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1. Introduction

1.1 Textbooks

Therearea numbera textbooksto berecommendedfor thosewho wish to studymolecular
spectroscopy; the best ones are:

1)The series of books by Gerhard Herzberg
Molecular Spectra and Molecular Structure
I. Spectra of Diatomic Molecules
II. Infrared and Raman Spectroscopy of Polyatomic Molecules
III. Electronic Spectra of Polyatomic Molecules

2)Peter F. Bernath
Spectra of Atoms and Molecules

3)Philip R. Bunker and Per Jensen
Molecular Symmetry and Spectroscopy, 2nd edition

4)Hélène Lefebvre-Brion and Robert W. Field
Perturbations in the Spectra of Diatomic Molecules

A recent very good book is that of:
5) John Brown and Alan Carrington
Rotational Spectroscopy of Diatomic Molecules

1.2 Some general remarks on the spectra of molecules

Molecules are different from atoms:
- Apart from electronictransitions,alwaysassociatedwith thespectraof atoms,alsopurely
vibrationalor rotationaltransitionscanoccur.Thesetransitionsarerelatedto radiationby
multipolemoments,similar to thecaseof atoms.While in atomsa redistributionof theelec-
tronic chargeoccursin a moleculethe transitioncanoccurthrougha permanentdipolemo-
ment related to the charges of the nuclei.
- Superimposedon thespectrallinesrelatedto electronictransitions,thereis alwaysa rovi-
brationalstructure,thatmakesthemolecularspectramuchricher.In thecaseof polyatomics
threedifferentmomentsof inertiagiveriseto rotationalspectra,in diatomicsonly asinglero-
tationalcomponent.Eachmoleculehas3n-6 vibrationaldegreesof freedomwheren is the
number of atoms.
- Atomscanionizeandionizationcontinuaarecontinuousquantumstatesthatneedto becon-
sidered.In molecules,in addition,therearecontinuumstatesassociatedwith thedissociation
of themolecule.Boundstatescancouple,throughsomeinteraction,to thecontinuaasaresult
of which they (pre)-dissociate.
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1.3 Some examples of Molecular Spectra

The first spectrum is that of iodine vapour. It shows resolved vibrational bands, recorded by
the classical photographic technique, in the so-called B3Π0u

+ - X1Σg
+ system observed in

absorption; the light features signify intense absorption. The discrete lines are the resolved
vibrations in the excited state going over to the dissociative continuum at point C. Leftward
of point C the spectrum looks like a continuum but this is an effect of the poor resolution.
This spectrum demonstrates that indeed absorption is possible (in this case strong) to the
continuum quantum state.

Later the absorption spectrum was reinvestigated by Fourier-transform spectroscopy result-
ing in the important iodine-atlas covering the range 500-800 nm. There is several lines in
each cm-1 interval and the numbers are well-documented and often used as a reference for
wavelength calibration. Note that the resolution is determined by two effects: (1) Doppler
broadening and (2) unresolved hyperfine structure. The figure shows only a small part of the
iodine atlas of Gerstenkorn and Luc.
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The hyperfine structure can be resolved when Doppler-free laser spectroscopic techniques are
invoked. The following spectrum is recorded with saturation spectroscopy. A single rotational
line of a certain band is shown to consist of 21 hyperfine components. These are related to the
angular momentum of the two I=5/2 nuclei in the I2 molecule.

Usually molecular spectra appear as regular progressions of lines. In the vibrational bands of
diatomic molecules the rotational lines are in first order at equal separation. If a quantum state
is perturbed that may be clearly visible in the spectrum. This is demonstrated in the spectra of
two bands of the SiO molecule in the H1Σ+- X1Σ+ system. The upper spectrum pertains to the
(0,0) band and is unperturbed; the lower one of the (1,0) band clearly shown perturbation of the
rotational structure.

-3000 -2000 -1000
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2. Energy levels in molecules; the quantum structure

2.1. The Born-Oppenheimer approximation

The Hamiltonian for a system of nuclei and electrons can be written as:

wherethesummationi refersto theelectronsandA to thenuclei.Thefirst termon theright
correspondsto thekinetic energyof theelectrons,thesecondtermto thekinetic energyof
thenucleiandthethird termto theCoulombenergy,dueto theelectrostaticattractionand
repulsion between the electrons and nuclei. The potential energy term is equal to:

Thenegativetermsrepresentattraction,while thepositivetermsrepresentCoulomb-repul-
sion.Notethata treatmentwith this Hamiltoniangivesa non-relativisticdescriptionof the
molecule, in which also all spin-effects have been ignored.

Now assumethat thewavefunctionof theentiremolecularsystemis separableandcan
be written as:

whereψel representstheelectronicwavefunctionandχnuc thewavefunctionof thenuclear
motion.In thisdescriptionit is assumedthattheelectronicwavefunctioncanbecalculated
for a particular nuclear distanceR. Then:

TheBorn-Oppenheimerapproximationnowentailsthatthederivativeof theelectronicwave
functionwith respectto thenuclearcoordinatesis small,so is negligibly small. In
wordsthis meansthatthenucleicanbeconsideredstationary,andtheelectronsadapttheir
positionsinstantaneouslyto thepotentialfield of thenuclei.Thejustificationfor this origi-
natesin thefactthatthemassof theelectronsis severalthousandtimessmallerthanthemass
of thenuclei. IndeedtheBO-approximationis the leastappropriatefor the light H2-mole-
cule.

If we insert the separable wave function in the wave equation:

then it follows:
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The wave equation for the electronic part can be written separately and solved:

for eachvalueof R. Theresultingelectronicenergycanthenbeinsertedin thewaveequation
describing the nuclear motion:

Wehavenowin acertainsensetwo separateproblemsrelatedto two waveequations.Thefirst
relatesto theelectronicpart,wherethegoal is to find theelectronicwavefunction
andanenergy . This energyis relatedto theelectronicstructureof themoleculeanalo-
gouslyto thatof atoms.Notethatherewedealwith an(infinite) seriesof energylevels,aground
stateandexcitedstates,dependentontheconfigurationsof all electrons.By searchingtheeigen
valuesof theelectronicwaveequationfor eachvalueof R wefind a functionfor theelectronic
energy, rather than a single value.

Solution of the nuclear part then gives the eigen functions  and eigen energies:

In theBO-approximationthenucleiaretreatedasbeinginfinitely heavy.As aconsequencethe
possibleisotopicspecies(HCl andDCl) havethesamepotentialin theBO-picture.Alsoall cou-
plings between electronic and rotational motion is neglected (e.g.Λ-doubling).

2.2. Potential energy curves

The electrostatic repulsion between the positively charged nuclei:

is a functionof the internucleardistance(s)just astheelectronicenergy.Thesetwo termscan
be taken together in a single function representing the potential energy of the nuclear motion:
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In thecaseof a diatomthevector-charactercanberemoved;thereis only a singleinternu-
clear distance between two atomic nuclei.

In thefigure belowa few potentialenergycurvesaredisplayed,for groundandexcited
states. Note that:

- atsmallinternuclearseparationtheenergyis alwayslarge,dueto theedominantroleof
the nuclear repulsion

- it is not always so that de electronic ground state corresponds to a bound state
- electronically excited states can be bound.

Electronictransitionscantakeplace,justasin theatom,if theelectronicconfigurationin the
moleculechanges.In that casethereis a transitionform onepotentialenergycurvein the
moleculeto anotherpotentialenergycurve.Sucha transitionis accompaniedby absorption
or emissionof radiation;it doesnotmakeadifferencewhetheror not thestateis bound.The
binding (chemical binding) refers to the motion of the nuclei.

2.3. Rotational motion in a diatomic molecule

Staringpoint is dewaveequationfor thenuclearmotionin deBorn-Oppenheimerapproxi-
mation:

where,justasin thecaseof thehydrogenatomtheproblemis transferredto oneof areduced
mass. Note thatµ represents now the reduced mass of the nuclear motion:

Beforesearchingfor solutionsit is interestingto considerthesimilarity betweenthis wave
equationandthatof thehydrogenatom.If a 1/R potentialis insertedthenthesolutions(ei-
genvaluesandeigenfunctions)of thehydrogenatomwould follow. Only thewavefunction

hasa differentmeaning:it representsthemotionof thenucleiin a diatomicmole-
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cule.In generalwe do not know thepreciseform of thepotentialfunctionV(R) andalsoit is
not infinitely deep as in the hydrogen atom.

Analogouslyto thetreatmentof thehydrogenatomwecanproceedby writing theLaplacian
in spherical coordinates:

Now a vector-operatorN can be defined with the properties of an angular momentum:

The Laplacian can then be written as:

The Hamiltonian can then be reduced to:

Becausethispotentialis only afunctionof internuclearseparationR, theonly operatorwith an-
gulardependenceis theangularmomentumN2, analogouslyto L2 in thehydrogenatom.The
angular dependent part can again be separated and we know the solutions:

Theeigenfunctionsfor theseparatedangularpartarethusrepresentedby thewell-knownspher-
ical harmonics:

and the wave function for the molecular Hamiltonian:

Inserting this function gives us an equation for the radial part:
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Now the wave equation has no partial derivatives, only one variableR is left.

2.4. The rigid rotor

Now assumethat themoleculeconsistsof two atomsrigidly connectedto eachother.That
meansthat the internuclearseparationremainsconstant,e.g.at a valueRe. Sincethe zero
pointof apotentialenergycanbearbitrarilychosenwechooseV(Re)=0.Thewaveequation
reduces to:

The eigenvalues follow immediately:

whereB is definedastherotational constant. Hencea ladderof rotationalenergylevelsap-
pearsin a diatom.Notethattheseparationbetweenthelevelsis not constant,but increases
with the rotational quantum numberN.
ForanHCl moleculetheinternuclearseparationis Re=0.129nm;this follows from theanal-
ysis of energy levels. Deduce that the rotational constants 10.34 cm-1.

This analysis gives also the isotopic scaling for the rotational levels of an isotope:

2.5 The elastic rotor; centrifugal distortion

In anelasticrotor R is no longerconstantbut increaseswith increasingamountof rotation
asa resultof centrifugalforces.This effect is knownascentrifugal distortion. An estimate
of this effectcanbeobtainedfrom a simpleclassicalpicture.As themoleculestretchesthe

"
2

2µR
2

-------------
Rd

d
R

2

Rd
d

 
 – N N 1+( ) V R( )+ + ℜ R( ) EvNℜ R( )=

1

2µRe
2

---------------N
2

χnuc Re( ) Erotχnuc Re( )=

EN
"

2

2µRe
2

---------------N N 1+( ) BN N 1+( )= =

N

B
1
µ
---∝



- 12 -

centrifugalforceFc is, at somenewequilibriumdistanceRe’ , balancedby theelasticbinding
forceFe, which is harmonic. The centripetal and elastic forces are:

By equatingFc=Fe and by assuming  it follows:

The expression for the rotational energy including the centrifugal effect is obtained from:

Now useRe’ for theaboveequationsandexpandingthe first termof theenergyexpressionit
follows:

ThequantummechanicalHamiltonianis obtainedby replacingN by thequantummechanical
operator . It is clearthatthesphericalharmonicsYNM(Ω) arealsosolutionsof thatHamilto-
nian. the result for the rotational energy can be expressed as:

where:

is thecentrifugaldistortionconstant.Thisconstantis quitesmall,e.g.5.32x 10-4 cm-1 in HCl,
but its effect can be quite large for high rotational angular momentum states (N4 dependence).
Selection rules for the elastic rotor are the same as for the rigid rotor (see later).

