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Part I: Free Fields





1
Relativistic Quantum Mechanics

In this chapter we will follow the books of Griffiths (special relativity) and Peskin
and Schroeder (relativistic wave equations).

1.1 Special Relativity

1.1.1 Postulates

Classical mechanics obeys the principle of relativity which states that the laws of
nature take the same form in all inertial frames. An inertial frame is any frame
in which Newton’s first law holds. Therefore all other frames which move with a
constant velocity with respect to a given inertial frame are also inertial frames.

Any two inertial frames O and O′ can be related by a Galilean transformation
which is of the general form

t
′

= t+ τ

~x
′

= R~x+ ~vt + ~d. (1.1)

In above R is a constant orthogonal matrix, ~d and ~v are constant vectors and τ
is a constant scalar. Thus the observer O

′

sees the coordinates axes of O rotated
by R, moving with a velocity ~v, translated by ~d and it sees the clock of O running
behind by the amount τ . The set of all transformations of the form (1.1) form a
10-parameter group called the Galilean group.
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The invariance/covariance of the equations of motion under these transforma-
tions which is called Galilean invariance/covariance is the precise statement of the
principle of Galilean relativity.

In contrast to the laws of classical mechanics the laws of classical electrodynam-
ics do not obey the Galilean principle of relativity. Before the advent of the theory
of special relativity the laws of electrodynamics were thought to hold only in the
inertial reference frame which is at rest with respect to an invisible medium filling
all space known as the ether. For example electromagnetic waves were thought to
propagate through the vacuum at a speed relative to the ether equal to the speed
of light c = 1/

√
µ0ǫ0 = 3× 108m/s.

The motion of the earth through the ether creates an ether wind. Thus only
by measuring the speed of light in the direction of the ether wind we can get the
value c whereas measuring it in any other direction will give a different result. In
other words we can detect the ether by measuring the speed of light in different
directions which is precisely what Michelson and Morley tried to do in their famous
experiments. The outcome of these experiments was always negative in the sense
that the speed of light was found exactly the same equal to c in all directions.

The theory of special relativity was the first to accommodate this empirical
finding by postulating that the speed of light is the same in all inertial reference
frames, i.e. there is no ether. Furthermore it postulates that classical electrody-
namics (and physical laws in general) must hold in all inertial reference frames.
This is the principle of relativity although now its precise statement can not be
given in terms of the invariance/covariance under Galilean transformations but in
terms of the invariance/covariance under Lorentz transformations which we will
discuss further in the next section.

Einstein’s original motivation behind the principle of relativity comes from the
physics of the electromotive force. The interaction between a conductor and a
magnet in the reference frame where the conductor is moving and the magnet is at
rest is known to result in an emotional emf. The charges in the moving conductor
will experience a magnetic force given by the Lorentz force law. As a consequence
a current will flow in the conductor with an induced motional emf given by the
flux rule E = −dΦ/dt. In the reference frame where the conductor is at rest and
the magnet is moving there is no magnetic force acting on the charges. However
the moving magnet generates a changing magnetic field which by Faraday’s law
induces an electric field. As a consequence in the rest frame of the conductor the
charges experience an electric force which causes a current to flow with an induced
transformer emf given precisely by the flux rule, viz E = −dΦ/dt.

So in summary although the two observers associated with the states of rest of
the conductor and the magnet have different interpretations of the process their
predictions are in perfect agreement. This indeed suggests as pointed out first
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by Einstein that the laws of classical electrodynamics are the same in all inertial
reference frames.

The two fundamental postulates of special relativity are therefore:

• The principle of relativity: The laws of physics take the same form in all
inertial reference frames.

• The constancy of the speed of light: The speed of light in vacuum is the
same in all inertial reference frames.

1.1.2 Relativistic Effects

The gedanken experiments we will discuss here might be called “The train-and-
platform thought experiments”.

Relativity of Simultaneity We consider an observer O′ in the middle of a
freight car moving at a speed v with respect to the ground and a second observer
O standing on a platform. A light bulb hanging in the center of the car is switched
on just as the two observers pass each other.

