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1. Introduction

1.1 Textbooks

Therearea numbera textbooksto be recommendedor thosewho wish to studymolecular
spectroscopy; the best ones are:

1)The series of books by Gerhard Herzberg

Molecular Spectra and Molecular Structure

I. Spectra of Diatomic Molecules

II. Infrared and Raman Spectroscopy of Polyatomic Molecules
[ll. Electronic Spectra of Polyatomic Molecules

2)Peter F. Bernath
Spectra of Atoms and Molecules

3)Philip R. Bunker and Per Jensen
Molecular Symmetry and Spectroscopy, 2nd edition

4)Helene Lefebvre-Brion and Robert W. Field
Perturbations in the Spectra of Diatomic Molecules

A recent very good book is that of:
5) John Brown and Alan Carrington
Rotational Spectroscopy of Diatomic Molecules

1.2 Some general remarks on the spectra of molecules

Molecules are different from atoms:

- Apart from electronictransitions alwaysassociateavith the spectraof atoms,alsopurely
vibrational or rotationaltransitionscan occur. Thesetransitionsare relatedto radiationby
multipole momentssimilar to the caseof atoms.While in atomsa redistributionof the elec-
tronic chargeoccursin a moleculethe transitioncanoccurthrougha permanentlipole mo-
ment related to the charges of the nuclei.

- Superimposedn the spectralinesrelatedto electronictransitions thereis alwaysa rovi-
brationalstructure thatmakesthe molecularspectramuchricher.In the caseof polyatomics
threedifferentmomentof inertiagive riseto rotationalspectrain diatomicsonly asinglero-
tationalcomponentEachmoleculehas3n-6 vibrationaldegreesf freedomwheren is the
number of atoms.

- Atomscanionizeandionizationcontinuaarecontinuougjuantunstateghatneedo becon-
sideredIn moleculesjn addition,therearecontinuumstatesassociateavith thedissociation
of themolecule Boundstatesancouple throughsomeinteraction to thecontinuaasaresult
of which they (pre)-dissociate.



1.3 Some examples of Molecular Spectra

Thefirst spectrum isthat of iodine vapour. It shows resolved vibrational bands, recorded by
the classical photographic technique, in the so-called B3Mg,* - xlzg+ system observed in
absorption; the light features signify intense absorption. The discrete lines are the resolved
vibrationsin the excited state going over to the dissociative continuum at point C. Leftward
of point C the spectrum looks like a continuum but this is an effect of the poor resolution.
This spectrum demonstrates that indeed absorption is possible (in this case strong) to the
continuum quantum state.
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Fia. 15. Absorption Spectruims of [» Vapor. The arrow denoted by C in-
dicates the position of the convergence limit of the bands, where a continuous
absorption joins on.

L ater the absorption spectrum was reinvestigated by Fourier-transform spectroscopy result-
ing in the important iodine-atlas covering the range 500-800 nm. There is severa linesin
each cm™ interval and the numbers are well-documented and often used as a reference for
wavelength calibration. Note that the resolution is determined by two effects: (1) Doppler
broadening and (2) unresolved hyperfine structure. The figure shows only asmall part of the
iodine atlas of Gerstenkorn and Luc.
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The hyperfine structure can be resolved when Doppler-free laser spectroscopic techniques are
invoked. The following spectrum is recorded with saturation spectroscopy. A single rotational
line of a certain band is shown to consist of 21 hyperfine components. These are related to the
angular momentum of the two 1=5/2 nuclei in the |, molecule.
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Usually molecular spectra appear as regular progressions of lines. In the vibrational bands of
diatomic molecules the rotational lines are in first order at equal separation. If a quantum state
is perturbed that may be clearly visible in the spectrum. This is demonstrated in the spectra of
two bands of the SiO molecule in the H1Z*- X*=* system. The upper spectrum pertains to the
(0,0) band and is unperturbed; the lower one of the (1,0) band clearly shown perturbation of the

rotational structure.
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Fig. 1.7 A comparisonof the S0 H'E — X'X 0,0 (top) and 1,0 (bottom | bands. The 0,0 band at 1435 A is perturbation-free, but perturbations in the
1 level of the H'E state cause the 1,0 band at 1413 A to be shattered. (Courtesy . Renhorn.



2. Energy levelsin molecules; the quantum structure

2.1. The Born-Oppenheimer approximation

The Hamiltonian for a system of nuclei and electrons can be written as:

= ZmZD DA+V(RF)

wherethesummation refersto theelectronsandA to thenuclei. Thefirst termontheright
correspondso the kinetic energyof the electronsthe secondermto the kinetic energyof
the nucleiandthe third termto the Coulombenergy,dueto the electrostatiattractionand
repulsion between the electrons and nuclei. The potential energy term is equal to:
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The negativetermsrepresenattraction while the positivetermsrepresenCoulomb-repul-
sion. Notethatatreatmentwith this Hamiltoniangivesa non-relativisticdescriptionof the
molecule, in which also all spin-effects have been ignored.

Now assumehatthe wavefunction of the entiremolecularsystemis separablendcan
be written as:

meol (?i,ﬁA) = L|Je|(?i ’ﬁ)Xnuc(a)

wherey representtgheelectronicwavefunctionandy,, . thewavefunctionof thenuclear
motion.In this descriptionit is assumedhatthe electronicwavefunctioncanbe calculated
for a particular nuclear distan&e Then:

2 2
Di llJeIXnuc = XnucDi llJeI

2 2 2
DAl'l"elxnuc = ll"el DAXnuc + 2(DAtl"eI)(DAXnuc) + XnucDAqJel

TheBorn-Oppenheimeaspproximatiomow entailsthatthederivativeof theelectroniovave
functionwith respecto the nuclearcoordinatess small,so [,y is negligibly small.In

wordsthis meanghatthe nucleicanbe consideredtationaryandthe electronsadapttheir
positionsinstantaneouslyo the potentialfield of the nuclei. Thejustificationfor this origi-

natedn thefactthatthemassf theelectronss severathousandimessmallerthanthemass
of the nuclei. Indeedthe BO-approximatioris the leastappropriatefor the light H,-mole-
cule.

If we insert the separable wave function in the wave equation:

HY = EY
then it follows:
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The wave equation for the electronic part can be written separately and solved:

2 2 2
h

O 2
B_E_ZDI Z4T[£0r ;4.“.80 M Al I:LIJe|(?I1R) - Ee|(R)l.|Je|(?|,R)

for eachvalueof R. Theresultingelectronicenergycanthenbeinsertedin the waveequation
describing the nuclear motion:

Z,\Zg€

D_ ZZM m D(nuc(R) + EeI(R)Xnuc(R) - Etotalxnuc(R)
We havenowin acertainsensdwo separat@roblemselatedto two waveequationsThefi rst
relatesto the electronicpart, wherethe goalis to find the electronicwavefunction (fi:R)
andanenergyE (R) . This energyis relatedto the electronicstructureof the moleculeanalo-
gouslyto thatof atoms Notethatherewe dealwith an(infinite) seriesof energylevels,aground
stateandexcitedstatesdependenbntheconfigurationof all electronsBy searchingheeigen
valuesof the electronicwaveequationfor eachvalueof R we find a functionfor the electronic
energy, rather than a single value.

Solution of the nuclear part then gives the eigen funclxqgg(R) and eigen energies:

9
Enuc = Etotal _EeI(R) = Evib+ Erot

In the BO-approximatiorthenucleiaretreatedasbeinginfinitely heavy.As aconsequencthe
possiblasotopicspeciegHCl andDCI) havethesamepotentialin theBO-picture Also all cou-
plings between electronic and rotational motion is neglectedXedgubling).

2.2. Potential energy curves

The electrostatic repulsion between the positively charged nuclei:

2
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9
V(R
n(R) = Z 54TEg|R, — Ry
is a function of theinternucleardistance(s)ust asthe electronicenergy.Thesetwo termscan
be taken together in a single function representing the potential energy of the nuclear motion:

V(R) = V,,(R) + E4(R)



In the caseof a diatomthe vector-charactecanbe removedihereis only a singleinternu-
clear distance between two atomic nuclei.

In the figure belowa few potentialenergycurvesaredisplayed for groundandexcited
states. Note that:

- atsmallinternucleasseparatiortheenergyis alwayslarge,dueto theedominantrole of
the nuclear repulsion

- it is not always so that de electronic ground state corresponds to a bound state

- electronically excited states can be bound.

Electronictransitionscantakeplace justasin theatom,if theelectronicconfigurationin the
moleculechangeslin that casethereis a transitionform one potentialenergycurvein the
moleculeto anothempotentialenergycurve.Suchatransitionis accompaniedby absorption
or emissiorof radiation;it doesnot makea differencewhetheror notthestateis bound.The
binding (chemical binding) refers to the motion of the nuclei.

2.3. Rotational motion in a diatomic molecule

Staringpointis dewaveequationfor the nucleammotionin de Born-Oppenheimeapproxi-
mation:
ﬁ2 > > >
|:_ EﬁAa + V(R)}Xnuc(R) = EXnuc( R)
where justasin thecaseof thehydrogeratomtheproblemis transferredo oneof areduced
mass. Note that represents now the reduced mass of the nuclear motion:

M A'vI B
M, + Mg
Beforesearchingor solutionsit is interestingto considerthe similarity betweerthis wave
equationandthatof the hydrogenatom.If a 1/R potentialis insertedthenthe solutions(ei-

genvglueslndeigenfunctions))f the hydrogenatomwould follow. Only thewavefunction
Xnuc(R) hasadifferentmeaningit representshe motionof the nucleiin adiatomicmole-

M=



cule.In generalwe do not know the preciseform of the potentialfunctionV(R) andalsoit is
not infinitely deep as in the hydrogen atom.

Analogouslyto thetreatmenbf thehydrogeratomwe canproceedy writing the Laplacian
in spherical coordinates:

_10gpedqn, 2 0ne00, 1 9
R ZaR aRD Rsmeae GGD Rsmea(p

A

Now a vector-operatdd can be defined with the properties of an angular momentum:
6 D _ 00
|h§/a |h%§|n% + cotecosrpw]

= |h%a 6 D = |h% coscp)—+ cotesmcp(%g

g
“'h%a yaxD 30

The Laplacian can then be written as:

A, = iziEQZ 9 0 N
R R2OROORD 422
The Hamiltonian can then be reduced to:
7% 920 O, 1 , N
{ 2uR%IR R0 2R }Xnuc(R) = EXpuc(R)

Becausehis potentialis only afunctionof internucleaseparatiorR, theonly operatomith an-
gulardependences the angularmomenturer, analogouslyto L2 in the hydrogenatom.The
angular dependent part can again be separated and we know the solutions:

2
NN, MO= #2N(N+1)|N, MO with N =012 3 etc
N,IN, MO= #MIN, MO with M=-N-N+1, N

Theeigenfunctiongor theseparatedngulampartarethusrepresentetly thewell-knownspher-
ical harmonics:

IN, MO="Y\m(8, @)

and the wave function for the molecular Hamiltonian:

Xnue(R) = O(R)Y (6, ©)

Inserting this function gives us an equation for the radial part:
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2
[_ ;ﬁ—R—ZdiRaqzdiRE+ N(N + 1) +V(R)}D(R) = Enb(R)
u

Now the wave equation has no partial derivatives, only one vafablgeft.

2.4. Therigid rotor

Now assumehatthe moleculeconsistsof two atomsrigidly connectedo eachother.That
meansthat the internuclearseparatiorremainsconstante.g. at a value R.. Sincethe zero

pointof apotentialenergycanbearbitrarily choserwe chooseV(R.)=0. Thewaveequation
reduces to:

1 =2 - RN
2N Xnuc(Re) = ErotXnuc(Re)
2uR,

The eigenvalues follow immediately:
2
En = f SN(N+1) = BN(N+1)
2uR,

whereB is definedastherotational constant. Hencea ladderof rotationalenergylevelsap-
pearsin adiatom.Notethatthe separatiorbetweerthelevelsis not constantputincreases
with the rotational quantum numbEr

ForanHCI moleculetheinternucleaseparations R,=0.129nm; this follows from theanal-
ysis of energy levels. Deduce that the rotational constants 10:34 cm

= N

8

>
oRN W A

This analysis gives also the isotopic scaling for the rotational levels of an isotope:

BO 1
Il
2.5 Theelastic rotor; centrifugal distortion

In anelasticrotor R is no longerconstanbut increasesith increasingamountof rotation
asaresultof centrifugalforces.This effectis knownascentrifugal distortion. An estimate
of this effectcanbe obtainedirom a simpleclassicalpicture.As the moleculestretcheghe
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centrifugalforce F, is, at somenew equilibriumdistanceRy’, balanceduy the elasticbinding
forceF, which is harmonic. The centripetal and elastic forces are:

2

F, = pw’R, O
MRy

By equating=.=F ¢ and by assumin®,' = R, it follows:

- Fe= k(RS =Ry

Now useR. for the aboveequationsandexpandinghe first term of the energyexpressiorit
follows:

2 2 2 4 2 4
U I
E—ND]-"'ND'}N DN N

— +
2uR’0 pkrRID 2p%kRE 2uR? 2u%kRS

The quargummechanicaHamiItonianis obtainedby replacingN by the quantummechanical
operatorN . It is clearthatthe sphericaharmonicsYy,(Q2) arealsosolutionsof thatHamilto-
nian. the result for the rotational energy can be expressed as:

Ey = BN(N +1)—DN%(N +1)?
N

where:
_ 48,

T2

(*)e
is the centrifugaldistortionconstantThis constanis quitesmall,e.g.5.32x 10%cmtin HCl,
but its effect can be quite large for high rotational angular momentum stéteésgendence).

Selection rules for the elastic rotor are the same as for the rigid rotor (see later).

2.6. Vibrational motion in a non-rotating diatomic molecule

If we settheangulamomentumN equalto 0 in the Schibdingerequatiorfor theradialpartand
introduceafunctionQ(R)with J(R) = Q(R)/R thanasomewhasimplerexpressiomesults:

h2 d2
{—EER"'V(R)}Q(R) = EvibQ(R)

This equationcannotbe solvedstraightforwardlybecause¢he exactshapeof the potentialV(R)
is notknown.For boundstatesof a moleculethe potentialfunctioncanbeapproximatedvith a
quadratidunction.Particularlynearthe bottomof the potentialwell thatapproximations valid
(see figure).
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V(R)

Near the minimuniR=R, a Taylor-expansion can be made, where wepus® - Rg:
dV} 1d v} 2

VR = VR * R IgP ¥ 2 | P

and:

2
_ dav] _ dVv _
KCRCE LI

Hereagainthe zerofor the potentialenergycanbe choserat R.. Thefirst derivativeis O at
theminimumandk is the springconstanof the vibrationalmotion. The waveequatiorre-
ducego theknownproblemof the 1-dimensionatjuantummechanicaharmonicoscillator:

f° d _
|:2“dp —kp}Q(p) E.inQ(P)

The solutions for the eigenfunctions are known:
o V/2,1/4 u

W,
= —naexp[%apz}Hv(Jap) with a = Te W, = JE
whereH,, are the Hermite polynomials; de energy eigenvalues are:

Evip = ﬁwe%Hl

with the quantum numberthat runs over values0,1,2,3.

