theory can be more efficient than the variational method.

The basic idea of the variational method is to guess a “trial” wavefunc-
tion for the problem, which consists of some adjustable parameters called
“variational parameters.” These parameters are adjusted until the energy
of the trial wavefunction is minimized. The resulting trial wavefunction and
its corresponding energy are variational method approximations to the exact
wavefunction and energy.

Why would it make sense that the best approximate trial wavefunction is
the one with the lowest energy? This results from the Variational Theorem,
which states that the energy of any trial wavefunction E is always an upper
bound to the exact ground state energy E0. This can be proven easily.
Let the trial wavefunction be denoted φ. Any trial function can formally
be expanded as a linear combination of the exact eigenfunctions ψi. Of
course, in practice, we do not know the ψi, since we are assuming that we are
applying the variational method to a problem we can not solve analytically.
Nevertheless, that does not prevent us from using the exact eigenfunctions
in our proof, since they certainly exist and form a complete set, even if we
do not happen to know them:

∑

i,j

〈ψi|ψj〉 = δi,j (15)

where δi,j is the Kronecker delta.

H |ψi〉 = Ei |ψi〉 . (16)

We are asuming that the physical states are normalized, i.e. their norm is
equal to unity (we can always make it to do so). Let us assume that we have
a candidate wavefunction to describe the ground-state, that we call |φ〉, and
that this function deppends on a set of parameters ci, that we call variational
parameters and are complex numbers. Ignoring complications involved with
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a continuous spectrum of H, suppose that the spectrum is bounded from
below and that its greatest lower bound is E0. So, the approximate energy
corresponding to this wavefunction is the expectation value of H :

〈φ|H|φ〉 =
∑

i,j

〈φ|ψi〉 〈ψi|H|ψj〉 〈ψj |φ〉 (17)

=
∑

i

Ei |〈ψi|φ〉|2 ≥
∑

i

E0 |〈ψi|φ〉|2 = E0 (18)

In other words, the energy of any approximate wavefunction is always
greater than or equal to the exact ground state energy E0. This explains
the strategy of the variational method: since the energy of any approximate
trial function is always above the true energy, then any variations in the
trial function which lower its energy are necessarily making the approximate
energy closer to the exact answer. (The trial wavefunction is also a better
approximation to the true ground state wavefunction as the energy is lowered,
although not necessarily in every possible sense unless the limit φ = ψ0 is
reached).

Frequently, the trial function is written as a linear combination of basis
functions, such as

|φ〉 =
∑

i

ci|φi〉.

This leads to the linear variation method, and the variational parameters
are the expansion coefficients ci. We shall assume that the possible solutions
are restricted to a subspace of the Hilbert space, and we shall seek the best
possible solution in this subspace.

The energy for this approximate wavefunction is just

E[φ] =

∑

ij c
∗
i cj〈φi|H|φj〉

∑

ij c
∗
i cj〈φi|φj〉

, (19)

which can be simplified using the notation Hij = 〈ψi|H|ψj〉 =
∫

φ∗
iHφj,

Sij = 〈ψi|H|ψj〉 =
∫

φ∗
iφj, to yield

E[φ] =

∑

ij c
∗
i cjHij

∑

ij c
∗
i cjSij

.

In order to find the optimial solution, we need to minimize this energy
functional with respect to the variational parameters ci, or calculate the
variation such that:

δE(ci) = 0. (20)
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We will calculate only the variation with respect to c∗i , since the variation
with respect to cj will yield the same result:

δE =
∑

i

(

∑

j cjHij
∑

i′,j′ c
∗
i′cj′Si′j′ −

∑

j cjSij
∑

i′,j′ c
∗
i′cj′Hi′j′

)

(

∑

i′,j′ c
∗
i′cj′Si′j′

)2 δc∗i . (21)

Reordering some terms we can rewrite it as:

∑

i

(
∑

j cjHij − E
∑

j cjSij
∑

i′j′ c
∗
i′cj′Si′j′

)

δc∗i , (22)

where E is given by Eq.(19). This should be satisfied for all ci’s, and we find
that the coefficients should satisfy the following conditions:

N
∑

j=1

(Hij − ESij)cj = 0 i = 1, 2, ..., N. (23)

This is a generalized eigenvalue problem, that can be rewritten:

Hc = ESc, (24)

where H is the Hamiltonian matrix, and S is the so-called “overlap matrix”.
The main difference with an ordinary eigenvalue problem is the marix S on
the right hand side. We’ll see how to solve this problem in the exercises.
The solution to thsi problem is obtained by solving the following “secular
determinant”

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 −ES11 H12 −ES12 · · · H1N − ES1N

H21 −ES21 H22 −ES22 · · · H2N − ES2N
...

...
...

...
HN1 −ESN1 H2N −ES2N · · · HNN − ESNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (25)

If an orthonormal basis is used, the secular equation is greatly simplified
because Sij = δij (1 for i = j and 0 for i 6= j), and we obtain:

Hc = Ec, (26)
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which is nothing else but the stationary Schrödinger’s equation, formulated
in this basis. In this case, the secular determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 −E H12 · · · H1N

H21 H22 − E · · · H2N
...

...
...

...
HN1 H2N · · · HNN − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (27)

In either case, the secular determinant for N basis functions gives an N -
th order polynomial in E which is solved for N different roots, each of which
approximates a different eigenvalue. These equations can be easily solved
using readily available library routines, such as those in Numerical Recipes,
or Lapack. At this point one may wonder where the approximation is: aren’t
we solving the problem exactly? If we take into account a complete basis set,
the answer is “yes, we are solving the problem exactly”. But as we said before,
teh Hilbert space is very large, and we therefore have to limit the basis size
to a number that is easily tractable with a computer. Therefore, we have to
work in a constrained Hilbert space with a relatively small number of basis
states kept, which makes the result variational. Because of the computer
time needed for numerical diagonalizations scales as the third power of the
linear matrix size, we would want to keep the basis size as small as possible.
Therefore, the basis wavefunctions must be choses carefully: it should be
possible to approximate the exact solution to the full problem with a small
number of basis states. Inorder to do that, we need some good intuition
about the underlying physics of the problem.

We have used a linear parametrization of the wave function. This greatly
simplifies the calculations. However, nonlinear parametrizations are also pos-
sible, such as in the case of hartree-Fock theory.

The variational method lies behind hartree-Fock theory and the configu-
ration interaction method for the electronic structure of atoms and molecules,
as we will see in the following chapter.
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2.1 Examples of linear variational calculations

2.1.1 The infinite potential well

The potential well with inifinite barriers is defined:

V (x) =

{

∞ for |x| > |a|
0 for |x| ≤ |a| (28)

and it forces the wave function to vanish at the boundaries of the well at
x = ±a. The exact solutioon for this problems is known and treated in
introductory quantum mechanics courses. Here we discuss a linear variational
approach to be compared with the exact solution. We take a = 1 and use
natural units such that h̄2/2m = 1.

As basis functions we take simple polynomials that vanish on the bound-
aries of the well:

ψn(x) = xn(x− 1)(x+ 1), n = 0, 1, 2, 3... (29)

The reason for choosing this particular form of basis functions is that the
relevant matrix elements can easily be calculated analytically. We start we
the overlap matrix:

Smn = 〈ψn|ψm〉 =
∫ 1

−1
ψn(x)ψm(x)dx. (30)

Working out the integrals, one obtains

Smn =
2

n +m+ 5
− 4

n+m+ 3
+

2

n +m+ 1
(31)

for n+m even, and zero otherwise.
We can also calculate the Hamiltonian matrix elements:

Hmn = 〈ψn|p2|ψm〉 =
∫ 1

−1
ψn(x)

(

− d2

dx2

)

ψm(x)dx (32)

= −8

[

1 −m− n− 2mn

(m+ n+ 3)(m+ n + 1)(m+ n− 1)

]

(33)

for m+ n even, and zero otherwise.
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Exercise 2.1: Infinite potential well

• Write a computer program in which you fill the overlap and Hamiltonian
matrices for this problem. Use standard software to solve the generalized
eigenvalue problem. Notice that the matrices are Hermitian, so only the up-
per, or lower triangular parts have to be calculated (including the diagonal).
• Compare results with exact analytic solutions. These are given by

ψn(x) =

{

cos (knx) n odd
sin (knx) n even and positive

(34)

with kn = nπ/2, n = 1, 2..., and the corresponding energies are given by

En = k2
n =

n2π2

4
(35)

For each eigenvector c, the function
∑N

p=1 = cpφp(x) should approximate an
exact eigenfunction. They can be compared by displaying both graphically.
Carry out the comparison for various numbers of basis states kept.

2.1.2 Hydrogen atom

One example of the variational method would be using the Gaussian func-
tion χ(r) = e−αr2

as a trial function for the hydrogen atom ground state.
This problem could be solved by the variational method by obtaining the
energy of χ(r) as a function of the variational parameter α, and then min-
imizing E(α) to find the optimum value αmin. The variational theorem’s
approximate wavefunction and energy for the hydrogen atom would then be
χ(r) = e−αminr2

and E(αmin).
This is a one electron problem, so we do not have to worry about electron-

electron interactions, or antisymmetrization of the wave function. The Schrödinger’s
equation reads:

[

− h̄2

2m
∇2 − e2

4πǫ0

1

r

]

ψ(x) = Eψ(x) (36)

where the second term is the Coulomb interaction with the positive nucleus
(remember, this is a charged particle in a central potential). The mass m
is the reduced mass of the proton-electron system, which is approximately
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equal to the electron mass. The ground state has energy

E = −N
h̄2

(

e2

4πǫ0

)2

≈ −13.6058eV (37)

and the wave function is given by

ψ(x) =
2

a
3/2
0

exp (−x/a0) (38)

where a0 is Bohr’s radius

a0 =
4πǫ0h̄

2

me2
. (39)

It is convenient to use units such that equations take on a simpler form.
These are the so-called standard units in electronic structure: the unit of
distance is Bohr’s radius, masses are expressed in units of the electon mass
me, and charge in units of the electron charge e. The energy is finally given
in “hartrees”, equal to EH = mec

2α2 (where α is the fine structure constant).
In these units the Schrödinger equation for the hydrogen atom assumes the
following simpler form:

[

−1

2
∇2 − 1

r

]

ψ(x) = Eψ(x). (40)

To approximate the ground state energy and wave function of the hy-
drogen atom in a linear variational procedure, we will use Gaussian basis
functions. For the ground state, we only need angular momentum l = 0
wave functions (s-orbitals), which have the form:

χp(r) = exp (−αpr
2) (41)

centered on the nucleus (whis is thus placed at the origin). We have to specify
the values of the exponents αp, which are our variational parameters. Opti-
mal values of these exponents have been previously found by other means,
and in our case, we will keep these values fixed:

α1 = 13.00773 (42)

α2 = 1.962079 (43)

α3 = 0.444529 (44)

α4 = 0.1219492. (45)
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If the program works correctly, it should shield a value of the energy close to
the exact results E0 = −1/2EH .

It remains to determine the coefficients of the linear expansion, by solving
the generalized eigenvalue problem, as we did in the previous example. The
matrix elements of the overlap matrix S, the kinetic energy matrix T, and
the Coulomb interaction V are given by:

Spq =
∫

d3re−αpr2

e−αqr2

=

(

π

αp + αq

)3/2

(46)

Tpq =
∫

d3re−αpr2∇2e−αqr2

= 3
αpαqπ

3/2

(αp + αq)5/2
(47)

Vpq =
∫

d3re−αpr2 1

r
e−αqr2

= − 2π

(αp + αq)
. (48)

Using these expressions, one can fill the overlap and Hamiltonian matrices
and solve the problem numerically.

Exercise 2.2: Hydrogen atom

• Solve the problem stated in the previous section. If your program has no
errors, you should obtainE = −0.499278EH, which is remarkable considering
that only four basis states have been taken into account.
• Compare graphically the variational ground-state to the exact one, given
by Eq.(38).
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3 The Hartree-Fock method

In the previous section we have seen how to apply the variational method to
a simple simgle-particle problem. As we treat more complicated problems,
such as heavier atoms, molecules, and ultimately, solids, the complexitiy
increases as the number of particles, and degrees of freedom increases. In
these so-called, many-body problems, we have to consider the motion of the
nuclei, the interaction between the protons and electrons, and between elec-
trons themselves. We will consider a general system of N nuclei described
by coordinates, R1, ...,RN ≡ R, momenta, P1, ...,PN ≡ P, and masses
M1, ...,MN , and Ne electrons described by coordinates, r1, ..., rNe

≡ r, mo-
menta, p1, ...,pNe

≡ p, and spin variables, s1, ..., sNe
≡ s. The Hamiltonian

of the system is given by

H = TN(R) + Te(r) + VNN(R) + VeN(r,R) + Vee(r),

where TN is the kinetic energy of the nuclei, Te is the kinetic energy of the
electrons, and VNN , VeN and Vee contain the nucleus-nucleus, nuclei-electron,
and electron-electron interactions, respectively:

TN =
N
∑

I=1

P2
I

2MI
, (49)

Te =
Ne
∑

i=1

p2
i

2mI

, (50)

VNN =
∑

I>J

ZIZJe
2

|RI − RJ |
=
∑

I>J

ZIZJe
2

rIJ

, (51)

VeN = −
∑

i,I

ZIe
2

|RI − ri|
= −

∑

I>J

ZIe
2

rIi

, (52)

Vee =
∑

i,j

e2

|ri − ri|
= −

∑

i>j

e2

rij
. (53)

(54)

This is sometimes jokingly referred to as the ”equation of everything”. Clearly,if
we could solve this problem, condensed matter would be a dead field. ”Luck-
ily” for us, this equation is extremely complicated, and basically intractable.
Therefore, we are forced to make several approximations. The first one is to
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assume that the nuclei are static. This is justified when when realizes that
the mass of the protons and neutrons is much larger that the mass of the
electrons by three orders of magnitude. Therefore the time scale for motion
of the nuclei is much large than the one for the electrons, that move at much
faster speeds. This approach is the so-called Born-Oppenheimer approxima-
tion: by taking the position of the nuclei fixed, the main remaining problem
is the electronic part.

A second approximation is to assume that the wave-function of the many-
electron system takes the form of an antisymmetized product of one-electron
wave-functions (remember that electrons are fermions). This simplification
transforms the complicated many-body problem into the problem of a single-
particle in an effective ”mean-field” potential determined by the positions of
the other electrons. This is the basic idea behind the Hartree-Fock method.

We can immediatley make two obervations: The first is that we are as-
suming that the physics can be described by single-particle wave-functions,
and therefore, thsi corresponds to approximating the actual ground state by
a variational ansatz. As a consequence, all the concepts learned in the previ-
ous section will apply here as well. A second observation is that the effective
potential feld by the electrons will have to be calculated self-consistently: ev-
ery time we update or modify the single particle wave-function, the potential
will have to be updated as well.

We shall see that in this variational approach, correlations between elec-
trons are neglected to some extent. In particular, Coulomb repulsion between
electrons is taken into account in an averaged way.

3.1 The Born-Oppenheimer approximation

The Born-Oppenheimer Approximation is the assumption that the electronic
motion and the nuclear motion in molecules can be separated. It leads to a
molecular wave function in terms of electron positions and nuclear positions.

This involves the following assumptions:
• The electronic wavefunction depends upon the nuclear positions but not
upon their velocities, i.e., the nuclear motion is so much slower than electron
motion that they can be considered to be fixed.
• The nuclear motion (e.g., rotation, vibration) sees a smeared out potential
from the speedy electrons.
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We know that if a Hamiltonian is separable into two or more terms, then
the total eigenfunctions are products of the individual eigenfunctions of the
separated Hamiltonian terms, and the total eigenvalues are sums of individual
eigenvalues of the separated Hamiltonian terms.

Consider, for example, a Hamiltonian which is separable into two terms,
one involving coordinate q1 and the other involving coordinate q2.

H = H1(q1) +H2(q2)

with the overall Schrdinger equation being

Hψ(q1, q2) = Eψ(q1, q2)

If we assume that the total wavefunction can be written in the form
ψ(q1, q2) = ψ1(q1)ψ2(q2), where ψ1(q1) and ψ2(q2) are eigenfunctions of H1

and H2 with eigenvalues E1 and E2, then

Hψ(q1, q2) = (H1 +H2)ψ1(q1)ψ2(q2) (55)

= H1ψ1(q1)ψ2(q2) +H2ψ1(q1)ψ2(q2) (56)

= E1ψ1(q1)ψ2(q2) + E2ψ1(q1)ψ2(q2) (57)

= (E1 + E2)ψ1(q1)ψ2(q2) (58)

= Eψ(q1, q2) (59)

Thus the eigenfunctions of H are products of the eigenfunctions of H1 and
H2, and the eigenvalues are the sums of eigenvalues of H1 and H2.

Going back to our original problem, Eq.(3), , we would start by seeking
the eigenfunctions and eigenvalues of this Hamiltonian, which will be given
by solution of the time-independent Schrödinger equation

[TN + Te + Vee(r) + VNN(R) + VeN(r,R)]Ψ(r,R) = EΨ(r,R).

We first invoke the Born-Oppenheimer approximation by recognizing that,
in a dynamical sense, there is a strong separation of time scales between the
electronic and nuclear motion, since the electrons are lighter than the nuclei
by three orders of magnitude. This can be exploited by assuming a quasi-
separable ansatz of the form

Ψ(x,R) = φe(x,R)φN(R)
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where φN(R) is a nuclear wave function and φe(x,R) is an electronic wave
function that depends parametrically on the nuclear positions. If we look
again at the Hamiltonian, we would notice right away that the term VeN
would prevent us from applying this separation of variables. The Born-
Oppenheimer (named for its original inventors, Max Born and Robert Op-
penheimer) is based on the fact that nuclei are several thousand times heavier
than electrons. The proton, itself, is approximately 2000 times more massive
than an electron. In a dynamical sense, the electrons can be regarded as
particles that follow the nuclear motion adiabatically, meaning that they are
“dragged” along with the nuclei without requiring a finite relaxation time.
This, of course, is an approximation, since there could be non-adiabatic ef-
fects that do not allow the electrons to follow in this “instantaneous” manner,
however, in many systems, the adiabatic separation between electrons and
nuclei is an excellent approximation. Another consequence of the mass dif-
ference between electrons and nuclei is that the nuclear components of the
wave function are spatially more localized than the electronic component of
the wave function. In the classical limit, the nuclear are fully localized about
single points representing classical point particles.

