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AsstrACT. These notes were inspired by the course “Quantum Field Theory from a Func-
tional Integral Point of View” given at the University of Zurich in Spring 2017 by San-
tosh Kandel. We describe Feynman’s path integral approach to quantum mechanics and
quantum field theory from a functional integral point of view, where the main focus lies
in Euclidean field theory. The notion of Gaussian measure and the construction of the
Wiener measure are covered. Moreover, we recall the notion of classical mechanics and
the Schrodinger picture of quantum mechanics, where it shows the equivalence to the path
integral formalism, by deriving the quantum mechanical propagator out of it. Additionally,
we give an introduction to elements of constructive quantum field theory.
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1. INTRODUCTION

We want to give a review of quantum field theory, using perturbative methods with the
notion of Feynman path integrals. In classical mechanics we consider an action functional'

5(g) = f L), 4(h)dt,

fo

q(t1)

q(to)

Ficure 1. The path of least action, i.e. the solution to 6S = 0, between two
points x = g(tp) and y = g(t;) in space-time.

where L(g, §) = 3ml|§ll* — V(q) is called the Lagrangian function of the paths g: [to, ;] — R”
with some function V' € C*(IR") depending on g, called the potential energy. We denote by
Pathgi‘j’yt)l](lR”) the space of all such paths with g(ty) = x and q(t;) = y. By considering the
methods of variational calculus, one can show that the solutions of the equation 6S = 0 for
fixed endpoints (i.e. the extremal points of S) give us the classical trajectory of the particle
with mass m € R*. The equations following from 6S = 0 are called the Euler-Lagrange
equations (EL), and they are exactly the equations of motion obtained from Newtonian
mechanics. Netwon’s equations of motion appear from the law F = ma(t) = m(t) (read it
“force equals mass times acceleration”). To see this, we recall that the momentum in physics
is given by p = mv, where v denotes the velocity of the particle with mass m. Then, by the
fact that v = g, one considers the coordinates § = = and p = —VV, where V denotes the
gradient operator. The Hamiltonian approach considers the space with these coordinates
to be the classical phase space (classical space of states) given by T'IR" > (g, p) endowed

with a symplectic form* given by
w = Z dg'dp;.
P

Moreover, one considers a total energy function (or a Hamiltonian function) H(q, p) = % +V,
where V is again a potential energy function. In the physics literature, the first term of H
is called the kinetic energy. This function is said to be Hamiltonian if there is a vector field
Xy such that

Ix, = —d_H,

In the physics literature, it is common to denote the time-derivatives by “dots”, i.e. %q(t) = 4(t).
Zwe will not always write A between forms but secretly always mean the exterior product between them,
i.e. for two differential forms a, 5, we have aff = a A 5.
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where 1 denotes the contraction map (also called interior derivative). The vector field X is
called the Hamiltonian vector field of H. In the case at hand, since w is nondegenerate, every
function is Hamiltonian and its Hamiltonian vector field is uniquely determined. For H
being the total energy function and the canonical symplectic form on the cotangent space,
we get the following Hamiltonian vector field: A vector field on T"IR" has the form general
form X = X'd,; + X;d,,. Thus, applying the equation for being the Hamiltonian vector field
of Hwe get —dH = X;dq' + X'dp; = ixw. Now since dH = 9;Vdg'+ %, we get the coefficients
of the vector field to be X; = -9,V and X' = %. Hence, we get the Hamiltonian vector field

Xy = -0V, + 2,
m
Naturally, Xy induces a Hamiltonian flow T"R" — T*R".

An approach of quantization of the above is to associate to T*IR" the space of square in-
tegrable functions L?(R") on R". The Hamiltonian flow can then be replaced by a linear
map

et [2(R") - LA(R"),

where H := —%A + V denotes the Hamilton operator, which is the canonical quantization
of the classical Hamiltonian function, where A = };_;,(d,)* denotes the Laplacian. Note
that the space of states is now given by a Hilbert space J(, and the observables as operators
on Hy. One can show that the action of this operator can be expressed as an integral of the
form

() 00 = [ K mwa,

for ¢ € Hy, where K denotes the integral kernel for the operator. Feynman showed in [4]
that this kernel (quantum mechanical propagator) can be seen as a path integral, which is

given by
K(x,y) = f SEU7
Pathgg;;](ﬂzn)

where S denotes the action of the classical system and 2 a measure on the path space (see
also figure 2).

Since  is suppose to be a “measure” on an infinite-dimensional space, it is mathematically
ill-defined. However, one can still make sense of such an integral in several ways; one
of them is by considering its perturbative expansion in formal power series with Feynman
diagrams as coefficients. This procedure is mathematically well-defined. These notes are
basedon|[1,2,3,5,6,7,8,9,10,11,12,13, 14, 15].

Acknowledgements. The author acknowledges partial support of the SNF grant No. 200020
172498/1 and by the Forschungskredit of the University of Zurich, grant no. FK-18-095.
Moreover, the author wants to thank Santosh Kandel for sharing his lecture notes with
him.



QUANTUM FIELD THEORY AND FUNCTIONAL INTEGRALS 5

q(t1)

/
/
qto) \—

Ficure 2. Illustration of the fact that all the paths between x = ¢(t;) and
y = q(t,) are taken into account.

Part 1. A Brief Recap of Classical Mechanics
2. NEWTONIAN MECHANICS WITH EXAMPLES

Consider a particle of mass m moving in IR". The position of a praticle x = (xy, ..., x,) is a
vector in IR". More precisely x(t) = (x1(t), ..., x,(t)) is the position of the particle at time .
Let v(t) and a(t) denote the velocity and the acceleration at time ¢ respectively. Then

1) o(t) = x(t) = (41 (6), ..., (1)),
() a(t) = X(t) = (X1(t), ..., Xu(t)),

where x;(t) = %xi(t) and ¥;(t) = %xi(t) = 3—;xi(t). We recall Newton’s second law of motion:
©) mi(t) = F(x(t), X(t)),

where F is a force acting on the particle with mass m. Hence, the trajectories of motion are
given by solutions of (3). We note that (3) is a system of second order ordinary differential
equations and is nonlinear in general’.

Example 2.0.1 (The free particle on IR"). The force F = 0, which implies that (3) becomes
¥ = 0, hence the trajectories of motion are given by x(t) = at + b with a,b € R".

Example 2.0.2 (Harmonic oscillator in one dimension (1 = 1)). The force is given by F =
—Kx (Hooke’s law), where K = w?m is the so-called spring constant. Then the equation of
motion becomes mX + Kx = 0. Hence the trajectories of motion are given by

4) x(t) = a cos(wt) + bsin(wt),

witha,b € R.

Thus, in Newtonian mechanics, we are interested in solving the equation (3). One way to
try to solve (3) would be to try to find conserved quantities which may help simplifying
the problem.

3Nonlinearity depends on the nature of F
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2.1. Conservation of Energy. Assume that the force F depends only on the position and
it has the form F = —VV(x), where V : R" — R is some function. Such a force F is called
a conservative force and V is called the potential energy of F. Since (3) is a second order
differential equation, the state space or phase space of (3) is R* = {(x,v) | x,v € R"}.
Define the total energy function E by

®) B, 2) = gl + V),

where |[v]|* = (v, v) with the standard inner product ( , ) on R". The main significance of
the total energy function is that it is conserved, meaning that its value along any trajectory
of motion is constant.

Proposition 2.1.1. Suppose a particle moving on R" satisfying Newton’s law of the form
(3). Then

d o
(6) 3 E (@), x(1) =0,
along any trajectory x(t) satisfying (3).
Proof. Along a solution x(t) of (3) we have

- a_Ex+ - a_EU
i1 ox;’" i1 do;

= 9V o
(7) = ; B_xivi +m ; 0;0;

= (VV + ma)v
= (—F + ma)v
=0,

d
aE(x, U) =

O

Definition 2.1.1 (Constant of motion). Let f be a function on the phase space R*'. We say
f is a constant of motion if % f = 0along (x(t), (t)), whenever x(t) is a trajectory of motion.

Remark 2.1.1. Constants of motion are conserved quantities.

By proposition 2.1.1, the total energy is a constant of motion. Next, using an example,
we investigate that the conservation of energy helps us to understand the solution of the
equation of motion. Let us rewrite (3) in terms of first order equations

ety =vt), i=1,2,..n
dr
® d 1
&vi(t) = EFZ('x(t))/ L= 1/2/ L
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For simplicity, assume n = 1. Hence we have

d

S50 = 00),
©) A
500 = —FG()

By conservation of energy, we know that < d $E(x,0) = 0 along (x(t), v(t)), whenever (x(t), v(t))
satisty (9). Let E(x(t), v(t)) = Eo. Then

(10) Smi(t)? + V(o) = Eo,
and thus

o RE VD)
(11) x(t) =+ \/T,

which can be solved using separation of variables. From this example, we learned that the
conservation of energy helps us simplify the given system of equation in the one dimen-
sional case (previous example), we were able to reduce the second order equation into a
first order equation and even solve the equation. A general “mantra” is: the knowledge of
conserved quantities helps to simplify the equation of motion.

3. HamiLroNiAN MECHANICS

3.1. The general formulation. Hamiltonian mechanics gives a systematic approach to un-
derstand conserved quantities. Consider a particle moving in IR". The idea is to think of
the total energy as a function of position and momentum rather than a function of position
and velocity:

12) Hwp) = 5 )+ V),
=

where p; = mi;. Now the system of equations (12) can be written as

1 JH
_xl(t) - xl(t) - _pl - a
Pi
(13)
ity = m Sy = -2 = -2
dtpl B xl o, ox;
The equations of (13), i.e.
. _oH . OH
(14) X; = a—pi, pi = axi

are called Hamilton’s equations.
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3.2. The Poisson bracket. The previous observation implies that in Hamiltonian mechan-
ics we consider the phase space to be

R* := {(x,p) | x,p € R"}.

It turns out that R*" has more structures. If f and g are smooth functions on R*, one can
define the Poisson bracket

_\"(9fdg IgIf
(15) {f, &t —le(a—x]a—p]—a—x]a—p])

Exercise 3.2.1. Verify that the Poisson bracket satisfies the following properties. Let f, g
and & be smooth function on R*". Then

M) {f, 8} =-1g f}

@) {f,g+chy=1{f, g} +cif,h}, ceR

) {f.ght =1{f, gth+{f, hig

@) {f (g 1} = {{f, g} h} + {g, {f, h}} (Jacobi identity)

Example 3.2.1. Let p; and x; be momentum and position observables as images of the
following maps respectively.

(x,p) = pj

(16) (x,p) — x;.

Then {x;, x;} = 0 = {p;, p;} and {x;, pj} = 6;j, where 6;; denotes the Kronecker delta.

Next we will see that we can use the Poisson bracket to describe the conserved quantities.
For that we need the following proposition.

Proposition 3.2.1. Let f € C*(R*"). Then

17) Sr=1fH)

along a solution of Hamilton’s equations {(x(f), p(t))} ¢ R*".
Proof. Exercise. O

Corollary 3.2.1. Let f € C*(IR*"). Then f is conserved along solutions of Hamilton’s equa-
tions iff
{f,H} =0.

Proof. By proposition 3.2.1 % f =1{f, H} along solutions (x(t), p(t)) of Hamilton’s equations.
By definition, f is conserved if % f=0iff {f,H} =0. O
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Remark 3.2.1. Given any f € C*(IR*"), we can define Hamilton’s equations by

_9f
" i
(18) . 9f

pi= 8xi

i=1,2,..,n

Xi

For the next remarks we assume familliarity with basic differential geometry notions such
as vector fiedls, differential forms etc.

Remark 3.2.2. R*" has a canonical symplectic structure w = Y, dp;Adx;. Given f € C*(IR*")
there exists a vector field Xy, called the Hamiltonian vector field of f, defined by

(19) w(Xy, )=—df
The flow of X is given by solutions of (18). In this case, one can check that

(20) if 81 = Xy, Xy)-

This means that if (N, w) is a symplectic manifold, then we can define the Poisson bracket
of f, g € C*(N) using (20).

Remark 3.2.3. Let f € C*(R*") and X 7 be the corresponding Hamiltonian vector field. The

flow of X (or in other words the solutions of (18)) defines one-parameter diffeomorphisms
DY : R — R>

(21) ! t
(x/ P) — (I)Xf(x/ p) = (X(t), p(t))/

where (x(t), p(t)) satisfy Hamilton’s equations with x(0) = x and p(0) = p. Then, assuming
that the flow is complete, we get

(1) q)g(f preserves w (i.e. (q)ég)*a) = w). Such a map is called a symplectomorphism.

(2) q)g(f preserves the volume form v = dxydx; - - - dx,dp:dp, - - - dp, (i-e. (q)g(f)*v = 0).
This is known as Liouville’s theorem.

Remark 3.2.4. Let f,g € C*(R*"). Then f is conserved along the solutions of Hamilton’s
equations of g iff {f, g} = 0 (This is an instance of Noether’s theorem).

4. LAGRANGIAN MECHANICS

There are two important points in this formalism:
e Mechanics on a configuration space.

e Basic theorems are invariant under actions of diffeomorphisms of the configuration
space. It is useful to compute conserved quantities.
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4.1. Lagrangian system. Let M be a smooth manifold (we will usually consider M = IR").
A Lagrangian system with configuration space M consists of a smooth real valued function
L: TM xR — R, where TM denotes the tangent bundle of M (e.g. if M = RR", then
TR" = R" x R" = {(x,v)}). L is called the Lagrangian function or simply Lagrangian.
Lagrangian mechanics uses special ideas such as the least action principle from calculus
of variation. Let xo, x; € M and P(M, x¢, x1) := {y : [to,t1] C R — M | y(to) = xo, y(t1) = x1},
which is the space of paramterized paths joining x; to x;.

Definition 4.1.1 (Action functional). The action functional S : P(M, xo, x1) — R of the La-
grangian system (M, L) is defined by

@) soo=tf LO/B), y(), D,

to

From now on we take M = R". We are interested in understanding “critical points” of S.
Leth : [to,t1] = R" be such that y + h € P(R", x¢, x1) and h(ty) = h(t;) = 0. We think of & as
a small variation of y € P(IR", xy, x1). Then, if we change y(t) by h, we get

(23) Sy + eh) = f 1 LOy(t) + eh(t), y(t) + eh(t), H)dt,

to

which needs to be extremal with respect to the parameter ¢. Hence

(a—Lh + a—Lh) dr = 0.

d i
(24) &S(y +¢h) = f o't 5y

to

For the second part, we use integration by parts, which gives
"oL, JL

h " d oL
(25) a—yh(t)dt_a—yh - fto $a—yh(t)dt.

fo
——
=0

The last term remains and by the product rule we get

t
"(dL dJdL
— — ——|h(t)dt = 0.
= [ (5 - a5 oo
Definition 4.1.2 (Extremal point/Critical point). An extremal (or critical) point of S is some
x € P(IR", xo, x1) such that

(oL dL
27) L($-§$ym_o

along x for all paths h such that h(ty) = h(t;) = 0.
Theorem 4.1.1. A path x € P(R", ty, t1) is an extremal of S iff along x we have

8) ox " dtox 0
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The proof for this theorem follows from the following lemma.

Lemma 4.1.1. Let f : [to, 1] — R" be a continuous path and

ty
(29) f fhdt =0
fo
for all continuous h : [ty, ;] = R" such that h(ty) = h(t;) = 0. Then f = 0 on [ty, t1].

Proof. For simplicity assumen =1,i.e. f : [ty t;] = Rand h : [to, 1] — R. By contradiction
assume there is some t € [t(, t;] such that f(t) > 0. Then by continuity there is some 6 > 0
such that f > Oon (t—96,t+0). Let h be a continuous function on [fy, t;] such that / vanishes
outside (t — 6,t + 6) buth > 0on (t —6/2,t + 6/2). Then

ty
f fhdt >0,
fo

which is a contradiction. m|

Definition 4.1.3 (Euler-Lagrange equations). The equations

oL daL

(30) g—ag_o

are called the Euler-Lagrange (EL) equations of S(x).

Corollary 4.1.1. A path x € P(R", xo, x1) is an extremal of S iff it satisfies the Euler-Lagrange
equations.

4.2. Hamilton’s least action principle. Recall that we defined the total energy function
by

1
E(x,0) = 5mlolf + V),
where the first term is the kinetic energy and the second the potential energy.

Theorem 4.2.1. Define L(y(t), y(t),t) = %m||)'/(i,‘)||2 — V(y(t)). Then an extremal path y(t) of S
solves the system (8).

Proof. Exercise. O

Remark 4.2.1. Even though only an extremal path of S is involved here, it is called Hamil-
ton’s least action principle.

Next we briefly investigate how Hamilton’s equations and the EL equations are related.
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5. THE LEGENDRE TRANSFORM

Let f be a convex function, i.e. f”(x) > 0. Let p € R and define g(x) = px — f(x). Then
g'(x) = p — f'(x). Since f is convex (i.e. f’ is increasing), there is a unique x, such that
g(xp) = 0. We denote this xy by x(p). Moreover, f”(x) > 0 impliesg”(x) < 0, and hence g
has a maximum at x(p). In this case the Legendre transform of f is defined by

(31) Lfp) = max g(x) = m;ax(px — f(x)).

Example 5.0.1. Let f(x) = x?, then £ f(p) = 1p*.
Example 5.0.2. Let f(x) = 1x%, then £f(p) = 1p*.

More generally, let V be a finite dimensional vector space and V*beitsdualand f : V — R
be a function. Then £ f : V* — Ris defined by

(2 L£(p) = max(p(x) - f(),

where p(x) is the pairing between x € V and p € V*. If f is convex, then £ f exists.
Exercise 5.0.1. Show that if f is convex, then so is £ f. Moreover, show that £(Lf) = f.

Example 5.0.3. Let A be an 1 x n positiv definite matrix and f : R* — R, f(x) = 3(Ax, x),
where ( , ) is the standard inner product on R". Then

Lf(w) = %(A_la),a)).

Let us now consider a Lagrangian system (R",L), i.e. L : R" X R" xR — R. Let H(x,p, )
———

3(x,0,t)
be the Legendre transform of L in v-direction.

Theorem 5.0.1. The system of EL equations are equivalent to Hamilton’s equation with H defined
as above.

Proof. Exercise. O

Part 2. The Schrédinger Picture of Quantum Mechanics

Classical physics is inconsistent at the level of atoms and molecules. For example, the
hydrogen atom which is composed of two particles a proton of charge +¢ and an electron
of charge —e. If we follow classical mechanics, then the charged electron would radiate
energy continuously causing the atom to collapse. But this is not true. We need quantum
mechanics to explain the stability of molecules and atoms.*

“We refer to a standard physics book on quantum mechanics for the motivation leading to postulates of
quantum mechanics.
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6. PostuLATES OF QUANTUM MECHANICS

6.1. First Postulate. The pure states of a quantum mechanical system are rays in a Hilbet
space 7, i.e. one dimensional subspaces of H{. The Hilbert space K is called the space of
states. Define

PH = (FC\ {0)/(C\ {0)).

Let ¢, ¢ € H \ {0}. We say ¢ ~ 1 iff there is an a € C \ {0} such that ¢ = ayp. Then PH is
the set of equivalence classes with respect to this equivalence relation.

Lemma 6.1.1. There is a canonical bijection
{1-dimensiona1 subspaces of f}{} «—— PH.
Proof. Let L be a one dimensional subspace of 7, and ¢ € L such that ¢ # 0. Define

pL) = [9], [¢] € PH.

Let us check that 8 is well defined. Let ¢ € L \ {0}. Then there is an @ € C \ {0} such that
Y = a¢ (since L is a one dimensional subspace). Thus [¢’] = [¢]. This shows that f is well
defined. One can easily check that f3 is a bijection. |

Remark 6.1.1. More precisely, the space of pure states is PJ{.

From now on when we say a state we mean 1 € H such that [[i)|| = 1 (these are called
normalized states). The concept of a state as a ray in H leads to the probability interpre-
tation in quantum mechanics. This means that if a physical system is in the state 1), then
the probability that it is in the state ¢ is [(, ¢)I>. Since we assume ||¢|| = 1, ||| = 1, clearly

0 <Ky, p)I* < 1.

