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Playing with Marbles: Structural and
Thermodynamic Properties of Hard-Sphere
Systems

Andrés Santos

Abstract These lecture notes present an overview of equilibriunmssizdl mechan-

ics of classical fluids, with special applications to theistural and thermodynamic
properties of systems made of particles interacting viahttuel-sphere potential
or closely related model potentials. The exact statisticathanical properties of
one-dimensional systems, the issue of thermodynamicqfirsjstency among dif-
ferent routes in the context of several approximate thepaead the construction
of analytical or semi-analytical approximations for theistural properties are also
addressed.

1 Introduction

Hard-sphere systems represent a favorite playgroundftistgtal mechanics, both
in and out of equilibrium, as they represent the simplestetodf many-body sys-
tems of interacting particles][1].

Apart from their academic or pedagogical values, hard+sph®dels are also
important from a more practical point of view. In real fluidsspecially at high
temperatures and moderate and high densities, the stalietod thermodynamic
properties are mainly governed by the repulsive forces gmnuoolecules and in this
context hard-core fluids are very useful as reference sysf2n3].

Moreover, the use of the hard-sphere model in the realm d€soflensed matter
has become increasingly populal [4]. For instance, the@ffeinteraction among
(sterically stabilized) colloidal particles can be tunedratch almost perfectly the
hard-sphere model][5].

As a very imperfect measure of the impact of the hard-sphedeiron current
research, Fid._111 shows the number of papers per year patlia the ten-year
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Fig. 1.1 Number of papers 800
per year published in the ten-
year period 2003-2012 that r I I I
include the terms “hard” and
“sphere” as a topic (hollow
columns) or in the title (col-
ored columns).
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period 2003-2012 (according to Thomson Reuters’ Web of Hadge) that include
the words “hard’and“sphere” as a topic (that is, in the title, in the abstracta®a

keyword). It can be observed that the number is rather steMilfluctuating around
700 paperslyear. If one constrains the search criteriormpens including “hard”
and “sphere” in the title, about 100 papers/year are found.

Despite the title of this work and the preceding paragraiblesnain aim of these
lecture notes is neither restricted to hard-sphere fluiddotused on the “state of
the art” of the field. Instead, the notes attempt to presemtamduction to the equi-
librium statistical mechanics of liquids and non-idealegmsat a graduate-student
textbook level, with emphasis on the basics and fundanmeot#he topic. The treat-
ment uses classical (i.e., non-quantum) mechanics andewasprerequisites are
required, apart from standard statistical-mechanicamides. Most of the content
applies to any (short-range) interaction potential, amgetisionality, and (in gen-
eral) any number of components. On the other hand, somefispgmplications deal
with the properties of fluids made of particles interactireythe hard-sphere poten-
tial or related potentials. The approach is unavoidablgdiatoward those aspects
the author is more familiarized with. Thus, important tggsach as inhomogeneous
fluids and density functional theoryl[6] [7, [8,[9.] 10] 11], nsehle glassy states
[12,[13]14], and perturbation theori€s$[[2, 3] are not repméed in these notes.

Apart from a brief concluding remark, the remainder of thiesgure notes is
split into the following sections:

2. A Brief Survey of Thermodynamic Potentials

3. A Brief Survey of Equilibrium Statistical Ensembles

4. Reduced Distribution Functions

5. Thermodynamics from the Radial Distribution Function
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6. One-Dimensional Systems. Exact Solution for NearesggNmr Inter-

actions

7. Density Expansion of the Radial Distribution Function

8. Ornstein—Zernike Relation and Approximate Integral&mn Theories
9. Some Thermodynamic Consistency Relations in Approxeriaeories
10. Exact Solution of the Percus—Yevick Equation for Hard&ps . . . and
Beyond

The core of the notes is made of SeLt$14]5, 7[@nd 8. Thewsthrthe defini-
tion of the reduced distribution functions and, in partaubf the radial distribution
functiong(r) (Sect[#), and continues with the derivation of the mainrtrozty-
namic guantities in terms af(r) (Sect[®). This includes the chemical-potential
route, usually forgotten in textbooks. Sectidiis 7 Bhd 8 apeentechnical. They
have to do with the expansion in powers of densitg@f and the pressure, the def-
inition of the direct correlation function(r), and the construction of approximate
equations of state and integral-equation theories. Batticses make extensive use
of diagrams but several needed theorems and lemmas afeeflibly simple exam-
ples without formal proofs.

In addition to the four core sections mentioned above, therdéive more sections
that can be seen as optional. Sectidns Zand 3 are includeaki® tie notes as self-
contained as possible and to unify the notation, but otlerwan be skipped by
the knowledgeable reader. Sectibn$16, 9, [add 10 are “sithesliswhereas one-
dimensional systems can be seen as rather artificial, it dowistedly important
from pedagogical and illustrative perspectives to derhairtexact structural and
thermophysical quantities, and this is the purpose of Be&ectiof D presents three
examples related to the problem of thermodynamic consigtamong different
routes when an approximaggr) is employed. Finally, Sedf._10 derives the exact
solution of the Percus—Yevick integral equation for hartiesps as the simplest
implementation of a more general class of approximations.

2 A Brief Survey of Thermodynamic Potentials

Just to fix the notation, this section provides a summary ofesof the most impor-
tant thermodynamic relations.

2.1 Isolated Systems. Entropy

In a reversible process, the first and second laws of thermaodics in a fluid mix-
ture can be combined 16]
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(2.1)

TdS=dE + pdV — ¥ pydN,
Vv

whereSis the entropyE is the internal energy/ is the volume of the fluid, anl,
is the number of particles of speciesAll these quantities arextensivei.e., they
scale with the size of the system. The coefficients of thedkffitials in[(2.11) are the
conjugateintensivequantities: the absolute temperatufg,(the pressurep), and
the chemical potentialgu().

Equation[(Z11) shows that timaturalvariables of the entropy a&g V, and{N, },
i.e.,, S(E,V,{Ny}). This implies thatSis the right thermodynamic potential iso-
latedsystems: at givek, V, and{N, }, Sis maximal in equilibrium. The respective
partial derivatives give the intensive quantities:

170 T e T () @2
T 0E V,{NV} ’ T (9V E,{NV} ’ T 0NV E,V,{Ny#v} ' '

The extensive nature d§, E, V, and {N,} implies the extensivity condition
S(AE,AV,{ANy}) =AS(E,V,{N,}). Application of Euler's homogeneous function
theorem yields

PIS S S
SE,V, {N }):E(—) v (—) +YN (—) .
’ 9B /v, (v} N JEe N Z T\ONy v i)
2.3)

Using [2.2), we obtain the identity

TS=E+ pV—ZuVNV . (2.4)
Vv

This is the so-calletindamental equation of thermodynamio#ferentiating [2.4#)
and subtractind (211) one arrives at the Gibbs—Duhem oelati

SAT —Vdp+ 5 Nydpy = 0. (2.5)
v

Equation [[211) also shows th&tV, and{N, }, are the natural variables of the
internal energE(S,V, {N, }), so that

oE JE JE
VANy} S{Ny} v/ SV{Ny2y}

2.2 Closed Systems. Helmholtz Free Energy

From a practical point of view, it is usually more convenienthoose the tempera-
ture instead of the internal energy or the entropy as a covar@ble. In that case,
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the adequate thermodynamic potential is no longer eitteeetiiropy or the inter-
nal energy, respectively, but the Helmholtz free endtgit is defined fromSor E
through the Legendre transformation

FTV.AN) =E-TS=—pV+ 5 tN,, 2.7)
vV
where in the last step use has been made_df (2.4). Fram (2.4ptaan

v

so that

oF oF oF
MR B o
V{Ny} TNy} v/ TV ANy}

The Helmholtz free energy is the adequate thermodynamientiat in a closed
system, that is, a system that cannot exchange mass witmtirerement but can
exchange energy. At fixel, V, and{N, }, F is minimal in equilibrium.

2.3 Isothermal-Isobaric Systems. Gibbs Free Energy

If, instead of the volume, the independent thermodynamiiakite is pressure, we
need to perform a Legendre transformation frérto define the Gibbs free energy
(or free enthalpy) as

G(T,p,{Nv}) =F +pV =75 LNy (2.10)

The second equality shows that the chemical poteptiatan be interpreted as the
contribution of each particle of speciedo the total Gibbs free energy. The differ-
ential relations now become

dG = —SdT +Vdp+ pvdNy , (2.11)
Vv

S=_— (g_$) , V= (‘;_G) . My = (jl\(l; ) . (2.12)
p.{Ny} P/ TNy v/ T.p{Nysv }

Needless to say; is minimal in equilibrium if one fixed, p, and{N, }.
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2.4 Open Systems. Grand Potential

In an open system, not only energy but also particles can &teaexged with the en-
vironment. In that case, we need to repldbk } by {uy} as independent variables
and define the grand potenti@l from F via a new Legendre transformation:

Q(Tvva{uv}) =F- ZIJVNV =—pV. (2.13)

Interestingly, the second equality shows thd® /V is not but the pressure, except
that it must be seen as a function of temperature and the chéputentials. Now
we have

40 = —SdT — pav — 3 Nydly (2.14)
vV
Q Q Q a2Q
B () )
OT )y {m) Nty Vv OHv /15,41y 00}
(2.15)

2.5 Response Functions

We have seen that the thermodynamic varialles T (or S« T), V « p, and

Ny <> [y appear as extensive intensive conjugate pairs. Depending on the ther-
modynamic potential of interest, one of the members of tlegués as independent
variable and the other one is obtained by differentiatibanladditional derivative is
taken one obtains the so-callesponsdunctions. For example, the heat capacities
at constant volume and at constant pressure are defined as

JE s 0%F
(8 )80
9T v i) 9T Jv (N IT2 )Ny

2
CooT (g_f) _— (%) . (2.17)
pﬁ{NV} p*{NV}

Analogously, it is convenient to define the isothermal cagspibility

p 1 (aV) 1 <02G>
T=—5\ 3= = v\ 32
v dp T,{Nv} v 0p2 T{Ny}

ap o 9%F o
v (_) v (_) L (18)
0V T,{NV}] (3V2 T,{Nv}

and the thermal expansivity

(2.16)
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Fig. 3.1 Sketch of the phase

space of a system of iden- dx'=dr'dp"
tical particles. The horizontal N /
axis represents thix N posi- P 8

tion variables § components
for each particle), while the
vertical axis represents the N
d x N momentum variables.
A differential phase-space

volume &N around a point

xN is represented.

1/0V 1/ 9%G ) 1 (aS)
P™v (dT)p’{NV} Vv (aTap ny o V9Pt (2.19)

The equivalence between the second and fourth ternis in) (3. && example of a
Maxwell relation.

3 A Brief Survey of Equilibrium Statistical Ensembles

In this section a summary of the main equilibrium ensemidgzrésented, essen-
tially to fix part of the notation that will be needed later &or simplicity, we will
restrict this section to one-component systems, altholiglextension to mixtures
is straightforward.

Let us consider alassicalsystem made dfl identicalpoint particles ird dimen-
sions. In classical mechanics, the dynamical state of thesyis characterized by
the N vector positiongr1,ro,...,rn} and theN vector momentdps, p2,...,pn}-

In what follows, we will employ the following short-hand raion

o tN={ryra,...,rn}, drN=drydrp---dry,

e pN={p1,p2,...,pn}, dpN = dp1dpz - - dpn,
o xN={rN pN}, axN = drNdpN.

Thus, the wholanicroscopicstate of the systenmiicrostate is represented by
a single poiniN in the (2d x N)-dimensionaphase spacésee Fig[31l). The time
evolution of the microstate" is governed by the Hamiltonian of the systeta(xN)
through the classical Hamilton’s equations|[17].

Given the practical impossibility of describing the systaa microscopic level,
a statistical description is needed. Thus, we define theegpbpace probability dis-
tribution functionpn (xN) such thapy (xN)dxN is the probability that the microstate
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of the system lies inside an infinitesimal (hyper)volun¥ dround the phase-space
pointxN.

3.1 Gibbs Entropy

The concept of a phase-space probability distribution tionds valid both out of
equilibrium (where, in general, it changes with time acaogdo the Liouville the-
orem [18/19]) and in equilibrium (where it is stationary).the latter caspy (x)
can be obtained for isolated, closed, open, ...systems Ilwiag logical steps
and starting from thequal a priori probability postulatéor isolated systems. Here
we follow an alternative (but equivalent) method based éorination-theory argu-
ments[[19,20, 21].

Let us define the Gibbs entrojfiynctional

Sipn] = —ka [ & o) In [Cupn ()] |, (3.1)

wherekg is the Boltzmann constant and
Cn = NthdN (3.2)

In (3:2) the coefficienhdN is introduced to comply with Heisenberg’s uncertainty
principle and preserve the non-dimensional charactereftijument of the loga-
rithm, while the factoriaN! accounts for the fact that two apparently different mi-
crostates which only differ on the particle labels are ptaiéy the same microstate
(thus avoiding Gibbs’s paradox).

Equation [[3.11) applies to systems with a fixed number of giagiN. On the
other hand, if the system is allowed to exchange particlél thie environment,
microstates with differertl exist, so that one needs to define a a phase-space density
pn(xV) for eachN > 0. In that case, the entropy functional becomes

Si{on)] = ke éo [ onx)In [Cupn (x™] (3.3)

Now, the basic postulate consists of asserting that, odt pbasible phase-space
probability distribution functiongy consistent with givernonstraintwhich define
theensembl®f accessible microstates), tlaquiIibriumfunctionp,‘f,O| is the one that
maximizeghe entropy functionabpn]. Oncep,'f,q is known, connection with ther-
modynamics is made through the identifications8% = Sjpy| as the equilibrium
entropy.
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3.2 Microcanonical Ensemble (Isolated System)

The microcanical ensemble describes an isolated systethasdt is characterized
by fixed values oW, N, E (the latter with a tolerancAE, in accordance with the
uncertainty principle). Therefore, the basic constraiihe normalization condition

/ XN o (XN) = 1. (3.4)
JE<HN(XN)<E+AE

Maximization of the entropy functional just says tha(x\) = const for all the
accessible microstat& < Hy(x\) < E 4+ AE. Thus,

1 N
pN(xN) _ ) aeENw E <HnN(XY) <E+AE, (3.5)
0, otherwise
The normalization function
cne(E,N,V) :/ axN (3.6)
E<Hn(XN)<E+AE

is the phase-space volume comprised between the hypaessHy(xN) = E
andHy(xN) = E + AE. By insertion of [3.5) into[(3]1) one immediately sees that
wne (E,N,V) is directly related to the equilibrium entropy as

OJAE(E,N,V)
N!hdN

In this expression the specific valueiE becomes irrelevant in the thermodynamic
limit (as long asAE < E).

S(E,N,V) = kgln (3.7)

3.3 Canonical Ensemble (Closed System)

Now the system can hawayvalue of the total energf. However, we are free to
prescribe a given value of tfeverageenergy(E). Therefore, the constraints in the
canonical ensemble are

JoMono =1, [ @ Hy(xM)pn(x) = (E) (3.8)

The maximization of the entropy functional subject to thesteaints[(3.8) can be
carried out through the Lagrange multiplier method with réault

e*BHN xN)

~ NIhdNZ (B, V)’ (3.9)

on(xN)
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wheref is the Lagrange multiplier associated witi) and thepartition function
ZA is determined from the normalization condition as

1 "
A(BNV) = o / dxN e BN ) (3.10)

Substitution of[(3.B) intd (311) and use bf (B.8) yields
S=kg(InZN+B(E)) . (3.11)

Comparison with[{Z]7) (where now the internal energy isespnted byE)) allows
one to identify

1

B= T F(T,N,V)=—kseTIn2n(B,V) . (3.12)
B
Therefore, in the canonical ensemble the connection wentlodynamics is con-
veniently established via the Helmholtz free energy ratihan via the entropy.
As an average of a phase-space dynamical variable, thaahtenergy can be

directly obtained from Iy as

- aln ffN
(E) = g (3.13)
Moreover, we can obtain the energy fluctuations:
2
(%) — (2= ;Z;@PN = keT2Cy . (3.14)

In the last step, use has been madé¢ of (2.16).

3.4 Grand Canonical Ensemble (Open System)

In an open system neither the energy nor the number of pestisldetermined but
we can choose to fix their average values. As a consequeraggitistraints are

NZO'/ dePN(XN) =1, ’\ZO/de HN(XN)PN(XN) — (E), (3.15)
Ni N/depN(XN) —(N) . (3.16)
=)

The solution to the maximization problem is

e*aNe*BHN(XN)
T NINNZ(B,a.V)

N

PN (XT) (3.17)
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wherea andf3 are Lagrange multipliers and tigeand partition functionis
“Bav)= 3 /'dee*BHN<X“> S &N 2 (B.V) (3.18)
= s Uy = Ni~dN = N ) . .
éo N!hdN éo

In this case the equilibrium entropy becomes
S=kg(IN=+BET+a(N)) . (3.19)
From comparison with the first equality 6f (2113) we can idfgnt

B:%, a=—-Bu, Q(T,uV)=-kTIn=(B,a,V). (3.20)

The average and fluctuation relations are

_ dIn= > 0%In=
€)= E)-E=Z0 kO, (21
Ny = -2 (3.22)
210 = 2
(N2) (2= E0E e N (3:23)

The second equality df(3.23) requires the use of thermatjewelations and math-
ematical properties of partial derivatives.
3.5 Isothermal-Isobaric Ensemble

In this ensemble the volume is a fluctuating quantity and @slaverage value is
fixed. Thus, similarly to the grand canonical ensemble, trestraints are

/Ode/depN(xN):l, /Ode/deHN(xN)pN(xN):<E>, (3.24)

/ dVV/depN(xN) — W) (3.25)
0
Not surprisingly, the solution is
e*We*BHN(XN)
on(xV) (3.26)

~ VoNIhINAG(B.y)

where\y is an arbitrary volume scale factor (needed to keep the codienen-
sions),y andf3 are again Lagrange multipliers, and the isothermal-isolpartition
function is
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1 ' _ ' _ N 1 /= _
AN(&V):W/O Ve W/dee BN (x ):\70'/0 dve V2N (B.V).

