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Chapter 1

Introduction

This work is focussed on the application of multigrid methtal particle simulation meth-
ods. Particle simulation is important for a broad range darddic fields, like biophysics,
astrophysics or plasma physics, to name a few. In these fieltputer experiments play
an important role, either supporting real experiments plag@ng them. The first can sig-
nificantly reduce costs, e.g. in the pharmaceutic industhgre possible agents can be
checked for an effect in advance of real and expensive arpets. The latter has an
important role in astrophysics, where most experimentsgaanot be carried out in a
laboratory. In the cases we are interested in, the interact particles can be evaluated
by pairwise potentials, where short-ranged potentiatg, gotentials describing chemical
bonds, are easy to be implemented efficiently. But the vepomant Coulomb potential
and the gravitational potential are not short-ranged, #ustuitive implementation has
to evaluate all pairwise interactions, yielding@aN?) algorithm, whereV is the number
of particles to be simulated. The key to reduce this compjlegithe use of approximate
algorithms for the evaluation of the long-ranged potestial

In the Coulomb or gravitational potential case we have aetef options. One option
is the use of tree-codes, that approximate particles tieataaraway by a bigger pseudo-
particle. Furthermore, in the periodic case we have th@oti calculating the convolution
with the influence function given by the potential in Fouspace. We are exploiting the
fact that the Coulomb or gravitational potential is strgngbnnected to the Poisson equa-
tion, i.e. up to a constant the Green’s function of the Paiggquation and these potentials
are the same. Given this fact, we are able to solve the probilenerically by sampling a
special right hand side onto a mesh describing either a torasection of the open space
and solving the equation numerically. After the solutioavailable on the mesh, the elec-
trostatic quantities of interest can be obtained from tissréte solution by interpolating
it back to the particles and applying a correction schemeeGihese considerations the
problem can be reduced to using a fast Poisson solver foruheencal solution of the
Poisson equation on the mesh. Multigrid method are know teeloy efficient solvers for
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CHAPTER 1. INTRODUCTION

the Poisson equation and similar PDEs, so we choose to usgghtliimethods for that
purpose.

In the open boundary case the Poisson equation has to belsolepen space. The prob-
lem is that this leads to infinitely large systems. The nunabgrid points can be reduced
easily, as far away from the system the solution will changlg gery little. Washio and
Oosterlee [87] were able to provide an error analysis fohsubierarchically coarsened
grid. They suggest to calculate a finite subvolume, only)evéetting the boundary values
to zero, assuming that the induced error can be neglectée Wwdalume is large enough.
They did not provide an estimate for this error, though. Werd their method to im-
pose certain boundary conditions at the boundary of theesysind provide an estimate
for the error of the modified method. This estimate shows ttamodified method is of
the desired accuracy. Additionally we show that the metisastill optimal for a number
of refinement steps that can be precomputed easily. Thetirgsslystem can be solved
using the well-known FAC method, which is an extension ofidéad geometric multigrid
methods for adaptive grids.

For molecular dynamics simulation, the periodic case ipet&l importance. The solu-
tion of the Poisson equation with constant coefficients oaquidistant regular grid using
a discretization technique like finite differences leadsitoulant matrices. Circulant ma-
trices form a matrix algebra and can be analyzed eleganggeRly, multigrid methods
for circulant matrices have been developed, see e.g. [2,ThY theory for these methods
is based on a variational property which is fulfilled when @Galerkin operator is used.
This operator gets denser when going down to coarser levelsye end up with a fully
filled stencil after a few coarsening steps, even if the oapstencil was sparse. Motivated
by the fact that this is not necessary in geometric multigrethods using a rediscretiza-
tion of the system with finite differences, and motivated tstencil collapsing technique
introduced in [4] we develop necessary conditions for theyste convergence of multigrid
methods not using the Galerkin operator but rather a replane We apply these theoreti-
cal considerations to certain circulant matrices and ptesghemes for these matrices that
fulfill these properties. As a result we obtain very efficisalvers for circulant matrices.

The rest of this work is structured as follows: In Chapter 2wilecover partial differential
equations. After the definition and classification of pamidferential equations we will
present various results for the existence, uniquenessegudarity of the solution of el-
liptic partial differential equations. We present diffeteliscretization techniques, namely
finite differences, compact discretizations of higher o@ted the finite volume discretiza-
tion. The chapter closes with an overview of Washio’s andt€tee’s method and the
modification to it, as well as with some numerical examplefierithat, in Chapter 3 we
introduce iterative solvers and multigrid methods. Aftshart introduction to general iter-
ative methods and geometric multigrid methods including@fd FAC, we continue with
algebraic multigrid theory for structured matrices. Astdithis theory we present the new
theoretical considerations for non-Galerkin coarse gpierators and the application to cir-
culant matrices. Thereafter, a short overview over thellgdization of multigrid methods

2



and some results for our parallel code for circulant masrexe presented. Chapter 4 deals
with particle simulation. After an introduction to the ptetm and a brief overview over
available methods we give a mathematical formulation ofgrablem that consistently
uses the Poisson equation and which allows the use of mdltiggthods for the solution
of these problems. We finish this work with a conclusion in @ka5.
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Chapter 2

Partial Differential Equations

The development of multigrid methods is strongly connedtetheir application to the
solution of partial differential equations. As the simidatof particle systems leads to
a partial differential equation as well, in this chapter wédl give a short overview over
partial differential equations and the associated theory.

2.1 Introduction

Unlike ordinary differential equations which involve uanate functions, partial differen-
tial equations involve multivariate functions. In the fmdling, we call an open and con-
nected subset d&“ adomain By €2 we denote a bounded domain and its boundarg®y
orI'. A formal definition of a partial differential equation isvgin by the following:

Definition 2.1 (Partial differential equation) LetQ c R?. An equation of the form

0 0 0? 0?
F <X, u(x), 8—xlu(x), ey axdu(x), &E%u(x), (%anlu(x), . ) =0

with x € R? andu € C*(Q) and whereF' depends only o and the value of: and the
partial derivatives of; at x is called apartial differential equatioor PDEfor short.

Partial differential equations are classified by their orklei.e. the maximum occurring
order of the derivatives. Furthermore PDEs are distingedddy the type of linearity. IfF
depends only linearly on and all partial derivatives, i.e. the coefficient functialepend
only onx, the PDE is calledinear. If it depends only linearly on the partial derivatives of
highest order but non-linearly anand all other partial derivatives it is calledmilinear It

is calledquasilinear if the coefficient functions of the partial derivatives afhest degree
depend only on lower-order derivatives andtherwise the equation is callethan-linear
PDE.



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Linear partial differential equations are well studied andumber of different numerical
methods exist for their solution. Many physical problemg, éheat conduction or wave
propagation, lead to second-order linear PDEs. These assiftéd in the following way:

Definition 2.2 (Classification of linear PDEs of second ordgr Considering a linear
PDE of second order of the form

Cul) = = 3 0] 5 o) + D )5 u(x) + o)) = ).

i,j=1 j=1

Depending on the eigenvalues of the coefficient matrix (am)g{jzl these PDEs are
called:

e elliptic - all eigenvalues ofi have same sign,
e parabolic all eigenvalues ofi, except for one vanishing eigenvalue, have same sign,

e hyperbolic- all eigenvalues ofl have same sign, except for one eigenvalue that has
the opposite sign.

As geometric multigrid methods are optimal methods foraiarelliptic PDES, in the re-
maining sections we focus on this class of problems.

A PDE by itself usually has multiple solutions. In order taah a unique solution, we
need boundary conditions or initial conditions, i.e. givatues on the domain’s boundary
or parts of the boundary of the domain. This leads to boundalye problems or initial
value problems, respectively.

2.1.1 Boundary conditions

Various different boundary conditions are known in literat In this work, we are using
the following conditions:

e Open boundary conditions
Open boundary conditions are not very common, although¢haybe handled very
elegantly in theory. If a partial differential equatidfu = f is defined orf) = R?,
the solution usually is still not unique. Therefore, a vabfie. can be prescribed for
x € 0f2, which in this case we consider to be the painin the 1-point compactifi-
cation ofQ) = R?. In order for the solution to have nice analytical properties, e.qg.
u € Lo, the following condition is usually required:

u(x) e}

e Dirichlet boundary conditions
Let the partial differential equatiofu = f be defined on its domaifi. Boundary
conditions of the form
u=gonl

6



2.2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

are known as Dirichlet boundary conditions. PDEs with Dil&t boundary con-
ditions are well-analyzed and a lot of theory exists for #tise, uniqueness etc.
of the solution, especially with respect to the propertiehe boundary and to the
smoothness aof.

e Periodic boundary conditions
If a partial differential equation is defined on the tofkf§/Z¢, boundary conditions
are not needed. Nevertheless, in this case one often spéaksiadic boundary
conditions. PDEs can be analyzed very elegantly and solffieteatly on the torus
using Fourier techniques.

2.2 Elliptic partial differential equations

A large class of important stationary problems leads tp®tliPDEs, namely diffusion-
like problems like those described by the electrostaticherdravitational potential. In
accordance to the introductory book by Larsson and Thom®&k yvhich is the basis of
this introduction, we study the equation

Lu:=—aAu+b-Vu+cu=f

in larger detail. In order to keep the analysis of this equrationsistent with all kinds of
boundary conditions needed here, we choose a variatiomatfation. So in the following
the domairn of the PDE is either equal to or a subseRdfor it is thed-dimensional torus
R?/Z% unless noted otherwise. In case thais a subset oR?, the solution shall fulfill
u = g onT and forQ) = R? u shall vanish a§x|| goes to infinity.

2.2.1 Prerequisites from functional analysis

In order to handle PDEs formally correctly, we need a fewgumarsites from functional
analysis, as existence and uniqueness results can be &edwdlegantly using function
spaces.

Vector spaces

Given anR-vector spacéd/, we can define a linear functional froin to the underlying
field R.

Definition 2.3 (Linear functional) Let 1 be a vector space ové&. A linear functional
LonV isafunctionL : V — R, such that for alki, v € V and for all \, . € R we have

L(Au+ pv) = AL(u) + pL(v).

7



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

It is called boundedf there exists a constarte R, such that for allb € V" we have

[1L(0)llv < el|vflv-

The set of all bounded linear functionals on a vector sgacde called thedual spaceof
V) and denoted by *. The norm of an element € V* is given by

Ll = sup I
ueV HU”V

Definition 2.4 (Bilinear form) LetV be a vector space ov&. Abilinear forma(-,-) on
Visafunctiona : V x V — R such that it is linear in each argument, i.e.

a(Au+ pv,w) = Aa(u, w) + pa(v, w),
a(u, Mo + pw) = Aa(u,v) + pau, w),
for all u,v,w € V and\,u € R. The bilinear forma is called symmetrig iff for all

u,v eV
a(u,v) = a(v,u),

it is namedpositive definiteiff for all u € V, u # 0 we have
a(u,u) > 0.

A symmetric and positive definite bilinear form @ris calledscalar productEach scalar
product induces a normul|, := y/a(u,u) onV. A vector space with scalar product is
calledHilbert spaceas usual.

Further on, ifV is a Hilbert space with induced norip- |
coercive iff

v, a bilinear forma is called

a(u,u) > allulf,
forall w € V, wherea > 0.

Using these definitions, the following theorem states anont@mt property of Hilbert
spaces:

Theorem 2.1 (Riesz representation theorem)LetV be a Hilbert space with scalar prod-
uct (-, -)y and induced norn - ||y,. For each bounded linear functionalonV' there exists
a uniqueu € V, such that for allv € V" we have

L(v) = (v,u).

Moreover, the norm of the operator can be expressed in tefrttseanorm of this unique
representation:
IL]

ve = [lullv.

8



2.2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Proof. See e.g. [89], pp. 90-91. O

This theorem helps us to prove the following lemma.

Lemma 2.1 LetV be a Hilbert space. Assume that we are given a symmetric iveerc
bilinear forma and a bounded linear functiondl. Then there exists a unique solution
u eV of

a(u,v) = L(u), forallv € V.

Proof. Froma being symmetric and coercive it follows thats symmetric and positive
definite. Sou is a scalar product ol and(V, a) is a Hilbert space. The linear functional
L is bounded oniV, a), so we can apply Theorem 2.1 and the assertion holds true [

Often, a bilinear form is only coercive, but not symmetriteTollowing theorem can be
seen as a generalization of the Riesz representation thebet covers this case.

Theorem 2.2 (Lax-Milgram Lemma [62]) LetV be a Hilbert space, lei be a bounded
coercive bilinear form and lek be a bounded linear functional. Then there exists a unique
vectoru € V, such that

a(u,v) = L(u), forallv e V.

Proof. See e.g. [89], pp. 92-93. O

Sobolev spaces

Later on we will present a variational approach for the asialgf partial differential equa-
tions that is based on the results introduced in the pre\season. In this framework the
solution of a PDE has to be a member of a function space thadibart space. The most
natural choice for a solution would be a function(ifi(Q2) which is defined as follows.

Definition 2.5 The spac€*(1) is the space of functions that are continuous up to at least
all derivatives of orderk. Depending on the domai and boundary condition&’;(€2)
denotes either the set of functions that vanish on the baynti@ is a proper subset d&¢,

the sets of functions that vanish as the norm of the argunueag tp infinity ifQ2 is equal

to R?, or the set of functiong defined o2 = R¢/Z? whose integral vanishes, i.e.

Q/fdx:o.

Obviously, the spaces*(£2) and the spaceS}(2) form vector spaces. Equipped with the
usual norm ofC*(Q2), namely

||U||Ck(ﬂ) = sup u(x),
xeN

9



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

they are not Hilbert spaces, since this norm is not induceal $galar product. So we need
function spaces that are Hilbert spaces. The common Hiipaces used for the theory of
PDEs are the spacés(£2), where the norm

a0 / 0 P

is induced by the scalar product

(10} 1) = [ u(x)u(x)ax

Q

As the functions in’, are in general not differentiable, we generalize the natiopartial
derivative. Let therefore eithét C R? or Q2 = R¢/Z¢. First we assume that € C'(Q),
whereds2 has a piecewise smooth boundary, thus the expression

ou
8.’172‘

is meaningful. For allb € C(Q), applying integration by parts yields

gu /ugpnzds / (,;pdx (2.1)
Q

o0

wheren is the surface normal ad2. The first summand vanishes in both cases. For
Q) C RY, with 99 being piecewise smooth in the ca®eC R?, we have that, vanishes

at the boundary or in infinity. Fof2 = R¢/Z? the value on the hyperplane of thle
dimensional unit hypercube that represents the torus ial¢égthe corresponding value on
the opposite boundary and the normas the same on both planes, except for the sign. So
for all p € C§(92) we have

This motivates the definition of theeak derivativdor functions inL,:

Definition 2.6 (Weak derivative) LetQ C R? or Q = R?/Z? and letv € Ly(Q2). The
weak derivativeof v is defined to be the linear functional

(?:zcZ (%Z

for o € C}(2). We define weak derivatives of higher and mixed order aceghgli

10



2.2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

That allows the definition of the Sobolev spatgs:

Definition 2.7 (Sobolev space)Let C R¢ and open oK) = R¢/Z?. TheSobolev space
W} () is the space of all function which are if),(©2) and whose partial derivative3™ up
to the ordera| < k,« € Nare in L,(12) as well. The spaced’; have the norms

1/p

k
fullwg = | 3 [ 1orulrax

la]=0 ¢
and the half-norms, i.e. positive semi-definite linear fiorals,
1/p
ﬂu]wg = Z /|80‘u|pdx
lal=k ¢
Additionally, we denot&/’y by H*.

As L, is complete, théVy are complete as well. So the spadés form Hilbert spaces
with the scalar products

k
(U, v) e := Z /6au 0% dx.
lo|=0 ¢
It remains to note, that if the spacﬁg}@(Q) are defined analogously to the spac#sthe

half-normsﬂ . HW;O(Q) are norms, as they map only constant functions to zero arepexc
for the zero function these are not part of the spatgs((2).

2.2.2 Prerequisites from Fourier analysis

As mentioned before, partial differential equations wigripdic boundary conditions can
be analyzed elegantly on the tof@$/Z?. In order to do so, the right hand side and the so-
lution are expanded into their respective Fourier seriethé following the most important
definitions and Lemmata from Fourier analysis are repeébed, detailed introduction we
refer to the books of Korner [59] and Gonzalez-Velascd.[43

Definition 2.8 (Fourier series) Let f € L?(R?/Z%). Disregarding convergence the ‘sym-

bolic’ series
Z f(k)ezmk.x
kezd
with
flo= [ soe i

Rd /74

11
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is called theFourier serieof f, the f are calledFourier coefficientof f. For ease of
notation the operatofF and its inverseF ! are defined as
F:L*(RY)7%) — 12,
[ F(f) =1,
f*l . l2 N Lz(Rd/Zd),
freF U =1
The Fourier series can be defined for functions that are narsgintegrable, but for the

sake of simplicity it is convenient to stick to that space e@hthe most important theorems
states the connection between square-integrable fuisciiot their Fourier coefficients:

Theorem 2.3 (Riesz-Fischer theorem)Let { f (k) }x. k € Z? be absolutely square inte-

grable, i.e. )
DI < oo

kezd
Then there exists a functighe L2(R?/Z?), whose Fourier coefficients are thefek).

Proof. Ford = 1 see e.g. Theorem 6.9 in [43]. We can extend the resulttol by d-fold
application. O

In many cases a stronger concept of convergence is neederidnto interchange differ-
entiation and summation of a Fourier sum, uniform converges necessary.

Lemma 2.2 Letf e C(RY/Z%) and let

> )] < e

keZd
Then the Fourier series gf converges uniformly tg.

Proof. Ford = 1 the Fourier series converges uniformly by the convergenterion of
Weierstral3, as the series of the Fourier coefficientsisfan absolutely convergent majo-
rant of the Fourier series. Again, we can extend the resdlttol by repeated application.
O

Now we can prove the following lemma that is necessary inraanalyze partial differ-
ential equations on the torus.

Lemma 2.3 Let f € L?(R?/Z%) with absolutely converging Fourier coefficients and let
d/ox;f € L*(R?/Z%),j = 1,...,d. The Fourier series of the partial derivative gfis

given by
0

Oz

Fx) =" 2mik;f(k) e,

keZzd

12



2.2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Proof. By Lemma 2.2 the Fourier series @fis uniformly convergent, so it can be differ-
entiated element-wise, yielding the desired result. O

2.2.3 Weak formulation of a PDE

We consider the partial differential equation
Lu:=—aAu+bV - -u+cu= finQ (2.2)

for the domain and boundary conditions set to either

Q c R? and u(x) = 0 forall x € 99, (2.2a)
0 =Rd and u(x) "=, (2.2b)
Q=R%/7% (2.2¢)

Let further |
a(x) > ap > 0 ande(x) — §V -b(x) > 0forallx € Q, (2.3)

so the PDE is elliptic. Now we derive the variational forntida in the same way as the
weak derivative. Under the assumption that the solutiosin C*(2) we multiply (2.2)
by v € C}(Q2) and integrate over the whole domdinyielding

/Euvdx:/fvduforallveCol(Q).
Q

Q

Applying the first Green’s identity gives

/(aVu-Vv+b~Vuv+cuv)dx—/aVu~ﬁvds:/fvdx.
Q

Q o

Like in (2.1) the boundary integral vanishes, so that

/(aVu-Vv+b-Vuv+cuv)dX:/fvdxforallv6001.
Q Q

As Larsson and Thomée denote thgtis dense inf} for sufficiently smooth boundaries
(see p. 248 in [61]), the following holds true as well:

/(aVu-Vv+b-Vuv+cuv)dX: /fvdxfor allv e Hj. (2.4)
Q Q

Therefore one defines:

13
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Definition 2.9 (Weak solution) Let Fu = 0 be a partial differential equations in domain
2 with boundary conditions defined as(i22a) (2.2b)or (2.2c) A functionu fulfilling

/fuvdx =0 forall v € Hy(Q)
Q

is called aweak solutiorof the partial differential equation.

As the derivation of this definition started with a class&alltion of the problem, itis clear
that a classical solution is always a weak solution. If a wsktion of the model problem,
i.e. ifu € H}(Q) fulfills (2.4), is in Cy(2) and if the right hand sid¢ is continuous, then
this u is a classical solution. This can be seen by applying Greesisidentity in the
opposite direction:

/(aVu-Verb-Vqurcuv)dX:/fvdxforallvGHO1
Q

0
& /(aV-Vuv—l—b«Vuv—l—cuv)dx:/fvdxforallvEHO1
Q Q
= /]:uvdX:/fvdxforallvEH&
0 0
& /(]—“u—f)vdx:OforallveH&.
Q

As both Fu and f are continuos functions, it follows, that their differermlso vanishes
point-wise.
2.2.4 Existence and uniqueness of the weak solution

Having the definition of a weak solution at hand it is possiideshow that the model
problem in (2.2) has a unique weak solution. To prove thateezrihe Poincaré inequality.

Theorem 2.4 (Poincagé inequality) LetQ) C R¢ be an open and bounded domain. Then
there exists a constantsuch that for ally € H}(2) we have

[o]] < el Vol.
Proof. For the casé€ = [0, 1] x [0, 1] see the proof of Theorem A.6 in [61]. O

Now we are ready to show the main result of this section.

14
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Theorem 2.5 (Existence and uniqueness of the weak solution)et f € L?(2), Q asin

(2.2a) (2.2b)or (2.2c) and let the coefficient functions ¢2.2) fulfill the requirements
in (2.3). Then there exists a unique weak solutiore H} () that accomplishe$2.2)

with boundary conditiong2.2a) (2.2b) or (2.2c) Moreover, there exists a constaft

independent of, such that

[ulla < CllA 22

Proof. Define a linear functional
L(v) = /fvdx
Q

and a bilinear form

g(u,v) = /(aVu-Vv+b-Vuv+cuv) dx.
Q

The linear functional is bounded, as with help of the CauSkbiiwarz inequality and the
Poincaré inequality we show

(L) < I flle2llvllze < ([ fllzllollae < ell fllz2llvll g,

andg(-,-) is bounded and coercive i} () as for allv € H}(Q)

ov,0) = [ Vo + (e = 57 B)1f?) dx

> ag||vll7 -

The spaceg* form Hilbert spaces, so the Lax-Milgram Lemma (Theorem & 2ppli-
cable, i.e. the equation

g(u,v) = L(v)

has a unique solution for eache H} (). O

Now that we know, that a unique weak solution exists, we wakinow if the solution is
regular, i.e. if it depends continuously on the data of the partifiedential equation. The
answer to this question heavily depends on the domain ankeondundary conditions of
the problem at hand, so in the following it will be treatedaepely for boundary conditions
(2.2a), (2.2b) and (2.2c).

15
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2.2.5 Regularity of the solution for PDEs with Dirichlet boundary
conditions

Partial differential equations with Dirichlet boundarynetitions are very well analyzed.
The associated theory requires tools from functional aisihat are beyond the scope of
our brief overview, e.g. it depends on Sobolev inequaliied similar estimates. More
details can be found in the books of Friedman [36], Gilbard &rudinger [41], Gustafson
[47], Jost [58] and various other textbooks on PDEs. For tmpgse of this work it is
sufficient to know about some of the most important resulis tan be found in the book
of Larsson and Thomée [61]. For problem (2.2) with boundanyditions (2.2a) they note
in Chapter 3.7 that it is possible to show that fobeing either smooth or described by
finitely many convex piecewise polynomials, a solutiomf (2.2) is in H?, and that a
constant exists such that

[ull 2 < el F1- (2.5)

For the plain Poisson equation
—Au=f (2.6)

this means that the second derivatives of the solution avaded by a combination of
special second derivatives. Another consequence of @thpat small changes in the right
hand side lead to relatively small changes in the solution.

Obviously neither being if7! () nor being inH?(Q) is sufficient for applications from
engineering or physics. Larsson and Thomée mention thatlb@ing smooth and < H*
the weak solution: is in H**2(Q2). With the Sobolev inequality (see Theorem A.5 in
[61]), we obtainH**2(Q) c Co(QUT) for k > d/2. That implies that the solution has
the desired properties. Similar results can be obtaineddarains whose boundaries are
convex polynomial and for four-dimensional hypercubes.

2.2.6 Construction of the solution for PDEs with open boundey con-
ditions

For some patrtial differential equations with open boundanyditions given by (2.2b) itis
possible to construct the solution analytically, so a ragtyl analysis is not necessary. For
that purpose, lef be as in (2.2) with open boundary conditions as in (2.2b)taad), so

—alAu+cu= finRY,

x| —0
) —

(2.7)
0.

u(x

In order to construct a solution for this problem, we needsitvealled fundamental solu-
tion.

16
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Definition 2.10 (Fundamental solution) Let £ be defined a$2.2) with open boundary
conditions given ir{2.2b) A functionU that fulfills

/Uﬁcpdx = (0) for all ¢ € C5°(RY) (2.8)

R4

and that is smooth fox # 0, having a singularity atkk = 0, such that/ € L'(B) with
B :={x € R?||x| < 1} and such that

10°U (x)| < Cu|x|*~971°1, for |a| > 0, (2.9)

is calledfundamental solutionf L.

In order to make the purpose of the fundamental solution mabwous, we need the defi-
nition of the Dirac delta distribution.

Definition 2.11 (Dirac delta distribution) LetQ) c R<. TheDirac delta distributior is
defined to be a linear functional acting on smooth test fmstias

d(¢) = ¢(0) for all ¢ € Cy(92).

Usingé as the right hand sidgin L it follows that the fundamental solution fulfills
LU=

in the weak sense. To proceed we need the definition of theobaion of two functions.