After these considerations, HN(R) can be neglected since TN is smaller
than Te by a factor of M/m. Thus for a fixed nuclear configuration, we have

Hel = Te(r) + VeN(r,R) + VNN(R) + Vee(r)

such that
Helφe(r,R) = Eelφe(r,R)

This is the “clamped-nuclei” Schrödinger equation. Quite frequently VNN(R)
is neglected in the above equation, which is justified since in this case R is just
a parameter so that VNN (R) is just a constant and shifts the eigenvalues only
by some constant amount. Leaving VNN(R) out of the electronic Schrdinger
equation leads to a similar equation,

He = Te(r) + VeN(r,R) + Vee(r) (60)

Heφe(r,R) = Eeφe(r,R), (61)

where we have used a new subscript “e” on the electronic Hamiltonian and
energy to distinguish from the case where VNN is included.
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We now consider again the original Hamiltonian (3). If we insert a wave-
function of the form Ψ(r,R) = φe(r,R)φN(R), we obtain

Hφe(r,R)φN(R) = Etotφe(r,R)φN(R)(62)

{TN(R) + Te(r) + VeN(r,R) + VNN(R)}φe(r,R)φN(R) = Etotφe(r,R)φN(R)(63)

Since Te contains no R dependence,

Teφe(r,R)φN(R) = φN(R)Teφe(r,R)

However, we may not immediately assume

TNφe(r,R)φN(R) = φe(r,R)TNφN(R)

(this point is tacitly assumed by most introductory textbooks). By the chain
rule,

∇2
Rφe(r,R)φN(R) = φe(r,R)∇2

RφN(R)+2∇Rφe(r,R)∇RφN(R)+φN(R)∇2
Rφe(r,R)

Using these facts, along with the electronic Schrdöinger equation,

{Te + VeN(r,R) + Vee}φe(r,R) = Heφe(r,R) = Eeφe(r,R)

we simplify Eq.(63) to

φe(r,R)TNφN(R) + φN(R)φe(r,R)(Ee + VNN) (64)

−
{

∑

A

1

2M
(2∇Rφe(r,R)∇RφN(R) + φN(R)∇2

Rφe(r,R))

}

(65)

= Etotφe(r,R)φN(R). (66)

We must now estimate the magnitude of the last term in brackets. A
typical contribution has the form 1/(2M)∇2

Rφe(r,R), but ∇Rφe(r,R) is of
the same order as ∇rφe(r,R) since the derivatives operate over approximately
the same dimensions. The latter is φe(r,R)pe, with pe the momentum of
an electron. Therefore 1/(2M)∇2

Rφe(r,R) ≈ p2
e/(2M) = (m/M)Ee. Since

m/M ∼ 1/10000, the term in brackets can be dropped, giving

φe(r,R)TNφN(R)+φN(R)Eeφe(r,R)+φN(R)VNNφe(r,R) = Etotφe(r,R)φN(R)
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{TN + Ee + VNN}φN(R) = EtotφN(R).

This is the nuclear Shrödinger equation we anticipated–the nuclei move in a
potential set up by the electrons.

To summarize, the large difference in the relative masses of the electrons
and nuclei allows us to approximately separate the wavefunction as a prod-
uct of nuclear and electronic terms. The electronic wavefucntion φe(r,R) is
solved for a given set of nuclear coordinates,

Heφe(r,R) =







−1

2

∑

i

∇2
i −

∑

i,I

ZI

rIi
+
∑

i>j

1

rij







φe(r,R) = Ee(R)φe(r,R),

and the electronic energy obtained contributes a potential term to the motion
of the nuclei described by the nuclear wavefunction φN(R).

HNφN(R) =

{

−
∑

I

1

2MI
∇2

I + Ee(R) +
∑

I>J

ZIZJ

RIJ

}

φN(R) = EtotφN(R)

3.2 The helium atom

in this section we introduce a first application of the Hartree-Fock methos
for the helium atom. In order to carry out the calculation we shall use the
electronic Hamiltonian within the Born-Oppenheimer approximation.

The helium atom has two electrons, and we will label their coordinates
xx and x2, wich are combined position and spin coordinates xi = {ri, si},
where the spin can assume two values si =↑, ↓. The Born-Oppenheimer
Hamiltonian for the helium atom reads:

H = −1

2
∇2

r1
− 1

2
∇2

r2
− Z

r1
− Z

r2
+

1

r12
. (67)

Since electrons are fermions, the wave function should be antisymmetric
under an exchange of coordinates. We use the following antisymmetric trial
wave function for the ground state:

Ψ(x1,x2) = φ(r1)φ(r2) ×
1√
2

[| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2] . (68)

We shall now replace this into the Schrödinger equation. Since the Hamil-
tonian does not act on the spin degree of freedom, we are left with:

[

−1

2
∇2

r1
− 1

2
∇2

r2
− Z

r1
− Z

r2
+

1

r12

]

φ(r1)φ(r2) = Eφ(r1)φ(r2). (69)
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We now multiply both sides from the left by φ(r∗2) and we integrate over r2,
arriving to:

[

−1

2
∇2

r1
− Z

r1
+
∫

d3r2|φ(r2)|2
1

|r2 − r2|

]

φ(r1) = E ′φ(r1), (70)

where several integrals we have removed the constant terms that do not
deppend on ~r1 by absorving them into E ′. The third term on the left hand
side can be recognized as the Coulomb energy of particle 1 in the electric
field generated by the charge density of particle 2.

We now have a single-particle Hamiltonian for the wave-function of a
single electron. However, the Hamiltonian deppends on the wave-function
we are looking for. This is a self-consistent problem: φ is the solution to
the Schrödinger equation, but the Hamiltonian deppends on φ itself. To
solve this kind of problem, we start searching for a solution with some trial
wave-function φ(0), which is used for constructing the potential. SOlving the
Schrödinger equation for this potential one finds a new ground state φ(1),
which is in turn used to build a new potential. The procedure is repeated
until the ground state φ(i) and the corresponding energy E(i) at step i do not
deviate appreciably from those in the previous step.

The wave-function we have used is called uncorrelated because of the
fact that the probability P (r1, r2) for finding a particle at position r1 and
another one at r2 is uncorrelated, ı.e. can be written as the product of two
one-electron probabilities:

P (r1, r2) = P (r1)P (r2). (71)

This does not mean that the electrons do not feel each other: in the depetr-
mination of the wave function, the term 1/|r1 − r2| was taken into account.
But this was done in an average way: it is not the actual position of particle
2 that determines the wave-function for electron 1, but the average charge
distribution of electron 2. This is why this approach is usually referred-to as
mean field.

The Coulomb term in (70) is called Hartree potential. We will see that
in more complex many-body problems as second term arises, due to the
fermionic exchange statistics.
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3.3 A program for the helium ground-state

We shall take a similar variational approach as the one used for the hydrogen
atom. Let us take a wave-function of the form

φ(r) =
N
∑

p=1

Cpχp(r). (72)

Replacing into (70) we obtain


−1

2
∇2

r1
− Z

r1
+

N
∑

r,s=1

CrCs

∫

d3r2χr(r2)χs(r2)
1

|r2 − r2|





N
∑

q=1

Cqχq(r1) (73)

= E ′
N
∑

q=1

Cqχq(r1). (74)

Note that the Cp are real as the functions χp are also real. Multiplying from
the left by χp(r1) and integrating over r1 leads to

∑

pq

(

hpq +
∑

rs

CrCsQpqrs

)

Cq = E ′
∑

pq

SpqCq (75)

with

hpq =
〈

χp

∣

∣

∣

∣

−1

2
∇2 − Z

r

∣

∣

∣

∣

χq

〉

(76)

Qpqrs =
∫

d3r2d
3r1χp(r2)χr(r2)

1

|r2 − r2|
χq(r1)χs(r2) (77)

Spq = 〈χp|χq〉 (78)

Unfortunately, thsi is not a generalized eigenvalue equation because of
the presence of the variables Cr and Cs inside the brackets on the left hand
side. However, we can carry out a self-consistency iteration process as de-
scribed earlier. By keeping Cr and Cs fixed, we solve the equationo for the
Cq’s. We then replace the coefficients by the new solutiono, and iterate until
convergence is achieved.

In order to calculate the matrix elements, we shall use Gaussian l = 0
basis functions, just as in the case of the hydrogen atom:

χp(r) = e−αpr2

. (79)
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We shall take the optimal values of αp found by solving the non-linear prob-
lem:

α1 = 0.298073 (80)

α2 = 1.242567 (81)

α3 = 5.782948 (82)

α4 = 38.474970. (83)

The matrix elements for the kinetic and Coulomb terms are similar to
those calculated for the hydrogen atom, except for an extra factor of Z in
the nuclear attraction. The matrix elements ofr Qpqrs are

Qpqrs =
2π5/2

(αp + αq)(αr + αs)
√
αp + αq + αr + αs

. (84)

The program is consructed as follows:
• First, the N ×N matrices hpq, Spq and the N × N × N ×N tensor Qpqrs

are calculated.
• Initial values for the Cp coefficients are chosen (all equal, for instance).
• These values are used to contruct the Fpq matrix given by

Fpq = hpq +
∑

rs

CrCsQpqrs. (85)

• We solve the generalized eigenvalue problem. For the ground-state, we
keep only the eigenvector with the lowest eigenvalue.
• We calculate the ground-state energy as:

E = 2
∑

pq

CpCqhpq +
∑

pqrs

QpqrsCpCqCrCs. (86)

• The new solution of the geenralized eigenvalue problem is then used to
contruct the new matrix Fpq and we repeat until the energy converges.

Exercise 3.1: Helium atom

Wirte a program to calculate the ground-state energy of the helium atom. If
your program is correct, your result shoul dbe E = −2.85516038.
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3.4 Many electron systems and the Slater determinant

3.4.1 Two-particle case

In the helium problem, we could make use of the fact that in the ground-state,
the antisymmetry is taken care of by the spin part of the wave-function, whcih
in turn drops out of the Schrödinger equation. If we are after excited states,
or if more than two electrons are involved, the antisymmetry requirement
affects the orbital part of the wave-function and must be taken into account.

Let us take another look at the two-particle case. The simplest way
to approximate the wave function of a many-particle system is to take the
product of properly chosen wave functions of the individual particles. For
the two-particle case, we have

Ψ(x1,x2) = ψ1(x1)ψ2(x2). (87)

This expression is used in the Hartree method as an ansatz for the many-
particle wave function and is known as a Hartree product. However, it is
not satisfactory for fermions, such as electrons, because the wave function is
not antisymmetric. An antisymmetric wave function can be mathematically
described as follows:

Ψ(x1,x2) = −Ψ(x2,x1). (88)

Therefore the Hartree product does not satisfy the Pauli principle. This
problem can be overcome by taking a linear combination of both Hartree
products

Ψ(x1,x2) =
1√
2
{ψ1(x1)ψ2(x2) − ψ1(x2)ψ2(x1)} =

1√
2

∣

∣

∣

∣

∣

ψ1(x1) ψ2(x1)
ψ1(x2) ψ2(x2)

∣

∣

∣

∣

∣

(89)
where the coefficient is the normalization factor. This wave function is anti-
symmetric and no longer distinguishes between fermions. Moreover, it also
goes to zero if any two wave functions or two fermions are the same. This is
equivalent to satisfying the Pauli exclusion principle.

If we now take into account the spin degree of freedom ψ(x) = φ(r)|σ〉,
we obtain:

Ψ(x1,x2) =
1√
2
{φ1(r1)|σ1〉1φ2(r2)|σ2〉2 − φ1(r2)|σ2〉1φ2(r1)|σ1〉2} (90)
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3.4.2 General case: the many body wave-function

When considering a many-electron system, we must remember that the elec-
trons are identical particles. This is seen in the Hamiltonian, exchanging
indices i and j does not change the Hamiltonian. We say that the Hamilto-
nian commutes with the particle exchange operator Pij . This operator has
the effect of exchanging the coordinates of particles I and j:

PijΨ(x1,x2, · · · ,xi, · · · ,xj , · · · ,xN) = Ψ(x1,x2, · · · ,xj, · · · ,xi, · · · ,xN),
(91)

where the coordinates xi contain the orbital and spin part.
Since the Hamiltonian commutes with the operator Pij, its eigenvectors

should simultaneously be eigenvectors of P . Since P 2 = 1, its eigenvalues
are either +1 or −1. In the first case, we say that the particles are bosons,
while in the second case, we call them fermions. Since electrons are fermions,
we find that their many-body wave-function whould be antisymmetric under
exchanges.

Let us forget about antisymmetry for a moment. For the case of an
independent particle Hamiltonian, which is the sum of one-electron Hamil-
tonians, we can write the solution to the Schrödinger equation as a product
of one-particle wave-functions:

Ψ(x1,x2, · · · ,xN) = ψ1(x1)ψ2(x2) · · ·ψN (xN). (92)

the one-particle states are eigenstates of the one-particle Hamiltonians. The
probability density id then given by

ρ(x1,x2, · · · ,xN) = |ψ1(x1)|2|ψ2(x2)|2|...|ψN(xN)|2, (93)

which is just the product of one-particle densities. Such a probability density
is called uncorrelated.

Of course, a state with the coordinates permuted is also a solution, as
are linear combinations of such states. But the requirement of antisymmetry
implies that the wave function should have the form:

ΨAS =
1

N !

∑

P

sgnPPψ1(x1)ψ2(x2)...ψN (xN). (94)

P is a permutation operator that permutes the coordinates, and not the
wave-functions. The sign in the sum can be +1 or −1 according to wether
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the permutation can be written as a product of even or odd pair interchanges,
respectively.

We can write this wave-function as a Slater determinant:

ΨAS =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

...
ψ1(xN) ψ2(xN) · · · ψN (xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

Its is important to note that after the antisymmetrization procedure the
electrons are correlated. To see this we write the prbability density of finding
two electrons with coordinates x1 and x2:

ρ(x1,x2) =
∫

dx3 · · · dxN |ΨAS|2 (95)

=
1

N(N − 1)

∑

k,l

[

|ψk(x1)|2|ψl(x2)|2 − ψ∗
k(x1)ψk(x2)ψ

∗
l (x2)ψl(x1)

]

.(96)

To find the probability of having two electrons at positions r2 and r2 we
have to sum over the spin variables:

ρ(r1, r2) =
∑

s1,s2

ρ(x1,x2). (97)

We can see that for ψk and ψl having opposite spin, the second term in
(96) vanishes and therefore opposite spin oribitals are uncorrelated, but for
equal spins, the two terms cancel when r1 = r2, so electrons with equal spins
cannot sit on the same point in space and are kept apart. Every electron
is found surrounded by an exchange hole in which other electrons having
similar spin are hardly found. This is nothing else but a manifestation of
Pauli’s exclussion principle.

3.5 Hartree-Fock theory

3.5.1 The Hartree-Fock equations

The full Hartree-Fock equations are given by

HHFψk = ǫkψk, (98)
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with

HHFψk =

[

−1

2
∇2 −

∑

n

Zn

|r −Rn|

]

ψk(x) +
N
∑

l=1

∫

dx′|ψl(x
′)|2 1

|r − r′|ψk(x)(99)

−
N
∑

l=1

∫

dx′ψ∗
l (x

′)
1

|r− r′|ψk(x
′)ψl(x).(100)

Notice that the wavefunctions deppend on the generalize coordinate x, which
includes the orbital and spin parts. The right hand side of the equations
consists of four terms. The first and second give rise are the kinetic energy
contribution and the electron-ion potential. The third term, or Hartree term,
is the simply electrostatic potential arising from the charge distribution of
N electrons. As written, the term includes an unphysical self-interaction of
electrons when l = k. This term is cancelled in the fourth, or exchange term.
The exchange term results from our inclusion of the Pauli principle and the
assumed determinantal form of the wavefunction. Notice that thsi term is
non-local, its value at r is determined by the value assumed by ψk at all
possible positions r′.

We can rewrite HHF as the sum of different terms:

HHF = h + J −K, (101)

with

h =
∑

i

[

−1

2
∇2

i −
∑

n

Zn

|ri − Rn|

]

(102)

J(x)ψk(x) =
N
∑

l=1

∫

dx′|ψl(x
′)|2 1

|r − r′|ψk(x) (103)

K(x)ψk(x) =
N
∑

l=1

∫

dx′ψ∗
l (x

′)ψk(x
′)

1

|r− r′|ψl(x). (104)

We can eliminate the sum over the spin indices by summing over them, to
find the operators acting on the orbital part, only. The h operators remains
the same since it does not contain any spin dependence. The new operators
J and K acting on the orbital parts then read:

J(r)φk(r) = 2
N
∑

l=1

∫

d3r′|φl(r
′)|2 1

|r− r′|φk(r) (105)
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K(r)φk(r) =
N
∑

l=1

∫

d3r′φ∗
l (r

′)φk(r
′)

1

|r − r′|φl(r). (106)

Multiplying by φ∗
k(r) and integrating over r we obtain the expression for the

energy:
E = 2

∑

k

〈φk|h|φk〉 +
∑

k

〈φk|2J −K|φk〉 (107)

where the factors 2 arise from the sum over the spin indices.

3.5.2 Koopman’s theorem

If we assume that the spectrum does not change when we excite an electron
above the ground-state, we can prove that the energy required to add the
electron to an excited state, is precisely ǫk, the eigenvalues of HHF . In order
to do that we need to calculate Ek

N+1−EN , where we have added an electron
in the orbital k. The energy can be easily computed to yield:

Ek
N+1 −EN = 〈φk|h|φk〉 + 〈φk|2J −K|φk〉 = ǫk. (108)

If one sums over all occupied states, the two-body term will become twice
larger than 107. Thus, the total energy is also given by:

E =
∑

k

[

ǫk −
1

2
〈k|2J −K|k〉

]

, (109)

which is obviously not the same as the sum over all the eigenvalues.

3.6 Matrix form of the Hartree-Fock equations

Same as in previous chapters, we are going to expand the wavefunctions as
linear combinations of a finite number of basis states:

φk(r) =
∑

p

Cpkχp(r). (110)

For a given basis, we obtain the following matrix equation, which is known
as Roothaan equation:

FCk = ǫSCk, (111)
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where S is the overlap matrix for the orbital basis, and the matrix F is given
by:

Fpq = hpq +
∑

k

∑

pq

C∗
rkCsk(2〈ps|g|qs〉 − 〈pr|g|sq〉) (112)

where

hpq = 〈p|h|q〉 =
∫

d3rχ∗
p(r)

[

−1

2
∇2 −

∑

n

Zn

|r − Rn|

]

χq(r), (113)

and

〈pr|g|qs〉 =
∫

d3r1d
3r2χ

∗
p(r1)χ

∗
r(r2)

1

|r2 − r2|
χq(r1)χs(r2). (114)

As we have seen before, these equations should be solved by a self-
consistent iterative procedure.

