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Proceedings, Second Edition

organized by

John von Neumann Institute for Computing

in cooperation with

Arbeitsgemeinschaft für Theoretische Chemie

NIC Series Volume 3

ISBN 3-00-005834-6



Die Deutsche Bibliothek – CIP-Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die Deutsche
Bibliothek.

Publisher: NIC-Directors

Distributor: NIC-Secretariat
Research Centre Jülich
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PREFACE

Computational quantum chemistry has long promised to become a major tool
for the study of molecular properties and reaction mechanisms. The fundamen-
tal methods of quantum chemistry date back to the earliest days of quantum
mechanics in the first decades of the twentieth century. However, widespread
quantitative applications have only become common practice in recent times,
primarily because of the explosive developments in computer hardware and the
associated achievements in the design of new and improved theoretical methods
and computational techniques. The significance of these advances in computational
quantum chemistry is unterlined by the 1998 chemistry Nobel prize to Walter Kohn
and John Pople; this award also documents the increasing acceptance of computer
simulations and scientific computing as an important research method in chemistry.

Nearly one third of the projects which use the supercomputing facilities
provided by the John von Neumann Institute for Computing (NIC) pertain to the
area of computational chemistry. For projects in quantum chemistry the Central
Institute for Applied Mathematics (ZAM) which runs the supercomputers and
networks at the Research Centre Jülich offers several extensive software packages
running on its Cray supercomputer complex. The computational requirements of
large quantum-chemical calculations are enormous. They have made the use of
parallel computers indispensable and have led to the development of a broad range
of advanced algorithms for these machines.

This interdisciplinary Winterschool brought together experts from the fields
of quantum chemistry, computer science and applied mathematics in order to
present recent methodological and computational advances to research students
in the field of theoretical chemistry and their applications. The participants were
also informed about new software developments and about implementation issues
that are encountered in quantum chemistry codes, particularly in the context of
high-performance computing (topics not yet included in typical university courses).
The major focus of the Winterschool was on method development and algorithms,
but state-of-the-art applications were also demonstrated for illustration. The
following topics were covered by twenty lectures:

• Density functional theory
• Ab initio molecular dynamics
• Post-Hartree-Fock methods
• Molecular properties
• Heavy-element chemistry
• Linear scaling approaches
• Semiempirical and hybrid methods
• Parallel programming models and tools
• Numerical techniques and automatic differentiation
• Industrial applications



The programme was compiled by Johannes Grotendorst (Research Centre
Jülich), Marius Lewerenz (Université Pierre et Marie Curie, Paris), Walter
Thiel (Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr) and
Hans-Joachim Werner (University of Stuttgart).

Fostering education and training in important fields of scientific computing by
symposia, workshops, schools and courses is a major objective of NIC. This Winter-
school continued a series of workshops and conferences in the field of computational
chemistry organized by the ZAM in the last years; it provided a forum for the
scientific exchange between young research students and experts from different aca-
demic disciplines. More than two hundred participants from sixteen countries took
part in the NIC Winterschool, and more than fifty contributions were submitted
for the poster session. This overwhelming international resonance clearly reflects
the attractiveness of the programme. The excellent support of the Arbeitsgemein-
schaft für Theoretische Chemie in preparing the Winterschool is highly appreciated.

As in previous conferences, many people have made significant contributions to
the success of this Winterschool. The local organization at Research Centre Jülich
was perfectly done by Elke Bielitza, Rüdiger Esser, Bernd Krahl-Urban, Monika
Marx, Renate Mengels, and Margarete Reiser. We are grateful for the generous
financial support by the Federal Ministry for Education and Research (BMBF)
and by the Research Centre Jülich and for the help provided by its Conference
Service. We thank the authors for their willingness to provide a written version
of their lecture notes. Special thanks go to Monika Marx for her commitment
concerning the compilation and editing of this book. Finally, we are indebted to
Beate Herrmann who supported the difficult typesetting with professionalism and
great care.

This second edition of the proceedings includes the material of all the lectures
held at the NIC Winterschool and now gives a broad review on modern methods
and computational techniques in quantum chemistry. In order to increase the
circulation among research students and scientists working in the field of com-
putational quantum chemistry the lecture notes are also available on the web
(www.fz-juelich.de/nic-series).

Jülich Johannes Grotendorst
November 2000
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1 Introduction 315
2 Basic Modes of Automatic Differentiation 317
3 Design of Automatic Differentiation Tools 319
4 Using Automatic Differentiation Tools 321
5 Concluding Remarks 325

Ab Initio Molecular Dynamics: Theory and Implementation
Dominik Marx and Jürg Hutter 329

1 Setting the Stage: Why Ab Initio Molecular Dynamics ? 329
2 Basic Techniques: Theory 333
3 Basic Techniques: Implementation within the CPMD Code 371
4 Advanced Techniques: Beyond . . . 420
5 Applications: From Materials Science to Biochemistry 446

iii



Relativistic Electronic-Structure Calculations for Atoms and
Molecules
Markus Reiher and Bernd Heß 479

1 Qualitative Description of Relativistic Effects 479
2 Fundamentals of Relativistic Quantum Chemistry 480
3 Numerical 4-Component Calculations for Atoms 481
4 Molecular Calculations 491
5 Epilogue 500

Effective Core Potentials
Michael Dolg 507

1 Introduction 507
2 All-Electron Hamiltonian 512
3 Valence-Only Hamiltonian 515
4 Analytical Form of Pseudopotentials 521
5 Adjustment of Pseudopotentials 523
6 Core Polarization Potentials 527
7 Calibration Studies 528
8 A Few Hints for Practical Calculations 532

Molecular Properties
Jürgen Gauss 541

1 Introduction 541
2 Molecular Properties as Analytical Derivatives 542
3 Magnetic Properties 559
4 Frequency-Dependent Properties 577
5 Summary 585

Tensors in Electronic Structure Theory:
Basic Concepts and Applications to Electron Correlation Models
Martin Head-Gordon, Michael Lee, Paul Maslen,
Troy van Voorhis, and Steven Gwaltney 593

1 Introduction 593
2 Basic Tensor Concepts 595
3 Many-Electron Theory 603
4 Nonorthogonal Functions for Local Electron Correlation 610
5 An Overview of Other Applications 630
6 Conclusions 635

iv



INDUSTRIAL CHALLENGES FOR QUANTUM CHEMISTRY

ANSGAR SCHÄFER

BASF Aktiengesellschaft
Scientific Computing

ZDP/C - C13
67056 Ludwigshafen

Germany
E-mail: ansgar.schaefer@basf-ag.de

The current fields of application of quantum chemical methods in the chemical
industry are described. Although there are a lot of questions that already can be
tackled with modern algorithms and computers, there are still important problems
left which will need further improved methods. A few examples are given in this
article.

1 Introduction

Already in the 1970’s and 80’s, quantum chemical methods were very successful
in describing the structure and properties of organic and main-group inorganic
molecules. The Hartree-Fock (HF) method and its simplified semi-empirical mod-
ifications became standard tools for a vivid rationalization of chemical processes.
The underlying molecular orbital (MO) picture was, and still is, the most important
theoretical concept for the interpretation of reactivity and molecular properties.
Nevertheless, quantum chemical methods were not used extensively for industrial
problems, although most of the industrial chemistry produces organic compounds.
One reason can be found in the fact that almost all industrial processes are cat-
alytic. The catalysts are predominantly transition metal compounds, which in
general have a more complicated electronic structure than main-group compounds,
since their variability in the occupation of the d orbitals results in a subtle balance
of several close lying energy levels. HF and post-HF methods based on a single elec-
tron configuration are not able to describe this situation correctly. Furthermore,
the catalyst systems were generally too big to be handled. The usual approach was
to choose small model systems, e.g. with PH3 substituting any phosphine ligand
or a cluster representing a solid surface. Such investigations provided only a basic
understanding of the catalytic reaction, but no detailed knowledge on steric and
electronic dependencies.

With the improvement of both the methodology and the algorithms of density
functional theory (DFT) in the last two decades, the situation changed signifi-
cantly. DFT appears to be less sensitive to near degeneracy of electronic states,
and furthermore incorporates some effects of electron correlation. The development
of new functionals with improved description of non-uniform electron distributions
in molecules or on surfaces, paved the way for a qualitative or even quantitative
quantum chemical treatment of a large variety of transition metal compounds and
their reactions. When functionals without partial inclusion of HF exchange con-
tributions are used, an approximate treatment of the Coulomb interaction of the
electrons (density fitting, resolution of identity (RI) approach) allows for a very ef-

1



ficient treatment of large systems. Therefore, with efficiently parallelized programs
of this kind, it is routinely possible today to calculate the structure of molecules
with 100-200 atoms.

Although the chemical processes in many cases involve transition metal com-
pounds, calculations on pure organic molecules are still important to predict prop-
erties like thermodynamic data or various types of spectra. However, for a quan-
titative agreement between calculated and experimental results, DFT very often
is not reliable enough, and approaches going beyond the HF approximation are
necesary to assess the effects caused by electron correlation. These methods are
computationally very demanding, and highly accurate calculations are still limited
to small molecules with not more than about 10 atoms. Therefore, still only few
problems of industrial relevance can be tackled by these methods at the moment.

2 Application fields of quantum chemistry in industry

2.1 Catalysis

As already mentioned, many of the industrial chemical processes involve catalysts.
Most of the catalysts are in the solid state (heterogeneous catalysis), but, with the
extensive developments in organometallic chemistry in the last decades, catalytic
processes in the liquid phase become more and more important (homogeneous catal-
ysis). For the development of a catalyst, besides economic considerations, three
issues are of central importance:

• Activity: The catalyst must be efficient (high turnover numbers).

• Selectivity: By-products should be avoided.

• Stability: Deactivation or decomposition of the catalyst must be slow.

To improve a catalyst with respect to these criteria, a detailed understanding of the
reaction pathways is necessary. This is one point, where quantum chemical methods
can be of enormous value, since the experimental investigation of steps in a com-
plicated mechanism is rather difficult. Once the crucial parameters are found, new
guesses for better performing catalysts can be deduced and immediately be tested in
the calculations. Thus, when theory is used for a rough screening and only the most
promising candidates have to be tested in experiment, the development process for
new catalysts can be shortened significantly. DFT is used almost exclusively for
both homogeneous and heterogeneous applications. In the latter case, solids are
treated with preriodic boundary conditions or QM/MM approaches.

2.2 Process design

The design of chemical processes and plants requires the knowledge of accurate
thermodynamic and kinetic data for all substances and reactions involved. The
experimental determination of such data is rather time-consuming and expensive.
The substances have to be prepared in high purity and precise calorimetric or ki-
netic measurements have to be done for well-defined reactions. This effort must
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be invested before the actual technical realization of a new process, because for
economic and safety reasons, the data has to be as accurate as possible. However,
for an early assessment of the practicability and profitability of a process, a fast but
nevertheless reliable estimate for the thermodynamics usually is sufficient. A num-
ber of empirical methods based on group contributions are used for this purpose,
but they are not generally applicable and often not reliable enough. For exam-
ple, these methods often can not discriminate between isomers containing the same
number and type of groups. Alternatively, reaction enthalpies and entropies can
also be calculated by quantum chemical methods in combination with statistical
mechanics. For the rotational and vibrational energy levels, a correct description
of the molecular structure and the shape of the energy surface is needed, which can
very efficiently be obtained with DFT. The crucial point for the overall accuracy,
however, are the differences in electronic energies, and high level ab initio meth-
ods like coupled cluster theories are often needed to get the error down to a few
kcal/mol. That such a high accuracy is needed can be illustrated by the fact, that a
change in the Gibbs free energy of only 1.4 kcal/mol already changes an equilibrium
constant by an order of magnitude at room temperature.

2.3 Material properties

When a desired property of a material can be connected to quantities on the atomic
or molecular scale, quantum chemistry can be a useful tool in the process of improv-
ing such materials. Typical examples are dyes and pigments, for which color and
brilliance depend on the energies and nature of electronic excitations. Organic dyes
typically have delocalized pi systems and functional groups chosen appropriately
to tune the optical properties. Since the molecules normally are too big for an ab
initio treatment with the desired accuracy, semi-empirical methods are currently
used to calculate the excited states.

3 Unsolved problems

3.1 Treatment of the molecular environment

Quantum chemical methods are predominantly applied to isolated molecules, which
corresponds to the state of an ideal gas. Most chemical processes, however, take
place in condensed phase, and the interaction of a molecule with its environment
can generally not be neglected. Two important examples are given here.

3.1.1 Solvent effects

Solvent molecules can directly interact with the reacting species, e.g. by coordi-
nation to a metal center or by formation of hydrogen bonds. In such cases it is
necessary to explicitely include solvent molecules in the calculation. Depending on
the size of the solvent molecules and their number needed to get the calculated
properties converged, the overall size of the molecular system and the resulting
computational effort can significantly be increased. Currently, only semi-empirical
methods are able to handle several hundred atoms, but the developments towards
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linear scaling approaches in DFT are very promising. An alternative would be
a mixed quantum mechanical (QM) and molecular mechanical (MM) treatment
(QM/MM method).

If there are no specific solute-solvent interactions, the main effect of the solvent is
electrostatic screening, depending on its dielectric constant. This can be described
very efficiently by continuum solvation models (CSM).

3.1.2 Enzymes

Biomolecules like enzymes usually consist of many thousands of atoms and therefore
can not be handled by quantum chemical methods. Although there exist several
very elaborate force field methods which quite reliably reproduce protein structures,
the accurate description of the interaction of the active site with a ligand bound
to it still is an unsolved problem. Quantum mechanics is needed for a quantitative
assessment of polarization effects and for the description of reactions. Treating
only the active site quantum mechanically usually does not give the correct results
because of the strong electrostatic influence of the whole enzyme and the water
molecules included. QM/MM approaches can be used for the treatment of the
whole system, but the QM/MM coupling still needs improvement.

A very important quantity of an enzyme/ligand complex is its binding free
energy. It determines the measured equilibrium constant for a ligand exchange
and is therefore important for the development of enzyme inhibitors. A reliable
calculation of such binding constants is currently not possible. It certainly must
involve quantum chemistry and molecular dynamics.

3.2 Accurate thermochemistry and kinetics

The highly accurate calculation of thermochemical data with ab initio methods is
currently possible only for small molecules up to about 10 atoms. However, many of
the data for molecules of this size are already known, whereas accurate experiments
for larger compounds are quite rare. Therefore, efficient ab initio methods are
needed which are able to treat molecules with 30-50 atoms with the same level of
accuracy. The currently developed local treatments of electron correlation are very
promising in this direction.

Another problem arises for large molecules. They often have a high torsional
flexibility, and the calculation of partition functions based on a single conformer
is therefore not correct. Quantum molecular dynamics could probably give better
answers, but is in many cases too expensive.

For the assessment of catalytic mechanisms, kinetic data are needed to discrim-
inate between different reaction pathways. As described above, ab initio methods
are often not applicable when transition metals are involved. The DFT results for
reaction energies are usually reliable enough to give correct trends, but calculated
activation barriers easily can be wrong by a factor of two or more. The problem lies
in the functionals, which best describe the electron distribution in the molecular
ground states.
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3.3 Spectroscopy for large molecules

Calculated molecular spectroscopic properties are very helful in the assignment
and interpretation of measured spectra, provided that the accuracy is sufficiently
high. In many cases IR, Raman and NMR spectra can be obtained with reason-
able accuracy on DFT or MP2 level, but UV/VIS spectra normally require more
elaborate theories like configuration interaction, which are only applicable to very
small molecules. To improve on the currently applied semi-empirical approaches it
would be necessary to calculate accurate excitation energies also for, e.g., organic
dyes with 50 or even more atoms.

4 Conclusion

The improvement of the efficiency of the algorithms and the enormous increase
of the available computer power already made quantum chemistry applicable to a
lot of industrial problems. However, there are still many aspects concerning the
accuracy, completeness and efficiency of the quantum chemical treatment, which
will need more attention in the future.

Currently, DFT is the most widely used quantum theoretical method in indus-
try. Also of high importance are semi-empirical methods for certain applications.
Both approaches have in common that they do not offer a systematic way for the
improvement of results, if they are found to be not reliable enough. Therefore,
there is still need for efficient ab initio methods, at least as a reference.
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AB INITIO TREATMENT OF LARGE MOLECULES

REINHART AHLRICHS, SIMON D. ELLIOTT AND UWE HUNIAR

Lehrstuhl für Theoretische Chemie, Universität Karlsruhe
Institut für Physikalische Chemie und Elektrochemie

Kaiserstr. 12, 76128 Karlsruhe
Germany

E-mail: ramail@tchibm3.chemie.uni-karlsruhe.de, simon.elliott@tcd.ie
uwe@tchibm3.chemie.uni-karlsruhe.de

We give a brief exposition of the fundamental approximations of ab initio calcu-
lations, the SCF, DFT and MP2 methods for calculating molecular wavefunctions
and energies are introduced. The Resolution of Identity (RI) approach is described
with a view to the treatment of large molecules (100 atoms and more). Scaling
behavior of the various computational methods is compared; here, aluminium clus-
ters represent a demanding application. The utility of analytical energy gradients
is shown, in particular using the example of a theoretical study of the structural
isomers of sulfur-bridged copper clusters. A strategy to compute electronic exci-
tation energies for large molecules is sketched and applications to fullerenes and
cadmium-selenide nanoclusters are presented. Developments in scientific comput-
ing hardware are considered, with emphasis on the emergence of PC’s. The oppor-
tunities and difficulties inherent in the parallelization of quantum chemical code
are also discussed, and the performance of parallel TURBOMOLE is presented.

1 Introduction

Computing in the natural sciences and engineering has gained considerably in im-
portance as a result of the ever increasing power of available hardware. As a
consequence it is justified to speak of the tripod of science: experiment, theory and
scientific computing. The first two of these branches should not require an expla-
nation. The third, scientific computing, comprises “computer experiments” which
give exact results - up to rounding errors and errors in computer programs - within
a model ultimately defined by the computational procedures applied, i.e. by the
assumptions on which they are based. The better the model and the justification
for assumptions, the better and the more realistic the results. Scientific computing
thus permits the prediction and checking of results of experiments and especially
their interpretation. This clearly will never make experiments superfluous - but it
will change and has already changed the way in which experiments are designed
and selected. We just remind the reader of the importance of computer modelling
in the design of air planes, jet engines, cars, and computers, in oil exploration
and weather forecasting, to name just a few fields essentially shaped by modern
simulation techniques.

In the present article we deal with molecular electronic structure theory 1,2,
the application of Quantum Mechanics to determine properties - “observables” - of
molecular systems. The central problem is here the approximate but sufficiently
accurate solution of the molecular Schrödinger equation. This is a formidable task,
a real grand challenge, simply because of the dimensionality: the wavefunction
describing a system of 100 electrons and nuclei is a function of 300 cartesian coor-
dinates (all problems mentioned above are three-dimensional cases), which is simply
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not manageable in an accurate way. Despite these apparently insurmountable diffi-
culties, chemists now almost routinely perform calculations for systems with a few
hundred atoms, which give results that are competitive in accuracy and effort with
measurements. Some aspects of this methodology will be sketched in this article,
where “large molecules” are those with of the order of 100 atoms and more.

2 The Zoo of Methods

2.1 The Standard Approximations: MO-LCAO-CGTO 2

We separate the treatment of electrons and nuclei by means of the Born Oppen-
heimer approximation and are then left with the electronic Schrödinger equation.
Approximate ab initio treatments are almost invariably based on the variation prin-
ciple which requires an evaluation of

E[ψ] = 〈ψ|H |ψ〉/〈ψ|ψ〉 (1)

H =
∑

i

h(i) +
∑

i<j

1/rij (2)

The one-electron terms h include the kinetic energy of electrons and their inter-
action with the nuclei; in the two-electron terms rij denotes the distance between
electrons i and j. We have sufficient knowledge of properties of exact wavefunctions
to guess a high quality ansatz for ψ, but it is then impossible to evaluate the 3n-
dimensional integrals in (1), n = number of electrons, with sufficient accuracy and
reasonable effort. The structure of high quality wavefunctions has been extensively
probed in treatments of small atoms and molecules, especially He and H2.

An application of the variation principle requires an ansatz for ψ for which
integration is easy in general: all integrals should factorize into low dimensional
cases. This is achieved by building ψ from the one-electron functions ϕi called
molecular orbitals (MO), and this leads to the general configuration interaction
(CI) ansatz

ψ =
∑

I

CIΦI (3)

ΦI = [ϕi1...ϕin] (4)

〈ϕi|ϕj〉 = δij (5)

The square brackets in (4) indicate the assignment of spins and antisymmetriza-
tion, the formation of Slater determinants.

As a result of (3)-(5), the evaluation of E[ψ] is reduced to simple three and
six-dimensional integrals

hij =

∫

ϕihϕjdτ
3 (6)
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(ij|kl) =

∫

ϕi(r1)ϕj(r1)1/r12ϕk(r2)ϕl(r2)dτ6 (7)

This solves the problem of integration. However, the number of configurations
to be included in (3) to achieve a prescribed accuracy basically grows exponentially
with the size of the system: CI treatments are in general not feasible for large
molecules at present.

The MO ansatz makes an application of the variation principle possible; effi-
ciency of an implementation depends on the actual representation of MO’s ϕi. The
success of Quantum Chemistry is essentially based on the use of Gaussian functions:
the MO’s ϕi are approximated as “linear combinations of atomic orbitals” (LCAO)
fµ

ϕi =
∑

µ

Cµifµ (8)

and the atom centered basis functions fµ are “contracted Gauss type orbitals”
(CGTO)

fµ =

{
∑

γ

dγexp(−ηγr2)

}

Mon(x, y, z). (9)

Mon(x, y, z) denotes a monomial, i.e. Mon = 1 for an s function, Mon = x or y
or z for p functions and so on. The fixed parameters in (9) - contraction coefficients
dγ and exponents ηγ - have typically been optimized in calculations of atoms. If
(8) is plugged into (6) and (7) one is left with integrals hνµ and (νµ|κλ), defined
in complete analogy to (6) and (7) by replacing ϕi by fν , etc. These integrals hνµ
and (νµ|κλ) over Gaussians are simple analytic expressions which can be evaluated
very efficiently: around 20 additions and multiplications per primitive integral.

2.2 Single Determinant Wavefunctions: SCF and DFT

The simplest MO ansatz includes only a single term, ψSCF = Φ1, in the CI expan-
sion (3). This is a crude approximation and reasonable results can only be expected
if the MOs occupied in ψSCF are variationally optimized: the Self-Consistent Field
(SCF) approach. Despite its simplicity this is a very useful approximation. Equilib-
rium structure constants of most main group compounds are obtained with errors
of about 2% in bond distances and a few degrees in bond angles; simple examples
are discussed in 2. Exceptions are mainly found for weak bonds like those in F2 or
the N-N bond in N2O4 where errors can be considerably larger. We leave it to the
reader to compare this with the accuracy of experimental structure determinations
typically achieved in the gas phase or in crystals for large molecules. The SCF
approach is useless for binding energies but reaction energies can be computed to
within 10 kJ/mol for isodesmic and especially homodesmic reactions. The SCF ap-
proximation also fails for molecules containing transition metals; only cases that are
formally d0 can be treated since they more or less behave as main group elements.
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Many deficiencies of the SCF approach are rectified by density functional theory
(DFT) methods. DFT is easy to characterize if one takes a very pragmatic attitude.
Choosing for simplicity a closed shell system, we write the SCF energy expression
as

ESCF = E(1) + J − Ex (10)

E(1) = 2
∑

i

hii (11)

J = 2
∑

ij

(ii|jj) =
1

2

∫

ρ(r1)1/r12ρ(r2)dτ6 (12)

Ex =
∑

ij

(ij|ij) (13)

ρ(r) = 2
∑

i

|ϕi(r)|2 =
∑

νµ

Dνµfν(r)fµ(r) . (14)

In a remarkable paper Kohn and Sham established - a correct proof was given
later by others - the existence of an “exchange correlation” functional Exc[ρ] such
that 3,4

EDFT = E(1) + J − Exc[ρ] (15)

yields the exact density ρ and the exact ground state energy, EDFT = E0,
provided (15) is minimized with respect to the MO’s ϕi. The exact functional Exc[ρ]
is unknown, also unknown are systematic procedures to derive (better and better)
functionals from the exact Schrödinger equation. Approximate functionals are thus
derived from a study of the underlying physics, by considerations of model systems,
and by simple fits (e.g fitting Ex to SCF results for atoms or to experimental
data). The dominant contribution to Exc is, of course, the Dirac approximation for
exchange: Ex ≈ const ·

∫
ρ4/3dτ3.

This pragmatic approach to determining exchange correlation functionals has
been very successful. DFT yields much improved energetics for main group com-
pounds 5. Even more importantly, DFT methods also yield reasonable results for
transition metal compounds and metal clusters for which SCF is essentially useless.
There are still problems: DFT quite consistently overestimates bond distances and
the density vanishes too slowly at larger distances from nuclei.

DFT has repeatedly been characterized as an essentially semiempirical method,
quite recently by Handy and coworkers 6. If one accepts this judgement, one has to
add that DFT introduces a new quality of semiempirical procedures since the level
of reasoning and the foundation of the approximations are on a much higher level
than for example for CNDO or MNDO and its variants.
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2.3 MP2: Second Order Perturbation Corrections to SCF

The only other method presently applicable to large molecules is MP2 (Møller-
Plesset second order pertubation correction) which adds the dominant effects of
electron correlation to the SCF treatment. Two comments about MP2 should
be made. MP2 is the first term of a perturbation expansion based on SCF as
zeroth order. There is no way to establish or estimate the convergence properties
of this series in general. MP2 typically improves SCF if the latter is already a
useful approximation, and errors with respect to experiment or reliable high level
calculations are reduced to roughly 30% (compared to SCF), e.g. in NMR chemical
shifts 7. Applicability is thus restricted to most of main group chemistry, transition
metals with d0 and in addition with d10 atomic states. The other comment concerns
basis sets: MP2 requires use of (much) larger basis sets than needed for SCF. MP2
treatments require, in addition to a preceeding SCF calculation, the computation
of two-electron integrals (ia|jb), e.g. (7), for all pairs of occupied (i, j) and virtual
(a, b) MO’s. The computational effort is thus much larger than for SCF.

2.4 Gradient Techniques and Properties 8

The development of techniques to evaluate analytical gradients, i.e.

E
(1)
λ = ∂E/∂λ (16)

E
(2)
λµ = ∂2E/∂λ∂µ (17)

of the electronic energy (SCF, DFT, MP2, etc.) with respect to external pa-
rameters (λ, µ) has been essential for the success of Quantum Chemistry. The
programs for (16) and (17) are clearly more complicated than those for the cor-
responding energy - but one gets used to it: last year’s sensation is this year’s
calibration. Analytical gradients have a direct relationship to molecular properties
or are at least very useful in their determination, as the following examples show.

λ = Xµ , a nuclear coordinate: The gradient E
(1)
λ is then the (negative) force

component acting on the nucleus. Knowledge of the gradient is very useful for
structure relaxations to locate the minima of the potential energy hypersurface
which define molecular isomers and conformers.

λ = Xν , µ = Xκ: The second derivatives E
(2)
λκ completely specify the potential

for the treatment of nuclear dynamics in the harmonic approximation, i.e. infrared
and Raman spectra.

λ, µ = components of external electric or magnetic fields: E
(2)
λµ is the polariz-

ability or susceptibility tensor.
λ = component of the magnetic field, µ = component of the nuclear magnetic

moment: E
(2)
λµ gives the chemical shielding of NMR, and chemical shifts by compar-

ison with a standard. We note in passing that the treatment of magnetic properties
has caused many problems which are connected with achieving invariance with
respect to the gauge of (magnetic) vector potentials 9.

The advantage of analytical gradient evaluations is again efficiency: the evalua-
tion of the complete gradient with respect to all nuclear coordinates is faster than
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the computation of the energy for SCF and DFT, and only about a factor 3 more
expensive for MP2.

2.5 Electronic Excitations

The treatment of electronic excitation generally requires extended CI calculations
which are not feasible for large molecules. If a computational procedure is envisaged
for this purpose which is comparable in effort to SCF or DFT, one is led to consider
Time-Dependent SCF and especially Time-Dependent DFT (TDDFT) 10. Consid-
ering the molecule under the influence of an electric field with frequency ω, one
computes α(ω), the frequency dependent polarizability - technically a modification
of the static polarizability computations mentioned above. Electronic excitations
are then obtained as the poles of α(ω), i.e. by putting α(ω) =∞ in the correspond-
ing equations. TDDFT appears to be more accurate than the SCF analogue 11 -
usually called SCF-RPA (random phase approximation) - which in turn is closely
related to a CI with the SCF reference and all single excitations (SCI). A final note:
TDDFT can be expected to be of use (relative errors of a few tenths of an eV) only
if excited states are sufficiently well described by single excitations - at least for the
DFT functionals presently in use.

2.6 RI Methods (Resolution of the Identity)

Electronic structure calculations are essentially a struggle with the consequences
of interelectronic interactions, i.e. the computation and processing of two-electron
integrals (νµ|κλ), Eq. (7), within the LCAO-MO approximation. In attempts to
reduce the large number of two-electron integrals, one has tried to approximate
products of basis functions, fνfµ, by a set of atom-centered auxiliary (or fitting)
basis functions g, ususally labelled by indices α or β:

∆νµ = fνfµ −
∑

α

Cαgα ≈ 0 . (18)

The late Jan Almlöf and coworkers have shown that the appropriate metric for
(18) in the context of interelctronic interactions is given as 12

||∆νµ||2 = (∆νµ|∆νµ) =

∫

∆νµ(r1)1/r12∆νµ(r2)dτ6 = min . (19)

The condition (19) leads, after standard manipulations, to the following replace-
ment

(νµ|κλ) ≈
∑

αβ

(νµ|α)(α|β)−1(β|κλ) (20)

where (x|y) is as in (7) or (19) and where (α|β)−1 denotes the inverse matrix.
This approximation formally resembles the Resolution of the Identity in Hilbert
space theory for non-orthogonal basis functions: hence the acronym RI.
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The r.h.s. of (20) looks more complicated than the l.h.s., but using (20) may
still be advantageous since it only involves two- and three-index quantities and no
four-index quantities. The most pronounced gain in efficiency results if (20) is used
for the approximate treatment of the Coulomb term J , eq. (12), giving the RI-J
approximation

J ≈
∑

νµ

Dνµ(νµ|α)




∑

β

(α|β)−1

{
∑

κλ

(β|κλ)Dκλ

}

 (21)

This is employed profitably in DFT treatments where only J is present and Exc
is treated separately (Eq. (15)), which leads to the RI-DFT method discussed in 13.
No way has been found so far to exploit (20) in connection with exchange terms
(13). On the other hand, quite pronounced gains in efficiency are achieved for MP2
calculations: the RI-MP2 approximation 14.

The RI approximation is of use only if auxiliary basis sets gα are available for
which the loss of accuracy incurred by (20) can be controlled. This is fortunately
the case for the RI-DFT 13,15 and the RI-MP2 methods 16: the errors introduced are
without consequences, since they are much smaller than those that result anyway
from typical basis sets. (For the experts: one achieves an accuracy of obout 50
µH ≈ 0.1 kJ/mol per atom and the corresponding errors largely cancel for energy
differences.)

2.7 Scaling Behavior

For treatments of large molecules it is essential to establish the so called “scaling
behavior”: the way in which computational effort increases with increasing molecu-
lar size. Theoreticians usually take the number of basis functions, N , as a measure
of molecular size (the number of atoms would also do).

It is important to distinguish between formal and asymptotic scaling, as will
be explained in this example. The total number of two-electron integrals (νµ|κλ)
clearly increases with N4, the formal scaling. However in practice one can neglect
sufficiently small integrals. Since the differential overlap fνfµ vanishes when the
corresponding centers of basis functions are far apart, the number of fνfµ to be
considered grows only in proportion to N , and the number of (νµ|κλ) in proportion
to N2. This is the asymptotic scaling behavior for large molecules.

Analoguous considerations lead to the following results

Computational step Scaling: formal → asymptotic
—————————————————————————
(νµ|κλ) N4 → N2

RI-J (Eq. (21)) N3 → N2

Quadrature N3 → N
Linear algebra N3 → N3

MP2 N5 → N3

13



Quadrature denotes here the numerical integration necessary for DFT to
evaluate Exc (which cannot be integrated analytically). Linear algebra includes
the usual matrix operations: product, inversion, and diagonalization. Since the
investigation of scaling behavior is a very active field of research 17,18,19,20 and
since discussions are sometimes confusing, a few comments appear appropriate.

Quantum chemists have always tried to avoid unnecessary computations and
thus achieve better scaling behavior. As an example we mention the timings for
a series of Al clusters which include between 13 and 147 atoms, i.e. 200 to 3000
CGTO basis functions, for a gradient calculation within the RI-DFT method 13,21.
To save computer time Oh symmetry was used (in the comparison) although this
is distorted by Jahn Teller effects in most cases. The total times never show the
formal N3 behavior. The CPU times increase like N2.3 for the smaller cases and
N1.7 for the larger cases. Clusters of Al are densely packed systems and certainly
cannot be considered as fortunate examples.

The scaling behavior is only one aspect of an algorithm. The exact Coulomb
term, Eq. (7), and the RI-J approximation, Eq. (21), have the same asymptotic
scaling - but the latter can be evaluated 10 to 100 times faster 13,15. The N3

scaling for linear algebra is not seen for these cases although matrix calculations
are carried out. If computational effort is approximated as cNx, the factor c can
be as important or even more important as the exponent x over a wide range of N
values.

Very impressive progress has been made in the development of ‘linear scaling’
methods 17,18,19,20 where one attempts to achieve tCPU ∝ N asymptotically for
large molecules. There are now algorithms available which scale better than N2

(and often reach N) for all steps of energy or gradient calculations. An exception is
exact exchange Ex, Eq.(13), for delocalized systems, which still appears to require
N2 effort 22. Although it is not clear at present for which system size these methods
offer an advantage as compared to the best procedures already available, they will
play an important role in the future.

3 Computer Hardware: Another Zoo

3.1 PC’s and Workstations

The computers that can be afforded by research groups, institutes, faculties, and
actually most computation centers are based on microprocessors. These are truly
impressive devices: with about 10 million transistors packed on 1 cm2 they con-
stitute almost complete computers (with CPU and memory, a primary cache with
a few 100 kB) and deliver a performance of roughly 1 GIPS (109 instructions per
second), dwarfing the best mainframes of three decades ago. The performance of
microprocessors has been increased by a factor of two every 18 to 24 months over
the last decade - and this trend will more or less continue over the next decade.

Microprocessors are only partly suited to scientific computing. Because of the
considerable investment costs, microprocessor development has been driven by con-
sumer electronics (games), PC’s for homes and offices, graphics requirements and
transaction machines in business. So far these computers could always also be used
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Table 1. Timings of TURBOMOLE for representative molecules on a HP workstation (180 MHz,
PA 8000); BF denotes the number of basis functions, MO the number of occupied MO’s, G the
molecular symmetry group, and Natom the number of atoms.

Molecule / basis G Method BF/MO Natom

C5H5N / TZP C2v SCF 150/21 11 energy 6.3 min
gradient 1.4 min

Ni(CO)4 / SVP Td DFT 136/42 9 energy 1.7 min
gradient 13 sec

C19H40 / SV C2v MP2 251/77 59 energy 96 min
+grad.

(CoPH3)6 As12/ SVP D3d RI-DFT 726/333 42 energy 33 min
gradient 4.3 min

Fullerene C60 / 3-21G Ih DFT 540/180 60 energy 7.8 min
gradient 58 sec

Acetyl Salecylic Acid / SV(P) C1 SCF 198/47 21 energy 25.0 min
gradient 4.5 min

Fe(C5H5)2 / SV D5d MP2 131/48 21 energy 59 sec
/ SVP SCF 214/48 energy 4.4 min

gradient 39 sec
/ SVP RI-DFT energy 1.9 min

gradient 21 sec
Cu12[P(C2H5)3]8S6/ SVP+ECP C4h RI-DFT 1260/426 194 energy 210 min

gradient 32.4 min
C70 / TZVP D5h RI-MP2 1330/210 70 energy 49.3 h

+grad.

for number crunching purposes in science and engineering.
The big success of decentralized computing – as opposed to using mainframes –

came with UNIX workstations. These were open systems (hardware and software):
all interfaces were standardized and their specifications published. One could com-
bine parts from different manufacturers, opening the way to heavy competition
and price reductions. PC’s have recently become competitive with workstations
in performance, even for typical number crunching applications. This has been
greatly facilitated by the public domain system LINUX, a UNIX system for PC’s
and workstations. Windows and WindowsNT are so far hardly used for scientific
computing. It is to be expected, however, that they will replace UNIX, first for the
“low end” computers and later also for larger systems. This process is well under
way and may proceed faster than expected.

A desktop system for scientific computing is typically equipped with 256 MB
memory (at least 128 MB, up to 1 GB is usually possible) and disks with 4 GB
or 9 GB capacity. Prices for these systems start below 10 000 DM. We have
carried out computations with various small computers with the program system
TURBOMOLE 23. Some representative timings are collected in the Table 1 for a
typical high end workstation. The same set of test cases (with very few exceptions
since access was limited) has been run on other hardware which permits to compare
their relative speed. A newer version is available via 23.
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Relative Performance of some Workstations:
(larger numbers mean faster machines)

IBM RISC 3CT (67 MHz) 0.49
Pentium Pro (200 MHz) 0.52
IBM RISC SP2 node (120 MHz) 0.85
SGI (R 10 000, 190 MHz) 0.98
Pentium II (375 MHz) 0.96
DEC (personal workstation, 433 MHz) 0.96
HP PA8000 (180 MHz) 1.0
DEC (workstation, 600 MHz) 1.25

The reader should not forget that the above comparison is for
TURBOMOLE, and here only on average with a standard deviation around
15%. Running other programs may lead to quite different relative efficiencies of the
machines considered. For Pentium-based PC’s we employed the “Portland Group”
compiler, for all others those provided by the respective companies. The timings
for the ‘375 MHz Pentium II’ have been obtained with a 333 MHz processor driven
at higher clock frequency.

3.2 Multiprocessor Machines

There is a clear trend towards machines with 2 to 8 CPUs in a single frame since this
reduces costs for production and maintenance. Even larger machines contain 512 (or
even more) processors and are designed for parallel processing of big problems, e.g.
the “grand challenges”. Parallel computers are at present the only way to reduce
turn-around times for very demanding computations. However, scientists do not
always get the hardware they would like. One has to work with the machines the
engineers can construct or are told to construct by their companies: i.e. basically
standard workstations with a fast connection network. Although these are very
powerful and potentially useful tools, they are only reluctantly accepted since the
burden of parallelizing codes to exploit this machinery lies entirely with the scientific
programmer. It is also embarrassing that different computer architectures may
require different parallelization strategies. In Quantum Chemistry the situation is
further complicated since the methods and algorithms employed have not settled
down and are still in a state of flux.

Despite all these problems a variety of codes is available in parallelized versions.
In the next section it will be shown that impressive improvements in turn-around
time have been achieved.

4 Calculating some Large Systems

4.1 Methods

We will try to give the reader a broad idea of applications carried out in Karlsruhe.
This is appropriate for a feature article; a comprehensive survey of computational
Quantum Chemistry would in any case be impossible in a few pages.
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Let us first put the methods in order according to the effort typically required:

Effort of MP2 > RI-MP2 > DFT(Jexact) ≥ SCF > RI-DFT.

This ordering applies to TURBOMOLE and most other programs where corre-
sponding methods are implemented. DFT(Jexact) denotes usage of the exact
Coulomb energy based on two-electron integrals, Eqs. (7), (8), and (12). Such
calculations are more expensive than SCF since a quadrature is necessary in addi-
tion. RI-DFT is considerably more efficient than DFT(Jexact) or SCF – typically
by a factor of 3 to 5 13,15 – and is the method of choice for large systems. RI-MP2
is about 5 to 7 times faster than MP2 14.

Molecular symmetry reduces computer times roughly according to the order of
the molecular symmetry group, for TURBOMOLE at least. This makes it possible
to calculate large molecules on small and inexpensive machines.

4.2 Ligand-stabilized Sulfur-bridged Copper Clusters 24

Numerous sulfur or selenium bridged copper clusters have been synthesized and
structurally characterized in the group of Dieter Fenske; accompanying theoretical
treatments have been carried out especially to establish the energetics. S. Dehnen
synthesized two structural isomers, type 1 and 2, Fig. 1, for [Cu12S6(PR3)8].
Whereas the type 1 structure is found for R=Et, and appears to be quite common,
type 2 is known for R=nPr only. The calculations were started with the idea
that a pronounced ligand effect would be responsible for this state of affairs: type
2 structures can better accomodate the bulkier ligands PnPr3 (as compared to
P Et3). The following results were obtained.

1 2

Figure 1. Molecular structure types 1 and 2 for [Cu12S6(PR3)8], the organic groups R attached
to P are not shown.
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(i) MP2 and DFT lead to virtually identical results for the model compound with
R=H (larger R could not be treated by MP2). Type 1 is slightly more stable
than type 2: by 2.4 kJ/mol (MP2) and 1.2 kJ/mol (DFT).

(ii) The type 1 and type 2 structure can easily accomodate either ligand, R=Et or
R=nPr, Fig. 2. Type 1 is 22 kJ/mol (R=Et) and 24 kJ/mol (R=nPr) more
stable than type 2.

Since the authors of the theoretical study see no compelling reasons to doubt
the reliability of their findings, it was concluded that the structural types found in
experiment are probably not determined by the energetics of isolated clusters alone
and rather that kinetics plays the decisive role. The cluster with R=nPr precipitates
already at -80◦C and dissolves at higher temperature; for R=Et crystals form at
-24◦C. (The thermodynamically stable Cu2S is obtained at room temperature in
either case). To reconcile all aspects mentioned, it was proposed that structure 2,
R=nPr, is kinetically stabilized at the low temperature where it exists.

This example involved very demanding calculations with structure determina-
tions (in C4h symmetry) for clusters with up to 266 atoms; timings are given in
Table 1.

4.3 Cadmium Selenide Nanoparticles 25

Clusters of semiconductor compounds such as CdSe often exhibit strongly size
dependent electrical and optical properties. These materials could form the basis for
new devices with considerable technological importance, e.g. light emitting diodes
or electronic devices operating above GHz frequency. The behavior of the clusters
is mainly governed by their electronic structure. Since the electrons are spatially
confined to the cluster volume one expects and finds a pronounced “quantum size
effect” which causes the size dependence of properties.

As a first step towards a detailed understanding of the quantum size effect the
clusters shown in Fig. 3 have been investigated. The compounds have been mainly
synthesized in the group of Fenske and are available as monodisperse materials
in crystalline form (ionic clusters with the necessary counterions, of course). The
stabilization of the clusters is achieved by protecting phenyl groups bonded to outer
layer Se atoms.

Dipole allowed electronic excitation spectra are an important aspect of the elec-
tronic spectra. These have been computed within the TDDFT method employing
the RI approximation 26. The results are presented in Fig. 4. Since the two
largest cluster could not be computed with the phenyl groups, these groups were
replaced by H throughout for better comparison. Structure optimization - which
show good agreement with experiment - has been carried out for the 294-atom
cluster [Cd10Se4(SePh)12(PPh3)4]; requiring 7 hours for an RI-DFT structure op-
timization cycle (energy + gradient) on a HP-PA 8000 (180 MHz).

The largest clusters treated have a diameter exceeding 1 nm: they are large
enough to be “nanoclusters”. However they are still too small to allow electronic
excitations to be treated by band structure theory (with effective masses for holes
and electrons). Quantum chemical calculations, although expensive, thus provide
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a) [Cu12S6(PEt3)8]/C4h [Cu12S6(PnPr3)8]/S4

b) [Cu12S6(PnPr3)8]/C4h [Cu12S6(PEt3)8]/S4

Figure 2. Computed RI-DFT structures of [Cu12S6(PR3)8] for R=Et and nPr. Type 1 clusters
are on the left side (symmetry C4h), type 2 on the right side (symmetry S4); a) known compounds,
b) ‘hypothetical’ clusters.
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[Cd4(SePh)6Br4]2− [Cd8Se(SePh)12Cl4]2−

[Cd10Se4(SePh)12(PPh3)4]

[Cd17Se4(SeH)24(PH3)4]2+ [Cd32Se14(SeH)36(PH3)4]

Figure 3. RI-DFT cluster structures of [Cd4(SePh)6Br4]2−, [Cd8Se(SePh)12Cl4]2−,
[Cd10Se4(SePh)12(PPh3)4], [Cd17Se4(SeH)24(PH3)4]2+, [Cd32Se14(SeH)36(PH3)4]; the lig-
ands H and Ph attached to Se and P atoms are not shown.
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Figure 4. TDDFT electronic excitation spectra of [Cd8Se(SeH)12Cl4]2−,
[Cd10Se4(SeH)12(PH3)4], [Cd17Se4(SeH)24(PH3)4]2+, [Cd32Se14(SeH)36(PH3)4]; the first
dipole allowed transitions are shown.
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Figure 5. Absorption spectrum of C60 (Ih) in n-hexane at room temperature in comparison with
the computed TDDFT excitation energies.

the only way so far to calculate such spectra for nanoclusters of this size; measure-
ments could not be carried out so far. The calculated spectra are shown in Fig.
4. We observe that such large-scale calculations start to show convergence to the
known bulk properties.

4.4 Fullerenes 27

TDDFT 11,26 has been applied to compute electronic excitations of fullerenes C60

(Ih), C70 (D5h), C76 (D2), C78 (C2v, D3 and D3h) and C80 (D2). The fullerenes
had been isolated and their spectra measured in solution (toluene, hexane). The
calculations were carried out to assign the spectra as far as possible. Despite
various uncertainties (solution versus gas phase, neglect of vibration), the level
of agreement is good enough to allow assignment of the dominant spectral features.
As a simple example we present a comparison of theory and experiment in Fig. 5.
The computed excitation energies have all been increased by 0.35eV to compensate
for the underestimation typical of TDDFT.

4.5 Parallelized Programs

It was only possible to calculate the large systems mentioned above on workstations
and PC’s by exploiting the molecular symmetry. Reducing the symmetry increases
the computational demand; for example, in TURBOMOLE, going from D4h, D4d,
Td or O symmetry down to C1 raises the time taken by a factor of 20. It is thus
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impractical to compute systems of 300 atoms or so without symmetry on such
workstations. Instead one needs parallel computers and parallel codes. The high
symmetry cases treated on a single workstation could then be computed without
symmetry restrictions but in comparable turn-around time with 8 to 32 parallel
processors.

Parallel TURBOMOLE 28 achieves a very good speed-up in the dominant com-
putational steps of SCF, DFT and RI-DFT calculations (energy and first order
gradients). For the evaluation and processing of two-electron integrals as well as
for the quadrature the speed-up is > 100 for 128 processors, ≈ 59 for 64 processors,
and ≈ 30 for 32 processors. The RI-J algorithms even show a superlinear speed-up.
The performance for a complete run is limited by linear algebra, however, which
has not been efficiently parallelized.

Reliable estimates of the parallelization efficiency require a single processor
run for comparison. The largest case for which this could be carried out was
[SiAl14Cp*6], Cp* = (CH3)5, with 165 atoms and 1365 CGTO basis functions.
The following timings and speed-ups have been obtained in C1 symmetry on an
IBM SP2 (120 MHz) for a complete RI-DFT run.

Processors Time/min Speed-up
1 1131 1
8 135 9
16 71 16
32 43 26

At around 32 parallel processors one reaches the point of diminishing returns for
the present program version. Even the large cases [Cd10Se4(SePh)12 (PPh3)4] and
[Cd32Se14(SeH)36 (PH3)4] with up to 294 atoms and 2754 CGTO basis functions
can be treated at the RI-DFT level in less than 4 hours on 32 processors.

5 Outlook

The ongoing dynamic development of methods and the continuing improvement
of hardware have consequences which are easy to discern: Quantum Chemistry is
rapidly becoming a standard tool of chemistry. In this respect it is following other
techniques like NMR spectroscopy or X-ray scattering. There is an important
difference which should be kept in mind. NMR and X-ray are the indispensable
methods for qualitative and quantitative structure analysis. Quantum Chemitry
has the capacity to be a universal tool to simulate all properties: spectra (ir, Raman,
electronic, NMR), structures, energetics, intermolecular interactions, reactions, and
so on.

Of course, this universal tool is still far off. Despite the progress theoreticians
have made, the applicability of Quantum Chemistry is still restricted to specific
cases. We just mention one problem: it would be highly desirable to develop
efficient and reliable procedures to generate potential energy surfaces globally for
larger molecules. This would allow the routine simulation of reactions and of the
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temperature dependence of properties.
The progress in ab initio Quantum Chemistry also affects the computationally

less demanding semi empirical and force field procedures. A better parametrization
of these methods and an assessment of their accuracy becomes possible with the
aid of detailed and reliable ab initio results often not available from experiment.
One can further combine various methods in the treatment of a large molecule by
means of embedding procedures 29, which may extend the applicability of ab initio
methods to molecules in the range of 1000 to 10 000 atoms.

Solutions to many of the problems still limiting the applicability of present
methods are in fact in reach or have been worked out in principle. With qualified
manpower and sufficient support these will become routine in the near future.
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The major parallel programming models for scalable parallel architectures are the
message passing model and the shared memory model. This article outlines the
main concepts of those models as well as the industry standard programming in-
terfaces MPI and OpenMP. To exploit the potential performance of parallel com-
puters, programs need to be carefully designed and tuned. We will discuss design
decisions for good performance as well as programming tools that help the pro-
grammer in program tuning.

1 Introduction

Although the performance of sequential computers increases incredibly fast, it is
insufficient for a large number of challenging applications. Applications requiring
much more performance are numerical simulations in industry and research as well
as commercial applications such as query processing, data mining, and multi-media
applications. Architectures offering high performance do not only exploit paral-
lelism on a very fine grain within a single processor but apply a medium to large
number of processors concurrently to a single application. High end parallel com-
puters deliver up to 3 Teraflop/s (1012 floating point operations per second) and
are developed and exploited within the ASCI (Accelerated Strategic Computing
Initiative) program of the Department of Energy in the USA.

This article concentrates on programming numerical applications on distributed
memory computers introduced in Section 1.1. Parallelization of those applications
centers around selecting a decomposition of the data domain onto the processors
such that the workload is well balanced and the communication is reduced (Section
1.2)7.

The parallel implementation is then based on either the message passing or
the shared memory model (Section 2). The standard programming interface for
the message passing model is MPI (Message Passing Interface) 13,10, offering a
complete set of communication routines (Section 2.1). OpenMP 5,12 is the standard
for directive-based shared memory programming and will be introduced in Section
2.2.

Since parallel programs exploit multiple threads of control, debugging is even
more complicated then for sequential programs. Section 3 outlines the main con-
cepts of parallel debuggers and presents TotalView, the most widely available de-
bugger for parallel programs.

Although the domain decomposition is key to good performance on parallel ar-
chitectures, program efficiency depends also heavily on the implementation of the
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communication and synchronization required by the parallel algorithm and the im-
plementation techniques chosen for sequential kernels. Optimizing those aspects is
very system dependent and thus, an interactive tuning process consisting of mea-
suring performance data and applying optimizations follows the initial coding of the
application. The tuning process is supported by programming model specific per-
formance analysis tools. Section 4 presents basic performance analysis techniques
and introduces the three performance analysis tools for MPI programs available on
CRAY T3E.

1.1 Parallel Architectures

Parallel computers that scale beyond a small number of processors circumvent the
main memory bottleneck by distributing the memory among the processors. Cur-
rent architectures 4 are composed of single-processor nodes with local memory or
of multiprocessor nodes where the node’s main memory is shared among the node’s
processors. In the following it is assumed that nodes do have only a single CPU
and the terms node and processor will be used interchangeably.

The most important characteristic of this distributed memory architecture is that
access to the local memory is faster than to remote memory. It is the challenge
for the programmer to assign data to the processors such that most of the data
accessed during the computation are already in the node’s local memory.

Three major classes of distributed memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any hard-
ware support to access another node’s local memory. Processors obtain data
from remote memory only by exchanging messages between processes on the
requesting and the supplying node.

Remote Memory Access (RMA) computers allow to access remote memory
via specialized operations implemented by hardware. The accessed memory
location is not determined via an address in a shared linear address space but
via a tuple consisting of the processor number and the local address in the
target processor’s address space.

Cache-Coherent Non Uniform Memory Access (ccNUMA) computers
do have a shared physical address space. All memory locations can be accessed
via usual load and store operations. Access to a remote location results in
a copy of the appropriate cache line in the processor’s cache. Coherence
algorithms ensure that multiple copies of a cache line are kept coherent, i.e.
the copies do have the same value.

While most of the early parallel computers were NORMA systems, today’s
systems are either RMA or ccNUMA computers. This is because remote memory
access is a light-weight communication protocol that is more efficient than standard
message passing since data copying and process synchronization are eliminated. In
addition, ccNUMA systems offer the abstraction of a shared linear address space
resembling physical shared memory systems. This abstraction simplifies the task
of program development but does not necessarily facilitate program tuning.
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Figure 1. Structure of the matrix during Gaussian elimination.

Typical examples of the three classes are clusters of workstations (NORMA),
CRAY T3E (RMA), and SGI Origin 2000 (ccNUMA).

1.2 Data Parallel Programming

Applications that scale to a large number of processors usually perform computa-
tions on large data domains. For example, crash simulations are based on partial
differential equations that are solved on a large finite element grid and molecular
dynamic applications simulate the behavior of a large number of atoms. Other
parallel applications apply linear algebra operations to large vectors and matrices.
The elemental operations on each object in the data domain can be executed in
parallel by the available processors.

The scheduling of operations to processors is determined according to a selected
domain decomposition 8. Processors execute those operations that determine new
values for local elements (owner-computes rule). While processors execute an op-
eration, they might need values from other processors. The domain decomposition
has thus to be chosen so that the distribution of operations is balanced and the
communication is minimized. The third goal is to optimize single node computa-
tion, i.e. to be able to exploit the processor’s pipelines and the processor’s caches
efficiently.

A good example for the design decisions taken when selecting a domain decom-
position is Gaussian elimination 2. The main structure of the matrix during the
iterations of the algorithm is outlined in Figure 1.

The goal of this algorithm is to eliminate all entries in the matrix below the
main diagonal. It starts at the top diagonal element and subtracts multiples of
the first row from the second and subsequent rows to end up with zeros in the first
column. This operation is repeated for all the rows. In later stages of the algorithm
the actual computations have to be done on rectangular sections of decreasing size.

If the main diagonal element of the current row is zero, a pivot operation has
to be performed. The subsequent row with the maximum value in this column is
selected and exchanged with the current row.

A possible distribution of the matrix is to decompose its columns into blocks, one
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block for each processor. The elimination of the entries in the lower triangle can then
be performed in parallel where each processor computes new values for its columns
only. The main disadvantage of this distribution is that in later computations of
the algorithms only a subgroup of the processes is actually doing any useful work
since the computed rectangle is getting smaller.

To improve load balancing, a cyclic column distribution can be applied. The
computations in each step of the algorithm executed by the processors differ only
in one column.

In addition to load balancing also communication needs to be minimized. Com-
munication occurs in this algorithm for broadcasting the current column to all the
processors since it is needed to compute the multiplication factor for the row. If
the domain decomposition is a row distribution, which eliminates the need to com-
municate the current column, the current row needs to be broadcast to the other
processors.

If we consider also the pivot operation, communication is necessary to select
the best row when a rowwise distribution is applied since the computation of the
global maximum in that column requires a comparison of all values.

Selecting the best domain decomposition is further complicated due to optimiz-
ing single node performance. In this example, it is advantageous to apply BLAS3
operations for the local computations. Those operations make use of blocks of rows
to improve cache utilization. Blocks of rows can only be obtained if a block-cyclic
distribution is applied, i.e. columns are not distributed individually but blocks of
columns are cyclically distributed.

This discussion makes clear, that choosing a domain decomposition is a very
complicated step in program development. It requires deep knowledge of the algo-
rithm’s data access patterns as well as the ability to predict the resulting commu-
nication.

2 Programming Models

The two main programming models, message passing and shared memory, offer
different features for implementing applications parallelized by domain decomposi-
tion.

The message passing model is based on a set of processes with private data
structures. Processes communicate by exchanging messages with special send and
receive operations. The domain decomposition is implemented by developing a
code describing the local computations and local data structures of a single pro-
cess. Thus, global arrays have to be split up and only the local part be allocated
in a process. This handling of global data structures is called data distribution.
Computations on the global arrays also have to be transformed, e.g. by adapting
the loop bounds, to ensure that only local array elements are computed. Access
to remote elements have to be implemented via explicit communication, temporary
variables have to be allocated, messages be setup and transmitted to the target
process.

The shared memory model is based on a set of threads that are created when
parallel operations are executed. This type of computation is also called fork-join
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parallelism. Threads share a global address space and thus access array elements
via a global index.

The main parallel operations are parallel loops and parallel sections. Paral-
lel loops are executed by a set of threads also called team. The iterations are
distributed onto the threads according to a predefined strategy. This scheduling
strategy implements the chosen domain decomposition. Parallel sections are also
executed by a team of threads but the tasks assigned to the threads implement dif-
ferent operations. This feature can for example be applied if domain decomposition
itself does not generate enough parallelism and whole operations can be executed
in parallel since they access different data structures.

In the shared memory model, the distribution of data structures onto the node
memories is not enforced by decomposing global arrays into local arrays, but the
global address space is distributed onto the memories on system level. For example,
the pages of the virtual address space can be distributed cyclically or can be assigned
on a first touch basis. The chosen domain decomposition thus has to take into
account the granularity of the distribution, i.e. the size of pages, as well as the
system-dependent allocation strategy.

While the domain decomposition has to be hardcoded into the message passing
program, it can easily be changed in a shared memory program by selecting a
different scheduling strategy for parallel loops.

Another advantage of the shared memory model is that automatic and incre-
mental parallelization is supported. While automatic parallelization leads to a first
working parallel program, its efficiency typically needs to be improved. The rea-
son for this is that parallelization techniques work on a loop-by-loop basis and do
not globally optimize the parallel code via a domain decomposition. In addition,
dependence analysis, the prerequisite for automatic parallelization, is limited to
statically known access patterns.

In the shared memory model, a first parallel version is relatively easy to im-
plement and can be incrementally tuned. In the message passing model instead,
the program can be tested only after finishing the full implementation. Subsequent
tuning by adapting the domain decomposition is usually time consuming.

2.1 MPI

The Message Passing Interface (MPI) 13,10 was developed between 1993 and 1997.
It includes routines for point-to-point communication, collective communication,
one-sided communication, and parallel IO. While the basic communication primi-
tives are already defined since May 1994 and implemented on allmost all parallel
computers, remote memory access and parallel IO routines are part of MPI 2.0 and
are only available on few machines.

2.1.1 MPI basic routines

MPI consists of more than 120 functions. But realistic programs can already be
developed based on no more than six functions:

MPI Init initializes the library. It has to be called at the beginning of a parallel
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operation before any other MPI routines are executed.

MPI Finalize frees any resources used by the library and has to be called at the
end of the program.

MPI Comm size determines the number of processors executing the parallel
program.

MPI Comm rank returns the unique process identifier.

MPI Send transfers a message to a target process. This operation is a blocking
send operation, i.e. it terminates when the message buffer can be reused either
because the message was copied to a system buffer by the library or because
the message was delivered to the target process.

MPI Recv receives a message. This routines terminates if a message was copied
into the receive buffer.

2.1.2 MPI communicator

All communication routines depend on the concept of a communicator. A commu-
nicator consists of a process group and a communication context. The processes
in the process group are numbered from zero to process count - 1. The process
number returned by MPI Comm rank is the identification in the process group of
the communicator which is passed as a parameter to this routine.

The communication context of the communicator is important in identifying
messages. Each message has an integer number called a tag which has to match a
given selector in the corresponding receive operation. The selector depends on the
communicator and thus on the communication context. It selects only messages
with a fitting tag and having been sent relative to the same communicator. This
feature is very useful in building parallel libraries since messages sent inside the
library will not interfere with messages outside if a special communicator is used in
the library. The default communicator that includes all processes of the application
is MPI COMM WORLD.

2.1.3 MPI collective operation

Another important class of operations are collective operations. Collective oper-
ations are executed by a process group identified via a communicator. All the
processes in the group have to perform the same operation. Typical examples for
such operations are:

MPI Reduce performs a global operation on the data of each process in the
process group. For example, the sum of all values of a distributed array can
be computed by first summing up all local values in each process and then
summing up the local sums to get a global sum. The latter step can be per-
formed by the reduction operation with the parameter MPI SUM. The result
is delivered to a single target processor.
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MPI Comm split is an administration routine for communicators. It allows to
create multiple new communicators based on a given coloring scheme. All
processes of the original communicator have to take part in that operation.

MPI Barrier synchronizes all processes. None of the processes can proceed be-
yond the barrier until all the processes started execution of that routine.

2.1.4 MPI IO

Data parallel applications make use of the IO subsystem to read and write big data
sets. These data sets result from replicated or distributed arrays. The reasons
for IO are to read input data, to pass information to other programs, e.g. for
visualization, or to store the state of the computation to be able to restart the
computation in case of a system failure or if the computation has to be split into
multiple runs due to its resource requirements.

IO can be implemented in three ways:

1. Sequential IO

A single node is reponsible to perform the IO. It gathers information from the
other nodes and writes it to disc or reads information from disc and scatters
it to the appropriate nodes. While the IO is sequential and thus need not be
parallelized, the full performance of the IO subsystem might not be utilized.
Modern systems provide high performance IO subsystems that are fast enough
to support multiple IO requests from different nodes in parallel.

2. Private IO

Each node accesses its own files. The big advantage of this implementation is
that no synchronization among the nodes is required and very high performance
can be obtained. The major disadvantage is that the user has to handle a large
number of files. For input the original data set has to be splitted according to
the distribution of the data structure and for output the process-specific files
have to be merged into a global file for postprocessing.

3. Parallel IO

In this implementation all the processes access the same file. They read and
write only those parts of the file with relevant data. The main advantages are
that no individual files need to be handled and that reasonable performance
can be reached. The disadvantage is that it is difficult to reach the same
performance as with private IO. The parallel IO interface of MPI provides
flexible and high-level means to implement applications with parallel IO.

Files accessed via MPI IO routines have to be opened and closed by collective
operations. The open routine allows to specify hints to optimize the performance
such as whether the application might profit from combining small IO requests from
different nodes, what size is recommended for the combined request, and how many
nodes should be engaged in merging the requests.

The central concept in accessing the files is the view. A view is defined for each
process and specifies a sequence of data elements to be ignored and data elements
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to be read or written by the process. When reading or writing a distributed array
the local information can be described easily as such a repeating pattern. The IO
operations read and write a number of data elements on the basis of the defined
view, i.e. they access the local information only. Since the views are defined via
runtime routines prior to the access, the information can be exploited in the library
to optimize IO.

MPI IO provides blocking as well as nonblocking operations. In contrast to
blocking operations, the nonblocking ones only start IO and terminate immediately.
If the program depends on the successful completion of the IO it has to check it via
a test function. Besides the collective IO routines which allow to combine individual
requests, also noncollective routines are available to access shared files.

2.1.5 MPI remote memory access

Remote memory access (RMA)operations allow to access the address space of other
processes without participation of the other process. The implementation of this
concept can either be in hardware, such as in the CRAY T3E, or in software via
additional threads waiting for requests. The advantages of these operations are that
the protocol overhead is much lower than for normal send and receive operations and
that no polling or global communication is required for setting up communication
such as in unstructured grid applications and multiparticle applications.

In contrast to explicit message passing where synchronization happens im-
plicitely, accesses via RMA operations need to be protected by explicit synchro-
nization operations.

RMA communication in MPI is based on the window concept. Each process has
to execute a collective routine that defines a window, i.e. the part of its address
space that can be accessed by other processes.

The actual access is performed via a put and get operation. The address is
defined by the target process number and the displacement relative to the starting
address of the window for that process.

MPI provides also special synchronization operations relative to a window. The
MPI Win fence operation synchronizes all processes that make some address ranges
accessible to other processes. It is a collective operation that ensures, that all RMA
operations started before the fence operation terminate before the target process
executes the fence operation and that all RMA operations of a process executed
after the fence operation are executed after the target process executed the fence
operation.

2.2 OpenMP

OpenMP 5,12 is a directive-based programming interface for the shared memory
programming model. It is the result of an effort to standardize the different pro-
gramming interfaces on the target systems. OpenMP is a set of directives and
runtime routines for Fortran 77 (1997) and a corresponding set of pragmas for C
and C++ (1998). An extension of OpenMP for Fortran 95 is under investigation.

Directives are comments that are interpreted by the compiler. Directives do
have the advantage that the code is still a sequential code that can be executed on
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sequential machines and thus no two versions, a sequential and a parallel version,
need to be maintained.

Directives start and terminate parallel regions. When the master thread hits
a parallel region a team of threads is created or activated. The threads execute
the code in parallel and are synchronized at the beginning and the end of the
computation. After the final synchronization the master thread continues execution
after the parallel region. The main directives are:

PARALLEL DO specifies a loop that can be executed in parallel. The DO loop’s
iterations can be distributed in various ways including STATIC(CHUNK), DY-
NAMIC(CHUNK), and GUIDED(CHUNK) onto the set of threads (as defined
in the OpenMP standard). STATIC(CHUNK) distribution means that the set
of iterations are consecutively distributed onto the threads in blocks of CHUNK
size (resulting in block and cyclic distributions). DYNAMIC(CHUNK) dis-
tribution implies that iterations are distributed in blocks of CHUNK size to
threads on a first-come-first-served basis. GUIDED (CHUNK) means that
blocks of exponentially decreasing size are assigned on a first-come-first-served
basis. The size of the smallest block is determined by CHUNK size.

PARALLEL SECTION starts a set of sections that are executed in parallel by
a team of threads.

PARALLEL REGION introduces a code region that is executed redundantly
by the threads. It has to be used very carefully since assigments to global vari-
ables will lead to conflicts among the threads and possibly to nondeterministic
behavior.

PDO is a work sharing construct and may be used within a parallel region. All
the threads executing the parallel region have to cooperate in the execution
of the parallel loop. There is no implicit synchronization at the beginning of
the loop but a synchronization at the end. After the final synchronization all
threads continue after the loop in the replicated execution of the program code.

The main advantage of this approach is that the overhead for starting up the
threads is eliminated. The team of threads exists during the execution of the
parallel region and need not be built before each parallel loop.

PSECTION is also a work sharing construct that enforces that the current team
of threads executing the surrounding parallel region cooperates in the execution
of the parallel section.

Program data can either be shared or private. While threads do have an own
copy of private data, only one copy exists of shared data. This copy can be accessed
by all threads. To ensure program correctness, OpenMP provides special synchro-
nization constructs. The main constructs are barrier synchronization enforcing that
all threads have reached this synchronization operation before execution continues
and critical sections. Critical sections ensure that only a single thread can enter the
section and thus, data accesses in such a section are protected from race conditions.
A common situation for a critical section is the accumulation of values. Since an
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accumulation consists of a read and a write operation unexpected results can occur
if both operations are not surrounded by a critical section.

3 Parallel Debugging

Debugging parallel programs is more difficult than debugging sequential programs
not only since multiple processes or threads need to be taken into account but also
because program behaviour might not be deterministic and might not be repro-
ducible. These problems are not attacked by current state-of-the-art commercial
parallel debuggers. Only the first reason is eliviated by current debuggers. They
provide menus, diplays, and commands that allow to inspect individual processes
and execute commands on individual or all processes.

The widely used debugger is TotalView from Etnus Inc.14 TotalView provides
breakpoint definition, single stepping, and variable inspection via an interactive
interface. The programmer can execute those operations for individual processes
and groups of processes. TotalView also provides some means to summarize in-
formation such that equal information from multiple processes is combined into a
single information and not repeated redundantly.

4 Performance Analysis

Performance analysis is an iterative subtask during process development. The goal
is to identify program regions that do not perform well. Performance analysis is
structured into four phases:

1. Measurement

Performance analysis is executed based on information on runtime events gath-
ered during program execution. The basic events are, for example, cache
misses, termination of a floating point operation, start and stop of a sub-
routine or message passing operation. The information on individual events
can be summarized during program execution or individual trace records can
be collected for each event.

Summary information has the advantage to be of moderate size while trace
information tends to be very large. The disadvantage is that it is not that fine
grained, the behavior of individual instances of subroutines can for example
not be investigated since all the information has been summed up.

2. Analysis

During analysis the collected runtime data are inspected to detect performance
problems. Performance problems are based on performance properties, such
as the existence of message passing in a program region, which do have a
condition for identifying it and a severity function that specifies its importance
for program performance.

Current tools support the user in checking the conditions and the severity by
visualizing program behavior. Future tools might be able to automatically
detect performance properties based on a specification of possible properties.

36



During analysis the programmer applies a threshold. Only performance prop-
erties whose severity exceeds this threshold are considered to be performance
problems.

3. Ranking

During program analysis the severest performance problems need to be identi-
fied. This means that the problems need to be ranked according to the severity.
The most severe problem is called the program bottleneck. This is the problem
the programmer tries to resolve by applying appropriate program transforma-
tions.

4. Refinement

The performance problems detected in the previous phases might not be pre-
cise enough to allow the user to start optimization. At the beginning of perfor-
mance analysis, summary data can be used to identify critical regions. Those
summary data might not be sufficient to identify why, for example, a region
has high message passing overhead. The reason, e.g. very big messages or load
imbalance, might be identified only with more detailed information. Therefore
the performance problem should be refined into hypotheses about the real rea-
son and additional information be collected in the next performance analysis
cycle.

Current techniques for performance data collection are profiling and tracing.
Profiling collects summary data only. This can be done via sampling, the program
is regularly interrupted, e.g. every 10 ms, and the information is added up for the
source code location which was executed in this moment. For example, the UNIX
profiling tool prof applies this technique to determine the fraction of the execution
time spent in individual subroutines.

A more precise profiling technique is based on instrumentation, i.e. special calls
to a monitoring library are inserted into the program. This can either be done in the
source code by the compiler or specialized tools, or can be done in the object code.
While the first approach allows to instrument more types of regions, for example,
loops and vector statements, the latter allows to measure data for programs where
no source code is available. The monitoring library collects the information and
adds it to special counters for the specific region.

Tracing is a technique that collects information for each event. This results,
for example, in very detailed information for each instance of a subroutine and for
each message sent to another process. The information is stored in specialized trace
records for each event type. For example, for each start of a send operation, the
time stamp, the message size and the target process can be recorded, while for the
end of the operation, the timestamp and bandwidth are stored.

The trace records are stored in the memory of each process and are output either
because the buffer is filled up or because the program terminated. The individual
trace files of the processes are merged together into one trace file ordered according
to the time stamps of the events.

The following sections describe performance analysis tools available on CRAY
T3E.
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4.1 The CRAY T3E Performance Analysis Environment

The programming environment of the CRAY T3E supports performance analysis
via interactive tools. Cray itself provides two tools, Apprentice and PAT, which
are both based on summary information. In addition, Apprentice accesses source
code information to map the performance information to the statements of the
original source code. Besides these two tools, programmers can use VAMPIR, a
trace analysis tool developed at our institute. Within a collaboration with Cray,
instrumentation and trace generation for VAMPIR is being integrated into the next
version of PAT.

4.2 Compiler Information File

The F90 and C compilers on CRAY T3E generate for each source file on request a
compiler information file (CIF). This file includes information about the compila-
tion process (applied compiler options, target machine characteristics, and compiler
messages) and source information of the compilation units (procedure information,
symbol information, information about loops and statement types, cross-reference
information for each symbol in the source file).

Apprentice requires this information to link the performance information back
to the source code. CIFs are initially in ASCII format but can be converted to
binary format. The information can be easily accessed in both formats via a library
interface.

4.3 Apprentice

Apprentice is a post-execution performance analysis tool for message passing pro-
grams 3. Originally it was designed to support the CRAFT programming model on
the CRAY T3E predecessor system, the CRAY T3D. Apprentice analyzes summary
information collected at runtime via an instrumentation of the source program.

The instrumentation is performed by the compiler and is triggered via an ap-
propriate compiler switch. To reduce the overhead of the instrumentation, the pro-
grammer can selectively compile the source files with and without instrumentation.
The instrumentation is done in a late phase of the compilation after all optimiza-
tions already occurred. This prevents that instrumentation affects the way code is
compiled. During runtime, summary information is collected at each processor for
each basic block. This information comprises:

• execution time

• number of floating point, integer, and load/store operations

• instrumentation overhead

For each subroutine call the execution time as well as the pass count is deter-
mined. At the end of a program run, the information of all processors is summed up
and written to the runtime information file (RIF). In addition to the summed up
execution times and pass counts of subroutines calls, their mean value and standard
deviation, as well as the minimum and maximum values are stored.
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The size of the resulting RIF is typically less than one megabyte. But the
overhead due to the instrumentation can easily be a factor of two which results
from instrumenting each basic block. This severe drawback of the instrumentation is
partly compensated in Apprentice by correcting the timings based on the measured
overhead.

When the user starts Apprentice to analyze the collected information, the tool
first reads the RIF as well as the CIFs of the individual source files. The perfor-
mance data measured for the optimized code are related back to the original source
code. Apprentice distinguishes between:

• parallel work: user-level subroutines

• I/O: system subroutines for performing I/O

• communication overhead: MPI and PVM routines, SHMEM routines

• uninstrumented code

The available barcharts allow the user to identify critical code regions that take
most of the execution time or with a lot of I/O and communication overhead. Since
all the values have been summed up, no specific behavior of the processors can be
identified. Load balance problems can be detected by inspecting the execution times
of calls to synchronization subroutines, such as global sums or barriers. Based on
the available information, the processors with the least and the highest execution
time can be identified.

While Apprentice does not evaluate the hardware performance counters of the
DEC Alpha, it estimates the loss due to cache misses and suboptimal use of the
functional units. Based on the number of instructions and a very simple cost model
(fixed cycles for each type of instruction) it determines the loss as the difference
between the estimated optimal and the measured execution time.

4.4 VAMPIR

VAMPIR (Visualization and Analysis of MPI Resources) is an event trace analysis
tool 11 which was developed by the Central Institute for Applied Mathematics of the
Research Centre Jülich and now is commercially distributed by a German company
named PALLAS. Its main application area is the analysis of parallel programs based
on the message passing paradigm but it also has been successfully used for other
areas (e.g., for SVM-Fortran traces to analyze shared virtual memory page transfer
behavior 9 or to analyze CRAY T3E usage based on accounting data). VAMPIR
has three components:

• The VAMPIR tool itself is a graphical event trace browser implemented for
the X11 Window system using the Motif toolkit. It is available for any major
UNIX platform.

• The VAMPIR runtime library provides an API for collecting, buffering, and
generating event traces as well as a set of wrapper routines for the most com-
monly used MPI and PVM communication routines which record message traf-
fic in the event trace.
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• In order to observe functions or subroutines in the user program, their entry
and exit has to be instrumented by inserting calls to the VAMPIR runtime
library. Observing message passing functions is handled by linking the program
with the VAMPIR wrapper function library.

VAMPIR comes with a source instrumenter for ANSI Fortran 77. Programs
written in other programming languages (e.g., C or C++) have to be instru-
mented manually. To improve this situation, our institute in collaboration
with CRAY Research is currently implementing an object code instrumenter
for CRAY T3E. This is described in the next section.

During the execution of the instrumented user program, the VAMPIR runtime
library records entry and exits to instrumented user and message passing functions
and the sending and receiving of messages. For each message, its tag, communica-
tor, and length is recorded. Through the use of a configuration file, it is possible
to switch the runtime observation of specific functions on and off. This way, the
program doesn’t have to be re-instrumented and re-compiled for every change in
the instrumentation.

Large parallel programs consist of several dozens or even hundreds of functions.
To ease the analysis of such complex programs, VAMPIR arranges the functions
into groups, e.g., user functions, MPI routines, I/O routines, and so on. The user
can control/change the assignment of functions to groups and can also define new
groups.

VAMPIR provides a wide variety of graphical displays to analyze the recorded
event traces:

• The dynamic behavior of the program can be analyzed by timeline diagrams
for either the whole program or a selected set of nodes. By default, the displays
show the whole event trace, but the user can zoom-in to any arbitrary region of
the trace. Also, the user can change the display style of the lines representing
messages based on their tag/communicator or the length. This way, message
traffic of different modules or libraries can easily be visually separated.

• The parallelism display shows the number of nodes in each function group over
time. This allows to easily locate specific parts of the program, e.g., parts with
heavy message traffic or I/O.

• VAMPIR also provides a large number of statistical displays. It calculates
how often each function or group of functions got called and the time spent in
there. Message statistics show the number of messages sent, and the minimum,
maximum, sum, and average length or transfer rate between any two nodes.
The statistics can be displayed as barcharts, histograms, or textual tables.

A very useful feature of VAMPIR is that the statistic displays can be linked to
the timeline diagrams. By this, statistics can be calculated for any arbitrary,
user selectable part of the program execution.

• If the instrumenter/runtime library provides the necessary information in the
event trace header, the information provided by VAMPIR can be related back
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to source code. VAMPIR provides a source code and a call graph display to
show selected functions or the location of the send and the receive of a selected
message.

In summary, VAMPIR is a very powerful and highly configurable event trace
browser. It displays trace files in a variety of graphical views, and provides flexible
filter and statistical operations that condense the displayed information to a man-
ageable amount. Rapid zooming and instantaneous redraw allow to identify and
focus on the time interval of interest.

4.5 PAT

PAT (Performance Analysis Tool) is the second performance tool available from
CRAY Research for CRAY T3E. The two main differences to Apprentice are that
no source code instrumentation or special compiler support is necessary. The user
only needs to re-link his/her application against the PAT runtime library (because
CRAY Unicos doesn’t support dynamic linking). Second, PAT aims at keeping the
additional overhead to measure/observe program behavior as low as possible. PAT
is actually three performance tools in one:

1. PAT allows the user to get an rough overview about the performance of the par-
allel program through a method called sampling, i.e., interrupting the program
at regular intervals and evaluating the program counter. PAT can calculate
then the percentage of time spent in each function. The sampling rate can be
changed by the user to adapt it to the execution time of the program and to
keep overhead low. Because the sampling method provides only a statistical
estimate of the actual time spent in a function, the tool also provides a measure
of confidence in the sampling estimate.

In addition PAT determines the total, user, and system time of the execution
run and the number of cache misses and the number of either flointing point,
integer, store, or load operations. These are measured through the DEC Al-
pha hardware counters. The user can select the hardware counter by setting
an environment variable. All this statistical information is stored after the
execution in a so-called Performance Information File (PIF).

2. If a more detailed analysis is necessary, PAT can be used to instrument and
analyze a specific function or set of functions in a second phase. PAT can
instrument object code (however only on the function level). This is a big
advantage especially for large complex programs because they do not have
to be re-compiled for instrumentation. In addition, it is possible to analyze
functions contained in system or 3rd-party libraries. A third advantage is
that programs written in more than one language can be handled. The big
disadvantage is that it is more difficult to relate the results back to the source
code.

This detailed investigation of function behavior is called Call Site Report by
PAT. It records for each call site of the instrumented functions how often it got
called and time spent in this instantiation of the function. Execution times are
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measured with a high-resolution timer. The results are available for each CPU
used in the parallel program. The next version of PAT will allow to gather
hardware counter statistics for instrumented functions as well.

3. Last, if a very detailed analysis of the program behavior is necessary, PAT
also supports event tracing. The object instrumenter of PAT can also be used
to insert calls to entry and exit trace routines around calls to user or library
routines. Entry and exit trace routines can be provided in two ways:

• The user can supply function-specific wrapper functions. The routines
must be written in C, they must have the same number and same types
of arguments as the routine they are tracing, and finally, the wrapper
function name for a function func must be func trace entry for entry
trace routines and func trace exit for exit trace routines.

• If specific wrapper routines for the requested function are not available,
PAT uses generic wrapper code which just records the entry and exit of
the function in the event trace.

In addition, PAT provides extra tracing runtime system calls, which can be
inserted in the source code and allow to switch tracing on and off, and to insert
additional information into the trace (e.g., information unrelated to functions).

The tracing features of PAT were developed in a collaboration of Research
Centre Jülich with CRAY Research. Our institute implemented all the nec-
essary special wrapper functions for all message passing functions available
on the T3E (MPI, PVM, and SHMEM and for both the C and Fortran in-
terfaces) which record the message traffic in the event trace. In addition, we
implemented a tool for converting the event traces contained in PIF files into
VAMPIR trace format.

The major drawback of PAT’s object instrumentation is the very low-level in-
terface for specifying the functions to be instrumented. The user has to specify the
function names as they appear in the object code, i.e., C++ functions or F90 func-
tions which are local or contained in modules have to be specified in the mangled
form (e.g., ” 0FDfooPd” instead of the C++ function name ”int foo(double *)”).
Clearly, a more user friendly or automatic way for the instrumenter interface needs
to be added to PAT.

In addition, the combination of three different instrumentation/analysis tech-
niques into a single tool is very confusing for users. This confusion is further
increased since the supported techniques overlap with the techniques applied in the
other tools.

4.6 Summary

The previous sections pointed out that the CRAY T3E has a programming envi-
ronment that includes the most advanced performance analysis tools. On the other
hand, each of these tools comes with its own instrumentation, provides partially
overlapping information, and has a totally different user interface. The program-
mer has to understand the advantages and disadvantages of all the tools to be able
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Apprentice VAMPIR PAT

data
collection

instrumentation
via compiler

source instru-
mentation by
preprocessor

sampling object code inst.

intrusion high /
corrected

high low high

selective
instr.

not required,
optional

required — required

selection
interface

compiler switch GUI or ASCII
file

— ASCII interface or file

level of de-
tail

summary infor-
mation

event trace statistics summary
informa-
tion

event
trace

information total time and
oper. counts
for basic blocks
and call sites

subroutine
start/stop
and send/recv
events

statistical
distr. of
time
(subrou-
tines)

total
time
and pass
counts
for call
sites

subroutine
start/stop
and
send/recv
events

strength source-level,
analysis of
loops

many displays
for message
passing his-
tory and for
statistics of
arbitrary
execution
phases

low over-
head
profiling

total
time
for call
sites, no
recompi-
lation

object
code
instr. for
VAM-
PIR, no
recompi-
lation

Table 1. User interface and properties of performance analysis tools on CRAY T3E

to select and apply the right ones. Table 1 summarizes the main features of these
three tools.

5 Summary

This article gave an overview of parallel programming models as well as program-
ming tools. Parallel programming will always be a challenge for programmers.
Higher-level programming models and appropriate programming tools only facili-
tate the process but do not make it a simple task.

While programming in MPI offers the greatest potential performance, shared
memory programming with OpenMP is much more comfortable due to the global
style of the resulting program. The sequential control flow among the parallel loops
and regions matches much better with the sequential programming model all the
programmers are trained for.

Although program tools were developed over years, the current situation seems
not to be very satisfiable. Program debugging is done on a per thread basis, a
technique that does not scale to larger numbers of processors. Performance anal-
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ysis tools do also suffer scalability limitations and, in addition, those tools are
complicated to use. The programmers have to be experts for performance analy-
sis to understand potential performance problems, their proof conditions and their
serverity. In addition they have to be experts for powerful but also complex user
interfaces.

Future research in that area has to try to automate performance analysis tools,
such that frequently occuring performance problems can be identified automatically.
It is the goal of the ESPRIT IV working group APART on Automatic Performance
Analysis: Resources and Tools to investigate base technologies for future more in-
telligent tools 1. A first result of the work ia a collection of performance problems
for parallel programs that have been formalized with the ASL, the APART Spec-
ification Language 6. This approach will lead to a formal representation of the
knowledge applied in the manually executed performance analysis process and thus
will make this knowledge accessible for automatic processing.

A second important trend that will effect parallel programming in the future
is the move towards clustered shared memory systems. Within the GoSMP study
executed for the Federal Ministry for Education and Research its influence on pro-
gram development is investigated. Clearly, a hybrid programming approach will
be applied on those systems for best performance, combining message passing be-
tween the individual SMP nodes and shared memory programming in a node. This
programming model will lead to even more complex programs and program devel-
opment tools have to be enhanced to be able to help the user in developing those
codes.
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Three public domain libraries with basic numerical operations for distributed mem-
ory parallel systems are presented: ScaLAPACK, PLAPACK, and Global Arrays.
They are compared not only with respect to performance on CRAY T3E but also
to user-friendliness.

1 Introduction

There are many projects for parallelization of numerical software. An overview of
public domain libraries for high performance computing can be found on the HPC-
Netlib homepage1. Often these libraries are very specialized either concerning the
problem which is treated or the platform on which they run. Three of the more
general packages based on message-passing with MPI will be presented here in some
detail: ScaLAPACK2, PLAPACK3, and Global Arrays4.

Often there is an MPI-implementation on shared-memory multiprocessor sys-
tems, hence libraries based on MPI can also be used there and often very efficiently
as message-passing programs take great care of data locality.

1.1 ScaLAPACK, Scalable Linear Algebra PACKage

The largest and most flexible public domain library with basic numerical operations
for distributed memory parallel systems up to now is ScaLAPACK. Within the
ScaLAPACK project many LAPACK5 routines were ported to distributed memory
computers using message passing.

The communication in ScaLAPACK is based on the BLACS (Basic Linear Alge-
bra Communication Subroutines)6. There are public domain versions of the BLACS
based on MPI and PVM available. For CRAY T3E there is also a version of the
BLACS in Cray scientific libraries (libsci)7 using Cray shared memory routines
(shmem) which is often faster than the public domain versions.

The basic routines of ScaLAPACK are the PBLAS (Parallel Basic Linear Al-
gebra Subroutines). They contain parallel versions of the BLASa, which are paral-
lelized using BLACS for communication and sequential BLAS for computation. As
most vendors offer optimized sequential BLAS the BLAS and PBLAS deliver very
good performance on most parallel computers.

Based on BLACS and PBLAS ScaLAPACK contains parallel solvers for dense
linear systems and linear systems with banded system matrix as well as parallel

aBLAS 1 contains vector-vector operations, e.g. dotproduct, BLAS 2 matrix-vector operations,
e.g. matrix-vector multiplication, BLAS 3 matrix-matrix operations, e.g. matrix-matrix multipli-
cation
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routines for the solution of linear least squares problems and for singular value
decomposition. Routines for the computation of all or some of the eigenvalues
and eigenvectors of dense real symmetric matrices and dense complex hermitian
matrices and for the generalized symmetric definite eigenproblem are also included
in ScaLAPACK.

ScaLAPACK also contains additional libraries to treat distributed matrices and
vectors. One of them is the TOOLS library, which offers useful routines for example
to find out which part of the global matrix a local process has in its memory or to
find out the global index of a matrix element corresponding to its local index and
vice versa. Unfortunately these routines are documented only in the source code of
the routines and not in the Users’ Guide. Another library is the REDIST library
which is documented in the ScaLAPACK Users’ Guide. It contains routines to copy
any block-cyclicly distributed (sub)matrix to any other block-cyclicly distributed
(sub)matrix.

ScaLAPACK is a Fortran 77 library which uses C subroutines internally to al-
locate additional workspace. Especially the PBLAS allocate additional workspace.

1.2 PLAPACK, Parallel Linear Algebra PACKage

PLAPACK does not offer as many black-box solvers as ScaLAPACK but is designed
as a parallel infrastructure to develop routines for solving linear algebra problems.
With PLAPACK routines the user can create global matrices, vectors, and mul-
tiscalars, and he may fill them with values with the help of an API (Application
Programming Interface). To make the development of programs easier and to get
good performance PLAPACK includes parallel versions of most real BLAS routines
and solvers for real dense linear systems using LU-decomposition and for real sym-
metric positive definite systems applying Cholesky-decomposition which operate on
the global data.

PLAPACK is a C library with a Fortran interface in Release 1.2. Unfortunately
up to now Release 1.2 does not run on CRAY T3E.

1.3 Global Arrays

Like PLAPACK Global Arrays supplies the user with global linear algebra objects
and an interface to fill them with data. For the solution of linear equations there
is an interface to special ScaLAPACK routines which can be modified to use other
ScaLAPACK routines, too. For the solution of the full symmetric eigenvalue prob-
lem Global Arrays contains an interface to PeIGS8.

Global Arrays is a Fortran 77 library which uses a memory allocator library for
dynamic memory management.

2 Data Distributions

There are many ways to distribute data, especially matrices, to processors. In the
ScaLAPACK Users’ Guide many of them are presented and discussed.

All of the three libraries described here distribute matrices to a two-dimensional
processor grid, but they do it in different ways and the user can more or less influence
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the way data are distributed. Users who only want to use routines from the libraries
don’t have to care for the way data are distributed in PLAPACK and Global Arrays.
The distribution is done automatically. To use ScaLAPACK, however, the user has
to create and fill the local parts of the global matrix on his own.

2.1 ScaLAPACK: Two-dimensional Block-Cyclic Distribution

For performance and load balancing reasons ScaLAPACK has chosen a two-
dimensional block-cyclic distribution for full matrices (see ScaLAPACK Users’
Guide). First the matrix is distributed to blocks of size MB ×NB. These blocks
are then uniformly distributed across the NP ×NQ processor grid in a cyclic man-
ner. As a result, every process owns a collection of blocks, which are contiguously
stored in a two-dimensional “column major” array.

This local storage convention allows ScaLAPACK software to efficiently use local
memory by calling BLAS 3 routines on submatrices that may be larger than a single
MB×NB block. Figure 1 shows the distribution of a 9×9-matrix subdivided into
blocks of size 3× 2 distributed across a 2× 2-processor grid.

0 1 0 1 0
a11 a12 a13 a14 a15 a16 a17 a18 a19

0 a21 a22 a23 a24 a25 a26 a27 a28 a29

a31 a32 a33 a34 a35 a36 a37 a38 a39

a41 a42 a43 a44 a45 a46 a47 a48 a49

1 a51 a52 a53 a54 a55 a56 a57 a58 a59

a61 a62 a63 a64 a65 a66 a67 a68 a69

a71 a72 a73 a74 a75 a76 a77 a78 a79

0 a81 a82 a83 a84 a85 a86 a87 a88 a89

a91 a92 a93 a94 a95 a96 a97 a98 a99

Figure 1. Block-cyclic 2D distribution of a 9× 9-matrix subdivided into 3× 2-blocks to a 2 × 2-
processor grid. The numbers outside the matrix indicate processor row and column indices re-
spectively.

2.2 PLAPACK: “Physically based Matrix Distribution”

For those who want to develop programs which operate on PLAPACK distributed
vectors and matrices it may be interesting to know more about the way data are
distributed.

The distribution of matrices is induced by the distribution of vectors in a linear
system A~x = ~y: Vectors are divided into blocks of length NB, where NB is a
blocking factor chosen by the user. These blocks are distributed to the processor
grid in “column-first-order”, i.e. processor (0,0) gets the first block, processor (1,0)
the second one and so on.

The distribution of the matrix is now induced by requiring a column of matrix A
to be assigned to the same column of processors as the corresponding element of ~x
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and the rows of A to the same row of processors as the corresponding element of ~y,
e.g. processor (1,0) has x2 and y2, consequently the second row of A is distributed
to the second row of processors and the second column of A is distributed to the
first processor column.

Figure 2 first shows a 2 × 3-processor-grid and then a vector of length 7 dis-
tributed to it in “column-first-order” with block size 1. Below there is shown how
a 7× 7-matrix is distributed to the processor grid accordingly.

2× 3
processor-grid

(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

distribution of the vector,
NB = 1

x1 → (0, 0)
x2 → (1, 0)
x3 → (0, 1)
x4 → (1, 1)
x5 → (0, 2)
x6 → (1, 2)
x7 → (0, 0)

induced distribution of the matrix

0 1 2
1 2 7 3 4 5 6

1 a11 a12 a17 a13 a14 a15 a16

0 3 a31 a32 a37 a33 a34 a35 a36

5 a51 a52 a57 a53 a54 a55 a56

7 a71 a72 a77 a73 a74 a75 a76

2 a21 a22 a27 a23 a24 a25 a26

1 4 a41 a42 a47 a43 a44 a45 a46

6 a61 a62 a67 a63 a64 a65 a66

Figure 2. Physically based distribution of a 7×7-matrix with block size 1 to a 2×3-processor-grid.
The outmost numbers indicate processor row and column indices respectively, the next ones are
matrix row and column indices.

Thus processor (0,0) has elements of rows 1, 3, 5, and 7 and columns 1, 2, and
7 because elements 1, 3, 5, and 7 of the vector are assigned to processor row 0 and
elements 1, 2, and 7 of the vector are assigned to processor column 0.

2.3 Global Arrays: Two-dimensional Block Distribution

The global objects in this library are distributed in a very simple way and the
user has little influence on that. Matrices are distributed into contiguous blocks
and each process gets one of these blocks. The user can only choose the minimum
number of rows or columns in a block. With this he can force for example a column
block distribution by setting the minimum number of rows per block to the total
number of rows of the global matrix.
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When routines from other libraries are called there is an interface where data
are redistributed in the way the other library expects them.

3 User-Interfaces

The user-interface of a library influences the decision for or against it. An easy-to-
use interface can significantly reduce parallelization time.

3.1 ScaLAPACK

ScaLAPACK as a parallel successor of LAPACK attempts to leave the calling se-
quence of the subroutines unchanged as much as possible in comparison to the cor-
responding sequential subroutine from LAPACK. The user should have to change
only a few parameters in the calling sequence to use ScaLAPACK routines instead
of LAPACK routines.

Therefore ScaLAPACK uses so-called descriptors, which are integer arrays con-
taining all necessary information about the distribution of a matrix. This descriptor
appears in the calling sequence of the parallel routine instead of the leading dimen-
sion of the matrix in the sequential one.
For example the sequential BLAS 3 routine for the computation of C = αAB+βC,
A an M ×K-matrix, B a K×N -matrix, overwriting the original C with the result,
has the following calling sequence:
...

CALL SGEMM(TRANSA,TRANSB,M,N,K,alpha,A(1,1),LDA, &

B(1,1),LDB,beta,C(1,1),LDC)

...

whereas the ScaLAPACK routine PSGEMM is called
...

! Call of PSGEMM with descriptors and the global

! starting indices of the whole matrix

CALL PSGEMM(TRANSA,TRANSB,M,N,K,alpha,A,1,1,DESCA, &

B,1,1,DESCB,beta,C,1,1,DESCC)

...

Instead of taking the whole matrix starting with A(1, 1), any contiguous sub-
matrix starting with A(I, J), I and J global indices, can be multiplied with a
submatrix of B starting with B(J, L) by calling
...

CALL PSGEMM(TRANSA,TRANSB,M-I+1,N-L+1,K-J+1,alpha,A,I,J,DESCA, &

B,J,L,DESCB,beta,C,I,L,DESCC)

...

The main problem is that the user has to take care of the data distribution.
He has to choose the processor grid by initializing MP , the number of processor
rows, and NP , the number of processor columns and to determine the blocking
by choosing MB and NB, the number of rows and the number of columns per
block, respectively. For many routines, especially for the eigenvalue solvers and the
Cholesky decomposition, MB = NB is necessary.
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The conversion of global to local indices and vice versa is supported only by
some auxiliary routines in the TOOLS sublibrary. It is completely left to the user
to put the correct local part of the matrix to the right places and to put the correct
data to the descriptor. The Users’ Guide and the comments at the beginning of all
routines are sufficient to use ScaLAPACK correctly but for someone not familiar
with parallel programming it can be rather difficult and time-consuming to learn
how to use it.

The main steps the user has to perform for creating and filling a matrix A are
(it is assumed that MB=NB and N=M=K):
...

! Create the MP * NP processor grid

CALL BLACS_GRIDINIT(ICTXT,’Row-major’,MP,NP)

! Find my processor coordinates MYROW and MYCOL

! NPROW should return same value as MP,

! NPCOL should return same value as NP

CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL)

! Compute local dimensions with routine NUMROC from TOOLS

! N is dimension of the matrix, NB is block size

MYNUMROWS = NUMROC(N,NB,MYROW,0,NPROW)

MYNUMCOLS = NUMROC(N,NB,MYCOL,0,NPCOL)

! Local leading dimension of A,

! Number of local rows of A

MXLLDA = MYNUMROWS

! Allocate only the local part of A

ALLOCATE(A(MXLLDA,MYNUMCOLS))

! Fill the descriptors, P0 and Q0 are processor coordinates

! of the processor holding global element A(0,0)

CALL DESCINIT(DESCA,N,N,NB,NB,P0,Q0,ICTXT,MXLLDA,INFO)

! Fill the local part of the matrix with data

do j = 1, MYNUMCOLS, NB ! Fill the local column blocks

do jj=1,min(NB,MYNUMCOLS-j+1) ! All colums of one block

jloc = j-1 + jj ! local column index

jglob = (j-1)*NPCOL + MYCOL*NB +jj ! global column index

do i = 1, MYNUMROWS, NB ! The local row blocks in this column

do ii=1,min(NB,MYNUMROWS-i+1) ! The rows in this row block

iloc = i-1 + ii ! local row index

iglob = (i-1)*NPROW + MYROW*NB + ii ! global row index

A(iloc,jloc) = function of global indices iglob, jglob

enddo

enddo

enddo

enddo

...

The four nested loops show how local and global indices can be computed from
block sizes, the number of rows and columns in the processor grid and the processor
coordinates.
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3.2 PLAPACK

The calling sequences of PLAPACK routines are also very similar to the ones of
BLAS and LAPACK, e.g. the matrix-matrix-multiplication routine PLA Gemm is
called in the following way:
...

/* Call PLA_Gemm with global objects */

PLA_Gemm ( PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, alpha,

A, B, beta, C );

...

With PLAPACK always the whole global matrix is treated as the sizes and the
distribution are implicitly contained in the global object. If the user wishes to deal
with a submatrix only he has to create a so-called view into the matrix which is
a new distributed object using the data and the memory locations of the whole
matrix.

To write to or read entries from the global linear algebra objects of PLAPACK
there is an Application Program Interface (API) which must be started and finished
and during which no other communication should take place. Within the API a
global matrix can be filled columnwise or blockwise. On CRAY T3E large matrices
must be filled by larger blocks as there is a limit in the number of MPI messages
which can be open simultaneously, and columnwise filling of global matrices causes
too many open messages.

To start PLAPACK and the API and fill a global matrix, e.g. column block
wise, the user has to do the following after initializing MPI (again N=M=K):
...

/* Create a 2D-Communicator */

PLA_Comm_1D_to_2D(MPI_COMM_WORLD, mp, np, &comm);

/* Create an object distribution template */

PLA_Temp_create( nb_distr, ist0_1, &templ );

/* Create the global matrices */

PLA_Matrix_create( datatype, N, N, templ,

PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &A );

...

/* Create a global scalar */

PLA_Mscalar_create( MPI_DOUBLE, PLA_ALL_ROWS,

PLA_ALL_COLS, 1, 1, templ, &alpha );

...

/* Initialize the matrices to equal zero */

PLA_Obj_set_to_zero ( A );

...

/* Enter Application Interface mode */

PLA_API_begin();

/* Open object A, ... for read/write */

PLA_Obj_API_open(A);

...

/* Create a work buffer for computing one column block */
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/* of the global matrix A */

/* locA is a local array */

locA = pla_calloc(N*fill_blk_size, type_size);

/* Column blocks are computed by processors in a round-robin fashion */

for (j=me*fill_blk_size;j< N; j+=nprocs*fill_blk_size) {

int jb, jj;

jb = min( fill_blk_size, N-j );

/* Fill column block j of width fill_blk_size */

for (jj=0; jj<jb; jj++) {

for (i=0; i < N; i++) {

((double *)locA)[jj*N+i] = function of (j+jj,i) ;

}

}

/* Add the column block locA containing jb columns */

/* to the global matrix A at the location starting with*/

/* global index (ist0_1+0,ist0_1+j) */

PLA_API_axpy_matrix_to_global( N, jb, &d_one, locA,

N, A, 0,j );

/* synchronization after filling in a block of A */

PLA_Obj_API_sync(A);

}

/* Close the objects */

PLA_Obj_API_close(A);

...

/* Free the workspace */

pla_free( locA );

/* leave Application Interface mode */

PLA_API_end();

3.3 Global Arrays

The usage of Global Arrays is described in Th. Steinke’s9 article in these proceed-
ings.

4 Performance

All performance measurements for the matrix-multiplication routines and the
routines for the solution of linear systems with LU-decomposition from ScaLA-
PACK/PBLAS, PLAPACK and Global Arrays and for the solution of the full sym-
metric eigenvalue problem with ScaLAPACK and Global Arrays (PeIGS) were done
on a 256-node CRAY T3E-900 with 128 MB RAM on each node. Some diagrams
with performance results are shown in the appendix.

Execution times were measured for various block sizes and grid shapes and in
the diagrams collected in the appendix always the shortest time for each matrix
size and processor number is shown.

Additionally we looked at the routines with the performance analysis tool PAT10
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and the performance counter library PCL11. We used these tools to find out which
part of the execution time was spent with communication and in different BLAS
routines and to get operation counts per node to see how well the load was balanced.

4.1 Matrix-multiplication and LU-decomposition

We measured execution times for the multiplication C = 2AB+3C with A, B, and
C square matrices of size n and for the LU-decomposition of a square matrix A of
size n with the solution of the resulting triangular system with n right-hand-sides.
The values of n were n = 1200, . . . , 6000 on 12 nodes, n = 6000, . . . , 12500 on 64
nodes and n = 6000 on 10 to 50 nodes.

Global Arrays uses an interface to ScaLAPACK for the solution of a linear
system with LU-decomposition. The block size for matrix distribution is 64 for all
blockings. This is fixed as a parameter in the interface routine.

For matrix-multiplication Global Arrays contains a routine which uses a blocked
version of the usual nested loops, distributes matrix blocks to the processors and
calls SGEMMb on each node. As this leads to high communication, we modified
the ScaLAPACK interface for LU-decomposition to one for matrix-multiplication.
This resulted in much better performance for all problems we measured.

4.2 Solution of the Full Symmetric Eigenvalue Problem

For the solution of the full symmetric eigenproblem we measured execution times
for the computation of all eigenvalues and eigenvectors of a real full symmetric
matrix of size n. The times were measured on 4, 8, 16, 25, 32, 36, and 64 nodes
and problem sizes varied from n = 400 on four nodes and n = 800 on more than
four nodes to the maximum n possible on that number of nodes.

A detailed study of the performance of the dense symmetric eigensolvers from
ScaLAPACK and PeIGS called by Global Arrays can be found in an internal report
of Research Centre Jülich12.

ScaLAPACK contains two driver routines for the solution of the full symmet-
ric eigenproblem, PSSYEVX, the so-called expert-driver, and PSSYEV, the sim-
ple driver. Both compute eigenvalues and optionally eigenvectors by a three-step-
algorithm: Reduction of the full matrix to tridiagonal form via Householder trans-
formations, computation of the eigenvalues and (optionally) the eigenvectors of the
tridiagonal matrix and back transformation of the eigenvectors to those of the orig-
inal matrix. Global Arrays’ routine GA DIAG STD calls PDSPEV from PeIGS
and uses the same three steps to compute all eigenvalues and eigenvectors of a real
full symmetric matrix.

PSSYEVX and GA DIAG STD use parallel bisection and inverse iteration for
the computation of the eigenvalues and eigenvectors of the tridiagonal matrix
whereas in PSSYEV the eigenvalues of the tridiagonal matrix are computed re-
dundantly (and sequentially) on all nodes via a modified QR-algorithm and only
the computation of the eigenvectors is done in parallel.

bBLAS 3 routine for matrix-matrix-multiplication, contained in libsci
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PSSYEV only allows to compute all eigenvalues of the matrix and optionally
all eigenvectors whereas in PSSYEVX the user can choose a range of eigenvalues
to be computed with or without the corresponding eigenvectors. GA DIAG STD
always computes all eigenvalues and all eigenvectors.

If there are clusters of eigenvalues inverse iteration does not guarantee orthog-
onality of the corresponding eigenvectors and therefore they have to be reorthogo-
nalized if orthogonal eigenvectors are required. This is done on one single processor
for one cluster in PSSYEVX.

If there is one very large cluster of eigenvalues (more than 2000) there is not
enough memory (128 MB RAM) for the reorthogonalization of the eigenvectors of
this cluster on one node. There is an additional parameter ORFAC in the call-
ing sequence of PSSYEVX which does not appear in SSYEVX, the corresponding
LAPACK routine. If ORFAC is set to zero, no reorthogonalization is done and
execution times of PSSYEVX are the same whether eigenvalues are clustered or
not. Eigenvectors are no longer orthogonal to machine precision. However, the
eigenvectors still are nearly orthogonal to an accuracy which might be sufficient in
many cases.

In GA DIAG STD this problem is solved by a parallel version of the reorthogo-
nalization. It is said in the Users’ Guide that it does not guarantee to always deliver
orthogonal eigenvectors but in our study we didn’t find a case where it didn’t work.

The modified QR-algorithm of PSSYEV guarantees orthogonal eigenvectors
even for large clusters of eigenvalues and it is even a littlebit faster with one large
cluster than without clusters. On the other hand, it needs about twice as many
operations per node as PSSYEVX if no eigenvectors have to be reorthogonalized.

4.3 Factors that Influence Performance

There are many factors that affect performance on an MPP system. The user can
influence some of them, but others are only influenced by choosing between the
libraries.

4.3.1 Usage of BLAS Routines

All tested library routines use BLAS routines for single node computations, so
vendor optimized BLAS routines, on CRAY T3E those from libsci, are an important
factor for performance. Due to the small level 1 cache on T3E and BLAS 1 routines
becoming very slow when data are not in level 1 cache, for all but very small
problems performance of BLAS 1 routines is very poor. BLAS 2 routines still can
not deliver high performance, so it is preferable to use BLAS 3 routines because
cache reuse is possible here.

For matrix-multiplication and the solution of a linear system with LU-
decomposition, it is no problem to use BLAS 3 routines. As Global Arrays utilizes
an interface to ScaLAPACK for solving linear systems via LU-decomposition there
is almost no difference in BLAS 3 usage between both libraries.

Although PAT shows higher communication overhead and lower BLAS 3 us-
age for PLAPACK than for ScaLAPACK, PLAPACK is faster for large problems.
Therefore, we think that PAT results seem to be not significant in the case of linear
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system solution. This is probably due to the fact that we could not find out how
much of the communication overhead indicated for PLAPACK was due to the filling
of the global matrix in the beginning and how much was due to the tested routine.

The usage of BLAS 3 routines plays an important role when comparing the
routines for the solution of the symmetric eigenvalue problem. From Table 1 it
can be seen that GA DIAG STD from Global Arrays, which calls PDSPEV from
PeIGS, is based on BLAS 1 routines SDOT and SAXPY whereas PSSYEV and
PSSYEVX from ScaLAPACK call the BLAS 3 routine SGEMM and the BLAS 2
routine SGEMV whenever possible. As a result if there is no large cluster of eigen-
values whose eigenvectors have to be reorthogonalized PSSYEVX is much faster
than GA DIAG STD and reaches a higher MFLOPS rate per node for large prob-
lems(see Table 2), although they both use the same algorithm. We can up to now
not explain why GA DIAG STD needs so much more operations than PSSYEVX.
This surely also leads to higher execution times.

Table 1. Percentage of time spent in different BLAS routines. The ranges in percentage arise from
different numbers of nodes. For large problems ≥ means that for larger problems the percentage
is still higher.

no clusters percentage of small problem large problem
time spent in 200× 200 ≥ 1000× 1000

elements per node elements per node
PSSYEVX BLAS 3 SGEMM 6 - 8% ≥ 30 %

BLAS 2 SGEMV 7 - 8 % ≈ 27 %
BLAS 1 - -

PSSYEV BLAS 3 SGEMM 3 - 4 % ≥ 9 %
BLAS 2 SGEMV 2 - 5 % 7 - 9 %
BLAS 1 SROT 26 - 33 % ≥ 56 %

GA DIAG STD BLAS 2, 3 - -
BLAS 1 SDOT 28 - 41 % 39 - 58 %
BLAS 1 SAXPY 7 - 8 % 19 - 27 %

If there is a large cluster of eigenvalues the usage of BLAS 3 and BLAS 2 in
PSSYEV even is a little bit higher than in the case of non-clustered eigenvalues
whereas BLAS 1 usage in GA DIAG STD remains almost the same. For large
problems this leads to higher MFLOPS rates for PSSYEV than for GA DIAG STD
and consequently to shorter execution times if there is a large cluster of eigenvalues.

4.3.2 Load Balance and Communication Overhead

The communication overhead is another important factor for MPP performance.
Problems must not be too small for a larger number of nodes because more nodes
usually mean more communication and less computation per node.

The algorithm choosen also influences communication overhead as can be seen
with the matrix-multiplication routine contained in Global Arrays. For a 1000×
1000-matrix on 4 nodes the original routine spends only 60 % in SGEMM and 24 %
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in communication whereas with the ScaLAPACK interface 77 % of the time is spent
in SGEMM and 11 % in communication. Also load balance is worse in the original
routine, three of the four nodes perform about 1800 million floating point operations
(MFLOP) and the fourth one only about 750 MFLOP,wheras with ScaLAPACK
all processors perform about 1600 MFLOP.

Load imbalance leads to a high communication overhead as a lot of time is
spent in waits for other processors to finish computation and send data needed
to continue. From Table 2 it can be seen that the ScaLAPACK routines have
better balanced operation counts than GA DIAG STD in the case with no clusters.
For small problems the node with most operations has about 8 to 24 % more
operations in PSSYEVX, about 3 to 40 % more in PSSYEV and about 50 to 68 %
more operations in GA DIAG STD than the node with least operations. With large
matrices this becomes more extreme. Whereas in both ScaLAPACK routines the
difference is less than 10 % of the operation count of the node with least work, in
GA DIAG STD the node with most operations has up to 70 % more operations to
do than the one with least operations.

Table 2. Millions of floating point operations and MFLOPS per node, equally spread eigenvalues.
The operation counts are the lowest and the highest value per node as delivered by PCL, the
MFLOPS are computed by the times measured and these operation counts. Only the highest
MFLOPS/node rate is shown. On the other nodes MFLOPS rates are lower mainly because of
waits.

Million operations per node small problem large problem
(MFLOPS per node) 200× 200 1000× 1000

no clusters elements per node elements per node
PSSYEVX 4 nodes 82-92 (70) 8190-8380 (180)

32 nodes 219-245 (60) 22000-22700 (180)
64 nodes 268-331 (55) 30700-32100 (180)

PSSYEV 4 nodes 175-184 (80) 16800-17000 (130)
32 nodes 455-631 (65) 50400-54200 (130)
64 nodes 674-945 (65) 74600-81100 (125)

GA DIAG STD 4 nodes 124-186 (100) 14500-22000 (115)
32 nodes 349-585 (75) 37600-64800 (80)
64 nodes 494-768 (60) 54300-92700 (75)

In the case of one large cluster of eigenvalues load balance remains almost the
same for PSSYEV. For GA DIAG STD it becomes more imbalanced as reorthogo-
nalization plays an important role.

The most extreme example for load imbalance is the reorthogonalization of
eigenvectors belonging to a large cluster of eigenvalues which is done sequentially
on one single node in PSSYEVX. There it can be seen that with 64 nodes and
a problem size of n = 1600 and a cluster of 1333 eigenvalues about 94 % of the
execution time summed up over all nodes is spent in communication/wait. 62 of
the 64 nodes only have to execute about 260-320 MFLOP, one node about 560
MFLOP (orthogonalization of the eigenvectors belonging to one smaller cluster),
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and one node has to perform about 21900 MFLOP.

4.3.3 Block Sizes and Grid Shapes

ScaLAPACK as well as PLAPACK allow the user to choose block sizes for distri-
bution of vectors and matrices. This size can influence load balance and communi-
cation overhead. Small blocks lead to better load balance but to higher communi-
cation.

Block sizes have more influence on the performance of routines for solving linear
systems than on the performance of routines for the solution of the full symmetric
eigenvalue problem.

In ScaLAPACK the system matrix for LU-decomposition has to be distributed
into square blocks, i.e. MB = NB, but the matrix of the right-hand-sides may
be distributed to rectangular blocks with the columns distributed like the system
matrix and the rows to blocks of size NBRHS.

We found out that for problems with small matrix parts per node (n = 6000
on 40 nodes) small block sizes for the system matrix (here NB = 32) were best
whereas for problems with large matrix parts per node (n = 6000 on 12 nodes)
larger blocks (here NB = 64) were better. For the blocking of the right-hand-sides
always a large block size (here NBRHS = 64) was best. Powers of two often were
slightly better than other numbers of block sizes even if the matrix size wasn’t a
power of two.

PLAPACK allows to choose only one block size, the one for the distribution
of the template vector. Here we could find that as in ScaLAPACK problems with
small parts per node perform better with small block sizes (NB = 32) and systems
with large parts per node with large (NB = 64) ones.

For the solution of the symmetric eigenvalue problem with ScaLAPACK routines
the system matrix also has to be distributed to square blocks. Here smaller blocks,
NB = 16 or NB = 20 gave best results. For some of the largest problems tested
NB = 32 delivered the fastest result.

Usually the differences were rather small, but there is one case where the dif-
ference is significant. We found out that for block sizes of NB = 16 or NB = 32
PSSYEVX needs up to twice the time as with a block size of NB = 20 if one
of the nodes or all the nodes have a local matrix of size 1024 × 1024 (e.g. 2 × 2
nodes, n = 2048, NB = 16: 80 sec, NB = 20: 52 sec execution time; 6 × 6 nodes,
n = 6000, NB = 32: 282 sec, NB = 20: 133 sec). For PSSYEV the difference is
almost the same. But as the execution times are higher time increases only by 50 %.
This is due to a performance problem of SGEMM from libsci with the first matrix
not transposed and the second one transposed, which is called in the back trans-
formation of the eigenvectors. Called with random matrices the time for SGEMM
in the above situation is 4.6 sec for n = 1000, 54.8 sec for n = 1024 and 6.1 sec
for n = 1050, hence it takes almost 9 times as long to multiply two 1024 × 1024
matrices, the second one transposed, than to multiply two 1050 × 1050 matrices.
Therefore it is better not to use powers of two as block sizes even though sometimes
the performance is better with those block sizes.

As mentioned in section 2, all libraries presented here distribute matrices to
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a two-dimensional processor grid. ScaLAPACK and PLAPACK allow the user
to explicitely choose the shape of this grid whereas Global Arrays only allows to
determine the minimum number of rows or columns which must be in one block.

For the solution of the symmetric eigenvalue problem with ScaLAPACK the
shape of the grid usually does not influence performance very much. If the number
of nodes is a square, a square grid achieves highest performance. On rectangular
grids, e.g. 8 nodes, sometimes a 2 × 4 grid and sometimes a 4 × 2 grid delivers
slightly better performance results.

For the solution of linear systems via LU-decomposition grid shapes have more
influence on performance than for the solution of the symmetric eigenvalue problem.
The time for the solution of the triangular system with n right-hand-sides after
LU-decomposition of the matrix with ScaLAPACK is very sensitive to grid shapes.
E.g. we found out that in the case of 26 nodes for n = 6000, NB = 32, and
NBRHS = 64 on a 2× 13-grid the LU-decomposition time was about 19.6 sec and
the solution time 139.2 sec whereas on a 13 × 2-grid the LU-decomposition time
was about 18.8 sec and the solution time was only about 61.1 sec. This means that
the total time (LU-decomposition + solution) was only half as high on a 13×2-grid
than on a 2× 13-grid.

4.3.4 Memory Requirements

As mentioned in section 4.3.2 problem sizes per node have to be large to get high
performance. High additional memory requirements can therefore cause low per-
formance because the problem size per node can’t be made large enough.

Due to the necessity to hold at least a small part of the global data as a local
copy when filling the global matrix, we were not able to solve as large linear systems
with Global Arrays or PLAPACK as with ScaLAPACK.

On 64 nodes, the largest problem we could solve with the Global Arrays interface
to ScaLAPACK was n = 12288, with PLAPACK n = 12800, and with ScaLAPACK
n = 19000. Performance of ScaLAPACK was still increasing from less than 300
MFLOPS per node for n = 12000 to 350 MFLOPS per node for n ≥ 17000.

For the symmetric eigenvalue problem we did not see a large difference in mem-
ory usage between ScaLAPACK and Global Arrays. This is because PSSYEVX
needs additional space for reorthogonalization of eigenvectors as matrices larger
than n = 1000 tend to have at least one very large cluster due to a nonscalable
definition of clusters to remain consistent with LAPACK (see ScaLAPACK Users’
Guide). PSSYEV needs additional space for the solution of the tridiagonal eigen-
value problem. For large problems the tridiagonal matrix must be stored on each
node no matter how many nodes are used.

4.4 Performance Results

In the appendix we show some diagrams with results of performance measurements.
MFLOPS shown in the figures for matrix-multiplication and LU-decomposition

were not taken from the MFLOP counts per node delivered by PAT but were based
on the number of floating point operations necessary to solve the problem (2n3

for multiplication of two n× n matrices and 8
3n

3 − 1
2n

2 for LU-decomposition and
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solution of an n×n linear system with n right-hand-sides) divided by the number of
nodes and divided by the time the slowest node needed to complete computation.
The MFLOP counts shown by PAT are of course higher than the ones computed
because there is always some parallelization overhead and PAT counts operations
of the whole program including initialization and collection of results.

Figure 3 shows the results of matrix-matrix-multiplication routines. It can be
seen that on 12 processors PLAPACK reaches stable performance of more than
500 MFLOPS/node. ScaLAPACK’s PBLAS performance is in the same range and
perhaps there could be some better block sizes for n = 1800, 3000, 4200, 5400 to
get the same performance as with the other sizes. The original Global Arrays
routine never reaches 500 MFLOPS/node, thus the ScaLAPACK interface is really
necessary for performance.

From figures 4 and 5 it can be seen that for 12 nodes n = 6000 is large enough
to get high MFLOPS rate of about 370 MFLOPS/node for the solution of linear
systems with n right-hand-sides via LU-decomposition with PLAPACK and ScaLA-
PACK. On 64 nodes, however, any routine delivers poor performance of less than
250 MFLOPS/node with n = 6000. On 64 nodes the performance differences be-
come higher. The PLAPACK routine already reaches 250 MFLOPS/node at prob-
lem sizes of less than n = 7000, whereas this was the highest performance we got
with Global Arrays calling ScaLAPACK. ScaLAPACK performance is still increas-
ing with problem sizes n ≥ 12000 and reaches 350 MFLOS for n ≥ 17000 as men-
tioned in section 4.3.4. For both matrix-multiplication and LU-decomposition with
solution of the resulting triangular system PLAPACK delivers highest MFLOPS
rates and therefore the shortest execution times.

Figures 6 and 7 show execution times for the computation of all eigenvalues
and all eigenvectors of a real symmetric matrix of size n = 2000, . . . , 2500. Fig-
ure 6 shows the times in the case where the eigenvalues are equally spread and
reorthogonalization is not necessary. Figure 7 shows execution times for a matrix
with one large cluster of n − 267 eigenvalues. In PSSYEVX and GA DIAG STD
the eigenvectors belonging to this cluster are reorthogonalized. It can be seen that
for equally spread eigenvalues PSSYEVX on 4 nodes is as fast as PSSYEV on 16
nodes. One reason, of course is, that PSSYEV needs twice as many operations as
PSSYEVX. The other reason is, that the sequential QR-algorithm within PSSYEV
uses a lot of BLAS 1 routines and consequently reaches a lower MFLOPS rate than
PSSYEVX.

Although GA DIAG STD uses the same algorithm as PSSYEVX if there is no
large cluster of eigenvalues the number of operations is much higher even for the
node with the smallest number of operations (see Table 2). Due to the poor load
balance of GA DIAG STD, see Table 2, it is even higher than that of PSSYEV on
the node with the highest operation count. For large problems also MFLOPS rates
per node reached with GA DIAG STD are significantly lower than the ones reached
by PSSYEV or PSSYEVX, mainly because it is completely based on BLAS 1 rou-
tines and therefore performance is additionally reduced by cache misses.

If there is one large cluster of eigenvalues and the eigenvectors have to be re-
orthogonalized the situation changes dramatically. Now on four nodes the largest
problem that could be solved with PSSYEVX was n = 2000. The execution times
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for PSSYEVX are almost independent of the number of nodes.
It can be seen that the execution times for PSSYEV are slightly lower in the

case of one large cluster of eigenvalues than in the case of equally spread eigenval-
ues. The execution times of GA DIAG STD on the other hand become higher as
eigenvectors are reorthogonalized. Consequently the difference between PSSYEV
and GA DIAG STD becomes larger than in the case without a cluster.

For the solution of the symmetric eigenvalue problem there is always one ScaLA-
PACK routine with highest performance: if eigenvalues are not clustered this is
PSSYEVX, for one large cluster of eigenvalues whose eigenvectors have to be re-
orthogonalized PSSYEV is the fastest routine.

5 Conclusions

ScaLAPACK offers very good performance compared to the other libraries and a
broad range of black box solvers but at the expense of a little more complicated
user interface. Programmers willing to apply ScaLAPACK routines should become
familiar with the data distribution used in ScaLAPACK and adapt their program
to this distribution from the start. This will result in good performance and low
memory usage.

PLAPACK achieves highest performance on those routines available in that
library but these are only a few and the lack of a solver for the symmetric eigenvalue
problem will prevent most people having to solve eigenvalue problems from using
it. “Using PLAPACK”3 explains how to use PLAPACK for writing linear algebra
routines based on the PLAPACK distributed objects but we think it needs an
experienced user to write an eigensolver based on PLAPACK.

Global Arrays mainly offers an infrastructure to treat global objects transpar-
ently. If routines from other libraries are to be used this costs some performance
due to redistribution of data. There is only one interface routine to ScaLAPACK
within Global Arrays, the one for LU decomposition and the solution of the re-
sulting triangular system. This routine must be modified if other ScaLAPACK or
PBLAS routines like matrix-matrix-multiplication shall be used. It seems to be
much easier to write an interface to use PSSYEV(X) from Global Arrays than to
write a new eigensolver for PLAPACK.

All libraries can help developers of new application programs or application
packages to take advantage of work already done. They are not meant for those
who only want to use software on the application level.
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Appendix
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Figure 3. Matrix-matrix-multiplication C = 2AB + 3C, A, B, C square matrices, using different
library routines on 12 nodes.
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Figure 4. Solving a linear system with N right-hand-sides by means of LU-decomposition using
different library routines on 12 nodes.
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Figure 5. Solving a linear system with N right-hand-sides by means of LU-decomposition using
different routines on 64 nodes.
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Figure 6. Computation of all eigenvalues and eigenvectors of an N × N-matrix (no clusters of
eigenvalues) using different library routines.
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Figure 7. Computation of all eigenvalues and eigenvectors of an N × N-matrix with one large
cluster of eigenvalues using different library routines.
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The lack of appropriate middleware for implementing parallel methods on true
parallel computers like the Intel series in late 80s forced the design of suitable
programming tools for application packages. The TCGMSG was one of the first
examples which provides a portable and efficient message passing interface. This
tool is still used in production codes in the field of quantum chemistry. Further
developments led to programming interfaces (e.g. Global Array Toolkit) providing
a shared memory programming model on distributed memory architectures. This
article gives an introduction into the basic terminology and the application of these
tools.

1 Introduction

First-principle quantum-chemical simulations of large molecular systems consist-
ing of a few hundreds of atoms are going to be more and more feasible as com-
mon ”daily“ task as powerful parallel processor computers are becoming available.
Massively-parallel processor platforms (e.g. CRAY T3E, IBM SP) as well as large
scalable shared memory systems (e.g. SGI Origin) both providing some tens or hun-
dreds of GigaFlop/s sustained performance are accessible for scientists at certain
sites. Today, a scientist who is developing parallel applications for high-performance
computer platforms can choose between some programming libraries, programming
models and toolkits. But, the situation was quite different in the late 80s.

In order to take advantage of new hardware features provided by the first true
parallel computers 15 years ago (e.g. Intel Hypercube, later Paragon etc.), the re-
design of serial versions of existing quantum chemistry packages (e.g. COLUMBUS,
GAMESS (US), GAMESS-UK, DGauss) was initiated as well as the new design and
implementation of packages from scratch (e.g. NWChem, Q-Chem). Due to the
lack of appropriate middleware for implementing software on such distributed mem-
ory architectures research groups in the chemistry community developed suitable
communication libraries and user-friendly APIs for programming these parallel ma-
chines. For example, TCGMSG was developed to provide a portable communication
library for quantum chemistry software. Although the functionality of TCGMSG
is superceeded by standard messsage-passing libraries PVM and MPI this software
is still in use in production codes.

This article gives an introduction into the fundamentals of some of the pro-
gramming tools used in production codes for quantum chemical simulations. The
part of informations provided are restricted to the basics of the topic. A more
complete view of the capabilities of tools explained below will arise together with
the overhead presentation given at the Winterschool at Forschungszentrum Jülich.
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2 Basic Tasks in Typical Quantum Chemical Calculations

The major part of today’s quantum chemical calculations carried out routinely is
dealing with Hartree-Fock SCF, MP2, or DFT type calculations of more or less
large molecules. To identify the computational steps which take advantage of par-
allelization we will give a coarse-grain analysis of such calculations. We will focus
on common SCF type calculations for solving the stationary Schrödinger equation
ĤΨ = EΨ within the common molecular orbital (MO) approach. The following
summary lists the basic time consuming steps:

1. the computation of 2-electron integrals (ERI),

2. the construction of the Fock matrix F from ERIs and density matrix P,

3. the diagonalization of F delivering MO coeffients C, and

4. the calculation of a new density matrix P from C

In large molecular systems consisting of a few hundreds of atoms, the number
of basis functions included is in the order of thousands. In the direct SCF scheme
the steps 1 and 2 are combined with sophisticated integral screening techniques to
reduce the number of ERI contributions to be considered. In this way, any storing
of ERIs either on disk (conventional approach) or in memory (in-core scheme) is
avoided by (re-)computing ERIs for the Fock matrix build as they needed.

From the picture given above one can imagine that

• the work distribution to calculate ERIs and to construct the Fock matrix F
which itself should be distributed over all compute nodes,

• the diagonalization of F, or quasi-Newton orbital rotations, and finally

• subsequent operations on the wavefunction (C and/or P) like matrix opera-
tions

should be the subject of parallelization efforts. In the next subsection some
basic issues related to parallel programming are discussed.

2.1 Issues related to parallel programming

Given the list of basic tasks above one can define essential features of a suitable
toolkit required for quantum-chemical calculations. Below some key issues regard-
ing support for parallelism, not only in the context of quantum chemistry, are
explained:

Work sharing, task parallelism: That is the basic idea of parallelism. It is
wanted to use as many compute nodes as possible without substantial over-
head in order to reduce the wall-time for a given problem size. A given set of
tasks, e.g. the calculation of ERIs or elements of F, should be distributed over
all computing nodes.
Work sharing within an application may be at a high level (coarse-grain par-
allelism) or low level (fine-grain parallelism). The suitable approach depends
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on the given hardware and software environment, e.g. latency and bandwith
of the communication network or availability of thin low-level APIs.

Dynamic load balancing: This aspect is closely connected to the previous topic.
Under certain conditions it may be impossible or unpredictable to split a prob-
lem into a set of evenly sized tasks. A suitable mechanism for dynamic load
balancing is required to keep all compute resources as busy as possible. The
load balancing problem becomes even more prominent if the (virtual) parallel
computer system consists of compute nodes with different CPU performances
(e.g. heterogeneous resources in network of workstations).

Replicated data model: Storing all data in a replicated fashion in memory on
all nodes is the first approach to implement task parallelism. Its advantage is
that in general less communication is required, but this programming approach
shows problem size limitations.

Distributed data model: To offer solutions for large problems where per node
memory resources are not sufficient, data distribution is the only way to tackle
such grand challenge problems. It is desirable that the total memory of a par-
allel computer system can be allocated to keep large arrays. Then, the largest
problem which can be handled scales with the number of compute nodes in-
volved in the calculation. Large arrays like F and/or P are limiting actual
realizations of simulations in quantum chemistry. These arrays need to be dis-
tributed.
A user-friendly support of the distributed data model is not provided in com-
mon message-passing libaries (MPI, PVM), and thus, it is the objective of
software projects discussed in this tutorial.

Interface to numerical libraries: A high-level interface to common numerical
libraries (e.g. ScaLAPACK) should be available. Desirable are routines for
matrix operations of distributed arrays (matrix multiply) as well as an interface
to parallel eigensolversa .

One-sided communication: In a programming model supporting distributed
data, a “lightweighted” access to remote data is important. Usual point-to-
point connections implemented in message-passing environments require the
interaction of CPU resources on both sides. Tools described in this tutorial
provide methods to access remote data without interferring with application
process running on a remote CPU.

A common classification scheme for communication operations considers to what
extent compute nodes are involved:

Collective operations: These are operations where all computing nodes of a
given set are involved. Typically, they distribute work across the nodes. Ex-
amples are global summation, broadcast, and synchronization operations.

afor details see contribution given by I. Gutheil1 in this volume
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Non-collective operations: These type of communication operations fall into
synchronous and one-sided (or asynchronous) operations:

Synchronous operations: In common message passing environments (e.g.
MPI) any point-to-point data transfer consists of a complementary pair
of send/receive invocations. On both sides CPU resources are allocated
to perform the data transfer. In this type of communication an implicit
pairwise synchronization is involved.

One-sided operations: Within these operations only one node is active.
Communication or data transfer is performed without interferring with
the other node which keeps remote data in memory. Examples are one-
sided read and write operations from/into remote memory or atomic up-
date operations on remote locations.

Atomic operations: To update the contents of variables in a save way it is nec-
essary to prevent concurrent read or write operations on the same memory
locations. This is achieved by locking the critical code region, i.e. only one
request is permitted to perform read/write actions. More complex atomic op-
erations like read-and-increment or accumulate includes a locking mechanism
in a transparent way.

3 Parallel Tools in Today’s Production Codes

There are several program packages available to perform quantum chemical calcu-
lations of large molecules on massively-parallel platforms. Table 1 presents some
important examples of programming tools developed in this context. For the sake
of completeness, commonly used tools on shared-memory platforms are includedb

too.

The Global Array Toolkit4,5 (GA) is the de-facto standard in the quantum chem-
istry community. The suite of tools in GA is primarily designed as middleware for
quantum chemical program packages. Major application examples are those which
are developed and maintained at PNNL like NWChem9 and COLUMBUS10 as well
as GAMESS-UK11, and applications coming from other fields. Beside providing
a portable interface to global shared arrays the GA includes tools for dynamic
memory allocation (MA), one-sided communication (AMRCI), and efficient I/O
capablities for parallel I/O (e.g. ChemIO).

The Distributed Data Interface13 (DDI) has been written for the
GAMESS12 (US) package, and provides a one-sided data access via communica-
tion with data-servers on top of MPI or TCP/IP sockets. Within the DFT code
DGauss15 a proprietary Distributed Matrix16 library is used. A quite different
programming approach is used in Gaussian17 and MPQC18. In Gaussian, the par-
allelization is implemented using the LINDA programming model. The MPQC
package follows an object-oriented design and parallelization is implemented by
using the Scientific Computing Toolkit19 C++ class library.

bfor details regarding OpenMP see contribution given by M. Gerndt2 in this volume
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Table 1. Tools used by various quantum chemistry packages on multi-processor systems

Memory Tool Packages
Architecture (Communication Lib) (examples)
distributed Global Array Toolkit NWChem, GAMESS-UK,
memory (TCGMSG, MPI, SHMEM, sockets) COLUMBUS

Distributed Data Interface GAMESS (US)
(MPI, sockets)
Distributed Matrix Lib DGauss
(SHMEM, PVM, MPI)
LINDA Gaussian
(MPI, SHMEM)
Scientific Computing Toolkit MPQC
(PVM, MPI, NX, IPC)

shared OpenMP MOLPRO, Gaussian
memory Microtasking DGauss

4 The TCGMSG Library

In the late 80s and early 90s portable message passing libraries like PVM or MPI
did not exists yet. To provide a compact, user-friendly, and portable programmer’s
interface for message passing R. J. Harrison implemented the TCGMSG3 (Theoreti-
cal chemistry group message-passing toolkit) toolkit. The programming model and
interface is directly modelled after PARMACS22 developed at Argonne National
Lab.

In the UNIX environment communication is done via TCP sockets. If iden-
tical processes are running on shared memory machine the faster communication
mechanism provided by the hardware is used. Thus, applications can be built to
run on an entire network of machines with local communication running at mem-
ory bandwidth and remote communication running at the corresponding network
speed. On true message-passing machines TCGMSG is just a thin layer over the
system interface (e.g. SHMEM on CRAY T3E).

Asynchronous communication is available in TCGMSG on machines supporting
it. Otherwise, send operations block until the message is explicitly received, and
messages from a particular process can only be received in the order sent. As far
as buffering provided by the transport layer permits, messages are actually sent
without any synchronization between sender and receiver.

TCGMSG supports FORTRAN and C bindings, Table 2 gives an overview of
the TCGMSG API.

One remarkable feature is the integer function NXTVAL(MPROC) which imple-
ments a shared counter by communicating with a dedicated server process. It
returns the next counter associated with a single active loop (0,1,2,...). MPROC is
the number of processes actively requesting values. This NXTVAL function allows
the implementation of dynamic load balancing within loops (work parallelism).
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Table 2. Basic functions of TCGMSG

Operation FORTRAN C

Initialization call PBEGINF() PBEGIN (...)
Termination call PEND() PEND ()
Identification
Number of nodes NNODES() NNODES ()
Node ID NODEID() NODEID ()
Communication Operations
Send call SND(...) SND (...)
Receive call RCV(...) RCV (...)
Broadcast call BRDCST(...) BRDCST (...)
Synchronization call SYNCH(...) SYNCH (...)
Shared counter NXTVAL(...) NXTVAL (...)
Global operation call DGOP(...) DGOP (...)
Utilities
Print statistics call STATS() STATS ()
Wall time TCGTIME() TCGTIME ()

A FORTRAN example may look like the following code snippet:

next = NXTVAL(MPROC)

do i = 0, big

if (i .eq. next) then

! ... do work for iteration i

next = NXTVAL(MPROC)

endif

end do

A complete code example showing the usage of the NXTVAL function can be found
in Appendix A.

5 The Global Array Toolkit

5.1 Overview

The Global Array Toolkit4 (GA) is written and maintained at the William R.
Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific North-
west National Laboratory (PNNL). The principal development work is done by
J. Nieplocha, the latest version is release 35,6.

The GA provides a portable shared memory style programming environment
which consists of a certain programming model as well as a logical view of a virtual
machine (machine model)20. The virtual machine might be a massively-parallel
distributed memory or a scalable shared memory platform. It is viewed as an
ensemble of nodes consisting of CPU(s) and local memory (Figure 1). The whole
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Figure 1. The Global Array machine model

memory is accessible via global arrays. These logically shared data are divided
into local and remote portions, and the GA recognizes variable data transfer costs
required to access the data (fast access to local data, slower access to remote data).
In acknowledging the difference of local and remote data access, the GA model
exposes to the programmer the Non-Uniform Memory Access (NUMA) architecture
of computer systems found today.

5.2 Basic Features

The GA programming environment supports the development of parallel programs
in C or/and FORTRAN. Main application areas are codes that operate on dis-
tributed dense multidimensional arrays and/or require shared memory program-
ming style or one-sided communication. GA encapsulates many details of array
distribution and addressing so that the programming effort is substantially reduced.

The basic shared memory operations supported include the one-sided commu-
nication operations get, put, scatter, and gather. The atomic operations accumulate
and read-and-increment complete the list of fundamental functions. These opera-
tions are truely one-sided and will complete regardless of actions taken by a remote
process that owns the data.

Details of the data distribution, addressing, and communication are encapsu-
lated in the GA objects (internal data structures). The information on actual
distribution patterns and locality of data can be obtained by library routines. Ad-
vantage of this information is taken whenever data locality is important.

At the user level, transfer operations of arrays or array patches are initiated
using an array index interface rather than addresses. GA does not require the user
to specify process IDs for accessing remote data. Any global array index-to-address
translation and estimation of target IDs is done internally.

The GA is not built on top of any particular message-passing library but it
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requires one to initialize the parallel environment and create processes. The one-
sided communication required to support a shared memory programming model is
facilitated by the ARMCI library included in the GA packagec .

5.3 Using the GA Toolkit

Supported Plattforms

The current GA release supports homogeneous hardware platforms as follows:

• massively-parallel processor (MPP) systems (CRAY T3E, IBM SP)

• scalable shared memory systems (CRAY PVP, SGI Origin, Fujitsu VX/VPP)

• cluster of workstations (all UNIX flavours including Linux)

• SMP server (UNIX)

• multi-processor NT server

Selection of message-passing library

GA is working on top of a message-passing library which is selected at compile time
on a given platform. For example, the message-passing library is used on some
platforms to fork processes, implement broadcast or global operations (ga dgop).
Currently, either TCGMSG (s. section 4) or MPI can be used as an interface. Since
TCGMSG is only a small set of routines and provides a convenient interface it is
used per default on UNIX systems. On NT server the GA is build on top of WMPI,
a NT implementation derived from MPICH.

Dependency on other software

Besides the message-passing interface there are additional software tools which are
required by GA:

• MA (Memory Allocator) by Greg Thomas, a library for portable memory man-
agement;

• ARMCI, a one-sided communication library used by GA as its run-time system;

• BLAS library is required for the eigensolver and matrix multiply (ga dgemm);

• GA eigensolver, ga diag, is a wrapper for the eigensolver from PeIGS8,d;

• LAPACK library is required for the eigensolver;

• MPI, SCALAPACK, PBBLAS, and BLACS libraries are required for
some linear algebra functions (ga lu solve, ga cholesky, ga llt solve,
ga spd invert, ga solve);

cIn earlier versions of GA, the one-sided communication was implemented directly inside GA.
dapplication of PeIGS and performance issues are discussed by I. Gutheil1

74



5.4 Getting started with GA

Table 3 gives an overview about the most important functions implemented in GA,
Table 4 summarizes some of the utility operations.

Table 3. Basic functionality provided by GA (only 2D array operations on whole arrays are listed)

Operation FORTRAN C

Initialization ga initialize() GA Initialize()
Termination ga terminate() GA Terminate()
Creation of arrays
Regular dist. ga create(...) NGA Create(...)
Irregular dist. ga create irreg(...) NGA Create irreg(...)
Duplication ga duplicate(...) GA Duplicate(...)
Destroying ga destroy(...) GA Destroy(...)
One-sided operations
Put ga put(...) NGA Put(...)
Get ga get(...) NGA Get(...)
Atomic accumulate ga acc(...) NGA Acc(...)
Atomic read and increment ga read inc(...) NGA Read inc(...)
Scatter ga scatter(...) NGA Scatter(...)
Gather ga gather(...) NGA Gather(...)
Interprocess synchronization
Lock ga lock(...) GA lock(...)
Unlock ga unlock(...) GA unlock(...)
Fence ga init fence() GA Init fence()

ga fence() GA Fence()
Barrier ga sync() GA Sync()
Collective array operations
Basic array operations
Init zero ga zero(...) GA Zero(...)
Fill ga fill(...) GA Fill(...)
Scale ga scale(...) GA Scale(...)
Copy ga copy(...) GA Copy(...)
Linear algebra
Matrix add ga add(...) GA Add(...)
Matrix multiply ga dgemm(...) GA Dgemm(...)
Dot product ga ddot(...) GA Ddot(...)
Symmetrization ga symmetrize(...) GA Symmetrize(...)
Transposition ga transpose(...) GA Transpose(...)
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Table 4. Utility operations in GA

Operation FORTRAN C

Locality of data
Locate ga locate(...) NGA Locate(...)
Find distrib. ga distribute(...) NGA Distribute(...)
Accessing ga acess(...) NGA Access(...)
Process information
Process ID ga nodeid() GA Nodeid()
Nodes ga nnodes() GA Nnodes()
Memory availability
Available memory ga memory avail() GA Memory avail()
Used memory ga inquire memory() GA Inquire memory()
Wrappers to
reduction/broadcast operations
Broadcast ga brdcst(...) GA brdcst(...)
Global operation ga dgop(...) GA Dgop(...)

ga igop(...) GA Igop(...)
Print detailed informations
Print array ga print(...) GA Print(...)
Statistics ga print stats() GA Print stats()

The principal structure of a GA program should look like:

• when GA runs on top of MPI

FORTRAN C

call mpi_init(...) MPI_Init(...) ! start MPI

call ga_initialize() GA_Initialize() ! start GA

status = ma_init(...) MA_Init(...) ! start MA

.... do some work ... do some work

call ga_terminate() GA_Terminate() ! tidy up GA

call mpi_finalize() MPI_Finalize() ! tidy up MPI

stop exit() ! exit

• when GA runs on top of TCGMSG

FORTRAN C

call pbeginf() PBEGIN_(...) ! start TCGMSG

call ga_initialize() GA_Initialize() ! start GA

status = ma_init(...) MA_Init(...) ! start MA

.... do some work ... do some work

call ga_terminate() GA_Terminate() ! tidy up GA

call pend() PEND_() ! tidy up TCGMSG

stop exit() ! exit
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Examples: The Parallel Process Environment

The following two examples will demonstrate the first basic steps to employ the
GA toolkit. In the first example the parallel process environment is provided and
each node prints its unique node ID.

program example1

implicit none

include ’global.fh’

integer :: n_nodes, me

logical :: stat

call pbeginf() ! init of TCGMSG

call ga_initialize() ! init GA

n_nodes = ga_nnodes() ! get number of nodes

me = ga_nodeid() ! who am i

print *, ’Hi, Iam node ’, me, ’ of ’, n_nodes, ’nodes’

call ga_terminate() ! tidy up GA

call pend() ! tidy up TCGMSG

stop

end program example1

If the program is running on 4 nodes it generates the following output:

Hi, Iam node 3 of 4 nodes

Hi, Iam node 0 of 4 nodes

Hi, Iam node 1 of 4 nodes

Hi, Iam node 2 of 4 nodes

Beginning with release 3, the node numbering in GA and TCGMSG is coherent,
e.g. a code snippet like the following reports identical node IDs in a TCGMSG
and GA environment.

tcg_n_nodes = NNODES () ! TCGMSG nodes cntr

tcg_me = NODEID () ! TCGMSG nodeid

ga_n_nodes = ga_nnodes() ! GA nodes cntr

ga_me = ga_nodeid() ! GA nodeid

print *, ’TCGMSG: #nodes:’, tcg_n_nodes, ’ on node’, tcg_me

print *, ’ GA: #nodes:’, ga_n_nodes , ’ on node’, ga_me

Example: Creating a Regular Global 2D Array

The next example introduces the creation of a 2D array. The syntax of the
corresponding GA function ga create is as follows:

logical function ga_create(type, dim1, dim2, name, chunk1, chunk2, g_a)

integer type - MA type [input]

integer dim1/2 - array(dim1,dim2) as in FORTRAN [input]

character*(*) name - a unique character string [input]

integer chunk1/2 - minimum size that dimensions should

be chunked up into [input]

integer g_a - handle for future references [output]
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Setting chunk1 = dim1 gives distribution by vertical strips (chunk2*columns); set-
ting chunk2 = dim2 gives distribution by horizontal strips (chunk1*rows). Actual
chunks will be modified so that they are at least the size of the minimum and each
process has either zero or one chunk. Specifying chunk1/2 as 〈 1 will cause that
dimension to be distributed evenly. ga create is a collective operation.

The following code snippet demonstrates the creation of a regular 2D array.
Assuming that the code is started on 4 nodes the distribution of the squared
100x100 array named A is done by horizontal strips. Figure 2 shows various
distribution patterns depending on the chunk sizes in the ga create call. ( In the
example below the data type MT DBL means double-precision ).

status = ma_init(...) ! allocate memory

call ga_initialize() ! init GA

status = ga_create ( MT_DBL, 100, 100, ’A’, 25, 100, ga_hndl)

call ga_destroy ( ga_hndl )

call ga_terminate()

Complete code examples demonstrating the creation of a global regular and irreg-
ular 2D arrays, the usage of matrix multiply interface and some utility functions
are listed in Appendices B-F.

5.5 About Performance: Matrix Multiply

To give some impression about the performance we present some numbers for ma-
trix multiply operations obtained on our CRAY T3E-1200. Three matrix multiply
routines are compared: the optimized BLAS routine SGEMM (64 bit, running on a
single node), the parallel GA DGEMM provided by GA (code example Appendix E),
and a matrix multiply version implemented in High Performance Fortran (HPF).

Fig. 3 shows the single node performance for a N = 1000 matrix multiply. The
performance degradation for GA DGEMM is small, and is mainly due to the array
index-to-address conversions. More in detail: using the native SGEMM routine one
obtains 592 MFlop/s whereas GA GEMM achieves 563 MFlop/s. Please note the
poor performance of 6 MFlop/s for the HPF code. The dependence of the global
performance on the number of nodes for a fixed problem size is showing in Fig. 4.
For the given problem size N = 1000, the efficiency of GA DGEMM ranges from 0.92
to 0.57 for two up to eight nodes, respectively. If one measures the performance
with respect to the problem size on eight nodes (s. Fig. 5) one can show that the
dimension of matrices should be at least in the order of some hundreds to obtain a
reasonable speed on CRAY T3E.

5.6 Further components of the Global Array toolkit

The Memory Allocator (MA) is a library of routines that comprises a dynamic
memory allocator for use by C, FORTRAN, or mixed-language applications. MA
is designed to be portable across a variety of platforms. C applications can benefit
from using MA instead of the ordinary malloc() and free() routines because
of the extra features MA provides: both heap and stack memory management
disciplines, debugging and verification support, usage statistics, and quantitative
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memory availability information. FORTRAN applications can take advantage of
the same features, and predecessors of FORTRAN 9x codes may in fact require
a library such as MA because dynamic memory allocation is not supported. One
important advantage of MA should be noted: memory leaks are avoided due to the
management strategies of MA.
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A suite of independent parallel I/O libraries for high-performance computers
building a chemistry I/O API, ChemIO23, has been developed:

• Disk Resident Arrays (DRA),
• Shared Files (SF), and
• Exclusive Access Files (EAF).
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All the components have an asynchronous API allowing the applications to overlap
expensive I/O with computations. As an example, the DRA layer is employed in
the RI-MP2 module in NWChem, thus some aspects of the DRA are discussed in
the following.

Disk Resident Arrays (DRA) extend the Global Arrays (GA) programming
model to disk. The library encapsulates the details of data layout, addressing
and I/O transfer in disk arrays objects. Disk resident arrays resemble global arrays
except that they reside on disk instead of in main memory. The main features of
this model are:

• Data can be transferred between disk and global memory.

• I/O operations have a nonblocking interface to allow overlapping of I/O with
computations.

• All I/O operations are collective.

• Either whole or sections of global arrays can be transferred between GA mem-
ory and the disk.

5.7 Guidelines for using GA

Some guidelines regarding a suitable application scenario for the GA toolkit may
be summarized as follows6. Utilization of GA is preferred:

• for applications with dynamic and irregular communication patterns,

• for calculations gaining advantage from dynamic load balancing,

• if one-sided access to shared data is required,

• when coding in message-passing style is too complicated,

• if data locality is important.

Alternatives to GA – MPI, HPF, or OpenMP – might be considered,

• if there are regular communication patterns or only a few communication paths
(e.g. nearest neighbour) often found in domain decomposition approaches,

• when synchronization after point-to-point message passing is needed, or

• if compiler parallelization is more effective e.g. OpenMP on shared memory
platforms.
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6 The Distributed Data Interface Used in GAMESS (US)

The Distributed Data Interface (DDI) was introduced in the public GAMESS12

(US) in June 1999, and replaces the TCGMSG API used since 1991. The low level
transport layers which DDI relies on are SHMEM, MPI-1, or TCP/IP sockets.

The DDI is similar to the GA concept in the sense that DDI attempts to exploit
the entire machines memory as global shared memory. The implementation follows
the concept of providing one-sided communication calls. There are three subroutine
calls to access memory on remote nodes: DDI PUT, DDI GET, and DDI ACCUMULATE.

At the present time, the DDI routines support only two dimensional FORTRAN
arrays, organized in such a way that columns are kept on a single node’s memory.
Up to 10 matrices may be distributed in this fashion.

6.1 The Data Server concept

Since MPI-2 is still unavailable on most platforms, and the SHMEM24 e is or will
be available on a limited number of computer systems only, a data server model is
implemented in DDI on other platforms (Figure 6).

On each node two processes are running: one is doing the chemistry work (com-
pute process) and the other one acts as data server supporting DDI get, put, and

eThe logically shared, distributed memory access (SHMEM) routines provide low-latency, high-
bandwidth communication.
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Figure 7. The DDI implementation on CRAY T3E for two nodes

Table 5. Some useful DDI Functions

Operation Functions

Global Operations
Initialization DDI PBEG(...)
Termination DDI PEND(...)
Number of nodes, ID DDI NPROC(...)
Allocate shared memory DDI MEMORY(...)
Create distrib. matrix DDI CREATE(...)
Destroy matrix DDI DESTROY(...)
Synchronization DDI SYNC(...)
Global sum (fp) DDI GSUMF(...)
Broadcast DDI BCAST(...)
Point-to-Point Operations
Synchronous send DDI SEND(...)
Synchronous receive DDI RECV(...)
Get next index DDI DLBNEXT(...)
Get block of matrix DDI GET(...)
Put block of matrix DDI PUT(...)
Accumulate data into block DDI ACC(...)

accumulate requests. Interupts are handled by the operating system, as the data
servers are distinct processes.

On CRAY MPP systems an efficient, hardware supported API for (fast) one-
sided communication is provided (SHMEM). Therefore, the data server model can
be dropped which allows for a more compact implementation. The memory image
of a GAMESS process on T3E is shown in Figure 7.
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DDI provides an interface for ordinary message passing parallel programming.
A summary of important operations can be found in Table 5. There are functions
to initialize and terminate the various processes, point-to-point send and receive,
and collective operations like global sum and the broadcast. In addition, functions
for distributed data manipulation, which include creation and destruction of the
arrays, the put, get, and accumulation operations mentioned above, are available.

Note, that the current version of DDI is not intended to be a general parallel
programming library, e.g. there are no portable memory management routines
included. Thus, parts of the GAMESS distribution are still required.

6.2 DDI Example

To illustrate the DDI a very simple example14 is given below. It shows the proper
initialization and closure of the DDI library, requests replicated memory but not
distributed memory.

program bcast

implicit double precision(a-h,o-z)

parameter (maxmsg=500000)

common /fmcom / xx(1)

data exetyp/8hRUN /

nwdvar=2 ! open DDI, tell it integer ...

call ddi_pbeg(nwdvar) ! ... word length is 32 bit

memrep=maxmsg ! request allocation of only

memddi=0 ! replicated memory

call ddi_memory(memrep,memddi,exetyp)

call setfm(memrep)

call ddi_nproc(nproc,me) ! who am I

master=0

if(me.eq.master) print *, ’running ’, nproc, ’ processes’

call valfm(loadfm) ! allocate a replicated array

lbuff = loadfm + 1

last = lbuff + maxmsg

need = last - loadfm - 1

call getfm(need)

if (me.eq.master) then

do i=1,maxmsg ! fill it up with ones

xx(lbuff-1+i) = 1.0d+00

end do

end if

! send it to all the other compute processes

call ddi_bcast(102,’F’,xx(lbuff),maxmsg,master)

call retfm(need) ! replicated storage done

istat=0

call ddi_pend(istat) ! close the DDI library gracefully

stop

end
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7 Further Reading

Students which are not necessarily familiar with parallel computational chem-
istry are encouraged to study the presentation Parallel Computing in Chemistry
by Roland Lindh21. Access to further documentation regarding the Global Array
Tookit can be found on the Web5. The Global Array User’s Manual 6 explains most
of the details required to implement parallel software using the GA. An excellent
introduction to DDI as well as to the global shared memory programming model
is given in the GAMESS (US) documentation14. Some of the ideas for the Global
Array presentation were “borrowed” from the on-line slide-show Global Arrays by
Krister Dackland20.

8 Summary

Driven by practical requirements in the field of quantum chemistry, stable and
robust tools for parallel programming were and are developed. The TCGMSG
library was (and is) the ”quantum chemist’s“ message-passing interface. Besides
other tools and libraries, the Global Array Toolkit (GA) can be viewed as the
de-facto standard for parallel applications in the quantum chemistry community.
Using the GA one benefits from it since the Global Array Toolkit

• provides a shared memory programming style ...

• ... on distributed memory and true shared memory architectures,

• supports an efficient NUMA,

• is user-friendly, and

• is open-source.

Due to performance reasons, HPF based applications play only a minor role in the
quantum-chemistry arena.
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Please note that the following examples are written for tutorial purposes only, i.e.
the author acknowledges that there exists more elegant and sophisticated solutions.

Appendix A: Shared Counter using TCGMSG NXTVAL Function

Program Code

program sc

implicit none

integer, parameter :: NTASKS = 20

integer :: nodes, me

integer, external :: NNODES, NODEID, NXTVAL

integer :: next, i, ntsks

logical :: master

nodes = NNODES()

me = NODEID()

master = me == 0

if ( master ) print *, ’run on’, nodes, ’ nodes’

ntsks = 0

next = NXTVAL ( nodes )

do i=0, NTASKS-1

if ( next == i ) then

print *, ’node’, me, ’ do task’, next

call work ( 5. )

ntsks = ntsks + 1

next = NXTVAL ( nodes )

end if

end do

print *, ’node’, me, ’ processed’, ntsks, ’ tasks’

end program sc

!-------------------------------------------------------------------------------

subroutine work ( fctr )

implicit none

real :: fctr

real :: tmp

integer :: secs, left, error

call RANDOM_NUMBER ( tmp )

secs = fctr * tmp

call pxfsleep ( secs, left, error ) !sleep for <secs> seconds

return

end subroutine work
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Example Output

run on 6 nodes

node 1 do task 3

node 1 do task 7

node 1 do task 14

node 1 processed 3 tasks

node 4 do task 2

node 4 do task 9

node 4 do task 15

node 4 processed 3 tasks

...

node 3 do task 0

node 3 do task 6

node 3 do task 13

node 3 do task 18

node 3 processed 4 tasks

run on 6 nodes

node 0 do task 5

node 0 do task 8

node 0 do task 12

node 0 do task 19

node 0 processed 4 tasks

Appendix B: Creation of Global 2D Array (I)

Program Code

program create_2d

implicit none

include ’mafdecls.fh’

include ’global.fh’

integer, parameter :: MAXDIM = 100

integer :: n_nodes, me, ga_hndl, owner

logical :: status

integer :: jnk_size, i

call pbeginf () ! init TCGMSG

call ga_initialize () ! init GA

n_nodes = ga_nnodes ()

me = ga_nodeid ()

jnk_size = MAXDIM/n_nodes

status = ma_init(MT_DBL, MAXDIM*jnk_size, MT_BYTE) ! allocate memory

status = ga_create ( MT_DBL, MAXDIM, MAXDIM, ’A’, jnk_size, MAXDIM, ga_hndl)

do i = 1, MAXDIM, MAXDIM/n_nodes

if ( ga_locate( ga_hndl, i, 1, owner) ) then

if ( me == owner ) &

print *,’PE’, ga_nodeid(), ’ owns rows ’, i, ’ - ’, i+MAXDIM/n_nodes-1

end if

end do
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call ga_sync ()

status = ga_destroy ( ga_hndl )

call ga_terminate()

call pend()

stop

end program create_2d

Example Output

PE 3 owns rows 76 - 100

PE 2 owns rows 51 - 75

PE 0 owns rows 1 - 25

PE 1 owns rows 26 - 50

Appendix C: Creation of Global 2D Array (II)

Program Code

program crea_2d

implicit none

include ’mafdecls.fh’

include ’global.fh’

integer, parameter :: MAXDIM = 100

integer :: n_nodes, me, ga_hndl, owner

logical :: status

integer :: jnk_size, j

call pbeginf () ! init TCGMSG

call ga_initialize () ! init GA

n_nodes = ga_nnodes ()

me = ga_nodeid ()

jnk_size = MAXDIM/n_nodes

status = ma_init(MT_DBL, MAXDIM*jnk_size, MT_BYTE) ! allocate memory

status = ga_create ( MT_DBL, MAXDIM, MAXDIM, ’A’, MAXDIM, jnk_size, ga_hndl)

if ( me == 0 ) call ga_summarize ( .true. )

call ga_sync()

status = ga_destroy ( ga_hndl )

call ga_terminate()

call pend()

stop

end program crea_2d
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Example Output

Summary of allocated global arrays

-----------------------------------

array 0 => double precision A(100,100), handle: -1000

(1:100,1:25) -> 0

(1:100,26:50) -> 1

(1:100,51:75) -> 2

(1:100,76:100) -> 3

Appendix D: Print a Distributed Array

Program Code Snippet

...

integer, parameter :: MAXDIM = 16

logical :: status

integer :: ga_hndl, chunk_size

...

status = ga_create ( MT_DBL, MAXDIM, MAXDIM, ’A’, MAXDIM, chunk_size, ga_hndl)

call ga_sync()

call ga_print ( ga_hndl )

...