It is clear that with respect to the observer O′ light will reach the front end
A and the back end B of the freight car at the same time. The two events “light
reaches the front end” and “light reaches the back end” are simultaneous.

According to the second postulate light propagates with the same velocity with
respect to the observer O. This observer sees the back end B moving toward the
point at which the flash was given off and the front end A moving away from it.
Thus light will reach B before it reaches A. In other words with the respect to O
the event “ light reaches the back end” happens before the event “light reaches the
front end”.

Time Dilation Let us now ask the question: How long does it take a light ray
to travel from the bulb to the floor?

Let us call h the height of the freight car. It is clear that with respect to O
′

the time spent by the light ray between the bulb and the floor is

∆t
′

=
h

c
. (1.2)

The observer O will measure a time ∆t during which the freight car moves a
horizontal distance v∆t. The trajectory of the light ray is not given by the vertical
distance h but by the hypotenuse of the right triangle with h and vdt as the other
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two sides. Thus with respect to O the light ray travels a longer distance given by√
h2 + v2∆t2 and therefore the time spent is

∆t =

√
h2 + v2∆t2

c
. (1.3)

Solving for ∆t we get

∆t = γ
h

c
= γ∆t

′

. (1.4)

The factor γ is known as Lorentz factor and it is given by

γ =
1

√

1− v2

c2

. (1.5)

Hence we obtain

∆t
′

=

√

1− v2

c2
∆t ≤ ∆t. (1.6)

The time measured on the train is shorter than the time measured on the ground.
In other words moving clocks run slow. This is called time dilation.

Lorentz Contraction We place now a lamp at the back end B of the freight
car and a mirror at the front end A. Then we ask the question: How long does it
take a light ray to travel from the lamp to the mirror and back?

Again with respect to the observer O′ the answer is simple. If ∆x′ is the length
of the freight car measured by O

′

then the time spent by the light ray in the round
trip between the lamp and the mirror is

∆t
′

= 2
∆x

′

c
. (1.7)

Let ∆x be the length of the freight car measured by O and ∆t1 be the time for
the light ray to reach the front end A. Then clearly

c∆t1 = ∆x+ v∆t1. (1.8)

The term v∆t1 is the distance traveled by the train during the time ∆t1. Let ∆t2
be the time for the light ray to return to the back end B. Then

c∆t2 = ∆x− v∆t2. (1.9)
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The time spent by the light ray in the round trip between the lamp and the mirror
is therefore

∆t = ∆t1 +∆t2 =
∆x

c− v +
∆x

c+ v
= 2γ2

∆x

c
. (1.10)

The time intervals ∆t and ∆t
′

are related by time dilation, viz

∆t = γ∆t
′

. (1.11)

This is equivalent to

∆x
′

= γ∆x ≥ ∆x. (1.12)

The length measured on the train is longer than the length measured on the ground.
In other words moving objects are shortened. This is called Lorentz contraction.

We point out here that only the length parallel to the direction of motion is
contracted while lengths perpendicular to the direction of the motion remain not
contracted.

1.1.3 Lorentz Transformations: Boosts

Any physical process consists of a collection of events. Any event takes place at a
given point (x, y, z) of space at an instant of time t. Lorentz transformations relate
the coordinates (x, y, z, t) of a given event in an inertial reference frame O to the
coordinates (x

′

, y
′

, z
′

, t
′

) of the same event in another inertial reference frame O
′

.
Let (x, y, z, t) be the coordinates in O of an event E. The projection of E

onto the x axis is given by the point P which has the coordinates (x, 0, 0, t). For
simplicity we will assume that the observer O

′

moves with respect to the observer
O at a constant speed v along the x axis. At time t = 0 the two observers O and
O

′

coincides. After time t the observer O
′

moves a distance vt on the x axis. Let
d be the distance between O

′

and P as measured by O. Then clearly

x = d+ vt. (1.13)

