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1 Preamble

Astrophysics, and more specifically astroparticle physics, has been going
through tremendous progress during the last two decades. Still, one of the
main problems, that of the nature of the dark matter, remains unsolved. With
the help of accelerator experiments (at CERN:s LHC in particular, which
started operation in 2010 and which is currently gathering an impressive in-
tegrated luminosity) we could soon hope to get a first indication of the mass
scale for the new physics that is associated with dark matter. However, to
actually prove that a particle discovered at accelerators has the right proper-
ties to constitute the astrophysical dark matter, complementary methods are
needed. The fact that a candidate for dark matter is electrically neutral (as
not to emit nor absorb light - that is what we mean with the term “dark”)
can plausibly be determined at accelerators. However, the coupling of the dark
matter particles to other matter needs to be weak, and the lifetime of the dark
matter particle needs to be at least of the order of the age of the universe. This
cannot be tested at accelerators - the dark matter particles would leave the
detector in some 100 nanoseconds. There could be very useful information still
gathered at the LHC, as possibly decays of more massive states in the “dark
sector” would be observable, and the missing energy could be estimated.

Fortunately, through observations of various types of messengers - radio
waves, microwaves, IR, optical and UV radiation, X-rays, γ-rays and neutri-
nos, there is great hope that we could get an independent indication of the
mass scale of dark matter. This variety of possible methods of indirect de-
tection methods is a part of multimessenger astronomy, and it is the second
way by which we approach the dark matter problem. In particular, for models
where the dark matter particles are involved in breaking the electroweak sym-
metry of the Standard Model, so-called WIMP models (for weakly interacting
massive particles), prospects of detection in the near future look promising.
We will look in some detail on the properties of WIMP candidates, where that
fact that they are massive means that they move non-relativistically in galac-
tic halos, and form so-called cold dark matter (CDM). One thought earlier
that neutrinos could be the dark matter, but they would constitute hot dark
matter (HDM), which is not favoured by observations. Due to free-streaming
motion, they would only form very large structures first, which then fragment
into smaller scales, like galaxies. This scenario does not agree with observa-
tions, as it gives too little power on small scales. Of course, one may also
consider an inbetween scenario, warm dark matter, usually consisting of hav-
ing a sterile neutrino (i.e., with no direct Standard Model couplings) in the
keV mass region. These may perhaps have some virtue of explaining possible
anomalies in dark matter distribution on the very smallest scales, but reli-
able methods are so far lacking to probe the dark matter distribution, and its
couplings to baryons, on these scales.

As a third approach, ingenious experiments for direct detection employ-
ing solid state devices, liquid noble gases etc, can be used to tell us about
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other important properties of dark matter, like the spin-dependent or spin-
independent cross section of dark matter particle scattering on nucleons. Once
signals start to be found (and there are some, however not undisputed ones,
already), an exciting puzzle will present itself, putting all these pieces of in-
formation together. For indirect detection, astrophysical backgrounds that
could mask or mimic dark matter signatures will often be a great challenge
to overcome. It should therefore be useful to the reader to study also the ac-
companying articles by Felix Aharonian and Chuck Dermer in this volume -
not the least to understand the very interesting aspects of those processes in
their own right.

In this set of lectures, I will treat all of the dark matter-related aspects
in some detail, and also cover some other current problems of astroparticle
physics and cosmology. The sections in these lectures correspond roughly to
the lectures at the Saas-Fee School in Les Diablerets in March, 2010, i.e.,

• The particle universe: introduction, cosmological parameters.
• Basic cross sections for neutrinos and γ-rays; IceCube.
• Density of relic particles from the early universe.
• Dark matter: Direct and indirect detection methods; the galactic centre &

other promising DM sources.
• Neutrinos and antimatter from dark matter, Sommerfeld enhancement.
• Supersymmetric dark matter, DarkSUSY.
• Particular dark matter candidates (WIMPS, Kaluza-Klein particles, sterile

neutrinos. . . ).
• Diffuse extragalactic γ-rays, Primordial black holes, Hawking radiation.
• Gravitational waves.

The order has been slightly changed (cf. the Table of Contents), and in many
cases I have updated the material since the time of the lectures, referring
to important developments (actually, quite a number of them) that have ap-
peared after time of the School. This is of course mandatory in a field that
evolves so rapidly. For the more basic parts of this review, I have relied heav-
ily on the Springer/PRAXIS textbook by Ariel Goobar and myself [1]. Also
material from various reviews I have written over the last few years [2, 3, 4, 5]
has come to use, but also a lot of new material. With these lecture notes, I
hope to convey at least some of the excitement I feel for this topic, which
relates to some of the outstanding questions still with us in particle physics
and cosmology.

2 The Particle Universe: Introduction

2.1 Introduction

One of the most impressive achievements of science is the development of
a quite detailed understanding of the physical properties of the universe,



3

even at its earliest stages. Thanks to the fruitful interplay between theoret-
ical analysis, astronomical observations and laboratory experiments we have
today very successful ‘Standard Models’ of both particle physics and cosmol-
ogy. The Standard Model of particle physics involves matter particles: quarks
which always form bound states such as neutrons and protons, and leptons
like the electron which is charged and therefore can make up neutral matter
when bound to nuclei formed by neutrons and protons. There are also neutral
leptons, neutrinos, which do not form bound states but which play a very im-
portant role in cosmology and particle astrophysics as we will see throughout
these lecture notes. The other important ingredients in the Standard Model
of particle physics are the particles which mediate the fundamental forces: the
photon, the gluons and the W and Z bosons.

The Standard Model of cosmology is the hot big bang model, which states
that the universe is not infinitely old but rather came into existence some 13.7
billion years ago. There may have been a short period with extremely rapid
expansion, inflation, which diluted all matter, radiation and other structures
(like magnetic monopoles) that might have existed before inflation. When in-
flation ended, there was a rapid heating (or, thus, rather re-heating) which
meant a re-start of expansion, now governed by the relativistic degrees of
freedom of our universe, i.e., radiation. The expansion started out in a state
which after this small fraction of a second was enormously compressed and
very hot (the relation between the density and the temperature can be deter-
mined by near-equilibrium thermodynamics in this epoch, when the expansion
was “slow” and adiabatic). No bound states could exist because of the intense
heat which caused immediate dissociation even of protons and neutrons into
quarks if they were formed in the quark-gluon plasma. Subsequently, the uni-
verse expanded and cooled, making possible the formation of a sequence of
ever more complex objects: protons and neutrons, nuclei, atoms, molecules,
clouds, stars, planets,. . . . As we will see, the observational support for the big
bang model is overwhelming, but it contains new elements, of dark matter
and dark energy, that were not entirely expected. The key observations are:

• The present expansion of the universe.
• The existence of the cosmic microwave background radiation, CMBR,
i.e. the relic radiation from the hot stage of the early universe, and
measurements of the temperature variations therein.

• The presence of related structure in the late-time distribution of
galaxies, so-called “baryon acoustic oscillations” (BAO).

• Supernova cosmology that measures the expansion history, with the
surprising result that the cosmic expansion is accelerating (Nobel
Prize to S. Perlmutter, B. Schmidt and A. Riess, 2011).

• The successful calculations of the relative abundance of light ele-
ments in the universe, which accurately agrees with what would be
synthesized in an initially hot, expanding universe.
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• The concept of cosmological inflation, which successfully predicted
the geometric flatness of the universe, (thus that the average density
is near the critical density, i.e., Ωtot = 1 to an excellent approxi-
mation) and gave an explanation of the form of the nearly scale
invariant, gaussian temperature fluctuations.

• The discovery of dark matter, pioneered by Zwicky in the 1930’s,
has stood the test of time and is now an established piece of the
cosmological standard model. This is what the main part of these
lecture notes will be about. Dark energy, in its simplest form just a
constant vacuum energy, is the other part which explains Ωtot = 1
and the accelerated expansion of the universe.

Several of these observations have been awarded the Nobel Prize, the latest
thus being the prize for the discovery of the accelerated expansion of the
universe through supernova observations.

As another piece of evidence in favour of the big bang scenario, can be
taken the fact that the oldest objects found in the universe – globular clusters
of stars and some radioactive isotopes – do not seem to exceed an age around
13 billion years. This gives strong evidence for a universe with a finite age,
such as the big bang model predicts.

In some areas, there are new pieces of information to await. For instance,
one of the main objectives of the Planck satellite, which will present cosmo-
logical data in early 2013, is to search for non-gaussian features, which could
tell us more about the mechanism of inflation.

Although there are still many puzzles and interesting details to fill in, both
in the Standard Model of particle physics and in the big bang model, they do
remarkably well in describing a majority of all phenomena we can observe in
nature. Combined, they allow us to follow the history of our universe back to
only about 10−10 seconds after the big bang using established physical laws
that have been checked in the laboratory. Extending the models, there are
inflationary scenarios that describe the evolution back to 10−43 seconds after
the big bang!

Behind this remarkable success are the theories of General Relativity and
Quantum Field Theory, which we use in these lecture notes. However, many
fundamental aspects of the laws of nature remain uncertain and are the subject
of present-day research. The key problem is, as it has been for many decades,
to find a valid description of quantized gravity, something which is needed to
push our limit of knowledge even closer to (and maybe eventually explaining?)
the big bang itself.

In this section we will review some of the most striking observational facts
about our universe.

2.2 Basic Assumptions

A basic concept in modern cosmology is that of the “Copernican principle”,
i. e. the supposition that the universe on the average is homogeneous and
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isotropic. Although this is definitely not true on galactic scales and smaller,
the distribution of matter seems to become more and more smooth on large
scales, and on the largest scales we can observe, probed by the CMBR, isotropy
and homogeneity seems to be fulfilled. The inhomogeneities seem to be 10−5

or smaller, apart from a dipole component in the CMB radiation, which how-
ever has a natural interpretation in terms of motion of our galaxy towards
other massive galaxies. Given isotropy and homogeneity, the most general
line element is the one found by Friedmann, Lemâıtre , Robertson and Walker
(FLRW),

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
.

Measurements on the cosmic microwave background gives (and inflationary
theories predicted) k = 0, i.e., a geometrically flat universe on large scales,
to good accuracy. (There have been suggestions that some of the features of
the homogeneous and isotropic model can be alternatively explained if we
live in an inhomogeneous universe with large “bubbles” of atypical density.
Although a logical possibility, combined constraints from galaxy surveys, su-
pernova data, and the CMBR mean that we would have to live at a fine-tuned
location near the centre of such a bubble [6]. We will thus not consider these
scenarios.)

The scale factor a(t) follows equations first derived by Friedmann from
Einsteins equations in general relativity:

H(t)2 ≡
(
ȧ

a

)2

=
8πGN

3
ρtot.

Here GN is Newton’s gravitational constant, and ρtot is the total average
energy density of the universe. The time-dependent Hubble parameter H(t),
has a value today which is known as the Hubble constant,

H(t0) ≡ H0 = h · 100 kms−1Mpc−1.

This defines the dimensionless quantity h ∼ 0.7, which has to be given by
measurement.

The equation which determines the acceleration of the scale factor is also
derived from Einstein’s equations:

2ä

a
+

(
ȧ

a

)2

= −8πGNp,

with p being the total pressure.

2.3 Energy and Pressure

In general, there are several components contributing to the energy density,
at least matter, radiation and dark energy, where the simplest possibility is
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a constant vacuum energy - the modern version of Einstein’s cosmological
constant:

ρtot = ρm + ρrad + ρΛ.

For an isotropic and homogeneous model, the non-zero elements of the energy-
momentum tensor are

T ij = pδij

T i0 = 0

T 00 = ρtot

and there is for each component contributing to p and ρtot a relation

pi = wi · ρi

called the equation of state, which enables one to make predictions for the
time evolution of the expansion of the universe and for the relative weights of
the different energy components. For non-relativistic matter, the pressure is
proportional (v/c)2, and therefore negligible, p = 0, i.e. wM = 0. For radiation
on the other hand, p = ρ/3, so wR = 1/3. What is the equation of state for
vacuum energy? This is easy to motivate from symmetry reasons (as was done
already by Lemâıtre in the 1930s). The energy momentum tensor has to be
proportional to the only available rank-2 tensor in empty space-time, namely
the Minkowski metric tensor in the cosmic rest frame:

T µν
Λ = ρΛ




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 =




ρΛ 0 0 0
0 −ρΛ 0 0
0 0 −ρΛ 0
0 0 0 −ρΛ


 .

This form is thus dictated by the requirement of Lorentz invariance. Compar-
ing with the general form of the energy-momentum tensor which has ρ and in
the diagonal, we thus see that the equation of state is p = −ρ, i.e., wΛ = −1.
The vacuum energy thus acts as a fluid with negative pressure.

2.4 Contributions to Vacuum Energy

How do we describe the contents of the universe, including vacuum energy?
Based on its success in particle physics, we try to do it by using quantum field
theory, with its particles and fields. A field is a dynamical quantity which
is defined in all points of space and at all times. Particles are the lowest
excitations of the fields. A particle is characterized by the mass m, spin s,
charge Q, and maybe other internal quantum numbers.

The lowest excitations of the field, carrying energy E and three-momentum
p can be quantized as harmonic oscillators fulfilling, in the cosmic rest frame
(the reference frame where the CMBR looks maximally isotropic), the mass
shell condition
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pµp
µ = m2,

where the four momentum
pµ = (E,p)

and
pµ = (E,−p).

For each possible momentum mode, there will, as for the simple quantum
mechanical harmonic oscillator, be a zero-point energy

Ei = ω(pi)

(
n+

1

2

)

n=0

=
√
p2i +m2

(
n+

1

2

)

n=0

=
1

2

√
p2i +m2.

However, for a given field, these have to be summed for all modes, meaning
that there will be a huge zero-energy density

ρΛ =
1

2

1

(2π)3

∫
d3p
√
p2 +m2.

The highly divergent integral has to be cut-off at some large energy scale,
and the first guess is the Planck mass, thus

ρΛ =
1

2

1

(2π)3

∫ mPl

d3p
√
p2 +m2 ∼ m4

Pl.

Unfortunately, this is orders of magnitude too large, and is the same disastrous
result one would get by using simple dimensional analysis. Namely, what is
the natural scale of ρΛ? We see here that it is governed by the cut-off mass
scale when new physics appears, and dimensional analysis gives that in units
where c = 1 so that length is proportional to an inverse mass, energy per unit
volume becomes [ρΛ] = [M4]. The only mass scale in gravity is mPl, thus

ρthΛ ∼ m4
Pl.

Unlike other guesses in physics based on dimensional analysis, this is a terrible
prediction. The present-day vacuum energy density of the universe is given
by measurements of supernovae and the CMBR and is (using k = 0)

ρobsΛ ∼ 10−122m4
Pl << m4

Pl ∼ ρthΛ .

To go back to our field theory result, the zero-point energy is really a
consequence of the quantum mechanical commutator between the field and
its canonical momentum. However, for fermions, anticommutators are used,
meaning the sign of the vacuum energy is changed. So, introducing the fermion
number F = 1 for fermions, F = 0 for bosons, one gets

ρΛ =
∑

(−1)F
1

2

1

(2π)3

∫ mPl

d3p
√
p2 +m2.
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Remarkably, if there are as many fermionic degrees of freedom as bosonic,
and they pairwise have the same mass, the vacuum energy would vanish.
Examples of theories having this property are supersymmetric theories, with
unbroken supersymmetry. However, since we do not see 0.511 MeV scalar
electrons (selectrons), supersymmetry has to be broken. Therefore large effects
of the zero-point energy remain, and ρΛ ∼ m4

SUSY with mSUSY (1000 GeV,
say) the scale of SUSY breaking. Better, but still enormously much too high.

In summary, we have encountered one of the most severe problems of
cosmology and particle astrophysics: Why is the cosmological constant so
small, but still not zero? (By the way, nobody found a good reason that
it should be exactly zero, anyway. . . ) Supersymmetry alleviates the problem
somewhat, but since supersymmetry is broken there remains large mass terms
still giving a value some 50-60 orders of magnitude different from the observed
value.

In cosmology the cosmological constant has a dramatic effect. Since it is
related to the energy density of the vacuum, and the vacuum is growing in
size due to the expansion, it will eventually dominate completely. Matter is on
the other hand more and more diluted and becomes less and less important,
and radiation is also diluted plus red-shifted:

ρm ∼ (1 + z)3, ρr ∼ (1 + z)4, ρΛ ∼ (1 + z)0.

We see that in the early universe (large redshifts), vacuum energy was irrele-
vant. Today matter and vacuum energy are almost equal (why now?). In the
future, the expansion rate will grow exponentially, as we will see in the section
on inflation, Sec. 3.3.

To explain the smallness of Λ some people resort to (almost) non-scientific
reasoning: the anthropic principle, or the landscape of string theory vacua.
There the argument goes roughly like this: There exist an amazingly large
number of different vacua, i.e., ground states, of the theory, and maybe all
of these are realized somewhere in nature. But of course, those with very
large values of Λ would accelerate so quickly that structure would not form in
the universe and therefore no life could appear. But since we exist, we have
to do so in one of the very few universes where life did evolve. Of course,
this sounds more like postdicting the properties of our universe rather than
predicting them, which perhaps just shows the desperation in front of the
problem of the size of the cosmological constant.

Let us have another look at Planck-mass phenomena. Consider the scatter-
ing of a photon on an electron, Compton scattering (we will treat this in detail
later, see Fig. 3). The relation between the incident and outgoing wavelength
as a function of scattering angle is given by

λ′ − λ =
2π~

mec
(1− cos θ) =

2π

me
(1− cos θ) ≡ λc (1− cos θ) .
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Here λc is called the Compton wavelength of the particle (the electron in
this case). We will see in section 9 the expression for the Schwarzschild radius
(the radius which marks the limit of where light can leave the black hole)

rs =
2GNM

c2
= 2GNM

(we use here and onwards units such that c = ~ = 1). Thus, the Compton
radius decreases with mass, but the Schwarzschild radius increases with mass.
When are the two equal, i.e., how big must the mass be for the Compton
radius to be smaller than the Schwarzschild radius? This is when quantum
gravity should be important. (All details of particle properties are smeared
out by quantum fluctuations on the order of the Compton wavelength or less,
so for λc > rs the black hole properties should be unnoticeable.) We see

λc

rS
=

π

GNM2
∼ m2

Pl

M2
.

Thus, when the mass of an elementary particle is larger than the Planck mass,
its Compton radius is smaller than its Schwarzschild radius, which implies that
we need quantum gravity! None exists yet, but perhaps string theory is the
best bet for such a fundamental theory at the Planck scale? For an electron,
λc/rS ∼ 1045, so quantum gravity effects are completely negligible at the
particle level. The same is true for all other Standard Model particles.

2.5 Summary of Observations

To end this section where the main theoretical lines for describing the uni-
verse have been laid out, we summarize what we know about the cosmo-
logical parameters of the universe from the impressive recent measurements.
Analyses combining high-redshift supernova luminosity distances, microwave
background fluctuations (from the satellite WMAP) and baryon acoustic os-
cillations (BAO) in the galaxy distribution give tight constraints [7] on the
present mass density of matter in the universe. This is usually expressed in
the ratio

ΩM = ρM/ρc,

normalized to the critical density,

ρc = 3H2
0/(8πGN ) = h2 × 1.9 · 10−29 g cm−3.

The value obtained for the 7-year WMAP data[7] for cold dark matter for
the (unknown) particleX making up the dark matter is ΩXh2 = 0.113±0.004,
which is around 5 times higher than the value obtained for baryons, ΩBh

2 =
0.0226± 0.0005. Here h = 0.704± 0.014 is the derived [7] present value of the
Hubble constant in units of 100 km s−1 Mpc−1. In addition, the WMAP data
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is consistent within a percent with a flat universe (Ωtot = 1)and a value for the
dark energy component, e.g. the cosmological constant Λ, of ΩΛ = 0.73±0.02.

One of the main problems for cosmology and particle physics is to explain
the measured density of dark matter, and to give candidates for the identity
of the dark matter particles. The fact that dark matter is definitely needed
on the largest scales (probed by WMAP), on galaxy cluster scales (as pointed
out by Zwicky already in 1933 [8], and verified by gravitational lensing and
the temperature distribution of X-ray emitting gas) all the way down to the
smallest dwarf galaxies, means that solutions based on changing the laws
of gravity seem less natural. In particular, the direct empirical proof of the
existence of dark matter given by the ”Bullet Cluster” [9] is very difficult to
circumvent, as the X-ray signal from the baryonic matter and the gravitational
lensing signal from dark matter are clearly separated.

Although the existence of a non-zero cosmological constant (or some sim-
ilar form of dark energy) in the present-day universe came as a big surprise
to most cosmologists and particle physicists, the most successful models of
evolution in the universe do make use of a similar effect in models of inflation,
as we will see in the next section.

3 Relic Density of Particles

There are several important examples of freeze-out in the early universe, for
instance at the synthesis of light elements one second to a few minutes after
the big bang, and the microwave photons from the “surface of last scattering”
several hundred thousand years later. Before we calculate freeze-out, it is
convenient to introduce a formalism which considers freeze-out in general:
that is, what happens when a particle species goes out of equilibrium. A
rigorous treatment has to be based on the Boltzmann transport equation in
an expanding background, but here we give a simplified treatment (see, for
example [1] for a more complete discussion).

There are several different contributions to Ω = ρ
ρc
, like radiation ΩR,

matter ΩM and vacuum energy ΩΛ.
The equations of motion for the matter in the universe are given by the

vanishing of the covariant divergence of the energy-momentum tensor

Tαβ
;β = 0 (1)

This gives, for the FLRW metric,

d

dt
(ρa3) = −p

d

dt
a3 (2)

which shows that the change of energy in a comoving volume element is equal
to minus the pressure times the change in volume. This can be rewritten as

a3
dp

dt
=

d

dt
[a3(ρ+ p)] (3)
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which can be interpreted as a conservation law for the entropy in a volume
a3(T ). For radiation, where p = ρ/3, (2) gives ρ ∼ a−4. Note that all particles
fulfilling mc2 ≪ kBT have the equation of state of radiation.

The Friedmann equation is

H2(t) =
8πGNρ

3
(4)

where as a good approximation only the relativistic species contribute appre-
ciably to ρ. Note that the Hubble parameter H(t) has units of 1/(time). This
means in our units that it has dimensions of mass. The age of the universe at
a given time t is simply of the order of H−1(t), at least when the scale factor
increases as a power of t.

We now treat schematically the thermodynamics of the expanding uni-
verse. We assume, which is true if reactions between different species of parti-
cles are rapid enough, that we can use the thermodynamical quantities, tem-
perature T , pressure p, entropy density s, and other quantities, at each time t
to describe the state of the universe. The constituents have number density n
and typical relative velocities v, and scattering or annihilations cross-section
σ, meaning that the interaction rate per particle Γ is given by

Γ = nσv.

The condition that the interactions maintain equilibrium is that the interac-
tion rate is larger than the expansion rate of the universe:

Γ ≫ H (5)

Typically, the number density of particles decreases faster with temperature
and therefore with time than the Hubble parameter does. This means that at
certain epochs some of the particle species will leave thermodynamic equilib-
rium. Their number density will be “frozen” at some particular value which
then only changes through the general dilution due to the expansion. This
“freeze-out” of particles is an important mechanism which explains the par-
ticle content of the universe we observe today.

Using relativistic statistical mechanics in the cosmic rest frame, the dis-
tribution function fi(p) for particle species of type i is

fi(p) =
1

e
(Ei−µi)

T ± 1
(6)

with Ei =
√
p2 +m2

i the energy, µi is the chemical potential and T the
temperature (we put kB = 1). The minus sign is for particles that obey
Bose-Einstein statistics (bosons) and the plus sign is for particles obeying
the exclusion principle and therefore Fermi-Dirac statistics (fermions). To a
good approximation the chemical potentials can be neglected in the very early
universe.
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We denote by gi the number of internal degrees of freedom of particle i.
The photon has two polarization states and therefore gγ = 2. The neutrinos
only have one polarization state, giving gν = 1, electrons and muons have
ge,µ = 2 (and the same numbers for the antiparticles).