Example Output

global array: A[1:16,1:16], handle: -1000

1 2 3 4 5 6

----------- ----------- ----------- ----------- ----------- -----------

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

7 8 9 10 11 12

----------- ----------- ----------- ----------- ----------- -----------

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

13 14 15 16

----------- ----------- ----------- -----------

1 0.00000 0.00000 0.00000 0.00000

2 0.00000 0.00000 0.00000 0.00000

3 0.00000 0.00000 0.00000 0.00000

4 0.00000 0.00000 0.00000 0.00000

5 0.00000 0.00000 0.00000 0.00000

6 0.00000 0.00000 0.00000 0.00000

7 0.00000 0.00000 0.00000 0.00000

8 0.00000 0.00000 0.00000 0.00000

9 0.00000 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.00000 0.00000

11 0.00000 0.00000 0.00000 0.00000

12 0.00000 0.00000 0.00000 0.00000

13 0.00000 0.00000 0.00000 0.00000

14 0.00000 0.00000 0.00000 0.00000

15 0.00000 0.00000 0.00000 0.00000

16 0.00000 0.00000 0.00000 0.00000

Appendix E: Parallel Matrix Multiply using GA DGEMM

Program Code

program mxm_1

implicit none

include ’mafdecls.fh’

include ’global.fh’

integer :: n

integer :: n_nodes, me, hndl_a, hndl_b, hndl_c, owner

logical :: status

integer :: jnk_size, mem_size, j

logical :: master

real :: s, alpha, beta

real :: usr_time(2), usrt(2), mflops

call pbeginf () ! init TCGMSG

call ga_initialize () ! init GA

n_nodes = ga_nnodes ()

me = ga_nodeid ()

master = me == 0
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call CPU_TIME ( usr_time(1) )

if ( master ) then

print *, ’Nodes: ’, n_nodes

read (*,*) n

print *, ’Rank = ’, n

end if

call ga_sync()

call ga_brdcst ( MT_INT, n, MA_sizeof(MT_INT,1,MT_BYTE), 0 )

jnk_size = n/n_nodes

mem_size = MAX(6*jnk_size*jnk_size, 2000000)

status = ma_init(MT_DBL, 0 , mem_size) ! allocate memory

call CPU_TIME ( usrt(1) )

status = ga_create ( MT_DBL, n, n, ’A’, jnk_size, n, hndl_a)

status = ga_create ( MT_DBL, n, n, ’B’, n, jnk_size, hndl_b)

status = ga_create ( MT_DBL, n, n, ’C’, jnk_size, jnk_size, hndl_c)

s = 2.

call ga_fill_patch ( hndl_a, 1, n, 1, n, s )

s = 0.5

call ga_fill_patch ( hndl_b, 1, n, 1, n, s )

call ga_zero ( hndl_c )

call CPU_TIME ( usrt(2) )

if ( master ) then

write (*, ’(’’usr time for init’’,t24,f9.3,1x,’’s’’)’) usrt(2)-usrt(1)

end if

call ga_sync()

call CPU_TIME ( usrt(1) )

call ga_dgemm( ’N’, ’N’, n, n, n, 1.0, hndl_a, hndl_b, 0.0, hndl_c )

call ga_sync()

call CPU_TIME ( usrt(2) )

usrt(1) = usrt(2)-usrt(1)

mflops=1.e-6*2*n*n*n/usrt(1)

if ( master ) then

write (*, ’(’’usr time for matmul’’,t24,f9.3,1x,’’s’’)’) usrt(1)

write (*, ’(’’global performance of’’,t24,f9.3,1x,’’mflop/s’’)’) mflops

end if

if ( master ) then

call ga_summarize ( .true. )

end if

call ga_sync()

status = ga_destroy ( hndl_c )

status = ga_destroy ( hndl_b )

status = ga_destroy ( hndl_c )

call ga_terminate()

call pend()
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call CPU_TIME ( usr_time(2) )

if ( master ) then

write (*, ’(’’total usr time’’,t24,f9.3,1x,’’s’’)’) usr_time(2)-usr_time(1)

end if

stop

end program mxm_1

Example Output

Nodes: 16

Rank = 1000

usr time for init 0.006 s

usr time for matmul 0.522 s

global performance of 3830.552 mflop/s

Summary of allocated global arrays

-----------------------------------

array 0 => double precision A(1000,1000), handle: -1000

(1:63,1:1000) -> 0

(64:126,1:1000) -> 1

(127:189,1:1000) -> 2

(190:252,1:1000) -> 3

(253:315,1:1000) -> 4

(316:378,1:1000) -> 5

(379:441,1:1000) -> 6

(442:504,1:1000) -> 7

(505:567,1:1000) -> 8

(568:630,1:1000) -> 9

(631:693,1:1000) -> 10

(694:756,1:1000) -> 11

(757:819,1:1000) -> 12

(820:882,1:1000) -> 13

(883:945,1:1000) -> 14

(946:1000,1:1000) -> 15

array 1 => double precision B(1000,1000), handle: -999

(1:1000,1:63) -> 0

(1:1000,64:126) -> 1

(1:1000,127:189) -> 2

(1:1000,190:252) -> 3

(1:1000,253:315) -> 4

(1:1000,316:378) -> 5

(1:1000,379:441) -> 6

(1:1000,442:504) -> 7

(1:1000,505:567) -> 8

(1:1000,568:630) -> 9

(1:1000,631:693) -> 10

(1:1000,694:756) -> 11

(1:1000,757:819) -> 12

(1:1000,820:882) -> 13

(1:1000,883:945) -> 14

(1:1000,946:1000) -> 15

array 2 => double precision C(1000,1000), handle: -998

(1:250,1:250) -> 0

(251:500,1:250) -> 1

(501:750,1:250) -> 2

(751:1000,1:250) -> 3

(1:250,251:500) -> 4
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(251:500,251:500) -> 5

(501:750,251:500) -> 6

(751:1000,251:500) -> 7

(1:250,501:750) -> 8

(251:500,501:750) -> 9

(501:750,501:750) -> 10

(751:1000,501:750) -> 11

(1:250,751:1000) -> 12

(251:500,751:1000) -> 13

(501:750,751:1000) -> 14

(751:1000,751:1000) -> 15

Appendix F: Irregular Distributed 2D Array

Program Code

program irreg_2d

implicit none

include ’mafdecls.fh’

include ’global.fh’

integer, parameter :: MAXDIM = 8

integer :: n_nodes, me, ga_hndl, owner

logical :: status

integer, parameter :: NBLOCK1 = 1, NBLOCK2 = 3

integer :: map1(NBLOCK1) = 1, map2(NBLOCK2) = (/1,2,5/)

integer :: node, mem_sze

logical :: master

call pbeginf () ! init TCGMSG

call ga_initialize () ! init GA

n_nodes = ga_nnodes ()

if ( n_nodes /= NBLOCK2 ) then

print *, ’need’, NBLOCK2, ’ nodes, have’, n_nodes, ’!’

stop ’wrong no. of nodes’

end if

me = ga_nodeid ()

master = me == 0

status = ma_init(MT_DBL, MAXDIM*MAXDIM, MT_BYTE)

status = ga_create_irreg ( MT_DBL, MAXDIM, MAXDIM, ’A’, &

map1, NBLOCK1, map2, NBLOCK2, ga_hndl)

if ( master ) call ga_summarize ( .true. )

call ga_sync()

status = ga_destroy ( ga_hndl )

call ga_terminate()

call pend()

stop

end program irreg_2d
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Example Output

Summary of allocated global arrays

-----------------------------------

array 0 => double precision A(8,8), handle: -1000

(1:8,1:1) -> 0

(1:8,2:4) -> 1

(1:8,5:8) -> 2
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Reliable ab initio electronic structure calculations require high-level treatment
of electron correlation effects. For molecules in electronic ground states, single-
reference correlation methods, which are based on the Hartree-Fock self-consistent
field (SCF) wavefunctions as zeroth order approximation, are usually sufficient.
Møller-Plesset perturbation theory up to fourth order (MP2-MP4) and coupled-
cluster methods with all single and double excitations followed by a perturbative
treatment of triple excitations [CCSD(T)] are the most popular single-reference
methods. All of these approaches can also be formulated in a local framework
which gives a demand on computational resources that scales only linearly with
system size; they can also be carried out using integral-direct techniques, that
avoid the storage of large numbers of two electron integrals by recomputing them
on demand. For computing electronically excited states or global potential energy
functions, multiconfiguration self-consistent field (MCSCF) wavefunctions are re-
quired for a qualitatively correct representation of the wavefunction. The major
part of dynamical electron correlation effects can then be accounted for by sub-
sequent multireference correlation treatments, in which a large number of single
and double excitations relative to the MCSCF reference configurations are taken
into account. In multireference configuration interaction (MRCI) calculations the
expansion coefficients are determined variationally. Alternatively, the coefficients
can be obtained by first-order perturbation theory, and the energy be evaluated to
second (MRPT2) or third (MRPT3) order. These lecture notes give a short review
of all these methods.

1 Introduction

1.1 Electron correlation and the configuration interaction method

Hartree-Fock Self-Consistent Field (SCF) Theory enjoys considerable success in
the first-principles determination of molecular electronic wavefunctions and prop-
erties. However, there are important situations where the underlying assumption
of molecular orbital theory, that the electronic wavefunction can be approximated
by an antisymmetrized product of orbitals, breaks down. There are still further
situations where SCF does provide a reasonable qualitative description, but fails to
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predict energetics to desired accuracy. We explore here the deficiencies of Hartree-
Fock, and survey the various techniques available for going beyond SCF.

Hartree-Fock is a mean field theory, in which each electron has its own wave-
function (orbital), which in turn obeys an effective 1-electron Schrödinger equation.
The effective hamiltonian (Fock operator) contains the average field (Coulomb and
exchange) of all other electrons in the system. The total electronic wavefunction for
the molecule, ignoring complications introduced by the Pauli principle, is a simple
product of the orbitals. Following the Born interpretation of wavefunctions, this
implies that if P (r1, r2) is the probability density for finding electrons labelled 1
and 2 in regions of space around r1 and r2 respectively,

P (r1, r2) = P (r1)P (r2) (1)

i.e., the probability density for a given electron is independent of the positions of
all others.

In reality, however, the motions of electrons are more intimately correlated.
Because of the direct Coulomb repulsion of electrons, the instantaneous position of
electron 2 forms the centre of a region in space which electron 1 will avoid. This
avoidance is more than that caused by the mean field, and is local; if electron 2
changes position, the Coulomb hole for electron 1 moves with it. In contrast, in the
mean-field theory, electron 1 has no knowledge of the instantaneous position of 2,
only its average value, and thus motions are uncorrelated, and there is no depletion
in P (r1, r2) near r1 = r2.

The effects of neglecting electron correlation in Hartree-Fock are spectacularly
illustrated when one attempts to compute complete potential curves for diatomic
molecules using SCF. Figure 1 shows potential curves for H2 from both a very
accurate calculation and from Hartree-Fock. It is seen that the spin-restricted
Hartree-Fock (RHF) approximation breaks down as dissociation is reached, pre-
dicting energies which are much too high, and a potential curve characteristic of
the interaction of ions rather than neutral atoms. The RHF wavefunction for the
X1Σ+

g ground state of H2 takes the form

ΨX = Âσαg (1)σβg (2) (2)

where Â is the antisymmetrizing operator, α and β are the usual one-electron spin
functions, and the bonding orbital σg = Zσg

(χA + χB), with χA an s-like orbital
centred on atom A, and Zσg

a normalization constant. As the atoms become
infinitely separated, χA ∼ 1sA, Zσg

∼ 1√
2

and thus

ΨX ∼
1

2
Â
(

1sαA1sβB + 1sαB1sβA + 1sαA1sβA + 1sαB1sβB

)

(3)

The first two terms are direct products of neutral 2S hydrogen atom wavefunctions
on the two atoms A and B, as desired. However, the last two terms describe a
spurious H+ . . .H− pair. The overall energy of this unphysical wavefunction exceeds
the energy of two hydrogen atoms by half the difference of the ionization energy
and electron affinity of H (i.e., 6.4 eV), and at long range the potential energy curve
has an unphysical ionic R−1 behaviour.
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Figure 1. Potential Energy Curves for H2
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The failure of RHF for this example can be easily understood in terms of elec-
tron correlation. At long internuclear separations, if one electron is located near
atom A, the other will on physical grounds be found close to atom B. This correla-
tion is reflected in the exact wavefunction, which is asymptotically the product of
hydrogenic orbitals on the two nuclei. In contrast, within the Hartree-Fock frame-
work, each electron is made to experience only the average effect of the other. Since
in RHF, the two electrons are constrained to be in the same spatial orbital, this σg
orbital will be symmetrical between the atoms, and thus each electron has equal
probability of being on A or B, irrespective of the position of the other electron. The
possibility of both electrons being on the same atom is not excluded, as reflected
in the ionic terms in the RHF wavefunction (3).

In the case of H2, and in fact for a number of other dissociating molecules,
Hartree-Fock theory can give correct behaviour provided the restriction to iden-
tical spatial orbitals for α and β spin is relaxed. The Unrestricted HF (UHF)
wavefunction for H2 is identical to RHF at short bond lengths, but when the two
atoms are separated, it becomes variationally advantageous for the α and β spin
orbitals to localize on different hydrogen atoms. In this way, a correct asymptotic
energy is obtained, as seen in Figure 1. However, the wavefunction can never be
identical to the exact wavefunction. Asymptotically, the UHF wavefunction is ei-
ther Â1sαA1sβB or Â1sαB1sβA, whereas the true wavefunction is the sum of these two
degenerate determinants. Although the energy is unaffected, the UHF wavefunc-
tion is not an eigenfunction of the spin-squared operator Ŝ2, being an unphysical
mixture of singlet and triplet states. This spin contamination is displeasing, and
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Figure 2. Potential Energy Curves for F2
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can have serious undesirable effects. In the case of the H2 UHF potential curve,
at the point where UHF and RHF diverge, the curve is discontinuous in its sec-
ond derivative. For more advanced correlation methods which build on UHF, spin
contamination has a disastrous effect1,2. In the case of F2 (Figure 2), UHF does
not repair the inability of RHF to give an energy at equilibrium geometry which is
lower than at dissociation, and as a consequence the UHF potential curve is purely
repulsive. For all these reasons, the use of UHF is becoming increasingly rare.

1.2 Long-range correlation — Molecular Dissociation

In order to understand a theory which goes beyond the inability of RHF to describe
dissociation, we examine first of all an excited 1Σ+

g state of H2 for which the RHF
wavefunction takes the form

ΨE = Âσαu (1)σβu(2) (4)

and where we now have two electrons in the antibonding orbital σu =
Zσu

(χA − χB). Asymptotically, this becomes

ΨE ∼ 1
2Â
(

1sαA1sβB + 1sαB1sβA − 1sαA1sβA − 1sαB1sβB

)

(5)

This wavefunction also contains an unphysical mixture of covalent and ionic terms.
However, we observe that it is possible to construct purely ionic or purely covalent
wavefunctions by taking a linear combination of ΨX and ΨE. In ΨX−ΨE = σ2

g−σ2
u,

the ionic terms cancel exactly, and the correct asymptotic wavefunction is obtained.
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This is an example of configuration interaction (CI), whereby the wavefunction is
considered as being a mixture of several Slater determinants. For H2 at general
internuclear separations, the form of the CI wavefunction is

Ψ = cXΨX + cEΨE (6)

and the coefficients specifying this linear combination must be allowed to vary,
since it is known that near equilibrium, the RHF wavefunction is already a good
approximation. Thus the best wavefunction near equilibrium will have cX ≃ 1 and
cE small, in contrast to their asymptotic values of 1√

2
and − 1√

2
.

In general, in the standard CI method, the variational principle is used to
determine the CI coefficients. For any approximate wavefunction, the Rayleigh
quotient

E =
〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉 (7)

is an upper bound to the exact ground-state energy E, i.e., E ≥ E. Variational
methods proceed by assuming that the best wavefunction will be the one which
gives the lowest, i.e. minimum, E. In the specific case of a linear expansion, as in
CI, i.e.,

Ψ =
∑

I

cIΦI (8)

minimising E is equivalent to finding the lowest eigensolution of the hamiltonian
matrix H, whose elements are the integrals

HIJ = 〈ΦI |Ĥ |ΦJ〉 , (9)

i.e. one needs to solve

Hc = Ec (10)

with the minimum Rayleigh quotient E appearing as the eigenvalue. The linear
ansatz allows also the calculation of approximations to excited states, through
the Hylleraas-Undheim-MacDonald theorem, which states that the n-th eigenvalue
is an upper bound to the exact energy of the (n − 1)-th excited state. Finding
the lowest few eigensolutions of a symmetric matrix is a well-studied problem;
for the diagonally-dominant hamiltonian matrices invariably arising in molecular
CI, algorithms exist3 which will converge in around ten iterations, each of which
requires the evaluation of the action of the hamiltonian matrix on some trial vector,
i.e.,

vI =
∑

J

HIJcJ . (11)

This feature allows the solution of CI problems of very large dimensions; because H
is often extremely sparse, forming H·c is much easier than forming the matrix itself,
and the limiting factor is the availability of memory to store c and v. Calculations
with more than 109 configurations have been carried out in this way.
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1.3 Short-range correlation — the Interelectronic Cusp

Although consideration of electron correlation is clearly vital for the proper de-
scription of molecules closed to dissociation, it also has important implications in
situations where Hartree-Fock is a reasonable approximation. Since the hamilto-
nian operator contains r−1

ij , the inverse distance between two electrons, the nature
of the electronic wavefunction in regions close to rij = 0 will have a strong effect
on the energy.

We will consider initially the helium atom, for which the hamiltonian is

Ĥ = − 1
2∇2

1 − 1
2∇2

2 −
2

r1
− 2

r2
+

1

r12
. (12)

The electronic wavefunction will satisfy Schrödinger’s equation

ĤΨ(r1, r2) = EΨ(r1, r2) (13)

at all points in six-dimensional space. We note that close to r12 = 0 there is
a paradox; the left hand side of (13) apparently becomes infinite, because of the
1/r12 Coulomb singularity, whereas E is constant, and so the right hand side is well
behaved. The local energy ĤΨ/Ψ cannot have singularities since it is constant, and
the inescapable conclusion is that there must be an additional singularity in the left
hand side of (13) which exactly cancels 1/r12 close to r12 = 0. Since the electrons
are not necessarily close to a nucleus, the only candidate for this cancelling term
is the kinetic energy. It is convenient to transform to centre-of-mass and relative
coordinates,

R = 1
2 (r2 + r1) ; r = r2 − r1 , (14)

in which the hamiltonian becomes

Ĥ = − 1
4∇2

R −
2

r1
− 2

r2
−∇2

r +
1

r
. (15)

If we expand the two-electron wavefunction in a Taylor series in r about r = 0,
on the (correct for the singlet state) assumption that angular terms in r can be
ignored at low order,

Ψ = a0 + a1r + a2r
2 + . . . (16)

then the Schrödinger equation expands as

0 = r−1 (a0 − 2a1) + r0
(
a1 − 6a2 − 4R−1 − E

)
+ r1 (. . . (17)

The r−1 singularity is removed if a1 = 1
2a0, or

∂Ψ

∂r

∣
∣
∣
∣
r=0

=
Ψ

2

∣
∣
∣
∣
r=0

. (18)

This is the well-known cusp condition4,5,6,7, which shows that in whatever direction
one moves from r = 0, the wavefunction increases linearly. The exact wavefunction
must have the shape depicted in Figure 3, showing the existence of a Coulomb Hole
around the point of coalescence. In Figure 3, the wavefunctions are plotted against
z = z2 − z1, with the two electrons having identical x, y coordinates.
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Figure 3. The interelectronic cusp
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The Hartree-Fock wavefunction is

ΨRHF = Â1sα1sβ = 1s(r1)1s(r2) 1√
2
(α(1)β(2)− β(1)α(2)) (19)

which has no special behaviour near coalescence; in fact it is easy to show that
∂ΨRHF/∂r = 0 at r = 0. Thus the RHF wavefunction must have the shape shown
in Figure 3; clearly, it overestimates the probability of finding the two electrons
close together, and this in turn implies an overestimate of the electron repulsion
energy. This is consistent with the variational principle, which requires the RHF
energy to be higher than the exact energy. We define the correlation energy to be

E = ERHF − Eexact (20)

where Eexact is the lowest exact eigenvalue of Schrödinger’s equation. For He,
E ≃ 0.042 hartree = 1.1 eV.

The above analysis for the helium ground state, consisting of two electrons with
opposing spin, needs to be modified when spins are instead aligned. A triplet spin
wavefunction, e.g., α(1)α(2) is symmetric with respect to electron label exchange,
and so, by the Pauli principle, the spatial wavefunction must be antisymmetric.
This has the consequences that, in a picture like Figure 3, the triplet wavefunc-
tion must pass through the origin, and has dipole rather than monopole r angular
variation. There is a corresponding cusp condition specifying ∂2Ψ/∂r2 in terms of
∂Ψ/∂r at the coalescence point5, but the important thing is that in the energeti-
cally important region, the electrons are already kept apart by the Pauli principle,
even in Hartree-Fock, and the effects of electron correlation neglect are fairly minor.
Electron correlation effects are most important for electrons with opposing spins.

A further observation for polyelectronic systems is that the biggest contributions
will come from pairs of electrons which occupy the same regions of physical space. If
orbitals are well localized, there will be a large contribution to the correlation energy
from each doubly occupied orbital, with smaller additions from pairs consisting of
two different orbitals. This leads to a rough rule of thumb, that each doubly
occupied orbital contributes approximately 1 eV to the total electron correlation
energy.

In atomic and molecular systems, an alternative and equivalent way of visual-
ising two-electron correlations relative to the nuclear positions is possible. If one
electron is far from the nucleus of an atom, then the second electron will prefer to
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be closer to the nucleus than its Hartree-Fock average; this is termed radial corre-
lation. If a first electron is, say, to the right of a nucleus, then another electron will
tend to visit regions of space to the left of that nucleus more than predicted by HF;
this is termed angular correlation.

These short-range correlation effects arising from the Coulomb hole can be rep-
resented using CI wavefunctions just as with the long-range correlations discussed
above. The simplest such wavefunction representing the angular correlation in the
helium atom would have the form

Ψ = Â
(
1sα(1)1sβ(2) + λ

(
2pαx(1)2pβx(2) + 2pαy (1)2pβy (2) + 2pαz (1)2pβz (2)

))
(21)

It is straightforward to show that such an ansatz introduces explicit r12 depen-
dence into the wavefunction. This demonstrates that CI does support correlated
wavefunctions. However, unfortunately, the r12 dependence introduced is entirely
in terms of r212; there are no linear terms. A CI wavefunction can never satisfy the
cusp condition (18), since its gradient will always be zero at coalescence; however,
given sufficient terms, the linear combination of functions of r212 will give a rea-
sonable representation of the shape of the Coulomb hole. Because the expansion
functions are not ideally suited to the problem, the convergence of the CI expansion
is unfortunately slow, and this is discussed further below.

Historically, even some of the earliest molecular electronic structure
calculations8,9 used 2-electron basis functions of a type better adapted to the prob-
lem than orbital products (i.e., CI). Inclusion of linear terms in r12 is an efficient way
to obtain an accurate wavefunction with a small number of functions, and probably
it will remain the approach of choice when very high accuracy is needed, particu-
larly for atoms. However, despite successful research activity in this area10,11 this
approach has not yet emerged as the best method generally applicable to molecules;
CI expansions remain computationally preferable. The reason for this preference
is that, although very large numbers of basis functions might be required, the
hamiltonian integrals which have to be computed for CI are much simpler than
for explicitly correlated wavefunctions. The explicit r12 terms introduce 3- and
4-electron integrals12,13 which are potentially very numerous. In contrast, CI needs
only the two-electron integrals required in an SCF calculation. Although the 3-
and 4-electron integrals can be reasonably approximated11, explicitly correlated
wavefunctions still remain a specialist rather than general-purpose tool.

1.4 Second Quantization

The adoption of the CI (or other related) approach to electron correlation implies
that we deal with wavefunctions which are represented as vectors in a linear space
of Slater determinants; this space is in turn a subspace of N -fold products of or-
bitals. For the moment, we will assume that we generate all of the N -electron
basis functions that we can after appropriate symmetry adaptation (electron an-
tisymmetry, point group, etc.). Therefore the N -electron basis set is determined
entirely by a choice of 1-electron basis. Before considering what this choice should
be for optimum accuracy, we consider the analysis and manipulation of N -electron
functions of this orbital-product type. We note initially that the orbital basis will
contain at least the SCF occupied orbitals, denoted {φi}, but in order that further
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configurations be generated, it must be augmented by virtual or external orbitals,
{φa}. Both the occupied and virtual orbitals can be considered as linear combina-
tions of an underlying chosen fixed basis {χα}, which will usually be atom-centred
functions, exactly as in basis-set SCF calculations. The functions φp and χα de-
pend only on the spatial coordinate r; where spin-orbitals are required, they will
be denoted by ψp(x) and can be constructed as a product of a spatial orbital φp(r)
and a spin function α or β.

Consider a complete (infinite) one particle basis set {φp(r), p = 1, 2, . . .}; any
function of the position r can be represented as a linear combination of the spatial
orbitals

f(r) =
∑

p

xpφp(r) . (22)

For a system of N electrons, a complete spatial basis can then be generated by
taking all possible products φp1(r1)φp2(r2) . . . φpN

(rN ), i.e., any N particle spatial
function may be expanded as

F (r1, r2, . . . rN ) =
∑

p1p2...pN

Xp1p2...pN
φp1(r1)φp2 (r2) . . . φpN

(rN ) . (23)

This fact is not much use for practical calculations, since we cannot use an infinite
set of functions, but if we consider now the case of a finite one particle basis {φp, p =
1, 2, . . . ,m}, then we see the concept of the corresponding complete N particle
space, composed of all possible products of orbitals. A variational calculation in
such a basis will yield the lowest possible energy eigenvalue for the given one particle
basis set, and such a calculation is termed Full or Complete configuration interaction
(FCI). It is, however, easily appreciated that the number of possible orbital products
mN (m one electron α and β spin orbitals, N electrons) can become exceedingly
large.

We introduce the useful concept of second quantization by defining the orbital
excitation operator as (assuming orthogonal orbitals)

Êpq =

N∑

i=1

|φp(i)〉〈φq(i)| . (24)

The Dirac bracket notation means that whenever the brackets become closed,
〈f(i)|g(i)〉, integration over the coordinates of electron i is performed on the func-
tions within the bracket,

∫
dτif

∗(i)g(i). If Êpq is made to act on any N electron
function which is a product of orbitals, or a linear combination of such products,
the effect is for each occurrence of φq to generate a function which is identical, but

with φq replaced by φp. Thus if φq does not appear, Êpq annihilates the function.

Êpq is a spatial orbital excitation operator; it acts on space coordinates and does
not affect spin. In fact, it can be decomposed into a sum of operators which excite α
and β spin orbitals separately, Êpq = êαpq + êβpq = η̂α†p η̂αq + η̂β†p η̂

β
q , where η̂αq destroys

α spin orbital ψq and η̂α†p creates α spin orbital ψp. The idea of second quantization
is that the orbitals themselves now become quantum mechanical operators. Thus a
Slater determinant can be viewed as arising from successive applications of creation
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operators on the empty (vacuum) state,

. . . η†rη
†
qη

†
pΨvacuum = Â(ψpψqψr . . . ) . (25)

The analysis that follows continues to use pure spatial orbitals φp; however, exactly
analogous results are obtained by using explicit spin-orbitals ψp and spin-orbital
excitation operators êpq. Further details of the properties of the second quantization
can be found in the literature 14.

As well as the single orbital excitation operators Êpq, it is possible to define
multiple excitation operators:

Êpq,rs =

N∑

i6=j
|φp(i)〉〈φq(i)| |φr(j)〉〈φs(j)| ≡ Êrs,pq (26)

Êpq,rs,tu =

N∑

i6=j 6=k
|φp(i)〉〈φq(i)| |φr(j)〉〈φs(j)| |φt(k)〉〈φu(k)| (27)

etc.

These can all be formulated as combinations of the single excitations:

Êpq,rs =

N∑

i,j

|φp(i)〉〈φq(i)| |φr(j)〉〈φs(j)| −
N∑

i

|φp(i)〉〈φq(i)|φr(i)〉〈φs(i)|

(28)

= ÊpqÊrs − δqrÊps (29)

Similar consideration of the identical operator Êrs,pq yields the commutation rela-
tion for the single excitations:

[Êpq, Êrs] = ÊpqÊrs − ÊrsÊpq = δqrÊps − δpsÊrq . (30)

Given that any wavefunction Ψ we construct is ultimately composed as a lin-
ear combination in the space of orbital products, then the following completeness
identity is true for all i = 1, 2, . . . , N

(
m∑

p

|φp(i)〉〈φp(i)|
)

|Ψ〉 = |Ψ〉 . (31)

Now we insert this identity into the electronic hamiltonian operator

Ĥ = Z +

N∑

i

ĥ(i) +

N∑

i>j

r−1
ij , (32)

where Z is the nuclear repulsion energy, rij are the separations of the electrons, and

ĥ(i) is the single particle hamiltonian for each electron, incorporating its kinetic
energy and the field of all the nuclei. This has the effect of replacing Ĥ by the
effective model or second quantized hamiltonian ĤM , with the understanding that
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the only thing we will ever do with ĤM is to take matrix elements between functions
in the orbital product space:

ĤM = Z +

N∑

i

m∑

pq

|φp(i)〉 〈φp(i)|ĥ(i)|φq(i)〉 〈φq(i)|

+

N∑

i>j

m∑

pqrs

|φp(i)〉|φr(j)〉 〈φp(i)|〈φr(j)|r−1
ij |φq(i)〉|φs(j)〉 〈φq(i)|〈φs(j)|

(33)

= Z +
∑

pq

hpqÊpq + 1
2

∑

pqrs

(pq|rs)Êpq,rs , (34)

where we introduce the one and two electron hamiltonian integrals

hpq = 〈φp|ĥ|φq〉 =

∫

dr1 φ
∗
p(1)ĥ(1)φq(1) (35)

(pq|rs) = 〈φp(1)|〈φr(2)|r−1
12 |φq(1)〉|φs(2)〉

=

∫

dr1

∫

dr2 φ
∗
p(1)φ∗r(2)r−1

12 φq(1)φs(2) . (36)

For matrix elements between the N electron basis functions we then have

〈ΦI |Ĥ |ΦJ〉 = 〈ΦI |ĤM |ΦJ 〉
= Z〈ΦI |ΦJ〉+

∑

pq

hpq〈ΦI |Êpq|ΦJ 〉+ 1
2

∑

pqrs

(pq|rs)〈ΦI |Êpq,rs|ΦJ 〉 .

(37)

In this way, we separate integrals hpq, (pq|rs) and coupling coefficients dIJpq =

〈ΦI |Êpq |ΦJ〉, DIJ
pqrs = 〈ΦI |Êpq,rs|ΦJ〉. The coupling coefficients depend only on

the algebraic structure of the N electron functions, and not on such factors as
molecular geometry, external fields, etc.

We illustrate the use of the second-quantized formalism by considering CI wave-
functions for two electrons. Unnormalized spin-adapted basis functions can be con-
structed as

Φpq± = 1
2

(

Â(φαpφ
β
q )± Â(φαq φ

β
p )
)

, (38)

with the upper (+) sign for spin S = 0 (singlet) and the lower (−) for S = 1
(triplet). The total wavefunction can then be expanded in this basis as

Ψ =
∑

p≥q
Cpq(1± δpq)Φpq±

=
∑

pq

CpqΦ
pq
± , (39)

The orbital excitation operator Êrs when acting on Φpq± will completely annihilate
the function if s is not equal to at least one of p, q; otherwise, each occurence of φs
is replaced by φr. Thus

ÊrsΦ
pq
± = (1± τpq)δsqΦpr± (40)
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and then

Êrs,tuΦpq± = (1± τpq)δspδuqΦrt± , (41)

where τpq has the effect of swapping the labels p, q in whatever follows it. Then the
action of the hamiltonian operator is

ĤΦpq± = (1± τpq)
(
∑

r

hrqΦ
pr
± + 1

2

∑

rs

(rp|qs)Φrs±

)

, (42)

i.e.,

ĤΨ =
∑

pq

CpqĤΦpq±

=
∑

rs

Φrs± (K(C)rs + 2(hC)rs) . (43)

Here, we have defined a generalized exchange matrix K(C), which for any given
coefficient matrix C is

K(C)rs =
∑

pq

Cpq(rp|qs) . (44)

1.5 Orbital basis sets

Calculations with complete (infinite) orbital basis sets are impossible; therefore,
one immediately wants to know how to choose optimally a finite basis set such that
the CI wavefunction is as close to the exact wavefunction as possible for a given
number of orbitals. Insight into this problem can be gained from the two-electron
example developed above. Consider the one-electron density matrix generated by
the wavefunction, defined as

dpq = 〈Ψ|Êpq|Ψ〉 (45)

For the two-electron example, it is straightforward to show using (40) that

dpq = 2
∑

s

CspCsq , (46)

or d = 2C†C.
Suppose that we now consider truncating the basis set by deleting the last (m-

th) orbital to leave m − 1 remaining functions. The overlap between the new and
old wavefunctions is

〈ΨNew|ΨOld〉 = 〈ΨOld|ΨOld〉 − 2
∑

pqr

CpqCrm〈Φpq|Φrm〉+
∑

pq

CpqCmm〈Φpq|φmm〉

= 1− 2(C†C)mm + C2
mm (47)

Ignoring the last (C2
mm) term, which can be shown to be of lesser importance,

we deduce that the amount that the overlap differs from unity is dmm. Consider
making linear transformations amongst the underlying orbitals. Of all the possible
transformations, the one which minimises dmm is that which brings d to diagonal
form, with dmm being the smallest eigenvalue. Such orbitals are known as natural
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orbitals (NOs), and are of great utility in interpreting correlated many-electron
wavefunctions. The trace of the density matrix is equal to the number of electrons,
leading to an interpretation of the eigenvalues as occupation numbers.

In the above example, therefore, if natural orbitals are chosen, the effects of
deleting the last (m-th) orbital are minimized. In other words, the CI wavefunction
in m−1 orbitals is as good as it can be. We have thus shown that of all the possible
choices of orbitals, natural orbitals offer the most compact or efficient basis set, for
a two-electron system. For many-electron systems, the situation is, of course, more
complicated. One can still define natural orbitals as density matrix eigenvalues, but
their relationship with the wavefunction is not so transparent. For the special case
of CI wavefunctions that contain up to double excitations from the Hartree-Fock
determinant, then one can also construct pair natural orbitals (PNOs) for each
pair of occupied orbitals that are excited; these PNOs do have similar properties
to the two-electron NOs, and typically show a similar convergence of eigenvalues
towards zero. The true NOs, however, are an average of the various PNOs, and
the convergence of their spectrum and their usefulness in evaluating the correlating
effect of basis functions is usually less advantageous.

In contrast to Hartree-Fock, where reasonably good wavefunctions can be ob-
tained using a double-zeta plus polarization (DZP) basis set allowing for simple
contraction and deformation of atomic orbitals, a much larger basis set is required
for recovering a large fraction of the correlation energy; i.e., the sequence of NO
occupation numbers is found to be rather slowly convergent. It is then not a triv-
ial problem to decide straightaway what basis functions {χα} should be used for
optimum recovery of electron correlation effects. The idea of using natural orbitals
to obtain basis sets is taken to the extreme in the atomic natural orbital (ANO)
basis scheme15. Here, the basis functions are (approximate) atomic natural or-
bitals, obtained from a CI calculation on each of the molecule’s constituent atoms.
The idea is that the ANOs, which are near–optimum correlating functions for the
atomic problem, will be good functions for describing molecular electron correla-
tion. Within each of the atomic symmetries (s, p, d, . . . ), each contracted basis
function is a linear combination of all the primitive gaussian functions; thus each
primitive function enters in to all contractions (general contraction). Within the
ANO scheme, there also arises the concept of sequences of basis sets, in which each
basis set is derived from the previous one by the addition of the next most impor-
tant atomic natural orbital. This allows for the systematic improvement of basis
sets and consequent elimination of possible spurious errors arising from unbalanced
choices of basis functions. For example, for most first row atoms, examination of the
ANO occupation numbers identifies [3s2p1d], [4s3p2d1f ] and [5s4p3d2f1g] as good
choices of contracted basis sets, whilst a set such as [5s3p2d2f2g] is unbalanced,
and would be inefficient in recovering electron correlation effects.

For certain applications, selection of a small or medium–sized ANO set will
not necessarily result in a good basis set, and can lead to spurious results. An
example is the calculation of atomic or molecular electrical polarizabilities. Here,
it is vital to include diffuse basis functions, particularly of d type in the usual case
that the highest atomic shell is of p type. Such basis functions do not appear in
the set which is optimum for the correlation problem, and so such functions must
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be included additionally, or the basis set redesigned somewhat. This case occurs to
a milder degree in all molecules, where the atomic functions are polarized by their
neighbours; even for SCF calculations, polarization functions are required to cover
this effect, and the optimum gaussian exponents are not necessarily related to those
best for correlation. Another type of calculation which presents problems for ANO
sets is that where several different atomic states are involved; the classic case is
in transition metal chemistry, where dns2, dn+1s1 and dn+2 atomic states often all
make significant contributions to the molecular situation. ANO bases based on each
state are drastically different, particularly for the d orbitals, which are much more
diffuse in dn+2 than in dn; so the use of an ANO set derived from one particular
atomic state can introduce an unwanted bias towards that state. A partial solution
is to select functions which are eigenfunctions of the sum of the density matrices for
each state16,17,18, although caution is still needed. For general applications, a good
compromise is found in the “correlation consistent” basis sets19, which are similar to
ANO sets, except that the most diffuse s and p functions are left uncontracted, and
the polarization functions are simple uncontracted gaussians designed to cover both
the polarization and correlation requirements. In fact, the advantage in using ANOs
for the polarization functions is not that great, and the correlation consistent basis
sets are usually more compact than standard ANOs for a given level of accuracy.
Just as with ANOs, a systematic sequence of basis sets is defined, with members
conventionally denoted cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, etc., which for 1st
row atoms comprise 3s2p1d, 4s3p2d1f , 5s4p3d2f1g, 6s5p4d3f2g1h . . . .

1.6 Dynamical vs. Non-Dynamical Correlation

The correlation energy arising from overestimation of short-range electron repul-
sions in Hartree-Fock wavefunctions is usually referred to as dynamical correlation.
Dynamical correlation is always reduced when a normal chemical bond (i.e., doubly
occupied orbital) is broken. It is the neglect of dynamical correlation which causes
the RHF equilibrium energy of F2 to be higher than twice the RHF energy of a
fluorine atom, since in F2 there are 9 pairs of electrons, but in each F there are only
4. The effect is so pronounced for F because the molecular orbitals are considerably
smaller than their atomic parents, and crowding the electrons together means there
is more correlation energy. Where dynamical correlation effects are important,
Hartree-Fock will therefore generally overestimate bond lengths and underestimate
binding. An extreme example is that of rare-gas dimers, which are unbound at
the Hartree-Fock level, but in reality are held together by dispersion, which is a
manifestation of dynamic correlation.

That part of the correlation energy arising from long-range correlation effects,
such as observed on molecular dissociation, is often referred to as non-dynamical (or
static) correlation. Static correlation effects mean that (spin-restricted) Hartree-
Fock tends to artificially overbind molecules underestimating bond lengths and over-
estimating vibrational frequencies. Thus the effects of dynamic and non-dynamic
correlation are very often in opposition, and the partial cancellation of correlation
errors enhances the value of SCF; it is often observed that, for example, use of
methods which represent properly the non-dynamical correlation effects leads to
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much worse agreement of computed properties with experiment than RHF.
The division between dynamical and non-dynamical correlation is difficult to

define in most cases. For example, when thinking about electron correlation in
a bond in a molecule, the radial and angular short-range concepts are somewhat
blurred with the ideas of long-range dissociation-enabling correlation. One useful
visualization is that the non-dynamical correlation is that which is recovered with
the minimum CI expansion describing properly all correlation effects; in contrast,
convergence of the dynamical correlation energy with increasing size of CI expansion
is very slow.

When non-dynamical correlation is weak, Hartree-Fock theory already provides
a qualitatively correct description of the wavefunction. Under such circumstances,
which, fortunately, apply for the majority of molecules in their ground state near
equilibrium geometry, one may use single-reference methods for representing the
dynamical correlation effect. These methods build on the SCF reference deter-
minant, typically using perturbative arguments to define classes of configurations
or excitations deemed to be of most importance in constructing an approximate
correlated wavefunction. For most excited states, for molecules that are close to
dissociation, and for situations in which there is near electronic degeneracy, Hartree-
Fock is a poor approximation. Static correlation effects often mean that there is
no single Slater determinant that dominates the wavefunction, and perturbative or
other approaches that assume a good single-reference starting point are doomed to
failure. Under such circumstances, a viable way forward is to first deal with the
static correlation problem using a CI expansion that covers all the important ef-
fects. One may then go further using this many-determinant reference as a starting
point for further recovery of the dynamic correlation. Such approaches are termed
multi-reference methods.

2 Closed-Shell single-reference methods

In this section we will discuss the most important electron correlation methods
based on closed-shell Hartree-Fock reference functions. This includes Møller-Plesset
perturbation theory, singles and doubles configuration interaction (CISD), and non-
variational variants like the coupled-electron pair approximation (CEPA), as well as
coupled cluster methods with single and double excitations (CCSD). The effect of
triple excitations can be accounted for by perturbation theory, leading to CCSD(T).

From a computational point of view, it is important to minimize the logic in
the code, and to formulate the theory in terms of matrix and vector operations.
The most efficient operations one can perform on any kind of current hardware
are matrix multiplications. This applies both to vector computers as well as to
RISC workstations or even PCs. The reason for this is that on most machines the
bottleneck is not the floating point operation itself, but getting the data from the
memory, in particular if the quantities involved do not fit into the fast cache. By an
appropriate unrolling of the three loops in a matrix multiplication one can achieve
that each data element obtained from memory can be used in several floating point
operations, and this this way often about 80% of the theoretical peak performance
can be achieved.
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For the formulation of the theory in terms of matrix multiplications it is essential
to use unnormalized or even non-orthogonal configuration state functions. We
start with a general discussion of the configuration spaces which are common to all
methods discussed in the subsequent sections.

2.1 The first-order interacting space

According to second-order perturbation theory, the most important contributions
to the correlation energy arise from configurations ΦI which have non-zero matrix
elements 〈ΦI |Ĥ |ΦSCF 〉, i.e., which span the first-order interacting space of ΦSCF .
In the following, the SCF wavefunction will be denoted |0〉 ≡ ΦSCF . According
to the Slater-Condon rules only Slater determinants can contribute which differ by
at most two spin-orbitals from the Hartree-Fock determinant. The spin adapted
singly and doubly excited configurations are conveniently generated by applying
the excitation operators Êai to the reference function

Φai = Êai|0〉 , (48)

Φabij = ÊaiÊbj |0〉 , (49)

where i, j refer to occupied orbitals in |0〉, and a, b to virtual orbitals (unoccupied
in |0〉). If |0〉 is an optimized closed-shell Hartree-Fock wavefunction, the matrix
elements 〈Φai |Ĥ|0〉 = 2fai vanish for all single replacements Φai , since the optimized
orbitals satisfy the conditions fai = 0 (Brillouin theorem). Therefore, the first-order
wavefunction is a linear combination of all doubly excited configurations Φabij

Ψ(1) =
1

2

∑

ij

∑

ab

T ijabΦ
ab
ij , (50)

where T ijab are the amplitudes. Note that the operators Êai and Êbj commute, and
therefore

Φabij = Φbaji , (51)

i.e., the configuration set used in the expansion of Ψ(1) is redundant. In the formu-
lation of correlation theories it will be convenient to use this redundant set, but we
must account for this by the restriction

T ijab = T jiba . (52)

We will consider T ijab as matrices with elements ab. Different matrices are labeled
by the superscripts ij:

[Tij ]ab = T ijab , Tij = Tji† . (53)

The matrix elements for i > j, all a, b and i = j, a ≥ b form the non-redundant set
of amplitudes.

The definition of the doubly excited configurations in eq. (49) is most simple,
but has the disadvantage that the resulting functions are non-orthogonal. Using the
commutation relations (30) and the fact that zero results if an external annihilator
acts on the reference function |0〉 one obtains

〈Φabij |Φcdkl 〉 = δacδbd〈0|Êik,jl |0〉+ δadδbc〈0|Êil,jk|0〉 , (54)
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where 〈0|Êik,jl|0〉 are the elements of the second-order reduced density matrix of
the reference function. For closed-shell Hartree-Fock reference functions one obtains
explicitly

〈0|Êik,jl |0〉 = 4δikδjl − 2δilδjk ,

〈Φabij |Φcdkl 〉 = δacδbd(4δikδjl − 2δilδjk) + δadδbc(4δilδjk − 2δikδjl) . (55)

Straightforward use of these non-orthogonal configurations is in principle possible,
but leads to some complications. There are two ways for simplification: in the first
case a set of orthogonal configuration state functions is defined as

Φabijp =
1

2

(
Φabij + pΦbaij

)
for p = ±1, i ≥ j, a ≥ b , (56)

where p = 1 corresponds to singlet coupling of the two external electrons, and
p = −1 to triplet coupling. Note that these functions are not normalized; for a
closed-shell reference function we have

〈Φabijp|Φcdklq〉 = (2− p)δpq(δacδbd + pδadδbc)(δikδjl + pδilδjk) , (57)

and thus the normalization factors are

〈Φabijp|Φabijq〉 = (2 − p)δpq(1 + pδab)(1 + pδij) . (58)

As will become clear later, for an efficient formulation of all electron correlation
methods it is essential not to normalize the configurations. This was first realized
in the theory of self-consistent electron pairs (SCEP) by Meyer20, who showed that
by using unnormalized configurations all terms involving the virtual orbital labels
a, b, . . . can be formulated in a computationally convenient matrix form without any
logic. Most importantly, this concerns the factor (1+pδab), which implies a different
normalization for diagonal configurations (a = b) than for non diagonal ones (a 6=
b). We note that in the original SCEP theory of Meyer20 the configurations were

normalized by the factors [(2− p)(1 + pδij)]
−1/2

, but this leads to some unnecessary
factors in the resulting equations. A similar definition is possible for multireference
wavefunctions and will be used in section 5.

For single-reference methods it turns out that even simpler equations can be ob-
tained by directly using the configurations (49) together with a set of contravariant
configurations21,22

Φ̃abij =
1

6
(2Φabij + Φabji ) (59)

which have the properties

〈Φ̃abij |Φcdkl 〉 = δacδbdδikδjl + δadδbcδilδjk , (60)

〈Φ̃abij |Ψ(1)〉 = T ijab , (61)

〈Φ̃abij |Ĥ |Ψ(0)〉 = (ai|bj) . (62)

The last expression is obtained by inserting the hamiltonian in second quantization
(cf. eq. (34))

〈Φ̃abij |Ĥ |Ψ(0)〉 =
1

2

∑

rstu

〈Φ̃abij |Êrs,tu|Ψ(0)〉(rs|tu) , (63)

113



and realizing that the indices r, t must be external and match a, b, while s, u must
be internal and match i, j according to eq. (60)

〈Φ̃abij |Ĥ|Ψ(0)〉 =
1

2

∑

kl

∑

cd

〈Φ̃abij |ÊckÊdl|Ψ(0)〉(ck|dl)

=
1

2

∑

kl

∑

cd

〈Φ̃abij |Φcdkl 〉(ck|dl) = (ai|bj) . (64)

We can now express Ψ(1) either in the original basis or in the basis of contravari-
ant functions

Ψ(1) =
1

2

∑

ij

∑

ab

T ijabΦ
ab
ij =

∑

ij

∑

ab

T̃ ijabΦ̃
ab
ij , (65)

which leads to

T̃ ijab = 2T ijab − T
ji
ab or T̃ij = 2Tij −Tji . (66)

The factor 1
2 has been omitted in the second sum for convenience in later expres-

sions.
For the singles we can define the contravariant space analogously, but in this

case only the normalization of Φai and Φ̃ai differs

Φ̃ai =
1

2
Φai , (67)

t̃ia = 2tia . (68)

2.2 Matrix notation

We have seen above that the amplitudes T ijab for a given correlated orbital pair (ij)
can be considered as a matrix Tij , and the amplitudes tia of the single excitations
as vectors ti. Unless otherwise noted, here and in the following i, j, k, l refer to
occupied orbitals, a, b, c, d to virtual orbitals (unoccupied in the reference function),
and p, q, r, s to any orbitals. In open-shell and MCSCF methods, t, u, v, w will
denote open-shell (active) orbitals.

Similarly, it is convenient to order the two-electron integrals over two occupied
and two virtual orbitals into matrices. In this case there are two types, namely
Coulomb and exchange matrices

J ijab = (ab|ij) , (69)

Kij
ab = (ai|bj) . (70)

The labels ij refer to different matrices, and ab to their elements. Often it will be
possible to write equations in matrix form, involving matrix multiplications and
additions, and then bold face letters will be used for matrices, e.g., Jij and Kij .
For convenience in later expressions, we also define

Lijab = 2Kij
ab −K

ij
ba , (71)

and the closed shell Fock matrix

frs = hrs +
∑

i

[
2J iirs −Kii

rs

]
. (72)
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In the subsequent sections, the matrix f will only refer to the external part, i.e, the
elements fab.

2.3 Second-order Møller-Plesset perturbation theory

The simplest electron correlation method to treat electron correlation is Møller-
Plesset perturbation theory, which is a special variant of Rayleigh-Schrödinger per-
turbation theory, with the zeroth-order hamiltonian

Ĥ(0) =

Nel∑

i=1

f̂(i) =
∑

rs

Êrsfrs , (73)

and with

Ĥ(1) = Ĥ − Ĥ(0) , (74)

where f̂(i) is the closed-shell Fock operator for electron i. For optimized orbitals
the matrix elements fai vanish (Brillouin conditions), and it is then easily shown
that the Hartree-Fock wavefunction Ψ(0) = ΦSCF is an eigenfunction of Ĥ(0), i.e.,

Ĥ(0)Ψ(0) = Ê(0)Ψ(0) , (75)

Ê(0) = 2

mocc∑

i=1

fii , (76)

Ê(0) + Ê(1) = 〈Ψ(0)|Ĥ |Ψ(0)〉 = ESCF , (77)

where ESCF is the Hartree-Fock energy expectation value.
The first-order wavefunction is expanded according to eq. (50), and the ampli-

tudes T ijab are obtained by solving the first-order perturbation equations

〈Φ̃abij |Ĥ(0) − Ê(0)|Ψ(1)〉+ 〈Φ̃abij |Ĥ |Ψ(0)〉 = 0 (78)

for all i ≥ j, ab. Inserting eq. (50) and evaluating the matrix elements yields the
linear equations

Rijab = Kij
ab +

∑

c

(

facT
ij
cb + T ijacfcb

)

−
∑

k

(

fikT
kj
ab + T ikabfkj

)

= 0 . (79)

For the case that canonical Hartree-Fock orbitals are used which obey

fij = ǫiδij , (80)

fab = ǫaδab , (81)

one obtains

Rabij = Kij
ab + (ǫa + ǫb − ǫi − ǫj)T ijab (82)

T ijab = −Kij
ab/(ǫa + ǫb − ǫi − ǫj) , (83)
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which is, of course, the well known MP2 expression. Using eqs. (61) and (62) the
second-order energy takes the form

Ê(2) = 〈Ψ(0)|Ĥ |Ψ(1)〉
=
∑

ij

∑

ab

〈Ψ(0)|Ĥ|Φ̃abij 〉T̃ ijab

=
∑

ij

〈KijT̃ji〉 =
∑

ij

〈Kij(2Tji −Tij)〉 , (84)

where

〈KijT̃ji〉 =
∑

ab

Kij
abT̃

ji
ba =

∑

ab

Kij
abT̃

ij
ab (85)

(86)

denotes the trace of the matrix product in the brackets.
From the above equations it is obvious that evaluating the second-order energy

is trivial once the exchange integrals Kij
ab = (ai|bj) are available. These integrals

are in the MO basis, and must therefore be generated from the 2-electron integrals
in the AO basis by a four-index transformation

(ai|bj) =
∑

µνρσ

XµaXνbXρiXσj(µρ|νσ) . (87)

This transformation is most efficiently done in four steps, each being a matrix
multiplication, i.e.

(µρ|νj) =
∑

σ

(µρ|νσ)Xσj , (88)

(µi|νj) =
∑

ρ

(µρ|νj)Xρi , (89)

(µi|bj) =
∑

ν

(µj|νi)Xνb , (90)

(ai|bj) =
∑

µ

(µi|bj)Xµa . (91)

Since the number of occupied orbitals i, j is usually much smaller than the number
of basis functions, the number of transformed integrals becomes smaller in each step,
and therefore the first quarter transformation step is most expensive. It requires
about 1

2mvalm
4 operations, where m is the number of basis functions and mval

the number of correlated orbitals. Since both mval and m increase linearly with
system size N , the computational effort scales with O(N 5). For large systems not
only the computation time but also the storage of the two-electron integrals and
intermediate quantities is a severe bottleneck. Chapter 6 discusses integral-direct
transformations, in which the integrals (µρ|νσ) are computed on the fly whenever
needed, without being ever stored on disk.
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An alternative way to compute the second-order energy is to start from the
Hylleraas functional

E2 = 2〈Ψ(1)|Ĥ |Ψ(0)〉+ 〈Ψ(1)|Ĥ(0) − Ê(0)|Ψ(1)〉

= 2
∑

ij

[

〈KijT̃ji〉+ 〈Tij fT̃ji〉 − fij
∑

k

〈TikT̃kj〉
]

=
∑

ij

[

〈(Kij + Rij)T̃ji〉
]

. (92)

Minimizing this functional with respect to the T̃ ijab yields

∂E2

∂T̃ ijab
= 2Rijab , (93)

with the Vij defined in eq. (79). Thus, the Hylleraas functional is stationary with
respect to small variations of the T ijab if the first-order perturbation equations are

fulfilled, i.e. Rijab = 0. For the corresponding amplitudes we have E2 = Ê(2). It

is straightforward to show that in general E2 ≥ Ê(2) for any set of trial function
Ψ(1). The stationary property is very convenient for deriving the MP2 gradient
expression and in the context of local electron correlation methods to be discussed
later.

Even though we will not discuss applications of the methods in this article, it
should be noted that the applicability of MP2 is restricted to cases with a sufficient
large HOMO-LUMO gap. If this is not the case, the energy denominators in eq.
(83) become small and the perturbation expansion diverges.

2.4 Singles and doubles configuration interaction

In singles and doubles configuration interaction (CISD) the expansion coefficients
are determined variationally. Consequently, the resulting energy is an upper bound
to the exact energy, but it is not size extensive or size consistent, i.e., it does not
scale correctly with the number of electrons or the number of independent subsys-
tems. Therefore, CISD usually yields poor results, and it is not recommended to be
used. However, much better results can be obtained by some simple modifications
of the variational conditions, leading to the coupled electron pair approximation
(CEPA)23,24 or the coupled pair functional (CPF)25, which are approximately size
consistent and yield much better results at the same computational cost as CISD.

The first matrix formulation of CISD is due to Meyer and known as SCEP
theory20 (cf. section 2.1). This method was formulated originally in the AO basis,
but here we will continue to work in a basis of orthogonal MOs, which is somewhat
simpler. However, we will come back to the AO formulation when discussing local
electron correlation theories.

The CISD wavefunction is expanded in terms of the same configurations as used
in the MP2 wavefunction, but also includes single excitations

ΨCISD = ΦSCF +
∑

ia

tiaΦai +
1

2

∑

ij

∑

ab

T ijabΦ
ab
ij . (94)
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The coefficients tia, T ijab are optimized variationally by minimizing the Rayleigh
quotient

ECISD =
〈ΨCISD|Ĥ |ΨCISD〉
〈ΨCISD|ΨCISD〉 . (95)

Using eqs. (61) and (65) one finds for the norm

N = 〈ΨCISD|ΨCISD〉 = 1 +
∑

ai

t̃iat
i
a +

∑

ij

∑

ab

T̃ ijabT
ij
ab

= 1 +
∑

i

〈t̃i†ti〉+
∑

i≥j
(2− δij)〈T̃ijTji〉 . (96)

Differentiating the expectation value with respect to the T̃ ijab yields the eigenvalue
equations

ria = 〈Φ̃ai |Ĥ − ECISD|ΨCISD〉 = 0 ,

Rijab = 〈Φ̃abij |Ĥ − ECISD|ΨCISD〉 = 0 . (97)

These equations can be solved iteratively (direct CI ). In each iteration one has to
compute the residuals

ria = via − ECISDtia , (98)

Rijab = V ijab − ECISDT ijab (99)

where

via = 〈Φ̃ai |Ĥ − ESCF|ΨCISD〉 (100)

V ijab = 〈Φ̃abij |Ĥ − ESCF|ΨCISD〉 , (101)

and ECISD = ECISD − ESCF is the correlation energy

ECISD =
1

N




∑

i

(f ia + via)t̃ia +
∑

ij

∑

ab

(Kij
ab + V ijab )T̃ ijab



 . (102)

The residuals are used to obtain an update of the CI-coefficients by simple pertur-
bation theory:

∆tia =
−ria

〈Φ̃ai |Ĥ − ECISD|Φai 〉
, ∆T ijab =

−Rijab
〈Φ̃abij |Ĥ − ECISD|Φabij 〉

. (103)

This procedure relies on the fact that the hamiltonian in the configuration basis is
diagonal dominant. Convergence can be improved and guaranteed by the Davidson
procedure26.

For the sake of simplicity, we will restrict the following discussion to double
excitations (CID); the inclusion of single excitations is quite straightforward and
does not lead to any principle difficulties. In the CID case the matrices Vij take
the explicit form

V ijab = Kij
ab +K(Tij)ab +

∑

kl

Kij
klT

kl
ab +Gijab +Gjiba (104)
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with the auxiliary matrices

Gij = Tijf −
∑

k

[

Tikfkj + TikJkj + (TikJkj)† − T̃ikKkj
]

. (105)

The matrices Gij account for the contributions of the two-electron integrals over two
external and two occupied orbitals, i.e., all matrices occuring in eq. (105) are defined
in the space of external orbitals only. The evaluation of all Gij requires 2m3

val

matrix multiplications. Since each matrix multiplication involves 2m3
ext floating

point operations, the total cost scales with the sixth power of the molecular size.
Note the exceedingly simple matrix form of these equations, which do not involve
any complicated logic. This is solely due to the fact that unormalized and non-
orthogonal configurations are used, as outlined in section 2.1. In contrast, in the
early direct CISD method of Roos and Siegbahn27, which employed orthonormalized
configuration state functions, about 140 different types of matrix elements had to
be distinguished.

The so called external exchange operators K(Tij) in the second term of (104)
account for all contributions of integrals over four external orbitals

K(Tij)ab =
∑

cd

T ijcd(ac|db) . (106)

There terms require about m2
valm

4
ext floating point operations, and for large basis

sets and not too many correlated orbitals mval their evaluation dominates the
total computational cost. As written in eq. (106) one would need a full integral
transformation for generating the integrals (ac|dc). This would not only be rather
expensive (O(N 5) operations), but also double the disk space. The transformation
can be avoided by expanding the virtual MOs in the integral, yielding

K(Tij)ab =
∑

µν

XµaXνb

∑

ρσ

[
∑

cd

XρcT
ij
cdXσd

]

(µρ|σν)

=
∑

µν

XµaXνb

∑

ρσ

T ijρσ(µρ|σν)

=
[
X†K(Tij)AOX

]

ab
. (107)

The quantities Tij
AO = XTij

MOX† are the amplitudes in the AO basis. These are
precomputed and then contracted with the two-electron integrals (µρ|σν), which
very much resembles the calculation of the exchange terms in the Fock matrix. The
resulting operators in the AO basis K(Tij)µν are finally backtransformed into the
MO basis by the two matrix multiplications in the last line. Similar operators are
also needed in coupled cluster theory (cf. section 2.5) and multirefence configuration
interaction (cf. section 5).

The third-order energy in Møller-Plesset perturbation energy is obtained as

E(3) =
∑

ij

∑

ab

(Kij
ab + V ijab )T̃ ijab , (108)

where the V ijab and T̃ ijab are computed from the MP2 amplitudes. Note that this
energy expression is similar to the expectation value, eq. (102), but without the
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normalization factor. In contrast to the CID energy E(3) is size consistent, but not
an upper bound to the exact energy.

Finally, we note that the CEPA equations23,24 can be obtained from the CISD
equations by replacing in the residual the correlation energy by individual pair
energies, e.g., CEPA-2

Rabab = V ijab − ǫijT
ij
ab , (109)

with

ǫij = (2− δij)
∑

ab

Kij
abT̃

ij
ab . (110)

Other CEPA variants use slightly different expressions for the residual. The CEPA
correlation energy is the sum of all pair energies

ECEPA =
∑

i≥j
ǫij . (111)

Obviously, the computational effort per iteration is virtually the same as for CISD,
but the results are much better (almost as good as for CCSD(T) if singles are
included).

2.5 Singles and doubles coupled-cluster

The main disadvantage of the variational configuration interaction method is the
fact that it is not size consistent. This can easily be understood by considering
two independent subsystems, e.g., two water molecules. The correct wavefunc-
tion for the total system AB should then be the (antisymmetrized) product of the
wavefunctions of the two molecules A and B. If each of these wavefunctions con-
tains double excitations from the SCF determinant, the total system will contain
quadruple excitations, e.g.,

Ψ(A) = ΦSCF(A) + Ψc(A) = [1 +
1

2

(A)
∑

ij

(A)
∑

ab

T abij ÊaiÊbj ]Φ
SCF(A)

Ψ(B) = ΦSCF(B) + Ψc(B) = [1 +
1

2

(B)
∑

kl

(B)
∑

cd

T cdkl ÊckÊdl]Φ
SCF(B)

Ψ(AB) = ΦSCF(AB) + Â[ΦSCF(A)Ψc(B) + ΦSCF(B)Ψc(A)]

+
1

4

(A)
∑

ij

(A)
∑

ab

(B)
∑

kl

(B)
∑

cd

T abij T
cd
kl ÊaiÊbjÊckÊdlΦ

SCF(AB) (112)

where Â is the antisymmetrizer. It is seen that that the coefficients of the quadruple
excitations Φabcdijkl = ÊaiÊbjÊckÊdlΦ

SCF(AB) are simple products T abij T
cd
kl of the

coefficients of the subsystems. However, these terms are not included in the CISD
wavefunction for the dimer, and therefore the total CISD energy is not equal to the
sum of the monomer energies.
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In coupled-cluster theory28,29,30 the wavefunction is generated by an exponential
excitation operator

ΨCC = exp(T̂ )ΦSCF , (113)

where the exponential is defined by the Taylor expansion

exp(T̂ ) = 1 + T̂ +
1

2!
T̂ T̂ +

1

3!
T̂ T̂ T̂ + . . . . (114)

The excitation operator T̂ may be decomposed into single, double, and possibly
higher excitation operators

T̂ = T̂1 + T̂2 + . . . (115)

with

T̂1 =
∑

ai

taiÊai , (116)

T̂2 =
1

2

∑

ij

∑

ab

T ijabÊaiÊbj , (117)

(118)

etc. Truncating the expansion after T̂2 yields the CCSD theory31,21,32,22.
For two independent subsystems we can decompose T̂ into a sum of two opera-

tors each acting only on one subsystem

Ψ(AB) = exp(T̂A + T̂B)ΦSCF(AB) = Â
[

exp(T̂A)ΦSCF(A) exp(T̂B)ΦSCF(B)
]

= Â [Ψ(A)Ψ(B)] . (119)

Thus, the coupled-cluster wavefunction is size consistent as required. It implicitly
contains triple, quadruple, and higher excitations, but the coefficients of these are
all products of the single and double excitation amplitudes tia and T ijab.

Unfortunately, it is not possible to determine these amplitues variationally, since
like the full CI expansion (113) includes up to N -fold excitations, which makes the
evaluation of an expectation value too expensive. However, one can obtain a non-
linear system of equations for the amplitudes by projecting the Schrödinger equation
from the left with the contravariant configurations Φ̃ai and Φ̃abij as defined in section
2.1. An additional equation for the correlation energy is obtained by projecting
with the reference function. This yields

ECCSD = 〈0|Ĥ(1 + T̂1 + T̂2 +
1

2
T̂ 2

1 )|0〉 (120)

ria = 〈 Φai |(Ĥ − ECCSD)(1 + T̂1 + T̂2 +
1

2
T̂ 2

1 + T̂1T̂2 +
1

3!
T̂ 3

1 )|0〉 = 0

(121)

Rijab = 〈Φ̃abij |(Ĥ − ECCSD)(1 + T̂1 + T̂2 +
1

2
T̂ 2

1 + T̂1T̂2 +
1

3!
T̂ 3

1

+
1

2
T̂ 2

1 T̂2 +
1

2
T̂ 2

2 +
1

4!
T̂ 4

1 )|0〉 = 0 (i ≥ j, all a, b) . (122)
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The expansions on the right-hand side terminate after the quadruple excitations
since the hamiltonian can couple only configurations that differ by at most two exci-
tations. The number of equations corresponds exactly to the number of amplitudes.
Even though these equations look quite complicated, it turns out that their solution
is not much more difficult than of the CISD equations. It can be shown that in
the coupled-cluster case the contributions of the energy in the residual equations
cancel out, as required for a size-consistent theory.

In order to exemplify the structure of the resulting equations, we will omit the
single excitation operator T̂1 and consider only the coupled-cluster doubles (CCD)
case. The full CCSD equations in a similar matrix formulation can be found in Ref.
22. The explicit expressions for the CCD residual matrices Rij are

Rij = Kij + K(Tij) +
∑

kl

αij,klT
kl + Gij + Gji , (123)

with

Gij = TijX−
∑

k

[

βikT
kj − T̃ikYkj +

1

2
TkiZkj + (TkiZkj)†

]

. (124)

The form of these equations is exactly the same as for the CID, discussed in the
previous section, but there are now intermediate quantities which depend linearly
on the amplitudes. In detail, the integrals Kij

kl in the CID equations are replaced
by αij,kl, fik by βik, f by X, Kkj by Ykj , and Jkj by Zkj . The explicit form of
these quantites is

αij,kl = Kkl
ij + tr

(
TijKlk

)
, (125)

βik = fik +
∑

l

tr
(
TilLlk

)
, (126)

X = f −
∑

kl

LklTlk (127)

Ykj = Kkj − 1

2
Jkj +

1

4

∑

l

LklT̃lj , (128)

Zkj = Jkj − 1

2

∑

l

KlkTjl . (129)

The computational effort of the CCD differs from CID basically by the additional
2m3 matrix multiplications in eqs. (128) and (129), which doubles the time for eval-
uating the matrices Gij . However, the same external exchange operators K(Tij)
are needed, and therefore the difference in total time is less significant.

If singles are included, there are additional terms in the intermediates, but these
require only minor computational effort. The products of singles arising from the
T̂ 2

1 , T̂ 3
1 , and T̂ 4

1 terms in eqs. (121) and (122) can all be accounted for by defining
modified amplitude matrices

Cij = Tij + titj
†
, C̄ij =

1

2
Tij + titj

†
, (130)
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and then all intermediates depend only linearly on either Tij , Cij , or C̄ij . The
most notable difference between CISD and CCSD is that in the latter case one
needs additional contractions of singles amplitudes with 3-external integrals

J(Eij)ab =
∑

c

(ab|ci) tjc , (131)

K(Eij)ab =
∑

c

(ai|bc) tjc . (132)

As the external exchange operators, these terms can be evaluated in two different
ways. Either the 3-external integrals (ab|ci) are explicitly generated, which requires
a more expensive integral transformation (note, however, that the effort for the first
quarter transformation is the same). Alternatively, the storage of these integrals
can be avoided by computing these terms directly from the integrals in the AO
basis. First, the singles amplitudes are transformed into the AO basis

tiσ =
∑

c

Xσc t
i
c , (133)

then the operators are computed in the AO basis

J(Eij)µν =
∑

ρ

Xρi

∑

σ

tjσ (µν|ρσ) , (134)

K(Eij)µν =
∑

ρ

Xρi

∑

σ

tjσ (µρ|σν) , (135)

and finally they are back transformed into the MO basis

J(Eij)MO = X†J(Eij)AOX , (136)

K(Eij)MO = X†K(Eij)AOX . (137)

This procedure, which is similar to the computation of the operators Jkl and Kkl, re-
quires about 3

4m
4mocc +4m3m2

occ additions and multiplications (m basis functions,
mocc correlated orbitals) rather than 3

2m
3m2

occ operations if the same quantities
are computed from the fully transformed two-electron integrals (the full integral
transformation scales as m5). The additional effort is, however, quite insignificant
as compared to the 1

2m
4m2

occ operations needed to evaluate the operators K(Tij)
and will therefore not introduce a bottleneck. Nevertheless, it should be noted that
the three-external integrals (ab|ci) are also needed for evaluating the perturbative
correction for triple excitations, and then it is of course advantageous to use them
also for the CCSD.

Finally, we note that the QCISD (quadratic configuration interaction)
equations33 are obtained by omitting all T̂ 2

1 , T̂ 3
1 , T̂ 4

1 terms and the T̂1T̂2 term
in equation 122. The residuals then include only part of the singles terms present
in the CCSD. Most notably, the operators J(Eij) and K(Eij) are not needed in
QCISD; as in the case of CISD all contributions of three-external integrals can be
absorbed into the external exchange operators by computing these with modified
coefficient matrices22. Another variant is the Brueckner coupled-cluster doubles
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(BCCD) theory34,35,36,37,38,39,22. In this case the orbitals are modified in each it-
eration so that at convergence all singles amplitudes vanish. This can be achieved
by aborbing after each update the singles into the orbitals

φi ← φi +
∑

a

tiaφa (138)

with subsequent symmetrical reorthonormalization of the new occupied orbitals.
Furthermore, the virtual orbitals have to be Schmidt-orthogonalized to the occupied
space. Then the integral transformation must be repeated, since the Jkl and Kkl

change. The Brueckner theory has some theoretical advantages. In particular, the
resulting wavefunction is less sensitive to symmetry breaking problems than the
CCSD wavefunction on the basis of canonical Hartree-Fock orbitals.

2.6 Computational aspects

As already pointed out, the matrix formulation with a minimum amount of logic
is one of the prerequisites for an efficient CISD or CCSD program. Often this
can be exploited to the best possible extent by using highly optimzed routines
for matrix multiplication (e.g, dgemm), which are available in BLAS (basic linear
algebra subroutines) libraries on many platforms. These routines also allow to
transpose one or both of the two matrices to be multiplied on the fly, without the
need to precompute and store the transposed matrix. This is often useful, since
the amplitudes Tij are stored only for i ≥ j, and Tji is the transpose of Tij . The
same holds for the operators Kkl = Klk†.

It is equally important to think carefully about memory and I/O usage. The
number of amplitudes Tij , as well as the number of transformed integrals Jkl,
Kkl scale with the fourth power of the molecular size, and in large calculations it
will often not be possible to keep all these quantities simultaneously in high speed
memory. One can then use paging algorithms, which read blocks of data from disk
as required. The algorithm should therefore be optimized so that for a given amount
of available memory the I/O is minimized.

As a first example consider the evaluation of the matrices Gij in the CID case.
The Gij do not need to be stored but their contribution can be immediately added
to the residuals Rij . If the outer two loops run over j and k, one Jkj and one Kkj

at a time need to be in memory and have to be read just once for a given kj. The
simplest algorithm would then assume that all Rij and Tik can be kept in memory.
Should this not be possible, one could split them into batches. For instance, if k is
the outermost loop, one could read in this loop all Tik for a fixed k; if still not all
Rij fit into memory, one could treat the largest possible subsets of them together.
In this case, one would have to read the Jkj , Kkj , and Tik for each batch of Rij .
Reading all the Jkj and Kkj for each batch of Rij could be avoided if each batch
would comprise only a subset of j.

The situation is more complicated in the coupled cluster case, since then one
has to evaluate the intermediates Ykj and Zkj instead of simply reading the Jkj

and Kkj . This requires all operators Kkl for a fixed k and all Tlj for fixed j. Thus,
the simplest algorithm requires to keep all Rij and Tij together with all Kkj for
a fixed k in memory. A simple paging over the Rij and/or Tij as in the CI case

124



is not possible, since this would involve repeated calculation of the intermediate
quantities. It would be possible, however, first to evaluate the the Ykj and Zkj ,
using a similar paging algorithm as in the CI case, and store these on disk. The
Rij are then computed in a second stage, exactly as in the CI case, but instead of
the Jkj and Kkj one would read Ykj and Zkj .

The computation time and memory requirements can be much reduced if molec-
ular symmetry is exploited, which is easy as long as only one-dimensional irreducible
representations are present, i.e. D2h and subgroups. If symmetry adapted molecu-
lar orbitals are used, all matrices are blocked. The block structure of a given matrix
T ijab is determined by the product symmetry of the orbitals i and j, which must be
the same as the product symmetry of a and b. The same holds for the Rij , Jij ,
and Kij . Of course, only the non-zero blocks are stored, and since each symmetry
block can have a different dimension, the matrices are stored in one-dimensional
arrays; block dimensions and offsets are precomputed and kept in memory. It is
then convenient to have a set of subroutines for operations like matrix multiplica-
tions, matrix traces, outer products etc., which handle all the symmetry blocking
internally. Thus, the rest of the program requires only a minimum amount of the
symmetry information, and stays most readable and easy to debug.

2.7 Triple excitations

The accuracy of coupled cluster calculations with single and double excitations
(CCSD) can be significantly improved by subsequently computing the effects of
higher order excitations through Rayleigh-Schrödinger perturbation theory (RSPT)
based on the Fock (Møller-Plesset) hamiltonian and the computed CCSD ampli-
tudes of single and double excitations40,33,41. The most important such correction
is that which is linear in triple excitations, since its inclusion gives an energy ex-
pression which is consistent with the exact solution of Schrödinger’s equation up to
fourth order41,42,43,44. The most widely used ansatz of this type, usually denoted
CCSD(T)41, is also consistent with many of the fifth order terms, and includes
much of the sixth and higher order energies as well45,46, provided that the refer-
ence wavefunction is a true variational solution of the Hartree-Fock equations. This
analysis takes into account the fact that terms such as T1T2 present in the CCSD
expansion already partially includes the effects of triple excitations.

The evaluation of the triples (T) correction requires terms like

W ijk
abc =

∑

d

(bd|ck)T ijad −
∑

m

(mj|ck)T imab + permutations. (139)

The first terms scales with m3
valm

4
ext, the second with m4

valm
3
ext, where mval and

mext are the number of correlated and virtual (external) orbitals, respectively.
Thus, the computational cost increases with O(N 7), where N is a measure of the
molecular size. In most cases the calculation of the triples correction is therefore
much more expensive than the CCSD calculation itself, and the applicability is lim-
ited to quite small molecules. The elapsed time (not the cost!) can be reduced by
parallelization of the code, but is should be noted that this does not substantially
increase the molecular size that can be handled. Doubling the molecular size in-
creases the time by a factor of 128, and therefore even the largest parallel computers
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Table 1. CPU timesa of coupled cluster calculations for glycine peptidesb

Program (Gly)1 (Gly)2 (Gly)3
Basis functions 95 166 237
Transformationc 10 180 1471
CCSD (11 iterations) 312 7453 62741
Triples (T) correction 520 21081 220486

a) In seconds on Sun Enterprise 3500, Ultrasparc 336 MHZ processor
b) Using Cs symmetry
c) Partial transformation to generate two-external integrals Jkl, Kkl

and the three-external integrals (ab|ci).

do not help much further. The dramatic increase of CPU time with molecular size is
demonstrated in Table 1 for some glycine peptides, (Gly)n ≡ HO[C(O)CH2NH]nH,
using the correlation consistent double zeta basis set (cc-pVDZ) of Dunning19. The
increase of the CPU times is close to the expected theoretical factors. It is easily
estimated that the evaluation of the triples correction for the next larger peptide
(Gly)4 would already take about three weeks of CPU time. Another bottleneck of
the triples calculation is the storage of the integrals (ab|ci) over three external and
one occupied orbitals, which must be stored on disk. Since these integrals have less
permutational symmetry than the integrals in the AO basis, and the molecular or-
bitals are more diffuse than the basis functions, the number of significant integrals
may even be larger than the number of AO integrals.

The cc-pVDZ basis set used in these calculations is too small for obtaining re-
liable results. Table 2 shows the dependence of the CPU times on the basis set for
closed-shell coupled-cluster calculations on another molecule, p-dimethylbenzene
C8H10, performed in Cs symmetry on a medium workstation. It is seen that in-
creasing the basis set by about a factor of 1.6 increases the CPU times by a factor
of 8-12, as expected from the quartic dependence. The larger calculation does not
even include f -functions on the carbon atoms, as would be required for accurate
results. The computation time is strongly dominated by the triples correction,
while the differences of the various methods are quite small. Clearly, the treatment
of molecules of this size is about the maximum what can be done in a reasonable
time, which demonstrates the limitations of the conventional coupled cluster meth-
ods. Even the fastest current workstations or supercomputers are only about a
factor of 3-4 faster, and do not much extend the range of applicability. The strong
dependence of the computer time on the molecular size can be dramatically reduced
using local correlation methods, as will be discussed in section 4. In particular, as
will be demonstrated in section 4.3, the evaluation of an approximate local triples
corrections no longer dominates the calculation, but takes only a small amount of
the total time.
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Table 2. CPU timesa of coupled cluster calculations for C8H10 with different basis sets

Program cc-pVDZb cc-pVTZ(d/p)c

Transformationd 35 318
CCSD/iteration 374 2313
QCISD/iteration 360 2180
BCCD/iteration 399 2520

Transformatione 119 1443
Triples (T) correction 9059 122515

a) In seconds on HP J282, PA8000/180MHZ processor
b) 162 basis functions (114a′, 48a′′)
c) 274 basis functions (188a′, 86a′′)
d) Partial transformation to generate the two-external

integrals Jkl, Kkl

e) Partial transformation to generate two-external integrals
Jkl, Kkl and the three-external integrals (ab|ci)

3 Open-shell single-reference methods

The coupled-cluster treatment of open-shell systems is more complicated that the
closed shell case since additional types of orbitals and excitations occur. First
of all, it is possible to use either a spin-unrestricted (UHF) or a spin-restricted
(RHF) Hartree-Fock wavefunction as a reference. In the UHF case the α and
β spin orbitals are optimized independently, which leads to a wavefunction that
is not an eigenfunction of the total spin operator Ŝ2. It is well known that the
problems associated with the spin-contamination of the UHF wavefunction can
become magnified when electron correlation effects are introduced1, in particular
in second-order perturbation theory (UMP2). It is therefore more desirable to use
RHF orbitals.

The second difficulty is the definition of the excitation operators used in coupled-
cluster treatments. It turns out that a fully spin-adapted treatment based on an
RHF reference function and the spin-free excitation operators Êrs is very compli-
cated. Is is much easier to use spin-orbital excitation operators êai, which replace
a spin-orbital ψi by another spin orbital ψa with the same spin. However, then the
correlated wavefunction is not spin-adapted, even if an RHF reference functions is
used. This problem already arises in the linear configuration interaction theory if
the first order interacting space, spanned by the functions êaiêbj|Ψ0〉, is used as a
basis; this is due to the fact that for high-spin open shell cases this space does not
include all possible Slater determinants of given MS which arise from a particular
occupancy of spatial orbitals. For instance, in a three electron case with reference
function |φα1 φβ1φα2 |, the determinant |φαaφαb φβ2 | is a triple excitation and not included
in the first order interacting space. This function would be necessary, however, to
generate one of the two possible doublet spin eigenfunctions together with the de-
terminants |φβaφαb φα2 | and |φαaφβb φα2 |. A quartet spin contamination arises if the
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latter two Slater determinants have coefficients of different magnitude. Thus, the
RHF-UCISD and RHF-UCCSD theories based on spin-orbital single and double
excitations are not spin adapted.

As will be shown in Section 3.2, the spin contamination in the linear UCISD
wavefunction can be quite easily removed by applying appropriate projection op-
erators to the UCISD residual vector. The same projection can be used to remove
the spin contamination from the linear terms of the CCSD wavefunction. But even
then, the presence of higher powers of T̂ in the CCSD can introduce a spin con-
tamination in a non–trivial way. Fortunately, this effect is usually very small. The
partial spin adpation (PSA-CCSD) of only the linear terms has a number of ad-
vantages: the number of independent parameters (amplitudes) is minimized and
corresponds exactly to the first-order interacting space; also spin contamination ef-
fects are minimized, though not entirely removed. In an optimum implementation,
the computational cost of the PSA-CCSD should be approximately the same as for
a closed shell calculation with the same number of correlated orbitals.

3.1 Spin-unrestricted coupled-cluster theory (UCCSD)

We will first consider the spin unrestricted coupled cluster (UCCSD) for the case
that the reference function is a high-spin RHF Slater determinant with mclosed dou-
bly occupied and mopen singly occupied orbitals; high spin means that all open-shell
electrons have α spin. The UCCSD wavefunction is obtained using the following
cluster operator T̂ = T̂1 + T̂2 in the exponential ansatz (113)

T̂ =
∑

ia

(t̃iaê
α
ai + t̄iaê

β
ai) +

∑

it

t̄itê
β
ti +

∑

ta

t̃taê
α
at +

∑

ij

∑

ab

(T̃ ijabê
α
aiê

α
bj + T̄ ijabê

β
aiê

β
bj)

+
∑

ij

∑
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T ijabê
α
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β
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∑
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at

T ijat ê
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∑
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tu
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+
∑

tj

∑

ab

T tjabê
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∑
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T̃ tuab ê
α
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α
bu , (140)

where êσai = η̂σ†a η̂σi are the usual spin-orbital excitation operators. If applied to
a Slater determinant, êσai replaces spin orbital φσi by φσa ; σ = {α, β} denotes the
spin. Here and in the following, the indices i, j refer to closed-shell orbitals, t, u
to open-shell orbitals, and a, b to virtual orbitals. For each orbital pair (ij), there
are three sets of amplitudes, namely those for pure α or β-spin excitations T̃ ijab and

T̄ ijab, respectively, and those for mixed α, β excitations T ijab. In total, there are about
three times as many amplitudes as in the closed-shell case. The corresponding
cluster amplitudes are obtained by solving a non-linear set of equations obtained
by projecting the Schrödinger equation on the left with ΨRHF ≡ |0〉, êσai|0〉, êσaiêσ

′

bj |0〉
etc., as in eqs. (120) - (122). The resulting explicit equations can be found in Ref.
47. They have a very similar matrix structure as the closed shell equations discussed
in the previous sections and will not be further discussed here. It should be noted,
however, that there are three times as many equations as in the closed shell case,
and the total computational effort is about three times larger.
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3.2 Partially spin-resticted coupled-cluster theory (RCCSD)

In fully spin coupled theory48, it is recognized that the hamiltonian operator is
spin free, and therefore the excitation operators used in the previous section may
be replaced by the smaller set Êai, Êat, Êti and their products, where again t, u, . . .
are used to denote orbitals lying in the singly occupied space, while i, j, . . . denote
true closed shell orbitals, and a, b, . . . external orbitals. A simpler theory47,49,50,51,
including some but not all of the spin coupling, may be obtained by using the
operators Êai, ê

α
at, ê

β
ti and their products; because the orbitals φαt are occupied, and

φβt are unoccupied in Ψ0, the wave function is then be spin adapted for a CISD
configuration expansion, which is linear in these operators. In the non-linear CCSD
case products of these operators can still give a spin-contaminated contribution to
the wave function. This ansatz is denoted “partially spin adapted” CCSD (PSA-
CCSD). It has the advantage that the complications occuring through the spin
adaption are minimized, while most of the spin-contamination is removed.

A slight complication arises for the so called semi-internal configurations gen-
erated by the operators êαatê

β
ti, which have the same orbital occupancy as the single

excitations Êai but a different spin contribution. It is easily seen that êαatê
β
ti|0〉 is

not a spin eigenfunction; a correct spin eigenfunction is generated by the operator
êαatê

β
ti − 1

2 ê
α
ai + 1

2 ê
β
ai. In fact, analysis of the action of the hamiltonian operator on

the RHF reference function shows that this operator together with Êai generates
the two possible spin eigenfunctions that contribute to the first-order interacting
space. The cluster operator can now be written as

T̂ =
∑

ia

(t̃iaê
α
ai + t̄iaê

β
ai) +

∑

it

t̄itê
β
ti +

∑

ta

t̃taê
α
at

+
∑

ij

∑

ab

T ijabÊaiÊbj +
∑

ij

∑

at

T ijatÊaiê
β
tj +

∑

tj

∑

ab

T tjab ê
α
atÊbj

+
∑

tj

∑

au

T tjauê
α
atê

β
uj +

∑

tu

∑

ab

T tuab ê
α
atê

α
bu , (141)

with the restrictions

t̃ia = tia −
1

2

∑

t

T tiat , (142)

t̄ia = tia +
1

2

∑

t

T tiat , (143)

which account for the fact that there are only two independent spin eigenfunctions
for the orbital configurations . . . φiφtφa, as discussed above. Equating the operator
T̂ with the spin-unrestricted operator in eq. (140) yields the following relations
between the amplitudes

T̃ tuab = T tuab , (144)

T̄ ijtu = T ijtu , (145)

T̃ pjab = T pjab − T
pj
ba , (146)

T̄ ijar = T ijar − T jiar , (147)
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where p, q refer to all occupied orbitals (closed + open), and rs to all openshell +
virtual orbitals. Setting further tit = 1

2 t̄
i
t and tta = 1

2 t̃
t
a we obtain a unique set of

amplitudes T pqrs and tpr to be solved for. The number of independent parameters
is then exactly the same as in a fully spin adapted formulation and about three
times smaller than in the spin-unrestricted case. The corresponding minimal set of
coupled equations can be obtained by projecting the Schrödinger equation onto the
set of functions generated the individual excitation operators in the cluster operator
to the reference function. Since the configuration generated in this way are non-
orthonormal, simpler equations can again be derived by projecting the Schrödinger
equation with the equivalent set of contravariant configurations. For details refer
to Ref. 47.

The simplest possibility to solve the PSA-CCSD equations is to compute the
UCCSD residuals, and then to form appropriate linear combinations of the different
spin components to generate the spin-restricted residuals as needed for updating
the amplitudes. Finally, the UCCSD amplitudes can be generated from the PSA-
CCSD ones using eqs. (144–147). Of course, this procedure does not save any
computer time relative to the UCCSD, but it requires only a minor modification of
an existing UCCSD program to perform the spin projection.

4 Linear scaling local correlation methods

As pointed out in the previous sections, the computational cost of conventional
electron correlation methods like MP2 or CCSD(T) increases dramatically with
the size of the system. The steep scaling mainly originates from the delocalized
character of the canonical MO basis. This leads to a quadratic increase of the
number of amplitudes used for correlating a given electron pair, and a quartic
increase of the total number of parameters. The increase of the CPU time with
molecular is even steeper, being O(N 7) for the best method of choice, which is
usually CCSD(T).

From a physical point of view, however, there should be no need to correlate all
electrons in an extended molecular system: dynamic electron correlation in non-
metallic systems is a short-range effect with an asymptotic distance dependence of∝
r−6 (dispersion energy), and thus the high-order dependence of the computational
cost with the number of electrons of the system is just an artifact of the canonical
orthogonal basis, in which the diverse correlation methods have traditionally been
formulated. One natural way to circumvent this problem is to to use local orbitals
to span the occupied and virtual spaces. Such local correlation methods have been
proposed by several authors. Some recent papers which also summarize previous
work can be found Refs. 52,53,54,55,56.

Particularly successful has been the local correlation method originally proposed
by Pulay57, which was first implemented by Saebø and Pulay for Møller-Plesset
perturbation theory up to fourth order (LMP2 - LMP4(SDQ) without triple ex-
citations) and the coupled-electron pair approximation (CEPA)58,59. Later it was
generalized to full local CCSD by Hampel and Werner 53. While in the early work
of Saebø and Pulay58,59 it could already be shown that only 1-2% of the correla-
tion energy (relative to a conventional calculation with the same basis set) is lost
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by the local approximation, it was not yet possible at that time to demonstrate
that the scaling of the computational cost can actually be reduced, and that larger
systems than with conventional methods can be treated. Significant progress in
this direction was only made during the last few years when the local correlation
methods were combined with newly developed integral-direct techniques60, which
fully expoit the possibilities for integral screening. Within such a framework, it has
been possible to develop O(N ) algorithms (asymptotic linear scaling of all compu-
tational ressources, i.e. CPU time, memory and disk space with molecular size) for
local MP2 54, local CCSD 61 and even for local connected triples correction (T) 62.

In the local correlation methods the occupied space is usually spanned by lo-
calized molecular orbitals (LMOs), which are obtained from the occupied canonical
orbitals of a preceeding SCF calculation by virtue of a unitary localization proce-
dure 63,64,65, which maintains the orthogonality the occupied SCF orbitalsa

|φloc

k 〉 =
∑

i

|φcan

i 〉Wik with WW† = 1 . (148)

The corresponding MO coefficient matrices are related similarly

L = XoccW . (149)

(If core orbitals are not correlated, the localization should be restriced to the sub-
space of correlated valence orbitals.) The idea of Pulay was to abandon the or-
thogonality of the virtual orbitals, and to use a basis of functions which resemble
the atomic orbitals (AOs) as much as possible. Obviously, the AOs are optimally
localized, but since they are not orthogonal on the occupied orbitals one cannot
use them straightaway. The strong orthogonality between the occupied and vir-
tual spaces must be retained, since otherwise excitations would violate the Pauli
exclusion principle and the theory would become very complicated. The orthog-
onality to the occupied space can be enforced by applying a projection operator
(1−∑i |φi〉〈φi|) to the AOs, yielding projected atomic orbitals (PAOs)

|χ̃r〉 = (1 −
mocc∑

i=1

|φi〉〈φi|)|χr〉

=
∑

µ

|χµ〉Pµr (150)

with

P = 1− LL†S = 1−XoccX
†
occS = XvirtX

†
virtS. (151)

Here, Xocc and Xvirt denote the rectangular submatrices of the MO coefficient
matrix X for the occupied and virtual (external) canonical orbitals, respectively,
i.e.,

(XvirtX
†
virt)µν =

∑

a

XµaXνa , (152)

aRecently, it has also been proposed to use non-orthogonal basis functions to span the occupied
space66,67 , but the computational efficiency of this approach has not yet been proven.
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and the last equality in Eq. (151) follows from the orthonormality condition

(XoccX
†
occ + XvirtX

†
virt)S = 1 . (153)

The PAOs are orthogonal to all occupied orbitals

〈χ̃r|φloc

i 〉 = (P†SL)ri = 0 (154)

but non-orthogonal among themselves

〈χ̃r|χ̃s〉 = (P†SP)rs = (SXvirtX
†
virtS)rs . (155)

For non-metallic systems the PAOs are intrinsically localized, though less well than
the unprojected AOs. Due to the projection the full set of PAOs is linearly depen-
dent, but these linear dependencies can be removed at a later stage.

After having introduced local functions to span both the occupied and the vir-
tual spaces, it is possible to truncate the expansion of the wavefunction in a phys-
ically reasonable way. First, one assigns to each localized orbital φloc

i an orbital
domain [i] which contains all AOs needed to approximate the orbital φloc

i with
a prescribed accuracy. In practice, always all AOs at a given atom are treated
together, and as many atoms are added as required. The order in which atoms
are added is determined by gross atomic Mulliken charges. The corresponding or-
bital domain in the virtual space is spanned by the PAOs generated by applying
the projector to the selected AOs. The PAOs in domain [i] are then all spatially
close to the localized orbital φloc

i . This selection procedure can be performed fully
automatically as described in Ref. 68.

The first approximation to the correlated wavefunction is now that single ex-
citations from orbital φloc

i are resticted to PAOs in the domain [i], while double
excitations from a pair of occupied LMOs i and j are restricted to a subset [ij]
of PAOs. The pair domain [ij] is simply the union of the two orbital domains [i]
and [j]. The immediate consequence of these truncations is that for a given pair
ij the number of amplitudes T ijrs, rs ∈ [ij] no longer increases quadratically with
increasing molecular size, but instead becomes independent of molecular size.

The second approximation is to introduce a hierarchical treatment of different
pairs based on the interorbital distance Rij between two LMOs i and j. Rij is
defined as the shortest distance between any centre included in the orbital domain
[i] and any centre in the domain [j]. We distinguish strong, weak, distant, and
very distant pairs. The strong pairs have at least one atom in common and usually
account for about 95% of the correlation energy. These pairs are treated at highest
level, e.g., CCSD. Weak pairs are those for which the minimum distance is smaller
than typcially 8 bohr. These pairs can be treated at lower level, e.g., MP2. Distant
pairs (8 ≤ Rij ≤ 15 bohr) are also treated by MP2, but the required two-electron
integrals can be approximated by a multipole expansion69, which reduces the cost
for the integral transformation (see section 6.3). Finally, the very distant pairs
(Rij > 15 bohr) contribute to the correlation energy only by a few micro hartree and
can therefore be neglected. The important point to notice is now that the number of
strong, weak, and distant pairs all scale linearly with size. Only the number of very
distant pairs, which are neglected, scales quadratically. This is demonstrated in Fig.
4 for linear chains of glycine peptides, (Gly)n ≡ HO[C(O)CH2NH]nH, Thus, the
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Figure 4. Number of pairs for a chain of Glycine peptides (Gly)n as function of the chain length.

total number of amplitudes on which the wavefunction depends scales only linearly
with molecular size. This forms the basis for the development of electron correlation
methods with linear cost scaling. Furthermore, the number of strong pairs remains
quite modest, which is very important for an efficient CCSD algorithm (cf. section
4.2).

4.1 Local MP2

In the local LMO/PAO basis, the first-order wave function takes the form

|Ψ(1)〉 =
1

2

∑

ij∈P

∑

rs∈[ij]

T ijrs|Φrsij 〉 with T ijrs = T jisr , (156)

where P represents the truncated pair list and it is implicitly assumed that the pair
domains [ij] are defined as described above. The configurations |Φrsij 〉 are defined as
in eq. (49), but now the virtual labels r, s refer to the non-orthogonal PAOs. Note
that the commutation relations of the excitation operators involving non-orthogonal
orbitals are different and depend on overlap matrix elements.

In order to derive the LMP2 equations in the non-orthogonal basis of PAOs we
first consider the transformation properties of the operators and amplitudes. The
projected orbitals can be expressed in the basis of virtual orbitals as

P = Xvirt[X†
virtS] = XvirtV , (157)
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and therefore the MP2 residual given in eq. (79) for a basis of orthogonal MOs can
be transformed to the PAO basis as

Rij
PAO

= V†Rij
MO

V . (158)

The Fock and exchange matrices transform similarly. The transformation properties
of the amplitude matrices can be obtained by expanding the projected orbitals in
the pair correlation functions Ψij into the MO basis

Ψij =
∑

rs∈[ij]

T ijrs| . . . χ̃rχ̃s . . . | =
∑

ab




∑

rs∈[ij]

VarT
ij
rsVbs



 | . . . φaφb . . . | (159)

which yields the relation

Tij
MO

= VTij
PAO

V† . (160)

Inserting this into eq. (79) yields

Rij
PAO

= Kij
PAO

+ fPAOTij
PAO

SPAO + SPAOTij
PAO

fPAO

−
∑

k

SPAO

[

fikT
kj
PAO

+ fkjT
ik
PAO

]

SPAO = 0 , (161)

where SPAO = P†SAOP = V†V is the overlap matrix of the projected orbitals,
cf. eq. (155). In the local basis the occupied-occupied and virtual-virtual blocks
of the Fock matrix are not diagonal, and therefore the linear equations (161) have
to be solved iteratively for the amplitudes Tij

PAO
. Restricting the excitations to

domains [ij] of PAOs means that only the elements T ijrs with r, s ∈ [ij] are nonzero,
and only the corresponding elements of the residual, Rijrs, r, s ∈ [ij] must vanish at
convergence. For a given set of amplitudes, the Hylleraas functional (eq. 92)

E2 =
∑

ij∈P

∑

rs∈[ij]

(2T ijrs − T ijsr)(Kij
rs +Rijrs) (162)

can be computed. At convergence, Rijrs = 0 for r, s ∈ [ij], and then E2 = E(2).
Since the projected orbitals are not orthogonal and may even be linearly depen-

dent, straightforward application of an update formular as eq. (103) will lead to
slow or no convergence. In order to perform the amplitude update it is therefore
necessary to transform the residuals to a pseudo-canonical basis, which diagonalizes
the Fock operator in the subspace of the domain [ij], i.e.

f ijrsX
ij
rs = SijrsX

ij
saǫ

ij
a for r, s ∈ [ij] , (163)

Rijab =
∑

rs∈[ij]

X ij
saR

ij
rsX

ij
sb . (164)

The update is then computed in this orthogonal basis and finally backtransformed
to the projected basis

∆T ijab = −Rijab/(ǫija + ǫijb − fii − fjj) , (165)

∆T ijrs =
∑

ab

X ij
ra∆T ijabX

ij
sb . (166)
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Note that the square transformation matrix Xij is different for each electron pair.
The dimension of this matrix corresponds to the number of projected orbitals in
domain [ij] and is therefore independent of the molecular size. If the overlap ma-
trix Sijrs, r, s ∈ [ij] has small or zero eigenvalues, i.e, if the functions in the do-
main are linearly dependent, the corresponding eigenvectors of Sij are projected
out53. Convergence of this scheme is reached quickly; usually 5-7 iterations are suf-
ficient to converge the energy to better than 0.1 µH using no further convergence
acceleration70.

In order to compute the residuals, only the small subset of exchange integrals

Kij
rs = (ri|sj) =

∑

νµ

PµrPνs

[
∑

ρσ

LρiLσj(µρ|νσ)

]

r, s ∈ [ij] (167)

is needed, where all r, s are close either to i or j. This makes it possible to devise
an integral-direct transformation scheme which scales only linearly with molecular
size54. Taking further into account that for a given pair (ij) the number of terms k
in the summation of eq. (161) becomes asymptotically independent of the molecular
size (provided very distant pairs are neglected), it follows that the computational
effort to solve the linear equations scales inearly with molecular size as well54. Thus,
the overall cost to transform the integrals, to solve the linear equations (161), and to
compute the second order energy depends linearly on the molecular size. This has
made it possible to perform LMP2 calculations with about 2000 basis functions and
500 correlated electrons without using molecular symmetry. Since also the memory
demands are small and scale linearly with molecular size, such calculations can even
be performed on low-cost personal computers.

Finally we note that analytical energy gradients for LMP2 have been
developed71. It has been shown that the local ansatz largely eliminates basis set
superposition errors (BSSE), and it is therefore possible to optimize BSSE-free
equilibrium structures of molecular clusters72,73. Recently, also the theory for com-
puting NMR chemical shifts using the LMP2 method has been derived and first
promising results have been obtained74.

4.2 Local CCSD

The LCCSD equations can be obtained exactly in the same way as indicated above
for the LMP2 case, namely by transforming the residuals from the MO to the PAO
basis. The resulting equations differ formally from the canonical ones only by the
occurrence of additional matrix multiplications with the overlap matrix. The full
formalism has been presented in Ref. 53 and will therefore not be repeated here.

As already pointed out before, it is usually sufficient to treat pairs with interor-
bital distances Rij ≤ 1 bohr (strong pairs) at the CCSD level. Exceptions are cases
where it is of importance to treat longe-range interactions accurately at high level,
for instance for computing intermolecular interactions. In the following discussion
we will assume, however, that this is not the case, and that the number of strong
pairs included in the CCSD treatment is relatively small and scales linearly with
molecular size, as shown in Fig. 4.
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For the LMP2 case it is immediately obvious that the number of transformed
exchange integrals Kij

rs = (ri|js) that need to be computed and stored depends
only linearly on the molecular size. This follows from the fact that there is a one-
to-one correspondence between these integrals and the corresponding amplitudes
T ijrs. In the coupled cluster case however, the situation is more complicated, since
integrals like the above also couple different electron pairs in the CCSD formalism.
Furthermore, as already discussed in section 6.6, there are additional contributions
of Coulomb integrals J ijrs = (ij|rs), as well as of integrals (ir|st) and (rs|tu) with
three and four external indices, respectively. Closer inspection of the problem
reveals, however, that also in the coupled cluster case the number of transformed
integrals scales only linearly with molecular size. The same is true for the number
of floating point operations needed to compute the residuals.

In order to illustrate the main ideas we will a consider the contribution of the
Yjk intermediates to the LCCD residual, cf. eqs. (124) and (128),

Gij = . . .+
∑

k

ST̃ik

(

Kkj − 1

2
Jkj
)

+
1

4

∑

kl

ST̃ikLklT̃ljS + . . . . (168)

Here, all matrices are assumed to be in the PAO basis. Now, since (ik) and (lj)
both are strong pairs, there is only a constant number of LMOs k and l interacting
with given i and j, respectively. Furthermore, since also (ij) is a strong pair, it
follows that for a fixed (ij) the total number of operators contributing to each Gij

is asymptotically constant and independent of the molecular size. Thus, the total
number of integral matrices Jkl and Kkl needed in eq. 168 scales linearly; the same
holds for the number of matrix multiplications. Furthermore, the LMOs k and l
of the surviving operators have to be close, which is important to achieve linear
scaling in the integral transformation needed to compute the Jkl and Kkl. Note
that fewer Jkl than Kkl are needed, since the Jkl only occur in the linear terms.
Thus, separate operator lists for the Jkl and Kkl have to be maintained. In contrast
to the canonical case, the evaluation of the residuals is driven by individual Jkl and
Kkl, and the Yjk and Zjk intermediates are never explicitly computed.

The PAO range r, s of a particular operatorKkl
rs is also independent of molecular

size: since i must be close to k, and l close to j, all the r, s occuring in the matrix
multiplications of eq. 168 must be within a limited distance to k, l. This leads to a
different operator domain for each surviving operator. Again, the operator domains
for the Jkl are smaller than for the Kkl. Since the number of Coulomb and exchange
matrices scales linearly with molecular size, and the number of elements per matrix
is independent of size, it is evident that the overall number of transformed integrals
scales linearly with molecular size.

So far, no approximations were involved by introducing the sparse operator lists
and operator domains. However, there are a few terms like

Gij = . . .− STij
∑

kl

LklTlkS (169)

with no coupling between ij and kl via pair amplitudes, and for those terms
additional approximations have to be introduced to achieve linear scaling. Fortu-
nately, the integrals involved in these contractions diminish quickly with increasing
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distance between the pairs (ij) and (kl), and it is well justified to neglect couplings
between remote pairs. For a detailed discussion of these approximations we refer
to Ref. 61.

Another important feature of LCCSD is the fact that the number of 3-external
and 4-external integrals (ir|st) and (rs|tu) also scales linearly with molecular size,
and in fact remains rather modest. For the 3-external integrals this follows from
the fact that the r, s in the operators

J(Ekj)rs =
∑

t

(rs|tk)tjt , K(Ekj)rs =
∑

t

(rk|ts)tjt (170)

are restricted to the J-operator domain [kj], while t in the sum is restricted to the
pair domain [jj], which is identical to the orbital domain [j]. For the 4-external
integrals the PAO indices simply all belong to the same pair domain [ij], since
there is a one-to-one correspondence between the residual (Rij)rs and the external
exchange operators 53,61

K(Tij)rs =
∑

tu

T ijtu(rt|us) . (171)

Thus the number of 4-external integrals per pair is a constant. Fig. 5 shows the
number 3-external and 4-external integrals in the local basis as a function of the
length n of a linear polyglycine peptide chain (Gly)n in a cc-pVDZ basis. Even
for a molecule as large as (Gly)20 with about 1500 basis functions and almost 500
correlated electrons, the disk storage requirement to hold the 3-external integrals is
less than 1.5 GByte (compared to more than 3000 GByte in the canonical case). A
similar amount is required for the 4-external integrals. Disk storage of the 3-external
and 4-external integrals is very appealing, since then the computational cost per
iteration is minimized. It can be estimated that forming the contractions of the 3-
external and 4-external integrals with the amplitudes would take virtually no time
(e.g., less than 50 sec for (Gly)20). However, the transformation for the 4-external
integrals is quite complicated and has not been implemented so far. Alternatively,
the contribution of these integrals can be accounted for by computing for each
strong pair an external exchange operator, as defined in eq. (107). In an integral
direct scheme, as will be discussed in section 6.5, it is then also possible to achieve
linear cost scaling.

4.3 Local connected triples corretion

The ultimate bottleneck for accurate conventional coupled cluster calculations is
the connected triples correction, as outlined in section 2.7. If canonical orbitals are
used, the Fock matrix is diagonal, and the perturbative energy correction can be
obtained directly without storing the triples amplitudes. In the local case this is
no longer the case, and in principle an iterative scheme is required, as described
above for the local MP2. One might therefore think that the evaluation of a local
triples correction for large molecules is impossible, since the storage requirements
for all triples amplitudes would scale as O(N 6). However, as for the doubles,
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triple domains can be introduced, and the correlation of distant electrons can be
neglected.

The theory has been outlined in Ref. 62. Similarly to the LMP2 case the triples
amplitudes are obtained by solving a system of linear equations

Qijkrst +W ijk
rst = 0 (172)

with

Qijkrst =
∑

v

{
∑

r′s′

ftvT
ijk
r′s′vSrr′Sss′ + permutations} (173)

−
∑

m

{
∑

r′s′t′

fkmT
ijm
r′s′t′Srr′Sss′Stt′ + permutations}

and

W ijk
rst =

∑

v

{
∑

r′

(vs|tk)T ijr′vSrr′ + permutations} (174)

−
∑

m

{
∑

r′s′

(mj|kt)T imr′s′Srr′Sss′ + permutations}.

These equations have to be solved iteratively, and therefore all triples amplitudes
T ijkrst must be stored on disk. This seems devastating at a first glance, but by virtue
of the local approximations the number of amplitudes can be drastically reduced:
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Firstly, a sparse triples list (ijk) of strong triples is constructed by restricting the
related pairs ij, ik and jk to strong pairs. The number of strong triples then
scales linearly with molecular size. Secondly, the excitations are restricted to triple
domains [ijk], constructed as the union of the three strong pair domains, i.e., [ijk] =
[ij] ∪ [ik] ∪ [jk]. Since the sizes of the individual pair domains are independent of
the molecular size, the size of the triples domain [ijk] is also independent of the
molecular size, yielding overall an asymptotically linear scaling of the number of
triples amplitudes.

Another important implication of the constant size of the triple domains is
that the number of required 3-external integrals occurring in eq. (174) scales only
linearly with molecular size. In practice, for each orbital l a united triple domain
UT (l) is defined as the union of all triple domains [ijk] comprising a common LMO
index l, i.e.,

UT (l) = ∪[ijk], for (i = l) ∨ (j = l) ∨ (k = l), (175)

and all 3-external integrals (vs|tl) with v, s, t ∈ UT (l) are generated using and
integral-direct transformation module. Obviously, the size of UT (l) is independent
of the molecular size, and the CPU time as well as memory and disk requirements
of the transformation scale asymptotically linear with molecular size. In fact, the
set of 3-external integrals needed for the triples correction remains pretty small 62,
and usually it is a subset of the 3-external integral set required in the preceeding
coupled cluster calculation (cf. Fig. 5 in section 4.2).

A linear scaling algorithm for local triples has been implemented in MOLPRO
2000. So far, inter-triples couplings via the occupied-occupied off-diagonal Fock ma-
trix elements are neglected (couplings via the virtual-virtual block and the overlap
matrices are included though). This yields about 95% of the local triples correction
and has the advantage that the iterative solution of eq. (172) can be avoided. As
in the canonical case, the correlation contribution of each individual triple can be
computed separately. First test results62 presented in Table 3 are very promising,
showing already for medium sized molecules speedups by factors 500-1000 com-
pared to the conventional (T) calculation presented earlier in Table 1 (note that
the calculations in Table 1 used molecular symmetry, while the current calculations
were done with no symmetry). In these calculations about 85% of the canonical
triples correction was recovered62. The savings quickly increase with increasing
molecular size. In sharp contrast to the conventional case, the time to compute
the local triples corrections is very small as compared to time for the preceding
integral transformation and LCCSD calculation. Considering the efficiency of the
new triples kernel, it seems even possible to go beyond the CCSD(T) model, i.e. to
include the triples into the CC iterations, even for large chemical systems.

Finally, it should be emphasized that the triples amplitudes can be stored and
an iterative full local triples algorithm is presently under development.
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Table 3. CPU, disk and memory requirements for computing the (T) correction. All calculations
were performed with a development version of MOLPRO 200075. No molecular symmetry was
used.

Molecule bf Memory/MW Diska/MW CPU/secb

(Gly)1 95 2.57 7.46 187.3
(Gly)2 166 6.38 25.51 757.8
(Gly)3 236 8.82 39.98 934.6
(Gly)4 308 13.28 61.06 1296.6
(Gly)6 450 18.95 94.17 1852.5

a) Disk space for storage of 3-external integrals necessary for (T) only.
b) HP J282 PA8000/180MHz.

5 Multireference electron correlation methods

5.1 Configuration Interaction: general aspects

For a given orbital basis set, Schrödinger’s equation as expressed using the second-
quantized hamiltonian Ĥ (equation (34)) is solved by finding eigenvectors and eigen-
values of the hamiltonian matrix in the complete basis of N -electron orbital prod-
ucts. This full CI problem is of extremely large dimension for even a small number
of electrons with a modest orbital basis size, and is usually intractable. However, it
is important to consider it for two reasons: first of all, where the full CI problem can
be solved, it provides very important benchmark data against which approximate
methods can be evaluated; secondly, the techniques and algorithms applicable to
the full CI problem serve as appropriate building blocks for the sometimes more
complicated approximate methods.

Although the full configuration space for N electrons in m spatial or-
bitals consists formally of the complete set of (2m)N spin-orbital products
ψi1(x1)ψi2(x2) . . . ψiN (xN), the space can be reduced substantially through sym-
metry considerations:

• Spatial (point group) symmetry. Ĥ is invariant to geometrical transformations
whose only effect is to interchange identical nuclei. The action of the symmetry
operators on the wavefunction is defined through

T̂Ψ(q) = Ψ(T̂−1q) (176)

where q represents the coordinates of the particles. In electronic structure cal-
culations, the use of abelian point group symmetry is straightforward; provided
each orbital is a basis for an irreducible representation, then so is every orbital
product. All orbital products not of the required symmetry can then be simply
discarded from the basis. For non–abelian point groups, orbital products are in
general of mixed symmetry, and it is therefore usual to exploit the symmetry
of only the highest abelian subgroup.

• Permutational symmetry. Ĥ is totally symmetric in the labels of the electrons,
and so is invariant under the operation Îij which interchanges the labels of
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electrons i, j, i.e., [Ĥ, Îij ] = 0. At the simplest level, Î2
ij = 1, and so there

are 1
2N(N −1) two dimensional symmetry groups {1, Îij}. Symmetry adapted

wavefunctions will satisfy ÎijΨ = ±Ψ, the different signs corresponding to
boson and fermion states. We are interested only in fermion solutions, and so
it is vital to use this symmetry to exclude unwanted boson and non-physical
states. In further detail, there is actually a total of N ! permutations of the
electron labels, which can be build as products of Îij operators. As with point
groups, we define the action of a permutation operator on the wavefunction
through equation (176). The permutations form a group isomorphic with the
Symmetric Group SN , and to use permutational symmetry to the full, we
must consider all of these N ! operators which commute with Ĥ . Since the
electronic wavefunction is antisymmetric with respect to all the Îij , it must
form a basis for the one dimensional totally antisymmetric representation of
SN ; the representation matrix elements Γ(P̂ ) are equal to the parity ǫP of the
permutation P̂ , which is ±1 according to whether P̂ is made up from an even or
odd number of interchanges Îij . To enforce the symmetry, we apply a multiple
of the Wigner projection operator for this representation, the antisymmetrizer

Â =
1√
N !

N !∑

P

ǫP P̂ . (177)

When applied to a simple product of orbitals, Â yields the corresponding Slater
determinant

Âψ1(1)ψ2(2) . . . ψN (N) =
1√
N !

N !∑

P

ǫP P̂ ψ1(1)ψ2(2) . . . ψN (N)

=
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(1) ψ2(1) . . . ψN (1)
ψ1(2) ψ2(2) . . . ψN (2)

...
...

...
ψ1(N) ψ2(N) . . . ψN (N)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (178)

Note that, apart from a possible phase factor, exactly the same determinant
would arise if Â were applied to a string of the same orbitals, but in a different
order, e.g., ψ2(1)ψ3(2)ψ1(3) . . .. Therefore we can symmetry reduce the full
set of mN orbital products to a much smaller basis of

(
m
N

)
Slater determinants

obtained by acting with the antisymmetrizer on each of the
(
m
N

)
unique orbital

products. The valid unique orbital products can be determined by assuming
an ordering for the orbitals; each of the m orbitals ψi is assigned a sequence
number i, i = 1, 2, . . . ,m, and only orbital products ψi1ψi2 . . . ψiN for which
i1 < i2 < . . . < iN are included.
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• Spin symmetry. The electron spin operators are defined through

Ŝ2 = Ŝ · Ŝ; Ŝ=

N∑

i

ŝ(i)

ŝxα =
1

2
β; ŝyα = − i

2
β; ŝzα =

1

2
α;

ŝxβ =
1

2
α; ŝyβ =

i

2
α; ŝzβ = −1

2
β, (179)

where α and β are the one electron spin eigenfunctions. The non–relativistic
hamiltonian contains no spin operators, and so [Ĥ, Ŝz] = [Ĥ, Ŝ2] = 0. It is
not possible to use simple group theory to exploit these symmetries, since the
operators Ŝz, Ŝ

2 do not form a closed finite group. But we can use other
considerations to force the N electron basis set, and hence the wavefunction,
to be eigenfunctions of Ŝz and/or Ŝ2.

In the case of Ŝz, the approach which is usually used is to use a basis of
2m orbitals, made up of m spatial orbitals φi, i = 1, 2, . . .m, each multiplied
by a spin function α or β. Then any orbital product, or Slater determinant,
is automatically an eigenfunction of Ŝz according to (179), with eigenvalue
1
2 (Nα − Nβ), where Nα is the number of α–spin orbitals φαi in the function,

and Nβ = N −Nα. Thus the basis is already adapted to Ŝz symmetry, and we

may discard all those N electron functions with the wrong Ŝz eigenfunction.
This reduces the size of the Slater determinant basis from

(
2m
N

)
to

MD =

(
m

Nα

)(
m

Nβ

)

, (180)

since for each of the
(
m
Nα

)
possible arrangements of the α spin orbitals there

are
(
m
Nβ

)
choices for the β–spin orbitals.

For Ŝ2, the situation is not so simple. Orbital products or Slater determi-
nants are not in general eigenfunctions of Ŝ2; for example, following (179),

Ŝ2φα1 (1)φβ2 (2) = φα1 (1)φβ2 (2) + φβ1 (1)φα2 (2). If the symmetry is to be exploited,
Slater determinants must be linearly combined into functions which are eigen-
functions of Ŝ2. Such functions are often termed Configuration State Func-
tions (CSFs). As a simple example, for two electrons in two orbitals with
Nα = Nβ = 1, the normalized Slater determinants are

Âφα1 φβ1 , Âφα1φβ2 , Âφα2φβ1 , Âφα2 φβ2 ;

the normalized CSFs with S = 0 are

Âφα1φβ1 , Âφα2 φβ2 , (1/
√

2)(Âφα1 φβ2 + Âφα2 φβ1 ) ,

and the CSF with S = 1 (i.e., the eigenvalue of Ŝ2 is S(S + 1) = 2) is

(1/
√

2)(Âφα1 φβ2 − Âφα2 φβ1 ) .

Generally, the set of Slater determinants exactly spans the sets of CSFs with
spin quantum numbers S = 1

2 (Nα − Nβ), 1
2 (Nα − Nβ) + 1, . . . , 1

2N . Ignoring
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any point group symmetry, the number of CSFs with spin quantum number S
is given by the Weyl formula 76

MC =
2S + 1

m+ 1

(
m+ 1

1
2N − S

)(
m+ 1

m− 1
2N − S

)

, (181)

for the case that S = 1
2 (Nα − Nβ). So, for example, for S = 0 and large m,

the number of CSFs is less than the number of Slater determinants by a factor
of about 1

2N + 1. The advantage of reducing the basis in this way has to be
offset against the increased complexity of the functions which must be dealt
with; in practice both Slater determinants and CSFs are commonly used, and
we discuss the practicalities of matrix element evaluation with each below.

• Orbital rotation symmetry. If we have all (unique) orbital products possible
for N electrons in m orbitals, then the basis is invariant to rotations (or in fact
any non–singular linear transformation) of the orbitals amongst themselves.
These rotations form a continuous group U(m), the unitary group (or GL(m),
the general linear group), and the theory of such groups is exploited to advan-
tage, for example, in the Graphical Unitary Group Approach (GUGA) 77 for
configuration interaction.

In order to perform a variational configuration interaction calculation in either
the full or a truncated configuration space, it is necessary to find an eigenvector
of the matrix H of the hamiltonian operator Ĥ in the appropriate configuration
space. Direct construction and diagonalization of H is usually out of the question
since it is typically of dimension 103–107; but algorithms to find a few eigenvectors
for such matrices exist3,78, and rely on the construction, for a few (∼ 10–20) given
trial vectors c, of the action of H on c,

v = Hc . (182)

Other ab initio approaches which are not simple matrix eigenproblems can also
proceed through (182). Therefore it is vital to have an efficient scheme for con-
structing (182) from the hamiltonian integrals hpq, (pq|rs). Following (37), this
means we must be able to compute rapidly the set of one and two particle coupling
coefficients dIJpq , DIJ

pqrs.
In many circumstances, the most efficient schemes for building (182) require

computation only of the one particle coefficients dIJpq , without explicit construction

of the two body terms DIJ
pqrs. This is achieved through a formal insertion of the

resolution of the identity as a sum over the complete space of orbital products,

DIJ
pqrs = 〈ΦI |ÊpqÊrs − δqrÊps|ΦJ 〉

=
∑

K

〈ΦI |Êpq|ΦK〉 〈ΦK |Êrs|ΦJ〉 − δqr〈ΦIÊps|ΦJ 〉

=
∑

K

dIKpq d
KJ
rs − δqrd

IJ
ps . (183)

Note that Êpq commutes with electron label permutations and spin operators; there-
fore the set of intermediate states {ΦK} can be reduced to the full set of Slater
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determinants or CSFs as convenient; but the same is not true for point group oper-
ations, and {ΦK} must therefore extend over all spatial symmetries. The algorithm
for building (182) then proceeds as 79

DO K = 1,M

DO p, q = 1,m such that dKJpq 6= 0

FKpq = FKpq + dKJpq cJ

END DO

END DO (184)

DO r ≥ s
DO p ≥ q

DO K = 1,M

EKrs = EKrs + FKpq (pq|rs)
END DO

END DO

END DO (185)

DO K = 1,M

DO p, q = 1,m such that dIKpq 6= 0

vI = vI + EKpq d
IK
pq

END DO

END DO (186)

The one electron part and second term of (183) are easily dealt with in an addi-
tional stage, or may be included in (184–186) by modifying the two electron inte-
grals. The advantage of using this scheme is that, for sufficiently large cases, the
computation time is dominated by (185), requiring approximately 1

2Mm4 floating
point operations, and this step is a large dimension matrix multiplication capable
of driving most computer hardware at optimal speeds. In what follows, therefore,
we are concerned principally with the evaluation, rapidly and in the correct order
for assembly of (184–186), of the non–zero dIJpq , without the need to consider the

more complicated structure, and much larger number, of DIJ
pqrs coefficients. In some

circumstances, simple Slater determinants offer the most efficient route to calculat-
ing (182), whilst elsewhere the greater compactness of the CSF basis is important.
Therefore we develop techniques for evaluating dIJpq in both types of basis set.

5.2 Matrix elements between Slater Determinants

Any Slater determinant can be written in the form

ΦI,J = Â
(
αΦI

βΦJ
)

(187)
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where αΦI(r1, r2, . . . , rNα
) is a string (product) of occupied α–spin orbitals

αΦI = φαI1 (1)φαI2(2) . . . φαIN
(N) , (188)

which is completely specified by the ordered list of sequence numbers of occupied
orbitals, {I1 < I2 < . . . < IN}. Similarly, βΦJ(rNα+1, rNα+2, . . . , rN ) is a string of
occupied β–spin orbitals. For the case of a complete basis of determinants, this is
a particularly helpful classification, since a wavefunction Ψ is then specified by a
fully populated rectangular matrix of coefficients C,

Ψ =
∑

IJ

CIJΦI,J , (189)

and this simple rectangular addressing structure makes for a particularly efficient
computer implementation. For certain special types of incomplete CI expansion,
it is possible to obtain similar structures80, but it is the case of full CI (FCI) for
which the determinant basis has found particularly useful application.

For the evaluation of coupling coefficients, we can exploit the fact that the
orbital excitation operator partitions as

Êpq = êαpq + êβpq , (190)

where êαpq, ê
β
pq excite only α, β spin orbitals respectively; thus the effect of Êpq on

any determinant is to produce at most two new determinants:

ÊpqÂ
(
αΦI

βΦJ
)

= Â
(
(êαpq

αΦI)
βΦJ

)
+ Â

(
αΦI (êβpq

βΦJ)
)
. (191)

Note that the excitation êαpq
αΦI is completely independent of βΦJ , and so once a

particular α–spin excitation has been characterized, one can use the information
found for all β strings, obtaining

〈ΦI,J |Êpq|ΦK,L〉 = 〈αΦI |ÂêαpqÂ|αΦK〉 δJL . (192)

For this to be non zero, αΦI must be identical to αΦK apart from the replacement
of φαq by φαp . Suppose that in ΦI , φp appears as a function of electron i, and in
ΦK , φq is correspondingly in position j, i.e.,

αΦI = φI1(1)φI2 (2) . . . φIi−1
(i− 1)φp(i)φIi+1

(i + 1) . . . φIj
(j) . . . (193)

and
αΦK = φI1(1)φI2 (2) . . . φIi−1

(i− 1)φIi+1
(i)φIi+2

(i+ 1) . . . φq(j) . . . (194)

Then

Êpq
αΦK = φI1(1)φI2 (2) . . . φIi−1

(i− 1)φIi+1
(i)φIi+2

(i+ 1) . . . φp(j) . . . (195)

This is not the same as the string αΦI , but is related to it by a permutation of the
electron labels, known as the line–up permutation L̂, which in this case is the cyclic
permutation Ĉ(i, j), defined through

Ĉ(i, j)φ1(i)φ2(i+ 1) . . . φj−i+1(j) = φj−i+1(i)φ1(i+ 1) . . . φj−i(j) ; (196)

Thus L̂êαpq
αΦK = Ĉ(i, j)êαpq

αΦK = αΦI . For any permutation P̂ , the following is
true:

P̂ Â = ÂP̂ = ǫP Â , (197)
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and so the matrix element (192) is

〈αΦI |ÂêαtuÂ|αΦK〉 = 〈αΦI |ÂL̂−1Â|αΦI〉
= ǫL

√
N ! 〈αΦI |Â|αΦI〉

= ǫL , (198)

since Â2 =
√
N !Â, and the only non–zero contribution to 〈αΦI |Â|αΦI〉 comes

from the identity permutation. Therefore all coupling coefficients are 0 or ±1, and
the sign is determined by the parity of the line–up permutation L̂. Hence the
construction of F in (184) proceeds as

DO αΦK

DO p, q = 1,m such that αΦI = ±Êαpq αΦK exists

Determine parity ǫL of line–up permutation L̂

DO βΦJ

F (K, J, pq)← ǫLC(I, J)

END DO

END DO

END DO (199)

The innermost loop over βΦJ contains no logic or even multiplication and vectorizes
perfectly on all pipeline computers. A similar loop structure is required for the
contributions from êβpq, and the logic of (186) can be treated in a similar fashion.

Because the number of α, β strings is rather small (
√
MD), all the necessary single

excitation information can be computed once and held in high speed storage. The
result is a perfectly vectorized, disk free algorithm81,82, where for reasonably sized
problems at least, there is practically no overhead above the cost of the matrix
multiplication (185).

There have been a number of algorithmic developments which have further en-
hanced the efficiency and applicability of the determinant FCI method. Olsen et
al. 80 showed how it was possible to reduce the operation count to be proportional
to N2m2 rather than m4, with, however, some degradation of the vector perfor-
mance; their method is particularly useful when the ration m/N is relatively large.
Zarrabian et al. 83 have used an alternative resolution of the identity to (183), with
an intermediate summation over N − 2 electron (rather than N electron) Slater
determinants. Again, when m/N is large, there are many fewer of these, allowing
for considerable enhancement in efficiency.

5.3 Matrix elements between Configuration State Functions

In order to build a basis of spin–adapted CSFs, we begin by finding explicit spin
functions Θ, which are not dependent on space coordinates, and which satisfy
Ŝ2Θ = S(S + 1)Θ. Having done this, we then attempt to build fully symmetry
adapted space–spin functions. For a single electron, there are two possible spin
functions θ(s), where s represents the spin coordinate, namely the usual α and β.
For N electrons, the complete space of spin functions is then spanned exactly by the
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N electron primitive spin functions, written as [θi1θi2 . . . θiN ] where the function
θi of the spin coordinates of each electron in turn may be α or β. There are a
total of 2N such functions, and they are eigenfunctions of Ŝz , the eigenvalue MS

being 1
2 (Nα − Nβ) where Nα is the number of times α appears in the function,

and Nβ = N − Nα; it is then convenient to group them together in sets of those

functions sharing the same MS , the number in each set being
(

N
1
2
N+MS

)
.

The primitive spin functions are not in general eigenfunctions of Ŝ2, and so we
seek linear combinations Θµ which will be spin eigenfunctions. This is achieved most
simply by repeated application of standard angular momentum coupling theory84,85.
If we have two independent physical systems in each of which we have sets of
angular momentum eigenfunctions, {|J1M1〉} and {|J2M2〉}, then the members of
the set of all products of such wavefunctions are not in general eigenfunctions of
the total angular momentum for the combined system. But for a given J1, J2 and
feasible final quantum numbers J,M , it is possible to find exactly one composite
eigenfunction

|JM〉 =
∑

M1M2

〈J1J2M1M2|JM〉|J1M1〉|J2M2〉 (200)

where the number 〈J1J2M1M2|JM〉 is a standard Clebsch–Gordon coefficient. Note
that all the different M1 and M2 components appear in the sum, but only a single
J1 and J2 value is involved. For N electron spin functions, this suggests a recursive
scheme whereby N electron functions are made from such a composite of an N − 1
electron system with a further single electron. The N − 1 electron functions arise
in the same way from N − 2 electron spin eigenfunctions, the chain being repeated
down to a single particle. For each coupling, the value of J2 is 1

2 , and so the sum
over M2 extends over two possible values, ± 1

2 , i.e. a contribution involving α for
the last electron and a contribution with β. In this genealogical construction, each
N electron function is fully described by its parentage — the history of the coupling
scheme — which can be visualized as a path on the branching diagram shown in
Figure 6. Because in the angular momentum coupling one need sum only over theM
and not the S quantum numbers, there are in general many independent functions
having the same S, MS , but different ancestry, and we label the functions as ΘN

S,M,µ

where µ is an index which distinguishes functions with different parentage. The
number fNS of such functions is indicated at each node on the branching diagram,
and one can show inductively that

fNS =

((
N

1
2N − S

)

−
(

N
1
2N − S − 1

))

. (201)

It follows, again inductively, that
∑

S

(2S + 1) fNS = 2N . (202)

It is straightforward to show 86 that the genealogical functions are orthonormal.
For each path on the diagram, there are (2S + 1) functions, corresponding to the
possible different MS values, and so

∑

S(2S+ 1) fNS represents the total number of
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Figure 6. The branching diagram
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independent N electron branching diagram functions; this is the same as the number
of primitive spin functions, and so we have a complete set of spin functions.

Because eventually we need to consider the effect of the antisymmetrizing oper-
ator Â, it is important to develop the permutation properties of the spin functions.
Since Ŝ2 is totally symmetric in the particle labels, it commutes with any permu-
tation, P̂ Ŝ2 = Ŝ2P̂ . Then it follows that, since Ŝ2ΘN

S,M,µ = S(S + 1)ΘN
S,M,µ ,

Ŝ2
(

P̂ΘN
S,M,µ

)

= P̂ Ŝ2ΘN
S,M,µ (203)

= S(S + 1)
(

P̂ΘN
S,M,µ

)

, (204)

i.e. P̂ΘN
S,M,µ is a spin eigenfunction with quantum numbers S, M . Since

{ΘN
S,M,λ , λ = 1, 2, . . . , fNS } is a complete set of such functions, then P̂ΘN

S,M,µ must
be a linear combination of these:

P̂ΘN
S,M,µ =

∑

λ

ΘN
S,M,λUλµ(P̂ ) , (205)

i.e., {ΘN
S,M,λ, λ = 1, 2, . . . , fNS } is a basis for a representation of the symmetric group

SN . The representation is actually isomorphic with particular cases of Young’s
Orthogonal Representation, which is generated (also genealogically) using ideas from
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the theory of SN . Young’s orthogonal representation is often depicted graphically.
A given representation is drawn as a Young diagram, consisting of N adjoining
square boxes with rows numbered numerically downwards, and columns rightwards;
there may not be more rows in column i than in column i− 1, nor columns in row
j than in row j − 1. For example, in S4, the possible Young diagrams are

(206)

For the case of the spin– 1
2 particles which are our exclusive concern, then only those

representations whose Young diagram has at most two rows are relevant, and they
correspond to spin quantum numbers S equal to half the difference between the
number of boxes in the two rows. Thus for S4, , , represent,

respectively, the sets of spin functions with S = 0, 1, 2.
Within each representation, a given basis function is depicted as a Young tableau,

which is an arrangement of the numbers 1, 2, . . . , N in the Young Diagram, such
that numbers always increase along all rows and down all columns. For the two–row
Young frames which we consider, the number of such tableaux (i.e., the dimension of
the representation) is exactly fNS , and in fact there is a one–to–one correspondence
between the branching diagram functions and the tableaux; when a particle number
appears in the first row, its spin is coupled up, and for those in the second row,
the spin is coupled down. For the case of four electrons, the complete set of Young
tableaux and corresponding branching diagram functions are shown in Figure 7.
The representation matrices U(P̂ ) constitute all the information which we require
for developing properties of the branching diagram functions; for example, the
branching diagram functions themselves can be generated from a primitive spin
function by use of a suitable projection operator. Formulae for the Uλµ(P̂ ) for any

permutation P̂ are straightforward to derive from simple rules given in terms of
the Young tableaux 86, or, equivalently, from consideration of the Clebsch–Gordon
coefficients 86.

Having obtained the representation matrices, we are now in a position to use
them in constructing a basis of space and spin functions which are spin eigenfunc-
tions and satisfy the Pauli principle. We write members of this basis as

ΦAλ = Â
(
ΦA ΘN

S,M,λ

)
(207)

where the spatial function ΦA is usually an ordered product of spatial orbitals, and
ΘN
S,M,λ is a branching diagram function. Note that the antisymmetrizer involves

a sum over all permutations P̂ , and each P̂ permutes both the space and the spin
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Figure 7. Branching diagram symbols and Young tableaux for 4 electrons
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coordinate labels. Inserting the definition of the antisymmetrizer,

ΦAλ =

√

1

N !

∑

P

ǫP

(

P̂spaceΦA

)(

P̂spinΘλ

)

=

√

1

N !

∑

P

ǫP

(

P̂spaceΦA

) f
∑

µ

Uµλ(P̂ )Θµ (208)

=

√
1

f

f
∑

µ

ΘµΦAµλ , (209)

where we define a set of spatial functions

ΦAµλ =

√

f

N !

∑

P

ǫPUµλ(P̂ )P̂ΦA . (210)

This has the appearance of a projection operator on ΦA for a representation with
matrices Vµλ(P̂ ) = ǫP Uµλ(P̂ ). This is the conjugate representation to that sup-
ported by the spin functions, and appears in the Young theory as the reversal of
the roles of rows and columns, e.g., (spin) → (space). Note that all
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Θµ , µ = 1, 2, . . . , f are involved in each of the space–spin functions ΦAλ.
For the the coupling coefficients

dAλ,Bµpq = 〈ΦAλ|Êpq |ΦBµ〉 , (211)

as with determinants, a non–zero contribution will arise only if ΦA and ΦB differ by
the orbital excitation φq → φp. Ignoring any complications which arise from doubly

occupied orbitals, we must again have ΦA = L̂ÊpqΦB, where L̂ is the appropriate
line–up permutation. Inserting (208) into (211) we obtain

dAλ,Bµpq =
1

N !

∑

PQ

ǫP ǫQ〈P̂ΦA|Q̂L̂−1ΦA〉
∑

ρσ

Uρλ(P̂ )Uσµ(Q̂)〈Θρ|Θσ〉

=
1

N !

∑

PQ

ǫP ǫQ〈P̂ΦA|Q̂L̂−1ΦA〉
∑

ρ

Uρλ(P̂ )Uρµ(Q̂)

since the spin functions are orthogonal

=
1

N !

∑

PQ

ǫP ǫQ〈P̂ΦA|Q̂L̂−1ΦA〉Uλµ(P̂−1Q̂) , (212)

using the representation property of U(P̂ ). Orbital orthogonality then gives the
requirement that P̂ = Q̂L̂−1, and so

dAλ,Bµtu =
1

N !

∑

Q

ǫLǫ
2
QUλµ(L̂Q̂−1Q̂)

= ǫLUλµ(L̂) . (213)

Thus knowledge of the line–up permutation and the representation matrix elements
is sufficient to generate any desired one–particle coupling coefficient.

The above is based on the assumption that φp and φq are singly occupied in ΦA,
ΦB respectively. When one or both orbitals are doubly occupied, further consider-
ations are necessary. Firstly, many of the spin functions give rise to vanishing ΦAλ
because of the operation of the Pauli principle acting through the antisymmetrizer.
If the orbitals are ordered such that the doubly occupied appear first in their re-
spective pairs, then only those spin functions which couple each pair to singlet are
allowed. This of course gives a drastic reduction in the number of possible spin
functions, since it is now fNS with N referring to the number of singly occupied
orbitals only. Following this, there are slight complications to the above scheme for
the coupling coefficients; there appear four distinct cases depending on the excited
orbital occupancies, of which (213) is one.

How are the relevant representation matrices obtained? Equation (213) shows
that one needs all of the representation matrices for all possible cyclic permutations.
These matrices can be generated by writing the cycle as a sequence of elementary
transpositions,

Ĉ(i, j) = Ĉ(j − 1, j)Ĉ(j − 2, j − 1) . . . Ĉ(i+ 1, i+ 2)Ĉ(i, i+ 1) ; (214)

the representation matrices for these transpositions are very sparse, and can be
obtained from the shapes of the Young tableaux86. The matrix for the cycle is then
obtained by matrix multiplication. Unfortunately, this algorithm is too slow for
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practical use, and it is much better to precompute and store all of the necessary
matrices. The number of matrices that must be stored can be reduced considerably
by using a resolution of the identity analogous to that used to factorize two-body
matrix elements into sums of products of one-body elements (equation (183)). If
we introduce a (fictitious) additional orbital φα which is defined to occur lexically
always after any other orbital, the following identity holds.

Êpq = ÊpaÊaq (215)

This allows one to make use of just those cycles involving the last electron, since the
orbital φa will always be occupied by only this electron in the ordered orbital prod-
uct string. This is the basis of an efficient algorithm for matrix element evaluation
that is fast enough for general use in full and other CI computations87.

5.4 Molecular Dissociation and the MCSCF method

As discussed in section 1.6, in many situations electron correlation effects are purely
of the ‘dynamic’ type, in the sense that Hartree-Fock is a good zero-order ap-
proximation, and under such circumstances, single-reference methods provide an
efficient and accurate way to getting correlation energies and correlated wavefunc-
tions. However, wherever bonds are being broken, and for many excited states, the
Hartree-Fock determinant does not dominate the wavefunction, and may sometimes
be just one of a number of important electronic configurations. If this is the case,
single-reference methods, which often depend formally on perturbation arguments
for their validity, are inappropriate, and one must seek from the outset to have a
first description of the system that is better than Hartree-Fock. Only then can one
go on to attempt to recover the remaining dynamic correlation effects.

As in H2, we can build a general qualitatively correct wavefunction by selecting
a number of configurations which are meant to describe all possible dissociation
pathways, etc., and then writing the wavefunction as a linear CI expansion

Ψ =

M∑

I

cIΦI . (216)

The energy is then minimized with respect to not only the cI (as in the CI method),
but also to changes in the common set of orbitals φt which are used to construct
the ΦI . This orbital optimization is analogous to what is done in the SCF method,
hence the name multiconfiguration self consistent field (MCSCF), which is given to
this approach. Provided all the necessary configurations are included in the set ΦI ,
then the method should give a qualitatively correct description of the electronic
structure.

Nearly all molecules dissociate to valence states of their constituent atoms, in
which only the valence orbitals (e.g., 2s, 2p in carbon) are occupied. So ignoring
the complications which might occur for Rydberg molecular states, a good de-
scription can be obtained by including ΦI which have only valence orbitals of the
molecule occupied. This has important computational consequences, and we distin-
guish in a calculation the relatively small number of internal (or valence) orbitals
φt, φu, φv, . . . from the usually much larger number of external orbitals φa, φb, . . .,

152



which are unoccupied in all configurations, and so actually are not part of the
wavefunction. We continue to use the notation φp, φq, φr, . . . to denote general
molecular orbitals from any set. The internal and external orbitals take the roles
of the occupied and virtual orbitals in an SCF calculation; as the calculation pro-
ceeds, the internal and external orbitals are mixed amongst each other until the
optimum internal orbitals are found. Taking these ideas to the extreme suggests the
use of a CI expansion consisting of all possible configurations in the valence space,
i.e., a FCI type of wavefunction. This approach 88,89,90 is often termed complete
active space SCF (CASSCF) and has the feature that it is to some extent a ‘black
box’; the sometimes rather difficult problem of selecting suitable configurations ΦI
is replaced by the simpler identification of important orbitals. If the active orbital
space coincides with the true valence space, then correct dissociation at all limits
is automatically guaranteed, although there may be many configurations included
which are completely unimportant. As a simple example, consider the ground state
of N2. The quartet spin N atom ground state is described by the configuration
2pαx2pαy2pαz . On bringing two N atoms together, one can make 20 CSFs with the
correct spin (singlet) and space (Ag in D2h) symmetries, of which one is dominant
near equilibrium bond length, but all of which are important at dissociation. The
CASSCF wavefunction, a FCI expansion of 6 electrons in 6 orbitals, contains 32
CSFs. Although the ansatz may be wasteful in this way, we note that a complete
CI expansion enables the use of special efficient techniques91, so a CASSCF calcu-
lation may actually be easier than a smaller more general MCSCF calculation with
the same internal orbital space.

5.5 Determination of MCSCF wavefunctions

We have considered earlier how the matrix elements HIJ = 〈ΦI |Ĥ |ΦJ〉 are obtained
in terms of one and two electron integrals htu, (tu|vw) and coupling coefficients dIJtu ,
DIJ
tuvw:

〈ΦI |Ĥ |ΦJ 〉 =
∑

tu

dIJtu htu + 1
2

∑

tuvw

DIJ
tuvw(tu|vw) . (217)

Thus the expression for the energy is

E = 〈
∑

I

cIΦI |Ĥ |
∑

J

cJΦJ〉

=
∑

tu

∑

IJ

cIcJd
IJ
tu htu + 1

2

∑

tuvw

∑

IJ

cIcJD
IJ
tuvw(tu|vw)

=
∑

tu

dtuhtu + 1
2

∑

tuvw

Dtuvw(tu|vw) , (218)

where we see the introduction of the one and two electron density matrices dtu,
Dtuvw, which in this context can be viewed as expectation values of the coupling
coefficients. This energy expression is the quantity which must be made stationary
with respect to changes in the CI coefficients cI and the orbitals φt, subject to the

153



constraints
∑

I

c2I = 1 (normalization) (219)

〈φt|φu〉 = δtu (orbital orthogonality) . (220)

For the CI coefficients, introducing a Lagrange multiplier E for the first constraint,
and setting the differential with respect to cI to zero, gives the stationary conditions

∑

J

〈ΦI |Ĥ|ΦJ 〉cJ − EcI = 0 , (221)

i.e., the usual matrix eigenvalue equations obtained in regular CI theory. For the
orbitals, the most straightforward approach is to parametrize orthogonal rotations
U amongst the orbitals (φt ←

∑

p φpupt) by means of the matrix elements Rtu of
an antisymmetric matrix. Any orthogonal matrix may be represented as

U = exp(R) where R† = −R . (222)

The advantage of this formulation is that the 1
2m(m+ 1) orthogonality constraints

are automatically satisfied, leaving 1
2m(m−1) free parameters which are contained

in the lower triangle of R. There is then no need for Lagrange multipliers, and
numerical methods for unconstrained optimization may be used.

To derive the variational conditions for orbital rotations, we note that the or-
bitals vary on R through (222) as

∂φp
∂Rrs

∣
∣
∣
∣
R=0

= δspφr − δrpφs , (223)

and that the integrals htu, (tu|vw) given by (35), (36) are quadratic and quartic,
respectively, in the orbitals. Then we obtain

∂

∂Rrs
htu

∣
∣
∣
∣
R=0

= (1 − τrs)(1 + τtu)δsthru (224)

∂

∂Rrs
(tu|vw)

∣
∣
∣
∣
R=0

= (1 − τrs)(1 + τtu)(1 + τtu,vw)δst(ru|vw) , (225)

where the operator τij permutes the labels i, j in what follows it. Thus the deriva-
tive of the energy, which is zero for the converged wavefunction, is given by

0 =
∂E

∂Rrs
= 2(1− τrs)Frs , (226)

with

Frs =
∑

u

dsuhru +
∑

uvw

Dsuvw(ru|vw) . (227)

Equations (221) and (226) must be solved to obtain the MCSCF wavefunction.
Note that for some orbital rotations Rrs, the variational condition (226) is always
obeyed automatically; for example, if both r, s are external, then the density matrix
elements are all zero. The same can occur in a more subtle way for certain internal–
internal orbital rotations, e.g., for a CASSCF, all internal–internal rotations show
this behaviour. When an Rrs behaves like this it is known as a redundant variable,
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and is best removed from the optimization altogether92. Note also that (226) is
highly non–linear, in contrast to the linear eigenvalue problem which appears in
the CI method; E is 4th order in the orbitals, and infinite order in R, since the
orbitals are in fact periodic functions because of the orthogonality constraint.

In order to solve numerically the variational equations (221) and (226), the
standard approach is to use some kind of quasi-Newton approach93,94 that utilizes
the gradients of the energy expression to construct a Taylor series for the energy in
powers of the parameters that express changes in the wavefunction. Truncation of
this power series gives an approximate energy expression that is accurate for small
displacements, and which is easier to minimize than the full energy expression. For
a given approximate solution, we construct the gradient vector

gλ =

(
∂E

∂pλ

)

p=0

(228)

and hessian matrix

hλµ =

(
∂2E

∂pλ∂pµ

)

p=0

(229)

where the set of parameters {pλ} contains the changes in CI coefficients {∆cI}
and the non-redundant orbital change generators {Rrs}. The approximate energy
expression

E2(p) = E2(0) +
∑

λ

gλpλ + 1
2

∑

λµ

hλµpλpµ (230)

is then minimized by solving the linear equations

0 = gλ +
∑

µ

hλµpµ (231)

The solution p defines a step that is applied to the wavefunction to improve it. Thus
the overall procedure is iterative, each iteration consisting of the construction of the
energy, gradient and hessian, followed by solution of the linear Newton-Raphson
equations. The Newton-Raphson equations can be very large in dimension, partic-
ularly for a large CASSCF full CI expansion; therefore, usually, they have to be
solved iteratively as well, using relaxation or expansion vector techniques95 similar
to the Davidson diagonalization algorithm3. These iterations are usually referred to
as microiterations to distinguish them from the enclosing macroiterations in each
of which a new expansion point is defined.

The generic Newton-Raphson algorithm suffers in this context from two distinct
problems associated with robustness and efficiency. First of all, the second-order
expansion (230) is valid only for small displacements q, and it is often the case that
the predicted step length is outside the ‘trust region’ of the truncated Taylor series.
Modifications that restrict the step length96, or recast the linear equation system
as an eigenvalue problem such that the step length is automatically restricted (aug-
mented hessian method97) are helpful in improving global convergence. Secondly,
however, even with such methods, as many as 20 macroiterations may be required,
and each macroiteration is expensive. For each new set of orbitals, in order to con-
struct the gradient and hessian, a subset of the molecular-orbital electron-repulsion
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integrals must be constructed, specifically those with up to two external indices
(Jtu,Ktu), by a computationally demanding transformation of the atomic-orbital
integrals, which themselves have to be read from disk or computed on the fly. It is
therefore highly desirable to reduce the number of macroiterations. Both problems
are solved by adopting an ansatz98,91 in which the microiterations involve opti-
mization of an approximate energy functional that is second order in the orbital
changes themselves, ∆T = U − 1, rather than in the generators R. This energy
functional is periodic in the orbitals, just like the true energy, and its use gives an
algorithm that is much more robust; in fact, in almost all cases, quadratic conver-
gence is seen from the outset, and typically only three macroiterations are needed.
Of course, there is additional complication in that the microiterations are solving
non-linear rather than linear equations, but these can be effectively addressed using
convergence accelerators such as DIIS99.

5.6 Multireference Perturbation Theory

In order to go beyond a qualitatively correct MCSCF wavefunction ΨREF and re-
cover as much of the correlation energy as possible, as in the single-reference case,
we begin by writing the exact wavefunction in a perturbation series

ΨExact = ΨREF + λΨ(1) + λ2Ψ(2) + . . . , (232)

where λ is an ordering parameter which will eventually be set to 1. Suppose that
we can find an operator Ĥ(0) such that Ĥ(0)ΨREF = E(0)ΨREF. In the particular
case where ΨREF is the solution of the SCF equations, an appropriate Ĥ(0) is the
many-electron Fock operator,

Ĥ(0) =

N∑

i

f̂(i) =

m∑

tu

ftuÊtu (233)

where f̂ is the orbital Fock operator; in other cases it may or may not be possible
to find a suitable operator, but the arguments we develop still hold. If we write
Ĥ = Ĥ(0) + λĤ(1), and separate terms of different order in λ in the Schrödinger
equation, at first order we obtain

(

Ĥ(0) − E(0)
)

Ψ(1) + Ĥ(1)ΨREF − 〈ΨREF|Ĥ(1)|ΨREF〉ΨREF = 0 . (234)

We expand Ψ(1), the first order correction to the wavefunction, and also ĤΨREF,
the action of the full hamiltonian on the approximate wavefunction, as linear com-
binations of N -electron configurations in the full space,

Ψ(1) =
∑

I

ΦIc
(1)
I

ĤΨREF =
∑

I

ΦIhI , (235)

and assume (although again this is not critical) that Ĥ(0)ΦI = EIΦI . This will be
true for the Fock Ĥ(0) (EI is then the sum of the Fock eigenvalues for the orbitals
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occupied in ΦI), and approximately true for others. The first order equation then
becomes

∑

I

c
(1)
I ΦI

(

EI − E(0)
)

= −
∑

I

hIΦI + 〈ΨREF|Ĥ |ΨREF〉ΨREF . (236)

This tells us that the basis functions which are required for Ψ(1) are exactly those
which appear in the action of Ĥ on ΨREF. This set of functions is the first order
interacting space. Recall that the hamiltonian consists of single and double exci-
tation operators; this means that in turn the first order space consists of all those
configurations which are at most doubly excited with respect to the reference func-
tion ΨREF. In the language of second quantization, the first-order space consists of
all the non-null configurations {Êtu,vwΨREF}.

These arguments can be generalized to higher orders of perturbation theory; at
second order, configurations related to the first-order wavefunction by up to double
excitations will be introduced, and so the second-order interacting space consists
of configurations which are singly, doubly, triply and quadruply excited relative to
ΨREF.

One route to carry these ideas forward is to simply apply regular Rayleigh-
Schrödinger perturbation theory to obtain the perturbation series for the energy.
With the choice of Fock Ĥ(0), this is the single-reference Møller-Plesset theory
(MP)100,101 or Many-Body Perturbation Theory (MBPT)102. For multiconfigura-
tional ΨREF, the choice of zero order hamiltonian is not so obviously unique, but
a number of different variants have been very successfully used103,104,105,106,107.
These are generally non-diagonal in the configuration basis, and so solution of the
first-order equations must be carried out iteratively; in contrast, for a Hartree-Fock
reference with canonical molecular orbitals, each Slater determinant is an eigen-
function of Ĥ(0), and so the first-order equations have an explicit analytic solution.

Multireference perturbation theory at second order (MRPT2 or CASPT2) is
now well established as a robust and reliable technique particularly, for example, in
the computation of electronic excitation energies106, and is computationally feasible
in almost all cases where the underlying MCSCF or CASSCF calculation is possible.
Third-order perturbation theory103,108 can also be carried out for smaller systems,
and the results show significant differences from second order, indicating the need
for caution in the use of CASPT2.

5.7 Multireference Configuration Interaction

Although perturbation theory may be a dangerous tool to rely on, the interacting
space hierarchy concept provides useful insight on how to design other methods.
If we consider doing a variational CI calculation, we now know that, even though
FCI may be impossible, we expect to obtain most of the correlation energy using a
basis consisting of the first-order interacting space. In the case of an RHF reference
wavefunction ΨREF this is the singles and doubles (CISD) method, with the basis
consisting of all Slater determinants which are related to ΨREF by a single or double
spin-orbital excitation. Strictly speaking, for RHF ΨREF, singles do not formally
enter until second order perturbation theory, but in practice their effect can be quite
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significant, and there are fewer of them than doubles, and so they are invariably
included as well.

The same kind of approach can be taken for an MCSCF ΨREF. The first-order
space is certainly spanned by a wavefunction of the form

Ψ =
∑

I

cIΦI +
∑

Sa

cSaΦaS +
∑

Pab

CPabΦ
ab
P , (237)

where the three types of configuration ΦI , ΦaS , ΦabP contain respectively 0, 1, 2
occupied external orbitals, and the set of configurations is the union of the sets
of CSFs obtained by making all possible single and double excitations on each
reference configuration in turn. For the case that ΨREF consists of a single closed
shell configuration, (237) is the single-reference CISD wavefunction; when ΨREF

contains more than one configuration, variational treatment of (237) is usually
referred to as multireference CI (MRCI)109,110,111,112.

Since there are usually many more external orbitals than internal orbitals, the
doubly external configurations ΦabP are expected to be by far the most numerous,
just as in the single-reference case, and we focus attention on these in considering
what work has to be done in evaluating hamiltonian interactions. In the general
multi-reference case, it is not possible to arrive at explicit matrix-oriented expres-
sions for the hamiltonian matrix elements. However, some simplification beyond
the general CI matrix element strategy presented in section 5.3 is certainly possible;
just as in the single-reference case, there is special structure associated with the
pairs of external orbitals φa, φb. In the formation of CSFs ΦabP , it is advantageous to
take the occupied orbital string which is inserted into equation (207) such that the
orbitals φa and φb appear as functions of the coordinates of electrons 1 and 2 re-
spectively; this means that the function is pure singlet or triplet coupled in the two
external orbitals, exactly as in the single-reference case, and allows for some sim-
plification in matrix element evaluation. The structure of the wavefunction in the
external orbitals is then no more complicated than in the single-reference problem,
and so closed formulae for those parts involving external orbitals are obtainable; for
example, the contribution from all external integrals has exactly the same form as
in single-reference SDCI, and can be obtained efficiently by computing the external
exchange matrices for each pair P . However, for the internal orbitals, the CSFs are
completely general in character, and ultimately one must compute one and two par-
ticle coupling coefficients using the general techniques of section 5.3. For example,
that part of the hamiltonian containing the Coulomb integrals,

∑

tuab J
tu
ab ÊabÊtu,

gives rise to matrix elements

〈ΦabP |Ĥ|ΦcdQ 〉 =
1

2
δpq
∑

mn

αmn(P,Q) (1 + pτab)(1 + qτcd) δbd J
tu
ac , (238)

where p = ±1 according to whether ΦabP is singlet or triplet coupled in the external

space. αtu(P,Q) is simply a one particle coupling coefficient for the operator Êtu
between the functions ΦabP and ΦabQ ,

αtu(P,Q) = 〈ΦabP |Êtu|ΦcdQ 〉 . (239)

158



Although coupling coefficient evaluation is required, all the coupling coefficients
are completely independent of the external orbital labels; thus many hamiltonian
matrix elements share the same coupling coefficients in a regular manner. Discov-
ery of this property 113,114 first opened the way for large scale MRCI calculations.
Although the coupling coefficient evaluation problem is dramatically reduced by
exploiting these special properties, the MRCI method is still severely restricted by
computational difficulties. For even quite modest numbers of reference configura-
tions, the number of pair functions ΦabP can be rather large; this means that the
dimension of the hamiltonian matrix can easily exceed the length of vector which
can be stored on the computer, and, more importantly, the number of matrix ele-
ments which must be evaluated becomes completely unmanageable. Nevertheless,
benchmark calculations, in which MRCI results are compared with those from full
CI in the same basis, indicate that MRCI is the ab initio method of choice for all
circumstances in which single determinant descriptions do not work, and that very
high accuracy may be obtained115,116.