6.2. Second Postulate. Quantum mechanical observables are self adjoint operators on .
Let A be an observable. Then the expectation of A in the state ¢ is defined as

Ay, )
W, ¢)

6.3. Third Postulate. The Hamiltonian H is the infinitesimal generator of the unitary group

(33) (A)y =

U(t) = e #*H, Tt describes the dynamics of the system. Let 1) be a state. Then time evolution
is described by the Schrédinger equation

L d =
(34) 17&51,0(15) = Hy(¢).
Using an Ansatz for equation (34), we get a solution of the form i (t) = e‘%tﬁgb(O). In the

so-called Heisenberg picture, the Schrédinger equation takes the form

d
dt
where A is an observable and [ , ]is the commutator of operators, defined by [A, B] =
AB — BA.

(35) n—A(t) = [iH, A(t)],
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Lemma 6.3.1. Let ¢(t) and 1(t) be solutions of (34), such that ¢(0) = ¢ and 1(0) = ¢. Then

(P(t), Y()) = (P, V), vt
Proof. We have

(36) o(t) = e Hp(0),
37) Y(t) = e H70),
and since e 1" is a unitary operator, we get the result. O

6.4. Summary of CM and QM. The following should summarize the differences of clas-
sical and quantum mechanics.

Classical Mechanics Quantum Mechanics
State space | T*M (cotangent bundle) PH, where H is a Hilbert
space

Observables | C*(T*"M) (smooth func- | Self adjoint operators on H
tions on the cotagent
bundle)

Dynamics | Described by Hamilton’s | Described by the
equation associated to a | Schrodinger equation
Hamiltonian function H € | associated to a quantum

c=(T"M) Hamiltonian operator H:
i) = Hi()

Next, we will define basic notations and concepts used to define quantum mechanical
systems.’

7. ELEMENTS OF FUNCTIONAL ANALYSIS

Let H be a Hilbert space (we always assume it is seperable, i.e. there exists a basis). An
operator in H is a pair (A, D(A)) where D(A) is a subspace of I, called the domain of A,
and A : D(A) — H is a linear map. We can always assume that D(A) is dense in H.

Definition 7.0.1 (Bounded operator). A linear map A : D(A) — H is called bounded if
there exists some ¢ > 0 such that for all y € D(A)

AP < ellll.
Otherwise, we say A is unbounded.

Remark7.0.1. If Aisbounded, A can be always extended to a bounded operator A:H - H.
Hence, when we talk about bounded operator, we always consider A : H{ — H.

Let A : H{ — H be a bounded operator. Then there is a unique operator A* : :{ — H such
that

(9, APy =(A'D, ¢y, Vo, € H.

>This is fairly standard. One can find them in any text book about functional analysis.
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Definition 7.0.2 (Adjoint/Self adjoint operator). We call A* the adjoint of A. Moreover, a
bounded operator A : H{ — I is called self adjoint if A* = A.

Example 7.0.1. Let H = L*([0,1]) and X : H — H, (Xf)(x) = xf(x). Then

1 1
IXFIE = fo 2l f()Pdx < fo F@Pdx = IfIP,

which implies that ||Xf|| < ||f|| and thus X is bounded. Let now f, g € L*([0, 1]). Then

1_ 1—
38) (f, Xg) = fo Fxg()dx = fo FEe(dx = (Xf, 2),

and thus A* = A. Hence A is self adjoint.
7.1. Unbounded operators.

Example 7.1.1. Let H = L*(R). Let X be the multiplication operator like before and define
its domain D(X) = {¢ € L*(R) | x¢(x) € L*(R)}. We claim that

(1) D(X) is dense in L*(R).
(2) X is unbounded.

Let ¢ € L*(R). Define ¢, = ¢x[-n, Where x denotes the characteristic function. Then it

is clear that x¢, € L*(RR) and by the dominated convergence theorem ¢, —— ¢, in L*(R).
This proves (1). To see that X is unbounded, consider ¢, = # X1, then ||, || = 1 for all n,
but

1 ! 7’12 n—oo
IXulE = [ =T
¢ n Jo 3

Thus X is unbounded, proving (2).

7.2. Adjoint of an unbounded operator. Let A be an unbounded operator in H with do-
main D(A). Define D(A) = {¢ € H | (¢,A )isabounded linear functional on D(A")}.
Using Riesz’s theorem, one can show that if ¢ € D(A"), then there is a unique ¢ € H such
that

W, x)={p,Ax), Vx €D(A).
We define A" = 1.

Definition 7.2.1 (Symmetric operator). Let A be an unbounded operator with D(A). We
say A is symmetric if

(P, AY) = (AP, ), VP, ¢ € D(A).
Moreover, A is self adjoint if D(A) = D(A*) and A*¢ = Ad.

Exercise 7.2.1. Show that if A is symmetric, then D(A) € D(A"). Hence, A is self adjoint iff
A is symmetric and D(A) = D(A").
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Exercise 7.2.2. Let 5 = L?*(R) and V : R — R be a measurable map. Define the domain
D(V(x)) = {¢ € LA(R) | V(x)p(x) € L*(R)}
for the operator

(39) V(X) : D(V(X)) — L%(R)
(40) ¢ +— V(x)p

Proposition 7.2.1. V(X) is self adjoint.

Proof. We need to check that D(V(X)) is dense in L*(R). V(X) is symmetric and D(V(X)) =
D(V(X)"). Tt is easy to check that D(V(X)) is dense in L3(R). Since V is a real valued func-
tion, V(X) is symmetric as well. We only need to show D(V(X)*) € D(V(X)). For this let
¢ € D(V(X)*). We want to show that V(x)¢p(x) € LA(R). Since ¢ € D(V(X)*), we get that
Y - (P, V(X)) is a bounded linear functional on D(V(X)). In fact, it can be extended to
a bounded linear functional on L*(R) (since D(V(X)) is dense). Hence by Riesz’s theorem
there is a unique x € L?(R) such that

(41) XYy ={o, VX)), Yy eLX(R),

thus

(42) fR x()Y(x)dx = fR P V()Y(x)dx, Vi € L(R),
and hence

13) IR e )

which shows that x = V(x)¢ a.e., and therefore V(x)¢ € L*(R). Hence ¢ € D(V(X)). O

Similarly one can show that the operator P, defined by Pi(x) = —ifid(x), is a self adjoint
operator with domain

D(P) = [ € L*(R) | k§/k) € L (R)),
where )
iy - —ikx
70 = 5 [ ey
is the Fourier transform of ¢. Next we mention two techincal results without proof.

Theorem 7.2.1 (Spectral theorem/ Functional calculus). Let A be a self adjoint operator on
JH. Let L(J) denote the space of bounded linear operators in H. Then, there is a unique map

{Bounded measurable functions on ]R} AN L(¥H),

such that
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(1) Zﬁ is linear and Zﬁ( fg) = ;5( f);ﬁ(g) for all bounded measureable functions f, g on R.

(2) $(f) = @)
(3) llp(ll < I1Hlleo

n—-oo

(4) If h, — x and for all n we have |h,(x)| < |x|, then for all Y € D(A)

n—00

)Y = A,

(5) A = Ay for A € C.

We can use this theorem to produce bounded operators from a self adjoint operator, e.g.
let f(x) = ™. We can see that f is bounded and measurable. Hence we can talk about
f(A) = ' as a bounded linear operator on K.

Theorem 7.2.2 (Stone’s theorem). Let A be a self adjoint operator on H. Define U(t) = el
Then

(1) U(t) is a unitary operator:
), o, Ut)yy) = (o, )
for all ¢, € H. Moreover, U(t +s) = U(t) o U(s).
(2) For ¢ € H and t — to we have that U(t)p — U(to)p in H (strong convergence)

(3) The limit lim,_, w exists in H for all Y € D(A) and

5 Uiy -
m-———--
t—0 t

= iAy.

(formally, this means %U(t) =iA)

(4) Let 1 € H such that the limit lim,_, HOYY pxists. Then Y € D(A).

t

Moreover, if U(t), for t € IR, is a family of unitary operators such that (1) and (2) hold, then
U(t) = e for some self adjoint operator A.

Definition 7.2.2 (Strongly continuous one parameter unitary group). A familiy U(t) sat-
isfying (1) and (2) of theorem 7.2.2 is called strongly continuous one parameter unitary
group and A is called the infinitesimal generator.

Definition 7.2.3 (Resolvent). Let A be an operator with domain D(A) and let A € C. We
say that A is in the resolvent set p(A) of A if

(1) AI - A: D(A) — H is bijective,
(2) (AT - A)!is a bounded operator.
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Definition 7.2.4 (Spectrum). The spectrum o(A) of A is defined by 0(A) := C \ p(A).

One can actually check that if A is an eigenvalue of A, then A € 0(A). We call the set of
eigenvalues of A the point spectrum of A.
Let A[0, 1] denote the set of absolutely continuous L?-functions on [0, 1].

Example 7.2.1. Consider the operator T = i% on L%([0,1]) with domain D(T) = A[0, 1].
Then o(T) = C (just a differential equation).

Example 7.2.2. Consider the operator T = i% with domain D(T) = {f € A[0,1] | f(0) = 0}.
We claim that p(T) = C.

Proof. Let A € C and define

Sig(x) =i f e 079 o(s)ds.
0

One can show that (T — A)S,g = g for all ¢ € L*([0, 1]). Moreover, S)(T — Al)g = g for all
g € D(T). We need to show that S, is bounded. Indeed, we have

f e 9 o(s)ds
0

2 2
[ s
x€[0,1]

7.3. Quantization of a classical system. We want to talk about quantization of a classical
system by considering a “quantization map” between classical and quantum data. Con-
sider a map 2, which maps a classical system to a quantum system. The classical (path
space) space of states ("M, w), which is a symplectic manifold coming from a cotangent
space, is mapped to a Hilbert space J{. Moreover, the space of observables C*(T*M) is
mapped to the space of self adjoint operators. We know that C*(T"M) is endowed with a
Poisson bracket { , }, but the question is what its image is under 2.

2

1
1Sagll5 =f 1S)g(x)[*dx < sup S g(x)* = sup
0

x€[0,1] x€[0,1]

X 2 X
< sup ( f |e'“<x's)g(s)|ds) < (sup f e M9 dy
x€[0,1] \Jo xefo,11 1Jo
< CM)igll3-

fo ) g(s)ds

O

Example 7.3.1. Let T"M = R*" = {(x,p) | x,p € R"}. Then x;, p' represent position and
momentum observables and {x;, pi} = 6;;. Denote by x; the operator given by multiplication
with x; and by ' := —ifizZ-. Then their commutator bracket is given by [x;, p'] = i1d;;.

The previous example can be generalized such that given {f, g} for f, g € C*(T*M) it will
be mapped by 2 to

1
or, by considering % = {f, H}, we get the quantum image
. d _ -
i A®) = [A(1), H],

which is basically the Schrodinger equation for the Heisenberg picture.
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Definition 7.3.1 (Quantization). A quantization of a classical system (R**, w) is an argu-
ment of a quantum Hilber space H together with a linear map

2: C*(R*) — {self adjoint operators on H}

such that the following hold:

(ql) 2 is linear,

(q2) 2(1) =idy,

(q3) 2(x)) =x;, 2(p:) = pi,

(@4 [2(f), 2(0)] = in2({f, g)),

(q5) 2(¢ o f) = ¢(2(f)) for any map ¢: R — R.

Remark 7.3.1. The problem is that (q1) — (45) are inconsistent. Even (gq1), (43), and (45) are
inconsistent.

Example 7.3.2. Consider n = 1. We want to know what the image of the classical observ-
able x*p? is under 2, i.e. 2(x*p?). We write

2 42 —

2yt = (" +p )2 P

Then we use (43) and (g5) to get the quantum observables

R ek e A i et
2 2 '

On the other hand we have

2 2 .92
S EE YTV o) = o)) =
which implies

2(x*p*) =

7

(?352 + T )2
2

which is in general not what we get before.

The question here is: what are general approaches to a solution? Even (q1), (42), (34) and
(g5) are not consistent. We can have two different solutions:

e Keep (91),(32), (43), (94) and choose an appropriate domain for 2,
e Keep (q1), (32), (g3) and demand (gq4) holds asymptotically, i.e.

[2(f), 2(9)] = ih2({f, g}) + O).
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We have two different approaches:

(1) (Canomcal quant1zat10n) Here we quantize the observables x;, p; as the image of 2,
i.e. x; > x; and p; - pi. Moreovr, f(x,p) — f(x,p) and the question will be what to
do for x;p;? More precisely, there is an ordering problem. We need to know how to
define Q(xfp]?).

(2) (Wick ordering quantization) Consider z = x + iap and Z = x — iap. Then write

f(x,p)as f(z,2), e.g.
f(z,2) = Z a;iz; z]
ij

and withz =X + iap, z* = x — iap we get

Dwialf) = f@2) = Z(* Y7

Example 7.3.3. Consider n = 1. Then, by writing x = 1(z + Z), we get
D) = D (}Lz2 +222+2)
_1 1 (@+10p7 + 2@+ i0p)@ - iap) + @ + iap))
:i( a*p* +ia(Xp + px) + 20 + &7p* + ia[x, p]) + X — &p° 1a(“+~))
=1 (4382 + 2iafx, p]) =% — Ehod,

where [ is the identity operator.

(3) (Weyl Quantization) Consider n = 1. We define 2y, (x, p) := =z +p ~. Eg. PDweyi(X?p) =
Dieyi(xxp) = m More generally,
1 — —_ —
QWeyl(xin) = m Z Xo1) *** Xo()Po(1) * * * Po(m)-
’ O€Sy+m

Exercise 7.3.1. Let ¢ be any polynomial in x and p. Then

if Jg if Jg
QWeyl(x ) g) QWeyl(x)QWeyl(g) QWeyl &p QWeyl(g)QWeyl(x) QWeyl &p

in g Ig
QWeyl(p ) g) QWeyl(p)QWeyl(g) + QWeyl a QWeyl(g)QWeyl(p) QWeyl ax

Proposition 7.3.1. Let f be a polynomial in x and p of degree at most 2 and g be
any polynomial. Then

[QWeyl(f)l QWeyl(g)] = iho@Weyl({f’ g})
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Proof. Let f = f. Then {x, g} = 3—5;. Using exercise 7.3.1 we get
in J if J . )
[ 2t (5), Lot (R)] = 5 ey (—g) + 5 Dy (—g) = ih2 (—g) .

Ip Ip Ip
a
Remark 7.3.2. This is not possible for arbitrary polynomials f and g, because of the NO-GO
theorem of Gronewald.
7.4. More on self adjoint operators.

Theorem 7.4.1. Let A be a self adjoint operator. Then o(A) C R.

Proof. Assume A is bounded. Let A = a+ib with b # 0. We calim that A € p(A). Let ¢ € H.
Moreover, define T := (A — al). Then

(A= ADY, (A~ ADY) = (A - al)y — iby, (A - al)p — iby)
= ITYIP — Giby, TY) — (T, iby) + PPy
= ITYIP + Pl
> PIyIP.

Hence ((A — AI)'(A — ADY, ) > b?||¢|* and thus (A — AI)*(A — Al) is a positive operator.
Moreover, we can show that (A — AI)~! is bounded. O

Remark 7.4.1. There are also plenty examples for unbounded operators.

7.5. Eigenvalues of single Harmonic Oscillator. Let H = L*(R) and consider the Hamil-
tonian H(x,p) = 5-p? + & with k = mw?. Then going to the corresponding operator for-
mulation, we have p = ifis and ¥ is just multiplication by x. Then the Hamilton operator
is given by
= 1 kx> 1
e 724 _ 1 (2 2)
il 7 = g (7 ()

mwx+ip

We will only do formal computations (i.e. we forget about the domains). Definea = —=—

Lemma 7.5.1. We have
H = haw (a*a + —I).
Lemma 7.5.2. The following hold:
D [aa]l=1
(2) [a,a%a] = a,

(3) [a*,a%a] = —a”
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Proof. Exercise O

Proposition 7.5.1. Assume that i is an eigenvector of a*a with eigenvalue A. Then

(44) aa(@p) = (A - Day,
(45) aa@y) = (A +1ay.

Remark 7.5.1. The consequence of this proposition is that either ay is an eigenvector or ay =
0. We know that a*a > 0 so all eigenvalues are non-negative. Hence, if 1 is an eigenvector
with eigenvalue A, then there is some number N sucht that a¥¢ # 0 but aV*y = 0.

Define 1y = aVp. Then a*ayy = 0 and thus v is an eigenvector of zero eigenvalue.

Proposition 7.5.2. Let ¢y be such that ||¢o|| = 1 and ayy = 0. Then, ¥, := (a*)"¢y, for n > 0,
satisfies the following:

(@) @ Pn = Y1,

(ii) (@a)pn = nipy,
(ti1) (Y, Pu) = 110,
(iv) apn = (n + D,

Remark 7.5.2. Our goal is to find some 1y € L*(R) such that aiy = 0 and [l = 1.

d _
—, then = = /;=4-. Thus

Define x = — dx

- e ) - f<—>

We want to solve the equation ayy = 0. This is equivalent to = + Xty = 0, which implies

that
Wo(x) = ,/mTwe-’S—?xz € S(R).

Here 8(IR) represents the space of Schwartz functions on R (see Subsection 8.2)

Proposition 7.5.3. For H,(x) satisfying Hy(x) = 1 and H,41(x) = (2xH (x) - dH” ) we
have

1)071(32) = Hn@EDO@-

Remark 7.5.3. One can check that the family {i,,} forms an orthogonal basis of L*(R).

We want to ask the following question: Is {ficw(n + %) forn =0,1,2, ...} the full spectrum of
H? The answer is yes, but the proof is not straight forward.
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7.6. Weyl Quantization on R*'. Let f be a sufficiently nice function, e.g. f € §(R*"). We
define 2y.,(f) as an operator on L*(R") by

1

Dweyi(f) = 0 e

f(a, b) €@ dadb,
N——
U(a,b)

where J?denotes the Fourier transform of f. We can compute U(a, b) by using the BCH
formula: eA*8 = el4B8l/2e4eB if [[A, B], B] = [A, [A, B]]. Formally, we get

_l . . .~ e ﬁ .~ g~
U(a, b) —e 2[uzx,lbfﬂewxelbp — ezabemxelbp.

Exercise 7.6.1. Show (ei’ﬂb) (x) = ¥(x + Iib).

ifiab

Using the exercise, we get U(a, b)) (x) = e™el™y(x + fib). There are some nice properties

for the Weyl quantization:

o If f € S(R™), then 2y, (f) is a bounded operator on L*(R"). In fact, it is a Hilbert-
Schmidt operator.

o The map Zye,: S(R*") — L*(R") is one-to-one.
e Let f, g € 8(R*"). Then [Pweyi(f)) Pwey(9)] = i1 2weyi(1f, &) + O(1?).

8. SOLVING SCHRODINGER EQUATIONS, FOURIER TRANSFORM AND PROPAGATOR

Recall that in the Hamiltonian formalism of classical mechanics the dynamics (time evo-
lution) was generated by Hamilton’s equations associated to a Hamiltonian function H €
C*(T"M). In quantum mechanics, it is postulated that time evolution is described by the

Schrodinger equation associated to the quantum Hamiltonian H: Given Y € H we con-
sider

() = Hy(t)
46 dt
(0) {¢<o> =

Before we discuss how to solve the Schrodinger equation (SE), let us briefly mention some
features of the equation.

(1) The SE is a linear equation: If 1(t) and () solve the SE with 11(0) = ¢ and
12(0) = Y, then ayy(t) + o (t) solve the SE with

a1(0) + Y (0) = ayy + Bis.

Remark 8.0.1. The linear SE can easily be generalized to a nonlinear equation but
we do not discuss that here.

(2) The SE is deterministic in the sense that given ¢ € J{, there is a canonical way to
produce ¢ (t) (we will make this precise later).