Before the theory of special relativity the coordinate x
′

of the event E in the
reference frame O

′

is taken to be equal to the distance d. We get therefore the
transformation laws

x
′

= x− vt
y

′

= y

z
′

= z

t
′

= t. (1.14)
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This is a Galilean transformation. Indeed this is a special case of (1.1).
As we have already seen Einstein’s postulates lead to Lorentz contraction. In

other words the distance between O
′

and P measured by the observer O
′

which is
precisely the coordinate x′ is larger than d. More precisely

x
′

= γd. (1.15)

Hence

x
′

= γ(x− vt). (1.16)

Einstein’s postulates lead also to time dilation and relativity of simultaneity. Thus
the time of the event E measured by O

′

is different from t. Since the observer O
moves with respect to O′ at a speed v in the negative x direction we must have

x = γ(x
′

+ vt
′

). (1.17)

Thus we get

t
′

= γ(t− v

c2
x). (1.18)

In summary we get the transformation laws

x
′

= γ(x− vt)
y

′

= y

z
′

= z

t
′

= γ(t− v

c2
x). (1.19)

This is a special Lorentz transformation which is a boost along the x axis.
Let us look at the clock found at the origin of the reference frame O′. We set

then x
′

= 0 in the above equations. We get immediately the time dilation effect,
viz

t
′

=
t

γ
. (1.20)

At time t = 0 the clocks in O
′

read different times depending on their location
since

t
′

= −γ v
c2
x. (1.21)

Hence moving clocks can not be synchronized.
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We consider now two events A and B with coordinates (xA, tA) and (xB, tB) in
O and coordinates (x

′

A, t
′

A) and (x
′

B, t
′

B) in O
′

. We can immediately compute

∆t
′

= γ(∆t− v

c2
∆x). (1.22)

Thus if the two events are simultaneous with respect to O, i.e. ∆t = 0 they are
not simultaneous with respect to O

′

since

∆t
′

= −γ v
c2
∆x. (1.23)

1.1.4 Spacetime

The above Lorentz boost transformation can be rewritten as

x0
′

= γ(x0 − βx1)
x1

′

= γ(x1 − βx0)
x2

′

= x2

x3
′

= x3. (1.24)

In the above equation

x0 = ct , x1 = x , x2 = y , x3 = z. (1.25)

β =
v

c
, γ =

√

1− β2. (1.26)

This can also be rewritten as

xµ
′

=
4
∑

ν=0

Λµ
νx

ν . (1.27)

Λ =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









. (1.28)

The matrix Λ is the Lorentz boost transformation matrix. A general Lorentz boost
transformation can be obtained if the relative motion of the two inertial reference
frames O and O′ is along an arbitrary direction in space. The transformation law
of the coordinates xµ will still be given by (1.27) with a more complicated matrix
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Λ. A general Lorentz transformation can be written as a product of a rotation
and a boost along a direction n̂ given by

x
′0 = x0 coshα− n̂~x sinhα
~x

′

= ~x+ n̂

(

(coshα− 1)n̂~x− x0 sinhα
)

. (1.29)

~v

c
= tanhα n̂. (1.30)

Indeed the set of all Lorentz transformations contains rotations as a subset.
The set of coordinates (x0, x1, x2, x3) which transforms under Lorentz transfor-

mations as xµ
′

= Λµ
νx

ν will be called a 4−vector in analogy with the set of coor-
dinates (x1, x2, x3) which is called a vector because it transforms under rotations
as xa′ = Ra

bx
b. Thus in general a 4−vector a is any set of numbers (a0, a1, a2, a3)

which transforms as (x0, x1, x2, x3) under Lorentz transformations, viz

aµ
′

=

4
∑

ν=0

Λµ
νa

ν . (1.31)

For the particular Lorentz transformation (1.28) we have

a0
′

= γ(a0 − βa1)
a1

′

= γ(a1 − βa0)
a2

′

= a2

a3
′

= a3. (1.32)

The numbers aµ are called the contravariant components of the 4−vector a. We
define the covariant components aµ by

a0 = a0 , a1 = −a1 , a2 = −a2 , a3 = −a3. (1.33)