(3.27)
As expected, the entropy becomes
S=kg(InAn+B(E)+y(V)) . (3.28)
From comparison witH {2.10) we conclude that
1
Bzmv y:Bpa G(T,p,N):—kBTlnAN(B,V) (329)
The main average and fluctuation relations are
0InAN 02InAN
B =-—5 > E)- (E)? = oz T (330)
(9|I’1AN
V) ===5" (3.31)
2
W2y = )2 = TN ke (3.32)

Equations[(3.23) an@{3.82) are equivalent. Both show tietensity fluctuations
are proportional to the isothermal compressibility andrease as the size of the
system increases. I (3]23) the volume is constant, sohkadénsity fluctuations
are due to fluctuations in the number of particles, while thpasite happens in

E32).

3.6 Ideal Gas

The exact evaluation of the normalization functidnsl(3(B)10), [3.18), and (3.27)
is in general a formidable task due to the involved depenglethe Hamiltonian
on the coordinates of the particles. However, in the casewfinteracting particles
(ideal gas), the Hamiltonian depends only on the momenta:

N id /N
HN(X )_>HN(p ) P om’

(3.33)
wheremis the mass of a particle. In this case Nody Hamiltonian is just the sum
over all the particles of the one-body Hamiltonigfy 2m and the exact statistical-
mechanical results can be easily obtained. The expresgortse normalization
function, the thermodynamic potential, and the first denies of the latter for each
one of the four ensembles considered above are the followrieg:

e Microcanonical ensemble
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Vv (4dﬂNE> dﬂ] } : (3.34)

d/2
v (‘;"Nm;) H . (3.35)

In i (E,N,V) = N{g—i—ln

SY(E,N,V) = Nkg {d—+2+|

o_2E 4 2E 4 2E |V 4mE\Y?
T =gn: P =ave M =g <th2> 1 (3.36)
e Canonical ensemble
gy LBV v __h
] (3.37)
i _ AY(B)
F9(T,N,V) = NkgT {m VN —1] : (3.38)
g d id _ N id _ A4(B)
(E) —ENkBT, p _kaT, p'® =kgTlIn { V/N } ; (3.39)

e Grand canonical ensemble

- N
2(p.av)- 5 e MBIl ot zmeoeh. @)
=0

NI
QY4B a,V)=—-p9 = —ksgTe 9Z(B,V), (3.41)
(€)= SkeTe “(BY), (NV=e2BY),  (342)

e Isothermal-isobaric ensemble
AS(B.y) = W/ v Ve W = \% (3.43)
GY(N,p,T) = N = NigT In [BpAY(B)| | (3.44)
(E)9 = gNkBT . (Ve = % . (3.45)

In (3.37) is the one-particle partition function andis the thermal de Broglie

wavelength. In[(3.40} is thefugacity Note that[(3.35),[(3.38)[ (3.41), arld (3.44)

are equivalent. Likewisel (3.B6], (3139), (3.42), dnd BB are also equivalent. This
a manifestation of the ensemble equivalence in the thermandic limit, the only

difference lying in the choice of independent and dependanidbles.
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3.7 Interacting Systems

Of course, particles do interact in real systems, so the Kammin has the form
Hn (M) = HE () + en(r) (3.46)

where®y denotes the total potential energy. As a consequence, tlisquafunc-
tion factorizes into its ideal and non-ideal parts:

(BV) = ZREBVIQBY) . QuBV) =V [arte PN | (3.47)

The non-ideal parQy is theconfiguration integralin the canonical ensembi@y
is responsible for thexcessontributions(E)™ = (E) — (E)"%, p& = p— p'¥, u& =
o

ex__dInQN ex (9|I’1QN ex_ (9|I’1QN
The grand partition function does not factorize but can bi#tevwr as
_ © VN Vv
2gav) =1+ 5 BV, g ayp (3.49)
=1 .
where (@)
Z(a
z7(B.a) = (3.50)
AB)°

is a sort of modified fugacity and we have taken into accouatt@3 = 1. Thus, the
configuration integrals are related to the coefficients engékpansion of the grand
partition function in powers of the quantizy .

4 Reduced Distribution Functions

The N-body probability distribution functiorpy(xN) contains all the statistical-
mechanical information about the system. On the other hpadial information
embedded imarginalfew-body distributions are usually enough for the most-rele
vant quantities. Moreover, it is much simpler to introduseful approximations at
the level of the marginal distributions than at tiebody level.

Letus introduce the-bodyreduced distribution functionsfx®) such thatfs(x%)dx®
is the (average) number of groupssybarticles such that one particle lies inside a
volume &y around the (1-body) phase-space pointother particle lies inside a
volume k; around the (1-body) phase-space paint. . . and so on (see Fig. 4.1 for
s= 3). More explicitly,
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Fig. 4.1 Sketch of the one-

_body pha_se space. The hor- dx =dr dp
izontal axis represents tlte 1 1
position coordinates, while L g
the vertical axis represents the Qom o ‘
d momentum components. P; 1
Three pointsXy, X2, andxs) T T
are represented. ‘
Pyl----- ]
N N
)= Y [aNa(x, —x1) 8, — x)on(x")
i1#i27#s
N' 3 3 3 N
= N—s)! OXsp1 [ OXsi2-- [ dXNPN(XT) - (4.1)

In most situations it is enough to take= 2 and integrate out the momenta. Thus,
we define theonfigurationakwo-body distribution function as

n2(ry,r2) :/dpl/dpz fa(X1,X2) . (4.2)
Obviously, its normalization condition is
/drl/drznz(rl,rz):N(N—l) . (4.3)

The importance of, arises especially when one is interested in evaluatingihe a
erage of a dynamical variable of the form

1
= — Az(l’i,l’j) . (4.4)
24
In that case, itis easy to obtain

E/dXNA(rN)PN(XN) = %/dfl/dszz(fl,fz)nz(rl,fz)- (4.5)

The quantities[{4]1) and(4.2) can be defined both out of arefyinlibrium.
In the latter case, however, we can benefit from the (formadkedge ofpy. In
particular, in the canonical ensemble [de€](3.9) And {Boti® has

No(ry,ra) = NvﬁQl /dr3 /drNe Ben(r™) (4.6)

In the absence of interaction®y = 0),
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N(N—1) 2

nizd =——> "> ~n n 4.7)

N
V2 ’ V-

In the grand canonical ensemble the equations equival¢hidh [4.6), and (4]7)
are

/drl/drznz(rl,rz) — (N(N—1)) (4.8)

no(r1,rz) = éé [ZA(ii"a)]NN(N—l) /dr3--- /drNe’Bd’N(rN), (4.9)
=&, N , ,

g = NN—D) n, n= (N (4.10)

27 V2 v

4.1 Radial Distribution Function

Taking into accounf(417) and{4110), we definepla@ correlation functiomy(r1,r»)
by

Na(r1,r2) =ng(ra,ra) . (4.11)
Thus, according td (416),
~(N-2) .
9(ra,rz) = v oN /drs---/drN e Ao (4.12)

in the canonical ensemble.

Now, taking into account the translational invariance grtypof the system, one
hasg(ri,rz) =g(r1—r»). Moreover, a fluid is rotationally invariant, so that (assum
ing central forces)g(r1 —r2) = g(r12), whererio = |r1 —r»| is the distance between
the pointsr1 andr». In such a case, the functigir) is calledradial distribution
functionand will play a very important role henceforth.

An interesting normalization relation holds in the grandamical ensemble. In-

serting [4.111) into[{418) we get

af CN(N=1)  (N?) 1
v /drg(r)_ N W (4.13)

In the thermodynamic limit{(N) — c andV — « with n = const), we know that
<N2>/<N)2 — 1 [see [[3.2B)] (except near the critical point, where diverges).
This implies thatv ! [dr g(r) ~ 1, meaning thag(r) ~ 1 for macroscopicdis-
tancesr, which are those dominating the value of the integral. Ineotivords,
Jdrg(r)—1 <« V.

Apart from the formal definition provided b (4]11) ahd (4).1iRis important to
have a more intuitive physical interpretationgif ). Two simple equivalent inter-
pretations are:
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Fig. 4.2 Left panel: Schematic view of how(r) is determined. The red particle is the refer-
ence one and the blue particles are those whose centers amistance betweenandr + dr.
The average number of blue particles, divided rgyr2dr (in three dimensions) giveg(r).
Right panel: Radial distribution function for a Lennardi@e fluid at a reduced temperature
T*=0.71 and a reduced density = 0.844, as obtained from Monte Carlo simulations. Source:
http://en.w Ki pedi a.org/w ki /Radial distribution function.

e g(r) is the probability of finding a particle at a distancaway from a given
reference particleglativeto the probability for an ideal gas.

e If a given reference particle is taken to be at the originntthelocal aver-
age density at a distancérom that particle isig(r).

Figure[4.2 illustrates the meaning gfr) and depicts the typical shape of the
function for a (three-dimensional) fluid of particles irdgeting via the Lennard-

Jones (LJ) potential
o(r) = 4e [(g)u_ (g)e] (4.14)

at the reduced temperatufé = kg T /¢ = 0.71 and the reduced density = no® =
0.844. The Lennard-Jones potential is characterized by a sisthnces and well
depthe, and is repulsive for < 21/6¢ and attractive for > 21/6g. As we see from
Fig.[4.2,9(r) is practically zero in the region€Qr < o (due to the strongly repulsive
force exerted by the reference particle at those distange=gents a very high peak
atr ~ o, oscillates thereafter, and eventually tends to unity éogl distances as
compared witho. Thus, a liquid may present a strong structure captureg{ by

Some functions related to the radial distribution functggn) can be defined.
The first one is simply the so-callégtal correlation function

h(r)=g(r)—1]. (4.15)

Its Fourier transform


http://en.wikipedia.org/wiki/Radial_distribution_function
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Fig. 4.3 Structure factor of a three-dimensional hard-sphere flagdgbtained from the Percus—
Yevick approximation) at several values of the packingtfoacn = (11/6)nc® = 0.05, Q1, 0.2,
0.3, 04, and 05, in increasing order of complexity.

Hmz/mgmmm (4.16)

is directly connected to the (statisfructure factor

S(k) = 1+nh(k) |. (4.17)

The typical shape of(k) at several densities is illustrated in Hig.14.3 for the hard-
sphere (HS) potentigl[1]
o, r<o
ry= ’ ’ 4.18
o(r) 0. >0, (4.18)
whereo is the diameter of the spheres.

The structure factor is a very important quantity becauss é@xperimentally
accessible by elastic scattering of radiation (x-rays otmoas) by the fluid[18, 22].
Thus, whileg(r) can be measured directly in simulations (either Monte Carlo
molecular dynamics) [23,24], it can be obtained indireatlexperiments from a
numerical inverse Fourier transform k) — 1.

5 Thermodynamics from the Radial Distribution Function

As shown by[(317) [(3.12)[ (3.20), arid (3.29), the knowlealgny of the ensemble

normalization functions allows one to obtain the full thedgnamic information
about the system. But now imagine that instead of the nomai@din function (for
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instance, the partition function in the canonical ensejnlle are given (from ex-
perimental measures, computer simulations, or a certaoryh the radial distribu-
tion functiong(r). Can we have access to thermodynamics directly fgém? As
we will see in this section, the answer is affirmative in theecaf pairwise interac-
tions.

5.1 Compressibility Route

The most straightforward route to thermodynamics fig(m) is provided by choos-
ing the grand canonical ensemble and simply combiing §&&8 [4.1B) to obtain

an

X:nkBTKT_kBT<dp) :1+n/drh(r):S(0) (5.1)
T

wherey is the isothermal susceptibility and we recall that theltooarelation func-
tion is defined by[(4.15) and in the last step use has been nigdidd). Therefore,
the zero wavenumber limit of the structure factor (see[EB) & directly related to
the isothermal compressibility.

Equation[(5.1) is usually known as tlsempressibility equation of stata the
compressibility routéo thermodynamics.

5.2 Energy Route

Equation[5.11) applies regardless of the specific form ofpiiential energy func-
tion @y (rN). From now on, however, we assume that the interactigraiswise
additive i.e., @y can be expressed as a sum over all pairs of a certain funation (
teraction potentiallp that depends on the distance between the two particles of the
pair. In mathematical terms,

N-1 N

=3 3 o) =33 ot 52)

We have previously encountered two particular examples [&44) and(4.18)] of
interaction potentials.

The pairwise additivity conditior (5.2) implies thdl is a dynamical variable
of the form [4.%). As a consequence, we can apply the profi@&y to the average
potential energy:

E)=(onTN)) = %/dfl/dfznz(fl,fz)(P(rlz) : (5.3)
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Fig. 5.1 Cavity function in 1) T T T = T
the overlapping region < o 1000 -\, —u—n5 =03 ;
for a hard-sphere fluid at three \. — A 55°=0.5
different densities, as obtained N e ue’=07
from Monte Carlo simulations '\ noe =4.
25]. 100 ¢ .\ 4
T e .
\\ .
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Adding the ideal-gas term [see (3139)] and taking into aotq@d.11), we finally
obtain

(E) =N [ngT—l—g/dr (p(r)g(r)] , (5.4)

where we have used the general propditly; [dro. % (r12) =V [dr Z(r), Z#(r)
being an arbitrary function.

Equation[[5.4) defines trenergy route¢o thermodynamics. It can be equivalently
written in terms of the so-callechvity function

y(r) =g(ne’?"|. (5.5)

The resultis

(E)=N EkBT+g/dr o(r)e POy |. (5.6)

The cavity functiony(r) is much more regular than the radial distribution func-
tion g(r). It is continuous even if the interaction potential is distiouous or di-
verges. In the case of hard spheres, for instance, ghile=0if r < g, y(r) is well
defined in that region, as illustrated by Hig.15.1.

5.3 Virial Route

Now we consider the pressure, which is the quantity morectlyreelated to the
equation of state. In the canonical ensemble, the excessypeeis proportional to
dInQn/0V [seel[3.4B)] and thus itis not the average of a dynamicahbéeiof type
(@.5). To make things worse, the volurdieappears in the configurational integral
[see[[3.417)] both explicitly aniinplicitly through the integration limits. Let us make
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this more evident by writing

QuV) =V N [ drNe PO (5.7)
v
To get rid of this difficulty, we imagine now that the systenaisphere of volume
V and the origin of coordinates is chosen at the center of thersp If the whole
system is blown up by a factar [18], the volume changes from to A9V and the
configurational integral changes fra@y (V) to Qn(A9V) with

QAN =AW N [ dNe PR Sy [ arte P (5)

where in the last step the change— r{ =r;/A has been performed. We see that
Qn(A%V) depends oi explicitly through the argument of the interaction potahti
Next, taking into account the identitin Qn(A9V)/dV = (A /Vd)dInQn(A9V) /A,
we can write

Jhouy) 1 oo (5.9)
oV - Vvd oA Aot '
so that
dInQn(A9V) _ B dDN(ANIN)
0P(Ar12)
= —— drl/drznz I'j_,rz
2/ i,

_ B / 9g(Ar)
= 2n V [ drg(r) A |, (5.10)

In the second equality use has been madgaf (4.5). Finallgthematical property
similar to [5.9) is

dp(Ar)|  _ do(r)
o A:l_r T (5.11)
Inserting [5.111) into{5.70), and usirig (b.9), we obtaingbaght result:
R
2= or = 1——/dr (5.12)

This is known as the pressure routeuinial route to the equation of state, where
Z is thecompressibility factarExpressed in terms of the cavity functign {5.5), the
virial route becomes

ae Bo(r)

_p ..n
s /dr (5.13)
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5.4 Chemical-Potential Route

A look at (3.48) shows that we have already succeeded in ssipige the first two
derivatives of IrQy in terms of integrals involving the radial distribution fttion.
The third derivative involves the chemical potential anchisch more delicate. First,
noting thatN is actually a discrete variable, we can rewrite

IO, Qu(B.Y)
oN Qn:1(B,V)

Thus, the (excess) chemical potential is related to theorespof the system to the
addition of one more particle without changing either terap@e or volume.

TheN-body potential energy is expressed by15.2). Now we add &a particle
(labeled as = 0), so that théN + 1)-body potential energy becomes

Bu®=— (5.14)

N-1 N N

O (M) = Zl > o)+ olroj) - (5.15)
i=1 j=1+1

=1

The trick now consists of introducing the extra particlee(tbolute”) little by little

through acharging proces§l8,[19/26[ 217, 28. 29, 30, B1]. We do so by introducing
a coupling parameteg such that its value & & < 1 controls the strength of the
interaction of particlé = 0 to the rest of particles (the “solvent”):

0 =0

E(rai) =1 ’

@ (roj) = (5.16)
(foi) {(0(f0j)7 E=1.