2.6. Vibrational motion in a non-rotating diatomic molecule

If wesettheangularmomentumN equalto 0 in theSchrödingerequationfor theradialpartand
introduceafunctionQ(R)with thanasomewhatsimplerexpressionresults:

Thisequationcannotbesolvedstraightforwardlybecausetheexactshapeof thepotentialV(R)
is notknown.Forboundstatesof amoleculethepotentialfunctioncanbeapproximatedwith a
quadraticfunction.Particularlynearthebottomof thepotentialwell thatapproximationis valid
(see figure).
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Near the minimumR=Re a Taylor-expansion can be made, where we useρ = R - Re:

and:

Hereagainthezerofor thepotentialenergycanbechosenat Re. Thefirst derivativeis 0 at
theminimumandk is thespringconstantof thevibrationalmotion.Thewaveequationre-
ducesto theknownproblemof the1-dimensionalquantummechanicalharmonicoscillator:

The solutions for the eigenfunctions are known:

whereHv are the Hermite polynomials; de energy eigenvalues are:

with the quantum numberv that runs over valuesv=0,1,2,3.

Fromthis we learnthatthevibrationallevelsin a moleculeareequidistantandthatthereis
acontributionform azeropointvibration.Theaveragedinternucleardistancecanbecalcu-
latedfor eachvibrationalquantumstatewith . Theseexpectationvaluesareplotted
in thefigure.Notethatathighvibrationalquantumnumbersthelargestdensityis attheclas-
sical turning points of the oscillator.
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The isotopic scaling for the vibrational constant is

Note also that the zero point vibrational energy is different for the isotopes.

2.7. Anharmonicity in the vibrational motion

The anharmonic vibrator can be represented with a potential function:

On thebasisof energiesandwavefunctionsof theharmonicoscillator,that canbeusedasa
first approximation,quantummechanicalperturbationtheorycanbeappliedto find energylev-
els for the anharmonic oscillator (with parametersk‘ andk‘‘):

In the usual spectroscopic practice an expansion is written (in cm-1),

with ωe, ωexe, ωeye andωeze to be consideredasspectroscopicconstants, that canbe deter-
mined from experiment.
Note that for theanharmonicoscillatortheseparationbetweenvibrationallevelsis no longer
constant.In the figure below the potentialandthe vibrational levelsfor the H2-moleculeare
shown.

ωe
1

µ
-------∝

V ρ( ) 1
2
---kρ2

k'ρ3
k''ρ4

+ +=

Evib "ωe v
1
2
---+ 

  15
4
------ k'

2

"ωe
---------- "

µωe
---------- 

  3
v

2
v

11
30
------+ + 

 – O k''( )+=

G v( ) ωe v
1
2
---+ 

  ωexe v
1
2
---+ 

  2
– ωeye v

1
2
---+ 

  3
ωeze v

1
2
---+ 

  4
+ + +=



- 15 -

H2 has14 boundvibrationallevels.Theshadedareaabovethedissociationlimit containsa
continuumof states.The moleculecanoccupythis continuumstate!For D2 thereare17
bound vibrational states.

A potentialenergyfunctionthatoftenresemblestheshapeof boundelectronicstatepoten-
tials is theMorse Potential defined as:

wherethethreeparameterscanbeadjustedto thetruepotentialfor acertainmolecule.One
canverify thatthis potentialis not sogoodat . By solvingtheSchrödingerequation
with this potential one can derive the spectroscopic constants:

The energies of the rovibrational levels then follow via the equation:

Anotherprocedurethatis oftenusedfor representingtherovibrationalenergylevelswithin
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aphysicalmeaning.neverthelessarelationcanbeestablishedbetweentheYkl andthemolecular
parametersBe, De, etc. In approximation it holds:

2.8. Energy levels in a diatomic molecule: electronic, vibrational and rotational

In amoleculethereareelectronicenergylevels,justasin anatom,determinedby theconfigu-
rationof orbitals.Superimposedonthatelectronicstructurethereexistsastructureof vibration-
al and rotational levels as depicted in the figure.

Transitionsbetweenlevelscanoccur,e.g.via electricdipole transitions,accompaniedby ab-
sorptionor emissionof photons.Justasin thecaseof atomsthereexistselectionrulesthatde-
termine which transitions are allowed.

2.9. The RKR-procedure

Thequestionis if thereexistsaprocedureto deriveapotentialenergycurveform themeasure-
mentson theenergylevelsfor acertainelectronicstate.Suchaprocedure,which is theinverse
of aSchrödingerequationdoesexistandis calledtheRKR-procedure,afterRydberg,Klein and
Rees.

Y 10 ωe≈ Y 01 Be≈ Y 20 ωexe–≈ Y 11 αe≈ Y 30 ωeye≈
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3. Transitions between quantum states

3.1. Radiative transitions in molecules

In asimplepictureamoleculeactsin thesamewayuponincidentelectromagneticradiation
asanatom.Themultipolecomponentsof theelectromagneticfield interactswith thecharge
distributionin thesystem.Again themostprominenteffect is theelectricdipoletransition.
In amoleculewith transitionsin theinfraredandevenfar-infraredtheelectricdipoleapprox-
imationis evenmorevalid, sinceit dependson theinequality.Thewavelengthλ of thera-
diation is much longer than the size of the moleculed:

In the dipole approximation a dipole momentµ interacts with the electric field vector:

In aquantummechanicaldescriptionradiativetransitionsaretreatedwith a "transitionmo-
ment"Mif defined as:

Thismatrixelementis relatedto thestrengthof a transitionthroughtheEinsteincoefficient
for absorption is:

Very generallythe Wigner-Eckarttheoremcanbe usedto makesomepredictionson al-
lowedtransitionsandselectionrules.Thedipoleoperatoris an -vector,soa tensorof rank
1. If thewavefunctionshavesomehowadependenceonaradialpartandanangularpartthe
theorem shows how to separate these parts:

In thedescriptionthetensorof rank1 q cantakethevalues0, -1 and+1; this corresponds
with x, y, andz directionsof thevector.In all casestheWigner-3jsymbolhasa valueune-
qualto 0, if ∆J=0, -1 and+1.This is ageneralselectionrule following if J is anangularmo-
mentum:

Therule ∆M=0 only holdsfor q=0, soif thepolarisationis alongtheprojectionof thefield
axis.
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3.1. Two kinds of dipole moments: atoms and molecules

In atomsthereis nodipolemoment.Neverthelessradiativetransitionscanoccurvia atransition
dipolemoment;thiscanbeunderstoodasareorientationor relocationof electronsin thesystem
asa resultof a radiativetransition.Moleculesaredifferent; theycanhavea permanentdipole
moment as well. The dipole moment can be written as:

WhereeandN referto theelectronsandthenuclei.In factdipolemomentscanalsobecreated
by the motion of the nuclei, particularly through the vibrational motion, giving rise to:

wherethefirst termis theelectronictransitiondipole,similar to theonein atoms,thesecondis
the permanent or rotating dipole moment and the third is the vibrating dipole moment.

3.2. The Franck-Condon principle

Herewe investigateif thereis a selectionrule for vibrationalquantumnumbersin electronic
transitions in a diatom. If we neglect rotation the wave function can be written as:

The transition matrix element for an electronic dipole transition between statesΨ’ andΨ’’ is:

Notethaton theleft sidewithin theintegralthereappearsa complexconjugatedfunction.The
dipole moment contains an electronic part and a nuclear part (see above). Insertion yields:

If two differentelectronicstatesψ’el andψ’’ el areconcernedthenthesecondtermcancels,be-
causeelectronicstatesareorthogonal.Note: it is thesecondtermthatgivesriseto purevibra-
tional transitions(alsopurerotationaltransitions)within an electronicstateof the molecule.
Here we are interested in electronic transitions. We write the electronic transition moment:

In first approximationthiscanbeconsideredindependentof internucleardistanceR. This is the
Franck-Condonapproximation,or theFranck-Condonprinciple.As a resultthetransitionma-
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trix element of an electronic transition is then:

The intensityof a transitionis proportionalto the squareof the transitionmatrix element,
hence:

SotheFranck-Condonprinciplegivesusaselectionrulefor vibrationalquantumnumbersin
electronictransitions.The intensityis equalto theoverlapintegralof thevibrationalwave
functionof groundandexcitedstates.Thisoverlapintegralis calledtheFrank-Condonfac-
tor. It is not a strict selection rule forbidding transitions!

3.3. Vibrational transitions: infrared spectra

In theanalysisof FC-factorsthesecondtermin theexpressionfor thedipolematrixelement
was not further considered. This term:

reduces,in caseof asingleelectronicstate(thefirst integralequals1 becauseof orthogonal-
ity) it can be written as:

wherethefirst termrepresentsthepermanentdipolemomentof themolecule.In higheror-
derapproximationin avibratingmoleculeinduceddipolemomentsplayarole,but theseare
generally weaker.

µif Me R( ) ψ'vibψ''vib Rd∫=

I µif
2

v' v''〈 | 〉 2∝ ∝

µif ψ'elψ''el r ψ'vibµNψ''vib∫d Rd∫=

v'〈 |µvib v''| 〉 v'〈 | aρ bρ2
+ +( ) v''| 〉=
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An importantconsequenceis thatin ahomonuclearmoleculethereexistsnodipolemoment,
, so there isno vibrational or infrared spectrum!

If we proceedwith theapproximationof a harmonicoscillatorthenwe canusetheknown
wavefunctionsQv(ρ) to calculateintensitiesin transitionsbetweenstateswith quantumnum-
bersvk andvn:

form which a selection rule follows for purely vibrational transitions:

In caseof ananharmonicoscillator,or in caseof aninduceddipolemomentso-calledovertone
transitions occur. Then:

Theseovertonetransitionsaregenerallyweakerbyafactorof 100thanthefundamentalinfrared
bands.

Note that vibrational transitionsarenot transitionsinvolving a simplechangeof vibrational
quantumnumber.In vibrationaltransitionstheselectionrulesfor therotationalor angularpart
must be satisfied (see below).

3.4. Rotational transitions

Inducedby thepermanentdipolemomentradiativetransitionscanoccurfor whichtheelectron-
ic aswell asthevibrationalquantumnumbersarenotaffected.Thetransitionmomentfor atran-
sition between states  and  can be written as:

where the states represent wave functions:

Theprojectionof thedipolemomentontotheelectricfield vector(thequantizationaxis)canbe
written in vector form (in spherical coordinates) in the space-fixed coordinate frame:

Thefact thatthevectorcanbeexpressedin termsof a simplesphericalharmonicfunctionY1m

µvib 0=
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allows for a simple calculation of the transition moment integral:

This gives only a non-zero result if:

Sorotationaltransitionshaveto obeytheseselectionrules.Thesameholdsfor thevibration-
al transitions.

3.5. Rotation spectra

The energy expression for rotational energy levels, including centrifugal distortion, is:

Hereweadopttheusualconventionthatgroundstatelevelsaredenotedwith N" andexcited
statelevelswith N’. Thesubscriptν refersto thevibrationalquantumnumberof thestate.
Then we can express rotational transition between ground and excited states as:

AssumeN’=N"+1  for absorption:

If the centrifugal absorption is neglected and an equally spaced sequence of lines is found:

The centrifugal distortion causes the slight deviation from equally separated lines.