Definition 2.12 (Convolution) Let f,g € L?(R%). We define theonvolutionof f andg
as

(f % g)(x) := / F(x— y)g(y)dy.

Given the fundamental solution and its motivation, we camstwict a solution fo’ with
open boundary conditions as given by the following theorem.

Theorem 2.6 Let £ be defined a§2.2) with open boundary conditions given(a.2b) U
be a fundamental solution ande C¢(R¢). Then the unique solutiangiven by

) = (U ) = [ Ulx—y) fy)dy.
Proof. Due to (2.8) it holds
JUc-yceix= [U@) £ota+y)da=ly)

17
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Using an arbitrary test functiop € C;°(R?) the definition ofu gives

/uﬁcpdx-// x —y) f(y) dy £ o(x) dx

:]717 Ux —y) Lp(x)dx f(y)dy
~ [ o) £y,

Sinced/ox;U € L*(R?) andd/dz; f € Co(R?) C L'(R?) the Fourier transformations of
these functions exist. Thus their convolution can be caroiet in Fourier space and the
convolution exists. Furthermore

0 0 0? 0?

&'EiU * 8—% - O0x;0x; (U=1)= ox; (‘390]

see e.g. Proposition 1 on page 156 in [89]. Thus all secortthpderivatives ofu exist,
so by partial integration the following holds

/uﬁapdx:/ﬁugodx,
Rd

R4

thus
Jeu=peix=o
Rd
forall ¢ € Cg°. ThereforeLu = f. O

We can summarize this theorem as follows: Given a fundarhsalation of a partial dif-
ferential equation with open boundary conditions, thesstad solution can be constructed
for sufficiently smooth right hand sidesvanishing at infinity. As mentioned before, a
classical solution is always a weak solution, which is urigUhe solution is also regular,
as it depends smoothly on the right hand side.

This section closes with the fundamental solution of a paldir partial differential equa-
tion, theGreen'’s functiorof the Poisson equation iR®.

Theorem 2.7 LetU : R? — R, .

4r|x|

U(x) =

(2.10)
ThenU is a fundamental solution of
—Au = finR3

u(x) =,

18
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Proof. Differentiation of U atx # 0 yields

o m o’U 3z} —|x|?
Or;  4r|x]3 or?’  dr|xp

so—AU = 0 for x # 0. Equation (2.9) is fulfilled, a&l/dr)*1/r = cr~'=. It remains to
show, that (2.8) is valid as well. For that purposedet C5°(R?). We setn := x/|x| and
apply Green’s second identity:

/U(—Agp)dx: /(—AU)godx— / (gpg—ﬁ—g—ﬁ(]) ds.

|X‘>5 |x\>6 |x\:8
Now
/(—AU)godXIO,
|x|>e
oU 1 e—0
Y on ds = 4rre? / pds = ¢(0)
/=< ==
and
agp 1 8%0 e—0
[ |-l [ Gate| <eAVelam o
Ix|== =<
so

e—0

/U(—Agp) dx = lim U(—=Ayp)dx = ¢(0).

R3 |x|>e

2.2.7 Construction of the solution for PDESs on the torus

As for the partial differential equations in the previoustgen the solution of partial differ-
ential equations on the torus is constructed analyticddtyigh the tools needed differ a lot
from the ones used previously. We consider the problem (&it?) boundary conditions
(2.20), i.e.

—alAu + bV -u+cu= finR?/Z4,

with constant coefficients, b, c € R and with f € L?(R?/Z). The solution of this partial
differential equation can be given in terms of its Fourieieseas stated in the following
theorem.

19



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Theorem 2.8 Let
—aAu+ bV -u +cu = finR?/Z%,

with f € L?(R%/Z%) be a given partial differential equation and I¢tk) be the Fourier
coefficients of the right hand side with

> )] < e

kcZzd

Assuming that either = 0 or that the Fourier coefficienf(0) vanishes, the solutiomcan
be given in terms of its uniformly convergent Fourier seass

u(x) = 3 (ke 2R,

kezd

where

u(k) = /() :
Yoaki+bikj+c

J=1

Proof. The series
Z a(k)ef%rik-x
keZd

has a convergent majorant series, as

" A
)] = | < |
Yo aki+bik;+c

j=1

,Vk # 0.

Therefore it converges uniformly te by the convergence criterion of Weierstral3. That
allows to analyze the partial differential equation by depeng both sides of the equation
into the respective Fourier series:

F(—aAu+ bV - u+cu)( ) =F(f)(x)
& Z (—aAu+bV u + cu) (k) Rx = Z fk)e2mikx,

kezd kezd

Applying Lemma 2.3 twice gives

d
ZZ ak:?+bzk‘j+c) 27rzkx_ Zf 27rz‘k~x.

kezd j=1 kezd
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Comparison of coefficients yields:

f (k)
y :
doaki+bikj+c

Jj=1

(k) =

Now we have to consider two casesrlf 0, this equation is always true. For= 0, we
need more, namely(0) = 0, required in the assumptions. O

So under the premises of the previous theorem the classicdic of the partial differen-
tial equation can be constructed. It remains to mentionttieatonstructed solution is also
regular, as the dependence on the right hand side of the P&¥&asth.

2.3 Numerical solution

We have shown that unique solutions of a PDE of the form (2i) @irichlet boundary
conditions (2.2a) or periodic boundary conditions (2.2a) af a PDE with open boundary
conditions as given in (2.7) exist. Furthermore they areil@g so a numerical approxi-
mation of the solution is meaningful. Various different imeds for the numerical solution
of partial differential equations exist. In the followingewvill examine two methods in
larger detail. The first method under investigation will be discretization using finite
differences which is probably the easiest method for thearigal solution of PDEs. Af-
ter that we will discuss the discretization of PDEs usingdimolumes. The first method
is perfectly suited for simply shaped domains like cuboidthwither Dirichlet or peri-
odic boundary conditions, where in the periodic case theiculs just a representative
of the torus. When the partial differential equation at had constant coefficients, the
resulting linear systems are easy to analyze, for detailsetee to Chapter 3. The second
discretization technique is especially well suited for tluenerical solution of the Poisson
equation with open boundary conditions. Together with trethod an extension of the
error analysis of Washio and Oosterlee [87] is presentegl her

Various other discretization and solution techniques DER exist, that we do not mention
here. One of the most important techniques missing in thiskusthe finite element
method, which is strongly connected to the variational agpph that was presented in
Section 2.2.3.

2.3.1 Solution of PDEs on the torus or on subsets @ with Dirichlet
boundary conditions using finite differences

The use of finite differences for the solution of partial ei#ntial equations is straightfor-
ward as it is directly connected to the definition of the datiixe. To motivate the use of
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finite differences for the solution of partial differentieduations, we will start with one
dimension.

Finite differences in one dimension

The derivative of a function is defined via the difference tigra

f@%:mnﬂx+m—f@)

h—0 h

Motivated by this definition the discretization of a derivaton an equispaced grid with
grid width ~ can be given by

f(x+h) = f(x)
- :

fix)=
Using the Taylor expansion it can be shown that the errorfveebis of orderh, as

f@+h) = f(z)+ f'(x) h+ O(h?)

N R CaLIEY (G

+O(h).

Using Taylor expansion at additional grid points, e.g.

Fla+h)=f@)+ f'@x)h+ fﬁéx) b2+ fméx) 1+ O(hY) (2.11)
and " n
F@—h) = f@) - fa)h+ éx) I 6@ 1+ O(hY), (2.12)

allows the definition of higher-order approximations of tingt derivative, e.g. by subtract-
ing (2.12) from (2.11) and dividing the result Bywve have

fl(z) = f(x+h)2_hf(x_h) +O(h?), (2.13)

and of approximations of higher derivatives, e.g. the ofdespproximation of the second
derivative given by adding (2.11) and (2.11) given by

fle—h)—2f(x)+ flz+h)

f"(x) = ™ + O(h?). (2.14)

Higher order approximations can be constructed by usingergad points, e.g. not only
x — h, xandx + h, butz — 2h, x + 2h, ....
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For the one-dimensional analogue of the Poisson equatitnDiiichlet boundary condi-
tions, i.e.

—u"(z) = f(x) forallz € Q, u(0) = go, u(l) = g1,

discretization with the approximation in (2.14) with = u(ih), f; = f(ih) andh = 1/n
leads to the linear system

Uozgoa
1
ﬁ(ui_l—Quﬁrqu):fi, fori=1,....n—1,

Uy = gl.

After elimination of the boundary values this linear systierads to a tridiagonal linear
system. Analogously, for periodic boundary conditions wée g

1
72 (Un — 2ug +u1) = fo,
1
ﬁ(ui_l —2ui+ui+1) :fz‘, fori = 1,....n—1
1
ﬁ (’U/n,1 — Qun +’U,0) = fn

The resulting system has a singular coefficient matrix thairculant. Both systems can
be solved using multigrid methods. This will be describe@apter 3.

Finite differences for higher dimensions and the stencil ntation

The usage of finite differences for the approximation of\dives is not limited to one
dimension but can easily be extended to more dimensions.o@twring partial deriva-
tives are approximated as before, yielding a linear syskahitas to be solved in order to
obtain the approximate solution of the partial differehgéiquation. So for a second order
accurate approximation of the Laplacian in two dimensioescambine (2.14) ir;- and
xo-direction and obtain

Au(x) = % [u(x — hey) + u(x — hey) — du(x) (2.15)

+u(x 4 hey) + u(x + hey)] + O(h?),

wheree; is thei-th unit vector. For the sake of clarity we introduce 8tencil notation
In this notation the coefficients belonging to neighboring goints are written in squared
brackets, where the coefficient in the center is belongirigeactual grid point itself. The
stencil for (2.15) is

. 1
EELERE R R (2.16)
1
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The same can be used for higher dimensions, e.g. an appitixmud the Laplacian in
three dimensions is given by

Au(x) = % [u(x — hey) + u(x — hey) + u(x — hes) — 6u(x

(2.17)
+u(x + hey) + u(x + hey) + u(x + hes)] + O(h?),

or in stencil notation by

1 1 1
ﬁl ﬁl—?l 72

To simplify the representation we writg ; ,, and f; ; . to denote the value of respectively
f at the grid pointx; ; ,, and we introduce the notatid¥ v, ;x, which is defined as the
central finite difference approximation to the second paderivative inz-direction, i.e.

u(Xi1k) — 2u(Xi k) + u(Xir15k)
h2

2 Wijg = : (2.18)
Hereh = ||Xi,j,k — Xi_l’j7k||2 = ||Xi+1,j,k — Xi,j,k”Q- We deﬁn&?éuid"k and@ggumk in the
same manner, so we may write for (2.17):

2 2 2 2
Aui e = Oy Uik + Oy, i g + Opytii i + O(h7).

If one orders variables lexicographically, the linear syss$ that belong to these discretiza-
tions are blocked systems, where the occurring blocks catebieed directly from the
stencil. So in two dimensions the three diagonals of thekbtotthe main diagonal are
given by the row in the center of the stencil and the diagonties of the blocks on the
secondary diagonals are given by the lower row for the loviegahal block respectively
by the upper row for the upper diagonal block.

Compact discretizations of higher order

We will now continue with compact discretizations of higloeder, i.e. discretizations not
only taking into account the direct neighbors, but all neareighbors. These discretiza-
tions are often referred to @a®mpactdiscretizations, as the stencil describing them still
has the compact 9-point representation in two dimensi@spectively a 27-point stencil
in 3D. Nevertheless, the stencil has more non-zero entness the original stencil of the
discretization of ordeh?. The main advantage of these stencils is that they achighehi
order but still only nearest neighbors are needed. This iseproperty especially when
considering PDEs with Dirichlet boundary conditions, asnlearest neighbors are always
available, which might not be the case for the next layer.tAepadvantage is the reduced
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amount of communication for parallel solvers, which usesgfoells. The approach pre-
sented here can be found in the work of Spotz and Carey, wineddahe discretization in
[75].

To define compact schemes of higher order, we now take a dimsleat the error term in
(2.17), while still using the notation as in (2.18). For th@d3on equation

—Au = f, (2.19)

we get
2 2 2
Otk + Oyuijr + O ui gk — Tijk = fijh

with

2 1o 4 4 4 g6 6 6
h* [0'w 0 81@ h {811 Pu  Pu Lo, (2.20)
15,

kT g (0uf " 0uf " Oad),, " 300 [00f T 05 0af),

Taking the appropriate partial derivatives of (2.19) we get

o'u  O*f o*u oMt
Ozt T 012 022022 022042
o'u  O*f o*u oMt
Oxd 922 022022 Oa20x%’
d'u  *f o*u o*u

4 2 29..2 29,.2°
Oxs  Ox;  Oxi0x;  Ox30x;

When we substitute these into (2.20), we obtain

L e I
7'17],;6—12 i,k 6 &U%@x% 8x%8:€§ 8:6%356% ik
ht [0%u 0% 0%
v O(h®).
Jr360 {8x? o &EgL,j,k+ ()

Now for all terms that are multiplied by?> and thus contribute to oul# error term, we are
able to provideh?-accurate approximations. Thus the resulting approxmnath (2.19) is
given by

Tl -T2 xr1 T3 2 I3

h2
D+ 4+, +—(020, + 0207 + 02,02 | wij =
Tl T2 T3 6 Js
h2
fish+ 75 100, + 0, + 05 ] g+ O(Y) (2.21)
and ish*-accurate.

Provided that the analytical derivatives of the right hamte ¢ are available, Spotz and
Carey derivedh®-accurate approximations in the same manner. For detadlsefer to
[75]. Their work was recently reviewed and extended by Samand Steffen in [83].
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2.3.2 Finite volume discretization-based solution of PDEdefined on
Rd

While finite difference methods are easy to understand aidpgtement for standard ge-
ometries leading to equispaced grids, they are hard to déd@ahwhe case of unstructured
grids as they occur in many engineering applications. On®mpo avoid the problems
related to the use of finite difference methods is the finitawe method.

Finite volume discretization

The purpose of the finite volume method is the same as thakedirihlie differences, i.e.
discretizing a PDE in order to gain a solution of it at definedhs, but the derivation of the
methods is completely different. Whereas in the finite défecee method we started with
the discrete points and discretizations of the occurringgalerivatives directly yielding
the algebraic equations, in the finite volume method the domaartitioned into several
small volumes and the PDE is rewritten at the interior of ¢heslumes using the diver-
gence theorem. This is a common approach for hyperbolic PDEst is feasible for the
solution of the Poisson equation in free space, as well.

For this purpose we considéras in (2.2) withb = —Va, i.e.
—a(x)Au(x) — Va(x) - Vu(x) + c(x)u(x) = f(x) forx € Q (2.22)
with boundary conditions as in (2.2a), (2.2b) or (2.2c). Negymay write
—a(x)Au(x) = Va(x) - Vu(x) + c(x)u(x) = =V - (a(x)Vu(x)) + c(x)u(x).

yielding (2.22) indivergence form

=V - (a(x)Vu(x)) + c(x)u(x) = f(x) forx € €. (2.23)
The domain? is partitioned into smaller closed volumes: = 1, ..., n, such that
U v=2 (2.24)
i=1,...,n
while
v; M v = (Z) for all 1 7£ j (225)

By V we denote this partitioning dl2. For each subvolume; C Q,7 = 1,...,n the
following holds true

/ —V - (a(x)Vu(x)) + c(x)u(x)dx = /f(x)dx.
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2.3. NUMERICAL SOLUTION

Applying Gaul}’ divergence theorem yields

/—(a(s)Vu(s))-ﬁds+/c(x)u(x)dx: /f(x)dx, (2.26)

v; (o

wheren is the outer normal obv;. On the basis of this equation and with the help of
finite difference approximations of the gradient a propecditization of the partial dif-
ferential equation can be given for domd&m The gradient in the boundary integral in
(2.26) is called thélux. The flux out of one subvolume over the boundary to a neighigori
subvolume is equal to the flux over this boundary into thaveltbme. This is true for a
symmetric discretization of the gradients as well, whichHy observation is conservative.

Consider the simple case of equation (2.22) ia 2 dimensions with Dirichlet boundary
on the unit square, i.€2 = [0, 1]*>. Forh = 1/n we define the partitioning

Vi = A{vn v, = [0 = 1)h,ih] x [(j — 1)h, jhl,i,j = 1,...,n}.

g

This partitioning fulfills (2.24) and (2.25). We discretittee boundary integral by the value
of the gradient in the middle of one side times its length, i.e

Qu((i — 1)h, (j = 3)h)

/ (a(s)Vu(s))-mids =h (a((i —1)h, (5 — %)h)

s Fre
~a(in, (-~ 2=
Falti = bn, -y 22
af(i gy 2T

and the volume integrals by the valuewénd f at the center times the volume, i.e.

/ c(x)u(x)dx = h*c((i — 3)h, (j — 3)R)u((i — 3)h, (j — 3)h)

Uhy

and /f@ﬁwﬁw—amo—@m

'Uhi’j
Both quadrature formulas are ordet accurate. If we discretize the partial derivatives
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CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

using the second order accurate discretization in (2.18), i

ou((i — 1)h, (j — %)h) L Ui — Ui15

0x; h ’

Ou(ih, (5 — 3)h) . i1y —uiy

0xy h '
am@—@mg—mw)imJ—mwl

019 h ’

du((i — 3)h, jh) . Ui jr1 — Uy j

and 69522 D

whereu; ; = u((i — 1/2)h,(j — 1/2)h), fori,j = 1,...,n, we obtain for the subvolume
centered arounfi — 1/2)h, (j — 1/2)h):

(hPcij — A)uij + Uim1j + g1 + wijer + uipr; = B2 fij. (2.27)

Except for the boundary conditions, which either have to ivergin terms of the values
of u at a distance ole away from the boundary or in terms of the normal derivative of
u, this yields the same system as the discretization usinig fthiferences. The same is
true for higher dimensions. As both the quadrature formalag the approximation of
the first derivatives are second order accurate, the ovacaliracy of this method is of
orderO(h?), higher order quadrature formulae and partial derivatigerétization can be
used yielding higher accuracy. The main advantage of thie futlume method over the
finite differences discretization is the potential to detize a partial differential equation
in irregular domains or adaptively as it depends on appratimy the flow between two
volumes and discretizing the integral over the right hadd sonly.

Washio’s and Oosterlee’s finite volume discretization of te Poisson equation orR?

In the following we will derive an adaptive discretizatioor fthe solution of the Poisson
equation with open boundary conditions that is based on & wbWashio and Ooster-
lee [87]. The following covers the case that the solution of

—Au(x) = f(x), x € R

u(x) =0, [[x[| = oo,

(2.28)

is sought for inQ)y = [—2, 1]3, only, where supfyf) C €. To solve this problem numeri-

272
cally, we discretizé), using a regular grid with mesh-widthand A using finite volumes,

i.e. the 3D analogue of (2.27).

To properly handle the boundary conditions the originad ggiextended with the help of a
grid extension rater € (1, 2) in the following way: The grid on the finest level is defined
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2.3. NUMERICAL SOLUTION

Figure 2.1: Coarsened grid in 2D. Highlighted is the origfime grid, in which the solution
is of interest.

to be the discretization of domaiy with grid-width /;, where

Ql = [_é7é:|37

22
s (2.29)
hl =h

As a result(?; is just an extension of the original domdh The domain is then extended
and the grid is coarsened recursively as

0 . [ 48]

l - 272 ) 5 30
ﬁlzala ( )
hy = 2071 h,

The additional parameters are introduced in order to enable the extended grids to have
common grid points with the fine grids. Furthermore we defireeset of grid pointgj; of
levell to be

& Z:{XGQI|X:hlZ,ZEZ}.

An example of how a coarsened grid might look like in 2D can duenfl in Figure 2.1.
We remark that Washio and Oosterlee continue the extensidit@arsening process up
to infinity, which is nice for the analysis of the discretinat but not suitable for an actual
implementation.

The Laplacian is now discretized on the domains(2,\ 2, 23\, ... using the finite
volume method, except for the interfaces. For a completigation ofR* we have to
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****************************************

Figure 2.2: Conservative discretization at the interfac2D.

give a discretization of the problem on the composite grid
G=G UG U:---,

including the interfaces betweéy and();,.;\();. Using the finite volume discretization
this can be done relatively straightforwardly. As an exangansider the two-dimensional
discretization using finite volumes at the refinement bomntiaat is depicted in Fig. 2.2

(the extension to 3D is straightforward). Here the flixcan be approximated by interpo-
lating linearly from the left and the right neighbors, i.e.

1
Fo= 5+ F). (2.31)

Now we are ready to show that for a suitable grid-extensitwrahe error of this method
is of the same order as it would be if the whole grid was dismedtusing the finest grid
size.

In order to analyze the error of such a discretization we defie discrete analogue of a
Green’s function.

Definition 2.13 (Discrete Green’s function) Let A, be a discretization of the Laplace
operator on the grid x | x = h z,z € Z*} and letd,(x,y) be defined as

)L, x=y,
on(x,y) := { 0 otherwise

Then the discrete Green'’s function is defined by

AhG(h(Xa Y) = 5h(X7 y)7

whereA,, is w.r.t. the first argument, only.
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2.3. NUMERICAL SOLUTION

Conforming to the discretization using the partitioningtbé domain, we measure the
error in terms of the difference to the cell-average of thait Green’s function, which
is derived in Theorem 2.7.

Definition 2.14 (Cell-averaged Green'’s function) Let G/(x,y) be the Green’s function
of the Laplace operatof and let(), be defined as the cube with volumecentered ak,

i.e.
h
0= {v |Ix-yl<3}

The cell-averaged Green'’s functighis given by

G(x,y) = %/G(z,y)dz.

Qx

As we chose a conservative discretization, Green’s idehotds for the discrete case as
well. Thus we obtain

/[u(Ahv) — (Apu)v]dx = j{[u(vhv) — (Vyu)v] - nids.

Q o0

Therefore, for the discrete Green’s functi@p it holds true that

/Gh(x,Y)[—A\I/h(y)]dy =

Q

Wy (x) - 7{ (G, 8)(Valn(s)) — (VaGn(x, ) Wa(s)] - fids, (2.32)

[%9]

for a function¥,. With this observation, we are now ready to provide an emaiyasis for
Washio’s and Oosterlee’s method.

Theorem 2.9 Using the described grid coarsening strategy with a grideagion rate
a > 2%/ the errore(x, p), defined as

e(x,p) := |G(x,p) — Gi(x, )], (2.33)

is of orderh? for all x € G,.

Proof. By applying the discrete version of Green’s identity, insertinge(x, p) into (2.32),
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we get

/ (%, ¥)[=An(C(y, P) — Gy, p))] dy +

9

e(x,p) =

7{ [Ghx, )V (G5, p) — Ginls. b)) -

o

ViG(x,8)(G(s,p) — Gals, p))] Cfids| (2.34)

for any domain(;. Letting! — oo the second integral vanishes due to the boundary

conditions. So the error due to the integration over the figed is bounded by
|€0<X7 p)‘ S COhQ'

Washio and Oosterlee showed in [87] that the eefatlue to the region outside the finest
grid, but not including the non-cubic-cells is bounded by

ad—1 h?
1—22/a3 dxdg

le1(x,p)| < a1

and that the erro#, due to the non-cubic cells is bounded by

1 h?
1 — 22/ dydd’

|62(X7 p)| <c

whered, andd,, are the minimum distances from the boundary of the finestajridandp,
respectively. The proof depends on the fact that there eaisdtantsy, (k = 0,1,2,...),
such that

%
ly — p[F+t

whereA, andA, act ony andp, respectively. For further details we refer to [87]. Ovkral
the first integral can thus be estimated as:

Ay AT Gy, p)| < (m < k),

/ (%, ¥) [~ An(C(y, p) — Gy, p)] dy| < €0 + 1 + e2 = O(1?).

v

The limit! — oc yields the desired result. O
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Modification of Washio’s and Oosterlee’s method

Although the proposed method of Washio and Oosterlee iseafi¢fint accuracy it does not
provide a practical numerical scheme as the error analysyshmlds for infinitely many
refinement levels. In practice the refinement process igstb@at an arbitrary but finite
number of refinements, but we cannot be sure, that the eroduped by this alteration is
of the required accuracy. To tackle this problem, we havedptons:

1. Estimate the error induced by stopping the refinementgaat a given level.
2. Provide a modification of the method which does not exfiiét problem.

As the first would strongly depend on the number of refinemantsthe grid size of the
finest mesh, we decided to use the latter approach. The extewas published by the
author in [8]. For our purpose we defifgy to be the index of the maximum coarsening
level and we denote the discretized domairthy, . At that level the Dirichlet boundary
conditions of the original problem are imposed, i.e.

u(xy) = L / ﬂdy for xp € 0, - (2.35)
i ) Ty =l

So the boundary conditions of the Dirichlet problem thabived numerically are set with
the help of the fundamental solution. We immediately obthennew problem to solve:

Au(x) = f(x), x € Q, supp(f) C Q C R?,
) — b f(x) N (2.36)
(xa) 47TQ/7”},_)<8H2c1lyfor 9 € 0N

The solution of this Dirichlet problem, which can be interfed as a slice of the original
problem with open boundary conditions, is the same as thtisolof the original problem
in that region, as stated by the following lemma:

Lemma 2.4 Let f € Co(R3) N L*(R3) with supp(f) € R? and letu be the solution of
(2.28) with that right hand sidef. Thenw also is the unique solution of2.36)in any
bounded domaif D supp(f).

Proof. Let 2 be any domain that is a supersetsapp(f). With Theorem 2.6 fulfills
(2.36) for allxy € 0f2. Uniqueness follows from Theorem 2.5. O

Imposing the boundary conditions with the help of the caruns problem does not yield
the same solution as solving the discrete problem on thestrioied domain. So as an
extension to Theorem 2.9 we have to provide an error estifoathis step as well.

