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Chapter 1

Introduction

This work is focussed on the application of multigrid methods to particle simulation meth-
ods. Particle simulation is important for a broad range of scientific fields, like biophysics,
astrophysics or plasma physics, to name a few. In these fieldscomputer experiments play
an important role, either supporting real experiments or replacing them. The first can sig-
nificantly reduce costs, e.g. in the pharmaceutic industry,where possible agents can be
checked for an effect in advance of real and expensive experiments. The latter has an
important role in astrophysics, where most experiments just cannot be carried out in a
laboratory. In the cases we are interested in, the interaction of particles can be evaluated
by pairwise potentials, where short-ranged potentials, e.g. potentials describing chemical
bonds, are easy to be implemented efficiently. But the very important Coulomb potential
and the gravitational potential are not short-ranged, thusan intuitive implementation has
to evaluate all pairwise interactions, yielding anO(N2) algorithm, whereN is the number
of particles to be simulated. The key to reduce this complexity is the use of approximate
algorithms for the evaluation of the long-ranged potentials.

In the Coulomb or gravitational potential case we have a variety of options. One option
is the use of tree-codes, that approximate particles that are far away by a bigger pseudo-
particle. Furthermore, in the periodic case we have the option of calculating the convolution
with the influence function given by the potential in Fourierspace. We are exploiting the
fact that the Coulomb or gravitational potential is strongly connected to the Poisson equa-
tion, i.e. up to a constant the Green’s function of the Poisson equation and these potentials
are the same. Given this fact, we are able to solve the problemnumerically by sampling a
special right hand side onto a mesh describing either a torusor a section of the open space
and solving the equation numerically. After the solution isavailable on the mesh, the elec-
trostatic quantities of interest can be obtained from this discrete solution by interpolating
it back to the particles and applying a correction scheme. Given these considerations the
problem can be reduced to using a fast Poisson solver for the numerical solution of the
Poisson equation on the mesh. Multigrid method are known to be very efficient solvers for
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CHAPTER 1. INTRODUCTION

the Poisson equation and similar PDEs, so we choose to use Multigrid methods for that
purpose.

In the open boundary case the Poisson equation has to be solved in open space. The prob-
lem is that this leads to infinitely large systems. The numberof grid points can be reduced
easily, as far away from the system the solution will change only very little. Washio and
Oosterlee [87] were able to provide an error analysis for such a hierarchically coarsened
grid. They suggest to calculate a finite subvolume, only, while setting the boundary values
to zero, assuming that the induced error can be neglected if the volume is large enough.
They did not provide an estimate for this error, though. We extend their method to im-
pose certain boundary conditions at the boundary of the system and provide an estimate
for the error of the modified method. This estimate shows thatthe modified method is of
the desired accuracy. Additionally we show that the method is still optimal for a number
of refinement steps that can be precomputed easily. The resulting system can be solved
using the well-known FAC method, which is an extension of standard geometric multigrid
methods for adaptive grids.

For molecular dynamics simulation, the periodic case is of special importance. The solu-
tion of the Poisson equation with constant coefficients on anequidistant regular grid using
a discretization technique like finite differences leads tocirculant matrices. Circulant ma-
trices form a matrix algebra and can be analyzed elegantly. Recently, multigrid methods
for circulant matrices have been developed, see e.g. [2, 74]. The theory for these methods
is based on a variational property which is fulfilled when theGalerkin operator is used.
This operator gets denser when going down to coarser levels,i.e. we end up with a fully
filled stencil after a few coarsening steps, even if the original stencil was sparse. Motivated
by the fact that this is not necessary in geometric multigridmethods using a rediscretiza-
tion of the system with finite differences, and motivated by astencil collapsing technique
introduced in [4] we develop necessary conditions for the V-cycle convergence of multigrid
methods not using the Galerkin operator but rather a replacement. We apply these theoreti-
cal considerations to certain circulant matrices and present schemes for these matrices that
fulfill these properties. As a result we obtain very efficientsolvers for circulant matrices.

The rest of this work is structured as follows: In Chapter 2 wewill cover partial differential
equations. After the definition and classification of partial differential equations we will
present various results for the existence, uniqueness and regularity of the solution of el-
liptic partial differential equations. We present different discretization techniques, namely
finite differences, compact discretizations of higher order and the finite volume discretiza-
tion. The chapter closes with an overview of Washio’s and Oosterlee’s method and the
modification to it, as well as with some numerical examples. After that, in Chapter 3 we
introduce iterative solvers and multigrid methods. After ashort introduction to general iter-
ative methods and geometric multigrid methods including FAS and FAC, we continue with
algebraic multigrid theory for structured matrices. As part of this theory we present the new
theoretical considerations for non-Galerkin coarse grid operators and the application to cir-
culant matrices. Thereafter, a short overview over the parallelization of multigrid methods

2



and some results for our parallel code for circulant matrices are presented. Chapter 4 deals
with particle simulation. After an introduction to the problem and a brief overview over
available methods we give a mathematical formulation of theproblem that consistently
uses the Poisson equation and which allows the use of multigrid methods for the solution
of these problems. We finish this work with a conclusion in Chapter 5.
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Chapter 2

Partial Differential Equations

The development of multigrid methods is strongly connectedto their application to the
solution of partial differential equations. As the simulation of particle systems leads to
a partial differential equation as well, in this chapter we will give a short overview over
partial differential equations and the associated theory.

2.1 Introduction

Unlike ordinary differential equations which involve univariate functions, partial differen-
tial equations involve multivariate functions. In the following, we call an open and con-
nected subset ofRd adomain. By Ω we denote a bounded domain and its boundary by∂Ω
or Γ. A formal definition of a partial differential equation is given by the following:

Definition 2.1 (Partial differential equation) LetΩ ⊂ Rd. An equation of the form

F
(

x, u(x),
∂

∂x1

u(x), . . . ,
∂

∂xd

u(x),
∂2

∂x2
1

u(x),
∂2

∂x2∂x1

u(x), . . .

)

= 0

with x ∈ Rd andu ∈ Ck(Ω) and whereF depends only onx and the value ofu and the
partial derivatives ofu at x is called apartial differential equationor PDE for short.

Partial differential equations are classified by their order k, i.e. the maximum occurring
order of the derivatives. Furthermore PDEs are distinguished by the type of linearity. IfF
depends only linearly onu and all partial derivatives, i.e. the coefficient functionsdepend
only onx, the PDE is calledlinear. If it depends only linearly on the partial derivatives of
highest order but non-linearly onu and all other partial derivatives it is calledsemilinear. It
is calledquasilinear, if the coefficient functions of the partial derivatives of highest degree
depend only on lower-order derivatives andu. Otherwise the equation is called anon-linear
PDE.

5



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Linear partial differential equations are well studied anda number of different numerical
methods exist for their solution. Many physical problems, e.g. heat conduction or wave
propagation, lead to second-order linear PDEs. These are classified in the following way:

Definition 2.2 (Classification of linear PDEs of second order) Considering a linear
PDE of second order of the form

Lu(x) = −
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj

u(x) +
d∑

j=1

bj(x)
∂

∂xj

u(x) + c(x)u(x) = f(x).

Depending on the eigenvalues of the coefficient matrixA = (ai,j)
d
i,j=1 these PDEs are

called:

• elliptic - all eigenvalues ofA have same sign,

• parabolic- all eigenvalues ofA, except for one vanishing eigenvalue, have same sign,

• hyperbolic- all eigenvalues ofA have same sign, except for one eigenvalue that has
the opposite sign.

As geometric multigrid methods are optimal methods for certain elliptic PDEs, in the re-
maining sections we focus on this class of problems.

A PDE by itself usually has multiple solutions. In order to obtain a unique solution, we
need boundary conditions or initial conditions, i.e. givenvalues on the domain’s boundary
or parts of the boundary of the domain. This leads to boundaryvalue problems or initial
value problems, respectively.

2.1.1 Boundary conditions

Various different boundary conditions are known in literature. In this work, we are using
the following conditions:

• Open boundary conditions
Open boundary conditions are not very common, although theycan be handled very
elegantly in theory. If a partial differential equationFu = f is defined onΩ = Rd,
the solution usually is still not unique. Therefore, a valueof u can be prescribed for
x ∈ ∂Ω, which in this case we consider to be the point∞ in the1-point compactifi-
cation ofΩ = Rd. In order for the solutionu to have nice analytical properties, e.g.
u ∈ L2, the following condition is usually required:

u(x)
‖x‖→∞−→ 0.

• Dirichlet boundary conditions
Let the partial differential equationFu = f be defined on its domainΩ. Boundary
conditions of the form

u = g onΓ

6



2.2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

are known as Dirichlet boundary conditions. PDEs with Dirichlet boundary con-
ditions are well-analyzed and a lot of theory exists for existence, uniqueness etc.
of the solution, especially with respect to the properties of the boundary and to the
smoothness ofg.

• Periodic boundary conditions
If a partial differential equation is defined on the torusRd/Zd, boundary conditions
are not needed. Nevertheless, in this case one often speaks of periodic boundary
conditions. PDEs can be analyzed very elegantly and solved efficiently on the torus
using Fourier techniques.

2.2 Elliptic partial differential equations

A large class of important stationary problems leads to elliptic PDEs, namely diffusion-
like problems like those described by the electrostatic or the gravitational potential. In
accordance to the introductory book by Larsson and Thomée [61], which is the basis of
this introduction, we study the equation

Lu := −a∆u + b · ∇u + cu = f

in larger detail. In order to keep the analysis of this equation consistent with all kinds of
boundary conditions needed here, we choose a variational formulation. So in the following
the domainΩ of the PDE is either equal to or a subset ofRd or it is thed-dimensional torus
Rd/Zd unless noted otherwise. In case thatΩ is a subset ofRd, the solutionu shall fulfill
u = g onΓ and forΩ = Rd u shall vanish as‖x‖ goes to infinity.

2.2.1 Prerequisites from functional analysis

In order to handle PDEs formally correctly, we need a few prerequisites from functional
analysis, as existence and uniqueness results can be formulated elegantly using function
spaces.

Vector spaces

Given anR-vector spaceV , we can define a linear functional fromV to the underlying
field R.

Definition 2.3 (Linear functional) Let V be a vector space overR. A linear functional
L onV is a functionL : V → R, such that for allu, v ∈ V and for allλ, µ ∈ R we have

L(λu + µv) = λL(u) + µL(v).

7



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

It is calledboundedif there exists a constantc ∈ R, such that for allv ∈ V we have

‖L(v)‖V ≤ c‖v‖V .

The set of all bounded linear functionals on a vector spaceV is called thedual space(of
V ) and denoted byV ∗. The norm of an elementL ∈ V ∗ is given by

‖L‖V ∗ = sup
u∈V

‖L(v)‖V
‖v‖V

.

Definition 2.4 (Bilinear form) LetV be a vector space overR. A bilinear forma(·, ·) on
V is a functiona : V × V → R such that it is linear in each argument, i.e.

a(λu + µv, w) = λa(u, w) + µa(v, w),

a(u, λv + µw) = λa(u, v) + µa(u, w),

for all u, v, w ∈ V and λ, µ ∈ R. The bilinear forma is called symmetric, iff for all
u, v ∈ V

a(u, v) = a(v, u),

it is namedpositive definite, iff for all u ∈ V, u 6= 0 we have

a(u, u) > 0.

A symmetric and positive definite bilinear form onV is calledscalar product. Each scalar
product induces a norm‖u‖a :=

√

a(u, u) on V . A vector space with scalar product is
calledHilbert space, as usual.

Further on, ifV is a Hilbert space with induced norm‖ · ‖V , a bilinear forma is called
coercive, iff

a(u, u) ≥ α‖u‖2V
for all u ∈ V , whereα > 0.

Using these definitions, the following theorem states an important property of Hilbert
spaces:

Theorem 2.1 (Riesz representation theorem)LetV be a Hilbert space with scalar prod-
uct (·, ·)V and induced norm‖ · ‖V . For each bounded linear functionalL onV there exists
a uniqueu ∈ V , such that for allv ∈ V we have

L(v) = (v, u).

Moreover, the norm of the operator can be expressed in terms of the norm of this unique
representation:

‖L‖V ∗ = ‖u‖V .

8
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Proof. See e.g. [89], pp. 90–91. �

This theorem helps us to prove the following lemma.

Lemma 2.1 Let V be a Hilbert space. Assume that we are given a symmetric coercive
bilinear form a and a bounded linear functionalL. Then there exists a unique solution
u ∈ V of

a(u, v) = L(u), for all v ∈ V.

Proof. Froma being symmetric and coercive it follows thata is symmetric and positive
definite. Soa is a scalar product onV and(V, a) is a Hilbert space. The linear functional
L is bounded on(V, a), so we can apply Theorem 2.1 and the assertion holds true.�

Often, a bilinear form is only coercive, but not symmetric. The following theorem can be
seen as a generalization of the Riesz representation theorem that covers this case.

Theorem 2.2 (Lax-Milgram Lemma [62]) LetV be a Hilbert space, leta be a bounded
coercive bilinear form and letL be a bounded linear functional. Then there exists a unique
vectoru ∈ V , such that

a(u, v) = L(u), for all v ∈ V.

Proof. See e.g. [89], pp. 92–93. �

Sobolev spaces

Later on we will present a variational approach for the analysis of partial differential equa-
tions that is based on the results introduced in the previoussection. In this framework the
solution of a PDE has to be a member of a function space that is aHilbert space. The most
natural choice for a solution would be a function inCk(Ω) which is defined as follows.

Definition 2.5 The spaceCk(Ω) is the space of functions that are continuous up to at least
all derivatives of orderk. Depending on the domainΩ and boundary conditionsCk

0 (Ω)
denotes either the set of functions that vanish on the boundary if Ω is a proper subset ofRd,
the sets of functions that vanish as the norm of the argument goes to infinity ifΩ is equal
to Rd, or the set of functionsf defined onΩ = Rd/Zd whose integral vanishes, i.e.

∫

Ω

f dx = 0.

Obviously, the spacesCk(Ω) and the spacesCk
0 (Ω) form vector spaces. Equipped with the

usual norm ofCk(Ω), namely

‖u‖Ck(Ω) = sup
x∈Ω

u(x),

9
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they are not Hilbert spaces, since this norm is not induced bya scalar product. So we need
function spaces that are Hilbert spaces. The common Hilbertspaces used for the theory of
PDEs are the spacesL2(Ω), where the norm

‖u‖L2(Ω) =

∫

Ω

|u(x)|2dx

is induced by the scalar product

(u, v)L2(Ω) =

∫

Ω

u(x)v(x)dx.

As the functions inL2 are in general not differentiable, we generalize the notionof partial
derivative. Let therefore eitherΩ ⊆ Rd or Ω = Rd/Zd. First we assume thatu ∈ C1(Ω),
where∂Ω has a piecewise smooth boundary, thus the expression

∂u

∂xi

is meaningful. For allϕ ∈ C1
0 (Ω), applying integration by parts yields

∫

Ω

∂u

∂xi

ϕdx =

∫

∂Ω

u ϕ~ni ds−
∫

Ω

u
∂ϕ

∂xi

dx, (2.1)

where~n is the surface normal of∂Ω. The first summand vanishes in both cases. For
Ω ⊆ Rd, with ∂Ω being piecewise smooth in the caseΩ ( Rd, we have thatu vanishes
at the boundary or in infinity. ForΩ = Rd/Zd the value on the hyperplane of thed-
dimensional unit hypercube that represents the torus is equal to the corresponding value on
the opposite boundary and the normal~n is the same on both planes, except for the sign. So
for all ϕ ∈ C1

0(Ω) we have
∫

Ω

∂u

∂xi
ϕdx = −

∫

Ω

u
∂ϕ

∂xi
dx.

This motivates the definition of theweak derivativefor functions inL2:

Definition 2.6 (Weak derivative) Let Ω ⊆ Rd or Ω = Rd/Zd and letv ∈ L2(Ω). The
weak derivativeof v is defined to be the linear functional

∂v

∂xi
(ϕ) = −

∫

Ω

v
∂ϕ

∂xi
dx ,

for ϕ ∈ C1
0 (Ω). We define weak derivatives of higher and mixed order accordingly.

10
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That allows the definition of the Sobolev spacesW k
p :

Definition 2.7 (Sobolev space)LetΩ ⊆ Rd and open orΩ = Rd/Zd. TheSobolev space
W k

p (Ω) is the space of all function which are inLp(Ω) and whose partial derivatives∂α up
to the order|α| ≤ k, α ∈ N are inLp(Ω) as well. The spacesW k

p have the norms

‖u‖W k
p

:=





k∑

|α|=0

∫

Ω

|∂αu|pdx





1/p

and the half-norms, i.e. positive semi-definite linear functionals,

‖̂u‖̂W k
p

:=




∑

|α|=k

∫

Ω

|∂αu|pdx





1/p

.

Additionally, we denoteW k
2 byHk.

As L2 is complete, theW k
2 are complete as well. So the spacesHk form Hilbert spaces

with the scalar products

(u, v)Hk :=
k∑

|α|=0

∫

Ω

∂αu ∂αv dx.

It remains to note, that if the spacesW 1
p,0(Ω) are defined analogously to the spacesCk

0 , the

half-norms‖̂ · ‖̂W 1
p,0(Ω) are norms, as they map only constant functions to zero and except

for the zero function these are not part of the spacesW 1
p,0(Ω).

2.2.2 Prerequisites from Fourier analysis

As mentioned before, partial differential equations with periodic boundary conditions can
be analyzed elegantly on the torusRd/Zd. In order to do so, the right hand side and the so-
lution are expanded into their respective Fourier series. In the following the most important
definitions and Lemmata from Fourier analysis are repeated,for a detailed introduction we
refer to the books of Körner [59] and González-Velasco [43].

Definition 2.8 (Fourier series) Letf ∈ L2(Rd/Zd). Disregarding convergence the ‘sym-
bolic’ series ∑

k∈Zd

f̂(k)e2π ik·x

with

f̂(k) =

∫

Rd/Zd

f(x) e−2π ik·x dx

11
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is called theFourier seriesof f , the f̂ are calledFourier coefficientsof f . For ease of
notation the operatorF and its inverseF−1 are defined as

F : L2(Rd/Zd)→ l2,

f 7→ F(f) := f̂ ,

F−1 : l2 → L2(Rd/Zd),

f̂ 7→ F−1(f̂) := f.

The Fourier series can be defined for functions that are not square-integrable, but for the
sake of simplicity it is convenient to stick to that space. One of the most important theorems
states the connection between square-integrable functions and their Fourier coefficients:

Theorem 2.3 (Riesz-Fischer theorem)Let {f̂(k)}k,k ∈ Zd be absolutely square inte-
grable, i.e.

∑

k∈Zd

|f̂(k)|2 <∞.

Then there exists a functionf ∈ L2(Rd/Zd), whose Fourier coefficients are thesef̂(k).

Proof. Ford = 1 see e.g. Theorem 6.9 in [43]. We can extend the result tod > 1 by d-fold
application. �

In many cases a stronger concept of convergence is needed. Inorder to interchange differ-
entiation and summation of a Fourier sum, uniform convergence is necessary.

Lemma 2.2 Letf ∈ C(Rd/Zd) and let
∑

k∈Zd

|f̂(k)| <∞.

Then the Fourier series off converges uniformly tof .

Proof. For d = 1 the Fourier series converges uniformly by the convergence criterion of
Weierstraß, as the series of the Fourier coefficients off is an absolutely convergent majo-
rant of the Fourier series. Again, we can extend the result tod > 1 by repeated application.
�

Now we can prove the following lemma that is necessary in order to analyze partial differ-
ential equations on the torus.

Lemma 2.3 Let f ∈ L2(Rd/Zd) with absolutely converging Fourier coefficients and let
∂/∂xjf ∈ L2(Rd/Zd), j = 1, . . . , d. The Fourier series of the partial derivative off is
given by

∂

∂xj

f(x) =
∑

k∈Zd

2π i kj f̂(k) e2π ik·x.

12
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Proof. By Lemma 2.2 the Fourier series off is uniformly convergent, so it can be differ-
entiated element-wise, yielding the desired result. �

2.2.3 Weak formulation of a PDE

We consider the partial differential equation

Lu := −a∆u + b∇ · u + cu = f in Ω (2.2)

for the domain and boundary conditions set to either

Ω ⊂ Rd and u(x) = 0 for all x ∈ ∂Ω, (2.2a)

Ω = Rd and u(x)
‖x‖→∞−→ 0, (2.2b)

Ω = Rd/Zd. (2.2c)

Let further

a(x) ≥ a0 > 0 andc(x)− 1

2
∇ · b(x) ≥ 0 for all x ∈ Ω, (2.3)

so the PDE is elliptic. Now we derive the variational formulation in the same way as the
weak derivative. Under the assumption that the solutionu is in C2(Ω) we multiply (2.2)
by v ∈ C1

0 (Ω) and integrate over the whole domainΩ, yielding
∫

Ω

Lu v dx =

∫

Ω

f v du for all v ∈ C1
0(Ω).

Applying the first Green’s identity gives
∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx−
∫

∂Ω

a∇u · ~n v ds =

∫

Ω

f v dx.

Like in (2.1) the boundary integral vanishes, so that
∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx =

∫

Ω

f v dx for all v ∈ C1
0 .

As Larsson and Thomée denote thatC1
0 is dense inH1

0 for sufficiently smooth boundaries
(see p. 248 in [61]), the following holds true as well:

∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx =

∫

Ω

f v dx for all v ∈ H1
0 . (2.4)

Therefore one defines:

13
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Definition 2.9 (Weak solution) LetFu = 0 be a partial differential equations in domain
Ω with boundary conditions defined as in(2.2a), (2.2b)or (2.2c). A functionu fulfilling

∫

Ω

Fu v dx = 0 for all v ∈ H1
0 (Ω)

is called aweak solutionof the partial differential equation.

As the derivation of this definition started with a classicalsolution of the problem, it is clear
that a classical solution is always a weak solution. If a weaksolution of the model problem,
i.e. if u ∈ H1

0 (Ω) fulfills (2.4), is inC0(Ω) and if the right hand sidef is continuous, then
this u is a classical solution. This can be seen by applying Green’sfirst identity in the
opposite direction:

∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx =

∫

Ω

f v dx for all v ∈ H1
0

⇔
∫

Ω

(a∇ · ∇uv + b · ∇u v + c u v) dx =

∫

Ω

f v dx for all v ∈ H1
0

⇔
∫

Ω

Fu v dx =

∫

Ω

f v dx for all v ∈ H1
0

⇔
∫

Ω

(Fu− f) v dx = 0 for all v ∈ H1
0 .

As bothFu andf are continuos functions, it follows, that their differencealso vanishes
point-wise.

2.2.4 Existence and uniqueness of the weak solution

Having the definition of a weak solution at hand it is possibleto show that the model
problem in (2.2) has a unique weak solution. To prove that we need the Poincaré inequality.

Theorem 2.4 (Poincaŕe inequality) Let Ω ⊂ Rd be an open and bounded domain. Then
there exists a constantc such that for allv ∈ H1

0(Ω) we have

‖v‖ ≤ c‖∇v‖.

Proof. For the caseΩ = [0, 1]× [0, 1] see the proof of Theorem A.6 in [61]. �

Now we are ready to show the main result of this section.
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Theorem 2.5 (Existence and uniqueness of the weak solution)Let f ∈ L2(Ω), Ω as in
(2.2a), (2.2b) or (2.2c), and let the coefficient functions of(2.2) fulfill the requirements
in (2.3). Then there exists a unique weak solutionu ∈ H1

0 (Ω) that accomplishes(2.2)
with boundary conditions(2.2a), (2.2b) or (2.2c). Moreover, there exists a constantC
independent off , such that

‖u‖H1 ≤ C‖f‖L2.

Proof. Define a linear functional

L(v) =

∫

Ω

f v dx

and a bilinear form

g(u, v) =

∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx.

The linear functional is bounded, as with help of the Cauchy-Schwarz inequality and the
Poincaré inequality we show

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 ≤ c‖f‖L2 ‖̂v‖̂H1
0
,

andg(·, ·) is bounded and coercive inH1
0 (Ω) as for allv ∈ H1

0 (Ω)

g(v, v) =

∫

Ω

(a|∇v|2 + (c− 1

2
∇ · b)|v|2) dx

≥ a0‖v‖2H1(Ω).

The spacesHk form Hilbert spaces, so the Lax-Milgram Lemma (Theorem 2.2)is appli-
cable, i.e. the equation

g(u, v) = L(v)

has a unique solution for eachv ∈ H1
0 (Ω). �

Now that we know, that a unique weak solution exists, we want to know if the solution is
regular, i.e. if it depends continuously on the data of the partial differential equation. The
answer to this question heavily depends on the domain and on the boundary conditions of
the problem at hand, so in the following it will be treated separately for boundary conditions
(2.2a), (2.2b) and (2.2c).
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2.2.5 Regularity of the solution for PDEs with Dirichlet boundary
conditions

Partial differential equations with Dirichlet boundary conditions are very well analyzed.
The associated theory requires tools from functional analysis that are beyond the scope of
our brief overview, e.g. it depends on Sobolev inequalitiesand similar estimates. More
details can be found in the books of Friedman [36], Gilbarg and Trudinger [41], Gustafson
[47], Jost [58] and various other textbooks on PDEs. For the purpose of this work it is
sufficient to know about some of the most important results that can be found in the book
of Larsson and Thomée [61]. For problem (2.2) with boundaryconditions (2.2a) they note
in Chapter 3.7 that it is possible to show that forΓ being either smooth or described by
finitely many convex piecewise polynomials, a solutionu of (2.2) is in H2, and that a
constantc exists such that

‖u‖H2 ≤ c‖f‖. (2.5)

For the plain Poisson equation
−∆u = f (2.6)

this means that the second derivatives of the solution are bounded by a combination of
special second derivatives. Another consequence of (2.5) is that small changes in the right
hand side lead to relatively small changes in the solution.

Obviously neither being inH1(Ω) nor being inH2(Ω) is sufficient for applications from
engineering or physics. Larsson and Thomée mention that for Γ being smooth andf ∈ Hk

the weak solutionu is in Hk+2(Ω). With the Sobolev inequality (see Theorem A.5 in
[61]), we obtainHk+2(Ω) ⊂ C2(Ω ∪ Γ) for k > d/2. That implies that the solution has
the desired properties. Similar results can be obtained fordomains whose boundaries are
convex polynomial and for four-dimensional hypercubes.

2.2.6 Construction of the solution for PDEs with open boundary con-
ditions

For some partial differential equations with open boundaryconditions given by (2.2b) it is
possible to construct the solution analytically, so a regularity analysis is not necessary. For
that purpose, letL be as in (2.2) with open boundary conditions as in (2.2b) andb = 0, so

−a∆u + cu = f in Rd,

u(x)
‖x‖→∞−→ 0.

(2.7)

In order to construct a solution for this problem, we need theso-called fundamental solu-
tion.
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Definition 2.10 (Fundamental solution) Let L be defined as(2.2) with open boundary
conditions given in(2.2b). A functionU that fulfills

∫

Rd

U Lϕ dx = ϕ(0) for all ϕ ∈ C∞
0 (Rd) (2.8)

and that is smooth forx 6= 0, having a singularity atx = 0, such thatU ∈ L1(B) with
B := {x ∈ Rd | |x| < 1 } and such that

|∂αU(x)| ≤ Cα|x|2−d−|α|, for |α| > 0, (2.9)

is calledfundamental solutionofL.

In order to make the purpose of the fundamental solution moreobvious, we need the defi-
nition of the Dirac delta distribution.

Definition 2.11 (Dirac delta distribution) Let Ω ⊂ Rd. TheDirac delta distributionδ is
defined to be a linear functional acting on smooth test functions as

δ(ϕ) = ϕ(0) for all ϕ ∈ C0(Ω).

Usingδ as the right hand sidef in L it follows that the fundamental solution fulfills

LU = δ

in the weak sense. To proceed we need the definition of the convolution of two functions.

Definition 2.12 (Convolution) Let f, g ∈ L2(Rd). We define theconvolutionof f andg
as

(f ∗ g)(x) :=

∫

Rd

f(x− y)g(y)dy.

Given the fundamental solution and its motivation, we can construct a solution forL with
open boundary conditions as given by the following theorem.

Theorem 2.6 LetL be defined as(2.2)with open boundary conditions given in(2.2b), U
be a fundamental solution andf ∈ C1

0(R
d). Then the unique solutionu given by

u(x) = (U ∗ f)(x) =

∫

Rd

U(x− y) f(y) dy.

Proof. Due to (2.8) it holds
∫

Rd

U(x− y)Lϕ(x) dx =

∫

Rd

U(z)Lϕ(z + y) dz = ϕ(y).
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Using an arbitrary test functionϕ ∈ C∞
0 (Rd) the definition ofu gives

∫

Rd

uLϕ dx =

∫

Rd

∫

Rd

U(x− y) f(y) dyLϕ(x) dx

=

∫

Rd

∫

Rd

U(x− y)Lϕ(x) dx f(y) dy

=

∫

Rd

ϕ(y) f(y) dy.

Since∂/∂xiU ∈ L1(Rd) and∂/∂xjf ∈ C0(R
d) ⊂ L1(Rd) the Fourier transformations of

these functions exist. Thus their convolution can be carried out in Fourier space and the
convolution exists. Furthermore

∂

∂xi
U ∗ ∂

∂xj
f =

∂2

∂xi∂xj
(U ∗ f) =

∂2

∂xi∂xj
u,

see e.g. Proposition 1 on page 156 in [89]. Thus all second partial derivatives ofu exist,
so by partial integration the following holds

∫

Rd

uLϕ dx =

∫

Rd

L u ϕ dx,

thus ∫

Rd

(L u− f) ϕ dx = 0,

for all ϕ ∈ C∞
0 . ThereforeL u = f . �

We can summarize this theorem as follows: Given a fundamental solution of a partial dif-
ferential equation with open boundary conditions, the classical solution can be constructed
for sufficiently smooth right hand sidesf vanishing at infinity. As mentioned before, a
classical solution is always a weak solution, which is unique. The solution is also regular,
as it depends smoothly on the right hand side.