Fromthis we learnthatthevibrationallevelsin a moleculeareequidistantandthatthereis
acontributionform a zeropointvibration. Theaveragednternuclealdlstancecanbecalcu-
latedfor eachvibrationalquantunstatewith |Qv(p)| . Theseexpectatiorvaluesareplotted
in thefigure.Notethatathighvibrationalqguantummumberghelargestdensityis attheclas-
sical turning points of the oscillator.
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The isotopic scaling for the vibrational constant is
0,01

Ju

Note also that the zero point vibrational energy is different for the isotopes.

2.7. Anharmonicity in the vibrational motion

The anharmonic vibrator can be represented with a potential function:
21 2, .,3, ,..4
V(p) = ékp +Kp~+K'p

On the basisof energiesandwave functionsof the harmonicoscillator,that canbe usedasa
first approximationguantummechanicaperturbatiortheorycanbeappliedto find energylev-
els for the anharmonic oscillator (with parameterandk*‘):

17 15k* g%

_ 2 11 "
Evib = hwe%“’ 50" 7 ho,hoo D %’ v+ 250t OK)

In the usual spectroscopic practice an expansion is written (i'r),cm
_ 10 1t 17 it
G(v) = we%/ + il wexe%/ + 50 + ooeye%/ + >0 + meze%/ + >0 +

with W, WeXe, WeYe aNd WeZ, to be consideredas spectroscopiconstantsthat canbe deter-
mined from experiment.

Note thatfor the anharmonimscillatorthe separatiorbetweernvibrationallevelsis no longer
constantIn the figure below the potentialandthe vibrationallevelsfor the H,-moleculeare
shown.
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H, has14 boundvibrationallevels.The shadedareaabovethe dissociatiorlimit containsa
continuumof states.The moleculecan occupythis continuumstate! For D, thereare 17
bound vibrational states.

A potentialenergyfunctionthatoftenresembleshe shapeof boundelectronicstatepoten-
tials is theMorse Potential defined as:

V(R) = D [1—e "~ ?

]
wherethethreeparametersanbe adjustedo thetrue potentialfor a certainmolecule.One
canverify thatthis potentialis notsogoodatr - oo . By solvingthe Schidingerequation
with this potential one can derive the spectroscopic constants:

3 2
2D, I xB> B 2
W, = — Xe:_e a, =6 €€ _p-= Be:_ji__
2n M 4D, Wy W 2uR?
e

The energies of the rovibrational levels then follow via the equation:

EWJ=u%%+%g—&w$%+%g+BJMN+1%4%N%N+1f—a4%+%%«N+l)+

Anotherprocedurehatis oftenusedfor representingherovibrationalenergylevelswithin
a certain electronic state of a molecule is that of Dunham, first proposed in 1932:

;YH%+1@NRN+1f

In this procedurdhe parametery), arefit to the experimentallydeterminedenergylevels;
theparameterareto beconsideremathematicalepresentatiomatherthanconstantsvith
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aphysicalmeaningneverthelesarelationcanbeestablishetetweertheY,; andthemolecular
parameter8,, D, etc. In approximation it holds:

Y10= W Y01~ Be Y= —WeXg Y=g Y30= WeYe

2.8. Energy levelsin a diatomic molecule: electronic, vibrational and rotational

In amoleculethereareelectronicenergylevels,justasin anatom,determinedy the configu-
rationof orbitals.Superimposednthatelectronicstructureghereexistsastructureof vibration-
al and rotational levels as depicted in the figure.

= 0

A

Transitionsbetweenevelscanoccur,e.g.via electricdipole transitions,accompaniedby ab-
sorptionor emissionof photons.Justasin the caseof atomsthereexistselectionrulesthatde-
termine which transitions are allowed.

2.9. The RKR-procedure

Thequestionis if thereexistsa procedureo derivea potentialenergycurveform themeasure-
mentson theenergylevelsfor a certainelectronicstate.Sucha procedurewhichis theinverse
of aSchibdingerequatiordoesexistandis calledthe RKR-procedureafterRydbergKlein and

Rees.
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3. Transitions between quantum states

3.1. Radiative transitionsin molecules

In asimplepictureamoleculeactsin the sameway uponincidentelectromagneticadiation
asanatom.Themultipolecomponent®f theelectromagnetitield interactswith thecharge
distributionin the system Again the mostprominenteffectis the electricdipole transition.
In amoleculewith transitiongn theinfraredandevenfar-infraredtheelectricdipoleapprox-
imationis evenmorevalid, sinceit depend®n theinequality. The wavelength\ of thera-
diation is much longer than the size of the moledule

2Tﬂd«l

In the dipole approximation a dipole momerninteracts with the electric field vector:
R >
H, = H(E = ef (E

In aquantummechanicatlescriptionradiativetransitionsaretreatedwith a"transitionmo-
ment"M;; defined as:

i

My = ¥R LEIY 0

This matrix elements relatedto the strengthof atransitionthroughthe Einsteincoefficient
for absorption is:

2
e

Bfi(w) = 2

[S"Ars=["
€0

Very generallythe Wigner-Eckarttheoremcan be usedto make somepredictionson al-
lowedtransitionsandselectiorrules.Thedipoleoperatoiis an f -vector,soatensorof rank
1. If thewavefunctionshavesomehowadependencenaradialpartandanangulampartthe
theorem shows how to separate these parts:

yam|r Yy rmo= (—1)3‘“"[ )1 Jl [rPlyao
-M g M

In the descriptionthe tensorof rank 1 g cantakethe values0, -1 and+1; this corresponds
with X, y, andz directionsof thevector.In all caseghe Wigner-3jsymbolhasavalueune-
qualto 0, if AJ=0,-1and+1. Thisis agenerakelectiorrule following if Jis anangulamo-
mentum:
AJ=J-J=-101
J=7J= forbidden
AM = M-M =-1,0,1

Therule AM=0 only holdsfor g=0, soif the polarisationis alongthe projectionof thefield
axis.
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3.1. Two kinds of dipole moments. atoms and molecules

In atomsthereis nodipolemomentNeverthelessadiativetransitionscanoccurvia atransition
dipolemomentihis canbeunderstoo@sareorientatioror relocationof electronsn thesystem
asaresultof aradiativetransition.Moleculesaredifferent; they canhavea permanentipole
moment as well. The dipole moment can be written as:

W= P+ My = —Ze?ﬁZeZAEQA
I

Wheree andN referto the electronsandthenuclei.In factdipole momentscanalsobecreated
by the motion of the nuclei, particularly through the vibrational motion, giving rise to:

2

> _ > .0doa>n 18d°50 2
= O+W +s0— +

HoH Ru[ﬁep 2 bRZu%p

wherethefirst termis theelectronictransitiondipole,similarto theonein atoms theseconds
the permanent or rotating dipole moment and the third is the vibrating dipole moment.

3.2. The Franck-Condon principle

Herewe investigateif thereis a selectionrule for vibrationalquantumnumbersin electronic
transitions in a diatom. If we neglect rotation the wave function can be written as:

> > >
q"mo|(?i,RA) = L|Je|(?i;R)llJvib(R)
The transition matrix element for an electronic dipole transition between ‘$tadesl W is:
Wi = IW'uW"dT

Notethatontheleft sidewithin theintegralthereappears complexconjugatedunction.The
dipole moment contains an electronic part and a nuclear part (see above). Insertion yields:

9
Wit = [WaW'yip(ke * Hn)W g WyipdrdR =
> >
= [(JW et AN W ipW"ipdR + [Wg g F [WipHy WyipdR
If two differentelectronicstates)’ o;andy” o areconcernedhenthe secondermcancelspe-
causeelectronicstatesareorthogonal Note:it is the secondermthatgivesriseto purevibra-

tional transitions(also purerotationaltransitions)within an electronicstateof the molecule.
Here we are interested in electronic transitions. We write the electronic transition moment:

M e( R) = J.qJIeI “ew"el dr

In first approximatiorthis canbe consideredndependentf internucleadistanceR. Thisis the
Franck-Condompproximationpr the Franck-Condorprinciple. As aresultthe transitionma-
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trix element of an electronic transition is then:
—_ " /DY 1 n 9
M = Me(R)ﬂJ vib®"vipdR

The intensity of a transitionis proportionalto the squareof the transitionmatrix element,
hence:

| O|uy* 0o

SotheFranck-Condomrinciplegivesusaselectiorrule for vibrationalqguanturmumbersn
electronictransitions.The intensityis equalto the overlapintegral of the vibrationalwave
functionof groundandexcitedstatesThis overlapintegralis calledthe Frank-Condorfac-
tor. It is not a strict selection rule forbidding transitions!

3.3. Vibrational transitions: infrared spectra

In theanalysisof FC-factorghesecondermin theexpressiorior thedipolematrix element
was not further considered. This term:

Hif = ILU'el Py dfj'w'vi NUNLURY bd|3

reducesin caseof asingleelectronicstate(thefirst integralequalsl becausef orthogonal-
ity) it can be written as:

1 2 ‘1]
W{pyipV'O= O¥|(ap + bp™ + )V'0
wherethefirst termrepresentshe permanentipole momentof the molecule.In higheror-

derapproximationin avibratingmoleculeinduceddipolemomentgplay arole, buttheseare
generally weaker.
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An importantconsequencis thatin ahomonucleamoleculethereexistsno dipolemoment,
Hip, = 0, so there iso vibrational or infrared spectrum!

If we proceedwith the approximationof a harmonicoscillatorthenwe canusethe known
wavefunctionsQ,(p) to calculateintensitiesin transitionsbetweenstateswith quantumnum-
bersy, andv,,:

mlpkD= [Qn(P)PQK(P)dP = &[£5K,n_1+ /D-Jzi—lék,ml}

form which a selection rule follows for purely vibrational transitions:
Av = VvV —v = 1

In caseof ananharmonimscillator,or in caseof aninduceddipole momentso-calledovertone
transitions occur. Then:

Av = +1, +2, etc

Theseovertondransitionsaregenerallyweaketby afactorof 100thanthefundamentainfrared
bands.

Note that vibrational transitionsare not transitionsinvolving a simple changeof vibrational
guantumnumber.In vibrationaltransitionsthe selectionrulesfor therotationalor angularpart
must be satisfied (see below).

3.4. Rotational transitions

Inducedby thepermanentlipolemomentradiativetransitionscanoccurfor whichtheelectron-
ic aswell asthevibrationalguanturmumbersrenotaffected.Thetransitionmomenftor atran-
sition between statdBIMC and|N"M'LC can be written as:

e
Mg = BPymlb CEWPyME
where the states represent wave functions:

INMO= W u(p89) = Y R(P)Y\ym(Q)

Theprojectionof thedipolemomentontotheelectricfield vector(thequantizatioraxis) canbe
written in vector form (in spherical coordinates) in the space-fixed coordinate frame:

N sinBcosyp
H = Ho| sinBsing| U HoY1m
cosd

Thefactthatthe vectorcanbeexpressedh termsof a simplesphericaharmonicfunction Yy,
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allows for a simple calculation of the transition moment integral:

sinBcosp o 10
My = UO£YN’M’O sin@sing| YamdQ U [ [ Yim “YimY nmdQ2
cosd

= A/£(2N'+1)3(2N+1) N"1N|IN"1 N
4m 000/|M mM

This gives only a non-zero result if:

AN = N'—N = 1
AM = M'-M =0, %1

Sorotationaltransitionshaveto obeytheseselectiorrules. Thesameholdsfor thevibration-
al transitions.

3.5. Rotation spectra

The energy expression for rotational energy levels, including centrifugal distortion, is:

F, = B,N(N+1) =D N*(N +1)°

Herewe adopttheusualconventionthatgroundstatelevelsaredenotedvith N" andexcited
statelevelswith N'. The subscriptv refersto the vibrationalqguantumnumberof the state.
Then we can express rotational transition between ground and excited states as:

v = F,(N)-F,(N)
= (B,N'(N' +1) =D, N'*(N' + 1)° = [B,N'(N' + 1) =D _N'*(N' + 1)°])

AssumeN’=N"+1 for absorption:

Vabs = Byl(N" + 1)(N" +2) = N"(N" + 1)] =D [(N" + 1)%(N" + 2)* = N"*(N" + 1)°]

= 2B,(N" +1)—4D (N" +1)°
If the centrifugal absorption is neglected and an equally spaced sequence of lines is found:
Vaps(N") =V ps(N" =1) = 2B,

The centrifugal distortion causes the slight deviation from equally separated lines.

Notethatin a purerotationspectrunthereareonly absorbingransitionsfor which AN=N’-
"=1, so in the R-branch (see below).
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3.6. Rovibrational spectra

Now theterm valuesor the energies, are defined as:
T = G(v) +F,(N)

F,(N) = B,N(N+1) =D ,N*(N +1)°

1 1
6) = o+ w37

For transitionsv” — v’ one finds the transition energies:

GV =v") = F(N') =F,.(N") + G(v') = G(V")

Hereo, = G(v') —G(v") is the so-calledbandorigin, the rotationlesdransition.Note that
there is no line at this origin. So:

G(V’_V") = O-O+FV’(N’)_FV"(N”)

Now thedifferentbranchef atransitioncanbedefined.TheR-branchrelateso transitionfor
which AN=1. Notethatthis definition meanghattherotationalquantunnumberof the excited
stateis alwayshigherby 1 quantum|jrrespectiveof thefactthatthetransitioncanrelateto ab-
sorptionor emission With neglectof the centrifugaldistortiononefinds the transitionsin the
R-branch:

Og = 0y+ B, (N+1)(N+2)—B,"N(N + 1)
= 0,+2B, + (3B, —B,")N + (B, —B,")N?

Similarly transitionsan theP-branchdefinedasAN=-1 transitionscanbecalculatedagainwith
neglect of centrifugal distortion:

op = 0,—(B,' +B,")N + (B, —=B,")N°
Now the spacing between the lines is rougiBy rdore precisely:

og(N+1)—0g(N) O3B, -B,” S0 <2B,
op(N+1)—0p(N) OB, +B,"  so >2B,/

wherethe statemenbn theright holdsif B, < B,. Hencethe spacingn the P-branchs larger
in the usualcasethatthe rotationalconstanin the groundstateis larger.Thereis a pile up of
linesin the R-branchthat can eventuallyleadto the formationof a bandheadli.e. the point
where a reversal occurs.