With these definitions, the number density for species i is

ni =
gi

(2π)3

∫
fi(p)d

3p, (7)

and its energy density is

ρi =
gi

(2π)3

∫
Ei(p)fi(p)d

3p. (8)

The expression for the pressure is

pi =
gi

(2π)3

∫ |p|2
3Ei(p)

fi(p)d
3p. (9)

In the nonrelativistic limit T/m ≪ 1 we can solve the integrals analytically,
and the result both for Fermi-Dirac and Bose-Einstein particles is

nNR = gi

(
mT

2π

) 3
2

e−
m
T , (10)

ρNR = m · nNR, (11)

and
pNR = T · nNR ≪ ρNR (12)

For nonrelativistic matter, 〈E〉 = m+ 3T/2.
In the ultrarelativistic approximation, T/m ≫ 1, the integrals can also be

performed with the results

ρR =
gi
6π2

∫ ∞

0

E3dE

e
E
T ± 1

=






π2

30 giT
4, Bose-Einstein

7
8

(
π2

30 giT
4

)
, Fermi-Dirac,

(13)

nR =






ζ(3)
π2 giT

3, Bose-Einstein

3
4

(
ζ(3)
π2 giT

3

)
, Fermi-Dirac,

(14)

with ζ(x) is the Riemann zeta function, ζ(3) = 1.20206... The average energy
ρ/n for a relativistic particle is

〈E〉BE ∼ 2.7T (15)

and
〈E〉FD ∼ 3.15T (16)
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For photons, with the massmγ = 0, and gγ = 2, the expression for ργ(T ) ∼ T 4

is the famous Stefan Boltzmann law for electromagnetic black-body radiation.
The total contribution to the energy and number density of all kinds of

particles in the early universe is to a good approximation (since the energy
and number density of a nonrelativistic species is exponentially suppressed),

ρR(T ) =
π2

30
geff(T )T

4 (17)

pR(T ) =
1

3
ρR(T ) =

π2

90
geff(T )T

4 (18)

where geff(T ) counts the total number of internal degrees of freedom (such as
spin, colour, etc.) of the particles whose mass fulfill m ≪ T , and which are in
thermodynamic equilibrium with the “primordial cosmic soup” of particles in
the early universe. The expression for geff(T ) has the factor 7/8 for fermions.

As an example, we calculate geff(T ) for a temperature of, say, 1 TeV when
all the particles of the Standard Model were relativistic and in thermal equi-
librium. The total number of internal degrees of freedom of the fermions is 90
and for the gauge and Higgs bosons 28, so the total expression for geff is

geff(T ∼ 1TeV) = 28 +
7

8
· 90 = 106.75 (19)

If we insert the expression for the energy density into the Friedmann equa-
tion (4) we get for the radiation-dominated epoch in the early universe

H2 =
8πG

3
ρR =

8πGN

3

π2

30
geffT

4 = 2.76
geffT

4

m2
Pl

(20)

or

H = 1.66
√
geff

T 2

mPl
(21)

This is a very important formula governing the physics of the early universe.
For radiation domination, it can be shown that

a(t) ∼
√
t (22)

deriving from the equation of state p = ρ/3. For matter domination, that is,
for p ∼ 0, one has

a(t) ∼ t
2
3 . (23)

So for radiation domination,

H =
ȧ

a
=

1

2t
(24)

and the time temperature relation becomes

t = 0.30
mPl√
geffT 2

∼
(

1 MeV

T

)2

sec (25)
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We now have to determine which particles are in thermal equilibrium at
a given temperature, so that we can calculate geff(T ). The entropy S(V, T ) is
introduced through

dS(V, T ) =
1

T
[d(ρ(T )V ) + p(T )dV ] (26)

this gives (see [1])

S(V, T ) =
V

T
(ρ(T ) + p(T )) (27)

and from the conservation of the energy-momentum tensor follows

d

dt

(
a3

T
[ρ(T ) + p(T )]

)
= 0. (28)

Identifying the volume V with a3(t) and comparing with (27) we find the law
of conservation of entropy in the volume a3(t). Sometimes it is more useful
to work with the entropy density s(T ) rather than the total entropy S(V, T )
within the volume V . The definition is thus:

s(T ) ≡ S(V, T )

V
=

ρ(T ) + p(T )

T
(29)

In the early universe, both the energy density and the pressure were dom-
inated by relativistic particles with the equation of state p = ρ/3. Using (29)
and the relativistic expressions for the energy density and the pressure, gives
density s

s =
2π2

45
gseffT

3 (30)

where gseff is defined in a similar way to geff .
Since s and nγ both vary as T 3 there is a simple relationship between

them. With

nγ =
2ζ(3)

π2
T 3 (31)

we find

s =
π4

45ζ(3)
gseffnγ ∼ 1.8gseffnγ (32)

Following [1] we now consider a case of great interest for the dark mat-
ter problem. Suppose that there exists some kind of unknown particle χ, with
antiparticle χ̄, that can annihilate each other and be pair created through pro-
cesses χ+ χ̄ ↔ X + X̄, where X stands for any type of particle to which the
χs can annihilate. The supersymmetric neutralino is a charge-less, Majorana
particle and is its own antiparticle (just as the photon is its own antiparticle).
The formalism is very similar in this case. In particular, a neutralino can anni-
hilate with another neutralino giving other, non-supersymmetric particles in
the final state. We further assume (which is usually an excellent approxima-
tion in the early universe) that the X particles have zero chemical potential
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and that they are kept in thermal equilibrium with the photons and the other
light particles when the temperature was much larger than the rest mass of χ
(the X particles can be quarks, leptons etc.)

How will the number density nχ evolve with time (and therefore with
temperature)? It is clear that in exact thermal equilibrium the number of χ
particles in a comoving volume Nχ = a3nχ will be given by the equilibrium
value nEQ

χ (T ) (see (14)). (In exact thermal equilibrium the rate for the process

χ+χ̄ ↔ X+X̄ is the same in both directions.) If at a given temperature T the
number density nχ(T ) is larger than the equilibrium density the reaction will
go faster to the right. Thus, the χ particles will annihilate faster than they
are created. The depletion rate of χ should be proportional to σχχ̄→XX̄ |v|n2

χ

(quadratic in the density, since it should be proportional to the product of
nχ and nχ̄, and these according to our assumptions are equal). However, χ
particles are also created by the inverse process, with a rate proportional to
(nEQ

χ )2. We have thus heuristically derived the basic equation that governs
the number density of species χ, also as it starts to depart from equilibrium:

dnχ

dt
+ 3Hnχ = −〈σχχ̄→XX̄ |v|〉[n2

χ − (nEQ
χ )2]. (33)

The left-hand side derives from 1
a3

d
dt [nχa

3], and the term proportional to 3H
expresses the dilution that automatically comes from the Hubble expansion.
The quantity 〈σχχ̄→XX̄ |v|〉 stands for the thermally averaged cross section
times velocity. This averaging is necessary, since the annihilating particles
have random thermal velocities and directions. Summing over all possible
annihilation channels gives

dnχ

dt
+ 3Hnχ = −〈σA|v|〉[n2

χ − (nEQ
χ )2], (34)

where σA is the total annihilation cross section.
Using the time-temperature relation equation (25) (for radiation domi-

nance)

t = 0.30
mPl

T 2√geff
, (35)

this can be converted to an equation for how nχ evolves with decreasing tem-
perature. Introducing the dimensionless variable x = mχ/T , and normalizing
for convenience nχ to the entropy density,

Yχ =
nχ

s
, (36)

we find after some intermediate steps (that you may want to reproduce your-
self)

dY

dx
= −mχmPlceff

x2

√
π

45
〈σA|v|〉(Y 2

χ − (Y EQ
χ )2) (37)
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where

ceff =
gseff√
geff

. (38)

After rearranging we find,

x

Y EQ
χ

dY

dx
= −ΓA

H

[(
Yχ

Y EQ
χ

)2

− 1

]
, (39)

where ΓA = nEQ
χ 〈σA|v|〉. This equation can be solved numerically with the

boundary condition that for small x, Yχ ∼ Y EQ
χ . This is because at high tem-

peratures, much larger than mχ, the χ particles were in thermal equilibrium
with the other particles. We see from (39) that the evolution conveniently
is governed by the factor ΓA/H , the interaction rate divided by the Hubble
expansion rate.

The solutions to these equations have to be obtained numerically in the
general case to find the temperature Tf and therefore the value of xf of freeze-
out and the asymptotic value Yχ(∞) of the relic abundance of the species χ.
There are, however, some simple limiting cases. If the species χ is relativistic
at freeze-out, then Y EQ

χ is not changing with time during the period of freeze-
out, and the resulting Yχ(∞) is just the equilibrium value at freeze-out,

Yχ(∞) = Y EQ
χ (xf ) =

45ζ(3)

2π4

geff
gseff(xf )

(40)

where geff = g for bosons and 3g/4 for fermions. A particle that was relativis-
tic at freeze-out is called a hot relic, or hot dark matter. A typical example is
the neutrino. The present mass density of a hot relic with mass m is

Ωχh
2 = 7.8 · 10−2 geff

gseff(xf )

(
mχ

1 eV

)
(41)

Note that today the motion of a particle with mass greater than the small
number T0 = 2.73 K = 2.4 ·10−4 eV is of course non-relativistic and therefore
the contribution to the energy density is dominated by its rest mass energy.
A Standard Model neutrino has geff = 2 · 3/4 = 1.5 and decoupled at a few
MeV when gseff = geff = 10.75. We find

Ωνν̄h
2 =

∑
i mνi

(93 eV)
. (42)

As we will see, present estimates of the neutrinos masses, based on the obser-
vation of neutrino oscillations, give a sum much less than 1 eV, which means
that neutrinos are not the main form of dark matter. On the other hand, we
are now rather certain that they do contribute a small fraction of nonbaryonic
dark mtter. In a sense a (small) part of the dark matter problem is solved!
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3.1 The WIMP Miracle

This analysis has been valid for hot relics, or hot dark matter. For cold relics
(particles that were non-relativistic at freeze-out) the equation (39) has to
be found numerically. Then one finds that for massive particles in the mass
range between, say, 10 GeV and a few TeV, xf ∼ 1/20, and moreover to a
good approximation the relic density only depends on the cross section times
velocity,

ΩXh2 ≃ 0.11× 2.8 · 10−26 cm3s−1

〈σA|v|〉
. (43)

Another striking result is that, if one gives typical gauge gauge couplings to
the particle X , and a mass of typical weak interaction magnitude (100 – 300
GeV, say), then 〈σAv〉 is such that the resulting ΩXh2 ∼ 0.11. This is the
essence of what is sometimes called the “WIMP miracle”.

As can be understood, the value of xf when Yχ leaves the equilibrium
curve is lower for a smaller cross section σA. This is because of the fact that
in thermal equilibrium, massive particles will eventually be exponentially sup-
pressed. That is, more weakly interacting particles decouple earlier, and since
the equilibrium curve for a nonrelativistic species drops fast with increasing
x, more weakly coupled particles will have a higher relic abundance.

Going through the numerical analysis one finds that a hypothetical neu-
trino with massmν ∼ 3 GeV would also have about the right mass to close the
universe. On the other hand, the range between 90 eV and 3 GeV is cosmolog-
ically disallowed for a stable neutrino (it would overclose the universe). There
are strong arguments from large-scale structure formation that favour cold
relics over hot relics, so such a neutrino would in principle be a good dark
matter candidate. Data from the LEP accelerator at CERN did, however,
exclude any ordinary neutrino with a mass in the GeV range.

3.2 Coannihilations

There are instances when the simple treatment discussed here has to be im-
proved. One example is for instance the possibility that entropy may be gener-
ated by other particles than those of the Standard Model, before, at, or after
decoupling. Another example, which for instance appears in some supersym-
metric models, is that of coannihilations. This was first discussed in [10], here
we follow the more detailed treatment in [11].

We will here outline the procedure developed in [11, 2] which is used in
DarkSUSY [123]. For more details, see [11, 2]. DarkSUSY is a free Fortran

package that can be used to compute a variety of dark matter related quanti-
ties, such the relic density and the scattering and annihilation rates to many
different channels. It was developed for computations in the Minimal Super-
symmetric extension to the Standard Model (MSSM), but it is modular and
can be adapted to most WIMP models.
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We consider annihilation of N particles with mass mi and internal degrees
of freedom gi. For convenience, we may order them such thatm1 ≤ m2 ≤ · · · ≤
mN−1 ≤ mN . For the lightest particle (which is the dark matter candidate,
if a symmetry is guaranteeing the stability, like what is called R-parity for
supersymmetry, see section 5), we use both the notation m1 and mχ.

All heavier particles will eventually decay to the lightest, stable, and there-
fore we add the number densities up,

n =

N∑

i=1

ni.

The scattering rate of particles on particles in the thermal background “soup”
is generally much faster than the annihilation rate, since the background par-
ticle densities of Standard Model particles, nSM is much larger than each
of the particle densities in the dark sector ni. The important SM particles
are, as we have seen, those that are relativistic and cold dark matter par-
ticles (WIMPs) are nonrelativistic, and thus suppressed by the Boltzmann
factor. Thus, the ni distributions remain in thermal equilibrium during their
(“chemical”) freeze-out.

We then get
dn

dt
= −3Hn− 〈σeffv〉

(
n2 − n2

eq

)
(44)

where

〈σeffv〉 =
∑

ij

〈σijvij〉
neq
i

neq

neq
j

neq
. (45)

with

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
. (46)

Using the Maxwell-Boltzmann approximation for the velocity distributions
one can derive the following expression for the thermally averaged annihilation
cross section [11]

〈σeffv〉 =
∫∞
0

dpeffp
2
effWeffK1

(√
s

T

)

m4
1T
[∑

i
gi
g1

m2
i

m2
1
K2

(
mi

T

)]2 . (47)

where K1 (K2) is the modified Bessel function of the second kind of order 1
(2), T is the temperature, s is the usual Mandelstam variable and

Weff =
∑

ij

pij
peff

gigj
g21

Wij

=
∑

ij

√
[s− (mi −mj)2][s− (mi +mj)2]

s(s− 4m2
1)

gigj
g21

Wij . (48)
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Here,

pij =

[
s− (mi +mj)

2
]1/2 [

s− (mi −mj)
2
]1/2

2
√
s

, (49)

and the invariant annihilation rate is (see [11])

Wij = 4pij
√
sσij = 4σij

√
(pi · pj)2 −m2

im
2
j = 4EiEjσijvij (50)

and, finally, the effective momentum

peff = p11 =
1

2

√
s− 4m2

1. (51)

Since Wij(s) = 0 for s ≤ (mi +mj)
2, the terms in (48) are non-negative. For

a two-body final state, Wij is given by the expression

W 2−body
ij =

|k|
16π2gigjSf

√
s

∑

internal d.o.f.

∫
|M|2 dΩ, (52)

that after some manipulations leads to (37). Here k is the final center-of-mass
momentum, Sf is a symmetry factor equal to 2 for identical final particles.

So, what could the dark matter be? It turns out that in particle physics,
there are hypothetical particles, like supersymmetric partners of ordinary par-
ticles, that have the right interaction strength and mass range to be promising
dark matter candidates. In particular, the neutralino has all the properties of
a good dark matter candidate. Since it is electrically neutral it does not emit
or absorb radiation which makes it ‘dark’ (invisible matter is thus a better
term than dark matter). The couplings of neutralinos are generally of weak
interaction strength, but the large number of possible annihilation channels,
which depends on the unknown supersymmetry breaking parameters, makes
an exact prediction of mass and relic abundance uncertain. Scans of parame-
ter space show, however, that a neutralino in the mass range between 30 GeV
and a few TeV could give a relic density close to the critical density. We will
later in these notes have much more to say about this.

3.3 Inflation

An important ingredient in today’s cosmology is, as mentioned, the concept of
inflation, which was introduced by Alan Guth in the early 1980’s [12] and later
improved by Albrecht and Steinhardt [13], and Linde [14] (see also Sato [15]).
This is nowadays a vast field of research, and we will only go through some
very basic concepts and some of the first ideas. For a thorough treatment, see
the book by Mukhanov [16].

Einstein’s equations including a cosmological constant read

Rµν − 1

2
gµνR = 8πGTµν + Λgµν . (53)
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Here we have put the Λ term on the right hand side, which shows that a cos-
mological term acts as a stress-energy tensor, albeit with the unusual equation
of state pvac = −ρvac. (We have already used that one may trivially include
vacuum energy in the term proportional to G, with ρΛ = Λ/(8πG).) The equa-
tion of state implies that the entropy density according to (29) is s ∼ ρ+p = 0.
This means that, when vacuum energy dominates, the entropy vanishes. This
can be understood from statistical mechanics. Entropy is related to the total
number of degrees of freedom, and the vacuum (at least if it is unique) is just
one state, that is only one degree of freedom. Of course, the entropy that was
in a patch before inflation will still be there after inflation – but it will be
diluted by an exponentially large factor due to the expansion.

In the situation when the constant vacuum energy dominates the expan-
sion, the Friedmann equation (2.2) becomes very simple:

H2 =

(
ȧ

a

)2

=
Λ

3
(54)

or

H =
ȧ

a
=

√
Λ

3
= const (55)

with the elementary (de Sitter) solution

a ∼ eHt. (56)

In inflation, the expansion rate is constant, which causes an exponential
growth of the scale factor.

In many models of inflation, the phase transition involving a scalar field,
the inflaton field, took place at temperatures around the hypothetical Grand
Unification scale TGUT ∼ 1015 GeV, at the corresponding Hubble time
H−1 ∼ 10−34 sec. If the universe stayed in the inflationary state for a short
time, say 10−32 sec, many e-folds of inflation took place. When inflation
stopped, the huge vacuum energy of the inflaton field went into creation of
ordinary particles, and a reheating of the universe took place. The reheat-
ing temperature is of the order of the temperature of the phase transition,
TRH ∼ 1015 GeV if the inflaton is strongly enough coupled to ordinary mat-
ter, as it is in many successful models of inflation.

Let us see what happened to a small region with radius of for example
10−23 cm before inflation. The entropy within that volume was only around
1014, but after inflation the volume of the region has increased by a factor
given by the cube of the scale factor, (e100)3 = 10130. Thus, after the entropy
generated by reheating, the total entropy within the inflated region had grown
to around 10144. Entropy was generated because the equation of state changed
from p = −ρ to p = ρ/3, meaning that the entropy density s ∼ p+ρ increased
dramatically.

This huge entropy increase solves many problems of cosmology. The “hori-
zon problem” – i.e., how come that regions of the universe that are too far
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from each other to be causally connected today, still have exactly the same
microwave background temperature – is solved since our whole observable
universe arose from a very small thermalized volume before inflation, and the
smooth region after inflation had sufficient entropy to encompass our observ-
able universe.

During inflation the energy density, and the negative pressure, of the uni-
verse were constant, whereas the scale factor a increased exponentially. This
means that the total Ω after inflation was exponentially close to unity. (Like a
balloon which would inflate to be as big as the Earth would locally look very
flat.) Thus, the present value should also be equal to unity with an accuracy
of many decimal places, perhaps the most important successful prediction of
inflation.

Even if Ω = 1 is predicted, there is nothing telling us the subdivision of
Ω into contributions from radiation, matter and vacuum energy. As we have
noted, however, the ‘natural’ contribution of ΩΛ is either extremely small or
extremely large. Only during very brief epochs can ΩΛ be of similar magnitude
as the matter contribution ΩM . This is actually a still unsolved problem, why
is it that the energy density in matter ρM is about the same as ρΛ today?

The period of inflation and reheating is strongly non-adiabatic, since there
was an enormous generation of entropy at reheating. After the end of inflation,
the universe ‘restarted’ in an adiabatic phase with the standard conservation
of aT , and it is because the universe automatically restarts from very special
initial conditions given by inflation that the horizon and flatness problems are
solved.

It is instructive to see how inflation can be produced in field theory. A
Lagrangian density of the form

L =
1

2
∂µφ∂µφ− V (φ) (57)

can be shown to give a contribution to the energy-momentum tensor T µν of
the form

T µν = ∂µφ∂νφ− Lgµν . (58)

For a homogeneous state, the spatial gradient terms vanish, meaning that
T µν becomes that of the perfect fluid type. If one would keep the gradient
terms, one sees that they are divided by a(t)2, which means that after a short
period of inflation they are exponentially suppressed. The resulting ρ and p
are

ρ =
φ̇2

2
+ V (φ) (59)

and

p =
φ̇2

2
− V (φ), (60)

and we see that the equation of state ρ = −p will be fulfilled if we can neglect
the kinetic term ∼ φ̇2 (this is called “slow-roll” inflation).
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The exact equations of motion of φ can be derived from the condition
of vanishing covariant divergence of the energy-momentum tensor, T µν

;ν = 0,
which gives

φ̈+ 3Hφ̇+ V ′(φ) = 0 (61)

This is similar to the equation of motion of a ball in a potential well with fric-
tion ∼ 3Hφ̇, and can be solved by elementary methods. We assume that at
very high temperatures, φ = 0 gives the locations of the minimum of the po-
tential. Temperature dependent terms in the effective potential then generate
another minimum for φ = φvac 6= 0, an example of what is called spontaneous
symmetry breakdown. To produce a long enough period of inflation and a
rapid reheating after inflation, the potential V (φ) has as mentioned to be of
the “slow-roll” type, with the field spending a long time on the nearly flat,
horizontal part of the potential. In the beginning, on the almost horizontal
slow ‘roll’ towards a deep potential well, φ̈ can be neglected, and the slow-roll
equation of motion

3Hφ̇+ V ′(φ) = 0, (62)

together with the Friedmann equation

H2 =
8πGN

3

[
1

2
φ̇2 + V (φ)

]
, (63)

which during slow roll, when φ̇2 is small, can be approximated by

H2 =
8πGN

3
V (φ). (64)

One can from this get an expression for the number Nφ of e-folds of the scale
factor,

Nφ ≡ log

(
a2
a1

)
=

∫
Hdt ∼

∫ φ2

φ1

V (φ)

V ′(φ)
dφ. (65)

Thus, for a large growth of the scale factor, V (φ) has to be very flat (V ′(φ) ∼
0). This may be unnatural except perhaps in some supersymmetric theories
where ‘flat directions’ can occur because of the pattern of supersymmetry
breaking. In a situation of such a slow roll of the inflaton field, the exact form
of the potential does not matter so much, and the relevant physics can be
expressed in terms of the so-called slow-roll parameters

ε = − Ḣ

H2
= 4πG

φ̇2

H2
=

1

16πG

(
V ′

V

)2

(66)

η =
1

8πG

(
V ′′

V

)
=

V ′′

3H2
(67)

where the second equation in (66) comes from taking the derivative of (63) and
inserting into (61). The variable ε is a measure of the change of the Hubble
expansion during inflation; for inflation to happen at all, ε < 1 is needed.



23

In the picture of the rolling ball, reheating corresponds to oscillations in
the potential well. Thus, for enough entropy to be generated the well has
to be rather steep. The problem of constructing a suitable potential is to
simultaneously have it flat near φ = 0 and steep near φ = φmin.

A way to avoid a phase transition, and in fact the simplest model of infla-
tion is the chaotic inflation model of Linde [17]. It relies on the fact that the
key ingredient for inflation to occur is that the field is rolling slowly, so that
the energy density is nearly constant during a sufficient number of e-foldings
of the scale factor. Since the rolling is damped by the presence of the term
proportional to H in (61), and H according to the Friedmann equation is
given by the height of the potential (if kinetic terms can be neglected), infla-
tion will be possible for any positive, power-law potential V (φ), for example
the simplest V (φ) = 1

2m
2φ2, as long as the field values start out large. As

Linde has argued, this may not be unreasonable since these initial values may
be given stochastically (“chaotically”) at the Planck epoch, and those regions
where the field values are large start to inflate rapidly dominating the volume
of the universe. There are also constructions relying on the existence of more
than one scalar field, keeping the same general features but with changes in
the details.

Since the value of the total energy density Ω = 1 is found observationally in
current measurements of the CMBR anisotropy which yield Ω = 1.003±0.010,
the most natural explanation seems to be that the universe has indeed gone
through a period of inflation. The nearly gaussian and adiabatic temperature
fluctuations measured by COBE and WMAP are a strong indication of the
correctness of the basic quantum fluctuation mechanism active during inflation
[18].

An important test of this mechanism may be produced by the upcoming
measurements from the Planck satellite of the even more detailed pattern
of temperature fluctuations in the cosmic microwave background radiation.
Inflation predicts a nearly but not perfect scale-invariant spectrum of fluctu-
ations (which is when the index of scalar fluctuations ns = 1), and present
measurements from WMAP give ns ∼ 0.96, in excellent agreement. Inflation
could also have generated gravitational (tensor) waves during the phase tran-
sitions which would give a particular pattern (“B-modes”) in the microwave
sky. However, the amplitude of tensor to scalar fluctuations depends rather
strongly on the model. It will be interesting to see whether the Planck satellite,
when cosmological data are released in early 2013, will detect such a B-mode
pattern.