It is convenient to introduce the density matrix, defined as

ρpq = 2
∑

k

CpkC
∗
qk (115)

which is the matrix representation for the operator

ρ = 2
∑

k

|φk〉〈φk|. (116)

Using this expression we can rewrite the Fock matrix as:

Fpq = hpq +
1

2

∑

rs

ρrs(2〈ps|g|qs〉 − 〈pr|g|sq〉), (117)

and the energy is given by:

E =
∑

pq

ρpqhpq +
1

2

∑

pqrs

ρpqρrs

[

〈pr|g|qs〉 − 1

2
〈pr|g|sq〉

]

. (118)
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4 Density Functional Theory

4.1 Introduction

We are interested in calculating the ground state energy of a generic Hamil-
tonian for a system of many electons interacting with an external potential
Vext(r). We assume this external potential depends only on the coordinates
r, and it is generaly given by the interaction with the nuclei, as we have seen
in previous sections. Therefore the Hamiltonian reads: For a many-body
system, the Hamiltonian is given by

H =
∑

i

[

1

2
∇2

i + Vext(ri)
]

+
∑

i,j>i

1

|r − rj|
(119)

= T + Vext + Ve−e, (120)

where we have also included the electron-electron interactions. Vext is an ex-
ternal potential, which, in systems of interest to us, is the Coulomb attraction
by the nuclei.

The kinetic energy and the external potential are one-particle terms, while
the electron-electron term is a two-body interaction. We can rewrite the
energy as

E = 〈ψ|H|ψ〉 =
∫

d3r1d
3r2 · · · d3rNψ

∗(r1, · · · , rN)Hψ(r1, · · · , rN)(121)

= N
∫

d3r1d
3r2 · · · d3rNψ

∗(r1, · · · , rN) [T (r1) + Vext(r1)]ψ(r1, · · · , rN) +(122)

N(N − 1)

2

∫

d3r1d
3r2 · · · d3rNψ

∗(r1, r2, · · · , rN)
1

r12
ψ(r1, r2, · · · , rN).(123)

Let us define the density matrix as

g(r1, r2, r
′
1, r

′
2) =

∫

d3r3d
3r4 · · · d3rNψ

∗(r1, r2, · · · , rN)ψ(r′1, r
′
2, · · · , rN)

(124)
and the pair-correlation as

g(r1, r
′
1) =

∫

d3r2d
3r3 · · · d3rNψ

∗(r1, r2, · · · , rN)ψ(r′1, r2, · · · , rN). (125)

and the density as:

n(r) =
∫

d3r2d
3r3 · · · d3rNψ

∗(r, r2, · · · , rN)ψ(r, r2, · · · , rN). (126)
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We can now write the interaction part of the enrgy as:

〈Ve−e〉 =
N(N − 1)

2

∫

d3r1d
3r2g(r1, r2)

1

r12
. (127)

〈Vext〉 =
∫

d3r n(r)Vext(r) (128)

What’s noteworthy about these expression is that we do not need the wave-
function to calculate this quantity, we only need the density and the pair-
correlation function, which is complicated, or even impossible to evaluate.

Density Functional Theory goes a step further, and it states that we can
evaluate the energy if we just know the density.

Thsi is a remarkable result, and the implications are very powerful: we
know that wafe-functions are very complicated objects compared to the den-
sity. Working with the density simplifies the problem enormously. However,
we notice right away that we have avoided writing the kinetic energy and the
interaction energies as fcuntiosn of the density. This is because we simply
do not know how to do it! Density functional theory hints at a method to
get good guesses by using the so-called Kohn-Sham equations, and the local
density approximation, and this is what we are going to leanr in the course
of this section.

4.1.1 Some considerations about exchange

The pair correlation function satisfies a very important sum-rule:

n(r)
∫

d3r′ (g(r, r′) − 1) = −1, (129)

valid for all positions r and totally independent of the interactionos and the
Hamiltonian.

The effect of the pair correlation is to keep the particles appart by virtue
of the interaction and Pauli’s exclusion principle. Of these, we expect the
interaction to give the larger contribution. In fact, setting g = 1 amounts to
the Hartree potential, whcih neglects all effects of exchange and correlation,
but still takes Coulomb repulsion into account. Furthermore, we expect
that at large distances the particles interact very weakly, thus g(r, r′) → 1
as |r − r′| → ∞. These observations lead us to separating Ve−e into two
contrubutions by rewriting g = 1 + (g − 1), whcih will give us one pure
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interaction term –or Hartree term — from the first 1 and one, hopefully
small exchange correlation term from the (g − 1):

Ve−e =
1

2

∫

d3r1 d
3r2 n(r1)n(r2)

1

r12
(130)

+
1

2

∫

d3r1 d
3r2 n(r1)n(r2)

1

r12
(g(r1, r2) − 1) . (131)

At this point it is appropriate to say a few words about the Hartree-
Fock approximation, in which exchange is taken into account by requiring
all wavefunctions to be Slater determinants. It still ignores the correlation
energy, whcih can be defined as exactly that: everything that is ignored in
Hartree-Fock.

4.2 Functionals and functional derivatives

Functionals are mappings from function spaces to real or complex numbers.
A general representation for a function F is

F [g] = F0 +
∫

dxF1(x)g(x) (132)

+
∫

dx1

∫

dx2F2(x1, x2)g(x1)g(x2) (133)

+
∫

dx1

∫

dx2

∫

dx3F3(x2, x2, x3)g(x1)g(x2)g(x3) + · · · (134)

where the kernels Fi are general functions.
Now let g → g + ∆g. To linear order in ∆g we obtain

F [g + ∆g] = F [g] +
∫

dxF1(x)∆g(x) (135)

+ 2
∫

dx1

∫

dxF2(x1, x)g(x1)∆g(x) (136)

+ 3
∫

dx1

∫

dx2

∫

dxF3(x1, x2, x)g(x1)g(x2)∆g(x) + · · ·(137)

where we have assumed that the functions Fi are symmetric functions of their
arguments.

We can rewrite this equation as

F [g + ∆g] = f [g] +
∫

dx
δF [g]

δg(x)
∆g(x) (138)
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where

δF [g]

δg(x)
= F1(x) + 2

∫

dx1F2(x1, x)g(x1) (139)

+ 3
∫

dx1

∫

dx2F3(x1, x2, x)g(x1)g(x2) + · · · (140)

In analogy, we find

δ2F [g]

δg(x)δg(x′)
= 2F2(x, x

′) + 3
∫

dx1F3(x1, x, x
′)g(x1) + · · · (141)

4.3 The Coulomb (Thomas-Fermi) functional

For the classical part of the potential, Thomas and Fermi employed the
Coulomb potential energy functional

U [n(r)] =
1

2

∫ ∫ n(r)n(r′)

|r− r′| d3rd3r′ (142)

Again, U [n] depends only on the charge density n and does not depend on
its gradient, Laplacian, or other higher-order derivatives. Therefore,

U0 = 0; U1 = 0; U2(r, r
′) =

1

2

1

|r − r′| ; Un>2 = 0; (143)

and we find
δU [n]

δn
=
∫ n(r′)

|r − r′| d
3r′ (144)

The second functional derivative of the Coulomb potential energy functional
is

δ2U [n]

δn2
=

1

|r − r′| (145)

We should make the following observation. Thsi potential contains a self-
interaction between a particle and itself, which is unphysical. It does not
take into account the Pauli principle, and therefore, this functional should
be corrected to cancel the effects of the self-interaction and take exchange
into account properly. Notice that this is equivalent to the Hartree potential
in the Hartree-Fock approximation.
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4.4 Hohenberg-Kohn theorems

4.4.1 H-K theorem I

The Hohenberg-Kohn theorem[11] states that if N interacting electrons move
in an external potential Vext(r), the ground-state energy is a unique functional
of the density n(r).

Thus the ground state electron density is sufficient to construct the full
Hamilton operator and hence to calculate - in principle - any ground state
property of the system without the knowledge of the many electron wavefunc-
tion. Alternatively formulated, this means that any ground state property
can be expressed in terms of the ground state electron density n(r).

4.4.2 H-K theorem II

The groundstate energy can be obtained variationally: the density that min-
imises the total energy is the exact groundstate density.

Although the Hohenberg-Kohn theorems are extremely powerful, they do
not offer a way of computing the ground-state density of a system in practice.
About one year after the seminal DFT paper by Hohenberg and Kohn, Kohn
and Sham devised a simple method for carrying-out DFT calculations, that
retains the exact nature of DFT. This method is described next.

4.5 DFT formalism and derivation of the Kohn-Sham

equations

We define the energy as a functional of the density as

E[n(r)] = min
Ψ|n

〈Ψ|H|Ψ〉 (146)

where we are minimizing with respect to all the possible wavefunctions com-
patible with the density n(r).

The ground-state can be found by minimizing the functional with respect
to the density, subject to the constraint:

∫

d3rn(r) = N (147)

where N is the total number of electrons.
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4.5.1 Non-interacting case

Consider the separation of the Hamiltonian as

H = H0 + Vext (148)

where H0 corresponds to the non-interacting homogeneouos electron gas.
Then the functional reads:

E[n] = F [n] +
∫

d3rn(r)Vext(r) (149)

with
F [n] = min

Ψ|n
〈Ψ|H0|Ψ〉 (150)

The problem of treating the many-body problem lies in the electron-
electron interation. In the non-interacting case, E[n] has a kinetic contribu-
tion and a contribution from the external potential Vext:

E[n] = T [n] +
∫

d3rn(r)Vext(r) (151)

The variation of E with respect to the density leads to the following
equation:

δT [n]

δn(r)
+ Vext(r) = µ, (152)

where µ is the chemical potential and acts as a Lagrange multiplier asso-
ciated to the density contraint. The problem with this expression is that
we still don not know how to write tthe kinetic energy as a function of the
density. Fortunately, we know how to solve the non-interacting case, and the
exact ground-state has the form of a Slater determinant. The correspoding
Schrödinger equation reads:

[

−1

2
∇2 + Vext(r)

]

ψk(r) = ǫkψk(r). (153)

The ground-state density of given by

n(r) =
N
∑

k=1

|ψk(r)|2, (154)

and this solution is self-consistent.
From the exact solution of the non-interacting case, we know that T [n]

is independent of the external potential Vext.
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4.5.2 Interacting system

The energy-functional for a many-body system with the electronic interaction
taken into account reads

E [n(r)] = T [n(r)]+
∫

d3rn(r)Vext(r)+
1

2

∫

d3rd3r′n(r′)
1

|r − r′|n(r)+Exc[n],

(155)
where the last term, the exchange correlation energy, contains by definition
all the contributions not taken into account by the first three terms. We
have made no approximation, we simply moved all the unknown correlations
into Exc, whcih depends on the density instead of the explicit form of the
wavefunction. Varying this equation with respet to the density we obtain:

δT [n]

δn(r)
+
δExc[n]

δn(r)
+
∫

d3r′n(r′)
1

|r− r′| + Vext(r) = µ, (156)

This equation has the same form as (152) with the difference that the poten-
tial has been replaced by an effective one:

Veff(r) = Vext(r) +
δExc[n]

δn(r)
+
∫

d3r′n(r′)
1

|r− r′| . (157)

The corresponding Schrödinger equation for the one-particle wavefunc-
tions is

[

−1

2
∇2 + Veff(r)

]

ψk(r) = ǫkψk(r). (158)

Same as for Hartree-Fock, summing over all the eigenvalues leads to overes-
timating the Hartree energy by a factor of 2, and further difference in the
exchange correlation energy. The corresponding expression for the ground-
state energy is:

E =
N
∑

k=1

ǫk−
1

2

∫

d3rd3r′n(r)
1

|r− r′|n(r′)+Exc[n]−
∫

d3rVxc[n(r)]n(r). (159)

where

Vxc =
δExc[n]

δn(r)
(160)

These are the so-called Kohn and Sham equations.
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From here we obtain the kinetic term as:

T [n] =
N
∑

i=1

ǫi −
∫

n(r)Veff(r)d
3r (161)

and the density

n(r) =
N
∑

i=1

|ψi(r)|2. (162)

It is very important to be careful when considering the individual eigen-
values ǫi. In general they cannot be associated to any excitation energy,
which would be a nive and natural interpretation.

The main problem with the Kohn-Sham equations is that we do not
know the exact expression for the exchange functional, we can only use some
properly chosen functionals based on educated guesses, as we are going to
see next.

4.6 The local density approximation - LDA

In the local density approximation (LDA), the value of Exc[n(r)] is approxi-
mated by the exchange-correlation energy of an electron in an homogeneous
electron gas of the same density n(r), i.e.

ELDA
xc [n(r)] =

∫

ǫxc(n(r))n(r)dr .

The most accurate data for ǫxc(n(r)) is from Quantum Monte Carlo calcu-
lations. The LDA is often surprisingly accurate and for systems with slowly
varying charge densities generally gives very good results. The failings of
the LDA are now well established: it has a tendency to favour more ho-
mogeneous systems and over-binds molecules and solids. In weakly bonded
systems these errors are exaggerated and bond lengths are too short. In good
systems where the LDA works well, often those mostly consisting of sp bonds,
geometries are good and bond lengths and angles are accurate to within a
few percent. Quantities such as the dielectric and piezoelectric constant are
approximately 10% too large.

The principle advantage of LDA-DFT over methods such as Hartree-Fock
is that where the LDA works well (correlation effects are well accounted for)
many experimentally relevant physical properties can be determined to a
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useful level of accuracy. Difficulties arise where it is not clear whether the
LDA is applicable. For example, although the LDA performs well in bulk
group-IV semiconductors it is not immediately clear how well it performs at
surfaces of these materials.

4.6.1 Limitations

Despite the remarkable success of the LDA, its limitations mean that care
must be taken in its application. For systems where the density varies
slowly, the LDA tends to perform well, and chemical trends are well repro-
duced. In strongly correlated systems where an independent particle picture
breaks down, the LDA is very inaccurate. The transition metal oxides XO
(X=Fe,Mn,Ni) are all Mott insulators, but the LDA predicts that they are
either semiconductors or metals. The LDA has been applied to high Tc

superconductors, but finds several to be metallic, when in reality they are
insulating at 0K.

The LDA finds the wrong ground state for in many simpler cases. For
example, the LDA finds the wrong ground state for the titanium atom. The
LDA does not account for van der Waals bonding, and gives a very poor
description of hydrogen bonding. These phenomena are essential for most
of biochemistry: the structure of DNA of depends critically on hydrogen
bonding, as do the changes in the structure of most molecules on solvation.

The success of the LDA has been shown by QMC calculations to result
from a real-space cancellation of errors in the LDA exchange and correlation
energies. The cancellation represents a difficulty when improvements to the
LDA are attempted, as an improvement in only the exchange or correlation
contributions may give worse results.

An obvious approach to improving the LDA is to include gradient correc-
tions, by making Exc a functional of the density and its gradient:

Exc[n(r)] =
∫

d3rǫxc(n(r))n(r) +
∫

d3rFxc[n(r), |∇n(r)|]dr ,

where Fxc is a correction chosen to satisfy one or several known limits for
Exc.

Clearly, there is no unique recipe for Fxc, and several dozen functionals
have been proposed in the literature. They do not always represent a sys-
tematic improvement over the LDA and results must be carefully compared
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against experiment.The development of improved functionals is currently
a very active area of research and although incremental improvements are
likely, it is far from clear whether the research will be successful in providing
the substantial increase in accuracy desired.

4.7 More about exchange

Let us define a new quantity

nxc(r, r
′) = n(r′)(g(r, r′) − 1). (163)

We can easily see that the exchange correlation energy may be written

Exc[n] =
1

2

∫

d3r1 d
3r2 n(r1)nxc(r1, r2)

1

r12
. (164)

This is the Coulomb interaction of each electron with a charge distribution
nxc, whcih can be interpreted as a conditional density. This conditional
density vanished as the distance between the particles goes to zero, and may
be interpreted as a “hole” surrounding each particle, and it is named exchange
correlation hole. We can see that this hole orrespond to a unit of charge by
anotehr sum-rule: ∫

d3r nxc(r, r
′) = −1. (165)

We can consider −nxc as a normalizationo factor and define the radius of
the exchange hole as:

〈

1

R

〉

= −
∫

d3r
nxc(r,R)

|R| . (166)

Thsi leads to

Exc[n] = −1

2

∫

d3r n(r)
〈

1

R

〉

(167)

showing that, privided that the sum-rule is satisfied, the exchange-correlation
energy depends only weakly on the details of nxc. Thsi means that even if
our approximation is nto able to describe the detailed spatial shape of the
hole, as long as the sum-rule is fulfuilled, the errors are small, and LDA will
produce good results.
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4.8 Solution to the Kohn-Sham equations

We can solve the Kohn-Sham equations self-consistently, in the same spirit
as we solved the Hartree-Fock equations in the previous section. The first
step is to pick a suitable exchange functional.

1. Choose and appropriate atomic basis χp

2. We write the variational ansatz as:

ψk =
∑

p

Ckpχp (168)

3. We compute the density as:

n(r) =
∑

k

|ψk(r)|2 (169)

4. We replace the density in the Kohn-Sham equations to find the new
eigenfunctions and eigenvalues. Thsi means funding the coefficients
Ckp.

5. Go to 3 to compute the new density and iterate until convergence is
achieved.

4.9 Pros and Cons of the DFT

• It is computationally very “cheap”.

• Stablished exchanged functinals are “good”.

• There is no systematic way to imporve the functionals.

• Dispersion of electrons in not included in the functionals.

• Exchange functionals do not cancel the self-interaction properly.

• If one plugged the density for an excited state, would the same func-
tional give the right energy?
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5 Methods for band-structure calculations

5.1 The tight-binding approximation

It is instructive to look at the simple example of a chain composed of hydrogen-
like atoms with a single s-orbital. This will serve to illustrate the main con-
cepts in band structure calculations, such as momentum space, and Bloch
functions.

Let us first define some identities: The wave function of an isolated atomic
orbital centered on atom j is φ(r−Rj). We are going to use Direc’s notation
from now one, meaning that:

φ(r− Rj) ≡ 〈r|j〉, (170)
∫

d3rφ∗(r −Rj)φ(r − Ri) ≡ 〈i|j〉 (171)

We propose a solution of the form:

|ψ〉 =
N−1
∑

i=0

ci|i〉 (172)

We are going to make the following assumptions:

〈i|j〉 = δi,j (173)

〈i|H|j〉 = −tδj,i±1 (174)

〈i|H|i〉 = ǫ. (175)

The first one implies orthogonality of orbitals sitting on different sites, and
this implies, as we are going to see later, that these are “Wannier orbitals”.The
second line means that the Hamiltonian only mizes orbitals sitting on neigh-
boring sites, while the third just defines a “site energy”, which is just a
constant shift. We are also neglectning the electron-electron interaction.

As a consequence of the above, the Hamiltonian matrix will be band
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diagonal:

H =



























ǫ −t 0 0 · · · 0
−t ǫ −t 0 · · · 0
0 −t ǫ −t · · · 0
0 0 −t ǫ −t · · · 0
...