By using the Lorentz transformation (1.32) we verify given any two 4−vectors a
and b the identity

a0
′

b0
′ − a1′b1′ − a2′b2′ − a3′b3′ = a0b0 − a1b1 − a2b2 − a3b3. (1.34)

In fact we can show that this identity holds for all Lorentz transformations. We
recall that under rotations the scalar product ~a~b of any two vectors ~a and ~b is
invariant, i.e.

a1
′

b1
′

+ a2
′

b2
′

+ a3
′

b3
′

= a1b1 + a2b2 + a3b3. (1.35)
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The 4-dimensional scalar product must therefore be defined by the Lorentz invari-
ant combination a0b0 − a1b1 − a2b2 − a3b3, namely

ab = a0b0 − a1b1 − a2b2 − a3b3

=

3
∑

µ=0

aµb
µ

= aµb
µ. (1.36)

In the last equation we have employed the so-called Einstein summation conven-
tion, i.e. a repeated index is summed over.

We define the separation 4−vector ∆x between two events A and B occurring
at the points (x0A, x

1
A, x

2
A, x

3
A) and (x0B, x

1
B, x

2
B, x

3
B) by the components

∆xµ = xµA − xµB. (1.37)

The distance squared between the two events A and B which is called the interval
between A and B is defined by

∆s2 = ∆xµ∆x
µ = c2∆t2 −∆~x2. (1.38)

This is a Lorentz invariant quantity. However it could be positive, negative or
zero.

In the case ∆s2 > 0 the interval is called timelike. There exists an inertial
reference frame in which the two events occur at the same place and are only
separated temporally.

In the case ∆s2 < 0 the interval is called spacelike. There exists an inertial
reference frame in which the two events occur at the same time and are only
separated in space.

In the case ∆s2 = 0 the interval is called lightlike. The two events are connected
by a signal traveling at the speed of light.

1.1.5 Metric

The interval ds2 between two infinitesimally close events A and B in spacetime
with position 4−vectors xµA and xµB = xµA + dxµ is given by

ds2 =

3
∑

µ=0

(xA − xB)µ(xA − xB)µ

= (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

= c2(dt)2 − (d~x)2. (1.39)
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We can also write this interval as (using also Einstein’s summation convention)

ds2 =
3
∑

µ,ν=0

ηµνdx
µdxν = ηµνdx

µdxν

=
3
∑

µ,ν=0

ηµνdxµdxν = ηµνdxµdxν . (1.40)

The 4× 4 matrix η is called the metric tensor and it is given by

ηµν = ηµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (1.41)

Clearly we can also write

ds2 =
3
∑

µ,ν=0

ηνµdx
µdxν = ηνµdx

µdxν . (1.42)

In this case

ηνµ = δνµ. (1.43)

The metric η is used to lower and raise Lorentz indices, viz

xµ = ηµνx
ν . (1.44)

The interval ds2 is invariant under Poincare transformations which combine trans-
lations a with Lorentz transformations Λ:

xµ −→ x
′µ = Λµ

νx
ν + aµ. (1.45)

We compute

ds2 = ηµνdx
′µdx

′ν = ηµνdx
µdxν . (1.46)

This leads to the condition

ηµνΛ
µ
ρΛ

ν
σ = ηρσ ⇔ ΛTηΛ = η. (1.47)
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1.2 Klein-Gordon Equation

The non-relativistic energy-momentum relation reads

E =
~p2

2m
+ V. (2.48)

The correspondence principle is

E −→ i~
∂

∂t
, ~p −→ ~

i
~∇. (2.49)

This yields immediately the Schrodinger equation
(

− ~
2

2m
∇2 + V

)

ψ = i~
∂ψ

∂t
. (2.50)

We will only consider the free case,i.e. V = 0. We have then

− ~
2

2m
∇2ψ = i~

∂ψ

∂t
. (2.51)

The energy-momentum 4−vector is given by

pµ = (p0, p1, p2, p3) = (
E

c
, ~p). (2.52)