This section closes with the fundamental solution of a particular partial differential equa-
tion, theGreen’s functionof the Poisson equation inR3.

Theorem 2.7 LetU : R3 → R,

U(x) =
1

4π|x| . (2.10)

ThenU is a fundamental solution of

−∆u = f in R3,

u(x)
‖x‖→∞−→ 0.
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Proof. Differentiation ofU atx 6= 0 yields

∂U

∂xi
= − xi

4π|x|3
∂2U

∂x2
i

, =
3x2

i − |x|2
4π|x|5 ,

so−∆U = 0 for x 6= 0. Equation (2.9) is fulfilled, as(d/dr)α1/r = cr−1−α. It remains to
show, that (2.8) is valid as well. For that purpose letϕ ∈ C∞

0 (R3). We setn := x/|x| and
apply Green’s second identity:

∫

|x|>ε

U(−∆ϕ) dx =

∫

|x|>ε

(−∆U) ϕ dx−
∫

|x|=ε

(

ϕ
∂U

∂n
− ∂ϕ

∂n
U

)

ds.

Now
∫

|x|>ε

(−∆U) ϕ dx = 0,

∫

|x|=ε

ϕ
∂U

∂n
ds =

1

4πε2

∫

|x|=ε

ϕ ds
ε→0−→ ϕ(0)

and
∣
∣
∣
∣
∣
∣
∣

∫

|x|=ε

(−∂ϕ

∂n
U) ds

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

1

4πε

∫

|x|=ε

∂ϕ

∂n
ds

∣
∣
∣
∣
∣
∣
∣

≤ ε‖∇ϕ‖C0(R3)
ε→0−→ 0,

so ∫

R3

U(−∆ϕ) dx = lim
ε→0

∫

|x|>ε

U(−∆ϕ) dx = ϕ(0).

�

2.2.7 Construction of the solution for PDEs on the torus

As for the partial differential equations in the previous section the solution of partial differ-
ential equations on the torus is constructed analytically,though the tools needed differ a lot
from the ones used previously. We consider the problem (2.2)with boundary conditions
(2.2c), i.e.

−a∆u + b∇ · u + cu = f in Rd/Zd,

with constant coefficientsa, b, c ∈ R and withf ∈ L2(Rd/Zd). The solution of this partial
differential equation can be given in terms of its Fourier series as stated in the following
theorem.
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Theorem 2.8 Let
−a∆u + b∇ · u + cu = f in Rd/Zd,

with f ∈ L2(Rd/Zd) be a given partial differential equation and let̂f(k) be the Fourier
coefficients of the right hand side with

∑

k∈Zd

|f̂(k)| <∞.

Assuming that eitherc 6= 0 or that the Fourier coefficient̂f(0) vanishes, the solutionu can
be given in terms of its uniformly convergent Fourier seriesas

u(x) =
∑

k∈Zd

û(k)e−2π ik·x,

where

û(k) =
f̂(k)

d∑

j=1

a k2
j + b i kj + c

.

Proof. The series
∑

k∈Zd

û(k)e−2π ik·x

has a convergent majorant series, as

|û(k)| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

f̂(k)
d∑

j=1

a k2
j + b i kj + c

∣
∣
∣
∣
∣
∣
∣
∣
∣

< c0

∣
∣
∣f̂(k)

∣
∣
∣ , ∀k 6= 0.

Therefore it converges uniformly tou by the convergence criterion of Weierstraß. That
allows to analyze the partial differential equation by developing both sides of the equation
into the respective Fourier series:

F(−a∆u + b∇ · u + cu)(x) = F(f)(x)

⇔
∑

k∈Zd

̂(−a∆u + b∇ · u + cu)(k)e2π ik·x =
∑

k∈Zd

f̂(k)e2π ik·x.

Applying Lemma 2.3 twice gives

∑

k∈Zd

d∑

j=1

(a k2
j + b i kj + c) û(k)e2π ik·x =

∑

k∈Zd

f̂(k)e2π ik·x.
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Comparison of coefficients yields:

û(k) =
f̂(k)

d∑

j=1

a k2
j + b i kj + c

.

Now we have to consider two cases: Ifc 6= 0, this equation is always true. Forc = 0, we
need more, namelŷf(0) = 0, required in the assumptions. �

So under the premises of the previous theorem the classical solution of the partial differen-
tial equation can be constructed. It remains to mention thatthe constructed solution is also
regular, as the dependence on the right hand side of the PDE issmooth.

2.3 Numerical solution

We have shown that unique solutions of a PDE of the form (2.2) with Dirichlet boundary
conditions (2.2a) or periodic boundary conditions (2.2c) and of a PDE with open boundary
conditions as given in (2.7) exist. Furthermore they are regular, so a numerical approxi-
mation of the solution is meaningful. Various different methods for the numerical solution
of partial differential equations exist. In the following we will examine two methods in
larger detail. The first method under investigation will be the discretization using finite
differences which is probably the easiest method for the numerical solution of PDEs. Af-
ter that we will discuss the discretization of PDEs using finite volumes. The first method
is perfectly suited for simply shaped domains like cuboids with either Dirichlet or peri-
odic boundary conditions, where in the periodic case the cuboid is just a representative
of the torus. When the partial differential equation at handhas constant coefficients, the
resulting linear systems are easy to analyze, for details werefer to Chapter 3. The second
discretization technique is especially well suited for thenumerical solution of the Poisson
equation with open boundary conditions. Together with the method an extension of the
error analysis of Washio and Oosterlee [87] is presented here.

Various other discretization and solution techniques for PDEs exist, that we do not mention
here. One of the most important techniques missing in this work is the finite element
method, which is strongly connected to the variational approach that was presented in
Section 2.2.3.

2.3.1 Solution of PDEs on the torus or on subsets ofRd with Dirichlet
boundary conditions using finite differences

The use of finite differences for the solution of partial differential equations is straightfor-
ward as it is directly connected to the definition of the derivative. To motivate the use of
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finite differences for the solution of partial differentialequations, we will start with one
dimension.

Finite differences in one dimension

The derivative of a function is defined via the difference quotient

f ′(x) := lim
h→0

f(x + h)− f(x)

h
.

Motivated by this definition the discretization of a derivative on an equispaced grid with
grid widthh can be given by

f ′(x)=̇
f(x + h)− f(x)

h
.

Using the Taylor expansion it can be shown that the error involved is of orderh, as

f(x + h) = f(x) + f ′(x) h +O(h2)

⇔ f ′(x) =
f(x + h)− f(x)

h
+O(h).

Using Taylor expansion at additional grid points, e.g.

f(x + h) = f(x) + f ′(x) h +
f ′′(x)

2
h2 +

f ′′′(x)

6
h3 +O(h4) (2.11)

and

f(x− h) = f(x)− f ′(x) h +
f ′′(x)

2
h2 − f ′′′(x)

6
h3 +O(h4), (2.12)

allows the definition of higher-order approximations of thefirst derivative, e.g. by subtract-
ing (2.12) from (2.11) and dividing the result by2 we have

f ′(x) =
f(x + h)− f(x− h)

2h
+O(h2), (2.13)

and of approximations of higher derivatives, e.g. the orderh2-approximation of the second
derivative given by adding (2.11) and (2.11) given by

f ′′(x) =
f(x− h)− 2 f(x) + f(x + h)

h2
+O(h2). (2.14)

Higher order approximations can be constructed by using more grid points, e.g. not only
x− h, x andx + h, butx− 2h, x + 2h, . . . .
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For the one-dimensional analogue of the Poisson equation with Dirichlet boundary condi-
tions, i.e.

−u′′(x) = f(x) for allx ∈ Ω, u(0) = g0, u(1) = g1,

discretization with the approximation in (2.14) withui = u(ih), fi = f(ih) andh = 1/n
leads to the linear system

u0 = g0,

1

h2
(ui−1 − 2 ui + ui+1) = fi, for i = 1, . . . , n− 1,

un = g1.

After elimination of the boundary values this linear systemleads to a tridiagonal linear
system. Analogously, for periodic boundary conditions we get

1

h2
(un − 2 u0 + u1) = f0,

1

h2
(ui−1 − 2 ui + ui+1) = fi, for i = 1, . . . , n− 1

1

h2
(un−1 − 2 un + u0) = fn.

The resulting system has a singular coefficient matrix that is circulant. Both systems can
be solved using multigrid methods. This will be described inChapter 3.

Finite differences for higher dimensions and the stencil notation

The usage of finite differences for the approximation of derivatives is not limited to one
dimension but can easily be extended to more dimensions. Theoccurring partial deriva-
tives are approximated as before, yielding a linear system that has to be solved in order to
obtain the approximate solution of the partial differential equation. So for a second order
accurate approximation of the Laplacian in two dimensions we combine (2.14) inx1- and
x2-direction and obtain

∆u(x) =
1

h2
[u(x− he1) + u(x− he2)− 4u(x)

+u(x + he1) + u(x + he2)] +O(h2),
(2.15)

whereei is thei-th unit vector. For the sake of clarity we introduce thestencil notation.
In this notation the coefficients belonging to neighboring grid points are written in squared
brackets, where the coefficient in the center is belonging tothe actual grid point itself. The
stencil for (2.15) is

1

h2





1
1 −4 1

1



 . (2.16)
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The same can be used for higher dimensions, e.g. an approximation of the Laplacian in
three dimensions is given by

∆u(x) =
1

h2
[u(x− he1) + u(x− he2) + u(x− he3)− 6u(x

+u(x + he1) + u(x + he2) + u(x + he3)] +O(h2),
(2.17)

or in stencil notation by

1

h2



 1




1

h2





1
1 −6 1

1




1

h2



 1



 .

To simplify the representation we writeui,j,k andfi,j,k to denote the value ofu respectively
f at the grid pointxi,j,k, and we introduce the notation∂2

x1
ui,j,k, which is defined as the

central finite difference approximation to the second partial derivative inx-direction, i.e.

∂2
x1

ui,j,k :=
u(xi−1,j,k)− 2u(xi,j,k) + u(xi+1,j,k)

h2
. (2.18)

Hereh = ‖xi,j,k − xi−1,j,k‖2 = ‖xi+1,j,k − xi,j,k‖2. We define∂2
x2

ui,j,k and∂2
x3

ui,j,k in the
same manner, so we may write for (2.17):

∆ui,j,k = ∂2
x1

ui,j,k + ∂2
x2

ui,j,k + ∂2
x3

ui,j,k +O(h2).

If one orders variables lexicographically, the linear systems that belong to these discretiza-
tions are blocked systems, where the occurring blocks can bederived directly from the
stencil. So in two dimensions the three diagonals of the block on the main diagonal are
given by the row in the center of the stencil and the diagonal entries of the blocks on the
secondary diagonals are given by the lower row for the lower diagonal block respectively
by the upper row for the upper diagonal block.

Compact discretizations of higher order

We will now continue with compact discretizations of higherorder, i.e. discretizations not
only taking into account the direct neighbors, but all nearest neighbors. These discretiza-
tions are often referred to ascompactdiscretizations, as the stencil describing them still
has the compact 9-point representation in two dimensions, respectively a 27-point stencil
in 3D. Nevertheless, the stencil has more non-zero entries than the original stencil of the
discretization of orderh2. The main advantage of these stencils is that they achieve higher
order but still only nearest neighbors are needed. This is a nice property especially when
considering PDEs with Dirichlet boundary conditions, as the nearest neighbors are always
available, which might not be the case for the next layer. Another advantage is the reduced
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amount of communication for parallel solvers, which use ghost cells. The approach pre-
sented here can be found in the work of Spotz and Carey, who derived the discretization in
[75].

To define compact schemes of higher order, we now take a closerlook at the error term in
(2.17), while still using the notation as in (2.18). For the Poisson equation

−∆u = f, (2.19)

we get
∂2

xui,j,k + ∂2
yui,j,k + ∂2

zui,j,k − τi,j,k = fi,j,k,

with

τi,j,k =
h2

12

[
∂4u

∂x4
1

+
∂4u

∂x4
2

+
∂4u

∂x4
3

]

i,j,k

+
h4

360

[
∂6u

∂x6
1

+
∂6u

∂x6
2

+
∂6u

∂x6
3

]

i,j,k

+O(h6). (2.20)

Taking the appropriate partial derivatives of (2.19) we get

∂4u

∂x4
1

=
∂2f

∂x2
1

− ∂4u

∂x2
1∂x2

2

− ∂4u

∂x2
1∂x2

3

,

∂4u

∂x4
2

=
∂2f

∂x2
2

− ∂4u

∂x2
1∂x2

2

− ∂4u

∂x2
2∂x2

3

,

∂4u

∂x4
3

=
∂2f

∂x2
3

− ∂4u

∂x2
1∂x2

3

− ∂4u

∂x2
2∂x2

3

.

When we substitute these into (2.20), we obtain

τi,j,k =
h2

12
∆fi,j,k −

h2

6

[
∂4u

∂x2
1∂x2

2

+
∂4u

∂x2
1∂x2

3

+
∂4u

∂x2
2∂x2

3

]

i,j,k

+
h4

360

[
∂6u

∂x6
1

+
∂6u

∂x6
2

+
∂6u

∂x6
3

]

i,j,k

+O(h6).

Now for all terms that are multiplied byh2 and thus contribute to ourh2 error term, we are
able to provideh2-accurate approximations. Thus the resulting approximation to (2.19) is
given by
[

∂2
x1

+ ∂2
x2

+ ∂2
x3

+
h2

6
(∂2

x1
∂2

x2
+ ∂2

x1
∂2

x3
+ ∂2

x2
∂2

x3
)

]

ui,j,k =

fi,j,k +
h2

12

[
∂2

x1
+ ∂2

x2
+ ∂2

x3

]
fi,j,k +O(h4) (2.21)

and ish4-accurate.

Provided that the analytical derivatives of the right hand side f are available, Spotz and
Carey derivedh6-accurate approximations in the same manner. For details, we refer to
[75]. Their work was recently reviewed and extended by Sutmann and Steffen in [83].
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2.3.2 Finite volume discretization-based solution of PDEsdefined on
Rd

While finite difference methods are easy to understand and toimplement for standard ge-
ometries leading to equispaced grids, they are hard to deal within the case of unstructured
grids as they occur in many engineering applications. One option to avoid the problems
related to the use of finite difference methods is the finite volume method.

Finite volume discretization

The purpose of the finite volume method is the same as that of the finite differences, i.e.
discretizing a PDE in order to gain a solution of it at defined points, but the derivation of the
methods is completely different. Whereas in the finite difference method we started with
the discrete points and discretizations of the occurring partial derivatives directly yielding
the algebraic equations, in the finite volume method the domain is partitioned into several
small volumes and the PDE is rewritten at the interior of these volumes using the diver-
gence theorem. This is a common approach for hyperbolic PDEs, but it is feasible for the
solution of the Poisson equation in free space, as well.

For this purpose we considerL as in (2.2) withb = −∇a, i.e.

−a(x)∆u(x)−∇a(x) · ∇u(x) + c(x)u(x) = f(x) for x ∈ Ω (2.22)

with boundary conditions as in (2.2a), (2.2b) or (2.2c). Nowwe may write

−a(x)∆u(x)−∇a(x) · ∇u(x) + c(x)u(x) = −∇ · (a(x)∇u(x)) + c(x)u(x),

yielding (2.22) indivergence form

−∇ · (a(x)∇u(x)) + c(x)u(x) = f(x) for x ∈ Ω. (2.23)

The domainΩ is partitioned into smaller closed volumesvi, i = 1, . . . , n, such that
⋃

i=1,...,n

vi = Ω, (2.24)

while
vi ∩ vj = ∅ for all i 6= j. (2.25)

By V we denote this partitioning ofΩ. For each subvolumevi ⊂ Ω, i = 1, . . . , n the
following holds true

∫

vi

−∇ · (a(x)∇u(x)) + c(x)u(x)dx =

∫

vi

f(x)dx.
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Applying Gauß’ divergence theorem yields

∫

∂vi

−(a(s)∇u(s)) · ~n ds +

∫

vi

c(x)u(x)dx =

∫

vi

f(x)dx, (2.26)

where~n is the outer normal of∂vi. On the basis of this equation and with the help of
finite difference approximations of the gradient a proper discretization of the partial dif-
ferential equation can be given for domainΩ. The gradient in the boundary integral in
(2.26) is called theflux. The flux out of one subvolume over the boundary to a neighboring
subvolume is equal to the flux over this boundary into that subvolume. This is true for a
symmetric discretization of the gradients as well, which bythis observation is conservative.

Consider the simple case of equation (2.22) ind = 2 dimensions with Dirichlet boundary
on the unit square, i.e.Ω = [0, 1]2. Forh = 1/n we define the partitioning

Vh = {vhi,j
|vhi,j

= [(i− 1)h, ih]× [(j − 1)h, jh], i, j = 1, . . . , n}.

This partitioning fulfills (2.24) and (2.25). We discretizethe boundary integral by the value
of the gradient in the middle of one side times its length, i.e.

∫

∂vhi,j

(a(s)∇u(s)) · ~n ds
.
= h

(

a((i− 1)h, (j − 1
2
)h)

∂u((i− 1)h, (j − 1
2
)h)

∂x1

− a(ih, (j − 1
2
)h)

∂u(ih, (j − 1
2
)h)

∂x1

+ a((i− 1
2
)h, (j − 1)h)

∂u((i− 1
2
)h, (j − 1)h)

∂x2

− a((i− 1
2
)h, jh)

∂u((i− 1
2
)h, jh)

∂x2

)

,

and the volume integrals by the value ofu andf at the center times the volume, i.e.

∫

vhi,j

c(x)u(x)dx
.
= h2c((i− 1

2
)h, (j − 1

2
)h)u((i− 1

2
)h, (j − 1

2
)h)

and
∫

vhi,j

f(x)
.
= h2f((i− 1

2
)h, (j − 1

2
)h).

Both quadrature formulas are orderh2 accurate. If we discretize the partial derivatives
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using the second order accurate discretization in (2.13), i.e.

∂u((i− 1)h, (j − 1
2
)h)

∂x1

.
=

ui,j − ui−1,j

h
,

∂u(ih, (j − 1
2
)h)

∂x1

.
=

ui+1,j − ui,j

h
,

∂u((i− 1
2
)h, (j − 1)h)

∂x2

.
=

ui,j − ui,j−1

h
,

and
∂u((i− 1

2
)h, jh)

∂x2

.
=

ui,j+1 − ui,j

h
,

whereui,j = u((i− 1/2)h, (j − 1/2)h), for i, j = 1, . . . , n, we obtain for the subvolume
centered around((i− 1/2)h, (j − 1/2)h):

(h2ci,j − 4)ui,j + ui−1,j + ui,j−1 + ui,j+1 + ui+1,j = h2fi,j . (2.27)

Except for the boundary conditions, which either have to be given in terms of the values
of u at a distance ofh

2
away from the boundary or in terms of the normal derivative of

u, this yields the same system as the discretization using finite differences. The same is
true for higher dimensions. As both the quadrature formulaeand the approximation of
the first derivatives are second order accurate, the overallaccuracy of this method is of
orderO(h2), higher order quadrature formulae and partial derivative discretization can be
used yielding higher accuracy. The main advantage of the finite volume method over the
finite differences discretization is the potential to discretize a partial differential equation
in irregular domains or adaptively as it depends on approximating the flow between two
volumes and discretizing the integral over the right hand side, only.

Washio’s and Oosterlee’s finite volume discretization of the Poisson equation onRd

In the following we will derive an adaptive discretization for the solution of the Poisson
equation with open boundary conditions that is based on a work of Washio and Ooster-
lee [87]. The following covers the case that the solution of

−∆u(x) = f(x), x ∈ R3

u(x)→ 0, ||x|| → ∞,
(2.28)

is sought for inΩ0 = [−1
2
, 1

2
]3, only, where supp(f) ⊂ Ω0. To solve this problem numeri-

cally, we discretizeΩ0 using a regular grid with mesh-widthh and∆ using finite volumes,
i.e. the 3D analogue of (2.27).

To properly handle the boundary conditions the original grid is extended with the help of a
grid extension rateα ∈ (1, 2) in the following way: The grid on the finest level is defined
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Figure 2.1: Coarsened grid in 2D. Highlighted is the original fine grid, in which the solution
is of interest.

to be the discretization of domainΩ1 with grid-widthh1, where

Ω1 :=

[

−β1

2
,
β1

2

]3

,

β1 ≥ α,

h1 := h.

(2.29)

As a resultΩ1 is just an extension of the original domainΩ. The domain is then extended
and the grid is coarsened recursively as

Ωl :=

[

−βl

2
,
βl

2

]3

,

βl ≥ αl,

hl := 2(l−1) h.

(2.30)

The additional parametersβl are introduced in order to enable the extended grids to have
common grid points with the fine grids. Furthermore we define the set of grid pointsGl of
level l to be

Gl := { x ∈ Ωl | x = hlz, z ∈ Z } .
An example of how a coarsened grid might look like in 2D can be found in Figure 2.1.
We remark that Washio and Oosterlee continue the extension and coarsening process up
to infinity, which is nice for the analysis of the discretization but not suitable for an actual
implementation.

The Laplacian is now discretized on the domainsΩ1, Ω2\Ω1, Ω3\Ω2, . . . using the finite
volume method, except for the interfaces. For a complete discretization ofR3 we have to
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Fl Fr

(x, y) (x + h, y)(x− h, y)

Fs

Figure 2.2: Conservative discretization at the interface in 2D.

give a discretization of the problem on the composite grid

G := G1 ∪ G2 ∪ · · · ,

including the interfaces betweenΩl andΩl+1\Ωl. Using the finite volume discretization
this can be done relatively straightforwardly. As an example consider the two-dimensional
discretization using finite volumes at the refinement boundary that is depicted in Fig. 2.2
(the extension to 3D is straightforward). Here the fluxFs can be approximated by interpo-
lating linearly from the left and the right neighbors, i.e.

Fs =
1

2
(Fl + Fr). (2.31)

Now we are ready to show that for a suitable grid-extension rateα the error of this method
is of the same order as it would be if the whole grid was discretized using the finest grid
size.

In order to analyze the error of such a discretization we define the discrete analogue of a
Green’s function.

Definition 2.13 (Discrete Green’s function) Let ∆h be a discretization of the Laplace
operator on the grid{ x | x = h z, z ∈ Z3} and letδh(x,y) be defined as

δh(x,y) :=

{
1, x = y,
0 otherwise.

Then the discrete Green’s function is defined by

∆hGh(x,y) := δh(x,y),

where∆h is w.r.t. the first argumentx, only.
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Conforming to the discretization using the partitioning ofthe domain, we measure the
error in terms of the difference to the cell-average of the analytic Green’s function, which
is derived in Theorem 2.7.

Definition 2.14 (Cell-averaged Green’s function) Let G(x,y) be the Green’s function
of the Laplace operator∆ and letΩx be defined as the cube with volumeh3 centered atx,
i.e.

Ωx :=

{

y

∣
∣
∣
∣
||x− y||∞ ≤

h

2

}

.

The cell-averaged Green’s functioñG is given by

G̃(x,y) =
1

h3

∫

Ωx

G(z,y)dz.

As we chose a conservative discretization, Green’s identity holds for the discrete case as
well. Thus we obtain

∫

Ω

[u(∆hv)− (∆hu)v]dx =

∮

∂Ω

[u(∇hv)− (∇hu)v] · ~nds.

Therefore, for the discrete Green’s functionGh it holds true that

∫

Ω

Gh(x,y)[−∆Ψh(y)]dy =

Ψh(x)−
∮

∂Ω

[Gh(x, s)(∇hΨh(s))− (∇hGh(x, s))Ψh(s)] · ~nds, (2.32)

for a functionΨh. With this observation, we are now ready to provide an error analysis for
Washio’s and Oosterlee’s method.

Theorem 2.9 Using the described grid coarsening strategy with a grid extension rate
α ≥ 22/3 the errore(x,p), defined as

e(x,p) := |G̃(x,p)−Gh(x,p)|, (2.33)

is of orderh2 for all x ∈ G0.

Proof.By applying the discrete version of Green’s identity, i.e. insertinge(x,p) into (2.32),
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we get

e(x,p) =

∣
∣
∣
∣
∣

∫

Ωl

Gh(x,y)[−∆h(G̃(y,p)−Gh(y,p))] dy +

∮

∂Ωl

[

Gh(x, s)∇h(G̃(s,p)−Gh(s,p))−

∇hGh(x, s)(G̃(s,p)−Gh(s,p))
]

· ~nds

∣
∣
∣
∣
∣

(2.34)

for any domainΩl. Letting l → ∞ the second integral vanishes due to the boundary
conditions. So the error due to the integration over the finest grid is bounded by

|e0(x,p)| ≤ c0h
2.

Washio and Oosterlee showed in [87] that the errore1 due to the region outside the finest
grid, but not including the non-cubic-cells is bounded by

|e1(x,p)| ≤ c1
α3 − 1

1− 22/α3

h2

dxd5
p

and that the errore2 due to the non-cubic cells is bounded by

|e2(x,p)| ≤ c2
1

1− 22/α3

h2

dxd4
x

,

wheredx anddp are the minimum distances from the boundary of the finest gridof x andp,
respectively. The proof depends on the fact that there existconstantsck, (k = 0, 1, 2, . . . ),
such that

|∆k−m
y ∆m

p G(y,p)| ≤ ck

|y− p|k+1
, (m ≤ k),

where∆y and∆p act ony andp, respectively. For further details we refer to [87]. Overall,
the first integral can thus be estimated as:

∣
∣
∣
∣
∣
∣

∫

Ωl

Gh(x,y)[−∆h(G̃(y,p)−Gh(y,p))] dy

∣
∣
∣
∣
∣
∣

≤ e0 + e1 + e2 = O(h2).

The limit l →∞ yields the desired result. �
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Modification of Washio’s and Oosterlee’s method

Although the proposed method of Washio and Oosterlee is of the right accuracy it does not
provide a practical numerical scheme as the error analysis only holds for infinitely many
refinement levels. In practice the refinement process is stopped at an arbitrary but finite
number of refinements, but we cannot be sure, that the error produced by this alteration is
of the required accuracy. To tackle this problem, we have twooptions:

1. Estimate the error induced by stopping the refinement process at a given level.

2. Provide a modification of the method which does not exhibitthis problem.

As the first would strongly depend on the number of refinementsand the grid size of the
finest mesh, we decided to use the latter approach. The extension was published by the
author in [8]. For our purpose we definelmax to be the index of the maximum coarsening
level and we denote the discretized domain byΩlmax. At that level the Dirichlet boundary
conditions of the original problem are imposed, i.e.

u(x∂) =
1

4π

∫

Ω

f(x)

||y − x∂ ||2
dy for x∂ ∈ ∂Ωlmax. (2.35)

So the boundary conditions of the Dirichlet problem that is solved numerically are set with
the help of the fundamental solution. We immediately obtainthe new problem to solve:

∆u(x) = f(x), x ∈ Ω, supp(f) ⊂ Ω ⊂ R3,

u(x∂) =
1

4π

∫

Ω

f(x)

||y− x∂ ||2
dy for x∂ ∈ ∂Ω. (2.36)

The solution of this Dirichlet problem, which can be interpreted as a slice of the original
problem with open boundary conditions, is the same as the solution of the original problem
in that region, as stated by the following lemma:

Lemma 2.4 Let f ∈ C0(R
3) ∩ L2(R3) with supp(f) ( R3 and letu be the solution of

(2.28) with that right hand sidef . Thenu also is the unique solution of(2.36) in any
bounded domainΩ ⊃ supp(f).

Proof. Let Ω be any domain that is a superset ofsupp(f). With Theorem 2.6u fulfills
(2.36) for allx∂ ∈ ∂Ω. Uniqueness follows from Theorem 2.5. �

Imposing the boundary conditions with the help of the continuous problem does not yield
the same solution as solving the discrete problem on the unrestricted domain. So as an
extension to Theorem 2.9 we have to provide an error estimatefor this step as well.

Theorem 2.10 Assume that the discrete Green’s function can be bounded by

Gh(x,p) ≤ 1

4π

[
1

||x− p||2
+

c1

||x− p||32

]

.

33



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Using the described grid coarsening strategy with a grid extension rateα ≥ 22/3 up to an
arbitrary level lmax ∈ N and setting the boundary conditions at that level as in(2.35)the
error e(x,p), defined in(2.33), is of orderh2 for all x ∈ G0.

Proof. For an arbitrary domainΩl the estimate of the volume integral in (2.34) holds as
in the proof of Theorem 2.9. It remains to estimate the value of the surface integral. For
that purpose letd be the minimum distance of a point of the original domainΩ0 to the
boundary of the domain discretized using the coarsest grid.As both,x andp are inside of
the original domain, we can estimate the second integral:
∣
∣
∣
∣
∣

∮

∂Ωlmax

[

Gh(x, s)∇h(G̃(s,p)−Gh(s,p))− ∇hGh(x, s)(G̃(s,p)−Gh(s,p))
]

· ~nds

∣
∣
∣
∣
∣

≤ α3lmax max
s∈∂Ωlmax

[∣
∣
∣Gh(x, s)∇h(G̃(s,p)−Gh(s,p)) · ~n

∣
∣
∣+

∣
∣
∣∇hGh(x, s) · ~n (G̃(s,p)−Gh(s,p))

∣
∣
∣

]

≤ α3lmax

[(∣
∣
∣
∣

1
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1

d
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+

∣
∣
∣
∣

c1h
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) ∣
∣
∣
∣
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2
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d4
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∣
∣
+

(∣
∣
∣
∣

1

4π

1

d2
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∣
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+
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∣
∣
∣
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2
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d4

∣
∣
∣
∣
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∣
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= α3lmax

[∣
∣
∣
∣

1

4π

3c1h
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d5
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∣
∣
∣
+

∣
∣
∣
∣

3c2
1h

4
lmax

d6
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∣
∣
∣
∣

1

4π
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2
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d6
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∣
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∣
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3c2
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d7

∣
∣
∣
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]

.