The associated total potential energy and configuratiegial are

N
AN = dn(r) + 3 9 (1)), (5.17)
=1
$l2(8.v) =V fartite P, (5.18)

Thus, assuming thz@,(\ﬁl is a smooth function of, (5.14) becomes

/ faanN“BV). (5.19)

Since the dependence Q‘( i1 On & takes place through the extra summation in
(5.17) and all the solvent particles are assumed to be inti

3 _
oInQy), _ _npv N / N B e 091 (ro) (5.20)
EH @) 9& - '
QN+1
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Now we realize that, similarly td {4.12), the solute-solveadial distribution func-
tion is defined as

0¥ (ro1) = /drz /drNe Boy (VY (5.21)
Qi

This allows us to rewrité (5.20) in the form

aInQN+1 = /dro/drlg r01 % . (522)
Finally,
()
1= kT In (nAd)+n/oldg‘/drg(5)(r)a(pag(r) , (5.23)

or, equivalently,

aefﬁq’(‘()(r)
9¢
In contrast to the other three conventional routes [sed),(&H), and[(5.12)], the

chemical-potential routs.23) requires the knowledge of the solute-solvent corre-
lation functions for all the values € & < 1 of the coupling parametér.

(5.24)

Bu=In(m?) - n'/:df /dr vy (r)

5.5 Extension to Mixtures

In a multicomponent system the main quantities are

Number of particles of species Ng.

Total number of particles\ = 5 ; Nq.

Mole fraction of species: Xg = Ng /N, ¥ ¢ Xq = 1.

Interaction potential between a particle of speaesand a particle of
species/: @uy(r).

e Radial distribution function for the pairy: gqy(r)

All the previous thermodynamic routes can be generalizedixtures.

5.5.1 Compressibility Route

The generalization of (5.1) to mixtures is not trivial [3Zhe result is
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_ aBp ~\ 1
1_
= —— = I+h
X ( on >T OZ,V XO,XV( + )ay

where the elemerftay of the matrixh is proportional to the zero wavenumber limit
of the Fourier transform of the total correlation functioy(r) = gqy(r) — 1, namely

(5.25)

5.5.2 Energy Route

In this case [(5]6) is simply generalized as

E)=N lgk‘” o [ %y(r)emmyay(r)] | (5.27)
ay

5.5.3 Virial Route

Likewise, the generalization df(5.113) to mixtures reads

z=_P 4,0 d oe Pennt) 5.28
s +£gyxaxy/ ryay(r)rT. (5.28)

5.5.4 Chemical-Potential Route

In this case, there exists a chemical potential associaitbdeach species and the

generalization of(5.24) i§ [31]

e BaE ")

P (5.29)

By =In (nx\,A\‘,’) —nzxa/oldg/dr yﬁ?(r)

Here, the solute particie= 0 is coupled to a particle of specigsvia an interaction
potential(,qgf,) (r) such that

@ (r) = {0’ g - 2’ (5.30)
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Fig. 5.2 Hard-sphere interac-

tion potential. The potential is

equal to infinity in the shaded ¢, (")
region and zero otherwise.

oy r

so that it becomes a particle of speciesat the end of the charging process.

The associated radial distribution and cavity functions g{ﬁ}(r) and ys,fa)(r) =

g&?(r)eﬁ@?(”, respectively.
The Helmholtz and Gibbs free energies can be obtained froas [see[(2.70)]
d(F/V)

> Ny :G:—VZT. (5.31)
Vv

5.6 Hard Spheres

Let us now particularize the above expressions for multippnent hard-sphere flu-
ids [33]. The interaction potential function is given by floem (4.18) for any pair
of species, namely (see Fig.b.2)

©, I<0Ogy,
r) = 5.32
Bay(r) {O, f> Oay. ( )

Here,oqy is the closest possible distance between the center of aesphspecies

o and the center of a sphere of spegiel we call oy = 044 to the closest distance
between two spheres of the same spedied is legitimate to refer tao, as the
diameterof a sphere of species. However, that does not necessarily mean that
two spheres of different type repel each other with a distaagual to the sum of
their radii. Depending on that, one can classify hard-sphaixtures into additive

or nonadditive:

e Additive mixtures:ogy = %(oa + gy) for all pairsay.
e Nonadditive mixturesoyy # %(aa + oy) for at least one painy.

As a consequence df(5132),
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de Py (r)

e Baay(r) — O(r — gqy) , T

=05(r—oay) , (5.33)
where®(x) andd(x) are the Heaviside step function and the Dirac delta function
respectively.

The compressibility rout¢ (5.25) does not include the exttion potential explic-
itly and so it is not simplified in the hard-sphere case. Astlierenergy route, the
integral [5.2V) vanishes becaugg,(r)e #%v(") — 0 both forr < ggy andr > dgy,
while yqy(r) is finite even in the region < gy, (see Figl5l). Therefore,

(E) = NngT . (5.34)

But this is the ideal-gas internal energy! This is an expmtogsult since the hard-
sphere potential is only different from zero when two pdescoverlap but those
configurations are forbidden by the Boltzmann factof@v("),

The generic virial route (5.28) is highly simplified for hasgheres. First, one
changes to spherical coordinates and takes into accournhttotald-dimensional
solid angle (area of d-dimensional sphere of unit radius) is

/dF: 2%y, | (5.35)
where - )d/z
/4
W Favd (5:38)

is the volume of a-dimensional sphere of unit diameter. Next, using the prgpe

(5:33), we obtain

p d—1 d
w_nz nvd%xaxyaayyay(aay). (5.37)

The same method works for the chemical-potential rqutejsa2th the choice

e BAE 1) — o(r - 0lf) (5.38)

Whereo\gg,> =0 ando\stl),> = 0,4. Changing the integration variable [0 (529) frdm

to 0%, one gets

"Ova
Buy =In (nxv/\f,’) +d2ngd Z Xa/o dooa Ggo?1YOa(UOa) ) (5.39)
o

where the notation has been simplifiedféé) — Opg andyﬁx) — Yoa-
If 0ay > 3 (0a + 0y) (positive or zermonadditivity, then it can be proved [31]
that
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Fig. 5.3 Schematic view of
the thermodynamic inconsis-
tency problem.

F(T,V,N)

—|F(T,V,N)
q (’f’) compressibih’ty route 82 F
Wﬁ;l =V —F@V.N)

F(T,V,N)

Same result?

1
.?o'a
02'mis Y o [ * dona 0f; Yoa(00a) = —In(1=1) . (5.40)
) Xa

where

n =Ny z X OF (5.41)
a

is the totalpackingfraction. In that case[ (5.B9) can be rewritten as

B n)(\;/\\(/j d Ova
Buy, =In ﬁ+d2 nvy ;xo,/1

50

dooa 03 1Yo (0oa) |- (5.42)

5.7 The Thermodynamic Inconsistency Problem

Going back to the case of an arbitrary interaction potentiel have seen that the
knowledge of the radial distribution functiag(r) (where, for simplicity, we are

using the one-component language) allows one to obtainifioportant thermody-

namic quantities: the internal energy, the pressure, titbésmal compressibility,

and the chemical potential. By integration, one could imgple derive the free

energy of the system (except for functions playing the rélategration constants)
from any of those routes, as sketched in Eigl 5.3. The impbdaestion is, would

one obtain consistent results?

Since all the thermodynamic routes are derived from forynadiact statistical-
mechanical formulas, it is obvious that the use ofekactradial distribution func-
tion g(r) must lead to the same exact free endfg¥,V, N), regardless of the route
followed. On the other hand, if aapproximate ¢r) is used, one must be prepared
to obtain (in general) a different approximd&t€T,V,N) from each separate route.
This is known as théhermodynamic (in)consistency problewihich route is more
accurate, i.e., which route is more effective in conceatimg deficiencies of an
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approximateg(r), depends on the approximation, the potential, and the thaym
namic state.

6 One-Dimensional Systems. Exact Solution for
Nearest-Neighbor Interactions

As is apparent fron{{4.12), the evaluationggf) is a formidable task, comparable
to that of the evaluation of the configuration integral itsklowever, in the case of
one-dimensional systemd £ 1) of particles which only interact with their nearest
neighbors, the problem can be exactly solVed [34| 35, 3&38]7,

Let us consider a one-dimensional systenNgfarticles in a box of length (so
the number density is = N/L) subject to an interaction potenti@(r) such that

1. limy0¢(r) = . This implies that therder of the particles in the line
does not change.

2. lim;— ¢@(r) = 0. The interaction hasfmite range.

3. Each patrticle interactmly with its two nearest neighbors.

The total potential energy is then

N-1

o) = pr(ml—m). (6.1)

6.1 Nearest-Neighbor and Pair Correlation Functions

Given a particle at a certain position, g (r)dr be theconditionalprobability of
finding its (right)nearest neighboat a distance betweerandr -+ dr (see Fig[ 6.1,
top panel). More in general, we can defiplé (r)dr as the conditional probability
of finding its (right)/th neighbor (1< ¢ < N — 1) at a distance betweerandr +

dr (see Fig[611, middle panel). Since th neighbor must be somewhere, the
normalization condition is

/(;mdrp(f)(r) _1, 6.2)

In making the upper limit equal to infinity, we are implicithssuming the thermo-
dynamic limit L — o, N — o0, n = const). Moreover, periodic boundary conditions
are supposed to be applied when needed.

As illustrated by the bottom panel of Fig. 6.1, the followirggcurrence relation
holds
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Fig. 6.1 Top panel: Two nearest-neighbor particles separated andist. Middle panel: Two/th-
order neighbors separated a distand@ottom panel: lllustration of the convolution property.

pO(r) = [ ar pr)p B ). 6.3)

The convolution structure of the integral invites one tedduice the Laplace trans-
form

P (s) = /Ooo dr e "spl(r) , (6.4)
so that[(6.B) becomes
P() = P ()P (8) = PU(s) = [PV(9)] (6.5)
The normalization conditiof (8.2) is equivalent to
PO©0)=1. (6.6)

Now, given a reference particle at a certain positionptgt )dr be thenumber of
particlesat a distance betweerandr + dr, regardless of whether those particles are
the nearest neighbor, the next-nearest neighbor, ... sefbeence particle. Thus,

00

N-1
o N—c0 0)
ngr)= 5 p(n == p(r). (6.7)
2 2
Introducing the Laplace transform

G(s) = /Ooo dr e "g(r), (6.8)
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Fig. 6.2 lllustration of the evaluation o (r) in the isothermal-isobaric ensemble.

and using[(6J55), we have

12 ¢ 1 P
G(s) = n/; {P(l)( )} ni— P(lfz s (6.9)

Thus, the determination of the radial distribution funaotig(r) reduces to the de-
termination of the nearest-neighbor distribution funetig? (r). To that end, we
take advantage of the ensemble equivalence in the therramjymmlt and use the
isothermal-isobaric ensemble.

6.2 Nearest-Neighbor Distribution. Isothermal-IsobarEnsemble

The isothermal-isobaric ensemble is described by [3.2®) .iMportant point is that
the N-body probability distribution function in configuratiopace is proportional
to e BPV-BON(™) Therefore, in this ensemble the one-dimensional nearggtzhor
probability distribution function is

00 L L L
p<1>(r)m/ dLe’BpL/ dx3/ dx4---/ dxy e BN (6.10)
Jr X2 JX3 XN-1

where we have identified the volurdewith the length_ and have taken the particles
i =1 (atxy = 0) andi = 2 (atxp = r) as the canonical nearest-neighbor pair (see
Fig.[6.2). Next, usind{6]1) and applying periodic boundzogditions,

pY(r) O e POl /m dLe PP /Lf
Jr

L—r—
' dr3 e*B(P(rS) / s dr4 efﬁ(p(u)
0 0

- /L7r7r37---7l’N71 drN eﬁﬁ(p(rN>eiﬁ(p(rN+l> , (611)
0

where a change of variables— ri = x — %1 (i = 3,...,N) has been carried out
andryy 1 =L—r—rz—rgq—---—ry. Finally, the change of variable— L' =L —r
shows that a factor@P' comes out of the integrals, the latter being independent of
r. In summary,

p(l)(r) — Ke Bo(r) g—Bpr ’ (6.12)
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where the proportionality constait will be determined by normalization. The
Laplace transform of(6.12) is

PU(s) =KQ(s+Bp) (6.13)

where

Q(s)z/ dr e "Se~Peln) (6.14)
0

is the Laplace transform of the Boltzmann factof&"). The normalization condi-
tion (6.8) yields

(6.15)

6.3 Exact Radial Distribution Function and Equation of Stat

Insertion of [6.1b) into[{6]19) gives the exact radial dmition function (in Laplace
space):

1 Q(s+Bp)
G = aEp QG B |

To fully close the problem, it remains to relate the presg tae densityn, and the
temperaturd (equation of state). To do that, we apply the consistencdition

(6.16)

rIiﬁrrc]og(r) = 1:>Isi£r?)sG(s) =1. (6.17)

ExpandingQ(s+ Bp) in powers ofsand imposing[(6.17), we obtain

Q(Bp)

B 2Q(s)
Q'Bp) |’ '

n(va) =

(6.18)

As a consistency test, let us prove that the equation of @ai&) is equivalent
to the compressibility routé (8.1). First, according[fdl@, the isothermal suscep-

tibility is
_(on _ . QBp)Q"(Bp 6.19
X (fmp)a Yo (619

Alternatively, the Laplace transform df(r) is H(s) = G(s) — s%, and thus the
Fourier transform can be obtained as

(k) = [H(s) + H(=9)]s_i = [G(S) + G(—9)]e_ix - (6.20)

In particular, the zero wavenumber limit is



32 Andrés Santos

/dr h(r) = 2lim {G(s) _ E} _Q'(Bp)  2"(Bp) (6.21)

so that

M ) (6.22)

Comparison betweeh (6.119) ahd (8.22) shows (5.1) exiddatisfied.

6.4 Extension to Mixtures

In the case of one-dimensional mixtures the argumentsnadtlabove can be ex-
tended without special difficulties [86,137.138]. Now, iretieofp(*) (r)dr one defines
pgf,),(r)dr as the conditional probability that tiégh neighbor to the right of a refer-
ence particle of speciasis located at a distance betwereandr + dr and belongs
to species. The counterparts of (6.2, (6.3), afd (6.7) are

Z/ drpgy(r) =1, (6.23)
vV - 0
r
Piy(n) =y [ e i (rplly =1, (6.24)
v
NXyGay(r) = ; psf,),(r) : (6.25)
(=1

Next, by defining the Laplace transforrﬁgy)(s) andGqy(s) of pgfz,(r) andgay(r),
respectively, one easily arrives at

Gay(8) = — (P<1> (s)- [| - P<1>(s)] l) , (6.26)

nxy ay

whereP(s) is the matrix of elementgl}) (s).
The nearest-neighbor probability distribution is againwal in the isothermal-
isobaric ensemble with the result

P (r) = X/Kqye Pov(DePPr (6.27)

so that L
P&y (8) = XyKayQay(s+Bp) . (6.28)
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where Qqy () is the Laplace transform of €%v("). The normalization condition
(6.23) imposes the following relationship for the conssatt, = Kyq:

> XyKayQay(Bp) =1. (6.29)
y

To complete the determination &%, we can make use of the physical condition

stating that lin_,c pE,l,),(r)/pf,l\Z(r) must be independent of the identity of the
species the reference particle belongs to, soKaatKqy is independent ofr. It is
easy to see that such a condition implies

K2y = KaaKyy - (6.30)
Finally, the equation of statg p, T ) is determined, as in the one-component case,
from the condition liM_e gay(r) = 1= lims_,0SGyy(s) = 1.
6.4.1 Binary Case

As a more explicit situation, here we particularize to a bjmaixture. In that case,

(628) yields

_ >
Gua(s) = 29 nx%g] +Qils) (6.31)
_ >
Goo(s) = Qz(9)[1 n)?lelg] Q9 ; (6.32)
Qa9
Gi2(s) = nU/x%D(S) ’ (6.33)
where
Quy(9) = \/XE; PL(S) = \/KaXKayQay(s+BP) (6.34)
D(s) = [1 - Qu1(9)] [1 — Qa2(8)] — Qa(S) - (6.35)

The parameter,, are obtained fron{{6.29) and (6130). Firkt; andKy;, can
be expressed in terms Kf» as

1—xK12Q12(Bp) Kpp — 1-x1K12Q12(Bp)
x1Qui(Bp) X2Q22(BP)

The remaining parameté&l, satisfies a quadratic equation whose solution is

1 /T 4xR(BP) 1 2u(Bp)Q2(Bp)

© 2xR(BP)Q12(Bp) Q%4 (Bp)

Finally, the equation of state becomes

K1 =

(6.36)

K12 R(Bp) = (6.37)
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g (1) Dgps()

—gbo .

Fig. 6.3 Left panel: Square-well potential. Right panel: Stickyedraphere potential.

1

— . 6.38
AR (BP) + 2K, (BP) + Dok, Bp) . 0D

n(va) =

6.5 Examples

6.5.1 Sticky Hard Rods

As an application, we consider here the sticky-hard-rodiflwhich is the one-
dimensional version of the so-called sticky-hard-sph8iS) fluid. Let us first in-
troduce the square-well (SW) potential (see Eigl 6.3, laftgd)

0, r<o,
Gw(r)=<—-¢€, o<r<ao, (6.39)
0, r>a.

The associated Boltzmann factor is

0, r<o,
e Pl — B gor<o, (6.40)
1, r>a,
whose Laplace transformis
_ 1 RS —a's —a's
Q(s)_g[eﬁ (eos—e%) +e] . (6.41)

In order to apply the exact results for one-dimensionaksyst we must prevent the
square-well interaction from extending beyond nearegjhimirs. This implies the
constrainto’ < 20.