(3) Unitarity: || (#)II* = |[y|[* for all t (compare this with conservation of energy in clas-
sical mechanics).
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8.1. Solving the Schrodinger equation. We start with a simple situation, namely we as-
sume that {1} are eigenvalues of H and {¢p,,} form an orthonormal basis of H, where ¢;;

is an eigenvector associated to the eigenvalue A, i.e. the equation ﬁgbAj = Ajpa, holds. We
want to solve

@) 9, (1) = Hox ()
$1,(0) =y,

We want to formulate the idea for solving this equation. Look for solutions of the form

$a,(8) = f(O)Pa,-

From (47) it follows that

(48) iif' (pa, = Ajf(D)a,
f(0) =1

Clearly we can take f(t) = e iVt and we see that P (t) = e‘%mfgmj solves (47). Note that
we can write

(49) Pa (1) = €71y,

Now equation (49) together with the linearity of the SE suggests that “formally” for all
Ve X,

(50) () = ety

solves the SE (46). In fact, if ¢ € D(E), then using Stone’s theorem it can be deduced that

Y(t) € D(ﬁ) for all ¢, and in this case ¢(t) defined as in (50) indeed solves the SE (46).
Hence (50) can be interpreted as a canonical time evolution of ¢ € H. This is what is
usually referred as the deterministic feature of the SE.

Remark 8.1.1. To define i (t) = e itH Y we do not need the assumption that it has an eigen-
basis. We only need H to be self adjoint.

Definition 8.1.1 (Propagator). The operator U(t) = e #tH is called the (quantum mechani-
cal) propagator.

Lemma 8.1.1. If {¢, } is an eigenbasis with ¢, being eigenvectors associated to the eigen-
values A; then

n

(51) U =) e gy @y,

=

where qb}] € 3" is the dual of ¢,,.
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Proof. Let i € H. Then we can write it as a linear combination ¢ = Y ;_; ck,,. We know
that

n n

(52) UMy =Y all®ps, = Y e gy,

k=1 k=1
On the other hand

n n n
(53) [Z e i), ® @]]w = ) ce Mo 6,0 fn, = ) e g,
j=1 k,j=1 —_—— k=1
=0k

Thus for all ¢ we get
Uy = [Z e i) @ qn,] .

=

Let us give a short summary of the discussion so far.

e The operator U(t) = e+ can be used to describe time evolution of states in a
canonical way.

e If H has a eigenbasis {¢,,}, correpsondig to the eigenvalues A;, then U(t) can be
described explicitely as

n

um =Yy e g, @,

=1

8.2. The Schrédinger equation for the free particle moving on R. Recall that we have
H = [*(R) and H = 217> = L & Hence the SE (46) becomes

2m a2

2y(x,t) = —LLy(x, i)
54 ot 2m ox
oY {ub(x, 0) = (x)

Here we will discuss how to solve (54) with Fourier transform. We will also try to find an
explicit representation of U(t).

8.2.1. Digression on Fourier Transform. We will briefly recall the definition and properties
of the Fourier transform. Let 8(IR") be the space of Schwartz functions on R". Recall that
f € 8(IR") roughly means that f € C*(IR") and f and all its derivatives approach to zero
as |x| — oo faster than any polynomial function approaches to infinity. Now let f € S(IR").

The Fourier transform J(f), or simply f, of f is defined by
1

2n)z Jgs

where ( , ) : R" X R" — R again denotes the standard inner product on IR". We want to

list some properties of the Fourier transform without proofs:

(55) flk) = e f(x)dx,
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(i) If f € S(IR"), then f € S(R").
(i) Let f € S(IR"). Then

f_ .=

(56) a—x] = lk]f,
— 9

(57) x]-f:ia—l{
)

(iii) Let f € S(R"), then

1 N
0 IR n ' £ (k)dk.

This is called the inverse Fourier transform.

(58) FUHE) = f(x) =

(iv) Let f € $(R"), then

(59) f F(0dx = f |F(k)Pdx.
IRn n
This is called Plancherel’s formula.

(©)

Theorem 8.2.1 (Combined inversion and Plancherel formula). The Fourier transform

F : S(R") — 8(IR") can be extended to a unique bounded map F : L*(R") — L*(R"). This
map can be computed as

_ 1 : —i(k,x)
(60) FOW = Goplim | e fd

Moreover, the inverse Fourier transform ¥ : L*(R") — L*(R") is unitary and

(61) FUf)(Kk) = lim % £(k)dk.

(27'()% A— Jiy<a

Remark 8.2.1. If f € LY(R") N L3(R"), then

1

TO0 =G |

e 0 f(x)dx,
because in this case

lim e 60 f(x)dx = f e 5 f(x)dx

A= Jiy<a R

by dominated convergence.
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(vi) Let f and g be two measurable functions. Then the convolution f * g of f and g is
defined as

(f *g)x) = wa—ymWM%

where we assume that the right hand side exists. Suppose f, g € L'(R") N L*(R").

Then
1

(2m)?

F(f = &) = F())F (g

8.3. Solving the Schrédinger equation with Fourier Transform. First, we look for so-
lutions of the form ¢(x,t) = e®=“®) From (54), it is clear that i(x,t) is a solution iff
w(k) = % Hence,

(62) lp(x, t) — eikx—i%t

is a solution. However, note that, such ¢(x, t) ¢ L*(R"). Therefore, i(x, t) is not the solution
we are looking for. Here, the idea is to use 1(x, t) to produce a senseble solution of (54)

Proposition 8.3.1. Let ¢y € 8(R) and let r:b\o be its Fourier transform. Define

1

(63) P, t) = 20

f {b\o (k)ei(kx—a)(k)t) dk.
R

Then ¢(x, t) is a solution of (54) with 1(x, 0) = Yy(x).

Proof. Since ;b\o(k) € 8(IR), we can check that the derivatives with respect to x and t can be
interchanged with the integral sign in the definition of {(x, ). Since el®™~“®" golves the
SE, we can easily check that 1/(x, t) solves (54). Moreover,

1 .
00 = — [ Gt = o),
(2m)2 Jr
where the last equatlity holds because of the inverse Fourier transform. m|

Corollary 8.3.1. Let ¢y be as in proposition 8.3.1. Let ib\(k, t) be the Fourier transform of
Y(x, t) with respect to t. Then

P(x, t) = Po(k)e @,
Proof. From proposition 8.3.1 we know

1 ikx ( iw()t T,
¢mﬂ=amhﬁﬁ(emwﬁﬁﬂ.

Thus, the claim follows. O
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Form property (vi) of Fourier transforms, formally we get
1

e_iw(k)tao(k) = —F (K * o),
(2m)2
— o-iw(k)E — q-1(y-iwk)t) — _1 ikx —iw(k)t : “ _
where F(K;) = e ,ie K, =F (e ) = _(271)% f]Re ‘e dk. Again, a “formal com

putation” shows that

m imx2
K =\ g ™

The computation of K;(x) is “formal” because e™®* ¢ L}(IR) N L?*(R) and thus we do not
know how to take the inverse Fourier transform of it. Hence, we need a way to make sense
of an integral of the form

(64) f eikxe_i“’(k)tdk.
R

Integrals of the form (64) are called Fresnel Integrals.

8.3.1. Digression on Fresnel Integrals. Let Q be a real, symmetric n X n-matrix with det(Q) #
0. An integral of the form
f eH@dy

is called a Fresnel integral, and is defined as

f e @Iy ;= lim f e Wi (Qudy,
R e—0 n

As a matter of fact we have
1

|det (%)
where sign(Q) = #positive eigenvalues — #negative eigenvalues. More generally, for v €
R", we have

7

f e Q0 gy = oFsign(Q)
R”

1
2

f e%(Qx,x) e @Ody = lim e%(Qx,x)—%e(x,x) (@M dx
]Rn

e—0 R"
(65) _ o Tsign(Q) oh@ 00
Y .
Q
We use this general result, to compute
(66) 1 f e—im(k)teikxdk
- .
(2m)2 Jr

Now, using (65), it can be easily checked that

m imx?
K@= e ™
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Remark 8.3.1. There is also another way to define (66) (see [7]).
Now we make our previous formal discussion mathematically.
Proposition 8.3.2. Suppose ¢y € L'(R) N L*(R) and define

ye ) =57 (Jue ).

imx2

Then y(x, t) = K; * 1o, where Ki(x) = (/5ze2r.

Proof. We will only briefly sketch the proof. The idea here is to show that
- k2t

(67) ?(Kt * ¢0) = ¢O(k)e_ o

We can not talk about F(K;) as K; ¢ L*(R). However, we can consider K;x[-, and its
Fourier transform. Observe that

?(Kt)([—n,n] * l,DO) = 5'rd(Kt)([—n,n])g'i(lgbo)-

1
(2m)}
It can be shown that K;x[_,. * Po —— K, * ¢ in L2(R) and
n—o0 1 _ihk2t =~

9T(Kl‘)([—n,n])9:(1100) EE— 1 e Wl,bo
(2m)2

in L?(R). These two observations imply that (67) holds and hence

Ko = ! (Jo(k)e—hz"—r?).

8.3.2. Summary of the discussion. We have shown that if )y € L'(R) N L*(R), then
e'%tﬁybo = (3”'1 omo 3") Yo,
_ink2t

where (mf)(k) = e 27 f(k). This means we have shown that the following diagram is
commutative.

LYR) N L*(R) I LY(R) N L*(R)
e #tH m

LX(R) [A(R)

3:—1

Moreover, we have shown that (F7! o m o F)ihy = K; * 1. Finally, combining these results,

we conclude that
_ig _ m M
(e ) 00 = g [ € iy

im(x— y)z

i.e. the integral kernel of e i Ki(x —y) = /5mme
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Remark 8.3.2. One can check that K;(x) satisfies the SE and lim;_,q K;(x) = 6(x) in distribu-
tional sense.

Definition 8.3.1 (Fundamental solution). K;(x) is called the fundamental solution of the SE.

Remark 8.3.3. One can easily extend the discussion above for the free particle in R".

Part 3. The Path Integral Approach to Quantum Mechanics

We saw that Hamilton’s approach to classical mechanics inspired an axiomatic approach
to quantum mechanics. Hence, it is natural to ask whether there is a “Lagrangian formula-
tion" of quantum mechanics. Dirac, who viewed Lagrangian mechanics more fundamen-
tal, took first steps towards a Lagrangian formulation of quantum mechanics. Feynman
advanced it further, which gave rise to the path integral formulation of quantum theory.
Dirac suggested that the quantum mechanical propagator K(t, x, ) may be represented by

(68) f i’ 9y,
yEP(t,x,y)

where P(t, x, y) is the space of paths y : [0, t] — Rjoining x to y. Since P(¢, x, ) is an infinite
dimensional manifold, it is not clear what the integral (68) means.

9. FEYNMAN’s FORMULATION OF THE PATH INTEGRAL

Feynman's idea was to define (68) as a limit of integrals over finite dimensional manifolds,
which roughly goes as follows. Let P,(t, x, y) be the space of piecewise linear paths joining
x to y, which consists of n line segments €, ,,, {x, x,, ..., {x, , y- Clearly, to definey € P,(t, x, y),
we need to specify (x1, ..., X,—1). This means that we can identify P, (¢, x, y) with R"~. Hence,
we can define

(69) f et gy = lim A(n, ) e dx; - - dxyy,
yeP(tx,y) e Y€Pu(tX,)
where A(n, t) is some constant depending on n and t.

9.1. Free Propagator for the free particle on R. We have already shown that

— m i %(x_y)2
(70) K(t,x,y) = / 2nihteh .

Let us now give a path integral derivation of K(t,x,y). Let0 = t, < --- < t, = t with
ti—ti = % =: At. Moreover, let (x1, ..., x,-1) € R" and let y be the piecewise linear path
joining x to y such that y(t;) = x; and the line segment joining x;_; to x; is given by

1
y(s) = Y (ti=s)xiz1 + (s —tis)xi), se€ltia,ti], i=12,.,n

Then

(71) S(y) = —mZ f <x1(Af)z21> % Z % )?

tiza =1



QUANTUM FIELD THEORY AND FUNCTIONAL INTEGRALS 31

and thus
; n XX 2
(72) An, b) f eFSOdx; - di,y = A, ) f I g - d g
Define f; = /5 5xi. Then by change of variables, this integral will be
(73)
121 11 -
2hAt) ? T AT 2BAL T ()T i p g0
A t iYL (fifie1) =AMt a(fa=f1)
mn(Be) [ emrragag = aonn(Ze) T Ee
el 11
:A(Tl t) 21At) * (7’(1) ’ %2:,nm(xn—xl)2
7 m Av—
n-1
nmi
-1
ZﬂlhAt T im 2
— Ant )
Aln, 1) ) (anhAt) e

n

Define A(n, t) := (2n1ht) then

f et gy = lim A(n, ) f eSMdx; - dx,y
yeP(t,x,y) h—00 Rn-1

l
74) :( m ) b By
2tifit
= K(t, x, ).

Next we show how to derive the path integral representation of the propagator associated
with a Hamiltonian of the form H, + V(x), where H,y = s—p” is the free Hamiltonian. Let
us recall the Kato-Lie-Trotter product formula. Let A and B be self adjoint operators on a
Hilbert space H with domains D(A) and D(B) respectively. Assume that A + B is densely
defined and essentially self adjoint on D(A) N D(B). Then

(75) lim (e%tAe;tB) — @if(A+B)
n—oo

n—-oo

in the strong operator topology (i.e. A, — A iff ||A,Y — AY|| — 0 for all ¥ € H). We
assume that V(x) is sufficently nice so that the assumption of the Kato-Lie-Trotter product
formula is satisfied. Then for all ¢ € L*(R), we have

(76) e_%t(ﬁ‘)w@)gb = lim (e_%ﬁoe_ﬁv@)n Y

n—00

Let us compute the right hand side of (76). Recall that

$)e = g fo e

S|w~

(77) (e7ii"
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and
(78) (1Y) () = eV Oy ().

Using these two relations, we compute

(79) ((e FiHoe=h VO (xl) = ,/2 L fe%ﬁ(xl_x‘)) e 1V (xg)dxp.

Repeatedly applying the process we get

(80)
((e e ti¥ (xn (2717711711) e " () dodar -+ dxy
m rz i Ziet %{%(xkik_l )Z_V(xk—l)}
= " x)dxdxy - - - dx, -
(27117’1%) R p() 1 1
% i Y % (e xk’ -Vix
(8]) = f{(znn:ht ) f leh k=1 {2( ) (xk 1)}d dxn 1}1,0(3(0)(13(0
Wl IR

Then we get

% ivyn ot ) m %k k=1 2_ x
_ f {11 (znTht ) f o’ Yk n{z( 1 ) V( k—1)}dxl .. -dxn_l} lp(xo)d_xo =
R |1 L Ri-1

= L K(t, X, Xo)lp(xo)dXO/

where

n 2

m 2 iyn %{m S ) Y )}

K(t, x, xp) = lim e’ 2( % ) dx - da, .
n—eo 27'(1?1 Rr-1

Moreover, observe that

can be interpreted as

| (B - V) ds

This means that

5 .
(83) f ehs(y).@)/ = lim m f e%s(y)dﬁ tee dxn—l = K(t/ X, y)
yeP(t,x,y) n—00 27’(1771 Rr-1
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10. CoNSTRUCTION OF THE WIENER MEASURE

We saw that Feynman defined the path integral fy e50) Py as a limit of integrals over

eP(t,x,y)
tinite dimensional manifolds. Now we plan to investigate whether or not it is possible to

define a probability measure on P(t, x, ), which is of the form

e%S(V) @')/
Z 7
where Z is some quantity for normalization of the measure. A short answer to this ques-
tion is no. However, if we replace i by —1 (i.e. Wick rotate) then it is possible to construct

a measure of the desired form on a suitable P(t, x, y). This was done by Wiener in 1923 for
the case V(x) = 0 and it is known as Wiener measure. From now on we assume V(x) = 0

and S(y) = 3 fot |l(s)I[*ds. The basic ideas are the following:

e Interpret

(84) A(n,t) . e SMdx; -+ - dx,
measurable

as a measure of a certain “measurable" subset of P(t, x, y).

e Instead of taking the limit n — oo, try to extend this “measure" defined by (84) to a
measure on P(t, x, y).

Essentially, the idea comes from Molecular-kinetic theory. Einstein showed that, if p(x, t)
is the probability density for finding the Brownian particle at location x and at time ¢, then
it satisfies the diffusion equation

2

d d
(85) 5P t) = Do p(x, 1),

where D is the diffusion constant. This immediatly implies

X
1Dt
et

1
(x,£) =
b VanDt
if we insist that lim,_,o p(x, t) = 6o(x), where 6, is the Dirac delta function. This implies that
for any measurable set E C IR, the probability of finding the Brownian particle in E at time
tis given by

1 2
(86) f e iidx.
V4rDt JE

1

\27n(ta—t1)

of finding the particle at y at time t = £, if it was at x at time ¢t = t;. This means, given
O=ty<t <---<t, <tand E = [],(;, Bil, we can observe that

(-2

e22 is the probability density

From now on we take 2D = 1. more generally,

n (g=x_ )2
(87) A(n, t) f e X T dx; ---dx,
E
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can be interpreted as the probability of finding the Brownian particle in (a;, ;] at time
t = t;. Hence it should not be suprising to interpret (84) as a “measure"” of a suitable subset
of P(t,x,y). Let us try to make this precise and construct the Wiener measure. First, we
need some notations and definitions.

e We write
Co([0,1]) = {x:[0,1] —» R | x is continuous at x(0)},
which are paths starting at 0. Recall that Cy([0, 1]) is a Banach space with the norm

llxll = sup |x(£)].

te[0,1]

Hence, it is a topological space. Let B(Cy([0,1])) denote the Borel o-algebra of
Co([0, 1]) with respect to the topology induced by the norm || - ||.

e Fix t € [0,1], define ev; : Cy([0,1]) — R, evi(x) = x(t). It is easy to check that ev; is
continuous and hence it is Borel measurable. More generally, given t4, ..., t, € [0,1],
define

P(tl,..., tn) : Co([o, 1]) — IRn
X — P(ty, ..., t)(x) = (x(ty), ..., x(t,)),

ie. P(t,...,t,) = (evy,...,evy,), thus P(ty, ..., t,) is continuous and hence Borel mea-
surable.

e Giventy, ... t, € [0,1] and (a1, B1] X - - - X (@, Bu] = 1121 (as, Bi] € R”, define

I[tll ceey tn/ H(ai/ ﬁl]) = p(tll ceey tn)_l (H(ai/ ﬁl]) = {x € CO([OI 1])'(x(tl)l cees x(tn)) € H(ail 51]} .
i=1 i=1 i=1

Observe that I (t, ..., t,, [ 11— (@, Bi]) is Borel measurable. Also note that
n n
(88) I[tll ceey tnl H(ail ﬁl]] = m evt_il ((ail 51]) .
i=1 i=1
From (88) it is clear that we can always assume t; < t, <--- <t,1 <t,.

Exercise 10.0.1. Let 4, ...,t, € [0,1] and t; < t5,--- < t,. Moreover, let t,_; < s < t;. Check

that
n k-1 n
I(tll ey tn/ H(ail ﬁl]] = I[tll ceey tk—ll 5, tkl ceey tnl H(ai-ﬁi] X R X H(ail ﬁl] .
i=1 i=1 i=k

Hint: use that [ = (N, th_il((ai/ Bil)-

Let J be the collection of all I(t, ..., t,, [1-1 (@, Bi]), where n € IN (note that we always
include zero in IN) and a; < 8; with a;, f; € R U {eo} or all i.
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Exercise 10.0.2. Check that J is a semialgebra, i.e.

(1) 2,Co([0,1]) €7

(2 IfI,JeJ,thenIn]ed.

(3) If I € J, then Cy([0, 1]) \ I is a finite disjoint union of elements in J.
Solution. We have:

(1) @ =ev;((1,1]), and thus @ € J.

(2) LetI =i ev;'((a;, i) and J = N, evs‘jl((yj, 6i]). Then

In]= () (evi' (@i D nevy (v ).

Note that ev; ' ((a;, fi]) N ev;jl((yj, 6]) is of the form ev;*((a, b]).
(3) LetI € Jwith I = ev;'((«o, B]). Then
Co([0, 1)\ I = ev; (-, al) Uev; (B, a]) € J.

We leave the general case as an exercise.

Theorem 10.0.1 (Wiener). There is unique probability measure u on B(Co([0, 1])), such that

¥ (-x_1)?

fn ‘“ledxl -dx,
H 1(0‘1ﬁ]
(89) [ [tll tn/ | |(a1/ ))

V) ti(t — tr) -+ (ty — ta1)

Let us give a small overview of the proof strategy:
e First, we will define u(I) for I € J by (89).
e Then we will use the Caratheodory extension construction.