Notethatin apurerotationspectrumthereareonly absorbingtransitionsfor which∆N=N’-
N"= 1, so in the R-branch (see below).
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3.6. Rovibrational spectra

Now theterm values, or the energies, are defined as:

For transitions  one finds the transition energies:

Here is the so-calledbandorigin, the rotationlesstransition.Note that
there is no line at this origin. So:

Now thedifferentbranchesof atransitioncanbedefined.TheR-branchrelatesto transitionfor
which∆N=1.Notethatthisdefinitionmeansthattherotationalquantumnumberof theexcited
stateis alwayshigherby 1 quantum,irrespectiveof thefact thatthetransitioncanrelateto ab-
sorptionor emission.With neglectof thecentrifugaldistortiononefinds thetransitionsin the
R-branch:

Similarly transitionsin theP-branch,definedas∆N=-1transitions,canbecalculated,againwith
neglect of centrifugal distortion:

Now the spacing between the lines is roughly 2B; more precisely:

wherethestatementon theright holdsif Bv’ < Bv". Hencethespacingin theP-branchis larger
in theusualcasethat therotationalconstantin thegroundstateis larger.Thereis a pile up of
lines in the R-branchthat caneventuallylead to the formationof a bandhead, i.e. the point
where a reversal occurs.
An energylevel diagramfor rovibrationaltransitionsis shownin thefollowing figure.Where
thespacingbetweenlinesis 2B thespacingbetweentheR(0)andP(1)linesis 4B. Hencethere
is aband gap at the origin.
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3.7. Rovibronic spectra

If therearetwo differentelectronicstatesinvolvedrovibronictransitionscanoccur,i.e.tran-
sitionswheretheelectronicconfiguration,thevibrationalaswell astherotationalquantum
numberschange.Transitionsbetweena lower electronicstateA anda higherexcitedstate
B as in the following scheme can take place:

Possibletransitionsbetweenthelowerandexcitedstatehaveto obeytheselectionrules,in-
cluding the Franck-Condon principle. Transitions can be calculated:
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AgainRandP branchescanbedefinedin thesamewayasfor vibrationaltransitionswith tran-
sition energies:

But now the constantshavea slightly different meaning:σ0 is the bandorigin including the
electronicandvibrationalenergies,andtherotationalconstantsBv’ andBv" pertainto electron-
ically excited and lower states. If now we substitute:

Thenwe obtainan equationthat is fulfilled by the lines in the R branchaswell asin the P-
branch:

This is a quadratic function in m; if we assume thatB’ < B", as is usually the case, then:

aparabolaresultsthatrepresentstheenergyrepresentationsof RandP branches.Suchaparab-
ola is calleda Fortrat diagramor a Fortrat Parabola. Thefigure showsonefor a singlerovi-
bronic band in the CN radical at 388.3 nm.
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Notethatthereis noline for m=0; this impliesthatagainthereis aband gap. Fromsuchfig-
ureswe candeducethat therealwaysis a bandheadformation,eitherin theR-branchor in
theP-branch.In thecaseof CN in thespectrumabovethebandheadformsin theP-branch.
The bandhead can easily be calculated, assuming that it is in theP-branch:

It follows that the bandhead is formed at:

3.8. Population distribution

If line intensitiesin bandsare to be calculatedthe populationdistribution over quantum
stateshasto beaccountedfor. Fromstatisticalthermodynamicsapartitionfunctionfollows
for populationof statesat certainenergiesundertheconditionof thermodynamicequilibri-
um. In caseof Maxwell-BoltzmannstatisticstheprobabilityP(v) of finding a moleculein
quantum state with vibrational quantum numberv is:

When filling in the vibrational energy it follows:

whereN is theZustandssumme,andkT is expressedin cm-1. As oftenin statisticalphysics
(ergodictheorem)P(v) canbeinterpretedasa probabilityor a distribution.As anexample
P(v) is plotted as a function ofv in the following figure.

At eachtemperaturetheratioof moleculesin thefirst excitedstateoverthosein theground
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statecanbecalculated.P(v=1)/P(v=0)is listedin theTablefor severalmoleculesfor 300Kand
1000K.

In caseof thedistributionoverrotationalstatesthedegeneracyof therotationalstatesneedsto
beconsidered.Everystate has(2J+1) substates . Hencethepartitionfunctionbecomes:

In the figure the rotationalpopulationdistributionof theHCl moleculeis plotted.Note that it
doesnotpeakatJ=0. Thepeakvalueis temperaturedependentandcanbefoundthroughsetting:
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J′
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-----------------------------------------------------

1
N rot
---------- 2J 1+( )e

BJ J 1+( )– DJ2 J 1+( )2+
= =
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d

P J( ) 0=
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4. High vibrational levels in the WKB-approximation

4.1. The Wentzel Kramers Brillouin approximation

The WentzelKramersBrillouin (WKB) approximationis a tool to solve the one-dimensional
Schrödingerequation.Both, wavefunctionsandenergylevelscanbedeterminedfor a givenpo-
tential.Beforecomputerswerein commonuse,thisapproximationbelongedto thestandardtopics
in basicquantummechaniccourses,but afterthe1960’sthis approximationreceivedlessandless
attention.Recently,however,theWKB approximationgainedinterestagain,dueto developments
in thefield of coldatoms.TheWKB is wieldedto determinethebindingenergyof theuppervibra-
tional levelsin diatomicmoleculeswhich is importantfor thevalueof thescatteringlengthfor s-
wave collisions; an important parameter for experiments with cold atoms.
In molecularphysicsthis approximationcanaid in theinvestigationof vibrationallevelscloseto
adissociationlimit andcangivetunnelingrateconstantsin thecaseof, for instance,auto-ionization
or pre-dissociation.
Besidesthis, theWKB approximationis widely applicablefor a lot of quantummechanicalprob-
lems,provideda potentialcurveis known,andcanhelpto interpretphysicalphenomenain some
detail. Therefore, this approximation is presented in this chapter.

Thisandthefollowing threeparagraphsarebasedon thebook:Quantum Mechanics, by E. Merz-
bacher (1964).

Thederivationstartswith theone-dimensionalSchrödingerequation.Thevariableis chosento be
R rather thanx, as this is the symbol for the internuclear distance in diatomic molecules.

with µ as the reduced mass.
In the case thatV = constant, the equation is easily solved and the solutions are

with

In the following only k will beused,whetherE > V or E < V. In the lattercasea purelypositive
imaginary number is assumed fork.
If V = V(R) the solutions can be written in the form

The problem is now to obtain the functionu(R). Substitute this wave function and also
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in the Schrödinger equation to get

In the case ofV(R) = V = constant,k(R) = k = constant, the solution is

The second derivative (the first term) is then zero.
Omit the first term to obtain a zeroth order approximation

which has the solution

This solution will be starting point in an iteration procedure

And u1 will then become

At this point onelikes to stoptheprocedure.This is only valid, however,if u1 ≅ u0, that is if the
first order solution is almost the exact one. The conditionu1 ≅ u0 is fulfilled when

If this is the case, the square root may be rewritten andu1 becomes

Using this, the wave functionΨ can be determined.

Theconstantof integrationC1 affectsonly thenormalizationof Ψ andwill not beconsideredin
the following.

4.2. Breakdown of the approximation criterion

The criterion for the approximation was

This breaks down whenR is close to a classical turning point whereE = V and hencek = 0. The
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strategyto find asolutionfor thewholerangeof R consistsof twoparts.First,find theWKB-
solutionswherevertheapproximationis valid (i.e. far from theturningpoints).Second,find
awavefunctionwhich is valid aroundtheturningpointsandis alsovalid in acertainregion
whereonecanalsousetheWKB solutions.Now, we havesolutionsoverthewholerange,
andall wehaveto do is to tie thedifferentsolutionstogetherto find thetotalwavefunction.
To do this, it is necessaryto havea certainregionwhereboth, the WKB solutionandthe
solution around the turning points, are valid. This is schematically depicted below.
WKB standsfor theregionswheretheapproximationis valid andCF for theregionswhere
theso-called‘connectionformulas’haveto befound.R1 andR 2 arerespectivelytheinner
and outer turning point.

4.3. The connection formulas

To obtainthewavefunctionsaroundtheclassicalturningpointstheSchrödingerequation
will beexpressedin two newparameters.Theequationwill bereducedto averysimpleone
afterthelinearizationof thepotentialaroundtheturningpoints.Thetwo newparameters,v
andy are related toΨ andR in the following way

which implies

The Schrödinger equation expressed in the new parameters will be
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Now, the potential is replaced by a straight line

with Rt as one of the turning points. Note that V and E do not appearexplicitly in the
Schrödinger equation, but are hidden ink.
When this approximation is applied the Schrödinger equations takes on a simple form

This equationgivesthe correctwavefunctionsaroundthe turning pointsandhopefully over
sucha rangethatit hassomeoverlapwith therangeswheretheWKB solutionsarevalid to be
able to connect the two solutions.
In theremainingof this paragraphit will beshownthat it is possibleto find a solutionfor this
differential equation.
Suppose that the solution can be written in the form

with, λ, f(t) andthepathof integrationnot specifiedyet.After substitutionthefollowing must
be valid

If it canbeproventhatthis is equalto zerofor all y, thentheproposedsolutionis theright one.
Chooseλ suchthatthefirst termcancelstheconstant5/36,i.e. λ = 1/6 or 5/6.Theintegralbe-
comes

Integrationby partsgivestwo termswhich shouldgive zerowhenadded,but if we canprove
that both terms themselves are zero, this condition is automatically fulfilled. The two parts are
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The first one gives an expression forf(t)

This expression forf(t) is inserted in the second equation. This leads to the integral

If the limits arechosensuchthat the function is zero,thenof coursealsothedifferenceis
zero. This leads to the following solutions

With this choiceof t, f(t) andλ, we havefound a non-trivial solutionof the Schrödinger
equation.Thismeansthatwenowhaveanexpressionfor thewavefunctionaroundtheturn-
ingpoints.All thewavefunctionsin thedifferentregionsshouldbematchedtogether.Doing
so(somecomplexfunctiontheoryis involved),it canbeshownthatthedifferentpartsof the
WKB solution should be connected as follows:
Around the inner turning point (R = R1)

Around the outer turning point (R = R2)

These formulas are known as the connection formulas.
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4.4. Bound states and the WKB approximation

In this paragraph,anexpressionwill bederivedto determinetheenergiesof boundlevelsin a
potentialwell. If the potentialexhibitsonly onewell, threeregionscanbe distinguished:the
classicallyallowedregion(RegionII) andtwice a classicallyforbiddenregion(RegionsI and
III).
In Region I, the WKB wave function is

with A andB normalization constants.
ΨI must vanish rigorously whenR < R1 and thusB = 0. By applying the connection formulas

ΨII  can be found

which can be rewritten into

Only thesecondtermgivesrise to a decreasingexponentialfunction in RegionIII (thewave
function should vanish for largeR) and therefore the first term should be equal to zero

This term should be zero for everyR, which means that the cosine should vanish or

with v a positive integer.
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This leads to the formula known as the WKB-condition for bound levels in a potential well

All oneneedsfor a calculationof theenergylevelsis thepotentialanda numericalprocedure
for the integral.