Theorem 2.10 Assume that the discrete Green’s function can be bounded by

1 1 C1
Gh(x7 p) S s + .
dr [[[x=pll2  [lx—plS
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Using the described grid coarsening strategy with a griceaston rater > 2%/% up to an
arbitrary levellnhax € N and setting the boundary conditions at that level ag2r85)the
error e(x, p), defined in(2.33) is of orderh? for all x € Gy.

Proof. For an arbitrary domaif; the estimate of the volume integral in (2.34) holds as
in the proof of Theorem 2.9. It remains to estimate the vafub® surface integral. For
that purpose letl be the minimum distance of a point of the original dom&into the
boundary of the domain discretized using the coarsest §gdoth,x andp are inside of
the original domain, we can estimate the second integral:

[Gh(x, s)Vi(G(s,p) — Gi(s,p))— ViaGu(x,8)(G(s,p) — Gh(s,p))} - 1ds

anmax

< qBlmax ax HGh(x, s)V1(G(s,p) — Gu(s, p)) - ﬁ’ -

ViGi(x,8) -3 (G(s,p) — Guls, p))|

11| |ah 3c1h?
< 3lmax i Imax Imax
=« K 47rd' P ) @ |
11 3Clh12max Clhlzmax
4r d? d* a3
— aglmax i 301 thmax 30% h;lmax i 301 hlzmax 30% h?max
AT P db 4 d d’ '
Obviously, fora > 2%/3 we can estimaté as
al—1 _ o
d= >
2 T 4

and forh,, ., we have
By = 2070y = 20D,

So we get
a3lmax i 301 hlzmax 30% h?max i 301 thmax 3C%h?max
47 & d6 Ar 6 7
g || 13072602 22\ V] 1228820 24\ Y
< 19 max o o= ~ Las00C /0 s +
- 47 Oé5 Oé5 aG Oé6
1 12288¢:h% 22\ Y| 4915220t 24\ (7Y
A ab ab o7 o :
This is orderh? for o > 2%/3, -
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Remark 2.1 The assumption that the discrete Green’s functigns bounded, i.e.

1 C1

Gh(X7 p) S e + )

dr [[lx—pll2  [x—pl
is justified in the delight of an asymptotic expansion of the-fioint discretization of the
Laplacian given by Burkhart in [16]. This expansion is migsterms of even powers, so
our assumption is fulfilled.

Implementation of the grid coarsening

As noted in the definition of the different domains in (2.28dg2.30) we introduced
additional parameters; to simplify letting the different domains have common grairgs.

11

In the following we assume that the original doméin = [—3, ;]* is discretized using

grid spacingh = 2™, wherem > 2. Therefore the domain of interest consist@8f grid
points. Furthermore we want to double the grid spa&ngn each coarsening level, i.e.

hy =2

We define the domain on refinement levaks

3
Ql = {_%7%] )

where; is the length of domaif;. So for a conservative discretization of the flux as in
(2.31) we need that the new domain has at least length

Bi = B + 4y, (2.37)

For the error analysis to hold we need a grid extension raalefst/, i.e. the length has
to fulfill
B >al (2.38)
on each level. To fit (2.37) and (2.38) and to simplify the implementatioe whoose
4, =2and
0, := max <ﬁl_1 + 4hy, Q[IOgQ(O‘l)]) forl > 1.
On levell we now have
9[logy a')
M=o
grid points in each direction and the grid points on thatlleve given by

l — - mfl N nlfl nlfl T . . o
lejyk_hl<,l_ 2 7']_ 2 7k_ 2 ) 7Z7J7k_07"'7nl_1'

With that choice we can always reduce the problem to a coasseetization with9* un-
knowns in a finite number of coarsening steps, as stated dplbaing lemma.

35



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Lemma 2.5 Let2%? < a < 2, m > 3 and let the hierarchical coarsening be defined by

BO - 27
£ = max (5,,1 + 4y, 2“%““”) forl > 1, (2.39)
3
Q= [—@,@} and
279
hy =27

Then we have that only/grid points are present in each direction on level
2—m
Imax := [7w +1 (2.40)
logy v — 1
and on all subsequent levels.

Proof. We start assuming
B, = 2Nz for [ > 1,

neglecting the formation of the maximum in (2.39). Using tthefinition a level at which
only 93 or fewer grid points are left is reached when

9flogz(a)] < g,

Qflogz(al)]
o 2[llog2(a)fl+m+l"| <8
& [(logy(ar) = 1) +m+1<3
~ logy(a) — 1

If we show for levels below or equal to such athatg,_; + 4h; is not always larger than
2ltlog2(e)] we have shown the first part of the proposition. For that psepee note that

ﬁl — 2“0.%2(0‘)] = 2 and
Bo = 1 + 4hs.

Now for any levell + 1 with

B, = 2lt-D g ang
B = Bi—1 + 4y

it holds true that

ﬁlJrl _ 2[(l+1) logy ()] PN Bl + 4hl+1 < 2[(l+1) logQ(a)]’
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as

B+ 4hi = B + 4l + 8ly
— 9l=Dlogy(a)] 4 19 .9-mHi-1

With (2.40) for any level < [,oxWe have
92—
I < [77”} +1,
logy v —1

19, 9=mH=1 < 3, gl=2+(1=1)logs(@) =D+ £ 3, o(=1)logy(a)]

such that

So we get

By + dhyq < 2/ Dloga(e)] 4 3. ol(=1)logy()]
_ 9l(=1) logy ()] 42

< 2((“‘1)10%2(@)1 )

To summarize: Up to level,. each times, is equal tog,_; + 4h;, on the following re-
finement level we havg,; = 2/(+11e:(2)1 |t remains to show that once refinement level
Imax is reached, all subsequent levels pos$ésgid points as well. This is easy to see for
any levell possessing® grid points, as after doubling the grid spacimgrid points are
left in the domair(2,. Thus addingth,,; in each direction doubles the length resulting in a
domain eight times as big withgrid points in each direction. This length is the maximum,
asa < 2. So the next refinement level still possessegsid points in each direction. [

The modified method not only has the same order of the diget&in error than the orig-
inal method with refinement up to infinitely many levels bigabnly a finite number of
refinement steps depending linearly on the number of unke@arthe finest discretization
level is necessary to reduce the problen9tarid points. As a consequence orf{ V),

whereN is the total number of unknowns on the finest level, stepseayeired to impose
the boundary conditions on the coarsest refinement level iNiemains to show that the
number of grid points grows linearly with the number of grmirds of the innermost box.

Lemma 2.6 Leta, m, G,  andh;, [ = 1,...,1,... be defined as in Lemma 2.5. Then
the total number of grid points on all grids separately degieefinearly on the number of
grid points inside of the original domaif,, namely(2™ + 1)3.

Proof. We show the assertion by induction over We setd to the maximum of the
total number of grid points divided 3™ for m = 3 and %c, wherec is the number of
additional levels when we go from tom + 1, i.e.

lmax(m) 64

d := max ?—m;#gl ,70 )

m=3
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with

Iy = || 41
maxm) T Jog, a — 1 '

We like to note that is a constant, akax.,) is bounded by a linear function im. Now

we show that
lmax(m)

> #G < a2, (2.41)

=1

which is obviously true forn = 3. Assume (2.41) holds for some € N, then it holds for
m + 1 as well, since:

lmax(m+1) lmax(m) lmax(m+1)

Yo o#G =D #G+ D> #G
=1

=1 l=max(m)+1

lmax(m+1)

<d2?+ ) #G

I=max(m)+1

Obviously, the number of grid points on each of thadditional levels going fromn to
m + 1 is bounded by3*™*6, yielding

lmax(m+1)

Z #G, < d23m 4 3m+6

=1
d
= <g -+ 80)23(m+1)

< d 23(m+1) .

0

Combining the results we have shown that we have construiedptimal method of

the desired accuracy in the following sense: The numberitifraetical operations per
unknown on the finest level is bounded from above by a conataththe number of coars-
ening steps is predetermined by the size of the finest gridhé&same time the order of
the reached accuracy is not influenced by the number of aaagssteps, but depends on
the grid spacing on the finest level, only.

Comparison of the unmodified method and our modification

We like to conclude this chapter with a numerical comparigbthe original method by
Washio and Oosterlee and our method. For that purpose wemngpited the method in C,
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Figure 2.3: A cut through the computed solution of the tese@nd its analytic point-wise
error on a64® grid. Every fourth grid point is plotted.

#Go h #refinements |lu — u*||w ||la —u*||2/#G0 time
173 1/16 8 2.110010 - 102 2.162535 - 107° 1.66s
333 1/32 11 5.078421 - 1073 1.810825 - 10~¢ 12.84s
65° 1/64 14 1.251313-1073 1.580911 - 1077 104.61 s

1290 1/128 17 3.112553-10°* 1.392736- 10~ 909.64 s

Table 2.1: Error and timings for different various sizese®b-norm of the error decreases
as predicted and the method scales linearly with the nunflgrdpoints.

using the FAC method introduced later in Chapter 3.2.4 advaisfor the resulting linear
system. The performance was measured on a machine with @&aHz Power4+ CPU.
The grid extension rate was set td .6 > 2% and for practical reasorishas been chosen
as

B = (gﬂogz(al)w_

We used a point symmetric density described by a translatbat B8-Spline as defined
later in Chapter 4 as right hand side So the exact solution* to the problem is known
analytically. The computed solution on6a* grid and the error of this test case can be
found in Figure 2.3. Timings and error norms for various gizks are shown in Table 2.1.
Obviously, the method scales linearly and tkenorm of the error decreases as expected.

As it can be seen in Table 2.2 the number of refinement steps mweinfluence the
method’s accuracy, although the timings vary a lot. Thisgs@sequence of the reduction
of the number of boundary points, when the number of refinersieps is increased. We
ran the same test using the original method presented intf8/g not setting the boundary
values to the values of the continuous problem. The resultalble 2.3 and Fig. 2.4 show
that this method behaves as expected: Increasing the nuwhded refinements increases
the accuracy of the method up to the same level than our matikfic

The presented method is a useful extension of Washio’s arsfe@ee’s method. The
number of coarsening steps is known a priori and using a gridtsolver for the solution
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#refinements #G0 |lu — u*||w l|lu —u*||2/#Go
2 65° 5.089194 - 1073 2.023222 - 1076
3 65° 5.085428 - 1073 1.857736 - 106
4 373 5.066483 - 1073 1.927579 - 106
5 333 5.063288 - 1073 1.840964 - 10~
6 333 5.079554 - 1073 1.815541 - 106
7 213 5.067220 - 1073 1.815151 - 106
8 173 5.070326 - 1073 1.811852-10°¢
9 173 5.084148 - 1073 1.812722- 106

10 133 5.084021 - 103 1.812488 - 106
11 93 5.078421-1073 1.810825 - 1076
12 93 5.084541 - 1073 1.812455- 106
13 93 5.088087 - 1073 1.813763 - 106
14 93 5.089895 - 103 1.814523 - 106
15 93 5.090805 - 10~3 1.814928 - 106
16 93 5.091260 - 1073 1.815137-10°¢
17 93 5.091489 - 1073 1.815244 - 106
18 93 5.091603 - 1073 1.815297 - 106
19 93 5.091660 - 10~3 1.815324 - 106
20 93 5.091688 - 10~3 1.815337-10°¢

Table 2.2: Error norms for a33-problem withh = 1/32 and various refinements. The
error of the method is only marginally affected by the nundferefinement steps.

original method original method
— — — modified method — — — modified method

llell /32°

5 10 15 20 5 10 15 20
# refinements # refinements
Figure 2.4: Behavior of the error of the original method ahthe modification. Using the
original method both, the error in tilenorm and in thexc-norm, depend heavily on the
number of grid refinements. The accuracy converges to theaog of our modification,
that is almost independent of the number of refinements.
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#refinements #G.. [lu —u*||so lla —u*||2/#Go
2 653 3.653597 - 102 1.915066 - 10~
3 653 1.783026 - 102 9.573523-10°
4 373 1.584892 - 102 8.508257 - 105
5 333 8.995442 - 1073 4.779984 - 107°
6 333 4.631318 - 1073 2.383245-107°
7 213 3.762046 - 103 1.905511 - 10~°
8 173 2.929352 - 103 1.192743 - 107°
9 173 4.014153 - 1073 6.073405 - 10

10 133 4.375166 - 1073 4.211756 - 1076
11 93 4.554064 - 1073 3.346295 - 1076
12 93 4.821822 - 1073 2.248768 - 1076
13 93 4.956727 - 1073 1.902828 - 106
14 93 5.024221 - 1073 1.821841 - 1076
15 93 5.057969 - 103 1.809017 - 106
16 93 5.074843 - 1073 1.809788 - 106
17 93 5.083280 - 1073 1.811972 - 1076
18 93 5.087498 - 1073 1.813512-1076
19 93 5.089608 - 103 1.814394 - 106
20 93 5.090662 - 103 1.814863 - 106

Table 2.3: Error norms for 33*-problem with = 1/32 and various refinements using the
method of Washio and Oosterlee. The error of the method lysd&pends on number of
refinement steps, reaching the same accuracy as the moddibdan
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CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

of the linear system the computational cost grows lineaiti the number of unknowns as
intended by Washio and Oosterlee. The error analysis psshows that independent of
the number of refinement steps the method is of the desiret ofcaccuracy. In contrast
to that the original method lacks this independence, asrioe analysis is based on the
assumption that infinitely many coarsening steps are cboug. In practice this number is
an additional parameter that has to be provided by the usearlearly seen in the numerical
examples, the accuracy of the original method depends amutmer of coarsening steps.
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Chapter 3

Multigrid Methods

3.1 Iterative methods

In the following we are interested in the solution of linegstems using iterative methods.
For that purpose letl € R"™" n € N, regular and leb € R". Later on, we will use
the fieldC instead ofR, as it simplifies representation. We are interested in theisa

x € R” of linear systems of the form

Ax = b. (3.1)

A lot of different methods exist to solve this system dirgat iteratively. Examples for
direct solution methods are Gaussian elimination or the€ky decomposition. Besides
roundoff errors and memory requirements the main drawbadkect solvers is their high
arithmetical complexity, e.g. the Gaussian eliminatiomfiorder O(n?) if one cannot
exploit the sparsity ofl. In this work we are interested in iterative methods, théharetic
complexity of which should be significantly smaller. Thisoshintroduction to iterative
methods is based on the books by Meister [67] and Hackbugighffs further details we
refer their works. In our case (3.1) is solved using an iteeanethodp.

Definition 3.1 Aniterative methods a mapping

¢ :R" xR" — R".

In the following we denote byx(® ¢ R” the initial approximation. The new iterag*+!)
is computed with the help of®*) andb as

X(kJrl) _ (b(X(k), b)

We demand from a numerical method that it converges agdiastdlution of the system
and that the solution of the system is a fixed point of the nktho
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Definition 3.2 An iterative method is called consistent withA iff for all b € R* A~'b
is a fixed point of(-,b). It is called convergeniff for all b € R™ and for all initial
approximationsc() € R” the sequencéx®)}2  has the limitA~—'b.

Both consistency and convergence are necessary condioas iterative method to be a
meaningful method.

3.1.1 Linear iterative methods

Definition 3.3 An iterative methoa@ is called alinear iterative methodf there exist ma-
trices M, N € R™"*" such that

¢(x,b) = Mx + Nb.

The matrix)M is callediteration matrix

For a linear iterative method necessary and sufficient ¢cimmdi for consistency and con-
vergence can be given as stated by the following two thearems

Theorem 3.1 A linear iterative method is consistent iff we can write

M=1-NA.

Proof. Letx* = A~'b. Assume thak* is a fixed point of)(-, b), so we have

x" = ¢(x",b) = Mx* + Nb = (M + NA)x".
This is the case for abh € R”, i.e. for allx* € R", iff ] = M + NA. O
Theorem 3.2 A linear iterative metho@ is convergent iff the spectral radius of the iter-
ation matrix is bounded from above byi.e.

p(M) < 1.
Proof. See e.g. the proof of Theorem 3.2.7 in [54]. O

For the analysis of multigrid methods which use linear tigeamethods as smoothers the
following lemma is helpful.

Lemma 3.1 Thek-th iterate of the linear iterative methaglcan be written as

k—1
x¥ = M*x© +) " M'Nb. (3.2)
=0
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Proof. We prove the statement by induction. Fot= 1 equation (3.2) holds. Assume that
(3.2) holds fork — 1. Inserting the definitions yields

k—2 k—1
x® = M (M’“x@ + Z Mle> + Nb = M*x© + Z M'Nb
=0 =0

O

So applyingk iterations of a linear iterative method results in multiptythe current ap-
proximation by thek-th power of the method’s iteration matrix and adding a modtfon
of the right hand side. Starting with a zero approximationcae give an explicit formula
for x(®),

Lemma 3.2 Lety : R" x R™ — R™ be a consistent linear iteration method with iteration
matrix M = I — N A. If we start with a zero approximation for the solutionA% = b,
we can write the:-th iterate as

x® = (I — M*)A™'b.

Proof. For A we can writeA = N~Y(I — M) < A~ = (I — M)~'N. Asx® = 0, we
have
x® =T +M+M*+...+M)Nb
= (I —M*(I - M)"Nb
= (I - MMA'b.

3.1.2 Splitting methods

From Definition 3.3 it is not obvious how to choose eitliéror N. One way to construct
a linear iterative method is the splitting of the matrlxi.e. with regularB € R"*™ we
write

A=B+(A-DB).

Now we can define the iterative methody
¢(x,b) =B (B—-A)x+B'b=(1-BA)x+ B 'b,

thus we setM = (I — B~'A) and N = B~!. Obviously the defined iterative method
is consistent, a®3 is regular. The key idea is to defirie¢ to be similar toA and easy to
invert. One of the first ideas is to sBtto the product of the identity and an arbitrary value,
resulting in the Richardson method.
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Definition 3.4 Letd > 0. Then theRichardson methots defined as the linear iterative
method
¢Richardsor,€(X, b) = (] — QA)X + 6b.

Theorem 3.3 Let A be symmetric and positive definite, Mg, be the smallest and I&t,x
be the largest eigenvalue df. Then the Richardson method converge8 if (0, 2/ A\max)
and the convergence rate is

p(MRichardsor,ﬁ) = maX{‘l - ‘9)\min‘a ‘1 - ‘9)\max‘}- (3-3)

Proof. Let A\ 4 be an eigenvalue of, then obviouslyl — 6\ is an eigenvalue a/richardsors-
As the functionl — A\ has no local maxima, we immediately obtain (3.3). Now assume
thatd € (0,2/Amax), SO we have

SO p(Mrichardsow) < 1. This shows sufficiency. To show necessity we assume
p(MRichardsor,ﬂ) < 1. With

1> p(MRichardsor,ﬂ) > |1 - 0/\max| >1-— ‘9)\max
we haved > 0, from
-1< p(MRichardsor,ﬂ) < _‘1 - ‘9)\max| <1- 0/\max

we obtaind < 2/Amax- O

Another well-known splitting method is the Jacobi methotigve B is chosen to contain
only the diagonal ofA.

Definition 3.5 LetA = D + L + U, whereD is the matrix containing only the diagonal
of A, L contains only the lower triangular part and only the upper triangular part. The
Jacobi methodks the linear iterative method given by

Gracobi(X,b) = =D (L + U)x + D 'b.

Its iteration matrix is denoted b¥/3aconi = —D (L + U).

A number of convergence criterions exists. We just would tik mention the criterion for
positive definite matrices. Here and in the following, forand B being two symmetric
matrices the expressiom“> B” denotes thatd — B is symmetric and positive definite,
“A > B” denotes thatd — B is symmetric and positive semi-definite. For some symmetric
and positive definite matrix’ and matricesD and E that are such that’D andC'E are
positive definite, by D > E” and “D >, E” we denote thaU'D — C'E is symmetric
and positive definite and symmetric and positive semi-definespectively.
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3.1. ITERATIVE METHODS

Theorem 3.4 Let bothA be symmetric positive definite and let the relation
2D>A>0

hold. Then the Jacobi method converges and its convergateésrgiven by
p(MJacobi) = ”MJacobi”A = ”MJacobiHD < 1.
Proof. Obviously we have

ID>A>02]>D2AD 2 > 0.
=:A’

Soo(A") C (0,2). Now the matrix
M =T —A =1 —D3AD"% = D> MaeonD ">

is similar to Mjacom SO
U(MJacobD — U(M/) C (_1, 1).

Additionally
1 1
p(Msacob) = p(M") = || M'[|s = |D"2 M'D2||p = || Maacobi| -
Using the similar symmetric matriA%MJacob.-A*%, we obtain

p(Miacon) = p(A? MiacopA™?) = || A% Miacond 2 ||2 = || Miacobil a-

Remark 3.1 Writing the Jacobi method component-wise yields

1 n
k+1 k
Qis J
1 j=1
J#i

Using not only components of the old iteraté) but the available components of the new
iteratex*+1) results in

i—1 n
k1 1 (k+1) (k)
x; = (bi — Zaijx]— — Z aijT; ) ,
7j=1 Jj=i+1

which is the component-wise version of the Gauss-Seidalaieln matrix form it reads

pes(x,b) = —(D + L) 'Ux+ (D + L) 'b.
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3.1.3 Relaxation methods

The new iterate of a linear iteration method can be writteteims of the residual vector
r:=b— Ax as

xF) = (I = NA)x® + Nb = x® 4 N(b — Ax®)) = x®) 4 Nr®),
By weighting the correction we get

resulting in a new linear iterative method. The additioraagmetetv allows us to optimize
the spectral radius of the original method’s iteration matBy introducing the parameter
to the Jacobi method we get the JOR method.

Definition 3.6 Let A, D, L and U be as in Definition 3.5. Thdacobi overrelaxation
methodor for shortJORis the linear iterative method given by

$30rw(X,b) =x —wD ! (Ax + b).
For the JOR method we can formulate the following convergemiterion.
Theorem 3.5 Let A be symmetric and and positive definite andJdulfill
0<w<2/p(DA). (3.4)
Then the JOR method converges, and its convergence rateeis by

p(Miorw) = | Miorwlla = [[Mioru|lp < 1.

Proof. We have(D~'A)~! > 1/p(D~'A)I. Thus, with condition (3.4) we have
0<wl<2/p(DTA <2(D'A)"t=247"D.

This in turn implies
0<wA<2D.

The rest of the proof proceeds like the proof of Theorem 3hi¢lvstates the convergence
criterion for the Jacobi method. O

Remark 3.2 The Gauss-Seidel method mentioned in Remark 3.1 can baledtby a
relaxation parameter in a similar way as the Jacobi methbd,main difference being the
component-wise introduction of The resulting method is the well-known SOR method.
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Linear iterative methods like the Richardson method or #mBi and JOR method, re-
spectively, are easy to analyze and to implement. The cgawnee rate directly depends
on the eigenvalues of the original system. For example thenealues of the iteration
matrix of the Richardson method are given as

=1—0\,,

A Richardsond

where) 4 is an eigenvalue ofl. So for an ill-conditioned system with an eigenvalue close
to zero the convergence rate of the Richardson iteratidrb@ismaller than one, but very
close to it. As a consequence it will be unsatisfactory. ©thethods like Jacobi and
Gauss-Seidel and their relaxed variants behave in the saye Whis is in contrast to
Multigrid methods which do not share this downside for dertdasses of matrices.

3.2 Geometric Multigrid

Multigrid methods are optimal, i.€(n), methods for the solution of certain linear systems
arising from the discretization of elliptic PDEs. Additally, they are efficient, i.e. the
constant factor that is multiplied with the leadingerm is small. Multigrid is a universal
principle that can be applied to a wide range of elliptic peofs, e.g. problems with non-
constant coefficients, different discretizations, eta #mnon-elliptic problems as well.
The origins of multigrid go back to the workings of Fedorerj80, 31], who analyzed the
convergence of a multigrid method solving a discretizeigtédl PDE of second order with
Dirichlet boundary conditions. Further on Bakhvalov [6}éasbe named, who mentioned
the use of nested iterations in order to improve the inifgdraximation. Brandt used the
ideas contained in these papers in his work on adaptivearedization and showed their
practical efficiency [11]. Later, he published a very detailvork on multigrid methods
[12]. Simultaneous to these developments, Hackbusch waskemultigrid methods for
the solution of elliptic PDEs as well [48, 49, 50, 51], puttiparticular emphasize on
mathematical rigor.

We stick to the standard model problem and definitions as mastductory multigrid
books that are much more detailed, see e.g. [15, 84].

3.2.1 Motivation

As aforementioned, iterative methods like the Richardsethod or the Jacobi method
converge very slowly for ill-conditioned systems. We wamtanhalyze this effect a little
more in detail. Although this observation can be made forgelalass of problems, we
restrict ourselves to the Poisson equation (2.5) with Bietboundary conditions (2.2a)
on the unit square, wherevanishes on the boundary, i.e.

—Au(x) = f(x) forx € [0, 1]?
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and
u(x)=0forzy =0Va; =1Vaey, =0V =1

Now we discretize the domain usimg+ 1 points in each direction, where= 2*. Using
the 5-point formula (2.15) for the discretization of the laagan we get

75 (At — i1y — Ui i1 — Uirrj — Uij1) = fig

hi;
with b, =2 %fori,j=1,...,n,andfori=0Vi=nVj=0Vj=nwe have
(ur)ij = 0.
This results in the linear system
Lyuy, = fy, (3.5)

where L, € R**® n, = (28 —1)2 andu,, f, € R*. To determine the convergence
factor of the Richardson method and the Jacobi method, we theeeigenvalues aof ;.
One easily verifies that the vectopgjzl with the components

(@52)” = sin(lmih) sin(mmjh), fori, j,l,m =1,... ny (3.6)

are the eigenvectors d@f,. The associated eigenvalues are
)\1(2 =4 — 2cos(Irh) — 2cos(mmh), forl,m =1,... ng.