The relativistic momentum and energy are defined by

~p =
m~u

√

1− u2

c2

, E =
mc2

√

1− u2

c2

. (2.53)

The energy-momentum 4−vector satisfies

pµpµ =
E2

c2
− ~p2 = m2c2. (2.54)

The relativistic energy-momentum relation is therefore given by

~p2c2 +m2c4 = E2. (2.55)

Thus the free Schrodinger equation will be replaced by the relativistic wave equa-
tion

(−~2c2∇2 +m2c4)φ = −~2∂
2φ

∂t2
. (2.56)
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This can also be rewritten as
(

− 1

c2
∂2

∂t2
+∇2 − m2c2

~2

)

φ = 0. (2.57)

This is Klein-Gordon equation. In contrast with the Schrodinger equation the
Klein-Gordon equation is a second-order differential equation. In relativistic no-
tation we have

E −→ i~
∂

∂t
⇔ p0 −→ i~∂0 , ∂0 =

∂

∂x0
=

1

c

∂

∂t
. (2.58)

~p −→ ~

i
~∇ ⇔ pi −→ i~∂i , ∂i =

∂

∂xi
. (2.59)

In other words

pµ −→ i~∂µ , ∂µ =
∂

∂xµ
. (2.60)

pµp
µ −→ −~2∂µ∂

µ = ~
2

(

− 1

c2
∂2

∂t2
+∇2

)

. (2.61)

The covariant form of the Klein-Gordon equation is
(

∂µ∂
µ +

m2c2

~2

)

φ = 0. (2.62)

Free solutions are of the form

φ(t, ~x) = e−
i
~
px , px = pµx

µ = Et− ~p~x. (2.63)

Indeed we compute

∂µ∂
µφ(t, ~x) = − 1

c2~2
(E2 − ~p2c2)φ(t, ~x). (2.64)

Thus we must have

E2 − ~p2c2 = m2c4. (2.65)

In other words

E2 = ±
√

~p2c2 +m2c4. (2.66)
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There exists therefore negative-energy solutions. The energy gap is 2mc2. As it
stands the existence of negative-energy solutions means that the spectrum is not
bounded from below and as a consequence an arbitrarily large amount of energy
can be extracted. This is a severe problem for a single-particle wave equation.
However these negative-energy solutions, as we will see shortly, will be related to
antiparticles.

From the two equations

φ∗

(

∂µ∂
µ +

m2c2

~2

)

φ = 0, (2.67)

φ

(

∂µ∂
µ +

m2c2

~2

)

φ∗ = 0, (2.68)

we get the continuity equation

∂µJµ = 0, (2.69)

where

Jµ =
i~

2m
[φ∗∂µφ− φ∂µφ∗]. (2.70)

We have included the factor i~/2m in order that the zero component J0 has the
dimension of a probability density. The continuity equation can also be put in the
form

∂ρ

∂t
+ ~∇ ~J = 0, (2.71)

where

ρ =
J0
c

=
i~

2mc2
[φ∗∂φ

∂t
− φ∂φ

∗

∂t
]. (2.72)

~J = − i~

2mc
[φ∗~∇φ− φ~∇φ∗]. (2.73)

Clearly the zero component J0 is not positive definite and hence it can be a prob-
ability density. This is due to the fact that the Klein-Gordon equation is second-
order.

The Dirac equation is a relativistic wave equation which is a first-order differ-
ential equation. The corresponding probability density will therefore be positive
definite. However negative-energy solutions will still be present.
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1.3 Dirac Equation

Dirac equation is a first-order differential equation of the same form as the Schrodinger
equation, viz

i~
∂ψ

∂t
= Hψ. (3.74)

In order to derive the form of the Hamiltonian H we go back to the relativistic
energy-momentum relation

pµp
µ −m2c2 = 0. (3.75)

The only requirement on H is that it must be linear in spatial derivatives since
we want space and time to be on equal footing. We thus factor out the above
equation as follows

pµp
µ −m2c2 = (γµpµ +mc)(βνpν −mc)

