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Preface

Condensed matter systems, ranging from simple fluids and solids to complex multi-
component materials and even biological matter, are governed by well understood laws of
physics, within the formal theoretical framework of quantum theory and statistical mechanics.
On the relevant scales of length and time, the appropriate ‘first-principles’ description needs
only the Schroedinger equation together with Gibbs averaging over the relevant statistical
ensemble. However, this program cannot be carried out straightforwardly—dealing with
electron correlations is still a challenge for the methods of quantum chemistry. Similarly,
standard statistical mechanics makes precise explicit statements only on the properties of
systems for which the many-body problem can be effectively reduced to one of independent
particles or quasi-particles.

As the interactions among so many degrees of freedom introduce nontrivial correlations
between them, only computer simulation provides us with a methodic route to make accurate
explicit predictions for the static and dynamic properties of many-body physical systems
starting from first principles. The molecular dynamics simulation method (MD) was introduced
in the 1950s, shortly after the ‘companion’ Monte Carlo method. Since then, the scope of both
has been rapidly expanding. Despite the fact that suitable computing facilities were scarce,
very slow, and with very small storage capacities compared to present-day facilities,
immediately important and, at the time, rather surprising discoveries were made—notably
that hard spheres crystallize at a density long before close packing has been achieved and
that dynamic correlations in fluids exhibit long time tails. These have been the starting point
of a great variety of methodological developments, with many exciting technical extensions
still under development, providing broad applications and opportunities for important
discoveries.

Nowadays, with pervasive high-speed networking and powerful massively-parallel
computers at the hands of every scientist, advances in simulation methods are progressing at a
breathtaking speed. Molecular dynamics computer simulation offers the advantage that
connections can be established between the models of condensed matter on different scales
and the hierarchy, from the sub-Angstrom scale—where one deals with effects due to the
electrons, up to the mesoscopic and macroscopic scales relevant for living matter.
Applications cut across extremely diverse fields, from fundamental problems in solid state
physics to the rich world of phenomena exhibited by complex fluids and biological
systems—elucidating the electronic properties of materials as well as the major non-
equilibrium processes that take place in the living cell. The goal is to develop a simulation
approach for complex materials and biological matter that successfully bridges the gap from
the small scales of electronic structure calculations to the mesoscopic scales of pattern
formation in soft matter (where one uses coarse-grained techniques such as dissipative
particle dynamics and multiscale collision dynamics). This is a goal that will remain an
exciting challenge for many years to come.

The contributions collected in this book move from the quantum-statistical description to
the validity of classical modeling; they present some perspectives in the algorithmic and in
the enhanced sampling approaches, tackling some longstanding challenges to simulation in
the area of non-equilibrium, rare events, mesoscale and quantum-classical simulation.
Initially, the book deals with the validity of molecular dynamics modeling, starting from the
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adiabatic hypothesis for the electronic ground state; the first contribution explores different

descriptions of the potential energy surfaces one can use in a molecular dynamics simulation;

the second analyzes in detail the Born-Oppenheimer schemes for ab initio MD within Kohn—

Sham density functional theory, while the third one tackles the problem from the alternative

perspective of a quantum Monte Carlo approach. The next contribution dwells on how to

improve the statistical ensemble properties of time integrators for Langevin dynamics by
including an acceptance-rejection scheme. The subject of free energy calculations by
molecular dynamics is illustrated in the next two contributions, first with a presentation of
alternative dynamical approaches for performing enhanced sampling by force biasing and
temperature acceleration, then using non-equilibrium path sampling within the framework of

Jarzynski identity and Crooks fluctuation theorem. The general ideas behind non-equilibrium

molecular dynamics are the focus of the next two contributions, regarding calculation of

dynamical responses and the application of Malliavin weight sampling to dynamical
trajectories. Many of the same ideas are at the core of the study of rare, reactive, events by
molecular dynamics as discussed in the next two contributions, more in general in the first
and then with specific reference to the Markov state models approach. The last four invited
contributions are dedicated to the problem of dealing with well separated space and time
scales. First, the general philosophy of multiscale approaches and the related computational
strategies within molecular dynamics are discussed in a concept paper, while the other three
deals with specific non-adiabatic dynamical approaches for systems with a mixed quantum-
classical description, based upon alternative approaches borrowing either from the Wigner
transform representation or from the Bohmian formulation of quantum dynamics. The book is
completed by the contributed papers to the molecular dynamics special issue.

The reader will find answers to a number of questions, a few of which we can briefly
recall here:

e How to generate averages in statistical mechanics ensembles, other than the
microcanonical one, or, in other words, how to couple the system to temperature, pressure
or particle baths.

e How to deal with the simultaneous occurrence of slow and fast degrees of freedom that
makes straightforward implementations of MD very inefficient, with a great waste of
computer resources.

e How to evolve in time a quantum subsystem immersed in a classical environment, using
a consistent description based on the Wigner formulation of quantum statistical
mechanics, allowing the study of transport phenomena in such mixed quantum-classical
systems.

e How to combine ab initio MD with classical MD using hybrid approaches in the
environment of the reactive groups, by suitable “quantum mechanical/molecular
mechanical (QM/MM)” partitioning.

e How to extend the standard quantum Monte Carlo approach to obtain a description of
electronic structure that provides an interesting alternative to the density functional based
methods.

e How to efficiently sample rare events, e.g., a nucleation process where a huge free
energy barrier needs to be crossed to form a critical nucleus of the new stable phase on
the background of a metastable phase, and develop sampling schemes for computing
the relevant properties and studying the mechanisms of transitions between
metastable states.

e How to eliminate or treat in a simplified way, by coarse-graining, some small-scale
degrees of freedom, which are considered less relevant to the considered questions.
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This is what you will find in the present book but many more questions, some certainly yet to
be posed, will certainly find their answers in the forthcoming developments of molecular
dynamics simulation.

We wish to acknowledge the collaboration of the many people who have made possible
this special issue. First of all, the authors, whose rigor, good work and speed have, of course,
been instrumental. Also, we are very grateful to the many anonymous referees for the
invaluable work of guaranteeing the quality and soundness of the contributions. Thanks,
finally, to Jely He: She and the entire MDPI staff of the Editorial Office of Entropy have
generously given invaluable help and good professional skill to bring this adventure to a
successful conclusion.

Giovanni Ciccotti, Mauro Ferrario and Christof Schuette
Guest Editors
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Abstract: Explicit or implicit expressions of potential energy surfaces (PES) represent
the basis of our ability to simulate condensed matter systems, possibly understanding
and sometimes predicting their properties by purely computational methods. The paper
provides an outline of the major approaches currently used to approximate and represent
PESs and contains a brief discussion of what still needs to be achieved. The paper also
analyses the relative role of empirical and ab initio methods, which represents a crucial

issue affecting the future of modeling in chemical physics and materials science.

Keywords: atomistic modeling; bond-order potentials; ab initio methods

1. Introduction

Most, if not all, of computer simulations using particles require the specification of the system
potential energy as a function of particles’ coordinates [1]. The most ab initio methods, such as
those discussed in [2], represent systems as made of electrons and atomic nuclei, and Coulomb’s
law is sufficient to account for every interaction. In all other cases, particles represent composite
objects, such as atoms or atomic nuclei, dressed by core electrons, possibly embedded into a sea of
valence electrons described at some approximate level of a many-body theory. Then, all the relevant
interactions need to be worked out on a case by case basis, and the effort required to determine
inter-particle forces may represent a sizeable fraction of the work to be done to investigate condensed
matter systems [3].

The sections that follow contain an overview of modeling approaches and a discussion of their

relative merits and limitations. Needless to say, the variety of systems and methods, together with




the shear size of the knowledge accumulated over decades, impose strict limits to the scope of this
presentation. First of all, the focus is on atomistic models, i.e., models in which the number and
geometry of interaction centers follows the distribution of atoms closely. A second major branch of
modeling, concerning coarse graining approaches, is the subject of a separate contribution (see [4]).

Moreover, again, for limitations of space, the discussion that follows mainly concerns the most
restrictive picture of interatomic interactions, based on the assumption that the potential energy
of a system of N atoms can be expressed as a single-valued function of their 3N coordinates
{R;,i = 1,..., N}, which represents the so-called potential energy surface (PES) of the system.
This assumption relies, first of all, on the so-called Born-Oppenheimer approximation [5], whose
validity is loosely attributed to the ~ 3—4 orders of magnitude difference in the mass of electrons
and atomic nuclei, giving rise to a clear separation of the characteristic energy and time scales for
the motion of electrons and atomic nuclei. Then, for any given instantaneous configuration of the
atomic cores, electrons will be able to reach their electronic ground state, justifying the single-value
assumption for the system potential energy. Experience shows that this “adiabatic assumption” is
fairly well justified for a wide variety of systems and thermodynamic conditions. To be precise, it
turns out that some cases are left out of this picture and often represent systems and phenomena of
great interest. Methods suitable to deal with these cases are discussed in [6].

Computational science and simulation, in particular, always have a practical and an algorithmic
aspect to them, and a central theme of research is the development of efficient ways to approximate
and represent PESs. The availability of simple and computationally-convenient models of
inter-particle interactions, for instance, has been instrumental in the dawning of computer simulation.
Since then, the two complementary stages of determining the relevant interactions and of working
out their structural, thermodynamic and dynamical consequences have cross fertilized each other, so
much that the terms, modeling and simulation, often appear together in the title of books, papers,
conferences, workshops and funding proposals.

Nowadays, the general perception of atomistic modeling is that of an overwhelmingly important
and successful field, steadily expanding its reach towards more complex systems, which in this
context means systems combining a wider variety of chemical bonds. In this respect, it is clear
that much remains to be done, for instance, to bring under the cover of simulation heterogeneous
systems and interfaces at which organic, semiconducting and metal phases meet each other or to
model systems in which chemical transformations take place.

During the last few decades, ab initio simulation methods have progressively come to play the
role of the elephant in the (modeling) room. Methods, such as density functional theory [7,8] and
ab initio molecular dynamics [9], could, in principle, replace all other approaches, reducing the
variety of modeling problems to just one, concerning the effective and accurate representation of the
energy of valence electrons in the field of atomic nuclei or ionic cores.

Up to now, this replacement has not been pervasive, mainly because of the size and time
limitations of ab initio methods running on present day computers and partly because the
approximations that make ab initio computations feasible still somewhat limit their accuracy on the
energy scale of thermal motion, especially for molecular systems whose properties are determined



by weak interactions among closed shell molecules. Ab initio modeling, however, is progressing and
extending its reach. For what concerns atomistic simulation, therefore, empirical and semi-empirical
models might eventually be squeezed out by the combination of ab initio methods and coarse-grained
approaches. Simple models of atom-atom interactions, however, are likely to retain their appeal,
because of their unique ability to represent and rationalize the microscopic forces underlying the
properties and behaviors of condensed matter systems.

2. The Potential Energy Surface (PES) of a Many-Atom System

From a physicist point of view, ordinary matter consists of an assembly of electrons and atomic
nuclei, evolving according to the laws of quantum mechanics. The non-relativistic limit is adequate
for many of the systems and properties of interest for the present discussion, and unless differently
specified, we shall restrict ourselves to this case.

Let us therefore consider a system made of N electrons and K nuclei, and let {r;,i = 1,..., N}
and {R,,a = 1, ..., K'} be the coordinates of electrons and nuclei, respectively. The corresponding
linear momenta are denoted by {p;} and {P,}. In the absence of external fields, the system
Hamiltonian is:

2

~ P2 p2 1 ZoZge? Z,e? 1 e
H, = a i Z s e e 4z - - 1
0 ZgMa+;2m+2§B|Ra—RB| ;m—R +2;|ri—rj| M

that, for the sake of simplicity, we re-write as:

HO = Eon + Tele + V;on—ion + V;on—ele + V;fle—ele (2)

with an obvious correspondence between Equations (1) and (2). The Hamiltonian does not depend
on the spin of electrons and nuclei, since we restrict ourselves to the non-relativistic limit, and we
do not include any spin-orbit interaction into our Hamiltonian. Unless differently specified, Hartree
atomic units (A = €2 = m = 1) are used in this section.

Let us assume that the system is described by a many-body wave function,
U(ry,...,rN; Ry, ..., Rk;t), whose time evolution is determined by the time-dependent
Schrodinger equation:

P RBD g m, i) (3)

with appropriate boundary conditions in space and in time. Since the Hamiltonian is time
independent, let us turn to the equivalent version of this same problem, concerned with the stationary
states, Wy, ({r;}; {Ra}) of Hy.

The first important step towards the definition of a potential energy surface for the atomic nuclei
is provided by the Born-Oppenheimer approximation (BO), which, under suitable and often verified
conditions, opens the way to a separate description of the time evolution of electrons and nuclei [5].
The intuitive justification of BO is the observation that the motion of electrons and nuclei takes
place over different time scales, since M, /m is at least M, /m ~ 1,800, and usually approaches
27, M, /m, where M, is the mass of a nucleon (proton or neutron). Moreover, the ratio of vibrational



and rotational excitations is again ~ /M, /m. Experimental data confirm that, indeed, typical
electronic excitations are of the order of a few eV; vibrational energies reach up to a few hundred
meV, and even for small molecules, the separation of rotational levels is of the order of 1 meV. The
conclusion is that the excitation of electrons, because of vibrational or rotational motion, is very
unlikely. We can therefore represent the motion of electrons as taking place in the slowly varying
field of the nuclei. Consistently with these qualitative arguments, the BO approximation breaks down
whenever the energy of relevant electronic excitations becomes comparable to typical vibrational
energies (or, much less likely, comparable to rotational energies). In those cases, vibrational and
electronic excitations need to be considered on the same footing.

The core of the so-called adiabatic approximation can be given a semi-rigorous mathematical

formulation in the following way [5]. Let us re-write f]o as:
1‘{[0 = T'ion + FIele (4)

where Hee = Toe + Vion—ion + Vion—cie + Vele—ele- The energy term, V., _ion, commutes with all
other terms in H;., and its inclusion in the electronic part is just a matter of convenience.

For every choice of the nuclear coordinates, {R,,« = 1, ..., K'}, the eigenvalue problem:

Haeti({rs} | {Ra}) = E({Ra D¢ ({ri} | {Ra}) (5)

is well defined and provides a sequence of eigenvalues, £;({R,}), and eigenfunctions 1;({r;} |
{R.}). At this stage, nuclei are “clamped”, i.e., they are no longer treated as particles embodied
with a mass and a momentum, but only as sources of the potential acting on the electrons. The
notation, (r; | R,), means that ¢; is an explicit function of r; and depends parametrically on the
nuclear coordinates, {R,, }.

The functions, 1;, are a basis for the Hilbert space spanned by the electron coordinates, and we

can represent Wy, as follows:
Ui({ri} (R} = D wy(fri} [{Ra)xSY (Ra) (©)
J

(k)

where, at this stage, x; (R,) is simply the coefficient expressing the projection of W, on 1);:

IR = [ 05({m) [ {Ra)) el (R}, ™

The equation for ¥, becomes:
ﬁoq’k({l‘i}; {Ra}) - (ﬂon + f{ele)q}k({ri}y {Ra}) (8)

= Zx§k><{Ra}>Ej<Ra>wj<{ri} [{R.}) + ¢ () | {Ra D) Tionx ({Ra})

X (R Tiontty ({ri} [ {Ra}) = ETx({ri}, {Ra})



Let us now multiply on the left by ¥ ({r;} | {R.}) and integrate over the electron coordinates. One

obtains in this way a set of coupled partial differential equations for the X ({Ra}) functions:

En({Ra)XP ({Ra}) + Tionx® ({Ra} +Zxﬁ> {RaD) Wi | Tion | ¥5) = EXE({Ra}) (9)

where & is the eigenvalue of the full, i.e., electrons and ions Hamiltonian f]o, and the relation,

(Y | 1j) = 0mj, has been used. The coupling among the equations is due to the non-diagonal part

of <wm ‘ T‘ion | ¢j>:

o B )= 5 [ [0 e o))" [ 20000 o)} g,

whose computation requires the parametric dependence of x,,(R,) on the {R,} coordinates to be
continuous and differentiable.

Neglecting these non-diagonal terms, the equations for the electronic and ionic coordinates are
decoupled, and the picture emerging from this manipulation of Equation (6) is that of nuclei evolving
on the potential energy surfaces U;[{Rqo}] = E;({Ra}) + (¢; | Tion | ;). This last expression,
corresponding to the so-called Born-Huang approximation [10], represents, in fact, an upper bound
for the system’s potential energy. A lower bound, instead, is given by the original BO approximation,
e Ujl{Ra}] = E({Ra}).

The nuclear motion in general is quantum mechanical, and, depending on initial conditions, it
might occur on any of the U; potential energy surfaces (PESs). More precisely, since the equations
for different j’s are separated, it will take place on a single surface of index 7, provided the starting
point is consistent with this choice. This condition, that we identify with adiabatic motion, underlies
most of the simulations that are routinely carried out in computational-condensed matter physics.
Moreover, again, in most cases, but with noticeable exceptions, the relevant PES corresponds to the
electronic ground state, and the scale of times and energies of interest allows the usage of classical
dynamics instead of quantum mechanics [6].

The following sections are devoted to the discussion of the general properties of PESs, and of
computationally tractable approaches to approximate them. Before doing that, it might be interesting
to consider briefly when the BO approximation and the conditions for adiabatic motion are no
longer valid.

An estimate of the (¢, | Tion | 1;) terms can be obtained by perturbation theory, showing that

the strength of the non-diagonal coupling is proportional to:

~ 1 ~
<77Dm | Eon | ’QD]> X wam | [POmHele] | ¢]> (11)

Ey,

Moreover, the matrix element of the commutator can be shown to depend primarily on the properties
of individual atoms and to be only moderately dependent on the {R,} coordinates. Then, the
major factor determining the coupling strength among different adiabatic surfaces is the energy gap
separating different PESs. Whenever (£,,, — E;) becomes comparable to the typical energies of the

atomic motion, the BO decoupling is no longer valid, the electronic and ionic motion are intimately



intertwined and both need to be treated quantum mechanically. The range of quantum mechanical
features that become relevant in the non-BO case go beyond delocalization and diffraction, but
includes the appearance of geometric (Berry-Pancharatnam) phases [11].

Far from being the exception, violations of the BO approximation are pervasive. They occur
often, but not exclusively, at the so-called conical intersections [11], playing a major role in chemical
reactions and, for instance, challenging our ability to model catalysis [12]. Apparent non-BO effects
are routinely highlighted by clever experiments [13,14].

Metals, whose occupied states are immediately contiguous in energy to the empty states, may
appear as the most obvious candidates for large deviations from the BO picture. In the vicinity
of the Fermi surface, however, single particle excitations are the only relevant excitations, but the
coupling of each of these excitations to the nuclear motion (through Equation (11)) is vanishingly
small. Collective electron excitations, such as plasmons, couple to the atomic motion, but their
energies are of the order of several eV and, thus, are comparable to, if not higher than, those of closed
shell atoms and molecules. As a result, vibrational properties of metals are generally well described
by adiabatic dynamics. Exceptions are represented by Kohn anomalies, resulting from the nesting
of reciprocal lattice vectors with the Fermi surface. Metals also provide the setting for a type of BO
violation qualitatively different from those considered until now, represented by superconductors, in
which the coupling of the electron and nuclear motion changes the symmetry of the ground state.

The isolated system picture underlying the BO decoupling has been generalized in [15-17] to
the case of electrons and nuclei evolving in an external time-dependent potential. It was shown,
in particular, that the full wave function can be factorized exactly into an electronic and a nuclear
wave function, again opening the way to the definition of a time-dependent PES. The picture is less
simple than in the static case, since it involves the introduction of a Berry vector potential and of
Berry-Pancharatnam geometric phases [18,19] into the problem. This approach has already provided
the basis for the real-time simulation of molecular systems in strong (laser) external fields. For
completeness, I mention that some details of the formal framework might still need to be worked out
for a fully rigorous treatment [20].

3. Properties of Potential Energy Surfaces

Basic features of the PES can be anticipated even without an explicit solution of the standard
electronic problem in Equation (5). A surprisingly realistic intuition of what a PES looks like was
outlined in elegant Latin prose long before quantum mechanics [21], based on an atomistic hypothesis
and on the assumption that the still undiscovered atoms felt each other mainly at short distances.

The modern interpretation confirms this picture and adds a wealth of microscopic detail. The
direct Coulomb repulsion among nuclei, unscreened by electrons at short distances, prevents the
close contact of atoms and their eventual collapse. The kinetic energy of the electrons tightly bound
to the nuclei will provide an additional repulsive contribution, resulting from the need to preserve the
Pauli principle. On the other hand, the formation of chemical bonds gives rise to attractive potentials,
binding atoms together. Even in the case of inert species, subtle quantum mechanical effects give rise
to dispersion forces, which provide a weak, but pervasive, attraction.



Arguably, the simplest and most intuitive picture of atomic interactions is provided by pair
potential models, in which the system energy is written as:

Ul{Ro} = Z%B |Ro — R ) (12)

where the «, 5 label on ¢, 5 indicates that the interaction depends on the chemical identity of particles
« and 3. A spherically symmetric potential has been assumed for the sake of simplicity.

Computations and comparison with experiments have shown that an expression of this kind is
suitable for rare gases [22] and for simple ionic compounds [23]. Systems and models of this
kind have been instrumental in establishing computer simulation as a quantitative research tool in
condensed matter and in chemical physics.

Needless to say, the scope of pair potentials is very narrow, and limitations of this model
were already apparent well before the dawn of computer simulation, based on the results of lattice
dynamics models in metals and semiconductors.

One could think of the pair potential expression as being only the lowest order approximation of

the PES into an n-body expansion of the form:

Ul{R,} = Q,ZVQRQ,R/; 3|ZV3Ra,Rﬁ,R) (13)
a8 a,By

For a system made of a finite and constant number of particles, such an expression can always be
written down. For instance, one could define V5 as the interaction energy of two isolated atoms, V3
as the corresponding energy of trimers, minus the symmetrized combination of V5 contributions, etc.
Such an expansion, however, is useful only if it converges within a few terms, at least because the cost
of evaluating successive n body terms grows rapidly with increasing n. Moreover, it contributes to
the physical understanding of the system behavior only when its convergence is absolute, i.e., it does
not require the cancellation of contributions of alternating sign, whose amplitude is constant or even
increasing with increasing order. Model computations based on a tight binding Hamiltonian [24],
however, show that even for simple systems, the expansion in Equation (13) is not well behaved and,
thus, is seldom useful for practical computations.

More fruitful than the systematic expansion of Equation (13) has been the introduction of the
cluster potential idea [25,26], loosely and sometimes more closely based on the bond-order concept
introduced by Pauling [27]. In this approach, a fixed and low number of terms is retained; the
expression looses its character of a systematic series to become an asymptotic expansion. Each of
the few terms that are retained describe low-order potentials whose strength depends on the local
environment. Approaches of this kind have given origin to the most popular family of potentials used
to simulate metals and metallic alloys and also to some important approaches to approximate the PES

of semi-conductors, which are discussed in the following sections.

4. Many-Body Interactions: Metals and Metal Alloys

Metals and their alloys posed an early challenge to the pair or few-body potential picture, since

their basic properties manifest essential many-body interactions [28].



The successful and physically-motivated incorporation of these effects into tractable models in the
early eighties of the last century has spawned a vast simulation activity, aiming, at first, at reproducing
phase diagrams, then at analyzing in detail surfaces and interfaces and further progressing towards the
prediction of mechanical properties through multi-scale approaches. Physical metallurgy is currently
one of the most active and productive subfields of atomistic simulation [29,30].

Many-body interactions in metals were first identified by the analysis of their elastic properties.
For instance, the elastic constants of cubic materials consisting of atoms interacting via spherically
symmetric pair potentials have to satisfy the so-called Cauchy relations, stating, for instance, that
C12 = Cyy. The violation of this relation, known in the solid state literature as a Cauchy anomaly,
is the rule more than the exception in metals, unambiguously pointing to a deviation from the pair
potential picture.

These features were first rationalized by considering the basic representation of a metal, as made
of ions embedded into a sea of valence electrons. Since the major ingredient, i.e., the homogeneous
electron gas could be solved analytically, and, at least for sp metals, the electron-ion interaction is
weak, the full problem could be attacked by perturbation theory [28,31]. Carried up to the second
order, this approach provides an expression for the system total energy that consists of a large volume
(or, equivalently, density) term and a pair potential contribution. The volume term is able to account
for the Cauchy anomaly. In simple metals, such as the alkalis, the pair potential is relatively soft
at short distances and oscillates at large distances, reflecting Friedel oscillations. These features
explain the beestructure of these systems at normal conditions and provide a clue to understand more
complex structures adopted by the lighter alkali metals at very low temperature or found in slightly
more complex systems, such as alloys, or heavier sp metals, such as gallium, indium or tin.

Approaches of this kind are now mainly of historical interest, since most of the cases relevant for
applications involve transition metals, and in those systems, the valence electron-ion interaction is
by no means weak; the perturbation expansion cannot be limited to the second order and becomes
rapidly untreatable beyond that point [32]. Besides these fundamental problems, other practical
difficulties concern the definition and the zero-order solution of an electron gas problem suitable
for inhomogeneous systems and for alloys. Electron gas perturbative approaches, therefore, could
not solve problems, such as the inward relaxation of crystal surfaces, the quantitative description of
stacking faults or the overestimation by pair potentials of the vacancy formation energy in metals.

To overcome these problems, new models have been proposed in [33—-35], conforming to the
cluster-potential idea [26], and representing low-order approximations to a bond-order potential. The
embedded atom model (EAM) of [33,34], loosely based on density functional theory, has the broadest
appeal, and for this reason, it is used here as a representative of a wider class of models.

According to EAM, each metal ion, 4, at position R; gains an energy, E|[p.(R;)]|, upon being
immersed into the valence electron distribution at density p.(R;) and interacts with neighboring ions

by a short range repulsive pair potential, V5(R). The energy of /N metal atoms, therefore, is:

U{R:}] = ZVzIR R;|)+ Z [pe(Ry)] (14)

Z#J



The picture is completed by a prescription to compute the electron density, p., at the position,
R, of each atomic core. EAM represents such a density as the sum of contributions from every
other atom:

pe(Ri) = > #;(| Ri — Ry |) (15)
J#
where the ¢;(R) are again relatively short-range functions, mimicking the tail of the electron
distribution around an isolated atom. Since it introduces a local embedding density, this prescription
overcomes most of the limitations of the free electron models, which instead rely on a global
definition of the valence electron density.

Parameters and auxiliary functions, such as t(R), E[p.| and V5(R), could be computed from first
principles [36], but this approach has been only moderately successful. Far more effective has been
the strategy of adopting the EAM potential energy expression as a general framework, relying on
fitting experimental quantities to tune a few parameters distributed into the functional form.

The success of EAM has been due to its ability to overcome the limitations of simpler models,
easily accounting for the Cauchy anomaly, the reduced value of the vacancy formation energy, the
inward relaxation of compact metal surfaces and the reconstruction of more open ones. Its broad
acceptance relies also on the many and physically appealing properties of the model, discussed in a
number of publications, such as the ease of extending EAM to alloys or the close relation with pair
potentials in the case of homogeneous systems at constant volume.

From the computational point of view, the efficiency of EAM is due to the pair potential form of
both the repulsive contribution, V5, and the embedding density expression in Equation (15). The time
required to carry out a simulation based on EAM is expected to be twice that of a pair potential model,
since a pass on all atom pairs is required to compute the repulsive potentials and the embedding
density, while a second pass is needed to compute forces on atoms arising from the embedding
energy. With suitable lists of neighbors, and depending on the range of V5(R) and of ¢(R), EAM
can be used to carry out MDsimulations for systems of 10* atoms over several nanoseconds using
laptops or inexpensive PCs. Supercomputers extend these ranges to several million atoms, and us
time scales.

Needless to say, an empirical and approximate approach, such as EAM, cannot provide the final
answer to the problem of modeling metals, and transition metals, in particular. A comprehensive
discussion of inaccuracies and limitations identified during thirty years of applications is beyond
the scope of this short review, and only two examples are briefly mentioned here. Phonons in
transition metal crystals, a property routinely measured by inelastic neutron scattering, are not well
reproduced by EAM. The elastic constants usually enter the fitting of the potential, and thus, the
low-frequency acoustic phonons close to the I'-point of the first Brillouin zone are usually well
reproduced. Higher frequency modes at the zone boundary, however, turn out to be too soft with
respect to the experimental data (see Figure 1). Transition metal clusters from a few to several
thousand atoms are important for catalysis and represent a basic ingredient of nanotechnology. EAM
neglects the details of the electronic structure of the atoms, leaving out quantum mechanical effects,
such as Jahn-Teller. Thus, EAM is unable to quantitatively reproduce the structure and cohesive
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properties of the very small aggregates as provided by density functional computations. Beyond
~ 100 atoms, cluster properties are expected to evolve more continuously with size, approaching
those of bulk phases beyond 10* atoms. EAM has been used extensively to investigate clusters across
this range, but a quantitative validation of the model is still lacking and difficult to achieve, since
more ab initio computations become too expensive to carry out, and experiments find it difficult to
probe this range of cluster sizes.

A step beyond EAM, needed to quantitatively model the fine details of the structure,
thermodynamics and dynamics of transition metal systems, requires the introduction of explicit
angular terms into the potential energy expression. This can be achieved through a conceptually
simple extension of EAM, known as modified EAM (MEAM) [34], or resorting to a chemically
accurate bond-order potential model, including the directionality of d and f electron orbitals, as well
as the distinction of o, 7, d, ..., bonding, anti-bonding and non-bonding orbitals [37].

The MEAM is somewhat more complex to use than EAM, and probably for this reason, it has
been less extensively applied. Moreover, its ability to quantitatively overcome the limitations of the
simpler model is not always so apparent. The other approaches, more closely based on the bond order
approach, appear to be cumbersome to use in simulations, and the number of applications based on
these models has been limited.

Figure 1. Phonon frequencies of fccpalladium from experiments (symbols, see [38]) and
from the embedded atom model (EAM) model of [33].
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Because of the inclusion of angularly dependent forces, the scope of MEAM could, in principle,
cover semiconductors. Successful applications have been published [34], but more specific models,
described in the following section, have received broader attention in this subfield.

5. Semiconductors and Insulators

Semiconductor materials, exemplified by silicon, germanium, gallium arsenite, efc., are
characterized by fairly open and complex structures of relatively low coordination, stabilized by
sizeable angular forces, arising from the directionality of covalent bonds. Apart from elemental

systems, most inorganic semiconductors are characterized, in fact, by a combination of covalent
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and ionic bonding. Several of these systems, most notably silicon and germanium, turn into metals
upon melting.

Despite the difficulty of reproducing these properties by few-body potentials, the urgency of
investigating the elements and compounds that fueled the electronic revolution stimulated the first
bold attempts. The two- and three-body potential for silicon proposed by Stillinger and Weber [39]
arguably has been the most representative example of this first generation of models.

Despite their interest, approaches of this kind have been only moderately successful, and once
again, the bond-order concept [27] proved more fruitful. Its application to semiconductors was first
discussed by Abell [25] before being used in a more empirical setting by Tersoff [40,41] and extended
by Brenner [42] to a wider class of systems and problems.

According to these models, the potential energy of an assembly of N atoms of coordinates {R;}

18 written as:

En = Z [Aexp (—\1Rij) — Bijexp (—A2Ryj)] (16)
i#]
where R;; =| Ri — R; |. The first term, representing the short-range repulsion, is a genuine pair

potential. The second term contains many-body contributions via the dependence of B;; on the local
environment around the interacting pair, ;.

This form has obvious analogies with the EAM case. The difference is that 5;; not only
counts neighbors, as the embedding density does, but takes into account also the angular correlation
among their mutual positions. This addition is required to enforce the dominance of tetrahedral sp®
coordination, but also to carve a secondary role for other structures, from the sp? bonding of graphite,
to the octahedral coordination of liquid silicon and germanium [40,41].

Parallel to the EAM case for metals, potentials of this type replaced previous models and
established a new standard in modeling semiconducting systems. Success, however, has been
somewhat less pervasive than in the case of EAM, for reasons that are relatively easy to identify.
First of all, interactions in semiconductors are more complex and propagate at a longer range, since
screening is not as effective as in metals. Moreover, semiconducting alloys and compounds give
rise to partially Coulombic interactions, whose combination with covalent bonding has seldom been
modeled, even by bond-order potentials.

Furthermore, in this case, the systematic improvement beyond the semi-empirical Tersoff and
Brenner potentials has to rely on the analytical development of chemically accurate bond-order
models [43]. Work along these lines is underway and has shown promising developments, but current
models still appear fairly difficult to implement in molecular dynamics or Monte Carlo packages.

An important development of Brenner’s scheme has been the introduction of reactive force fields,
able to describe chemical transformations in the system under consideration. The majority of the
parameterizations and applications published until now concern organic systems, but potentials of
this kind are mentioned here for their similarity with models first introduced for semiconductor
systems. Prototypical examples of a reactive force field are the so-called ReaxFF [44] and the
REBOpotential [45]. Both models require a massive parametrization effort, and for this reason,
they appear to be fairly ad hoc and system specific.
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A different line of attack to modeling semiconducting systems is suggested by the observation
that in many cases, force fields of the form currently used to model organic systems and consisting
on stretching, bending and torsion might indeed provide a good representation of structural and
dynamical properties of semiconductors and of network insulators, such as silica. Models of this kind,
in fact, were developed well before the age of computer simulation, and extensively used in lattice
dynamics studies of semiconductors and insulators [46]. The problem of these models is that, mainly
because of the established tradition, the topology of bonds is kept fixed, bonds are harmonic and can
neither form nor break. These models, therefore, describe only low amplitude oscillations around
a pre-assigned minimum of the potential energy surface. Removing these inessential constraints
by introducing rules to break, form and interchange bonds results in a far more realistic picture.
It was shown, for instance, that such a reactive force field model of silica undergoes melting at
approximately the right conditions [47] (see Figure 2), and the same model has been used to provide

an intriguing view of the amorphous silica surface at length and time scales unachievable by other
methods [48].

Figure 2. Average potential energy per atom (U(7")) / K g of SiO, computed by the force
field of [47]. kp is the Boltzmann constant, introduced to express energies in temperature
units (K). Solid dots: heating a 3-cristobalite sample. Solid line: cooling the same sample
from high temperature. The potential energy contribution, C),, to the constant pressure
specific heat computed on heating the full model is shown in the inset. The peak in C,

and the anomaly in (U(7')) are around the same temperature point to a melting transition
at Ty ~2150 K.
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Progressively increasing the electronegativity difference in compound semiconductors enhances
the charge transfer among atoms, widening the band gap and turning the system into an ionic
insulator. In the limit of strongly ionic materials, of course, pair potentials are adequate, but only
a few compounds belong to this class, such as, for instance, alkali-halides or the oxides and chlorides
of Group ITA and Group IIB metals. In between ionic insulators and polar semiconductors, there is a
vast number of systems, including technologically relevant compounds, such as ceramics, transition
metal oxides, ferroelectric and ferroid materials, minerals and bio-minerals, in particular, for which
no current model is fully satisfactory. One of the major issues for these systems is the inclusion
of polarizability into ionic and polar models [49]. Unfortunately, simulation approaches using
polarizable models require either the minimization at every step of a polarization energy functional
or the inclusion into the model of charged shells [50]. These last represent electronic degrees of
freedom and react to electric fields on a time scale much faster than that of ionic vibrations [51]. Both
methods are significantly at a disadvantage with respect to cases in which the potential energy is an
explicit function of the atomic coordinates, and the simulation of systems bound by a combination
of covalent and ionic forces appears to be split between oversimplified pair potential models and
ab initio approaches.

6. Force Fields for Molecular Systems

Although every material ultimately consists of atoms, many systems are more easily understood
as being made of molecules.

Modeling the PES of small and relatively unreactive species, such as Ny, O, CO, CO,, but, also,
PFg, BF4, BHy, efc., requires only a slight extension of the pair-potential picture. Each molecule is
represented by a small number of interaction centers, which may or may not coincide with atoms in
number and position. The intra-molecular configuration is enforced by constraints representing rigid
bonds or, less often, by harmonic springs, while centers on different molecules interact pair-wise.
Because of their simplicity, models for small inorganic molecules have been used since the early
days of computer simulation. Perhaps the most remarkable observation concerning these systems
is that the quantitative details of their PES are still under investigations and require surprisingly
sophisticated models to be reproduced [52,53].

Conspicuously absent in the list of small unreactive and supposedly simple molecules is water,
whose peculiar properties and special role have motivated an extraordinary modeling effort, which is
discussed separately in Section 7.

A specialized subfield of modeling simple species concerns systems in which a weakly bound
molecular fluid is physisorbed on an inert solid surface, such as MgO, mica, graphite and flat or
stepped transition metal surfaces. In this case, the effect of the solid substrate on the molecular fluid
often is represented as an external field. In the case of crystal surfaces, the in-plane dependence of
the field strength can be expanded in plane waves, whose wave vectors reflect the periodicity and
symmetry of the surface lattice [54].
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6.1. Organic Molecular Systems

In many respects, organic molecular systems are not so different from any other molecular
systems, but the range and impact of their applications together with the explosive expansion of
simulation in bio-physics and bio-chemistry amply justify a separate discussion. Systems of interest
in this context include polymers, hydrocarbons, sugars, cellulose, efc., but also the endless variety
of biological molecules, from phospholipids to proteins and nucleic acids. Other molecular organic
systems of biological interest include drugs, simple nutrients, signal molecules, such as hormones,
metabolic species, such as ATP, GTP, NADP, coenzymes, including vitamins, and prosthetic groups.

The modeling and simulation of systems of this kind arguably is the computational condensed
matter activity with the largest economic relevance, both directly via the commercialization of
packages and force fields and indirectly through the impact it has on applied research.

Despite the complexity of the structures they form, the PESs of organic systems turns out to
be approximated fairly well by simple analytic expressions. First of all, the organic and biological
species of interest are made primarily of light elements, forming strong covalent bonds through their
s and p orbitals, giving origin to closed shell molecules. Systems of this kind, therefore, can be
thought of as consisting of atoms connected by a fixed topology of bonds, with inter-molecular, i.e.,
non-bonded, interactions consisting of pair-wise Coulomb and dispersion forces. Because of their
sp character, intra-molecular angular forces are relatively simple. Whenever d electron metals are
involved, as in metal centers and in prosthetic groups, modeling becomes far more challenging.

In the standard cases, the PES of organic and biological systems is written as the sum of

contributions from bonded (U}) and non-bonded (U,,;) interactions:
U=U,+U,y (17)

The bonded energy, in turn, is given by the sum of two-, three- and four-body terms from atoms
joined by one ({ij}), two ({ijk}) and three ({ijkl}) consecutive covalent bonds:

ZKS R R Z KL]b ijk — 'ij Z zjkl + Cos (n¢1jkl - &zyklﬂ (18)
{Z]} {zgk} {Ukl}

K i K; b ik and K T, are suitable force constants; RZ], Owk, Q%kl and n reflect the length, bending and
dihedral angles of unstrained bonds. The sub-indices, ij, efc., indicate that each of these parameters
depends on the chemical identity of the atoms involved. The form for the dihedral contribution in
Equation (18) is just one of a few different expressions used in popular force fields, while the choice
for stretching and bending terms is more uniform.

Non-bonded interactions are written as.

471'602 qij +Z4 €ij

I i#j
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where the {¢;} are atomic charges, Coulomb forces are assumed to be acting in vacuum and o;; and

€;; are suitable coefficients for the dispersion interaction. The prime on each sum indicates that pairs
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of atoms separated by one and two consecutive bonds are excluded, and the contribution from pairs
separated by three consecutive bonds might be reduced.

The remarkable and, to same extent, unique property of the PES of organic and biological systems
is that the bonds, whose properties are described in Equation (18), are fairly transferable, meaning
that the equilibrium length, stiffness, efc., of a given organic bond is nearly the same in a large
number of homologous compounds. Highlighting these similarities and exploiting them to endow
the model with broad transferability is the most challenging and most rewarding part of modeling
organic molecular systems.

The parametrization and, especially, validation of these potentials may require sizeable
computations and are the playground of large collaborations, since it requires the convergence
of several types of complementary expertise. Any single system might be analyzed by ab initio
computations to derive intra-molecular force constants and atomic charges. These need to be
complemented by suitable coefficients for the dispersion part, which are usually obtained by fitting
measured properties, such as the equilibrium density and enthalpy per molecule or the molecular
diffusion constant.

Generic potentials covering large classes of compounds and widely used by the community
include Amber [55], CHARMM [56], OPLS [57] and Gromos [58]. More specialized
parameterizations, tuned on the properties of specific families of compounds, are too many to
be listed.

In many respects, the most uncertain part of the parametrization is the choice of coefficients for
the non-bonded interactions. The definition of atomic charges is not unique, and different methods
provide fairly different results. The most popular approach [59] attributes charges by fitting the
electrostatic potential outside gas-phase molecules, as provided by ab initio computations. The
method is physically sound, but the fit becomes ill conditioned whenever the molecular size exceeds
~ 15-20 atoms or when the geometry is compact, thus reducing the number of multipolar momenta
whose modulus is significantly different from zero. Constraints and minimum conditions on the
size of individual charges do improve the fit [60], but the choice of these parameters remains fairly
uncertain. For each individual system, the error introduced by the choice of the charge may be
compensated for by the selection of the dispersion coefficients. In fact, it has been observed many
times that it was possible to accurately reproduce the target properties of condensed phases such
as the density or the molecular diffusion even starting from the fairly different charges provided by
different methods. Unfortunately, this cancellation of errors limits the transferability of the potential,
since an equivalent compensation might not occur when a given organic molecule is transferred into
a different environment.

Especially for large biological systems, computational cost considerations have motivated
approximations and shortcuts that might reduce the size of the simulated system. One obvious
saving is obtained by representing CH, and CHj3 groups in aliphatic chains by a single particle.
This united-atoms approximation is fairly well justified, since these groups are small and and the
non-bonded potential arising from them is fairly spherical. Moreover, the motion of hydrogen in

each of these groups is frozen by quantum effects up to fairly high temperature.
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A second more drastic approximation concerns systems in solution. Since, especially in
biochemistry, one is interested in the properties of the solute, implicit solvent models [61] have
been developed to replace the effect of the solvent by suitable modifications of the solute force field.
In many respects, implicit solvent models are a special case of coarse graining and, as such, are left
out of our discussion.

In summary, the force field modeling of organic and biological systems is a largely successful
enterprise, validated by a vast number of applications and supporting the research of a large portion of
the simulation community. Furthermore, in this case, and almost needless to say, the vast simulation
activity has highlighted many cases of inaccuracies or outright failures. The general feeling, however,
is that the scale of most of these simulations is too large to allow, at present, the usage of significantly
more sophisticated and more expensive approaches. Polarizability is likely to be the single most
relevant missing ingredient, but the available methods to include it into simulations are still fairly
expensive, and for this reason, explicitly polarizable models have been used only for a limited number
of large-scale studies.

At present, a very active research field is the development of force fields for organo-metallic
complexes, which represent prosthetic groups in proteins or active groups in a variety of organic
opto-electronic devices and are important also for homogeneous catalysis. Peculiar difficulties are
represented by the variety of coordination numbers, sometimes corresponding to different spin states,
thus pointing to multiple PESs fairly close in energy. Moreover, the structure of organo-metallic
complexes is characterized by the importance of quantum mechanical effects, such as Jahn-Teller,
or by the so-called trans influence, defined as the “tendency of a ligand to selectively weaken
the bond trans to itself” [62]. Models to include these effects in empirical PES models might
turn out to be too complex to be used in practice. A more promising alternative is provided by
QM/MMapproaches, using classical force fields for most of the system and resorting to ab initio
methods for the challenging portion around the metal center.