Obviously, forα ≥ 22/3 we can estimated as

d =
αl − 1

2
≥ αl

4

and forhlmax we have
hlmax = 2(l−1)h1 = 2(l−1)h.

So we get

α3lmax

[∣
∣
∣
∣

1

4π
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2
lmax
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∣
∣
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∣
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1

4π

3072c1h
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22
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12288c2
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α6
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∣
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]

.

This is orderh2 for α > 22/3. �
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Remark 2.1 The assumption that the discrete Green’s functionGh is bounded, i.e.

Gh(x,p) ≤ 1

4π

[
1

||x− p||2
+

c1

||x− p||32

]

,

is justified in the delight of an asymptotic expansion of the five-point discretization of the
Laplacian given by Burkhart in [16]. This expansion is missing terms of even powers, so
our assumption is fulfilled.

Implementation of the grid coarsening

As noted in the definition of the different domains in (2.29) and (2.30) we introduced
additional parametersβl to simplify letting the different domains have common grid points.
In the following we assume that the original domainΩ0 = [−1

2
, 1

2
]3 is discretized using

grid spacingh = 2−m, wherem > 2. Therefore the domain of interest consists of23m grid
points. Furthermore we want to double the grid spacinghl on each coarsening level, i.e.

hl = 2−m+l−1.

We define the domain on refinement levell as

Ωl :=

[

−βl

2
,
βl

2

]3

,

whereβl is the length of domainΩl. So for a conservative discretization of the flux as in
(2.31) we need that the new domain has at least length

βl ≥ βl−1 + 4hl. (2.37)

For the error analysis to hold we need a grid extension rate ofat leastαl, i.e. the length has
to fulfill

βl ≥ αl (2.38)

on each levell. To fit (2.37) and (2.38) and to simplify the implementation we choose
β1 = 2 and

βl := max
(

βl−1 + 4hl, 2
⌈log2(αl)⌉

)

for l > 1.

On levell we now have

nl =
2⌈log2 αl⌉)

2−k+l−1

grid points in each direction and the grid points on that level are given by

xl
i,j,k = hl(i− nl−1

2
, j − nl−1

2
, k − nl−1

2
)T , i, j, k = 0, . . . , nl − 1.

With that choice we can always reduce the problem to a coarse discretization with93 un-
knowns in a finite number of coarsening steps, as stated by thefollowing lemma.

35



CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Lemma 2.5 Let22/3 ≤ α < 2, m ≥ 3 and let the hierarchical coarsening be defined by

β0 = 2,

βl = max
(

βl−1 + 4hl, 2
⌈log2(α

l)⌉
)

for l > 1, (2.39)

Ωl =

[

−βl

2
,
βl

2

]3

and

hl = 2−m+l−1.

Then we have that only9 grid points are present in each direction on level

lmax :=

⌈
2−m

log2 α− 1

⌉

+ 1 (2.40)

and on all subsequent levels.

Proof. We start assuming
βl = 2⌈log2(αl)⌉ for l > 1,

neglecting the formation of the maximum in (2.39). Using that definition a levell at which
only 93 or fewer grid points are left is reached when

2⌈log2(αl)⌉ ≤ 8hl

⇔ 2⌈log2(αl)⌉

2−m+l+1
≤ 8

⇔ 2⌈l log2(α)−l+m+1⌉ ≤ 8

⇔ l(log2(α)− 1) + m + 1 ≤ 3

⇔ l ≥ 2−m

log2(α)− 1

If we show for levels below or equal to such anl thatβl−1 + 4hl is not always larger than
2⌈l log2(α)⌉ we have shown the first part of the proposition. For that purpose we note that

β1 = 2⌈log2(α)⌉ = 2 and

β2 = β1 + 4h2.

Now for any levell + 1 with

βl−1 = 2⌈(l−1) log2(α)⌉ and

βl = βl−1 + 4hl

it holds true that

βl+1 = 2⌈(l+1) log2(α)⌉ ⇔ βl + 4hl+1 ≤ 2⌈(l+1) log2(α)⌉,
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as

βl + 4hl+1 = βl−1 + 4hl + 8hl

= 2⌈(l−1) log2(α)⌉ + 12 · 2−m+l−1.

With (2.40) for any levell ≤ lmax we have

l ≤
⌈

2−m

log2 α− 1

⌉

+ 1,

such that
12 · 2−m+l−1 ≤ 3 · 2l−2+(l−1)(log2(α)−1)+1 ≤ 3 · 2⌈(l−1) log2(α)⌉.

So we get

βl + 4hl+1 ≤ 2⌈(l−1) log2(α)⌉ + 3 · 2⌈(l−1) log2(α)⌉

= 2⌈(l−1) log2(α)⌉+2

≤ 2⌈(l+1) log2(α)⌉.

To summarize: Up to levellmax each timeβl is equal toβl−1 + 4hl, on the following re-
finement level we haveβl+1 = 2⌈(l+1) log2(α)⌉. It remains to show that once refinement level
lmax is reached, all subsequent levels possess93 grid points as well. This is easy to see for
any levell possessing93 grid points, as after doubling the grid spacing5 grid points are
left in the domainΩl. Thus adding4hl+1 in each direction doubles the length resulting in a
domain eight times as big with9 grid points in each direction. This length is the maximum,
asα < 2. So the next refinement level still possesses9 grid points in each direction. �

The modified method not only has the same order of the discretization error than the orig-
inal method with refinement up to infinitely many levels but also only a finite number of
refinement steps depending linearly on the number of unknowns on the finest discretization
level is necessary to reduce the problem to93 grid points. As a consequence onlyO(N),
whereN is the total number of unknowns on the finest level, steps are required to impose
the boundary conditions on the coarsest refinement level. Now it remains to show that the
number of grid points grows linearly with the number of grid points of the innermost box.

Lemma 2.6 Let α, m, βl, Ωl andhl, l = 1, . . . , lmax be defined as in Lemma 2.5. Then
the total number of grid points on all grids separately depends linearly on the number of
grid points inside of the original domainΩ0, namely(2m + 1)3.

Proof. We show the assertion by induction overm. We setd to the maximum of the
total number of grid points divided by23m for m = 3 and 64

7
c, wherec is the number of

additional levels when we go fromm to m + 1, i.e.

d := max




1

23m

lmax(m)
∑

l=1

#Gl

∣
∣
∣
∣
∣
∣
m=3

,
64

7
c



 ,
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with

lmax(m) :=

⌈
2−m

log2 α− 1

⌉

+ 1.

We like to note thatc is a constant, aslmax(m) is bounded by a linear function inm. Now
we show that

lmax(m)
∑

l=1

#Gl ≤ d23m, (2.41)

which is obviously true form = 3. Assume (2.41) holds for somem ∈ N, then it holds for
m + 1 as well, since:

lmax(m+1)
∑

l=1

#Gl =

lmax(m)
∑

l=1

#Gl +

lmax(m+1)
∑

l=max(m)+1

#Gl

≤ d23m +

lmax(m+1)
∑

l=max(m)+1

#Gl

Obviously, the number of grid points on each of thec additional levels going fromm to
m + 1 is bounded by23m+6, yielding

lmax(m+1)
∑

l=1

#Gl ≤ d23m + c23m+6

= (
d

8
+ 8c)23(m+1)

≤ d 23(m+1).

�

Combining the results we have shown that we have constructedan optimal method of
the desired accuracy in the following sense: The number of arithmetical operations per
unknown on the finest level is bounded from above by a constantand the number of coars-
ening steps is predetermined by the size of the finest grid. Atthe same time the order of
the reached accuracy is not influenced by the number of coarsening steps, but depends on
the grid spacing on the finest level, only.

Comparison of the unmodified method and our modification

We like to conclude this chapter with a numerical comparisonof the original method by
Washio and Oosterlee and our method. For that purpose we implemented the method in C,
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Figure 2.3: A cut through the computed solution of the test case and its analytic point-wise
error on a643 grid. Every fourth grid point is plotted.

#G0 h #refinements ||u− u∗||∞ ||u− u∗||2/#G0 time

173 1/16 8 2.110010 · 10−2 2.162535 · 10−5 1.66 s
333 1/32 11 5.078421 · 10−3 1.810825 · 10−6 12.84 s
653 1/64 14 1.251313 · 10−3 1.580911 · 10−7 104.61 s

1293 1/128 17 3.112553 · 10−4 1.392736 · 10−8 909.64 s

Table 2.1: Error and timings for different various sizes. The∞-norm of the error decreases
as predicted and the method scales linearly with the number of grid points.

using the FAC method introduced later in Chapter 3.2.4 as a solver for the resulting linear
system. The performance was measured on a machine with an 1.7GHz Power4+ CPU.
The grid extension rateα was set to1.6 > 22/3 and for practical reasonsβ has been chosen
as

β := ⌈2⌈log2(αl)⌉⌉.
We used a point symmetric density described by a translated cubic B-Spline as defined
later in Chapter 4 as right hand sidef . So the exact solutionu∗ to the problem is known
analytically. The computed solution on a643 grid and the error of this test case can be
found in Figure 2.3. Timings and error norms for various gridsizes are shown in Table 2.1.
Obviously, the method scales linearly and the∞-norm of the error decreases as expected.

As it can be seen in Table 2.2 the number of refinement steps does not influence the
method’s accuracy, although the timings vary a lot. This is aconsequence of the reduction
of the number of boundary points, when the number of refinement steps is increased. We
ran the same test using the original method presented in [87], thus not setting the boundary
values to the values of the continuous problem. The results in Table 2.3 and Fig. 2.4 show
that this method behaves as expected: Increasing the numberof grid refinements increases
the accuracy of the method up to the same level than our modification.

The presented method is a useful extension of Washio’s and Oosterlee’s method. The
number of coarsening steps is known a priori and using a multigrid solver for the solution
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#refinements #Glmax ||u− u∗||∞ ||u− u∗||2/#G0

2 653 5.089194 · 10−3 2.023222 · 10−6

3 653 5.085428 · 10−3 1.857736 · 10−6

4 373 5.066483 · 10−3 1.927579 · 10−6

5 333 5.063288 · 10−3 1.840964 · 10−6

6 333 5.079554 · 10−3 1.815541 · 10−6

7 213 5.067220 · 10−3 1.815151 · 10−6

8 173 5.070326 · 10−3 1.811852 · 10−6

9 173 5.084148 · 10−3 1.812722 · 10−6

10 133 5.084021 · 10−3 1.812488 · 10−6

11 93 5.078421 · 10−3 1.810825 · 10−6

12 93 5.084541 · 10−3 1.812455 · 10−6

13 93 5.088087 · 10−3 1.813763 · 10−6

14 93 5.089895 · 10−3 1.814523 · 10−6

15 93 5.090805 · 10−3 1.814928 · 10−6

16 93 5.091260 · 10−3 1.815137 · 10−6

17 93 5.091489 · 10−3 1.815244 · 10−6

18 93 5.091603 · 10−3 1.815297 · 10−6

19 93 5.091660 · 10−3 1.815324 · 10−6

20 93 5.091688 · 10−3 1.815337 · 10−6

Table 2.2: Error norms for a333-problem withh = 1/32 and various refinements. The
error of the method is only marginally affected by the numberof refinement steps.
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Figure 2.4: Behavior of the error of the original method and of the modification. Using the
original method both, the error in the2-norm and in the∞-norm, depend heavily on the
number of grid refinements. The accuracy converges to the accuracy of our modification,
that is almost independent of the number of refinements.

40



2.3. NUMERICAL SOLUTION

#refinements #Glmax ||u− u∗||∞ ||u− u∗||2/#G0

2 653 3.653597 · 10−2 1.915066 · 10−4

3 653 1.783026 · 10−2 9.573523 · 10−5

4 373 1.584892 · 10−2 8.508257 · 10−5

5 333 8.995442 · 10−3 4.779984 · 10−5

6 333 4.631318 · 10−3 2.383245 · 10−5

7 213 3.762046 · 10−3 1.905511 · 10−5

8 173 2.929352 · 10−3 1.192743 · 10−5

9 173 4.014153 · 10−3 6.073405 · 10−6

10 133 4.375166 · 10−3 4.211756 · 10−6

11 93 4.554064 · 10−3 3.346295 · 10−6

12 93 4.821822 · 10−3 2.248768 · 10−6

13 93 4.956727 · 10−3 1.902828 · 10−6

14 93 5.024221 · 10−3 1.821841 · 10−6

15 93 5.057969 · 10−3 1.809017 · 10−6

16 93 5.074843 · 10−3 1.809788 · 10−6

17 93 5.083280 · 10−3 1.811972 · 10−6

18 93 5.087498 · 10−3 1.813512 · 10−6

19 93 5.089608 · 10−3 1.814394 · 10−6

20 93 5.090662 · 10−3 1.814863 · 10−6

Table 2.3: Error norms for a333-problem withh = 1/32 and various refinements using the
method of Washio and Oosterlee. The error of the method heavily depends on number of
refinement steps, reaching the same accuracy as the modified method.
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of the linear system the computational cost grows linearly with the number of unknowns as
intended by Washio and Oosterlee. The error analysis presented shows that independent of
the number of refinement steps the method is of the desired order of accuracy. In contrast
to that the original method lacks this independence, as the error analysis is based on the
assumption that infinitely many coarsening steps are carried out. In practice this number is
an additional parameter that has to be provided by the user. As clearly seen in the numerical
examples, the accuracy of the original method depends on thenumber of coarsening steps.
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Chapter 3

Multigrid Methods

3.1 Iterative methods

In the following we are interested in the solution of linear systems using iterative methods.
For that purpose letA ∈ Rn×n, n ∈ N, regular and letb ∈ Rn. Later on, we will use
the fieldC instead ofR, as it simplifies representation. We are interested in the solution
x ∈ Rn of linear systems of the form

Ax = b. (3.1)

A lot of different methods exist to solve this system directly or iteratively. Examples for
direct solution methods are Gaussian elimination or the Cholesky decomposition. Besides
roundoff errors and memory requirements the main drawback of direct solvers is their high
arithmetical complexity, e.g. the Gaussian elimination isof orderO(n3) if one cannot
exploit the sparsity ofA. In this work we are interested in iterative methods, the arithmetic
complexity of which should be significantly smaller. This short introduction to iterative
methods is based on the books by Meister [67] and Hackbusch [54], for further details we
refer their works. In our case (3.1) is solved using an iterative methodφ.

Definition 3.1 An iterative methodis a mapping

φ : Rn ×Rn → Rn.

In the following we denote byx(0) ∈ Rn the initial approximation. The new iteratex(k+1)

is computed with the help ofx(k) andb as

x(k+1) = φ(x(k),b).

We demand from a numerical method that it converges against the solution of the system
and that the solution of the system is a fixed point of the method.
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Definition 3.2 An iterative methodφ is calledconsistent withA iff for all b ∈ Rn A−1b

is a fixed point ofφ(·,b). It is called convergentiff for all b ∈ Rn and for all initial
approximationsx(0) ∈ Rn the sequence{x(k)}∞k=0 has the limitA−1b.

Both consistency and convergence are necessary conditionsfor an iterative method to be a
meaningful method.

3.1.1 Linear iterative methods

Definition 3.3 An iterative methodφ is called alinear iterative methodiff there exist ma-
tricesM, N ∈ Rn×n such that

φ(x,b) = Mx + Nb.

The matrixM is callediteration matrix.

For a linear iterative method necessary and sufficient conditions for consistency and con-
vergence can be given as stated by the following two theorems.

Theorem 3.1 A linear iterative methodφ is consistent iff we can write

M = I −NA.

Proof. Let x∗ = A−1b. Assume thatx∗ is a fixed point ofφ(·,b), so we have

x∗ = φ(x∗,b) = Mx∗ + Nb = (M + NA)x∗.

This is the case for allb ∈ Rn, i.e. for allx∗ ∈ Rn, iff I = M + NA. �

Theorem 3.2 A linear iterative methodφ is convergent iff the spectral radius of the iter-
ation matrix is bounded from above by1, i.e.

ρ(M) < 1.

Proof. See e.g. the proof of Theorem 3.2.7 in [54]. �

For the analysis of multigrid methods which use linear iterative methods as smoothers the
following lemma is helpful.

Lemma 3.1 Thek-th iterate of the linear iterative methodφ can be written as

xk = Mkx(0) +

k−1∑

l=0

M lNb. (3.2)
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Proof. We prove the statement by induction. Fork = 1 equation (3.2) holds. Assume that
(3.2) holds fork − 1. Inserting the definitions yields

x(k) = M

(

Mk−1x(0) +
k−2∑

l=0

M lNb

)

+ Nb = Mkx(0) +
k−1∑

l=0

M lNb

�

So applyingk iterations of a linear iterative method results in multiplying the current ap-
proximation by thek-th power of the method’s iteration matrix and adding a modification
of the right hand side. Starting with a zero approximation wecan give an explicit formula
for x(k).

Lemma 3.2 Letφ : Rn×Rn → Rn be a consistent linear iteration method with iteration
matrix M = I − NA. If we start with a zero approximation for the solution ofAx = b,
we can write thek-th iterate as

x(k) = (I −Mk)A−1b.

Proof. For A we can writeA = N−1(I −M) ⇔ A−1 = (I −M)−1N . As x(0) = 0, we
have

x(k) = (I + M + M2 + · · ·+ Mk−1)Nb

= (I −Mk)(I −M)−1Nb

= (I −Mk)A−1b.

�

3.1.2 Splitting methods

From Definition 3.3 it is not obvious how to choose eitherM or N . One way to construct
a linear iterative method is the splitting of the matrixA, i.e. with regularB ∈ Rn×n we
write

A = B + (A− B).

Now we can define the iterative methodφ by

φ(x,b) = B−1(B − A)x + B−1b = (I −B−1A)x + B−1b,

thus we setM = (I − B−1A) andN = B−1. Obviously the defined iterative method
is consistent, asB is regular. The key idea is to defineB to be similar toA and easy to
invert. One of the first ideas is to setB to the product of the identity and an arbitrary value,
resulting in the Richardson method.

45



CHAPTER 3. MULTIGRID METHODS

Definition 3.4 Let θ > 0. Then theRichardson methodis defined as the linear iterative
method

φRichardson,θ(x,b) = (I − θA)x + θb.

Theorem 3.3 LetA be symmetric and positive definite, letλmin be the smallest and letλmax

be the largest eigenvalue ofA. Then the Richardson method converges iffθ ∈ (0, 2/λmax)
and the convergence rate is

ρ(MRichardson,θ) = max{|1− θλmin|, |1− θλmax|}. (3.3)

Proof. Let λA be an eigenvalue ofA, then obviously1−θλ is an eigenvalue ofMRichardson,θ.
As the function1 − θλ has no local maxima, we immediately obtain (3.3). Now assume
thatθ ∈ (0, 2/λmax), so we have

−1 < 1− θλmax≤ 1− θλmin < 1,

so ρ(MRichardson,θ) < 1. This shows sufficiency. To show necessity we assume
ρ(MRichardson,θ) < 1. With

1 > ρ(MRichardson,θ) ≥ |1− θλmax| ≥ 1− θλmax

we haveθ > 0, from

−1 < ρ(MRichardson,θ) ≤ −|1− θλmax| ≤ 1− θλmax

we obtainθ < 2/λmax. �

Another well-known splitting method is the Jacobi method, whereB is chosen to contain
only the diagonal ofA.

Definition 3.5 Let A = D + L + U , whereD is the matrix containing only the diagonal
of A, L contains only the lower triangular part andU only the upper triangular part. The
Jacobi methodis the linear iterative method given by

φJacobi(x,b) = −D−1(L + U)x + D−1b.

Its iteration matrix is denoted byMJacobi = −D−1(L + U).

A number of convergence criterions exists. We just would like to mention the criterion for
positive definite matrices. Here and in the following, forA andB being two symmetric
matrices the expression “A > B” denotes thatA − B is symmetric and positive definite,
“A ≥ B” denotes thatA−B is symmetric and positive semi-definite. For some symmetric
and positive definite matrixC and matricesD andE that are such thatCD andCE are
positive definite, by “D >C E” and “D ≥C E” we denote thatCD − CE is symmetric
and positive definite and symmetric and positive semi-definite, respectively.
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Theorem 3.4 Let bothA be symmetric positive definite and let the relation

2D > A > 0

hold. Then the Jacobi method converges and its convergence rate is given by

ρ(MJacobi) = ‖MJacobi‖A = ‖MJacobi‖D < 1.

Proof. Obviously we have

2D > A > 0⇔ 2I > D− 1
2 AD− 1

2
︸ ︷︷ ︸

=:A′

> 0.

Soσ(A′) ⊂ (0, 2). Now the matrix

M ′ := I − A′ = I −D− 1
2 AD− 1

2 = D
1
2 MJacobiD

− 1
2

is similar toMJacobi, so
σ(MJacobi) = σ(M ′) ⊂ (−1, 1).

Additionally

ρ(MJacobi) = ρ(M ′) = ‖M ′‖2 = ‖D− 1
2 M ′D

1
2‖D = ‖MJacobi‖D.

Using the similar symmetric matrixA
1
2 MJacobiA

− 1
2 , we obtain

ρ(MJacobi) = ρ(A
1
2 MJacobiA

− 1
2 ) = ‖A 1

2 MJacobiA
− 1

2‖2 = ‖MJacobi‖A.

�

Remark 3.1 Writing the Jacobi method component-wise yields

x
(k+1)
i =

1

aii




bi −

n∑

j=1
j 6=i

aijx
(k)
j




 .

Using not only components of the old iteratex(k) but the available components of the new
iteratex(k+1) results in

x
(k+1)
i =

1

aii

(

bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

)

,

which is the component-wise version of the Gauss-Seidel method. In matrix form it reads

φGS(x,b) = −(D + L)−1Ux + (D + L)−1b.
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3.1.3 Relaxation methods

The new iterate of a linear iteration method can be written interms of the residual vector
r := b− Ax as

x(k+1) = (I −NA)x(k) + Nb = x(k) + N(b− Ax(k)) = x(k) + Nr(k).

By weighting the correction we get

x(k+1) = x(k) + ωNr(k),

resulting in a new linear iterative method. The additional parameterω allows us to optimize
the spectral radius of the original method’s iteration matrix. By introducing the parameter
to the Jacobi method we get the JOR method.

Definition 3.6 Let A, D, L and U be as in Definition 3.5. TheJacobi overrelaxation
methodor for shortJORis the linear iterative method given by

φJOR,ω(x,b) = x− ωD−1(Ax + b).

For the JOR method we can formulate the following convergence criterion.

Theorem 3.5 LetA be symmetric and and positive definite and letω fulfill

0 < ω < 2/ρ(D−1A). (3.4)

Then the JOR method converges, and its convergence rate is given by

ρ(MJOR,ω) = ‖MJOR,ω‖A = ‖MJOR,ω‖D < 1.

Proof. We have(D−1A)−1 ≥ 1/ρ(D−1A)I. Thus, with condition (3.4) we have

0 < ωI < 2/ρ(D−1A)I ≤ 2(D−1A)−1 = 2A−1D.

This in turn implies
0 < ωA < 2D.

The rest of the proof proceeds like the proof of Theorem 3.4, which states the convergence
criterion for the Jacobi method. �

Remark 3.2 The Gauss-Seidel method mentioned in Remark 3.1 can be extended by a
relaxation parameter in a similar way as the Jacobi method, the main difference being the
component-wise introduction ofω. The resulting method is the well-known SOR method.
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Linear iterative methods like the Richardson method or the Jacobi and JOR method, re-
spectively, are easy to analyze and to implement. The convergence rate directly depends
on the eigenvalues of the original system. For example the eigenvalues of the iteration
matrix of the Richardson method are given as

λMRichardson,θ = 1− θλA,

whereλA is an eigenvalue ofA. So for an ill-conditioned system with an eigenvalue close
to zero the convergence rate of the Richardson iteration will be smaller than one, but very
close to it. As a consequence it will be unsatisfactory. Other methods like Jacobi and
Gauss-Seidel and their relaxed variants behave in the same way. This is in contrast to
Multigrid methods which do not share this downside for certain classes of matrices.

3.2 Geometric Multigrid

Multigrid methods are optimal, i.e.O(n), methods for the solution of certain linear systems
arising from the discretization of elliptic PDEs. Additionally, they are efficient, i.e. the
constant factor that is multiplied with the leadingn-term is small. Multigrid is a universal
principle that can be applied to a wide range of elliptic problems, e.g. problems with non-
constant coefficients, different discretizations, etc. and to non-elliptic problems as well.
The origins of multigrid go back to the workings of Fedorenko[30, 31], who analyzed the
convergence of a multigrid method solving a discretized elliptic PDE of second order with
Dirichlet boundary conditions. Further on Bakhvalov [6] isto be named, who mentioned
the use of nested iterations in order to improve the initial approximation. Brandt used the
ideas contained in these papers in his work on adaptive rediscretization and showed their
practical efficiency [11]. Later, he published a very detailed work on multigrid methods
[12]. Simultaneous to these developments, Hackbusch worked on multigrid methods for
the solution of elliptic PDEs as well [48, 49, 50, 51], putting particular emphasize on
mathematical rigor.

We stick to the standard model problem and definitions as mostintroductory multigrid
books that are much more detailed, see e.g. [15, 84].

3.2.1 Motivation

As aforementioned, iterative methods like the Richardson method or the Jacobi method
converge very slowly for ill-conditioned systems. We want to analyze this effect a little
more in detail. Although this observation can be made for a large class of problems, we
restrict ourselves to the Poisson equation (2.5) with Dirichlet boundary conditions (2.2a)
on the unit square, whereu vanishes on the boundary, i.e.

−∆u(x) = f(x) for x ∈ [0, 1]2
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and
u(x) = 0 for x1 = 0 ∨ x1 = 1 ∨ x2 = 0 ∨ x2 = 1.

Now we discretize the domain usingn + 1 points in each direction, wheren = 2k. Using
the 5-point formula (2.15) for the discretization of the Laplacian we get

1

h2
k

(4ui,j − ui−1,j − ui,j−1 − ui+1,j − ui,j+1) = fi,j

with hk = 2−k for i, j = 1, . . . , nk and fori = 0 ∨ i = n ∨ j = 0 ∨ j = n we have

(uk)i,j = 0.

This results in the linear system
Lkuk = fk, (3.5)

whereLk ∈ Rnk×nk ,nk = (2k − 1)2 anduk, fk ∈ Rnk . To determine the convergence
factor of the Richardson method and the Jacobi method, we need the eigenvalues ofLk.
One easily verifies that the vectorsϕ

(k)
l,m with the components

(ϕ
(k)
l,m)i,j = sin(lπih) sin(mπjh), for i, j, l, m = 1, . . . , nk (3.6)

are the eigenvectors ofLk. The associated eigenvalues are

λ
(k)
l,m = 4− 2 cos(lπh)− 2 cos(mπh), for l, m = 1, . . . , nk.

So the smallest eigenvalue ofLk is

λ
(k)
min = 4(1− cos(πhk)).

By Theorem 3.3 and Theorem 3.5 we easily find that the convergence rate for the Richard-
son method is

ρ(MRichardson,θ) = 1− θ(1− cos(πhk)),

and for the Jacobi method we get

ρ(MJacobi) = cos(πhk).

Therefore both methods converge slowly for largek, which is not surprising, as the system
is asymptotically ill-conditioned.

As the entries on the main diagonal of the coefficient matrix are constant, for this problem
the Richardson method is equivalent to the damped Jacobi method. In the following we will
cover the Jacobi method in larger detail. Looking more closely at the convergence rate of
the Jacobi method for the different eigenvectors, we find that it depends on the associated
eigenvalue. If we represent the error

ek = u∗
k − uk,
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Figure 3.1: Error of an arbitrarily chosen initial approximation and right hand side of the
Laplacian discretized on the unit square using152 grid points before and after application
of one and three iterations of a damped Jacobi method withω = 4/5.

whereu∗
k is the exact solution in terms of the eigenvectors, we can immediately determine,

which parts of the error are reduced efficiently and which arenot. We find out that the part
belonging to the eigenvalueλ(k)

l,m is damped by a factor of|1
2
(cos(lπhk) cos(mπhk))|. So

the parts belonging to eigenvalues with indicesl andm somewhere in the middle between
1 andnk are damped efficiently, while parts belonging to eigenvalues with extreme indices
are hardly damped at all. Now we analyze, which parts of the error are damped by the JOR
method. We obtain that the part belonging to the eigenvalue with indexl, m is damped by
a factor of ∣

∣
∣1− ω

2
(2− cos(lπhk)− cos(mπhk))

∣
∣
∣ .

So for anω < 1 we can achieve that parts of the error belonging to eigenvalues with large
indicesl andm are damped efficiently by a factor of at least|1 − 2ω|. The parts of the
error belonging to eigenvalues with small indices are stilldamped very inefficiently, as
they are at least asymptotically not damped at all. Now, we observe that the eigenvectors
(3.6) belonging to eigenvalues with high coefficientsl and m are geometrically highly
oscillatory. This means that high frequency parts are damped very efficiently by the Jacobi
method, while low frequencies are damped much slower. The error is becoming smooth
after only a few iterations of the Jacobi method. This is the fundamental observation that
lead to the development of multigrid methods. This behaviorcan be easily verified by
plotting the error before and after applying a few iterations of the Jacobi method, c.f. Figure
3.1.