So the smallest eigenvalue bf is

)

min

= 4(1 — cos(mhy)).

By Theorem 3.3 and Theorem 3.5 we easily find that the connesgrate for the Richard-
son method is

p(Mrichardsow) = 1 — 6(1 — cos(mhy)),
and for the Jacobi method we get

P(Mjacon) = cos(mhy).

Therefore both methods converge slowly for lakg&vhich is not surprising, as the system
is asymptotically ill-conditioned.

As the entries on the main diagonal of the coefficient matexanstant, for this problem
the Richardson method is equivalent to the damped Jacohoaheln the following we will
cover the Jacobi method in larger detail. Looking more dioaethe convergence rate of
the Jacobi method for the different eigenvectors, we finditrdepends on the associated
eigenvalue. If we represent the error

*
€ = U, — U,
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Figure 3.1: Error of an arbitrarily chosen initial approxation and right hand side of the
Laplacian discretized on the unit square usifg grid points before and after application
of one and three iterations of a damped Jacobi methoduwwvithd /5.

whereu; is the exact solution in terms of the eigenvectors, we canathately determine,
which parts of the error are reduced efficiently and whichraxte We find out that the part
belonging to the eigenvaluké”‘;)1 is damped by a factor g (cos(lrhy) cos(mmhy))|. So
the parts belonging to eigenvalues with indi¢emdm somewhere in the middle between
1 andn,, are damped efficiently, while parts belonging to eigenvalugh extreme indices
are hardly damped at all. Now we analyze, which parts of the ere damped by the JOR
method. We obtain that the part belonging to the eigenvaltieindex!/, m is damped by
a factor of "

1-— 5(2 — cos(Imhy) — cos(mmhy,))| -

So for anw < 1 we can achieve that parts of the error belonging to eigeegakith large
indices! andm are damped efficiently by a factor of at least— 2w|. The parts of the
error belonging to eigenvalues with small indices are d@linped very inefficiently, as
they are at least asymptotically not damped at all. Now, weepke that the eigenvectors
(3.6) belonging to eigenvalues with high coefficientand m are geometrically highly
oscillatory. This means that high frequency parts are dampey efficiently by the Jacobi
method, while low frequencies are damped much slower. Tiwe & becoming smooth
after only a few iterations of the Jacobi method. This is thedbmental observation that
lead to the development of multigrid methods. This behacar be easily verified by
plotting the error before and after applying a few iterasiofthe Jacobi method, c.f. Figure
3.1.

Another fundamental observation that has to be made in dodeonstruct a twogrid
method is that a smooth error is well-represented on a cogrse That means a smaller
number of grid points is sufficient. Given a current appraadiion u, to the solution of
(3.5), we can compute the residualas

Iy = fk - Lkuk.
The actual iterate can then be updated by adding the appatxisolutiore;, of the defect

equation
Lkek = TI. (37)
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This approximate solution can be obtained from the coarsk gs it is well represented
on that level.

On this coarser grid the low frequency components of the finelrcan be differentiated

into low and high frequency components, again. The Jacothiadestill has the smoothing

property on this level, resulting in a very efficient dampofghe high frequency parts of
the error, which have been low frequency parts on the fine gAid a consequence, a
recursive application of the twogrid idea is possible, irgdo a multigrid method.

Now, we will continue to formally define the twogrid and mglid methods.

3.2.2 Twogrid methods

Twogrid methods consist of three main ingredients: the gsheypthe restriction and pro-
longation operators, and the coarse grid correction operat

Smoothers

Essentially, all iterative methods that smooth the err@ geometrical sense, i.e. damp the
high frequency components efficiently and independently, @ire possible smoothers for
a twogrid method. The most common smoothers are the damgedn&thod and the SOR
method, as defined in Theorem 3.6 and Remark 3.2. We will nee fgirmal definitions
of high and low frequencies and of the smoothing factor of @& method for (3.5).

Definition 3.7 Let L, be defined as i(3.5). An eigenvectoqog”f}1 given in(3.6)is called

low frequency, ifmax(l,m) < (ng +1)/2,
high frequency, ifng +1)/2 < max(l,m).

Definition 3.8 Let L, be defined as i(3.5)and let

Xl(lji(w) =1- g(Q — cos(lmh) — cos(mmh))

be the factor by which the eigenvect;pfﬁi is damped by the JOR method. Then the
smoothing factoy; (w) of the JOR method is defined as

pi(w) == max{|x§2(w)| c(ng +1)/2 < max(l,m) < ng},

I.e. the worst factor by which a high frequency is dampedtt@nrwe define its suprenum
overk as

p(w) = sup (W)
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SN high frequencies

0 0.2 0.4 0.6 0.8 1
frequency

Figure 3.2: Damping factorsg, ,,, for » — 0 of the JOR method for the 1D analogon to our
model problem for different relaxation parametersThe choicev = 2/3 is optimal and
all high frequency components are damped by a factor of at 1¢a.

Thus the relaxation parameter is optimal if we choosss the minimizer ofi(w). In our
casew = 4/5 is optimal. For the 1D analogon of our problem the chaice- 2/3 is
optimal, as depicted in Figure 3.2.

Remark 3.3 The eigenvectors of the iteration matrix of the Gauss-3$eaiteg SOR meth-
ods are not the same as the eigenvectors,0fSo the analysis of these smoothers is more
involved, requiring other tools as presented here, e.gldbal Fourier analysis (LFA). For
details see [84].

In the following we do not restrict ourselves to the JOR mdths a smoother, but we
just assume that some appropriate smoothing method S wasrchS8 is a linear iterative
method, although other methods have been used as smoaothargtigrid methods. To
simplify the representation we definjé(sk))” to represenv iterations of the smoothing
method on the grid with grid spacing.. This is possible, as due to Lemma 3.1> 1
iterations of one linear iterative method define anotherdmterative method.

Restriction and prolongation operators

So far, we have not mentioned how to transfer the residual tte fine grid to the coarse
grid and the result of the solution of the defect equatior)(8n the coarse grid back to the
fine grid. In the following we assume that the grid spacingaslded on the coarse grid.
So counting only the unknowns but not the boundary pointshawe only(n;, + 1)/2 — 1
variables in each direction on the coarse grid, while we haweariables on the fine grid.
Under this assumption reasonable operators can be defined.

We begin with the restriction operators. To simplify thereggntation we use the stencil
notation introduced in section 2.3.1. The meaning of a stéorca restriction operator is

that its elements define by which extent the elements of tleafildl contribute to the value
on the coarse grid. The point at the center is the fine gridtghat corresponds to the
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current coarse grid point. To emphasize that the operatpsraaector from the fine grid
using grid widthh,, to the coarse grid with width,_; we add thek to the right bottom of
the stencil and thé — 1 to the right top.

Definition 3.9 Theinjection operators given by the stencil

k—1

k

The injection operator is the most easy to implement opematd the computationally
least expensive one, as only copying is involved. No flogpioigt operations are needed.
Due to this fact, it is an option for optimizing the compubaial cost of a multigrid cycle.
Alternatively, in order to improve the representation & grror on the coarse grid we can
distribute the values of a non-coarse grid point to its nieagh, which are part of the coarse
grid, resulting in thdull-weighting operator

Definition 3.10 By the stencil

1121’“‘1
— 242
611 91

we define théull-weighting operator

A cheaper variant of the full-weighting operator is tradf-weighting operatagrwhich does
not take grid points into account that have no neighborsrgghg to the coarse grid in-
or y-direction.

Definition 3.11 Thehalf-weighting operatois given by the stencil

k—1

[ =
—_
—_ s =
—_

k

Of course, one can define three dimensional versions of thmators as well.

For prolongation we define th#linear interpolation In order to emphasize that it works
in the opposite direction as the restriction, we denoteté#ad| with open brackets, i.e.

] - [, and we add thé andk — 1 in reverse order. Intuitively this accentuates that the
prolongation operatogivesto the fine grid, while the restriction operatmkesfrom the
fine grid. With the help of the stencil notation we immedigtebtain which share of a
coarse grid point is distributed to which fine grid point. Agahe center point is the fine
grid point that corresponds to the coarse grid point.
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Definition 3.12 Thebilinear interpolation operatas given by the stencil
k

1
2
1

[NCREN )

1
1
1 2
1 k—1
We would like to denote that the bilinear interpolation @er is the adjoint of the full-
weighting operator up to a constant factor. This is an inmgodrfeature in the context of
the variational formulation of the multigrid theory thatllwie described later.

We denote the matrix representation of the restriction atperfrom the grid with grid
spacingh;, to the grid with spacingy;,_; by I}~ € R™*™-1, Analogously the matrix
representation of the prolongation operator is denoteffby e R 1>,

Coarse grid correction operator

As the error is represented on the coarse grid reasonablytheldefect equation (3.7) is
solved on the coarse grid. This is done by the coarse griéctoon operator. The coarse
grid correction consists of the following steps:

1. Compute residuak;, « f, — Lyu,
2. Restrict residualr, ; < I} 'ry
3. Solve defect equatiory, | « L' 1 ;
4. Prolongate correctior;, < I} e ;
5. Correct current approximatios;, <« x;. + ey,
Using this description we can define the coarse grid coor@s a linear iterative method.

Definition 3.13 Let L* and L*~! be two discretizations of the model problem as defined
above. Let furthelrl,’j‘1 be a restriction operator and}’ , be a prolongation operator.
Then the coarse grid correction is defined as

gbg%C(uk? fr) = we + I Ly I (fe — Lywg).

An immediate consequence of this definition is the fact thatiteration matrix of the
coarse grid correction is given by

Tp=1—1F L' I L. (3.8)

Remark 3.4 The coarse grid correction is consistent with the lineartegsl,u, = f;,
but it is not convergent, as some eigenvalues are equal toldrerank of the prolongation
is at mostn,,_;.
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The twogrid cycle

Combining the smoother with the coarse grid correctiondgehe twogrid cycle.

Definition 3.14 Let ¢(S'“) be an iterative method that smoothes the high frequencitgeof
error and letyy, 5, € N be the number of presmoothing respectively postsmootteng i
ations. Assume tha;tggc is the coarse grid correction. Then the twogrid cycle with
presmoothing iterations ang, postsmoothing iterations is given by

(g, £i) = (687)72 (Beac(60) (uy, £1), £), £r).

By this definition we obtain the iteration matrix of the twabcycle. Given the iteration
matrix Sy of the smoother and the iteration matfix of the coarse grid correction in (3.8)
we obtain the iteration matrix

ST S = S (I — If Lt I L) Sy

The twogrid cycle in algorithmic form can be found in Algdmih 3.1.

Algorithm 3.1 Twogrid cycleuy, «— gb.(rlgM(uk, fr)

k)\v
u, — (687)" (wy, fi)
r, «— £ — Lyuy
Tp_1 < [g_ll'k
€p—1 (Lk_l)_lrkq
€ — I}j_lek,l
Ui < Ui + €L
k)\v
u, — (687) (wy, fi)

Convergence of the two-grid cycle

There are various ways to prove convergence of the two-gdkdn different settings. We
will outline Hackbusch’s proving technique here, as it issdly related to the proofs for
algebraic multigrid convergence presented later. Otheofdechniques include the use of
Fourier transforms or the interpretation of multigrid nadk as subspace correction meth-
ods. For an overview over these approaches we refer to tHedidoottenberg, Oosterlee
and Schuller [84]. Hackbusch provides two properties thgéther give a sufficient crite-
rion for the convergence of the twogrid method. These arsiti@othing property and the
approximation property.

The smoothing property is motivated by the fact that therasremoothed as seen before.
We have seen that the high frequencies are the eigenvedlorsging to the large eigen-
values. As a consequence we measure the smoothness oftthie éerms of thel2-norm.
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So an iterative methoﬁ(sk) is a good smoother if the?-norm of an arbitrary vectas; after
one iteration step is sufficiently smaller than before,if.e.

[Skexllz: = [|LrSkerll2 < || Liexll2 = lexl| 2

This motivates the following definition.
Definition 3.15 (Smoothing property) An iterative method¥% with iteration matrix.Sy,
fulfills the smoothing propertyif there exists a function(v), such that
| LiSE |2 < n(v)||Li||2 forall 0 < v < cowithk > 0,
lim n(v) = 0.

It can be shown that for our model problem that the Richardsethod [54] and the
damped JOR method [52] satisfy the smoothing property with = v”/(v + 1)" !
andn(v) = ¢/(v + 3), respectively.

Since the inverse of the operator is approximated on thesedavel, the approximation
property is defined as a measure for the quality of this appratxon.

Definition 3.16 (Approximation property) Let [} | and I,fj‘l be the interpolation and
restriction operators and lef.* be the discretization of the underlying partial differexti
equation as defined above. The twogrid method using thesatopeis said to fulfill the
approximation propertyif there exists a constant such that for allk € N we have

_ _ _ C
1L = I L e < T
| Li|l2

Various problems arising from the discretization of padiéerential equations fulfill the
approximation property, for details we refer to the work @dkbusch [48, 49, 50, 51, 52,
53, 54].

Given the smoothing and the approximation property the tidognethod converges, as
stated by the following theorem.

Theorem 3.6 Let the twogrid method>TGM o With v presmoothing iterations of the it-

erative methoctzss fulfill the smoothing and the approximation property. Then 4l
0 < ¢ < 1 there exists a lower boung, such that for allv > 7 and for all h < hmaxWe
have

I TSy ll2 < en(v) < ¢.
Proof. Chooser such thaty(v) < & for all v > 7. Then we have
ITeSEll2 = 12 = Ly Lty I L) Sy
= 1L = L L I LSy
< Lyt =T L 1 il ”Lk‘SkH2
(v

C
< v )HLkHQ en(v) <
1Lll>"
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O

It is sufficient to analyze either pre- or post-smoothingehas for two-grid methods the
spectra of two methods having a different numbeof pre-smoothing iterations and an-
other number, of post-smoothing iterations but having the same sums v, coincide,
c.f. Lemma4.4in [74].

Now that we have defined everything we need for the twogrichotstand that we have
given an overview over one proving technique for the cormecg of the two grid method,
we are ready to apply the same idea recursively, leading togrid methods.

3.2.3 Multigrid methods

The twogrid cycle provides a very efficient iterative mettiodthe solution of linear sys-
tems arising in the discretization of partial differenggjuations. The most important fea-
ture is theh-independent convergence factor, a feature not provideddogreviously con-
sidered methods. On the other hand the exact solution ofytera on the coarse grid is
needed to achieve that behavior. The direct solution ondhese level is still very expen-
sive, so iterative methods should be used to solve thatraySenple solvers like JOR still
expose the same problem on the coarse grid as on the finelgmmljgh the problem is not
as severe, since the smallest eigenvalue is larger on cggide. So we use iterations of

a twogrid method on the coarse grid again, to solve the detpation. This is a consistent
application of the twogrid idea, leading to multigrid medisaf applied recursively. On the
coarsest level reached, a direct solver is used to solveyters. This coarsest level may
contain one unknown only, so the direct solution on thatesyds computationally cheap.
The multigrid cycle can then be defined recursively

Definition 3.17 Let ¢g“) be a linear iterative method with iteration matrby, smoothing
the high frequencies. Let,, € N be the number of pre- and postsmoothing iterations
and lety € N be the number of multigrid cycles used to sq8€). Then the multigrid
cycle is defined as

vem(o, f0) = Lo o

for k = 0and
(e, £) = (572 ((09)1 (ug, £) + IF_ (Drran ) (0, IF (£, — Lyuy))), £r)
fork=1,2,....

With the help of Lemma 3.2 we immediately obtain the recrsigfinition of the iteration
matrix M}, of the multigrid cycle.

M. — 0 fork =0
TSR =1 (I = (M )L I L) S fork =1,2,.
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Given Definition 3.17 we can extend Algorithm 3.1 to AlgontlB.2 for the multigrid
cycle.

Algorithm 3.2 Multigrid cycle u;, «— ¢§ng(uk, fr.)
uy, — (687)" (g, £

€10

if Kk —1=0then
€y — Lo_lI'o

else
fori =1to~ do

ex1 — Bt (€x-1,Tx 1)

end for

end if

€ — I}j_lek,l

Ui <— Ui -+ (S73

w — (687)" (g, £)

V-cycles and W-cycles

Depending on how often we apply the twogrid cycle to solvedbéect equation (3.7),
we get different types of multigrid cycles. They are namedoating to the following
definition.

Definition 3.18 Depending on the numberof multigrid cycles recursively used to solve
the defect equatiof8.7)on the coarse grid, the multigrid cycle is callgecycle, for~v = 1

or W-cyclefor v = 2. We denote the V-cycle multigrid operatorw) and the W-cycle
operator by¢f,§).

Computational complexity

We will now discuss the computational complexity of diffetealues ofy according to
[84], especially of the V- and the W-cycles. We will stick torestandard 2D problem, i.e.
we assume that the grid spacing is doubled on each level. Noeaw derive the number
of arithmetical operations for each multigrid cycle. We defil;, to be the number of
arithmetical operations needed for a multigrid cycle stgron levelk. Further on we
define 1, to be the number of arithmetical operations needed on levekcluding the
solution of the defect equation using the recursive apgptinadf the multigrid cycle. Thus
we get

W1:W1+W0 Wk+1:Wk+1+Wk7k:1727....
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From that we obtain -

Wi =Y AW+ 451, (3.9)
=1
Again we letn; be the number of unknowns on leviel Neglecting boundary effects we
have thatn, = inkﬂ. For the work on each level excluding the solution of the defe
equation we havél’, < cn,, wherec is a small constant independentigf. So from (3.9)
we get

k—1
Wi =) AW+

=1

k—1 k—1
< k—I l k‘—lW
< E Y 1 ey + vy 0

=1

The last summand grows logarithmically with the number dénowns on the finest grid,
the first summand is a geometric series, so we can subsume

feny + O(logny)  fory =1,
Wi < 9 2eny, + O(logny,)  fory =2,
4deny, + O(logny)  fory = 3.

For~ = 4 the work on each level is constant, as the number of unknosvqaartered up
to boundary effects but we spend 4 cycles on each level, sadventage of quartering the
number of unknowns is lost. As the number of levels is an olagm,)-term, we then
have a complexity of(ny, log n;). We like to conclude mentioning that the computational
complexity depends on the reductiomf the number of unknowns going from levieko
level £ — 1, on the complexity;. per unknown, which may grow while going to a coarser
level, and on the number of recursive applications of muttigyclesy. As long~yrc, < 1

we have linear complexity.

Convergence of the W-cycle

Now we have that the twogrid method converges and that onégndicycle is compu-
tationally optimal, it remains to show that a multigrid methconverges where the con-
vergence rate is bounded from above by a bound that is indepérf the number of
unknowns. A multigrid method can be interpreted as a twograthod, where the defect
equation (3.7) is solved only approximately. This appraatiesolution is calculated using
a multigrid method, which is an iterative method. Under teguanption, that the twogrid
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convergence rate is bounded for all grid spacings and tlaintlolved prolongation, re-
striction and smoothing operators are bounded as well, wedeave that the multigrid
method converges uniformly for > 2, i.e. that independent of the number of unknowns
the convergence rate is bounded from above.

Theorem 3.7 Let
152 Tk Sy ||« < o, 1S Il L T LS < c

hold uniformly for all grid spacings for some normnj - ||... Then thex-norm of the iteration
matrix M, is bounded by)*, wheren* is defined recursively as

ny = o, m=oc+cn _, (k=12...), (3.10)
wherec, o > 0. Fory = 2 and
4eo <1

the x-norm of the iteration matrix/,, is bounded from above by
1
Ml <7 = o-(1 = VI= 1) < 20,
C

so foro < % the method converges with a uniformly bounded convergeatee r

Proof. First we show that the norm of the iteration matrix is boundjpyas defined in
(3.10). We have

ISP — T\ I L)SE + ST M L I sy

< ISP = Ty L I L) SO+ IS0 T M L T LS

< ISP = I L I LS+ 1S T80 L 1 sy .
o+l

1Ml = 1S3 (1 = Ly (= M) L2 L Le) S
(

Now v = 2 and forming the limit yields) = ¢ + ¢n®. So fordco < 1 we have

1 1—-1—1
(1 —VI—dco) = — Y- "T95 <25,

= 2c 4co

since

1 —4dco < V1 —4co
< 1 —+V1—deo < 4dco
1—+1—dco

4co

< 1.
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Obviouslyny, = o < (1 — /1 —4co)/(2¢). Assuming that),_; < (1 — /1 — 4co)/(2¢)

we have

M < 0+ 077/3—1

1—\/1—400)2

<
_U+C< %

1
:a+4—(1—2\/1—4ca+1—4ca)
c

1 —+1—4co
2¢ ’

So (1 —+/1—4co)/(2¢) is an upper bound for the convergence rate of the W-cycle.]

So under a few additional assumptions the convergence ofitittegrid method is a conse-
guence of the convergence of the twogrid method. The coamergof the V-cycle requires
more advanced techniques of proof. As we will present anbaége proof of the conver-

gence of the V-cycle later, for proofs that are more relavegetometric multigrid we refer

to the work of Braess and Hackbusch [10] and to the book oft@nbierg, Oosterlee and
Schiller [84].

3.2.4 FAS and FAC

While multigrid methods originally have been developedtfoe use of linear problems,
they have been adopted to non-linear problems as well. Wehatildeal with non-linear
problems here, but we need some ideas from the full apprdgistarage approach in
order to motivate a multigrid technique that efficiently\a&s problems with local grid
refinements. This will allow us to define a fast multigrid nattfor the solution of the
system resulting from the hierarchical grid refinementadtrced in section 2.3.2. When
dealing with non-linear problems the solution of the defsgiation (3.7) is not feasible,
as the correction carried out later directly depends onitialfity of the operator, i.e. we
make use of

ll;; = L;lLk(uk + (ll;; — uk)) = Ug + lel(fk — Lkuk) = Ug + L;lrk.

This is obviously not possible for the solution of non-linpaoblems. To avoid this, we

rather transfer the current approximation to the coarsel.l&¥e compute a new approxi-
mate solution on the coarse level using the restricted ctiaggproximation as a start value.
The right hand side is constructed as the sum of the currstntated fine level residual and
the operator applied to the restricted current fine levet@amation. Then we subtract the
restricted fine level solution from the new coarse level Botuin order to get a correction.

That correction is then transferred to the fine level and dddehe current approximate
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solution on that level. That way we avoided using the lirtgari the operator, nevertheless
the resulting method is equivalent to the unmodified mutigycle for linear operators.
So we define the full approximate storage cycle in accordemtiee multigrid cycle.

Definition 3.19 Let <;5(5k) be an iterative method smoothing the high frequencies. Let
vi1,5 € N be the number of pre- and postsmoothing iterations andylet N be the
number of recursive calls used to solve the coarse levetsysthen théull approximate
storage cycler FAS cycleis defined as

P, fo) = Ly '
for k = 0 and
k E)\ v E)\v h — k)\v
Py, ) = (692 (6S) (g, ) + I, (D) (1EH(09))" (wy,, £),
Y6 — Lywg) + Ly I (08)) (wy, £) — 1FH(08))" (wg, £1)), £2)

fork=1,2,....
The implementation can be found in Algorithm 3.3.

Algorithm 3.3 FAS cycleu;, « ¢(F’25(uk, fr)

e — (687)" (u, )

dk — fk — Lkuk

dp_1 — [;f*ldk

w1 — Iy

fr1 —dp_1 + Li—1up—y
Vi—1 < Ug—1

if t—1=0then
Vo < Lalfo
else

fori=1to~ do
2h
Vi1 — Oran (Vi-1: 1)

end for
end if
Vi—1 < Vg—1 — U1
Vi < Ilf,le—l
Ui < Ui + Vi

k)\v

uy, — (éb(s )) > (ug, fx)

In Section 2.3.2 we extended the hierarchical refined gsdrdtization for the solution
of the Poisson equation in free space. The multigrid metlistl geveloped is directly
applicable to solve the system. If that approach is chosealt@ the system, on each level
the composite grid up to that level would have to be used. Wieenthat the parts that

63



CHAPTER 3. MULTIGRID METHODS

are not refined will not benefit a lot from the solution on a filesel, as they are already
treated properly on the lower levels. So we only apply theatimer on the finer levels to
that part of the grid that is discretized using the currergdimgrid size. The only remaining
guestion is then how to treat the correction. In the stanfarygcle the defect equation is
solved on the coarse level, so Dirichlet zero boundary d¢mrd are used. This is not an
option as parts of the information on the current approxiomais contained in the coarse
grid approximation, only. So we use the FAS cycle, i.e. wadfar our current residual
plus the discretized operator applied to our current appration to the coarse level and
solve the system there. The correction is then formed asitdedcabove and our current
approximation is updated. This technique is an applicatioMcCormick’sfast adaptive
composite grid methoFAC) [66, 65]. Washio and Oosterlee used theltilevel adaptive
technique(MLAT) by Brandt [11, 13] that involves high order interptitan constructed
from the discretization at the interface in their work [874. more general approach to
adaptive multigrid methods can be found in the work of Rig&].[

3.3 Algebraic Multigrid Theory for Structured Matrices

While geometric multigrid methods are easy to develop fobpms arising from partial
differential equations with simple geometries, it can be/\eard to generate a grid hierar-
chy for more complex geometries. The problem is to find codesels for the multigrid
method. While in most cases it is easy to provide a finer digatton for a given geometry
which is already discretized, it can be very hard to find aoeable coarser discretization.
Therefore the problem on the coarsest level might still lmeebpensive to be solved di-
rectly. Another problem exists when geometry informatismot available at all, which
might be the case if multigrid should be used as a black boresdor example in a com-
mercial code, or when the underlying problem is not geomettiall. To tackle these
problems algebraic multigrid methods, or AMG methods farghave been developed as
black box multigrid solvers. Unlike in geometric multigmaethods, in algebraic multigrid
methods the smoother is fixed and the coarsening procesHyisafiomatic, i.e. given
a matrix the interpolation and restriction operators amstacted such that the resulting
method converges. Due to the construction of the coarsetsleélie algebraic multigrid
methods can be split into a setup phase and a solution phaseof@he main concerns by
AMG critics is the setup phase, as it can be quite expensidéitdnally, the coarse level
construction is hard to parallelize. Nevertheless AMGvadidhe use of multigrid methods
where it would not be possible at all to use a geometric mudtimethod. The standard
algebraic multigrid theory is valid for M-matrices. Intnactions to algebraic multigrid can
be found in the book chapter by Ruge and Stuiben [69], in tpem=ghix written by Stiben
[78] or in his reports [77, 76].