There are constructions showing, after some initial difficulties, how infla-
tion can also be embedded into supergravity [19], or string theory [20].
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4 Basic Cross Sections for Neutrinos and γ-rays

Among the various messengers from the Galaxy and structures further away,
neutrinos and γ-rays have the advantage that they follow straight lines (or
to be more exact, geodesics; the deviations from straight lines can in almost
all cases be safely neglected - exceptions are given for particles originating
or travelling very near black holes). This is in contrast to all other cosmic
rays, electrons, protons, nuclei, and antimatter (positrons, antiprotons and
some antinuclei like antideuterons). Neutrons would in principle also travel
rectilinearly apart from effects of their magnetic moment. However, their fi-
nite lifetime (of the order of 10 minutes in the rest frame) means that for
energies less than a few TeV which is the energy range we will generally be
concerned with, they cannot travel over astrophysical distances. They β-decay
to a proton, and electron and an (anti-)neutrino

Although neutrinos and γ-rays (high-energy photons) are both encom-
passed in the Standard Model of particle physics and therefore in principle
should interact with similar strengths given by gauge couplings, this is in
practice not so. The reason is the difference that the photon is a massless,
spin-1 gauge particle, i.e., a mediator of a force (the electromagnetic force,
i.e., it couples to electrons and protons, and all other particles with electric
charge) while the neutrino is a spin-1/2 matter particle which in turn interacts
through a weak forces mediated by the heavy W and Z bosons. The large,
important difference of masses between weak bosons and the photon is due
to the hitherto experimentally unverified, but hopefully soon to be verified
mechanism, the Higgs mechanism. This breaks the gauge group of the Stan-
dard Model, leaving only the electromagnetic U(1)em unbroken and therefore
the photon massless. It means that for energies up to 1 TeV or so, neutri-
nos have very small cross section, which however rises with energy, until the
centre-of-mass energy is of the order of the W and Z masses, at which point
neutrinos start to react roughly as strongly as photons. Let us now discuss in
some more detail how some simple particle cross sections are computed.

4.1 Estimates of Cross Sections

The calculation of collision and annihilation cross sections, and decay rates of
particles, is an important task in particle physics. Here we will present only a
brief outline of how this is done, and focus on ‘quick-and-dirty’ estimates which
may be very useful in cosmology and astrophysics. For the local microphysics
in the FLRW model, only three interactions – electromagnetic, weak and
strong – between particles need to be considered. The gravitational force is
completely negligible between individual elementary particles – for instance,
the gravitational force between the proton and the electron in a hydrogen
atom is around 1040 times weaker than the electromagnetic force. However,
gravity, due to its coherence over long range, still needs to be taken into
account through its influence on the metric. This means that the dilution of
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number densities due to the time dependence of the scale factor a(t) has to
be taken into account. In the next section we will see how this is done.

Let us begin with the interaction strengths. The strength of the electro-
magnetic interaction is governed by the electromagnetic coupling constant
gem, which is simply the electric charge. As usual, we take the proton charge
e as the basic unit and can thus write

gem = Qe (68)

where Q is the charge of the particle in units of the proton charge (for a
u-quark, for example, Qu = +2/3). In our system of units,

e2

4π
≡ αem (69)

where αem is the so-called fine structure constant which has the value of
around 1/137 at low energies.1 (Usually, it is denoted just α without the
subscript.) The weak coupling constant is of similar magnitude:

gw =
e

sin θW
(70)

with θW the weak interaction (or Weinberg) angle, which has the numerical
value sin2 θW ∼ 0.23. The fact that the weak and electromagnetic coupling
constants are of the same order of magnitude is of course related to the fact
that they are unified in the Standard Model to the ‘electroweak’ interaction.

The coupling constant of the strong interaction, gs, is somewhat higher.
Also, it runs faster (it decreases) with energy than the electromagnetic cou-
pling. At energies of a few GeV,

αs ≡
g2s
4π

∼ 0.3 (71)

Let us look at the Feynman diagram for a simple process like e+e− →
µ+µ− (Fig. (1)). The amplitude will be proportional to the coupling constants
at both vertices, which in this case are both equal to e. The cross section,
being proportional to the square of the amplitude, is thus proportional to
e4 ∝ (α/4π)2.

The total energy of the e+e− pair in the centre of momentum frame is
Ecm(e+) + Ecm(e−) =

√
s. Since the total momentum in this frame is zero,

the four-momentum pµ = (
√
s, 0, 0, 0) is identical to that of a massive particle

of mass M =
√
s which is at rest. Energy and momentum conservation then

tells us that the photon in the intermediate state has this four-momentum.
However, a freely propagating photon is massless, which means that the inter-
mediate photon is virtual by a large amount. In quantum field theory one can

1 This coupling constant, as all others, depends on the energy scale, for example,
the energy transfer, of the process. At 100 GeV energy αem is ∼ 1/128.
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Fig. 1. A Feynman diagram representing the annihilation of an electron and a
positron to a muon pair.

show that the appearance of an intermediate state of virtual mass
√
s for a

particle with real rest mass Mi is suppressed in amplitude by a factor (called
the propagator factor)

P (s) = 1/(s−m2
i ) (72)

In this case (mγ = 0), we have a factor of 1/s. (If one does this rigorously,
one should insert a small imaginary part in the denominator, which defines
how the singularity on the mass shell is treated.) The outgoing particles (in
this case the muons) have a large number of possible final states to enter (for
example, all different scattering angles in the centre of momentum frame).
This is accounted for by the so-called phase space factor φ, which generally
grows as s for large energies. For the cross section σ

σ(e+e− → µ+µ−) ∝ φ

(
α2

s2

)
(73)

with φ the phase space factor. If s is large compared to m2
e and m2

µ, φ ∝ s,
and

σ(e+e− → µ+µ−) ∼ α2

s
(74)

This is not an exact expression. A careful calculation (see next section) gives
4πα2/(3s)), but it is surprisingly accurate and often accurate enough for the
estimates we need in big bang cosmology.

Since the weak coupling strength is similar to the electromagnetic strength,
the same formula is valid for, for example, νe+e → νµ+µ which goes through
W exchange (see Fig. 2). The only replacement we need is 1/s → 1/(s−m2

W )
for the propagator, thus

σ(ν̄e + e− → ν̄µ + µ−) ∼ α2s

(s−m2
W )2

(75)

When s ≪ m2
W , this gives σw ∼ α2s/m4

W , which is a very small cross section,
e.g., for MeV energies. One should notice, however, the fast rise with energy
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due to the factor s. This is the historical reason for the name ‘weak interac-
tion’, which is really not appropriate at high energies (much larger than mW ),
where the two types of cross sections become of similar size.

e+ µ+

W

time

νe
+

νµ

Fig. 2. A Feynman diagram representing the annihilation of an electron neutrino
and a positron to a muon neutrino and a muon.

Note that once one remembers the factors of coupling constants and the
propagators, the magnitude of cross sections can often be estimated by simple
dimensional analysis. A cross section has the dimension of area, which in our
units means (mass)−2. It is very useful to check that the expressions (74) and
(75) have the correct dimensions.

A decay rate Γ can be estimated in a similar way. If a collection of identical
unstable particles decay, their number density decreases as e−Γt which means
that Γ has the dimensions of mass.

A fermion has a propagator that behaves as 1/m (instead of 1/m2) at
low energies. This means that the Thomson cross section σ(γe → γe) at low
energies Eγ ≪ me can be estimated to be (see Fig. 3)

σT ≡ σ(γe → γe) ∼ α2

m2
e

(76)

4.2 Examples of Cross Section Calculations

The estimates we have given are in many cases sufficient for cosmological and
astrophysical applications. However, there are cases when one would like to
have a more accurate formula. We now provide only a couple of examples and
summarize the general framework for calculation and the main results.

4.3 Definition of the Cross Section

The differential cross section dσ/dt for 2 → 2 scattering a+ b → c+d is given
by the expression
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e

e

e

γ γ

Fig. 3. A Feynman diagram representing the γe → γe process. In the classical
limit, this is called Thomson scattering. The quantum version is called Compton
scattering, and in the relativistic regime, the result is given by the Klein-Nishina
formula.

dσ

dt
=

|T̃ |2
16πλ (s,m2

a,m
2
b)

(77)

where the Lorentz invariant Mandelstam variables are t = (pa − pc)
2 and s =

(pa + pb)
2. |T̃ |2 is the polarization-summed and squared quantum mechanical

transition amplitude. For a 2 → 2 process, the kinematically allowed region
in s is

s > (m3 +m4)
2 (78)

which can be understood from energy conservation: In the centre of momen-
tum system, where

√
s corresponds to the total energy, at least the rest mass

energy m3 +m4 has to be provided.
The kinematical limits for t can be obtained from the condition | cos θcms

13 | ≤
1, with

cos θcm13 =
s(t− u) + (m2

1 −m2
2)(m

2
3 −m2

4)√
λ(s,m2

1,m
2
2)
√
λ(s,m2

3,m
2
4)

. (79)

A typical calculation involves (here we follow the treatment of [1]) comput-
ing the matrix element in terms of s and t and carrying out the t integration
to obtain the total cross section.

In the one-photon exchange approximation, the cross section for the anni-
hilation process e+e− → µ+µ− is

σ(e+e− → µ+µ−) =
2πα2

s
β

(
1− β2

3

)
(80)

where the only approximation made is to neglect me (this is allowed, since
m2

e/m
2
µ ≪ 1). Here β is the velocity of one of the outgoing muons in the centre

of momentum system, β =
√
1− 4m2

µ/s. In the relativistic limit of s ≫ m2
µ,

(β → 1), this becomes
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σ
(
e+e− → µ+µ−)

large s
=

4πα2

3s
(81)

in agreement with our simple estimate (74).

4.4 The γγee System

By different permutations of the incoming and outgoing particles, the basic
γγee interaction (shown in Fig. 3) can describe all of the astrophysically im-
portant processes (see the contributions by F. Aharonian and C. Dermer in
this volume) γγ → e+e−, e+e− → γγ, and γe± → γe±, see Fig. 4.

e

e

e

γ γ

Fig. 4. The same Feynman diagram can, after rotation of the external legs, describe
both eγ → eγ, γγ → e+e−, and e+e− → γγ. Here time is as usual flowing from left
to right.

For γγ → e+e− the result is
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σ
(
γγ → e+e−

)
=

πα2

2m2
e

(
1− β2

) [(
3− β4

)
ln

(
1 + β

1− β

)
+ 2β

(
β2 − 2

)]
(82)

where β now is the velocity of one of the produced electrons in the centre-
of-momentum frame, β =

√
1− 4m2

e/s. Near threshold, i.e. for small β, the
expression in square brackets can be series expanded to 2β+O(β2), and thus

σ
(
γγ → e+e−

)
small β

≃ πα2

m2
e

(83)

In the other extreme, β → 1,

σ
(
γγ → e+e−

)
s≫4m2

e

≃ 4πα2

s

[
ln

(√
s

me

)
− 1

]
(84)

One could in fact have guessed most of this to a fair amount of accu-
racy by the simple dimensional and vertex-counting rules. At low energy,
the only available mass scale is me, so the factor α2/m2

e could have been
guessed for that reason. The factor β could also have been inferred with some
more knowledge of non-relativistic partial wave amplitudes. At low energy,
the ℓ = 0 (S-wave) amplitude should dominate, and this contributes to the
cross section proportionally to β. A partial wave ℓ contributes to the total
cross section with a term proportional to β2ℓ+1. We see from (80) that in the
case of e+e− → µ+µ− the S-wave dominates at low energy, but when β → 1,
the P -wave contribution is 1/3. At high energy, when me can be neglected,
the dimensions have to be carried by s. Only the logarithmic correction factor
in (84) could not have been easily guessed.

These formulas show that the γγ → e+e− cross section rises from threshold
to a maximum at intermediate energies and then drops roughly as 1/s at
higher β, i.e., higher cms energy in the process (see Fig. 5).

The results for the reverse process e+e− → γγ are of course extremely
similar. Now, the process is automatically always above threshold. For β → 0
(with β now the velocity of one of the incoming particles in the cm-system,
still given by the formula β =

√
1− 4m2

e/s), the flux factor ∼ 1/β in (152)
diverges. Since the outgoing photons move away with β = c = 1 there is no
partial-wave suppression factor, and we can thus expect the cross section at
low energy to behave as

σ
(
e+e− → γγ

)
low energy

∼ α2

βm2
e

(85)

and the high-energy behaviour by the same formula, with m2
e replaced by s

(and possibly a logarithmic factor). These expectations are borne out by the
actual calculation, which gives

σ
(
e+e− → γγ

)
=

πα2
(
1− β2

)

2βm2
e

[
3− β4

2β
ln

(
1 + β

1− β

)
− 2 + β2

]
(86)
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Fig. 5. The cross sections (in cm2) for photon photon annihilation, e+e− → γγ and
Compton scattering as a function of the cms velocity β of the electron.

Note the similarity with (82). The 1/β behaviour of the cross section (see
the dashed curve in Fig. 5) was noted by Arnold Sommerfeld in the 1930’s,
and he showed how one can make an improved calculation valid at very small
velocities by not only treating the annihilating particles as plane waves, but
using wave functions appropriate for the attractive Coulomb interaction be-
tween the electron and positron. He thereby described a generic mechanism,
so so-called Sommerfeld enhancement mechanism, which recently has played
an important role for dark matter calculations, as we will see later.

Compton and Inverse Compton Scattering

As the final example, we consider Compton scattering γ + e− → γ + e−.
Historically, this was first computed for an incoming beam of photons of energy
ω which hit electrons at rest. Later on, the related process of a very high
energy electron or positron colliding with a low-energy photon (such as coming
from the cosmic microwave background, or from infrared or optical radiation
created in stellar processes) and upscattering that photon to high, maybe GeV
energy or higher, has been found to be very important in astrophysics. Despite
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being really one and the same process, the latter situation is often referred to
as the inverse Compton or IC process. In fact, the inverse Compton process
is one purely leptonic process of creating high-energy γ-rays, and could be
important for the emission γ-rays in several cases, such as AGNs, GRBs and
various supernova remnants. However, to completely prove such a scenario,
it is important to search for, or give upper limits on, neutrino emission. In
competing hadronic models of emission, where γ-rays mainly come from π0

decays, one should also have essentially the same amount of charged pions
which decay into a leptons and neutrinos. Also for some “leptophilic” models
of dark matter, where electrons and muons are main annihilation products,
inverse Compton processes may be quite important, e.g., near the galactic
centre where radiation fields are large.

For scattering of a photon by an angle θ with respect to the incident
photon direction, the outgoing photon energy ω′ is given by energy-momentum
conservation

ω′ =
meω

me + ω (1− cos θ)
(87)

In this frame, the unpolarized differential cross section, the Klein-Nishina
formula as it was first computed by Klein and Nishina shortly after Dirac had
presented his equation describing relativistic electrons (and positrons), is

dσ

dΩ
=

α2

2m2
e

(
ω′

ω

)2 [
ω′

ω
+

ω

ω′ − sin2 θ

]
(88)

Integrated over all possible scattering angles this gives the total cross section

σ(γ + e → γ + e) =
πα2 (1− β)

m2
eβ

3
×

[
4β

1 + β
+
(
β2 + 2β − 2

)
ln

(
1 + β

1− β

)
− 2β3 (1 + 2β)

(1 + β)2

]
(89)

where β is now the incoming electron velocity in the centre of momentum
frame, β = (s −m2

e)/(s +m2
e). If one expands this result around β = 0, one

recovers the Thomson scattering result

σThomson =
8πα2

3m2
e

∼ 6.65 · 10−25 cm2 (90)

and the large-s, so-called Klein Nishina regime gives

σKN =
2πα2

s

[
ln

(
s

m2
e

)
+

1

2

]
(91)

We see that for photon energies much larger than me – that is, in the Klein-
Nishina regime – the Compton cross section falls quite rapidly.

In the classical Compton scattering situation, the outgoing photon en-
ergy is always less than the incoming one. Thus, energetic photons travelling
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through a gas of cold electrons will be ‘cooled’ by Compton scattering. In the
IC case (for example for the cosmic microwave background radiation passing
through a galaxy cluster with hot gas) energetic electrons may instead trans-
fer energy to photons, thereby ‘heating’ them. For CMBR this is called the
Sunyaev-Z’eldovich effect, and has a large range of applicability (for instance,
it has recently been used to find galaxy clusters).

When computing actual numbers for the cross sections (which should have
the dimensions of area) in our units, a useful conversion factor is

1 GeV−2 = 0.389 · 10−27 cm2 (92)

In Fig. 5 the numerical results are summarized. The cross sections are shown
(in cm2) for γγ → ee, ee → γγ and γe → γe as a a function of the cms
velocity v of the electron. We see in the figure the different behaviour at low
cms velocity (small β) already discussed, but that they show a similar decrease
at high energy.

Another process of great astrophysical importance is that of bremsstrahlung.
By this is meant the emission of photons from charged particles which are ac-
celerated or decelerated. If this acceleration is due to circular motion in a
magnetic field, the term synchrotron radiation is used. Through these pro-
cesses (unlike Compton scattering) the number of photons can change. This
is needed, for instance in the early universe, if thermal equilibrium is to be
maintained, since the number density of photons has to vary, as it depends
strongly on temperature. Most of the produced photons have very low energy
(long wavelength). If fast electrons pass through a region where synchrotron
radiation and bremsstrahlung occur, these low-energy photons may be upscat-
tered in energy through the inverse Compton process. This may for example
explain the observations of very high-energy photons in active galactic nuclei
(see the contributions by Aharonian and Dermer in this volume, where many
other applications are discussed).

For a detailed discussion of these and other QED processes, see standard
textbooks in quantum field theory, for example, [21], or a simplified treatment
along the lines given here, in [1]. And, of course, for good examples of the
use of these processes in astrophysics, see the accompanying lectures by F.
Aharonian and C. Dermer in this volume.

4.5 Processes involving Hadrons

Since protons and neutrons belong to the most common particles in the uni-
verse, it is of course of great interest to compute processes where these and
other hadrons (such as pions) are involved. This is, however, not easy to do
from first principles. The reason that in the previous section we could compute
so accurately weak and electromagnetic processes is that we could use per-
turbation theory (as summarized, for example, in Feynman diagrams). The
expansion parameter, the electroweak gauge coupling constant g or rather
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αew = g2/(4π) ∼ 10−2, is small enough that a lowest-order calculation is
enough to obtain very accurate results.

In QCD, which also is a gauge theory just as QED, we also have a cou-
pling constant αs. Due to the fact that the gauge group of QCD is SU(3),
which involves self-interactions of the 8 spin-1 gluons, there are important
differences. We say that QCD is a non-abelian gauge theory whereas QED is
based on the abelian group U(1) with only one spin-a gauge field, the photon.
One consequence of this difference is that QCD has what is called asymptotic
freedom meaning that the coupling strength which is of order unity at a few
hundred MeV, “runs” to smaller values for large energies. The energy scale is
set, for example, by the energy or momentum transfer Q (Q2 ≡ −t with t in
the process. Thus, for processes with large Q2, we should be able to use low-
order perturbative QCD, although with lower accuracy than for QED due to
the possible importance of higher-order corrections. At low energies when the
QCD coupling becomes of the order unity perturbation theory breaks down.
In the nonperturbative regime we have to rely on empirical methods, such
as “QCD sum rules” [22] or large computer simulations, where one tries to
solve QCD is solved by formulating it as a field theory on a lattice. Although
the problem is notoriously difficult, the agreement between the spectrum of
hadrons, i.e., the masses and quantum numbers of the lowest-lying states with
experimentally measured quantities, is quite satisfactory for the most recent
numerical simulations [23].

For processes like proton proton scattering at low energies, the picture of
strong interactions being due to the exchange of gluons breaks down. Instead
one may approximate the exchange force as being due to pions and other low-
mass mesons with surprisingly good results (this is in fact what motivated
Yukawa to predict the existence of pions). If one wants to make crude approx-
imations of the strong interaction cross section in this regime, σstrong ∼ 1/m2

π

is a good estimate.
In the perturbative regime at high Q2, the scattering, for example, of

an electron off a proton (‘deep inelastic scattering’) can be treated by the
successful parton model. Here, the momentum of a hadron at high energy is
shared between its different constituents. Among the constituents are of course
the quarks that make up the hadron (two u and one d quarks in the case of the
proton), i.e., the valence quarks. In addition, there may be pairs of quarks and
antiquarks produced through quantum fluctuations at any given “snapshot”
of the hadron. The incoming exchange photon sent out from an electron in ep
scattering may hit these “sea quarks”, which will therefore contribute to the
scattering process.

Since the partons interact with each other, they can share the momentum
of the proton in many ways. Thus, there will be a probability distribution,
fi(x,Q

2), for a parton of type i (where i denotes any quark, antiquark or
gluon) to carry a fraction x of the proton momentum. These functions cannot
be calculated from first principles. However, once determined (by guess or by
experimental information from various scattering and annihilation processes)
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at a particular value of Q2
0, then the evolution of the structure functions

with Q2 can be predicted. This analysis, as first convincingly performed by
Altarelli and Parisi, gives rise to a predicted variation of the deep inelastic
scattering probability with Q2 (so-called scaling violations) which has been
successfully compared with experimental data. The success of the perturbative
QCD program, including the running of αs in agreement with the asymptotic
freedom prediction, and the agreement of scaling violations in several processes
with data, resulted in a Nobel Prize for Gross, Wilczek and Politzer in 2004.

With the successful QCD parton model, we can now compute many elec-
tromagnetic and weak processes, including those when hadrons are involved.
For instance, the neutrino proton scattering cross section is be given by the
scattering of a neutrino on a single quark or antiquark. This calculation is
easily done in a way similar to how we computed the ν̄e+ e− → ν̄µ+µ− cross
section. The only change is that the contributions from all partons have to be
summed over, and an integral of x performed.

As an example, we give the expression for the electromagnetic cross section
p+ p → µ+ + µ−, which is called the Drell-Yan process, in the QCD parton
model. The fundamental process must involve charged partons, i.e., quarks
(since we assume that strong interactions dominate and thus neglect the weak
contribution), q + q̄ → γ∗ → µ+ + µ−, with the (valence) quark taken from
one of the protons and the (sea) antiquark from the other. The momentum
transfer in the process is Q2 = ŝ, where ŝ = (pµ+ +pµ−)2. We know from (81)
that the parton level cross section is 4παe2q/3ŝ (where we have to take into
account that the quark charge eq is not the unit charge). Since the parton from
proton 1 carries the fraction x1 and that from proton 2 x2 of the respective
parent proton, ŝ = x1x2s, with s = (p1 + p2)

2. The total cross section for
producing a muon pair of momentum transfer ŝ is thus

dσ

dŝ
=

4πα2

3ŝ
×

kc
∑

q

e2i

∫ 1

0

dx1

∫ 1

0

dx2 [fq(x1, ŝ)fq̄(x2, ŝ) + fq̄(x1, ŝ)fq(x2, ŝ)] δ(ŝ− x1x2s)

Here kc is a colour factor, which takes into account that for a given quark of
a given colour, the probability to find in the other proton an antiquark with
a matching (anti-) colour is 1/3. Thus, in this case kc = 1/3. In the reverse
process, µ+ + µ− → q + q̄, all the quark colours in the final state have to be
summed over (each contributes to the cross section), so in that case kc = 3.

4.6 Neutrinos

Neutrinos would provide an important contribution to the total energy density
of the universe if they had a mass in the eV range. Present-day analyses of the
microwave background and the matter distribution favour as we mentioned,
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cold dark matter over hot dark matter which eV-scale Standard Model neu-
trinos would constitute. However, neutrinos are plausibly part of dark matter,
as one of the most important discoveries the last 15 years has been the defini-
tive demonstration that neutrinos are not massless. It has been shown that
neutrinos species can transform into each other through quantum mechanical
mixing, mean that in principle they could also decay into each other, e.g., by
emitting a photon. The huge mass scale of the W and Z bosons means, how-
ever, that the lifetime also for the heaviest neutrino is much longer than the
age of the universe, so they are effectively stable. Their production through
thermal processes in the early universe would then mean that their number
density is of the same order of magnitude today as that of the microwave
background photons, and since they are electrically neutral they qualify as
dark matter. This was in fact one of the most studied candidates for dark
matter in the 1970’s, when one did not know how many different neutrino
types there were (this was fixed in the 1990’s to 3 standard species, thanks to
the CERN LEP experiments), neither very much about their mass. Today’s
knowledge give estimates of far less than a percent for their contribution to
Ω, however.

There is of course a possibility that there may exist neutrinos with weaker
couplings than standard model ones, and if they have mass in the keV range
they would qualify as “warm” dark matter, that would still be allowed from
structure formation. However, this involves some fine-tuning to get the correct
relic density and to avoid other experimental bounds [24].

Neutrinos are also very important information carriers from violent astro-
physical processes, which is why neutrino astrophysics is a very active field
of research at the present time. An attractive property of neutrinos is in fact
their feeble interactions at low energies, which means that they may penetrate
regions with dense matter, e.g., the solar interior, or near remnants of super-
novae, without being absorbed. Where other particles become trapped or can
only propagate through very slow diffusive processes (for instance, it takes on
the order of a million years for a photon created near the centre of the sun to
diffuse out to the solar surface), neutrinos are able to escape. Neutrinos can
thus connect regions of matter that would otherwise be isolated from each
other. Because they almost massless, they move effectively with the speed of
light, which makes energy transfer (i.e., radiative heat conduction) very effi-
cient, e.g, from the interior of the sun. Unfortunately, the fact that neutrinos
are so weakly interacting, also means that they are extremely difficult to de-
tect. As of today, the only neutrinos of astrophysical interest that have been
detected are those created in the fusion processes in the solar interior, and
the exceptional supernova in 1987, where a handful of neutrinos was detected
a few hours before it was spotted optically in the Southern sky.