An alternative formulation which avoids the rapid increase in basis size with the
number of reference configurations is possible 113. Instead of selecting singly and
doubly excited CSFs from each reference configuration, we can construct configu-
rations by applying excitation operators to the reference wavefunction as a single
entity:

Ψ =
∑

tuvw

CtuvwÊtu,vwΨREF +
∑

tuva

Ctuva Êat,uvΨREF

+
∑

p

∑

ab

∑

t≥u
Ctupab

1
2

(

Êat,bu + pÊau,bt

)

ΨREF . (240)

This is the internally contracted MRCI (ICMRCI)113,117,118 wavefunction, and it is
obvious that the number of configurations is now independent of the number of ref-
erence functions, depending only on the numbers of internal and external orbitals.
In this way, the size of CI expansion is reduced typically by one or two orders of
magnitude; the configuration set, however, still spans the first order interacting
space, and although CMRCI can be considered as only an approximation to MRCI,
benchmark calculations show that in most cases the extra error introduced by the
contraction is several times smaller than the error of MRCI relative to full CI118.
The price that is paid is that the configurations are now much more complicated,
being in fact linear contractions of CSFs according to the values of the reference
coefficients. This means that coupling coefficient evaluation is now a formidable
problem; the simple CSF coupling coefficients are replaced by reduced density ma-
trices of high order. For example, for the Coulomb integrals considered previously,
the coupling coefficients are

αtu(vwp, xyq) = δpq(1 + pτxy) 〈ΨREF|Êvx,wy,tu|ΨREF〉 . (241)

This third-order density matrix is evaluated using the general resolution-of-identity
techniques used in the full CI problem, i.e.,.

〈ΨREF|Êvx,wy,tu|ΨREF〉 =
∑

K

〈ΨREF|Êvx,wy|ΦK〉〈ΦK |Êtu|ΨREF〉+ lower order terms

(242)
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where the {ΦK} are appropriate CSFs. For a given bra (vw) and ket (xy), all
the matrix elements 〈ΨREF|Êvx,wy|ΦK〉 are found by successively applying the op-

erators Êav, Êxa, Êaw, Êya (φa is a ‘fictitious’ unoccupied orbital) to ΨREF. For
processing a given Coulomb matrix Jtu, these matrix elements are combined with
precomputed 〈ΦK |Êtu|ΨREF〉.

An additional complication in ICMRCI is that the configurations are non–
orthogonal in a non–trivial way, and their orthogonalization can be a computational
bottleneck117. For this reason, the standard approach to ICMRCI is a hybrid that
combines the best features of uncontracted and contracted wavefunctions 118; con-
traction is carried out only where it is easiest, and of most benefit, namely for
the doubly external configurations, and the all-internal and singly-externals are left
uncontracted.

An unfortunate feature of an MRCI calculation is that, just as in the single-
reference CISD case, the energy is not an extensive function of the number of
electrons as it should be. This undesirable feature of any truncated variational CI
calculation can to some extent be avoided in MRCI by error cancellation across a
potential energy surface; provided, for example, dissociation asymptotes are com-
puted as supermolecules rather than by adding fragment energies, reasonable results
can be obtained for dissociation energies. It is also true that the size-consistency
errors for MRCI are usually much less than for single-reference CISD, since MRCI
already contains some of the important quadruple configurations. However, the
effects can never be completely avoided.

One way to view the lack of size-consistency in variational CI is by considering
the Rayleigh quotient correlation energy functional itself,

E =
〈Ψ|Ĥ − EREF|Ψ〉

〈Ψ|Ψ〉 . (243)

Suppose Ψ is, for example, restricted to contain double excitation configurations
only, and that the coefficient of the reference wavefunction is kept fixed (interme-
diate normalization, 〈Ψ|ΨREF〉 = 1). Then the numerator of this expression can be
shown to grow linearly with system size N ; however, the denominator also grows,
but as 1 + λN , where λ is a constant. This spoils the proper linear scaling of the
correlation energy. In the absence so far of problem-free multireference coupled-
cluster approaches, this analysis gives rise to a number of approximate ways to
correct for the effects of lack of extensivity. The simplest, the Davidson or ‘+Q’
correction 119,26, involves a straightforward rescaling of the correlation energy by
〈Ψ|Ψ〉, i.e. replacing the denominator of (243) by 1 once the wavefunction has been
determined. More explicitly,

ECI+Q =
1− c20
c20
ECI , (244)

where c20 is the weight of the reference wavefunction ΨREF in the final normalized
CI wavefunction. Alternative approaches (ACPF120, AQCC121) introduce at the
outset a denominator in the energy functional that does not increase with system
size. This modified approximate functional is then minimized to determine the
wavefunction and energy.
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6 Integral-direct methods

Since the first formulation of the LCAO finite basis scheme for molecular Hartree-
Fock calculations, computer implementations of this method have traditionally been
organised as a two-step process. In the first step all the two-electron repulsion in-
tegrals (ERIs) over four contracted Gaussian basis functions are calculated and
stored externally on disk, while the second step comprises the iterative solution of
the Hartree-Fock Roothaan equations, where in each iteration the integrals from
the first step are retrieved from disk and contracted with the present density ma-
trix to form a new Fock matrix. This subdivision of the computational process into
the two steps was motivated by the relatively high CPU cost necessary to gener-
ate the ERIs using rather complicated analytical recurrence relations, which was
clearly dominating a Hartree-Fock calculation. For post Hartree-Fock calculations,
which are traditionally formulated using the canonical SCF orbitals from a pre-
ceding Hartree-Fock calculation as a basis, an integral transformation of the AO
ERIs generated in the first step to the canonical MO basis is required prior to the
actual correlated calculation. The computational complexity of such an integral
transformation scales with O(N 5), where N is a measure of the molecular size or
the number of correlated electrons. It also is quite memory and disk intensive. The
amount of disk space required to hold the AO (and MO) ERIs scales as O(N 4).

The last several decades have witnessed continuous rapid advances in computer
technology, and in fact the progress in CPU technology has been much faster than
the development of I/O facilities. Furthermore, much effort has been invested in
improving integration techniques. Hence, with the conventional two step procedure
one now faces the dilemma of being able to compute large numbers of integrals
rapidly, but spending a relatively large amount of time and resources in their stor-
age and retrieval. In fact, the size of chemical systems one can handle today with
the conventional method described above is primarily limited by the disk space
required to store the AO ERIs, rather than the CPU time required to compute
these. Integral-direct methods offer a solution to this problem. The philosophy
is to eliminate the O(N 4) bottleneck of AO ERI storage altogether by recomput-
ing the ERIs on the fly whenever needed, thus trading disk space and I/O load
at the expense of additional CPU time. Integral-direct methods were first used
in Hartree-Fock (SCF) theory almost two decades ago (“direct SCF” approach by
Almlöf et al. 122), and it constituted a break of a paradigm at that time. These
days, direct SCF programs are part of virtually all ab initio program packages used
by the community. Since the pioneering direct SCF work integral-direct methods
have been extended to electron correlation methods like multiconfigurational SCF
123,124,60, many-body perturbation theory [MBPT(2)] 125,126,127,60, MBPT(2) gra-
dients 128 and coupled cluster methods 129,130,60. In contrast to the SCF method,
where the ERIs over atomic orbitals (AOs) (i.e., the basis functions) are immedi-
ately contracted to the Fock matrix in AO basis, and only AO integrals are needed,
correlation methods including MCSCF require an AO to MO integral transforma-
tion, as discussed above. Hence an intermediate four-indexed quantity (rather than
the two-indexed Fock matrix in direct SCF procedures) arises and has to be dealt
with. A full 4-index transformation, carried out as four quarter transformations
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has a flop count that scales as O(m5) with the number of basis functions m, and
has O(m4) storage requirements. At a first sight the storage requirements for such
an integral transformation seem to rule out any integral-direct implementation of
a correlated method, since no savings to the conventional method seem to be pos-
sible. Fortunately enough, however, most correlation methods can be reformulated
in terms of AO ERIs and a reasonably small subset of MO integrals 20. Such MO
integral subsets typically have two indices restricted to the occupied orbital space
of dimension mocc, which is usually much smaller than m. For example, the com-
putation of the MBPT(2) energy requires only the exchange integrals (ia|jb), while
for direct MCSCF and all other correlation methods the Coulomb (ij|pq) and ex-
change (ip|jq) MO integrals are needed. The disk space necessary to hold such a
subset of MO integrals then is O(m2

occm
2), i.e. for a ratio m/mocc ≈ 10 this means

savings of a factor of 100 and larger in the storage requirements, compared to the
conventional method. In the work by Schütz et al. 60 it was demonstrated that
for integral-direct implementations of most electron correlation methods (MP2-
4(SDQ), CCSD, QCISD, BCCD, MCSCF, MRPT2/3, MRCI) only three integral-
direct kernel procedures are necessary. The only exception are methods involving
triply or higher excited configurations. Apart from the trivial Fock matrix con-
struction routine these involve a generalized partial integral transformation and a
module for the construction of external exchange operators which corresponds basi-
cally to a two-index contraction of AO ERIs with the doubles amplitude matrices,
backtransformed to AO basis, as explained in section 2.4.

Integral-direct methods are especially powerful in the context of local corre-
lation methods 57,58,59,53,54. Here, additional savings are possible by describing
occupied and virtual correlation spaces in terms of localized MOs and projected
(non-orthogonal) AOs, respectively, which in turn allows to exploit the short range
character of dynamic correlation (asymptotic distance dependence is ∝ r−6 in insu-
lators). In such a scheme, a hierarchical treatment of different electron pairs is pos-
sible, depending on relative distance of the corresponding LMOs. Furthermore, the
virtual space spanned by the non-orthogonal projected AOs can be partitioned into
domains (cf. section 4). As a result of this, only very small subsets of (transformed)
integrals are required even for methods including triply excited configurations, and
the number of these integrals scales linearly with the molecular size. This, in turn,
opens the path for O(N ) electron correlation methods and hence the treatment of
very large molecular systems at a level of very high accuracy.

6.1 The direct SCF method

In the most naive implementation, writing a computer code for a direct SCF scheme
comprises little more than just replacing the reading of one- and two-electron in-
tegrals in the SCF algorithm by their repeated calculation. However, in order to
get an efficient program, it is clear that such a change in the paradigm calls for
major restructuring of the code. Since the computation of the two-electron inte-
grals is rather expensive, a direct algorithm should be integral driven, i.e. integral
evaluation concerns should dictate the order of events. Once an integral has been
computed, it should be used to the maximum extent possible, as long as no external
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storage is invoked.
Two-electron repulsion integrals (ERIs) are integrals of the following form (as-

suming real basis functions)

(µρ|νσ) =

∫ ∫

χµ(1)χρ(1)r−1
12 χν(2)χσ(2)dr1dr2, (245)

where χµ, χρ, χν , χσ denote contracted Cartesian Gaussians,

χµ =
∑

α

cαµχ̄α(r) =
∑

α

cαµ(χ̄xα(x)χ̄yα(y)χ̄zα(z)), (246)

with

χ̄xα(x) = (x− xα)kα exp[−aα(x − xα)2], (247)

and χ̄xα(x) . . . symbolize Cartesian components of primitive Gaussians, centred at
origins rα = (xα, yα, zα). Usually, these centres are taken to be the atoms, but
sometimes basis functions are also positioned between atoms. One of the most
important reason to choose Gaussians as basis functions is the separability into
products of Cartesian components, as indicated in eq. (246). Another equally
important reason for the efficacy of a Gaussian basis set is the fact that a two-
centre product of Gaussians can be expressed as a short expansion of one-centre
Gaussians – the Gaussian Product Theorem, (GPT)

χ̄xα(x)χ̄xβ(x) =

kα+kβ∑

i=0

C
kα+kβ

i φPi(x), with (248)

xP =
aαxα + aβxβ

aP
,

aP = aα + aβ,

φPi(x) = xieaP (x−xP )2 .

For the case of two s-type Gaussians (kα = kβ = 0) the single expansion coefficient
is

C0
0 = exp[−(aαaβ/aP )(rα − rβ)2]. (249)

In a geometrical interpretation, the GPT states that the product of two Gaussian
functions (with arbitrary polynomial factors) can be expressed as a finite sum of new
Gaussians, all centred at a single point P , which is located on the line connecting
the two original centres rα and rβ .

The ERIs as given in eq. (245) can be evaluated analytically using various
methods. At the heart of all these methods lies the GPT and some recurrence
relations to shift angular momenta from one function to the other. Here, we will
not go into the details; for a recent review we refer to Ref. 131.

From eq. (245) it is immediately evident that the ERIs obey the permutational
symmetry relations

(µρ|νσ) = (ρµ|νσ) = (µρ|σν) = (ρµ|σν) (250)

= (νσ|µρ) = (σν|µρ) = (νσ|ρµ) = (σν|ρµ) .
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By exploiting this permutational symmetry the number of integrals that need to be
evaluated can be reduced by about a factor of eight. In modern quantum chemical
codes the ERIs are usually evaluated over shell quadruplet batches. A shell typically
comprises all contracted functions of a given centre and given angular momentum.
For example, an s-shell of a 3s2p1d basis set comprises three functions, a p-shell
six, and a d-shell 5 functions. In order to exploit an integral shell quadruplet
batch to its maximum extent, i.e. to make use of the permutational symmetry
mentioned above, the code should drive triangularly over the shell quadruplets. In
the following we will use M,R,N, S as symbols for shells of basis functions, i.e.,
µ ∈ M,ρ ∈ R, etc. A direct Fock builder performs a two-index contraction of
each integral batch (MR|NS) with the related piece of the density matrix. If it runs
over the minimal integral list (i.e. exploits the full permutational symmetry of the
ERIs), each integral batch contributes to the Fock matrix via two Coulomb and
four exchange components, as indicated in the pseudocode below.

DO M=1,NShell

DO R=1,M

DO N=1,M

DO S=1,N | R (for N=M)

compute integral shell quadruplet block (MR|NS)

compute Coulomb component of Fock matrix:

f(M,R)=f(M,R)+4*(MR|NS)*d(N,S)

f(N,S)=f(N,S)+4*(MR|NS)*d(M,R)

compute exchange component of Fock matrix:

f(R,N)=f(R,N)-(MR|NS)*d(M,S)

f(R,S)=f(R,S)-(MR|NS)*d(M,N)

f(M,N)=f(M,N)-(MR|NS)*d(R,S)

f(M,S)=f(M,S)-(MR|NS)*d(R,N)

END DO

END DO

END DO

END DO

6.2 Integral prescreening

Obviously, the ERI supermatrix is a four-indexed quantity. Therefore, the compu-
tational effort to evaluate the ERIs scales nominally as N 4, where N is a measure
for the size of the chemical system (e.g. the number of basis functions for a given
basis set). For instance, for a system with 100-200 atoms, involving about 2000
basis functions or more, the ERI supermatrix would comprise 1012−1013 integrals.
It is clear that even though the algorithms for ERI evaluation have been drastically
improved over the last two decades, no code can deal with all these integrals in a
routine calculation.

In the integral-direct approach the storage bottleneck is removed by reevaluat-
ing ERIs on the fly whenever needed. One is then in the situation that the integral
evaluation is the bottleneck. The solution to the problem is not only to generate
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the ERIs more efficiently, but to search for algorithms that can avoid the calcu-
lation of negligible integrals altogether. Fortunately, the ERI supermatrix is very
sparse for extended chemical systems. Consider for a moment an ERI (µρ|νσ), as
given in eq. (245). Since both µ and ρ are Gaussian functions and involve the same
electron coordinate r1, it is immediately clear from eqs. (248) and (249) that the
integrand decreases exponentially with the distance between the centres rα − rβ .
The same holds for ν and σ. In fact, also the value of the ERI drops exponentially
with the distance between µ and ρ or ν and σ. Unfortunately, the two Gaussian
pairs (µρ) and (νσ) are coupled by the Coulomb interaction 1/r12, which is long
range. Hence, the ERI still might be significant even if (µρ) is far away from (νσ).
Therefore, the number of non-vanishing ERIs scales asymptotically with N 2 rather
than with N 4. In a direct SCF scheme the ERIs are reevaluated in each itera-
tion and immediately contracted over two indices with the corresponding density
matrix elements. Now, for an extended (but non-periodical) chemical system, the
density itself is also sparse (i.e. D(M,N) becomes small if M is distant from N),
provided that the HOMO-LUMO gap is large enough (which is usually the case for
non-metallic systems). Furthermore, the exchange components of the Fock matrix
requires contractions of the ERIs where the first index involves one function of the
first Gaussian pair (µρ), while the second index corresponds to one function of the
second pair (νσ). Hence, by virtue of the sparsity of the density matrix, the number
of ERIs with non vanishing contributions to the Fock exchange component scales
asymptotically linear (i.e. as O(N )) with molecular size. Unfortunately, this is not
true for the Coulomb component, where the density connects just functions within
each pair. Thus, a straightforward scheme would lead to O(N 2) scaling. However,
since Coulomb repulsion is a relatively simple (i.e. classical) form of interaction,
one can employ multipole expansions132,133,134,135 for the long range interactions,
for which linear scaling with molecular size can be achieved. If then the evaluation
of the Coulomb and exchange contributions to the Fock matrix is done separately,
an overall linear scaling of the Fock matrix construction in integral-direct SCF
calculations can be achieved.136.

A prerequisite for approaching quadratic or even linear scaling in a direct SCF
scheme is a method to estimate the integral values as accurately as possible without
actually computing them. This estimate must not be done for each integral or
each integral batch individually, since then the test would scale itself with N 4 and
become the bottleneck. A strict upper bound for the ERI (µρ|νσ) can be obtained
from the Schwartz inequality 137

|(µρ|νσ)| ≤ QµρQνσ, with Qµρ =
√

(µρ|µρ) . (251)

The Qµρ necessary to compute the Schwartz estimates for the ERIs are just two
indexed quantities, and can easily be precomputed outside the the nested loop over
shell quadruplet batches. The number of non-negligible such integrals scales linearly
with molecular size, and it is possible to evaluate them in a way that the overhead
with quadratic scaling is very small. Furthermore, since the ERI prescreening
takes place at the level of shell batches, only the maximum values of Qµρ over the
respective shells, i.e. the

QMR = Max
µ∈M,ρ∈R

Qµρ (252)
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are required. The four nested shell loops can now be replaced by two loops over the
pairs (MR) and (NS) with non-negligible QMR and QNS , respectively, and within
these loops the product QMRQNS can be tested against a threshold. Formally, this
prescreening procedure scales quadratically with molecular size, but the prefactor is
very small. A more powerful prescreening scheme has also to take the density matrix
into account. As we have seen above, each ERI contributes with two Coulomb and
four exchange components to the Fock matrix, and therefore the following test is
required

QMRQNSdmax ≥ τ, with

dmax = max(4|dMR|, 4|dNS |, |dMN |, |dMS |, |dRN |, |dRS |) . (253)

If the exchange component of the Fock matrix is constructed separately, eq. (253)
reduces to

QMRQNSdmax ≥ τ, with dmax = max(|dMN |, |dMS |, |dRN |, |dRS |), (254)

leading to an overall linear scaling of shell quadruplets that survive the test, and
consequently the number of ERIs that have to be computed.

The efficiency of this prescreening scheme can be enhanced in several ways.
First, since ERIs are evaluated batchwise over whole shells, it might be desirable to
split off diffuse functions (small exponents) from tight functions (large exponents),
and to treat diffuse functions in separate shells. Even though this will increase the
total number of shell quadruplets, the actual number of integrals to be computed
can be reduced. Second, the effectivity of the prescreening schemes in eqs. (253)
and (254) can be enhanced further by constructing incremental Fock matrix updates
in each new iteration, rather than the total Fock matrix. Consider the the Fock
matrices of two consecutive iterations m− 1 and m:

f (m−1)
µρ = hµρ +

∑

νσ

d(m−1)
νσ {2(µρ|νσ)− (µν|ρσ)}, (255)

f (m)
µρ = hµρ +

∑

νσ

d(m)
νσ {2(µρ|νσ)− (µν|ρσ)} .

Obviously, the mth Fock matrix can also be computed via the recurrence relation

f (m)
µρ = f (m−1)

µρ +
∑

νσ

{d(m)
νσ − d(m−1)

νσ }{2(µρ|νσ)− (µν|ρσ)},

i.e. by generating an incremental two-electron repulsion matrix, obtained by con-
tracting the ERIs with an difference density matrix ∆d(m) = d(m) − d(m−1). To-
wards convergence, ∆d(m) will become very sparse, and thus the prescreening be
more and more effective. The advantages of this recursive construction of the Fock
matrix can be further enhanced by the ‘minimized density difference‘ approach 137,
where rather than simple density differences a linear combination of a history of
densities (and Fock matrices) is used, which minimizes the density residual. On
should note at this point, however, that the prescreening thresholds may have to
be tightened towards convergence in order to avoid numerical noise and thus a de-
terioration of the convergence behaviour of the SCF. Changing the thresholds on
the other hand implies the calculation of a full Fock matrix, i.e., a restart of the
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density difference procedure. Moreover, the DIIS (direct inversion of the iterative
subspace 99) convergence accelerator has to be restarted as well.

The philosophy of the direct SCF approach was based on the observation that
the efficiency of integral processing had outgrown the storage and I/O capacities
on modern computer systems. Evidently though, after eliminating the storage and
I/O bottleneck at the cost of additional CPU time, the evaluation of the ERIs again
becomes the bottleneck in large direct SCF calculations, despite of all the ERI pre-
screening discussed above. Much work has therefore been dedicated to improve the
efficiency of ERI evaluation and Fock matrix construction. Some of these ideas can
be summarized as early contraction schemes, where the Fock matrix is built directly
from the two-centre integrals in the Gaussian Product basis (cf. GPT, eq. (248)),
avoiding the handling of explicit four-centre ERIs over primitive or contracted basis
functions as much as possible. Other ideas go into the direction of (approximately)
reexpanding a product of basis functions in a new auxiliary basis (approximate
three-centre expansions138). The approximate three-centre expansions appear in
a different context (RI-DFT, RI-MP2) in other lectures of this winter school. A
discussion of these methods is beyond the scope of this brief overview. Excellent
overviews of these methods can be found in Refs. 139,140.

6.3 Integral-direct MP2

As shown in section 2.3, the MP2 contribution to the correlation energy for a closed
shell system can be written in spin-free formalism as

E(2) =
∑

i,j,a,b

(ia|jb)[2(ia|jb)− (ib|ja)]

ǫi + ǫj − ǫa − ǫb
, (256)

where ǫi, ǫj , ǫa, ǫb are the corresponding eigenvalues of the Fock matrix. The MO
exchange integrals (bj|ia) are computed from the AO integrals (ERIs) through a
four-index transformation as shown in eq. (91). In the following, we will denote the
four quarter transformation steps by Q1, Q2, Q3 and Q4, respectively. The nominal
operation count (without any prescreening) of the Q1 step scales with O(moccm

4),
while the others scale with O(m2

occm
3), i.e. the cost of all steps increases with

O(N 5). For applications on large molecules it is therefore essential to reduce this
steep scaling by prescreening techniques, similar to the direct SCF case.

The memory requirements of the four individual transformation steps can be
minimized by performing these over fixed shells. This seems to be quite natural,
since the ERIs are generated anyway as individual batches over shell quadruplets.
In a straightforward scheme of that type the storage requirements to hold an in-
dividual AO ERI batch then are O(s4) (s denotes an average shell size, which is
independent of the molecular size), O(moccms

2) for the ERIs after the Q1 and Q2
steps, and O(m2

occm
2) after the Q3 and Q4 steps, respectively. Apparently, while

the computational burden is largest for the initial transformation step, the memory
requirements are highest for the final step. In the canonical MP2 case the MO in-
tegrals are immediately consumed and accumulated to the MP2 correlation energy,
according to eq. (256). A straightforward way to reduce the memory requirements
of the critical Q3 and Q4 steps then is to segment the first MO index i into indi-
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vidual chunks (as large chunks as possible, given by the available memory) and to
multipass over the AO integral list for each chunk individually 126,127. This reduces
the memory requirements from O(m2

occm
2) to O(Imoccm

2) (I denotes the chunk
size) at the cost of repeated ERI evaluations. In order for this algorithm to work,
one of the ERI permutational symmetries (i.e. the (µρ) ↔ (νσ) symmetry) must
be abandoned, thus one integral pass involves twice as many ERIs as the minimal
list. The algorithm is free of any I/O operations and can be considered as fully
direct. Yet the disadvantages are obvious: repeated ERI evaluation might become
quite costly, and the number of passes increases quartically with increasing system
size and constant memory. A more efficient, semi direct algorithm generates in a
first step the whole set of half transformed integrals (µj|iν). The transformation of
the remaining two indices µ, ν to the virtual basis takes place after an intermediate
bucket sort, which rearranges the ERIs to integral matrices Kij

µν , and transforms

individual Kij matrices one after the other. If the permutational symmetry of the
slow pair (µρ) (i.e. µ↔ ρ) is abandoned, the maximum memory requirements are
solely O(smoccm

2). Such an algorithm is outlined in pseudocode below (algorithm
A)

DO M=1,NShell

DO R=1,NShell

DO N=1,M

DO S=1,N | R (for M=N)

Compute integral block (MR|NS)

Q1 step over shell block:

(MR|Nj) = (MR|Nj) + (MR|NS) * X(S,j)

(MR|Sj) = (MR|Sj) + (MR|NS) * X(N,j)

END DO

END DO

(Mi|Nj) = (Mi|Nj) + (MR|Nj) * X(R,i)

END DO

write (Mi|Nj) to disk

END DO

perform bucket sort/(Mi|Nj)=(Mi|Nj)+(Nj|Mi)

Note, that in order to keep the (µρ) ↔ (νσ) permutational symmetry the trian-
gularity in the operator indices i, j is lost. The final operator matrices Kij(i ≥ j)
are formed by adding up the partial results Kijµν +Kjiνµ(i ≥ j), which is performed
during the bucket sort, as indicated above.
By virtue of an elaborate paging algorithm, it is even possible to maintain also the
µ↔ ρ permutational symmetry (algorithm B), i.e.

R_End=0

R_Pass=0

1 R_Start=R_End+1

R_End=MIN(NShell,R_End+R_Batch)

R_Pass=R_Pass+1
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if(R_Pass.gt.1) Read (Ri|Nj) for shells R_Start to R_End

DO M=R_Start,NShell

IF(R_Pass.gt.1.and.M.gt.R_End) Read (Mi|Nj) for shell M

DO R=R_Start,MIN(R_End,M)

DO N=1,M

DO S=1,N | R (for M=N)

Compute integral block (MR|NS)

Q1 step over shell block:

(MR|Nj) = (MR|Nj) + (MR|NS) * X(S,j)

(MR|Sj) = (MR|Sj) + (MR|NS) * X(N,j)

END DO

END DO

(Mi|Nj) = (Mi|Nj) + (MR|Nj) * X(R,i)

(Ri|Nj) = (Ri|Nj) + (MR|Nj) * X(M,i)

END DO

IF(M.GT.R_End) Write (Mi|Nj) for shell M

END DO

Write (Ri|Nj) for shells R_Start to R_End

If(R_End.LT.NShell) goto 1

perform bucket sort/(Mi|Nj)=(Mi|Nj)+(Nj|Mi)

This means that the full permutational symmetry of the AO ERIs is exploited. This
algorithm is very efficient for molecular systems of intermediate size. However, for
large systems and limited memory, the paging overhead might become too excessive
(even though no multipassing whatsoever over the integral list is involved, as in the
fully direct scheme), and algorithm A becomes more efficient.

The Q1 and Q2 transformation steps require matrix multiplications, in which
at least one of the matrix dimensions corresponds to the shell size. For small shells
the vector lengths are too short for a good performance to be achieved. Therefore,
it is advantageous to merge adjacent R and S shells until an upper limit of 32-64
basis functions is reached. Significant speedups (factors of 4-6) were observed, if
such shell merging was invoked 60.

For applications on larger molecules, integral prescreening is of utmost impor-
tance. In order to assess the values of the AO ERIs, the Schwartz inequality (eq.
251) is again employed. Furthermore a test density Dmax is constructed from the
MO coefficient matrix C as

Dmax
ρσ = Max

ij
CσiCρj (257)

The prescreening criterions for the direct transformation at the level of shell
quadrulets then are

QMRQNSD
max
RS ≥ τ1 (258)

before integral evaluation, and

Max
µ∈M,ρ∈R,ν∈N,σ∈S

(µρ|νσ)Dmax
RS ≥ τ2 (259)
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before the Q1 step, respectively. Such a prescreening leads to a reduction of the
computational cost of the dominant Q1 step from O(N 5) to O(N 3) 60. The over-
all scaling however deteriorates again for larger molecules due to the subsequent
transformations steps, which, because of the delocalized character of canonical or-
bitals, scale worse than O(N 3). In particular the Q4 step (i.e. the transformation
of the Kij

µν to the canonical virtuals) would still scale as O(N 5), although with a
small prefactor, but nevertheless will ultimately constitute the bottleneck of the
calculation. The remedy to this problem are local correlation methods, discussed in
section 4. In combination with local correlation methods integral-direct MP2 algo-
rithms with linear cost scaling have been implemented, which enable calculations
of molecules with more than 2000 basis functions and 500 correlated electrons 54.

6.4 Integral-direct MCSCF

In MCSCF calculations the orbitals are optimized simultaneously with the CI co-
efficients. Thus, an integral transformation is required in each iteration, which
constitutes one of the major bottlenecks in conventional MCSCF calculations. In
a direct scheme, this bottleneck is even much more severe, since each direct trans-
formation also involves recomputation of all AO ERIs. It is therefore of utmost
importance that the MCSCF converges in as few iterations as possible.

MCSCF orbital optimization methods can be classified as first-order or second-
order methods. In the former only the first derivatives of the energy with respect to
the variational parameters are computed exactly, and updates of the parameters are
obtained using some approximation of the Hessian (e.g. a BFGS update scheme).
In first-order methods the coupling of the orbitals and CI-coefficients is neglected.
One particular advantage of first-order methods is that only a very compact set of
transformed integrals is required, i.e. an integral distribution of the form (pj|kl)
with only a single external index. In fact, j, k, l here run just over active orbitals,
while the inactive orbitals (doubly occupied in all CSFs) can be accounted for by a
single Fock matrix 141,142. Thus, any storage bottleneck connected to the integral
transformation is avoided. An integral-direct first-order MCSCF method has been
described by Frisch et al.124.

In second-order methods, also the second energy derivatives are computed ex-
actly, yielding quadratic convergence near the final solution. Naturally, first-order
methods require less effort per iteration, but are often slowly convergent and appear
to be only useful for the optimization of CASSCF wavefunctions141. In this case
convergence is facilitated by the fact that orbital rotations among active orbitals
are redundant. Even with second-order methods convergence is often difficult to
achieve for general MCSCF wavefunctions142. The radius of convergence and the
speed of convergence can be substantially increased by taking into account certain
higher-order terms, as first proposed by Werner and Meyer143,144 and further refined
by Werner and Knowles98,91. Using the latter method (in the following denoted
WMK), convergence can often be achieved in only 2-3 iterations, in particular for
CASSCF wavefunctions. Almost cubic convergence behaviour is observed near the
solution. In the light of the discussion above, the WMK method is particulary
useful in an integral-direct context, while the advantage of the simple and efficient
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transformation of first-order methods is spoilt by its slow convergence behaviour.
The integral sets required by the WMK method are identical to those used by or-
dinary second-order methods: in additon to the exchange integrals (ip|jq) also the
Coulomb integrals (pq|ij) are necessary. Furthermore, the very same integral sets,
generated in the last iteration, can be reused in a subsequent CASPT2 or MRCI
calculation. The additional Coulomb integral set can be produced simultaneously
with the exchange integrals by modifying the above MP2 transformation algorithm
A in the following way (algorithm C):

DO M=1,NShell

DO R=1,NShell

DO N=1,NShell

DO S=1,R

Compute integral block (MR|NS)

Q1 step over shell block:

(MR|Nj) = (MR|Nj) + (MR|NS) * X1(S,j)

(MR|Sj) = (MR|Sj) + (MR|NS) * X1(N,j)

END DO

END DO

Q2 (J) step:

(MR|ij) = (MR|Nj) * X2(N,i) (summed over N)

write (MR|ij) to disk

Q2 (K) step:

(Mi|Nj) = (Mi|Nj) + (MR|Nj) * X2(R,i)

END DO

write (Mi|Nj) to disk

END DO

perform bucket sort

Note, that compared to algorithm A the permutational symmetry between the pairs
(µρ)↔ (νσ) is lost, thus the AO integral list in algorithm C is four times as long as
the minimal list. As in the MP2 case (algorithm B), the permutational symmetry
(µρ) can be maintained by using an analogous paging algorithm, which might be
advantageous for intermediate cases.

6.5 Integral-direct multireference correlation methods

The internally contracted MRCI and MRPT methods as discussed in section 5
can be formulated in terms of matrix operations142 involving the same Coulomb
and exchange matrices Jij and Kij as needed in the preceeding MCSCF. In the
MRCI and MRPT3 all contributions of 4-external integrals (ab|cd) can be taken
into account by computing for each pair P an external exchange operator (EEO),
as defined in eq. (106)117,118,108. These operators can be computed directly from
the two-electron integrals in the AO basis by first transforming the amplitude ma-
trices into the AO basis and finally transforming these back into the MO basis (cf.
eqs (107). For an integral-direct implementation the internally contracted MRCI
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scheme is particularly useful, since the number of pairs and thus external exchange
operators that need to be computed is minimized and does not depend on the
number of reference configurations. In uncontracted MRCI methods the number of
pairs P for which the EEOs K(TP ) must be computed is excessively larger than
in the internally contracted case. This does not only lead to higher computational
cost, but also to a storage bottleneck in the direct evaluation of these operators

The direct construction of the EEOs from the minimal AO integral list is ac-
complished by contracting two indices of the AO ERI (µρ|σν) with the two AO
indices of the backtransformed amplitudes 107, in all possible ways, which result
in exchange type contributions, and can be regarded as a ‘Fock build‘ (excluding
Coulomb contributions) of nP Fock matrices simultaneously (nP denotes the num-
ber of pairs P ). A shell driven out-of-core algorithm for such a construction of
the EEOs, as implemented in MOLPRO 60, is given in pseudocode below (module
DKEXT).

R_End=0

R_Pass=0

1 R_Start=R_End+1

R_End=MIN(NShell,R_End+R_Batch)

Read amplitudes for shells R_Start to R_End

R_Pass=R_Pass+1

IF(R_Pass.gt.1) Read operators for shells R_Start to R_End

DO M=R_Start,NShell

If(M.GT.R_End) then

Read amplitudes for shell M

If(R_Pass.gt.1) Read operators for shell M

End If

DO R=R_Start,MIN(R_End,M)

DO N=1,M

S_End=N

If(N.EQ.M) S_End=R

DO S=1,S_End

Compute integral block (MR|NS)

Compute contributions to operators

END DO

END DO

END DO

IF(M.GT.R_End) Write operators for shell M

END DO

Write operators for shells R_Start to R_End

If(R_End.LT.NShell) goto 1

The algorithm employs a paging algorithm, which is quite similar to that used in
the direct transformation scheme discussed in section 6.3. The amplitudes and
EEOs are presorted according to shell blocks TMR

P,µρ with M running slowest, and
stored on disk. In this way it is possible to read/write them for a given shell M
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and for all P and R.
All contributions arising from integrals over one occupied and three external

orbitals (ia|bc) can be taken into account by an additional set of EEOs K(DP ),
where DP are modified coefficient matrices117,118,22, which differ from the TP by
the addition of internal-external blocks arising from contributions of single excita-
tions. In single-reference methods (CISD, MP4(SDQ), QCSID, CCSD) as well as
for evaluating the MRPT3 energy it is sufficient to compute only the latter set of
operators. In MRCI calculations, this would in principle be possible as well, but
since then complicated correction terms are necessary118 it is easier to compute the
operators K(TP ) and K(DP ) separately. Of course, the two sets can be computed
together in a single integral pass.

Since the EEOs depend explicitly on the amplitudes that must be computed in
each iteration. The computational complexity of EEO formation is nominally a task
O(m2

occm
4) = O(N 6). In an integral-direct context this can be reduced to ≈ O(N 4)

by virtue of integral prescreening 60. In order to get efficient prescreening, it is
important to include the amplitudes into the prescreening scheme. Nevertheless,
in integral-direct calculations with large basis sets, the EEO construction often
dominates the computational effort.

6.6 Integral-direct coupled cluster methods

The first integral-direct CCSD method was developed by Koch and coworkers129,145.
In this method the transformed integrals are never stored on disk. Instead, ”distri-
butions” of AO integrals (µρ|νσ) are generated for fixed µ, all ρ, ν ≥ σ. One such
distribution at a time is kept in memory and consumed immediately to compute
all contributions to the CCSD residual (fully direct CCSD). This method, although
very efficient on vector computers due to long vector lenghths, suffers from some
severe bottlenecks (most importantly, the m3 memory requirements of the integral
distributions, mentioned above), which limit the application range for larger sys-
tems. An alternative method has been proposed by Schütz, Werner and Lindh 60,
which differs from the above method by the fact, that the partially transformed
integrals are stored on disk (3/2m2

occm
2 words are required). Considering that the

doubles amplitudes as the variational parameters of the iterative CCSD procedure
and the residuals have to be stored on disk anyway in several instances (due to DIIS
convergence acceleration), with a required diskspace of nDIISm

2
occm

2, this certainly
does not constitute a further bottleneck, and seems to be a reasonable strategy. The
immediate advantage is that the remaining program remains entirely unchanged,
and that the same integral-direct modules as for the MCSCF and MRCI programs
can be used. Furthermore, in such a scheme the maximum memory requirements
can be reduced to O(moccm

2), and to O(N ) for local CCSD (cf. section 4.2).
The MP3, MP4(SDQ), QCISD and CCSD methods, which all are related, re-

quire the same internal operators Jij , Kij , and the EEOs K(Dij) as introduced for
the MRCI case in the previous section. A further complication arises in the CCSD
method 22, where the additional operators J(Eij) and K(Eij) (cf. eqs. (132)) are
needed. As discussed in section 2.5, these operators can be obtained by a gener-
alized integral transformation (cf. eqs. (133)-(137)). This transformation can be
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performed using the same integral-direct module as employed for generating the
Jij and Kij matrices, but since they depend on the singles amplitudes they must
be performed in each iteration. An important point to notice is that the latter
operators are only needed for CCSD, but not for the QCISD (quadratic configura-
tion interaction) method33. While the computational effort for these two methods
is not too much different in conventional calculations22, in the integral-direct case
the full CCSD takes significantly more time, due to this additional transformation
which must be performed in each iteration. For most applications, QCISD and
CCSD results are very similar, and QCISD may often be more cost effective for
integral-direct calculations of large molecules, even though from a theoretical point
of view CCSD is more satisfactory. If the 3-external integrals are available though,
as is usually the case for local CCSD calculations, then the construction of the
J(Eij) and K(Eij) operators takes little time, hence there is little reason to use the
QCISD model in that case.
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15. J. Almlöf and P. R. Taylor, J. Chem. Phys. 86, 4070 (1987).
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28. J. Čı́žek, J. Chem. Phys. 45, 4256 (1966).
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122. J. Almlöf, J. K. Faegri, and K. Korsell, J. Comput. Chem. 3, 385 (1982).
123. P. Taylor, Int. J. Quantum Chem. 31, 521 (1987).
124. M. Frisch, I. N. Raganzos, M. A. Robb, and H. B. Schlegel, Chem. Phys. Lett.

189, 524 (1992).
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The basis-set truncation error of standard electron-correlation treatments repre-
sents a serious problem in computational chemistry. Wavefunction models that
are restricted to products of one-particle basis functions – that is, the orbital ap-
proximation – converge very slowly to the true solutions that would be obtained
in a complete basis. The convergence of the orbital approximation can be charac-
terized as N−1, where N is the number of functions in the correlation-consistent
basis. Extrapolation schemes appear to help to overcome this basis-set conver-
gence problem and even more so do expansions that not only employ one-particle
basis functions, but also basis functions that depend on the coordinates of more
than one electron. R12 methods and Gaussian geminals employ two-electron basis
functions that depend on the interparticle distance r12. In more general explicitly
correlated Gaussians (ECG) also functions that depend on the coordinates of more
than two electrons occur. The present discussion of the various many-electron ba-
sis functions focuses on methods that can be applied to molecular many-electron
systems and is less concerned with highly accurate calculations of atomic electronic
structure.

1 Introduction

R12 methods, Gaussian geminals, and explicitly correlated Gaussians have been
introduced to computational quantum chemistry with the purpose to facilitate cal-
culations of dynamical electron-correlation effects and have in common that they
include the interparticle distances rij into the many-electron wavefunction.

It had been recognized already in the early days of quantum mechanics that
the electron-electron distance r12 ought to be included into the wavefunction if
quantitatively accurate computational results were to be obtained1−6. In 1937,
Hellmann wrote about the electron-correlation effect4:

Der Effekt spielt bei allen feineren quantitativen Rechnungen eine
große Rolle, ist aber meist schwer rechnerisch zu erfassen, da er die
Einführung von r12 in die Eigenfunktion erfordert.

(The correlation effect plays an important rôle in all precise quantitative calcula-
tions but is mostly difficult to describe computationally, as it requires the inclusion
of r12 into the wavefunction.) Indeed, as we will see later in the present lecture
notes, the accurate computation of the dynamical electron-correlation effects is very
difficult with the standard electron-correlation treatments7,8 within the orbital ap-
proximation – that is, treatments that are based on wavefunction expansions in
terms of antisymmetrized orbital products (Slater determinants). These calcula-
tions are difficult in the sense that the computed electronic energies and molecular
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properties are very dependent on the orbital basis sets used. When larger and larger
basis sets are used, the computed data keep changing and converge only very slowly
to the limiting value of an infinitely large, complete basis set. In particular, the
convergence is so slow that the computational costs of the correlated calculations
grow four orders of magnitude faster than the rate with which the basis-set trunca-
tion errors decrease. In order to reach the next level of accuracy, which corresponds
to a reduction of the truncation error by a factor of ten, calculations are required
that consume roughly 10000 times more computing time. We will see that, as a
function of the error δ, the required computing time of standard electron-correlation
treatments can be expressed as:

tcpu(δ) = δ−4. (1)

This means in practice that if we want to improve (by one order of magnitude)
certain calculations that take something like one minute of computing time on a
given computer, we have to perform calculations that run for a whole week on that
same computer. We would have to wait almost 200 years to achieve results at
the next level of accuracy! Evidently, the scaling of standard ab initio electronic-
structure calculations in terms of the basis-set truncation error is nothing else but
disastreous.

In the present lecture, we will be concerned with computational approaches that
address this slow basis-set convergence and the corresponding scaling problems.

2 Errors in electronic-structure calculations

What precisely are the errors we are dealing with when we perform electronic-
structure calculations? It is of course important to ask this question and especially
to find out about the most significant sources of error in our calculations. If more
accurate calculations are required, that is, if more reliable computational data are
needed, one can then focus on the most important sources of error and address
these.

In ab initio electronic-structure calculations, approximate solutions are obtained
to the nonrelativistic electronic Schrödinger equation in the framework of the Born-
Oppenheimer (BO) approximation. We can thus define the errors of our ab initio
calculations relative to the true solutions of that equation, and that is what we will
do in the following. This implies that we will not be concerned with relativistic or
non-BO effects. There are cases, of course, where these effects become important,
but we will restrict our discussion to the nonrelativistic BO case. Clearly, it depends
on the level of accuracy we are aiming at whether relativistic or non-BO effects
should be taken into account. Table 1 shows the order of magnitude of these
effects on electronic barriers in the H2O and SiH−

3 molecules. When aiming at
an accuracy of about ±50 cm−1 (±0.6 kJ mol−1), as in the cited works9,10, it
becomes mandatory to include these effects. Scalar relativistic effects and spin-
orbit interactions become certainly very important for molecular systems containing
heavy elements. We will not discuss this topic further, although it must be said
that the basis-set convergence of relativistic calculations is even slower – in fact,
significantly slower11 – than in the nonrelativistic case, implying that explicitly
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Table 1. Barrier to linearity of H2O a,b and barrier to inversion of SiH−

3 .c,d

∆E/cm−1

H2O SiH−
3

Nonrelativistic BO-value 11086 8314
Relativistic correction 58 50
Diagonal BO-correction −17 −13
Total 11127 8351

a C2v: RO−H = 95.885 pm, \H−O−H = 104.343◦.9

b D∞h: RO−H = 93.411 pm.9

c C3v: RSi−H = 153.753 pm, \H−Si−H = 95.196◦.10

d D3h: RSi−H = 147.641 pm.10

correlated methods would be very powerful in particular in relativistic electronic-
structure calculations.

In any case we define12,13 the apparent error as the difference between the true
solution of the electronic Schrödinger equation (equal to the experimental value of
the property of interest if relativistic and non-BO effects can be neglected) and the
particular calculation that we carry out. This apparent error can be subdivided
into the basis-set error and the n-electron error, as our calculation will employ a
truncated one-electron basis set and a truncated n-electron wavefunction model.
Thus, two approximations are introduced, leading to two sources of error to our
computed data. These two errors (basis-set error and n-electron error) depend on
the basis set used. In the limit of a complete basis, the basis-set error vanishes
and only the n-electron error remains. This remaining n-electron error at the limit
of a complete basis is denoted as the intrinsic error of the respective n-electron
wavefunction model.

We will only be concerned with the basis-set error in the present lecture.

3 The basis-set error

3.1 Correlation-consistent basis sets

The development of the correlation-consistent basis sets (cc-pVXZ) by Dunning
and co-workers14−19 has prompted a series a studies of the basis-set dependence
of computed molecular properties in terms of these basis sets. The basis sets are
characterized by the cardinal number X , and basis sets for X = 2, . . . , 6 have been
derived, also in the aug-cc-pVXZ15 and cc-pCVXZ18 forms. The latter two series
of basis sets are cc-pVXZ sets to which diffuse, respectively tight Gaussians have
been added. Also aug-cc-pCVXZ basis sets exist as well as doubly augmented sets,
and so on.

A typical example of a correlation-consistent basis-set convergence study is
shown in Table 2, which shows the all-electron correlation energy of the H2O
molecule at the CCSD(T) level20,21. Empirically, as shown in Figure 1, one finds
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Table 2. All-electron correlation energies (in Eh) of the H2O moleculea.

Basis Nb ESCF ∆EcMP2 ∆EdCCSD ∆EeCCSD(T)

Orbital basis
cc-pCVDZ 28 −76.0272 −0.2413 −0.0104 −0.0033
cc-pCVTZ 71 −76.0574 −0.3175 −0.0067 −0.0082
cc-pCVQZ 144 −76.0649 −0.3426 −0.0039 −0.0095
cc-pCV5Z 255 −76.0671 −0.3516 −0.0018 −0.0100
cc-pCV6Zf 412 −76.0673 −0.3563 −0.0005 −0.0102
R12 basis20

O:15s9p7d5f3g1h/
H:9s7p5d3f1g 320 −76.0674 −0.3615 0.0015 −0.0100

a H2O geometry: RO−H = 1.80885 a0, \H−O−H = 104.52◦.20

b Number of basis functions.

c Total second-order correlation energy. The MP2-R12 calculations were

based on standard approximation B.

d CCSD increment, ECCSD − EMP2.

e Triples contribution, ECCSD(T) − ECCSD.

f Not available in basis set library18. Constructed in analogy to the smaller sets21.
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Figure 1. All-electron CCSD(T) correlation energy (in Eh) of the water molecule as a function of
the cc-pCVXZ basis sets. Cf. Table 2.

that the cc-pCVXZ results are well represented by the formula:

Ecorr(X) = Ecorr(∞) + cX−3. (2)
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The actual curve in Figure 1 corresponds to Ecorr(∞) = −0.372 Eh and c = 1.07
Eh. Equation (2) provides an estimate for the basis-set error as a function of X .
This basis-set error is equal to cX−3, and thus, if we would like to reduce the
basis-set error of our standard CCSD(T) calculation of H2O to below 1 mEh, we
ought to use basis sets with cardinal numbers X > 10. Such basis sets do not exist,
however. We note in passing that also in the case of the above-mentioned barrier
to linearity of the H2O molecule one finds that a ridiculously large (1276 functions)
basis set with X = 10 ought to be used to compute the nonrelativistic BO barrier
accurate to within 10 cm−1.9

Furthermore, we note that the number of basis functions in a cc-pVXZ basis set
grows with the third power of X . For first-row atoms, the number is:

N =
1

3
(X + 1)(X +

3

2
)(X + 2). (3)

This cubic dependence implies that we can represent the computed correlation
energies obtained with correlation-consistent basis sets alternatively as22,23:

Ecorr(N) = Ecorr(∞) + c′N−1 +O(N−2). (4)

It must be said, however, that the latter equation is only correct for the “magic”
numbers N that correspond to a correlation-consistent hierarchy of basis sets.

The number of two-electron integrals grows with the fourth power of the number
of basis functions, and thus, also the computing time will grow as N4 when the basis
set is enlarged. In the light of this scaling, (1) thus follows from (4). Note that the
N4-scaling refers to an increase of the number of functions per atom. Correlation
treatments are being developed that scale linearly with the size of the system24−26,
but from that perspective, the whole molecular system is increased while the number
of functions per atom remains constant. Intregral-screening techniques are of little
help to the N4-scaling problem when we enlarge only the basis set per atom.

3.2 Principal expansion

For the ground state of the He atom, it is empirically found that the energy contri-
bution of an individual natural orbital is almost completely independent from its
angular momentum and magnetic quantum numbers and only proportional to the
inverse sixth power of its principal quantum number n:27,28

∆Enℓm = −A
(

n− 1

2

)−6

. (5)

On itself, the observation that the natural orbital increments are proportional to
n−6 is a strong motivation for the development of hierarchies of basis sets in terms
of the principal quantum number n, as is the case for the cc-pVXZ sets. We will
denote such an expansion as principal expansion. The basis set on a given atom is
then defined by some principal quantum number nmax = X and all shells of orbitals
χnℓm up to that quantum number are included in the principal expansion.

For a calculation that includes only shells with principal quantum number n ≤
X , the truncation error δEX is obtained by summing all increments ∆Enℓm for
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those orbitals not included in the expansion:

δEX =
∞∑

n=X+1

n−1∑

ℓ=0

ℓ∑

m=−ℓ
|∆Enℓm|. (6)

The summation can be carried out in closed form and expressed in terms of the
polygamma function Ψ(n, x), but replacing the summation over n by integration
leads immediately to the same leading X−3- and X−4-terms:

δEX = A
∞∑

n=X+1

n2

(

n− 1

2

)−6

=
A

6
Ψ(3, X +

1

2
)− A

24
Ψ(4, X +

1

2
) +

A

480
Ψ(5, X +

1

2
)

=
A

3
X−3 +

A

4
X−4 − 7A

60
X−5 +O(X−6), (7)

δEX ≈ A

∫ ∞

X+ 1
2

n2

(

n− 1

2

)−6

dn =
A

3
X−3 +

A

4
X−4 +

A

20
X−5. (8)

In a similar fashion, we can compute the truncation error δEL of a partial-wave
expansion that includes all contributions up to ℓ ≤ L:

δEL =
∞∑

n=L+2

n−1∑

ℓ=L+1

ℓ∑

m=−ℓ
|∆Enℓm|

=
A

6
Ψ(3, L+

3

2
)− A

24
Ψ(4, L+

3

2
)− A

120
(L2 + 2L+

3

4
)Ψ(5, L+

3

2
)

=
2A

15
(L+ 1)−3 +

A

4
(L+ 1)−4 +

2A

15
(L+ 1)−5 +O

(
(L+ 1)−6

)
, (9)

δEL ≈ A

∫ ∞

L+ 3
2

[
n2 − (L+ 1)2

]
(

n− 1

2

)−6

dn

=
2A

15
(L+ 1)−3 +

A

4
(L+ 1)−4 +

A

20
(L+ 1)−5. (10)

For variational calculations on He, the expression (10) for the basis-set error of
the partial-wave expansion has been found empirically28. Hill has shown how the
coefficients can be derived from the exact He ground-state wavefunction29 and
a very similar expression was derived nearly 40 years ago by Schwartz for the
partial-wave expansion in the framework of perturbation theory30,31. Kutzelnigg
and Morgan have shown that similar rates of convergence apply to many-electron
atoms as well32,33.

It is remarkable that no such analysis exists for the principal expansion, but
since the working assumption (5), which is supported by strong numerical evidence,
leads to the correct expression for the basis-set error of the partial-wave expansion,
it is safe to assume that the basis-set error of the principal expansion is given by
(8). This is also supported by the observation that the basis-set error of molecular
calculations appears to vanish as X−3 with the cardinal number of the correlation-
consistent basis sets (cf. Figure 1) and by the fact that extrapolations based on the
X−3-form (2) work so well, as we will see in the next section.
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Table 3. Statistical measure of errors for all-electron CCSD(T) atomization energies relative to
experimenta. All values in kJ mol−1.

Raw cc-pCVXZ results
2 3 4 5 6

∆̄ −103.07 −34.00 −13.46 −6.61 −4.06
∆std 37.19 13.58 5.64 3.09 2.14
∆̄abs 103.07 34.00 13.46 6.61 4.06
∆max 155.71 51.58 20.15 10.71 7.04

cc-pCV[(X-1)X]Z extrapolated
23 34 45 56

∆̄ −14.67 −0.23 0.08 −0.44
∆std 8.39 2.16 1.12 1.05
∆̄abs 14.74 1.68 0.90 0.84
∆max 29.53 4.01 2.45 2.31

a The experimental atomization energies were corrected for

(anharmonic) zero-point vibrational energies and (scalar

and spin-orbit) relativistic effects.

3.3 Extrapolation schemes

Recently, Bak et al.13,34 applied two-point extrapolations of the form35:

Ecorr(X) = Ecorr(∞) + cX−3 (11)

to the CCSD(T)(FULL)/cc-pCVXZ atomization energies of the following 16 closed-
shell molecules: CH2 (ã 1A1 state), CH4, NH3, H2O, HF, C2H2, C2H4, HCN, N2,
CO, H2CO, HNO, H2O2, F2, CO2, and H2. Table 3 shows the mean error (∆̄),
standard deviation (∆std), mean absolute error (∆̄abs), and maximum error (∆max)
of the raw CCSD(T)(FULL)/cc-pCVXZ calculations of these molecules in compar-
ison with the two-point extrapolations. The two-point extrapolations are based
on calculations with two subsequent basis sets with cardinal numbers X − 1 and
X . For example, the extrapolation denoted as “56” refers to the results that were
obtained by inserting the CCSD(T)(FULL)/cc-pCV5Z and CCSD(T)(FULL)/cc-
pCV6Z correlation energies into (11) and extracting Ecorr(∞) from the two equa-
tions with two unknowns. Note that this extrapolation only applies to the electron-
correlation contribution to the atomization energy. It was not clear how to extrapo-
late the Hartree-Fock energy36 (which perhaps converges exponentially)37 and thus
the Hartree-Fock energy of the larger of the two basis sets was taken.

The extrapolation appears to work! The results displayed in Table 3 show that
all errors are significantly reduced by applying the two-point extrapolation. At
the raw CCSD(T)(FULL)/cc-pCV6Z level, the mean absolute error is still as large
as 4.06 kJ mol−1. We usually refer to an accuracy of about 4 kJ mol−1 (or 1
kcal mol−1) as “chemical accuracy”. This chemical accuracy is clearly achieved
already at the 34-extrapolated level, where the mean absolute error is only 1.68
kJ mol−1. At the 45- and 56- extrapolated levels, the mean absolute errors are 0.90
and 0.84 kJ mol−1 and these errors are good estimates of the intrinsic errors of the
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Table 4. Application of the two-point (X-1,X)-extrapolation to the MP2(FC) correlation contri-
bution (in kJ mol−1) to the interaction energy of the H2O dimer in the Halkier geometry41 .

Raw (X-1,X)
resultsa Extrapolation

aug-cc-pVDZ −3.35
aug-cc-pVTZ −4.78 −5.38
aug-cc-pVQZ −5.33 −5.74
aug-cc-pV5Z −5.54 −5.75

Schütz et al.42 −5.74b

R12 result43 −5.78

a Within the full counterpoise framework.

b Original value transferred to Halkier geometry41 .

CCSD(T)(FULL) atomization energies.
The two-point X−3-extrapolation has also been tested on reaction

enthalpies13,34, weak interactions38, spectroscopic constants39, and dipole
moments40, all with encouraging results. As an example, consider the MP2(FC)
contribution to the interaction energy of the H2O dimer in the fixed geometry
optimized by Halkier et al.41 (cf. Table 4). Already the extrapolation from the
aug-cc-pVDZ and aug-cc-pVTZ data provides a significant improvement over the
raw aug-cc-pVTZ results. The extrapolation is comparable to the aug-cc-pVQZ
level. The extrapolation from the aug-cc-pVTZ and aug-cc-pVQZ basis sets virtu-
ally coincides with very large calculations by Schütz et al.42 (using more than 1000
basis functions up to ℓ = 7) and R12 calculations43. It must be noted, however,
that the extrapolations only work well when applied to the counterpoise-corrected
raw data. In general, the extrapolations can be expected to work only when the
basis-set error is solely due to the slow convergence of the Coulomb cusp – that is,
other basis-set errors such as the basis-set superposition error must be taken care
of otherwise. The poor description of the electron-electron cusp must be the only
remaining basis-set error. Also in case of the extrapolation of the dipole moments,
for example, it was important to use aug-cc-pVXZ basis sets, as the extrapolation
is unable to account for missing diffuse functions.

An important feature of the two-point X−3-extrapolation is that it can in prin-
ciple be applied to any point on the molecular potential energy hypersurface. It is
possible to define a model chemistry on the basis of calculations with two basis sets
in conjunction with the corresponding two-point X−3-extrapolation. One can op-
timize molecular geometries and compute harmonic vibrational frequencies within
the particular model chemistry44−47. Of course, one must be able to separate the
Hartree-Fock and correlation contributions, because the extrapolation applies to
the (dynamical) correlation energy only. This separation is not always clear-cut on
every point on the hypersurface, but maybe one can use an appropriate MCSCF
energy as a reference.

Furthermore, we note that in the past other extrapolations from correlation-
consistent basis sets have also been tried12,48−52. These include the exponential
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form48,52:

E(X) = E(∞) + a exp(−bX), (12)

and the functional forms49−51:

E(X) = E(∞) + a

(

X +
1

2

)−4

, (13)

E(X) = E(∞) + b

(

X +
1

2

)−4

+ c

(

X +
1

2

)−6

, (14)

E(X) = E(∞) + d

(

X +
1

2

)−e
. (15)

It is clear, however, that the exponential form overestimates the rate of conver-
gence of the correlation energy obtained with the correlation-consistent basis sets.
Moreover, the leading term is clearly X−3.

All of the above extrapolations were mainly concerned with the (correlation)
energy. The basis-set convergence of molecular properties might of course be differ-
ent from the X−3-form for the energy. When we think of the property of interest
as an energy-derivative concerning the Hamiltonian:

Ĥ(λ) = Ĥ(0) + λ V̂ , (16)

then we can expand the correlation energy as:

Ecorr(λ,X) =

∞∑

n=0

∞∑

k=0

C
(k)
n λk

k!
X−n. (17)

The coefficients C
(0)
n govern the convergence of the energy, the C

(1)
n govern the

convergence of the first-order property, and so on53.
Let us finally have a brief look at the CBS (complete basis set) extrapolation

to the MP2 limit developed by Petersson and co-workers54−62, which is found in
standard and widely distributed quantum chemistry programs. For pairs of occu-
pied α and β spin-orbitals (αβ pairs) and for αα-type second-order pair energies,
the CBS extrapolation is based on the expressions:

αβe
(2)
ij (N) = αβe

(2)
ij (∞) + αβfij

25

512
(N + αβδij)

−1, (18)

ααe
(2)
ij (N) = ααe

(2)
ij (∞) + ααfij

25

512
(N + ααδij)

−5/3, (19)

where:

αβfij = |S|2ij , ααfij = 2|S|2ij

(

1− |S|2ij
1 + |S|2ij

)

, (20)

and:

|S|ij =

∫

|ϕi(r)ϕj(r)|dτ. (21)

Equation (18) shows the same N−1-dependence as found in (4), corresponding to
the X−3-form. This is the correct basis-set error of the principal expansion of the
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Figure 2. Ratio of CCSD(T) to MP2 basis-set errors, δECCSD(T)/δEMP2, of the APNO basis set.
Comparison of the ratio (i.e., interference factor) computed by the CBS-QCI/APNO method with
the ratio obtained from R12 calculations. At the R12 level, the CCSD(T) error is δECCSD(T) =
CCSD(T)-R12/B − CCSD(T)/APNO, while the MP2 error is either δEMP2 = MP2-R12/A −
MP2/APNO (◦) or δEMP2 = MP2-R12/B − MP2/APNO ( ). The dotted line is a straight line
with slope one through the origin.

He ground state. For a triplet state of He, however, or in general for triplet pair
energies, the basis-set error of the principal expansion is X−5 (or (L+1)−5).32 This
triplet basis-set error is reflected by the (N + ααδij)

−5/3 dependence.
We note that the αβ and αα pairs of the spin-orbital CBS method do not

represent spin-adapted singlet and triplet pairs. Rather, the αβ pair contributes
to both singlet and triplet pairs. The purpose of the prefactors αβfij and ααfij is
to damp the extrapolated truncation errors for spatially distant pairs of (localized)
orbitals.

In (18) and (19), αβe
(2)
ij (∞) and αβδij , which constitute the fitting parameters,

are obtained from two-point fits. The first point is chosen as N = 1 – that is, as the

Hartree–Fock calculation, for which αβe
(2)
ij (1)=0. A prescribed range of N values

are then tried for the second point, each time computing the corresponding pair

energy αβe
(2)
ij (N). For each N , the two equations are solved for the two unknowns

and the most negative αβe
(2)
ij (∞) is taken as the final, extrapolated second-order

pair energy. The same procedure is followed for the αα pairs.
To obtain the infinite-order corrections, the second-order corrections are scaled
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Figure 3. Coulomb hole (difference between the exact and the Hartree-Fock wavefunctions) of the
He ground state as a function of the x2 and y2 coordinates of the second electron. The nucleus is
located in the origin and the first electron is kept fixed at x1 = 0.5 a0, y1 = z1 = 0.

by the interference factors:

δe
(∞)
ij =





Nvirt+1∑

µij=1

c(1)µij





2

δe
(2)
ij , (22)

computed from the first-order wavefunction. The scaling with this interference fac-
tor is remarkably accurate. For a variety of small closed-shell molecules63, Figure 2
shows the overall CBS scaling factor – that is, the scaling factor for the sum of all
pair energies – in comparison with the CCSD(T) to MP2 ratio as computed by the
R12/A and R12/B methods. Hence, the interference factor appears to provide, by
simple scaling, a reasonable estimate of the basis-set error at the CCSD(T) level
once the corresponding MP2 basis-set error is known or obtained by extrapolation62.

4 Coulomb hole

An explicit dependence of the wavefunction on r12 was already discussed by Slater1

and Hylleraas2 in the early days of quantum mechanics64. Slater and Hylleraas were
concerned with the He atom, where the ground-state wavefunction can be written
as a function Ψ(r1, r2, r12) of the two nucleus-electron distances r1 and r2 and
the electron-electron distance r12. Then, the corresponding effective Schrödinger
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Figure 4. Coulomb hole of the He ground state. Comparison of standard CI wavefunctions ob-
tained with the cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z basis sets (upper curves, from top to
bottom) with the exact wavefunction Ψ(r1, r2, r12) (lower curve) as a function of the angle θ12

(deg) between the position vectors r1 and r2, with fixed r1 = r2 = 0.5 a0.

equation has the form2:

H Ψ(r1, r2, r12) = EΨ(r1, r2, r12), (23)

with

H = −1

2

∂2

∂r21
− 1

r1

∂

∂r1
− Z

r1
− 1

2

∂2

∂r22
− 1

r2

∂

∂r2
− Z

r2
−

− ∂2

∂r1∂r12

r21 − r22 + r212
r1r12

− ∂2

∂r2∂r12

r22 − r21 + r212
r2r12

−

− ∂2

∂r212
− 2

r12

∂

∂r12
+

1

r12
, (24)

where Z is the nuclear charge. The exact solution to this equation should contain
terms that balance the Coulomb singularities. For example, it should be ensured
that:

{

H Ψ(r1, r2, r12)

}

r1=r2=rc

= EΨ(rc, rc, 0) (25)

for any point rc. This balance is established if:
{
∂Ψ(r1, r2, r12)

∂r12

}

r1=r2=rc

=
1

2
Ψ(rc, rc, 0), (26)

because then the last and second-last terms of (24) cancel. Similar conditions can
be derived for the Z/r1 and Z/r2 singularities. Equation (26) is known as Kato’s
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Table 5. Principal expansion of the two-electron Darwin energy (in µEh) of the He ground statea,b.

X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8
−23.579 −21.564 −20.605 −20.039 −19.664 −19.397 −19.197

a As a function of numerically optimized cc-pVXZ basis sets53.

b The exact value is − π
c2

〈δ(r12)〉 = −17.791 µEh.
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Figure 5. Coulomb hole of the He ground state. Comparison of the three-parameter Hylleraas
function (33) (upper curve) with the exact wavefunction Ψ(r1, r2, r12) (lower curve) as a function
of the angle θ12 (rad) between the position vectors r1 and r2, with fixed r1 = r2 = 0.5 a0.

electron-electron cusp condition65, which implies that for small r12 the (unnormal-
ized) wavefunction behaves as:

Ψ(r1, r2, r12) = 1 +
1

2
r12 +O(r212). (27)

The cusp is easy to see at the bottom of the Coulomb hole in Figure 3.
A CI expansion in orbital products cannot reproduce this electron-electron cusp,

as can be seen in Figure 4. At the bottom of the Coulomb hole of standard CI wave-
functions, there is no cusp as the first derivative is zero. Moreover, the convergence
to the exact bottom of the Coulomb hole is extremely slow, as illustrated by the
convergence of the expectation value 〈δ(r12)〉, which is nothing but an integral over
configuration space of the bottom of the Coulomb hole. This expectation value is
related to the relativistic two-electron Darwin energy as:

Etwo−electron Darwin = − π
c2
〈δ(r12)〉, (28)

and this two-electron Darwin energy is displayed in Table 5 as a function of the car-
dinal number of numerically optimized cc-pVXZ basis sets. Interestingly, the two-
electron Darwin term appears to converge as X−1.53 Thus, whereas the Coulomb
hole itself converges as X−1, its consequence for the correlation energy is that the
latter converges as X−3.
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Hylleraas proposed to expand the He ground-state wavefunction as:

ΨN = exp(−ζs)
N∑

i=1

cis
lit2miuni , (29)

with:

s = r1 + r2, t = r1 − r2, u = r12. (30)

The first function studied by Hylleraas was the 3-term function:

Ψ3 = exp(−ζs)(c1 + c2u+ c3t
2), (31)

and the variationally determined energy for this function was E = −2.902 43 Eh for
ζ = 1.816. Hylleraas furthermore reported that he had spent considerable effort to
find the next most important terms in the expansion (29). He ended up with the
6-term function:

Ψ6 = exp(−ζs)(c1 + c2u+ c3t
2 + c4s+ c5s

2 + c6u
2), (32)

leading to the energy E = −2.903 33 Eh for ζ = 1.756.
It is truly amazing how accurate these compact wavefunctions are. Let us for

example consider the 3-term function in more detail:

Ψ3(r1, r2, r12) = 1.331 e−1.816(r1+r2)
[
1 + 0.292 r12 + 0.131 (r1 − r2)2

]
. (33)

When we plot this wavefunction as a function of the angle between the position
vectors r1 and r2, keeping the electrons fixed at a distance of 0.5 a0 from the nucleus,
we see that it already closely resembles the exact wavefunction (cf. Figure 5). In
this plot, as r1 and r2 are constant, the function takes the form:

Ψ3(0.5, 0.5, r12) = 0.2165 (1 + 0.292 r12), (34)

that is, it has only one term linear in r12. When comparing it with the standard CI
wavefunctions in Figure 4, one is tempted to conclude that the 3-term Hylleraas-
function is of an accuracy comparable to that of a cc-pVQZ- or cc-pV5Z/CI wave-
function. Indeed, the two-electron Darwin energy computed from the 3-term wave-
function amounts to −19.427 µEh. This value is practically identical to the CI
value (−19.397 µEh) obtained with the fully optimized cc-pV7Z basis set! The
correlation contribution from the 6-term Hylleraas-function is −18.732 µEh. We
can represent the two-electron Darwin energy as:

Etwo−electron Darwin(X)/µEh = −17.791− 11.25/X, (35)

and thus, this 6-term value corresponds roughly to the X = 12 level.

5 Many-electron systems

For two-electron systems, the inclusion of r12 into the electronic wavefunction is
not too difficult. The situation is different for many-electron systems, however.
Hylleraas coordinates have been used in calculations on atoms with up to four
electrons66,67, but it is almost impossible to perform any useful calculations with
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these coordinates on molecules with more than two electrons. This is very unfor-
tunate because the Hylleraas expansion is in principle very rapidly convergent.

The very difficult many-electron many-center integrals are the reason why many-
electron molecular calculations with Hylleraas coordinates are too complicated to
be practical. In the remaining part of the present lecture, we will be concerned
with the auxiliary techniques that are utilized to avoid the very difficult many-
electron many-center integrals, thereby providing new opportunities for accurate
calculations of molecular electronic structure.

6 Second quantization

We use the following notation for one- and many-electron functions:

Ψ, ΨN , . . . n-electron wavefunctions,

Φ, Φk, |Φ〉, |Φai 〉, |Φabij 〉 . . . Slater determinants,

ϕκ, ϕp . . . orthonormal spin-orbitals,

χq . . . atomic basis functions.

Two-electron Slater determinants are also written as:

|ij〉 =
1√
2

{
ϕi(1)ϕj(2)− ϕi(2)ϕj(1)

}
. (36)

We employ a given, finite basis set {ϕp} of one-electron functions in which the
calculations are performed as well as a complete set {ϕκ}, which is used in the
second-quantization formalism. Orbital indices are used as follows:

i, j, k, . . . occupied spin-orbitals,

a, b, c, . . . virtual spin-orbitals within the given basis set,

p, q, r, . . . arbitrary spin-orbitals within the given basis set,

α, β, γ, . . . virtual spin-orbitals within a complete basis set,

κ, λ, µ, . . . arbitrary spin-orbitals that form a complete basis set.

This convention is illustrated in Figure 6. Antisymmetrized integrals and replace-
ment operator amplitudes are written in tensor form68−70:

Xq
p = 〈p|X |q〉, Ȳ pqrs = 〈rs|Y |pq〉, (37)

assuming the Einstein summation convention over repeated indices. In the second-
quantization particle-hole formalism, the closed-shell reference state |Φ〉 is taken as
the physical vacuum and the Hamiltonian is shifted by the reference energy. With
g = r−1

12 and h the usual one-electron Hamiltonian, the normal-ordered Hamiltonian
can be written as:

HN = H − 〈Φ|H |Φ〉 = FN +WN , (38)

FN = fλκ ã
κ
λ, fλκ = hλκ + ḡλiκi , WN = 1

4 ḡ
µν
κλã

κλ
µν , (39)

in terms of the orthonormal one-electron basis {ϕκ}. Greek letters emphasize that
the second-quantized Hamiltonian is exact only if it is defined in terms of a complete
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κ, λ, . . .







i, j, . . .

α, β, . . .







i, j, . . .

a, b, . . .







p, q, . . .

occupied orbitals

virtual orbitals

within the finite basis

orbitals not contained

in the finite basis

Figure 6. Illustration of the spaces spanned by the one-particle basis functions: i, j, · · · = occu-
pied spin-orbitals, a, b, · · · = non-occupied spin-orbitals contained in the finite basis, α, β, · · · =
complete set of virtuals, p, q, · · · = arbitrary spin-orbital contained in the finite basis, κ, λ, · · · =
complete basis set.

basis set. The ãκλ and ãκλνµ are replacement operators in normal order, defined with
respect to |Φ > according to:

ãq1q2...qn
p1p2...pn

= (ãp1p2...pn
q1q2...qn

)† = {a†q1a†q2 . . . a†qn
apn

. . . ap2ap1}, (40)

where a†q and ap are creation and annihilation operators, respectively. The braces
in (40) denote the normal-ordering with respect to the physical vacuum, while the
counterparts of (40) without a tilde refer to the genuine vacuum. The multiplicative
first-quantized operator r =

∑

i<j rij of the interelectronic coordinates can thus be
written in the second-quantization form:

r = 1
4 r̄
µν
κλa

κλ
µν . (41)

If |Φ〉 is the Hartree-Fock reference, the fλκ ’s in (39) are elements of the Fock matrix.
In terms of canonical orbitals this matrix is diagonal – that is, fλκ=δλκελ.

7 Explicitly correlated coupled-cluster doubles model

In single-reference coupled-cluster doubles (CCD) theory, the wavefunction is writ-
ten in the exponential form:

|Ψ〉 = eS |Φ〉, (42)

where |Φ〉 is the Hartree-Fock determinant and S the cluster operator, which in
this special case is restricted to all double replacements:

S ≡ T2 = 1
4 t
ij
aba

ab
ij . (43)

The energy and the amplitudes are determined by:

E = 〈Φ|H̃S |Φ〉, H̃S = e−SHeS , (44)
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〈
(
∂SΦ

∂tijab

)

|H̃S |Φ〉 = 0. (45)

Jeziorski et al.71 have formulated a first-quantization form of the CCD equations
where the pair functions are not expressed in terms of double replacements – as in
the orbital approximation – but as expansions in Gaussian geminals. In the original
derivation of the theory, they have employed a spin-adapted formulation in terms of
singlet and triplet pairs but we will discuss the theory in a spin-orbital formalism.

In the first-quantization formulation, the cluster operator is written as a sum of
two-electron operators:

T2 =
∑

µ<ν

t(µν), t(12) =
∑

i<j

|τij〉〈ij|. (46)

For each pair of occupied spin-orbitals there is one pair function |τij〉, which is
determined by solving the coupled CCD equations for all pairs simultaneously.
In conventional CCD theory, that is, in the orbital approximation, each |τij〉 is
expanded as:

|τij〉 =
∑

a<b

tijab |ab〉, (47)

but Szalewicz et al.72−85 expand the pair function in a basis of (Gaussian) geminals:

|τij〉 =
∑

kij

ckij
Qocc(12)A

{
Θkij

(12)Gkij
(12)

}
. (48)

The notation with kij indicates that both the expansion length and the geminals
themselves can be chosen individually for each pair of occupied orbitals. Θkij

(12)
is a proper spin function and the projection operator:

Qocc(12) =
{

1− Pocc(1)
}{

1− Pocc(2)
}
, Pocc =

∑

i

|ϕi〉〈ϕi| (49)

ensures that the |τij〉’s satisfy the strong-orthogonality condition:

|τij〉 = Qocc(12) |τij〉. (50)

Obviously, the amplitudes are obtained from:

〈
(
∂SΦ

∂ckij

)

|H̃S |Φ〉 = 0. (51)

A second-quantization formulation can be used if a complete basis set is introduced
formally (cf. Section 6). This is convenient for the discussion of the various many-
electron integrals that appear when geminals are employed in the framework of
CCD theory. In particular, up to four-electron integrals occur in the MP2, MP3,
LCCD (linearized coupled-cluster doubles), and FCCD (factorizable coupled-cluster
doubles) approaches. The complete CCD equations involve five-electron integrals
and the FCCD approximation to CCD consists of ignoring the (nonfactorizable)
terms or diagrams that involve these five-electron integrals.
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Using the complete basis set notation, the cluster operator can be written as:

T2 = 1
4c
ij
kij
Ḡ
kij

αβa
αβ
ij , cijkij

≡ ckij
(52)

where:

Ḡ
kij

αβ = 〈αβ|A
{

Θkij
(12)Gkij

(12)
}
〉. (53)

Ḡ
kij

αβ is the two-electron overlap between two virtual orbitals and a geminal. Note
that the projection operator Qocc(12) is not needed in (53) by virtue of 〈αβ|. The
CCD energy and amplitude equations can be written schematically as86:

E = 1
2A

kij

ij c
ij
kij
, (54)

Aijkij
+ (L1)ijkij

+ (L2)ijkij
+Qijkij

= 0, (55)

where A, L, and Q represent the absolute, linear, and quadratic terms, respectively.
The absolute term takes the following form:

Aijkij
= 〈
(
∂SΦ

∂cijkij

)

|WN |Φ〉 = 1
2 Ḡ

αβ
kij
ḡijαβ = 〈A

{
Θkij

(12)Gkij
(12)

}
|Qocc(12)

1

r12
|ij〉.

(56)
This term contains three-electron integrals due to the strong-orthogonality projec-
tor Qocc(12), for example:

〈Gkij
(12)||ϕm(1)〉〈ϕm(1)| 1

r12
|ϕi(1)ϕj(2)〉 = 〈Gkij

(12)ϕm(3)| 1

r32
|ϕm(1)ϕj(2)ϕi(3)〉.

(57)
Using the two-index antisymmetrizer Aij = 1− (i↔ j), the first of the two linear
terms is:

(L1)ijkij
= 〈
(
∂SΦ

∂cijkij

)

|[FN , S]|Φ〉

= 1
2 Ḡ

αβ
kij

(

AαβfγαḠ
lij

γβc
ij
lij
−Aijf ikḠ

lkj

αβc
kj
lkj

)

. (58)

The term involving the f ik elements of the Fock matrix is related to the overlap
matrix of the geminals and involves three-electron integrals. The other term, how-
ever, is more complicated. After realizing that fγα = hγα + ḡγiαi it becomes clear that
it contains four-electron integrals. Note that this term also occurs in MP2 theory.
The second linear term is:

(L2)ijkij
= 〈
(
∂SΦ

∂cijkij

)

|[WN , S]|Φ〉

= 1
2 Ḡ

αβ
kij

(

1
2 ḡ
γδ
αβḠ

lij

γδc
ij
lij

+ 1
2 ḡ
ij
klḠ

lkl

αβc
kl
lkl

+AαβAij ḡiγαkḠ
ljk

βγ c
jk
ljk

)

. (59)
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The three distinct terms (or diagrams) contain four-electron, three-electron, and
four-electron integrals, in the order of appearance. Finally, the quadratic term is:

Qijkij
= 1

2 〈
(
∂SΦ

∂cijkij

)

|[[WN , S], S]|Φ〉

= 1
2 Ḡ

αβ
kij

(

AαβḠlik
αγc

ik
lik
Ḡ
ljl

βδc
jl
ljl

+ 1
2AαβḠ

lij

αδc
ij
lij
Ḡlkl

βγc
kl
lkl

+ 1
2AijḠ

lil

αβc
il
lil
Ḡ
ljk

γδ c
jk
ljk

+ 1
4 Ḡ

lij

γδc
ij
lij
Ḡlkl

αβc
kl
lkl

)

ḡγδkl . (60)

The last two terms in (60) factorize into products of three-electron integrals, but
the first two terms involve five-electron integrals. However, these terms are ignored
in the FCCD approximation (the whole quadratic term is, of course, absent in the
LCCD approach). For not too large systems, it is believed that this nonfactorizable
term is small and can be neglected.

Clearly, the computation of four- and five-electron integrals is a serious obstacle
for large-scale applications on molecules of the geminals-based CCD approach.

Szalewicz and co-workers72−75 have developed alternative approaches that in-
volve only three-electron integrals at the MP2, MP3, LCCD, and FCCD levels
(and four-electron integrals at the complete CCD level) by introducing new com-
putational techniques. The techniques have been designated as weak orthogonality
(WO), super weak orthogonality (SWO), and SWO plus projection (SWOP), and
the techniques are sketched in the following section.

8 Weak orthogonality techniques

In order to illustrate the simplifications introduced by Szalewicz et al.72−75 it is
convenient to define an iterative CCD procedure by rewriting (55) as:

−(L1)ijkij
= Aijkij

+ (L2)ijkij
+Qijkij

≡ 1
2 Ḡ

αβ
kij
V ijαβ (61)

The meaning of V is easily recognized in (56), (59), and (60). Using canonical
Hartree-Fock orbitals, the iterative process takes the form:

− 1
2 Ḡ

αβ
kij

(

fγαḠ
lij

γβ + fγβ Ḡ
lij
αγ − (εi + εj)Ḡ

lij

αβ

)

cijlij

[n+1]
= 1

2 Ḡ
αβ
kij
V ijαβ(c[n]). (62)

The first simplification (WO) is achieved by replacing the l.h.s of (62) by an
analogous expression without strong-orthogonality projector, that is72:

− 1
2 Ḡ

κλ
kij

(

f̃µκ Ḡ
lij

µλ + f̃µλ Ḡ
lij
κµ − (εi + εj)Ḡ

lij

κλ

)

cijlij

[n+1]
= 1

2 Ḡ
αβ
kij
V ijαβ(c[n]), (63)

which eliminates the four-electron integrals in L1. The operator f̃ is defined as:

f̃(1) = f(1) + ∆ijPocc(1), (64)

with:

∆ij = 1
2 (εi + εj)− εmin + η, (65)
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where εmin is the lowest eigenvalue and η a positive parameter (note that the op-
erator f̃(1) depends on the electron pair ij). Some improved WO functionals are
proposed and described in the more recent literature76,82. The second approxima-
tion (SWO) is concerned with the r.h.s. of 62, which is replaced by:

− 1
2 Ḡ

κλ
kij

(

f̃µκ Ḡ
lij

µλ + f̃µλ Ḡ
lij
κµ − (εi + εj)Ḡ

lij

κλ

)

cijlij

[n+1]

= 1
2

(

Ḡκλkij
V ijκλ(c[n])− Ḡmnkij

V ijmn(c[n])

)

. (66)

The third simplification (SWOP) consists of re-expanding after each CCD it-
eration the strongly orthogonalized pair functions in the corresponding basis of
geminals by solving the set of linear equations75:

Ḡκλmij
Ḡ
kij

κλ c̃
ij
kij

[n]
= Gαβmij

Ḡ
lij

αβ c
ij
lij

[n]
. (67)

The amplitudes c̃[n] are inserted into a modified iterative process:

− 1
2 Ḡ

κλ
kij

(

f̃µκ Ḡ
lij

µλ + f̃µλ Ḡ
lij
κµ − (εi + εj)Ḡ

lij

κλ

)

cijlij

[n+1]

= 1
2

(

Ḡκλkij
Ṽ ijκλ(c̃[n])− Ḡmnkij

Ṽ ijmn(c̃[n])

)

. (68)

Note that this equation contains Ṽ , which is analogous to V but with the strong-
orthogonality projectors removed. In the second-quantization notation, this means
that in Ṽ all α, β, . . . appearing in V are replaced by the indices κ, λ, . . . of the
entire basis. New amplitudes c[n+1] are obtained and subsequently re-expanded
according to (67).

The SWOP-FCCD approach is an approximative CCD method that is dras-
tically less demanding than the corresponding rigorous and complete treatment.
To illustrate this, let the one-particle basis set has dimension M and the geminal
basis dimension K (i.e., the same dimension for all pairs). By inspection of (60)
it becomes clear that the complete CCD approach would require the computation
of M4K3 five-electron integrals. The FCCD method would require M4K2 four-
electron integrals in L1 and L2 if no weak orthogonality techniques were introduced
and only M2K2 (and M4K) three-electron integrals in the SWOP framework.
Hence, MP2 calculations based on the WO functional involve aM2K2 + bM4K
three-electron integrals and so do the LCCD and FCCD methods based on the
SWOP technique. A SWOP-FCCD computation is not substantially more time
consuming than a third-order calculation.

The most elaborate CCD – and partly CCSD – calculations with Gaussian
geminals have been performed on small atomic and diatomic systems such as Be,
LiH, and Ne76. Unfortunately, the geminals-based coupled-cluster approach has
not yet evolved to a widely applicable tool of numerical quantum chemistry, and
not many applications are known. Recently, however, second-order results for H2O
have been reported82.

It is stressed that the WO, SWO, and SWOP techniques are not approximations.
These are different methods to enforce the strong orthogonality, capable of giving
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the exact results provided that the employed geminal basis set is sufficiently large.
If we aim at extremely accurate results, then these techniques are certainly helpful
tools, but their rôle is not clear when we plan to use geminals to compute efficiently
the bulk of dynamical correlation (of the order of 90%).

For more details on the geminals-based CCSD method the reader is referred to
the very recent ans comprehensive overview presented by Bukowski et al.85

9 R12 methods

The R12 methods have first been proposed by Kutzelnigg in 198587. They have
been implemented at various levels of many-body perturbation theory and at the
coupled-cluster level88−93. A detailed description of the coupled-cluster theory
with linear R12 terms has been presented by Noga and Kutzelnigg94, and we will
therefore focus only on the main formulae in the present section. It is also noted
that Gdanitz95,96 has extended the application of R12 methods to the multireference
case.

The CCD-R12 ansatz is:

T2 = 1
8c
ij
klR̄

kl
αβa

αβ
ij + 1

4 t
ij
aba

ab
ij , (69)

with:

R̄klµν = 〈µν|Q(12) r12 |kl〉 = r̄klµν − δqν r̄klµq − δpµr̄klpν + 1
2∆pq

µν r̄
kl
pq, (70)

where:

∆µν
κλ = δµκδ

ν
λ − δµλδνκ (71)

and:

Q(12) = {1− P (1)}{1− P (2)}, P =
∑

p

|ϕp〉〈ϕp|. (72)

The use of the operator R̄ implies that the r12-dependent functions R̄klαβa
αβ
ij |Φ〉 are

strongly orthogonal to all Slater determinants built from orbitals contained in the
finite basis set. This is very convenient. In a first-quantization form97, the ansatz
(69–70) is:

T2 =
∑

µ<ν

t(µν), (73)

t(12) =
∑

i<j

∑

k<l

cijklQ(12) r12 |kl〉〈ij|+
∑

i<j

∑

a<b

tijab |ab〉〈ij|. (74)

There are two coupled sets of amplitude equations, one for the conventional
amplitudes t:

Aijab + (L1)ijab + (L2)ijab +Qijab = 0, (75)

and one for the r12-dependent amplitudes c:

Aijkl + (L1)ijkl + (L2)ijkl +Qijkl = 0, (76)
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while the energy is given by:

E = 1
4 (Aklij c

ij
kl +Aabij t

ij
ab). (77)

Here and in the following, it is understood that the A, L1, L2, and Q terms refer to
the amplitude equations determining the r12-dependent amplitudes c if all four sub-
and superscripts are indices of occupied orbitals and to the equations determining
the conventional amplitudes t otherwise.

The absolute terms take the form:

Aijab = 〈
(
∂SΦ

∂tijab

)

|WN |Φ〉 = ḡijab, (78)

Aijkl = 〈
(
∂SΦ

∂cijkl

)

|WN |Φ〉 = 1
2 R̄

αβ
kl ḡ

ij
αβ . (79)

Application of the standard approximation70 to (79) gives:

1
2 R̄

αβ
kl ḡ

ij
αβ = 1

2

(

r̄κλkl ḡ
ij
κλ − r̄

pλ
kl ḡ

ij
pλ − r̄

κq
kl ḡ

ij
κq + r̄pqkl ḡ

ij
pq

)

≈ ∆ij
kl − 1

2 r̄
pq
kl ḡ

ij
pq, (80)

which only involves two-electron integrals over the operators r12 and r−1
12 .

The L1 terms are

(L1)ijab = 〈
(
∂SΦ

∂tijab

)

|[FN , S]|Φ〉 = Aabf catijcb −Aijf ikt
kj
ab, (81)

(L1)ijkl = 〈
(
∂SΦ

∂cijkl

)

|[FN , S]|Φ〉

= 1
2 R̄

αβ
kl

(

AαβfγαR̄mnγβ cijmn −Aijf ioR̄mnαβ cojmn
)

. (82)

There is no coupling between the conventional and r12-dependent L1 terms by virtue
of the strongly orthogonal R̄. Since MP2-R12 theory is obtained by removing the
L2 and Q terms from (75) and (76), this level of theory is exactly decoupled98, that
is, the MP2-R12 energy is a sum of the conventional MP2 energy and a contribution
from the r12-dependent terms. Therefore, this r12-dependent contribution has been
denoted in previous work as “basis set incompleteness correction”, as it represents
a contribution that is computed independently and added to the conventional MP2
energy. The latter is computed as usual in the prescribed basis.

A coupling between the conventional and r12-dependent amplitudes appears for
the first time in the L2 terms:

(L2)ijab = 1
2 ḡ
ij
klt

kl
ab + 1

2 ḡ
cd
abt

ij
cd +AijAabḡicaktjkbc + 1

4 ḡ
γδ
ab R̄

kl
γδc

ij
kl. (83)

Introducing the amplitude-free intermediate:

V̄ klab = 1
2 ḡ
γδ
ab R̄

kl
γδ = 1

2 ḡ
κλ
ab R̄

kl
κλ ≈ − 1

2g
pq
ab r̄

kl
pq, (84)

this term can be evaluated in a straightforward manner as:

(L2)ijab = 1
2 ḡ
ij
klt

kl
ab + 1

2 ḡ
cd
abt

ij
cd +AijAabḡakic tbcjk + 1

2 V̄
kl
ab c

ij
kl. (85)
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In terms of the effective interactions P̄ , X̄, and Z̄, the r12-dependent L2 amplitude
equation can be written as:

(L2)ijkl = 1
2

{

(V̄ †)abkl t
ij
ab + P̄ oo

′

kl c
ij
oo′ + 1

2X̄
oo′

kl c̄
mn
oo′ ḡ

ij
mn −AijZ̄oo

′;i
kl;mc

mj
oo′

}

. (86)

The X̄ and P̄ intermediates are easily computed in the standard approximation:

X̄ ij
kl ≈ (r2)

ij

kl − 1
2 r̄
pq
kl r̄

ij
pq, P oo

′

kl ≈ 1
4 r̄
rs
kl ḡ

pq
rs r̄

oo′

pq − r̄oo
′

kl . (87)

The effective interaction Z̄oo
′;i

kl;m is, however, more complicated. Its evaluation has

been discussed in detail by Noga and Kutzelnigg94 in the Appendix F of their paper.
Intermediates of the type Z̄kl;ikl;m already appeared in the early MP3, CID, and

LCCD calculations based on the former, non-orbital-invariant ansatz99. In these
calculations, the evaluation of the Z̄ term was performed according this Appendix
F94:

Z̄kl;qij;p = R̄αβij ḡ
qγ
pβR̄

kl
αγ ≈ R̄αβij gqγpβR̄klαγ = R̄µνij g

qλ
pν R̄

kl
µλ

≈ R̄µνij g
qλ
pν r̄

kl
µλ + r̄µνij g

qλ
pν R̄

kl
µλ − r̄µνij gqλpν r̄klµλ + r̄rsij g

qt
psr̄

kl
rt

≈ Aijgqrpi Ȳ klrj +Aklgqkpr Ȳ rlij + r̄rsij g
qt
psr̄

kl
rt, (88)

where:

Ȳ rspq = X̄rs
pq − 1

2 (r2)
rs

pq. (89)

The quadratic term to the conventional doubles amplitude equation is:

Qijab =

[

Aab(tikactjlbd + 1
2 t
ij
adt

kl
bc) + 1

2Aijtilabt
jk
cd + 1

4 t
ij
cdt

kl
ab

]

ḡcdkl

+ 1
2AijtilabV̄ mnkl cjkmn + 1

4 t
kl
abV̄

mn
kl cijmn, (90)

where:

V̄ mnkl = 1
2 ḡ
αβ
kl R̄

mn
αβ ≈ ∆mn

kl − 1
2 ḡ
oo′

kl r̄
mn
oo′ . (91)

The quadratic term to the r12 amplitude equation is:

Qijkl = 1
8 R̄

αβ
kl Aαβ

(

cinmm′R̄mm
′

αγ R̄oo
′

βδ c
jn′

oo′ + 1
2c
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mm′R̄
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αδ R̄oo
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βγ c
nn′
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)

ḡγδnn′

+ 1
4AijX̄oo′
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(
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+ 1
8X̄
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kl c
mm′

oo′

(
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′

mm′c
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nn′ + ḡcdmm′t

ij
cd
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, (92)

which by virtue of the standard approximation, that is, by inserting the resolution
of the identity, simplifies to:

Qijkl ≈ 1
4AijX̄oo′

kl c
im′

oo′

(

V̄ nn
′

mm′c
jm
nn′ + ḡcdmm′t

jm
cd

)

+ 1
8X̄

oo′

kl c
mm′

oo′

(

V̄ nn
′

mm′c
ij
nn′ + ḡcdmm′t

ij
cd

)

. (93)
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The terms that vanish due to the standard approximation are the nonfactorizable
Q-term diagrams that involve five-electron integrals. Hence, the FCCD-R12 and
CCD-R12 methods do not differ in their r12 parts but only in the conventional
nonfactorizable quadratic terms.

The reader is referred to recent reviews of R12 theory for further details23,100.

9.1 Expansion of r12 in terms of Gaussian geminals

Persson and Taylor101 have suggested to expand the linear r12 terms in a basis of
Gaussian geminals. The linear r12 terms introduced in the preceding section can
subsequently be replaced by this expansion, with the advantage that the many-
electron integrals become tractable. Persson and Taylor studied fits of the type:

r12 ≈
N∑

v=1

bv

[

1− exp(−γvr212)

]

≡ s(12), (94)

where the notation s(12) has been introduced to highlight the fact that the r.h.s of
(94) is some particular multiplicative two-electron operator. Hence, the theory of
explicitly correlated wavefunctions with terms linear in r12 can be used with no or
minor modifications by replacing the ansatz (69) by:

T2 = 1
8c
ij
klS̄

kl
αβa

αβ
ij + 1

4 t
ij
aba

ab
ij , (95)

where:

S̄klµν = 〈µν|Q(12) s(12) |kl〉. (96)

The analogy with fitting Slater-type orbitals (STO) as expansions in Gaussian
orbitals is obvious. As for the STO-fits, the main objective of the present approach
is to simplify (or make possible) the evaluation of many-electron integrals. Persson
and Taylor investigated even-tempered sets of Gaussian geminals of the type γv =
aN 3v−1 and obtained very satisfying exponentionally weighted linear least-squares
fits of r12 with six (a6 = 0.111111) or nine terms (a9 = 0.037037) by minimizing:

χ2 =

∫ ∞

0

e−2x

[

x−
N∑

v=1

bv(1− e−γvx
2

)

]2

dx. (97)

(Actually, Persson and Taylor did not integrate from 0 to∞, but over a preselected
range, for example from 0 to 2, 5, 10, or 15 a0.) The corresponding fits are shown in
Figure 7. Clearly, these expansions will approach a constant value for r12 →∞, but
this does not matter since the purpose of the terms is to describe the short-range
correlation effects for small r12. For large interelectronic distances, a constant or
linearly growing r12 term is in fact not desirable and in this respect the correlating
functions s(12) are not necessarily inferiour to the linear r12 terms. Although
the expansions do not describe the cusp for r12 = 0 (which can not be seen in
Figure 7 on the present scale), it has been observed that electron correlation effects
are very effectively recovered by these functions101. The expansion in Gaussian
geminals might perhaps not – or not so efficiently – speed up the convergence in
the asymptotic region where the objective is the compute 99% of the correlation
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Figure 7. Fits of r12 as expansions in terms of six and nine even-tempered Gaussian geminals.

energy or more, but appears to recover a significant part of the correlation energy
when used with small or medium-sized basis sets (i.e., basis sets that recover roughly
70–80% of the correlation energy).

Furthermore, it was realized that the even-tempered basis of Gaussian-type
geminals could also be applied in the uncontracted form:

T2 = 1
8

N∑

v=1

(cv)
ij
kl

¯(Sv)
kl

αβa
αβ
ij + 1

4 t
ij
aba

ab
ij , (98)

where:

¯(Sv)
kl

µν = 〈µν|Q(12) exp(−γvr212) |kl〉. (99)

Some initial calculations were performed on He, and it was observed that the varia-
tionally determined linear parameters for the Gaussian geminals in (98) were quite
similar to the coefficients obtained from the fitting procedure. Results for Ne and
H2O obtained from this (uncontracted) ansatz are presented in Table 6. For the
practical calculations in Table 6, the sum over ij and kl in (98) was restricted to
the diagonal terms where ij = kl while the occupied orbitals in the integral (99)
were expressed in terms of a very small AO basis set (e.g., by one single AO of
the total set). This was done for technical reasons. The results nevertheless show
that augmentation of standard basis sets with a few explicitly correlated Gaussian
geminals improves the percentage of the correlation energy recovered by the basis
set from about 73–85 % to ca. 92–98 %.

If the approximations of the linear R12 theory would be exploited in the Persson-
Taylor geminals approach (which was not done in their work), not much would
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Table 6. MP2(FC) correlation energy (in mEh) for Ne and H2O obtained by Persson and Taylor101

from augmentation of standard orbital basis sets with six Gaussian-type geminals.

Orbital basis + 6 geminals
Basisa Ecorr %b Ecorr %c

Ne cc-pVTZ(uc) −273.1 85.3 −314.0 98.1
H2O cc-pVDZ −219.8 73.1 −277.0 92.1

a Using Cartesian Gaussians.

(uc) denotes a fully uncontracted basis set.

b Percentage of the limiting value of −320.2 mEh.20,102

c Percentage of the limiting value of −300.5 mEh.20

be gained. The many-electron integrals of the linear R12 methods are only of
the two-electron type, and very easy to compute. However, it will certainly be
interesting to further investigate the expansion of r12 in terms of geminals if a
method is developed where all (or some important) many-electron integrals are
computed rigorously. One advantage of this method is that it does not require the
optimization of nonlinear parameters.

10 Explicitly correlated Gaussians

Cencek and Rychlewski103−107 have developed a variational method where the n-
electron wavefunction is expanded in a basis {Φk} of the form:

Φk(12 . . . n) = A
{

Θ(σ1σn . . . σn)PR
[

G0
k(12)

n∏

i>2

g0
k(i)

]}

, (100)

where A is the usual antisymmetrizer, Θ a proper spin function, and PR the sym-
metry projector onto the irreducible representation R of the molecular point group
taking care of the symmetry adaptation. The important point to note is that the
n-electron basis functions contain only one geminal:

G0
k(12) ≡ G0

αk,βk,β̄k,Bk,B̄k
(12) = exp(−αkr212 − βkr21Bk

− β̄kr22B̄k
), (101)

where r12 is the interelectronic distance, r1Bk
is the distance of electron 1 to center

Bk, r2B̄k
is the distance of electron 2 to center B̄k, and αk, βk, and β̄k are Gaussian

exponents (which to some extent are allowed to be negative as long as the function
is square integrable). Thus, one Gaussian geminal contains 9 nonlinear variational
parameters (3 exponents and 6 coordinates).

By the choice (100), the complexity of the many-electron integrals for any n-
electron system is limited to at most four-electron integrals, which can be evaluated
analytically103.

The nonlinear parameters are considered variational parameters in each indi-
vidual Φk and are optimized on the fly. This means that, for a general n-electron
molecular system, an expansion in terms of N basis functions of the type (100)
contains N × (4n+ 1) nonlinear parameters.
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For the systems studied so far, containing up to four electrons, the Cencek-
Rychlewski method has provided variational energies for molecules that are su-
perior to all other variational calculations, including the Ko los-Wolniewicz-type
calculations for H2. This success can be attributed to the rigorous and efficient
optimization of the nonlinear parameters. Note that the Gaussian centers are not
restricted to the positions of the nuclei, but are completely free to float.

Equation (100) is restricted to Gaussian functions with only one single geminal
depending on only one single interparticle distance. In later calculations by the
authors of the ECG method, however, explicitly correlated Gaussians have been
introduced that depend on the interparticle distances of all electrons in the system.
For example, spatial basis functions of the form:

Φk(1 . . . 4) = exp



−
4∑

i=1

αi,k|ri −Ci,k|2 −
3∑

i=1

4∑

j=i+1

βij,kr
2
ij



 (102)

have been employed in calculations on four-electron systems106,107.

11 Similarity transformed Hamiltonians

In about 1969 the “transcorrelated method” of Boys and Handy108−116 appeared
to be an interesting alternative to the standard methods of numerical quantum
chemistry employing explicitly correlated functions. Boys and Handy proposed to
consider the non-Hermitian Hamiltonian:

H̃C = e−CHeC , with C =
∑

i<j

f(ri, rj). (103)

This similarity transformed Hamiltonian only contains three-electron operators,
since the Hausdorff expansion

H̃C = H + [H,C] +
1

2
[[H,C], C] + . . . (104)

breaks off after the double commutator. Introducing the short-hand notation fij ≡
f(ri, rj) and assuming that the correlation factor C is symmetrical (fij = fji), we
find that:

[H,C] = −1

2

∑

i

∑

j 6=i
(∆ifij + 2∇ifij · ∇i), (105)

1

2
[[H,C], C] = −1

2

∑

i

∑

j 6=i

∑

k 6=i
∇ifij · ∇ifik. (106)

The double commutator is a three-electron operator that commutes with C.
As an example of the similarity transformed Hamiltonian, consider the corre-

lating function C = f(r1, r2) = 1
2r12 for the He atom. With this C, it follows

that

[H,C] = − 1

r12
− 1

2

r12

r12
· (∇1 −∇2),

1

2
[[H,C], C] = −1

4
, (107)
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Table 7. He ground state energies from the similarity transformed Hamiltonian.

exp(− 1
2r12)H exp(1

2r12) Configuration Interaction
Basis E/Eh δEa/mEh E/Eh δEa/mEh

11s −3.010 759 3 −107.035 −2.879 009 2 24.715
11s8p −2.904 819 1 −1.095 −2.900 486 5 3.238
11s8p7d −2.904 048 7 −0.324 −2.902 725 3 0.999
11s8p7d6f −2.903 793 4 −0.069 −2.903 262 1 0.462
11s8p7d6f5g −2.903 741 1 −0.017 −2.903 427 2 0.297
11s8p7d6f5g4h −2.903 729 6 −0.005 −2.903 468 2 0.256

a Error with respect to the exact value of E = −2.903 724 377 Eh.117

and the transformed Hamiltonian becomes

H̃C = h1 + h2 −
1

2

r12

r12
· (∇1 −∇2)− 1

4
. (108)

Since the partial-wave expansion of the operator U12 = − 1
2

r12

r12
·(∇1−∇2) converges

rapidly87, good convergence of the computed energy with respect to the maximum
angular momentum quantum number Lmax contained in the basis can be expected.
Some preliminary results from the ansatz

Ψ =
∑

pq

cpqΦpq, Φpq = |ϕp(r1)ϕq(r2)|, (109)

〈 ∂Ψ

∂cpq
|H̃C − E|Ψ〉 = 0, E = 〈Ψ|H̃C |Ψ〉, (110)

are presented in Table 7. The orbitals ϕp were expanded in a Gaussian basis of
the type 11s8p7d6f5g4h, which was derived from the 11s8p6d5f4g3h basis used in
earlier work on the He dimer20. (This 11s8p6d5f4g3h set was augmented with sets
of d-, f-, g-, and h-type functions with exponents 22.841124, 10.566783, 4.95893,
and 2.39464, respectively.) The results of Table 7 look promising, and it seems
worthwhile to reinvestigate the Boys-Handy method (or other explicitly correlated
similarity transformed effective Hamiltonians) in the framework of modern coupled-
cluster theory118. Note that the correlation function exp(C) was only multiplied
with one single determinant in the original Boys-Handy method.

12 MP2-limit corrections

MP2 calculations are computationally less demanding than high-order electron-
correlation treatments such as MP4(SDTQ) perturbation theory or the CCSD(T)
approach. Therefore, it will often be easier to determine the basis-set error at the
MP2 level than at some higher level, and we may ask ourselves whether the MP2
basis-set error could be transferred in an easy way to that higher level.

Suppose we have available the correlation energy or correlation contribution to
some molecular property at a given method/basis level of theory, which we denote
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Figure 8. Equilibrium dissociation energy (De in kJ mol−1) of the H2O dimer in the fixed Halkier
geometry41. The (valence only) unscaled MP2-limit correction is applied to CCSD(T)(FC)/cc-
pVXZ (solid lines) and CCSD(T)(FC)/aug-cc-pVXZ (dashed lines) results. Meaning of the curves:
1 = no-CP, no-MP2-limit; 2 = CP, no-MP2-limit; 3 = no-CP, MP2-limit; 4 = CP, MP2-limit.

as ∆(method/basis), and also the corresponding correlation part at the MP2 level
in a (nearly) complete basis, denoted as ∆(MP2/∞). Then, there are two evident
choices of how to improve the computed ∆(method/basis) data with the known
MP2-limits:

∆(method/∞) ≈ ∆(method/basis)−∆(MP2/basis) + ∆(MP2/∞), (111)

∆(method/∞) ≈ ∆(method/basis)× ∆(MP2/∞)

∆(MP2/basis)
, (112)

that is, we can add the ∆(MP2/basis) to ∆(MP2/∞) increment to the high-order
results or we can scale the high-order results with the ∆(MP2/basis) to ∆(MP2/∞)
ratio.

When the finite basis set is enlarged, the increment (111) will eventually vanish
and the ratio (112) will converge to unity. Thus, in both cases, it is guaranteed
that the improved – that is, the MP2-limit corrected – results will converge to the
true limiting values of the high-order approach.

Figure 8 shows the application of (111) with regard to the interaction energy
between two H2O molecules43. The correction has been applied to two series of
calculations, namely, calculations with the cc-pVXZ sets and with the aug-cc-pVXZ
sets, either with (CP) or without (no-CP) counterpoise correction. It is obvious that
the convergence to the limiting value (20.7±0.1 kJ mol−1 in this case) is significantly
accelerated by the add-on MP2-limit correction (111). The direct addition of the
MP2-limit correction has been applied on several occasions, for example in order
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Figure 9. CCSD(FC) correlation contribution versus MP2(FC) correlation contribution to the
interaction energy (in kJ mol−1) of the H2O dimer in the fixed Halkier geometry41 , as obtained
from a variety of different basis sets125.

to obtain accurate results for the ferrocene molecule, the weak benzene· · · neon and
benzene· · · argon interactions, and the CO2 trimer119−121.

One can argue, however, that the MP2-correlation treatment often overestimates
the all-order correlation effects and that, accordingly, the MP2-limit correction for
the basis-set error is likely to overestimate the true basis-set error of the high-level
method. We have already seen in Section 3.3 that the CBS method utilizes an
interference factor to scale down the MP2 basis-set error that was obtained by ex-
trapolation. Also concerning this issue, Van de Bovenkamp and Van Duijneveldt122

argue that the binding energy of the He dimer as computed by Korona et al.123

(11.06 K) is larger than what is regarded as the limiting value (11.01 K) because Ko-
rona et al. are believed to have incorrectly combined low-order Gaussian-geminals
results with high-order orbital approximations, without taking into account that
the low-order Gaussian-geminals corrections give too large contributions.

In view of these difficulties, Martin has proposed to scale the MP2-limit correc-
tion Q as follows124:

∆(method/∞) ≈ ∆(method/basis) +Q× {∆(MP2/∞)−∆(MP2/basis)} , (113)

where Q is computed from the correlation-energy increments from two basis sets at
both the MP2 level and the high-level method of interest:

Q =
∆(method/basis−∆(method/basis′)

∆(MP2/basis−∆(MP2/basis′)
, basis′ < basis. (114)

Indeed, it seems a reasonable assumption that the ratio of these increments is
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nearly constant for many basis sets beyond some minimum level of accuracy. This
is illustrated in Figure 9 for calculations on the H2O dimer, where CCSD and MP2
correlation contributions to the interaction energy are compared. These correlation
contributions have been obtained with various – but all state-of-the-art – basis
sets125. A nearly linear dependence is found with Q in (113) being the slope of
the straight line in Figure 9. Of course, if the ratio of these increments is indeed
constant, we can also use125:

Q =
∆(method/basis)

∆(MP2/basis)
. (115)

Concerning the H2O dimer, we can estimate from the results displayed in Figure 9
that the limiting CCSD(FC) correlation contribution is likely to amount to −4.89
kJ mol−1 as the valence-only MP2-limit contribution is −5.78 kJ mol−1 (cf. Ta-
ble 4). Adding the SCF (−14.78 kJ mol−1) and (T) triples corrections (−1.05
kJ mol−1) then yields a total CCSD(T)(FC) interaction enery of −20.72 kJ mol−1

for the fixed Halkier geometry. Core-correlation effects add −0.14 kJ mol−1 and
geometry-relaxation effects add −0.12 kJ mol−1. Hence, the total equilibrium bind-
ing energy can safely be said to be established to De = 21.0± 0.1 kJ mol−1.125

13 Computational aspects of R12 methods

13.1 Integral-direct implementation

The explicitly correlated methods that rigorously evaluate the many-electron in-
tegrals use Gaussian geminals or explicitly correlated Gaussians. The three- and
four-electron integrals appearing in the variational method of Cencek and Rych-
lewski can be computed in closed form103, while the five-electron integrals appearing
in the geminals-based coupled-cluster method are avoided by means of ignoring the
corresponding non-factorizable diagrams (FCCD approximation). On the whole,
not much is known about the efficient generation of three- and four-electron in-
tegrals over Gaussian geminals, but some aspects are discussed by Persson and
Taylor126.

The many-electron integrals over linear r12-dependent functions are more com-
plicated than the integrals over Gaussian geminals, and unfortunately, optimized
strategies or algorithms for their computation have not been developed. However,
the R12 methods avoid the corresponding three-, four-, and five-electron integrals
by virtue of the standard approximations. What remains in the R12 methods are
two-electron integrals, some of them special integrals appearing only in the R12
methods.

The algorithms used for the R12 computations have been tailored towards large-
scale applications, that is, calculations on molecules with high-quality AO basis
sets.

Since the introduction of the integral-direct implementation of the Hartree-Fock
method by Almlöf et al.127 in 1982, the integral-direct (or semi-direct) techniques
have been refined further and have also been applied to the CCSD level128−130.
Calculations with more than 500 basis functions are possible at this level today.
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The current CCSDT-R12 computer program also employs integral-direct algo-
rithms. In this section, the computational aspects of the implementation that are
specific to the CC-R12 approach will be discussed in detail. The notation of Noga
and Kutzelnigg94 is adopted and it is referred to this paper for definitions of the
intermediates, integrals, and so forth.

This section will be concerned with the following three R12 related computa-
tional tasks: First, the R12 part of the energy, second, the coupling of the R12
functions to the T1 and T2 equations, and third, the equation which determines the
amplitudes of the r12-type double excitations.

Furthermore, it will be assumed that quantities of the order of N2 or possibly
n2N2, where n is the number of occupied orbitals and N is the total number of
orbitals, can be kept in the main memory of the computer and can be computed
by integral-direct schemes that are analogous to the integral-direct MP2 algorithm
(i.e., by an integral-direct partial four-index transformation).

If triple excitations are involved in the method, not only the n2N2 quantities,
but also the two-electron integrals of the type grsiq (∝ nN3) are generated by integral-

direct techniques. However, these nN3 quantities are stored on disk.
The R12 contribution to the total CCSD-R12 correlation energy is represented

by the diagram on Figure 2d of the paper by Noga and Kutzelnigg94. This diagram
is evaluated as:

E = 1
4A

kl
ij c

ij
kl, (116)

where cijkl are the amplitudes of the r12 double replacements, and:

Aijkl ≈ ∆ij
kl −

1

2
r̄pqkl ḡ

ij
pq. (117)

Except for the numerical value of the amplitudes, this energy expression is identi-
cal with the R12 part of the MP2-R12 energy that has been implemented in the
integral-direct SORE program. It is obvious that the n2N2 quantities ḡpqkl and r̄ijpq
can be generated by the integral-direct partial four-index transformation, and that
the n4 intermediates Aijkl can be computed using an in-core algorithm.

Whereas only these n4 intermediates occur in the MP2-R12 method, the higher-
order methods also require (although not for the energy) the n2N2 intermediates:

V̄ ijrs =
1

2
ḡαβrs R̄

ij
αβ ≈ ∆ij

rs −
1

2
ḡpqrs r̄

ij
pq . (118)

These intermediates, which are computed only once and kept in main memory,
are evaluated as follows: In a first step, the r̄ijpq integrals are generated by the
integral-direct partial four-index transformation. In a second step, the product
ḡpqrs r̄

ij
pq is computed in full analogy to the “B-term” of conventional integral-direct

CC implementations128,129:

ΩBaibj = tcdij ḡ
ab
cd . (119)

It is noticed that the integrals r̄ijpq play the role of the amplitudes tcdij that occur in
this B-term.

The new T1 and T2 equations of the CCSD-R12 method are easily obtained
by modifying the established T1 and T2 equations of the traditional CC method
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as well as the well-known intermediates Fmi and Wmnij (for a definition of these
intermediates, see for example Equations (4) and (6) in the paper by Stanton et
al.131. Four minor modifications are required. One must add:

−1

2

∑

kl

∑

m

cimkl V̄
kl
ma to r.h.s. of T1 eq., (120)

1

2

∑

kl

cijkl

(

V̄ klab −
∑

m

tmb V̄
kl
am +

∑

m

tma V̄
kl
bm

)

to r.h.s. of T2 eq., (121)

1

2

∑

kl

∑

n

cinkl V̄
kl
mn to Fmi, (122)

1

2

∑

kl

cijklV̄
kl
mn to Wmnij . (123)

The important observation is that only the n2N2 quantities V̄ ijrs are needed for these
modifications. As discussed before, the V̄ ijrs intermediates are computed employ-
ing integral-direct schemes and stored for later use in the subsequent CCSD-R12
iterations.

For completeness, it is noted that Equation (120) corresponds to diagram d3.15
of the paper by Noga and Kutzelnigg94, whereas Equation (121) is the sum of the
diagrams d4.1 and d4.2. Diagrams d3.16 and d4.5 result from the modified Fmi
intermediate of Equation (122), and diagrams d4.3 and d4.4 can be traced back to
the new Wmnij intermediate of Equation (123).

The equation determining the amplitudes of the r12 double excitations is given
by Equation (III.4) in Table III of the paper by Noga and Kutzelnigg94:

−1

2
B̄mnkl c

ij
mn = −

(

F̄ jm
˜̄X im
kl + F̄ im

˜̄Xmj
kl

)

+ (V̄ †)ijkl +
1

2
Ḡijmn

˜̄Xmn
kl +

1

2
P̄mnkl cijmn

+
1

2
(V̄ †)abkl τ

ij
ab −

1

2

(

Z̄mn;j
kl;o ciomn + Z̄mn;i

kl;o c
oj
mn

)

− 1

2

(

Z̄mn;a
kl;o ciomnt

j
a + Z̄mn;a

kl;o cojmnt
i
a

)

+
1

2
Z̄mn;a
kl;o cijmnt

o
a. (124)

Inspection of the auxiliary quantities94 F̄ , ˜̄X , V̄ , Ḡ, P̄ , and Z̄ reveals that these
intermediates only depend on integrals and/or other auxiliary quantities that carry
at least two occupied indices. Therefore, the constructon and solution of (124)
involves only in-core procedures. Recall that n2N2 quantities are kept or handled
in main memory. For example, consider:

P̄mnkl =
1

4
R̄αβkl ḡ

γδ
αβR̄

mn
γδ ≈ −

1

2
r̄pqkl V̄

mn
pq . (125)

The computation of P̄mnkl is straightforward as soon as the integrals r̄pqkl and V̄ mnpq

are available. The only exception is the computation of:

X̄ ij
rs =

1

2
R̄αβrs R̄

ij
αβ ≈ (r̄2)ijrs −

1

2
r̄pqrs r̄

ij
pq , (126)

which requires a B-term-like procedure analogous to Equation (118). It is noted
that the integral (r̄2)ijrs factorizes into products of one-electron integrals.
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Furthermore, a direct MP2-like partial four-index transformation must be
performed for the two-electron integrals t̄ijpq over the operators [T (1), r12] and
[T (2), r12]. These integrals also occur in the direct MP2-R12 program SORE. No-
tice that the SORE program is based on standard approximation A, which does not
involve the quantities X̄ ij

rs, whereas these quantities are required by the standard
approximation B based MP2-R12/B method.

The integral-direct procedure to generate the R12 specific auxiliary quantities
that are required by the CCSD-R12 method can be summarized as follows: In a
first pass through the two-electron integral generator, the integral-direct partial
four-index transformation is processed to generate the integrals t̄ijpq, r̄

ij
pq , and ḡijpq.

This step corresponds to the MP2-R12/A method as implemented in the SORE

program. In a second pass, the integral-direct algorithm for the B-term is performed
simultaneously with the two-electron integrals over 1/r12 and r12 to obtain the
products ḡrspq r̄

ij
rs and r̄rspq r̄

ij
rs, respectively.

For methods that involve triple excitations, an integral-direct scheme to compute
the integrals grsiq is processed and these integrals are stored on disk along with
appropriate labels. It is noted that in the present CC-R12 implementation the
energy contributions due to triple excitations depend on the R12 basis functions not
explicitly, but only indirectly through the R12 induced changes in the amplitudes
of the conventional single and double excitations.

In each CCSD-R12 or CCSDT-1a-R12 iteration, the two-electron integrals over
1/r12 are recomputed to contribute to the integral-direct part of the conventional
CC equations. On the other hand, all of the R12 part of the CC equations is
computed beforehand, and the computational cost of this part roughly compares
with the computational work of just a few (≈ 6) conventional CC iterations.

Hence, an important computational aspect is the generation of the R12 related
integrals.

13.2 Two-electron integrals

The linear R12 methods require the computation of four types of two-electron
integrals over Cartesian Gaussian functions:

(ab|r−1
12 |cd) =

∫ ∫

ψa(1)ψc(2) r−1
12 ψb(1)ψd(2) dτ1dτ2, (127)

(ab|r12|cd) =

∫ ∫

ψa(1)ψc(2) r12 ψb(1)ψd(2) dτ1dτ2, (128)

(ab|[T1, r12]|cd) =

∫ ∫

ψa(1)ψc(2) [T1, r12]ψb(1)ψd(2) dτ1dτ2, (129)

(ab|[T2, r12]|cd) =

∫ ∫

ψa(1)ψc(2) [T2, r12]ψb(1)ψd(2) dτ1dτ2. (130)

Ti = − 1
2∆i is the kinetic energy operator (i = 1, 2) and ψa, ψb, . . . are primitive

Cartesian Gaussians with exponents a, b, . . . ,

ψa(1) = ga,A,l(1) = NAx
lx
1Ay

ly
1Az

lz
1A exp(−ar21A). (131)

This function is centered at A, NA is a normalization constant, and xA = x −
Ax, etc. It has been shown shown that the integral (129) can be computed very
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efficiently from the relationship132:

(ab|[T1, r12]|cd) = −
(
a− b
a+ b

)

(ab|r−1
12 |cd)−∇P · ∇R (ab|r12|cd), (132)

where the relative coordinates P and R are defined by:

P =
aA + bB

a+ b
and R = A−B. (133)

The integral (130) can be computed similarly:

(ab|[T2, r12]|cd) = −
(
c− d
c+ d

)

(ab|r−1
12 |cd)−∇Q · ∇S (ab|r12|cd), (134)

where:

Q =
cC + dD

c+ d
and S = C−D. (135)

By expanding the Gaussian charge distributions in Hermite functions:

ψaψb =
∑

tuv

EabtuvΛtuv, (136)

Λtuv(r, p,P) =

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v

exp(−pr2P ), (137)

(with p = a+ b), the integrals can be obtained from:

(ab|r−1
12 |cd) =

∑

t′u′v′

Ecdt′u′v′

∑

tuv

Eabtuv(tuv|r−1
12 |t′u′v′), (138)

(ab|r12|cd) =
∑

t′u′v′

Ecdt′u′v′

∑

tuv

Eabtuv(tuv|r12|t′u′v′). (139)

The integral over [T1, r12] can be computed from:

(ab|[T1, r12]|cd) = −
(
a−b
a+b

)
∑

t′u′v′ E
cd
t′u′v′

∑

tuv E
ab
tuv(tuv|r−1

12 |t′u′v′)

−∑t′u′v′ E
cd
t′u′v′

∑

tuv

{

Eab;xtuv (t+1, uv|r12|t′u′v′) + Eab;ytuv (t, u+1, v|r12|t′u′v′)

+ Eab;ztuv (tu, v+1|r12|t′u′v′)
}

. (140)

Here it was used that:

∂

∂Px
(tuv|r12|t′u′v′) = (t+1, uv|r12|t′u′v′), (141)

Eab;xtuv =
∂

∂Rx
Eabtuv. (142)

The integral [T2, r12] can be computed analogously. By virtue of the change of
variables to relative coordinates, the range of summation over t, u, and v is the
same for all types of integrals. But note that the range of intermediate integrals over
Hermite functions has been increased by one “quantum” due to the differentiation
with respect to Px (Py , Pz) or Qx (Qy, Qz). Furthermore, it has been shown
that the integrals (tuv|r12|t′u′v′) over Hermite functions can be obtained from the
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electron-repulsion integrals (tuv|r−1
12 |t′u′v′) with negligible computational cost132.

As an overall result, the computational effort required for the evaluation of the four
types of two-electron integrals occuring in the R12 methods is roughly equal to four
times the effort for the computation of the usual electron-repulsion integrals alone.

A recent development has been concerned with the computation of the [T1, r12]
and [T2, r12] integrals at a later stage of the four-index transformation of the inte-
grals from the atomic orbital (AO) basis into the orthonormal Hartree-Fock molec-
ular orbital (MO) basis133: It was suggested to exploit the relation:

(ab|[T1, r12]|JQ) = −
(
a−b
a+b

)
∑

tuv E
ab
tuv(tuv|r−1

12 |JQ)

−∑tuv

{

Eab;xtuv (t+1, uv|r12|JQ) + Eab;ytuv (t, u+1, v|r12|JQ)

+Eab;ztuv (tu, v+1|r12|JQ)
}

, (143)

where J and Q are MOs (J occupied, Q arbitrary), and simularly for the integral
(IP |[T2, r12]|cd). In the proposed algorithm, the Hermite integrals are transformed
partially into the MO basis before the final [T1, r12] and [T2, r12] integrals are assem-
bled. Since the number of occupied orbitals is relatively small (i.e., much smaller
than the size of the AO basis), the new scheme based on (143) seems very attractive.
At this point it is noted that the coupled-cluster R12 methods require exactly the
same transformed MO integrals of the type (IP |[T1, r12]|JQ) and (IP |[T2, r12]|JQ),
such that the CC-R12 methods will be improved to the same extent.

The performance of the R12 integral generation and corresponding four-index
transformation is illustrated in Table 8. Shown are the timings for MP2-R12/A
calculations on ferrocene and the permanganate ion. Remember that these MP2-
R12/A calculations implicitly generate the transformed [T (1), r12] and [T (2), r12]
integrals required by the CC-R12 methods, in other words, that the extra work in
CC-R12 calculations compared with conventional coupled-cluster calculations in a
good approximation consists of the computational steps displayed in Table 8. The
computation time needed for the evaluation of the two-electron integrals for the
ferrocene molecule might seem somewhat high: 1100 minutes. This is due to the
fact that four passes through the program were needed as not more than ca. 15
gigabytes of external storage were available for the partially transformed integrals.

In summarizing, it is concluded that interesting applications of the R12 methods
are possible today and will be even more so in the future due to the efficient atomic
orbital driven direct implementations of the two-electron integrals in the MP2-R12
and CC-R12 computer programs.

14 Numerical examples

Today, explicitly correlated calculations can be performed on transition metal com-
pounds. To illustrate that this type of calculations is not confined to small two-
or four-electron systems (ten-electron sytems at the best), Table 9 shows the op-
timized structures of ferrocene (Fe(C5H5)2 or Fe(Cp)2 for short) and the perman-
ganate ion (MnO−

4 ) as obtained from MP2-R12/A calculations. For ferrocene, only
the distance from Fe to the center of mass of the cyclopentadienyl ring was opti-
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Table 8. Performance assessment of the SORE program, obtained from calculations on FeCp2 and
MnO−

4 on a NEC SX-3/24R supercomputer.

FeCp2
a MnO−

4
b

tcpu/minc GFLOPSd tcpu/minc GFLOPSd

Integrals
Evaluation 1100 0.5 53 0.6
Sorting 75 – 5 –
Transformation
1st step 48 3.0 6 3.7
2nd step 41 5.1 7 5.5
3rd step 10 1.3 2 1.3
4th step 20 0.3 2 0.3
Miscellaneouse 97 ≈ 0 10 ≈ 0
Total 1391 0.7 85 1.1

a Exploiting D5d symmetry, correlating 66 electrons, and using 864 basis func-

tions. The calculation required 4 × 12 gigabytes of disk space, the mean

vector length was 176 elements, and the degree of vectorization was 96.4%.

b Exploiting Td symmetry, correlating 40 electrons, and using 520 basis func-

tions. The calculation required 15 gigabytes of disk space, the mean vector

length was 192 elements, and the degree of vectorization was 97.6%.

c Central processor unit (cpu) time in minutes.

d 1 GFLOPS = 1 × 109 floating point operations per second.

e Consists mainly of the computation time required for the computation of

the MP2-R12/A energy. This part of the calculation has not been vectorized.

Table 9. Fe–Cp and Mn–O bond lengths (in pm) of the ferrocene molecule and the permanganate
ion, computed at the basis set limit of second-order perturbation theorya.

Molecule Basis N b ne
c SCF MP2d Experiment

Fe(Cp)2 Fe:16s12p8d6f/ 864 66 187.2 146.8 166.1± 0.4e

C:8s5p4d3f/H:3s2p
58 148.1

MnO−
4 Mn:17s13p10d6f/ 520 40 154.3 158.1 162.9± 0.8f

O:13s9p5d4f

a Obtained from MP2-R12/A (SORE) calculations.

b Number of basis functions.

c Number of electrons correlated.

d K-shells and L-shell of transition metal not correlated.

e Gas-phase bond-distance as reported by Haaland134 .

f Crystal structure of KMnO4 determined by Palenik135.

mized. The basis set for ferrocene is described elsewhere120, while the basis set for
MnO−

4 was derived from the ANO basis sets of Widmark et al.136 and Pou-Amérigo
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Table 10. Bond disruption enthalpy (∆H◦

298 in kJ mol−1) of ferrocene computed from the het-
erolytic dissociation: FeCp2 → Fe2+(5D) + 2Cp−.

CCSD(T) CASPT2 Method/Basis set Na ne
b

3 046 CCSD(T)/TZV2P+fc 373 66
3 117 CASPT2/basis 4c,d 255 58

+42 −42 MP2-R12/A correctione 865 58&66
+8 +38 Other correctionsf

3 096 3 114
−363 −363 ∆E(1I–5D) excitation energy 145

2 733 2 751 Theoretical ∆H◦
298

2 742± 60 Best estimate
2 658± 26 Experimental value146

a Number of contracted basis functions.

b Numer of electrons correlated.

c With respect to the 1I state of Fe2+.

d Basis 4 = Fe:6s5p4d2f/C:4s3p1d/H:2s.

e Using the basis set Fe:16s12p8d6f/C:13s7p4d3f/H:6s2p.

f Semicore 3s3p correlation, vibrational zero-point energy, translational, rotational,

and vibrational thermal energy, structural relaxation, and relativistic corrections.

et al.137 (The spdf part of the primitive 21s15p10d6f4g set for Mn was contracted
to a segmented contraction of the type 17s13p10d6f by contracting the innermost
orbitals. Similarly, the primitive 14s9p4d3f set for O was contracted to a segmented
contraction of the type 11s7p4d3f and diffuse functions (2s2p1d1f) were added to
the latter by geometrical progression.) The results in Table 9 represent the AO
basis set limit results for the SCF and MP2 levels of theory and can be used to
calibrate standard one-particle basis sets for transition metal compounds at the
Hartree-Fock and correlated levels. For example, the present Fe–Cp bond length at
the MP2 level (correlating 66 electrons) is ca. 11 pm shorter than the MP2 value of
158 pm obtained by Park and Almlöf138 – indicating serious basis set deficiencies
in their calculations – while the present limiting value of 148.1 pm (correlating 58
electrons) agrees well with the MP2 result of 148.6 pm obtained by Pierloot et al.139

The benchmark calculations on MnO−
4 were performed to calibrate basis sets

for future theoretical studies of the electronic spectrum. Such studies using den-
sity functional, symmetry-adapted-cluster CI (SAC-CI), and coupled-cluster theory
have been performed by Dickson and Ziegler140, Nakai et al.141,142, and Nooijen143,
respectively. For both ferrocene and permanganate, it is interesting to investigate
how well single-reference based coupled-cluster methods perform despite the well-
known Hartree-Fock failure for these transition metal compounds.

Recent complete active space self-consistent-field (CASSCF), complete active
space second-order perturbation theory (CASPT2), and coupled-cluster calcula-
tions using large Gaussian basis sets were concerned with the molecular structure
and binding energy of ferrocene139,144.

Koch et al.144 determined the equilibrium bond length to RFe−Cp = 166.0 pm,
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in full agreement with the experimental value, and reported the total CCSD(T)
energy of ferrocene obtained from calculations using a large Gaussian basis set
containing 373 contracted basis functions. These authors correlated all 66 valence
electrons.

Pierloot et al.139, using an active space consisting of 10 electrons distributed
among 10 orbitals and a basis set containing 255 functions, obtained a bond length
of RFe−Cp = 164.3 pm at the counterpoise corrected CASPT2 level correlating 58
electrons (i.e., freezing the 3s/3p semicore orbitals of Fe). They also computed the
bond disruption enthalpy from the heterolytic dissociation

FeCp2 → Fe2+(5D) + 2Cp−,

which amounted to 2 628 kJ mol−1 at the CASPT2 level, in good agreement with
the experimental value of 2 658± 26 kJ mol−1.146

MP2-R12/A calculations were performed to obtain insight into the remaining
errors in the CCSD(T) and CASPT2 calculations related to the use of a finite AO
basis set120. These MP2-R12/A calculations were performed with a large Gaus-
sian basis set of the type Fe:16s12p8d6f/C:13s7p4d3f/H:6s2p containing more than
1000 Cartesian Gaussian functions. Furthermore, core and core-valence correlation
effects as well as thermal, vibrational, relativistic, and structural relaxation effects
were studied120.

The results of this study are presented in Table 10. The CCSD(T) and CASPT2
calculations used very different basis sets, and hence, the MP2-R12/A complete ba-
sis set corrections differ largely. However, the two corresponding extrapolations of
the theoretical bond disruption enthalpy are very similar, and the deduced aver-
aged value amounts to 2 742 ± 60 kJ mol−1. This is the currently most accurate
theoretical estimate. The agreement of this estimate with the experimental value is
not satisfactory and the latter is challenged by the ab initio calculations. To resolve
the disagreement in more detail, future studies of the individual heats of formation
of ferrocene, Fe2+, and Cp− are required. Especially for Cp−, the experimental
value might be uncertain.

15 Concluding remark

In the present lecture, we have seen how the poor description of the Coulomb
cusp leads to a very poor basis-set convergence of the orbital approximation to the
electron correlation problem. Wavefunctions with explicit depence on the inter-
electronic coordinates rij help to overcome the poor convergence. One can add the
rij -dependent terms to the wavefunction or transform the Hamiltonian accordingly.

There are, still, a few more approaches that aim at quantitatively correct com-
putations of electron correlation effects. One could for example employ quantum
Monte Carlo methods147 or integrate the correlation energy functional with the
Hartree-Fock density if that functional were known to high accuracy148. Another
set of techniques, including extrapolation, scaling, and empirical corrections can be
found among the Gn (n = 1, 2, 3) family of methods149. Cf. the paper by Curtiss
et al.149 for more references. We have not discussed these alternative methods as
the focus of the present lecture was on R12 methods and Gaussian geminals.
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This article reviews classical and recent direct methods for computing eigenvalues
and eigenvectors of symmetric full or banded matrices. The ideas underlying the
methods are presented, and the properties of the algorithms with respect to ac-
curacy and performance are discussed. Finally, pointers to relevant software are
given.

This article reviews classical, as well as recent state-of-the-art, direct solvers for
standard and generalized symmetric eigenvalue problems. In Section 1 we explain
what direct solvers for symmetric eigenvalue problems are. Section 2 describes
what we may reasonably expect from an eigenvalue solver in terms of accuracy and
how algorithms should be structured in order to minimize the computing time, and
introduces two basic tools on which most eigensolvers are based, namely similarity
transformations and deflation. For accuracy reasons, orthogonal transformations
should be used whenever possible. Some simple orthogonal transformations are
discussed in Section 3.

Most eigenvalue solvers work in two phases: First the matrix is reduced to tridi-
agonal form and then the eigenvalue problem for the tridiagonal matrix is solved.
Algorithms for these two phases are discussed in Sections 4 and 5, respectively,
whereas Section 6 reviews algorithms that do not rely on an initial reduction. A
synopsis of the available algorithms is given in Section 7. The methods presented
here also carry over to complex Hermitean matrices. For simplicity we will focus
on the real case. Finally, Section 8 points to relevant software.

1 Setting the Stage

After introducing some notational conventions, this section recalls the symmetric
standard and generalized eigenvalue problems and points out the differences be-
tween direct and iterative eigenvalue solvers.

1.1 Some Notation

Throughout this article, matrices are denoted by uppercase letters A,B, . . ., and
the (i, j) entry of A is referred to as A(i, j). Analogously, lowercase letters x,y, . . .
stand for (column) vectors with entries x(i), whereas greek letters α, β, . . . denote
scalars. Unless explicitly stated otherwise, all matrices are n-by-n and all vectors
have length n.

I is the identity matrix (with entries I(i, j) = 1 if i = j and I(i, j) = 0 otherwise),
and 0 is the matrix with all entries equal to zero. For any matrix A ∈ R

m×n ,
A⊤ ∈ Rn×m denotes the transpose of A, i.e., A⊤(i, j) = A(j, i) for all i, j. A square
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matrix A is symmetric if A⊤ = A.

1.2 The Symmetric Eigenvalue Problem

The symmetric (standard) eigenvalue problem consists of computing all or selected
eigenvalues and associated eigenvectors of a symmetric matrix A ∈ R

n×n , that is,
scalars λi and vectors qi 6= 0 satisfying

A · qi = qi · λi . (1)

The eigenvalues of A are just the n roots (counting multiplicity) of its characteristic
polynomial p(λ) = det(A− λI). (It is tempting to use this property for computing
the eigenvalues: First determine the coefficients of the characteristic polynomial
and then its roots. However, this method cannot be recommended because it gives
highly inaccurate results.)

A pair (λi,qi) satisfying Eq. (1) is called an eigenpair of A, and the set of all
eigenvalues is called the spectrum, spec(A). For symmetric matrices all eigenvalues
are real, and there exists a complete set of n mutually orthogonal, normalized
(orthonormal, for brevity) real eigenvectors:

q⊤
i qj = 0 for i 6= j and q⊤

i qi = 1 for i = 1, . . . , n .

Together with Eq. (1) this implies that A has an eigendecomposition

A = QΛQ⊤ , (2)

where Q = (q1 | . . . |qn ) ∈ Rn×n is an orthogonal matrix (i.e., Q⊤Q = I), and

Λ = diag(λ1, . . . , λn) :=






λ1

. . .

λn




 .

By convention the eigenvalues are numbered ascendingly, that is, λ1 ≤ . . . ≤ λn.
Not all applications require computing the full eigendecomposition. Sometimes

if suffices to compute only the eigenvalues, sometimes only selected eigenpairs are
needed (e.g., eigenpairs for all non-negative eigenvalues or for the 100 largest eigen-
values), etc.

In the symmetric generalized eigenvalue problem one wants to compute eigen-
pairs (λi,qi) satisfying

A · qi = B · qi · λi ,

where B is another symmetric matrix. In the generalized case the eigenvectors need
not be mutually orthogonal. In most applications B is also positive definite (i.e.,
z⊤Bz > 0 for all z 6= 0 or, equivalently, all eigenvalues of B are positive). In our
treatment of the generalized problem we will focus on this case.

232



1.3 Direct and Iterative Eigensolvers

For the solution of linear systems we can choose between direct methods like Gaus-
sian elimination, which give the solution after a fixed number of operations, and
iterative solvers like the conjugate gradients method, which produce a sequence of
increasingly accurate approximations to the solution. Iterative solvers terminate as
soon as the required precision is attained and can thus lead to considerable savings
in operations (and in memory as well).

By contrast, a result from Galois theory implies that there can be no algorithm
that computes the eigenvalues of every matrix in a finite number of operations
(additions, subtractions, multiplications, divisions, roots of any order). Thus, every
eigensolver must have an iterative component.

Nevertheless some of the methods are called direct solvers. As with linear sys-
tems, direct eigensolvers transform the matrix to obtain the eigensystem, whereas
(purely) iterative solvers work with the original matrix and try to extract selected
eigenvalues and eigenvectors from appropriate low-dimensional subspaces of Rn .
Direct solvers are the methods of choice to compute a significant portion of the
eigendecomposition for small to medium-sized matrices (n . 5000, say), while it-
erative solvers are used when only a few (up to 100, say) eigenpairs of very large
— and typically sparse — matrices are sought. In this article we discuss only the
direct solvers; iterative methods are treated in another contribution.

2 Eigenvalue Computations: How Good, How Fast, and How?

At the beginning of this section we introduce some more notations and definitions.
Then we explain why eigenvalue solvers cannot compute the exact eigenvalues and
eigenvectors of a matrix, and what kind of accuracy a “good” algorithm can achieve.
Issues related to minimizing the computing time on today’s high-performance com-
puters are discussed subsequently. Finally, two basic tools for eigenvalue compu-
tations are introduced, namely similarity transformations that make the matrix in
some way easier to handle, and deflation, which helps to break the problem into
smaller ones whose solution is much cheaper.

2.1 More Notation

For contiguous portions of vectors and matrices we use the Matlab-style30 colon
notation: x(i1 : i2) denotes the length-(i2− i1 +1) vector consisting of x’s entries i1
through i2, and A(i1 : i2, j1 : j2) is the (i2− i1 + 1)× (j2− j1 + 1) matrix containing
rows i1, . . . , i2 of A’s columns j1, . . . , j2. An isolated colon stands for the whole
index range in the respective direction. Thus, A(5, :) denotes the fifth row of A,
whereas A(:, 3 : 7) contains columns 3 through 7 of the matrix.

The “size” of vectors and matrices is measured with norms. For our purposes,
the Euclidean norm

‖x‖2 :=
√

x⊤x =

√
√
√
√

n∑

i=1

x(i)2
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plays the dominant rôle. Its associated matrix norm is the spectral norm

‖A‖2 := max

{‖Ax‖2
‖x‖2

: x 6= 0

}

(= max{|λ1|, |λn|} if A is symmetric) .

Since computing the spectral norm of a matrix is very expensive, often the Frobenius
norm

‖A‖F :=

√
√
√
√

n∑

i=1

n∑

j=1

A(i, j)2

is used instead. Another important norm is the maximum norm

‖x‖∞ := max{|x(i)| : i = 1, . . . , n} .
For iterative processes the order of convergence indicates how fast the desired

values are approached. Let ‖ · ‖ denote a vector norm. A sequence of vectors
(xk)k≥0 converges linearly to a limit x∗ if there is some constant 0 < c < 1 such
that ‖xk+1 − x∗‖ ≤ c · ‖xk − x∗‖ for all k. This means that a constant number
of steps is required to obtain one additional correct digit in the approximation xk.
The sequence converges quadratically (or cubically) if ‖xk+1−x∗‖ ≤ C · ‖xk−x∗‖2
(or ‖xk+1 − x∗‖ ≤ C · ‖xk − x∗‖3) for some C > 0. With quadratic and cubic
convergence, the number of correct digits is doubled or tripled in each step. Thus
x∗ is approached very fast, once we have come somewhere close to it.

2.2 Accuracy Issues

Two obstacles prevent us from getting the exact eigenvalues and eigenvectors of a
matrix on a computer.

First, in general the computation of the eigensystem involves an iterative pro-
cess, which must be interrupted at some point before the correct values are reached,
resulting in a so-called truncation error.

But even if this were not the case, the eigenvalues typically cannot be stored
exactly in the finite number of memory cells that are allocated for each “real”
number. The same holds for the results of most intermediate results. E.g., the
IEEE standard 7542 represents double-precision numbers with 64 bits, twelve of
them encoding the sign and magnitude, and the remaining 52 bits holding the
most significant binary digits of the number — corresponding to roughly 16 decimal
places accuracy.

The best we may reasonably expect is that the computed result fl(α◦β) of each
operation, where ◦ stands for addition, subtraction, multiplication, or division, is
the floating-point number that is closest to the exact result α ◦ β, that is,

fl(α ◦ β) = (α ◦ β) · (1 + ǫ) , (3)

where ǫ is some tiny quantity depending on the operation ◦ and on the operands
α and β. If the arithmetic of the computer conforms to the IEEE standard (this
is true for all recent workstations and personal computers) then the quantities ǫ in
Eq. (3) are guaranteed to be below some constant bound ε, the so-called machine
epsilon. In double-precision, ε ≈ 2.22 · 10−16.
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But even if each single operation produces only a tiny relative error, a badly
chosen (though mathematically correct) sequence of operations may yield an utterly
wrong final result. In addition it is often very difficult to derive good estimates for
the error of the computed quantity, the so-called forward error.

A much simpler technique for analyzing the behaviour of the algorithms was
invented by Wilkinson39. Roughly speaking, his backward error analysis tries to put
the blame for the rounding errors on the initial data. In the context of eigenvalue
computations this means proving that the computed eigenvalues fl(λi) are the exact
eigenvalues not of the original matrix A, but of a (slightly) perturbed matrix A+∆A.
An eigenvalue algorithm is called (backward) stable if the perturbation ∆A is very
small compared to A:

‖∆A‖2 = O(ε) · ‖A‖2 , (4)

where O(ε) stands for a “small multiple” of the machine epsilon that may grow
with a low-degree polynomial in the matrix dimension, like 4nε or 2n2ε.

In order to derive bounds for the errors |fl(λi) − λi| (λi being the exact eigen-
values of A), the backward error analysis must be complemented by perturbation
analysis, which investigates how much the eigenvalues can change if the matrix is
perturbed. For the symmetric case, the following simple bound holds.

Theorem18. Let A and Ã be symmetric matrices with eigenvalues λ1 ≤ . . . ≤ λn
and λ̃1 ≤ . . . ≤ λ̃n, respectively. Then

|λ̃i − λi| ≤ ‖Ã− A‖2 . (5)

The accumulated changes of all eigenvalues can be estimated with the Frobenius
norm.

Theorem (Wielandt-Hoffman)18. Let A and Ã be symmetric matrices with
eigenvalues λ1 ≤ . . . ≤ λn and λ̃1 ≤ . . . ≤ λ̃n, respectively. Then

√
√
√
√

n∑

i=1

(λ̃i − λi)2 ≤ ‖Ã− A‖F .

The changes of eigenvectors corresponding to simple eigenvalues can be bounded
as follows.

Theorem11. Let A and Ã be symmetric matrices with eigenvalues λ1 ≤ . . . ≤ λn
and λ̃1 ≤ . . . ≤ λ̃n and associated orthonormal eigenvectors q1, . . . , qn and q̃1,
. . . , q̃n, respectively. Let θi denote the (acute) angle between q̃i and qi. Then

1

2
sin 2θi ≤

‖Ã− A‖2
min{|λj − λi| : j 6= i} if λj 6= λi for all j 6= i . (6)

Therefore the direction of an eigenvector qi changes only little, provided that
the matrix itself changes very little and that the associated eigenvalue λi is simple
and well separated from the remaining eigenvalues. Note that when θi is small then
1
2 sin 2θi ≈ sin θi ≈ θi.

Eqs. (4), (5), and (6) imply that stable algorithms can compute the eigenvalues
of a symmetric matrix A with an error O(ε) · ‖A‖2 and the eigenvectors correspond-
ing to well-separated eigenvalues with an error O(ε). For the large eigenvalues
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(|λi| ≈ ‖A‖2) this means that the computed values will be correct except for a few
digits at the end. For very small eigenvalues (|λi| ≈ O(ε)‖A‖2), however, very few
correct figures can be guaranteed. Indeed, even the magnitude and the sign of the
computed eigenvalue may be wrong.

In general, the bounds given in Eqs. (5) and (6) cannot be improved much. For
particular classes of matrices, however, the dependence of the eigenvalues on the
matrix elements is much stronger: Then relative perturbations of the matrix (i.e.,
each matrix entry is perturbed proportionally to its magnitude) lead to relative
eigenvalue perturbations. In these situations appropriate algorithms can compute
almost all digits even of extremely tiny eigenvalues4.

2.3 Performance Issues

Among the stable methods we would like to select one that takes the least time to
determine the desired eigenvalues and eigenvectors. The computing time depends
on several factors, most notably on the number of operations, on the rate at which
these operations can be performed, and on the potential for exploiting parallelism.

In the context of direct eigensolvers, the overall work is adequately captured
by counting only the floating-point operations (flop: additions, subtractions, mul-
tiplications, divisions, and square roots) and ignoring everything else, like index
manipulations etc.

The performance (or execution rate) of an algorithm is measured in Mflop/s
(millions of flop per second). On today’s machines with processors running at
hundreds of MHz and main memories being almost an order of magnitude slower,
the performance is mainly determined by the “data re-use factor” r, which is the
number of operations performed, divided by the amount of data that are moved
between the main memory and the processor (more precisely, between main memory
and the caches, which are small, but fast memory buffers running almost at full
processor speed). This issue is best explained with the different levels of the BLAS
(Basic Linear Algebra Subprograms)13,14,28.

The BLAS define a set of subroutines for performing some simple recurring
tasks in linear algebra computations. To consider just three of these routines, the
(double-precision) function DDOT returns the scalar product x⊤y of two vectors.
This routine does 2n − 1 flop and reads 2n elements from memory (the entries of
the two vectors), yielding r ≈ 1. Another routine, DGEMV, computes a matrix–
vector product with roughly 2n2 flop and n2 accesses to memory, thus r ≈ 2. And
finally, the routine for computing matrix–matrix products, DGEMM, requires about
4n2 memory accesses to do 2n3 flop, resulting in a much higher ratio r ≈ n/2.
(The “level 1 BLAS” do order-of-n flop on order-of-n data, the level 2 routines do
order-of-n2 flop on order-of-n2 data, and the level 3 routines do order-of-n3 flop
on order-of-n2 data.) As can be seen from Table 1, a higher re-use factor can
significantly improve the performance. (Note that only the level 3 routine comes
anywhere close to the processor’s peak performance of 266Mflop/s.)

Therefore the algorithms should be (re)structured in such a way that a major
part of their operations can be done with level 3 routines, even if the overall number
of operations is slightly increased. Algorithms with this property are often called
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Table 1. Performance of selected operations on a 266MHz PentiumII. All vectors had length
n = 1000, all matrices were n-by-n.

Operation BLAS Routine re-use factor r Mflop/s

α := x⊤y DDOT (BLAS 1) 1 36.1
y := αAx + βy DGEMV (BLAS 2) 2 61.1
C := αAB + βC DGEMM (BLAS 3) n/2 195.2

blocked algorithms.
Modern high-performance computers typically feature multiple processors. To

fully utilize the potential power of these machines, parallelism must be exploited,
i.e., the work (and in most cases the data, too) must be distributed among the
processors. In particular, the algorithm must contain enough independent opera-
tions to keep all the processors busy. In addition, a processor cannot work com-
pletely on its on, but from time to time it must synchronize with other processors
in order to exchange information. As synchronization causes significant adminis-
trative overhead, one should strive for so-called coarse-grained parallelism, where
synchronizations occur rarely, thus allowing each processor to do a lot of “useful”
operations between them — as opposed to fine-grained parallelism with frequent
synchronizations and just a few flop in between.

Algorithms that are based mainly on level 3 operations lend themselves in a
natural way to coarse-grained parallelism. This is another argument in favor of
blocking, besides the fact that these algorithms also achieve high per-node comput-
ing performance.

2.4 Similarity Transformations

Almost every direct method for computing eigensystems makes use of the fact that
eigenvalues are invariant under similarity transformations A 7→ X−1AX =: Ã, where
X denotes an arbitrary non-singular matrix. More precisely, if (λ,x) is an eigenpair
of A then Ax = xλ, and hence

(X−1AX) · (X−1x) = (X−1x) · λ .

Thus (λ,X−1x) is an eigenpair of the transformed matrix Ã.
Most eigensolvers exploit this property in the following way: First, a suitable

similarity transformation A 7→ X−1AX =: Ã reduces A to a matrix Ã that is in
some way more easily handled (see Sections 4 and 5), then the desired eigenvalues
λ̃i and associated eigenvectors x̃i of Ã are computed, and finally these are back-
transformed into the eigenvalues λi = λ̃i and eigenvectors xi = X · x̃i of the original
matrix A.

Whenever possible, orthogonal similarity transformations A 7→ Q⊤AQ (Q be-
ing an orthogonal matrix) should be used, for three reasons. First, the inverse
Q−1 = Q⊤ is readily available. Second, these transformations preserve symmetry:
If A is symmetric then Q⊤AQ is symmetric, too. And third, orthogonal transfor-
mations are very stable in the sense that they induce a small backward error. It is
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a nice feature of the symmetric (standard) eigenvalue problem that in principle all
computations can be done with orthogonal transformations.

2.5 Deflation

Suppose that we have found an orthogonal matrix Q such that

Q⊤AQ =

(
A1 0
0 A2

)

(7)

with A1 ∈ R

k×k and A2 ∈ R

(n−k)×(n−k) . Then we have spec(A) = spec(A1) ∪
spec(A2), and therefore the eigenvalues of A can be obtained by computing those
of the smaller matrices Ai. This reduction of the size of the matrices that must be
transformed further — the so-called deflation — leads to considerable flop savings.

The eigenvectors of A may also be obtained from those of the smaller matrices
Ai. To this end we partition Q accordingly: Q = ( Q1 |Q2 ), where Q1 consists of
the first k columns in Q. Then Eq. (7) is equivalent to AQi = QiAi, i = 1, 2. Given
an eigenpair (λ̃, x̃) of one of the smaller matrices Ai, we thus obtain

A · (Qix̃) = Qi · (Aix̃) = (Qix̃) · λ ,
which means that (λ,Qix̃) is an eigenpair of A.

3 Tools of the Trade: Basic Orthogonal Transformations

Orthogonal matrices play an important rôle in the computation of eigenvalues and
eigenvectors (e.g., the eigenvector matrix Q in the eigendecomposition (2) is orthog-
onal). These orthogonal matrices are built up from two basic types, rotations and
Householder transformations, which are introduced in this section. We also discuss
techniques for improving the performance by applying these basic transformations
in a blocked fashion.

3.1 Rotations

An (i, j) rotation in R

n is given by the matrix

R = R(i, j, θ) =
























1
. . .

1
c s ← i

1
. . .

1
−s c ← j

1
. . .

1
























∈ Rn×n , (8)

238



where c = cos θ, s = sin θ, and all the remaining entries of R are zero. It is easy to
verify that R is orthogonal.

Applying R to some column vector x ∈ R

n via x 7→ R⊤ · x corresponds to a
counter-clockwise rotation by the angle θ in the (i, j) coordinates plane. The same
is achieved for row vectors x⊤ via x⊤ 7→ x⊤ ·R. In both cases only the ith and jth
entries of x change.

By letting

c =
x(i)

√

x(i)2 + x(j)2
and s =

−x(j)
√

x(i)2 + x(j)2
(9)

in the above transformations we can zero the jth entry of x. (Note that only the
cosine and the sine of the rotation angle θ are present in the formulas (8) and (9);
there is no need to compute the angle itself.)

Applying the rotation to a matrix A ∈ Rn×m from the left, A 7→ R⊤ · A, affects
only the ith and jth row of A,

tmp := c · A(i, :) + s · A(j, :)

A(j, :) := −s · A(i, :) + c · A(j, :)

A(i, :) := tmp

whereas Rm×n ∋ A 7→ A ·R does the same with columns i and j. In either case, the
transformation takes 4m multiplications and 2m additions. If a symmetric matrix
A is transformed from both sides, A 7→ R⊤ ·A ·R, then the resulting matrix is again
symmetric. Therefore the transformations must be applied only to the lower (or
upper) triangle of A, thereby approximately halving the overall cost to 6n flop.

Rotations are very stable. It can be shown40 that the backward error corre-
sponding to a transformation A 7→ R⊤ · A is bounded by 6ε‖A‖F .

There are variants of rotations — called fast Givens rotations35 — that require
only half as many multiplications as the “ordinary” rotations described above,
resulting in 4m flop for the transformation A 7→ R⊤A. These savings are achieved
by an appropriate (implicit) scaling of the matrix R.

In rotation–based algorithms, parallelism can be exploited in two ways. Either
the work of each rotation is split among the processors (yielding a rather fine-
grained parallelism), or in some situations several rotations in disjoint planes can
be applied simultaneously24.

3.2 Householder Transformations

While rotations may be used to introduce single zeros in a vector or a matrix,
Householder transformations can zero out more than one entry.

A length-n Householder transformation is described by the matrix

H = H(y) = I− yτy⊤ ∈ Rn×n , (10)

where y ∈ Rn is an arbitrary vector and

τ =

{
0, if y = 0
2/‖y‖22, otherwise

∈ R.
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A short computation reveals that H is orthogonal and that the transformations
x 7→ H⊤ · x and x⊤ 7→ x⊤ · H correspond to a reflection of x at the (hyper)plane
perpendicular to y, thus inverting x’s component in direction y. (Note that H is
symmetric; thus we might write H instead of H⊤.)

To zero out the entries i+ 1, . . . , j of a given vector x ∈ Rn , we choose

y = (0, . . . , 0,x(i)± ‖x(i + 1 : j)‖2,x(i + 1), . . . ,x(j), 0, . . . , 0)⊤ , (11)

where “±” is chosen equal to the sign of x(i) in order to avoid loss of precision
through cancellation. This choice gives

H⊤ · x = (x(1), . . . ,x(i− 1),∓‖x(i : j)‖2, 0, . . . , 0,x(j + 1), . . . ,x(n))⊤ .

In particular, only the entries i, . . . , j of x are affected by the transformation.
Analogously the transformations Rn×m ∋ A 7→ H⊤ · A and R

m×n ∋ A 7→ A · H
affect only rows (columns, resp.) i, . . . , j of A: Making use of Eqs. (10) and (11),
in the first case one computes

z⊤ := τ · y(i : j)⊤ · A(i : j, :) ∈ R1×m (12)

A(i : j, :) := A(i : j, :) − y(i : j) · z⊤. (13)

The matrix–vector product (12) and the rank-1-update (13) each require approxi-
mately 2ℓm operations (ℓ = j − i+ 1 is the “active length” of the transformation),
for a total of 4ℓm flop. (Note that one never computes H⊤ · A as a matrix–matrix
product, which would require approximately 2ℓ2m flop.)

As with rotations, symmetry can be exploited to save operations. The two-sided
transformation R

n×n ∋ A 7→ H⊤ · A · H of a symmetric matrix A is performed as
follows:

z := A · y · τ (14)

v := z− y · τ(y⊤z)

2

A := A− y · v⊤ − v · y⊤ . (15)

Due to the symmetry, only one triangle of A must be updated in the symmetric rank-
2-update (15), provided that only one triangle is used in the symmetric matrix–
vector product (14). Again, the two-sided transformation of A can be effected at
the same cost as a one-sided transformation of a non-symmetric matrix, that is,
4n2 flop.

Householder transformations are very stable, too20. The backward error corre-
sponding to a transformation A 7→ H⊤ ·A is bounded by cnε‖A‖F , where c is some
small constant.

With Householder transformations, parallelism is exploited by working on a
distributed matrix A and doing each of the steps (14) and (15) in parallel.

3.3 Blocked Householder Transformations

Applying single rotations or Householder transformations does not allow using any
level 3 BLAS. The situation changes if a sequence of transformations must be
applied to the same matrix.
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Bischof and Van Loan6 discovered that the product Q = H1 ·. . .·Hk of k length-n
Householder transformations Hj = I− yjτjy

⊤
j can be written in the form

Q = I−WY⊤ (WY representation), (16)

where W and Y are suitable n-by-k matrices.
For k = 1 the representation (16) is obviously valid with W = y1τ1 and Y = y1.