An intriguing subset of mainly, but not exclusively, organic compounds is represented by the
so-called room temperature ionic liquids [63], defined as molecular ionic systems whose melting
temperature is below 100°. Prototypical systems are made by an alkane substituted imidazolium
cation, joined to an organic or inorganic anion. Systems of this kind are relevant here, not only
because of the intense simulation activity that concerns them, but mainly because they provide a
bridge between different classes of bonding and, thus, pose special modeling problems.

The bulk of the extensive simulation work carried out at present relies on Amber-like force
fields, with specialized parameterizations (see, for instance, [64,65]). Models of this kind are fairly
successful, but issues concerning polarizability and the attribution of partial charges to atoms become
particularly important for these systems. Despite these difficulties, a number of simulations have
successfully addressed the properties of very complex systems, consisting of room temperature
ionic liquids in combination with a variety of solvents and neutral organic compounds, including
bio-molecular species (see Figure 3).

A few carbon systems, such as fullerenes, carbon nanotubes and graphene, lie at the boundary

between inorganic and organic species and even blur the distinction between covalent and metal
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character. Not surprisingly, systems of this kind have been represented by a variety of models, from
Tersoff-Brenner to a molecular force field, such as those described in this section.

Figure 3. Snapshot from a molecular dynamics simulation of a room temperature
1onic liquid/water solution at 0.5 M concentration in contact with a POPCphospholipid
bilayer [66]. Green balls: [Cl]™; gray-silver molecules: [bmim]*. wireframe molecules:
POPC. Water has been removed to highlight the incorporation of [bmim]* cations into
the phospholipid bilayer.

7. Water

Because of its fundamental role in life and of its widespread and generally benign presence in
nature, water has always been the object of interest and fascination. In this respect, computational
physicists and chemists are no exception, although the reasons for their interest are somewhat
different from those of the rest of humankind. A number of measurements have highlighted a wide

variety of peculiarities, if not anomalies, in the properties of water [67]. These include the surprising
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expansion of water upon freezing, the density anomaly observed at 4 °C at ambient pressure, and,
more in general, the non-monotonic variation of several physics-chemical properties in the vicinity
of this remarkable density maximum. Other peculiar features consist in the wide temperature range
of super-cooling, the high liquid-vapor critical temperature and the large value of the latent heat of
the liquid water-ice transition.

To a large extent, these anomalous behaviors are embodied into the PES of water systems and
arise from the strength and directionality of the hydrogen bond network that provides the bulk of
water cohesion. In part, however, they are due to the light mass of the water molecule, causing
non-negligible quantum effects that influence the properties of hydrogen bonds. Heavy water, for
instance, is already somewhat different from ordinary water, so much that D,O is known to have
peculiar and generally adverse biological effects. This duality of potential energy versus quantum
mechanical effects poses apparent and significant problems to modeling [68]. Potentials tuned on the
exact PES of water do not reproduce its properties when used in a classical simulation. On the other
hand, potentials tuned on experimental properties of water do not necessarily reflect the details of the
exact PES.

Work to provide a quantitative and comprehensive description of water properties is still in
progress [69,70]. In the meantime, a vast number of simulations in which water is the unique
or an essential component are being carried out with a variety of simple potentials, reflecting the
basic atomistic and electronic structure of the water molecule. Two major families are in use:
TIPnP [71-73], with n = 3, 4 and 5, and SPC [74-77], both based on fixed charges (rigid ions)
and centers of short range interactions, joined by rigid or harmonic bonds.

Models of this kind allow the routine simulation by MD of systems of 50 x 10® water molecules
solvating whole proteins, covering times well in excess of 100 ns. Results are generally good, and
a large number of successful applications clearly validate these models, at least up to the accuracy
needed for these large-scale applications. However, it is fair to say that no single model of the rigid
ion type is able to provide a uniformly satisfactory account of water properties over a wide range
of regimes and thermodynamic conditions. Several of these models, in particular, do not display
the experimental density maximum of water or place it at (P, T)conditions far from the experimental
ones [69,70]. The liquid-vapor coexistence curve is also poorly predicted by rigid ion models, unless
the potential parameters are explicitly adjusted for this purpose. In such a case, however, the accurate
description of some other quantity might need to be sacrificed. The description of critical properties,
that are accurately known from measurements, are only moderately well reproduced [78].

Water clusters and droplets are another, distinct subfield of water research. Thermodynamic and
spectroscopic data are available from experiments, but are not sufficiently detailed to provide a full
description of structural and dynamical properties. In this case, state-of-the-art quantum chemistry
computations supplement the experimental information [79]. Once again, it turns out that rigid ion
models are only moderately successful in predicting their properties and usually fail to reproduce the
reduced binding of very small clusters. The oxygen-oxygen equilibrium distance in the water dimer,
for instance, is greatly underestimated by popular models, and its cohesive energy is correspondingly

overestimated. These discrepancies decrease in importance with increasing cluster size, but the
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convergence to the bulk cohesive properties, reliably described by current DFTmodels of water, is
fairly slow (See Table 1). In these small systems, the rigid-ion assumption, or, in other terms, the
lack of polarizability, again seems to be the major problem. The molecular dipole moment of water,
for instance, changes from ;¢ = 1.855 D in the gas phase molecule, to nearly 1+ = 3 D in ice and in
liquid water, but rigid ion models cannot reproduce this change. Moreover, within rigid-ion models,
hydrogen bonds have only a Coulombic origin, contradicting the results of experiments and quantum
chemistry computations showing that both Coulomb and covalent contributions are important [80]

and change in slightly different ways upon changing the aggregation state of water.

Table 1. Cohesive energy (kJ/mol per water molecule) of (H,O),, of cyclic water clusters
(H50),,, n = 3, 4, 5, 6, and of the cubic Dy form of (H,O)g computed by an SPC, rigid
ion model (SPC/Fw, [77]). Deviations from dispersion-corrected [81] DFT [82] results
are given in parentheses. Data are from [83].

n 2 3 4 5 6 8

PBE+vdW 12.06 25.95 34.48 36.09 36.82 45.28
SPC/Fw 14.35 26.66 33.44 35.10 35.67 40.69
[18.99%] [2.7%] [-3.0%] [-2.7%] [-3.1%] [—10.1%]

Somewhat surprisingly, the inclusion of polarizability into simple models has not resulted yet
into the systematic improvement of the description of the properties for extended water systems [84],
while it has been more successful for clusters.

All these difficulties have stimulated a large number of new attempts. It might be worth
mentioning the representation of electron polarizability via classical [85] and quantum [86] Drude
oscillators, the application to water [87] of the empirical valence band (EVB) theory [88] and the
usage of polarizable Thole models [89].

Ab initio modeling, discussed in more detailed below, will eventually provide the method
of choice to study water [90]. Until now, however, approaches of this kind using standard
approximations for the exchange-correlation energy (see next section) have given rather mixed
results [91].

8. The Ab initio Route

Over the last twenty years, the art of representing PES as a function of atomic coordinates has
seen its role increasingly challenged by the explosive growth of ab initio simulation methods.

As discussed in Section 2, the exact PES of a system made by N electrons evolving in the
field of K nuclei can be determined point by point by computing the energy eigenvalues of the

]:Iele Hamiltonian: R
Helewk({ri} ’ {Ra})
Ue({ri} [ {Ra})

Er({Ra}) = (20)



20

For any single choice of the {R,, } coordinates, a fairly extended array of quantum chemistry ab initio
methods, such as configuration interaction, Mgller-Plesset perturbation theory or coupled clusters,
are available to find all or a few of the lowest energy eigenvalues and eigenvectors of this so-called
standard problem in electronic structure computations.

For what concerns the direct application of ab initio methods to simulation, however, progress
came primarily through the advent of density functional theory, whose recognized theoretical and
practical foundation is provided by the Hohenberg-Kohn (HK) theorem [92] and by the seminal
paper by Kohn and Sham (KS) [93]. In a very schematic way, density functional theory in the
popular Kohn-Sham formulation represents the ground state electron density, p(r), in terms of
an auxiliary set of non-interacting electron orbitals {¢;(r),7 = 1,..., K}, generally known as the

Kohn-Sham orbitals: .
= | éilr) [ Q1)
i=1

To reproduce the exact density, the (unspecified) potential acting on the non-interacting electrons has
to be different from the one acting on their interacting counterpart. The properties of such a potential
and, in particular, its local, i.e., multiplicative nature are a corollary of the HKtheorem.

Then, according to KS, the system ground state energy is the minimum of the unique and

universal functional:
K

Buslp | {(Ra}] = —3 3 _(or| 7% ) + 3 [ FE0 / LR+ Uscl
i=1 2
where Ux¢[p] is the so-called exchange correlation energy, a functional of the electron density, p(r),
which also contains a small fraction of the kinetic energy of the interacting electrons. Minimization
of Equation (22) under the constraint of ortho-normality for the Kohn-Sham orbitals results in a set
of coupled partial differential equations for {¢; }.

Methods to solve this problem have been developed and discussed in a vast numbers of
papers and textbooks [7,8]. The accuracy of the solution depends on the functional used to
approximate Uy [p], and on the choice of the basis used to represent the orbitals. Popular choices
for the exchange-correlation energy are generalized gradient corrections, such as PBE [82], or
hybrid functionals, such as B3LYP [94]. Basis sets range from atomic orbitals to wavelets, but
plane waves [95,96] and Gaussian functions [97] are probably the most widely used choice for
implementations tuned on molecular dynamics applications.

The solution of the standard problem in Equation (5) obtained through Equation (22) is restricted
to the ground state PES. Even within this limited scope, the PES itself can only be determined point
by point. Nevertheless, the KS energy expression can be used to evolve the atomic positions in time,
thus opening the way to MD, provided one can: (i) minimize Equation (22) fast enough; and (ii)
evaluate forces on the atoms through:

Fs = —Vr,Exslp | {Ra}] (23)

Towards this goal, the work of Car and Parrinello [9] has truly represented the single most
important breakthrough, whose major innovation consisted of the introduction of direct minimization
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approaches for Equation (22), exploiting the close similarity of the electronic configuration at two
successive steps of MD. Evaluation of forces, moreover, was greatly eased by the choice of plane
waves as the basis set to represent KS orbitals, whose unbiased coverage of the entire space allows
the application of the Hellmann-Feynman theorem in its simplest form to compute gradients of the
ground state energy [95,98].

Atoms evolve on the adiabatic PES implicitly defined by Equation (22) classically or quantum
mechanically. The validity of a classical time evolution for the atoms according to Newton’s
equations relies on conditions discussed in detail in Chapter [6]. Outside these conditions, one could
resort to a path integral approach, as done, for instance, in [99].

The method can be extended to simulate the atomic dynamics on the single PES of an
electronically excited state [100], provided the different symmetry of the ground and excited state
allows a meaningful definition of both PESs by density functional methods. As apparent from
the discussion of the Born-Oppenheimer approximation, multiple PESs close in energy make
it impossible to disentangle the ionic and electron dynamics, and in these cases, resorting to
semiclassical or to more accurate quantum mechanical approaches [6] is mandatory.

Somewhat simplified versions of the density-functional-based MD, resorting to localized bases
and relying on a self-consistent tight-binding approach have been developed [101,102] and provide
a cheaper and popular alternative to unrestricted DFT methods. The price to be paid is a slight
limitation in the quality of the solution, as well as occasional failures of the method.

The amazing success of density-functional-based simulation methods is due to the fact that they
represent the only method endowed with truly predictive power, which can be used for systems of
several hundred atoms, with up to a few thousand valence electrons. ab initio simulation, therefore, is
the method of choice whenever we cannot guess a suitable representation of the PES or when we need
an accuracy that cannot be provided by the empirical models that are available. Ab initio simulation is
also strictly required for systems whose structure is affected by electronic effects, such as Jahn-Teller,
and also enjoys a clear advantage in describing spin-polarization effects or systems undergoing
chemical transformations and non-stoichiometric compounds exhibiting different valence states.

Well known drawbacks are represented by the computational cost that limits the size and
especially the time scale of ab initio simulations, even though the reach of the method is constantly
expanding. At present, large computations running on state-of-the-art facilities may involve ~1, 000
atoms and ~4, 000-5, 000 valence electrons. Early problems with metals have been progressively
eased by approaches relying on the accurate step-by-step minimization of the KS energy functional.
Problems, however, remain with transition and, especially, rare-earth metals, for which standard
exchange-correlation approximations give unsatisfactory results, and quantum chemistry hybrid
methods fail fairly spectacularly [103]. Progress is being achieved with methods incorporating strong
correlation at some approximate level, such as LSD+U [104].

Difficulties remain also in the limit of weakly interacting molecular systems. Furthermore, in
this case, early methods lacked essential components, such as the dispersion interaction, which in
molecular systems provide a good portion of cohesion. Dispersion interactions are now increasingly

included in ab initio simulations [81], especially for molecular systems and for water, in particular.
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Results are encouraging, although not yet in full quantitative agreement with experiments. However,
the accuracy, reliability and computational efficiency of these methods are improving rapidly.

The major problem in current MD applications of ab initio methods arguably is that achieving
accurate results for difficult systems, such as transition metals and oxides or molecular systems,
still require an extensive preliminary calibration stage and system-specific exchange correlation
approximations [105], effectively spoiling the ab initio character of these methods. Perhaps more
importantly, these adjustments of the model decrease their reliability for systems exhibiting different
bonding types, since the improvement on one type might worsen the description of the other type.

Most of the cost of KS-DFT computations is due to the representation of the density in terms
of KS orbitals. Approaches relying on genuine density functional formalism, such as a refined
Thomas-Fermi method, could enjoy a huge computational advantage, but no successful scheme has
emerged during the years, and only very idealized Gordon-Kim approaches [106] have been used

with some success.

9. Conclusions

Explicit or implicit expressions of the PES of condensed matter systems represent the basis of
our ability to simulate them, possibly understanding and sometimes predicting their properties by
purely computational methods. For this reason, the development of approximations and efficient
representations of PES is the focus of an intense research effort, involving a sizable portion of the
computational community.

Such a modeling activity is an art as much as a science. It is a science in the systematic derivation
of interatomic forces from more fundamental interactions. It is an art in the invention of effective
ways to incorporate new ideas in physically transparent and computationally efficient mathematical
expressions. Like many other forms of art, it relies on a big deal of craftsmanship, required
in the stage of parameterizing force fields, validating them and incorporating them into widely
used computer packages, using sophisticated programming techniques, tuned on state-of-the-art
computational hardware.

It should be apparent from the discussion of the previous sections that the last thirty years have
seen an amazing enhancement of our ability to model a wide variety of systems at the atomistic
level, fueling the explosive growth of simulation studies, while, at the same time, being driven by it.
Equally amazing, however, is the extent of what we are still unable to model satisfactorily. Interfaces
between different materials, for instance, are intrinsically difficult to describe by simple approaches.
Excluding ab initio, no reliable, general and widely accepted model is available to simulate water and
electrolyte solutions in contact with neutral or charged electrodes, organic and biological molecules
on solid surfaces or the junction of metal and semiconducting phases. Even homogeneous phases,
such as non-stoichiometric oxides, still represent a formidable challenge for models suitable for
simulating 10% atoms over 100 ns or more. Systems undergoing chemical transformations are another
sore point, even though methods, such as ReaxFF and REBO, are achieving progress in this direction.

At this stage, strategic decisions on the directions and aims of the modeling effort have to take
into account the rapid growth of ab initio methods, which easily account for the intermixing of
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different bonding categories, cover electrostatic polarizability, provide information on excited state
PES and may include magnetic interactions and spin effects through their approximate description
of exchange.

The rapid progress of methods and computational equipment implies that the foreseeable future
spans at most ten to fifteen years from now. Over this time, empirical models of PES will continue to
play an important and useful role in the atomistic simulation of large systems (N > 10? atoms) over
times in excess of 100 ns. Most biochemistry and biophysics simulations fall into this class.

On the longer run, however, the general picture of modeling might indeed change. First of
all, the domain proper to atomistic modeling concerns the investigation of the microscopic details
underlying larger-scale phenomena. In this context, the scales of interest rarely exceed ~10% atoms
and correspondingly short times of less than ~10 ns. Beyond this range, simulation may become the
exclusive domain of coarse graining and multi-scale approaches, provided refined versions of these
methods are developed over the next few years.

Ab initio methods already represent the method of choice for systems for which we do not
have reliable approximations of their PES, for phenomena that can be represented by 100 to 1,000
atoms and that take place within a 50-100 ps time span. Mixed QM/MM approaches extend this
reach and represent the most appealing method to treat systems, such as protein reaction centers,
organometallic catalysts, efc., in which a small portion of a large system needs to be represented in
full chemical detail.

The parallel development of ab initio and of refined coarse graining and multi-scale methods,
therefore, could greatly shrink the role of empirical PES approximations in atomistic simulation.
Even these likely developments, however, might not mark the end of atomistic potential models,
since simple and transparent representations of PES will continue to provide the conceptual basis to
rationalize the properties of condensed matter systems in terms of atoms, of molecules and of their

microscopic interactions.
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1. Introduction

Ab initio molecular dynamics (AIMD) [1-6] has been greatly developed in the past few
decades, so that nowadays, it is able to quantitatively predict the equilibrium and non-equilibrium
properties for a vast range of systems. AIMD has become widely used in chemistry, biology,
materials science, efc. A coherent and comprehensive presentation of AIMD with both the basic
theory and advanced methods can be found in [7]. Most AIMD methods treat the nuclei as
classical particles following Newtonian dynamics (known as the time-dependent Born-Oppenheimer
approximation), and the interactive force among nuclei is provided directly from electronic structure
theory, such as the Kohn-Sham density functional theory [8,9] (KSDFT), without the need of using
empirical atomic potentials. KSDFT consists of a set of nonlinear equations that are solved at
each molecular dynamics time step self-consistently via the self-consistent field (SCF) iteration. In
Born-Oppenheimer molecular dynamics (BOMD), KSDFT is solved until full self-consistency for
each atomic configuration per time step. Since many iterations are usually needed to reach full
self-consistency and each iteration takes a considerable amount of time, until recently, this procedure
was still found to be prohibitively expensive for producing meaningful dynamical information. On
the other hand, if the self-consistent iterations are truncated before convergence is reached, it is often
the case that the energy of the system is no longer conservative, even for an NVE system. The error
in SCF iteration acts as a sink or source, gradually draining or adding energy to the atomic system
within a short period of molecular dynamics simulation [10]. This is one of the main challenges for
accelerating Born-Oppenheimer molecular dynamics.

AIMD was made practical by the ground-breaking work of Car-Parrinello molecular dynamics
(CPMD) [11]. CPMD introduces an extended Lagrangian, including the degrees of freedom of both
nuclei and electrons without the necessity of a convergent SCF iteration. The dynamics of electronic
orbitals can be loosely viewed as a special way for performing the SCF iteration at each molecular
dynamics (MD) step. Thanks to the Hamiltonian structure, numerical simulation for CPMD is stable,
and the energy is conservative over a much longer time period compared to that for BOMD with
non-convergent SCF iteration. When the system has a spectral gap, the accuracy of CPMD is
controlled by a single parameter, the fictitious electron mass, p. The result of CPMD approaches
that of BOMD as p goes to zero [12,13]. However, it has also been shown that CPMD does not work
as well for systems with a vanishing gap, for example, for metallic systems [12].

To reduce the cost of BOMD, in particular, the number of SCF iterations needed per MD time
step, a new type of AIMD method, the time reversible Born-Oppenheimer molecular dynamics
(TRBOMD) method has been recently proposed by Niklasson, Tymczak and Challacombe in [14].
The method has been further developed in [15-18]. The idea of TRBOMD can be summarized as
follows: TRBOMD assumes that the SCF iteration is a deterministic procedure, with the outcome
determined only by the initial guess of the variable to be determined self-consistently. For instance,
this variable can be the electron density, and the SCF iteration procedure can be simple mixing
with a fixed number of iteration steps without reaching full self-consistency. Then, a fictitious
dynamics governed by a second order ordinary differential equation (ODE) is introduced on this
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initial guess variable. The resulting coupled dynamics is then time-reversible and supposed to
be more stable, since it has been found that time-reversible numerical schemes are more stable
for long time simulation [19,20]. Besides TRBOMD, alternative ideas based on time-reversible
predictor-corrector methods [21] and Langevin dynamics [22,23] can also relax the requirement on
the accuracy of the force for AIMD simulation. For these methods, we refer the readers to a recent
review paper [24] for more information.

Although TRBOMD has been found to be effective and significantly reduces the number of SCF
iterations needed in practice, to the extent of our knowledge, there has been so far no detailed analysis
of TRBOMD, other than the numerical stability condition of the Verlet or generalized Verlet scheme
for time discretization [17]. Accuracy, stability, as well as the applicability range of TRBOMD
remain unclear. In particular, it is not known how the choice of SCF iteration scheme affects
TRBOMD. These are crucial issues for guiding the practical use of TRBOMD. The full TRBOMD
method for general systems is highly nonlinear and is difficult to analyze. In this work, we first focus
on the linear response regime, i.e., we assume that each atom oscillates around their equilibrium
position and the electron density stays around the “true” electron density. Under such assumptions,
we analyze the accuracy and stability of TRBOMD. We then extend the results to the regime where
the atom position is not near equilibrium using the averaging principle.

The rest of the paper is organized as follows. We illustrate the idea of TRBOMD and its analysis
in the linear response regime using a simple model in Section 2 and introduce TRBOMD for AIMD
in Section 3. We analyze TRBOMD in the linear response regime and compare TRBOMD with
CPMD in Section 4. The numerical results for TRBOMD in the linear response regime are given
in Section 5. We present the analysis of TRBOMD beyond the linear response regime, such as the

non-equilibrium dynamics in Section 6, and conclude with a few remarks in Section 7.

2. An Illustrative Model

To start, let us illustrate the main idea for a simple model problem, which provides the essence of

TRBOMD in a much simplified setting. Consider the following nonlinear ODE:
#(t) = f(x(t)) (D

where we assume that the right-hand side f(z) is difficult to compute, and it can be approximated
by an iterative procedure. Starting from an initial guess, s ~ f(x), the final approximation via the

iterative procedure is denoted by g(x, s). We assume the approximation, g(x, s), is consistent, i.e.,:

gz, f(x)) = [(x) 2

To numerically solve the ODE Equation (1), we discretize it by some numerical scheme; then, it
remains to decide the initial guess, s, at each time step. A natural choice of s would be g(z, s) from
the previous step, as x does not change much in successive steps. For instance, if the Verlet algorithm
is used and t;, = kAt with At being the time step, the discretized ODE becomes:

Tpy1 = 2£Ck — Tr_1+ (At)QQ((L'k, Sk) (3)

Sk+1 = 9(5% Sk)
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We immediately observe that the discretization scheme Equation (3) breaks the time reversibility of
the original ODE Equation (1). In other words, for the original ODE Equation (1), we propagate
the system forward in time from (z(ty), @(t9)) to (x(t1),@(¢1)). Then, if we use (x(t1),(t1)) as the
initial data at ¢ = ¢; and propagate the system backward in time to time ¢t = ¢,, we will be at the
state, (x(to), Z(to)). The loss of the time reversible structure can introduce large error in long time
numerical simulation [20]. This is the main reason why BOMD with non-convergent SCF iteration
fails for long time simulations [14]. To overcome this obstacle, the idea of TRBOMD is to introduce
a fictitious dynamics for the initial guess, s. Namely, we consider the time reversible coupled system:

i(t) = g(x(t), s(t))

0 @
§(t) = w(g(x(t),s(t)) — s(t))

where w is an artificial frequency. We analyze, now, the accuracy and stability of Equation (4) in
the linear response regime by assuming that the trajectory, x(t), oscillates around an equilibrium
position, z*. We denote by z(t) = xz(t) — z* the deviation from the equilibrium position and
s(t) = s(t) — f(z(t)), the deviation of the initial guess from the exact force term. Consequently,
the equation of motion (4) can be rewritten as (for simplicity we suppress the ¢-dependence in the

notation for the rest of the section):

*% = g(iL‘, S)
=~ 2 " -\ 2 / - ®)
§=w(g(x,s) —s) = f1(x)(&)" — f(x)@
where the term, — f”(x)(z)? — f'(x)#, comes from the term, f(z) in 5, by the chain rule.
In the linear response regime, we assume the linear approximation of force for x around z*:
f(z) ~ -z —2%) = Q%% (6)

where (2 is the oscillation frequency of z in the linear response regime. We also linearize g with
respect to s and x and dropping all higher order terms as:

6(z,5) = gl, f(2) +7)
~g(z, f(2) + gs(z, f(x))s (7)
~ — 0T + go(z*, f(2*)5

where g; denotes the partial derivative of g with respect to s, and the consistency condition (2) is
applied. We then have:

g(x,s) —s = (g(z, f(x) +5) = f(x)) — (s = f(2))
~ (gs(x*7 f(l'*)) - 1>§

In accord with notations used in later discussions, let us denote:

L=gs(a®, f(27), K=1=gs(a" f(z")) ©
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with which the linearized system of Equation (5) becomes:

&2 (7 e c 7 7
az (’5) - (f'(x*)sz? —f'<x*)£—w2/c> <'§> =4 (:5) (10)

Note that when the force is computed accurately, i.e.,

g(x,s) = f(x), Vs (11
we have:

L=0, K=1 (12)
meaning that the motion of 7 is decoupled from that of 5, and x follows the exact harmonic motion in
the linear response regime with the accurate frequency, 2. When the force is computed inaccurately,
7 is coupled with s in Equation (10). Actually, we can solve (10) analytically, and the eigenvalues of

A are:

<A§> (VTP + K T R — KPR — L' (27) — Ku? — ) "

Aa) 3 (VLT + K + Q2 — AKX — Lf (o) - Ku? — 02)

2

Then, the frequencies of the normal modes of the ODE are Q=./ —Agand w = \/—Ag, respectively.
Assume w? > Q? and expand the solution to the order of O(1/w?); we have:

3 (@) oy 4
QzQ(l— 507 LK +O(1/w?) (14)
Similarly, the frequency for the other normal mode, which is dominated by the motion of s, is:
/ *
o =VKw (1 + f2(x2)£IC1) + O(1/w®) (15)
w

It is found that one of the normal modes of Equation (10) has frequency Q ~ Q. We can therefore
measure the accuracy of Equation (4) using the relative error between Q and . Furthermore, if the
dynamics (4) is stable in the linear response regime, it is necessary to have K > 0.

From Equation (14), we conclude that if the time reversible numerical scheme (4) is used for
simulating the ODE Equation (1) and if we neglect the error due to the Verlet scheme, the error
introduced in computing the frequency, €2, is proportional to w™2. This seems to indicate that very
large w (i.e., very small time step At) might be needed to obtain accurate results. Fortunately, the
w2 term in Equation (14) has the prefactor, f'(z*)LK ™. Equation (6) shows that f'(z*) ~ —Q2,
which is small compared to w?. If g,(z*, f(2*)) is small, then K ~ 1, and the accuracy of €2 is
determined by L or g¢(z*, f(2*)), which indicates the sensitivity of the computed force with respect
to the initial guess, or the accuracy of the iterative procedure for computing the force. If a “good”
iterative procedure is used, gs(z*, f(x*)) will be small. Therefore, the presence of the term, L,
allows one to obtain relatively accurate approximation to the frequency, {2, without using a large w.
The same behavior can be observed when using TRBOMD to approximate BOMD (vide post).

Finally, we remark that even though Equation (1) is a much simplified system, it will be seen
below that for BOMD with M atoms and NV interacting electrons, the analysis in the linear response

regime follows the same line, and the result for the frequency is similar to Equation (14).
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3. Time Reversible Born-Oppenheimer Molecular Dynamics

Consider a system with M atoms and /N electrons. The position of the atoms at time ¢ is denoted
by R(t) = (Ry(t),..., Ry(t))T. In BOMD, the motion of atoms follows Newton’s law:

IE(R()) (16)

mi (1) = [RE) = 5

where E(R(t)) is the total energy of the system at the atomic configuration, R(¢). In KSDFT, the
total energy is expressed as a functional of a set of Kohn-Sham orbitals, {¢;(x)}¥ ;. To illustrate
the idea with minimal technicality, let us consider for the moment a system of /N electrons at zero
temperature. The energy functional in KSDFT takes the form:

E({x(2)}, R Z / V(@) de + / () Vion (1 R) i + B[]

:Z ()]

The first term in the energy functional is the kinetic energy of the electrons. The second term

a7

contains the electron-ion interaction energy. The ion-ion interaction energy usually takes the form
Dor<s | RZI’ Zé E where Z; is the charge for the nucleus, /. The ion-ion interaction energy does not
depend on the electron density, p. To simplify the notation, we include the ion-ion interaction
energy in the Vi,, term as a constant shift that is independent of the x variable. The third term
does not explicitly depend on the atomic configuration, R, and is a nonlinear functional of the
electron density, p. It represents the Hartree part of electron-electron interaction energy (h) and the
exchange-correlation energy (xc) characterizing many body effects. The energy, F(R), as a function

of atomic positions is given by the following minimization problem:

E(R) :w%n E({¢i()}E;R)

(18)
[vl@u@)de =5 i =1.0N

We denote by {1;(z; R)}Y, the (local) minimizer and p*(z; R) = 3. | [);(x; R)|?, the converged
electron density corresponding to the minimizer (here, we assume that the minimizing electron
density is unique). Then, the force acting on the atom I is:

fRep(asR)) = 22 = [y DB (19)
In the physics literature, the force formula in Equation (19) is referred to as the Hellmann-Feynman
force. The validity of the Hellmann-Feynman formula relies on the electron density, p*(z;R),
corresponding to the minimizers of the Kohn-Sham energy functional. Since Ej..[p| is a nonlinear
functional of p, the electron density, p, is usually determined through the self-consistent field (SCF)
iteration as follows.
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Starting from an inaccurate input electron density, p™, one first computes the output electron
density by solving the lowest /V eigenfunctions of the problem:

1 .
(_an +V(z; R, Pm)> Vi = gt (20)
with: S Finelf]
V(R p) = Vi R) + =255 (1) @
and the output electron density, p°"*, is defined by:
N
P () = Flp"(w) = Y [u(a)]” (22)
i=1

Here, the operator, I, is called the Kohn-Sham map. p°"* can be used directly as the input electron
density, pi“, in the next iteration. This is called the fixed point iteration. Unfortunately, in most
electronic structure calculations, the fixed point iteration does not converge, even when p™™ is very
close to the true electron density, p*. The fixed point iteration can be improved by the simple mixing

method, which takes the linear combination of the electron density:
OépOUt + (1 o a)pin (23)

as the input density for the next iteration with 0 < «o < 1.  Simple mixing can
greatly improve the convergence properties of the SCF iteration over the fixed point iteration,
but the convergence rate can still be slow in practice. There are more complicated SCF
iteration schemes, such as the Anderson mixing scheme [25], the Pulay mixing scheme [26]
and the Broyden mixing scheme [27]. Furthermore, preconditioners can be applied to the
SCF iteration to enhance convergence properties, such as the Kerker preconditioner [28].
More detailed discussion on the convergence properties of these SCF schemes can be found
in [29]. In the following discussions, we denote by pscr(z;R,p) the final electron density
after the SCF iteration starting from an initial guess, p. We assume that pscp satisfies the
consistency condition:

pscr(z; R, p" (1 R)) = p"(z; R) (24)

If a non-convergent SCF iteration procedure is used, pscr(z; R, p) might deviate from p*(x; R).
Such deviation introduces error in the force, and the error can accumulate in the long time molecular
dynamics simulation and lead to inaccurate results in computing the statistical and dynamical
properties of the systems.

The map, pscr, 1s usually highly nonlinear, which makes it difficult to correct the error in the
force. The TRBOMD scheme avoids the direct correction for the inaccurate pgcr, but allows the
initial guess to dynamically evolve together with the motion of the atoms. We denote by p(z,t)
the initial guess for the SCF iteration at time t. When p(-,¢) is used as an argument, we also
write pscr(z; R(t), p(t)) = pscr(x; R(t), p(-,t)). The Hellmann-Feynman formula (19) is used
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to compute the force at the electron density, pscr(z; R(%), p(t)), even though p*(z;R(t)) is not
available. Thus, the equation of motion in TRBOMD reads:
I aVvion x; R t
Bty = SR pscn o RO, p(0) = = [ pscn (s R (0, ple) 2SR
OR; (25)
(. t) = w(pscr(z R(E), p(t)) — p(a, 1)

It is clear that TRBOMD is time reversible. The discretized TRBOMD is still time reversible if
the numerical scheme is time reversible. For instance, if the Verlet scheme is used, the discretized

equation of motion becomes:

Riftien) = 2R1(0) — Rilti) — o (R{1): pscr (07 R (1), (1)

(@, tin) = 2p(a,t) — p(, 1) + AW (pser (2 R(t), p(te)) — p(x, 1)

(26)

which is evidently time reversible. The artificial frequency, w, controls the frequency of the fictitious
dynamics of p(z, t) and is generally chosen to be larger than the frequency of the motion of the atoms.
The numerical stability of the Verlet algorithm requires that the dimensionless quantity, k := (wAt)?,
be small [30]. When x is fixed, w controls the stiffness or, equivalently, the time step At = ‘/TE for
the equation of motion (26).

Let us mention that TRBOMD is closely related to CPMD. In CPMD, the equation of motion is
given by:

mBr(t) = f1(R(t), p(t)) = — / (%) %};IR@))

i) = <" OD 4 57 e

dz
(27)

where 4 is the fictitious electron mass for the fake electron dynamics in CPMD and A’s are the
Lagrange multipliers determined so that {¢;(¢)} is an orthonormal set of functions for any time. The

CPMD scheme (27) can be viewed as the equation of motion with an extended Lagrangian:

La(R R0 = X FIP+ 35 [16P - BR.(0)) (28)
I i
which contains both ionic and electronic degrees of freedom. Therefore, CPMD is a Hamiltonian
dynamics and, thus, time reversible.

Note that the frequency of the evolution equation for {¢);} in CPMD is adjusted by the fictitious
mass parameter, ;. Comparing with TRBOMD, the parameter, j, plays a similar role as w2, which
controls the frequency of the fictitious dynamics of the initial density guess in SCF iteration. This
connection will be made more explicit in the sequel.

We remark that the papers, [16,17], took a further step in viewing TRBOMD by an extended
Lagrangian approach in a vanishing mass limit. This was also interpreted differently in [24] by
starting from a Lagrangian and, then, using inaccurate forces in the equation of motions. However,

unless a very specific and restrictive form of the error due to non-convergent SCF iterations is
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assumed, the equation of motion in TRBOMD does not have an associated Lagrangian in general.
The connection to Lagrangian dynamics remains formal, and hence, we will not further explore
it here.

4. Analysis of TRBOMD in the Linear Response Regime

In this section, we consider Equation (25) in the linear response regime, in which each atom, I,
oscillates around its equilibrium position, [2;. The displacement of the atomic configuration, R, from
the equilibrium position is denoted by f{(t) := R(t) — R*, and the deviation of the electron density
from the converged density is denoted by j(z,t) := p(z,t) — p*(z: R(t)). Both R(t) and p(x, t) are
small quantities in the linear response regime and contain the same information as R(¢) and p(z, t).
Using R(t) and j(z,t) as the new variables and noting the chain rule due to the R-dependence in
p*(x; R(t)), the equation of motion in TRBOMD becomes:

i) = — [ pscr (o R, o) e B g

5(% t) = w?(psor(z; R(t), p(t)) — p(x,1)) — Z a—RIRI(t) (29)

7 y&r @ R(t)
; OR;OR;

To simplify notation, from now on, we suppress the t¢-dependence in all variables, and
Equation (29) becomes:

Wion(z; R)

mR; = —/PSCF@ R, p) OR, da (30a)
M 8 « . 82 *

N2 . _ _ D .

) = (s o) = ple) = Y- 58 RO I}J Rl ) G0

In the linear response regime, we expand Equation (30) and only keep terms that are linear with
respect to R and p. All the higher order terms, including all the cross products of R;, Ry and p, will
be dropped. First, we linearize the force on atom I with respect to p as:

J1(R; pscr(2; R, p))

' OVin(7; R)
—/PSCF(I,R; P)—aRI dz
aVzon x; R a‘/;on X, R (31)
=- / o R) el R) g / (pscr (R, 5 (R) + 7) — p (2 R)) LonlBiR)
OR; OR;
~ x( . 6‘/;011(:”; R) 5PSCF . ~ av}on(l’; R)
[ R e — [ R Ry j)

Next, we linearize with respect to R; we have:

OVion(7; R,
/P*($§R)+Rl A~ —m Z DisRy (32)
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Here, the matrix, {D;,}, is the dynamical matrix for the atoms. For the last term in Equation (31),
we have:

/5PSCF ~ OVin(z; R) dz dy

5 (z,y; R)p(y) oR,

- 5PSCF D\ awon(va*) (33)
N/ 5p (z,y; R )P(y)a—RI dz dy

= mﬁj[ﬁ]

and 8Vvion (x7R )

The last equation in Equation (33) defines a linear functional, £;, with 5”;% (z,y; R*) Sk

evaluated at the fixed equilibrium point, R*.

In the linear response regime, the operator, ‘5%5%(35, y; R*), carries all the information of the
SCF iteration scheme. Let us now derive the explicit form of 5’?%(30, y; R*) for the k-step simple
mixing scheme with mixing parameter (step length) o (0 < o < 1). If £ = 1, the simple mixing

scheme reads:

pscr(; R, p*(R) + ) = aF[p"(R) + 5] + (1 — a)(p"(R) + p) (34)
L i R) = 8o~ ) a (B =)~ () 65)

Y
refereed to as the dielectric operator [31,32]. To simplify the notation, we would not distinguish

Here, §(z) is the Dirac ¢-function, and the operator, <(5(x —y) - o (a:,y)) = e(x,y), is usually

the kernel of an integral operator from the integral operator itself. For example, (x,y) is
denoted by €. Neither will we distinguish integral operators defined on continuous space from
the corresponding finite dimensional matrices obtained from certain numerical discretization. This
slight abuse of notation allows us to simply denote f(z) = [A(z,y)g(y)dy by f = Ag
as a matrix-vector multiplication and to denote the composition of kernels of integral operators
C(z,y) = [dzA(x,z)B(z,y) by C = AB as a matrix-matrix multiplication. Using such notations,

Equation (35) can be written in a more compact form:

dpscr
op

=1 —oac (36)

Similarly, for the k-step simple mixing method, we have:

dpscr

_ . k
el (1— ae) 37)

In general, the dielectric operator is diagonalizable, and all eigenvalues of ¢ are real. Therefore, the

linear response operator, ‘S'”g%, for the k-th step simple mixing method is also diagonalizable with

real eigenvalues.
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From Equation (30b), we have:

pscr(z; R, p) — p(x)
= (pscr(7; R, p+ p"(R)) — p*(2;R)) — (p(x) — p*(7; R))

%/&§T@%Rﬁ@My—ﬂ@

(38)
~ / 5?“ (z,y; R")ply) dy — p(x)
p
—— [ Kt dy
Here, we have used consistency condition (24). The last line of Equation (38) defines a kernel:
K(w,y) =d(z —y) - 5’?? (x.5:R") (39)

which is an important quantity for the stability of TRBOMD, as will be seen later. Using

Equations (33) and (38), the equation of motion, (30), can be written in the linear response regime as:

M ~
—> "DisR;+ L[]

J=1
=~ — 2 e R* . D 153
pla) =~ [ K7 ;jRa:>( ;;u&+mm>
Define:
L= (L, L))" (41)
then Equation (40) can be rewritten in a more compact form as:
R=-DR+ L[, (422)
= —w /IC z,y)p(y) dy — o0 (x; R™) ' (—Df{—i— ﬁ[[)]) (42b)
OR "

Now, if the self-consistent iteration is performed accurately regardless of the initial guess, i.e.,

pscr(r; R, p) = p*(z;R), Vp (43)

which implies:
dpscr
op

The linearized equation of motion (42) becomes:

(z,y;R") =0, L£=0, K(z,y)=0d(z—y) (44)

R = -DR, (45a)

‘ T
Mmz—wmm+(§gaRﬁ)DR (45b)

Therefore, in the case of accurate SCF iteration, according to Equation (45a), the equation of
the motion of atoms follows the accurate linearized equation and is decoupled from the fictitious
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dynamics of p. The normal modes of the equation of motion of atoms can be obtained by

diagonalizing the dynamical matrix, D, as:
Dv;=Qv;, l=1,....M (46)

The frequencies, {€%;} (£, > 0), are known as phonon frequencies. When the SCF iterations are
performed inaccurately, it is meaningless to assess the accuracy of the approximate dynamics (42)
by direct investigation of the trajectories, ﬁ(t) since small difference in the phonon frequency can
cause large error in the phase of the periodic motion, é(t), over a long time. However, it is possible
to compute the approximate phonon frequencies, {ﬁl} from Equation (42) and measure the accuracy
of TRBOMD in the linearized regime from the relative error:

Q —
Q

(47)

err; =

The operator, K(x,y), in Equation (39) is directly related to the stability of the dynamics.
Equation (42b) also suggests that in the linear response regime, the spectrum of /(x, y) must be on
the real line, which requires that the matrix, é% (z,y; R*), be diagonalizable with real eigenvalues.
This has been shown for the simple mixing scheme. However, we remark that the condition that all
eigenvalues of IC(z, y) are real may not hold for general preconditioners or for more complicated SCF
iterations (for instance, Anderson mixing). This is one important restriction of the linear response
analysis. Of course, this may not be a restriction for practical TRBOMD simulation for real systems.
We will leave further understanding of this to future works.

Let us now assume that all eigenvalues of KC are real. The lower bound of the spectrum of K,
denoted by A (K), should satisfy:

Awin (KC) > 0 (48)
Equation (48) is a necessary condition for TRBOMD to be stable, which will be referred to as the

stability condition in the following. Furthermore, w should be chosen large enough in order to avoid
resonance between the motion of R and p. Therefore, the adiabatic condition:

Amax(D)  max; 0?
)\min(’C) B )\min(lc>

w? > (49)

should also be satisfied. Due to Equation (49), we may assume ¢ = 1/w? is a small number and

expand (); in the perturbation series of € to quantify the error in the linear response regime. Following

ap* ’
R) V!

where K~! is the inverse operator of K (K is invertible, due to the stability condition). Since

the derivation in the appendix, we have:

IC_l

~ 1
Ql = Ql (]_ — 2—w2Vérﬁ

) +O(1/w?) (50)

w = v/k/At, Equation (50) suggests that the accuracy of TRBOMD in the linear response regime is
(At)?, with the pre-constant mainly determined by L, i.e., the accuracy of the SCF iteration.

Let us compare TRBOMD with CPMD. It is well known that CPMD accurately approximates
the results of BOMD, provided that the electronic and ionic degrees of freedom remain adiabatically
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separated, as well as the electrons stay close to the Born-Oppenheimer surface [12,13]. More
specifically, the fictitious electron mass should be chosen, so that the lowest electronic frequency
is well above ionic frequencies:

< & (51)
max; (7

where Eg,, is the spectral gap (between the highest occupied and the lowest unoccupied states) of
the system, and recall that {2; is the vibration frequency of the lattice phonon. For CPMD, a similar
analysis in the linear response regime as above (we omit the derivation here) shows that:

Q= Q1+ O(w) (52)

under assumption (51). The adiabaticity (51), as well as the role of the fictitious electron mass
on physical quantities have been investigated extensively in [33—-35]. The linear relationship (52)
between the fictitious electron mass and the dynamical frequencies of CPMD was also presented
in [34].