Neutrinos are the neutral counterparts of the charged leptons: e, µ and τ .
There are therefore three types of “active” neutrinos in the Standard Model
of particle physics: νe, νµ and ντ . Neutrinos are fermions, i.e., spin- 12 particles.
Apart from their possible gravitational interactions, νs interact with matter
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only through the exchange of the mediators of the weak force, the W and
Z bosons. They are fundamental particles without constituents, as far as is
known, have extremely small masses and lack electric charge. Among the most
spectacular events in astrophysics are supernova explosions. In a few seconds,
more energy is released in neutrinos from the forming neutron star than all
the electromagnetic emission from an entire galaxy over a decade.

Neutrino interactions with matter are divided into two kinds, neutral cur-
rent (NC) interactions mediated by the neutral Z bosons, and charged current
(CC) interactions involving the exchange of W+ and W− bosons. NC inter-
actions are responsible for annihilation reactions involving neutrinos,

e+ + e− → νµ + ν̄µ

for example, and elastic scattering interactions such as

νµ + e− → νµ + e−.

In CC interactions there is a change of fermion type, of “flavour”. For
example, an antineutrino can be absorbed by a proton, producing a neutron
and a positron in the final state. This comes about because at the parton
level a u-quark in the proton is changed into a d-quark, which means it is
transformed to a neutron. In this process charge is transferred, both for the
leptons as the neutrino becomes a charged lepton, and for the hadrons as the
positively charged proton becomes a neutron.

4.7 Neutrino Interactions

For the neutrino process (the flavour-changing charged current interaction)
ν̄ee

− → ν̄µµ
− the cross section at low energies (but still high enough to

produce the heavier muon) is

σ
(
ν̄ee

− → ν̄µµ
−) ∼ g4ws

96πm4
W

(93)

Before it was known that W bosons existed, Enrico Fermi had written a
phenomenological theory for weak interactions with a dimensionful constant
(the Fermi constant) GF . (Enrico Fermi is of course also well-known today as
the one who has been honoured by giving the γ-ray satellite, FERMI, its name.
This has to do with his description of acceleration processes in astrophysics.)
The relation between Fermi’s constant and the gauge theory quantities is

GF√
2
=

g2w
8m2

W

≃ 1.166 · 10−5 GeV−2 (94)

Using the Fermi constant, the cross section can now be written

σ
(
ν̄ee

− → ν̄µµ
−) = G2

F s

3π
. (95)
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We note that the cross section rises with s ≃ 2Eνme and thus linearly
with neutrino energy. When s starts to approach m2

W , the W propagator
1/(s−m2

W ) has to be treated more carefully. It can be improved by writing
it in the so-called Breit-Wigner form

1

s−m2
W

→ 1

s−m2
w + iΓmW

(96)

where Γ is the total decay width (around 2 GeV) of the W . We see from this
that a substantial enhancement of the cross section is possible for s ≃ m2

W .
This is an example of a resonant enhancement in the s-channel. For a target
electron at rest, this resonance occurs at around 6.3 PeV and is sometimes
called the Glashow resonance. If astrophysical sources exist which produce
electron antineutrinos with such high energies, the prospects of detecting them
would be correspondingly enhanced. However, well above the resonance, the
cross section will again start to decrease like 1/s, just as in the electromagnetic
case, e+e− → µ+µ−.

It should be noted that the latter process, e+e− → µ+µ−, also receives a
contribution from an intermediate Z boson. At low energies this is negligible,
but due to the resonant enhancement it will dominate near s ≃ m2

Z . This
is the principle behind the Z studies performed at the LEP accelerator at
CERN (where all other fermion-antifermion pairs of the Standard Model were
also produced except for tt̄, which was not kinematically allowed). In a full
calculation, the two contributions have to be added coherently and may in
fact interfere in interesting ways, producing for example, a backward-forward
asymmetry between the outgoing muons.

A detailed calculation for neutrino energies above around 5 MeV shows
that the total cross section for the reaction νXe− → νXe− is well approxi-
mated by [25]:

σνe = CX · 9.5 · 10−45 ·
(

Eν

1 MeV

)
cm2 (97)

where the flavour-dependent constants CX are

Ce = 1 (98)

and

Cµ = Cτ =
1

6.2
(99)

The cross section is larger for electron neutrinos as they can, unlike the
other neutrino species, couple to the electrons in the target through both NC
and CC interactions.

Laboratory experiments have, so far, not succeeded in directly measuring
the mass of any neutrino. Instead, the negative results have been expressed in
the form of upper limits, due to the finite resolution of the experiments. The
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best (lowest) upper limits on the mass of the electron neutrino come from the
studies of the electron energy spectrum in tritium decay:

3H →3 He + e− + ν̄e

As the minimum amount of energy taken by the νe is its mass, the end-
point energy of the emitted electron is a measurement of mνe . According to
these experiments the mass of the electron neutrino is lower than 3 eV at
the 95 per cent confidence level [26]. With the KATRIN experiment being
constructed in Karlsruhe, one hope to decrease this upper limit (or find a
non-zero value) by an order of magnitude [27].

The discovery of the tau neutrino was announced in 2000 by the DONUT
collaboration at Fermilab, through appearance in charm meson decays in pho-
tographic emulsion.

Mixing of neutrino species is a very interesting quantum mechanical ef-
fect which may occur if the weak-interaction eigenstates νe, νµ and ντ are
not the mass eigenstates that propagate in vacuum. We can then express a
flavour or weak-interaction neutrino eigenstate, νf , as a linear superposition
of orthogonal mass eigenstates, νm:

|νf >=
∑

m

cfm|νm >.

Of course, all three neutrinos may mix, but it is instructive to see what
happens if just two of the neutrinos mix, e.g, νµ ⇄ νe mixing with mixing
angle θ. The time evolution of a muon neutrino wave function, produced e.g.
in pion decays, with momentum p is then

|νe(t) >= − sin θe−iE1t|ν1 > +cos θe−iE2t|ν2 > (100)

with E1 and E2 are the energies of the two mass eigenstates. Two energy
levels arise if ν1 and ν2 have different masses, for the same momentum, p.
Then, for small neutrino masses mi ≪ Ei,

Ei = p+
m2

i

2p
(101)

The probability P (νe → νe) = | < νe|νe > |2, that an electron neutrino
remains a νe after a time t then becomes

P (νe → νe) = 1− sin2 (2θ) sin2 [
1

2
(E2 − E1)t] (102)

For very small neutrino masses, using (101),

P (νe → νe) = 1− sin2 (2θ) sin2
[(

m2
2 −m2

1

4E

)
t

]
(103)
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where E is the energy of νe.
Thus the probability the electron neutrino transforming to a muon neu-

trino at a time t is

P (νe → νµ) = sin2 (2θ) sin2
[
∆m2

4E
t

]
(104)

where ∆m2 = |m2
2 −m2

1|.
From (104) it is seen that the probability function for flavour change

oscillates, with an amplitude given by sin2(2θ) and oscillation frequency
∼ ∆m2/E. This is now the generally accepted reason for the deficit of solar
electron neutrinos, as deduced by combining data from the Super-Kamiokande
experiment in Japan (most recently [28]), which sees the deficit of electron neu-
trinos, with SNO in Canada, which has measured the neutral current cross
section, which shows no deficit [29]. As the neutral current has the same
strength for all three neutrinos, this is strong evidence that the total flux is
unchanged, but the flux of electron neutrinos has decreased due to mixing.

Numerically, the oscillation length becomes

Lν = 1.27

(
E

1MeV

)(
1 eV2

∆m2

)
metres. (105)

In fact, a direct proof that oscillations occur in the (anti-) neutrino sector
is given by recent results from the KamLAND experiment [30], where reac-
tor antineutrinos have been shown to oscillate over more than one period of
oscillation in L/E.

4.8 Atmospheric Neutrinos

Neutrinos are copiously produced in the atmosphere by hadronic and muonic
decays following the interaction of cosmic rays,






p/n+N → π+/K+ + ...
π+/K+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe,



p/n+N → π−/K− + ...
π−/K− → µ− + ν̄µ

µ− → e− + νµ + ν̄e

(106)

Studying the end result of these reactions one expects that there are about
twice as many muon neutrinos than electron neutrinos produced in the atmo-
sphere:

φνµ + φν̄µ

φνe + φν̄e

= 2 (107)

This expectation holds at low energies. At higher energies, additional ef-
fects have to be taken into account: for example, the competition between
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scattering and decay of the produced pions, and also time dilation. As the
energy spectrum of the primary nuclei reaches out to ∼1020 eV, one expects
neutrinos to be produced up to comparable energies.

Due to the complicated chain of reactions in the cascade computer simu-
lations are needed to find the differential spectrum of atmospheric neutrinos.
One finds that there is a broad peak around 0.1 GeV (∼1 cm−2 s−1) and at
very high energies, Eν much larger than TeV, a falling flux ∼ E−3.7.

The cross section for neutrino-nucleon interactions in a target can be cal-
culated by inserting the nucleon mass instead of me in our previous example.
In the region of the maximum flux of atmospheric neutrinos the cross section
is σνN ∼10−39 cm2. The Super-K experiment showed that also atmospheric
neutrinos oscillate, and that part of the muon neutrinos disappear due to
νµ → ντ mixing taking place. (Due to the high τ± lepton mass (1.8 GeV)
the ντ s generated by mixing will not have enough energy on average to make
the charged current interaction ντ +N → τ +X kinematically possible. Their
contribution to the neutral current events is too small to be easily detected.)
The Super-K data on the angular and energy dependence of the oscillation is
in excellent agreement with the E/L ratio given by (105).

4.9 Neutrinos as Tracers of Particle Acceleration

A kiloton-size detector is necessary to observe neutrinos from sources as close
as the Earth’s atmosphere, or the Sun (this actually gave a Nobel Prize to
Davies and Koshiba, in 2002). To be able to search other astrophysical objects,
the required detector mass becomes very large, megaton or even gigaton (or
volume of order km3).

Consider the νµ → µ charged current weak interaction in a medium,

νµ + N → µ + ...,

where N is a nucleon in the medium in or surrounding the detector. The muon
range rises with energy, and around 1 TeV (1012 eV) it is more than one
kilometre. The detection area is therefore greatly enhanced at high energies.
In water or ice, a good approximation of the muon range as a function of
energy is given by

Rµ ≈ 2.5 ln

(
2 · Eµ

1 TeV
+ 1

)
km (108)

T he muon produced conserves, on average, the direction of the incoming
neutrino. The average of the square of the νµ-µ angle is approximately (see
[1])

√
< θ2 > ≈ 2

(
1 TeV

Eν

) 1
2

deg. (109)

The cross section for neutrino interaction with a fixed target rises linearly
with energy. Neutrino telescopes for very high energies become efficient at
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a few GeV, where the product of the neutrino-matter cross section and the
muon range rises approximately as E2

ν . Above 1 GeV, the induced flux of
muons from atmospheric neutrinos, for example, is about 1 m−2 year−1.

This detection scheme does not work as well for other types of neutrinos.
Electrons (from νe + N → e + . . . ) have a very short range as they lose
energy through radiative processes, due to their small mass. On the other
hand τ leptons, the heaviest known charged leptons with mτ = 1.78 GeV, are
produced in charged current interactions of ντ , but they are very short lived
(tτ ∼ 10−13 s). Therefore they are not suitable for detection, except for the
fraction of times where the τ decays into µν̄µντ , which happens in roughly 20
percent of the cases. However, in large neutrino detectors such as the IceCube,
one may perhaps detect ultra-high-energy electron and τ neutrino events by
the intense cascade of light that is produced by secondary electrons, positrons
and photons. In the case of τ neutrinos, special relativity may help to produce
a good signature. If sources of PeV (1015 eV) τ neutrinos exist, the produced
charged τ lepton would have a relativistic γ factor as large as

γ ∼ Eν

mτ
∼ 106 (110)

which means, thanks to time dilation, that in the detector reference frame the
τ lepton will travel a distance ℓγctτ ∼ 100 m.

The “double bang” created by the charged current interaction and the
subsequent decay of the τ lepton, separated by 100 m, would be the signature
of PeV τ neutrinos.

Since neutrinos oscillate, very energetic τ neutrinos could be produced by
mixing with muon neutrinos created in high-energy pion decays in cosmic
accelerators. This is, e.g., the basis for the experiments OPERA [31] at Gran
Sasso and MINOS [32] at Fermilab, where a few events of produced τ leptons
have in fact been reported.

In present detectors, only neutrino-induced muons moving upwards in the
detectors (or downwards but near the horizon) are safe tracers of neutrino
interactions. Most muons moving downwards have their origin in cosmic-ray
nuclei interacting with the Earth’s atmosphere and produce a very difficult
background. At the surface of the Earth, the flux of downward-going muons
produced in the atmosphere is about 106 times larger than the flux of neutrino-
induced upward-moving muons.

By going underground, the material (rock, water, ice, etc.) above the de-
tector attenuates the flux of atmospheric muons considerably. In addition, if
it is experimentally possible to select events where a muon is moving upwards
the Earth itself acts as a filter since only neutrino-induced muons can be
produced upward-going close to the detector.

4.10 AMANDA, IceCube and Direct Detection of WIMPs

Neutrinos may give clues to the dark matter problem in another way than just
being a small part of the dark matter due to their tiny mass. If the dark matter
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has a component that is massive and weakly coupled (electrically neutral) it
will be non-relativistic at freeze-out, which is of course the WIMP paradigm
of cold dark matter. A good template for a dark matter WIMP candidate is as
we mentioned the lightest supersymmetric particle – plausibly the neutralino
χ (see Section 5 for more details).

Neutralinos (or other WIMPs) have interactions with ordinary matter
which are equally as small as those of neutrinos. However, since they move
with non-relativistic velocity there is a chance that they become gravitation-
ally trapped inside, for example, the Sun or the Earth. A neutralino scattering
e.g., in the Sun will lose energy and fall further inside the solar volume, and
successive scatterings in the solar medium will soon make it lose more and
more energy. In the end, neutralinos will assemble near the centre. As they are
their own antiparticles (they are Majorana fermions), they can annihilate with
each other, resulting in ordinary particles (quarks, leptons, gauge particles).

As the annihilation rate is proportional to the scattering rate, and the
interior of the Earth is almost entirely spin-0 nuclei, constraints on the spin-
independent scattering rate from experiments described in section 8 mean
that neutrinos from the center of the Earth are not a very promising signal for
canonical WIMPs. However, as the Sun consists to some 75 % of single protons
(i.e., hydrogen nuclei) with spin-1/2, spin-dependent scattering is important
and searching for neutrinos from the Sun stands well in competition with
other experiments. We will return also to this later.

Most of the annihilation products in the Sun create no measurable effect;
they are just stopped and contribute somewhat to the energy generation.
However, neutrinos have the unique property that they can penetrate the
whole Sun without being much absorbed, at least for WIMPs less massive
than a few hundred GeV. An annihilating neutralino pair of mass mχ would
thus give rise to high-energy neutrinos of energy aroundmχ/3 or so (the reason
that Eν 6= mχ is that other particles created in the annihilation process share
the energy). The signal of high-energy neutrinos (tens to hundreds of GeV –
to be compared with the ‘ordinary’ MeV solar neutrinos) from the centre of
the Sun would be an unmistakable signature of WIMP annihilation.

The detection of muons in IceCube, for instance, relies on the Cherenkov
effect. This coherent emission of light follows a characteristic angle given by
the Mach relation

cos θ =
1

βn

where β is the speed of the particle traversing the medium in units of the
speed of light. The Cherenkov effect takes place when

β >
1

n
.

Cherenkov radiation constitutes a very small fraction of the total energy
loss of a charged particle as it crosses a medium. The superluminal condition is
fulfilled only between the UV and near-infrared region of the electromagnetic
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spectrum. In water or ice, for example, where the index of refraction for UV
and optical wavelengths averages around 1.3, the Cherenkov radiation cut-off
in the UV region is around 70 nm. The differential energy loss into Cherenkov
photons in water or ice is a few per cent of the total differential energy loss
of a charged track moving with a speed very close to c.

4.11 Water and Ice Cherenkov Telescopes

Neutrinos can thus be detected indirectly by the Cherenkov radiation from
charged leptons and hadrons produced in neutrino interactions with matter.
The extremely large detector volumes needed to detect neutrinos from dis-
tances beyond our Sun makes the use of any other material than water or ice
very difficult.

A typical detector consists of an array of light sensors (photomultipliers,
PM) with good time resolution (∼ 1 ns) distributed in the medium. The pat-
tern of the hit PMs, and relative arrival times, are then used to fit the direction
of the particle that generated the Cherenkov radiation. The correlation be-
tween the original direction of the neutrino and the produced charged lepton
means that one may reconstruct the direction of the incoming neutrino.

Antares is a good prototype, for a larger detector being planned with the
working name KM3NET, near Toulon in the Mediterranean. The AMANDA
experiment at the South Pole was similarly an excellent working prototype,
where the disadvantages related to the remote location of the telescope were
compensated by the virtues of the glacier ice, found to be the clearest natural
solid on Earth. The Cherenkov photons emitted along the path of a muon at
some wavelengths be selected hundreds of metres away from the muon track.

The AMANDA detector was a great success, but was too small and has re-
cently been abandoned, replaced by a much larger detector, the IceCube, with
80 strings encompassing roughly a cubic kilometer of ice. Construction was
finished in 2010, and at that time also a smaller and denser inset, the Deep-
Core detector, was completed. This allows a lower detection energy threshold
which is particularly beneficial for the WIMP search. Unfortunately, despite
the heroic effort to build the first large neutrino detector in this remote loca-
tion, no astrophysical neutrino source including WIMPs has yet been detected,
but it is only a year that data have been collected (for a recent review of dark
matter detection in neutrino telescopes, see [33]).

5 Supersymmetric Dark Matter

As we have mentioned several time already, one of the prime candidates for the
non-baryonic cold dark matter particle is provided by the lightest supersym-
metric particle, most likely the lightest neutralino χ. Even it would be that
supersymmetry were not realized in nature, the neutralino is still important
as a nice, calculable template for a generic WIMP.
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In most versions of the low-energy theory which results from the largely
unknown mechanism of supersymmetry breaking, there is a conserved multi-
plicative quantum number, R-parity:

R = (−1)
3(B−L)+2S

, (111)

where B is the baryon number, L the lepton number and S the spin of the
particle. This implies that R = +1 for ordinary particles and R = −1 for su-
persymmetric particles. In fact, for phenomenological reasons, this symmetry
is required, as its conservation protects the proton from decaying through the
mediation of R-symmetry breaking interactions. The R-symmetry means that
supersymmetric particles can only be created or annihilated in pairs in reac-
tions of ordinary particles. It also means that a single supersymmetric particle
can only decay into final states containing an odd number of supersymmetric
particles. In particular, this makes the lightest supersymmetric particle sta-
ble, since there is no kinematically allowed state with negative R-parity which
it can decay to. This is of course of utmost importance for the dark matter
problem. Also other WIMP models of dark matter needs some mechanism to
prevent decay, and the simplest mechanism is a discrete symmetry like the
double-valued (Z2) R-symmetry. (Another reason for stability could be the
quantum numbers of the particles in the theory. There are in fact models
with high spin or isospin multiplets which also have a stable particle which
could act as dark matter [34].)

Pair-produced neutralinos in the early universe which left thermal equi-
librium as the universe kept expanding should, due to their stability, have
a non-zero relic abundance today. If the scale of supersymmetry breaking is
related to that of electroweak breaking, the neutralino will act as a WIMP
and therefore a dark matter candidate with a relic density of the same order
of magnitude as the value implied by the WMAP measurements. This is a
very elegant and economical method to solve two of the most outstanding
problems in fundamental science, dark matter and the unification of the basic
forces, if they have a common element of solution - supersymmetry.

5.1 Supersymmetric Dark Matter Particles

If R-parity is conserved, the lightest supersymmetric particle should be sta-
ble. The most plausible candidate is the lightest neutralino χ. As we saw in
section 4 it is a mixture of the supersymmetric partners of the photon, the
Z and the two neutral CP -even Higgs bosons present in the minimal exten-
sion of the supersymmetric standard model. It is electrically neutral and thus
neither absorbs nor emits light, and is stable, surviving since earliest epoch
after the big bang. Its gauge couplings and mass means that for a large range
of parameters in the supersymmetric sector a relic density is predicted in the
required range to explain the observed Ωχh

2 ∼ 0.11. Its electroweak couplings
to ordinary matter also means that its existence as dark matter in our galaxy’s
halo may be experimentally tested.
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Unfortunately, very little is known about how supersymmetry is broken
(for a discussion, see [35]), and therefore any given supersymmetric model
contains a large number of unknown parameters (of the order of 100). Such a
large parameter space is virtually impossible to explore by present-day numer-
ical methods, and therefore simplifying assumptions are needed. Fortunately,
most of the unknown parameters such as CP violating phases influence the
properties relevant for cosmology, and for detection, very little.

Usually, when scanning the large space of a priori unknown parameters
in supersymmetry, one thus makes reasonable simplifying assumptions and
accepts solutions as cosmologically appropriate if they give a neutralino relic
density in the range

0.09 ∼< Ωχh
2
∼< 0.12 (112)

Recently, there has been a number of analyses where the relic density, and
other parameters or experimental quantities known within some error bounds
are allowed to vary. By using so-called Multi-Chain Monte Carlo methods
(MCMC), one can get a “global fit” of the best-fit models using statistical
methods [36, 37]. Usually, one employs what is called a Bayesian method which
need some assumption about the prior distribution of probabilities. In the case
of mass parameters one may, for instance, choose linear or logarithmic scans. If
experimental data are good enough, it can be shown that the choice of priors is
not crucial. However, so far there has been a lack of experimental information,
meaning that the predicted most likely regions in parameter space may depend
quite sensitively on priors (see, e.g., [38]). Hopefully, the situation may soon
change with new results from the LHC. A drawback of the method of global
fits is that it is very computer intensive, meaning that only very simplified
models of supersymmetry have been fully investigated so far.

Besides its interesting implications for cosmology, the motivation from
particle physics for supersymmetric particles at the electroweak mass scale
has become stronger due to the apparent need for 100 GeV - 10 TeV scale
supersymmetry to achieve unification of the gauge couplings in view of LEP
results. (For an extensive review of the literature on supersymmetric dark
matter up to mid-1995, see Ref. [39]. More recent reviews are [40] and [41]).

A great virtue of supersymmetry at the phenomenological level is that
it gives an attractive solution to the so-called hierarchy problem, which is to
understand why the electroweak scale at a few hundred GeV is so much smaller
than the Planck scale∼ 1019 GeV despite the fact that there is nothing in non-
supersymmetric theories to cancel the severe quadratic divergences of loop-
induced mass terms. In supersymmetric theories, the partners of differing spin
would exactly cancel those divergencies (if supersymmetry were unbroken).
Of course, supersymmetric models are not guaranteed to contain good dark
matter candidates, but in the simplest models R-parity is conserved and the
neutralino naturally appears as a good candidate.
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The MSSM

The minimal supersymmetric extension of the standard model is defined by
the particle content and gauge couplings required by supersymmetry and a
gauge-invariant superpotential. Thus, to each particle degree of freedom in
the non-supersymmetric Standard Model, there appears a supersymmetric
partner with the same charge, colour etc, but with the spin differing by half
a unit. The only addition to this doubling of the particle spectrum of the
Standard Model concerns the Higgs sector. It turns out that the single scalar
Higgs doublet is not enough to give masses to both the u- and d-like quarks
and their superpartners (since supersymmetry forbids using both a complex
Higgs field and its complex conjugate at the same time, which one does in
the non-supersymmetric Standard Model). Thus, two complex Higgs doublets
have to be introduced. After the usual Higgs mechanism, three of these states
disappear as the longitudinal components of the weak gauge bosons leaving
five physical states: two neutral scalar Higgs particles H1 and H2 (where by
convention H2 is the lighter state), one neutral pseudoscalar state A, and two
charged scalars H±.

The Z boson mass gets a contribution from the vacuum expectation values
vi of both of the doublets,

〈H1
1 〉 = v1, 〈H2

2 〉 = v2, (113)

with g2(v21 + v22) = 2m2
W . One assumes that vacuum expectation values of all

other scalar fields (in particular, squark and sleptons) vanish, as this avoids
color and/or charge breaking vacua.

The supersymmetric theory also contains the supersymmetric partners of
the spin-0 Higgs doublets. In particular, two Majorana fermion states, higgsi-
nos, appear as the supersymmetric partners of the electrically neutral parts
of the H1 and H2 doublets. These can mix quantum mechanically with each
other and with two other neutral Majorana states, the supersymmetric part-
ners of the photon (the photino) and the Z (the zino). When diagonalizing
the mass matrix of these four neutral Majorana spinor fields (neutralinos), the
lightest physical state becomes an excellent candidate for cold dark matter,
CDM.