An energylevel diagramfor rovibrationaltransitionsis shownin the following figure. Where
thespacingbetweerlinesis 2B the spacingbetweertheR(0) andP(1) linesis 4B. Hencethere
is aband gapat the origin.
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3.7. Rovibronic spectra

If therearetwo differentelectronicstatesnvolvedrovibronictransitionscanoccur,i.e. tran-
sitionswherethe electronicconfiguration thevibrationalaswell astherotationalquantum
numberschange Transitionsbetweena lower electronicstateA anda higherexcitedstate
B as in the following scheme can take place:

T!
term value
of excited state

Tll

term value
of lower state

—F Ta

Possibldaransitionsbetweerthelower andexcitedstatehaveto obeytheselectiorrules,in-
cluding the Franck-Condon principle. Transitions can be calculated:



V = TI _TH
T =Tg-G'(V)+F'(N)
TH = TA_G"(V") + F"(NH)
Again RandP branchesanbedefinedin the sameway asfor vibrationaltransitionswith tran-
sition energies:
Ogr = 0,+2B, +(3B,'—B,")N+ (B, - BV”)N2
0p = 0y— (B, +B,")N + (B, —B,")N’

But now the constantdhavea slightly different meaning:og is the bandorigin including the
electronicandvibrationalenergiesandtherotationalconstantd,’ andB," pertainto electron-
ically excited and lower states. If now we substitute:

m=N+1 for R—branch
m = —N for P —branch

Thenwe obtainan equationthatis fulfilled by thelinesin the R branchaswell asin the P-
branch:

o =0,+(B,/+B,")m+ (B, - Bv")m2
This is a quadratic function in m; if we assume Biat B", as is usually the case, then:
0 = gy+tam-— Bm’

aparabolaesultsthatrepresenttheenergyrepresentationsf RandP branchesSucha parab-
olais calleda Fortrat diagramor a Fortrat Parabola Thefigure showsonefor a singlerovi-
bronic band in the CN radical at 388.3 nm.

v {em1)

IHIIIIIHiI

n 25.900 40 v{em™)

25740 60 80 25,90

Fic. 24. Fortrat Parabela of the CN Band 3883 A (see Fig. 18). The schematic spectrum
below is drawn to the same scale as the Fortrat paraboela above. The relation !)mween_ curve and
spectrum is indicated by broken lines for two points (m = —1landm = -+18). No line is observed
at m = 0 {dotted line).
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Notethatthereis noline for m=0; thisimpliesthatagainthereis aband gap. Fromsuchfig-
ureswe candeducehattherealwaysis a bandheadormation,eitherin the R-branchor in
theP-branch.In thecaseof CN in the spectrumabovethe bandheadormsin the P-branch.
The bandhead can easily be calculated, assuming that it isRrbitaech:

dop = B'+B")+2N(B'-B") = 0
g = ~(B'+B")+2N(B'-B") =
It follows that the bandhead is formed at:
B! + B"
N = ——
BI — B"

3.8. Population distribution

If line intensitiesin bandsare to be calculatedthe populationdistribution over quantum
stateshasto beaccountedor. Fromstatisticathermodynamica partitionfunctionfollows

for populationof statesat certainenergiesinderthe conditionof thermodynamiequilibri-

um. In caseof Maxwell-Boltzmannstatisticsthe probability P(v) of finding a moleculein

guantum state with vibrational quantum numbeés.

& (EM)/(KT)
P(v) =

Ze—(E(V'))/(kT)
\Y
When filling in the vibrational energy it follows:

o ff o ¥
1 Tw T
=e

N

whereN is the ZustandssummendkT is expressedh cmit. As oftenin statisticalphysics

(ergodictheorem)P(v) canbeinterpretedasa probability or a distribution.As anexample
P(v) is plotted as a function efin the following figure.

P(v) =

1.6
0.8
0.6
0.4

0.2

t
t
I ?I [ t i L -
[ 260 400 800 800 1000 1200 E{em™

Fie. 58. Boltzmann Facter and Thermal Disiribution of the Vibrational Levels. The curve
gives the function e —E/kT for T = 300° K. with F in em™ 1. The broken-line ordinates correspond

to the vibrational levels of the I: molecule.

At eachtemperatureheratio of moleculesn thefirst excitedstateoverthosein theground
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statecanbecalculatedP(v=1)/P(v=0)s listedin the Tablefor severaimoleculedor 300K and
1000K.

TABLE 14. RATIO OF THE NUMBER OF MOLECULES IN THE FIRST
TO THAT IN THE ZEROTH VIBRATIONAL LEVEL ror 300° K. anp 1000° K.

g_AGVth/]GT

Gas Al (cm_l) -

For 300° K. For 1000° K.
H, 41602 2.16 X 107 251 x 107°
HO 2885.9 0.77 X 1077 1.57 X 1072
Ny 2330.7 1.40 X 107° 3.50 x 1072
co 21432 3.43 X 1075 4.58 X 1072
0, 1556.4 574 % 1074 107 x 107¢
82 721.8 3.14 X 1072 3.564 x 107¢
Cly 556.9 6.92 X 1072 4,49 X 1071
I, 213.2 3.60 X 101 7.36 X 10t

In caseof thedistributionoverrotationalstateshe degeneracyf the rotationalstatesneedgo
beconsideredEverystate|J[ has(2J+1) substate$IML. Hencethepartitionfunctionbecomes:

- k
(2J+1)e Ero/ (KT) _ 1 (20 + 1)e—BJ(J +1)+DJ%(J+ 1)
_Erot/(kT) Nrot

Z(zy +1)e

PQ) =

In the figure the rotationalpopulationdistributionof the HCI moleculeis plotted. Note that it
doesnotpeakatJ=0. Thepeakvalueis temperaturelependenandcanbefoundthroughsetting:

3.0

2.0

1.0

i
]
i
) il I n L i
] 2 4 [ 8 0 12 J
Fia. 59. Thermal Distribution of the Rotational Levels for T = 300° K. and B = 10.44 c¢m !
{That is, for HClin the Ground-State). The curve represents the function (2J + 1)e —BJ(J +1)uc/eT

as a function of J. The broken-line ordinates give the relative populations of the corresponding
rotational levels.
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4. High vibrational levelsin the WK B-appr oximation

4.1. The Wentzel KramersBrillouin approximation

The Wentzel KramersBrillouin (WKB) approximationis a tool to solve the one-dimensional
Schrédingeequation Both, wavefunctionsandenergylevelscanbe determinedor a given po-
tential. Beforecomputersverein commonuse this approximatiorbelongedo the standardopics
in basicquantummechaniaoursesput afterthe 1960’sthis approximatiorreceivedessandless
attention Recently howeverthe WKB approximatiorgainedinterestagain,dueto developments
in thefield of coldatoms.The WKB is wieldedto determinghebindingenergyof theuppervibra-
tional levelsin diatomicmoleculeswvhich is importantfor the value of the scatteringengthfor s-
wave collisions; an important parameter for experiments with cold atoms.

In molecularphysicsthis approximationcanaid in the investigationof vibrationallevelscloseto
adissociatiorimit andcangivetunnelingrateconstantsn thecaseof, for instanceauto-ionization
or pre-dissociation.

Besideghis, the WKB approximations widely applicablefor alot of quantummechanicaprob-
lems,provideda potentialcurveis known,andcanhelpto interpretphysicalphenomenan some
detail. Therefore, this approximation is presented in this chapter.

This andthefollowing threeparagrapharebasedn the book: Quantum Mechanics, by E. Merz-
bacher (1964).

Thederivationstartswith the one-dimensionabchrodingeequation.Thevariableis choserto be

R rather tharx, as this is the symbol for the internuclear distance in diatomic molecules.
d’y | 2
—+tE-viw=0

dR™ #

with p as the reduced mass.
In the case that = constant, the equation is easily solved and the solutions are

Yy = eiikR forE>V
Y = ei'(R for E<V
with
o 2 o 2
k = G5IE-VID K = C5IV-EIQ
Ak O Ofh O

In the following only k will be used,whetherkE >V or E < V. In the latter casea purely positive
imaginary number is assumed for
If V =V(R) the solutions can be written in the form

W(R) = HU(R)

The problem is now to obtain the functiofR). Substitute this wave function and also

/2
(R = PEE_v(RID
Of O
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in the Schrddinger equation to get
2

U = (kR i

LaRU R2

In the case o¥/(R) =V = constantk(R) = k = constant, the solution is
u(R) = kR

The second derivative (the first term) is then zero.
Omit the first term to obtain a zeroth order approximation

U f 2
%ﬁg = [k(R)]
which has the solution
Ug = J.rIk(R)dR+ Co
This solution will be starting point in an iteration procedure
2

Hohaacf - Ry e i
dR

Odr O
And uq will then become

u, = iJ’A/kZ(R)iik'(R)dR+C1

At this point onelikes to stopthe procedureThisis only valid, however,if u; Ouy, thatis if the
first order solution is almost the exact one. The conduidnug is fulfilled when

k]« [k
If this is the case, the square root may be rewritterughécomes

+ LIK(R)
_Ik(R)%l_zkz(R)EHR+ C,

ug

£[k(R)AR + 'élogk(R) +C,
Using this, the wave functiod# can be determined.

1 :
| exp[ilfk(R)dR]

Y Oexp[iu(R)] = TR

The constanof integrationC, affectsonly the normalizationof W andwill notbe consideredn
the following.

4.2. Breakdown of the approximation criterion

The criterion for the approximation was
K| <«|k

This breaks down wheR is close to a classical turning point wh&re V and henc& = 0. The

i
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strategyto find asolutionfor thewholerangeof R consistof two parts.First,find the WKB-
solutionswherevetheapproximatioris valid (i.e. far from theturningpoints).Secondfind
awavefunctionwhichis valid aroundtheturningpointsandis alsovalid in a certainregion
whereonecanalsousethe WKB solutions.Now, we havesolutionsoverthewholerange,
andall we haveto dois to tie thedifferentsolutionstogethetto find thetotal wavefunction.
To do this, it is necessaryo havea certainregionwhereboth,the WKB solutionandthe
solution around the turning points, are valid. This is schematically depicted below.
WKB standdor theregionswheretheapproximations valid andCF for theregionswhere
the so-called’connectionformulas’ haveto befound.R; andR , arerespectivelytheinner
and outer turning point.

V(R)
E| |
| I
| |
| |
OF
WKB—T WKB T — WKB
| T
Ry R R>

4.3. The connection formulas

To obtainthe wavefunctionsaroundthe classicalturning pointsthe Schrédingerequation
will beexpresseth two newparametersTheequatiorwill bereducedo avery simpleone
afterthelinearizationof the potentialaroundthe turning points. Thetwo newparametersy
andy are related t& andR in the following way

v = Jkw
y = J’de
which implies
vV = exp[£iy]

The Schrédinger equation expressed in the new parameters will be

2 2
dv{_l_agraz id__kﬂ}vz 0

dy2 4k2anD deyz
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Now, the potential is replaced by a straight line
V(R)-E=a(R-R)

with R; as one of the turning points. Note that V and E do not appearexplicitly in the
Schrddinger equation, but are hidderk.in
When this approximation is applied the Schrédinger equations takes on a simple form

d’v 5

S+t = =0

dy 36y
This equationgivesthe correctwave functionsaroundthe turning pointsand hopefully over
sucharangethatit hassomeoverlapwith therangesvherethe WKB solutionsarevalid to be
able to connect the two solutions.
In theremainingof this paragrapht will be shownthatit is possibleto find a solutionfor this

differential equation.
Suppose that the solution can be written in the form

v(y) = y* J'ey‘ f(t)dt

with, A, f(t) andthe pathof integrationnot specifiedyet. After substitutionthe following must
be valid

I[)\()\ _1)+ 2yt + PRy 356}&‘ f(t)dt = 0

If it canbeproventhatthisis equalto zerofor all y, thenthe proposedsolutionis theright one.
Choose\ suchthatthefirst termcancelghe constant/36,i.e. A = 1/6 or 5/6. Theintegralbe-
comes

If(t)[Z)\t+(1+t2)%}eytdt -0

Integrationby partsgivestwo termswhich shouldgive zerowhenadded put if we canprove
that both terms themselves are zero, this condition is automatically fulfilled. The two parts are

I%Atf(t)—g(lﬂz)f(t) 2t = 0
0 dt 0

Idﬁt[(l +)f)edt = 0
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The first one gives an expression fity

N (1) = dﬂt(l + ) (1)

DAL (t) — 2t (t)

1+ St

2t t=t 1
at = —

(A—1) f; df (t)

)
(A=1)In(L+t%) = |n5fwg
f(t) = fO)a+t)"

This expression fdi(t) is inserted in the second equation. This leads to the integral

A
I-d‘it[(1+t2) dt = 0
2\ yt upper limit B
(1+t) e ‘Iower limit — 0

If thelimits arechosensuchthatthe functionis zero,thenof coursealsothe differenceis
zero. This leads to the following solutions

+i
= i

= 4o y<O0

~ ~ ~ o~

= —0 y>0

With this choiceof t, f(t) andA, we havefound a non-trivial solutionof the Schrodinger
equationThismeanghatwe now haveanexpressiotior thewavefunctionaroundtheturn-
ing points.All thewavefunctionsin thedifferentregionsshouldoematchedogetherDoing
so(somecomplexfunctiontheoryis involved),it canbeshownthatthedifferentpartsof the
WKB solution should be connected as follows:

Around the inner turning poinR(=Ry)

1 ) 0 2 R
+—exp=[ |kdR= - —cos{ kdR-
K pD.IR D, aRl

10 Rged . 2 O 1
_ L ex KdRE & 2 sind" kdR— 3
K PO IR 0k %Rl 4”1%

Around the outer turning poinRE= Ry)
2 R 1 1 0 R n
— kdR—=15 & +—— —(_ |kld
,\/RCOSSR 4T[E mexpm J’R2| | RD

2 .k 1 1 R [
“ sintr kdR—=T o —=—expE[ |K/dR
R R e R MR

These formulas are known as the connection formulas.

1
4
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4.4. Bound states and the WK B approximation

In this paragraphan expressiomwill be derivedto determinghe energiesof boundlevelsin a
potentialwell. If the potentialexhibitsonly onewell, threeregionscanbe distinguishedthe
classicallyallowedregion(Regionll) andtwice a classicallyforbiddenregion(Regionsl and

).

In Region |, the WKB wave function is

W (R) = AiexpDI KdRS+ B— 1

K K

with A andB normalization constants.
W, must vanish rigorously wheR< R; and thu$B = 0. By applying the connection formulas

expH .f 'kIdRS

WY, can be found

W, (R) = A—/Z_—kcosa';de——r%

which can be rewritten into

W, (R) = ——cosa' de%sma' de——Tl%+—sma‘zjdeEcos%'?de—%n%

Only the secondterm givesriseto a decreasingxponentiafunctionin Regionlll (the wave
function should vanish for larg®) and therefore the first term should be equal to zero

—cosa' kdR=sin 5 de——ng 0

This term should be zero for evdRywhich means that the cosine should vanish or

V(R) D

E

!
| !
! !
| |
| |

R; R,

[

Region | Reglon Region Il

R 1
.ijde = E’*igﬁ

with v a positive integer.
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This leads to the formula known as the WKB-condition for bound levels in a potential well

2u)1/2 V2,
veg = G EW -V(R)
All oneneeddor a calculationof the energylevelsis the potentialanda numericalprocedure

for the integral.

45. Levelscloseto thedissociation limit

This paragraphis basedon an article by RobertJ. Leroy and Richard Bernstein(JCP 52,
38693879(1970)).In thisarticleenergylevelsareinvestigatealoseto adissociatiodimit. An
expressions derivedfor the dependencef the bindingenergyasa functionof the vibrational
quantumnumber Experimentallyit usuallybecomedarderto probethe higherlevelsin a po-
tentialandwith thisformulathehighestievelscanbe predictedon thebasisof lowerones Also
an estimation of the value of the dissociation limit can be given.