The rest of this section is structured as follows: We willtfysze an overview over the
convergence theory for hermitian positive definite proldemfter that we will present
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some theory regarding the replacement of the Galerkin ¢prettaat has been developed
during the work leading to this thesis. Finally, we will pe@$ multigrid methods for
matrices from matrix algebras and the application of the th@®ry to the circulant case.

3.3.1 Convergence theory for multigrid methods for hermitan posi-
tive definite problems

The following presentation of the convergence theory isilainto the one in the book
chapter of Ruge and Stuben [69], parts are clarified in thduction of Stuben [78].
Their theory is based on the works of Brandt [14], Mandel [8@ECormick [64] and
others.

Basic definitions and results

While in the presentation of geometric multigrid methodsdeeoted the matrices hy,
the right hand sides bf and the solutions by as they are connected to partial differ-
ential equations, we will now usd, b andx, respectively, again to underline, that the
presented theory is not only applicable to problems resyliiom the discretization of
partial differential equations, but rather applicable lsses of problems, where only the
algebraic properties of the associated system matricesf améerest. We are interested in
the solution of the system

Ax = b,

A e C™™ hermitian and positive definite andb € C" using a multigrid method. For
that purpose we assume that a sequence of systems of eguation

Apxy = by,

with the corresponding sequences of dimensieﬁm}~’,§rj‘f,n;C € N, system matri-
ces {Ak}’,j;af,Ak e Cm>  hermitian and positive definite, right hand side vectors
{bk}’,j;af, b, € C™ and solution vector$xk}’,§";af,xk € C™ exists, where

Akmax = A, Xmax = X bi = b.
Furthermore we assume the existence of prolongation apsrat
P, e C ™1k =1,..., kmax
and restriction operators
R € C™1" L =1,... kmax

Besides these transfer operators weskebe a linear iterative method with iteration matrix
Ms that is used as a smoother. In analogy to Definition 3.13 wanelefie coarse grid
correction.

65



CHAPTER 3. MULTIGRID METHODS

Definition 3.20 Let A, € C™*" A, | € C™-1*™-1 pe two System matrices, |&}, €
Cm>*m-1 pe the prolongation operator from level— 1 to levelk and letR;, € C"+—-1*"
be the restriction operator from levélto levelk — 1. Then the coarse grid correction is
defined as

¢g%c(xka by) = xi, + PuA L Ri(br — Apxy).
The iteration matrixl, is given by
Ty = I — P A Ry Ay (3.11)

In the same fashion we define the twogrid method and the midltigethod on the basis
of Definition 3.14 and 3.17, respectively, depending on tefndion of the coarse grid
correction just given.

Definition 3.21 Let ¢\ be a linear iterative method that is used as a smoother and let
v1, 5 € N be the number of presmoothing respectively postsmootteragions. Assume
that <z><c’2C is the coarse grid correction. Then the twogrid cycle withpresmoothing
iterations andv, postsmoothing iterations is given by

Olom(Xr, br) = (08))72 (0L2((08)) (x4, by), br), by).

Definition 3.22 Let <;5(5k) be an iterative method used as a smoother. ihet, € N be
the number of pre- and postsmoothing iterations and letN be the number of multigrid
cycles used to solve the defect equation

Aper = rp.
Then the multigrid cycle is defined as
wem(Xo, bo) = Ag by
for k =0 and
dbm(xk: i) = (057)2((95”)" (xi, i) + Pul(Syiom ) (0, Ri(be — Axai))). by

fork:17...,kmax.

In analogy to the Definition 3.15 and 3.16, we define the smiongtproperty and the ap-
proximation property. For that purpose we need an arbitnaryn that has to be the same
in both definitions. That norm will be denoted By ||.. In the classical work of Ruge
and Stiiben the energy norm with respectifaliag(A;) ' A is used. Arico and Donatelli
noted in [2] that this choice is not necessary, as long asdahesorm is used in both
properties.
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Figure 3.3: Algebraically smooth error of a mixture of a difintial equation in x-direction
and an integral equation in y-direction after applicatiéi @ iteration of the JOR method
with w = 4/5.

Definition 3.23 An iterative methoab(s’“) with iteration matrix.Sy fulfills the smoothing
propertyif there exists amv > 0 such that for alle;, € C"* it holds

ISkerllZ, < llexll, — allex:. (3.12)

We like to note that this definition of smoothness does noessarily mean that an error
is geometrically smooth. As an example consider a problemiagi to the model problem
that is discretized on the unit square and described by émeist

A plot of the error of the JOR-method after a couple of itenasi can be be found in Figure
3.3. Although the error is smooth regarding the previousndedn, it is geometrically
highly oscillatory, so we prefer to call the erralgebraically smooth An error that is
algebraically smooth fulfills the property that thenorm of the error is small compared to
the A,-norm. We now continue with the definition of the approxiroatproperty.

Definition 3.24 LetT}, be the iteration matrix of the coarse grid correcti¢f:féc. If there
exists as for all e, € C™ such that

[Twerl%, < Bllexl?, (3.13)

thenqb(ckéc fulfills theapproximation property

Combining the smoothing and the approximation propertjdgi¢he convergence of the
twogrid method using postsmoothing, only, as stated bydheviing lemma.
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Lemma 3.3 Let ¢g’“> be an iterative method with iteration matrd, fulfilling the smooth-
ing property with some nort- ||* and Iet¢é’2c be the coarse grid correction fulfilling the
approximation property using the same norm, denoting @sation matrix by7;. and let
T <4, I hold. Then we have

B>a

and
ISKTll%, < V1 = a/BITll, -
Proof.
1Sk Teerllh, < I Twexlls, — allThex|?

< || Twerl%, — o/ Bl Tiexl%,

< (1 —a/B)exl,
This provess > a. O

So fory/1 — /3 < 1 we have a convergent twogrid method.

Variational property of the coarse grid correction using the Galerkin operator on the
coarser level

For the theoretical considerations we first consider theBal operator as the operator on
the coarse grid, only. It is given by the following definition

Definition 3.25 LetA, € C"*" be the system matrix of level P, the related projection
operator andR,, the related restriction operator. Then we define @ederkin operatoas

Ak,1 = RkAkPk

In the following we are only treating hermitian matrices aveldefine the projection to be
the adjoint of the restriction, i.e.

P, = R
Methods using the Galerkin operator on the coarser leved Bame nice properties, since
due to the use of the Galerkin operator the iteration mdfyiaf the coarse grid correction
is an A,-orthogonal projector.

Definition 3.26 Let A € C™*" be a hermitian positive definite matrix. Then a matrix
@ € C"™ is called A-orthogonal projectorif () is symmetric with respect to the scalar
product induced b, i.e. for allx,y € C" we have

<QX7 y>A = XHQHAy = XAQy = <X7 Qy>A7
and ifQ? = 0.
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T}, with the Galerkin operator on the coarse level and the atigithe restriction operator
as prolongation operator is ah),-orthogonal projector.

Lemma 3.4 Let A, € C"*™ pe an hermitian positive definite matrix. Th&pas given
by (3.11)with the Galerkin operator on the coarse level and the adjoirthe restriction
operator as prolongation operator is a#,-orthogonal projector. Further we have

ran(/ — Ty,) = ran(Fy). (3.14)

Proof. Equation (3.14) is obvious for a projection having full raftegarding the first part
we have

T2 = (I — P AL RyAy)?
=1 — PA Y R Ay — PLA R Ay
+ P A R AGPLA R Ay
=1 — P A R Ax — PuA R Ay
+ P ALY R AR Pu(RL AR P) ' Ry Ay
= — P AN Ry Ay — P A ReAs + PeAY Ry Ay
— [ — PN Ry Ay
=1T,..

Now for all x,y € C"*
=x" ATy,

which completes the proof. O

We like to recall some properties of orthogonal projectors:

Lemma 3.5 Let A € C™*" be a hermitian positive definite matrix and @te C"*" be
an A-orthogonal projector. Then the following holds true:

1. ran(Q)Laran(I — Q).
2. Forallu € ran(Q) and for allu € ran(I — Q) it holds|u + v||% = ||u|/} + [|v]4-

3. 1Q[[a =1,

4. Forallu € C"we have|Qu|} = min [u—v|?3%.
veran(I—Q)

Proof. The first statement holds, as for allv € C we have
<Qu7 ([ - Q)V>A = <u7 Q([ - Q)V>A = <u7 0>A = 07
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the second statement is an immediate consequence of tles/aben. For the third state-
ment we have

|Qul% |Qull%
Q% = sup =
AT Tl

= sup <1
uzo [|[Qul% + [[(I — Q)ull

Choosingu € ran(Q) yields||Q||4 = 1. For the last statement the following holds true:
. 2 . 2
min u—v|3= min u+ ([ —Qu—v
i e vi= min Qo (- Qpu v

_ : o2
—verg}ggQ)HQu via

. 2 2
= min Qu + |V
ve an(liQ)(H ||A || ||A)

= [|Qulf%.
O

A consequence of these basic properties of the coarse gmiection is that it fulfills a
variational property regardingn( 7 ), i.e. minimizes thed-norm of the error with respect

to all variations inran( P ), as due to the last statement of the previous lemma we have for
all e, € an

Teer|s, = i —er 1|4, -
| Ther |3, . mm ler —er—1lla,

For methods involving the Galerkin operator on the coarsete Lemma 3.3 holds as
| Tl 4, = 1, so the two-grid method converges. We now carry over theag@nce result
to the multigrid case.

Theorem 3.8 Let T}, be the coarse grid correction with iteration matri,, using the
Galerkin operatord,_, = R, A. P, on the coarser level and the adjoint of the restriction

as prolongation, i.e.P, = R. Now we assume a coarse grid correctiﬁ&fﬁc where we
solve the defect equation not directly, but rather with @#niterative method

¢* D (x4 1, b_1) = My_1Xp—1 + Np_1Xp1,
using zero as start approximation and assume furthermae th
77 = ||] — Nk—lAk—lnAk,_l < 1, (315)

that gb(sk) fulfills the smoothing property3.12) and thatqb(ckéc fulfills the approximation
property (3.13) Then the (post-smoothing) two grid method using the maddoarse
grid correctionT}, using the zero initial approximation, i.e.

Tk =1 Pka,leAk,
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converges with convergence factor of at mask{7, /1 — 4}, i.e.

1Sy* Trer ]| 4, < max{7, V1 — d}lex a,,
whered = o/ 3 with o and 3 from the smoothing and approximation property.
Proof. Given a fine level erroe;, we define the coarse level defects as

A_1di—1 = R Arey
respectively  dy_1 = N_1RpArey.
Thus with (3.15) for the error of the approximate defect we wate
|de_1 — di_1]la,, = |4} RrArer — N1 RiAver| 4,

= | At RrAver — Ny 1 Ay 1 ALY RiAer|a,
= |(I = Nj1 Ap—1) A ReArer]| 4,
<N = NioaAg-alla, JIAC ReArer 4,
= 77||d/€—1||14k—1

Now we may write for the error after a modified coarse grid edtion step:

Tkek = € — Pkakfl
=e, — Pudj—y + Pp(dp—1 — dj—1)
= Trey + Py(dp—1 — djp—1).

As ||P. - |la, = || - |la,_, we can estimatéPy.(dy,_; — di_1)||a, < 7]|Peds_1]4,. Using
the A,-orthogonality ofran(7},) andran(F;) we thus get:

[ Twerl%, = 1 Tue" (1%, + || Pe(dr—1 — dy—1)[|%,
< || Trexll2, + 72| Pedi-1]l%, -

So usingP.d;_ = (I — T} )e; together with thed,-orthogonality leads to
I Twerll%, < IThexll%, + 7 (lerlls, — [Thexl%e)-
Now we observe that

TiTy = (I — PLAY  RiAy) (I — PN, Ry Ay)
+ PkA];,lleAkPkafleAk
=1— PA ' RLA,
=T
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and that| 7| 4, = 1. Similar to the proof of Lemma 3.3 we now write

ISkTrerll%, < I Thexll, — ol Trexl?
< || Trerl%, — /B TiTrer|%,
< || Twerl%, +7°(lexllh, — IThexl%e) — o/ Bl Trexl%,
= (1 =7 = a/B)|Trex|, +7*llexl%,
< max{(1 — o/B), 1’} lex%,

0

Recursive application of this theorem yields convergerfaautigrid methods using the
Galerkin operator on the coarser levels. In that easdhe convergence rate of the method
on the coarse level, thus the overall convergence rate iadsaliby+/1 — §, as on the
coarsest level the convergence rate.is

3.3.2 Replacement of the Galerkin operator

Besides its nice properties, the Galerkin operator has e downside. As it is essen-
tially formed by prolongating the residual to the fine lexagiplying the fine level operator
there and restricting the result back to the coarse lewegpplication can be very expen-
sive per unknown. As an example consider the following: Assthat the model problem
is discretized using the 5-point discretization from (3, 3%elding the stencil (2.16), i.e.

1
1
— 1 -4 1
2
h 1

Now we construct a twogrid method utilizing the full-weigig operator given in Defini-
tion 3.10 for restriction and using the bilinear interpaatfrom Definition 3.12 as prolon-
gation. Instead of rediscretizing the problem using the gaa spacing2h, we now use
the Galerkin operator, yielding the following stencil repentation on the coarse level

1
h?

8|HOO|HS|}—‘
|

Q0| | ol

5|>~OOI>~;|>—!

So the Galerkin operator on the coarse level has nine entrspared to five entries
on the fine level or using a coarse rediscretization. Nurakegperiments show that the
convergence of the method using the Galerkin operator tigigpetter than the use of
the rediscretization, but not enough to justify the addiilocost. We like to emphasize
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that this example is a best case scenario, as the drawbable @alerkin operator will
be even more pronounced in higher dimensions or for steimsitdving more neighbors
than only the next ones. For unstructured grids the probmget even worse, as after a
few levels we might end up with an operator that is not spanyenare. For our purpose
we are interested in reducing the computational time farcstired matrices, only. For
that purpose in the following we will present sufficient cdiwhs for replacements of the
Galerkin operator on the coarse grid, presumably resemlbfia sparsity pattern of the
original matrix and the describing stencils, respectively

We can subsume that we are interested in not qsing the Galgpkratord, | = R, AR
on the coarse level but rather an approximatign,. The convergence of the two grid
method stated by the following lemma is an immediate consecgiof Theorem 3.8 above.

Lemma 3.6 Let A;, R, and T}, be defined as in Theorem 3.8 fulfilling the smoothing
property and the approximation property, cf. Definition3and Definition 3.24, and let
T be defined ag’ in Theorem 3.8 withV,_; = A, ' . Assume that

=11 = At Ailla,, <1

Then the (post-smoothing) two grid method using the apprationA,_; of the Galerkin
operator converges with a convergence bounded from aboweakyn, /1 — §}.

As a consequence, in order to optimize the twogrid methodave ko minimize
N 1 Al
n =11 = AL Aralla, = 1AL (T = A A

under appropriate restriction given, for example, by asipapattern imposed od;_;.
For application of the method we are interested in multigodvergence rather than in
twogrid convergence. Thus we need to analyze the convezgetie altered system is not
solved directly but rather by a multigrid method itself,we solve

Ak—ldk—l = RkA + k:ek (316)
using the multigrid method, which is the iterative methogiven by
Or1(Xp—1, br—1) = My_1X4-1 + Ny_1by_y

with initial zero approximation, i.e. we usé,_; as an approximate inverse 4f_;, which
itself is an approximation ofl, ! . Assume that

h= I — A2 Aralla,, <1

and that the iterative methagl,_; used to solve the modified defect equation converges
with a convergence rate of at magin the A,_;-norm. More precisely, assume that

7=l = Nea Al <1,
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wherey > 0 is the constant of the upper bound of the ;-norm in terms of thed, ;-
norm, i.e.

1Bl < wllBll4,_,»

which exists due to the equivalence of norms. Since we waappy Theorem 3.8 we
only analyze|l — Ny_1Ax_1||a,_,- We have

I — NkAAkAHAk,l = || — quAkAAIQ_llAkAHAk,l
= (I = Nior A ) A Aoy + (T = A A ag
<N = Nioa Ap ol 1A Aralla, + 11— Ay A1) 4,
< plll = NeorAraall g, NAZ Accallag, + 11— At Ar)lla,
< AlA Aralla,, +1

This is smaller than 1 if -
1A Al < ——

which can always be fulfilled ifl, | is sufficiently close t4,_;, because then — 0 as
At Ag_1]|a,_, — 1. For uniform multigrid convergence we need more, namely

17 — Np—1Ap_1|a,_, <max{i,v1—4}. (3.17)
So we would have to impose

AL Ailla,, + 0 <7
& 7 < (1= |AL Aot a7

Now two cases are possible.

1. | A Aroilla,_, < 1. That implies that — || A, Ax_1]|4,_, = 7, thus we would
requiren < 77, which is true only for; > 1. So we would have no convergence.

2. |A Ay lla,_, > 1. Thisimpliesd < 7 < af, wherea = 1— || A Ap ][4, , <
0, son < 0 as well, which is not admissible.

So we conclude that this approach is not feasible to showeabkeat! result: Rewriting the
modified method in a way that allows us to split it into one hescribing the approxi-
mation of the Galerkin operator and another part describiegapproximate solution of
the modified coarse grid correction using the triangle irditgprohibits to prove uniform
convergence. So we have to alter Ruge’s and Stuben’s thelor@rder to allow us to
prove uniform convergence in the case that an alternatigseseayrid operator is used and
the defect equation is solved approximately, only.

For that purpose we show two auxiliary results that willallas to formulate a convergence
theorem that is closely related to Ruge’s and Stuiben’s f@me@.1 in [69].
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Lemma3.7 LetTy = [ — P,A_Y Ry Ay, with Ay, € C- -1 and Ay, € C™*m
symmetric and positive definite, = R € C™>*™-1 being a full rank prolongation and
R, € C—1>™ g full rank restriction. Assume that

0 <a, T <a, 1
Then for alle € C"* we have
| Pedi1]%, < llexll, — 1 Tkexll, .

whered,_; is the solution of the linear systeAy ! d,_; = R, Aze,.
Proof. As Ty, <4, I and as
ATy = Ap(I = REAZY R AL) = (I — AgREATL R A, = THA,,
we have
T2 —T, <0 AT — AT, <0 THAT, — ATy <0.
Now we can write
IR k1%, = llex — Thexl%,
= <Ak(ek - Tkek), (ek - Tkek)>
= (Arer, er) — <Akek>Tkek> - <Akaek> ey) + <Akaek, Tkek>
= (Arer, e) — (Akaek,Tke) + 2<Akaek, Tkek>
— (Akek,Tek> — <Akaek, ex)
= (Arey, er) — (Akae, Tkek) + 2<ATkek,Tkek)
- <TkHAkek‘7 er) — <Akaek7 )
= [lex]|%, — I Thexl%, + 2((T AxTrer, ex) — (ArTier, ex))
= llexll%, — 1Tkexl%, + 20T ATy — AT},) ey, ex)

<0

< llexll%, — 1 Tkexll%,

As before, we assume that we do not solve the coarse gridiequat
Akfldkfl = RpArey,

directly but by an iterative method with iteration matfix- Ny 1Ay, yielding another
approximate coarse grid correcti@p given by

Ty, = I — RIN,_ 1 Ry Ay
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We assume that the iterative method converges with a coemeegrate of at most < 1
measured in thel,_;-norm, i.e.||l;_; — Nk—1Ak—1I|Ak71 < 7. We define

ak = Nk_leAkek.

The second auxiliary result seems to be a little bit unhandse need a feature of the
kernels of matrix products in order to show that we can esértiee square of the norm of
the modified coarse grid correction times some error pluptb@ngation of the difference

of the defects using the modified defect equation and itsceqmiation by the sum of the

norm of both plus a bit more of the coarse grid correction sitie error. Nevertheless we
will see later on, that we are able to fulfill this prerequesat least in the case of circulant
matrices.

Lemma 3.8 LetTk =1- PkAI;_lleAk, Tk =1—- PkaRkAk with A/;_l1 € Cre—1xMh—1
Ny, € Cr—1m-1 and A7 symmetric and positive definit®, € C™-1*" being a
full rank prolongation andr, € C"*"#-1 g full rank restriction. Assume that

Then i ~
\; := min (T — Ti)" ApT, + T, Ap(Ti — T) Jew ex)
| eneCl (TH Ay Trer, er)

exists, and for alk, € C"* the following holds true:

| Twer + Pe(dy—r — di—1) |3, < (1+ M) || el 3, + | Pe(dimr — di—1) I3, -

Proof. Under the lemma’s assumption bath, — 7;,) 7 A, Ty + T} Ay, (T, — T') and T} A, T,
are symmetric and positive definite linear mappings on tetigot space”"+\ ker((7} —
T " AT, + THAL(Ty — Ty,)), so they induce norms on that space that are given by

= s = 1
I Wty ag s it an -t = (Do = T ATy + T Ap(Ty — Tr))- )2,

A 1
- Nl a, = (T Ay )2

Due to the equivalence of norms we can estimate
(Tx = T)" ATy + T Ap(Ti — Tx))-» ) < MlT Ay, ),
where we chosg;, to be the minimunm\;, which fulfills this estimate. Now we have:
Pk(akq - akq) = (PkA/;_lleAk - PkafleAk)ek = (Tk - Tk)ek-
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So we can write:

||Tkek + Pk(ak—l — ak—1)||§;k
= |(Th + (Ti — Te))exll2,
= (A(Ti + (T — Ti)Jew, (Ti + (T — Ti) e
= (ArTrer, Trer) + (Ap(Th — Ty )er, (T — Ti)er)+
(ArTye, (Tr, — Ti)ex) + (Ap(T — Ti)ex, Trer)
= || Thexl%, + (T — Th)ewl|%, +
(T, — Tk)HAkaek, ex) + <T,fAk(T~k - Tk)ek, er)
= | Texll, + 1 Pe(droy — de) %, +
((Th = Te) " ATy + T AL(Ty — T1) e, ex)
< || Twexl%, + 1 Pe(di—1 — dr-1) ||, + Me(T ArTher, ex)
= | Texll?, + 1 Pe(di1 — di—1) |1, + Ml Trells,
= (14 M)l Twerl|%, + [ Pe(dio1 — di—1)1%, -
O

Now we can show the convergence of the modified multigrid wethot using a Galerkin
coarse grid operator but rather an approximation to it ardrspthe coarse grid defect
equation using that approximation with the help of an ifeeatnethod.

Theorem 3.9 LetTk =1—- PkA];,lleAk, Tk =1—- PkaRkAk, with Ak € Cw>*": gnd
A;_, € Cre—1Xm—1 hoth symmetric and positive definite, = R € C"*"-1 being a
full rank prolongation andr,, € C™-1*"+ a full rank restriction. LetN, , € C—1xne—1
be a symmetric and positive definite matrix defined by a liitegative method given by

Or—1(Xp—1, by_1) = My_1Xp—1 + Nj_1bj_y
converging with a convergence rate of at mist; given by
ﬁk,1 = ”[ — NkflAkfl”Ak,l < 1.
Further let the linear iterative methoﬁl(sk) with iteration matrixS;, used as smoother fulfill
the smoothing propert{8.12)and let7}, fulfill the approximation property3.13) i.e.
|1 Thexll%, < Okllexl?

Let

0<a, Tx <a, I,

A1 > Ry AP,
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and choosé\; such that

Ak == min (T = T) " ATy + T ATy — Ty) e, ex)

e,eC"k <T,§{Akﬂek, ek>

and ;. such that .
|| Thexl2

ek€C || Trey, |2

Under the assumptions that

\/(1+)\k) — G/ B < 1,

wheredy, = uay, the (post-smoothing) two grid method using the modifiedseogrid
correction and solving the coarse grid defect correctiomgghe iterative method con-
verges with convergence factor of at most

max {ﬁk_l, \/(1 + ) — Oék/Bk} ;

||S”2Tkek||Ak < max {ﬁk—l) \/(1 + )\k) — ak/ﬁk} ||ek||Ak for all e, € C',

Proof. Combining the smoothing property (3.12) with (3.13) yields
ISpzenl, < llexll?, — Sl Thexl’ (3.18)
DB
for all e, € C™+. For the error of the approximate defect we can write
Hakq - akleAk,l = HAE,lleAkek - quRkAkekHAk,l
— | A ReAver — N1 Ap 1 ALY ReAver |,
= |(1 = Ny A1) A RiApe|a,_,
< — Nyr Ay ||, 1A ReArer || 4y
< = NemrApall 4, A ReAre| 4,
< ﬁkq”aquAk,l-
Now we may write for the error after an approximate modifiedrse grid correction step:
Tkek =e, — Rfak_l
— e, — Rd,_ + RI(dy_y — dyy)
= Trey + Rf(&k,l — &k,l).
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As||[RI-||a, = || - la,_, we can estimatBR} (dy_y — di—1)]|a, < k1| Ridj1]|4, and
combined with Lemma 3.8 we get
| Teerll, = | Thex + RE (dr—1 — di1) |3,
< (1+ o)l Twerl %, + 1R (dret — dio1) |12,
< (1+ M)l Thel%, + 77— | R diea |17, -

So with Lemma 3.7 we have

| Twerl%, < (1+ M)l Thexl%, + n-1 (lerlls, — 1 Txexll,)-

Overall, with (3.18) we get:

1572 Thewl%, < I Twenll, — ol Trexl|?
< || Trerlls, — awir | Thew |2
< || Trexll%, — dllThexl
< || Twexl3, — cu/Bell Thexl4,
< (14 M) = /B — o) I Therll, + 71 llexll,
< max{((1+ Ax) — ax/Br), iy Hlexl|.