...
0 · · · ǫ −t
0 · · · −t ǫ



























(176)

Here we assumed periodic boundary conditions, meaning:

〈0|H|N − 1〉 = −t (177)

〈N − 1|H|0〉 = −t (178)

and obviously, the Hamiltonian is real and symmetric.
We find the solution by writing the wavefunction as a plane wave:

ci =
1√
N
eikRi (179)

Because of the periodic boundary conditions, we have to impose a condi-
tion over the allowed values of k:

eikNa = 1 ⇒ k =
2π

Na
m ; m : integer (180)

The resulting wavefunction is:

|ψk〉 =
1√
N

N−1
∑

i=0

eikRi|i〉. (181)

It is easy to verify by calculating H|ψk〉, that it is indeed an eigenstate
with an energy

ǫ(k) = ǫ− 2t cos (ka) (182)

Next, we are going to verify that it also is an eigenstate of the displace-
ment operator TR, i.e that is invariant under translations of the lattice: First,
we rewrite the wavefunction as:

|ψk〉 =
1√
N

N−1
∑

i=0

eikRiT−Ri
|0〉. (183)
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Then, it is easy to see that

TRj
|ψk〉 =

1√
N

N−1
∑

i=0

eikRiT−Ri+Rj
|0〉. (184)

=
1√
N
eikRj

N−1
∑

i=0

eik(Ri−Rj)T−Ri+Rj
|0〉. (185)

= eikRj |ψk〉. (186)

Hence, our wavefunction is a Bloch state. Another thing we notice is that
the energy band is periodic, with perdio 2π/a. Its is customary to represent
it in a region between −π/a and +π/a, which is nothing else, but the 1D
Brillouin zone.

5.2 General case: Linear Combination of Atomic Or-

bitals

Let us consider a more general case, independently of the form of the Hamil-
tonian and the crystal structure. We are assuming for simplicity that we
have one atom per unit cell (we shall see the generalization later), and the
electron-electron interarctions are ignored.

We shall write the wave function for a single site, as a linear combinatioj
of atomic orbitals

|i〉 =
∑

p

cp|ip〉, (187)

wheer the coefficient ci are unknown. We are also assuming that the different
orbitals form a locally orthogonal basis:

〈ip|iq〉 = δpq. (188)

This does not mean that the orbitals on different sites will not have a finite
overlap. Let us write a k-state as:

|k〉 =
1√
N

N−1
∑

i=0

eik.Ri|i〉. (189)

We want to explicitly obtain a form for the eigenvalue equation

H|k〉 = ǫ(k)|k〉. (190)
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Applying the Hamiltonian on the state |k〉 yields:

H|k〉 =
1√
N

N−1
∑

i=0,p

eik.RicpH|ip〉. (191)

We now multiply from the left by |0q〉, to obtain

〈0q|H|k〉 =
1√
N

N−1
∑

i=0,p

eik.Ricp〈0q|H|ip〉 (192)

= ǫ(k)
N−1
∑

i=0,p

eik.Ricp〈0q|ip〉. (193)

This leads to a generalized eigenvalue equation of the form

HC(k) = ǫ(k)SC(k) (194)

in order to calculate the matrix elements explicitly, let us break H into
a pice containing the atomic potential on site 0, Hat, and the remaning part
in a term that we call ∆U . Therefore, we obtain:

〈0p|H|0q〉 = 〈0p|Hat|0q〉 = ǫpδpq (195)

〈0p|H|0q〉 = 〈0p|∆U |iq〉 = γpq(Ri) (196)

〈0p|iq〉 = αpq(Ri) (197)

this yields

Hpq =
N−1
∑

i6=0

eik.Riγpq(Ri) + ǫpδpq (198)

Spq = 1 +
N−1
∑

i6=0

eik.Riαpq(Ri) (199)

Example 5.1: Single s band

H =
N−1
∑

i6=0

eik.Riγ(Ri) + ǫ (200)
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S = 1 +
N−1
∑

i6=0

eik.Riα(Ri) (201)

ǫ(k) =
H

S
=
ǫ+

∑N−1
i6=0 eik.Riγ(Ri)

1 +
∑N−1

i6=0 eik.Riα(Ri)
(202)

Going back to the linear chain, we find that the conditions we need to
impose to recover the previous results are:

γ = −t for Ri = ±a; α = 0 (203)

An then we obtain
ǫ(k) = ǫ− 2t cos (ka). (204)

5.2.1 Some remarks on the tight-binding method

• The characteristic feature of the tight-binding energy bands is that hte
bandwidth is determined by the small overlap integral γ. Thus, the tight-
binsing bands are narrow bands, and the smaller the overlap, the narrower
the bands are. In the limit of vanishing overlap, the bandwidth also vanishes
and the states become N -fold degenerate. This would correspond to core
electrond residing near the nucleus, resembling N isolated atoms, or atoms
that are pulled very far apart.
• Interestingly, although commonly associated to the kinetic energy, the in-
tegral γ –also called hopping integral– is purely generated by the potential
energy, and how it hybridizes neighboring orbitals.
• Near the bottom of the bands, the energy is quadratic in k, and the
constant-energy surfaces are spherical.
• The slope of the energy curve is zero when crossing perpendicular to one
of the faces of the Brillouin zone.
• In solids that are not monoatomic Bravais lattices, i.e they are decorated
lattices with more than one atom species, the tight-binding calculation be-
comes more complicated. if we have more than one atom per unit cell, we
can write:

|i〉 =
∑

αp

cαp|iαp〉 (205)

where alpha denotes the different atoms in the unit cell. Then, we need to
generalize the equations to obtain the matrix elements Hαp,βq, and Sαp,βq.
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5.2.2 Limitations of the tight-binding model

The main objection we can raise about the method is that we are trying to
describe the wavefunction of the periodic solid as a combination of atomic
orbitals that are eigenstates of a different Schrödinger equation with a dif-
feren potential and different boundary conditions. Moreover, the basis set is
incomplete, since it lacks all the scattered wave eigenstates of the Schrödinger
equation in the continuum. Although the wavefunction may be reasonably
describe the states near the core of the atoms, it cannot pretebd to represent
a Bloch state in the insterstitial region, where is must behave as a linear
combination of free-electron plane waves.

The core wavefunctionos are appreciable only in de vicinity of the atom,
and therefore the t-b approximation works reasonably well. However, in
valence band states, that have higher energy than core states, the wavefunc-
tions present more oscillations near the atomic cores. Moreover, they look
more plane-wave-like in the intersticial regiono between atoms. For these
states, the tight-binsing approximation does not work, and more sophisti-
cated methods are required, as we will stee in the next section.

5.3 Plane Waves

From Bloch’s theorem we know that

φi(r) = eik·ru(r) (206)

where the function u(r) is a periodic function with the periodicity of the
lattice. This means that we can always expand it in a Fourier series as

u(r) =
1√
Ω

∞
∑

K=0

Ck(K)eiK·r (207)

where K is a vector of the recirpocal lattice.
Let us define the PW basis as

φK(r) =
1√
Ω
eiK·r (208)

We can see that this is an orthonormal basis

〈φK|φK′〉 = 0 (209)
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We can now write the wave function φk in this basis as:

φk(r) = eik·r
∞
∑

K=0

CkφK(r). (210)

We can redefine the basis by including the phase in the exponential

φK+k(r) =
1√
Ω
ei(K+k)·r (211)

to obtain

φk(r) =
∞
∑

K=0

CkφK+k(r). (212)

5.3.1 Matrix elements

The basis is orthonormal. This implies that:

Sk
K,K′ = δK,K′ (213)

T k
K,K′ = − h̄2

2m
〈φk

K|∇2|φk
K′〉 =

h̄2

2m
|k + K|2δK,K′ (214)

V k
K,K′ = 〈φk

K|V |φk
K′〉 =

1

Ω

∫

V (r)ei(K−K′)·rd3r = VK−K′. (215)

Hence, we obtain the following expression for the Schrödinger equation:

∑

K′

(

h̄2

2m
|k + K|2δK,K′ + VK−K′

)

Ck(K
′) = ǫkCk(K) (216)

A realistic calculation should include a large number of terms in the series,
but usually it is necessary to impose a cutoff energy:

h̄2

2m
|k + K|2 < Ecutoff ⇒ |K| <

√

2mEcutoff

h̄2 (217)

43



5.3.2 Orthogonalized plane waves

This method is due to Herring, 1940. The idea is to build valence states
using plane waves that are orthogonal to the core states. the cores states
are treated as known, generally taken from tight-binding calculations using
atomic orbitals.

The OPW state is constructed by orthogonalizing the wave-function with
respect to the core states:

|φOPW
k+K 〉 = |K + k〉 −

∑

c

〈φc|k + K〉|φc〉. (218)

where the sum runs over all core states with Bloch vector k.
The orthogonalized plane waves satisfy a Scrödinger equation similar to

(216), but with the modified potential:

VOPW = V +
∑

c

(ǫ− ǫc)|φc〉〈φc| (219)
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5.4 The Pseudopotential Method

The pseudopotential theory began as an extension of the OPW method. It is
based on an ansatz which separates the total wave function into an oscillatory
part and a smooth part, the so called pseudo wave function. The strong true
potential of the ions is replaced by a weaker potential valid for the valence
electrons.

Philips and Kleinman (1959) showed that one can construct a smooth
valence function φ̃v that is orthogonal to the core states φc, by using the
following construction:

|φ̃v〉 = |φv〉 +
∑

c

αcv|φc〉, (220)

where the αcv = 〈φc|φ̃v〉 are orthogonalization coefficients. This pseudo wave-
function satisfies the modified Schrödinger equation:

[

H +
∑

c

(ǫv − ǫc)|φc〉〈φc|
]

|φ̃v〉 = ǫv|φ̃v〉. (221)

where H = T + V , and V is the bare nuclear potential. This shows that it is
possible to construct a pseudo-Hamiltonian

HPS = H +
∑

c

(ǫv − ǫc)|φc〉〈φc| (222)

with the same eigenvalues as the original Hamiltonian but smoother, nodeless
wave function. The associated potential:

VPS = V +
∑

c

(ǫv − ǫc)|φc〉〈φc| (223)

was called a pseudopotential. This new correction is repulsive, and cancels the
attractive potential enar the core, resulting into a smootha varying function.

To simplify the problem even further, model pseudopotentials are used in
place of the actual pseudopotential, for instace:

1. Constant effective potential in the core region

V (r) =

{

−Z
r

; r > r0
−Z
r0

; r ≤ r0
(224)
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2. Empty core model

V (r) =

{

−Z
r

; r > r0
0; r ≤ r0

(225)

3. model potential of Heine and Abarenkov:

V (r) =

{

−Z
r

; r > r0
const.; r ≤ r0

(226)

The solution of the problem is very simple. All these pseudopotentials
have to be Fourier transformed to obtain the coefficients VK−K′, which are
replaced in the OPW Schrödinger equation, which is in turn solved numeri-
cally.

5.4.1 Construction of pseudopotentials

Clearly, there is an enormous freedom in how pseudopotentials are con-
structed. Hoever, a sistematic, first-principles method to contruct pseudopo-
tentials is highly desirable. Clearly, a requirements is that the pseudopoten-
tial should coincide with the actual potential outside the core region. But
suppose tha the wave-function obtained with the pseudopotential differs from
the actual one in the core region. That means that their respective charges
will be distributed differently among core and valence regions, resulting in
their norms being different. This charge difference is called orthogonality
hole, and should be corrected for.

Different approaches have been used in the past construct pseudopoten-
tials. This is a complicated problem and a whole topic to study separately.

See Thijssen’s book for guidelines to build a self-consistent pseudo-potential.

5.4.2 Empirical pseudo-potentials

As we have seen beofre, we can write the pseudopotential as a Fourier series:

V (r) =
∑

K

V (K)eiK·r; VK =
1√
Ω

∫

d3rV (r)e−iK·r (227)

In crystal structures that consist of more than one atom per unit cell, we
need to introduce a structure factor SK, defined as

SK =
1

N

N
∑

i=1

eiK·ri, (228)
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where the sum runs over all teh N atoms in the unit cell, at positions ri.
The pseudopotential is teh expressed as a Fourier series, with the coefficients
corrected by the structure factor as:

VK → VKSK. (229)

In crystals with a diamond structure there are two atoms at the positions
r1 and r2 in the primitive unit cell. By taking the midpoint between the
two atoms in the unit cell as origin, the positions of the atoms are given by
r1 = a0

8
(1, 1, 1) = τ and r2 = −a0

8
(1, 1, 1) = −τ . Thus, the structure factor

is given by

SK =
1

2
(exp(−iK · τ) + exp(iK · τ)) = cos(K · τ) (230)

In unstrained diamond structures the reciprocal lattice vectors in order
of increasing magnitude are (in units of 2π

a0
):

K0 = (0, 0, 0) (231)

K3 = (1, 1, 1), ( 1,−1, 1) , . . . , (−1,−1,−1) (232)

K4 = (2, 0, 0), (−2, 0, 0), . . . , ( 0, 0,−2) (233)

K8 = (2, 2, 0), ( 2,−2, 0) , . . . , ( 0,−2,−2) (234)

K11 = (3, 1, 1), (−3, 1, 1) , . . . , (−3,−1,−1) (235)

(236)

Form factors with reciprocal lattice vectors larger than K2 > 11(2π
a0

)2

are neglected, since typically VK decreases as K−2 for large K. Assuming
that the atomic pseudopotentials are spherically symmetric V (r) = V (|r|),
the form factors only depend on the absolute value of the reciprocal lattice
vector. The form factor belonging to K0 shifts the entire energy scale by a
constant value, and can therefore be set to zero. The form factors belonging
to the reciprocal lattice vectors K3 have an absolute value of

√
3 · 2π

a0
and are

conventionally labeled V3. Since the structure factor of the reciprocal lattice
vectors K4 with magnitude 2 · 2π

a0
vanishes,

cos
(

2π

a0

τ · (±2, 0, 0)
)

= cos
(

±π
2

)

= 0 , (237)
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the respective form factor V4 does not enter the pseudopotential. Thus, only
three pseudopotentials form factors V3, V8 and V11 are required to calculate
the band structure.

Form Factor (Ry) Si Ge

V3 -0.2241 -0.2768
V8 0.0551 0.0582
V11 0.0724 0.0152

In Table 5.4.2 the parameters employed in the empirical pseudopotential
calculations are listed. They consist of three local form factors V3, V8, V11.
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5.5 The cellular (Wigner-Seitz) method

The TB model is too crude to be useful in calculations of actual bands, which
are to be compared with experimental results. Now we shall consider some of
the common methods employed in calculations of actual bands. The cellular
method was the earliest method employed in band calculations by Wigner
and Seitz. It was applied with success to the alkali metals, particularly to
Na and K.

The method begins by observing that because of the Bloch relation, if
we solve the Schrödinger equation in one unit cell, we know thie solution in
the entire solid. However, we need to impose the boundary conditions that
the function, and its derivative should vary continuously at the boundary
between two neighboring cells.

In order to find the solution of the Schödinger equation, we assume that
the electron, when in a particular cell, say A, is influenced by the potential of
the ion in that cell only. The ions in other cells have a negligible effect on the
electron in cell A because each of these cells is occupied, on the average, by
another conduction electron which tends to screen the ion, thereby reducing
its potential drastically. To ensure that the function ψk satisfies the Bloch
form ψk = eikruk , it is necessary that uk be periodic, i.e. uk be the same on
opposite faces of the cell.

The procedure is now clear in principle: We attempt to solve the Schrödinger
equation in a single cell, using for V (r) the potential of a free ion, which can
be found from atomic physics. In Na, for instance, V (r) is the potential of the
ion core Na+. It is still very difficult, however, to impose the requirements of
periodicity on the function for the actual shape of the cell, and to overcome
this difficulty Wigner and Seitz replaced the cell by a WS sphere of the same
volume as the actual cell. The reason why this method is suitable for Na, is
precisely because body-center cubic and face-centered cubic structures have
a WS cells that are polyhedra that resemble spheres.

Using these simplifying assumptions concerning the potential and the
periodic conditions, one then solves the Schrödinger equation numerically,
since an analytical solution cannot usually be found.

Since the potential is spherically symmetric we write the wave function
as

ψlm(r) = Ylm(θ, φ)Rl(r) (238)

where Ylm are spherical harmonics and the radial part satisfies the usual
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differential equation

Rl”(r) +
2

r
R′

l(r) +
2m

h̄

(

ǫ− V (r) − h̄2

2m

l(l + 1)

r2

)

R(r) = 0 (239)

Given the potential V (r) and any value of ǫ there is a unique Rl that
solves thsi equations and it is regular at the origin. These functions can be
calculated numerically. Next, we write the wavefunction as:

ψ(r, ǫ) =
∑

lm

AlmYlm(θ, φ)Rl(r, ǫ). (240)

Now, we need to impose the following boundary conditions:

ψ(r) = e−ik.Rψ(r + R), (241)

n · ~∇ψ(r) = −e−ik.R · ~∇ψ(r + R). (242)

where both r and R are points on the surface of the cell, and n is the outward
normal to the face of the WS cell. These boundary conditions introduces k
into the equations and determine the discrete values of the energies for which
these equations have a solution, i.e the energy bands ǫ = ǫ(k).

Its is in the impositioon of these conditions that we make the major
approximation. First, we take only as many terms in the expansion

∑

lm as
we are able to handle. Since there is only a finite number of coefficients in
the expansions , we can only fit the boundary condition for a finite numbers
of points on the cell. This leads to a set of k-dependent linear homogeneouos
equations for the coefficients Alm, that yield the wanted energies ǫn(k).

There are two ways to solve the k dependence:
- We fix k and we do a search to find the energies that correspond to

zeroes in the determinant.
- We solve the differential equation for a given value of the energy ǫ and

we look for the vector k at which the determinan vanishes. Provided that
we have not chosen a value of ǫ in the middle of the gap, we can always find
a solution.

5.5.1 Remarks about the cellular method

• Notice that the problem is equivalent to the atomic problem, except that
the atomic boundary conditions (that the wave function vanishes at infinity)
are replaced by the cellular boundary condition.
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• It is questionable wether the potential representing an isolated atom is
the best approximation for the periodic potential within the entire WS cell.
In particular, this potential has discontinous derivatives when crossing to
neighboring preimitive cells (the actual potential is quite flat and smooth in
such regions).

5.6 The Muffin-tin potential

A potential that overcomes the objectionos with the cellular method is the
Muffiin-tin potential, whcih is taken to represent an isolated ion within an
spehere of radius r0 around each lattice point, and taken to be constant
elsewhere. The muffin-tin potential mitigates both problems, being flat in
the intestitial region, and leading to matching conditions on a spherical,
rather than a polyhedral surface.

Formally, the muffin-tin potential can be defined by:

Um−t(r) =

{

V (|r− R|) when |r − R| < r0
constant when |r− R| ≥ r0

(243)

where r0 is less than half the distance between neighboring sites.