GivenI(t;,,,., ts, [T (@, Bil), define u(I) as in (89). First we show that u is well defined i.e.
if 1 <s < ty, then

(90) y([(tl, tn,H(al, )) ((tl, et 8, b e tn,H(al,ﬁ]x]RxH(al, ]]

To verity (90), we need the following lemma:
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2
Lemma 10.0.1 (Kolmogorov-Chapman equation). Define K(t, x, y) = \/%e‘%. Then

1) f K(ty, %, y)K(t, y,2)dy = K(ty + b, %,2).
R

In other words

_@p?  y2? 1 _ (x-2?
2 e 2 dy —— ¢ 24,

1
V(@m)*tt, f]Re \27(t + 1)

Proof of Theorem 10.0.1. Note that

k-1 n
(93) u ([ [tl, ves b1, 8, tky o by H(ai, ﬁl] X IR X H(ai, ﬁl]]] =

N 2 2
_% Zk -2 (xj=xi_1)" 2 Ly (xj=x;_1)? +(y 1) +(xk )

1 k+1 S—t_ - }
= ti—ti_q i=k+ ti—ti_q te_1 t—s dxl---dxk_ldydxk---dxn

(92)

fnk (e BIXRXIT (i 1] €
VY™t — t1) -+ (o1 — e2)(S — tre1) (e — 8) -+ (. — 1)

Using Lemma 10.0.1, we see that

Zn (—xj 1
fn e 275 it dxy - dxy,
[Ty (@i pil
(94) = ( [tll //tnl H(al/ ))

V@A™t — t1) -+ (b — 1) -+ - by — e 1)

Exercise 10.0.3. Check thatif[,JeJandIN ] =@,1U ] €J, then

p U ) = p + p(),

i.e. uis finitely additive. Hint: Use

I=1 tl/ sy tn/ H(ail ﬁl])
i=1

T=7151,.,51, H()/j, 6]-]].
j=1

A fact of the construction is that y is countably additive on J. Now, by the Caratheodory
extension construction, p induces a unique measure on o(J), the o-algebra generated by
J. We will denote this “measure” again by p. To prove theorem 10.0.1, we will show that
0(J) = B(Co([0, 1])), which is the content of the following proposition.

Proposition 10.0.1.
a(J) = B(Co([0, 11))-
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Proof. We already know that J € B(Cy([0, 1])). Hence o(J) € B(Co([0,1])). To show the
converse, it suffices to show that for any 6 > 0,

Bs(xo) := {x € Co([0, 1]) | [lx — xoll < 6} € (7).

Fix 6 > 0 and x € Cy([0, 1]). Our goal will be to show that

Bs(xo) = m Ky,
N=1

where Ky € ¢(J). Note that for fixed t € [0, 1] we have
(95) By(xo) C fx € Co([0, 1]) | 1x(t) = xo()] < o},
Let {tx},2, be a dense subset of [0, 1] and define
Ky = {x € Co([0, 1]) | |x(t;) — xo(tj)| < 6 for j=1,2,...,N}.

Then by (95), Bs(x0) € (=1 Kn- To show the reverse inclusion, we will show that

X & Bs(xg) = x ¢ ﬂKN.

N=1
Assume that x ¢ Bs(xp). Then there is an s € [0, 1] such that
[x(s) — x0(s)] = 6 + &1

for some 6; > 0. Now, choose a subsequence {fy,} of {tc} such that t;; — s (this can be done
since {t;} is dense). Since x and x are both continuous, we get

(96) xX(t;) — x(s),
97) Xo(tx;) — Xo(s)-

Thus for large j we get

0
be(ti,) = o) 2 6 + =,

and thus x ¢ (y_; Ky. Hence, we were able to construct a measure on B(Cy([0,1])). To

complete the proof of theorem 10.0.1, we check that u is a probability measure. Indeed,

we have )
G0, 1D) = plev; () = —= fR e Tdv=1.

This completes the proof of theorem 10.0.1. O

Next we will compute the Wiener measure of the set

A?? = {x € Co([0,1]) | & < x(t) — x(s) < b},
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wherea,b € Rwitha < b,and s, t € [0,1] with 0 < 5 < £. Note that A?} = P(s, t)"\(E), where
={(x,y) € R*|a < x —y < b}. Hence

R P

aby _ e 5 29 dxdy

= ——— [
- Wf [

(98) e Tdy

f e %9 s> du
\/271(1‘ —s)

Let us make a short input on pushforward of a measure. Let (X, 0(X), u) be a measure
space, (Y, 0(Y)) a measurable space and f : X — Y a measurable map. Then we can define
a measure f.u on (Y,0(Y)), which is defined as

fuP) = u(f'P),  Pea().

This measure f.u is called the pushfoward measure of y along f. It is easy to check that
for any integrable function @ : Y — R we have

f a()d(fu(y)) = f (F o)) du(),
Y X

where (f*a)(x) = a(f(x)). Define the map as; : Co([0,1]) = R by a,(x) = x(t) — x(s). Then
(98) implies that (as).u, where u is the Wiener measure on Cy([0, 1]), is given by

(s 1) pu([a, b]) =

1 22
S f e ady.
\/27’((t - S) a

Thus (as,).u is the Gaussian measure on IR, which is centered and it has variance (f - s).
As a corollary of this discussion we get

Corollary 10.0.1. The following hold.
1)
f (x(8) - x(5)du() =
Co([0,1])

)
f (x(t) — x(s))*du(x) = t —s.
Co([0,1])

Exercise 10.0.4. Show that

f x(s)x(t)du(x) = min {s, t}.
Co([0,1])

s,t€[0,1]

Hint: Assume that s < f and show that

x2 (x= y)z

xye Fe T dxdy =s.

T b
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Exercise 10.0.5. Compute
(1)

1

f ( f x(t)dt)dy(x),
Co([0,1]) \JO
1

f (f x(t)zdt)dy(x).
Co([0,1]) \JO

10.1. Towards nowhere differentiability of Brownian Paths. Leth > 0and 0 < a < 1.
Define

()

Hint: Use Fubini.

Ci(s, 1) = {x € Co([0, 1]) | [x() — x(s)] < hlt — 5|},
City= ) G, b,
s€[0,1]
_ ﬂ C2(b).
te[0,1]

One can check that Cj(s, ) is closed in Co([0, 1]) and thus Cj(s, t), C;(t) and C}} are Borel
measurable.

Lemma 10.1.1.

(99) u(C(s, 1) < \/%hlt —s|.

Proof. We can write

Ci(s, 1) = bx € Co([0, 11) | ~hlf — sI* < x(t) = x(s) < hlt — 5|} =2 AZ-F =1

Assume that s < t. Then by (98) we have

1 h|f—5|a u?
u(Ca(s, 1) = e 1 dy
\/_ —hjt—s|

h|t—s|*” 2
(100) f
\/2_71 hjt—s|*

< \/jhu — g2,
TC

MZ
where we used thate 7 < 1. m|
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Corollary 10.1.1. If 7 < a < 1, then u(C%(#)) = 0 and hence u(C¥) = 0.
Proof. Let {ti} C [0,1] such that ty — t (for k — o0). Now C}(t) € Cy(t, tx). Thus

1 k—>o0

p(C (1) < (G (¢ t)) < \/ghlf — "2 — 0.

Proposition 10.1.1. Let ; < a < 1. Then
u (fx € Co([0,1]) | x is Holder continuous of exponent a}) = 0.

Proof. 1t is clear since {x € Co([0,1]) | x is Holder continuous of exponent a} C 2, Cp.
O

Corollary 10.1.2.
p (fx € Co([0,1]) | x is differentiable}) = 0.

Proof. This follows since
{x € Co([0,1]) | xis differentiable} C {x € Cy([0,1]) | x is Holder continuous of exponent 1}.

O

The following lemma will play an important role when we discuss nowhere differentia-
bility of Brownian paths.

Lemma 10.1.2. Let t € [0, 1]. Then u(D;) = 0, where D, = {x € Cy([0, 1]) | x(t) exists}.

Proof. We can easily check that D; € U, C; (t). Moreover, we already know that u(C(t)) =
0 and thus p(Dy) = 0. O

Lemma 10.1.3. Define F on Cy([0, 1]) x [0, 1] by

Fix, f) = 1, if x(t) exists
"7 710, otherwise

Then F is measurable on Cy([0, 1]) X [0, 1].

Proof. We will show that the set G = {(x, t) | F(x, t) = 1} has measure 0 with respect to uxm,
where m is the Lebesgue measure on [0, 1]. First we observe that G C G*, where

G" = {(x,t) € Co([0,1]) x [0,1] | %1_1%10 fa(x, t) exists},

_1)_
with f,(x,t) = lim,_e (¢ ”l) x(t). Moreover, G* is measurable (since it is the set where a

sequence of measurable functions have a imit). Note that

(W xm)(G) < (" xm)(G") = (uxm)(G),
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where pu” is the outer measure associated with the premeasure u in the construction of the
Wiener measure. Now

1
(@)= [ pGpt,

where G} = {x € Co([0,1]) | im0 fu(x, t) exists}. If we can show that u(G;) = 0, then we
see that (u X m)(G") = 0 = (u* X m)(G) = 0 = G is measurable. To see that y(G;) = 0, one
can show that

and use the fact that lim,, ., u(C; (t, t+ %)) =0. O

Theorem 10.1.1 (Nowehere differentiable Brownian paths). With probability 1, paths x €
Co([0, 1]) are differentiable at most on a subset of Lebesgue measure O of [0, 1]. (In other words:
with probability 1, paths x € Cy([0, 1])) are “nowhere” differentiable.)

Proof. Let F be defined as in lemma 10.1.3. Note that

1 1
(101) f F(x, t)du(x)dt = f (f F(x, t)dy(x)) dt = f u(Dy)dt =0,
Co([0,1])x[0,1] 0 Co([0,1]) 0

by lemma 10.1.2, since for fixed ¢, F(x, t) = xp,. Thus we get

1
f (f F(x, t)dt) du(x) =0,
Co([0,1]) \JO

whence fol F(x,t)dt = 0 for almost all x € Cy([0, 1]). For such x, F(x,t) = 0 for almost all
t € [0,1] and thus x(t) does not exists for almost all ¢ € [0, 1]. O

We will state now the following facts without proof.

o (Fact 1) u({x € Co([0,1]) | x is Holder continuous of exponent a}) = 1 for 0 < o < %

(see [10]).
o (Fact2) u({x € Co([0, 1]) | x is Holder continuous of exponent %}) =0 (see[13, 11]).

Remark 10.1.1. More generally, we can talk about the Wiener measure u, on C,([a,b]) =
{w :[a,b] » R | w is continuous and w(a) = x}.

Remark 10.1.2. Moreover, there is the Wiener measure ) on
C¥([a,b]) = {w : [a,b] > R | w is continuous and w(a) = x, w(b) = y}.

This measure is the unique measure on B(C%([0, 1])) such that for all ¢y, ..., t, € (a,b)

uy((ty, ..., ty), E) = f Kot (Y, Xu) K, 1, (X, Xu-1) = - - Ky o (21, X)dxy - - - dxy,
E

1 1 (u—v)2

e 2t
V2mt

where E C IR" is a measurable set and K;(u, v) =
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Definition 10.1.1 (Conditional Wiener measure). The Wiener measure p? is called a con-
ditional Wiener measure.

Remark 10.1.3. uf is not a probability measure. In fact,

1 (x-y?

1 (Ci([a, b])) = ———=e"1"9.

V2n(b - )

Remark 10.1.4. u? is called conditional Wiener measure because i, and y fit in the general
framework (see [10, 11]) of a conditional measure

= f pxdy.
R

10.2. The Feynman-Kac Formula. The goal of this subsection is to prove the following
theorem.

Theorem 10.2.1 (Feynman—Kac) Let V be a continuous function on R, which is bounded from

below. Let Hy = 14 = 1A and H = Hy+ V. Moreover, assume that H is essentially self adjoint.
Then for all € L*(R)

(102) (e7™) (x0) = f Pe(t))e b Ve gy (),

Cry (01D

The main techincal tool, which we are going to use here, is the Trotter product formula,
given in the following way. Let A and B be self adjoint operators bounded from below on

JH. Assume that H = A + B is essentially self adjoint in D(A) N D(B). Denote the unique
self adjoint extension of H by H again. Then for all ¢p € H{ and forall t > 0

e'”q(p = lim ((e'%Ae'%B)n qb)

n—00

Proof of Theorem 10.2.1. We have

(103) (") ) (xo) = fm Ky (v, xo)e” OV ey ).

Taking the square of the operator we get

tI7 t 2 t
(104) ((e—zHOe—zV) ¢)(x0): ff K (x2, x1)K e (x1, )¢~ VOV Y (Y, dox,.
Rz n n

Taking the n-th power of the operator, we get
(105) (e e )" ) (xo) = f Ky (i, x0m1) -+ Ky (o) 2 YO0y )l - vy,
Rﬂ n n

where x; = x( ) and thus x,, = x(t). Then (105) is equal to

f Px)e s En e ay,,
Coy (10.)



QUANTUM FIELD THEORY AND FUNCTIONAL INTEGRALS 43

and thus

(106) ()@ =lim | e Ty,
1% JCy, (0,4])

Since

lim e+ L V() = = ) Vatends

n—-oo

it is enough to justify that limit and integral are interchangable in (106). This can be justi-
tied by using the assumption that V is bounded from below and by Lebesgue’s dominated
convergence theorem. Details are left to the reader. O

Remark 10.2.1. The Feynman-Kac formula holds (see [13]) for some general V.

Remark 10.2.2. There is a Feynman-Kac formula with respect to ui on Cy([0, t]) as well (see

[5]). It simply sais that the integral kernel of e is given by

— 1
Ki(x,y,H) = f e~ b Vixe)ds g ‘Uz-
Cy([0,4])

11. GaussiAN MEASURES
11.1. Gaussian measures on IR.

Definition 11.1.1 (Gaussian measure I). A Borel probability measure u on R is called
Gaussian if it is either the Dirac measure 6, at a € IR, or it is of the form

(x=a)?
e_ 20 ,

(107) du(x) =
210

where a € R, and 0 > 0. The parameters a and o are called mean and variance of u
respectively.

Remark 11.1.1. If u is given by (107), we say u is nondegenerate Gaussian. Moreover, if
a = 0, then u is called a centered Gaussian.

Exercise 11.1.1. Check that

(108) a= fxdy(x),
R

(109) o= f(x — a)*du(x).
R

Exercise 11.1.1 justifies the names “mean” and “variance” of the Gaussian measure u given
by (107).

Exercise 11.1.2. Given a Broel measure p, define i : R — C by

ﬁ(y):f]Reiyxd‘u(x).

Check that 1i(y) = €19, if 1 is given by (107).
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Definition 11.1.2 (Characteristic Functional I). The map u defined as in exercise 11.1.2 is
called the charactersitic functional (or Fourier transform) of p.

Exercise 11.1.3. Let u be a Borel measure on R. Show that i is Gaussian iff
(110) fy) = e ior

for somea € Rand o > 0.
11.2. Gaussian measures on finite dimensional vector spaces.

Definition 11.2.1 (Gaussian measure II). A Borel probability measure u on R" is called
Gaussian, if for all linear maps a : R” — R, the pushforward measure a.u is Gaussian on
R.

This definition is abstract and we will later give a more “working” definition of a Gaussian
measure.

Remark 11.2.1. From now on we will identify (R")* with R", using the standard metric on
R", i.e. a linear map a : R" — R will be considered a vector a € R".

Definition 11.2.2 (Characteristic Functional II). Given a finite Borel measure u on R", de-
finey: R — Cby

‘I[(y) = f ei<er>d‘u(x).
R
1 is called the Characteristic functional (or Fourier transform) of p.

Proposition 11.2.1. A Borel measure u on R" is Gaussian iff

(111) (y) = e iym=3 Ky

where a € R" and K is a positive definite symmetric n X n-matrix. In this case, when y is
nondegenerate, then

1 _ _
du(x) = ——— e 2K ) KT (e-a) g5
K \2
det (E)

Proof. Given a Borel measure u on R" and a linear map a : R" — R, we get
@(t) — feitsd(a*y)(s) = feita(x)dy(x)
R R
(1 12) — f ei(ta,x>d‘u(x)

= p(ta),

where we have used in the second equality that

f (Fa)w)dx = f fden).
X Y
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Assume that i has the form (110). Then
(113) agi(t) = f(ta) = plftam)—3(K(ta) tay _ qittaa)-3(Kaa)

By exercise 11.1.2, a1 is Gaussian on R. Conversely, assume that a.u is Gaussian on R for
all linear maps a : R" — IR. By exercise 11.1.2 we get

ita(a)—3o(a)? )

at) =e

Moreover, by exercise 11.1.1, we get
(114) @ = [ rdan),
R

(115) o(a) = fR(t — a(a)*d(a.p)(®).

We can check that the application @ — a(a) defines a linear map R" — R. and hence it
can be identified with a € R" as a(a) = {a, @). Moreover, the application a — o(a) defines a
quadratic form on R". Hence, there is a symmetric n X n-matrix K such that o(a) = (Ka, a).
Thus, o(a) > 0 for all @ € R" implies that K is a positive matrix. The last part of the proof
is left as an exercise®. |

Hence, we saw that this abstract definition of a Gaussian measure on R" is equivalent to
the usual notion of Gaussian measure.

Exercise 11.2.1. Let  be a Gaussian measure on R” of the form

1
K\2
du(x) = det (E) o HKG-), (-0 g

a:f]Rxdy(x):(f]Rxldy(xl),...,\[Rxnd‘u(xn)),

Kj' = f}R ”(xi —a;)(xj — aj)du(x).

Definition 11.2.3 (Covariance operator). The vector a € IR" is called the mean of the Gauss-
ian measure and the matrix K™ is called the covariance operator of y. When the mean of
a Gaussian measure is 0, then it is called a centered Gaussian (see remark 11.1.1).

Check that

and

Proposition 11.2.2. Let u be a centered Gaussian measure on IR" of the form

K\
du(x) = det(ﬂ) e HKEI Gy

Then

%1t essentially follows from the one dimensional case and diagonalization of K.
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(1) For all A € C7,
f e(/\,x>d‘u(x) — e%<K_1/\,/\>.
RTI
2)
fR fle= Viydu(y) = (e f) (),

where L# = Y/, Ki_jla%aiyj' Moreover,

fR fWdu(y) = (1) ).

€)
f pEOdu() = pDe ™|
Re A=0
where p(D,) is a polynomial in derivatives in A;-directions 8%1 corresponding to the
polynomial map p(x), i.e. if p(x) = x1x2, then p(D,) = 3%1 3%2.

Proof. We prove each point separately:
(1) We have

NI—=

1 K
K \2 det by 3 3
eu’x)dlu(x) — det(—) e(A,x>e—%<Kx,x>dx — ( n) e%<1< AN — e%<K u,A).
R" 271 R~ det (ﬁ)
271

(2) It is sufficient to check that f(x) is of the form e*® with A € C" as these function
are dense. For f(x) = e we get

Nl—=

fla = Viy) = e eV,

and thus
f flx— \/Ey)d‘u(y) = e“"”f el ‘m'wd‘u(y) = MK
R R
On the other hand

LF (e19) = (KA, Ay

which means
trup tyr-1
il (e<A,x>) — KA G

Thus we have

[ A= Vindut) = (4 ),

when f(x) = €. The second part can be verified in a similar way.
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(3) Left as an exercise.

Example 11.2.1. Consider

f xixdp(x) = K.
Rﬂ

More generally,

f (u, x)v, x)dp(x) = (K'u,v).
RVI

Graphically, it can be represented as

Example 11.2.2. Consider

4
f [H(ui, x>] du(x) = (K™ uy, up) (K us, ug)+(K g, us ) (K 1, gy +(K  uy, ug)(K ug, u3).
R™\ 521

Graphically, it can be represented as the sum of

Uy Us Uy Us
o—0
o—0
Uy Uy Uy Uy

where each edge represents K.
In general, there is the following theorem.

Theorem 11.2.1 (Wick).