Another fundamental observation that has to be made in orderto construct a twogrid
method is that a smooth error is well-represented on a coarser grid. That means a smaller
number of grid points is sufficient. Given a current approximationuk to the solution of
(3.5), we can compute the residualrk as

rk = fk − Lkuk.

The actual iterate can then be updated by adding the approximate solutionek of the defect
equation

Lkek = rk. (3.7)
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This approximate solution can be obtained from the coarse grid, as it is well represented
on that level.

On this coarser grid the low frequency components of the finergrid can be differentiated
into low and high frequency components, again. The Jacobi method still has the smoothing
property on this level, resulting in a very efficient dampingof the high frequency parts of
the error, which have been low frequency parts on the fine grid. As a consequence, a
recursive application of the twogrid idea is possible, leading to a multigrid method.

Now, we will continue to formally define the twogrid and multigrid methods.

3.2.2 Twogrid methods

Twogrid methods consist of three main ingredients: the smoother, the restriction and pro-
longation operators, and the coarse grid correction operator.

Smoothers

Essentially, all iterative methods that smooth the error ina geometrical sense, i.e. damp the
high frequency components efficiently and independently ofh, are possible smoothers for
a twogrid method. The most common smoothers are the damped JOR method and the SOR
method, as defined in Theorem 3.6 and Remark 3.2. We will now give formal definitions
of high and low frequencies and of the smoothing factor of theJOR method for (3.5).

Definition 3.7 LetLk be defined as in(3.5). An eigenvectorϕ(k)
l,m given in(3.6) is called

low frequency, ifmax(l, m) < (nk + 1)/2,

high frequency, if(nk + 1)/2 ≤ max(l, m).

Definition 3.8 LetLk be defined as in(3.5)and let

χ
(k)
l,m(ω) := 1− ω

2
(2− cos(lπh)− cos(mπh))

be the factor by which the eigenvectorϕ
(k)
l,m is damped by the JOR method. Then the

smoothing factorµk(ω) of the JOR method is defined as

µk(ω) := max{|χ(k)
l,m(ω)| : (nk + 1)/2 ≤ max(l, m) ≤ nk},

i.e. the worst factor by which a high frequency is damped. Further we define its suprenum
overk as

µ(ω) = sup
k∈N

µk(ω).
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Figure 3.2: Damping factorsχl,m for h→ 0 of the JOR method for the 1D analogon to our
model problem for different relaxation parametersω. The choiceω = 2/3 is optimal and
all high frequency components are damped by a factor of at least1/3.

Thus the relaxation parameter is optimal if we chooseω as the minimizer ofµ(ω). In our
caseω = 4/5 is optimal. For the 1D analogon of our problem the choiceω = 2/3 is
optimal, as depicted in Figure 3.2.

Remark 3.3 The eigenvectors of the iteration matrix of the Gauss-Seidel and SOR meth-
ods are not the same as the eigenvectors ofLk. So the analysis of these smoothers is more
involved, requiring other tools as presented here, e.g. thelocal Fourier analysis (LFA). For
details see [84].

In the following we do not restrict ourselves to the JOR method as a smoother, but we
just assume that some appropriate smoothing method S was chosen. S is a linear iterative
method, although other methods have been used as smoothers in multigrid methods. To
simplify the representation we define(φ(k)

S )ν to representν iterations of the smoothing
method on the grid with grid spacinghk. This is possible, as due to Lemma 3.1ν ≥ 1
iterations of one linear iterative method define another linear iterative method.

Restriction and prolongation operators

So far, we have not mentioned how to transfer the residual from the fine grid to the coarse
grid and the result of the solution of the defect equation (3.7) on the coarse grid back to the
fine grid. In the following we assume that the grid spacing is doubled on the coarse grid.
So counting only the unknowns but not the boundary points, wehave only(nk + 1)/2− 1
variables in each direction on the coarse grid, while we havenk variables on the fine grid.
Under this assumption reasonable operators can be defined.

We begin with the restriction operators. To simplify the representation we use the stencil
notation introduced in section 2.3.1. The meaning of a stencil for a restriction operator is
that its elements define by which extent the elements of the fine grid contribute to the value
on the coarse grid. The point at the center is the fine grid point that corresponds to the
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current coarse grid point. To emphasize that the operator maps a vector from the fine grid
using grid widthhk to the coarse grid with widthhk−1 we add thek to the right bottom of
the stencil and thek − 1 to the right top.

Definition 3.9 Theinjection operatoris given by the stencil



 1





k−1

k

.

The injection operator is the most easy to implement operator and the computationally
least expensive one, as only copying is involved. No floatingpoint operations are needed.
Due to this fact, it is an option for optimizing the computational cost of a multigrid cycle.
Alternatively, in order to improve the representation of the error on the coarse grid we can
distribute the values of a non-coarse grid point to its neighbors, which are part of the coarse
grid, resulting in thefull-weighting operator.

Definition 3.10 By the stencil

1

16





1 2 1
2 4 2
1 2 1





k−1

k

we define thefull-weighting operator.

A cheaper variant of the full-weighting operator is thehalf-weighting operator, which does
not take grid points into account that have no neighbors belonging to the coarse grid inx-
or y-direction.

Definition 3.11 Thehalf-weighting operatoris given by the stencil

1

8





1
1 4 1

1





k−1

k

.

Of course, one can define three dimensional versions of theseoperators as well.

For prolongation we define thebilinear interpolation. In order to emphasize that it works
in the opposite direction as the restriction, we denote its stencil with open brackets, i.e.
] · [, and we add thek andk − 1 in reverse order. Intuitively this accentuates that the
prolongation operatorgivesto the fine grid, while the restriction operatortakesfrom the
fine grid. With the help of the stencil notation we immediately obtain which share of a
coarse grid point is distributed to which fine grid point. Again, the center point is the fine
grid point that corresponds to the coarse grid point.
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Definition 3.12 Thebilinear interpolation operatoris given by the stencil

1

4





1 2 1
2 4 2
1 2 1





k

k−1

.

We would like to denote that the bilinear interpolation operator is the adjoint of the full-
weighting operator up to a constant factor. This is an important feature in the context of
the variational formulation of the multigrid theory that will be described later.

We denote the matrix representation of the restriction operator from the grid with grid
spacinghk to the grid with spacinghk−1 by Ik−1

k ∈ Rnk×nk−1. Analogously the matrix
representation of the prolongation operator is denoted byIk

k−1 ∈ Rnk−1×nk .

Coarse grid correction operator

As the error is represented on the coarse grid reasonably well, the defect equation (3.7) is
solved on the coarse grid. This is done by the coarse grid correction operator. The coarse
grid correction consists of the following steps:

1. Compute residual:rk ← fk − Lkuk

2. Restrict residual:rk−1 ← Ik−1
k rk

3. Solve defect equation:ek−1 ← L−1
k−1rk−1

4. Prolongate correction:ek ← Ik
k−1ek−1

5. Correct current approximation:xk ← xk + ek

Using this description we can define the coarse grid correction as a linear iterative method.

Definition 3.13 Let Lk andLk−1 be two discretizations of the model problem as defined
above. Let furtherIk−1

k be a restriction operator andIk
k−1 be a prolongation operator.

Then the coarse grid correction is defined as

φ
(k)
CGC(uk, fk) = uk + Ik

k−1L
−1
k−1I

k−1
k (fk − Lkuk).

An immediate consequence of this definition is the fact that the iteration matrix of the
coarse grid correction is given by

Tk = I − Ik
k−1L

−1
k−1I

k−1
k Lk. (3.8)

Remark 3.4 The coarse grid correction is consistent with the linear systemLkuk = fk,
but it is not convergent, as some eigenvalues are equal to one. The rank of the prolongation
is at mostnk−1.
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The twogrid cycle

Combining the smoother with the coarse grid correction yields the twogrid cycle.

Definition 3.14 Let φ(k)
S be an iterative method that smoothes the high frequencies ofthe

error and letν1, ν2 ∈ N be the number of presmoothing respectively postsmoothing iter-
ations. Assume thatφ(k)

CGC is the coarse grid correction. Then the twogrid cycle withν1

presmoothing iterations andν2 postsmoothing iterations is given by

φ
(k)
TGM(uk, fk) = (φ

(k)
S )ν2(φ

(k)
CGC((φ

(k)
S )ν1(uk, fk), fk), fk).

By this definition we obtain the iteration matrix of the twogrid cycle. Given the iteration
matrixSk of the smoother and the iteration matrixTk of the coarse grid correction in (3.8)
we obtain the iteration matrix

Sν2
k TkS

ν1
k = Sν2

k (I − Ik
k−1L

−1
k−1I

k−1
k Lk)S

ν1
k .

The twogrid cycle in algorithmic form can be found in Algorithm 3.1.

Algorithm 3.1 Twogrid cycleuk ← φ
(k)
TGM(uk, fk)

uk ← (φ
(k)
S )ν1(uk, fk)

rk ← fk − Lkuk

rk−1 ← Ik−1
k rk

ek−1 ← (Lk−1)−1rk−1

ek ← Ik
k−1ek−1

uk ← uk + ek

uk ← (φ
(k)
S )ν2(uk, fk)

Convergence of the two-grid cycle

There are various ways to prove convergence of the two-grid cycle in different settings. We
will outline Hackbusch’s proving technique here, as it is closely related to the proofs for
algebraic multigrid convergence presented later. Other proof techniques include the use of
Fourier transforms or the interpretation of multigrid methods as subspace correction meth-
ods. For an overview over these approaches we refer to the book of Trottenberg, Oosterlee
and Schüller [84]. Hackbusch provides two properties thattogether give a sufficient crite-
rion for the convergence of the twogrid method. These are thesmoothing property and the
approximation property.

The smoothing property is motivated by the fact that the error is smoothed as seen before.
We have seen that the high frequencies are the eigenvectors belonging to the large eigen-
values. As a consequence we measure the smoothness of the error in terms of theL2

k-norm.

56



3.2. GEOMETRIC MULTIGRID

So an iterative methodφ(k)
S is a good smoother if theL2

k-norm of an arbitrary vectorek after
one iteration step is sufficiently smaller than before, i.e.if

‖Skek‖L2
k

= ‖LkSkek‖2 < ‖Lkek‖2 = ‖ek‖L2
k
.

This motivates the following definition.

Definition 3.15 (Smoothing property) An iterative methodφk
S with iteration matrixSk

fulfills thesmoothing property, if there exists a functionη(ν), such that

‖LkS
ν
k‖2 ≤ η(ν)‖Lk‖2 for all 0 ≤ ν ≤ ∞ with k ≥ 0,

lim
ν→∞

η(ν) = 0.

It can be shown that for our model problem that the Richardsonmethod [54] and the
damped JOR method [52] satisfy the smoothing property withη(ν) = νν/(ν + 1)ν+1

andη(ν) = c/(ν + 1
2
), respectively.

Since the inverse of the operator is approximated on the coarse level, the approximation
property is defined as a measure for the quality of this approximation.

Definition 3.16 (Approximation property) Let Ik
k−1 and Ik−1

k be the interpolation and
restriction operators and letLk be the discretization of the underlying partial differential
equation as defined above. The twogrid method using these operators is said to fulfill the
approximation property, if there exists a constantc, such that for allk ∈ N we have

‖L−1
k − Ik

k−1L
−1
k−1I

k−1
k ‖2 ≤

c

‖Lk‖2
.

Various problems arising from the discretization of partial differential equations fulfill the
approximation property, for details we refer to the work of Hackbusch [48, 49, 50, 51, 52,
53, 54].

Given the smoothing and the approximation property the twogrid method converges, as
stated by the following theorem.

Theorem 3.6 Let the twogrid methodφ(k)
TGM,ν,0 with ν presmoothing iterations of the it-

erative methodφ(k)
S fulfill the smoothing and the approximation property. Then for all

0 < ζ < 1 there exists a lower bound̃ν, such that for allν > ν̃ and for all h < hmax we
have

‖TkS
ν
k‖2 ≤ cη(ν) ≤ ζ.

Proof. Choosẽν such thatη(ν) ≤ ζ
c

for all ν > ν̃. Then we have

‖TkS
ν
k‖2 = ‖(I − Ik

k−1L
−1
k−1I

k−1
k Lk)S

ν
k‖2

= ‖(L−1
k − Ik

k−1L
−1
k−1I

k−1
k )LkS

ν
k‖2

≤ ‖(L−1
k − Ik

k−1L
−1
k−1I

k−1
k )‖2‖LkS

ν
k‖2

≤ c

‖Lk‖2
η(ν)‖Lk‖2 = cη(ν) ≤ ζ.
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�

It is sufficient to analyze either pre- or post-smoothing here, as for two-grid methods the
spectra of two methods having a different numberν1 of pre-smoothing iterations and an-
other numberν2 of post-smoothing iterations but having the same sumsν1 + ν2 coincide,
c.f. Lemma 4.4 in [74].

Now that we have defined everything we need for the twogrid method, and that we have
given an overview over one proving technique for the convergence of the two grid method,
we are ready to apply the same idea recursively, leading to multigrid methods.

3.2.3 Multigrid methods

The twogrid cycle provides a very efficient iterative methodfor the solution of linear sys-
tems arising in the discretization of partial differentialequations. The most important fea-
ture is theh-independent convergence factor, a feature not provided bythe previously con-
sidered methods. On the other hand the exact solution of the system on the coarse grid is
needed to achieve that behavior. The direct solution on the coarse level is still very expen-
sive, so iterative methods should be used to solve that system. Simple solvers like JOR still
expose the same problem on the coarse grid as on the fine grid, although the problem is not
as severe, since the smallest eigenvalue is larger on coarser grids. So we useγ iterations of
a twogrid method on the coarse grid again, to solve the defectequation. This is a consistent
application of the twogrid idea, leading to multigrid methods if applied recursively. On the
coarsest level reached, a direct solver is used to solve the system. This coarsest level may
contain one unknown only, so the direct solution on that system is computationally cheap.
The multigrid cycle can then be defined recursively

Definition 3.17 Let φ(k)
S be a linear iterative method with iteration matrixSk smoothing

the high frequencies. Letν1, ν2 ∈ N be the number of pre- and postsmoothing iterations
and letγ ∈ N be the number of multigrid cycles used to solve(3.7). Then the multigrid
cycle is defined as

φ
(0)
MGM(u0, f0) = L−1

0 f0

for k = 0 and

φ
(k)
MGM(uk, fk) = (φ

(k)
S )ν2((φ

(k)
S )ν1(uk, fk) + Ik

k−1((φ
(k−1)
MGM )γ(0, Ik−1

k (fk − Lkuk))), fk)

for k = 1, 2, . . . .

With the help of Lemma 3.2 we immediately obtain the recursive definition of the iteration
matrixMk of the multigrid cycle.

Mk =

{

0 for k = 0

Sν2

k (I − Ik
k−1(I − (Mk−1)

γ)L−1
k−1I

k−1
k Lk)S

ν1

k for k = 1, 2, . . .
.
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Given Definition 3.17 we can extend Algorithm 3.1 to Algorithm 3.2 for the multigrid
cycle.

Algorithm 3.2 Multigrid cycleuk ← φ
(k)
MGM(uk, fk)

uk ← (φ
(k)
S )ν1(uk, fk)

rk ← fk − Lkuk

rk−1 ← Ik−1
k rk

ek−1 ← 0

if k − 1 = 0 then
e0 ← L−1

0 r0

else
for i = 1 to γ do

ek−1 ← φ
(k−1)
MGM (ek−1, rk−1)

end for
end if
ek ← Ik

k−1ek−1

uk ← uk + ek

uk ← (φ
(k)
S )ν2(uk, fk)

V-cycles and W-cycles

Depending on how often we apply the twogrid cycle to solve thedefect equation (3.7),
we get different types of multigrid cycles. They are named according to the following
definition.

Definition 3.18 Depending on the numberγ of multigrid cycles recursively used to solve
the defect equation(3.7)on the coarse grid, the multigrid cycle is calledV-cycle, for γ = 1

or W-cycle for γ = 2. We denote the V-cycle multigrid operator byφ
(k)
V and the W-cycle

operator byφ(k)
W .

Computational complexity

We will now discuss the computational complexity of different values ofγ according to
[84], especially of the V- and the W-cycles. We will stick to our standard 2D problem, i.e.
we assume that the grid spacing is doubled on each level. Now we can derive the number
of arithmetical operations for each multigrid cycle. We define Wk to be the number of
arithmetical operations needed for a multigrid cycle starting on levelk. Further on we
defineW̃k to be the number of arithmetical operations needed on levelk, excluding the
solution of the defect equation using the recursive application of the multigrid cycle. Thus
we get

W1 = W̃1 + W0 Wk+1 = W̃k+1 + Wk, k = 1, 2, . . . .
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From that we obtain

Wk =
k−1∑

l=1

γk−lW̃l + γk−1W0 (3.9)

Again we letnk be the number of unknowns on levelk. Neglecting boundary effects we
have thatnk = 1

4
nk+1. For the work on each level excluding the solution of the defect

equation we havẽWk ≤ cnk, wherec is a small constant independent ofnk. So from (3.9)
we get

Wk =
k−1∑

l=1

γk−lW̃l + γk−1W0

≤
k−1∑

l=1

γk−l

(
1

4

)k−l

cnk + γk−1W0

= cnk

k−1∑

l=1

(γ

4

)l

+ γk−1W0

The last summand grows logarithmically with the number of unknowns on the finest grid,
the first summand is a geometric series, so we can subsume

Wk ≤







4
3
cnk +O(lognk) for γ = 1,

2cnk +O(log nk) for γ = 2,

4cnk +O(log nk) for γ = 3.

For γ = 4 the work on each level is constant, as the number of unknowns is quartered up
to boundary effects but we spend 4 cycles on each level, so theadvantage of quartering the
number of unknowns is lost. As the number of levels is an orderlog(nk)-term, we then
have a complexity ofO(nk lognk). We like to conclude mentioning that the computational
complexity depends on the reductionr of the number of unknowns going from levelk to
levelk − 1, on the complexityck per unknown, which may grow while going to a coarser
level, and on the number of recursive applications of multigrid cyclesγ. As longγrck < 1
we have linear complexity.

Convergence of the W-cycle

Now we have that the twogrid method converges and that one multigrid cycle is compu-
tationally optimal, it remains to show that a multigrid method converges where the con-
vergence rate is bounded from above by a bound that is independent of the number of
unknowns. A multigrid method can be interpreted as a twogridmethod, where the defect
equation (3.7) is solved only approximately. This approximate solution is calculated using
a multigrid method, which is an iterative method. Under the assumption, that the twogrid
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convergence rate is bounded for all grid spacings and that the involved prolongation, re-
striction and smoothing operators are bounded as well, we can derive that the multigrid
method converges uniformly forγ ≥ 2, i.e. that independent of the number of unknowns
the convergence rate is bounded from above.

Theorem 3.7 Let

‖Sν2
k TkS

ν1
k ‖∗ ≤ σ, ‖Sν2

k Ik
k−1‖∗‖L−1

k−1I
k−1
k LkS

ν1
k ‖∗ ≤ c

hold uniformly for all grid spacingsh for some norm‖·‖∗. Then the∗-norm of the iteration
matrixMk is bounded byηk, whereηk is defined recursively as

η0 = σ, ηk = σ + cηγ
k−1 (k = 1, 2, . . . ), (3.10)

wherec, σ > 0. For γ = 2 and
4cσ ≤ 1

the∗-norm of the iteration matrixMk is bounded from above by

‖Mk‖∗ ≤ η =
1

2c
(1−

√
1− 4cσ) ≤ 2σ,

so forσ < 1
2

the method converges with a uniformly bounded convergence rate.

Proof. First we show that the norm of the iteration matrix is bound byηk as defined in
(3.10). We have

‖Mk‖∗ = ‖Sν2
k (I − Ik

k−1(I −Mγ
k−1)L

−1
k−1I

k−1
k Lk)S

ν1
k ‖∗

= ‖Sν2

k (I − Ik
k−1L

−1
k−1I

k−1
k Lk)S

ν1

k + Sν2

k Ik
k−1M

γ
k−1L

−1
k−1I

k−1
k LkS

ν1

k ‖∗
≤ ‖Sν2

k (I − Ik
k−1L

−1
k−1I

k−1
k Lk)S

ν1
k ‖∗ + ‖Sν2

k Ik
k−1M

γ
k−1L

−1
k−1I

k−1
k LkS

ν1
k ‖∗

≤ ‖Sν2
k (I − Ik

k−1L
−1
k−1I

k−1
k Lk)S

ν1
k ‖∗ + ‖Sν2

k Ik
k−1‖∗‖Mγ

k−1‖∗‖L−1
k−1I

k−1
k LkS

ν1
k ‖∗

= σ + cηγ
k−1.

Now γ = 2 and forming the limit yieldsη = σ + cη2. So for4cσ ≤ 1 we have

η =
1

2c
(1−

√
1− 4cσ) =

1−
√

1− 4cσ

4cσ
2σ ≤ 2σ,

since

1− 4cσ ≤
√

1− 4cσ

⇔ 1−
√

1− 4cσ ≤ 4cσ

⇔ 1−
√

1− 4cσ

4cσ
≤ 1.
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Obviouslyη0 = σ ≤ (1−
√

1− 4cσ)/(2c). Assuming thatηk−1 ≤ (1−
√

1− 4cσ)/(2c)
we have

ηk ≤ σ + cη2
k−1

≤ σ + c

(
1−
√

1− 4cσ

2c

)2

= σ +
1

4c
(1− 2

√
1− 4cσ + 1− 4cσ)

=
1−
√

1− 4cσ

2c
.

So(1−
√

1− 4cσ)/(2c) is an upper bound for the convergence rate of the W-cycle.�

So under a few additional assumptions the convergence of themultigrid method is a conse-
quence of the convergence of the twogrid method. The convergence of the V-cycle requires
more advanced techniques of proof. As we will present an algebraic proof of the conver-
gence of the V-cycle later, for proofs that are more related to geometric multigrid we refer
to the work of Braess and Hackbusch [10] and to the book of Trottenberg, Oosterlee and
Schüller [84].

3.2.4 FAS and FAC

While multigrid methods originally have been developed forthe use of linear problems,
they have been adopted to non-linear problems as well. We will not deal with non-linear
problems here, but we need some ideas from the full approximate storage approach in
order to motivate a multigrid technique that efficiently solves problems with local grid
refinements. This will allow us to define a fast multigrid method for the solution of the
system resulting from the hierarchical grid refinement introduced in section 2.3.2. When
dealing with non-linear problems the solution of the defectequation (3.7) is not feasible,
as the correction carried out later directly depends on the linearity of the operator, i.e. we
make use of

u∗
k = L−1

k Lk(uk + (u∗
k − uk)) = uk + L−1

k (fk − Lkuk) = uk + L−1
k rk.

This is obviously not possible for the solution of non-linear problems. To avoid this, we
rather transfer the current approximation to the coarse level. We compute a new approxi-
mate solution on the coarse level using the restricted current approximation as a start value.
The right hand side is constructed as the sum of the current restricted fine level residual and
the operator applied to the restricted current fine level approximation. Then we subtract the
restricted fine level solution from the new coarse level solution in order to get a correction.
That correction is then transferred to the fine level and added to the current approximate
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solution on that level. That way we avoided using the linearity of the operator, nevertheless
the resulting method is equivalent to the unmodified multigrid cycle for linear operators.
So we define the full approximate storage cycle in accordanceto the multigrid cycle.

Definition 3.19 Let φ
(k)
S be an iterative method smoothing the high frequencies. Let

ν1, ν2 ∈ N be the number of pre- and postsmoothing iterations and letγ ∈ N be the
number of recursive calls used to solve the coarse level system. Then thefull approximate
storage cycleor FAS cycleis defined as

φ
(0)
FAS(u0, f0) = L−1

0 f0

for k = 0 and

φ
(k)
FAS(uk, fk) = (φ

(k)
S )ν2((φ

(k)
S )ν1(uk, fk) + Ik

k−1((φ
(2h)
FAS )γ(Ik−1

k (φ
(k)
S )ν1(uk, fk),

Ik−1
k (fk − Lkuk) + Lk−1I

k−1
k (φ

(k)
S )ν1(uk, fk))− Ik−1

k (φ
(k)
S )ν1(uk, fk)), fk)

for k = 1, 2, . . . .

The implementation can be found in Algorithm 3.3.

Algorithm 3.3 FAS cycleuk ← φ
(k)
FAS(uk, fk)

uk ← (φ
(k)
S )ν1(uk, fk)

dk ← fk − Lkuk

dk−1 ← Ik−1
k dk

uk−1 ← Ik−1
k uk

fk−1 ← dk−1 + Lk−1uk−1

vk−1 ← uk−1

if k − 1 = 0 then
v0 ← L−1

0 f0
else

for i = 1 to γ do
vk−1 ← φ

(2h)
FAS(vk−1, fk−1)

end for
end if
vk−1 ← vk−1 − uk−1

vk ← Ik
k−1vk−1

uk ← uk + vk

uk ← (φ
(k)
S )ν2(uk, fk)

In Section 2.3.2 we extended the hierarchical refined grid discretization for the solution
of the Poisson equation in free space. The multigrid method just developed is directly
applicable to solve the system. If that approach is chosen tosolve the system, on each level
the composite grid up to that level would have to be used. We notice that the parts that
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are not refined will not benefit a lot from the solution on a finerlevel, as they are already
treated properly on the lower levels. So we only apply the smoother on the finer levels to
that part of the grid that is discretized using the current finest grid size. The only remaining
question is then how to treat the correction. In the standardV-cycle the defect equation is
solved on the coarse level, so Dirichlet zero boundary conditions are used. This is not an
option as parts of the information on the current approximation is contained in the coarse
grid approximation, only. So we use the FAS cycle, i.e. we transfer our current residual
plus the discretized operator applied to our current approximation to the coarse level and
solve the system there. The correction is then formed as described above and our current
approximation is updated. This technique is an applicationof McCormick’s fast adaptive
composite grid method(FAC) [66, 65]. Washio and Oosterlee used themultilevel adaptive
technique(MLAT) by Brandt [11, 13] that involves high order interpolation constructed
from the discretization at the interface in their work [87].A more general approach to
adaptive multigrid methods can be found in the work of Rüde [68].

3.3 Algebraic Multigrid Theory for Structured Matrices

While geometric multigrid methods are easy to develop for problems arising from partial
differential equations with simple geometries, it can be very hard to generate a grid hierar-
chy for more complex geometries. The problem is to find coarser levels for the multigrid
method. While in most cases it is easy to provide a finer discretization for a given geometry
which is already discretized, it can be very hard to find a reasonable coarser discretization.
Therefore the problem on the coarsest level might still be too expensive to be solved di-
rectly. Another problem exists when geometry information is not available at all, which
might be the case if multigrid should be used as a black box solver, for example in a com-
mercial code, or when the underlying problem is not geometric at all. To tackle these
problems algebraic multigrid methods, or AMG methods for short, have been developed as
black box multigrid solvers. Unlike in geometric multigridmethods, in algebraic multigrid
methods the smoother is fixed and the coarsening process is fully automatic, i.e. given
a matrix the interpolation and restriction operators are constructed such that the resulting
method converges. Due to the construction of the coarser levels the algebraic multigrid
methods can be split into a setup phase and a solution phase. One of the main concerns by
AMG critics is the setup phase, as it can be quite expensive. Additionally, the coarse level
construction is hard to parallelize. Nevertheless AMG allows the use of multigrid methods
where it would not be possible at all to use a geometric multigrid method. The standard
algebraic multigrid theory is valid for M-matrices. Introductions to algebraic multigrid can
be found in the book chapter by Ruge and Stüben [69], in the appendix written by Stüben
[78] or in his reports [77, 76].

The rest of this section is structured as follows: We will first give an overview over the
convergence theory for hermitian positive definite problems. After that we will present
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some theory regarding the replacement of the Galerkin operator that has been developed
during the work leading to this thesis. Finally, we will present multigrid methods for
matrices from matrix algebras and the application of the newtheory to the circulant case.

3.3.1 Convergence theory for multigrid methods for hermitian posi-
tive definite problems

The following presentation of the convergence theory is similar to the one in the book
chapter of Ruge and Stüben [69], parts are clarified in the introduction of Stüben [78].
Their theory is based on the works of Brandt [14], Mandel [63], McCormick [64] and
others.

Basic definitions and results

While in the presentation of geometric multigrid methods wedenoted the matrices byL,
the right hand sides byf and the solutions byu as they are connected to partial differ-
ential equations, we will now useA, b andx, respectively, again to underline, that the
presented theory is not only applicable to problems resulting from the discretization of
partial differential equations, but rather applicable to classes of problems, where only the
algebraic properties of the associated system matrices areof interest. We are interested in
the solution of the system

Ax = b,

A ∈ Cn×n hermitian and positive definite andx,b ∈ Cn using a multigrid method. For
that purpose we assume that a sequence of systems of equations

Akxk = bk,

with the corresponding sequences of dimensions{nk}kmax
k=1, nk ∈ N, system matri-

ces {Ak}kmax
k=1, Ak ∈ Cnk×nk , hermitian and positive definite, right hand side vectors

{bk}kmax
k=1,bk ∈ Cnk and solution vectors{xk}kmax

k=1,xk ∈ Cnk exists, where

Akmax = A, xkmax = x, bkmax = b.

Furthermore we assume the existence of prolongation operators

Pk ∈ Cnk×nk−1, k = 1, . . . , kmax

and restriction operators

Rk ∈ Cnk−1×nk , k = 1, . . . , kmax.