5.7 The Augmented plane-wave method (APW)

The APW method was developed by Slater in 1937. Since the effective crystal
potential was found to be constant in most of the open spaces between the
cores, the APW method begins by assuming such a muffin-tin potential. The
potential is that of a free ion at the core, and is strictly constant outside the
core. The wave function for the wave vector k is now taken to be

ψk(r) =

{

eik·r when |r− R| ≥0

atomic function when |r− R| < r0
(244)

where r0 is the core radius. Outside the core the function is a plane wave
because the potential is constant there. Inside the core the function is atom-
like, and is found by solving the appropriate free-atom Schrödinger equation.
Also, the atomic function is chosen such that it joins continuously to the
plane wave at the surface of the sphere forming the core; this is the boundary
condition here.
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Notice that there is no constraint relating k and ǫ for a plane-wave, since
we have ǫ = h̄2k2/2m. It is the boundary conditions that determine the value
of k for a given ǫ.

5.7.1 Matching the boundary conditions

We have defined our APW as:

ψk(r) =

{

eik·r when |r− R| ≥ r0
∑

lmAlmYlm(θ, φ)Rl(r, ǫ). when |r −R| < r0
(245)

If an eigenfunction would be discontinuous, its kinetic energy would not
be well-defined. Such a situation can therefore never happen, and we have to
require that the plane wave outside the sphere matches the function inside
the sphere over the complete surface of the sphere (in value, not in slope).
That seems a weird thing to do: a plane wave is oscillating and has a unique
direction built in, how can it match another function based on spherical
harmonics over the entire surface of a sphere? To see how this is possible,
we expand the plane wave in spherical harmonics:

exp (ik · r) = 4π
∞
∑

l=0

l
∑

m=−l

il jl(kr)Y
∗
lm(θk, φk)Ylm(θ, φ) (246)

where θ,φ,r correspond to the polar representation of r and θk,φk,k to k.
To keep the problem tractable, we cut all the expansions in lm to a finite
value of l. jl(r) is the Bessel function of order l. Requiring this at the sphere
boundary means that all the coefficients of Ylm have to be equal for both
parts of the function at the boundary. Thsi conditiono fixes the Alm and we
obtain:

ψAPW
k (r) = 4π

∑

lm

il
[

jl(kr0)

Rl(r0)

]

Rl(r)Y
∗
lm(θk, φk)Ylm(θ, φ) (247)

for the function inside the sphere.
The APW function is no a solution to the Scrödinger equation, but they

are appropriate for expanding the actual wave function. The APW method
tries to approximate the correct solution to the crystal by a superposition
of APW’s, all with the same energy. For any reciprocal lattice vector K,
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the APW satisfies the Bloch condition with wave vector k, but for the entire
wavefunctioon to be of the Bloch form we need the expansion of ψk(r)

ψk(r) =
∑

K

cKψ
APW
k+K,ǫ(k)(r) (248)

where the sum is over all the reciprocal lattice vectors.
The hope is that we swill need only a small number of APW’s to ap-

proximate the full Schrödinger euqation in the interstitial region and at the
boundary. In practice, as many as a several hundreeds can be used. By
the time we do this, the energy does not change much, as more APW’s are
added, and we achieve convergence.

All the APW have to be evaluated at the same energy. The coefficients
are given, again, by solving the generalized eigenvalue equation

Hc = ESc (249)

where the elements of H and S have very complicated expressions.
The most remarkable aspect of this equation is, that even though is looks

like an ordinary eigenvalue problem, the marix elements depend on energy!
To solve the problem it is convenient to work a fixed energy, and look for the
k’s at which the following secular expresion is satisfied:

(H − ES)c = 0 (250)

Another possibility, is to fix the momentum k, and define a fine energy mesh,
and look for the zeros of the determinant |H − ES|.

5.7.2 Matrix elements

(H−ES)ij = 〈k+Ki|H−ES|k+Kj〉 = −EAij+Bij+
lmax
∑

l=0

Cijl
R′

l(r0)

Rl(r0)
. (251)

Aij =
−4πr2

0

Ω

j1(|Ki −Kj |r0)
|Ki −Kj |

+ δij (252)

Bij =
h̄2

2m
Aij(qi · qj) (253)

Cijl = (2l + 1)
2πr2

0

Ω
Pl

(

qi · qj

kikj

)

jl(qir0)jl(qjr0) (254)

where Ω is the volume of the unit cell, and Pl is the Legendre polynomial,
and qi = Ki + k.
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5.7.3 Some remarks about the APW method

• Note that the wavefunction in general will have discontinous derivatives on
the boundary between the interstitial and atomic regions.
• In the APW method the augmenting function Rl corresponds to the ex-
act muffin-tin potential eigenstate of eigenenergy . Because of this energy
dependence of the function Rl the eigenvalue problem will be non-linear in
energy and has to be solved iteratively. This is, however, computationally
very costly. On the other hand, any eigenstate of a different eigenenergy will
be poorly described without adapting . To overcome this problem linearized
versions of the APW method have been developed, where the energy is set to
a fixed value and the basis functions are modified to gain extra flexibility to
cover a larger energy region around their linearization energy. These meth-
ods are the linearized APW method (LAPW) and the APW+ local orbitals
(APW+lo).

5.8 The LAPW method

The traditional way of linearizing the APW method is the LAPW method,
which was developed in the beginning of the 1970s. In this approach the basis
functions are expanded in the same way as in Eq. (245) in the interstitial,
but inside the muffin- tin the basis functions do not only depend on Rl(r, ǫ),
but also on its derivative Ṙl(r, ǫ) ≡ ∂Rl/∂ǫ.

The idea is that the radial wavefunction can be approximated well around
an energy of interest by a linearization of the form:

R(r, ǫ) = R(r, ǫp) + (ǫ− ǫp)Ṙ(r, ǫp), (255)

where ǫp is some reference energy, or pivot energy.
The LAPW wavefunction then reads

ψk(r) =

{

eik·r when |r− R| ≥ r0
∑

lm

[

AlmRl(r, ǫp) +BlmṘ(r, ǫp)
]

Ylm(θ, φ) when |r− R| < r0
(256)

The remarkable aspect of this expression is that the wavefunction no
longer depends on the energy. The price we pay is in the accuracy of the
wavefunction inside the MT sphere.
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We end up with a generalized eigenvalue problem with energy-independent
overlap and Hamiltonian matrices. these matrices are reliables within some
range around the pivot energy.
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5.9 Adding electron-electron interactions

The exchange correlations and Hartree potenatials are density-dependent and
add a self-consistency ingredient to the soup. Now, the Hamiltonian becomes
a Kohn-Sham Hamiltonian. After diagonalizing teh Hamiltonian, we obtain
teh Fourier compotents of the wave-functions. Then, we can calculate the
density in real-space and reciprocal space.

The exchange-correlation potentials is given as the derivative of the en-
ergy with respect to the density n. It must be calculated in real space,
and then Fourier transformed to that it can be added to the Hamiltonian in
momentum representation.

The Hartree potential

VH(r) =
∫

n(r′)

|r − r′|d
3r′ (257)

can be Fourier transformed to give

VH(K− K′) =
4π

|K −K′|2n(K −K′). (258)
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6 Random sequences

Imagine a bingo draw, where numbered balls are picked randomly. If you
want to reproduce this process with a computer, you will find that it is not
as easy as you might think. Computing is completely deterministic by nature,
and reproducing or simulating naturally random processes is a particularly
delicate matter.

The problem is how to use a computer to generate random numbers. In
fact, this is impossible! We can program a computer to generate a sequence of
numbers, following certain law. Although the output values of this sequence
might look random (according to some rules that we will discuss in this
section), the existence of a deterministic law behind them is telling us that
preciselly, these are not random numbers at all!

We define a sequence of numbers {r1, r2, ...rn} as “random” if there are
no correlations among the numbers in the sequence. A random sequence
can have a distribution, i. e. the probability of a number to appear in
the sequence would correspond to some distribution. If the distribution is
uniform, all numbers are equally probable to appear. Mathematically, the
likehood of a number to occur is described by a distribution function P (r).
This means that the probability of finding ri in the interval [r, r+dr] is given
by P (r)dr. The usual random number generators provided by compilers
or libraries generate a uniform distribution between 0 and 1, that means
P (r) = 1. Ideally this numbers have equal probability, and it is independent
of the previous one.

The computer, the sequences are “pseudo-random” because knowing a
number rm and the preceeding ri, we can predict the next one rm+1. This
is evident in the correlations. Some sophisticated psudo-random number
generators do a good job hiding this fact from our eyes, although if you look
hard enough, you will eventually figure it out.

6.1 Pseudo-random number generators

In this section we will simply review some possible alternatives for pseudo-
random number generators. These go from the simplest “congruential” or
“power residue” algorithm to more sophisticated ones that can be found in
the literature. We will limit ourselves to understand this simple example. We
want to generate a sequence {ri} over an interval [0,M − 1]. You multiply
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the previous random number ri by a constant a, add on another constant c,
take the modulus by M , and then keep just the fractional part, the reminder,
as the next rendom number ri+1:

ri+1 = (ari + c)modM = remainder
(

ari + c

M

)

.

The value r1 has to be supplied by the user, and it is called the “seed” of the
sequence. The sequence will be uniquely pre-determined by the seed.

As an example, let us pick c = 1,a = 4,M = 9 and r1 = 3. We obtain the
sequence:

r1 = 3, (259)

r2 = (4 × 3 + 1)mod9 = 4, (260)

r3 = (4 × 4 + 1)mod9 = 8, (261)

r4 = (4 × 8 + 1)mod9 = 6, (262)

, 7, 2, 0, 1, 5, 3, ... (263)

We get a sequence of length M = 9 after which the entire sequence repeats.
This means that the “period” of the sequence is M −1. If we want the num-
bers in the range [0, 1] we would divide these values by M . This algorithm
is extremely simple and portable, and it’s particularly suitable for simple
applications. As we have seen, the longer the M , the longer the “period”
of the sequence. Using large integer raises the problem of protability. Most
processors use 32-bit representation for integers (some 64). This limits the
largest possible integer that can be used. However, there are ways to work
around this issue.

The C++ Standard Library provides a psuedo-random number generator.
It provides a function to initialize the seed of the sequence:

srand(size t seed); and the actual call to retrieve a new random number
rand();
The generator provides a sequence between 0 and RAND MAX, which

is a large integer that deppends on the implementation. A common way to
generate independent sequences is to use the internal clock of the computer
to generate a relatively random seed.

For more on random number generators read Knuth, Numerical Recipes.
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6.2 Testing for randomness and uniformity

Since the random numbers are generated according to a deterministic rule,
the numbers in the sequence must be correlated in a certain way. This can
affect a simulation that assumes random events.Therefore it is wise to test a
generator before you use it.

6.2.1 Moments

The k − th moment of a distribution is defined as:

〈xk〉 =
1

N

N
∑

i=1

xk
i . (264)

If the numbers are distributed with a uniform probability distribution P (x),
then (264) must correspond to the moment of P :

∫ 1

0
xkP (x)dx ∼ 1

k + 1
.

If this holds for your generator, then you know that the distribution is uni-
form. If the deviation from this varies as 1/

√
N , then you also know that

the distribution is random.

6.2.2 Autocorrelation

Another simple test determines the near-neighbor correlation in your random
sequence by taking the sume of products at a “distance” m:

C(m) = 〈xixi+m〉 =
1

N

N
∑

i=1

xixi+m. (265)

If your random numbers are distributed with a joint probability distribu-
tion P (xi, xi+m) and are independent and uniform, then (265) must compare
to the integral:

∫ 1

0
dx
∫ 1

0
dyP (x, y)xy.
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6.2.3 Visual test

If you plot the points (r2i, r2i+1) and you notice some sort of regularity, the
sequence is not random. If the points are random, they should uniformly fill
a square with no discernible pattern.

6.2.4 Statistical errors

If you run a simulation using a pesudo-random generator, you may expect
your measurements (of some quantity, and observable for instance) to be dis-
tributed according to some statistics. If your results do not satisfy these
statistics, then you should pick another generator. If you know a good
random-number generator (you usually try to avoid this kind because they
are time-consumming), it is a good idea to compare your results for a short
run, to see is they agree or not.

6.3 Non-uniform random distributions

In th eprevious section we learned how to generate random deviates with a
uniform probability distribution in an interval [a, b]. This distributioon is
normalized, so that

∫ b

a
P (x)dx = 1.

Hence, P (x) = 1/(b− a).
Now, suppose that we generate a sequence {xi} and we take some function

of it to generate {y(xi)} = {yi}. This new sequence is going to be distributed
according to some probaility density P (y), such that

P (y)dy = P (x)dx

or

P (y) = P (x)
dx

dy
.

If we want to generate a desired normalized distribution P (y), we need
to solve the differential equation:

dy

dy
= P (y).
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But the solution of this is

x =
∫ y

0
P (y′)dy′ = F (y).

Therefore,
y(x) = F−1(x), (266)

where F−1 is the inverse of F .

6.3.1 Exponential distribution

As an example, let us take y(x) = − ln (x) with P (x) representing a uniform
distribution in the interval [0, 1]. Then

P (y) =
dx

dy
= e−y,

which is distributed exponentially. This distribution occurs frequantly in real
problems such as the readioactive decay of nuclei. You can also see that the
quantity y/λ has the distribution λe−λy.

6.4 von Neumann rejection

A simple and ingenious method for generating random points with a prob-
ability distribution P (x) was deduced by von Neumann. Draw a plot with
you probability distribution, and on the same graph, plot another curve f(x)
which has finite area and lies everywhere above your original distribution. We
will call f(x) the “comparison function”. Generate random pairs (xi, yi) with
uniform distribution inside f(x). Whenever the point lies inside the area of
the original probability, we accept it, otherwise, we reject it. All the accepted
points will be uniformly distributed within the original area, and therefore
will have the desired distribution. The fraction of points accepted/rejected
will deppend on the ratio between the two areas. The closer the comparison
function f(x) resembles P (x), the more points will be accepted. Ideally, for
P (x) = f(x), all the points will be accepted, and none rejected. However, in
practice, this is not always possible, but we can try to pick f(x) such that
we minimize the fraction of rejected points.

It only remains how to pick a number with probability f(x). For this
purpose, we utilize the method shown in the previous section, using a func-
tion whose indefinite intergral is know analitically, and is also analitically
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invertible. We then pick a random number x and retrieve the corresponding
y(x) according to (266). Then, we generate a second random number and
we use the rejection criterion.

An equivalent procedure consists of picking the second number between
0 and 1 and accept or reject according to wether is it respectively less than
or greater than the ratio P (x)/f(x)

6.5 Random walk methods: the Metropolis algorithm

Suppose that we want to generate random variables according to an arbitrary
probability density P (x). The Metropolis algorithm produces a “random
walk” of points {xi} whose asymptotic probability approaches P (x) after a
large number of steps. The random walk is defined by a “transition probabil-
ity” w(xi → xj) for one value xi to another xj in order that the distribution
of points x0, x1, x2, ... converges to P (x). In can be shown that it is sufficient
(but not necessary) to satisfy the “detailed balance” condition

p(xi)w(xi → xj) = p(xj)w(xj → xi). (267)

This relation dos not specify w(xi → xj uniquely. A simple choice is

w(xi → xj) = min

[

1,
P (xj)

P (xi)

]

. (268)

This choice can be described by the following steps. Suppose that the “ran-
dom walker” is a position xn. To generate xn+1 we

1. choose a trial position xt = xn + δn , where the δn is a random number
in the interval [−δ, δ].

2. Calculate w = P (xt)/P (xn).

3. If w ≥ 1 we accept the change and let xn+1 = xt.

4. If w ≤ 1, generate a random number r.

5. If r ≤ w, accept the change and let xn+1 = xt.

6. If the trial change is not accepted, the let xn+1 = xn.
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It is necessary to sample a number of points of the random walk before
the asymptotic probability P (x) is attained. How do we choose the “step
size” δ? If δ is too large, only a small fraction of changes will be accepted
and the sampling will be inefficient. If δ is too small, a large number will be
accepted, but it would take too long to sample P (x) over the whole interval
of interest. Ideally, we want at least 1/3-1/2 of the trial steps to be accepted.
We also want to choose x0 such that the distribution {xi} converges to P (x)
as quickly as possible. An obvious choice is to begin the random walk at the
point where P (x) is maximum.

6.5.1 Exercise 9.1: The Gaussian distribution

1. Use the Metropolis algorithm to generate a Gaussian distribution P (x) =
A exp (−x2/2σ2). Is the numerical value of the normalization constant
A relevant? Determine the qualitative dependence of the acceptance
ratio and the equilibrium time on the maximum step size δ. One pos-
sible criterion for equilibrium is that 〈x2〉 ≈ σ2. For σ = 1, what is a
reasonable choice of δ? (choose x0 = 0.)

2. Plot the asymptotic probability distribution generated by the Metropo-
lis algorithm.
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7 Monte Carlo integration

Imagine that we want to measure the area of a pond with arbitrary shape.
Suppose that this pond is in the middle of a field with known area A. If we
throw N stones randomly, such that they land within the boundaries of the
field, and we count the number of stones that fall in the pond Nin, the area
of the pond will be approximately proportional to the fraction of stones that
make a splash, multiplied by A:

Apond =
Nin

N
A.

This simple procedure is an example of the “Monte Carlo” method.

7.1 Simple Monte Carlo integration

More generaly, imagine a rectangle of height H in the integration interval
[a, b], such that the function f(x) is within its boundaries. Compute n pairs
of random numbers (xi, yi) such that they are uniformly distributed inside
this rectangle. The fraction of points that fall within the area contained
below f(x), i. e., that satisfy yi ≤ f(xi) is an estimate of the ratio o fthe
integral of f(x) and the area of the rectangle. Hence, the estimate of the
integral will be given by:

∫ b

a
f(x)dx ≃ I(N) =

Nin

N
H(b− a). (269)

Another Monte Carlo procedure is based on the definition:

〈g〉 =
1

(b− a)

∫ b

a
f(x)dx. (270)

In order to determine this average, we sample the value of f(x):

〈f〉 ≃ 1

N

N
∑

i=1

f(xi),

where the N values xi are distributed unformly in the interval [a, b]. The
integral will be given by

I(N) = (b− a)〈f〉.
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7.2 Monte Carlo error analysis

The Monte Carlo method clearly yields approximate results. The accuracy
deppends on the number of values N that we use for the average. A possible
measure of the error is the “variance” σ2 defined by:

σ2 = 〈f 2〉 − 〈f〉2, (271)

where

〈f〉 =
1

N

N
∑

i=1

f(xi)

and

〈f 2〉 =
1

N

N
∑

i=1

f(xi)
2.

The “standard deviation” is σ. However, we should expect that the error
decreases with the number of points N , and the quantity σ defines by (271)
does not. Hence, this cannot be a good measure of the error.

Imagine that we perform several measurements of the integral, each of
them yielding a result In. Thes values have been obtained with different
sequences of N random numbers. According to the central limit theorem,
these values whould be normally dstributed around a mean 〈I〉. Suppouse
that we have a set of M of such measurements In. A convenient measure
of the differences of these measurements is the “standard deviation of the
means” σM :

σ2
M = 〈I2〉 − 〈I〉2, (272)

where

〈I〉 =
1

M

M
∑

n=1

In

and

〈I2〉 =
1

M

M
∑

n=1

I2
n.