Note that condition (51) implies that CPMD no longer works if the system has a small gap or
is even metallic. The usual work-around for this is to add a heat bath for the electronic degrees
of freedom in CPMD [33], so that it maintains a fictitious temperature for the electronic degree of
freedom. Nonetheless, the adiabaticity is lost for metallic systems, and CPMD is no longer accurate
over long time simulation. In contrast, as we have discussed previously, TRBOMD may work for
both insulating and metallic systems without any modification, provided that the SCF iteration is
accurate and no resonance occurs. This is an important advantage of TRBOMD, which we will
illustrate using numerical examples in the next section.

When the system has a gap, we can take p sufficiently small to satisfy the adiabatic separation
condition (51). Compare Equation (52) with Equation (50); we see that ;1 in CPMD plays a similar
role as w~? in TRBOMD. The accuracy (in the linear regime) for CPMD and TRBOMD is the first
order in ;1 and w2, respectively. At the same time, as taking a small y or large w increases the
stiffness of the equation, the computational cost is proportional to ;! and w?, respectively.

Let us remark that the above analysis is done in the linear response regime. As shown in [12,13],
the accuracy of CPMD, in general, is only O(p/?) instead of O (1) for the linear regime. Due to the
close connection between these two parameters, we do not expect O(w™2) accuracy for TRBOMD
in general, either. Actually, as will be discussed in Section 6, if the deviation of atom positions from
equilibrium is not so small that we cannot linearize the nuclei motion, the error of TRBOMD in
general will be O(w™1).

5. Numerical Results in the Linear Response Regime

In this section, we present numerical results for TRBOMD in the linear response regime using
a one-dimensional (1D) model for KSDFT without the exchange correlation functional. The model
problem can be tuned to exhibit both metallic and insulating features. Such a model was used before
in mathematical analysis of ionization conjecture [36].
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The total energy functional in our 1D density functional theory (DFT) model is given by:

B({ui(n)}¥ i R Z/'—wz

dx+% / K (2, 5)(p(@)+m(x; R)) (p(y)+m(y; R)) da dy

(33)
with p(z) = Zf\il |1p;()|*. The associated Hamiltonian is given by:
HR) = -2 4 [k )+ m(y: R)) d (54)
=573 (z,9)( m(y; y

Here, m(z;R) = S_1° ms(x — Ry), with the position of the /-th nucleus denoted by R;. Each
function, m;(z), takes the form:

2
Zr —2
I

e 20
\/ 27m%

where Z; is an integer representing the charge of the i-th nucleus. This can be understood as a local

(55)

my(x) = —

pseudopotential approximation to represent the electron-ion interaction. The second term on the
right-hand side of Equation (53) represents the electron-ion, electron-electron and ion-ion interaction
energy. The parameter, o, represents the width of the nuclei in the pseudopotential theory. Clearly,
as oy — 0, my(x) — —Z0(x), which is the charge density for an ideal nucleus. In our numerical
simulation, we set o; to a finite value. The corresponding m;(z) is called a pseudo charge density
for the 7-th nucleus. We refer to the function, m(x), as the total pseudo-charge density of the nuclei.
The system satisfies the charge neutrality condition, i.e.,

/p(m) +m(z;R)dz =0 (56)

Since [m;(z)dx = —Z;, the charge neutrality condition (56) implies:

M
/p(x)dx:ZZI:N (57)
=1

where N is the total number of electrons in the system. To simplify discussion, we omit the spin

degeneracy here. The Hellmann-Feynman force is given by:

om(z; R)
OR;

Instead of using a bare Coulomb interaction, which diverges in 1D, we adopt a Yukawa kernel:

- / K(2,9)(p(y) + m(y:R)) da dy (58)

2me eyl
K(oy) = 26— (59)
R€q
which satisfies the equation:
d? 4T
—'3—§f(( y) + KK (2, y) = 235($'—'y) (60)

As k — 0, the Yukawa kernel approaches the bare Coulomb interaction given by the Poisson
equation. The parameter, ¢, is used to make the magnitude of the electron static contribution
comparable to that of the kinetic energy.
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The parameters used in the 1D DFT model are chosen as follows. Atomic units are used
throughout the discussion unless otherwise mentioned. The Yukawa parameter, = 0.01, is small
enough so that the range of the electrostatic interaction is sufficiently long, and ¢ is set to 10.00.
The nuclear charge, Z;, is set to one for all atoms. Since spin is neglected, Z; = 1 implies that each
atom contributes to one occupied state. The Hamiltonian operator is represented in a planewave basis
set. All the examples presented in this section consists of 32 atoms. Initially, the atoms are at their
equilibrium positions, and the distance between each atom and its nearest neighbor is set to 10 au.
Starting from the equilibrium position, each ion is given a finite velocity, so that the velocity on the
centroid of mass is zero. In the numerical experiments below, the system contains only one single
phonon, which is obtained by assigning an initial velocity, vg < (1,—1,1,—1,---), to the atoms.
We denote by QR°f the corresponding phonon frequency. We choose vy, so that %mvé = kgTion,
where kg is the Boltzmann constant and 7}, is 10 K, to make sure that the system is in the linear
response regime. In the atomic unit, the mass of the electron is one, and the mass of each nuclei is set
to 42,000. By adjusting the parameters, {0}, the 1D DFT model model can be tuned to resemble
an insulating (with o; = 2.0) or a metallic system (with o; = 6.0) throughout the MD simulation.
Figure 1 shows the spectrum of the insulating and the metallic system after running 1,000 BOMD
steps with converged SCF iteration.

Figure 1. Spectrum for the insulator and metal with 32 atoms after 1,000
Born-Oppenheimer molecular dynamics (BOMD) steps with converged self-consistent
field (SCF) iteration. (a) Insulator; (b) metal.
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In the linear response regime, we measure the error of the phonon frequency calculated from
TRBOMD. This can be done in two ways. The first is given by Equation (50), namely, all quantities in
the big parentheses in Equation (50) can be directly obtained by using the finite difference method at
the equilibrium position, R*. The second is to explore the fact that in the linear response regime, there
is a linear relation between the force and the atomic position, as in Equation (32), i.e., Hooke’s law:

f[(tl) ~ —mZD[JEJ(tl) (61)
J
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holds approximately at each time step. Here, { f(t;)} and { R;(#,)} are obtained from the trajectory of

the TRBOMD simulation directly. To numerically compute D;;, we solve the least square problem:

~ 2
min 3 ) F1(t) + mZDuRJ(tl)H (62)
1,1 J

which yields:

D= Lgm(grm) (63)
m
where:
SIF=>"ft)Rs(t), S =" Ri(t)R,(t) (64)
l l

The frequencies, {Ql}, can be obtained by diagonalizing the matrix, D. Similarly, one can perform
the calculation for the accurate BOMD simulation and obtain the exact value of the frequencies, {€; }.

In order to compare the performance among BOMD, TRBOMD and CPMD, we define the
following relative errors:

QHooke _ QRef

err™ = Rt (65)
QLR _ (ORef
eI‘I‘?)R = W (66)
—_ —Ref
EF—F
CITy = F (67)
2 Ri(t) = RY'(1)|| 2
erry, = 68
B R %

o Ri(t) — RR()||
erre = IFa(t) = R0
| BT ()] s

(69)

where the results from BOMD with convergent SCF iteration are taken to be corresponding reference
values, F is the average total energy over time, the frequencies, QHooke and ORef | are obtained via
solving the least square problem (62), the frequency, QMR is measured by Equation (50) with finite
difference methods and R, (t) is the trajectory of the left-most atom.

5.1. Numerical Comparison between BOMD and TRBOMD

The first run is to validate the performance of TRBOMD. We set the time step At = 250, the
artificial frequency w = ﬁ = 4.00E-03, the final time 7" = 2.50E+06 and employ the simple mixing
with step length o = 0.3 and the Kerker preconditioner in SCF cycles. Figure 2 plots the energy drift
for BOMD with the converged SCF iteration (denoted by BOMD(c)) where the tolerance is 1.00E-08;
BOMD with five SCF iterations per time step (denoted by BOMD(5)) and TRBOMD with five SCF
iterations per time step (denoted by TRBOMD(5)). We see clearly there that BOMD(5) produces
large drift for both insulator and metal, but TRBOMD(5) does not. Actually, from Table 1, the relative
error in the average total energy over time between TRBOMD(5) and BOMD(c) is under 1.30E-05,
but BOMD(c) needs about an average of 45 SCF iterations per time step to reach the tolerance
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1.00E-08. Figure 3 plots corresponding trajectory of the left-most atom during about the first 25
periods and shows that the trajectory from TRBOMD (five) almost coincides with that from BOMD
(¢), which is also confirmed by the data of err)s and err’™ in Table 1. However, for BOMD(5), the
atom will cease oscillation after a while. A similar phenomena occurs for other atoms. In Table 1, we
present more results for TRBOMD(n) with n = 3,5,7. We observe there that TRBOMD(n) gives
more accurate results with larger n, and errg""ke has a similar behavior as n increases to errbR, which
is in accord with our previous linear response analysis in Section 4.

Figure 2. The energy fluctuations around the starting energy, £ (¢ = 0), as a function
of time. The time step is At = 250. The final time is 2.50E+06 and w = 1/At =
4.00E-03. The simple mixing with the Kerker preconditioner is applied in SCF cycles.
BOMD (c) denotes the BOMD simulation with converged SCF iteration, and BOMD
(n) (resp. TRBOMD(n)) represents the BOMD (resp. TRBOMD) simulation with n SCF
iterations per time step. It shows clearly that BOMD (five) produces large drift for both
the insulator (a) and the metal (b), but TRBOMD (five) does not.
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Table 1. The errors for time reversible Born-Oppenheimer molecular dynamics
(TRBOMD) (n). The settings are the same as those in Figure 2, except for the number of

SCF iterations.
Insulator: QR = 2.51E-04, E=° = 8.66E-01
n err]ﬁR eI‘I“SOOke errg elrrﬁ2 errk™
3 —6.53E-03 —1.63E-02 —7.63E-05 2.26E-02 4.25E-02
5 —1.08E-03 —2.38E-03 —1.30E-05 1.27E-02 2.92E-02
7 —=2.76E-04 —541E-04 —-3.32E-06 3.02E-03 7.22E-03
Metal: QRef = 1.06E-04, E"° = 5.28E-01
3 —2.65E-04 —6.92E-04 —4.36E-06 3.86E-03 &.95E-03
5 —3.6bE-00 —7.31E-05 —4.44E-07 4.14E-04 9.60E-04
7 —5.24E-06 2.93E-06 —1.10E-07 1.63E-05 3.78E-05
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Figure 3. The position of the left-most atom as a function of time. The settings are
the same as those in Figure 2. It shows clearly that the trajectory from TRBOMD (five)
almost coincides with that from BOMD (c¢). However, for BOMD (five), the atom will
cease oscillation after a while. (a) Insulator; (b) metal.
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Figure 4. The absolute value of the error for TRBOMD (three) as a function of 1/w?
in logarithmic scales. The time step is At = 20, and the final time is 6.00E+05. For
the readers’ reference, within each plot, the red straight line denotes corresponding
linear dependence, while the red solid point on the x axis represents the critical value

of Anin () /Amax (D). (a) Insulator; (b) metal.

According to Equation (50), we have that err® is proportional to 1/w? for large w. We verify
this behavior using TRBOMD(3) as an example. In this example, a smaller time step, At = 20,
is set to allow bigger artificial frequency w. The final time is 7' = 6.00E+05, and the simple
mixing with & = 0.3 and the Kerker preconditioner is applied in SCF iterations. For TRBOMD
(three) under these settings, we have A, (K) ~ 8.81E-03 for the insulator and \,;, (K) ~ 5.92E-01
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for the metal, and thus, the critical values of (QR")? /)i, (K) in Equation (49) are about 7.12E-06
and 1.90E-08, respectively. We choose w? = 2.50E-03, 2.50E-04, 2.50E-05, 2.50E-06, 2.50E-07,
2.50E-08, 2.50E-09, and plot in Figure 4 the absolute values of errio%¢, err, err’y’” for TRBOMD
(three) as a function of 1/w? in logarithmic scales. When 1/w? << A\pin (K)/(Q2R¢F)2, Figure 4 shows
clearly that all of |errH®|, |err], |err’s’| depend linearly on 1/w?. The error, errks”, has a similar
behavior to elrr]%2 and is skipped here for saving space.

The last example illustrates the possible unstable behavior of TRBOMD when the stability
condition A, () > 0 in Equation (48) is violated. Here, we take the insulator as an example and set
the time step At = 250, the final time to 2.50E+05 and the artificial frequency w = ﬁ = 4.00E-03.
The simple mixing with « = 0.3 is now applied in SCF iterations. Under these setting, we have
Amin () < 0, e.g., Anin(K) = —2.42E+03 for TRBOMD (three). Figure 5a plots the energy drift
for TRBOMD (n) with n = 3,5,7,45. We see clearly there that TRBOMD is unstable even using
45 SCF iterations per time step (recall that BOMD (c¢) in the first run needs about average 45 SCF
iterations per time step). Figure 5b plots the corresponding trajectory of the left-most atom and shows

that the atom is driven wildly by the non-convergent SCF iteration.

Figure 5. The unstable behavior of TRBOMD with the simple mixing for the insulator.
The time step is At = 250. The final time is 2.50E+05 and w = 1/At = 4.00E-03. (a)
The energy drift; (b) the trajectory of the left-most atom.
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5.2. Numerical Comparison between TRBOMD and CPMD

We now present some numerical examples for CPMD illustrating the difference between CPMD
and TRBOMD. As we have discussed, TRBOMD is applicable to both metallic and insulting systems,
while CPMD becomes inaccurate when the gap vanishes. To make this statement more concrete, we
apply CPMD to the same atom chain system. We implement CPMD using a standard velocity Verlet
scheme combined with RATTLEfor the orthonormality constraints [37-39].

We present in Figure 6 the error of CPMD simulation for different choices of fictitious electron

mass /. We study the relative error of the phonon frequency, errfi**, the relative error of the position
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of the left-most atom measured in L? norm, i.e., err,L;. We observe in Figure 6a linear convergence
of CPMD to the BOMD result as the parameter, p, decreases. This is consistent with our analysis.
Recall that in CPMD, p plays a similar role as w=2 in TRBOMD. For the metallic example, the
behavior is quite different; actually, Figure 6b shows a systematic error as j decreases. For metallic
system, as the spectral gap vanishes, the adiabatic separation between ionic and electronic degrees
of freedom cannot be achieved no matter how small y is. The adiabatic separation for TRBOMD,
on the other hand, relies on the choice of an effective pscr, and hence, TRBOMD also works for a
metallic system, as Figure 4 indicates.

Figure 6. The absolute value of the error for Car-Parrinello molecular dynamics (CPMD)
as a function of y in logarithmic scales. The time step is At = 20, and the final time is
6.00E+05. (a) Insulator; (b) metal.

(a) (b)

Figure 7. The trajectory of the position of the left-most atom. The dashed line is the
result from BOMD with converged SCF iteration. Colored solid lines are the results from
CPMD with fictitious electron mass 1 = 2,500, 5,000, 10,000 and 20, 000. The time
step is At = 20; the trajectory plotted is within the time interval, [2.00E+05, 4.00E+05].
(a) Insulator; (b) metal.
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The different behavior of CPMD for insulating and metallic systems is further illustrated by
Figure 7, which shows the trajectory of the position of the left-most atom during the simulation. The
phase error is apparent from the two subfigures. While the phase error decreases so that the trajectory
approaches that of BOMD for the insulator in Figure 7a, the result in Figure 7b shows a systematic

error for a metallic system.

6. Beyond the Linear Response Regime: Non-Equilibrium Dynamics

The discussion so far has been limited to the linear response regime so that we can make linear
approximations for the degrees of freedom of both nuclei and electrons. In this case, as the system
becomes linear, explicit error analysis has been given. For practical applications, we will be also
interested in non-equilibrium nuclei dynamics, so that the deviation of atom positions is no longer
small. In this section, we will investigate the non-equilibrium case using the averaging principle (see

e.g., [40,41] for a general introduction on the averaging principle).

Figure 8. Comparison of the trajectories of the first three atoms from the left for a
non-equilibrium system. Different atoms are distinguished by color (blue for the initially
left-most atom; green for the initially second left-most atom; red for the initially third
left-most atom). Solid lines are the results from BOMD (c); circled lines are the results
from TRBOMD (seven); dashed lines are the results from BOMD (seven). It is evident
that while the results from BOMD with a non-convergent SCF iteration have a huge
deviation, the results from TRBOMD are hardly distinguishable from the “true” results
from BOMD.

40t ‘ ‘ "~ [—BOMD(c)
- --BOMD(7)
—— TRBOMD(7)

Let us first show numerically a non-equilibrium situation for the atom chain example discussed
before. Initially, the 32 atoms stay at their equilibrium position. We set the initial velocity so that
the left-most atom has a large velocity towards the right and other atoms have equal velocity towards
the left. The mean velocity is equal to zero; so, the center of mass does not move. Figure 8 shows

the trajectory of the positions of the first three atoms from the left. We observe that the results from
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TRBOMD agree very well with the BOMD results with convergent SCF iterations. Let us note that
in the simulation, the left-most atom crosses over the second left-most atom. This happens since, in
our model, we have taken a 1D analog of Coulomb interaction, the nuclei background charges are
smeared out and, hence, the interaction is “soft” without hard-core repulsion. In Figure 9, we plot
the difference between pgcr and the converged electron density of the SCF iteration (denoted by pks)
along the TRBOMD simulation. We see that the electron density used in TRBOMD stays close to
the ground state electron density corresponding to the atom configuration.
To understand the performance of TRBOMD, recall that the equations of motion are given by:

ml(t) = _/PSCF(m;R(t),p(t))%é?@))

px.t) = w*(pscr(z; R(1), p(t) — pla, 1))

dx

To satisfy the adiabatic condition (49) from the linear analysis, w here is a large parameter. As
a result, the time scales of the motions of the nuclei and of the electrons are quite different: The
electronic degrees of freedom move much faster than the nuclear degrees of freedom.

Let us consider the limit, w — oo. In this case, we may freeze the R degree of freedom in the
equation of motion for p, as p changes on a much faster time scale. To capture the two time scale
behavior, we introduce a heuristic two-scale asymptotic expansion with faster time variable given by
7 = wt (with some abuse of notation):

R(t) = R(t) and p(x,t) = p(z,t,T) (70)

and hence:
pla,t) = w?d?p(x,t,7) + 2w0.0,p(x,t,7) + O p(x,t,T) (71)

Therefore, to the leading order, after neglecting the terms of O(w™1!), we obtain:

mi(t) = — / pscr(: R(2), p(t,T))%éIR(t» dr 72)
33[’(% t? T) - ,OSCF<5U; R(t)v p(t, 7_)) - p(l‘, tv T) (73)

For the equation of motion for p, note that as R only depends on ¢, the nuclear positions are fixed
parameters in Equation (73).

To proceed, we consider the scenario that p(t,7) is close to the ground state electron density
corresponding to the current atom configuration, p*(R(¢)). We have seen from numerical examples
(Figure 9) that this is indeed the case for a good choice of SCF iteration, while we do not have a
proof of this in the general case. Hence, we linearize the map: pscr.

pscr(7; R, p) = p"(z; R) + / 5/;%(%3/; R, p"(R))(p(y) — p"(y; R)) dy (74)

and Equation (73) becomes:

02p(,t,7) = —=K(R)(p(x,t,7) — p"(2;R(1))) (75)
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where KC(R) is the same as in Equation (39), except it is now defined for each atom configuration,
R. Let us emphasize that here we have only taken the linear approximation for the electronic degrees
of freedom, while keeping the possibly nonlinear dynamics of R. This is different from the linear

response regime considered before, where the nuclei motion is also linearized.

Figure 9. The difference of pscrp with the converged electron density of SCF
iteration (denoted by pxs) measured in L' norm along the TRBOMD simulation for a

non-equilibrium system.
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Under the stability condition (48), it is easy to see that for p(¢, 7) satisfying Equation (75), the

limit of the time average:

P R(1) = Jim / pscr(; R(1), plt, 7)) dr

T—o00

. op . . .
~ p"(z; R(1)) +/ ;CF (z,y; R, p (R))(hm —/ ply;t, ) —p (y;R(t))dT) dy
p T—oo T/
= p"(z; R(1))
(76)
Take the average of Equation (72) in 7, we have:
> a‘/ion ) R t
mR(t) = — /ﬁ(x;R(t))de (77)
OR;
Because of Equation (76), the above dynamics is given by:
P ion\L; R(t
mit ) = — [ R PR g, 78)
1

which agrees with the equation of the motion of atoms in BOMD. As we have neglected O(w™1)
terms in the averaging, the difference in the trajectory of BOMD and TRBOMD is on the order of

O(w™!) for finite w.
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Remark. If we do not make the linear approximation for the electronic degree of freedom, as the map,
pscr, 1s quite nonlinear and complicated, the analysis of the long time (in 7) behavior of Equation (73)
is not as straightforward. In particular, it is not clear to us whether the limit:

S R() = lim % /0 pscr(: R(1), p(t, 7)) dr (79)

T—o00

exists or how close the limit is to p*(z; R(t)) in a fully nonlinear regime. One particular difficulty lies
in the fact that unlike BOMD or CPMD, we do not have a conserved Lagrangian for the TRBOMD.
Actually, it is easy to construct a much simplified analog of Equation (73), the average of which is
different from p*. For example, if we consider the following analog, which only has one degree of

freedom, &:
€=(€/2+ag%) —¢ (80)

where (£/2 + afZ) is the analog of pscr, here, and a > 0 is a small parameter, which characterizes

the nonlinearity of the map. Note that:

§=—¢/2+a® = —0(& /4 — a®/3) (81)

The motion of £ is equivalent to the motion of a particle in an anharmonic potential. It is clear that
if, initially, £(0) # 0, the long time average of £ will not be zero. Furthermore, if, initially, £(0) is
too large, the orbit is not closed (¢ escapes the well around ¢ = 0). If phenomena similar to this
occur for a general pgcr, then even in the limit, w — oo, there will be a systematic uncontrolled bias
between BOMD and TRBOMD. This is in contrast with Car-Parrinello molecular dynamics, which
agrees with BOMD in the limit fictitious mass going to zero (;+ — 0) if the adiabatic condition holds.

As a result of this discussion, in practice, when we apply TRBOMD to a particular system,
we need to be cautious whether the electronic degree of freedom remains around the converged
Kohn-Sham electron density, which is not necessarily guaranteed (in contrast to CPMD for systems
with gaps).

7. Conclusions

The recently developed time reversible Born-Oppenheimer molecular dynamics (TRBOMD)
scheme provides a promising way for reducing the number of self-consistent field (SCF) iterations
in molecular dynamics simulation. By introducing auxiliary dynamics to the initial guess of the SCF
iteration, TRBOMD preserves the time-reversibility of the NVE dynamics, both at the continuous and
at the discrete level, and exhibits improved long time stability over the Born-Oppenheimer molecular
dynamics with the same accuracy. In this paper we analyze, for the first time, the accuracy and the
stability of the TRBOMD scheme, and our analysis is verified through numerical experiments using
a one-dimensional density functional theory (DFT) model without exchange correlation potential.
The validity of the stability condition in TRBOMD is directly associated with the quality of the SCF
iteration procedure. In particular, we demonstrate in the case in which the SCF iteration procedure is
not very accurate, the stability condition can be violated, and TRBOMD becomes unstable. We also
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compare TRBOMD with the Car-Parrinello molecular dynamics (CPMD) scheme. CPMD relies
on the adiabatic evolution of the occupied electron states, and therefore, CPMD works better for
insulators than for metals. However, TRBOMD may be effective for both insulating and metallic
systems. The present study is restricted to the NVE system and to simplified DFT models. Moreover,
the analysis in the present work is mainly focused on the accuracy of trajectories and harmonic
frequencies in the perturbation regime. However, in practice, the more important question is how
the introduced artificial dynamics influence static properties, like distribution functions, and the most
critical capability is to reproduce the correct distribution functions. The performance of TRBOMD
for the NVT system and for realistic DFT systems with emphasis on the accuracy of static properties

will be our future work.
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Appendix

Here, we derive the perturbation analysis result in Equation (50). When deriving the perturbation
analysis below, we use linear algebra notation and do not distinguish matrices from operators. We use
the linear algebra notation, replace all the integrals by matrix-vector multiplication and drop all the
dependencies of the electron degrees of freedom, x and y. For instance, Cp should be understood as
J K(z,y)p(y) dy. We also denote % (x; R*) simply by g%; then, Equation (42) can be rewritten as:

(I;) - (I;) = (o) (f;{) (82
ne (8 —OIC> (83)

Here:
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is a block diagonal matrix, and:

v (o —core) - (Ler) (2 9 (84)

OR OR

is a rank-M matrix. Z is a M x M identity matrix. Now, assume the eigenvalues and eigenvectors

of A follow the expansion:
A=X+eN+, v=v9+evy+ - (85)

Match the equation up to O(e), and:

Ajvg =0 (86a)
A()Uo + A1U1 = )\QUO (86b)
onl + A1U2 = )\01)1 -+ )\11)0 (86C)

Equation (86a) implies that vy € KerA;. Apply the projection operator, Pxe4,, to both sides of

Equation (86b), and use vy = Pkera, Vo; We have:

Prxera, Ao Pxera, Vo = Ao Picera, Vo &7)
or:
-D 0
Vg = AU 88
( 0 O) 0 0o (88)
From the eigen-decomposition of D in Equation (46), we have Ay = —Q7 for some [ = 1,..., M.

For a fixed [, the corresponding eigenvector to the O-th order is:

vo = (v1,0)7 (89)
From Equation (86b), we also have:
A A A ( 0 ) (90)
1V1 = AgUp — AUy = T
—07 (FR) W

and therefore:

o \T T\
v = 02 <O,IC1 [(a%) vl]) )

Finally, we apply vy to both sides of Equation (86c¢); we have:
o\ "
(%) vl] ] 92)

+ O(e%) (93)

)\1 = (’UU,A()Ul) — (Uo, )\01}1) = Q?VZTE K_l

op\ "
R/

Therefore:

A= —QF +eviL|K!
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In other words, the phonon frequency, Q= V=N, up to the leading order is:

op* r
R)

~ 1 _
QZZQZ<1_2_Q}2VZT ICl

) + O(1/w*) (94)

which is Equation (50).
References

1. Marx, D.; Hutter, J. Ab initio molecular dynamics: Theory and implementation. Mod. Methods
Algorithms Quantum Chem. 2000, 1, 301-449.

2. Kirchner, B.; di Dio, P.J.; Hutter, J. Real-world predictions from ab initio molecular dynamics
simulations. Top. Curr. Chem. 2012, 307, 109—153.

3. Payne, M.C.; Teter, M.P.; Allen, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative minimization
techniques for ab initio total energy calculation: Molecular dynamics and conjugate gradients.
Rev. Mod. Phys. 1992, 64, 1045-1097.

4. Deumens, E.; Diz, A.; Longo, R.; Ohrn, Y. Time-dependent theoretical treatments of the
dynamics of electrons and nuclei in molecular systems. Rev. Mod. Phys. 1994, 66, 917-983.

5. Tuckerman, M.E.; Ungar, PJ.; von Rosenvinge, T.; Klein, M.L. Ab initio molecular dynamics
simulations. J. Phys. Chem. 1996, 100, 12878-12887.

6. Parrinello, M. From silicon to RNA: The coming of age of ab initio molecular dynamics.
Solid State Commun. 1997, 102, 107-120.

7. Marx, D.; Hutter, J. Ab initio Molecular Dynamics: Basic Theory and Advanced Methods;
Cambridge University Press: Cambridge, UK, 2009.

8. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-B871.

9. Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects.
Phys. Rev. 1965, 140, A1133-A1138.

10. Remler, D.K.; Madden, P.A. Molecular dynamics without effective potentials via the
Car-Parrinello approach. Mol. Phys. 1990, 70, 921-966.

11. Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional theory.
Phys. Rev. Lett. 1985, 55, 2471-2474.

12. Pastore, G.; Smargiassi, E.; Buda, F. Theory of ab initio molecular-dynamics calculations.
Phys. Rev. A 1991, 44, 6334-6347.

13. Bornemann, F.A.; Schiitte, C. A mathematical investigation of the Car-Parrinello method.
Numer. Math. 1998, 78, 359-376.

14. Niklasson, A.M.N.; Tymczak, C.J.; Challacombe, M. Time-reversible Born-Oppenheimer
molecular dynamics. Phys. Rev. Lett. 2006, 97, 123001:1-123001:4.

15. Niklasson, A.M.N.; Tymczak, C.J.; Challacombe, M. Time-reversible ab initio molecular
dynamics. J. Chem. Phys. 2007, 126, 144103:1-144103:9.

16. Niklasson, A.M.N. Extended Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 2008,
100, 123004:1-123004:4.



17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

57

Niklasson, A.M.N.; Steneteg, P.; Odell, A.; Bock, N.; Challacombe, M.; Tymczak, C.J.;
Holmstrom, E.; Zheng, G.; Weber, V. Extended Lagrangian Born-Oppenheimer molecular
dynamics with dissipation. J. Chem. Phys. 2009, 130, 214109, doi:10.1063/1.3148075.
Niklasson, A.M.N.; Cawkwell, M.J. Fast method for quantum mechanical molecular dynamics.
Phys. Rev. B 2012, 86, 174308:1-174308:12.

Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 2006.

McLachlan, R.I.; Perlmutter, M. Energy drift in reversible time integration. J. Phys. A:
Math. Gen. 2004, 37, L.593-1.598.

Kolafa, J. Time-reversible always stable predictor-corrector method for molecular dynamics of
polarizable molecules. J. Comput. Chem. 2004, 25, 335-342.

Kithne, T.D.; Krack, M.; Mohamed, FR.; Parrinello, M. Efficient and accurate
Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett.
2007, 98, 066401:1-066401:4.

Dai, J.; Yuan, J. Large-scale efficient Langevin dynamics, and why it works. EPL 2009,
88, 20001, doi:10.1209/0295-5075/88/20001.

Hutter, J. Car-Parrinello molecular dynamics. WIREs Comput. Mol. Sci. 2012, 2, 604—612.
Anderson, D.G. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach.
1965, 12, 547-560.

Pulay, P. Convergence acceleration of iterative sequences: The case of SCF iteration.
Chem. Phys. Lett. 1980, 73, 393-398.

Johnson, D.D. Modified Broyden’s method for accelerating convergence in self-consistent
calculations. Phys. Rev. B 1988, 38, 12807-12813.

Kerker, G.P. Efficient iteration scheme for self-consistent pseudopotential calculations.
Phys. Rev. B 1981, 23, 3082-3084.

Lin, L.; Yang, C. Elliptic preconditioner for accelerating self consistent field iteration in
Kohn-Sham density functional theory. SIAM J. Sci. Comput. 2013, 35, S277-S298.
McLachlan, R.I.; Atela, P. The accuracy of symplectic integrators.  Nonlinearity 1992,
5, 541-562.

Adler, S.L. Quantum theory of the dielectric constant in real solids. Phys. Rev. 1962,
126, 413-420.

Wiser, N. Dielectric constant with local field effects included. Phys. Rev. 1963, 129, 62—69.
Blochl, PE.; Parrinello, M. Adiabaticity in first-principles molecular dynamics. Phys. Rev. B
1992, 45, 9413-9416.

Tangney, P.; Scandolo, S. How well do Car-Parrinello simulations reproduce the
Born-Oppenheimer surface? Theory and examples. J. Chem. Phys. 2002, 116, 14-24.
Tangney, P. On the theory underlying the Car-Parrinello method and the role of the fictitious
mass parameter. J. Chem. Phys. 2006, 124, 044111:1-044111:14.

Solovej, J.P. Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math.
1991, 7104, 291-311.



58

37.

38.

39.

40.
41.

Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations
of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys.
1977, 23, 327-341.

Ciccotti, G.; Ferrario, M.; Ryckaert, J.P. Molecular dynamics of rigid systems in cartesian
coordinates: A general formulation. Mol. Phys. 1982, 47, 1253-1264.

Andersen, H.C. Rattle: A “velocity” version of the Shake algorithm for molecular dynmiacs
calculations. J. Comput. Phys. 1983, 52, 24-34.

E, W. Principles of Multiscale Modeling; Cambridge University Press: Cambridge, UK, 2011.
Pavliotis, G.; Stuart, A. Multiscale Methods: Averaging and Homogenization; Springer:
Berlin/Heidelberg, Germany, 2008.



59

Reprinted from Entropy. Cite as: Morales, M.A.; Clay, R.; Pierleoni, C.; Ceperley, D.M. First
Principles Methods: A Perspective from Quantum Monte Carlo. Entropy 2014, 16, 287-321.

Article

First Principles Methods: A Perspective from Quantum
Monte Carlo

Miguel A. Morales !, Raymond Clay 2, Carlo Pierleoni *** and David M. Ceperley >

I Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA;
E-Mail: moralessilva2 @lInl.gov

2 Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street
Urbana, IL 61801-3080, USA; E-Mails: rcclay2 @illinois.edu (R.C.);
ceperley @uiuc.edu (D.M.C.)

3 Dipartimento di Scienze Fisiche e Chimiche, Universita de L’ Aquila, Via Vetoio 10,
L’ Aquila 67100, Italy

4 Dipartimento di Fisica, Sapienza Universita di Roma, Ple A. moro 2, Rome 00185, Italy

* Author to whom correspondence should be addressed; E-Mail: carlo.pierleoni @aquila.infn.it;
Tel.: +39-0862433056.

Received: 22 September 2013; in revised form: 27 November 2013 / Accepted: 28 November 2013 /
Published: 30 December 2013

Abstract: Quantum Monte Carlo methods are among the most accurate algorithms for
predicting properties of general quantum systems. We briefly introduce ground state,
path integral at finite temperature and coupled electron-ion Monte Carlo methods, their
merits and limitations. We then discuss recent calculations using these methods for dense
liquid hydrogen as it undergoes a molecular/atomic (metal/insulator) transition. We then
discuss a procedure that can be used to assess electronic density functionals, which in
turn can be used on a larger scale for first principles calculations and apply this technique
to dense hydrogen and liquid water.

Keywords: quantum Monte Carlo; first-principles simulations; hydrogen; Coupled
Electron-Ion Monte Carlo; high pressure




60

1. Introduction

With the increasing computational power and the greater access to large clusters seen during the
last decade, simulation methods have become an increasingly useful tool for many fields of science,
including chemistry, materials science, condensed matter physics, and biophysics. In this article we
explore some of the future impact of Quantum Monte Carlo in the field of first principles simulation
(FPS). By this we mean reliable simulation methods that can be performed on condensed matter
systems in the absence of detailed experimental information on those systems. Starting with the
general Hamiltonian in Equation (1), and taking as input only the chemical compositions, masses,
density, temperature efc, currently there is a hierarchy of methods that are used to perform such a
simulation. In this introduction we focus on three classes of methods: the use of semi-empirical
interatomic potentials together with Monte Carlo (MC) or molecular dynamics (MD) simulations,
Density Functional Theory-based simulation methods, and Quantum Monte Carlo simulations.

The first member of the hierarchy uses semi-empirical interatomic potentials among effective
atoms considered as point particles, the best known of which is the Lennard-Jones potential. Such
potentials are routinely used in the vast majority of simulations (soft condensed matter, biophysics,
materials science) and are reviewed in a different contribution to this issue [1]. The first question
is how do we construct such a potential? The typical approach is to use available experimental
data. However, it is well known that those potentials are not very accurate in the vast majority of
systems, even if they match experimental data. Hence, though they can be used to say something
about generic properties of systems, quantitative predictions for defect energies, energy barriers,
melting temperatures, cannot be trusted. (If the potential has been adjusted to reproduce experimental
measurements, then the method is no longer first principles, and the question becomes whether the
potential is transferrable, i.e., reliable for properties that are not fitted for.) Another fundamental
limitation of this approach is that it becomes difficult to construct reliable interatomic potentials for
complex systems containing several types of atoms, for example a solvent with various solutes, or
systems under extreme conditions, since it becomes difficult to get enough reliable experimental data
to constrain all of the parameters. For these reasons, it is highly desirable to have methods that can
provide reliable predictions without input from experimental measurements.

Density Functional Theory (DFT) in the Kohn-Sham formulation maps the problem of many
interacting electrons in the external field of the nuclei onto a system of non-interacting electrons in
external field, a one body problem, and adds electronic correlation through an exchange-correlation
functional. A breakthrough in the usefulness and popularity of simulations occurred with the
development of the first-principle molecular dynamics (FPMD) approach by Car and Parrinello [2],
where they combined molecular dynamics and DFT to perform simulations of complex chemical
systems. Due to its favorable ratio between accuracy and computational cost, DFT has become the
workhorse as electronic solver in the field of first-principles simulations. In fact, the recent explosion
in the popularity of first-principles methods is, to a large part, due to the success of DFT in providing
a fairly accurate description of the electronic structure of materials at a reasonable computational

cost. DFT also gives access to a large range of observables. While DFT has been very successful
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in the description of many types of materials, e.g., metals and weakly correlated systems, many of
the currently available exchange-correlation functionals in DFT possess well-known limitations [3],
including the failure to properly describe strongly correlated materials, self-interaction errors, efc. It
is recognized that even for such a fundamental system as water, the FPMD procedure is not accurate
enough, giving large errors in many basic properties including the melting temperature, the diffusion
constant, the compressibility, among others [4].

In the past decade there has been an explosion of new DFT exchange-correlation functionals
with various characteristics. The reason is the difficulty of making systematic improvements to
the functional or judging the accuracy of a functional. If the DFT functional is considered as
“variable” then how does the user, in the absence of experimental data, decide on the functional?
In the case of finite molecular systems, the availability of high-level quantum chemistry methods,
like Coupled-Cluster theory offers a possible path towards the improvement of approximated
functionals in DFT, for example by minimizing errors in a training set between DFT and Coupled
Cluster theory results at various level of accuracy (with Single, Double or Triple excitations). In
fact, many exchange-correlation functionals contain optimizable parameters that are obtained from
calculations on finite molecular systems (exceptions to this include LDA, PBE, among others),
where results of quantum chemistry methods are routinely used as a references. In solids, accurate
calculations using many-body methods are computationally expensive, which has limited their use
in the development of density functionals. While there has also been considerable developments in
other correlated approaches for bulk systems, such as the many-body Green’s function methods (GW
approximation and Bethe-Salpeter equation), and Dynamical Mean Field Theory (DMFT), they are
more expensive and still leave questions of accuracy. For reasons of space, we do not discuss these
approaches further.

The third approach in our hierarchy is the use of Quantum Monte Carlo (QMC) methods,
which are generalizations of the classical Monte Carlo techniques to quantum statistical physics and
fundamentally based on imaginary-time path integrals. For a class of systems (bosons and systems
in one dimension) such techniques provide an exact computational method. For general problems,
though not exact, they are highly accurate and systematically improvable. Although there are a
variety of QMC methods (ground state, variational, path integral, auxiliary field...) fundamentally
they are closely related. QMC are the most accurate general methods but are less developed and
require much more computational facilities than DFT methods (although the scaling of computer
time versus system size is similar) limiting the systems on which such simulations can and have been
performed. The largest impact to date of QMC has been in the development and improvement of
DFT methods; specifically we mention the correlation energy of the electron gas [5], a fundamental
component in almost all exchange-correlation functionals used in DFT. Recent calculations [6] give
the corresponding correlation energies at finite electronic temperature.

Later in this paper we give an example of work in progress in this direction where QMC is used
to directly rank various DFT functionals. We suggest that this benchmark quality data could be used
to improve directly the best functionals. One can then envision using the highest ranked functional

to develop intermolecular potentials that would then be of higher quality. Ercolessi et al. [7] have
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developed the force-matching procedure to find the optimal effective potential reproducing the forces
appearing in an FPMD simulation. Such an approach is now feasible using QMC calculated forces
and energies.

First principles simulation methods entirely based on QMC have also been developed in the
last decade. These are the Coupled Electron-lon Monte Carlo method [8] and the QMC-Molecular
Dynamics [9], and have been recently reviewed in [10]. However their application to condensed
phases has been limited so far to high pressure hydrogen, and hydrogen-helium mixtures because
of their considerable computation cost. In this paper we will illustrate their use to investigate the
dissociation of liquid molecular hydrogen under pressure, a problem which is still unsolved by
DFT methods.

The article is organized as follows. We first describe in Section 2 the various QMC methods.
Section 3 is devoted to few applications of QMC. In Section 3.1 we present a QMC study of high
pressure phases of hydrogen. This is followed in Section 3.2 by a description of the use of these
methods to provide quantitative information on the accuracy of various DFT functionals. Finally we
close with a discussion in Section 4.

2. Computational Methods

In this section, we review some of the Quantum Monte Carlo methods used in the first principles
modeling of condensed matter systems. Under normal conditions of temperature and pressure, such
systems are described to a high degree of accuracy by the non-relativistic Hamiltonian for a collection
of electrons and ions. We will use atomic units throughout the paper, where Planck’s constant
h=m.=kp=e=4mey = 1 with kp being Boltzmann’s constant, and the energy is measured in
Hartrees £y, = 315,775 K = 27.2114 eV. Note that, in these units, the energy of a hydrogen atom is
0.5Ey, the binding energy of a hydrogen molecule is 0.17Ey, the unit of length is the Bohr Radius
ap = 0.0529 nm, and the molecular equilibrium bond length is 1.4ay. The Hamiltonian of the

systems reads

~

H = T+ﬁel:T +T+\7 (1)

ZAIW T, =X\ sz, 2)
V - Skl —_,, 3
Z |Rr — Ry Z ‘7’ ZI: r; — Ry ©)

1<J 1<j T’

where NN,, and N, are the number of ions and electrons, respectively, in atomic units A\, = 1/2,
Ar = 1/(2My), and M; and z; are the mass and charge (in units of the electron mass m,. and
charge e) of the nucleus /. The system occupies a volume 2. Note that ¥~ with lower case indexes
(¢, j, ...) 1s used to denote the position of electrons and R with upper case indexes (/, J, ...) is
used for the nuclei. When no indices are used, 7~ and R represent the full 3NV, and 3N,, dimensional
vectors, respectively. The electronic Hamiltonian H, corresponds to the solution of the problem in
the clamped-nuclei approximation, where the ions produce a fixed external potential for the electrons.
Another quantity that will be of interest is the electron number-density given by p = N./(2, and
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parameterized with r, = a/ag, where 4ma®/3 = p~L.

Given Equation (1), we only need to add
the temperature, particle statistics and boundary conditions to completely specify the physical and
numerical problem to be solved.

Finding the eigenvalues and eigenfunctions of the Hamiltonian in Equation (1) is a formidable
task, impossible to do analytically except for a few simple systems such as the single hydrogen atom.
In practice, numerical or approximate theoretical methods must be used. Two of the most widely
applicable methods are based either on imaginary-time path integrals or density functional theory

(DFT), as discussed in the following subsections.

2.1. Ground State Methods

The following ground state methods seek to evaluate expectation values of physical observables
taken over the ground state wavefunction ¢ (R):

5, _ J ARG (R) Oy (R)
O = rarlsmP @

Two problems are evident from this formula. The first is that we almost never know ¢ (R) exactly.

The second is that even if we did, Equation (4) is a high dimensional integral. The following methods
address both these problems. For sake of notation simplicity, throughout the Sections 2.1-2.3 we
will indicate by R the set of all coordinates of the quantum degrees of freedom without distinction
between electrons and nuclei.

2.1.1. Variational Monte Carlo

Variational Monte Carlo (VMC) is conceptually the simplest of the ground-state QMC methods.
It works by approximating the true ground-state wavefunction ¢o(R) with some trial wavefunction
Ur(R). Integrals like Equation (4) are then performed using Metropolis Monte Carlo sampling,
with U (R) in place of ¢o(R) [11]. The accuracy of this method depends strongly on how closely
Ur(R) approximates ¢g(R). Fortunately, the variational principle of quantum mechanics gives us a
metric by which to improve the quality of trial wavefunctions. Consider the expectation value of the
Hamiltonian and its variance:

[ ARV (R)HU(R) _ [ dR|Vr(R)Ey(R)

Bl Tl (RdR TaR U (R)P ®

) [ dRU(R)(H — E[V7])*Ur(R)
el JdRTU (R ©
(7)

where E(R) = [HU1(R)]/P(R) in Equation (5) is called local energy. The variational theorem
states that:

=
2
3,
v

E[¢o] (8)
opWr] > ohlé) =0 9)
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Based on this, improvements to the wavefunction can be quickly gauged by whether they lower the
energy and variance.