Now we take the sticky-hard-sphere limit [39] (see Eig] 6ight panel)

0 =0, e—>w, 1 1=(0—0)P =finite, (6.42)
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Fig. 6.4 Radial distribution function for hard rodg (! = 0, left panel) and sticky hard rods
(t—1/o = 0.5, right panel) at several values of the packing fractips no = 0.2, 0.4, 0.6, and
0.8, in increasing order of complexity.

where the temperature-dependent parametérmeasures the “stickiness” of the
interaction. In this limit, [[6.40) and (6.#1) become

e P —o(r—o)+113(r—0), (6.43)

() = <r1+ %) &0, (6.44)

The equation of stat@ (6.18) expresses the density as adnmdttemperature and
pressure. Solving the resulting quadratic equation foptiessure one simply gets

In/(1—no) —
B_np:\/1+4r 2:{(11] no)-1 (6.45)

z

In the hard-rod special case * — 0), the equation of state becom&s= (1 —
no)~L.
As for the radial distribution function, application 6f &) gives

1 (g e _1g Lﬁp)[em- (6.46)

:ﬁ -1, 1 _ (-1 1 —0s n & _ 1 ¢
T g5 (r +smp)e =) (T 1+ﬁ)

G(s)

The last equality allows one to perform the inverse Laplaaesform term by term
with the result

00

g(r) =gl%(r—£0)@(r—éa), (6.47)

where
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Fig. 6.5 Threshold situa- a oy w
tion (Oaw = Oay + Oyw) for -_——_—-——e—— e - - -
nearest-neighbor interaction. E— ; )
Oany O~w
Oaw
1 VAN sl Gl
W(r) = ————— [T '8(r) + ( ) rk-le PPl . (6.48)
) = AT 1/Bpy [ g k; k) (k—1)!

Note that, although an infinite number of terms formally apgie (6.4T), only the
first j terms are needed if one is interestedy(n) in the range < r/o < j+1.
Figure[6.4 showsg(r) for hard rods t~* = 0) and a representative case of a sticky-
hard-rod fluid ¢ /o = 0.5) at several densities [40].

Using [6.438), it is straightforward to see that the radiatritbution function and
the cavity functions are related by

g(r)=1Yy(0)3(r— o) +y(r)O(r—0) . (6.49)
This, together with[(6.47) anB{6M8), implies the contadtie
1

y(o) = nT T 18D (6.50)
This value is useful to obtain the mean potential energy peiqgbe,
e a1
Ne = nt y(o) = 171/6p’ (6.51)

where the energy route(5.6) has been particularized toystes.

6.5.2 Mixtures of Nonadditive Hard Rods

As a representative example of a one-dimensional mixtueegamsider here a non-
additive hard-rod binary mixture [seE_(5132) and [Fig] 5Te nearest-neighbor
interaction condition requireSq < Tay+ Oy, V(a, Y, w), as illustrated by Fig.
[63. In the binary case, this condition implies;2 > max 01, 0).

The Laplace transform of #%v(") js

g Oays

Qay(s) = (6.52)

S

The recipe described by (6]131)=(6.38) can be easily imphtade In order to obtain
the pair correlation functiongg(r) in real space, we first note that, according to

€35),
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Fig. 6.6 Radial distribution functions for a one-dimensional hasd-binary mixture withx;
Xo = %, Oy =207, O12= %50'1, andno; = %

1 [

D(s) ZO [Qua(S) + Qaa(8) + Qx(S) — Quu(9)Qa(s)] " (6.53)

When this is inserted int@ (6.B1)=(6133), one can expBs4s) as linear combina-
tions of terms of the form

—a(s+Bp)

ki1 ka2 ki2 €
QIO =

wherea = Kky101 + ko202 + k12012 andk = ki1 + koo + kio. The inverse Laplace

(XlKll)k11+k12/2 (X2K22)k22+k12/2 . (6.54)

transformsyqy(r) = 7 [Gay(s)] are readily evaluated by using the property
e a(s+Bp) (r_a)k*l

—e PP _ = _0O(r-a). 6.55

e TSI (6:59)

Analogously to the case df(6147), only the terms wikas, ko2, ki2} such that <

'max are needed if one is interested in distancesrmax. Figure[6.6 showggy(r)
for a particular binary mixturé [37].

7 Density Expansion of the Radial Distribution Function

Except for one-dimensional systems with nearest-neighiieractions, the exact
evaluation of the radial distribution functigr) or the equation of state(n, T) by

37
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theoretical tools for arbitrary interaction potentiglr ), densityn, and temperature
T is simply not possible. However, the problem can be coredoif one gives up
the “arbitrary density” requirement and is satisfied with tbw-density regime. In
such a case, a series expansion in powers of density is ti@atgeool:

a(r) =go(r) + G (r)n+ga(rn’+ -+, (7.1)

z %:1+BZ(T)n+Bg(T)n2+m. (7.2)

Therefore, our aim in this section is to derive expressionstevirial coefficients
gk(r) andBy(T) as functions ofl for any (short-range) interaction potentglr).
First, a note of caution: although for an ideal gas onegf4s) = 1 (andzZ'd = B; =
1), in a real gago(r) # 1. This is because even, if the density is extremely small,
interactions create correlations among particles. Féant®, in a hard-sphere fluid,
g(r) =0forr < g, no matter how large or small the density is.

What is the basic idea behind the virial expansions? Thiserg #learly stated by
E. G. D. Cohen in a recent work [41]:

The virial or density expansions reduce the intractatle 10°%)—particle prob-
lem of a macroscopic gas in a voluiviéo a sum of an increasing number of tractable
isolated few (1, 2, 3, ...) particle problems, where eaclugrof particlesmoves
alone in the volum& of the system.

Density expansions will then appear, since the number ofeiparticles, pairs
of particles, triplets of particles, ..., in the system arepprtional ton, n?, n®, ...,
respectively, where = N/V is the number density of the particles.

In order to attain the goals(7.1) and {[7.2), it is convenientork with the grand
canonical ensemble. This is because in that ensemble wadglfgave a natural
series power expansion for free: the grand canonical jartitinction is expressed
as a series in powers of fugacity [s€e (3.49)]. Let us considgeneric quantitx
that can be obtained frord by taking its logarithm, by differentiation, etc. Then,
from the expansion in(3.49) one could in principle obtain

X = /iiezf\ , (7.3)

where the coefficientX, are related to the configuration integr&g and depend
on the choice oK. In particular, in the case of the average density (N) /V, we
can write

nzglfb[Zf\ . (7-4)

Now, eliminating the (modified) fugaci, between(713) an@(4.4) one can express
X in powers ofn;
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Fig. 7.1 Left panels: Hard-sphere, square-well, and Lennard-Jpo&ntials. Right panels: Re-
spective Mayer functions.

X=F Xnk. (7.5)

The first few relations are

- X1 Xo 2bp— Xs 4by — (353 Sbg)—
=X, Xi=22 Xo=T2_ 2% Xg=o 2%, (22 -T2 Xy,
XO XO 1 bl 2 b% bi 1 3 bi bgll 2 bgll b? (716)
Xq 6by— 3b3 1002\ - 2bs 2003 156563\ — '
x4=—4——52x3—2(—53——62 Xo—2( o+ S22 -T2 B XL (7.7)
b1 b1 b1 b1 b1 b1 b1

7.1 Mayer Function and Diagrams

As we have seen many times before, the key quantity relatédtetmteraction po-
tential is the Boltzmann factor €%("). Since it is equal to unity in the ideal-gas
case, a convenient way of measuring deviations from thd ghesais by means of
theMayer function

f(ry=ePe _1. (7.8)

The shape of the Mayer function for the hard-sphere potd#iEs), the Lennard-
Jones potential(4.14), and the square-well poteiifiaBjjésdshown in Figl_Z]1.
Let us now rewrite[(3.49) as
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= _ ad ZN N
= _1+N;m/dr Wh(L,2,....N) (7.9)

W (L,2,...,N) =Wy (rN) = e BN |'| (1+fij), fij=f(rj), (7.10)

<i<|

and use has been made[of(3.47) and of the pairwise addjpraperty [5.2). When
expanding the productMN-1)/2 terms appear ikMy. To manage those terms, it is
very convenient to represent them with diagrams. Each dmgrontributing ta\y

is made ofN open circles (representing tieparticles), some of them joined by a
bond (representing a factdy;). The diagrams contributing 1\, are

W(l)=1=0 |, (7.11)

Wo(1,2) =1+ f;p=0 O +0—0 | (7.12)

W5(1,2,3) = (14 f12)(1+ f13)(1+ fo3)

- S os S s A A e

Wi (1, 2,374) =(1+ flg)(1+ f13)(1+ f14)(1+ f23)(1+ f24)(1+ f34)

o O o O o—O @]
=, 6 t12 +3 +4 +12

B e R R 5 -

The numerical coefficients before some diagrams refer tatimber of diagrams
topologically equivalent, i.e., those that differ only hetparticle labels associated
with each circle. Some of the diagrams aisconnectedi.e., there exists at least
one patrticle isolated from the remaining ones), while theeobnes areonnected
diagrams oclusters(i.e., it is possible to go from any particle to any other et
by following a path made of bonds). Therefore, in general,

W (L,2,...,N) = Zall (connected and disconnected) diagramhl glarticles

As we will see, in our goal of obtaining the coefficients in thgansiond(711)
and [Z.2), we will follow adistillation process upon which we will get rid of the least
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relevant diagrams at each stage, keeping only those cargaimore information.
The first step consists of taking the logarithm of the gramtitan function:

_ 2
In::glg—/!‘/drEUg(l,Z,...,é), (7.15)

where the functionb,(1,2,...,¢) are callectluster(or Ursell) functions. They are
obviously related to the functiodiy(1,2,...,N). In fact, by comparing(7]9) and
(Z3), one realizes that the relationship betwfak } and{U,} is exactly the same
as that betweemomentandcumulantof a certain probability distribution [19]. In
that analogy= plays the role of theharacteristic functior(or Fourier transform
of the probability distribution) and-iz4 plays the role of the Fourier variable. The
first few relations are

Wi(1) =Uq(2), (7.16)
W5(1,2) =U1(1)U1(2) +U2(1,2) (7.17)
Wa(1,2,3) = Up(1)U1(2)Us(3) + 3U1(1)Ua(2,3) + Ug(1,2,3),  (7.18)

W4(1,2,3,4) = Us(1)U1(2)U1(3)U1(4) + 6U1(1)U1(2)U2(3,4)
+3U5(1,2)Up(3,4) + 4Us(1)Us(2,3,4) + Ua(1,2,3,4) . (7.19)

Again, each numerical factor represents the number of tequivalent (except for
particle labeling) to the indicated canonical term. Us[Ad.{l){7.1%), one finds

U(l)=1=0 (7.20)

Uz(1,2) = fio= 0—0 , (7.21)

U3(1,2,3):3A +C& , (7.22)

u4(1,2,3,4):12i_i +4IZ; +12M +3i:i
+6iZi +m . (7.23)

We observe that all the disconnected diagrams have gone hawgsneral,

Ui(1,2,...,0) = z all connectedliagrams (i.e.,"clusters”) of particles
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For later use, it is important to classify the clusters retucibleandirreducible
The first class is made of those clusters having at leasadiwilation point i.e.,
a point that, if removed together with its bonds, the resgltiagram becomes dis-
connected. Examples of reducible clusters are

A LI U o

where the articulation points are surrounded by circlegduicible clusters (also
calledstarg are those clusters with no articulation point. For ins&anc

AO R K o

7.2 External Force. Functional Analysis

As can be seen fronh (3.21)—(3123), the thermodynamic cfies1tian be obtained
in the grand canonical ensemble from derivatives at IOn the other hand, the
pair correlation functiomy(r,r») is given by [4.9) and is not obvious at all how it
can be related to a derivative of# This is possible, however, by means of a trick
consisting of assuming that anternalpotentialu(r) is added to the system. In that
case,

PN () = Dy(rM|u) = Z (7.26)
(r'|6) = rle ), 6(r)=ePun, (7.27)
=(a,B,V|0) /Z /dr Us(L,2,....0]6) . (7.28)

Thus, the quantitied, and In= become&unctionalsof the free functiorf(r).
To proceed, we will need a few simple functional derivatives

5
36(r)

5 N No5(r
6 = 6

r)le (re) LDl (fk)] i;

o(ri—r)o(rj—r’)

ﬂe(rk)l > emery - (3D

6(r1)=0(r1—r), (7.29)

(7.30)
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It is then straightforward to obtain tisebody reduced distribution functiaw in the
absence of external force as thth-order functional derivative of (6) at 6 = 1,
divided by =. In particular,

=(6)
36(r1)

EG)

=1 B o6(r1)

| =
(Y]

m(ry) = (7.32)

)

6=1

52=(0)
56(r1)00(r2)
52In=(0)
56(r1)00(ry)

Ma(ri,ro) =

|~

6=1
3In=(6) 5In=(8)

ot 80(r1) 86(ro)
21n =

=ny(ry)ny(ra2) + %

6=1

(7.33)

6=1

In (Z32) and[{Z.33)n1(r) = n= (N) /V is actually independent of the positionf
the particle, but it is convenient to keep the notatig(r) for the moment.

7.3 Root and Field Points

Taking into account(7.27), application 6f (7130) ahd (J ya&lds

—566(r) /drfug(rﬂe)

Zf/.drz---drgU[(r;l'z,...,r[), (7.34)
6=1

2 . .
W/drfug(rﬂe) zﬂ(é—1)/dr3---drgUg(r,r’;rg,...,rg).
(7.35)
In the above two equations we have distinguished betweetiqgrosariables that
are integrated out and those which are not. We will tieltl points to the former
androot points to the latter. Thus,

6=1

Ue(r;ra,...,rg) : Ursell function withl root pointand/ — 1 field points,

Up(r,r';rs,...,ry) . Ursell function with2 root pointsand/ — 2 field points.

Therefore, usind (7.28), (7.32), aiid (4.33), we have

ni(ri) =2z +/‘i(£i§‘l)! /drz---drEUZ(l;Z,...,E) , (7.36)
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Z
((=2)!

nz(rl,rg) = nl(rl)nl(r2)+zf\uz(l, 2) —|—; /drg- --drgUg(l, 2;3,... ,E) .
/=3

(7.37)
From [7.20)-{{7.23) we see that the first fene-rootcluster diagrams are

by =Us(1)=© , (7.38)

2, = /'dr2u2(1;2)= o—e | (7.39)

Gbgz/drz/dr3U3(1;2,3): f\ +20/'\ +A , (7.40)

24b4z/drz/drg/dr4u4(l;2,3,4):6T_I +6l_I +lé: +3TZ.
+3M +3M +GIZI
*—0
+34>_l +3IZI . (7.41)

Now a filled circle means that the integration over that fiedéhpis carried out. As
a consequence, some of the diagram$ in {7.22) [and] (7.23)vérattopologically
equivalent need to be disentangledin (7.40) &nd {7.41p<ime new diagrams are
invariant under the permutation of two field points but notleinthe permutation
root « field. We observe fromi{7.36) that the expansion of densitgawers of
fugacity has the structurg(7.4) with

1 . : .
by = a z all clusters with 1 root and— 1 field points.

Analogously, the first feviwo-rootcluster diagrams are

Uz(1,2) = 0—0 , (7.42)

/dr3U3(1,2;3): O/\O Jrz./xQ +O& , (7.43)
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l/mg/duuszaA)zzf_j " +2l_l +4l_j
+2L£2 +2i{f +2§§§ +4L{I
+4M +2M +2<L_<L +lj

+4l21 +L2f +I§j +I§1 . (7.44)

In (Z.42)-{7.2%) we have colored those diagrams in whichectibond between the
root particlesl and2 exists. We will call thentlosedclusters. The other clusters in
which the two root particles are not directly linked will balled openclusters.

Closed clusters factorize into—o times anopencluster. For instance,

ﬁo = 0—0 x oio , (7.45)

=0—0 x , (7.46)

ﬁ = 0—0 X%A; , (7.47)
oo

l_l = 0—0 x : (7.48)

In some cases, the root particleand2 become isolatedfter factorization.

7.4 Expansion ofny(rq,r2) in Powers of Fugacity

According to [Z.3F), the coefficients of the expansiomgfl,2) come from two
sources: the produet;(1)n;(2) and the two-root clusters. The first class is repre-
sented by two-root diagrams where particles 1 and 2 are fsdilated. The sec-
ond class includes open and closed clusters, the latterfactesizing as in[(7.45)—
(Z.48). Taking into account all of this, one realizes thatfirst few coefficients can
be factorized as

Z:1+0—0 =ePnz (7.49)
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Z: (1+ 0o )(201 +A) (7.50)

as

Z :(1+0—0) % 2?: +zl_f +4T_f +2N +2U
vl [l D wal 1T+ )

ay (7.51)

It can be proved that this factorization scheme extendsltthalorders. Thus, in
general,

[

np(ry,ra) = e Pelrure) /;aml,rz)zﬁ : (7.52)

where
ap(ri,ro) = (6—712)' z all openclusters with 2 root points and- 2 field points.

A note of caution about the nomenclature employed is in oiersay that the
diagrams ina, areopenbecause the two root particles are not directly linked. But
they are alsalustersbecause either the group 6particles are connected or they
would be connected if we imagine a bond between the two rétasing this in
mind, we can classify the (open) clusters into (open) rdgdaciusters and (open) ir-
reducible clusters (or stars), as dondin (V.24) Bnd{7Q&)ourse, all open clusters
with particles 1 and 2 isolated are reducible. The open ribthiclusters factorize
into products of open irreducible clusters. For instance,

= (0—e ), (7.53)

o—e
o—e

LC: - 2. T_f — (0—e )2, (7.54)
VAN

: (7.55)
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Plcoex A [Looex A aso

Examples of two-root opeinreducibleclusters (“stars”) are
AL VI N e

7.5 Expansion in Powers of Density

Equation[[Z.5R) has the structure pf{7.3) with= X; = 0 andX, = e #®q,. Elim-
ination of fugacity in favor of density, as ib (7.5), allows to write

Mo(ry,rp) = e Polrar2) %W(M,fz)nk , (7.58)
=

whereXy = X; = 0 andX = e B?y. Using [7.6) and{7]7), we obtain
p=1, (7.59)

V3:013—4E>2:C/'\j : (7.60)

Va = Qg — 6asby + 206% — 6b3

:%<2U vl 1] +m> . ey

Here we have taken into account tibat= a, = 1. The explicit diagrams displayed
in (Z.60) and[(7.G1) are the ones surviving after considefh39), [7.4D),[{(7.50),
(Z51), and the factorization propertiés (1.58)=(7.56)éneral,

1 . . ' :
W(ra,ro) = =2 z all openstarswith 2 root points andk— 2 field points.