4.5. Levels close to the dissociation limit

This paragraphis basedon an article by RobertJ. Leroy and RichardBernstein(JCP 52,
3869-3879(1970)).In thisarticleenergylevelsareinvestigatedcloseto adissociationlimit. An
expressionis derivedfor thedependenceof thebindingenergyasa functionof thevibrational
quantumnumber.Experimentallyit usuallybecomesharderto probethehigherlevelsin a po-
tentialandwith thisformulathehighestlevelscanbepredictedonthebasisof lowerones.Also
an estimation of the value of the dissociation limit can be given.
Thestartingpoint is theWKB-conditionfor boundlevelsaswasderivedin thepreviouspara-
graph

Differentiating this expression with respect toE(v) gives

The outer part of a molecular potential close to the dissociation limit can be described by

with Cn aconstantandn is relatedto thedominantelectrostaticinteractionbetweenthetwo at-
oms(for instancen = 1 in thecaseof ionsandn = 6 in thecaseof avanderWaalsinteraction).
D is thedissociationlimit. Insertthis potentialin the formulaandalsochangethevariableof
integration tox = R2/R

This integralis knownif theupperlimit is ∞ i.e. if R1 = 0.Onthenextpageit is shownthatthis
is avalid approximation.Theintegralof thelower figure is finite thoughthevalueof thefunc-
tion itself goesto infinity at the turningpoints.Thesurfacebeneaththe functionat the right-
handsidein thelowerfigure,is biggerthanattheleft-handsideandthisdifferencewill increase
whenonegetscloserto thedissociationlimit. Theerrormadeby usingtheapproximatepoten-
tial becomessmallercloseto thelimit. And theerrormadeby taking0 aslower limit in stead
of R1 is alsonegligible.This meansthat theintegralderivedabovemaybeevaluatedbetween
1 and∞.
With thoselimits, the integral is analyticallysolvable(seefor instanceI. S.Gradshteynand
I. M. Ryzhik, Table of Integrals, Series and Products, AcademicPressInc., New York, 1965,
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Sec. 3.251, p. 295)

with in our caseµ = −1, p = n andν = 1/2, this becomes

Theβ-function is defined as follows

and theΓ-function
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Using those definitions and  results in the following equation

with Kn a constant depending on bothCn andµ, the reduced mass.
Rearrange the terms and integrate from the dissociation limitD to E(v)

PutE(v) to one side

with vD the‘effective’ vibrationalquantumnumberatthedissociationlimit. It indicateshow
closethehighestlevel is to thedissociationlimit. If for instancevD = 13.01thenv = 13 is
just bound.If, however,vD = 12.99thenv = 13 is just not boundin thepotential.Thede-
nominatorof theexponentbecomes0 for n = 2, andtheexpressionis only valid for n > 2.
In thecasen = 1, theSchrödingerequationcanbesolvedanalyticallyandfor n = 2, adiffer-
ent expression can be found (described in the same article, but not treated here).
The formula can be rewritten in terms of the binding energyε

with an a constant.
An applicationof this formulais shownin thenextfigure.Withoutgoinginto toomuchde-
tail, anelectronicstatein H2 with a long rangedependenceof R-3, waspopulatedin amulti
photonlaserexperiment.Boththebindingenergyandthevibrationalquantumnumberwere
knownandusingtheformula,apredictioncouldbemadefor thehighervibronic levels(in-
dicatedwith arrows).If thedissociationlimit wasnot known,thenalsothebindingenergy
would havebeenunknown.In thatcase,theexpressioncouldbeusedin a fitting routineto
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determine the value of the dissociation limitD.

Fortheso-calledI’ potentialin H2 n = 3andC3 = 0.554929atomicunits.Thisnumberis isotope
independent,buta3 is not.ForH2 a3 = 3.2343cm1/6 andfor D2 a3 = 4.5722cm1/6. Plottingthe
vibrational quantum number vs.ε1/6, a straight line is to be expected.
Finally, a list is presented with the interpretation of the differentn-values

n = 1 2 charged atoms (Coulomb)
n = 2 1 charged atom and 1 atom with a permanent dipole moment
n = 3 2 atoms with permanent dipole moments
n = 3 identicalunchargedatomsin electronicstateswhosetotalangularmomentadiffer

by one (i.e.∆L = 1)
n = 4 1 charged atom and one neutral atom
n = 4 1 atom with a permanent dipole moment and 1 atom with a permanent quadru
pole moment
n = 5 2 atoms with permanent quadrupole moments
n = 6 induced dipole - induced dipole interaction

ThelastR dependenceis alsoknownasthevanderWaalsinteractionandthis termwill always
be present.

4.6. The harmonic oscillator

TheWKB approximationgivestheright energylevelsin thecaseof aharmonicoscillator.This
remarkable result will be derived below.
Theenergylevelsof apotential canbefoundin anyelementarybookonquan-
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tum mechanics

Start with the WKB condition for bound levels

with R1 andR2 the two turning points. For a certain energyE(v), the turning points are

The equation becomes

By applying the following standard integral

the condition becomes

which can be rearranged into the first formula of this paragraph

Notehowever,thatthecorrespondingwavefunctionsΨ arenot exactlythesameastheanalytical
solutions.In the analyticalcasethe solutionsareHermitepolynomialfunctions,but in the WKB
case, the functions are somewhat different.

E v( ) "
c
µ
--- v

1
2
---+ 

 =

v
1
2
---+

2µ( )
π"

-----------
1 2⁄

E v( ) 1
2
---cR

2
–

1 2⁄

R1

R2

∫ dR=

R2 R1– 2E
c

-------= =

v
1
2
---+

2µ( )
π"

-----------
1 2⁄

E v( ) 1
2
---cR

2
–

1 2⁄

R1

R2

∫ dR=

cµ( )
π"

-----------
1 2⁄ E v( )

c
----------- R

2
–

1 2⁄

R1

R2

∫ dR=

a
2

x
2

–( ) xd∫ 1
2
--- x a

2
x

2
–( ) a

2 x
a
-----asin+=

v
1
2
---+

cµ( )
"

-----------
1 2⁄ E v( )

c
-----------=

E v( ) "
c
µ
--- v

1
2
---+ 

 =



- 38 -

5. Electronic states

5.1. Symmetry operations

Symmetryplaysanimportantrole in molecularspectroscopy.Quantumstatesof themolecular
Hamiltonianareclassifiedwith quantumnumbersthatrelateto symmetriesof theproblem;the
invarianceof the Hamiltonianundera symmetryoperationof the moleculein its body fixed
frame is connected to a quantum number. For a diatomic molecule the symmetries are:

The HamiltonianH0:

is invariant under the symmetry operations:
- Rφ rotation over every angleφ about the molecular axis
- σv reflection in a molecular plane containing the molecular axis
- i in version in the molecular centre

Theseoperatorsnot only leavethemolecularHamiltonianinvariant,theyarealsocommuting
observables.In thelanguageof quantummechanicsthismeansthattheseoperatorscangenerate
a set of simultaneous eigenfunctions of the system.

Note that the operatori only appliesin a diatomicmoleculewith inversionsymmetry,i.e. a
homonuclearmolecule.Theseoperatorsform groups, for a homonuclearmoleculesthe ,
for the heteronuclear molecules the  point group.

5.2. Classification of states

Theelectronicstatesof themoleculesareclassifiedaccordingto theeigenvaluesunderthesym-
metry operations.

The reflectionoperatorσv (later we will seethat this operatoris connectedto the conceptof
parity for a molecular eigen state) acts has two eigenvalues:

TheoperatorRφ is connectedto anotherconstantof themotion,Lz. Assumethatin a molecule
theelectronicangularmomentaarecoupledto a resultingvector . In anatom is a

φ
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constant of the motion, since there is overall rotational symmetry. Here is the distinct difference
between atoms and molecules; the overall rotational symmetry is broken. In a diatom there is
only axial symmetry around the internuclear axis of the molecule. Hence only Lz is a constant
of the motion. The eigen value equation is:

In the nomenclature of diatomic molecules the electronic states are called:

Σ for Λ = 0
Π for Λ = ��
∆ for Λ = ��
Φ for Λ = ��,etc.

The energy of the molecule depends on Λ2; states with Λ and -Λ are degenerate.

For the inversion operator there are two eigenvalues:

The g (gerade) and u (ungerade) symbols are chosen for a distinction with the eigenvalues of
the σv operator.
Hence we find simultaneous eigenvalues, under the three symmetry operations, resulting in pos-
sible quantum states:

Homonuclear Heteronuclear

Λ = 0 Σg
+ Σu

+ Σg
- Σu

- Σ+ Σ-

Λ = 1 Πg
+ Πu

+ Πg
- Πu

- Π+ Π-

Λ = 2 ∆g
+ ∆u

+ ∆g
- ∆u

- ∆+ ∆-

etc

Remarks.
- There is a double degeneracy under the σv operator for states . Therefore the +/- signs
are usually omitted for .
- There is no degeneracy under the i operator for u and g states. So u and g states have different
energies.

The electron spins are added in the molecule in the same way as in atoms: . In the
classification of states the multiplicity (2S+1) due the electron spin is given in the same way as
in atoms. Hence we identify states as:

1Σg
+ for the ground state of the H2 molecule

3Σg
- for the ground state of the O2 molecule

2Π3/2 for the ground state of the OH molecule; here spin-orbit coupling is included (see later)

Additional identifiers usually chosen are the symbols X, A, B, C, ..., a, b, c, ... These just relate
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to a way of sortingthe states.The electronicgroundstateis referredto with X. The excited
statesof thesamemultiplicity getA, B, C, etc,whereasa,b, c arereservedfor electronicstates
of differentmultiplicity. Forhistoricalreasonsfor somemoleculesthesymbolsX, A, B, C, ...,
a, b, c, ... are used differently, e.g. in the case of the N2 molecule.

5.3. Interchange of identical nuclei; the operator P

In molecularphysicsusuallytwo different framesof referencearechosenthat shouldnot be
confused.As theoriginsof thebody fixed frame andthespace fixed frame thecentreof gravity
of themoleculeis chosen.Thecoordinatesin thespacefixed framearedenotedwith capitals
(X, Y, Z) andthosein thebodyfixed framewith (x, y, z). By makinguseof Euler-anglesthetwo
referenceframescanbetransformedinto oneanother.Thez-axisis by definition theline con-
nectingnucleus1 with nucleaus2 andthis definestheEuler-anglesθ andφ. By definition χ =
0 and this ties thex- andy-axis (see figure). For an Euler-transformation withχ = 0:

If R is theseparationbetweenthenuclei,thenR, θ andφ canbeexpressedin thepositionsof
the nuclei in the space fixed frame (see also figure below):

Where (X1, Y1, Z1) is the position of nucleus 1 in the space fixed frame.
If the operator interchanging the two nuclei is calledP then:

x X θ φcoscos Y θcos φsin Z θsin–+=

y X– φsin Y φcos+=

z X θsin φcos Y θsin φsin Z θcos+ +=

Euler-transformationwith χ = 0. First (x, y, z) rotatedaroundthez-axisoverangleφ. Thenthex- andy-axis
stayin theXY-plane.Subsequently(x, y, z) is rotatedaroundthey-axisoverangleθ. They-axisstaysin the
XY-plane by doing so. The grey plane in the drawing is thexz-plane.
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Or in R, θ andφ:

Becausethez-axisby definitionrunsfrom nucleus1 to 2, it will beturnedaround.Fromthe
equationsit follows thatthey-axisalsoturnsaround.If theith electronhasaposition(xi, yi,
zi), thentheposititionsof all particlesof themoleculerepresentedby (R, θ, φ; xi, yi, zi) and
so:

The inversion-operator in the space-fixed frameISF, is then defined as:

It can be deduced that:

For the inversion-operator in the body-fixed frame iBF, it holds that:

P X1 Y 1 Z1 X2 Y 2 Z2, , , , ,( ) X2 Y 2 Z2 X1 Y 1 Z1, , , , ,( )=

X– 1 Y– 1 Z– 1 X– 2 Y– 2 Z– 2, , , , ,( )=

Fig: Underthe inversion-operationP not only theanglesθ andφ change,but
also thez-axis.
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SF
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SF
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Fig: Under the interchange operator P not only the anglesθ enφ change, but also thez-as.
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By combining the last two equations it follows:

Hence the important relationship for the inversion operators is proven:

5.4. The parity operator

Parityis definedastheinversionin a space-fixedframe,denotedby theoperatorISF. We wish
to proveherethat this operatorISF is equivalentto a reflectionthrougha planecontainingthe
nuclearaxis (z-axis).For this planewe takexz, but the sameproof would hold for any plane
containing thez-axis. One can write:

with σv(xz) a reflectionthroughthexz-plane.A rotationof 180˚aroundtheaxisperpendicular
to the chosen plane (so they-axis), gives in the body-fixed frame:

with R180(y) the rotation-operatoraroundthe y-axis. In sometextbooksR180(y) is written as
C2(y). The nuclei exchange position:

and thexyz-frame then rotates. The total rotation is:

By combining equations one gets:

This is the prove that:

or in general:

wheretheaxisof R180 mustbeperpendicularto theplaneof σv. In isotropicspacethestateof
amoleculeis independentof theorientation;henceamoleculecanundergoanarbitraryrotation
without change of state. Hence it is proven thatσv signifies the parity operation:

5.5 Parity of molecular wave functions; total (+/-) parity

Parity playsan importantrole in molecularphysics,particularly in determiningthe selection
rulesfor allowedtransitionsin thesystem.Quantummechanicsdictatesthatall quantumstates
havea definiteparity (+) or (-). As discussedaboveparity is connectedto theoperatorISF de-
fined in thespace-fixedframe,but mostmolecularpropertiesarecalculatedin thebody-fixed

i
BF

R θ φ xi; yi zi, ,, ,( ) R θ φ x– i; y– i z– i, , , ,( )=

i
BF

I
SF

R θ φ xi; yi zi, ,, ,( ) R π, θ– φ π+ xi; y– i z– i, , ,( )=

P i
BF

I
SF

=

σv xz( ) R θ φ xi; yi zi, ,, ,( ) R θ φ xi; y– i zi, , , ,( )=

R180 y( ) x y z, ,( ) x– y z–, ,( )=

R180 y( ) R θ φ, ,( ) R π, θ– φ π+,( )=

R180 y( ) R θ φ xi; yi zi, ,, ,( ) R π, θ– φ π+ x– i; y– i zi, , ,( )=

σv xz( )R180 y( ) R θ φ xi; yi zi, ,, ,( ) R π, θ– φ π+ x– i; yi zi, , ,( )=

I
SF σv xz( )R180 y( )=

I
SF σvR180=

I
SF σv=
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frame.Henceweusuallyreferto σv astheparityoperator.Thetotalwavefunctionof amo-
lecular system can be written:

and hence the parity operator should be applied to all products.
In diatomicmoleculesthevibrationalwavefunctionis only dependenton theparameterR,
the internuclear separation and therefore:

Note that this is not generally the case for polyatomic molecules.
TherotationalwavefunctionscanbeexpressedasregularYJM functionsfor whichtheparity
is:

where J is the rotational angularmomentum,previously defined as N. More generally
wavefunctionscanbeused,in similarity to symmetrictop wavefunctions ,

in which J is theangularmomentumandΩ is theprojectionontothemolecularaxis in the
body-fixedframe,while M is the projectionin the body-fixedframe.In fact Ω is alsothe
total electronic angular momentum. The effect of the parity operator is:

whereJ takes the role of the total angular momentum.
Soin generalthewavefunctionsfor rotationalmotionaresomewhatmorecomplicatedthan
thesphericalharmonics , whicharethepropereigenfunctionsfor amoleculein
a1Σ state.Thesituationis differentwhen and/or aredifferentfrom zero.Then is not
perpendicular to the molecular axis. It can be shown that the wave functions are:

whereD standsfor theWignerD-functions.Thephasefactordependson thechoiceof the
phaseconvention;theaboveequationis in accordnacewith theCondon-Shortlyconvention.
Note that other conventions are in use in the literature.
Thisis relatedto theeffectof theparityoperatoronthespinpartof theelectronicwavefunc-
tion:

NotethathereΣ hasthemeaningof theprojectionof thespinS ontothemolecularaxis;that
is acompletelydifferentmeaningof Σ thanfor thestatesin caseΛ=0.Fortheorbitalangular
momentum of the electrons:

Ψmol ψelψvibψrot=

σvψvib ψvib+=

σvY JM 1–( ) J–
Y JM=

ΩJM| 〉 JKM| 〉

σv ΩJM| 〉 1–( )J Ω– Ω– J M, ,| 〉=

Y NM θ φ,( )
L S J

ΩJM| 〉 –( )M Ω– 2J 1+

8π2
---------------DMΩ

J( ) αβγ( )=

σv SΣ| 〉 1–( )S Σ–
S Σ–,| 〉=

σv Λ| 〉 1–( )± Λ Λ–| 〉=
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So remember forΛ=0 states there are indeed two solutions:

because the statesΣ+ andΣ- are entirely different states with different energies.
The effect of the parity operator on the total wave function is then:

whereσ=0 for all states except forΣ- states, for whichσ=1.
Sincetheσv operationchangesthesignsof Λ, Σ, andΩ thetrueparityeigenfunctionsarelinear
combinations of the basis functions, namely:

for which the parity operator acts as:

Thesesymmetrizedwavefunctionscanbeusedto derivetheselectionrulesin electricdipole
transitions.
With theseequationstheparity of thevariouslevelsin a diatomcanbededuced.In a Σ- state
theparity is (-)N+1, with N thepurerotation.For a Σ+ statetheparity is (-)N. Stateswith Λ>0
aredoubledegenerateandbothpositiveandnegativerotationallevelsoccurfor eachvalueof
N. NotethatwehavejumpedbackfromtheangularmomentumJ (whichincludesΩ) to N which
refers to pure rotation.

σv Σ±| 〉 Σ±| 〉±=

σv ψelψvibψrot( ) σv nΛΣΩ| 〉 v| 〉 ΩJM| 〉( )=
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n Λ– S Σ–, , ,| 〉 v| 〉 Ω– J M, ,| 〉=
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Thelowestenergylevelsin theΠ and∆ statesarepurposelydepictedhigher.Thosearethe
levelsfor whichthepurerotationalangularmomentumis N=0. Notethatin astateof Π elec-
tronicsymmetrythereis 1 quantumof angularmomentumin theelectrons;hencethelowest
quantum state isJ=1. In a∆ stateJ=2 is the lowest state.

5.6 Rotationless parity (e/f)

Becauseof theJ-dependentphasefactor the total parity changessign for eachJ-level in a
rotationalladder.Thereforeanotherparityconceptwasestablishedwherethisalternationis
divided out. (e) and (f) parity is defined in the following way (for integer values ofJ):

For half-integer values ofJ the following definitions are used:

It canbeverified thatall levelsin aΣ+ statehave(e)parity.Similarly, all levelsin aΣ- state
have (f) parity. ForΠ states all levels occur in e/f pairs with opposing parity.
Theuseof e/f suppressesthephasefactorin thedefinitionof theparityeigenfunctions.Now
it is found, for example in the evaluation of symmetrized basis functions for2Π states:

5.7 g/u and s/a symmetries in homonuclear molecules

Forhomonuclearmoleculesthepointgroup containstheinversionoperationi defined
in thebody-fixedframe.Theoperationi leavesthevibrational,rotationalandelectronspin
partsof thewavefunctionunchanged;it onlyactsontheelectronicpartof thewavefunction.
Theimportantpoint to realizeis thatthetransitiondipolemomentoperator is of u-parity
and hence the selection rules for electric dipole transitions are .

σvψ 1–( )Jψ+= for e

σvψ 1–( )Jψ–= for f

σvψ 1–( )J 1 2⁄– ψ+= for e

σvψ 1–( )–
J 1 2⁄– ψ= for f
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2
-----------------------------------------=
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2
-----------------------------------------=
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2
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In the above the interchange operator P was defined and it was proven that:

States which remain unchanged under the P operator are called symmetric (s), while those
changing sign are called anti-symmetric (a). Under the operation ISF or σv the levels get their
(+/-) symmetry, while the operation iBF introduces the g/u symmetry. Thus it follows when the
electronic state is:

gerade + levels are symmetric
- levels are anti-symmetric

ungerade + levels are anti-symmetric
- levels are symmetric

This gives the following ordering:

For Λ>0 states the Πg
- states are ordered as Σg

-, etc.

5.8 The effect of nuclear spin

The magnetic moment of the nuclei interact with the other angular momenta in the molecular
system. When all the angular momenta due to rotation, electronic orbital and spin angular mo-
mentum are added to  then the spin of the nucleus  can be added:

If both nuclei have a spin they can both be added following the rules for addition of angular mo-
menta.

The additions of angular momenta play a role in heteronuclear as well as homonuclear mole-
cules. Of course the degeneracy of the levels should be taken into account: (2I1+1)(2I2+1).

In a homonuclear molecule the symmetry of the nuclear spin wave functions play a role. For
diatomic homonuclear molecules we must distinguish between nuclei with:
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- integral spin, which obey the Bose-Einstein statistics
- half-integral spin which obey the Fermi-Dirac statistics

The symmetrization postulate of quantum mechanics tells us that all wave functions are ei-
ther
unchanged or change sign under permutation of two particles. The total wave function Ψ
must be symmetric for integral spin particles, anti-symmetric for half-integral spin particles.
This gives rise to symmetry restrictions that can be viewed in various ways; the textbooks
give also various arguments, starting from different perspectives. One view is to start from
the interchange operator P, consider electronic states with g-symmetry (under iBF) and +-
symmetry (under σv) and neglect the vibrational part (always a positive parity in diatomics).
Then the rotational parts of the wave function and the nuclear spin wave functions remain.
The product of the exchange properties of these wave functions should follow the proper sta-
tistics. For the rotational levels (here we restrict ourselves to pure rotation; in case of angular
momentum coupling between electronic and rotational motion it also applies) the parity is
(-)N. Hence it follows:

FD-nuclei even N require ψnuc anti-symmetric
odd N require ψnuc symmetric

BE-nuclei even N require ψnuc symmetric
odd N require ψnuc anti-symmetric

If the symmetry of the wave function is considered then the rules change for -parity states
and for u-states. One can derive:

FD-nuclei s levels require ψnuc anti-symmetric
a levels require ψnuc symmetric

BE-nuclei s levels require ψnuc symmetric
a levels require ψnuc anti-symmetric

The nuclear spin weight is (2I+1)2 where I is the spin. Of the (2I+1)2 possible states:

(2I+1)(I+1) are symmetric
(2I+1)I are anti-symmetric

5.9 Para and ortho hydrogen

In the hydrogen molecule with two spin IH=1/2 the total nuclear spin is:

There exist (2I+1)2=4 possible quantum states of which 3 are symmetric and one anti-sym-

I tot IH IH+ 0 1,= =
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metric under interchange of the two particles (note that α means spin up,β spin down):

and:

Note that the three states forI=1 haveMI=+1, -1 and 0.
For thehydrogennucleiFD-statisticsapplies,hencethesymmetricwavefunctionψnuccouples
with a levelsandin theelectronicgroundstate,of 1Σg

+ symmetry,with theoddN levels.This
form of hydrogenis calledortho-hydrogen; theotheris para-hydrogen. Thereis a 3:1 ratio of
levelsin orthovspara.It is noteasyfor themoleculeto undergoatransitionfrom orthoto para;
in electromagnetictransitionsthis doesnot occur,sincetheelectricdipoledoesnot affect the
ordering of nuclear spins.

5.10 Missing levels in the oxygen molecule

Thenuclearspinof 16O nucleiis I=0. As aconsequencethenuclearspinwavefunctioncanbe
left outof theproblem,or in otherwords,it shouldbeconsideredasahavingpositivesymmetry.
Theelectronicgroundstateof O2 hasa3Σg

- symmetry,hencehasanegativeparity for theelec-
tronicwavefunction.16O nucleifollow Bose-Einsteinstatistics,sothetotalwavefunctionmust
besymmetricundertheinterchangeoperator.Thesymmetricstates(ssymmetry,seethefigure
for Σ- states)aretheoneswith oddN quantumnumbersfor purerotation.Theses-statescom-
binewith symmetricnuclearspinwavefunctions,the(a)-stateswouldcombinewith anti-sym-
metricnuclearspinwavefunctions,but these do not exist. As a consequencethe(a) states,or
the states with even rotational angular momentum do not exist.