The one-loop effective potential for the Higgs fields has to be used used
to obtain realistic Higgs mass estimates. The minimization conditions of the
potential allow one to trade two of the Higgs potential parameters for the Z
boson mass m2

Z = 1
2 (g

2 + g′2)(v21 + v22) (where g = e/ sin θW , g′ = e/ cos θW )
and the ratio of VEVs, tanβ. This ratio of VEVs

tanβ ≡ v2
v1

(114)

always enters as a free parameter in the MSSM, although it seems unlikely
to be outside the range between around 1.1 and 60, with some preference for
the higher values. The third parameter can further be re-expressed in terms
of the mass of one of the physical Higgs bosons, for example mA.
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5.2 Higgs and Supersymmetry

At the ATLAS and CMS experiments at the CERN Large Hadron Collider, a
discovery of the Higgs particle has not yet been claimed (by the end of 2011),
as the statistical significance is still below the wanted 5 σ (standard devia-
tions). However, there are intriguing indications showing up at more than 3σ
at a mass value around 125 GeV. If this would stand when more statistics is
gathered in 2012, it could means that the Standard Model of particles and
fields would be completed with a most wanted spin-0 boson, the Higgs particle.
Moreover, a mass below 130 GeV is a firm prediction of supersymmetry, so it
may also show the way to a whole new phenomenology, including a very inter-
esting dark matter candidate - the lightest supersymmetric particle, generally
thought to be the neutralino. This is a quantum mechanical mixture of the
supersymmetric partner of the photon, the neutral weak gauge boson and the
neutral spin-1/2 partners of each of the two Higgs doublets which are needed
by supersymmetry . In supersymmetric theories, the most likely dark matter
candidate is a quantum mechanical superposition, called the neutralino χ of
electrically neutral supersymmetric fermions.

Of course, if the 125 GeV Higgs also signals the presence of supersym-
metry, then a rich spectrum of particles, several of which may be in reach
kinematically at the LHC, is expected. Even if supersymmetry is not real-
ized in nature, it will continue to play a role as an important template for
dark matter, as the neutralino is a very attractive, calculable candidate for a
generic WIMP. We will return to this later.

5.3 The Neutralino Sector

The neutralinos χ̃0
i , of which the lightest is the dark matter candidate, are

linear combination of the neutral gauge bosons B̃, W̃3 (or equivalently γ̃, Z̃)
and of the neutral higgsinos H̃0

1 , H̃
0
2 . In this basis, their mass matrix

M =




M1 0 − g′v1√
2

+ g′v2√
2

0 M2 + gv1√
2

− gv2√
2

− g′v1√
2

+ gv1√
2

0 −µ

+ g′v2√
2

− gv2√
2

−µ 0




(115)

can be diagonalized to give four neutral Majorana states,

χ̃0
i = ai1B̃ + ai2W̃

3 + ai3H̃
0
1 + ai4H̃

0
2 (116)

(i = 1, 2, 3, 4) the lightest of which, χ0
1 or simply χ, is then the candidate for

the particle making up the dark matter in the universe (in section 4 we called
the coefficients a1j Nj .).

The coefficients in (116) are conveniently normalized such that for the
neutralino
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4∑

j=1

|a1j |2 = 1. (117)

The properties of the neutralino are quite different depending on whether is
consists mainly of gaugino (j = 1, 2) or higgsino (j = 3, 4) components. We
therefore define a parameter, Zg, which tells the size of the gaugino fraction:

Zg =

2∑

j=1

|a1j |2. (118)

A neutralino is often said to be gaugino-like if Zg ∼> 0.99, higgsino-like if
Zg ∼< 0.01, and mixed otherwise.

For simplicity, one often makes a diagonal ansatz for the soft supersymmetry-
breaking parameters in the sfermion sector. This allows the squark mass ma-
trices to be diagonalized analytically. Such an ansatz implies the absence of
tree-level flavor changing neutral currents (FCNC) in all sectors of the model.
In models inspired by low-energy supergravity with a universal scalar mass at
the grand-unification (or Planck) scale the running of the scalar masses down
to the electroweak scale generates off-diagonal terms and tree-level FCNC’s
in the squark sector.

In the estimates of detection rates here, we will adhere to a purely phe-
nomenological approach, where the simplest unification and scalar sector con-
straints are assumed, and no CP violating phases outside those of the Standard
Model, but no supergravity relations are used. This reduces the number of free
parameters to be scanned over in numerical calculations to seven: tanβ, M1,
µ, mA, and three parameters related to the sfermion sector (the exact val-
ues of the latter are usually not very important). In fact, on can reduce the
number of parameters further by choosing, e.g., explicit supergravity models,
but this only corresponds to a restriction to a subspace of our larger scan
of parameter space. In fact, data from the LHC have already excluded large
sectors of the simplified models.

The non-minimal character of the Higgs sector may well be the first ex-
perimental hint at accelerators of supersymmetry. At tree level, the H0

2 mass
is smaller than mZ , but radiative (loop) corrections are important and shift
this bound by a considerable amount. However, even after allowing for such
radiative corrections it can hardly be larger than around 130 GeV. When
there were some weak indications of a Higgs signature at 140 GeV in LHC
data reported in mid-2011, this looked like bad news for the MSSM. However,
with further data, the preferred mass is now around 125 GeV, which is easily
accomodated.

5.4 Experimental Limits

The successful operation of the CERN accelerator LHC at centre of mass en-
ergies above 7 TeV without observing any supersymmetric particles, in partic-
ular squarks of gluinos, puts important constraints on the parameters of the
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MSSM. However, it may be that the mass scale of neutralinos is decoupled
from the other supersymmetric particle masses (e.g, in “split susy” models
[42]).

It has proven to be very difficult, however, to put very tight lower limits
on the mass of the lightest neutralino, because of the multitude of couplings
and decay modes of the next-to-lightest supersymmetric particle. The lightest
neutralino can in general only be detected indirectly in accelerator experi-
ments through the missing energy and momentum it would carry away from
the interaction region.

The upper limit of dark matter neutralino masses in the MSSM of the order
of 7 TeV [11]. Above that mass, which is still far from the unitarity bound of
340 TeV [43], the relic density becomes larger than the allowed WMAP upper
limit. To get values for the lightest neutralino mass larger than a few hundred
GeV, however, some degree of “finetuning” is necessary. (On the other hand,
we have seen that for the other important unknown part of the energy density
of the universe, the cosmological constant Λ, a “finetuning” of many many
orders of magnitude seems also to be necessary.)

By making additional well-motivated but not mandatory restrictions on
the parameter space, such as in supergravity-inspired models or in simplified
constrained MSSM models (CMSSM), one gets in general masses below 600
GeV [44, 45] for the lightest neutralino, but as mentioned these models are
feeling some tension from early LHC data.

5.5 Supersymmetry Breaking

Supersymmetry is a mathematically beautiful theory, and would give rise to
a very predictive scenario, if it were not broken in an unknown way which
unfortunately introduces a large number of unknown parameters.

Breaking of supersymmetry has to be present since no supersymmetric
particle has as yet been detected, and unbroken supersymmetry requires par-
ticles and sparticles to have the same mass. This breaking can be achieved in
the MSSM by a soft potential which does not reintroduce large radiative mass
shifts (and which indicates that the lightest supersymmetric particles should
perhaps not be too much heavier than the 250 GeV electroweak breaking
scale). The origin of the effective low-energy potential need not be specified,
but it is natural to believe that it is induced through explicit breaking in a
hidden sector of the theory at a high mass scale. The supersymmetry break-
ing terms could then transmitted to the visible sector through gravitational
interactions.

Another possibility is that supersymmetry breaking is achieved through
gauge interactions at relatively low energy in the hidden sector. This is then
transferred to the visible sector through some messenger fields which trans-
form non-trivially under the Standard Model gauge group. However, we shall
assume the “canonical” scenario in most of the following.



51

Since one of the virtues of supersymmetry is that it may establish grand
unification of the gauge interactions at a common mass scale, a simplifying
assumption is often used for the gaugino mass parameters,

M1 =
5

3
tan2 θwM2 ∼− 0.5M2, (119)

and
M2 =

αem

sin2 θwαs

M3 ∼− 0.3M3, (120)

where θW is the weak mixing angle, sin2 θW ≈ 0.22.
When using the minimal supersymmetric standard model in calculations

of relic dark matter density, one should make sure that all accelerator con-
straints on supersymmetric particles and couplings are imposed. In addition
to the significant restrictions on parameters given by LEP and LHC, the mea-
surement of the b → sγ process is providing important bounds, since super-
symmetric virtual particles may contribute significantly to this loop-induced
decay. There are also constraints arising if one wants to attribute the slightly
abnormal value of g − 2 for the muon [46] to supersymmetric contributions
from virtual particles. The relic density calculation in the MSSM for a given
set of parameters is nowadays accurate to a few percent or so [2].

5.6 Other Supersymmetric Candidates

Although the neutralino is considered by most workers in the field to be the
preferred supersymmetric dark matter candidate, we mention briefly here also
some other options.

If the axion, the spin-0 pseudoscalar field which solves the strong CP
problem exists, and if the underlying theory is supersymmetric, there should
also exist a spin-1/2 partner, the axino. If this is the lightest supersymmetric
particle and is in the multi-GeV mass range, it could compose the cold dark
matter of the universe (for a review, see [47]).

A completely different type of supersymmetric dark matter candidate is
provided by so-called Q-balls [48], non-topological solitons predicted to be
present in many versions of the theory. These are produced in a non-thermal
way and may have large lepton or baryon number. They could produce unusual
ionization signals in neutrino telescopes, for example. However, the unknown
properties of their precise formation mechanism means that their relic density
may be far below the level of observability, and a value around the observa-
tionally favoured ΩQ ∼ 0.22 may seem fortuitous (for a recent review of the
physics of Q-balls, see [49].

Of course, there remains the possibility of dark matter being non-supersymm-
etric WIMPs. However, the interaction cross sections should then be quite
similar as for supersymmetric particles. Since, the rates in the MSSM are
completely calculable once the supersymmetry parameters are fixed, these
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particles, in particular neutralinos, serve as important templates for reason-
able dark matter candidates when it comes to designing experiments with the
purpose of detecting dark matter WIMPs.

6 Detection Methods for Neutralino Dark Matter

The ideal situation would appear if supersymmetry were discovered at acceler-
ators, so that direct measurements of the mass of the lightest supersymmetric
particle, its couplings and other properties could be performed. This would
give a way to check from very basic principle if this particle is a good dark
matter candidate - if it is electrically neutral and has the appropriate mass
and couplings to give the required relic density to provide Ωχh

2 ∼ 0.11. So
far, no signal of supersymmetry has been found at either LEP, Fermilab, or
LHC. An indirect piece of evidence for supersymmetry would be the discovery
of a Higgs particle below around 130 GeV, since this is the maximal value of
the lightest Higgs mass after radiative corrections, in the MSSM. In the non-
supersymmetric Standard Model the Higgs could be much heavier. It is indeed
encouraging that the first signs of the Higgs at LHC seems to correspond to
a mass of 125 GeV.

If we assume a local neutralino halo density of ρχ = ρ⊙ ∼ 0.4 GeV/cm3

[50], and a typical galactic velocity of neutralinos of v/c ∼ 10−3, the flux of
particles of mass 100 GeV at the location of a detector at the Earth is roughly
109 m−2 s−1. Although this may seem as a high flux, the interaction rate has
to be quite small, since the correct magnitude of Ωχh

2 ∼ 0.11 is only achieved
if the annihilation cross section, and therefore by expected crossing symmetry
also the scattering cross section, is of weak interaction strength.

The rate for direct detection of galactic neutralinos, integrated over de-
posited energy assuming no energy threshold, is

R =
∑

i

Ninχ〈σiχv〉, (121)

where Ni is the number of nuclei of species i in the detector, nχ is the local
galactic neutralino number density, σiχ is the neutralino-nucleus elastic cross
section, and the angular brackets denote an average over v, the neutralino
speed relative to the detector.

The most important non-vanishing contributions for neutralino-nucleon
scattering are the scalar-scalar coupling giving a spin-independent effective
interaction, and the spin-dependent axial-axial interaction,

Leff = fSI (χ̄χ)
(
N̄N

)
+ fSD

(
χ̄γµγ5χ

) (
N̄γµγ

5N
)
. (122)

Usually, it is the spin-independent interaction that gives the most important
contribution in realistic target materials (such as Na, Cs, Ge, I, or Xe), due to
the enhancement caused by the coherence of all nucleons in the target nucleus.
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The neutralino-nucleus elastic cross section can be written as

σiχ =
1

4πv2

∫ 4m2
iχv

2

0

dq2G2
iχ(q

2), (123)

wheremiχ is the neutralino-nucleus reduced mass, q is the momentum transfer
and Giχ(q

2) is the effective neutralino-nucleus vertex. One may write

G2
iχ(q

2) = A2
iF

2
SI(q

2)G2
SI + 4λ2

iJ(J + 1)F 2
SD(q2)G2

SD, (124)

which shows the coherent enhancement factor A2
i for the spin-independent

cross section. A reasonable approximation for the gaussian scalar and axial
nuclear form factors is

FSI(q
2) = FSD(q2) = exp(−q2R2

i /6~
2), (125)

Ri = (0.3 + 0.89A
1/3
i ) fm, (126)

which gives good approximation to the integrated detection rate [51] (but is
less accurate for the differential rate [52]). Here λi is related to the average spin
of the nucleons making up the nucleus. For the relation between GSI , GSD

and fSI , fSD as well as a discussion of the several Feynman diagrams which
contribute to these couplings, see e.g. [53, 54, 55]. One should be aware that
these expressions are at best approximate. A more sophisticated treatment
(see discussion and references in [39]) would, however, plausibly change the
values by much less than the spread due to the unknown supersymmetric
parameters.

For a target consisting of Ni nuclei the differential scattering rate per unit
time and unit recoil energy ER is given by

S0(ER) =
dR

dER
= Ni

ρχ
mχ

∫
d3v f(v) v

dσiχ

dER
(v, ER). (127)

The nuclear recoil energy ER is given by

ER =
m2

iχv
2(1 − cos θ∗)

mi
(128)

where θ∗ is the scattering angle in the center of mass frame. The range and
slope of the recoil energy spectrum is essentially given by non-relativistic kine-
matics. For a low-mass χ, the spectrum is steeply falling with ER; interaction
with a high-mass χ gives a flatter spectrum with higher cutoff in ER.

The total predicted rate integrated over recoil energy above a given gener-
ally (detector-dependent) threshold can be compared with upper limits com-
ing from various direct detection experiments. In this way, limits on the χ-
nucleon cross section can been obtained as a function of the massmχ [56]. The
cross section on neutrons is usually very similar to that on protons, so in gen-
eral only the latter is displayed. below. Major steps forward have been taken
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in recent years. For example, the CDMS-II experiment [57] and XENON100
[58] have been pushing the limits down by a large factor, reaching now 10−44

cm2 for masses around 50 GeV. This together with a larger detector mass
(for XENON, 1 tonne is presently being installed) and other improvements
will enable a thorough search well beyond the present range of WIMP-nucleon
cross sections. In Europe there are several other ambitious endeavours under-
way, such as DARWIN, a large liquid noble gas detector, and EURECA, a
solid state detector.

The rate in (127) is strongly dependent on the velocity v of the neutralino
with respect to the target nucleus. Therefore an annual modulation of the
counting rate is in principle possible, due to the motion of the Earth around
the Sun [59]. One can thus write

S(ER, t) = S0(ER) + Sm(ER) cos [ω(t− t0)] , (129)

where ω = 2π/365 days−1. Starting to count time in days from January 1st,
the phase is t0 = 153 days since the maximal signal occurs when the direction
of motion of the Earth around the Sun and the Sun around the galactic center
coincide maximally, which happens on June 2nd every year [59]. Similarly, the
counting rate is expected to be the lowest December 2nd every year. Here
S0(Er) is the average differential scattering rate in (127)and Sm(ER) is the
modulation amplitude of the rate. The relative size of Sm(ER) and S0(ER)
depends on the target and neutralino mass as well as onER. Typically Sm(ER)
is of the order of a few percent of S0(ER), but may approach 10 % for small
mχ (below, say, 50 GeV) and small ER (below some 10 keV).

Since the basic couplings in the MSSM are between neutralinos and quarks,
there are uncertainties related to the hadronic physics step which relates
quarks and gluons with nucleons, as well the step from nucleons to nuclei.
These uncertainties are substantial, and can plague all estimates of scattering
rates by at least a factor of 2, maybe even by an order of magnitude [60]. The
largest rates, which as first shown in [53] could be already ruled out by con-
temporary experiments, are generally obtained for mixed neutralinos, i.e. with
Zg neither very near 0 nor very near 1, and for relatively light Higgs masses
(since Higgs bosons mediate a scalar, spin-independent exchange interaction).

The experimental situation is becoming interesting as several direct detec-
tion experiments after many years of continuing sophistication are starting to
probe interesting parts of the parameter space of the MSSM, given reasonable,
central values of the astrophysical and nuclear physics parameters. Perhaps
most striking is the 8 σ evidence for an annual modulation effect claimed to be
seen in the NaI experiment DAMA/LIBRA [61] (see Section 8 where present
data are summarized).

Many of the present day detectors are severely hampered by a large back-
ground of various types of ambient radioactivity or cosmic-ray induced activ-
ity (neutrons are a particularly severe problem since they may produce recoils
which are very similar to the expected signal). A great improvement in sen-
sitivity would be acquired if one could use directional information about the
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recoils There are some very interesting developments also along this line, but
a full-scale detector is yet to be built.

Direction-sensitive detectors would have an even bigger advantage over
pure counting experiments if the dark matter velocity distribution is less triv-
ial than the commonly assumed maxwellian.

6.1 Indirect Searches

Besides these possibilities of direct detection of supersymmetric dark mat-
ter (with even present indications of the existence of a signal [61]), one also
has the possibility of indirect detection through neutralino annihilation in the
galactic halo. This is becoming a promising method thanks to very power-
ful new detectors for cosmic gamma rays and neutrinos planned and under
construction. Also, with time more has become known about the distribution
of dark matter thanks to very ambitious N-body simulations [62, 63], and a
large amount of substructure has been found. This would enhance indirect
detection, as it is proportional to the line-of-sight integral of the square of the
number density.

There has been a balloon-borne detection experiment [64], with increased
sensitivity to eventual positrons from neutralino annihilation, where an excess
of positrons over that expected from ordinary sources was found. However,
due to the rather poor quality of the data, it was not very conclusive.

In 2008, however, this changed completely when the data on the positron
to electron ratio, rising with energy, from the satellite PAMELA was presented
[65]. Somewhat later, FERMI-LAT reported a rise above the expectation from
secondary production (by cosmic rays) also for the sum of positrons and elec-
trons [66].

An unexpectedly high ratio of positrons over electrons was measured by
PAMELA, in particular in the region between 10 and 100 GeV, where previ-
ously only weak indications of an excess had been seen [67]. This new precision
measurement of the cosmic ray positron flux, which definitely disagrees with
a standard background [68] has opened up a whole new field of speculations
about the possible cause of this positron excess. Simultaneously, other data
from PAMELA indicate that the antiproton flux is in agreement with standard
expectations [69].

There are a variety of astrophysical models proposed for the needed extra
primary component of positrons, mainly based on having nearby pulsars as a
source [70]. Although pulsars with the required properties like distance, age,
and energy output are known to exist, it turns out not to be trivial to fit both
FERMI and PAMELA data with these models (see, for example, [71, 72]).
For this and other reasons, the dark matter interpretation, which already had
been applied to the much more uncertain HEAT data [64] was one of the
leading hypotheses.

It was clear from the outset that to fit the PAMELA positron data and
FERMI’s sum of positrons and electrons with a dark matter model a high mass
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is needed (on the order of 600 GeV to several TeV). However, since the local
average dark matter density is well-known to be around 0.4 GeV/cm3 [50], the
number density decreases as 1/MX and therefore the annihilation rate goes as
1/M2

X with MX the mass of the annihilating particle. This means that with
〈σv〉 = 3 ·10−26 cm3/s, which is the standard value of the annihilation rate in
the halo for thermally produced WIMPs (see (43)), the rate of positrons, even
for a contrived model which annihilates to e+e− with unit branching ratio is
much too small to explain the measured result.

To a good approximation, the local electron plus positron flux for such a
model is given by, assuming an energy loss of 10−16E2 GeVs−1 (with E in
GeV) from inverse Compton and synchrotron radiation,

E3 dφ

dE
= 6 · 10−4E

(
1 TeV

MX

)2

θ(MX − E)Btot m
−2s−1sr−1GeV2, (130)

which means that the boost factor Btot ∼ 200 for a 600 GeV particle, that may
otherwise explain the positron excess. Similar boost factors seem to be generic,
also for supersymmetric models giving e+e− through internal bremsstrahlung
[73].

Such a boost factor can in principle be given by a large inhomogeneity
which has to be very local, since positrons and electrons of several hundred
GeV do not diffuse very far before losing essentially all their energy. Although
not excluded, this would seem to be extremely unlikely in most structure for-
mation scenarios. Therefore, most models rely on the Sommerfeld enhance-
ment factor. This means a non-negligible amount of fine-tuning of the mass
spectrum, in particular also for the degeneracy between the lightest and next-
to-lightest particle in the new sector. For a detailed discussion of the required
model-building, see [74]. Similar fine-tuning is needed for the decaying dark
matter scenario, where the decay rate has to be precisely tuned to give the
measured flux. Since the antiproton ratio seems to be normal according to
the PAMELA measurements [69], the final states should be mainly leptons
(with perhaps intermediate light new particles decaying into leptons). For an
interesting such model, which may in fact contain an almost standard axion,
see [75].

It seems that at present it is possible to construct models of the Som-
merfeld enhanced type [76] which do marginally not contradict present data.
However, constraints are getting severe and the dark matter solution to the
positron excess is currently not as fashionable as a couple of years ago. It will
be interesting, however, to see the first results from the AMS-02 experiment
[77] on the International Space Station, which should appear in the summer
of 2012.

A very rare process in proton-proton collisions, antideuteron production,
may be less rare in neutralino annihilation [78]. However, the fluxes are so
small that the possibility of detection seems marginal even in the AMS-02
experiment, and probably a dedicated space probe has to be employed [79].
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6.2 Indirect Detection by γ-rays from the Halo

With the problem of a lack of clear signature of positrons and antiprotons,
one would expect that the situation of gamma rays and neutrinos is similar, if
they only arise from secondary decays in the annihilation process. For instance,
the gamma ray spectrum arising from the fragmentation of fermion and gauge
boson final states is quite featureless and gives the bulk of the gamma rays
at low energy where the cosmic gamma ray background is severe. However,
an advantage is the directional information that photons carry in contrast
to charged particles which random walk through the magnetic fields of the
Galaxy [80].

For annihilation into quark-antiquark pairs, or W and Z bosons, the con-
tinuous energy spectrum one gets after fragmentation into SM particles can
rather well and conveniently be parametrized as

dNcont(Eγ)/dEγ = (0.42/mχ)e
−8x/(x1.5 + 0.00014), (131)

where mχ is the WIMP mass and x = Eγ/mχ. For more detailed spectra, one
may for instance use standard particle physics codes like PYTHIA [81] (as is
done in [2]). One should note that for τ leptons in the final state (131) is not
a good approximation, as this gives a harder spectrum.

Gamma-ray Lines

An early idea was to look for a spectral feature, a line, in the radiative anni-
hilation process to a charm-anticharm bound state χχ → (c̄c)bound + γ [82].
However, as the experimental lower bound on the lightest neutralino became
higher it was shown that form factor suppression rapidly makes this process
unfeasible [83]. The surprising discovery was made that the loop-induced an-
nihilations χχ → γγ [83, 84] and χχ → Zγ [85] do not suffer from any form
factor suppression.

The rates of these processes are difficult to estimate because of uncertain-
ties in the supersymmetric parameters, cross sections and halo density profile.
However, in contrast to the other proposed detection methods they have the
virtue of giving very distinct, “smoking gun” signals of monoenergetic pho-
tons with energy Eγ = mχ (for χχ → γγ) or Eγ = mχ(1 − m2

Z/4m
2
χ) (for

χχ → Zγ) emanating from annihilations in the halo.
The detection probability of a gamma ray signal, either continuous or line,

will of course depend sensitively on the density profile of the dark matter halo.
To illustrate this point, let us consider the characteristic angular dependence
of the γ-ray line intensity from neutralino annihilation χχ → γγ in the galactic
halo. Annihilation of neutralinos in an isothermal halo with core radius a leads
to a γ-ray flux along the line-of-sight direction n̂ of

dF
dΩ

(n̂) ≃ (0.94× 10−13cm−2s−1sr−1)×
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( σγγv

10−29 cm−3s−1

)( ρχ
0.3 GeV cm−3

)2(100GeV

mχ

)2(
R

8.5 kpc

)
J(n̂) (132)

where σγγv is the annihilation rate, ρχ is the local neutralino halo density and
R is the distance to the galactic center. The integral J(n̂) is given by

J(n̂) =
1

Rρ2χ

∫

line−of−sight

ρ2(ℓ)dℓ(n̂), (133)

and is evidently very sensitive to local density variations along the line-of-
sight path of integration. In the case of a smooth halo, its value ranges from
a few at high galactic latitudes to several thousand for a small angle average
towards the galactic center in the NFW model [86].