Besides these transfer operators we letφk
S be a linear iterative method with iteration matrix

MS that is used as a smoother. In analogy to Definition 3.13 we define the coarse grid
correction.
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Definition 3.20 Let Ak ∈ Cnk×nk , Ak−1 ∈ Cnk−1×nk−1 be two system matrices, letPk ∈
Cnk×nk−1 be the prolongation operator from levelk − 1 to levelk and letRk ∈ Cnk−1×nk

be the restriction operator from levelk to levelk − 1. Then the coarse grid correction is
defined as

φ
(k)
CGC(xk,bk) = xk + PkA

−1
k−1Rk(bk − Akxk).

The iteration matrixTk is given by

Tk = I − PkA
−1
k−1RkAk. (3.11)

In the same fashion we define the twogrid method and the multigrid method on the basis
of Definition 3.14 and 3.17, respectively, depending on the definition of the coarse grid
correction just given.

Definition 3.21 Let φ
(k)
S be a linear iterative method that is used as a smoother and let

ν1, ν2 ∈ N be the number of presmoothing respectively postsmoothing iterations. Assume
that φ

(k)
CGC is the coarse grid correction. Then the twogrid cycle withν1 presmoothing

iterations andν2 postsmoothing iterations is given by

φ
(k)
TGM(xk,bk) = (φ

(k)
S )ν2(φ

(k)
CGC((φ

(k)
S )ν1(xk,bk),bk),bk).

Definition 3.22 Let φ
(k)
S be an iterative method used as a smoother. Letν1, ν2 ∈ N be

the number of pre- and postsmoothing iterations and letγ ∈ N be the number of multigrid
cycles used to solve the defect equation

Akek = rk.

Then the multigrid cycle is defined as

φ
(0)
MGM(x0,b0) = A−1

0 b0

for k = 0 and

φ
(k)
MGM(xk,bk) = (φ

(k)
S )ν2((φ

(k)
S )ν1(xk,bk) + Pk((φ

(k−1)
MGM )γ(0, Rk(bk − Akxk))),bk)

for k = 1, . . . , kmax.

In analogy to the Definition 3.15 and 3.16, we define the smoothing property and the ap-
proximation property. For that purpose we need an arbitrarynorm that has to be the same
in both definitions. That norm will be denoted by‖ · ‖∗. In the classical work of Ruge
and Stüben the energy norm with respect toAk diag(Ak)

−1Ak is used. Aricò and Donatelli
noted in [2] that this choice is not necessary, as long as the same norm is used in both
properties.
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Figure 3.3: Algebraically smooth error of a mixture of a differential equation in x-direction
and an integral equation in y-direction after application of 10 iteration of the JOR method
with ω = 4/5.

Definition 3.23 An iterative methodφ(k)
S with iteration matrixSk fulfills the smoothing

propertyif there exists anα > 0 such that for allek ∈ Cnk it holds

‖Skek‖2Ak
≤ ‖ek‖2Ak

− α‖ek‖2∗. (3.12)

We like to note that this definition of smoothness does not necessarily mean that an error
is geometrically smooth. As an example consider a problem similar to the model problem
that is discretized on the unit square and described by the stencil





1
−1 4 −1

1



 .

A plot of the error of the JOR-method after a couple of iterations can be be found in Figure
3.3. Although the error is smooth regarding the previous definition, it is geometrically
highly oscillatory, so we prefer to call the erroralgebraically smooth. An error that is
algebraically smooth fulfills the property that the∗-norm of the error is small compared to
theAk-norm. We now continue with the definition of the approximation property.

Definition 3.24 LetTk be the iteration matrix of the coarse grid correctionφ
(k)
CGC. If there

exists aβ for all ek ∈ Cnk such that

‖Tkek‖2Ak
≤ β‖ek‖2∗, (3.13)

thenφ
(k)
CGC fulfills theapproximation property.

Combining the smoothing and the approximation property yields the convergence of the
twogrid method using postsmoothing, only, as stated by the following lemma.
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Lemma 3.3 Letφ(k)
S be an iterative method with iteration matrixSk fulfilling the smooth-

ing property with some norm‖ · ‖∗ and letφ(k)
CGC be the coarse grid correction fulfilling the

approximation property using the same norm, denoting its iteration matrix byTk and let
Tk ≤Ak

I hold. Then we have

β ≥ α

and

‖SkTk‖2Ak
≤
√

1− α/β‖Tk‖2Ak
.

Proof.

‖SkTkek‖2Ak
≤ ‖Tkek‖2Ak

− α‖Tkek‖2∗
≤ ‖Tkek‖2Ak

− α/β‖T 2
k ek‖2Ak

≤ (1− α/β)‖ek‖2Ak

This provesβ ≥ α. �

So for
√

1− α/β < 1 we have a convergent twogrid method.

Variational property of the coarse grid correction using the Galerkin operator on the
coarser level

For the theoretical considerations we first consider the Galerkin operator as the operator on
the coarse grid, only. It is given by the following definition.

Definition 3.25 LetAk ∈ Cnk×nk be the system matrix of levelk, Pk the related projection
operator andRk the related restriction operator. Then we define theGalerkin operatoras

Ak−1 = RkAkPk.

In the following we are only treating hermitian matrices andwe define the projection to be
the adjoint of the restriction, i.e.

Pk = RH
k .

Methods using the Galerkin operator on the coarser level have some nice properties, since
due to the use of the Galerkin operator the iteration matrixTk of the coarse grid correction
is anAk-orthogonal projector.

Definition 3.26 Let A ∈ Cn×n be a hermitian positive definite matrix. Then a matrix
Q ∈ Cn×n is calledA-orthogonal projector, if Q is symmetric with respect to the scalar
product induced byA, i.e. for allx,y ∈ Cn we have

〈Qx,y〉A = xHQHAy = xAQy = 〈x, Qy〉A,

and ifQ2 = Q.

68



3.3. ALGEBRAIC MULTIGRID THEORY FOR STRUCTURED MATRICES

Tk with the Galerkin operator on the coarse level and the adjoint of the restriction operator
as prolongation operator is anAk-orthogonal projector.

Lemma 3.4 Let Ak ∈ Cnk×nk be an hermitian positive definite matrix. ThenTk as given
by (3.11)with the Galerkin operator on the coarse level and the adjoint of the restriction
operator as prolongation operator is anAk-orthogonal projector. Further we have

ran(I − Tk) = ran(Pk). (3.14)

Proof. Equation (3.14) is obvious for a projection having full rank. Regarding the first part
we have

T 2
k = (I − PkA

−1
k−1RkAk)

2

= I − PkA
−1
k−1RkAk − PkA

−1
k−1RkAk

+ PkA
−1
k−1RkAkPkA

−1
k−1RkAk

= I − PkA
−1
k−1RkAk − PkA

−1
k−1RkAk

+ PkA
−1
k−1RkAkPk(RkAkPk)

−1RkAk

= I − PkA
−1
k−1RkAk − PkA

−1
k−1RkAk + PkA

−1
k−1RkAk

= I − PkA
−1
k−1RkAk

= Tk.

Now for all x,y ∈ Cnk

xHTH
k Aky = xH(I − AkPkA

−1
k−1Rk)Aky

= xHAk(I − PkA
−1
k−1RkAk)y

= xHAkTky,

which completes the proof. �

We like to recall some properties of orthogonal projectors:

Lemma 3.5 Let A ∈ Cn×n be a hermitian positive definite matrix and letQ ∈ Cn×n be
anA-orthogonal projector. Then the following holds true:

1. ran(Q)⊥A ran(I −Q).

2. For all u ∈ ran(Q) and for allu ∈ ran(I −Q) it holds‖u + v‖2A = ‖u‖2A + ‖v‖2A.

3. ‖Q‖A = 1.

4. For all u ∈ Cn we have‖Qu‖2A = min
v∈ran(I−Q)

‖u− v‖2A.

Proof. The first statement holds, as for allu,v ∈ C we have

〈Qu, (I −Q)v〉A = 〈u, Q(I −Q)v〉A = 〈u, 0〉A = 0,
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the second statement is an immediate consequence of this observation. For the third state-
ment we have

‖Q‖2A = sup
u6=0

‖Qu‖2A
‖u‖2A

= sup
u6=0

‖Qu‖2A
‖Qu‖2A + ‖(I −Q)u‖2A

≤ 1.

Choosingu ∈ ran(Q) yields‖Q‖A = 1. For the last statement the following holds true:

min
v∈ran(I−Q)

‖u− v‖2A = min
v∈ran(I−Q)

‖Qu + (I −Q)u− v‖2A
= min

v∈ran(I−Q)
‖Qu− v‖2A

= min
v∈ran(I−Q)

(‖Qu‖2A + ‖v‖2A)

= ‖Qu‖2A.

�

A consequence of these basic properties of the coarse grid correction is that it fulfills a
variational property regardingran(Pk), i.e. minimizes theA-norm of the error with respect
to all variations inran(Pk), as due to the last statement of the previous lemma we have for
all ek ∈ Cnk

‖Tkek‖2Ak
= min

ek−1∈ran(Pk)
‖ek − ek−1‖2Ak

.

For methods involving the Galerkin operator on the coarse grid the Lemma 3.3 holds as
‖Tk‖Ak

= 1, so the two-grid method converges. We now carry over the convergence result
to the multigrid case.

Theorem 3.8 Let Tk be the coarse grid correction with iteration matrixTk, using the
Galerkin operatorAk−1 = RkAkPk on the coarser level and the adjoint of the restriction
as prolongation, i.e.Pk = RH

k . Now we assume a coarse grid correctionφ̄
(k)
CGC where we

solve the defect equation not directly, but rather with a linear iterative method

φ̄(k−1)(xk−1,bk−1) = M̄k−1xk−1 + N̄k−1xk−1,

using zero as start approximation and assume furthermore that

η̄ := ‖I − N̄k−1Ak−1‖Ak−1
< 1, (3.15)

that φ
(k)
S fulfills the smoothing property(3.12) and thatφ(k)

CGC fulfills the approximation
property (3.13). Then the (post-smoothing) two grid method using the modified coarse
grid correctionT̄k using the zero initial approximation, i.e.

T̄k = I − PkN̄k−1RkAk,
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converges with convergence factor of at mostmax{η̄,
√

1− δ}, i.e.

‖Sν2

k T̄kek‖Ak
≤ max{η̄,

√
1− δ}‖ek‖Ak

,

whereδ = α/β with α andβ from the smoothing and approximation property.

Proof. Given a fine level errorek we define the coarse level defects as

Ak−1dk−1 = RkAkek

respectively d̄k−1 = N̄k−1RkAkek.

Thus with (3.15) for the error of the approximate defect we can write

‖dk−1 − d̄k−1‖Ak−1
= ‖A−1

k−1RkAkek − N̄k−1RkAkek‖Ak−1

= ‖A−1
k−1RkAkek − N̄k−1Ak−1A

−1
k−1RkAkek‖Ak−1

= ‖(I − N̄k−1Ak−1)A
−1
k−1RkAkek‖Ak−1

≤ ‖I − N̄k−1Ak−1‖Ak−1
‖A−1

k−1RkAkek‖Ak−1

= η̄‖dk−1‖Ak−1

Now we may write for the error after a modified coarse grid correction step:

T̄kek = ek − Pkd̄k−1

= ek − Pkdk−1 + Pk(dk−1 − d̄k−1)

= Tkek + Pk(dk−1 − d̄k−1).

As ‖Pk · ‖Ak
= ‖ · ‖Ak−1

we can estimate‖Pk(dk−1 − d̄k−1)‖Ak
≤ η̄‖Pkdk−1‖Ak

. Using
theAk-orthogonality ofran(Tk) andran(Pk) we thus get:

‖T̄kek‖2Ak
= ‖Tke

k‖2Ak
+ ‖Pk(dk−1 − d̄k−1)‖2Ak

≤ ‖Tkek‖2Ak
+ η̄2‖Pkdk−1‖2Ak

.

So usingPkdk−1 = (I − Tk)ek together with theAk-orthogonality leads to

‖T̄kek‖2Ak
≤ ‖Tkek‖2Ak

+ η̄2(‖ek‖2Ak
− ‖Tkek‖2Ak).

Now we observe that

TkT̄k = (I − PkA
−1
k−1RkAk)(I − PkN̄k−1RkAk)

= I − PkNk−1RkAk − PkA
−1
k−1RkAk

+ PkA
−1
k−1RkAkPkNk−1RkAk

= I − PkA
−1
k−1RkAk

= Tk
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and that‖Tk‖Ak
= 1. Similar to the proof of Lemma 3.3 we now write

‖SkT̄kek‖2Ak
≤ ‖T̄kek‖2Ak

− α‖T̄kek‖2∗
≤ ‖T̄kek‖2Ak

− α/β‖TkT̄kek‖2Ak

≤ ‖Tkek‖2Ak
+ η̄2(‖ek‖2Ak

− ‖Tkek‖2Ak)− α/β‖Tkek‖2Ak

= (1− η̄2 − α/β)‖Tkek‖2Ak
+ η̄2‖ek‖2Ak

≤ max{(1− α/β), η̄2}‖ek‖2Ak

�

Recursive application of this theorem yields convergence of multigrid methods using the
Galerkin operator on the coarser levels. In that caseη is the convergence rate of the method
on the coarse level, thus the overall convergence rate is bounded by

√
1− δ, as on the

coarsest level the convergence rate is0.

3.3.2 Replacement of the Galerkin operator

Besides its nice properties, the Galerkin operator has one main downside. As it is essen-
tially formed by prolongating the residual to the fine level,applying the fine level operator
there and restricting the result back to the coarse level, its application can be very expen-
sive per unknown. As an example consider the following: Assume that the model problem
is discretized using the 5-point discretization from (2.15), yielding the stencil (2.16), i.e.

1

h2





1
1 −4 1

1



 .

Now we construct a twogrid method utilizing the full-weighting operator given in Defini-
tion 3.10 for restriction and using the bilinear interpolation from Definition 3.12 as prolon-
gation. Instead of rediscretizing the problem using the newgrid spacing2h, we now use
the Galerkin operator, yielding the following stencil representation on the coarse level

1

h2






1
16

1
8

1
16

1
8
−3

4
1
8

1
16

1
8

1
16




 .

So the Galerkin operator on the coarse level has nine entries, compared to five entries
on the fine level or using a coarse rediscretization. Numerical experiments show that the
convergence of the method using the Galerkin operator is sightly better than the use of
the rediscretization, but not enough to justify the additional cost. We like to emphasize

72



3.3. ALGEBRAIC MULTIGRID THEORY FOR STRUCTURED MATRICES

that this example is a best case scenario, as the drawback of the Galerkin operator will
be even more pronounced in higher dimensions or for stencilsinvolving more neighbors
than only the next ones. For unstructured grids the problem can get even worse, as after a
few levels we might end up with an operator that is not sparse anymore. For our purpose
we are interested in reducing the computational time for structured matrices, only. For
that purpose in the following we will present sufficient conditions for replacements of the
Galerkin operator on the coarse grid, presumably resembling the sparsity pattern of the
original matrix and the describing stencils, respectively.

We can subsume that we are interested in not using the Galerkin operatorAk−1 = RkAkR
H
k

on the coarse level but rather an approximationÂk−1. The convergence of the two grid
method stated by the following lemma is an immediate consequence of Theorem 3.8 above.

Lemma 3.6 Let Ak, Rk and Tk be defined as in Theorem 3.8 fulfilling the smoothing
property and the approximation property, cf. Definition 3.23 and Definition 3.24, and let
T̂ be defined as̄T in Theorem 3.8 witĥNk−1 = Â−1

k−1. Assume that

η := ‖I − Â−1
k−1Ak−1‖Ak−1

< 1.

Then the (post-smoothing) two grid method using the approximationÂk−1 of the Galerkin
operator converges with a convergence bounded from above bymax{η,

√
1− δ}.

As a consequence, in order to optimize the twogrid method we have to minimize

η = ‖I − Â−1
k−1Ak−1‖Ak−1

= ‖A
1
2
k−1(I − Â−1

k−1Ak−1)‖2.

under appropriate restriction given, for example, by a sparsity pattern imposed on̂Ak−1.
For application of the method we are interested in multigridconvergence rather than in
twogrid convergence. Thus we need to analyze the convergence if the altered system is not
solved directly but rather by a multigrid method itself, i.ewe solve

Âk−1dk−1 = RkA + kek (3.16)

using the multigrid method, which is the iterative methodφ̃ given by

φ̃k−1(xk−1,bk−1) = M̃k−1xk−1 + Ñk−1bk−1

with initial zero approximation, i.e. we usẽNk−1 as an approximate inverse ofÂk−1, which
itself is an approximation ofA−1

k−1. Assume that

η̂ := ‖I − Â−1
k−1Ak−1‖Ak−1

< 1

and that the iterative method̃φk−1 used to solve the modified defect equation converges
with a convergence rate of at mostη̃ in theÂk−1-norm. More precisely, assume that

η̃ := µ‖I − Ñk−1Âk−1‖Âk−1
< 1,
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whereµ > 0 is the constant of the upper bound of theAk−1-norm in terms of theÂk−1-
norm, i.e.

‖B‖Ak−1
≤ µ‖B‖Âk−1

,

which exists due to the equivalence of norms. Since we want toapply Theorem 3.8 we
only analyze‖I − Ñk−1Ak−1‖Ak−1

. We have

‖I − Ñk−1Ak−1‖Ak−1
= ‖I − Ñk−1Âk−1Â

−1
k−1Ak−1‖Ak−1

= ‖(I − Ñk−1Âk−1)Â
−1
k−1Ak−1 + (I − Â−1

k−1Ak−1)‖Ak−1

≤ ‖I − Ñk−1Âk−1‖Ak−1
‖Â−1

k−1Ak−1‖Ak−1
+ ‖I − Â−1

k−1Ak−1)‖Ak−1

≤ µ‖I − Ñk−1Âk−1‖Âk−1
‖Â−1

k−1Ak−1‖Ak−1
+ ‖I − Â−1

k−1Ak−1)‖Ak−1

≤ η̃‖Â−1
k−1Ak−1‖Ak−1

+ η̂

This is smaller than 1 if

‖Â−1
k−1Ak−1‖Ak−1

≤ 1− η̂

η̃
,

which can always be fulfilled if̂Ak−1 is sufficiently close toAk−1, because then̂η → 0 as
‖Â−1

k−1Ak−1‖Ak−1
→ 1. For uniform multigrid convergence we need more, namely

‖I − Ñk−1Ak−1‖Ak−1
≤ max{η̃,

√
1− δ}. (3.17)

So we would have to impose

η̃‖Â−1
k−1Ak−1‖Ak−1

+ η̂ ≤ η̃

⇔ η̂ ≤ (1− ‖Â−1
k−1Ak−1‖Ak−1

)η̃.

Now two cases are possible.

1. ‖Â−1
k−1Ak−1‖Ak−1

< 1. That implies that1 − ‖Â−1
k−1Ak−1‖Ak−1

= η̂, thus we would
requireη̂ ≤ η̂η̃, which is true only for̃η ≥ 1. So we would have no convergence.

2. ‖Â−1
k−1Ak−1‖Ak−1

> 1. This implies0 < η̂ ≤ αη̃, whereα = 1−‖Â−1
k−1Ak−1‖Ak−1

<
0, soη̃ < 0 as well, which is not admissible.

So we conclude that this approach is not feasible to show the desired result: Rewriting the
modified method in a way that allows us to split it into one partdescribing the approxi-
mation of the Galerkin operator and another part describingthe approximate solution of
the modified coarse grid correction using the triangle inequality prohibits to prove uniform
convergence. So we have to alter Ruge’s and Stüben’s theorem in order to allow us to
prove uniform convergence in the case that an alternative coarse grid operator is used and
the defect equation is solved approximately, only.

For that purpose we show two auxiliary results that will allow us to formulate a convergence
theorem that is closely related to Ruge’s and Stüben’s Theorem 3.1 in [69].
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Lemma 3.7 Let T̂k = I − PkÂ
−1
k−1RkAk, with Âk−1 ∈ Cnk−1×nk−1 and Ak ∈ Cnk×nk

symmetric and positive definite,Pk = RH
k ∈ Cnk×nk−1 being a full rank prolongation and

Rk ∈ Cnk−1×nk a full rank restriction. Assume that

0 ≤Ak
T̂k ≤Ak

I

Then for alle ∈ Cnk we have

‖Pkd̂k−1‖2Ak
≤ ‖ek‖2Ak

− ‖T̂kek‖2Ak
,

whered̂k−1 is the solution of the linear system̂A−1
k−1d̂k−1 = RkAkek.

Proof. As T̂k ≤Ak
I and as

AkT̂k = Ak(I − RH
k A−1

k−1RkAk) = (I −AkR
H
k A−1

k−1Rk)Ak = T̂H
k Ak,

we have
T̂ 2

k − T̂k ≤ 0⇔ AkT̂
2
k − AkT̂k ≤ 0⇔ T̂H

k AkT̂k −AkT̂k ≤ 0.

Now we can write

‖RH
k d̂k−1‖2Ak

= ‖ek − T̂kek‖2Ak

= 〈Ak(ek − T̂kek), (ek − T̂kek)〉
= 〈Akek, ek〉 − 〈Akek, T̂kek〉 − 〈AkT̂kek, ek〉+ 〈AkT̂kek, T̂kek〉
= 〈Akek, ek〉 − 〈AkT̂kek, T̂ke〉+ 2〈AkT̂kek, T̂kek〉
− 〈Akek, T̂ek〉 − 〈AkT̂kek, ek〉

= 〈Akek, ek〉 − 〈AkT̂ke, T̂kek〉+ 2〈AT̂kek, T̂kek〉
− 〈T̂H

k Akek, ek〉 − 〈AkT̂kek, ek〉
= ‖ek‖2Ak

− ‖T̂kek‖2Ak
+ 2(〈T̂H

k AkT̂kek, ek〉 − 〈AkT̂kek, ek〉)
= ‖ek‖2Ak

− ‖T̂kek‖2Ak
+ 2〈(T̂H

k AkT̂k −AT̂k)
︸ ︷︷ ︸

≤0

ek, ek〉

≤ ‖ek‖2Ak
− ‖T̂kek‖2Ak

.

�

As before, we assume that we do not solve the coarse grid equation

Âk−1dk−1 = RkAkek

directly but by an iterative method with iteration matrixI − Ñk−1Âk−1, yielding another
approximate coarse grid correctioñTk given by

T̃k = I − RH
k Ñk−1RkAk.
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We assume that the iterative method converges with a convergence rate of at most̃η < 1
measured in thêAk−1-norm, i.e.‖Ik−1 − Ñk−1Âk−1‖Âk−1

≤ η̃. We define

d̃k = Ñk−1RkAkek.

The second auxiliary result seems to be a little bit unhandy.We need a feature of the
kernels of matrix products in order to show that we can estimate the square of the norm of
the modified coarse grid correction times some error plus theprolongation of the difference
of the defects using the modified defect equation and its approximation by the sum of the
norm of both plus a bit more of the coarse grid correction times the error. Nevertheless we
will see later on, that we are able to fulfill this prerequisite at least in the case of circulant
matrices.

Lemma 3.8 Let T̂k = I − PkÂ
−1
k−1RkAk, T̃k = I − PkÑkRkAk with Â−1

k−1 ∈ Cnk−1×nk−1,
Ñk−1 ∈ Cnk−1×nk−1 andAnk×nk

k symmetric and positive definite,Pk ∈ Cnk−1×nk being a
full rank prolongation andRk ∈ Cnk×nk−1 a full rank restriction. Assume that

ker(T̂H
k AkT̂k) ⊂ ker((T̃k − T̂k)

HAkT̂k + T̂H
k Ak(T̃k − T̂k)).

Then

λk := min
ek∈C

nk

〈((T̃k − T̂k)
HAkT̂k + T̂H

k Ak(T̃k − T̂k))ek, ek〉
〈T̂H

k AkT̂kek, ek〉
exists, and for allek ∈ Cnk the following holds true:

‖T̂kek + Pk(d̂k−1 − d̃k−1)‖2Ak
≤ (1 + λk)‖T̂kek‖2Ak

+ ‖Pk(d̂k−1 − d̃k−1)‖2Ak
.

Proof. Under the lemma’s assumption both(T̃k−T̂k)
HAkT̂k+T̂H

k Ak(T̃k−T̂ ) andT̂H
k AkT̂k

are symmetric and positive definite linear mappings on the quotient spaceCnk\ ker((T̃k −
T̂k)

HAkT̂k + T̂H
k Ak(T̃k − T̂k)), so they induce norms on that space that are given by

‖ · ‖(T̃k−T̂k)HAkT̂k+T̂ H
k

Ak(T̃k−T̂k) = 〈((T̃k − T̂k)
HAkT̂k + T̂H

k Ak(T̃k − T̂k))·, ·〉
1
2 ,

‖ · ‖T̂ H
k

Ak
= 〈T̂H

k Ak·, ·〉
1
2 .

Due to the equivalence of norms we can estimate

〈((T̃k − T̂k)
HAkT̂k + T̂H

k Ak(T̃k − T̂k))·, ·〉 ≤ λk〈T̂H
k Ak·, ·〉,

where we choseλk to be the minimumλk which fulfills this estimate. Now we have:

Pk(d̂k−1 − d̃k−1) = (PkÂ
−1
k−1RkAk − PkÑk−1RkAk)ek = (T̃k − T̂k)ek.
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So we can write:

‖T̂kek + Pk(d̂k−1 − d̃k−1)‖2Ak

= ‖(T̂k + (T̃k − T̂k))ek‖2Ak

= 〈Ak(T̂k + (T̃k − T̂k))ek, (T̂k + (T̃k − T̂k))ek〉
= 〈AkT̂kek, T̂kek〉+ 〈Ak(T̃k − T̂k)ek, (T̃k − T̂k)ek〉+
〈AkT̂ke, (T̃k − T̂k)ek〉+ 〈Ak(T̃k − T̂k)ek, T̂kek〉

= ‖T̂kek‖2Ak
+ ‖(T̃k − T̂k)ek‖2Ak

+

〈(T̃k − T̂k)
HAkT̂kek, ek〉+ 〈T̂H

k Ak(T̃k − T̂k)ek, ek〉
= ‖T̂kek‖2Ak

+ ‖Pk(d̂k−1 − d̃k−1)‖2Ak
+

〈((T̃k − T̂k)
HAkT̂k + T̂H

k Ak(T̃k − T̂k))ek, ek〉
≤ ‖T̂kek‖2Ak

+ ‖Pk(d̂k−1 − d̃k−1)‖2Ak
+ λk〈T̂H

k AkT̂kek, ek〉
= ‖T̂kek‖2Ak

+ ‖Pk(d̂k−1 − d̃k−1)‖2Ak
+ λk‖T̂kek‖2Ak

= (1 + λk)‖T̂kek‖2Ak
+ ‖Pk(d̂k−1 − d̃k−1)‖2Ak

.

�

Now we can show the convergence of the modified multigrid method not using a Galerkin
coarse grid operator but rather an approximation to it and solving the coarse grid defect
equation using that approximation with the help of an iterative method.

Theorem 3.9 Let T̂k = I − PkÂ
−1
k−1RkAk, T̃k = I − PkÑkRkAk, with Ak ∈ Cnk×nk and

Âk−1 ∈ Cnk−1×nk−1 both symmetric and positive definite,Pk = RH
k ∈ Cnk×nk−1 being a

full rank prolongation andRk ∈ Cnk−1×nk a full rank restriction. LetÑk−1 ∈ Cnk−1×nk−1

be a symmetric and positive definite matrix defined by a lineariterative method given by

φ̃k−1(xk−1,bk−1) = M̃k−1xk−1 + Ñk−1bk−1

converging with a convergence rate of at mostη̃k−1 given by

η̃k−1 := ‖I − Ñk−1Âk−1‖Âk−1
< 1.

Further let the linear iterative methodφ(k)
S with iteration matrixSk used as smoother fulfill

the smoothing property(3.12)and letT̂k fulfill the approximation property(3.13), i.e.

‖T̂kek‖2Ak
≤ β̂k‖ek‖2∗

Let

0 ≤Ak
T̂k ≤Ak

I,

Âk−1 ≥ RkAkPk,

ker(T̂H
k AkT̂k) ⊂ ker((T̃k − T̂k)

HAkT̂k + T̂H
k Ak(T̃k − T̂k))
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and chooseλk such that

λk := min
ek∈C

nk

〈((T̃k − T̂k)
HAkT̂k + T̂H

k Ak(T̃k − T̂k))ek, ek〉
〈T̂H

k AkT̂kek, ek〉
andµk such that

µk = min
ek∈Cnk

‖T̃kek‖2∗
‖T̂kek‖2∗

Under the assumptions that
√

(1 + λk)− α̂k/β̂k < 1,

whereα̂k := µkαk, the (post-smoothing) two grid method using the modified coarse grid
correction and solving the coarse grid defect correction using the iterative method con-
verges with convergence factor of at most

max

{

η̃k−1,

√

(1 + λk)− αk/β̂k

}

,

i.e.

‖Sν2T̃kek‖Ak
≤ max

{

η̃k−1,

√

(1 + λk)− αk/β̂k

}

‖ek‖Ak
for all ek ∈ Cnk .

Proof. Combining the smoothing property (3.12) with (3.13) yields

‖Sν2
k ek‖2Ak

≤ ‖ek‖2Ak
− αk

β̂k

‖T̂kek‖2A (3.18)

for all ek ∈ Cnk . For the error of the approximate defect we can write

‖d̂k−1 − d̃k−1‖Ak−1
= ‖Â−1

k−1RkAkek − Ñk−1RkAkek‖Ak−1

= ‖Â−1
k−1RkAkek − Ñk−1Âk−1Â

−1
k−1RkAkek‖Ak−1

= ‖(I − Ñk−1Âk−1)Â
−1
k−1RkAkek‖Ak−1

≤ ‖I − Ñk−1Âk−1‖Ak−1
‖Â−1

k−1RkAkek‖Ak−1

≤ ‖I − Ñk−1Âk−1‖Âk−1
‖Â−1

k−1RkAkek‖Ak−1

≤ η̃k−1‖d̂k−1‖Ak−1
.