The startingpointis the WKB-conditionfor boundlevelsaswasderivedin the previouspara-
graph

1. @
vl 5 = J' “[E(v) - V(R)]
Differentiating this expression W|th respeciEi@/) gives
dv _ (w22 -1/2,

ot = BT Em - VR

The outer part of a molecular potential close to the dissociation limit can be described by
Cn
V(R) =D -—
R

with C,, aconstaneindn is relatedto thedominantelectrostatienteractionbetweerthetwo at-
oms(for instancen = 1 in thecaseof ionsandn = 6 in the caseof avanderWaalsinteraction).
D is thedissociatiorimit. Insertthis potentialin the formulaandalsochangethe variableof
integration tax = Ry/R

1/
vV _ (|.1/2)1/2 C:n " Rz/Rlx_z

dE e~ D-g¥2* Vs

n -1/2
(x =1) dx

Thisintegralis knownif theupperlimit isc i.e.if R; = 0. Onthenextpageit is shownthatthis

Is avalid approximationTheintegralof thelowerfigureis finite thoughthe valueof thefunc-

tion itself goesto infinity at the turning points. The surfacebeneattthe function at the right-

handsidein thelowerfigure,is biggerthanattheleft-handsideandthis differencewill increase
whenonegetscloserto thedissociatiorlimit. Theerrormadeby usingthe approximateoten-
tial becomesmallercloseto thelimit. And the errormadeby taking 0 aslower limit in stead
of Ry is alsonegligible. This meanghatthe integralderivedabovemay be evaluatecbetween
1 andeo.

With thoselimits, the integralis analytically solvable(seefor instancel. S. Gradshteyrand
I. M. Ryzhik, Table of Integrals, Series and Products, AcademicPresdnc., New York, 1965,
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Sec. 3.251, p. 295)

O ou-1,.p v-1 1 U0
-1 dx = = -V ==,
|1X (x ) X B%l \Y \)D

with in our caseL =-1,p=nandv = 1/2, this becomes

® 2" - 1) 2y = Lt 1 A0
J’lx (x —-1) dx = nBE2+n’2D
The B-function is defined as follows
_r(era
B(p.A) = F o7
and thd -function
&2tz
Nz = J’Oe to Tdt
|
E V(R)i |
| |
| |
| |
' /D-cyR" |
R R,
; | E
7 |
T |
Y |
1 | |
= | |
L | I
— 00 |
L '
R
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Using those definitions ari('jDlD JTt results in the following equation

n+2
dE _ EZTIDUZ r(1+1/n) n e 2n
dv = A0 Opd r(1/2+1/n)¢ 1/n[D ]
n+2
2n
= K,[D-E]

with K,, a constant depending on b@h andy, the reduced mass.
Rearrange the terms and integrate from the dissociationDitoiE(Vv)

—2-n
E

l{ “iD_EW)] P dEW) = [ dv

Kn D Vp

2 n—2
1 2n
_R__[D E(v )] = V-V
PutE(v) to one side
2n

E(v) = D— |:(VD—V)n nan} -

with v the'effective’ vibrationalguanturmumberatthedissociatiodimit. It indicateshow
closethe highestlevel is to the dissociatiorlimit. If for instancevp = 13.01thenv = 13is
justbound.If, however,vp = 12.99thenv = 13 is just not boundin the potential. The de-
nominatorof the exponentecomed for n = 2, andthe expressiors only valid for n > 2.
In thecasen = 1, the Schrédingeequationcanbe solvedanalyticallyandfor n = 2, adiffer-
ent expression can be found (described in the same article, but not treated here).
The formula can be rewritten in terms of the binding energy
n-2

_ 2n
V = Vp—3a,§,

with a,, a constant.

An applicationof thisformulais shownin the nextfigure. Without goinginto too muchde-
tail, anelectronicstatein H, with along rangedependencef RS, waspopulatedn a multi

photonlaserexperimentBoth thebindingenergyandthevibrationalguantummumbermwere
knownandusingtheformula,a predictioncould be madefor the highervibronic levels(in-

dicatedwith arrows).If thedissociatiodimit wasnot known,thenalsothe bindingenergy
would havebeenunknown.In thatcase the expressiorcould be usedin afitting routineto
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determine the value of the dissociation limit

= -10
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Fortheso-called’ potentialin H, n =3 andC3; =0.55492%tomicunits. Thisnumbeis isotope
independenthutag is not. For H, a; = 3.2343cm*® andfor D, ag = 4.5722cm*®. Plottingthe
vibrational quantum number a0 a straight line is to be expected.

Finally, a list is presented with the interpretation of the diffenerdlues

n=1 2 charged atoms (Coulomb)
n=2 1 charged atom and 1 atom with a permanent dipole moment
n=3 2 atoms with permanent dipole moments
n=3 identicalunchargedtomsin electronicstatesvhosetotal angulamomentadiffer
by one (i.eAL = 1)
n=4 1 charged atom and one neutral atom
n=4 1 atom with a permanent dipole moment and 1 atom with a permanent quadru
pole moment
n=>5 2 atoms with permanent quadrupole moments
n==6 induced dipole - induced dipole interaction

ThelastR dependences alsoknownasthevanderWaalsinteractionandthistermwill always
be present.

4.6. The harmonic oscillator

TheWKB approximatiorgivestheright energylevelsin thecaseof aharmonicoscillator.This
remarkable result will be derived below.

Theenergylevelsof apotentialV(R) = ECRZ canbefoundin anyelementarypookon quan-

-36 -



tum mechanics
_ 2 /cq, . 10
E(v) = 4 /\/‘:1%/+ .
Start with the WKB condition for bound levels

1_ (w2 R

V+2 T .[Rl

1/2
[E(v) - %clﬂ dR

with R; andR, the two turning points. For a certain eneHgy), the turning points are

The equation becomes

T
1/2 R 1/2
_ (e Z[E(V)—Rz} dR
Th RL C

By applying the following standard integral

IA/(az—xz)dx = %[xd(az—xz) +a2asiné}

the condition becomes
1 _ () 2EW)

+ =
V2 fi C

which can be rearranged into the first formula of this paragraph

-7 /€Q, .10
E(v) = % [ﬁaﬁ >0
Note however thatthe correspondingvavefunctionsW arenot exactlythe sameasthe analytical

solutions.In the analyticalcasethe solutionsare Hermite polynomialfunctions,but in the WKB
case, the functions are somewhat different.
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5. Electronic states

5.1. Symmetry operations

Symmetryplaysanimportantrole in molecularspectroscopyQuantumstatesof themolecular
Hamiltonianareclassifiedwith quantumnumberghatrelateto symmetrieof the problem;the
invarianceof the Hamiltonianundera symmetryoperationof the moleculein its body fixed
frame is connected to a quantum number. For a diatomic molecule the symmetries are:

Oy

.i../(.)q,

The HamiltoniarH:
7 2
Ho = —5-5 0, +V(fi, R)
|

is invariant under the symmetry operations:

- Ry rotation over every anglgabout the molecular axis

- 0y reflection in a molecular plane containing the molecular axis
- in version in the molecular centre

Theseoperatorqiot only leavethe molecularHamiltonianinvariant,they arealsocommuting
observabledn thelanguagef quantummechanicshismeanghattheseoperatorcangenerate
a set of simultaneous eigenfunctions of the system.

Note that the operatori only appliesin a diatomic moleculewith inversionsymmetry,i.e. a
homonucleamolecule.Theseoperatordorm groups, for a homonucleamoleculeghe D,
for the heteronuclear molecules tGg,, point group.

5.2. Classification of states

Theelectronicstatef themoleculesareclassifiedaccordingo theeigenvaluesinderthesym-
metry operations.

Thereflectionoperatoro,, (laterwe will seethatthis operatoris connectedo the conceptof
parity for a molecular eigen state) acts has two eigenvalues:
oY = £, eigenvalues + -

TheoperatoiR, is connectedo anotherconstanbf themotion, L, Assumethatin a molecule
the electronicangularmomentaarecoupledto aresultingvectorL = ZTi .InanatomL isa
|
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constant of the motion, sincethereisoverall rotational symmetry. Hereisthe distinct difference
between atoms and molecules; the overall rotational symmetry is broken. In a diatom there is
only axial symmetry around the internuclear axis of the molecule. Hence only L, is a constant
of the motion. The eigen value equation is:

A0We _ . _
LW, = T30 = N, eigenvalues N = 0,£1,£2,%3,
In the nomenclature of diatomic molecules the electronic states are called:
> for AN=0
M for AN==1
A for N=22
O} for N\ =23 etc.

The energy of the molecule depends on A?; states with A and -A are degenerate.
For the inversion operator there are two eigenvalues.

iPe = £, eigenvalues g,u

The g (gerade) and u (ungerade) symbols are chosen for a distinction with the eigenvalues of
the o,, operator.

Hence we find simultaneous eigenval ues, under the three symmetry operations, resulting in pos-
sible quantum states:

Homonuclear Heteronuclear
A=0 IR o sty
AN=1 I‘I*I‘I*I‘I My ntn-
N=2 A+Au Ag'Au AN
etc
Remarks.

- There is a double degeneracy under the o,, operator for states A # 0. Therefore the +/- signs
are usually omitted for A 2 0.

- Thereis no degeneracy under thei operator for u and g states. So u and g states have different
energies.

The electron spins are added in the molecule in the same way as in atoms: = § . Inthe
classification of statesthe multiplicity (25+1) due the electron spin is given in the sS@me way as
in atoms. Hence we identify states as:

3" for the ground state of the H, molecule

%4  for theground state of the O, molecule

n 32 for theground state of the OH molecule; here spin-orbit coupling isincluded (seelater)

Additional identifiers usually chosen arethe symbols X, A, B, C, ..., & b, ¢, ... Thesejust relate

-39-



to a way of sortingthe states.The electronicgroundstateis referredto with X. The excited
statesof thesamemultiplicity getA, B, C, etc,whereas, b, c arereservedor electronicstates
of differentmultiplicity. For historicalreasongor somemoleculeghesymbolsX, A, B, C, ...,

a, b, c, ... are used differently, e.g. in the case of hadlecule.

5.3. Interchange of identical nuclei; the operator P

In molecularphysicsusuallytwo different framesof referenceare chosenthat shouldnot be
confusedAs theoriginsof thebody fixed frame andthe space fixed frame the centreof gravity
of themoleculeis chosenThe coordinatesn the spacdfixed framearedenotedwith capitals
(X, Y, 2) andthosein thebodyfixed framewith (x, y, z). By makinguseof Euler-angleshetwo
referencdramescanbetransformednto oneanotherThe z-axisis by definition theline con-
nectingnucleusl with nucleau andthis definesthe Euler-angle® andg. By definitionx =
0 and this ties the- andy-axis (see figure). For an Euler-transformation vyith O:

XcosBcosp+ YcosBsing—Zsind

y = =Xsin@+ Y cosp
z = XsinBcosp + YsinBsing + ZcosH
z z z
A” Az\xf/\ e\ZfQ
y Y © Yy 8 Sy Y
5 > 0 = L -
¢ X o\
X X X

Euler-transformationvith x = 0. First (X, y, 2) rotatedaroundthe z-axis overangle@. Thenthe x- andy-axis
stayin the XY-plane.Subsequentlyx, y, z) is rotatedaroundthe y-axisoveranglef. They-axisstaysin the
XY-plane by doing so. The grey plane in the drawing ischglane.

If Ris the separatiorbetweerthe nuclei,thenR, 8 and@ canbe expressedh the positionsof
the nuclei in the space fixed frame (see also figure below):

O Z, O
0 = acogs+———I]

D/Xi+Yi+ZfD

Q= acosg——)—(}—% and R=2 /x2+Y2+Z2
0 /x2 4 y20 171741
NN 1

Where 4, Y1, Z;) is the position of nucleus 1 in the space fixed frame.
If the operator interchanging the two nuclei is caRetthen:
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P(X, Y1 2, X5, Y0, Z5) = (X9 Yo, 2o, Xy, Y1, Z9)
= (X =Y =20, X5 =Y =Z3)

z
Z
0 R
2 vy F—
1 L
R
X

Fig: Underthe inversion-operatiof® not only the anglesd and @ change put
also thez-axis.

OrinR, 6 andg:

P(R,6,9) = (R T-6,0+Tm)
Becausehe z-axisby definition runsfrom nucleusl to 2, it will beturnedaround Fromthe
equationst follows thatthey-axisalsoturnsaround.If thei™ electronhasa position(x;, yi,
z), thenthe posititionsof all particlesof the moleculerepresentedy (R, 6, @; X;, y;, z) and
so:

P(R 6, ¢:x, Vi, z) = (R -6, 0+ 1mMX), -Y;, —Z)
The inversion-operator in the space-fixed frdfie is then defined as:
ISF(X, Y, Z) = (=X, -Y,-2)
It can be deduced that:
SF
17 (R 6, ¢:%, Y, ) = (Rm-6,0+T1-X,,Y,, %)

Z Z

2. e

Fig: Under the interchange operator P not only the afigéesp change, but also theas.
For the inversion-operator in the body-fixed fraiffe it holds that:
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%F(R 6,0, v, 2) = (R 6, 9-x, —y,, )

(K 1’ 1
By combining the last two equations it follows:

i®F1(R 0, @ix, ¥, ) = (R =8, 9+ TLX;, i, -2,

Hence the important relationship for the inversion operators is proven:

.BF , SF
P=i"1

5.4. The parity operator

Parityis definedastheinversionin a space-fixedrame,denotecby theoperatoris':. We wish
to proveherethatthis operator < is equivalentto a reflectionthrougha planecontainingthe
nuclearaxis (z-axis). For this planewe take xz, but the sameproof would hold for any plane
containing thez-axis. One can write:

0,(x2)(R 8, ¢;x;, i, Z) = (R 6, ¢:x;, Y, Z)
with o,(x2) areflectionthroughthe xz-plane.A rotationof 180° aroundthe axis perpendicular
to the chosen plane (so thxis), gives in the body-fixed frame:

R180(y)(xl Y, Z) = (—X, Y, _Z)

with R;gdy) the rotation-operatoaroundthe y-axis. In sometextbooksR;g(y) is written as
C,(y). The nuclei exchange position:

Rigo(Y)(R 6, 9) = (R -8, p+m)
and thexyz-frame then rotates. The total rotation is:
Rigo(Y)(R 6, @, ¥;, ) = (R =6, 0+ 15X, -Y;, Z)
By combining equations one gets:
0,(X2)Ri5o(V)(R, 6, :X;, ¥;, ) = (R, =6, @+ X, Y;, Z)

This is the prove that:
SF

1™ = 0,(X2)Rygg(Y)
or in general:

Sk _
1™ = 0,Rigo

wherethe axis of R, gomustbe perpendiculato the planeof g,. In isotropicspacethe stateof
amoleculesindependentf theorientationhenceamoleculecanundergoanarbitraryrotation
without change of state. Hence it is proven thasignifies the parity operation:

SF

I~ =0,

5.5 Parity of molecular wave functions; total (+/-) parity

Parity playsan importantrole in molecularphysics,particularlyin determiningthe selection
rulesfor allowedtransitionsgn the system Quantummechanicgictateshatall quantumstates
havea definite parity (+) or (-). As discussedboveparity is connectedo the operaton o de-
fined in the space-fixedrame,but mostmolecularpropertiesarecalculatedn the body-fixed
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frame.Hencewe usuallyreferto o, asthe parity operator Thetotal wavefunctionof amo-
lecular system can be written:

LIJmoI = llJequviqurot

and hence the parity operator should be applied to all products.
In diatomicmoleculeghe vibrationalwavefunctionis only dependentn the parameteR,
the internuclear separation and therefore:

olip = Wy

Note that this is not generally the case for polyatomic molecules.
TherotationalwavefunctionscanbeexpressedsregularY;y, functionsfor whichtheparity
¥

-J
o,Ysu = (1) "Yjm

where J is the rotational angularmomentum,previously defined as N. More generally
|QIMLC wavefunctionscanbeused,in similarity to symmetrictop wavefunctions|JKML,
in which J is theangularmomentumandQ is the projectionontothe molecularaxisin the
body-fixedframe,while M is the projectionin the body-fixedframe.In fact Q is alsothe
total electronic angular momentum. The effect of the parity operator is:

_ J-Q

0,|QIMO= (-1)" " "}-Q, J, MO

whereJ takes the role of the total angular momentum.
Soin generathewavefunctionsfor rotationalmotionaresomewhatnorecomplicatedhan
thesphericaharmonicsY (6, @), Whicg arethegropereigenfunctionsfor amolgculein
als state Thesituationis differentwhen and/orS aredifferentfrom zero.ThenJ is not
perpendicular to the molecular axis. It can be shown that the wave functions are:

M-Q [2J+1_.(@
Qimo= (- )M? | - Dizh(aBy)
Tt

whereD standdor the Wigner D-functions.The phasefactor dependsn the choiceof the
phaseconventiontheaboveequations in accordnacith the Condon-Shorthconvention.
Note that other conventions are in use in the literature.