A popular approach for fermionic problems is to assume a Slater-Jastrow wavefunction. This
type of wavefunction possesses the correct fermionic antisymmetry, and symbolically is given by
Up(R) = det(M(R))e’®). Here, M(R);; = ¢;(r;) is a Slater determinant of single-particle
orbitals. The single-particle orbitals ¢, () are typically taken from other quantum-chemistry methods
(Hartree-Fock, DFT, etc.). J(R) is called a “Jastrow" factor, and is constructed to be symmetric under
particle exchange [12,13]. The Jastrow factor is typically chosen to be a sum of species dependent
one-body, two-body, and sometimes three-body functions, which are designed to capture bosonic
correlations. The form of these functions can vary from analytically derived forms with few to
no free parameters, like the RPA jastrow [14,15], to functions with a large number of variational
parameters, like b-splines. The interested reader is encouraged to look at the references for more
information on Slater-Jastrow wavefunctions [12,16]. One can also go beyond the Slater-Jastrow
form; other possible choices include multi-Slater determinant expansions [17], geminals [18], efc.

VMC can be improved if we consider classes of trial wavefunctions W (R, ) parameterized
by o = (o, ..., ) free parameters. We then minimize the energy and/or variance with respect
to these parameters. Recent improvements to optimization algorithms allow the optimization
of thousands of variational parameters [19,20]. Traditionally, only the Jastrow functions have
been parameterized, although work has been done using parameterized single particle orbitals and
multi-Slater determinantal expansions.

VMC has some advantages that keep it in use. First, it is usually computationally cheaper than
more accurate QMC methods (to be discussed later). VMC can also include several different types
of electron correlations (various forms of electronic wave functions). Lastly, it doesn’t suffer from a
sign problem. However, it is at heart an approximate method, and does depend on the choice of trial
wavefunction.

2.1.2. Projector Methods

2.1.2.1. Formalism

Projector methods attempt to stochastically project out the exact many-body ground state,
allowing us to sample this distribution for Monte Carlo integration. The “projector”, or
imaginary-time Green’s function G(R', R, ' — [3), is the operator solution to the imaginary-time

Schrodinger equation:

ov N

— =—-HY(R 10

93 (R,5) (10)
subject to the boundary condition that limg _, 3 G(R', R, 8’ — ) = 6(R' — R). One can verify that the
formal solution is G = exp(—S3H). Now consider an arbitrary wavefunction (R, 3 = 0) that is not

orthogonal to the ground state ¢o(R) (in general this is an optimized trial function Wr). Expanding
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this function in terms of the eigenfunctions of the Hamiltonian, and applying the projector to this,
we find:

U(R,B) = Y aipi(R)e ™

7

< agpo(R) + Z ;i (R)ePlei=<o) (11)

This implies that as 5 — oo, we are left with just the ground state wavefunction.

For efficiency reasons, it is better to use the “importance-sampled" Schrodinger’s
equation [12,21,22]. We obtain this by writing the original equation in terms of f(R,5) =
Ur(R)V(R, 3). After some algebra [12], we find that

Of(R,5)  _ LE(R,B) (12)

ap
= AV [V —F(R)]f(R,B)+ [Er — EL(R)] f(R, )

F(R) is the quantum force defined by F'(R) = VIn |U1(R)|*> and E1,(R) is the local energy defined
above. FEr, the trial energy, is an arbitrary energy shift, unessential for the physics, but important
for the numerical algorithm. If f(R,/3) > 0 everywhere, then we can interpret f as a probability
distribution. This amounts to demanding a bosonic many-body ground state (fermions will be
covered in a later section). Equation (12) can then be interpreted as a generalized Smoluchowski
equation for a drift-diffusion process with sources and sinks. The first term represents a drift-diffusion
process, whereas the second term represents an exponential growth/decay process. When we get
around to simulating this equation, we will use the mapping between a Smoluchowski equation
governing probability distributions, and Langevin-like equations, governing the diffusion and growth
of particles.
The solution of Equation (12) satisfy the following integral equation

ﬂamzfm@mﬂwMWﬁ> (13)

where the Green’s function for this equation is formally G(R', R, 5) = (R'|exp(SL)|R), and it
is easy to show that this is related to the original projector by the transformation G (R,R,B) =
Ur(R)G(R',R,3)¥r(R)". In the short-time approximation (tA << 1), we can decouple
the drift-diffusion and growth operators by the Trotter formula. The result (for the symmetric
decomposition) is:

G(R/,R,T) ~ GDD(R/,R,T)GB(R,,R,T) (14)
/ _ 2
Cop = e (_(R R —2)\rF(R)) ) is)
4NT

T

GB(R/,R,T) = exp( 2[EL(R/)—|—EL(R)—2ET]) (16)

where A indicates either A, or A\; as defined after Equation(1). The short-time approximation allows
us to deal with the full propagator as a product of short-time propagators, G(3) = (G(r = 8/M))M.
The cost is that we have now incurred in a time-step error that we must take into account.
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2.1.2.2. Diffusion Monte Carlo

In diffusion Monte Carlo (DMC) [22-24], we represent the distribution function f(R, () as
an ensemble of 3N-dimensional samples {Ri, ..., Ry}, which are known as “walkers". The
average density of walkers at position R in configurational space is proportional to the distribution
function f(R).

As in classical diffusion, we would then simulate Equations (13) and (14) by a Langevin-like
process acting on the walkers. Assuming that the time step 7 = 3/M is sufficiently small, we advance
from f(R, ) — f(R,( + 7) by first proposing to move each walker R; to R by a drift-diffusion
step, prescribed by Equation (15). Then we accumulate a weight associated with walker ¢, given by
wi(B+7) = w;(8)G (R, R;, 7). To calculate the expectation value of an operator O over f(R, §) =
Ur(R)V(R, ), we average over the ensemble of walkers, including the appropriate weights:

6y - S0
Zi:l w;(3)

If we stopped here, this would be the basis of pure-diffusion Monte Carlo [25]. Because these weights

(17)

are exponential factors, the variance associated with Equation (17) will increase exponentially as the
simulation progresses: the weights of a few walkers will exponentially grow, whereas the rest will
exponentially tend to zero.

Branching diffusion Monte Carlo [23], by far the most used form of DMC, fixes this problem by
using the weights to either replicate or kill off walkers. After each drift-diffusion step, the number
of walkers associated with the single walker R; to advance to the next time-step, M, , is chosen
tobe M!_, = INT(w;(8 + 7) + &), where £ is a random number between [0, 1]. The weights of
the replicated walkers are all adjusted to conserve the total weight of walker ¢ as much as possible.
Modern methods are typically hybrids, where the weights of walkers are carried until they exceed
certain established bounds, at which point they are branched [26].

The simulation is run by initializing the starting ensemble according to f(R,0) = |¥r(R)|%.
Assuming [ is the projection time required to reach the ground-state, the simulation is incremented
M = p/7 steps, at which point our ensemble is distributed according to fo(R) = Wr(R)po(R).
Samples can then be accumulated, and the simulation is run for a long enough time to achieve the
desired statistical error bars.

It is important to note that since we are sampling fo(R), this corresponds to the following type of
expectation value, known as a “mixed-estimate":

(U7|O|¢o)
(Ur|go)

For observables that commute with the Hamiltonian, this gives us exact, unbiased estimates over

<@>DMC = (18)

the true many-body ground state wavefunction. For those that don’t, the estimators will be biased
by the quality of the trial wavefunction. This bias is less than that encountered by VMC, but
still present. This can be alleviated somewhat by the use of “extrapolated estimators", and by the
“forward-walking” method [27].
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2.1.2.3. Reptation Monte Carlo

Reptation Monte Carlo (RMC) is based on the path-integral representation of the projector.
Assuming that 3 is large enough to guarantee sufficient convergence to the ground state, we begin by
partitioning the full projector into M segments of time-interval 7 = /M, called “time slices".
Inserting a resolution of the identity between each short-time projector, we find the following
path-integral expression for the mixed distribution (W |¢pg):

<‘I’T’¢0> = /dRO Ce dRM\IfT(Ro)G(Ro, Rl, 7') ce G(RMfl, RM, T)WT(RM) (19)

Using the short-time approximate Green’s function at the beginning of this section, we can recast

this expectation value in a more traditional path-integral form:

(Urlpy) = Z= / DX (20)
M-1
SIX] = WnUyp(Ro) +InUp(Ry) — Y Li(Ri, Rit1) 21)
=0
/ _ (R/ B R)2 1 / /
+2 [BU(R) + BL(R) + MFX(R) + F*(R))] (23)

Here, X is shorthand for the directed path X = Ry, ..., R);. Equation (20) plays the role of a

SIX]/ Z is the probability of a given

partition function in statistical mechanics, where the I1[X] = e
path X, —S[X] is the path action, which includes the trial wavefunctions at the ends of the path, as
well as a sum over “link-actions" Ls(R', R), (see Equations (22) and (23)). The form we used for
the link-action comes from imposing symmetry of the normal Green’s function under the exchange
of two end-points, and writing it in terms of the importance-sampled Green’s functions [28].

The versatility of reptation Monte Carlo comes from how II[X] is sampled. In the original
method [29], one takes a given path X and chooses a growth direction at random. One then proposes a
new path X* by adding ¢ time slices to the “head" and removing ¢ slices from the “tail". Acceptance
or rejection of this move is based on the usual Metropolis acceptance step. This type of move is
called “reptation”, reminiscent of a “reptile", from which the method derives its name. The proposed
head move is done by a sequence of drift-diffusion moves, as in DMC, and rigorously preserves
detailed balance.

Most practical implementations use what’s known as the “bounce algorithm" [28]. Rather than
choosing the growth direction randomly, it is set at the beginning of the simulation and is changed
only after a rejection step, hence the name “bounce". This method does not satisfy detailed balance,
but does satisfy the more general stationarity condition required for Markov chain Monte Carlo. This
dramatically decreases the autocorrelation time of the method, and also tames ergodicity problems
that have been observed to crop up in the method.

RMC is appealing for two reasons. It gives us the same level of accuracy for the energy as DMC
but correlated sampling between different configurations can be done without approximation. This
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is particularly useful in methods like the Coupled Electron-Ilon Monte Carlo. RMC also gives us the
ability to sample expectation values over the pure distribution, as seen below:
B A _B
. Uple 2 Qe 27|
(O)pure = 1T - o) (24)
(Uple=PH[Wr)

1
= 2 / DXe “FO(Rg)) (25)

This shows that the center time slice of the reptile is distributed according to |¢o(R)|?, whereas
the ends are distributed according to the mixed distribution f(R). This easy access to the pure
distribution makes RMC ideal for calculations of unbiased observables and correlation functions,
doing so in a more efficient manner than “forward-walking" in DMC. Estimation of observables
over the pure distribution works whenever we can write a meaningful estimator in terms of position
space coordinates. Diagonal position space observables, like the average potential energy and
pair-correlation function, can be measured directly from the sampled pure distribution. Observables
that aren’t diagonal in position space, like off-diagonal density matrix elements and the momentum
distribution, can be measured from the pure distribution with suitable additions to the basic algorithm.
This procedure does not work for all estimators however; one can show that evaluating the local
kinetic energy over the pure distribution does not yield a correct estimate of the average ground-state

kinetic energy.

2.1.2.4. The Fixed-Node Approximation

The previous projector methods we mentioned are in principle exact for bosonic systems,
since the mapping to a diffusion process is valid when ¢o(R) > 0 everywhere. However,
since the wavefunction for a fermion systems must be antisymmetric under exchange, the ground
state wavefunction will have as many negative configurations as positive ones (in many cases the
wavefunction can be made real). We can restore the probabilistic interpretation of the wavefunction
U (R, B) if we factor its sign into the weight of the walker, or into the observable itself. It turns out that
in doing so, we will have large and almost equal contributions to the expectation value of opposite
signs. This leads to an exponentially decaying signal to noise ratio, implying that the computational
effort required to treat the fermion problem directly scales exponentially. This is the well known
“fermion sign problem".

By far, the most common means of alleviating the sign-problem in both DMC and RMC is
applying the “fixed-node" approximation [23,24]. We assume that the nodes of ¢(R) are the same
as the nodes for U (R). We then propagate our ensemble of walkers or our reptile strictly within
restricted space where W (R) doesn’t change sign. This can be implemented by rejecting moves
that carry walkers across a node, or bouncing a reptile whenever a head move is proposed across a
nodal surface. Though this is an uncontrolled approximation, it turns out to be an extremely good one
in most cases. Fixed-node energies are proved to be upper bounds of the exact energy [16], which
allows us to optimize the nodal surfaces and to compare fixed-node DMC and fixed-node RMC
energies with other methods. It turns out that both of these methods are among the most accurate
computational methods known for electronic systems.
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2.2. Scaling of QM C Methods

Like DFT, fermionic QMC typically has scaling between O(N?) and O(N*) depending on
the property computed and the trial function. Here N is the number of particles. In contrast,
popular quantum chemistry methods like Moller-Plesset Perturbation Theory, coupled-cluster, or
configuration interaction, scale at least like O(N7). This makes QMC one of the few accurate
many-body theories that is able to treat bulk systems.

Unlike DFT, whose scaling prefactor is governed by the solution of a generalized eigenvalue
problem, Monte Carlo methods, in general, have statistical error bars which reduce as the inverse of
the square root of the sampled configurations as a consequence of the central limit theorem. This
makes quantum Monte Carlo significantly more expensive than DFT to reach chemical accuracy,
though it has a smaller uncontrolled bias. The necessity for a much smaller time step in projector
monte carlo than in VMC can make projector monte carlo about an order of magnitude more
expensive for the same statistical uncertainty.

The cost of a single N-particle monte carlo step in VMC and projector monte carlo methods
are determined by the evaluation of the trial wavefunction. For bosonic trial wavefunctions with
pair-wise correlations, these calculations scale like O(N?) per N-particle step. If these correlations
are short-ranged, linear scaling can be achieved.

For fermionic trial wavefunctions, the computational cost is determined by the evaluation of
single-particle orbitals and by the evaluation of a Slater determinant. The scaling of orbital
evaluations depends on whether the electrons are localized since evaluating localized orbitals can
be done in constant time. For plane waves basis sets, the cost scales like O(V). If we seek to include
the effects of backflow, this can increase the computational cost by an additional factor of V. The
remaining bottleneck is then the evaluation of the Slater determinant, which scales like O(N?) per
N-particle step. In theory, the cost of the determinant evaluation could be brought down by almost a
factor of N if the Slater determinant is sparse, however, the crossover point is prohibitive (greater than
3000 particles for a model system) [30]. This causes VMC and projector monte carlo to realistically

scale like O(N3~*) depending on whether one uses backflow or not.

2.3. Finite-Temperature Methods

Next, we summarize path integral methods. These methods are similar to DMC but can treat
systems at non-zero temperature: a many-body density matrix replaces the trial wave function.
Concerning first principles simulations the path integral method can be used either to simulate the
properties of thermal electrons or to simulate the zero point effects of light nuclei or both. For
electronic simulations there are two major problems. First, the energy scale of electrons is 1 Hartree
or above, thus to reach ambient temperature requires very long paths. Second, since electrons
are fermions, antisymmetrization and hence the sign problem is inevitable. For a more complete

overview of the method and its application to fermion systems, see [31,32] respectively.
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2.3.1. Path Integrals

To begin, we define the many particle density matrix for a system in equilibrium with an external
reservoir at inverse temperature 5 = 1/kgT (canonical ensemble)

p(R, R 8) = (R|e P | R) (26)

where R = (rM, ... V) with r( specifying the spacial coordinates of the i’ of N particles. The

partition function is defined as the trace of the density matrix,

23) =1r(p) = [ ar(R | | R) = [ dRp(R i) @
The expectation value of any observable may be computed from this definition as
(0) = Tr(0p)/Z = Tr(Op)/Tr(p) (28)

Using the product property of the density matrix M times, such that § = M7, we write the partition
function (or the diagonal density matrix) as an integral over a discrete path:

20)= [ rﬁ IR,

We have reduced the problem of sampling a low temperature density matrix to one of finding a high

p(Ro, Ri;7)p(Ry, Ro;7) ... p(Rar—1, Ro; 7) (29)

temperature density matrix and integrating over the path. The action, defined as

can be broken into kinetic and potential parts, using Trotter’s formula. The integration over all of
the path variables is done using a specialized form of either Metropolis Monte Carlo or Molecular
Dynamics, generating the Path Integral Monte Carlo (PIMC) or Path Integral Molecular Dynamics
(PIMD) methods.

Finally, in order to account for the particle statistics of the simulated system, we must sum over

permutations P, giving

—PR

1 _
20) = [ @) [ et (1)
P
where R, represents the generic path starting at R and ending at P R while ¢ varies from 0 to /5.
2.3.2. Restricted Paths

For fermions, negative terms enter in this sum, leading to a sign problem. As was done in the
previous discussion of DMC, one way to circumvent this issue is to impose a nodal constraint [33].
We define the nodal surface Y r, g for a given point ?, and inverse temperature 3 to be

Trp=A{R|[p(R R f) =0} (32)
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which is a (dN — 1)-dimensional manifold in d/N-dimensional configuration space (d is the space
dimensionality). Here, R, is dubbed the reference point, as it is needed to define the nodal surfaces.
Inside a nodal cell, by definition the sign of the density matrix is uniform. Using Dirichlet boundary
conditions, we may solve the Bloch equation within each nodal cell. We define the reach I's(R,) as
the set of all continuous paths R;, for which p(R;, R,, 3) # 0 for all intermediate ¢ (0 < t < f3),
i.e., node-avoiding paths

Ua(Ry) ={v: R« = Ry | p(R., Ry; B) # 0} (33)

Since paths are continuous Brownian objects, all paths contributing to the Bloch equation solution
must belong to this reach. For all diagonal contributions, odd permutations must cross a node an odd
number of times and thus are not allowed by this constraint and are exactly cancelled by all paths of

node-crossing even permutations. This leaves us with the following expression for the density matrix,

1 v€ls(R)
pR RS = 3 [ DR S (34)

|
N! P even v:R—PR

We have thus turned the sign-full expression for the density matrix into one which includes only
terms of a single sign, allowing efficient computation. However, because p appears on both sides of
Equation (34) (in the r.h.s. it appears into the definition of the reach), this requires a priori knowledge
of the density matrix nodal structure, which is generally unknown. To escape this self-consistency
issue, an ansatz density matrix that approximates the actual nodal structure, is introduced. This will
give an exact sampling of the Fermi density matrix if its nodes are correct. This method is called
restricted PIMC (RPIMC). The density matrix for non-interacting fermions is a Slater determinant
of single-particle distinguishable density matrices, p(R, R,; 3) = 77 det p;;, where

)2
pis. = (AmAB) 42 exp(—%) (35)

It is a good approximation to use the free particle density matrix at high temperatures (say for
temperatures greater than the Fermi energy) and when correlation effects are weak. Furthermore,
due to the constraint of translational invariance, free particle nodes are quite reasonable for
homogeneous systems.

The nodal error, arising from using an approximate restriction is problematic since it is
uncontrollable. The finite temperature variational principle is through the free energy, as opposed
to the internal energy in the ground state. Thus one possible solution is to parameterize the
nodal ansatz, and then minimize the free energy by varying the parameters. This will require a
thermodynamic integration, in general. Systems analyzed to date suggest that the nodal error arising
from the free-particle ansatz is small since the correlation from the interacting potential is fully taken
into account.

2.3.3. Path Integrals for Nuclei

Even when quantum particles can be considered distinguishable, as for instance light nuclei in
condensed phases, there could be substantial physical effects arising from their quantum behavior,
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i.e., resulting from the T, in Equation (1). For example in bulk hydrogen and in water, the zero point
motion of the protons must be taken into account for an accurate description. Furthermore, in the
crystalline phase the frequently used harmonic approximation is often inadequate since non-harmonic
effects can be as significant as harmonic effects. In contrast to the situation with electrons, our ability
to simulate the nuclei with current algorithms and hardware is well controlled; because the nuclei
are thousands of time heavier, they are much closer to the classical limit, so that fewer path steps
are needed. For hydrogen-containing compounds at room temperature, one can often get away with
about few tens of imaginary time slices. A second consequence is that particle statistics (either
Fermi or Bose) can typically be ignored; a notable exception is the difference between para- and
ortho-hydrogen, important for modeling the low-temperature low-pressure crystals of molecular
hydrogen and deuterium.

A frequent use of path integrals for nuclei occurs when DFT is used to integrate out the electronic
degrees of freedom. However, one wants to use the DFT energy surface for the properties of the
quantum nuclei in equilibrium, using the path integral method. To perform the path integration,
it i1s advantageous to use molecular dynamics instead of Monte Carlo since that will allow the
electronic wave functions to evolve smoothly in time, and thus reduce the time to convergence in
solving the DFT self-consistency conditions. M. Ceriotti, ef al. [34] have devised an ingenious noise
filtering scheme to reduce the number of needed path integral steps. Assuming the density functional
description of the electrons is accurate, thermodynamic (static) properties of the simulated system
will be accurate. Conversely the dynamical properties are not to be trusted. In general a reliable
method for quantum time correlation functions or, even worse, quantum dynamics is still missing.

2.4. Coupled Electron-lon Monte Carlo

The QMC methods described so far, when applied to an ion-electron system, treat all
particles on the same footing, either both in the ground state [35-37] or both at the same finite
temperature [38—40]. However the large nucleon-electron mass ratio implies a wide separation of
time and energy scales and it is a common practice to adopt the adiabatic, or Born-Oppenheimer
(BO), approximation. Ignoring such an approximation in QMC causes difficulties. The imaginary
time step of the path integral representation (both in DMC/RMC and PIMC) is imposed by
the light electron mass. In DMC this means that nuclear “dynamics” (the speed of sampling
configuration space) is much slower than electron “dynamics” requiring very long (and time
consuming) trajectories. In PIMC the separation of time scales presents itself as a separation in the
regions where thermal effects are relevant: in high pressure hydrogen for instance nuclear quantum
effects becomes relevant below ~2000 K where electrons are, to a very good approximation, in their
ground state. Performing PIMC in this region of temperatures requires very long electronic paths
causing a slowing down of the exploration of configuration space and effectively limiting the ability
of PIMC to perform accurate calculations at low temperatures.

The Coupled Electron-lon Monte Carlo method (CEIMC) is a QMC method based on the
BO approximation [8]. In CEIMC a Monte Carlo calculation for finite temperature nuclei (either
classical or quantum represented by path integrals) is performed using the Metropolis method with
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the BO energy obtained by a separate QMC calculation for ground state electrons. CEIMC has been

extensively reviewed in [8,10]. Here, we only briefly report the main features of the method.
2.4.1. Penalty Method

In CEIMC the difference of BO energies of two nearby nuclear configurations in a MC attempted
step, as obtained by an electronic QMC run, is affected by statistical noise which, if ignored, results
in a biased nuclear sampling. To cope with this situation either the statistical noise needs to be
reduced to a negligible value by long electronic calculations (very inefficient), or the Metropolis
acceptance/rejection scheme needs modifications to cope with noisy energy differences. The latter
strategy is implemented in the Penalty Method [41] which enforces detailed balance to hold on
average over the noise distribution. The presence of statistical noise causes an extra rejection for a
single nuclear move with respect to the noiseless situation. An extra “penalty” defined as the variance
of the energy difference over the square of the physical temperature is added to the energy differences.
Therefore running at lower temperatures requires a reduced variance to keep an acceptable efficiency
of the nuclear sampling. Small variances can be obtained if correlated sampling is used to compute
the energy of the two competing nuclear configurations. In an attempted nuclear MC step, a single
ground state electronic run is performed with a trial wave function which is a linear combination
of the wave functions of the two nuclear configurations considered. The BO energy of the two
nuclear configurations is obtained by a reweighting procedure which provides energy differences
with a much reduced variance with respect to performing two independent electronic runs if the
“distance” between the two nuclear configurations is limited (i.e., the overlap between the trial wave
functions of the two configurations is large) [42]. This strategy allows an efficient sampling of nuclear

configuration space for high pressure hydrogen and helium down to temperature as low as ~200 K.
2.4.2. Nuclear PIMC

When nuclear quantum effects are included using a path integral representation (see §2.3), the
relevant inverse temperature in the penalty method is the imaginary time discretization step 7, so
that no loss of efficiency is experienced when lowering the temperature (i.e., taking longer paths).
For quantum protons in high pressure hydrogen, CEIMC can be used to efficiently study systems at
temperatures as low as ~200 K. In the present implementation of nuclear quantum effects in CEIMC,
we introduce an effective pair potential between nuclei and use the pair density matrix corresponding
to the effective potential to factorize the imaginary time propagator. The residual difference between
the energy of the effective system and the BO energy of the original system is considered at the
primitive approximation level of the Trotter break-up of the proton propagator [8]. In high pressure
hydrogen (r, = 1.40) it is found that with this strategy, an inverse time step of 7! ~ 4800 K is
enough to reach convergence of the thermodynamics properties, which allows to study systems at
low temperature with a limited number of time slices (<50).

In CEIMC many-body nuclear moves are preferred to single-body moves. The reason is that

even if only few nuclei are moved the entire electronic calculation must be repeated, by far the most
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expensive part of the method. For this reason we sample nuclear configuration by a smart Monte
Carlo method [43] in the normal mode space of the path [44] with forces from the effective two body
potential. This strategy allows us to simulate systems of ~100 protons (for hydrogen) at temperature
as low as 200 K with an acceptable efficiency.

2.4.3. VMC vs. RMC

The main ingredient of CEIMC is the electronic QMC engine used to compute the BO energy.
As mentioned a very important aspect for the efficiency of CEIMC is the noise level which is related
to the variance of the local energy. In ground state QMC (see §2.1) the “zero variance principle”
applies: if the trial wave function is an eigenfunction of the Hamiltonian, the local energy is no longer
a function of the electronic coordinates and a single calculation provides the exact corresponding
eigenvalues. Therefore by improving the trial wave function and approaching the exact ground state,
the variance of the local energy decreases to zero. In connection with CEIMC, this is important not
only for the accuracy of the BO energy but also for the efficiency of the nuclear sampling since the
extra rejection due to the noise is reduced for a more accurate trial wave function.

To go beyond VMC accuracy in CEIMC we have implemented Reptation QMC method
(RMC) [8,29]. RMC is superior to DMC in the CEIMC context since it uses an explicit representation
of the statistical weight of each path and therefore the reweighting procedure needed for estimating
energy differences is easily applied. Going from VMC to RMC accuracy in CEIMC requires at
least one order of magnitude more computer time. This is because it is in general more difficult to
properly sample the configuration space of a 3N-dimensional path than of a 3N-dimensional point.
It is analogous to the difficulty of sampling the configuration space of a long polymers with respect
to point particles. For any proposed nuclear move one has to relax the electronic path to the new
equilibrium state and perform long enough sampling of the electronic configuration space to compute
the energy difference with the required noise level.

In order to improve the efficiency of CEIMC while keeping the RMC accuracy, we have recently
developed a method, based on a peculiar thermodynamic integration, to estimate the free energy of
the system with RMC based BO energy from the knowledge of the free energy of the system with
VMC based BO energy [45]. This allows to extensively use VMC rather than RMC, performing

RMC on selected thermodynamic states only.
2.4.4. Hydrogen Trial Wave Function

For high pressure hydrogen we have developed a quite accurate trial function of the
Slater-Jastrow, single determinant, form. The Jastrow part has an electron-proton and
electron-electron Random Phase Approximation (RPA) term plus two-body and three-body empirical
terms depending on few variational parameters. The Slater determinants (one for each spin state) are
built with single electron orbitals obtained by a self-consistent DFT solution. We have recently
integrated the PWSCF-DFT solver [46] into our CEIMC code to ensure a faster and uniform
convergence of the single electron orbitals in different physical conditions. Further, the argument
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of the orbitals are not the bare electron positions but rather the quasiparticle positions defined
by the backflow transformation [47,48]. We combined both the RPA analytical form and the
Gaussian-like empirical terms depending on variational parameters. Our trial wave function has a

total of 13 variational parameters to be optimized [42,48].

Figure 1. Variational energy of four different crystalline molecular structures versus
rs: Co/c upper-left panel, Cmca-12 upper-right panel, P63m lower-left panel and Pbcn
lower-right panel. Energies from wave functions with different orbitals relatives to the
energy with LDA orbitals: PBE orbitals (red triangles), HSE orbitals (green closed
circles) and vdW-DF2 orbitals (blue closed squares).
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In view of the large variability of DFT results from different exchange-correlation approximations
in the dissociation region of high pressure hydrogen (see next section), one interesting question is
about the sensitivity of the trial wave function to the particular form of the adopted Kohn-Sham
orbitals in the Slater determinant. This is particularly relevant since the form of the orbitals determine
the nodal surface of the trial wave function, the ultimate limit in the accuracy of fermionic QMC. On
the one hand one could hope to further improve the quality of the trial wave function by varying
the type of orbitals, on the other hand a large sensitivity to the form of the Kohn-Sham orbitals will
signal a too constrained form of the wave function, probably with a large room for improvements. The
recent technical advance of the CEIMC code, namely the integration of PWSCE, allowed us to test
several different types of orbitals: standard local (LDA) and semilocal (GGA-PBE) approximation,
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a non-local functional devised to reduce the self-interaction error and improve the description of the
electronic correlation in DFT (HSE [49]) and a functional devised to improve the description of the
dispersion interactions which are absent in a self-consistent mean-field theory (vdW-DF2 [50-52]).
In the range of coupling parameter 1.22 < r, < 1.44 which corresponds approximatively to the range
of pressure between 200 GPa and 550 GPa according to DFT, we have considered four recently
proposed candidate structures for the molecular crystal [53], namely C2/c, Cmca-12, Pbcn and P63m.
For each structure we have performed parameter optimizations for the four mentioned forms of the
orbitals and at eight different densities. Supercells of 96 atoms were considered for C2/c, Cmca-12
and Pbcn structures, while a supercell of 128 atoms was studied for the P63m structure. Moreover
for a single structure, Pbcn, at a single value of s = 1.35 we have performed a complete RMC study.
In Figure 1 we report for all densities investigated the variational energies from the different orbitals
relative to the energy of the trial function with LDA orbitals.

Figure 2. Pbcn structure of molecular hydrogen at r;, = 1.35. Left panel: energy per
atom versus projection time in RMC from different kind of orbitals: LDA (closed red
squares), PBE (green closed circles), HSE (upward blue triangles), vdW-DF2 (downward
purple triangles). Also results from the old LDA implementation (cyan open circles)
are reported. Right panel: Energy per atom versus variance in RMC from different

kind of orbitals.
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We note that for all structures and at all densities LDA, PBE and HSE orbitals provides trial
functions of the same quality (differences are of the order of 0.2 mH/atoms = 90K). Instead the trial
function with orbitals from vdW-DF2 functional provides higher energies, by roughly 0.4 mH/at
with values up to 1.4 mH/atom (~630 K). This first result is quite indicative that our trial function
is flexible and general enough to be very little sensitive to the form of the orbitals. In order to check
whether the observed differences from vdW-DF2 orbitals could be due to optimization problems
only, we performed a complete RMC study for a single case, namely the Pbcn structure at g = 1.35.
A time step of 7 = 0.005 h™! was used, which is fairly typical in this sort of calculation. No further
time step error extrapolation study has been performed. In Figure 2 the energy versus projection
time is reported for all kind of orbitals. We also added results from our old DFT solver with LDA



77

orbitals plagued by the truncation error. For all kinds of trial function we observe a very similar
relaxation with projection time meaning that the quality of the trial function is similar in all cases.
The differences observed at the variational level among different trial functions essentially remain
along the projection and therefore in the extrapolated value for the total energy. A quantitative way
to estimate the extrapolated (8 — o0) value of the total energy is to plot energy versus its variance
(pure estimate) and use a linear extrapolation at small values of o2. This plot for all studied cases
is shown in the right panel of Figure 2. We see that the three kinds of orbitals, LDA, PBE and HSE
all provides extrapolated energies within error bars (Ey = —0.5350(2)), while the vdW-DF?2 orbitals
provides a higher value (Fy = —0.5342(2)). The fact that the RMC projection is not able to remove
the difference observed at the VMC level means that the nodes from the vdW-DF2 are less accurate
than for the other kind of orbitals, which instead, despite their differences, provide essentially the
same nodal structure. Finally we note that our old implementation of LDA orbitals provides a less

accurate determination of the energy with correspondingly larger variance.
3. Applications

3.1. High-Pressure Hydrogen

Hydrogen is the simplest element of the periodic table and also the most abundant element in the
Universe. Because of its simple electronic structure, it has been instrumental in the development
of quantum mechanics and remains important for developing ideas and theoretical methods. In
the next section we explore its use in developing DFT functionals. Its phase diagram at high
pressure has received considerable attention from the first-principles simulation community due to its
critical importance in many fields like planetary science, high pressure physics, astrophysics, inertial
confinement fusion, among many others [10,54,55]. The phase diagram of hydrogen at high pressure
contains many interesting features including: a maximum in the melting line with a subsequent
negative slope [56,57], a predicted liquid-liquid transition between an insulating molecular and
a conducting atomic phase [58,59], exotic molecular phases at low temperature, and a predicted
metal-insulator transition in the solid phase [10,55].

The ground state structure of crystalline hydrogen across the pressure-induced molecular
dissociation has been studied by DMC [35-37] which predicted molecular dissociation at density
corresponding to s ~ 1.3. RPIMC has been applied to investigate the Warm Dense Matter
regime, namely the regime of high pressure and density where thermal and pressure molecular
dissociation and ionization occur simultaneously [38,39,60]. Particularly relevant for our current
understanding of the phase diagram and the Equation of State (EOS) of compressed hydrogen
has been the determination of the primary and secondary Hugoniots lines of deuterium which
could be directly compared with experimental data [40,61]. RPIMC predictions for the principal
Hugoniot of deuterium were first in disagreement with pulsed laser-produced shock compression
experiments [62—-64], but were later confirmed by magnetically generated shock compression
experiments at the Z-pinch machine [65-70] and by converging explosive-driven shock waves

techniques [71,72]. Also relevant for the development and fine tuning of simulation methods for
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Warm Dense Matter has been the comparison with the less demanding, but also less fundamental
methods based on Density Functional Theory (either Kohn-Sham or Orbital-Free flavours). A
general agreement between RPIMC and FPMD predictions for the Hugoniot lines was observed [10]
except at the lowest temperatures that could be reached by RPIMC (~10,000 K). More recently
the synergetic use of Born-Oppenheimer molecular dynamics (BOMD) and RPIMC has allowed to
produce first-principle based EOS’s in a wide range of physical conditions for hydrogen, helium and
hydrogen-helium mixtures [73,74] instrumental in planetary modeling and crucial ingredients for the
hydrodynamic codes used in the large facilities for extreme conditions experiments.

Temperatures lower than ~10,000 K cannot be easily reached by RPIMC without reducing the
level of accuracy. However, most of the interesting phenomena in high pressure hydrogen, like
molecular dissociation under pressure, metallization, solid-fluid transition, a possible liquid-liquid
phase transition and its interplay with melting, the various crystalline phases and the transition to the
atomic phases [10], occur at lower temperature out of the reach of RPIMC. Investigating this regime
by QMC methods has been the main motivation in developing CEIMC. The other motivation, as
mentioned above, is the benchmark of the much more developed (and less demanding) alternative
theoretical method, namely FPMD based on DFT. Indeed the numerical implementation of DFT is
based on approximations (the exchange-correlation functional) the accuracy of which can only be
established against experiments or, better, against more accurate theories. As mentioned earlier,
QMC energy is an upper bound and therefore has an internal measure of accuracy.

CEIMC has been applied to investigate the WDM regime of hydrogen and helium and benchmark
FPMD [48,75,76]. In [76] an investigation of the fully ionized state of hydrogen in a region of
pressure and temperature relevant for Jovian planets found that FPMD based on the GGA-PBE
exchange-correlation functional and CEIMC are in very good agreement but both deviates from a
widely accepted phenomenological EOS. The agreement between the simulation methods becomes
less good when approaching the molecular dissociation regime at slightly lower temperature and
pressure. Both CEIMC and FPMD with different approximated functionals has been applied to
investigate the Liquid-Liquid phase transition (LLPT) region in hydrogen [45,59,77]. The emerging
picture is that a weak first-order phase transition occurs in hydrogen between a molecular-insulating
fluid and a metallic-mostly monoatomic fluid. At higher temperature, molecular dissociation and
metallization occur continuously. However the precise location of the transition line and the
critical point are still matter of debate since several levels of the theory provide different locations.
Within FPMD-DFT the location of the transition line depends strongly on the exchange-correlation
functional employed and on whether classical or quantum protons are considered [77]. Transition
lines from the PBE and vdW-DF2 approximations differ by roughly 200-250 GPa, the PBE one
being located at lower pressure. The PBE melting line with quantum protons is not in agreement
with experiments, which highlights the failure of the PBE approximation when employed together
with the quantum description of the nuclei. On the other hand, optical properties for the vdW-DF2
approximation are in agreement with experiments supporting the use of this functional for hydrogen
in the WDM regime. The LLPT line from CEIMC lies in between the lines from PBE and vdW-DF2

functionals [45,59]. However, those results were plagued by a truncation error in the calculations
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of the single electron orbitals which showed up only around the metallization and which resulted
in biased estimates. We have now changed the DFT solver in our CEIMC code and checked the
convergence. We find a roughly uniform shift of the transition line of ~50 GPa to higher pressure
and we are performing new calculations with quantum nuclei. Preliminary results, based on VMC
electronic energies, suggests that, similarly to the DFT scenario, nuclear quantum effects favor
molecular dissociation and become increasingly important at lower temperatures. We estimate that
the transition pressure is decreased, because of nuclear quantum effects, by ~60 GPa at 600 K and by
~150 GPa at 300 K (from ~430 GPa for classical nuclei to ~290 GPa for quantum nuclei). RQMC
corrections to the transition lines was previously found to be small and we expect an even smaller
effect with the new CEIMC implementation since the VMC variance is roughly half of what it was
in the previous code [45].

The last estimate however is for a metastable liquid state obtained by an instantaneous quenching
of the fluid at higher temperature, while it is expected that the equilibrium state at 300 K and ~290
GPa be crystalline (of unknown structure) [10]. Those results are preliminary since the calculation
is performed for a small system of 54 protons (we employ Twist Averaged boundary conditions to
reduce size effects on the single-electron properties with a 4 x 4 x 4 twist angle grid) and we are
presently estimating size effects, both by direct size extrapolation and by the analytic treatment of
size effects [78,79]. In Figure 3 we report CEIMC proton-proton g(r) at various densities along
the T = 600 K isotherm to illustrate the relevance of nuclear quantum effects on the pressure
dissociation. The preliminary CEIMC results suggest that, despite the good performance observed on
band gap calculations in the crystalline phases [80], the vdW-DF2 exchange-correlation functional
has a tendency to over-stabilize molecules.

Although our results demonstrate the power of CEIMC in predicting the physical properties of
hydrogen, its use is still quite demanding in terms of computer time, a fact that limits its applicability.
This is particularly true when a much larger exploration of external conditions is needed to clarify
the physics. For example, to study the crystalline state of the molecular system and clarify the
molecular-atomic transition mechanism in the solid state, it is necessary to consider a large number
of candidate structures, some of which have very large unit cells (the recently proposed Pc structure
for phase IV of molecular hydrogen [81] contains 192 proton, more than three times larger than
the system considered in the LLPT). Moreover, in studying those structure at finite temperature it is
important to apply a constant stress algorithm allowing the simulation box to deform and release the
excess internal stress that otherwise would produce metastable states. While larger systems (>250
particles) and constant pressure algorithms are routinely applied in FP methods based on DFT, their
use in conjunction with CEIMC is still problematic. Therefore, it is important to apply CEIMC and
other QMC methods to validate DFT predictions and determine the most accurate functional for a
given system. The same considerations apply to systems more complex than hydrogen. In the next
section we will describe our effort to benchmark functionals for high pressure hydrogen and for water

in condensed phase.
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Figure 3. Proton-proton radial distribution function at various densities along the
isotherm T = 600 K. Comparison between classical nuclei (red continuous line) and
quantum nuclei (blue dashed line) for hydrogen nuclear mass. It is evident the molecular
dissociation with increasing density.
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3.2. QMC Benchmarks of DFT

Within the Born-Oppenheimer approximation at low temperatures, the only interaction between
ions and electrons comes through the potential energy surface Fy(R), defined as the solution of
the electronic Hamiltonian for a fixed set of ionic coordinates. Fy(R) is typically approximated
by Eprr(R) in first-principles calculations, and obtained from a density functional theory (DFT)
calculation. Over the last several years, many-body methods for solids have been developed to
the point that the prospect of developing density functionals from accurate reference calculations
is now a possibility. In this section, we show how quantum Monte Carlo calculations can be used
to benchmark the accuracy of DFT in the description of the potential energy surface. The quality
of Eprr(R) defines the predictive capabilities of the resulting first-principles simulation. We use
large sets of representative configuration from PIMD simulations, and compare the mean absolute
error between accurate QMC calculations and various DFT functionals. We present preliminary
calculations on high pressure hydrogen and liquid water at ambient conditions, two materials that
are particularly challenging to DFT due to the subtle competition between dispersion interactions,
nuclear quantum effects, hydrogen bonding, and anisotropic interactions.
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3.2.1. Hydrogen

The phase diagram of hydrogen at high pressure has been extensively explored using
first-principles simulations with DFT [58,59,82—-85]. In spite of the large number of studies,
most of the work so far has employed either the local density (LDA) [86] approximation to the
exchange-correlation potential or the Perdew-Burke-Ehrzenhof (PBE) [87] generalized gradient
approximation. These are two of the simplest functionals currently available in DFT. In fact, both
of them suffer from self-interaction errors and lack a proper treatment of dispersion interactions,
making their application in the regime of molecular dissociation questionable. Recently, the use of
DFT functionals with an improved description of dispersion interactions has been employed in the
study of the liquid and solid molecular phases in the neighborhood of molecular dissociation. It
was found that the dissociation density changed when compared to calculations using PBE [77,80].
Since these functionals were not designed for materials at high density, and because dispersion
interactions are clearly important in dense molecular hydrogen, there is a crucial need for accurate
calculations that can be used to benchmark the different exchange-correlation functionals employed
in first-principles simulations.

Since sufficient experimental data is not available to validate the quality of functionals in the
high-pressure high-temperature regime of the phase diagram, we used fixed-node diffusion Monte
Carlo (DMC) to benchmark the accuracy of several DFT functionals over a range of densities near the
liquid-liquid phase transition at a temperature of T = 1000 K. Henceforth, we will refer to densities
using the parameter 7. First, we ran PIMD simulations with the PBE functional for NV = 54 hydrogen
atoms at three densities: r, = 1.30,1.45,1.60. In this range of densities, the liquid goes from an
insulating molecular state at vy, = 1.60 to a conducting atomic liquid at r, = 1.30. The density
rs = 1.45 is intermediate and close to the LLPT for this functional. After equilibration, we sampled
100 ionic configurations from uncorrelated PIMD time slices for each density. For each configuration
at each density, we calculated the DMC energy, and then computed Eprr(R) for the following
functionals: LDA, PBE, vdW-DF [50], vdW-DF2 [51,52,88], and HSE [49].