Now we may write for the error after an approximate modified coarse grid correction step:

T̃kek = ek − RH
k d̃k−1

= ek − RH
k d̂k−1 + RH

k (d̂k−1 − d̃k−1)

= T̂kek + RH
k (d̂k−1 − d̃k−1).
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As ‖RH
k · ‖Ak

= ‖ · ‖Ak−1
we can estimate‖RH

k (d̂k−1− d̃k−1)‖Ak
≤ η̃k−1‖RH

k d̂k−1‖Ak
and

combined with Lemma 3.8 we get

‖T̃kek‖2Ak
= ‖T̂kek + RH

k (d̂k−1 − d̃k−1)‖2Ak

≤ (1 + λk)‖T̂kek‖2Ak
+ ‖RH

k (d̂k−1 − d̃k−1)‖2Ak

≤ (1 + λk)‖T̂kek‖2Ak
+ η̃2

k−1‖RH
k d̂k−1‖2Ak

.

So with Lemma 3.7 we have

‖T̃kek‖2Ak
≤ (1 + λk)‖T̂kek‖2Ak

+ η̃2
k−1(‖ek‖2Ak

− ‖T̂kek‖2Ak
).

Overall, with (3.18) we get:

‖Sν2

k T̃kek‖2Ak
≤ ‖T̃kek‖2Ak

− αk‖T̃kek‖2∗
≤ ‖T̃kek‖2Ak

− αkµk‖T̂kek‖2∗
≤ ‖T̃kek‖2Ak

− α̂k‖T̂kek‖2∗
≤ ‖T̃kek‖2Ak

− α̂k/β̂k‖T̂kek‖2Ak

≤ ((1 + λk)− α̂k/β̂k − η̃2
k−1)‖T̂kek‖2Ak

+ η̃2
k−1‖ek‖2Ak

≤ max{((1 + λk)− α̂k/β̂k), η̃
2
k−1}‖ek‖2A.

�

We like to emphasize, that both,λk andµk depend oñTk and can be very large and small,
respectively. So for a detailed analysis of a multigrid method both require further investi-
gation.

By recursive application we immediately obtain the following result.

Theorem 3.10 Let φ
(kmax)
MGM be a multigrid method whereTk and Ak−1, k = 1, . . . , kmax

fulfill the requirements of Theorem 3.9. Then the convergence rate ofφ(kmax)
MGM is bounded

from above by

max
k=1,...,kmax

{

max

{

η̃,

√

(1 + λk)− α̂k/β̂k

}}

< 1.

It remains to note that the degradation of the performance ofthe multigrid method using
a replacement of the Galerkin operator depends on how much worse the approximation
property (3.13) is fulfilled byT̂k compared toTk and on the size ofλk, which should be
very small and almost negligible.

We will close this section with a lemma providing an alternative requirement implying
0 ≤Ak

T̂k ≤Ak
I.
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Lemma 3.9 Let T̂k = I − PkÂ
−1
k−1RkAk, Ak ∈ Cnk×nk and Âk−1 ∈ Cnk−1×nk−1 both

symmetric and positive definite,Pk = RH
k ∈ Cnk×nk−1 being a full rank prolongation and

Rk ∈ Cnk−1×nk a full rank restriction. If

Âk−1 ≥ Ak−1,

then we also have
0 ≤Ak

T̂k ≤Ak
I.

Proof. Let Tk,2 = I −A
1
2
k RH

k A−1
k−1RkA

1
2
k andT̂k,2 = I −A

1
2
k RH

k Â−1
k−1RkA

1
2
k . Then we have

0 ≤Ak
T̂k ≤Ak

I

⇔ 0 ≤ I −A
1
2
k RH

k Â−1
k−1RkA

1
2
k ≤ I

⇔ 0 ≤ T̂k,2 ≤ I.

Now we can write

T̂k,2 = T̂k,2Tk,2 + T̂k,2(I − Tk,2)

= Tk,2 + T̂k,2(I − Tk,2)

= Tk,2 + (I − A
1
2
k RH

k Â−1
k−1RkA

1
2
k )(A

1
2
k RH

k A−1
k−1RkA

1
2
k )

= Tk,2 + (A
1
2
k RH

k A−1
k−1RkA

1
2
k −A

1
2
k RH

k Â−1
k−1RkAkR

H
k A−1

k−1Rk)

= Tk,2 + A
1
2
k RH

k (A−1
k−1 − Â−1

k−1)RkA
1
2
k .

As Tk,2 is the orthogonal projector onto the complement ofA
1
2
k RH

k and as the range of

A
1
2

k RH
k (A−1

k−1 − Â−1
k−1)RkA

1
2

k is a subset of the range ofA
1
2

k RH
k we obtain that all vectors

belonging to the orthogonal complement ofA
1
2
k RH

k are mapped to itself, so we only have
to show that

0 ≤ A
1
2
k RH

k (A−1
k−1 − Â−1

k−1)RkA
1
2
k ≤ I. (3.19)

FromÂk−1 ≥ Ak−1 we immediately obtain the first part of the inequality. Furthermore we

obtain thatA
1
2
k RH

k (A−1
k−1 − Â−1

k−1)RkA
1
2
k is positive definite and that

A
1
2
k RH

k (A−1
k−1 − Â−1

k−1)RkA
1
2
k ≤ A

1
2
k RH

k A−1
k−1RkA

1
2
k .

Choosing an arbitraryx ∈ ran (A
1
2
k RH

k ) there exists ay such thatx = A
1
2
k RH

k y and we get

A
1
2
k RH

k A−1
k−1RkA

1
2
k x = A

1
2
k RH

k A−1
k−1RkA

1
2
k A

1
2
k RH

k y = A
1
2
k RH

k y = x,

yielding the second part of inequality 3.19. �
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3.3.3 Application to circulant matrices

In the following we will discuss multigrid methods for circulant matrices. As circulant
matrices form a matrix algebra, they are relatively easy to analyze. Nevertheless they are an
important class of matrices, as they occur in various problems, i.e. when solving discretized
partial differential equations with constant coefficientsor integral equations on the torus.
Further on they are prototypes for the analysis of Toeplitz matrices, as the spectrum of
both is asymptotically equal and they serve well for the analysis of non-constant coefficient
problems, as well. A review covering both circulant and Toeplitz matrices has been written
by Gray [44].

The development of multigrid methods for circulant matrices is based on the theory for
Toeplitz matrices. The idea is to apply the algebraic multigrid theory that was presented
before to Toeplitz or circulant matrices and to construct prolongation and restriction such
that the resulting matrices on the coarser levels still belong to the same class of matrices.
This methodology goes back at least to Fiorentino and Serra who published first results
for banded symmetric Toeplitz matrices which arise in the discretization of partial differ-
ential equation in [32] and in [34] and extended their theoryto the indefinite case in [33].
They provided the basis of the theory to be presented later on, namely the choice of the re-
striction and prolongation operator and the application ofthe algebraic multigrid theory to
structured problems we presented in the previous section. These works were continued by
Sun, Chan and Chang in [79]. Chan, Chang and Sun published results on ill-conditioned
Toeplitz systems in [17]. Their theory is similar to the theory presented in the works of
Fiorentino and Serra, but they use a different interpolation operator. In [80] Sun, Jin and
Chang extended the theory to cover ill-conditioned block Toeplitz systems as well. While
the theory for Toeplitz matrices usesτ -matrices as a theoretical foundation, in [74, 73]
Serra Capizzano and Tablino-Possio presented first resultsfor the application of the theory
to circulant matrices. Aricò, Donatelli and Serra-Capizzano provided a proof of the opti-
mality of the V-cycle in the unilevel case in [3], further details and applications of these
theoretical results and a general overview can be found in the PhD thesis of Aricò [1] and
in the one of Donatelli [22]. In [2] they provided an extension to the multilevel case.

We now start with a brief introduction of circulant matricesand some of their properties.

3.3.4 Circulant matrices

Circulant matrices are a special class of structured matrices, that are given by the following
definition.

Definition 3.27 Letf : [−π, π)→ C be a univariate2π-periodic function and let

(Fn)n−1
j,k=0 with (Fn)j,k =

1√
n

e−2πi jk
n
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be the Fourier matrix of dimensionn× n. The matrixA ∈ Cn×n given by

A = A(f) = Fn diag
(
(f(2πj/n))n−1

j=0

)
F H

n

is called acirculant matrix, the functionf is called thegenerating symbol ofC.

Circulant matrices are diagonalized by the orthogonal Fourier matrix, the rows of the
Fourier matrix are the eigenvectors of circulant matrices.Due to the simultaneous diag-
onalizability they form a commutative matrix algebra. The multiplication of vectors with
circulant matrices and the solution of linear systems with circulant coefficient matrix can be
carried out inO(n log n) operations using the FFT. The concept of circulant matricescan
also be transferred to multiple levels, i.e. multivariate generating symbols and Kronecker
products of Fourier matrices.

Definition 3.28 Letf : [−π, π)d → C be ad-variate periodic function defined on[−π, π)d.
Let

Fn =
1√

n1n2 · · ·nd

(

e−ik·w
[n]
j

)

j,k∈In

.

be thed-levelFourier matrix, where the vectorw[n] is a sampling of the domain off , i.e.

w
[n]
j =

(
2πj1

n1
, . . . ,

2πjd

nd

)

,

andIn = {0, . . . , n1 − 1} × · · · × {0, . . . , nd − 1} is the set of multi-indices. Then

A = A(f) := FnDiag(f(w[n]))F H
n

is thed-level circulant matrix with generating symbolf .

All the properties of the unilevel circulant matrix can be transferred to the multilevel case
using tensorial arguments. In the following, we will discuss the unilevel case, only where
the transfer to the multilevel case gets more involved, we will explicitly switch to that case.

3.3.5 Multigrid methods for circulant matrices

Although there already exist fastO(n log n) algorithms for circulant matrices, we are inter-
ested in multigrid methods for those matrices, as the multiplication with banded circulant
matrices is even cheaper, namely it can be done withO(n) operations. In the construction
of multigrid methods for circulant matrices the zeros of thegenerating symbols play an
important role. As the eigenvalues of the circulant matrices are given by a sampling of the
generating symbol, these circulant matrices are at least asymptotically ill-conditioned and
may get singular at some point. A singularity can be handled at least theoretically, c.f. [86],
by a rank one correction, a technique Aricò and Donatelli [2] refer to asStrang correction.
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Definition 3.29 (Strang correction) LetA(f) be a circulant matrix with generating sym-
bol f ≥ 0 and letf have a single zero atx0 = 2πj0/n, j0 ∈ N. Then the modification of
the system by using

f+(x) =

{

f(x) for x 6= x0

δ for x = x0

,

δ > 0, as generating symbol, resulting in the altered matrix

A(f+) = A(f) + δ(Fn)H
j=j0,k=0,...,n−1(Fn)j=j0,k=0,...,n−1

is calledStrang correction.

This modification still solves the original system, at leastif the right hand side does not
have components that are collinear to the eigenvector belonging to the originally zero
eigenvalue. It does keep the ill-conditioning of the system, so iterative methods like Ja-
cobi or Richardson will fail. Like in the geometric case multigrid methods do not share
this downside. The Strang correction approach might be chosen for more than one isolated
zero. For methods dealing with generating symbols with zerocurves, we refer to the PhD
thesis of Fischer [35]. For the definition of multigrid methods for circulant matrices we
restrict ourselves to the casen = 2kmax, kmax ∈ N. The extension to other factors than2
is straightforward. So we define the number of unknownsnk on levelk asnk = 2k, in
the multilevel case we do the same for each direction. For thedefinition of the restriction
operator, we need the cutting matrixKnk

, given by

Knk
=








1 0
1 0

. . . . . .
1 0







∈ Cnk×

nk
2 ,

the multilevel equivalent is given byKnk
= K(nk)1⊗· · ·⊗K(nk)d

. The restriction operator
itself is defined asKnk

A(pk), wherepk is a trigonometric polynomial. Assuming that the
generating symbolfk of Ak has a unique zerox0 the symbolpk is chosen such that the
limit

lim sup
x→x0

∣
∣
∣
∣

pk(x + π)

fk(x)

∣
∣
∣
∣

exists. Further for the prolongation to have full rank we demand for allx ∈ [−π, π) that
p(x) + p(x + π) > 0. In the multilevel case, i.e. for a unique zerox0, the symbolpj is
chosen that the limit

lim sup
x→x0

∣
∣
∣
∣

pj(y)

fj(x)

∣
∣
∣
∣

exists for all pointsy ∈ {z | zj ∈ {x0j
, x0j

+ π}}\{x0} and such that the sum of the value
of p over allmirror points, i.e. the pointsy ∈ {z | zj ∈ {x0j

, x0j
+π}}, is larger than zero.
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Now for a zerox0 in accordance to [74] we considerx̂ = x0 + π if x0 < π or x̂ = x0 − π
otherwise, and we set the generating symbol of the restriction to

p(x) = (2− 2 cos(x− x̂))⌈β/2⌉,

with

β ≥ min
{

i
∣
∣
∣ lim

x→x0

|x− x0|2i

f(x)
<∞

}

.

Using the transpose of the restriction as prolongation these choices assure, that the Galerkin
operator still has only one zero, see [2]. Serra-Capizzano and Tablino-Possio showed in
[74] that using these choices the coarse grid correction operator fulfills the approximation
property. They have also shown that the Richardson iteration fulfills the smoothing prop-
erty for the circulant matrices under consideration. In contrast to their work, which is based
on the use of theAk diag(Ak)

−1Ak-norm for both, the approximation and the smoothing
property, like Ruge and Stüben did in their introduction [69], in [2] Aricò and Donatelli
used theA2 norm for the same purpose, which in our opinion makes the proof a little bit
more elegant. Besides this difference, they have also shownthe uniform convergence of the
multigrid method by analyzing the series of generating symbols of the Galerkin operators,
something that is missing in the previous works of Serra and his colleagues. For details of
these proofs we refer to their paper [2]. We will use their approach to show that a modified
coarse grid correction still possesses the approximation property.

3.3.6 Replacement of the Galerkin operator for circulant matrices

We want to replace the Galerkin operator by some operator that is similar to it. For our
purpose we demand from this replacing operatorÂk−1 that it is spectrally larger than the
Galerkin operatorRkAkPk, but we want it to be bound by an upper boundedΛ times the
Galerkin operator, i.e. we want to have

RkAkR
H
k ≤ Âk−1 ≤ ΛRkAkR

H
k . (3.20)

Further on we demand̂Ak−1’s generating symbol and the generating symbol ofRkAkR
H
k to

have only one zero, that is common. To simplify our theoretical considerations, we require
the approximation to satisfy a little more, namely for someε > 0 we want to have

(1 + ε)RkAkPk ≤ Âk−1 ≤ ΛRkAkR
H
k . (3.21)

We express both requirements in terms of the generating symbols, the proof is a direct
consequence of the properties of the generating symbols.

Lemma 3.10 Let fk−1 be the generating symbol ofAk−1 = RkAkR
H
k and letf̂k−1 be the

generating symbol of̂Ak−1 and assume that for someε > 0 and someΛ > 1 we have

(1 + ε)fk−1 ≤ f̂k−1 ≤ Λfk−1.

Then we have(3.20)and (3.21).
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Now we have to show four presumptions in order to be able to apply Theorem 3.9, namely

1. ‖T̂kek‖2Ak
≤ β̂‖ek‖2∗,

2. 0 ≤Ak
T̂k ≤Ak

I,

3. ker(T̂H
k AkT̂k) ⊂ ker((T̃k − T̂k)

HAkT̂k + T̂H
k Ak(T̃k − T̂k)).

We will now show these prerequisites. The second is fulfilledby the requirements stated
above and Lemma 3.9. Now we have to show the remaining two items. We start with the
first one, the proof is similar to the proof of the approximation property of the coarse grid
correction involving the Galerkin operator by Aricò and Donatelli in [2].

Theorem 3.11 For a fixed levelk let fk be the generating symbol of the matrixAk, fk−1

be the generating symbol ofAk−1 = RkAkR
H
k and let f̂k−1 be the generating symbol of

the matrixÂk−1. Assume thatfk−1 ≤ f̂k−1 ≤ Λfk−1 and that the generating symbolpk

defining the restriction fulfills the conditions

lim sup
x→x0

∣
∣
∣
∣

pk(y)

fk(x)

∣
∣
∣
∣
<∞ for all y ∈ Ω(x0)\{x0} and (3.22)

∑

y∈Ω(x)

p2
k(y) > 0 for all x ∈ [−π, π)d, (3.23)

where
Ω(x) := {z | zl ∈ {xl, xl + π}}.

Then there exists a constantβ̂, depending only onp, f andΛ, such that

||T̂kek||2Ak
≤ β̂||ej||2A2

k
. (3.24)

Proof. Equation (3.24) can equivalently be formulated as

T̂H
k AkT̂k ≤ β̂A2

k.

Now,

T̂H
k AkT̂k = (I − RH

k Â−1
k−1RkAk)

HAk(I − RH
k Â−1

k−1RkAk)

= (I − AkR
H
k Â−1

k−1Rk)(Ak − AkR
H
k Â−1

k−1RkAk)

= Ak − AkR
H
k Â−1

k−1RkAk − AkR
H
k Â−1

k−1RkAk + AkR
H
k Â−1

k−1 RkAkR
H
k

︸ ︷︷ ︸

≤Âk−1

Â−1
k−1RkAk

≤ Ak − AkR
H
k Â−1

k−1RkAk − AkR
H
k Â−1

k−1RkAk + AkR
H
k Â−1

k−1Âk−1Â
−1
k−1RkAk

= Ak − AkR
H
k Â−1

k−1RkAk

= AkT̂k.
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To prove (3.24) it is thus sufficient to show

AjT̂k ≤ β̂A2
k. (3.25)

This will now be done in a manner similar to the convergence proof for multigrid for
multilevel matrix algebras in [2]. DefinêRk = RkA

1/2
k = Knj

Ak(p̂k) with p̂k = pkf
1/2
k .

Then (3.25) is implied by

I − R̂H
k Â−1

k−1R̂k ≤ β̂Ak, (3.26)

which is what we will show now. Let us for the moment assume that Ak is 1-level circulant,
i.e. d = 1. Multiplying the Fourier matrix from the left with the cut matrix then yields the
decomposition

Knk
Fnk

=
1√
2

(
Fnk−1

∣
∣Fnk−1

)
,

as is shown in [74], e.g. So

Ank
(fk−1) = RkAkR

H
k = Knk

Ank
(pk)AkAnk

(pk)
HKH

nk

= Knk
Fnk

F H
nk
Ank

(pk)Ank
(f)Ank

(pk)
HFnk

F H
nk

KH
nk

=
1

2

(
Fnk−1

∣
∣Fnk−1

)
F H

nk
Ank

(pkfkpk)Fnk

(

F H
nk−1

∣
∣
∣F H

nk−1

)H

,

which gives

F H
nk−1
Ank

(fk−1)Fnk−1
=

1

2
(I | I)F H

nk
Ank

(pkfkpk)
HFnk

(I | I)T . (3.27)

This decomposition can be generalized tod > 1 using tensorial arguments.

According to [74] the matrixF H
nk

T̂kFnk
can be symmetrically permuted to a block diagonal

matrix with2d × 2d-blocks. Using the “square bracket notation”f [x] to denote the vector
of length2d with

f [x] =
1

2d
· (f(y1), . . . , f(y2d))T ,

where theyj are a systematic enumeration of all the2d elements of the setΩ(x), these
blocks are given as

I − 1

f̂k−1(2w
[n]
k )

p̂k[w
[n]
k ]
(

p̂k[w
[n]
k ]
)H

.

With thed-dimensional analogue to (3.27) we obtain

fk−1(2w
[n]
k ) = ||(pkf

1/2
k )[w

[n]
k ]||22 = ||p̂k[w

[n]
k ]||22.
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Using f̂k−1 ≤ Λfk−1 and the definition of the Galerkin coarse grid operator we obtain

I − 1

f̂k−1(2w
[n]
k )

p̂k[w
[n]
k ]
(

p̂k[w
[n]
k ]
)H

≤ I − 1

Λfk−1(2w
[n]
k )

p̂k[w
[n]
k ]
(

p̂k[w
[n]
k ]
)H

= I − 1

Λ||p̂k[w
[n]
k ]||22

p̂k[w
[n]
k ]
(

p̂k[w
[n]
k ]
)H

.

Consequently, to show (3.26), it is sufficient to prove

I − 1

Λ||p̂k[w
[n]
k ]||22

p̂k[w
[n]
k ]
(

p̂k[w
[n]
k ]
)H

< β̂ diag(fk[w
n
k]).

Actually, we will show slightly more, namely that for allx we have

Z(x) = (diag(fk[x]))−1/2

(

I − 1

Λ||p̂k[x]||22
p̂k[x] (p̂k[x])H

)

(diag(fk[x]))−1/2 ≤ β̂I.

First we deal with an entryZ(x)q,r, whereq 6= r:

Z(x)q,r = − p̂k(yq)p̂k(yq)
√

fk(yq)fk(yr)
· 1

Λ||p̂k[x]||22

= − pk(yq)pk(yr)

Λ
∑

y∈Ω(x)

p2
k(y)fk(y)

.

This is bounded due to the hypothesis onpk from (3.22). ForZ(x)q,q we can write

Z(x)q,q =
∑

y∈Ω(x)\{x}

p̂k(yq)
2

fk(yq)
· 1

Λ||p̂k[x]||22

=
1

Λ






1

fk(yq)
− p2

k(yq)
∑

y∈Ω(x)

p2
k(y)fk(y)




 .

If q > 1, thenfk(yq) 6= 0 and by (3.22) again we have thatZ(x)q,q is bounded. Forq = 1
we haveyq = x, so we get

Z(x)1,1 =

∑

y∈Ω(x)\{x}

pk(y)2fk(y)

fk(x)2
· 1

Λ
∑

y∈Ω(x)

pk(y)2 fk(y)
fk(x)

,

87



CHAPTER 3. MULTIGRID METHODS

which is also bounded, as the first part of the product is bounded due to the same argument
as before and the second part is bounded since the sum in the denominator is bounded away
from 0 due to (3.23). So we can chooseβ̂ as

β̂ := max
q,r=1,...,d

{

max
x∈[−π,π)d

(Zq,r(x))

}

( <∞ ).

�

Comparing the proof of this Theorem with the proof of the approximation property by
Aricò and Donatelli yields that̂β differs from β by a factor of1/Λ. Now we proceed
showing the last required property. Using the altered requirement (3.21) we can show the
following.

Lemma 3.11 Let T̂k = I−RH
k Â−1

k−1RkAk, withRH
k ∈ Cnk×nk−1 being a full rank prolon-

gation operator. Let bothAk−1 = RkAkR
H
k andÂk be non-singular. Assume that for some

ε > 0 we have
(1 + ε)Ak−1 ≤ Âk ≤ ΛAk−1.

ThenT̂k is non-singular.

Proof. As Tk = I − Pk(RkAkPk)
−1RkAk is theA-orthogonal projector onto the comple-

ment ofran(Rk), we havedim(ker(Tk)) = dim(ran(Pk)), this is the maximum possible
dimension of the kernel of a coarse grid correction. As we haveAk−1 < Âk−1, we imme-
diately obtain that̂Tk has full rank. �

Obviously with this lemma the last requirement is fulfilled,asker(T̂H
k AkT̂k) = ∅.

3.3.7 Replacement strategies for the Galerkin operator forcirculant
matrices with compact stencils

Our original goal was to provide an alternative to the usage of the Galerkin operator for
circulant matrices with compact stencils, like the ones presented as motivation at the begin-
ning of Section 3.3.2. We will now give examples of replacement strategies, that guarantee
multigrid performance, as the prerequisites of the theory presented in the former sections
are fulfilled. We do this by analyzing the generating symbols. We start by a general result
ond-variate periodic functions.

Lemma 3.12 Letf, f̂ ∈ C2 : [−π, π)d → R+
0 be two nonnegative non-vanishing periodic

functions on[0, 2π)d having only common zeros and that for someε > 0 we havef̂ ≥
(1 + ε)f . Furthermore, assume that there are only finitely many such zerosx∗ and that
they all satisfy

∇2f(x∗) is positive definite and∇2f̂(x∗) is positive definite.
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Then there exists a constantΛ > 1 such that

f̂(x) ≤ Λf(x) for all x ∈ [−π, π)d.

Proof. Let x∗ be a zero off andf̂ . Since∇2f(x∗) as well as∇2f̂(x∗) are positive definite
for all v ∈ Rd,v 6= 0 we have

0 <
λmin(∇2f̂(x∗))

λmax(∇2f(x∗))
≤ vT∇2f̂(x∗)v

vT∇2f(x∗)v
≤ λmax(∇2f̂(x∗))

λmin(∇2f(x∗))
<∞.

By continuity, and since we only have finitely many (common) zeros off andf̂ in [0, 2π)d,
there exists̃ε > 0 andΛ̃ such that whenever‖x− x∗‖ < ε̃ and‖y − x∗‖ < ε̃ we have

vT∇2f̂(x)v

vT∇2f(y)v
≤ Λ̃.

Using the Taylor expansion

f(x) = f(x∗) +∇f(x∗)T (x− x∗) +
1

2
(x− x∗)T∇2f(x∗ + θ(x− x∗))(x− x∗)

=
1

2
(x− x∗)T∇2f(x∗ + θ(x− x∗))(x− x∗), θ ∈ [0, 1],

and similarly forf̂ , we see that whenever‖x− x∗‖ < ε̃ for some zerox∗ we have

f̂(x) ≤ Λ̃f(x).

The complementC in [0, 2π]d of these finitely many balls is compact, and the functionf̂/f
is continuous and positive onC. Putting

Λ = max

{

Λ̃, max
x∈C

(

f̂(x)

f(x)

)}

( <∞ ),

we finally obtain
f̂(x) ≤ Λf(x) for all x ∈ [−π, π)d.

�

This lemma provides all necessary conditions to formulate concrete schemes for the re-
placement of the Galerkin operator. First we consider the replacement of a compact9-point
stencil of a2-level circulant matrix.
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Definition 3.30 (Replacement 5-point stencil in 2D) Leta, b, c ∈ R−
0 and let





c b c
a −2(a + b)− 4c a
c b c



 (3.28)

be a 9-point stencil in 2D. We define the replacement 5-point stencil as

(1 + ε)





b + 2c
a + 2c −2(a + b)− 8c a + 2c

b + 2c



 . (3.29)

If the Galerkin operator is a member of the matrix sequence defined by a 9-point stencil
of the form (3.28), the sparser 5-point stencil defined by (3.29) can be used instead. The
generating symbol̂f of the circulant matrix sequence defined by the 9-point stencil (3.28)
is given by

f(x, y) = −2(a + b)− 4c + 2a cos(x) + 2b cos(y) + 4c cos(x) cos(y).

It is non-negative and has a unique zero at the origin with vanishing gradient. The same
holds for the generating symbolĝ of the 5-point stencil (3.29),

f̂(x, y) = (1 + ε)(−2(a + b)− 8c + 2(a + 2c) cos(x) + 2(b + 2c) cos(y)).

Moreover,

∇2f(0, 0) =

(
−2a 0
0 −2b

)

and

∇2f̂(0, 0) =

(
−2(a + 2c) 0

0 −2(b + 2c)

)

are both positive definite and for someε > 0 we have

(1 + ε)f(x, y) ≤ f̂(x, z).

So all requirements are fulfilled and a method using this modified coarse grid operator still
converges. Analogously, a replacement stencil can be defined for 3-level circulant matrices

Definition 3.31 (Replacement 7-point stencil in 3D) Leta, b, c, d, e, f, g ∈ R−
0 and let





g f g
e c e
g f g









d b d
a −2(a + b + c)− 4(d + e + f)− 8g a
d b d









g f g
e c e
g f g




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be a 27-point stencil in 3D. We define the associated 7-point stencil as

(1 + ε)



 c + 2(e + f) + 4g





(1 + ε)





b + 2(d + f) + 4g
a + 2(d + e) + 4g −2(a + b + c)− 8(d + e + f)− 16g a + 2(d + e) + 4g

b + 2(d + f) + 4g





(1 + ε)



 c + 2(e + f) + 4g



 .

In a similar manner as before – we refrain from reproducing all the details – the corre-
sponding generating functions

f(x, y, z) = −2(a + b + c)− 4(d + e + f)− 8g + 2a cos(x) + 2b cos(y) + 2c cos(z)

+ 4d cos(x) cos(y) + 4e cos(x) cos(z) + 4f cos(y) cos(z)

+ 8g cos(x) cos(y) cos(z)

f̂(x, y, z) = (1 + ε)(−2(a + b + c)− 8(d + e + f)− 16g + (a + 2(d + e) + 4g) cos(x)

+ (b + 2(d + f) + 4g) cos(y) + (c + 2(e + f) + 4g) cos(z))

can be shown to again have a unique common zero at0, thus fulfilling all postulated con-
ditions.

The application to stencils of other shapes or involving generating symbols with zeros at
other positions can be done in the same way.

3.3.8 Numerical Examples

We tested our replacement strategy in different settings. In contrast to the theory we always
choseε = 0, as this did not harm convergence. This is an indicator that this requirement
can probably be skipped. We start with some experiments for2-level circulant matrices
where the replacement has almost no influence on the convergence rate. Both, the standard
model problem with linear interpolation and full-weighting and a non-standard problem,
involving a zero of the generating symbol which is not at the origin, are presented. After
the examples for the2-level circulant matrices we present an example for3-level circulant
matrices, where the generating symbol has a zero at the origin, again.