Although σM gives us an estimate of the actual error, making additional
meaurements is not practical. instead, it can be proven that

σM ≈ σ/
√
N. (273)
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This relation becomes exact in the limit of a very large number of measure-
ments. Note that this expression implies that the error decreases withthe
squere root of the number of trials, meaning that if we want to reduce the
error by a factor 10, we need 100 times more points for the average.

Exercise 10.1: One dimensional integration

1. Write a program that implements the “hit and miss” Monte Carlo
integration algorithm. Find the estimate I(N) for the integral of

f(x) = 4
√

1 − x2

as a function of N , in the interval (0, 1). Choose H = 1, and sam-
ple only the x-dependent part

√
1 − x2, and multiply the result by 4.

Calculate the difference between I(N) and the exact result π. This
difference is a measure of the error associated with the Monte Carlo
estimate. Make a log-log plot of the error as a function of N . What is
the approximate functional deppendece of the error on N for large N?

2. Estimate the integral of f(x) using the simple Monte Carlo integration
by averaging over N points, using (270), and compute the error as
a function of N , for N upt to 10,000. Determine the approximate
functional deppendence of the error on N for large N . How many
trials are necessary to determine IN to two decimal places?

3. Perform 10 measurements In(N), with N = 10, 000 using different
random sequences. Show in a table the values of In and σ according
to (270) and (271). Use (272) to estimate the standard deviation of
the means, and compare to the values obtained from (273) using the
100,000 values.

4. To verify that your result for the error is independent of the number of
sets you used to divide your data, repeat the previous item grouping
your results in 20 groups of 5,000 points each.

Exercise 10.2: Importance of randomness

To examine the effects of a poor random number generator, modify your
program to use the linear congruential random number generator using the
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perameters a = 5, c = 0 and the seed x1 = 1. Repeat the integral of the
previous exercise and compare your results.

7.3 Variance reduction

If the function being integrated does not fluctuate too much in the interval
of integration, and does not differ much from the average value, then the
standard Monte Carlo mean-value method should work well with a reasonable
number of points. Otherwise, we will find that the variance is very large,
meaning that some points will make small contributions, while others will
make large contributions to the integral. If this is the case, the algorithm
will be very inefficient. The method can be improves by splitting the function
f(x) in two f(x) = f1(x) + f2(x), such that the integral of f1(x) is known,
and f2(x) as a small variance. The “variance reduction” technique, consists
then in evaluating the integral of f2(x) to obtain:

∫ b

a
f(x)dx =

∫ b

a
f1(x)dx+

∫ b

a
f2(x)dx =

∫ b

a
f1(x)dx+ J.

7.4 Importance Sampling

Imagine that we want to sample the function f(x) = e−x2

in the interval [0, 1].
It is evident that most of our points will fall in the region where the value
of f(x) is very small, and therefore we will need a large number of values to
achieve a decent accuracy. A way to improve the measurement by reducing
the variance is obtained by “importance sampling”. As the name says, the
idea is to sample the regions with larger contributions to the integral. For
this goal, we introduce a probability distribution P (x) normalized in the
interval of integration

∫ b

a
P (x)dx = 1.

Then, we can rewrite the integral of f(x) as

I =
∫ b

a

f(x)

P (x)
P (x)dx (274)
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We can evaluate this integral, by sampling according to the probability dis-
tribution P (x) and evaluating the sum

I(N) =
1

N

N
∑

i=1

f(xi)

P (xi)
. (275)

Note that for the uniform case P (x) = 1/(b − a), the expression reduces to
(270).

We are free to choose P (x) now. We wish to do it in a way to reduce
and minimize the variance of the integrand f(x)/P (x). The way to to this
is picking a P (x) that mimics f(x) where f(x) is large. if we are able to
determine an apropiate p(x), the integrand will be slowly varying, and hence
the variance will be reduced. Another consideration is that the generation
of points according to the distribution P (x) should be a simple task. As an
example, let us consider again the integral

I =
∫ 1

0
e−x2

dx.

A reasonable choice for a weigh function is P (x) = Ae−x, where A is a
normalization constant.

Notice that for P (x) = f(x) the variance is zero! This is known as the
zero variance property.

Exercise 10.3: Importance sampling

1. Choose the weight function P (x) = e−x and evaluate the integral:

∫ ∞

0
x3/2e−xdx.

2. Choose P (x) = e−ax and estimate the integral

∫ π

0

dx

x2 + cos2 x
.

Determine the value of a that minimizes the variance of the integral.

68



Exercise 10.4: The Metropolis algorithm

Use the Metropolis algorithm to sample points according to a ditribution and
estimate the integral

∫ 4

0
x2e−xdx,

with P (x) = x2e−x for 0 ≤ x ≤ 4. Plot the number of times the walker is at
points x0, x1, x2, ... Is the integrand sampled uniformly? If not, what is the
approximate region of x where the integrand is sampled more often?
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8 Monte Carlo Simulation

8.1 The Canonical Ensemble

Most physical systems are not isolated, bu exchange energy with the envi-
ronment. Since the system is very small compared to the environment, we
consider that the environment acts effectively as a heat reservoir or heat bath
at a fixed temperature T . If a small system is put in thermal contact with
the heat bath, it will reach thermal equilibrium exchanging energy until the
system attains the temperature of the bath.

Imagine an infinitely large number of mental copies of the system and
the heat bath. The probability Ps that the system is found in a microstate
s with energy s is given by:

Ps =
1

Z
e−Es/kBT , (276)

where Z is the normalization constant. This corresponds to the canonical
ensemble. Since

∑

Ps = 1, we have

Z =
∑

s

e−Es/kBT , (277)

where the sum is over all the possible microstates of the system. This equa-
tion defines the “partition function” of the system.

We can use (276) to obtain the ensemble average of physical quantities
of interest. For instance, the mean energy is given by:

〈E〉 =
∑

s

Es Ps =
1

Z

∑

s

Es e
−βEs ,

with β = 1/kBT .

8.2 The Metropolis algorithm

we wan to obtain an estimate for the mean value of an observable A:

〈A〉 =
∑

s

Ase
−βEs/

∑

s

e−βEs ,
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where Es and As are the values of the energy and the quantity A in the
configuration s. The idea of using Monte Carlo consists in sampling a subset
of configuration and approximating the average by the mean over the sample:

〈A〉 ≃
m
∑

s

Ase
−βEs/

m
∑

s

e−βEs,

where the sampling is over m configurations.
A crude Monte Carlo procedure is to generate a configuration at random,

calculate Es and As, and the contributions of this configuration to the sums.
This is equivalent to the “hit and miss” Monte Carlo method for evaluating
integrals. We have seen that this approach is very inefficient, because the
configurations generated would likely be very improbable and contribute very
little to the sum. Instead, we want to generate a sample of configurations
that are important, i. e. have large contributions to the sums. This is pre-
cisely the equivalent to “importance sampling”. Hence, we need to generate
the configurations according to a probability distribution. In this case, the
most convenient one is not other than the Boltzmann probability itself Ps

(276). Since we will average over the m configurations generated with this
probability, we must use the expression:

〈A〉 ≃
m
∑

s

As

Ps
e−βEs/

m
∑

s

1

Ps
e−βEs =

1

m

m
∑

s

As

The idea of the Monte Carlo algorithm consists in performing a random
walk over the space of configurations. The walker “hops” from a configuration
i to another j using the “transition probability”

W = min

(

1,
Pj

Pj

)

.

Replacing by the corresponding expression, we obtain:

W = min
(

1, e−β(Ej−Ei)
)

.

Since we are only interested in the ratio Pj/Pj, it is not necessary to know
the normalization constant Z. Although we have picked this expression for
the transition probability W , is not the only choice. It can be shown that
the only requirement is that W satisfies the “detailed balance” condition:

W (i→ j)e−βEi = W (2 → j)e−βEj .
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Another comon choice in the literature is given by:

W (i→ j) =
1

e−β(Ej−Ei) + 1
.

Note that if ∆E = 0, then W = 1/2 and the trial configuration has an equal
probability of being accepted.

The pseudocode for a Monte Carlo simulation can be outlined as follows:

1. Establish an initial configuration.

2. Make a random trial change in the configuration. For example, choose
a spin at random and try to flip it. Or choose a particle at random and
attempt to displace it a random distance.

3. Compute the change in the energy of the system ∆E due to the trial
change.

4. If ∆e ≤ 0, accept the new configuration and go to step 8.

5. If ∆E is positive, compute the “transition probability” W = e−β∆E.

6. Generate a random number r in the interval [0, 1].

7. If r ≤ W , accept the new configuration; otherwise retain the previous
configuration.

8. Repeat steps (2) to (8) to obtain a sufficient number of configurations
or “trials”.

9. Compute averages over configurations which are statistically indepen-
dent of each other.

Exercise 13.1: Classical gas in 1D

1. simulate an ideal gas of N particles in 1D. Choose N = 20, T = 100
and 200 MC steps. Give all the particles the same initial velocity
v0 = 10. Determine the value of the maximum velocity change ∆v so
that the acceptance ratio is approximately 50%. What is the mean
kinetic energy and mean velocity of the particles?
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2. We might expect that the total energy of an ideal gas to remain con-
stant since the particles do not interact with each other and hence they
cannot exchange energy directly. What is the initial value of the energy
of the system? Does it remain constant? If it does not, explain how
the energy changes. Explain why the measured mean particle velocity
is zero even though the initial particle velocities are not zero.

3. What is a simple criterion for “thermal equilibrium”? Estimate the
number of Monte Carlo steps per particle necessary for the system to
reach thermal equilibrium. What choice of the initial velocities allows
the system to reach thermal equilibrium at temperature T as quickly
as possible?

4. Compute the mean energy per particle for T = 10, 100 and 400. In
order to compute the averages after the system has reached thermal
equilibrium, start measuring only after equilibrium has been achieved.
Increase the number of Monte Carlo steps until the desired averages do
not change appreciably. What is the approximate number of warmup
steps for N = 10 and T = 100, and for N = 40 and T = 100? If
the number of warmup steps is different in the two cases, explain the
reason for this difference.

5. Compute the probability P (E)dE for the system of N particles to have
a total energy between E and E + dE. Do you expect P (E) to be
proportional to e−βE? Plot P (E) as a function of E and describe
the qualitative behavior of P (E). Doe s the plot of ln (P (E)) yield a
straight line?

6. Compute the mean energy for T = 10, 20, 30, 90, 100 and 110 and
estimate the heat capacity.

7. Compute the mean square energy fluctuations 〈∆E2〉 = 〈E2〉−〈E〉2 for
T = 10 and T = 40. Compare the magnitude of the ratio 〈∆E2〉/T 2

with the heat capacity determined in the previous item.
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8.3 The Ising model

Consider a lattice with N sites, where each site i can assume two possible
states si = +1,−1, or spin “up” and spin “down”. A particular configuration
or microstate of the lattice is specified by the set of variables {s1, s2, ...sN}
for all lattice sites.

Now we need to know the dependence of the energy E of a given mi-
crostate, according to the configuration of spins. The total energy in the
presence of a uniform magnetic field is given by the “Ising model”:

E = −J
∑

〈ij〉

sisj − h
N
∑

i=1

si, (278)

where the first summation is over all nearest neighbor pairs and the second
summation is over all the spins of the lattice. The “exchange constant” J is a
measure of the strength of the interaction between nearest neighbor spins. If
J > 0, the states with the spins aligned ↑↑ and ↓↓ are energetically favored,
while for J < 0 the configurations with the spins antiparallel ↑↓ and ↓↑ are
the ones that are preferred. In the first case, we expect that the state with
lower energy is “ferromagnetic”, while in the second case, we expect it to be
“antiferromagnetic”. If we subject the system to a uniform magnetic field
h directed upward, the spins ↑ and ↓ possess and additional energy −h and
+h respectively. Note that we chose the units of h such that the magnetic
moment per spin is unity.

Instead of obeying Newton’s laws, the dynamics of the Ising model cor-
responds to “spin flip” processes: a spin is chosen randomly, and the trial
change corresponds to a flip of the spin ↑→↓ or ↓→↑.

8.3.1 Boundary conditions

Since we are interested in the properties of an infinite system, we have to
consider the boundary conditions. The simplest case corresponds to “free
boundary condition”, where the spins at sites 1 and N are open ends and
have one interaction each. In general a better choice is periodic boundary
conditions, where sites 1 and N interact with each other closing a loop. In
this situation, the chain has the topology of a ring, and all the spins have
the same number of interactions. We also say that there is translational
invariance, since the origin can be picked arbitrarily.
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8.3.2 Physical quantities

The net magnetic moment or “magnetization’ M is given by

M =
N
∑

i=1

si. (279)

Usually we are interested in the average 〈M〉 and the fluctuations 〈M2〉 −
〈M〉2 as a function of the temperature of the system and the applied magnetic
field.

Exercise: One-dimensional Ising model

1. Choose N = 20, T = 1.0, and all the spins initially pointing “up” as
the initial state. Calculate the energy after each step, and estimate the
number of steps for the system to reach equilibrium.

2. Pick all the spins initially poiting randomly. Estimate the time that
takes for the system to reach equilibrium.

3. Choose N = 20 and equilibrate the system for 100 MC steps. Use at
least 200 MC steps to determine the mean energy 〈E〉 and magneti-
zation 〈M〉 as a function of T in the range T = 0.5 to 5.0. Plot 〈E〉
as a function of T ans discuss its qualitative features. Compare your
computed results for the mean energy to the exact values:

〈E〉 = −N tanh
(

J

kBT

)

.

What are yout results for 〈M〉? Do they depend on the initial config-
uration?

4. Is the acceptance ratio and increasing or decreasing function of T ?
Does the Metropolis algorithm become more or less efficient at low
temperatures?

75



8.4 Simulation of the 2D Ising model

One of the most interesting phenomena in nature is ferromagnetism. A FM
material exhibits a non-zero spontaneous magnetization in the absence of an
applied magnetic field. This occurs below a well-defined critical temperature
Tc known as the Curie temperature. For T > Tc the magnetization van-
ishes. Hence Tc separates two phases, a disordered one for T > Tc, and a
ferromagnetic one for T < Tc.

Although the Ising model is too simple, it already contains much of the
physics of the FM phase transition. In order to explore the properties of this
model, we need to calculate some physical quantities of interest, including
the mean energy 〈E〉, the mean magnetization 〈M〉, the heat capacity C,
and the magnetic susceptibility χ.

8.4.1 The heat capacity

One way to measure the heat capacity at constant external field id from the
definition:

C =
∂〈E〉
∂T

.

Another way is to use the statistical fluctuations for the total energy in the
canonical ensemble:

C =
1

kBT 2

(

〈E2〉 − 〈E〉2
)

.

8.4.2 The magnetic susceptibility

The magnetic susceptibility χ is an example of a “response function ”, since
it measures the ability of a spin to “respond” or flip with a change in the ex-
ternal magnetic field. The zero isothermal magnetic susceptibility is defined
by the thermodynamic derivative

χ = lim
H→0

∂〈M〉
∂H

.

The zero field susceptibility can be related to the magnetization fluctuations
in the system:

χ =
1

kBT

(

〈M2〉 − 〈M〉2
)

,

where 〈M2〉 and 〈M〉2 are zero field values.
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8.5 Metropolis algorithm

8.5.1 Boundary conditions

As discussed earlier, the use of PBC minimizes the finite size effects. How-
ever, a disadvantage is that they reduce the minimum separation between
two spins to half the length of the system.

8.5.2 Initial conditions and equilibration

We can pick a random initial configuration. However, as we shall see, in some
simulations the equilibration process can account for a substantial fraction
of the total computer time. The most practical choice of an initial condition
is an “equilibrium” configuration of a previous run which is at a temperature
close to the desired temperature.

8.5.3 Tricks

It is convenient that we store all the transition probabilities in lookup tables,
so we do not have to calculate them at each step. Another trick consists of
storing all the positions of the spins and their neighbors to avoid calculating
many random numbers. If you need to perform several runs for different
values of the temperature T , you can do it at the same time using the same
random numbers.

Exercise 13.3: Equilibration of the 2D Ising model

1. Run your simulation with L = 8 and T = 2 and choose the initial
spins to be all up. Plot the variation of the energy and the magneti-
zation with time. How much time is necessary for the system to reach
equilibrium?

2. Visually inspect several “equilibrium” configurations. Is the system
ordered or disordered?

3. Run the program with T = 1.5 and chose the same initial configuration
with all the spins up. How long does it take for the system to reach
equilibrium?
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4. Visually inspect several equilibrium configurations with T = 1.5. Are
they more or less ordered than those in part 2?

8.6 Measuring observables

Note that after reaching equilibrium we wish to compute the mean values of
several physical quantities of interest. In general this is quite time consuming
and hence we do not want to calculate their values more that necessary.
After a single spin flip of one spin, the values of the observables in the two
configurations will not differ much, and will be almost the same. Ideally,
we wish to compute the observables for configurations that are statistically
independent. This means that we have to run the simulation severals steps
in between measurements. This number of steps is a typical quantity that
depends on the physics of the model, the parameters used, the temperature,
and in particular, the “update dynamics” used in the algorithm, as we shall
see below. This “correlation time” is not known a priori, and we have to
estimate it with a preliminar test run.

One way to determine the time intervals over which configurations are
correlated is to compute the time-dependent autocorrelation functions de-
fined by:

CM(t) = 〈M(t)M(0)〉 − 〈M〉2

and
CE(t) = 〈E(t)E(0)〉 − 〈E〉2.

Note that at t = 0, CM is proportional to the susceptibility, and CE is
proportional to the heat capacity. For sufficient large t, M(t) and M(0) will
become uncorrelated, and

〈M(t)M(0)〉 → 〈M(t)〉〈M(0)〉 = 〈M〉2

, and the same will occur with CE. Hence CM and CE should vanish for
t → ∞. In general, we expect these quantities to decay exponentially with
time. The time is takes C(t) to decay to 1/e of its value at t = 0 is an
estimate of the autocorrelation time τ . Since configurations separated by
times less that τ are statistically correlated, we will compute the desired
physical quantities for times intervals of the order of τ rather than after each
MC step.
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Exercise 13.4: The correlation time

Consider L = 8 and T = 3.0 (high T ) and T = 2.3, and T = 1.5 (low
T ). Estimate the correlation time τ for the energy and the magnetization
fluctuations. Are the values comparable for the two fluctuations? How do
your estimates for τ compare with your estimates for the relaxation time
found in the previous problem?

8.6.1 Exercise 13.5: Comparison with exact results

1. Generate all the possible configurations of spins for L = 4.

2. Calculate the mean value of the energy, magnetization, susceptibility,
and heat capacity as a function of the temperature. For calculating the
magnetization use |m| instead of m.

3. Use your MC program to compute the same quantities and compare
with the exact results. Use the necessary MC steps to obtain an accu-
racy of 1% for the energy.