All QMC calculations were performed with the QMCPACK [89-91] software package. We
used a Slater-Jastrow trial wavefunction with twist-averaged boundary conditions [92], employing a
3 x 3 x 3 grid of boundary conditions. For the Jastrow functions, we used real space b-splines with
optimizable knots. We included spin-independent one-body proton-electron terms; a short-ranged
term with the appropriate cusp condition, and a long-ranged term. We also included two long-ranged
spin-dependent electron-electron functions with appropriate cusp conditions. For each configuration,
linear optimization with VMC was performed for all Jastrow parameters at a single twist-angle, these
parameters were subsequently used for all twists in the DMC calculations. For the DMC run, a

~1 and 6000 walkers were used. The orbitals were obtained from DFT

timestep of 7 = 0.05 Ha
using the Quantum Espresso software package [46], using the PBE functional. We used a plane
wave cutoff of 210 Ry. DFT calculations were performed with a Troullier-Martins norm conserving
pseudo-potential [93] with a cutoff radius of r. = 0.5a9, DMC calculations were performed with

the Coulomb potential. Based on the scale of the energy differences, we found a statistical error of
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0.02 mHa/particle to be sufficient for present purposes. Since we were interested in measuring the
spread of energy errors in this presentation, constant energy offsets were removed from our error
assessments. This means that we did not have to include energetic finite size effects, although more
detailed assessments will certainly call for this.

An example of the comparison between QMC and DFT is given in Figure 4. Shown is a histogram
of the energy difference between the results of DMC and the PBE functional at the three densities:
AEprr = Eprr — Epye. Given that r, = 1.30 corresponds to the atomic liquid, and 7, = 1.60 to
the molecular liquid, we immediately see that the errors incurred by using the PBE functional are not
consistent across the LLPT. As expected, PBE offers a much better description of the atomic liquid
compared to the molecular phase, where self-interaction errors are larger and dispersion interactions
are important. This is a well-known failure of most semi-local density functionals, which tend to

favor delocalized states.

Figure 4. Histograms of AFEppr for the PBE functional for dense hydrogen at densities
re = 1.30,1.45,1.60 at T' = 1,000K. AFEppr refers to the absolute energy difference
per hydrogen atom between the DFT and QMC for a given configuration. There were

54 atoms per configuration.
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To better quantify and compare the quality of functionals, we have computed the mean absolute
error (MAE) from data similar to that shown in Figure 4. This quantity is defined as M AEy,,,. =
(|AEprr — (AEppr)|), where the average is taken over all configurations at a particular density.
Notice that we subtract the average energy difference in the definition of the MAE, since the zero
of energy of each functional is modified by the use of pseudopotentials. Fluctuations of the energy
differences are more significant since the structure of the liquid is only sensitive to differences. The
MAE gives us one measure of the quality, or predictive capability, of a given functional as defined by
the reference method, in this case DMC. We have tabulated our results in Figure 5.

There are several interesting features in Figure 5 directly related to the expected performance
of these functionals in the description of hydrogen near molecular dissociation in the liquid. First,
the two semi-local functionals in the comparison, LDA and PBE, have considerably different errors

in the molecular and atomic regimes. As described above, the atomic regime is more accurately
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described in comparison to the molecular phase, leading to a potentially strong underestimation of
dissociation transition pressures in both solid and liquid phases. This is consistent with recently
reported simulations [77]. On the other hand, both the hybrid HSE and the functionals with improved
dispersion vdW-DF and vdW-DF2 offer a more consistent level of description between the two
regimes. The mean absolute errors of the HSE and vdW-DF functionals are approximately half
that of the PBE functional for all densities, which indicates that these functionals more accurately
capture energy differences between various liquid configurations.

Figure 5. Mean absolute error of energy/atom vs. functional for dense liquid hydrogen
at 1000 K. For each functional, we computed the mean absolute error for three different
densities, denoted by the different colored bars.
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3.2.2. Liquid Water

Water plays a central role in many scientific fields [94]. It is a critical component to almost all
chemical, biological, and geophysical processes. As a result, it is one of the most studied substances
in science, both from an experimental and a theoretical point of view. Despite such broad importance,
water’s most basic property, its local structure at ambient conditions, characterized by the geometry
of its underlying hydrogen-bond (H-bond) network, has remained a matter of debate for over a
century [95-97]. Challenges arise because water is only ~25 K (at room temperature) from the
melting temperature of ice, where a variety of subtle and complex effects become important. While
the structure is dominated by H bond between neighboring molecules, both van der Waals (vdW)
interactions (which, in this context, refers to dispersion forces resulting from dynamical nonlocal
electron correlations) and nuclear quantum effects (NQEs) influence the topology of the H-bond
network. In fact, it is precisely these seemingly subtle effects (compared to H bonding) that are key
to accurately describing ambient water, but have been (until recently) difficult or impossible to model.

Atomistic simulations have the potential to resolve these issues, particularly using first-principles
methods. Providing an accurate theoretical description has been a central topic and open challenge
in physical chemistry for many decades. Despite considerable focus over the last decade, to date
DFT has proven insufficient for the accurate description of liquid water [4,98]. Nonetheless,
much progress has occurred during the last several years. The main advances include the use of
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functionals that properly describe dispersion interactions in the liquid [50,52,99,100], the use of
hybrid functionals [101], and the direct treatment of nuclear quantum effects [102]. The combination
of all of these advances in first-principles simulations of liquid water could lead to an accurate
description of its interesting properties, including its local structure. At the same time, the choice
of exchange-correlation functional in DFT is still a source of complication, mainly due to the large
number of possibilities and the inability to test their predictive capabilities without resorting to full
first-principles calculations of a large set of observables. As in the case of hydrogen, an accurate
first-principles description almost certainly requires the use of path integral methods in order to
directly treat nuclear quantum effects, which makes the calculations quite computationally intensive.
What is needed is a way to assess the quality of a given functional without having to resort to
first-principles calculations of the liquid at the PIMD level, and if possible, a way to systematically
improve them using high quality reference calculations from accurate many-body methods.

In this section, we present QMC calculations of configurations of molecules extracted from
PIMD simulations of liquid water. QMC has been shown to be a reliable benchmark in the study
of small water clusters [103—105], and should provide an accurate reference method to measure
the quality of typical density functionals used in simulations of water. All DMC calculations were
performed with the QMCPack software package [89-91]. A Troullier-Martins norm-conserving
pseudo-potential [93] was used to represent both hydrogen and oxygen. In particular, we used the
pseudo-potentials from the CASINO database [106,107], which were recently shown to produce
accurate results in the study of small water clusters. A Slater-Jastrow trial wave-function was
used. The orbitals in the Slater determinant were obtained from DFT calculations employing
the PBE exchange-correlation functional. We do not expect a strong dependence of the resulting
comparison on the functional used to generate the orbitals. The Jastrow term contains electron-ion,
electron-electron and electron-electron-ion terms, the variational parameters were optimized at the
VMC level using a variant of the linear method of Umrigar, et al. [108]. A time-step of 0.01 Ha™!
was found to be sufficiently small to produce accurate total energies and approximately 4800 walkers
were used in the DMC calculations. Casula’s T-moves [109] were used to reduce locality errors,
while the Model Coulomb Potential [110] and Chiesa’s [78] correction scheme were used to estimate
finite-size corrections to the potential and kinetic energies respectively.

DFT calculations were performed with both Quantum Espresso (QE) [46] and VASP [111-113]
simulation packages. In the case of QE calculations we employed norm-conserving Troullier-Martins
pseudo-potentials, while in the case of VASP calculations we employed the Projector Augmented
Wave method (PAW) [114,115]. A single pseudo-potential (constructed with PBE) was chosen in
order to make a homogeneous comparison of all DFT functionals, since some of the functionals
employed in this work do not yet allow for the production of pseudo-potentials. All simulations
were performed at the I point of the supercell in order to be consistent with the corresponding DMC
calculations; errors due to the lack of k-point integration were small enough to be safely discarded.
We carefully tested the convergence with the plane-wave cutoff in all DFT calculations.

We present calculations for 3 different configuration sets. The first two sets, which we called
TIP5P-PI-OC-ICE and TIP5P-PI-0C-LIQ, were generated with PIMD calculations on simulation
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cells using the semi-empirical TIP5P water model and 32 molecules [116]. As the name suggests,
the PIMD calculations used to generate the configuration set were performed at T = 0 C, from stable
solid and liquid phases. The third configuration set was obtained from PIMD calculations of 64 water
molecules, at room temperature and density of 1 g/cm?®, with the vdW-DF2 functional, which has
been recently shown to provide an accurate description of the structure of water when combined
with a path integral representation [117]. The number of configurations in each set is 20, 47, 50,
respectively. The three configuration sets sample different aspects of the potential energy surface of
liquid water. While TIPSP is a rigid molecule model, the first-principles simulations with vdW-DF2
are fully flexible, which allows us to emphasize different ranges of the molecular interactions in the
liquid. On the other hand, the simulations with TIPSP in both liquid and solid phases at T =0 C
sample the configurations that either strongly favor hydrogen bonding in the solid, with those where
the hydrogen-bond network has been destabilized in the liquid.

Figure 6. Mean absolute error in the total energy between DMC and DFT with various
exchange correlation functionals for a supercell containing water molecules. Results
presented correspond to calculations using the PAW formulation with VASP. X-D, where
X represents a given density functional, designates results using the empirical dispersion
corrections of Grimme et al., [118], in particular the DFT-D2 correction scheme as
implemented in VASP. Statistical errors on the presented results are on the order of
0.003 mHa and 0.005 mHa for rigid and flexible molecule configurations respectively.
They are not shown on the figure for clarity.
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Figure 6 shows the mean absolute difference in the total energy between DMC and DFT
calculations, results are separated by configuration sets in order to allow for a more clear comparison
between them. Several functionals are considered including the semi-local functionals: PBE [87];
the hybrid functionals: PBEO [49], B3LYP [119,120]; the non-local van der Waals functionals:
optB88 [121], optPBE [121], optB86b [122], vdW-DF [50] and vdW-DF2 [52]; and finally
functionals with the empirical van der Waals correction of Grimme, et al., (DFT-D2) [118]. While
there are many interesting results in this comparison, the most noticeable feature is the large
difference in the scale of the MAE between rigid and flexible molecule configurations. This
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is not unexpected since the larger energy fluctuations in the system are found coupled to the
intramolecular degrees of freedom of the molecule. In the case of flexible molecule configurations,
hybrid functionals offer a much better agreement with DMC results, producing errors typically a
factor of 2 smaller than non-hybrid functionals. This result shows the fact that hybrid functionals
do a much better job at describing the intramolecular potential energy surface. This is consistent
with the recent calculations of Alfe, ef al. [104] and with the recent calculations of the absorption
spectra of bulk water at ambient conditions of Zhang, et al. [101]. On the other hand, the functionals
that include an appropriate description of dispersion interactions offer a clearly better comparison
with QMC in the rigid-molecule configuration sets. In this case, the intermolecular interactions are
the dominant energy contribution and the lack of appropriate dispersion leads to a larger error. In
this case, we can also see a small but finite improvement with the inclusion of empirically corrected
vdW functionals (PBE-D, B3LYP-D), but the gain is small and can not compete with non-local vdW
functionals. Notice also that the performance of hybrids in the rigid-molecule sets is comparable to
the performance of semi-local functionals, due to the fact that neither of these type of functionals
can properly describe dispersion interactions. Finally, the configuration set with the smallest overall
MAE is the one obtained from the calculations in the solid phase close to melting, showing the fact

that most of these functionals can describe hydrogen bonded configurations fairly well.

4. Discussion

Direct first-principles simulations with QMC accuracy of condensed phases systems are
nowadays possible but restricted so far to the simplest first few elements of the periodic table, namely
hydrogen, helium and their mixtures. Even for those simple systems, challenges are present and
the computational demand is large. Nonetheless, CEIMC predictions for the liquid-liquid phase
transition in hydrogen remains today the target for less accurate but faster DFT-based FP methods.
While much work remains to be done in developing QMC-based FP methods, the calculations
presented here show one possible use of accurate many-body calculations: using QMC to benchmark
the accuracy of DFT functionals. Not only does this allow us to make a judgment of the quality of a
functional before its use in first-principles simulations, but it also shows us a path for the systematic
improvement of the functionals by adjusting free parameters to minimize the errors. DFT users will
often point to experimental data to validate the quality of a chosen functional. What we have shown
is that we can use highly-accurate QMC methods to benchmark functionals around the liquid-liquid
transition of hydrogen from first-principles. In addition, this set of reference energies for the bulk
system can be used to optimize the free parameters in the DFT functional to minimize the errors,
and in the limit of a large data set, reproduce the quality of the more accurate many-body method in
first-principles calculations using DFT. This approach will be increasingly necessary as we continue
to explore matter under extreme pressures, since experimental data is often insufficient or nonexistent
at geophysical/planetary scales. It will also be necessary for other situations where DFT functionals
have difficulties, such as near metal-insulator transitions.

Let us consider a more general point. We suggest that, in general, it is superior to use total
energies to find an interatomic potential (force field). The traditional approach is to fit experimental
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data, for example, the melting temperature of ice, the density of water versus temperature, efc.
Clearly this procedure was necessary in the past since experimental data was all that was available.
However, using this approach requires very extensive calculations including free energy or equivalent
computations and ultimately only gives a few constraints. We can invoke “The Allegory of the Cave"
from Plato’s The Republic. We should not look to fit the atomic potentials using the projections of the
energy surface onto thermodynamic properties, but, instead to fit directly the energy surface. Thus we
will obtain an interatomic potential suitable for all properties. The situation has changed since QMC
methods have matured and much more computational power is available. We note that scanning
potential energy surface is a task very well suited to massively parallel computers. Including total
energy QMC benchmarks into the fitting procedure in addition to experimental data, can allow for
much more systematic improvements. QMC thus can provide a unique role in giving total energies
and is applicable to large enough systems to approximate condensed matter.

Water and hydrogen show an additional complication of using experimental data: namely because
of the importance of quantum zero-point effects of the protons, fitting of the experimental data
becomes particularly problematic. A common approach is to do a simulation of the classical system
and assume that the effective classical system includes the effects of zero-point energy; clearly this
then becomes quite approximate since the zero-point effects are not small. A complication is that
the interatomic potential that results can become temperature and density dependent with all known
pathologies related to the use of state dependent potentials [123]. One may need to do full PIMD
simulations of the system in order to determine the best empirical potential, thus increasing the,
already large, computational requirements considerably.

One aspect in determining good force fields is to find an appropriate basis set to parameterize
the force field. Traditionally, these have contained few functions with very few parameters, e.g.,
the Lennard Jones potential with only two parameters: € and o. It is feasible today to calculate
the energy and forces for millions of independent arrangements of ions. Using QMC techniques,
each would come with an error estimate. Hence, we can envision fitting this data set to a force
field with potentially tens of thousands of independent parameters. This will allow us to determine a
completely general pair potential (say with a spline basis), a three-body potential, four-body potential,
etc. However, the investigation into effective basis sets to describe these potentials becomes very
important. We can imagine an integrated set of tools: QMC simulations of systems with thousands
of electrons to produce data sets of energies and forces. These can be used either to tailor a DFT to
a particular system, or to determine a force field. The DFT simulations and the effective force field
simulations can then be used to model much larger systems. Thus simulations can thereby become
much more predictive, and produce not just universal properties, but details important to applications

and experiment.
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overview of methods is provided from an algorithmic viewpoint that emphasizes
long-time stability and finite-time dynamic accuracy. The given software simulates
Langevin dynamics using an explicit, second-order (weakly) accurate integrator that
exactly reproduces the Boltzmann-Gibbs density. This latter feature comes from adding
a Metropolis acceptance-rejection step to the integrator. The paper discusses in detail the
properties of the integrator. Since these properties do not rely on a specific form of a heat
or pressure bath model, the given algorithm can be used to simulate other bath models
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1. Introduction

Molecular Dynamics (MD) simulation refers to the time integration of Hamilton’s equations often
coupled to a heat or pressure bath [1-5]. From its early use in computing equilibrium dynamics
of homogeneous molecular systems [6—13] and pico- to nano-scale protein dynamics [14-23], the
method has evolved into a general purpose tool for simulating statistical properties of heterogeneous
molecular systems [24]. Accessible time horizons have increased remarkably: the time line in
Figure 1 attempts to capture this nearly billion-fold improvement in capability over the last forty
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or so years. To put this speedup in perspective, though, computing power has increased by about
eight powers of ten over this time period as predicted by Moore’s law.

To be clear, the selection of applications and methods shown in Figure 1 is not comprehensive
and heavily biased towards the specific ideas and methods that inform this paper. The applications
highlighted are simulations of liquid argon [6], water [11], protein dynamics without solvent [14,15]
and biopolymer dynamics with solvent [25-31]. The methods include the following “upgrades”
to MD simulation: Verlet integrator and neighbor lists [7], cell linked list [32], the SHAKE
integrator for constraints [33], stochastic heat baths via Langevin dynamics [34,35], a library of
empirical potentials [36], a deterministic heat bath via Nosé-Hoover dynamics [37,38], the fast
multipole method [39], multiple time steps [40], splitting methods for Langevin dynamics [41-43],
quasi-symplectic integrators [44,45], (fast) combined neighbor and cell lists [46], the v-rescale
thermostat [47] and the stochastic Nosé-Hoover Langevin thermostat [48—50].

Near future applications of MD simulation include micro- to milli-scale simulations of
biomolecular processes, like protein folding, ligand binding, membrane transport and biopolymer
conformational changes [51-53]. In addition, atomistic MD simulations are used more sparingly in
multiscale models [54-58] and rare event simulation, such as the finite temperature string method and
milestoning [59-62]. Given this continuous development and generalization of MD, it is not a stretch
to suppose that MD will play a transformative role in medicine, technology and education in the

twenty-first century.

Figure 1. A time line of selected developments in MD simulation.
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In its standard form, the method inputs a random initial condition, physical and numerical
parameters and outputs a long discrete path of the molecular system. Statistical quantities,
like velocity correlation or mean radius of gyration, are usually computed online, i.e., as
points along this trajectory are produced. @ MD simulation is built atop a cheap forward
Euler-like integrator that requires only a single interactomic force field evaluation per step. Even

though MD seems straightforward, software implementations of MD are typically optimized for
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performance [36,63,64], and as a side effect, make it cumbersome for non-experts to learn
and modify.

Also, besides this issue, due to the interplay between stochastic Brownian and molecular forces,
infinitely long trajectories of existing MD integrators do not have the right distribution. What happens
is that the Brownian force can cause the integrator to enter regions where its approximation to
the molecular force is inaccurate and possibly destabilizing. In the latter case, the approximation
spends a disproportionate amount of time at higher energies, and thus, the invariant measure of the
approximation, if it even exists, is not correct. This phenomenon is a well-known shortcoming of
explicit integrators for nonlinear diffusions [65-69].

Recently, a probabilistic approach was proposed to solve this problem, which questions the
notion that Monte Carlo methods and MD have different aims: the former strictly samples
probability distributions, and the latter estimates dynamics. The basic idea is to combine a
standard MD integrator with a Metropolis-Hastings algorithm targeted to the Boltzmann-Gibbs
distribution [70-72]. Because the scheme is a Monte Carlo method, it exactly preserves the desired
distribution [71,72]. This property implies numerical stability over long-time simulations. However,
the price to be paid for this stability is a loss of accuracy whenever a move is rejected and some
overhead in evaluating the Metropolis acceptance-rejection step. Still, a Metropolized integrator is
dynamically accurate on finite-time intervals [72,73], and so, even though a Metropolized integrator
involves a Monte Carlo step, its aim and philosophy are very different from Monte Carlo methods,
whose only goal is to sample a target distribution with no concern for the dynamics [71,74-82]. In
principle, this approach offers a simple alternative to costly implicit integrators, but are Metropolized
integrators ready for daily use in MD simulation? The answer to this question is unclear, since this
approach is new and has not been tested on enough examples.

Motivated by these issues, this paper builds a software system for MD simulation with a
Metropolis step built in and applies it to a homogeneous molecular system. The algorithm and
its properties are introduced in a step-by-step fashion. In particular, we show that the integrator
is second-order weakly accurate on finite-time intervals and converges to the Boltzmann-Gibbs
distribution in the long-time limit. The software version of the algorithm is written in the latest
version of MATLAB with plenty of comments, variables that are descriptively named and operations
that can be easily translated into mathematical expressions [83]. Since MATLAB is widely
available, this design ensures that the software will be easy-to-use and cross-platform. The following
MATLAB-specific file formats will be used.

(F1) MATLAB script and function files are written in the MATLAB language and can be run from
the MATLAB command line without ever compiling them.

(F2) MATLAB executable (MEX) files are written in the “C” language and compiled using the
MATLAB mex function. The resulting executable is comparable in efficiency to a “C” code
and can be called directly from the MATLAB command line. We will use MEX-files for
performance-critical routines [84].

(F3) MATLAB binary (MAT) files will be used to store simulation data.
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The paper is organized as follows. We begin with an overview of integrators that have been
proposed in MD simulation in Section 2. We explain how to Metropolize each of these schemes to
make them long-time stable in Section 3, and as an application, we use a Metropolized scheme to
generate a long trajectory of a Lennard-Jones fluid in Section 4. Generalizations of corrected MD
integrators to other molecular models are discussed in Section 5. The paper closes by discussing
some potential pitfalls in high dimension and tricks to get the integrator to scale well in Section 6.

2. Algorithmic Introduction to Time Integrators for MD Simulation

For pedagogical reasons, we will start with Langevin dynamics of a system of N molecules.
Then, we show in Section 5 how to simulate more general models of molecular systems. Denote by
m; > 0 and g; the mass and position of the j-th molecule, respectively. The governing Langevin

equation is given by:

dq; _
%(t):mjlpj(t)a =1 N )
dp;(t) = — 42 (a())dt — yp;(t)dt + \/2KTym;dw; ’

where ¢ = (qy,--- ,qy) and p = (py,--- ,py) denote the positions and momenta of the particles,

kT is the temperature factor, and {w; };VZI are N-independent Brownian motions. The last two
terms in the second equation in (1) represent the effect of a heat bath with parameter . In Langevin
dynamics, positions are differentiable, and due to the irregularity of the Brownian force, momenta are
just continuous, but not differentiable. This difference in regularity explains why the first equation
in (1) is written as an ordinary differential equation (ODE) and the second equation is written as a
stochastic differential equation (SDE).

The bath-free dynamics is a Hamiltonian system with the following Hamiltonian energy function:

N
1

H = — n.?4+U 2

(g, p) ; o Ip,I> + Ulq) 2)

Since the masses are constant, this Hamiltonian nicely separates into a kinetic and potential energy

that are purely functions of p and g, respectively. The stationary probability density of the solution

to Equation (1) is the Boltzmann-Gibbs density given by:

1 1
=71 ——H 7 = —-—H dqd 3
v(q,p) exp ( T (q,p)) 7 /eXp ( T (q,p)) qdp (3)
Let h be a given time step size and m = diag(my,--- ,my). Let (Q,, Py) denote the position

and momentum of the molecular system at time ¢ > 0. The simplest approximation to Equation (1)
is a forward Euler discretization or Euler-Maruyama scheme [85] that computes an updated position

and momentum (Q,, P1) at t + h using:

Q,=Q,+hm P,

(forward Euler)
P, = Py — hVU(Q,) — hy Py + Vh~/2kTym'/?¢
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Here, £ € R” denotes a Gaussian random vector with mean zero and covariance E(§,€;) = d;.
The problem with this approximation is that the forward Euler method is known to diverge in
finite-time when the derivatives of the potential are unbounded, which is the norm in MD simulation.
The precise statement and proof of divergence in a general setting can be found in [86]. By far the
most computationally intensive part of the time-stepping algorithm is the evaluation of the potential
force. Thus, we will restrict our discussion to schemes that, like Euler, only require a single force
field evaluation per step.
An improvement to the forward Euler method is the following two-step scheme:

_ o—h

Q= (1+e"™Q, —e"Q, + 1Tem—1 (—hVU(Ql) +Vh 2kT7m1/2£) (BBK)

In the limit, v — 0, this scheme reduces to the well-known Verlet integrator for MD simulation [7].
Just like Verlet, this integrator defines a map on pairs of molecular system configurations.
Substituting the approximation, e " ~ (1 — vh/2)/(1 + ~h/2), into the above yields the
Briinger-Brooks-Karplus (BBK) scheme, as appearing in [35]. Like the forward Euler method, this
method is explicit and only requires one new force evaluation per step.

Second-order accurate schemes that generalize the Velocity Verlet integrator to Langevin
dynamics were proposed in a sequence of papers [42—44,87,88]. Here, we mention two of these
schemes that are both Strang splittings of Equation (1). The first was proposed by Ricci and
Ciccotti [42] and consists of the following sub-steps:

q(t) = m~'p(t) . q(t)=0 L[4t = m~p(t)
dp(t) =0 dp(t) = —=VU(q(t))dt — vp(t)dt + 2KkTym'/2dW dp(t) =0

exactly evolve by 1/2 a step exactly evolve by a step exactly evolve by 1/2 a step

Each step in this decomposition can be exactly solved. Clearly, the half-steps are easy to solve, since
momentum is constant over each of these half-steps. The SDE appearing in the inner step can also be
exactly solved, since it is linear in momentum (see Chapter 5 in [89]). This splitting is quite natural,

since it treats the heat bath forces in the same way as the potential forces.
A related, but different, splitting method was proposed by Bussi and Parinello in [43] and is
given by:

q(t) =0 L[ aty=mTp(t) \ q(t) =0
dp(t) = —yp(t)dt + 2KTym'/2dW p(t) = -VU(q(t)) dp(t) = —yp(t)dt + 2kTym'/2dW

exactly evolve by 1/2 a step exactly evolve by 1/2 a step

approximately evolve
using a step of Verlet

Notice that this decomposition splits the Langevin dynamics into its Hamiltonian and heat bath parts,
which makes it easy to analyze the structural properties of the scheme. A Velocity Verlet integrator
is used to approximate the Hamiltonian dynamics. This approximation exactly preserves phase space
volume and preserves energy to third-order accuracy per step. Moreover, the solution to the SDE
appearing in the half-steps exactly preserves the Boltzmann-Gibbs density.

Since the Velocity Verlet integrator does not exactly preserve energy, the composition above

does not exactly preserve the stationary distribution with density in Equation (3). In [90], it was



101

shown that if the derivatives of the potential are all bounded, the Bussi and Parinello integrator
possesses an invariant measure that is O(h?) close to the Boltzmann-Gibbs distribution. In this same
context, the leading order error term in the integrator’s approximation to the invariant measure was
explicitly determined [91]. Technically speaking, however, these results do not directly apply to
MD simulation, since real MD simulation involves potentials whose derivatives are unbounded, e.g.,
Lennard-Jones forces. As a consequence of this irregularity in the force fields and discretization error,
explicit schemes, like this one, may either not detect features of the potential energy properly, which
leads to unnoticed, but large errors in dynamic quantities such as the mean first passage time, or
may mishandle soft- or hard-core potentials, which leads to numerical instabilities; see the numerical
examples in [92]. These numerical artifacts motivate adding a Metropolis accept/refusal sub-step to
the integrator. In the next section, we show how to Metropolize all of the MD integrators presented in
this section. In Section 5, we explain how to generalize the Metropolis-corrected Bussi and Parinello
algorithm to a larger class of diffusion processes.

3. Metropolis-Corrected MD Integrators

Here, we show how to add a Metropolis acceptance-rejection step to a BBK-type scheme and the
Bussi and Parinello splitting scheme and then precisely state the properties of these integrators. We
start with a detailed description of each algorithm. Both algorithms require evaluating the acceptance
probability given by the usual Metropolis ratio:

ala.p.Q.P) = min (Lexp (~ 1@ P) - H(a.) ) ) @

The procedure to Metropolize the Ricci and Ciccotti scheme can be found in Section 2 of [70].

Algorithm 3.1 (First-order BBK-type integrator). Given the current state (Q,, Po) at time ¢, the
algorithm proposes a new state (Q7, P7) at time ¢ + h for some time step h > 0 via:

(Qa{) _ (QO + m~! (hPo - %QVU(QO)>> (Step 1)
P* Py — 5 (VU(Q,) + VU(QY))

This “proposal move” (Q7, P7) is then accepted or rejected:

Q\ _ (@ B Qo
(131) = (Pf> +(1—2) <—Po> (Step 2)

where z is a Bernoulli random variable with parameter a(Q,,, Py, Q7, P7) given by Equation (4).
The actual update of the system is taken to be:

Ql o Ql
<P1) B (exp(—Vh)Pl +VET/1 — eXP(—Q’yh)ml/2§> (Step 3)

Here, § € R™ denotes a Gaussian random vector with mean zero and covariance E(§;;) = K71'6;;.
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The momenta of the molecules gets reversed if a move is rejected in Step 2 of Algorithm 3.1.
This momentum flip is necessary for the algorithm to preserve the correct stationary
distribution [70,71], but results in an O(1) error in dynamics. High acceptance rates are therefore
needed to ensure that the time lag between successive rejections is frequently long enough for the
approximation to capture the desired dynamics. Since the acceptance rate in Equation (4) is related
to how well the Verlet integrator in (Step 1) preserves energy after a single step, this rejection rate is
O(h?). Thus, in practice, we find that the time step required to obtain a sufficiently high acceptance
rate is often automatically fulfilled by a time step that sufficiently resolves the desired dynamics.
Each step of this algorithm requires: evaluating the atomic force field once in the third equation of
(Step 1), generating a Bernoulli random variable with parameter « in (Step 2) and generating an
n-dimensional Gaussian vector in (Step 3). We stress that (Step 2) in Algorithm 3.1 is all that is
needed to get MD integrators to exactly preserve the Boltzmann-Gibbs density in Equation (3).

Next, we show how to Metropolize the Bussi and Parinello splitting integrator.

Algorithm 3.2 (Second-order Bussi and Parinello integrator). Let £, m € R" be two independent
Gaussian random vectors with mean zero and covariance E(§,£;) = E(n;n;) = ;. Given a
time step size h and the current state (Q,, Py) at time ¢, the algorithm takes a half-step of the heat
bath dynamics:

QO = . Qo (Step 1)
P, exp(—vh/2)Py + VkT+/1 — exp(—yh)m!'/2¢
Followed by a full step of Verlet to compute a proposal move (QI, 13:):
@\ [(@Qurmt(hPo- EVUQ))
Zx ] = . . . (Step 2)
Pi)\ P-4 (VUQ) +VU@)

This proposal move (Q;, P;) is then accepted or rejected:

Q) (@ [ Qo
(131) =z (PI> +(1—x) (_130> (Step 3)

where z is a Bernoulli random variable with parameter a(QO, P, QI, 15;) given by Equation (4).
The actual update of the system at time ¢ + h is taken to be:

Q, Q,
<P 1) E (eXp(—vhﬂ)Pl + \/ﬁmmwn>

(Step 4)
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This algorithm requires generating two independent n-dimensional Gaussian vectors per step.
Thus, it is more costly than Algorithm 3.1. However, the advantage of doing this is that the resulting

Metropolis corrected algorithm is second-order weakly accurate, as the following Proposition states.

Proposition 3.3. Let (Q,,, P,,) represent the numerical approximation produced by Algorithm 3.2 at
time nh with the same initial condition as the true solution: (Q,, Py) = (q(0),p(0)). For every time
interval T' > 0 and for suitable observables f(q,p), there exists a C(T) > 0, such that:

[Ef(q([t/R]h), p([t/h]h) = Ef(Qn): Pm)| < C(T)R? ()
forallt <T.

This accuracy concept is sufficient for computing means and correlation functions at finite-time
and equilibrium correlations. Figure 2 verifies this Proposition by checking the weak accuracy of
Algorithms 3.1 and 3.2 on a harmonic oscillator test problem.

Figure 2. Langevin dynamics of a harmonic oscillator.

Weak Accuracy Verification

10 w
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S —»— Algorithm 3.2
-1 ---0(h)
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107} )
10°}
X
10*

To be specific, Figure 2 plots the weak accuracy of the Metropolis-corrected MD integrators
with respect to the true solution of the Langevin dynamics of a harmonic oscillator: ¢(t) = p(t),
dp(t) = —q(t) — p(t) + v2dw(t), with initial condition ¢(0) = 1.0 , p(0) = 0. The time steps tested
are h = 27", where n is given on the z-axis. The quantity monitored for the error is the estimate of
E(q(1)* + p(1)?) = 1.699445410 computed analytically. The dashed and solid curves are the graphs
of 27" (= h) and 272"(= h?) versus n, respectively.

Proof. The desired single-step error estimate can be obtained from an application of the
triangle inequality:

[Ef(q(h), p(h)) —Ef(Q,, P1)| < [Ef(q(h),p(h)) —Ef(Qy, Py)| +[Ef(Q,. P1) —Ef(Q,, P,)|
(6)
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where (Ql, 131) denotes one step of the uncorrected Bussi and Parinello scheme with (QO, 150) =
(g(0),p(0)). The first term in the upper bound in Equation (6) is O(h?), since the unadjusted scheme
is a Strang splitting of Equation (1). To bound the second term in Equation (6), note that:

Ef(Qu P1) —Ef(Qu, P1) = E{(£(@}. P)) = F(Qu.~P0)) (a(Qy. Po. Q). P}) — 1) }

where we have introduced the auxilary function:

f(a,p) =Ef(g,exp(—vh/2)p + VET\/1 — exp(—vh)m'/*n)

Since the rejection rate is O(h?), it follows from the above expression that the second term in the
upper bound of Equation (6) is also O(h?). Standard results in numerical analysis for SDEs then
imply that the algorithm converges weakly on finite-time intervals with global order two; see, for
instance, [93] (Chapter 2.2). [l

For completeness sake, we also provide a statement that both algorithms are ergodic.

Proposition 3.4. Let (Q,,, P,,) be the numerical approximation produced by Algorithms 3.1 or 3.2
at time nh. Then, for suitable observables f(q,p):
1

A7

T
/f(QLt/hJ7PLt/hJ)dt—>/R f(g,p)v(q, p)dgdp (7)
0 2n

Here, v(q, p) denotes the Boltzmann-Gibbs density defined in Equation (3).

A proof of this Proposition can be found in [72].

4. Application to Lennard-Jones Fluid

Listing 1 translates Algorithm 3.2 into the MATLAB language. Intrinsically defined MATLAB
functions appear in boldface. The algorithm uses MATLAB’s built in random number generators
to carry out Step 1, Step 3 and Step 4. In particular, the Bernoulli random variable, z, in Step 3 is
generated in Line 20, and the Gaussian vectors in Step 1 and Step 4 are generated on Line 9 and
Line 29, respectively. In addition to updating the positions and momenta of the system, the program
also stores the previous value of the potential energy and force, so that the force and potential energy
is evaluated in Line 15 just once per simulation step. This evaluation calls a MEX function, which
inputs the current position of the molecular system and outputs the force field and potential energy at
that position. We use a MEX function, because the atomistic force field evaluation cannot be easily
vectorized and is, by far, the most computationally demanding step in MD. The PreProcessing
script file called in Line 2 defines the physical and numerical parameters, sets the initial condition
and allocates space for storing simulation data. Sample averages are updated as new points on the
trajectory are produced in the UpdateSampleAverages script file invoked in Line 35. Finally,
the outputs produced by the algorithm are handled by the PostProcessing script file in Line 39.

Let us consider a concrete example: a Lennard-Jones fluid that consists of /N identical
atoms [1-3]. The configuration space of this system is a fixed cubic box with periodic boundary
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conditions. The distance between the i-th and j-th particle is defined according to the minimum

image convention, which states that the distance between g; and q; in a cubic box of length £ is:

dyp(q;, q]') = (q; — q]') —Lll(q; - qg’)/ﬂ’ ()

where |-]| is the nearest integer function. In terms of this distance, the total potential energy is a sum

over all pairs:

n—1 n
Ulg) = Z Z Urs(dnvp(g;: q;)) )
i=1 j=itl

where Uy, ;(r) is the following truncated Lennard-Jones potential function:

ULJ(T) _ f(?") - f(,rc)v r<7re (10)
0, otherwise

Listing 1. Metropolized MD Integrator: MDintegrator.m

PreProcessing;

for i = 1:Ns

$——— Step 1 ——— Heat Bath Step
tQ0=0Q0;

tPO0=f1+xP0+f2+xrandn (3+«Nm, 1) ;

$—-—— Step 2 —-——- Velocity Verlet Proposal
Ppt5=tP0+0.5+xh*F0;

tQlstar=tQ0+h«Ppt5;
[tFlstar,tUlstar]=ForceFieldmex (tQlstar,Nm, rcut2,ell);

tPlstar=Ppt5+0.5xhxtFlstar;

$——— Step 3 ——— Accept or Refuse Step

x= (rand<exp (- (0.5+tPlstar’ «*tPlstar-0.5xtP0’ xtP0+tUlstar-U0) /kT)) ;

tPl=x+Plstar-(1-x)*PO0;
tQl=x*Qlstar+ (1-x) *xQ0;
Fl=x*tFlstar+ (1-x)«F0; Ul=x*tUlstar+ (l1-x)*U0;

2——— Step 4 ——— Heat Bath Step
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Ql=tQ1l;

Pl=fl«tPl+f2+xrandn (3+«Nm, 1) ;

o

%$——— 1iterate

00=Q1,; PO=P1l; FO=F1; UO=U1;

UpdateSampleAverages;

end
PostProcessing;
Listing 2. Metropolized MD Integrator: PreProcessing.m
$—-——- seed random # generator
rng(123);
%$——— physical parameters
rho=0.6; % density
kT=0.5; % temperature factor
gama=0.1; % heat bath parameter
Nm=500; % # of molecules
T=2.0; % time span for velocity correlation

ell=(Nm/rho) "~ (1/3);

$——— simulation parameters
h=0.005;

Ns=1le3;

rcut = 2.07(1/6);

rcut?2 = rcut+rcut;

o\o

oo oo

o\o

length of cubic box

time-step size
# of steps
cutoff radius

fl=exp (-0.5xgamaxh); f2=sqrt((l.0-exp(—gamaxh))*kT);

$——— 1initial condition

A=fcclattice (Nm,ell);
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Q0=reshape (A, [3*Nm 1]);
PO=zeros (3xNm, 1) ;

oo

atoms on an fcc lattice

oo

atoms at rest

o

$——— 1nitialize statistics

NA=ceil (T/h)+1;

acf=zeros (NA, 1) ;

oo

preallocate space for

oe

online correlation computation
varacf=zeros (NA, 1) ;
pivot=zeros (NA, 3xNm) ;

nacf=zeros (NA, 1) ;

o\e

AP=zeros (Ns, 1) ; vector of acceptance probabilities

[FO,UO0]=ForceFieldmex (Q0,Nm, rcut2,ell); % 1nitial force & energy

Here, f(r) = 4(1/r'? — 1/r%) and r, is the cutoff radius, which is bounded above by the size
of the simulation box; and we have used dimensionless units to describe this system, where energy
is rescaled by the depth of the Lennard-Jones potential energy and length by the point where the
potential energy is zero. The error introduced by the truncation in Equation (10) is proportional to
the density of the molecular system and can be made arbitrarily small by selecting the cutoff distance
to be sufficiently large. A direct evaluation of the potential force, VU(q), scales like O(N?), and
typically dominates the total computational cost. In practice, neighbor/cell lists, also called Verlet
lists, are used in order to obtain a force evaluation that scales linearly with system size. Since the
system we consider will have just a few hundred atoms, there is, however, little advantage to using
these data structures, or using a fast force field evaluation, and thus, ForceFieldmex evaluates
the force and energy using a sum over all particle pairs.

Table 1. Simulation parameters.

Parameter Description Value
p density {0.6,0.7,0.8,0.9,1.0,1.1}
. kT temperature factor 0.5
Physical
¥ heat bath parameter 0.01
Parameters
N,, # of molecules 512
T time-span for autocorrelation 2
. h time step 0.005
Numerical ) )
N, # of simulation steps 10°
Parameters .
Te Lennard-Jones force cutoff radius 21/6

Listing 2 shows the PreProcessing script, which sets the parameters provided in Table 1
and constructs the initial condition, where the N atoms are assumed to be at rest and on the sites
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of a face-centered cubic lattice. The command, rng (123), on Line 3 sets the seed of the random
number generator functions, RAND and RANDN. The acceptance rates at every step and the velocity
autocorrelation are updated in the UpdateSampleAverages script shown in Listing 3. The mean
acceptance rate, which is outputted in the PostProcessing script shown in Listing 4, must be
high enough to ensure that the dynamics is accurately represented. To compute the autocorrelation
of an observable over a time interval of length 7', the value of that observable along the entire
trajectory is not needed. In fact, it suffices to use the values of this observable along a piece of
trajectory over a moving time-window [t;, t; +T'], where ¢; = i x h. This storage space is allocated in
PreProcessing and is updated in UpdateSampleAverages. More precisely, the molecular
velocities are stored in the pivot array from ¢ — N, to ¢, where ¢ is the index of the current position
and N, = [T/h] + 1. Notice that velocity autocorrelations are not computed until after the index, 1,
exceeds 10, This equilibration time removes some of the statistical bias that may arise from using a
non-random initial condition. Short-time trajectories of this molecular system are plotted in Figure 3
from an initial condition where atoms are placed on the sites of a face-centered cubic lattice and at
rest. The trajectory is computed using the numerical and physical parameters indicated in Table 1,
with the exception of the number of steps, which is set equal to N, = 1000. Notice that at lower
densities particle trajectories are more diffusive and less localized. Using the parameters provided
in Table 1, we compute velocity autocorrelations for a range of density values in Figure 4. Since
the heat bath parameter is set to a small value, these figures are in qualitative agreement with those
obtained by simulating the molecular system with no heat bath as shown in Figure 5.2 of [3].

Listing 3. Metropolized MD Integrator: UpdateSampleAverages.m

¥——— store acceptance probability
AP (i) =x;
%——— update correlation function

if (i>1ed)

pp=mod (i-1,NA) +1;
pivot (pp, :)=P0;

for j=1:min (i, NA)
nacf (j)=nacf (J)+1;
mui=acf (j);
vari=varacft (Jj);
n_samples=nacf (J);
xipl=pivot (mod (pp—-J,NA)+1, :) +pivot (pp, :) '/ (3.0%Nm) ;
acf (j)=mui+ (xipl-mui) /n_samples;

varacf (j)=((n_samples—1)xvari+...
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(xipl-mui) » (xipl—-acf(j)))/n_samples;
end
end
Listing 4. Metropolized MD Integrator: PostProcessing.m
%——— output results
disp([’h=’ num2str (h) ", <AP>=’ num2str (mean (AP))]);

figure(2); clf; hold on; tt=0:h:T;
errorbar (tt,acf, 1.96+xsqrt (varacf) ./sqrt (nacf));

save (' VelocityAutocorrelation.mat’, ’"tt’, "acf’, ’varacf’);

Figure 3. Atomic trajectories in a simulation box.

@p=06 ((B)p=07 (©p=08 (Wp=09 (@p=10 (@Hp=11

Figure 4. Soft-sphere velocity autocorrelation functions. A reproduction of Figure 5.2
of [3] using Langevin dynamics with heat bath parameter v = 0.01. The remaining
parameters are set equal to those provided in Table 1. The negative correlations at higher
densities are consistent with what has been found in the literature [6,8].
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5. General Case

Here, we show how the preceding ideas extend to other molecular systems that obey stochastic
differential equations. In the process, we generalize the Metropolized Bussi and Parinello integrator
(Algorithm 3.2) to a big class of diffusion processes, including the v-rescale thermostat. We begin
with the underlying Hamiltonian dynamics of a molecular system.