251 Uusz

Uz Uy

f ﬁﬁt xydp(x) = {Z<K_1ujl,uj2> (K, ug,), ik even
.1 174 0
i=1 ’

Exercise 11.2.2. Prove theorem 11.2.1.

otherwise

11.3. Gaussian measures on real seperable Hilbert spaces. Let J{ be a real seperable

Hilbert space.

Definition 11.3.1 (Borel measure on ). A Borel measure p on JH is a measure defined on

B(F), which is the Borel o-algebra of J.
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In the previous subsection, we saw that a Gaussian measure on a finite dimensional vector
space V is determined by 2 € V and a positive symmetric matrix K™}, called the covariance
of the Gaussian mean. In this section we will see whether this is the case in the infinite
dimensional case as well. Let u be a Borel measure on 3. Define an operator S, on H by

(116) (Su(), y) = L %, 2)(y, 2)du(2)

Remark 11.3.1. It may happen that S, does not exists.

Let us recall some background material.

(1) (Trace class operators) Let A : H{ — H be a bounded operator. We define the

squareroot of A by
|Al := VA*A,

which exists by the spectral theorem. Note that |A| > 0. Let A be a nonegative
operator on J{. Then

[o¢]

Y (Aey,en)

n=1

is independent of the choice of an orthonormal basis {e,}. In this case, one defines
the trace of A as

Tr(A) = Z(Aen, en).
n=1
Definition 11.3.2 (Trace class). The operator A is called trace class if Tr(|A|) < .

If A is a trace class operator, then )., ,(Ae,, e,) does not depend on the choice of an
orthonormal basis {e,}. In this case, we define Tr(A) = )., (Ae,, e,).

(2) (Bilinear forms/quadratic forms) A bilinear form B with domain D(B) is a bilinear
map

B: D(B)x D(B) — R
(x,y) — B(x, ),
where D(B) is a dense subspace of H{. Given a bilinear form B on J, we can define

a quadratic form g(x) = B(x, x). A bilinear form B is bounded if there is some ¢ > 0
such that for all x, y € D(B)

B, y)I < ellxllllyll-

We call B symmetric if B(x, y) = B(y, x) for all x, y. Moreover, B is called positive
(definite) if g(x) > 0 (and g(x) = 0 iff x = 0) for all x. If B is a bounded, positive
and symmetric bilinear form, then there is a bounded linear operator Sg : H — K
such that B(x, v) = (Sp(x), y).
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This is the end of the background materials. Next, we want to investigate when S, exists.
We first need some notation. We define
T := {Trace class, positive, self adjoint operators on H}.
Proposition 11.3.1.
S, €T = f [lx|Pd pe(x) < oo.
5

Proof. Assume S, € T. Let {¢,} be an orthonormal basis of J{. Then

118 = Y (S en = Y, [ werduco = [ Yinerduw = [ fduco,
n=1 n=1 n=1

by the monotone convergence theorem. Conversely, assume fg{ |Ix|*dp(x) < oo. Then,
define
Bx,w) = [ (20,20,
5
Then

IB(x, y)| = f x, 2y, z)du(z)| < x|yl f llzIPdu(z),
H H

and thus B is a bounded bilinear form. Moreover, B is symmetric and positive. Hence,
there is a positive self adjoint operator S, such that B(x, y) = (S,(x), v). Now, we can check

Y uteen = [ IlPdute) <o
n=1 H

for any orthonormal basis {¢,}. Thus S, € T. O

11.3.1. Characteristic Functionals.

Definition 11.3.3 (Positive definite function). A function ¢ : H{ — C is called a positive
definite if for all ¢y, ...,c¢, € C and hy, ..., h, € H withn =1, 2, ... we have

n

(117) Z ekl — h); = 0.

jk=1

Definition 11.3.4 (Characteristic functional III). Let u be a Borel measure on (. The char-
acteristic functional (or Fourier transform) 1 of i is a function i : 3 — C defined by

(118) ) = [ e duto)

Remark 11.3.2. It is easy to check that:
(1) [u)| < u(FH) for all x € H.

(2) If p is a probability measure, then u(0) = 1.
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(3) If y is a finite measure, then 1 is uniformly continuous on K.

Lemma 11.3.1. Let u be a Borel measure on H. Then 1 is a positive definite functional on
.

Proof. Leth;, ...,h, € H and cy, ..., ¢, € C. Then we get

n

Z C]‘ﬁ(h]‘ - hk)fk = L Z cjei<hf'x>e_i<hk'x>ékdy(x)

Jk=1 k=1

n
= f Zcjei<hf"‘>ei<her>ckdy(x)

Hik=1
L

Definition 11.3.5 (Gaussian measure III). A Borel measure u on I is called a Gaussian
measure on K if for all h € H we get that (ay).u is a Gaussian measure on R, wehere
ay, : H — Ris given by ay,(x) = (h, x).

2

du(x) > 0.

n

Z Cjei<hj,x)

j=1

O

Lemma 11.3.2. Let u be a Gaussian measure on J{. Then there are functions m and o on
H such that 1i(y) = e"™¥)-290),

Proof. Recall that (az).i(t) = Fi(th). Since (a).4t is a Gaussian measure, we have
(OTh-)T‘Ll(t) = eim(h)t—%tza(h),

and thus - -
() = (@p)-u(1) = =200,

Exercise 11.3.1. Check that

(119) m(y) = L o, ydue)

(120) oy) = L 2P (x)

Theorem 11.3.1 (Bochner-Kolmogorov-Milnor-Prokhorov). Let ¢ be a positive definite func-
tional on 3. Then ¢ is a characteristic functional of a Borel probability measure y on 3 if and only

if
(1) ¢0) =0
(2) forall € > O thereis an S, € T such that
1 —Re(p(x)) < (Sex,x) + €
forall x € H.
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Proof. See [10]. O
Theorem 11.3.2 (Prokhorov). The following hold:

(1) Let u be a Gaussian measure on H. Then S, € 7.

(2) Let m € Hand S € T. Then ¢p(x) = e“™0=35%0) js the characteristic functional of a
Gaussian measure.

Proof. We will only consider the centered Gaussian measure, i.e. m(y) = 0, i.e. u(x) =
e"2°%). We want to show that

(121) L llx|Pdu(x) < oo.

The idea now is to try to find some S € 7 and Cs > 0 such that

(122) f (x, yYdu(y) < Cs(Sx, %),
H

for all x € H. Before we discuss a construction of S, let us observe why (122) implies (121).
Let {e,} be an orthonormal basis of J{. Then by (122)

Y [ nnidut < s Y (Sew ) = CSTHG)
n=1 vH n=1

This implies that

[o¢]

2d = 3 o y)2d = f"’ 2d < CsTr(S) < oo.
L IyIPdp(y) fg{ ;@ yrPduy) =), | (e yVdu(y) < CsTHS) <

n=1

Hence, our goal will be to construct S such that (122) holds. Since u is a probability mea-
sure, by the previous theorem we get that for all ¢ > 0 there is some S, € 7 such that

(123) 1—u(x) <(Sx,x) +¢,

for all x € H. Assume now that ker(S,) = {0}. In this case we claim that for all x € H \ {0},
we have

1

4
2
(124) [ rrauc < Siog (=5 ) s,

Obviously (124) implies (122). To verify (124), we proceed as follows: If y € I such
that (S.y,y) < ¢, then from (123) we get o(y) < 2log(L-). Given x € 3\ {0}, take

1
y= (m)z x. Then we can check that (S,y, y) < ¢ and hence we have

(125) o(y) < 210g(ﬁ).
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Note that we use ker(S,) = {0} to define y. Also, we can check that

o(y) = o(x).

__&
2(Sex, x)
Thus for x € J \ {0}, we get from (125) that

o(x) < —log( L )(5 %, ).

Now using o(x) = fg{<x, yY2du(y), we verify (124) when ker(S.) = {0}. If ker(S,) = {0},
then we can construct S € T with S, < S and ker(S) = {0} as follows: Let {A,} be positive
eigenvalues of S, and ¢, eigenvectors corresponding to A, such that ||p,|| = 1 and ¢, L ¢,
for m # n. Moreover, let {{;} be an orthonormal basis of ker(S;). Then {¢,,{;} form an
orthonormal basis of J{. Define the map

S:H—XH
X S(x) = Z An<¢n1x>¢n + Z ]'1_2<¢]"x>¢]"
n j

Then we can check that S € T, ker(S) = {0} and thus (123) holds if we replace S, by S.
Hence repeating the argument above, (124) holds for S. This completes the proof. O

Now let H be a seperable Hilbert space. Let J be the set of finite rank projections of 3, i.e.
p € Fiff p: H — JH is a projection and dim p(H) < co. We define the set

R ={p™'(B) | p € F, B C p(H), B is Borel measurable}.

Then it is easy to check that R is an algebra. However, R is not a sigma algebra, which can

be seen as follows. Let B(0, 1) be the closed unit ball in H. When X is infinite dimensional

B(0,1) is not a cylinder set, i.e. B(0,1) ¢ R, as C € R implies that C is unbounded. We

claim that B(0, 1) can be written as countable intersections of elements of R. Let {h,} be a

countable dense subset of H with &, # 0 for all n. Moreover, for N € IN, we define the set
Ky ={h € H | Kh, b}l < |Ihall, V1 = 1,2,...,N}.

Exercise 11.3.2. Show that Ky € R for all N € IN.

It is easy to see that B(0,1) € (y-; Kn. Assume that & ¢ B(0,1). Then there is some
W € H \ {0} such that Kﬁ’h}f”” > 6 + 1 for some 6 > 0. Choose then a subsequence {h,,} such

hhy,
that 1,, — I’. Then WL, K51 and thus

T T W
h, hy,

K5, B >0+1
11,

as k — oo. This shows that 1 ¢ (3_; Ky and hence we have showed that (3_; Ky € B(0, 1).

This means B(0, 1) = (-1 Kn. Next we define a finitely additive measure p on R as follows.
Let p € 3 and B be a Borel subset of p(H) and dim p(H) = n. Define

wp(B)) = 2 f -3 gy
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Exercise 11.3.3. Show that u is a finitely additive measure on R.
Exercise 11.3.4. Show directly that u can not be countably additive.

Hence, there is no hope to try to construct the standard Gaussian measure on H (in the
infinite dimensionl case the identity operator is not a trace class operator). We ask ourself
whether there is a wayto make sense of the standard Gaussian measure on . The answer
is yes. There is a way to understand the standard Gaussian measure on . The idea is to
expand H so that it supports a countably additive Gaussian measure.

11.4. Standard Gaussian measure on H. How do we expand H? The technical tool we
use here is Kolmogorov’s theorem. Let us briefly recall this without a proof. For this, let
{Xi}ies be a family of topological spaces. Assume that for each I C J finite, we have a Borel
probability measure u; on X := []; Xi. Given ] € I C J, with I finite, let 7tj; : X; — X
denote the projection onto the first | coordinates.

Definition 11.4.1 (Compatible family). The family {X;, u ]}IFU«’ is said to form a compatible
family if for all | € I we have (my)).u; = Y.

Theorem 11.4.1 (Kolmogorov). Let {X], u;} be a compatible family. Then there is a unique prob-
ability measure py on Xy = [];cy Xi and measurable maps m; : Xy — X| for I C J finite such that

(n[)*[,lj = (UI-

To apply theorem 11.4.1 in our sitation, we proceed as follows. Let {¢,} be an orthonormal
basis of H{. Define a measure p, on R" by

in(B) = u(p,'(B)),

where p, : H — spanie, ..., e,} = R" is the projection and u the cylindrical measure defined
before. Then it is easy to check that {R", u,,} form a compatible family of probability mea-
sures. Hence, by theorem 11.4.1 there is a probability space (Q, 1) and random variables
&1, ..., & on Q such that

(126) 1 (fw € Q| (&1(w), ..., E4(w)) € B, B € R" Borel measurable})
= u(th € 3| ((h, e1),...,{h,ey)) € B})(or simply u,(B))

Lemma 11.4.1. The {&;} are independent and identitcally distributed random variables
with mean 0 and variance 1.

Note that using the &;s we can define J{-valued random variables X,, by

X,:Q—0 K
w — Xy(@) = Y Ew)en.
i=1

Moreover,

(127) (Pn o Xn);[j = HUn-
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If {X,,} converges in probability (convergence in measure), then it would induce a random
variable X : QO — H and hence we would get a measure X, on H and by construction it
would be the standard Gaussian measure on H. Unfortunately, the bad thing is that the
sequence {X,} does not converge in probability. We already know that this is not possible
because we have seen that there can not exist a Gaussian measure u on H (assuming I is
infinite dimensional) whose characteristic functional is 1i(x) = e 2", Let us see directly
how {X,} fails to converge in probability. For this it is sufficient to show that {X,} is not
Cauchy in probability.

Lemma 11.4.2. {X,,} is not Cauchy in probability.
Proof. Let € > 0 and n > m. Then

(128) :LT {a) S Q| Z Ei(a))ei > S}J = Un—m (]Rﬂ—m \ B(O, &))
i=m+1
(129) =1 — up-m(B(0, €))
(130) > 1= tp-m([—¢, €]"™)
(131) =1-(u([-¢ )™
Note that u;([—¢, €]) < 1implies that (ui([—¢, €]))"™ 2%, 0. Here pi([—¢, €]) = \/% f_i e 2" dx.
This implies that {X,} is not Cauchy in probability. O

Hence, our strategy to construct a Banach space containing  would be the following. First
consider a new norm || [l for which the sequence {X,} is Cauchy in probability. In this
case {X,,} converges in probability if we consider the Banach space obtained by completing
JH with respect to this new norm. This motivates the following definition.

Definition 11.4.2 (Measurable norm). A norm || ||y on K is said to be measurable if for
all € > 0 there is some p, € J such that

p(th € X lipullw > €}) < ¢
for all p € F such that p L py.

Geometrically it means that || || is such that p is concentrated in a tubular neighborhood
of some py € J. A non-example would be the norm || |5 on 3, which is not measurable.

Theorem 11.4.2 (Gross). Let || |lw be a measurable norm on H. Let W be the Banach space ob-
tained by the completion of H with respect to || |lw. Then the sequence {X,} converges in probability
in W.

Theorem 11.4.3 (Gross). Given a seperable real Hilbert space 3, there is a seperable Banach space
W with a linear continuous dense embedding 1 : H — W and a Gaussian measure iy on W such
that

(132) uw(w € W (fi(w), ..., fu(w)) € B, B C IR" Borel measurable})
= u(th € 51 (h, fr), ..., B, fa)) € BY)
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forall fi, ..., fo € W — H* = H. In particular, forall f € W* C K

u(f) = e lfI5
Here Gaussian measure means that for all f € W* we have that f.u is Gaussian on R.

Remark 11.4.1. 1If || |lw is a measurable norm on H, then there is some ¢ > 0 such that
lhllw < cllhl| for all h € I (see [10]). It was expected that || ||y is dominated by || || because
we needed a bigger topology on H to allow convergence of {X,}.

Remark 11.4.2. Let A be a positive Hilbert-Schmidt operator on J. Define a new norm by
1hllw, = llAH.

Then || ||, is a measurable norm on J (see [10]).

Remark 11.4.3. In the view of remark 11.4.2 we see that there can be many Banach spaces.
In other words, we have no uniqueness. However, we do not care.

To elaborate on remark 11.4.3, a slogan here is that J{ contains all information about the
measure. Our next goal is to make this slogan a little more precise, and this requires some
effort. Given a seperabe Hilbert space J{, we saw that there is a Banach space W, a linear
continuous dense embedding ¢ : H{ — W and a Gaussian measure u on W such that
1(f) = e 311, where f € W* C H* = H. Next, we would like to understand whether it is
possible to identify JH from a seperable Banach space W and a centered Gaussian measure
p. More precisely, given a seperable Banach space W and a centered Gaussian measure y
on W, is it possible to find a Hilbert space H(u) together with a linear continuous dense

embedding ¢ : H(y) — W such that u(f) = e MM We will start with a seperable real
Hilbert space H{ and a Banach space W and a Gaussian measure p given by theorem 11.4.3.
Then we will try to understand how to recover H from W and u. This will give a hint on
the construction of H(u) out of W and u. Let 1, W and u be as in theorem 11.4.2. Given
f € W, we have q,(f) = [ f(w)*du(w). More generally,

gu: W XW"' — R
(f,8) — qu(f, 8) = fw fedu.

Definition 11.4.3 (Covariance of a measure). The map g, is called the covariance of p.
Exercise 11.4.1. Show that q,(f, g) = (f, &5, where f,g € W* C H* = K.

First, we would like to show that g, is a continuous positive definite symmetric bilinear
form on W*. To see this we need a technical tool: Fernique’s theorem, which we state
without proof.

Theorem 11.4.4 (Fernique). Let W be a seperable Banach space and . be a Gaussian measure on
W. Then there is some € = &(u) > 0 such that

f eIl dy(av) < oo.
2%
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Corollary 11.4.1.
f lwllf, dp(w) < oo,  Vp=1.
w
Proposition 11.4.1. g, is a continuous bilinear form on W*.

Proof. We have

9., 9)l < fw | (@)g(@)ldu(e) < | flwlgl fw ol dp(eo)

[

O

Note that f € W* implies that q,(f) < co and thus f € L*(W, u). Hence, we have a canonical
linear map

T: W — LW, p)
Lemma 11.4.3. The map T is continuous.

Proof. We have

Tl = fw F@)duw) < IIfIR, fw ol ().

Corollary 11.4.2. The norm on W* induced by g, is weaker then || |[-.

Lemma 11.4.4. Let | be the map | : W* —  given as the composition W* < H* = .
Then | : (W*,q,) — H is a linear continuous dense isometric embedding.

Proof. It is a direct consequence of the previous corollary. m|

Exercise 11.4.2. Given h € H, define oy, : W* — R by ay(f) = f(h). Show that ay, is
continuous on W* with respect to the topology given by g,.

Corollary 11.4.3. If i € 3, then |[2llyc = SUP oy, o) s

VauFAH

Proof. Since J(W*) is dense in H, we know that

”h”f}{: sup M: sup M: sup M
FeW=\{0} ”](f)” feW\{0} ”f”LZ(WrH) Few\(o) qy(f’ f)

O

Let K be the completion of T(W*) in L*(W, 1t). Then we see that | extends to an isometry
J:K— H.
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Exercise 11.4.3. Show that | : K — J is an isomorphism of Hilbert spaces.

Let us summerize what we have seen so far:

(1) We have seen that

h
heH = |hllsx = sup |f(—)|

fewor VI )

This relation can be thought of as constructing the norm on J out of W and u. It
will be the key in order to construct H out of W and p.

(2) The map | : K — 3 is an isomorphism of Hilbert spaces. In particular, it is an
isomorphism of Banach spaces.

Given a seperable Banach space on W and a contered Gaussian measure y on W, (1) will
be used to define a normed space H(u) and (2) will be used to give an inner product on
H(u). This way we will be able to construct H(u) out of W and u.

Definition 11.4.4 (H{(u)-norm). Let W be a real seperable Banach space and 1 a centered
Gaussian measure on W. Define a norm || |3, by

|f (@)l
lwllscy = sup Wl

fewor VI )
and H(u) = {w € W | [|wlls) < oo}. The space H(u) is called the Cameron-Martin space.

Exercise 11.4.4. Show that J{(u) is a normed space.

Exercise 11.4.5. Show that w € H(u) iff f — f(w) is continuous on W* if W* has the topol-
ogy induced by g,..

Proposition 11.4.2. H(u) is a Banach space, i.e. || |5, is complete.

Proof. We first show that there is some ¢ > 0 such that for all w € JH(u)

llwwllw < cllwllseq-

In other words ¢ : (H(u), || llscy) < W is continuous. Let w € W\ {0}. By the Hahn-
Banach theorem we can choose f € W* such that |||y = 1 and f(w) = |[w||w. Moreover,
by proposition 11.4.1 we have that || f||;, < él|fllw- and thus [|f]|;, <& Now

f@)l _ If@)
1w~ T,

with ¢ = 1. To show that H(u) is complete, let {h,} be a Cauchy sequence in H(u) with
respect to || [ls¢). By the previuous section it is Cauchy in (W, || [lw). Since W is complete,
there is some h € W such that i, — hin (W, || [lw). We claim that h € H(u) and h, — hin
H(u). Let € > 0. Choose m > n large enough such that

flhy = 1) < & \Jqu(f, f),

lwllw = f(w) = |f(w)] =

< C”w”f}{(y)/
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(use h, = hin W and f € W*). Therefore

|f (hy, — h)| - |f(hy = hy)| . 1f (s — 1) . |
B = ”hﬂ_hm” )+ E.
qu(f, f) Vau(f. ) V. P H(w)

This shows that ||, — k|3 < oo implies that & € H(u) and ||k, — hlls¢y) — O. O

Even though we haven been able to show that H(u) is a Banach space, so far, we haven't
done anything to show that J{(u) # {0}. In order to see this, and that J((u) is a Hilbert
space, we will use Bochner integrals.