5-point Laplacian in 2D

First we consider the standard model problem of Poisson’s equation in 2D with periodic
boundary conditions yielding a circulant coefficient matrix of the linear system arising
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from a discretization using the well-known 5-point stencil




−1
−1 4 −1

−1



 .

The symbol

p(x, z) =
1

8
(2− 2 cos(x− π))(2− 2 cos(y − π))

was used for interpolation, thus the stencil describingA(p) is given by





1
8

1
4

1
8

1
4

1
2

1
4

1
8

1
4

1
8




 ,

resulting in the Galerkin coarse grid operator given by the stencil





− 1
64
− 1

32
− 1

64

− 1
32

6
32

− 1
32

− 1
64
− 1

32
− 1

64




 .

The Galerkin operator has been replaced by the operator described by the following stencil,
which was chosen in the way defined in Definition 3.30.





− 1
16

− 1
16

1
4

− 1
16

− 1
16



 .

This coincides with the original stencil multiplied by1/16. Due to the factor1/h2 =
1/4 from the doubling of the grid-spacing and another factor of1/4 from the inter-grid
transfer operators defined with the help ofp, the proposed method is equivalent to standard
geometric multigrid method in this case. A plot of the associated generating symbols can
be found in Fig. 3.4. Fig. 3.5 reports the convergence behavior of the method going down
to the level that contains one variable only. As expected, the convergence of the method is
only marginally affected by the use of the replacement coarse grid operators.

Example with a zero which is not the origin

Our next example is the stencil




1
−1 4 −1

1



 ,
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Figure 3.4: Generating symbolsf of the Galerkin coarse grid operator for the 5-point
discretization of Poisson’s equation,f̂ of the replacement operator and of the ratiof/f̂ .
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Figure 3.5: Convergence of the multigrid method for the 5-point Laplacian using the
Galerkin operator and the replacement operator forn = 162 andn = 322.
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Figure 3.6: Convergence of the multigrid method for the example with zero at(0, π) rather
than at the origin using the Galerkin operator and the replacement operator forn = 162

andn = 322.

as it can be found in [78], e.g. Such a stencil cannot be handled by standard geometric
multigrid methods. We chose the symbol for the interpolation as

p(x, z) =
1

8
(2− 2 cos(x− π))(2− 2 cos(y)),

as suggested by Serra Capizzano and Tablino-Possio in [74],so thatA(p) is described by
the stencil 




−1
8

−1
4

−1
8

1
4

1
2

1
4

−1
8

−1
4

−1
8




 .

The Galerkin operator is then given by the (scaled) stencil of the standard Poisson problem





− 1
16

−1
8

− 1
16

−1
8

3
4

−1
8

− 1
16

−1
8

− 1
16




 .

The convergence of the stencil collapsing multigrid methodgoing down to the maximum
possible level is depicted in Fig. 3.6. The results are very similar to the results for the
standard model problem. In particular, the convergence rate degrades only marginally as
compared to the multigrid using the Galerkin operators.

7-point Laplacian in 3D

The 3D test is again the model problem, i.e. the 7-point stencil for the 3D-Laplacian. It is
given by



 −1









−1
−1 6 −1

−1







 −1



 .
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n # iterations final rel. residual time per iteration total time

163 6 2.6446 · 10−7 0.0047 s 0.0308 s
323 6 3.4160 · 10−7 0.0352 s 0.2215 s
643 6 3.4430 · 10−7 0.2833 s 1.7576 s

1283 6 3.4429 · 10−7 2.2263 s 13.7980 s

Table 3.1: Convergence of the multigrid method for the 7-point Laplacian in 3D using the
Galerkin coarse grid operator.

n # iterations final rel. residual time per iteration total time

163 7 1.4726 · 10−7 0.0024 s 0.0182 s
323 7 1.5726 · 10−7 0.0165 s 0.1255 s
643 7 1.5813 · 10−7 0.1333 s 0.9830 s

1283 7 1.5853 · 10−7 1.0347 s 7.5916 s

Table 3.2: Convergence of the multigrid method for the 7-point Laplacian in 3D using the
replacement grid operator.

The interpolation is defined by the symbol

p(x, y, z) =
1

8
(2− 2 cos(x− π))(2− 2 cos(y − π))(2− 2 cos(z − π)).

The resulting Galerkin coarse grid operator has 19 entries,and the Galerkin operators on
all subsequent levels have 27 entries. The stencil collapsing multigrid method was incor-
porated into a multigrid code for 3-level circulant matrices, thus keeping the size of the
stencils corresponding to the coarse grid operators constantly at 7.

In order to measure timings for 3D problems, a multigrid method for circulant matrices
with generating symbols having zeros at the origin was implemented in C and compiled us-
ing the gcc compiler with O3-optimization. The Galerkin coarse grid operator was formed
automatically on each level and the replacement given in Definition 3.31 was computed
automatically as well. The measurements were taken on a Linux machine with 3.2 GHz
Pentium 4 CPU. The times needed by the method to reduce the relative residual to10−7

using the Galerkin coarse grid operator can be found in Table3.1, the ones for the replace-
ment operator are given in Table 3.2. It can be seen that one additional iteration is needed
when using the Galerkin coarse grid operator, but the execution using the replacement
operator is much faster.

3.4 Parallelization

Parallelization of algorithms of numerical linear algebrais an important part of the de-
velopment of scientific applications, as many applicationsfrom different fields of research
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spend a lot of time in these routines. For that purpose various books with a special focus on
parallelization have been published, for example the book by Golub and Ortega [42] or the
book by Frommer [37]. Albeit multigrid algorithms are very fast and efficient methods for
the solution of linear systems and although our extension tothe theory allows additional
savings in terms of CPU cycles and wall clock time, the parallelization of multigrid still
can be necessary for two reasons:

1. The lack of memory on one node when the system that should besolved is too large.

2. Parallelization is necessary because of the computational requirements of the under-
lying problem, that requires the solution of the linear system.

While the first is relatively easy to understand, we like to emphasize the second part a little
bit more. If the underlying problem that requires to solve the system, is computationally
complex, for example because forming the right hand side of our linear system costs a lot
of time, it might be necessary to parallelize the problem. Itwould be unsatisfactory not to
parallelize the multigrid part, because due to Amdahl’s law, the speedup will be bound by
the time spent in the solution of the linear system.

The parallelization of multigrid methods is well analyzed.For an overview see the work
of Chow, Falgout, Hu, Tuminaro and Yang [18], a more detailedintroduction and analysis
of the parallelization of geometric multigrid methods can be found in the PhD thesis of
Tuminaro [85]. Our parallel implementation, which was usedto produce the results in
Section 3.4.2, is kept as simple as possible, i.e. a data distribution scheme is chosen that is
equivalent to a domain decomposition approach, and processors become idle when there
are no variables left that belong to them. It shares this concept with the code of Ashby
and Falgout introduced in [4] that is a predecessor to the structured multigrid code that is
contained in the hypre package [28, 29]. Other parallelization approaches, especially some
that utilize idle processors on coarse levels, are possible, but they are not covered, here.

3.4.1 Data distribution for banded matrices

What we want to do is solving a linear system on a parallel computer. In the cases we are
interested in, here, we deal with banded circulant matrices, although the chosen approach
can be transferred to band matrices with similar structures, as well. For our algorithms we
need matrix vector multiplication with a matrixA := A(f) and transfer of the vectors,
only. We start with1-level circulants with a fixed bandwidthm, that is independent of
the system sizen. That means that in order to calculate thei-th entry of the matrix-vector
product we only need the information of the entries that haveindices fromIi,m,n, where

Ii,m,n = {(i−m) modn, . . . , (i− 1) modn, i, (i + 1) modn, . . . , (i + m) modn}.

Concretely we have
(Ax)i =

∑

j∈Ii,m,n

ai,jxj .
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Figure 3.7: Communication pattern for a vector with 10 components, distributed to 4 pro-
cessors. Highlighted is processor P2 and its communication, whenm = 2 neighbors are
needed for the matrix vector multiplication.

In order to evaluate this product on a parallel computer it isfavorable to have as much as
possible of this information stored locally. Therefore we choose to distribute the vector
over the processors block-wise, i.e. when we havep processors thei-th processor gets
the components ranging from(i− 1)⌈n/p⌉ to min{i⌈n/p⌉, n}. Using this distribution the
processors are logically arranged in a1-D torus and they only have to exchange components
with ⌈m/ min{⌈n/p⌉, n−(p−1)⌈n/p⌉}⌉ neighbors in a one-dimensional torus. An outline
of the communication needed can be found in Figure 3.7. As multilevel circulant matrices
are formed by the use of tensor products, this concept can be carried over to that case, as
well. As long as the bandwidth of the according circulant matrices is fixed and independent
of ni, the same communication pattern can be used ind different directions in thed-level
case. So the optimal communication topology for circulant matrices is ad-dimensional
torus. Obviously for the non-periodic case, that leads to a Toeplitz matrix, ad-dimensional
mesh is sufficient. Going down to the coarser levels, the locality of a variable on the
fine level determines on which processor the coarse level variable will be located. The
variables on the coarse level are located on the same processor as their fine grid counterpart.
This leads to a structured communication scheme on the lowerlevels. Starting with ad-
dimensional torus we have communication with the next neighbors holding them needed
components, as long as all processors still have variables to treat. At some point, namely
when the number of processors in one direction is bigger thanthe number of unknowns,
we will have idle processors, which do not hold any variable on that level anymore. These
processors then have to be ignored, when the communication takes place. Technically we
tackle this issue by storing the neighborhood information on each level. In the initialization
step processors ask the neighbors of the previous level which neighbor they should use on
this level. The asked processor answers this question with its own id, if it still has to do
work, or with its own neighbor. Of course this scheme requires that only every second
processor may become idle per level, but that is guaranteed if the unknowns are equally
distributed on the finest level at the beginning. Otherwise it could be fixed by providing a
function that computes the corresponding variable on the finest level, eventually combined
with a distributed directory of the variable location, likeproposed in the work of Baker,
Falgout and Yang [5].
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3.4.2 Example results on Blue Gene/L and Blue Gene/P

The algorithm was implemented in the C programming language, using MPI for the dis-
tributed memory parallelization. As the torus is well-suited to implement the communica-
tion pattern of the algorithm, the implementation makes useof cartesian communicators
and the associated functions. The implementation was tested on both Blue Gene systems
of the Jülich Supercomputing Centre, the 8-rack Blue Gene/L system JUBL [71] and the
16-rack Blue Gene/P system JUGENE [72]. Both Blue Gene generations, the Blue Gene/L
and the Blue Gene/P, consist of several racks, where each rack consists of two midplanes
with 512 nodes each. The nodes are designed as systems on chip, i.e. one chip contains all
necessary components as the processor itself, network adaptors, memory controllers etc.,
where each system has two cores in the Blue Gene/L and four cores in the Blue Gene/P.
The chips are clocked at 700 MHz in the Blue Gene/L, in the BlueGene/P the clock rate
has been raised to 850 MHz. Besides Gigabit networking for communication with the out-
side world, a very fast interrupt network, and a network for system management purpose,
the Blue Gene architecture has two networks that are used forthe communication of the
parallel programs. These are a torus network that is used forpoint to point communication
and a tree network for collective communication. For an overview of the Blue Gene/L ar-
chitecture see the article of Gara et al. [39]. Further details can be found on the web pages
on JUBL [71] and JUGENE [72] and the references therein.

The implementations of the solver for circulant matrices using the Galerkin operator and
of the one using the replacement were tested in different configurations. First we like to
emphasize, that the use of a V-cycle instead of a W-cycle is mandatory. Not only is a W-
cycle in general slower than a V-cycle, but in the W-cycle theamount of time the multigrid
method spends in the coarser levels is much larger than in theV-cycle and many more
communication steps are necessary. To illustrate that, we refer to Figure 3.8, where the
weak scaling behavior of the V-cycle and the W-cycle using the Galerkin operator for a
system with64× 128× 128 unknowns per processor are depicted. The tests were carried
out on JUBL and the system was arising from a 7-point discretization of the Laplacian with
periodic boundary conditions. It is clear, that the W-cycle’s performance decreases in the
parallel case, thus the effort spend in order to proof V-cycle convergence in Section 3.3.2
is necessary in the parallel case. Otherwise the time that issaved by the replacement of the
Galerkin operator gets lost in the parallel case or even moretime is spent.

To illustrate the good scaling results of the V-cycle using the Galerkin operator as well as
the replacement we ran a number of tests. Strong scaling results on up to one rack of Blue
Gene/L were obtained for both for a 7-point discretization of the Laplace operator with
periodic boundary conditions resulting in a system with1283 unknowns. The timings for
the solution of the system up to an absolute error of10−7 of this case are found in Table
3.3, a plot of the speedup and the efficiency can be found in Figure 3.9. Obviously the
replacement of the operator does not harm the scaling behavior of the method, although
the time needed to solve the system is smaller and thus the ratio of communication and
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Figure 3.8: Speedup for the V-cycle and the W-cycle compared.
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Figure 3.9: Speedup and efficiency on Blue Gene/L for the solution of a system with1283

unknowns arising from the discretization of the Laplacian using a 7-point stencil.

computation is even worse than in the case, where the Galerkin operator was used. We
like to emphasize that although the scaling curves do not look very impressive, the results
are nevertheless pretty good, considering that the system consists of1283 unknowns, only.
This is the largest problem, that can be solved on a single Blue Gene/L node and could
thus be easily solved on a desktop PC, as the node of a Blue Geneis much slower than
todays’ PCs. Nevertheless we increase the number of nodes to1024, as a result each node
is responsible for handling 2048 unknowns on the finest level, only. Additionally we ran
some tests on the newly installed Blue Gene/P system for the V-cycle using the Galerkin
operator. The behavior of the method using the replacement operator should be similar. In
the test, a system with10243 unknowns has been solved, see Table 3.4 and Figure 3.4 for
the results. Again, the system was arising from a 7-point discretization of the Laplacian
with periodic boundary conditions. We can see that the scaling looks much better for this
case, although we have to mention that the amount of data is 64times as big. Regarding
weak scaling the results are very good. The results of a run where each processor has
64× 128× 128 unknowns are as expected, see the measurements in Table 3.5 and the plot
of this data in Figure 3.11.
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Galerkin operator replacement operator
#processors time/iteration total time time/iteration total time

1 3.218399 · 100 3.604389 · 101 1.896993 · 100 2.138000 · 101

2 1.741969 · 100 1.951582 · 101 1.045804 · 100 1.178795 · 101

4 8.436338 · 10−1 9.454753 · 100 5.272539 · 10−1 5.947049 · 100

8 4.503158 · 10−1 5.045441 · 100 2.902817 · 10−1 3.270748 · 100

16 2.493376 · 10−1 2.790456 · 100 1.677954 · 10−1 1.887067 · 100

32 1.351773 · 10−1 1.510425 · 100 9.678527 · 10−2 1.085267 · 100

64 7.951982 · 10−2 8.889820 · 10−1 5.906118 · 10−2 6.629070 · 10−1

128 4.887073 · 10−2 5.466090 · 10−1 3.710509 · 10−2 4.169230 · 10−1

256 3.117418 · 10−2 3.487930 · 10−1 2.662664 · 10−2 2.989930 · 10−1

512 1.794464 · 10−2 2.019890 · 10−1 1.440055 · 10−2 1.634570 · 10−1

1024 1.443436 · 10−2 1.627610 · 10−1 1.227636 · 10−2 1.393520 · 10−1

2048 1.029345 · 10−2 1.164280 · 10−1 9.510182 · 10−3 1.085170 · 10−1

4096 5.794727 · 10−3 6.665800 · 10−2 5.452455 · 10−3 6.333800 · 10−2

8192 2.941091 · 10−3 3.515200 · 10−2 2.787636 · 10−3 3.370500 · 10−2

Table 3.3: Timings on Blue Gene/L for the solution of a systemwith 1283 unknowns arising
from the discretization of the Laplacian using a 7-point stencil.

# processors average time per iteration

4096 5.216130 · 10−1

8192 2.789460 · 10−1

16384 1.938290 · 10−1

32768 7.484900 · 10−2

65536 4.131500 · 10−2

Table 3.4: Timings on Blue Gene/P for the solution of a systemwith 10243 unknowns
arising from the discretization of the Laplacian using a 7-point stencil.
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Figure 3.10: Speedup and efficiency relative to one rack with4096 processors on Blue
Gene/P for the solution of a system with10243 unknowns arising from the discretization
of the Poisson equation using a 7-point stencil.

Galerkin operator replacement operator
#processors time/iteration total time time/iteration total time

1 1.586269 · 100 1.776711 · 101 9.536420 · 10−1 1.074958 · 101

2 1.741970 · 100 1.951583 · 101 1.045803 · 100 1.178818 · 101

4 1.686735 · 100 1.890513 · 101 1.013224 · 100 1.143372 · 101

8 1.742680 · 100 1.952863 · 101 1.016574 · 100 1.146883 · 101

16 1.857210 · 100 2.079570 · 101 1.084866 · 100 1.221705 · 101

32 1.758144 · 100 1.969952 · 101 1.041178 · 100 1.174254 · 101

64 1.824098 · 100 2.043441 · 101 1.059706 · 100 1.195079 · 101

128 1.885549 · 100 2.111226 · 101 1.087700 · 100 1.225203 · 101

256 1.856749 · 100 2.080243 · 101 1.059373 · 100 1.194493 · 101

512 1.843628 · 100 2.065635 · 101 1.018313 · 100 1.148949 · 101

1024 1.919460 · 100 2.149173 · 101 1.085729 · 100 1.222963 · 101

2048 1.976223 · 100 2.213161 · 101 1.191898 · 100 1.341163 · 101

4096 1.970838 · 100 2.207169 · 101 1.187782 · 100 1.336699 · 101

8192 1.923521 · 100 2.153583 · 101 1.090093 · 100 1.227793 · 101

Table 3.5: Weak scaling results on Blue Gene/L for differentnumbers of unknowns for the
discretization of the Laplacian with periodic boundary conditions using a 7-point stencil.
Each Processor has64× 128× 128 unknowns on the finest level.
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Figure 3.11: Speedup and efficiency for the weak scaling teston Blue Gene/L for different
numbers of unknowns for the discretization of the Laplacianwith periodic boundary con-
ditions using a 7-point stencil. Each Processor has64× 128× 128 unknowns on the finest
level.

3.4.3 Further parallelization issues

What we have not covered here is the parallelization of the FAC method introduced in
Section 3.2.4. Although the communication pattern will be more involved, the problem
still possesses a lot of structure that can be exploited for the solution on a parallel system.

Besides massively parallel systems that are similar to the Blue Gene architecture, recently
multicore architectures became more and more important. One famous member of this
family is the hybrid multicore architecture Cell BroadbandEngine Architecture or CBEA
for short. We investigated the usefulness of the CBEA for multigrid methods for structured
matrices and published some ideas and preliminary results in [9]. A general analysis of the
CBEA for scientific applications can be found in [88].
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Chapter 4

Particle Simulation

4.1 Introduction

Particle simulation plays an important role in computational science. For many fields of ap-
plications the simulation of atomistic particles using simple integration of Newton’s equa-
tions of motion is sufficient. Considering e.g. astrophysics computer experiments are the
only choice to verify new models, as the studied phenomenon can not be influenced by the
researcher and the time-scales in question are far too large. Another example is the field
of biophysics, which became more and more important in recent years. Here, computer
experiments help to save a lot of money, as the experiments that have to be conducted are
very expensive and time-consuming. So computer experiments are used to have a guide-
line, which experiments one wants to carry out in reality. Atthe Jülich Supercomputing
Centre there exists the complex atomistic modeling and simulation group, where scientists
with different backgrounds and applications work on the development of particle simula-
tion methods. Most of these methods are highly scalable, as ahuge amount of supercom-
puter time is spend in particle simulation codes. The methodthat will be described in the
following was developed as part of the work in this group thatled to this thesis.

Given that computers became available in the middle of the last century, the field of particle
simulation is relatively old. As a consequence a huge numberof algorithms using different
techniques and approximations exist. In the following, we will present a short introduction
into the problem. A more detailed overview on classical molecular dynamics is given by
Sutmann [81], and an overview over long-range interactionsby Gibbon and Sutmann [40],
introductions with larger details can be found in the books of Hockney and Eastwood [56]
and in the book of Griebel, Knapek, Zumbusch and Caglar [46].After the introduction we
give a brief overview over the available methods for particle simulation, and finally present
the approach that allows us to use multigrid methods in the context of particle simulation.
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4.2 Mathematical formulation

Given is an initial stateS0 = [x1, . . . ,v1, . . . ] of a, not necessarily finite, setP of particles.
In classical mechanics the system is described completely by this set, i.e. the coordinates
and the velocities of the particles. The time evolution of the system is described by New-
ton’s equations of motion, i.e.

vi =
d

dt
xi,

Fi =
d

dt
mivi

for a particle with indexi. The force acting on particlei is given by the sum of the forces
due to all other particles in the system, i.e.

Fi =
∑

i∈P\{i}

Fi,j . (4.1)

In some cases an external force may be present as well. The forces are given by the gradient
of the potentials, yielding

Fi = −∇Φi, respectivelyFi,j = −∇Φi,j , (4.2)

where
Φi =

∑

i∈P\{i}

Φi,j . (4.3)

So the evolution of the system is a consequence of the effective potential. Depending on
the type of application different potentials are used, e.g.

1. Coulomb potential

Φi,j =
1

4πε0

qj

‖xi − xj‖2
, (4.4)

2. Gravitational potential

Φi,j = −G
mj

‖xi − xj‖2
,

3. Van der Waals potential

Φi,j = −a

(
1

‖xi − xj‖2

)6

,

4. Lenard-Jones potential

Φi,j = αε

[(
σ

‖xi − xj‖2

)n

−
(

σ

‖xi − xj‖2

)m]

, m < n,

α :=
1

n−m

(
nn

mm

) 1
n−m

.

104



4.2. MATHEMATICAL FORMULATION

We differentiate potentials by their range, i.e. a potential that decays faster than1/rd, where
d is the space dimension, is called a short-ranged potential,whereas potentials decaying
at least as slowly as that are called long-ranged potentials. Short ranged potentials, like
the Van der Waals potential or the Lenard-Jones potential, can be easily evaluated using
list-techniques, like the the linked list array (see [56]).

While we need methods for short-ranged potentials later on to correct artificially introduced
errors in our potential, we cover the Coulomb potential, here. Differentiating the potential
energy, i.e. the potential of the particle times it’s charge, leads to the force that is acting on
a particle. The Coulomb potential is one of the most important potentials, as it arises in
various applications like biophysics and plasma physics. For the forces due to this potential
we obtain

Fi =
1

4πε0

∑

j∈P\{i}

qiqj
xi − xj

‖xi − xj‖2
. (4.5)

Another important quantity of Coulomb systems is the electrostatic energy that can be
calculated with the help of the potential, as

E =
1

2

∑

i∈P

qiΦi =
1

4πε0

∑

i∈P

qi

∑

j∈P\{i}

qj

‖xi − xj‖32
. (4.6)

We like to note that the gravitational potential is of the same form as the Coulomb potential,
so we are able to cover applications from astrophysics, as well.

In order to simulate a particle system, a time integration scheme is required. For that pur-
pose we use a simple integrator like the Euler integration scheme or a leapfrog scheme.
These integration schemes need at least the input of the forces and velocities at one time
step and they provide the new positions and updated velocities as output. Integration
schemes are not covered by this work, we refer to the books of Hockney and Eastwood
[56] or the book of Griebel, Knapek, Zumbusch and Caglar [46], which both cover particle
simulation methods in general. The applications in the firstbook are focussed on plasma
physics and astrophysics and the authors of the second book concentrate on biophysical
applications. We will focus on methods that calculate the potential of particles and thus
provide a way to calculate the forces needed as input to the integrators.

We will now provide a rough overview over the different ways the problem may be posed.
Particle systems differ in the domain they cover. In this work we will cover the most
important options, namely open and periodic systems.

4.2.1 Open systems

In open systems the set of particlesP is finite and the particles can move in the open space
freely. As the number of involved particles is finite, the problem can be directly solved
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by evaluating (4.1) or (4.3), utilizing (4.2). As an exampleconsider the total energy of a
system ofN particles. Substituting{1, 2, . . . , N} for P in (4.6) yields

E =
1

2

N∑

i=1

qi

N∑

j=1
j 6=i

1

4πε0

qj

‖xi − xj‖2
.

Using symmetry we can write

E =

N∑

i=1

qi

N∑

j=i+1

1

4πε0

qj

‖xi − xj‖2
.

We note that the complexity for evaluatingE is quadratic. Therefore methods have been
developed that reduce the complexity toO(N log N) or evenO(N). The price to pay these
methods is accuracy, as they only compute an approximation to the real solution. As all
the computations are carried out in floating point arithmetic on a finite computer, this is not
necessarily a downside, as the direct calculation is inexact there, as well.

4.2.2 Periodic systems

In periodic systems the set of particlesP is infinite, but the particle distribution itself is
periodic and the number of particles in a box representing the whole system is finite. The
particles in the box are interacting with each other and withall periodic images of all
particles in the box, including the periodic images of the particle itself. As an example we
consider the total electrostatic energy of the system, again, which is given by

E =
1

2

N∑

i=1

qi

N∑

j=1
j 6=i

1

4πε0

qj

‖xi − xj‖2
+

∑

n∈Z3\{0}

1

2

N∑

i=1

qi

N∑

j=1

1

4πε0

qj

‖xi − xj + n‖2
. (4.7)

Here, without loss of generality, we assume the system to be represented by a cube with
side length1. This system cannot be solved using direct summation anymore, as the sum
overn is infinite. Furthermore this sum is divergent, so other summation techniques have to
be used, which take information about the underlying physics into account. An example is
the Ewald summation [27], which splits this sum into two parts replacing the point charge
by a charge distribution described by a gaussian and correcting this afterwards. The sum
can now be split into two parts, where the point charge minus the charge distribution decays
very fast and the other part converges very fast after transformation to Fourier space. This
approach will be used later on when we discuss the numerical solution scheme used.
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4.2.3 Relation to the Poisson equation

There is an obvious connection between the electrostatic potential and the solution of the
Poisson equation discussed as model problem in Chapter 2. InTheorem 2.7 we have shown
that the Green function of the Poisson equation inR3 is given by (2.10), i.e.

U(x) =
1

4π‖x‖2
.

This reminds us of the definition of the Coulomb potential in (4.4). In fact we have that

Φi =
N∑

j=1
j 6=i

1

4πε0

qj

‖xi − xj‖2

is a solution of the Poisson equation

∆Φi(x) = ρi :=
1

ε0

N∑

j=1
j 6=i

qjδ(‖x− xj‖2). (4.8)

Therefore we call the solution of this Poisson equation thepotential inducedby all particles
except for thei-th particle. Now the potential of particlei is given asΦi(xi) and the force
acting on it by−∇Φi(x). The connection to the Poisson equation provides us with a way
to define numerical schemes to calculate the electrostatic quantities of the system that are
based on the solution of the Poisson equation on a mesh.

4.3 Numerical solution

Before we come to our numerical method we like to subsume the available methods for
the calculation of forces and energies. On the one hand thereare mesh-free methods,
that directly tackle the sums in (4.5) or (4.6). Other methods exploit the fact that the
potential can be evaluated on a mesh, effectively solving the Poisson equation. The forces
are obtained by numerical differentiation afterwards.

4.3.1 Mesh-free methods

A 1/r-term, wherer denotes the distance between two particles, is not neglectable, i.e.
even particles far away have a noticeable impact on the force. Nevertheless, changes in the
position of the other particles that are small compared to the distance, will not induce no-
ticeable changes in neither the potential or the forces. That observation led to the develop-
ment of tree codes. In the Barnes-Hut tree code [7] the whole simulation domain is put into
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a box. By recursively subdividing the box into sub-boxes that are represented by pseudo-
particles, the calculation of particle-box interactions is possible. For each particle-box
interaction a criterion controls, whether this pair is chosen or whether a further subdivision
is chosen. As a consequence, the Barnes-Hut tree code has a complexity ofO(N log N),
whereN is the number of particles.

The idea can be extended to not only exploit the idea in one direction, i.e. computing
particle-box interactions, but to computing box-box interactions for boxes that are far
enough away, as well. This is the basis of the Fast Multipole Method (FMM), that was
presented by Greengard and Rokhlin in [45]. They combined this idea with not only taking
monopole interactions into account but rather computing multipole interactions, as well.
The multipole interactions in principle are a Taylor-Expansion of the potential.

Both methods originally have been developed for open systems. Mesh-free methods for
periodic systems include the Ewald summation [27], although there are efforts to extend
tree codes to the periodic case, as well. As an example consider the method of Kudin and
Scuseria recently presented in [60].

4.3.2 Mesh-based methods

The developed numerical method is mesh-based and thus similar to the P3M, the SPME
and the method presented in the diploma thesis of Füllenbach [38]. As mentioned above,
these methods exploit the connection between the Poisson equation and the electrostatic
potential. All of these methods have in common that they are based on the development
of the Ewald summation and thus have been developed for periodic systems. To derive the
methods, we start with (4.7), i.e.

E =
1

2

N∑

i=1

qi

N∑

j=1
j 6=i

1

4πε0

qj

‖xi − xj‖2
+

∑

n∈Z3\{0}

1

2

N∑

i=1

qi

N∑

j=1

1

4πε0

qj

‖xi − xj + n‖2
.