8.7 The Ising phase transition

We have seen that at T = Tc, the magnetization vanishes. This happens
continuously with increasing temperature and hence, it is a “2nd order”
phase transition. In 1st order phase transition the magnetization, vanishes
abruptly. A way to characterize phase transition is though studying the
“critical behavior” of the system. First, we have to define a quantity called
“order parameter” which vanishes above the critical temperature, and is finite
below it. We clearly see that the magnetization satisfies this criterion, and
is a suitable candidate. The critical behavior of the system is determined by
the functional form of the order parameter near the phase transition. In this
region, physical quantities show a power law behavior

m(T ) ∼ (T − Tc)
β,

where β is the “critical exponent”. Although M vanishes with T , thermo-
dynamic derivatives such as the heat capacity and sucseptibility diverge at
Tc:

χ ∼ |T − Tc|−γ
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and
C ∼ |T − Tc|−α.

We have assumed that the exponent is the same on both sides of the transi-
tion.

Another measure of the magnetic fluctuations is the linear dimension ξ(T )
of a typical magnetic domain. We expect that this “correlation length” to
be the order of the lattice spacing for T ≫ Tc. Since the alignment of the
spins will become more correlated as T approaches Tc from above, ξ will
increase. We can characterize the divergent behavior of ξ(T ) near Tc by a
critical exponent η

ξ(T ) ∼ |T − Tc|−η

A finite system cannot observe a true phase transition. Nevertheless we
expect that if the correlation length is less than the linear dimension L of
the system, then a finite system will be an accurate representation of the
infinite system. In other words, our simulations would yield accurate results
comparable to an infinite system is T is not too close to Tc.

Exercise 13.6: Qualitative behavior of the 2D Ising model

Calculate 〈E〉, C, χ and m as a function of temperature for L = 4, L = 8
and L = 16. Plot the results and describe their qualitative behavior. Do you
see any evidence of a phase transition?

Exercise 13.7: Critical slowing down

1. Consider the 2D Ising model on a square lattice with L = 16. Compute
the correlation time τ for T = 1.5, 2.4, and 2.3. Show that τ increases
as the critical temperature is approached, a physical effect known as
“critical slowing down”.

The magnitude of τ depend in part on our choice of “dynamics”. Al-
though we generate trial configurations attempting a single spin flip, it
is possible to simultaneously flip two or more spins, even an entire clus-
ter. This other update strategies are more efficient and lead to smaller
correlation times.
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9 Quantum Monte Carlo

9.1 Variational Monte Carlo

We begin our description of the Quantum Monte Carlo variants with the
Variational Monte Carlo (VMC), the most transparent application of the
ideas described in previous sections. This algorithm is in the borderline
that divides the classical methods from the genuine quantum simulations.
Although quantum in nature, it is not the action of the model that is sampled,
but a trial wave function.

The main ingredient is a trial wave function |ψT (η)〉, that depends on a
set of parameters η. This wave function is represented in terms of a basis of
orthogonal states |x〉

|ψT (η)〉 =
∑

x

〈x|ψT (η)〉|x〉 =
∑

x

Cx(η)|x〉,

where the coefficients of the parametrization are known functions of η. We
would like the wave function to be a good representation of the actual ground
state of a model. Finding the best wave function means finding the right set
of parameters η that maximize the overlap with the actual ground state. In
practice this is impossible since we do not know the groud state a priori, and
some physical insight is needed to derive a good analytical approximation.
Then we apply the variational principle, that states that the variational en-
ergy of the trial state is always greater or equal to the exact energy of the
ground state:

〈E〉T =
〈ψT | H | ψT 〉
〈ψT | ψT 〉

≥ E0, (280)

and we use the criterium of minimizing the variational energy. In order to
do that we require to calculate this quantity for different sets of parameters
η, and once we found a proper wave function, we can calculate the physical
quantities of interest.

The expectation value of an arbitrary operator O is

〈O〉V ar =
〈ψT | O | ψT 〉
〈ψT | ψT 〉

=

∑

x〈ψT | x〉〈x | O | ψT 〉
∑

x〈ψT | x〉〈x | ψT 〉
(281)

81



=

∑

x |〈ψT | x〉|2∑x′〈x | O | ψT 〉/〈x | ψT 〉
∑

x |〈ψT | x〉|2

=
∑

x

PxOx, (282)

with

Px =
|〈ψT | x〉|2

∑

x |〈ψT | x〉|2
, (283)

and

Ox =
〈x | O | ψT 〉
〈x | ψT 〉

. (284)

The equation (282) has precisely the form of a mean value in statistical
mechanics, with Px as the Boltzmann factor:

Px ≥ 0;
∑

x

Px = 1.

The first step in order to calculate it consists of generating a collection of
configurations distributed according to this probability. For that purpose
we employ the Metropolis algorithm: starting from a configuration |x〉, we
accept a new configuration |x′〉 with probability R = |〈ψT | x′〉|2 / |〈ψT | x〉|2,
or 1/(1 +R) if we use the heat bath approach.

The variational simulations are simple to perform and very stable. Since
the probabilities do not deppend on the statistics of the particles involved,
they do not suffer from the sign problem. However, the results deppend
decisively of the quality of the variational wave function, because they are
completely pre-determined by it, and the physical arguments that define it.
In the particular situation in which the trial function coincides with the exact
ground state, the matrix elements (284) for O = H are all equal to E0 :

Ex =
〈x | H | ψT 〉
〈x | ψT 〉

= E0.

This is the property called “zero variance”: the more the wave function
resembles the actual ground state, the more rapidly the variational enery
converges with the number of iterations.

In general, the computation results more complicated, or numerically
more expensive, when the number of variational parameters η that define
the trial state is large. Thus, we always try to keep the form of the wave
function simple enough and with only a few variational degrees of freedom.
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9.2 World Line Monte Carlo

The Monte carlo methods extensively used in the study of classical systems
cannot be directly applied to quantum systems. Suzuki[14] generalized a
method previously proposed by trotter [?] and used to to demonstrate that
every d-dimensional quantum spin system can be mapped onto a (d + 1)-
dimensional problem, similar to the Ising model, suggesting that the Monte
Carlo method could be used on the resulting classical model. The first re-
sults of such calculations were presented by Suzuki et al. [?], who carried
out simulations for the heisenberg model in 1D and the XY model in one
and two dimensions. Employing a generalization of the method, de Raedt
and Lgendijk [?] and Hirsch et al [?, ?] performed similar calculations for
fermionic systems. Mor erecently, Reger and Young [?] and makivic and
Ding [?] perfected the method for spin systems in two dimensions.

In this section we describe the World Line Monte Carlo method for quan-
tum spin systems in one dimension.

9.2.1 Suzuki-Trotter transformation and the equivalent classical
system

The Suzuki-trotter transformation is based on the following result: If Ai is a
set of operators that do not necessarily commute with each other, then

eA1+A2+···+Ap = lim
m→∞

(

eA1/meA2/m · · · eAp/m
)m

(285)

this equation is applicable to a quantum system with a partition function
given by

Z = Tr(e−βH) (286)

qith a Hamiltonian H and β = 1/T the inverse temperature. In general H
can be decomposed into a sum of terms Hi (i = 1, 2, · · ·) (a process that is
not necessarily uniquely defined [?, ?]), yielding

Z = lim
m→∞

Z(m), (287)

with
Z(m) = Tr

(

e∆τH1e∆τH2 · · · e∆τHp

)

(288)

The trace and limit operations have beeen interchanged, and we have defined
a step in imaginary time ∆τ = β/m (in the temperature axis, or Trotter
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direction). Introducing reslutions of the identity in some appropriate basis,
the m-th approximant to the partition function can be written as:

Z(m) =





∑

i1,i2,···,ip

〈i1|e∆τH1 |i2〉〈i2|e∆τH2 |i3〉 · · · 〈ip|e∆τHp|i1〉




m

, (289)

where the error is of order (δτ02. Next, introducing new resolutions of the
identity for each time interval we obtain:

Z(m) =
∑

i1,i2,···,imp

〈i1|e∆τH1 |i2〉〈i2|e∆τH2 |i3〉 · · · 〈ip|e∆τHp|ip+1〉

〈ip+1|e∆τH1 |ip+2〉〈ip+2|e∆τH1|ip+3〉 · · · 〈i2p|e∆τHp|i2p+1〉 · · ·
〈i(m−1)p+1|e∆τH1|i(m−1)p+2〉〈i(m−1)p+2|e∆τH1 |i(m−1)p+3〉 · · · 〈imp|e∆τHp|i1〉(290)

What distinguished one approximation from another is the partition of
the Hamiltonian. One select the partition in oder to simplify the evaluation
of the matrix elements, avoid sign problems, and effectively implement the
conservation rules associated to H . In general one uses a partition in real
space in terms of local Hamiltonians h1, H2, · · ·Hp that are composed by sums
of two-site terms tthat do not overlap. In systems of (d + 1) dimensions (d
physical plus the Trotter/time direction) with short range interactions, the
Hamiltonian can be written as a sum of interaction terms between nearest
neighbors in the lattice:

H =
∑

i,δ

Hi,i+δ. (291)

In (1+1) dimensions, the most natural choice corresponds to the so-called
”checkerboard” decomposition, that consiusts of dividing the lattice into two
sublattices, one containing the even sites, and the other one, the odd sites.
As a consequence, the Hamiltonian can be broken into two pieces H1 and H2,
each of them being the sum of two-site interactions between sites belonging
to different sublattices:

H1 =
∑

i even

Hi,i+1

H2 =
∑

i odd

Hi,i+1

(292)
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We should notice that H1 and H2 are composed by terms that commute with
eachother, hence:

e−∆τH1 =
∏

i even

e−∆τHi,i+1

e−∆τH2 =
∏

i odd

e−∆τHi,i+1 (293)

As a result, the matrix elements can be obtained by simply solving a
two-site problem, which has a very small number of degrees of freedom. In
the case of the heisenberg model is is easy to see that:

e−∆τHi,i+1| − −〉 = e−∆τJ/4| − −〉
e−∆τHi,i+1| + +〉 = e−∆τJ/4| + +〉
e−∆τHi,i+1 | + −〉 = [cosh(∆τJ/2)| + −〉 + sinh(∆τJ/2)| − +〉] e∆τJ/4

e−∆τHi,i+1 | − +〉 = [sinh(∆τJ/2)| + −〉 + cosh(∆τJ/2)| − +〉] e∆τJ/4(294)

For each time interval ∆τ , the operator e∆τH1 is applied first, and then the
operator e∆τH2 . That gives rise to a graphic representation as the one shown
in Fig.??, where the horizontal axis represente the spatial direction along
the sites of the chain, and the vertical axis represnts the imaginary timer τ ,
whcih has been subdivided into 2m segments. The configuration of spins at
time l∆τ correspond to a state |il〉 in the sum for Z(m). the shaded plaque-
ttes correspond to slices of space and time in whcih the spins can interact
and we shall call them ”interacting plaquettes”. The white plaquettes are
called ”non-interacting” plaquettes. The sum over the intermediate states
correspond to summing over all the possible ways to distribute the spins in
the spatial direction, for each interval of time. We have connected the ↑-
projection of the spin with lines, that are precisely called ”world-lines”. In
the Heisenberg model it is enough with following the trajectory of one kind
of spin only, since the others are qutomatically determined. In the case of
fermionic systems, onbe assigns a different color to each spin orientation.

For a given interval of time l, each matrix element for H1 can be written
as:

〈il|e−∆τH1 |il+1〉 = 〈il|e−∆τ
∏

i even
Hii,i+1|il〉

=
∏

i even

〈il|e−∆τHi,i+1|il〉

=
∏

i even

〈si,lsi+1,l|e−∆τHi,i+1|si,l+1si+1,l+1〉 (295)
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where the variables Si,l are of the ising type and can assume the values ±1/2.
this expression can be rewritten as:

〈il|e−∆τH1|il+1〉 = exp

{

ln

[

∏

i even

〈si,lsi+1,l|e−∆τHi,i+1|si,l+1si+1,l+1〉
]}

= exp

{

∑

i even

ln〈si,lsi+1,l|e−∆τHi,i+1|si,l+1si+1,l+1〉
}

.(296)

using the equivalent expression for H2, we finally obtain

Z(m) =
∑

{i1,i2,···,i2m}

exp





∑

sh.plq

ln〈si,lsi+1,l|e−∆τHi,i+1|si,l+1si+1,l+1〉




=
∑

{states}

exp



−β
∑

sh.plq

(

1

β

)

ln〈si,lsi+1,l|e−∆τHi,i+1|si,l+1si+1,l+1〉




=
∑

{states}

exp



−β
∑

sh.plq

h(i, l)



 . (297)

In this expression we have replaced the sum over configurations of quantum
spins by a sum over states of a (1+ 1)-dimensional system of Ising variables.
The equation ([?]) respresents tha partition function of a two-dimensional
Ising system with a 4-spin interaction:

h(i, j) =

(

1

β

)

ln〈si,lsi+1,l|e−∆τHi,i+1|si,l+1si+1,l+1〉. (298)

The six possible configurations of 4 spins allowed by the conservation rules
are shown in Fig.[?]. the sum over states that satisfy the conservation rules
is equivalent to summing over all the possible configurations of allowed world
lines. Notice that these can be drwan parallel to the lateral sides of a pla-
quette, or crossing the diagonal of the shaded plaquettes, but never accross
the diagonal of a white plaquette.

This graphic representation gives a simple picture about a given config-
uration and also offers an idea of the ground state of the system. Let us
consider the partition function as the trace over eigenstates |α〉,

Z =
∑

α

〈α|e−βH|α〉. (299)
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We can separate e−βH into e−(β−τ)He−τH , and insert a complete set of state in
the Sz representation between the two exponentials. In the low temperature
limit, and for each time slice τ we obtain

Z = e−βE0
∑

{Sz
i
}

|〈s1s2 · · · sN |ψ0〉|2. (300)

As a consequence, for each interval of time τ , the probability of finding a
given set of spins |s1s2 · · · sN〉 is proportional to the square of the projection
of the ground-state on that configuration. This way, the world lines for large
β offer a picture of the ground state of the system.

9.2.2 Monte Carlo simulation with worldlines

We would like to develop an algorithm to generate all the possible configu-
rations of world lines, that is ergodic, and does not violate the conservation
rules. The conservation of Sz implies the fololowing restrictions: if two spins
are moved on a horizontal side of an interacting plaquette, they must nec-
essarily be anti-parallel; if two spins on a lateral side participate, they can
only move if they point in the same direction.

We mus generate all the possible closed loops under these considerations
applying all the possible moved compatible with the torus topology. The
toroidal geometry is a consequence of the preiodic boundary conditions in
the space direction (to preserva translational invariance) and along the time
direction (required by the trace operation). The minimum local move tthat
we can make corresponds to moving two parallel spins from one side of a
non-interacting plaquette, to the opposite side, as illustrated in Fig.[?]. Per-
doming successive changes of this kind it is possible to generate all the possi-
ble configurations with a given “winding number”, conserving the total value
of Sz. We define “winding number” of a given configuration of worldlines in
the following way: Since we are evaluating the trace with periodic boundary
conditions, the system has the topology of a torus. Suppose that we start
from an arbitrary site at τ = 0 with spin ↑, and we follow the worldline
continuously for an entire revolution along the time direction (τ grows from
0 to β, and returns to 0). If we arrive to the same site after a revolution,
we say that tthe configuration has a winding number equal to zero; if we
require n revolutions to return to the same site, we then say that the config-
uration has a winding number equal to ±(n−1), with the sign depending on
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the spatial direction we move with each revolution. In the majority of the
cases, only configurations with winding number zero are important. Con-
figurations with larger winding number can only be obtained with periodic
boundary conditions, althoug it is clear that they do not occur with open
boundary conditions.

The Monte Carlo algorithm we need to devise will consists of different
possible moves. The local move, similar to the “flipping” move for the Ising
model, would correspond to sweeping over all the sites of the lattice, and
verifying that it is possible to move a worldline accross a white plaquette. If
a white plaquette has its lower-left corner on site 9i, l) of the lattice, a move
will only be possible if the quantity s ≡ si,l + si+1,l − si+1,l − si+1,l+1 = 2. A
possitive sign allows to move the line from left to right, while for a negative
sign, from right to left. Is a move is possible, we need to calculate the
transition probablity as the ratio between the matrix elements of the involved
plaquettes, before, and after the move, for instance:

R =
〈il−1|e−∆τH1 |i′l〉〈i′l|e−∆τH2 |i′l+1〉〈i′l+1|e−∆τH1|il + 1〉
〈il−′1|e−∆τH1|il〉〈il|e−∆τH2|il+1〉〈il+1|e−∆τH1|il + 1〉 (301)

with

〈il−1|e−∆τH1 |il〉 = 〈si,l−1si+1,l−1|e−∆τHi,i+1|si,lsi+1,l〉
〈il|e−∆τH2 |il+1〉 = 〈si−1,lsi,l|e−∆τHi−1,i |si−1,l+1si,l+1〉

×〈si+1,lsi+2,l|e−∆τHi+1,i+2|si+1,l+1si+2,l+1〉
〈il+1|e−∆τH1 |il+2〉 = 〈si,l+1si+1,l+1|e−∆τHi,i+1|si,l+2si+1,l+2〉 (302)

and where the prime states correspond to configurations after the move. The
ratio R depends on the number s, that indicates the direction of the move,
and the numbers si+1,l and si+1,l+2, that determine if the move is vertical or
diagonal accross the upper and lower interacting plaquettes, and si−1,l and
si+2,l, that indicate if there is another additional world line moving accross
the lateral interacting plaquettes.

Since we only take into account two possible configurations of world lines,
we emply the ”thermal bath” algorithm to accept or reject new configura-
tions. Therefore, we accept or not a new configuration with probability

P =
R

R + 1
. (303)
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Besides the local moves, there are two other types of global moves neces-
sary to preserve ergodicity. The first one is responsible for the fluctuations in
the magnetization and is illustrated in Fig.[?]. We look for a straight line of
spins pointing in the same direction, and we flip all of them simultaneously.
This allows one to calculate values of the magnetization and the uniform
susceptibility, which is generated by magnetic fluctuations of straight lines
connecting configurations with different total magnetization. In studies of
ground state properties, we require to simulate very low temperatures, and
the magnetic fluctuations are negligible or null, and we can ignore them
completely, working in the subspace restricted to zero magnetization.

The other global move extends along the spatial direction, and is shown
in Fig.[?]. Its is responsible of connecting subspaces with different topology,
that differ in the winding number. The absence of this type of moves can
introduce finite size effects in small systems, but in sufficiently large lattices,
they can be ignored.