Thisis relatedto theeffectof the parity operatoionthespinpartof theelectronicwavefunc-
tion:

o s20= (-1)°7%|s —20
NotethathereX hasthemeaningof theprojectionof thespinSontothemolecularaxis;that
isacompletelydifferentmeaningof Z thanfor thestatesn case\=0. Fortheorbitalangular
momentum of the electrons:

o AO= +(-1)"-AD
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So remember foA=0 states there are indeed two solutions:
o /=F O= #£* O

because the stat&$ ands" are entirely different states with different energies.
The effect of the parity operator on the total wave function is then:

cyv(qJeIl""vibl'prot) = OV(|I’I/\ZQ|:]]V|:[QJMD
= (-1)"72 S %0, A, § —SIMIFQ, J, MO

whereo=0 for all states except far states, for whiclw=1.
Sincetheo, operatiorchangeshesignsof A, %, andQ thetrueparity eigenfunctionsrelinear
combinations of the basis functions, namely:

2S+1 J-25+S+025+1
NolE(-1 N_pU
psein y s [0 Mol P

2

for which the parity operator acts as:

V|28+1/\Qi 0= i|28+1/\Qi 0
Thesesymmetrizedvavefunctionscanbe usedto derivethe selectionrulesin electricdipole
transitions.

With theseequationghe parity of the variouslevelsin a diatomcanbe deducedIn a X" state
the parity is (-)N*1, with N the purerotation.Fora =* statethe parity is (-)N. Stateswith A>0
aredoubledegeneratandboth positiveandnegativerotationallevelsoccurfor eachvalue of
N. Notethatwe havejumpedbackfrom theangulamomentum] (whichincludes2) to N which
refers to pure rotation.

N N N N
4 + 4 - 3= 2=+
3 - 3 + 2 +- 1 +/-
2 + 2 -1 -+ 0 -+
1 -1 + 0 +/-
0 + 0 -

>t 2 M A
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Thelowestenergylevelsin thell andA statesarepurposelydepictedhigher. Thosearethe
levelsfor whichthepurerotationalangulamomentums N=0. Notethatin astateof 1 elec-
tronicsymmetrythereis 1 quantunmof angulaiTmomentumin theelectronshencehelowest
guantum state i¥=1. In aA stateJ=2 is the lowest state.

5.6 Rotationless parity (e/f)

Becauseof the J-dependenphasefactorthe total parity changesign for eachJ-levelin a
rotationalladder.Thereforeanothemparity conceptwasestablisheavherethis alternations
divided out. (e) and (f) parity is defined in the following way (for integer valugs of

op = + (—1)le for e
o0 = —(-1)"y for f
For half-integer values afthe following definitions are used:

J- 1/2
for e

oW = +(-1)

J- 1/2
oy = —(-1) for f

It canbeverified thatall levelsin aZ™* statehave(e) parity. Similarly, all levelsin a” state
have (f) parity. Fof1 states all levels occur in e/f pairs with opposing parity.
Theuseof e/f suppressethe phasdactorin thedefinition of the parity eigenfunctionsNow
it is found, for example in the evaluation of symmetrized basis functioflfstates:

2 2
I_IS/ZB:I I_I—S/ZD

2
P, e/ f0=
3/2 ,\/é
2 2
|2|_| e/ f= ||_]1/2B:| I_I—l/ZD
1/2 ,\/é
2« + 2< +
|22 + e/ fl= Iz1/2 &l z—1/2D
1/2 ,\/é
2—— 2—
|ZZ— e/ fl= |zl/2&I z—1/2D
1/2» ,\/é

5.7 g/u and g/a symmetriesin homonuclear molecules

Forhomonucleamoleculeghepointgroup D, containgheinversionoperation defined
in the body-fixedframe.The operation leavesthe vibrational,rotationalandelectronspin
partsof thewavefunctionunchangedt only actsontheelectronigpartof thewavefunctlon
Theimportantpointto reallzelsthatthetran5|t|ond|polemomentoperatoru is of u-parity
and hence the selection rules for electric dipole transitiong areu.
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In the above the interchange operator P was defined and it was proven that:

p — {BF|SF _ BF
States which remain unchanged under the P operator are caled symmetric (s), while those
changing sign are called anti-symmetric (a). Under the operation I or o, the levels get their
(+/-) symmetry, while the operation igg introduces the g/lu symmetry. Thusit follows when the
electronic state is:

\Y

gerade - + levels are symmetric
- levels are anti-symmetric
ungerade - +  levelsare anti-symmetric

- levels are symmetric
This gives the following ordering:

N

4 +—— § -—  a +t——  _a -— s
3 - a + s - s + a
2 + s - a + a - S
1 - a + s - S + a
0 + s - a + a - S

=y 2y
For A>0 states the IN g' states are ordered as Zg', etc.

z+U Z_U

5.8 The effect of nuclear spin

The magnetic moment of the nucle interact with the other angular momentain the molecular
system. When all the gngular momenta due to rotatign, electronic orbital and spin angular mo-
mentum are added to J then the spin of the nucleus | can be added:

9

> >
F=J+i

If both nuclei have a spin they can both be added following the rulesfor addition of angular mo-
menta.

> > >3

F=Jd+l1+12

The additions of angular momenta play a role in heteronuclear as well as homonuclear mole-
cules. Of course the degeneracy of the levels should be taken into account: (21,+1)(21,+1).

In a homonuclear molecule the symmetry of the nuclear spin wave functions play arole. For
diatomic homonuclear molecules we must distinguish between nuclei with:
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- integral spin, which obey the Bose-Einstein statistics
- half-integral spin  which obey the Fermi-Dirac statistics

The symmetrization postulate of quantum mechanics tells us that all wave functions are ei-
ther

unchanged or change sign under permutation of two particles. The total wave function W
must be symmetric for integral spin particles, anti-symmetric for half-integral spin particles.
This gives rise to symmetry restrictions that can be viewed in various ways, the textbooks
give aso various arguments, starting from different perspectives. One view isto start from
the interchange operator P, consider electronic states with g-symmetry (under igg) and +-
symmetry (under o,,) and neglect the vibrational part (always apositive parity in diatomics).
Then the rotational parts of the wave function and the nuclear spin wave functions remain.
The product of the exchange properties of these wave functions should follow the proper sta-
tistics. For therotational levels (here we restrict ourselvesto pure rotation; in case of angular
momentum coupling between electronic and rotational motion it also applies) the parity is
(-)N. Hence it follows:

FD-nuclei even N require Whye anti-symmetric
odd N require Whue SYmmetric
BE-nuclei even N require Wnue SYmmetric
odd N require Wpue anti-symmetric

If the symmetry of the wave function is considered then the rules change for -parity states
and for u-states. One can derive:

FD-nuclei slevels require Whye anti-symmetric
alevels require Whue SYmmetric

BE-nuclei Slevels require Wnue Symmetric
alevels require Wpue anti-symmetric

The nuclear spin weight is (21+1)% where | is the spin. Of the (21+1)? possible states:

2+1)(1+2) are symmetric
2+l are anti-symmetric

5.9 Para and ortho hydrogen
In the hydrogen molecule with two spin |=1/2 the total nuclear spinis:
|>tot = |>H+|>H =01

There exist (21+ 1)2:4 possible quantum states of which 3 are symmetric and one anti-sym-

-47 -



metric under interchange of the two particles (notedhakans spin u spin down):
a(1l)a(2)
B(1)B(2)

-}—2[0((1)[3(2) +B(1)a(2)]

and:

1
| =0 —[a(1)B(2) -B(1)a(2
[2[ (1)B(2) -B(1)a(2)]
Note that the three states terl haveM,=+1, -1 and 0.
ForthehydrogemucleiFD-statisticaapplies hencethesymmetrlc,wavefunctlon Wnuccouples
with alevelsandin theelectronicgroundstate of Z symmetry with theoddN levels.This
form of hydrogenis calledortho-hydrogen; the otherls para-hydrogen. Thereis a 3:1 ratio of
levelsin orthovs para.lt is noteasyfor themoleculeto undergaatransitionfrom orthoto para;
in electromagnetitransitionsthis doesnot occur,sincethe electricdipole doesnot affectthe
ordering of nuclear spins.

5.10 Missing levelsin the oxygen molecule

Thenuclearspinof 180 nucleiis I=0. As aconsequencthe nuclearspinwavefunctioncanbe
left outof theproblem,orin otherwords it shouldbeconsidere@sahavingpositivesymmetry.
Theelectronlogroundstateof O, hasa3 24 symmetry| hencehasanegativeparity for theelec-
tronicwavefunction.1®0 nucleifollow Bose Einsteirstatisticssothetotalwavefunctionmust
besymmetricundertheinterchangeperatorThe symmetricstateqs symmetry seethefigure
for 2 stateslarethe oneswith odd N quantumnumberdor purerotation. Theses-statexom-
binewith symmetricnuclearspinwavefunctions,the (a)-statesvould combinewith anti-sym-
metric nuclearspinwavefunctions,but these do not exist. As a consequencthe (a) statesor
the states with even rotational angular momentum do not exist.
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The energy levels of the oxygen molecule in its ground state are depicted in the figure.

N=4 J=4
RAR AT
RI[Ro S - N = 3 - J=3
N=2 J=2 g RRIRQ
W
A4l "4 s N = l—py =1
N=0 J=0 PR PQ
A
Ng
J=3
N=3 J=4 g
J=2 9y J=2
g N=2—& J=3
J=1 N
N=1 J=2
J=0
N =0 J=1

Figure: The allowed and forbidden states and transitions in the 160, molecule,

Note that this analysis only holds for the 180, molecule, and for the 180, molecule, because
the 180 nucleus also has 1=0. The heteronuclear species (isotopomers) 0180, 160170 and
170180 do not follow this peculiar behaviour since the additional inversion symmetry islift-
ed. In the 1702 isotopomer the situation is also different, because the nuclear spinis|=5/2.
Thisgivesriseto an intensity alternation (which one?), but not to a disappearing of lines. So
for all isotopomers except 1°0, and 180, the level scheme depicted on the right is appropri-
ate.

Inthefiguretherotational levelsof the electronic ground state (329') are splitinto three com-
ponent as aresult of thetriplet structure. The electron spins of the two paired outer electrons
lign up to atriplet giving mol ecglar oxygen a paramagnetic character. The$nte9ractio_;1 bg
tween the resulting spin vector S and the rotational angular momentum N, J = N+ S
causes a lifting of the degeneracy and a splitting into three components, wherever possible
(not for N=0 obvioudly).

In the electronically excited state of 1Zg+ symmetry, the situation is similar. Because the
electronic parity is positive here the odd N-levels are missing; also there is no triplet split-
ting, since we deal with asinglet state.

The transitions depicted in the figure are also anomal ous. Since both the ground and excited
states are of g-symmetry electric dipole transitions are not allowed. A second reason is that
1Zg+ - 3Zg‘ transitions are not allowed for electric dipole. The thick lines are the allowed but
very weak magnetic dipole transitions, while the thinner lines refer to the branches of the
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electric quadrupole transitions (again weaker by afactor 108). Thefact that the transition is be-
tween atriplet state and a singlet state is also areason for its weakness.

511 The3:1ratioin N,

Herzberg measured, in the 1930s, a spectrum (the Raman spectrum in the electronic ground
state of 12 symmetry) for the nitrogen molecule and observed a 3:1 ratio between lines. This
phenomenon could only be explained by assuming that the nitrogen (X*N) nucleus has a nuclear
spin of 1=1. In those days nuclel were considered to be built from protons and electrons; the
neutron was not yet observed, postulated however. The 14N nucleus was considered to be built
form 14 protons and 7 electrons giving rise to a charge of 7+ and amass of 14 amu. But 21 par-
ticles of half-integer spin should build a nucleus of total half-integer spin and should therefore
obey Fermi-Dirac statistics. This paradox gave support to the neutron hypothesis.
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6. Open Shell Molecules

6.1 Introduction

In our discussion of rotational energies we haxlle assumed (tacitly) that ﬁ was the only angular
momentum. This assumption isvery good for "% in which all electronic spins are paired off and
the orbital angular momentum, although in principle not necessarily zexo, manifests itseLf only in
second order. The situation isdrastically different in states other than "~ inwhich both L and S
can be effectively different from zero. On the qther hand in the discussion of electronic energies
the molecule was considered as non-rotating N = 0. In actual molecules all these angular mo-
menta may be present and coupled in acomplicated way by gyroscopic and magnetic forces. In-
dividual angular momentathen lose their identity and only certain sums resulting from effective
couplings are constants of motion which can be determined from the observed spectra.
The presence of the various angular momentaintroduces a number of new phenomena and prob-
lems:

(1) coupling schemes,

(2) interactions which may not only shift but also split electronic energy levels,

(3) breakdown of certain rules and approximations.