A summary of the “distillation” process leading {o (7. 58)pieesented in Table
[Z]. Taking into account the definitioris (4.11) ahd](5.5)h&f tadial distribution
function and the cavity function, respectively, (4.58) tarewritten as
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Table 7.1 Summary of diagrams contributing to different quantities

Andrés Santos

Quantity Expansion in powers of Coefficient Diagrams Eaqrati
= fugacity @) Wa All (disconnected+clusters) [172.9)
In= fugacity @) U, Clusters (reducible+stars) [{7115)
Ny fugacity @) ay Open clusters (reducible+stars)[_(4.52)
np density () Y Open stars [(7.58)
Fig. 7.2 Diagrams contribut- -
ing to ys(r), ya(r), andys(r). Coefficient of n /\ =3(r)
Adapted from Table 8.3.1 of
[18]. Coefficient of %n’ 21_—1+ 4Vl+ N+ M = 2y,(r)
Coefficient of . n’ 6ﬂ+ 6ﬁ+12m+12 m
c o]l s P
c o e Ple N+ s [
= 675(r)
wle Mo
+12m+ 3m+ 3ﬁ+ 6 m
+6%+6m+3%+ m
g =e P |1y mz(r)n"] YD) =14 Wa2(n®|. (7.62)
k=1 k=1

Thus, the functiong(r) in (Z1) are given byy(r) = e By »(r). In particular,
in the limitn — 0,g(r) — go(r) = e %), which differs from the ideal-gas function
g9(r) = 1, as anticipated. However, limoy(r) = 1.

The formal extension of the resigi(r) = e ®(") to any order in densitglefines
the so-callegotential of mean forcey(r) from

g(r) =e PO :>‘ W(r) = —kgTIng(r) ‘ (7.63)
Obviously,y(r) # ¢(r), except in the limith — 0. In general,
Bw(r)=PBao(r)—Iny(r). (7.64)

The diagrams representing the functign&) andy,(r) are given by[(7.60) and
(Z.861), respectively. As the ordérincreases, the number of diagrams and their
complexity increase dramatically. This is illustrated by.&Z.2.
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The simplest diagram (of course, apart frggn= 1) is the one corresponding to
y3. More explicitly,

Va(r12) = / drs f(ria)f (r2s) - (7.65)
In the special case of hard spheres, whigile = —© (0 —r) (see FigLZ1)ys(r)

is the overlap volume of two spheres of radimsvhose centers are separated a
distancer. In d dimensions, the result is [42]

20-1(yr/4)l9-1/2 d+11
y3(r) = WG 6(20'— r)Blir2/4o-2 (T, §> , (766)
where «
By(a,b) = / deteL(1—)>t (7.67)
Jo

is the incomplete beta function [43]. In particular, forabrdimensional systems,
Va(r) = 1_"2(2_ N2(4+1)02-r), (7.68)

wherer is assumed to be measured in unitsofFor this system, each one of the
diagrams contributing tgs(r) has also been evaluatéd[44] 45, 46]. The results are

_ %%(r—1)4(r3+4r2—53r—162)@(1—r)
w1 4,3 2
e - +12242T-6)0(3-1),  (7.69)

i = —%g(r—l) (r +4r —53—162)@(1—”4'3—6@
(r—2)2(r°+4r* —51r3 — 10r + 479 — 81)0(2—r), (7.70)

7] =mor. 7.1)

N =xnea-n+enevs-n-n?, @

X

where
Xa(r) = i(r—1)4(r2+4r—53—162r’1)
A 630
) 2 20 9 1124143
oG5 T a5 3 ) N R
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3r2 41

2

= — _ 3— - —

Xs(r) nl r <280 420) r2 <15 cos Nerer
I 4 2 2r 9 B r2+r—
S cos !
560 15 2 ' 15 35r /3 _r2
(Br6 4 r2 2r 9> —r2+r+3

560 15 2 15 35 N

U)

(7.74)

7.6 Equation of State. Virial Coefficients

The knowledge of the coefficienig(r) allows us to obtain the virial coefficients
By(T) defined in[[ZP). As long as all the exact diagramgit) are incorporated,

it does not matter which route is employed to get the viriadfficients. The most

straightforward route is the virial one [s¢e(3.13)]. There,

Bu(T) = Z—Z/dryk(r)r%(rr) , (7.75)

where we have taken into account tidat (") /or = df(r)/or. In particular, the
second virial coefficient is

By(T) = i/drraf(r) - Zd’lvd/ drrdm - —d2d’lvd/ drrd=1f(r),
2d or 0 0

or
(7.76)
where we have passed to spherical coordinates [sed (5.85(a&0)] and have
integrated by parts. Going back to a volume integral,

5 [arto)| (7.77)

In general, it can be proved that[19]

By(T) = —k— Z all openstarswith 1 root andk — 1 field points.

The first few cases are

Bo(T) = —% o—e | By(T)=-3 (7.78)
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1
B4(T) = ~3 3 +6 + . (7.79)

7.6.1 Second Virial Coefficient

For d-dimensional hard spheres, the second virial coefficiesinigply
B, = 29 1lyy09 (7.80)
so that the equation of state truncated afigrs

Z=——=1+2%n+..., (7.81)

where

n = nygod (7.82)

is the packing fraction [seE (5]41) for its definition in thaltitomponent case].
The hard-sphere Mayer function is independent of tempexasee Fig[ 7]1)

and so are the hard-sphere virial coefficients. On the othedhin generaB,(T)

is a function of temperature. As a simple example, the rdsulthe square-well

potential [see[(6.39) and Fig.7.1] is
Ba(T) = 29 Lyyod {1— (eﬁf - 1) [(o’/a)d - 1} } : (7.83)
The evaluation is less straightforward in the case of cowotirs potentials like

the Lennard-Jones one [sée (4.14)]. Let us consider the gewreral case of the
Lennard-Jones &s) potential (withs > d):

o= (2)"-(2)7]. (7.84)

r r

Starting from the last equality il (776) and introducing tihange of variable —
t=./8B¢&(a/r)3 one has

Bz(T)=—2d’1vdadg(8[3£)d/25 /O dtt—9/s1 (e*t2/2+ 258‘-1) . (7.85)

The integral can be compared with the following integralresgntation of the
parabolic cylinder functiori[43]:

—22/4 oo
Da(2) = % /O dt 2t (e 2% 1) O<Re@)<l.  (7.86)

Thus, [Z.8b) becomes
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B(T)/By®

Boyle temperature

St €

Fig. 7.3 Left panel:By(T) for a square-well fluid witho’/o = 1.5. Right panel:Bx(T) for a
Lennard-Jones &) fluid withs=4, 5, 6, 7, 8, and 12, from bottom to top.

d/2s
(@) Temen(F) e

whereT* =kgT /¢ andB?S is given by [[7.8D). To the best of the author’s knowledge,
the compact expression (7187) has not been published before

Figure[Z.8 shows the temperature-dependend ofelative to the hard-sphere
value with the same, for (three-dimensional) square-well and Lennard-Jones fl
ids [47]. For low temperatures the attractive part of theeptil dominates and
thus B, < 0, meaning that in the low-density regime the pressure idlenthan
that of an ideal gas at the same density. Reciprodaly; O for high temperatures,
in which case the repulsive part of the potential prevailse Transition between
both situations takes place at the so-called Boyle temperag, whereB, = 0.
Note that, while the square-well second virial coefficietmotonically grows with
temperature and asymptotically tends to the hard-sphdue vélne Lennard-Jones
coefficient reaches a maximum (smaller than the hard-spladue corresponding
to a diametew) and then decreases very slowly. This reflects the fact tratdry
high temperatures the system behaves practically as aspaiete system but with
aneffectivediameter smaller than the nominal valae

7.6.2 Higher-Order Virial Coefficients for Hard Spheres

The evaluation of virial coefficients beyori®) becomes a formidable task as the
order increases and it is necessary to resort to numericatédvloarlo methods to
perform the multiple integrals involved. Needless to dagtask is much more man-
ageable in the case of hard spheres. In the one-componentleashird and fourth
virial coefficients are analytically knowh [48,149] aBg-B; , have been numerically

evaluated[50, 51, 52, 53,554].
The third virial coefficient is[[55]
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Flg 74 SeCOI’]d and thll’d Table I. The Second and Third Virial Coefficients as Functions of Dimension
virial coefficients ford- B/
dimensional hard spheres. v
Source: [B)] . D B, Exact Numerical
1 4 1 1
3
2 n6?/2 ﬂ—i 0.782004- - -
3 =z
3 216°/3 5/8 0.625
4 /33
4 264/4 R s 0.506340 - -
ot/ 32 506340
5 4n’s°/15 53/27 0.414063 - - -
3
6 nc®/12 ﬁ—ig 0.340941 - -
3 n5
7 8n°¢7/105 289/2' 0.282227---
e AL
8 n'o®/48 3% 140 0.234614
9 16mc°/945 6413/2" 0.195709- -
4 \/3297
5510 i At
10 n°c'°/240 377 140 0.163728
11 327°¢'1 /10395 35995/21% 0.137310---
4 oz
6,12 IV A
12 72/ 1440 377 110 0.115398
F|g 7.5 Fourth virial coeffi- Table Il. Exact and Numerical Values of the Fourth Virial Coefficient
cient ford-dimensional hard N - )
B4/ By Decimal expansion
spheres. Sourcé: [49].
2 2-38 410k 0.53223180...
30 HOg 2 VA a1/ 0.28694950598 ...
4 2-ULgspd 0.15184606235....

0.151846054(20)
0.15184(7)13)

25315393 3888425 V2 _ 67183425 arccos (1/3)

5 3280076 16400384 =~ 32800768 E3 0.07597248028 o
0.075972512(4)®
0.07592(6)13
0.075978(4)14)

81 /3 | 38848 1
6 2-Ho4 8L 0.03336314...
299189248759 159966456685 /2 292926667005 arccos (1/3)
7 0596061158 T 43582;4;0917,76 E 96&653’537:3 k3 0.00986494662....
0.009873(3)4
2511 V3 17605024 1
8 2-3M 8 s L —0.00255768...
2886207717678787 2698457589952103 2 8656066770083523 arccos (1/3) <
9 2281372811001856 + 5703432027534640 “m T 22813728T1001856 T —0.00858079817....
—0.008575(3)1
2673 /3 | 49048616 1
10 2-FpL 4 fodao —0.01096248....
11 17357449486516274011 + 16554115383300832799 ﬁ
T1932824186709344256 29832060466773360640 7
52251492946866520923 cos (1/3) -
"~ T1932824186709344256 E3 - —0.01133719858....
—0.011333(3)(1
2187 V3 11565604768 1
120 2= 505 2 + 5 77 ~0.010670281.....
B3 d+1 1
= =2l =5 ) (7.88)
B3 2 2

where (a,b) = Bx(a,b)[ (a+ b)/I(a)l (b) is the regularizedincomplete beta
function [see[(7.67)]. The explicit expressionsBaf and 33/55 ford < 12 can be
found in Fig[Z#. We note th&z/B3 is a rational number ifl = odd, while it is an
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D Bs/B§ Ba/BS B7/BS Bg/BQ7 Bg/BS Blo/Bg

2 0.33355604(1)*  0.1988425(42)  0.1148728(43)  0.0649930(34) 0.0362193(35) 0.0199537(80)
3 0.110252(1)* 0.03888198(91) 0.01302354(91)  0.0041832(11) 0.0013094(13)  0.0004035(15)
4 0.0357041(17 0.0077359(16)  0.0014303(19)  0.0002888(18) 0.0000441(22)  0.0000113(31)

0.0129551(13

0.0070724(10

0.0009815(14

—0.0035121(11

0.0004162(19)
0.0013066(18)
0.0025386(16)

—0.0008950(30
—0.0019937(28

0.0000747(26)
0.0006673(45

—0.0000492(48)
—0.000525(16)
—0.001514(14)

)
)
)
—0.0001120(20)
)
)
)

)
) )
0.0075231(11)  —0.0017385(13)
) )
3 )

0w N & »o

)
0.0016869(41)
)

0.00743092(93) —0.0045164(11)  0.0034149(15) —0.0028624(26) 0.0025969(38) —0.002511(13)

Fig. 7.6 Fifth to tenth virial coefficient fod-dimensional hard spheres. The numbers in parenthe-
ses indicate the statistical error in the last significagitsli Source:[[52].

irrational number (since it includeg3/m) if d = even. The influence of the parity
of d is also present in the exact evaluationBaf which has been carried out sepa-
rately ford = even [50] andd = odd [49]. The results fod < 12 are shown in Fig.
[7.5. We see tha,/B3 is always an irrational number that includg8/mand 1/

if d = even, while itincludes/2/mand cos*(1/3)/mif d = odd. Interestingly, the
fourth virial coefficient becomes negative fie> 8.

The Monte Carlo numerical values of the virial coefficieBtsB1o up tod = 8
[52,/53] are displayed in Fi._1.6. Whils, B;, andBg remain positive (at least if
d < 8), B, Bg, andB;p become negative il > 6,d > 5, andd > 5, respectively.
While the known first ten and twelve virial coefficients aresipive if d = 4 and
d = 3 [54], respectively, the behavior observed whtk 5 shows that this does
not need to be necessarily the case for all the virial coefiisi. It is then legitimate
to speculate that, for three-dimensional hard-spheresysta certain high-order
coefficientBy (perhaps withk = even) might become negative, alternating in sign
thereafter. This scenario would be consistent with a saxgtyl of the equation of
state on the (density) negative real axis that would detegrttie radius of conver-
gence of the virial serie5 [52, 53./56].

7.6.3 Simple Approximations

In terms of the packing fraction, the virial series[(7]2) becomes

Z=142""1n+ban?+bsn3+---, br=By/(vgoh) 1. (7.89)
Although incomplete, the knowledge of the first few viriakdficients is practically
the only access to exact information about the equationaté sif the hard-sphere
fluid. If the packing fractiom is low enough, the virial expansion truncated after
a given order is an accurate representation of the exactiegu state. However,
this tool is not practical at moderate or high valuegjoin those cases, instead of
truncating the series, it is far more convenient to constan@pproximantwhich,
while keeping a number of exact virial coefficients, inclsi@ of orders in density

[57]. The most popular class is made by Padé approximaBjs\ifhere the com-
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Fig. 7.7 Close-packing

configuration in a system of

hard disks. The fraction of

the total area occupied by the

disks isncp = @T Source:

http://en.w Ki pedi a. or g/ w ki / Packi ng probl em.

pressibility factorZ is approximated by the ratio of two polynomials. Obviously,
as the number of retained exact virial coefficients increasedoes the complex-
ity of the approximant. Here, however, we will deal with siempbut yet accurate,
approximations.

Hard disks (d = 2)

In the two-dimensional case, the virial series truncatéer d@fhe third virial coeffi-
cientis

Z=1+2n+bsn’+---, nzgnoz, (7.90)
where 4 -
b3_4(§—\/§rr) =3128 ~ . (7.91)
Henderson’s approximation [69] consists of
_1+n?%/8| 25 ,
Z= i-np =1+2n+ g+ (7.92)

As we see, it retains the exact second virial coefficient anatianal-number ap-
proximation of the third virial coefficient. On the other ltar{Z.92) assumes that
the pressure is finite for any < 1, whereas by geometrical reasons the maximum

conceivable packing fraction is the close-packing vajge= @T ~0.907 (see Fig.
[.3).

Another simple approximatioh[600, 61] exploits the secoinhcoefficientb, =
2 only but imposes a pole gt,. Thus, the constraints are

(7.93)

S Ji+ont n<t,
o, I —Ncp-

A simple approximation satisfying those requirements is


http://en.wikipedia.org/wiki/Packing_problem
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Fig. 7.8 Comparison between 10
computer-simulation values

of the equation of state of a

hard-disk fluid [[62] and the 8
theoretical approximations

(792) (label H) and{7.94)

(label SHY). 6 8
~
Q‘TQ
ER ]
],
2 u
0 s 1 s 1 s 1 s
0.0 0.2 0.4 0.6 0.8

Table 7.2 The second row shows the round-off integer of the known firgtite reduced virial
coefficientshy of a three-dimensional hard-sphere fluid. The third row gjitee values obtained
from the formulak? + k — 2. Finally, the deviatiom\by of the latter values from the true values of
by are shown in the fourth row.

k 2 3 4 5 6 7 8 9 10 11 12

Round-off 4 10 18 28 40 53 69 86 106  128(5) 111(30)
K+k—2 4 10 18 28 40 54 70 88 108 130 154

Aby 0 0 -036-022018 066 15 22 22(4) 2(5 43(30)
1
z- (7.94)
1-2n+ —Z”SZ’lnz
ép

Figure[ 7.8 compares the predictions[of (7.92) and {7.94hageomputer simu-
lations [62]. Despite their simplicity, both approximat®oexhibit an excellent per-
formance, even at packing fractions where the pressureastden times higher
than the ideal-gas one.

Hard spheres @ = 3)

In the three-dimensional casg= (71/6)na* and the second and third reduced virial
coefficients are integer numbels: = 4 andbz = 10. The fourth virial coefficient,
however, is a transcendental number (see[Fig] 7.11), nampelyl8.36476838- -.