Since the neutralino velocities in the halo are of the order of 10−3 of
the velocity of light, the annihilation can be considered to be at rest. The
resulting gamma ray spectrum is a line at Eγ = mχ of relative linewidth 10−3

(coming from the Doppler effect caused by the motion of the WIMP) which
in favourable cases will stand out against background.

Detection of a γ-rate line signal would need a detector with very good
energy resolution, like one percent or better. This is not achieved by FERMI
(although data on a line search have been presented [87]). However, the Rus-
sian satellite GAMMA-400 [88] seems to have very promising characteristics
for this type of dark matter search, when it is launched by the end of this
decade. This could be a very interesting new instrument in the search for
γ-ray lines from annihilation (or decay) of dark matter.

The calculation of the χχ → γγ cross section is technically quite involved
with a large number of loop diagrams contributing. A full calculation in the
MSSM was performed in [89]. Since the different contributions all have to be
added coherently, there may be cancellations or enhancements, depending on
the supersymmetric parameters. The process χχ → Zγ is treated analogously
and has a similar rate [85].

An important contribution, especially for neutralinos that contain a fair
fraction of a higgsino component, is from virtual W+W− intermediate states.
This is true both for the γγ and Zγ final state for very massive neutralinos
[85]. In fact, thanks to the effects of coannihilations [11], neutralinos as heavy
as several TeV are allowed without giving a too large Ω. These extremely
heavy dark matter candidates (which, however, would require quite a degree
of finetuning in most supersymmetric models) are predominantly higgsinos
and have a remarkably large branching ratio into the loop-induced γγ and Zγ
final states (the sum of these can be as large as 30%). If there would exist such
heavy, stable neutralinos, the gamma ray line annihilation process may be the
only one which could reveal their existence in the foreseeable future (since not
even LHC would be sensitive to supersymmetry if the lightest supersymmetric
particle weighs several TeV). In fact the high branching ratio for higgsino
annihilation to 2γ was the reason that Hisano et al. [90] took a closer look at
the process and discovered the effect of Sommerfeld enhancement.
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Internal Bremsstrahlung

The γγ process appears in a closed loop meaning that it is suppressed by
powers of the electromagnetic coupling constant. An amusing effect appears,
however, for Majorana fermions at even lower order. It was early realized
that there could be important spectral features [91], and recently it has been
shown that internal bremsstrahlung (IB) from produced charged particles in
the annihilations could yield a detectable ”bump” near the highest energy for
heavy gauginos or Higgsinos annihilating intoW boson pairs, such as expected
in split supersymmetry models [92]. In [93], it was furthermore pointed out
that IB often can be estimated by simple, universal formulas and often gives
rise to a very prominent step in the spectrum at photon energies of Eγ = mχ

(such as in LKP models [94]). The IB process was thoroughly treated in [95],
and here we summarize the main results.

In [91] it was shown that the radiative process χ0χ0 → f f̄γ may cir-
cumvent the chiral suppression, i.e., the annihilation rate being proportional
to m2

f . This is normally what one would get for annihilation into a fermion
pair from an S-wave initial state [96], as is the case in lowest order for non-
relativistic dark matter Majorana particles in the Galactic halo (see also [97]).
Since this enhancement mechanism is most prominent in cases where the neu-
tralino is close to degenerate with charged sleptons, it is of special importance
in the so-called stau coannihilation region.

A fermion final state containing an additional photon, f f̄γ, is thus not
subject to a helicity suppression. The full analytical expressions lengthy,but
simplify in the limit of mf → 0. Then one finds

dNf+f−

dx
=

λ×
{ 4x

µ(µ− 2x)
− 2x

(µ− x)2
− µ(µ− 2x)

(µ− x)3
log

µ

µ− 2x

}
, (134)

with

λ = (1− x)αemQ
2
f

|g̃R|4 + |g̃L|4
64π2

(
m2

χ〈σv〉χχ→ff̄

)−1

.

where µ ≡ m2
f̃R

/m2
χ + 1 = m2

f̃L
/m2

χ + 1 and g̃RPL (g̃LPR) is the cou-

pling between neutralino, fermion and right-handed (left-handed) sfermion.
This confirmed the result found in [91] for photino annihilation. Note the
large enhancement factor m2

χ/m
2
f due to the lifted helicity suppression (from

〈σv〉χχ→ff̄ ∝ m2
fmχ−4), and another large enhancement that appears at high

photon energies for sfermions degenerate with the neutralino.
Internal bremsstrahlung from the various possible final states of neutralino

annihilations is included in DarkSUSY [2]. The total γ-ray spectrum is given
by

dNγ,tot

dx
=
∑

f

Bf

(
dNγ,sec

f

dx
+

dNγ,IB
f

dx
+

dNγ,line
f

dx

)
, (135)
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where Bf denotes the branching ratio into the annihilation channel f . The last
term in the above equation gives the contribution from the direct annihilation
into photons, γγ or Zγ, which result in a sharp line feature [89, 85]. The
first term is the contribution from secondary photons from the fragmentation
of the fermion pair. This “standard” part of the total γ-ray yield from dark
matter annihilations shows a feature-less spectrum with a rather soft cutoff
at Eγ = mχ.

In Fig. 6 an example of the energy distribution of photons given by (134)
is shown.
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Fig. 6. The distribution of γ-rays from the internal bremsstrahlung process χ0χ0
→

ff̄γ is shown as the solid line, and compared to the standard case, (131) (dashed
line). As can be seen, the internal bremsstrahlung process gives a very hard spec-
trum, which may counteract the fact that radiation of a photon always is suppressed
by factor ∼ αem/π.

Density Profile and γ-ray Detection

To compute J(n̂) in (133), a model of the dark matter halo has to be chosen.
The universal halo profile found in simulations by Navarro, Frenk and White
[98] has a rather significant enhancement ∝ 1/r near the halo centre,

ρNFW =
c

r(a + r)
, (136)

where c is a concentration parameter and a a typical length scale for the halo.
In fact, more detailed later simulations have given a slightly different shape,
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the so-called Einasto profile,

ρEinasto = ρse
− 2

α [(
r
α )

α−1], (137)

with α ∼ 0.17 for the Milky Way. Except near r = 0, this profile is actually
quite similar to the NFW profile, and it has slightly higher density outside
the very center. The local dark matter density near the solar system can be
quite well determined [50] and is ρ0 ≃ 0.4 GeV/cm3. If these forms of the
density can be applied to the Milky Way, this would lead to a much enhanced
annihilation rate towards the galactic centre, and also to a very characteristic
angular dependence of the line signal. This would be very beneficial when
discriminating against the extragalactic γ ray background, and Imaging Air
Cherenkov Telescope Arrays (IACTAs) are be eminently suited to look for
these signals since they have an angular acceptance which is well matched to
the angular size of the Galactic central region where a cusp is likely to be.
Both H.E.S.S. [99], MAGIC [100] and Whipple [101] have searched for a signal
at the galactic center or in other dark matter concentrations, but are still a
couple of orders of magnitude above the flux which would correspond to the
canonical WIMP flux, (43). Maybe with the planned CTA project [102] one
may get to the interesting region of parameter space for supersymmetric or
other WIMPs.

Also the energy threshold of present-day IACTAs is too high (of the order
of 50 GeV or higher) to be very useful for WIMPs of 100 GeV or lighter. There
have been discussions about a high-altitude detector with lower threshold,
perhaps as low as 5 GeV [103], which would be very beneficial for dark matter
detection, see Fig. 6.2

Space-borne gamma ray detectors, like the FERMI satellite have a much
smaller area (on the order of 1 m2 instead of 104−105 m2 for IACTAs), but a
correspondingly larger angular acceptance so that the integrated sensitivity is
in fact similar. This is at least true if the Galactic center does not have a very
large dark matter density enhancement which would favour IACTAs. The total
rate expected in FERMI can be computed with much less uncertainty because
of the angular integration [104]. Directional information is obtained and can
be used to discriminate against the diffuse extragalactic background. A line
signal can be searched for with high precision, since the energy resolution of
FERMI is at the few percent level.

Indirect Detection through Neutrinos

The density of neutralinos in the halo is not large enough to give a measur-
able flux of secondary neutrinos, unless the dark matter halo is very clumpy
[105]. In particular, the central Galactic black hole may have interacted with
the dissipationless dark matter of the halo so that a spike of very high dark
matter density may exist right at the Galactic centre [106]. However, the exis-
tence of these different forms of density enhancements are very uncertain and
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Fig. 7. The energy distribution of γ-rays from WIMP dark matter annihilation into
a bb̄ pair, for a dark matter particle mass of 100, 200, 500, 1000, 1500, and 3000
GeV, respectively. One can see that the bulk of the signal is at low energies. (Here
the line signals from γγ and Zγ have not been included.)

depend extremely sensitively on presently completely unknown aspects of the
formation history of the Milky Way.

More model-independent predictions (where essentially only the relatively
well-determined local halo dark matter density is of importance) can be made
for neutrinos from the centre of the Sun or Earth, where neutralinos may have
been gravitationally trapped and therefore their density enhanced. As they
annihilate, many of the possible final states (in particular, τ+τ− lepton pairs,
heavy quark-antiquark pairs and, if kinematically allowed, W±H∓, Z0H0

i ,
W+W− or Z0Z0 pairs) give after decays and perhaps hadronization energetic
neutrinos which will propagate out from the interior of the Sun or Earth. (For
neutrinos from the Sun, energy loss of the hadrons in the solar medium and
the energy loss of neutrinos have to be considered [107, 108]). In particular,
the muon neutrinos are useful for indirect detection of neutralino annihilation
processes, since muons have a quite long range in a suitable detector medium
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like ice or water. Therefore they can be detected through their Cherenkov
radiation after having been produced at or near the detector, through the
action of a charged current weak interaction νµ +A → µ+X .

Detection of neutralino annihilation into neutrinos is one of the most
promising indirect detection methods, and will be subject to extensive ex-
perimental investigations in view of the new neutrino telescopes (IceCube,
ANTARES, KM3NET) planned or under construction [109]. The advantage
shared with gamma rays is that neutrinos keep their original direction. A high-
energy neutrino signal in the direction of the centre of the Sun or Earth is
therefore an excellent experimental signature which may stand up against the
background of neutrinos generated by cosmic-ray interactions in the Earth’s
atmosphere.

The differential neutrino flux from neutralino annihilation is

dNν

dEν
=

ΓA

4πD2

∑

f

Bf
χ

dNf
ν

dEν
(138)

where ΓA is the annihilation rate, D is the distance of the detector from
the source (the central region of the Earth or the Sun), f is the neutralino
pair annihilation final states, and Bf

χ are the branching ratios into the final

state f . dNf
ν /dEν are the energy distributions of neutrinos generated by the

final state f . Detailed calculations of these spectra can be made using Monte
Carlo methods [110, 108, 111]. Effects of neutrino oscillations have also been
included [112].

The neutrino-induced muon flux may be detected in a neutrino telescope
by measuring the muons that come from the direction of the centre of the Sun
or Earth. For a shallow detector, this usually has to be done in the case of
the Sun by looking (as always the case for the Earth) at upward-going muons,
since there is a huge background of downward-going muons created by cosmic-
ray interactions in the atmosphere. The flux of muons at the detector is given
by

dNµ

dEµ
= NA

∫ ∞

Eth
µ

dEν

∫ ∞

0

dλ

∫ Eν

Eµ

dE′
µ P (Eµ, E

′
µ;λ)

dσν(Eν , E
′
µ)

dE′
µ

dNν

dEν
,

(139)
where λ is the muon range in the medium (ice or water for the large detectors
in the ocean or at the South Pole, or rock which surrounds the smaller un-
derground detectors), dσν(Eν , E

′
µ)/dE

′
µ is the weak interaction cross section

for production of a muon of energy E′
µ from a parent neutrino of energy Eν ,

and P (Eµ, E
′
µ;λ) is the probability for a muon of initial energy E′

µ to have
a final energy Eµ after passing a path–length λ inside the detector medium.
Eth

µ is the detector threshold energy, which for “small” neutrino telescopes
like Baksan, MACRO and Super-Kamiokande is around 1 GeV. Large area
neutrino telescopes in the ocean or in Antarctic ice typically have thresholds
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of the order of tens of GeV, which makes them sensitive mainly to heavy neu-
tralinos (above 100 GeV) [113]. Convenient approximation formulas relating
the observable muon flux to the neutrino flux at a given energy exist [114].

The integrand in (139) is weighted towards high neutrino energies, both
because the cross section σν rises approximately linearly with energy and be-
cause the average muon energy, and therefore the range λ, also grow approx-
imately linearly with Eν . Therefore, final states which give a hard neutrino
spectrum (such as heavy quarks, τ leptons and W or Z bosons) are usually
more important than the soft spectrum arising from light quarks and gluons.

The rate of change of the number of neutralinos Nχ in the Sun or Earth
is governed by the equation

Ṅχ = CC − CAN
2
χ (140)

where CC is the capture rate and CA is related to the annihilation rate ΓA,
ΓA = CAN

2
χ. This has the solution

ΓA =
CC

2
tanh2

(
t

τ

)
, (141)

where the equilibration time scale τ = 1/
√
CCCA. In most cases for the Sun,

and in the cases of observable fluxes for the Earth, τ is much smaller than a few
billion years, and therefore equilibrium is often a good approximation (Ṅχ =
0 in (140)). This means that it is the capture rate which is the important
quantity that determines the neutrino flux.

The capture rate induced by scalar (spin-independent) interactions be-
tween the neutralinos and the nuclei in the interior of the Earth or Sun is the
most difficult one to compute, since it depends sensitively on Higgs mass, form
factors, and other poorly known quantities. However, this spin-independent
capture rate calculation is the same as for direct detection. Therefore, there is
a strong correlation between the neutrino flux expected from the Earth (which
is mainly composed of spin-less nuclei) and the signal predicted in direct de-
tection experiments [113, 115]. It seems that even the large (kilometer-scale)
neutrino telescopes planned will not be competitive with the next generation
of direct detection experiments when it comes to detecting neutralino dark
matter, searching for annihilations from the Earth. However, the situation
concerning the Sun is more favourable. Due to the low counting rates for
the spin-dependent interactions in terrestrial detectors, high-energy neutrinos
from the Sun constitute a competitive and complementary neutralino dark
matter search. Of course, even if a neutralino is found through direct detec-
tion, it will be extremely important to confirm its identity and investigate its
properties through indirect detection. In particular, the mass can be deter-
mined with reasonable accuracy by looking at the angular distribution of the
detected muons [116, 117].

For the the Sun, dominated by hydrogen, the axial (spin-dependent) cross
section is important and relatively easy to compute. A good approximation is
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given by [39]

Csd
⊙

(1.3 · 1023 s−1)
=

( ρχ
0.3 GeV cm−3

)(100GeV

mχ

)(
σsd
pχ

10−40 cm2

)(
270 km/s

v̄

)
, (142)

where σsd
pχ is the cross section for neutralino-proton elastic scattering via the

axial-vector interaction, v̄ is the dark-matter velocity dispersion, and ρχ is
the local dark matter mass. The capture rate in the Earth is dominated by
scalar interactions, where there may be kinematic and other enhancements,
in particular if the mass of the neutralino almost matches one of the heavy
elements in the Earth. For this case, a more detailed analysis is called for, but
convenient approximations are available [39]. In fact, also for the Sun the spin-
dependent contribution can be important, in particular iron may contribute
non-negligibly.

A neutrino telescope of area around 1 km2, which is roughly the size of
IceCube, has discovery potential for a range of supersymmetric models, which
cannot easily be probed using other methods, see [113].

To conclude this section on detection methods of WIMPs, we have seen
that supersymmetric particles, which are the theoretically most plausible
WIMPs have many interesting features which may make them detectable in
the nor too distant future. Supersymmetry, in particular MSSM, invented
already in the 1970’s, and obtained as a phenomenological manifestation of
the most realistic string theories, has since the early 1980’s, when the CDM
paradigm first won universal acclaim, been the prime template for a WIMP
[96, 118].

Even in the MSSM, however, there are in principle more than a hundred
free parameters, meaning that for practical reasons the templates, for instance
used at the LHC experiments, are drastically simplified versions (like CMSSM
or the even more constrained mSUGRA), which do not, in contrast to the full
MSSM, correspond very well to more recent thinking about supersymmetry
breaking [119]. This has to be kept in mind when discussing the impressive
LHC limits discussed extensively at this conference. Even in still simplified
versions, like the 19 to 24-parameter ”phenomenological MSSM”, pMSSM
[120], the bounds on particle masses given, e.g., by fulfilling the WMAP relic
density, are not very constraining at the moment [121]. Of course, the outlook
for the MSSM would be much bleaker if a light Higgs (with mass below roughly
130 GeV) were not to be established by the end of the 7 TeV run, in 2012.

With the freely available [123] DarkSUSY package [2], one can compute
in detail the relic density, not only for supersymmetric models, but since the
package has a modular design, one can insert any favourite model one has
for WIMP-like dark matter. Of course, DarkSUSY is mostly used for the
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supersymmetric case, and it has been originally set up for a general pMSSM
model, with large freedom in the choice of parameters.

6.3 Antimatter Detection of Dark Matter

Antimatter does not seem to be present in large quantities in the universe, as
can be inferred from the absence of γ-ray radiation that would have been cre-
ated in large amounts if astrophysical anti-objects would annihilate on their
matter counterparts (this would also cause deviations from the pure black-
body form of the cosmic microwave background, something which is very
severely limited by WMAP data and will be further probed by the PLANCK
satellite). In fact, both the analysis of primordial nucleosynthesis and the
CMB, give a non-zero number around 10−10 for the baryon-antibaryon asym-
metry, which means that matter dominated over antimatter already in the
very early universe. On the other hand, dark matter annihilation in almost
all models occurs from a matter-antimatter symmetric initial state and thus
equal amounts of matter and antimatter is created. This leads to an interest-
ing possible new primary source of positrons and antiprotons (i.e. the stable
anti-particles of protons) in the cosmic rays of dark matter halos, including
the one where the Milky Way resides. (There is always a small amount of
antimatter produced as secondary particles in collisions with galactic gas and
dust by ordinary cosmic rays, of course.) As discussed extensively at confer-
ences in 2009 (see, e.g., [124]) this was an extremely hot topic then. This was
due to the PAMELA and FERMI collaborations just having discovered an
anomalously high ratio of positrons over electrons up to 100 GeV [65], and
sum of positrons and electrons up to 1 TeV [66], respectively. During the last
two years, this anomaly, although possible to explain by dark matter annihi-
lation, needs such large boost factors (e.g., from Sommerfeld enhancement to
be discussed below), and somewhat contrived, leptophilic models, that these
models are feeling severe pressure from other detection methods, e.g, γ-rays
from the central parts of the Galaxy [125]. Alternative astrophysical explana-
tions are on the other hand possible with quite standard assumptions. One
cannot say that the dark matter explanation is yet completely ruled out, but
it is in strong tension from other measurements.

Returning to more standard WIMP models, there have recently been im-
provements in the computations of the annihilation rate at low velocity as is
the case in galaxies, where v/c ∼ 10−3. An amusing effect is caused due to
the suppression of the 3S1 for an initial initial state of two Majorana spinors
(such as neutralinos) at zero velocity, due to the requirement of Fermi statis-
tics. Namely, one cannot have two identical fermions in the same spin state.
This means that annihilation only occurs from the pseudoscalar 1S0 state
where one of the particles has spin up, the other spin down. This causes for
instance the annihilation amplitude into a light fermion-antifermion pair, like
e+e−, to be suppressed by an explicit helicity factor of the fermion mass (as in
the limit of zero mass, the vertices are helicity-preserving, and to cause a spin
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flip a mass term is needed). Direct annihilation into e+e− was thus thought to
be very subdominant. However, it was realized [126] (building on an old idea
[127]), that a spin-flip by one of the Majorana fermions caused by emitting
a photon could first of all relieve the helicity suppression of the process to a
mere α/π ordinary radiative factor. And, in addition, the spectral shape of
the emitted photon is very favourable for detection, causing a shoulder which
peaks close to the dark matter particle mass. In particular, for heavy (TeV-
scale) WIMPs this could be quite important, and using the radiative peak
would help extracting the signal over background [128]. Recently, these radia-
tive processes have been generalized also to emission of other gauge bosons,
and have been shown to be quite important generally [129].

The Sommerfeld Effect

The possibility of an enhanced annihilation rate due to DM halo substructure
has been realized for a long time [105]. However, it seems hard to produce a
boost factor of the order of a few hundred to a thousand in the solar neigh-
borhood, as would be needed to explain the PAMELA and FERMI excesses.
This is because substructure survives in numerical simulations mostly in the
outer portions of the halo, due to tidal stripping in the inner part.

Another potentially very important effect, Sommerfeld enhancement, which
may explain the large boost had been found a few years earlier. This effect,
was computed for electromagnetism by Arnold Sommerfeld many years ago
[130], but it was rediscovered [90, 74] in the quantum field theory of very
heavy dark matter particles in the limit when the gauge particles, γ, Z0 and
W± are essentially massless, or at least have a Compton wavelength that is
sufficiently large compared to the would-be bound state caused by the attrac-
tive gauge forces. (Of course, a bound state is never really formed due to the
fast time scale of annihilation.)

In the quantum mechanical calculation of electron scattering and e+e−

annihilation, Sommerfeld enhancement is caused by the distortion of the plane
wave describing the relative motion of the annihilating particle pair through
the near formation of a bound state caused by photon exchange. In the so-
called ladder approximation for QED (where one sums only certain types of
Feynman diagrams), one obtains this Sommerfeld effect, and the square of the
wave function at the origin in relative coordinates r1 − r2, which enters into
the probability for the short-distance process of annihilation, is increased by
the factor [74]

S =
|Ψ(0)|2
|Ψ(0)(0)|2

=

(
πα
β

)

1− e−(
πα
β )

, (143)

with α the fine-structure constant, and β the relative velocity. This can be
expanded to SQED = πα/β for small relative velocities. In the Milky Way
halo, velocities are typically β/c ∼ 10−3, so this limit is certainly relevant.
For smaller galaxies or DM substructure, velocities (as measured by velocity
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dispersions) are even smaller. Of course, there is no direct photon exchange
between DM particles, since they are electrically neutral. However, if there
are charged states nearby in mass, the neutral pair may momentarily, before
annihilation, transform into a charged pair which in turn may exchange a
photon between then. These are the basic processes that have to be summed
to all orders in the ladder approximation, and which lead to Sommerfeld
enhancement (see Fig. 6.3).
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Fig. 8. Diagrams illustrating the field-theoretical reason for the Sommerfeld en-
hancement. The figure is drawn for a supersymmetric neutralino (which is the case
where the effect was first found in dark matter physics [90]), but similar diagrams
apply for any dark matter candidate which first of all is heavy compared to the
exchanged particle in the t-channel (i.e. in the “ladder”), and where there is a near
degeneracy between the neutral state being the dark matter and the virtual states
(in this case charged particles, charginos). In (a) is shown the lowest order contribu-
tion, which gets very important for large masses, and which is further enhanced by
the ladder diagrams of the type shown in (b). The net result could be an “explosive
annihilation”, to quote [90].

One could of course also have a Yukawa-like particle (i.e., spinless) of mass
mY , mediating a weak attractive force with coupling constant αY between
DM particles of mass mχ. The small velocity limit of the enhancement then
becomes

SY ∝ αY mχ

mY
. (144)

In some cases, depending on the detailed nature of the mediating particles,
the enhancement factor S can indeed be as high as several hundred to a few
thousand, depending on the exact parameters. The effect is generally strongly
velocity-dependent, depending on velocity as 1/β or even (near resonance)
1/β2 but in the Yukawa case the 1/β scaling is valid only for β > mY /mχ.
At smaller velocities and outside resonances, the effect saturates at mY /mχ

[131]
Important bounds comes from γ-rays, but also from the non-observation of

energy distortions in the cosmic microwave background. It may still be possible



69

to (marginally) fit the PAMELA/FERMI excess, if one takes astrophysical
uncertainties into account [76].

It should be noted that the Sommerfeld effect has a solid theoretical back-
ing and is important, if the mass and coupling parameters are in the right
range. For supersymmetric models, however, it occurs only for very heavy
neutralinos (generally higgsinos) and the phenomenology has only been partly
investigated [132].

7 Particular Dark Matter Candidates

7.1 WIMP models

The particle physics connection is particularly striking in the WIMP scenario,
namely that for typical gauge couplings and a mass at the weak interaction
scale of a few hundred GeV, the relic density computed using standard big
bang thermodynamics, as we saw in Section 3. This is rather well as tested
by the calculation of the abundances of hydrogen and helium in the early uni-
verse, through big bang nucleosynthesis. This calculation of these abundances
turns out to be in amazingly good agreement with the measured ones. Using
the same early universe thermodynamics and solving the Boltzmann equation
for hypothetical dark matter particles of mass mχ, we found that the annihila-
tion rate < σv > needed to explain Ωχh

2 ∼ 0.11 (as determined by WMAP),
naturally appears for ordinary gauge couplings and a mass between around
20 GeV to a few TeV - a WIMP.