To proceed from k to k + 1, we assume that the matrices W and Y in (16) are
known and that Q̃ = H1 · . . . · Hk+1 = Q · Hk+1. Then a short calculation reveals
that Q̃ = I− W̃Ỹ⊤ with the n-by-(k + 1) matrices

W̃ = ( W |Qyk+1τk+1 ) and Ỹ = ( Y |yk+1 ) .

Thus each additional transformation Hj requires only appending one new column to
W and Y. Note that in particular the columns of Y are just the vectors yj defining
the transformations Hj.

Given the representation (16), applying the k transformations to a matrix A
amounts to two matrix–matrix products,

H⊤
k · . . . · H⊤

1 · A = Q⊤ · A = A− Y · (W⊤ · A) ,

which performs significantly better than applying the single Householder transfor-
mations and requires only marginally more operations.

Later, Schreiber and Van Loan36 refined the WY representation to

Q = I− YTY⊤ (compact WY representation), (17)

where Y is again n-by-k and T is an upper triangular k-by-k matrix. Here, the case
k = 1 is covered by setting Y = y1 and T = τ1, and the step from k to k+ 1 is done
by letting

Ỹ = ( Y |yk+1 ) and T̃ =

(
T −τk+1Tyk+1

0⊤ τk+1

)

.

The compact WY representation costs significantly less additional storage than the
original WY representation does (T instead of W), but applying the transformations
in the compact representation requires a third matrix–matrix product.

Under favorable conditions, applying a sequence of rotations to a matrix can
also be organized in such a way that most of the work is done in matrix–matrix
products27.

4 Phase I: Reduction to Tridiagonal Form

Most eigenvalue solvers first reduce the symmetric matrix A to a symmetric tridi-
agonal matrix T (i.e., T(i, j) = 0 whenever |i − j| > 1) in order to make the
ensuing iterative process simpler and cheaper. This section first presents the stan-
dard algorithm for tridiagonalizing a full matrix, as well as a blocked variant of the
algorithm. Then the back-transformation of the eigenvectors is discussed, which
is a final step after computing the eigenvalues and eigenvectors of the tridiagonal
matrix T (cf. Section 5). Specialized reduction methods for banded matrices and
generalized eigenvalue problems are described at the end of the section.
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Figure 1. The fourth step in the reduction of a 12-by-12 matrix to tridiagonal form.

4.1 Householder Tridiagonalization

The standard algorithm for reducing an n-by-n symmetric full matrix to tridiagonal
form, A 7→ Q⊤

1 AQ1 = T, proceeds in n− 2 steps:

A =: A0 7→ H⊤
1 A0H1 =: A1 7→ H⊤

2 A1H2 =: A2 7→
7→ . . . 7→ H⊤

n−2An−3Hn−2 =: An−2 = T ,
(18)

the kth step transforming column and row k to the desired shape with a suitable
Householder transformation Hk, cf. Figure 1 and Algorithm 1.

Algorithm 1 Householder reduction to tridiagonal form.

for k = 1 to n− 2
determine a Householder transformation Hk = I− ykτky

⊤
k that reduces

A(k + 1 : n, k) to the form (x, 0, . . . , 0)⊤

zk := Aykτk
vk := zk − yk · (τk(y⊤

k zk)/2)
A := A− yk · v⊤

k − vk · y⊤
k

Note that only the submatrix A(k + 1 : n, k + 1 : n) (and, due to symmetry,
only one triangle of this matrix) is modified in the last line of the algorithm. Thus
the reduction requires approximately 4

3n
3 flop, which are done mainly within the

level 2 BLAS.
Before Householder developed the method just described, the tridiagonalization

had been done with a rotation–based algorithm due to Givens40. Householder’s
approach is superior for full matrices because it requires fewer operations, whereas
Givens’ algorithm can make better use of sparsity.
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4.2 Blocked Householder Tridiagonalization

It is not necessary to build all the intermediate matrices Ak from Eq. (18)
explicitly15. Instead, they can be represented in the so-called factored form

As = A0 − y1v
⊤
1 − v1y

⊤
1 − . . .− ysv

⊤
s − vsy

⊤
s = A0 − YsV

⊤
s − VsY

⊤
s , (19)

where the vectors yk and vk are defined as in Algorithm 1, and Ys = (y1 | . . . |ys )
and Vs = (v1 | . . . |vs ) are n-by-s matrices. If the matrices Ak are built only
every nbth step then we arrive at Algorithm 2 (lines 4 through 6 and line 8 of the
algorithm reflect the fact that vk and zk are computed from Ak−1 and not from
As−1, which is currently held in A).

Algorithm 2 Blocked Householder tridiagonalization.

for s = 1 to n− 2 step nb
Y := () , V := () { matrices with 0 columns }
for k = s to min{s+ nb − 1, n− 2}

if k > s
compute the kth column of Ak−1 according to Eq. (19):

A(:, k) := A(:, k)− YV⊤(:, k)− VY⊤(:, k)
determine the Householder transformation Hk as in Algorithm 1
zk := Aykτk − Y(V⊤ykτk)− V(Y⊤ykτk)
compute vk as in Algorithm 1
Y := ( Y |yk ) , V := ( V |vk )

A := A− YV⊤ − VY⊤ { after nb steps rebuild A according to Eq. (19) }

Note that the rank-2-updates (last line in Algorithm 1) have been replaced with
matrix–matrix products, whereas the symmetric matrix–vector products A · y in
the computation of zk persist. Therefore, the blocked algorithm does roughly one
half of its 4

3n
3 operations with level-3 BLAS while the remaining operations are

still confined to the level-2 BLAS.
The portion of matrix–matrix operations can be further increased if the reduc-

tion to tridiagonal form is done in two phases5. First the matrix is reduced to
banded form (almost completely with level 3 BLAS), and then the banded matrix
is tridiagonalized (no level 3 BLAS, but significantly lower flop count than for the
first phase). This approach typically outperforms the direct tridiagonalization if no
eigenvectors are required.

4.3 Back-Transformation of the Eigenvectors

After the reduction of A to tridiagonal form, A 7→ Q⊤
1 AQ1 = T, all or selected eigen-

pairs (λi,vi) of the tridiagonal matrix T are computed. While the eigenvalues λi of
T are also eigenvalues of A, the associated eigenvectors must be back-transformed
in order to obtain A’s eigenvectors via vi 7→ Q1 · vi = qi, cf. Section 2.4.

Let Hk = I − ykτky
⊤
k , k = 1, . . . , n − 2, be the Householder transformations

that were used in the reduction A 7→ T, i.e., Q1 = H1 · . . . · Hn−2, and let V =

243



∗ ∗ x 0
∗ ∗ x x ∗
x x x x x x f
0 x x x x x x

∗ x x ∗ ∗ ∗ ∗
x x ∗ ∗ ∗ ∗ ∗
f x ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ x 0

∗ ∗ ∗ ∗ x x
∗ ∗ ∗ ∗ x x ∗

x x x x x x x f
0 x x x x x x x

∗ x x ∗ ∗ ∗ ∗
x x ∗ ∗ ∗ ∗ ∗
f x ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ x 0
∗ ∗ ∗ ∗ ∗ x x

∗ ∗ ∗ ∗ x x ∗
x x x x x x x
0 x x x x x x

∗ x x ∗ ∗
x x ∗ ∗

Figure 2. Rotations for zeroing the (4, 1) entry and for chasing the intermediate fill-in elements
(denoted by f) in Schwarz’ algorithm.

( v1 | . . . |vm ) denote those eigenvectors of T that were computed and must be
back-transformed. Then the corresponding eigenvectors of A are obtained as

( q1 | . . . |qm ) =: Q = Q1 · V = H1 · . . . · Hn−2 · V .

In contrast to the tridiagonal reduction, almost all of the roughly 2n2m operations
can be done with matrix–matrix products if we resort to the (compact or original)
WY representation for applying nb > 1 transformations at a time, cf. Algorithm 3.

Algorithm 3 Blocked back-transformation of selected eigenvectors.

Q := V
for s = n− 2 to 1 step −nb

determine the compact WY representation for the next n′
b = min{nb, s}

transformations: Hs−n′

b
+1 · . . . · Hs = I− YTY⊤

apply these transformations via Q := Q− YTY⊤Q

Like any algorithm involving mainly products of large matrices, the back-
transformation can be easily and efficiently parallelized.

4.4 Reduction of Banded Matrices

A symmetric matrix A is banded with semibandwidth b if A(i, j) = 0 whenever
|i − j| > b. For narrow-banded matrices (b ≪ n), Algorithms 1 and 2 are not
optimal because they completely destroy the sparsity.

Such matrices are reduced with a rotation–based algorithm by Schwarz37. To
understand how this algorithm works we consider a 12-by-12 matrix with semiband-
width b = 3, see Figure 2.

First, the outmost entry (4, 1) in the first column is made zero with a rotation
A 7→ R⊤AR in the (3, 4) plane (left picture in Figure 2). This creates a new fill-in
entry f at position (7, 3), just outside the band. Then a second rotation in the (6, 7)
plane is used to remove the fill-in entry (center picture), only to have another fill
element appear at position (10, 6), which in turn is removed by the next rotation,
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and so on. Each rotation “chases” the fill element b positions down the band until
the end of the matrix is reached and no further fill-in is created (right picture).

Then we can zero the next entry (3, 1) in the first column with a (2, 3) rotation,
again followed by a sequence of rotations for chasing the fill-in. When the first
column of A is reduced to tridiagonal form we repeat the procedure for the second
column, and so on. The whole method is summarized in Algorithm 4.

Algorithm 4 Schwarz’ algorithm for tridiagonalizing banded matrices.

for j = 1 to n− 2 { proceed by columns }
for d = min{b, n− j} to 2 step −1 { zero the entry in the dth subdiagonal }
make A(j + d, j) zero with a suitable rotation in the (j + d− 1, j + d) plane
while the most recent rotation created a fill-in entry at some position (k, ℓ)

make this entry zero by a suitable rotation in the (k − 1, k) plane

If A’s eigenvectors are needed, too, then in the banded case the orthogonal
matrix Q1 (cf. Section 4.3), which is the product of all rotations that are used for
the reduction, is built explicitly during the reduction. This is achieved by applying
each plane-(k − 1, k) rotation R not only to the banded matrix, A 7→ R⊤AR, but
also to the columns k − 1 and k of an n-by-n matrix Q1 via Q1 7→ Q1R, where Q1

has been initialized as the identity matrix.
The reduction of A requires 6bn2 flop. If the eigenvectors of A must be computed

then the costs for accumulating Q1, 3n3 flop, by far dominate the reduction costs.
In this method some parallelism can be exploited by applying several rotations
simultaneously24.

A more recent reduction algorithm is based on Householder transformations32,
each transformation affecting just b rows and columns of A. This method allows
coarser-grained parallelism than Schwarz’ algorithm26, and the accumulation of Q1

can be done in a blocked fashion5.

4.5 Reduction of the Generalized Eigenvalue Problem

The symmetric generalized eigenvalue problem Aqi = Bqiλi with a symmetric
positive definite matrix B can be transformed into a symmetric standard eigenvalue
problem as follows. Let

B = LL⊤ , (20)

where L is a lower triangular matrix with positive diagonal entries, be the Cholesky
decomposition of B. (Algorithms for computing the Cholesky factor L are given
below.) Then the condition Aqi = Bqiλi is equivalent to

(L−1AL−⊤) · (L⊤qi) = (L−1BL−⊤) · (L⊤qi) · λi = (L⊤qi) · λi ,
where L−⊤ is a shorthand for (L⊤)−1 (= (L−1)⊤). Therefore, an eigenpair (λi,qi)
of the generalized eigenvalue problem corresponds to the eigenpair (λi, L

⊤qi) of
the symmetric standard eigenvalue problem for the matrix M = L−1AL−⊤. Thus
we arrive at Algorithm 5, which takes approximately 12n3 flop for solving the
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generalized eigenvalue problem. (Note that the explicit calculation of L−1 and L−⊤

is avoided by solving triangular systems with multiple right-hand sides, which is
implemented in the level 3 BLAS routine DTRSM.)

Algorithm 5 Generalized eigenvalue problem via Cholesky decomposition of B.

compute the Cholesky decomposition B = LL⊤ { Algorithm 7 }
compute M = L−1AL−⊤ by solving two triangular systems with multiple

right-hand sides, XL⊤ = A (for X), and LM = X (for M)
use blocked Householder tridiagonalization (Algorithm 2) and an algorithm from

Section 5 to compute the eigendecomposition M = Q̃ΛQ̃⊤

compute the eigenvectors qi = L−⊤q̃i of the generalized problem by solving the

triangular system L⊤Q = Q̃ for Q

In general, the matrix M will be full even if A and B (and therefore B’s Cholesky
factor L, too) are banded. An algorithm by Crawford9 avoids building M explicitly
by interleaving its computation with the ensuing reduction to tridiagonal form.
This leads to considerable flop and memory savings.

If B is ill-conditioned (i.e., its eigenvalues vary over many orders of magni-
tude) then severe loss of accuracy may happen because the backward error of Al-
gorithm 5 grows with ‖B−1‖2. In this case the Cholesky decomposition should
be replaced with the eigendecomposition B = S∆2S⊤ = (S∆)(S∆)⊤, where S is
orthogonal and ∆ contains the roots of B’s (positive!) eigenvalues. This leads to
M = ∆−1S⊤AS∆−1. In practice, the use of orthogonal matrices gives better results,
albeit at higher cost.

The generalized eigenvalue problem with a matrix B that is not positive definite
requires completely different techniques18,34.

Let us finally give two algorithms for computing the Cholesky decomposition.
Eq. (20) is equivalent to

B(1, 1) = L(1, 1) · L(1, 1) ,
B(2 : n, 1) = L(2 : n, 1) · L(1, 1) , and

B(2 : n, 2 : n) = L(2 : n, 2 : n) + L(2 : n, 1) · L(2 : n, 1)⊤ ,

i.e., L(1, 1) =
√

B(1, 1), L(2 : n, 1) = B(2 : n, 1)/L(1, 1), and L(2 : n, 2 : n) is the
Cholesky factor of B(2 : n, 2 : n)− L(2 : n, 1) · L(2 : n, 1)⊤. Resolving this recursion
into a loop leads to Algorithm 6, in which the lower triangle of the matrix B is
overwritten with the Cholesky factor L.

By replacing matrix entries B(i, j) with nb-by-nb blocks B[i, j] := B((i−1)nb+1 :
inb, (j − 1)nb + 1 : jnb) we arrive at Algorithm 7 (N = ⌈n/nb⌉ is the number of
blocks).

Both algorithms require roughly 1
3n

3 flop. The operations of Algorithm 7 are
done almost exclusively with level 3 BLAS.
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Algorithm 6 Cholesky decomposition.

for k = 1 to n

B(k, k) :=
√

B(k, k)

B(k + 1 : n, k) := B(k + 1 : n, k) · 1

B(k, k)
B(k + 1 : n, k + 1 : n) := B(k + 1 : n, k + 1 : n)

− B(k + 1 : n, k) · B(k + 1 : n, k)⊤

Algorithm 7 Blocked Cholesky decomposition.

for k = 1 to N
L[k, k] := Cholesky factor of B[k, k] { Algorithm 6, overwriting B[k, k] }
B[k + 1 : N, k] := B[k + 1 : N, k] · L[k, k]−⊤

B[k + 1 : N, k + 1 : N ] := B[k + 1 : N, k + 1 : N ]
− B[k + 1 : N, k] · B[k + 1 : N, k]⊤

5 Phase II: Methods for Tridiagonal Matrices

Once the symmetric matrix A is reduced to tridiagonal form, the eigenvalues λi
and the eigenvectors vi of the tridiagonal matrix T must be found. There is a large
variety of algorithms for solving this problem.

Since its invention in the 1960’s, the QR iteration has been the the method
of choice for computing all eigenvalues (and, optionally, all eigenvectors). If only
selected eigenvalues are required then bisection is the adequate method, otherwise
QR-style algorithms tend to be faster. Inverse iteration may be used to compute
selected eigenvectors, the subset being chosen after having determined and inspected
the eigenvalues. In the 1990’s the new divide-and-conquer algorithm, which has
been developed with the aim of exposing parallelism, has proved by far superior to
the QR iteration even on serial computers. It requires, however, significantly more
memory than QR. Finally, there are other techniques — like homotopy algorithms
— that are still in an experimental state.

Thoughout this section, we will use the shorthands T(i, i) =: αi and T(i, i −
1) =: βi for the diagonal and subdiagonal entries, respectively, of the symmetric
tridiagonal matrix T, so

T =










α1 β2

β2 α2

· · ·
· · ·

· · ·
βn

βn αn










.

We assume that all βi are nonzero because otherwise the problem splits into two
smaller subproblems that can be handled independently, cf. Section 2.5.
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x 0 f
0 x x
f x ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

initial (1, 2) rotation

∗ x 0
x x x f
0 x x x

f x ∗ ∗
∗ ∗ ∗

∗ ∗

(2, 3) rotation

∗ ∗
∗ ∗ x 0

x x x f
0 x x x

f x ∗ ∗
∗ ∗

(3, 4) rotation

∗ ∗
∗ ∗ ∗

∗ ∗ x 0
x x x f
0 x x x

f x ∗

(4, 5) rotation

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ x 0

x x x
0 x x

(5, 6) rotation

Figure 3. Rotations in one sweep of the QR iteration (n = 6).

5.1 QR Iteration

The QR iteration17 for symmetric tridiagonal matrices is summarized in Algo-
rithm 8. One pass through the repeat loop is called a sweep of the iteration.

Algorithm 8 QR iteration for tridiagonal matrices.

repeat

determine a suitable shift σ ∈ R
apply a rotation in the (1, 2) plane that zeroes the second entry of the vector

(α1 − σ, β2, 0, . . . , 0)⊤. This creates a fill-in element at position (3, 1).
for i = 2 to n− 1

apply a rotation in the (i, i+ 1) plane that zeroes the fill-in element at
position (i+ 1, i− 1) and creates a new fill-in element at (i+ 2, i)

until some subdiagonal entry βi becomes negligible
set βi := 0 and apply the whole algorithm to the submatrices T(1 : i, 1 : i) and

T(i+ 1 : n, i+ 1 : n) { deflation }

Each sweep is initiated with a rotation T 7→ R⊤TR, where the rotation angle
depends on a certain parameter σ (the shift). This rotation produces a fill-in
element below the subdiagonal, and a whole sequence of additional rotations is
used to chase the fill element down the band until the tridiagonal structure is
restored, cf. Figure 3. (See also Section 4.4 for a similar chasing strategy.)

If the shifts are chosen appropriately then the subdiagonal entries βi tend to
zero. Typically, the last subdiagonal entry βn is the first to become negligible so
that the last line in the algorithm reduces to continuing with the matrix T(1 :
n− 1, 1 : n− 1), and that one eigenvalue may be read off from the diagonal entry
αn. But it is also possible that the matrix splits somewhere in the middle. The QR
iteration tends to compute the eigenvalues by increasing absolute value, but this
order may be broken.

The speed of convergence is determined by the shifts. For the most popular
choice, Wilkinson’s shifts, one can prove that the convergence is global (i.e., the
subdiagonal elements are guaranteed to tend to zero) and — with rare exceptions
— ultimately cubic. (Using Wilkinson’s shifts means setting σ to one of the two

eigenvalues of the current matrix T’s trailing 2-by-2 subblock

(
αn−1 βn
βn αn

)

, namely
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the eigenvalue closer to αn.) The high order of convergence explains why — after
some initial “warming up” — only two sweeps (with order-of-n flop per sweep) are
needed on average in order to split off another eigenvalue. Therefore only order-
of-n2 flop are required to compute all eigenvalues of T. If the eigenvectors of T
are needed, too, then each rotation must also be applied to an n-by-n matrix V,
V 7→ VR, where V has been initialized as the orthogonal matrix Q1 that reduced the
full or banded matrix A to tridiagonal form. (In the full case Algorithm 3, initialized
with Q := I, can be used to build the matrix Q1 with 4

3n
3 flop.) Accumulating V

requires a total of roughly 6n3 flop. As the QR iteration relies completely on
rotations it is backward stable.

The name of the method stems from the fact that one sweep of the iteration
corresponds to first computing a QR decomposition T−σI =: Q̃R into an orthogonal
matrix Q̃ and an upper triangular matrix R, and then replacing T with RQ̃ + σI.

This idea can also be applied to matrices with semibandwidth b > 1 (indeed,
even to full matrices), but for complexity reasons (one sweep then takes order-of-
b2n flop without the work on the eigenvectors) such matrices are typically reduced
to tridiagonal form before the iteration is started. If many eigenvalues but only
a few eigenvectors of the banded matrix A are required then the following hybrid
technique is may pay: First reduce A to tridiagonal form without accumulating the
transformations, then compute the eigenvalues of T, and finally use the computed
eigenvalues as “perfect” shifts in the QR iteration on the original A (with accumu-
lation of the transformations in a matrix V, initialized as V = I) in order to obtain
the required eigenvectors.

There is a variety of mostly newer (and often more efficient) methods that are
in some way similar to the tridiagonal QR iteration, in particular the LR itera-
tion, which relies on LR (i.e., LU) decompositions of the matrix, the QL iteration,
which works bottom-up instead of top-down, the Pal-Walker-Kahan QR variant
for computing eigenvalues only, which requires no squares roots, and the new qd
algorithms33, which essentially perform LR iteration on a factored representation
of the tridiagonal matrix.

All these variants bear very limited potential for parallelism in the work on T.
By contrast, the accumulation of the eigenvector matrix V is easily parallelized.

5.2 Bisection

Bisection is a versatile method for computing all or selected eigenvalues of T. It is
based on the fact that for any µ ∈ R, the number ν(µ) of negative elements in the
sequence

δ1 := α1 − µ ,
δi := (αi − µ)− β2

i

δi−1
, i = 2, . . . , n ,

(21)

is equal to the number of eigenvalues of T that are smaller than µ. (This is just
Sylvester’s law of inertia34, applied to the decomposition T − µI = LDL⊤ with a
lower triangular matrix L having all ones on the diagonal, and a diagonal matrix
D.)
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Therefore, given an interval [a, b) that is known to include the k-smallest eigen-
value λk of T, we may locate this eigenvalue to very high precision by repeatedly
cutting the interval into two halves and testing which of the halves contains λk, see
Algorithm 9. Note that a suitable initial “search interval” is provided by Gersh-
gorin’s theorem, which states that all eigenvalues of T are contained in the interval

I = [ min{αi − ρi : i = 1, . . . , n} , max{αi + ρi : i = 1, . . . , n} ] ,

where ρi = |βi|+ |βi+1|, and β1 := 0 and βn+1 := 0 for convenience.

Algorithm 9 Bisection for locating eigenvalue λk in an interval [a, b).

compute ν(a) and ν(b) by building the sequences (21) for µ = a and µ = b
if ν(a) < k ≤ ν(b) { otherwise λk is not contained in [a, b] }

while the interval width b− a is too large
let c = (a+ b)/2 and compute ν(c) by evaluating (21) for µ = c
if ν(c) ≥ k { λk lies in the left half of [a, b] }

b := c
else { λk lies in the right half of [a, b] }

a := c
return λk ≈ (a+ b)/2

Algorithm 9 is easily modified to compute a sequence λj , . . . , λk of consecutive
eigenvalues, or all eigenvalues in a given interval [a, b). Although bisection does not
rely on orthogonal transformations (indeed, it is related to the unstable Gaussian
elimination without pivoting), it is a perfectly stable algorithm featuring a very low
backward error. In addition, bisection is efficiently parallelizable by having different
processors compute disjoint subsets of the desired eigenvalues.

The major drawback of the method is its slow (namely, linear) convergence.
This problem can be alleviated to some extent by using bisection only for isolating
the eigenvalues, i.e., for narrowing down the initial interval until each subinterval
contains exactly one eigenvalue. Then we switch to a superlinearly convergent root-
finder, like Newton’s method25 or zeroin8, for obtaining these eigenvalues to higher
accuracy. Nevertheless, QR-type methods are superior on serial machines if more
than one third, say, of the spectrum is required.

5.3 Inverse Iteration

Inverse iteration complements bisection in that it allows determining eigenvectors to
selected previously computed eigenvalues. Inverse iteration is based on the power
iteration, which is shown in Algorithm 10. The normalization (last line of the
algorithm) is necessary to avoid overflow.

If there is a simple dominant eigenvalue (i.e., |λmax| > |λi| for the n− 1 other
eigenvalues) then the vectors sign(λmax) · v tend to an eigenvector corresponding
to λmax (the dominant eigenvector), and ‖ṽ‖ approaches |λmax|. The convergence
is linear with factor c = |λmax/λmax2

|, where λmax2
is the eigenvalue with second

largest modulus. Therefore, the more dominant λmax is, the faster the convergence.
Now, if (λi,vi) is an eigenpair of T, and µ ∈ R, then (λi−µ,vi) is an eigenpair

of T−µI, and (1/(λi−µ),vi) is an eigenpair of (T−µI)−1. Therefore, if µ is a very

250



Algorithm 10 Power iteration for approximating the dominant eigenvector.

select a suitable starting vector v
repeat

ṽ := T · v
v := ṽ/‖ṽ‖

until v is “good enough”

good approximation to λi (i.e., |λi − µ| ≪ |λj − µ| for all j 6= i) then 1/(λi − µ) is
a strongly dominant eigenvalue of (T−µI)−1. This is the basis of inverse iteration,
which is just the power iteration applied to (T−µI)−1 and therefore can be obtained
by substituting “solve the system (T−µI)·ṽ = v” for the third line in Algorithm 10.

Under favorable circumstances inverse iteration is a very flexible and fast
method, able to compute just the needed eigenvectors and requiring only order-
of-n flop per eigenvector, one order of magnitude less than QR iteration! This is
the case if the eigenvalues of T are well separated and if good approximations to
them have been computed (e.g., with bisection or QR iteration). Then experi-
ence shows that for each eigenvalue only one or two iteration steps are needed to
obtain an excellent approximation to the corresponding eigenvector. In addition,
eigenvectors to different eigenvalues can be computed in parallel.

Problems occur with clustered eigenvalues, i.e., λi ≈ λi+1 ≈ . . . ≈ λj . Then
the orthogonality of the corresponding computed eigenvectors fl(vi), . . . , fl(vj) gets
impaired because the clustered eigenvalues lead to almost identical linear systems
(T−µI)ṽ = v, which in turn lead to similar solutions ṽ. This is particularly true if
the starting vector v always remains the same. Therefore, one partial remedy is to
use a new random starting vector for each eigenvalue. In addition, the vectors are
explicitly orthogonalized against each other. Suppose that we already have com-
puted mutually orthogonal, normalized eigenvectors for the eigenvalues λi, . . . , λℓ of
the cluster. Then, in each iteration step for eigenvector vℓ+1, we apply the modified
Gram-Schmidt process to the intermediate vector ṽ before it is normalized. That
is, for r = i, . . . , ℓ the component of ṽ in direction vr is eliminated by replacing ṽ
with ṽ− (v⊤

r ṽ) ·vr . Note that the explicit orthogonalization may sum up to order-
of-n3 flop if large clusters of eigenvalues are present. Both cures cannot preclude
another type of failure, which amounts to matching the eigenvectors with wrong
eigenvalues23.

Currently a new variant of inverse iteration is being developed that always gives
orthonormal eigenvectors without explicit orthogonalization12. If these efforts are
successful then the combination of bisection (or QR iteration) with the new method
will make all other tridiagonal eigensolvers obsolete.

5.4 Divide-and-Conquer

The divide-and-conquer algorithm10,16 was developed with the aim of exploiting
parallelism. As it turned out, this method typically beats the QR iteration and
bisection/inverse iteration even on serial machines.
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The first step in the divide-and-conquer algorithm consists of “tearing” the
tridiagonal matrix into two halves via a suitable rank-1-modification. For a 6-by-6
matrix, this tearing might look like

T =











α1 β2

β2 α2 β3

β3 α3 β4

β4 α4 β5

β5 α5 β6

β6 α6











=











α1 β2

β2 α2 β3

β3 α3 − β4

α4 − β4 β5

β5 α5 β6

β6 α6











+











β4 β4

β4 β4











=:

(
T1

T2

)

+ ρww⊤

with ρ = β4 and w = (0, 0, 1, 1, 0, 0)⊤. In general, T1 and T2 are m-by-m and (n−
m)-by-(n−m), resp., where m ≈ n/2, ρ = βm+1, and w = (0, . . . , 0, 1, 1, 0, . . . , 0)⊤.

Then the eigendecompositions T1 = X1∆1X
⊤
1 and T2 = X2∆2X

⊤
2 are computed

by applying the divide-and-conquer algorithm recursively to the smaller matrices
Ti (or, if these are small enough, QR iteration is used instead). This yields

T =

(
X1∆1X

⊤
1

X2∆2X
⊤
2

)

+ ρww⊤

=

(
X1

X2

)

·
((

∆1

∆2

)

+ ρzz⊤
)

·
(

X⊤
1

X⊤
2

)

=: X · (∆ + ρzz⊤) · X⊤ ,

where

z = X⊤ ·w =

(
last column of X⊤

1

first column of X⊤
2

)

.

Then the eigendecomposition

∆ + ρzz⊤ = YΛY⊤ (22)

of a rank-1-perturbed diagonal matrix must be computed (see below), and finally
the eigendecomposition of T can be recovered via T = (XY) · Λ · (XY)⊤.

The crucial step in the overall algorithm is the efficient and stable computation of
the eigendecomposition (22), the remaining operations being expensive but trivial.

Suppose for a moment that all the entries of z = (ζ1, . . . , ζn)⊤ are nonzero and
that the eigenvalues (i.e., the diagonal entries) of ∆ are distinct: δ1 < δ2 < . . . < δn.
Then it is easy to show that the eigenvalues λi of ∆ + ρzz⊤ are the roots of the
so-called secular equation

f(λ) := 1 + ρ

n∑

i=1

ζ2
i

δi − λ
= 0 , (23)

and that for any eigenvalue λi of ∆ + ρzz⊤,

yi := (∆− λiI)−1 · z (24)
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is a corresponding eigenvector. (Note that computing yi involves just an appropri-
ate entry-wise scaling of z.)

Eq. (23) implies that the δi “interlace” the sought eigenvalues, i.e., for ρ > 0 we
have

δ1 < λ1 < δ2 < λ2 < δ3 < . . . < δn < λn .

This property, together with the fact that on each interval (δi, δi+1) the function
f can be approximated by simple rational expressions, leads to a globally and
quadratically convergent root finder that can compute all the λi in order-of-n2

time.
Unfortunately, Eq. (24) is not an adequate means to compute the eigenvectors

because orthogonality is severely impaired in the presence of close δi. It took
more than ten years from the invention of the divide-and-conquer method until
a technique was discovered19 that did not need resorting to extended precision
in the eigenvector computations. Roughly speaking, we can compute orthogonal
eigenvectors for ∆ + ρzz⊤ by applying Formula (24) to a slightly modified vector
z.

In practice our assumption that all the ζi are nonzero and all the δi are distinct
is seldom fulfilled. The superiority of the divide-and-conquer method comes from
the fact that it even can take advantage from a violation of this assumption. In
fact, if some ζi is zero then δi and the ith column of X already are an eigenpair of
the tridiagonal matrix T. Similarly, if some of the δi are (almost) identical then all
but one of them are also very good approximations to eigenvalues λi of T, and the
corresponding eigenvalues can be computed cheaply. Thus, the eigenvalue problem
for ∆ + ρzz⊤ and the ensuing multiplication X · Y are effectively reduced in size.
Fortunately this type of deflation is quite frequent.

Parallelism can be exploited in two ways. First, all the solutions of the secular
equation and the corresponding eigenvectors of ∆ + ρzz⊤ may be computed inde-
pendently from each other, and second, the matrix–matrix product X ·Y lends itself
naturally to a coarse-grained parallelization.

There are also attempts to apply the divide-and-conquer technique to banded
matrices3, but the resulting algorithms are still highly experimental.

5.5 Homotopy Methods

Homotopy methods29 try to follow the paths of the eigenvalues and eigenvectors
through a whole sequence of matrices

T0 7→ T1 = T0 + θ1(T− T0) 7→ . . . 7→ Tk−1 = T0 + θk−1(T− T0) 7→ Tk = T ,

where T0 is some initial matrix whose eigensystem is readily computed (e.g., a
diagonal matrix), T is the matrix whose eigensystem is sought, and 0 = θ0 < θ1 <
. . . < θk−1 < θk = 1. If the step-sizes θi−θi−1 are small enough then the eigenvalues
of Ti−1 are good starting values for computing the eigenvalues of Ti, and inverse
iteration for Ti’s eigenvectors can be started with the eigenvectors of Ti−1.

The same idea may also be applied to other (e.g., banded) matrices and to the
generalized eigenvalue problem. Note that the homotopy methods are still in an
experimental state.
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6 Methods Without Initial Tridiagonalization

In contrast to the methods described above, the algorithms discussed in this section
do not rely on an initial tridiagonalization of the matrix, but apply the iterative
process to the matrix A itself.

6.1 Jacobi’s Method

Jacobi’s method is based on the idea of reducing A’s “off-diagonal norm”,

off(A) :=

√
√
√
√

n∑

i=1

n∑

j=1,j 6=i
A(i, j)2 ,

until it is negligibly small. Then we can read off A’s eigenvalue from the diagonal
entries and the eigenvectors from the columns of the orthogonal transformation
matrix that was used to attain the almost-diagonal form.

This form is achieved by repeatedly zeroing selected entries A(i, j) with suitable
rotations. If we choose the rotation angle θ such that

tan θ =
sign(τ)

|τ |+
√

1 + τ2
, where τ =

A(i, i)− A(j, j)

2A(i, j)
,

then a short computations shows that the two-sided rotation A 7→ R⊤AR with
R = R(i, j, θ) indeed zeroes A’s (i, j) and (j, i) entries and that off(A) drops by
2 · A(i, j)2. Note that again the rotation angle is not needed explicitly because the
parameters c and s may be obtained via

c =
1√

1 + t2
, s = t · c .

Unfortunately, zeros introduced this way do not persist but are made nonzero
again in later rotations. Thus most entries of A have to be made zero several times
during the whole process. There are many different strategies for selecting the order
of the entries (i, j) to be zeroed.

Obviously, zeroing the off-diagonal entry A(i, j) with the largest absolute value
will lead to the largest reduction of off(A). This is the classical Jacobi method22,
which is slowed down by organizational overhead since the roughly n2/2 compar-
isons for determining the maximum entry cost by far more time than the 6n ensuing
arithmetic operations.

Therefore most often cheaper schemes are used, in particular the row cyclic and
column cyclic elimination orders. In the former, the entries of the strictly lower
triangle of A are made zero row-by-row, that is, in the order A(2, 1), A(3, 1), A(3, 2),
A(4, 1), A(4, 2), A(4, 3), . . . , A(n, 1), A(n, 2), . . . , A(n, n−1). When all these entries
have been made zero once (this is called a sweep of the method), then the process
is started anew.

It is easy to see that each rotation in the classical method must reduce off(A)
by a factor ≤ 1 − 2

n(n−1) < 1, thus implying at least linear convergence. A

more involved analysis reveals that the convergence is indeed much faster, namely
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quadratic34. This is also true for the cyclic schemes, provided that some precautions
concerning the rotation angles are taken.

Experimental evidence suggests that in practice roughly logn sweeps are neces-
sary to achieve adequate accuracy. As the methods discussed in Sections 4 and 5
require much less work (corresponding to just two Jacobi sweeps), Jacobi’s method
is usually not competitive. If, however, the matrix A is already strongly diago-
nally dominant (i.e., its diagonal entries are much larger than the off-diagonals)
then Jacobi’s method needs only a few sweeps to converge and may even beat the
reduction-based methods.

Two other facts have revived the interest in Jacobi’s method. First, it was ob-
served that in some cases this algorithm — carefully implemented — can deliver
much more accurate eigensystems than the other techniques. And second, appro-
priate cyclic elimination schemes allow exploiting parallelism by applying several
rotations simultaneously31.

There are also variants of Jacobi’s method for the generalized eigenvalue prob-
lem, but their convergence properties are not sufficiently known.

6.2 Invariant Subspace Decomposition

The invariant subspace decomposition algorithm21 (ISDA) is in some sense dual
to the bisection/inverse iteration approach since it extracts information about the
eigenvectors before the eigenvalues. This algorithm relies on the fact that eigenvec-
tors are invariant under polynomial transformations of the matrix: If (λ,q) is an
eigenpair of A then for any polynomial p, (p(λ),q) is an eigenpair of p(A).

First, lower and upper bounds for spec(A) are determined (e.g., with Gersh-
gorin’s theorem for full matrices), and then a linear transformation A 7→ αA+βI =:
A1 is applied that maps the lower half of the eigenvalues, λ1, . . . , λn/2, into the

interval [0, 1
2 ] and the upper half of the eigenvalues into [12 , 1].

Then further polynomial transformations Ak 7→ pk(Ak) =: Ak+1 are applied,
where the polynomial pk is designed such that pk(x) ≈ 0 for x ∈ [0, 1

2 ) and pk(x) ≈ 1
for x ∈ (1

2 , 1], i.e., pk pushes the lower half of the eigenvalues toward 0 and the
upper half toward 1. This process is repeated until Ak ≈ Ak−1, implying that all
eigenvalues of the final Ak are approximately 0 or 1.

Next, a so-called rank-revealing QR decomposition Ak = QR of this matrix into
an orthogonal matrix Q and an upper triangular matrix R is determined. Then the
first (last) n/2 columns of Q are orthonormal eigenvectors to the eigenvalue 1 (0,
respectively) of Ak. This implies

Q⊤AQ =

(
A′

A′′

)

,

where A′ and A′′ are symmetric (n/2)-by-(n/2) matrices. According to Section 2.5,
the eigenvalues and eigenvectors of A may now be obtained from the eigendecom-
positions of A′ and A′′, which in turn are computed by recursively applying the
ISDA to these two matrices, or with QR iteration if A′ and A′′ are small enough.

This approach does most of its computations with matrix–matrix products (e.g.,
in the evaluation of pk(Ak)) and therefore achieves high Mflop/s rates. In addition,

255



full

generalized
full

generalized

bandedCholesky

eigenvalues eigenvectors

tridiagonal

Murata/
Horikoshi

Schwarz
blocked

Householder

Crawford

Jacobi
ISDA

bisection
QR

inverse
iteration

banded

+

divide-
and-

conquer

Figure 4. Computational paths for the symmetric eigenvalue problem.

efficient parallelization is possible. On the other hand, the ISDA requires several
times more flop than the reduction–based techniques and is therefore not competi-
tive on serial machines.

7 Synopsis

Figure 4 summarizes the algorithms used in direct symmetric eigensolvers. De-
pending on the initial problem (standard or generalized, full or banded), on the
required information (eigenvalues only or eigenvectors, too), and on a priori knowl-
edge (are the eigenvalues clustered or not?), different computational paths through
the diagram are taken.

8 Available Software

Whenever possible, eigenvalue solvers from established libraries should be used be-
cause much effort went into optimizing their performance and making them robust
(e.g., appropriate scalings for “balancing” the eigenvalues). There are many pitfalls
awaiting the ambitious but unexperienced programmer.

8.1 Serial and Shared-Memory Machines

As modern software for dense or banded matrices relies heavily on the BLAS, ob-
taining an optimized implementation of the BLAS is extremely important. For
most high-performance machines, optimized BLAS are provided by the manufac-
turer. If this is not the case, the public-domain BLAS from the ATLAS project
(http://www.netlib.org/atlas) are a viable alternative. They often perform
almost as well as (and sometimes even better than) proprietary implementations.

The public-domain LAPACK library1 (http://www.netlib.org/lapack) con-
tains optimized implementations for almost all non-experimental algorithms de-
scribed in this article. (LAPACK also solves linear systems and least squares and
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related problems, and most routines are available for real and complex matrices
in either single-precision or double-precision arithmetic.) Preferably the libary’s
comfortable driver routines should be used. E.g., DSYEV computes the eigendecom-
position of a full matrix, whereas DSBEV handles the banded case. Similar drivers
exist for the generalized (full or banded) eigenvalue problem, as well as so-called
“expert” drivers with additional options (e.g., computing only parts of the eigen-
decomposition). In addition, the computational routines may be called directly.
Thus, DSYTRD (DSBTRD) reduces a full (banded) matrix to tridiagonal form with
Algorithm 2 (with a modified version of Algorithm 4).

At http://www-unix.mcs.anl.gov/prism, additional software for the ISDA
(Section 6.2) and for the two-phase reduction (mentioned at the end of Section 4.2)
is available.

Because of the high quality of the LAPACK library, many vendor-supplied nu-
merical packages and commercial libraries (like NAG) are based on these routines.
This is also the case for multithreaded parallel libraries that come with shared-
memory parallel machines. Here the parallelism is often confined within the BLAS.

8.2 Distributed-Memory Systems

For distributed-memory machines with the message-passing programming model,
the situation is more complicated. The direct analogue to LAPACK is the ScaLA-
PACK library7 (http://www.netlib.org/scalapack), which contains the func-
tionality of many LAPACK routines. ScaLAPACK is based on the PBLAS, a
parallelized implementation of the BLAS. ScaLAPACK contains solvers for the
symmetric standard and generalized eigenvalue problem with full matrices, but no
banded solvers. Another problem with this library is the fact that inverse itera-
tion performs explicit orthogonalization only against eigenvectors within the same
processor. Thus excessive memory may be required on a single processor, or or-
thogonality may be lost if explicit orthogonalization is turned off. (ScaLAPACK
also includes QR iteration, which does not suffer from this problem.)

PeIGS (http://www.emsl.pnl.gov:2080/docs/global/peigs.html) is an-
other library offering eigensystem functionality comparable to that of ScaLAPACK;
in particular, banded problems are not addressed. While ScaLAPACK relies on a
two-dimensional data layout (i.e., the matrices are split along rows and columns),
PeIGS works with matrices that are distributed by whole columns or whole rows.
Such distributions are typically inferior. On the other hand, inverse iteration in
PeIGS orthogonalizes against all eigenvectors of a cluster — also on different pro-
cessors — and therefore gives better results.

Finally, there are packages that do not contain complete eigensolvers but
rather provide infrastructure for easily putting such methods together, namely
PLAPACK 38 (http://www.cs.utexas.edu/users/plapack) and Global Arrays
http://www.emsl.pnl.gov:2080/docs/global/ga.html). Both packages facili-
tate the manipulation of distributed matrices.
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Recent methodological advances in semiempirical quantum chemistry and associ-
ated algorithmic developments are reviewed. After a brief overview over the current
status of established semiempirical methods, the following topics are covered: new
general-purpose methods with orthogonalization corrections, MNDO–NMR chem-
ical shifts, analytic derivatives, parallelization of semiempirical codes, and linear
scaling vs combined QM/MM approaches.

1 Introduction

This article outlines a lecture held at the winterschool on ”Modern Methods and
Algorithms of Quantum Chemistry” at Jülich (February 2000). It summarizes some
recent developments in the field of semiempirical quantum chemistry, with emphasis
on the work from our group. Theoretical derivations and detailed numerical results
are generally not presented since they can be found in the original publications.

Over the past decades the semiempirical molecular orbital (MO) methods have
been used widely in computational studies. There are several books 1,2,3,4,5,6 and
reviews 7,8,9,10,11,12,13,14 which describe the underlying theory, the different variants
of semiempirical methods, and the numerical results. Semiempirical approaches are
normally formulated within the same conceptual framework as ab initio methods,
but they neglect many smaller integrals to speed up the calculations. In order to
compensate for the errors caused by these approximations, empirical parameters
are introduced into the remaining integrals and calibrated against reliable exper-
imental or theoretical reference data. This strategy can only be successful if the
semiempirical model retains the essential physics to describe the properties of inter-
est. Provided that this is the case, the parameterization can account for all other
effects in an average sense, and it is then a matter of validation to establish the
numerical accuracy of a given approach.

In current practice, semiempirical methods serve as efficient computational tools
which can yield fast quantitative estimates for a number of properties. This may be
particularly useful for correlating large sets of experimental and theoretical data, for
establishing trends in classes of related molecules, and for scanning a computational
problem before proceeding with higher-level treatments. Compared with ab initio
or density functional methods, semiempirical calculations are much faster, typically
by several orders of magnitude14, but they are also less accurate, with errors that are
less systematic and thus harder to correct. Hence, there remains the need to improve
semiempirical methods with regard to their accuracy and range of applicability,
without compromising their computational efficiency. In addition, there is the need
to develop new algorithms in order to exploit modern computer architectures and
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to extend semiempirical calculations to ever larger molecules.

2 Established methods

Quantum-chemical semiempirical treatments are defined by the following specifica-
tions:

(a) The underlying theoretical approach: Most current general-purpose semiem-
pirical methods are based on MO theory and employ a minimal basis set for
the valence electrons. Electron correlation is treated explicitly only if this is
necessary for an appropriate zero-order description.

(b) The integral approximation and the types of interactions included: Tradition-
ally there are three levels of integral approximation 2,15 – CNDO (complete
neglect of differential overlap), INDO (intermediate neglect of differential over-
lap), and NDDO (neglect of diatomic differential overlap). NDDO is the best
of these approximations since it retains the higher multipoles of charge distri-
butions in the two-center interactions (unlike CNDO and INDO which truncate
after the monopole).

(c) The integral evaluation: At a given level of integral approximation, the in-
tegrals are either determined directly from experimental data or calculated
from the corresponding analytical formulas or computed from suitable para-
metric expressions. The first option is generally only feasible for the one-center
integrals which may be derived from atomic spectroscopic data. The choice
between the second and third option is influenced by the ease of implementa-
tion of the analytical formulas, but mainly depends on an assessment of how
to model the essential interactions.

(d) The parameterization: Semiempirical MO methods are parameterized to repro-
duce experimental reference data (or, possibly, accurate high-level theoretical
predictions as substitutes for experimental data). The reference properties are
best selected such that they are representative for the intended applications.
The quality of semiempirical results is strongly influenced by the effort put
into the parameterization.

In our terminology, the specifications (a)–(b) define a semiempirical model, (a)–(c)
an implementation of a given model, and (a)–(d) a particular method.

Over the years, a large number of methods with different choices for (a)–(d)
and different acronyms have been published, including CNDO/2 16, CNDO/S 17,
INDO 18, MINDO/3 19, INDO/S 20,21, SINDO1 22,23, MSINDO 24,25, MNDO 26,27,
MNDOC 28, AM1 29, PM3 30, SAM1 31,32, MNDO/d 33,34, PM3/tm 35, and
NDDO–G 36. The most popular semiempirical methods for studying ground-state
potential surfaces are based on the MNDO model 26. As a point of reference for the
further discussion, we therefore first outline the MNDO formalism for closed-shell
molecules.

MNDO is a valence-electron self-consistent-field (SCF) MO treatment which
employs a minimal basis of atomic orbitals (AOs, φµ) and the NDDO integral
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approximation. The molecular orbitals ψi and the corresponding orbital energies
εi are obtained from the solution of the secular equations (Sµν = δµν for NDDO):

ψi =
∑

µ

cµiφµ , (1)

0 =
∑

ν

(Fµν − δµνεi) cνi . (2)

Using superscripts to assign an AO (with index µ, ν, λ, σ) to an atom A or B, the
NDDO Fock matrix elements Fµν are given as

FµAνA = HµAνA +
∑

λA

∑

σA

PλAσA

[
(
µAνA, λAσA

)
− 1

2

(
µAλA, νAσA

)
]

+
∑

B

∑

λB

∑

σB

PλBσB

(
µAνA, λBσB

)
, (3)

FµAνB = HµAνB − 1

2

∑

λA

∑

σB

PλAσB

(
µAλA, νBσB

)
, (4)

where Hµν and Pλσ are elements of the one-electron core Hamiltonian and the
density matrix, respectively, and (µν, λσ) denotes a two-electron integral. The
total energy Etot of a molecule is the sum of its electronic energy Eel and the
repulsions EcoreAB between the cores of all atoms A and B.

Eel =
1

2

∑

µ

∑

ν

Pµν (Hµν + Fµν) , (5)

Etot = Eel +
∑

A<

∑

B

EcoreAB . (6)

It is obvious from Eqs. (1)–(6) that the MNDO model includes only one-center and
two-center terms which accounts for much of its computational efficiency. Current
implementations of the MNDO model (e.g., in the MNDO, AM1, and PM3 meth-
ods) are quite similar: Conceptually the one-center terms are taken from atomic
spectroscopic data, with the refinement that slight adjustments are allowed in the
optimization to account for possible differences between free atoms and atoms in
a molecule. The one-center two-electron integrals derived from atomic spectro-
scopic data are considerably smaller than their analytically calculated values which
is (at least partly) attributed to an average incorporation of electron correlation
effects. For reasons of internal consistency, these integrals provide the one-center
limit (RAB = 0) of the two-center two-electron integrals

(
µAνA, λBσB

)
, whereas

the asymptotic limit of
(
µAνA, λBσB

)
for RAB → ∞ is determined by classical

electrostatics. The semiempirical calculation of
(
µAνA, λBσB

)
conforms to these

limits and evaluates these integrals from semiempirical multipole-multipole inter-
actions 33,37: The relevant multipoles are represented by suitable point-charge con-
figurations whose interaction is damped according to the Klopman-Ohno formula.
Therefore, at intermediate distances, the semiempirical two-electron integrals are
smaller than their analytical counterparts which again reflects some inclusion of
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Table 1. Mean Absolute Errors for Organic Molecules (C, H, N, O).

Propertya Nb MNDO AM1 PM3
∆Hf (kcal/mol) 133 6.3 5.5 4.2
R(Å) 228 0.015 0.017 0.011
θ (deg) 92 2.69 2.01 2.22
IP (eV) 51 0.47 0.36 0.43
µ (D) 57 0.32 0.25 0.27

a Heats of formation ∆Hf , bond lengths R, bond angles θ,
ionization potentials IP (Koopmans’ theorem), dipole
moments µ.

b Number of comparisons.

electron correlation effects. Aiming for a reasonable balance between electrostatic
attractions and repulsions within a molecule, the core-electron attractions and the
core-core repulsions are treated in terms of the corresponding two-electron integrals,
neglecting, for example, penetration effects. The additional effective atom-pair po-
tential that is included in the core-core repulsions (with an essentially exponential
repulsion in MNDO and a more flexible parametric function in AM1 and PM3) at-
tempts to compensate for errors introduced by the above assumptions, but mainly
represents the Pauli exchange repulsions. Covalent bonding arises from the two-
center one-electron integrals HµAνB (resonance integrals) which are often taken to
be proportional to the corresponding overlap integrals.

The MNDO model in its current standard implementations (MNDO, AM1,
PM3) has been parameterized primarily with respect to ground-state properties,
with particular emphasis on the energies and geometries of organic molecules. It
has become common practice to judge the accuracy of computational methods from
statistical evaluations for standard validation sets. Such results are shown in Table
1 for organic compounds using the original MNDO set 27, in Table 2 for second-row
and heavier molecules using the MNDO/d set 34, and in Table 3 for first-row and
second-row compounds using the recent G2 neutral test set that is mainly employed
in ab initio and density functional (DFT) work 38. The data in Tables 1–3 have
been assembled for previous reviews 14,39.

The results in Table 1 indicate that AM1 and PM3 offer some improvement in
accuracy over the original MNDO method, but the mean absolute errors remain of
the same order of magnitude. Hence, AM1 and PM3 may be viewed as variants of
MNDO that explore the limits of the underlying theoretical model through careful
parameterization.

In general, the errors in semiempirical calculations for organic compounds (Table
1 ) are smaller than those for molecules containing second-row and heavier elements
(Table 2). As expected, the methods with an sp basis (MNDO, AM1, PM3) fail
for hypervalent compounds, which are described more accurately upon extension
of the MNDO model to d orbitals (MNDO/d, see Table 2).

Concerning the G2 validation set, it is obvious from Table 3 that the G2 ap-
proach is the most accurate one among those studied (as anticipated), followed by
G2(MP2) and B3LYP. The semiempirical methods (especially PM3 and MNDO/d)
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Table 2. Mean Absolute Errors for Molecules Containing Second-Row and Heavier Elementsa

Propertyb Nc MNDO AM1 PM3 MNDO/d
∆Hf (kcal/mol) 575 29.2 15.3 10.9 5.4
R(Å) 441 0.072 0.063 0.065 0.056
θ (deg) 243 3.7 3.4 7.4 2.5
IP (eV) 200 0.89 0.55 0.64 0.45
µ (D) 133 0.55 0.50 0.60 0.35
Hypervalent compounds only
∆Hf (kcal/mol) 67 143.2 61.3 19.9 5.4

a Elements: Na, Mg, Al, Si, P, S, Cl, Br, I, Zn, Cd, and Hg are included. Original data
see ref. 34

b Heats of formation ∆Hf , bond lengths R, bond angles θ, ionization potentials IP
(Koopmans’ theorem), dipole moments µ.

c Number of comparisons for MNDO/d (slightly lower for the other methods due to
missing parameters, see ref. 34 for details).

Table 3. Mean Absolute Errors ∆abs, Largest Positive Errors ∆pos, and Largest Negative Errors
∆neg of Heats of Formation (kcal/mol) for the Molecules from the G2 Neutral Test Seta.

Method ∆abs ∆pos ∆neg Ref.
G2 1.58 8.2 -7.1 38

G2(MP2) 2.04 10.1 -5.3 38

LDA(SVWN) 91.16 228.7 none 38

BLYP 7.09 28.4 -24.8 38

BP86 20.19 49.7 -6.3 38

B3LYP 3.11 8.2 -20.1 38

MNDO 9.32 27.6 -116.7 39

AM1 7.81 42.5 -58.2 39

PM3 7.01 23.1 -32.2 39

MNDO/d 7.26 27.6 -33.9 39

a The G2 neutral test set contains 148 molecules 38.
Due to the lack of parameters for certain elements,
the data for MNDO, AM1, and PM3 refer to 146,
142, and 144 molecules, respectively.

show similar errors as BLYP, whereas BP86 and particularly LDA(SVWN) overbind
strongly. To put these results into perspective, it should be noted that the complete
geometry optimization of all 148 test molecules took altogether less than 20 seconds
on an SGI R10000 workstation, for any of the four semiempirical methods. Since
this computational effort is several orders of magnitude lower than that at the ab
initio or DFT levels, the overall performance of the semiempirical methods appears
acceptable (Table 3).

The statistical evaluations in Tables 1–3 (and many others that are available in
the literature 11,12,13,30,34) indicate that the established semiempirical methods can
often be applied with useful accuracy and at very low computational costs. The
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following limitations should be kept in mind, however:

(a) In general, errors tend to be more systematic at a given ab initio or DFT
level and may therefore often be taken into account by suitable corrections.
Errors in semiempirical calculations are normally less uniform and thus harder
to correct.

(b) The accuracy of the semiempirical results may be different for different classes
of compounds, and there are elements that are more ”difficult” than others.
Such variations in the accuracy are again less pronounced in high-level ab initio
and DFT calculations.

(c) Semiempirical methods can only be applied to molecules containing elements
that have been parameterized, while ab initio and DFT methods are generally
applicable (apart from technical considerations such as basis set availability).

(d) Semiempirical parameterizations require reliable experimental or theoretical
reference data and are impeded by the lack of such data. Such problems do
not occur in ab initio or DFT approaches.

(e) Different parameterizations of a given semiempirical model may be required
for different properties to obtain useful accuracy, and there is no systematic
procedure for improving the results, unlike ab initio methods which provide a
convergent path to the exact solution of the nonrelativistic Schrödinger equa-
tion.

To overcome some of these limitations, it seems desirable to develop better semiem-
pirical methods. In the next sections, two such attempts are presented: First, a
general-purpose parameterization of an approach that goes beyond the MNDO
model by explicitly including orthogonalization effects, and secondly, a special pa-
rameterization of the MNDO model for the calculation of NMR chemical shifts.

3 Beyond the MNDO model: Orthogonalization corrections

As discussed above, the established MNDO-type methods do not treat the Pauli
exchange repulsions explicitly, but attempt to incorporate them through an effec-
tive atom-pair potential that is added to the core-core repulsion. When trying to
improve the MNDO model, it would seem logical to include the Pauli exchange
repulsions explicitly in the electronic calculation and to remove the effective atom-
pair potential from the core-core repulsion. For the sake of consistency, other
one-electron terms of similar magnitude should then also be treated explicitly, i.e.
penetration integrals and core-valence interactions (effective core potentials).

The zero-differential-overlap (ZDO) approximation causes the formal neglect of
the Pauli exchange repulsions in semiempirical methods. Its consequences have
been analyzed in many studies (see e.g. refs. 40,41,42,43,44,45,46,47). ZDO-related
deficiencies include:

(a) The gaps between bonding and antibonding molecular orbitals, as well as the
corresponding excitation energies, are significantly underestimated.
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(b) The correct pairing properties for the electronic states of of conjugated hydro-
carbons are not reproduced 45.

(c) Barriers to internal rotation as in ethane are underestimated, with implications
for other conformational properties (for a detailed discussion see ref. 46).

(d) The closed-shell repulsions due to four-electron two-orbital interactions are
not recovered properly, which causes problems, for example, with antiaromatic
systems, intermolecular interaction potentials, and certain transition structures
41,42,43,44,45,46,47.

To account for the Pauli exchange repulsions more explicitly at the semiempirical
level, orthogonalization corrections need to be addressed. The chosen strategy is
based on the following general considerations 47.

Ab initio SCF methods solve the Roothaan-Hall pseudo-eigenvalue problem

F C = S C E , (7)

where F, C, and S denote the Fock, eigenvector and overlap matrix, respectively,
and E is the diagonal matrix of orbital energies. Orthogonalization of the basis
leads to a standard eigenvalue problem

λFλC = λCE , (8)

where the superscript λ denotes a quantity expressed in an orthogonalized basis.
The corresponding transformation can be achieved through a symmetric Löwdin
orthogonalization. By contrast, semiempirical methods solve a secular equation,

NDDOF NDDOC = NDDOC E , (9)

where the transformation F to λF is not explicitly performed. This suggests that
the semiempirical Fock matrix implicitly refers to an orthogonal basis:

NDDOF ≈ λF (10)

The neglect of all three-center and four-center two-electron integrals in NDDO
approximation 2,15 is consistent with this interpretation because these integrals are
vanishingly small only in an orthogonalized basis. The Fock matrix contains both
one-electron (H) and two-electron (G) terms, which can be handled separately
during Löwdin orthogonalization:

λF = λH +λ G (11)
λH = S−1/2HS−1/2 (12)
λG = S−1/2GS−1/2. (13)

To account for the orthogonalization effects arising from these transformations,
different strategies may be followed in a semiempirical context. The direct use of Eq.
(13) is not feasible since it requires the prior calculation of all two-electron integrals
and would thus sacrifice the computational efficiency of the NDDO approach. On
the other hand, the exact orthogonalization of the one-electron part according to
Eq. (12) would be feasible computationally. However, using Eq. (12) without Eq.
(13) introduces an imbalance between the one-electron and two-electron parts of the
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Fock matrix and is therefore problematic. In the literature, several variants of this
approach have been studied, where different parts of the Fock matrix are subjected
to the exact Löwdin transformation while the ZDO approximation is applied to
the remainder (see e.g. refs. 45,48,49). To our knowledge, none of these attempts
has been successfully incorporated into a general-purpose semiempirical method.
Therefore, we have adopted the alternative strategy of representing the dominant
one-electron orthogonalization corrections by suitable parametric functions. These
corrections can then be adjusted during the parameterization process, as in previous
approaches at the CNDO and INDO levels 22,23,24,25,50.

These basic ideas have been implemented in two steps. First, the Pauli exchange
repulsions have been introduced as valence-shell orthogonalization corrections only
in the one-center part of the core Hamiltonian 51,52. In the second step, they have
also been incorporated in the two-center part of the core Hamiltonian 46,47, i.e. in
the resonance integrals. Both developments have been guided by analytic ab initio
formulas and numerical ab initio SCF results. Their implementations are actually
quite similar: In both cases, a Gaussian minimal basis set is used for technical
reasons, and most two-center interactions are evaluated analytically followed by
an appropriate Klopman-Ohno scaling. The valence-shell orthogonalization cor-
rections are represented in terms of the resonance integrals through a truncated
and parameterized series expansion. The resonance integrals contain a parameter-
ized radial part while the angular part is the same as in the corresponding overlap
integral.

The first approach 51,52 which we now call OM1 (orthogonalization method
1) contains only one-center and two-center terms, since the dominant orthogonal-
ization corrections to the one-center part of the core Hamiltonian involve only a
second atom. By contrast, the second approach 46,47 labelled OM2 (orthogonal-
ization method 2) includes three-center contributions, since the corrections to the
resonance integrals βµλ involve a third atom. The relevant corrections in OM2 are
given by 46,47

λHµλ = βµλ −
1

2

C∑

ρ

(Sµρβρλ + βµρSρλ) +
1

8

C∑

ρ

SµρSρλ(Hµµ +Hλλ − 2Hρρ) . (14)

These three-center contributions reflect the stereochemical environment of each
electron pair bond and should thus be important for modeling conformational prop-
erties. Technically, their inclusion increases the computational effort, but does not
affect its scaling behavior since the three-center terms fall off like the square of an
overlap integral and can therefore safely be neglected beyond certain cutoffs.

OM1 has been parameterized for the elements H, C, N, O, and F 51,52. Sig-
nificant qualitative improvements over the established MNDO-type methods are
found in several areas, particularly for excited states. The mean absolute error in
vertical excitation energies is 0.28 eV, much lower than in AM1 (1.20 eV) or PM3
(1.18 eV). This is readily rationalized: The destabilization of antibonding molec-
ular orbitals is greater than the stabilization of bonding molecular orbitals at the
ab initio level. This effect is not taken into account in the established MNDO-type
methods whereas it is incorporated in OM1 through the orthogonalization correc-
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Table 4. Mean Absolute Errors of Heats of Formation (kcal/mol) for First-Row Molecules from
the G2 Neutral Test Seta.

Method First-row CH CHN CHNO CHNOF
G2 1.53(93) 1.31(30) 1.04(17) 1.37(33) 3.29(12)
BLYP 7.38 7.16 5.41 8.34 8.70
B3LYP 2.42 2.66 2.23 2.18 2.86
MNDO 7.71 7.42 5.93 9.13 7.62
AM1 7.44 6.57 5.05 9.35 7.89
PM3 6.86 6.43 6.75 6.88 7.46
OM1 4.64 3.20 3.67 5.89 6.37
OM2 3.36(81) 2.37 3.25 4.30 b

a The number of molecules in a subgroup is given in parentheses. Results for
G2, BLYP, and B3LYP have been derived from the published data 38.

b OM2 parameters for F still missing.

tions 14. Hence, the excitation energies are raised in a natural manner by correcting
for deficiencies inherent to the ZDO approximation.

OM2 has presently been parameterized for H, C, N, and O 46. As expected
theoretically (see above), the numerical results show qualitative improvements for
conformational properties, including rotational barriers, relative energies of isomers,
and ring conformations. Hydrogen bonds are generally described much better than
previously. The barriers for typical pericyclic reactions are realistic: for example, in
the Diels-Alder reaction between butadiene and ethylene, the barrier is lower for the
concerted pathway than for the biradicaloid one, and it decreases with increasing
cyano substitution (in agreement with experiment and ab initio results).

While these qualitative advances are gratifying, it is also important to demon-
strate that OM1 and OM2 perform well for the usual ground-state properties (see
above). This is indeed the case 39,46,52. OM1 and OM2 offer consistent small im-
provements over the established MNDO-type models, as can be seen, for example,
from Table 4 which presents a statistical evaluation of thermochemical results for
the first-row compounds and suitable subgroups from the G2 neutral test set 38,39.

Judging from the presently available OM1 and OM2 results 38,46,52,53, the ex-
plicit inclusion of Pauli exchange repulsions has led to qualitative and quantitative
improvements in several important areas, which can partly be traced back to im-
provements in the underlying theoretical model. More work is needed to explore
the limitations of these new approaches and to extend them to heavier elements.

4 NMR chemical shifts

NMR chemical shifts are an important source of information on molecular structure
and reactivity in many fields of chemistry. They can be measured with high accu-
racy and sensitivity for increasingly complex systems, including large biomolecules
whose solution structures can be determined from NMR chemical shifts and cou-
pling constants. The accurate theoretical calculation of absolute NMR shieldings
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is a challenging task which is best addressed by high-level theoretical methods. A
large number of ab initio and density functional approaches to the evaluation of
the NMR chemical shifts have indeed become available in recent years. Most of
these approaches are based on the GIAO (Gauge-Including Atomic Orbitals) 54

and IGLO (Individual Gauge for Localized Orbitals) 55,56 concepts. Many such ab
initio and DFT calculations have been published, and several reviews of such work
have appeared 56,57,58.

Despite these tremendous advances at the ab initio and DFT level, a reliable
and less costly semiempirical method would clearly be useful for the treatment of
larger systems and the rapid estimation of chemical shifts in cases where the full
versatility of ab initio and DFT methods is not needed. Even though there has
been some previous semiempirical work in this area (for a review of the earlier
literature, see refs. 59,60), a reliable semiempirical method for computing NMR
chemical shifts appears to be lacking. We have therefore decided to implement the
evaluation of the NMR chemical shift tensor at the MNDO level for an spd basis set
using gauge-including atomic orbitals and analytic derivative theory, followed by a
specific parameterization of the GIAO–MNDO model with respect to experimental
reference data 59,60. In the following, we outline this development and summarize
the results that have been obtained so far (for details see ref. 60).

The NMR shielding tensor components σab are second-order properties given by
the mixed derivative of the energy with respect to the components of the nuclear
magnetic moment ~µ and the magnetic field strength ~B:

σab =
∂2E

∂Ba∂µb

∣
∣
∣
~µ, ~B=0

(15)

For the evaluation of the shielding tensor it is sufficient to include only the terms
linear and bi-linear in ~µ and ~B in the one-electron Hamiltonian, which is then given
by (atomic units) 54,61:

ĥ = ĥ00 + i
∑

a

ĥa0Ba + i
∑

b

ĥ0bµb +
∑

a,b

ĥabBaµb (16)

In the GIAO approach, the origin independence of the chemical shift is ensured by
introducing a field-dependent factor into the basis functions 62:

ϕ
(

~r − ~R
)

= χ
(

~r − ~R
)

exp

(

− i

2c

(

~B × ~R
)

· ~r
)

(17)

where χ
(

~r − ~R
)

is a field-independent basis function centered at ~R.

GIAO basis functions do not depend on the nuclear magnetic moment, so that
differentiation with respect to ~µ may be performed using the Hellmann-Feynman
theorem. Subsequent differentiation with respect to ~B introduces terms due to the
derivatives of the Hamiltonian, the GIAOs, and the wave function. In the density
matrix formulation, the resulting expression is given by 61:

σab =
∑

µν

PµνH
ab
µν −

∑

µν

P aµνH
0b
µν (18)
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The purely real matrix elements Hab
µν and H0b

µν are:

Hab
µν =

∂

∂Ba

〈

ϕµ

∣
∣
∣
∂ĥ

∂µb

∣
∣
∣ϕν

〉∣
∣
∣
∣
∣
~µ, ~B=0

(19)

H0b
µν =

〈

χµ

∣
∣
∣
∂ĥ

∂iµb

∣
∣
∣χν

〉∣
∣
∣
∣
∣
~µ, ~B=0

(20)

The imaginary part of the first-order density matrix Pa is formally defined as
derivative of the zero-order density matrix P:

P aµν =
∂Pµν
∂iBa

(21)

The perturbed density matrix is obtained by solving the CPHF (coupled perturbed
Hartree-Fock) equations, which take a particularly simple form in the MNDO ap-
proximation 59,61:

FaP + FPa = PaF + PFa (22)

PaP + PPa = 2Pa (23)

Fa = Ha + G (Pa) (24)

Ha is the imaginary part of the static derivative of the one-electron Hamiltonian
with respect to the magnetic field:

Ha
µν =

∂

∂iBa

〈

ϕµ
∣
∣ĥ
∣
∣ϕν

〉 ∣
∣
∣
~µ, ~B=0

=

〈

χµ

∣
∣
∣ĥa0 − 1

2c

(

~r × ~Rµ

)

a
ĥ00 +

1

2c
ĥ00

(

~r × ~Rν

)

a

∣
∣
∣χν

〉

(25)

G (Pa) is the analogue of the two-electron part of the Fock matrix built using the
first-order density matrix in place of the unperturbed density. Equation (24) is
considerably simpler than its ab initio analogue 61 due to the cancellation of the
field-dependent factors in all two-electron integrals that are retained in MNDO
approximation. The CPHF equations (22)–(24) can be solved directly in the AO
(atomic orbital) basis or transformed into the explicitly linear non-redundant form
59. In either case, the equations are solved by a rapidly converging iterative proce-
dure.

In ab initio approaches, the matrix elements Ha
µν in Eq. (25) are evaluated

analytically. MNDO-type methods assume the two-center matrix elements Hµν of

the operator ĥ00 to be proportional to the corresponding overlap integral Sµν :

Hµν =
〈

χµ|ĥ00|χν
〉

≈ bµνSµν = HMNDO
µν (26)

Given this choice, a consistent approximation is required in Eq. (25) in order to
preserve the origin independence of the results. For reasons discussed in more detail
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elsewhere 59,60, we have adopted the following semiempirical expression for Ha
µν :

Ha
µν(MNDO) =

1

2c

{
(

~Rµ × ~Rν

)

HMNDO
µν +

(

~Rµ − ~Rν

)

×
(

bµν

〈

χµ

∣
∣
∣~r − ~Rν

∣
∣
∣χν

〉)

− 1

2

〈

χµ

∣
∣
∣L̂Rν

∣
∣
∣χν

〉

+
1

2

〈

χν

∣
∣
∣L̂Rµ

∣
∣
∣χµ

〉
}

a

(27)

This completes the outline of the GIAO–MNDO approach. The NMR chemical
shift tensor is evaluated from Eqs. (18)–(21), with the first-order density matrix
being determined from the CPHF equations (22)–(24) using the approximation
of Eq. (27) for Ha

µν . It should be stressed that semiempirical approximations
only enter the right-hand side of the CPHF equations and thus only influence the
paramagnetic terms via the first-order density matrix. The present model does not
explicitly account for the contributions of the core electrons to the chemical shift
(due to the neglect of core electrons in MNDO-type methods), so that absolute
NMR shieldings will not be reproduced. However, since core contributions to the
absolute shieldings are constant to within a few ppm 56, and largely cancel when
computing shifts, this shortcoming is unlikely to impede a parameterization for
NMR chemical shifts, at least for first-row elements (with a 1s core).

In the implementation of the GIAO–MNDO approach, the perturbed density
matrix P aµν , Eq. (21), is obtained by solving the CPHF equations. Unlike in the ab
initio case, its determination requires only a minor fraction of the overall computa-
tional effort: relatively few one-electron integrals are needed that can be expressed
in terms of overlap integrals, and the two-electron integrals are field-independent
due to the MNDO approximation (see above). The derivatives Hab

µν , Eq. (19), and

H0b
µν , Eq. (20), both contain two-center and three-center contributions. The for-

mer can be determined easily, since there are relatively few two-center terms which
can be computed efficiently over Slater orbitals by any of several available tech-
niques 59,60. The latter represent the computational bottleneck: there are many
three-center terms which are hard to compute over Slater orbitals, accounting for
far more than 90% of the overall computational effort. In a semiempirical context,
it is tempting to neglect these three-center contributions, but this is not possible
in general, because they turn out to be important for hydrogen chemical shifts
and long-range current effects. We have therefore resorted to the use of STO–
4G expansions for the Slater basis functions in MNDO during the evaluation of
these three-center integrals (for details see ref. 60). This speeds up the calculation
considerably, even though most of the computational effort is still spent on the
three-center terms.

Calculations using standard MNDO parameters overestimate the variation of
the paramagnetic contribution to the NMR chemical shifts 59 which is due to the
systematic underestimation of excitation energies in MNDO (see above). This fail-
ure cannot be rectified without modifying the MNDO parameters 59. We have
therefore carried out two parameterizations for H, C, N, and O where the quanti-
ties HMNDO

µν in Eq. (27) were adjusted to increase the gap between occupied and
unoccupied molecular orbitals which decreases the paramagnetic contribution to
the NMR chemical shifts. The first parameterization involved a total of 9 orbital
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Table 5. Mean Absolute Errors of the Computed NMR Chemical Shifts (ppm)a.

Elementb MA2 MA3 MB2 MB3 Range
Small set
H (102) 0.57 0.50 0.66 0.46 31
C (93) 11.78 12.12 9.79 9.65 346
N (37) 51.13 50.51 33.53 33.70 933
O (51) 64.30 63.70 59.90 59.75 1650
Large set
H (345) 0.95 0.66 1.60 0.73 19
C (848) 8.48 8.32 8.31 7.95 359
N (239) 41.90 41.42 28.70 28.74 977
O (168) 47.92 47.79 43.64 43.32 1698

a See text.
b Number of comparisons per element given in parentheses.

exponents and resonance parameters for H, C, N, and O which were optimized
to reproduce liquid-phase chemical shift reference data from 299 small organic
and inorganic molecules 59 (employing MNDO geometries and neglecting three-
center terms during the parameterization for the sake of efficiency). The resulting
”Method A” (MA) parameters show a significant improvement over the original
MNDO parameters in chemical shift computations, a particularly good agreement
with experiment being observed for 13C shifts in hydrocarbons 59. The second
parameterization added the one-center one-electron energies to the previous list
of parameters, for a total of 16 adjustable parameters, to allow for the tuning of
both diamagnetic and paramagnetic contributions. The parameters were calibrated
against experimental chemical shifts for 97 small ions and molecules (mostly gas-
phase data) using B3LYP geometries and including three-center terms during the
parameterization. The final ”Method B” (MB) parameters turn out to be slightly
superior to the MA parameters and are the recommended choice, but the quality
of the computed shifts is not too different.

Table 5 lists the mean absolute errors of the calculated shifts (relative to ex-
periment) for the small gas-phase set (97 molecules, B3LYP geometries) and the
largest liquid-phase set (384 molecules, MNDO geometries). Data are given for the
MA and MB parameters, both without (MA2, MB2) and with (MA3, MB3) three-
center terms (for details see 60). For both validation sets, the mean absolute errors
as well as the rms errors usually remain below 5% of the total chemical shift range
for each element. Closer inspection shows that a significant fraction of the error
in the small set is due to small molecules with unusual bonding. Since ”normal”
organic molecules are represented more strongly in the larger set, the errors tend
to be somewhat smaller in the latter, at least for C, N, and O. In the case of H,
the experimental shifts in the large set (liquid-phase data) are partly influenced by
solvation effects which cannot be completely absorbed by the parameterization; this
may be the reason why the errors for H are smaller in the smaller set (gas-phase
data).
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Three-center terms typically contribute a few ppm to the total chemical shift for
all four elements studied, but they are essential for a qualitatively correct descrip-
tion of hydrogen chemical shifts (and also of nucleus-independent chemical shifts,
see below). These terms are less important for C, N, and O, where they can nor-
mally be omitted without significantly degrading the results. Hence, MB2 is the
recommended approach for C, N, and O. MB2 calculations are fairly efficient: for
example, the 13C shifts of taxol (113 atoms) are computed in 117 seconds on an
SGI R10000 workstation.

Nucleus-independent chemical shifts (NICS) have been introduced as an ad-
ditional magnetic criterion for aromaticity 63. They are defined as the negative
magnetic shielding at some selected point in space, e.g., at a ring center. Given
the large number of successful NICS studies at ab initio and DFT levels, we have
applied the MNDO–MB3 approach to compute 116 NICS values for a wide range
of organic molecules, including [n]annulenes, polycyclic hydrocarbons, heterocycles,
cage molecules, fullerenes, and pericyclic transition states 64. Generally we find rea-
sonable agreement with the ab initio and DFT reference data. The semiempirical
NICS values tend to be smaller in absolute value than their ab initio counterparts,
but they often show similar trends. The aromatic or antiaromatic character of a
given system can normally be assigned correctly on the basis of the MNDO–MB3
NICS values 64.

For a more detailed assessment of the GIAO–MNDO method, the available sta-
tistical evaluations 60,64 need to be supplemented by case studies. For example, we
have confirmed that GIAO–MNDO satisfactorily reproduces the differences between
the nonclassical and classical 2-norbornyl cations 56, the shifts in benzenonium and
related carbocations 65, and the individual shielding tensor components in carbonyl
compounds 66. Further such validation work is in progress.

5 Analytic derivatives

Efficient explorations of potential surfaces require the derivatives of the energy with
respect to the nuclear coordinates. The first derivatives (gradient) are essential for
geometry optimization, while the second derivatives (harmonic force field) char-
acterize stationary points. In principle, these derivatives can be computed either
analytically or numerically. The analytic approach is generally more precise, but
requires a significant coding effort. By contrast, the numerical approach is easily
implemented and also trivially amenable to a coarse-grained parallelization (see
below).

For variational semiempirical SCF methods (e.g., closed-shell restricted Hartree-
Fock, RHF, or unrestricted Hartree-Fock, UHF) the gradient can be computed at
a fraction of the cost for an SCF calculation. Analytic gradients have long been
available for this case 67, but a simple finite-difference procedure with a constant
density matrix and recalculated two-center integrals is also efficient. For certain
nonvariational semiempirical wavefunctions (e.g., open-shell half-electron restricted
Hartree-Fock, HE–RHF, or configuration interaction, CI), analytic gradients have
also been introduced 68 employing a procedure for solving the CPHF equations
that scales as N4 (N basis functions). Harmonic force fields have traditionally
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been determined in semiempirical programs from numerical finite differences of the
corresponding gradients.

We have recently implemented analytic first and second derivatives for MNDO-
type methods 59,69,70,71. Compared with the existing codes, there is little to be
gained for the gradient in variational SCF methods (see above) whereas large im-
provements can be achieved for the gradient in nonvariational approaches (HE–SCF,
HE–CI, and small CI expansions in general). In this case, the time-determining
step is the solution of the CPHF equations which can be reformulated to scale as
N3 when making use of the Z-vector method 72. The chosen representation of
the CPHF equations exploits the simplifications arising from the MNDO integral
approximations and covers the case of fractional occupation numbers 69. The im-
plementation provides 18 predefined combinations of options for the solution of the
CPHF equations (e.g., direct vs iterative solver, MO vs AO basis, in-core vs out-
of-core treatment, alternative preconditioners) and automatically selects the best
computational path for given system size and hardware configuration. As a result
of these developments, dramatic speedups are observed between the previous N4

and the new N3 algorithms: for example, the cpu time for the gradient evaluation
on an SGI Indigo R4000 workstation drops

(a) from 24049 s to 62 s in C66H20, N=284, SCF–CI time 166 s 70,

(b) from 100139 s to 222 s in C96H24, N=408, HE–SCF time 605 s 69.

It is obvious that these algorithmic improvements will greatly facilitate semiem-
pirical studies of open-shell molecules and electronically excited states: since the
evaluation of the analytic gradient is now significantly faster than the underlying
SCF and CI calculations, routine full geometry optimizations become feasible for
fairly large systems.

Analytic second derivatives always contain contributions from integral deriva-
tives (direct terms) and density matrix derivatives (CPHF terms), even at the SCF
level. In the ab initio case, the computational cost is often dominated by the direct
terms (in typical applications to medium-size molecules) so that the analytic eval-
uation of the second derivatives will normally be more efficient than a numerical
evaluation. By contrast, in the semiempirical case, the computational cost is always
dominated by the CPHF terms since there are relatively few integral derivatives
due to the MNDO approximation. While it is not trivial to derive and to code
these derivatives (especially for the two-electron terms in an spd basis) 59,71, their
evaluation involves little computational effort. On the other hand, the traditional
finite-difference evaluation of the second derivatives in MNDO-type methods also
benefits from the MNDO integral approximation and scales as MN3 for a molecule
with M atoms and N basis functions. The same scaling can be achieved in the
analytic approach if the CPHF problem is formulated in the AO basis and solved
iteratively 71. It is thus the prefactors in these scaling laws (and the convergence
behavior of the underlying SCF and CPHF solutions) that determine the relative
speed of the two approaches. Our implementation 71 of the analytic second deriva-
tives for MNDO-type methods turns out to be faster by factors of 4-8 compared
with analogous numerical computations, and it exhibits a reliable convergence over
a wider range of molecules. The asymptotic memory and disk storage requirements
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can be chosen to scale as low as N2 without significant degradation of performance.
These advances clearly facilitate force constant calculations for larger molecules at
the semiempirical SCF level.

6 Parallelization

Both parallel vector processors (PVP) with shared memory and massively parallel
(MP) systems with distributed memory are currently used for high-performance
computing (HPC). It is evident that production codes should exploit the possi-
bilities offered by these architectures. Like other quantum-chemical software, our
present semiempirical program 73 is quite large (more than 170000 lines of source
code) and provides the usual core functionality as well as diverse additional options
74. When adapting such a program to novel architectures, it is common to concen-
trate on the time-determining steps of standard applications first and to consider
other tasks later.

Focusing on the core functionality of semiempirical codes, the most time-
consuming step in an MNDO SCF–MO calculation is the solution of the secular
equations, see Eq. (2). In matrix notation:

FC = CE (28)

The solution of this eigenvalue problem is an O(N3) process. The only other O(N3)
step is the calculation of the density matrix

P = 2 CoccC
T
occ , (29)

where Cocc is an (N × Nocc) matrix containing the Nocc doubly occupied closed-
shell eigenvectors, and CT

occ its transpose. Both the evaluation of the two-center
integrals and the construction of the Fock matrix (see Eqs. (3)–(4)) require a
computational effort that scales as O(N2). These tasks may represent a large
part of the computation for smaller molecules, but the O(N3) steps are bound to
dominate for large molecules and thus deserve special attention.

Traditionally the eigenvalue problem, Eq. (28), is solved by diagonalizing the
Fock matrix. In the case of semiempirical SCF methods, however, this diagonal-
ization is replaced by a pseudodiagonalization scheme whenever possible 75. In
essence, the Fock matrix is transformed from the AO basis to the MO basis (from
FAO = F to FMO) using the currently available trial eigenvectors (occupied and
virtual vectors being collected in Cocc and Cvirt, respectively):

FMO = CT
occFAOCvirt . (30)

The elements in the resulting (Nocc × Nvirt) matrix FMO that exceed a prede-
fined threshold are approximately annihilated by noniterative 2 × 2 Jacobi-type
rotations (with corresponding modification of the trial eigenvectors). This pseu-
dodiagonalization scheme is much faster than the full diagonalization and usually
does not slow down SCF convergence 75. Full diagonalizations are still required at
the beginning and the end of the computation.

Measurements for medium-size molecules show that in typical applications (e.g.,
closed-shell RHF geometry optimizations), more than 50% of the total cpu time is
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spent for matrix multiplications (see Eqs. (29)–(30)), while non-negligible portions
of around 10% may be required for integral evaluation, Fock matrix construction,
full diagonalization, and gradient evaluation. These are very approximate order-
of-magnitude figures, of course, and actual timings will show considerable scatter
depending on several factors that need not be discussed here. In any event, the share
of the total cpu time spent on matrix multiplications will increase with increasing
molecular size.

This is an ideal situation for PVP architectures since large matrix multiplica-
tions (DGEMM) vectorize very well and can efficiently be parallelized on shared-
memory machines, running close to peak performance. Likewise, efficient library
routines are available on PVP machines for full diagonalizations (EISPACK, LA-
PACK). The remaining minor tasks can be vectorized (Fock matrix construc-
tion) and parallelized (Fock matrix construction, integral and gradient evaluation).
Hence, high performance is reached in such jobs: for example 76, a full geome-
try optimization of the fullerene C960 at the MNDO SCF level runs at a speed
of 23.9 GFLOPS/s on the NEC SX-4/16 at CSCS (75% of the hardware limit of
32 GLOPS/s for 16 cpus, speedup factor of 13.8 relative to 1 cpu, wallclock time
2319 s).

The situation is less advantageous for distributed-memory MP systems. A
coarse-grained parallelization is possible for certain applications where essentially
independent jobs can be distributed over different nodes. Examples of this kind
include the finite-difference evaluation of gradients and force constants as well as
reaction path calculations. These applications show almost linear speedup with the
number of processors 74, but they are not prevalent in practice, and the size of
molecules that can be handled in this manner is limited by the memory available
at each single node 74.

It is thus necessary to attempt a fine-grained parallelization of the basic MNDO
SCF procedure on MP systems such that the relevant data are distributed over
all p available processors. We start by considering the square symmetric Fock
matrix F which is distributed by rows over the processors. The division of F is
determined once and for all at the beginning of the computation such that the
boundaries are always between basis functions of different atoms. Hence, each
processor conceptually owns a partial square Fock matrix Fp of dimension (Np×N)
with Np ≈ N/p. This partial square matrix is associated with a subset {Ap} of
atom pairs, i.e. those involving atoms whose basis functions correspond to the row
indices of Fp. Inspection of Eqs. (3)–(4) shows that the construction of Fp requires
only the one-electron integrals from the corresponding partial square matrix Hp

and the two-electron integrals Gp from the subset {Ap} of atom pairs. Moreover,
the calculation of Fp from Eqs. (3)–(4) employs only two-center density matrix
elements that belong to the corresponding partial square matrix Pp whereas the

required one-center density matrix elements PAA refer to all atoms in the molecule.
Based on these observations, the partial Fock matrix Fp can be constructed

locally at the corresponding processor using one-electron and two-electron integrals
which can also be evaluated locally in an integral-direct manner. The one-center
density matrix elements PAA must be communicated globally, whereas the partial
density matrix Pp needs to be communicated only to the associated processor. This
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scheme 74 of constructing the Fock matrix in parallel exploits the simplifications
inherent to the MNDO approximation.

The remaining and most time-consuming steps of the MNDO SCF procedure,
Eqs. (28)–(30), are handled by calls to standard parallel library routines for matrix
multiplication (PBLAS) and full diagonalization (ScaLAPACK), with a correspond-
ing adaptation of the data structures 77. Benchmark calculations with the resulting
parallel code have been carried out some time ago on a Cray T3D system using
up to 64 nodes 77. These calculations showed that large molecules can be treated
on this modest machine: Using 64 nodes, the fullerene C960 required less than 44
MB per node, with wallclock times of 2275 s and 13 s for the MNDO SCF energy
and gradient evaluation, respectively. The MNDO geometry optimization of the
fullerene C540 showed a speedup of 1.59 when going from 16 to 32 nodes, and an-
other speedup of 1.35 upon moving to 64 nodes; these factors are mostly determined
by the performance of the library routine (PSGEMM and PSSYEVX) where more
than 75% of the cpu time are spent in this case. Apparently, the fullerene examples
chosen are two small (matrix dimensions of 2160 for C540 and 3840 for C960) to
obtain a convincing scaling behavior from the linear algebra routines.

In summary, our semiempirical code has been ported both to shared-memory
PVP and distributed-memory MP platforms. Both versions have been tested for
molecules containing up to about 1000 non-hydrogen atoms. The performance is
excellent on PVP machines up to 16 nodes, and satisfactory on MP systems up to
64 nodes. In the latter case, the code would seem to require further optimization,
and larger molecules would need to be tested with more than 64 nodes. On the
other hand, it is probably not worthwhile to do conventional semiempirical SCF
calculations (with diagonalization) on molecules with more than 1000 atoms, even
on MP systems, because alternative theoretical and algorithmic approaches are
available for such large systems. This will be discussed in the next section.

7 Linear scaling and combined QM/MM approaches

In recent years, it has been a common goal of many groups to perform theoreti-
cal calculations on ever larger molecules. In the field of quantum chemistry, one
common theme in this endeavour has been to exploit the locality of interactions
whenever possible and to introduce numerically well-controlled simplifications for
long-range interactions. This leads to computational procedures where the scaling
of the computational effort with system size is improved over the formal scaling
that characterizes a given method. The ultimate goal of such research are methods
that exhibit linear scaling with system size.

It is clearly beyond the scope of this article to survey the widespread activities
on linear scaling approaches. Some of the ab initio and DFT work has been reviewed
recently 78. In semiempirical quantum chemistry, the primary objective of the linear
scaling algorithms is to avoid the diagonalization bottleneck, i.e. to avoid the steps
that scale as N3 (see above). Three different approaches have been proposed which
accomplish this goal:

(a) Localized molecular orbital (LMO) techniques 79,
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(b) Divide-and-conquer methods 80,81,82,

(c) Conjugate gradient density matrix search (CG–DMS) 83,84,85.

In the LMO approach, 2 × 2 rotations are applied to annihilate the interactions
between occupied and virtual LMOs that are located within a certain cutoff radius
(typically 8–10 Å), whereas all other interactions are considered to be negligible and
therefore not treated. Small numerical errors result from these approximations, but
they can be controlled by a renormalization of the LMOs and a suitable choice of the
cutoff radius. The SCF procedure for LMOs is found to converge even faster than
the conventional one. Using this algorithm, it is possible to carry out semiempirical
SCF–MO calculations on standard workstations for proteins with several thousand
atoms. The largest system treated in the original paper is rhizomucor miehei lipase
with 4037 atoms 79.

The divide-and-conquer methods are based on a partitioning of the density
matrix. The overall electronic structure calculation is decomposed into a series of
relatively inexpensive calculations for a set of smaller, overlapping subsystems, each
of which involves the diagonalization of a comparatively small Fock matrix. A global
description of the full system is then obtained by combining the information from
all subsystem density matrices. The accuracy of this approach can be controlled by
the manner in which the system is partitioned. Proteins that have been treated by
the divide-and-conquer method include HIV protease 6-mer with 9378 atoms 81.

The CG–DMS method avoids diagonalizations by using a direct conjugate gradi-
ent search for the density matrix. An acceptable density matrix must be normalized
and idempotent, and it must commute with the Fock matrix after SCF convergence.
In the CG–DMS treatment, a suitable functional of the density matrix is minimized
with respect to the density matrix such that the resulting density matrix satisfies
the above criteria; idempotency is enforced through McWeeny purification trans-
formations. By neglecting density and Fock matrix elements close to zero, sparse
matrices are obtained, and linear scaling can be approached by applying sparse
matrix techniques. The accuracy of this algorithm depends on the chosen cutoffs.
Initial benchmarks with this method include nucleic acids up to 6304 atoms and
polyglycine chains up to 19995 atoms 85.

The methods outlined above share several common features. First, all of them
introduce some approximations so that the results from such treatments will show
some deviations from the conventional results obtained by a full diagonalization.
These deviations will increase when cutoffs are made less stringent to speed up
the calculations, and it is obviously necessary to ensure that they remain tolerable.
Secondly, all three methods require some overhead so that the conventional calcu-
lations with full diagonalization remain faster for small molecules. The crossover
point beyond which the described algorithms become faster depends on a number
of factors (e.g., the chosen cutoffs and the molecular shapes), but 200–300 atoms
seems to be a typical range. In view of this situation, it makes little sense to invest
in the optimization of conventional codes to treat systems with more than thousand
atoms more efficiently (see above). Finally, it should be kept in mind that none of
these algorithms can exhibit true linear scaling without addressing other parts of
semiempirical computations that scale formally as N2, such as integral evaluation.
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However, in practice this is only a minor point since the N2 steps are generally
very fast so that the removal of the diagonalization bottleneck is indeed of decisive
importance.

The strength of the semiempirical ”linear scaling” methods is most obvious for
large systems with long-range charge transfer or long-range charge fluctuations,
which may, for example, occur in proteins. Such effects can be captured by these
approaches. On the other hand, there are many processes where the electroni-
cally active part of a large system is more localized, as in many chemical reactions
or in localized electronic excitations. For such systems, an alternative theoretical
treatment may be appropriate where the active center is described by quantum me-
chanics (QM) and the environment by molecular mechanics (MM). Such combined
QM/MM methods are not the subject of this article, but they are briefly mentioned
here to put the linear scaling developments into perspective.

Combined QM/MM methods (for reviews see refs. 86,87,88,89) are computa-
tionally much less demanding than pure QM methods, even when compared with
semiempirical linear scaling approaches. In addition, they offer the possibility for
a system-specific modeling of large systems, by selecting suitable QM and MM
components for the chemical problem being studied. On the other hand, QM/MM
methods require a careful definition of the QM/MM boundary (especially when co-
valent bonds need to be cut), a physically sensible QM/MM coupling scheme, and
possibly a calibration of QM/MM interaction terms 86,87,88,89,90,91. Moreover, the
standard QM/MM approaches do not allow for charge transfer between the QM
and MM regions.

At present, it seems that the linear scaling QM methods and the combined
QM/MM methods are complementary since they may be used to address different
questions. Therefore, our group is active in both these areas which are expected to
coexist and supplement each other for some time to come.

Due to the advances in linear scaling and QM/MM methods, the semiempirical
methods of quantum chemistry have come to the point where they can be applied to
complex systems with thousands of atoms such as enzymes. A relatively large num-
ber of enzymatic reactions has already been studied at the semiempirical QM/MM
level (for a survey see ref. 88), and analogous investigations with semiempirical
linear scaling approaches are anticipated.

8 Conclusions

The methodological and algorithmic developments outlined in this article promise
to open new areas of application for semiempirical methods which will therefore
continue to be valuable tools for studying electronic effects in large molecules.
Whenever technically feasible, such investigations should be supplemented with
appropriate higher-level calculations because the synergetic use of several compu-
tational tools is often expected to provide the best computational solution for a
given chemical problem.
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47. W. Weber and W. Thiel, Theor. Chem. Acc. , in press (2000).
48. J. Spanget-Larsen, Theor. Chim. Acta 55, 165-172 (1980).
49. C. Kollmar, Chem. Phys. Lett. 269, 215-221 (1997).
50. M.J. Filatov, O.V. Gritsenko, and G.M. Zhidomirov, Theor. Chim. Acta 72,

211-222 (1987).
51. M. Kolb, Ph.D. Thesis, Universität Wuppertal, (1991).
52. M. Kolb and W. Thiel, J. Comput. Chem. 14, 775-789 (1993).
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An overview is provided of the range of approaches to hybrid QM/MM (quantum
mechanics/molecular mechanics) calculations. The factors considered include the
choice of QM and MM methods, the construction of the total QM/MM energy ex-
pression, the nature of the QM/MM coupling, and the treatment of bonds between
QM and MM regions. The practical issues associated with handling the increased
conformational complexity of macromolecular systems, and the construction of
QM/MM codes are discussed.

1 Introduction

The modelling of complex chemical systems is still a daunting challenge. We have
at our disposal sophisticated first-principles methods for simulating reactions and
electronic processes to high accuracy but these are limited by their computational
cost to small molecules. The systems of chemical interest in computational biology
and catalysis are often condensed phase systems with many thousands of partic-
ipating atoms. While significant progress is being made in the development of
quantum chemical approaches applicable to large systems1, it is clear that to treat
complex biological and catalytic systems we still need to be able to integrate a
range of computational chemistry methodologies with differing accuracies and cost.
By embedding a quantum mechanics calculation in a classical molecular mechanics
model of the environment, the hybrid QM/MM schemes attempt to incorporate
environmental effects at an atomistic level, including such influences as mechani-
cal constraints, electrostatic perturbations and dielectric screening. Since the first
published example from the field of computational enzymology2 many QM/MM
schemes have been implemented and applied in a wide variety of chemical applica-
tions.

The subject has steadily developed, and the last couple of years in particu-
lar have seen rapid increase in the rate of publication of QM/MM applications.
The availability of implementations within commerical packages (e.g. CHARMM
and Gaussian98), and improvements in the available computational resources will
doubtless contribute to a continued increase in popularity. Recent reviews of the
subject include those by Gao3 and Mordasini and Thiel4.

2 Terminology

The first, trivial, step is to divide the entire system (E), into inner (I) and outer (O)
regions (Figure 1a). The objective in all cases is to use the QM calculation to model
processes in the inner region and to use MM to model the outer region. As always
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Figure 1. Terminology for regions used in the QM/MM scheme

the devil is in the detail, and it is rarely possible to simply write down the total
energy in terms of two, non-overlapping subsystems, Very often the interactions
between the systems are sufficiently strong (the obvious example being the presence
of a chemical bond) to ensure that a QM calculation on the inner region alone is not
sensible. Some form of termination, or treatment of the boundary is required. For
the purpose of this article, we will classify the approaches to this QM termination
into two groups;

1. those based on link atoms5,6, additional centres added to the QM calculation
but not present in the entire system(E). The position of centres in the region
(L) are either viewed as independent variables or as a function of the positions
of atoms in both (I) and (O) regions (vide infra). Link atoms are generally
invisible to the MM calculation.

2. those having a boundary region, a subset of the centres of the systems which
will feature in both QM and MM calculations (Figure 1b). In the QM calcu-
lation these centres can have a range of roles, ranging from a re-parameterised
semi-empirical Hamiltonian to an ab-initio pseudopotential or a frozen hybrid
orbital.

3 Overview of QM/MM Schemes

In this section we discuss some of the choices that distinguish the range of possible
QM/MM schemes.

3.1 The QM/MM Energy Expression

Given the definitions given in Section 2 we can group QM/MM schemes into two
broad classes:
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3.1.1 Additive Schemes

This general classification is applied to schemes for which the QM and MM energies
are considered complementary, the total energy of the system is obtained by adding
them together and applying any coupling terms or corrections.

For link atom based schemes the total energy expression takes the form of
Equation 1 (E = entire, I = inner, O = outer and L = link);

EEQM/MM = EOMM + EI,LQM + EI,OQM−MM − E
I,L
Corr (1)

Here the term EI,OQM−MM is QM-MM coupling term includes all terms that cou-
ple the two regions, for example MM-style bonding and van der Waals interactions
and modifications to the QM Hamiltonian to reflect the influence of some or all of
the atoms in the outer region.

The correction term EI,LCorr represents terms designed to reduce the dependency
of the total energy on the centres in the link atom region7. How this term is handled
depends on the the choice of link atom coordinates, as discussed below in Section
3.5.2. However, this term is often neglected.

Additive schemes are probably the most widely adopted approaches to QM/MM
calculations, particularly in the biomolecular area, with the AMBER5,8,9 and
CHARMM 6,10,11,12 based implementations being important examples.

The main problems with the scheme arise because it is difficult to compute the
coupling term EI,OQM−MM accurately in the presence of the link atoms13, particularly
if electrostatic perturbations to the QM Hamiltonian are included.

For boundary-region based methods, which are usually additive in type, the
energy total may be written

EEQM/MM = EO,BMM + EI,BQM + EI,O,BQM−MM (2)

There is no need for any link atom corrections, but since the boundary atoms
are treated by both QM and MM methods it is important that the classical energy
expression be modified to avoid multiple counting of interactions.

This class of scheme has been adopted most widely for studies involving strongly
ionic materials where the boundary region is treated by model- or pseudo-potentials.
However, as discussed below in Section 3.5.1, a number of treatments designed for
more covalent systems also eliminate link atoms, placing a re-parameterised atomic
description or a frozen orbital at the site of the first MM atom.

3.1.2 Subtractive Schemes

Here the entire system is treated by MM, and a third calculation on the inner
region at the MM level is performed to eliminate multiple counting7. The approach
is generally applied to link-atom based schemes, in which case the total energy may
be written:

EEQM/MM = EEMM + EI,LQM − EI,LMM (3)

287



The coupling term EI,O,LQM−MM is no longer required as all interactions between

inner and outer regions are handled at the MM level of theory, in the EEMM term.
The handling of link atom corrections here occurs implicitly as a result of the
subtraction. It is necessary that the forces in the link region arising from the
difference between the QM and MM representations (EI,LQM − E

I,L
MM ) remain small

for all reasonable positions of the link atoms. It is therefore particularly valuable
in this case to use a forcefield designed to reproduce forces at the particular QM
approximation used for the inner region.

If the process under investigation involves changes in chemical bonding it will
become more difficult to provide a suitable forcefield. However, if the inner region is
large enough, it is possible to ensure that the contribution to the total energy from
atoms in the interior of the inner region completely cancel when the subtraction
EEMM −EI,LMM is performed, and there is therefore no requirement for the forcefield
to model the energetics of the reaction. Nevertheless, the forcefield must be able
to compute the interaction between the reacting centre and the outer region at the
MM level of theory, which requires, for example, partial charges for the former.
Since the charge density of the inner region may change during the course of the
reaction this can be a demanding requirement. Subtractive schemes are clearly not
suitable for cases in which the electronic structure of the QM region is expected to
be significantly perturbed by interaction with the environment. However, in most
application areas explored so far this approximation has not proved problematic14.
Where good quality forcefields are available the approach can be very accurate
since there are no problems with interactions between the link atom region and the
classical environment.

To date the main applications have been in the areas of organometallic15 and
zeolite chemistry16,14,17 This scheme is actually quite general and can be used to
coupling different levels of QM theory, as exemplified by the IMOMO 18,19 scheme
of Morokuma.

The subtractive and additive models as defined here are closely related, as dis-
cussed by Bakowies and Thiel7, where the subtractive model is used as a starting
point for the derivation of link-atom corrected additive model.

3.2 The Choice of QM model

The choice of QM method will not be dealt with in detail here as it does not a
fundamentally affect the design of a QM/MM scheme and will largely be governed
by the same critera that apply to pure QM calculations.

Since the first Warshel and Levitt2, study schemes based on semi-empirical
methods have dominated the field for biological applications, and for reasons of
computational cost such schemes are likely to remain important for applications
incorporating molecular dynamics.

Approaches incorporating parameterised Hamiltonians include the MOLARIS
implementation20 (using an empirical valence bond (EVB) scheme) and the MM-
VB scheme of Bernardi, Robb and co-workers21,22

A large number of ab-initio schemes based on Hartree-Fock5,10,23,24 and density
functional9,25,26,11,16 approaches have been implemented. Recently a number of
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approaches based on Car-Parrinello DFT codes have been reported27,28,30.

3.3 The Choice of MM model

The significance of the choice of MM scheme depends on whether the additive or
subtractive schemes are chosen, since within the subtractive scheme any forcefield
can be used (see the discussion in Section 3.1.2).

Within additive schemes, type of MM model can have significant influence on
the treatment of the boundary, since different classical approaches differ markedly
with respect to the handling of both bonded and non-bonded interactions. The
most important distinction is that between:

• valence force fields, exemplified by the biomolecular force fields (CHARMM31,
AMBER32) and a number of more general purpose forcefields including MM333

and the consistent force field (CFF34) constructed from energy terms such as
bond stretches, angle bends etc.

• ionic forcefields in which the principal terms are the electrostatic and short-
range (van der Waals) forces, exemplified by force fields based on the shell
model35,36,14.

The choice affects the construction of the MM model in two major respects:

1. The choice of forcefield influences the atomic partial charges thus affecting
the long-range QM/MM interactions, as for most current implementations the
same charges are used for MM...MM and MM...QM interactions (in principle
it would be possible to construct schemes based on two sets of MM charges
but this approach has not been widely adopted). For a given material, (for
example the zeolites37,38) the shell model forcefields tend to be based on larger
charges than those generated by fitting to the electrostatic potential. In many
case the ionic forcefields employ formal ionic charges.

2. Handling of bonding and close interionic contacts between QM and MM regions
will generally follow the same approach as treatment of similar interactions
within the MM region. In the valence forcefield case it is easy to identify the
terms involved, typically bond-stretch, angle-bend and torsion terms that are
needed, and it is simple to delete those that correspond to terms handled by
the QM interaction. For ionic force-fields the short-range QM..MM attractive
terms will come from the presence of the MM charges in the QM Hamiltonian,
and cannot readily be separated from the long-range interactions.

For these reasons, additive schemes based on link atoms are easier to construct
with valence forcefields. The ionic class of forcefields can be used in boundary-region
additive schemes, but only if the forcefield charges can generate the correct elec-
trostatic potential in the QM region and thus the correct interionic forces. This is
more likely to be true for highly ionic materials, unless significant parameterisation
of the boundary region is carried out.
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3.4 Handling of the QM/MM non-bonded coupling terms

Within most classical modelling schemes, the non-bonded interactions comprise
electrostatic and short-range (or van der Waals) forces. In the context of the ad-
ditive QM/MM schemes, the same decomposition is applied to the non-bonded
interaction between QM and MM centres.

3.4.1 Short-range or Lennard-Jones terms

The treatment of the short-range QM/MM interaction generally follows the model
used in the MM calculation. Re-fitting of the non-bonded parameters is often
carried out, particularly in the case of solvation studies39,40,41 or where the details
of non-bonded contacts are particulary important42.

3.4.2 Electrostatic terms

Bakowies and Thiel7 defined three ways of treating QM/MM electrostatic interac-
tion, labelled A-C, as follows.

A mechanical embedding, in which the QM calculation is essentially performed
in the gas phase, without electronic coupling to the environment. The electro-
static interaction between QM and MM regions is either omitted or performed
by the MM code, using a classical point charge model for the QM charge dis-
tribution (e.g. a potential derived charge model).

B electrostatic embedding, in which the classical partition appears as an exter-
nal charge distribution (e.g. a set of point charges) in the QM Hamiltonian.
The polarisation of the QM region by the MM charge distribution thus occurs
as part of the QM electronic structure calculation. The partial charges used
to describe the MM distribution are frequently taken to be those used in the
forcefield 5,6,43, relying on the use of electrostatic properties in the forcefield
charge derivation. When using an aluminosilicate CFF forcefield37 for electro-
static QM/MM modelling of zeolites44 it was found necessary to replace the
original MM charges with those derived by fitting to electrostatic potentials.
Charge equilibration schemes, which determine the MM charges as a function
of geometry have also been employed45,46.

In ab-initio schemes it is clear that the electrostatic embedding scheme should
be implemented, at least at long range, by adding the contribution of the
MM point charges to the 1-electron Hamiltonian. However, within the semi-
empirical formalism the definition of the electrostatic potential is more ambigu-
ous as a result of the overlap approximations used, and alternative formulations
for the 1-electron integral terms have been suggested6,47,45.

C polarised embedding, in which the polarisation of the MM region in response
to the the QM charge distribution is also included. Intuitively this makes
most sense when the forcefield incorporates polarisation as unpolarised force-
fields implicitly incorporate MM polarisation in their parameterisation, and
care must be taken to ensure such implicit contributions to not occur in
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Figure 2. Labelling of atoms in the link atom region

the QM/MM potential. A variety of models for the classical polarisation
are available, including the shell model35, and coupled distributed atomic
polarizabilities48. Polarisation of MM atoms close to the QM region (e.g. those
connected by link-atom terminated bonds) were found to be unphysically large,
leading to the suggestion that these atoms be treated as unpolarizable7.

In model C the result of the change in MM charge distribution from the clas-
sical polarisation is not propagated to the QM calculation resulting in a non
variational total energy.

D While not part of the original definition, model D49 is defined as an extension
to model C where QM and MM polarisations are made self-consistent, either
by iterative solution of the SCF and polarizability problems50, or by matrix
inversion techniques, as exemplified by the the Direct Reaction Field (DRF)
model51,52,53,54,55.

3.5 Termination of the QM region

In those cases where there are bonds or strong ionic interactions between the QM
and MM regions it is necessary to introduce some termination of the QM calcula-
tion, either through the link atom or boundary region approaches. Figure 2 indi-
cates the labelling adopted in the discussion below for those models incorporating
link atoms.

3.5.1 Chemical Nature of the Termination

For termination of sites where a covalent bond has been broken addition of a link
atom is the most popular approach. An extra nuclear centre is introduced, together
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with basis functions and electrons required to form a covalent bond to the QM region
that will mimic the bond to the MM region. The simplest and still most popular
choice is the use of a hydrogen atom5.

There are clearly chemical differences between hydrogen and the chemical group
it replaces. Within empirical and semi-empirical schemes, an obvious enhancement
is to adjust the link atom parameterisation to mimic more closely the modelled
group. Recently, Antes and Thiel57 have described the semi-empirical Adjusted
Connection Atom (ACA) scheme, in which the link atom is replaced with a bound-
ary atom with parameters chosen to model a methyl group. A related approach
within ab-initio based QM/MM methodologies is to place a pseudopotential at the
MM site to mimic the electronic properties of the replaced bond58.

For embedding treatments of highly ionic materials the main requirement of the
termination is to stop the unphysical polarisation of the charge density of the QM
cluster by the adjacent cations. “Leakage” of charge from the cluster will clearly
occur to an increasing extent as the QM basis set is extended. Most treatments
therefore include a pseudo- or model- potential at the cationic sites, without any va-
lence electrons or basis functions59,60. Modelling the anions by model potentials24,61

is a further refinement, which may be more important for materials with a more sig-
nificant covalent character. Here the use of bare anionic charges might be expected
to lead to poor structural predictions which can be ameliorated by adjustments to
the potential.

All the approaches listed above assume that once the termination potential has
been set up a full SCF calculation is performed on the resulting cluster. An al-
ternative approach is to constrain the SCF solution to reflect the influence of the
bonds that have been omitted. The local self-consistent field (LSCF) scheme62,63

of Rivail and coworkers involves the preliminary calculation of the localised bond
orbital, which is then frozen during the calculation. The generalised hybrid orbital
(GHO) scheme of Gao et al.64 constrains the hybridisation of the terminating cen-
tre but allows adjustment of the QM-MM bond itself, allowing changes in local
geometry to be handled.

Similar approaches based on ab-initio wavefunctions have been less widely used
to date, but include adaption of the LSCF scheme 65 and a recent implementation
by Philipp and Friesner43 which incorporates geometry changes at the boundary.

While the frozen hybrid orbital approaches promise to mimic the electronic prop-
erties of the extended system, problems with the calculation of the EI,OQM−MM term

in Equation 1 still remain. As described by Philipp and Friesner43 it is probably
necessary to combine the definition of the terminating orbitals with reparameteri-
sation of the link atom region to obtain accurate conformational energies.

3.5.2 Coordinates and forces for the termination sites

In contrast to the boundary atom schemes, the appearance of additional QM centres
in the link atom approaches leads to additional variability in the definition of the
coordinates and forces. Inital coordinates can be chosen by placing the link atom on
the bond that is being terminated, but once a geometry optimisation or molecular
dynamics run has been started there are a number of different ways of updating
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the coordinates and handling the forces.

1. Optimised Link Atoms

In these approaches, the link atom coordinates are added to the atom list
used in the geometry optimisation or molecular dynamics scheme, and the
coordinates are free to vary6.

Sometimes some additional forcefield terms may be added to favour the po-
sitioning along the M1-Q1 bond66 This is particularly important when link
atom corrections or (vide supra) lead to small and unphysical forces on the
link atoms.

2. Constrained Link Atom Procedures

If the link atom coordinates can be written as a function of the real atom
coordinates it is possible to eliminate them from the set of coordinates used in
the optimisation or dynamics. Such an elimination is particularly desirable for
molecular dynamics and the evaluation of vibrational frequencies, which would
be modified by coupling to any independent link atom motions.

Since the link atoms have non-zero forces it is necessary add a term to the
real atom forces to account for the changes in the link atom position resulting
from movement of the real atoms. In the IMOMM scheme of Maseras and
Morokuma68 this was implicitly performed by using working in internal co-
ordinates such that the same internal coordinates were used to position the
link atoms and to define the corresponding real atom (M1) coordinates. The
internal coordinate force can then be obtained by adding the QM and MM
contributions.

When working in pure cartesian coordinates the same effect can be realised
by using the chain rule to establish the contribution to the forces on the real
atoms Xi.

∂E
∂Xi

= ∂E
∂Xi

+ ∂E
∂Xl

. ∂Xl

∂Xi
(4)

where the derivative ∂Xl

∂Xi
is a 3x3 matrix describing the coupling of the link

atom and real atom motions as a function of the constraint term. There is
a term for each atom i which appears in the definition of the position of the
link atom l, For the case of a link atom placed at a fixed position along the
QM–MM bond there will be a correction term for the atom at each end of
the bond in question (M1 and Q1 in Figure 2). This approach is used by the
ChemShell implementation69 and by the QM-Pot scheme of Sauer et al.16. A
similar adaptation to the IMOMM scheme has been published by Woo et al.70.

When using constrained link atoms in additive QM schemes some adjustment
to the forcefield is required. The MM force constant for the angle bend Q2-Q1-
M1 is in effect supplemented by the bending potential for the group Q2-Q1-H,
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since the restoring forces acting on H are transferred to atom M1 as described
in equation 4. The approach adopted in the ChemShell scheme is to delete
the MM term on the basis that the link atom bending potential will replace
it. Greater accuracy could be achieved by fitting a modified MM parameter
to reflect the presence of the link atom. Similar considerations apply to the
torsion angles of the form Q3-Q2-Q1-M1. As a general rule, the Q1-H distance
is kept fixed. It has been suggested that variation of the Q1-H distance provides
a simple way to tune the electronic characteristics of the termination69.

Similar considerations apply to the boundary atom schemes. It is generally
assumed, or considered as a requirement for the boundary atom parameterisa-
tion, that the QM calculation incorporating a model potential will generate a
suitable geometry for the short QM...MM contacts.

3.6 Modifications to the Classical charge distribution at the boundary

Within all of the polarised QM/MM schemes (models B-D in Section 3.4.2) prob-
lems can be expected when point charges modelling the MM region closely approach
the QM region. In the absence of link atoms, close approach is usually prevented by
the non-bonded interaction potential which is repulsive at short range. However in
the region of bonds across the QM-MM boundary some adjustment to the classical
charge distribution is essential, as the nearest point charges to the QM region will
be at most a single bond distance away. In the case of terminating link atom (e.g.
hydrogen) the link atom will be almost superimposed on the first classical atom
(M1 in Figure 2).

Clearly this problem will be more severe when large basis sets are used, and in
fact it is possible to disregard it in the semi-emprical case6. Antes and Thiel71,49

have discussed a variety of approaches to the problem and suggested the L1-L3
classification included below.

3.6.1 Selective deletion of one-electron integral terms

For QM calculations with small basis sets the leading spurious interaction is that of
the basis functions on the link atom with the classical MM charges. Since the link
atom is an artefact of the QM/MM scheme it has been suggested that the model can
be improved simply by deleting the 1-electron Hamiltonian contributions involving
link atom basis functions and the full set of MM charges (scheme L149).

Antes and Thiel also defined a further scheme, denoted L3, in which all 1-
electron terms are included with the exception of those of the that involve basis
functions on the link atom and the charge on centre M1.

3.6.2 Deletion of selected atomic charges

Perhaps the simplest way of dealing with the charge on the nearby classical cen-
tres is to delete them from the Hamiltonian. The QUASI Gaussian/AMBER
scheme5 omitted any MM charges less than 4 bonds removed from any QM atom.
Waszkowycz et al.8 modified this approach so that only a single MM charge at the
M1 site was excluded.
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The danger of these schemes is that simply deleting charges according to the
connectivity will often result in the remaining MM atoms, as experienced by the
QM region, appearing to have a net charge. Such an artefact will have particularly
serious effect on computed energies for processes in which the total charge of the
QM region is modified, such as protonation reactions.

Many biochemical forcefields have the feature that sets of neighbouring atomic
charges can be grouped together such that the total group charge is an integer
(usually zero)72. This is a convenient feature for a forcefield as it enables a molecule
built by combining these charge groups to have an integral charge without any
adjustment of the atomic charges being necessary. In the L2 scheme49 the charges
on the charge group containing atom M1 (in Figure 2) are neglected when building
the QM Hamiltonian. While this will clearly remove some significant physical
interactions, the fact that the charges removed will sum to zero will ensure that the
total MM charge experienced by the QM calculation is correct. The leading term
that is missing will be the dipole moment of the first charge group.

A series of tests on protonation reactions were used to evaluate the schemes L1 to
L349, using semi-empirical, DFT and MP2 wavefunctions. The differences between
the schemes were observed to be more pronounced for the ab-initio wavefunction,
as expected from an analysis of the influence of the integral approximations49. L1
was recommended only at the semi-empirical level, for ab-initio wavefunctions the
selective integral deletion was considered to lead to problems of imbalance in the
electrostatics for the link atom region. The L2 scheme was found to be robust for all
types of wavefunctions, and for ab-initio studies using forcefields based on neutral
groups it appears the obvious choice. The results for L3 were less consistent and
this scheme was not recommeded.

3.6.3 Charge Shifting Schemes

Within our calculations on zeolites44,73,69 a different scheme has been adopted.
Since the aluminosilicate forcefield used37 does not consist of charge groups, there
is no simple subset of MM atoms that can be deleted without associating an artificial
total charge with the local MM environment.

The first stage of the approach is to adjust the charge on centre M1 to account
for the deletion of the M1-Q1 bond. For an aluminosilicate forcefield with silicon
charges of +2x and oxygen charges of −x, each Si-O bond can be considered to
contribute a charge of magnitude 0.5x to the atom at each end, since there are 2
bonds to each O and 4 to each Si. The idea of deriving electrostatic models from a
sum of dipolar contributions from the bonds to each atom has been used for more
general chemical sytems, for example the MM3 forcefield33 uses an electrostatic
model including bond dipole terms. For each QM-MM bond each atom M1 is
involved in, the charge on M1 is reduced by 0.5x, thus ensuring that the defect
created in the MM lattice is electrically neutral.

Since the M1 centres still have finite charge, further adjustments are necessary.
The approach adopted sets M1 to zero, but for each of the connected atoms M2 a
charge adjustment is made to conserve the total charge of the MM system. As M1
and M2 will usually have charges of opposite sign the M2 atoms will have reduced
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charges. To compensate for the dipole that has been created by the charge shift a
pair of equal and opposite point charges are added close to each M2 centre along
the M1-M2 bond direction. The resulting MM charge distribution therefore has
the same charge and dipole moment to that of the MM defect created by the first
stage, but the charge distribution close to the link atoms has been eliminated.

3.6.4 Gaussian Blur

Brooks has suggested66 that the problems of close approach of the MM charges to
the QM region are largely the result of the representation of this charge distribution
by a point charge model. The “Gaussian blur” approach replaces the point charges
for selected MM centres with a Gaussian charge distribution. An implementation
of this approach67 is included in the coupling of GAMESS-UK84 and CHARMM31.

4 The Issue of Conformational Complexity

One reason for the slow uptake of the ab-initio based QM/MM methods has been
the computational costs. Although the cost of each energy and gradient evaluation
is similar to that for a calculation on a small-molecule cluster model, the number
of energy and gradient evaluations needed is likely to be much greater as a result
of the larger number of degrees of freedom of the system.

In favourable cases it is possible to concentrate on a particular conformation
for the environment, perhaps by simulated annealing or a related conformational
search technique, using a cheaper energy function. The QM/MM study can then
proceed without any attempt to repeat the conformational search, and relaxation
of the MM coordinates can be repeated for each geometry change of the QM core.
An example is the IMOMM scheme68 which restricts the main geometry optimisa-
tion loop to those coordinates describing the QM geometry. At each step of this
optimisation the remaining (MM) coordinates were optimised. Since IMOMM is
a mechanical embedding scheme this relaxation does not change the QM energy
and the QM calculation can therefore be skipped. By ensuring that the derivative
of the energy with respect to the MM coordinates was zero at all times, standard
optimisation algorithms, including transition state (TS) searching could be used.
In favorable cases the number of QM calculations required will be similar to a pure
QM calculation.

A related approach, but based on cartesian coordinates and polarised embed-
ding was adopted by Turner et al.12 for geometry optimisation and transition state
determination for reactions in enzymes and solution. The MM relaxation was per-
formed in the field of a classical model for the QM region, obtained by fitting to the
QM contribution to the forces on the MM atoms at each QM geometry. As well as
the savings in computational cost that arise from the reduced number of QM eval-
uations, the division of the coordinate set also proves useful for TS optimisations.
If the TS search can be restricted to a reduced number of coordinates the stability
of algorithms such as P-RFO74 can be improved. This is especially true when the
MM coordinate set is characterised by many soft eigenmodes and incipient transion
states, as the case for solvated systems.
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Recently Billeter et al.75 have developed a geometry optimisation scheme based
on delocalised internal co-ordinates76. The decomposition of the system into two
or three sets of coordinates12 is extended to an arbitrary number of residues, each
subject to optimisation in turn. This “divide and conquer” approach enables linear
scaling properties with system size to be obtained.

In cases where a number of QM/MM energies and forces are required for ge-
ometries with similar QM structures it is possible to reduce the number of QM
energy evaluations required, interpolation approaches have been suggested for this
purpose77.

5 Software Implementation

In many respects the issues governing implementation of QM/MM computer codes
are similar to those associated with the individual QM and MM methods. Most of
the coupling terms are readily computed using the machinery present in either the
QM or MM packages. However, it is worth giving brief consideration to a couple
of implementational issues.

5.1 Program architecture

Given that the starting point is working QM and MM codes, QM/MM implemen-
tations can be considered to fall into three groups:

(i) those based on classical modelling packages, with a QM code integrated as a
force-field extension

(ii) those based on a QM packages, incorporating the MM environment as a per-
turbation

(iii) modular schemes in which a central control program is provided and a choice
of both QM and MM methods is left open.

Probably the most popular approach to date has been (i), for the sound reason
that the modelling tools present in a typical MM/MD package are well suited for
manipulation of large, complex chemical systems. A good example of this approach
is the series of QM implementations within the CHARMM package 6,10,11,67. How-
ever, one area in which the functionality of a traditional macromolecular program
may need enhancing is the search for transition states. Turner et al.12 extended
the QM/MM capabilities of CHARMM by adding a driver package (GRACE) with
capabilities including eigenvector-following search methods, and on-the-fly charge
model fitting.

Option (ii) is particulary well suited when the tools required are those associated
with small-molecule quantum chemistry, for example internal (Z-matrix coordi-
nates) and Hessian-based transition-state searching using active coordinates which
involve only QM atoms, By keeping the environment stationary, or fully relaxed
at each step, the conformational complexity is hidden and the problem resembles
a QM optimisation. Morokuma’s IMOMM scheme68 has the appearance of being
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designed in this way. A coupling of GAMESS-UK and AMBER8 followed a sim-
ilar philosophy. Breuer et al.78 used the framework of the MSI Cerius-2 package
to introduce a mechanically-coupled MM model for the environment in an imple-
mentation exploiting the RI-DFT and redundant internal coordinate optimisation
capabilities of TURBOMOLE79.

We will discuss option (iii) in a little more detail, not because it is intrinsi-
cally superior, but because the QM/MM development work at Daresbury has been
concentrated on this approach, and we therefore have more experience with the
benefits and pitfalls of the approach.

The benefits can be summarised as follows

(a) A modular construction offers the greatest flexibility, and is particularly valu-
able if the same program system is to be used for investigation of an number
of different types of chemical systems, each requiring different classes of force-
fields. A range of QM schemes can readily be supported within a common
environment, and commercial packages can be exploited in some of the simpler
models.

(b) If care is taken to ensure that the component packages are modified to a mini-
mal extent this approach also promises to provide the best hope for substituting
up-to-date versions of the QM and MM packages when they become available.

The drawbacks are also significant, including

(a) additional programming complexity is introduced by the need to try and gen-
eralise the interfaces

(b) the need to provide, as part of the system a set of tools (e.g. structure ma-
nipulation, geometry optimisation, MD) which can be used with any choice of
QM and MM methods.

(c) there are efficiency implications of attempting to keep the QM and MM cal-
culations independent, particulary with respect to data transfer between the
programs.

Examples of systems of modular design include the coupling of AMBER32 to
CADPAC81 and MNDO82 by Antes and Thiel49 and the ChemShell package from
our Laboratory83. The ChemShell package currently has a range of interfaces,
including GAMESS-UK84, DL POLY86, MNDO9482, TURBOMOLE79, GULP85,
CHARMM31, GROMOS87 and MOPAC80 Interfaces with a variety of codes includ-
ing Gaussian9488, CADPAC81 and AMBER32 are in various stages of development.
Program control is provided by a scripting language (Tcl89), which can be used to
construct dynamics simulation protocols and geometry optimisation algorthms (us-
ing a suite of standard 2nd-order algorithms). Geometry optimisation using the
HDLCOpt scheme75 is also under development within the QUASI90 project.

5.2 HPC and parallel implementation

The approach The efficient exploitation of HPC resources provides a challenge to
the construction of QM/MM schemes, particularly the those of modular design.
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The significant overheads associated with loading programs onto a large parallel
computer force the requirement that all of the composite programs be linked into
a single executable image, an awkward process since many of the components are
themselves very large and complex packages, with different parallelisation models.
HPC developments of the ChemShell package are taking place as part of the QUASI
project90, and include integrating the parallel version of a number of the component
codes.

6 Summary and Outlook

This brief review of the QM/MM approach has emphasised the variety of ways that
QM and MM calculations can be combined. It is by no means exhaustive, and the
subject is now expanding rapidly.

The subtractive schemes have the advantage of relative simplicity of implemen-
tation, and the fact that there is no need to validate the QM/MM interaction. The
increased reliance on the forcefield is a potential problem but this is increasingly
being addressed by forcefields derived from ab-initio data.

Additive approaches based on link atoms, whether simple implementations with
rather ad hoc treatments of boundaries, or more complex schemes incorporating ex-
tensive QM/MM parameterisation, are likely to suffer for some time from a lack of
user confidence. As may be clear from the number of variations that are possible
it will probably be difficult to get exactly the same answer with two separarate
implementations, and, like the forcefields themselves, the methodology will grad-
ually gain acceptance on the basis of experience. Cross-checks between methods
and validation studies (e.g. comparison with pure QM results) will continue to be
important for some time to come.

One of the chief challenges will be exploration of conformational space, par-
ticularly in those applications areas for which semi-empirical methods are not ap-
plicable. Large scale parallel computing can be expected to play an increasingly
important role here.
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Subspace methods are the methods of choice for calculating a few eigenvalues and
-vectors of a large matrix. They may also be considered for completely diagonaliz-
ing a matrix if it is either very sparse or too large to be stored. A subspace method
for a n×n matrix A consists of a scheme to extract approximations to some eigen-
values and -vectors of A from the action of A onto a subspace V ⊂ C

n and a method
to update V. We will present extraction schemes for extremal (Ritz projection)
as well as inner (residual minimization, harmonic Ritz projection) eigenvalues and
discuss advanced update schemes.

1 Introduction

The problem of calculating some or all eigenvalues and -vectors of a large matrix
appears in a wide range of applications from biology (meta stable states of ecosys-
tems) to mechanical engineering (oscillations of suspension bridges). Theoretical
chemistry methods have an outstanding position here by giving rise to extremely
large matrices with very special properties, so that there are methods that are very
successful there but rarely in use - and not very effective - with problems from
other sources. As eigenvalue problems, and particularly eigenvalue problems from
theoretical chemistry, make up a fair share of the supercomputer usage, there is
good reason for analyzing and improving the algorithms and implementations as
well as for teaching users to make the most of the method chosen.

The classification of eigenvalue problems distinguishes between different types of
matrices (general, hermitian, complex symmetric, full, sparse, ...), different require-
ments (eigenvalues only, eigenvectors too, all eigenvalues, only extremal eigenvalues,
certain part of spectrum, eigenvector similar to excitation vector, ...) and numeri-
cal properties (normal, diagonally dominant, clustered eigenvalues, ...). While these
are extremely important for issues of efficiency and implementation, there are only
three basic principles involved in the solution of eigenvalue problems:

Similarity transformations A = S−1JS converting A into some normal form
(usually diagonal or Jordan) where eigenvalues can be extracted immediately and
eigenvectors are given by columns of S. S is built up iteratively as a product of
simple matrices (see8).

Nonlinear equation methods treat the problem directly as an (n+1)-dimensional
nonlinear equation, searching for a solution in the neighborhood of λ̄. Methods
in use are ’shift and invert’ and polynomial iteration xn = Pn(A)xn−1, where
the polynomials Pn are chosen such that the sequence xn converges, e.g. to the
eigenvector of the largest eigenvalue.

Subspace methods where the action of A on a low (e.g. m) dimensional sub-
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space V is considered. May {wi} be an orthonormal basis of V and {wi, yi} of
span(V, AV).
For each vector w := a1w1 + . . .+ amwm we have
Aw := b1w1 + . . .+ bmwm + c1y1 + . . .+ cmym. The mapping of {ai} onto {bi}
is given by the orthogonal projection of A onto V: Â = WTAW , where the {wi}
form the columns of W . Obviously, any eigenvector of A contained in V gives an
eigenvector of Â to the same eigenvalue, and conversely, the eigenpairs of Â give
approximations to those of A (see10). For hermitian A, these approximations are
almost11 optimal with respect to V for the extremal eigenvalues of A (Ritz projec-
tion); for non hermitian A, they are still about the best thing available. For inner
eigenpairs, things are complicated. Reliable approximations λi to the inner eigen-
values near a value λ̄ can be constructed either from the inverse of the orthogonal
projection of (A − λ̄I) onto V (harmonic Ritz projection) or by minimizing some
function f((A− λI)v, λ − λ̄) over v ∈ V and λ ∈ C (residual minimization). With
the information from the x̄i and (A− λ̄iI)x̄i, a new (possibly larger and hopefully
better) subspace V′ can be constructed.
The subspace methods differ primarily in the update procedure. New directions are
added to V, old directions may be removed. The new directions may be random
(not recommended), AV, (Lanczos, Arnoldi4,6), (A − λ̄I)−1x̄i, or various approx-
imations to (A − λ̄I)−1((A − λiI)x̄i)

5,7,13,3. The latter are the most interesting
methods and – notably for theoretical chemistry problems – give the best perfor-
mance.

All subspace methods separate the computations into a low dimensional nonlin-
ear problem and a number of linear algebra operations (matrix × vector and scalar
products) in n dimensions. The latter make up only a small part of the code, but
take most of the time. The implementation has to be carefully tuned to reduce the
number of operations in n dimensions, low dimensional computations being of mi-
nor importance. The linear algebra operations should be carefully optimized (e.g.
using BLAS 3), and they allow a large amount of parallelization, too. Parallelizing
the low dimensional part is in the process of development, but not really useful
yet3.

2 Eigenvalue extraction

The goal of the extraction part is to find in a given subspace vectors that are good
approximations of eigenvectors of A as well as the corresponding approximations
of the eigenvalues. The description is independent of the update method, while the
implementation shows some interdependence.

2.1 Ritz projection

The Ritz projection is the most important approach to extract eigenvalue and
-vector approximations from a given subspace. The basic idea11 is: May V(k) be

a subspace of Rn at iteration step k with an orthonormal basis ~w
(k)
1 , . . . , ~w

(k)
m and

W (k) the matrix with columns ~w
(k)
j , S(k) := (W (k))T AW (k), λ̄

(k)
j the eigenvalues

of S(k), and T (k) a matrix with the eigenvectors of S(k) as columns. The columns
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~x
(k)
j ofW (k) T (k) (the Ritz vectors) are approximations to eigenvectors ofA with the

Ritz values λ̄
(k)
j = (~x

(k)
j )T A~x

(k)
j approximating eigenvalues of A. If the subspace

allows a good approximation of the extremal eigenvectors of A, the corresponding
Ritz vectors will be close to optimal approximations11.

Example 1: Let A be a diagonal matrix and let V(k) contain a good approxi-
mation to the largest eigenvector of A:

A :=










−1000 0 0 0

0 4 0 0

0 0 5 0

0 0 0 6










V(k) := span (










0.001 −0.005

0.1 −1.0

0 1.0

1 0.001










)

The approximations to [0, 0, 0, 1] calculated by Ritz projection will be
[.00066, .0320, .0677, .9972], near optimal, and the Ritz value 5.9929.

For hermitian A, the Ritz vectors are forced to be orthogonal, while the pro-
jections of the eigenvectors of A onto V(k) will not be orthogonal. Now, the Ritz

vector ~x
(k)
1 to the smallest (largest) Ritz value may be askew to all eigenvectors

of A. ~x
(k)
2 will be orthogonal to ~x

(k)
1 , therefore even if a non extremal eigenvector

of A has a good approximation in V(k), this may not be orthogonal to ~x
(k)
1 and

therefore not be close to a Ritz vector. Therefore, the second eigenvector of A can
be expected to be well approximated only if the extremal one has at least a decent
approximation, and inner eigenvectors of A may be poorly approximated even if
a good approximation is contained in V(k). This effect is pronounced when there
appear numerically multiple Ritz values.

Example 2: Let A be as before and exchange the last two rows in the basis
vectors of V(k), which now contains a good approximation to an inner eigenvec-
tor of A. The approximations to [0, 0, 1, 0] calculated by Ritz projection will be
[−.00184,−.4423, .7338, .5156], which is almost 430 off the desired eigenvector and
much inferior to the starting approximation. The Ritz value of 4.92 is almost
correct. The situation is not necessarily improved by improving the subspace.
Changing the first column of V(k) to [0.0001, 0.01, 1, 0] does not help.

2.2 Methods for interior eigenvalues

If Ritz projection performs poorly, inner eigenvalues may be approximated from
a subspace containing a good approximation of the eigenvector by either of two
methods depending on information available. Instead of calculating the projection
of A onto V(k), an inverse projection of (A − λ̄I)−1 onto W(k) := (A − λ̄I)V(k)

is calculated with only marginally increased effort. Now the formerly interior
eigenvalues transform to extremal ones, and if λ̄ is chosen properly, the corre-
sponding eigenvector approximations (in W(k)) are good. Applying (A − λ̄I)−1

to these approximations is easy, just a linear combination of the basis vectors
in V(k), and yields good approximations to eigenvectors in the neighborhood
of λ̄ (harmonic Ritz projection, 13). With λ̄ = 4.9, the previous example re-
turns [0.0017, 0.2390, .9605,−0.1429], a much better but not optimal approxima-
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tion. Changing λ̄ to 4.995 gives [0.0013, 0.1630, 0.9845,−0.0646], quite good. This
will work well when eigenvalues in a well-known range are looked for.
There are, however, problems where the eigenvalues are not known with sufficient
accuracy, but approximations to the eigenvectors are known, e.g. from low accu-
racy computations or from observation. In this case, a residual minimization gives
better results:
Let v̄ ∈ V(k) be an approximation to an eigenvector x̄ with ||v̄|| = 1. Choose x(k)

as the local minimum of ||(A − xTAx I)x|| for all x ∈ V(k), xT v/(||x||||v̄||) > α,
that is closest to v̄.
This means looking for an eigenvector that is closer to v̄ than any other eigenvector.
Usually, α > 0.9 is safe,

√
0.5 being the theoretical lower limit that garantees that an

eigenvector found almost accurately is not discarded of again. In the non-hermitian
case, the threshold may have to be increased depending on the angle between eigen-
vectors of A. As this is a (low dimensional) nonlinear problem, some approxima-
tion is needed. A simple but almost always sufficient linearization is minimizing
||(A− v̄TAv̄ I)(v̄ + x)|| over xT v̄ = 0. This yields [0.00006,−0.0861, .9791, .1840]T

for the above example, only slightly less accurate than harmonic Ritz projection
with λ̄ = 4.995. Changing the V [1, 2] to 0.0001 changes the picture, the harmonic
Ritz projection will perform only slightly better than simple Ritz projection, while
the residuum minimization will be near perfect. In general, residuum minimization
is more robust than harmonic Ritz projection and therefore may be a good choice
for starting steps, but it is in most cases tested inferior in final convergence.

3 Update procedures

The update procedure creates V(k+1) from V(k) by adding some directions and
possibly reducing the dimensions again. The reduction of dimensions is increasing
the number of iteration steps, but as the steps get computationally cheaper, there
will usually be some gain in computing time. Even if not, the reduction in memory
requirement may be helpful. The reduction – sometimes termed restart – usually
retains the approximations to the eigenvectors required plus those to neighboring
eigenvectors.

3.1 Krylow space updates of subspace

The simplest sequence of subspaces V(k) is given by the Krylow construction
V(k) = span(x0, Ax0, . . . , A

(k)x0). This is the basis of the methods of Lanczos
and Arnoldi, which are about the best possible for black box solvers for a few
extreme eigenvalues. The Krylow space allows a construction of an orthogonal basis
via a three term recurrence which is extremely efficient. There are quite a number
of computational shortcuts available with this choice of updates, such that the
performance is better than an iteration count would suggest. If only eigenvalues are
required, they need little storage, while the computation of eigenvectors is either
very memory-consuming or needs a second pass. There are stability problems, but
those can be dealt with nicely, and efficient implementations are available 4,6,1.
A related choice is V(k+1) = span(Aw1

(k), . . . , Awm
(k)). This has the advantage
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of a search subspace with constant dimension which reduces memory requirement
and enhances stability, but converges only to the largest eigenvalues11. Improve-
ments use Chebychev acceleration V(k+1) = span(P (A)w1

(k), . . . , P (A)wm
(k))

11,14,12.

3.2 Approximate inverse updates of subspace

Approximate inverse updates use special features of the matrix and can there-
fore be very efficient if properly implemented. The idea is to define a linearized
correction equation of the eigenvalue approximation and utilize a computation-
ally cheap approximation of this equation. With λ1 = xTi Axi and ei the correct
eigenvector, this equation reads (A − λ1I)(ei + qi) ≈ (A − λ1I)xi, which with
λ1 ≈ λ, (A − λI)ei = 0 seems to give a reasonable way to construct im-
proved subspace updates. May Bλi

be an (easy to compute) approximation to
(A − λiI)−1. Add the approximate inverses applied to the residue to the search
space: V(k+1) = span(V(k), Bλ1

r1, . . . , Bλm
rm), where ri := (A − xTi Axi I)xi

with xi the best eigenvector approximations available. An alternative is using
Bλ1

xi directly, thus approximating ’shift and invert’, but this has obvious stability
problems. Until recently, the only method using approximate inverses was David-
son’s method which simply uses the diagonal entries of A to compute B, and it was
useful only for matrices from theoretical chemistry. While convergence was demon-
strated to be rather fast, no analysis was available, and attempts to improve it by
using better approximate inverses failed. In hindsight, the reason for this is quite
clear, and some idea was there right from the start. If B is exact, then Bλi

ri = xi,
obviously not a good choice. So B must not be too good. On the other hand, if B
is a poor approximation, this is not much better than taking ri itself, which is the
Krylow subspace calculation without the computational shortcuts. The annoying
problem that improving B might reduce convergence was understood and overcome
in 13, where it was proved that the exact way to define a correction equation is to
project the correction problem into the space orthogonal to ei, and ei not being
available, the space orthogonal to xi will do fine, too. This leads to the improved
definition of qi:

[(I − xi xiT ) (Ā− λ̄(k)
j I) (I − xi xiT )] qi = ri

The projection (I−xi xiT ) is not easy to incorporate into the matrix, but there
is no need to do so. Because of ri ⊥ −xi,

qi = (ǫ + λ̄i)B
−1 ~x i − B−1Axi with ǫ =

xi
T B−1 ri

xiT B−1 xi

gives the proper solution of the projected equation.
There is no need to use the same type of approximate inverses throughout the

computation. In some finite element test cases, the best efficiency has been achieved
by starting out with a rather crude and simple choice for B (diagonal only) and
getting more accurate as the eigenvector approximations improve 3. This leaves the
field of tuning the algorithm wide open.
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Approximate inverses are, strictly speaking, not part of the eigenvalue algorithm
but only a plug-in, but of course of highest importance for the efficiency. Therefore
a few words on the topic seem appropriate. To build a good method, the literature
on approximate inverses should be consulted.
In most cases, an approximate inverse will be constructed by extracting from A
a structurally simpler (e.g. narrow banded, very sparse, ...) matrix that contains
most of the information of A, and invert this accurately or again approximately
(incomplete decomposition). With most matrices from quantum chemistry, taking
for Ā a (possibly tapered) band gives a useful approximate inverse:
āij = 0 for |i− j| > ki, āij = aij for |i− j| ≤ ki, k1 ≪ n , ki+1 ≤ ki
The Davidson method is a special example, and often near optimal.
If A is not a stored matrix but only given as a procedure to calculate Ax from x, it
rarely pays to extract Ā. Here the approximate inverse can be calculated using a
conjugate gradient method for solving an equation (A− λI)q = r, and stopped at
appropriate accuracy. This approach is widely used for eigenvalue problems from
PDE’s.

4 Problems of implementation and parallelization

The eigenvalue computation can be separated into actions in the n-dimensional
space and those in the projected space. The former are generally simple, but time
consuming, while the latter may be very complicated indeed, but take up little
time. The n-dimensional operations consist of calculation of Ax, the solution of
(A − λI)q = r, calculation of scalar products and linear combinations of vectors.
Except for very peculiar data structure of A, all this is done best by using the
existing efficient implementations of linear algebra, BLAS and LAPACK for the se-
quential and PBLAS and ScaLAPACK for parallel computing. The ARPACK and
PARPACK packages 1,9 give careful implementations of the Lanczos and Arnoldi
method and may be used either as is or serve as a guideline and provide building
blocks for other implementations.
There are some not so obvious details that need special attention. In concept, an

orthonormal basis ~w
(k)
1 , . . . , ~w

(k)
m of the subspace V(k) is required to build the ma-

trix Â(k) := (W (k))T AW (k),(k) and this is usually done by applying the modified

Gram-Schmidt method to a basis of ~v
(k)
1 , . . . , ~v

(k)
m of V(k). This is not necessary.

May V := [v1, . . . , vm], T the eigenvectors of Â, F = V T V , C the Cholesky de-
composition of F and R = C−1, then W = V R, and S := RT ((AV )T V )R. The
calculation of the Ritz vectors can be done via W (k) T (k) := V (RT ), so that there

is no need to actually compute the ~w
(k)
i . All that is needed in the n-dimensional

space is V T V and V T AV , all other calculations being only in the low-dimensional
subspace.
This saves about half the computations of the Gram-Schmidt method, but there
is a problem. The Ritz projection is rather sensitive to errors in orthogonality in

W , so the basis ~v
(k)
1 , . . . , ~v

(k)
m must not be near degenerate. Otherwise, the culprit

vector has to be removed or replaced by a new, truly independent direction. This
can be organized by using an incremental Cholesky decomposition. The method
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is computationally similar to the original Gram-Schmidt method, so the numeri-
cal stability is less than that of the modified Gram-Schmidt method. Especially
if a restart is to be done, the computation of the vectors forming the basis of the
reduced space is a numerically sensitive step. Here, actual orthogonalization may
pay.
The only computations in low dimensional space that may contribute to the com-
putational load are the solution of the eigenvalue problem of Â(k) (e.g. by using
some LAPACK procedure) and possibly the process to choose the approximations
that will be put to further use.
All the n-dimensional linear algebra calculations can be distributed with benefit
over different processors of parallel machines. As they have predictable computa-
tional effort, static load balancing will do. There are full codes, building blocks and
development tools available for almost any architecture, but writing efficient par-
allel programs still requires skill and insight. The easy-to-use methods like HPF or
virtual shared memory are considerably less efficient than explicit message passing,
which is not an easy-to-use method. The speedup available depends on problem
size, but there are examples of a speedup of 500 on a 512 processor machine.

5 Conclusions

The calculation of eigenvalues and -vectors of a large matrix is an old topic of
mathematics, but there is still progress. While matrix transformation, direct iter-
ation and the use of exact inverses have long been understood and are cast into
up-to-date implementations, the proper use of approximate inverses is quite recent,
and the implementations are less mature and not generally available. The building
blocks for state-of-the-art code are there, but it still has to be put together. Paral-
lel implementations may well exploit parallelism for the n-dimensional operations,
while the parallelism for the low dimensional computations is tough to use at all.
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Automatic differentiation is introduced as a powerful technique to compute deriva-
tives of functions given in the form of a computer program in a high-level program-
ming language such as Fortran, C, or C++. In contrast to traditional approaches
such as handcoding of analytic expressions, numerical approximation by divided
differences, or manipulation of symbolic algebraic expressions by computer algebra
systems, automatic differentiation offers the following substantial benefits: it is ac-
curate up to machine precision, efficient in terms of computational cost, applicable
to a 1-line formula as well as to a 100,000-line code, and can be produced with
minimal human effort.

1 Introduction

Numerical simulations arising in large-scale scientific applications such as quantum
chemistry often require the evaluation of derivatives of some objective function. An
example is given in this conference proceedings1 where the need for derivatives in
quantum chemical calculations of molecular properties is demonstrated. Derivatives
play a crucial role not only in quantum chemistry but in numerical computing in
general. Examples include the solution of nonlinear systems of equations, stiff ordi-
nary differential equations, partial differential equations, and differential-algebraic
equations. Derivatives are also ubiquitous in the areas of sensitivity analysis of
computer models, inverse problems, and (multidisciplinary) design optimization.

Traditionally, such problems with derivatives have been addressed by using tech-
niques of numerical and analytical differentiation as discussed by Gauss1. Here, we
will discuss another powerful technique called automatic differentiation (AD) for
computing derivative information, say, gradients or Hessians. AD has been success-
fully applied2,3, it is currently less well known than and sometimes confused with
symbolic differentiation. The purpose of this note is to call attention to automatic
differentiation, to provide some background information on the technique, and to
highlight its advantages over other techniques of differentiation.

To abstract from the particular area of interest, let

f : R n → R

m with x 7→ y

denote any vector-valued objective function whose derivatives are sought. We call x
the vector of independent variables and y the vector of dependent variables. In large-
scale applications, the objective function f is typically not available in analytic form
but is given by a computer code written in a high-level programming language
such as Fortran, C, or C++. Think of f as a function computed by, say, one of
the modules of the TURBOMOLE program system to compute and analyze the
electronic structure of molecules4. Given such a representation of the objective
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function f(x) =
(
y1(x), y2(x), . . . , ym(x)

)T
, computational methods often demand

the evaluation of the Jacobian matrix

J(x) :=






∂
∂x1

y1(x) . . . ∂
∂xn

y1(x)
...

. . .
...

∂
∂x1

ym(x) . . . ∂
∂xn

ym(x)




 ∈ Rm×n (1)

at some point of interest x ∈ R n .
A well-known and widely used approach for the approximation of the Jacobian

matrix is the use of divided differences (DD). For the sake of simplicity, we only
mention first-order forward DD but stress that the following discussion applies
to DD as a technique of numerical differentiation in general. Using first-order
forward DD, one approximates the ith column of the Jacobian matrix Eq. (1) by

f(x + hiei)− f(x)

hi
, (2)

where hi is a suitably chosen step size and ei ∈ R n is the ith Cartesian unit vector.
An advantage of the DD approach is that the function f needs to be evaluated
only at some suitably chosen points. Roughly speaking, f is used as a black-box.
The main disadvantage of DD is that the accuracy of the approximation depends
crucially on a suitable choice of these points, that is, of the step size hi. However,
any strategy to determine a step size faces the dilemma of mutual influence of
truncation and cancellation error: The step size should be small to decrease the
error of Eq. (2) in approximating Eq. (1) even if infinite-precision arithmetic were
used; the step size should be large to avoid cancellation of significant digits when
using finite-precision arithmetic in the computation of Eq. (2).

Another traditional approach for computing derivatives is handcoding of an-
alytic expressions. Here, an analytic expression for the Jacobian matrix J(x) is
identified first and then implemented by hand using any high-level programming
language. If care is taken, handcoding results in highly optimized implementations.
However, analytic expressions are not always available. Furthermore, handcoding
is smooth only for “simple” objective functions, is substantially error-prone, and
requires considerable human effort.

Computer algebra systems such as MACSYMA can, in principle, also be used
to find an explicit expression for the Jacobian matrix J(x). A disadvantage of
symbolic differentiation is that the length of the representation of the resulting
derivative expressions increases rapidly with the number n of independent vari-
ables. This property is extremely painful when higher-order derivatives are consid-
ered. For instance, the Hessian of an objective function of some complexity in more
than three variables can easily result in expressions filling several pages. More-
over, symbolic differentiation is inherently inefficient in terms of computing time,
because of the rapid growth of the underlying expressions. The reader is referred
to an article by Griewank5 for a more detailed discussion of computing derivatives
symbolically. Another computer algebra system, Maple, is unusual in that it does
offer the additional option of automatic differentiation. However, the intention of
automatic differentiation of Maple procedures is the development of efficient pro-
grams in Maple and other programming languages (Fortran, C). On the other hand,
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in this note we consider automatic differentiation for generating derivatives of large
production codes written in virtually any high-level programming language.

Automatic differentiation is another option for computing the Jacobian ma-
trix J(x). Virtually any computer program written in a high-level programming
language such as Fortran, C, or C++ can be differentiated by this black-box mecha-
nism. Given a program for the evaluation of the objective function f , this technique
generates, in a completely automatic fashion, another computer program, called the
extended program, that evaluates f(x) and J(x) simultaneously. The key concept
behind AD is the fact that every computation, no matter how complicated, is ex-
ecuted on a computer as a (potentially very long) sequence of a limited set of
elementary arithmetic operations such as additions, multiplications, and intrinsic
functions such as sin() and cos(). By applying the chain rule over and over again
to the composition of these elementary operations, the extended program can be
generated accurately evaluating f(x) and J(x) up to machine precision. AD tech-
niques are discussed in a monograph6 and a forthcoming book7. Differentiating a
computer program by AD meets all of the following requirements:

Reliability: The computed derivatives should ideally be accurate to machine pre-
cision. If the functional relation between x and y is not necessarily smooth,
the user should get a warning that something might be amiss.

Computational Cost: In many applications, the computation of derivatives is
the dominant computational burden. Hence, the amount of memory and run-
time required for the derivative code should be minimized as much as possible
and in any case be bounded a priori.

Scalability: The approach should give correct results for a 1-line formula as well
as a 100,000-line code.

Human Effort: Derivatives are a means to an end. Hence a user should not spend
much time in preparing a code for differentiation, in particular in situations in
which computer models are bound to change frequently.

Handcoding, divided-difference approximations, and symbolic manipulators fall
short with respect to the previously mentioned criteria. The main drawbacks of
divided-difference approximations are their numerical unpredictability and their
computational cost. In contrast, both the handcoding and symbolic approaches
suffer from a lack of scalability and require considerable human effort.

In the next section, we give a brief overview of automatic differentiation. Sec-
tion 3 discusses issues that arise in the design of software packages implementing
the AD technology. In Section 4, we discuss some issues concerning the use of AD
tools. In the last section, we summarize AD’s advantages and provide pointers to
AD tools.

2 Basic Modes of Automatic Differentiation

Traditionally, two basic approaches to automatic differentiation have been em-
ployed: the so-called forward mode and reverse mode, which date back to the
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early sixties and seventies, respectively. These modes are distinguished by how the
chain rule is used to propagate derivatives through the computation. We briefly
summarize the main points about these two approaches; a more detailed description
can be found in the literature5,6,8.

The forward mode propagates derivatives of intermediate variables with respect
to the independent variables and follows the control flow of the original program.
By exploiting the linearity of differentiation, the forward mode allows us to compute
arbitrary linear combinations J S of columns of the Jacobian matrix J . In matrix-
matrix multiplication, the symbol S denotes an arbitrary n× p matrix. The effort
required to compute not only the objective function but also J S is roughly p times
the runtime and memory of the original program. In particular, when p = 1 and
thus the matrix S reduces to a vector s, we compute the directional derivative

J s = lim
h→0

f(x + hs)− f(x)

h
,

where h is some step size.
In contrast, the reverse mode of automatic differentiation propagates deriva-

tives of the final result with respect to an intermediate quantity, so-called adjoint
quantities. To propagate adjoints, one must be able to reverse the flow of the pro-
gram and must remember or recompute any intermediate value that nonlinearly
affects the final result. In particular, one must store the intermediate values that
have been involved in nonlinear operations before they are overwritten or go out
of scope. Sometimes some of these intermediates can be recomputed during the
reverse sweep, but in any case one has to keep a log of the branch directions taken.

For an m× q matrix W , the reverse mode allows us to compute arbitrary linear
combinations WTJ of rows of the Jacobian matrix J with roughly q times as many
floating-point operations as required for the evaluation of f . In a straightforward
implementation, however, the storage requirements may be proportional to the
number of floating-point operations required for the evaluation of f , as a result
of the tracing required to make the program “reversible.” When q = 1 and thus
the matrix WT reduces to a row vector wT , we compute the derivative wTJ . The
reverse mode is particularly attractive for the computation of long gradients, as its
operations count does not depend on the number n of independent variables.

The forward mode can be naturally extended to second or third (and even
higher) derivatives, but the complexity grows like the square or cube p, respectively.
Especially for Hessian-vector products, a combined forward and reverse sweep is
attractive, since it still has essentially the same complexity as a single evaluation
of the underlying scalar function. In any case, automatic differentiation produces
code that computes derivatives accurate to machine precision5. The techniques of
automatic differentiation are directly applicable to computer programs of arbitrary
length containing branches, loops, and subroutines.

The weighting and combining of derivatives through the matrices W and S are
natural and useful for many applications, especially if sparsity in J can be exploited.
Unfortunately, many existing AD tools are (like computer algebra packages) still
exclusively oriented toward the evaluation of Cartesian derivatives, that is, the
partials of certain dependent variables with respect to certain independent variables.
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3 Design of Automatic Differentiation Tools

Automatic differentiation can be viewed as a particular semantic transformation
problem: Given a code for computing a function, we would like to generate a code
that computes the derivatives of that function. To effect this transformation, two
approaches have been employed:

Operator Overloading: Modern computer languages such as C++ or Fortran 90
make it possible to redefine the meaning of elementary operators. We can, for
example, define a type for floating-point numbers that have gradient objects as-
sociated with them (let’s call this new type adouble), and for each elementary
operation such as a multiplication, we can define the meaning of the operator
“∗” for variables of type adouble as follows. An assignment z = x ∗ y not
only computes the product of x and y but also updates the associated gradient
object in a product rule fashion ∇z = x∇y + y∇x. So, each occurrence of a
multiplication of two adoubles in the code will also effect the update of the
associated derivatives in a transparent fashion.

Source Transformation: Another way of changing the semantics of the code is
to rewrite it explicitly. For example, the assignment z = x ∗ y is rewritten into
a piece of code that contains not only the computation of z but also an im-
plementation of the vector linear combination ∇z = x∇y+ y∇x, implemented
either as a do-loop or as a subroutine call.

Each of these approaches has its advantages and disadvantages. The advantages of
operator overloading are threefold.

Terseness: All that is required for a new data type, such as adoubles, is a new
class definition. While such a class definition can be substantial, comprising
several thousand lines of code, it hides this complexity from the user of an AD
tool.

Flexibility: If we want to change an implementation strategy associated with a
particular class, the source code remains unaffected. All that changes is the
class definition itself. So, for example, whether we compute first- or second-
order derivatives is reflected in the class definition but not in the code being
differentiated.

Full Access to Runtime Information: The reverse mode of AD requires the
ability to reverse the partial flow of program execution. One way to do this is to
use operator overloading to generate a tape that logs all the operations actually
performed, and use this tape as the input for a derivative interpreter, which
then can compute any derivatives desired using either the forward or reverse
mode of automatic differentiation. This approach is, for example, chosen in
the ADOL-C package9.

The drawbacks of operator overloading are the following

Lack of Transparency: While it is aesthetically pleasing that the source code
does not change, even though its meaning does, it does not aid in debugging,
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since one has to deduce the meaning of the operations implied by the source
code and the associated class definitions.

Implementation Overhead: The actions associated with a class definition can
be viewed as an implied subroutine call, and although much progress has been
made recently in the compilation of operator overloading, the runtime overhead
of this technique can be substantial depending on the sophistication of the
compiler.

Dusty Deck Assimilation: Many existing computer codes are written in lan-
guages such as Fortran 77 or ANSI-C that do not support operator overload-
ing. In particular, assimilating large codes into the supposedly backwards-
compatible Fortran 90 or C++ languages turns out to be a thorny task.

On the other hand, the advantages of the source transformation approach are as
follows.