If we round off this coefficientlf, ~ 18), we realize thalby — bz = (bz — by) + 2.
Interestingly, by continuing the rounding-off process tklationshigy, — b, =
(bx_1— by 2) + 2 extends up t& = 6, as shown in Table™.2.
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Fig. 7.9 Compressibility LS T lati T 0777
factor for three-dimensional 16} imulation /
hard spheres, as obtained —CS 7
from computer simulations
[64] and from the Carnahan— 12k ?/ 8
Starling equation of state '50/
o
(Z98). e 2
£ 8 e
S b7
2
4t B
0 [ 1 s 1
0.0 0.2 0.4 0.6
n

In the late sixties only the first six virial coefficients wexecurately known and
thus Carnahan and Starling [63] proposed to extrapolatestatonshigo, — b1 =
(bk—1—bx_2) + 2 to anyk > 2, what is equivalent to the approximation

b =k?>+k—2. (7.95)

By summing the virial series within that approximation ytlabtained the famous
Carnahan-Starling (CS) equation of state:

_1+n+n®-n’
Zes= 13 (7.96)
The corresponding isothermal susceptibility is
_[0(nZes)] (1-n)*
res™ [ on } T 1tan+anZ—and+nt- (7.97)

Figure 7.9 shows that, despite its simplicity, the Carnai®tarling equation ex-
hibits an excellent performance over the whole fluid stabgan and even in the
metastable fluid regiom(> 0.492 [65]), where the crystal is the stable phase. This
is remarkable because, as shown in Tablé 7.2, the appragimat= k% +k — 2
fails to capture the rounding-off of the virial coefficient for k > 7, the devia-
tion Aby tending to increase witk. The explanation might partially lie in the fact
that the Carnahan—Starling recipe underestimaesidbs but this is compensated
by an overestimate of the higher virial coefficients. Apadnfi that, and analo-
gously to Henderson’s equatidn (7.92), the Carnahan-i&jatjuation[(7.96) pro-
vides finite values even for packing fractions higher tham dtose-packing value
Nep = TV/2/6 =~ 0.7405.
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Fig. 8.1 Left panel: Leonard p—
Salomon Ornstein (1880—
1941). Right panel: Frits
Zernike (1888-1966).
( ) -

oo

Fig. 8.2 Sketch of the mean- 3 20
ing of the Ornstein—Zernike & @Q_
relation [81). & R
1 2 1 1 2
o0 =0 0 +
TOTAL: his direct: c12

8 Ornstein—Zernike Relation and Approximate Integral
Equation Theories

Similarly to what was said above in connection with the forwigal expansion
(Z2) of the equation of state, the virial representatiaf4y of the radial distribu-
tion function is only practical in the low-density regima,which case the expan-
sion can be truncated after a certain low order. On the othed hat moderate or
high densities this strategy is not useful and in that casehetter to resort to ap-
proximations that include all the orders of density, in agglto what was done in
the hard-sphere equation-of-state case viith {7.92).](728%l [7.96). In order to
construct those approximations, a crucial quantity isdinect correlation function

c(r).

8.1 Direct Correlation Function

We recall that the total correlation function is defined[byB). This function owes
its name to the fact that it measures the degree of spatis¢latipn between two
particles separated a distarrcgéue not only to theidirectinteraction but alsindi-
rectly through other intermediate or “messenger” particles. ¢t e range ofi(r)
is usually much larger than that of the potentat) itself, as illustrated by Figs.
[4.2 and_64. In fluids with a gas-liquid phase transitiofr) decays algebraically
at thecritical point, so that the integraJ dr h(r) diverges and so does the isother-
mal compressibilitykr [see [5.1)], a phenomenon known eritical opalescence
[18,[22].

It is then important to disentangle froh(r) its direct and indirect contribu-
tions. This aim was addressed in 1914 by the Dutch physicis& Ornstein and
F. Zernike (see Fid_8.1). They defined ttieect correlation functiorc(r) by the
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integral relation

h(rlg) = C(I’lz) + n/.dr3c(r13)h(r32) . (81)

The idea behind the Ornstein—Zernike (OZ) relatlonl(8. $kistched in Fid. 8]2: the
total correlation functiotn;, between particles 1 and 2 can be decomposed into the
direct correlation functiommy» plus the indirect part, the latter being mediated by a
messenger particle 3 that is directly correlated to 1 arallyotorrelated to 2.

Thanks to the convolution structure of the indirect parg @rnstein—Zernike
relation [8:1) becomdsk) = €(k) + nc(k)h(k) in Fourier space or, equivalently,

O L) Sk h(k)

h()—m, :m. (8.2)

Thus, the compressibility route to the equation of sfaf#)(&an be rewritten as

X =nkgTkT = (8.3)

1-ng(0) |

Therefore, even ifi(0) — o (at the critical point)§(0) — n—1 = finite, thus showing
thatc(r) is much shorter ranged théu(r), as expected.

It is important to bear in mind that the Ornstein—Zerniketiein [81)defines
c(r). Therefore, it isnot a closed equation. However, if @pproximate closuref
the formc(r) = .7 [h(r)] is assumed, one can obtaiclased integral equatian

h(r):ﬁ[h(r)]+n/dr’9‘[h(r’)]h(|r—r’|). (8.4)
In contrast to a truncated density expansion, a closure pleabto all orders in
density.

Before addressing thdosure problentet us first derivdormally exactrelations
betweerc(r), h(r), and some other functions.

8.2 Classification of Diagrams
We recall from[[7.6R) (see also Fig.7.2) that

po-sind o3 (2 T el L LI )

(8.5)
We now introduce the following classification openstars:
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e “Chains” (or nodal diagrams), % (r): Subset ofopendiagrams having
at least onenode A node is a field particle which must beecessarily
traversed when going from one root to the other one.

The first few terms in the expansion®fri,) are

‘K(rlz):nO&j +%2<2U +4M)+~--. (8.6)

e Open “parallel” diagrams (or open “bundles”), &?(r): Subset ofopen
diagrams with no nodes, such that there are at kwasttotally indepen-
dent (“parallel”) paths to go from one root to the other onlee Existence
of parallel paths means that if the roots (together withrtbends) were
removed, the resulting diagram would fall into two or moreqgas.

The functionZ?(r) is of second order in density:

2
W(rlz):%m + e (8.7)

e “Bridge” (or “elementary”) diagrams, 4(r): Subset ofopendiagrams
with no nodes, such that there dot exist two totally independent ways to
go from one root to the other one.

Analogously toZ(r), the bridge function’(r) is of ordern?:

2
B(r12) = % m +e (8.8)

Figure[8.8 shows the classification to ordérSince the three classes exhaust all
the open stars, we can write

V(1) =1+6()+ 2(r) + B(r) |. (8.9)

As for the total correlation function, the diagrams conttibg to it are
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Fig. 8.3 First few chain, open

parallel, and bridge diagrams. Coefficient of n

==

BES S T o
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Adapted from Table 8.3.1 of c(r)
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h(riz) = (1+ 0—0 )y(riz) -1

coo A+ A )2 (2] el 1
N e 2

= ;% z openandclosedstars with 2 roots ank field points. (8.10)
o K

It is not worth classifying the closed diagrams. Insteadytjoin the open bundles
to create an augmented class:

e “Parallel” diagrams (or “bundles”), 2% (r): All closeddiagrams plus
theopenbundles.

The first few ones are

P (rpp) = 00 +n0&O +n—22 m +2l:£ +4IZ:L
+IZT +& T (8.11)
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Obviously,

(h(n) =%(1)+ 2 (1) +2(0)]. (8.12)

Why this classification? There are two main reasons. Figggngoarallel dia-
grams () factorize into products of chaing? and bridge diagramsZ). For in-

stance,
2

SHES

As a consequence, it can be proved that

1 1
P = E(%+%)2+§(%+%)3+---

= (146 +B) = [C+ B =1+ + 2+ 2)|. (814)

Making use of[(8.114) in(8]9), we obtainyr= ¢ + % or, equivalently,

|Ing(r) = —Bo(r) +€(r) + A(r)|. (8.15)

The second important reason for the classification of opans $$ that, as we are
about to see, the chain®’) do notcontribute to the direct correlation functia(r).
Let us first rewrite[(8.10) as

h(riz) = 0—0 +n(0/'\o +A)+”—;(2U +4M +I:T
NS 7 S m) 616)

where thechainsare marked in blue. Next, the Ornstein—Zernike relatiodl)(8r
(8.2) can be iterated to yield

c=h—nhxh+n*hshxh—nhxhsxhsh+... (8.17)

where the asterisk denotes a convolution integral. Therdiag representing those
convolutions are always chains. For instance,

h*h:/drgh(rlg)h(rgz): C/\O +2n<U +M ) 4., (8.18)

h*h*h:'/drg/dr4h(r13)h(r34)h(r42) - T_T . (8.19)
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Inserting [8.16),[(8.18), and (8119) info (8.17), one aldai

o= o= wn A\ +F (1] + 1N w2l ]
] +E)+-... (8.20)

Thus, as anticipated, all chain diagrams cancel out! Thietssurprising after all
since the chains are the open diagrams that more easily catréiehed out”, thus
allowing particles 1 and 2 to be be correlated via interntediarticles, even if the
distancer12 is much larger than the interaction range. Note, howevat the direct
correlation function is not limited to closed diagrams blsbaincludes the open
diagrams with no nodes. Therefore,

lc(n) = 2 () +2(0)]. (8.21)

From [8.9), [8.1R),[(8.15), an (8]21) we can extract thenchanction in three
alternative ways:

€(r) =ePPg(r) —1— 2(r) — B(r), (8.22)
¢(r)=Ing(r)+Bo(r) — A(r), (8.23)
€(r)=h(r)—c(r) . (8.24)

Combination of[(8.22) and[(8.24) yields

o(r) =g(r) [1- 70| + 2(r) + (1) |. (8.25)

Similarly, combining[(8.23) and (8.24) one gets

‘c(r) =g(r)—1—Ing(r)—Be(r) + A(r) ‘ (8.26)

8.3 Approximate Closures

Equations[(8.25) and (8.26) are formally exact, but theynateclosed since they
have the structure(r) = .Z[h(r), 2(r) + %(r)] andc(r) = .Z[h(r), B(r)], respec-
tively.

In most of the cases, a closwie) = .7 [h(r)] [see [8:#)] is aad hocapproxima-
tion whose usefulness must be judgegosteriori The two prototype closures are
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the hypernetted-chain (HNC) closufe [66] 67] and the Perdexdck (PY) closure
[68].

8.3.1 HNC and Percus—Yevick Integral Equations

The HNC closure consists of settitg(r) = 0 in (8.26):

|c(r) =g(r)—1-Ing(r) - Be(r)| (HNC). (8.27)

Similarly, the Percus—Yevick closure is obtained by sgtti#f(r) + #(r) = 0 in
(8:23), what results in

o(r) = g(r) [1—eﬁ<ﬂ<f>] (PY). (8.28)

By inserting the above closures into the Ornstein—Zernékation [8.1) we obtain
the HNC and Percus—Yevick integral equations, respegtivel

HNC = In {g(r)eﬁ"’(r)] - —n/dr’ {ln [g(r/)eﬁw’)} - h(r’)} h(r —r'|), (8.29)

PY = g(nef?n 1= n /dr’ [0r)eP9) — 1~ h(r)| n(r 1)) (8.:30)

Interestingly, if one formally assumes thét) = g(r)ef?(") ~ 1 and applies the lin-
earization property Ilﬁg(r)e‘g"’“)} —g(r)ef?") — 1, then the HNC integral equation
(8:29) becomes the Percus—Yevick integral equalion (8@0)the other hand, the
Percus—Yevick theory stands by itself, evew(if) is not close to 1.

A few comments are in order. First, the density expansiomgfc(r) and
yrnc(r) can be obtained from the closed integral equation by itmatt turns out
that not only the bridge diagrams disappear, but alsmechain and open par-
allel diagrams are not retained either. This is because ¢lgéeat of (r) at the
level of (8.26) propagates to other non-bridge diagramsatievel of [8.9). For
instance, while[(814) is an identity, we cannot negletr) on both sides, i.e.,
€ #In(1+ %+ 22). A similar comment applies tbpy(r) andypy(r), in which
case some chain diagrams disappear along with all the baddeopen parallel
diagrams. This is illustrated by comparison between Eiga8d 8.4.

Another interesting feature is that all the diagrams negtkin the density expan-
sion ofyync(r) are neglected in the density expansiorygf(r) as well. However,
the latter neglects extra diagrams which are retainegdgy:(r). Thus, one could
think that the HNC equation ialwaysa better approximation than the Percus—
Yevick equation. On the other hand, this is not necessdniy dase, especially
for hard-sphere-like systems. In those cases the diagragisated in the Percus—
Yevick equation may cancel each other to a reasonable deggréleat adding more
diagrams (as HNC does) may actually worsen the result. Rtance, the combi-
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Fig. 8.4 The colored dia- B
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nation of the two diagrams neglected by the Percus—Yevipkagimation to first

order in density is
—|— ; =

where the dotted line on the right-hand side meang-Aond between the field
particles 3 and 4, i.e., a factorf1f(rs4) = e #9("34)_In the hard-sphere case the
three diagrams i (8.81) vanishrif, > 20 since in that case it is impossible that
either particle 3 or particle 4 can be separated from bothdl2aa distance smaller
thano. If ri2 < 20, the only configurations which contribute to the diagramfan t
right-hand side of[(8.31) are those wheig < T, I3 < 0, 14 < 0, andrys < 0
but r34 > 0. It is obvious that those configurations represent a smedlieime than

(8.31)
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the ones contributing to any of the two diagrams on the leftehside of[(8.31),
especially ifr1, > 0. In fact, as can be seen frol (7.71) and (VV.72), the rightthan
side of [B.31l) vanishesif> /30 in the three-dimensional case. The three diagrams
in (8:31) are plotted in Fig. 8.5 in the rangeclry»/o < 2.

Being approximate, thg(r) obtained from either the Percus—Yevick or the HNC
theory isnot thermodynamically consistent, i.e., virial rogtehemical-potential
route£compressibility routg¢energy route. However, it can be proved that the virial
and energy routes are equivalent in the HNC approximatioatig interaction po-
tential [2,[69].

What makes the Percus—Yevick integral equation partigubgspealing is that
it admits a non-triviaexactsolution for three-dimensional hard-sphere liquids [70,
[71]72], sticky hard sphereés[39], additive hard-sphereaunés [73], additive sticky-
hard-sphere mixtures [Vi4,175], and their generalizatioms+ odd dimensions[76,
[77,[78]79].

8.3.2 A Few Other Closures

Apart from the classical Percus—Yevick and HNC approxioredj many other
ones have been proposed in the literatlife[ ]2, 22]. Most ahths formulated
as closing the formallyexactrelation [8.26) with amapproximationof the form

B(r) = F[y(r)], where

V() =h(r)—c()| (8.32)

is theindirect correlation function. In particular,

HNC = A(r) =0,
PY = A(r)=In[1+y(r)]—y(r)—1. (8.33)
In several cases the closure containgdjustableparameter fitted to guarantee the

thermodynamic consistency between two routes (usualigiand compressibility).
A few examples are

e Verlet (modified)[80]

2
B(r) = —%% , a;= g , (8.34)

e Martynov—Sarkiso\[81]
B(r)=~/1+2y(r)—y(r)—1, (8.35)

e Rogers—Yound[82]

exp[(1—e *)y(r)] -
l-e&f

%’(r)=|n{1+ 1}—y(r), a;=0.160, (8.36)
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e Ballone—Pastore—Galli-Gazzillo [83]

B(r)=[1+agy(nN]Y2—y(r) -1, as=". (8.37)

8.3.3 Linearized Debye—Hiickel and Mean Spherical Approxnations

We end this section with two more simple approximate theofést, the linearized
Debye—Hiickel (LDH) theory consists of retaining only timear chain diagrams in

the expansion of(r) [see [85)]:
W(I’) Ey(r)—lzno—o—o+n20—o—o—o+n30—o—o—o—o+~~~ . (8.38)

This apparently crude approximation is justified in the ocafSkong-rangeinterac-

tions (like Coulomb’s) since the linear chains are the mostrdgent diagrams but

their sum gives a convergent result[22]. The approximaf88) is also valid for

boundedpotentials in the high-temperature limit [84]. For thosegmtials|f(r)|

can be made arbitrarily small by increasing the temperamndehus, at any order in

density, the linear chains (having the least number of bpagsthe dominant ones.
In Fourier space[(8.38) becomes

~ 2
LDH = (k) = n [?(k)rmz [F(k)]3+n3 [F(k)]4+--- = % . (8.39)

The conventional Debye—Huickel theory is obtained frof@gBby assuming that (i)
Iny(r) ~w(r) and (i) f(r) ~ —B¢(r). In that case[(7.64) yield3{ (k) ~ B(k) —
W(k) ~ Bo(k)/[1+nBa(k)].

Another approximation closely related to the linearizedype-Huckel theory
(8:39) is the mean spherical approximation (MSA). First, stat from the iden-
tity h(r) = f(r)y(r) + y(r) — 1. Next, in the same spirit as the assumption (i)
above, we assumg(r)y(r) ~ y(r), so thath(k) ~ f (k) + W(k). Insertion of [8:39)
yields h(k) ~ f(k)/[1— nf(k)]. According to the Ornstein—Zernike relatidn (8.2),
the above approximation is equivalentdk) = f(k). Going back to real space,
c(r) = f(r). Finally, repeating the assumption (ii) above, we get

MSA = ¢(r) = —Bo(r) = h(k) = 1;[:]72% . (8.40)

It must be noted that in the mean spherical approximationdttext correlation
function is independent of density but differs from its @mtr zero-density limit
c(r) — f(r) [see [B2D)].