Although this is not a completely convincing argument for WIMP dark
matter – it may perhaps be a coincidence – it nevertheless gives WIMP can-
didates a flavour of naturalness. For non-WIMP candidates there is, on the
other hand, usually a finetuning involved, or use of non-standard cosmology,
to obtain the correct relic density. Even limiting oneself to WIMP models for
dark matter, the literature is extensive, and among some recent developments,
which cannot be discussed in this review in any detail, can be mentioned:

7.2 Dark Stars

Since cosmological structure in WIMP models occurs hierarchically, starting
from scales as small as (10−12−10−6)m⊙ [133], the idea has been put forward
that the earliest dense, small structures created by dark matter may play a
role in star formation and if the dark matter particles annihilate within the
stars, unusual stellar evolution may result [134].

7.3 Inelastic Dark Matter

These are dark matter candidates which may be excited to a state with slightly
higher mass and therefore cause a higher than usual direct detection rate [135],
and also relieve the tension between the different direct detection experiments.
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7.4 Dynamical Dark Matter

As it is not obvious that there is only one type of particle making up the dark
matter (neutrinos should, for example contribute up to a few percent), an
extreme solution could be to have a very large number, with different spins,
masses, etc. [136].

7.5 Leptophilic Dark Matter

As we have mentioned, there was an almost explosion of suggestions of this
kind of models in 2009, when the dark matter interpretation of the anoma-
lous positron ratio measured by PAMELA[65] and FERMI [66] was proposed
to be explained by dark matter annihilation. Leptophilic means that these
dark matter particles annihilate mainly to leptons, for example by proceeding
through axion-like particles below the pion mass [137]. Although the original
motivation for these models has become somewhat weaker, the concept has
established itself in the dark matter community.

7.6 Supersymmetric Models Beyond the MSSM

[138]. Of course, even though the minimal supersymmetric version of the stan-
dard model, the MSSM, has more than 100 free parameters, models having,
e.g., motivation from new scenarios of supersymmetry breaking, are of course
logically possible. These “beyond the MSSM” or BMSSM models may among
other things give a higher Higgs mass than the limit of 130 GeV given by
minimal SUSY models. In the summer of 2011, this was perhaps a favoured
scenario, as the first indications of the Higgs mass was around 140 GeV. How-
ever, with more data, the preferred range (not yet significant enough by the
end of 2011 to be called a discovery) is now 124-126 GeV which is more easily
encompassed in the MSSM.

7.7 Asymmetric Dark Matter

This is a class of dark matter models which may also explain the baryon (or
lepton) asymmetry of the universe [139]. This generally only works for masses
around or below 10 GeV, and this mass range has been in focus recently
due to a (possible) signal in direct detection experiments [61, 140, 141], and
maybe also in γ-ray detection in the direction near the Galactic centre [142].
However, it remains to see whether these indications will stand the test of
time. A similar model is “emergent dark matter”. This is a recent version of
asymmetric DM with larger possible parameter range, such as DM mass up
to 100 GeV [139].
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7.8 Kaluza-Klein Models

A candidate for dark matter, the so-called LKP (for lightest Kaluza-Klein
particle) has been identified. This appears in theories with extra dimensions,
and has a rich phenomenology which we will not enter into here (for a review,
see [143]). The main difference with supersymmetry is that the dark matter
candidate has spin-1, and can give the correct relic density for a mass in the
range 600 GeV to 1 TeV.

7.9 Inert Higgs Doublet

Interesting are also versions of the Standard Model with an enlarged Higgs
sector. If there would be, for instance, a second Higgs doublet which does not
couple directly to Standard Model particles (an “inert doublet”), there turns
out to be a stable spin-0 state which then would be the dark matter particle
(see [144], and references therein).

7.10 Non-WIMP Models

WIMPs are arguably the leading candidates for Dark Matter, due to lack of
fine-tuning to get correct relic density. In most models, the annihilation cross
section which sets the relic density also implies observable rates in various
DM detection experiments.

A word of caution is in place here, however. There are many non-WIMP
models that also have good particle physics motivation, and may be de-
tectable, like: axions, gravitinos, superWIMPS, non-thermal dark matter, de-
caying dark matter, sterile Neutrinos, Q-balls. . . The literature is extensive,
but a good summary of both WIMP and non-WIMP models has recently ap-
peared, namely, 700-page book giving details of most dark matterscenarios
[145].

7.11 The Axion

Another, rather different candidate [146] for dark matter is provided by the
axion, a hypothetical light boson which was introduced for theoretical reasons
to explain the absence of CP violation in the strong interactions (as far as we
know, CP violations only take place in the weak interactions). It turns out
that for a mass range between 10−6 and 10−3 eV, the axion could give a sizable
contribution to ΩM . It couples very weakly to ordinary matter, but it may
be converted into a photon in a cavity containing a strong magnetic field (the
basic coupling is to two photons, but here the magnetic field takes the role of
one photon). Experiments in the USA and Japan are currently probing parts
of the interesting mass region. A section about the axion should always be
inserted when describing dark matter candidates, since the axion does, as does
the lightest supersymmetric particle, have a good particle physics motivation
for its existence.
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8 Dark Matter Detection: Status

As we have mentioned, there are basically three different, and complementary
methods for detecting WIMPs. First, the dark matter particle may be directly
produced at accelerators, in particular at the LHC, which today is the only
high-energy accelerator running (although data from Fermilab’s Tevatron col-
lider will still be analyzed and may give surprises in the coming year or so). Of
course, it is not clear that the particle will be kinematically allowed, and even
if it is produced, one will not know that the lifetime is of the required cosmo-
logical order of magnitude. Anyway, detecting a candidate and determining
its mass would be a great gain when combining with the other two search
methods of dark matter, namely direct and indirect detection. In particular,
direct detection experiments have seen an impressive gain of sensitivity during
the last few years. The idea is to register rare events giving a combination of
scintillation, ionization and nuclear recoil signals in chunks of matter shielded
from cosmic rays in underground sites.

In indirect detection, one rather registers products of dark matter anni-
hilation from regions in the surrounding universe with a high dark matter
density like the galactic centre, dwarf spheroidal galaxies, or the interior of
the Earth or the Sun. An interesting feature of indirect detection is that the
expression for the local annihilation rate of a pair of DM particles χ (here as-
sumed, like in supersymmetry, to be self-charge-conjugate, of relative velocity
vrel

Γann ∝ n2
χσann(vrel)vrel (145)

is the dependence on the square of the number density. Also, the cross section
may depend in non-trivial ways on the relative velocity. In particular, for
low velocities the rate may be much higher than at high velocity, for models
containing an attractive force between the annihilating particles. This is in
particular true for models with so-called Sommerfeld enhancement [90], a
resonant enhancement by in some cases orders of magnitude. This means that
dwarf galaxies (dark matter subhalos) may be particularly interesting objects
to study, as they are completely dark matter dominated with low rate of
cosmic ray-induced γ-rays, and their low mass means a relatively low velocity
dispersion, meaning higher possible rates if Sommerfeld enhancement is active.

So far, indirect methods have not been as competitive as direct detection,
but recently the FERMI collaboration has started to probe the interesting
WIMP region by stacking data from several dwarf galaxies [147].

For non-WIMP dark matter, like sterile neutrinos (warm DM), the produc-
tion rate in the early universe generally has to be tuned to give the observed
relic density, but phenomenologically warm DM is possible, and according to
some analyses even preferred in cosmological data [148]. However, the signifi-
cance is weak and may be influenced by statistical bias [149]. Ordinary, active
neutrinos have too small mass to contribute significantly to the dark matter
density, although in the extreme case may contribute a couple of percent to
the critical density today.
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A very interesting effect for direct detection of dark matter WIMPs in
terrestrial detectors comes about due to the motion of the solar system in the
Galaxy [59]. This circular speed is around 200 km/s, and the direction of the
“wind” of dark matter particles varies in between seasons. This is due to the
detector following the Earth’s motion around the Sun and sometimes (actually
around June 2) having “headwind” of WIMPs and sometimes (December 2)
“tailwind”. As the cross section between a WIMP and the detector target
depends strongly on their relative velocity, this causes a few percent annual
modulation of the detection rate, something that is a very distinct signature.
The DAMA/LIBRA experiment in the Gran Sasso tunnel [61] has in fact
seen an annual modulation, which has a statistical significance of more than 8
standard deviations. However, since no other experiment has found the same
effect (see Table 1), the effect can still not be taken as an established detection
of dark matter. There have been attempts to interpreted the DAMA signal as
possibly being due to a neutralino of the MSSM [150, 151]. It seems premature,
however, to draw strong conclusions from this experiment alone. Besides some
cloudy experimental issues, the implied scattering rate seems somewhat too
high for the MSSM or any other canonical WIMP, given the strong Higgs
mass bounds from LEP and LHC unless one stretches the astrophysical and
nuclear physics quantities. Also, it is disturbing that neither XENON100 nor
CDMS-II see an effect despite their nominally higher sensitivity. Clearly, even
more sensitive experiments, preferably also using NaI, seem to be needed to
settle this issue. An interesting idea, DM-Ice [152], uses the IceCube site to
deploy crystals of NaI with ice as a very calm surrounding medium. If an
annual modulation could be measured also there one could check whether it
has the same phase as that of DAMA, or if it rather follows the seasons (which
are opposite on the southern hemisphere).

There have recently been a number of claimed possible detections of dark
matter, see Table 1. Of the items in Table 1, it seems that only the positron
excess at high energy (20 GeV - 1 TeV) and the γ-ray excess towards the
galactic center, inferred by an analysis of FERMI public data [160], can be
due to dark matter annihilation without tension from other data. However,
they may both perhaps more naturally be explained by ordinary astrophysical
processes. In addition, the DM explanation of the PAMELA and FERMI data
as we have seen needs a leptophilic particle of TeV-scale mass and a very much
boosted cross section. Although this may perhaps be obtained, stretching all
uncertainties involved [165], and employing Sommerfeld enhancement [76], the
remaining window seems quite tight.

The DAMA/LIBRA annual modulation is a statistically very strong signal
(significance of the order of 8σ), however the lack of supporting data from
other experiments is disturbing. The annual modulation hinted at by CoGeNT
[140] is statistically much weaker, and the purported excess unmodulated
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Table 1. Some of the recent experimental claims for possible dark matter detection,
and a comment on the present status.

Experiment Status of claim

DAMA/LIBRA annual modulation
[61]

Unexplained at the moment; not
confirmed by other experiments
[153, 58]

CoGeNT excess events and annual
modulation [140]

Tension with other data [153, 58]

EGRET excess of GeV photons
[154, 155]

Due to instrument error (?) – not
confirmed by FERMI [156]

INTEGRAL 511 keV γ-line from
galactic centre region [157]

Does not seem to have spherical
symmetry – shows an asymmetry
which follows the disk (?) [158]

PAMELA: Anomalous ratio of cos-
mic ray positrons/electrons [65]

May be due to DM [159], or pulsars
[70] – energy signature not unique
for DM

FERMI positrons + electrons [66] May be due to DM [159], or pulsars
[70] – energy signature not unique
for DM

FERMI γ-ray excess towards galac-
tic centre [160]

Unexplained at the moment – astro-
physical explanations possible [161,
162], no statement from the FERMI
collaboration

WMAP radio “haze” [163] Has a correspondence in “FERMI
bubbles” [164] – probably caused by
outflow from the galactic center

signal may in fact be incompatible with the level of modulated reported.
Also, it seems that the DAMA/LIBRA and GoGeNT signals, if interpreted
as being due to dark matter, may be in tension with each other, even if one
uses freedom in isospin violation, inelastic scattering, and non-standard halo
properties [166]. At the moment this is one of the unsolved, frequently debated
issues in the dark matter community.

The recent improvement of the upper limits on the WIMP-nucleon scat-
tering cross section reported by CDMS II [153] and, in particular, XENON100
[58] are truly impressive. Not only does it cast some doubt on other reported
experimental results, the sensitivity is also good enough to start probing the
parameter space of supersymmetric models [2]. The new calibration of the
sensitivity to low-energy recoils of Xenon adds to the credibility of the new
limits. The very good news is also that the installation of the next stage, a 1
ton liquid Xenon detector, has already started in the Gran Sasso experimental
halls in Italy.

Of course, a much more decisive claim of detection of dark matter would
result if any of the other methods, like a suitable new particle candidate being
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detected at the LHC, or a signature in gamma-rays from the Galactic dark
matter halo would be discovered.

In the first runs at LHC, no signs of a Higgs particle, nor supersymmetry
or any other of the prime candidates for dark matter, have been discovered.
On the other hand, the mass region 115 - 130 GeV, interesting for the lightest
Higgs boson in the simplest versions of supersymmetry, was yet to be inves-
tigated, and in fact a weak indication around 125 GeV seem to have been
found.

One possible scenario might be that such a Higgs particle is indeed found,
but the particles carrying non-trivial R-parity all have masses beyond reach
with the LHC. This is not impossible, depending on the amount of fine-tuning
one is willing to tolerate. In fact, if one puts no prior constraints on the
supersymmetric parameter space other than one should have the WMAP-
measured relic density, and fulfill all other experimental constraints (cf. [121]),
a mass for the lightest supersymmetric neutralino in the TeV region is generic.
For such heavy dark matter neutralinos, the rate for direct detection will also
be small, and it would seem impossible to test such a scenario. However, for
this particular case indirect detection through gamma rays turns out to have
an interesting advantage, as the new imaging air Cherenkov arrays like CTA
will have their peak sensitivity in the energy range between a few hundred
GeV to a few TeV [122].

Depending on the particular model realized in nature, Sommerfeld en-
hancement of indirect detection may also be operative. However, these large
arrays will be served by a large astrophysical community which will be very
much interested in transient or periodic events, meaning that a “boring”
search for a stationary dark matter spectral signature during hundreds or
even thousands of hours seem out of the question. One may therefore consider
a dedicated particle physics experiment, the “Dark Matter Array”, DMA [167]
only used for dark matter search. This would have great, and complementary,
potential to the large direct detection experiments that are presently being
planned. In fact, we mentioned, and you heard at the lectures by F. Aharonian,
that there are ideas [103] on how to decrease the lower threshold for detection,
something that could increase the sensitivity for DM detection considerably
(see Fig. 6.2). If a working prototype of this type could be built, this idea may
materialize in the next decade as a new way to search for phenomena beyond
the Standard Model – with an expensive dedicated detector, still far below
the cost of a new high-energy accelerator.

Of course, LHC data has already started to exclude some regions of super-
symmetric parameter space, although not very much. This may be surprising,
but is in fact due to the relative independence of the squark and gluino sector
of supersymmetry, and the neutralino sector, which hosts the dark matter can-
didate. In fact, as mentioned, there are so-called split supersymmetry models,
which have this dichotomy explicitly postulated [42].
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The complementarity of direct and indirect detection is shown in Fig. 8,
where also the effects on the parameter space caused by the XENON100
bounds and LHC 2011 bounds, respectively, are shown.
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Fig. 9. Scan of the MSSM parameter space showing the direct detection cross section
vs. indirect detection through gamma rays. The uppermost points are excluded by
XENON100, and points which survive also the LHC 2011 data are shown in black.

9 A Detailed Calculation: The Saas-Fee WIMP

An interesting question came up during the Saas-Fee Workshop: Could there
be a cosmological contribution to the γ-ray spectrum making up the deficit
in the diffuse γ-ray emission measured by FERMI? As we heard, this is not
readily explained by adding the well-known sources like AGNs, millisecond
pulsars and star-forming galaxies described by C. Dermer.
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Here we will outline the simple steps in making the dark matter prediction
for this flux, based on [168] (see [169] for a much more thorough treatment).
We will see how that could lead us to predict a several hundred GeV dark mat-
ter particle - the Saas-Fee particle as we named it at the Saas-Fee school it in
2010. This was only published in online slides from my talk (it is probably still
there on the homepage of the school), and should not be taken too seriously.
However, as a pedagogical example of a surprising effect of the accumulated
dark matter structure in the universe it is quite instructive.

As we have seem, in the presently most successful model for structure
formation, ΛCDM, most of the matter is in the form of non-relativistic cold
dark matter (CDM), but with a contribution to the present-day energy den-
sity also from a cosmological constant (Λ). As shown by detailed N -body
simulations (see, e.g., [62, 63] and references therein), in such a picture large
structures form by the successive merging of small substructures, with smaller
objects generally being denser. N -body simulations also show that the dark
matter density profile in clusters of galaxies and in single galaxies develops an
enhancement of the density near the centre, although it is at present unclear
how steep this increase is, and whether it even shows a cusp near the center like
in the popular parametrization of Navarro, Frenk and White, ρCDM (r) ∼ r−α

with α close to 1 [98] (a very similar profile, the Einasto profile, does not show
a singularity, but behaves rather similarly on moderate length scales).

At present, it is not clear whether these N -body predictions are in agree-
ment or not with all available data (one recently acknowledged problem is, for
example, the apparent lack of a halo mass threshold for dwarf galaxies [170]).
On large scales, however, the ΛCDM scenario gives excellent agreement with
observations. On smaller scales, the dynamical range of the simulations is
not enough, and one of the main puzzles is how to properly include the non-
linearities induced by baryonic matter in the form of supernova explosions
and other feedback mechanisms.

Let us assume that the ΛCDM picture is basically correct and that struc-
ture forms hierarchically, with the number density of halos of mass M being
distributed as dN/dM ∝ M−β with β ∼ 1.9 – 2, as predicted by Press-
Schechter theory and also verified in N -body simulations. Furthermore, the
concentration of halos grows in these simulations with decreasing mass.

It is interesting that the averaging involved in computing the integrated
signal of annihilation γ-rays of unresolved cosmological dark matter gives
results which are more robust to changes in the details of how the dark matter
is distributed on small scales. (The same is actually also true for all sources
which are completely encompassed by the angular resolution cone of a given γ-
ray experiment, for the obvious source of the galactic centre, the prediction of
fluxes differ by up to 4 orders of magnitude for different models: in particular
they are very sensitive to the presence or not by a central cusp.)

Let us consider annihilation of a WIMP such as the lightest neutralino χ of
the MSSM, as a template. The mass range is from around 20 GeV up to several
TeV [2]. For the sake of pedagogy, let us start with the unrealistic case of all
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the dark matter is smoothly distributed with the density distribution being
just a number, the average density, at all redshifts. The idea is that since the
dark matter was more dense in the early universe, one may get a large (red-
shifted) flux by integrating over the line of sight from 0 to very high redshifts.
Actually, in papers preceding [168] this was the only effect considered. We will
soon modify the results by introducing the effects of structure, which indeed
increases the flux by many orders of magnitude.

9.1 The Flux in a Smooth Universe

The comoving number density nc of WIMPS, after decoupling from chemical
equilibrium (“freeze-out”) at very large temperatures (T ∼ mχ/20) is depleted
only slightly due to self-annihilations, governed by the Boltzmann equation

ṅc = −〈σv〉(1 + z)3n2
c , (146)

where 〈σv〉 is the thermal- and angular-averaged annihilation rate, which, to
an excellent approximation after freeze-out, is velocity independent, since the
neutralinos move non-relativistically, and there always in a dominant S-wave
component (at least for our supersymmetric WIMP templates).

Each pair of χ particles that disappears through annihilation give rise to
Nγ photons on the average, with an energy distribution in the rest frame of
the annihilation pair,

dNγ(E)

dE
=

dNcont

dE
(E) + bγγδ (mχ − E) . (147)

Here the first term gives the average continuum gamma ray distribution per
annihilating χ and we have also added a term for the possible γγ line contri-
bution, with bγγ being the branching ratio into γγ (one could also have a Zγ
channel).

A γ-ray observed today, at redshift z = 0, of energy E0 would correspond
to an energy at the emission at redshift z of E = (1+z)E0. We can now track,
using the Boltzmann equation, the number of WIMPs that have disappeared
from redshift z until now, and fold in the energy distribution (147). Thus we
we get a first estimate of the level of the diffuse extragalactic γ-ray flux. As
usual, H0 is the Hubble parameter, and we use the relation between time and
redshift (see, e.g., [1]) d/dt = −H0(1 + z)h(z)d/dz with

h(z) =
√
ΩM (1 + z)3 +ΩK(1 + z)2 +ΩΛ ∼

√
ΩM (1 + z)3 +ΩΛ. (148)

Here ΩM , ΩΛ and ΩK = 1−ΩM −ΩΛ are the present fractions of the critical
density given by matter, vacuum energy and curvature. We can here use the
result from the first section that the universe to an excellent approximation
is flat, ΩK = 0. We then obtain

dnc(z)

dz
=

〈σv〉
H0

(
(1 + z)2

h(z)

)
nc(z)

2. (149)
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The differential energy spectrum of the number density nγ of photons
generated by WIMP annihilations is then given by

dnγ

dz
= Nγ

dnc

dz
=

∫ mχ

0

dNγ(E)

dE

dnc

dz
dE. (150)

Here, dnc/dz can be computed directly from (149) to excellent accuracy, re-
placing the exact solution nc(z) by the present average number density of
neutralinos n0 on the right hand side. This we can do since the comoving
number density does not change appreciably after freeze-out.

Neglecting the baryon contribution (as we will see, factors of order unity
will not make a difference here, due to much larger uncertainties in structure
formation), Ωχ ∼ ΩM , we obtain

n0 = ρχ/mχ = ρcΩM/mχ. (151)

Here ρc = 1.06 · 10−5 h2 GeV/cm
3
and h as before is the scaled Hubble

parameter in units of 100 km s−1 Mpc−1, h ∼ 0.7. There are a few more
effects we have to include. We have to use the fact that all photons move with
velocity c and that the average flux is isotropic from each volume element
where annihilation takes place, giving a factor 1/4π per steradian. The cross
section times velocity average should, for Majorana particles, also be divided
by 2, something which was missing in the original derivation [168], but added
in [169] (see the published version). Some of the photons will be absorbed after
travelling over cosmological distances. This can to the level of our approximate
calculation be handled by introducing a simple energy- and redshift-dependent
factor e−z/zmax (or the more detailed calculation in [169] a more complicated
factor depending on z and E0).

The resulting γ-ray flux at the detector is then given by:

φγ =
c

8π

dnγ

dE0
= 4.2 · 10−14 cm−2s−1sr−1GeV−1 ×

Γ26Ω
2
Mh3

m2
100

∫ zup

0

dz
(1 + z)3e−z/zmax

h(z)

dNγ(E0(1 + z))

dE
. (152)

where we defined Γ26 = 〈σv〉/(10−26 cm3s−1) and m100 the mass in units of
100 GeV.

For the energies we are interested in, 1 GeV < E0 < 500 GeV, it is the
starlight and (more poorly known) infrared background radiation which is
most important, whereas the CMBR may be important for higher energies.
An optical depth of order unity is reached for a redshift which in [169] was
approximated by zoldmax(E0) ∼ 3.3(E0/10 GeV)−0.8, which represented older
results. However, the newer data discussed at length in the lectures by C.
Dermer, indicate much less absorption. As a representative of the more recent
evaluation of this absorption [171], we take instead the simple approximation
znewmax(E0) ∼ 2.3(E0/50 GeV)−1.1.
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The exponential form is a good approximation for small values of zmax as
is dominant in most of the cases we study here. The upper limit of integra-
tion is given by kinematics, zup = mχ/E0 − 1, as the maximum rest frame
energy of a photon in an annihilation event is E = mχ. The gamma line
contribution to (152) is particularly simple, just picking out the integrand at
z + 1 = mχ/E0; it has the very distinctive and potentially observable signa-
ture of being asymmetrically smeared to lower energies (due to the redshift)
and of suddenly dropping just above mχ. Unfortunately, for most models the
branching ratio for this channel is too small to be measurable with present-
day energy resolution, and we will drop it from now on. (This may however
change when the high-resolution instrument GAMMA-400 [88] is operational
towards the end of this decade. This is specified to have an energy resolution
of 1%, which will be a perfect instrument for searching for γ lines from annihi-
lation, and also from models where dark matter decays radiatively [172].) The
continuum emission will produce a characteristic, although less conspicuous
feature, a smooth “bump” below around one tenth of the neutralino mass,
and may be more difficult to detect. One should notice that there are par-
ticular models where radiative corrections (“internal bremsstrahlung”) may
give a significantly harder spectrum near Eγ = mχ, facilitating discrimination
against most backgrounds [126].