0

We like to emphasize, that both, and;, depend orf}, and can be very large and small,
respectively. So for a detailed analysis of a multigrid neeitboth require further investi-
gation.

By recursive application we immediately obtain the follagiresult.

Theorem 3.10 Let gzsﬁjfgﬁ,? be a multigrid method wheré, and A,_1, £k = 1,..., kmax
fulfill the requirements of Theorem 3.9. Then the convergeate oqu,(\fgﬁj) Is bounded

from above by
lcllna}limaX{maX {?7’ \/(1 * )\k) - O‘k/ﬁk}} <b

-----

It remains to note that the degradation of the performandaefmultigrid method using
a replacement of the Galerkin operator depends on how muckevtbe approximation
property (3.13) is fulfilled byl}, compared tdl, and on the size o, which should be
very small and almost negligible.

We will close this section with a lemma providing an alteivetrequirement implying
0<a, Tr <a, I.
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Lemma3.9 LetTy = [ — PAY Ry Ay, Ay € C*™ and A, € C™-1*"-1 poth
symmetric and positive definite, = R € C™>*™-1 being a full rank prolongation and
R, € C—1>™ g full rank restriction. If

Ap_y > Apy,
then we also have )
0 <4, Tp <a, I
Proof. Let Ty, = I — AZ RF AL R, A? and Ty, = I — A REE A Ry AZ. Then we have
0 <a, T <a, 1
S0<I—-ARIA!N R A} <1
S0< Ty <1
Now we can write
Tk,2 = Tk,2Tk,2 + Tk,2([ —Tk2)
=Tgo+ Tm(] —Ti2)
= Tho+ (I — AP R A RLAZ) (AR RY A ReAR)
= Tpo+ (AZREAY RLAZ — AZREACY RLALRE AL Ry)
1 ~ 1
=Tpo+ AZRY (A, — A ) ReAZ.

1
As T, is the orthogonal projector onto the complementdgfR} and as the range of
~ 1

1 1 1
AZRH(AY — A'))R,A} is a subset of the range of? R we obtain that all vectors

belonging to the orthogonal complemenL@ij are mapped to itself, so we only have
to show that : )
0< AZRI(A, — AL RiAL < I (3.19)

FromA,_; > A,_; we immediately obtain the first part of the inequality. Ferthore we
1 ~ 1
obtain thatA? R (A, ', — A;',) Ry A} is positive definite and that

AngH(Al;ll - Al;ll)RkAlg < Ag RII:AlllleAg-
Choosing an arbitrary € ran (A2 Rf') there exists & such thatk = A2 R}y and we get
AZRIA RpAlx = AZRIATY RLAF ARy = A2 Rlly = x,

yielding the second part of inequality 3.19. O
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3.3.3 Application to circulant matrices

In the following we will discuss multigrid methods for cideunt matrices. As circulant
matrices form a matrix algebra, they are relatively easytdyze. Nevertheless they are an
important class of matrices, as they occur in various prob|e.e. when solving discretized
partial differential equations with constant coefficieatantegral equations on the torus.
Further on they are prototypes for the analysis of Toeplitrives, as the spectrum of
both is asymptotically equal and they serve well for the gsialof non-constant coefficient
problems, as well. A review covering both circulant and Taepnatrices has been written
by Gray [44].

The development of multigrid methods for circulant matsice based on the theory for
Toeplitz matrices. The idea is to apply the algebraic mrttiheory that was presented
before to Toeplitz or circulant matrices and to construciggation and restriction such
that the resulting matrices on the coarser levels stilliglim the same class of matrices.
This methodology goes back at least to Fiorentino and Seln@ published first results
for banded symmetric Toeplitz matrices which arise in treegitization of partial differ-
ential equation in [32] and in [34] and extended their theiorthe indefinite case in [33].
They provided the basis of the theory to be presented lataraomely the choice of the re-
striction and prolongation operator and the applicatiothefalgebraic multigrid theory to
structured problems we presented in the previous sectioes& works were continued by
Sun, Chan and Chang in [79]. Chan, Chang and Sun publishelisres ill-conditioned
Toeplitz systems in [17]. Their theory is similar to the thepresented in the works of
Fiorentino and Serra, but they use a different interpatatiperator. In [80] Sun, Jin and
Chang extended the theory to cover ill-conditioned blockplitz systems as well. While
the theory for Toeplitz matrices usesmatrices as a theoretical foundation, in [74, 73]
Serra Capizzano and Tablino-Possio presented first résuttse application of the theory
to circulant matrices. Arico, Donatelli and Serra-Capiza provided a proof of the opti-
mality of the V-cycle in the unilevel case in [3], further dés and applications of these
theoretical results and a general overview can be foundartiD thesis of Arico [1] and
in the one of Donatelli [22]. In [2] they provided an externrsto the multilevel case.

We now start with a brief introduction of circulant matriceasd some of their properties.

3.3.4 Circulant matrices

Circulant matrices are a special class of structured nesiritbat are given by the following
definition.

Definition 3.27 Let f : [-m, m) — C be a univariater-periodic function and let

_omilk
e 271 P

n— H 1
(F)ito with (F,)j0 = 7
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be the Fourier matrix of dimensian x n. The matrixA € C"*™ given by

A= A(f) = F,diag ((f(2mj/n))}=) FY

Is called acirculant matrix the functionf is called thegenerating symbol of’.

Circulant matrices are diagonalized by the orthogonal ieounatrix, the rows of the
Fourier matrix are the eigenvectors of circulant matricese to the simultaneous diag-
onalizability they form a commutative matrix algebra. Theltiplication of vectors with
circulant matrices and the solution of linear systems wirituidant coefficient matrix can be
carried out inO(n log n) operations using the FFT. The concept of circulant matrees
also be transferred to multiple levels, i.e. multivariagmgrating symbols and Kronecker
products of Fourier matrices.

Definition 3.28 Letf : [, m)¢ — C be ad-variate periodic function defined dn-r, ).
Let

1 iewln]
Fn — (6 ik w; ) )
A/ NMNo -+ Mg J,k€In

be thed-level Fourier matrix where the vectow™ is a sampling of the domain gf i.e.

] <27Tj1 27Tjd)
W, = e ,
J ny ng

andZ,, = {0,...,n; — 1} x --- x{0,...,ns — 1} is the set of multi-indices. Then

A= A(f) = FaDiag(f(w')) F

is thed-level circulant matrix with generating symbgl

All the properties of the unilevel circulant matrix can bartsferred to the multilevel case
using tensorial arguments. In the following, we will dissuise unilevel case, only where
the transfer to the multilevel case gets more involved, weeaxplicitly switch to that case.

3.3.5 Multigrid methods for circulant matrices

Although there already exist faék(n log n) algorithms for circulant matrices, we are inter-
ested in multigrid methods for those matrices, as the nmidépon with banded circulant
matrices is even cheaper, namely it can be done @ith) operations. In the construction
of multigrid methods for circulant matrices the zeros of generating symbols play an
important role. As the eigenvalues of the circulant magriaee given by a sampling of the
generating symbol, these circulant matrices are at legst@stically ill-conditioned and
may get singular at some point. A singularity can be handiézbat theoretically, c.f. [86],
by a rank one correction, a technique Arico and Donate]li¢fer to asStrang correction
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Definition 3.29 (Strang correction) Let.A(f) be a circulant matrix with generating sym-
bol f > 0 and let f have a single zero at, = 27j,/n, jo € N. Then the modification of
the system by using

) fore =0’

fulz) = {f(a:) for z #

0 > 0, as generating symbol, resulting in the altered matrix

is calledStrang correction

This modification still solves the original system, at ledshe right hand side does not
have components that are collinear to the eigenvector geigrnto the originally zero
eigenvalue. It does keep the ill-conditioning of the systemiterative methods like Ja-
cobi or Richardson will fail. Like in the geometric case nlid methods do not share
this downside. The Strang correction approach might beeshfis more than one isolated
zero. For methods dealing with generating symbols with zerges, we refer to the PhD
thesis of Fischer [35]. For the definition of multigrid metisofor circulant matrices we
restrict ourselves to the case= 2m k... € N. The extension to other factors than
is straightforward. So we define the number of unknowp®n levelk asn;, = 2%, in
the multilevel case we do the same for each direction. Foddfiaition of the restriction
operator, we need the cutting matri,, , given by

10 "
Kn = . . G(anXTa

10

the multilevel equivalent is given bi,,, = K, ), ® - - - ® K(n,),. The restriction operator
itself is defined ad<,,, .A(py), wherepy, is a trigonometric polynomial. Assuming that the
generating symbof;, of A, has a unique zeres, the symbolp, is chosen such that the
limit

pr(x + )

()
exists. Further for the prolongation to have full rank we dechfor allx € [—r, 7) that
p(x) + p(z + m) > 0. In the multilevel case, i.e. for a unique zetg, the symbob; is
chosen that the limit

lim sup

T—x0

pj()’)
fi(x)
exists for all pointyy € {z | z; € {x,, zo, +7}}\{X0} and such that the sum of the value
of p over allmirror points i.e. the pointy € {z | z; € {xo,, 7o, +7}}, is larger than zero.

lim sup

X—X(
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Now for a zerar, in accordance to [74] we consider= zo + wif xg <7 OrZ =9 — 7
otherwise, and we set the generating symbol of the restni¢t

p(z) = (2 — 2cos(z — &)1/,
with

2
lim M < oo}

£ > min {z Hm
Using the transpose of the restriction as prolongatioretbbsices assure, that the Galerkin
operator still has only one zero, see [2]. Serra-CapizzawbTablino-Possio showed in
[74] that using these choices the coarse grid correctionadefulfills the approximation
property. They have also shown that the Richardson iterdtiliills the smoothing prop-
erty for the circulant matrices under consideration. Intcast to their work, which is based
on the use of thel, diag(A;) ! A,-norm for both, the approximation and the smoothing
property, like Ruge and Stuben did in their introductiof][@n [2] Arico and Donatelli
used the4? norm for the same purpose, which in our opinion makes theffadittle bit
more elegant. Besides this difference, they have also sttwswmiform convergence of the
multigrid method by analyzing the series of generating syis\bf the Galerkin operators,
something that is missing in the previous works of Serra asddlleagues. For details of
these proofs we refer to their paper [2]. We will use theirrapph to show that a modified
coarse grid correction still possesses the approximatiopguty.

3.3.6 Replacement of the Galerkin operator for circulant mdrices

We want to replace the Galerkin operator by some operatorigrsamilar to it. For our
purpose we demand from this replacing operatgr; that it is spectrally larger than the
Galerkin operatoi, A, Py, but we want it to be bound by an upper boundetimes the
Galerkin operator, i.e. we want to have

Ry AxRY < A, < AR, AR (3.20)

Further on we demand,_,’s generating symbol and the generating symbdtpf;, R to
have only one zero, that is common. To simplify our theoedttonsiderations, we require
the approximation to satisfy a little more, namely for same 0 we want to have

(14 &) RpAPy < Ay < ARy ALRE. (3.21)

We express both requirements in terms of the generating @gmtihe proof is a direct
consequence of the properties of the generating symbols.

Lemma 3.10 Let f;_, be the generating symbol g, = Ry ARY and Ietfk_l be the
generating symbol ofl, _; and assume that for somae> 0 and some\ > 1 we have

(14&)fiet < fro1 < Afyor.
Then we havé€3.20)and (3.21)

84



3.3. ALGEBRAIC MULTIGRID THEORY FOR STRUCTURED MATRICES

Now we have to show four presumptions in order to be able ttyafipeorem 3.9, namely
1. | Thexl, < Bllexl?,
2.0 <, Tx <a, I,
3. ker(TH AT C ker((Ty, — Tp) T ATy, + TH Ap(Ty, — Ti)).

We will now show these prerequisites. The second is fulfibgdhe requirements stated
above and Lemma 3.9. Now we have to show the remaining twcsitéie start with the
first one, the proof is similar to the proof of the approxiroatproperty of the coarse grid
correction involving the Galerkin operator by Arico andriatelli in [2].

Theorem 3.11 For a fixed levek let f; be the generating symbol of the matrlx, fr 1
be the generating symbol af, ; = R, A, R} and IetﬁH be the generating symbol of
the matrixA; ;. Assume thaf, | < fk,l < Afr_; and that the generating symbp|
defining the restriction fulfills the conditions

lim sup < oo forally € Q(xq)\{x0} and (3.22)
X—X0 fk(x)
> pily) > 0forallx € [-m,m)%, (3.23)
yEQ(x)

where
Qx) ={z|z €{z,z+7}}.

Then there exists a constaftdepending only op, f and A, such that

1Tkexl %, < Blle;l . (3.24)

Proof. Equation (3.24) can equivalently be formulated as
TifAka < BAi
Now,
THAT, = (I—RIAZY RLADTAL(I — RIACY RLA)
= (I — AWRIAY R (Ap — AGRE AT R AL)
= Ay — ARIATY R A, — ALRIAY R Ay + ALRITAY, Ry ALRY AN Ry A
——
<Ap_y
< Ap— ARREAY R AL — ALRIATY R AL+ ALRIAY A (AL RLA,
= A, — A.RIAY RLA,
= ATy
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To prove (3.24) it is thus sufficient to show
ATy, < BA2 (3.25)

This will now be done in a manner similar to the convergenaepfor multigrid for
multilevel matrix algebras in [2]. Defing&, = RI‘CA}C/2 = Ky Aw(pr) With py, = pkf,i/Q.
Then (3.25) is implied by

I — RIACL R, < BA,, (3.26)

which is what we will show now. Let us for the moment assume thas 1-level circulant,
i.e. d = 1. Multiplying the Fourier matrix from the left with the cut rir&x then yields the
decomposition

1

Fnk—l ‘Fnk—l) )

as is shownin [74], e.g. So

A”k(fkfl) = RkAk‘Rg = KnkAnk (pk)AkAnk (pk)HKVIL{c

Nk~ ny

1 H H H H
= 5 (Fnk—l }Fnk’—l) Fnk'Ank (pkfkpk)Fnk (Fnk,_l Fnk_l) )
which gives
1
Fe Anfe) oy = 5 (L | D) Fyf A, (pafip) ™ Py (1] D" (3.27)

This decomposition can be generalizedito 1 using tensorial arguments.

According to [74] the matrixffk Tank, can be symmetrically permuted to a block diagonal
matrix with 2¢ x 2¢-blocks. Using the “square bracket notatiofik] to denote the vector
of length2¢ with

1

f[X] - @ : (f(yl)v SR f(YQd))Tv

where they; are a systematic enumeration of all tefeelements of the se®(x), these
blocks are given as

1

froa(2wi™)

With the d-dimensional analogue to (3.27) we obtain

el (ulwi?])

n 1/2 n ~ n
Fea W) = (e fi ) WM 2 = (15 [wi]]12.
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Usingfk,l < A f;._1 and the definition of the Galerkin coarse grid operator waiobt

I Lo (5 )
= [n] pk[wk ] pk[ k ]
fe-1(2wy)
<1 ———cpdwi) (puiwi)
Afe-1(2w)
1wl ()
Allpr[wi ][5

Consequently, to show (3.26), it is sufficient to prove

1

i (plwi) < B ding(fwg)
Allpr[w 12
Actually, we will show slightly more, namely that for atlwe have

1
Allpx[x]I13

First we deal with an entry (x), ., whereq # r:

Z(x) = (diag(fulx]))~? (1 - ol @k[xDH) (ding(fulx])) " < BI.

Pr(yq)Pr(yq) 1

V) i) M3

_ pk(}’q)pk(yr)
A YD i) fe(y)

yEQ(x)

Z(X)qr =

This is bounded due to the hypothesisparirom (3.22). ForZ(x),, we can write

B ﬁk(Yq)Q_ 1
D D AR AN

yeQ(x)\{x}
_ l 1 _ pi(yq)
A fulyy) X R fely)
yeQ(x)

If ¢ > 1, thenf,(y,) # 0 and by (3.22) again we have thétx), , is bounded. Fog = 1
we havey, = x, so we get

> () ()
yEQE)\{x} , 1

Ao = e N SRRy
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which is also bounded, as the first part of the product is bedmllie to the same argument
as before and the second part is bounded since the sum inrtomaetor is bounded away
from O due to (3.23). So we can chogsas

O

Comparing the proof of this Theorem with the proof of the apgmation property by
Arico and Donatelli yields that differs from 3 by a factor of1/A. Now we proceed
showing the last required property. Using the altered reguent (3.21) we can show the
following.

Lemma 3.11 LetT, = [ — R AL R, Ay, with RET € C™*™-1 being a full rank prolon-
gation operator. Let bothl;, |, = Ry A, RY and A, be non-singular. Assume that for some

e > 0 we have )
(1+e)Apq < Ap < AA.

ThenT}, is non-singular.

Proof. As T}, = I — Py(RyA,LPy) "' R, Ay is the A-orthogonal projector onto the comple-
ment ofran(Ry), we havedim(ker(7})) = dim(ran(FP)), this is the maximum possible
dimension of the kernel of a coarse grid correction. As weehiy ; < Ak_l, we imme-
diately obtain thaf}, has full rank. O

Obviously with this lemma the last requirement is fulfillegker (77 A, T}) = 0.

3.3.7 Replacement strategies for the Galerkin operator focirculant
matrices with compact stencils

Our original goal was to provide an alternative to the usage® Galerkin operator for
circulant matrices with compact stencils, like the ones@néed as motivation at the begin-
ning of Section 3.3.2. We will now give examples of replacatstrategies, that guarantee
multigrid performance, as the prerequisites of the theoeg@nted in the former sections
are fulfilled. We do this by analyzing the generating symbWls start by a general result
on d-variate periodic functions.

Lemma 3.12 Letf, f € C?: [—m,m)¢4 — RJ be two nonnegative non-vanishing periodic
functions on[0, 27)¢ having only common zeros and that for some 0 we havef >

(1 4+ ¢)f. Furthermore, assume that there are only finitely many secbsx* and that
they all satisfy

V2 f(x*) is positive definite an&? f (x*) is positive definite.
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Then there exists a constalt> 1 such that

f(x) < Af(x)forall x € [-m, m)7.

Proof. Letx* be a zero off andf. SinceV?f(x*) as well asvV2f(x*) are positive definite
forall v € R?, v # 0 we have

< imax(VQf(X*)) < o

min(V2f (x*))

mn( V21 (") _ VIV ()
o)) <

A
U A V() = VIV ()

By continuity, and since we only have finitely many (commoeras off and f in [0, 27)4,

there exists > 0 andA such that whenevelx — x*|| < £ and|y — x*|| < £ we have

vIV2f(x)v

vIV2 f(y)v =4

Using the Taylor expansion
1
F) = F() + V) (x = x7) + 5 (x = x) V(X + 0(x = x7)) (x = x7)
1
= §(x —x)IV2f(x* 4+ 0(x — x7))(x — x¥), 0 €[0,1],
and similarly forf, we see that whenevéx — x*|| < & for some zera* we have

F(x) < Af(x).

The complement’ in [0, 27]? of these finitely many balls is compact, and the funcpfgzi[ﬁ
Is continuous and positive ar. Putting

— Imax ~max @ 0
e {mxw(ﬂ@)}& )

f(x) < Af(x)forallx € [, m)%

we finally obtain

0

This lemma provides all necessary conditions to formulatgcete schemes for the re-
placement of the Galerkin operator. First we consider thiaoement of a compagtpoint
stencil of a2-level circulant matrix.
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Definition 3.30 (Replacement 5-point stencil in 2D) Leta, b, c € R, and let

c b c
a —2(a+0b)—4c a (3.28)
c b c

be a 9-point stencil in 2D. We define the replacement 5-poamicd as

b+ 2c
(I+¢)| a+2¢c —2(a+b)—8c a+2c |. (3.29)
b+ 2c

If the Galerkin operator is a member of the matrix sequendaeld by a 9-point stencil
of the form (3.28), the sparser 5-point stencil defined bgqBcan be used instead. The
generating symbaf of the circulant matrix sequence defined by the 9-point $téa@8)
is given by

f(z,y) = —2(a + b) — 4c + 2a cos(x) + 2bcos(y) + 4ccos(x) cos(y).

It is non-negative and has a unique zero at the origin withskang gradient. The same
holds for the generating symbglof the 5-point stencil (3.29),

~

flz,y) = (1+¢e)(—2(a+b) — 8¢+ 2(a+ 2¢) cos(x) + 2(b + 2¢) cos(y)).

Moreover,

V2£(0,0) = ( —ga —02b) and

97 —2(a + 2¢) 0
VI(0,0) = ( 0 —2(b+ 2c) )

are both positive definite and for some- 0 we have

(1+e)f(z,y) < fl,2).
So all requirements are fulfilled and a method using this frexticoarse grid operator still
converges. Analogously, a replacement stencil can be din@-level circulant matrices
Definition 3.31 (Replacement 7-point stencil in 3D) Leta, b, c,d, e, f,g € R, and let

9 /g

e C €

9 [ g
d b d
a —2a+b+c)—4(d+e+f)—8g a
d b d

9 [ g

e C e

9 [ g

(o}
o
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be a 27-point stencil in 3D. We define the associated 7-ptencd as

(14¢e)| c+2(e+f)+4g

b+2(d+ f)+4g
(14+¢e)|la+2(d+e)+49g —2(a+b+c)—8(d+e+ f)—16g9 a+2(d+e)+4g
b+2(d+ f)+4g

(14+¢e)| c+2(e+f)+4g

In a similar manner as before — we refrain from reproducindhe details — the corre-
sponding generating functions

flz,y,2) =—=2(a+b+c)—4(d+ e+ f) —8g + 2acos(x) + 2bcos(y) + 2¢ cos(2)
+ 4d cos(x) cos(y) + 4e cos(x) cos(z) + 4 f cos(y) cos(z)
+ 8¢ cos(z) cos(y) cos(z)

~

fx,y,2) = (1+¢e)(—2(a+b+c)—8(d+e+ f) — 169 + (a + 2(d + e) + 4g) cos(x)
+ (b+2(d+ f) +4g) cos(y) + (c+2(e + f) + 4g) cos(2))

can be shown to again have a unique common zetptaus fulfilling all postulated con-
ditions.

The application to stencils of other shapes or involvingegating symbols with zeros at
other positions can be done in the same way.

3.3.8 Numerical Examples

We tested our replacement strategy in different settimgsontrast to the theory we always
choses = 0, as this did not harm convergence. This is an indicator thiatrequirement
can probably be skipped. We start with some experiment&-fevel circulant matrices
where the replacement has almost no influence on the come=gate. Both, the standard
model problem with linear interpolation and full-weighgiand a non-standard problem,
involving a zero of the generating symbol which is not at thgin, are presented. After
the examples for th-level circulant matrices we present an example3féevel circulant
matrices, where the generating symbol has a zero at thenpagain.

5-point Laplacian in 2D

First we consider the standard model problem of Poissonigtémn in 2D with periodic
boundary conditions yielding a circulant coefficient matoif the linear system arising
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from a discretization using the well-known 5-point stencil

-1
-1 4 -1
-1

The symbol '
p(z,z) = 5(2 —2cos(z —m))(2 — 2cos(y — 7))

was used for interpolation, thus the stencil describitig) is given by

Q= | 00l
L I N T
Q0= | 00—

resulting in the Galerkin coarse grid operator given by teadl

1 1 1

64 32 64
_ 1 6 _L
32 32 32
-1 _1 L
64 32 64

The Galerkin operator has been replaced by the operatarldeddy the following stencil,
which was chosen in the way defined in Definition 3.30.

,_.
(=)
5|>a»l>|>d;|>—n
—
(=)

This coincides with the original stencil multiplied by'16. Due to the factorl /h? =

1/4 from the doubling of the grid-spacing and another factot 6f from the inter-grid
transfer operators defined with the helgothe proposed method is equivalent to standard
geometric multigrid method in this case. A plot of the asatexd generating symbols can
be found in Fig. 3.4. Fig. 3.5 reports the convergence beha¥ithe method going down
to the level that contains one variable only. As expecteglctinvergence of the method is
only marginally affected by the use of the replacement egril operators.

Example with a zero which is not the origin

Our next example is the stencil

—_
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Figure 3.4: Generating symbojs of the Galerkin coarse grid operator for the 5-point
discretization of Poisson’s equatiofipf the replacement operator and of the ratjg .