11.4.1. Digression on Bochner integrals. Let (€2, 0(C2), u) be a measure space and W a Banach
space.

Definition 11.4.5 (Bochner integrable). Let f : O — W be a measurable map, where we
consider the Borel o-algebra on W. We say f is Bochner integrable if

[ 1@van <o

If f is Bochner integrable, it is possible to define fQ flw)dp(w) € W, i.e. a W-valued integral
on Q, which is called the Bochner integral of f. For us (Q, 0(Q), ) will be (W, B(W), ). Let
f € W*, then

f o f)lwdp(@) < IIfllw f ol dpe(@) < oo,
W W

by Fernique’s theorem. This implies that, given f € W*, the map w +— wf(w) is Bochner
integrable. Hence fw wf(w)du(w) € W. For f € W* we define

J(f) 1=fwwf(w)dy(w)ew.

Exercise 11.4.6. Show that J(f) € H(u) and |[J(f)llscw) < IIfllg,-

As a consequence of the exercise we see that | : W* — JH(u) is a contraction if W* is
endowed with the norm induced by g, i.e.

1 llg, = 11 f 12w

This shows that H(u) # {0}. Since W* is dense in K, we have an isometry | : K — H(u).
Next, we show that ] is surjective. Given h € J(u) such that the map f +— f(h) is continu-
ous on (W*,g,,). We call this map h. Note that /i extends to a continuous linear functional
on K. Hence, by Riesz’s theorem, J can be identified with a element of /1 € K. It is easy to
check that J(i) = h. Thus J is an isomorphism of Banach spaces. Now we give H(u) the
Hilbert space structure induced by J. Since K is a seperable Hilbert space, so is H(u). We
have the following theorem

Theorem 11.4.5 (Gross). Given a real seperable Banach space and a Gaussian measure |, there
exist a Hilbet space H(u) € W such that H(u) — W is a linear continuous dense embedding and

—~ e -, .
u(f) =e w, VfeW.
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Exercise 11.4.7. Let J{(u) be the Cameron-Martin space of (W, u). Let {e,} € W* be an
orthonormal basis of H{(u). Show that if w € W, then w € H(u) iff

(e}

Z e (w) < oo,

n=1

and in this case

[se]

ol = Y en(ew)®

n=1
Corollary 11.4.4. u(3(u)) = 0 if H(u) is infinite dimensional.
Proof. Let {e,} € W*be as in the previuous exercise. Then {e,} is a sequence of independent,

identically distributed random variables with mean 0 and variance 1. Hence, by the law
of large numbers, we get

[ee]

Z:en(w)2 =u ae

n=1

Whereas by exercise 11.4.7 we have

H(u) = {w € W‘ i en(w)* < oo}.
=1

This implies that p(F(u)) = 0. O
The is a different way to understand the Cameron-Martin space.

Theorem 11.4.6 (Cameron-Martin). Let H(u) be the Cameron-Martin space of (W, u), h € W
and Ty, : W — W given by Ti(w) = w—h. If h € H(u), then uy, = (Ty,).u is absolutely continuous
with respect to u and

ditn
du

Ihll3

1
= o 2l et ),

(133)

1R
Proof. We will compute the Fourier transform of yj, and e 2"%we® ). Let thus f € W*.
Then we have

ﬁh(f) — f eif(w)dyh(w) — f eif(w_h)dy(w) — o W o=30u(f.1)
w W
Ont he other hand, setting h=J]'(h), we get

f e~ HIHP f@)eif @) () = =4I f =M@ (zp)
W W
(134) — o 3IP o= 3au(f—ihf~ih)

= eif(h)e_%qy(frf) .

Thus (T},).u is absolutely continuous with respect to u and (133) holds. m|
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Remark 11.4.4. h € W\ H(u) implies that u and p; are mutually singular. Hence h € HH(u)
iff (Th)*[.i < u.

Example 11.4.1 (Cameron-Martin space of the classical Wiener space). Recall the classical
Wiener space: we had W = Cy([0, 1]) endowed with the Wiener measure p together with
the covariance

gu(evy, evs) = min{s, t},

where ev denotes the evaluation map. One can check that E = span{ev; | t € [0, 1]} is dense
in W*. First, let us compute | : E — W. By definition we have

(Jev)(s) = f x(s) evi(¥)du(x) = f x(&)x()du() = mins, £,
Co([0,1]) Co([0,1])

and thus %( J(ev)) = Xxo,1- Note htat g,(evy, evy) = min{s, t}. On the other hand

1 1
f ] (th)(”)j (evs)(u)du = f Xio,11(m) x 0,51 (w)du = min(s, t}.
0 0

This shows that if x, y € H(u), then

1
(135) %, Yhs = fo () g

Thus we can write down the space H(u) = {x € Co([0,1]) | * € L*([0,1])} and the inner
product on H(u) is given by (135). This means that the Winer measure is the standard
Gaussian measure on H'([0, 1]), which is the space of 1-Sobolev paths. This observation
is due to Cameron-Martin, which was later generalized by Gross.

12. WIck ORDERING
12.1. Motivating example and construction. Let H,(x) be the degree n Hermite polyno-
mial on R. It can be defined recursively as follows
Ho(.X') =1

d d
aHn(x) - naHn—l(x)

f H,(x)du(x) =0, where u is the standard Gaussian measure on R.
R

Moreover, Hermite polynomials are given by the generating function

(136) it = Z FH, (x),
n=0

i.e. e 2" is the generating function for H,(x). This is used as the best way to study prop-

erties of H,,(x).
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Exercise 12.1.1. Show that H,(x) = e‘%(x”), where A =
think about Wick ordering).

dx2 (this is a conceptual way to

The following statements hold:

(1) Hy(x) form an orthonormal basis of L*(R, p).

2)
an(x)zdy(x) =nl.
R

Note that here LA(R, u) = @@ span(H,(x)), i.e. Hy(x) L @Z;S span(Hi(x)). More generally,
H,(x", .., x")y=Hy(x)---Hy (x), tH+--+t =mn,

and one can check that Hermite polynomials form an orthogonal basis of L>(R", i1). On
the other hand R is a Hilbert space, in fact it is also a Cameron-Martin space (CMS) for
standard Gaussian measure p. We can then talk about the Bosonic Fock space of R. We
have

Sym’ (R) === L’(R, 1)

@nzo Sym"(R) —— @nzo span(H,(x))

where the arrow on the bottom represents a canonical isomorphism. More generally, we
want to prove

LX(W, p) = Sym (H(y)),
where the isomorphism is canonical. Let thus W be a seperable Banach space and u a
centered Gaussian measure on W and H(u) be its Cameron-Martin space with covariance

qu. Let f € W (or f € H(u), since it doesn’t matter). Define” then (: f" :) recursively as
follows:

et
SHC A7) =

f(f”)du 0

This definition sais that (: f" :) comes from f" in the same way as H,(x) comes from x". Let
us use generating functions to observe properties of (: f" :). Define

7In the physics literature, this is usually written without the brackets, i.e. : " :. We write the brackets to
avoid confusion with the “double dot” of a function or when two such objects are multiplied.
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One can then check that
(137) f( ef Ddu =1.
w

Moreover, by definition

f( e’ ) =a(eV)),

which implies that (: €%/ :) = ce®/, where c is a constant, which needs to be determined.
Using (137), we see that ¢ = m.

Exercise 12.1.2. Use Wick’s theorem to show that

f f2”+1d,Ll — 0,
1%

2n)!
[ = Goras o

Hence, regarding e*/ as a formal power series in @, we see that

i ~ = ok x g2k (2K)! ol
fw efd‘”—;oﬁ fw fldu = ST = @ulf, ) = ex

because (: €%/ :) = e*fe~29"w(.), which is exactly (136) when W = R and f(x) = x. One can
use the generating function for (: f*:) to show that

[5]

Z )
Proposition 12.1.1.
fw G f7 068" )du = dunn(f, 8)".
Proof. We have
(e )= ef~10%u(£.f)
(e 1) = efs 2P nss),

Then
(e ) eff ) = (: VPR )ePanf)
Thus
@ & af+ (
f( e ) efs: ydpy =e ﬁ%(fg)f( etf ﬁg)d Z q#(f )k

| —
=1
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Comparing the coeefficients of (aB)* we get

1 1
a7 = g
O

The questions is how to define (: ff1¢* :)? The idea is to use the recursive definition.
Therefore we get for n = ny + -+ - + 1

(R f =1,

f(: A £ dp =0,
W
a n n Nj— s
8_i(:flnl...fkk:):ni(:fll...ﬂll...fk :).

One can easily check that (: (af + Bg)" 1) = Loy (DB F(: f¥¢"* 1) by using generating
functions.

Exercise 12.1.3. Show that

0 ifm#n
=) e = )du=1" " .
fw( Jr=fu ) 81— &m )dp {Zaesn [T fi) Qo) ifm=mn

As in the finite dimensional case, given a polynomial function P on W, i.e.

P@) = )ty ai fi @) £ (@),

where f;, ..., fi, € W*, formally

P:)= e_%P,
where we need to check what A is. One can use the Cameron-Martin space to make sense
of A. Take an orthonormal basis {e,} of H(y). Then loosely speaking A = — Yo, 2

n=1 ge2*
12.2. Wick ordering as a value of Feynman diagrams. Given fi, f>, f3, f4 € W, and y €

{{1,2}, {3,4}}, we can construct a diagram as follows

Ju
fi e * f2

Ju
f3

®
[}
=

The value of such a diagram will be g,(f1, f2)3.(f3, f)-
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1 e ° 2 1 o o 2
5 e 5 e
3 e o 4 3 e o 4
(@) H={{1,2}}, A =1{3,4,5} (b) H=1{{1,2},{3,4}}, A = {5}
1 e 2
5

,— L

(o) H=1{{2,4},{3,5}}, A = {1}

Ficure 3. Examples of Feynman graphs with V = {1, 2, 3,4, 5} and different
H and A.

Definition 12.2.1 (Feynman diagram). A Feynman diagram with n vertices and rank r,

where r < 7, consists of a set V' called the set of vertices (thus |V| = 1), and a set H called

the set of half edges, which consists of r disjoint pair of vertices. The remaining vertices
are called unpaired vertices, which will be denoted by A.

Example 12.2.1.

If we are given fi, ..., f, € W*, we can think of them as vertices of a Feynman diagram.
Hence, given fi, ..., f, € W* and a Feynman diagram of rank r, i.e.

y(H) = i1, j1}, o Ains Jud)

we define the value F(fi, ..., f,; y) of the Feynman diagram as

F(fi oo fii?) = [H mﬁk,fm] 15
k=1

i€A

Moreover, we say that y is complete if n = 2r. With this notation, we can rephrase Wick’s

theorem as
f frofdu= Y FQ).

y complete
Feynman diagram

12.3. Abstract point of view on Wick ordering.

Definition 12.3.1 (Gaussian Hilbert space). A Gaussian Hilbert space { is a Hilbert space
of random variables on some probability space (€, 0(Q), u) such that each f € H is a
Gaussianon IR, i.e. f € 3, then f.u is Gaussian on RR.

Example 12.3.1. If K denotes the completion of W* in L>(W, u), then K is a Gaussian Hilbert
space. We assume that 0(Q2) is generated by elements of .
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Given a Gaussian Hilbert space 3 C L*(Q, 6(Q), ), define the set
P, (H) ={P(&y, ..., &) | &1, o, En € I, P is a polynomial of degree < n},

and define . L
H™ = P(H) N (P, (FH))* .

We can then observe® that

® n
P,(30) = P 3c*,
k=0
) _
P e = Puso).
n=0 n=0
Theorem 12.3.1. .
LHQ,0(), 1) = ) 3™
n=0
Proof. See O

Remark 12.3.1. This is just a way to say that “polynomial” random variables are dense in
[2(Q,0(Q), p).

Theorem 12.3.2. Let &4, ...,&¢, € H. Then

(: El"'gn :) = Tcn(gl"'gn);
where 1, : L*(Q, 0(Q), u) — H™ is the projection.

Hence, we saw that (: &3, ..., &, 1) is nothing but an orthogonal projection of &; - &, onto
H™. The idea here is that &; - - - &, is not orthogonal to lower degree polynomials where
as (: &1 -+ &y @) is orthogonal to lower degree polynomials. Hence, Wick ordering can be
thought of as taking a polynomial and changing it into a new polynomial in such a way
that the result is orthogonal to lower degree polynomials.

13. Bosonic Fock Spaces

Let {1, H, be a seperable Hilbert spaces. Then we can look at the tensor product {; ® 3(,,
where we have the inner product defined as

(hy ® hy, hy ® h3)s,9¢, := (h1, ) )se, (o, B ),

Moreover, we denote by H,1QFH, the completion of H; ® I, with respectto ( , ). We call
® the Hilbert-Schmidt tensor product. The space 3(;®%; is isomorphic to the space of

8We will define the completed direct sum at some later point.



66 N. MOSHAYEDI

Hilbert-Schmidt operators from H; to 3,. Let {}{}2) be a familiy of Hilbert spaces. Then
&), is the completion of X), H; with respect to the norm Y, ||xi||§{i, ie.

@ij{i = {(xi)‘ i llxill3, < oo}.
i=0

We will drop " from now on. We can also define the space H; ® --- ® ¥, and so on.
Let now H be a real and sepereable Hilbert space. Then T"H = H®'. Define the map
P:H® - H® by Pl ® -+~ @ hy) = & Yoes, Moty ® + - - @ Hy(my. Then P is a projection. We
define Sym™"(H) = P(H®"). Now we can see that S, acts on T"H and thus Sym"(H) is the
invariant subspace of T"J{ under this action. Given hy, ..., h,, define

hl®s"'®shn: Zhd(l)®"'®hd(n)/

1
M o€S,

e h ® - ®hy, = VP @ - Q).
Exercise 13.0.1. Show that

(I @+ @I, 1, @+ @ I ogon = Y | [Chi oo

o€S, i=1

In particular [[1®"]]%,, = n!|hl3! (.e. [h®"||3en = Val|hls).

FH®sn

Let us try to give an alternative definition for Sym"(J). For this, recall that closed sub-
spaces are generated by elements of the form h; ®; - - - ®; h,,.

Remark 13.0.1. From now on we will not indicate the inner products.

Definition 13.0.1 (Bosonic Fock space). The space %.(.‘H) = @;O:O Sym"(H) is called the
Bosonic Fock space of .

Remark 13.0.2. We sometimes also write I'({) or Exp(J) for the Bosonic Fock space.
Remark 13.0.3. Similarly, one can define the Fermionic Fock space of J by

1
= — Z sgn(a)ug(l) X ® ug(n).
\/m 0€S,

One can check that I'(H; ®H,) = I'(H1)QI'(H,). Now one can ask whether there is a functor
H = I'(H). Thus, given a bounded operator A : H; — H,, we need to know whether I'(A)
is bounded. As a matter of fact, this is not the case. On the other hand, If ||A|| < 1 then
IT(A)]] < 1. This leads to the functor

U A Ay

I': Hilb3' — Hilb,

where Hilb3! is the category with Hilbert spaces as objects and bounded linear operators
of norm < 1 as morphisms and Hilb the category of Hilbert spaces.
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Remark 13.0.4. In the Fermionic case, no restriction on A is required.

Given h € H, we can define

x ®n

Exp(h) = Z —- € (90

n=0

Then, for hy, h, € H, we observe

[o¢]

(Expl), Explhe) =) I = Y i 1 = Bxp((in ).

Exercise 13.0.2. Show that Exp : H{ — I'(¥) is continuous (be aware that it is not linear).
Moreover, show that Exp is injective.

Lemma 13.0.1. The elements {Exp(h) | h € H} C I'(H) are linearly independent in I'().

n=0

Proof. Let hy, ..., h, € H. We want to show

Z AExp(h) =0= A;=0, Vi>1,2,..n
i=1
For this, choose h € H such that
(h,hiy # (b, hyy, Vi

Then we get that Y/, A;Exp(h;) = Oimplies Y./, A, = 0forallh € H. Thus )1, Ae*h =

0 for all z € C if we choose & as above. Hence, A; =0 foralli=1,2,...,n. O
Exercise 13.0.3. Show that {Exp(h) | h € H} span I'(H).
Recall that

(1) LX(W,u) = P, K™

(2) there is a canonical isomorphism of Hilbert spaces JH(u) Lk
Thus we can observe that there is a canonical isomorphism of Hilbert spaces
Sym"(K) — K™
18, ® & (E10 &),

which leads to a map

&)

T (: Exp(&) :) = eée_%”é”z,

i
51
™

|
s

n=0
that comes from the Segal-Ito isomorphism
L(H) — T(K) = LA(W, )

Exp(h) — e Je 2P,
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Part 4. Construction of Quantum Field Theories
14. FreE ScALAR FIELD THEORY

Recall that a classical scalar field theory on IR" consists of the following data. A space of
fields 3 = C*(IR") and an action functional, which is a map S : ¥ — R that is local, i.e.
it only depends on fields and derivatives of fields. In free theory we are interested in the
action functional S which is of the form

S@) = | ¢ +npds,
]Rn

where dx denotes the Lebesgue measure on R". In quantum theory, we are interested in
defining a measure of the form

(138) A7

on J. We will see that it is possible to define a measure of the form (138) but it lives on
a much larger space than J. Next, we will discuss Gaussian measures on locally convex
spaces and as a consequence we will define a measure of the form (138).

14.1. Locally convex spaces.

Definition 14.1.1 (seperating points). Let V be a vector space. A family {p,}aeca of semi-
norms on V is said to seperate points if p,(x) = 0 for all &« € A implies x = 0.

Definition 14.1.2 (Natural topology). Given a family of seminorms {p,},ca on V there ex-
ists a smallest topology for which each p, is continuous and the addition operation is
continuous. This topology, which is denoted by O({p,}), is called the natural topology on
V.

Definition 14.1.3 (Locally convex space). A locally convex space is a vector space V to-
gether with a family {p,} of seminorms that seperate points.

Exercise 14.1.1. Show that the natural topology on a locally convex space is Hausdorff.

Lete > 0and ay, ..., a, € A. Define the set
N(ay,...,ape) ={veV]|p,@) <e Vi=1,2,..,n}
One can check that
(1) N(avq, ..., an; €) = i N(a; €).
(2) N(ay, ..., ay; €) is convex.
Exercise 14.1.2. Check that the elements of
{N(ay,...,an; €) | a1, ...,a, € A,n € N, e > 0}

form a neighbourhood basis at 0 € V.
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From (2) it follows that a locally convex space V has a neighbourhood basis at 0 € V, where
each open set in this basis is convex. This justifies the name locally convex space. One can
define the notion of a Cauchy sequence and the notion of convergence in a locally convex
space. Let V be a locally convex space. The following are equivalent:

(1) V is metrizable.
(2) 0 € V has a countable neighbourhood basis.
(3) The natural topology on V is generated by some countable family of seminorms.

Definition 14.1.4 (Fréchet space). A complete metrizable locally convex space is called a
Fréchet space.

Example 14.1.1 (Schwartz space). Let ¢ € C*(R") and let & = (a3, ..., ) € (N U {0})F and

B =(B1,... Bc) € (N U{0})’. Let DF = a‘j;l;:}[ Moreover, define
1 ip

pllop = sup [x*DFp(x)],

xelR”

and
S(R") = {¢p € C*(R") | [|¢llap < o0, VYa,p}.

The space $(IR") is called the Schwartz space on R". One can easily check that §(IR") is a
locally convex space. In general §(IR") is a Fréchet space.