ANGULAR MOMENTA |DEFINITION QUANTUM
NUMBER

Electronic orbital L= Eﬁ L

SF projection L, M

BF projection L, A
Electronic spin 5= X s

SF projection S, Mg

BF projection S, b2
Rotational R R

SF projection R, M

BF projection R, -
Total orbital N =R+l N

BF projection N, A
Total molecular J=N+3 J

SF projection J, M,

BF projection J Q=A+Z
Total electronic Y -

BF projection - Q

In the table all the angular momenta are collected which appear in calculations of molecular en-
ergies, with their projections in SF-Z axis and the BF-z axis (the molecular axis), and associated




guanturmumbersThe couplingof ﬁ’st Ii anq)gi 'sto § corresponds$o theatomicRussel-
Saundersoupling,while thecouplingto Ja(Ji = I; + %i) representananalogorof jj-coupling.
Wehavedisregardedhepossibilityof avibrationalangulamomentumVariouspossiblevays
of couplingtheangulamomentantroducedoy Hundin 1926(knownasHund’scasesparedis-
cussed in the following section.

The newinteractionswvhich haveto be consideredn the presencef unpairedelectronicspin
and non-zero orbital momenta are:

spin-spin,

spin-orbit (and also spin other orbit),

spin-rotation.

The microscopic hamiltonian for the spin-spi,,) and spin-orbi{H, ) interaction is:

Hes = %%guéjzi[(éi ) ‘3(iii 05) (Fij 05)]

and:

(¥
— 0 2
HSor = di;[%lzmgeuBaEJ EL—?’E%?JG X [ﬂ-[j—\élj —\9/05} I:%JE_
il Ja

ey o< -]

J#1

In these expressions g. is the electronic g factor, Hg the Bohr magneton,
Fuk = ?u—_?K(?HK = |?_HK|) fand\’/“ stands for the velocity of the partigle
Actually this expression, first derived by Van Vleck (1951), is a sum:

HSOI’ = HSO+ HSI’

where
0_[Z 1 01 [
Hy = %{E"zmgeuémz B?ag?ja X EGJ} 55— > B_e,%?ii x %\’/,— —\’/,E} 0
Eb’JGjG jilﬁlj ]

_ o 2 Zalre |
He = —m—n%mgeusgj EEE([?JG %a] [éj)

The hamiltonianH, is the mostgeneralform of thefine structureinteraction.lt containsthe
usualspin-orbitinteractionthespin-other-orbitnteractionandthecrossermsbetweerthevar-
iousf's, V's and&'s. The most common forms éf, are:

1 > >
Heo' = S ¢(fp(ials)  or  Hg' = AL
5, a
9
Thelastform of H,, canonly be usedwhenl and$ arewell (or almostwell) defined.In el-
ementary text books this form is written as:
Hy" = AAZ

Thisexpressiorranonly beusedfor thediagonalcontributionof H., andonly whenA and~
aregood (or almostgood) guantumnumbersin this expressionA is the spin-orbitcoupling
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. , > .
constan{ A >0 for normaland A < 0 for invertedfine structure)andl ja is the orbitalangular
momentunof thej-th electronwith respecto thea nucleus.The spinrotationhamiltonianis
usually written in the form:

> >
Hy, = Y(RID)
(often Withﬁ replacingﬁ andA replacingy).

6.2 Hund’s Coupling Cases

Case (a)

This cgse occurs when |

(1) alll’s are cogpled '[d)_ and allg’s to S
(2) the coupling L of and § to the axial internuclearfield (sometimesalledthe L A and
S[A coupling regpectlvely)s muchstrongertthanthe spin-orbit(L [5) or anyotherpossible
coupling (e.qRLCL) i.e.

[é and

SHA»LB and SHA»NDB

» »

v
L B
N2 N2
vy
¢§¢
v 2
v H

A gyroscopicdiagramof this couplingis shownin the figure below. Both Z and§ precess
independentlyabouttheinternucleaaxisandonly theircomponent¢/A andZ, respectively)
and their sum:

Q=A+Z

. . . = 2
areconstantof motion. This sum,written asa vector Q coupleswith R to atotal molecular
angular momentum:

Hunds case (a) Hunds case (b)

It's quantum number can take the values:
J=0Q,Q+1,Q+2,...

Consequentlythe levelswith J < Q cannotoccur.Hund’s case(a) is quite commonin the
ground state otz molecules, especially the light ones.

Case (b)

. > . . 2. .
In thiscaseL is still coupledto internucleamlxisbut S is decoupledrom it, moreor less.Put
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, > . > > > >
differently, S is coupled more strongly t8 = R+ A than toA, i.e.

IiDZ»IiEé and KDZ»%EI?

> > > >
N [E>SMA
The couplings of the various angular momenta and their precessions are shown in the figure.
Explicitly the couplings are:

The quantum numbetdsandN can take the values:
\]:N+S,N+S_11 ] 1|N_3
N=ANA+LA+2,AN+3 ..
;
Precessionf S groyndﬁ is slow comparedo rotationbecauséheinteractionwhich couples
thesevectors(yN [5) is relativelyweak.The case(b) couplingis especiallyimportantwhen
A = 0 but S#0 (CN, H,", HgH, NH, O,,...), but canalsooccurfor otherelectronicstates,
particularly when there are relatively few electrons.
Case (c)

The couplingdiagramfor this caseis shownin the figure below. It occurswhenthe spin-orbit
coupling is much stronger than the coupling to the internuclear axis:

and

Hund'’s case (c) Hund'’s case (d)

Thisis usuallythe casein heavymoleculeslike Br,, |,. The couplingwhich producesja may
be of Russel-Saunders or of jj type:

Ja=L+8 3a:Zfi (j?i=>|i+§i)
Case(d)

> > o . .

In casega)and(b) theL A couplingis assumedo be strong.However,in someexcitedstates
of H,, He, andothermoleculesthe elegtronicorbit is solargethatthis couplingbecomesoo

weak.ThegyroscopieeffectsuncoupleL from theinternucleaaxis.Thecouplingdiagramap-
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propriate for this situation, shown in the figure above, corresponds to the coupling scheme:

> S =
R+L = N
> > 3
N+S=J
When S = 0 we expect a splitting of a level into 2L + 1 components characterized by:
N=R+LR+L-1,..., .., |R-L]

Splitting betweenthe J componentsvhen S> 0 is determinedoy the ﬁ [é interactionwhich
is usually very weak.

The Hund’s coupling schemesre idealizations at their bestactualmoleculescan only ap-
proachthem.Neverthelesgheyareusefulasa classificatiorandasanindicationof the“best”
basis for calculations of molecular energies.

6.3 Calculation of rotational energies

6.3.1 Case(a)

An expressiorfor therotationalenergycanin this casebe obtainedrom the“pure” rotational
hamiltonian
»2

H =BR = B3 -3)
2
assuminga simple“rotational” basissetof |JQM > correspondingo eigenvalue$)f3 N
andJ,. The result for the energy, or rotational term value, is:

F,(J) = B[J(J+1)—Qz] = BJ(J+1)

In thesecondine theterm —BQ? is disregardedbecauset is a constanin a givenelectronic
state Rotationalevelsof a °Tl multlpletareshownschematlcallyn thefigure. Thelowestlev-
elsin thisfigure correspondo J = Q. Fora N state apartfrom J = 1/2, eachvalueof J oc-
curs for each of the two multiplet components which @ve 3/2,1/2.

3 3 3
Mo My My
4 4 4
3 3 3 . 5
Rotationalenergylevelsin a T
- o o state
' < 4
1 1
0—
J J J

The questionis, how goodis the expressiorfor therotationalenergy First of all we notethat
R is NOT a good quantum number. Its value is fixed by the condition:

2= J3+1)-0°
Strictlyéspeakingthe only good quantumnumbersfor a rotating moleculeare J, M; a>nd Q.

Then R should be consideredmore properly as the perpendicularcomponentof J (i.e.
J5:Q = J ). Butthis J doesnotresultfrom nuclearrotationalone,but hasalsoa contri-
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bution from the rapidly precessing perpendicular component

N YN +
| o
\ // R

—

> . . >
L5 of L. The“pure” nuclearrotationcoupleswith L to produceJ. The operatorR of the
pure rotational angular momentum and the rotational hamiltonian are:

%

H, = BR = (Jg-Ly)? = 3B+L3-2(3, L)
Hence:
F,(J) = B,[J(J+1)-Q% +B, L0~ 2B, 00
The last term in this expression may be approximated by:
—2B,[RIL0

ThetermB,( ELéD— Q°) hasa constanvaluein agivenelectronicstateandcanbe removedas
a part of electronic energy. The rotational energy can then be written as:

F,(J) = B[J(I+1)] +f,(Q,J)

f,(Q, J) representsontributionof thelasttermof in theequation As will be shownlaterthis
term is responsible for th& -doubling.

SpinorbitcouplingA A X splitstheelectronicstateinto 2S+ 1 multipletcomponentshathave
different values of2 andf, (Q, J).

6.3.2 Case (b)

In the pure case (b) Wit% = 0 an expression for the rotational eneFgy¥N) follow from:

>2 =2 32
R =N -A

F(N) = B,[N(N + 1) =A%

which reducesdo F,(N) = B [N(N +1)] becausd?:vl\2 is independentf the rotational
quantum numberR or N).
A (somewhat) better approach is analogous to that followed in case (a). By writing:

9
we get:
>2 2 2
—>2 2 2
le.:

F(N) = B,[N(N+1) =A%+ .20 + f (A, N)

Thelasttermrepresents couplingbetweenrelectronicandrotationalmotion,in factthe same
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asabove lf this couplingis neglectecandtheterms—-2B (A™—<L>) areincludedin the
ro-vibrational energy, theR (N) reduces to:

F(N) = B,N(N +1)

Thetreatmentdgollowed %boyeneglecmot only ogherelectroniccouplings,but alsofor the
Hund’'scase(b) essentiaN [5 couplingto obtainJ. Thiscouplingcan,in goodapproxima-
tion, be written as:
> >

Hov = Y(SIN)
with y asthe spin-rotationconstantlt canbeinterpretedasaninteractionof the spinmag-
neticmomentwith themagnetidield producedoy molecularotation.Thisfield canbepro-
duced by:
(1) simple rotation of the nuclear frame and
(2) by excitation of electrons to states with non-zero angular momentum.
Theseconceffectis generallythemostimportantone,dependingntheseparatiorbetween
the electronicstatesWe considemow two exampleof case(b) couplingassuminga basis
set ofINSIML.

(1) ’s states

Forthesestateghe spin-rotationnteractionis theonly onecontributingto therotationalen-
ergy.

1[ N for J=N+1/2

1
HoU= 5[J(3+1)-S(S+1)-N(N+1)] = 3
st = 5[3( )—( ) —N( ) =35y —(N+1) for J=N-1/z

i.e.

BVN(N+1)+%yN for J=N+1/2
Fu(N) = 1
BN(N +1)—Sy(N +1) for J=N-1/2

Energylevels for s anda “M statesare shown schematicallyin the figure. Statesfor

J = N+1/2andJ = N -1/2 areoftendesignateésF,; andF, following HerzbergThe

spinrotationsplitting in thefigure is greatlyexaggeratedcachvalueof J occursin associ-
ation with two possible values bf(e.g.J = 3/2 fromN =1 andN = 2). 2

It shouldbe notedthatin the "2 stateaspin-orbittygeinteraction Sl (see™ states)
may contributesignificantlyto y . Thesplitting of a "% statedueto the spin-rotationinter-

action is known ap-doubling
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2) 35 states

Thebestknownexampleof this stateandcouplingis O, in its groundstate.Sincetherearetwo
unpaired electronic spins the following interactions have to be considered:
(1) spin-rotation(2) spin-spin{3) polarization, or induced spin-ozrbit
Spin-rotationinteractionis, in g)rinciple,thesameasin the caseof "% statesThe contribution
is givenby above whichfor a “Z state(S= 1) yieldsatriplet (this splitting is sometime<alled
p-tripling):
yN for J=N+1
MHgO= -y for J=N

-Y(N +1) for J=N-1
It wasshownby Kramers(1939)thatin the caseof two parallelspinsthis interaction whenav-
eraged over the molecular rotation, is equivalent to:

H., = A(3cos(®—1) = A(35-3)

wherey is theanglebetweenS andthemolecularaxis. Sothespin-spininteractionis equivalent
to SCA. Calculationof thespin-spincontributionis ratherstraightforwardf usecanbe madeof
angular momentum techniques. The result is:

3X(X + 1) —4S(S+ 1)N(N + 1)
2(2N—1)(2N + 3) }

(H)= INSIHINSIO= -A|
where:
X=JJ+1)-S(S+1)-N(N+1)
andA is the spin-spin coupling constant. For S=1 we obtain from this expression:

T AN _

5N+ 3 for J=N+1
H = A for J=N
N+1 _

}\ZN—l for J=N-1

The polarizationeffectinvolvesexcitationof electrongto stateswith non-zeroorbital momen-
tum li; this momentum(or momenta)interact then vvéithés via a spin-orbit type coupling

SO, . Hebb(1936)consideredicouplingof thetype S[1.o. Anotherpossiblemechanismis
amagneticspinexcitationof orbitalangulamomentumThis excitationis especiallyimportant
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whenthereis alow lying N state.Both mechanismenvolve perturbationof the groundstate
by all state Effectivehamiltoniansn bothmechanismbavethesameangulardependencas
thespin-spininteractionsand,exceptfor adifferentcouplingconstantgive the samecontribu-
tionto theenergy.Theeffectsof spin-spinandof theotherinteractioncannotbeseparateffom
observedspectraln the following we assumedhat A containsall the effects.The constantA
can be large; for ©

A=39667 MHzy =-252.7 MHz B =43 102 MHz
The resulting rotational energies are:

F(N) = BVN(N+1)+y(N+1)—3)\2|\II\I++13
Fy(N) = B,N(N +1)
N
FV(N) = BVN(N+1)_VN_3)\m

6.3.3 Case(c) and (d)

Case(c) occursquite oftenin heayydiatomic molecules(d) is howeverguige rareéTtle latter
caserequiresaweakcouplingof L to theinternucleataxisandastrongN [5 (or R [5) cou-
pling, conditions which are difficult to fulfil, simultaneously.

If we disregardall the weakereffectstherotationalenergyin case(c) is givenby the sameex-
pression as in case (a):

F,(J) = B,J(J+1)

Similar arguments yield for case (d):

F(R) = B,R(R+1)

Whenspin-orbitinteractionis largethe LS manifoldmayappeamlasasetof distinctenergylev-
els.In case(d) the manifoldmay contain (2L + 1)(2S+ 1) levelsbecauséN cantakevalues
from R+ L to R—L, exceptwhenR<L. SplittingbetweertheL subleveLsngybeIargebutbe-
tweentheJ componentsvhenS> 0 is normally negligiblebecaus¢he N [5 couplingis usu-
ally very weak.