Simplicity of Generated Code: Since the derivative code is spelled out exactly,
usually in the same language as the input code, it is easier to follow the actions
of the derivative code as long as the chain rule is applied in a basic local
fashion. This simplicity also facilitates compiler optimizations and hence faster
execution of the generated code.

Dusty Deck Assimilation: The source transformation approach requires tradi-
tional compiler infrastructure such as parsers, generators and manipulators of
intermediate languages, and unparsers. These tools are readily available for
languages such as Fortran 77 or ANSI-C, at least in the commercial world.

Variable Scope: Operator overloading inherently sees one elementary operation
at a time. Source transformation approaches, on the other hand, have access
to the context of a particular computation and hence have more flexibility in
applying derivative rules. For example, the ADIFOR10,11 and ADIC12 tools
view a program as a sequence of assignment statements, applying the reverse
mode at this level and the forward mode overall.

The disadvantages of the source transformation approach are the following.

Implementation Complexity: Source transformation approaches, at least at
the moment, require considerable tool infrastructure, in particular for the
processing of language-dependent features. Also, the lack of a standardized
language description makes changing the semantics of a particular automatic
differentiation tool a potentially rather involved task.

Code Expansion or Subroutine Interface Swell: A “pure” source transfor-
mation approach is infeasible when the action associated with a particular
statement exceeds a certain level of complexity. In this case, either the length
of the generated code grows too large for a compiler to digest, or rather ex-
tensive subroutine library interfaces must be maintained to encapsulate the
basic computational kernels. The latter approach, in many ways, is similar to
operator overloading, albeit considerably less elegant.
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Of course, the relevance of these advantages and disadvantages depends to a great
extent on the particular application.

Given the mathematical underpinnings of the concept of derivatives, the “black-
box” application of an AD tool usually raises several questions that we briefly
address here.

Question: How do you know that the code represents a globally differentiable
function?

Answer: We don’t. AD computes the derivative defined by the sequence of as-
signment statements executed in the course of a function evaluation. Hence,
for a branch (if-statement), which potentially introduces a nondifferentiability,
AD will compute a one-sided directional derivative. This problem is further
discussed by Fischer13.

Question: How do you deal with intrinsics?

Answer: Some intrinsics functions, such as abs() and sqrt(), are not differen-
tiable in all points of their domain. Some tools invoke an extension handler
flagging such occurrences; others ignore such occurrences.

Question: What happens when you differentiate through iterative processes?

Answer: It depends. AD generates a new iteration, and it is not clear a priori
whether the new iteration will converge and what it will converge to, although
empirically AD leads to the desired result. However, derivative convergence
may lag, or derivatives may diverge. For some commonly used approaches
for solving nonlinear systems of equations, this issue is discussed by Griewank
et al.14. This problem clearly requires more research, but the emergence of
robust AD tools has made it possible to tackle this problem for sophisticated
numerical methods.

4 Using Automatic Differentiation Tools

Based on our experience with the ADIFOR10,11 and ADIC12 tools for automatic
differentiation, this section explores some of the subtler issues related to the use of
AD and the implications for numerical software design. In particular, we focus on
the issues that arise from the fact that AD differentiates a given computer program
step by step, in a fashion that is oblivious of the overall semantics of a program.
This “myopic” view gives AD tools the power to deal with programs of arbitrary
length, but it also implies that users of AD tools may have to communicate some
of their knowledge to an AD tool to arrive at a desired solution. Specifically, we
illustrate the issues arising in the context of nondifferentiable language intrinsics
such as max() and numerical integrators.
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4.1 Intrinsic Functions

Since the derivative of sin(x) with respect to x is given by cos(x), an AD tool might
transform the statement

y = sin(x)

into the derivative statement

∇y = cos(x) * ∇ x.

Here, the notation ∇y denotes the derivatives of variable y with respect to some
chosen set of variables. In this case, there is no difficulty, since sin() is everywhere
differentiable.

Most computer languages do, however, contain intrinsic functions that are not
differentiable in some points in their domain, as for example the Fortran 77 intrinsics
abs(x) and sqrt(x) when the value of the argument is zero. We call such a point
an “exceptional point.” We cannot simply claim that the function in question is
not differentiable, since a computer program executing such instructions may well
represent a smooth function, such as g(x, y) =

√

x4 + y4. Moreover, intrinsics may
be used to guard against unphysical values of simulation parameters. For example,
in a weather model one might see code such as

rain = max(rain, 0.0).

This statement reflects the fact that rainfall cannot be negative and is intended
to convert a small negative number, which may have arisen from floating-point
roundoff, to the physically sensible number 0 (i.e., no rain).

The function max(x, y) is not differentiable for x = y. However, in the previously
described case, it makes sense to define partial derivatives for the exceptional cases

as ∂max(x,y)
∂ x |x=y := 1.0 and ∂max(x,y)

∂ y |x=y := 0.0. These definitions do not change
∇rain when rain is set to zero in the induced AD statement

∇rain =
∂max(x, y)

∂ x
∇rain.

However, these definitions would not lead to the desired result if the order of argu-
ments in the max() call was reversed, namely,

rain = max(0.0, rain).

In this case, the derivative of rain would be zeroed out when the value of the
variable was zero, and it would have been appropriate to exchange the definitions
of ∂max

∂ x and ∂max
∂ y . In other contexts, an argument could also be made for setting

∂max(x,y)
∂ x |x=y = 0.5 and ∂max(x,y)

∂ y |x=y = 0.5, since then automatic differentiation
provides a so-called subgradient, which is useful in nonsmooth numerical optimiza-
tion, as described, for example, by Clark15.

These examples demonstrate the following points:

i. No choice of derivative values for exceptional points will always be correct.

ii. There is no “automatic” way to decide what sensible choices are.
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Given: parameter p, current time t, current solution xc ≈ x(t, p),
suggested time step ∆t.

1) Compute x1 ≈ x(t+ ∆t, p) using Method A.
2) Compute x2 ≈ x(t+ ∆t, p) using Method B.
3) Compute δ = ‖x1 − x2‖ for some norm ‖ · ‖.
4) if ( δ < some given threshold )

Accept the higher-order of x1 and x2

and update t← t+ ∆t.
else

∆t = g(∆t, δ);
goto 1)

endif

Figure 1. Simplified Description of a Numerical Integrator

iii. User insight into the problem is essential.

Thus, potential users of AD tools need to be aware of these facts and provide
“hints” for an AD tool in the code to be eventually differentiated. Such hints are
particularly important for numerical libraries, since these codes typically embody
subtle numerics and will be reused often. To this end, the ADIFOR and ADIC
systems employ the completely user-customizable ADIntrinsics system for dealing
with Fortran and ANSI-C intrinsics. Surprisingly, in most cases the derivatives turn
out to be the ones intended without the need for derivatives intrinsics modifications.

4.2 Numerical Integrators

Another problem arises from the fact that an AD tool, when applied to a code
embodying a numerical method, will not only differentiate the solution produced
by this method, but also take into account the way by which one arrived at the
solution. As an illustration, consider a parameter-dependent initial value problem

ẋ(p) = f(x, p, t) with x(t = 0) = x0, (3)

where p is a parameter. Figure 1 shows a simplified version of the time-stepping loop
of a typical explicit numerical integrator with step size control. In this figure, the
notation Method A and Method B is used for two integration methods of different
order, and g is some function that adjusts the time step ∆t. For simplicity, we
ignore the fact that the time step will be adjusted upward if there is a good fit.

If, for a given p, we are interested in ∂ x
∂ p

∣
∣
t=T

, where T is the final time, we can
employ an AD tool to differentiate this code with respect to p. If we differentiate
with respect to p and use ∇ to denote d

d p , the chain rule of differential calculus
now implies that

∇(∆t) =
∂ g

∂ (∆t)
∇(∆t) +

∂ g

∂ δ
∇δ.

Clearly, ∇δ 6= 0 in general, since δ depends on x, which in turn depends on p.
Thus we have the interesting situation that ∇(∆t) 6= 0 when ∂ g

∂ δ 6= 0; that is, the
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computational equivalent of time, ∆t, will have a nonzero derivative with respect
to the parameter p. Viewed from an analytical perspective, this is nonsense – the
values of time and the parameter are not related. From a computational perspective
however, it does make sense – depending on the value of the parameter, we may
choose a different time discretization. Thus, what we really compute as the final
value xT (p) is

xT (p) = x(t(p), p)|t(p)=T
(note the dependence of t on p). Thus, we obtain

∇xt=T =
∂ x

∂ t

∣
∣
∣
∣
t=T

· ∇tt=T +
∂ x

∂ p

∣
∣
∣
∣
t=T

,

and with Eq. (3)

∇xt=T = f(xT , p, T ) · ∇tt=T +
∂ x

∂ p

∣
∣
∣
∣
t=T

.

Note that ∇x and ∇t will have been computed by the AD-generated derivative
code. We observe the following:

i. Depending on how the time discretization was chosen, we will obtain different
values for ∇tt=T and thus for ∇xt=T . Most certainly, we will not obtain
∂ x
∂ p

∣
∣
t=T

which is the result desired by most users.

ii. If ∆t would had been zero at every step, we would have ∇tt=T = 0 and thus
∇xt=T = ∂ x

∂ p

∣
∣
t=T

, as desired by the user. By default, this happens in methods

using a fixed step size. This case is also discussed by Sandu et al.16

iii. Independent of how the time discretization was chosen, we can recover the
desired solution as

∂ x

∂ p

∣
∣
∣
∣
t=T

= ∇xt=T − f(xT , p, T ) · ∇tt=T . (4)

These issues are discussed in more detail by Eberhard and Bischof17.
Note that approaches (ii) and (iii) are really geared toward the library developer

and the sophisticated AD user, respectively. When an integrator code is written, it
is probably feasible to indicate the places where the next time step is assigned and
to indicate that an AD tool should treat this statement as constant with respect to
differentiation, resulting in the assignment of a zero gradient. Current AD tools do
not have such facilities built-in yet, but will so soon. At any rate, unless the devel-
oper of the integrator provides this information, the considerable sophistication of
these codes makes it difficult for others to extract this information from the code.

While one might take the attitude that this was not an issue, given the “fix”
(iii), this is not really the case. Even when ∂ x

∂ p is well behaved, ∇t and ∇x can
become very large and can overflow. Furthermore, the user of an AD tool may
well be unaware of these issues, or may not be able to localize the problem since
the integrator may be buried under other layers of software. However, as shown
by Eberhard and Bischof17, if the final time is prescribed, we are likely to obtain
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∇tt=T = 0, and everything works out; we suspect that this situation has happened
in quite a few AD applications.

We note that while (ii) and (iii) will result in the right derivatives ∂ x
∂ p , there

is no guarantee that the derivatives will be obtained at the same accuracy as the
solution x, since the guard of the if-statement governing acceptance or rejection of
a step will not be augmented by AD, and thus still will be governed only by the
behavior of x. Thus, the derivatives obtained by Eq. (4) will be consistent, but
they may not be as accurate as those obtained by solving the sensitivity equation

ẋp =
∂ f

∂ x
xp +

∂ f

∂ p
,

where xp = ∂ x
∂ p , alongside the original differential equation Eq. (3). It is easy to

add the norm of ∇δ to the guard for step size control, but an AD tool cannot
be expected to do so without user guidance. Similar issues also arise in the con-
text of automatic differentiation of iterative solvers for nonlinear equations and are
discussed by Griewank et al.14.

5 Concluding Remarks

This note was meant to give a brief introduction to automatic differentiation. We
briefly discussed the advantages of this powerful technique in contrast to the better-
known approaches of numerical, analytic, and symbolic differentiation. Broadly
speaking, automatic differentiation saves work in comparison with handcoding
of analytic derivatives and, by computing accurate derivatives, avoids the hassle
caused by inaccurate numerical differentiation. We reviewed the forward and re-
verse modes of automatic differentiation, gave some background on design issues of
automatic differentiation tools, and discussed some subtle issues involved in using
these tools.

Even though automatic differentiation tools are still in their infancy, under
a wide range of circumstances they already can compute derivatives faster than
divided difference approximations11. Furthermore, there are examples where the
availability of fully accurate derivatives was essential for numerical robustness and
convergence18,19,20. Another advantage of automatic differentiation tools that we
did not discuss in this note is their ability to provide, in a fashion that is transparent
to the user, information about the zero/nonzero structure of derivative matrices.21

This information is required to solve linear systems involving the Jacobian, and the
automatic detection of the sparsity pattern avoids the error-prone task of having the
user specify the sparsity pattern. This feature is provided in ADIFOR and ADIC
through the SparsLinC library and is used, for example, in the NEOS (Network-
enabled Optimization Server) problem-solving environment22, which is accessible
at http://www-neos.mcs.anl.gov/.

The emergence of robust automatic differentiation tools applicable to
functions defined by computer programs in general-purpose computer lan-
guages such as Fortran 77, Fortran 90, C, and C++ is putting these
tools within the reach of many computational practitioners in any field
requiring derivatives, including quantum chemistry. The web site at
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http://www.sc.rwth-aachen.de/Research/AD/subject.html gives a short de-
scription of some available automatic differentiation tools and provides pointers for
obtaining these tools.
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The rapidly growing field of ab initio molecular dynamics is reviewed in the spirit
of a series of lectures given at the Winterschool 2000 at the John von Neumann

Institute for Computing, Jülich. Several such molecular dynamics schemes are
compared which arise from following various approximations to the fully coupled
Schrödinger equation for electrons and nuclei. Special focus is given to the Car–
Parrinello method with discussion of both strengths and weaknesses in addition
to its range of applicability. To shed light upon why the Car–Parrinello approach
works several alternate perspectives of the underlying ideas are presented. The
implementation of ab initio molecular dynamics within the framework of plane
wave–pseudopotential density functional theory is given in detail, including diag-
onalization and minimization techniques as required for the Born–Oppenheimer
variant. Efficient algorithms for the most important computational kernel routines
are presented. The adaptation of these routines to distributed memory parallel
computers is discussed using the implementation within the computer code CPMD

as an example. Several advanced techniques from the field of molecular dynam-
ics, (constant temperature dynamics, constant pressure dynamics) and electronic
structure theory (free energy functional, excited states) are introduced. The com-
bination of the path integral method with ab initio molecular dynamics is presented
in detail, showing its limitations and possible extensions. Finally, a wide range of
applications from materials science to biochemistry is listed, which shows the enor-
mous potential of ab initio molecular dynamics for both explaining and predicting
properties of molecules and materials on an atomic scale.

1 Setting the Stage: Why Ab Initio Molecular Dynamics ?

Classical molecular dynamics using “predefined potentials”, either based on em-
pirical data or on independent electronic structure calculations, is well estab-
lished as a powerful tool to investigate many–body condensed matter systems.
The broadness, diversity, and level of sophistication of this technique is docu-
mented in several monographs as well as proceedings of conferences and scientific
schools 12,135,270,217,69,59,177. At the very heart of any molecular dynamics scheme
is the question of how to describe – that is in practice how to approximate – the
interatomic interactions. The traditional route followed in molecular dynamics is to
determine these potentials in advance. Typically, the full interaction is broken up
into two–body, three–body and many–body contributions, long–range and short–
range terms etc., which have to be represented by suitable functional forms, see
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Sect. 2 of Ref. 253 for a detailed account. After decades of intense research, very
elaborate interaction models including the non–trivial aspect to represent them
analytically were devised 253,539,584.

Despite overwhelming success – which will however not be praised in this re-
view – the need to devise a “fixed model potential” implies serious drawbacks, see
the introduction sections of several earlier reviews 513,472 for a more complete di-
gression on these aspects. Among the most delicate ones are systems where (i)
many different atom or molecule types give rise to a myriad of different interatomic
interactions that have to be parameterized and / or (ii) the electronic structure
and thus the bonding pattern changes qualitatively in the course of the simulation.
These systems can be called “chemically complex”.

The reign of traditional molecular dynamics and electronic structure methods
was greatly extended by the family of techniques that is called here “ab initio
molecular dynamics”. Other names that are currently in use are for instance Car–
Parrinello, Hellmann–Feynman, first principles, quantum chemical, on–the–fly, di-
rect, potential–free, quantum, etc. molecular dynamics. The basic idea underlying
every ab initio molecular dynamics method is to compute the forces acting on the
nuclei from electronic structure calculations that are performed “on–the–fly” as the
molecular dynamics trajectory is generated. In this way, the electronic variables are
not integrated out beforehand, but are considered as active degrees of freedom. This
implies that, given a suitable approximate solution of the many–electron problem,
also “chemically complex” systems can be handled by molecular dynamics. But
this also implies that the approximation is shifted from the level of selecting the
model potential to the level of selecting a particular approximation for solving the
Schrödinger equation.

Applications of ab initio molecular dynamics are particularly widespread in ma-
terials science and chemistry, where the aforementioned difficulties (i) and (ii) are
particularly severe. A collection of problems that were already tackled by ab initio
molecular dynamics including the pertinent references can be found in Sect. 5. The
power of this novel technique lead to an explosion of the activity in this field in terms
of the number of published papers. The locus can be located in the late–eighties,
see the squares in Fig. 1 that can be interpreted as a measure of the activity in
the area of ab initio molecular dynamics. As a matter of fact the time evolution of
the number of citations of a particular paper, the one by Car and Parrinello from
1985 entitled “Unified Approach for Molecular Dynamics and Density–Functional
Theory” 108, parallels the trend in the entire field, see the circles in Fig. 1. Thus,
the resonance that the Car and Parrinello paper evoked and the popularity of the
entire field go hand in hand in the last decade. Incidentally, the 1985 paper by Car
and Parrinello is the last one included in the section “Trends and Prospects” in
the reprint collection of “key papers” from the field of atomistic computer simula-
tions 135. That the entire field of ab initio molecular dynamics has grown mature
is also evidenced by a separate PACS classification number (71.15.Pd “Electronic
Structure: Molecular dynamics calculations (Car–Parrinello) and other numerical
simulations”) that was introduced in 1996 into the Physics and Astronomy Classi-
fication Scheme 486.

Despite its obvious advantages, it is evident that a price has to be payed for
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Figure 1. Publication and citation analysis. Squares: number of publications which appeared
up to the year n that contain the keyword “ab initio molecular dynamics” (or synonyma such
as “first principles MD”, “Car–Parrinello simulations” etc.) in title, abstract or keyword list.
Circles: number of publications which appeared up to the year n that cite the 1985 paper by
Car and Parrinello 108 (including misspellings of the bibliographic reference). Self–citations and
self–papers are excluded, i.e. citations of Ref. 108 in their own papers and papers coauthored by
R. Car and / or M. Parrinello are not considered in the respective statistics. The analysis is based
on the CAPLUS (“Chemical Abstracts Plus”), INSPEC (“Physics Abstracts”), and SCI (“Science
Citation Index”) data bases at STN International. Updated statistics from Ref. 405.

putting molecular dynamics on ab initio grounds: the correlation lengths and re-
laxation times that are accessible are much smaller than what is affordable via
standard molecular dynamics. Another appealing feature of standard molecular
dynamics is less evident, namely the “experimental aspect of playing with the po-
tential”. Thus, tracing back the properties of a given system to a simple physical
picture or mechanism is much harder in ab initio molecular dynamics. The bright
side is that new phenomena, which were not forseen before starting the simulation,
can simply happen if necessary. This gives ab initio molecular dynamics a truly
predictive power.

Ab initio molecular dynamics can also be viewed from another corner, namely
from the field of classical trajectory calculations 649,541. In this approach, which
has its origin in gas phase molecular dynamics, a global potential energy surface
is constructed in a first step either empirically or based on electronic structure
calculations. In a second step, the dynamical evolution of the nuclei is generated
by using classical mechanics, quantum mechanics or semi / quasiclassical approx-
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imations of various sorts. In the case of using classical mechanics to describe the
dynamics – the focus of the present overview – the limiting step for large systems is
the first one, why so? There are 3N − 6 internal degrees of freedom that span the
global potential energy surface of an unconstrained N–body system. Using for sim-
plicity 10 discretization points per coordinate implies that of the order of 103N−6

electronic structure calculations are needed in order to map such a global potential
energy surface. Thus, the computational workload for the first step grows roughly
like ∼ 10N with increasing system size. This is what might be called the “dimen-
sionality bottleneck” of calculations that rely on global potential energy surfaces,
see for instance the discussion on p. 420 in Ref. 254.

What is needed in ab initio molecular dynamics instead? Suppose that a useful
trajectory consists of about 10M molecular dynamics steps, i.e. 10M electronic
structure calculations are needed to generate one trajectory. Furthermore, it is
assumed that 10n independent trajectories are necessary in order to average over
different initial conditions so that 10M+n ab initio molecular dynamics steps are
required in total. Finally, it is assumed that each single–point electronic structure
calculation needed to devise the global potential energy surface and one ab initio
molecular dynamics time step requires roughly the same amount of cpu time. Based
on this truly simplistic order of magnitude estimate, the advantage of ab initio
molecular dynamics vs. calculations relying on the computation of a global potential
energy surface amounts to about 103N−6−M−n. The crucial point is that for a given
statistical accuracy (that is for M and n fixed and independent on N) and for a
given electronic structure method, the computational advantage of “on–the–fly”
approaches grows like ∼ 10N with system size.

Of course, considerable progress has been achieved in trajectory calculations by
carefully selecting the discretization points and reducing their number, choosing so-
phisticated representations and internal coordinates, exploiting symmetry etc. but
basically the scaling ∼ 10N with the number of nuclei remains a problem. Other
strategies consist for instance in reducing the number of active degrees of freedom
by constraining certain internal coordinates, representing less important ones by a
(harmonic) bath or friction, or building up the global potential energy surface in
terms of few–body fragments. All these approaches, however, invoke approxima-
tions beyond the ones of the electronic structure method itself. Finally, it is evident
that the computational advantage of the “on–the–fly” approaches diminish as more
and more trajectories are needed for a given (small) system. For instance extensive
averaging over many different initial conditions is required in order to calculate
quantitatively scattering or reactive cross sections. Summarizing this discussion,
it can be concluded that ab initio molecular dynamics is the method of choice to
investigate large and “chemically complex” systems.

Quite a few review articles dealing with ab initio molecular dynamics appeared
in the nineties 513,223,472,457,224,158,643,234,463,538,405 and the interested reader is re-
ferred to them for various complementary viewpoints. In the present overview
article, emphasis is put on both broadness of the approaches and depth of the pre-
sentation. Concerning the broadness, the discussion starts from the Schrödinger
equation. Classical, Ehrenfest, Born–Oppenheimer, and Car–Parrinello molecular
dynamics are “derived” from the time–dependent mean–field approach that is ob-

332



tained after separating the nuclear and electronic degrees of freedom. The most
extensive discussion is related to the features of the basic Car–Parrinello approach
but all three ab initio approaches to molecular dynamics are contrasted and partly
compared. The important issue of how to obtain the correct forces in these schemes
is discussed in some depth. The most popular electronic structure theories imple-
mented within ab initio molecular dynamics, density functional theory in the first
place but also the Hartree–Fock approach, are sketched. Some attention is also
given to another important ingredient in ab initio molecular dynamics, the choice
of the basis set.

Concerning the depth, the focus of the present discussion is clearly the im-
plementation of both the basic Car–Parrinello and Born–Oppenheimer molecular
dynamics schemes in the CPMD package 142. The electronic structure approach
in CPMD is Hohenberg–Kohn–Sham density functional theory within a plane wave
/ pseudopotential implementation and the Generalized Gradient Approximation.
The formulae for energies, forces, stress, pseudopotentials, boundary conditions,
optimization procedures, parallelization etc. are given for this particular choice to
solve the electronic structure problem. One should, however, keep in mind that
a variety of other powerful ab initio molecular dynamics codes are available (for
instance CASTEP 116, CP-PAW 143, fhi98md 189, NWChem 446, VASP 663) which are
partly based on very similar techniques. The classic Car–Parrinello approach 108

is then extended to other ensembles than the microcanonical one, other electronic
states than the ground state, and to a fully quantum–mechanical representation of
the nuclei. Finally, the wealth of problems that can be addressed using ab initio
molecular dynamics is briefly sketched at the end, which also serves implicitly as
the “Summary and Conclusions” section.

2 Basic Techniques: Theory

2.1 Deriving Classical Molecular Dynamics

The starting point of the following discussion is non–relativistic quantum mechanics
as formalized via the time–dependent Schrödinger equation

i~
∂

∂t
Φ({ri}, {RI}; t) = HΦ({ri}, {RI}; t) (1)

in its position representation in conjunction with the standard Hamiltonian

H = −
∑

I

~

2

2MI
∇2
I −

∑

i

~

2

2me
∇2
i +

∑

i<j

e2

|ri − rj |
−
∑

I,i

e2ZI
|RI − ri|

+
∑

I<J

e2ZIZJ
|RI −RJ |

= −
∑

I

~

2

2MI
∇2
I −

∑

i

~

2

2me
∇2
i + Vn−e({ri}, {RI})

= −
∑

I

~

2

2MI
∇2
I +He({ri}, {RI}) (2)

for the electronic {ri} and nuclear {RI} degrees of freedom. The more convenient
atomic units (a.u.) will be introduced at a later stage for reasons that will soon
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become clear. Thus, only the bare electron–electron, electron–nuclear, and nuclear–
nuclear Coulomb interactions are taken into account.

The goal of this section is to derive classical molecular dynamics 12,270,217

starting from Schrödinger’s wave equation and following the elegant route of
Tully 650,651. To this end, the nuclear and electronic contributions to the total
wavefunction Φ({ri}, {RI}; t), which depends on both the nuclear and electronic
coordinates, have to be separated. The simplest possible form is a product ansatz

Φ({ri}, {RI}; t) ≈ Ψ({ri}; t) χ({RI}; t) exp

[
i

~

∫ t

t0

dt′Ẽe(t
′)

]

, (3)

where the nuclear and electronic wavefunctions are separately normalized to unity
at every instant of time, i.e. 〈χ; t|χ; t〉 = 1 and 〈Ψ; t|Ψ; t〉 = 1, respectively. In
addition, a convenient phase factor

Ẽe =

∫

drdR Ψ⋆({ri}; t) χ⋆({RI}; t)He Ψ({ri}; t) χ({RI}; t) (4)

was introduced at this stage such that the final equations will look nice;
∫
drdR

refers to the integration over all i = 1, . . . and I = 1, . . . variables {ri} and {RI},
respectively. It is mentioned in passing that this approximation is called a one–
determinant or single–configuration ansatz for the total wavefunction, which at the
end must lead to a mean–field description of the coupled dynamics. Note also that
this product ansatz (excluding the phase factor) differs from the Born–Oppenheimer
ansatz 340,350 for separating the fast and slow variables

ΦBO({ri}, {RI}; t) =

∞∑

k=0

Ψ̃k({ri}, {RI})χ̃k({RI}; t) (5)

even in its one–determinant limit, where only a single electronic state k (evaluated
for the nuclear configuration {RI}) is included in the expansion.

Inserting the separation ansatz Eq. (3) into Eqs. (1)–(2) yields (after multiplying
from the left by 〈Ψ| and 〈χ| and imposing energy conservation d 〈H〉 /dt ≡ 0) the
following relations

i~
∂Ψ

∂t
= −

∑

i

~

2

2me
∇2
iΨ +

{∫

dR χ⋆({RI}; t)Vn−e({ri}, {RI})χ({RI}; t)
}

Ψ (6)

i~
∂χ

∂t
= −

∑

I

~

2

2MI
∇2
Iχ+

{∫

dr Ψ⋆({ri}; t)He({ri}, {RI})Ψ({ri}; t)
}

χ . (7)

This set of coupled equations defines the basis of the time–dependent self–consistent
field (TDSCF) method introduced as early as 1930 by Dirac 162, see also Ref. 158.
Both electrons and nuclei move quantum–mechanically in time–dependent effective
potentials (or self–consistently obtained average fields) obtained from appropriate
averages (quantum mechanical expectation values 〈. . . 〉) over the other class of
degrees of freedom (by using the nuclear and electronic wavefunctions, respectively).
Thus, the single–determinant ansatz Eq. (3) produces, as already anticipated, a
mean–field description of the coupled nuclear–electronic quantum dynamics. This
is the price to pay for the simplest possible separation of electronic and nuclear
variables.
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The next step in the derivation of classical molecular dynamics is the task to
approximate the nuclei as classical point particles. How can this be achieved in the
framework of the TDSCF approach, given one quantum–mechanical wave equa-
tion describing all nuclei? A well–known route to extract classical mechanics from
quantum mechanics in general starts with rewriting the corresponding wavefunction

χ({RI}; t) = A({RI}; t) exp [iS({RI}; t)/~] (8)

in terms of an amplitude factor A and a phase S which are both considered to be
real and A > 0 in this polar representation, see for instance Refs. 163,425,535. After
transforming the nuclear wavefunction in Eq. (7) accordingly and after separating
the real and imaginary parts, the TDSCF equation for the nuclei

∂S

∂t
+
∑

I

1

2MI
(∇IS)2 +

∫

dr Ψ⋆HeΨ = ~

2
∑

I

1

2MI

∇2
IA

A
(9)

∂A

∂t
+
∑

I

1

MI
(∇IA) (∇IS) +

∑

I

1

2MI
A
(
∇2
IS
)

= 0 (10)

is (exactly) re–expressed in terms of the new variables A and S. This so–called
“quantum fluid dynamical representation” Eqs. (9)–(10) can actually be used to
solve the time–dependent Schrödinger equation 160. The relation for A, Eq. (10),
can be rewritten as a continuity equation 163,425,535 with the help of the identi-
fication of the nuclear density |χ|2 ≡ A2 as directly obtained from the definition
Eq. (8). This continuity equation is independent of ~ and ensures locally the con-
servation of the particle probability |χ|2 associated to the nuclei in the presence of
a flux.

More important for the present purpose is a more detailed discussion of the
relation for S, Eq. (9). This equation contains one term that depends on ~, a
contribution that vanishes if the classical limit

∂S

∂t
+
∑

I

1

2MI
(∇IS)

2
+

∫

dr Ψ⋆HeΨ = 0 (11)

is taken as ~ → 0; an expansion in terms of ~ would lead to a hierarchy of semi-
classical methods 425,259. The resulting equation is now isomorphic to equations of
motion in the Hamilton–Jacobi formulation 244,540

∂S

∂t
+H ({RI}, {∇IS}) = 0 (12)

of classical mechanics with the classical Hamilton function

H({RI}, {PI}) = T ({PI}) + V ({RI}) (13)

defined in terms of (generalized) coordinates {RI} and their conjugate momenta
{PI}. With the help of the connecting transformation

PI ≡ ∇IS (14)
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the Newtonian equation of motion ṖI = −∇IV ({RI}) corresponding to Eq. (11)

dPI

dt
= −∇I

∫

dr Ψ⋆HeΨ or

MIR̈I(t) = −∇I
∫

dr Ψ⋆HeΨ (15)

= −∇IV E
e ({RI(t)}) (16)

can be read off. Thus, the nuclei move according to classical mechanics in an
effective potential V E

e due to the electrons. This potential is a function of only the
nuclear positions at time t as a result of averaging He over the electronic degrees
of freedom, i.e. computing its quantum expectation value 〈Ψ|He|Ψ〉, while keeping
the nuclear positions fixed at their instantaneous values {RI(t)}.

However, the nuclear wavefunction still occurs in the TDSCF equation for the
electronic degrees of freedom and has to be replaced by the positions of the nuclei for
consistency. In this case the classical reduction can be achieved simply by replacing
the nuclear density |χ({RI}; t)|2 in Eq. (6) in the limit ~→ 0 by a product of delta
functions

∏

I δ(RI −RI(t)) centered at the instantaneous positions {RI(t)} of the
classical nuclei as given by Eq. (15). This yields e.g. for the position operator

∫

dR χ⋆({RI}; t) RI χ({RI}; t) ~→0−→ RI(t) (17)

the required expectation value. This classical limit leads to a time–dependent wave
equation for the electrons

i~
∂Ψ

∂t
= −

∑

i

~

2

2me
∇2
iΨ + Vn−e({ri}, {RI(t)})Ψ

= He({ri}, {RI(t)}) Ψ({ri}, {RI}; t) (18)

which evolve self–consistently as the classical nuclei are propagated via Eq. (15).
Note that now He and thus Ψ depend parametrically on the classical nuclear posi-
tions {RI(t)} at time t through Vn−e({ri}, {RI(t)}). This means that feedback
between the classical and quantum degrees of freedom is incorporated in both
directions (at variance with the “classical path” or Mott non–SCF approach to
dynamics 650,651).

The approach relying on solving Eq. (15) together with Eq. (18) is sometimes
called “Ehrenfest molecular dynamics” in honor of Ehrenfest who was the first to
address the question a of how Newtonian classical dynamics can be derived from
Schrödinger’s wave equation 174. In the present case this leads to a hybrid or
mixed approach because only the nuclei are forced to behave like classical particles,
whereas the electrons are still treated as quantum objects.

Although the TDSCF approach underlying Ehrenfest molecular dynamics
clearly is a mean–field theory, transitions between electronic states are included

aThe opening statement of Ehrenfest’s famous 1927 paper 174 reads:
“Es ist wünschenswert, die folgende Frage möglichst elementar beantworten zu können: Welcher

Rückblick ergibt sich vom Standpunkt der Quantenmechanik auf die Newtonschen Grundgleichun-

gen der klassischen Mechanik?”
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in this scheme. This can be made evident by expanding the electronic wavefunc-
tion Ψ (as opposed to the total wavefunction Φ according to Eq. (5)) in terms of
many electronic states or determinants Ψk

Ψ({ri}, {RI}; t) =

∞∑

k=0

ck(t)Ψk({ri}; {RI}) (19)

with complex coefficients {ck(t)}. In this case, the coefficients {|ck(t)|2} (with
∑

k |ck(t)|2 ≡ 1) describe explicitly the time evolution of the populations (occupa-
tions) of the different states {k} whereas interferences are included via the {c⋆kcl 6=k}
contributions. One possible choice for the basis functions {Ψk} is the adiabatic basis
obtained from solving the time–independent electronic Schrödinger equation

He({ri}; {RI})Ψk = Ek({RI})Ψk({ri}; {RI}) , (20)

where {RI} are the instantaneous nuclear positions at time t according to Eq. (15).
The actual equations of motion in terms of the expansion coefficients {ck} are
presented in Sect. 2.2.

At this stage a further simplification can be invoked by restricting the total
electronic wave function Ψ to be the ground state wave function Ψ0 of He at each
instant of time according to Eq. (20) and |c0(t)|2 ≡ 1 in Eq. (19). This should be a
good approximation if the energy difference between Ψ0 and the first excited state
Ψ1 is everywhere large compared to the thermal energy kBT , roughly speaking. In
this limit the nuclei move according to Eq. (15) on a single potential energy surface

V E
e =

∫

dr Ψ⋆
0HeΨ0 ≡ E0({RI}) (21)

that can be computed by solving the time–independent electronic Schrödinger equa-
tion Eq. (20)

HeΨ0 = E0Ψ0 , (22)

for the ground state only. This leads to the identification V E
e ≡ E0 via Eq. (21),

i.e. in this limit the Ehrenfest potential is identical to the ground–state Born–
Oppenheimer potential.

As a consequence of this observation, it is conceivable to decouple the task of
generating the nuclear dynamics from the task of computing the potential energy
surface. In a first step E0 is computed for many nuclear configurations by solving
Eq. (22). In a second step, these data points are fitted to an analytical functional
form to yield a global potential energy surface 539, from which the gradients can be
obtained analytically. In a third step, the Newtonian equation of motion Eq. (16)
is solved on this surface for many different initial conditions, producing a “swarm”
of classical trajectories. This is, in a nutshell, the basis of classical trajectory cal-
culations on global potential energy surfaces 649,541.

As already alluded to in the general introduction, such approaches suffer severely
from the “dimensionality bottleneck” as the number of active nuclear degrees of
freedom increases. One traditional way out of this dilemma is to approximate the
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global potential energy surface

V E
e ≈ V approx

e ({RI}) =

N∑

I=1

v1(RI) +

N∑

I<J

v2(RI ,RJ)

+

N∑

I<J<K

v3(RI ,RJ ,RK) + · · · (23)

in terms of a truncated expansion of many–body contributions 253,12,270. At this
stage, the electronic degrees of freedom are replaced by interaction potentials {vn}
and are not featured as explicit degrees of freedom in the equations of motion. Thus,
the mixed quantum / classical problem is reduced to purely classical mechanics,
once the {vn} are determined. Classical molecular dynamics

MIR̈I(t) = −∇IV approx
e ({RI(t)}) (24)

relies crucially on this idea, where typically only two–body v2 or three–body v3
interactions are taken into account 12,270, although more sophisticated models to
include non–additive interactions such as polarization exist. This amounts to a
dramatic simplification and removes the dimensionality bottleneck as the global
potential surface is constructed from a manageable sum of additive few–body con-
tributions — at the price of introducing a drastic approximation and of basically
excluding chemical transformations from the realm of simulations.

As a result of this derivation, the essential assumptions underlying classical
molecular dynamics become transparent: the electrons follow adiabatically the clas-
sical nuclear motion and can be integrated out so that the nuclei evolve on a single
Born–Oppenheimer potential energy surface (typically but not necessarily given by
the electronic ground state), which is in general approximated in terms of few–body
interactions.

Actually, classical molecular dynamics for many–body systems is only made
possible by somehow decomposing the global potential energy. In order to illustrate
this point consider the simulation of N = 500 Argon atoms in the liquid phase 175

where the interactions can faithfully be described by additive two–body terms,
i.e. V approx

e ({RI}) ≈
∑N

I<J v2(|RI − RJ |). Thus, the determination of the pair
potential v2 from ab initio electronic structure calculations amounts to computing
and fitting a one–dimensional function. The corresponding task to determine a
global potential energy surface amounts to doing that in about 101500 dimensions,
which is simply impossible (and on top of that not necessary for Nobel gases!).

2.2 Ehrenfest Molecular Dynamics

A way out of the dimensionality bottleneck other than to approximate the global
potential energy surface Eq. (23) or to reduce the number of active degrees of free-
dom is to take seriously the classical nuclei approximation to the TDSCF equations,
Eq. (15) and (18). This amounts to computing the Ehrenfest force by actually solv-
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ing numerically

MIR̈I(t) = −∇I
∫

dr Ψ⋆HeΨ

= −∇I 〈Ψ |He|Ψ〉 (25)

= −∇I 〈He〉
= −∇IV E

e

i~
∂Ψ

∂t
=

[

−
∑

i

~

2

2me
∇2
i + Vn−e({ri}, {RI(t)})

]

Ψ

= HeΨ (26)

the coupled set of equations simultaneously. Thereby, the a priori construction
of any type of potential energy surface is avoided from the outset by solving the
time–dependent electronic Schrödinger equation “on–the–fly”. This allows one to
compute the force from ∇I〈He〉 for each configuration {RI(t)} generated by molec-
ular dynamics; see Sect. 2.5 for the issue of using the so–called “Hellmann–Feynman
forces” instead.

The corresponding equations of motion in terms of the adiabatic basis Eq. (20)
and the time–dependent expansion coefficients Eq. (19) read 650,651

MIR̈I(t) = −
∑

k

|ck(t)|2∇IEk −
∑

k,l

c⋆kcl (Ek − El) dklI (27)

i~ċk(t) = ck(t)Ek − i~
∑

I,l

cl(t)ṘId
kl
I , (28)

where the coupling terms are given by

dklI ({RI(t)}) =

∫

dr Ψ⋆
k∇IΨl (29)

with the property dkkI ≡ 0. The Ehrenfest approach is thus seen to include rigor-
ously non–adiabatic transitions between different electronic states Ψk and Ψl within
the framework of classical nuclear motion and the mean–field (TDSCF) approxi-
mation to the electronic structure, see e.g. Refs. 650,651 for reviews and for instance
Ref. 532 for an implementation in terms of time–dependent density functional the-
ory.

The restriction to one electronic state in the expansion Eq. (19), which is in
most cases the ground state Ψ0, leads to

MIR̈I(t) = −∇I 〈Ψ0 |He|Ψ0〉 (30)

i~
∂Ψ0

∂t
= HeΨ0 (31)

as a special case of Eqs. (25)–(26); note that He is time–dependent via the nuclear
coordinates {RI(t)}. A point worth mentioning here is that the propagation of the
wavefunction is unitary, i.e. the wavefunction preserves its norm and the set of
orbitals used to build up the wavefunction will stay orthonormal, see Sect. 2.6.
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Ehrenfest molecular dynamics is certainly the oldest approach to “on–the–fly”
molecular dynamics and is typically used for collision– and scattering–type prob-
lems 154,649,426,532. However, it was never in widespread use for systems with many
active degrees of freedom typical for condensed matter problems for reasons that
will be outlined in Sec. 2.6 (although a few exceptions exist 553,34,203,617 but here
the number of explicitly treated electrons is fairly limited with the exception of
Ref. 617).

2.3 Born–Oppenheimer Molecular Dynamics

An alternative approach to include the electronic structure in molecular dynamics
simulations consists in straightforwardly solving the static electronic structure prob-
lem in each molecular dynamics step given the set of fixed nuclear positions at that
instance of time. Thus, the electronic structure part is reduced to solving a time–
independent quantum problem, e.g. by solving the time–independent Schrödinger
equation, concurrently to propagating the nuclei via classical molecular dynamics.
Thus, the time–dependence of the electronic structure is a consequence of nuclear
motion, and not intrinsic as in Ehrenfest molecular dynamics. The resulting Born–
Oppenheimer molecular dynamics method is defined by

MIR̈I(t) = −∇I min
Ψ0

{〈Ψ0 |He|Ψ0〉} (32)

E0Ψ0 = HeΨ0 (33)

for the electronic ground state. A deep difference with respect to Ehrenfest dy-
namics concerning the nuclear equation of motion is that the minimum of 〈He〉
has to be reached in each Born–Oppenheimer molecular dynamics step according
to Eq. (32). In Ehrenfest dynamics, on the other hand, a wavefunction that min-
imized 〈He〉 initially will also stay in its respective minimum as the nuclei move
according to Eq. (30)!

A natural and straightforward extension 281 of ground–state Born–Oppenheimer
dynamics is to apply the same scheme to any excited electronic state Ψk without
considering any interferences. In particular, this means that also the “diagonal
correction terms” 340

Dkk
I ({RI(t)}) = −

∫

dr Ψ⋆
k∇2

IΨk (34)

are always neglected; the inclusion of such terms is discussed for instance in
Refs. 650,651. These terms renormalize the Born–Oppenheimer or “clamped nu-
clei” potential energy surface Ek of a given state Ψk (which might also be the
ground state Ψ0) and lead to the so–called “adiabatic potential energy surface”
of that state 340. Whence, Born–Oppenheimer molecular dynamics should not be
called “adiabatic molecular dynamics”, as is sometime done.

It is useful for the sake of later reference to formulate the Born–Oppenheimer
equations of motion for the special case of effective one–particle Hamiltonians. This
might be the Hartree–Fock approximation defined to be the variational minimum
of the energy expectation value 〈Ψ0 |He|Ψ0〉 given a single Slater determinant Ψ0 =
det{ψi} subject to the constraint that the one–particle orbitals ψi are orthonormal
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〈ψi |ψj 〉 = δij . The corresponding constraint minimization of the total energy with
respect to the orbitals

min
{ψi}
{〈Ψ0 |He|Ψ0〉}

∣
∣
∣
∣
{〈ψi|ψj 〉=δij}

(35)

can be cast into Lagrange’s formalism

L = −〈Ψ0 |He|Ψ0〉+
∑

i,j

Λij (〈ψi |ψj 〉 − δij) (36)

where Λij are the associated Lagrangian multipliers. Unconstrained variation of
this Lagrangian with respect to the orbitals

δL
δψ⋆i

!
= 0 (37)

leads to the well–known Hartree–Fock equations

HHF
e ψi =

∑

j

Λijψj (38)

as derived in standard text books 604,418; the diagonal canonical formHHF
e ψi = ǫiψi

is obtained after a unitary transformation and HHF
e denotes the effective one–

particle Hamiltonian, see Sect. 2.7 for more details. The equations of motion
corresponding to Eqs. (32)–(33) read

MIR̈I(t) = −∇I min
{ψi}

{〈
Ψ0

∣
∣HHF

e

∣
∣Ψ0

〉}
(39)

0 = −HHF
e ψi +

∑

j

Λijψj (40)

for the Hartree–Fock case. A similar set of equations is obtained if Hohenberg–
Kohn–Sham density functional theory 458,168 is used, where HHF

e has to be replaced
by the Kohn–Sham effective one–particle Hamiltonian HKS

e , see Sect. 2.7 for more
details. Instead of diagonalizing the one–particle Hamiltonian an alternative but
equivalent approach consists in directly performing the constraint minimization
according to Eq. (35) via nonlinear optimization techniques.

Early applications of Born–Oppenheimer molecular dynamics were performed
in the framework of a semiempirical approximation to the electronic structure prob-
lem 669,671. But only a few years later an ab initio approach was implemented within
the Hartree–Fock approximation 365. Born–Oppenheimer dynamics started to be-
come popular in the early nineties with the availability of more efficient electronic
structure codes in conjunction with sufficient computer power to solve “interesting
problems”, see for instance the compilation of such studies in Table 1 in a recent
overview article 82.

Undoubtedly, the breakthrough of Hohenberg–Kohn–Sham density functional
theory in the realm of chemistry – which took place around the same time – also
helped a lot by greatly improving the “price / performance ratio” of the electronic
structure part, see e.g. Refs. 694,590. A third and possibly the crucial reason that
boosted the field of ab initio molecular dynamics was the pioneering introduction of
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the Car–Parrinello approach 108, see also Fig. 1. This technique opened novel av-
enues to treat large–scale problems via ab initio molecular dynamics and catalyzed
the entire field by making “interesting calculations” possible, see also the closing
section on applications.

2.4 Car–Parrinello Molecular Dynamics

2.4.1 Motivation

A non–obvious approach to cut down the computational expenses of molecular dy-
namics which includes the electrons in a single state was proposed by Car and
Parrinello in 1985 108. In retrospect it can be considered to combine the advan-
tages of both Ehrenfest and Born–Oppenheimer molecular dynamics. In Ehrenfest
dynamics the time scale and thus the time step to integrate Eqs. (30) and (31)
simultaneously is dictated by the intrinsic dynamics of the electrons. Since elec-
tronic motion is much faster than nuclear motion, the largest possible time step
is that which allows to integrate the electronic equations of motion. Contrary
to that, there is no electron dynamics whatsoever involved in solving the Born–
Oppenheimer Eqs. (32)–(33), i.e. they can be integrated on the time scale given
by nuclear motion. However, this means that the electronic structure problem
has to be solved self–consistently at each molecular dynamics step, whereas this is
avoided in Ehrenfest dynamics due to the possibility to propagate the wavefunc-
tion by applying the Hamiltonian to an initial wavefunction (obtained e.g. by one
self–consistent diagonalization).

From an algorithmic point of view the main task achieved in ground–state
Ehrenfest dynamics is simply to keep the wavefunction automatically minimized
as the nuclei are propagated. This, however, might be achieved – in principle – by
another sort of deterministic dynamics than first–order Schrödinger dynamics. In
summary, the “Best of all Worlds Method” should (i) integrate the equations of
motion on the (long) time scale set by the nuclear motion but nevertheless (ii) take
intrinsically advantage of the smooth time–evolution of the dynamically evolving
electronic subsystem as much as possible. The second point allows to circumvent
explicit diagonalization or minimization to solve the electronic structure problem
for the next molecular dynamics step. Car–Parrinello molecular dynamics is an ef-
ficient method to satisfy requirement (ii) in a numerically stable fashion and makes
an acceptable compromise concerning the length of the time step (i).

2.4.2 Car–Parrinello Lagrangian and Equations of Motion

The basic idea of the Car–Parrinello approach can be viewed to exploit the
quantum–mechanical adiabatic time–scale separation of fast electronic and slow
nuclear motion by transforming that into classical–mechanical adiabatic energy–
scale separation in the framework of dynamical systems theory. In order to achieve
this goal the two–component quantum / classical problem is mapped onto a two–
component purely classical problem with two separate energy scales at the expense
of loosing the explicit time–dependence of the quantum subsystem dynamics. Fur-
thermore, the central quantity, the energy of the electronic subsystem 〈Ψ0|He|Ψ0〉
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evaluated with some wavefunction Ψ0, is certainly a function of the nuclear posi-
tions {RI}. But at the same time it can be considered to be a functional of the
wavefunction Ψ0 and thus of a set of one–particle orbitals {ψi} (or in general of
other functions such as two–particle geminals) used to build up this wavefunction
(being for instance a Slater determinant Ψ0 = det{ψi} or a combination thereof).
Now, in classical mechanics the force on the nuclei is obtained from the deriva-
tive of a Lagrangian with respect to the nuclear positions. This suggests that a
functional derivative with respect to the orbitals, which are interpreted as classical
fields, might yield the force on the orbitals, given a suitable Lagrangian. In addi-
tion, possible constraints within the set of orbitals have to be imposed, such as e.g.
orthonormality (or generalized orthonormality conditions that include an overlap
matrix).

Car and Parrinello postulated the following class of Lagrangians 108

LCP =
∑

I

1

2
MIṘ

2
I +

∑

i

1

2
µi

〈

ψ̇i

∣
∣
∣ψ̇i

〉

︸ ︷︷ ︸

kinetic energy

− 〈Ψ0|He|Ψ0〉
︸ ︷︷ ︸

potential energy

+ constraints
︸ ︷︷ ︸

orthonormality

(41)

to serve this purpose. The corresponding Newtonian equations of motion are ob-
tained from the associated Euler–Lagrange equations

d

dt

∂L
∂ṘI

=
∂L
∂RI

(42)

d

dt

δL
δψ̇⋆i

=
δL
δψ⋆i

(43)

like in classical mechanics, but here for both the nuclear positions and the orbitals;
note ψ⋆i = 〈ψi| and that the constraints are holonomic 244. Following this route of
ideas, generic Car–Parrinello equations of motion are found to be of the form

MIR̈I(t) = − ∂

∂RI
〈Ψ0|He|Ψ0〉+

∂

∂RI
{constraints} (44)

µiψ̈i(t) = − δ

δψ⋆i
〈Ψ0|He|Ψ0〉+

δ

δψ⋆i
{constraints} (45)

where µi (= µ) are the “fictitious masses” or inertia parameters assigned to the
orbital degrees of freedom; the units of the mass parameter µ are energy times a
squared time for reasons of dimensionality. Note that the constraints within the
total wavefunction lead to “constraint forces” in the equations of motion. Note also
that these constraints

constraints = constraints ({ψi}, {RI}) (46)

might be a function of both the set of orbitals {ψi} and the nuclear positions {RI}.
These dependencies have to be taken into account properly in deriving the Car–
Parrinello equations following from Eq. (41) using Eqs. (42)–(43), see Sect. 2.5 for
a general discussion and see e.g. Ref. 351 for a case with an additional dependence
of the wavefunction constraint on nuclear positions.
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According to the Car–Parrinello equations of motion, the nuclei evolve in time
at a certain (instantaneous) physical temperature ∝ ∑

IMIṘ
2
I , whereas a “fic-

titious temperature” ∝ ∑

i µi〈ψ̇i|ψ̇i〉 is associated to the electronic degrees of
freedom. In this terminology, “low electronic temperature” or “cold electrons”
means that the electronic subsystem is close to its instantaneous minimum energy
min{ψi}〈Ψ0|He|Ψ0〉, i.e. close to the exact Born–Oppenheimer surface. Thus, a
ground–state wavefunction optimized for the initial configuration of the nuclei will
stay close to its ground state also during time evolution if it is kept at a sufficiently
low temperature.

The remaining task is to separate in practice nuclear and electronic motion such
that the fast electronic subsystem stays cold also for long times but still follows
the slow nuclear motion adiabatically (or instantaneously). Simultaneously, the
nuclei are nevertheless kept at a much higher temperature. This can be achieved
in nonlinear classical dynamics via decoupling of the two subsystems and (quasi–)
adiabatic time evolution. This is possible if the power spectra stemming from
both dynamics do not have substantial overlap in the frequency domain so that
energy transfer from the “hot nuclei” to the “cold electrons” becomes practically
impossible on the relevant time scales. This amounts in other words to imposing and
maintaining a metastability condition in a complex dynamical system for sufficiently
long times. How and to which extend this is possible in practice was investigated in
detail in an important investigation based on well–controlled model systems 467,468

(see also Sects. 3.2 and 3.3 in Ref. 513), with more mathematical rigor in Ref. 86,
and in terms of a generalization to a second level of adiabaticity in Ref. 411.

2.4.3 Why Does the Car–Parrinello Method Work ?

In order to shed light on the title question, the dynamics generated by the Car–
Parrinello Lagrangian Eq. (41) is analyzed 467 in more detail invoking a “classical
dynamics perspective” of a simple model system (eight silicon atoms forming a
periodic diamond lattice, local density approximation to density functional theory,
normconserving pseudopotentials for core electrons, plane wave basis for valence
orbitals, 0.3 fs time step with µ = 300 a.u., in total 20 000 time steps or 6.3 ps,
for full details see Ref. 467); a concise presentation of similar ideas can be found
in Ref. 110. For this system the vibrational density of states or power spectrum
of the electronic degrees of freedom, i.e. the Fourier transform of the statistically
averaged velocity autocorrelation function of the classical fields

f(ω) =

∫ ∞

0

dt cos(ωt)
∑

i

〈

ψ̇i; t
∣
∣
∣ψ̇i; 0

〉

(47)

is compared to the highest–frequency phonon mode ωmax
n of the nuclear subsystem

in Fig. 2. From this figure it is evident that for the chosen parameters the nuclear
and electronic subsystems are dynamically separated: their power spectra do not
overlap so that energy transfer from the hot to the cold subsystem is expected to
be prohibitively slow, see Sect. 3.3 in Ref. 513 for a similar argument.

This is indeed the case as can be verified in Fig. 3 where the conserved energy
Econs, physical total energy Ephys, electronic energy Ve, and fictitious kinetic energy
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Figure 2. Vibrational density of states Eq. (47) (continuous spectrum in upper part) and harmonic
approximation thereof Eq. (52) (stick spectrum in lower part) of the electronic degrees of freedom
compared to the highest–frequency phonon mode ωmax

n (triangle) for a model system; for further
details see text. Adapted from Ref. 467.

of the electrons Te

Econs =
∑

i

1

2
µi

〈

ψ̇i

∣
∣
∣ψ̇i

〉

+
∑

I

1

2
MIṘ

2
I + 〈Ψ0|He|Ψ0〉 (48)

Ephys =
∑

I

1

2
MIṘ

2
I + 〈Ψ0|He|Ψ0〉 = Econs − Te (49)

Ve = 〈Ψ0|He|Ψ0〉 (50)

Te =
∑

i

1

2
µi

〈

ψ̇i

∣
∣
∣ψ̇i

〉

(51)

are shown for the same system as a function of time. First of all, there should be a
conserved energy quantity according to classical dynamics since the constraints are
holonomic 244. Indeed “the Hamiltonian” or conserved energy Econs is a constant of
motion (with relative variations smaller than 10−6 and with no drift), which serves
as an extremely sensitive check of the molecular dynamics algorithm. Contrary
to that the electronic energy Ve displays a simple oscillation pattern due to the
simplicity of the phonon modes.

Most importantly, the fictitious kinetic energy of the electrons Te is found to
perform bound oscillations around a constant, i.e. the electrons “do not heat up”
systematically in the presence of the hot nuclei; note that Te is a measure for devi-
ations from the exact Born–Oppenheimer surface. Closer inspection shows actually
two time scales of oscillations: the one visible in Fig. 3 stems from the drag exerted
by the moving nuclei on the electrons and is the mirror image of the Ve fluctuations.
Superimposed on top of that (not shown, but see Fig. 4(b)) are small–amplitude
high frequency oscillations intrinsic to the fictitious electron dynamics with a period
of only a fraction of the visible mode. These oscillations are actually instrumental
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Figure 3. Various energies Eqs. (48)–(51) for a model system propagated via Car–Parrinello molec-
ular dynamics for at short (up to 300 fs), intermediate, and long times (up to 6.3 ps); for further
details see text. Adapted from Ref. 467.

for the stability of the Car–Parrinello dynamics, vide infra. But already the visible
variations are three orders of magnitude smaller than the physically meaningful os-
cillations of Ve. As a result, Ephys defined as Econs − Te or equivalently as the sum
of the nuclear kinetic energy and the electronic total energy (which serves as the
potential energy for the nuclei) is essentially constant on the relevant energy and
time scales. Thus, it behaves approximately like the strictly conserved total energy
in classical molecular dynamics (with only nuclei as dynamical degrees of freedom)
or in Born–Oppenheimer molecular dynamics (with fully optimized electronic de-
grees of freedom) and is therefore often denoted as the “physical total energy”.
This implies that the resulting physically significant dynamics of the nuclei yields
an excellent approximation to microcanonical dynamics (and assuming ergodicity
to the microcanonical ensemble). Note that a different explanation was advocated
in Ref. 470 (see also Ref. 472, in particular Sect. VIII.B and C), which was however
revised in Ref. 110. A discussion similar in spirit to the one outlined here 467 is
provided in Ref. 513, see in particular Sect. 3.2 and 3.3.

Given the adiabatic separation and the stability of the propagation, the central
question remains if the forces acting on the nuclei are actually the “correct” ones
in Car–Parrinello molecular dynamics. As a reference serve the forces obtained
from full self–consistent minimizations of the electronic energy min{ψi}〈Ψ0|He|Ψ0〉
at each time step, i.e. Born–Oppenheimer molecular dynamics with extremely well
converged wavefunctions. This is indeed the case as demonstrated in Fig. 4(a):
the physically meaningful dynamics of the x–component of the force acting on one
silicon atom in the model system obtained from stable Car–Parrinello fictitious
dynamics propagation of the electrons and from iterative minimizations of the elec-
tronic energy are extremely close.

Better resolution of one oscillation period in (b) reveals that the gross devia-
tions are also oscillatory but that they are four orders of magnitudes smaller than
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Figure 4. (a) Comparison of the x–component of the force acting on one atom of a model system
obtained from Car–Parrinello (solid line) and well–converged Born–Oppenheimer (dots) molecular
dynamics. (b) Enlarged view of the difference between Car–Parrinello and Born–Oppenheimer
forces; for further details see text. Adapted from Ref. 467.

the physical variations of the force resolved in Fig. 4(a). These correspond to the
“large–amplitude” oscillations of Te visible in Fig. 3 due to the drag of the nuclei
exerted on the quasi–adiabatically following electrons having a finite dynamical
mass µ. Note that the inertia of the electrons also dampens artificially the nuclear
motion (typically on a few–percent scale, see Sect. V.C.2 in Ref. 75 for an anal-
ysis and a renormalization correction of MI) but decreases as the fictitious mass
approaches the adiabatic limit µ → 0. Superimposed on the gross variation in (b)
are again high–frequency bound oscillatory small–amplitude fluctuations like for Te.
They lead on physically relevant time scales (i.e. those visible in Fig. 4(a)) to “av-
eraged forces” that are very close to the exact ground–state Born–Oppenheimer
forces. This feature is an important ingredient in the derivation of adiabatic dy-
namics 467,411.

In conclusion, the Car–Parrinello force can be said to deviate at most instants of
time from the exact Born–Oppenheimer force. However, this does not disturb the
physical time evolution due to (i) the smallness and boundedness of this difference
and (ii) the intrinsic averaging effect of small–amplitude high–frequency oscillations
within a few molecular dynamics time steps, i.e. on the sub–femtosecond time scale
which is irrelevant for nuclear dynamics.

2.4.4 How to Control Adiabaticity ?

An important question is under which circumstances the adiabatic separation can
be achieved, and how it can be controlled. A simple harmonic analysis of the
frequency spectrum of the orbital classical fields close to the minimum defining the
ground state yields 467

ωij =

(
2(ǫi − ǫj)

µ

)1/2

, (52)
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where ǫj and ǫi are the eigenvalues of occupied and unoccupied orbitals, respec-
tively; see Eq. (26) in Ref. 467 for the case where both orbitals are occupied ones.
It can be seen from Fig. 2 that the harmonic approximation works faithfully as
compared to the exact spectrum; see Ref. 471 and Sect. IV.A in Ref. 472 for a more
general analysis of the associated equations of motion. Since this is in particu-
lar true for the lowest frequency ωmin

e , the handy analytic estimate for the lowest
possible electronic frequency

ωmin
e ∝

(
Egap

µ

)1/2

, (53)

shows that this frequency increases like the square root of the electronic energy
difference Egap between the lowest unoccupied and the highest occupied orbital.
On the other hand it increases similarly for a decreasing fictitious mass parameter
µ.

In order to guarantee the adiabatic separation, the frequency difference ωmin
e −

ωmax
n should be large, see Sect. 3.3 in Ref. 513 for a similar argument. But both

the highest phonon frequency ωmax
n and the energy gap Egap are quantities that a

dictated by the physics of the system. Whence, the only parameter in our hands
to control adiabatic separation is the fictitious mass, which is therefore also called
“adiabaticity parameter”. However, decreasing µ not only shifts the electronic
spectrum upwards on the frequency scale, but also stretches the entire frequency
spectrum according to Eq. (52). This leads to an increase of the maximum frequency
according to

ωmax
e ∝

(
Ecut

µ

)1/2

, (54)

where Ecut is the largest kinetic energy in an expansion of the wavefunction in
terms of a plane wave basis set, see Sect. 3.1.3.

At this place a limitation to decrease µ arbitrarily kicks in due to the maximum
length of the molecular dynamics time step ∆tmax that can be used. The time step
is inversely proportional to the highest frequency in the system, which is ωmax

e and
thus the relation

∆tmax ∝
(

µ

Ecut

)1/2

(55)

governs the largest time step that is possible. As a consequence, Car–Parrinello
simulators have to find their way between Scylla and Charybdis and have to make
a compromise on the control parameter µ; typical values for large–gap systems are
µ = 500–1500 a.u. together with a time step of about 5–10 a.u. (0.12–0.24 fs).
Recently, an algorithm was devised that optimizes µ during a particular simulation
given a fixed accuracy criterion 87. Note that a poor man’s way to keep the time
step large and still increase µ in order to satisfy adiabaticity is to choose heavier
nuclear masses. That depresses the largest phonon or vibrational frequency ωmax

n

of the nuclei (at the cost of renormalizing all dynamical quantities in the sense of
classical isotope effects).
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Up to this point the entire discussion of the stability and adiabaticity issues
was based on model systems, approximate and mostly qualitative in nature. But
recently it was actually proven 86 that the deviation or the absolute error ∆µ of the
Car–Parrinello trajectory relative to the trajectory obtained on the exact Born–
Oppenheimer potential energy surface is controlled by µ:
Theorem 1 iv.): There are constants C > 0 and µ⋆ > 0 such that

∆µ =
∣
∣Rµ(t)−R0(t)

∣
∣+
∣
∣|ψµ; t 〉 −

∣
∣ψ0; t

〉∣
∣ ≤ Cµ1/2 , 0 ≤ t ≤ T (56)

and the fictitious kinetic energy satisfies

Te =
1

2
µ
〈

ψ̇µ; t
∣
∣
∣ψ̇µ; t

〉

≤ Cµ , 0 ≤ t ≤ T (57)

for all values of the parameter µ satisfying 0 < µ ≤ µ⋆, where up to time T > 0
there exists a unique nuclear trajectory on the exact Born–Oppenheimer surface
with ωmin

e > 0 for 0 ≤ t ≤ T , i.e. there is “always” a finite electronic excitation
gap. Here, the superscript µ or 0 indicates that the trajectory was obtained via
Car–Parrinello molecular dynamics using a finite mass µ or via dynamics on the
exact Born–Oppenheimer surface, respectively. Note that not only the nuclear
trajectory is shown to be close to the correct one, but also the wavefunction is
proven to stay close to the fully converged one up to time T . Furthermore, it
was also investigated what happens if the initial wavefunction at t = 0 is not the
minimum of the electronic energy 〈He〉 but trapped in an excited state. In this case
it is found that the propagated wavefunction will keep on oscillating at t > 0 also
for µ→ 0 and not even time averages converge to any of the eigenstates. Note that
this does not preclude Car–Parrinello molecular dynamics in excited states, which is
possible given a properly “minimizable” expression for the electronic energy, see e.g.
Refs. 281,214. However, this finding might have crucial implications for electronic
level–crossing situations.

What happens if the electronic gap is very small or even vanishes Egap → 0
as is the case for metallic systems? In this limit, all the above–given arguments
break down due to the occurrence of zero–frequency electronic modes in the power
spectrum according to Eq. (53), which necessarily overlap with the phonon spec-
trum. Following an idea of Sprik 583 applied in a classical context it was shown
that the coupling of separate Nosé–Hoover thermostats 12,270,217 to the nuclear and
electronic subsystem can maintain adiabaticity by counterbalancing the energy flow
from ions to electrons so that the electrons stay “cool” 74; see Ref. 204 for a simi-
lar idea to restore adiabaticity. Although this method is demonstrated to work in
practice 464, this ad hoc cure is not entirely satisfactory from both a theoretical and
practical point of view so that the well–controlled Born–Oppenheimer approach is
recommended for strongly metallic systems. An additional advantage for metal-
lic systems is that the latter is also better suited to sample many k–points (see
Sect. 3.1.3), allows easily for fractional occupation numbers 458,168, and can handle
efficiently the so–called charge sloshing problem 472.
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2.4.5 The Quantum Chemistry Viewpoint

In order to understand Car–Parrinello molecular dynamics also from the “quantum
chemistry perspective”, it is useful to formulate it for the special case of the Hartree–
Fock approximation using

LCP =
∑

I

1

2
MIṘ

2
I +

∑

i

1

2
µi

〈

ψ̇i

∣
∣
∣ψ̇i

〉

−
〈
Ψ0|HHF

e |Ψ0

〉
+
∑

i,j

Λij (〈ψi |ψj 〉 − δij) . (58)

The resulting equations of motion

MIR̈I(t) = −∇I
〈
Ψ0

∣
∣HHF

e

∣
∣Ψ0

〉
(59)

µiψ̈i(t) = −HHF
e ψi +

∑

j

Λijψj (60)

are very close to those obtained for Born–Oppenheimer molecular dynamics
Eqs. (39)–(40) except for (i) no need to minimize the electronic total energy ex-
pression and (ii) featuring the additional fictitious kinetic energy term associated
to the orbital degrees of freedom. It is suggestive to argue that both sets of equa-
tions become identical if the term |µiψ̈i(t)| is small at any time t compared to the
physically relevant forces on the right–hand–side of both Eq. (59) and Eq. (60).
This term being zero (or small) means that one is at (or close to) the minimum of
the electronic energy 〈Ψ0|HHF

e |Ψ0〉 since time derivatives of the orbitals {ψi} can
be considered as variations of Ψ0 and thus of the expectation value 〈HHF

e 〉 itself.
In other words, no forces act on the wavefunction if µiψ̈i ≡ 0. In conclusion, the
Car–Parrinello equations are expected to produce the correct dynamics and thus
physical trajectories in the microcanonical ensemble in this idealized limit. But
if |µiψ̈i(t)| is small for all i, this also implies that the associated kinetic energy
Te =

∑

i µi〈ψ̇i|ψ̇i〉/2 is small, which connects these more qualitative arguments
with the previous discussion 467.

At this stage, it is also interesting to compare the structure of the Lagrangian
Eq. (58) and the Euler–Lagrange equation Eq. (43) for Car–Parrinello dynamics to
the analogues equations (36) and (37), respectively, used to derive “Hartree–Fock
statics”. The former reduce to the latter if the dynamical aspect and the associated
time evolution is neglected, that is in the limit that the nuclear and electronic
momenta are absent or constant. Thus, the Car–Parrinello ansatz, namely Eq. (41)
together with Eqs. (42)–(43), can also be viewed as a prescription to derive a new
class of “dynamical ab initio methods” in very general terms.

2.4.6 The Simulated Annealing and Optimization Viewpoints

In the discussion given above, Car–Parrinello molecular dynamics was motivated
by “combining” the positive features of both Ehrenfest and Born–Oppenheimer
molecular dynamics as much as possible. Looked at from another side, the Car–
Parrinello method can also be considered as an ingenious way to perform global
optimizations (minimizations) of nonlinear functions, here 〈Ψ0|He|Ψ0〉, in a high–
dimensional parameter space including complicated constraints. The optimization
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parameters are those used to represent the total wavefunction Ψ0 in terms of simpler
functions, for instance expansion coefficients of the orbitals in terms of Gaussians
or plane waves, see e.g. Refs. 583,375,693,608 for applications of the same idea in
other fields.

Keeping the nuclei frozen for a moment, one could start this optimization pro-
cedure from a “random wavefunction” which certainly does not minimize the elec-
tronic energy. Thus, its fictitious kinetic energy is high, the electronic degrees of
freedom are “hot”. This energy, however, can be extracted from the system by
systematically cooling it to lower and lower temperatures. This can be achieved
in an elegant way by adding a non–conservative damping term to the electronic
Car–Parrinello equation of motion Eq. (45)

µiψ̈i(t) = − δ

δψ⋆i
〈Ψ0|He|Ψ0〉+

δ

δψ⋆i
{constraints} − γeµiψi , (61)

where γe ≥ 0 is a friction constant that governs the rate of energy dissipation 610;
alternatively, dissipation can be enforced in a discrete fashion by reducing the veloc-
ities by multiplying them with a constant factor < 1. Note that this deterministic
and dynamical method is very similar in spirit to simulated annealing 332 invented
in the framework of the stochastic Monte Carlo approach in the canonical ensemble.
If the energy dissipation is done slowly, the wavefunction will find its way down to
the minimum of the energy. At the end, an intricate global optimization has been
performed!

If the nuclei are allowed to move according to Eq. (44) in the presence of an-
other damping term a combined or simultaneous optimization of both electrons
and nuclei can be achieved, which amounts to a “global geometry optimization”.
This perspective is stressed in more detail in the review Ref. 223 and an imple-
mentation of such ideas within the CADPAC quantum chemistry code is described in
Ref. 692. This operational mode of Car–Parrinello molecular dynamics is related to
other optimization techniques where it is aimed to optimize simultaneously both the
structure of the nuclear skeleton and the electronic structure. This is achieved by
considering the nuclear coordinates and the expansion coefficients of the orbitals as
variation parameters on the same footing 49,290,608. But Car–Parrinello molecular
dynamics is more than that because even if the nuclei continuously move according
to Newtonian dynamics at finite temperature an initially optimized wavefunction
will stay optimal along the nuclear trajectory.

2.4.7 The Extended Lagrangian Viewpoint

There is still another way to look at the Car–Parrinello method, namely in the
light of so–called “extended Lagrangians” or “extended system dynamics” 14, see
e.g. Refs. 136,12,270,585,217 for introductions. The basic idea is to couple additional
degrees of freedom to the Lagrangian of interest, thereby “extending” it by increas-
ing the dimensionality of phase space. These degrees of freedom are treated like
classical particle coordinates, i.e. they are in general characterized by “positions”,
“momenta”, “masses”, “interactions” and a “coupling term” to the particle’s po-
sitions and momenta. In order to distinguish them from the physical degrees of
freedom, they are often called “fictitious degrees of freedom”.
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The corresponding equations of motion follow from the Euler–Lagrange equa-
tions and yield a microcanonical ensemble in the extended phase space where the
Hamiltonian of the extended system is strictly conserved. In other words, the
Hamiltonian of the physical (sub–) system is no more (strictly) conserved, and the
produced ensemble is no more the microcanonical one. Any extended system dy-
namics is constructed such that time–averages taken in that part of phase space that
is associated to the physical degrees of freedom (obtained from a partial trace over
the fictitious degrees of freedom) are physically meaningful. Of course, dynamics
and thermodynamics of the system are affected by adding fictitious degrees of free-
dom, the classic examples being temperature and pressure control by thermostats
and barostats, see Sect. 4.2.

In the case of Car–Parrinello molecular dynamics, the basic Lagrangian for
Newtonian dynamics of the nuclei is actually extended by classical fields {ψi(r)},
i.e. functions instead of coordinates, which represent the quantum wavefunction.
Thus, vector products or absolute values have to be generalized to scalar products
and norms of the fields. In addition, the “positions” of these fields {ψi} actually
have a physical meaning, contrary to their momenta {ψ̇i}.

2.5 What about Hellmann–Feynman Forces ?

An important ingredient in all dynamics methods is the efficient calculation of the
forces acting on the nuclei, see Eqs. (30), (32), and (44). The straightforward
numerical evaluation of the derivative

FI = −∇I 〈Ψ0|He|Ψ0〉 (62)

in terms of a finite–difference approximation of the total electronic energy is both
too costly and too inaccurate for dynamical simulations. What happens if the gra-
dients are evaluated analytically? In addition to the derivative of the Hamiltonian
itself

∇I 〈Ψ0|He|Ψ0〉 = 〈Ψ0|∇IHe|Ψ0〉
+ 〈∇IΨ0|He|Ψ0〉+ 〈Ψ0|He|∇IΨ0〉 (63)

there are in general also contributions from variations of the wavefunction ∼ ∇IΨ0.
In general means here that these contributions vanish exactly

FHFT
I = −〈Ψ0|∇IHe|Ψ0〉 (64)

if the wavefunction is an exact eigenfunction (or stationary state wavefunction) of
the particular Hamiltonian under consideration. This is the content of the often–
cited Hellmann–Feynman Theorem 295,186,368, which is also valid for many varia-
tional wavefunctions (e.g. the Hartree–Fock wavefunction) provided that complete
basis sets are used. If this is not the case, which has to be assumed for numerical
calculations, the additional terms have to be evaluated explicitly.

In order to proceed a Slater determinant Ψ0 = det{ψi} of one–particle orbitals
ψi, which themselves are expanded

ψi =
∑

ν

ciν fν(r; {RI}) (65)
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in terms of a linear combination of basis functions {fν}, is used in conjunction with
an effective one–particle Hamiltonian (such as e.g. in Hartree–Fock or Kohn–Sham
theories). The basis functions might depend explicitly on the nuclear positions (in
the case of basis functions with origin such as atom–centered orbitals), whereas the
expansion coefficients always carry an implicit dependence. This means that from
the outset two sorts of forces are expected

∇Iψi =
∑

ν

(∇Iciν) fν(r; {RI}) +
∑

ν

ciν (∇Ifν(r; {RI})) (66)

in addition to the Hellmann–Feynman force Eq. (64).
Using such a linear expansion Eq. (65), the force contributions stemming from

the nuclear gradients of the wavefunction in Eq. (63) can be disentangled into two
terms. The first one is called “incomplete–basis–set correction” (IBS) in solid state
theory 49,591,180 and corresponds to the “wavefunction force” 494 or “Pulay force” in
quantum chemistry 494,496. It contains the nuclear gradients of the basis functions

FIBS
I = −

∑

iνµ

(〈
∇Ifν

∣
∣HNSC

e − ǫi
∣
∣ fµ
〉

+
〈
fν
∣
∣HNSC

e − ǫi
∣
∣∇fµ

〉)
(67)

and the (in practice non–self–consistent) effective one–particle Hamiltonian 49,591.
The second term leads to the so–called “non–self–consistency correction” (NSC) of
the force 49,591

FNSC
I = −

∫

dr (∇In)
(
V SCF − V NSC

)
(68)

and is governed by the difference between the self–consistent (“exact”) potential or
field V SCF and its non–self–consistent (or approximate) counterpart V NSC associ-
ated to HNSC

e ; n(r) is the charge density. In summary, the total force needed in ab
initio molecular dynamics simulations

FI = FHFT
I + FIBS

I + FNSC
I (69)

comprises in general three qualitatively different terms; see the tutorial article
Ref. 180 for a further discussion of core vs. valence states and the effect of pseudopo-
tentials. Assuming that self–consistency is exactly satisfied (which is never going
to be the case in numerical calculations), the force FNSC

I vanishes and HSCF
e has to

be used to evaluate FIBS
I . The Pulay contribution vanishes in the limit of using a

complete basis set (which is also not possible to achieve in actual calculations).
The most obvious simplification arises if the wavefunction is expanded in terms

of originless basis functions such as plane waves, see Eq. (100). In this case the Pu-
lay force vanishes exactly, which applies of course to all ab initio molecular dynamics
schemes (i.e. Ehrenfest, Born–Oppenheimer, and Car–Parrinello) using that par-
ticular basis set. This statement is true for calculations where the number of plane
waves is fixed. If the number of plane waves changes, such as in (constant pressure)
calculations with varying cell volume / shape where the energy cutoff is strictly
fixed instead, Pulay stress contributions crop up 219,245,660,211,202, see Sect. 4.2. If
basis sets with origin are used instead of plane waves Pulay forces arise always and
have to be included explicitely in force calculations, see e.g. Refs. 75,370,371 for such
methods. Another interesting simplification of the same origin is noted in passing:
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there is no basis set superposition error (BSSE) 88 in plane wave–based electronic
structure calculations.

A non–obvious and more delicate term in the context of ab initio molecular
dynamics is the one stemming from non–self–consistency Eq. (68). This term van-
ishes only if the wavefunction Ψ0 is an eigenfunction of the Hamiltonian within the
subspace spanned by the finite basis set used. This demands less than the Hellmann–
Feynman theorem where Ψ0 has to be an exact eigenfunction of the Hamiltonian
and a complete basis set has to be used in turn. In terms of electronic structure
calculations complete self–consistency (within a given incomplete basis set) has to
be reached in order that FNSC

I vanishes. Thus, in numerical calculations the NSC
term can be made arbitrarily small by optimizing the effective Hamiltonian and by
determining its eigenfunctions to very high accuracy, but it can never be suppressed
completely.

The crucial point is, however, that in Car–Parrinello as well as in Ehrenfest
molecular dynamics it is not the minimized expectation value of the electronic
Hamiltonian, i.e. minΨ0

{〈Ψ0|He|Ψ0〉}, that yields the consistent forces. What is
merely needed is to evaluate the expression 〈Ψ0|He|Ψ0〉 with the Hamiltonian and
the associated wavefunction available at a certain time step, compare Eq. (32) to
Eq. (44) or (30). In other words, it is not required (concerning the present discussion
of the contributions to the force!) that the expectation value of the electronic
Hamiltonian is actually completely minimized for the nuclear configuration at that
time step. Whence, full self–consistency is not required for this purpose in the case
of Car–Parrinello (and Ehrenfest) molecular dynamics. As a consequence, the non–
self–consistency correction to the force FNSC

I Eq. (68) is irrelevant in Car–Parrinello
(and Ehrenfest) simulations.

In Born–Oppenheimer molecular dynamics, on the other hand, the expectation
value of the Hamiltonian has to be minimized for each nuclear configuration before
taking the gradient to obtain the consistent force! In this scheme there is (inde-
pendently from the issue of Pulay forces) always the non–vanishing contribution of
the non–self–consistency force, which is unknown by its very definition (if it were
know, the problem was solved, see Eq. (68)). It is noted in passing that there are
estimation schemes available that correct approximately for this systematic error in
Born–Oppenheimer dynamics and lead to significant time–savings, see e.g. Ref. 344.

Heuristically one could also argue that within Car–Parrinello dynamics the non–
vanishing non–self–consistency force is kept under control or counterbalanced by
the non–vanishing “mass times acceleration term” µiψ̈i(t) ≈ 0, which is small but
not identical to zero and oscillatory. This is sufficient to keep the propagation sta-
ble, whereas µiψ̈i(t) ≡ 0, i.e. an extremely tight minimization minΨ0

{〈Ψ0|He|Ψ0〉},
is required by its very definition in order to make the Born–Oppenheimer approach
stable, compare again Eq. (60) to Eq. (40). Thus, also from this perspective it
becomes clear that the fictitious kinetic energy of the electrons and thus their ficti-
tious temperature is a measure for the departure from the exact Born–Oppenheimer
surface during Car–Parrinello dynamics.

Finally, the present discussion shows that nowhere in these force derivations was
made use of the Hellmann–Feynman theorem as is sometimes stated. Actually, it
is known for a long time that this theorem is quite useless for numerical electronic
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structure calculations, see e.g. Refs. 494,49,496 and references therein. Rather it
turns out that in the case of Car–Parrinello calculations using a plane wave basis
the resulting relation for the force, namely Eq. (64), looks like the one obtained by
simply invoking the Hellmann–Feynman theorem at the outset.

It is interesting to recall that the Hellmann–Feynman theorem as applied to a
non–eigenfunction of a Hamiltonian yields only a first–order perturbative estimate
of the exact force 295,368. The same argument applies to ab initio molecular dy-
namics calculations where possible force corrections according to Eqs. (67) and (68)
are neglected without justification. Furthermore, such simulations can of course not
strictly conserve the total Hamiltonian Econs Eq. (48). Finally, it should be stressed
that possible contributions to the force in the nuclear equation of motion Eq. (44)
due to position–dependent wavefunction constraints have to be evaluated following
the same procedure. This leads to similar “correction terms” to the force, see e.g.
Ref. 351 for such a case.

2.6 Which Method to Choose ?

Presumably the most important question for practical applications is which ab initio
molecular dynamics method is the most efficient in terms of computer time given a
specific problem. An a priori advantage of both the Ehrenfest and Car–Parrinello
schemes over Born–Oppenheimer molecular dynamics is that no diagonalization
of the Hamiltonian (or the equivalent minimization of an energy functional) is
necessary, except at the very first step in order to obtain the initial wavefunc-
tion. The difference is, however, that the Ehrenfest time–evolution according to
the time–dependent Schrödinger equation Eq. (26) conforms to a unitary propaga-
tion 341,366,342

Ψ(t0 + ∆t) = exp [−iHe(t0)∆t/~] Ψ(t0) (70)

Ψ(t0 +m∆t) = exp [−iHe(t0 + (m− 1)∆t) ∆t/~]

× · · ·
× exp [−iHe(t0 + 2∆t) ∆t/~]

× exp [−iHe(t0 + ∆t) ∆t/~]

× exp [−iHe(t0) ∆t/~] Ψ(t0) (71)

Ψ(t0 + tmax)
∆t→0

= T exp

[

− i
~

∫ t0+tmax

t0

dtHe(t)

]

Ψ(t0) (72)

for infinitesimally short times given by the time step ∆t = tmax/m; here T is the
time–ordering operator and He(t) is the Hamiltonian (which is implicitly time–
dependent via the positions {RI(t)}) evaluated at time t using e.g. split operator
techniques 183. Thus, the wavefunction Ψ will conserve its norm and in particular
orbitals used to expand it will stay orthonormal, see e.g. Ref. 617. In Car–Parrinello
molecular dynamics, on the contrary, the orthonormality has to be imposed brute
force by Lagrange multipliers, which amounts to an additional orthogonalization
at each molecular dynamics step. If this is not properly done, the orbitals will
become non–orthogonal and the wavefunction unnormalized, see e.g. Sect. III.C.1
in Ref. 472.
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But this theoretical disadvantage of Car–Parrinello vs. Ehrenfest dynamics is
in reality more than compensated by the possibility to use a much larger time step
in order to propagate the electronic (and thus nuclear) degrees of freedom in the
former scheme. In both approaches, there is the time scale inherent to the nuclear
motion τn and the one stemming from the electronic dynamics τe. The first one
can be estimated by considering the highest phonon or vibrational frequency and
amounts to the order of τn ∼ 10−14 s (or 0.01 ps or 10 fs, assuming a maximum
frequency of about 4000 cm−1). This time scale depends only on the physics of the
problem under consideration and yields an upper limit for the timestep ∆tmax that
can be used in order to integrate the equations of motion, e.g. ∆tmax ≈ τn/10.

The fasted electronic motion in Ehrenfest dynamics can be estimated within a
plane wave expansion by ωE

e ∼ Ecut, where Ecut is the maximum kinetic energy
included in the expansion. A realistic estimate for reasonable basis sets is τE

e ∼
10−16 s, which leads to τE

e ≈ τn/100. The analogues relation for Car–Parrinello
dynamics reads however ωCP

e ∼ (Ecut/µ)1/2 according to the analysis in Sect. 2.4,
see Eq. (54). Thus, in addition to reducing ωCP

e by introducing a finite electron mass
µ, the maximum electronic frequency increases much more slowly in Car–Parrinello
than in Ehrenfest molecular dynamics with increasing basis set size. An estimate
for the same basis set and a typical fictitious mass yields about τCP

e ∼ 10−15 s or
τCP
e ≈ τn/10. According to this simple estimate, the time step can be about one

order of magnitude larger if Car–Parrinello second–order fictitious–time electron
dynamics is used instead of Ehrenfest first–order real–time electron dynamics.

The time scale and thus time step problem inherent to Ehrenfest dynamics
prompted some attempts to releave it. In Ref. 203 the equations of motion of
electrons and nuclei were integrated using two different time steps, the one of the
nuclei being 20–times as large as the electronic one. The powerful technology
of multiple–time step integration theory 636,639 could also be applied in order to
ameliorate the time scale disparity 585. A different approach borrowed from plasma
simulations consists in decreasing the nuclear masses so that their time evolution
is artificially speeded up 617. As a result, the nuclear dynamics is fictitious (in the
presence of real–time electron dynamics!) and has to be rescaled to the proper mass
ratio after the simulation.

In both Ehrenfest and Car–Parrinello schemes the explicitly treated electron
dynamics limits the largest time step that can be used in order to integrate simul-
taneously the coupled equations of motion for nuclei and electrons. This limitation
does of course not exist in Born–Oppenheimer dynamics since there is no explicit
electron dynamics so that the maximum time step is simply given by the one in-
trinsic to nuclear motion, i.e. τBO

e ≈ τn. This is formally an order of magnitude
advantage with respect to Car–Parrinello dynamics.

Do these back–of–the–envelope estimates have anything to do with reality? For-
tunately, several state–of–the–art studies are reported in the literature for physi-
cally similar systems where all three molecular dynamics schemes have been em-
ployed. Ehrenfest simulations 553,203 of a dilute Kx·(KCl)1−x melt were performed
using a time step of 0.012–0.024 fs. In comparison, a time step as large as 0.4 fs
could be used to produce a stable Car–Parrinello simulation of electrons in liq-
uid ammonia 155,156. Since the physics of these systems has a similar nature —
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“unbound electrons” dissolved in liquid condensed matter (localizing as F–centers,
polarons, bipolarons, etc.) — the time step difference of about a factor of ten con-
firms the crude estimate given above. In a Born–Oppenheimer simulation 569 of
again Kx·(KCl)1−x but up to a higher concentration of unbound electrons the time
step used was 0.5 fs.

The time–scale advantage of Born–Oppenheimer vs. Car–Parrinello dynamics
becomes more evident if the nuclear dynamics becomes fairly slow, such as in liquid
sodium 343 or selenium 331 where a time step of 3 fs was used. This establishes
the above–mentioned order of magnitude advantage of Born–Oppenheimer vs. Car–
Parrinello dynamics in advantageous cases. However, it has to be taken into account
that in simulations 331 with such a large time step dynamical information is limited
to about 10 THz, which corresponds to frequencies below roughly 500 cm−1. In
order to resolve vibrations in molecular systems with stiff covalent bonds the time
step has to be decreased to less than a femtosecond (see the estimate given above)
also in Born–Oppenheimer dynamics.

The comparison of the overall performance of Car–Parrinello and Born–
Oppenheimer molecular dynamics in terms of computer time is a delicate issue.
For instance it depends crucially on the choice made concerning the accuracy of
the conservation of the energy Econs as defined in Eq. (48). Thus, this issue is to
some extend subject of “personal taste” as to what is considered to be a “suf-
ficiently accurate” energy conservation. In addition, this comparison might to
different conclusions as a function of system size. In order to nevertheless shed
light on this point, microcanonical simulations of 8 silicon atoms were performed
with various parameters using Car–Parrinello and Born–Oppenheimer molecular
dynamics as implemented in the CPMD package 142. This large–gap system was
initially extremely well equilibrated and the runs were extended to 8 ps (and a
few to 12 ps with no noticeable difference) at a temperature of about 360–370 K
(with ±80 K root–mean–square fluctuations). The wavefunction was expanded up
to Ecut = 10 Ry at the Γ–point of a simple cubic supercell and LDA was used
to describe the interactions. In both cases the velocity Verlet scheme was used to
integrate the equations of motion, see Eqs. (231). It is noted in passing that also
the velocity Verlet algorithm 638 allows for stable integration of the equations of
motion contrary to the statements in Ref. 513 (see Sect. 3.4 and Figs. 4–5).

In Car–Parrinello molecular dynamics two different time steps were used, 5 a.u.
and 10 a.u. (corresponding to about 0.24 fs), in conjunction with a fictitious electron
mass of µ = 400 a.u.; this mass parameter is certainly not optimized and thus
the time step could be increased furthermore. Also the largest time step lead to
perfect adiabaticity (similar to the one documented in Fig. 3), i.e. Ephys Eq. (49)
and Te Eq. (51) did not show a systematic drift relative to the energy scale set
by the variations of Ve Eq. (50). Within Born–Oppenheimer molecular dynamics
the minimization of the energy functional was done using the highly efficient DIIS
(direct inversion in the iterative subspace) scheme using 10 “history vectors”, see
Sect. 3.6. In this case, the time step was either 10 a.u. or 100 a.u. and three
convergence criteria were used; note that the large time step corresponding to
2.4 fs is already at the limit to be used to investigate typical molecular systems
(with frequencies up to 3–4000 cm−1). The convergence criterion is based on the
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Figure 5. Conserved energy Econs defined in Eq. (48) from Car–Parrinello (CP) and Born–
Oppenheimer (BO) molecular dynamics simulations of a model system for various time steps
and convergence criteria using the CPMD package 142; see text for further details and Table 1 for
the corresponding timings. Top: solid line: CP, 5 a.u.; open circles: CP, 10 a.u.; filled squares:
BO, 10 a.u., 10−6. Middle: open circles: CP, 10 a.u.; filled squares: BO, 10 a.u., 10−6; filled
triangles: BO, 100 a.u., 10−6; open diamonds: BO, 100 a.u., 10−5. Bottom: open circles: CP,
10 a.u.; open diamonds: BO, 100 a.u., 10−5; dashed line: BO, 100 a.u., 10−4.

largest element of the wavefunction gradient which was required to be smaller than
10−6, 10−5 or 10−4 a.u.; note that the resulting energy convergence shows roughly
a quadratic dependence on this criterion.

The outcome of this comparison is shown in Fig. 5 in terms of the time evolution
of the conserved energy Econs Eq. (48) on energy scales that cover more than three
orders of magnitude in absolute accuracy. Within the present comparison ultimate
energy stability was obtained using Car–Parrinello molecular dynamics with the
shortest time step of 5 a.u., which conserves the energy of the total system to
about 6×10−8 a.u. per picosecond, see solid line in Fig. 5(top). Increasing the
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Table 1. Timings in cpu seconds and energy conservation in a.u. / ps for Car–Parrinello (CP) and
Born–Oppenheimer (BO) molecular dynamics simulations of a model system for 1 ps of trajectory
on an IBM RS6000 / model 390 (Power2) workstation using the CPMD package 142; see Fig. 5 for
corresponding energy plots.

Method Time step (a.u.) Convergence (a.u.) Conservation (a.u./ps) Time (s)
CP 5 — 6×10−8 3230
CP 7 — 1×10−7 2310
CP 10 — 3×10−7 1610
BO 10 10−6 1×10−6 16590
BO 50 10−6 1×10−6 4130
BO 100 10−6 6×10−6 2250
BO 100 10−5 1×10−5 1660
BO 100 10−4 1×10−3 1060

time step to 10 a.u. leads to an energy conservation of about 3×10−7 a.u./ps and
much larger energy fluctuations, see open circles in Fig. 5(top). The computer time
needed in order to generate one picosecond of Car–Parrinello trajectory increases –
to a good approximation – linearly with the increasing time step, see Table 1. The
most stable Born–Oppenheimer run was performed with a time step of 10 a.u. and a
convergence of 10−6. This leads to an energy conservation of about 1×10−6 a.u./ps,
see filled squares in Fig. 5(top).

As the maximum time step in Born–Oppenheimer dynamics is only related
to the time scale associated to nuclear motion it could be increased from 10 to
100 a.u. while keeping the convergence at the same tight limit of 10−6. This
worsens the energy conservation slightly (to about 6×10−6 a.u./ps), whereas the
energy fluctuations increase dramatically, see filled triangles in Fig. 5(middle) and
note the change of scale compared to Fig. 5(top). The overall gain is an acceleration
of the Born–Oppenheimer simulation by a factor of about seven to eight, see Table 1.
In the Born–Oppenheimer scheme, the computer time needed for a fixed amount of
simulated physical time decreases only sublinearly with increasing time step since
the initial guess for the iterative minimization degrades in quality as the time step is
made larger. Further savings of computer time can be easily achieved by decreasing
the quality of the wavefunction convergence from 10−6 to 10−5 and finally to 10−4,
see Table 1. This is unfortunately tied to a significant decrease of the energy
conservation from 6×10−6 a.u./ps at 10−6 (filled triangles) to about 1×10−3 a.u./ps
at 10−4 (dashed line) using the same 100 a.u. time step, see Fig. 5(bottom) but
note the change of scale compared to Fig. 5(middle).

In conclusion, Born–Oppenheimer molecular dynamics can be made as fast
as (or even faster than) Car–Parrinello molecular dynamics (as measured by the
amount of cpu time spent per picosecond) at the expense of sacrificing accuracy
in terms of energy conservation. In the “classical molecular dynamics community”
there is a general consensus that this conservation law should be taken seriously
being a measure of the numerical quality of the simulation. In the “quantum chem-
istry and total energy communities” this issue is typically of less concern. There, it
is rather the quality of the convergence of the wavefunction or energy (as achieved
in every individual molecular dynamics step) that is believed to be crucial in order
to gauge the quality of a particular simulation.
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Finally, it is worth commenting in this particular section on a paper entitled
“A comparison of Car–Parrinello and Born–Oppenheimer generalized valence bond
molecular dynamics” 229. In this paper one (computationally expensive) term in
the nuclear equations of motion is neglected 648,405. It is well known that using
a basis set with origin, such as Gaussians fG

ν (r; {RI}) centered at the nuclei, see
Eq. (99), produces various Pulay forces, see Sect. 2.5. In particular a linear expan-
sion Eq. (65) or (97) based on such orbitals introduces a position dependence into
the orthogonality constraint

〈ψi|ψj〉 =
∑

νµ

c⋆iνcjµ
〈
fG
ν

∣
∣fG
µ

〉

︸ ︷︷ ︸

Sνµ

= δij (73)

that is hidden in the overlap matrix Sνµ({RI}) which involves the basis functions.
According to Eq. (44) this term produces a constraint force of the type

∑

ij

Λij
∑

νµ

c⋆iνcjµ
∂

∂RI
Sνµ({RI}) (74)

in the correct Car–Parrinello equation of motion for the nuclei similar to the one
contained in the electronic equation of motion Eq. (45). This term has to be
included in order to yield exact Car–Parrinello trajectories and thus energy con-
servation, see e.g. Eq. (37) in Ref. 351 for a similar situation. In the case of Born–
Oppenheimer molecular dynamics, on the contrary, this term is always absent in the
nuclear equation of motion, see Eq. (32). Thus, the particular implementation 229

underlying the comparison between Car–Parrinello and Born–Oppenheimer molec-
ular dynamics is an approximate one from the outset concerning the Car–Parrinello
part; it can be argued that this was justified in the early papers 281,282 where the
basic feasibility of both the Hartree Fock– and generalized valence bond–based Car–
Parrinello molecular dynamics techniques was demonstrated 285. Most importantly,
this approximation implies that the energy Econs Eq. (48) cannot be rigorously con-
served in this particular version of Car–Parrinello molecular dynamics. However,
energy conservation of Econs was used in Ref. 229 to compare the efficiency and accu-
racy of these two approaches to GVB ab initio molecular dynamics (using DIIS for
the Born–Oppenheimer simulations as done in the above–given comparison). Thus,
the final conclusion that for “. . . approaches that utilize non–space–fixed bases to
describe the electronic wave function, Born–Oppenheimer AIMD is the method of
choice, both in terms of accuracy and speed” 229 cannot be drawn from this specific
comparison for the reasons outlined above (independently of the particular basis
set or electronic structure method used).

The toy system investigated here (see Fig. 5 and Table 1), i.e. 8 silicon atoms in
a periodic supercell, is for the purpose of comparing different approaches to ab initio
molecular dynamics quite similar to the system used in Ref. 229, i.e. clusters of 4 or 6
sodium atoms (in addition, qualitatively identical results where reported in Sect. 4
for silicon clusters). Thus, it is admissible to compare the energy conservations
reported in Figs. 1 and 2 of Ref. 229 to the ones depicted here in Fig. 5 noting
that the longest simulations reported in Ref. 229 reached only 1 ps. It should be
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stressed that the energy conservation seen in Fig. 5(top) is routinely achieved in
Car–Parrinello molecular dynamics simulations.

2.7 Electronic Structure Methods

2.7.1 Introduction

Up to this point, the electronic structure method to calculate the ab initio forces
∇I〈Ψ|He|Ψ〉 was not specified in detail. It is immediately clear that ab initio
molecular dynamics is not tied to any particular approach, although very accu-
rate techniques are of course prohibitively expensive. It is also evident that the
strength or weakness of a particular ab initio molecular dynamics scheme is inti-
mately connected to the strength or weakness of the chosen electronic structure
method. Over the years a variety of different approaches such as density func-
tional 108,679,35,472,343,36, Hartree–Fock 365,254,191,379,281,284,316,293, generalized va-
lence bond (GVB) 282,283,228,229,230, complete active space SCF (CASSCF) 566,567,
full configuration interaction (FCI) 372, semiempirical 669,671,91,190,114,666,280 or
other approximate 473,454,551,455,170,171,26 methods were combined with molecular
dynamics, and this list is certainly incomplete.

The focus of the present review clearly is Car–Parrinello molecular dynamics
in conjunction with Hohenberg–Kohn–Sham density functional theory 301,338. In
the following, only those parts of density functional theory are presented that im-
pact directly on ab initio molecular dynamics. For a deeper presentation and in
particular for a discussion of the assumptions and limitations of this approach
(both conceptually and in practice) the reader is referred to the existing excellent
literature 591,320,458,168. For simplicity, the formulae are presented for the spin–
unpolarized or restricted special case.

Following the exposition of density functional theory, the fundamentals of
Hartree–Fock theory, which is often considered to be the basis of quantum chem-
istry, are introduced for the same special case. Finally, a glimpse is given at post
Hartree–Fock methods. Again, an extensive text–book literature exists for these
wavefunction–based approaches to electronic structure calculations 604,418. The
very useful connection between the density–based and wavefunction–based meth-
ods goes back to Löwdin’s work in the mid fifties and is e.g. worked out in Chapt. 2.5
of Ref. 458, where Hartree–Fock theory is formulated in density–matrix language.

2.7.2 Density Functional Theory

The total ground–state energy of the interacting system of electrons with classical
nuclei fixed at positions {RI} can be obtained

min
Ψ0

{〈Ψ0 |He|Ψ0〉} = min
{φi}

EKS[{φi}]

as the minimum of the Kohn–Sham energy 301,338

EKS[{φi}] = Ts[{φi}] +

∫

dr Vext(r) n(r) +
1

2

∫

dr VH(r) n(r) + Exc[n] ,(75)
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which is an explicit functional of the set of auxiliary functions {φi(r)} that sat-
isfy the orthonormality relation 〈φi | φj〉 = δij . This is a dramatic simplification
since the minimization with respect to all possible many–body wavefunctions {Ψ} is
replaced by a minimization with respect to a set of orthonormal one–particle func-
tions, the Kohn–Sham orbitals {φi}. The associated electronic one–body density
or charge density

n(r) =

occ∑

i

fi | φi(r) |2 (76)

is obtained from a single Slater determinant built from the occupied orbitals, where
{fi} are integer occupation numbers.

The first term in the Kohn–Sham functional Eq. (75) is the kinetic energy of a
non–interacting reference system

Ts[{φi}] =

occ∑

i

fi

〈

φi

∣
∣
∣
∣
−1

2
∇2

∣
∣
∣
∣
φi

〉

(77)

consisting of the same number of electrons exposed to the same external potential
as in the fully interacting system. The second term comes from the fixed external
potential

Vext(r) = −
∑

I

ZI
|RI − r| +

∑

I<J

ZIZJ
|RI −RJ |

(78)

in which the electrons move, which comprises the Coulomb interactions between
electrons and nuclei and in the definition used here also the internuclear Coulomb
interactions; this term changes in the first place if core electrons are replaced by
pseudopotentials, see Sect. 3.1.5 for further details. The third term is the Hartree
energy, i.e. the classical electrostatic energy of two charge clouds which stem from
the electronic density and is obtained from the Hartree potential

VH(r) =

∫

dr′
n(r′)

| r− r′ | , (79)

which in turn is related to the density via

∇2VH(r) = −4πn(r) (80)

Poisson’s equation. The last contribution in the Kohn–Sham functional, the
exchange–correlation functional Exc[n], is the most intricate contribution to the
total electronic energy. The electronic exchange and correlation effects are lumped
together and basically define this functional as the remainder between the exact
energy and its Kohn–Sham decomposition in terms of the three previous contribu-
tions.

The minimum of the Kohn–Sham functional is obtained by varying the energy
functional Eq. (75) for a fixed number of electrons with respect to the density
Eq. (76) or with respect to the orbitals subject to the orthonormality constraint,
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see e.g. the discussion following Eq. (35) for a similar variational procedure. This
leads to the Kohn–Sham equations

{

−1

2
∇2 + Vext(r) + VH(r) +

δExc[n]

δn(r)

}

φi(r) =
∑

j

Λijφj(r) (81)

{

−1

2
∇2 + V KS(r)

}

φi(r) =
∑

j

Λijφj(r) (82)

HKS
e φi(r) =

∑

j

Λijφj(r) , (83)

which are one–electron equations involving an effective one–particle Hamiltonian
HKS

e with the local potential V KS. Note that HKS
e nevertheless embodies the elec-

tronic many–body effects by virtue of the exchange–correlation potential

δExc[n]

δn(r)
= Vxc(r) . (84)

A unitary transformation within the space of the occupied orbitals leads to the
canonical form

HKS
e φi = ǫiφi (85)

of the Kohn–Sham equations, where {ǫi} are the eigenvalues. In conventional static
density functional or “band structure” calculations this set of equations has to be
solved self–consistently in order to yield the density, the orbitals and the Kohn–
Sham potential for the electronic ground state 487. The corresponding total energy
Eq. (75) can be written as

EKS =
∑

i

ǫi −
1

2

∫

dr VH(r) n(r) + Exc[n]−
∫

dr
δExc[n]

δn(r)
n(r) , (86)

where the sum over Kohn–Sham eigenvalues is the so–called “band–structure en-
ergy”.

Thus, Eqs. (81)–(83) together with Eqs. (39)–(40) define Born–Oppenheimer
molecular dynamics within Kohn–Sham density functional theory, see e.g.
Refs. 232,616,594,35,679,472,36,343,344 for such implementations. The functional deriva-
tive of the Kohn–Sham functional with respect to the orbitals, the Kohn–Sham
force acting on the orbitals, can be expressed as

δEKS

δφ⋆i
= fiH

KS
e φi , (87)

which makes clear the connection to Car–Parrinello molecular dynamics, see
Eq. (45). Thus, Eqs. (59)–(60) have to be solved with the effective one–particle
Hamiltonian in the Kohn–Sham formulation Eqs. (81)–(83). In the case of Ehren-
fest dynamics presented in Sect. 2.2, which will not be discussed in further detail
at this stage, the Runge–Gross time–dependent generalization of density functional
theory 258 has to be invoked instead, see e.g. Refs. 203,617,532.

Crucial to any application of density functional theory is the approximation of
the unknown exchange and correlation functional. A discussion focussed on the
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utilization of such functionals in the framework of ab initio molecular dynamics
is for instance given in Ref. 588. Those exchange–correlation functionals that will
be considered in the implementation part, Sect. 3.3, belong to the class of the
“Generalized Gradient Approximation”

EGGA
xc [n] =

∫

dr n(r) εGGA
xc (n(r);∇n(r)) , (88)

where the unknown functional is approximated by an integral over a function that
depends only on the density and its gradient at a given point in space, see Ref. 477

and references therein. The combined exchange–correlation function is typically
split up into two additive terms εx and εc for exchange and correlation, respectively.
In the simplest case it is the exchange and correlation energy density εLDA

xc (n) of an
interacting but homogeneous electron gas at the density given by the “local” density
n(r) at space–point r in the inhomogeneous system. This simple but astonishingly
powerful approximation 320 is the famous local density approximation LDA 338

(or local spin density LSD in the spin–polarized case 40), and a host of different
parameterizations exist in the literature 458,168. The self–interaction correction 475

SIC as applied to LDA was critically assessed for molecules in Ref. 240 with a
disappointing outcome.

A significant improvement of the accuracy was achieved by introducing the gra-
dient of the density as indicated in Eq. (88) beyond the well–known straightforward
gradient expansions. These so–called GGAs (also denoted as “gradient corrected”
or “semilocal” functionals) extended the applicability of density functional calcula-
tion to the realm of chemistry, see e.g. Refs. 476,42,362,477,478,479 for a few “popular
functionals” and Refs. 318,176,577,322 for extensive tests on molecules, complexes,
and solids, respectively.

Another considerable advance was the successful introduction of “hybrid func-
tionals” 43,44 that include to some extent “exact exchange” 249 in addition to a
standard GGA. Although such functionals can certainly be implemented within a
plane wave approach 262,128, they are prohibitively time–consuming as outlined at
the end of Sect. 3.3. A more promising route in this respect are those function-
als that include higher–order powers of the gradient (or the local kinetic energy
density) in the sense of a generalized gradient expansion beyond the first term.
Promising results could be achieved by including Laplacian or local kinetic energy
terms 493,192,194,662, but at this stage a sound judgment concerning their “prize /
performance ratio” has to await further scrutinizing tests. The “optimized poten-
tial method” (OPM) or “optimized effective potentials” (OEP) are another route
to include “exact exchange” within density functional theory, see e.g. Sect. 13.6
in Ref. 588 or Ref. 251 for overviews. Here, the exchange–correlation functional
EOPM

xc = Exc[{φi}] depends on the individual orbitals instead of only on the den-
sity or its derivatives.

2.7.3 Hartree–Fock Theory

Hartree–Fock theory is derived by invoking the variational principle in a restricted
space of wavefunctions. The antisymmetric ground–state electronic wavefunction
is approximated by a single Slater determinant Ψ0 = det{ψi} which is constructed
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from a set of one–particle spin orbitals {ψi} required to be mutually orthonormal
〈ψi |ψj 〉 = δij . The corresponding variational minimum of the total electronic
energy He defined in Eq. (2)

EHF[{ψi}] =
∑

i

∫

dr ψ⋆i (r)

[

−1

2
∇2 + Vext(r)

]

ψi(r)

+
1

2

∑

ij

∫ ∫

dr dr′ ψ⋆i (r)ψ⋆j (r′)
1

|r− r′| ψi(r)ψj(r
′)

+
1

2

∑

ij

∫ ∫

dr dr′ ψ⋆i (r)ψ⋆j (r′)
1

|r− r′| ψj(r)ψi(r
′) (89)

yields the lowest energy and the “best” wavefunction within a one–determinant
ansatz; the external Coulomb potential Vext was already defined in Eq. (78). Car-
rying out the constraint minimization within this ansatz (see Eq. (36) in Sect. 2.3
for a sketch) leads to






−1

2
∇2 + Vext(r) +

∑

j

Jj(r)−
∑

j

Kj(r)






ψi(r) =

∑

j

Λijψj(r) (90)

{

−1

2
∇2 + V HF(r)

}

ψi(r) =
∑

j

Λijψj(r) (91)

HHF
e ψi(r) =

∑

j

Λijψj(r) (92)

the Hartree–Fock integro–differential equations. In analogy to the Kohn–Sham
equations Eqs. (81)–(83) these are effective one–particle equations that involve an
effective one–particle Hamiltonian HHF

e , the (Hartree–) Fock operator. The set of
canonical orbitals

HHF
e ψi = ǫiψi (93)

is obtained similarly to Eq. (85). The Coulomb operator

Jj(r) ψi(r) =

[∫

dr′ ψ⋆j (r′)
1

|r− r′|ψj(r
′)

]

ψi(r) (94)

and the exchange operator

Kj(r) ψi(r) =

[∫

dr′ ψ⋆j (r′)
1

|r− r′|ψi(r
′)

]

ψj(r) (95)

are most easily defined via their action on a particular orbital ψi. It is found
that upon acting on orbital ψi(r) the exchange operator for the j–th state “ex-
changes” ψj(r

′) → ψi(r
′) in the kernel as well as replaces ψi(r) → ψj(r) in its

argument, compare to the Coulomb operator. Thus, K is a non–local operator as
its action on a function ψi at point r in space requires the evaluation and thus the
knowledge of that function throughout all space by virtue of

∫
dr′ ψi(r′) . . . the

required integration. In this sense the exchange operator does not possess a simple
classical interpretation like the Coulomb operator C, which is the counterpart of
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the Hartree potential VH in Kohn–Sham theory. The exchange operator vanishes
exactly if the antisymmetrization requirement of the wavefunction is relaxed, i.e.
only the Coulomb contribution survives if a Hartree product is used to represent
the wavefunction.

The force acting on the orbitals is defined

δEHF

δψ⋆i
= HHF

e ψi (96)

similarly to Eq. (87). At this stage, the various ab initio molecular dynamics
schemes based on Hartree–Fock theory are defined, see Eqs. (39)–(40) for Born–
Oppenheimer molecular dynamics and Eqs. (59)–(60) for Car–Parrinello molecu-
lar dynamics. In the case of Ehrenfest molecular dynamics the time–dependent
Hartree–Fock formalism 162 has to be invoked instead.

2.7.4 Post Hartree–Fock Theories

Although post Hartree–Fock methods have a very unfavorable scaling of the compu-
tational cost as the number of electrons increases, a few case studies were performed
with such correlated quantum chemistry techniques. For instance ab initio molec-
ular dynamics was combined with GVB 282,283,228,229,230, CASSCF 566,567, as well
as FCI 372 approaches, see also references therein. It is noted in passing that Car–
Parrinello molecular dynamics can only be implemented straightforwardly if energy
and wavefunction are “consistent”. This is not the case in perturbation theories
such as e.g. the widely used Møller–Plesset approach 292: within standard MP2
the energy is correct to second order, whereas the wavefunction is the one given by
the uncorrelated HF reference. As a result, the derivative of the MP2 energy with
respect to the wavefunction Eq. (96) does not yield the correct force on the HF
wavefunction in the sense of fictitious dynamics. Such problems are of course ab-
sent from the Born–Oppenheimer approach to sample configuration space, see e.g.
Ref. 328,317,33 for MP2, density functional, and multireference CI ab initio Monte
Carlo schemes.

It should be kept in mind that the rapidly growing workload of post HF calcu-
lations, although extremely powerful in principle, limits the number of explicitely
treated electrons to only a few. The rapid development of correlated electronic
structure methods that scale linearly with the number of electrons will certainly
broaden the range of applicability of this class of techniques in the near future.

2.8 Basis Sets

2.8.1 Gaussians and Slater Functions

Having selected a specific electronic structure method the next choice is related
to which basis set to use in order to represent the orbitals ψi in terms of simple
analytic functions fν with well–known properties. In general a linear combination
of such basis functions

ψi(r) =
∑

ν

ciνfν(r; {RI}) (97)
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is used, which represents exactly any reasonable function in the limit of using a
complete set of basis functions. In quantum chemistry, Slater–type basis functions
(STOs)

fS
m(r) = NS

m rmx
x rmy

y rmz
z exp [−ζm|r|] (98)

with an exponentially decaying radial part and Gaussian–type basis functions
(GTOs)

fG
m(r) = NG

m rmx
x rmy

y rmz
z exp

[
−αmr

2
]

(99)

have received widespread use, see e.g. Ref. 292 for a concise overview–type presen-
tation. Here, Nm, ζm and αm are constants that are typically kept fixed during
a molecular electronic structure calculation so that only the orbital expansion co-
efficients ciν need to be optimized. In addition, fixed linear combinations of the
above–given “primitive” basis functions can be used for a given angular momentum
channel m, which defines the “contracted” basis sets.

The Slater or Gaussian basis functions are in general centered at the positions of
the nuclei, i.e. r→ r−RI in Eq. (98)–(99), which leads to the linear combination
of atomic orbitals (LCAO) ansatz to solve differential equations algebraically. Fur-
thermore, their derivatives as well as the resulting matrix elements are efficiently
obtained by differentiation and integration in real–space. However, Pulay forces
(see Sect. 2.5) will result for such basis functions that are fixed at atoms (or bonds)
if the atoms are allowed to move, either in geometry optimization or molecular
dynamics schemes. This disadvantage can be circumvented by using freely floating
Gaussians that are distributed in space 582, which form an originless basis set since
it is localized but not atom–fixed.

2.8.2 Plane Waves

A vastly different approach has its roots in solid–state theory. Here, the ubiquitous
periodicity of the underlying lattice produces a periodic potential and thus imposes
the same periodicity on the density (implying Bloch’s Theorem, Born–von Karman
periodic boundary conditions etc., see e.g. Chapt. 8 in Ref. 27). This heavily
suggests to use plane waves as the generic basis set in order to expand the periodic
part of the orbitals, see Sect. 3.1.2. Plane waves are defined as

fPW
G (r) = N exp [iGr] , (100)

where the normalization is simply given by N = 1/
√

Ω; Ω is the volume of the
periodic (super–) cell. Since plane waves form a complete and orthonormal set of
functions they can be used to expand orbitals according to Eq. (97), where the
labeling ν is simply given by the vector G in reciprocal space / G–space (including
only those G–vectors that satisfy the particular periodic boundary conditions). The
total electronic energy is found to have a particularly simple form when expressed
in plane waves 312.

It is important to observe that plane waves are originless functions, i.e. they
do not depend on the positions of the nuclei {RI}. This implies that the Pulay
forces Eq. (67) vanish exactly even within a finite basis (and using a fixed number
of plane waves, see the discussion related to “Pulay stress” in Sect. 2.5), which
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tremendously facilitates force calculations. This also implies that plane waves are
a very unbiased basis set in that they are “delocalized” in space and do not “favor”
certain atoms or regions over others, i.e. they can be considered as an ultimately
“balanced basis set” in the language of quantum chemistry. Thus, the only way
to improve the quality of the basis is to increase the “energy cutoff” Ecut, i.e. to
increase the largest |G|–vector that is included in the finite expansion Eq. (97).
This blind approach is vastly different from the traditional procedures in quantum
chemistry that are needed in order to produce reliable basis sets 292. Another
appealing feature is that derivatives in real–space are simply multiplications in G–
space, and both spaces can be efficiently connected via Fast Fourier Transforms
(FFTs). Thus, one can easily evaluate operators in that space in which they are
diagonal, see for instance the flow charts in Fig. 6 or Fig. 7.

According to the well–known “No Free Lunch Theorem” there cannot be only
advantages connected to using plane waves. The first point is that the pseudopoten-
tial approximation is intimately connected to using plane waves, why so? A plane
wave basis is basically a lattice–symmetry–adapted three–dimensional Fourier de-
composition of the orbitals. This means that increasingly large Fourier components
are needed in order to resolve structures in real space on decreasingly small distance
scales. But already orbitals of first row atoms feature quite strong and rapid oscilla-
tions close to the nuclei due to the Pauli principle, which enforces a nodal structure
onto the wavefunction by imposing orthogonality of the orbitals. However, most
of chemistry is ruled by the valence electrons, whereas the core electrons are es-
sentially inert. In practice, this means that the innermost electrons can be taken
out of explicit calculations. Instead they are represented by a smooth and nodeless
effective potential, the so–called pseudopotential 296,297,484,485,139, see for instance
Refs. 487,578,221 for reviews in the context of “solid state theory” and Refs. 145,166 for
pseudopotentials as used in “quantum chemistry”. The resulting pseudo wavefunc-
tion is made as smooth as possible close to the nuclear core region. This also means
that properties that depend crucially on the wavefunction close to the core cannot
be obtained straightforwardly from such calculations. In the field of plane wave
calculations the introduction of “soft” norm–conserving ab initio pseudopotentials
was a breakthrough both conceptually 274 and in practice 28. Another important
contribution, especially for transition metals, was the introduction of the so–called
ultrasoft pseudopotentials by Vanderbilt 661. This approaches lead to the power-
ful technique of plane wave–pseudopotential electronic structure calculations in the
framework of density functional theory 312,487. Within this particular framework
the issue of pseudopotentials is elaborated in more detail in Sect. 3.1.5.

Another severe shortcoming of plane waves is the backside of the medal of being
an unbiased basis set: there is no way to shuffle more basis functions into regions in
space where they are more needed than in other regions. This is particularly bad for
systems with strong inhomogeneities. Such examples are all–electron calculations
or the inclusion of semi–core states, a few heavy atoms in a sea of light atoms, and
(semi–) finite systems such as surfaces or molecules with a large vacuum region in
order to allow the long–range Coulomb interactions to decay. This is often referred
to as the multiple length scale deficiency of plane wave calculations.
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2.8.3 Generalized Plane Waves

An extremely appealing and elegant generalization of the plane wave concept 263,264

consists in defining them in curved ξ–space

fGPW
G (ξ) = Ndet1/2J exp [iG r(ξ)] (101)

detJ =

∣
∣
∣
∣

∂ri

∂ξj

∣
∣
∣
∣
,

where det J is the Jacobian of the transformation from Cartesian to curvilinear
coordinates r → ξ(r) with ξ = (ξ1, ξ2, ξ3) and N = 1/

√
Ω as for regular plane

waves. These functions are orthonormal, form a complete basis set, can be used
for k–point sampling after replacing G by G + k in Eq. (101), are originless (but
nevertheless localized) so that Pulay forces are absent, can be manipulated via
efficient FFT techniques, and reduce to standard plane waves in the special case of
an Euclidean space ξ(r) = r. Thus, they can be used equally well like plane waves
in linear expansions of the sort Eq. (65) underlying most of electronic structure
calculations. The Jacobian of the transformation is related to the Riemannian
metric tensor

gij =
3∑

k=1

∂ξk

∂ri
∂ξk

∂rj

det J = det−1/2 {gij} (102)

which defines the metric of the ξ–space. The metric and thus the curvilinear co-
ordinate system itself is considered as a variational parameter in the original fully
adaptive–coordinate approach 263,264, see also Refs. 159,275,276,277,278. Thus, a uni-
form grid in curved Riemannian space is non–uniform or distorted when viewed in
flat Euclidean space (where gij = δij) such that the density of grid points (or the
“local” cutoff energy of the expansion in terms of G–vectors) is highest in regions
close to the nuclei and lowest in vacuum regions, see Fig. 2 in Ref. 275.

Concerning actual calculations, this means that a lower number of generalized
plane waves than standard plane waves are needed in order to achieve a given ac-
curacy 263, see Fig. 1 in Ref. 275. This allows even for all–electron approaches to
electronic structure calculations where plane waves fail 431,497. More recently, the
distortion of the metric was frozen spherically around atoms by introducing defor-
mation functions 265,266, which leads to a concept closely connected to non–uniform
atom–centered meshes in real–space methods 431, see below. In such non–fully–
adaptive approaches using predefined coordinate transformations attention has to
be given to Pulay force contributions which have to be evaluated explicitely 265,431.

2.8.4 Wavelets

Similar to using generalized plane waves is the idea to exploit the powerful
multiscale–properties of wavelets. Since this approach requires an extensive in-
troductory discussion (see e.g. Ref. 242 for a gentle introduction) and since it seems
still quite far from being used in large–scale electronic structure calculations the
interested reader is referred to original papers 134,674,699,652,241,25 and the general

369



wavelet literature cited therein. Wavelet–based methods allow intrinsically to ex-
ploit multiple length scales without introducing Pulay forces and can be efficiently
handled by fast wavelet transforms. In addition, they are also a powerful route to
linear scaling or “order–N” methods 453,243 as first demonstrated in Ref. 241 with
the calculation of the Hartree potential for an all–electron uranium dimer.

2.8.5 Mixed and Augmented Basis Sets

Localized Gaussian basis functions on the one hand and plane waves on the other
hand are certainly two extreme cases. There has been a tremendous effort to
combine such localized and originless basis functions in order to exploit their mutual
strengths. This resulted in a rich collection of mixed and augmented basis sets
with very specific implementation requirements. This topic will not be covered
here and the interested reader is referred to Refs. 75,654,498,370,371 and references
given therein for some recent implementations used in conjunction with ab initio
molecular dynamics.

2.8.6 Wannier Functions

An alternative to the plane wave basis set in the framework of periodic calculations
in solid–state theory are Wannier functions, see for instance Sect. 10 in Ref. 27.
These functions are formally obtained from a unitary transformation of the Bloch
orbitals Eq. (114) and have the advantage that they can be exponentially localized
under certain circumstances. The so–called maximally localized generalized Wan-
nier functions 413 are the periodic analogues of Boys’ localized orbitals defined for
isolated systems. Recently the usefulness of Wannier functions for numerical pur-
poses was advocated by several groups, see Refs. 339,184,413,10 and references given
therein.

2.8.7 Real Space Grids

A quite different approach is to leave conventional basis set approaches altogether
and to resort to real–space methods where continuous space is replaced by a discrete
space r → rp. This entails that the derivative operator or the entire energy ex-
pression has to be discretized in some way. The high–order central–finite difference
approach leads to the expression

−1

2
∇2ψi(r)

h→0
= −1

2

[

∑N
nx=−N Cnx

ψi(rpx
+ nxh, rpy

, rpz
)

+
∑N
ny=−N Cny

ψi(rpx
, rpy

+ nyh, rpz
)

+
∑N

nz=−N Cnz
ψi(rpx

, rpy
, rpz

+ nzh)

]

+O
(
h2N+2

)
(103)

for the Laplacian which is correct up to the order h2N+2. Here, h is the uniform
grid spacing and {Cn} are known expansion coefficients that depend on the selected
order 130. Within this scheme, not only the grid spacing h but also the order are
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disposable parameters that can be optimized for a particular calculation. Note that
the discretization points in continuous space can also be considered to constitute a
sort of “finite basis set” – despite different statements in the literature – and that
the “infinite basis set limit” is reached as h → 0 for N fixed. A variation on the
theme are Mehrstellen schemes where the discretization of the entire differential
equation and not only of the derivative operator is optimized 89.

The first real–space approach devised for ab initio molecular dynamics was based
on the lowest–order finite–difference approximation in conjunction with a equally–
spaced cubic mesh in real space 109. A variety of other implementations of more
sophisticated real–space methods followed and include e.g. non–uniform meshes,
multigrid acceleration, different discretization techniques, and finite–element meth-
ods 686,61,39,130,131,632,633,431,634. Among the chief advantages of the real–space
methods is that linear scaling approaches 453,243 can be implemented in a natural
way and that the multiple–length scale problem can be coped with by adapting the
grid. However, the extension to such non–uniform meshes induces the (in)famous
Pulay forces (see Sect. 2.5) if the mesh moves as the nuclei move.

3 Basic Techniques: Implementation within the CPMD Code

3.1 Introduction and Basic Definitions

This section discusses the implementation of the plane wave–pseudopotential molec-
ular dynamics method within the CPMD computer code 142. It concentrates on the
basics leaving advanced methods to later chapters. In addition all formulas are for
the non-spin polarized case. This allows to show the essential features of a plane
wave code as well as the reasons for its high performance in detail. The imple-
mentation of other versions of the presented algorithms and of the more advanced
techniques in Sect. 4 is in most cases very similar.

There are many reviews on the pseudopotential plane wave method alone or in
connection with the Car–Parrinello algorithm. Older articles 312,157,487,591 as well
as the book by Singh 578 concentrate on the electronic structure part. Other re-
views 513,472,223,224 present the plane wave method in connection with the molecular
dynamics technique.

3.1.1 Unit Cell and Plane Wave Basis

The unit cell of a periodically repeated system is defined by the Bravais lattice
vectors a1, a2, and a3. The Bravais vectors can be combined into a three by three
matrix h = [a1,a2,a3] 459. The volume Ω of the cell is calculated as the determinant
of h

Ω = deth . (104)

Further, scaled coordinates s are introduced that are related to r via h

r = hs . (105)
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Distances in scaled coordinates are related to distances in real coordinates by the
metric tensor G = hth

(ri − rj)
2 = (si − sj)

tG(si − sj) . (106)

Periodic boundary conditions can be enforced by using

rpbc = r− h
[
h−1r

]

NINT
, (107)

where [· · · ]NINT denotes the nearest integer value. The coordinates rpbc will be
always within the box centered around the origin of the coordinate system. Recip-
rocal lattice vectors bi are defined as

bi · aj = 2π δij (108)

and can also be arranged to a three by three matrix

[b1,b2,b3] = 2π(ht)−1 . (109)

Plane waves build a complete and orthonormal basis with the above periodicity
(see also the section on plane waves in Sect. 2.8)

fPW
G (r) =

1√
Ω

exp[iG · r] =
1√
Ω

exp[2π i g · s] , (110)

with the reciprocal space vectors

G = 2π(ht)−1g , (111)

where g = [i, j, k] is a triple of integer values. A periodic function can be expanded
in this basis

ψ(r) = ψ(r + L) =
1√
Ω

∑

G

ψ(G) exp[iG · r] , (112)

where ψ(r) and ψ(G) are related by a three-dimensional Fourier transform. The
direct lattice vectors L connect equivalent points in different cells.

3.1.2 Plane Wave Expansions

The Kohn–Sham potential (see Eq. (82)) of a periodic system exhibits the same
periodicity as the direct lattice

V KS(r) = V KS(r + L) , (113)

and the Kohn–Sham orbitals can be written in Bloch form (see e.g. Ref. 27)

Ψ(r) = Ψi(r,k) = exp[ik · r] ui(r,k) , (114)

where k is a vector in the first Brillouin zone. The functions ui(r,k) have the
periodicity of the direct lattice

ui(r,k) = ui(r + L,k) . (115)
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The index i runs over all states and the states have an occupation fi(k) associated
with them. The periodic functions ui(r,k) are now expanded in the plane wave
basis

ui(r,k) =
1√
Ω

∑

G

ci(G,k) exp[iG · r] , (116)

and the Kohn–Sham orbitals are

φi(r,k) =
1√
Ω

∑

G

ci(G,k) exp[i(G + k) · r] , (117)

where ci(G,k) are complex numbers. With this expansion the density can also be
expanded into a plane wave basis

n(r) =
1

Ω

∑

i

∫

dk fi(k)
∑

G,G′

c⋆i (G
′,k)ci(G,k) exp[i(G + k) · r] (118)

=
∑

G

n(G) exp[iG · r] , (119)

where the sum over G vectors in Eq. (119) expands over double the range given
by the wavefunction expansion. This is one of the main advantages of the plane
wave basis. Whereas for atomic orbital basis sets the number of functions needed
to describe the density grows quadratically with the size of the system, there is
only a linear dependence for plane waves.

3.1.3 K–Points and Cutoffs

In actual calculations the infinite sums over G vectors and cells has to be truncated.
Furthermore, we have to approximate the integral over the Brillouin zone by a finite
sum over special k–points

∫

dk→
∑

k

wk , (120)

where wk are the weights of the integration points. Schemes on how to choose the
integration points efficiently are available in the literature 30,123,435 where also an
overview 179 on the use of k–points in the calculation of the electronic structure of
solids can be found.

The truncation of the plane wave basis rests on the fact that the Kohn–Sham
potential V KS(G) converges rapidly with increasing modulus of G. For this reason,
at each k–point, only G vectors with a kinetic energy lower than a given maximum
cutoff

1

2
|k + G|2 ≤ Ecut (121)

are included in the basis. With this choice of the basis the precision of the calcu-
lation within the approximations of density functional theory is controlled by one
parameter Ecut only.
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The number of plane waves for a given cutoff depends on the unit cell and the
k–point. An estimate for the size of the basis at the center of the Brillouin zone is

NPW =
1

2π2
Ω E

3/2
cut , (122)

where Ecut is in Hartree units. The basis set needed to describe the density cal-
culated from the Kohn-Sham orbitals has a corresponding cutoff that is four times
the cutoff of the orbitals. The number of plane waves needed at a given density
cutoff is therefore eight times the number of plane waves needed for the orbitals.

It is a common approximation in density functional theory calculations 536,169

to use approximate electronic densities. Instead of using the full description, the
density is expanded in an auxiliary basis. An incomplete plane wave basis can be
considered as an auxiliary basis with special properties 371. Because of the filter
property of plane waves the new density is an optimal approximation to the true
density. No additional difficulties in calculations of the energy or forces appear.
The only point to control is, if the accuracy of the calculation is still sufficient.

Finally, sums over all unit cells in real space have to be truncated. The only
term in the final energy expression with such a sum is the real space part of the
Ewald sum (see Sect. 3.2). This term is not a major contribution to the workload
in a density functional calculation, that is the cutoff can be set rather generously.

3.1.4 Real Space Grid

A function given as a finite linear combination of plane waves can also be defined
as a set of functional values on a equally spaced grid in real space. The sampling
theorem (see e.g. Ref. 492) gives the maximal grid spacing that still allows to hold
the same information as the expansion coefficients of the plane waves. The real
space sampling points R are defined

R = h Nq , (123)

where N is a diagonal matrix with the entries 1/Ns and q is a vector of integers
ranging from 0 to Ns − 1 (s = x, y, z). To fulfill the sampling theorem Ns has to
be bigger than 2 max(gs) + 1. To be able to use fast Fourier techniques, Ns must
be decomposable into small prime numbers (typically 2, 3, and 5). In applications
the smallest number Ns that fulfills the above requirements is chosen.

A periodic function can be calculated at the real space grid points

f(R) =
∑

G

f(G) exp[iG ·R] (124)

=
∑

g

f(G) exp
[
2π i

(
(ht)−1g

)
· (hNq)

]
(125)

=
∑

g

f(G) exp

[
2π

Nx
igxqx

]

exp

[
2π

Ny
igyqy

]

exp

[
2π

Nz
igzqz

]

. (126)

The function f(G) is zero outside the cutoff region and the sum over g can be
extended over all indices in the cube −gmax

s . . .gmax
s . The functions f(R) and
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f(G) are related by three–dimensional Fourier transforms

f(R) = inv FT [f(G)] (127)

f(G) = fw FT [f(R)] . (128)

The Fourier transforms are defined by

[inv FT [f(G)]]uvw =

Nx−1∑

j=0

Ny−1
∑

k=0

Nz−1∑

l=0

fG
jkl

exp

[

i
2π

Nx
j u

]

exp

[

i
2π

Ny
k v

]

exp

[

i
2π

Nz
l w

]

(129)

[fw FT [f(R)]]jkl =

Nx−1∑

u=0

Ny−1
∑

v=0

Nz−1∑

w=0

fR
uvw

exp

[

−i 2π

Nx
j u

]

exp

[

−i 2π

Ny
k v

]

exp

[

−i 2π
Nz

l w

]

, (130)

where the appropriate mappings of q and g to the indices

[u, v, w] = q (131)

{j, k, l} = gs if gs ≥ 0 (132)

{j, k, l} = Ns + gs if gs < 0 (133)

have to be used. From Eqs. (129) and (130) it can be seen, that the calculation
of the three–dimensional Fourier transforms can be performed by a series of one
dimensional Fourier transforms. The number of transforms in each direction is
NxNy, NxNz, and NyNz respectively. Assuming that the one-dimensional trans-
forms are performed within the fast Fourier transform framework, the number of
operations per transform of length n is approximately 5n logn. This leads to an
estimate for the number of operations for the full three-dimensional transform of
5N logN , where N = NxNyNz.

3.1.5 Pseudopotentials

In order to minimize the size of the plane wave basis necessary for the calculation,
core electrons are replaced by pseudopotentials. The pseudopotential approxima-
tion in the realm of solid–state theory goes back to the work on orthogonalized
plane waves 298 and core state projector methods 485. Empirical pseudopotentials
were used in plane wave calculations 294,703 but new developments have consid-
erably increased efficiency and reliability of the method. Pseudopotential are re-
quired to correctly represent the long range interactions of the core and to produce
pseudo–wavefunction solutions that approach the full wavefunction outside a core
radius rc. Inside this radius the pseudopotential and the wavefunction should be as
smooth as possible, in order to allow for a small plane wave cutoff. For the pseudo–
wavefunction this requires that the nodal structure of the valence wavefunctions
is replaced by a smooth function. In addition it is desired that a pseudopotential
is transferable 238,197, this means that one and the same pseudopotential can be
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used in calculations of different chemical environment resulting in calculations with
comparable accuracy.

A first major step to achieve all this conflicting goals was the introduction of
”norm–conservation” 622,593. Norm–conserving pseudopotentials have to be angular
momentum dependent. In their most general form they are semi–local

V PP(r, r′) =
∑

lm

Ylm(r)Vl(r)δr,r′Ylm(r′) , (134)

where Ylm are spherical harmonics. A minimal set of requirements and a construc-
tion scheme for soft, semi–local pseudopotentials were developed 274,28 . Since then
many variations of the original method have been proposed, concentrating either
on an improvement in softness or in transferability. Analytic representations of the
core part of the potential 326,626,627,509 were used. Extended norm-conservation 564

was introduced to enhance transferability and new concepts to increase the soft-
ness were presented 659,509,369. More information on pseudopotentials and their
construction can be found in recent review articles 487,578,221.

Originally generated in a semi-local form, most applications use the fully separa-
ble form. Pseudopotentials can be transformed to the separable form using atomic
wavefunctions 335,73,659. Recently 239,288 a new type of separable, norm-conserving
pseudopotentials was introduced. Local and non-local parts of these pseudopoten-
tials have a simple analytic form and only a few parameters are needed to charac-
terize the potential. These parameters are globally optimized in order to reproduce
many properties of atoms and ensure a good transferability.

A separable non-local pseudopotential can be put into general form (this in-
cludes all the above mentioned types)

V PP(r, r′) = (Vcore(r) + ∆Vlocal(r)) δr,r′ +
∑

k,l

P ⋆k (r)hklPl(r
′) . (135)

The local part has been split into a core ( ∼ 1/r for r → ∞ ) and a short-ranged
local part in order to facilitate the derivation of the final energy formula. The
actual form of the core potential will be defined later. The local potential ∆Vlocal

and the projectors Pk are atom-centered functions of the form

ϕ(r) = ϕ(|r−RI |) Ylm(θ, φ) , (136)

that can be expanded in plane waves

ϕ(r) =
∑

G

ϕ(G) exp[iG · r]SI(G) Ylm(θ̃, φ̃) , (137)

RI denote atomic positions and the so–called structure factors SI are defined as

SI(G) = exp[−iG ·RI ] . (138)

The functions ϕ(G) are calculated from ϕ(r) by a Bessel transform

ϕ(G) = 4π (−i)l
∫ ∞

0

dr r2 ϕ(r) jl(Gr) , (139)
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where jl are spherical Bessel functions of the first kind. The local pseudopotential
and the projectors of the nonlocal part in Fourier space are given by

∆Vlocal(G) =
4π

Ω

∫ ∞

0

dr r2 ∆Vlocal(r)j0(Gr) (140)

Pk(G) =
4π√

Ω
(−i)l

∫ ∞

0

dr r2 Pk(r) jl(Gr) Ylm(θ̃, φ̃) , (141)

where lm are angular momentum quantum numbers associated with projector α.

3.2 Electrostatic Energy

3.2.1 General Concepts

The electrostatic energy of a system of nuclear charges ZI at positions RI and
an electronic charge distribution n(r) consists of three parts: the Hartree energy
of the electrons, the interaction energy of the electrons with the nuclei and the
internuclear interactions

EES =
1

2

∫ ∫

dr dr′
n(r)n(r′)

|r− r′|

+
∑

I

∫

drV Icore(r)n(r) +
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

. (142)

The Ewald method (see e.g. Ref. 12) can be used to avoid singularities in the
individual terms when the system size is infinite. In order to achieve this a Gaussian
core charge distribution associated with each nuclei is defined

nIc(r) = − ZI

(Rc
I)

3π
−3/2 exp

[

−
(

r−RI

Rc
I

)2
]

. (143)

It is convenient at this point to make use of the arbitrariness in the definition of the
core potential and define it to be the potential of the Gaussian charge distribution
of Eq. (143)

V Icore(r) =

∫

dr′
nIc(r′)

|r− r′| = − ZI
|r−RI |

erf

[ |r−RI |
Rc
I

]

, (144)

where erf is the error function. The interaction energy of this Gaussian charge
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distributions is now added and subtracted from the total electrostatic energy

EES =
1

2

∫ ∫

dr dr′
n(r)n(r′)

|r− r′|

+
1

2

∫ ∫

dr dr′
nc(r)nc(r′)

|r− r′|

+

∫ ∫

dr dr′
nc(r)n(r′)

|r− r′|

+
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

−1

2

∫ ∫

dr dr′
nc(r)nc(r′)

|r− r′| , (145)

where nc(r) =
∑

I n
I
c(r). The first three terms can be combined to the electrostatic

energy of a total charge distribution ntot(r) = n(r) + nc(r). The remaining terms
are rewritten as a double sum over nuclei and a sum over self–energy terms of the
Gaussian charge distributions

EES =
1

2

∫ ∫

dr dr′
ntot(r)ntot(r

′)

|r− r′|

+
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

erfc




|RI −RJ |
√

Rc
I
2 + Rc

J
2



−
∑

I

1√
2π

Z2
I

Rc
I

, (146)

where erfc denotes the complementary error function.

3.2.2 Periodic Systems

For a periodically repeated system the total energy per unit cell is derived from
the above expression by using the solution to Poisson’s equation in Fourier space
for the first term and make use of the quick convergence of the second term in real
space. The total charge is expanded in plane waves with expansion coefficients

ntot(G) = n(G) +
∑

I

nIc(G)SI(G) (147)

= n(G)− 1

Ω

∑

I

ZI√
4π

exp

[

−1

2
G2Rc

I
2

]

SI(G) . (148)

This leads to the electrostatic energy for a periodic system

EES = 2πΩ
∑

G 6=0

|ntot(G)|2
G2

+ Eovrl − Eself , (149)

where

Eovrl =
∑′

I,J

∑

L

ZIZJ
|RI −RJ − L|erfc




|RI −RJ − L|
√

Rc
I
2 + Rc

J
2



 (150)
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and

Eself =
∑

I

1√
2π

Z2
I

Rc
I

. (151)

Here, the sums expand over all atoms in the simulation cell, all direct lattice vectors
L, and the prime in the first sum indicates that I < J is imposed for L = 0.

3.2.3 Cluster Boundary Conditions

The possibility to use fast Fourier transforms to calculate the electrostatic energy
is one of the reasons for the high performance of plane wave calculations. How-
ever, plane wave based calculations imply periodic boundary conditions. This is
appropriate for crystal calculations but very unnatural for molecule or slab calcu-
lations. For neutral systems this problem is circumvented by use of the supercell
method. Namely, the molecule is periodically repeated but the distance between
each molecule and its periodic images is so large that their interaction is negligible.
This procedure is somewhat wasteful but can lead to satisfactory results.

Handling charged molecular systems is, however, considerably more difficult,
due to the long range Coulomb forces. A charged periodic system has infinite
energy and the interaction between images cannot really be completely eliminated.
In order to circumvent this problem several solutions have been proposed. The
simplest fix-up is to add to the system a neutralizing background charge. This
is achieved trivially as the G = 0 term in Eq. (149) is already eliminated. This
leads to finite energies but does not eliminate the interaction between the images
and makes the calculation of absolute energies difficult. Other solutions involve
performing a set of different calculations on the system such that extrapolation to
the limit of infinitely separated images is possible. This procedure is lengthy and
one cannot use it easily in molecular dynamics applications. It has been shown,
that it is possible to estimate the correction to the total energy for the removal
of the image charges 378. Still it seems not easy to incorporate this scheme into
the frameworks of molecular dynamics. Another method 60,702,361 works with the
separation of the long and short range parts of the Coulomb forces. In this method
the low–order multipole moments of the charge distribution are separated out and
handled analytically. This method was used in the context of coupling ab initio
and classical molecular dynamics 76.

The long-range forces in Eq. (146) are contained in the first term. This term
can be written

1

2

∫ ∫

dr dr′
ntot(r)ntot(r

′)

|r− r′| =
1

2

∫

drVH(r)ntot(r) , (152)

where the electrostatic potential VH(r) is the solution of Poisson’s equation (see
Eq. (80)). There are two approaches to solve Poisson’s equation subject to the
boundary conditions VH(r) → 0 for r → ∞ implemented in CPMD. Both of them
rely on fast Fourier transforms, thus keeping the same framework as for the periodic
case.

The first method is due to Hockney 300 and was first applied to density functional
plane wave calculations in Ref. 36. In the following outline, for the sake of simplicity,
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a one-dimensional case is presented. The charge density is assumed to be non-zero
only within an interval L and sampled on N equidistant points. These points are
denoted by xp. The potential can then be written

VH(xp) =
L

N

∞∑

p′=−∞
G(xp − xp′)n(xp′ ) (153)

=
L

N

N∑

p′=0

G(xp − xp′)n(xp′ ) (154)

for p = 0, 1, 2, . . .N , where G(xp − xp′ ) is the corresponding Green’s function. In
Hockney’s algorithm this equation is replaced by the cyclic convolution

ṼH(xp) =
L

N

2N+1∑

p′=0

G̃(xp − xp′ )ñ(xp′) (155)

where p = 0, 1, 2, . . .2N + 1, and

ñ(xp) =

{
n(xp) 0 ≤ p ≤ N
0 N ≤ p ≤ 2N + 1

(156)

G̃(xp) = G(xp) − (N + 1) ≤ p ≤ N (157)

ñ(xp) = ñ(xp + L) (158)

G̃(xp) = G̃(xp + L) (159)

The solution ṼH(xp) can be obtained by a series of fast Fourier transforms and has
the desired property

ṼH(xp) = VH(xp) for 0 ≤ p ≤ N . (160)

To remove the singularity of the Green’s function at x = 0, G(x) is modified for
small x and the error is corrected by using the identity

G(x) =
1

x
erf

[
x

rc

]

+
1

x
erfc

[
x

rc

]

, (161)

where rc is chosen such, that the short-ranged part can be accurately described by
a plane wave expansion with the density cutoff. In an optimized implementation
Hockney’s method requires the double amount of memory and two additional fast
Fourier transforms on the box of double size (see Fig. 6 for a flow chart). Hockney’s
method can be generalized to systems with periodicity in one (wires) and two (slabs)
dimensions. It was pointed out 173 that Hockney’s method gives the exact solution
to Poisson’s equation for isolated systems if the boundary condition (zero density
at the edges of the box) are fulfilled.

A different, fully reciprocal space based method, that can be seen as an approx-
imation to Hockney’s method, was recently proposed 393. The final expression for
the Hartree energy is also based on the splitting of the Green’s function in Eq. (161)

EES = 2πΩ
∑

G

V MT
H (G)n⋆tot(G) + Eovrl − Eself . (162)
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EH = Ω
NxNyNz

∑

R VH(R)ntot(R)

VH(G) VH(R)

ṼH(R)ṼH(G) = Φ(G)ñtot(G)

ñtot(G) ñtot(R)

ntot(R)ntot(G)

?

?

?

?

�

�

-

-

fw FT

inv FT

fw FT

inv FT

Figure 6. Flow chart for the calculation of long-ranged part of the electrostatic energy using the
method by Hockney 300. The part inside the dashed box is calculated most efficiently with the
procedure outlined by Eastwood and Brownrigg 173.

The potential function is calculated from two parts,

V MT
H (G) = V̄H(G) + ṼH(G) , (163)

where ṼH(G) is the analytic part, calculated from a Fourier transform of erfc

ṼH(G) =
4π

G2

(

1− exp

[

−G
2r2c
4

])

n(G) (164)

and V̄H(G) is calculated from a discrete Fourier transform of the Green’s function
on an appropriate grid. The calculation of the Green’s function can be done at the
beginning of the calculation and has not to be repeated again. It is reported 393

that a cutoff of ten to twenty percent higher than the one employed for the charge
density gives converged results. The same technique can also be applied for systems
that are periodic in one and two dimensions 394.

If the boundary conditions are appropriately chosen, the discrete Fourier trans-
forms for the calculation of V̄H(G) can be performed analytically 437. This is
possible for the limiting case where rc = 0 and the boundary conditions are on a
sphere of radius R for the cluster. For a one-dimensional system we choose a torus
of radius R and for the two-dimensional system a slab of thickness Z. The electro-

static potential for these systems are listed in Table 2, where Gxy =
[
g2
x + g2

y

]1/2

and Jn and Kn are the Bessel functions of the first and second kind of integer order
n.

Hockney’s method requires a computational box such that the charge density is
negligible at the edges. This is equivalent to the supercell approach 510. Practical
experience tells that a minimum distance of about 3 Å of all atoms to the edges of
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Table 2. Fourier space formulas for the Hartree energy, see text for definitions.

Dim. periodic (G2/4π)VH(G) VH(0)
0 – (1− cos [RG])n(G) 2πR2n(0)
1 z (1 +R (GxyJ1(RGxy)K0(Rgz)

−gzJ0(RGxy)K1(Rgz)))n(G) 0
2 x, y (1− (−1)gz exp [−GZ/2])n(G) 0
3 x, y, z n(G) 0

the box is sufficient for most systems. The Green’s function is then applied to the
charge density in a box double this size. The Green’s function has to be calculated
only once at the beginning of the calculation. The other methods presented in this
chapter require a computational box of double the size of the Hockney method as
they are applying the artificially periodic Green’s function within the computational
box. This can only be equivalent to the exact Hockney method if the box is enlarged
to double the size. In plane wave calculations computational costs grow linearly
with the volume of the box. Therefore Hockney’s method will prevail over the others
in accuracy, speed, and memory requirements in the limit of large systems. The
direct Fourier space methods have advantages through their easy implementation
and for small systems, if not full accuracy is required, i.e. if they are used with
smaller computational boxes. In addition, they can be of great use in calculations
with classical potentials.

3.3 Exchange and Correlation Energy

Exchange and correlation functionals implemented in the CPMD code are of the local
type with gradient corrections. These type of functionals can be written as (see
also Eqs. (88) and (84))

Exc =

∫

dr εxc(n,∇n)n(r) = Ω
∑

G

εxc(G)n⋆(G) (165)

with the corresponding potential

Vxc(r) =
∂Fxc

∂n
−
∑

s

∂

∂rs

[
∂Fxc

∂(∂sn)

]

, (166)

where Fxc = εxc(n,∇n)n and ∂sn is the s-component of the density gradient.
Exchange and correlation functionals have complicated analytical forms that

give rise to high frequency components in εxc(G). Although these high frequency
components do not enter the sum in Eq. (165) due to the filter effect of the density,
they affect the calculation of εxc. As the functionals are only local in real space, not
in Fourier space, they have to be evaluated on a real space grid. The function εxc(G)
can then be calculated by a Fourier transform. Therefore the exact calculation of
Exc would require a grid with infinite resolution. However, the high frequency
components are usually very small and even a moderate grid gives accurate results.
The use of a finite grid results in an effective redefinition of the exchange and
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correlation energy

Exc =
Ω

NxNyNz

∑

R

εxc(n,∇n)(R)n(R) = Ω
∑

G

ε̃xc(G)n(G) , (167)

where ε̃xc(G) is the finite Fourier transform of εxc(R). This definition of Exc

allows the calculation of all gradients analytically. In most applications the real
space grid used in the calculation of the density and the potentials is also used
for the exchange and correlation energy. Grids with higher resolution can be used
easily. The density is calculated on the new grid by use of Fourier transforms and
the resulting potential is transfered back to the original grid. With this procedure
the different grids do not have to be commensurate.

The above redefinition has an undesired side effect. The new exchange and
correlation energy is no longer translationally invariant. Only translations by a
multiple of the grid spacing do not change the total energy. This introduces a
small modulation of the energy hyper surface 685, known as ”ripples”. Highly
accurate optimizations of structures and the calculation of harmonic frequencies
can be affected by the ripples. Using a denser grid for the calculation of Exc is the
only solution to avoid these problems.

The calculation of a gradient corrected functional within the plane wave frame-
work can be conducted using Fourier transforms 685. The flowchart of the calcula-
tion is presented in Fig. 7. With the use of Fourier transforms the calculation of
second derivatives of the charge density is avoided, leading to a numerically stable
algorithm. To this end the identity

∂Fxc

∂(∂sn)
=

∂Fxc

∂|∇n|
∂sn

|∇n| (168)

is used.
This is the place to say some words on functionals that include exact exchange.

As mentioned in Sect. 2.7 this type of functional has been very popular recently
and improvements of results over GGA–type density functionals for many systems
and properties have been reported. However, the calculation of the Hartree–Fock
exchange causes a considerable performance problem in plane wave calculations.
The Hartree–Fock exchange energy is defined as 604

EHFX =
∑

ij

∫ ∫

drdr′
ρij(r)ρij(r

′)

|r− r′| , (169)

where

ρij(r) = φi(r)φj(r). (170)

From this expression the wavefunction force is easily derived and can be calculated
in Fourier space

1

fi

∂EHFX

∂c⋆i (G)
=
∑

j

∑

G′

V ijHFX(G−G′)cj(G
′) . (171)

The force calculation is best performed in real space, whereas the potential is cal-
culated in Fourier space. For a system with Nb electronic states and N real space
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Exc = Ω
NxNyNz

∑

R εxc(R)n(R)

Vxc(R) = ∂Fxc

∂n (R) +
∑

s ∂sAs(R)

∂sAs(R)

∂As(G) = iGsAs(G)

As(G)

As(R) = ∂Fxc

∂|∇n|
∂sn
|∇n|

∂Fxc

∂|∇n|
∂Fxc

∂n
εxc

|∇n| = (
∑

s(∂sn(R))2)1/2

∂sn(R)

∂sn(G) = iGsn(G)

n(G)

?

?

?

?

?

??

?

?

?

?

?

?

3 × inv FT

3 × fw FT

3 × inv FT

Figure 7. Flow chart for the calculation of the energy and potential of a gradient corrected ex-
change and correlation functional.

grid points, a total of 5N2
b three–dimensional transforms are needed, resulting in

approximately 25N2
bN logN operations needed to perform the calculation. This

has to be compared to the 15NbN logN operations needed for the other Fourier
transforms of the charge density and the application of the local potential and the
4N2

bN operations for the orthogonalization step. In calculations dominated by the
Fourier transforms an additional factor of at leastNb is needed. If on the other hand
orthogonalization dominates an increase in computer time by a factor of 5 logN is
expected. Therefore, at least an order of magnitude more computer time is needed
for calculations including exact exchange compared to ordinary density functional
calculations. Consequently, hybrid functionals will only be used in exceptional cases
together with plane waves 262,128.
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3.4 Total Energy, Gradients, and Stress Tensor

3.4.1 Total Energy

Molecular dynamics calculations with interaction potentials derived from density
functional theory require the evaluation of the total energy and derivatives with
respect to the parameters of the Lagrangian. In this section formulas are given in
Fourier space for a periodic system. The total energy can be calculated as a sum of
kinetic, external (local and non-local pseudopotential), exchange and correlation,
and electrostatic energy (to be compared with Eq. (75))

Etotal = Ekin + EPP
local + EPP

nonlocal + Exc + EES . (172)

The individual terms are defined by

Ekin =
∑

k

wk

∑

i

∑

G

1

2
fi(k) |G + k|2 |ci(G,k)|2 (173)

EPP
local =

∑

I

∑

G

∆V Ilocal(G)SI(G)n⋆(G) (174)

EPP
nonlocal =

∑

k

wk

∑

i

fi(k)
∑

I

∑

α,β∈I

(
FαI,i(k)

)⋆
hIαβF

β
I,i(k) (175)

Exc = Ω
∑

G

ǫxc(G)n⋆(G) (176)

EES = 2πΩ
∑

G 6=0

|ntot(G)|2
G2

+ Eovrl − Eself . (177)

The overlap between the projectors of the non-local pseudopotential and the Kohn–
Sham orbitals has been introduced in the equation above

FαI,i(k) =
1√
Ω

∑

G

P Iα(G)SI(G + k) c⋆i (G,k) . (178)

An alternative expression, using the Kohn–Sham eigenvalues ǫi(k) can also be used

Etotal =
∑

k

wk

∑

i

fi(k)ǫi(k)

−Ω
∑

G

(Vxc(G)− εxc(G))n⋆(G)

−2πΩ
∑

G 6=0

|n(G)|2 − |nc(G)|2
G2

+ Eovrl − Eself

+∆Etot , (179)

to be compared to Eq. (86). The additional term ∆Etot in Eq. (179) is needed to
have an expression for the energy that is quadratic in the variations of the charge
density, as it is true for Eq. (172). Without the correction term, which is zero for
the exact charge density, small differences between the computed and the exact
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density could give rise to large errors in the total energy 129. The correction energy
can be calculated from

∆Etot = −2πΩ
∑

G 6=0

(
nin(G)

G2
− nout(G)

G2

)

(nout(G))⋆

−Ω
∑

G

(
V in

xc (G)− V out
xc (G)

)
(nout(G))⋆, (180)

where nin and nout are the input and output charge densities and V in
xc and V out

xc the
corresponding exchange and correlation potentials. This term leads to the so–called
“non–self–consistency correction” of the force, introduced in Eq. (68).

The use of an appropriate k–point mesh is the most efficient method to calculate
the total energy of a periodic system. Equivalent, although not as efficient, the
calculation can be performed using a supercell consisting of replications of the
unit cell and a single integration point for the Brillouin zone. In systems where
the translational symmetry is broken, e.g. disorder systems, liquids, or thermally
excited crystals, periodic boundary conditions can still be used if combined with
a supercell approach. Many systems investigated with the here described method
fall into these categories, and therfore most calculations using the Car-Parrinello
molecular dynamics approach are using supercells and a single k–point ”integration
scheme”. The only point calculated is the center of the Brillouin zone (Γ–point;
k = 0). For the remainder of this chapter, all formulas are given for the Γ–point
approximation.

3.4.2 Wavefunction Gradient

Analytic derivatives of the total energy with respect to the parameters of the calcu-
lation are needed for stable molecular dynamics calculations. All derivatives needed
are easily accessible in the plane wave pseudopotential approach. In the following
Fourier space formulas are presented

1

fi

∂Etotal

∂c⋆i (G)
=

1

2
G2 ci(G)

+
∑

G′

V ⋆loc(G−G′)ci(G
′)

+
∑

I

∑

α,β

(
FαI,i

)⋆
hIαβP

I
β (G)SI(G) , (181)

where Vloc is the local potential

Vloc(G) =
∑

I

∆V Ilocal(G)SI(G) + Vxc(G) + 4π
ntot(G)

G2
. (182)

Wavefunction gradients are needed in optimization calculations and in the Car-
Parrinello molecular dynamics approach.
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3.4.3 Gradient for Nuclear Positions

The derivative of the total energy with respect to nuclear positions is needed for
structure optimization and in molecular dynamics, that is

∂Etotal

∂RI,s
=
∂EPP

local

∂RI,s
+
∂EPP

nonlocal

∂RI,s
+
∂EES

∂RI,s
, (183)

as the kinetic energy Ekin and the exchange and correlation energy Exc do not
depend directly on the atomic positions, the relevant parts are

∂EPP
local

∂RI,s
= −Ω

∑

G

iGs ∆V Ilocal(G)SI(G)n⋆(G) (184)

∂EPP
nonlocal

∂RI,s
=
∑

i

fi
∑

α,β∈I

{

(
FαI,i

)⋆
hIαβ

(

∂F βI,i
∂RI,s

)

+

(
∂FαI,i
∂RI,s

)⋆

hIα,βF
β
I,i

}

(185)

∂EES

∂RI,s
= −Ω

∑

G 6=0

iGs
n⋆tot(G)

G2
nIc(G)SI(G) +

∂Eovrl

∂RI,s
. (186)

The contribution of the projectors of the non-local pseudopotentials is calculated
from

∂FαI,i
∂RI,s

= − 1√
Ω

∑

G

iGs P
I
α(G)SI(G) c⋆i (G,k) . (187)

Finally, the real space part contribution of the Ewald sum is

∂Eovrl

∂RI,s
=
∑′

J

∑

L
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|RI −RJ − L|3 erfc
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2 + Rc
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ZIZJ
|RI −RJ − L|2 exp



−|RI −RJ − L|2
√

Rc
I
2 + Rc

J
2











×(RI,s −RJ,s − Ls) . (188)

The self energy Eself is independent of the atomic positions and does not contribute
to the forces.