14.2. Dual of a locally convex space. Let V be a locally convex space and V* be the set
of continuous linear functionals on V, i.e. £ € v*iff £ : V — R is linear and continuous.
Given x € V, define p, : V* — R by p.(f) = [€(x)|. One can easily check that p, is a
seminorm. In fact {p, | x € V} is a family of seminorms on V" that seperates points.
Hence, (V*, {p. | x € V}) is a locally convex space. The natural topology on V* induces by
{px | x € V} is called the weak*-topology on V*. A sequence {{,} in V* converges to £ € V*
in the weak-*topology iff p.(¢,) — px(f) forallx € V,ie. {,(x) — {(x) for all x € V. The
weak-*topology on V" is denoted by O(V*, V).

Remark 14.2.1. The space of linear functionals on (V*, O(V*, V)) is exactly V.
14.3. Gaussian measures on the dual of Fréchet spaces.

Theorem 14.3.1. Let V be a Fréchet space. Then there is a bijection between the following sets

{Continuous poisitve definite symmetric bilinear forms on V}

—> {Centered Gaussian measures on (V*, O(V", V))}

Proof. See [2, 6]. O

Let C be a continuous positive definite symmetric bilinear form on V. The construction of
the associated Gaussian measure on V" goes as follows. Let F C V be a finite dimensional
subspace of V. Let Cr be the restriction of C on F. Then Cr is a symmetric bilinear form
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on F, which is positive definite. Hence Cr defines a Gaussian measure yic, on F* (F* can be
identified with F) of the form

Nl—=

1

_ & —QCp(x,x)
T

where Cr is identified with a positive definite matrix. In fact, one can think of pc, to be
a measure on the F cylinder subsets of V*. One can check that if E C F, then pc, agrees
with pc, when restricted to the E cylinder subsets of V*. Now we can proceed as in the
construction of the Wiener measure and show that there is a Gaussian measure pc on the
o-algebra of V* generated by cyclinder sets. This gives the construction of pic.

Corollary 14.3.1. Let C be the bilinear form on §(IR") defined by

Che)= | fla+ m?)~ gdx.

Then there is a Gaussian measure p on 8(IR") whose covariance is C.

In this example the reproducing kernel space K(u) of u is H'(IR"), where H™'(R") is the
completion of §(IR") with respect to C. Hence, we have succeeding in defining the measure
of the form e™>® 2¢), where

50) =3 [ o+ nxds

In other words, we have constructed the Gaussian measure associated to the free theory.

Remark 14.3.1. In this example, the Cameron-Martin space of u is H!(IR"), which is the
completion of §(IR") with respect to the map

(f,9) — - f(A+ mz)gdx.

14.4. The operator (A + m?)™'. We regard (A + m?)™! as an operator on L?(IR"). It is known
that (A + m?)! is a positive operator, and that it is an integral operator. Let C(x, ) be the
integral kernel of (A + m?)~'. Then

ct9= [[  fecwsmady
]Rn XRT!
In fact, one can show that C(x, y) is the unique solution of

(139) A C(x, y) = 0:(y)-

Using Fourier transform, we can give an explicit representation of C(x, y). Formally we
have the following chain of implications.

(A+m2)‘1f=g=>(A+m2)g=f=>(52+m2)8'1:f_lz’g:?_l(c?imj)'
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elc=y)
— d ,
g(x) = Gy f f o T 25 (W)dyde

1 elc—y)
Cwy) = (2n)" fw &2+ mzdg'

For x # y one can show that

These hold since

and thus

Cx,y) = @n) (” ”) Koz (mllx = yll),
where K, is a modified Bessel function. Next we will study C(x, y) in more details. In
particular the behaviour of C(x, y) when ||x — y|| is large and ||x — y|| is small.

Remark 14.4.1. For n = 1 we have C(x, y) = “— and for n = 3 we have C(x, y) = 4nﬁix__;'|‘|.

Proposition 14.4.1 (Properties of C(x, y)). The following hold:

(1) For every m|x — y| bounded away from zero, there exists some M > 0 such that we
have

Clx, y) < Mm'? Ix — y|"T'1e-mlx—yl.

(2) For n > 3 and m|x — y| in a neighbourhood of zero we get

—n+2

Clx, y) ~ lx =yl
(3) For n = 2 and m|x — y| in a neighborhood of zero we get
C(x,y) ~ —log (mlx — yl).
Proof. Recall first
1 elc(—y)

(140) Clx,y) = S TZrm

dé.

Exercise 14.4.1. Show that in general we have

1 ei¢lx=yl
N =g | Trm s
Hint: Choose an orthonormal basis {ey, ..., ¢,} of R"” such that e; = =] = and doa change of
variables.
Now, using the residue theorem, we have
1 elté
Clx,y) = 2n)" fﬂ 5d&rdE, - - - dé,,

dgz o dgn

R
éf+(\/m2+£§+m+£$,)
1 f ne—t\/m2+£§+~-~+§%

(271)” Rr-1 \/mZ + E% + .o+ E%
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Without loss of generality, assume that m = 1. Recall that for f : R" — R with f(x) = g(|x|)
we have

(141) f(x)dx = v(S" 1) f ) " te(r)dr,
R 0

where v(S"™") is the volume of $"~1. Using (142), we can write

TCAn—l 00 rn—Ze—t‘u(r)

(142) Clx,y) = 20f Js e dr,
where u(r) = V1 +12.
Exercise 14.4.2. Show that there is some ¢ > 0 such that
1+er?, ifr<i
uiry = {1+€1’, ifr>1
We will claim that
(143) Clx, y) < ke ("7 + D),

where t = ||x — y|| and k some constant. Note then that

1 n=2 —tu(r) 1
f et < f rn—ze—t(1+er2)dr < ke_tt_%
0 u(r) 0

00 rn—Ze—ty(r) 00
f — < f P 2e7 N qy < ket (17D,
1 w(r) 1

n-1

Clx,y) <ke 't 7.

and

Ift > 1 then

For 0 <t <1 we have

foo Ze_t w/l_H»Z ( 2) 00 5 e_ \152+t2
' dr =t~ s ds
2
0 L+r 0 Vs2 + 12

00 Sn—Ze—s
-(n-2
~{as t — 0 in the integral} t =2) f ds
0

s
= (2 f s"3eds
0

Ifn=21lets=tu(r). Then u(r) = 3,1+ = % and r = /<52, Thus

(o) e_s (o) 1
C(x,y) = ds ~ ds ~ —log(t).
.y I Vs2 + 12 I Vs2 + 2 8!
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15. CONSTRUCTION OF SELF INTERACTING THEORY

To construct a theory with polynomial interaction, we want to define a measure of the
form

e 5@ @(P

rigorously where

50) =3 [ o+ mipac+ [ Poxx=5,00) + i),

with P(y) = Y.;a;y' some polynomial function on R. We have succeeded in defining a
measure i of the form e/ ¢, but the price we had to pay was that it lives on S(IR").
In fact u(S(IR")) = 0 because for such measures the Cameron-Martin space is H'(R") and
S8(R") € H'(R"). Hence, it is not obvious that we have to view ¢ f]Rn ¢"(x)dx as a
measurable function on §(IR"). Let us now define a measure of the form

&S @510 g,
First, we will try to “define” measurable functions of the form

(144) d+— | P(x)dx
]Rn

In particular, we will try to bypass the difficulties in making sense of (144). Let us pretend
that we can define (144). Formally we have

UR Py ;S(W = L . ( f n qb(x)kdx) ( fR n qb(y)"dy) du(¢)

= f f ( GZ)(X)kQZ)(y)de(qb)) dxdy.
RxR? \J $(R")

Now, formally thinking of ¢(x) as 6.[¢] = (0.|¢), which is defined in terms of the Heaviside
step function, and using Wick’s theorem, we see that

f]R n B(x)dx

= Linear combination of integrals of the form
L2(S(R™),u)

[ cnrcw prce
R#xR"

The existence of fw ¢(x)*dx depends on the properties of C(x, ) and hence it is dimension
sensitive. In fact we can not define (144) because C(x, x) is not integrable. We want to try
two different attempts to make sense of f]Rn () dx:

(1) (Approximation of delta function) Let & € 8(IR") such that # > 0,h(0) > 0 and
Jeu B = 1. Consider e.g. h.(y) = %h (%) for some ¢ > 0. Then h, — &y as ¢ — 0.
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Similarly” we can construct 6, € 8'(R") (space of Schwartz distributions on R")
such that 6, — 0,. Then ¢ — 0, [P] = (Or.|p) is a polynomial function on S(IR").
We denote the polynomial type by ¢(6y.). We know how to compute

f (61" 0(6,.0)"du(@),
9es(RY)

which is equal to the sum of terms of the form A, C(0x,¢, 0x,c)*C(Oy,¢, Oy,e)F C(Ox e, Oy ) -
Formally we have that

< f (5)dlx, f qb(éy,g)’“>
R Ry 2SR )

is equal to sum of expressions of the form

Aaﬁy fﬁ{n R C((Sx,s/ 6x,e)ac(6y,81 6y,s)ﬁc(6x,e/ 6y,e)ydxdyz

and we can try to take the limit ¢ — 0. The conclusion here is that this attempt does
not lead to anywhere, since we still get a diagonal contribution.

(2) (Redefine obseravbles) Let us try to get rid of diagonal contribution (i.e. terms like
C(x, x)). This is where the Wick ordering comes into the play. We can think of Wick
ordering as a renormalization process. Consider the map

ACR"
A compact

o +— f ( gb(éx,g)k )dx.

Thus we get

D(0x) ) JFd dxdy = k! C(Oye, 6y ) dxdy.
I ( L (9 66, ) y(qb)) ay=n [ consany

Taking the limit ¢ — 0 formally, it converges to

(145) k! f f C(x, y)dxdy.
R"XIR"

Let us list what we know so far:
(i) Wick ordering allows us to get rid of diagonal contribution of C(x, y).

(i) If f f i T y)'dxdy < oo, then there is a hope that we can define “Wick ordered
polynomial” functions of the form

¢ — fﬂ(: qb(x)k J)dx.

"With x = 1 we get 1,(x) = x2(xx) — &g as x — o.

&
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Recall that if n > 3, then C(x, y) ~ m for ||x— y|| — 0 and hence the integral of the form
(145) will diverge in general. This means that if n > 3, Wick ordering renormalization
may not kill all the infinites appearing in Feynmann amplitudes. However, if n = 2, we get
C(x,y) ~ —log(llx—yll) as [lx — yll = 0 and in this case it is possible to define observables of

the form ¢ f are (1 P(@) :). Define FSVLA(qb) = f (: P(¢)(x) :)dx as a measurable function

A compact

on 8'(R?), where P is any polynomial. Let P(x) = x* and A c R?. Then we can consider
FS}” AP) = fA(: P(¢,6.,) :)dx, where 0, is a smooth approximation of 6,. More precisely,
d.x can be constructed as follows. Let h € C3°(IR?) with 1 > 0, h(0) > 0, and = 1.
Then consider 6. ,(y) = ¢k (ﬂ) In fact, 5., — 0, in 8'(R?). If we take ¢ = 3, we will
get O, = Oy and thus one can observe that the sequence {S’;, Ak is Cauchy in L2(8'(R?, w)).
Define S;4(¢) = limyo S* , ().

Remark 15.0.1. Recall

: O(0rky) ), (0 y) )" =n! C(Okx, Or) dxdy.
< fA ¢ 6(66x) ) fA (- kﬁ))ﬂ(gm)) n fA | Clbtu,)dxdy

To see that {g’f Ak is Cauchy we only have to understand how C behaves. In the Fourier pic-

ture it is easier understood. We have the Fourier transform of 6y, is (ﬁ) h? (%), which can

be understood very easily. Then one can use the properties of Cy(x, y) := C(b, Oky), which
is a smooth approximation of Green function, to show that fA(: P(0k,x) :)"dx is Cauchy.
15.1. More random variables. Let f € CY(R* X - - - X R?). Then

—————

k

Sialf ) = f]RZ ]Rz(i P(x1) -+ d(x) ) f(xa, oo, xi)dy - - - dixy

can be defined as before. More generally we can take f € L*(R? X - - - X R?). Moreover, we
can also define

A@) = [ [ it k.
i=1

We want to know how we can compute fs A(¢p)du(¢). For that, we recall: For (W, u) a

(R?)
measure space and f € W* we have

L5) k
n = n! — —-q (f/f)
£ =) t-am Zk( > ) '

k=0

We would like to know if an expression of the form

G fe )G &rere - 8n2)

can be written as a linear combination of Wick ordered polynomials. The answer is yes,
and the advantage is that it allows us to compute integration of product of Wick ordered
polynomials easily.
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Example 15.1.1. We can write

which is similar to integration by parts. Here the symbol — means that the element is
omitted.

15.2. Generalized Feynman diagrams. Let[ = [; U I, LI - -- U I,,, be the disjoint union of
finite sets I; fori € {1, ..., n}.

Definition 15.2.1 (Generlized Feynman diagram). A generalized Feynman diagram is a
pair (I, E), where

E C{(a,b)| aand b do not belong to some I;, i € {1, ..., n}}.

We denote by Ag the remaining vertices. Let F = (V, E) be a generalized Feynman diagram
associated to (: f1 -+ fi :)(: Qks1 - n ). Then

V(F) = (H qu(ff(e)zgr(e))] (1 H ay ]

ecE vEAE

where a, is either f, or g, and £(e) is the left end point and r(e) the right end point.
Corollary 15.2.1.

f ( fi fie ) Qks1 - §n )du = sum of value of complete Feynman diagrams.

Consider again the integral fS A(¢)du(p). This can be computed using generalized

(R?) _ —
Feynman diagrams. Our goal is to show that e~Sin € LY(8’(R")). Consider thus Slf, AP) =
fA(: ¢ (x) :)dx. We want to know whether e Sin € LYS'(R"). E.g. (- x*:) =x* —6x2 + 3,
then e"®") can behave bad.

Lemma 15.2.1. _
Sy = —b(logk)",

as k — oo for some b > 0.

Remark 15.2.1. This shows that g’; , does not gneralize to a polynomial, which is is not
bounded from below.

Proof. Let Q(y) = ,%ZO ay¥, for ay, > 0. Then
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for some 0 < b < o0, and

2n

(PO =) =

k=0

(2ﬂ)

CSk, Okx) )"

¢(6 )211 Zk(( 1) >

) 2n—-2k
2! DA 90k
= Cr(x, x)" '
k(x, x) ;k!(Zn— 2k)! 2k ( Ck(x,x)]

Thus (: ¢(k) )" > —b [, Cu(x,x)" for some b > 0 and hence S, (¢) > —b [, Ci(x, )" >
—E(log k)" as k — oo. O

Corollary 15.2.2. e Sia e L7 (8’(IR™)) for all p.

Consider S'(, f)(¢) = f]Rz F()(: P(¢(x)) :)dx, where P(x) = Y, a,x" is a function on 8'(IR?)
and f € L*(R?*). We showed, S/(P, f) € L*(S'(R?),n). Let S"(P, f) = f F(xX)P(¢p, Ok x)dx,

where 0, is a smooth approximation of 6,. We showed, if Sk is Cauchy, then S/(, f) =
limy_,co SY(P, f). In fact,

IS (P, f) - S'(P, ez ey, < Cf,

for some & > 0ask — co. Moreover, e5"®) e L1(8'(R")), where S" P (¢) = f (: P(¢(x)) :)dx
with P(x) = x%*. The idea is that SI k (¢) = —C(logk)" for some C > 0. We can observe that
Sk k(cp) >1-C log(k)" for some C > 0 for large k (take C= 2C) The goal was to show that

e 5\P ¢ LY(8'(R?), u). The strategy is to study the sets, where S A(P) is bad, and then show
that these sets have measure zero. Define a “bad set”

X(k) := (¢ € 8'(R?) | S| (P)(@) < C(logh)"}.

Lemma 15.2.2.
X(k) C {¢ € 8'(R?) | IS\ (P) () — ST (P) ()| > 1}.

Proof. Let ¢ € X(k). Then

SL(P)(@) = SK(P)(P) < SL(P)(P) - (1 = Clog k)" = S,(P)(¢)) + C(log k)" ~1 < 1.

<1

Proposition 15.2.1. There is a B > 0 and 6 > 0 such that u(X(k)) < Bk as k — oo.
Proof. We have

k) = d s s"p)Pd s! s p)Pd ko
w(X(K) = fm) ”<fx<k>' () - S¥(P)| u<f|A<P> (P)Pdy < By

as k — oo. m|
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Remark 15.2.2. One can show that u(X(k)) < CExp (—k*) for some a > 0 as k — oo.

Let (Q, 0(Q2), 1) be a probability space and f: {2 — R a measurable function on Q. Denote
by
(@) = pllw € Q| f(@) = x)).

Let F be an increasing positive function on R such that lim,_,., F(x) = co. Then

f F(f(@)dp(w) = f P (@) dx
Q R

Theorem 15.2.1. Let f be a measurable function on Q such that u({w € Q| — f(w) > C(logk)"}) <
Ce™ for k > k. Then

fe‘f(“’)dy(a)) < 00,
Q

Proof. We have

f e'f(“’)dy(a)) = f e'f(“’)dy(a)) + f e'f(“’)dy(a))
Q {weQ f(w)<C(log k)"} {weQl-f(w)>C(log ko)"}
<B fexyf(x)dx <B;+ fexExp (—e“(%)l/n)dx < oo,
O
Corollary 15.2.3. e, ¢ L(8'(IR")).
Proof. Take f = S\ (P) and Q = §'(R?). O

Remark 15.2.3. If P is a polynomial of the form P(x) = Z,%ZO ax® with a,, > 0, and f e
L'(R?) N L2(R?) with f > 0, then we can show that e 5'®) € L1(8'(R?), ).

o SAES
Corollary 15.2.4. ————

RN
s/(R2) €

is a probability measure on 8’(IR?).
15.3. Theories with exponential interaction. Consider the potetial
V(o) = fg(x)(: Exp(a¢(x)) :)dx.

We want to define a theory for this type of interaction. Moreover, we want to show that
Vg € L*(8'(R?), u) with certain assumption on a and g. Define

Vi@ = [ s Explatg 0. ad

Recall (: Exp(af) 1) = Yoo i—,k( f£2) for f € 8(R?).
Lemma 15.3.1. We get V¥(g) € L*(8'(IR?), u), whenever g € L'(IR*>)NL*(R?*) and 0 < a* < 4.
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Proof. We have
((: Exp(af) 2), : Exp(ag) 1)) = Exp(@®C(f, 8)),

and thus
IVEQIPF = f . IRg(x)g(y)E><1:>(oc2C(ék,x, Ox))dxdy = f fR e g(0)g(y)Exp(a®Ci(x, y))dxdy,

where Ci(x, y) = C(6x,x, Ox,y). We know Ci(x, v) < C(x, y) and f f]RMRz 2(x)g(y) exp(a?C(x, y))dxdy <
oo, whenever 0 < a? < 47, and ¢ € L'(IR?) N L*(R?). The latter is true for ||x — y|| > 1 and

Il — yll < 1 gives exp (a? — “EE) = |jx - y|| - £. Hence [[VE(g)I* < co. O

Proposition 15.3.1. {V}}; converges in L?(8'(IR?), p).

Proof. Recall that Vi, = Y2, i—f f g@)(: fx(x)* :)dx. The Weierstrass M-test tells us that for
any metric space (X,d), a Banach space W, f,: X — W with |fi(x)] < M with numbers
M > 0 such that Y2y My < oo, then Y2, fi(x) converges uniformly for x. O

Exercise 15.3.1. Show that there is a C; > 0 such that ||‘;‘<—,2 f () Pr(x)k :)dx” Cy.

2
L2(8(R?), 1) <

This implies that V; converges uniformly on X (by the M-test). Recall that

k k
% fg(x)(: ¢k(x)k Ddx — % fg(x)(: ¢(x)k :)dx,

where ¢ = (¢, 0kr). If V = limy_,o Vi, then

ok
V= Z % f g(x)(: qb(x)k dx = f g(x)(: Exp(ag(x)) :)dx.
k=0

Thus we have shown that V € L?(8'(IR?), u). We can observe the following:

(1) Vi = 0 for all k, whenever g > 0. this implies that for such g, V > 0 and hence
eV el

(2) For 0 > a? < 4mand g > 0 with g € L'(R?) N L?(IR?), we showed e™"s € L(8'(IR?), ).
Let v be a measure on [—a, a]. Then

f eV dv(a’) € L1 (S'(R?), ).
[-a,a]

15.4. The Osterwalder-Schrader Axioms. Let u be a Borel measure on &'(IR").
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15.4.1. Analyticity (OS0). Let fi, ..., fr € 8 (R"). Define a function u(fy, ..., fi): C- - C
by U(f1, s fi)(z1, - 26) = TJ(Z iz f]), where 1 is the characteristic function of y, i.e.