5.1. Bath-Free Dynamics

MD is based on Hamilton’s equations for a Hamiltonian H : R* — R:
2(t) = JVH(2(t), z(0) € R* (11)

where z(t) = (q(t), p(t)) is a vector of molecular positions g(¢) € R? and momenta p(t) € R? and

J is the 2d x 2d skew-symmetric matrix defined as:

0 I
J— dxd dxd (1 2)
—Iixa Odxa
The Hamiltonian, H(z), represents the total energy of the molecular system and is typically
“separable”, meaning that it can be written as:

H(z)=K(p)+U(q), z=(q,p) (13)

where K (p) and U(q) are the kinetic and potential energy functions, respectively [94]. In MD,
the kinetic energy function is a positive definite quadratic form, and the potential energy function
involves “fudge factors” determined from experimental or quantum mechanical studies of pieces
of the molecular system of interest [36]. The accuracy of the resulting energy function must be
systematically verified by comparing MD simulation data to experimental data [95]. The flow that

Equation (11) determines has the following structure:

(S1) volume-preserving (since the vector-field in Equation (11) is divergenceless); and
(S2) energy-preserving (since J is skew-symmetric and constant).

Explicit symplectic integrators, like the Verlet scheme, exploit these properties to obtain long-time
stable schemes for Hamilton’s equations [96,97].

5.2. Governing Stochastic Dynamics

In order to mimic experimental conditions, Equation (11) is often coupled to a bath that puts the
system at constant temperature and/or pressure. The standard way to do this is to assume that the
system with a bath is governed by a stochastic ordinary differential equation (SDE) of the type:

dY (t) = A(Y (1))dt + (div D)(Y ())dt + VAT B(Y (£))dW (t) (14)
determi;gtic drift he;gath

Here, we have introduced the following notation.
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Y(t) e R" state of the (extended) system
A(x) e R” deterministic drift vector field
B(x) € R noise-coefficient matrix
D(x) € R™™ diffusion matrix
W(t) € R*  n-dimensional Brownian motion
kT temperature factor

The n x n diffusion matrix, D(x), is defined in terms of the noise coefficient matrix, B(x), as:
D(x) = kTB(z)B(x)" , forallz € R" (15)

where B(x)" denotes the transpose of the real matrix, B(x). The diffusion matrix is symmetric
and nonnegative definite. Depending on the particular bath that is used, the dimension, n, of Y (¢) in
Equation (14) is related to the dimension, 2d, of z(¢) in Equation (11) by the inequality: n > 2d.
For example, in Nosé-Hoover Langevin dynamics, a single bath degree of freedom is added to
Equation (11), so that n = 2d + 1, while in Langevin dynamics, the effect of the bath is modeled by
added friction and Brownian forces that keep n = 2d. The Langevin Equation (1) can be put in the
form of Equation (14) by letting = (q, p),

B mip _ 0 0 B
A(z) = (_VU(q) _7p> , B=./y (0 m1/2> ,and W = (wq,--- ,wy) (16)

where m = diag(mq, -+ ,my).

Equation (14) generates a stochastic process, Y (), that is a Markov diffusion process. We
assume that this diffusion process admits a stationary distribution p(dx), ie., a probability
distribution preserved by the dynamics [98,99]. We denote by v(x) the density of this distribution.
Even though the diffusion matrix in Equation (15) is not necessarily positive definite, one can use the
Hormander’s condition to prove that the process, Y (¢), is an ergodic process with a unique stationary
distribution [100,101]. By the ergodic theorem, it then follows that:

—/ fY (t))dt — f( w(z)de , asT — oo, as. (17)

where f(«) is a suitable test function.
The evolution of the probability density of the law of Y (¢) at time ¢, p(t,x), satisfies the
Fokker-Planck equation:

dp
Lp = 1
— 5 TLp 0 (18)

where p(0, -) is the density of the initial distribution, Y (0) ~ p(0, -), and L is defined as the following

second-order partial differential operator:

(Lf)(z) = div (div(D(z) f(z)) — A(z)f()) (19)

Since p(dx) = v(x)dz is a stationary distribution of Y (¢), the probability density, v(x), is a

steady-state solution of Equation (18), i.e., it satisfies:

(Lv)(z) =0 (20)



112

Define the probability current as the vector field:
j(x) = div(D(z)v(x)) — A(z)v(x) 21

The stationarity condition in Equation (20) implies that j(x) is divergenceless. In the zero-current
case, the diffusion process, Y (t), is reversible, and the stationary density v(x) is called the
equilibrium probability density of the diffusion [102].

In this case, the operator, L, is self-adjoint, in the sense that:

(Lf,9), = {f,Lg), for all suitable test functions f, g (22)

where (-, ), denotes an L? inner product weighted by the density, v(x). This property implies that

the diffusion is v-symmetric [103]:

viz)p(x,y) =v(y)p(y, x) forallt > 0 (23)

where p;(x,y) denotes the transition probability density of Y (¢). Indeed, Equation (22) is simply
an infinitesimal version of Equation (23), which is referred to as the detailed balance condition.
In the self-adjoint case, the drift is uniquely determined by the diffusion matrix and the stationary
density v(x):

j@) =0 — A() = @div(D(w}u(w)) 24)

Long-time stable explicit schemes adapted to this structure have been recently developed [92].

5.3. Splitting Approach to MD Simulation

We are now in a position to explain our general approach for deriving a long-time stable scheme
for Equation (14). Crucial to our approach is that in MD simulation, we usually have a formula for a

function proportional to the stationary density v(x). Following [90], we can split Equation (14) into:

dY = —D(Y)VH,(Y)dt + div D(Y)dt + V2kT B(Y )dW (25)
Y = A(Y)+D(Y)VH,(Y) (26)
where we have introduced H,(x) = —(logv)(x). An exact splitting method preserves p(dx). It is

formed by taking the exact solution (in law) of Equation (25) in composition with the exact flow
of Equation (26). The process produced by Equation (25) is self-adjoint with respect to v(x).
Moreover, the stationarity of v(a) implies that the flow of the ODE (26) preserves it. Since each
step is preservative, their composition is, too.

In place of the exact splitting, a Metropolized explicit integrator can be wused for
Equation (25) [92], and a measure-preserving scheme can be designed to solve the ODE [72,104].
In [92], explicit schemes are introduced for Equation (25) that: (i) sample the exact equilibrium
probability density of the SDE when this density exists (i.e., whenever v(x) is normalizable);
(ii) generates a weakly accurate approximation to the solution of Equation (14) at constant k7’;
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(ii1) acquire higher order accuracy in the small noise limit, k7" — 0; and (iv) avoid computing the
divergence of the diffusion matrix D(x). Compared to the methods in [72], the main novelty of these
schemes stems from (iii) and (iv). The resulting explicit splitting method is accurate, since it is an
additive splitting of Equation (14); and typically ergodic when the continuous process is ergodic [72].

This type of splitting of Equation (14) is quite natural and has been used before in
MD [43,87], dissipative particle dynamics [105,106] and the simulation of inertial particles [107].
Other closely related schemes for Equation (14) include Briinger-Brooks-Karplus (BBK) [35],
van Gunsteren and Berendsen (vGB) [108] and the Langevin-Impulse (LI) methods [41] and
quasi-symplectic integrators [44]. However, for general MD force fields, none of these explicit
integrators are long-time stable. Our framework to stabilize explicit MD integrators is the
Metropolis-Hastings algorithm.

5.4. Metropolis-Hastings Algorithm

A Metropolis-Hastings method is a Monte Carlo method for producing samples from a probability
distribution, given a formula for a function proportional to its density [74,75]. The algorithm consists
of two sub-steps: firstly, a proposal move is generated according to a transition density, g(x, y); and

secondly, this proposal move is accepted or rejected with a probability:
9(y, z)v(y)

9(x, y)v(x)
Standard results on Metropolis-Hastings methods can be used to classify this algorithm as
ergodic [100,109,110].

alxz,y) =1A (27)

6. Conclusions

This paper provided an algorithmic introduction to time integrators for MD simulation. A quick
overview of existing algorithms was given. When the derivatives of the potential are bounded, it is
well known that these integrators work just fine: they are convergent on finite-time intervals and
possess an invariant measure that is nearby the Boltzmann-Gibbs density. However, in realistic
MD simulation, the derivatives of the potential are unbounded. This lack of regularity can cause
numerical instabilities or artifacts in explicit integrators. The paper demonstrated how a Metropolis
acceptance-rejection step can be added to explicit MD integrators to mitigate some of these
problems and, in principle, obtain long-time stable and finite-time accurate schemes. A MATLAB
implementation of Metropolis-corrected MD integrators was provided and used to compute the
velocity autocorrelation of a sea of Lennard-Jones particles at various densities between the solid and
liquid phases. The paper did not provide an in-depth review of the theory of Metropolis integrators,
which can be found elsewhere [72,73].

Calculating the force field at every step dominates the overall computational cost of MD
simulation. These force fields involve: bonded interactions and non-bonded Lennard-Jones and
electrostatic interactions. The calculation of bonded interactions is straightforward to vectorize and

scales like O(N). In addition, Lennard-Jones forces rapidly decay with interatomic distance. To a
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good approximation, every atom interacts only with neighbors within a sufficiently large ball. By
using data structures, like neighbor lists and cell linked lists, these interactions can be calculated
in O(N) steps, and therefore, the Lennard-Jones interactions can be calculated in O(N) steps [46].
On the other hand, the electrostatic energy between particles decays, like 1/r, where r denotes an
interatomic distance, which leads to long-range interactions between atoms. Unlike Lennard-Jones
interaction, this interaction cannot be cutoff without introducing large errors. In this case, one can
use sophisticated techniques, like the fast multipole method, to rigorously handle such interactions
in O(N) steps [39,58].

However, the effect of these ‘mathematical tricks’ for fast calculation of the force field can
become muted if the time step requirement for stability or accuracy becomes more severe in high
dimension. This can happen in the Metropolis integrator, if the acceptance probability in Step 2
of Algorithm 3.1 or Step 3 of Algorithm 3.2 deteriorates in high dimension. The scaling of
Metropolis algorithms has been quantified for the random walk Metropolis, hybrid Monte Carlo and
Metropolis-adjusted Langevin algorithm (MALA) [111-115]. Since the acceptance probability is
a function of an extensive quantity, the acceptance rate can artificially deteriorate with increasing
system size, unless the time step is reduced. Because high acceptance rates are required to
maintain dynamic accuracy, the dependence of the time step on system size limits the application
of Metropolized schemes to large-scale systems. Fortunately, this scalability issue can often be
resolved by using local, rather than global proposal moves, because the change in energy induced by
a local move is typically an intensive quantity. For molecular dynamics calculations, this approach
was pursued in [73]. Using dynamically consistent local moves (a so-called J-splitting [116]), it was
shown that in certain situations, a scalable Metropolis integrator can be designed; however, the extent
to which this strategy remedies the issue of high rejection rate in high dimension is not clear at this

point and should be tested in applications.
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Abstract: We review a selection of methods for performing enhanced sampling in
molecular dynamics simulations. We consider methods based on collective variable
biasing and on tempering, and offer both historical and contemporary perspectives. In
collective-variable biasing, we first discuss methods stemming from thermodynamic
integration that use mean force biasing, including the adaptive biasing force algorithm
and temperature acceleration. We then turn to methods that use bias potentials,
including umbrella sampling and metadynamics. We next consider parallel tempering
and replica-exchange methods. We conclude with a brief presentation of some
combination methods.
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1. Introduction

The purpose of molecular dynamics (MD) is to compute the positions and velocities of a set of
interacting atoms at the present time instant given these quantities one time increment in the past.
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Uniform sampling from the discrete trajectories one can generate using MD has long been seen as
synonymous with sampling from a statistical-mechanical ensemble; this just expresses our collective
wish that the ergodic hypothesis holds at finite times. Unfortunately, most MD trajectories are not
ergodic and leave many relevant regions of configuration space unexplored. This stems from the
separation of high-probability “metastable” regions by low-probability “transition” regions and the
inherent difficulty of sampling a 3/N-dimensional space by embedding into it a one-dimensional
dynamical trajectory.

This review concerns a selection of methods to use MD simulation to enhance the sampling of
configuration space. A central concern with any enhanced sampling method is guaranteeing that
the statistical weights of the samples generated are known and correct (or at least correctable) while
simultaneously ensuring that as much of the relevant regions of configuration space are sampled.
Because of the tight relationship between probability and free energy, many of these methods are
known as “free-energy” methods. To be sure, there are a large number of excellent reviews of
free-energy methods in the literature (e.g., [1-5]). The present review is in no way intended to
be as comprehensive. As the title indicates, we will mostly focus on enhanced sampling methods of
three flavors: tempering, metadynamics, and temperature-acceleration. Along the way, we will point
out important related methods, but in the interest of brevity we will not spend much time explaining
these. The methods we have chosen to focus on reflect our own preferences to some extent, but
they also represent popular and growing classes of methods that find ever more use in biomolecular
simulations and beyond.

We divide our review into three main sections. In the first, we discuss enhanced sampling
approaches that rely on collective variable biasing. These include the historically important
methods of thermodynamic integration and umbrella sampling, and we pay particular attention
to the more recent approaches of the adaptive-biasing force algorithm, temperature-acceleration,
and metadynamics. In the second section, we discuss approaches based on fempering, which is
dominated by a discussion of the parallel tempering/replica exchange approaches. In the third
section, we briefly present some relatively new methods derived from either collective-variable-based
or tempering-based approaches, or their combinations.

2. Approaches Based on Collective-Variable Biasing

2.1. Background: Collective Variables and Free Energy

For our purposes, the term “collective variable” or CV refers to any multidimensional
function € of 3/N-dimensional atomic configuration @ = (z;|¢ = 1...3N). The functions 6, (x),
0(x),. .. 0 () map configuration = onto an M-dimensional CV space z = (z;]j =1... M),
where usually M < 3N. At equilibrium, the probability of observing the system at CV-point z is
the weight of all configurations & which map to z:

P(z) = (0]6(z) - 2]) (D
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The Dirac delta function picks out only those configurations for which the CV 0(x) is z, and (-)
denotes averaging its argument over the equilibrium probability distribution of . The probability

can be expressed as a free energy:
F(z) = —kpT'In (5[0 (x) — z]) 2)

Here, kg is Boltzmann’s constant and 7" is temperature.

Local minima in F' are metastable equilibrium states. F' also measures the energetic cost of
a maximally efficient (i.e., reversible) transition from one region of CV space to another. If, for
example, we choose a CV space such that two well-separated regions define two important allosteric
states of a given protein, we could perform a free-energy calculation to estimate the change in
free energy required to realize the conformational transition. Indeed, the promise of being able
to observe with atomic detail the transition states along some pathway connecting two distinct states
of a biomacromolecule is strong motivation for exploring these transitions with CVs.

Given the limitations of standard MD, how does one “discover” such states in a proposed CV
space? A perfectly ergodic (infinitely long) MD trajectory would visit these minima much more
frequently than it would the intervening spaces, allowing one to tally how often each point in CV
space is visited; normalizing this histogram into a probability P(z) would be the most straightforward
way to compute /' via Equation (2). In all too many actual cases, MD trajectories remain close to only
one minimum (the one closest to the initial state of the simulation) and only very rarely, if ever, visit
others. In the CV sense, we therefore speak of standard MD simulations failing to overcome barriers
in free energy. “Enhanced sampling” in this context refers then to methods by which free-energy
barriers in a chosen CV space are surmounted to allow as broad as possible an extent of CV space to
be explored and statistically characterized with limited computational resources.

In this section, we focus on methods of enhanced sampling of CVs based on MD simulations that
are directly biased on those CVs; that is, we focus on methods in which an investigator must identify
the CVs of interest as an input to the calculation. We have chosen to limit discussion to two broad
classes of biasing: those whose objective is direct computation of the gradient of the free energy
(OF /0z) at local points throughout CV space, and those in which non-Boltzmann sampling with bias
potentials is used to force exploration of otherwise hard-to-visit regions of CV space. The canonical
methods in these two classes are thermodynamic integration and umbrella sampling, respectively, and
a discussion of these two methods sets the stage for discussion of three relatively modern variants:
the Adaptive-Biasing Force Algorithm [6], Temperature-Accelerated MD [7] and Metadynamics [8].

2.2. Gradient Methods:  Blue-Moon Sampling, Adaptive-Biasing Force Algorithm, and
Temperature-Accelerated Molecular Dynamics

2.2.1. Overview: Thermodynamic Integration

Naively, one way to have an MD system visit a hard-to-reach point z in CV space is simply to
create a realization of the configuration @ at that point (i.e., such that 8(x) = z). This is an inverse
problem, since the number of degrees of freedom in « is usually much larger than in z. One way
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to perform this inversion is by introducing external forces that guide the configuration to the desired
point from some easy-to-create initial state; both targeted MD [9] and steered MD [10] are ways to
do this. Of course, one would like MD to explore CV space in the vicinity of z, so after creating
the configuration «, one would just let it run. Unfortunately, this would likely result in the system
drifting away from z rather quickly, and there would be no way from such calculations to estimate
the likelihood of observing an unbiased long MD simulation visit z. However, there is information
in the fact that the system drifts away; if one knows on average which direction and how strongly the
system would like to move if initialized at z, this would be a measure of negative gradient of the free
energy, —(0F/0z), or the “mean force”. We have then a glimpse of a three-step method to compute
F (i.e., the statistics of CVs) over a meaningfully broad extent of CV space:

(1) visit a select number of local points in that space, and at each one,
(2) compute the mean force, then

(3) use numerical integration to reconstruct F' from these local mean forces; formally expressed as

F(z) — F(z) = / (g—D dz 3)

Inspired by Kirkwood’s original suggestion involving switching parameters [11], such an approach is
generally referred to as “thermodynamic integration” or TI. TT allows us to reconstruct the statistical
weights of any point in CV space by accumulating information on the gradients of free energy at
selected points.

2.2.2. Blue-Moon Sampling

The discussion so far leaves open the correct way to compute the local free-energy gradients.

A gradient is a local quantity, so a natural choice is to compute it from an MD simulation localized
at a point in CV space by a constraint. Consider a long MD simulation with a holonomic constraint
fixing the system at the point z. Uniform samples from this constrained trajectory x(¢) then represent
an ensemble at fixed z over which the averaging needed to convert gradients in potential energy
to gradients in free energy could be done. However, this constrained ensemble has the undesired
property that the velocities O(w) are zero. This is a bit problematic because virtually none of the
samples plucked from a long unconstrained MD simulation (as is implied by Equation (1)), would
have @ = 0, and @ = 0 acts as a set of M unphysical constraints on the system velocities x, since
0, = 3..(00;/0x;)i;. Probably the best-known example of a method to correct for this bias is the
so-called “blue-moon” sampling method [12—15] or the constrained ensemble method [16,17]. The
essence of the method is a decomposition of free energy gradients into components along the CV
gradients and thermal components orthogonal to them:

or = (bj(x) - VV(x) — kgTV - b;(x)) 4)

0z, J j 0(z)==2
where (->9(w):z denotes averaging across samples drawn uniformly from the MD simulation
constrained at @(x) = z, and the b;(x) is the vector field orthogonal to the gradients of every
component k of @ for k # j:
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bj(x) - VOi(x) = o0, )

where ;. is the Kroenecker delta. (For brevity, we have omitted the consideration of holonomic
constraints other than that on the CV; the reader is referred to the paper by Ciccotti et al. for
details [15].) The vector fields b; for each 6; can be constructed by orthogonalization. The first
term in the angle brackets in Equation (4) implements the chain rule one needs to account for how
energy V' changes with z through all the ways z can change with . The second term corrects for
the thermal bias imposed by the constraint.

Although nowhere near exhaustive, below is a listing of common types of problems to which
blue-moon sampling has been applied with some representative examples:

(1) sampling conformations of small flexible molecules and peptides [18-20];

(2) environmental effects on covalent bond formation/breaking (usually in combination with
ab initio MD) [21-27];

(3) solvation and non-covalent binding of small molecules in solvent [28-32];

(4) protein dimerization [33,34].

2.2.3. The Adaptive Biasing Force Algorithm

The blue-moon approach requires multiple independent constrained MD simulations to cover
the region of CV space in which one wants internal statistics. The care taken in choosing these
quadrature points can often dictate the accuracy of the resulting free energy reconstruction. It is
therefore sometimes advantageous to consider ways to avoid having to choose such points ahead of
time, and adaptive methods attempt to address this problem. One example is the adaptive-biasing
force (ABF) algorithm of Darve et al. [6,35] The essence of ABF is two-fold: (1) recognition that
external bias forces of the form V0, (0F/0z;) for j = 1,..., M exactly oppose mean forces and
should lead to more uniform sampling of CV space; and (2) that these bias forces can be converged
upon adaptively during a single unconstrained MD simulation.

The first of those two ideas is motivated by the fact that “forces” that keep normal MD simulations
effectively confined to free energy minima are mean forces on the collective variables projected onto
the atomic coordinates, and balancing those forces against their exact opposite should allow for
thermal motion to take the system out of those minima. The second idea is a bit more subtle; after
all, in a running MD simulation with no CV constraints, the constrained ensemble expression for
the mean force (Equation (4)) does not directly apply, because a constrained ensemble is not what
is being sampled. However, Darve et al. showed how to relate these ensembles so that the samples
generated in the MD simulation could be used to build mean forces [35]. Further, they showed using
a clever choice of the fields of Equation (4) an equivalence between (z) the spatial gradients needed

to computed forces, and (:2) time-derivatives of the CVs [6]:

oF d db;
3= e (G (W), ©
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where My is the transformed mass matrix given by
Myt = JsM ", (7

where .Jy is the M x 3N matrix with elements 06;/0z; (i =1...M, j = 1...3N), and M is the
diagonal matrix of atomic masses. Equation (7) is the result of a particular choice for the fields b;(x).
This reformulation of the instantaneous mean forces computed on-the-fly makes ABF exceptionally
easy to implement in most modern MD packages. Darve et al. present a clear demonstration of the
ABF algorithm in a pseudocode [6] that attests to this fact.

ABF has found rather wide application in CV-based free energy calculations in recent years.
Below is a representative sample of some types of problems subjected to ABF calculations in the

recent literature:

(1) Peptide backbone angle sampling [36,37];

(2) Nucleoside [38], protein [39] and fullerene [40,41] insertion into a lipid bilayer;

(3) Interactions of small molecules with polymers in water [42,43];

(4) Molecule/ion transport through protein complexes [44—47] and DNA superstructures [48];
(5) Calculation of octanol-water partition coefficients [49,50];

(6) Large-scale protein conformational changes [51];

(7) Protein-nanotube [52] and nanotube-nanotube [53] association.

2.2.4. Temperature-Accelerated Molecular Dynamics

Both blue-moon sampling and ABF are based on statistics in the constrained ensemble. However,
estimation of mean forces need not only use this ensemble. One can instead relax the constraint and

work with a “mollified” version of the free energy:
F(z) = —kgTn (0, [0(x) — z|) (8)

where 0,. refers to the Gaussian (or “mollified delta function™):

1
o= Eexp [—w 6(z) — 2 ©)

where [ is just shorthand for 1/kpT. Since limg,_,, 6, = J, we know that limg,_,, F), = F. One
way to view this Gaussian is that it “smoothes out” the true free energy to a tunable degree; the factor
1/+/PBr is a length-scale in CV space below which details are smeared.

Because the Gaussian has continuous gradients, it can be used directly in an MD simulation.
Suppose we have a CV space 6(x), and we extend our MD system to include variables z such that

the combined set (x, z) obeys the following extended potential:
M4
2
Ulz,z) =V(z) + ; 51 105(®) — 2| (10)

where V() is the interatomic potential, and « is a constant. Clearly, if we fix z, then the resulting

free energy is to within an additive constant the mollified free energy of Equation (8). (The additive
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constant is related to the prefactor of the mollified delta function and has nothing to do with the
number of CVs.) Further, we can directly express the gradient of this mollified free energy with

respect to z: [54]

V.F. = —(k[0(x) — z]) (11)

This suggests that, instead of using constrained ensemble MD to accumulate mean forces, we
could work in the restrained ensemble and get very good approximations to the mean force. By
“restrained”, we refer to the fact that the term giving rise to the mollified delta function in the
configurational integral is essentially a harmonic restraining potential with a “spring constant” k.
In this restrained-ensemble approach, no velocities are held fixed, and the larger we choose « the
more closely we can approximate the true free energy. Notice however that large values of « could
lead to numerical instabilities in integrating equations of motion, and a balance should be found. (In
practice, we have found that for CVs with dimensions of length, values of x less than about 1,000
kcal/mol/A2 can be stably handled, and values of around 100 kcal/mol/A? are typically adequate.)
Temperature-accelerated MD (TAMD) [7] takes advantage of the restrained-ensemble approach
to directly evolve the variables z in such a way to accelerate the sampling of CV space. First, consider
how the atomic variables x evolve under the extended potential (assuming Langevin dynamics):
oV (x) “ 1 96;(x)

miZ; = — — k) [0(x) — 2] o

8%‘1'

— ymd; + ni(t; B) (12)
j=1
Here, m; is the mass of x;, v is the friction coefficient for the Langevin thermostat, and 7 is the

thermostat white noise satisfying the fluctuation-dissipation theorem at physical temperature 5~ 1:
(mi(t; B (¢'5 B)) = B~ ymadio(t — ') (13)

Key to TAMD is that the z are treated as slow variables that evolve according to their own equations
of motion, which here we take as diffusive (though other choices are possible [7]):

Mz =k [05(z) — 2] + &(t; B) (14)

Here, 7 is a fictitious friction, /m; is a mass, and the first term on the right-hand side represents
the instantaneous force on variable z;, and the second term represents thermal noise at the fictitious
thermal energy 3! # 1.

The advantage of TAMD is that if (1) 4 is chosen sufficiently large so as to guarantee that the
slow variables indeed evolve slowly relative to the fundamental variables; and (2) « is sufficiently
large such that O(x(t)) ~ z(t) at any given time, then the force acting on z is approximately equal
to minus the gradient of the free energy (Equation (11)) [7]. This is because the MD integration
repeatedly samples x [@(x) — z] for an essentially fixed (but actually very slowly moving) z, so z
evolution effectively feels these samples as a mean force. In other words, the dynamics of z(t)

is effectively
0F(z)

5. D) (15)

”}/ijj = —
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This shows that the z-dynamics describes an equilibrium constant-temperature ensemble at fictitious
temperature 3! acted on by the “potential” F'(z), which is the free energy evaluated at the physical
temperature S~!. That is, under TAMD, z conforms to a probability distribution of the form
exp [~(F(z; )], whereas under normal MD it would conform to exp [—3F(z; 3)]. The all-atom
MD simulation (at /3) simply serves to approximate the local gradients of F(z). Sampling is
enhanced by taking 3~! > 57!, which has the effect of attenuating the ruggedness of F'. TAMD
therefore can accelerate a trajectory z(t) through CV space by increasing the likelihood of visiting
points with relatively low physical Boltzmann factors. This borrows directly from the main idea
of adiabatic free-energy dynamics [55] (AFED), in that one deliberately makes some variables hot
(to overcome barriers) but slow (to keep them adiabatically separated from all other variables). In
TAMD, however, the use of the mollified free energy means no cumbersome variable transformations
are required. (The authors of AFED refer to TAMD as “driven”-AFED, or d-AFED [56].) It
is also worth mentioning in this review that TAMD borrows heavily from an early version of
metadynamics [57], which was formulated as a way to evolve the auxiliary variables z on a mollified
free energy. However, unlike metadynamics (which we discuss below in Section 2.3.3, there is no
history-dependent bias in TAMD.

Unlike TI, ABF, and the methods of umbrella sampling and metadynamics discussed in the next
section, TAMD is not a method for direct calculation of the free energy. Rather, it is a way to
overcome free energy barriers in a chosen CV space quickly without visiting irrelevant regions of
CV space. (However, we discuss briefly a method in Section 4.2.2n which TAMD gradients are used
in a spirit similar to ABF to reconstruct a free energy.) That is, we consider TAMD a way to efficiently
explore relevant regions CV space that are practically inaccessible to standard MD simulation. It is
also worth pointing out that, unlike ABF, TAMD does not operate by opposing the natural gradients
in free energy, but rather by using them to guide accelerated sampling. ABF can only use forces in
locations in CV space the trajectory has visited, which means nothing opposes the trajectory going
to regions of very high free energy. However, under TAMD, an acceleration of 3~'= 6 kcal/mol on
the CVs will greatly accelerate transitions over barriers of 6-12 kcal/mol, but will still not (in theory)
accelerate excursions to regions requiring climbs of hundreds of kcal/mol. TAMD and ABF have in
common the ability to handle rather high-dimensional CVs.

Although it was presented theoretically in 2006 [7], TAMD was not applied directly to large-scale
MD until much later [58]. Since then, there has been growing interest in using TAMD in a variety of

applications requiring enhanced sampling:

(1) TAMD-enhanced flexible fitting of all-atom protein and RNA models into low-resolution
electron microscopy density maps [59,60];

(2) Large-scale (interdomain) protein conformational sampling [58,61,62];

(3) Loop conformational sampling in proteins [63];

(4) Mapping of diffusion pathways for small molecules in globular proteins [64,65];

(5) Vacancy diffusion [66];

(6) Conformational sampling and packing in dense polymer systems [67].



130

Finally, we mention briefly that TAMD can be used as a quick way to generate trajectories
from which samples can be drawn for subsequent mean-force estimation for later reconstruction
of a multidimensional free energy; this is the essence of the single-sweep method [68], which
is an efficient means of computing multidimensional free energies. Rather than using straight
numerical TI, single sweep posits the free energy as a basis function expansion and uses standard
optimization methods to find the expansion coefficients that best reproduce the measured mean
forces. Single-sweep has been used to map diffusion pathways of CO and H»O in myoglobin [64,65].

2.3. Bias Potential Methods: Umbrella Sampling and Metadynamics
2.3.1. Overview: Non-Boltzmann Sampling

In the previous section, we considered methods that achieve enhanced sampling by using mean
forces: in TI, these are integrated to reconstruct a free energy; in ABF, these are built on-the-fly to
drive uniform CV sampling; and in TAMD, these are used on-the-fly to guide accelerated evolution
of CVs. In this section, we consider methods that achieve enhanced sampling by means of controlled
bias potentials. As a class, we refer to these as non-Boltzmann sampling methods.

Non-Boltzmann sampling is generally a way to derive statistics on a system whose energetics
differ from the energetics used to perform the sampling. Imagine we have an MD system with bare
interatomic potential V' (x), and we add a bias AV (x) to arrive at a biased total potential:

V(@) = V(@) + AV/(a) (16)

The statistics of the CVs on this biased potential are then given as

/da: e AV@)=BAV@) 519 (1) — 2]

Fy(z) =
/ da ¢~ FYo(@) BV (@)

/da: e PVN@=BAV 5 (g (x) — 2]

/ o~V (@) / dx e~V (@) ~BAV (@)

e AAV@)5 [0(x) — 2]
= (e-BAV(@)) i (7

where (-) denotes ensemble averaging on the unbiased potential V' (x). Further, if we take the bias
potential AV to be explicitly a function only of the CVs @, then it becomes invariant in the averaging
of the numerator thanks to the delta function, and we have

e PRV (5[0(x) — 2])
(e PAVE@)) (18)

Fy(x) =
Finally, since the unbiased statistics are P(z) = (0 [@(x) — z]), we arrive at

P(2) = Py(2)ePAV (@) (= PAVI@I) (19)



131

Taking samples from an ergodic MD simulation on the biased potential V;, Equation (19) provides
the recipe for reconstructing the statistics the CVs would present were they generated using the
unbiased potential V. However, the probability P(z) is implicit in this equation, because

(e PRV = / dzP(z)e PAVIO@) (20)

This is not really a problem, since we can treat <e‘5AV> as a constant we can get from
normalizing P,(z)e?AV (),

How does one choose AV so as to enhance the sampling of CV space? Evidently, from the
standpoint of non-Boltzmann sampling, the closer the bias potential is to the negative free energy
—F(z), the more uniform the sampling of CV space will be. To wit: if AV [0(x)] = —F [0(x)],
then e#2V(2) = ¢=8F(2) — P(2), and Equation (19) can be inverted for P, to yield

1 1 1 1
Py(z) = = = 21

BF(=) -
(e ) /dzP(z)eBF(z) /dze_BFeﬂF /dz

So we see that taking the bias potential to be the negative free energy makes all states z in CV space

equiprobable. This is indeed the limit to which ABF strives by applying negative mean forces, for
example [6].

We usually do not know the free energy ahead of time; if we did, we would already know the
statistics of CV space and no enhanced sampling would be necessary. Moreover, perfectly uniform
sampling of the entire CV space is usually far from necessary, since most CV spaces have many
irrelevant regions that should be ignored. And in reference to the mean-force methods of the last
section, uniform sampling is likely not necessary to achieve accurate mean force values; how good
an estimate of VF' is at some point z, should not depend on how well we sampled at some other
point z;. Yet achieving uniform sampling is an idealization since, if we do, this means we know the
free energy. We now consider two other biasing methods that aim for this ideal, either in relatively

small regions of CV space using fixed biases, or over broader extents using adaptive biases.
2.3.2. Umbrella Sampling

Umbrella sampling is the standard way of using non-Boltzmann sampling to overcome free
energy barriers. In its debut [69], umbrella sampling used a function w(x) that weights

hard-to-sample configurations, equivalent to adding a bias potential of the form
AV(x) = —kpT Inw(x) (22)

w is found by trial-and-error such that configurations that are easy to sample on the unbiased
potential are still easy to sample; that is, w acts like an “umbrella” covering both the easy- and
hard-to-sample regions of configuration space. Nearly always, w is an explicit function of the CVs,
w(x) = W[0(x)).

Coming up with the umbrella potential that would enable exploration of CV space with a single

umbrella sampling simulation that takes the system far from its initial point is not straightforward.
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Akin to TI, it is therefore advantageous to combine results from several independent trajectories,
each with its own umbrella potential that localizes it to a small volume of CV space that overlaps
with nearby volumes. The most popular way to combine the statistics of such a set of independent
umbrella sampling runs is the weighted-histogram analysis method (WHAM) [70].

To compute statistics of CV space using WHAM, one first chooses the points in CV space that
define the little local neighborhoods, or “windows” to be sampled and chooses the bias potential used
to localize the sampling. Not knowing how the free energy changes in CV space makes the first task
somewhat challenging, since more densely packed windows are preferred in regions where the free
energy changes rapidly; however, since the calculations are independent, more can be added later
if needed. A convenient choice for the bias potential is a simple harmonic spring that tethers the

trajectory to a reference point z; in CV space:
1 2
AVi(x) = ol |0(x) — =z (23)

which means the dynamics of the atomic variables « are identical to Equation (12) at fixed z = z;.
The points { z;} and the value of x (which may be point-dependent) must be chosen such that 6 [x(t)]
from any one window’s trajectory makes excursions into the window of each of its nearest neighbors
in CV space.

Each window-restrained trajectory is directly histogrammed to yield apparent (i.e., biased)
statistics on 6; let us call the biased probability in the ith window P, ;(z). Equation (19) again
gives the recipe to reconstruct the unbiased statistics P;(z) for z in the window of z;:

Pi(z) = Pb,z’(z)eé'g*“'z*zi'2 <e’5%”|9(m)*zi|2> (24)

We could use Equation (24) directly assuming the biased MD trajectory is ergodic, but we know that
regions far from the reference point will be explored very rarely and thus their free energy would
be estimated with large uncertainty. This means that, although we can use sampling to compute 7, ;
knowing it effectively vanishes outside the neighborhood of z;, we cannot use sampling to compute
e BErlO(@)—=i|* |
WHAM solves this problem by renormalizing the probabilities in each window into a single
composite probability. Where there is overlap among windows, WHAM renormalizes such that the

statistical variance of the probability is minimal. That is, it treats the factor <e‘5 3hl0(@) =zl

> as an
undetermined constant C; for each window, and solves for specific values such that the composite
unbiased probability P(z) is continuous across all overlap regions with minimal statistical error. An
alternative to WHAM, termed “umbrella integration™, solves the problem of renormalization across
windows by constructing the composite mean force [71,72].

The literature on umbrella sampling is vast (by simulation standards), so we present here a very

condensed listing of some of its more recent application areas with representative citations:

(1) Small molecule conformational sampling [73-76];
(2) Protein-folding [77-79] and large-scale protein conformational sampling [80-83];
(3) Protein-protein/peptide-peptide interactions [84-92];
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(4) DNA conformational changes [93] and DNA-DNA interactions [94-96];
(5) Binding and association free-energies [97-107];
(6) Adsorption on and permeation through lipid bilayers [108-117];
(7) Adsorption onto inorganic surfaces/interfaces [118,119];
(8) Water ionization [120,121];
(9) Phase transitions [122,123];
(10) Enzymatic mechanisms [124—-132];
(11) Molecule/ion  transport  through  protein  complexes [133-140] and  other

macromolecules [141,142].
2.3.3. Metadynamics

As already mentioned, one of the difficulties of the umbrella sampling method is the choice
and construction of the bias potential. As we already saw with the relationship among TI, ABF,
and TAMD, an adaptive method for building a bias potential in a running MD simulation may be
advantageous. Metadynamics [8,143] represents just such a method.

Metadynamics is rooted in the original idea of “local elevation” [144], in which a supplemental
bias potential is progressively grown in the dihedral space of a molecule to prevent it from remaining
in one region of configuration space. However, at variance with metadynamics, local elevation does
not provide any means to reconstruct the unbiased free-energy landscape and as such it is mostly
aimed at fast generation of plausible conformers.

In metadynamics, configurational variables x evolve in response to a biased total potential:

V(x) = Vo(x) + AV (x,t) (25)

where 1/ is the bare interatomic potential and AV (x, ) is a time-dependent bias potential. The key
element of metadynamics is that the bias is built as a sum of Gaussian functions centered on the

points in CV space already visited:

AVB@).d=w Y e (_ 6 [w(t)]ggei ()| > o6

t,:Tg,QTg,...
<t

Here, w is the height of each Gaussian, 7 is the size of the time interval between successive
Gaussian depositions, and 060 is the Gaussian width. It has been first empirically [145] then
analytically [146] demonstrated that in the limit in which the CVs evolve according to a Langevin
dynamics, the bias indeed converges to the negative of the free energy, thus providing an optimal bias
to enhance transition events. Multiple simulations can also be used to allow for a quicker filling of
the free-energy landscape [147].

The difference between the metadynamics estimate of the free energy and the true free energy can
be shown to be related to the diffusion coefficient of the collective variables and to the rate at which
the bias is grown. A possible way to decrease this error as a simulation progresses is to decrease the
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growth rate of the bias. Well-tempered metadynamics [148] used an optimized schedule to decrease
the deposition rate of bias by modulating the Gaussian height:

_AV(6,t)
W = wyTge kAT 27

Here, wy is the initial “deposition rate”, measured Gaussian height per unit time, and AT is a
parameter that controls the degree to which the biased trajectory makes excursions away from
free-energy minima. It is possible to show that using well-tempered metadynamics the bias does
not converge to the negative of the free-energy but to a fraction of it, thus resulting in sampling
the CVs at an effectively higher temperature 7" + AT, where normal metadynamics is recovered
for AT — oo. We notice that other deposition schedules can be used aimed, e.g., at maximizing
the number of round-trips in the CV space [149]. Importantly, it is possible to recover equilibrium
Boltzmann statistics of unbiased collective variables from samples drawn throughout a well-tempered
metadynamics trajectory [150]; it does not seem clear that one can do this from an ABF trajectory.
Finally, it is possible to tune the shape of the Gaussians on the fly using schemes based on the
geometric compression of the phase space or on the variance of the CVs [151].

In the well-tempered ensemble, the parameter A7 can be used to tune the size of the explored
region, in a fashion similar to the fictitious temperature in TAMD. So both TAMD and well-tempered
metadynamics can be used to explore relevant regions of CV space while surmounting relevant free
energy barriers. However, there are important distictions between the two methods. First, the main
source of error in TAMD rests with how well mean-forces are approximated, and adiabatic separation,
realizable only when the auxiliary variables z never move, is the only way to guarantee they are
perfectly accurate. In practical application, TAMD never achieves perfect adiabatic separation. In
contrast, because the deposition rate of decreases as a well-tempered trajectory progresses, errors
related to poor adiabatic separation are progressively damped. Second, as already mentioned,
TAMD alone cannot report the free energy, but it also is therefore not practically limited by the
dimensionality of CV space; multicomponent gradients are just as accurately calculated in TAMD
as are single-component gradients. Metadynamics, as a histogram-filling method, must exhaustively
sample a finite region around any point to know the free energy and its gradients are correct, which
can sometimes limit its utility.

Metadynamics is a powerful method whose popularity continues to grow. In either its original
formulation or in more recent variants, metadynamics has been employed successfully in several
fields, some of which we point out below with some representative examples:

(1) Chemical reactions [57,152];

(2) Peptide backbone angle sampling [153—155];

(3) Protein folding [156-159];

(4) Protein aggregation [160];

(5) Molecular docking [161-163] ;

(6) Conformational rearrangement of proteins [164];
(7) Crystal structure prediction [165];

(8) Nucleation and crystal growth [166,167];
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(9) and proton diffusion [168].

2.4. Some Comments on Collective Variables
2.4.1. The Physical Fidelity of CV-Spaces

Given a potential V' (x), any multidimensional CV 6(x) has a mathematically determined free
energy F'(z), and in principle the free-energy methods we describe here (and others) can use and/or
compute it. However, this does not guarantee that F' is meaningful, and a poor choice for 8(x) can
render the results of even the most sophisticated free-energy methods useless for understanding the
nature of actual metastable states and the transitions among them. This puts two major requirements

on any CV space:

(1) Metastable states and transition states must be unambiguously identified as energetically
separate regions in CV space.

(2) The CV space must not contain hidden barriers.

The first of these may seem obvious: CVs are chosen to provide a low-dimensional description of
some important process, say a conformational change or a chemical reaction or a binding event, and
one can not describe a process without being able to discriminate states. However, it is not always
easy to find CVs that do this. Even given representative configurations of two distinct metastable
states, standard MD from these two different initial configurations may sample partially overlapping
regions of CV space, making ambiguous the assignation of an arbitrary configuration to a state. It
may be in this case that the two representative configurations actually belong to the same state, or
that if there are two states, that no matter what CV space is overlaid, the barrier separating them
is so small that, on MD timescales, they can be considered rapidly exchanging substates of some
larger state.

However, a third possibility exists: the two MD simulations mentioned above may in fact
represent very different states. The overlap might just be an artifact of neglecting to include one
or more CVs that are truly necessary to distinguish those states. If there is a significant free energy
barrier along this neglected variable, an MD simulation will not cross it, yet may still sample regions
in CV space also sampled by an MD simulation launched from the other side of this hidden barrier.
And it is even worse: if TI or umbrella sampling is used along a pathway in CV space that neglects
an important variable, the free-energy barriers along that pathway might be totally meaningless.

Hidden barriers can be a significant problem in CV-based free-energy calculations. Generally
speaking, one only learns of a hidden barrier after postulating its existence and testing it with a
new calculation. Detecting them is not straightforward and often involves a good deal of CV space
exploration. Methods such as TAMD and well-tempered metadynamics offer this capability, but
much more work could be done in the automated detection of hidden barriers and the “right” CVs
(e.g., [169-171]).

An obvious way of reducing the likelihood of hidden barriers is to use increase the dimensionality
of CV space. TAMD is well-suited to this because it is a gradient method, but standard metadynamics,
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because it is a histogram-filling method, is not. A recent variant of metadynamics termed
“reconnaissance metadynamics” [172] does have the capability of handling high-dimensional CV
spaces. In reconnaissance metadynamics, bias potential kernels are deposited at the CV space points
identified as centers of clusters detected and measured by an on-the-fly clusterization scheme. These
kernels are hyperspherically symmetric but grow as cluster sizes grow and are able to push a system
out of a CV space basin to discover other basins. As such, reconnaissance metadynamics is an
automated way of identifying free-energy minima in high-dimensional CV spaces. It has been
applied the identification of configurations of small clusters of molecules [173] and identification
of protein-ligand binding poses [162].