3.4.4 Internal Stress Tensor

For calculations where the supercell is changed (e.g. the combination of the Car–
Parrinello method with the Parrinello–Rahman approach 201,55) the electronic in-
ternal stress tensor is required. The electronic part of the internal stress tensor is
defined as 440,441 (see also Sect. 4.2.3)

Πuv = − 1

Ω

∑

s

∂Etotal

∂hus
ht
sv . (189)

An important identity for the derivation of the stress tensor is

∂Ω

∂huv
= Ω(ht)−1

uv . (190)
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The derivatives of the total energy with respect to the components of the cell matrix
h can be performed on every part of the total energy individually,

∂Etotal

∂huv
=
∂Ekin

∂huv
+
∂EPP

local

∂huv
+
∂EPP

nonlocal

∂huv
+
∂Exc

∂huv
+
∂EES

∂huv
. (191)

Using Eq. (190) extensively, the derivatives can be calculated for the case of a plane
wave basis in Fourier space 202,

∂Ekin

∂huv
= −

∑

i

fi
∑

G

∑

s

GuGs(h
t)−1
sv |ci(G)|2 (192)

∂EPP
local

∂huv
= Ω

∑

I

∑

G

(
∂∆V Ilocal(G)

∂huv

)

SI(G)n⋆(G) (193)

∂EPP
nonlocal

∂huv
=
∑

i

fi
∑

I

∑

α,β∈I

{

(
FαI,i

)⋆
hIαβ

(

∂F βI,i
∂huv

)

+

(
∂FαI,i
∂huv

)⋆

hIα,βF
β
I,i

}

(194)

∂Exc

∂huv
= −

∑

G

n⋆(G) [Vxc(G)− εxc(G)] (ht)−1
uv

+
∑

s

∑

G

iGun
⋆(G)

(
∂Fxc(G)

∂(∂sn)

)

(ht)−1
sv (195)

∂EES

∂huv
= 2πΩ
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G 6=0

∑

s
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−|ntot(G)|2
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+
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+
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. (196)

Finally, the derivative of the overlap contribution to the electrostatic energy is

∂Eovrl
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×
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(RI,u −RJ,u − Lu)(RI,s −RJ,s − Ls)(h
t)−1
sv . (197)

The local part of the pseudopotential ∆V Ilocal(G) and the nonlocal projector func-
tions depend on the cell matrix h through the volume, the Bessel transform integral
and the spherical harmonics function. Their derivatives are lengthy but easy to cal-
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culate from their definitions Eqs. (140) and (141)

∂∆V Ilocal(G)

∂huv
= −∆V Ilocal(G)(ht)−1

uv

+
4π

Ω

∫ ∞

0

dr r2 ∆Vlocal(r)

(
∂j0(Gr)

∂huv

)

Ylm(θ̃, φ̃) (198)

∂FαI,i
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c⋆i (G)SI(G)

[(

∂Ylm(θ̃, φ̃)
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2
Ylm(θ̃, φ̃)(ht)−1

uv

)
∫ ∞

0

dr r2 P Iα(r) jl(Gr)

+Ylm(θ̃, φ̃)

∫ ∞

0

dr r2 P Iα(r)

(
∂jl(Gr)

∂huv

)]

. (199)

3.4.5 Non-linear Core Correction

The success of pseudopotentials in density functional calculations relies on two
assumptions. The transferability of the core electrons to different environments and
the linearization of the exchange and correlation energy. The second assumption is
only valid if the frozen core electrons and the valence state do not overlap. However,
if there is significant overlap between core and valence densities, the linearization
will lead to reduced transferability and systematic errors. The most straightforward
remedy is to include “semi–core states” in addition to the valence shell, i.e. one
more inner shell (which is from a chemical viewpoint an inert “core level”) is treated
explicitely. This approach, however, leads to quite hard pseudopotentials which call
for large plane wave cutoffs. Alternatively, it was proposed to treat the non–linear
parts of the exchange and correlation energy Exc explicitely 374. This idea does
not lead to an increase of the cutoff but ameliorates the above–mentioned problems
quite a bit. To achieve this, Exc is calculated not from the valence density n(R)
alone, but from a modified density

ñ(R) = n(R) + ñcore(R) , (200)

where ñcore(R) denotes a density that is equal to the core density of the atomic
reference state in the region of overlap with the valence density

ñcore(r) = ncore(r) if r > r0 ; (201)

with the vanishing valence density inside r0. Close to the nuclei a model density
is chosen in order to reduce the cutoff for the plane wave expansion. Finally, the
two densities and their derivatives are matched at r0. This procedure leads to a
modified total energy in Eq. (176), where Exc is replace by

Exc = Exc(n+ ñcore) , (202)

and the corresponding potential is

Vxc = Vxc(n+ ñcore) . (203)
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The sum of all modified core densities

ñcore(G) =
∑

I

ñIcore(G)SI(G) (204)

depends on the nuclear positions, leading to a new contribution to the forces

∂Exc

∂RI,s
= −Ω

∑

G

iGsV
⋆
xc(G)ñIcore(G)SI(G) , (205)

and to the stress tensor

∂Exc

∂huv
=
∑

I

∑

G

V ⋆xc(G)
∂ñIcore(G)

∂huv
SI(G) . (206)

The derivative of the core charge with respect to the cell matrix can be performed in
analogy to the formula given for the local potential. The method of the non-linear
core correction dramatically improves results on systems with alkali and transition
metal atoms. For practical applications, one should keep in mind that the non-
linear core correction should only be applied together with pseudopotentials that
were generated using the same energy expression.

3.5 Energy and Force Calculations in Practice

In Sect. 3.4 formulas for the total energy and forces were given in their Fourier
space representation. Many terms are in fact calculated most easily in this form,
but some terms would require double sums over plane waves. In particular, the
calculation of the charge density and the wavefunction gradient originating from
the local potential

∑

G′

V ⋆loc(G−G′)ci(G
′) . (207)

The expression in Eq. (207) is a convolution and can be calculated efficiently by a
series of Fourier transforms. The flow charts of this calculations are presented in
Fig. 8. Both of these modules contain a Fourier transform of the wavefunctions from
G space to the real space grid. In addition, the calculation of the wavefunction
forces requires a back transform of the product of the local potential with the
wavefunctions, performed on the real space grid, to Fourier space. This leads to
a number of Fourier transforms that is three times the number of states in the
system. If enough memory is available on the computer the second transform of
the wavefunctions to the grid can be avoided if the wavefunctions are stored in real
space during the computation of the density. These modules are further used in
the flow chart of the calculation of the local potential in Fig. 9. Additional Fourier
transforms are needed in this part of the calculation. However, the number of
transforms does not scale with the number of electrons in the system. Additional
transforms might be hidden in the module to calculate the exchange and correlation
potential (see also Fig. 7) and the Poisson solver in cases when the Hockney method
is used (see Fig. 6).

The calculation of the total energy, together with the local potential is shown
in Fig. 10. The overlap between the projectors of the nonlocal pseudopotential and
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n(R)

n(R)← |ci(R)|2

ci(R)

ci(G)

i = 1 . . .Nb

?

?

?

inv FT

FCi(G)

FCi(R) = Vloc(R)ci(R)

ci(R)

ci(G)Vloc(R)

?

?

?

?

fw FT

inv FT

Figure 8. Flow chart for the calculation of the charge density (on the left) and the force on the
wavefunction from the local potential (on the right). The charge density calculation requires Nb

(number of states) three dimensional Fourier transforms. For the application of the local potential
two Fourier transforms per state are needed. If enough memory is available the first transform can
be avoided if the wavefunction on the real space grid are stored during the density calculation.

Vloc(R)

Vxc(R) VH(R) ∆Vlocal(R)

XC
module

Poisson
solver

n(R) ntot(G) = n(G) + nc(G)

density
module

ci(G) nc(G) ∆Vlocal(G)

?

?

?

?

?

?

?

?

?

-

fw FT
inv FT

Figure 9. Flow chart for the calculation of the local potential from the Kohn–Sham orbitals.
This module calculates also the charge density in real and Fourier space and the exchange and
correlation energy, Hartree energy, and local pseudopotential energy.

the wavefunctions calculated in this part will be reused in the calculation of the
forces on the wavefunctions. There are three initialization steps marked in Fig. 9.
Step one has only to be performed at the beginning of the calculation, as the
quantities g and Eself are constants. The quantities calculated in step two depend
on the absolute value of the reciprocal space vectors. They have to be recalculated
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Etot, Vloc(R)

Ekin EPP
nl

FαI,i

ci(G)

local potential
module

SI(G), Eovrl

∆Vlocal(G), nc(G)

∆V Ilocal(G), nIc(G), P Iα(G)

g, Eself1

2

3

?

?

?

?

?

Figure 10. Flow chart for the calculation of the local potential and total energy. Initialization
steps are marked with numbers. Step 2 has to be repeated whenever the size of the unit cell
changes. Step 3 has to be repeated whenever nuclear positions have changed.

whenever the box matrix h changes. Finally, the variables in step three depend
on the atomic positions and have to be calculated after each change of the nuclear
positions. The flow charts of the calculation of the forces for the wavefunctions and
the nuclei are shown in Figs. 11 and 12.

3.6 Optimizing the Kohn-Sham Orbitals

Advances in the application of plane wave based electronic structure methods are
closely related to improved methods for the solution of the Kohn–Sham equations.
There are now two different but equally successful approaches available. Fix–point
methods based on the diagonalization of the Kohn–Sham matrix follow the more
traditionally ways that go back to the roots of basis set methods in quantum chem-
istry. Direct nonlinear optimization approaches subject to a constraint were initi-
ated by the success of the Car–Parrinello method. The following sections review
some of these methods, focusing on the special problems related to the plane wave
basis.
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Figure 11. Flow chart for the calculation of the forces on the wavefunctions. Notice that the
calculation of the overlap terms F α

I,i is done outside the loop over wavefunctions. Besides the
wavefunctions and the local potential, the structure factors and the projectors of the nonlocal
pseudopotential are input parameters to this module.
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?
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Figure 12. Flow chart for the calculation of the forces on the nuclei.

3.6.1 Initial Guess

The initial guess of the Kohn–Sham orbitals is the first step to a successful calcu-
lation. One would like to introduce as much knowledge as possible into the first
step of the calculation, but at the same time the procedure should be general and
robust. One should also take care not to introduce artifical symmetries that may
be preserved during the optimization and lead to false results. The most general
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initialization might be, choosing the wavefunction coefficients from a random dis-
tribution. It makes sense to weight the random numbers by a function reflecting
the relative importance of different basis functions. A good choice is a Gaussian
distribution in G2. This initialization scheme avoids symmetry problems but leads
to energies far off the final results and especially highly tuned optimization methods
might have problems.

A more educated guess is to use a superposition of atomic densities and then
diagonalize the Kohn–Sham matrix in an appropriate basis. This basis can be the
full plane wave basis or just a part of it, or any other reasonable choice. The
most natural choice of atomic densities and basis sets for a plane wave calculation
are the pseudo atomic density and the pseudo atomic wavefunction of the atomic
reference state used in the generation of the pseudopotential. In the CPMD code this
is one possibility, but often the data needed are not available. For this case the
default option is to generate a minimal basis out of Slater functions (see Eq. (98) in
Sect. 2.8) and combine them with the help of atomic occupation numbers (gathered
using the Aufbau principle) to an atomic density. From the superposition of these
densities a Kohn–Sham potential is constructed. The Slater orbitals are expanded
in plane waves and using the same routines as in the standard code the Kohn–Sham
and overlap matrices are calculated in this basis. The general eigenvalue problem is
solved and the eigenfunctions can easily be expressed in the plane wave basis that
are in turn used as the initial wavefunctions to the optimization routines. Similarly,
a given plane wave representation of the total wavefunction can be projected onto an
auxiliary set of atom–centered functions. This opens up the possibility to perform
population and bond–order analyses (following for instance the schemes of Mulliken
or Mayer) in plane wave–pseudopotential calculations 537.

3.6.2 Preconditioning

Optimizations in many dimensions are often hampered by the appearance of differ-
ent length scales. The introduction of a metric that brings all degrees of freedom
onto the same length scale can improve convergence considerably. The applica-
tion of such a metric is called ”preconditioning” and is used in many optimization
problems. If the variables in the optimization are decoupled the preconditioning
matrix is diagonal and becomes computationally tractable even for very large sys-
tems. Fortunately, this is to a large degree the case for a plane wave basis set. For
large G vectors the Kohn–Sham matrix is dominated by the kinetic energy which
is diagonal in the plane wave representation. Based on this observation efficient
preconditioning schemes have been proposed 616,610,308,344. The preconditioner im-
plemented in the CPMD code is based on the diagonal of the Kohn–Sham matrix
HG,G′ , which is given by

KG,G′ = HG,G δG,G′ if |G| ≥ Gc

KG,G′ = HGc,Gc
δG,G′ if |G| ≤ Gc

, (208)

where Gc is a free parameter that can be adjusted to accelerate convergence. How-
ever, it is found that the actual choice is not very critical and for practical purposes
it is convenient not to fix Gc, but to use an universal constant of 0.5 Hartree for
HGc,Gc

that in turn defines Gc for each system.
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3.6.3 Direct Methods

The success of the Car–Parrinello approach started the interest in other methods
for a direct minimization of the Kohn–Sham energy functional. These methods
optimize the total energy using the gradient derived from the Lagrange function

L = EKS ({Φi})−
∑

ij

λij (〈Φi|Φj〉 − δij) (209)

∂L
∂Φi

= HeΦi −
∑

j

〈Φi|He|Φj〉Φj . (210)

Optimization methods differ in the way orbitals are updated. A steepest descent
based scheme

ci(G)← ci(G) + αK−1
G,Gψi(G) (211)

can be combined with the preconditioner and a line search option to find the optimal
step size α. Nearly optimal α’s can be found with an interpolation based on a
quadratic polynomial. In Eq. (211) ψi(G) denote the Fourier components of the
wavefunction gradient.
Improved convergence can be achieved by replacing the steepest descent step with
a search direction based on conjugate gradients 594,232,616,23,499

ci(G)← ci(G) + αhi(G) . (212)

The conjugate directions are calculated from

h
(n)
i (G) =

{

g
(n)
i (G) n = 0

g
(n)
i (G) + γ(n−1)hn−1

i (G) n = 1, 2, 3, . . .
(213)

where

g
(n)
i (G) = K−1

G,Gψ
(n)
i (G) (214)

γ(n) =

∑

i〈g
(n+1)
i (G)|g(n+1)

i (G)〉
〈g(n)
i (G)|g(n)

i (G)〉
. (215)

A very efficient implementation of this method 616 is based on a band by band
optimization. A detailed description of this method can also be found in Ref. 472.

The direct inversion in the iterative subspace (DIIS) method 495,144,308 is a
very successful extrapolation method that can be used in any kind of optimization
problems. In quantum chemistry the DIIS scheme has been applied to wavefunc-
tion optimizations, geometry optimizations and in post–Hartree–Fock applications.
DIIS uses the information of n previous steps. Together with the position vectors

c
(k)
i (G) an estimate of the error vector e

(k)
i (G) for each previous step k is stored.

The best approximation to the final solution within the subspace spanned by the
n stored vectors is obtained in a least square sense by writing

c
(n+1)
i (G) =

n∑

k=1

dkc
(k)
i (G) , (216)
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where the dk are subject to the restriction

n∑

k=1

dk = 1 (217)

and the estimated error becomes

e
(n+1)
i (G) =

n∑

k=1

dke
(k)
i (G) . (218)

The expansion coefficients dk are calculated from a system of linear equations
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(219)

where the bkl are given by

bkl =
∑

i

〈eki (G)|eli(G)〉 . (220)

The error vectors are not known, but can be approximated within a quadratic model

e
(k)
i (G) = −K−1

G,Gψ
(k)
i (G) . (221)

In the same approximation, assuming K to be a constant, the new trial vectors are
estimated to be

ci(G) = c
(n+1)
i (G) + K−1

G,Gψ
(n+1)
i (G) , (222)

where the first derivative of the energy density functional is estimated to be

ψ
(n+1)
i (G) =

n∑

k=1

dkψ
(k)
i (G) . (223)

The methods described in this section produce new trail vectors that are not or-
thogonal. Therefore an orthogonalization step has to be added before the new
charge density is calculated

ci(G)←
∑

k

cj(G)Xji . (224)

There are different choices for the rotation matrix X that lead to orthogonal or-
bitals. Two of the computationally convenient choices are the Löwdin orthogonal-
ization

Xji = S
−1/2
ji (225)

and a matrix form of the Gram–Schmidt procedure

Xji = (GT )−1
ji , (226)
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where S is the overlap matrix and G is its Cholesky decomposition

S = GGT . (227)

Recently new methods that avoid the orthogonalization step have been intro-
duced. One of them 483 relies on modified functionals that can be optimized without
the orthogonality constraint. These functionals, originally introduced in the con-
text of linear scaling methods 417,452, have the property that their minima coincide
with the original Kohn–Sham energy functional. The methods described above can
be used to optimize the new functional.

Another approach 309 is to use a variable transformation from the expansion
coefficients of the orbitals in plane waves to a set of non–redundant orbital rotation
angles. This method was introduced in quantum chemistry 618,149,167 and is used
successfully in many optimization problems that involve a set of orthogonal orbitals.
A generalization of the orbital rotation scheme allowed the application also for cases
where the number of basis functions is orders of magnitudes bigger than the number
of occupied orbitals. However, no advantage is gained over the standard methods,
as the calculation of the gradient in the transformed variables scales the same as the
orthogonalization step. In addition, there is no simple and efficient preconditioner
available for the orbital rotation coordinates.

3.6.4 Fix-Point Methods

Originally all methods to find solutions to the Kohn–Sham equations were using
matrix diagonalization methods. It became quickly clear that direct schemes can
only be used for very small systems. The storage requirements of the Kohn–Sham
matrix in the plane wave basis and the scaling proportional to the cube of the basis
set size lead to unsurmountable problems. Iterative diagonalization schemes can be
adapted to the special needs of a plane wave basis and when combined with a proper
preconditioner lead to algorithms that are comparable to the direct methods, both
in memory requirements and over all scaling properties. Iterative diagonalization
schemes are abundant. Methods based on the Lanczos algorithm 357,151,489 can
be used as well as conjugate gradient techniques 616,97. Very good results have
been achieved by the combination of the DIIS method with the minimization of
the norm of the residual vector 698,344. The diagonalization methods have to be
combined with an optimization method for the charge density. Methods based on
mixing 153,4, quasi-Newton algorithms 92,77,319, and DIIS 495,344,345 are successfully
used. Also these methods use a preconditioning scheme. It was shown that the op-
timal preconditioning for charge density mixing is connected to the charge dielectric
matrix 153,4,299,658,48. For a plane wave basis, the charge dielectric matrix can be
approximated by expressions very close to the ones used for the preconditioning in
the direct optimization methods.

Fix-point methods have a slightly larger prefactor than most of the direct meth-
ods. Their advantage lies in the robustness and capability of treating systems with
no or small band gaps.
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3.7 Molecular Dynamics

Numerical methods to integrate the equations of motion are an important part
of every molecular dynamics program. Therefore an extended literature exists on
integration techniques (see Ref. 217 and references in there). All considerations
valid for the integration of equations of motion with classical potentials also apply
for ab initio molecular dynamics if the Born–Oppenheimer dynamics approach is
used. These basic techniques will not be discussed here.

A good initial guess for the Kohn–Sham optimization procedure is a crucial
ingredient for good performance of the Born–Oppenheimer dynamics approach. An
extrapolation scheme was devised 24 that makes use of the optimized wavefunctions
from previous time steps. This procedure has a strong connection to the basic idea
of the Car–Parrinello method, but is not essential to the method.

The remainder of this section discusses the integration of the Car–Parrinello
equations in their simplest form and explains the solution to the constraints equa-
tion for general geometric constraints. Finally, a special form of the equations of
motion will be used for optimization purposes.

3.7.1 Car–Parrinello Equations

The Car–Parrinello Lagrangian and its derived equations of motions were intro-
duced in Sect. 2.4. Here Eqs. (41), (44), and (45) are specialized to the case of
a plane wave basis within Kohn–Sham density functional theory. Specifically the
functions φi are replaced by the expansion coefficients ci(G) and the orthonormal-
ity constraint only depends on the wavefunctions, not the nuclear positions. The
equations of motion for the Car–Parrinello method are derived from this specific
extended Lagrangian

L = µ
∑

i

∑

G

|ċi(G)|2 +
1

2

∑

I

MIṘ
2
I − EKS [{G}, {RI}]

+
∑

ij

Λij

(
∑

G

c⋆i (G)cj(G)− δij
)

, (228)

where µ is the electron mass, and MI are the masses of the nuclei. Because of
the expansion of the Kohn–Sham orbitals in plane waves, the orthonormality con-
straint does not depend on the nuclear positions. For basis sets that depend on
the atomic positions (e.g. atomic orbital basis sets) or methods that introduce an
atomic position dependent metric (ultra–soft pseudopotentials 661,351, PAW 143,347,
the integration methods have to be adapted (see also Sect. 2.5). Solutions that in-
clude these cases can be found in the literature 280,351,143,310. The Euler–Lagrange
equations derived from Eq.( 228) are

µc̈i(G) = − ∂E

∂c⋆i (G)
+
∑

j

Λijcj(G) (229)

MIR̈I = − ∂E

∂RI
. (230)
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The two sets of equations are coupled through the Kohn–Sham energy functional
and special care has to be taken for the integration because of the orthonormality
constraint.

The integrator used in the CPMD code is based on the velocity Verlet / rattle

algorithm 603,638,15. The velocity Verlet algorithm requires more operations and
more storage than the Verlet algorithm 664. However, it is much easier to incorpo-
rate temperature control via velocity scaling into the velocity Verlet algorithm. In
addition, velocity Verlet allows to change the time step trivially and is conceptually
easier to handle 638,391. It is defined by the following equations

˙̃
RI(t+ δt) = ṘI(t) +

δt

2MI
FI(t) (231)

RI(t+ δt) = RI(t) + δt
˙̃
RI(t+ δt)

˙̃cI(t+ δt) = ċI(t) +
δt

2µ
fi(t)

c̃i(t+ δt) = ci(t) + δt ˙̃ci(t+ δt)

ci(t+ δt) = c̃i(t+ δt) +
∑

j

Xij cj(t)

calculate FI(t+ δt)

calculate fi(t+ δt)

ṘI(t+ δt) =
˙̃
RI(t+ δt) +

δt

2MI
FI(t+ δt)

ċ′i(t+ δt) = ˙̃ci(t+ δt) +
δt

2µ
fi(t+ δt)

ċi(t+ δt) = ċ′i(t+ δt) +
∑

j

Yij cj(t+ δt) ,

where RI(t) and ci(t) are the atomic positions of particle I and the Kohn–Sham
orbital i at time t respectively. Here, FI are the forces on atom I, and fi are the
forces on Kohn–Sham orbital i. The matrices X and Y are directly related to the
Lagrange multipliers by

Xij =
δt2

2µ
Λp
ij (232)

Yij =
δt

2µ
Λv
ij . (233)

Notice that in the rattle algorithm the Lagrange multipliers to enforce the or-
thonormality for the positions Λp and velocities Λv are treated as independent
variables. Denoting with C the matrix of wavefunction coefficients ci(G), the or-
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thonormality constraint can be written as

C†(t+ δt)C(t+ δt)− I = 0 (234)
[

C̃ + XC
]† [

C̃ + XC
]

− I = 0 (235)

C̃†C̃ + XC̃†C + C†C̃X† + XX† − I = 0 (236)

XX† + XB + B†X† = I−A , (237)

where the new matrices Aij = c̃†i (t + δt)c̃j(t + δt) and Bij = c†i (t)c̃j(t + δt) have
been introduced in Eq. (237). The unit matrix is denoted by the symbol I. By
noting that A = I +O(δt2) and B = I +O(δt), Eq. (237) can be solved iteratively
using

X(n+1) =
1

2

[

I−A + X(n) (I−B)

+ (I−B) X(n) −
(

X(n)
)2
]

(238)

and starting from the initial guess

X(0) =
1

2
(I−A) . (239)

In Eq. (238) it has been made use of the fact that the matrices X and B are real
and symmetric, which follows directly from their definitions. Eq. (238) can usually
be iterated to a tolerance of 10−6 within a few iterations.

The rotation matrix Y is calculated from the orthogonality condition on the
orbital velocities

ċ†i (t+ δt)cj(t+ δt) + c†i (t+ δt)ċj(t+ δt) = 0. (240)

Applying Eq. (240) to the trial states Ċ′ + YC yields a simple equation for Y

Y = −1

2
(Q + Q†), (241)

where Qij = c†i (t+δt)ċ
′†
i (t+δt). The fact that Y can be obtained without iteration

means that the velocity constraint condition Eq. (240) is satisfied exactly at each
time step.

3.7.2 Advanced Techniques

One advantage of the velocity Verlet integrator is that it can be easily combined
with multiple time scale algorithms 636,639 and still results in reversible dynamics.
The most successful implementation of a multiple time scale scheme in connec-
tion with the plane wave–pseudopotential method is the harmonic reference system
idea 471,639. The high frequency motion of the plane waves with large kinetic energy
is used as a reference system for the integration. The dynamics of this reference
system is harmonic and can be integrated analytically. In addition, this can be com-
bined with the basic notion of a preconditioner already introduced in the section
on optimizations. The electronic mass used in the Car–Parrinello scheme is a ficti-
tious construct (see Sect. 2.4, Eq. (45)) and it is allowed to generalize the idea by
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introducing different masses for different ”classical” degrees of freedom 473,610,639.
In agreement with the preconditioner introduced in the optimization section, the
new plane wave dependent masses are

µ(G) =

{
µ H(G,G) ≤ α
(µ/α) (1

2G
2 + V(G,G)) H(G,G) ≥ α , (242)

where H and V are the matrix elements of the Kohn–Sham matrix and the poten-
tial respectively. The reference electron mass is µ and the parameter α has been
introduced before in Eq. (208) as HGc,Gc

. With the preconditioned masses and
the harmonic reference system, the equations of motion of the system are

µ(G)c̈i(G) = −λ(G)ci(G) + δΦi(G) +
∑

j

Λijcj(G) . (243)

where δΦi(G) is the force on orbital i minus −λ(G). From Eq. (243) it is easy
to see that the frequencies ω(G) =

√

λ(G)/µ(G) are independent of G and that

there is only one harmonic frequency equal to
√

α/µ. The revised formulas for
the integration of the equations of motion for the velocity Verlet algorithm can be
found in the literature 639.

The implications of the G vector dependent masses can be seen by revisiting
the formulas for the characteristic frequencies of the electronic system Eqs. (52),
(53), and (54). The masses µ are chosen such that all frequencies ωij are approxi-
mately the same, thus optimizing both, adiabaticity and maximal time step. The
disadvantage of this method is that the average electron mass seen by the nuclei is
drastically enhanced, leading to renormalization corrections 75 on the masses MI

that are significantly higher than in the standard approach and not as simple to
estimate by an analytical expression.

3.7.3 Geometrical Constraints

Geometrical constraints are used in classical simulations to freeze fast degrees of
freedom in order to allow for larger time steps. Mainly distance constraints are
used for instance to fix intramolecular covalent bonds. These type of applications
of constraints is of lesser importance in ab initio molecular dynamics. However, in
the simulation of rare events such as many reactions, constraints play an important
role together with the method of thermodynamic integration 217. The ”blue–moon”
ensemble method 115,589 enables one to compute the potential of mean force. This
potential can be obtained directly from the average force of constraint and a geo-
metric correction term during a molecular dynamics simulation as follows:

F(ξ2)−F(ξ1) =

∫ ξ2

ξ1

dξ′
〈
∂H
∂ξ

〉cond.

ξ′
, (244)

where F is the free energy and ξ(r) a one–dimensional reaction coordinate, H the
Hamiltonian of the system and 〈· · · 〉cond.

ξ′ the conditioned average in the constraint

ensemble 589. By way of the blue moon ensemble, the statistical average is replaced
by a time average over a constrained trajectory with the reaction coordinate fixed
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at special values, ξ(R) = ξ′ , and ξ̇(R, Ṙ) = 0. The quantity to evaluate is the
mean force

dF
dξ′

=

〈
Z−1/2 [−λ+ kBTG]

〉

ξ′
〈
Z−1/2

〉

ξ′

, (245)

where λ is the Lagrange multiplier of the constraint,

Z =
∑

I

1

MI

(
∂ξ

∂RI

)2

, (246)

and

G =
1

Z2

∑

I,J

1

MIMJ

∂ξ

∂RI
· ∂2ξ

∂RI∂RJ
· ∂ξ

∂RJ
, (247)

where 〈· · · 〉ξ′ is the unconditioned average, as directly obtained from a constrained
molecular dynamics run with ξ(R) = ξ′ and

F(ξ2)−F(ξ1) =

∫ ξ2

ξ1

dξ′
dF
dξ′

(248)

finally defines the free energy difference. For the special case of a simple distance
constraint ξ(R) = |RI −RJ | the parameter Z is a constant and G = 0.

The rattle algorithm, allows for the calculation of the Lagrange multiplier of
arbitrary constraints on geometrical variables within the velocity Verlet integrator.
The following algorithm is implemented in the CPMD code. The constraints are
defined by

σ(i)({RI(t)}) = 0 , (249)

and the velocity Verlet algorithm can be performed with the following steps.

˙̃
RI = ṘI(t) +

δt

2MI
FI(t)

R̃I = RI(t) + δt
˙̃
RI

RI(t+ δt) = R̃I +
δt2

2MI
gp(t)

calculate FI(t+ δt)

Ṙ′
I =

˙̃
RI +

δt

2MI
FI(t+ δt)

ṘI(t+ δt) = Ṙ′
I +

δt

2MI
gv(t+ δt) ,

where the constraint forces are defined by

gp(t) = −
∑

i

λip
∂σ(i)({RI(t)})

∂RI
(250)

gv(t) = −
∑

i

λiv
∂σ(i)({RI(t)})

∂RI
. (251)
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The Lagrange multiplier have to be determined to ensure that the constraint on
the positions and velocities are exactly fulfilled at the end of the time step. For the
position, the constraint condition is

σ(i)({RI(t+ δt)}) = 0 . (252)

Eq. (252) is in general a system of nonlinear equations in the Lagrange multipliers
λip. These equations can be solved using a generalized Newton algorithm 491 that
can be combined with a convergence acceleration scheme based on the direct inver-
sion in the iterative subspace method 495,144. The error vectors for a given set of
Lagrange multipliers λ are calculated from

ei(λ) = −
∑

j

J−1
ij (λ)σ(j)(λ) . (253)

The Jacobian J is defined by

Jij(λ) =
∂σ(i)(λ)

∂λj
(254)

=
∑

I

∂σ(i)(λ)

∂RI(λ)

∂RI(λ)

∂λj
(255)

= −
∑

I

δt2

2MI
f c
I (λ)f c

I (0) , (256)

where f c
I (λ) =

∑

i λ
i∂σ(i)/∂RI . Typically only a few iterations are needed to

converge the Lagrange multipliers to an accuracy of 1× 10−8.
The constraint condition for the velocities can be cast into a system of linear

equations. Again, as in the case of the orthonormality constraints in the Car–
Parrinello method, the Lagrange multiplier for the velocity update can be calculated
exactly without making use of an iterative scheme. Defining the derivative matrix

AiI =
∂σ(i)

∂RI
, (257)

the velocity constraints are

σ̇(i)(t+ δt) = 0 (258)

∑

I

∂σ(i)

∂RI
ṘI = 0 (259)

−
∑

j

(
∑

I

δt2

2MI
AiIAjI

)

λv
j =

∑

I

AiIṘ′
I . (260)

The only information needed to implement a new type of constraint are the formulas
for the functional value and its derivative with respect to the nuclear coordinates
involved in the constraint.
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3.7.4 Using Car-Parrinello Dynamics for Optimizations

By adding a friction term, Car–Parrinello molecular dynamics can be turned into
a damped second order dynamics scheme (see also Sect. 2.4.6).

The friction can be applied both to the nuclear degrees of freedom and the
electronic coordinates. The resulting dynamics equation are a powerful method to
simultaneously optimize the atomic structure and the Kohn–Sham orbitals 472,610.
Harmonic reference system integration and plane wave dependent electron masses,
introduced above, are especially helpful in this context, as the derived dynamics
does not have a direct physical relevance.

Introducing a friction force proportional to the constants γn and γe the equations
of motion can readily be integrated using the velocity Verlet algorithm. The friction
terms translate into a simple rescaling of the velocities at the beginning and end of
the time step according to

ṘI(t) = γnṘI(t)

ċi(t) = γeċi(t)

VELOCITY VERLET UPDATE

ṘI(t+ δt) = γnṘI(t+ δt)

ċi(t+ δt) = γeċi(t+ δt) .

It was shown 472,610 that this scheme leads to optimizations that are competitive
with other methods described in Sect. 3.6

3.8 Data Structures and Computational Kernels

In the practical implementation of the method, mathematical symbols have to
be translated into data structures of the computer language. Then mathematical
formulas are set into computer code using the data structures. The layout of the
data structures should be such that optimal performance for the algorithms can be
achieved. The CPMD code is written in fortran77 and in the following sections the
most important data structures and computational kernels will be given in pseudo
code form. The following variables are used to denote quantities that measure
system size.

Nat number of atoms
Np number of projectors
Nb number of electronic bands or states
NPW number of plane-waves
ND number of plane-waves for densities and potentials
Nx, Ny, Nz number of grid points in x, y, and z direction
N = NxNyNz total number of grid points

In Table 3 the relative size of this variables are given for two systems. The example
for a silicon crystal assumes an energy cutoff of 13 Rydberg and s non-locality for
the pseudopotential. In the example of a water system the numbers are given per
molecule. The cutoff used was 70 Rydberg and the oxygen pseudopotential has a s
nonlocal part, the hydrogen pseudopotential is local.
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Table 3. Relative size of characteristic variables in a plane wave calculation. See text for details.

silicon water
Nat 1 3
Np 1 1
Nb 2 4
NPW 53 1000
ND 429 8000
N 1728 31250

3.8.1 CPMD Program: Data Structures

Important quantities in the pseudopotential plane–wave method depend either not
at all, linearly, or quadratically on the system size. Examples for the first kind of
data are the unit cell matrix h and the cutoff Ecut. Variables with a size that grows
linearly with the system are

r(3,Nat) nuclear positions
v(3,Nat) nuclear velocities
f(3,Nat) nuclear forces
g(3,NPW) plane–wave indices
ipg(3,NPW) mapping of G–vectors (positive part)
img(3,NPW) mapping of G–vectors (negative part)
rhog(NPW) densities (n, nc, ntot) in Fourier–space
vpot(NPW) potentials (Vloc, Vxc, VH) in Fourier–space
n(Nx,Ny,Nz) densities (n, nc, ntot) in real–space
v(Nx,Ny,Nz) potentials (Vloc, Vxc, VH) in real–space
vps(ND) local pseudopotential
rpc(ND) core charges
pro(NPW) projectors of non-local pseudopotential.

The pseudopotential related quantities vps, rpc, and pro are one–dimensional in
system size but also depend on the number of different atomic species. In the
following it is assumed that this is one. It is easy to generalize the pseudo codes
given to more than one atomic species. For real quantities that depend on G–
vectors only half of the values have to be stored. The other half can be recomputed
when needed by using the symmetry relation

A(G) = A⋆(−G) . (261)

This saves a factor of two in memory. In addition G vectors are stored in a linear
array, instead of a three-dimensional structure. This allows to store only non–zero
variables. Because there is a spherical cutoff, another reduction of a factor of two
is achieved for the memory. For the Fourier transforms the variables have to be
prepared in a three-dimensional array. The mapping of the linear array to this
structure is provided by the information stored in the arrays ipg and img.
Most of the memory is needed for the storage of quantities that grow quadratically
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with system size.

eigr(ND,Nat) structure factors
fnl(Np,Nb) overlap of projectors and bands
dfnl(Np,Nb,3) derivative of fnl
smat(Nb,Nb) overlap matrices between bands
cr(NPW,Nb) bands in Fourier space
cv(NPW,Nb) velocity of bands in Fourier space
cf(NPW,Nb) forces of bands in Fourier space

In order to save memory it is possible to store the structure factors only for the
G vectors of the wave function basis or even not to store them at all. However,
this requires that the missing structure factors are recomputed whenever needed.
The structure factors eigr and the wavefunction related quantities cr, cv, cf are
complex numbers. Other quantities, like the local pseudopotential vps, the core
charges rpc, and the projectors pro can be stored as real numbers if the factor
(−i)l is excluded.

3.8.2 CPMD Program: Computational Kernels

Most of the calculations in a plane wave code are done in only a few kernel routines.
These routines are given in this section using a pseudo code language. Where
possible an implementation using basic linear algebra (blas) routines is given. The
first kernel is the calculation of the structure factors. The exponential function of
the structure factor separates in three parts along the directions sx, sy, sz.

MODULE StructureFactor

FOR i=1:Nat

s(1:3) = 2 * PI * MATMUL[htm1(1:3,1:3),r(1:3,i)]

dp(1:3) = CMPLX[COS[s(1:3)],SIN[s(1:3)]]

dm(1:3) = CONJG[dp(1:3)]

e(0,1:3,i) = 1

FOR k=1:gmax

e(k,1:3,i) = e(k-1,1:3,i) * dp

e(-k,1:3,i) = e(-k+1,1:3,i) * dm

END

FOR j=0:ND

eigr(j,i) = e(g(1,j),1,i) * e(g(2,j),2,i) * e(g(3,j),3,i)

END

END

In the module above htm1 is the matrix (ht)−1. One of the most important calcu-
lation is the inner product of two vectors in Fourier space. This kernel appears for
example in the calculation of energies

e =
∑

G

A⋆(G)B(G) . (262)

Making use of the fact that both functions are real the sum can be restricted to half
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of the G vectors, and only real operations have to be performed. Approximately a
factor of three in operations can be save this way. Special care has to be taken for
the zero G vector. It is assumed that this plane wave component is stored in the
first position of the arrays.

MODULE DotProduct

e = A(1) * B(1)

FOR i=2:ND

ar = REAL(A(i))

ai = IMAG(A(i))

br = REAL(B(i))

bi = IMAG(B(i))

e = e + 2 * (ar * br + ai * bi)

END

This loop structure is available in the blas library, optimized on most computer
architectures. To use the blas routines for real variables, complex numbers have
to be stored as two real numbers in contiguous memory locations.

e = A(1) * B(1) + 2 * sdot(2 * ND - 2,A(2),1,B(2),1)

The calculation of overlap matrices between sets of vectors in real space is a im-
portant task in the orthogonalization step

Sij =
∑

G

A⋆i (G)Bj(G) . (263)

It can be executed by using matrix multiply routines from the blas library. The
special case of the zero G vector is handled by a routine that performs a rank 1
update of the final matrix.

MODULE Overlap

CALL SGEMM(’T’,’N’,Nb,Nb,2*NPW,2,&

& ca(1,1),2*NPW,cb(1,1),2*NPW,0,smat,Nb)

CALL SDER(Nb,Nb,-1,ca(1,1),2*NPW,cb(1,1),2*NPW,smat,Nb)

For a symmetric overlap additional time can be saved by using the symmetric
matrix multiply routine. The overlap routines scale like N2

bNPW. It is therefore
very important to have an implementation of these parts that performs close to
peek performance.

MODULE SymmetricOverlap

CALL SSYRK(’U’,’T’,Nb,2*NPW,2,ca(1,1),2*NPW,0,smat,Nb)

CALL SDER(Nb,Nb,-1,ca(1,1),2*NPW,cb(1,1),2*NPW,smat,Nb)

Another operation that scales as the overlap matrix calculations is the rotation of
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a set of wavefunctions in Fourier space

Bi(G) =
∑

j

Aj(G)Sji . (264)

Again this kernel can be executed by using the optimized blas matrix multiply
routines.

MODULE Rotation

CALL SGEMM(’N’,’N’,2*NPW,Nb,Nb,1,ca(1,1),2*NPW,&

& smat,Nb,0,cb(1,1),2*NPW)

The overlap calculation of the projectors of the nonlinear pseudopotential with
the wavefunctions in Fourier space scales as NpNbNPW. As the projectors are
stored as real quantities, the imaginary prefactor and the structure factor have
to be applied before the inner product can be calculated. The following pseudo
code calculates M projectors at a time, making use of the special structure of the
prefactor. This allows again to do all calculations with real quantities. The code
assumes that the total number of projectors is a multiple of M . A generalization
of the code to other cases is straightforward. By using batches of projectors the
overlap can be calculated using matrix multiplies. The variable lp(i) holds the
angular momentum of projector i.

MODULE FNL

FOR i=1:Np,M

IF (MOD(lp(i),2) == 0) THEN

FOR j=0:M-1

pf = -1**(lp(i+j)/2)

FOR k=1:NPW

t = pro(k) * pf

er = REAL[eigr(k,iat(i+j))]

ei = IMAG[eigr(k,iat(i+j))]

scr(k,j) = CMPLX[t * er,t * ei]

END

END

ELSE

FOR j=0:M-1

pf = -1**(lp(i+j)/2+1)

FOR k=1:NPW

t = pro(k) * pf

er = REAL[eigr(k,iat(i+j))]

ei = IMAG[eigr(k,iat(i+j))]

scr(k,j) = CMPLX[-t * ei,t * er]

END

END

END IF

scr(1,0:M-1) = scr(1,0:M-1)/2

408



CALL SGEMM(’T’,’N’,M,Nb,2*NPW,2,&

& scr(1,0),2*NPW,cr(1,1),2*NPW,0,fnl(i,1),Np)

END

Fourier transform routines are assumed to work on complex data and return
also arrays with complex numbers. The transform of data with the density cutoff is
shown in the next two pseudo code sections. It is assumed that a three dimensional
fast Fourier transform routine exists. This is in fact the case on most computers
where optimized scientific libraries are available. The next two pseudo code seg-
ments show the transform of the charge density from Fourier space to real space
and back.

MODULE INVFFT

scr(1:Nx,1:Ny,1:Nz) = 0

FOR i=1:ND

scr(ipg(1,i),ipg(2,i),ipg(3,i)) = rhog(i)

scr(img(1,i),img(2,i),img(3,i)) = CONJG[rhog(i)]

END

CALL FFT3D("INV",scr)

n(1:Nx,1:Ny,1:Nz) = REAL[scr(1:Nx,1:Ny,1:Nz)]

MODULE FWFFT

scr(1:Nx,1:Ny,1:Nz) = n(1:Nx,1:Ny,1:Nz)

CALL FFT3D("FW",scr)

FOR i=1:ND

rhog(i) = scr(ipg(1,i),ipg(2,i),ipg(3,i))

END

Special kernels are presented for the calculation of the density and the application
of the local potential. These are the implementation of the flow charts shown in
Fig. 8. The operation count of these routines is NbN log[N ]. In most applications
these routines take most of the computer time. Only for the biggest applications
possible on todays computers the cubic scaling of the orthogonalization and the
nonlocal pseudopotential become dominant. A small prefactor and the optimized
implementation of the overlap are the reasons for this.

In the Fourier transforms of the wavefunction two properties are used to speed
up the calculation. First, because the wavefunctions are real two transforms can be
done at the same time, and second, the smaller cutoff of the wavefunctions can be
used to avoid some parts of the transforms. The use of the sparsity in the Fourier
transforms is not shown in the following modules. In an actual implementation a
mask will be generated and only transforms allowed by this mask will be executed.
Under optimal circumstances a gain of almost a factor of two can be achieved.
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MODULE Density

rho(1:Nx,1:Ny,1:Nz) = 0

FOR i=1:Nb,2

scr(1:Nx,1:Ny,1:Nz) = 0

FOR j=1:NPW

scr(ipg(1,i),ipg(2,i),ipg(3,i)) = c(j,i) + I * c(j,i+1)

scr(img(1,i),img(2,i),img(3,i)) = CONJG[c(j,i) + I * c(j,i+1)]

END

CALL FFT3D("INV",scr)

rho(1:Nx,1:Ny,1:Nz) = rho(1:Nx,1:Ny,1:Nz) + &

& REAL[scr(1:Nx,1:Ny,1:Nz)]**2 + IMAG[scr(1:Nx,1:Ny,1:Nz)]**2

END

MODULE VPSI

FOR i=1:Nb,2

scr(1:Nx,1:Ny,1:Nz) = 0

FOR j=1:NPW

scr(ipg(1,i),ipg(2,i),ipg(3,i)) = c(j,i) + I * c(j,i+1)

scr(img(1,i),img(2,i),img(3,i)) = CONJG[c(j,i) + I * c(j,i+1)]

END

CALL FFT3D("INV",scr)

scr(1:Nx,1:Ny,1:Nz) = scr(1:Nx,1:Ny,1:Nz) * &

& vpot(1:Nx,1:Ny,1:Nz)

CALL FFT3D("FW",scr)

FOR j=1:NPW

FP = scr(ipg(1,i),ipg(2,i),ipg(3,i)) &

& + scr(img(1,i),img(2,i),img(3,i))

FM = scr(ipg(1,i),ipg(2,i),ipg(3,i)) &

& - scr(img(1,i),img(2,i),img(3,i))

fc(j,i) = f(i) * CMPLX[REAL[FP],IMAG[FM]]

fc(j,i+1) = f(i+1) * CMPLX[IMAG[FP],-REAL[FM]]

END

END

3.9 Parallel Computing

3.9.1 Introduction

Ab initio molecular dynamics calculation need large computer resources. Memory
and cpu time requirement make it necessary to run projects on the biggest com-
puters available. It is exclusively parallel computers that provide these resources
today. There are many different types of parallel computers available. Comput-
ers differ in their memory access system and their communication system. Widely
different performances are seen for bandwidth and latency. In addition, different
programming paradigms are supported. In order to have a portable code that can
be used on most of the current computer architectures, CPMD was programmed us-
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ing standard communication libraries and making no assumption on the topology
of the processor network and memory access system.

Minimizing the communication was the major goal in the implementation of
the parallel plane wave code in CPMD. Therefore, the algorithms had to be adapted
to the distributed data model chosen. The most important decisions concern the
data distribution of the largest arrays in the calculation. These arrays are the ones
holding information on the wavefunctions. Three distribution strategies can be
envisaged and were used before 90,137,687,688,117.

First, the data are distributed over the bands 687. Each processor holds all
expansion coefficients of an electronic band locally. Several problems arise with
this choice. The number of bands is usually of the same magnitude as the number
of processors. This leads to a severe load-balancing problem that can only be
avoided for certain magic numbers, namely if the number of bands is a multiple
of the number of cpu’s. Furthermore this approach requires to perform three-
dimensional Fourier transforms locally. The memory requirements for the Fourier
transform only increase linearly with system size, but their prefactor is very big and
a distribution of these arrays is desirable. In addition, all parts of the program that
do not contain loops over the number of bands have to be parallelized using another
scheme, leading to additional communication and synchronization overhead.

Second, the data is distributed over the Fourier space components and the
real space grid is also distributed 90,137,117. This scheme allows for a straight
forward parallelization of all parts of the program that involve loops over the Fourier
components or the real space grid. Only a few routines are not covered by this
scheme. The disadvantage is that all three-dimensional Fourier transforms require
communication.

Third, it is possible to use a combination of the above two schemes 688. This
leads to the most complicated scheme, as only a careful arrangement of algorithms
avoids the disadvantages of the other schemes while still keeping their advantages.

Additionally, it is possible to distribute the loop over k–points. As most calcu-
lation only use a limited number of k–points or even only the Γ–point, this method
is of limited use. However, combining the distribution of the k-points with one of
the other method mentioned above might result in a very efficient approach.

The CPMD program is parallelized using the distribution in Fourier and real space.
The data distribution is held fixed during a calculation, i.e. static load balancing
is used. In all parts of the program where the distribution of the plane waves does
not apply, an additional parallelization over the number of atoms or bands is used.
However, the data structures involved are replicated on all processors.

A special situation exists for the case of path integral calculations (see Sect. 4.4),
where an inherent parallelization over the Trotter slices is present. The problem is
”embarrassingly parallel” in this variable and perfect parallelism can be observed on
all types of computers, even on clusters of workstations or supercomputers (”meta–
computing”). In practice the parallelization over the Trotter slices will be combined
with one of the schemes mentioned above, allowing for good results even on mas-
sively parallel machines with several hundred processors.
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3.9.2 CPMD Program: Data Structures

In addition to the variables used in the serial version, local copies have to be de-
fined. These local variables will be indexed by a superscript indicating the processor
number. The total number of processors is P . Each processor has a certain number
of plane waves, atoms, electronic bands and real space grid points assigned.

Np
at number of atoms on processor p

Np
p number of projectors on processor p

Np
b number of electronic bands or states on processor p

Np
PW number of plane-waves on processor p

Np
D number of plane-waves for densities and potentials on processor p

Np
x , Ny, Nz number of grid points in x, y, and z direction on processor p

Np=Np
xNyNz total number of grid points on processor p

The real space grid is only distributed over the x coordinates. This decision is
related to the performance of the Fourier transform that will be discussed in more
detail in the following sections. The distribution algorithm for atoms, projectors
and bands just divides the total number of these quantities in equal junks based on
their arbitrary numbering. The algorithms that use these parallelization schemes
do not play a major role in the overall performance of the program (at least for the
systems accessible with the computers available today) and small imperfections in
load balancing can be ignored.
Data structures that are replicated on all processors:

r(3,Nat) nuclear positions
v(3,Nat) nuclear velocities
f(3,Nat) nuclear forces
fnl(Np,Nb) overlap of projectors and bands
smat(Nb,Nb) overlap matrices between bands.

Data structures that are distributed over all processors:

g(3,Np
PW) plane–wave indices

ipg(3,Np
PW) mapping of G–vectors (positive part)

img(3,Np
PW) mapping of G–vectors (negative part)

rhog(Np
PW) densities (n, nc, ntot) in Fourier–space

vpot(Np
PW) potentials (Vloc, Vxc, VH) in Fourier–space

n(Np
x,Ny,Nz) densities (n, nc, ntot) in real–space

v(Np
x,Ny,Nz) potentials (Vloc, Vxc, VH) in real–space

vps(Np
D) local pseudopotential

rpc(Np
D) core charges

pro(Np
PW) projectors of non-local pseudopotential

eigr(Np
D,Nat) structure factors

dfnl(Np,N
p
b ,3) derivative of fnl

cr(Np
PW,Nb) bands in Fourier space

cv(Np
PW,Nb) velocity of bands in Fourier space

cf(Np
PW,Nb) forces of bands in Fourier space.

Several different goals should be achieved in the distribution of the plane waves
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over processors. All processors should hold approximately the same number of
plane waves. If a plane wave for the wavefunction cutoff is on a certain processor,
the same plane wave should be on the same processor for the density cutoff. The
distribution of the plane waves should be such that at the beginning or end of a
three dimensional Fourier transform no additional communication is needed. To
achieve all of these goals the following heuristic algorithm 137 is used. The plane
waves are ordered into ”pencils”. Each pencil holds all plane waves with the same
gy and gz components. The pencils are numbered according to the total number
of plane waves that are part of it. Pencils are distributed over processors in a
”round robin” fashion switching directions after each round. This is first done for
the wavefunction cutoff. For the density cutoff the distribution is carried over, and
all new pencils are distributed according to the same algorithm. Experience shows
that this algorithm leads to good results for the load balancing on both levels, the
total number of plane waves and the total number of pencils. The number of pencils
on a processor is proportional to the work for the first step in the three-dimensional
Fourier transform.
Special care has to be taken for the processor that holds the G = 0 component.
This component has to be treated individually in the calculation of the overlaps.
The processor that holds this component will be called p0.

3.9.3 CPMD Program: Computational Kernels

There are three communication routines mostly used in the parallelization of the
CPMD code. All of them are collective communication routines, meaning that all
processors are involved. This also implies that synchronization steps are performed
during the execution of these routines. Occasionally other communication routines
have to be used (e.g. in the output routines for the collection of data) but they
do not appear in the basic computational kernels. The three routines are the
Broadcast, GlobalSum, and MatrixTranspose. In the Broadcast routine data is
send from one processor (px) to all other processors

xp ← xpx . (265)

In the GlobalSum routine a data item is replaced on each processor by the sum over
this quantity on all processors

xp ←
∑

p

xp . (266)

The MatrixTranspose changes the distribution pattern of a matrix, e.g. from row
distribution to column distribution

x(p, :)← x(:, p) . (267)

On a parallel computer with P processors, a typical latency time tL (time for the
first data to arrive) and a bandwidth of B, the time spend in the communication
routines is

Broadcast log2[P ] {tL +N/B}
GlobalSum log2[P ] {tL +N/B}
MatrixTranspose PtL +N/(PB)
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Table 4. Distribution of plane waves and ”pencils” in parallel runs on different numbers of pro-
cessors. Example for a cubic box with a volume of 6479.0979 bohr3 and a 70 Rydberg cutoff for
the wavefunctions. This is the simulation box needed for 32 water molecules at normal pressure.

wavefunction cutoff
PE plane waves pencils

max min max min
1 32043 32043 1933 1933
2 16030 16013 967 966
4 8016 8006 484 482
8 4011 4000 242 240

16 2013 1996 122 119
32 1009 994 62 59
64 507 495 32 29

128 256 245 16 14
density cutoff

PE plane waves pencils
max min max min

1 256034 256034 7721 7721
2 128043 127991 3859 3862
4 64022 63972 1932 1929
8 32013 31976 966 964

16 16011 15971 484 482
32 8011 7966 242 240
64 4011 3992 122 119

128 2006 1996 62 59

where it is assumed that the amount of data N is constant. The time needed
in Broadcast and GlobalSum will increase with the logarithm of the number of
processors involved. The time for the matrix transposition scales for one part
linearly with the number of processors. Once this part is small, then the latency
part will be dominant and increase linearly. Besides load balancing problems, the
communication routines will limit the maximum speedup that can be achieved on
a parallel computer for a given problem size. Examples will be shown in the last
part of this section.
With the distribution of the data structures given, the parallelization of the com-
putational kernels is in most cases easy. In the StructureFactor and Rotation

routines the loop over the plane waves ND has to be replaced by Np
D. The routines

performing inner products have to be adapted for the G = 0 term and the global
summation of the final result.

MODULE DotProduct

IF (p == P0) THEN

ab = A(1) * B(1) + 2 * sdot(2 * (Np
D − 1),A(2),1,B(2),1)

ELSE
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ab = 2 * sdot(2 * Np
D,A(1),1,B(1),1)

END IF

CALL GlobalSum[ab]

MODULE Overlap

CALL SGEMM(’T’,’N’,Nb,Nb,2*N
p
PW,2,&

& ca(1,1),2*Np
PW,cb(1,1),2*Np

PW,0,smat,Nb)

IF (p == P0) CALL SDER(Nb,Nb,-1,ca(1,1),2*N
p
PW,&

& cb(1,1),2*Np
PW,smat,Nb)

CALL GlobalSum[smat]

Similarly, the overlap part of the FNL routine has to be changed and the loops
restricted to the local number of plane waves.

MODULE FNL

FOR i=1:Np,M

IF (MOD(lp(i),2) == 0) THEN

FOR j=0:M-1

pf = -1**(lp(i+j)/2)

FOR k=1:Np
PW

t = pro(k) * pf

er = REAL[eigr(k,iat(i+j))]

ei = IMAG[eigr(k,iat(i+j))]

scr(k,j) = CMPLX[t * er,t * ei]

END

END

ELSE

FOR j=0:M-1

pf = -1**(lp(i+j)/2+1)

FOR k=1:Np
PW

t = pro(k) * pf

er = REAL[eigr(k,iat(i+j))]

ei = IMAG[eigr(k,iat(i+j))]

scr(k,j) = CMPLX[-t * ei,t * er]

END

END

END IF

IF (p == P0) scr(1,0:M-1) = scr(1,0:M-1)/2

CALL SGEMM(’T’,’N’,M,Nb,2*N
p
PW,2,&

& scr(1,0),2*Np
PW,cr(1,1),2*Np

PW,0,fnl(i,1),Np)

END

CALL GlobalSum[fnl]

The routines that need the most changes are the once that include Fourier trans-
forms. Due to the complicated break up of the plane waves a new mapping has to
be introduced. The map mapxy ensures that all pencils occupy contiguous memory
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locations on each processor.

MODULE INVFFT

scr1(1:Nx,1:N
D
pencil) = 0

FOR i=1:Np
D

scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i))) = rhog(i)

scr1(img(1,i),mapxy(img(2,i),img(3,i))) = CONJG[rhog(i)]

END

CALL ParallelFFT3D("INV",scr1,scr2)

n(1:Np
x,1:Ny,1:Nz) = REAL[scr2(1:Np

x,1:Ny,1:Nz)]

MODULE FWFFT

scr2(1:Np
x,1:Ny,1:Nz) = n(1:Np

x,1:Ny,1:Nz)

CALL ParallelFFT3D("FW",scr1,scr2)

FOR i=1:Np
D

rhog(i) = scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i)))

END

Due to the mapping of the y and z direction in Fourier space onto a single dimension,
input and output array of the parallel Fourier transform do have different shapes.

MODULE Density

rho(1:Np
x,1:Ny,1:Nz) = 0

FOR i=1:Nb,2

scr1(1:Nx,1:N
PW
pencil) = 0

FOR j=1:Np
PW

scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i))) = &

& c(j,i) + I * c(j,i+1)

scr1(img(1,i),mapxy(img(2,i),img(3,i))) = &

& CONJG[c(j,i) + I * c(j,i+1)]

END

CALL ParallelFFT3D("INV",scr1,scr2)

rho(1:Np
x,1:Ny,1:Nz) = rho(1:Np

x,1:Ny,1:Nz) + &

& REAL[scr2(1:Np
x,1:Ny,1:Nz)]**2 + &

& IMAG[scr2(1:Np
x,1:Ny,1:Nz)]**2

END

MODULE VPSI

FOR i=1:Nb,2

scr1(1:Nx,1:N
PW
pencil) = 0

FOR j=1:Np
PW

scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i))) = &

& c(j,i) + I * c(j,i+1)

scr1(img(1,i),mapxy(img(2,i),img(3,i))) = &

& CONJG[c(j,i) + I * c(j,i+1)]
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END

CALL ParallelFFT3D("INV",scr1,scr2)

scr2(1:Np
x,1:Ny,1:Nz) = scr2(1:Np

x,1:Ny,1:Nz) * &

& vpot(1:Np
x,1:Ny,1:Nz)

CALL ParallelFFT3D("FW",scr1,scr2)

FOR j=1:Np
PW

FP = scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i))) &

& + scr1(img(1,i),mapxy(img(2,i),img(3,i)))

FM = scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i))) &

& - scr1(img(1,i),mapxy(img(2,i),img(3,i)))

fc(j,i) = f(i) * CMPLX[REAL[FP],IMAG[FM]]

fc(j,i+1) = f(i+1) * CMPLX[IMAG[FP],-REAL[FM]]

END

END

The parallel Fourier transform routine can be built from a multiple one-dimensional
Fourier transform and a parallel matrix transpose. As mentioned above, only one
dimension of the real space grid is distributed in the CPMD code. This allows to
combine the transforms in y and z direction to a series of two-dimensional trans-
forms. The handling of the plane waves in Fourier space breaks the symmetry and
two different transpose routines are needed, depending on the direction. All the
communication is done in the routine ParallelTranspose. This routine consists
of a part where the coefficients are gathered into matrix form, the parallel matrix
transpose, and a final part where the coefficients are put back according to the
mapping used.

MODULE ParallelFFT3D(tag,a,b)

IF (tag == "INV") THEN

CALL MLTFFT1D(a)

CALL ParallelTranspose("INV",b,a)

CALL MLTFFT2D(b)

ELSE

CALL MLTFFT2D(b)

CALL ParallelTranspose("FW",b,a)

CALL MLTFFT1D(a)

END IF

All other parts of the program use the same patterns for the parallelization as the
ones shown in this section.

3.9.4 Limitations

Two types of limitations can be encountered when trying to run a parallel code on a
computer. Increasing the number of processors working on a problem will no longer
lead to a faster calculation or the memory available is not sufficient to perform a
calculation, independently on the number of processors available. The first type of
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Figure 13. Maximal theoretical speedup for a calculation with a real space grid of dimension 100
(solid line). Effective speedup for a 32 water molecule system with an energy cutoff of 70 Rydberg
and a real space grid of dimension 100 (dotted line with diamonds)

limitation is related to bad load-balancing or the computation becomes dominated
by the non-scaling part of the communication routines. Load–balancing problems
in the CPMD code are almost exclusively due to the distribution of the real space
arrays. Only the x coordinate is distributed. There are typically of the order of
100 grid points in each direction. Figure 13 shows the maximal theoretical speedup
for a calculation with a real space grid of dimension 100. The steps are due to the
load–balancing problems initiated by the granularity of the problem (the dimension
is an integer value). No further speedup can be achieved once 100 processors are
reached. The second curve in Fig. 13 shows actual calculations of the full CPMD code.
It is clearly shown that the load balancing problem in the Fourier transforms affects
the performance of this special example. Where this steps appear and how severe
the performance losses are depends of course on the system under consideration.

To overcome this limitation a method based on processor groups has been im-
plemented into the code. For the two most important routines where the real space
grid load–balancing problem appears, the calculation of the charge density and the
application of the local potential, a second level of parallelism is introduced. The
processors are arranged into a two-dimensional grid and groups are build according
to the row and column indices. Each processor is a member of its column group
(colgrp) and its row group (rowgrp). In a first step a data exchange in the column
group assures that all the data needed to perform Fourier transforms within the
row groups are available. Then each row group performs the Fourier transforms
independently and in the end another data exchange in the column groups rebuilds
the original data distribution. This scheme (shown in the pseudo code for the den-
sity calculation) needs roughly double the amount of communication. Advantages
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are the improved load–balancing for the Fourier transforms and the bigger data
packages in the matrix transposes. The number of plane waves in the row groups
(Npr

PW) is calculated as the sum over all local plane waves in the corresponding
column groups.

MODULE Density

rho(1:Npr
x ,1:Ny,1:Nz) = 0

FOR i=1:Nb,2*Pc

CALL ParallelTranspose(c(:,i),colgrp)

scr1(1:Nx,1:N
PW
pencil,r) = 0

FOR j=1:Npr
PW

scr1(ipg(1,i),mapxy(ipg(2,i),ipg(3,i))) = &

& c(j,i) + I * c(j,i+1)

scr1(img(1,i),mapxy(img(2,i),img(3,i))) = &

& CONJG[c(j,i) + I * c(j,i+1)]

END

CALL ParallelFFT3D("INV",scr1,scr2,rowgrp)

rho(1:Npr
x ,1:Ny,1:Nz) = rho(1:Npr

x ,1:Ny,1:Nz) + &

& REAL[scr2(1:Np
x,1:Ny,1:Nz)]**2 + &

& IMAG[scr2(1:Np
x,1:Ny,1:Nz)]**2

END

CALL GlobalSum(rho,colgrp)

The use of two task groups in the example shown in Fig. 13 leads to an increase of
speedup for 256 processors from 120 to 184 on a Cray T3E/600 computer.

The effect of the non-scalability of the global communication used in CPMD is
shown in Fig. 14. This example shows the percentage of time used in the global
communication routines (global sums and broadcasts) and the time spend in the
parallel Fourier transforms for a system of 64 silicon atoms with a energy cutoff of
12 Rydberg. It can clearly be seen that the global sums and broadcasts do not scale
and therefore become more important the more processors are used. The Fourier
transforms on the other hand scale nicely for this range of processors. Where
the communication becomes dominant depends on the size of the system and the
performance ratio of communication to cpu.
Finally, the memory available on each processor may become a bottleneck for large
computations. The replicated data approach for some arrays adapted in the im-
plementation of the code poses limits on the system size that can be processed on
a given type of computer. In the outline given in this chapter there are two types
of arrays that scale quadratically in system size that a replicated. The overlap
matrix of the projectors with the wavefunctions (fnl) and the overlap matrices of
the wavefunctions themselves (smat). The fnl matrix is involved in two types of
calculations where the parallel loop goes either over the bands or the projectors.
To avoid communication, two copies of the array are kept on each processor. Each
copy holds the data needed in one of the distribution patterns. This scheme needs
only a small adaptation of the code described above.
The distribution of the overlap matrices (smat) causes some more problems. In
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Figure 14. Percentage of total cpu time spend in global communication routines (solid line) and
in Fourier transform routines (dashed line) for a system of 64 silicon atoms on a Cray T3E/600
computer.

addition to the adaptation of the overlap routine, also the matrix multiply routines
needed for the orthogonalization step have to be done in parallel. Although there
are libraries for these tasks available the complexity of the code is considerably
increased.

3.9.5 Summary

Efficient parallel algorithms for the plane wave–pseudopotential density functional
theory method exist. Implementations of these algorithms are available and were
used in most of the large scale applications presented at the end of this paper
(Sect. 5). Depending on the size of the problem, excellent speedups can be achieved
even on computers with several hundreds of processors. The limitations presented
in the last paragraph are of importance for high–end applications. Together with
the extensions presented, existing plane wave codes are well suited also for the next
generation of supercomputers.

4 Advanced Techniques: Beyond . . .

4.1 Introduction

The discussion up to this point revolved essentially around the “basic” ab initio
molecular dynamics methodologies. This means in particular that classical nuclei
evolve in the electronic ground state in the microcanonical ensemble. This com-
bination allows already a multitude of applications, but many circumstances exist
where the underlying approximations are unsatisfactory. Among these cases are
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situations where

• it is necessary to keep temperature and /or pressure constant (such as during
journeys in phase diagrams or in the investigation of solid–state phase transi-
tions),

• there is a sufficient population of excited electronic states (such as in materials
with a small or vanishing electronic gap) or dynamical motion occurs in a single
excited states (such as after photoexcitation events),

• light nuclei are involved in crucial steps of a process (such as in studies of
proton transfer or muonium impurities).

In the following subsections techniques are introduced which transcede these limi-
tations. Thus, the realm of ab initio molecular dynamics is considerably increased
beyond the basic setup as discussed in general terms in Sect. 2 and concerning
its implementation in Sect. 3. The presented “advanced techniques” are selected
because they are available in the current version of the CPMD package 142, but their
implementation is not discussed in detail here.

4.2 Beyond Microcanonics

4.2.1 Introduction

In the framework of statistical mechanics all ensembles can be formally obtained
from the microcanonical or NV E ensemble – where particle number, volume and
energy are the external thermodynamic control variables – by suitable Laplace
transforms of its partition function; note that V is used for volume when it comes
to labeling the various ensembles in Sect. 4 and its subsections. Thermodynam-
ically this corresponds to Legendre transforms of the associated thermodynamic
potentials where intensive and extensive conjugate variables are interchanged. In
thermodynamics, this task is achieved by a “sufficiently weak” coupling of the
original system to an appropriate infinitely large bath or reservoir via a link that
establishes thermodynamic equilibrium. The same basic idea is instrumental in
generating distribution functions of such ensembles by computer simulation 98,250.
Here, two important special cases are discussed: thermostats and barostats, which
are used to impose temperature instead of energy and / or pressure instead of
volume as external control parameters 12,445,270,585,217.

4.2.2 Imposing Temperature: Thermostats

In the limit of ergodic sampling the ensemble created by standard molecular dynam-
ics is the microcanonical or NVE ensemble where in addition the total momentum
is conserved 12,270,217. Thus, the temperature is not a control variable in the New-
tonian approach to molecular dynamics and whence it cannot be preselected and
fixed. But it is evident that also within molecular dynamics the possibility to con-
trol the average temperature (as obtained from the average kinetic energy of the
nuclei and the energy equipartition theorem) is welcome for physical reasons. A
deterministic algorithm of achieving temperature control in the spirit of extended
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system dynamics 14 by a sort of dynamical friction mechanism was devised by Nosé
and Hoover 442,443,444,307, see e.g. Refs. 12,445,270,585,217 for reviews of this well–
established technique. Thereby, the canonical or NV T ensemble is generated in
the case of ergodic dynamics.

As discussed in depth in Sect. 2.4, the Car–Parrinello approach to ab initio
molecular dynamics works due to a dynamical separation between the physical
and fictitious temperatures of the nuclear and electronic subsystems, respectively.
This separability and thus the associated metastability condition breaks down if the
electronic excitation gap becomes comparable to the thermal energy or smaller, that
is in particular for metallic systems. In order to satisfy nevertheless adiabaticity in
the sense of Car and Parrinello it was proposed to couple separate thermostats 583 to
the classical fields that stem from the electronic degrees of freedom 74,204. Finally,
the (long–term) stability of the molecular dynamics propagation can be increased
due to the same mechanism, which enables one to increase the time step that still
allows for adiabatic time evolution 638. Note that these technical reasons to include
additional thermostats are by construction absent from any Born–Oppenheimer
molecular dynamics scheme.

It is well–known that the standard Nosé–Hoover thermostat method suffers from
non–ergodicity problems for certain classes of Hamiltonians, such as the harmonic
oscillator 307. A closely related technique, the so–called Nosé–Hoover–chain ther-
mostat 388, cures that problem and assures ergodic sampling of phase space even
for the pathological harmonic oscillator. This is achieved by thermostatting the
original thermostat by another thermostat, which in turn is thermostatted and so
on. In addition to restoring ergodicity even with only a few thermostats in the
chain, this technique is found to be much more efficient in imposing the desired
temperature.

Nosé–Hoover–chain thermostatted Car–Parrinello molecular dynamics was in-
troduced in Ref. 638. The underlying equations of motion read

MIR̈I = −∇IEKS −MI ξ̇1ṘI (268)

Qn
1 ξ̈1 =

[
∑

I

MIṘ
2
I − gkBT

]

−Qn
1 ξ̇1ξ̇2

Qn
kξ̈k =

[

Qn
k−1ξ̇

2
k−1 − kBT

]

−Qn
k ξ̇k ξ̇k+1 (1− δkK) where k = 2, . . . ,K

for the nuclear part and

µφ̈i = −HKS
e φi +

∑

ij

Λijφj − µη̇1φ̇i (269)

Qe
1η̈1 = 2

[
occ∑

i

µ 〈φi |φi 〉 − T 0
e

]

−Qe
1η̇1η̇2

Qe
l η̈l =

[

Qe
l−1η̇

2
l−1 −

1

βe

]

−Qe
l η̇lη̇l+1 (1− δlL) where l = 2, . . . , L

for the electronic contribution. These equations are written down in density func-
tional language (see Eq. (75) and Eq. (81) for the definitions of EKS and HKS

e ,
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respectively), but completely analogues expressions are operational if other elec-
tronic structure approaches are used instead. Using separate thermostatting baths
{ξk} and {ηl}, chains composed of K and L coupled thermostats are attached to
the nuclear and electronic equations of motion, respectively.

By inspection of Eq. (268) it becomes intuitively clear how the thermostat works:
ξ̇1 can be considered as a dynamical friction coefficient. The resulting “dissipative
dynamics” leads to non–Hamiltonian flow, but the friction term can aquire positive
or negative sign according to its equation of motion. This leads to damping or
acceleration of the nuclei and thus to cooling or heating if the instantaneous kinetic
energy of the nuclei is higher or lower than kBT which is preset. As a result,
this extended system dynamics can be shown to produce a canonical ensemble
in the subspace of the nuclear coordinates and momenta. In spite of being non–
Hamiltonian, Nosé–Hoover (–chain) dynamics is also distinguished by conserving
an energy quantity of the extended system, see Eq. (272).

The desired average physical temperature is given by T and g denotes the num-
ber of dynamical degrees of freedom to which the nuclear thermostat chain is cou-
pled (i.e. constraints imposed on the nuclei have to be subtracted). Similarly, T 0

e is
the desired fictitious kinetic energy of the electrons and 1/βe is the associated tem-
perature. In principle, βe should be chosen such that 1/βe = 2T 0

e /Ne where Ne is
the number of dynamical degrees of freedom needed to parameterize the wavefunc-
tion minus the number of constraint conditions. It is found that this choice requires
a very accurate integration of the resulting equations of motion (for instance by us-
ing a high–order Suzuki–Yoshida integrator, see Sect. VI.A in Ref. 638). However,
relevant quantities are rather insensitive to the particular value so that Ne can be
replaced heuristically by N ′

e which is the number of orbitals φi used to expand the
wavefunction 638.

The choice of the “mass parameters” assigned to the thermostat degrees of
freedom should be made such that the overlap of their power spectra and the ones
the thermostatted subsystems is maximal 74,638. The relations

Qn
1 =

gkBT

ω2
n

, Qn
k =

kBT

ω2
n

(270)

Qe
1 =

2T 0
e

ω2
e

, Qe
l =

1

βeω2
e

(271)

assures this if ωn is a typical phonon or vibrational frequency of the nuclear subsys-
tem (say of the order of 2000 to 4000 cm−1) and ωe is sufficiently large compared
to the maximum frequency ωmax

n of the nuclear power spectrum (say 10 000 cm−1

or larger). The integration of these equations of motion is discussed in detail in
Ref. 638 using the velocity Verlet / rattle algorithm.

In some instances, for example during equilibration runs, it is advantageous to
go one step further and to actually couple one chain of Nosé–Hoover thermostats
to every individual nuclear degree of freedom akin to what is done in path integral
molecular dynamics simulations 637,644,646, see also Sect. 4.4. This so–called “mas-
sive thermostatting approach” is found to accelerate considerably the expensive
equilibration periods within ab initio molecular dynamics, which is useful for both
Car–Parrinello and Born–Oppenheimer dynamics.
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In classical molecular dynamics two quantities are conserved during a simula-
tion, the total energy and the total momentum. The same constants of motion
apply to (exact) microcanonical Born–Oppenheimer molecular dynamics because
the only dynamical variables are the nuclear positions and momenta as in classi-
cal molecular dynamics. In microcanonical Car–Parrinello molecular dynamics the
total energy of the extended dynamical system composed of nuclear and electronic
positions and momenta, that is Econs as defined in Eq. (48), is also conserved, see
e.g. Fig. 3 in Sect. 2.4. There is also a conserved energy quantity in the case of ther-
mostatted molecular dynamics according to Eq. (268)–(269). Instead of Eq. (48)
this constant of motion reads

ENVT
cons =

occ∑

i

µ
〈

φ̇i

∣
∣
∣φ̇i

〉

+
∑

I

1

2
MIṘ

2
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+
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1

2
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2
l +
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ηl
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+ 2T 0
e η1

+

K∑

k=1

1

2
Qn
kξ̇

2
k +

K∑

k=2

kBTξk + gkBTξ1 (272)

for Nosé–Hoover–chain thermostatted canonical Car–Parrinello molecular dynam-
ics 638.

In microcanonical Car–Parrinello molecular dynamics the total nuclear momen-
tum Pn is no more a constant of motion as a result of the fictitious dynamics of the
wavefunction; this quantity as well as other symmetries and associated invariants
are discussed in Ref. 467. However, a generalized linear momentum which embraces
the electronic degrees of freedom

PCP = Pn + Pe =
∑

I

PI +

occ∑

i

µ
〈

φ̇i

∣
∣
∣−∇r

∣
∣
∣φi

〉

+ c.c. (273)

can be defined 467,436; PI = MIṘI . This quantity is a constant of motion in
unthermostatted Car–Parrinello molecular dynamics due to an exact cancellation of
the nuclear and electronic contributions 467,436. As a result, the nuclear momentum
Pn fluctuates during such a run, but in practice Pn is conserved on the average as
shown in Fig. 1 of Ref. 436. This is analogues to the behavior of the physical total
energy Ephys Eq. (49), which fluctuates slightly due to the presence of the fictitious
kinetic energy of the electrons Te Eq. (51).

As recently outlined in detail it is clear that the coupling of more than one
thermostat to a dynamical system, such as done in Eq. (268)–(269), destroys the
conservation of momentum 436, i.e. PCP is no more an invariant. In unfavorable
cases, in particular in small–gap or metallic regimes where there is a substantial
coupling of the nuclear and electronic subsystems, momentum can be transferred
to the nuclear subsystem such that Pn grows in the course of a simulation. This
problem can be cured by controlling the nuclear momentum (using e.g. scaling or
constraint methods) so that the total nuclear momentum Pn remains small 436.
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4.2.3 Imposing Pressure: Barostats

Keeping the pressure constant is a desirable feature for many applications of molec-
ular dynamics. The concept of barostats and thus constant–pressure molecular dy-
namics was introduced in the framework of extended system dynamics by Hans An-
dersen 14, see e.g. Refs. 12,270,585,217 for introductions. This method was devised to
allow for isotropic fluctuations in the volume of the supercell. A powerful extension
consists in also allowing for changes of the shape of the supercell to occur as a result
of applying external pressure 459,460,461,678, including the possibility of non–isotropic
external stress 460; the additional fictitious degrees of freedom in the Parrinello–
Rahman approach 459,460,461 are the lattice vectors of the supercell, whereas the
strain tensor is the dynamical variable in the Wentzcovitch approach 678. These
variable–cell approaches make it possible to study dynamically structural phase
transitions in solids at finite temperatures. With the birth of ab initio molecu-
lar dynamics both approaches were combined starting out with isotropic volume
fluctuations 94 à la Andersen 14 and followed by Born–Oppenheimer 681,682 and
Car–Parrinello 201,202,55,56 variable–cell techniques.

The basic idea to allow for changes in the cell shape consists in constructing
an extended Lagrangian where the primitive Bravais lattice vectors a1, a2 and a3

of the simulation cell are additional dynamical variables similar to the thermostat
degree of freedom ξ, see Eq. (268). Using the 3 × 3 matrix h = [a1,a2,a3] (which
fully defines the cell with volume Ω) the real–space position RI of a particle in this
original cell can be expressed as

RI = hSI (274)

where SI is a scaled coordinate with components SI,u ∈ [0, 1] that defines the
position of the Ith particle in a unit cube (i.e. Ωunit = 1) which is the scaled
cell 459,460, see Sect. 3.1 for some definitions. The resulting metric tensor G = hth
converts distances measured in scaled coordinates to distances as given by the
original coordinates according to Eq. (106) and periodic boundary conditions are
applied using Eq. (107).

In the case of ab initio molecular dynamics the orbitals have to be expressed
suitably in the scaled coordinates s = h−1r. The normalized original orbitals φi(r)
as defined in the unscaled cell h are transformed according to

φi(r) =
1√
Ω
φi (s) (275)

satisfying
∫

Ω

dr φ⋆i (r)φi(r) =

∫

Ωunit

ds φ⋆i (s)φi(s) (276)

so that the resulting charge density is given by

n(r) =
1

Ω
n (s) . (277)

in the scaled cell, i.e. the unit cube. Importantly, the scaled fields φi(s) and thus
their charge density n(s) do not depend on the dynamical variables associated to
the cell degrees of freedom and thus can be varied independently from the cell; the

425



original unscaled fields φi(r) do depend on the cell variables h via the normalization
by the cell volume Ω = deth as evidenced by Eq. (275).

After these preliminaries a variable–cell extended Lagrangian for ab initio molec-
ular dynamics can be postulated 202,201,55

L =
∑

i

µ
〈

φ̇i(s)
∣
∣
∣φ̇i(s)

〉

− EKS [{φi}, {hSI}]

+
∑
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Λij (〈φi(s) |φj(s) 〉 − δij)

+
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I

1

2
MI

(

Ṡt
IGṠI

)

+
1

2
W Tr ḣtḣ− p Ω , (278)

with additional nine dynamical degrees of freedom that are associated to the lat-
tice vectors of the supercell h. This constant–pressure Lagrangian reduces to the
constant–volume Car–Parrinello Lagrangian, see e.g. Eq. (41) or Eq. (58), in the
limit ḣ → 0 of a rigid cell (apart from a constant term p Ω). Here, p defines the
externally applied hydrostatic pressure, W defines the fictitious mass or inertia pa-
rameter that controls the time–scale of the motion of the cell h and the interaction
energy EKS is of the form that is defined in Eq. (75). In particular, this Lagrangian
allows for symmetry–breaking fluctuations – which might be necessary to drive
a solid–state phase transformation – to take place spontaneously. The resulting
equations of motion read

MI S̈I,u = −
3∑

v=1

∂EKS

∂RI,v

(
ht
)−1

vu
−MI

3∑

v=1

3∑
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G−1
uv ĠvsṠI,s (279)

µφ̈i(s) = − δEKS

δφ⋆i (s)
+
∑

j

Λijφj(s) (280)

W ḧuv = Ω
3∑
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(
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us − p δus

) (
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)−1

sv
, (281)

where the total internal stress tensor

Πtot
us =

1

Ω

∑

I

MI

(

Ṡt
IGṠI

)

us
+ Πus (282)

is the sum of the thermal contribution due to nuclear motion at finite temperature
and the electronic stress tensor 440,441 Π which is defined in Eq. (189) and the
following equations, see Sect. 3.4.

Similar to the thermostat case discussed in the previous section one can rec-
ognize a sort of frictional feedback mechanism. The average internal pressure
〈(1/3) Tr Πtot〉 equals the externally applied pressure p as a result of maintain-
ing dynamically a balance between p δ and the instantaneous internal stress Πtot

by virtue of the friction coefficient ∝ Ġ in Eq. (279). Ergodic trajectories obtained
from solving the associated ab initio equations of motion Eq. (279)–(281) lead to
a sampling according to the isobaric–isoenthalpic or NpH ensemble. However, the
generated dynamics is fictitious similar to the constant–temperature case discussed
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in the previous section. The isobaric–isothermal or NpT ensemble is obtained by
combining barostats and thermostats, see Ref. 389 for a general formulation and
Ref. 391 for reversible integration schemes.

An important practical issue in isobaric ab initio molecular dynamics simula-
tions is related to problems caused by using a finite basis set, i.e. “incomplete–
basis–set” or Pulay–type contributions to the stress, see also Sect. 2.5. Using a
finite plane wave basis (together with a finite number of k–points) in the presence
of a fluctuating cell 245,211 one can either fix the number of plane waves or fix the
energy cutoff; see Eq. (122) for their relation according to a rule–of–thumb. A
constant number of plane waves implies no Pulay stress but a decreasing precision
of the calculation as the volume of the supercell increases, whence leading to a sys-
tematically biased (but smooth) equation of state. The constant cutoff procedure
has better convergence properties towards the infinite–basis–set limit 245. However,
it produces in general unphysical discontinuities in the total energy and thus in the
equation of state at volumes where the number of plane waves changes abruptly,
see e.g. Fig. 5 in Ref. 211.

Computationally, the number of plane waves has to be fixed in the framework
of Car–Parrinello variable–cell molecular dynamics 94,202,201,55, whereas the energy
cutoff can easily be kept constant in Born–Oppenheimer approaches to variable–
cell molecular dynamics 681,682. Sticking to the Car–Parrinello technique a practical
remedy 202,55 to this problem consists in modifying the electronic kinetic energy
term Eq. (173) in a plane wave expansion Eq. (172) of the Kohn–Sham functional
EKS Eq. (75)

Ekin =
∑

i

fi
∑

q

1

2
|G|2 |ci(q)|2 , (283)

where the unscaled G and scaled q = 2πg reciprocal lattice vectors are interrelated
via the cell h according to Eq. (111) (thus Gr = qs) and the cutoff Eq. (121)
is defined as (1/2) |G|2 ≤ Ecut for a fixed number of q–vectors, see Sect. 3.1.
The modified kinetic energy at the Γ–point of the Brillouin zone associated to the
supercell reads
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2 |G|2 − Eeff

cut
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(285)

where A, σ and Eeff
cut are positive definite constants and the number of scaled vectors

q, that is the number of plane waves, is strictly kept fixed.
In the limit of a vanishing smoothing (A→ 0;σ →∞) the constant number of

plane wave result is recovered. In limit of a sharp step function (A → ∞;σ → 0)
all plane waves with (1/2) |G|2 ≫ Eeff

cut have a negligible weight in Ẽkin and are
thus effectively suppressed. This situation mimics a constant cutoff calculation at
an “effective cutoff” of ≈ Eeff

cut within a constant number of plane wave scheme. For
this trick to work note that Ecut ≫ Eeff

cut has to be satisfied. In the case A > 0 the
electronic stress tensor Π given by Eq. (189) features an additional term (due to
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changes in the “effective basis set” as a result of variations of the supercell), which
is related to the Pulay stress 219,660.

Finally, the strength of the smoothing A > 0 should be kept as modest as possi-
ble since the modification Eq. (284) of the kinetic energy leads to an increase of the
highest frequency in the electronic power spectrum ∝ A. This implies a decrease
of the permissible molecular dynamics time step ∆tmax according to Eq. (55). It
is found that a suitably tuned set of the additional parameters (A, σ,Eeff

cut) leads
to an efficiently converging constant–pressure scheme in conjunction with a fairly
small number of plane waves 202,55. Note that the cutoff was kept strictly con-
stant in applications of the Born–Oppenheimer implementation 679 of variable–cell
molecular dynamics 681,682, but the smoothing scheme presented here could be
implemented in this case as well. An efficient method to correct for the discontinu-
ities of static total energy calculations performed at constant cutoff was proposed
in Ref. 211. Evidently, the best way to deal with the incomplete–basis–set problem
is to increase the cutoff such that the resulting artifacts become negligible on the
physically relevant energy scale.

4.3 Beyond Ground States

4.3.1 Introduction

Extending ab initio molecular dynamics to a single non–interacting excited state is
straightforward in the framework of wavefunction–based methods such as Hartree–
Fock 365,254,191,379,281,284,316,293, generalized valence bond (GVB) 282,283,228,229,230,
complete active space SCF (CASSCF) 566,567, or full configuration interaction
(FCI) 372 approaches, see Sect. 2.7. However, these methods are computationally
quite demanding – given present–day algorithms and hardware. Promising steps
in the direction of including several excited states and non–adiabatic couplings are
also made 385,386,387,71.

Density functional theory offers an alternative route to approximately solving
electronic structure problems and recent approaches to excited–state properties
within this framework look promising. In the following, two limiting and thus
certainly idealistic situations will be considered, which are characterized by either

• many closely–spaced excited electronic states with a broad thermal distribution
of fractional occupation numbers, or by

• a single electronic state that is completely decoupled from all other states.

The first situation is encountered for metallic systems with collective excitations or
for materials at high temperatures compared to the Fermi temperature. It is noted
in passing that associating fractional occupation numbers to one–particle orbitals is
also one route to go beyond a single–determinant ansatz for constructing the charge
density 458,168. The second case applies for instance to large–gap molecular systems
which complete a chemical reaction in a single excited state as a result of e.g. a
vertical homo / lumo or instantaneous one–particle / one–hole photoexcitation.
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4.3.2 Many Excited States: Free Energy Functional

The free energy functional approach to excited–state molecular dynamics 5,7 is a
mean–field approach similar in spirit to Ehrenfest molecular dynamics, see Sect. 2.2.
The total wavefunction is first factorized into a nuclear and an electronic wave-
function Eq. (3) followed by taking the classical limit for the nuclear subsystem.
Thus, classical nuclei move in the average field as obtained from averaging over all
electronic states Eq. (25). A difference is that according to Ehrenfest molecular
dynamics the electrons are propagated in real time and can perform non–adiabatic
transitions by virtue of direct coupling terms ∝ dkl between all states Ψk subject
to energy conservation, see Sect. 2.2 and in particular Eqs. (27)–(29). The average
force or Ehrenfest force is obtained by weighting the different states k according to
their diagonal density matrix elements (that is ∝ |ck(t)|2 in Eq. (27)) whereas the
coherent transitions are driven by the off–diagonal contributions (which are ∝ c⋆kcl,
see Eq. (27)).

In the free energy approach 5,7, the excited states are populated according to
the Fermi–Dirac (finite–temperature equilibrium) distribution which is based on
the assumption that the electrons “equilibrate” more rapidly than the timescale
of the nuclear motion. This means that the set of electronic states evolves at a
given temperature “isothermally” (rather than adiabatically) under the inclusion
of incoherent electronic transitions at the nuclei move. Thus, instead of comput-
ing the force acting on the nuclei from the electronic ground–state energy it is
obtained from the electronic free energy as defined in the canonical ensemble. By
allowing such electronic transitions to occur the free energy approach transcends
the usual Born–Oppenheimer approximation. However, the approximation of an
instantaneous equilibration of the electronic subsystem implies that the electronic
structure at a given nuclear configuration {RI} is completely independent from pre-
vious configurations along a molecular dynamics trajectory. Due to this assumption
the notion “free energy Born–Oppenheimer approximation” was coined in Ref. 101

in a similar context. Certain non–equilibrium situations can also be modeled within
the free energy approach by starting off with an initial orbital occupation pattern
that does not correspond to any temperature in its thermodynamic meaning, see
e.g. Refs. 570,572,574 for such applications.

The free energy functional as defined in Ref. 5 is introduced most elegantly 7,9

by starting the discussion for the special case of non–interacting Fermions

Hs = −1

2
∇2 −

∑

I

ZI
|RI − r| (286)

in a fixed external potential due to a collection of nuclei at positions {RI}. The
associated grand partition function and its thermodynamic potential (“grand free
energy”) are given by

Ξs(µV T ) = det2 (1 + exp [−β (Hs − µ)]) (287)

Ωs(µV T ) = −kBT ln Ξs(µV T ) , (288)

where µ is the chemical potential acting on the electrons and the square of the
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determinant stems from considering the spin–unpolarized special case only. This
reduces to the well–known grand potential expression

Ωs(µV T ) = −2kBT ln det (1 + exp [−β (Hs − µ)])

= −2kBT
∑

i

ln
(

1 + exp
[

−β
(

ǫ(i)s − µ
)])

(289)

for non–interacting spin–1/2 Fermions where {ǫ(i)s } are the eigenvalues of a one–
particle Hamiltonian such as Eq. (286); here the standard identity ln detM =
Tr ln M was invoked for positive definite M.

According to thermodynamics the Helmholtz free energy F(NV T ) associated
to Eq. (288) can be obtained from an appropriate Legendre transformation of the
grand free energy Ω(µV T )

Fs(NV T ) = Ωs(µV T ) + µN +
∑

I<J

ZIZJ
|RI −RJ |

(290)

by fixing the average number of electrons N and determining µ from the conven-
tional thermodynamic condition

N = −
(
∂Ω

∂µ

)

V T

. (291)

In addition, the internuclear Coulomb interactions between the classical nuclei were
included at this stage in Eq. (290). Thus, derivatives of the free energy Eq. (290)
with respect to ionic positions −∇IFs define forces on the nuclei that could be used
in a (hypothetical) molecular dynamics scheme using non–interacting electrons.

The interactions between the electrons can be “switched on” by resorting to
Kohn–Sham density functional theory and the concept of a non–interacting refer-
ence system. Thus, instead of using the simple one–particle Hamiltonian Eq. (286)
the effective Kohn–Sham Hamiltonian Eq. (83) has to be utilized. As a result, the
grand free energy Eq. (287) can be written as

ΩKS(µV T ) = −2kBT ln
[
det
(
1 + exp

[
−β
(
HKS − µ

)])]
(292)

HKS = −1

2
∇2 −

∑

I

ZI
|RI − r| + VH(r) +

δΩxc[n]

δn(r)
(293)

HKSφi = ǫiφi (294)

where Ωxc is the exchange–correlation functional at finite temperature. By virtue of
Eq. (289) one can immediately see that ΩKS is nothing else than the “Fermi–Dirac
weighted sum” of the bare Kohn–Sham eigenvalues {ǫi}. Whence, this term is the
extension to finite temperatures of the “band–structure energy” (or of the “sum
of orbital energies” in the analogues Hartree–Fock case 604,418) contribution to the
total electronic energy, see Eq. (86).

In order to obtain the correct total electronic free energy of the interacting
electrons as defined in Eq. (86) the corresponding extra terms (properly generalized
to finite temperatures) have to be included in ΩKS. This finally allows one to write
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down the generalization of the Helmholtz free energy of the interacting many–
electron case

FKS(NV T ) = ΩKS(µV T ) + µ

∫

dr n(r) +
∑

I<J

ZIZJ
|RI −RJ |

−1

2

∫

dr VH(r) n(r) + Ωxc −
∫

dr
δΩxc[n]

δn(r)
n(r) (295)

in the framework of a Kohn–Sham–like formulation. The corresponding one–
particle density at the Γ–point is given by

n(r) =
∑

i

fi(β) |φi(r)|2 (296)

fi(β) = (1 + exp [β (ǫi − µ)])
−1

, (297)

where the fractional occupation numbers {fi} are obtained from the Fermi–Dirac
distribution at temperature T in terms of the Kohn–Sham eigenvalues {ǫi}. Finally,
ab initio forces can be obtained as usual from the nuclear gradient of FKS, which
makes molecular dynamics possible.

By construction, the total free energy Eq. (295) reduces to that of the non–
interacting toy model Eq. (290) once the electron–electron interaction is switched
off. Another useful limit is the ground–state limit β → ∞ where the free energy
FKS(NV T ) yields the standard Kohn–Sham total energy expression EKS as de-
fined in Eq. (86) after invoking the appropriate limit Ωxc → Exc as T → 0. Most
importantly, stability analysis 5,7 of Eq. (295) shows that this functional shares the
same stationary point as the exact finite–temperature functional due to Mermin 424,
see e.g. the textbooks 458,168 for introductions to density functional formalisms at
finite temperatures. This implies that the self–consistent density, which defines
the stationary point of FKS, is identical to the exact one. This analysis reveals
furthermore that, unfortunately, this stationary point is not an extremum but a
saddle point so that no variational principle and, numerically speaking, no direct
minimization algorithms can be applied. For the same reason a Car–Parrinello
fictitious dynamics approach to molecular dynamics is not a straightforward op-
tion, whereas Born–Oppenheimer dynamics based on diagonalization can be used
directly.

The band–structure energy term is evaluated in the CPMD package 142 by di-
agonalizing the Kohn–Sham Hamiltonian after a suitable “preconditioning” 5, see
Sect. 3.6.2. Specifically, a second–order Trotter approximation is used
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]
=
∑

i

exp [−βǫi] =
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i
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{exp [−∆τǫi]}P (300)
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in order to compute first the diagonal elements ρii(∆τ) of the “high–temperature”
Boltzmann operator ρ(∆τ); here ∆τ = β/P and P is the Trotter “time slice” as
introduced in Sect. 4.4.2. To this end, the kinetic and potential energies can be
conveniently evaluated in reciprocal and real space, respectively, by using the split–
operator / FFT technique 183. The Kohn–Sham eigenvalues ǫi are finally obtained
from the density matrix via ǫi = −(1/∆τ) ln ρii(∆τ). They are used in order to
compute the occupation numbers {fi}, the density n(r), the band–structure energy
ΩKS, and thus the free energy Eq. (295).

In practice a diagonalization / density–mixing scheme is employed in order to
compute the self–consistent density n(r). Grossly speaking a suitably constructed
trial input density nin (see e.g. the Appendix of Ref. 571 for such a method) is used
in order to compute the potential V KS[nin]. Then the lowest–order approximant
to the Boltzmann operator Eq. (300) is diagonalized using an iterative Lanczos–
type method. This yields an output density nout and the corresponding free energy
FKS[nout]. Finally, the densities are mixed and the former steps are iterated until a
stationary solution nscf of FKS[nscf ] is achieved, see Sect. 3.6.4 for some details on
such methods. Of course the most time–consuming part of the calculation is in the
iterative diagonalization. In principle this is not required, and it should be possible
to compute the output density directly from the Fermi–Dirac density matrix even
in a linear scaling scheme 243, thus circumventing the explicit calculation of the
Kohn–Sham eigenstates. However, to date efforts in this direction have failed, or
given methods which are too slow to be useful 9.

As a method, molecular dynamics with the free energy functional is most ap-
propriate to use when the excitation gap is either small, or in cases where the
gap might close during a chemical transformation. In the latter case no instabil-
ities are encountered with this approach, which is not true for ground–state ab
initio molecular dynamics methods. The price to pay is the quite demanding it-
erative computation of well–converged forces. Besides allowing such applications
with physically relevant excitations this method can also be straightforwardly com-
bined with k–point sampling and applied to metals at “zero” temperature. In
this case, the electronic “temperature” is only used as a smearing parameter of
the Fermi edge by introducing fractional occupation numbers, which is known to
improve greatly the convergence of these ground–state electronic structure calcula-
tions 220,232,185,676,680,343,260,344,414,243.

Finite–temperature expressions for the exchange–correlation functional Ωxc are
available in the literature. However, for most temperatures of interest the correc-
tions to the ground–state expression are small and it seems justified to use one of
the various well–established parameterizations of the exchange–correlation energy
Exc at zero temperature, see Sect. 2.7.

4.3.3 A Single Excited State: S1–Dynamics

For large–gap systems with well separated electronic states it might be desirable
to single out a particular state in order to allow the nuclei to move on the asso-
ciated excited state potential energy surface. Approaches that rely on fractional
occupation numbers such as ensemble density functional theories – including the
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free energy functional discussed in the previous section – are difficult to adapt for
cases where the symmetry and / or spin of the electronic state should be fixed 168.
An early approach in order to select a particular excited state was based on intro-
ducing a “quadratic restoring potential” which vanishes only at the eigenvalue of
the particular state 417,111.

A method that combines Roothaan’s symmetry–adapted wavefunctions with
Kohn–Sham density functional theory was proposed in Ref. 214 and used to simulate
a photoisomerization via molecular dynamics. Viewed from Kohn–Sham theory this
approach consists in building up the spin density of an open–shell system based on
a symmetry–adapted wavefunction that is constructed from spin–restricted deter-
minants (the “microstates”). Viewed from the restricted open–shell Hartree–Fock
theory à la Roothaan it amounts essentially to replacing Hartree–Fock exchange by
an approximate exchange–correlation density functional. This procedure leads to
an orbital–dependent density functional which was formulated explicitely for the
first–excited singlet state S1 in Ref. 214. The relation of this approach to previ-
ous theories is discussed in some detail in Ref. 214. In particular, the success of the
closely–related Ziegler–Rauk–Baerends “sum methods” 704,150,600 was an important
stimulus. More recently several papers 252,439,193,195,196 appeared that are similar
in spirit to the method of Ref. 214. The approach of Refs. 193,195,196 can be viewed
as a generalization of the special case (S1 state) worked out in Ref. 214 to arbitrary
spin states. In addition, the generalized method 193,195,196 was derived within the
framework of density functional theory, whereas the wavefunction perspective was
the starting point in Ref. 214.

In the following, the method is outlined with the focus to perform molecular
dynamics in the S1 state. Promoting one electron from the homo to the lumo in a
closed–shell system with 2n electrons assigned to n doubly occupied orbitals (that is
spin–restricted orbitals that have the same spatial part for both spin up α and spin
down β electrons) leads to four different excited wavefunctions or determinants, see
Fig. 15 for a sketch. Two states |t1〉 and |t2〉 are energetically degenerate triplets
t whereas the two states |m1〉 and |m2〉 are not eigenfunctions of the total spin
operator and thus degenerate mixed states m (“spin contamination”). Note in
particular that the m states do not correspond – as is well known – to singlet states
despite the suggestive occupation pattern in Fig. 15.

However, suitable Clebsch–Gordon projections of the mixed states |m1〉 and
|m2〉 yield another triplet state |t3〉 and the desired first excited singlet or S1 state
|s1〉. Here, the ansatz 214 for the total energy of the S1 state is given by

ES1
[{φi}] = 2EKS

m [{φi}]− EKS
t [{φi}] (301)

where the energies of the mixed and triplet determinants

EKS
m [{φi}] = Ts[n] +

∫

dr Vext(r)n(r) +
1

2

∫

dr VH(r)n(r) + Exc[n
α
m, n

β
m] (302)

EKS
t [{φi}] = Ts[n] +

∫

dr Vext(r)n(r) +
1

2

∫

dr VH(r)n(r) + Exc[n
α
t , n

β
t ] (303)

are expressed in terms of (restricted) Kohn–Sham spin–density functionals con-
structed from the set {φi}, cf. Eq. (75). The associated S1 wavefunction is given
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Figure 15. Four possible determinants |t1〉, |t2〉, |m1〉 and |m2〉 as a result of the promotion of a
single electron from the homo to the lumo of a closed shell system, see text for further details.
Taken from Ref. 214.

by

|s1 [{φi}] 〉 =
√

2 |m [{φi}]〉 − | t [{φi}]〉 (304)

where the “microstates” m and t are both constructed from the same set {φi} of
n+ 1 spin–restricted orbitals. Using this particular set of orbitals the total density

n(r) = nαm(r) + nβm(r) = nαt (r) + nβt (r) (305)

is of course identical for both the m and t determinants whereas their spin den-
sities clearly differ, see Fig. 16. Thus, the decisive difference between the m and
t functionals Eq. (302) and Eq. (303), respectively, comes exclusively from the
exchange–correlation functional Exc, whereas kinetic, external and Hartree energy
are identical by construction. Note that this basic philosophy can be generalized
to other spin–states by adapting suitably the microstates and the corresponding
coefficients in Eq. (301) and Eq. (304).

Having defined a density functional for the first excited singlet state the
corresponding Kohn–Sham equations are obtained by varying Eq. (301) using

Eq. (302) and Eq. (303) subject to the orthonormality constraint
∑n+1

i,j=1 Λij(〈φi |
φj〉 − δij). Following this procedure the equation for the doubly occupied orbitals
i = 1, . . . , n− 1 reads

{

−1

2
∇2 + VH(r) + Vext(r)

+ V αxc[n
α
m(r), nβm(r)] + V βxc[n

α
m(r), nβm(r)]

− 1

2
V αxc[n

α
t (r), nβt (r)] − 1

2
V βxc[n

α
t (r), nβt (r)]

}

φi(r) =
n+1∑

j=1

Λijφj(r) (306)
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Figure 16. Four patterns of spin densities nα
t , nβ

t , nα
m, and nβ

m corresponding to the two spin–
restricted determinants |t〉 and |m〉 sketched in Fig. 15, see text for further details. Taken from
Ref. 214.

whereas
{

1

2

[

− 1

2
∇2 + VH(r) + Vext(r)

]

+ V αxc[n
α
m(r), nβm(r)] − 1

2
V αxc[n

α
t (r), nβt (r)]

}

φa(r) =

n+1∑

j=1

Λajφj(r) , (307)

and
{

1

2

[

− 1

2
∇2 + VH(r) + Vext(r)

]

+ V βxc[n
α
m(r), nβm(r)]− 1

2
V αxc[n

α
t (r), nβt (r)]

}

φb(r) =

n+1∑

j=1

Λbjφj(r) . (308)

are two different equations for the two singly–occupied open–shell orbitals a and
b, respectively, see Fig. 15. Note that these Kohn–Sham–like equations fea-
ture an orbital–dependent exchange–correlation potential where V αxc[n

α
m, n

β
m] =

δExc[n
α
m, n

β
m]/δnαm and analogues definitions hold for the β and t cases.

The set of equations Eq. (306)–(308) could be solved by diagonalization of the
corresponding “restricted open–shell Kohn–Sham Hamiltonian” or alternatively by
direct minimization of the associated total energy functional. The algorithm pro-
posed in Ref. 240, which allows to properly and efficiently minimize such orbital–
dependent functionals including the orthonormality constraints, was implemented
in the CPMD package 142. Based on this minimization technique Born–Oppenheimer
molecular dynamics simulations can be performed in the first excited singlet state.
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The alternative Car–Parrinello formulation seems inconvenient because the singly
and doubly occupied orbitals would have to be constrained not to mix.

4.4 Beyond Classical Nuclei

4.4.1 Introduction

Up to this point the nuclei were approximated as classical point particles as custom-
arily done in standard molecular dynamics. There are, however, many situations
where quantum dispersion broadening and tunneling effects play an important role
and cannot be neglected if the simulation aims at being realistic – which is the
generic goal of ab initio simulations. The ab initio path integral technique 395 and
its extension to quasiclassical time evolution 411 is able to cope with such situations
at finite temperatures. It is also implemented in the CPMD package 142. The central
idea is to quantize the nuclei using Feynman’s path integrals and at the same time
to include the electronic degrees of freedom akin to ab initio molecular dynamics –
that is “on–the–fly”. The main ingredients and approximations underlying the ab
initio path integral approach 395,399,644,404 are

• the adiabatic separation of electrons and nuclei where the electrons are kept in
their ground state without any coupling to electronically excited states (Born–
Oppenheimer or “clamped–nuclei” approximation),

• using a particular approximate electronic structure theory in order to calculate
the interactions,

• approximating the continuous path integral for the nuclei by a finite discretiza-
tion (Trotter factorization) and neglecting the indistinguishability of identical
nuclei (Boltzmann statistics), and

• using finite supercells with periodic boundary conditions and finite sampling
times (finite–size and finite–time effects) as usual.

Thus, quantum effects such as zero–point motion and tunneling as well as thermal
fluctuations are included at some preset temperature without further simplifications
consisting e.g. in quasiclassical or quasiharmonic approximations, restricting the
Hilbert space, or in artificially reducing the dimensionality of the problem.

4.4.2 Ab Initio Path Integrals: Statics

For the purpose of introducing ab initio path integrals 395 it is convenient to start
directly with Feynman’s formulation of quantum–statistical mechanics in terms
of path integrals as opposed to Schrödinger’s formulation in terms of wavefunc-
tions which was used in Sect. 2.1 in order to derive ab initio molecular dynamics.
For a general introduction to path integrals the reader is referred to standard text-
books 187,188,334, whereas their use in numerical simulations is discussed for instance
in Refs. 233,126,542,120,124,646,407.

The derivation of the expressions for ab initio path integrals is based on assuming
the non–relativistic standard Hamiltonian, see Eq. (2). The corresponding canoni-
cal partition function of a collection of interacting nuclei with positions R = {RI}
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and electrons r = {ri} can be written as a path integral

Z =

∮ ′
DR

∮ ′
Dr exp

[

−1

~

∫
~β

0

dτ LE

(

{ṘI(τ)}, {RI(τ)}; {ṙi(τ)}, {ri(τ)}
)
]

(309)

where

LE = T (Ṙ) + V (R) + T (ṙ) + V (r) + V (R, r)

=
∑

I

1

2
MI

(
dRI

dτ

)2

+
∑

I<J

e2ZIZJ
|RI −RJ |

+
∑

i

1

2
me

(
dri
dτ

)2

+
∑

i<j

e2

|ri − rj |
−
∑

I,i

e2ZI
|RI − ri|

, (310)

denotes the Euclidean Lagrangian. The primes in Eq. (309) indicate that the proper
sums over all permutations corresponding to Bose–Einstein and/or Fermi–Dirac
statistics have to be included. It is important to note that in Eq. (309) and (310)
the positions {RI} and {ri} are not operators but simply functions of the imaginary
time τ ∈ [0, ~β] which parameterizes fluctuations around the classical path. This
implies that the dots denote here derivatives with respect to imaginary time τ as
defined in Eq. (310). According to Eq. (309) exact quantum mechanics at finite
temperature T = 1/kBβ is recovered if all closed paths [{RI}; {ri}] of “length” ~β
are summed up and weighted with the exponential of the Euclidean action measured
in units of ~; atomic units will be used again from here on. The partial trace over
the electronic subsystem can formally be written down exactly

Z =

∮ ′
DR exp

[

−
∫ β

0

dτ
(

T (Ṙ) + V (R)
)
]

Z [R] , (311)

with the aid of the influence functional 187,334

Z[R] =

∮ ′
Dr exp

[

−
∫ β

0

dτ (T (ṙ) + V (r) + V (R, r))

]

. (312)

Note that Z[R] is a complicated and unknown functional for a given nuclear path
configuration [{RI}]. As a consequence the interactions between the nuclei become
highly nonlocal in imaginary time due to memory effects.

In the standard Born–Oppenheimer or “clamped nuclei” approximation, see
Ref. 340 for instance, the nuclei are frozen in some configuration and the complete
electronic problem is solved for this single static configuration. In addition to the
nondiagonal correction terms that are already neglected in the adiabatic approxi-
mation, the diagonal terms are now neglected as well. Thus the potential for the
nuclear motion is simply defined as the bare electronic eigenvalues obtained from a
series of fixed nuclear configurations.

In the statistical mechanics formulation of the problem Eq. (311)–(312) the
Born–Oppenheimer approximation amounts to a “quenched average”: at imaginary
time τ the nuclei are frozen at a particular configuration R(τ) and the electrons
explore their configuration space subject only to that single configuration. This
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implies that the electronic degrees of freedom at different imaginary times τ and τ ′

become completely decoupled. Thus, the influence functional Z[R] has to be local in
τ and becomes particularly simple; a discussion of adiabatic corrections in the path
integral formulation can be found in Ref. 101. For each τ the influence functional
Z[R] is given by the partition function of the electronic subsystem evaluated for
the respective nuclear configuration R(τ). Assuming that the temperature is small
compared to the gap in the electronic spectrum only the electronic ground state
with energy E0 (R(τ)) (obtained from solving Eq. (20) without the internuclear
Coulomb repulsion term) is populated. This electronic ground state dominance
leads to the following simple expression

Z[R]BO = exp

[

−
∫ β

0

dτE0(R(τ))

]

, (313)

which yields the final result

ZBO =

∮

DR exp

[

−
∫ β

0

dτ
(

T (Ṙ) + V (R) + E0(R)
)
]

. (314)

Here nuclear exchange is neglected by assuming that the nuclei are distinguishable
so that they can be treated within Boltzmann statistics, which corresponds to the
Hartree approximation for the nuclear density matrix. The presentation given here
follows Ref. 399 and alternative derivations were given in Sect. 2.3 of Refs. 124 and
in the appendix of Ref. 427. There, a wavefunction basis instead of the position
basis as in Eq. (312) was formally used in order to evaluate the influence functional
due to the electrons.

The partition function Eq. (314) together with the Coulomb Hamiltonian Eq. (2)
leads after applying the lowest–order Trotter factorization 334 to the following dis-
cretized expression

ZBO = lim
P→∞

P∏

s=1

N∏

I=1

[(
MIP

2πβ

)3/2 ∫

dR
(s)
I

]

× exp

[

−β
P∑

s=1

{
N∑

I=1

1

2
MIω

2
P

(

R
(s)
I −R

(s+1)
I

)2

+
1

P
E0

(

{RI}(s)
)
}]

(315)

for the path integral with ω2
P = P/β2 Thus, the continuous parameter τ ∈ [0, β] is

discretized using P so–called Trotter slices or “time slices” s = 1, . . . , P of “dura-
tion” ∆τ = β/P . The paths

{

{RI}(s)
}

=
(

{RI}(1); . . . ; {RI}(P )
)

=
(

R
(1)
1 , . . . ,R

(1)
N ; . . . ; R

(P )
1 , . . . ,R

(P )
N

)

(316)

have to be closed due to the trace condition, i.e. they are periodic in imaginary

time τ which implies RI(0) ≡ RI(β) and thus R
(P+1)
I = R

(1)
I ; the internuclear

Coulomb repulsion V (R) is now included in the definition of the total electronic
energy E0. Note that Eq. (315) is an exact reformulation of Eq. (314) in the limit
of an infinitely fine discretization P →∞ of the paths.
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The effective classical partition function Eq. (315) with a fixed discretization P
is isomorphic to that for N polymers each comprised by P monomers 233,126,120.
Each quantum degree of freedom is found to be represented by a ring polymer or
necklace. The intrapolymeric interactions stem from the kinetic energy T (Ṙ) and
consist of harmonic nearest–neighbor couplings ∝ ωP along the closed chain. The

interpolymeric interaction is given by the scaled potential E
(s)
0 /P which is only

evaluated for configurations {RI}(s) at the same imaginary time slice s.
In order to evaluate operators based on an expression like Eq. (315) most nu-

merical path integral schemes utilize Metropolis Monte Carlo sampling with the
effective potential

Veff =

P∑

s=1

{
N∑

I=1

1

2
MIω

2
P

(

R
(s)
I −R

(s+1)
I

)2

+
1

P
E0

(

{RI}(s)
)
}

(317)

of the isomorphic classical system 233,126,542,120,124,646,407. Molecular dynam-
ics techniques were also proposed in order to sample configuration space, see
Refs. 99,490,462,501,273 for pioneering work and Ref. 646 for an authoritative review.
Formally a Lagrangian can be obtained from the expression Eq. (317) by extending
it

LPIMD =

P∑

s=1

{
N∑

I=1

(
1

2M ′
I

P
(s)
I −

1

2
MIω

2
P

(

R
(s)
I −R

(s+1)
I

)2
)

− 1

P
E0

(

{RI}(s)
)
}

(318)

withN×P fictitious momenta P
(s)
I and corresponding (unphysical) fictitious masses

M ′
I . At this stage the time dependence of positions and momenta and thus the time

evolution in phase space as generated by Eq. (318) has no physical meaning. The
sole use of “time” is to parameterize the deterministic dynamical exploration of
configuration space. The trajectories of the positions in configuration space, can,
however, be analyzed similar to the ones obtained from the stochastic dynamics
that underlies the Monte Carlo method.

The crucial ingredient in ab initio 395,399,644,404 as opposed to stan-
dard 233,126,542,120,124,646,407 path integral simulations consists in computing the
interactions E0 “on–the–fly” like in ab initio molecular dynamics. In analogy to this
case both the Car–Parrinello and Born–Oppenheimer approaches from Sects. 2.4
and 2.3, respectively, can be combined with any electronic structure method. The
first implementation 395 was based on the Car–Parrinello / density functional com-
bination from Sect. 2.4 which leads to the following extended Lagrangian

LAIPI =
1

P

P∑

s=1

{
∑

i

µ
〈

φ̇
(s)
i

∣
∣
∣φ̇

(s)
i

〉

− EKS
[

{φi}(s), {RI}(s)
]

+
∑

ij

Λ
(s)
ij

(〈

φ
(s)
i

∣
∣
∣φ

(s)
j

〉

− δij
)
}

+
P∑

s=1

{
∑

I

1

2
M ′
I

(

Ṙ
(s)
I

)2

−
N∑

I=1

1

2
MIω

2
P

(

R
(s)
I −R

(s+1)
I

)2
}

, (319)
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where the interaction energy EKS[{φi}(s), {RI}(s)] at time slice s is defined in
Eq. (75); note that here and in the following the dots denote derivatives with respect
to propagation time t and that EKS

0 = minEKS. The standard Car–Parrinello
Lagrangian, see e.g. Eq. (41) or Eq. (58), is recovered in the limit P = 1 which
corresponds to classical nuclei. Mixed classical / quantum systems can easily be
treated by representing an arbitrary subset of the nuclei in Eq. (319) with only one
time slice.

This simplest formulation of ab initio path integrals, however, is insufficient for
the following reason: ergodicity of the trajectories and adiabaticity in the sense
of Car–Parrinello simulations are not guaranteed. It is known since the very first
molecular dynamics computer experiments that quasiharmonic systems (such as
coupled stiff harmonic oscillators subject to weak anharmonicities, i.e. the famous
Fermi–Pasta–Ulam chains) can easily lead to nonergodic behavior in the sampling
of phase space 210. Similarly “microcanonical” path integral molecular dynamics
simulations might lead to an insufficient exploration of configuration space depend-
ing on the parameters 273. The severity of this nonergodicity problem is governed
by the stiffness of the harmonic intrachain coupling ∝ ωP and the anharmonicity of
the overall potential surface ∝ EKS/P which establishes the coupling of the modes.
For a better and better discretization P the harmonic energy term dominates ac-
cording to ∼ P whereas the mode–mixing coupling decreases like ∼ 1/P . This
problem can be cured by attaching Nosé–Hoover chain thermostats 388, see also
Sect. 4.2, to all path integral degrees of freedom 637,644.

The second issue is related to the separation of the power spectra associated
to nuclear and electronic subsystems during Car–Parrinello ab initio molecular dy-
namics which is instrumental for maintaining adiabaticity, see Sect. 2.4. In ab
initio molecular dynamics with classical nuclei the highest phonon or vibrational
frequency ωmax

n is dictated by the physics of the system, see e.g. Fig. 2. This means
in particular that an upper limit is given by stiff intramolecular vibrations which
do not exceed ωmax

n ≤ 5000 cm−1 or 150 THz. In ab initio path integral simula-
tions, on the contrary, ωmax

n is given by ωP which actually diverges with increasing
discretization as ∼

√
P . The simplest counteraction would be to compensate this

artifact by decreasing the fictitious electron mass µ until the power spectra are
again separated for a fixed value of P and thus ωP . This, however, would lead to
a prohibitively small time step because ∆tmax ∝ √µ. This dilemma can be solved
by thermostatting the electronic degrees of freedom as well 395,399,644, see Sect. 4.2
for a related discussion in the context of metals.

Finally, it is known that diagonalizing the harmonic spring interaction in
Eq. (319) leads to more efficient propagators 637,644. One of these transforma-
tion and the resulting Nosé–Hoover chain thermostatted equations of motion will
be outlined in the following section, see in particular Eqs. (331)–(337). In addi-
tion to keeping the average temperature fixed it is also possible to generate path
trajectories in the isobaric–isothermal NpT ensemble 646,392. Instead of using
Car–Parrinello fictitious dynamics in order to evaluate the interaction energy in
Eq. (318), which is implemented in the CPMD package 142, it is evident that also
the Born–Oppenheimer approach from Sect. 2.3 or the free energy functional from
Sect. 4.3 can be used. This route eliminates the adiabaticity problem and was taken
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up e.g. in Refs. 132,37,596,597,428,429,333.
A final observation concerning parallel supercomputers might be useful, see also

Sect. 3.9. It is evident from the Lagrangian Eq. (319) and the resulting equations
of motion (e.g. Eqs. (331)–(337)) that most of the numerical workload comes from
calculating the ab initio forces on the nuclei. Given a fixed path configuration
Eq. (316) the P underlying electronic structure problems are independent from
each other and can be solved without communication on P nodes of a distributed
memory machine. Communication is only necessary to send the final result, essen-
tially the forces, to a special node that computes the quantum kinetic contribution
to the energy and integrates finally the equations of motions. It is even conceiv-
able to distribute this task on different supercomputers, i.e. “meta–computing” is
within reach for such calculations. Thus, the algorithm is “embarrassingly parallel”
provided that the memory per node is sufficient to solve the complete Kohn–Sham
problem at a given time slice. If this is not the case the electronic structure cal-
culation itself has to be parallelized on another hierarchical level as outlined in
Sect. 3.9.

4.4.3 Ab Initio Path Centroids: Dynamics

Initially the molecular dynamics approach to path integral simulations was invented
merely as a trick in order to sample configuration space similar to the Monte Carlo
method. This perception changed recently with the introduction of the so–called
“centroid molecular dynamics” technique 102, see Refs. 103,104,105,665,505,506,507 for
background information. In a nutshell it is found that the time evolution of the
centers of mass or centroids

Rc
I(t) =

1

P

P∑

s′=1

R
(s′)
I (t) (320)

of the closed Feynman paths that represent the quantum nuclei contains quasi-
classical information about the true quantum dynamics. The centroid molecular
dynamics approach can be shown to be exact for harmonic potentials and to have
the correct classical limit. The path centroids move in an effective potential which
is generated by all the other modes of the paths at the given temperature. This
effective potential thus includes the effects of quantum fluctuations on the (qua-
siclassical) time evolution of the centroid degrees of freedom. Roughly speaking
the trajectory of the path centroids can be regarded as a classical trajectory of the
system, which is approximately “renormalized” due to quantum effects.

The original centroid molecular dynamics technique 102,103,104,105,665 relies on
the use of model potentials as the standard time–independent path integral simu-
lations. This limitation was overcome independently in Refs. 469,411 by combining
ab initio path integrals with centroid molecular dynamics. The resulting technique,
ab initio centroid molecular dynamics can be considered as a quasiclassical gener-
alization of standard ab initio molecular dynamics. At the same time, it preserves
the virtues of the ab initio path integral technique 395,399,644,404 to generate exact
time–independent quantum equilibrium averages.
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Here, the so–called adiabatic formulation 105,390,106 of ab initio centroid molecu-
lar dynamics 411 is discussed. In close analogy to ab initio molecular dynamics with
classical nuclei also the effective centroid potential is generated “on–the–fly” as the
centroids are propagated. This is achieved by singling out the centroid coordinates
in terms of a normal mode transformation 138 and accelerating the dynamics of
all non–centroid modes artificially by assigning appropriate fictitious masses. At
the same time, the fictitious electron dynamics à la Car–Parrinello is kept in order
to calculate efficiently the ab initio forces on all modes from the electronic struc-
ture. This makes it necessary to maintain two levels of adiabaticity in the course
of simulations, see Sect. 2.1 of Ref. 411 for a theoretical analysis of that issue.

The partition function Eq. (315), formulated in the so-called “primitive” path
variables {RI}(s), is first transformed 644,646 to a representation in terms of the
normal modes {uI}(s), which diagonalize the harmonic nearest–neighbor harmonic
coupling 138. The transformation follows from the Fourier expansion of a cyclic
path

R
(s)
I =

P∑

s′=1

a
(s′)
I exp [2πi(s− 1)(s′ − 1)/P ] , (321)

where the coefficients {aI}(s) are complex. The normal mode variables {uI}(s) are
then given in terms of the expansion coefficients according to

u
(1)
I = a

(1)
I

u
(P )
I = a

((P+2)/2)
I

u
(2s−2)
I = Re (a

(s)
I )

u
(2s−1)
I = Im (a

(s)
I ) . (322)

Associated with the normal mode transformation is a set of normal mode frequencies
{λ}(s) given by

λ(2s−1) = λ(2s−2) = 2P

[

1− cos

(
2π(s− 1)

P

)]

(323)

with λ(1) = 0 and λ(P ) = 4P . Equation (321) is equivalent to direct diagonalization
of the matrix

Ass′ = 2δss′ − δs,s′−1 − δs,s′+1 (324)

with the path periodicity condition As0 = AsP and As,P+1 = As1 and subsequent
use of the unitary transformation matrix U to transform from the “primitive”
variables {RI}(s) to the normal mode variables {uI}(s)

R
(s)
I =

√
P

P∑

s′=1

U†
ss′u

(s′)
I

u
(s)
I =

1√
P

P∑

s′=1

Uss′R
(s′)
I . (325)
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The eigenvalues of A when multiplied by P are precisely the normal mode frequen-
cies {λ}(s). Since the transformation is unitary, its Jacobian is unity. Finally, it is
convenient to define a set of normal mode masses

M
(s)
I = λ(s)MI (326)

that vary along the imaginary time axis s = 1, . . . , P , where λ(1) = 0 for the

centroid mode u
(1)
I .

Based on these transformations the Lagrangian corresponding to the ab initio
path integral expressed in normal modes is obtained 644
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, (327)

where the masses M
′(s)
I will be defined later, see Eq. (338). As indicated, the

electronic energy E(s) is always evaluated in practice in terms of the “primitive”
path variables {RI}(s) in Cartesian space. The necessary transformation to switch
forth and back between “primitive” and normal mode variables is easily performed
as given by the relations Eq. (325).

The chief advantage of the normal mode representation Eq. (325) for the present

purpose is that the lowest–order normal mode u
(1)
I

u
(1)
I = Rc

I =
1

P

P∑

s′=1

R
(s′)
I (328)

turns out to be identical to the centroid Rc
I of the path that represents the Ith

nucleus. The centroid force can also be obtained from the matrix U according
to 644

∂E

∂u
(1)
I

=
1

P

P∑

s′=1

∂E(s′)

∂R
(s′)
I

(329)

since U1s = U†
s1 = 1/

√
P and the remaining normal mode forces are given by

∂E

∂u
(s)
I

=
1√
P

P∑

s′=1

Uss′
∂E(s′)

∂R
(s′)
I

for s = 2, . . . , P (330)

in terms of the “primitive” forces −∂E(s)/∂R
(s)
I . Here, E on the left–hand–side

with no superscript (s) refers to the average electronic energy E = (1/P )
∑P
s=1E

(s)

from which the forces have to be derived. Thus, the force Eq. (329) acting on each

centroid variable u
(1)
I , I = 1, . . .N , is exactly the force averaged over imaginary

time s = 1, . . . , P , i.e. the centroid force on the Ith nucleus as already given in
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Eq. (2.21) of Ref. 644. This is the desired relation which allows in centroid molecular
dynamics the centroid forces to be simply obtained as the average force which acts

on the lowest-order normal mode Eq. (328). The non–centroid normal modes u
(s)
I ,

s = 2, 3, . . . , P of the paths establish the effective potential in which the centroid
moves.

At this stage the equations of motion for adiabatic ab initio centroid molecular
dynamics 411 can be obtained from the Euler–Lagrange equations. These equations
of motion read

M
′(1)
I ü

(1)
I = − 1

P

P∑

s=1

∂E
[
{φi}(s), {RI}(s)

]

∂R
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(331)
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where u
(s)
I,α denotes the Cartesian components of a given normal mode vector

u
(s)
I = (u

(s)
I,1, u

(s)
I,2, u

(s)
I,3). In the present scheme, independent Nosé–Hoover chain

thermostats 388 of length K are coupled to all non–centroid mode degrees of free-
dom s = 2, . . . , P
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)2
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−Qnξ̇
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I,α,k+1 (1− δkK) , k = 2, ...,K(335)

and all orbitals at a given imaginary time slice s are thermostatted by one such
thermostat chain of length L
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Qe
l η̈

(s)
l =

[

Qe
l−1

(

η̇
(s)
l−1

)2

− 1

βe

]

−Qe
l η̇

(s)
l η̇

(s)
l+1 (1− δlL) , l = 2, . . . , L ; (337)

note that for standard ab initio path integral runs as discussed in the previous
section the centroid mode should be thermostatted as well. The desired fictitious
kinetic energy of the electronic subsystem T 0

e can be determined based on a short
equivalent classical Car–Parrinello run with P = 1 and using again the relation
1/βe = 2T 0

e /6N
′
e where N ′

e is the number of orbitals. The mass parameters {Qe
l}

associated to the orbital thermostats are the same as those defined in Eq. (271),
whereas the single mass parameter Qn for the nuclei is determined by the harmonic
interaction and is given by Qn = kBT/ω

2
P = β/P . The characteristic thermostat
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frequency of the electronic degrees of freedom ωe should again lie above the fre-
quency spectrum associated to the fictitious nuclear dynamics. These is the method
that is implemented in the CPMD package 142.

An important issue for adiabatic ab initio centroid molecular dynamics 411 is
how to establish the time–scale separation of the non–centroid modes compared to

the centroid modes. This is guaranteed if the fictitious normal mode masses M
′(s)
I

are taken to be

M
′(1)
I = MI

M
′(s)
I = γ M

(s)
I , s = 2, . . . , P , (338)

where MI is the physical nuclear mass, M
(s)
I are the normal mode masses Eq. (326),

and γ is the “centroid adiabaticity parameter”; note that this corrects a misprint

of the definition of M
′(s)
I for s ≥ 2 in Ref. 411. By choosing 0 < γ ≪ 1, the

required time–scale separation between the centroid and non–centroid modes can be
controlled so that the motion of the non–centroid modes is artificially accelerated,
see Sect. 3 in Ref. 411 for a systematic study of the γ–dependence. Thus, the
centroids with associated physical masses move quasiclassically in real–time in the
centroid effective potential, whereas the fast dynamics of all other nuclear modes
s > 1 is fictitious and serves only to generate the centroid effective potential “on–
the–fly”. In this sense γ (or rather γMI) is similar to µ, the electronic adiabaticity
parameter in Car–Parrinello molecular dynamics.

4.4.4 Other Approaches

It is evident from the outset that the Born–Oppenheimer approach to generate
the ab initio forces can be used as well as Car–Parrinello molecular dynamics
in order to generate the ab initio forces on the quantum nuclei. This varia-
tion was utilized in a variety of investigations ranging from clusters to molecular
solids 132,37,596,597,428,429,333. Closely related to the ab initio path integral approach
as discussed here is a method that is based on Monte Carlo sampling of the path
integral 672. It is similar in spirit and in its implementation to Born–Oppenheimer
molecular dynamics sampling as long as only time–averaged static observables are
calculated. A semiempirical (“cndo” and “indo”) version of Born–Oppenheimer ab
initio path integral simulations was also devised 656 and applied to study muonated
organic molecules 656,657.

A non–self–consistent approach to ab initio path integral calculations was advo-
cated and used in a series of publications devoted to study the interplay of nuclear
quantum effects and electronic structure in unsaturated hydrocarbons like ben-
zene 544,503,81,543,504. According to this philosophy, an ensemble of nuclear path
configurations Eq. (316) is first generated at finite temperature with the aid of a
parameterized model potential (or using a tight–binding Hamiltonian 504). In a sec-
ond, independent step electronic structure calculations (using Pariser–Parr–Pople,
Hubbard, or Hartree–Fock Hamiltonians) are performed for this fixed ensemble of
discretized quantum paths. The crucial difference compared to the self–consistent
approaches presented above is that the creation of the thermal ensemble and the
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subsequent analysis of its electronic properties is performed using different Hamil-
tonians.

Several attempts to treat also the electrons in the path integral formulation –
instead of using wavefunctions as in the ab initio path integral family – were
published 606,119,488,449,450. These approaches are exact in principle, i.e. non–
adiabaticity and full electron–phonon coupling is included at finite temperatures.
However, they suffer from severe stability problems 121 in the limit of degenerate
electrons, i.e. at very low temperatures compared to the Fermi temperature, which
is the temperature range of interest for typical problems in chemistry and materials
science. Recent progress on computing electronic forces from path integral Monte
Carlo simulations was also achieved 708.

More traditional approaches use a wavefunction representation for both the
electrons in the ground state and for nuclear density matrix instead of path in-
tegrals. The advantage is that real–time evolution is obtained more naturally
compared to path integral simulations. A review of such methods with the em-
phasis of computing the interactions “on–the–fly” is provided in Ref. 158. An ap-
proximate wavefunction–based quantum dynamics method which includes several
excited states and their couplings was also devised and used 385,386,387,45. An alter-
native approach to approximate quantum dynamics consists in performing instan-
ton or semiclassical ab initio dynamics 325,47. Also the approximate vibrational
self–consistent field approach to nuclear quantum dynamics was combined with
“on–the–fly” MP2 electronic structure calculations 122.

5 Applications: From Materials Science to Biochemistry

5.1 Introduction

Ab initio molecular dynamics was called a “virtual matter laboratory” 234, a notion
that is fully justified in view of its relationship to experiments performed in the
real laboratory. Ideally, a system is prepared in some initial state and than evolves
according to the basic laws of physics – without the need of experimental input.
It is clear to every practitioner that this viewpoint is highly idealistic for more
than one reason, but still this philosophy allows one to compute observables with
predictive power and also implies a broad range of applicability.

It is evident from the number of papers dealing with ab initio molecular dy-
namics, see for instance Fig. 1, that a truly comprehensive survey of applications
cannot be given. Instead, the strategy chosen is to provide the reader with a wealth
of references that try cover the full scope of this approach – instead of discussing
in depth the physics or chemistry of only a few specific applications. To this end
the selection is based on a general literature search in order to suppress personal
preferences as much as possible. In addition the emphasis lies on recent applica-
tions that could not be covered in earlier reviews. This implies that several older
key reference papers on similar topics are in general missing.
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5.2 Solids, Polymers, and Materials

The first application of Car–Parrinello molecular dynamics 108 dealt with silicon,
one of the basic materials in semiconductor industry. Classic solid–state applica-
tion of this technique focus on the properties of crystals, such as those of CuCl
where anharmonicity and off–center displacements of the Cu along the (111) di-
rections were found to be important to describe the crystal structure as a func-
tion of temperature and pressure 64. Various properties of solid nitromethane 647,
crystalline nitric acid trihydrate 602, solid benzene 420, stage–1 alkali–graphite in-
tercalation compounds 286,287, and of the one-dimensional intercalation compound
2HgS•SnBr2

530 were determined based on first principles. The molecular solid HBr
undergoes various phase transitions upon compression. The dynamical behavior of
one of these phases, disordered HBr–I, could be clarified using ab initio molecular
dynamics 313. Structure, phase transitions and short–time dynamics of magnesium
silicate perovskites were analyzed in terms of ab initio trajectories 670. The A7 to
simple cubic transformation in As was investigated using ab initio molecular dynam-
ics at constant–pressure568. By applying external pressure the hydrogen sublattice
was found to undergo amorphization in Mg(OH)2 and Ca(OH)2 a phenomenon
that was interpreted in terms of frustration 511. Properties of solid cubane C8H8

were obtained in constant pressure simulations and compared to experiment 514.
Ab initio simulations of the graphitization of flat and stepped diamond (111) sur-
faces uncovered that the transition temperature depends sensibly on the type of
the surface 327.

Sliding of grain boundaries in aluminum as a typical ductile metal was generated
and analyzed in terms of atomistic rearrangements 432. Microfracture in a sample
of amorphous silicon carbide was induced by uniaxial strain and found to induce Si
segregation at the surface 226. The early stages of nitride growth on cubic silicon
carbide including wetting were modeled by depositing nitrogen atoms on the Si–
terminated SiC(001) surface 225.

Classical proton diffusion in crystalline silicon at high temperatures was an early
application to the dynamics of atoms in solids 93. Using the ab initio path integral
technique 395,399,644,404, see Sect. 4.4 the preferred sites of hydrogen and muonium
impurities in crystalline silicon 428,429, or the proton positions in HCl • nH2O crys-
talline hydrates 516 could be located. The radiation–induced formation of H⋆

2 defects
in c–Si via vacancies and self–interstitials was simulated by ab initio molecular dy-
namics 178. The classical diffusion of hydrogen in crystalline GaAs was followed in
terms of diffusion paths 668 and photoassisted reactivation of H–passivated Si donors
in GaAs was simulated based on first principles 430. Oxygen diffusion in p–doped
silicon can be enhanced by adding hydrogen to the material, an effect that could
be rationalized by simulations 107. Ab initio dynamics helped in quantifying the
barrier for the diffusion of atomic oxygen in a model silica host 279. The microscopic
mechanism of the proton diffusion in protonic conductors, in particular Sc–doped
SrTiO3 and Y–doped SrCeO3, is studied via ab initio molecular dynamics, where
is it found that covalent OH–bonds are formed during the process 561. Ionic dif-
fusion in a ternary superionic conductor was obtained by ab initio dynamics 677.
Proton motion and isomerization pathways of a complex photochromic molecular
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crystal composed of 2–(2,4–dinitrobenzyl)pyridine dyes was generated by ab initio
methods 216.

Also materials properties of polymers are investigated in quite some detail.
Early applications of semiempirical zdo molecular dynamics 666 were devoted to
defects in conducting polymers, in particular to solitons, polarons and alkali doping
in polyacetylene 666,667 as well as to muonium implanted in trans and cis polyacety-
lene 200. More recent are calculations of Young’s modulus for crystalline polyethy-
lene 271, soliton dynamics in positively charged polyacetylene chains 125, charge
localization in doped polypyrroles 140, chain rupture of polyethylene chains under
tensile load 533, the influence of a knot on the strength of a polymer strand 534, or
ion diffusion in polyethylene oxide 456.

5.3 Surfaces, Interfaces, and Adsorbates

A host of studies focusing on atoms and in particular on molecules interacting
with surfaces appeared over the years. Recent studies focussed for instance on
C2H2, C2H4, and trimethylgallium adsorbates on the GaAs(001)–(2×4) surface 248,
thiophene on the catalytically active MoS2(010) 512 or RuS2

580 surfaces, small
molecules on a nitric acid monohydrate crystal surface 624, CO on Si(001) 314, small
molecules on TiO2

554,41, sulfur on Si(100) at various coverages 707, and sulfuric
acid adsorbed on ZrO2(101) and ZrO2(001) 269.

Specific to ab initio molecular dynamics is its capability to describe also
chemisorption as well as dynamical processes on (and of) surfaces including surface
reactions 500. The ab initio calculations of surface phonons in semiconductor sur-
faces can be based on the frozen–phonon, linear–response or nowadays molecular
dynamics approaches, see Ref. 218 for a discussion and comparison. A review on
the structure and energetics of oxide surfaces including molecular processes occur-
ring on such surfaces is provided in Ref. 235, whereas Ref. 256 concentrates on the
interaction of hydrogen with clean and adsorbate covered metal and semiconductor
surfaces.

Recent applications in surface science include the transition from surface vibra-
tions to liquid–like diffusional dynamics of the Ge(111) surface 607, the diffusion of Si
adatoms on a double–layer stepped Si(001) surface 330, the structure of chemisorbed
acetylene on the Si(001)–(2×1) surface 423, chemisorption of quinizarin on α–
Al2O3

212,213, the diffusion of a single Ga adatom on the GaAs(100)–c(4×4) sur-
face 367, homoepitaxial crystal growth on Si(001) and the low–temperature dynam-
ics of Si(111)–(7×7) 595,611, dissociation of an H2O molecule on MgO 358,359, disso-
ciation of Cl2 on GaAs(110) 380, chlorine adsorption and reactions on Si(100) 691,
molecular motion of NH3 on MgO 358, dynamics and reactions of hydrated α–
alumina surfaces 289, molecular vs. dissociative adsorption of water layers on
MgO(100) as a function of coverage 448, oxidation of CO on Pt(111) 8,705, the
reaction HCl + HOCl → H2O + Cl2 as it occurs on an ice surface 373, or desorp-
tion of D2 from Si(100) 255. Thermal contraction, the formation of adatom-vacancy
pairs, and finally premelting was observed in ab initio simulations of the Al(110)
surface at temperatures up to 900 K 415 Early stages of the oxidation of a Mg(0001)
surface by direct attack of molecular O2 was dynamically simulated 96 including
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the penetration of the oxidation layer into the bulk. Similarly, the growth of an
oxide layer was generated on an Si(100) surface 653.

The water–Pd(100), water–O/Pd(100) and water–Si(111) interfaces were simu-
lated based on ab initio molecular dynamics 336,655. Water covering the surface of
a microscopic model of muscovite mica is found to form a two–dimensional network
of hydrogen bonds, called two–dimensional ice, on that surface 447. The metal–
organic junction of monolayers of Pd–porphyrin and perylene on Au(111) was ana-
lyzed using an ab initio approach 355. An interesting possibility is to compute the
tip–surface interactions in atomic force microscopy as e.g. done for a neutral silicon
tip interacting with an InP(110) surface 619 or Si(111) 481,482.

5.4 Liquids and Solutions

Molecular liquids certainly belong to the classic realm of molecular dynamics simu-
lations. Water was and still is a challenge 581 for both experiment and simulations
due to the directional nature and the weakness of the hydrogen bonds which leads
to delicate association phenomena. Pioneering ab initio simulations of pure wa-
ter at ambient 352 and supercritical conditions 205 were reported only a few years
ago. More recently, these gradient–corrected density functional theory–based simu-
lations were extended into several directions 587,573,575,576,579,118. In the mean time
(minimal–basis) Hartree–Fock ab initio molecular dynamics 291 as well as more ap-
proximate schemes 455 were also applied to liquid water. Since chemical reactions
often occur in aqueous media the solvation properties of water are of utmost impor-
tance so that the hydration of ions 403,620,621,377,502 and small molecules 353,354,433

was investigated. Similarly to water liquid HF is a strongly associated liquid which
features short–lived hydrogen–bonded zig–zag chains 521. Another associated liq-
uid, methanol, was simulated at 300 K using an adaptive finite–element method 634

in conjunction with Born–Oppenheimer molecular dynamics 635. In agreement with
experimental evidence, the majority of the molecules is found to be engaged in short
linear hydrogen–bonded chains with some branching points 635. Partial reviews on
the subject of ab initio simulations as applied to hydrogen–bonded liquids can be
found in the literature 586,406,247.

The ab initio simulated solvation behavior of “unbound electrons” in liquid
ammonia at 260 K was found to be consistent with the physical picture extracted
from experiment 155,156. Similarly, ab initio molecular dynamics of dilute 553,203 and
concentrated 569 molten Kx·(KCl)1−x mixtures were performed at 1300 K entering
the metallic regime. The structure of liquid ammonia at 273 K was investigated
with a variety of techniques so that limitations of using classical nuclei, simple point
charge models, small systems, and various density functionals could be assessed 164.

Ab initio molecular dynamics is also an ideal tool to study other complex fluids
with partial covalency, metallic fluids, and their transformations as a function of
temperature, pressure, or concentration. The properties of water–free KF • nHF
melts depend crucially on polyfluoride anions HmF−

m+1 and solvated K+ cations.
Ab initio simulations allow for a direct comparison of these complexes in the liquid,
gaseous and crystalline phase 515. The changes of the measured structure factor
of liquid sulfur as a function of temperature can be rationalized on the atomistic
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level by various chain and ring structures that can be statistically analyzed in ab
initio molecular dynamics simulations 631. Liquid GeSe2 is characterized by strong
chemical bonds that impose a structure beyond the usual very short distances due
to network formation 416. Zintl–alloys such as liquid NaSn 552 or KPb 556 have very
interesting bonding properties that manifest themselves in strong temperature– and
concentration dependences of their structure factors (including the appearance of
the so–called first sharp diffraction peak 555) or electric conductivities.

Metals are ideal systems to investigate the metal–insulator transition upon ex-
pansion of the liquid 346,63 or melting 689. Liquid copper was simulated at 1500 K:
structural and dynamical data were found to be in excellent agreement with exper-
imental 464. Transport coefficients of liquid metals (including in particular extreme
conditions) can also be obtained from first principles molecular dynamics using the
Green–Kubo formalism 571,592. The microscopic mechanism of the semiconductor–
metal transition in liquid As2Se3 could be rationalized in terms of a structural
change as found in ab initio simulations performed as a function of temperature
and pressure 563. The iii–v semiconductors, such as GaAs, assume metallic behav-
ior when melted, whereas the ii–vi semiconductor CdTe does not. The different
conductivities could be traced back to pronounced structural dissimilarities of the
two systems in the melt 236.

5.5 Glasses and Amorphous Systems

Related to the simulation of dynamically disordered fluid systems are investiga-
tions of amorphous or glassy materials. In view of the severe limitations on system
size and time scale (and thus on correlation lengths and times) ab initio molecular
dynamics can only provide fairly local information in this sense. Within these inher-
ent constraints the microscopic structure of amorphous selenium 304 and tetrahedral
amorphous carbon 384, the amorphization of silica 684, boron doping in amorphous
Si:H 181 or in tetrahedral amorphous carbon 227, as well as the Raman spectrum 465

and dynamic structure factor 466 of quartz glass and their relation to short–range
order could be studied.

The properties of supercooled CdTe were compared to the behavior in the liq-
uid state in terms of its local structure 237. Defects in amorphous Si1−xGex alloys
generated by ab initio annealing were found to explain ESR spectra of this sys-
tem 329. The infrared spectrum of a sample of amorphous silicon was obtained
and found to be in quantitative agreement with experimental data 152. The CO2

insertion into a model of argon–bombarded porous SiO2 was studied 508. In partic-
ular the electronic properties of amorphous GaN were investigated using ab initio
methods 601.

Larger systems and longer annealing times are accessible after introducing more
approximations into the first principle treatment of the electronic structure that
underlies ab initio molecular dynamics. Using such methods 551, a host of different
amorphous carbon nitride samples with various stoichiometries and densities could
be generated and characterized in terms of trends 675. Similarly, the pressure–
induced glass–to–crystal transition in condensed sodium was investigated 22 and two
structural models of amorphous GaN obtained at different densities were examined
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in terms of their electronic structure 601.

5.6 Matter at Extreme Conditions

A strong advantage of ab initio simulations is their predictive power also at ex-
treme conditions, an area where molecular dynamics relying on fitted potential
models might encounter severe difficulties. Thus, high pressures and / or high tem-
peratures such as those in the earth’s core, on other planets, or on stars can be
easily achieved in the virtual laboratory. This opens up the possibility to study
phase transformations and chemical reactions at such conditions 56. Furthermore,
conditions of geophysical and astrophysical interest can nowadays be produced in
the real laboratory, using techniques based on diamond anvil cells, shock waves, or
lasers. The limitations of these experimental approaches are, however, not so much
related to generating the extreme conditions as one might expect, but rather to
measuring observables.

In the virtual laboratory this information is accessible and the melting of
diamond at high pressure 222, the phase transformation from the antiferromag-
netic insulating δ–O2 phase to a nonmagnetic metallic molecular ζ–O2 phase 557,
the phase diagram of carbon at high pressures and temperatures 261 as well as
transformations of methane 13, carbon monoxide 54, molecular CO2

267,558, water
ice 363,364,58,50,51,52, solid 305,337,65,66,333 and hot fluid 5 hydrogen, solid Ar(H2)2

53

under pressure could be probed. Along similar lines properties of a liquid Fe–S mix-
ture under earth’s core conditions 11, the viscosity of liquid iron 690,592, the sound
velocity of dense hydrogen at conditions on jupiter 6, the phase diagram of water
and ammonia up to 7000 K and 300 GPa 118, the laser heating of silicon 570,572

and graphite 574 etc. were investigated at extreme state points. A review on ab
initio simulations relevant to minerals at conditions found in the earth’s mantle is
provided in Ref. 683.

5.7 Clusters, Fullerenes, and Nanotubes

Investigations of clusters by ab initio molecular dynamics were among the first
applications of this technique. Here, the feasibility to conduct finite–temperature
simulations and in particular the possibility to search globally for minima turned
out to be instrumental 302,31,303,550,517,519, see e.g. Refs. 16,321,32 for reviews.
Such investigations focus more and more on clusters with varying composi-
tion 518,293,199,348,349,161. Cluster melting is also accessible on an ab initio foot-
ing 84,531,525,526 and molecular clusters, complexes or cluster aggregates are actively
investigated 612,645,613,70,596,597,133,701,524.

Iii–v semiconductor clusters embedded in sodalite show quantum confinement
and size effects that can be rationalized by ab initio simulations 625,95. Supported
clusters such as Cun on an MgO(100) surface are found to diffuse by “rolling” and
“twisting” motions with very small barriers 438. The diffusion of protonated helium
clusters in various sodalite cages was generated using ab initio dynamics 198. Photo–
induced structural changes in Se chains and rings were generated by a vertical
homo → lumo excitation and monitored by ab initio dynamics 306. With the
discovery and production of finite carbon assemblies ab initio investigations of the
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properties of fullerenes 19,17,451, the growth process of nanotubes 127,62,72, or the
electrical conductivity of nanowires 38,272 became of great interest.

5.8 Complex and Floppy Molecules

The determination of the structure of a RNA duplex including its hydration wa-
ter 311, investigations of geometry and electronic structure of porphyrins and por-
phyrazines 356, and the simulation of a bacteriochlorophyll crystal 381 are some
applications to large molecules. Similarly, the “carboplatin” complex 623– a drug
with large ligands – as well as the organometallic complex Alq(3) 148 – an electro-
luminescent material used in organic light–emitting diodes – were investigated with
respect to structural, dynamical and electronic properties.

The organometallic compound C2H2Li2 has an unexpected ground–state struc-
ture that was found by careful ab initio simulated annealing 521. In addition, this
complex shows at high temperatures intramolecular hydrogen migration that is
mediated via a lithium hydride unit 521. Ground–state fluxionality of protonated
methane CH+

5
397,408 including some isotopomers 409 and of protonated acetylene

C2H+
3

400 was shown to be driven by quantum effects. The related dynamical
exchange of atoms in these molecules can also be excited by thermal fluctua-
tions 630,85,401. In addition it was shown that CH+

5 is three–center two–electron
bonded and that this bonding topology does not qualitatively change in the pres-
ence of strong quantum motion 402. The fluxional behavior of the protonated ethane
molecular ion C2H+

7 was investigated by ab initio molecular dynamics as well 172.
The neutral and ionized SiH5 and Si2H3 species display a rich dynamical be-

havior which was seen during ab initio molecular dynamics simulations 246. The
lithium pentamer Li5 was found to perform pseudorotational motion on a time
scale of picoseconds or faster at temperatures as low as 77 K 231. Using ab initio
instanton dynamics the inversion splitting of the NH3, ND3, and PH3 molecules
due to the umbrella mode was estimated 325. Similarly, a semiclassical ab initio
dynamics approach as used to compute the tunneling rate for intramolecular pro-
ton transfer in malonaldehyde 47. Ab initio simulated annealing can be used to
explore the potential energy landscape and to locate various minima, such as for
instance done for protonated water clusters 673. Molecular dynamics simulations of
the trimethylaluminum Al(CH3)3 have been carried out in order to investigate the
properties of the gas–phase dimer 29. The structures and vibrational frequencies
of tetrathiafulvalene in different oxidation states was probed by ab initio molec-
ular dynamics 324. Implanted muons in organic molecules (benzene, 3–quinolyl
nitronyl nitroxide, para–pyridyl nitronyl nitroxide, phenyl nitronyl nitroxide and
para–nitrophenyl nitronyl nitroxide) were investigated using approximate ab ini-
tio path integral simulations that include the strong quantum broadening of the
muonium 656,657.

5.9 Chemical Reactions and Transformations

Early applications of ab initio molecular dynamics were devoted to reactive scat-
tering in the gas phase such as CH2 + H2 → CH4

669 or H− + CH4 → CH4 +
H− 365. The “on–the–fly” approach can be compared to classical trajectory cal-
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culations on very accurate global potential energy surfaces. This was for instance
done for the well–studied exothermic exchange reaction F + H2 → HF + H in
Ref. 565. Other gas phase reactions studied were Li(2p) + H2 → LiH(1Σ) + H(1S)
in Ref. 387, F + C2H4 → C2H3F + H in Ref. 83, 2O3 → 3O2 in Ref. 170, F− +
CH3Cl → CH3F + Cl− in Ref. 605, hydroxyl radical with nitrogen dioxide radi-
cal 165, formaldehyde radical anion with CH3Cl in Ref. 700, the reduction of OH•

with 3-hexanone 215 or the hydrolysis (or solvolysis, SN2 nucleophilic substitution)
of methyl chloride with water 2,3. Photoreactions of molecules slowly become ac-
cessible to ab initio dynamics, such as for instance the cis–trans photoisomerization
in ethylene 46, excited–state dynamics in conjugated polymers 71, bond breaking
in the S8 ring 562, transformations of diradicales 195,196, or the S0 → S1 photo
isomerization of formaldimine 214.

In addition to allowing to study complex gas phase chemistry, ab initio molecular
dynamics opened the way to simulate reactions in solution at finite temperatures.
This allows liquid state chemistry to take place in the virtual laboratory where
thermal fluctuations and solvation effects are included. Some applications out of
this emerging field are the cationic polymerization of 1,2,5–trioxane 146,147, the
initial steps of the dissociation of HCl in water 353,354, the formation of sulfuric
acid by letting SO3 react in liquid water 421 or the acid–catalyzed addition of water
to formaldehyde 422.

Proton transfer is a process of broad interest and implications in many fields.
Intramolecular proton transfer was studied recently in malonaldehyde 695,47, a Man-
nich base 182, and formic acid dimers 427. Pioneering ab initio molecular dynamics
simulations of proton and hydroxyl diffusion in liquid water were reported in the
mid nineties 640,641,642. Related to this problem is the auto–dissociation of pure
water at ambient conditions 628,629. Since recently it became possible to study
proton motion including nuclear quantum effects 645,410,412 by using the ab initio
path integral technique 395,399,644,404, see Sect. 4.4.

Ab initio molecular dynamics also allows chemical reactions to take place in solid
phases, in particular if a constant pressure methodology is used 56, see Sect. 4.2.
For instance solid state reactions such as pressure–induced transformations of
methane 13 and carbon monoxide 54 or the polymerization 57 and amorphization 56

of acetylene were investigated.

5.10 Catalysis and Zeolites

The polymerization of olefines is an important class of chemical reactions that is
operated on the industrial scale. In the light of such applications the detailed un-
derstanding of these reactions might lead to the design of novel catalysts. Driven
by such stimulations several catalysts were investigated in detail such as metal
alkyles 609, platinum–phospine complexes 141, or Grubbs’ ruthenium–phosphine
complexes 1, metallocenes 696. In addition, elementary steps of various chemi-
cal processes were the focus of ab initio molecular dynamics simulations. Among
those are chain branching and termination steps in polymerizations 696, ethylene
metathesis 1, “living polymerization” of isoprene with ethyl lithium 522, Ziegler–
Natta heterogenous polymerization of ethylene 79,80, Reppe carbonylation of Ni–
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CH=CH2 using Cl(CO)2
20, or Sakakura–Tanaka functionalization 382. As in the

real laboratory, side reactions can occur also in the virtual laboratory, such as e.g.
the β–hydrogen elimination as an unpredicted reaction path 383. A digression on
using finite–temperature ab initio dynamics in homogeneous catalysis research can
be found in Ref. 697.

Zeolites often serve as catalysists as well and are at the same time ideal can-
didates for finite–temperature ab initio simulations in view of their chemical com-
plexity. A host of different studies 559,100,268,614,545,206,560,598,207,315,208,209,546 con-
tributed greatly to the understanding of these materials and the processes occurring
therein such as the initial stages of the methanol to gasoline conversion 599. Het-
erogenous catalysts are often poisoned, which was for instance studied in the case
of hydrogen dissociation on the Pd(100) surface in the presence adsorbed sulfur
layers 257.

5.11 Biophysics and Biochemistry

Applications of ab initio molecular dynamics to molecules and processes of interest
in life sciences begin to emerge 18,113. Investigations related to these interests are
investigations of the crystal structure of a hydrated RNA duplex (sodium guanylyl–
3’–5’–cytidine nona–hydrate) 311, structure models for the cytochrom P450 enzyme
family 547,548,549, nanotubular polypeptides 112, a synthetic biomimetic model of
galactose oxidase 523, aspects of the process of vision in form of the 11–cis to
all–trans isomerization in rhodopsin 67,68,474, interconversion pathways of the pro-
tonated β–ionone Schiff base 615, or of the binding properties of small molecules
of physiological relevance such as O2, CO or NO to iron–porphyrines and its com-
plexes 527,528,529.

Proton transport throught water wires is an important biophysical process in
the chemiosmotic theory for biochemical ATP production. Using the ab initio
path integral technique 395,399,644,404 the properties of linear water wires with an
excess proton were studied at room temperature 419. Amino acids are important
ingredients as they are the building blocks of polypeptides, which in turn form
channels and pores for ion exchange. Motivated by their ubiquity, glycine and
alanine as well as some of their oligopeptides and helical (periodic) polypeptides
were studied in great detail 323.

5.12 Outlook

Ab initio molecular dynamics is by now not only a standard tool in academic re-
search but also becomes increasingly attractive to industrial researchers. Analysis
of data bases, see caption of Fig. 1 for details, uncovers that quite a few companies
seem to be interested in this methodology. Researchers affiliated to Bayer, Corning,
DSM, Dupont, Exxon, Ford, Hitachi, Hoechst, Kodak, NEC, Philips, Pirelli, Shell,
Toyota, Xerox and others cite the Car–Parrinello paper Ref. 108 or use ab initio
molecular dynamics in their work. This trend will certainly be enhanced by the
availability of efficient and general ab initio molecular dynamics packages which are
commercially available.
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442. S. Nosé and M. L. Klein, Mol. Phys. 50, 1055 (1983).
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We give an account of theoretical methods for calculations on atoms and molecules
in a relativistic quantum-mechanical framework. After a short introduction into the
nature of relativistic effects, we describe fully numerical methods for 4-component
atomic structure calculations. The account closes with a detailed discussion of
approximate relativistic methods for the description of the electronic structure of
molecules.