The mean spherical approximatidn (8.40) has usually beplegito bounded
and soft potentials [85]. For potentials with a hard core ato plus an attractive
tail for r > o, the mean spherical approximatidn (8.40) is replaced bydthéble
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Fig. 9.1 Scheme of the re- - 2 , 34 ...
lationship between the func- y(r) + 3(min + yamin” + ()" +
tions y(r) and the virial

coefficientsBy.

Thermodynamic routes

L]

7= =1+ Ban + Bsn® + Ban® + Bsn® + - -
TL]{?BT
condition
ry=0 r<o
g(r)=0, <a, (8.41)
c(r)=-Bo(r), r>o.

This version of the mean spherical approximation is exasalyable for Yukawa

fluids [88,87].

9 Some Thermodynamic Consistency Relations in Approximate
Theories

As sketched in Fid_5l3, an approximae) does not guarantee thermodynamic
consistency among the different routes. However, thera fewr cases where either
a partial consistency or a certain relationship may exist.

9.1 AreB{™Y and B "% Related?

As summarized in Fig._ 91, the knowledge of the coefficignts) in the density
expansion of the cavity function allows one to obtain théaVicoefficientsBy. In
general, unless the functiopg(r) are exact, the virial coefficienB will depend
on the thermodynamic route followed. Here, we will focus ba tompressibility
route [see[(5]1)] and the virial route [sée (5.13)], derwptire corresponding virial
coefficients byBﬁc) andBi(("), respectively.

As shown before [se€(7]75)], the virial route yields

Bl = 2—1d/dr W(r)r%. ©.1)

As for the compressibility route, frori(3.1) one has
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X =1+ n/dr {[f(r)+2y(r)—1}
= 1+ XoN+ Xan*+ Xan>+--- | (9:2)

where
XZ:/drf(r), Xk:/dr [F()+ Uu(r), k>3, 9.3)

Then, taking into account that= [ (nZ)/dn] %, we obtain

1 1 1
By =—SXe. BY=-Z(xa-x8). BY=-700u-2xxs+x3). (94

9.1.1 HNC and Percus—-Yevick Theories

Let us now particularize to the HNC and Percus-Yevick thm)rSince/épY)(r) =
N9 (1) = Y@ (1) (see FiglBMY), it follows that

B(PY,V) _ B(PY,C)

(HNCyV) _ L(HNCc)
3 3 B =B

{ { Bl (9.5)

On the other hand™ " (r) # ys™ (1) # yi¥@% (r) (see again Fig8l4). Therefore,
it can be expected that

BL(lPY,v) 7& BgPY,c) 7& BElHNC,v) 7& BgHNC’C) 7& Bgexacc . (9.6)
However, interestingly enougBﬁPY‘c) anngHNC’V) turn out to be closely related.

More specifically, our aim is to prove that [88]

BgHNC,v) B ng(;PYm 9.7)

for any potentialp(r) and dimensionalitgl.

9.1.2 A“Flexible” Function y4(r)

The exact functiony(r) is given by [Z.611). As shown by Fig. 8.4, the HNC approxi-
mation neglects the last diagram and the Percus—Yevicloappation neglects the
two last diagrams. In order to account for all of these padlis#ls, let us construct
the function

=3 (2U val /] nl ] +A2§> NG
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The casegA1,A2) = (1,1), (1,0), and (0,0) correspond to the exact, HNC, and
Percus—Yevick functions, respectively.
Inserting [9.8) into[(3]1), one has

BgW:%(ztI +4TZI +/\1LZI +)\2E ) (9.9)

where a dashed line denotes a fac@f (r)/dr. By integrating by parts, the follow-
ing properties can be proved [88]:

Ll = d._. , (9.10)
TZI +% =—374d : (9.11)

d
m =3 . (9.12)
Consequently,

B J;—l __IZI M "1‘1 (9.13)

In the case of the compressibility route, (9.3) yields

X2=0—9 , x3:C/\ +A ; (9.14)
L2+ 4+ A1+ A A
-l o5 el L 3 I

(9.15)

where in [9.1Fb) use has been made of the property

IZI = IZI :v*IZI . (9.16)
XoX3 = T_I +14 . Xe= T_I ; (9.17)

and using[(Q}4), we finally obtain

B — 2+A1<Ll _wm _"_BZE . (9.18)

Noting that
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Fig. 9.2 The diagonal (la- T T T
beled c) and vertical (labeled 1.0 Exget
v) lines represent the classes

of approximationsA\; = A,

and A; = 1, respectively.

The dashed tie lines connect

the pairs of approximations

whose respective values of ~ 0.5

B\ andB)’ are related by

©.19).

0.0

Comparison betweeh (9]13) afd (3.18) shows that

. 3A 3 .
B!’ (Wlth A =1and); = 2—1——/\) =507 BY (with Ay =A2=2)|. (9.19)

In the case of the exag4(r) we haveAd = 1 in both sides ofi[{9.19) and therefore
B{T?M — B{®@%) as expected. On the other hand, the chaiee0 makes the left-
and right-hand sides correspond to the HNC and Percus-Rkeyiproximations,
respectively, and theb (9.19) reduces to the sought ré&ulx. (

More in general [(9.19) implies that for any approximatidnhe classA; = A,
there exists a specific approximation of the clags= 1, such that the compress-
ibility and virial values, respectively, @4 are proportional to each other. The con-
nection between both classes is schematically illustramterig.[9.2. Interestingly,
the largest deviation of the proportionality factor from dcars in the case of the
Percus—Yevick and HNC pair. The proofbf(9.19) can be easilgnded to mixtures

[83].

9.2 Energy and Virial Routes in the Linearized Debyetidkel
Theory and in the Mean Spherical Approximation

As said in Secf]8, the energy and virial routes are equivaléhe HNC approxima-
tion. Now we will see that the same property holds in the lirresl Debye—Huickel

approximation[(8.39)[89] and in the mean spherical appnagion [8.40)[[90].
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9.2.1 Linearized Debye—Hiickel Theory

We start by recalling the energy and pressure rolife$ (5&b)Rai3), respectively.
In terms ofw(r) =y(r) — 1, they are given by

ex:<E>eX7_Q/ of(r)
W= ="3 dr [14w(r)] B (9.20)
E%—l—i——/dr [L+w(r)]r-OF(r) . (9.21)
The consistency condition between both routes is provigatd® Maxwell rela-
tion
aus* 9z
n—m = 0B (9.22)
Given the mathematical identity
- of(r)
—/dr 50 ddﬁ [/drr Of(r )} (9.23)
the consistency conditioh (9]22) becomes
7] : af(r
- {n/drw(r) } 438 [/drw } L (9.24)

Since the linearized Debye—Hiickel approximation (8.8®&imulated in Fourier
space, it is convenient to express the spatial integra@.I} as wavevector inte-

[ /dk ] 438 {/dk (k)}}. (9.25)

We now make use of the mathematical identity

%{W(k)gk.[kﬂk)”_ a\g—é)f(k)+mk. kw (K) %ﬁ")]
ke [ 208079 - 22 Dkv~v(k>] (9.26)
to rewrite [9.2F) as
l /dkw ] /dkk l k?(k)—%[gk)[lkw(k)]

+/dk‘g’—BF(k) . (9.27)
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It must be emphasized that no approximations have beeredarut so far. There-
fore, any W(k) satisfying the conditior[{9:27) gives thermodynamicatiysistent

results via the energy and virial routes.
Let us suppose dosurerelation of the form

W(k) =n 17 (an(k)) ., F(z) = arbitrary. (9.28)

This implies the relations

% nw (k)] = 7' (n?(k)) fk) . (9.29)
%g‘) — (n?(k)) %g‘) : (9.30)
W (K) = F/ (nf(k)) O (K) - (9.31)

Itis then straightforward to check that the energy-vir@isistency conditio (9.27)
is identically satisfied.

As a corollary, the linearized Debye—Hiickel approxima{@.39) belongs to the
scaling clasg[(9.28) with the particular choié&z) = 22/(1— z), what closes the
proof.

9.2.2 Mean Spherical Approximation
The proof in the case on the mean spherical approximdiicil)8ollows along

similar lines [90]. Now, instead of{9.20) anld (9121), wersfeom the energy and
virial routes written in the form$ {5.4) and (5112), namely

U = g/dr [1+h(r)] ‘9[[;7‘;’3(”] , (9.32)
z—1- 2% /dr [+ h(n)]r-O[Be(r)] . (9.33)

We observe thaf (9.20) anfl (9121) becorhe (9.32) &nd](9.83pexctively, with
the formal changesi(r) — h(r) and f(r) — —Bg(r). Since all the steps lead-
ing from (9.22) to [[9.2)7) are purely technical, it is cleaatthve obtain a consis-
tency condition analogous 16 (9]27), except for the forrhalngesv(k) — h(k) and
f(k) — —Be(k). Consequently, that consistency condition is automayisatisfied
by closures of the form

h(k) =n 1z (—nﬁ&(k)) . F(2) = arbitrary. (9.34)

As shown in[(8.4D), the mean spherical approximation beddaghat class of clo-
sures with the particular choicg(z) = z/(1 - 2).
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Fig. 9.3 Left panel: Square-shoulder potential. Right panel: Rab&t-sphere potential

9.3 Energy Route in Hard-Sphere Liquids

We saw in[(5.34) that the energy routauiselesgor hard spheres. In fact, the con-
sistency conditio{(9.22) isivially satisfied since

0uﬁxs . 0Zus .
an =0, B =0. (9.35)
The last equality expresses the fact that the hard-spherpressibility factor
Zus(n) = 1+2% *nyns(o;n) (9.36)

is independent of temperature. Thus, there is no posgibiliextracting thermody-
namic information fromugs.

However, a physical meaning can be allocated to the enengte rfor hard
spheresifirstitis applied to a non-hard-sphere system that includesahe-sphere
system as a special case dhdnthe hard-sphere limit is taken.

9.3.1 A “Core-Softened” Potential. The Square-Shoulder Iteraction

Let us take the square-shoulder (SS) potential

o, r<ao,
@s(r)=<¢e, o<r<o, (9.37)
0, r>0

as a convenient choice of a non-hard-sphere potential (ge©.8, left panel). The

square-shoulder potential is the simplest example of asoftened potential, i.e., a
potential with a two-length scale repulsive part exhilgtansoftening region where
the slope changes dramatically [91].
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The square-shoulder potential has the interesting prpmérteducing to the
hard-sphere potential in three independent limits:

Blismo(pss(r) = @ys(r) (diametera’) (9.38)
Blim @ss(r) = @us(r) (diametero) , (9.39)
lim @ss(r) = ghs(r) (diametero’ = o) . (9.40)

It also reduces to the so-called penetrable-sphere (P8hipait(see Fig. 913, right
panel) in the limito’ — 0:

lim_@ss(r) = ges(r) - (9.41)

9.3.2 Equation of State from the Energy Route

Suppose amapproximatecavity functionyss(r;n, 3) is known (for instance, as the
solution to an integral equation) for the square-shouldét flThen, the energy route

(5.8) gives
ag
U&Y(n, B) = d2% tvgnee F¢ / drrd-lysg(rin, B) . (9.42)
0—/

Then, the energy-route equation of state is obtained ffoBR{%s

B
Zss(n,B) = ZHS(nG’d)—l—n% /O d’uyn, B)

.B , g
= Zus(na') + dzdflvdns%n/ dp'e P 5/ drr9tysg(r;n, B'),
0 o’
(9.43)
where in the first step we have fixed the integration constatitd physical condi-
tion (9.38), while in the second step we have uged {9.42).

As a second step, we now, take the lifit — « on both sides 0f{3.43), apply
([@39), and divide both sides g — ng’%. The result is

Zns(no®) — Zus(no'®) _ d29 e 0
nod — ng’d ~ gd—gd an

~00 g
n/ dBe’BS/ drrd-lysg(r;n, B) .
0 Jao’
(9.44)
Finally, we take the limio” — o. The left-hand side of (9.44) becomes

_Z dy_z d 9
jim 20500 = Zus(n0T) _ a0 5 (g9 (9.45)
o' —a nod — no’ on

Moreover, the spatial integral on the right-hand sidé_ of49reduces to
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Fig. 9.4 Scheme of the steps A mate) | Integration

. pproximate .
followed to derive [[9.36) Theory forss | —ugs(n, B) > Zss(n, B) — Zus(n)
starting from[(9.4R). fluids

@
1

Zus (1) = Virial route ‘H Zus(n) — Zus(n')

. 1 o _ 1
im ot [ dr® yss(rin ) = Syus(oingd), (9.46)
o'—o gl -0 o’

where the third limit[(9.400) has been used. Taking into ant@.4%) and[(9.46) in
(©:42), one gets

%ZHS(I’]Ud) = 2d*1vd%nadst(a; nov) . (9.47)
Integration over density and application of the ideal-gastdlary conditioZs(0) =
1 yields [9.36), which is not but the virial equation of stafbe generalization to
mixtures follows essentially the same steps [92].

In summary, the ill definition of the energy route to the egurabdf state of hard
spheres can be avoided by first considering a square-shidluideand then taking
the limit of a vanishing shoulder width. The resulting edomatof state coincides
exactly with the one obtained through the virial roEsm that point of viewthe
energy and virial routes to the equation of state of hardespfiuids can be consid-
ered as equivalent. Figure 9.4 presents a scheme of theyeoeitg— virial route
path.

It must be emphasized that the application of the three dif@t38)-[(9.40) is
essentiato derive [9.3B) from[(9.42) [93]. For instance, if the limgit— 0 (instead
of 0’ — o) is taken in[[9.44), the result is

00 ¥el
Zns(no®) = 1+ d2d*1nvde%n/o d[ie*‘“/o drrd=Yypg(r;n,B),  (9.48)

where the changgss — Yps is a consequence df (9141). Equatibn (9.48) is an al-
ternative recipe to obtain the hard-sphere equation of $tat the energy route
applied to penetrable spheres. In general, it gives a réifdtent from [9.36) when

an approximatgps is used. For instance, in the Percus—Yevick approximaton f
three dimensional systemis, (9.36) gives a (reduced) foirith coefficientb, = 16,
while (9.48) gived, = 1814/175~ 10.37 [93].
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10 Exact Solution of the Percus—Yevick Equation for Hard
Spheres ...and Beyond

As said in Sect[]8, one of the milestones of the statisticattmnical theory of
liquids in equilibrium was the exact analytical solutiortleé Percus—Yevick integral
equation[(8.30) for three-dimensional hard sphéeres 18 .

The statement of the problem is as follows. Partlcularmeﬂ:t 3, the Ornstein—
Zernike relation[(811) can be written as

.
h(r) +— / dr'r / o). (10.1)
. r—r’

where bipolar coordinates have been used. In the hardphse, one necessarily
hasg(r) = 0 for r < . Moreover, the Percus—Yevick closufe (8.28) implies that
c(r) =0 forr > 0. Thus, the mathematical problem consists in soiMing {18uby
ject to the boundary conditions

{g(r) = 87 r < o (exact hard-core condition) (10.2)

r > o (Percus-Yevick approximation for hard spheres)

3

The solution relies on the use of Laplace transforms, asesigd by the structure
of (10.1), and stringent analytical propertiesatire function®f complex variable.

Here, however, we will follow an alternative methad([3] 98,96] that does not
make explicit use of (1012) and lends itself to extensiorsganeralizations.

10.1 An Alternative Approach. The Rational-Function
Approximation

The main steps we will follow are the following ones:

(I) Introduce the Laplace transfor@(s) of rg(r).
(I) Define an auxiliary functiori (s) directly related ta5(s).
(I Find the exact properties d%(s) for smalls and for larges.
(IV) Propose a rational-functioapproximation(RFA) for F (s) satisfying the
previous exact properties.

As will be seen, thesimplestapproximation (i.e., the one with the least number
of parameters) yields the Percus—Yevick solution. Funttoge, the next-order ap-
proximation contains two free parameters which can be deted by prescribing
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a given equation of state and thermodynamic consistenayeeet the virial and
compressibility routes.

The same approach can be extended to mixtures, to othezdedgstems with
piece-wise constant potentials, and to higher dimensitiesglvith d = odd.

We now proceed with the four steps described above.

() Introduction of G(s)

Let us introduce the Laplace transformrgfr):
G(s) =-Zrg(r)] (s) :/ dr e Srg(r) . (10.3)
0

The choice ofg(r) instead ofg(r) as the function to be Laplace transformed is
suggested by the structure 6f{110.1) and also by the linG(sj to the Fourier
transformh(k) of h(r) = g(r) — 1 and hence to the structure functitk) =
1+ nh(k):

h(k = 4”[@] - —2n[M

S }kik , (10.4)

s=ik

whereH (s) = G(s) — s~ 2 is the Laplace transform oh(r). Had we define@(s)

as the Laplace transform gfr), (Z0.4) would have involved the derivati®(s),
what would be far less convenient.