2.4.2. Some Common and Emerging Types of CVs

There are very few “best practices” codified for choosing CVs for any given system. Most CVs
are developed ad hoc based on the processes that investigators would like to study, for instance,
center-of-mass distance between two molecules for studying binding/unbinding, or torsion angles
for studying conformational changes, or number of contacts for studying order-disorder transitions.
Cartesian coordinates of centers of mass of groups of atoms are also often used as CVs, as they are
functions of these coordinates.

The potential energy V' (x) is also an example of a 1-D CV, and there have been several
examples of using it in CV-based enhanced sampling methods, such as umbrella sampling [174],
metadynamics [175] well-tempered metadynamics [176]. In a recent work based on steered MD, it
has been shown that also relevant reductions of the potential energy (e.g., the electrostatic interaction
free-energy) can be used as effective CVs [177]. The basic rationale for enhanced sampling of V' is
that states with higher potential energy often correspond to transition states, and one need make no
assumptions about precise physical mechanisms. Key to its successful use as a CV, as it is for any
CV, is a proper accounting for its entropy; i.e., the classical density-of-states.

Coarse-graining of particle positions onto Eulerian fields was used early on in enhanced
sampling [178]; here, the value of the field at any Cartesian point is a CV, and the entire field
represents a very high-dimensional CV. This idea has been put to use recently in the “indirect
umbrella sampling” method of Patel ef al. [179] for computing free energies of solvation, and string
method (Section 4.2.) calculations of lipid bilayer fusion [180]. In a similar vein, there have been
recent attempts at variables designed to count the recurrency of groups of atoms positioned according
to given templates, such as a-helices paired [§-strands in proteins [181].

We finally mention the possibility of building collective variables based on set of frames which
might be available from experimental data or generated by means of previous MD simulations. Some
of these variables are based on the idea of computing the distances between the present configuration
and a set of precomputed snapshots. These distances, here indicated with d;, where i is the index of
the snapshot, are then combined to obtain a coarse representation of the present configuration, which
is then used as a CV. As an example, one might combine the distances as

—Ad; ;
Zi e ¢ (28)
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If the parameter A is properly chosen, this function returns a continuous interpolation between the
indexes of the snapshots which are closer to the present conformation. If the snapshots are disposed
along a putative path connecting two experimental structures, this CV can be used as a path CV
to monitor and bias the progression along the path [182]. A nice feature of path CVs is that it is
straighforward to also monitor the distance from the putative path. The standard way to do it is by
looking at the distance from the closest reference snapshot, which can be approximately computed

with the following continuous function:
z=—\""tlog Z e Adi 29)

This approach, modified to use internal coordinates, was used recently by Zinovjev et al. to study
the aqueous phase reaction of pyruvate to salycilate, and in the CO bond-breaking/proton transfer in
PchB [183].

A generalization to multidimensional paths (i.e., sheets) can be obtained by assigning a generic
vector v; to each of the precomputed snapshots and computing its average [184]:

—Ad;,,.
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3. Tempering Approaches

“Tempering” refers to a class of methods based on increasing the temperature of an MD system
to overcome barriers. Tempering relies on the fact that according to the Arrhenius law the rate at
which activated (barrier-crossing) events happen is strongly dependent on the temperature. Thus, an
annealing procedure where the system is first heated and then cooled allows one to produce quickly
samples which are largely uncorrelated. The root of all these ideas indeed lies in the simulated

annealing procedure [185], a well-known method successfully used in many optimization problems.

3.1. Simulated Tempering

Simulated annealing is a form of Markov-chain Monte Carlo sampling where the temperature is
artificially modified during the simulation. In particular, sampling is initially done at a temperature
high enough that the simulation can easily overcome high free-energy barriers. Then, the temperature
is decreased as the simulation proceeds, thus smoothly bringing the simulation to a local energy
minimum. In simulated annealing, a critical parameter is the cooling speed. Indeed, the probability
to reach the global minimum grows as this speed is decreased.

The search for the global minimum can be interpreted in the same way as sampling an
energy landscape at zero temperature. One could thus imagine to use simulated annealing to
generate conformations at, e.g., room temperature by slowly cooling conformations starting at high
temperature. However, the resulting ensemble will strongly depend on the cooling speed, thus
possibly providing a biased result. A better approach consists of the the so-called simulated
tempering methods [186]. Here, a discrete list of temperatures 7;, with = € 1... N are chosen a

priori, typically spanning a range going from the physical temperature of interest to a temperature
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which is high enough to overcome all relevant free energy barriers. (Note that we do not have

to stipulate a CV-space in which those barriers live.) Then, the index 7, which indicates at which

temperature the system should be simulated, is evolved with time. Two kind of moves are possible:

(a) normal evolution of the system at fixed temperature, which can be done with a usual Markov

Chain Monte Carlo or molecular dynamics and (b) change of the index ¢ at fixed atomic coordinates.

It is easy to show that the latter can be performed as a Monte Carlo step with acceptance equal to
U(z) , Uz)

7.
o = min (1, 7J6 kBTj ’“BTi) 3D

%

where ¢ and j are the indexes corresponding to the present temperature and the new one. The weights
Z; should be choosen so as to sample equivalently all the value of 7. It must be noticed that also
within molecular dynamics simulations only the potential energy usually appears in the acceptance.
This is due to the fact that the velocities are typically scaled by a factor \/? upon acceptance. This
scaling leads to a cancellation of the contribution to the acceptance coming from the kinetic energy.
Ultimately, this is related to the fact that the ensemble of velocities is analytically known a priori,
such that it is possible to adapt the velocities to the new temperature instantaneously.

Estimating these weights Z; is nontrivial and typically requires a preliminary step. Moreover, if
this estimate is poor the system could spend no time at the physical temperature, thus spoiling the
result. Iterative algorithms for adjusting these weights have been proposed (see e.g., [187]). We also
observe that since the temperature sets the typical value of the potential energy, an effect much similar
to that of simulated tempering with adaptive weights can be obtained by performing a metadynamics

simulation using the potential energy as a CV (Section 2.4.2.

3.2. Parallel Tempering

A smart way to alleviate the issue of finding the correct weights is that of simulating several
replicas at the same time [188,189]. Rather that changing the temperature of a single system, the
defining move proposal in parallel tempering consists of a coordinate swap between two 7'-replicas
with acceptance probability

L V(e Ul
i (176(,63@. o ) U )1) )

This method is the root of a class of techniques collectively known as “replica exchange” methods,
and the latter name is often used as a synonimous of parallel tempering. Notably, within this
framework it is not necessary to precompute a set of weights. Indeed, the equal time spent by
each replica at each temperature is enforced by the constraint that only pairwise swaps are allowed.
Moreover, parallel tempering has an additional advantage: since the replicas are weakly coupled and
only interact when exchanges are attempted, they can be simulated on different computers without
the need of a very fast interconnection (provided, of course, that a single replica is small enough to
run on a single node).

The calculation of the acceptance is very cheap as it is based on the potential energy which is
often computed alongside force evaluation. Thus, one could in theory exploit also a large number
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of virtual, rejected exchanges so as to enhance statistical sampling [190,191]. Since efficiency
of parallel tempering simulation can deteriorate if the stride between subsequent exchanges is
too large [192,193], a typical recipe is to choose this stride as small as possible, with the only
limitation of avoiding extra costs due to replica synchronization. One can push this idea further
and implement asynchronous versions of parallel tempering, where overhead related to exchanges is
minimized [193,194]. One should be however aware that, especially at high exchange rate, artifacts
coming from e.g., the use of wrong thermostating schemes could spoil the results [195,196].
Parallel tempering is popular in simulations of protein conformational sampling [197,198],
protein folding [189,199-203] and aggregation [204,205], due at least in part to the fact that one
need not choose CVs to use it, and CVs for describing these processes are not always straightforward

to determine.

3.3. Generalized Replica Exchange

The difference between the replicas is not restricted to be a change in temperature. Any control
parameter can be changed, and even the expression of the Hamiltonian can be modified [206]. In
the most general case every replica is simulated at a different temperature (and or pressure) and a

different Hamiltonian, and the acceptance reads
_( Uizy) | Uj(z)
e ( ipt, T kpT; >
Uj(zy) | Ujley)
€_< FpT; T kJBTJj )

Several recipes for choosing the modified Hamiltonian have been proposed in the

(33)

a =min | 1,

literature [207-219]. Among these, a notable idea is that of solute tempering [208,217] which is used
for the simulation of solvated biomolecules. Here, only the Hamiltonian of the solute is modified.
More precisely, one could notice that a scaling of the Hamiltonian by a factor A\ is completely
equivalent to a scaling of the temperature by a factor A~!. Hamiltonian scaling however can take
advantage of the fact that the total energy of the system is an extensive property. Thus, one can
limit the scaling to the portion of the system which is considered to be interesting and which has the
relevant bottlenecks. With solute tempering, the solute energy is scaled whereas the solvent energy is
left unchanged. This is equivalent to keeping the solute at a high effective temperature and the solvent
at the physical temperature. Since in the simulation of solvated molecules most of the atoms belong
to the solvent, this turns in a much smaller modification to the explored ensemble when compared
with parallel tempering. In spite of this, the effect on the solute resemble much that of increasing the
physical temperature.

A sometimes-overlooked subtlety in solute tempering is the choice for the treatment of
solvent-solute interactions. Indeed, whereas solute-solute interactions are scaled with a factor A < 1
and solvent-solvent interactions are not scaled, any intermediate choice (scaling factor between A
and 1) could intuitively make sense for solvent-solute coupling. In the original formulation, the
authors used a factor (1 + \)/2 for the solute-solvent interaction. This choice however was later
shown to be suboptimal [217,220], and refined to be v/A. This latter choice appears to be more
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physically sound, since it allows one to just simulate the biased replicas with a modified force-field.
Indeed, if one scales the charges of the solute by a factor v/, electrostatic interactions are changed
by a factor \ for solute-solute coupling and v/\ for solute-solvent coupling. The same is true for
Lennard-Jones terms, albeit in this case it depends on the specific combination rules used. Notably,
the same rules for scaling were used in a previous work [209]. As a final remark, we point out that
solute tempering can be also used in a serial manner a la simulated tempering, in a simulated solute
tempering scheme [221].

3.4. General Comments

In general, the advantage of these tempering methods over straighforward sampling can be
rationalized as follows. A simulation is evolved so as to sample a modified ensemble by e.g.,
raising temperature or artificially modifying the Hamiltonian. The change in the ensemble could
be drastic, so that trying to extract canonical averages by reweighting from such a simulation would
be pointless. For this reason, a ladder of intermediate ensembles is built, interpolating between the
physical one (i.e., room temperature, physical Hamiltonian) and the modified one. Then, transitions
between consecutive steps in this ladder (or, in parallel schemes, coordinate swaps) are performed
using a Monte Carlo scheme. Assuming that the dynamics of the most modified ensemble is ergodic,
independent samples will be generated every time a new simulation reaches the highest step of the
ladder. Thus, efficiency of these methods is often based on the evaluation of the round trip time
required for a replica to traverse the entire ladder.

Tempering methods are thus relying on the ergodicity of the most modified ensemble. This
assumption is not always correct. A very simple example is parallel tempering used to accelerate the
sampling over an entropic barrier. Since the height of an entropic barrier grows with the temperature,
in this conditions the barrier in the most modified ensembles are unaffected [222]. Moreover, since a
lot of time is spent in sampling states in non-physical situations (e.g., high temperature), the overall
computational efficiency could even be lower than that of straightforward sampling. Real applications
are often in an intermediate situation, and usefulness of parallel tempering should be evaluated case
by case.

The number of intermediate steps in the ladder can be shown to grow with the square root of the
specific heat of the system in the case of parallel tempering simulations. No general relationship can
be drawn in the case of Hamiltonian replica exchange, but one can expect approximately that the
number of replicas should be proportional to the square root of the number of degrees of freedom
affected by the modification of the Hamiltonian. Thus, Hamiltonian replica exchange methods could
be much more effective than simple parallel tempering as they allow the effort to be focused and the
number of replicas to be minimized.

Parallel tempering has the advantage that all the replicas can be analyzed to obtain meaningful
results, e.g., to predict the melting curve of a molecule. This procedure should be used with caution,
especially with empirically parametrized potentials, which are often tuned to be realistic only at room
temperature. On the other hand, Hamiltonian replica exchange often relies on unphysically modified
ensembles which have no interest but for the fact that they increase ergodicity.
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As a final note, we observe that data obtained at different temperature (or with modified
Hamiltonians) could be combined to enhance statistics at the physical temperature [223]. However,
the effectiveness of this data recycling is limited by the fact that high temperature replicas visit
very rarely low energy conformations, thus decreasing the amount of additional information that can

be extracted.

4. Combinations and Advanced Approaches

4.1. Combination of Tempering Methods and Biased Sampling

The algorithms presented in Section 3 and based on tempering are typically considered to be
simpler to apply when compared with those discussed in Section 2 and based on biasing the sampling
of selected collective variables. Indeed, by avoiding the problem of choosing collective variables
which properly describe the reaction path, most of the burden of setting up a simulation is removed.
However, this comes at a price: considering the computational cost, tempering methods are extremely
expensive. This cost is related to the fact that they are able to accelerate all degrees of freedom to the
same extent, without an a priori knowledge of the sampling bottlenecks. In this sense, Hamiltonian
replica exchange methods are in an intermediate situation, since they are typically less expensive than
parallel tempering but allow to embed part of the knowledge of the system in the simulation set up.

Because of the conceptual difference between tempering methods and CV-based methods, these
approaches can be easily and efficiently combined. As an example, the combination of metadynamics
and parallel tempering can be used to take advantage of the known bottlenecks with biased collective
variables at the same time accelerating the overall sampling with parallel tempering [156]. In that
work, the free energy landscape for the folding of a small hairpin was computed by biasing a small
number of selected CVs (gyration radius and the number of hydrogen bonds). These CVs alone are
not enough to describe folding, as can be easily shown by performing a metadynamics simulation
using these CVs. However, the combination with parallel tempering allowed acceleration of all
the degrees of freedom blindly and reversible folding of the hairpin. This combined approach also
improves the results when compared with parallel tempering alone, since it accelerates exploration
of phase-space. Moreover, since parallel tempering samples the unbiased canonical distribution,
it is very difficult to use it to compute free-energy differences which are larger than a few kg7
The metadynamics bias can be used to disfavor, e.g., the folded state so as to better estimate the
free-energy difference between the folded and unfolded states.

It is also possible to combine metadynamics with the solute tempering method so as to decrease
the number of required replicas and the computational cost [224]. As an alternative to solute
tempering, metadynamics in the well-tempered ensemble can be effectively used to enhance the
acceptance in parallel tempering simulations and to decrease the number of necessary replicas [176].
This combination of parallel tempering with well-tempered ensemble can be pushed further and
combined with metadynamics on a few selected degrees of freedom [225]. As a final note, bias
exchange metadynamics [226] combines metadynamics and replica echange in a completely different

spirit: every replica is run using a different CV, thus allowing many CVs to be tried at the same time.
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This technique has been succesfully applied to several problems. For a recent review, we refer the
reader to [227].

4.2. Some Methods Based on TAMD
4.2.1. String Method in Collective Variables

The string method is generally an approach to find pathways of minimal energy connecting two
points in phase space [228]. When working in CVs, the string method is used to find minimal
free-energy paths (MFEP’s) [229]. String method calculations involve multiple replicas, each
representing a point z, in CV space at position s along a discretized string connecting two points
of interest (reactant and product states, say). The forces on each replica’s z, are computed and their
z,’s updated, as in TAMD, with the addition of forces that act to keep the z’s equidistant along the

string (so-called reparameterization forces):

Yzi(s,t) = Z [Mjk(x(s,t))m[ﬁk(x(s, ) — zi(s, ]| + n.(t) + A(s, t)% (34)

Here, Mjk is the metric tensor mapping distances on the manifold of atomic coordinates to the

. . . Zj N
manifold of CV space, 7 is thermal noise and A(s, t)a—J represents the reparameterization force
5

tangent to the string that is sufficient to maintain equidistant images along the string. String method
has been used to study activation of the insulin-receptor kinase [63], docking of insulin to its
receptor [230], and myosin [231]. In these examples, the update of the string coordinates is done
at a lower frequency than the atomic variables in each image.

In contrast, in the on-the-fly variant of string method in CVs, the friction on the z,’s is set high
enough to make the effective averaging of the forces approach the true mean forces, and the z updates
occur in lockstep with the & updates of the MD system [232]. Just as in TAMD, the atomic variables
obey an equation of motion like Equation (12) tethering them to the z. Stober and Abrams recently
demonstrated an implementation of on-the-fly string method to study the thermodynamics of the
normal-to-amyloidogenic transition of S2-microglobulin [233]. Unique in this approach was the
construction of a single composite MD system containing 27 individual 52 molecules restrained to
points on 3 x 3 x 3 grid inside a single large solvent box. Zinovjev ef al. used a combination
of the on-the-fly string method and of path-collective variables (see Equations (28) and (29)) in a
quantum-mechanics/molecular-mechanics approach to study a methyltransferase reaction [234].

4.2.2. On-the-Fly Free Energy Parameterization

Because TAMD provides mean-force estimates as it is exploring CV space, it stands to reason
that those mean forces could be used to compute a free energy. In contrast, in the single-sweep
method [68], the TAMD forces are only used in the CV space exploration phase, not the free-energy
calculation itself. Recently, Abrams and Vanden-Eijnden proposed a method for using TAMD
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directly to parameterize a free energy; that is, to determine the best set of some parameters A on

which a free energy of known functional form depends [235]:
F(z)=F(z;A") (35)

The approach, termed “on-the-fly free energy parameterization”, uses forces from a running TAMD
simulation to progressively optimize A using a time-averaged gradient error:

E(\) = %/0 IV.F [2(s), A(t)] + & [0(2(s)) — 2(s)]|>ds (36)

If constructed so that Fis linear in A = (Aq, Ao, ..., A\y/), minimization of E can be expressed as a
simple linear algebra problem

D Aghi=b, i=1,...,M (37)
J

and the running TAMD simulation provides progressively better estimates of A and b until the A
converge. In the cited work, it was shown that this method is an efficient way to derive potentials of
mean force between particles in coarse-grained molecular simulations as basis-function expansions.
It is currently being investigated as a means to parameterize free energies associated with
conformational changes of proteins.

Chen, Cuendet, and Tuckermann developed a very similar approach that in addition to
parameterizing a free energy using d-AFED-computed gradients uses a metadynamics-like bias on
the potential [236]. These authors demonstrated efficient reconstruction of the four-dimensional

free-energy of vacuum alanine dipeptide with this approach.

5. Conclusions

In this review, we have summarized some of the current and emerging enhanced sampling
methods that sit atop MD simulation. These have been broadly classified as methods that use
collective variable biasing and methods that use tempering. CV biasing is a much more prevalent
approach than tempering, due partially to the fact that it is perceived to be cheaper, since tempering
simulations are really only useful for enhanced sampling of configuration space when run in parallel.
CV-biasing also reflects the desire to rein in the complexity of all-atom simulations by projecting
configurations into a much lower dimensional space. (Parallel tempering can be thought of as
increasing the dimensionality of the system by a factor equal to the number of simulated replicas.)
But the drawback of all CV-biasing approaches is the risk that the chosen CV space does not
provide the most faithful representation of the true spectrum of metastable subensembles and the
barriers that separate them. Guaranteeing that sampling of CV space is not stymied by hidden
barriers must be of paramount concern in the continued evolution of such methods. For this reason,
methods that specifically allow broad exploration of CV space, like TAMD (which can handle large
numbers of CVs) and well-tempered metadynamics will continue to be valuable. So too will parallel
tempering because its broad sampling of configuration space can be used to inform the choice of
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better CVs. Accelerating development of combined CV-tempering methods bodes well for enhanced
sampling generally.

Although some of these methods involve time-varying forces (ABF, TAMD, and metadynamics),
all methods we’ve discussed have the underlying rationale of the equilibrium ensemble. TT uses the
constrained ensemble, ABF and metadynamics ideally converge to an ensemble in which a bias erases
free-energy variations, and TAMD samples an attenuated/mollified equilibrium ensemble. There is
an entirely separate class of methods that inherently rely on non-equilibrium thermodynamics. We
have not discussed at all the several free-energy methods based on non-equilibrium MD simulations;
we refer interested readers to the article by Christoph Dellago and Gerhard Hummer in this issue.

Finally, we have also not really touched on any of the practical issues of implementing and using
these methods in conjunction with modern MD packages (e.g., NAMD [237], LAMMPS [238],
Gromacs [239], Amber [240], and CHARMM [241], to name a few). At least two packages (NAMD
and CHARMM) have native support for collective variable biasing, and NAMD in particular offers
both native ABF and a TcL-based interface which has been used to implement TAMD [58]. The
native collective variable module for NAMD has been recently ported to LAMMPS [242]. Gromacs
offers native support for parallel tempering. Generally speaking, however, modifying MD codes
to handle CV-biasing and multiple replicas is not straightforward, since one would like access to
the data structures that store coordinates and forces. A major help in this regard is the PLUMED
package [243,244], which patches a variety of MD codes to enable users to use many of the
techniques discussed here.
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Abstract: As shown by Jarzynski, free energy differences between equilibrium states
can be expressed in terms of the statistics of work carried out on a system during
non-equilibrium transformations. This exact result, as well as the related Crooks
fluctuation theorem, provide the basis for the computation of free energy differences
from fast switching molecular dynamics simulations, in which an external parameter is
changed at a finite rate, driving the system away from equilibrium. In this article, we
first briefly review the Jarzynski identity and the Crooks fluctuation theorem and then
survey various algorithms building on these relations. We pay particular attention to
the statistical efficiency of these methods and discuss practical issues arising in their
implementation and the analysis of the results.
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1. Introduction

The calculation of free energies from atomistic simulations is of great importance in many
applications, ranging from the prediction of the phase behavior of a certain substance to the
calculation of ligand affinities in drug design. Since the computation of free energies (or, more

precisely, of free energy differences) involves the determination of entropic contributions and,
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hence, the estimation of phase space volumes [1], free energy calculations are computationally
very demanding in most cases. Therefore, a significant effort has been devoted to the development
of more efficient free energy calculation algorithms. This endeavor has received new momentum
with Jarzynski’s discovery of a very general relation between equilibrium free energies and
non-equilibrium work [2,3], which has inspired several molecular dynamics-based algorithms for
free energy computations. In this article, we will give an overview of these methods.

According to the maximum work theorem, a consequence of the second law of thermodynamics,
the amount of work W performed on a system during a non-equilibrium transformation is larger
than the free energy difference AF’ between the equilibrium states corresponding to the transition
end points:

(W) > AF (1)

Equivalently, the amount of work that can be extracted from a system is bounded from above by
the free energy difference. In the above equation, the equal sign holds only if the transformation
is carried out reversibly, maintaining equilibrium at all times. The angular brackets on the left-hand
side of the maximum work theorem indicate an average over many realizations of the non-equilibrium
process. If one considers a macroscopic system, for instance, a piston compressing a gas enclosed
in a cylinder, the average is not necessary, because every realization of the process yields, for all
practical purposes, the same amount of work W, if the transformation is carried out following
the same protocol. This is essentially a consequence of the central limit theorem for thermal
fluctuations. In the case of a microscopic system, however, fluctuations become important, and
different realizations of the transformation typically produce different work values, leading to a
statistical distribution of . For instance, stretching a biomolecule with atomic force microscopes
or optical tweezers will cost a different amount work for each repetition of the experiment. In some
cases, the work expended on the system might even be smaller than the free energy difference,
seemingly violating the maximum work theorem and, hence, the second law of thermodynamics.

As shown by Jarzynski in 1997 [2,3], the work fluctuations resulting for microscopic systems can

be accounted for in an exact way, transforming the maximum work theorem into an equality:
<€—5W> _ oBAF 2)

Here, 5 = 1/kgT is the reciprocal temperature of the equilibrium state from which the transformation
is started, and kg is the Boltzmann constant. Remarkably, this result, now commonly referred to as
Jarzynski equation or Jarzynski non-equilibrium work theorem, relates the statistics of irreversible
work carried out on the system, while it is driven away from equilibrium, to an equilibrium free
energy difference. A closely connected result is the Crooks fluctuation theorem [4—6], which relates
the equilibrium free energy difference to the work distributions of the forward and reversed process.

In general, processes during which work is performed on or by the system drive the system
away from equilibrium, such that the phase space distribution obtained at the end of the process
may differ strongly from the equilibrium distribution to which the system relaxes after the external
perturbation has been stopped. For instance, a piston pushed quickly into a gas-filled cylinder
generates non-equilibrium states with strong flows markedly different from the static equilibrium
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state to which the gas eventually relaxes after the piston has reached its final state. At first sight, it is
therefore surprising that equilibrium properties, such as free energy differences, can be extracted from
non-equilibrium trajectories. As discussed in the following sections of this paper, a closer analysis
reveals that averaging over the work exponential is equivalent to removing the bias introduced during
the driving process. It is this unbiasing that ultimately permits the extraction of equilibrium properties
(as we will discuss in Section 5, in principle, one can determine the entire equilibrium distribution
and not only the free energy) from non-equilibrium trajectories. Thus, the non-equilibrium work
theorem can be viewed as a prescription of how to compensate for the effects of manipulations that
drive the system into non-equilibrium rather than a tool that illuminates the nature of non-equilibrium
processes. Nevertheless, it is remarkable that the bias has a very simple exponential form and can be
expressed in terms of the work only.

The Jarzynski non-equilibrium work theorem, as well as the Crooks fluctuation theorem
provide the framework for the interpretation of single-molecule pulling experiments [7-9], in which
non-equilibrium effects can never be fully avoided. These exact results can also be exploited to
devise computer simulation algorithms for the calculation of free energies. In this article, we
review several computational approaches based on the collection of work statistics in a fast-switching
non-equilibrium setting, paying particular attention to the accuracy and efficient implementation of
these methods compared to conventional free energy computation methods (see [10-12]). In the
remainder of this article, we will first state the Jarzynski and Crooks theorems more explicitly and
discuss the conditions under which they apply. After that, we will survey several fast switching
algorithms in which free energies are determined from sets of molecular dynamics trajectories
obtained while changing a control parameter, thereby exerting work on the system. We conclude

with a brief summary and outlook to future possibilities and applications.

2. Jarzynski Identity and Crooks Fluctuation Theorem

To set the notation, consider a classical system with energy H (x, \) depending on the microscopic
state x of the system, as well as on a parameter \. The microscopic state x is specified by the positions
of all particles in the system and, if necessary, also by all momenta. The parameter \ is a control
parameter that can be changed externally, for instance, the volume of the cylinder containing the
particles or an external field. According to the basic laws of statistical mechanics, the free energy
difference between the two equilibrium states A and B corresponding to the values A4 and Ap,
respectively, of the order parameter is given by:

AF =Fp — Fy = —kgTn Zp 3)

ZA

where Z, = [dzexp{—BH(x,\4)} and Zp = [dx exp{—[H(z,\p)} are the canonical
partition functions of the two equilibrium states (up to a combinatorial prefactor irrelevant for our
considerations). The free energy difference A F'is the work required to change the external parameter
from A4 to Ap in a reversible process. Such a reversible transformation could be realized, for
instance, by changing the parameter A infinitely slowly, while keeping the system in contact with
a heat bath. In this case, the free energy difference is equal to the work of the system.
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Instead of changing the control parameter A very slowly, one could change it at a finite rate over a
time interval 7, following a certain protocol A(¢), where A(0) = A4 and A\(7) = Ap. In general, such
a fast switching of the control parameter drives the system away from equilibrium in an irreversible
way, such that the work required to do the change exceeds the free energy difference, as posited by
the maximum work theorem of Equation (1). To be more specific, the work performed on the system
along a particular trajectory x=(t) is the energy change caused by changes of the control parameter
accumulated along the trajectory:

wie x0] = [ HHEON] @

A=A(t)

where A(£) is the time derivative of A(¢). Note that this work depends both on the protocol A() as well
as on the particular trajectory x(¢) followed by the system. The average appearing on the left-hand
side of Equation (1) is over many repetitions of the switching process starting from initial conditions
distributed according to the equilibrium distribution p(z) o exp(—SH (z, A4)) for control parameter
Aa. In a computer simulation, one could realize such a process by sampling initial conditions from
a canonical distribution and then integrating the underlying equations of motion, while at the same
time changing the control parameter A according to the protocol A(t).

Jarzynski has shown [2,3] that averaging over the exponential of the work exp(—SW (7)) rather
than the work, turns the maximum work theorem into an equality, (exp{—SW|z(t), A(¢)]}) =
exp{—FAF}. Tt is important to realize that the average over the work exponential involves two
averages, one over the distribution of initial conditions and another one over the set of trajectories
that originate from a particle initial condition. For deterministic dynamics, the initial condition
determines the entire trajectory, z(t), but for stochastic dynamics, the system evolves in different
ways, even if one repeatedly starts from the same initial condition. Hence, for stochastic dynamics,
the average appearing in the Jarzynski equation also requires an average over noise histories.

The Jarzynski equation is an exact result that holds under very general conditions. The
requirements are that initially, the system must be in equilibrium and that for a fixed control
parameter, the dynamics conserves the equilibrium distribution corresponding to that value of the
control parameter. The latter condition is satisfied by most types of dynamics usually used in
computer simulations, including Newtonian, thermostated, Langevin and Monte Carlo dynamics.
It is worth pointing out that it is not necessary that the system be in an equilibrium state at the end
of the transformation process or relax towards equilibrium after the control parameter switching is
completed. Furthermore, it is interesting that the Jarzynski equation holds, even if the switching
is carried out according to different (though prescribed) protocols provided that A(0) = A4 and
A1) = A, Le., all protocols start at A4 at time O and finish at A\g at time 7. After Jarzynski’s
seminal work [2], in which the Jarzynski equality was derived for systems evolving deterministically
with and without coupling to a heat bath, several other proofs were provided, for instance, based
on a master equation [3], for Markovian dynamics satisfying detailed balance [5,13], for dynamical
systems conserving the canonical distribution [14] or from the Feynman—Kac theorem [7].

In the limiting cases of infinitely fast switching and infinitely slow switching, the Jarzynski

equality reduced to two well-known results. For instantaneous switching, 7 — 0, the initial and
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final point of a trajectory are identical, as the system has no time to evolve. In this case, the work
carried out on the system at a particular microscopic state x equals the difference in energy evaluated
for the two values of the control parameter:

The Jarzynski equation then becomes:

e TPAF _ <€*6[H(17AB)*H(L>\A)]>AA (6)

where the subscript next to the angular bracket indicates that the average has to be carried out with
respect to the equilibrium distribution at A 4. The above equation is the central result of free energy
perturbation theory [15] and is often used to compute free energy differences. In the opposite limit
of infinitely slow switching, 7 — oo, the system has time to equilibrate for every intermediate value

of the control parameter, such that the Jarzynski equation together with Equation (4) implies:

_[*® JOH(z,\)
apo [ (2 4 o

This expression provides the basis for the thermodynamic integration method [16], in which
equilibrium simulations are carried out for different, but fixed values of the control parameter A
to compute the average energy derivatives (0H/OM),. The free energy difference is then obtained
by numerical integration, for instance, by using the Simpson rule or more sophisticated integration
schemes. The maximum work theorem of Equation (1) also immediately follows from the Jarzynski
equation by virtue of Jensen’s inequality, (exp(—z)) > exp(—(x)).

As mentioned in the introduction, the Jarzynski equation can be viewed as a way to remove the
bias introduced by the switching process into the phase space distribution obtained at the end of the
process. Following similar considerations as those used to derive the Jarzynski equality, one can
prove that for any phase space function A(z) the following equation holds [4,7,17]:

(A(Z))eqrp = <A(x(7))eiﬁ[W(T)iAF]>non-eq (®)

Here, the angular brackets on the left-hand side indicate an equilibrium average for the control
parameter fixed at A\p, and the average on the right-hand side is an average over non-equilibrium
pathways generated with protocol (%) just as in the Jarzynski equations. To make this difference even
more explicit, we have added the subscripts eq and non-eq to the equilibrium and non-equilibrium
average, respectively. In the above equation, x(7) refers to the endpoints of the non-equilibrium
trajectories. The Jarzynski equation is simply obtained by setting A(x) = 1. Equation (8) implies that
equilibrium averages can be computed by reweighting the non-equilibrium distribution obtained as a
result of the switching procedure by exp(—SW + SAF). In particular, the equilibrium distribution
for \p is obtained by setting A(x) = §(x — x(7)), where () is the Dirac delta function:

Peq(T, AB) = (6( — x(T))e_ﬁ[W(T)_Aanon—eq )
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Hence, in principle, all equilibrium properties for Az (and with appropriate modifications, also for
all intermediate values \(¢) of the control parameter) can be extracted from a set of non-equilibrium
trajectories obtained from simulation or experiment.

If the dynamics of the system not only conserves the equilibrium distribution for a fixed control
parameter, but is also microscopically reversible, i.e., if it satisfies detailed balance, the work
distribution for the forward process is simply related to that of the process carried out with the
time reversed protocol. More specifically, the distribution P(W') of work W observed in repeated
realizations of the switching process is given by:

PW) = (6(W — Wlxz(t), A(£)])) a (10)

where the average is over initial conditions of the equilibrium ensemble A and over pathways starting
from these initial conditions under the action of the protocol A(#). Now, consider the time inverted
protocol Ag(t) = A(7 — t). The distribution Pr(W), observed for the reverse process, in which the
control parameter is changed from Az back to A 4, can be written as:

Pr(W) = (6(W — Wlx(t), Ar(t)])) 5 (11)

where, now, the average is over initial conditions from the equilibrium ensemble B with trajectories
evolving, while the control parameter follows the inverted protocol A\g(t). Crooks has shown that
for dynamics that is microscopically reversible, the work distributions P(W') and Pg(V) for the
forward and reverse process, respectively, are related by [5,6]:

P(W) = Pr(=W)ePW-AF) (12)

This exact result, known as the Crooks fluctuation theorem, also serves as a basis for various free

energy calculation methods, as explained in detail in subsequent sections.

3. Implementing Fast Switching Simulations

Jarzynski’s non-equilibrium work theorem and the Crooks fluctuation theorem suggest interesting
algorithms for the calculation of free energy differences. The power of these algorithms derives
from the fact that all quantities appearing in these relations can be easily determined. The simplest
of these algorithms consists in the following steps. First, one needs to prepare initial conditions
distributed according to the Boltzmann—Gibbs distribution. This can be achieved using a variety
of methods, for instance, canonical Monte Carlo simulation, possibly combined with enhanced
sampling methods, such as parallel replica sampling, or with thermostated molecular dynamics. To
improve the efficiency of the free energy calculation, it is important to make sure that these initial
conditions are sufficiently decorrelated.

From these initial conditions, one then starts trajectories of the desired length that are integrated,
while, at the same time, changing the control parameter according to the protocol A(¢). Both the
choice of the parameter A\ used to drive the transformation, as well as the shape of the protocol
influence the efficiency of the calculation, as described in detail below. One can compute the
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dynamics of the system based on stochastic equations of motion, such as the Langevin equation,
or deterministic equations of motion, such as Newton’s equations with or without thermostat. Along
the computed trajectories, one then has to compute the work W carried out on the system by changing
the control parameter. This is most easily done by dividing the basic molecular dynamics steps into
two sub-steps. In the first sub-step, the state x(t + At) of the system at time ¢ + At is computed by
carrying out an integration step with the control parameter fixed at value A\(¢). In the second sub-step,
one then changes the control parameter from A(¢) to A\(¢ + At), while keeping the state z(t + At)
of the system unchanged. Only in this second sup-step is work carried out on the system. In this
two-step procedure, the work carried out on the system along a particular trajectory up to time ¢ + At
is given by:

W(t+ At) = W(t) + H(ziat, Airar) — H(Tipar, At) (13)

where x; = z(t) and \; = A(¢) are the state of the system and the value of the control parameter at
time ¢, respectively. From the work values collected in this way for the forward process, and possibly
also for the backward process, one can then determine the free energy difference by applying the
types of analyses discussed in the next section.

An important choice one has to make in the context of fast switching free energy computations
is how to allocate computing time. In particular, one has to decide whether to generate many short
trajectories with a large switching rate or fewer and longer trajectories along which the system is
driven more gently. Without enhanced sampling schemes, as those discussed in subsequent sections,
one generally expects the slow switching regime to give more accurate free energy estimates for
a given amount of computing time [18]. As a rule of thumb, one should carry out the switching
slowly enough, such that the standard deviation of the work values does not exceed kg7'. In this slow
switching regime, the statistical error obtained with a given amount of computing time grows slowly
with the switching rate. It is nevertheless more advantageous to compute several trajectories at a
moderate switching rate than one single long trajectory, because then, an error estimate for the free
energy can be obtained in a straightforward manner. Furthermore, multiple trajectories can be run
in parallel to exploit the capabilities of parallel processing machines. Another important choice to
make in fast switching simulations concerns the direction in which the transformation is carried out.
Interestingly, it can be shown that the direction in which more work is dissipated is computationally
beneficial [19]. This formal result is consistent with experience in free energy calculations using
perturbation theory. In the calculation of chemical potentials, for instance, test particle insertion
typically produces a larger variation in the energy change compared to particle removal and leads to
more accurate estimates of the chemical potential [1].

As discussed above, the statistical error of a free energy computed via fast switching strongly
depends on the rate at which the system is driven out of equilibrium. However, while the switching
rate is certainly the most important parameter, also the particular shape of the protocol A(¢) for a
given total switching time 7 plays an important role in determining the accuracy of the free energy
estimate. Since the Jarzynski equality and the Crooks fluctuation theorem hold for arbitrary protocols,
one can exploit this freedom to design protocols that optimize the free energy computation. Recently,
Schmiedl and Seifert have addressed a related question, asking how the protocol should be designed
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to minimize the average work expended during the non-equilibrium transformation for a given total
of 7 [20]. Their analysis, carried out for a particle dragged through a fluid and for a particle
in a harmonic trap with changing strength, indicates that, surprisingly, the optimum protocol has
discontinuous jumps, both at the beginning and at the end of the process. This result is in contrast
to an earlier linear-response analysis [21], which implied that the optimum protocol is smooth and
free of jumps. In the cases studied by Schmiedl and Seifert, the optimum protocol with jumps led
to a reduction of the dissipated work by up to 12% compared to the case with a continuous protocol
changing linearly in time. A subsequent numerical study of a non-linear system carried out by Then
and Engel [22] showed that the optimum protocol can have one, two or even more jumps. Steps
occur also in the optimum protocol for underdamped Langevin dynamics, for which also delta-like
singularities appear at the start and the end of the switching process, effectively kicking the system
discontinuously [23].

While, in general, protocols in which the dissipated work is small are expected to yield a more
accurate free energy estimate, there is no simple relation between the average work and the statistical
error in the free energy. Hence, a protocol optimized with respect to the work does not necessarily
minimize the statistical error. However, numerical protocol optimizations conducted for various
models indicate that control parameter steps at the start and the end of the protocol (but never in
between) are beneficial also for free energy computations [24]. These steps are most pronounced in
the fast switching regime and disappear for slow switching. For small switching rates, the minimum
work protocol and the minimum error protocol are identical, but for large switching rates, that may
differ. In some cases the minimum error protocol even yields an average work that is larger than that
of a linear protocol without steps. While appropriate steps in the protocol can lead to a considerable
reduction of the computational cost of fast switching free energy calculations, such large savings
typically occur only in switching regimes where the straightforward application of the Jarzynski
equality is impractical. Whether work biased sampling schemes (discussed in Section 6) may serve

to leverage the potential power of discontinuous protocols is currently an open question.

4. Analysis of Non-Equilibrium Free Energy Calculations

The simplest, but also most error-prone, method to obtain free energies from one-sided

non-equilibrium simulations is a direct evaluation of the exponential estimator:
AF = —kgTln ()~ —kgTIn Y e /n (14)
=1

where IW; are the work values obtained in n independent non-equilibrium runs. If the work
distribution is broad, with a variance var(W) > (kgT)?, then the estimate will tend to be
dominated by only a few trajectories [19]. All others have negligible weight, resulting not only
in sampling inefficiency, but also a systematic bias of the free energy estimate (i.e., the average of
AF, obtained in repeated sampling with a fixed number n of trajectories, deviates from the exact
value [25]). The resulting systematic errors can be estimated and at least partly corrected [17,26-28].
Alternatively, the width of the work distribution can be reduced by breaking the transformation up
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into segments [18,29,30]. However, the computational cost of re-equilibration at intermediate stages
can be significant. The bias can also be eliminated by using cumulant estimators [2,18], in particular,
the second-order approximation:

AF ~ (W) — g var(W)/2 (15)

However, while eliminating the bias of the exponential estimator, the cumulant approximation is only
approximate and, thus, has a systematic error if the work distribution deviates from a Gaussian. Other
approaches using the tail statistics of work values have also been proposed [31,32]. In closing the
discussion of the direct estimator, we note that the width of the work distribution is closely related to

the amount of energy dissipated in the non-equilibrium transformation:
(W) —AF =~ [var(W)/2 (16)

Large variance, and, thus, large dissipation, arises from hysteresis effects and can be minimized by
optimising the transformation protocol with respect to its time dependence [20] and the choice of
control parameter.

More accurate and asymptotically unbiased free energy estimates can be obtained from
two-sided simulations by using the Crooks relation. By exploiting the analogy between equilibrium
perturbation theory and non-equilibrium simulations, one can adapt Bennett’s acceptance ratio as the
estimator [33,34]. It requires solving an implicit relation:

ny 1 ny 1

Z 1+ LBWi—AF) — Z 1 + 2 eB(W+AF) .
1 np nyg

= i=1
where W; and W, are the work values obtained on the n s and n;, forward and reverse transformations,
respectively. This equation can be solved numerically, e.g., by using the Newton—Raphson method.
Note that the work values, W, on the reversed path have the opposite sign.

The analogy to the equilibrium method also allows us to adapt two-sided cumulant estimators [35]
to non-equilibrium work distributions [18] or to use Bennett’s overlapping histogram method [33].
While less efficient as a free energy estimator than the acceptance ratio method, the histogram method
provides us with a test of consistency between forward and reverse transformations. According to
Equation (12), a plot of the logarithm of P(W')/Pr(—W) should be a straight line as a function of
W with slope 3. Deviations point to sampling issues or other problems. Another approach [36] for
the calculation of free energies from non-equilibrium switching simulations relies on the ideas of
waste-recycling Monte Carlo [37].

5. Calculating Potentials of Mean Force

Potentials of mean force (PMF) G(q) along a chosen coordinate ¢ = ¢(x) are defined as:

G(q) = —ksT ln/da:e_ﬁH(w)é[q—q(x)] (18)

up to an arbitrary constant. The coordinate ¢ depends on the phase space coordinate x and, thus,
fluctuates along a trajectory. To apply the Jarzynski equality, one would need to make ¢ a control



169

parameter equivalent to A. However, in molecular simulations, one may not be able to (or want to)
control g explicitly, e.g., by applying a holonomic constraint. Instead, it may be easier to restrain
q, for instance, by imposing harmonic biasing potentials, as in umbrella sampling. Even if such
bias potentials are explicit functions of time, e.g., by moving the center of the harmonic bias, one
can obtain equilibrium PMFs from an extension of the Jarzynski equality [7]. The central relation
is Equation (9), which allows us to obtain an estimate of the equilibrium phase space density by
reweighting trajectory data. If the time-dependent biasing potential is of the form V' = V[q(z), ],
then the equilibrium PMF in the absence of the bias V/, up to a time-dependent constant, can be
recovered by weighting trajectory points g[z(¢)] with the Boltzmann factor of the work minus the
energy stored in the pulling spring:

G(q) = —kgTIn <5[q _ q[x(t)]]e*ﬂ[W(t)*V[q[w(t)Lt]> (19)

In principle, this relation applies at every time, . In practice, ¢ values at time ¢ will be concentrated
in a narrow region, whose location depends on the bias, V, and its history. Therefore, to obtain a
complete PMF over a range of ¢ values, one should combine results at different times ¢. In the original
derivation, the histogram-reweighting procedure of Ferrenberg and Swendsen [38] was adapted for

non-equilibrium PMF calculations [7,17]:

Z (lg—q(t)] exp[-BW (t)])
t <6XP[_ﬂQ(t)]> (20)
exp[—BV (g,t)]
t {exp[—BW (t)])

G(Q) = —]{IBT In

where the sums extend over different time points ¢. This is not the only possible way to combine
histograms obtained at different times, and other procedures have been suggested [39-41].