9.2.3 Measurement and averaging

The algorithm described in the previous section generated a Markov chain of
states, favoring the selection of configurations that contribute to the partition
function with relatively large weights. Thsi process is simple a generalization
of the importance sampling. If we denote the set of generated states {σν}
with ν = 1, 2 · · · ,M , then the monte Carlos estimates for the mnean value
of an observable A in a classical system will be given by

A ≈ 1

M

M
∑

i=1

A(σν). (304)

In this equation A(σν) is the value of a function A in the state σν . However,
we must remember that in a classical system obtained from the Suzuki-
Trotter decomposition, the variable A is dynamic, and depends on the tem-
perature. therefore, we must average some adecuate function B associated
to A, such that in reality we obtain:

A =
1

M

M
∑

i=1

B(σν). (305)

89



For instance, let us consider the classical energies associated to the Heisenber
Hamiltonian

E
(m)
1 = E

(m)
2 =

∆τ

β
J/4

E
(m)
3 = E

(m)
4 =

1

β
(−J∆τ/4 − ln cosh

(

∆τJ

2

)

E
(m)
5 = E

(m)
6 =

1

β
(−J∆τ/4 − ln sinh

(

∆τJ

2

)

. (306)

The partition function for a single plaquette can written as

Z
(m)
plq. =

∑

j

exp
(

−βE(m)
j

)

, (307)

and the thermal average of the energy is finaly obtained as

E
(m)
plq. = − ∂

∂β
ln
(

Z
(m)
plq.

)

=
1

Z
(m)
plq.

∑

j

[

∂

∂β

(

βE
(m)
j

)

]

exp
(

−βE(m)
j

)

=
1

Z
(m)
plq.

∑

j

F
(m)
j exp

(

−βE(m)
j

)

. (308)

In the last step we have defined F
(m)
j , the value of the ”energy function”

for the state j, such that tthe energy is the the thermodynamic average of
a function F . The mean value of any observable can calculated in a similar
way.

The equivalence between the quantum system and the classical counter-
part is exact only in the limit of m going to infinity. In practice we work
always with finite values of m (or δτ 6= 0), which is a source of systematic
error of the order (∆τ)2, which is in general small and under control. The
error is independent of the volume for sufficiently large systems, and results
porportional to the norm of the commutator [H1, H2]. For a large quantity
of observables one can use the extrapolation

A(∆τ) = A(0) + a/(δτ)2 + b/(∆τ)4 + · · · , (309)
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where A(0) is the correct value. usually, only the lower oder temrs on the
extrapolation are considered, such that we extrapolate with 1/(∆τ)2. A
possible approximation is to fix the value of ∆τ to a very small number for
all temperatures, such that the systematic error can be neglected, compared
to the statistical error.

9.3 Determinantal (or Auxiliary Field) Monte Carlo

In this section, we will briefly describe an application of this general algorithm
to the quantum mechanical many-body problem of interacting electrons on a
lattice, working in the grand-canonical ensemble. The basic idea of this ap-
proach was presented some time ago by Blankenbecler, Scalapino and Sugar.
[13]

Quantum Monte Carlo relies on the fact that d-dimensional quantum
problems can be intepreted as classical problems in (d+1) dimensions through
Feymann’s Path Integral representation. The task consists in identifying
Ising-like fields that would allow us to evaluate the partition function and
mean values using the same Metropolis algorithm we have used before in the
equivalent classical model. Suzuki [14] was the first to apply this concepts
after generalizing an idea by Trotter. [15]

Suppose we want to evaluate the expectation value of a physical observ-
able Ô, at some finite temperature T = 1/β. If Ĥ is the Hamiltonian of the
model, this expectation value is defined as,

〈Ô〉T =
Tr(Ôe−βĤ)

Tr(e−βĤ)
, (310)

where the notation is the standard. From now on, let us concentrate on the
particular case of the one band Hubbard model which was defined previously.
The Hamiltonian of this model, with the addition of a chemical potential,
can be naturally separated into two terms as,

K̂ = −t
∑

〈ij〉,σ

(c†iσcjσ + c†jσciσ) − µ
∑

i

(ni↑ + ni↓), (311)

V̂ = U
∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
). (312)
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Discretizing the inverse temperature interval as β = ∆τL, where ∆τ is a
small number, and L is the total number of time slices, we can apply the
well-known Trotter’s formula to rewrite the partition function as,

Z = Tr(e−∆τLĤ) ∼ Tr(e−∆τV̂ e−∆τK̂)L, (313)

where a systematic error of order (∆τ)2 has been introduced, since [K̂, V̂ ] 6=
0. In order to integrate out the fermionic fields the interaction term V̂ has
to be made quadratic in the fermionic creation and annihilation operators
by introducing a decoupling Hubbard-Stratonovich transformation. At this
stage, we can select from a wide variety of possibilities to carry out this
decoupling i.e. we can choose continuous or discrete, real or complex fields,
belonging to different groups. In particular, and for illustration purposes,
here we use a simple transformation using a discrete “spin-like” field [16],

e−∆τU(ni↑−
1

2
)(ni↓−

1

2
) =

e−∆τU/4

2

∑

si,l=±1

e−∆τsi,lλ(ni↑−ni↓), (314)

which is carried out at each lattice site i, and for each temperature (or
imaginary-time) slice l. The constant λ is defined through the relation
cosh(∆τλ) = exp(∆τU/2). The transformation Eq.(314) reduces the four-
fermion self-interaction of the Hubbard model to a quadratic term in the
fermions coupled to the new spin-like field si,l. Thus, in this formalism the
interactions between electrons are mediated by the spin field. Now we can
carry out the integration of the fermions. While this is conceptually straight-
forward, and for a finite lattice of N × N sites it gives determinants of well-
defined matrices, arriving to the actual form of these matrices is somewhat
involved, and beyond the scope of this review. Then, here we will simply
present the result of the integration (more details can be found in Refs. [17]
and [18]. The partition function can be exactly written as,

Z =
∑

{si,l=±1}

detM+(s) detM−(s), (315)

where
Mσ = I +Bσ

LB
σ
L−1...B

σ
1 , (316)

and
B±

l = e∓∆τν(l)e−∆τK̂ . (317)
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I is the unit matrix, and ν(l)ij = δijsi,l. Usually the physical observable

Ô, can be expressed in terms of Green’s functions for the electrons moving
in the spin field. Then, expressions similar to Eq.(315) can be derived for
the numerator in Eq.(310). Once the partition function is written only in
terms of the spin fields, we can use standard Monte Carlo techniques (such as
Metropolis or heat bath methods) to perform a simulation of the complicated
sums over si,l that remain to be done. The probability distribution of a
given spin configuration is given in principle by 1

Z
detM+ detM− (unless it

becomes negative, see next section).

9.4 Projector Monte Carlo

A simple modification of the Blankenbecler, Scalapino and Sugar algorithm
allows the calculation of ground state properties in the canonical ensemble
i.e. with a fixed number of electrons. This approach is called “Projector
Monte Carlo.” Consider the ground state |ψ0〉 of a system, and let us denote
by |φ〉 a trial state with a nonzero overlap with the actual ground state. If
we apply the operator P = e−τHa number m of times over an arbitrary state
|φ〉, and we intercalate the identity operator in the basis |α〉 of eigenstates
of H , we obtain:

|φm〉 = Pm|φ〉
=

∑

α

e−mτH |α〉〈α|φ〉

=
∑

a

(

e−τEα

)m |α〉〈α|φ〉

= e−βE0

∑

a

(

e−τ(Eα−E0)
)m |α〉〈α|φ〉. (318)

In the limit with β → ∞, the projection will filter out all the states with
high energy and only the ground state will survive, i.e.

lim
m→∞

Pm|φ〉 =| ψ0〉, (319)

Thus, the ground state energy will be given by:

E0 =
〈φ|H|ψ0〉
〈φ|ψ0〉

= lim
m,m′→∞

〈φ|He−mτH |φ〉
〈φ|e−mτH |φ〉

, (320)
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while for any othe physical observable Ô, the expectation value can be exactly
written as:

〈ψ0|Ô|ψ0〉
〈ψ0|ψ0〉

= lim
m,m′→∞

〈φ|e−m′τHÔe
−mτH |φ〉

〈φ|e−(m′+m)τH |φ〉
(321)

This suggests that in principle, we can calculate the coeficients of the ground
state of the system. However, we have to keep in mind that the dimension
of the basis grows exponentially with the size of the lattice, and this will
prevent us to keep in memory all the possible configurations. (Unless the
system is small. Exercise for the reader: Heisenberg model on a chain with
N = 4 ).

The steps necessary to Monte Carlo simulate Eq.(321) are very similar to
those discussed before in deriving Eq.(315). First, the imaginary time axis is
discretized in a finite number of slices, then the Trotter approximation, as well
as the Hubbard-Stratonovich decoupling are used. Fermions are integrated
out, and all observables are finally expressed in terms of the spin-fields which
are treated using a Metropolis algorithm (for details see Ref.[18]).

Another approach that uses the same principle consists in sampling the
the ground state stochastically using a set of ”random walkers” {(wi, |xi〉)},
where wi is a weight defined real and positive, and |xi〉 are configurations
usually in the Sz or occupation number representations. The objective is
to obtain a distribution of weights ans states that correspond to that of the
actual ground state, generating a Markov chain applying stochastically the
operator P

(w′
i, |x′i〉) → P (wi, |xi〉). (322)

The Projector Monte Carlo has been perfected over time, and the widely
used scheme consists in using the projector operator:

G = [1 − τ(H − ω)]. (323)

The quantity ω represents a good approximation of the ground state energy,
and τ is a small time step that satisfies the condition τ ≤ 2/(Emax − ω),
where Emax is the maximum eigenvalue of H . This variant is called Green
Function Monte Carlo (GFMC). (See Refs. [4]-[7] and references therein)
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In practice, several walkers are used simultaneously, with the first gener-
ation of walkers {|x0

i 〉} obtained using Variational Monte Carlo. This vari-
ational state is also used in the bias control and as guiding function for the
importance sampling. The better the variational function, the lower the fluc-
tuations in the mean values and the smaller the variance in the simulation.
Both topics are out of the scope of this book, and the reader can find more
information in the bibliography.

9.5 Sign problem revisited

For the one band Hubbard model, the Determinantal Monte Carlo simu-
lations described before can be carried out at half-filling without problems
since the product detM+ detM− in Eq.(315) is positive (it can be shown that
detM+ = A×detM− for any configuration of the Hubbard-Stratonovich spin
fields, where A is a positive number [16]). However, in the case of an arbi-
trary density 〈n〉 6= 1 this is no longer true for the repulsive Hubbard model
(other models like the attractive Hubbard model can still be simulated at all
densities). Then, the “probability” of a given spin configuration is no longer
positive definite. In this situation, to obtain results using this technique it
is convenient to separate the product of the determinants into its absolute
value and its sign i.e. detM+ detM− = sign × | detM+ detM−| for each
spin configuration. Using this trick, the expectation value of any operator Ô
can be written as

〈Ô〉 =
〈〈Ôsign〉〉
〈〈sign〉〉 , (324)

where 〈〈...〉〉 denotes an expectation value obtained using a probability pro-
portional to | detM+ detM−|. Similar tricks can be applied to cases where
the determinant becomes complex as it occurs in problems of lattice gauge
theory in the context of particle physics [19]. Although Eq.(324) is an exact
identity, in practice the denominator can become very small if the number of
spin configurations with positive and negative determinants are similar. Re-
gretfully, this is the case for the Hubbard model in some regime of couplings
and densities, and at low temperatures: the sign decreases rapidly when the
temperature is reduced, specially at densities close to half-filling[18]. Actu-
ally, it has been shown that 〈〈sign〉〉 converges exponentially to zero as the
temperature decreases [20]. This effect imposes severe constraints on the
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temperatures that can be reached using Monte Carlo techniques in simula-
tions of the Hubbard model away from half-filling.

The study of the “sign-problem”, and the possibility of finding a cure
for this malice, is a very important subject in the context of simulations of
correlated electrons. Some time ago, considerable excitement was generated
by a paper by Sorella et al. [21] where it was claimed that using a projector
Monte Carlo algorithm, and an appropriate trial wave function |φ0〉, the mean
value of the sign converges to a nonzero constant as β → ∞. In such a case
it was argued that some physical quantities could be calculated simply by
neglecting the signs of the determinants. Regretfully, these conclusions were
somewhat premature as discussed later by Loh et al. [20], where it was shown
that the expectation value of the sign actually decreases exponentially with
β. Then, neglecting the signs of the determinants leads to an uncontrolled
approximation. Loh et al. [20] showed that some physical quantities related
with superconducting correlations present a qualitatively different behavior
with and without the signs included in the averages.

It is also important to clarify that the “sign-problem” is not only caused
by the sign that appear due to fermionic anticommutations. For example,
consider the case of spin-1/2 problems with nearest and next-nearest neigh-
bors interactions, which can be simulated using Random Walk Monte Carlo
methods [22]. In this technique, matrix elements of the interactions are used
as probability in the Monte Carlo algorithm. Regretfully, it is not possible to
write these matrix elements in a positive definite way for an arbitrary value
of the couplings in the Hamiltonian.

Several techniques have been proposed to alleviate the sign-problem. One
method is based on the possibility that the operators used to describe, e.g.,
hole excitations in Hubbard and t − J models are “poor”, in the sense that
they are a bad approximation to the actual “dressed” quasiparticle operators
that create real holes in these models. Having proper quasiparticle opera-
tors alleviates the sign problem since in Projector or Green’s function Monte
Carlo methods an initial state is selected upon which e−∆τĤ acts repeatedly
till convergence is reached (∆τ being a small number), and thus if the ini-
tial Ansatz is very good, it may occur that the sign problem destroys the
statistics only after a good convergence is observed (at least in the ground
state energy). A method to systematically construct better operators was
discussed by Dagotto and Schrieffer [32], Boninsegni and Manousakis [33],
and Furukawa and Imada [34], with good results for the cases of one and
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two holes in the t − J model, and the weak coupling Hubbard model. In this
technique the information gathered using Lanczos methods is very useful to
guide the construction of the variational states.

The Fixed Node Monte Carlo [23] is a GFMC variant that restricts the
random walkers to move into regions of the phase space in such a way that
they cannot cross nodal boundaries of the wave function, where its sign
changes. The nodes are provided by a suitable variational trial state. Al-
though this method has represented a remarkable improvement in controlling
the sign, the obtained results keep being variational in nature due to the con-
strain imposed.

A recent attemp to overcome this “stigma” in the study of strongly cor-
related electron models have had some notorious success in the case of frus-
trated antiferromagnets [24, 25], and the t-J model [26]. Instead of constrain-
ing the region where the walkers can move, this new original approach consists
in performing a “stochastic reconfiguration” of the distribution of random
walkers at regular intervals of the simulation, mapping them stochastically
into new ones that correct the sign instabilities.

Then, the sign-problem is a widely extended plague that affects several ar-
eas of theoretical physics, not only strongly correlated electrons. The study
of the sign-problem continues attracting considerable attention. Other at-
tempts to fight it can be found in [27], [28], [29], [30], [31], [35]; and references
therein.

References

[1] K. Binder, and D.W. Heerman, Monte Carlo Simulation in Statistical
Physics, Springer-Verlag (1992).

[2] K. Binder (editor), The Monte Carlo Method in Condensed Matter
Physics, Topics Appl. Phys. Vol. 71, Springer-Verlag (1992).

[3] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The
Theory of Critical Phenomena, An Introduction to the Renormalization
Group, Oxford Science Pub. (1993).

[4] J. W. Negele, and H. Orland, Quantum Many-Particle Systems, Adison-
Wesley (1988).

97



[5] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

[6] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995); N. Trivedi, and D.M
Ceperley, Phys. Rev. B 41, 4552 (1990).

[7] W. von der Linden, A Quantum Monte Carlo Approach to Many-Body
Physics, Physics Reports 230, 53 (1992).

[8] N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Teller, J. Chem.
Phys. 21, 1087 (1953).

[9] Numerical Recipes in Fortran 90: The Art of Parallel Scientific Com-
puting; (Fortran Numerical Recipes, Vol 2) William H. Press (Editor),
et al.

[10] R. H. Swendsen, and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

[11] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

[12] L. Onsager, Phys. Rev. 65, 117 (1944); B. Kauffman and L. Onsager,
Phys. Rev. 76, 1244 (1949).

[13] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24,
2278 (1981).

[14] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).

[15] H. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).

[16] J. E. Hirsch, Phys. Rev. B 31, 4403 (1985); ibid Phys. Rev. Lett 51,
1900(1983); J. E. Hirsch, and R. M. Fye, Phys. Rev. Lett. 56, 2521
(1986).

[17] J. E. Gubernatis, D. J. Scalapino, R. L. Sugar, and W. D. Toussaint,
Phys. Rev. B 32, 103 (1985).

[18] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis,
and R. T. Scalettar, Phys. Rev. B 40, 506 (1989)

[19] I. Barbour, N.-E. Behilil, E. Dagotto, F. Karsch, A. Moreo, M. Stone,
and H. W. Wyld, Nucl. Phys. B 275, 296 (1986).

98



[20] E. Y. Loh Jr., J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301 (1990).

[21] S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys. Lett. 8, 663
(1989).

[22] T. Barnes, Int. J. Mod. Phys. C 2, 659 (1991).

[23] H. J. M. van Bemmel, D. F. B ten Haaf, W. van Saarloos, J. M. J. van
Leeuwen, and G. An, Phys. Rev. Lett. 72, 2442 (1994).

[24] S. Sorella, and L. Capriotti, Phys. Rev. B 61, 2599 (2000).

[25] A. Trumper, L. Capriotti, and S. Sorella, Phys. Rev. B 61, 11529 (2000).

[26] M. Calandra, and S. Sorella, Phys. Rev. B 61, 11894 (2000); S. Sorella,
Phys. Rev. B 64, 024512 (2001).

[27] G. G. Batrouni, and R. T. Scalettar, Phys. Rev. B 42, 2282 (1990).

[28] F. F. Assaad, and P. De Forcrand, in Quantum Simulations of Con-
densed Matter Phenomena, edited by J. D. Doll and J. E. Gubernatis
(World Scientific, Singapore), p. 1. (1990).

[29] E. Dagotto, A. Moreo, R. Joynt, S. Bacci, and E. Gagliano, Phys. Rev.
B 41, 1585 (1990).

[30] S. Zhang, and M. H. Kalos, Phys. Rev. Lett. 67, 3074 (1991).

[31] S. B. Fahy, and D. R. Hammann, Phys. Rev. B 43, 765 (1991).

[32] E. Dagotto, and J. R. Schrieffer, Phys. Rev. B 43, 8705 (1991).

[33] M. Boninsegni, and E. Manousakis, Phys. Rev. B 43, 10353 (1991);
Phys. Rev. B 45, 4877 (1992); Phys. Rev. B 46, 560 (1992).

[34] N. Furukawa, and M. Imada, J. Phys. Soc. Jpn. 60, 810 (1991).

[35] S. Zhang, J. Carlson, J. E. Gubernatis, Phys. Rev. B 74, 3652 (1997) ;
ibid Phys. Rev. B 55, 7464 (1997)

[36] D. Knuth, The Art of Computer Programming , Addison-Wesley, Read-
ing, Mass. (1973)

99