T(f) = ip(f)q )
= [ e aue)

Definition 15.4.1 (Analyticity). We say that y is analytic or u has analyticity if u(fi, ..., fv)
is entire on C* for all fi, - fc € 8(R") and k € IN. This means that y decays faster than any
exponential map.

Remark 15.4.1. An immediate consequence is that fs
f € 8(R"). Then

& P(du(¢) < oo for all k and for all

TN = [ eWdu(p) <o
§/(R")

and

A = [ edue) <o

§'(R")

if u is analytic.
Example 15.4.1. Let u be the Gaussian measure on 8'(IR"), whose covariance is given by
(A+m?)7!, and let C(f, g) = ff(x)C(x, y)g(y)dxdy = (f, (A + m?)™ fczrey. We claim that u
has analyticity. We prove this via an example. Consider fi(z1 fi+22f2) = [, ®) el¢@fit2fd () =

e 222l LACRAECR)  which is obviously an entire function, and [(z; fi + z2f2) =
1u(f1, f2)(z1,22) which is analytic.

Proposition 15.4.1. Let v be any Gaussian measure on 8’(R"). Then v has analyticity.

15.4.2. Euclidean invariance (OS1). Let E(n) be the Euclidean group of R", i.e. the group
generated by rotations, reflections and translations. Let R € O(n) and a € R". Let T(a,R) €
E(n) be defined by (T(a, R))(x) = Rx + a. Notice that E(n) acts on 8(R") by (T(a, R) f)(x) =
f(T(a, R)™x). E(n) acts also on 8'(R") by (T(a, R)p)(f) = ¢(T(a, R)f).

Definition 15.4.2 (Euclidean invariance I). We say that p is Euclidean invariantif (T'(a, R)).u =
u for all T(a, R) € E(n).

Lemma 15.4.1. y is Euclidean invariant if and only if u(f) = u(T(a, R)f) for all f € S(R").
Definition 15.4.3 (Euclidean invariance II). Let v be a Gaussian measure on 8'(IR") whose
covarianceis C,: §(R")x8(IR") — R. Wesay C, is Euclidean invariantif Cov(T(a, R)f, T(a, R)g) =
Cy(f, g) forall T(a,R) € E(n) and f, g € S(R").

Lemma 15.4.2. Let v be Gaussian. Then v is Euclidean invariant if and only if C, is Eu-
clidean invariant.

Example 15.4.2. Let u be the Gaussian measure on 8’ (IR") with covariance (A +m?)~!. Then
u is Euclidean invariant. We have

1 eicillv=yll
Cu) = g [ gt

Next, we want to construct a Hilbert space & = L*(8'(IR"), u).
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15.4.3. Reflection positivity (OS3). Let fi, ..., fr € S(R"), such that supp(f;) € R}. Write R" =
R"!x Rand R” = R"! x (0, o).

Definition 15.4.4 (Reflection positivity I). We say that u has reflection positivity if for all
z1,.-,2x € C we have }, ; ziu(fi - im(0) - fj)z; = 0, where O6(x,t) = (x,—t). for all k € N,
fis s fr € S(R") with supp(fj) € R

Assume that v is Gaussian and let C, be its covariance.

Definition 15.4.5 (Reflection Positivity II). We say that C, has reflection positivity if

C.(f,0f) = f [, =90 ), () dxdycids > 0

for all f € S(R") such that supp(f) € R’.

Exercise 15.4.1. Let v be a Gaussian measure on 8'(R. Then v has reflection positivity if
and only if C, has reflection positivity.

Example 15.4.3. Let u be the Gaussian measure with covariance (A + m?)™. Then u has

reflection positivity.

Proof. We will show that C(f, g) = (f, (A + m*)™' g)11gn is reflection positive. Let f € S(R")
with supp(f) C R}, and x = (%, t). Then

iy floge) |
cto= ([ srocwmsmay=g [ ([ S ac)smanay = [ ac

Moreover, we have C(f,0f) = fRn wdé, which we want to be positive. We have

§2+m2

glg ig?’l) = (znl)n/2 j(;oo (ﬁ{”_l f(x, t)eié'x—§n~t) dt. Slmllarly é-’?(g 1571) = —(27_[1)”/2 j(;oo (ﬁ{n—l f(x’ t)e_lé'x_én't) dt.
us we get

Using these relations, we can show

o
(j(f,@f):fw_1 mdgzol

\m? + &
where y(g) = \m?+ 2. O

Considering & = L*(8'(R"), v), we assume that v has analyticity and Euclidean invariance.

Consider the set .
= {A(qb) =Y cje@(ff)‘cj €Cke N}

=1
In fact, A C €, because of analyticity, and A is an algebra. Moreover, let £, = {A(¢) € A |
supp(f;) € R} C €. We define a bilinear form b on €. by b(A, B) = [ OABdv(¢).
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Exercise 15.4.2. The measure v is reflection positive if and only if forall A € €., b(A, A) > 0.
Let N ={A € &, | b(A, A) = 0}, and let I be the completion of £, /N.

Definition 15.4.6. J{ is called the physical Hilbert space.

We can observe that if we have T: & — € such that T(€;) € €, and T(N) € N, then T
induces a map T(t): H — H, where T(t)(x,s) = (¥,s + t) for t > 0. We know that T(t) acts
on & unitarly.

Lemma 15.4.3. We have T(t)E, C €, and T(t)N C N.

Proof. The first part is obvious. For the second part, observe that 0 o T(t) = T(—t) o 0. Let
A € N. Then
(T(HA, 0T(HA)e = (T(HA, T(-1)0A)e = (T(2H)A, 0,04)¢
= b(T(21)A, A) < b(A, A)? b(T(21)A, T(2H)A)"? =
——
=0

which iplies that T(t)A € N because of reflection positivity. m|

One can also check that the map T()": H — H is a semigroup for ¢ > 0.
Lemma 15.4.4. We have ||T(#)|lsc < 1, for t > 0. Moreover, t — T(t) is strongly continuous.

Corollary 15.4.1. T(t) = e, where H is a positive self adjoint operator on H. Moreover,
H(1) =

Example 15.4.4 (Free massive scalar field theory). Consider a measure p and the Green’s
functions C(x, y). We want to know whether we can find an “explicit” representation of
H in terms of time zero hypersurfacesin R"~'. We can indeed write H = L*(8'(R"™),v) C
T(HY(R")) = L*(8'(R"), u), where v is a Gaussian measure.

Let f € S(R™™). Define then jof = f ® 60, where ( f ® 80)(X, t) = f(X)0o(t). We claim that
f® 0o € H'(R?). Indeed, we have f® 60(5 En) = f(cf) and we know

2
1 FE) de
TC

(f ® 0, C(f ® o)) = 27 ) 10
1 ) o] FEOR -
-5 |\ (fgzmz ) 5—§Lnl—\/mdé

-1
Thus f ® 69 € H'(IR"). Moreover, (f ® 6y, C(f ® 60))r2wn) = % <f, ( VAR + mZ) f> .
LZ(IRn—l)
If we define B(f, g) = % fan_l £ (Ager +m2) ™" gdx, we can see that j, defines an isometry
Kpwy = H7Y(R"), where Kj,) is the completion of 8(IR") with respect to B.
Lemma 15.4.5. For t € R, define (jif) = f ® 0, with f € S(R*!). Then for t > s,

. . -1/2 _(4—
Gif, sQnm = %(f (A + m2) "% =9 \/A+m—zg>L2(m.
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Let v be the Gaussian measure on 8’'(R""!) whose covariance is B. Denote by H™/2(R"™!) :=
Kpw)- Then we know L*(8'(R"),v) = T(H/2(R")). Given an operator A on H, one can
define an operator dI'(A) on I'(H() as follows: on Sym"(H) we get dI'(A) = ARI®---QI+I®
A®---®I+...,and on Sym’(H) = C we get dT'(A) = 0. If we identify H with L*(S'(R"),v)

or [(HV2(R"1)), then
dF( v ARr + mz).

16. QFT As OPERATOR VALUED DISTRIBUTION

The motivation of this section is to get a better understanding of relativistic quantum mea-
chanics. Recall the data for a quantum mechanical system:

e Hilbert space of states H (e.g. L*(IR"))
e Obsrevables, which are represented by self adjoint operatos on X,

e “symmetries”, which are unitary representations on J, and 1-parameter group of
symmetries, leading to specific observables (e.g. time translation ~» Hamiltonian
of the system).

e Dynamics is controlled by the Schrédinger equation ihaa—lf -H Y.

16.1. Relativistic quantum mechanics. In relativistic quantum mechanics we want to
have unitary representation of the Poincaré group P, which is the group of all “space-
time” symmetries. Recall that Minkowski space-time is given by M" = R, where we
can have coordinates in position space (such as (f, %)) or in momentum space (such as
(&o, 5)). Denote by £ the Lorentz group, which is the set of all linear isometries of IM", i.e.
{(Ai) | ATgA = g}, thus for A € £ we have det A € {£1}. Moreover, we can write £ as a
union of subspaces:

c=clucluctuct,

where the label T (]) means the determinant is +1 (—1), and the label + (—) means Agy > 0
(< 0). Note that I € £, which we call the restricted Lorentz group. We define the Poincaré
group by

P={T(A,a)| A€ L,aeR"},

where T(A,a)(x) = Ax +a. Thus P = £ < R". We can write P as the union of subspaces
in the same way as for £. We call P! the restricted Poincaré group. We want to have a
projective unitary representation of ZPL

16.1.1. Bergmann's construction (n = 4). In this construction, the Projective unitary repre-
sentation of P! come from unitary representation of P}, which is the universal cover of
P! In fact SL(2, C) is the universal cover of £!. Hence, in this case G = P! = SL(2,C) x R%.
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16.1.2. Wigner’s construction. Take p € R*, and let H, be the stabilizer of p by the action of
SL(2,C). Moreover, take a unitary irreducible representation H,, of H,. One can then use
the Mackey machine: choose a G invariant measure on G/H, and define the Hilbet space
H to be the H,, valued functions on G/H, anf use the invariant measure to define an inner
product.

Proposition 16.1.1 (Wigner). H is an irreducible unitary representation of G. Moreover,
all irreducible unitary representations of G arise this way.

Remark 16.1.1. H, can have (2s + 1)-dimensional irreducible representations. Here s €
{0, ;, 1} represents the “spin” of the particle.

Assume s = 0. We start with the trivial representation, which is a 1-dimensional repre-
sentation of H,. Consider the sets

X; =& =m>=0]& >0}
X, =& - m?>=0]& <0)

and write X, = X; UX, and X = {J,,59 Xiu. Take p = (m, 0,0, 0). Then we have G/H, = X}.
We want to construct an invariant measure on Xj,. Let f be a positive function on (0, o).
Then f(&?)d€ is an invariant measure on X. We would like to have an invariant measure

of the form (&' — m?)d&. We define ¢: (0,00) X R® — X}, (y,g) > (\/y +1&[2, &). Then
¢ (f(£2)dg) = Ldrde 492 e want to have the pushforward of 6, W4 _ 1 be our measure

Vi T Vo

on X;,. More precisely, define a: R® — X+ by a(g) = (\Jm?+ IEI2 cf) As an invariant

2V mz+l<§|2
H = L2(X}, tm) = L*(R%,v), where 9 = —L— The position operator is then given by

dé 2\/m2+|g|2

1(A+m?)7'/2. One can summarize the result by saying that the Hilbert space for spin zero
particles is given by L*(R?,v) = H/2(R®).

measure, we want the pushforward of d&on R® to X;. Wigner’s theorem gives us

16.2. Garding-Wightman formulation of QFT. We want to give the axioms of the so-
called Garding-Wightman formulation of QFT. We have the following axioms:

(GW1) We have a Hilbet space 3 , a vaccum state Q € H, and a unitary representation P}
on H.

(GW2) We have a field operator ®@: §(IR*) — Operators on H together with a dense sub-
space D of H such that
(@) QeD
(b) D C D(®(f)) for all f,
(c) f > O(f) |p is linear,

(d) for all €3, € D, the assignment f +— (D(f)€,(),) is a Schwarz distribution
(regularity),
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(€) O(f) = (f).
(GW3) (Covariance) We have
(@) U(a, A)D C D, where U(a, A) is the unitary representation of T(a, A) € ﬂ’l on
H,
(b) Ua, A)- B(f) - Ua, A" = D(T(a, A)f).
(GW4) (Spectrum) Since R* acts unitarly on H via U(a, A), we can take P4, ..., Py to be the
infinitesimal generators of this action. One can show that Pj, ..., P, are essentially

self adjoint. The axio is then given by: The joint spectrum of (Pj, ..., P;) lies in
X* ={& > 0] &y > 0}, where physically & = E? — p~.

(GW5) (Locality) If f and g have space-like disjoint support, then [®(f), D(g)] = 0.

Remark 16.2.1. By the axioms, one can show that the vaccum is unique: If U(a, A)Q)" = Q'
forall T(a, A) € TL then ()" = cQ), where c € C.

Given fi, ..., i € 8(R*), we can define (fi, ..., fx) — (O(f) - O(fi)Q, Q). By (GW2) this
assignment is a distribution in 8’'(R*), i.e.

(D(f1) -+ D(fi)Q2, Q) = Wi(1®--® f) = fw Wi(x1, oo x0) f1(21) - -+ fr(o)doxy - - - doxy.

Definition 16.2.1 (Wightman distribution). Wi(xy, ..., xx) are called Wightman distribution.

We can now formulate the Wightman axioms:
(W1) Wy are fPI—invariant,
(W2) If f; € S(RY), ..., fi € S(R¥), then ¥f -y Wi (i ® f;) > 0.

(W3) (Locality) Wi(x1, ..., Xj, Xjs1, o, Xk) = Wi(x1, ..., Xj41, Xj, ..., Xi), Wwhenever x; and x;,, are
space-like seperated.

We recall the Euclidean setting: We have a measure e 5% 2(¢) on 8'(R*), a two point

function C(f, ¢) and for fi, ..., fx € S(R*) wehaveamap (fy, ..., fx) — f¢(f1) - O(fr)e 5D D().
We would like to know how we can relate the Minkowski to the Euclidean setting.

We can observe that Wi(xy, ..., xx) = wr(x1 — Xy, ..., X1 — Xx) because of translation
invariance.

(W4) (Spectral condition) The Fourier transform of @y of wy has support in X* x - -- x X*.

~—_———
k

Remark 16.2.2. There is one more Wightman axiom, called “Cluster property” (W6), which
is related to uniqueness of vaccum.

Theorem 16.2.1 (Wightman reconstruction theorem). If we have distributions (W) satisfying
(W1)-(W6), then there is a “unique” GW field theory, whose Wightman distributions are Wi.
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Sketch of the proof. Let f € V = D, S(R*) (for k = 0 we get V = C), such that f =
(for fi, s fis ---), where everything is zero except for finitely many js. Moreover, let (f, ) =
YijWij(fi®g)and N = {f € V | (f,f) = 0}. Let H be the completion of V/N and
Q=(1,0,0,..),and forh € §(R*), wehave ®: V — V, ®(h)(fo, f1, --) = (0, fo®h, fi®h,...). O

16.2.1. Wick rotation. Consider the distribution Wi(xy, ..., xx) for x1, .., x; € M*, where x; =

(t1,X1), ..., Xk = (t, %) such that x? = £7—x2. Formally, we want to define Wi(it1, ¥, ity, %, ..., ity, i),
with x? = —i> — ¥2. We want to do this by considering complex variables z; = x; + iy; and
pass from Wi(xy, ..., xx) to Wi(z1, ..., zr). First, we canalytically continue Wi(xy, ..., xx) to a
holomorphic function. Next, we think of Wi(xy, ..., xx) as a boundary value of an analytic

function.

Definition 16.2.2 (Boundary value). Let ¢ be a distribution in 8’(IR"). Let F be a holomor-
phic function. We say ¢ is a boundary value of F if for fixed y, € R", we have

o(f) = lim fR F(c+ ity fd

or equivalently we say F is an analytic continuation of ¢.

Remark 16.2.3. It is not clear whether all ¢ € 8’(IR") have analytic continuations. In fact, let
T € 8'(IR") such that supp(T) € some cone C, where Cis the intersection of two hyperplanes.
Then T is a boundary value of an analytic function on R" —iC*, where C" is the dual cone.

Corollary 16.2.1. Recall wy has support in X* X --- X X*. Then wy can be analytically con-
tinued to a holomorphic function wy(z1, ..., z) on (R* —iX*) x - -+ X (R* —iX").

k-1

Now we can observe that the W have analytic continuation to Wi(z;, ..., zx) on Ty = {(z1, ..., z¢) |
Im(ziy1 — z;) € X}

16.2.2. Schwinger functions. We want to construct Wi (ity, i, ..., ify, %) having Wi(xy, ..., x¢)
with x; = (tj,X)). The problem is that all the points (it1, X)), ..., (it, %) € T

Exercise 16.2.1. Take k = 1 and show (it, i) € 77 if and only if ¢; > 0.

Hence, we want to enlarge T; and extend W to this bigger set. Take
T ={(Az1, ..., Az) | A€ £,det A =1},

E.g. wehad A = —Ibefore. Then we can extend Wi(ws, ..., wi) = Wi(z1, ..., zi) if (wy, ..., wi) =
(Azq, ..., Azg) for some A € L.

Lemma 16.2.1. It is possible to extend Wi as before (using a lot of assumptions).

Denote by
Z“k(“T]i) = {(Za(l)/ ey ZU(H)) | o€ Z‘kl (le ceey Zk) € “T]i}

the permutation group of order k on T7.

Definition 16.2.3. 7 := L,,(T?).
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Exercise 16.2.2. Show that the Euclidean points £, C T, where &, C Cand (z1, ..., 2,) € &,
if and only if z; = (it;, X)).

Remark 16.2.4. In fact, W,(z1, ..., z,) can be extended to an analytic function on TP (technical
result).

Definition 16.2.4.

= {((tll JE)\1)/ seey (tn/ fn)) | (itl/ fl/ seey itn/ fn) € En}
—— ——
n Yn
We call (y1, ..., y») non-coincident if v, # y, for all k # £.

Definition 16.2.5 (Schwinger function). For a non.coincident Euclidean point (y1, ..., ),
we define S, (y1, ..., Yu) = Wy(ity, 44, ..., it,, X,). We call S, Schwinger functions.

16.2.3. Properties of Schwinger functions. For a free massive scalar field theory we can com-
pute Wy(x, y) explicitely. It is given by

e @ -y +EE-D)

Wz(x, y) = szf Y dg;
R? w(&)

where a)(g) = m? + 52 and Cy, some constant. Let

el @@+
Wz(t,)?) = szf —_)dE
® o w(é)
Thus we get
. tm(g)e—lxx
S2(y) = Wa(it, %) = Cw, f
5 w(&

;Z‘ e~ itco B e ivé _
:szf Ef 2rm+ déo —szfwmdé—c(y),

where G is the Green’s function. The Osterwalder-Schrader axioms can be reformulated
with the Schwinger functions as follows:

(OS1) S(y1, ..., yn) defines a distribution on 8.(IR*"), where

8+(R™) ={f € SR™) | f(yi —y) =0,Yu # j}.

Moreover, S,(f) = S,(6f), where O(t, X) = (=t, %), and if h € S((IR*)""!) we get

1Su(M)(Y2 = Y1, ey Y = Yu-1)l < 1AL,

where || - || is some norm on §((R%)"™).
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(OS2) (Euclidean invariance)
(0S3) Let f, € S(RY)"). Then ¥, , Susm(0fs ® fin) = 0.

(OS4) S, (Yo1)s s Yom) = Su(yi, ..., yn) for all o € L,
(OS5) (Cluster property)

Theorem 16.2.2 (Reconstruction theorem). If we have S, (y1, y,) satisfying (OS1)-(OS5), then
there is an unique Garding-Wightman theory.
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