In many practical applications, the biasing potentials V' are harmonic. In such “steered molecular
dynamics” simulations and similar approaches [42-45], one can obtain estimates of the PMF
using approximate formalisms that involve the system’s free energy difference AF'(¢) and its time
dependence. In the limit of very stiff pulling springs V' (q,t) = k[g — z(t)]?/2, constraining ¢ to a
prescribed path z(t) with large k, one can use the “stiff-spring approximation” of Park er al. [46].
In this limit, ¢ is almost a control parameter, which results in an approximate relation between the
system free energy difference AF'(¢) and the PMF G(q):

Gla=a(t)] ~ AF() ~ 1y (AZ“) - AF@?) @)

where we assumed, for simplicity, that the spring moves at a constant velocity v, i.e., z(t) = vt, and
AF = dF(t)/dt. More accurate approaches using the same information, AF(t) and its first two
time derivatives, have been derived on the basis of the Weierstrass transform [17,47]:

AF(t)) AF(t)?
G (q:vt—7> ~ AF(t) — She?

1 AF(2)
toghn (1 - = ) (22)
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Note that the PMF is calculated at a shifted position and that the argument of the logarithm is positive
by definition, being proportional to a variance [47]. In practical applications of Equation (21) or
(22), AF(t) can be obtained from either unidirectional simulations using the Jarzynski equality or
from bidirectional sampling using, e.g., the method of Minh and Adib [48], building on the Crooks
fluctuation theorem. Minh and Adib [48] have also developed histogram-based PMF reconstructions
that combine information from simulations starting at different transition endpoints, i.e., with initial
biases V (¢, 0) and V' (¢, 7) and evolving as V(q,t) and V (¢, 7 — ).

6. Importance Sampling of Fast-Switching Trajectories

Fast switching simulations carried out at large switching rates typically generate work
distributions that lead to large statistical uncertainties in the free energy estimate. As discussed
earlier, the reason is that trajectories with typical work values contribute little to the exponential
average of the Jarzynski equation, while trajectories with work values dominating the average are
very rare. As a consequence, the convergence of the computed free energy is impractically slow for
overly fast switching. A solution to this problem consists in favoring the generation of trajectories
with important work values. In this section, we discuss how path sampling techniques can be used
for this purpose.

To introduce computational methods for realizing this idea, we rewrite the exponential work

average as an explicit sum over pathways:
e PAE — /Dm(t)P[m(t), A(t)]e PV AD)] (23)

where the notation [Dz(t) implies an integral over all pathways x(t) and P[z(t), A\(t)] is the
probability to observe the trajectory x(t) for given protocol A(t). Note that the path probability
Plz(t), A(t)] also includes the probability of the initial condition xy. As suggested by Ytreberg and
Zuckerman [49] and by Athenes [50], one way to enhance the sampling of important trajectories
consists in introducing an explicit bias function 7[x(¢)] (assumed to be integrable and positive

everywhere) in the average:

sar _ I DR Pla®]rle()]e VO alu(t)
D(t) Pla(®)][e(t)]/xla (D)

where we have dropped the explicit dependence on the protocol A(t) in the arguments of P|x(¢)] and

(24)

W z(t)] to simplify the notation. The right-hand side of this equation, obtained by simply dividing
and multiplying by the (so far unspecified) bias function 7[x(t)] can be viewed as the ratio of two

averages taken in a biased ensemble, leading to:

N )
0] )

Here, the angular brackets (---), denote an average over pathways distributed according to the

e

biased ensemble P, [z(t)] o< P[z(t)|r[z(t)]. Since, in general, the bias function 7|z (¢)] depends
on the entire pathway xz(t), the biased ensemble cannot be sampled by preparing initial conditions
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according to a certain distribution and running fast switching trajectories from them. Instead, one
can use trajectory sampling algorithms (such as the shooting algorithm) adapted from transition path
sampling, a methodology originally developed for the simulation of rare events occurring in complex
systems [51-53]. In this approach, the bias function appears in the acceptance probability of the path

sampling scheme, steering the simulation towards the desired regions of trajectory space.

Since the bias function should enhance the sampling of important, but rare, work values, a bias
function depending on the path x(¢) only through the work W [xz(t)] suffices, 7|z (t)] = w[W[z(t)]].
The accuracy of a free energy calculation carried out with biased path sampling now crucially
depends on the particular choice of this bias function. It is evident that to obtain an accurate
estimate of AF’, the bias function should be selected, such that the statistical error is small both
in the numerator and in the denominator of the fraction on the right-hand side of Equation (25).
This implies that the work distribution in the biased ensemble should have a large overlap
with the work distribution P(W/) in the unbiased ensemble, as well as with the integrand
P(W)exp(—SW) appearing in the Jarzynski equality. It has been shown [49,50] that large
efficiency increases can be obtained using the bias function w(W) = exp(—/SW/2), which
produces a work distribution in between the two distributions P(W) and P(W) exp(—SW) [54].
A more systematic investigation [55] of the statistical error in the free energy estimate obtained by
biased path sampling yields the optimum bias (W) = | exp(—/S(W —AF')) —1|. This result implies
that the expected statistical error in the free energy is smallest if typical and dominant work values
are sampled with high frequency. Interestingly, sampling work values W ~ AF’ near the free energy
difference is not important. Unfortunately, the practical usefulness of this optimum bias function is
limited, because its application requires prior knowledge of the free energy difference, i.e., the very
quantity one wants to compute. However, iterative schemes, in which the bias function is adapted as
the simulation goes on, might make productive use of the functional form of the optimum bias. A
recently suggested approach [36] based on the waste-recycling estimator [37] effectively introduces
a bias that covers both peaks of the optimum bias, ().

Another way of realizing work biased path sampling of fast-switching trajectories for the compu-
tation of free energies was suggested by Sun [56,57]. In this approach, which can be viewed as a
thermodynamic integration procedure in path space, a parameter « is introduced into the

exponential average:

¢ PAF@) _ / Dar(t) Pla(t))e PV () (26)

The right-hand side defines, in effect, the generating function of the work distribution at the end of
the transformation. The free energy difference AL (a) defined by the above equation depends on
this parameter a. While for & = 0 one obtains AF (0) = 0 due to the normalization of the path
distribution, for v = 1 one recovers the original free energy difference AF(a) = AF. One can thus
compute AF by taking the derivative of AF (cv) with respect to v and then integrate over o from
zero to one [18,56,57]:

1 )
AF — / I BAF (@) @27
0 da
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The advantage of writing the free energy difference in this way is that the derivative of AF' (cv) with
respect to « yields a simple average over the work:

dAF(«)

do (W)a (28)

where the notation (- - - ), indicates a path average over the work weighted path ensemble:
P, [2(t)] o< Pla(t)]e PVl (29)

The work average (W), is not affected by the type of statistical errors that make the computation
of the exponential work average difficult, and it can be evaluated efficiently in a path sampling
simulation. By repeating such a calculation for different values of o and integrating the work average
numerically, one finally obtains the desired free energy difference. Furthermore, in this method, the
statistical errors are kept low by making sure that pathways with both dominant and typical work
values are sampled with sufficient frequency. This can be seen explicitly by noting that in the
work biased ensemble corresponding to a particular value of the bias parameter, «, the work, W,
is distributed according to P,(W) oc P(W)exp(—pfaW). Thus, by gradually changing « from
zero to one, one switches the work distribution from P(W) to P(WW) exp(—/SW), sweeping over all
important work values in the course of the thermodynamic integration procedure.

One can show that in the limit of infinitely short trajectories, Sun’s method reduces to
conventional thermodynamic integration. This result raises the question of which trajectory length
leads to the most efficient free energy calculations and, in particular, if work biased path sampling
algorithms perform better then conventional methods, such as thermodynamic integration or umbrella
sampling. Extensive calculations carried out for various models indicate [58,59] that work biased fast
switching path algorithms are generally less efficient than standard methods, such as thermodynamic
integration, thermodynamic perturbation or umbrella sampling. There are however cases, such as an
ideal gas compressed by a piston moving in a cylinder, where fast switching is advantageous [59].
In this particular case, the work distribution does not converge to a limiting form for increasing
switching speed, and the typical work values keep growing. As a consequence, the optimum
switching rate is finite in this case, even if an optimum work bias is applied [59].

7. Fast Switching with Large Time Steps

Molecular dynamics simulations are usually carried out with time steps that are a compromise
between accuracy (often assessed in terms of energy conservation) and computing speed. Small time
steps yield accurate trajectories with good energy conservation, but require a larger computational
effort, because the cost of a trajectory of a given length is proportional to the number of steps and,
hence, inversely proportional to the size of the time step. Larger time steps reduce the computing
time, but corrupt the accuracy, resulting in poor energy conservation. In general, using such
low-accuracy trajectories for free energy computations introduces a systematic error into the free
energy estimate. It is, however, possible to devise exact expressions akin to the Jarzynski equation
to compute free energy differences from crude trajectories calculated with large time steps [13,60].
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Using this approach, which is based on a generalization of the Jarzynski equation for phase space
mappings [61], can help to considerably increase the efficiency of fast switching simulations, due to
the reduced computational cost of the large time step trajectories.

As mentioned earlier, in the limit of instantaneous switching, the Jarzynski equation reduces to
the perturbation identity of Equation (6). Free energy computation methods relying on this equation
perform well if there is a large overlap between the ensembles A and B, corresponding to the control
parameters A4 and \pg, respectively. If, however, these ensembles strongly differ, the free energy
calculation converges poorly, because important contributions to the average are rarely sampled. To
remedy this situation, Jarzynski has devised the targeted free energy perturbation method [61] based
on a generalization of the Jarzynski equality. The basic ideas underlying this approach is to improve
the efficiency of the perturbative calculation by applying a mapping that transforms the equilibrium
ensemble A into an ensemble A’ that overlaps more strongly with ensemble B. The mapping ¢(x)
considered in this approach is required to be invertible and differentiable, but is arbitrary otherwise.
By starting from the definition of the free energy difference (Equation (3)) and carrying out a variable
transformation from z to 2’ = ¢(x), one can then show that:

e—ﬂAF _ <€—,6’W¢(ac)> (30)

where the “work” function is defined as:

9¢

ox

The last term in the work function results from the Jacobian of the transformation and vanishes for

qu(l‘) = H((b(x)’ >‘B) o H(l’, )‘A) — kgT'In 3D

phase space volume preserving maps. If the mapping is chosen to be the propagator of Newtonian
dynamics, Equation (30) reduces to the Jarzynski equation for isolated systems evolving at constant
energy. By using the inverse map, ¢!, with the corresponding work definition, one can also use this
mapping approach together with the Crooks fluctuation theorem.

Equation (30) suggests the following algorithm for free energy computation. One first samples
phase space points = from the equilibrium ensemble A. Then, to each of these points, one applies
the mapping and computes ;. Finally, the average of exp(—/SWy(x)) carried out over all points =
yields the free energy difference. Now, the efficiency of this method crucially depends on the ability
to devise appropriate mapping ¢(x). The closer the ensemble resulting from the transformation
resembles B, the higher is the efficiency. No general methods exists to derive ¢(z), but a well-chosen
mapping can substantially reduce the cost of a free energy computation.

One possible strategy to exploit Equation (30) consists in choosing a sequence of molecular
dynamics steps as phase space mapping. Each of these steps, designed to approximate the time
evolution of the system over a small interval At maps a phase point x; into the next phase point x;_
along the molecular dynamics trajectory. Hence, a sequence of n molecular dynamics steps may
also be considered as a phase space mapping that takes the initial point z( into the final point z,,.
The expression for the work W), is particularly simple for integrators, such as the Verlet algorithm,
that conserve phase space volume. Then, the Jacobian of the mapping is unity, and Equation (30)

turns into:
e PAF _ <€—5[H($n,AB)—H(x0,/\A)]> (32)
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Interestingly, this relation holds exactly independently of the size of the time step At used in the
integration algorithm. Hence, fast switching simulations can be carried out with large time steps,
producing only approximate trajectories. Nevertheless, the free energies obtained in this way are
in principle exact. Since trajectories computed with a large time step require a smaller number of
integration steps, such fast switching simulation holds the promise to improve the efficiency of the
free energy calculation. Whether this is indeed the case, depends on how the work distribution
changes due to the large time step. Calculations carried out for several model systems indicate
that while the molecular dynamics trajectories generated with large time steps are approximate,
they still reproduce the essential physics of the process, such that the work distributions are not
affected adversely. As a consequence, for optimum efficiency, time steps of fast switching free
energy computations can be increased up to the stability limit of the simulation. Note that this large
time step approach can be used also using integrators that do not conserve phase space volume [60],
but this unnecessarily complicate the simulations, because one has to keep track of the Jacobian while
computing the molecular dynamics trajectories.

The large time step formalism can also be used for the calculation of potentials of mean force [62].
In such a simulation, the work based reweighing of Equation (30) is applied at each stage of the time
evolution with a work function that accumulates along the trajectory. Fast switching simulations were
carried out for the force induced unfolding of a decalanine molecule [62]. The free energy profile
obtained for a time step of 3.2 fs, i.e., close to the stability limit, agrees well with that calculated
using a conservative time step of 0.5 fs. An efficiency analysis reveals that the optimum time step
for the unfolding simulations lies in the range 1-3 fs. It is interesting to note that the fast-switching
trajectories may show unphysical features, such as a redistribution from potential to kinetic energy,
due to the conserved shadow Hamiltonian belonging to the integrator used in the simulation [62].

Nevertheless, the obtained free energy profile is exact up to statistical errors.

8. Applications

Arguably the most important practical application of non-equilibrium work theorems has been
to experiments. Almost immediately after the connection between non-equilibrium single-molecule
pulling experiments and Jarzynski’s identity was rigorously established [7], experimental studies of
the folding and unfolding of nucleic acids using optical tweezers followed [8,63]. It is often difficult,
if not impossible, to conduct pulling experiments sufficiently slowly to maintain near-equilibrium
conditions. Nonetheless, the use of non-equilibrium free energy reconstruction has made it possible
to extract thermodynamic information.

Applications to pulling have been mirrored on the simulation side. Simulated pulling
methods mimicking experiments have been developed, initially to probe mechanical perturbations
on biomolecules [42-44]. Non-equilibrium pulling methods have been applied not only to
protein unfolding, but also to many other complex molecular processes, including ligand
dissociation [64—66] and channel translocation [67,68]. To analyze such “steered molecular
dynamics” simulations and extract PMFs, the stiff-spring approximation is widely used [46],
though Equation (22) offers a more accurate method using the same information [47] that produce
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results comparable to full histogram reweighting. In molecular simulations, non-equilibrium
methods tend to be less efficient than optimized equilibrium methods as a tool to calculate free
energies [18,58]. However, as discussed above, the optimization of non-equilibrium sampling
methods is an area of active research, in particular, using importance sampling methods involving
path reweighting [49,50,55-59] and nonlinear maps [69,70]. Moreover, non-equilibrium methods
can provide valuable insight into the mechanism underlying a process. By forcing the system through
a transition and monitoring the resulting bottlenecks [71], one may be able to devise improved
control variables that result in a smoother transition and improved sampling efficiency, both in
non-equilibrium and equilibrium simulations.

9. Conclusions and Outlook

The Jarzynski non-equilibrium work theorem and the Crooks fluctuation theorem are fundamental
exact relations that link the irreversible work carried out on a system during a non-equilibrium
transformation to the system’s equilibrium statistics. To date, the most significant application of these
relations lies in the interpretation of single-molecule pulling experiments, in which forces exerted by
atomic force microscopes or optical tweezers are used to probe the properties of individual molecules.
Due to technological limitations, such experiments are necessarily carried out at a finite pulling rate,
leading to non-equilibrium effects that cannot be neglected. The theorems of Jarzynski and Crooks
provide a practical tool for the interpretation of such single-molecule pulling experiments and permit
one to extract equilibrium information, such as potentials of mean force, from data obtained under
inherently non-equilibrium conditions [7-9,72].

From a computational point of view, the Jarzynski and Crooks theorems have provided a new
and powerful framework for the calculation of free energies using computer simulations. Apart
from putting earlier slow-growth free energy simulations on a firm theoretical footing, these results
have spawned the development of several new free energy algorithms based on non-equilibrium,
fast-switching trajectories.

Depending on the rate at which the system is driven away from equilibrium, fast switching free
energy computations can be plagued by large statistical errors. For strong driving, i.e., for large
switching rates, work distributions are broad, with typical work values by far exceeding the free
energy difference. As a consequence, the exponential work average of the Jarzynski equation is
dominated by a few rare contributions, leading to large statistical uncertainties and a bias in the
free energy estimate. Such errors can outweigh the computational advantage of running inexpensive
short trajectories rather than one single long trajectory [18,29,58]. In fact, it has been shown that
in the slow switching regime, one obtains more accurate results from few slow simulations than
from many faster ones [18]. Numerical simulations carried out for various model systems [58,59]
indicate that conventional free energy computation methods, such as thermodynamic integration or
free energy perturbation theory, are more efficient than fast switching simulations, even if work
biasing techniques are employed. Fast switching methods may, however, be advantageous for
systems in which the states of interest are connected by several distinct pathways. In such a case,
conventional methods may fail to sample all important transition routes while multiple fast switching



176

trajectories have the chance to probe all important pathways. Such a situation was indeed observed
for transitions between low-energy configurations of Lennard-Jones clusters [41], which could be
sampled successfully only with non-equilibrium path sampling, but not with other approaches.
Compared to standard methods, fast switching algorithms appeared on the scene only recently,
such that substantial improvements and new developments are to be expected [13,21,57,73-78].
It is worth noting that fast switching ideas have not only been applied to the calculation of free
energies, but have also been combined with existing sampling methods to enhance the efficiency of
the simulation. For instance, non-equilibrium switches have been used to improve the acceptance
probability of replica exchange simulations [79,80] and to generate trial configurations for Monte
Carlo simulations [81,82]. Conversely, waste-recycling Monte Carlo [37] can be adapted for the
calculation of free energies from non-equilibrium switching simulations [36].

One aspect of fast switching simulations that has not been fully exploited is the freedom in
choosing the transformation protocol. While the optimization of the time dependence of the driving
parameter has been the subject of previous numerical and analytical studies [23,24], the extension
of such optimizations to multiple control parameters is unexplored to date. The control parameter at
the start and the end of the transformation are given, but in between, additional parameters can be
subjected to a change as well, without affecting the validity of the relations that provide the basis for
fast switching simulation. As an early example, an external pressure has been heuristically adjusted
to maintain reasonable box sizes and prevent phase separation in a transformation between liquid
and ideal gas states [54]. Defining parameter spaces of higher dimension and determining optimum
parameter pathways in these spaces may offer efficient ways to control the work distribution and,
hence, reduce the computational cost of fast switching simulations.
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Abstract: In this review, we discuss the Dynamical approach to Non-Equilibrium
Molecular Dynamics (D-NEMD), which extends stationary NEMD to time-dependent
situations, be they responses or relaxations. Based on the original Onsager regression
hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald,
the approach permits one to separate the problem of dynamical evolution from the
problem of sampling the initial condition. D-NEMD provides the theoretical framework
to compute time-dependent macroscopic dynamical behaviors by averaging on a large
sample of non-equilibrium trajectories starting from an ensemble of initial conditions
generated from a suitable (equilibrium or non-equilibrium) distribution at time zero. We
also discuss how to generate a large class of initial distributions. The same approach
applies also to the calculation of the rate constants of activated processes. The range of
problems treatable by this method is illustrated by discussing applications to a few key
hydrodynamic processes (the “classical” flow under shear, the formation of convective
cells and the relaxation of an interface between two immiscible liquids).
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1. Introduction

The most widespread use of Molecular Dynamics (MD) [1,2], in the same spirit of Monte
Carlo (MC) [3.,4], is to compute the thermodynamic or statistical behavior of molecular systems at
equilibrium. This means that, starting from the assumption of the validity of the ergodic hypothesis,
dynamical (MD) or fictitious-time (MC) trajectories are used to sample the equilibrium distribution in
phase space (MD) or in configurational space (MC). “Time” averages over the generated trajectories
will thereafter provide the statistical properties of the system.

At variance with Monte Carlo, the dynamical approach of Molecular Dynamics can be directly
extended to sample distributions corresponding to stationary non-equilibrium conditions, where there
exists a stationary distribution but, at variance with equilibrium, its expression is not explicitly
known. However, the statistical problem of sampling a time-dependent ensemble cannot be solved
by generating states along a single dynamical non-equilibrium trajectory, as long as time cannot be
taken as homogeneous and averages over time make no sense.

Generally, to compute macroscopic dynamical behaviors, as, e.g., in hydrodynamics, the
assumption of time-scale separation is made and rigorous ensemble averages are substituted with
short-time averages equivalent to local smoothing. This may not be the case, sometimes. Moreover,
the statistical error implied by this procedure cannot be made as small as desirable and possible.
These difficulties can be faced and solved.

In the nineteen-thirties, Lars Onsager [S5] observed that an induced (non-equilibrium) relaxation
towards equilibrium could be obtained by studying the regression of the corresponding spontaneous
fluctuations at equilibrium. Later, in the nineteen-fifties, Kubo [6] provided a mathematical
formulation of Onsager’s ideas by showing how the (linear) response of a system, initially at
equilibrium, to a time-dependent (external) physical perturbation could be obtained by convoluting
it with an appropriate equilibrium time-correlation function [7-9]. Kubo also derived the formal
expression for the complete (linear and nonlinear) response.

In the case of Kubo’s procedure one does not need to make reference to an initial equilibrium
state, but can, rather, refer to an arbitrary initial distribution at time ¢y = 0 of the system. This result
has an important consequence for Molecular Dynamics simulations, since it allows one to separate
the problem of dynamical evolution from the problem of sampling the initial condition.

Starting from the mid-nineteen-seventies, the direct numerical simulation of the response
was used in conjunction with a sample of initial conditions extracted from an equilibrium
trajectory [10,11]. In this context, the problem of achieving a reasonable signal-to-noise ratio,
even for weak perturbations, was solved for short times by introducing the so-called subtraction
technique [12], which permitted one to verify, with surprising results [13], the range of the validity
of linearity.

Some time later on, it was realized that the same approach could be used to calculate dynamical
properties for rare events (e.g., transmission coefficients) by averaging the dynamical response over
time-dependent trajectories started from initial conditions sampled from a constrained/conditional

equilibrium ensemble [14-18].
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Quite recently, finally, the idea of creating a large sample of non-equilibrium trajectories starting
from a given initial distribution has been extended to cover whatever distribution that can be sampled
starting from an equilibrium or a non-equilibrium, but stationary, dynamics. In particular stationary
non-equilibrium ensembles can be generated by suitably restraining standard MD simulations.

In particular, we will illustrate the approach by reporting the results of a study of the
time evolution of classical fields, including the onset of convective cells and the relaxation of
hydrodynamic interfaces in simple liquids. In this context, we will also briefly address a conceptual
difficulty of the approach, due to the possible existence of more than one macroscopic state associated
with specific perturbations. In particular cases the problem can be circumvented.

The structure of the paper is as follows. In Section 2 we derive the general framework and specify
the possible forms for the initial ensemble. In Section 3 we present a few successful applications of

the method. Finally, in Section 4 we try to assess the situation and sketch an outlook.
2. Dynamical Approach to Non-Equilibrium: Theoretical Background

2.1. General Formulation

We start considering, in a very general way, a (classical) dynamical system with n degrees of
freedom, whose time evolution is described by a set of first order differential equations in a phase
space of dimension 2n. We will refer to the phase space variables in a collective way with the
vector formalism [' = {q1,p1,9, P2, -, Gn, P}, Where the ¢’s and the p’s reduce to the usual
coordinate-momentum pairs for Hamiltonian dynamics. The equations of motion can be written
in the compact form

Fj - Fj(fé t) = 1%j (91,1, 42,02, - - Gy P t) . G =1,2,....2n (1

The above equations could be the usual Hamiltonian equations of motion for an isolated system of
N particles [19], contain a number of holonomic constraints [20] or represent the more general case
of an “extended” system, possibly non-Hamiltonian [21,22], including couplings of the system to a
thermal and/or pressure bath by means of a few extra degrees of freedom, so that, in general, n > 3N
(see, also, [23]). We will only assume that the dynamics described by Equation (1) are ergodic,
i.e., if we wait long enough, all regions of the phase space available to the system, in accord with
the imposed conditions, will be explored by the dynamic evolution. With this in mind, the statistical
mechanics description of the system requires the introduction of the invariant measure d,u(f, d*'T') in

phase space [23]. We start by introducing the generator of time translations in terms of the Liouville

Operator, ;CA
. 2n ) a n a n a
Tot) = SO0 (Fet) - -2 = S G(Te 1) - — 5 (T 1) - —— 2

so that the equations of motion can be rephrased in the operator form and formally solved. As

the Liouville operator depends explicitly on time, integrating Equation (2) from some initial time
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o to time ¢, one obtains an implicit integral equation that can be solved by iteration for each
j=12....2n

DL(t) = T, (to) + / s (1)) T t0) + /t:dsl /t dsa (1£(s0)) (1)) yte) + -~ @

to

The results can be expressed in closed “operatorial” form
0;(t) = LWOT;(t) —  T;(t) = S(t,to)Ti(te), j=1,2,...,2n (4)

with the introduction of the evolution operator
A A t A
S(t,tg) =T exp [/ 1L(S) ds] Q)
to

where 7' is the time-ordering operator.
Time evolution in phase space can be alternatively expressed in term of the Jacobian
J (f(t), f(t0)> of the time transformation from ['(to) to ['(¢). The phase space element d2"T'()

at time ¢, transforms into the volume element d*"T'(t) = J (f(t), f(to)) d?"T(ty) at time ¢, where
J = det J obeys the differential equation [23]

dJ (F(ZF(%)) — (F():t) T (f(t)j(to)) (6)

and the phase space compressibility & is defined by

R = o0 Ty(T51) (7)

For a Hamiltonian system the compressibility & vanishes, .J (f(t), f(t0)> = 1 and the dynamics
preserves volume in phase space (Liouville Theorem). More generally, when # does not vanish, d>"T’
is no longer a dynamical invariant and one needs to introduce a metric factor to define the invariant
measure of the phase space under the dynamical evolution. Starting from the general expression for
the Jacobian determinant, one gets

—

Z(T(to): to)
t

Z(L(to); to) g
ZE(0):0) ©
)

¢ = —
J (f(t),f(t@) = exp {/ /%(f(s), S)ds] — pw(I(®)t)—w(I(to)sto) —
to

—

where w is the indefinite time integral of x and Z(I'(t);t) = exp [—w(f(t);t . The dynamically

invariant volume element in phase space can be defined as

—

dp <f(t),d2”F> - Z(f(t);t)d%r(t):Z(F(t);t)J(f(t);f(to)) &2 (to)
d

= Z(T(to); to)d*" T (to) = dp (T (to), d*'T (to) )
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Consider, now, an ensemble of systems whose dynamical evolution is defined by Equation (1).
The statistical mechanics is described by the time-dependent probability distribution function in
phase space f (f; t) which must obey the global conservation law for probabilities

/ du(T, T f (T 1) = 1

The corresponding local, differential, conservation law can be derived by transforming the integral
back to the phase space element d*"I', by using

F(Tt)dp (f, dQ”F) = [T 0)Z(T0)d™'T = p(T5; t)d™T (10)

and introducing the phase space density p(I'; t)y =7 (f; t)f (f; t). The continuity equation to be
satisfied is

ap” iar ( (Ft))zo (11)

which when expressed in terms of the Liouville operator £ and the phase space compressibility &

becomes the “generalized” Liouville equation

ap(al;; b, [zﬁ(f; t) + &(T; t)} p(T51) =0 (12)

and reduces to the more “familiar” equation for the probability density f (f; t)

of(L;t)
ot

However, we must point out that this last equation may lead to confusion if one does not keep in

L f(Tit) = 0 (13)

mind that, while the Liouville operator L defines the dynamical evolution of the time-dependent
probability density in phase space f, the not-vanishing compressibility <, hidden in the phase space
invariant volume, defines the time evolution of the phase space volume d*"I".

The solution of Equation (12) can be retrieved along the same lines followed for Equation (2) and

the results can be formally written in closed “operatorial” form

—

p(T:t) = STt t0)p(Tsto),  ST(t,to) = T exp { / - (zﬁ(s) + /%(s)) ds} (14)

to

where we have introduced the adjoint S T(t,t) of the previously defined time evolution operator

S(t,to) acting on the phase space variables [' and the phase density p, = p(T'; ) at the initial

time ¢.
The average over the (non-)equilibrium ensemble of a physical observable O = (F)>t of,
more generally, of a macroscopic field O(Z,t) = (O(Z,T)), = <Z o > (the sum is

over the particles) can be defined as
o) =[O sEt)du(E.am) = [ OF) Ty (1)

O@F,1) - / O(F,T) (T 1) du(F, T = / O, T p(Fs 1) T (16)



187

We can make the time evolution explicit by means of the adjoint time evolution operator
p(T;t) = ST(t,to)p(T; ty) and then, by taking advantage of the fact that ST is the adjoint of the
dynamics, we can transfer the effect of time evolution to the physical observables

o) = [0 8 tta)o(Tsto)'T = [ (S(t.t0)0()) p(Fito)i"T

= / O(T;t) p(Tite)d®™ T = O(t) = (O(Tst) ), (17)

~ ~

O 1) = / O(&,T) §'(t, to)p(T; to)d™T = / (S(t:1)0(, 1)) p(Tsto)2T
T5t) Y (18)

where O(T';t) = S(t,ty) O(T), i.e., the time evolution along the dynamical trajectory of the system
starting from the initial condition f(to) at time tyo. We have introduced the shorthand notation,
(-++)po- for the averages over the ensemble described by the space density p, at the initial time .

Despite the apparent complexity of the time evolution operator S (t,to) in Equation (5), its action
is a task that can be simply accomplished by MD, i.e., by the numerical integration of the evolution
defined by Equation (1). Note that all this is possible thanks to the fact that the Liouville equation
can be integrated by the method of characteristics.

In the following, we will deal with fluid systems where the relevant macroscopic fields are [24]
the density field o(Z, t), the velocity field v(Z, t) and the temperature field T'(z, ¢):

N
o(Z,t) = / > myo (f_éj) St to)p(T: to) d*"T

j=1

= < i myd (7= By(0)) > (19)

1 N L
= 3 t)<z ()8 (7 - j(t))> (20)

[13] — m;V(Z, t)} 2 5 (f _ ﬁj.) gT(t’ to)p(f; to) d*"T

N Q(; ; < S [B @ —myitan)] 5 (- ) > @1

where NNV is the number of particles and the factor f, usually equal to 3N, counts the number of
degrees of freedom in the presence of constraints.
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2.2. Ensembles at t,

Equations (17) and (18) express what we like to call the Onsager—Kubo relations and state that we
can obtain the time evolution of a macroscopic observable or of a macroscopic field as the average of
the time evolved corresponding microscopic expression over the initial-time-ensemble described by
the phase space density py = p(f; to)-

If the ensemble at the initial time ¢y can be simulated by a dynamical system in stationary
conditions, then such a probability density function can be sampled by MD, generating a set of
(possibly independent) phase space points distributed according to py. From each of these points,
one can then start an independent dynamical trajectory along which the observables O(f, t) and
O(f, f; t) can be computed. Finally, by averaging over all the trajectories, the values of the involved
observables at time ¢, one can obtain the macroscopic time-dependent behavior of the system as
visualized in Figure 1.

In order to use MD to sample the appropriate initial ensemble at time ¢, one needs to define, for
any specific problem, the dynamical evolution, Equation (1), and the auxiliary conditions to which
the systems is subjected. Sometimes, but not always, this will be possible within the Hamiltonian

formulation of the dynamics.

Figure 1. Phase space representation of the ensemble of dynamical side-trajectories pro-
viding the non-equilibrium statistical averages: in blue, the Molecular Dynamics (MD)
trajectory sampling the ensemble at time ?(; in black, the individual non-equilibrium
trajectories sampling the Non-Equilibrium Molecular Dynamics (D-NEMD) ensemble,
over which one can average the time behavior of the observable O, as a function of the

time .

3. D-NEMD Selected Applications

We will now list a number of cases, which will later be illustrated with the corresponding
application. Transport properties, like viscosity, thermal conductivity, efc., have been computed and
their linearity range investigated by non-equilibrium MD since the 1970s [10-12,25-34]. These
results were obtained by measuring on a computer the mechanical response when switching on
the external (at the beginning Hamiltonian and later on, more generally, also non-Hamiltonian)
perturbation applied to a model system initially at equilibrium. In other words, we identify in the
present case the ensemble at time ¢, with the statistical mechanics equilibrium ensemble, while the
dynamical trajectories are carried out under the influence of an external (time-dependent) force field.
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More generally, we can generate (and sample) initial ensembles by less trivial procedures, e.g.,
in the case of the formation of convective cells, gravity is considered as the external perturbation
to be applied on a system initially in a steady state under the effect of a thermal gradient. The
ensemble at time ¢, no longer corresponds to the equilibrium one, but it is set up by introducing a
stationary boundary perturbation which, in the specific case, is just an ad hoc boundary condition,
which models a thermal wall stochastically. Moreover, a confining wall, present in the form of an
external field acting at the boundary on each particle, confines the system in the simulation box. This
boundary condition is perfectly compatible with the presence of a gravity field.

Another possible case we will consider is the relaxation to equilibrium of an interface between
two immiscible liquids, starting from an imposed, non-equilibrium, condition in which the curvature
of the interface is maintained by a macroscopic restraint fixing the shape of the initial interface. The
ensemble at time ¢ is described by a conditional probability density in which an ad hoc restraint
is imposed on a field-like observable. The sample is generated by using an advanced MD sampling
technique, where the dynamical trajectory evolves under the effect of a suitable restraining potential,
from which we can extract an unbiased sample of the conditional probability density function.
Time-dependent averages are then taken over dynamical trajectories generated according to the
un-restrained dynamics of the systems. The different situations described are summarized in Figure 2.

Figure 2. We distinguish three different classes for the sampling of the initial
distribution: equilibrium, direct stationary non-equilibrium simulations and advanced
conditional sampling. They are shown to be associated with the corresponding sampling
techniques and test-case applications.

=
P (Fa tO)
by MD (or MC)
Direct Equilibrium Advanced Sampling
(stationary fields, (Temperature- (Conditional
boundary cond.s,...) Pressure baths) Probabilities)
Non-Equilibrium Standafrd Restraint MD(MC)
: practice from
stationary MD the 70s (Bluemoon Ensemble)
Convective Transport Interface
Cells Properties Relaxation

3.1. Transport and Linear Response

Linear Response Theory is a nice result of the nineteen-fifties in the theory of irreversible
processes [6], where well-defined microscopic expressions for all transport coefficients have been
derived in terms of a properly chosen perturbation [7,8,35,36]. In the Dynamical approach to
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Non-Equilibrium Molecular Dynamics (D-NEMD) framework it has been possible to investigate the
linear and, more generally, the non-linear response by making reference to the canonical ensemble
for sampling the initial conditions at time %.

3.1.1. Hamiltonian Perturbations

For a system of particles in three dimensions described by the usual set of Cartesian coordinates
and momenta, {ﬁj, f’j, j =1,2,...}, the perturbation can be put in Hamiltonian form by choosing
a physical property A(Z \f) =2 Aj(f)é (% — é]) that describes the coupling of the system to the
applied external local field ¢ (%, t) = (&) x(t), whose time-dependent intensity x(¢) can be constant
or periodic or even arbitrary, generating corresponding flux conditions. Especially important are the
cases in which the perturbation is either a step function 6(t — o) (0(t > to) =1, 6(t < to) =0) or
a Dirac delta impulse (¢ — ty), at t = to, after which the system is left free to relax. In the linear
regime, the general response can be computed as the superposition of these impulsive responses.
One then derives the equations of motion using the standard Hamiltonian route, where we start by
separating in the Hamiltonian (T, t) = H(T') 4+ H,,(T, ) the time-dependent perturbation term

Hy(t) = — / AFA(E|T) (7 1) = = (Z Améj)) x(t) = =hyx(®) (22)

where the Hamiltonian H, is the equilibrium Hamiltonian to which one can possibly add the coupling
to a thermostat or a barostat, something that can be done in a variety of ways that we do not need to
specify here. Indicating generically the possible presence of such couplings to different baths with

ellipses, the equations of motion for particle j can be written

., OHy OH P; oh
Ry = +—=+ ”—(—W---)——fx(t)

oP;,  opP,  \'my oP,
= 6%0 OH — oh
’ OR;, OR, ( ’ ) aRjX< )

The structure of the equations of motion can be broken into the two terms of the Liouville operator
defined in Equation (2), 1.£(L; ) = 1Lo(T)+1.L,(T'; ), with the partial Liouville operator £, defining
the dynamical evolution in phase space for the sampling of the ensemble at time ¢,. Accordingly, the
corresponding evolution operator for the stationary dynamics will be called S’O(t). The dynamics
of the time-dependent trajectories will be generated by the ty-(time dependent) evolution operator

~

S(t, to), obeying the (usual) Dyson equation

t

S(t,to) = So(t) +/ So(t — s)1L,(s)S(s,to) ds (24)
to

which (if of interest) can be taken as the basis to develop the perturbative approach, whose first

term leads to the Linear Response Theory approach. However, in many cases of interest, for

example for constrained systems with a Hamiltonian or non-Hamiltonian structure, it becomes very

difficult, if not impossible, to carry out the standard manipulations leading to the correlation function
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expressions for the linear response [17,18]. Nevertheless, a linear (or non-linear) response can always
be computationally investigated using the procedure defined by Equations (17) and (18), as outlined
in Figure 1.

3.1.2. Non-Hamiltonian Perturbations

A more general scheme has also been used for bulk perturbations, where the new equations of
motion, which cannot be derived from a time-dependent Hamiltonian in a way that remains consistent
with applied (periodic) boundary conditions, are obtained from Equation (23) by substituting the
terms derived from the Hamiltonian perturbation h,,, with two sets of “ad hoc” phase space functions

—

{C,(T), Dy(T), j=1,2,...}:

i - <ﬁ+--->+cj<f>-x<t>
Bio= (Bt )+ D0 -x) ©5)

A specific, notable, example is the one known under the name of “SLLOD tensor” dynamics [37],
where C; x(t) = —(R; -£) x(t) and D; x(t) = (P; - k) X (t) are coupled with specific, synchronized,
Lees—Edwards periodic boundary conditions [38] (see Figure 3), which are needed to establish the
tensor r expressing the desired velocity gradient in the non-equilibrium simulation of viscous flows
by molecular dynamics [39-42].

Figure 3. The Lees—Edwards periodic boundary conditions (Panel A) used to establish
a stationary Couette flow (Panel B). In the case of a step function perturbation, periodic
images above and below the reference MD cell are translated by an amount +vdt at
each time step, starting from time ¢y. Periodic boundary conditions can be effectively
imposed using the equivalent non-orthogonal reference cell, highlighted in red (the actual
inclination increases uniformly with time).

Yy vdt
— y ’
° ] . ° . [ X = %
AR Y AL (A) ¢ (B)
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In the typical setup for a planar Couette flow, one establishes a gradient of the z-component of
the velocity along the y-axis of the simulation and measures the response using as an observable the
xy component of the pressure tensor o,,,, which can be written, for a system where the potential U is

given by a sum of pair interactions, as

1

V

(26)

Ozy =

() BY)
S () o
m; Y ORY

j 1<j

where ]:?Z»j = (fiz — ﬁj) In the D-NEMD approach, if the external field term is switched on with
a step function perturbation in time at ¢ = ¢y = 0, one can measure the viscous time-dependent
response 7)(t) = —(0.y(t)),, /7, where 7 is the applied shear rate and the asymptotic value 7 at long
times of 7(t) gives the viscosity of the fluid.

For the purpose of illustrating the method in the original applications, when the ensemble at
the initial time ¢, is an equilibrium ensemble, we will restrict ourselves to the simple case of shear
(Couette) flow. We would like to mention, however, that also elongational flows [41,43—-46] and,
later on, mixed shear-elongational flows [47-49] have been simulated both in atomic and molecular
fluids. In these cases, it becomes technically much more difficult to maintain for an indefinite length

of time the periodic boundary conditions and, for that, we refer the interested reader to [50,51].

Figure 4. Panel (A). Comparison of shear viscosity values as a function of the shear rate
for the planar Couette flow: (a) D-NEMD asymptotic values from Reference [52]; (b) and
(c) average values from stationary non-equilibrium calculations from Reference [54] and
Reference [55] respectively. The solid line is the Lorentzian best-fit to the data and the
dashed line is the Ree-Eyring-Eu prediction [56]; Panel (B). The running-time integral
(solid line) of the D-NEMD viscous dynamical response to a (¢ — t,) perturbation with
v = 1074, averaged over 4000 trajectories versus the running-time integral (dashed line)
of the stress autocorrelation function shows the agreement of D-NEMD results with the
Green-Kubo linear reponse theory [52]. The error bars, extrapolated using the mean
square fluctuations over the 4000 trajectories, increase with time restricting the time
range over which the response can be computed. (nb: the same kind of time dependent
behavior for 7(t) is observed directly when using a step function perturbation).
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In Panel (A) of Figure 4, we show the results of a calculation [52] with a step function perturbation
on a Lennard—Jones (LJ) fluid at the triple point, ¢ = 0.8442 and kg7, = 0.725 in reduced LJ
units, i.e., € for energy, o for distances and the particle mass m for masses. The temperature of
a system of 2,048 particles was controlled using a Nosé—Hoover thermostat [22], both on the long
equilibrium trajectory, which samples the (independent) initial conditions from a canonical ensemble
at temperature 7, and on the non-equilibrium trajectories to handle the heat produced, especially
at high shear rates. The behavior of the time-dependent viscous response for the case of a tg = 0
impulsive perturbation with a §(t — ) term was used to investigate the range of validity of the
Linear Response Theory for very small shear rates by comparison with the running time integral of
the corresponding stress autocorrelation at equilibrium [53].

3.2. Non-Equilibrium (Steady State) Initial Conditions at Time t

The D-NEMD approach can be used also to follow the transient evolution of a system, which,
starting from an out-of-equilibrium state under the effect of a stationary thermodynamic field, reaches
a final (different) non-equilibrium state in response to an additional external perturbation. Below, we
illustrate the approach with a case worked out in [57]. This is the case of the build up of a convective
roll in a two-dimensional (2D) model fluid kept in an out-of-equilibrium condition by the presence
of a thermal gradient when an external gravity field is (instantaneously) switched on.

The 2D system is composed of NV = 5,401 identical particles in a square box of size L in the xz
plane with periodic boundary conditions along the x direction and a pair of confining walls along z
obtained by means of an external field ¢)(z), acting at the top and the bottom of the simulation box
to avoid the drifting away of the particles, which interact with each other via a purely repulsive (2D)
Weeks—Chandler—Andersen (WCA) [58] pair potential obtained by trun