6.4. Intermediate Cases

6.4.1 Background

The calculationof rotationalenergiesin the preceedingsectionare not very accuratefor a
numberof reasonskFirst of all, noleculesnevercomply to pure Hund'’s couplingcasesin a
moleculeS canbe coupledto A or to the molecularaxisin low rotationalstategbut asthe
rotationalfrequencyincreasesindbecomesargerthantheprecessiofirequencyof S aboutA,
S decoupledrom A andcouplesto N instead We thengeta transitionfrom case(a) to case
(b), alsoknownasspin-uncoupling. Many moleculesge.g.OH belongto an INTERMEDIATE
CASE. Similar L-uncoupling occurswhenrotationbecomesnuchfasterthanprecessiomf L
aboutthemolecularaxis.We thengetatransitionfrom caseg(b) to case(d), whichis ratherun-
common. 5
Anotherreasoriiesin energiesnvolvedin thevariouscouplingsIn casga) S is stronglycou-
pledto A andstatedliffering Z (becaus%g.of spin-orbitcoupling)havelargeengrgydiffer-
encesln casg(b) S isweaklycoupledto N, andstatediffering in orientationof S (i.e.in J)
showonly a smallenergydifference . Consequentlyaneffectwhichis consideredsrelatively
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smallin onecaseis not necessarilysoin another A practicalconsequencef this is that off-
diagonalcontributionsof someinteractionggenerallycannotbedisregarded priori. In this sit-
uation energies are solutions of (often large) secular equations.

6.4.2. Hamiltonians and r epresentations

It shouldbe obviousby now that electroniceffectsuponrotationalenergieshaveto be taken
into accountright from the beginning We shallconsiderexplicitly only therotationalenergies
in acertainelectronicstate thevarioussmallereffectswill beincludedin alaterstageThemo-
lecular hamiltonian can, in this approximation be written as a sum:

H = Hg, +H,

H.,, is thevib-electronichamiltonianof anon-rotatingmoleculeandH, is therotationalham-
iltonian. Whenz is the molecular axibl, can be written as:

H, = B(R}+R)) = B[(J,-L,—S)*+(J,-L,~S)]
For calculations an equivalent hamiltonian is:
H, = BG =3 +BL -L) +B(Z =) +B(L,S.+L.S,) -
-B(J,L.+JL,)-B(J,S +JS)
It is seerfrom thisexpressiorthat< H, > equalsBJ(J + 1) Whenbothli and§ canbeignored
{(case(a) and(c)}, BN(N + 1) whenL canbut S cannotbeignored,and BR(R+ 1) when

none of them can be ignored {case (d)}.
When spin-orbit interaction is considered expliclly, can be written as:

0 > > 0 >
Hey = Hey+ A(LLS) = He, + 3 o(f) (li B8)
|
The simplest basis functions for the calculation are:

lev, rd=|evdrO

where|r> is therotationaland |ev> the electronicwavefunction.Both haveto be specified
formally asfar aspossible.To this endwe haveto look which quantumnumbersaregoodor
bad.QuanturmumbersvhichMUST begoodin non-rotatingnoleculeanddegeneraciesf the
states in question are:

case (a) Q (Q=N\+Z) 2orl

case (b) same 2(2S+1) or 25+1
case (c) Q 2orl

case (d) L,ASY (2L+1)(2S+1)

Whenthespin-orbitinteractionis large Q is agoodquantunnumberand | Q> is agoodbasis
because the operator associated \tlsatisfies:

(L,+S)lQ0= Q|Q0

However,onthisbasisA or Z is NOT agoodquantunmumberWhenthespin-orbitinteraction
issmallA, S andZ arealmostgoodquantumnumbersand |ASZ> is the bestbasiswe can
chooseFinally, whenboth spin-orbitandthe axis interactionare not strong(e.g.electronsn
Rydbergorbitals)A, S, ~ andL arealmzostgoodand |ASZ> isagoodbasis.This basismay
. S+ . .

correspondo case(d) whenenergieskE( ZSH of the multipletsare lessthenthe rotational
separatiorBJ; we have case (d) when &( L) » BJ, case (b) is between (a) and (d).

In thefollowing we shalladoptthe |ASZ> basisfor the non-rotatingmolecule.But it should
be keptin mind thattheseare not exacteigenfunction®f the hamiltonianbecausespin-orbit
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mixesstateswith different A, S and X . In calculationst is oftenmoreconveniento assume
that |ASZ> aretheexacteigenfunctiondutthe quantumnumbersA, S andZ arenotper-
fectly good, i.e.

LIANSEO= A|ASZ[H |00

SIASEO= ZIASSH (850

|6,> and |ds> are small functions which may be considered as due to mixing effects.
The rotationalfunctions|y> canbe specifiedas |QJM> whenJ and M s the quantum
numberassociatevith J andJ,, respectivelyln theabsencef externafields J andM are
perfectquantumnumbersbut Q is NOT a quantumnumberfor rotationbecausat is not an
eigenvaluef arotationaloperatorlt enteran theproblembecausef the presencef operator
L,+S,. In the rotational functiofQJM>| = QJ>, Q should be considered as a parameter.
The basis set for a rotating molecule is chosen to be

lev, rd= |ASE, Q0= |ASEOQJI0

It is seerfrom theexpressiorior H, thattheoperatorsi and§ contributeto matrix elements
via productsJ, L, J,L,, J,S, and J, S, . Selectionrulesfor matrix elementsof L,, L, and
Sy § are:

AN = £1 A = %1

Matrix elements of the relevant operators can be obtained from well known expressions, for
example:

rsx |8 ssn= s(5+ 1)
rs5|g)SE0= 3

[(B(Z+1)|S, |ST0= (SzZ)(Stz+1)

Fortheﬁ operatorrepJaceS byL, % byA and |SZ> by |LA>, butfor thej operatorét
should be replaced by .

Therearecomplicationsn actualcalculationg1) becaussomequantunnumbersnaynotbe
goodor only approximatelygoodand(2) becausesomeof the quantumnumberanay not be
definedatall, e.g.L. In thelattercasesomeof theexpressionsannote usedandthesematrix
elements have to be represented by parameters.

6.4.3 M State

ForthisstateA = +1,S = 1/2,% = +1/2.Thebasisset |ASZ, QJ> comprisedour func-
tions:

—p 113 =y i 13
10= 1155590  BO= FL35-5 35,30
i 116 =g 111
0= 1, 5,-5, =30 W= FL35,5,-5,90

Diagonal matrix elements &, are:

([Ho/10= [3H,/30= E+3A
2|He[20= (H,)40= E-3A

The matrix of these elements corresponds to two degenerateétaté%s withB/ 2, £1/2.
In the representationchosen the matrix elements of B(J —J)), B(S —Sﬁ) and
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B(L —L;) = BL; are all diagonal. The (off-diagonal) matrix elements of:
B(L,S +L_S,)-B(J ,L_+J_L,)

areall zero(theseoperatorsio not contributeon the diagonal).Thereasons thatthe basisset
containsonly functionswith A = +1 andtheoperatorsL, cannotproducenon-zeromatrix
elementgorrespondingo AA = 1. Sotheonly off-diagonalcontributioncomesrom theop-

erator:
BWJ,S +J.S.)

whosematrix elementcanbeobtainedrrom the generakexpressionsThefinal form of theen-
ergy matrix with the present approximation is given in the table (see below).
Eigenvalueof this matrix aremosteasilyobtainedby subtractingl/2 tracefrom each2 x 2 ma-
trix. The resulting eigenvalues are:

Ep = E+BOL°, O+ B[(J+1/2)2—1]i%JA(A—4B)+4BZ(J+1/2)2

Thisexpressionwith E + B El_é[ ignored,wasfizrst derivedby Hill andVan Vleck (1932)and
is known asthe Hill-Van Vleck expressiorfor “T1 stateslt represent&nergyof two doubly
degenerate levels.

11> |2> 3> |4>

|1>| B[J(3+1)-7/4+<15%>]  -B[(3-1/2)(3+3/2)}? 0 0
+A/2
|2>|-B[(J-1/2)(3+3/2)}?  B[I(I+1)+1/4+<I>>] 0 0
-A/2
13> 0 0 B[J(J+1)-7/4+<I?>] -B[(J-1/2)(3+3/2)}2
+A/2
14> 0 0 -B[(J-1/2)(3+3/2)}? B[I(I+1)+1/4+<I2>]
-A/2

WhenJ=1/2 the functions |1> and |3> do not exist in both matrices.
The hamiltonianmatrix factorstheninto two identical1x1 matrices.Theresultis adoublyde-
generate level with energy:
1 2 1
En,, = E-3A+BIL{O¢ B[J(J +1)+ ZJ
FromthegenerakxpressiorE, thelimiting (a) and(b) casecanbeobtainedoy expandinghe
square root.

Case (a)
0 20 O
sgrt = |A|[|1—2%+%%"£2E[(J+1/2)2—1]D
[ A O B

with |A| repiaced byA and keeping only terms of order B/A we obtain:

Apart from QB = B[S this expression agrees wiBjJ(J + 1) —QZ] .

Case (b)
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1 7
En,, = 3A* B[J(J +1) ‘ZJ

1 1
= —SA+ B[J(J+1)+4}

I_|1/2

For a pure Hund’s case (B) = 0. With this value of A we obtain
_rB[(3+1/2)(3+3/2)-1]
[B[(J -1/2)(J+1/2)-1]

These expressions are consistent Vid(N+1) for N = J+1/2.
Thebasissetconsistingof functions |ASNJ> is alsoquiteconveniento handle’T statesn
intermediatecoupling. This setcorrespondso case(b), while the onewe haveusedis clearly
an(a) set.lt is alsointerestingto notethatmolecularenergiedollow approximatelycase(b),
notonly whenBJ » |AA| butalsowhen A/B = 4. his quantityis a measureof the coupling
to the internuclearaxis. Generally A(A—-4B) hasthe samevalue for A/B = x and just
A/B = 4—x.Whenx > 4 therearetwo possiblevaluesof A (onepositiveandonenegative)
which give termswith the sameseparationsThis corresponds$o regular(A > 0) andinverted
(A<0) doublets.

In thefigure is showna correlationdiagrambetweercase(b) andcase(a) bothfor regularand
inverted fine structure.

Light molecules (large B, small A) approach case (b) already at low J-values, heavier mole-
cules are closer to case (a). OH radical is a good example of this situation.

52 —m7m8 — _—5/2
2
M(b)
“Myn(a) ’My5(a)
32— 712 —_— 32
52
1/2
vN— 5/2 SR
32
32
2 52— - 52 2
My/2(a) / 72 M3x(@)
32— _— 32
mw— 7k Fy
J J
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6.5 A-doubling

6.5.1 Qualitative Features

As hasbeenshownelectronicenergydepend®n AZ. Consequenthall stateswith |A|>0 are
doublydegeneratesSimilarly, in caseof electronicmultiplets,theenergydepend®nly on Q?
andsothestatesvith £Q arealsodoublydegeneratelhe Q -degeneracyfpr examplan "%,
> statescanbelifted by spin-rotatiorandspin-spininteractiont wasdiscoveredalreadyin
the 1930’ sthatalsostateswlth Q = 0 weresplitinto doublets.The origin of this splitting,
for examplen n and3|'|0, mustobviouslybealifting of the A -degeneracyn thesestates.
The splitting was consequently call&éddoubling
Interactionsresponsibldor A -doublingmustbe capableto reversenot only Q (e.g.from
2 . . .
210> Z.qs90r My, T_,,)butalsoA to—A. Theinteractionmustinvolve opera-
torsL, andL becaus®nly thesefollow theselectiorrule AA = +1 andsocanreverse/
in oneor morestepsAn obviouscandidates mteracﬂorbetweennglecuIarrotatlonandelec-
tronic orbital motion. It maybeseenasanincipientdecouplingof L from themolecularaxis
andhenceatransitionfrom caseg(a)or (b) to casg(d). In thgvectormodelpossmlenteractlons
arecontainedn f (Q, J)orf, (A, N)i.e.of thetypeBN (L or BJ [L . However theseeffects
may alsobe seenasa partialbreakdowrof the Born-OppenheimeapproximationAs a con-
sequencef this breakdowrelectrondollow, with agonaderablamountof slippagethenu-
clear motion. The coupling operator is of the tgfe [L .
Fromaquantummechanicapointof view A -doublingmayalsobe seemsaresultof pertur-
bationof the statein questionby otherstatesSincethis perturbatiormustchange/ theper-
turbatingstatemusthavedifferentvaluesof A (so Z or A statein caseof A -doublingof a
[ -state) but the samemuiltiplicity. Althougha perturbingstatemay lie morethan10* cm*
awayfrom thestatein questiont mayproducestrong.easilymeasurablesffects.Forexample

in OH theA -splitting is: X

1.6 GHz in a2, 3= 312

6.0 GHz in M5, J=5/2
. 2

4.7 GHz in Myo, 3= 112

althoughtheperturblng 2, ,, stateis 32000cm - away.Generallythesplittingis greatestor
smallestQ, andin A statesmuchsmallerthanin I statesA (very) essentiapointin the
perturbatiorapproacho A -doublingis thatthe effectarisesfrom the differencein theinter-
actionbetween(+) and(-) parity rovibrationalsublevelsof the interactingelectronicstates,
for examplell andZ . Consequentlyhetwo componentsf a A -doublethavedifferentsym-
metries,one(+), theother(-). The(+) statecanhavelower or higherenergythanthe(-) state,
both casesccur.Lambdasplitting in a “T1 is shownschematicallyn thefigure belowwith
the correct parity of thé -doublets (case of OH).
Althoughelectroninteractionmayberegardedsthemainagentof A -doublingspin-orbitin-
teractioncannotbeneglectedn stateswith A > 0. In thesestateghelatterinteractionis much
stronger than\ -doubling and may have a profound perturbing effect.
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The A -splittingsin N can be described by simple empirical expressions:

n qd(J+1)

n case(b)  gN(N+1)

My case(ad)  a(d+1/2)

Ny, case(ad)  b(FU2)(FH12)(3H3/2)
3 case(b)  gN(N+1)

In the so-called pure precession approximation (introduced by Van Vleck) rough values of the
constants are (A(I1, Z) isthe separation between the T and a perturbing Z state):

2
oL(L+1) _ 4B,

4= 280ms) - Ay
_ 4AB,
NG
. 8B,’
~ AA(NY)

In the following section we shall discuss A -doublingin a ’N state in some detail and derive a
more complete expression for a and b ; thelimiting case (b) will yield the value for the A -cou-
pling constant g.

Sincethetwo A -doublets have opposite symmetries el ectric dipole (E1) transitions are possible
between them. The transitions produce well known A -doubling spectrain microwave and EBR
spectroscopy. Microwave spectra of interstellar OH radical originate from these transitions.