I 1=

α 1( )α 2( )
β 1( )β 2( )

1

2
------- α 1( )β 2( ) β 1( )α 2( )+[ ]

I 0=
1

2
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The energy levels of the oxygen molecule in its ground state are depicted in the figure.

Note that this analysis only holds for the 16O2 molecule, and for the 18O2 molecule, because
the 18O nucleus also has I=0. The heteronuclear species (isotopomers) 16O18O, 16O17O and
17O18O do not follow this peculiar behaviour since the additional inversion symmetry is lift-
ed. In the 17O2 isotopomer the situation is also different, because the nuclear spin is I=5/2.
This gives rise to an intensity alternation (which one?), but not to a disappearing of lines. So
for all isotopomers except 16O2 and 18O2 the level scheme depicted on the right is appropri-
ate.
In the figure the rotational levels of the electronic ground state (3Σg

-) are split into three com-
ponent as a result of the triplet structure. The electron spins of the two paired outer electrons
lign up to a triplet giving molecular oxygen a paramagnetic character. The interaction be-
tween the resulting spin vector and the rotational angular momentum ,
causes a lifting of the degeneracy and a splitting into three components, wherever possible
(not for N=0 obviously).
In the electronically excited state of 1Σg

+ symmetry, the situation is similar. Because the
electronic parity is positive here the odd N-levels are missing; also there is no triplet split-
ting, since we deal with a singlet state.
The transitions depicted in the figure are also anomalous. Since both the ground and excited
states are of g-symmetry electric dipole transitions are not allowed. A second reason is that
1Σg

+ - 3Σg
- transitions are not allowed for electric dipole. The thick lines are the allowed but

very weak magnetic dipole transitions, while the thinner lines refer to the branches of the
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Figure: The allowed and forbidden states and transitions in the 16O2 molecule.
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electric quadrupole transitions (again weaker by a factor 106). The fact that the transition is be-
tween a triplet state and a singlet state is also a reason for its weakness.

5.11 The 3:1 ratio in N2

Herzberg measured, in the 1930s, a spectrum (the Raman spectrum in the electronic ground
state of 1Σg

+ symmetry) for the nitrogen molecule and observed a 3:1 ratio between lines. This
phenomenon could only be explained by assuming that the nitrogen (14N) nucleus has a nuclear
spin of I=1. In those days nuclei were considered to be built from protons and electrons; the
neutron was not yet observed, postulated however. The 14N nucleus was considered to be built
form 14 protons and 7 electrons giving rise to a charge of 7+ and a mass of 14 amu. But 21 par-
ticles of half-integer spin should build a nucleus of total half-integer spin and should therefore
obey Fermi-Dirac statistics. This paradox gave support to the neutron hypothesis.



6. Open Shell Molecules

6.1 Introduction

In our discussion of rotational energies we have assumed (tacitly) that was the only angular
momentum. This assumption is very good for in which all electronic spins are paired off and
the orbital angular momentum, although in principle not necessarily zero, manifests itself only in
second order. The situation is drastically different in states other than in which both and
can be effectively different from zero. On the other hand in the discussion of electronic energies
the molecule was considered as non-rotating . In actual molecules all these angular mo-
menta may be present and coupled in a complicated way by gyroscopic and magnetic forces. In-
dividual angular momenta then lose their identity and only certain sums resulting from effective
couplings are constants of motion which can be determined from the observed spectra.
The presence of the various angular momenta introduces a number of new phenomena and prob-
lems:

(1)  coupling schemes,
(2)  interactions which may not only shift but also split electronic energy levels,
(3)  breakdown of certain rules and approximations.

In the table all the angular momenta are collected which appear in calculations of molecular en-
ergies, with their projections in SF-Z axis and the BF-z axis (the molecular axis), and associated

ANGULAR MOMENTA DEFINITION QUANTUM
NUMBER

Electronic orbital

SF projection

BF projection

Electronic spin

SF projection

BF projection

Rotational

SF projection

BF projection -

Total orbital

BF projection

Total molecular

SF projection

BF projection

Total electronic -

BF projection -

N
Σ1

Σ1
L S

N 0=

L li∑= L

LZ ML

Lz Λ

S si∑= S

SZ MS

Sz Σ

R R

RZ M

Rz

N R L+= N

N z Λ

J N S+= J

JZ MJ

J Ω Λ Σ+=

J ji∑=

Ω
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quantumnumbers.Thecouplingof ’s to and ’s to correspondsto theatomicRussel-
Saunderscoupling,while thecouplingto representsananalogonof jj-coupling.
Wehavedisregardedthepossibilityof avibrationalangularmomentum.Variouspossibleways
of couplingtheangularmomentaintroducedby Hundin 1926(knownasHund’scases)aredis-
cussed in the following section.
Thenewinteractionswhich haveto beconsideredin thepresenceof unpairedelectronicspin
and non-zero orbital momenta are:
spin-spin,
spin-orbit (and also spin other orbit),
spin-rotation.
The microscopic hamiltonian for the spin-spin  and spin-orbit  interaction is:

and:

In these expressions ge is the electronic g factor, the Bohr magneton,
 and  stands for the velocity of the particle.

Actually this expression, first derived by Van Vleck (1951), is a sum:

where

Thehamiltonian is themostgeneralform of thefine structureinteraction.It containsthe
usualspin-orbitinteraction,thespin-other-orbitinteractionandthecrosstermsbetweenthevar-
ious  and . The most common forms of  are:

Thelastform of canonly beusedwhen and arewell (or almostwell) defined.In el-
ementary text books this form is written as:

Thisexpressioncanonly beusedfor thediagonalcontributionof andonly when and
aregood(or almostgood)quantumnumbers.In this expression is the spin-orbitcoupling
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constant( for normaland for invertedfine structure)and is theorbitalangular
momentumof the j-th electronwith respectto theα nucleus.Thespinrotationhamiltonianis
usually written in the form:

(often with  replacing  and  replacing ).

6.2 Hund’s Coupling Cases

Case (a)

This case occurs when
(1) all ’s are coupled to and all ’s to ,
(2) the coupling of and to the axial internuclearfield (sometimescalledthe and

coupling,respectively)is muchstrongerthanthespin-orbit( ) or anyotherpossible
coupling (e.q. ) i.e.:

A gyroscopicdiagramof this couplingis shownin the figure below.Both and precess
independentlyabouttheinternuclearaxisandonly their components( and , respectively)
and their sum:

areconstantsof motion.This sum,written asa vector coupleswith to a total molecular
angular momentum:

It’s quantum number can take the values:

Consequently,the levelswith cannotoccur.Hund’s case(a) is quite commonin the
ground state of  molecules, especially the light ones.

Case (b)

In thiscase is still coupledto internuclearaxisbut is decoupledfrom it, moreor less.Put
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differently,  is coupled more strongly to  than to , i.e.

The couplings of the various angular momenta and their precessions are shown in the figure.
Explicitly the couplings are:

The quantum numbersJ andN can take the values:

Precessionof around is slow comparedto rotationbecausetheinteractionwhich couples
thesevectors is relativelyweak.Thecase(b) couplingis especiallyimportantwhen

but (CN, H2
+, HgH, NH, O2,...), but canalsooccurfor otherelectronicstates,

particularly when there are relatively few electrons.

Case (c)

Thecouplingdiagramfor this caseis shownin thefigure below.It occurswhenthespin-orbit
coupling is much stronger than the coupling to the internuclear axis:

This is usuallythecasein heavymolecules,like Br2, I2. Thecouplingwhichproduces may
be of Russel-Saunders or of jj type:

Case (d)

In cases(a)and(b) the couplingis assumedto bestrong.However,in someexcitedstates
of H2, He2 andothermolecules,theelectronicorbit is solargethat this couplingbecomestoo
weak.Thegyroscopiceffectsuncouple from theinternuclearaxis.Thecouplingdiagramap-
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propriate for this situation, shown in the figure above, corresponds to the coupling scheme:

When S = 0 we expect a splitting of a level into 2L + 1 components characterized by:

Splitting betweentheJ componentswhen is determinedby the interactionwhich
is usually very weak.
The Hund’s couplingschemesare idealizations,at their bestactualmoleculescanonly ap-
proachthem.Nevertheless,theyareusefulasaclassificationandasanindicationof the“best”
basis for calculations of molecular energies.

6.3 Calculation of rotational energies

6.3.1 Case (a)

An expressionfor therotationalenergycanin thiscasebeobtainedfrom the“pure” rotational
hamiltonian

assuminga simple“rotational” basissetof correspondingto eigenvaluesof
and . The result for the energy, or rotational term value, is:

In thesecondline theterm is disregardedbecauseit is a constantin a givenelectronic
state.Rotationallevelsof a multipletareshownschematicallyin thefigure.Thelowestlev-
elsin this figurecorrespondto . For a state,apartfrom J = 1/2,eachvalueof J oc-
curs for each of the two multiplet components which have .

Thequestionis, how goodis theexpressionfor therotationalenergy.First of all we notethat
R is NOT a good quantum number. Its value is fixed by the condition:

Strictly speakingthe only goodquantumnumbersfor a rotatingmoleculeareJ, MJ and .
Then should be consideredmore properly as the perpendicularcomponentof (i.e.

). But this doesnot resultfrom nuclearrotationalone,but hasalsoa contri-
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bution from the rapidly precessing perpendicular component

of . The“pure” nuclearrotationcoupleswith to produce . Theoperator of the
pure rotational angular momentum and the rotational hamiltonian are:

Hence:

The last term in this expression may be approximated by:

Theterm hasaconstantvaluein agivenelectronicstateandcanberemovedas
a part of electronic energy. The rotational energy can then be written as:

representscontributionof thelasttermof in theequation.As will beshownlaterthis
term is responsible for the-doubling.
Spinorbit coupling splitstheelectronicstateinto 2S+ 1 multipletcomponentsthathave
different values of  and .

6.3.2 Case (b)

In the pure case (b) with  an expression for the rotational energy  follow from:

i.e.

which reducesto because is independentof the rotational
quantum number (R or N).
A (somewhat) better approach is analogous to that followed in case (a). By writing:

we get:

i.e.:

Thelast termrepresentsa couplingbetweenelectronicandrotationalmotion,in fact thesame

J⊥

R

L⊥

L⊥ L L⊥ J⊥ R

R J⊥ L⊥–=

Hr BR
2

J⊥ L⊥–( )2
J⊥

2
L⊥

2
2 J⊥ L⊥⋅( )–+= = =

Fv J( ) Bv J J 1+( ) Ω2
–[ ] Bv L⊥

2〈 〉 2Bv J⊥ L⊥⋅〈 〉–+=

2Bv R L⊥⋅〈 〉–

Bv L⊥
2〈 〉 Ω2

–( )

Fv J( ) Bv J J 1+( )[ ] f v Ω J,( )+=

f v Ω J,( )
Λ

A Λ Σ
Ω f v Ω J,( )

S 0= Fv N( )

R
2

N
2

Λ
2

–=

Fv N( ) Bv N N 1+( ) Λ2
–[ ]=

Fv N( ) Bv N N 1+( )[ ]= BvΛ2

R N⊥ L⊥–=

Hr BvR
2

Bv N⊥
2

L⊥
2

2N⊥L⊥–+( )= =

Bv N
2

N ||
2

– L⊥
2

2 N⊥ L⊥⋅( )–+( )=

Fv N( ) Bv N N 1+( ) Λ2
– L⊥

2〈 〉+[ ] f v Λ N,( )+=



- 57 -

asabove.If this couplingis neglectedandtheterms areincludedin the
ro-vibrational energy, then  reduces to:

Thetreatmentsfollowed aboveneglectnot only otherelectroniccouplings,but alsofor the
Hund’scase(b) essential couplingto obtain . Thiscouplingcan,in goodapproxima-
tion, be written as:

with asthespin-rotationconstant.It canbeinterpretedasaninteractionof thespinmag-
neticmomentwith themagneticfield producedby molecularrotation.Thisfield canbepro-
duced by:
(1) simple rotation of the nuclear frame and
(2) by excitation of electrons to states with non-zero angular momentum.
Thesecondeffectis generallythemostimportantone,dependingontheseparationbetween
theelectronicstates.We considernow two examplesof case(b) couplingassuminga basis
set of .