In the more general case 0f= odd> 3, it can be seen that the right choice for

G(s)is [7] }
G(s) :/o dr e %'8q_3)/2(sN)rg(r) , (10.5)

where )
B (2k—j)! ;
409 2 7T (100

are the so-calledeverse Bessel polynomia[@7]. In this more general case,

(@I0.2) becomes

Ri(k) = (—2m)@-D/2 {W} - (_2m)@-V/2 [%} :
| (10.7)

whereH (s) = G(s) — (d — 2)!'s~2is defined as ir[{10l5), except for the replace-
mentg(r) — h(r).
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(1) Definition of F(s)

Henceforth we return to the three-dimensional case @) and, for simplicity,
we takeo = 1 as the length unit. Taking(7162) afnd (4.68) into accolnethard-
sphere radial distribution function to first order in depgst

o =0 -1)[1+0@2-r)[-2? (% +2)n+] . (10.8)
To that order, the Laplace transformrgfr) is given by

s1G(s) = [Fo(s) + Fu(9)n] &S — 120 [Fo(s) e % + -+, (10.9)

where

5
Fo(s) =s2+s 3, Fi(s)= 53*2 —2s3-65s*+12s°+125° %, (10.10)

The exact form[(10]9) o6(s) to ordern suggestshe definitionof an auxiliary
functionF (s) through

s 'G(s) = F(s)e °— 120 [F(s)°e ®+(12)?[F(s))°e * -
F(s)e s

= le(s)e*s (10.12)
Equivalently,
B s1G(s)
F(s) = es—l_ 1275 1G(9 | (10.12)
Of course[F(s) depends om. To first order,
F(s) =Fo(s) +Fi(s)n +--- . (10.13)

In analogy with the one-dimensional case [dee (6.47)], nv@duction ofF (s)
allows one to expresyr) as a succession shells(1<r <2,2<r<3,...)in
a natural way. First, according fo (10111),

G(s) = ; (—12n) s[F(s)] e ’s. (10.14)
=1
Then, Laplace inversion term by term gives
1c e 1
;; —12n)" W (r— 0o 1), (10.15)

where
W(r) =21 [s[F (s)]ﬂ (r). (10.16)
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(1) Exact Properties of F(s) for Small sand Large s

In order to derive the exact behavior @fs) for larges, and in view of [10.15),
we need to start from the behaviorgyf) forr > 1:

g(r)=0(r—1) g(1+)+g’(1+)(r_1)+%g”(1+)(r_1)2+--- . (10.17)

In Laplace space,
£°G(s) =g(17) + [g(1") +g(1N)] s+ 0(s?). (10.18)

Therefore, according t6 (10112),

lim SF(s) =g(1") =finite|. (10.19)

Thus, we see thdk (s) must necessarily behave s for larges.
Now we turn to the smalé-behavior. Let us expand the Laplace transform of
rh(r) in powers ofs:

H(s)=HO +HWs4 ... | (10.20)

where - -
H<0>E/ dreh(r) | H<1>z—/ drr2h(r) . (10.21)
JO JO

In particularH® is directly related to the isothermal compressibility [84])]:
X =1-+nh(0)=1—24nH®Y (10.22)

Sincey must be finite, and recalling thik(s) = G(s) — s, we find
$G(s) =1+ 0x s+ HOL L HYS + (Y . (10.23)

Therefore, from[{10.32) the smallbehavior ofF(s) is found to be

e’ s
Fo - e
=120+ 0xs+0xL+1x+0x s —HOS _HUS 1 g(d).

(10.24)

Thus, just the conditioy = finite univocally fixes the firstive coefficients in the
power series expansion Bf(s). More specifically,

List Sy Lt 14024] sl (1025)

-~ 12n 2 ' 12 12n

F(s) =
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(IV) Construction of the Approximation

Thus far, all the results are formally exact. To summarize have defined the
Laplace transforn®(s) in (I0.3) and the auxiliary functioR(s) in (T0.12). This
latter function must comply with the two basic requiremets 19) and[(10.25).
A simple way of satisfying both conditions is by means af#onal-function

form: -
Polynomial ins of degreek

~ Polynomial ins of degreek + 2 (10.26)

F(s)

with 2k+ 3 > 5=k > 1. The simplestrational-function approximation corre-
sponds tk = 1:

1 1+LWs

F(s) — — 10.27

(s) 12n 14+ SWVs+ S22 + S3)B | ( )

where the coefficients are determined frém (1D.25). They are
1+n/2
LA = 10.28
1+2n° ( )
3. n 11-n 1 (1-n)?
n__>2>_"1T ) __-~-—"1 3~
s 21+2n’ s 21+2n’ s 12n 1+2n - (10.29)

10.2 Structural Properties

OnceF(s) and hence5(s) have been completely determined by the approxima-
tion (I0.27), it is easy to go back to real space and obtaircdhnespondingy(r).
Three alternative ways are possible. First, one can invertarically the Laplace
transformG(s) by means of efficient algorithms [98]. A second method cdssis
obtainingﬁ(k) from (10.4) and then performing a numerical Fourier invamsiThe
third method is purely analytical and is based[on (110.15)(&AdL6). From a practi-
cal point of view, one is interested in determinigig) up to a certain distanagax
sinceg(r) — 1 for large distances. In that case, the summatiofiin (1@:a6)be
truncated for > rmax. In obtaining¥(r) from (Z0.I6) and{I0.27) one only needs
the roots of the cubic equationi1SVs+ S?s? +- S°s® and to apply the residue
theorem. This latter method is the one employed in [99]

As for the structure function, application 6f (4117) ahd.@0ields the explicit
expression
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Fig. 10.1 Radial distribution function (left panel) and direct cdatéon function (right panel) of a
three-dimensional hard-sphere fluid, as obtained from ¢heuB—Yevick approximation. at several
values of the packing fraction = (rr/6)na3 =0.05,01, 02,03, 04, and 05, in increasing order
of complexity.

1 72n%(2+n)? _, 2881%(1+2n)? 12n(2+n)

R — —6_ -2
S0 = T oK ek ook T
720%(2—4n—Tn?%), _,  2881%(1+2n)2 g
(1-n)* < (1-n)* “ ]
- [24n(1-5n-5n?) 5 2881%(1+2n)% g
+smk[ A=n)p =) k ] (10.30)

To complete the description of the structural propertiesshing from the ap-
proximation [10.217), let us consider the direct correkafinction. Its Fourier trans-
form can be obtained from(k) via the Ornstein—Zernike relation (8.2). The inverse
Fourier transform can be performed analytically with theute

(1-n)* (1-n)* 2(1-n)*
0, r>1.

_ (1+2n)? | en(1+n/2)? . n(+2n)? 3 1
c(r)—{ * ' or<d (10.31)

We observe that(r) = 0 forr > 1. But this is thesignatureof the Percus—Yevick
approximation for hard spheres [sEe (10.2)]. This showtthiesimplestealization
(@I0.27) of the rational-function approximatidn (10.2@tsiout to coincide with the
exact Percus—Yevick solution.

Figure[TI0.1 displays the Percus—Yevick functigis) andc(r) at several densi-
ties. The corresponding structure factor curves weregaldtt Fig[4.3B.
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10.3 Equation of State

OnceG(s) is fully determined, one can obtain the equation of stateeXysected,
the result depends on the thermodynamic route employedid strt with the virial
route. According to[{9.36), the virial route in the threeagnsional case is

zV) =144ng(1"). (10.32)
The contact value is obtained from (10.19) as

1 LY 14n/2

) — _—_— =
g(1") = 121 59 (1_,7)2 . (10.33)
Thus,
v 1+ 2n+3n?
Zod =—_—1 =7 10.34
PY (1_ rI)Z ( )

In the case of the compressibility route, {10.22) shows weaneedH (V. This
quantity is evaluated from the coefficientsfin the Taylor expansion ofgF (s),
as shown in[(10.24). The result is

8—-2n+4n?-n3
1 —
H T (10.35)

Insertion into[[10.22) yields

_ 4
Xpy = ((114_7277))2 . (10.36)

The associated compressibility factor is obtained upaggiration as

Z(C)—l/n dn’  1+n+n?
P ndo xev(n’)  (1-n)3

(10.37)

Finally, we consider the chemical-potential equation afestin the three-dimensional

one-component casé, (5142) gives
1
BH™ = ~In(1~n)+247 |, d00108:01(05y) (10.38)
2

We see that the contact valle (10.33) is not enough to compifteNe need to
“borrow” the solute-solvent contact valgg: (o) from the Percus—Yevick solution
for mixtures [73]:

1 3 n 1
901(0'&[) = 11 +§(1—f])2 <2—0_—01) . (10.39)
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Table 10.1 First eleven (reduced) virial coefficientg as obtained exactly and from several equa-
tions of state related to the Percus—Yevick theory.

k exact 2z ZW Zes  ZWHed) z(ke2)

2 4 4 4 4 4 4 4

3 10 10 10 10 10 10 10

4 1836476 16 19 -1675 18 18— 181 15 -18125
5 2822453) 22 31 20-238 28 i‘? 2812 _2g2

6 3981519) 28 46 31 40 40 %1 ~ 402

7 533444) 34 64 268383 54 36~ 537 54

8 6854(2) 40 85 %S =456 70 27 _ 6925 Lﬁ ~ 697
9 85819 46 109 53 88 86.6 78~ 87.2
10 1058(4) 52 136 32_-604 108 2%44 10576 1066

11 1285) 58 166 ﬁ6~678 130 @~1267 i%~1278

This expression is exactdfy; = % [30] and reduces t6 (10.B3)dh, = 1. Performing
the integration in[(10.38) one finds

74+n/2

= (10.40)

Bugy =—-In(1-n)+n—>

The excess free enerdff* consistent with[{10.40) is obtained taking into account
the thermodynamic relation (2.9), i.e1%* = 9(F®*/V)/dn, as

36—n

== [Monpuginy =2 Tina-m+ 350 04

Then, the equation of state is derived from the thermodyoaetation [2.9), i.e.,
Z=1+nd(BF*/N)/dn. Theresultis

Inl—n) _1-31n/16
zW — _g -8 . 10.42
PY n (1-n)? ( )

Surprisingly, while the virial and compressibility equats of state[(10.34) and
(@0O37), respectively, are known since 1963|[71], the cleafpotential equation
of state [10.42) has remained hidden until recently [30].

The reduced virial coefficients [see [Z.8P)] predicted by the three equations of

state [(10.34)[(10.37), and (10142) are

2-3k+2 | vy _ 1531118

b =2(3k-4), BT === b

(10.43)

Those virial coefficients are compared with the exact va[6&s/53,[54] in Table
[I03. We observe thdi(10]137) overestimates the known cigafts, while [10.34)
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Fig. 10.2 Plot of T T " T " T Y
Z((:‘IS(%)*ZMD('"I) (circles), .
ZWe(n)—Zvo(n) - a0k /|
angles), andZ(#¢2 () — 0.00 E"§I§k /1r
Zwp (n) (squares). °\:§-\\_\ L
\.\.\:\. .\.—.’..}
5 N
2 .0.01} N ]
N N
E —eo— ZCS-ZMD . \A\A
N ue,1) . A, g
iA—Z( -ZMD \ AL/:/A‘A
0.02H g gD Seae? A
—7 _ZMD ° N
1 1 1 x
0.1 0.2 0.3 04 0.5

and [10.4P) underestimate them, the chemical-potentigerbeing slightly more
accurate than the virial one.

Interestingly, the Carnahan—Starling equation of stae [.95) and (7.96)] can
be recovered as anterpolationbetween the Percus—Yevick virial and compress-
ibility equations:

1w, 2,0

As shown by Figl_719Zcsis an excellent equation of state. On the other hand, since
Z,&‘Q is more reliable tharzé,\g, one may wonder whether a similar interpolation

formula, this time betweeﬁé,’“y andef@, i.e.,
ze) — Az + (1-2)Z) (10.45)

might be even more accurate. From an analysis of the viriefficients one can
check that the optimal value of the interpolation paramistér~ 0.4. In particular,
the two choices 2 .

A= z= ZHeh) ) = i Z(ke2) (10.46)

are analyzed in Tab[e_10.1 at the level of the virial coeffitdewhere

bl((uc,l) _ 9k3 4 21k? — 56k + 36 ’

(ue2) 11K +24Kk2 — 65k + 42
10k - '

by 12

(10.47)

A better performance than that of the Carnahan—Starlinfficieats is clearly ob-
served (except in the caseshgfandby).

The good quality oZ(#¢1) andz(#%2) | even better than that &@s, is confirmed
by Fig[10.2, where the deviations of those three compriiggactors from molec-
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ular dynamics simulation valueZyp) [64] are plotted as functions of the packing
fraction.

It is worth mentioning thaf{10.33)_(10J34), (10.36), @), (10.40),[(10.41),
and [T10.4P) are extended to additive hard-sphere mixtisr &l 73]

3 n  0g0yMy

Yay(Tay) = T " 2= 07 oy M5 (10.48)
z) = 1:7 + fnn)z Ml\l/ll\:z N (f_”;)zm—z: , (10.49)
Xpk = - _1’7)2 n (1517”)3 Ml\lx:\:Z N (1‘{72)4&—2 , (10.50)
28 = 1:7 + inn)z Ml\lx:\:Z N (13_’7;)3% , (10.51)
Bugt, = —In(1-n)+ £ a2 (M glj’nm_? o
+12n (1+312th1/:\:2>|3|_€’ (10.52)

3n MiM; 3 M3
1-n M 2(1—n)2M2

Fy _ In(1—n)+
N n

3M§{6—9n+2172 In(l—n)]
M2 | (1-1)7? +6 0 , (10.53)
S _ 1 N 3n M1M2+ 3n? M3 om3 1—§n+|n(1—n)
P¥"1-n (1-n)?2 M3 (1-n)*MZ M2 |(1-n)? n ’
(10.54)

where

Mq = zxaag . (10.55)

a

10.4 Beyond the Percus—Yevick Solution

Once we have obtained the exact solution of the Percus—k/@viegral equation
for hard spheres as the simplest application of the ratifuradtion approximation
methodology, let us go beyond it either by improving the agpnation or by con-
sidering other interaction models.
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10.4.1 Next-Order Approximation for Hard-Sphere Fluids

In the spirit of the rational-function approximatidn (16)2the next-order approxi-
mation is obtained withk = 2, i.e.,

1 1+ LWsL 2
F(s)=—— - . . - (10.56)
12n 1+ SVs+ S22 + S3)s3+ 94
From the exact series expansibn (10.25) one can obtain
G 12n } @ _ o
L& =Lpy+ 1 2 S (10.57)
1) 4)
=Sh+ 1+2r7 [ _ g } (10.58)
o _d2, 120 11-4n 4)
SA+ Toor | 137 @ 4 (10.59)
3_3_ 121 [1-n )
ST om0t § (10.60)
whereLg), andsg3 are given by[(10.28) an@ (10]29).

So far, the two coefﬁmentts( andS¥ remain free. They can be fixed by im-
posing any desired contact valgél™) (or compressibility factoZ) and the cor-
responding consistent isothermal susceptibjiity: [d(nZ)/dn] . First, the exact
condition [I0.IDP) fixes the ratio® /S, so that

L@ = _3(z—-1)SY. (10.61)

Next, the expansiorﬂ]IZIM) allows us to identify) and, by means of {10.22),
relatey, L?, andS¥. Using [I0.61l), one gets a quadratic equationdé [95],
whose phy5|cal solution is

_ z-1
SO k) N P P <L—1) , (10.62)
36n(2—3) z— 78 \Xpv

whereZQ@ andxpy are given by[(10.34) and{10136), respectively.

Figure[I0.B compares computer simulations resultg(of at n = 0.471 [64]
with the predictions obtained from the Percus—Yevick sotu{I0.2T) and from
the next-order rational-function approximatién (10.36)the latter,Z and x have
been chosen as given by the Carnahan—Starling equatioatef [see[(7.96) and
(Z:97)]. We observe that both theories describe quite welldehavior ofy(r) but
the Percus—Yevick approximation underestimates the cowtitue and then decays
by crossing the simulation data. Both features are sat@fc corrected by the
rational-function approximation.
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Fig. 10.3 Radial distribution functiom(r) of a hard-sphere fluid at a packing fractign= 0.471
as obtained by molecular dynamics simulatidns [64] and fthenPercus—Yevick and rational-
function approximation approaches.

It is interesting to note that the rational-function appneation [10.56) coin-
cides with the solution of the so-called generalized mgarescal approximation
(GMSA) [86,[100/101], where the direct correlation funotigr) outside the hard
core ¢ > 1), which vanishes in the Percus—Yevick theory, is assumduktgiven
by a Yukawa form. The rational-function approximation neethhowever, is math-
ematically much more economical and open to applicatiogtter systems.

10.5 Non-Hard-Sphere Systems

The rational-function approximation methodology has beygplied to systems dif-
ferent from one-component three-dimensional hard sph&hesse systems can be
classified into two categories: (i) systems amenable to attesolution of the
Percus—Yevick equation and (ii) systems non-amenable &xaat solution of the
Percus—Yevick equation. The first class includes stickyl Isaheres (see Fig. 6.3,
right panel) [39], additive hard-sphere mixtures|[73], itdd sticky-hard-sphere
mixtures [7475], and hard hyperspheres| [76, 77]. In thaszlof systems, the
rational-function approximation method recovers the Befdevick solution as
the simplestpossible approach, just as in the hard-sphere case[[s€El([LOhe
next-order approach allows one to make contact with engligquations of state,
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thus improving the predictions. The interested reader carsut the references

[78,[79[96/ 102, 108, 104, 105, 106, 107] for further details

The application of the rational-function approximatiorsistems of the second
class includes the penetrable-sphere model (sed_Eig.igt8,panel) [108[109],
the penetrable-square-well model[110], the square-vaeéiqtial (see Fid. 613, left
panel) [111] 172, 113], the square-shoulder potentialF&g.3, left panel)[114],
piece-wise constant potentials with more than one steg [ifié§, nonadditive hard-
sphere mixtures [117, 1118], and Janus particles with caimgtd orientations$ [11.9].
In those cases, th@mplestrational-function approximation is already quite accu-
rate, generally improving on the (numerical) solution of fercus—Yevick equa-
tion.

11 Concluding Remark

These lecture notes are already too long, so let this authariede just by saying
that he will feel fully satisfied if the notes are useful to soof the students who
attended the 5th Warsaw School of Statistical Physics, rieesof the readers who
have had the patience to read them, or to some instructorsnigtd find something
profitable for their own courses.
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