2 2
n=16 n=32
10° 10°
Galerkin
— — — replacement

Galerkin
— — — replacement

llell,
llell,

-10

10 1o

10

iterations iterations

Figure 3.5: Convergence of the multigrid method for the Spdaplacian using the
Galerkin operator and the replacement operatonfer 162 andn = 322.
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n =162 n = 322
10 10
Galerkin
— — — replacement

Galerkin
— — — replacement

llell,
llell,

-10

10 -10

10

iterations iterations

Figure 3.6: Convergence of the multigrid method for the eplanwith zero a0, ) rather
than at the origin using the Galerkin operator and the rephent operator fon = 162
andn = 322

as it can be found in [78], e.g. Such a stencil cannot be hdrulestandard geometric
multigrid methods. We chose the symbol for the interpolatie

p(z,z) = %(2 — 2cos(z —m))(2 — 2cos(y)),

as suggested by Serra Capizzano and Tablino-Possio ind@#hatA(p) is described by
the stencil

QO+ W= OOl

QO+ W= OOl

1
4
1
2
1

4
The Galerkin operator is then given by the (scaled) steftile@standard Poisson problem

L
16
1
8
1
16

QO =] o=
|
5|HOO|H;|}—‘

The convergence of the stencil collapsing multigrid metgoohg down to the maximum

possible level is depicted in Fig. 3.6. The results are vanjlar to the results for the

standard model problem. In particular, the convergenadagrades only marginally as
compared to the multigrid using the Galerkin operators.

7-point Laplacian in 3D

The 3D test is again the model problem, i.e. the 7-point stéarcthe 3D-Laplacian. It is
given by
—1
-1 —1 6 —1 —1
—1
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n # iterations final rel. residual time per iteration totalém
163 6 2.6446 - 1077 0.0047 s 0.0308 s
323 6 3.4160 - 1077 0.0352 s 0.2215 s
643 6 3.4430- 1077 0.2833 s 1.7576 s

1283 6 3.4429 - 1077 2.2263 s 13.7980 s

Table 3.1: Convergence of the multigrid method for the Mpbaplacian in 3D using the
Galerkin coarse grid operator.

n # iterations final rel. residual time per iteration totalém
163 7 1.4726 - 1077 0.0024 s 0.0182 s
323 7 1.5726 - 1077 0.0165 s 0.1255s
64° 7 1.5813- 1077 0.1333 s 0.9830 s

1283 7 1.5853 - 1077 1.0347 s 7.5916 s

Table 3.2: Convergence of the multigrid method for the Mpbaplacian in 3D using the
replacement grid operator.

The interpolation is defined by the symbol
p(z,y,2) = %(2 —2cos(z —m))(2 —2cos(y — 7)) (2 — 2cos(z — 7)).

The resulting Galerkin coarse grid operator has 19 entaied the Galerkin operators on
all subsequent levels have 27 entries. The stencil colgpsiultigrid method was incor-

porated into a multigrid code for 3-level circulant matscéhus keeping the size of the
stencils corresponding to the coarse grid operators coihgtt 7.

In order to measure timings for 3D problems, a multigrid roetior circulant matrices
with generating symbols having zeros at the origin was imgleted in C and compiled us-
ing the gcc compiler with O3-optimization. The Galerkin ts&grid operator was formed
automatically on each level and the replacement given inniefin 3.31 was computed
automatically as well. The measurements were taken on alimachine with 3.2 GHz
Pentium 4 CPU. The times needed by the method to reduce titévectesidual tal0~"
using the Galerkin coarse grid operator can be found in Talilethe ones for the replace-
ment operator are given in Table 3.2. It can be seen that atidathl iteration is needed
when using the Galerkin coarse grid operator, but the edatuising the replacement
operator is much faster.

3.4 Parallelization

Parallelization of algorithms of numerical linear algelsaan important part of the de-
velopment of scientific applications, as many applicativos different fields of research
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spend a lot of time in these routines. For that purpose vahowks with a special focus on
parallelization have been published, for example the bgqokdlub and Ortega [42] or the
book by Frommer [37]. Albeit multigrid algorithms are vepst and efficient methods for
the solution of linear systems and although our extensidhédheory allows additional
savings in terms of CPU cycles and wall clock time, the palizktion of multigrid still
can be necessary for two reasons:

1. The lack of memory on one node when the system that showddleed is too large.

2. Parallelization is necessary because of the computdtiequirements of the under-
lying problem, that requires the solution of the linear eyst

While the first is relatively easy to understand, we like tqobasize the second part a little
bit more. If the underlying problem that requires to solve fystem, is computationally
complex, for example because forming the right hand sidauofinear system costs a lot
of time, it might be necessary to parallelize the problemvduld be unsatisfactory not to
parallelize the multigrid part, because due to Amdahl’s ldne speedup will be bound by
the time spent in the solution of the linear system.

The parallelization of multigrid methods is well analyzdebr an overview see the work
of Chow, Falgout, Hu, Tuminaro and Yang [18], a more detaitgbduction and analysis
of the parallelization of geometric multigrid methods canfbund in the PhD thesis of
Tuminaro [85]. Our parallel implementation, which was usedgroduce the results in
Section 3.4.2, is kept as simple as possible, i.e. a databdison scheme is chosen that is
equivalent to a domain decomposition approach, and procesgcome idle when there
are no variables left that belong to them. It shares this ephwith the code of Ashby
and Falgout introduced in [4] that is a predecessor to thestred multigrid code that is
contained in the hypre package [28, 29]. Other parallebnapproaches, especially some
that utilize idle processors on coarse levels, are posdibtehey are not covered, here.

3.4.1 Data distribution for banded matrices

What we want to do is solving a linear system on a parallel agep In the cases we are
interested in, here, we deal with banded circulant matriaksough the chosen approach
can be transferred to band matrices with similar strucifaesvell. For our algorithms we
need matrix vector multiplication with a matrit := A(f) and transfer of the vectors,
only. We start withl-level circulants with a fixed bandwidth, that is independent of
the system size. That means that in order to calculate thé entry of the matrix-vector
product we only need the information of the entries that hasiees fromZ, ,,, ,, where

Zimn = {(i —m) modn, ..., (i —1) modn,i, (i+ 1) modn,..., (i +m) modn}.

Concretely we have

(AX)Z = Z Q5.

jeIi,'m,n
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2 » <«
> P3| Po

PO P1 )

Figure 3.7: Communication pattern for a vector with 10 congaus, distributed to 4 pro-
cessors. Highlighted is processor P2 and its communicawtbenm = 2 neighbors are
needed for the matrix vector multiplication.

In order to evaluate this product on a parallel computerfidverable to have as much as
possible of this information stored locally. Therefore wease to distribute the vector
over the processors block-wise, i.e. when we hay@ocessors thé-th processor gets
the components ranging fro— 1)[n/p| to min{i[n/p], n}. Using this distribution the
processors are logically arranged ii+B torus and they only have to exchange components
with [m/min{[n/p],n—(p—1)[n/p]|}] neighbors in a one-dimensional torus. An outline
of the communication needed can be found in Figure 3.7. Asilexél circulant matrices
are formed by the use of tensor products, this concept caared over to that case, as
well. As long as the bandwidth of the according circulantnes is fixed and independent
of n;, the same communication pattern can be usedldifferent directions in thel-level
case. So the optimal communication topology for circulaatrioes is al-dimensional
torus. Obviously for the non-periodic case, that leads toeplitz matrix, ai-dimensional
mesh is sufficient. Going down to the coarser levels, thelitycaf a variable on the
fine level determines on which processor the coarse levahbiarwill be located. The
variables on the coarse level are located on the same por@aesstheir fine grid counterpart.
This leads to a structured communication scheme on the |l@vels. Starting with ai-
dimensional torus we have communication with the next r@agh holding then needed
components, as long as all processors still have variablesadt. At some point, namely
when the number of processors in one direction is bigger thamumber of unknowns,
we will have idle processors, which do not hold any varialsi¢hat level anymore. These
processors then have to be ignored, when the communicatkes place. Technically we
tackle this issue by storing the neighborhood informatioeach level. In the initialization
step processors ask the neighbors of the previous levehwigighbor they should use on
this level. The asked processor answers this question tgithwn id, if it still has to do
work, or with its own neighbor. Of course this scheme requtteat only every second
processor may become idle per level, but that is guarantebd unknowns are equally
distributed on the finest level at the beginning. Otherwis®uld be fixed by providing a
function that computes the corresponding variable on tlesfilevel, eventually combined
with a distributed directory of the variable location, likeoposed in the work of Baker,
Falgout and Yang [5].
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3.4.2 Example results on Blue Gene/L and Blue Gene/P

The algorithm was implemented in the C programming languagieg MPI for the dis-
tributed memory parallelization. As the torus is well-sdito implement the communica-
tion pattern of the algorithm, the implementation makes afseartesian communicators
and the associated functions. The implementation wasdtestédoth Blue Gene systems
of the Julich Supercomputing Centre, the 8-rack Blue Gesgétem JUBL [71] and the
16-rack Blue Gene/P system JUGENE [72]. Both Blue Gene g¢ioes, the Blue Gene/L
and the Blue Gene/P, consist of several racks, where eakltoasists of two midplanes
with 512 nodes each. The nodes are designed as systems pnechyme chip contains all
necessary components as the processor itself, networkaaslamemory controllers etc.,
where each system has two cores in the Blue Gene/L and foes aothe Blue Gene/P.
The chips are clocked at 700 MHz in the Blue Gene/L, in the Ble®@e/P the clock rate
has been raised to 850 MHz. Besides Gigabit networking formoanication with the out-
side world, a very fast interrupt network, and a network fggtem management purpose,
the Blue Gene architecture has two networks that are usethdocommunication of the
parallel programs. These are a torus network that is usgebiat to point communication
and a tree network for collective communication. For an wesv of the Blue Gene/L ar-
chitecture see the article of Gara et al. [39]. Further tietain be found on the web pages
on JUBL [71] and JUGENE [72] and the references therein.

The implementations of the solver for circulant matricemgshe Galerkin operator and
of the one using the replacement were tested in differenfiguanations. First we like to
emphasize, that the use of a V-cycle instead of a W-cycle rsda@ry. Not only is a W-
cycle in general slower than a V-cycle, but in the W-cycleaheunt of time the multigrid
method spends in the coarser levels is much larger than iv-thele and many more
communication steps are necessary. To illustrate that,efez to Figure 3.8, where the
weak scaling behavior of the V-cycle and the W-cycle usirg @&alerkin operator for a
system with64 x 128 x 128 unknowns per processor are depicted. The tests were carried
out on JUBL and the system was arising from a 7-point diszaigtin of the Laplacian with
periodic boundary conditions. It is clear, that the W-cigcfgerformance decreases in the
parallel case, thus the effort spend in order to proof Veyanvergence in Section 3.3.2
is necessary in the parallel case. Otherwise the time tlsa/isd by the replacement of the
Galerkin operator gets lost in the parallel case or even mmeis spent.

To illustrate the good scaling results of the V-cycle usimg Galerkin operator as well as
the replacement we ran a number of tests. Strong scalingsesuup to one rack of Blue
Gene/L were obtained for both for a 7-point discretizatiérihe Laplace operator with
periodic boundary conditions resulting in a system wiit8® unknowns. The timings for
the solution of the system up to an absolute errot®f’ of this case are found in Table
3.3, a plot of the speedup and the efficiency can be found iar€i§.9. Obviously the
replacement of the operator does not harm the scaling bmhafithe method, although
the time needed to solve the system is smaller and thus tiseafatommunication and
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Figure 3.9: Speedup and efficiency on Blue Gene/L for thetismiwf a system with 283
unknowns arising from the discretization of the Laplaciaimg a 7-point stencil.

computation is even worse than in the case, where the Galegderator was used. We
like to emphasize that although the scaling curves do ndt Veoy impressive, the results
are nevertheless pretty good, considering that the systesists ofi 28* unknowns, only.
This is the largest problem, that can be solved on a single Blene/L node and could
thus be easily solved on a desktop PC, as the node of a Blue i&emgch slower than
todays’ PCs. Nevertheless we increase the number of nod€2t) as a result each node
is responsible for handling 2048 unknowns on the finest Jewdl. Additionally we ran
some tests on the newly installed Blue Gene/P system for itycké using the Galerkin
operator. The behavior of the method using the replacenparator should be similar. In
the test, a system with0243 unknowns has been solved, see Table 3.4 and Figure 3.4 for
the results. Again, the system was arising from a 7-poirtrdigzation of the Laplacian
with periodic boundary conditions. We can see that the isgatioks much better for this
case, although we have to mention that the amount of datatisn®$ as big. Regarding
weak scaling the results are very good. The results of a rugrevBach processor has
64 x 128 x 128 unknowns are as expected, see the measurements in Tabted3reglot

of this data in Figure 3.11.
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Galerkin operator replacement operator
#processors time/iteration total time time/iteration Lotae

1 3.218399 - 10° 3.604389 - 10! 1.896993 - 10° 2.138000 - 10!

2 1.741969 - 10° 1.951582 - 10* 1.045804 - 10° 1.178795 - 10*

4 8.436338-107! 9.454753 - 10°  5.272539 - 107! 5.947049 - 10°

8 4.503158- 107! 5.045441-10°  2.902817 - 107! 3.270748 - 10°

16 2.493376- 107! 2.790456 - 10°  1.677954 - 107! 1.887067 - 10°
32 1.351773-107! 1.510425 - 10°  9.678527 - 1072 1.085267 - 10°
64 7.951982-1072 8.889820-10"' 59061181072 6.629070 - 107"
128  4.887073-1072  5.466090- 10!  3.710509-10"%  4.169230 - 10!
256 3.117418-10"%  3.487930- 107!  2.662664 - 102  2.989930- 10!
512 1.794464-1072 2.019890- 107!  1.440055-1072 1.634570- 107!
1024  1.443436-1072  1.627610-10"! 1.227636-10"2 1.393520- 107!
2048  1.029345-1072 1.164280-10"' 9.510182-102 1.085170- 107"
4096 5.794727-107%  6.665800 - 1072  5.452455- 1072  6.333800 - 102
8192  2.941091-107% 3.515200- 1072 2.787636-10~3  3.370500 - 102

Table 3.3: Timings on Blue Gene/L for the solution of a systeith 1283 unknowns arising
from the discretization of the Laplacian using a 7-poinhstie

# processors average time per iteration
4096 5.216130 - 10 ¢
8192 2.789460 - 10!
16384 1.938290 - 10!
32768 7.484900 - 102
65536 4.131500 - 1072

Table 3.4: Timings on Blue Gene/P for the solution of a systeith 1024 unknowns
arising from the discretization of the Laplacian using aofmpstencil.
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Figure 3.10: Speedup and efficiency relative to one rack 4i®6 processors on Blue
Gene/P for the solution of a system with24® unknowns arising from the discretization
of the Poisson equation using a 7-point stencil.

Galerkin operator replacement operator
#processors time/iteration total time time/iteration Lotae

1 1.586269 - 10° 1.776711- 10 9.536420- 1071 1.074958 - 10*

2 1.741970 - 10° 1.951583 - 10* 1.045803 - 10° 1.178818 - 10

4 1.686735-10° 1.890513 - 10* 1.013224 - 10° 1.143372 - 10*

8 1.742680 - 10Y 1.952863 - 10* 1.016574 - 10° 1.146883 - 10*

16  1.857210-10°  2.079570 - 10* 1.084866 - 10° 1.221705 - 10*
32 1.758144 - 10Y 1.969952 - 10* 1.041178 - 10° 1.174254 - 10*
64  1.824098-10°  2.043441- 10" 1.059706 - 10° 1.195079 - 10*
128  1.885549-10°  2.111226 - 10! 1.087700 - 10° 1.225203 - 10*
256  1.856749-10°  2.080243 - 10! 1.059373 - 10° 1.194493 - 10*
512 1.843628-10°  2.065635 - 10! 1.018313 - 10° 1.148949 - 10*
1024 1.919460-10°  2.149173 - 10* 1.085729 - 10° 1.222963 - 10*
2048  1.976223-10°  2.213161 - 10* 1.191898 - 10° 1.341163 - 10*
4096  1.970838-10°  2.207169 - 10* 1.187782 - 10° 1.336699 - 10*
8192  1.923521-10°  2.153583- 10! 1.090093 - 10° 1.227793 - 10*

Table 3.5: Weak scaling results on Blue Gene/L for differamnhbers of unknowns for the
discretization of the Laplacian with periodic boundary @ibions using a 7-point stencil.
Each Processor h&d x 128 x 128 unknowns on the finest level.
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Figure 3.11: Speedup and efficiency for the weak scalingre8lue Gene/L for different
numbers of unknowns for the discretization of the Laplaeigth periodic boundary con-
ditions using a 7-point stencil. Each Processor@ias 128 x 128 unknowns on the finest
level.

3.4.3 Further parallelization issues

What we have not covered here is the parallelization of th€ FAethod introduced in
Section 3.2.4. Although the communication pattern will bereninvolved, the problem
still possesses a lot of structure that can be exploitechisblution on a parallel system.

Besides massively parallel systems that are similar to the 8ene architecture, recently
multicore architectures became more and more importane f@mous member of this
family is the hybrid multicore architecture Cell Broadbdhagine Architecture or CBEA
for short. We investigated the usefulness of the CBEA fortigtl methods for structured
matrices and published some ideas and preliminary resu®3.iA general analysis of the
CBEA for scientific applications can be found in [88].
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Chapter 4

Particle Simulation

4.1 Introduction

Particle simulation plays an important role in computagistience. For many fields of ap-
plications the simulation of atomistic particles using gienintegration of Newton'’s equa-
tions of motion is sufficient. Considering e.g. astrophysiomputer experiments are the
only choice to verify new models, as the studied phenomeaaomot be influenced by the
researcher and the time-scales in question are far too. |&gether example is the field
of biophysics, which became more and more important in riegears. Here, computer
experiments help to save a lot of money, as the experimeat$itve to be conducted are
very expensive and time-consuming. So computer expersraetused to have a guide-
line, which experiments one wants to carry out in reality. tih& Julich Supercomputing
Centre there exists the complex atomistic modeling and|sithom group, where scientists
with different backgrounds and applications work on theeliggment of particle simula-
tion methods. Most of these methods are highly scalable hag@ amount of supercom-
puter time is spend in particle simulation codes. The methatiwill be described in the
following was developed as part of the work in this group tedtto this thesis.

Given that computers became available in the middle of steckntury, the field of particle
simulation is relatively old. As a consequence a huge numbaigorithms using different
techniques and approximations exist. In the following, viépresent a short introduction
into the problem. A more detailed overview on classical roolar dynamics is given by
Sutmann [81], and an overview over long-range interactiyn&ibbon and Sutmann [40],
introductions with larger details can be found in the bodkidackney and Eastwood [56]
and in the book of Griebel, Knapek, Zumbusch and Caglar [Afgr the introduction we
give a brief overview over the available methods for pagtgimulation, and finally present
the approach that allows us to use multigrid methods in timéext of particle simulation.
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4.2 Mathematical formulation

Givenis an initial stat&, = [x;,...,vy,...] of a, not necessarily finite, setof particles.
In classical mechanics the system is described compleyelib set, i.e. the coordinates
and the velocities of the particles. The time evolution & $lystem is described by New-
ton’s equations of motion, i.e.

d
Vi = X,
dt
d
Fz’ = Emivi

for a particle with index. The force acting on patrticleis given by the sum of the forces
due to all other particles in the system, i.e.

F,= Y Fi (4.1)
i€P\{i}
In some cases an external force may be present as well. Tdesfare given by the gradient
of the potentials, yielding

F, = -V, respectivelyf; ; = -V, ;, (4.2)
where
i€P\{i}

So the evolution of the system is a consequence of the eféeptitential. Depending on
the type of application different potentials are used, e.qg.

1. Coulomb potential

1 .
P, = e (4.4)
’ 471'50 HXZ — X]”2

2. Gravitational potential
(I)i,j — —G mj

(& —XJ‘H2’

1 6
b))
1% = xl2
4. Lenard-Jones potential

n m
g ag
®i; = ae [(7) —<7> },m<n,
H&—&M |W—MM
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n—m \mm

3. Van der Waals potential




4.2. MATHEMATICAL FORMULATION

We differentiate potentials by their range, i.e. a poteitiat decays faster thanr¢, where

d is the space dimension, is called a short-ranged potentiareas potentials decaying
at least as slowly as that are called long-ranged potent&t®rt ranged potentials, like
the Van der Waals potential or the Lenard-Jones potental be easily evaluated using
list-techniques, like the the linked list array (see [56]).

While we need methods for short-ranged potentials lateo gortrect artificially introduced
errors in our potential, we cover the Coulomb potentialeh®ifferentiating the potential
energy, i.e. the potential of the particle times it's chatgads to the force that is acting on
a particle. The Coulomb potential is one of the most impdrpartentials, as it arises in
various applications like biophysics and plasma physiosthe forces due to this potential

we obtain
JGP\{Z g J 2

Another important quantity of Coulomb systems is the etestttic energy that can be
calculated with the help of the potential, as

ZQZ 22471'502% Z Hij (46)

zE'P i jepviy I %2

We like to note that the gravitational potential is of the sdorm as the Coulomb potential,
so we are able to cover applications from astrophysics, 8s we

In order to simulate a particle system, a time integratidreste is required. For that pur-
pose we use a simple integrator like the Euler integratidvese or a leapfrog scheme.
These integration schemes need at least the input of thesf@nmed velocities at one time
step and they provide the new positions and updated vedeca#ts output. Integration
schemes are not covered by this work, we refer to the booksookiy and Eastwood
[56] or the book of Griebel, Knapek, Zumbusch and Caglar,[4lich both cover particle
simulation methods in general. The applications in the fimgik are focussed on plasma
physics and astrophysics and the authors of the second lwowewtrate on biophysical
applications. We will focus on methods that calculate theepiial of particles and thus
provide a way to calculate the forces needed as input to tbgriators.

We will now provide a rough overview over the different walie problem may be posed.
Particle systems differ in the domain they cover. In this kvawve will cover the most
important options, namely open and periodic systems.

4.2.1 Open systems

In open systems the set of particiess finite and the particles can move in the open space
freely. As the number of involved particles is finite, the lpem can be directly solved
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by evaluating (4.1) or (4.3), utilizing (4.2). As an examptmnsider the total energy of a
system ofN particles. Substitutingl, 2, ..., N} for P in (4.6) yields

"
Z‘-’Z Z 47r50 Ix; —Jx]||2

J
#i

Using symmetry we can write

"
E= Zqﬁ Z 47r50 Ix; —]x]||2

=1 Jj=i+1

We note that the complexity for evaluatiigis quadratic. Therefore methods have been
developed that reduce the complexity@oN log V) or evenO(NN). The price to pay these
methods is accuracy, as they only compute an approximatitimet real solution. As all
the computations are carried out in floating point arithmeti a finite computer, this is not
necessarily a downside, as the direct calculation is irnte¢kace, as well.

4.2.2 Periodic systems

In periodic systems the set of particlsis infinite, but the particle distribution itself is
periodic and the number of particles in a box representiegmhole system is finite. The
particles in the box are interacting with each other and \althperiodic images of all

particles in the box, including the periodic images of theipke itself. As an example we
consider the total electrostatic energy of the systempagdiich is given by

. q;
Zqz Z 47r50 | _ij||2 + Z Z% ]z: 47T€0 l|x; — Xj +nfly *.7)

= N =
Here, without loss of generality, we assume the system t@peesented by a cube with
side lengthl. This system cannot be solved using direct summation argnasrthe sum
overn is infinite. Furthermore this sum is divergent, so other satiwom techniques have to
be used, which take information about the underlying pls/sito account. An example is
the Ewald summation [27], which splits this sum into two pa#gplacing the point charge
by a charge distribution described by a gaussian and corgetttis afterwards. The sum
can now be split into two parts, where the point charge minegharge distribution decays
very fast and the other part converges very fast after toameftion to Fourier space. This
approach will be used later on when we discuss the numenbatien scheme used.
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4.2.3 Relation to the Poisson equation

There is an obvious connection between the electrostatengal and the solution of the
Poisson equation discussed as model problem in Chapteifaelorem 2.7 we have shown
that the Green function of the Poisson equatioRfris given by (2.10), i.e.

1
Arllx|l2

U(x)
This reminds us of the definition of the Coulomb potentialdmj. In fact we have that

! 47T€0 ||Xi—Xj||2

j=1
i

is a solution of the Poisson equation

N
1
Ad;(x) = pi = gij‘5(llx—lelz)- (4.8)
i

Therefore we call the solution of this Poisson equatiomtitential inducedy all particles
except for the-th particle. Now the potential of particids given asb;(x;) and the force
acting on it by—V®,(x). The connection to the Poisson equation provides us withya wa
to define numerical schemes to calculate the electrostasintgies of the system that are
based on the solution of the Poisson equation on a mesh.

4.3 Numerical solution

Before we come to our numerical method we like to subsume thgadle methods for
the calculation of forces and energies. On the one hand #rerenesh-free methods,
that directly tackle the sums in (4.5) or (4.6). Other methedploit the fact that the
potential can be evaluated on a mesh, effectively solvied?bisson equation. The forces
are obtained by numerical differentiation afterwards.

4.3.1 Mesh-free methods

A 1/r-term, wherer denotes the distance between two particles, is not neglectee.
even particles far away have a noticeable impact on the fdteeertheless, changes in the
position of the other particles that are small compared eéadiktance, will not induce no-
ticeable changes in neither the potential or the forcest dlbservation led to the develop-
ment of tree codes. In the Barnes-Hut tree code [7] the whimielation domain is put into
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a box. By recursively subdividing the box into sub-boxeg Hra represented by pseudo-
particles, the calculation of particle-box interactiosspossible. For each particle-box
interaction a criterion controls, whether this pair is afmosr whether a further subdivision
is chosen. As a consequence, the Barnes-Hut tree code hagptegdy of O(N log N),
whereN is the number of particles.