(1)  states

Forthesestatesthespin-rotationinteractionis theonly onecontributingto therotationalen-
ergy.

i.e.

Energylevels for and a statesare shownschematicallyin the figure. Statesfor
and areoftendesignatedasF1andF2 following Herzberg.The

spinrotationsplitting in thefigure is greatlyexaggerated.Eachvalueof occursin associ-
ation with two possible values ofN (e.g.  from N = 1 andN = 2).
It shouldbenotedthat in the statea spin-orbittype interaction (see states)
maycontributesignificantlyto . Thesplitting of a statedueto thespin-rotationinter-
action is known asρ-doubling.
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2)  states

Thebestknownexampleof thisstateandcouplingis O2 in its groundstate.Sincetherearetwo
unpaired electronic spins the following interactions have to be considered:
(1) spin-rotation,(2) spin-spin,(3) polarization, or induced spin-orbit
Spin-rotationinteractionis, in principle,thesameasin thecaseof states.Thecontribution
is givenby above,which for a state(S= 1) yieldsa triplet (thissplitting is sometimescalled
ρ-tripling):

It wasshownby Kramers(1939)thatin thecaseof two parallelspinsthis interaction,whenav-
eraged over the molecular rotation, is equivalent to:

where is theanglebetween andthemolecularaxis.Sothespin-spininteractionis equivalent
to . Calculationof thespin-spincontributionis ratherstraightforwardif usecanbemadeof
angular momentum techniques. The result is:

where:

and  is the spin-spin coupling constant. For S=1 we obtain from this expression:

Thepolarizationeffect involvesexcitationof electronsto stateswith non-zeroorbital momen-
tum ; this momentum(or momenta)interact then with via a spin-orbit type coupling

. Hebb(1936)consideredacouplingof thetype . Anotherpossiblemechanismis
amagneticspinexcitationof orbitalangularmomentum.Thisexcitationis especiallyimportant
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whenthereis a low lying state.Both mechanismsinvolve perturbationof thegroundstate
by a state.Effectivehamiltoniansin bothmechanismshavethesameangulardependenceas
thespin-spininteractionsand,exceptfor adifferentcouplingconstant,givethesamecontribu-
tion to theenergy.Theeffectsof spin-spinandof theotherinteractioncannotbeseparatedfrom
observedspectra.In the following we assumethat containsall theeffects.Theconstant
can be large; for O2.

= 39 667 MHz  = -252.7 MHz B = 43 102 MHz
The resulting rotational energies are:

6.3.3 Case (c) and (d)

Case(c) occursquiteoften in heavydiatomicmolecules,(d) is howeverquiterare.Thelatter
caserequiresa weakcouplingof to theinternuclearaxisanda strong (or ) cou-
pling, conditions which are difficult to fulfil, simultaneously.
If wedisregardall theweakereffectstherotationalenergyin case(c) is givenby thesameex-
pression as in case (a):

Similar arguments yield for case (d):

Whenspin-orbitinteractionis largetheLS manifoldmayappearasasetof distinctenergylev-
els.In case(d) themanifoldmaycontain levelsbecauseN cantakevalues
from to , exceptwhenR<L. SplittingbetweentheL sublevelsmaybelargebutbe-
tweentheJ componentswhen is normallynegligiblebecausethe couplingis usu-
ally very weak.

6.4. Intermediate Cases

6.4.1 Background

The calculationof rotationalenergiesin the preceedingsectionare not very accuratefor a
numberof reasons.First of all, moleculesnevercomply to pureHund’scouplingcases.In a
molecule canbe coupledto or to the molecularaxis in low rotationalstates,but asthe
rotationalfrequencyincreasesandbecomeslargerthantheprecessionfrequencyof about ,

decouplesfrom andcouplesto instead.We thengeta transitionfrom case(a) to case
(b), alsoknownasspin-uncoupling. Manymolecules,e.g.OH belongto anINTERMEDIATE
CASE.SimilarL-uncoupling occurswhenrotationbecomesmuchfasterthanprecessionof
aboutthemolecularaxis.Wethengeta transitionfrom case(b) to case(d), which is ratherun-
common.
Anotherreasonliesin energiesinvolvedin thevariouscouplings.In case(a) is stronglycou-
pledto andstatesdiffering (becausee.g.of spin-orbitcoupling)havelargeenergydiffer-
ences.In case(b) is weaklycoupledto , andstatesdiffering in orientationof (i.e. in J)
showonly asmallenergydifference.Consequentlyaneffectwhich is consideredasrelatively
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small in onecaseis not necessarilyso in another.A practicalconsequenceof this is thatoff-
diagonalcontributionsof someinteractionsgenerallycannotbedisregardedapriori. In thissit-
uation energies are solutions of (often large) secular equations.

6.4.2. Hamiltonians and representations

It shouldbe obviousby now that electroniceffectsuponrotationalenergieshaveto be taken
into accountright from thebeginning.Weshallconsiderexplicitly only therotationalenergies
in acertainelectronicstate,thevarioussmallereffectswill beincludedin alaterstage.Themo-
lecular hamiltonian can, in this approximation be written as a sum:

is thevib-electronichamiltonianof anon-rotatingmoleculeand is therotationalham-
iltonian. When  is the molecular axis  can be written as:

For calculations an equivalent hamiltonian is:

It is seenfrom thisexpressionthat equals whenboth and canbeignored
{(case(a) and(c)}, when canbut cannotbe ignored,and when
none of them can be ignored {case (d)}.
When spin-orbit interaction is considered explicitly  can be written as:

The simplest basis functions for the calculation are:

where is therotationaland theelectronicwavefunction.Both haveto bespecified
formally asfar aspossible.To this endwe haveto look which quantumnumbersaregoodor
bad.QuantumnumberswhichMUST begoodin non-rotatingmoleculeanddegeneraciesof the
states in question are:

case (a) Ω (Ω=Λ+Σ) 2 or 1
case (b) same 2(2S+1) or 2S+1
case (c) Ω 2 or 1
case (d) L,Λ,S,Σ (2L+1)(2S+1)

Whenthespin-orbitinteractionis large is agoodquantumnumberand is agoodbasis
because the operator associated with satisfies:

However,onthisbasis or isNOTagoodquantumnumber.Whenthespin-orbitinteraction
is small , and arealmostgoodquantumnumbersand is thebestbasiswe can
choose.Finally, whenbothspin-orbitandtheaxis interactionarenot strong(e.g.electronsin
Rydbergorbitals) , , and arealmostgoodand is agoodbasis.Thisbasismay
correspondto case(d) whenenergies of the multipletsarelessthenthe rotational
separationBJ; we have case (d) when all , case (b) is between (a) and (d).
In thefollowing we shalladoptthe basisfor thenon-rotatingmolecule.But it should
be kept in mind that thesearenot exacteigenfunctionsof the hamiltonianbecausespin-orbit
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mixesstateswith different , and . In calculationsit is oftenmoreconvenientto assume
that aretheexacteigenfunctionsbut thequantumnumbers , and arenot per-
fectly good, i.e.

 and  are small functions which may be considered as due to mixing effects.
The rotationalfunctions canbe specifiedas when and is the quantum
numberassociatedwith and , respectively.In theabsenceof externalfields and are
perfectquantumnumbersbut is NOT a quantumnumberfor rotationbecauseit is not an
eigenvalueof arotationaloperator.It entersin theproblembecauseof thepresenceof operator

. In the rotational function ,  should be considered as a parameter.
The basis set for a rotating molecule is chosen to be

It is seenfrom theexpressionfor thattheoperators and contributeto matrixelements
via products and . Selectionrules for matrix elementsof and

 are:

Matrix elements of the relevant operators can be obtained from well known expressions, for
example:

For the operatorreplace by , by and by , but for the operator
should be replaced by .
Therearecomplicationsin actualcalculations(1) becausesomequantumnumbersmaynotbe
goodor only approximatelygoodand(2) becausesomeof thequantumnumbersmaynot be
definedatall, e.g.L. In thelattercasesomeof theexpressionscannotbeusedandthesematrix
elements have to be represented by parameters.

6.4.3 State

Forthisstate . Thebasisset comprisesfour func-
tions:

Diagonal matrix elements of  are:

The matrix of these elements corresponds to two degenerate states with .
In the representationchosen the matrix elements of and
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 are all diagonal. The (off-diagonal) matrix elements of:

areall zero(theseoperatorsdo not contributeon thediagonal).Thereasonis thatthebasisset
containsonly functionswith andtheoperators cannotproducenon-zeromatrix
elementscorrespondingto . Sotheonlyoff-diagonalcontributioncomesfromtheop-
erator:

whosematrixelementscanbeobtainedfrom thegeneralexpressions.Thefinal form of theen-
ergy matrix with the present approximation is given in the table (see below).
Eigenvalueof thismatrixaremosteasilyobtainedby subtracting1/2 tracefrom each2 x 2 ma-
trix. The resulting eigenvalues are:

Thisexpression,with ignored,wasfirst derivedby Hill andVanVleck (1932)and
is knownastheHill-Van Vleck expressionfor states.It representsenergyof two doubly
degenerate levels.

WhenJ=1/2 the functions  and  do not exist in both matrices.
Thehamiltonianmatrix factorstheninto two identical1x1 matrices.Theresultis a doublyde-
generate level with energy:

Fromthegeneralexpression thelimiting (a)and(b) casecanbeobtainedby expandingthe
square root.