1 Qualitative description of relativistic effects

At the beginning of the last century, Albert Einstein discovered the special and
general theory of relativity which turned out to be the key to a unified description
of classical mechanics and electrodynamics. It turns out that in particular in the
case of fast-moving particles, non-relativistic mechanics is an approximation to rel-
ativistic physics. In the framework of non-relativistic quantum mechanics, methods
have been developed to accurately describe the electronic structure of light atoms
and molecules consisting of light atoms. Most organic compounds belong to this
category, but even in these cases there are subtle effects requiring a relativistic
treatment, which are important for the interpretation of highly accurate experi-
ments in spectroscopy. The so-called relativistic effects begin to play a major role
in heavy atoms and their compounds. This is due to the fact that the relativistic
effects on energies and other physical quantities increase with the fourth power of
the nuclear charge Z.

At the first glance, relativistic quantum chemical calculations are much more
expensive than their non-relativistic analogues are. This is due to the fact that any
relativistic theory has to consider for every particle also the degrees of freedom for
its charge-conjugated particle (the positron in the case of the electrons of an atom
or a molecule) on equal footing. Since there is an additional doubling of the degrees
of freedom because the spin of the electron plays a dynamical role in relativistic
theories and, therefore, also has to be treated explicitly, the Dirac equation, which
is the proper equation of motion for spin one-half particles like electrons, consists
essentially of four coupled differential equations.

The field dealing with relativistic electronic-structure theory of atoms and
molecules is often called Relativistic Quantum Chemistry. It has been develop-
ing rapidly in the last few decades, and meanwhile very good reviews are available,
which provide a much more detailled discussion of relativistic effects than we shall
be able to give 1,2,3,4,5. An excellent account on the literature dealing with rela-
tivistic quantum chemistry has been provided by Pyykkö and can be found in 6,7
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and also online in the WWW 8.

1.1 Direct relativistic effects

Relativistic effects in atoms and molecules may be divided into kinematical effects,
which do not cause a splitting of energy levels due to the spin degrees of freedom,
and into effects of spin–orbit coupling. Kinematical effects are caused by elec-
trons moving with high velocity in the vicinity of a (heavy) nucleus. This leads
to contracted orbitals and, thus, to a contracted electron density distribution in
a quantum-mechanical description. Connected with this contraction is a lowering
of orbital energies and of the total energy (if compared in the energy scale of the
non-relativistic energies). This direct influence of relativistic kinematics is termed
as direct relativistic effects. It is mainly important for s and p1/2 shells, since
these have appreciable amplitude in the vicinity of the nucleus. Obviously, these
effects show up in physical quantities like excitation energies, ionization energies,
and electron affinities, as well as in chemical quantities like electronegativity.

1.2 Indirect relativistic effects

Orbitals with higher angular momentum have a node at the nucleus and therefore
are hardly directly affected by direct kinematical relativistic effects. The modified
shielding of the nuclear charge by the contracted core orbitals results, however,
in an expansion mainly of the d and f orbitals. These effects are called indirect
relativistic effects.

2 Fundamentals of relativistic quantum chemistry

The time-dependent Schrödinger equation is not Lorentz invariant, which becomes
immediately clear if one observes that all differential operators for spatial coor-
dinates represent second derivatives while the time coordinate occurs as a first
derivative. But spatial and time coordinates must be treated, roughly speaking, in
an equivalent way by a physical theory.

In 1928, Dirac found an equation for the free motion of an electron which fulfills
the invariance demands:

−i∂Ψ(r, t)

∂t
= ĤDΨ(r, t), (1)

with the Dirac Hamiltonian

ĤD = cα · p̂ +m0c
2β , (2)

and the standard definition for the momentum operator

p̂ = −i~∇ , (3)

where c is the speed of light, m0 the rest mass of the electron and in the standard
representation of the 4× 4 matrices α and β, the latter a diagonal matrix

β =

(
12 0
0 −12

)

, (4)
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with

12 =

(
1 0
0 1

)

, 0 =

(
0 0
0 0

)

. (5)

and the 3-component vector α= (αx,αy,αz) is conveniently expressed by
means of Pauli’s spin matrices σs as

αs =

(
0 σs
σs 0

)

, s = x, y, z , (6)

with the Pauli matrices

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

. (7)

Dirac’s equation is essentially a set of four coupled differential equations, and the
wavefunction appears to be a 4-component spinor containing four functions. Dirac
found that four is the lowest dimension possible for an equation for a spin one-half
particle consistent with the relativistic invariance requirement.

In the Dirac equation, the electromagnetic field is introduced by means of ex-
ternal potentials. This is very much akin to the method of introducing potentials
into non-relativistic equations by the method of “minimal coupling”. A fully rela-
tivistic theory requires, however, that the degrees of freedom are quantized as well,
a procedure carried out in quantum electrodynamics, and leading to deviations
from the Coulomb interactions, which is only the first term of a series in the fine-
structure constant α = e2/~c. Thus, for the case of many interacting electrons, the
so-called Dirac-Coulomb operator, which features the Coulomb repulsion between
the electrons in addition to a Dirac operator for each particle, does not satisfy the
relativistic invariance requirements, i. e., invariance with respect to Lorentz trans-
formations. Thus, relativistic electronic structure calculations with four-component
wave functions and the Dirac-Coulomb operator are not “fully” relativistic, as often
claimed, but rather correct only to first order in the fine-structure constant. The
so-called Breit operator introduces the next higher order in the electron–electron
interaction operator.

3 Numerical 4-component calculations for atoms

Before we discuss the methods for the calculation of electronic structure for
molecules in greater detail, we shall make some comments on atoms. Obviously,
the same theory which can be used for the treatment of molecules also applies for
atoms. But there are some methods which can be used in particular for atoms
because of their spherical symmetry.

3.1 A short history of relativistic atomic structure calculations

Some important landmarks in the history of relativistic atomic structure calcula-
tions will be given here. We refer to the literature 9,10,11 for detailed discussions
on this subject.
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Numerical relativistic calculations of atoms with more than one electron started
in 1935: Bertha Swirles 12 transferred the Hartree-Fock formalism to the Dirac
equation. Due to the lack of computers at that time, only a few calculations could
be carried out. The situation changed in the 1960’s when Grant used the tensor
algebra introduced by Racah (cf., e. g., 13,14) for handling the analytic integration
over all angular dependent terms and derived a general expression for the total
electronic energy of a closed-shell atom in the central-field approximation. From this
expression he deduced self-consistent field (SCF) equations for the determination
of spinors 15,16,17.

In 1967, Kim 18 expressed the SCF equations within a basis set representation
of the spinors. Desclaux 19 calculated highly accurate (fully numerical) spinor
energies, total energies, and other expectation values for nearly all neutral atoms of
the periodic table in the Dirac-Fock (DF) approximation, i. e., for closed shells and
configuration averages. He also published a program for calculations on the multi-
configuration (MC)DF level in 1975 20. In 1980 Grant et al. published their MCDF
code 21,22 which was later reorganized into the Grasp package 23. The numerical
methods they used 24 are similar to those applied in Desclaux’s code 25. But there
were (and still are) SCF convergence problems in some cases. Parpia et al. extended
the code to facilitate large-scale computations through the use of dynamic memory
allocation and improved convergence features (Grasp92 26). Additionally, there
has been done work on relativistic basis set calculations for atoms during the last
two decades (see for example 27,28,29). Recently developed program packages for
relativistic 4-component molecular electronic structure calculations can also be used
for the calculation of the electronic structure of atoms (cf., e. g., 30,31,32,33,34,35).

3.2 Reduction to equations dependent on the radial coordinate

When we assume that the mass of the atom’s nucleus is infinitely large (as compared
to the electron’s mass) we describe the motion of the electrons in a central field
potential. The spherical symmetry of this central field potential allows us to use
the following ansatz for the 4-component spinor

ψp(r, σ) =
1

r

(
Pnpκp

(r) Ωκpmp
(ϑ, ϕ, σ)

iQnpκp
(r) Ω−κpmp

(ϑ, ϕ, σ)

)

, (8)

where Ωκpmp
(ϑ, ϕ, σ) are 2-component spherical spinors containing the vector cou-

pling of angular momentum and spin (κi is the relativistic angular momentum
quantum number). With this ansatz it is possible to treat all angular and spin
dependent parts analytically. What remains is the calculation of the two radial
functions Pnpκp

(r) and Qnpκp
(r). Note that for this task coupled first-order differ-

ential equations have to be solved, e. g., the Dirac-Fock equations 17,36

(
V Pi (r) − ǫi A†

i (r)

Ai(r) V Qi (r) − ǫi

)(
Pi(r)
Qi(r)

)

=

(
XP
i (r)

XQ
i (r)

)

, (9)
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in case of closed-shell atoms. Here we introduced the following functions

Ai(r) = c

(
d

dr
+
κi
r

)

, (10)

V Qi (r) = V Pi (r) − 2c2 , (11)

V Pi (r) = Vnuc(r) +
∑

j

DjU
C
jj0(r) −

∑

ν=0

(Di/2) ΓiiνU
C
iiν(r) , (12)

XR
i (r) =

∑

j,j 6=i

∑

ν

(Dj/2) ΓijνU
C
ijν(r)Rj(r) , (13)

Rj(r) = Pj(r) or Rj(r) = Qj(r) ,

Γijν = 2

(
ji ν jj

1/2 0 −1/2

)2

. (14)

The Γijν are the two-electron Coulomb-interaction structure factors (coupling coef-
ficients) originating from the analytical treatment of spin and angular momentum.
The potential functions UCijν(r) are defined as

UCklν(r1) =

∫ ∞

0

[Pk(r2)Pl(r2) +Qk(r2)Ql(r2)]
rν<
rν+1
>

dr2 , (15)

where r<,> is the minimum and maximum, resp., of {r1, r2}. Di = 2|κi| denotes
the occupation number of the i-th shell. The sums over ν result from the analytic
treatment of angular and spin parts and run from νmin = |ji − jj | to νmax = ji + jj
(constraints: ji + jj + ν has to be even if sgn(κi)6=sgn(κj) and ji + jj + ν has to be
odd if sgn(κi)=sgn(κj)).

These SCF equations contain the r variable only and are, thus, one-dimensional.
This makes them accessible for numerical solution methods which work particularly
well for one-dimensional equations.

3.3 Numerical discretization and solution techniques

In atomic structure theory highly accurate calculations are possible. This high
accuracy is guaranteed by the employment of fully numerical solution techniques
which do not make use of basis sets such that a discussion of the size of a basis set
is not necessary. Furthermore, the use of basis sets is more involved in relativistic
electronic structure calculations as compared to non-relativistic analogues due to
the requirement to maintain so-called kinetic balance. We shall come back to this
issue later.

Finite-difference methods operating on a grid consisting of equidistant points
({xi}, xi = ih+ x0) are known to be the most accurate techniques available. Ad-
ditionally, on an equidistant grid all discretized operators appear in a simple form.
The uniform step size h allows us to use the Richardson extrapolation method 37,38

for the control of the numerical truncation error. Many methods are available for
the discretization of differential equations on equidistant grids and for the integra-
tion (quadrature) of functions needed for the calculation of expectation values.

Since a discretization in the variable r is not efficient (too many grid points
would lie at large distances instead near the origin where they are needed), a vari-
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Figure 1. An example for a variable transformation function r 7→ s = s(r) of typical shape
(logarithmic grid: b=0.001, T = ln[(rmax + b)/b], and rmax=40). The horizontal lines
indicate the equidistant s-grid while the vertical lines demonstrate how the r-grid is then
generated.
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able transformation is introduced. In this new variable s the equidistant grid is
created and all differential equations to be solved have to be transformed to this
new variable s. Fig. 1 shows how such a transformation function must principally
look like.

Simple discretization schemes use derivatives of Lagrangian interpolation poly-
nomials that approximate the function known only at the grid points {xi}. These
schemes consist of tabulated numbers multiplied with the function’s values at m
contiguous grid points and are referred to as “m-point-formulae” by Bickley 39 (cf.
[p. 914]40). For an acceptable truncation error O(ht), t = 4 or higher, m is larger
than t which leads to an extended amount of computation. Efficient discretization
schemes are available for the discretization of the differential equation encountered
in the course of a quantum chemical electronic structure calculation (cf., e. g.,
41,42,43,44).
Once a discretization scheme is chosen numerical solution methods like inverse it-
eration, shooting methods etc. can be applied to solve the discretized equations
and obtain values for the radial functions at equidistant grid points. These are
implemented in standard computer programs 23,26,45.

3.4 Description of the positive charge of the nucleus

The choice of a point-like atomic nucleus (PNC) limits the calculations to atoms
with a nuclear charge number Z ≤ c, i. e., Zmax ≈ 137. The series expansion around
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the origin for a non-singular electron-nucleus potential shows (see below) that this
limit can be overcome using an atomic nucleus of finite size with a model function
for the description of the distribution of the positive charge inside the nucleus (we
will denote this choice as FNC for finite nucleus case). The FNC limit for the
nuclear charge number Z is approximately 170 due to the one-particle energies of
the electrons entering the negative continuum.

Theoretical nuclear physics does not provide a unique model function for the
positive charge distribution derived from quantum chromodynamics. That is why
there is a certain degree of arbitrariness in the choice of such functions.

The potential corresponding to a given model charge density distribution ρ(u)
is

−rV (r) = 4π

∫ r

0

ρ(u)u2du+ 4πr

∫ ∞

r

ρ(u)udu . (16)

Many model potentials V (r) have been used but three became important in elec-
tronic structure calculations:

3.4.1 A piecewise defined model: Homogeneous charge density distribution

The uniformly or homogeneously charged sphere is a simple model for the finite
size of the nucleus. The total nuclear charge +Z is uniformly distributed over the
nuclear volume 4/3πR3,

ρhom(r) =

{
3Z/(4πR3) ; r ≤ R

0 ; r > R
, (17)

where R denotes an empirically fixed sphere radius (the “size” of the nucleus). This
charge density distribution leads to the homogeneous electron-nucleus potential

Vhom(r) =







− Z
2R

[

3− r2

R2

]

; r ≤ R
−Z/r ; r > R

, (18)

provided that the charge density distribution is normalized to the total charge

4π

∫ ∞

0

ρhom(u)u2du = Z . (19)

3.4.2 Continuously defined models: Gaussian and Fermi charge density distribu-
tions

The Gaussian charge density distribution

ρgauss(r) = ρgauss,0 exp [−r2/R2] (20)

with ρgauss,0 fixed through the normalization condition,

ρgauss,0 =
Z

4π

1√
πR3

, (21)

leads to the following electron-nucleus potential

Vgauss(r) = −Z
r

erf[r/R] (22)
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(erf[x] is the error function). The Fermi distribution,

ρfermi(r) = ρfermi,0f [1 + exp [(r −R)/(cR)]]
−1

, (23)

is another nuclear charge model often used in atomic structure calculations although
the evaluation of the corresponding potential is quite difficult.

3.5 Drawbacks of the choice for the nuclear charge distribution

We suppose the radial functions to be analytic at the origin (the shell index i of the

expansion coefficients a
(r)
j = a

(r)
j,i and b

(r)
j = b

(r)
j,i is skipped for the sake of brevity),

Pi(r) = rαi

∞∑

j=0

a
(r)
j rj , (24)

Qi(r) = rαi

∞∑

j=0

b
(r)
j rj , (25)

and determine the first exponent of this series expansion αi by solving the SCF
equation for the ith shell using series expansions for the coefficient functionsa:

V Pi (r) = v
(r)
−1 r

−1 + v
(r)
0 +O(rk) , (26)

XP,Q
i (r) = x

(r)
−1 r

−1 + x
(r)
0 +O(rk) , (27)

with

v
(r)
−1 =

{
−Z in the PNC

0 in the FNCs
. (28)

Here we assume (which might not be true in the general MCDF case) that the

inhomogeneity vanishes at the origin, i. e., x
(r)
−1 = x

(r)
0 = 0. We obtain from the

SCF equations for the coefficients of the rαi−1 term

(v
(r)
−1/c) a

(r)
0 + (κi − αi)b(r)0 = 0 , (29)

(v
(r)
−1/c) b

(r)
0 + (κi + αi)a

(r)
0 = 0 , (30)

which yields

αi =

√

κ2
i − (v

(r)
−1)2/c2 =

{√

κ2
i − Z2/c2 , PNC

|κi| , FNCs
. (31)

For PNC the first exponent of the series expansion is not integral. This creates
substantial drawbacks for the numerical methods used, which always require finite
higher derivatives which become singular at the origin.

aThe potential functions Uklν(r) can contribute only to the rj terms (with j ≥ 0).
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3.6 Technical problems in relativistic electronic structure calculations for
atoms

In general, technical problems usually remain in the group working on the imple-
mentation of some theory into a computer program. Since this winterschool is
mainly devoted to the discussion of problems, which one gets involved into when
implementing a formalism, some peculiarities are discussed in the following sections.

3.6.1 Transformation to orbitals which are regular at the origin

As was pointed out in the previous section, a singular electron-nucleus potential of
Coulomb type yields non-analytic solution functions. To obtain regular functions
for the PNC the operator identity

d

dx
= x−γi

d

dx
xγi − γi

x
(32)

with

γi = |κi| − αi = |κi| −
√

κ2
i − (Z/c)2 (33)

suggested by Biegler-König 46 can be used to replace the differential operator d/dr in
the SCF equations. The power γi depends on the quantum number κi and is chosen
such that it cancels out the real power αi in the short-range series expansion and
replaces it by the integral number |κi|. A generalized distance variable x is chosen
in Eq. (32) to indicate that the identity may be introduced in the old variable r or
in the new variable s.

Another possibility, which is implemented in the standard codes, is to use the
Taylor expansions of the radial functions from the origin to the first (inner) grid
point and to start with the discretization at this first grid point.

3.6.2 Extrapolation techniques for efficient algorithms

Finite difference methods allow the use of techniques which extrapolate to step
size h → 0 (i. e., the exact solution) and control the numerical truncation error
38,47,48. This can be done for every numerically calculated quantity F if we assume
an analytic behaviour of F ,

F (h) = F (0) +Aht +O(ht+1) , (34)

where t is the order of the truncation error connected to the chosen numerical
method. If F is known for three different step sizes the quantities F (0) (the ex-
trapolated result for step size zero), A, and t can be calculated. Since all numerical
methods are usually employed with an order t ≥ 4, this can be used to check this
“theoretical order”. Note that the extrapolated value F (0) will be correct to or-
der t + 1 and we gain only one or two figures in accuracy compared to the result
calculated with the largest number of grid points.

Multigrid methods with control of the numerical truncation error are very useful
for the solution of matrix equations since they start with a small number of grid
points, use extrapolation techniques similar to Richardson’s and reduce the step
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size until the result is accurate enough. The method of Bulirsch and Stoer (cf.
[p. 718-725]47 and [p. 288-324]49), for instance, consists essentially of three ideas:

• The calculated values for a given step size h are analytic functions of h – which
is, of course, fulfilled here.

• The analytic expression can always be approximated as a rational function,
i. e., a quotient of two polynomials in h, which is the basis for the rational
extrapolation [p. 104-107] 47.

• The applied numerical method must be of even order in all higher corrections
in the truncation term in order to gain two orders at a time [p. 717]47.

The SCF equations are now solved for a given number of points. Then, mid-points
are added to this starting grid and the equations are solved again. This process is
repeated until the rational extrapolation leads to a sufficiently small degree of error.
A 3-point formula [p. 914]40 without origin correction for the first derivative, which
is only of second order in h, can be applied for the discretization. This is possible
since the numerical error is controlled by rational extrapolation. Its advantage is
that the discretization matrix in the equation to be solved in the SCF procedure
is only penta-diagonal and its elements are easily computed. Additionally, the
Bulirsch-Stoer method might also be used in cases where one would like to use a
diagonal representation for the coefficient functions of the differential equations for
reasons of numerical stability.

3.6.3 Corrections for the electron-electron interaction: Breit interaction

As mentioned above, the electron–electron interaction is known from QED only as
a series expansion, which in addition depends on the gauge fixing employed for the
electromagnetic field. The first relativistic correction to the two-electron Coulomb
operator is the Breit operator,

Bω(1, 2) = −α1α2 cos (ωr12)

r12
+ (α1∇1)(α2∇2)

cos (ωr12)− 1

ω2r12
, (35)

where αi are the standard Dirac matrices with respect to electron i. The electron-
electron distance vector is denoted as r12 and its length is r12. The frequency of
the exchanged photon divided by the speed of light c is ω. The Breit operator may
be written in its long wavelength limit as

B0(1, 2) = −α1α2

r12
− 1

2
(α1∇1)(α2∇2)r12 +O(ω2r12) , (36)

where we used the Taylor series expansion for the cosine. This expression is equiv-
alent to the original one given by Breit 50,51,52

B0(1, 2) = −α1α2

r12
+

1

2r12

(

α1α2 −
(α1r12)(α2r12)

r212

)

. (37)

The Breit interaction becomes important for the calculation of fine structure
splittings and for highly charged ions. Unfortunately, it turns out that the calcula-
tion of the matrix elements resulting from this operator may become cumbersome
and time consuming even in the frequency-independent limit, ω → 0.
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For historical reasons, the Breit operator was split into the Gaunt term (first
term in the operator given in Eq. (37)) and the retardation term. While the Gaunt
term leads to matrix elements which are comparable in complexity to those obtained
for the Coulomb interaction, the retardation term turns out to be more difficult to
compute 17.

In 1976, Grant and Pyper 53 gave a general formulation of the total Breit
interaction. Unfortunately, the individual matrix elements for the frequency-
independent Breit interaction turned out to be non-symmetric in the electronic
radial coordinates, r1 and r2, while the operator in its original form is symmetric
in the total electronic coordinates. Their expression for the two-electron matrix
element involves integrals over the radial variable r2 which have to be evaluated
for every value of r1 which can become very time consuming (however, there exist
some tricks which reduce the effort).

The fully numerical MCDF package Grasp includes the Breit interaction only as
a first-order perturbation correction (after the self-consistent field (SCF) iterations
converged with the Coulomb interaction terms only). Only the Gaunt interaction
has been routinely treated in numerical calculations in a self-consistent way thus
far. Note that the basis set approach is not affected by these problems.

For a long time it has been thought that the Breit interaction must not be
evaluated self-consistently and should be treated only as a first-order perturba-
tion. DF calculations have shown that the self-consistent calculation of the Breit
interaction does not lead to instabilities. Since in numerical DF and in MCDF cal-
culations the negative continuum is excluded, the treatment of the Breit interaction
self-consistently leads to results comparable to those from all order perturbation
theory.

A reformulation of the frequency-independent Breit operator yielding relatively
simple expressions for the matrix elements and an algorithm which uses the same
routines as in Coulomb-only calculations has been derived 54. Table 1 shows some
results obtained with this algorithm for the light atoms helium and beryllium. Two
points are important in this context. First, the Breit contribution to the total
energy is relatively small and roughly speaking of the order of effects coming from
choosing different electron-nucleus potentials or different values for the speed of
light (the actual recommended value is c = 137.0359895, however, even in the
recent literature the old value c = 137.037 is still in use). The small effect of the
Breit correction implies that its fully numerical calculation is far from being trivial
since very small numbers occur in iterative calculations.

3.6.4 Other relativistic corrections

The frequency-independent Breit interaction is by far not the only correction aris-
ing from quantum electrodynamics. Other corrections, like self energy or vacuum
polarization, become also important. An exact calculation of electronic structure
on a quantum electrodynamical basis is only possible for atoms with, say, one to
three electrons (for a recent review see 56).

The main problem for atomic structure calculations is that these correction
terms cannot be easily included into the implemented framework since they cannot
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Table 1. Relativistic and non-relativistic Dirac-Fock calculations on helium and beryllium. The
results have been obtained with the fully numerical atomic structure program Adrien 55 (meaning
of styles: italics: relativistic effect, bold face: Breit effect, Typewriter: SCF effect).

type this work1 ref. data from

He non-rel. 2.861679996 A

DF-Coulomb 2.8618133420 2.861813323 B, Grasp

Breit/pert. 2.8617495464 2.8617495 C, Grasp

Breit/SCF 2.8617495455 2.8617490 D, basis sets

Be non-rel. 14.573023169 A

DF-Coulomb 14.5758917109 14.575891698 B, Grasp

Breit/pert. 14.5751892247 14.5751895 C, Grasp

Breit/SCF 14.5751892612 14.5751891 D, basis sets

A J. Stiehler and J. Hinze, Universität Bielefeld, unpublished (1995)
(numerical, point nucleus)

B K. Dyall and L. Visscher, At. Data Nucl. Data Tables (1997) 67, 207
(numerical, “homogeneous” nucleus),
and http://theochem.chem.rug.nl/̃ luuk/FiniteNuclei/

C F. A. Parpia et al., J. Phys. B (1992) 25, 1 (numerical, “homogeneous” nucleus)
D Y. Ishikawa et al., Phys. Rev. A (1991) 43, 3270

(basis sets, “homogeneous” nucleus, c = 137.0370)
1 M. Reiher, presented at the 35th Symposium for Theoretical Chemistry, STC99,

Freiberg (all calculations with 1000 grid points, “homogeneous” nucleus)

be reduced to simple radial-dependent potential functions (apart from the vacuum
polarization for which the Uehling potential might be used).

3.6.5 Large CI calculations and generation of configuration state functions

While large configuration interaction (CI) calculations have become possible with
the invention of the Davidson algorithm in the seventies of the last century 57,58,
it has been adopted for relativistic atomic structure calculations twenty years later
when Froese Fischer et al. introduced it into the Grasp package by Grant et al. 26

(for an application see, e. g., 59).
Davidson’s algorithm is designed for the calculation of a few eigenvectors of a

large CI matrix by an iterative procedure. To set up this large N ×N CI matrix
it is necessary to construct the N -dimensional space spanned by the configuration
state functions (CSFs) in jj coupling. This automatical construction of jj coupled
CSFs is not trivial and routinely done in the framework of Racah algebra.

3.7 Outlook

Although atomic structure calculations have a very long history some techniques
known in molecular quantum chemistry for a long time have never been imple-
mented into existing fully numerical atomic structure programs. This is astonishing
since these techniques are very promising. For example, the DIIS method by Pulay

490



60,61,62 could cure many of the SCF convergence problems known in relativistic
atomic structure calculations.

Another example is the recently developed Jacobi-Davidson method by van der
Vorst et al. 63,64,65,66,67 which improves on the existing Davidson method for the
determination of eigenvectors particular in CI problems.

4 Molecular Calculations

Whereas calculations on atoms are generally feasible with grid-based techniques,
calculations on molecules commonly make use of expansion techniques. Very simi-
lar to non-relativistic wave functions, it is customary to expand molecular spinors
in a basis of Gaussian functions. The most rigorous method for treating relativ-
ity in quantum chemical calculations then starts from the 4-component no-pair
Dirac–Coulomb–Breit (DCB) Hamiltonian 68,69. This Hamiltonian includes terms
to second order in the fine-structure constant α, and is expected to be sufficiently
accurate for neutral and weakly ionized states of even the heaviest atoms and
molecules 70. Calculations based on the DCB Hamiltonian may serve as reference
for more approximate treatments of relativistic effects, such as perturbation theory,
relativistic pseudo-potential techniques, and relativistic local density methods.

Four-component spinors obtained by solving single- or multiconfigurational
Dirac–Fock equations provide a natural starting point for calculation of dynamic
electron correlation effects, which are important in the quantitative determination
of ground and excited states properties such as transition energies, electric and mag-
netic moments, or oscillator strengths. The coupled-cluster method has emerged
as the most powerful tool for handling correlation effects in atomic and molecular
systems (see 71 for a recent review). It includes correlation effects to high order
and is size extensive, a property of particular importance for heavy systems, where
relativistic effects are also most pronounced. Significant progress has been made re-
cently in the development and application of the relativistic coupled-cluster method
(RCC) to atoms. Some of these applications were done numerically 72,73 and others
used basis sets, either local 74,75,76,77,78 or global 79,80,81,82,83,84.

Uzi Kaldor’s group in Tel Aviv has recently developed and implemented a rel-
ativistic version of the multireference valence-universal Fock-space coupled-cluster
method for atomic systems, using a discrete basis of four-component Gaussians
spinors (G-spinors). The method starts from the DCB Hamiltonian and treats cor-
relation by the coupled-cluster singles-and-doubles (CCSD) approximation, which
includes single and double virtual excitations in a self-consistent manner, incor-
porating the effects of the Coulomb and Breit interactions to all orders in these
excitations. Accurate ionization potentials, excitation energies and fine-structure
splittings were obtained by this method for a variety of heavy and superheavy
atomic systems 84,85,86,87,88,89,90,91,92

Four-component correlation methods for molecules have become available only re-
cently. They include relativistic configuration interaction (CI) 93, second order
many-body perturbation theory (MBPT) 94, and relativistic coupled cluster (RCC)
95,96,97,98. Both MBPT and RCC were used in a single-configuration version, suit-
able for limited classes of molecular states, with no degeneracy or near-degeneracy.
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The development and implementation of accurate relativistic 4-component mul-
tireference molecular approaches is a challenging problem. We are aware of only
one such method based on the relativistic 4-component multiconfigurational SCF
approach 99. Also by Kaldor’s group, molecular single-reference four-component
RCC code 98 has been developed.

Four-component methods usually involve complex spinors and place heavy de-
mands on computational resources.

4.1 Two-Component Methods

While theoretically most appealing, the four-component methods are very expen-
sive as concerns computational resources. This is, of course, because the charge-
conjugated degrees of freedom are treated as dynamical variables and thus require
their own basis set in the calculation. For technical reasons, the basis set for the
small component tends to be even larger than the large component basis.

Since the charge-conjugated degrees of freedom are not excited at energies typ-
ical for the valence shell of neutral or mildly ionized atoms and molecules, it is
desirable to integrate them out at the very beginning. This leads to a transformed
Hamiltonian, operating on a two-component wave function for the electronic degree
of freedom. Moreover, it is possible also for the Dirac equation to separate off spin-
dependent terms rigorously 100, so that in many cases one can use a spin-averaged
one-component wave function, calculated from a Hamiltonian transformed from
the spin-free (“scalar relativistic”) part of the Dirac equation. The transformed
Hamiltonians are obtained by means of a unitary transformation that annihilates
the coupling between the “electron-like” and the “positron-like” degrees of freedom.
Their wave functions still have formally four components. Since, however, there is
no coupling any more between the states of positive energy (the electrons) and the
states of negative energy (the positrons), we now have the possibility to focus on the
former and work with two-component wave functions only. While spin–orbit cou-
pling is described in the “Dirac-like” (four component) representation by a purely
algebraic structure (the Clifford algebra of the Dirac matrices), there is a “space
part” of the spin–orbit coupling operator in the decoupled representation.

The decoupled representation is achieved by a unitary transformation

Hdecoupled = U †DU =

(
h+ 0
0 h−

)

(38)

with

UU † = 1

U =

(
(1 +X†X)−1/2 −(1 +X†X)−1/2X†

X(1 +XX†)−1/2 (1 +XX†)−1/2

)

(39)

and D denoting a Dirac-type Hamiltonian. The operator X maintains the exact
relationship between the large and the small components

φS = XφL (40)
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for any trial function for the small component φS and for the large component
φL. The operator X is not known in general. If (φS , φL) is an exact eigenfunction
(ψL, ψS) of the one-electron Dirac equation, it could in principle be determined by
expressing the small component in terms of the large component by means of the
coupled system of equations resulting from

cσpψS + V ψL = E ψL

cσpψL − 2mc2 ψS + V ψS = E ψS , (41)

using the expression for ψS from the lower equation

2mc2 ψS =

(

1 +
E − V
2mc2

)−1

cσpψL. (42)

In the general case, X must fulfill the non-linear equation 101,102,103

X =
1

2mc2
(cσp− [X,V ]−X(cσp)X) . (43)

Obviously, the solution of this equation for X is as complex as the solution of the
Dirac equation itself, and approximations have to be employed.

Since the transformed large component, now describing electron states only,
should be normalized to one, the equation contains renormalization terms
(1 + X†X)−1/2 to take the change from the Dirac normalization prescription for
any four-component wave function Φ

〈Φ|Φ〉 = 〈φL|φL〉+ 〈φS |φS〉
= 〈φL|φL〉+ 〈XφL|XφL〉 (44)

into account. Unfortunately, closed-form solutions for Eq. (40) are known only for
a restricted class of potentials 104. A very important special case is, however, the
free particle, defined by V ≡ 0. In this case, we find a closed-form solution

XV=0 =
(

mc2 +
√

m2c4 + p2c2
)−1

cσp. (45)

This defines the exact Foldy-Wouthuysen transformation for the free particle. Note
that the square root is not expanded here.

Early attempts to reduce the Dirac and Dirac–Coulomb–Breit Hamiltonian to
the electronic degrees of freedom are characterized by expansions of the operators
in powers of (E − V )/mc2, the most popular of these methods being the Foldy–
Wouthuysen transformation 105. It has, however, been recognized early on that
the resulting expressions are too singular beyond the first order of perturbation
theory 106 and that, in particular, they cannot be used in a variational calcula-
tion. Variationally stable transformed Hamiltonians have appeared only recently
in the literature 107,108,101. Before introducing these methods in more detail, we
shall briefly discuss the classical methods of reducing the Dirac equation to two
components.
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4.1.1 Elimination of the small component

The method of elimination starts from the Dirac equation in the split form Eq. (41).
The expression for the small component obtained from the second of those equations
is inserted into the first one, yielding

(V − E)ψL +
1

2mc2
[σpω(r) σp]ψL = 0 (46)

with

ω(r) =

(

1− V − E
2mc2

)−1

. (47)

This substitution leads to an equation for the large component only, and Eq. (47)
has been used as the basis to formulate energy-dependent, non-hermitean operators
109,110,111,112,113,114,115,116. If desired, the spin dependence can be isolated using

(σu)(σv) = uv + iσ(u× v). (48)

The energy dependence is, however, undesirable, since orbital-dependent Hamilto-
nians and non-orthogonal orbitals result. The simplest way to arrive at a hermitean,
energy-dependent operator is by expanding

(

1− V − E
2mc2

)−1

=

∞∑

n=0

(
V − E
2mc2

)n

. (49)

Keeping only the lowest-order term, the non-relativistic Schrödinger equation is
recovered. Low-order relativistic corrections can be extracted by keeping the next
higher term and eliminating the energy dependence by means of systematic expan-
sion in c−2. This leads to the Pauli Hamiltonian

HPauli =
p2

2m
+ V +

1

4m2c2

(−p4

2m
+

1

2
(∆V ) + σ(∇V )× p

)

, (50)

where the so-called mass–velocity term −p4/8m3c2, the Darwin term ∆V/4m2c2,
and the spin–orbit coupling term σ(∇V ) × p/4m2c2 describe relativistic correc-
tions to O(c−2). Several problems are connected with this operator: The minus
sign of the mass–velocity term yields a strongly attractive term for states with high
momentum, and leads to variational collapse in unconstrained variation; the Dar-
win term degenerates to a highly singular Delta-Function term in the case of the
potential of a point-like nucleus; the spin–orbit coupling term leads to variational
collapse as well, since it is not bounded below. These problems cannot be reme-
died by going to higher orders 106. In fact, the expansion in Eq. (49) is invalid for
V − E > 2mc2, and this condition occurs certainly in regions close to the nucleus.
Operators based on simple expansions of Eq. (49) in c−2 are in general singular
and cannot be used for variational calculations. The Pauli operator is therefore
defined only for perturbation theory to lowest order. In practical calculations, its
expectation values give satisfactory relativistic corrections to the energy up to the
first and second transition metal row.

Making use of special features of the matrix representation of the Dirac equa-
tion, Dyall has recently worked out a Modified Elimination of the Small Component
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117,118. His method takes the proper renormalization mentioned above into account.
In particular this normalized variant of the Modified Elimination of the Small Com-
ponent is free from the singularities which plague the classical elimination method.
A very well-studied technique to arrive at regular expansions has been developed
in the mid-eighties 101,102. It is based on rewriting ω(r) in (47) and choosing a
different expansion parameter. Writing ω(r) as

ω(r) =
2mc2

2mc2 − V

(

1 +
E

2mc2 − V

)−1

(51)

and expanding the term in parentheses is the basis of the so-called regular approx-
imations, which were developed by the Amsterdam group 119,120 to a workable
method for electronic-structure calculations.

A truncation of the expansion (51) defines the Zero- and First-Order Regular
Approximation (ZORA, FORA) 121. A particular noteworthy feature of ZORA
is that even in the zeroth order there is an efficient relativistic correction for the
region close to the nucleus, where the main relativistic effects come from. Excellent
agreement of orbital energies and other valence shell properties with the results
from the Dirac equation is obtained in this zero-order approximation, in particular
in the Scaled ZORA variant 122, which takes the renormalization to the transformed
large component approximately into account, using

1√
1 +X†X

≈ 1
√

1 + 〈φLX†|XφL〉
(52)

The analysis 123 shows that in regions of high potential the zero-order Hamiltonian
reproduces relativistic energies up to an error of order −E2/c2. On the other hand,
in regions where the potential is small, but the kinetic energy of the particle high,
the ZORA Hamiltonian does not provide any relativistic correction.

The main disadvantage of the method is its dependence on the zero point of the
electrostatic potential, i. e., gauge dependence. This occurs because the potential
enters non-linearly (in the denominator of the operator for the energy), so that a
constant shift of the potential does not lead to a constant shift in the energy. This
deficiency can, however, be approximately remedied by suitable means 122,124.

4.1.2 Transformation to two components

An alternative to the elimination-type methods is the attempt to achieve the block
diagonalization of the Dirac operator according to (38) directly. The time-honoured
method is the Foldy–Wouthuysen transformation 105. The idea is to identify “odd”
and “even” operators in the split form of the Dirac equation, i. e., operators which
couple the large and small component, and such which do not. Apart from the
even term (β − 1), we can identify the even operator E = V and the odd operator
O = cαp, and find

[E , β] = 0, {O, β} = 0. (53)

The braces denote the anticommutator {A,B} = AB+BA. We now look for a uni-
tary matrix which removes the odd term. The Foldy–Wouthuysen transformation
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uses the ansatz

Φ1 = exp(iS1)Φ,

H1 = H + i [S1, H ] + . . . (54)

The choice S1 = −iβO/2m removes the odd term, but introduces new odd terms
of higher order, which are in turn removed by iteration of the transformation :
Φn = exp(iSn)Φn−1. At this point, the resulting operators are again expanded
in a power series in c−1. Up to second order, we obtain again the Pauli Hamil-
tonian, Eq. (50). While different expressions occur in higher orders, the problems
with singular operators are essentially the same as in the case of the Elimination of
the Small Component discussed above. Additional problems occur, since the wave
functions obtained in the Foldy–Wouthuysen procedure are no longer analytic func-
tions of c−1 in the neighborhood of c−1 = 0 125,126, as is the case for the Dirac wave
function 127. This means that the non-relativistic limit is not well defined.

To obtain a valid limiting procedure for c−1 → 0, the perturbation theory has
to be formulated by considering the non-relativistic limit of the metric (essentially
the normalization requirement) and that of the operator itself separately. Both for
the metric and for the operator limiting procedures must be defined. This is most
conveniently done by formulating the Dirac equation in terms of a scaled small com-
ponent cψS , and a regular perturbation formalism results 128,127,129,130,131,125,126.
In the more recent literature, this four-component method has been dubbed Direct
Perturbation Theory. The second-order results are equivalent to the perturbative
results of the Pauli operator in an infinite basis set. In contrast to the singular
expansions which are traditionally employed to derive the Pauli operator, Direct
Perturbation Theory gives workable and regular results also for higher orders.

Another possibility which has meanwhile proven of considerable practical value
is to avoid expansion in reciprocal powers of c throughout, and rather expand in
the coupling strengh Zαc~, if closed expressions cannot be obtained 107,108,132.

The Douglas–Kroll (DK) transformation defines a transformation of the
external-field Dirac Hamiltonian to two-component form which leads, in contrast
to the Foldy–Wouthuysen transformation, to operators which are bounded from
below and can be used variationally, similar to the Regular Approximations dis-
cussed above. As in the FW transformation, it is not possible in the DK formal-
ism to give the transformation in closed form. It is rather defined by a sequence
of unitary transformations U0, U1, . . . , the first of which is in fact a free-particle
Foldy–Wouthuysen transformation defined by

U0 = A(1 + βR), U−1
0 = (Rβ + 1)A, (55)

with

A =

√

Ep +mc2

2Ep
(56)

R =
cα p

Ep +mc2
(57)

Ep = c
√

p2 +m2c2. (58)
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Applying U0 to D leads to

U0DU
−1
0 = βEp + E1 +O1 ≡ H1 (59)

with even and odd operators of first order, given by

E1 = A(V +RV R)A ,

O1 = βA(RV − V R)A . (60)

The following unitary transformation – it turns out that only one more is required
to decouple the upper and lower components to sufficient accuracy for chemical
applications – is defined by the somewhat unusual parametrization

U1 =
√

1 +W 2
1 +W1. (61)

For any anti-hermitean operator W1 with W †
1 = −W1, it is easily seen that U1 is

unitary. Performing the transformation through U1 and expanding the square root
in powers of W1 leads to

U1H1U
−1
1 = βEp − [βEp,W1] + E1 +O1

+
1

2
βEpW

2
1 +

1

2
W 2

1 βEp −W1βEpW1

+[W1,O1] + [W1, E1] + . . . (62)

where the dots denote terms in higher than second order of W1. The first-order
odd term is now eliminated by equating

[βEp,W1] = O1 (63)

and solving for W1. We arrive at a momentum-space integral operator for W1

W1Φ(p) =

∫

d3p′ W1(p,p0)Φ(p0) (64)

with a kernel

W1(p,p0) = A(R −R′)A′ V (p,p0)

Ep′ + Ep
, (65)

where V (p,p0) denotes the Fourier transform of the external potential, and the
primed quantities are to be expressed in terms of the variable p0.

The final result is

Hdecoupled ≈ βEp + E1 − β(W1EpW1 +
1

2
[W 1

2, Ep]), (66)

where the approximation sign denotes equivalence up to second order in the external
potential. Higher-order transformations may be devised by definitions similar to
Eq. (61) in order to remove odd terms of higher order in a way similar to the
method described above. The performance of the second-order operator was found
satisfactory for chemical applications. At this point, a projection to the upper
components may be made, with the result that the β matrix becomes the unit
matrix, and the α matrices are to be replaced by σ matrices.
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The no-pair Hamiltonian Ĥ+ including all spin-dependent terms now operates
on the two upper components only and is obtained as 133,134,5

Ĥ+ =
∑

i

Ep(i) +
∑

i

Veff(i) +
1

2

∑

i6=j
Veff(i, j) , (67)

with

Ep(i) =
√

p2c2 +m2c4,

Veff(i) =

√

Ei +mc2

2Ei
[V + (σiPi)V (i)(σiPi)]

√

Ei +mc2

2Ei
,

Veff(i, j) = AiAj

[
1

rij
+ (σiPi)

1

rij
(σiPi) + (σjPj)

1

rij
( σjPj)

+(σiPi)(σjPj)
1

rij
(σiPi)(σjPj) + B̂ij(σiPi)(σjPj)

+(σiPi)Bij(σjPj) + (σjPj)Bij(σiPi) + (σiPi)(σjPj)Bij

]

AiAj ,

Ai =

√

Ei +mc2

2Ei
,

Pi =
cpi

Ei +mc2
,

B̂ij = −1

2

1

rij

[

σi · σj + ( σi ·
rij
rij

)(σj ·
rij
rij

)

]

.

Making repeated use of the Dirac relation

(σu)(σv) = uv + iσ(u× v), (68)

which is valid for operators u and v not containing σ matrices, terms linear in
either one of the σ matrices are extracted. These terms constitute, per definition,
the spin–orbit interaction part of the operator Ĥ+. There are, of course, spin-
independent terms characteristic for relativistic kinematics, which constitute the
above-mentioned “scalar relativistic” part of the operator, and terms with more
than one σ matrix which contribute, e. g., to spin-spin coupling mechanisms. The
spin–orbit part of the one-electron effective potential and the two-electron spin–
orbit part resulting from the Coulomb interaction reduce to the spin–same–orbit
interaction

Ĥsame−orbit
so =

∑

i

Aiiσi(PiV (i)×Pi)Ai

+
1

2

∑

i6=j
AiAj

[

iσi(Pi
1

rij
×Pi) + iσj(Pj

1

rij
×Pj)

]

AiAj , (69)
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and the extraction of the terms linear in σi and σj from the Breit contributions
constitute the spin–other–orbit interaction 133

Ĥother−orbit
so = −1

2

∑

i6=j
AiAj

[

2iσi(Pi
1

rij
×Pj) + 2iσj(Pj

1

rij
×Pi)

]

AiAj . (70)

Collecting terms, rearranging, and introducing explicitly the Coulomb potential of
the nuclei, we obtain 5 a workable expression for a variationally stable spin–orbit
operator

Ĥ+
so =

∑

i

∑

α

c2Zα
Ai

Ei +mc2
σi(

riα
r3iα
× pi)

Ai
Ei + mc2

− c2
∑

i6=j

AiAj
Ei +mc2

(
rij
r3ij
× pi) · (σi + 2σj)

AiAj
Ei +mc2

. (71)

In the case of singlet ground states well separated from the rest of the spectrum,
it is often convenient to use the spin–averaged approximation and treat the spin–
orbit coupling operator in a second step, be it perturbatively or variationally in
a spin–orbit configuration interaction procedure with two-component spinors. In
most applications (see, however, 134,135) the DK transformation of the external
potential V is limited to its one-electron part while the two-electron terms are
left in their Coulomb form. This leads to the most frequently used spin-averaged
1–component many-electron no-pair Hamiltonian:

H+ =
∑

i

Ep(i) +
∑

i

Veff(i) +
∑

i<j

1

rij
, (72)

where

Veff(i) = −Ai[V (i) + P iV (i)P i]Ai

− W1(i)Ep(i)W1(i)− 1

2
[(W1(i))2, Ep(i)]. (73)

Since the prefactors (Ei +mc2)−1 grow asymptotically (for |pi| → ∞, i. e., ri → 0)
like 1/|pi|, all contributions of momentum operators in the numerator (leading to
the 1/r3 divergence in the case of the Breit–Pauli operator) are cancelled asymp-
totically, and only a Coulomb singularity remains. The Breit-Pauli operator may
be recovered by reintroducing c explicitly, expanding Ai(Ei + mc2)−1 into powers
of c−2

Ai
Ei +mc2

=
1

2mc2
− 3p2

i

16m3c4
+ . . . (74)

and keeping only the lowest-order term.
Douglas–Kroll-transformed Hamiltonians have been used in many quantum-

chemical calculations on molecules, density-functional theory 136 including imple-
mentation of derivatives 137, and recently also for calculations of solids 138,139,140.
A numerical analysis of the energy values 108,141 and also perturbation theory 103

shows that the eigenvalues of the second-order Douglas–Kroll-transformed Hamilto-
nian for a single particle agrees with the results of the Dirac equation to order c−4.
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Note that this is the same order in which deviations in the matrix representation
of the Dirac equation itself are expected 142,103.

The Douglas–Kroll transformation can be carried to higher orders, if desired 143.
In this way, arbitrary accuracy with respect to the eigenvalues of D can be achieved,
and many applications of this method are reported in the literature 144,145,146,147.

The most elaborate of these methods based on the Douglas–Kroll transforma-
tion is again of the coupled-cluster type and has been published recently 148. It
possesses many of the essential features of the 4-component approach, including
the description of spin–orbital and spin–spin interactions. The CdH molecule and
its ions were chosen for the pilot application of two- and four-component Fock-
Space RCC 148. The calculated values were obtained in very good agreement with
experiment. While the four-component method gives the best results, one- and
two-component calculations include almost all the relativistic effects. Since they
are much cheaper than four-component calculations, they offer a viable alternative
for systems with heavy atoms.

5 Epilogue

In this account, we presented some of the recent devolpments in relativistic elec-
tronic structure theory for atoms and molecules. The field has seen a tremendous
development during the last two decades. Especially approximate relativistic op-
erators have been studied during this period. It took quite a long time until it
was realized that a meaningful description of the structure of atoms and molecules
containing heavy atoms can only be achieved on a relativistic basis.
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3. P. Pyykkö. Chem. Rev., 88:563–594, 1988.
4. W. H. E. Schwarz, A. Rutkowski, and S. G. Wang. Int. J. Quantum Chem.,

57:641–653, 1996.
5. B. A. Heß. Ber. Bunsenges. Phys. Chem., 101:1, 1997.
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80. A.-M. Mårtensson-Pendrill, S. A. Alexander, L. Adamowicz, N. Oliphant,

J. Olsen, P. Öster, H. M. Quiney, S. Salomonson, and D. Sundholm. Phys.
Rev. A, 43:3355, 1991.

81. E. Ilyabaev and U. Kaldor. Chem. Phys. Lett., 194:95, 1992.
82. E. Ilyabaev and U. Kaldor. Phys. Rev. A, 47:137, 1993.
83. E. Ilyabaev and U. Kaldor. J. Chem. Phys., 98:7126, 1992.
84. E. Eliav, U. Kaldor, and Y. Ishikawa. Chem. Phys. Lett., 222:82, 1994.
85. E. Eliav, U. Kaldor, and Y. Ishikawa. Phys. Rev. A, 50:1121, 1994.
86. E. Eliav, U. Kaldor, and Y. Ishikawa. Phys. Rev. A, 49:1724, 1994.
87. E. Eliav, U. Kaldor, and Y. Ishikawa. Int. J. Quantum Chem. Symp., 28:205,

1994.
88. E. Eliav, U. Kaldor, P. Schwerdtfeger, B. A. Heß, and Y. Ishikawa.

Phys. Rev. Lett., 73:3203–3206, 1994.
89. E. Eliav, U. Kaldor, and Y. Ishikawa. Phys. Rev. Lett., 74:1079, 1995.
90. E. Eliav, U. Kaldor, and Y. Ishikawa. Phys. Rev., 51:225, 1995.
91. E. Eliav, U. Kaldor, and Y. Ishikawa. Phys. Rev. Lett., 77:5350, 1996.
92. E. Eliav, U. Kaldor, Y. Ishikawa, M. Seth, and P. Pyykkö. Phys. Rev. A,
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After a brief review of relativistic effects on the electronic structure of atoms and
molecules the basic ideas of the relativistic ab initio effective core potential method
are outlined. The underlying approximations as well as the differences between the
two commonly used versions of the approach, i.e., model potentials and pseudopo-
tentials, are discussed. The article then focusses on the adjustment of atomic
shape-consistent and energy-consistent pseudopotentials, as well as on correspond-
ing core polarization potentials. Finally, the results of some calibration calculations
for the homonuclear dimers of the halogen atoms are presented.

1 Introduction

The present manuscript discusses the two branches of effective core potential (ECP)
approaches, i.e., the model potential (MP) and the pseudopotential (PP) tech-
niques. The main focus is on those ECP schemes which proved to be successful in
atomic and molecular relativistic electronic structure calculations during the past
decade, and moreover, due to the authors own history, the presentation is some-
what biased towards the discussion of energy-consistent ab initio pseudopotentials.
It is neither intended to give a complete overview over all effective core potential
approaches developed since the pioneering work of Hellmann and Gombas around
1935, nor to cover all schemes currently on the market. In particular techniques
developed especially for density functional theory and/or plane wave based com-
putational approaches have been left out. A number of reviews on effective core
potentials has been published during the last three decades and the reader is referred
to them for more detailed information 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.

1.1 Relativistic effects

Accurate ab initio electronic structure calculations for systems with heavy ele-
ments require the inclusion of relativistic effects, cf., e.g., the extensive bibli-
ographies of relativistic calculations collected by Pyykkö 21,22,23. Although this
fact is nowadays generally acknowledged and the discussion of relativistic effects
begins to be included in (quantum) chemical textbooks, a very brief and in-
complete outline of relativistic effects will be given here in order to make more
plausible why even for systems with second row elements a relativistic effective
core potential study may be more accurate than a nonrelativistic all-electron
investigation. Several excellent review articles focussing on relativistic effects
exist 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38.

For hydrogen and hydrogen-like ions with a point nucleus of charge Z the rela-
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tivistic Schrödinger equation, i.e., the Dirac equation, is analytically solvable:

Enκ = ±c2[1 +

(

Z/c

n− |κ|+
√

κ2 − (Z/c)2

)2

]−1/2 − c2 . (1)

Here c denotes the velocity of light (c ≈ 137.0359895 a.u.). The relativistic quantum
number κ is defined in terms of the quantum numbers of orbital and total angular
momentum, l and j, as

κ = ∓(j + 1/2) for j = l ± 1/2 . (2)

It is observed that in contrast to the nonrelativistic case two sets of solutions exist,
which are separated by ≈ 2c2. This is due to the fact that the Dirac equation is
not only a wave equation valid for an electron, but rather for spin-1/2 particles
as electrons and positrons. The solutions near the zero of energy are called elec-
tronic states and essentially correspond to the nonrelativistic solutions, whereas
those near −2c2 are called positronic states. The wavefunction turns out to be a
four-component vector (four-spinor), the two upper components (upper bispinor)
being large for the electronic states, the two lower ones (lower bispinor) being large
for the positronic states (charge degrees of freedom in the wavefunction). Since
the focus in relativistic quantum chemistry is on electrons, it is common to use the
terms large components and small components for the upper and lower components,
respectively. The odd and even components may be related to spin up and down,
respectively, of the particle (spin degrees of freedom). A Taylor expansion of Eq. 1
shows for the electronic states that the nonrelativistic energy increases as Z2 and
the relativistic corrections to it as Z4. However, since the prefactor of the rela-
tivistic energy contributions contains 1/c2 the corrections are expected to become
chemically important only for heavy nuclei. The substitution of the nonrelativistic
Hamiltonian by a relativistic one leads to the so-called direct relativistic effects, i.e.,
a stabilization and a contraction of the hydrogenic functions. It is further observed
that not all states with the same main quantum number n are degenerate as it is
the case for the nonrelativistic solutions. In particular, states with the same nl are
split into two subsets for l > 0 (spin-orbit splitting).

The total nonrelativistic Hartree-Fock energy of the rare gas atoms He, Ne, Ar,
Kr, Xe and Rn is approximately proportional to Z2.37, the correlation corrections
(as estimated from local density functional calculations including a self-interaction
correction) to Z1.16 and the relativistic corrections (as estimated from quasirela-
tivistic Wood-Boring calculations) to Z4.34 (Fig. 1). Focussing on the one-electron
functions rather than the total energy one observes a stabilization and contraction
for valence s and p shells, but a destabilization and expansion for valence d and f
shells (Figs. 2, 3). Besides the direct relativistic effects causing the stabilization
and contraction as well as the splitting of the p, d, f, ... shells, so-called indirect
relativistic effects or relativistic self-consistent field effects are present. The con-
traction of the inner shells causes a more efficient screening of the nuclear charge
for the outer shells, thus leading to a decreased effective nuclear charge and an ex-
pansion and destabilization. Direct and indirect effects act on all shells, but direct
effects dominate for s and p valence shells, whereas indirect effects dominate for
d and f valence shells. Relativistic effects on orbitals have direct consequences
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Figure 1. Total nonrelativistic Hartree-Fock energy, relativistic corrections (estimated from Wood-
Boring calculations) and correlation contributions (estimated from correlation energy density func-
tional calculations) for rare gas atoms.
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Figure 2. Nonrelativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) orbital
energies for the valence shells of the coinage metals (n = 4, 5, 6, 7 for Cu, Ag, Au and Eka-Au,
respectively).

on quantum mechanical observables, e.g., the ionization potentials of the coinage
metals are enhanced due to the relativistic stabilization of the valence s shell (Fig.
4). Clearly, since the energy and shape of valence orbitals is affected by relativis-
tic effects, these are also important for chemical bonding. Quite often relativity
leads to a bond length contraction, e.g., for the coinage metal hydrides (Fig. 5).
In some rare cases, e.g., for some lanthanide or actinide systems 36, slight bond
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Figure 3. Nonrelativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) orbital
radius expectation values < r > for the valence shells of the coinage metals (n = 4, 5, 6, 7 for Cu,
Ag, Au and Eka-Au, respectively.
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Figure 4. Nonrelativistic Hartree-Fock (HF), relativistic Dirac-Hartree-Fock (DHF) and experi-
mental (Exp.) ionization potentials of the coinage metals. The experimental result for Eka-Au
actually corresponds to the result of a high level correlated relativistic calculation (Eliav et al.,
Phys. Rev. Lett. 73, 3203 (1994)).

length expansions are found. One may relate the relativistic bond length changes
to contractions or expansions of the valence orbitals mainly involved in bonding,
but alternative explanations are also valid 27,33. Besides bond lengths also binding
energies and vibrational constants are influenced by relativistic effects. In simple
cases bond stabilization or destabilization may be estimated on the basis of atomic
data, e.g., for a mainly ionic A+B− system the relativistic effects in the ionization
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potential of A and the electron affinity of B roughly determine the relativistic effect
on the binding energy. Spin-orbit coupling lowers the energy of atoms with open p,
d, and/or f shells. In molecules the lowering of the energy is typically much smaller
due to the usually smaller number of unpaired electrons and the lower symmetry
of the system. This often leads to a net destabilization of the bond by spin-orbit
effects. In special cases, e.g., for the essentially van der Waals bonded dimer Hg2,
spin-orbit effects can also increase the binding energy 39.
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Figure 5. Nonrelativistic Hartree-Fock (HF), relativistic Dirac-Hartree-Fock (DHF) and experi-
mental (Exp.) bond lengths of the coinage metal hydrides. The experimental result for the Eka-Au
hydride actually corresponds to the result of a high level correlated relativistic calculation (Seth
et al., Chem. Phys. Lett. 250, 461 (1996)).

1.2 Computational savings

More familiar than relativistic effects is to the general chemist the idea that only
the valence electrons of an atom determine, at least qualitatively, its chemical be-
havior. The effective core potential approach is based on this experience and tries
to provide a valence-only Hamiltonian which models in actual calculations for va-
lence properties of atoms and molecules as accurately as possible the corresponding
all-electron results. The main motivation to develop such schemes was initially the
reduction of the computational effort, when only the chemically relevant subset of
electrons is treated explicitly. Today, with a far advanced computer technology
at hand and significantly improved algorithms implemented in quantum chemical
program packages, the main advantage of effective core potentials is the ease with
which relativistic effects can be included in the calculations.
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2 All-electron Hamiltonian

Relativistic all-electron approaches are discussed here in brief for two reasons: on
one hand relativistic ab initio effective core potentials are derived from (atomic)
all-electron relativistic calculations, on the other hand they are often calibrated in
atomic and molecular calculations against the results from all-electron relativistic
calculations.

Starting point of the following considerations is a general configuration space
Hamiltonian for n electrons and N nuclei, where we assume the Born-Oppenheimer
approximation to hold and neglect external fields.

H =
n∑

i

h(i) +
n∑

i<j

g(i, j) +
N∑

λ<µ

ZλZµ
rλµ

. (3)

The indices i and j denote electrons, λ and µ nuclei. Zλ is the charge of the nucleus
λ. For the one- and two-particle operators h and g various expressions can be
inserted (e.g., relativistic, quasirelativistic or nonrelativistic; all-electron or valence-
only). The basic goal of quantum chemical methods is usually the approximate
solution of the time-independent Schrödinger equation for a specific Hamiltonian,
the system being in the state I, i.e.,

HΨI = EIΨI . (4)

The most accurate electronic structure calculations nowadays applicable for atoms,
molecules and also solids are based on the Dirac (D) one-particle Hamiltonian

hD(i) = c~αi~pi + (βi − I4)c2 +
∑

λ

Vλ(riλ) , (5)

which is correct to all orders of the fine-structure constant α = 1/c. In these

equations I4 denotes the 4 × 4 unit matrix, and ~pi = −i~∇i is the momentum
operator for the i-th electron. ~αi is a three-component vector whose elements
together with βi are the 4× 4 Dirac matrices

β =

(
I2 0
0 −I2

)

and ~α =

(
~0 ~σ

~σ ~0

)

, (6)

which can be expressed in terms of the three-component vector of the 2 × 2 Pauli
matrices ~σ,

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

, (7)

and the 2 × 2 unit matrix I2. The rest energy c2 of the electron was subtracted
from Eq. 5 in order to achieve a better compatibility to the nonrelativistic case,
i.e., as in Eq. 1 the zero of energy corresponds to a free electron without kinetic
energy. Vλ(riλ) denotes the electrostatic potential generated by the λ-th nucleus at
the position of the i-th electron

Vλ(riλ) = −Zλ
riλ

. (8)
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In some cases a finite nucleus is used, e.g., a Gaussian-type charge distribution

ρλ(r) = ρ0
λ exp(−ηλr2) with 4π

∫ ∞

0

dr r2ρλ(r) = Zλ . (9)

The parameter ηλ can be determined from the nuclear radius Rλ, which is itself
derived from the nuclear mass according to

ηλ = 3/(2R2
λ) with Rλ = 2.2677× 10−5M

1/3
λ a0 . (10)

Other charge distributions, e.g., a finite hard sphere or a Fermi-type nuclear model,
are also used. The coupling of the upper and lower components of the wavefunction
via ~αi~pi requires either kinetically balanced basis sets or the imposal of appropriate
boundary conditions in order to avoid the so-called finite basis set disease.

The two-particle terms used in such calculations are either the nonrelativistic
electrostatic Coulomb (C) interaction (yielding the Dirac-Coulomb (DC) Hamilto-
nian correct to O(α0))

gC(i, j) =
1

rij
, (11)

or in addition the magnetic Gaunt (G) interaction (yielding the Dirac-Coulomb-
Gaunt (DCG) Hamiltonian correct to O(α0))

gCG(i, j) =
1

rij
− ~αi~αj

rij
, (12)

or in addition the retardation of the interaction due to the finite velocity of light,
as it is accounted for in the frequency-independent Breit (B) interaction (yielding
the Dirac-Coulomb-Breit (DCB) Hamiltonian correct to O(α2))

gCB(i, j) =
1

rij
− 1

2rij
[~αi~αj +

(~αi~rij)(~αj~rij)

r2ij
] . (13)

For further details the reader is referred to, e.g., a review article by Kutzelnigg 28.
The Gaunt- and Breit-interaction is often not treated variationally but rather by
first-order perturbation theory after a variational treatment of the Dirac-Coulomb-
Hamiltonian. The contribution of higher-order corrections such as the vaccuum
polarization or self-energy of the electron can be derived from quantum electrody-
namics (QED), but are usually neglected due to their negligible impact on chemical
properties.

In principle problems of relativistic electronic structure calculations arise from
the fact that the Dirac-Hamiltonian is not bounded from below and an energy-
variation without additional precautions could lead to a variational collapse of
the desired electronic solution into the positronic states. In addition, at the many-
electron level an infinite number of unbound states with one electron in the positive
and one in the negative continuuum are degenerate with the desired bound solution.
A mixing-in of these unphysical states is possible without changing the energy and
might lead to the so-called continuum dissolution or Brown-Ravenhall disease. Both
problems are avoided if the Hamiltonian is, at least formally, projected onto the
electronic states by means of suitable operators P+ (no-pair Hamiltonian):

Hnp = P+HP+ . (14)
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The Douglas-Kroll transformation 40 of the Dirac-Coulomb Hamiltonian in its im-
plementation by Heß 41,42,43,44,45 leads to one of the currently most successful and
popular forms of a relativistic no-pair Hamiltonian. The one-electron terms of the
Douglas-Kroll-Heß (DKH) Hamiltonian have the form

hDKH(i) = Ei −Ai[V (i) + RiV (i)Ri]Ai −W1(i)EiW1(i)− 1

2
{W1(i)2, Ei} (15)

with Ei = Epi
= c
√

~p 2
i + c2 , Ai = Api

=

√

Ei + c2

2Ei
, Ri =

c~σi~pi
Ei + c2

,

and {} denoting an anticommutator. W1(i) is an integral operator with the kernel

W1(~p, ~p ′) = Ap(Rp −Rp′)Ap′
V (~p, ~p ′)

Ep + Ep′
, (16)

where V (~p, ~p ′) is the Fourier transform of the external Potential V (i). The two-
electron terms

gDKH(i, j) = AiAj [
1

rij
+ Ri

1

rij
Ri + Rj

1

rij
Rj + RiRj

1

rij
RiRj]AiAj (17)

increase the computational cost significantly, but have only small effects on the
results and are therefore usually neglected, i.e., the unmodified Coulomb interaction
is used.

A straightforward elimination of the small components from the Dirac equation
leads to the two-component Wood-Boring (WB) equation 46, which exactly yields
the (electronic) eigenvalues of the Dirac Hamiltonian upon iterating the energy-
dependent Hamiltonian

hWB(i) =
1

2
(~σi~pi)(1 +

Ei − V (i)

2c2
)−1(~σi~pi) +

∑

λ

Vλ(riλ) . (18)

Due to the energy-dependence of the Hamiltonian the Wood-Boring approach leads
to nonorthogonal orbitals and has been mainly used in atomic finite difference
calculations as an alternative to the more involved Dirac-Hartree-Fock calculations.
The relation

(~σj~pj)f(rj)(~σj~pj) = ~pjf(rj)~pj + i~σj [(~pjf(rj))× ~pj ] (19)

allows the partitioning of spin-independent and spin-dependent parts and there-
fore the derivation of a scalar-relativistic DKH or WB Hamiltonian. This is also
obtained by formally replacing ~σi~pi by ~pi in Eqs. 15 and 18.

The WB approach was used to generate both model potentials as well as pseu-
dopotentials. The DKH method was applied together with model potentials and
to provide molecular all-electron results for calibration studies with valence-only
schemes (cf. below).
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3 Valence-only Hamiltonian

A significant reduction of the computational effort in quantum chemical investiga-
tions can be achieved by restriction of the actual calculations to the valence electron
system and the implicit inclusion of the influence of the chemically inert atomic
cores by means of suitable parametrized effective (core) potentials. This approach
is in line with the chemists view that mainly the valence electrons of an element
determine its chemical behavior, cf., e.g., the periodic table of elements. From
a quantum mechanical point of view the partitioning of a many-electron system
into subsystems is not possible, since electrons as elementary particles are indis-
tinguishable. However, in the framework of effective one-particle approximations
like Hartree-Fock or Dirac-Hartree-Fock theory a definition of core and valence or-
bitals/shells is possible either on the basis of energetic (orbital energies) or spatial
(shape, radial maxima or expectation values of orbitals) arguments. If the core
shells of a system are determined for one bonding situation, e.g., the free atoms,
and then transferred to other bonding situations, e.g., the molecule, one speeks of
the frozen-core or frozen-orbital approximation. This approach is underlying all
valence-only schemes (cf., however, section 6). It is important to realize, however,
that the chemists qualitative view of partitioning core and valence shells is usually
not suitable for quantitative calculations, e.g., treatment of Ti ([18Ar] 3d2 4s2 3F2

ground state) or Ce ([54Xe] 4f1 5d1 6s2 1G4 ground state) as a four valence electron
systems leads to poor or even disastrous results 36, whereas it works very well for
C ([2He] 2s2 2p2 3P0 ground state). The reason is the presence of partially occu-
pied valence shells which have the same or even lower main quantum number as
the fully occupied core shells. Although based on orbital energies the separation
between core and valence shell may be reasonable, it is poor from a spatial point
of view: the Ti 3d shell has its maximum density close to the one of the 3s and 3p
shells, the Ce 4f shell has its maximum density even closer to the nucleus than the
5s and 5p shells. A change in the valence electron configuration in these compact
valence orbitals, e.g., when looking at an excited atomic state or when forming a
chemical bond, leads to too large changes of the shielding of the nuclear charge for
the most diffuse core orbitals and consequently to a breakdown of the frozen core
approximation. The most reliable effective core potentials have a separation of core
and valence shells according to the main quantum number, e.g., 3s and 3p for Ti
and 4s, 4p, 4d, 5s and 5p for Ce have to be included in the valence shell.

In effective core potential theory an effective model Hamiltonian approximation
for Hnp is seeked, which only acts on the states formed by the valence electrons:

Hv =

nv∑

i

hv(i) +

nv∑

i<j

gv(i, j) + Vcc + Vcpp . (20)

The subscripts c and v denote core and valence, respectively. hv and gv stand for
effective one- and two-electron operators, Vcc represents the repulsion between all
cores and nuclei of the system, and Vcpp is a core polarization potential (CPP). nv
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denotes the number of valence electrons treated explicitly in the calculations

nv = n−
N∑

λ

(Zλ −Qλ) . (21)

Here Qλ denotes the charge of the core λ. Several choices exist for the formula-
tion of such a valence-only model Hamiltonian, i.e., four-, two- or one-component
approaches and explicit or implicit treatment of relativity. Since a reasonable com-
promise between accuracy and efficiency is desired, the standard effective core po-
tential schemes use the implicit treatment of relativity (i.e., a nonrelativistic ki-
netic energy operator and inclusion of relativistic effects via parametrization of the
effective core potential) and a one-component (scalar-quasirelativistic) or a two-
component (quasirelativistic) treatment. Moreover, one may decide to keep the
radial nodal structure of the (atomic) valence orbitals unchanged (model poten-
tials, MP), or formally apply a pseudoorbital transformation to have the energeti-
cally lowest (atomic) valence orbital of each lj or l quantum number without radial
nodes (pseudopotentials, PP).

Scalar-quasirelativistic and quasirelativistic effective core potentials use a for-
mally nonrelativistic model Hamiltonian

hv(i) = −1

2
∆i + Vcv(i) and gv(i, j) =

1

rij
. (22)

Relativistic contributions result only from the parametrization of the effective core
potential Vcv, which describes the interaction of a valence electron with all nuclei
and cores present in the system. The molecular pseudopotential is assumed to be
a superposition of atomic pseudopotentials, with the Coulomb attraction between
point charges as the leading term

Vcv(i) =

N∑

λ

(−Qλ
rλi

+ ∆V λcv(~rλi)) + ... . (23)

For the interaction between nuclei and cores the point charge approximation also
is the first term

Vcc =

N∑

λ<µ

(
QλQµ
rλµ

+ ∆V λµcc (rλµ)) + ... . (24)

It is hoped that a suitable parametrization of ∆V λcv and ∆V λµcc is able to compensate
for all errors resulting from the simplifications of the original valence Hamiltonian.

3.1 Model Potentials

The most straightforward approach to come to an effective core potential is to
use the Fock operator Fv of a valence orbital ϕVa and to simplify the effective one
particle potential

−
N∑

λ

Zλ
rλi

+
∑

c

(2Jc(i)−Kc(i)) =

N∑

λ

(−Qλ
rλi

+ ∆V λcv(~rλi)) , (25)
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where the first sum is over all nuclei λ with charge Zλ and the second over all
core orbitals c. Jc and Kc denote the usual Coulomb and exchange operators. A
first approximation is the assumption of non-overlapping cores, so that the sec-
ond sum on the lhs can also be regarded as a superposition of one-center terms.
A second approximation follows from the goal that relativistic effects should be
treated implicitly. Therefore not only Vcv is approximated but also an additive
relativistic correction term Vrel. In order to obtain the relevant atomic potentials
V λrel + V λcv a two- or one-component quasirelativistic atomic all-electron calculation
is performed. The most widely used variant of the method are the ab initio model
potentials (AIMP) of Seijo, Barandiarán and coworkers 48,49,50,51,52,53, where the
quasirelativistic Hamiltonian proposed by Wood and Boring (WB) 46 for density
functional calculations is used in the framework of Hartree-Fock theory according
to the scheme outlined by Cowan and Griffin (CG) 47. The WB and CG approaches
correspond essentially to the use of an energy-dependent one-particle Hamiltonian,
which results from the elimination of the small components from the Dirac-equation,
within the Hartree-Fock scheme, disregarding any resulting non-orthogonality be-
tween orbitals of equal lj.

The AIMP method in its present form starts from a quasirelativistic all-electron
Hartree-Fock calculation for the atom under consideration in a suitable electronic
state and approximates the operators on the lhs of Eq. 25 for an atomic core λ as
described in the following.

The long-range local Coulombic (C) part is spherical and is represented by
a linear combination of Gaussians with prefactors 1/r, i.e., a local radial model
potential

−Zλ −Qλ
rλi

+ 2
∑

c∈λ
Jλc (i) =

1

rλi

∑

k

Cλk e
−αλ

kr
2
λi = ∆V λC (i) . (26)

The exponents αλk and coefficients Cλk are adjusted to the all-electron potential in a
least-squares sense under the constraint that

∑

k C
λ
k = Zλ−Qλ in order to enforce

the correct asymptotic behavior of the model potential. Since the evaluation of
integrals over such a local potential is not costly, any desired accuracy can be easily
achieved by using a sufficiently long expansion. The nonlocal exchange (X) part is
substituted by its spectral representation in the space defined by a set of functions
χλp centered on core λ

−
∑

c∈λ
Kλ
c (i) =

∑

p,q

|χλp(i) > Aλpq < χλq (i)| = ∆V λX(i) . (27)

It should be noted that this model potential operator yields the same one-center
integrals as the true core exchange operator as long as the basis functions can be
represented by the set of the χλp . Two- and three-center integrals are approximated.
Since, in contrast to the Coulomb part, the exchange part is short ranged, a moder-
ate number of functions χλp is needed and the one-center approximation is expected
to be very good, at least for not too large cores. In practical applications the basis
used in the spectral representation is chosen to be identical to the primitive func-
tions of the valence basis set used for the atom under consideration and the Aλpq
are calculated during the input processing of each AIMP calculation.
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With the Coulomb and exchange parts of the model potential discussed so far
the core-like solutions of the valence Fock equation still would fall below the desired
valence-like solutions. In order to prevent the valence-orbitals to collapse into the
core during a variational treatment and to retain a Aufbau principle for the valence
electron system, the core-orbitals are shifted to higher energies by means of a shift
operator

Pλ(i) =
∑

c∈λ
(Dλ

c )|ϕλc (i) >< ϕλc (i)| . (28)

Here the ϕλc denote the core orbitals localized on core λ. For practical calculations
they are represented by a sufficiently large (all-electron) basis set. In principle only
Dλ
c →∞ would effect a strict orthogonality between core and valence orbitals, how-

ever the more or less arbitrary choice Dλ
c = −2ǫλc is usually made due to numerical

reasons. With this choice there is not strict orthogonality between core and valence
orbitals, but the resulting errors are expected to be small.

The approach which has been described so far is the nonrelativistic AIMP
method. It should be noted that for the derivation of the model potential

∆V λcv,av(i) = ∆V λC (i) + ∆V λX(i) + Pλ(i) (29)

no valence properties, e.g., valence orbitals or valence orbital energies, have
been used in the nonrelativistic AIMP approach. The scalar-quasirelativistic
and quasirelativistic extensions of the AIMP approach are called CG-AIMP (one-
component) and WB-AIMP (two-component), respectively.

For an one-electron atom in the central field approximation one obtains from
Eq. 18 the following radial equation:

(HS +HMV +HD +HSO)Pnκ(r) = ǫnκPnκ(r) . (30)

The nonrelativistic Schrödinger Hamiltonian

hS(i) = −1

2

d2

dr2
+
l(l + 1)

2r2
+ V (r) (31)

is augmented by three energy-dependent relativistic terms, i.e., a mass-velocity
(MV), a Darwin (D) and a spin-orbit (SO) term

HMV = −α
2

2
[ǫnκ − V (r)]

2
, HD = −α

2

4

dV

dr
Bnκ(

d

dr
− 1

r
), (32)

HSO = −α
2

4

dV

dr
Bnκ

κ+ 1

r
, Bnκ =

(

1 +
α2

2
[ǫnκ − V (r)]

)−1

.

In the many-electron case the correct nonlocal Hartree-Fock potential is used
in Eq. 30, but a local approximation to it in Eqs. 32. In the CG-AIMP approach
the mass-velocity and Darwin operators are cast together with the exchange terms
into their spectral representation Eq. 27. The valence orbital energies ǫnκ are kept
fixed during the extraction process and are also used for any semi-core orbitals of
the same κ, which are included in the AIMP valence space. A similar strategy is
followed in order to deal with the first derivative of the valence orbital in the Darwin
term. It should be noted, however, that due to the use of relativistic core orbitals
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and core orbital energies relativistic contributions are also present in the Coulomb
and shift terms of the AIMP. The WB-AIMP method adds to this a representation
of the spin-orbit operator in the form

∆V λcv,so(i) =
∑

l

(
∑

k

Bλlk
r2λi

e−β
λ
lkr

2
λi)Pλl (i)~lλi~siPλl (i) , (33)

where ~lλi = ~rλi × ~pi and ~si denote the operators of orbital angular momentum
and spin, respectively, and Pλl is the projection operator onto the subspace of
angular quantum number l with respect to core λ. The coefficients Bλlk and ex-
ponents βλlk are determined by means of a least-squares fit to the radial compo-
nents of the Wood-Boring spin-orbit term. We note here in passing, that the
Hamiltonian proposed by Cowan and Griffin is not identical to the spin-orbit
averaged form of the Hamiltonian proposed by Wood and Boring 90. The one-
component Cowan-Griffin equation is identical to the Wood-Boring equation for
l = 0, but it yields the eigenvalues of the Klein-Gordon equation (valid for a
spin-0 particle) for l > 0. The reason is that in addition to the spin-orbit term
the Darwin term was also neglected for l > 0 by Cowan and Griffin. The CG-
AIMP approach, however, uses in fact the properly spin-averaged Wood-Boring
Hamiltonian and not the Cowan-Griffin Hamiltonian. Ab initio model poten-
tial parameters and corresponding basis sets are available on the internet under
http://www.qui.uam.es/Data/AIMPLibs.html . Since the model potential ap-
proach yields valence orbitals which have the same nodal structure as the all-
electron orbitals, it is possible to combine the approach with an explicit treatment
of relativistic effects in the valence shell, e.g., in the framework of the DKH no-pair
Hamiltonian 54,55. Corresponding ab initio model potential parameters are available
on the internet under http://www.thch.uni-bonn.de/tc/TCB.download.html .

3.2 Pseudopotentials

The pseudopotential method was first developed by Hellmann 56 and Gombás 57

around 1935. The quantum mechanical foundations of the method have been inves-
tigated later by Fényes and Szépfalusy in the framework of Hartree and Hartree-
Fock theory, respectively. The approach became more popular after the work of
Preuss 58 for molecules and Phillips and Kleinman 59 for solids. Many of the ap-
proximations underlying the method were discussed extensively in the literature,
e.g., cf. papers of Weeks et al.1 and Dixon and Robertson 3. However, since the
modern pseudopotentials used today have little in common with the formulas one
obtains by a strict derivation of the theory, only a rough derivation in the framework
of nonrelativistic Hartree-Fock theory is presented in the following.

The space of orthonormal orbitals of a system with a single valence electron
outside a closed shell core may be partitioned into a subspace for the doubly oc-
cupied core orbitals ϕc and a subspace for the singly occupied valence orbital ϕv.
For the moment the space of the unoccupied virtual orbitals is not considered. The
Fock equation for the valence orbital ϕv

Fvϕv = ǫvϕv +
∑

c 6=v
ǫvcϕc (34)
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(Fv denotes the Fock operator) can be transformed by application of 1 − Pc from
the left into a pseudo eigenvalue equation

(1 − Pc)Fvϕv = ǫvϕv , (35)

with the projector Pc on the subspace of the core orbitals

Pc =
∑

c

|ϕc >< ϕc| . (36)

Reductions in the basis set used to represent the valence orbital ϕv can be only
achieved if by admixture of core orbitals ϕc the radial nodes are eliminated and the
shape of the resulting pseudo (p) valence orbital ϕp is as smooth as possible in the
core region (pseudoorbital transformation)

ϕp = Np(ϕv +
∑

c 6=v
ωcϕc) . (37)

Np denotes a normalization factor depending on the coefficients ωc. The original
valence orbital with the full nodal structure in terms of the pseudo valence orbital
with the simplified nodal structure

ϕv = (Np)
−1(1 − Pc)ϕp (38)

may be inserted into the pseudo eigenvalue problem Eq. 35

(1− Pc)Fv(1− Pc)ϕp = ǫv(1− Pc)ϕp . (39)

Using the so-called generalized Phillips-Kleinman pseudopotential 1

V GPK = −PcFv −FvPc + PcFvPc + ǫvPc (40)

one recovers again a pseudo eigenvalue problem for the pseudo valence orbital

(Fv + V GPK)ϕp = ǫvϕp . (41)

If one assumes the core orbitals ϕc to be also eigenfunctions of the Fock operator
Fv, i.e., [Fv, Pc] = 0, and uses the idempotency of the projection operator Pc = Pnc
(n ≤ 1), one recovers a simplified pseudo eigenvalue problem

(Fv + V PK)ϕp = ǫvϕp (42)

containing the so-called Phillips-Kleinman pseudopotential 59

V PK =
∑

c 6=v
(ǫv − ǫc)|ϕc >< ϕc| . (43)

The transition from a single valence electron to nv valence electron requires formally
in Eq. 39 the following substitutions:

Fv 7−→
nv∑

i

Fv(i) +

nv∑

i<j

g(i, j) , ǫv 7−→ Ev , (44)

(1− Pc) 7−→
nv∏

i

(1− Pc(i)) , ϕp 7−→ Ψp .
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The sum of effective one-particle operators Fv(i) has to be augmented by the in-
terelectronic interaction terms g(i, j) between the valence electrons. The valence
model Hamiltonian Hv then reads

Hv =

nv∏

k

(1− Pc(k))[

nv∑

i

Fv(i) +

nv∑

i<j

g(i, j)]

nv∏

l

(1− Pc(l)) (45)

+ Ev[

nv∑

i

Pc(i)−
nv∑

i<j

Pc(i)Pc(j)−+ ...] + Vcc .

This form of valence model Hamiltonian is essentially useless for practical calcula-
tions, since it contains complicated many-electron operators due to the introduc-
tion of products of projection operators. In addition the use of such a Hamiltonian
would not bring about any computational savings with respect to an all-electron
treatment, since the derivation given so far essentially consists of a rewriting of the
Fock equation for a valence orbital in a different form. Reductions in the compu-
tational effort can be only achieved by elimination of the core electron system and
simulation of its influence on the valence electrons by introducing a suitable model
Hamiltonian:

hv(i) = [(1 − Pc(i))Fv(i)(1 − Pc(i)) + EvPc(i)] 7−→ −1

2
∆i + Vcv(i) , (46)

gv(i, j) = [(1− Pc(i))(1 − Pc(j))g(i, j)(1 − Pc(i))(1 − Pc(j))] 7−→
1

rij
.

4 Analytical form of pseudopotentials

The simplest and historically the first choice is the local ansatz for ∆V λcv in Eq. 22,
however, such an ansatz is too inaccurate and therefore has soon been replaced by
a so-called semilocal form. In case of quasirelativistic pseudopotentials, i.e., when
spin-orbit coupling is included, the semilocal ansatz in two-component form may
be written as

∆V λcv(~rλi) =

L−1∑

l=0

l+1/2
∑

j=|l−1/2|
(V λlj (rλi)− V λL (rλi))P

λ
lj(i) + V λL (rλi) . (47)

Pλlj denotes a projection operator on spinor spherical harmonics centered at the
core λ

Pλlj(i) = Pλl,l±1/2(i) = Pλκ (i) =

j
∑

mj=−j
| λljmj(i)〉〈λljmj(i) | . (48)

For scalar-quasirelativistic calculations, i.e., when spin-orbit coupling is neglected,
a one-component form may be obtained by averaging over the spin

∆V λcv,av(~rλi) =

L−1∑

l=0

(V λl (rλi)− V λL (rλi))P
λ
l (i) + V λL (rλi) . (49)
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The projection operator Pλl refers now to the spherical harmonics centered at the
core λ

Pλl (i) =

l∑

ml=−l
| λlml(i) >< λlml(i) | . (50)

A spin-orbit operator may be defined

∆V λcv,so(~rλi) =

L−1∑

l=1

∆V λl (rλi)

2l+ 1
[lPλl,l+1/2(i)− (l + 1)Pλl,l−1/2(i)] (51)

which contains essentially the difference between the two-component pseudopoten-
tials

∆V λl (rλi) = V λl,l+1/2(rλi)− V λl,l−1/2(rλi) . (52)

For practical calculations it is advantageous to separate space and spin

∆V λcv,so(~rλi) =

L−1∑

l=1

2∆V λl (rλi)

2l + 1
Pλl (i)~lλi~siP

λ
l (i) . (53)

The potentials V λlj and V λl (l = 0 to l = L) respectively ∆V λl (l = 1 to l = L -1)
are represented as a linear combination of Gaussians multiplied by powers of the
electron-core distance:

V λlj (rλi) =
∑

k

Aλljk r
nλ

ljk

λi exp(−aλljkr2λi) , (54)

[∆]V λl (rλi) =
∑

k

[∆]Aλlk r
nλ

lk

λi exp(−aλlkr2λi) . (55)

The necessary one-electron integrals over cartesian Gaussians have been presented,
e.g., by McMurchie and Davidson 60 or by Pitzer and Winter 61,62. Alternatively,
making use of the operator identity

+l∑

ml=−l
|lml > Vl(r) < lml| =

∑

i,j

|χ(l)
i > A

(l)
ij < χ

(l)
j | . (56)

a nonlocal representation in a (nearly) complete auxiliary basis set can be used

instead 63. Once the constants A
(l)
ij have been determined the integral evaluation is

reduced to overlap integrals (between the auxiliary basis and the actual molecular
basis sets) and therefore the derivatives with respect to the nuclear coordinates
needed in geometry optimizations become much easier to evaluate.

In case of large cores a correction to the point charge repulsion model in Eq. 24
is needed. A Born-Mayer type ansatz proved to be quite successful

∆V λµcc (rλµ) = Bλµexp(−bλµrλµ) . (57)

For a core-nucleus repulsion the parameters Bλµ and bλµ can be obtained directly
from the electrostatic potential of the atomic core electron system, for a core-
core repulsion the deviation from the point charge model has to be determined
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by Hartree-Fock or Dirac-Hartree-Fock calculations for the interaction between the
frozen cores.

Relativistic pseudopotentials to be used in four-component Dirac-Hartree-Fock
calculations can also be successfully generated and used 64, however, the advantage
of obtaining accurate results at a low computational cost is certainly lost within
this scheme.

5 Adjustment of pseudopotentials

5.1 Shape-consistent pseudopotentials

The origin of shape-consistent pseudopotentials 65,66 lies in the insight that the ad-
mixture of only core orbitals to valence orbitals in order to remove the radial nodes
leads to too contracted pseudo valence orbitals and finally as a consequence to poor
molecular results, e.g., to too short bond distances. It has been recognized about
20 years ago that it is indispensable to have the same shape of the pseudo valence
orbital and the original valence orbital in the spatial valence region, where chemical
bonding occurs. Formally this requires also an admixture of virtual orbitals in Eq.
37. Since these are usually not obtained in finite difference atomic calculations,
another approach was developed. Starting point is an atomic all-electron calcu-
lation at the nonrelativistic, scalar-relativistic or quasirelativistic Hartree-Fock or
the Dirac-Hartree-Fock level. In the latter case the small components are discarded
and the large components of the energetically lowest valence shell of each quantum
number lj are considered as valence orbitals after renormalization. To generate the
pseudo valence orbitals ϕp,lj the original valence orbitals ϕv,lj are kept unchanged
outside a certain matching radius rc separating the spatial core and valence regions
(shape-consistency; exactly achieved only for the reference state), whereas inside
the matching radius the nodal structure is discarded and replaced by a smooth and
in the interval [0,rc] nodeless polynomial expansion flj(r):

ϕv,lj(r) → ϕp,lj(r) =

{
ϕv,lj(r) for r ≥ rc
flj(r) for r < rc

(58)

The free parameters in flj are determined by normalization and continuity condi-
tions, e.g., matching of flj and ϕv,lj as well as their derivatives at rc. The choice of
rc as well as the choice of flj is in certain limits arbitrary and a matter of experience.

Having a nodeless and smooth pseudo valence orbital ϕp,lj and the correspond-
ing orbital energy ǫv,lj at hand, the corresponding radial Fock equation

(−1

2

d2

dr2
+
l(l + 1)

2r2
+ V PPlj (r) +Wp,lj [{ϕp′,l′j′}])ϕp,lj(r) = ǫv,ljϕp,lj(r) (59)

can be solved pointwise for the unknown pseudopotential V PPlj for each combination
lj of interest. In Eq. 59 the term Wp,lj stands for an effective valence Coulomb
and exchange potential for ϕp,lj . Relativistic effects enter the potentials implicitly
via the value of the orbital energy ǫv,lj and the shape of the pseudo valence orbital
outside the matching radius. The resulting potentials V PPlj are tabulated on a grid
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and are usually fitted to a linear combination of Gaussian functions according to

V PP = −Q
r

+
∑

lj

(
∑

k

Alj,kr
nlj,k−2e−αlj,kr

2

)Plj . (60)

Shape-consistent pseudopotentials including spin-orbit operators based on Dirac-
Hartree-Fock calculations using the Dirac-Coulomb Hamiltonian have been gen-
erated by Christiansen, Ermler and coworkers 67,68,69,70,71,72,73,74,75,76. The po-
tentials and corresponding valence basis sets are available on the internet under
http://www.clarkson.edu/̃ pac/reps.html . A similar set for main group and
transition elements based on scalar-relativistic Cowan-Griffin all-electron calcula-
tions was published by Hay and Wadt 77,78,79,80,81. Another almost complete set
of pseudopotentials has been published by Stevens and coworkers 82,83,84.

5.2 Energy-consistent pseudopotentials

Energy-consistent ab initio pseudopotentials developed from energy-adjusted
semiempirical pseudopotentials, i.e., potentials which were fitted to reproduce the
experimental atomic spectrum. Due to the problems to account accurately for
valence correlation effects, such semiempirical energy-adjustment could only be
performed successfully for one-valence electron systems. The results for alkaline
and alkaline-earth systems were quite good, however, due to the limited validity
of the frozen-core approximation when going from a highly charged one-valence
electron ion to a neutral atom or nearly neutral ion, it essentially failed for other
elements, especially transition metals. However, the idea to fit exclusively to quan-
tum mechanical observables like total valence energies (note that these may be
written as sums of ionization potentials and excitation energies) instead of to rely
on quantities like orbitals and orbital energies only meaningful in an approximate
one-particle picture is very appealing and the approach regained attention in the
ab initio framework 85.

In the most recent version of the energy-consistent pseudopotential approach
the reference data is derived from finite-difference all-electron multi-configuration
Dirac-Hartree-Fock calculations based on the Dirac-Coulomb or Dirac-Coulomb-
Breit Hamiltonian 86. These calculations are performed for a multitude of electronic
configurations/states/levels I of the neutral atom and the low-charged ions. The
total valence energies EAEI derived from these calculations define the pseudopoten-
tial parameters for a given ansatz in a least-squares sense. A corresponding set
of finite-difference valence-only calculations (especially the same coupling scheme
and correlation treatment has to be applied) is performed to generate the total
valence energies EPPI , and the parameters are varied in such a way that the sum
of weighted squared errors in the total valence energies becomes a minimum, i.e.,

∑

I

(wI [E
PP
I − EAEI ]

2
) := min . (61)

In principle this formalism can be used to generate one-, two- and also four-
component pseudopotentials at any desired level of relativity (nonrelativistic
Schrödinger, or relativistic Wood-Boring, Douglas-Kroll-Hess, Dirac-Coulomb or

524



Dirac-Coulomb-Breit Hamiltonian; implicit or explicit treatment of relativity in
the valence shell) and electron correlation (single- or multi-configurational wave-
functions, e.g., the use of an intermediate coupling scheme is possible). The pseudo
valence orbitals usually agree very well with the all-electron orbitals in the va-
lence region, cf., e.g., Fig. 6. Parameters of energy-consistent ab initio pseudopo-
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Figure 6. Valence spinors of the iodine atom in the [46Pd] 5s2 5p5 ground state configuration
from average-level all-electron (AE) multiconfiguration Dirac-Hartree-Fock calculations and cor-
responding valence-only calculations using a relativistic energy-consistent 7-valence-electron pseu-
dopotential (PP).

tentials and corresponding valence basis sets have been presented for almost all
elements of the periodic table by Dolg, Preuss, Schwerdtfeger, Stoll and cowork-
ers 85,86,87,88,89,90,91,92,93,94,95,96,97. They are also available on the internet under
http://www.theochem.uni-stuttgart.de . Since the functional form of energy-
consistent pseudopotentials is identical to the one of shape-consistent pseudopoten-
tials, both types of pseudopotentials can be used in standard quantum chemical pro-
gram packages (COLUMBUS, GAUSSIAN, GAMESS, MOLPRO, TURBOMOLE,
...) as well as polymer or solid state codes using Gaussian basis sets (CRYSTAL,
WANNIER, ...).

5.3 Limitations of accuracy

Effective core potentials are usually derived for atomic systems at the finite dif-
ference level and used in subsequent molecular calculations using finite basis sets.
They are designed to model the more accurate all-electron calculations at low cost,
but without significant loss of accuracy. Unfortunately the correct relativistic all-
electron Hamiltonian for a many-electron system is not known and the various
pseudopotentials merely model the existing approximate formulations. For most
cases of chemical interest, e.g., geometries and binding energies, it usually does not
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matter which particular Hamiltonian model is used, i.e., typically errors due to the
finite basis set expansion or the limited correlation treatment are much larger than
the small differences between the various all-electron models. For very accurate cal-

Table 1. Relative average energy of a configuration of Hg from all-electron (AE) multi-
configuration Dirac-Hartree-Fock (DHF) average level calculations using the Dirac-Coulomb (DC)
Hamiltonian with a finite nucleus with Fermi charge distribution (fn) or a point nucleus (pn).
Contributions from the frequency-dependent Breit (B) interaction (frequency of the exchanged
photon 103 cm−1) and estimated contributions from quantum electrodynamics (QED, i.e., self-
interaction and vacuum polarization) were evaluated in first-order perturbation theory. Errors
of energy-consistent pseudopotentials (PP) with 20 valence electrons and different numbers of
adjustable parameters with respect to the AE DHF(DC,pn)+B+QED data. All values in cm−1.

configuration AE, DHF contribution error
(DC)+B+QED
fn pn B QED PPa PPb

Hg 6s2 0 0 0.0 0.0 0.0 0.0
6s1 6p1 35632.3 35674.4 -52.5 -18.7 1.3 0.0

Hg+ 6s1 68842.1 68885.1 -98.6 -11.6 -0.1 0.0
7s1 154127.4 154206.2 -220.6 -42.4 -0.4 0.0
8s1 178127.5 178215.5 -238.4 -41.7 1.1 0.1
9s1 188751.0 188843.2 -244.1 -40.6 1.6 -0.1
6p1 122036.8 122128.9 -154.2 -41.8 0.6 0.0
7p1 167514.3 167609.2 -224.1 -40.3 -3.3 0.0
8p1 183808.0 183903.6 -238.5 -40.0 -0.8 0.0
9p1 191697.2 191793.1 -244.0 -39.6 0.6 0.0

Hg++ 206962.2 207058.4 -249.8 -39.5 2.6 0.0
a energy-consistent pseudopotential with 26 adjustable parameters.
b energy-consistent pseudopotential with 54 adjustable parameters.

culations of excitation energies, ionization potentials and electron affinities, or for
a detailed investigation of errors inherent in the effective core potential approach,
however, such differences might become important. Tables 1 and 2 demonstrate
that for very special cases like Hg, with a closed 5d10-shell in all electronic states
considered, a small-core energy-consistent pseudopotential using a semilocal ansatz
reaches an accuracy of 10 cm−1, which is well below the effects of the nuclear model,
the Breit interaction or higher-order quantum electrodynamical contributions. We
also note that differences between results obtained with a frequency-dependent
Breit term and the corresponding low-frequency limit amount to up to 10 cm−1.
Moreover, the quantum electrodynamic corrections listed in tables 1 and 2 might
change by up to 20 cm−1 when more recent methods of their estimation are applied
98,99. Therefore, it is important to state exactly which relativistic all-electron model
the effective core potential simulates and, when comparing effective core potentials
of different origins, to separate differences in the underlying all-electron approach
from errors in the potential itself, e.g., due to the size of the core, the method of
adjustment or the form of the valence model Hamiltonian. In this context we want
to point out that the seemingly large errors for energy-adjusted pseudopotentials
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reported by Mosyagin et al. 100,101 are mainly due to the invalid comparison of
Wood-Boring-energy-adjusted and Dirac-Fock-orbital-adjusted pseudopotentials to
all-electron Dirac-Fock data, i.e., differences in the all-electron model are considered
to be pseudopotential errors.

Note that in the above example of Hg the average energy of a configuration (table
1) and the fine-structure (table 2) of one-valence electron states is more accurately
represented than the fine-structure of the 6s1 6p1 configuration. The small errors
in the latter case are a consequence of the pseudoorbital transformation and the
overestimation of the 6s-6p exchange integral with pseudo-valence spinors. This
error could be reduced further upon using a smaller core, but the efficiency of
the approach would be sacrificed. It is also obvious from the compiled data that
the accuracy of the valence model Hamiltonian is also a question of the number
of adjustable parameters. Claims that such very high accuracy as demonstrated
here can only be achieved by adding nonlocal terms for outer core orbitals to the
usual semilocal terms 100,101 appear to be invalid, at least for energy-consistent
pseudopotentials. Moreover, additional nonlocal terms obviously do not improve
the performance for atomic states with a 5d9 occupation or in molecular calculations
(cf., e.g., tables III and XVII in Mosyagin et al. 100).

Table 2. As table 1, but for fine-structure splittings. All values in cm−1.

configuration splitting AE,DHF contribution error
(DC)+B+QED

fn pn B QED PPa PPb

Hg 6s16p1 3P1-
3P0 1987.7 1988.6 -25.5 0.9 -14.7 3.0

3P2-
3P0 6082.6 6084.8 -96.8 2.9 -28.3 -3.5

1P1-
3P0 22994.4 22982.3 -72.4 2.2 -12.4 -9.4

Hg+ 6p1 2P3/2-
2P1/2 7765.3 7768.8 -132.8 4.8 -14.8 -0.1

7p1 2P3/2-
2P1/2 2136.8 2137.9 -29.0 1.1 -1.7 0.2

8p1 2P3/2-
2P1/2 939.4 939.9 -12.1 0.4 -4.6 -0.3

9p1 2P3/2-
2P1/2 498.7 498.9 -6.2 0.2 -3.5 0.0

a energy-consistent pseudopotential with 26 adjustable parameters.
b energy-consistent pseudopotential with 54 adjustable parameters.

6 Core Polarization Potentials

The frozen-core approximation is underlying the effective core potential schemes.
One may ask if it is possible to account for static (polarization of the core at the
Hartree-Fock level) and dynamic (core-valence correlation) polarization of the cores
in a both efficient and accurate way. The core polarization potential (CPP) ap-
proach originally developed by Meyer and coworkers 102 for all-electron calculations
and adapted by the Stuttgart group 103 for pseudopotential calculations proved to
be quite successful in the past. The core polarization potential is written in the
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following form

Vcpp = −1

2

∑

λ

αλ ~f
2
λ +

∑

λ,i

V λ(i) . (62)

Here αλ denotes the dipole polarizability of the core λ and ~fλ is the electric field at
core λ generated by all other cores and nuclei as well as all valence electrons. Since
the validity of the underlying multipole expansion breaks down for small distances
from the core λ, the field has to be multiplied by a cut-off function:

~fλ = −
∑

i

~riλ
r3iλ

(1 − exp(−δλe r2iλ))ne +
∑

µ6=λ
Qµ

~rµλ
r3µλ

(1− exp(−δλc r2µλ))nc . (63)

The necessary integrals over cartesian Gaussian functions have been presented by
Schwerdtfeger and Silberbach 104. In those cases where ns and np valence orbitals
are present together with (n-1)d and (n-2)f valence orbitals, e.g., for Cs, it proved
to be more accurate to augment the core polarization potential by a short-range
local potential 64

V λ(i) = Cλexp(−γλr2iλ) . (64)

A l-dependent cut-off function in Eq. 63 might even be more accurate 105.

7 Calibration Studies

Calibration studies, especially on molecules, are very important for effective core
potential methods. Excellent results in atomic calculations are a necessary pre-
requisite for successful molecular calculations, but provide no guarantee for them.
Therefore, effective core potentials should be systematically tested on atoms and
small molecules before using them in larger systems. This is especially necessary
for cases where a large core is used for economical reasons.

A number of such molecular calibration studies has been performed in the past
for energy-consistent pseudopotentials 106,107,108,109,110,111. Comparison is made to
experimental data and/or all-electron results. Some care has to be taken before
drawing final conclusions on the quality of pseudopotentials. Usually all molecular
calculations are performed using finite basis sets, both at the one-electron and the
many-electron level. The truncation of these basis sets leads to errors both at the
all-electron and at the pseudopotential level. Most of the time it is relatively easy to
generate basis sets of nearly the same quality at the one-particle level, e.g., by aug-
menting the standard all-electron and pseudopotential basis sets (which of course
have to be of the same quality for the valence shells) by the same polarization and
correlation functions. It is recommended, however, to approach the basis set limit,
at least up to a given angular quantum number, as closely as possible. At the many-
particle level it is sometimes more difficult to come to directly comparable basis
sets. As an example imagine a large-core pseudopotential augmented by a core po-
larization potential, which both accounts for static and dynamic core polarization.
Static core polarization occurs in the all-electron calculations automatically at the
self-consistent field level and can be accounted for in the frozen-core case by single
excitations out of the spherical core. Comparing the results of such all-electron
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Figure 7. Bond length of the iodine dimer I2 depending on the basis set. A subset of a
25s21p14d4f3g basis set and a relativistic energy-consistent 7-valence electron pseudopotential
augmented by a core polarization potential is used. The experimental value is indicated by a
vertical dashed line. The scalar-quasirelativistic pseudopotential calculations at the Hartree-Fock
self-consistent field (SCF) and coupled-cluster with single, double and perturbative triple excita-
tions (CCSD(T)) level of theory use an uncontracted (25s21p14d4f3g) Gaussian type basis set.
Spin-orbit corrections (+SO) were derived from limited two-component configuration interaction
calculations using the quasirelativistic pseudopotential and a contracted [3s3p1d1f] valence basis
set of polarized triple-zeta quality.

calculations to pseudopotential Hartree-Fock calculations including the core polar-
ization potential is not entirely correct, however, since the latter also accounts for
core-valence correlation. This effect can be modelled in all-electron calculations by
single excitations out of the spherical core and simultaneous single excitations in
the valence shell. Thus, comparing the results of an all-electron calculation where
all electrons are correlated to a correlated pseudopotential calculation with a core
polarization potential is also not entirely correct, since the former calculation also
accounts for core-core correlation effects. In addition, attention has to be paid with
respect to the relativistic contributions taken into account in the Hamiltonian, i.e.,
the relativistic scheme used in the all-electron reference calculations should not be
different, e.g., more approximate, from the scheme used to obtain the reference
data in the pseudopotential generation. As an example for a calibration study the
results for the iodine dimer I2 in its ground state are compared to Hartree-Fock
and coupled-cluster calculations using a relativistic energy-consistent 7-valence elec-
tron pseudopotential together with an uncontracted (25s21p14d4f3g) basis set. The
pseudopotential was augmented by a core polarization potential. The results for
the bond length, binding energy and vibrational frequency in dependence on the
highest angular quantum number used in the basis set are given in Figs. 7 to 9. It
is clear from these graphs that the experimental values are only approached for a
large basis set and after inclusion of spin-orbit effects. It should be mentioned here
that the core polarization potential also makes significant contributions, e.g., -0.03
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Figure 8. As figure 7, but for the binding energy.
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Figure 9. As figure 7, but for the vibrational constant.

Å, +0.09 eV and +3 cm−1 for the bond length, binding energy and vibrational con-
stant, respectively, at the Hartree-Fock level. The performance of energy-consistent
quasirelativistic 7-valence electron pseudopotentials for all halogen elements has
been investigated in a study of the monohydrides and homonuclear dimers 112.
Special attention was also paid to the accuracy of valence correlation energies ob-
tained with pseudo valence orbitals 113,114. Some of the results for the dimers is
presented in tables 3 to 5. The applied basis sets were uncontracted all-electron
basis sets: (15s9p5d4f3g) for fluorine, (21s13p5d4f3g) for chlorine, (22s17p11d4f3g)
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Table 3. Bond lengths Re (Å) of the homonuclear halogen dimers from all-electron (AE) Douglas-
Kroll-Heß (DKH) and valence-only pseudopotential (PP) Hartree-Fock self-consistent field (SCF)
calculations. Core-valence correlation and valence correlation are accounted for by a core polar-
ization potential (CPP) and a coupled-cluster treatment with singles, doubles and perturbative
triples (CCSD(T)) including spin-orbit corrections (+SO). For the basis sets cf. the text.

F2 Cl2 Br2 I2 At2
AE DKH,SCF 1.327 1.975 2.273 2.671 2.843
PP,SCF 1.324 1.964 2.266 2.669 2.861
PP+CPP,SCF 1.323 1.958 2.252 2.639 2.822
PP+CPP,CCSD(T)+SO 1.409 1.982 2.281 2.668 2.979
Exp. 1.412 1.988 2.281 2.666

Table 4. As table 3, but for vibrational constants ωe (cm−1).

F2 Cl2 Br2 I2 At2
AE DKH,SCF 1267a 615 354 232 169
PP,SCF 1271 619 356 238 168
PP+CPP,SCF 1273 622 359 241 172
PP+CPP,CCSD(T)+SO 927 561 324 215 117
Exp. 917 560 325 215

a nonrelativistic result.

Table 5. As table 3, but for binding energies De (eV).

F2 Cl2 Br2 I2 At2
AE DKH,SCF -1.07 1.23 1.01 0.92 0.81
PP,SCF -1.03 1.26 1.04 0.95 0.79
PP+CPP,SCF -1.03 1.27 1.08 1.04 0.95
PP+CPP,CCSD(T)+SO 1.66 2.44 1.95 1.57 0.80
Exp. 1.66 2.51 1.99 1.56

for bromine, (25s20p14d4f3g) for iodine, and (27s22p19d13f3g) for astatine. At
the HF level the calibration for the scalar-quasirelativistic pseudopotentials was
against all-electron calculations using the Douglas-Kroll-Heß Hamiltonian, whereas
at the CCSD(T) level including spin-orbit corrections from limited two-component
CI calculations the calibration was with respect to experimental data.

A typical example demonstrating that pseudopotentials account for the major
relativistic effects quite accurately and the largest errors in practical calculations are
actually due to finite basis sets and too limited correlation treatments is provided
by a series of theoretical investigations of gold monofluoride AuF (cf. table 6). All
calculations used the same scalar-relativistic energy-consistent 19-valence-electron
pseudopotential for Au 115, but the quality of the valence-only calculations was
systematically increased during the years. Originally it was believed that AuF is
not a stable molecule, until its existence was first predicted theoretically 115,116
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Table 6. Bond length Re (Å), binding energy De (eV) and vibrational constant ωe (cm−1) of gold
monofluoride AuF in the 1Σ+ ground state. All theoretical results have been obtained with a 19-
valence-electron energy-consistent pseudopotential adjusted to multi-configuration Dirac-Hartree-
Fock reference data 115 using different basis sets and valence correlation methods.

method basis year Re De ωe
CISD+SCC(LD)115 A 1989 1.978 2.24 509
CEPA-1115 A 1989 1.991 2.52 488
Exp.117 1992 560
QCISD(T)116 B 1994 1.939 3.09 539
Exp.118 1994 3.2
CCSD(T)119 C 1997 1.909 3.29 573
MRCI+SCC(S)119 C 1997 1.916 3.14 562
MRACPF119 C 1997 1.916 3.20 560

Basis sets: A: Au (8s6p5d1f)/[7s3p4d1f], F (13s8p1d)/[7s3p1d];

B: Au (10s8p7d1f)/[9s5p6d1f], F (15s10p2d1f)/[9s7p2d1f];

C: Au (10s8p7d4f2g)/[9s5p6d4f2g], F (13s7p4d3f2g)/[6s5p4d3f2g] (aug-cc-p-vqz).

and later also proven experimentally 117,118. The most recent calculations 119 are
in excellent agreement with the available experimental data.

8 A few hints for practical calculations

Some of the simple hints for practical applications of effective core potentials given
in the following may appear to be trivial or superfluous for some of the readers,
but experience during the last years showed that they may be welcome by the more
application-oriented ones who are less familiar with the methods.

Effective core potentials are usually a good and safe choice when properties re-
lated to the valence electron system are to be investigated. It should always be
remembered, however, that the size of the core not only determines the compu-
tational effort, but it also influences the accuracy of the results. Small-core and
medium-core potentials are usually safe to use, whereas the range of large-core po-
tentials is much more limited. In the latter case it might be important to include
a core-core and/or core-nucleus repulsion correction as well as a core polarization
potential. It is not a wise decision to simply neglect these terms, e.g., because the
CPP is not implemented in GAUSSIAN yet.

When using an effective core potential for the first time always do an atomic
test calculation first, e.g., for the ionization potential or electron affinity, in order to
check the correctness of your input and/or the programs library data. Especially in
pseudopotential calculations well-known sources of input errors are the 1/rn prefac-
tors used in some parametrizations or the presence/absence of a local potential. It
is recommended to use the valence basis set coming with the effective core potential,
possibly augmented by additional diffuse and polarizations functions. Especially in
case of pseudopotentials, where the detailed innermost shape of the pseudoorbitals
is essentially arbitrary, it is not recommended to use (contracted) all-electron basis
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sets or valence basis sets from other potentials, since significant basis set superposi-
tion errors may result. However, the added diffuse and polarization functions may
safely be taken from all-electron or other effective core potential basis sets.

When comparing to other all-electron or valence-only calculations use basis
sets and correlation treatments of the same quality and make sure that relativistic
effects are included at similar levels. Note that in all-electron calculations basis set
superposition errors tend to be larger than in valence-only calculations.
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25. P. Pyykkö, J.-P. Desclaux, Relativity and the periodic system of elements, Acc.
Chem. Res. 12, 276 (1979).
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93. A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuss, Ab initio energy-
adjusted pseudopotentials for elements of groups 13-17, Mol. Phys. 80, 1431
(1993).
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An introduction is given into the quantum chemical calculation of molecular prop-
erties with special emphasis on analytic derivative theory, magnetic properties, and
frequency-dependent properties.

1 Introduction

In order to relate results from quantum chemical calculations to experiment, it
is essential to compute quantities that are directly available from measurements.
Clearly, energies and wavefunctions obtained from the solution of the (electronic)
Schrödinger equation are not sufficient for this purpose, and it is necessary to com-
pute further quantities that characterize the atomic or molecular system of interest.
In particular, theoretical predictions of structure, spectroscopic quantities, as well
as properties such as, for example, dipole moment, polarizability, etc. are impor-
tant to establish the connection to experiment and to initiate a fruitful interplay
between theory and experiment.

It is quite obvious that the routine and efficient computation of the various
atomic and molecular properties requires techniques which go beyond the “simple”
solution of the Schrödinger equation. Besides theoretical aspects, computational
efficiency is – as always in quantum chemistry – the most important issue that
needs to be addressed.

Considering a molecule in a given electronic state, quantities of interest are:

a) energy differences, i.e., reaction energies, atomization energies, dissociation
energies, energy differences between various isomers or conformers, etc.

b) molecular properties specific for a given electronic state. Examples include the
equilibrium structure, dipole moment, polarizability, vibrational frequencies,
magnetazibility, NMR chemical shifts, etc.

c) properties that characterize transitions between different electronic states. Ex-
amples are here electronic excitation energies, one- and two-photon transition
strengths, radiative life times, ionization potentials, electron affinities, etc.

Properties of type a involve energy information at different points on the Born-
Oppenheimer potential energy surface. For a dissociation energy, for example,
the energy of the molecule as well as the energies of the fragments are needed.
Properties of type b require information for one electronic state at a single point
on the potential surface, while properties of type c involve information for different
electronic states.
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The given classification of molecular properties is of computational relevance,
as, for example, properties of type a just require energy calculations for different
points on the potential energy surface and in this respect are rather straightforward
to calculate. Computation of properties of type b and c, however, is more involved
and requires techniques such as analytic derivative and/or response theory.

In this lecture, a thorough discussion of the quantum chemical calculations for
properties of type b will be given. Special emphasis will be put on analytic derivative
theory (section 2), problems inherent to the calculation of magnetic properties
(section 3) as well as frequency-dependent properties (section 4).

2 Molecular properties as analytical derivatives

2.1 General discussion

Properties of type b describe the “response” of the molecular system to an external
perturbation. Let us consider as an example a molecule in an external electrical
field ε. If we treat the field as a weak perturbation, a Taylor expansion around the
the “field-free” case is a good description and yields for the energy

E(ε) = E(ε = 0) +
dE

dε

∣
∣
∣
∣
ε=0

ε+
1

2

d2E

dε2

∣
∣
∣
∣
ε=0

ε2 + . . . (1)

The first-order term in Eq. (1), i.e., the term linear in ε, involves the first derivative
(gradient) of the energy with respect to ε, the second-order term, i.e., the term
quadratic in ε, the corresponding second derivative, etc.

From Eq. (1), it is clear that derivatives of the energy play a key role in describ-
ing the response of a molecule to an external perturbation. However, to identify
these derivatives with the molecular properties of interest, it is essential to con-
sider also the physical aspect of the interaction with the external field. Doing that,
it becomes clear that the first-order interaction with an external electric field in-
volves the molecular dipole moment µ, the second-order interaction the molecular
polarizability α, etc.1 We can therefore make the following identifications

dipole moment (µ) =̂ − dE
dε

∣
∣
ε=0

(first derivative)

polarizability (α) =̂ − d2E
dε2

∣
∣
∣
ε=0

(second derivative)

first hyperpolarizability (β) =̂ − d3E
dε3

∣
∣
∣
ε=0

(third derivative)

. . .

and thus already obtain computational expressions for these particular molecular
properties: they can be determined as the corresponding derivatives of the energy
with respect to the components of the external field.

One might ask why a property such as the dipole moment is not just calculated
as a simple expectation value, as it should be possible according to the postulates of
quantum mechanics2. Indeed, the Hellmann-Feynman theorem3 states the identity
of the derivative and expectation value expression for first-order properties:

dE

dx
= 〈Ψ|∂H

∂x
|Ψ〉 (Hellmann− Feynman Theorem). (2)
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However, it should be noted that the Hellmann-Feynman theorem does not neces-
sarily hold for approximate wavefunctionsa with which we are generally dealing in
quantum chemistry. In such cases, it has been shown that derivative expressions
are usually the preferred choice 4.

The derivative ansatz can be generalized to other properties and in this way
allows computation of a large variety of atomic and molecular properties. Table
1 gives an overview. The list includes the electrical properties which have been
already discussed. Most important for chemical applications, however, are probably
properties that are connected to geometrical derivatives. First derivatives with
respect to nuclear displacements define the forces on nuclei which are essential
for the location of stationary points on the Born-Oppenheimer potential surface
and, thus, for the determination of equilibrium and transition state structures5.
Second derivatives with respect to nuclear coordinates allow a characterization of
the stationary points as minima, transition states, etc., but in addition enable a
qualitative characterization of vibrational spectra within the harmonic-oscillator
approximation. More quantitative treatments of vibrational spectra are possible
via higher derivatives (cubic and quartic force constants; see, for example, the
discussion given in Ref. 6).

Another important class are magnetic properties. For chemists, certainly NMR
chemical shifts and the corresponding spin-spin coupling constants are of greatest
interest. However, theory also allows calculation of magnetazibilities, spin-rotation
constants, rotational g-tensors (see the book by W.H. Flygare7 for a detailed ac-
count on these properties) as well as parameters that can be obtained from ESR
spectroscopy (see the book by W. Weltner8 for an introduction). A few examples
of quantum chemical property calculations will be given later.

2.2 Numerical versus analytical differentiation

In principle, derivatives of the energy can be computed in a rather straightforward
manner using finite-differentiation techniques, e.g., the gradient can be obtained
via

dE

dx
≈ E(∆x) − E(−∆x)

2∆x
(3)

with ∆x as an appropriate chosen step size. The main advantage of such a numerical
differentiation scheme is that it just requires the calculation of energies (though in
the presence of the perturbation) and, thus, is rather easily implemented. As a
consequence, finite-differentiation techniques have been and are still often used
for the calculation of electric properties (so-called “finite-field” calculations). The
disadvantages of the numerical differentiation scheme, however, are

a) the limited accuracy (a problem in particular for the computation of higher
derivatives),

b) the high computational cost, as numerical differentiation requires for each
derivative two additional energy calculations.

aIt should be noted that the Hellmann-Feynman theorem also holds for a few special cases such
as, for example, Hartree-Fock theory in the complete basis set limit.
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Table 1. List of molecular properties which can be computed as derivatives of energies

Derivative Observable

dE
dεi

dipole moment; in a similar manner also multipole

moments, electric field gradients, etc.

d2E
dεαdεβ

polarizability

d3E
dεαdεβdεβ

(first) hyperpolarizability

dE
dxi

forces on nuclei; stationary points on potential energy

surfaces, equilibrium and transition state structures
d2E
dxidxj

harmonic force constants; harmonic vibrational frequencies

d3E
dxidxjdxk

cubic force constants; vibrational corrections to distances

and rotational constants

d4E
dxidxjdxkdxl

quartic force constants; anharmonic corrections to

vibrational frequencies

d2E
dxidεα

dipole derivatives; infrared intensities within the harmonic

approximation

d3E
dxidεαdεβ

polarizability derivative; Raman intensities

d2E
dBαdBβ

magnetazibility

d2E
dmKjdBα

nuclear magnetic shielding tensor; relative NMR shifts

d2E
dIKidILj

indirect spin-spin coupling constant

d2E
dBαdJβ

rotational g-tensor; rotational spectra in magnetic field

d2E
dIKidBα

nuclear spin-rotation tensor; fine structure in rotational

spectra

dE
dmKj

spin density; hyperfine interaction constants

d2E
dSidBα

electronic g-tensor

The latter issue is of particular concern if one is interested in the forces on the N
nuclei of a molecule within a geometry optimization. The numerical evaluation of
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gradients requires in this case 2∗3N the cost of the corresponding energy calculation.
It is obvious that in this way routine determination of geometries is impossible for
larger molecules (see section 2.7).

Further disadvantages of the numerical differentiation scheme are

a) that there is no straightforward extension to the computation of frequency-
dependent properties (see section 4) and

b) that handling of magnetic properties is less straightforward (see section 3), as
the computation of the latter requires the capability of dealing with complex
wavefunction parameters. This capability is in most cases not available.

The alternative to numerical differentiation is analytic differentiation. This means
that first an analytic expression for the corresponding derivative is deduced and
then implemented within a computer code for the actual computation of the cor-
responding property. As we will see later, the use of analytic derivative techniques
solves the mentioned problems and, thus, is clearly the preferred choice for the
computation of properties.

However, it should be noted that application of analytic derivative techniques is
not as straightforward and often requires a complicated computer implementation.
The latter often requires substantial programming efforts as well as theoretical
work for the derivation of the appropriate derivative expressions. Nevertheless,
as the implementation needs in principle to be carried out only once, this cannot
be considered a major disadvantage. Analytic derivatives have been in the mean
time implemented for most of the standard quantum chemical approaches. For
some of the more advanced quantum chemical techniques, however, the task of
programming analytic derivatives can become so demanding that the corresponding
implementations are still missingb. In a similar way, lack of analytic schemes for
the calculation of higher derivatives often necessitates the latter to be calculated
within mixed analytic-numerical schemes in which lower analytic derivatives are
numerically differentiated. A prominent example is here the computation of cubic
and quartic force constants which often are obtained by numerical differentiation
of analytically evaluated quadratic force constants9.

2.3 Analytic derivatives: general discussion

We start our discussion of analytic derivatives with a description of the general
structure of derivative theory. Naively, one would expect that suitable expressions
for the derivatives of the energy can be obtained by simple differentiation of the
energy expression with respect to the corresponding parameter(s). While this is in
principle true, such an approach, however, does not necessarily lead to computation-
ally efficient expressions. The main problem appears to be the implicit dependence
of the energy on the perturbation through the wavefunction parameters.

For our general discussion, it is important to analyze first in which way energy
and wavefunction depend on a given external perturbation. For both, we have an
explicit dependence on the perturbation through either some set of fixed parameters

bExamples are here CCSDT and CCSDTQ
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(e.g., the basis functions which are given at the beginning of a calculation) or
the Hamiltonian and an implicit dependence through the wavefunction parameters
which are determined by some set of equations. Examples for the latter are the
molecular orbital (MO) coefficients, the configuration-interaction (CI) coefficients,
as well as the coupled-cluster (CC) amplitudes. As long as we are not specifying
these parameters further, we will denote them collectively by c.

The energy can be then written in the following convenient form

E = E(x, c(x)) (4)

and the equations for the wavefunction parameters c in the form

g(x, c(x)) = 0 (5)

with the function g indicating the structure of the equations for c. Note that
Eqs. (4) and (5) are rather general and that various quantum chemical methods
just differ in the definition of the set c as well as in the explicit expressions for E
and g.

Differentiation of the general energy expression given in Eq. (4) then yieldsc

dE

dx
=

(
∂E

∂x

)

+

(
∂E

∂c

)(
∂c

∂x

)

. (6)

The first term includes the explicit dependence on the perturbation through the
Hamiltonian as well as the fixed set of parameters, i.e., the basis functions. This
contribution is usually denoted as the integral derivative contribution and is easily
handled (see section 2.6). The second term is more problematic, as it includes
the derivatives of the coefficients c. Contrary to the first term, a straightforward
computation is here not possible, as the derivatives ∂c/∂x are unknown. At a
first sight, one might think that these derivatives need to be determined by solving
additional equations obtained by differentiation of Eq. (5):

dg

dx
= h(x, c,

∂c

∂x
) = 0. (7)

However, as the determination of c via Eq. (5) usually is the computationally most
expensive step of a quantum chemical calculation, solution of Eq. (7) for the per-
turbed c′s would render the analytic scheme rather expensive. The cost would be
similar to those of the numerical scheme.

For the following, it is necessary to distinguish between parameters c determined
via the variation principle (variational parameters) and those not determined via
the variation principle (non-variational parameters). Examples for the first type of
parameters are the MO coefficients in Hartree-Fock (HF) theory or the CI coeffi-
cients in CI calculations, while CC amplitudes are examples for the second type.

For the variational coefficients, the following condition holds

dE

dc
=

(
∂E

∂c

)

= 0 (8)

cNote that all derivatives are taken here and in the following at the point x = 0.
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as the variation principle requests minimization of the energy with respect to c.
Thus, it is clear that in Eq. (6), i.e., the general expression for the energy gradient,
the second term does not contribute and the whole expression simplifies to

dE

dx
=

(
∂E

∂x

)

. (9)

There is no need to determine the perturbed coefficients ∂c/∂x.
The situation is more complicated for the non-variational parameters, as here

the corresponding derivatives ∂E/∂c do not vanish. Nevertheless, it is possible
to eliminate the derivatives of c from the gradient expression. The most elegant
way to demonstrate this uses an energy functional Ẽ constructed from the energy
expression (Eq. (4)) by augmenting it with the equations that determine c (Eq. (5))
multiplied by Lagrangian multipliers λ:

Ẽ(x, c(x), λ(x)) = E(x, c(x)) + λ(x)g(x, c(x)). (10)

This functional provides the same energy as Eq. (4), as long as Eq. (5) is fulfilled.
Furthermore, the energy functional can be made stationary with respect to λ and
c by requesting that

(

dẼ

dλ

)

= 0 (11)

and
(

dẼ

dc

)

= 0. (12)

The first of the two equations is identical to Eq. (5) for the parameters c, while the
second equation allows determination of the Lagrangian multipliers λ. Solution of
this additional set is not needed for the determination of the energy but is required
to make Ẽ stationary with respect to λ.

With Eqs. (11) and (12), the derivative of Ẽ with respect to x takes the following
rather simple form

dẼ

dx
=

(

∂Ẽ

∂x

)

(13)

=

(
∂E

∂x

)

+ λ

(
∂g

∂x

)

(14)

and, as the value of Ẽ is identical to E, Eq. (13) also represents the desired gradient
expression for E. It can be thus concluded that like for the variational coefficients
(see Eq. (9)) there is no need to compute derivatives for the non-variational coeffi-
cients c. However, unlike for the variational case, for each non-variational parameter
c an additional, though perturbation-independent equation (Eq. (12)) needs to be
solved.

Expressions for higher derivatives can be obtained by differentiating the gradient
expressions (Eqs. (9) and (13), respectively) with respect to further perturbations.
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Derivation of computationally efficient expressions might require some rearrange-
ments, but there are rules which can simplify the derivation. These rules explicitly
state that for the coefficients c the knowledge of the nth derivative is sufficient for
the calculation of the (2n+ 1)th derivative of the energy (2n+ 1 rule) and for the
Lagrangian multipliers λ knowledge of the nth derivative is sufficient to compute
the (2n+ 2)th derivative of the energy (2n+ 2 rule). According to these two rules,
none of the derivatives is required for the gradient (see discussion above). Knowl-
edge of the derivatives of c suffices for second derivatives, while third derivatives
require derivatives of c and for non-variational parameters also of λ. The derivatives
of c and λ are determined by solving equations that are obtained by differentiating
Eq. (11) and Eq. (12) with respect to the external perturbation, respectively. We
illustrate the application of the two rules by some examples.

For the variational case, the expression for the second derivative of the energy
takes the following form

d2E

dxdy
=

(
∂2E

∂x∂y

)

+

(
∂2E

∂x∂c

)
∂c

∂y
+

(
∂2E

∂y∂c

)
∂c

∂x
+

(
∂2E

∂c∂c

)
∂c

∂x

∂c

∂y
. (15)

The contribution due to ∂2c/∂x∂y vanishes here, as the corresponding prefactor
∂E/∂c is zero due to Eq. (8).

For non-variational approaches, we obtain for the second derivative of the energy

d2E

dxdy
=

(

∂2Ẽ

∂x∂y

)

+

(

∂2Ẽ

∂x∂c

)

∂c

∂y
+

(

∂2Ẽ

∂y∂c

)

∂c

∂x
+

(

∂2Ẽ

∂c∂c

)

∂c

∂x

∂c

∂y
. (16)

The contributions due to ∂2c/∂x∂y and ∂2λ/∂x∂y vanish because of Eqs. (11) and
(12), i.e., due to the stationarity of the functional Ẽ with respect to c and λ. The
contributions due to ∂λ/∂x and ∂λ/∂y vanish, because

d

dx

(

∂Ẽ

∂λ

)

=
dg

dx
= 0. (17)

The prefactors for the terms involving the first derivatives of λ are just the deriva-
tives of the left-hand side of Eq. (5). As Eq. (5) holds for all values of x and y, the
corresponding total derivatives of g(x, c) must vanish.

As another example, we give the expression for the third derivatives of the
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energy in the non-variational case.

d3E

dxdydz
=

(

∂3Ẽ

∂x∂y∂z

)

+

(

∂3Ẽ

∂x∂y∂c

)

∂c

∂z
+

(

∂3Ẽ

∂x∂z∂c

)

∂c

∂y
+

(

∂3Ẽ

∂y∂z∂c

)

∂c

∂x

+

(

∂3Ẽ

∂x∂c∂c

)

∂c

∂y

∂c

∂z
+

(

∂3Ẽ

∂y∂c∂c

)

∂c

∂x

∂c

∂z
+

(

∂3Ẽ

∂z∂c∂c

)

∂c

∂x

∂c

∂y

+

(

∂3Ẽ

∂c∂c∂c

)

∂c

∂x

∂c

∂y

∂c

∂z

+

(

∂3Ẽ

∂x∂y∂λ

)

∂λ

∂z
+

(

∂3Ẽ

∂x∂z∂λ

)

∂λ

∂y
+

(

∂3Ẽ

∂y∂z∂λ

)

∂λ

∂x

+

(

∂3Ẽ

∂x∂c∂λ

)

∂c

∂y

∂λ

∂z
+

(

∂3Ẽ

∂y∂c∂λ

)

∂c

∂x

∂λ

∂z
+

(

∂3Ẽ

∂z∂c∂λ

)

∂c

∂x

∂λ

∂y

+

(

∂3Ẽ

∂x∂c∂λ

)

∂c

∂z

∂λ

∂y
+

(

∂3Ẽ

∂y∂c∂λ

)

∂c

∂z

∂λ

∂x
+

(

∂3Ẽ

∂z∂c∂λ

)

∂c

∂y

∂λ

∂x

+

(

∂3Ẽ

∂c∂c∂λ

)

∂c

∂x

∂c

∂y

∂λ

∂z
+

(

∂3Ẽ

∂c∂c∂λ

)

∂c

∂x

∂λ

∂y

∂c

∂z
+

(

∂3Ẽ

∂c∂c∂λ

)

∂λ

∂x

∂c

∂y

∂c

∂z

(18)

Note that Eq. (18) contains no contribution due to higher derivatives of c and λ.
Again it can be shown that the corresponding prefactors are identical to zero.

The general approach to analytic derivatives presented here has been first for-
mulated by Helgaker and Jørgensen10. Though the corresponding computationally
efficient equations can be also obtained in different ways, for example, by using the
interchange theorem of perturbation theory11, the Lagrangian approach to analytic
derivatives appears to be the simplest as well as the most elegant way to derive
computationally efficient expressions. This is also demonstrated in the next section
where a few specific examples for analytic energy derivatives are given.

2.4 Analytic derivatives: Specific examples

As first example, we discuss first derivatives (gradients) for standard closed-shell
Hartree-Fock self-consistent-field (HF-SCF) calculations. Within the atomic-orbital
(AO) notation (Greek indices µ, ν, ... are used here and in the following to denote
AOs), the following energy expression is obtained for this case

E =
∑

µν

Pµνhµν +
1

2

∑

µνρσ

PµνPσρ(〈µσ|νρ〉 −
1

2
〈µσ|ρν〉) (19)
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with Pµν as the closed-shell AO density matrix

Pµν = 2
∑

i

c∗µicνi, (20)

hµν as the one-electron integrals, and 〈µσ|νρ〉 as the two-electron integrals in Dirac
notation. Indices i, j, ... denote in Eq. (20) as well as in the following occupied
molecular orbitals, while indices a, b, ... are reserved for virtual orbitals and indices
p, q, ... are used for generic orbitals that are either occupied or unoccupied.

The variational wavefunction parameters are the MO coefficients cµi. As the
orthonormality of the MOs needs to be considered as additional constraint, it is
most convenient to start with the following energy functional

Ẽ =
∑

µν

Pµνhµν +
1

2

∑

µνρσ

PµνPσρ(〈µσ|νρ〉 −
1

2
〈µσ|ρν〉)

−2
∑

ij

εij(
∑

µν

c∗µiSµνcνj − δij) (21)

instead of Eq. (19). The Lagrangian multipliers εij can be shown to form a Her-
mitian matrix. It can be furthermore demonstrated that this matrix can be chosen
diagonal which leads to the usual case of canonical HF orbitals (see, for example,
Ref. 12). The diagonal element εi ≡ εii can be interpreted as orbital energies
(Koopmans’ theorem).

Based on the discussion in the previous section, the following gradient expression
can be derived13

dE

dx
=
∑

µν

Pµν
∂hµν
∂x

+
1

2

∑

µνσρ

PµνPσρ(
∂〈µσ|νρ〉

∂x
− 1

2

∂〈µσ|ρν〉
∂x

)

−
∑

µν

Wµν
∂Sµν
∂x

(22)

with the energy-weighted density matrix defined by

Wµν = 2
∑

i

c∗µiεicνi. (23)

From Eq. (22), it is clear that evaluation of HF-SCF gradients consists of a
series of contractions of density matrices with the corresponding integral deriva-
tives. For perturbations of the one-electron type, the expression in Eq. (22) takes
a particularly simple form, as only the first term needs to be considered:

dE

dx
=
∑

µν

Pµν
∂hµν
∂x

(one− electron perturbation). (24)

For geometrical derivatives, however, the two-electron contribution needs to be
considered due to the perturbation dependence of the basis functions. The latter
are usually centered at the nuclear positions and thus change with a displacement
of the nuclear coordinates. Calculation of the integral derivatives is nowadays a
routine task and efficient algorithms have been devised14. It should be also noted
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that calculation of HF-SCF gradients does not require storage of integral derivatives
which would be a serious bottleneck.

For second derivatives of the energy, the following expression is obtained at the
HF-SCF level15,16

d2E

dxdy
=
∑

µν

Pµν
∂2hµν
∂x∂y

+
1

2

∑

µνσρ

PµνPσρ(
∂2〈µσ|νρ〉
∂x∂y

− 1

2

∂2〈µσ|ρν〉
∂x∂y

)

−
∑

µν

Wµν
∂2Sµν
∂x∂y

+
∑

µν

∂Pµν
∂y

(
∂hµν
∂x

+
∑

σρ

Pσρ(
∂〈µσ|νρ〉

∂x
− 1

2

∂〈µσ|ρν〉
∂x

))

−
∑

µν

∂Wµν

∂y

∂Sµν
∂x

(25)

with

∂Pµν
∂x

= 2
∑

i

{
∂c∗µi
∂x

cνi + c∗µi
∂cνi
∂x
} (26)

∂Wµν

∂x
= 2

∑

i

{
∂c∗µi
∂x

ǫicνi + c∗µiǫi
∂cνi
∂x
}+

∑

ij

c∗µi
∂ǫji
∂x

cνj . (27)

As a consequence of the (2n + 1) rule, the expression given in Eq (25) contains
only first derivatives of the MO coefficients. The latter are determined through
equations that are obtained by differentiating the HF equations

∑

ν

fµνcνi =
∑

ν

Sµνcνiǫi (28)

with fµν as the Fock matrix

fµν = hµν +
∑

σρ

Pσρ(〈µσ|νρ〉 − 1

2
〈µσ|ρν〉) (29)

or more conveniently by differentiating the equivalent condition
∑

µν

c∗µafµνcνi = 0 (30)

which is also known as Brillouin’s theorem. It is common to parametrize for this
purpose the MO coefficient derivatives in the following way

∂cµi
∂x

=
∑

p

cµpU
x
pi (31)

with the coupled-perturbed HF (CPHF) coefficients Uxpi as the parameters to be

determined. The CPHF equations15,16 obtained from differentiating Eq. (28) or
Eq. (30) take then (for real perturbations) the following formd.

∑

e

∑

m

(4〈ae|im〉 − 〈ae|mi〉 − 〈am|ei〉+ δaeδim(εa − εi)) = Bxai (32)

dNote that only the coefficients Ux
ai are determined through the CPHF equations, while the

coefficients Ux
ij can be chosen in any way, as long as the differentiated orthonormality condition

Ux
qp

∗ + Sx
pq + Ux

pq = 0
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with

Bxai = −
∑

µν

c∗µacνi(
∂hµν
∂x

+
∑

σρ

Pσρ(
∂〈µσ|νρ〉

∂x
− 1

2

∂〈µσ|ρν〉
∂x

))

+
∑

mn

Sxmn(2〈am|in〉 − 〈am|ni〉) + Sxaiǫi (33)

with

Sxpq =
∑

µν

cxµp
∂Sµν
∂x

cνq. (34)

The CPHF equations are linear and can be solved using iterative algorithms16.
As another example, first derivatives of the energy in coupled-cluster (CC)

theory17 are discussed. To simplify the discussion, we ignore the dependence of
the CC energy on the molecular orbitals and consider only the CC amplitudes as
wavefunction parameters. The general CC energy expression is then given by

E = 〈0| exp(−T )H exp(T )|0〉 (35)

with T as the cluster operator and |0〉 denoting the reference determinant, usually
provided by the HF wavefunction. The amplitudes in CC theory are determined
through equations obtained by projecting the Schrödinger equation on the excita-
tion manifold. Denoting with Φp the determinants within this excitation manifold,
these equations, usually referred to as coupled-cluster equations, are given by

0 = 〈Φp| exp(−T )H exp(T )|0〉. (36)

For the derivatives of the CC gradient expression, we introduce the energy
functional

Ẽ = 〈0| exp(−T )H exp(T )|0〉+
∑

p

λp〈Φp| exp(−T )H exp(T )|0〉 (37)

with λp as the appropriate Lagrangian multipliers. Eq. (37) is often written in the
following short form

Ẽ = 〈0|(1 + Λ) exp(−T )H exp(T )|0〉 (38)

where we have introduced the de-excitation operator Λ by

〈0|Λ =
∑

p

λp〈Φp|. (39)

For the CC energy gradient, we then obtain in agreement with the (2n + 1) and
(2n+ 2) rules

dE

dx
= 〈0|(1 + Λ) exp(−T )

∂H

∂x
exp(T )|0〉. (40)

is fulfilled with the derivatives Sx
pq defined as in Eq. (34). The most common choice is

Ux
ij = −

1

2
Sx

ij .
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Perturbed T and Λ thus are not required for the evaluation of CC gradients18.
The λ amplitudes required in Eq. (40) are obtained as solutions to the following
equations

0 = 〈0|(1 + Λ)[exp(−T )H exp(T )− E]|Φp〉. (41)

which are usually referred to as Λ equations.
The actual CC gradient expression is somewhat more involved due to the ad-

ditional dependence of the CC energy on the MO coefficients. Though the MO
coefficients are determined via the variational principle for the HF wavefunction,
they are non-variational within CC theory. The reason is that the HF and not the
CC energy is made stationary with respect to orbital rotations. Accordingly, the
following energy functional represents a suitable starting point

Ẽ = 〈0|(1 + Λ) exp(−T )H exp(T )|0〉+
∑

a

∑

i

Zai
∑

µν

c∗µafµνcνi

+
∑

pq

Ipq(
∑

µν

c∗µpSµνcνq − δpq), (42)

where we augment the energy functional given in Eq. (37) by the HF condition
(Eq. (30), Zai is the corresponding Lagrangian multiplier) and by the additional
orthonormality constraint with Ipq as undetermined multiplier.

Differentiating this energy functional yields the complete gradient expression

dẼ

dx
= 〈0|(1 + Λ) exp(−T )

∂H

∂x
exp(T )|0〉+

∑

a

∑

i

Zai
∑

µν

c∗µa[
∂hµν
∂x

+
∑

σρ

Pσρ(
∂〈µσ|νρ〉

∂x
− 1

2

∂〈µσ|ρν〉
∂x

)]cνi +
∑

pq

Ipq
∑

µν

c∗µp
∂Sµν
∂x

cνq, (43)

which is usually cast in the following general form19,20

dE

dx
=
∑

µν

Dµν
∂hµν
∂x

+
∑

µνσρ

Γµνσρ
∂〈µν|σρ〉

∂x
+
∑

µν

Iµν
∂Sµν
∂x

(44)

with Dµν as an effective one-particle density matrix, Γµνσρ as the two-particle den-
sity matrix and Iµν as a generalized energy-weighted density matrix. The form
given in Eq. (44) for the gradient is rather general and has turned out very conve-
nient for actual computations. Differences between the various quantum chemical
approaches just exist in the definition of the corresponding density matrices.

A comment is necessary concerning the additional Lagrangian multipliers intro-
duced in Eq. (43). Zai leads to an orbital relaxation contribution to the one-particle
density matrix. It actually is the quantity that has been first introduced by Handy
and Schaefer as Z-vector21. Ipq turns out to be the MO representation of the energy-
weighted density matrix Iµν in Eq. (44). Explicit expressions for Dµν ,Γµνσρ, and
Iµν for the various CC models have been given in the literature22−29 and will not
be repeated here.

Finally, some basic aspects of the calculation of CC second derivatives are dis-
cussed. To emphasize the important aspects, we solely focus on the CC amplitudes
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and ignore the MO coefficient contributions. A corresponding complete discussion
can be found in the literature30,31.

Differentiation of Eq. (37) with respect to x and y yields31

d2E

dxdy
= 〈0|(1 + Λ) exp(−T )

∂2H

∂x∂y
exp(T )|0〉

+〈0|(1 + Λ)[exp(−T )
∂H

∂x
exp(T ),

dT

dy
]|0〉+

+〈0|(1 + Λ)[exp(−T )
∂H

∂y
exp(T ),

dT

dx
]|0〉+

+〈0|(1 + Λ)[[exp(−T )H exp(T ),
dT

dx
],
dT

dy
]|0〉. (45)

As stated by the (2n+1) and (2n+2) rules, the expression given in Eq. (45) contains
only first derivatives of the cluster operator (and thus of the CC amplitudes) and
no derivative contribution of the Λ operator. The required perturbed amplitudes
are determined by solving the first-order CC equations obtained by differentiating
the corresponding unperturbed equations given in Eq. (36) with respect to x or y:

〈Φp| exp(−T )
∂H

∂x
exp(T )|0〉+ 〈Φp|[exp(−T )H exp(T ),

∂T

∂x
]|0〉 = 0. (46)

For some cases, it might be advantageous to rearrange Eq. (45) and to use instead
the following expression31

d2E

dxdy
= 〈0|(1 + Λ) exp(−T )

∂2H

∂x∂y
exp(T )|0〉

+〈0|(1 + Λ)[exp(−T )
∂H

∂x
exp(T ),

dT

dy
]|0〉+

+〈0|dΛ

dy
exp(−T )

∂H

∂x
exp(T )|0〉. (47)

In Eq. (47), derivatives of the Lagrangian multipliers appear (at a first sight con-
trary to the (2n + 2) rule), but one should realize that derivative amplitudes in
Eq. (47) are only needed for one of the two perturbations, namely y. If the two
perturbations belong to different classes, this might be of advantage, as the to-
tal number of equations that need to be solved can be lower when using Eq. (47)
instead of Eq. (45). The most prominent example is the computation of NMR
shielding constants, where with the second, so-called asymmetric expression, only
6 perturbed equations for all components of the magnetic field need to be solved,
while use of the symmetric expression (Eq. (45)) requires solution of a total of
(3Natoms + 3) equations.

This example shows that different expressions for a derivative are possible. It
depends on the circumstances, in particular on the property of interest, which of
the deduced expressions is preferred and computationally more efficient.31

2.5 Advantages of analytic derivatives

Analytic derivatives are the preferred choice (if available for a quantum chemical
approach) for the following reasons:
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a) first of all, analytic derivatives generally provide higher accuracy for the cal-
culated derivatives, as they are not affected by rounding errors (too small step
sizes in the numerical differentiation) or problems due to contamination by
higher derivatives (too large step size in the numerical differentiation). This
aspect is of particular importance for higher derivatives, but of lesser concern
for first derivatives;

b) the cost of analytic gradients is independent of the number of perturbations.
Considering expressions Eq. (22) or Eq. (44), it is clear that the perturba-
tion dependence only appears through the integral derivative contribution. As
can be shown, computation of integral derivatives can be carried out with
cost independent of the number of perturbations. The same computational
advantage is not necessarily as pronounced as for higher derivatives. For ex-
ample, analytic computation of CC second derivatives scales with the number
of perturbations31. The same dependence is seen for the calculation of second
derivatives based on numerical differentiation of analytically evaluated gradi-
ents;

c) magnetic properties can be easily treated, as all quantities in the analytic
approach are either purely imaginary or real and, thus, can be handled using
real arithmetic. The only complication arises due to the fact that for magnetic
properties some matrices are antisymmetric instead of symmetric.

d) extension to frequency-dependent properties is possible in the framework of
response theory.

2.6 Availability of analytic derivatives

The use of analytic derivatives in quantum chemistry started in 1969 with the clas-
sic work of Pulay13 on HF gradientse. As soon as their applicability and efficiency
for geometry optimizations and force constant calculations33 had been realized, a
lot of effort was devoted to theory as well as implementation of analytic deriva-
tives. Important contributions to analytic derivatives were made by many groups;
noteworthy probably in particular those of the groups of Pople, Schaefer, Handy as
well as Bartlett. Landmarks in the development of analytic derivative techniques
have been the implementation of second derivatives at the HF level and MP2 gradi-
ents in 1979 by Pople et al.16, the formulation and implementation of MP2 second
derivatives by Handy and Bartlett et al.34−36 in 1985, and the implementation of
CCSD gradients by Schaefer et al.22 in 1987.

A more general important contribution to derivative theory has been the intro-
duction of the Z-vector method by Handy and Schaefer21 which had a large impact
on the theory of gradients for correlated quantum chemical approaches. Though
computation of integral derivatives is nowadays considered a routine issue, it should
not be forgotten that the availability of integral derivative packages has been an
important prerequisite for all of the advances mentioned above.

eIt might be of interest to note that papers on analytic derivatives (though within a one-center
basis set expansion) have been published as early as 1958 by Bratoz32.
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Table 2. Implementation of analytic geometrical derivatives within standard quantum chemical
approaches

First derivatives Ref.
HF Pulay (1969) 13
DFT Ziegler et al. (1988), Salahub et al. (1989), 37,38

Delley (1991) 39
MCSCF Kato and Morokuma (1979), 40

Goddard, Handy, Schaefer (1979) 41
MP2 Pople et al.(1979) 16
MP3 Bartlett et al. (1985) 42
MP4(SDQ) Gauss and Cremer (1987) 43
MP4 Gauss and Cremer (1988), 44

Bartlett et al. (1988) 45
CID, CISD Schaefer et al., Pople et al. (1980) 46,47
CPF Rice, Lee, Handy (1980) 48
QCISD Gauss and Cremer (1988) 49
QCISD(T) Gauss and Cremer (1989) 50
CCSD Schaefer et al. (1987) 22
CCSD(T) Scuseria(1990), Lee and Rendell (1990) 26,27
CCSDT-n Gauss and Stanton (2000) 29
MR-CI, MR-ACPF Shepard et al. (1991) 51
Second derivatives
HF Pople et al. (1979) 16
DFT Handy et al. (1993), Johnson, Frisch (1994) 52,53
MCSCF Schaefer, Handy et al. (1984) 54
MP2 Handy et al. (1985), Bartlett et al. (1986) 34,35,36
MP3, MP4 Gauss and Stanton (1997) 31
CISD Schaefer et al. (1983) 55
CCSD Koch, Jørgensen, Schaefer et al. (1990) 56
CCSD(T) Gauss and Stanton (1997) 31
CCSDT-n Gauss and Stanton (2000) 29
Third derivatives
HF Schaefer et al. (1984) 57

Table 2 gives an overview about the available analytic derivative techniques
within the standard quantum chemical approaches. The list of references given
there, however, must remain incomplete, as it is impossible to mention all papers
in the area of analytic derivatives. Often, initial implementations were followed up
by extensions to open-shell systems or in case of correlated approaches to other
type of reference functions. In addition, there have been many papers considering
algorithmic advances. For example, a number of papers have been published report-
ing direct or semi-direct implementations of MP2 gradients58−60, thus significantly
extending the range of the applicability of MP2 gradients.

With the increasing popularity of density functional theory (DFT) in quantum
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chemistry, interest very soon focused on analytic DFT derivatives and implementa-
tion of first and second derivatives were reported37−39,52,53. While analytic deriva-
tives are no more complicated for DFT than for HF-SCF, it should be noted that
differentiation of the exchange-correlation contribution can pose some problems due
to the usually employed numerical integration schemes61.

2.7 Application of analytic derivatives: examples for geometrical derivatives

A few illustrative examples for the application of analytic (geometrical) derivatives
will be given in the following. Fig. 1 shows a dimer of a hexabenzocoronene deriva-
tive (HBC-tBu) which has been synthesized by Müllen et al.62 The structure has
been investigated by X-ray analysis62 as well as by solid-state NMR spectroscopy
in the group of Spiess62. These experimental studies have been supplemented by
quantum chemical calculations63. We do not discuss the chemical aspects of these
calculations rather focus on their computational aspects. The dimer of HBC-tBu
consists of 264 atoms and the corresponding calculations using the 3-21G basis
involved 1452 basis functions and 786 degrees of freedom in the geometry optimiza-
tion.

Fig. 1: Optimized structure of HBC-tBu dimer

Using linear-scaling gradient techniques64 the energy calculation (all calcula-
tions have been carried out in C1 symmetry) required 4 hours and the correspond-
ing gradient required 2.3 hours on a DEC PW 433au workstation. This clearly
demonstrates that geometry optimizations for rather large systems are nowadays
feasible. The important prerequisite is that the computational costs do not scale
with the number of degrees of freedom.

As a second example, we discuss a quantum chemical study of the cubic and
quartic force field of propadienylidene (C3H2) using analytic derivative techniques
at the CC level28,31. Propadienylidene is the smallest stable cumulene carbene. It
has been investigated using various spectroscopic techniques and attracted a lot
of interest as interstellar molecule65. Computation of the cubic and quartic force

557



Table 3. Comparison of computed harmonic and fundamental frequencies for C3H2 with the
experimental data from Ref. 66. All computational results have been obtained at the CCSD(T)/cc-
pVTZ level.

Harmonic Infrared Fundamental Experimental
Frequency Intensity Frequency Fundamental

(cm−1) (km mol−1) (cm−1) (cm−1)
a1 symmetry

ν1 3123 5 2997 3050–3060
ν2 1998 250 1956 1952–1963
ν3 1495 10 1458 1447–1449
ν4 1119 2 1111 —

b1 symmetry
ν5 217 3 211 —

b2 symmetry
ν6 3212 0 3069 —
ν7 1052 3 1034 —
ν8 1020 19 996 999–1005
ν9 275 114 287 —

fields were needed for a rigorous assignment of the matrix IR spectrum measured
by Maier et al.66 and for a theoretical determination of vibrational corrections to
the rotational constants of C3H2. The latter are needed to deduce an equilibrium
structure (re structure) for propadienylidene from the experimental vibrationally
averaged rotational constants67. The calculation of the anharmonic force field was
carried out by numerical differentiation of analytically evaluated force constants
along the normal coordinates (for a detailed description, see Ref. 9). In this way,
computation of anharmonic force fields is a rather routine matter, while the same
cannot be stated for anharmonic force field calculations based on a numerical dif-
ferentiation of energies. The computation of the semi-diagonal quartic force field
at the CCSD(T)/cc-pVTZ level required about 45 days CPU time on a DEC PW
433au workstation. A single energy calculation requires less than half an hour, a
gradient calculation about one hour and a complete second derivative calculations
about 1.5 days.

The results from our calculations for C3H2 are summarized in Fig. 2 and Ta-
ble 3. Fig. 2 compares the equilibrium geometry obtained from a least-squares fit to
the experimental rotational constants corrected for vibrational effects (computed at
the CCSD(T)/cc-pCVTZ level) with a structure determined at the CCSD(T)/cc-
pCVQZ level (for further details, see Ref. 68). The agreement is excellent and dif-
ferences amount to less than 0.001 Å. Table 3 compares the computed fundamental
frequencies with those obtained in the matrix IR study66. Again the agreement
is good, except that the calculation sheds some doubt on the assignment of the
band at 3050-3060 cm−1 to the symmetric CH stretching mode. According to the
calculations, an assigment of this band to the antisymmetric CH stretching mode
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seems to be more plausible.

C C C..

H

H

1.0828
(1.0837)

117.52◦

(117.46◦)
1.3280 1.2869

(1.3281) (1.2879)

Fig. 2: Equilibrium structure (distances in Å, angles in degrees) of propadienylidene as obtained

from an analysis of experimental rotational constants corrected with vibrational corrections ob-

tained from a CCSD(T)/cc-pCVTZ anharmonic force field. Geometrical parameters obtained

from a CCSD(T)/cc-pCVQZ optimization are given in parentheses.

3 Magnetic properties

Among the magnetic properties of a molecule, the parameters which characterize
the NMR spectrum of a molecule are of particular interest to chemists. The quan-
tum chemical calculation of NMR chemical shifts and also of indirect spin-spin
coupling constants is of great importance, as the assignment of experimental NMR
spectra is not straightforward. There is no simple relationship between chemical
shifts and coupling constants on one hand and the structural parameters of interest
on the other hand.

As the calculation of magnetic properties poses a few special problems, their
computation is discussed in some detail in this section. Nevertheless, analytic
derivative theory (as discussed in the previous sections) is the main prerequisite for
the efficient computation of magnetic properties, as magnetazibilities are given as
second derivatives of the energy with respect to the magnetic field, NMR chemical
shifts as the corresponding mixed derivatives with respect to field and nuclear mag-
netic moments, and indirect spin-spin coupling constants as second derivative with
respect to the corresponding nuclear spins (compare Table 1). In the following,
the focus will be on the additional difficulties in the calculation of these properties.
Our main focus is on NMR chemical shifts, but a few remarks are also given on the
calculation of indirect spin-spin coupling constants.

3.1 Qualitative discussion

Before we discuss the actual computational aspects, it is appropriate to give a
qualitative picture of the chemical shielding effect. Consider for this purpose a
nucleus K with spin IK in an external magnetic field B. The spin is associated
with a magnetic moment mK according to

mK = γKIK (48)
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with γK as the gyromagnetic ratio. The magnetic moment mK directly interacts
with the external field leading to an energy correction of the form

∆E = −mK ·B. (49)

If this were the only contribution, NMR spectroscopy would not be able to distin-
guish between nuclei in different chemical environments.

The phenomenon of chemical shifts can only be understood if the electronic
motion is explicitly considered. In particular, one has to take into account that
the external magnetic field induces an electronic currentf and that according to
Biot-Savart’s law69 each current generates a magnetic field. As the induced field is
proportional to the current and the current proportional to the external field, the
induced magnetic field is in first order proportional to the external field. At the
position of the nucleus K, the induced field can thus be written as

Bind = −σKB (50)

with σK as the chemical shielding tensor. Note that σK is a tensor, as Bind is not
necessarily parallel or antiparallel to B.

The total magnetic field at the nucleus K is given as the sum of external and
internal field

Blocal = B + Bind (51)

and the energy correction and the splitting of the energy levels in the presence of
an external magnetic field B is then

∆E = −mK ·Blocal (52)

−mK(1− σK)B. (53)

The latter expression is identical to the shielding term in the effective Hamiltonian
HNMR often used in NMR spectroscopy70. The shielding term is supplemented
in HNMR by a second term which describes the coupling of the spins and thus is
responsible for the multiplet structure in NMR spectra70.

While the effective NMR Hamiltonian is often used to simulate spectra or to
deduce the relevant NMR parameters from experimental spectra, the quantum
chemical task is different. There, it is the goal to compute the relevant NMR
parameters, i.e., the shielding tensors and the spin-spin coupling constants, for a
given molecule without any further information.

To complete the introductory discussion, it should be noted that in most cases
isotropic shieldings

σK =
1

3
Tr(σK) (54)

as well as relative shifts

δ = σref − σK (55)

are reported. The relative shifts δ are given with respect to the shielding σref of
a reference compound (for example, TMS in case of 1H and 13C). Furthermore, as
the chemical shielding is a rather small effect (which, however, can be very precisely
measured), the dimensionless shielding constants are usually given in ppm.

f Note there is no electronic current in the field-free case.
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3.2 Shieldings as second derivatives of the energy

Following the basic physical explanation of the chemical shielding effect, it is ob-
vious that the shielding tensor is an electronic property that should be available
through quantum chemical calculations. From Eq. (53), it is clear that the shielding
tensor is a second-order response property with magnetic field and nuclear mag-
netic moment as the corresponding perturbations. Accordingly, the shielding tensor
can be computationally obtained as the following second derivative of the electronic
energy

σKij =

(
d2E

dBjdmKi

)

B,mK=0

, (56)

or in other words, the energy correction given in Eq. (53) can be considered as the
corresponding quadratic term in a Taylor expansion of the molecular energy with
respect to B and mK .

E(B,mK) = E(0) +
∑

j

∑

i

(
d2E

dBjdmKi

)

B,mK=0

Bj mKi + . . . (57)

3.3 Molecular Hamiltonian in the presence of a magnetic field

For all property calculations, it is essential to specify first the corresponding per-
turbed Hamiltonian. While this is a rather straightforward task for most properties,
some difficulties arise in case of the magnetic field.