This sum is not absolutely convergent. In order to define the sum’s value, we split it using
the identity

1

‖xi − xj‖2
=

f(‖xi − xj‖2)
‖xi − xj‖2

+
1− f(‖xi − xj‖2)
‖xi − xj‖2

,

where we choosef , such thatf(‖xi − xj‖2)/‖xi − xj‖2 decays very fast and thus can
be neglected beyond some cutoff and such that(1− f(‖xi − xj‖2))/‖xi − xj‖2 is slowly
varying, i.e. the Fourier coefficients belonging to large indices become small. As a con-
sequence the first sum can be evaluated like a short-ranged potential and the second sum
is calculated by calculating the Fourier sum only up to a certain index. In order to prop-
erly Fourier transform the second part of the sum, the so-called “self-energy”Es has to be
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introduced, yielding

E =
1

2

N∑

i=1

N∑

j=1
j 6=i

qiqj

4πε0

f(‖xi − xj + n‖2)
‖xi − xj‖2

+
∑

n∈Z3\{0}

1

2

N∑

i=1

N∑

j=1

qiqj

4πε0

f(‖xi − xj + n‖2)
‖xi − xj + n‖2

︸ ︷︷ ︸

=:Er

+
∑

n∈Z3

1

2

N∑

i=1

N∑

j=1

qiqj

4πε0

1− f(‖xi − xj + n‖2)
‖xi − xj + n‖2

︸ ︷︷ ︸

=:Ek

− 1

2

N∑

i=1

q2
i

4πε0
f

′

(0)

︸ ︷︷ ︸

=:Es

.

The traditional choice forf is the complementary error function

erfc(r) :=
2√
π

∞∫

r

e−x2

dx.

This also has a physical interpretation, namely that the point charges are “hidden” by a
“charge cloud” of the same charge. The “charge cloud” simplyis a distribution of measure
one, in the Ewald case it is point-symmetric and described bythe error function.

The Ewald approach can easily be transferred to a grid based approach. In that case the
particles charges are mapped to grid points in an appropriate way. Several ways exist to do
that, the simplest one being the nearest neighbor scheme. More sophisticated approaches
split a particle into several pseudo-particles, which reside on the grid point. The charges of
these pseudo-particles are then calculated using interpolation schemes or using B-splines.
Once the charges are mapped to the mesh, the mesh can be transferred to Fourier space
using the FFT and the reciprocal sumEk can be evaluated there using convolution with the
Fourier transformed version off(1−‖xi−xj‖2) or another so-called “influence function”.
The summationEr in real (physical) space can be carried out approximately using a cut-
off radius. At that point a data structure comes in handy thatstores the particles that
are contained in a certain grid cell. For that purpose thelinked list algorithm has been
developed (c.f. [56]). It creates a three-dimensional array HOC that contains the index of
the first particle inside the corresponding box. Another one-dimensional array LL contains
the next particle in that box of each particle. If there is no particle in a box or if a particle
has no successor, the entries are set to zero. The algorithm that creates the data structures
is to be found in Algorithm 4.1.

For the evaluation of the reciprocal sumEk, there exist two different approaches. The
first one is the Particle Particle Particle Mesh Method (P3M)developed by Hockney and
Eastwood. They have published several papers concerning this method, e.g. [23, 24, 25,
55, 56, 57]. They do not approximate the sum by using the discrete Fourier transform of a
periodic version of the error function, but they optimize that to minimize the discretization
error that has been introduced by meshing-up the charges.
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Algorithm 4.1 Creation of the linked list arrays HOC and LL for a gridG.
for i ∈ G do

HOC(i)← 0
end for
for i = 1 to |P| do

j← round(x/h)
LL(i)← HOC(j)
HOC(j)← i

end for

Another approach was chosen by Essmann, Perera, Berkowitz,Darden, Lee and Pedersen,
who introduced the Smooth Particle Mesh Ewald (SPME) methodin [26], which is an
improvement of the Particle Mesh Ewald (PME) method that wasintroduced by Darden,
York and Pedersen in [19]. They use the unmodified Fourier transform when calculating
the reciprocal sum, effectively solving the Poisson equation after smoothing with the error
function. In order to compensate the discretization error,in the SPME the point charges
are gridded using splines, resulting in an approximation tocardinal Euler B-splines.

All these methods use the FFT, thus the complexity isO(N + n log n), whereN is the
number of particles andn is the number of grid points. A comparison of these mesh-based
methods for the evaluation of the Ewald sum can be found in [20], further information on
the P3M is contained in [21]. Although the analysis and experiments in [20] have shown,
that the SPME method is not as accurate as the P3M, it has the big advantage of being
able to use other solvers for the Poisson equation. So Sagui and Darden were able to use
a multigrid method in a modification of the SPME presented in [70]. They also suggested
to use a diffusion approach to prevent smearing in the reciprocal space. This results in an
computationally optimal algorithm. Another method that uses multigrid has been published
by Sutmann and Steffen in [82]. In contrast to the approach bySagui and Darden and to the
approach presented here, they use an discrete approximation to the fundamental solution
to carry out the self-energy correction.

4.4 Meshed continuum method

Unlike the P3M and the SPME method, we chose a continuum approach that is not assign-
ing the point charges to a grid. Instead we replace the point charges by charge distributions
that are sampled on the mesh. As a result, unlike P3M or SPME, we do not introduce ad-
ditional discretization errors. We like to note, that our approach is very similar to the one
presented by Füllenbach in [38].
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4.4.1 Derivation of the method

To replace the point charges, we need to choose another pointsymmetric density.

Definition 4.1 Let g : R+ → R+ be a function with supp(g) = [0, rcut], rcut > 0 the
cut-off radiusand letρg : R3 → R+ be a function defined by

ρg(x) := g(|x|).

If
∫

R3

ρg(x)dx = 1,

thenρg is called apoint symmetric density.

If such a point symmetric density is used as the right hand side of the Poisson equation,
beyond the cut-off radius we have that the solution is equal to the solution of the Poisson
equation with theδ-distribution as right-hand side.

Lemma 4.1 Let ρg be a point symmetric density with cut-off radiusrcut. Let u andv be
the solutions of the respective Poisson equations

∆u(x) = δ(x),

∆v(x) = ρg(x),

for all x ∈ R3. Then for allx with ‖x‖2 ≥ rcut we have

u(x) = v(x).

Proof. We solve

∆u(x) = δ(x), for all x ∈ R

by convolution with the Green function, yielding

u(x) =

∫

R3

1

4π

1

‖x− y‖2
ρg(y)dy.
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Without loss of generality we setx = (0, 0, z)T . Transformation to spherical coordinates
yields

u(x) =
1

4π

∞∫

0

π∫

0

2π∫

0

g(r)r2 sin(θ)
√

(r sin(θ) sin(φ))2 + (r sin(θ) cos(φ))2 + (r cos(θ)− z)2
dφdθdr

=
1

2

∞∫

0

π∫

0

g(r)r2 sin(θ)
√

r2 sin2(θ) + r2 cos2(θ) + z2 − 2rz cos(θ)
dθdr

=
1

2

∞∫

0

π∫

0

g(r)r2 sin(θ)
√

r2 + z2 − 2rz cos(θ)
dθdr

=
1

2

∞∫

0

g(r)r(r + z − |r − z|)
z

dr

So forz > rcut we obtain finally

u(x) =
1

2

rcut∫

0

g(r)r(r + z − z + r)

z
dr =

1

z

rcut∫

0

g(r)r2dr =
1

4πz

∫

R3

φg(y)dy =
1

4πz

�

To further simplify the representation we assume that the point symmetric density has cut-
off radiusrcut = 1/2. Other radii can be obtained according to the following Lemma.

Lemma 4.2 Letφg be a point symmetric density with cut-off radiusrcut. A point symmetric
density with cut-off radius1

a
rcut is given by

ρga
(x) := ag(a ‖x‖2).

The solution of the Poisson equation with this function instead of the non-scaled version is
obtained in terms of the solution of the non-scaled version as

Φga
(x) = aΦg(a x). (4.9)

Proof. Obviouslyρga
is point symmetric and its cut-off radius is1

a
rcut. The volume is

∫

Rd

ρga
(x)dx = 4π

1
a
rcut∫

0

a3g(ar)r2dr = 4π

rcut∫

0

g(r)r2dr = 1.
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The remaining equation (4.9) directly follows when the solution is constructed by convo-
lution with the Green’s function. �

Now, in analogy to (4.8), we define

∆Φga,i(x) = ρga,i :=
1

ε0

N∑

j=1
j 6=i

qjρga
(‖x− xj‖2). (4.10)

If ρg is sufficiently smooth, we can solve (4.10) numerically. Furthermore, we have

Φix = Φga,i − (Φga,i − Φi),

so if we are givenΦga,i we can calculateΦi by subtracting the solution of the equation

∆(Φga,i − Φi) =
1

ε0

N∑

j=1
j 6=i

qj(ρga
− δ)(‖x− xj‖2).

As a consequence of Lemma 4.1 this can be evaluated by direct particle-particle interac-
tions with the help of a near-field correction, as the potential induced by this right hand
side only has to be evaluated in a ball of radius1

2a
aroundx. The use of smooth point

symmetric densities instead of theδ-distribution allows another reduction of complexity.
Instead of computingΦga,i for each particle, we can compute

∆Φga,P(x) = ρga
:=

1

ε0

N∑

j=1

qjρga
(‖x− xj‖2).

From this we can obtain the neededΦga,i(xi) as

Φga,i(xi) = Φga,P(xi)− qiΦga
.

This step corresponds to the self-energy correction in P3M or SPME and allows the def-
inition of an optimal method, as the Poisson equation only has to be solved once. So a
necessary condition for defining an optimal method this way is having an optimal Poisson
solver, e.g. a multigrid method. In Algorithm 4.2 we subsumethe method for the calcu-
lation of the system’s electrostatic energy. The calculation of the forces is carried out by
numerical differentiation of the potential surface. The resulting method will be optimal
in case when the number of particles in the near field, i.e. theparticles that have to be
treated using a particle-particle method, can be kept constant when the number of parti-
cles is growing. We can ensure this while keeping the same accuracy if only the number
of particles grows, but not their mean distance, i.e. if onlythe system grows. As an ex-
ample, we consider a system of randomly distributed chargesinside of a unit cell to be
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Algorithm 4.2 Calculation of the energies using the meshed continuum method. The
linked list arrays HOC and LL for the gridG are used to speed up sampling of the point
symmetric densities.

for i ∈ G do
for j ∈ {j|‖i− j‖∞ ≤ a/h} do

k = HOC(j)
while k 6= 0 do

f(xi) = qkρga
(xi − xk)

k = LL(k)
end while

end for
end for
Solve∆Φga,P = f numerically using Poisson solver
E = 0
for k = 1, . . . , N do

ApproximateΦga,P(xk) by interpolating the potential surface
E = E + qk(Φga,P(xk)− Φga

(0))
end for

simulated. In order to keep the number of particles in the near-field constant, the number
of grid points has to grow as the number of particles grows, while the radius of the point
symmetric densities replacing theδ-distribution has to shrink reciprocally in order to keep
the number of particles in the near-field constant. E.g. if the number of particles grows by
a factor ofb3, the number of grid points in each dimension grows byb and the radius of the
replacing charge distribution shrinks by a factor of1/b. As only the extent of the system
is enlarged, the charge of the particles inside of the unit cell is multiplied with 1/b like the
radius, yielding a potential as large in magnitude as the potential of the smaller system. So,
for the potential of a single unit charge in the center

∆hu(x) = −4πρga
(x)⇒ u(x) = φga

(x) + e(x),

we get
∆h

b
u(x) = −b34πρga

(bx)⇒ u(x) = b φga
(bx) + b e(bx). (4.11)

If the charge is multiplied with1/b, we see that neither the magnitude of the potential
nor the magnitude of the error change, thus the method has thesame accuracy and scales
linearly.

4.4.2 Point symmetric densities described by B-splines

We chose point symmetric densities that can be described by B-splines. A B-spline is given
by the following definition:
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Definition 4.2 A B-splineBi, i = 0, 1, . . . of unit width is given by

B0(x) =

{

1 for −1
2
≤ x ≤ 1

2

0 otherwise
,

Bi+1(x) = 2 B⌊i/2⌋(2 x) ∗ 2 B⌈i/2⌉(2 x), for i = 1, 2, . . . .

For example, the resulting quadratic B-spline density is given by:

ρB2(r) =







−27r2+36
16

: 0 ≤ r < 1
6

27r2−108r+108
32

: 1
6
≤ r ≤ 1

2

0 : otherwise
(4.12)

and it induces the potential:

φB2(r) =







3(1296r4−360r2+65)
40

: 0 ≤ r ≤ 1
6

−8505r5+12960r4−6480r3+810r−2
160r

: 1
6

< r ≤ 1
2

1
r

: 1
2

< r

(4.13)

4.4.3 Numerical experiments

In the following we will present some tests of the method. First we compare the influence
of the width of the replacing charge distribution while using either a standard 7-point stencil
or the compact fourth-order scheme presented in Section 2.3.1. The potential surface due
to a single unit charge distribution in the center of the simulation box was computed using
a multigrid method an either the standard 7-point discretization of the Laplacian or the
compact fourth-order discretization given by (2.21). The absolute errore between the
analytical and the numerical solution was measured. In Tables 4.1 and 4.2 the results for
various widths of the charge distribution are printed. Furthermore in Tables 4.3 and 4.4 the
dependence of the error on the number of neighboring cells, i.e. the radius of the charge
distribution divided by the grid spacing, can be found for the second-order and the fourth-
order solver, respectively. In Figures 4.1 and 4.2 this dependence is shown graphically.
We can see that keeping the number of neighbors constant while halving the grid spacing
and doubling the grid size, the error is doubled as predictedby (4.11). Comparison of the
results of the second-order solver and the fourth-order solver strongly suggests the use of
high order solvers.

Next we consider a test of randomly distributed charges inside of a cube. In accordance
to the considerations at the end of Section 4.4.1, the charges were scaled with the help of
(4.9) such that the expected potential energy per particle for the system was constant. The
results for the different steps of Algorithm 4.2 can be foundin Table 4.5 and Figure 4.3.
Here “sampling” denotes the process of sampling the right hand side on the grid, in the
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width h = 1/32 h = 1/64 h = 1/128
||e||∞ # cells ||e||∞ # cells ||e||∞ # cells

2/32 6.740 · 100 (2 · 1)3 7.658 · 10−1 (2 · 2)3 1.699 · 10−1 (2 · 4)3

4/32 3.823 · 10−1 (2 · 2)3 8.486 · 10−2 (2 · 4)3 2.049 · 10−2 (2 · 8)3

6/32 9.874 · 10−2 (2 · 3)3 2.378 · 10−2 (2 · 6)3 5.973 · 10−3 (2 · 12)3

8/32 4.232 · 10−2 (2 · 4)3 1.023 · 10−2 (2 · 8)3 2.527 · 10−3 (2 · 16)3

10/32 2.159 · 10−2 (2 · 5)3 5.212 · 10−3 (2 · 10)3 1.291 · 10−3 (2 · 20)3

12/32 1.188 · 10−2 (2 · 6)3 2.980 · 10−3 (2 · 12)3 7.444 · 10−4 (2 · 24)3

14/32 7.666 · 10−3 (2 · 7)3 1.885 · 10−3 (2 · 14)3 4.686 · 10−4 (2 · 28)3

16/32 5.090 · 10−3 (2 · 8)3 1.258 · 10−3 (2 · 16)3 3.133 · 10−4 (2 · 32)3

18/32 3.515 · 10−3 (2 · 9)3 8.795 · 10−4 (2 · 18)3 2.195 · 10−4 (2 · 36)3

20/32 2.584 · 10−3 (2 · 10)3 6.409 · 10−4 (2 · 20)3 1.598 · 10−4 (2 · 40)3

22/32 1.929 · 10−3 (2 · 11)3 4.804 · 10−4 (2 · 22)3 1.198 · 10−4 (2 · 44)3

24/32 1.474 · 10−3 (2 · 12)3 3.684 · 10−4 (2 · 24)3 9.206 · 10−5 (2 · 48)3

26/32 1.163 · 10−3 (2 · 13)3 2.897 · 10−4 (2 · 26)3 7.230 · 10−5 (2 · 52)3

28/32 9.305 · 10−4 (2 · 14)3 2.315 · 10−4 (2 · 28)3 5.780 · 10−5 (2 · 56)3

30/32 7.509 · 10−4 (2 · 15)3 1.879 · 10−4 (2 · 30)3 4.695 · 10−5 (2 · 60)3

Table 4.1: Error of the potential of a single charge distribution for different widths and grid
spacings calculated using the 7-point discretization of the Laplacian.

width h = 1/32 h = 1/64 h = 1/128
||e||∞ # cells ||e||∞ # cells ||e||∞ # cells

2/32 8.633 · 100 (2 · 1)3 2.345 · 10−1 (2 · 2)3 1.204 · 10−2 (2 · 4)3

4/32 1.172 · 10−1 (2 · 2)3 6.012 · 10−3 (2 · 4)3 3.018 · 10−4 (2 · 8)3

6/32 1.318 · 10−2 (2 · 3)3 6.187 · 10−4 (2 · 6)3 3.421 · 10−5 (2 · 12)3

8/32 3.001 · 10−3 (2 · 4)3 1.504 · 10−4 (2 · 8)3 7.687 · 10−6 (2 · 16)3

10/32 8.581 · 10−4 (2 · 5)3 4.424 · 10−5 (2 · 10)3 2.436 · 10−6 (2 · 20)3

12/32 3.106 · 10−4 (2 · 6)3 1.711 · 10−5 (2 · 12)3 9.839 · 10−7 (2 · 24)3

14/32 1.456 · 10−4 (2 · 7)3 7.834 · 10−6 (2 · 14)3 4.466 · 10−7 (2 · 28)3

16/32 7.451 · 10−5 (2 · 8)3 3.845 · 10−6 (2 · 16)3 2.287 · 10−7 (2 · 32)3

18/32 3.725 · 10−5 (2 · 9)3 2.161 · 10−6 (2 · 18)3 1.229 · 10−7 (2 · 36)3

20/32 2.195 · 10−5 (2 · 10)3 1.212 · 10−6 (2 · 20)3 7.196 · 10−8 (2 · 40)3

22/32 1.356 · 10−5 (2 · 11)3 7.586 · 10−7 (2 · 22)3 4.417 · 10−8 (2 · 44)3

24/32 8.415 · 10−6 (2 · 12)3 4.823 · 10−7 (2 · 24)3 2.854 · 10−8 (2 · 48)3

26/32 5.395 · 10−6 (2 · 13)3 3.130 · 10−7 (2 · 26)3 1.883 · 10−8 (2 · 52)3

28/32 3.757 · 10−6 (2 · 14)3 2.137 · 10−7 (2 · 28)3 1.276 · 10−8 (2 · 56)3

30/32 2.581 · 10−6 (2 · 15)3 1.460 · 10−7 (2 · 30)3 8.749 · 10−9 (2 · 60)3

Table 4.2: Error of the potential of a single charge distribution for different widths and grid
spacings calculated using the compact fourth-order discretization of the Laplacian.
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neighbors h = 1/32 h = 1/64 h = 1/128

1 6.740 · 100 1.357 · 101 2.722 · 101

2 3.823 · 10−1 7.658 · 10−1 1.533 · 100

3 9.874 · 10−2 1.977 · 10−1 3.957 · 10−1

4 4.232 · 10−2 8.486 · 10−2 1.699 · 10−1

5 2.159 · 10−2 4.332 · 10−2 8.676 · 10−2

6 1.188 · 10−2 2.378 · 10−2 4.756 · 10−2

7 7.666 · 10−3 1.541 · 10−2 3.087 · 10−2

8 5.090 · 10−3 1.023 · 10−2 2.049 · 10−2

9 3.515 · 10−3 7.071 · 10−3 1.415 · 10−2

10 2.584 · 10−3 5.212 · 10−3 1.044 · 10−2

11 1.929 · 10−3 3.894 · 10−3 7.802 · 10−3

12 1.474 · 10−3 2.980 · 10−3 5.973 · 10−3

13 1.163 · 10−3 2.354 · 10−3 4.720 · 10−3

14 9.305 · 10−4 1.885 · 10−3 3.784 · 10−3

15 7.509 · 10−4 1.520 · 10−3 3.051 · 10−3

Table 4.3: Influence of the width of the charge distribution measured in neighboring cells
in each direction for various grid-spacings for the 7-pointdiscretization of the Laplacian.
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Figure 4.1: Influence of the width of the charge distributionmeasured in neighboring cells
in each direction for various grid-spacings for the 7-pointdiscretization of the Laplacian.
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neighbors h = 1/32 h = 1/64 h = 1/128

1 8.633 · 100 1.748 · 101 3.518 · 101

2 1.172 · 10−1 2.345 · 10−1 4.690 · 10−1

3 1.318 · 10−2 2.661 · 10−2 5.348 · 10−2

4 3.001 · 10−3 6.012 · 10−3 1.204 · 10−2

5 8.581 · 10−4 1.732 · 10−3 3.480 · 10−3

6 3.106 · 10−4 6.187 · 10−4 1.235 · 10−3

7 1.456 · 10−4 2.934 · 10−4 5.886 · 10−4

8 7.451 · 10−5 1.504 · 10−4 3.018 · 10−4

9 3.725 · 10−5 7.477 · 10−5 1.495 · 10−4

10 2.195 · 10−5 4.424 · 10−5 8.852 · 10−5

11 1.356 · 10−5 2.762 · 10−5 5.545 · 10−5

12 8.415 · 10−6 1.711 · 10−5 3.421 · 10−5

13 5.395 · 10−6 1.109 · 10−5 2.218 · 10−5

14 3.757 · 10−6 7.834 · 10−6 1.570 · 10−5

15 2.581 · 10−6 5.527 · 10−6 1.113 · 10−5

Table 4.4: Influence of the width of the charge distribution measured in neighboring cells
in each direction for various grid-spacings for the compactfourth-order discretization of
the Laplacian.
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Figure 4.2: Influence of the width of the charge distributionmeasured in neighboring cells
in each direction for various grid-spacings for the compactfourth-order discretization of
the Laplacian.
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time/s

# particles grid size
∣
∣
∣
Epot−E∗

pot

E∗
pot

∣
∣
∣ sampling solution of PDE back interp.

1000 333 1.579 · 10−2 0.25 0.14 0.16
8000 653 1.989 · 10−3 2.01 3.46 1.41

64000 1293 1.033 · 10−2 16.34 35.18 12.29
512000 2573 2.481 · 10−3 132.30 340.05 108.95

Table 4.5: Scaling behavior and accuracy of Algorithm 4.2 for randomly distributed parti-
cles using the fourth-order discretization of the Laplacian and a B-spline width of 10 grid
spacings.
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Figure 4.3: Scaling behavior of Algorithm 4.2.

column titled “solution of PDE” the times for the multigrid solver can be found and finally
the times measured for the back interpolation of the potential to the particle positions is
shown in the outermost right column. We see that the proposedmethod scales linearly
with the number of particles while keeping about the same accuracy. Fluctuations in the
accuracy are due to the random distributions of the charges inside the simulation box.
The last test we want to present is the calculation of the total electrostatic energy of a DNA
fragment including counter ions consisting of 1316 atoms. This test was performed in order
to show that the method provides a way to accurately calculate the electrostatic energy of
a real molecule. The relative error of the total electrostatic energy is found in Table 4.6.
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neighbors h = 1/32 h = 1/64 h = 1/128

1 1.656 · 10−1 1.007 · 100 1.701 · 100

2 7.370 · 10−3 7.935 · 10−2 1.595 · 10−1

3 7.658 · 10−4 4.963 · 10−3 2.218 · 10−2

4 1.104 · 10−4 4.584 · 10−4 3.879 · 10−3

5 2.985 · 10−5 1.436 · 10−4 6.941 · 10−4

6 9.356 · 10−6 5.147 · 10−5 1.356 · 10−4

7 3.309 · 10−6 1.578 · 10−5 5.151 · 10−5

8 1.078 · 10−6 4.660 · 10−6 2.568 · 10−5

9 1.733 · 10−7 2.996 · 10−6 1.718 · 10−5

10 1.356 · 10−7 1.185 · 10−6 7.477 · 10−6

11 6.242 · 10−7 5.755 · 10−7 5.208 · 10−6

12 2.506 · 10−8 1.637 · 10−7 2.472 · 10−6

13 2.075 · 10−8 5.355 · 10−8 1.542 · 10−6

14 1.132 · 10−8 2.995 · 10−8 9.037 · 10−7

15 2.503 · 10−10 0.152 · 10−8 5.209 · 10−7

Table 4.6: Relative error of the electrostatic energy of a DNA fragment calculated for
various grid spacings using the compact fourth-order discretization of the Laplacian.
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Conclusion

In this work we presented a framework for the application of multigrid methods as a solver
for the Poisson equation that arises in particle simulationmethods. As the Poisson equa-
tion’s Green’s function is equal to the Coulomb potential and gravitational potential up to
a constant factor, the use of multigrid methods is possible for a wide range of applications,
i.e. in molecular dynamics simulations and in the simulation of astrophysical phenomena.
We reformulated the problem in a consistent way, such that the problem is equivalent to the
solution of a partial differential equation with a special right hand side. Additionally, a near
field correction has to be applied. Given that the continuouspartial differential equation is
solved analytically, no errors are introduced by this reformulation. When solved numeri-
cally, the only errors introduced are the discretization error of the numerical scheme used
to solve the PDE and the error of the back-interpolation scheme.

For the solution of PDEs in open systems we introduced the hierarchical grid refinement
technique by Washio and Oosterlee [87] and a new modificationof this technique which
is guaranteed to yield a result of the desired accuracy. We were able to show that the
modified method still scales optimally in terms of unknowns,although new grid points are
introduced. For the solution of the resulting method a geometric multigrid method using
the FAC method is appropriate.

In the periodic case the problem of solving the Poisson equation with constant coefficients
on an equispaced grid yields a linear system with circulant coefficient matrix. We reviewed
the algebraic multigrid theory for hermitian positive matrices in general and its use in the
circulant case. Motivated by the possible computational savings, we analyzed the theory
and developed sufficient conditions for a replacement coarse grid operator instead of the
Galerkin operator. The derived conditions were verified forschemes that are applicable to
certain circulant matrices.

Although multigrid methods are fast methods, it can still bedesirable to parallelize even
fast methods. Therefore we presented a parallel implementation of the solver for circulant
matrices, which included the Galerkin operator as well as its replacement. The results
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were obtained on up to 65536 processors on Jülich Supercomputing Centre’s Blue Gene/P
system JUGENE and on the Blue Gene/L system JUBL. The method shows very good
scaling results, allowing very large systems to be solved infractions of a second.

With this work a new method using multigrid for the solution of the long-ranged Coulomb
potential or gravitational potential becomes available for the simulation of systems consist-
ing of atomic particles.

The obtained theoretical results for multigrid methods payoff in this application. In the
future we will extend the theory to cover other classes of matrices to be able to replace the
Galerkin operator there, as well.
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Binh Trieu. I also like to mention the group members of the complex atomistic modelling
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NIC Series Volume 9
ISBN 3-00-009055-X, May 2002, 514 pages

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms - Lecture Notes
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands
NIC Series Volume 10
ISBN 3-00-009057-6, February 2002, 548 pages

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms- Poster Presentations
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands
NIC Series Volume 11
ISBN 3-00-009058-4, February 2002, 194 pages



Strongly Disordered Quantum Spin Systems in Low Dimensions :
Numerical Study of Spin Chains, Spin Ladders and
Two-Dimensional Systems
Yu-cheng Lin
NIC Series Volume 12
ISBN 3-00-009056-8, May 2002, 146 pages

Multiparadigm Programming with Object-Oriented Language s -
Proceedings
Jörg Striegnitz, Kei Davis, Yannis Smaragdakis (Editors)
Workshop MPOOL 2002, 11 June 2002, Malaga
NIC Series Volume 13
ISBN 3-00-009099-1, June 2002, 132 pages

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms - Audio-Visual Lecture Notes
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands
NIC Series Volume 14
ISBN 3-00-010000-8, November 2002, DVD

Numerical Methods for Limit and Shakedown Analysis
Manfred Staat, Michael Heitzer (Eds.)
NIC Series Volume 15
ISBN 3-00-010001-6, February 2003, 306 pages

Design and Evaluation of a Bandwidth Broker that Provides
Network Quality of Service for Grid Applications
Volker Sander
NIC Series Volume 16
ISBN 3-00-010002-4, February 2003, 208 pages

Automatic Performance Analysis on Parallel Computers with
SMP Nodes
Felix Wolf
NIC Series Volume 17
ISBN 3-00-010003-2, February 2003, 168 pages



Haptisches Rendern zum Einpassen von hochaufgel östen
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Wolfgang Gürich (Editor)
GI Conference, 4 - 5 November 2003, Forschungszentrum Jülich
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Winter School, 14. - 22 February 2006, Forschungszentrum Jülich
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NIC Series Volume 32
ISBN 3-00-017351-X, February 2006, 384 pages

Parallel Computing: Current & Future Issues of High-End
Computing
Proceedings of the International Conference ParCo 2005
G.R. Joubert, W.E. Nagel, F.J. Peters,
O. Plata, P. Tirado, E. Zapata (Editors)
NIC Series Volume 33
ISBN 3-00-017352-8, October 2006, 930 pages

From Computational Biophysics to Systems Biology 2006
Proceedings
U.H.E. Hansmann, J. Meinke, S. Mohanty, O. Zimmermann (Editors)
NIC Series Volume 34
ISBN-10 3-9810843-0-6, ISBN-13 978-3-9810843-0-6,
September 2006, 224 pages

Dreistufig parallele Software zur Parameteroptimierung vo n
Support-Vektor-Maschinen mit kostensensitiven Gütemaß en
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