Case (a)

with  replaced by  and keeping only terms of order B/A we obtain:
Apart from  this expression agrees with .
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For a pure Hund’s case (b) . With this value of A we obtain

These expressions are consistent with  for .
Thebasissetconsistingof functions is alsoquiteconvenientto handle statesin
intermediatecoupling.This setcorrespondsto case(b), while theonewe haveusedis clearly
an(a) set.It is alsointerestingto notethatmolecularenergiesfollow approximatelycase(b),
not only when but alsowhen . his quantityis a measureof thecoupling
to the internuclearaxis. Generally has the samevalue for and just

. When therearetwo possiblevaluesof (onepositiveandonenegative)
whichgive termswith thesameseparations.Thiscorrespondsto regular andinverted

 doublets.
In thefigure is shownacorrelationdiagrambetweencase(b) andcase(a)bothfor regularand
inverted fine structure.
Light molecules (large B, small A) approach case (b) already at low J-values, heavier mole-
cules are closer to case (a). OH radical is a good example of this situation.
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6.5 -doubling

6.5.1 Qualitative Features

As hasbeenshownelectronicenergydependson . Consequentlyall stateswith are
doublydegenerate.Similarly, in caseof electronicmultiplets,theenergydependsonly on
andsothestateswith arealsodoublydegenerate.The -degeneracy,for examplein ,

statescanbelifted by spin-rotationandspin-spininteraction.It wasdiscoveredalreadyin
the1930’sthatalsostateswith weresplit into doublets.Theorigin of this splitting,
for examplein and , mustobviouslybea lifting of the -degeneracyin thesestates.
The splitting was consequently called-doubling.
Interactionsresponsiblefor -doublingmustbe capableto reversenot only (e.g. from

or ) but also to . Theinteractionmustinvolve opera-
tors and becauseonly thesefollow theselectionrule andsocanreverse
in oneormoresteps.An obviouscandidateis interactionbetweenmolecularrotationandelec-
tronicorbitalmotion.It maybeseenasanincipientdecouplingof from themolecularaxis
andhenceatransitionfrom case(a)or (b) to case(d). In thevectormodelpossibleinteractions
arecontainedin or i.e.of thetype or . However,theseeffects
mayalsobeseenasapartialbreakdownof theBorn-Oppenheimerapproximation.As acon-
sequenceof thisbreakdownelectronsfollow, with aconsiderableamountof slippage,thenu-
clear motion. The coupling operator is of the type .
Fromaquantummechanicalpointof view -doublingmayalsobeseenasaresultof pertur-
bationof thestatein questionby otherstates.Sincethisperturbationmustchange theper-
turbatingstatemusthavedifferentvaluesof (so or statein caseof -doublingof a

-state),but thesamemultiplicity. Althougha perturbingstatemaylie morethan104 cm-1

awayfromthestatein questionit mayproducestrong,easilymeasurable,effects.Forexample
in OH the -splitting is:

1.6 GHz in , J= 3/2
6.0 GHz in  , J = 5/2
4.7 GHz in , J= 1/2

althoughtheperturbing stateis 32000cm-1 away.Generallythesplittingis greatestfor
smallest , andin statesmuchsmallerthanin states.A (very) essentialpoint in the
perturbationapproachto -doublingis thattheeffectarisesfrom thedifferencein theinter-
actionbetween(+) and(-) parity rovibrationalsublevelsof the interactingelectronicstates,
for example and . Consequentlythetwo componentsof a -doublethavedifferentsym-
metries,one(+), theother(-). The(+) statecanhaveloweror higherenergythanthe(-) state,
bothcasesoccur.Lambdasplitting in a is shownschematicallyin thefigure belowwith
the correct parity of the -doublets (case of OH).
Althoughelectroninteractionmayberegardedasthemainagentof -doublingspin-orbitin-
teractioncannotbeneglectedin stateswith . In thesestatesthelatterinteractionis much
stronger than -doubling and may have a profound perturbing effect.
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The -splittings in  can be described by simple empirical expressions:
1Π qJ(J+1)
2Π case(b) qN(N+1)
2Π1/2 case(a) a(J+1/2)
2Π3/2 case(a) b(J-1/2)(J+1/2)(J+3/2)
3Π case(b) qN(N+1)

In the so-called pure precession approximation (introduced by Van Vleck) rough values of the
constants are (  is the separation between the  and a perturbing  state):

In the following section we shall discuss -doubling in a state in some detail and derive a
more complete expression for and ; the limiting case (b) will yield the value for the -cou-
pling constant q.
Since the two -doublets have opposite symmetries electric dipole (E1) transitions are possible
between them. The transitions produce well known -doubling spectra in microwave and EBR
spectroscopy. Microwave spectra of interstellar OH radical originate from these transitions.

6.5.2. Λ-doubling in 2Π states

Lambda-doubling in these states is most common and best known. Celebrated examples are
OH, CH, NO. These states are split by spin-orbit interaction into and multiplets.
The next higher electronic states are , and these may be regarded as the only perturbers. In
essence, -doubling in states arises because interaction between even parity states
with, for example states is slightly different from the interaction between odd parity and
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 states.
Sincein thespin-doubletstatesspin-orbitinteractionscannotbedisregarded,a fairly complete
hamiltonian for a  state which can show all the relevant effects, is:

(z is themolecularaxis).With this hamiltoniana case(a) basisset is theobvious
choice.Operatorswhichconnectstateswith different are and . Whenonly theseoper-
ators are present the selection rules for matrix elements are:

Similarly different statesareconnectedby and andtheselectionruleswith only these
operators are:

In thematrix elements and do not changethestates.Obviouslythreesuchoperatorsare
neededto change into . Theseoperatorschangealso and , as
requiredfor -doubling.Consequentlywe expectthat -splitting in a stateshouldbe
proportionalto if thissplittingis determinedonly by agyroscopicinteraction.But therea-
soningfollowed aboveappliesalsoto states;we needthree and operatorsto
changeboth and . However,it is knownfrom experimentsthat -doublingin states
is largerthanin statesandthat it is proportionalto , andsomustbegeneratedby a
singleoperator.This is possiblethanksto thespin-orbitinteractionof theperpendicularcom-
ponentsof and . Matrix elementsof theseoperatorswith and

connectthe stateswith , and , in a single
transition.It is interestingto notethat three matrix elementcanreverse

the signs not only of  but also of  and  for a  state.
It shouldbeclearfrom theseremarksthata correctpictureof -doublingcannotbeobtained
by takingonly e.g.the interaction,insteadthecompletehamiltonianshouldbeconsidered
in a secular matrix equation.
To startwith weconsiderthetwo degenerate statesandasingle(alsodegenerate) state
perturbing the  states. So we have a basis set of six  states:

In this basis the non-zero matrix elements of the hamiltonian are:
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Energyof the stateis assumedto bezeroandso andthesubscript or
 is introduced to indicate that B and A can be different in the two states.

The diagonal matrix elements , , follow form the first four terms of H with
. The “purely spin” matrix elements and follow from the

 part of  using the following phase conventions:

The “purely orbital” matrix elements and  follow from the last term, with:

SinceL is notdefinedmatrixelementsof (and ) haveto beconsideredasparameters.
The matrix elements follow from the last but oneterm.The term yields a
small contribution independent ofJ and is left out:
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With thesematrixelementsthehamiltonianmatrixhastheform givenin thematrix.Thismatrix
can be reduced to two 3 x 3 matrices by using a symmetrized basis:

These functions have definite positive-negative (or Kronig’s even-odd) parity.
Matrix elementsof thehamiltonianon thebasis caneasilybeobtainedfrom theex-
pressions;for symmetric statestheequationsarevalid without anychanges,for antisym-
metric statesthe matrix elementsindicatedby an asteriskget a negativesign.All matrix
elementsbetweenstatesof differentparityarezero.This follows from invarianceof thehamil-
tonian under the inversion operation.
Theresultingmatricesyield two cubicsecularequations(onefor + andonefor the- sign)which
cannotbe solvedexactly.Dousmaniset al (1955)useda perturbationexpansionof the roots
(similarto perturbationexpansionin quantummechanics)andobtainedratherlengthyandcom-
plicatedexpressionsfrom which thedesired -splittingcanbeobtained.Theseformulaehave
to be used when high accuracy is desired. Below we shall consider three special cases.
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Case (1): Effect of the 2Σ states negligible

In thiscasethematrixelements , and arezeroandthehamiltonianmatrix reducesto:

The resultingsecularequationcan be readily solved for the energiesof the two states,
 and perturbed wavefunctions. The results for the energies are:

This resultshowsthatin theextremecase(b) the -splitting originatesfrom thesmalldif-
ference between the interactions of the positive and negative states.

Case (2): A=0

This represents an extreme case (b). With A=0 the matrix elements are:

With thesematrixelementsthetwo cubicsecularequations(onewith and , theother
with and bothfactorinto aproductof a linearandaquadraticequation.Thesecanbe
solved to:

Herein is theenergyseparationbetweenthe and statesandthesubscript
(+) and(-) indicatesa symmetricandanantisymmetricstate,respectively.However,when

as we haveassumed,the two statescoalescein energy.This implies that we
shouldreplace and by N. The -splitting is thenobtainedby subtracting
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the difference between  and .The result can be written in the form

where

This resultshowsthat in theextremecase(b) the -splitting originatesfrom thesmalldiffer-
ence between the interactions of the positive and negative states.

Case (3):

Usuallytheenergydifference betweenthe and statesis muchlargerthanthe -
splitting (in OH = 32 683cm-1), -splitting 0.05- 1 cm-1). In this case canbe
assumedto bea constant{ }. Thesecularequationreducesthento oneof second
order:

which can be solved. If we disregard terms of order with  the result is:

where again:

Thetwo signscorrespondto thetwo componentsof thespin-doublet:for (normaldou-
blet) the (+) signcorrespondsto , the (-) sign to , for (inverteddoublet)the
correspondence is reversed.
The -splitting is obtainedby subtractingtheexpressionwith only from thatwith only :

After filling in some of the constants:
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Theuppersignsareappropriatefor theupperspin-component,thelower signsfor thelower
component. From the last expression only the real part should be taken.
Evenin thepresentapproximationthetheoryneedssomeextension.All therelevantmatrix
elementsshouldbereplacedby a sumoverthevibrational(v,v’) levelsof a givenelectronic
level andoverelectroniclevelsof propersymmetry.In a morecompletetheoryalsointerac-
tion between and levelsshouldbeincluded.Following Mulliken (1931)term-energies
and -splitting of  levels are usually written in terms of the following (-)constants:

where:

( indicatesrovibrationalandelectronic stateswith positiveandnegativeparity).With
these constants the expression for the term energy is:

where:

Thebracketedsigns referto thesymmetric(+) andantisymmetric(-) -levels.Theun-
bracketed signs refer to the two components of the spin doublet.
Althoughtheexpressionlooksrathercomplicated,theonederivedfrom it for the -splitting
is simple:

( refers to components of the spin-doublet).
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Limiting Case (b)

In the extreme case (b)  and  we obtain:

with the(+) signfor andthe(-) signfor . In thesimplestcaseof a
 state the -doubling constant is:

Thematrix elementsappearingaredifficult to evaluate,usuallytheyareobtainedfrom a fit of
observedspectra.A roughestimatecanbeobtainedfrom theso-calledPUREPRECESSION
approximation. It is assumed (Van Vleck 1929) that:
(1) vibrational excitation in the  states is small so that  is a constant,
(2) momentof inertiais independentof (goodapproximationonly for electronsin Rydberg-

type orbits),
(3)angularmomentum of constantvalueprecessessuchthatboththe andthe stateresult

from projection of this .
In this approximation the matrix element the result for q is:

Often it is assumed that is that of a single electron .

Limiting case (a)

For this case  we use the approximation

By substitutingthis expressionwe obtainin orderfor thesplitting of the state(with
the lower signs in the equation for ).:

with:

hereinthe(+) signcorrespondsto andthe(-) signto . If thegeneralequationis used
the result for  is:

Theuppersignsin yield zeroin order.If we neglecttheJ-independenttermsin theexpan-
sion we obtain for the splitting of the  state in  order:
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where

(with the approximation ). The expression yields to order :

with the (+) sign for corresponds to  and the (-) sign to .
Theseresultsagreewith theexpressionsproposedin the introductionandwe havetheex-
pectedB dependence( for for ). However,theaccuracyis limited by
theapproximation = constant,neglectof couplingbetween and states,neglect
of the spin-rotation, etc. However, the J-dependence derived is confirmed by experiments.
Fromtheresultsfor thelimiting casesit is possibleto drawa correlationdiagrambetween
the -split levelsof a multiplet for case(a)and(b) coupling.Suchadiagramis shown
in thefigurebelow.Thebasisrule for thisdiagramis thatlevelsof agivensymmetry“com-
bine” only with levelsof thesamesymmetry;thespin-splitting,of course,disappearsin case
A = 0 andthetwo spin-doubletcomponentscorrelatewith asingleN-level.Weseethatthe

-levelsfor eachJ-valueexcept of the multiplets(bothnormalandinvert-
ed) cross. So there are values ofY such that the -splitting disappears for these levels.
Transitionsareallowedbetween -sublevelsof different parity both of different andthe
samero-vibrationallevels.The latter typeof transitions,alsoknownas -transitions,are
well known from interstellar OH and CH radicals and from laboratory spectra of NO.
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