The idea can be extended to not only exploit the idea in orectiim, i.e. computing

particle-box interactions, but to computing box-box iations for boxes that are far
enough away, as well. This is the basis of the Fast Multipo&thdd (FMM), that was

presented by Greengard and Rokhlin in [45]. They combinisddiea with not only taking

monopole interactions into account but rather computingtipale interactions, as well.

The multipole interactions in principle are a Taylor-Expiam of the potential.

Both methods originally have been developed for open systdvtesh-free methods for
periodic systems include the Ewald summation [27], alttotigere are efforts to extend
tree codes to the periodic case, as well. As an example antsid method of Kudin and
Scuseria recently presented in [60].

4.3.2 Mesh-based methods

The developed numerical method is mesh-based and thuasimithe P3M, the SPME

and the method presented in the diploma thesis of Fullén[&8]. As mentioned above,

these methods exploit the connection between the Poissatieq and the electrostatic
potential. All of these methods have in common that they aset) on the development
of the Ewald summation and thus have been developed forgiesgstems. To derive the
methods, we start with (4.7), i.e.

E:%E:MWﬂquqb+

J
J#i

! 47T€0 ||XZ — Xj + Il||2

nezi\{o} © =1 j=1

DO | =

This sum is not absolutely convergent. In order to define tile'svalue, we split it using
the identity
L flxi=xill2) 1= Sl = xl2)
1% — xl2 1% — %2 1% — xl2

)

where we choosg¢, such thatf(||x; — x;||2)/||x; — x;||» decays very fast and thus can
be neglected beyond some cutoff and such that f(||x; — x;||2))/||x: — x;|2 iS slowly
varying, i.e. the Fourier coefficients belonging to largdices become small. As a con-
sequence the first sum can be evaluated like a short-rangedtiad and the second sum
is calculated by calculating the Fourier sum only up to aaierindex. In order to prop-
erly Fourier transform the second part of the sum, the sleatéself-energy”’F, has to be

108



4.3. NUMERICAL SOLUTION

introduced, yielding
N N N
1 6ig; f(xi =% +nf2) 1 @q; f(|xi —x; +nls)
E == J J - J J
22 dmey X —xl2 p> 2224%80 [x; — x; +nl|,

r

N N
Jrzlzz qiq; 1 — flIxi —x; + nl]5) Z
24 - 47T€0 ||XZ — X + Il||2 i1 47'('60

The traditional choice fof is the complementary error function

erfc(r) : / '
\/_

This also has a physical interpretation, namely that thetpdiarges are “hidden” by a
“charge cloud” of the same charge. The “charge cloud” singpbydistribution of measure
one, in the Ewald case it is point-symmetric and describethéerror function.

The Ewald approach can easily be transferred to a grid bggaach. In that case the
particles charges are mapped to grid points in an apprepsiay. Several ways exist to do
that, the simplest one being the nearest neighbor schemee déphisticated approaches
split a particle into several pseudo-particles, whichdesin the grid point. The charges of
these pseudo-particles are then calculated using intrpolschemes or using B-splines.
Once the charges are mapped to the mesh, the mesh can bertethsd Fourier space
using the FFT and the reciprocal suthp can be evaluated there using convolution with the
Fourier transformed version ¢f 1 — ||x; —x;||2) or another so-called “influence function”.
The summatiorE, in real (physical) space can be carried out approximatehgus cut-
off radius. At that point a data structure comes in handy #tates the particles that
are contained in a certain grid cell. For that purposelithieed list algorithm has been
developed (c.f. [56]). It creates a three-dimensionalyaH®C that contains the index of
the first particle inside the corresponding box. Another-dimeensional array LL contains
the next particle in that box of each particle. If there is @agtigle in a box or if a particle
has no successor, the entries are set to zero. The algoh#trareates the data structures
is to be found in Algorithm 4.1.

For the evaluation of the reciprocal suf, there exist two different approaches. The
first one is the Particle Particle Particle Mesh Method (P8leNeloped by Hockney and
Eastwood. They have published several papers concernmgthod, e.g. [23, 24, 25,
55, 56, 57]. They do not approximate the sum by using the elisdfourier transform of a
periodic version of the error function, but they optimizattto minimize the discretization
error that has been introduced by meshing-up the charges.
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Algorithm 4.1 Creation of the linked list arrays HOC and LL for a ggd
forie Gdo
HOC(i) «— 0
end for
for i = 1to|P| do
j < roundx/h)
LL (i) «— HOC(j)
HOC(j) « ¢
end for

Another approach was chosen by Essmann, Perera, Berk®aitden, Lee and Pedersen,
who introduced the Smooth Particle Mesh Ewald (SPME) methd@6], which is an
improvement of the Particle Mesh Ewald (PME) method that iwaeduced by Darden,
York and Pedersen in [19]. They use the unmodified Fouriestoam when calculating
the reciprocal sum, effectively solving the Poisson eaqumadifter smoothing with the error
function. In order to compensate the discretization eirothe SPME the point charges
are gridded using splines, resulting in an approximaticcetalinal Euler B-splines.

All these methods use the FFT, thus the complexit§?{sV + nlogn), whereN is the
number of particles and is the number of grid points. A comparison of these meshbase
methods for the evaluation of the Ewald sum can be found ify f2@&her information on
the P3M is contained in [21]. Although the analysis and expents in [20] have shown,
that the SPME method is not as accurate as the P3M, it has ghaedvantage of being
able to use other solvers for the Poisson equation. So Sagubarden were able to use
a multigrid method in a modification of the SPME presented/®].| They also suggested
to use a diffusion approach to prevent smearing in the recgdrspace. This results in an
computationally optimal algorithm. Another method thagsisultigrid has been published
by Sutmann and Steffen in [82]. In contrast to the approacBdgui and Darden and to the
approach presented here, they use an discrete approxmtatibe fundamental solution
to carry out the self-energy correction.

4.4 Meshed continuum method

Unlike the P3M and the SPME method, we chose a continuum apprhat is not assign-

ing the point charges to a grid. Instead we replace the pbarges by charge distributions
that are sampled on the mesh. As a result, unlike P3M or SPMEloanot introduce ad-

ditional discretization errors. We like to note, that oupegach is very similar to the one
presented by Fullenbach in [38].
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4.4, MESHED CONTINUUM METHOD

4.4.1 Derivation of the method

To replace the point charges, we need to choose anothergyonmetric density.
Definition 4.1 Letg : R™ — R be a function with supg) = [0, rcud, recut > 0 the

cut-off radiusand letp, : R* — R* be a function defined by

pe(x) = g([x])-

[ o =1,

R3
thenp, is called apoint symmetric density

If such a point symmetric density is used as the right hane sfdhe Poisson equation,
beyond the cut-off radius we have that the solution is equéhé solution of the Poisson
equation with thé-distribution as right-hand side.

Lemma 4.1 Letp, be a point symmetric density with cut-off radiug. Letw andv be
the solutions of the respective Poisson equations

(x),

Au(x) =9
v py(x),

Av(x)

for all x € R®. Then for allx with ||x||2 > re, We have

Proof. We solve

Au(x) = 6(x), forallx € R

by convolution with the Green function, yielding

u) = [ Gy

R3
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Without loss of generality we set = (0,0, z)”. Transformation to spherical coordinates
yields

co mw 2w

u(x) = — 9(r)r” sin(6) dddr
) dm 0/0/0/ V/ (rsin(0) sin(¢))2 + (rsin(f) cos(¢))2 + (rcos(d) — 2)2 ¢

_ 1// g(r)r*sin() J0dr
2 / V/r2sin?(0) + 12 cos2(A) + 22 — 2rz cos(h)

- %/ / N i(gz—s;i(jzos(e)dedr

So forz > rq, we obtain finally

1 Tcmg(r)r(rJrz—err) 1 " o, 1 / 1
ux) =5 [ - ar == [ ot = o [ o,y = -
R3

z
0 0

O

To further simplify the representation we assume that thetgymmetric density has cut-
off radiusr¢, = 1/2. Other radii can be obtained according to the following Leamm

Lemma 4.2 Letg, be a point symmetric density with cut-off radigg. A point symmetric
density with cut-off radiugrc, is given by

P (x) = ag(a [[x[|2)-

The solution of the Poisson equation with this functiongadtof the non-scaled version is
obtained in terms of the solution of the non-scaled vers®n a

O, (x) = ad,(ax). (4.9)

Proof. Obviouslyp,, is point symmetric and its cut-off radius }sy. The volume is

1
o Tout Teut

/ P, (X)dx = 4 / o glar)r?dr = 4n / o(r)rdr = 1.

Rd 0 0
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The remaining equation (4.9) directly follows when the soluis constructed by convo-
lution with the Green'’s function. O

Now, in analogy to (4.8), we define

N
1
ADy, i(x) = pg,i = - > Gipg. (Ix = x]2)- (4.10)
j=1
i

If p, is sufficiently smooth, we can solve (4.10) numerically.tRearmore, we have

Pix = @y, i — (Pg,i — D),

so if we are giverp,, ; we can calculat@; by subtracting the solution of the equation
APy, — 80 ZQJ Pga — 0)([[x = xl2)-
J#t

As a consequence of Lemma 4.1 this can be evaluated by daeatle-particle interac-
tions with the help of a near-field correction, as the posgmtiduced by this right hand
side only has to be evaluated in a ball of rad'galsaroundx. The use of smooth point
symmetric densities instead of thalistribution allows another reduction of complexity.
Instead of computing,, ; for each particle, we can compute

A(Dgay ( _pga = Z%pga ”X XJH )

From this we can obtain the needeég ,(x;) as
(bga (Xl) - ®Qa7P<Xi) - ql'q)ga'

This step corresponds to the self-energy correction in PBERME and allows the def-
inition of an optimal method, as the Poisson equation onkythabe solved once. So a
necessary condition for defining an optimal method this vgdyaving an optimal Poisson
solver, e.g. a multigrid method. In Algorithm 4.2 we subsuime method for the calcu-
lation of the system’s electrostatic energy. The calcofatf the forces is carried out by
numerical differentiation of the potential surface. Theuleing method will be optimal
in case when the number of particles in the near field, i.eptréicles that have to be
treated using a particle-particle method, can be kept eohsthen the number of parti-
cles is growing. We can ensure this while keeping the sameracg if only the number
of particles grows, but not their mean distance, i.e. if dhly system grows. As an ex-
ample, we consider a system of randomly distributed charggde of a unit cell to be
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Algorithm 4.2 Calculation of the energies using the meshed continuum adetiThe
linked list arrays HOC and LL for the gri@ are used to speed up sampling of the point
symmetric densities.
forie Gdo
for j € {jl[li - jlloo < a/h} do
k= HOC(j)
while k£ # 0 do
f(xi) = 4k Py, (xi — Xx)
k= LL(k)
end while
end for
end for
SolveA®,, » = f numerically using Poisson solver
E=0
fork=1,...,Ndo
Approximated,, »(x;) by interpolating the potential surface
E = B+ qu(®y, p(x1) — 0,,(0))
end for

simulated. In order to keep the number of particles in the-fiell constant, the number
of grid points has to grow as the number of particles growsleathe radius of the point
symmetric densities replacing thedistribution has to shrink reciprocally in order to keep
the number of particles in the near-field constant. E.g.gfrtbmber of particles grows by
a factor ofb?, the number of grid points in each dimension grows layd the radius of the
replacing charge distribution shrinks by a factorlgb. As only the extent of the system
is enlarged, the charge of the particles inside of the ufliieultiplied with 1/b like the
radius, yielding a potential as large in magnitude as therg@l of the smaller system. So,
for the potential of a single unit charge in the center

Apu(x) = =47p,,(x) = u(x) = ¢g, (%) + ¢(x),

we get
A%u(x) = —b*4mp,, (bx) = u(x) = b ¢y, (bx) + b e(bx). (4.11)

If the charge is multiplied withl /b, we see that neither the magnitude of the potential
nor the magnitude of the error change, thus the method hasathe accuracy and scales
linearly.

4.4.2 Point symmetric densities described by B-splines

We chose point symmetric densities that can be describeddpfiBes. A B-spline is given
by the following definition:
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Definition 4.2 A B-splineB;,i = 0, 1, ... of unit width is given by

Bo(x) 1 for—i<az<i
Xr) = s
0 0 otherwise

BiJrl(.T) =2 BLZ/QJ (2 .CC) * 2 B|‘Z/2'| (2 .CC), fori = 1,2, e

For example, the resulting quadratic B-spline densityvegiby:

—27r2436 . 1
27 216108 108 . (1] =T 51

pB,(r) = H PR L <r < g (4.12)
0 . otherwise

and it induces the potential:

3(1296r* —360r24-65) 1
10 Osr=3
= —85051°+12960r* —6480r3+810r —2 1 1 4.13
r) = 1 1 .
95, (1) 1607 6 <7 =3 (4.13)
1 1
- 5 <T

4.4.3 Numerical experiments

In the following we will present some tests of the methodstive compare the influence
of the width of the replacing charge distribution while ugseither a standard 7-point stencil
or the compact fourth-order scheme presented in Sectioh. ZTBe potential surface due
to a single unit charge distribution in the center of the datian box was computed using
a multigrid method an either the standard 7-point disca¢ibn of the Laplacian or the
compact fourth-order discretization given by (2.21). Thsaute errore between the
analytical and the numerical solution was measured. IneBadll and 4.2 the results for
various widths of the charge distribution are printed. Rennore in Tables 4.3 and 4.4 the
dependence of the error on the number of neighboring cedisthe radius of the charge
distribution divided by the grid spacing, can be found fa second-order and the fourth-
order solver, respectively. In Figures 4.1 and 4.2 this ddpace is shown graphically.
We can see that keeping the number of neighbors constarg Walving the grid spacing
and doubling the grid size, the error is doubled as predioye@.11). Comparison of the
results of the second-order solver and the fourth-ordefesaitrongly suggests the use of
high order solvers.

Next we consider a test of randomly distributed chargeslesi a cube. In accordance
to the considerations at the end of Section 4.4.1, the chavgee scaled with the help of
(4.9) such that the expected potential energy per particlthe system was constant. The
results for the different steps of Algorithm 4.2 can be foumdable 4.5 and Figure 4.3.
Here “sampling” denotes the process of sampling the rightlede on the grid, in the
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width h=1/32 h=1/64 h=1/128
lle]]oo # cells lle]]oo # cells lle]]oo # cells
2/32  6.740-10°  (2-1)® 7.658-10"1  (2-2)3 1.699-10""  (2-4)3
4/32  3.823-107'  (2-2)% 8486-107%  (2-4)* 2.049-1072  (2-8)?
6/32 9.874-10"2  (2-3)® 23781072  (2-6) 5973-1073 (2-12)
8/32 4.232-1072  (2-4)® 1.023-1072  (2-8)® 2.527-107% (2-16)
10/32  2.159-1072  (2-5)% 5.212-107% (2-10)* 1.291-10% (2-20)
12/32  1.188-1072  (2-6)® 2.980-107% (2-12)® 7.444-10"* (2-24)3
14/32  7.666-107% (27 1.885-107% (2-14)® 4.686-107* (2-28)°
16/32  5.090-107%  (2-8)* 1.258-107% (2-16)3 3.133-107* (2-32)3
18/32 3515-107%  (2-9)® 8795-107* (2-18)® 2.195-10"* (2-36)
20/32  2.584-107% (2-10)> 6.409-107* (2-20)® 1.598-107* (2-40)®
22/32  1.929-107%  (2-11)> 4.804-107% (2-22) 1.198-107% (2-44)®
24/32  1.474-107%  (2-12)3 3.684-107* (2-24)> 9.206-1075 (2-48)
26/32  1.163-107% (2-13)3 2.897-107* (2-26)> 7.230-1075 (2-52)
28/32  9.305-107* (2-14)3 2315-107* (2-28)* 5.780-107% (2-56)3
30/32  7.509-107*  (2-15)* 1.879-107* (2-30)® 4.695-107° (2-60)?

Table 4.1: Error of the potential of a single charge distidoufor different widths and grid
spacings calculated using the 7-point discretization efLthplacian.

width h=1/32 h=1/64 h=1/128
lle]]oo # cells llel]oo # cells llel]oo # cells
2/32  8.633-10°  (2-1)® 2345-107"  (2-2)3 1.204-1072  (2-4)
4/32  1.172-107"  (2-2)® 6.012-107%  (2-4)® 3.018-10"*  (2-8)
6/32 1.318-1072  (2-3)® 6.187-107*  (2-6) 3.421-107° (2-12)
8/32 3.001-1073  (2-4)® 1.504-107%  (2-8) 7.687-10°° (2-16)
10/32  8581-107*  (2-5)® 4.424-107° (2-10)* 2436-10° (2-20)°
12/32  3.106- 1074 (2-6)3 1.711-107°  (2-12)3 9.839-1077 (2-24)3
14/32  1.456-107%  (2-7)% 7.834-100 (2-14)® 4.466-1077 (2-28)
16/32  7.451-107°  (2-8)® 3.845-107% (2-16)> 2287-1077 (2-32)°
18/32 3.725-107°  (2-9)® 2161-1076 (2-18)® 1.229-1077 (2-36)°
20/32  2.195-107° (2-10)* 1.212-10°% (2-20)* 7.196-10"% (2-40)
22/32  1.356-107°  (2-11) 7.586-1077 (2-22) 4.417-107% (2-44)®
24/32  8.415-1070  (2-12) 4.823-1077 (2-24)° 2.854-107% (2-48)?
26/32  5.395-107%  (2-13)* 3.130-1077 (2-26)* 1.883-107% (2-52)3
28/32  3.757-1076  (2-14) 2137-1077 (2-28)* 1.276-10"% (2-56)
30/32  2.581-107%  (2-15)3  1.460-1077 (2-30)* 8.749-1079 (2-60)3

Table 4.2: Error of the potential of a single charge distidoufor different widths and grid
spacings calculated using the compact fourth-order digateon of the Laplacian.
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neighbors h=1/32 h=1/64 h=1/128
1 6.740 - 10° 1.357 - 10 2.722 - 10!
2 3.823- 107! 7.658 - 1071 1.533 - 10°
3 9.874 - 1072 1.977-1071 3.957 - 101
4 4.232-1072 8.486 - 102 1.699 - 10!
5 2.159 - 102 4.332-1072 8.676 - 102
6 1.188- 1072 2.378 - 1072 4.756 - 1072
7 7.666 - 1073 1.541- 1072 3.087 - 1072
8 5.090 - 1073 1.023- 1072 2.049 - 1072
9 3.515-1073 7.071-1073 1.415- 1072
10 2.584 - 1073 5.212- 1073 1.044 - 1072
11 1.929-1073 3.894-1073 7.802 - 1073
12 1.474-1073 2.980 - 1073 5.973 - 1073
13 1.163-1073 2.354-1073 4.720-1073
14 9.305- 1074 1.885-1073 3.784-1073
15 7.509 - 10~* 1.520- 1073 3.051-1073

Table 4.3: Influence of the width of the charge distributiogasured in neighboring cells
in each direction for various grid-spacings for the 7-pdiistretization of the Laplacian.

h=1/32
1\ — — —h=164 |]
<<<<< h=1/128

llell,,
Iy
o

2 4 6 8 10 12 14
# cells

Figure 4.1: Influence of the width of the charge distributi@asured in neighboring cells
in each direction for various grid-spacings for the 7-pdiistretization of the Laplacian.
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neighbors h=1/32 h=1/64 h=1/128
1 8.633 - 10° 1.748 - 10* 3.518 - 10!
2 1.172-107! 2.345 - 101 4.690 - 1071
3 1.318- 1072 2.661 - 102 5.348 - 1072
4 3.001-1073 6.012- 1073 1.204 - 1072
5 8.581-10~* 1.732-1073 3.480- 1073
6 3.106 - 1074 6.187-107* 1.235-1073
7 1.456 - 10~* 2.934.1074 5.886 - 1074
8 7.451-107° 1.504 - 1074 3.018 - 1074
9 3.725-107° 7.477-107° 1.495-10~*
10 2.195-107° 4.424-107° 8.852-107°
11 1.356 - 10~° 2.762-107° 5.545-107°
12 8.415-1076 1.711-10°° 3.421-107°
13 5.395-107¢ 1.109-10°° 2.218-107°
14 3.757-1076 7.834-1076 1.570-107°
15 2.581 - 1076 5.527 - 1076 1.113-10°°

Table 4.4: Influence of the width of the charge distributiogasured in neighboring cells
in each direction for various grid-spacings for the comgaatth-order discretization of
the Laplacian.

10° : :
\ h=1/32
: — — —h=1/64
o N h=1/128
10° } ]
8
T 10
10}
10_6 1 1 1 1 1 1 1
2 4 6 8 10 12 14
# cells

Figure 4.2: Influence of the width of the charge distributio@asured in neighboring cells
in each direction for various grid-spacings for the comgaatth-order discretization of
the Laplacian.
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time/s |
# particles  grid size EP‘]‘E:ES‘“ sampling  solution of PDE  back interp.
pot
1000 33%  1.579-1072 0.25 0.14 0.16
8000 65>  1.989-1073 2.01 3.46 1.41
64000 129 1.033-1072 16.34 35.18 12.29
512000 2573 2.481-1073 132.30 340.05 108.95

Table 4.5: Scaling behavior and accuracy of Algorithm 4r22é&mdomly distributed parti-
cles using the fourth-order discretization of the Lapla@ad a B-spline width of 10 grid
spacings.

—H—— sampling _ A
100 L~ B — solution of PDE -
- —@H— - back interp. _ -
» 10"
k)
i=
10°
107k
10° 10* 10° 10°

# particles

Figure 4.3: Scaling behavior of Algorithm 4.2.

column titled “solution of PDE” the times for the multigridlser can be found and finally
the times measured for the back interpolation of the paétdithe particle positions is
shown in the outermost right column. We see that the propossitiod scales linearly
with the number of particles while keeping about the sameir@aoy. Fluctuations in the
accuracy are due to the random distributions of the charggda the simulation box.

The last test we want to present is the calculation of the éteatrostatic energy of a DNA
fragment including counter ions consisting of 1316 atonigs Test was performed in order
to show that the method provides a way to accurately caletites electrostatic energy of
a real molecule. The relative error of the total electrasttergy is found in Table 4.6.
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neighbors h=1/32 h=1/64 h=1/128
1 1.656 - 1071 1.007 - 10° 1.701 - 10°
2 7.370- 1073 7.935- 1072 1.595- 107!
3 7.658 - 1074 4.963 - 1073 2.218 - 1072
4 1.104 - 10~* 4.584-10~* 3.879 - 1073
5 2.985-107° 1.436-107* 6.941-1074
6 9.356 - 1076 5.147 -107° 1.356 - 10~*
7 3.309 - 1076 1.578-107° 5.151-107°
8 1.078-10°¢ 4.660 - 1076 2.568 - 10°
9 1.733-10°7 2.996 - 1076 1.718-10°°
10 1.356 - 1077 1.185-10°¢ 7.477 1076
11 6.242 - 107 5.755- 1077 5.208 - 107¢
12 2.506 - 1078 1.637-10°7 2.472- 1076
13 2.075- 1078 5.355- 1078 1.542-10°¢
14 1.132-10°8 2.995. 1078 9.037- 1077
15 2.503 - 1010 0.152-10°8 5.209 - 107

Table 4.6: Relative error of the electrostatic energy of aADiagment calculated for
various grid spacings using the compact fourth-order diszation of the Laplacian.
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Conclusion

In this work we presented a framework for the application aftigrid methods as a solver
for the Poisson equation that arises in particle simulati@thods. As the Poisson equa-
tion’s Green’s function is equal to the Coulomb potentiad gnavitational potential up to
a constant factor, the use of multigrid methods is possidria fvide range of applications,
i.e. in molecular dynamics simulations and in the simutatbastrophysical phenomena.
We reformulated the problem in a consistent way, such tlegbtbblem is equivalent to the
solution of a partial differential equation with a specight hand side. Additionally, a near
field correction has to be applied. Given that the contingzusial differential equation is
solved analytically, no errors are introduced by this nefolation. When solved numeri-
cally, the only errors introduced are the discretizatiaoreof the numerical scheme used
to solve the PDE and the error of the back-interpolationsehe

For the solution of PDEs in open systems we introduced theutuleical grid refinement
technigue by Washio and Oosterlee [87] and a new modificatidhis technique which
Is guaranteed to yield a result of the desired accuracy. We wable to show that the
modified method still scales optimally in terms of unknowalfhough new grid points are
introduced. For the solution of the resulting method a gegdmmultigrid method using
the FAC method is appropriate.

In the periodic case the problem of solving the Poisson éguatith constant coefficients
on an equispaced grid yields a linear system with circulaaffient matrix. We reviewed
the algebraic multigrid theory for hermitian positive megs in general and its use in the
circulant case. Motivated by the possible computationaihgs, we analyzed the theory
and developed sufficient conditions for a replacement eogrnsl operator instead of the
Galerkin operator. The derived conditions were verifiedsidremes that are applicable to
certain circulant matrices.

Although multigrid methods are fast methods, it can stilldesirable to parallelize even
fast methods. Therefore we presented a parallel implerientaf the solver for circulant
matrices, which included the Galerkin operator as well agéplacement. The results

121



CHAPTER 5. CONCLUSION

were obtained on up to 65536 processors on Jilich SuperdomgCentre’s Blue Gene/P
system JUGENE and on the Blue Gene/L system JUBL. The methodssvery good
scaling results, allowing very large systems to be solvdthictions of a second.

With this work a new method using multigrid for the solutidrtlee long-ranged Coulomb
potential or gravitational potential becomes availabtdlie simulation of systems consist-
ing of atomic patrticles.

The obtained theoretical results for multigrid methods p#iyn this application. In the
future we will extend the theory to cover other classes ofites to be able to replace the
Galerkin operator there, as well.
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