6.5.2. A-doubling in M states

Lambda-doubling in these states is most common and best knovzvn. Celebraged examples are
OH, CH, NO. These states are split b% spin-orhit interactioninto “T1, ,, and "5, multiplets.
The next higher electroni g states are "%, and these may be regarded as the only perturbers. In
essence, A -doubl i2ng in “T1 states arises because interaction between even parity I'I2 states
with, for example "X statesisdightly different from the interaction between odd parity “T1 and
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’s states.
Sincein thespin-goublestatespin-orbitinteractionscannotbedisregardedafairly complete
hamiltonian for aTl state which can show all the relevant effects, is:

>2 > >
H=H+Hg = BR +A(L B
2 2
= B[(Jy—Ly—S)° + (Jy—L,—S)"1 + AL,S, + A(L,S, + L,S))
2 2
= B -L) +§ +AL,S,-2B( [5) +B(LZ + L)) +
+(2B+ A)(L,S +L,S,) ~2B(J L+ L)

(z is themolecularaxis). With this hamiltoniana case(a) basisset |[ASZ, QJ> is the obvious
choice.Operatorsvhich connecttateswith different A areL, andL, . Whenonly theseoper-
ators are present the selection rules for matrix elements are:

AN = %1 A¥ =0

Similarly different X statesareconnectedy S, andSy andtheselectiorruleswith only these
operators are:
AN =0 A2 = %1

In the matrix elementssZ andlz_ do not changethe statesObviouslythreesuchoperatorsare
neededo change’ M,s,, into Tl_5,,. Theseoperatorchangealso A - andZz - -%,as
requiredfor A -doubling.Consequentlyve expectthat A -splittingin a5, stateshouldbe

proportionako B%2% if thissplittingis determinednly by agyroscopidnteraction But therea-
soningfollowed aboveappliesalsoto T1, ,, stateswe needthree AA and AZ pperatorso

changeboth A andZ . However it is knownfrom experimentshat A -doublingin “T1, ,, states
is largerthanin 2I‘I3/2 statesandthatit is proportionalto B,,, andso mustbe generatedy a

singleoperator.This is possiblethanksto the spin-orbitinteractionof the perpendiculacom-

ponentsof L and S (L,S, +L,S)). Matrix elementsof theseoperatorswith A> = +1 and

AN = -2 connectthe stateswith ~ = -1/2, A = +1 andX = 1/2, A = -1 in asingle
AQ = -1 transition.It is interestingto notethattheeAQ = =1 matrix elementcanreverse
the signs not only of2 but also ofA andZ fora™M;,, state.

It shouldbe clearfrométhgseremarksthatacorrectpictureof N\ -doublingcannotbe obtained
by takingonly e.g.the J [L interactionjnsteadhe completehamiltonianshouldbe considered
in a secular matrix equation.

To startwith we considerthetwo degeneratel‘l stateandasmgle(alsodegeneratefz state
perturbing thé’T states. So we have a basis set ofABZ, QJ[(E NZQL states:

11 _ ¢ 11 11 _p
0,550= P50 10,-5,-50= FE,,0  [1—3,30= T1,,0
11 o L1, 1 301

HL5-50= F,0 1330= Pry,0 0 b5 -280= P, 0

In this basis the non-zero matrix elements of the hamiltonian are:
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2 2 1
ﬁ21/2“'” 2,,00= DQ_2—1/2“'” 2 lEa = BE[‘J(‘J )+ ZJ tE

17 1
BH[J(J +1)+ ZJ ~3An

2 2 _
D2|_|1/2“'|| My,0= DZI_|-1/2“'|| M_y,0=P

Ln

2 5 ;
FM) ol HIMg 20= Oyl HIMg =y = Bn[‘](\] +1)_ZJ T2

1
D221/2|H| 2_y/50= hpi _1/2Hl 21/25—6 = BZEJ +‘D

2 2 — o — /

2 2 1
lfrl‘ll/leI 2 5,U= D')ﬂ—l/z“'” 21200 =C = EI_||2BLy|ZEEJ +§E

2 2 1 3
DZI_|3/2|H| 2, ,0= DZI_|—3/2|H| 2,08 =n = m|ZBLy|ZDﬁ/E]_§%+§E

2 2
ﬁ|_|1/2|H| 2, ,,l= D?n_1/2|H| 2 ,,7=0 = |:|_||ZBLy+ ALy|ZD

Energyof the N stateis assumedo bezeroandso E = hv(I1, ¥) andthesubscriptll or
> is introduced to indicate that B and A can be different in the two states.

The diggonal matrix elementsa, B, y follow form the first four terms of H with
—2(J [5)=-22Q. The “gurely spin” matrix elementsd and & follow from the
IS+ 3,5, part of—2(J [5) using the following phase conventions:

+i B[Sz +10= [(B|§/Z+10= %JS(S+ )-3(z£1)

£iMD)J,0£10= ~-FO,0+10= 2,00 +1)-Q(@ £ 1)
The “purely orbital” matrix elementé andn follow from the last term, with:

i \|LJA £10= DAL A+ 10

SincelL is notdefinedmatrix elementof Ly (andL, ) haveto be considerzedis%arameters.
The matrix elementsd follow from the last but oneterm. The term B(L, + Ly) yields a
small contribution independent dfand is left out:
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Priz> PE.q> PRy P> g N>

21> | @ 5 0 4 n 0
Psq>| 8 a Z 0 0 n
FNuz>| o ¢ B0 e O
RAEY I 0 0 B 0 ¢
Fz>| n 0 £ 0 y 0
PNs>| o n 0 € 0 y

With thesematrixelementshehamiltonianmatrix hastheform givenin thematrix. This matrix
can be reduced to two 3 x 3 matrices by using a symmetrized basis:

1.2 2
72[| NolE A O=Ng, O
These functions have definite positive-negative (or Kronig’s even-odd) parity.

Matrix elementsf thehamiltonianonthebasis |Ag, > caneasilybeobtainedrom theex-
pressionsfor symmetricE’ statesthe equationsarevalid without any changesfor antisym-
metric ¥ statesthe matrix elementsndicatedby an asteriskget a negativesign. All matrix
elementdetweerstateof differentparity arezero.This follows from invarianceof the hamil-
tonian under the inversion operation.
Theresultingmatricesyield two cubicsecularequationgonefor + andonefor the- sign)which
cannotbe solvedexactly. Dousmaniset al (1955) useda perturbationexpansiorof the roots
(similarto perturbatiorexpansionn quantummechanicsandobtainedathedengthyandcom-
plicatedexpressiongrom which the desiredA -splitting canbe obtained. Theseformulaehave
to be used when high accuracy is desired. Below we shall consider three special cases.

P2 1/0e> Py, > M3, >
2
°Z12+> | a %5 0+ n
Pi,>| e+ B €
M3, > n- el Y
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Case (1): Effect of the %S states negligible

In thiscasethe matrixelements), ¢ and® arezeroandthe hamiltonianmatrix reducego:

a+d 00
0 Be
0 €%y

The resulting secularequationcan be readily solvedfor the energiesof the two states,
2 ) .
(", Mj,,) and perturbed wavefunctions. The results for the energies are:

1 1 A
Ei :_(G+B)iBn 4D +_DZ+_HEﬁD_4D
2 20 "ByB, O
n

Thisresultshowsthatin the extremecase(b) the A -splitting originatesfrom the small dif-
ference between the interactions of the positive and negative states.

Case(2): A=0
This represents an extreme case (b). With A=0 the matrix elements are:
K, =a+3=E+Bs(J+1/2)(J+3/2)
K. =a-0=E+B;(J-1/2)(J+1/2)
W, =0+¢= (J+3/2)M2BL |50
W = ©-¢ = —~J-1/2)M|2BL |50
B = BylJ(J+1)+1/4] = B(J +1/2)°
y = Bgld(d+1)=7/4] = By[(I+1/2)°-2]
e = BhJ(J-1/2)(3+3/2)

n = J(J-1/2)(J +3/2)M|2BL |20

With thesematrix elementghetwo cubicsecularequationgonewith k. andy, , theother
with k_ and y_ bothfactorinto aproductof alinearandaquadraticequationThesecanbe
solved to:

mjBL,|z0, |°
En. OBpl(I+1/2)(3+3/2)~1] -8+ 1/2)(I+3/2)— 12—

[mBL,|z0_ |
En_ OBpl(0-1/2)(3+1/2)-1] -8 -1/ + 1/2)— 1A=

HereinA(IN, £) = E istheenergyseparatiometweerthell andX statesandthesubscript
(+) and(-) indicatesa symmetricandan antisymmetricstate respectivelyHowever,when
A = 0 aswe haveassumedthe two I statescoalescan energy.This implies that we
shouldreplaced + 1/2 andJ —1/2 by N. The A -splitting is thenobtainedby subtracting
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the difference betweel;+ andEy-.The result can be written in the form
where
2 2
_,/mBL ) /MLy
A(M, Z) AN, %)

This resultshowsthatin the extremecase(b) the A -splitting originatesfrom the small differ-
ence between the interactions of the positive and negative states.

Cy C,

Case (3): K =W = —A(T, %)

UsuallytheenergydifferenceA(IN, Z) betweerthe N and statess muchlargerthanthe A -

splitting (in OH A(N, £) = 32683cmY), A -splitting 0.05- 1 cmiY). In this casek — W canbe
assumedo beaconstan{ =-A(1, X)}. The secularequationreduceghento oneof second
order:

2 1 0 o
w —W[B+y+5(ui He °+ NN )}+
o 1 (<] o o [P N e] f—
+[Bv—s£ AR Wy Py FNN°B-p, Een® -y, e n)} =0
which can be solved. If we disregard terms of osiet with n> 1 the result is:
1 o o
2W:B+yiBnX+Z(|~li My +Nn°) +
1 o o [e] 00
2= [(B=Y)(Hy My °—NN°) + 20, €n°+ 24, “€°N]
n

where again:

X = J4JI+1/2)2+Y(Y=4) Y= A/B

The two signscorrespondo thetwo component®f the spin-doubletfor A>0 (normaldou-
blet) the (+) signcorrespondso I, ,, the(-) signto M, ,,, for A<0 (inverteddoublet)the
correspondence is reversed.

The A -splitting is obtainedby subtractingheexpressiomwith only p_ from thatwith only ., :

10 o o - 0
Avp = Z—A%(u s B TR )%I-iIélw_;(/E+¢E

2 o O~0 o [e P Ne)
CD:—B?((UJ,UI HH o, °ETN - L EN° - °E®N)

After filling in some of the constants:
_1, .1 m_Y O
Av, = ZDJ + E%%L + % ¥ )—(% D‘I|28Ly+ ALy|ZEm|ZBLy|ZD’ +ccl+ (DZE

_4, 1 3 2
®, = ;(DJ_E%J+§Hm|ZBLy|ZEp
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Theuppersignsareappropriatdor the upperspin-componenthelower signsfor the lower
component. From the last expression only the real part should be taken.

Evenin the presentapproximatiorthe theoryneedssomeextensionAll therelevantmatrix
elementshouldbereplacedoy a sumoverthevibrational(v,v’) levelsof a givenelectronic
levelandoverelectroniclevelsof propersymmetry.ln amorecompletetheoryalsointerac-
tion betweenl andA levelsshouldbeincluded.Following Mulliken (1931)term-energies
and A -splitting of °MN levels are usually written in terms of the followiny-jconstants:

q=0C-C,
P=a,-a
where:
2
_asr 2« |H1[2BLJE0
Cl = SZ(V, 2 + )W
2
_asru 2e |H1[2BL 20
C, = 85(v, "L )y
Re[ M|AL, | TTE"|BL, /M
al — 8Z(V',22 .\ ) [ | Y| - | Y| q
AN, )
Re[ (M|AL | [T |BL, M
a, = 85(v, 5. ) e[TjAL,) - BL,\MO
AN, Z)

(2, indicatesrovibrationalandelectronicX stateswith positiveandnegativeparity). With
these constants the expression for the term energy is:

o= ueefy 3ot oo
_ZX[(Z Y)E)+ p° +q°D+(p +2q° )DJ g%}

1,1 1 il BDD
+[x ]QD]+§%11+)_((2_Y)}E2p+qD 2xq EE]J ZDD

where:
pP°=a;+a, q° =C;+C, 0= (v, T)KNOALZ>Y/A(M, T)

Thebracketedigns[+ ] referto thesymmetrig(+) andantisymmetriq-) A -levels.Theun-
bracketed signs refer to the two components of the spin doublet.
Althoughtheexpressiohooksrathercomplicatedtheonederivedfrom it for the A -splitting

is simple:
e 2_YOo, 290, 1, 30
E] E p+q%l+x xD xD] 2 zD}

(= refers to components of the spin-doublet).
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Limiting Case (b)
In the extreme case () = 0 andY = 0 we obtain:
Av, = +gN(N +1)
W|th the(+) signfor N = J+ 1/2 andthe(-) signfor N = J—1/2. In thesimplestcaseof a
5" state the\ - -doubling constant is:
2
o - glTBL/=]
A, 2)

The matrix elementsappearingaredifficult to evaluatepusuallytheyareobtainedfrom afit of

observedspectraA roughestimatecanbe obtainedfrom the so-calledPUREPRECESSION

approximation. It is assumed (Van Vleck 1929) that:

(1) vibrational excitation in th& states is small so th&= B, is a constant,

(2) momentof inertiais independenvf Q (goodapproximatioronly for electronsn Rydberg-
type orbits),

(3)angulamomentunL of constantalueprecessesuchthatboththe I andthe T stateresult
from projection of thig_ .

In this approximation the matrix element the result for g is:

_2BIL(L+1)
CA(L3)
Often it is assumed thét is that of a single electrof. — 1).
Limiting case (a)

For this cas€Y - +o) we use the approximation

Oty )

By substitutingthis expressiorwe obtainin Y® orderfor the splitting of the n 1/ State(with
the lower signs in the equation faw, ).:

with:

a= { M|2BL, + AL,|>[1T1|2BL|2[? + cc}

A(I‘I >)
hereinthe(+) signcorrespondso A > 0 andthe(-) signto A< 0. If thegenerakquations used
the result forAv,, is:

1/2 1

= +(p+20)3 + 53

Theuppersignsin yield zeroin Y° order If we negleclttheJ independentermsin the expan-
sion we obtain for the splitting of tthI:,.)/2 state inY ~ order:

Av

Av,\2 = 1[|] +2E|%1+
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where

_ 4 2 _ 16B(4) 2
b = YA(H,Z)|m|ZBLy|Z[I] = —AA(I'I,Z)|D-I|BLV|ZE|]
_ 16B(4) 2
= (I1(BL,|>

AT DMy, 5155 BT

(with the approximatioE(zl'll/z) - E(Zl‘lg/z) = A). The expression yields to ordér”:

3

2 2 1 1 3

Bup’ = xS+ P -5 5 o

with the (+) sign for corresponds £> 0 and the (-) sign té&\< 0.
Theseresultsagreewith tgle exgressionspropgsedn theintroductionandwe havethe ex-
pectedB dependencg~B™ for “T1,,, ~B for “T1, ,,). Howevertheaccuracyis limited by
theapproximatiork —W = constantneglectof couplingbetweenlm andA statesneglect
of the spin-rotation, etc. However, the J-dependence derived is confirmed by experiments.
Fromtheresultsfor the limiting casest is possibleto drawa correlationdiagrambetween
the A -split levelsof a n multiplet for case(a) and(b) coupling.Sucha diagramis shown
in thefigure below. Thebasisrule for this diagramis thatlevelsof agivensymmetry‘com-
bine” only with levelsof thesamesymmetryithespin-splitting,of coursedisappears case
A =0 andthetwo spin-doublecomponentgorrelatewith a singleN-level. We seethatthe
A -levelsfor eachJ-valueexcept] = 1/2 ofthel1,,, multiplets(bothnormalandinvert-
ed) cross. So there are value¥@&uch that thé\ -splitting disappears for these levels.
Transitionsare allowed betweenA -sublevelsof different parity both of differentandthe
samero-vibrationallevels. The latter type of transitions,alsoknown as A -transitions,are
well known from interstellar OH and CH radicals and from laboratory spectra of NO.

712
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