9.2 Including Effects of Cosmic Structure

To give an example of the results (which in [168] contained both obsolete SUSY
models and not very accurate data from the old EGRET experiment), we
take a generic model with mass 600 GeV, and the canonical WIMP averaged
cross section times velocity of 〈σc〉 = 3 · 10−26 cm3s−1, in the “concordance”
cosmology ΩM = 0.3, ΩΛ = 0.7, h = 0.7. The continuous γ-ray rest frame
energy distribution per annihilating particle comes mainly from hadronization
and decay of π0s and is conveniently parametrized to reasonable accuracy as
(see (131))

dNcont(E)/dE = (0.42/mχ)e
−8x/(x1.5 + 0.00014)

where x = E/mχ. This is valid for most quark jet final states, except for
top. Also, τ lepton decays give a somewhat harder γ-ray spectrum, and as
mentioned internal bremsstrahlung may be important for certain types of
models.

The most difficult, but also most important and interesting part of the
calculation is to include the effects of structure formation. Following [168], we
consider first a halo of mass M whose radial density profile can be described
by ρDM (r) = ρ′DMf (r/a), with ρ′DM being a characteristic density and a a
length scale. These are found in N -body simulations not to be independent
parameters, as smaller halos are generally associated with higher densities.

As a simple first model for structure formation, assume that the halo
of mass M accreted from a spherical volume of radius RM , determined by
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requiring that the average cosmological density times that volume is equal to
M , ρ0 ·4πR3

M/3 = M (with ρ0 ∼ 1.3 ·10−6 GeV/cm
3
). The increase of average

squared overdensity per halo, which is what enters the annihilation rate, is
given by:

∆2 ≡ 〈
(
ρDM

ρ0

)2

〉r<RM
=

(
ρ′DM

ρ0

)
I2
I1

, (153)

where In ≡
∫ RM/a

0
y2dy(f(y))n. Here the dependence on the limits of integra-

tion is rather weak, at least for profiles less cuspy than the NFW profile.
Computing I2/I1 numerically, and using values of ρ′DM/ρ0 as determined

for Milky Way size halos we find values of ∆2 of 1.5 · 104 for the Navarro-
Frenk-White (NFW) profile[98], and 7 · 103 for a cored, modified isothermal
profile (modified so that the density falls as 1/r3 at large radii). The flux ratio,
2 : 1 for these two models should be compared with the ratios roughly 100 : 1
obtained within a few-degree cone encompassing the galactic center, showing
the announced relative insensitivity to halo density profiles.

We should now also take into account that the number density of halos is
scaling like ∼ 1/M1.9, and that small-mass halos are denser. We can resort
to the highest-resolution N -body simulations available to date [173] . Fitting
the concentration parameter of halos by

c ∼ 100 (Mvir/h
−1M⊙)

−0.08, (154)

one finds to a good approximation

∆2 ∼ 2 · 105M−0.2
12 , (155)

where M12 is the halo mass in units of 1012 solar masses. This means that
the total flux from a halo of mass M scales as M0.8. Since the number density
of halos goes as M−2, the fraction of flux coming from halos of mass M scales
as M−1.2. Thus the γ-ray flux will dominantly come from the smallest CDM
halos. In simulations, substructure has been found on all scales (being limited
only by numerical resolution). For very small dark matter clumps, however, no
gain in overdensity is expected, since once the matter power spectrum enters
the k−4 region a constant density is expected. There are arguments [174] that
structure is present in cold dark matter models all the way down to 10−6

or smaller [175]. We conservatively set 1M⊙ as the minimal scale. In a more
detailed treatment, one should also include effects of clumps within clumps,
which increase the enhancement. However, destruction of DM clumps near
large central densities of halos should also be included.

Finally, regarding redshift dependencies, we assumed in [168] a constant
enhancement factor ∆2 out to z ∼ 1, and somewhat arbitrarily imposed
quadratic growth in the enhancement factor from z ∼ 10 to the fully de-
veloped epoch z = 1. (The computed flux is not very sensitive to this assump-
tion.) Furthermore, in (152) we make the replacement (1+ z)3 → 1, reflecting
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the fact that the we are now dealing with a clumped, rather than a smooth
distribution with density scaling ∼ (1 + z)3.

We thus arrive at the following expression for the flux including structure
formation

φγ =
c

8π

dnγ

dE0
= 4.2 · 10−14 cm−2s−1sr−1GeV−1 ×

Γ26Ω
2
Mh3

m2
100

∫ zup

0

dz
∆2(z)e−z/zmax

h(z)

dNγ(E0(1 + z))

dE
. (156)

9.3 The Saas-Fee WIMP

We find using (156) (see also [176]) that the flux from small halo structure
is enhanced by roughly a factor (4 − 10) · 107 compared to the smooth case,
giving in the upper range observability for the annihilation parameters as used
above. The uncertainties reside mainly in the still poorly known factor ∆2(z)
and its extrapolation to small halo masses (and also the effects of DM clumps
within clumps, for instance).

In Fig. 10, we show the results for this 600 GeV WIMP model. The results
are compared with the measurements from FERMI-LAT [156], and despite
the fact that there is this uncertainty in the absolute rates, it is amusing, as I
discussed at the Saas-Fee school, that the possible break in the FERMI data
may be caused by a new contribution from 500-600 GeV mass annihilating
dark matter (“The Saas-Fee WIMP”, of which there would be one per 2 litres
in the lecture hall at Les Diablerets as in all other places on Earth) setting
in. It will obviously be interesting to follow the development of this data set
during the next few years, to see if this models survives or even becomes more
convincing.

It has of course to be remembered that the strength of the annihilation sig-
nal can be much lower than the proof-of-existence example chosen for Fig. 10
in which case a detection would be correspondingly more difficult. On the
other hand, there may be particle physics effects (such as Sommerfeld en-
hancement) which could give a higher flux.

As a recent illustration of the importance of adding up all structure
present, e.g., in galaxy clusters, can be mentioned the results of [177] and
[178], where it was shown that by choosing particularly favourable, not too
distant clusters, one is very close to the current observational limits from
FERMI-LAT. Indeed, there may even be (weak) indications from FERMI
data of a signal [179].

A related type of analysis for the diffuse extragalactic case is performed in
a similar way as when analyzing the angular fluctuations in the CMB. Also
using this method of analysis, the conclusion is that with FERMI-LAT data
one may be very near detection [180].
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Fig. 10. The predicted diffuse extragalactic γ-ray flux computed using the methods
described in the text, for a 600 GeV WIMP with a cross section compatible with
the WMAP-inferred relic density and with different assumptions for the effects of
structure. The diffuse extragalactic data was measured by FERMI-LAT [156].

10 Primordial Black Holes as Dark Matter?

Sometimes one gets the question from lay persons, when telling that we are
interested in the problem of dark matter: Could it be black holes? Black holes
are in some sense dark: they do not emit light from within the event horizon,
so the question is not completely out of context. However, the only black holes
which we are relatively certain to exist are those around 2− 20 solar masses,
and the supermassive ones like the one residing at the Galactic center (of mass
a few times 106 M⊙). We also know of even more massive ones (mass up to
a few times 109 M⊙) making up active galactic nuclei (AGNs). However, the
galactic halos in which even the most massive, “supermassive”, black holes
reside have a factor of at least 1000 more total mass.Thus their influence
on the cosmic energy balance is rather marginal. Also the solar mass type
black holes which are produced as end results of stellar evolution constitute
a small fraction, by far too small to explain the abundant and omnipresent
dark matter. Finally, most black holes are in practice not very dark, as their
concentrated mass has an effect on surrounding matter, causing various types
of radiation processes, as ordinary matter is “eaten” by the black hole.

However, very massive black holes may be important for dark matter de-
tection: if left undisturbed for a long time, they may adiabatically attract
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surrounding dark matter, changing the NFW-type distribution to a much
more spiky cusp [181]. As the annihilation rate grows with the square of the
dark matter density, this could give a dramatically increased rate of γ-rays,
and in particular neutrinos (which are unlikely to be absorbed by surrounding
matter). More extreme versions of this scenario are in fact ruled out already,
due to the lack of unambiguous dark matter signals from the galactic centre.
An interesting possibility is that intermediate mass black holes exist, where
this type of signal could be close to detection, e.g., with FERMI-LAT [182].

10.1 Primordial Black Holes

There is also a small, be definite probability that small mass black holes would
have been formed in the early universe. These “primordial” black holes would
have to have been formed with a rather peculiar mass spectrum not to over-
close the universe, and not to create too much radiation due to the interesting
spontaneous emission of Hawking radiation, named after its discoverer (in
theory).

Let us first remind ourselves of the metric surrounding a point mass M ,

ds2 =
(
1− rS

r

)
dt2 − 1

1− rS
r

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (157)

where rS is the Schwarzschild radius, rS = 2GM (hereG is Newton’s constant,
and as usual we set c = 1). A radial photon trajectory is this metric is given
by ds2 = 0, which gives

dt =
dr

1− rS
r

, (158)

for θ = φ = const. The time for the photon to travel from ri to rf is thus

tf − ti =

∫ rf

ri

dr

1− rS
r

. (159)

This diverges as rS → rf , so that a light ray which starts at r < rS will never
reach an outside observer, we have a black hole! If we define the sphere at
r = rS as the areas ABH of the black hole, we find

ABH = 4πr2S = 4π(2GM)2 = 16πG2M2. (160)

It is interesting to contrast this with the behaviour of a solid sphere in classical
physics, where M ∼ R3 which gives R ∼ M

1
3 , so that Aclass ∼ M

2
3 . This

difference is due to the strong curvature of space-time near the black hole.
As we noted, known black hole candidates either have a mass of a few

solar masses (probably remnants of stellar collapse, as the maximal mass of
a neutron star is somewhere between 1.4 solar masses the Chandrasekhar
mass - and a few solar masses), or a few million solar masses (Milky Way
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centre) to billions of solar masses (AGNs). There is no known present for-
mation mechanism for BHs of mass less than a solar mass, so these, if they
exist, must be primordial (PBHs), i.e. produced in the early universe, e.g. at
some phase transition after inflation. There are various limits restricting for-
mation scenarios, in general one has to “cook up” a power spectrum of density
fluctuations which peaks at a particular mass length scale. When the horizon
passes that scale, copious production of BHs may occur in such a scenario.
An example can be found in a recent paper [183] where one tries to explain
all of dark matter with PBHs, by having a power spectrum with a huge peak
(δρ/ρ ∼ 0.1) at a scale corresponding to a black hole mass of 10−7M⊙.

10.2 Hawking Radiation

If PBHs exist, one may detect them through Hawking radiation, as Hawking
discovered in a remarkable 1975 paper [184] that a black hole should emit
thermal radiation. This can be explained as a tunneling phenomenon [185].

Let us make an extremely simplified heuristic version of the derivation.
Let us say that we have an isolated black hole. We can then for certain say
that it is inside the Schwarzschild radius rS . This uncertainty in the position
of the radiation gives an uncertainty of the time ∆t ∼ rS/c = 2GM/c, but
the uncertainty relation between time and energy, ∆E∆t ∼ ~/2 gives

∆E ∼ ~c3

4GM
∼ Eth = kBT → kBT ∼ ~c3

4GM
=

1

4GM
. (161)

Thus, in our units, where also kB = 1, the temperature T = 1/(4GM). This
is only a factor of 2π different from Hawking’s result:

TH =
1

8πGM
. (162)

Of course, Hawking’s derivation is much more beautiful, by explaining the
radiation by mixing of positive and negative energy states due to the strong
space-time curvature near the black hole. Another way to understand the
process is that for a virtual particle pair created just at the horizon, one of
the particles will be dragged into the black hole, releasing gravitational binding
energy to the other particle, which can then appear as a real propagating state
outside the horizon.

An interesting consequence of Hawking radiation and the equivalence prin-
ciple is a uniformly accelerated observer, with acceleration a, in empty space
should see a thermal distribution of particles - the Unruh effect. The Unruh
temperature is T = a/2π. Attempts have been made to measure the Unruh
effect at accelerators, but present-day accelerations are not large enough. It
has been argued, however, that the so-called Sokolov-Ternov effect (depolar-
ization of electrons in a storage ring due to synchrotron radiation) really has
the same origin as the Unruh effect - and it has been experimentally verified
[186].
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10.3 Thermodynamics of Black Holes

If we regard the Hawking temperature as a true thermodynamical temper-
ature T (M) = T (E), there should also be an entropy (Bekenstein entropy)
associated with the BH:

T (E) =
1

8πGE
; dS =

dE

T (E)
→ S =

∫ M

0

8πGEdE = 4πGM2 =
1

4

ABH

G
.

(163)
If we remember that G = 1/M2

Pl = l2Pl, we see that each “Planck area”
of the surface of the BH contributes one quarter unit of entropy, and one
gets huge numbers. This is still mysterious what are the degrees of freedom
describing the black hole, and why does ordinary matter that forms a BH
suddenly increase its entropy enormously?

T describe black hole evaporation, it is useful to remember the form of a
thermal distribution for a particle species

fi(p) =
1

e
Ei−µi
kBT ± 1

=
1

e
Ei−µi

T ± 1
. (164)

This means that for the rate of mass loss we can analogously write [187]

dM

dt
= −

∑

j

1

2π

∫ ∞

mj

Γj
EdE

e8πGME ± 1
= . . . = −5 · 1025f(M)M−2 gs−1.

(165)
Here Γi is the absorption rate for particle of type j and the sum is over all
particle-antiparticle pairs. This gives the evaporation time

τevap ∼
∫ Mmax

Mmin

M2

f(M)
dM ∼ 6 · 10−27

f(Mi)

(
Mi

1 g

)3

s. (166)

Thus, only BHs with mass > 1015 g are stable on cosmological time scales
(so dont worry about BHs produced at LHC they would evaporate imme-
diately - if they exist!) Upper limits of γ-ray emission from EGRET and
FERMI-LAT gives the approximate bound for light pBHs:

ΩPBH(M < 1015 g) < 10−8. (167)

Actually, since the temperature increases with decreasing mass, all parti-
cles, even more massive than those presently produced at accelerators, may
give a contribution in the final “Hawking explosion”. In particular, if super-
symmetry is realized in nature, the end-time evolution may have interesting
differences from the scenario with only Standard Model particles [188].

Let us discuss how primordial black holes formed in the early universe (see
[189]). The relevant length scale is the particle horizon length, so that
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M = γM(particle horizon) = 2 · 105γ
(

t

1 s

)
M⊙, (168)

where γ ∼ 0.2 depends on the detailed formation scenario. We can now com-
pute the fraction of total energy density in black holes at formation:

β(M) ≡ ρPBH(ti)

ρ(ti)
= 8 · 10−29 1√

γ

( gi
106.75

) 1
4

(
M

M⊙

) 3
2
(
nPBH(t0)

1 Gpc−3

)
. (169)

This means a contribution to Ω today of

ΩPBH =
MnPBH(t0)

ρc
=

(
β(M)

1.2 · 10−8

)√
γ
( gi
106.75

)− 1
4

(
M

M⊙

)− 1
2

. (170)

The WMAP bound (the PBHs would behave gravitationally as cold dark
matter) Ω < 0.25, gives

β(M) < 2 · 10−18 1√
γ

( gi
106.75

) 1
4

(
M

1015 g

) 1
2

. (171)

(This is valid for BHs that have not evaporated today, i.e., for M > 1015 g.)
It is convenient to divide out the cosmology/formation factors and consider
the simpler expression for the energy density limit from WMAP:

β′(M) <
√
γ
( gi
106.75

)− 1
4

β(M) = 2 · 10−18

(
M

1015 g

) 1
2

. (172)

Limits on β′(M) can be obtained from a variety of data, from BBN and
CMB in the early universe to the galactic and diffuse extragalactic γ-ray
emission, gravitational lensing data and large scale structure. The limits we
just computed on ΩPBH is also important in the region M ∼ 1015 − 1027 g
(for a detailed summary of the situation, see [189]).

To conclude: PBHs of mass less than around 1015 g cannot be the dark
matter due to important constraints from the absence of Hawking radiation
in 1 - 100 MeV γ-rays, but may still be a subdominant component. It is
worthwhile to look for γ-ray signatures - a discovery of Hawking radiation
would be truly wonderful!

At all masses, there are important bounds from a variety of methods. In
principle, there are mass ranges where PBHs can still be the dark matter -
all of dark matter, but one needs contrived production mechanisms such as a
strongly peaked, and fine-tuned, density power spectrum.

11 Gravitational Waves

We will now, in view of the multi-messenger aspects of this lecture series,
discuss one more type of radiation which is deeply linked to the theory of
general relativity on which modern cosmology rests: gravitational radiation.
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Due to the nonlinearity of Einstein’s equations, it is virtually impossible
to find exact solutions to the metric tensor gµν(r, t) corresponding to the
dynamics, for example, of a massive star which collapses to a black hole near
the strong gravitational field of the star (using supercomputers, numerical
studies can, however, be made). Far from the source of the gravitational field,
it is on the other hand reasonable to use a first-order approximation. The
gravitational deformation of space-time near celestial bodies like the Earth
or the Sun due to conceivable astrophysical processes happening elsewhere
in the Galaxy is indeed as we will see extremely tiny, which justifies such a
perturbative approach. The same smallness of the effect unfortunately also
make detection of gravitational radiation very challenging.

11.1 The Gauge Choice for Electromagnetism

Recall the way one derives the existence of electromagnetic waves in Maxwell’s
theory. One inserts the vector potential Aµ in the equations of motion for a
vanishing current jµ (since we are dealing with propagation in in vacuum) to
obtain

�Aµ − ∂µ (∂νA
ν) = 0 (173)

Through the use of the gauge freedom Aµ → Aµ + ∂µf , we can choose Aµ to
fulfill A0 = 0 and also the co-called Lorentz condition ∂νA

ν = 0. This leads
to the wave equation

�Aµ = 0 (174)

with solutions of the form

Aµ(r, t) = ǫµe±i(ωt−k·r) = ǫµe±ikµxµ (175)

where kµkµ = 0 (light-like propagation) and the gauge conditions A0 = 0 and
∂νA

ν = ∇ · A = 0 translate into ǫ0 = 0 and k · ǫ = 0. This means that the
two physical degrees of freedom are transverse to the direction of propagation,
and there is no time-like mode of propagation (this is deeply connected to the
masslessness of the photon).

11.2 Gauge Choice for the Metric Perturbation

In the case of gravity waves in Einstein’s theory of general relativity, we can
similarly make a first-order expansion of the dynamical degrees of freedom,
which are the components of the metric tensor field gµν , around the constant
Minkowski metric ηµν :

gµν = ηµν + hµν , (176)

and work to to first non-vanishing order in hµν .
Now we have a spin-2 field hµν instead of the vector quantity Aµ, but

again we can use a gauge-like invariance (which in this case rather is re-
parametrization invariance)
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xµ → xµ + ξµ(x) (177)

translating into
hµν → hµν − ∂µξν − ∂νξµ. (178)

Using this we may impose the so-called traceless gauge condition

hµ
µ = 0 (179)

The analogy of A0 = 0 is

h0ν = hν0 = 0, (180)

and of the transversality condition

∇ ·A = 0 (181)

is
∇ih

iν = ∇ih
νi = 0. (182)

The Einstein equation (neglecting back-reaction, i.e. the contribution to
the energy-momentum tensor by the gravitational field itself) becomes simply

�hµν = 0. (183)

11.3 Solutions to the Wave Equation

Exactly like for photons we can write for the wave solutions to Einstein’s
equation

hµν = Eµνe
±i(ωt−k·x) (184)

with k2 = ω2, i.e. massless propagation, with the speed of light. (There have
been brave attempts to replace Einstein’s gravity with a massive theory, with
the extra component having extremely small mass. This would lead to many
interesting differences, perhaps even explaining the small value of the cosmo-
logical constant. So far, there has not appeared any generally accepted way
to this this, however.)

We can represent Eµν by a 4×4 matrix, which, exactly like for Aµ, should
reflect the gauge choice. We know already that the E0ν row and Eµ0 columns
are zero. Also E has to be symmetric in the two indices (since the metric
is). Further, kiEiν = kjEµj = 0, meaning that also the elements of the E3ν

column and Eµ3 row are zero for a wave propagating in the z-direction. So, we
really just have zeros for our perturbative solution apart from a symmetric,
traceless 2× 2 matrix. A general such matrix is a linear combination of

E+
µν =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 (185)
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and

E×
µν =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 (186)

For a given value of the 3-component z, and at time t, we can then write

Eµν(t) = h+(t)E
+
µν + h×(t)E

×
µν . (187)

Look at the case
h+ 6= 0, h× = 0. (188)

At a given time, we have in the unperturbed case

∆s2 = ηµν∆xµ∆xν = (∆t)2 −
∑

i

(∆xi)2 = −
∑

i

(∆xi)2 (189)

For two diametrically opposed points on the unit circle,

∆xi = (2 cos θ, 2 sin θ, 0) (190)

and their distance is

d0 =
√
−ηij(∆xi)(∆xj) = 2

√
sin2 θ + cos θ2 = 2. (191)

In the perturbed case (i.e., if a gravity wave passes)

d+ =
√
−(ηij + h+E

+
ij)∆xi∆xj =

√
4− h+(t)4(cos2 θ − sin2 θ) ≃ (192)

2− h+(t)(cos
2θ − sin2 θ) = 2− h+(t) cos 2θ. (193)

For simplicity, we may work with real h by combining as usual the waves with
the two signs in the exponential, giving

h+
µν = E+

µνh+(t) = E+
µν cos (ωt− k · r) (194)

and we see that the unit circle will be successively compressed or squeezed
depending on the sign of the last factor (see Fig. 11.3, where the corresponding
deformation caused by h× is also shown).

These are the two independent quadrupole deformations of a circle. This
means that the source of the gravitational field giving gravity waves has to
have a quadrupole moment. From dimensional reasoning,

h ∼ GN Q̈

d
∼ 4GNEkin

d
, (195)

which is obtained by the crude estimate

Q ∼ Ml2 ⇒ Q̇ = M2ll̇ = 2Mlv ⇒ Q̈ ∼ 2Mv2 = 4Ekin. (196)
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(a) (b)
Fig. 11. (a) The deformation of the unit circle caused by gravity waves propor-
tional to the polarization amplitude h+. Shown are the unperturbed circle and the
maximally stretched configurations along the two axes of symmetry, the x and y
axes. (b) The corresponding pattern for the orthogonal polarization state described
by the amplitude h×. Note that the axes along which stretching and compression
occur form 45-degree angles to the x and y axes.

For objects in the Milky Way, typically d ∼ 10 kpc, and with Ekin ∼ M⊙ we
find

h ∼ 10−17. (197)

On the other hand, for the distance appropriate for the Virgo galaxy cluster,

h ∼ 10−20. (198)
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These extremely tiny deformations is the reason for the non-detection so
far of gravitational radiation, although the are promising objects like coa-
lescing neutron stars which should have amplitudes nearing the experimental
upper limits.

In a sense, gravity waves have already been indirectly detected, however, by
comparing the slowing-down of the rotation rate of the binary pulsar system
PSR 1913-16 by Hulse and Taylor (Nobel Prize 1993):

dP

dt
= (−2.4225± 0.0056) · 10−12, (199)

with the general relativistic calculation (with energy loss due to gravitational
radiation):

dPGR

dt
= −2.40 · 10−12. (200)

This excellent agreement has put severe limits on possible modifications of
Einstein gravity. But effects of gravity waves have so far never been detected
directly on Earth, despite an impressive increase in sensitivity of the LIGO
experiment in the US, and VIRGO in Italy. Actually by combining several
experiments and searching for time-coincident effects, one may both decrease
various noise sources and increase the sensitivity for a signal. This is presently
done by LIGO, VIRGO and GEO600 in Germany. All three detector are
presently being upgraded to more advanced versions. However, it may be that
a space experiment, LISA, will be needed to detect a significant signal. Its
status is, however, at present unclear due to the difficult financial situation in
most countries of the world.

We finally remind that there is also a possibility of detecting gravitational
waves that are relics of dramatic processes in the early universe, such as during
the epoch of inflation or during the formation of cosmic strings, if such exist.
In that case, the most promising method is through analyzing the imprints
they have made in the cosmic microwave background radiation (CMBR). As
gravitational waves carry a quadrupole moment it is possible to distinguish
their effects through studies of CMBR polarization. With the planned Planck
satellite there will be a possibility of searching for gravitational waves of very
long wavelength generated through these hypothetical processes. Results are
expected in early 2013.

12 Conclusions

This finishes our trip through the universe, looking at fundamental processes
of similar interest to particle physicists, cosmologists, astrophysicists and as-
troparticle physicists alike. As hopefully has becomes clear, by combining
information from all messengers that we have available: photons of all wave-
lengths, neutrinos, antimatter and perhaps gravitational waves, we may study



from the Earth some of the most energetic and interesting processes in the
universe. If we are lucky, we may even solve the problem of the nature of
the dark matter, which has been with us since the times of Fritz Zwicky. Let
us remind ourselves of his prophetic words from 1933 [8], after observing the
rapid movement of the galaxy members of the Coma cluster, which pointed
to an overdensity of matter in the cluster:

If this over-density is confirmed we would arrive at the astonishing con-

clusion that dark matter is present with a much greater density than luminous

matter. . .
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