In the presence of an external magnetic field, the momentum operator p in the
electronic Hamiltoniang

H =
p2

2m
+ V (r) (58)

needs to be replaced by its mechanical counterpart

p −→ π = p +
e

c
A(r). (59)

In Eq. (59), e denotes the elementary charge (the charge of the electron is −e),
c the speed of light, and A the vector potential, which together with the scalar
potential φ(r) represents the fundamental quantity for a theoretical description of
electromagnetic field71. Note that the Gaussian unit system72 is used throughout.

The magnetic field is uniquely determined via

B = ∇×A (60)

from the vector potential A. It is obvious from Eq. (60) that the vector potential
suffices to specify the magnetic interactions in the Hamiltonian. Nevertheless, one
should note that B and not the potential A is the observable quantity. We later
return to this aspect.

gFor the current discussion it is sufficient to consider a one-electron system, as generalization to
many-electron systems is straightforward.
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Carrying out the substitution given by Eq. (59), one obtains for the Hamiltonian
of an electron in an external magnetic field

H = − (p− e
cA)2

2m
+ V (r). (61)

For our purpose, it is sufficient to consider static magnetic fields of the form

B = const (62)

which are adequately described by the vector potential

A =
1

2
B × r. (63)

As the vector potential given in Eq. (63) satisfies the (Coulomb gauge) condition

∇ ·A = 0, (64)

we can rewrite the Hamiltonian in Eq. (61) as

H =
p2

2m
+

e

mc
A · p +

e2

2mc2
A2 + V (r). (65)

Note that p and not π is the canonical conjugate momentum to the position r, so
that the operator p is given by −i~∇ in the position representation.

Insertion of the explicit form of the vector potential (Eq. (63)) into Eq. (65)
then yields for the Hamiltonian

H = − ~

2

2m
∇

2 − ie~

2mc
B · (r×∇) +

e2

8mc2
[(B ·B)(r · r)− (B · r)(B · r)] + V (r)

(66)

and thus the following expression for the first and second derivative of the Hamil-
tonian with respect to Bi

∂h

∂Bi
= − ie~

2mc
(r×∇)i (67)

∂2h

∂Bi∂Bj
=

e2

4mc2
[(r · r)δij − rirj ]. (68)

Considering in addition the vector potential due to the magnetic moments

A′ =
mK × (r−RK)

|r−RK |3
(69)

the corresponding derivative of H with respect to mK is given by

∂h

∂mKj

= − ie~
mc

[(r−RK)×∇]j
|r−RK |3

(70)

and for the mixed derivative with respect to Bi and mK the following expression
is obtained

∂2h

∂Bi∂mKj

=
e2

2mc2
r · (r−RK)δij − rj(r−RK)i

|r−RK |3
. (71)
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From Eqs. (67) and (70), it is clear that the matrix elements of ∂h/∂Bi and ∂h/∂mN

are imaginary if the usual real basis functions are employed. This explains why
a finite-field calculation of magnetic properties requires the capability of dealing
with complex wavefunction parameters. On the other hand, in case of an analytic
calculation all matrix elements are evaluated in the zero-field limit and thus are
either real or purely imaginary. Real arithmetic is then sufficient, as i can be
factored out from all imaginary quantities. The only difficulty arises due to the
fact that matrices which are symmetric for “real” perturbations

〈µ|∂h
∂x
|ν〉 = 〈ν|∂h

∂x
|µ〉 (72)

are antisymmetric for “imaginary” perturbations such as the magnetic field

〈µ| ∂h
∂Bi
|ν〉 = (〈ν| ∂h

∂Bi
|µ〉)∗ = −〈ν| ∂h

∂Bi
|µ〉 (73)

3.4 Gauge-origin dependence in the calculation of magnetic properties

The problem of gauge-invariance (or gauge-origin independence) in the calculation
of magnetic properties arises because of the use of the vector potential A for the
description of the magnetic interactions in the Hamiltonian. While A uniquely
defines the magnetic field via Eq. (60), there is no unique choice of A to a given
magnetic field B. The reason is the ∇ operator in Eq. (60) which allows to add the
gradient of an arbitrary scalar function to A without changing the corresponding
magnetic field. For a static homogeneous field, for example, the vector potential
can be chosen in the general form

A =
1

2
B× (r−RO) (74)

with RO as an arbitrary parameter, the so-called gauge origin.
The freedom in the choice of A, i.e. in fixing the gauge, has in principle no

consequences, as B as observable quantity is uniquely defined. However, one should
note that the freedom in choosing the gauge for a given B introduces an arbitrary
parameter, namely the gauge-origin RO, into the Hamiltonian. The question is now
how this arbitrary parameter RO affects the computation of magnetic properties.

The basic physical laws require that values for observable quantities must be
independent of the chosen gauge or gauge-origin. This statement is known as the
principle of gauge-invariance (or in our special case as gauge-origin independence).
It is an obvious statement, as Hamiltonians differing only in RO describe the same
physical system with the same physical properties. The values for the latter there-
fore cannot depend on RO which is exactly what the principle of gauge invariance
states. However, it should be noted that gauge invariance is only requested for
observable properties and not for non-observable quantities such as, for example,
the wavefunction. For the latter gauge invariance cannot be enforced.

It is obvious (and straightforward to demonstrate, see, for example, Ref. 73)
that the exact solution to the Schrödinger equation satisfies the requirement of
gauge invariance. All properties computed from the exact solution are uniquely
defined and, as it should be, independent of the gauge origin RO. It is also obvious
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Table 4. 1H shielding constants (in ppm) for hydrogen fluoride calculated at the HF-SCF level
using different basis sets and gauge origins.

gauge origin
basis set center of mass fluorine hydrogen
dz+d 29.3 27.6 60.1
tz+d 28.4 27.2 50.8
qz+2d 27.7 27.0 40.4

(though it has to be discussed for each case separately) that gauge invariance is not
necessarily ensured for approximate solutions of the Schrödinger equation. This is
a major problem for quantum chemistry, as there we deal almost exclusively with
such solutions.

Indeed, it is easily shown that none of the routinely applied quantum chemical
approaches provides gauge-invariant results for magnetic properties. The origin of
this deficiency is easily traced back to the finite-basis set representation used for the
molecular orbitals (commonly known as LCAO approximation). To illustrate the
problem, Table 4 contains results for the 1H shielding constant in hydrogen fluoride
computed at the HF-SCF level using different basis sets and different gauge origins.
The results clearly differ for the three gauge origins. Furthermore, it is observed
that the largest discrepancies appear for the smaller and more incomplete basis
sets. In passing, we note that exact HF calculations would provide gauge-origin
independent results, as the problem is the basis-set expansion and not the HF
approximation.

The main problem with the gauge-dependence of the computational results is
that they are no longer uniquely defined. The computed values for magnetic prop-
erties depend on a parameter (or parameters) which can be chosen in an arbitrary
manner. This also means that results could even become meaningless, when, for
example, computed chemical shifts for symmetry-equivalent nuclei are predicted to
be different. Clearly, this is an artifact of the calculation.

However, the gauge-dependence problem is more involved, as one would expect
from the discussion given so far. Naively, one would assume that unique results can
be achieved by simply fixing the gauge origin, for example, to the center of mass of
the considered molecule. Of course, such a choice would guarantee unique results,
but on the other hand it does not resolve the fundamental problem connected with
the gauge problem in the computation of magnetic properties.

A second serious problem in the calculation of magnetic properties is the slow
basis set convergence of the results. Fig. 3 displays the convergence for the 1H
shielding in case of hydrogen fluoride. It is seen that rather large basis sets are
required to obtain reliable results. Convergence to the basis set limit is much slower
than in the computation of most other molecular properties. In particular, standard
basis sets appear insufficient for the reliable calculation of magnetic properties.

For atoms, the nuclear position represents a natural gauge origin. With this
choice, no problem in the finite-basis representation of the magnetic interaction
appears, as the usually employed basis functions, i.e., spherical Gaussians centered
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Fig. 3: Basis set convergence in the calculation of the 1H shielding constant of hydrogen

fluoride. All calculations have been carried out with the gauge origin at the hydrogen.

at the nuclear position, are eigenfunctions to the angular momentum operator

l = r × p. (75)

The same is not the case as soon as the gauge origin is shifted and no longer
coincides with the nuclear position. The angular momentum is then defined with
respect to the displaced gauge origin

lO = (r−RO) × p (76)

and the following holds

lO|χµ〉 = l|χµ〉+ RO × p|χµ〉 (77)

when lO is applied to a basis function |χµ〉. The second term in Eq. (77) involves
a simple differentiation of a Gaussian basis function and thus leads to basis func-
tions with by one increased and decreased angular momentum quantum numbers.
A proper basis set representation of lO|χµ〉 thus requires that additional higher
angular momentum functions are included in the basis set, i.e. the corresponding p
function for a s function, the corresponding d function for a p function, etc. A cor-
rect representation of this term would require a complete AO basis which is usually
not provided. Shifting the gauge origin away from the nucleus thus deteriorates the
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description of the magnetic interactions. The deteriorations increases with the size
of the displacement.

3.5 Local gauge origin methods

From the discussion above, it is clear why the nucleus is the best gauge origin
for atoms. However, a similar natural gauge origin does not exist for molecules.
It is also obvious from the discussion above that a single gauge origin must be
unsatisfactory for molecular calculations. The quality of the description for the
various parts of a molecule depends on their distances to the gauge origin. As
a single gauge origin can impossibly be optimal for all molecular parts, a rather
unbalanced description of the magnetic interactions results.

The only viable way to overcome these problems consists in the use of more than
one gauge origin for the external magnetic field. The idea behind this concept of
local or distributed gauge origins is simple, though the technical realization is more
involved. To introduce local gauge origins, it is first necessary to partition the
molecule (or to be more specific the molecular wavefunction) into local fragments.
For each fragment, the gauge origin can be then individually chosen in an optimal
way. If the local fragments can be assigned to the various atoms in the molecule,
the corresponding nuclear position would be, for example, a good choice for the
gauge origin.

As within the concept of local gauge origins all molecular parts are described
equally well, a balanced description is achieved. A “good” description of the mag-
netic interactions is ensured, as for each local fragment an optimal choice for the
gauge origin is possible.

For a realization of the described concept of local gauge origins, it is necessary
to introduce gauge-transformations. A shift of the gauge origin from RO to R′

O is
achieved in the theoretical description via a so-called gauge transformation. For a
one-electron system, the corresponding equations are

Ψ −→ Ψ′ = exp(−Λ(r)) Ψ (78)

Ĥ −→ Ĥ ′ = exp(−Λ(r)) Ĥ exp(Λ(r)) (79)

with the gauge factor defined by

Λ(r) =
ie

2c~
[(R′

O −RO)×B] · r. (80)

Expansion of the Hamiltonian H ′ using the Hausdorff formula

H ′ = H + [H,Λ] +
1

2
[[H,Λ],Λ] + ... (81)

= H − ie~

2mc
B · ((RO −R′

O) × ∇) + ... (82)

= − ~

2

2m
∇

2 + V (r) − ie~

2mc
B · ((r−R′

O) × ∇) + ... (83)

shows that H ′ is indeed the Hamiltonian with the gauge origin at R′
O instead of

RO.
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To introduce local gauge origins, the concept of gauge transformations needs to
be extended, as so far we are only concerned with the change from a given origin to
another gauge origin. This extension is easily achieved by introducing more general
gauge transformations of the following kind

∑

A

exp(ΛA(r)) P̂A (84)

where P̂A represents a suitable projector on the local fragment A and exp(ΛA(r))
a gauge transformation to the origin chosen for A. Note that it can be shown
that Eq. (84) defines indeed a valid gauge transformation and leaves for the exact
solution of the Schrödinger equation all physical observables unchanged. As usual,
we have to require for the projector that

∑

A

P̂A = 1. (85)

One should also note that for a many-electron system the corresponding gauge
transformation is given by

N∏

α=1

exp(ΛA(rα))P̂αA (86)

where α is the electron index and P̂αA the corresponding projector.
Following Eq. (84), it is most convenient to define the local fragment at the

one-electron level. With the atomic and molecular orbitals as the one-electron
building blocks for the wavefunction, it appears natural to introduce individual
gauge origins for these one-electron functions. The corresponding schemes, i.e.,
IGLO74,75, LORG76, and GIAO77−80 are nowadays well established and routinely
used for NMR chemical shift calculationsh. In fact, it is justified to state that these
schemes first enabled those calculations to be routinely carried out within chemical
applications, as the trivial solution to the gauge problem, i.e., the use of very large
basis sets, is necessarily restricted to small molecules.

IGLO and LORG are both based on individual gauges for molecular orbitals.
However, as standard HF orbitals are usually delocalized, they are not well suited
for a local gauge origin approach. It is therefore mandatory to introduce localized
occupied orbitals81 and to define individual gauges for them. This is exactly what
is done in the individual gauges for localized orbital (IGLO) approach of Kutzelnigg
and Schindler74,75 and the localized orbital/local origin (LORG) scheme of Bouman
and Hansen76. Details for both approaches can be found in the original literature.

Considering the need of localized orbitals as disadvantageous, it appears more
natural to work with atomic orbitals (which are by construction localized quantities)
and to assign to each of them an individual gauge origin. No further manipulations
are required in this case. This choice of local gauge origins leads to what is nowa-
days known as the gauge-including atomic orbital (GIAO) approachi. As it seems

hIt should be noted that the IGLO and GIAO approaches are also well suited for the efficient
computation of magnetazibilities.
iThe GIAO method is sometimes also called the London atomic orbital (LAO) approach.
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that the GIAO approach is becoming the standard for the calculation of magnetic
properties, we will discuss it in the following section in some detail.

3.6 The GIAO ansatz

The GIAO ansatz77−80 consists in choosing local gauge origins for atomic orbitals
|χµ〉. This means in particular that the corresponding nucleus at which the atomic
orbital is centered is chosen as the “natural” gauge origin.

Within the concept of local gauge origins, the GIAO ansatz is based on the
following gauge-transformation

∑

µ

exp(Λµ(r)) P̂µ (87)

with the projector on |χµ〉 defined by

P̂µ =
∑

ν

|χµ〉S−1
µν 〈χν | (88)

and the gauge factor given by

Λµ(r) =
ie

2c~
[(Rµ −RO)×B] · r. (89)

with RO as the original gauge origin in the Hamiltonian and Rµ as the center of the
basis function |χµ〉. It is obvious that the gauge factor given in Eq. (89) describes
a shift of the gauge origin from RO to Rµ. The projector in Eq. (88) is somewhat
more involved in order to account for the non-orthogonality of the AOs.

While Eqs. (87) to (89) yield in our opinion a very elegant description of
the GIAO approach, a different, though in principle equivalent description is
more common.80 Consider the equations which define the gauge transformations
(Eqs. (78) and (79)). These equations can be interpreted such that there is some
freedom whether the phase factors (of the gauge transformation) are assigned to
the Hamiltonian or to the wavefunction. Eqs. (78) and (79) thus offer two possi-
bilities for the interpretation of the GIAO approach. The first is to apply the local
transformation and to work with a modified Hamiltonian but with the same un-
changed wavefunction. This means that the latter is described in the usual way with
the standard atomic orbitals, etc. The second possibility leaves the Hamiltonian
unchanged, but attaches additional phase factors (those from the gauge transforma-
tion) to the wavefunction description. In particular, it appears convenient to attach
these additional phase factors to the AOs and to describe the GIAO ansatz such
that the calculation of magnetic properties are now carried out with the following
perturbation-dependent basis functions

|χµ(B)〉 = exp(− ie

2c~
(B× [Rµ −RO]) · r)|χµ(0)〉 (90)

instead of the usual field-independent functions |χµ(0)〉. The field-dependent basis
functions of Eq. (90) have been termed in the literature as gauge-including atomic
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orbitalsj or London orbitals.
We will discuss now in some detail why GIAOs provide a satisfactory solution

to the gauge-origin problem. Let us take first the local gauge origin view, i.e.,
the description of the GIAO ansatz as an approach where local gauge origins are
introduced for AOs. The gauge-origin problem is solved here by fixing the gauge
in an optimal way. This first provides unique results and second ensures fast basis
set convergence, as for each AO the corresponding optimal gauge is used. However,
one should avoid the term gauge invariance in this context, as the gauge problem
is only solved by fixing the gauge in a very special way. However, the results are
independent of the original gauge (characterized by the common gauge origin RO)
and in that respect it is appropriate to talk about gauge-origin independent results
in the sense that the results for magnetic properties are independent of RO.

Let us take the second view, i.e., that of perturbation-dependent basis functions.
Here, the use of special basis functions ensures proper behavior of the wavefunc-
tion in the presence of the magnetic field. Gauge-origin independent results are
obtained, as these basis functions are especially tailored to the chosen gauge (the
gauge origin RO appears in the definition of the GIAOs). Gauge invariance is again
not ensured, as invariance is only guaranteed with respect to shifts in the gauge
origin RO, but not with respect to more general gauge transformations. Fast basis
set convergence is achieved, because the GIAOs are constructed in such a man-
ner that they provide exact first-order solutions in the presence of the magnetic
field provided the corresponding AO is the correct zeroth-order solution82. One
can argue that the GIAOs already take care of the major effect of the magnetic
field perturbation on the wavefunction and that the remaining corrections in MO
coefficients, CI coefficients or CC amplitudes are rather small and easily described
within the standard techniques.

The fast basis set convergence of GIAO calculations of shielding constants is
demonstrated in Fig.4.

We add a discussion on some technical aspects which are best explained in the
picture of field-dependent basis functions. As the basis functions now explicitly
depend on the magnetic field B, differentiation of the usual unperturbed one- and
two-electron integrals necessarily involves additional terms. While a conventional
approach just requires the integrals

(
∂〈χµ|h|χν〉

∂Bi

)

conv

= − ie~

2mc
〈χµ|(r × ∇)i|χν〉 (91)

(
∂〈χµ|h|χν〉
∂mKi

)

conv

= − ie~
mc
〈χµ|

[(r−RK) × ∇]i
|r−RK |3

|χν〉 (92)

(
∂2〈χµ|h|χν〉
∂Bi∂mKj

)

conv

=
e2

2mc2
〈χµ|

r · (r−RK)δij − ri(r−RK)j
|r−RK |3

|χν〉 (93)

jIt should be noted that the GIAOs were originally named in a somewhat misleading manner as
gauge-invariant or gauge-independent atomic orbitals. Following a suggestion by Bouman and
Hansen76 the more appropriate name gauge-including atomic orbitals has become standard since
the beginning of the nineties.
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Fig. 4: Comparison of the basis set convergence in common gauge-origin and GIAO cal-

culation of the 1H shielding constant of hydrogen fluoride.

the dependence of the basis functions on B leads to following additional integrals.
(
∂〈χµ|χν〉
∂Bi

)

GIAO

= 〈∂χµ
∂Bi
|χν〉+ 〈χµ|

∂χν
∂Bi
〉 (94)

(
∂〈χµ|h|χν〉

∂Bi

)

GIAO

=

(
∂〈χµ|h|χν〉

∂Bi

)

conv

+ 〈∂χµ
∂Bi
|h|χν〉+ 〈χµ|h|

∂χν
∂Bi
〉 (95)

(
∂〈χµ|h|χν〉
∂mKi

)

GIAO

=

(
∂〈χµ|h|χν〉
∂mKi

)

conv

(96)

(
∂2〈χµ|h|χν〉
∂Bi∂mKj

)

GIAO

=

(
∂2〈χµ|h|χν〉
∂Bi∂mKj

)

conv

− ie~

mc
〈∂χµ
∂Bi
| [(r−RK) × ∇]j
|r−RK |3

|χν〉

− ie~
mc
〈χµ|

[(r −RK) × ∇]j
|r−RK |3

|∂χν
∂Bi
〉 (97)

(
∂〈χµχν |χσχρ〉

∂Bi

)

GIAO

= 〈∂χµ
∂Bi

χν |χσχρ〉+ 〈χµ
∂χν
∂Bi
|χσχρ〉

+〈χµχν |
∂χσ
∂Bi

χρ〉+ 〈χµχν |chiσ
∂χρ
∂Bi
〉 (98)

For a long time, efficient calculation and handling of these integrals (and here in
particular of the additional two-electron integrals) was considered a major obstacle
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in the application of the GIAO approach. However, Pulay pointed out that the
additional integrals are closely related to usual geometrical integral derivatives83

and showed how modern analytic derivative techniques can be used to design an
efficient GIAO code at the SCF level80.

3.7 Availability of methods for the calculation of NMR chemical shifts

Before discussing available methods for the efficient calculation of NMR chemical
shifts, let us add a few historical remarks. The suggestion of using gauge-including
atomic orbitals goes back to London77 who has used them in a study of molecular
diamagnetism more than 50 years ago. At the end of the fifties, GIAOs were
used by Hameka in SCF calculations of shielding constants for a few diatomic
molecules78 and in the seventies by Ditchfield79. However due to technical problems
in calculating and handling integral derivatives, Ditchfield’s work had only limited
impact. The breakthrough with respect to applicability was the IGLO development
by Kutzelnigg and Schindler74,75. By introducing local gauges for localized orbitals,
the problem of additional two-electron integrals was avoided in a rather elegant
way and calculations of chemical shifts for larger and chemically more interesting
molecules became possible. Noteworthy are in particular the numerous applications
of the IGLO approach to problems in carbocation chemistry by Schleyer and co-
workers84. The LORG approach was suggested somewhat later within the random-
phase approximation (RPA) context, but has been shown by Kutzelnigg73 to be
closely related to IGLO. The popularity of the GIAO approach in the nineties
started with Pulay’s seminal work80. As the GIAO approach can be considered
the most elegant way to deal with the gauge problem, it has been adopted by
most groups and implemented in many quantum chemical program packages for
the calculation of magnetic properties.

Table 5 lists the currently available schemes for the calculation of NMR chemical
shifts. Note that we include only those approaches which take care of the gauge-
origin problem via local gauge-origin methods and ignore all other developments, as
they cannot be considered well suited for most chemical applications. At the HF-
SCF level, three variants are available: GIAO-SCF79,80, IGLO74,75, and LORG76

and all three schemes yield results of similar quality. However, implementations at
electron-correlated levels were mainly pursued using GIAOs85−91,29. GIAO-MP2
(also known as GIAO-MBPT(2)) provides the largest range of applicability, GIAO-
CCSD(T) is a tool for highly accurate prediction of NMR chemical shifts, while the
complementary GIAO-MCSCF treatment allows to tackle difficult cases with large
static correlation effects. On the other hand, IGLO was generalized to MCSCF
wavefunction models (MC-IGLO)92 and the LORG scheme to second-order LORG
(SOLO)93.

Naturally, there has been also a great interest in calculating NMR chemical
shifts using DFT approaches. From a pragmatic point of view, very promising
results have so far been obtained94−102, but it is necessary to add a few remarks.
First, it needs to be realized that the Hohenberg-Kohn theorems do not hold in the
presence of a magnetic field. They need to be extended (as described by Vignale
and Rasolt103) to include current-dependent functionals. Most implementations,
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Table 5. Available implementations for the calculations of NMR chemical shifts

quantum chemical methods Ref.
IGLO Kutzelnigg and Schindler (1982) 75
LORG Bouman and Hansen (1985) 76
GIAO-SCF Ditchfield (1974), Wolinski,Pulay, Hinton (1990) 79,80
MC-IGLO van Wüllen and Kutzelnigg (1993) 92
GIAO-MCSCF Ruud et al. (1994) 87
GIAO-MP2 Gauss (1992) 85,86
GIAO-MP3 Gauss (1994) 88
GIAO-MP4 Gauss, Stanton (1994,1996) 88,91
GIAO-CCSD Gauss, Stanton (1995) 89,90
GIAO-CCSD(T) Gauss, Stanton (1996) 91
GIAO-CCSDT-n Gauss, Stanton (2000) 29
DFT-IGLO Malkin et al. (1993) 94
SOS-DFPT Malkin et al. (1994) 95
GIAO-DFT Schreckenbach and Ziegler (1995), 96

Handy et al. (1995), 99
Pulay et al. (1996), Cheeseman et al. (1996) 97,98

SOLO Bouman, Hansen (1990) 93

however, ignore that fact and treat magnetic properties by what is called uncou-
pled DFT. A justification for this choice might be seen in the work of Lee et al.99

who showed that inclusion of the current does not necessarily improve the resultsk.
Second, to rectify some problems in the uncoupled DFT approach (which certainly
is incomplete from a formal point of view ) Malkin et al. suggested an ad hoc mod-
ification of the energy denominator within their sum-over-states density-functional
perturbation theory (SOS-DFPT) scheme95. Though the results give some justi-
fication for this empirical modification, it must be clearly stated that there is no
rigorous theoretical justification for Malkin’s approach and that a similar manip-
ulation would not have been accepted within the more conventional approaches.
Nevertheless, it can be anticipated that DFT treatments of NMR chemical shifts
are of great practical importance and will become a routine tool within quantum
chemistry.

We will complete our discussion by emphasizing some algorithmic developments
in chemical shift calculations aiming at the treatment of larger systems. Implemen-
tation of direct methods for GIAO-SCF105 or IGLO106 paved the path for the rou-
tine treatment of molecular systems with up to 100 atoms. Integral-direct concepts
have also been extended to the GIAO-MP2 approach107. Together with an effi-
cient treatment of molecular point-group symmetry108, thus GIAO-MP2 chemical
shift calculations became possible on molecules with more than 50 atoms described
by more than 600 basis functions (see also section 3.8). However, as the CPU re-
quirements remained unchanged, it appears attractive to couple such integral-direct

kFor a different concept for the treatment of magnetic properties within DFT, see the work by
Harris et al.104
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Table 6. Calculated absolute shielding constants (in ppm)

Molecule Nucleus σe σ0 σ(300K) σ(300K, exp.)
H2

1H 26.667 26.312 26.298 26.288±0.002
HF 1H 28.84 28.52 28.48 28.54±0.01

19F 419.6 409.6 409.2 409.6±1.0
CO 13C 4.2 1.9 1.8 0.9±0.9

17O -54.3 -60.4 -60.6 -44.8±17.2
N2

15N -58.4 -62.5 -62.7 -61.6
F2

19F -189.9 -220.8 -225.5 -233.02±1.0

developments with other ideas such as, for example, the local-correlation treatment
first suggested by Pulay109 and recently pursued by Werner and co-workers.110

Based on a preliminary implementation, test calculations have recently demon-
strated that a local GIAO-MP2 (GIAO-LMP2) scheme should hold great promises
for the treatment of larger molecules.111

Other active areas where methodological developments concerning chemical shift
calculations are pursued are the treatment of relativistic effects (important for
heavy elements)112−116, the routine calculation of rovibrational effects (important
to improve agreement between theory and experiment)117−119 and the consideration
of solvent effects120−122. The latter is of special importance, as the majority of the
NMR spectra is measured in solution or the liquid phase.

3.8 Examples for chemical shift calculations

We will give a few examples to demonstrate the range of applications which are
possible with the currently available methods for computing chemical shifts. Table
6 reports computed absolute shielding constants needed for establishing absolute
NMR scales117. In order to provide accurate data, it is here essential to use the
GIAO-CCSD(T) methods in combination with large basis sets. The error in the
computed absolute shifts of any of the other methods is too large in order to provide
reliable data. In addition, consideration of rovibrational and temperature effects
is mandatory. To emphasize the importance of such calculations, we note that the
current 17O scale is based on calculations117, as the corresponding experimental
scale (based on measured spin-rotation constants) appears to be inaccurate.

For most chemical applications, computation of relative shifts is of central im-
portance. In case of the following vinyl cation

γ
β α β′

γ′

C C
+

it turned out that GIAO-CCSD(T) calculations were essential to provide an un-
equivocal assignment123. GIAO-HF-SCF and GIAO-MP2 calculations are too in-
accurate and only a high-level correlation treatment provides sufficient accuracy.
The computed spectra are displayed in Fig. 5:
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Fig. 5: Calculated and experimental 13C NMR spectra for the 1-cyclopropylcyclopro-

pylidenemethyl cation

Another example is the 27Al NMR spectrum of the Al4Cp4 molecule (Fig. 6)
measured by Schnöckel and co-workers124.
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Fig. 6: Structure of Al4Cp4
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The spectrum was unequivocally assigned to the tetrameric species on the basis of
the computed 27Al chemical shifts124,108, as the experimental value of -111 ppm
agrees well with the computed value of -108.5 (GIAO-MP2). Correlation effects
amount in this case to about 15 ppm and, thus, are not negligible. The computa-
tional cost for the required GIAO-MP2 calculations have been rather demanding.
Using a parallel version of the integral-direct program described in Ref. 108, the cal-
culation (44 atoms, 192 electrons, 548 basis functions, molecular symmetry: D2d)
required about 6 days on a SGI Power Challenge (4 nodes).

A final example deals with an application of chemical shift calculations in com-
bination with solid-state NMR measurements. The aromatic proton signal for a
hexabenzocoronene (HBC) derivative splits in the solid state into three peaks (5.7,
6.9, and 8.3 ppm)125. GIAO-SCF calculations on dimeric and trimeric units of
HBC (Figure 7) enabled an assignment of the measured 1H NMR chemical shifts to
a specific structural model by comparison with computed shifts for various model
systems126.

BA

A

B

A

B

C

Computed

1

H-NMR shifts: 6.9 / 7.9 / 8.9 ppm

Computed

1

H-NMR shifts: 5.9 / 7.4 / 8.7 ppm

Fig. 7: Dimeric and trimeric units of HBC. The experimental chemical shifts for the

aromatic protons in the investigated solid HBC derivative are 5.7, 6.9, and 8.3 ppm125.

575



For the structure shown in Fig. 7, the best agreement is obtained between calcula-
tions and measured values.

3.9 Indirect spin-spin coupling constants

Besides the computation of NMR chemical shifts, theoretical prediction of indirect
spin-spin coupling constants JKL is equally important for a full understanding and
assignment of experimental NMR spectra. The coupling constants are given as
the corresponding second derivatives of the electronic energy with respect to the
involved nuclear spins

JKL =
1

3h

∑

i

d2E

dIKidILi
. (99)

It can be shown that there are four contributions to Eq. (99). The first (and
for CC and CH coupling constants dominating) term is the Fermi-Contact (FC)
contribution described by the following perturbed Hamiltonian

(
∂h

∂IKi

)

FC

= −2πe2gKge
3mMpc2

δ(r− rK)s. (100)

The second term describes the spin-dipole (SD) interaction:
(

∂h

∂IKi

)

SD

=
e2gKge

4mMpc2
(ri − rK)2s− 3(s · (ri − rK)(ri − rK)

|ri − rK |5
. (101)

Third and fourth terms finally represent the so-called diamagnetic and paramag-
netic spin-orbit (DSO and PSO) contributions with

(
∂2h

∂IKi∂ILj

)

DSO

=
gKgLe

4

8mM2
pc

4

(r− rK) · (r− rL)δij − (r− rK)j(r− rL)i
|r− rK |3|r− rL|3

(102)

and
(

∂h

∂IKi

)

PSO

= − ie
2
~gK

mMpc2
[(r−RK)×∇]j
|r−RK |3

. (103)

In Eqs. (100) to (103), s denotes the operator for the electron spin, m the electron
mass, Mp the proton mass, gK the g factor of the Kth nucleus, and ge the g factor
of the electron.

Though calculation of JKL is not hampered by the gauge problem, its calculation
is actually even more problematic. First of all, the FC and SD terms represent so-
called triplet operators (note the appearance of the electron spin s in the expressions
given in Eqs. (100) and (101)). The calculation of these contributions to JKL is
thus affected by triplet instabilities of the wavefunction and accordingly the HF-
SCF approach turns out to be useless in many cases127. Second, there are a total
of 10 perturbations per nucleus which renders computation of the complete set of
spin-spin coupling constants expensive. Third, the basis set convergence in the
calculation of the FC term is rather slow128−130, as the appropriate representation
of the delta function operator in the FC contribution in terms of Gaussians is
demanding.
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As the HF approach fails in most cases, promising results have been so far
only obtained at correlated levels. MCSCF calculations131,132 as well as CCSD
calculations133,134 have been shown to provide reliable theoretical data for these
properties. However, both schemes are hampered in the application to larger
molecules by high computational requirements.

Therefore, DFT might offer a pragmatic alternative. A first implementation
by Malkina et al.135 (within their SOS-DFPT scheme) unfortunately ignores the
SD term which in some cases has been proven to be important. A complete im-
plementation within the coupled-perturbed DFT framework that considers all four
contributions to JKL has been recently presented by Cremer et al.136 However,
further work is still needed before a final conclusion concerning the applicability of
DFT in the calculation of spin-spin coupling constants can be given.

4 Frequency-dependent properties

4.1 General theory

While analytic derivative theory is sufficient for the theoretical treatment of time-
independent (static) properties, the underlying theory needs to be extended for the
calculation of time-dependent (dynamical) properties. In particular, the fact that
there is – unlike for the static case – in the time-dependent case no well-defined
energy explains why the simple derivative theory discussed so far is not applicable.

Nevertheless, there is large interest in the calculation of dynamical properties.
The main examples comprise frequency-dependent polarizabilities and hyperpolar-
izabilities which are the key quantities in the area of non-linear optics137,138.

Starting point for the discussion of dynamical properties necessarily is the time-
dependent Schrödinger equationl

H(t)|Ψ〉 = i
∂

∂t
|Ψ〉 (104)

with the Hamiltonian H consisting of the usual time-independent molecular part
H0 and a time-dependent perturbation V (t):

H(t) = H0 + V (t). (105)

For V (t), one generally assumes that it can be written as a sum of periodic pertur-
bations

V (t) =

N∑

k=−N
exp(−iωkt)

∑

X

ǫX(ωk)X (106)

with ωk as the frequencies and ǫX(ωk) and X denoting the corresponding pertur-
bation strengths and operators. For a periodically oscillating electric field (the
most common example), X is the dipole operator µ and ǫX(ωk) the corresponding
electric field strength.

As V (t) has to be Hermitian, the following relations must hold:

X† = X, (107)

lAtomic units are used here and in the following.
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ω−k = −ωk, (108)

and

ǫ∗X(ωk) = ǫX(ωk). (109)

Eq. (106) for V (t) can thus be rewritten as

V (t) = ǫ(0)X + 2
N∑

k=1

cos(ωkt)
∑

X

Re(ǫX(ωk))X + 2 sin(ωkt)
∑

X

Im(ǫX(ωk))X

(110)

i.e., in a more common form with the perturbations given in terms of real sine and
cosine functions.

The expectation value of an operator X can now be expanded in the formm

〈X〉(t) = 〈X〉0 +
∑

k1

exp(−iωk1t)
∑

Y

〈〈X ;Y 〉〉ωk1
ǫY (ωk1)

+
1

2

∑

k1k2

exp(−i(ωk1 + ωk2)t)
∑

Y,Z

〈〈X ;Y, Z, 〉〉ωk1
,ωk2

ǫY (ωk1)ǫZ(ωk2) + ...

(111)

with the linear response function 〈〈X ;Y 〉〉ωk1
, the quadratic response function

〈〈X ;Y, Z〉〉ωk1
ωk2

), etc. characterizing the time dependence of 〈X〉. Eq. (111) can
be interpreted as an expansion of 〈X〉 with respect to the Fourier components of
the perturbation V (t). The response functions are denoted by 〈〈...〉〉. The operator
before the semi-colon represents the operator for which the expectation value is
computed, while the operators after the semi-colon denote those which are involved
in the Fourier components of V (t). The frequencies given as subscript are those
connected with the perturbation operators Y, Z, ...

For the specific case of X = µi, Eq. (111) takes the form

〈µi〉(t) = 〈µi〉0 +
∑

k1

exp(−iωk1t)
∑

j

αij(−ωk1 ;ωk1)ǫj(ωk1)

+
1

2

∑

k1,k2

exp(−i(ωk1 + ωk2)t)
∑

jk

βijk(−ωk1 − ωk2 ;ωk1 , ωk2)ǫj(ωk1)ǫk(ωk2)

+... (112)

with αij(−ω;ω) as the tensor elements of the frequency-dependent polarizability,
βijk(ω1;ω2, ω3) as the tensor elements of the frequency-dependent first hyperpolar-
izability, etc. Table 7 gives an overview about the various types of polarizabilities
and hyperpolarizabilities as well as their relationship to physical effects (for a more
detailed discussion see, for example, Ref. 138.) It is important to note in this
context that the sum of the frequencies (with explicit consideration of signs!) de-
termines the frequency of the corresponding contribution in the expectation value

mNote that we assume that the operator X is included in the perturbation V (t).
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Table 7. Definition and physical relevance of the various (frequency-dependent) polarizabilities
and hyperpolarizabilities

(hyper)polarizability physical effect
α(0;0) static polarizability
α(-ω;ω) frequency-dependent polarizability
β(0;0,0) static first hyperpolarizability
β(−2ω;ω, ω) second harmonic generation (SHG)
β(−ω;ω, 0) dc-Pockels effect (dc-P);

electro-optical Pockels Effect (EOPE)
β(0;ω, ω) optical rectification (OR)
γ(0;0,0,0) static second hyperpolarizability
γ(3ω;ω, ω, ω) third harmonic generation (THG)
γ(2ω;ω, ω, 0) dc-second harmonic generation (dc-SHG);

electric field induced SHG (EFISH or ESHG)
γ (−ω;ω,−ω, ω) intensity-dependent refractive index (IDRI);

degenerate four wave mixing (DFWM)
γ (−ω1;ω1,−ω2, ω2) ac-Kerr effect (ac-K);

optical Kerr effect (OKE)
γ (−ω;ω, 0, 0) dc-Kerr effect (dc-K);

electro-optical Kerr effect (EOKE)
γ (0;ω,−ω, 0) dc-optical rectification (dc-OR);

electric field induced optical rectification (EFIOR)

expression. For example, in case of the SHG hyperpolarizability, the resulting con-
tribution to the dipole moment has twice the frequency of the originally perturbing
field.

It can be shown that the response functions in Eq. (111) and thus the frequency-
dependent properties of interest can be determined as derivatives of the so-called
time-averaged quasi energy139. The latter is given as

Q(t) = 〈Ψ̃|(H − i ∂
∂t

)|Ψ̃〉 (113)

with the phase-isolated wavefunction

|Ψ〉 = exp(−iF (t))|Ψ̃〉 (114)

with

dF (t)

dt
= 〈Ψ̃|(H − i ∂

∂t
)|Ψ̃〉 (115)

defined in such a way that it coincides in the static case with the usual time-
independent wavefunction. Time averaging of Q(t) is performed in such a manner

{Q(t)}T = lim
T→∞

1

T

∫ T/2

−T/2
Q(t)dt (116)

that T corresponds to multiples of all periods of the considered perturbations.
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It can be then demonstrated that the expectation value 〈X〉0 corresponds to
the first derivative of {Q(t)} with respect to the corresponding field strengthsn

〈X〉0 =
d{Q}T
dǫX(0)

, (117)

the linear response function to the corresponding second derivative

〈〈X ;Y 〉〉ωk1
=

d2{Q}T
dǫX(ω0)dǫY (ωk1)

(118)

with

ω0 = −ωk1 , (119)

the quadratic response function to the corresponding third derivative

〈〈X ;Y, Z〉〉ωk1
,ωk2

=
d3{Q}T

dǫX(ω0)dǫY (ωk1)dǫZ(ωk2)
(120)

with

ω0 = −ωk1 − ωk2 , (121)

etc. Time-averaging is essential in order to obtain these simple expressions for the
response functions. The trick is that time averaging extracts the relevant terms
from the quasi-energy Q(t) and enforces proper matching of frequencies (as seen in
Eqs. (119) and (121)).

The time dependent variation principle can be rewritten in our case as

δ{Q}T = 0. (122)

To obtain explicit equations for the wavefunction parameters, it is convenient to
expand them in terms of the Fourier components of the perturbations

c(t) = c(0) +
∑

k1

exp(−iωk1t)c(1)(ωk1)

+
∑

k1k2

exp(−i(ωk1 + ωk2)t)c(2)(ωk1 , ωk2) + ... (123)

and then require fulfillment of the variational condition (Eq. (122)) for each order
of the perturbation. This yields in first order

∂{Q}T
∂c(0)

= 0, (124)

which is identical to the usual time-independent stationarity condition for c. In
higher orders, the following conditions are obtained

d

dǫX(ω1)

(
∂{Q}T
∂c(1)(ω2)

)

= 0 (125)

with ω1 = −ω2

d2

dǫX(ω1)dǫY (ω2)

(
∂{Q}T

∂c(2)(ω3, ω4)

)

= 0 (126)

nNote that all derivatives are taken at the point ǫX(ω) = 0, ǫY (ω) = 0, ...
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with ω1 + ω2 = −ω3 − ω4, etc.
For non-variational wavefunction parameters, the same technique as in the static

case is used. Accordingly, the derivatives of Q(t) in Eqs. (117) to (126) are replaced
by the corresponding derivatives of an energy functional Q̃(t) (in Ref. 139 called
the Lagrangian L(t)) with the latter obtained by augmenting Q(t) with the corre-
sponding time-dependent equations (g(c, t) = 0) for the wavefunction parameters

Q̃(t) = Q(t) + λg(c, t). (127)

Note that in this case, it is sometimes necessary to symmetrize the corresponding
expressions for the response functions in order to ensure proper symmetry rela-
tions (for a detailed discussion see, for example, section 2.C and 3D of Ref. 139).
The symmetrization needs to be carried out with respect to simultaneous complex
conjugation and inversion of the sign of the involved frequencies.

With Eqs. (111) to (127), the required theory (usually referred to as response
theory) for the calculation of frequency-dependent properties is summarized. The
given expressions differ from those in the static case mainly by the fact that the
energy (the key quantity for static properties) is replaced by the corresponding
time-averaged quasi-energy (the key quantity for dynamical properties). However,
the same techniques as in the static case, i.e. (2n + 1) and (2n + 2) rules, can be
used to deduce computationally efficient expressions for the calculation of dynamical
properties.

4.2 Specific examples

As first example, the computation of frequency-dependent polarizabilities at the
closed-shell HF-SCF level will be sketched. The corresponding quasi-energy is given
in that case by

Q(t) =
∑

µν

Pµν(t)hµν +
1

2

∑

µν

∑

σρ

Pµν(t)Pσρ(t)(〈µσ|νρ〉 − 1

2
〈µσ|ρν〉)

−i
∑

i

∑

µν

c∗νi(t)Sµν
∂cµi
∂t

. (128)

In comparison to the usual HF-SCF energy expression (Eq. (19)), we note that
in Eq. (128) MO coefficients (and thus also the density matrix elements) carry an
explicit time-dependence and that there is one additional term, namely the one
which involves the time derivative of the MO coefficients. As we need to ensure the
orthonormality of the MOs, the appropriate starting point is given by the following
functional

Q̃(t) = Q(t)− 2
∑

i

εij
∑

µν

c∗µiSµνcνj (129)

where we augment the quasi-energy by the orthonormality constraint multiplied
with the corresponding, now time-dependent Lagrangian multipliers εij .
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Following Eq. (123), the MO coefficients cµi(t) are expanded in terms of the
Fourier components of the electric field perturbations

cµi(t) = cµi +
∑

k1

exp(−iωk1t)c(1)µi (ωk1) +
∑

k1k2

exp(−i(ωk1 + ωk2)t)c
(2)
µi (ωk1 , ωk2) + ...

(130)

= cµi +
∑

k1

exp(−iωk1t)
∑

X

ǫX(ωk1)cXµi(ωk1)

+
∑

k1k2

exp(−i(ωk1 + ωk2)t)
∑

X,Y

ǫX(ωk1)ǫY (ωk2)cXYµi (ωk1 , ωk2) + ... (131)

Thus, the perturbed coefficients cXµi(ωk1), cXYµi (ωk1 , ωk2), ... completely characterize
the time-dependence of the HF wavefunction. Furthermore, as common in CPHF
theory, these coefficients are expanded in terms of the unperturbed MO coefficients

cXµi(ω) =
∑

p

cµpU
X
pi (ω) (132)

with the UXpi (ω) as the actual parameters to be determined in the calculation.
Similar parametrizations are also used for the higher-order MO coefficients.

Differentiation of {Q̃(t)}T with respect to electric field components ǫX(ω1) and
ǫY (ω2) yields then for the frequency-dependent polarizability

αXY (ω1;ω2) = −2
∑

a

∑

i

UYai(−ω2)hXia − 2
∑

a

∑

i

hXaiU
Y
ai(ω2) (133)

with

ω1 = −ω2. (134)

Corresponding expressions for the hyperpolarizabilities can be found in the litera-
ture. They are most conveniently derived using the (2n+ 1) rule.

The required coefficients UXai (ωk1) are determined via the so-called time-
dependent HF (TDHF) equations which are obtained by differentiating the quasi-

energy with respect to MO coefficients c
(1)
µi and the corresponding electric field

strengths ǫX(ω1). After some rearrangements, the following equations are obtainedo

∑

em

(2〈am|ie〉 − 〈am|ie〉 − ω)UXem(ω) +
∑

em

(2〈ae|im〉 − 〈ae|mi〉)UXem(−ω) = −hXai
∑

em

(2〈am|ie〉 − 〈am|ie〉+ ω)UXem(−ω) +
∑

em

(2〈ae|im〉 − 〈ae|mi〉)UXem(ω) = −hXai

(135)

which can be solved in the usual iterative manner. The TDHF equations resemble
very much the usual CPHF equations (compare Eq. (32)). Indeed, the CPHF
equations for electric perturbations are obtained in the static limit (ω → 0), in
which UXai (ω) = UXai (−ω). Note that for the time-dependent case, the perturbed

oNote that for electric perturbations UX
ij is zero.
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coefficients for ω and −ω, i.e. UXai (ω) and UXai (−ω) couple and need to determined
together.

As a second example, we discuss the computation of frequency-dependent prop-
erties within CC theory. The appropriate starting point is here the following quasi-
energy functional

Q̃(t) = 〈0|(1 + Λ(t)) exp(−T (t))(H − i ∂
∂t

) exp(T (t))|0〉. (136)

obtained by augmenting the CC quasi-energy with the time-dependent CC equa-
tions multiplied by the time-dependent Lagrangian multipliers λp(t). Orbital relax-
ation contributions are in Eq. (136) not considered. While for most static properties
(geometrical derivatives, magnetic properties, i.e., in general all properties for which
perturbation-dependent basis functions are used) inclusion of orbital relaxation is
mandatory, the opposite is true for dynamical properties. A closer analysis reveals
that a correct pole structure (see the discussion in Ref. 139) is only ensured if
orbital relaxation effects are treated via the single excitations (T1) in an indirect
manner and not explicitly included. Explicit consideration of orbital relaxation on
the other hand would lead to additional (artificial) second-order poles139 and thus
to an unphysical behavior of the response functions. A further advantage of the
so-called unrelaxed approach is that the theory as well as corresponding computer
implementations are considerably simplified.

For the frequency-dependent polarizability, the following expression is obtained
in CC theory

αXY (−ω;ω) = −〈0|(1 + Λ)[exp(−T )
∂H

∂Y
exp(T ), TX(ω)]0〉

−〈0|(1 + Λ)[exp(−T )
∂H

∂X
exp(T ), T Y (−ω)]0〉

−〈0|(1 + Λ)[[exp(−T )H exp(T ), T Y (−ω)], TX(ω)]|0〉 (137)

with the perturbed cluster operator TX(ω)p determined as solution of the following
equations

0 = 〈Φp| exp(−T )
∂H

∂X
exp(−T )|0〉+ 〈Φp|[exp(−T )(H − ω) exp(T ), TX(ω)]|0〉.

(138)

Corresponding expressions for first and second hyperpolarizabilities have been given
in the literature150,151,154.

4.3 Available implementations

The time-dependent HF scheme for the calculation of frequency-dependent prop-
erties has been implemented by Sekino and Bartlett140 in the eighties employing
a general formulation that allows computation of arbitrary polarizabilities and hy-
perpolarizabilities. This development was later followed by other implementations

pIn line with Eq. (123), T X(ω) is defined via the first-order term in the Fourier expansion of T (t).
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(see, for example, Refs. 141 and 142); all of them nowadays allow the routine com-
putation of frequency-dependent properties at the HF-SCF level. Concerning the
treatment of electron correlation, a first major effort has been made by Rice and
Handy143 to derive and implement frequency-dependent polarizabilities at the MP2
level. As amply discussed in the literature, a correct formulation and implementa-
tion of MP2 frequency-dependent polarizabilities (within response theory) has been
only achieved later144,145. MP2 calculations of first and second hyperpolarizabilities
have recently been reported by Kobayashi et al.146

At the CC level, response theory was first formulated by Monkhorst147 in 1977.
A first implementation for the computation of frequency-dependent polarizabilities
was reported in 1994 within the CCSD approximation148. An earlier simplified
variant based on an equation-of-motion CC ansatz149 has turned out less satisfy-
ing, as it lacked the important property of size extensivity. CCSD calculations for
hyperpolarizabilities were first presented by Hättig et al.150,151 in 1997 and 1998.
Concerning inclusion of triple excitations, it is important to recognize that the
otherwise highly popular CCSD(T) ansatz is not well suited for the calculation of
unrelaxed properties. Considering this, Christiansen et al. devised a new hierarchy
of CC models152 consisting of CCS, CC2, CCSD, CC3, etc. for the calculation
of dynamical properties. CCS only includes single excitations (CCS energies are
identical to the corresponding HF-SCF energies, higher-order response-properties,
however, differ), CC2 truncates the doubles equations to lowest order, CCSD in-
volves a full treatment of single and double excitations, while CC3 includes for the
first time triple excitations with the triples equations truncated to lowest order. To
ensure an adequate treatment of orbital relaxation, it is mandatory in this hierarchy
of CC models to consider single excitations (T1) — contrary to usual perturbation
arguments — as zeroth order. CC3 implementations for the computation of dynam-
ical polarizabilities and hyperpolarizabilities have recently reported by Christiansen
et al.153,154 and for the first time allow near-quantitative predictions for these type
of properties (see, for example, Ref. 155).

Finally, it should be mentioned that a lot of effort has been also devoted to
compute frequency-dependent properties at the MCSCF level156−158 and that there
is — as for other properties — a great interest in DFT computations of these
properties employing time-dependent DFT techniques (see, for example, Ref. 159).

4.4 Example

As an example for the computation of frequency-dependent properties, we show in
Fig. 8 the dispersion curve for the refractive index n of N2. The latter is related to
the (frequency-dependent) isotropic polarizability α via

n = 1 + 2π α(ω)N. (139)

Fig. 8 compares results obtained at SCF and various CC levelsq with those from
experimental investigations.160 It is clearly seen how the results improve (in com-
parison with experiment) within the CC hierarchy and that CC3 yields by far the
best agreement with experiment.

qAll calculations have been carried out for r(NN) = 2.068 bohr with the aug-pVQZ basis.
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0.00036

0.00034

0.00032

0.0003

0.00028

Fig. 8: Refractive index of N2 as calculated at SCF and various CC levels in comparison

with experiment.

5 Summary

The basic concepts for the quantum chemical calculation of molecular properties
have been discussed. Focussing on properties specific to a given electronic state,
analytic derivative techniques are the essential prerequisite for the accurate and
efficient computation of the required energy derivatives. Analytic derivatives tech-
niques have been proven especially important for the computation of magnetic
properties. Problems inherent to their calculation such as gauge-origin dependence
of the results and slow basis set convergence are best dealt with by using GIAOs,
i.e. explicitly magnetic-field dependent basis functions.

The derivative approach to molecular properties can also be extended to dy-
namical properties. In the framework of response theory, these kind of properties
are computed via the corresponding derivatives of the so-called time-averaged quasi
energy. As the expressions for dynamical properties coincide in the zero-frequency
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limit with those for the corresponding static properties, response theory represents
a unifying concept for molecular properties that covers both the static and dy-
namic case but also enables computation of excitation energies (via the poles of
the response functions) and transition strengths (via the residues of the response
functions at the poles).

The importance of the presented concepts can be hardly overestimated, as com-
putation of molecular properties plays a major role in almost all modern applica-
tions of quantum chemistry. In this way, it is certainly justified to consider the
introduction of analytic derivative techniques (Pulay’s paper on HF-SCF gradients
in 1969) as an important mile stone in quantum chemistry. There is no doubt that
computation of molecular properties as well as method development in this area of
quantum chemistry will remain an important topic in the future.

Acknowledgments

The author thanks Dr. Christian Ochsenfeld, Alexander Auer, and Oliver Heun for
helpful discussions and a careful reading of the manuscript.

References

1. See, for example, P.W. Atkins, Molecular Quantum Mechanis, Oxford Univer-
sity Press, Oxford, 1983, Chapter 13.

2. See, for example, P.W. Atkins, Molecular Quantum Mechanis, Oxford Univer-
sity Press, Oxford, 1983, Chapter 5.
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158. D. Jonsson, P. Norman, H. Ågren, J. Chem. Phys. 105, 6401 (1995).
159. S.J.A. Gisbergen, V.P. Osinga, O.V. Gritsenko, R. van Leeuwen, J.G.

Snijders, E.J. Baerends, J. Chem. Phys. 105, 3142 (1996); S.J.A. Gisber-

591



gen, J.G. Snijders, E.J. Baerends, J. Chem. Phys. 109, 10644 (1998).
160. E.R. Peck, B.N. Khanna, J. Opt. Soc. Am. 56, 1059 (1966); P.G. Wilkinson,

J. Opt. Soc. Am. 50, 1002 (1960).

592



TENSORS IN ELECTRONIC STRUCTURE THEORY:
BASIC CONCEPTS AND APPLICATIONS TO

ELECTRON CORRELATION MODELS

MARTIN HEAD-GORDON, MICHAEL S. LEE, PAUL E. MASLEN,
TROY VAN VOORHIS, AND STEVEN R. GWALTNEY

Department of Chemistry, University of California, and
Chemical Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA
E-mail: mhg@bastille.cchem.berkeley.edu, mslee@scripps.edu

{maslen,tvan,gwaltney}@bastille.cchem.berkeley.edu

Electronic structure theories correspond to approximate Schrödinger equations,
which are usually solved within finite basis expansions. Most textbook treatments
of electronic structure theory present both derivations and working equations in
terms of a single particle basis of orthogonal functions. All that matters, however,
is the space that the functions collectively span, and observables such as the energy
are naturally invariant to quite general nonunitary transformations of the under-
lying basis functions. Tensor methods compactly express such invariances. This
chapter presents a simple introduction to tensor methods and their applications
in electronic structure theory. One important message is that there is no extra
algebraic effort necessary to derive electronic structure theories in terms of an un-
derlying non-orthogonal basis when the so-called natural representation is used.
In this representation there is a term-by-term correspondence with equations in an
orthogonal basis. It is then straightforward to transform such equations via met-
ric matrices into the covariant integral representation, which is sometimes more
convenient for computational purposes, or as a starting point for further approx-
imations, such as local correlation models. In the remainder of the chapter, the
development of local electron correlation methods using nonorthogonal functions
to span both the occupied and virtual spaces is discussed as an application of the
tensor methods, and as an interesting new methodology in its own right. Addi-
tionally several other recent uses of the tensor methods from our group are briefly
summarized.

1 Introduction

In this chapter, we discuss the development of electronic structure theory with-
out requiring any orthogonalization of the underlying one-particle basis, which,
in general, is naturally nonorthogonal. We employ tensor methods to permit the
treatment of nonorthogonality in an efficient and general fashion. The resulting
tensor equations express the working equations of any electronic structure method
in a way that exhibits all of the natural invariances of such equations to underlying
transformations of the basis, between either different orthogonal or nonorthogonal
representations. By contrast, standard textbook treatments1,2,3 of electronic struc-
ture theory tend to present working equations that are explicitly in an orthogonal
basis, and perhaps in the end back-transform them to the original atomic orbital
basis. The basic reason for employing orthogonal representations is that they ap-
pear to yield simpler equations: working equations in the atomic orbital basis are
complicated by the appearance of the overlap matrix in many places. Part of the
beauty of the tensor-based approach advocated here is that it allows us to obtain ex-
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pressions that are general to nonorthogonal basis sets with essentially no additional
complication. This has been recognized in the research literature4,5,6,7, although it
is generally not widely known amongst electronic structure theorists.

The usefulness of working equations in the nonorthogonal atomic orbital repre-
sentation (or perhaps some other local nonorthogonal representation) needs little
explanation these days. The atomic orbital basis consists of strongly localized func-
tions, which permits any localization of the one and two-particle density matrices
in real-space to be exploited for computational efficiency. For example, recent ad-
vances in linear scaling methods8,9 for mean field electronic structure calculations
depend critically on the use of localized nonorthogonal functions. Localized (and
generally nonorthogonal) single particle functions also provide a natural represen-
tation in which the description of electron correlation via many-body theories can
be cast in local terms. A spatially localized treatment of electron correlation10,11

is one way to reduce the unphysical scaling of computational cost with molecular
size that afflicts orthogonal basis formulations of many-body theories.

Beyond pragmatic considerations of computational efficiency, perhaps the pri-
mary purpose of allowing nonorthogonal functions is to obtain expressions for elec-
tronic structure theories that are as general as possible. By this we mean that
an electronic structure theory normally corresponds to solving a set of equations
within some given one, two or many-particle Hilbert space: this is the working
model of the Schrodinger equation for a given model chemistry. The details of the
individual functions that span these spaces are clearly unimportant in general: all
that matters is the space they collectively define. In other words, what we are
saying is that electronic structure equations are usually operator relations, which
are merely represented in a given basis. Tensor methods have the important advan-
tage of naturally expressing this invariance to nonsingular transformations of the
basis functions. It is intuitive that the operators and approximate wave functions
depend only on the vector space spanned by the basis functions, rather than details
of the basis functions such as nonorthogonality. Their matrix representations are
the tensors that we shall focus on.

The first part of this chapter is an introduction to simple concepts of tensor
analysis, which does not assume any background in the area. In terms of electronic
structure methods, this then lets us more or less immediately treat problems that
involve functions of only one electron at a time, as an application of standard
tensor methods to quantum mechanics in a finite-dimensional one-particle Hilbert
space. We emphasize the fact that exact linear dependence in the basis does not
pose a significant problem. The next major topic is the treatment of many-body
methods as an application of tensor theory. In first quantization, generalizations
of Slater’s rules for matrix elements are obtained, while in second quantization,
Wick’s theorem holds, and lead to representations of one and two particle operators
in terms of the quasiparticle reference. These two topics comprise the tutorial part
of the chapter (Sections 2 and 3).

The next major part of the chapter (Section 4) describes the use of tensor
concepts to treat electron correlation in a spatially localized representation. We
discuss new methods that reduce the complexity of electron correlation theories by
making physically motivated truncations of the wavefunction variables. In partic-
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ular, the simplest wavefunction-based description of electron correlation is second
order Møller-Plesset (MP2) theory. In MP2 theory, the wavefunction variables are
amplitudes that describe correlated fluctuations of pairs of electrons from a mean
field reference into excited states. The tensor approach allows us to represent the
spaces that are occupied and unoccupied in the mean-field reference in terms of
over-complete sets of atom-centered functions. In turn, this means that the double
substitution amplitudes can now be represented in terms of these atom-centered
functions. If no local truncation is performed, then the MP2 energy would be more
expensive to evaluate in this representation than in terms of the usual ”canonical”
molecular orbitals (at least naively).

The overcomplete atomic representations are chosen because they are an ideal
starting point for local truncations of the double substitution amplitudes. We dis-
cuss in detail the various local truncations that can be obtained by restricting the
number of amplitudes retained, based on an atomic criterion. An example of such
a criterion is that at least one occupied and one unoccupied index of a double sub-
stitution must belong to the same atom, otherwise that amplitude is set to zero.
Such atomic truncations yield simplified ”local” descriptions of the electron corre-
lations, with inherently reduced computational complexity. Furthermore, atomic
truncations have the important advantage that they yield inherently smooth poten-
tial energy surfaces, and, indeed the resulting local correlation methods satisfy all
the criteria of a well-defined theoretical model chemistry. It may at first sound like
these atomic truncations are very drastic, and so we additionally present a selection
of numerical results to show that the resulting ”local model chemistries” are quite
faithful to the model chemistry obtained without any truncation (within the MP2
model).

There are, of course, innumerable other possible applications of tensor concepts
to outstanding problems in electronic structure theory, either of the model devel-
opment type, or of the algorithmic type. The final part of this chapter (Section 5)
is a short introduction to several other areas where we have found these concepts
to be helpful. This includes the simplified description of geminal wavefunctions for
bond-breaking, extensions of the local correlation models discussed for MP2 theory
to triple substitutions, and perturbation theory with non-Hermitian Hamiltonians.
The intention is to give the reader some flavor of why nonorthogonal orbitals and
tensor concepts are useful in these problems. It is important to emphasize that
there are many other interesting and important applications of tensor concepts in
electronic structure theory as well. Some have been pursued by other groups al-
ready, but many are yet to be investigated at all! For this reason, we believe that
a general knowledge of tensor methods is useful for someone who is planning to do
research in electronic structure theory, and the purpose of this chapter is to provide
a starting point.

2 Basic Tensor Concepts

While we must refer to textbooks12,13,14,15 for a full introduction to tensor analysis,
we shall develop the basic concepts necessary for application to electronic structure
methods in this section.
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2.1 Covariant Basis Functions and the Metric

The introduction of a finite basis of one-particle functions is the so-called algebraic
approximation of electronic structure theory. The one-particle basis functions are
atomic orbitals, which are non-orthogonal amongst themselves. Let us term this
set of given functions the covariant basis, and write them as: {|φµ〉}. While it
is not necessary, for simplicity we shall assume that the covariant basis functions
(and indeed all matrix elements involving the basis functions) are real. Other sets
of one-particle covariant functions will also be used later. They will be for example
a set of functions that spans only the occupied part of the one-particle space, or
only the unoccupied part.

Let us introduce a first basic definition. Quantities which, upon a transfor-
mation of the basis, change in the same way as the basis functions, are termed
covariant. Covariant quantities are denoted via subscripts. All matrix elements in-
volving the basis functions are entirely covariant in character as they are calculated
in a quantum chemistry program. In particular, the overlap matrix plays a very
central role in tensor analysis and is called the covariant metric. It will be denoted
as gµν :

gµν ≡ Sµν = 〈φµ | φν〉 (1)

2.2 Contravariant Basis Functions and the Inverse Metric

Given a nonorthogonal set of basic functions, or, in tensor language, given a covari-
ant basis, how will we be able to resolve a vector into components? In other words,
how will the operation of projection be performed in the absence of orthogonality?
The answer is that there is a matching ”dual” basis that can be readily derived from
the covariant functions, whose members have the property of being biorthogonal to
the covariant functions.

These functions, which are called contravariant basis functions, are defined by
the action of the inverse overlap matrix (or the inverse of the covariant metric), on
the covariant basis functions:

|φµ〉 =
∑

ν

|φν〉
(
S−1

)νµ
(2)

The term contravariant is meant to imply that these functions transform on a
change of basis in the opposite or inverse manner to the way in which the covariant
functions transform. These transformation properties will be established shortly
in the following subsection. To distinguish contravariant functions from covariant,
contravariant indexes are written as superscripts.

A one-line proof verifies that, by construction, the contravariant functions are
indeed biorthogonal to the covariant functions:

〈φµ | φν〉 =
∑

λ

(
S−1

)µλ 〈φλ | φν〉 = δµν (3)
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The overlap matrix of the contravariant functions is in fact the inverse of the overlap
matrix of the covariant functions:

gµν ≡ 〈φµ | φν〉 =
∑

λσ

(
S−1

)µλ 〈φλ | φσ〉
(
S−1

)σν
=
(
S−1

)µν
(4)

The role of the metric matrices can now be clearly seen. The contravariant
metric defined above has the general property that it converts a covariant index to
a contravariant one. Specifically we now see that Eq. (2) can be rewritten as:

|φµ〉 =
∑

ν

|φν〉gνµ (5)

Likewise the covariant metric matrix acting on a contravariant index converts that
index to being of the covariant type:

|φµ〉 =
∑

ν

|φν〉gνµ (6)

as is immediately proven by substituting Eq. (2) into Eq. (6). Thus the metric
matrices allow interconversion of covariant and contravariant indices.

2.3 Invariances to Transformations and the Summation Convention

Suppose we transform from the original set of covariant basis functions,
{∣
∣φµ
〉}

, to

a modified set,
{∣
∣φ̃µ
〉}

, spanning the same space by a transformation matrix T:

∣
∣φ̃µ
〉

=
∑

ν

∣
∣φν
〉
T ν•µ (7)

The placeholder (•), means that the first index of the transformation is con-
travariant while the second index is covariant, to distinguish them since they are
inequivalent. As discussed further in a subsequent subsection, we implicitly adopt
the convention that the right-hand index has the character of a ket and the left-hand
index has the character of a bra, in terms of Dirac’s bra-ket notation.

This new covariant basis will have an overlap matrix, or covariant metric, which
is related to the previous one by the following expression:

g̃µν =
〈
φ̃µ
∣
∣ φ̃ν

〉
=
∑

λσ

T •λ
µ gλσT

σ
•ν (8)

For real transformations T, the adjoint of T is the same as the transpose; i.e.
T •ν
µ = T ν•µ.

Given this new set of covariant basis functions, we can define a new contravariant
basis by the prescription given in the previous subsection.

∣
∣φ̃µ
〉

=
∑

ν

∣
∣φ̃ν
〉
g̃νµ (9)
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How are these new contravariant functions related to the original set? The
inverse of the new metric defined by Eq. (8) is evidently related to the original
inverse metric by the following relation involving the inverse of the transformation,
T:

g̃µν =
∑

λσ

(
T−1

)µ

•λ g
λσ
(
T−1

)•ν
σ

(10)

Substituting Eqs. (8) and (10) into Eq. (9) we obtain the transformation property
of the contravariant functions:

∣
∣φ̃µ
〉

=
∑

ν

∣
∣φν
〉(
T−1

)•µ
ν

(11)

The contravariant functions transform inversely to the way that the covariant
functions transform. More generally, therefore, covariant and contravariant indices
have inverse transformation properties.

This fact is important in tensor analysis. If we form a scalar quantity (or more
generally reduce the number of free indices by one) by summing over one covariant
index and one contravariant index:

c =
∑

µ

aµbµ (12)

then such a scalar will be invariant to transformations of the basis:

c̃ =
∑

µ

ãµb̃µ =
∑

µνλ

aν
(
T−1

)•µ
ν
T •λ
µ bλ =

∑

νλ

aνδ•λν bλ = c (13)

The energy in an electronic structure theory is just such a scalar, which will
be given by various sums over orbitals. Tensor notation will therefore immediately
express the invariance of the energy to certain classes of transformations of the
orbitals.

The summation convention simply states that the simple presence of a repeated
index implies summation, provided the index occurs once in covariant form and
once in contravariant form, as needed if the result is to be invariant. Specifically,
we are defining:

aµbµ ≡
∑

µ

aµbµ (14)

So, at this stage we have a useful perspective. The introduction of covariant
and contravariant indices that have inverse properties upon transformations of the
basis permits us to sum over indices in a way that is invariant with respect to such
transformations. Such a summation is termed a contraction.

More generally, tensor notation, meaning the use of the covariant and con-
travariant representations, will let us write express operator relations such that
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their transformation properties upon a change of basis are fully implicit in the
algebra. Certain rules must be followed for this to be true:

(1) Contraction must only be over index pairs where one index is covariant and
one index is contravariant.

(2) Addition of one quantity to another will only be valid if they have indices that
match one-to-one in covariant and contravariant character.

2.4 Flat Euclidean Spaces Versus Curved Spaces

A brief word on the geometrical character of what we have discussed to this stage
is in order. We have introduced a basis, with a metric or overlap matrix that is
nondiagonal. This corresponds to a set of axes that are not orthogonal to each other,
but are instead skewed. We are treating the elements of the metric as constants
whose value is the same regardless of where we are in the single particle space.
Thus we are working in Euclidean geometry, and space is flat. For simplicity we
shall retain this restriction throughout this article.

Other choices of basis vectors may define a metric whose values change depend-
ing on where we are in the space. The basis vectors corresponding to spherical
polar coordinates in 3-space are a familiar example. Another example that is fa-
miliar in chemistry are the internal coordinates often used to describe molecular
geometry. These basis vectors define spaces that are curved rather than flat, and it
is important to properly account for this curvature. For example, to describe the
shortest distance between two points, straight lines must be replaced by geodesics
(the generalization of great circles). Additionally vectors can no longer be simply
translated through space to change their origin, but instead must change their ori-
entation with translation. For further consideration of this topic, we refer the reader
to introductory (or not so introductory!) treatments of differential geometry12,14,15.
An interesting and detailed recent article16 has much relevance to minimizing self-
consistent field type energy expressions.

2.5 Bras, Kets and Operators as Tensors

When we form matrix elements in electronic structure theory, we are, by definition,
combining bras and kets. Therefore the tensors which we shall employ to represent
operators will have associated with them a set of indices that will be divided into
equal numbers of bra indices and ket indices. We adopt the useful convention that
for a matrix element involving 2n indices, the first n indices will be associated with
bras and the last n indices will be associated with kets. That is consistent with
how all the matrix elements have been written in the previous parts of this section.

Let us consider the representation of some simple operators. Most basic is the
operator for projection onto the space spanned by the covariant basis. The form
of this projection operator follows from the biorthogonality of the covariant and
contravariant functions:

1̂ = |φµ〉 〈φµ| (15)
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The metric matrices may be used to write this relation entirely in terms of either
just the covariant basis functions or just the contravariant basis functions:

1̂ = |φµ〉 gµν 〈φν | = |φµ〉 gµν 〈φν | (16)

It is simply verified that any of the three equivalent forms for the projection
operator acting on a ket in the covariant space gives back that same ket. They
express the ”resolution of the identity” in this space. By simply inserting Eq. (15)
or Eq. (16) after a bra or before a ket, one resolves it into components in either
the covariant or contravariant basis in the usual way.

Expressions for other operators may also be expressed in terms of the covariant
and contravariant basis functions by employing the resolution of the identity in any
of the three forms given above. For example, using the simplest form, Eq. (15), to
resolve a one electron operator into this nonorthogonal basis set yields:

F̂
(
r1, r

′
1

)
= |φµ〉 〈φµ| F̂ |φν〉 〈φν | = |φµ〉Fµ•ν 〈φν | (17)

In the second (more compact) form of this equation, we are applying the convention
that in a tensor of rank 2, the first index corresponds to the bra and the second
index corresponds to the ket. A two electron operator may be treated similarly,
making sure to apply the resolution of the identity to both the first and second
electronic coordinates:

Ĝ = |φµ (1)〉 |φν (2)〉 〈φµφν | φλφσ〉 〈φσ (2)|
〈
φλ (1)

∣
∣ (18)

2.6 Natural Representation and the Covariant Integral Representation

Given the fact that a given ket can be represented in either the covariant or con-
travariant basis, as can a given bra, there are indeed many ways that a given tensor
can be written. Specifically a one particle operator, such as given in Eq. (17), can
be represented in 22=4 ways, while a two-particle operator, such as Eq. (18), can
be represented in 24=16 different ways. Two of these ways are most useful in the
context of electronic structure theory.

The first useful representation is called the natural representation, and adopts
the convention that all ket indices are represented in the covariant basis, while all
bra indices are represented in the contravariant basis. This representation is faith-
ful in the sense that the tensor algebra representing an operator equation will be
isomorphic to the operator form of the equation. Crucially, this representation also
yields equations that correspond term-by-term to the form of the equations in an
orthogonal basis, with the only difference lying in the covariant and contravariant
character of individual indices. It is most convenient to obtain tensor equations
initially in the natural representation, as they can sometimes be written down by
inspection, or inferred from known equations in the orthogonal representation. The
essential point is that obtaining the defining equations of an electronic structure
method in terms of nonorthogonal functions in the natural representation is no
harder than obtaining the equations in a conventional orthogonal representation!
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We shall further develop the analogies between the natural representation and con-
ventional orthogonal basis tools for second quantization and many-electron theory
in the following sections.

The second useful representation may be called the covariant integral repre-
sentation, and is the representation in which all matrix elements of one and two
particle operators in the Hamiltonian are represented entirely in terms of covariant
indices. This is a useful representation because in electronic structure codes, as we
have already discussed, these matrix elements are always calculated with all indices
covariant. If all matrix elements are defined fully covariant, then the variables that
they are contracted with in the equations of a given electronic structure method
must be fully contravariant. For example, in one-electron theories, the one-particle
density matrix is fully contravariant in this representation. So, to summarize, as
a general rule, we will derive in the natural representation, but compute in the
covariant integral representation.

It is worthwhile at this point to briefly contrast what has been done with the
tensor notation relative to conventional treatments of nonorthogonality in quantum
chemistry. Conventionally what is done is to assume a particular tensor represen-
tation, such as the covariant integral representation, for the matrix elements and
unknowns. This has two principal drawbacks. First, the overlap matrix must be
carried explicitly, which makes the equations and derivations cumbersome relative
to simply transforming the tensor character of the indices of the final equations
in the natural representation with metric matrices. Second, without the explicit
covariant and contravariant character of the indices, it is all too easy to violate the
rules of tensor algebra.

2.7 Treatment of Exact Linear Dependence

We must extend the tensor treatment to the case where exact linear dependence
exists in the single particle basis. The reason for doing so (rather than eliminating
such redundancy at the outset) is that often convenient sets of occupied and virtual
functions may include exact linear dependence. A simple example are projected
atomic orbitals, defined by acting with P and Q on the parent set of atomic orbitals:

|φi〉 = P̂ |φµ〉 δµi = |φµ〉Pµ•νδνi (19)

∣
∣φa
〉

= Q̂
∣
∣φµ
〉
δµa =

(
Î − P̂

)∣
∣φµ
〉
δµa =

∣
∣φµ
〉(
δµa − Pµ•νδνa

)
(20)

The delta functions merely preserve index conventions. Projected atomic functions
are localized to the same extent as the density matrix itself17. Their covariant
metric matrices are the covariant representations of P and Q respectively:

gij = 〈φi | φj〉 = δµi Pµνδ
ν
j (21)

gab = 〈φa | φb〉 = δµa (gµν − Pµν) δνb (22)
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Contravariant functions may be defined by projection on the contravariant basis
vectors with P and Q ; their contravariant metrics are the contravariant represen-
tations of P and Q respectively.

The linear dependence associated with these representations is immediately ev-
ident. Take for example the occupied space. The dimension (number of linearly
independent functions) of the occupied subspace is the particle number, n, but
Equations (19) yields a larger set of functions (N, equal to the dimension of the
atomic orbital basis itself). The metric matrix, Equation (21), is then not formally
invertible, and the ability to change indices from covariant to contravariant seems
to be lost. A coordinate transformation from a set of nonredundant functions to
a linearly dependent representation (or vice versa) involves a rectangular matrix,
which also has no formal inverse. Can we allow these redundant representations in
the tensor formalism?

The answer is yes, for the following reason18. Trial vectors on which the inverse
operates lie in the range of the metric (the linearly independent subspace) with no
component in the nullspace, since a linearly dependent representation still spans
the same space as a related linearly independent basis. Hence we employ a gener-
alized inverse based on discarding the nullspace, as defined by the singular value
decomposition (SVD). Writing out summations explicitly, the SVD for a square
matrix is:

(S)
−1
ab =

∑

c′

Uacs
−1
c Ubc (23)

where the terms in the sum over c are discarded if sc (the eigenvalues of S, with
eigenvectors U) is zero. This inverse does not satisfy S−1S=1, but does yield the
correct solution, x=S−1b to linear equations Sx=b, if b lies within the range of
S. The SVD is also general for rectangular matrices, as needed for transformations
between redundant and nonredundant representations.

Generalized inverses of the metrics for projected atomic orbitals are the con-
travariant metric matrices discussed above: the density matrix and its orthogonal
complement respectively:

gij =
〈
φi
∣
∣ φj

〉
= δiµP

µνδjν (24)

gab =
〈
φa
∣
∣ φb

〉
= δaµ (gµν − Pµν) δbν (25)

This is proved either by considering the overlap of the contravariant projected
functions themselves or by the fact that the product of these two matrices operating
on any vector lying entirely within the occupied space yields the same function
unmodified.

The contraction of the product of covariant and contravariant metrics yields
an idempotent matrix which represents the Kronecker delta. For example, in the
occupied case, we obtain

gikgkj =
〈
φi
∣
∣ φj

〉
= gi•j 6= δij (26)
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Thus redundant contravariant functions are not biorthogonal with redundant co-
variant functions. In the natural representation, P and Q must then be written
as:

P̂ = |φi〉 gi•j
〈
φj
∣
∣ (27)

Q̂ = |φa〉 ga•b
〈
φb
∣
∣ (28)

We next consider rectangular coordinate transformations, Cj
′

•i, from a set of pro-
jected atomic orbitals, (19), (primed indices) to a linearly independent orthogonal
set (unprimed indices). This transformation matrix is a set of molecular orbital co-
efficients. The generalized completeness relation above defines C and its generalized
inverse D directly:

∣
∣φi
〉

=
∣
∣φj′

〉
gj

′

•k′
〈
φk

′ ∣
∣ φi
〉
≡
∣
∣φj′

〉
Cj

′

•i (29)

∣
∣φi′
〉

=
∣
∣φj
〉〈
φj
∣
∣ φi′

〉
≡
∣
∣φj
〉
Dj

•i′ =
∣
∣φj
〉(
Cj•i′

)∗
(30)

D is both a left inverse and a right inverse. In the latter case, where D is
undoing the transformation into the unprimed coordinates, the product of C and
D is not the identity matrix, but rather the projector onto the occupied subspace in
the mixed representation. Thus D works properly on all functions in the occupied
subspace. We can also view D as a transformation from an orthogonal basis into
the linearly dependent representation, with C as its generalized inverse.

This completes the demonstration that all basic operations of tensor algebra can
be performed in terms of linearly dependent representations. Exact linear depen-
dence evidently poses no practical or formal problem, because the space spanned
by the linearly dependent functions remains well defined. Numerical complications
can still arise from near linear dependence (where, for example, the eigenvalues of
Equation (23) are very small, but not zero. In that case a threshold must be de-
fined (the square root of machine precision for example) below which the eigenvalues
and associated eigenvectors are discarded. Finally, while we have been discussing
single-particle problems, it should also be emphasized that all of the results to be
discussed in the next section on many-electron problems will also hold in the case
of linear dependence, provided that the simple generalizations discussed here are
applied.

3 Many-Electron Theory

We shall consider only so-called single reference theories of electron correlation.
They begin from a single determinant of occupied orbitals, such as the mean-field
Hartree-Fock solution, and treat electron correlation by substitutions of sets of
occupied orbitals with virtual orbitals. As such, single reference methods are based
upon an initial partitioning of the one-particle Hilbert space into two subspaces.
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One consists of levels that are occupied in the reference determinant, and the other
consists of unoccupied (virtual) functions:

Î = P̂ + Q̂ (31)

The operators P̂ and Q̂ are projectors (as defined by idempotency, P̂ 2 = P̂ ,
Q̂2 = Q̂) onto the occupied and virtual subspaces respectively. From Eq. (31) all
functions which lie entirely within the occupied space are orthogonal to functions
lying entirely in the virtual space (a one or two line proof). This applies to any mix
of covariant and contravariant basis vectors, and is a condition of strong orthogo-
nality. We shall adopt the convention that indices i,j,k... denote functions spanning
the occupied subspace, indices a,b,c... denote functions spanning the virtual sub-
space, and indices µ,ν,λ,σ... denote functions lying in the full one-particle space.
The presentation in this section generally follows our full paper on this problem7.

3.1 Many-electron Determinants

We assume a single particle basis of dimension N, partitioned as in Eq. (31) into
occupied and virtual subspaces (dimension n and N -n), each spanned by linearly
independent functions (as discussed in the following section, linear dependence
poses no practical problem either). The simplest many-electron wavefunction is a
single determinant |Φ〉, comprised of the n covariant functions spanning P. We call
|Φ〉 the covariant reference ket :

|Φ〉 = (n!)−
1/2 det (|φ1〉 |φ2〉 · · · |φi〉 · · · |φn〉) (32)

What is the tensor character of |Φ〉? This follows from how |Φ〉 transforms un-
der nonorthogonal transformations of the underlying single-particle basis functions
spanning either P or Q. Since |Φ〉 depends on tensor products of n single particle
functions, it is an n-th rank antisymmetric tensor. The properties of antisymmetric
tensors are well known as part of exterior algebra or Grassman algebra. An impor-
tant fact is that if the dimension of the underlying single particle basis is S, then
the dimension of the subspace of nth rank tensors which are antisymmetric is SCn.
This is 1 if S=n, as is the case for |Φ〉 under transformations of the occupied space,
or N−nC0 for the virtual space. This permits substantial simplification, because
a basis function spanning a one-dimensional subspace behaves much like a scalar
under transformation of the basis.

In fact, a nonsingular linear transformation, C, of the one-electron kets spanning
the occupied space only alters the covariant reference ket by a constant, det(C).

The proof is based on rewriting Eq. (32) as |Φ〉 = (n!)−
1/2 det (Θ), where Θ is a

matrix whose rows are electron labels, and whose columns are occupied covariant
orbital labels. Under transformation with C:

(n!)
1/2 |Φ〉′ = det (Θ′) = det (ΘC) = det (Θ)det (C) = |Φ〉 det (C) (33)

An antisymmetric n-th rank tensor which transforms this way is a relative tensor
of rank 0 and weight 1 (or a pseudoscalar). Hence we can focus only on (the
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small number of) single particle levels that are altered from their configuration
(occupied or not) in the reference by the correlation treatment, rather than treating
substituted determinants as general n-th rank tensors. The weight 1 refers to
occupied basis transformations, while the tensor is of weight 0 with respect to
virtual basis transformations, as is trivially proven.

Many electron expansion spaces are generated by replacing covariant occupied
levels by covariant virtual levels. The set of all single substitutions of occupied
levels, i, by virtual levels a, the corresponding set of all double substitutions, etc
comprise well-defined subspaces of the full n-electron Hilbert space, Qn (which con-
sists of all substitutions through n-fold).

Qn = 0⊕ S ⊕D ⊕ T ⊕ · · · ⊕ n (34)

In general, electron correlation techniques seek an approximate solution of the
Schrödinger equation that is defined only within such subspaces. For example, a
trial wavefunction that depends on single and double substitutions can be com-
pletely determined by solving a Schrödinger-like equation within the 0 ⊕ S ⊕ D
subspace.

We state the tensor properties of the substituted determinants that span these
many-electron S, D, T subspaces, under transformations of the occupied and vir-
tual single particle basis sets without proof. A covariant virtual level a, introduced
by substitution, transforms covariantly. The hole index, i, of an occupied level
that has been substituted, transforms contravariantly, consistent with creating a
hole by projection with a biorthogonal contravariant bra orbital. These n-th rank
antisymmetric tensors are also relative tensors of rank (m,m), for m-fold substi-
tutions, with weight 1 for occupied basis transformations, and weight 0 with for
virtual basis transformations. A single substitution of an occupied (covariant) level
i by a virtual (covariant) level a is written as

∣
∣Φi•a

〉
, while double substitutions are

∣
∣Φij••ab

〉
.

The space spanned by any given level of substitutions of occupied levels by virtu-
als is closed under separate nonsingular linear transformations of occupied and/or
virtual levels amongst themselves. This follows directly from the fact that strong or-
thogonality between occupied and virtual subspaces is preserved under nonunitary
(nonsingular) transformations of the one-particle basis set within the occupied and
virtual subspaces. To give a concrete example, single substitutions are not mixed
with double substitutions under transformations of this type. Note that subsets of
these spaces are generally not closed under linear transformations.

The tensor character of substitution amplitudes is opposite to the many-electron
basis vectors so that their contractions are properly invariant to transformations of
the basis. Operators which generate invariant mixtures of substituted determinants
can then be written as

T̂1

∣
∣Φ
〉

= ta•i
∣
∣Φi•a

〉
(35)

T̂2

∣
∣Φ
〉

= 1
4 t
ab
••ij
∣
∣Φij••ab

〉
(36)
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The amplitude tensors can be transformed from this natural representation with
metric matrices in order to alter the character of the indices if desired.

3.2 Many-electron Bras and Slater’s Rules

We define many-electron dual spaces, which preserve the biorthogonality present
between contravariant and covariant single particle levels, starting from a determi-
nant of contravariant bras, which is the n-electron contravariant reference bra:

〈
Φ
∣
∣ =

(
n!
)−1/2det

(〈
φ1
∣
∣
〈
φ2
∣
∣ · · ·

〈
φi
∣
∣ · · ·

〈
φn
∣
∣
)

(37)

There are corresponding manifolds of substituted bras, {〈Φa•i|},
{〈

Φab••ij
∣
∣
}

etc. In
the dual space, the tensor character of indices is reversed: occupied indices (holes)
are covariant, virtual indices (particles) are contravariant. For example, we replace
occupied level

〈
φi
∣
∣ with virtual level 〈φa| in the single substitution 〈Φa•i|. These

are all relative tensors of weight -1, because by construction they transform in a
reciprocal way to the relative tensors of Sec. 3.1. They are the adjoints of the
corresponding covariant many-electron kets.

Solution of Schrödinger-like equations in the many-electron subspace spanned
by a given level of substituted determinants can be achieved by forming projection
equations with the appropriate dual vectors. Biorthogonal representations arise in
unsymmetric eigenvalue problems, such as coupled cluster excited state methods19.
They are also sometimes employed in valence bond methods20. In our case, the
projection equations are components of an absolute tensor which represents the
many-electron equations in a subspace. It is invariant to transformations of the un-
derlying basis, provided the projections are complete within each given substituted
manifold (i.e. all double substitutions, for example).

Matrix elements of operators between many-electron bras and kets in the natu-
ral representation are slight generalizations of Slater’s rules for the orthogonal case,
with all new information contained within the covariant and contravariant charac-
ter of the indices. The key to this close analogy is the natural representation in
which covariant and contravariant character is consistently reversed between many-
electron kets and bras. This is a tremendous contrast relative to the complexity of
matrix elements between determinants of nonorthogonal functions in both bra and
ket, which do not have the biorthogonality property.

For the identity operator (overlaps), as a result of orthonormality of single
particle functions in the dual space with functions in normal (covariant) basis, only
diagonal overlaps are nonzero. Thus:

〈Φ |Φ〉 = 1 (38)

〈
Φb•j

∣
∣ Φi•a

〉
= δijδ

b
a (39)

〈
Φcd••kl

∣
∣ Φij••ab

〉
=
(
δikδ

j
l − δilδ

j
k

)(
δcaδ

d
b − δdaδcb

)
= δijklδ

cd
ab (40)
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In Eq. (40), we have simplified the final expression by introducing the generalized
Kronecker delta (whose definition is obvious from the full equation). Nevertheless
it is apparent from Eq. (40) that doubly substituted contravariant bras are not
biorthogonal to doubly substituted covariant kets as we have defined them. This
situtation is exactly the same as applies in the familiar orthonormal representation,
and is a result of using a set of double substitutions which is redundant by roughly a
factor of 4 (the permutationally related substitutions

∣
∣Φij••ab

〉
,
∣
∣Φji••ab

〉
,
∣
∣Φij••ba

〉
, and

∣
∣Φji••ba

〉
are all equivalent). The somewhat cumbersome process of spin-adaptation

can be used to define sets of orthonormal double substitutions, but we shall not
pursue that issue here, preferring to use general spin orbitals. For a clear introduc-
tory discussion of how to proceed for the closed shell singlet case, see the article by
Knowles, Schütz and Werner elsewhere in this volume.

For spin-orbital matrix elements involving one-electron operators, we derive
results whose form is also familiar, as a direct result of the biorthogonality between
many-electron basis kets and the dual basis bras:

〈Φ |F |Φ〉 = F i•i = gijFji (41)

〈Φa•i |F |Φ〉 = F a•i = gabFbi (42)

We next consider two-electron operators. The tensor analog of the antisym-
metrized (”double bar”) two-electron integrals is a fourth rank tensor that in the
natural representation has two covariant (ket) indices and two contravariant (bra)
indices. There is also a corresponding fourth rank tensor for the parent (”single
bar”) two electron integrals. The definition of the antisymmetrized two electron
integrals is:

IIpq••rs = 〈ΦpΦq |ΦrΦs〉 − 〈ΦpΦq |ΦsΦr〉 ≡ Ipq••rs − Ipq••sr (43)

This appears in matrix elements of the two-electron repulsion operator:

〈Φ |G|Φ〉 = 1
2II

ij
••ij = 1

2g
ikgjlIIklij (44)

〈Φa•i |G|Φ〉 = IIaj••ij = gabgikIIbkij (45)

〈
Φab••ij

∣
∣G
∣
∣Φ
〉

= IIab••ij = gacgbdIIcdij (46)

In addition to the natural representation, we have employed the metric tensors to
re-express the results in terms of fully covariant two-electron integrals.
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3.3 Second Quantization

In first quantization in the previous section, we have continued to develop a strong
isomorphism between the algebra of quantum mechanics in orthogonal single parti-
cle basis sets, and nonorthogonal single particle basis sets when the natural repre-
sentation is employed. It is therefore at least intuitive that other powerful tools of
many-body electronic structure theory with orthonormal single particle basis sets
will also carry over virtually unchanged to the nonorthogonal case provided the
natural representation is employed. In particular, the tools of second quantization,
and the associated diagrammatic methods for systematically treating the relatively
complex algebra of many body theories is what we will want to use in general.

The purpose of this section is to describe the manner in which second quan-
tization carries over from the case of an orthonormal single particle basis to the
nonorthogonal case in the natural representation. We shall concentrate on the
basic concepts, carrying them as far as necessary to show that Wick’s theorem,
the underpinning of diagrammatic methods, goes over unaltered. It is beyond our
present scope to provide any real introduction to the use of Wick’s theorem in eval-
uating many-body matrix elements. Rather, the key is to establish the manner in
which standard textbook treatments (see for example refs. 2,3) of second quanti-
zation and diagrammatic methods can be directly employed in problems involving
nonorthogonal single particle basis sets.

Due to our focus on the many-particle problem, it is not convenient to define
creation and destruction operators with respect to the zero particle vacuum, unlike
some previous work on nonorthogonal basis sets. Therefore, we take the so-called
quasiparticle (QP) vacuum as our reference: a single determinant of n occupied
functions. In the natural representation, the covariant reference ket contains the
occupied set of covariant basis vectors, while the contravariant reference bra con-
tains the set of occupied contravariant functions. Thus for substituted many-electron
kets, particles (levels outside the QP reference which become filled) are covariant
in character while holes (levels within the QP reference which become vacated) are
contravariant. In the dual space of substituted many-electron bras, particles are
contravariant while holes are covariant. All QP creation and destruction operators
defined below obey this simple convention.

We must distinguish operations on virtual (unoccupied) functions (which can
create or destroy particles in the QP vacuum) from operations on occupied functions
(which will create or destroy holes in the QP vacuum). For the particle operators
in the virtual space in the natural representation:

a†a ≡ QP particle creation operator for |φa〉 ≡ QP destruction operator for 〈φa|

ab ≡ QP particle destruction operator for |φb〉 ≡ QP creation operator for
〈
φb
∣
∣

The anticommutation relations for the particle operators follow by any of the usual
textbook derivations as:

{
aa, a†b

}
= δab (47)
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{
a†a, a

†
b

}
=
{
aa, ab

}
= 0 (48)

As we have already seen in several other contexts, all differences relative to the
usual orthogonal basis treatments are contained in the covariant and contravariant
character of the indices. Of course this is only the case in the natural representa-
tion. Otherwise we would find overlaps for the anticommutator in Eq. (47). In
a redundant representation, such as was discussed in the section on Linear De-
pendence, the idempotent matrix of overlaps of covariant and contravariant levels
replaces the Kronecker delta:

{
aa, a†b

}
= ga•b (49)

For functions spanning the occupied space, the identity of creation and destruc-
tion operators reverses, as we create and destroy holes in the QP vacuum:

ai ≡ QP hole creation operator for |φi〉 ≡ QP hole destruction operator for
〈
φi
∣
∣

a†i ≡ QP hole destruction operator for |φi〉 ≡ QP hole creation operator for
〈
φi
∣
∣

The anticommutation relations are:

{
ai, a†j

}
= δij (50)

{
a†i , a

†
j

}
=
{
ai, aj

}
= 0 (51)

Due to strong orthogonality between levels in the occupied and virtual one-
particle spaces, all anticommutators between particle and hole operators are zero,
as in the orthogonal basis. In a redundant representation, gi•j replaces δij , analogous
to how we showed above that Eq. (49) generalizes Eq. (47).

Contraction is central to evaluating matrix elements within second quantiza-
tion. The contraction of operators x 1 and x 2 is defined as the difference between
their product, and their QP normal ordered product. The normal ordered string
is arranged such that all particle-hole creation operators are to the left, and all
destruction operators are to the right, and is multiplied by the parity of the permu-
tation (−1 for an odd number of pairwise swaps; +1 for an even number) necessary
to take the product to normal order. Thus the contraction of a pair of operators
(denoted by the overbar) is:

 

x1x2 = x1x2 −N [x1x2] = 〈Φ| x1x2 |Φ〉 (52)

where the N signifies that the following operator string is in normal order. Based
on the anticommutation relations above, the only nonzero contractions between any
pair of particle-hole creation and destruction operators are:
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aaa†b = δab (53)

 

a†ia
j = δji (54)

To evaluate many-electron operator matrix elements, we apply Wick’s theorem
(e.g. refs. 2,3 for orthogonal basis sets), which expresses a string of creation and
destruction operators of length m, as a terminating sum of partial contractions of
the string in normal order:

x1x2 · · ·xm = N [x1x2 · · · xm] +
∑

single
contractions

N

[

x1



x2· · · xm
]

+

∑

double
contractions

N

[

x1



x2·


· · · xm
]

+ ...+
∑

m/2 fold
contractions

N

[
 

x1x2

 

x3x4 · ·
 

· xm
]

(55)

Since vacuum expectation values of normal-ordered operator strings are zero, the
vacuum expectation value involves only the fully contracted terms. Again, apart
from the newly explicit tensor character of the operators, these results are identical
with the familiar orthogonal basis case. Relative to previous treatments of many-
electron theory involving nonorthogonal single particle expansion spaces, this is the
real value of the present approach.

Using either Wick’s theorem directly, or from inspection of the orthogonal basis
results, we can now obtain general expressions for one and two-electron operators:

Ĥ = Hi
•i +Hp

•qN
[
a†pa

q
]

(56)

Ĝ = 1
2II

ij
••ij + IIpi••qiN

[
a†pa

q
]

+ 1
4II

pq
••rsN

[
a†pa

†
qa
sar
]

(57)

In these expressions, indices i,j,k.. are occupied levels, and p,q,r,s are general levels
where the indices run over both occupied and virtual ranges, and the antisym-
metrized two-electron integrals were defined in Eq. (43). These second quantiza-
tion tools are sufficient to reduce n-electron matrix elements to mixtures of 1 and
2-electron matrix elements, as for the generalized Slater’s rules given in the previous
section, or the correlation methods discussed in the sections below.

4 Nonorthogonal Functions for Local Electron Correlation

The development of what may be called ”fast methods” for evaluating electron
correlation is a problem of both fundamental and practical importance, because of
these unphysical increases in computational complexity with molecular size which
afflict ”exact” implementations of electron correlation methods. The purpose of

610



this part of the chapter is to discuss our recent progress towards developing a new
family of local correlation models that are based on atomic truncations21,22,23. Our
emphasis here is on the formulation of the theory, as an interesting and topical
application of the general tensor approach to the many-body problem developed
in the first part of this chapter. We restrict our discussion entirely to second or-
der Møller-Plesset (MP2) theory24, the simplest useful wavefunction-based electron
correlation method. Local models that perform effectively at the MP2 level are ex-
pected to be transferable to other theories of electron correlation in terms of single
and double substitutions, such as coupled cluster theory with single and double
substitutions (CCSD). Our local MP2 models are also an interesting starting point
for treating triple substitutions (as needed for example in MP4 and CCSD(T)) as
we briefly describe in Section 5.1.

The MP2 method was originally proposed in 193424. Revived in the mid-1970’s,
it remains highly popular today, because it offers systematic improvement in opti-
mized geometries and other molecular properties relative to Hartree-Fock theory25.
Indeed, in a recent comparative study of small closed shell molecules26 , MP2 out-
performed the much more expensive CCSD method for such properties! Relative
to state-of-the-art Kohn-Sham density functional theory (DFT) methods27 , which
are the most economical methods to account for electron correlation effects, MP2
has the advantage of properly incorporating long-range dispersion forces. While its
computational cost scales as the 5th power of molecular size, quite efficient semidi-
rect methods28 permit routine applications to medium-sized molecules.

We do not attempt to comprehensively review other efforts at developing fast
methods for electron correlation. However, it is important to note that, to date,
the most successful approach of this type is the method pioneered by Saebø and
Pulay (SP)10,29,30. The SP model has now been adopted and extended by sev-
eral groups, both at the MP2 level31,32,33,34 and also at the level of self-consistent
treatment of single and double substitutions35,36,37. We shall later compare the
SP method against our new methods. Two important differences are that the SP
method does not yield continuous potential energy surfaces, and sometimes fails to
treat symmetry equivalent atoms on an equal footing, as in benzene for example.
However, to this stage the SP method has advanced much further as far as efficient
implementation is concerned. An excellent discussion of the current state of the art
is given in the chapter by Knowles, Schütz and Werner in this volume.

As a preliminary, we discuss how local correlation impacts theoretical and nu-
merical modeling in quantum chemistry. Generally, it is useful to distinguish two
main classes of errors in an electronic structure calculation:

(1) Intrinsic model errors, due to employing incomplete one-particle basis sets, and
incomplete descriptions of the many particle expansion spaces associated with
the one particle basis. Such errors may be large, but by virtue of understanding
the chemistry of the model and systematically studying its behavior over a
range of applications, one can understand the different conditions under which
it may produce reliable versus unreliable results. The theoretical model should
be constructed in as clean a fashion as possible, so that successes and failures
of the model can be cleanly understood.

(2) Numerical error, due to not exactly implementing the model. There is a strong
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argument for attempting to keep this source of error as small as possible. With-
out doing so, one cannot assess the intrinsic model errors cleanly. Furthermore,
the reproducibility of calculations is impeded if there is significant numerical
noise. However, in the context of fast methods, the use of looser thresholds
and cutoffs leads to significant speedups. Therefore it is advisable to control
precision carefully because it is strongly correlated with computational cost.

Ideally, the development of fast methods for treating electron correlation should not
impact either model errors or numerical errors. Unfortunately this is not possible at
present, as may be appreciated from the following rough argument. Spatial locality
is what permits reformulations of electronic structure methods that yield the same
answer as traditional methods, but faster. The one-particle density matrix decays
exponentially with a rate that relates to the HOMO-LUMO gap in periodic systems.
From model studies, as well as formal considerations17 , the decay rates are fairly
well understood. When length scales longer than this characteristic decay length
are examined, sparsity will emerge in both the one-particle density matrix and also
pair correlation amplitudes expressed in terms of localized functions. Very roughly,
such a length scale9 is about 5 to 10 atoms in a line, for a good insulator such as
alkanes. Hence sparsity emerges beyond this number of atoms in 1-d, beyond this
number of atoms squared in 2-d, and this number of atoms cubed in 3-d. Thus for
three-dimensional systems, locality only begins to emerge for systems of between
hundreds and thousands of atoms.

If we wish to accelerate calculations on systems below this size regime, we must
therefore introduce additional errors into the calculation, either as numerical noise
through looser tolerances, or by modifying the theoretical model, or perhaps both.
Our approach to local electron correlation is based on modifying the theoretical
models describing correlation with an additional well-defined local approximation.
We do not attempt to accelerate the calculations by introducing more numerical
error because of the difficulties of controlling the error as a function of molecule
size, and the difficulty of achieving reproducible significant results.

From this perspective, local correlation becomes an integral part of specifying
the electron correlation treatment. This means that the considerations necessary
for a correlation treatment to qualify as a well-defined theoretical model chemistry25

apply equally to local correlation modeling. The approximations should be:

a) Size-consistent : meaning that the energy of a supersystem of two noninter-
acting molecules should be the sum of the energy obtained from individual
calculations on each molecule.

b) Uniquely defined: Require no input beyond nuclei, electrons, and an atomic or-
bital basis set. In other words, the model should be uniquely specified without
customization for each molecule.

c) Yield continuous potential energy surfaces: The model approximations should
be smooth, and not yield energies that exhibit jumps as nuclear geometries are
varied.

While these criteria are simple and indeed almost trite to state, they are quite
easy to violate, and indeed many procedures for performing efficient calculations
of electron correlation effects do not meet the 2nd and 3rd criteria. For example,
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in the SP local correlation method, the choice of which substitutions to retain
depends on the nuclear geometry38,39. Therefore when consistently applied the
resulting potential energy surfaces are not smooth, unless the substitutions to keep
are defined at a single arbitrary geometry. Similarly the configuration selection
involved in current implementations of Nakatsuji’s SAC-CI method yields results
that depend on geometry, and this either causes potential energy surfaces to be
non-smooth or the results must depend on the reference geometry chosen40. In
the SP method, other difficulties arise in cases where the molecular orbitals do not
localize cleanly41, leading to difficulties in the consistent treatment of molecules
like benzene, and to problems in defining the substitutions to retain when treating
transition structures. In the new models described later in this part of this section
(Section 4.3 and onwards), the requirements of a theoretical model chemistry will
be strictly satisfied, by discarding many degrees of freedom according to an atomic
criterion.

4.1 Second Order Mller-Plesset Theory

First, let us begin by discussing the equations of our chosen correlation method,
MP2 theory, in general terms. A key result from earlier in this chapter is that use
of the natural representation leads to equations for electron correlation methods
that are isomorphic to traditional orthogonal basis derivations, but substantially
more general. This is what we shall illustrate in this section for MP2 theory.
The usual formulation of MP2 theory involves the assumption of the canonical
molecular orbitals (so that the zero order Hamiltonian is diagonal in the many-
electron basis). However, more general ”noncanonical” forms of MP2 theory which
are invariant to unitary transformations within the occupied and virtual spaces
were introduced in the context of gradient theory, and open shell problems42. With
Pulay and Saebø’s local MP2 method10, a yet more general form was presented, in
which nonorthogonal functions were employed to span the virtual function space.
Our tensor formalism7 yields the most general MP2 equations possible, as they
are invariant to nonunitary transformations within the occupied and virtual spaces
individually.

The basis of Møller-Plesset perturbation theory is partitioning the full Hamilto-
nian into a zero order (mean field) part, and a first order component which describes
the fluctuations associated with electron correlation effects. This may be written
in second quantized form as:

Ĥ = F̂ (0) + λV̂ (1) (58)

F̂ (0) = F i•i + F a•bN
[
a†aa

b
]
− F i•jN

[
aja†i

]
(59)

V̂ (1) = − 1
2II

ij
••ij + F i•aN

[
a†ia

a
]

+ F a•iN
[
a†aa

i
]

+ 1
4II

pq
••rsN

[
a†pa

†
qa
sar
]

(60)

F is the Fock operator corresponding to the reference single determinant wave-
function, and, as usual indices i,j,k... are occupied, and a,b,c... are virtual. The
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anti-symmetrized two electron integrals were previously defined in Eq. (43). By
placing occupied-virtual elements of the Fock operator into the fluctuation poten-
tial (Equation (60)), the single reference is an eigenket of Equation (59) even when
these elements are nonzero. The matrix elements and creation and destruction
operators entering Equations (59) and (60) have tensorial significance.

Performing perturbation expansions of the full wavefunction together with the
Hamiltonian leads to conditions for the first order wavefunction. These first order
equations for the perturbed wavefunction may be resolved by projection with singly
and doubly substituted bra determinants (in the dual basis of course) to yield
equations for the first order single and double substitution amplitudes (contained

within the corresponding substitution operators, T̂
(1)
1 and T̂

(1)
2 ):

〈

Φa•i

∣
∣
∣F̂ (0)

∣
∣
∣T̂

(1)
1 Φ

〉

+
〈

Φa•i

∣
∣
∣V̂ (1)

∣
∣
∣Φ
〉

= 0 (61)

〈

Φab••ij

∣
∣
∣F̂ (0)

∣
∣
∣T̂

(1)
2 Φ

〉

+
〈

Φab••ij

∣
∣
∣V̂ (1)

∣
∣
∣Φ
〉

= 0 (62)

The substituted bras represent the replacement of contravariant occupied functions
by contravariant virtual functions.

These equations may be written out in explicit spin-orbital notation quite easily,
exploiting the direct analogy between the natural representation and orthogonal
basis techniques.

F a•bt
b
•i − F j•ita•j + F a•i = 0 (63)

F b•ct
ac
••ij + F a•ct

cb
••ij − F k•jtab••ik − F k•itab••kj + IIab••ij (64)

Here t are the unknown first order amplitudes, that are now defined in terms of
two electron integrals, and matrix elements of the Fock operator.

Finally, the second order expansion of the energy is obtained from the second
order expansion of the eigenvalue equation followed by projection with the bra
determinant:

E(2) =
〈

Φ
∣
∣
∣V̂ (1)

∣
∣
∣

(

T̂
(1)
1 + T̂

(1)
2

)

Φ
〉

= F i•at
a
•i + 1

4II
ij
••abt

ab
••ij (65)

Equations (63), (64), and (65) embody all the invariances inherent in MP2 theory:
they are invariant to general nonunitary linear transformations within the occupied
and virtual subspaces respectively. These equations, despite their perturbational
nature, must be solved iteratively because of the off-diagonal Fock terms in Equa-
tions (63) and (64). They can be specialized to the textbook1 canonical case by:

(1) assuming an orthogonal basis so that the covariant-contravariant distinction
vanishes),

(2) satisfying the Brillouin theorem (such that F a•i = 0) so that the first order
singles are zero, and,
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(3) diagonalizing the occupied-occupied and virtual-virtual blocks of the Fock ma-
trix (so that the doubles equations uncouple).

Via the use of metric matrices, it is straightforward to alter the tensor character of
the integrals and amplitudes that enter the above equations. As mentioned earlier,
the natural representation is particularly convenient for defining the nonorthogonal
equations of electron correlation methods, but it is not necessarily the form that we
will subsequently use. Rather, since all one and two electron matrix elements are
made directly in the given covariant basis, we prefer to use the covariant integral
representation, which treats all amplitudes as contravariant.

Let us recast the MP2 equations given above into the covariant integral repre-
sentation. Acting with metric matrices to convert all indices in the matrix elements
to covariant and all indices in the amplitudes to contravariant leads to the following
alternative form:

E(2) = Fiat
ai + 1

4IIijabt
abij (66)

(
Fabgij − gabFij

)
tbj + Fai = 0 (67)

[(
Facgik − gacFik

)
gbdgjl + gacgik

(
Fbdgjl − gbdFjl

)]
tckdl + IIaibj (68)

Note that in writing Equations (66) and (68) we have chosen to reorder the in-
dexes in the integral and amplitude tensors to group occupied and virtual indexes
together. This is in preparation for making local approximations based on keeping
only occupied and virtual functions that share a common atom: the atomic single
substitution basis that is discussed in more detail later on.

4.2 The Nonorthogonal Orbitals

As discussed in the introduction to this section, we have decided to focus on atom-
centered functions, so that our new models for local correlation can be based on
atom-centered selection of the significant pair correlation amplitudes. The use of
atom-based functions is very common within single electron theories of electronic
structure such as Hartree-Fock theory and density functional theory. In the con-
text of the tensor-based electron correlation formalism, we require sets of functions
spanning the occupied and virtual subspaces.

The simplest approach is to use projected atomic orbitals: projected into the
occupied space and the virtual space respectively:

|φi〉 = P̂ |φµ〉 δµi = |φµ〉Pµ•νδνi (69)

∣
∣φa
〉

= Q̂
∣
∣φµ
〉
δµa =

(
Î − P̂

)∣
∣φµ
〉
δµa =

∣
∣φµ
〉(
δµa − Pµ•νδνa

)
(70)

These functions are assigned to atoms by the atom label of the parent atomic
orbital, thus partitioning the redundant functions amongst the atoms according to
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the number of AO’s on each atom in a manner that is well-defined for any atomic
arrangement. The resulting functions are exponentially localized for insulators, as
they have the decay properties of the one-particle density matrix P itself. The
use of functions of this type is satisfactory for the virtual space and was pioneered
successfully in the earlier local correlation models of Pulay and Saebø. However
projected atomic orbitals are highly redundant (and hence extremely inefficient)
for the occupied space. Increasing the number of basis functions per atom would
increase the number of functions spanning the occupied space, even though the
dimension (rank) of the occupied space itself is unaltered!

The simplest atom-centered basis that is capable of spanning the occupied space
is a minimal basis of core and valence atomic orbitals on each atom. Such a basis
is necessarily redundant because it also contains sufficient flexibility to describe the
empty valence antibonding orbitals necessary to correctly account for nondynam-
ical electron correlation effects such as bond-breaking. Atom-optimized minimal
basis sets (e.g. of the STO-nG type) are of course notoriously poor in practical
calculations. Yet it is still quite possible to define a localized minimal basis that
spans the occupied space at the end of a large basis set calculation. We term such
functions extracted polarized atomic orbitals (EPAO’s). It is even possible to ex-
plicitly perform an SCF calculation in terms of a molecule-optimized minimal basis
of polarized atomic orbitals (PAO’s). These two approaches each have strengths
and weaknesses, and we discuss them in turn below.

First we summarize the situation. The number of functions spanning the oc-
cupied subspace will be the minimal basis set dimension, M, which is greater than
the number of occupied orbitals, O, by a factor of up to about 2. The virtual space
is spanned by the set of projected atomic orbitals whose number is the atomic
orbital basis set size N, which is fractionally greater than the number of virtuals
V =N -O. The number of double substitutions in such a redundant representation
will be typically 3 to 5 times larger than the usual total. This will be more than
compensated by reducing the number of retained substitutions by a factor of the
number of atoms, A, in the local triatomics in molecules model, or a factor of A2

in the diatomics in molecules model.

4.2.1 Extracted Polarized Atomic Orbitals

The extracted polarized atomic orbitals (EPAO’s)43 of a molecule are a mini-
mal basis set that is derived subsequent to an extended basis electronic struc-
ture calculation. Thus the EPAO’s are themselves linear combinations of AO’s:
|α〉 =

∑

µBαµ |µ〉. Based on numbers of core and valence atomic orbitals, the num-
ber of EPAO’s for any given atom is 1 for H and He, 5 for first row elements, 9 for
second row elements, etc. The set of EPAO’s on each atom will be invariant to ro-
tations amongst individual EPAO’s on that atom. For simplicity, we will constrain
the full set of EPAO’s to form an orthonormal set, 〈α | β〉 = δαβ .

EPAO’s will be determined analogously to localized occupied orbitals in that an
EPAO delocalization functional, L, is minimized with respect to variations of the
atomic subspaces. Furthermore, these variations are subject to the constraint that
the full space of EPAO’s completely contains the one-particle density projector,
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ρ̂ =
∑

i

|i〉 〈i|, which can be abbreviated by the expression ρ̂ ⊂ τ̂ , where the full

space of EPAO’s, τ̂ , is the union of all the atomic subspaces in a system, τ̂ =
∑

A

τ̂A.

Many definitions of the delocalization functional are possible, and a number
have been explored. The choice we shall employ here is to minimize the second
moment of the EPAO’s, with the imposed condition that their centers coincide
with the atomic centers:

L
[
τ̂A, τ̂B , ...

]
=
Min
ρ̂ ⊂ τ̂

{
∑

A

kA
∑

α,β∈A

〈
α
∣
∣
(
r̂ − zA

)2∣
∣β
〉
Dαβ

}

(71)

Dαβ = 〈α| ρ̂ |β〉 is the one-particle density matrix evaluated in the EPAO basis.
This occupancy weighting reduces the sensitivity of the results to the presence of
empty or nearly empty orbitals in the minimum basis. The virtual part of the basis
is still fully determined because the occupancy weighting is not a full projection
into the occupied space. Equation (14) contains an atomic scaling factor, kA, which
we have included to make the definition of the localization criterion as general as
possible.

A reasonable choice of the scaling factor kA, will be to roughly normalize the
radii of valence EPAO’s of elements from different rows of the periodic table. We
use a very simple scaling factor that achieves this objective, which is the inverse of
the principal quantum number, n, of the atom. Thus, for elements H and He, the
factor is 1; for elements Li through Ne, the factor is 1/2; for elements Na through
Ar, the factor is 1/3, and so on. This choice very roughly mirrors trends in the sizes
of the noble gas atoms, and has the merit of involving no adjustable parameters.
Finally, the localized atom-centered occupied orbitals are obtained by projection
of the EPAO’s into the occupied space as |iA〉 = P̂ |αA〉. The projected functions
remain atom-centered in general, but are linearly dependent as their number M is
greater than the dimension of the occupied space, O.

4.2.2 Polarized Atomic Orbitals

Instead of extracting the minimal basis after the conclusion of an SCF calculation
in an extended basis, can one directly perform the SCF calculation in terms of
a molecule-optimized minimal basis set of polarized atomic orbitals? We have
shown44 that such an approach is feasible as long as a constraint is imposed on
the form of the PAO’s: namely that the PAO’s are linear combinations only of
the atomic orbitals on the corresponding atom. So, given a (large) secondary basis
{|φµ〉}, the (small) basis of PAO’s {|φα〉} are defined via an atom-blocked (let PAO
index α belong to atom A) rectangular transformation, B:

|φα〉 =
∑

µ∈A
|φµ〉Bµα (72)

The transformation coefficients are determined as part of the variational Hartree-
Fock calculation, in which the density matrix or molecular orbitals are defined in
terms of PAO’s.
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The PAO’s appear very promising as a method for performing Hartree-Fock
(HF) (or other self-consistent field methods such as density functional theory) cal-
culations on large molecules. The computational requirements are reduced signifi-
cantly because a PAO calculation does not require full matrices to be evaluated in
the large atomic orbital basis. Additionally a PAO calculation by definition pro-
vides a minimal basis set of atom-centered functions that span the occupied space
(after projection with the density operator).

It is important to emphasize that as a result of the atom-blocked constraint, the
PAO-HF energy is necessarily slightly higher than the HF energy directly computed
in the secondary atomic orbital basis. We have reported two studies of the magni-
tudes of these differences both for absolute and relative energies44,45. In terms of
absolute energies, the error introduced by the PAO model is generally smaller than
normal basis set incompleteness effects. Relative energies are quite well reproduced,
such that the PAO model dramatically outperforms any conventional minimal basis
set. Errors in absolute and relative energies can be reduced by employing larger
secondary basis sets in the PAO calculation. Some preliminary studies of the con-
vergence of results with size and composition of the secondary basis have been
completed45.

The appeal of PAO’s for local MP2 calculations is that the atom-blocked form
of the transformation to PAO’s can potentially accelerate the first two steps of
the atomic orbital to molecular orbital two-electron integral transformation. These
steps are often rate-determining, particularly for large basis sets. We do not report
any electron correlation calculations using PAO’s in this chapter, but this subject
is under active study in our laboratory46.

4.3 Atoms in Molecules Models of Local Correlation

We are now at the stage where local models of electron correlation can be formu-
lated and tested. The developments described in the previous sections constitute
a formally exact re-expression of standard theories of electron correlation, using
MP2 theory as the working example. In the traditional formulation, the nonredun-
dant canonical molecular orbitals are employed to express many-electron theories.
The canonical MO’s are in general fully delocalized throughout the system. In
our re-expression of electron correlation theories, redundant sets of atom-centered
functions are used to express the working equations. This takes advantage of the
fact that correlation theories are fundamentally independent of the choice of the
functions used to span a given occupied and virtual space. As described above, the
occupied space is spanned by a minimal basis set of distorted (polarized) atomic
orbitals that are projected into the occupied space. This is the smallest set of atom-
centered functions capable of performing this role. The virtual space is spanned by
the full atomic orbital basis projected into the virtual space. As a result of using
atom-centered functions, we can truncate the overcomplete set of double substitu-
tions based on an atomic criterion, so as to satisfy the requirements of a theoretical
model chemistry, as discussed at the start of Section 4.

At a conceptual level, we can distinguish four possible levels of truncation, based
on increasingly severe atomic truncations:
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a) Tetra-atomics in molecules. If no truncation (apart from numerical cutoffs)
is employed, substitutions will generally occur from occupied atomic-like or-
bitals centered on two atoms to virtual atomic-like orbitals centered on two
other atoms. As discussed above, based on sparsity considerations, we ex-
pect cross-overs relative to conventional MP2 will occur only for quite large
systems. Again, this is the motivation for considering stronger, ansatz-based
truncations.

b) Triatomics in molecules (TRIM) is the level of modeling where only double
substitutions with one occupied and one virtual orbital on a common atom
are retained. This immediately reduces the number of retained double sub-
stitutions to no more than A3 in the number of atoms, A. Substitutions that
are doubly ionic (and often identified with basis set superposition error) are
eliminated, while singly ionic and covalent substitutions are retained.

c) Diatomics in molecules (DIM) is the case where one occupied-virtual substi-
tution is restricted to be on a common atom, while the other occupied-virtual
substitution is restricted to be on another atom. This eliminates all ionic sub-
stitutions, and so may alternatively be called the covalent ansatz21,22. The
correct long-range dispersion force can still be recovered at this level of trun-
cation.

d) Atoms in molecules is the case where the only retained double substitutions
are those for which all occupieds and virtuals are on a common atom. Long-
range dispersion is no longer recovered, and therefore we shall not consider
this model further in the present context. However, it is of interest for treating
nondynamical correlation associated with bond-breaking, as we discuss briefly
in Section 5.2.

For practical purposes, there are then three levels of local correlation model treat-
ment that may be distinguished in the context of MP2 theory: exact, triatomics,
and diatomics. In the following sections, we shall develop the explicit expressions
necessary to evaluate the energy associated with these models of local electron
correlation.

4.4 Atomic Single Substitution Basis

Any set of orbital substitutions describing correlated fluctuations of electrons from
a mean field single determinant starting point can be represented in terms of direct
products of single substitutions. For example the set of double substitutions is
the direct product of the space of single substitutions with itself, the set of triple
substitutions is a 3-way direct product of the set of single substitutions, and so
forth.

We have expressed the space of occupied functions in terms of a minimal basis of
atom-centered functions, and the space of virtual (unoccupied) functions is spanned
by a redundant set of projected atomic orbitals. This means that the set of single
substitutions may now be divided into two categories:

(1) Atomic Single Substitutions (ASIS): These are single replacements where both
the occupied function and the virtual function belong to the same atom.
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(2) Interatomic Single Substitutions : Single replacements where the occupied func-
tion and the virtual function belong to different atoms.

The basis of our local truncations will be to retain only the ASIS basis for some
(or all) of the single substitutions that enter into electron correlation theories. This
approximation will express the locality inherent in electron correlation: namely
excitations that involve transporting electrons between spatially different regions of
a molecule are energetically insignificant. Retention of only the ASIS substitutions
is actually not quite as drastic an approximation as it first appears. Since the
functions spanning both the occupied and the virtual spaces are both nonorthogonal
and linearly dependent, the ASIS space and the space spanned by the interatomic
single substitutions are not disjoint. In fact the ASIS space includes a significant
fraction of the excitations on neighboring (bonded) atoms.

The dimension of the ASIS set grows linearly with the number of atoms, with
the coefficient being the average number of occupied-virtual product functions on
an atom. By contrast, of course, the full set of single substutions grows quadrati-
cally with the number of atoms. Therefore we are going to reduce the number of
amplitudes by one power of system size for each pair of occupied-virtual indices
for which we make an ASIS approximation. Specifically, we can now symbolically
write the form of both the DIM and TRIM models.

The full MP2 model involves the direct product of all single substitutions with
themselves:

{aibj}full = {a} ⊗ {i} ⊗ {b} ⊗ {j} (73)

The DIM model applies the atomic single substitution approximation to the two
sets of single substitutions whose direct product defines the double substitutions.
Denoting an ASIS substitution as (ai) where the use of the parenthesis reminds us
that both occupied and virtual functions are centered on common atoms, we may
write the space of DIM substitutions as:

{aibj}DIM = {(ai)} ⊗ {(bj)} . (74)

Clearly electrons on pairs of atoms are correlated in this way, and, as discussed
below, this is sufficient to correctly describe long-range dispersion interactions.

The TRIM model corresponds to applying the atomic single substitution ap-
proximation only to one of the two single substitutions whose direct product com-
prises the double substitutions of MP2 theory. To make such a model consistent
the correlation space should be the union of the two possible ways of doing this.
The TRIM set of double substitutions may then be written as follows:

{aibj}TRIM = {(ai)} ⊗ {b} ⊗ {j} ⊕ {a} ⊗ {i} ⊗ {(bj)} . (75)

The TRIM model expands the DIM substitutions to explicitly include single elec-
tron transfers between atoms that can be separated. Full double substitutions,
TRIM doubles and DIM doubles form a well-defined hierarchy of models for local
correlation.
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Roughly how do we expect the DIM and TRIM models to compare to the
existing Saebø-Pulay (SP) model for local correlation? Or, alternatively, what
does that model look like in terms of an expression like Equation (74) or (75)? If
it were implemented using atomic truncation criteria, the set of retained double
substitutions in the SP method could be expressed as follows:

{aibj}SP = {(ai)} ⊗ {(bj)} ⊕ {i} ⊗ {(abj)} ⊕ {(iab)} ⊗ {j} . (76)

In Equation (76), quantities in parentheses are centered on a common atom. Thus
the SP model can be expected to lie intermediate between our DIM and TRIM
models. The first term in Equation (76) is the direct product of ASIS terms that
are responsible for long-range correlation, and are included in the DIM model. The
2nd and 3rd terms are single electron transfers between pairs of atoms, in which
charge is consolidated from one electron on the atom of orbitals i and j to two
electrons on the atom of either orbital i or orbital j. These single electron transfers
are a subset of those included in the TRIM model. TRIM additionally includes
substitutions in which charge is separated from one atom to two atoms, as well as
singly ionic transfers that couple three atoms together rather than two.

4.5 Orthogonalizing and Canonicalizing the ASIS Basis

Recall for a moment how the molecular orbitals are treated in conventional elec-
tronic structure theory. Normally they are first orthogonalized, which eliminates
all overlap matrices from the equations, and then they are canonicalized, meaning
that they are transformed to a basis which makes the Fock operator diagonal. As a
result, the MP2 equations uncouple (for example, refer back to the steps listed after
Equations (65), and the MP2 correlation energy can be obtained without iterations.

It is possible (and indeed, probably necessary) to do exactly the same things
with the ASIS basis. We can orthogonalize, such that the overlap matrix (or metric)
becomes diagonal. The ASIS overlap matrix is merely the direct product of the
occupied and virtual overlaps. Denoting indexes in the ASIS basis as K,L... (they
are equivalent to atomic (ai), (bj )... pairs), we can write:

GKL ≡ G(ai)(bj) = gabgij (77)

This overlap matrix can be explicitly diagonalized (and thus inverted by singular
value decomposition) quite readily for systems of up to 150 heavy atoms or so
(the computational effort scales with the cube of molecule size). This yields the
orthogonalizing transformation G−1/2. The orthogonalized ASIS basis will be called
the OASIS basis.

Why the need for orthogonalizing the ASIS basis via singular value decomposi-
tion? The reason that explicit orthogonalization is probably necessary is that the
condition number of the ASIS metric, Equation (77), is tremendously large, as a
result of making the atomic truncation, and using nonorthogonal and linearly de-
pendent functions. This means that while the matrix described by Equation (77)
becomes sparse as the system size grows large, iterative methods to invert the met-
ric will perform tremendously poorly. If we had not made the ASIS approximation
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this would not necessarily be the case, since then we could invert separately the
occupied and virtual metrics entering Equation (77).

The relevant energy matrix in the ASIS basis is evident in Equations (68), and
is essentially a matrix of energy differences, which we shall denote as D:

DKL ≡ D(ai)(bj) =
(
Facgik − gacFik

)
(78)

Canonicalizing this matrix requires two steps. First, D must be transformed into
the OASIS basis (which we shall denote with overbars):

DK̄L̄ =
∑

K,L

G
−1/2
KK̄

DKLG
−1/2
LL̄

(79)

The second step is to diagonalize D in this orthogonalized basis:

DK̄L̄ =
∑

P̄

UK̄P̄EP̄UL̄P̄ (80)

The product of these two transformations is the matrix T that transforms from the
ASIS basis to the canonicalized OASIS (or COASIS) basis:

TKP̄ =
∑

K,K̄

G
−1/2
KK̄

UK̄P̄ (81)

4.6 Energy Expression

The MP2 spin-orbital expression for the energy that we shall use is:

EMP2 = 1
2Iaibjt

aibj (82)

where Iaibj ≡ (ai |bj ) = 〈ab |ij 〉 are unsymmetrized two-electron integrals. In
Mulliken notation, such integrals correspond simply to the Coulomb interaction
between the charge distribution corresponding to the product of virtual a and
occupied i, and the charge distribution due to the product of virtual b and occupied
j. The first order amplitudes are denoted as taibj . Relative to our expression in
Equations (65) and (66), we are:

(a) Using unsymmetrized rather than symmetrized integrals. This leads to the
factor of 1/2 instead of 1/4, and of course makes no difference in the absence
of any local truncation. In the presence of local truncation, as discussed further
below, Equation (82) is a preferable starting point.

(b) Omitting the singles substitution contribution to the energy. This is because, if
present, we shall treat it exactly, and we wish to focus attention on the critical
doubles contribution.

While Equation (82) is equivalent to the previous expressions in the absence of
local truncations, it is important to emphasize that the result of making local
truncations will be different depending on which starting point is used. This should
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not be disturbing upon reflection: it is simply a consequence of the fact that local
modeling breaks many of the invariances that are present in the original nonlocal
equations. Equation (82) is a preferable starting point because it will yield 100%
of the long-range correlation energy in the context of the DIM model. By contrast,
using Equation (66) will yield only 50% of the long-range correlation energy under
DIM truncation!

4.7 Diatomics in Molecules (DIM)

With the definitions made already it is now straightforward to write explicit ex-
pressions for the diatomics in molecules (DIM) local correlation model for the MP2
energy. Instead of retaining all significant doubles amplitudes, we shall instead
retain only the direct product of ASIS functions, as specified by Equation (74).
Therefore Equation (68) for the doubles amplitudes may be rewritten as follows
in the ASIS basis, while Equation (82) for the MP2 energy is given immediately
below:

[
DKMGLN +GKMDLN

]
tMN + IIKL (83)

EDIM−MP2 = 1
2IKLt

KL (84)

We have introduced the ASIS metric matrix G, and energy difference matrix D
defined previously in Equations (77) and (78) respectively.

As was implicit in the previous section describing canonicalizing the ASIS basis,
iterative solution of Equations (83) is a very challenging problem due to the very
large condition number of the ASIS overlap matrix, G. Hence, at present the only
viable method for obtaining the DIM energy is to do it non-iteratively, by direct
evaluation in the COASIS basis. The unsymmetrized and antisymmetrized integrals
must be transformed to the COASIS basis, using the transformation defined by
Equation (81), and the energy may then be obtained explicitly as:

EDIM−MP2 = −1

2

∑

P̄ Q̄

IP̄ Q̄IIP̄ Q̄
EP̄EQ̄

(85)

Equation (85) for the DIM-MP2 energy bears considerable similarity to the normal
expression for the canonical MP2 energy, but as a result of performing manipula-
tions in the atom-centered ASIS basis, we find:

(1) There are a quadratic number of energy contributions instead of the usual
quartic number. We shall use the notation that capital letters denote extensive
quantities such the AO basis size N, or the minimal basis size, M, while lower
case letters denote intensive quantities, such as the number of minimal basis
functions per atom, m, or the number of AO’s per atom, n. The number of
substitutions has been reduced from the usual O2V 2 to m2N 2 this way, which
is a saving proportional to the number of atoms squared.
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(2) The rate-determining computation steps will be cubic rather than 5th order
in the size of the molecule. Such steps will correspond to the COASIS canon-
icalization, and transformations of the unsymmetrized and antisymmetrized
two-electron integrals into the COASIS basis, as required for Equation (85).
These steps involve computational effort proportional to m3N 3.

4.8 Triatomics in Molecules (TRIM)

The TRIM substitutions were described symbolically in Equation (75): this local
correlation model applies the ASIS approximation to only one of the two pairs of
single substitution indices that comprise the double substitutions. Unfortunately,
the energy associated with the TRIM model cannot easily be obtained without
iterations. The TRIM ansatz is not a direct product, and therefore the coefficient
matrix coupling the retained substitutions in for example Equation (68) does not
decompose into direct products of smaller matrices. However since the model still
involves application of the ASIS approximation, we expect the condition number
of the coefficient matrix to be extremely large (even after discarding any null space
of zero eigenvalues). Therefore we are not optimistic about being able to efficiently
converge such equations by iterative methods. The focus of our efforts has been
to develop a viable noniterative alternative. The result of these investigations is
described below.

4.8.1 Half-TRIM Energy

If we adopt a triatomics in molecules model that included only half of the sub-
stitutions that are incorporated in Equation (75), the resulting model has direct
product structure:

{aibj}half−TRIM = {(ai)} ⊗ {b} ⊗ {j} (86)

As a result, it can be solved noniteratively by the same COASIS recanonicalization
we developed earlier, and then applied above to develop an explicit expression for
the DIM-MP2 energy.

The half-TRIM energy and amplitude equations may be written out in general
form as restrictions of Equations (66) and (68), using the ASIS overlap and energy
difference matrices G and D. The resulting equations may also be compared and
contrasted with the corresponding DIM equations, (83) and (84):

[
DKLgbcgjk +GKL

(
Fbcgjk − gbcFjk

)]
tLck + IIKbj (87)

Ehalf−TRIM−MP2 = 1
2IKbjt

Kbj (88)

The noniterative solution to the half-TRIM MP2 problem employs the COASIS
basis for the atomic single substitution indexes, thus bringing G and D to diagonal
form. The remaining occupied and virtual index can be represented in the con-
ventional canonical orthogonal basis (denoted also by overbars), so that the energy
may be directly evaluated from the following expression:
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Ehalf−TRIM−MP2 = −1

2

∑

P̄ b̄j̄

IP̄ b̄j̄IIP̄ b̄j̄
EP̄ + ǫb̄ − ǫj̄

(89)

The computational requirements of Equation (89) are roughly as follows:

(1) The number of substitutions is reduced from growing as the 4th power of
molecule size (O2V 2) to the 3rd power of molecule size: specifically mNOV.
This saves a factor proportional to the number of atoms.

(2) The significant computational steps scale either with the 3rd and 4th powers
of the size of the molecule. Obtaining the transformation to the COASIS basis
is m3N 3, as for the DIM model, but the transformation of the two-electron
integrals now involves a step proportional to the 4th power of molecule size,
in addition to steps scaling with the 3rd power of molecule size. A factor at
least proportional to the number of atoms can be saved relative to conventional
transformations.

It is also worth noting that a compromise for the evaluation of the half-TRIM energy
is possible, in which the ASIS indices are canonicalized (because the problem of large
condition numbers has its origin in the ASIS approximation), but the remaining
occupied and virtual indices are treated in a local basis. This may be the method
of choice for the largest calculations using this method, because sparsity can then
be exploited in the treatment of the nonlocal substitutions. Asymptotically the
computational effort in this formulation will scale as the cube of molecule size,
corresponding to the COASIS steps.

4.8.2 TRIM Energy Additivity Expression

The half-TRIM model will not be very close to the full TRIM model. We can
predict that it will give an energy that is approximately half way between the DIM
and TRIM models, because it includes only half of the additional substitutions
in TRIM, while nevertheless using an unmodified energy expression. The energy
expression, Equation (89), includes a factor of 1/2 based on double-counting all
contributions, as is done in the DIM model. Yet the half-TRIM model includes
only one copy of the new substitutions, and therefore their contribution to the
energy will be undercounted by a factor of two. Recovering only about 50% of the
TRIM-DIM correction is an unsatisfactory approximation, and we must do better.

The most obvious solution is to consider approximating the TRIM model by
modifying the energy expression to correct such undercounting. We cannot simply
double the half-TRIM energy, because then we over-count the DIM substitutions
by a factor of two. However this can be corrected by subtracting the DIM energy
itself, under the assumption that the omitted substitutions do not affect the calcu-
lated values. This result is the TRIM model we shall implement in practice. The
associated energy is simply:

ETRIM−MP2 = 2Ehalf−TRIM−MP2 − EDIM−MP2 (90)
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While Equation (90) is probably the simplest noniterative way to approximate the
TRIM model, there are also other possibilities. However, based on numerical tests,
we have not yet found any alternative that is superior to Equation (90).

4.9 Numerical Tests of the DIM And TRIM Models

Our primary purpose in this part of the chapter has been to discuss the devel-
opment of the theory underlying the atoms in molecules models of local electron
correlation. It is nonetheless still interesting to present a small selection of results
that establishes the comparative performance of the local DIM and TRIM models
relative to untruncated (”full”) MP2 theory. The local MP2 methods have been
implemented in a development version of the Q-Chem program suite47 , which was
used for all calculations. The results reported here are taken from our recent report
on the TRIM model23. All calculations employ EPAO’s to span the occupied space.

Details of the efficient implementation of the theory described above are re-
ported in a recent thesis48, and a paper in preparation. Here we simply summarize
the capabilities of our program. The computational advantage associated with these
local MP2 methods varies depending upon the size of molecule and the basis set.
As a rough general estimate, TRIM-MP2 calculations are feasible on molecule sizes
about twice as large as those for which conventional MP2 calculations are feasible
on a given computer, and this is their primary advantage. Our implementation
is well suited for large basis set calculations, because the memory requirement for
the integral transformation does not exceed OON, and is thresholded so that it
asymptotically grows linearly with molecule size. Additional memory of approxi-
mately 32N 2 is required to complete the local MP2 energy evaluation. The disk
space requirement is only about 8OVN, but is not thresholded. The integrals are
evaluated four times. DIM-MP2 calculations are faster than TRIM-MP2 and do
not require disk storage, but have similar memory requirements.

4.9.1 Asymptotic Correlation Energy Recovery in Polyenes

The simplest measurement of accuracy for any local MP2 method is the percentage
of untruncated MP2 correlation energy recovered. Any local method is exact for an
atom, and many are exact for diatomic molecules. Therefore the quantity of interest
is the limiting percentage of correlation energy recovered as molecule size becomes
large. In Figure 1, the percentage of the full MP2 correlation energy recovered by
the DIM and TRIM methods is plotted for each additional increment to a polyene
chain respectively. The 6-31G* basis was used for these calculations.

First, let us examine the TRIM results, which are quite remarkable. It is clear
that virtually no correlation energy is lost as a result of discarding what is asymp-
totically almost all of the double substitutions (the fraction kept is proportional to
the inverse of the number of atoms). So little correlation energy is lost that the
asymptotic correlation energy recovery is more than 5 times better than is com-
monly reported with the Saebø-Pulay model, which is perhaps typically 98%. This
very high fidelity in recovering absolute correlation energy bodes well for the ability
of the TRIM model to reliably reproduce relative energies also, as we investigate in
the following two subsections. We also note that while the TRIM correlation energy
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Figure 1. Percentage of the full (untruncated) MP2 correlation energy recovered by the diatomics
in molecules (DIM) and triatomics in molecules (TRIM) local correlation methods for all-trans
polyene chains of increasing length. Since local correlation models are usually exact for atoms
and exhibit gradually decreasing fractional correlation energy recovery as the size of the molecule
increases, we report the fractional correlation energy recovery for just the new increment of chain
length. The 6-31G* basis was used for these calculations, and all orbitals were correlated.

recovery is always below 100% in the results reported here, it does not appear to
obey a Hylleraas type variational principle with respect to the full MP2 correlation
energy.

The second point of interest is the performance of the DIM method, which
keeps a fraction of the double substitutions that is proportional to the inverse of
the number of atoms squared. While no explicitly ionic substitutions are retained,
the fraction of correlation energy recovered drops only by about 5% or so. This is
about as good as could reasonably be expected, and suggests that the use of linearly
dependent nonorthogonal functions must be accounting for a good fraction of local
(nearest neighbor) ionic substitutions. Of course, one must also remember the large
magnitude of the correlation energy (roughly 1 eV per spatially proximate pair of
electrons) versus the small values of relative energies that are often of interest in
chemistry. In this light it is nevertheless unclear if the DIM correlation energy
recovery is sufficient to reliably treat relative energies.
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4.9.2 Rotational Barriers in Conjugated Molecules

The second set of test calculations are MP2 corrections to the rotational barriers
of vinyl and phenyl- substituted molecules49. This is a rather stringent test of
the accuracy of a local MP2 method given that the barrier is a small difference in
energy relative to the absolute energy. Thus it provides a reasonable assessment of
the stability of the correlation energy recovery in a local method with respect to
changes in the potential energy surface. Furthermore, the molecules are conjugated
and the origin of the barriers is (nonlocal) resonance stabilization, which is also
particularly challenging for local correlation methods. Thus success in this class
of test problems bodes extremely well for success in the reproduction of relative
energies in general.

Table 1 contains a summary of the individual results and the RMS and maxi-
mum errors (relative to untruncated MP2) as a result of (a) neglecting correlation,
(b) employing DIM, and, (c) employing TRIM. The results indicate that TRIM
deviates on average by only 0.03 kcal/mol, when compared to the full MP2 re-
sults. The DIM results show deviations nearly ten times as large (0.2 kcal/mol).
The DIM deviations are nevertheless substantially smaller than simply neglecting
electron correlation effects. Therefore the main conclusions are that the TRIM re-
sults reproduce untruncated MP2 to a precision which is more than satisfactory for
routine chemical applications, and even DIM is certainly acceptable for this quite
challenging set of problems.

It is also important to emphasize that both the TRIM and DIM results for rela-
tive energies are significantly better than the reproduction of total MP2 correlation
energies might imply. In other words there is significant cancellation of errors in
the evaluation of relative energies. The extent to which this is so can be partly
answered from Table 1. Suppose the absolute MP2 correction to the energy of a
vinyl-substituted molecule is 0.8 hartree or 500 kcal/mol (or about double, or 1000
kcal/mol for a substituted benzene). The TRIM method, for instance, might pro-
duce an error anywhere from 0.1% to 0.2% leading to a range of 0.5 kcal/mol. (or
1 kcal/mol for the substituted benzenes). Nonetheless, the TRIM rotational bar-
riers are well within 0.1 kcal/mol. Thus the percentage of MP2 correlation energy
recovered is quite stable with respect to conformational changes, due in large part
to the associated smoothness of the EPAO description of the occupied space. This
argument is even more important in accounting for the fairly reasonable results
obtained with the DIM model.

4.9.3 Water Dimer Interaction Energy

The water dimer exhibits a significant correlation contribution to the hydrogen-
bonding energy of binding. Furthermore due to the donor-acceptor nature of hy-
drogen bonding, it is possible that the correlation effects are not highly localized.
The water dimer is thus a good system to assess the performance of the DIM and
TRIM models for treating hydrogen-bonding interactions. MP2 energy corrections
to the association energies of water clusters were assessed with the aug-cc-pVXZ
series of basis sets, where X=D,T,Q. The geometry of the water dimer was obtained
from a CCSD(T)/aug-cc-pVTZ calculation50 . The results, for the correlation con-
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Table 1. MP2/6-311G** corrections to Hartree-Fock relative energy differences in twelve conju-
gated molecules (kcal/mol)a,b. The conjugated molecules are substituted ethylenes of the form
Vi-X, where Vi is the vinyl group, and substituted benzenes of the form Ph-X, where Ph is the
phenyl group.

Molecule Conformation TRIM DIM null Full MP2

Vi-C2H3 rotation -0.249 0.030 0.000 -0.288

Vi-C2H3 gauche -0.508 -0.182 0.000 -0.530

Vi-CFO rotation -0.913 -0.926 0.000 -0.930

Vi-CHO rotation -0.064 -0.028 0.000 -0.085

Vi-NH2 rotation 0.770 0.605 0.000 0.806

Vi-NO2 rotation -1.795 -1.717 0.000 -1.834

Vi-OH rotation 1.012 1.063 0.000 0.999

Vi-OH anti 0.058 -0.084 0.000 0.059

Ph-OH rotation 0.824 1.033 0.000 0.810

Ph-NO2 rotation -2.296 -2.524 0.000 -2.316

Ph-C2H3 rotation -0.423 0.156 0.000 -0.506

Ph-CFO rotation -1.423 -1.694 0.000 -1.423

Ph-CHO rotation -0.459 -0.405 0.000 -0.493

Ph-NH2 rotation 0.579 0.616 0.000 0.572

Ph-NH2 inversion 0.735 0.548 0.000 0.741

RMS Error 0.031 0.252 1.022

Max Error 0.083 0.662 2.316

a All calculations were performed at HF/6-31G* optimized geometries, with all electrons cor-
related.

b The results exclude the Hartree-Fock contribution, values for which have been reported in
ref. 49.
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Table 2. Comparison of several local MP2 models for the calculation of the MP2 correction to
the water dimera association energyb (kcal/mol). These models are the triatomics in molecules
(TRIM) model, as developed here, the Saebø-Pulay model (SP), and the diatomics in molecules
(DIM) model.

Basis Set Full TRIM % Full SPc % Full DIM % Full

aug-cc-pVDZ -1.406 -1.316 94% -0.52 37% -0.191 14%

aug-cc-pVTZ -1.541 -1.478 96% -0.96 62% -0.503 33%

aug-cc-pVQZ -1.482 -1.432 97% -1.17 79% -0.804 54%

a All calculations were performed at the CCSD(T)/aug-cc-pVTZ optimized geometry50.
b Only valence orbitals are correlated. The current best estimate50,53 of the complete basis

set limit frozen core MP2 value at the Halkier geometry50 is 1.37 kcal/mol.
c Frozen core Saebø-Pulay local MP2 results from the calculations of Schütz et al.54, also at

the Halkier geometry.

tribution only, are reported in table 2. No counterpoise corrections were performed,
because we wish to assess the convergence of the calculations towards the estimated
complete basis set limit of 1.37 kcal/mol50,51,52,53.

From table 2, the TRIM model closely tracks the untruncated MP2 values,
with the difference gradually decreasing to 0.06 kcal/mol by the aug-cc-pVQZ ba-
sis. Table 2 also contains calculations using the SP model from ref. 54 and DIM
calculations. The SP model yields results that are intermediate between the DIM
and TRIM models, as might be anticipated from the discussion in Sec. 4.4.

It is noteworthy that the fraction of the correlation contribution to the binding
energy that is recovered by the SP and DIM models increases strongly as the basis
set size increases. This reflects an important point about these (and indeed all)
local truncations. Both DIM and SP are exact in the limit in which each atom’s set
of basis functions approach global completeness. Therefore the quality of results
obtained by these truncations improves markedly as the basis set size increases.
The much milder truncation involved in the TRIM model results in less pronounced
basis set dependence of the truncation effects. The SP model, and in particular the
DIM model, recover a disturbingly low fraction of the interaction energy for the
smaller basis sets, and therefore should probably not be used for hydrogen-bonding
problems except with the larger basis sets.

5 An Overview of Other Applications

Space and time considerations prohibit us from giving an equally detailed discus-
sion of our other recent applications of tensor ideas to electronic structure theory
of many-electron systems. Instead, the following short discussion provides an intro-
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ductory overview of several related research projects that we have been pursuing.
Full details are available in the primary literature. The purpose of these short dis-
cussions is to give more examples of the usefulness of tensor methods in electronic
structure theory.

5.1 Local Electron Correlation Models for Triple Substitutions

The local correlation methods discussed above for double substitutions, in the con-
text of MP2 theory, can be extended to yield local correlation methods for triple
substitutions55,56. Triple substitutions are essential for predicting chemical reac-
tion energies to 1 kcal/mol or better, and are employed in the widely used G2
and G3 thermochemical methods, where the rate-determining step is usually the
triples contribution to the fourth order Møller-Plesset energy: MP4(T). The cost
of methods including triple substitutions, such as the widely used MP4(T) and
CCSD(T) methods, scales as the seventh power of molecule size, and this limits
their application to roughly ten first row atoms.

The basis of the local triples method is a generalization of the TRIM method
discussed above for MP2 theory. The same nonorthogonal sets of functions are used
to span the occupied space (the molecule-adapted minimal basis, projected into
the occupied space), and the virtual space (the full atomic orbital basis, projected
into the virtual space). Three electrons are simultaneously promoted in a triple
substitution, and in the local model we have developed, two of those promotions
are restricted to a single atom, while the third is permitted to be non-local. This
reduces the number of triple substitutions from rising with the 6th power of molecule
size to rising with the 4th power. The recanonicalization described in the section
on the TRIM model for MP2 theory is even more valuable in the context of triple
substitutions, because it means that the local triples amplitudes do not need to be
stored. Instead they can be made in the recanonicalized representation in batches,
their contribution to the triples energy can be immediately obtained, and they can
be discarded prior to commencing the next batch.

Benchmark thermochemical calculations on 105 molecules in the G2/97
database indicate that local truncation recovers at least 95% of the untruncated
triples energy. The local error introduced into the G2 binding energies is typically
0.1 - 0.2 kcal/mol, with a maximum error of 0.26 kcal/mol. This error is small
enough for most applications. Finally, while the efficient computational implemen-
tation of this local triples method is a challenging algorithmic problem, the results
are worthwhile56. The local triples algorithm reduces the computational cost from
growing with the seventh power of molecule size to the fifth power of molecule size.
In practice, this enables triples calculations on molecules two to three times larger
than previously feasible. It crosses over with the conventional triples algorithm
around 25 occupied orbitals, or roughly 150 basis functions. The local algorithm
requires all the doubles amplitudes to be stored on disk, and also requires disk
storage for a cubic number of local integrals. A relatively small (quadratic) amount
of memory is required.
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5.2 Perfect Pairing with Nonorthogonal Orbitals as a Local Correlation Model

The discussion of atoms in molecules models of local correlation in Section 4.3
listed several different atomic truncations of the full set of double substitutions.
The gentlest truncation is triatomics in molecules, where one occupied to unoccu-
pied orbital substitution must occur on a single atom, so that the overall double
substitution cannot involve more than 3 atoms. In the more strongly truncated
diatomics in molecules model, two orbital substitutions are each required to be on
single atoms, so that the double substitution cannot involve more than a pair of
atoms. The most drastic truncation, which we termed atoms in molecules, requires
all 4 orbitals involved in the double substitution to be on a single atom. Such an
approximation would not correctly describe the dispersion energy, and therefore we
did not consider it as a useful approximation in the context of MP2 theory.

Are there other contexts in which the very drastic atoms in molecules approxi-
mation to electron correlation (or something very similar to it) could be useful? The
answer is yes, and in this section we shall describe one such context: namely the
so-called perfect pairing approaches to electron correlation57,58. In perfect pairing,
the (unnormalized) wavefunction is taken to be an antisymmetrized (A) product
of doubly occupied ”core” functions, and geminal (2-electron) functions, gi that
describe electron correlations within each valence bonded pair (and each lone pair)
of electrons:

∣
∣Ψ
〉

= A
[
ϕ1ϕ̄1ϕ2ϕ̄2 · · · g1g2 · · ·

]
(91)

gi = A
[
ϕC+iϕ̄C+i + tiϕ

∗
C+iϕ̄

∗
C+i

]
(92)

Here C is the number of doubly occupied (C)ore orbitals. Clearly a wavefunction of
this form is well suited to breaking single bonds, where at dissociation, the bonding
and antibonding orbitals, ϕi and ϕ∗

i , approach degeneracy.
It has been known for some time59, although it is still not widely appreciated,

that the PP wavefunction can be exactly rewritten in the form of a simplified
coupled cluster doubles wavefunction; no approximation is involved. Specifically:

∣
∣Ψ
〉

= exp
(
TPP2

)∣
∣Φ0

〉
(93)

∣
∣Φ0

〉
= A

[
ϕ1ϕ̄1ϕ2ϕ̄2 · · ·ϕOϕ̄O

]
(94)

T̂PP2

∣
∣Φ0

〉
=
∑

i

ti
∣
∣Φi
〉

(95)

The double substitution |Φi〉 is the determinant |Φ0〉 with the occupied pair
ϕC+iϕ̄C+i replaced by the unoccupied (correlating) pair ϕ∗

C+iϕ̄
∗
C+i. Viewed in this

light, the PP wavefunction is evidently a form of local correlation! It is a form in
which each occupied pair is treated separately (the pair is the atomic analog here).

632



Conventionally the bonding and antibonding functions that comprise the wavefunc-
tion are taken to be strongly orthogonal to each other. With this constraint the
energy can be solved for either variationally, or nonvariationally via the machinery
of coupled cluster theory. The resulting method is qualitatively quite successful in
describing potential energy curves. Single, double, and even triple bond-breaking
curves are qualitatively correct using perfect pairing. This applies whether the en-
ergy is obtained via the variational method, or via the coupled cluster approach,
which is not formally variational.

At the same time, PP does have some notable deficiencies, which are directly
connected to the limited description of electron correlation that it contains. For
example, applying PP to the benzene molecule leads to symmetry breaking: PP
predicts that the most stable geometry has alternating carbon-carbon bond lengths
rather than equal ones. This arises from the fact that there are two equivalent
sets of localized occupied orbitals that can describe the π electrons, which can be
loosely mapped to the two Kekule structures. When one of these sets is chosen,
and a corresponding set of correlating orbitals are defined, this favors localization
of the electronic structure. The extent of symmetry breaking is relatively small in
energy terms60: about 3 kcal/mol is the energy difference between D6h and D3h

structures. Nevertheless this is clearly an undesirable result.
Given our use of nonorthogonal functions to develop local correlation models for

double substitutions, we thought it natural to ask whether nonorthogonal functions
might be useful for alleviating the problem discussed above for the PP model. In
particular, we have explored the possibility of using the following redefinition of the
orbitals in Equation (92). Instead of permitting one orthogonal occupied and one
correlating orbital for each valence pair of electrons, we prefer to use one occupied
and one correlating orbital for each valence atomic orbital60. Since the number
of valence atomic orbitals is larger than the number of electrons, this is clearly
a redundant, or linearly dependent representation. The occupied valence orbitals
will be nonorthogonal to each other, and the unoccupied correlating orbitals will
also be nonorthogonal to each other. The two sets will remain strongly orthogonal,
however, as is necessary to make the occupied space well defined.

The use of redundant representations for the one-particle (orbital) space permits
additional flexibility in the two-particle space, because there are now more ampli-
tudes, and these additional amplitudes are not entirely redundant. In the case of
benzene in the π space, there will now be one occupied orbital for each C atom
(corresponding essentially to a pz function projected into the occupied space), and
one correlating orbital. Clearly, each symmetry-equivalent atom is treated equiva-
lently as far as correlation is concerned, and so it is not surprising that the resulting
nonorthogonal PP model60 (solved via coupled cluster methods), eliminates the ar-
tifactual symmetry breaking seen in the traditional PP model applied to benzene.

5.3 Second Order Corrections to Singles and Doubles Coupled Cluster
Energies

To approach chemical accuracy in reaction energies and related properties, it is
necessary to account for electron correlation effects that involve 3 electrons simul-
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taneously, as represented by triple substitutions relative to the mean field single
determinant reference, which arise in MP4. The best standard methods for includ-
ing triple substitutions are the CCSD(T) type methods61. The accuracy of these
methods is well-documented for many cases62 and in general is a very significant
improvement relative to the starting point. While the (T) corrections have been
extraordinarily successful, there is nonetheless still room for improvement. They
contain judiciously chosen terms from 4th and 5th order Møller-Plesset perturbation
theory, as well as higher order terms that result from the fact that the converged
cluster amplitudes are employed to evaluate the 4th and 5th order terms. The cor-
rection therefore depends upon the bare reference orbitals and orbital energies, and
in this way its effectiveness still depends on the quality of the reference determinant.
Since we are correcting a coupled cluster solution rather than a single determinant,
this is an aspect of the (T) corrections that can be improved.

Such an improvement has recently been reported63. The new correction is a
true second order correction to a coupled cluster starting point and is therefore
denoted as (2). It was first developed for the coupled cluster doubles method using
optimized orbitals64 (denoted as OD) and is also straightforward to implement for
either CCSD or QCISD, given the general theory already presented65. The basis
of the (2) method is to partition not the regular Hamiltonian into perturbed and
unperturbed parts, but rather to partition a similarity-transformed Hamiltonian,

defined as ˆ̄H = e−T̂ ĤeT̂ . In the truncated space (call it the p-space) within which
the cluster problem is solved (e.g. singles and doubles for CCSD), the coupled

cluster wavefunction is a true eigenvalue of ˆ̄H . Therefore we take the zero order

Hamiltonian, ˆ̄H(0), to be the full ˆ̄H in the p-space, while in the space of excluded

substitutions (the q-space) we take only the one-body part of ˆ̄H (which can be made
diagonal). The fluctuation potential describing electron correlations in the q-space

is ˆ̄H − ˆ̄H(0), and the (2) correction then follows from second order perturbation
theory.

Tensor methods are naturally useful in the development of the detailed expres-
sions for the (2) correction65. This is because the similarity transformed Hamil-

tonian, ˆ̄H , is non-Hermitian. As a result, when the one-body part of ˆ̄H is made
diagonal, the single particle eigenfunctions that result are different on the left and
right sides. In other words, the single particle bras and kets are different in the basis
in which we work. Furthermore, in this semicanonical basis, the bras and kets are
biorthogonal to each other, but each set contains functions that are nonorthogonal
amongst themselves. This basis defines the natural representation that is appropri-
ate for this problem, and in ref. 65, the working equations of the (2) methods are
derived and presented in this representation, as well as more general biorthogonal

natural representations (in which the single particle ˆ̄H is not diagonal).
The new partitioning of terms between the perturbed and unperturbed Hamil-

tonians inherent in the (2) correction leads to a correction that show both similar-
ities and differences relative to the existing (T) corrections. There are two types of
higher correlations that enter at second order: not only triple substitutions, but also
quadruple substitutions. The quadruples are treated with a factorization ansatz,
that is exact in 5th order Møller-Plesset theory66 , to reduce their computational
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cost from N 9 to N 6. For large basis sets this can still be larger than the cost of
the triples terms, which scale as the 7th power of molecule size, with a factor twice
as large as the usual (T) corrections. These corrections are feasible for molecules
containing between four and ten first row atoms, depending on computer resources,
and the size of the basis set chosen. There is early evidence that the (2) corrections
are superior to the (T) corrections for highly correlated systems63. This shows up
in improved potential curves, particularly at long range. For such problems, with
restricted orbitals, the (T) corrections tend to diverge, but the new (2) corrections
are stable provided the coupled cluster reference itself is stable. This advantage
may also extend to improved energetic and structural properties at equilibrium in
problematical cases. It will be some time before sufficient testing on the new (2)
corrections has been done to permit a general assessment of the performance of
these methods, but they are clearly very promising.

6 Conclusions

In this chapter we have tried to accomplish several objectives. First, we have pro-
vided a general introduction to tensor methods in the context of electronic structure
theory, where they are particularly well-suited to dealing with nonorthogonal single
particle basis sets. Second, we have discussed local electron correlation models for
second order Møller-Plesset theory, that are based entirely on nonorthogonal single
particle basis sets both as an application of the tensor algebra and as an illustration
of the potential usefulness of nonorthogonal functions. Third, we have provided a
brief description of several other applications in electronic structure theory where
we have found the tensor methods useful, to further illustrate their value. Fourth,
we would like to emphasize that there are many other potential applications await-
ing us in the future. Perhaps this is the best reason to at least be generally aware
of how to apply tensor methods in electronic structure theory.
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