= γµβνpµpν −mc(γµ − βµ)pµ −m2c2. (3.76)

We must therefore have βµ = γµ, i.e.

pµp
µ = γµγνpµpν . (3.77)

This is equivalent to

p20 − p21 − p22 − p23 = (γ0)2p20 + (γ1)2p21 + (γ2)2p22 + (γ3)2p23
+ (γ1γ2 + γ2γ1)p1p2 + (γ1γ3 + γ3γ1)p1p3 + (γ2γ3 + γ3γ2)p2p3

+ (γ1γ0 + γ0γ1)p1p0 + (γ2γ0 + γ0γ2)p2p0 + (γ3γ0 + γ0γ3)p3p0.

(3.78)

Clearly the objects γµ can not be complex numbers since we must have

(γ0)2 = 1 , (γ1)2 = (γ2)2 = (γ3)2 = −1
γµγν + γνγµ = 0. (3.79)

These conditions can be rewritten in a compact form as

γµγν + γνγµ = 2ηµν . (3.80)

This algebra is an example of a Clifford algebra and the solutions are matrices
γµ which are called Dirac matrices. In four-dimensional Minkowski space the
smallest Dirac matrices must be 4 × 4 matrices. All 4 × 4 representations are
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unitarily equivalent. We choose the so-called Weyl or chiral representation given
by

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

. (3.81)

The Pauli matrices are

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (3.82)

Remark that

(γ0)+ = γ0 , (γi)+ = −γi ⇔ (γµ)+ = γ0γµγ0. (3.83)

The relativistic energy-momentum relation becomes

pµp
µ −m2c2 = (γµpµ +mc)(γνpν −mc) = 0. (3.84)

Thus either γµpµ +mc = 0 or γµpµ −mc = 0. The convention is to take

γµpµ −mc = 0. (3.85)

By applying the correspondence principle pµ −→ i~∂µ we obtain the relativistic
wave equation

(i~γµ∂µ −mc)ψ = 0. (3.86)

This is the Dirac equation in a covariant form. Let us introduce the Feynamn
"slash" defined by

/∂ = γµ∂µ. (3.87)

(i~/∂ −mc)ψ = 0. (3.88)

Since the γ matrices are 4 × 4 the wave function ψ must be a four-component
object which we call a Dirac spinor. Thus we have

ψ =









ψ1

ψ2

ψ3

ψ4









. (3.89)

The Hermitian conjugate of the Dirac equation (4.100) is

ψ+(i~(γµ)+
←−
∂µ +mc) = 0. (3.90)



22 YDRI’s QFT.

In other words

ψ+(i~γ0γµγ0
←−
∂µ +mc) = 0. (3.91)

The Hermitian conjugate of a Dirac spinor is not ψ+ but it is defined by

ψ̄ = ψ+γ0. (3.92)

Thus the Hermitian conjugate of the Dirac equation is

ψ̄(i~γµ
←−
∂µ +mc) = 0. (3.93)

Equivalently

ψ̄(i~
←−
/∂ +mc) = 0. (3.94)

Putting (3.88) and (3.94) together we obtain

ψ̄(i~
←−
/∂ + i~~/∂)ψ = 0. (3.95)

We obtain the continuity equation

∂µJ
µ = 0 , Jµ = ψ̄γµψ. (3.96)

Explicitly we have

∂ρ

∂t
+ ~∇ ~J = 0. (3.97)

ρ =
J0

c
=

1

c
ψ̄γ0ψ =

1

c
ψ+ψ. (3.98)

~J = ψ̄~γψ = ψ+~αψ. (3.99)

The probability density ρ is positive definite as desired.

1.4 Free Solutions of The Dirac Equation

We seek solutions of the Dirac equation

(i~γµ∂µ −mc)ψ = 0. (4.100)
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The plane-wave solutions are of the form

ψ(x) = a e−
i
~
pxu(p). (4.101)

Explicitly

ψ(t, ~x) = a e−
i
~
(Et−~p~x)u(E, ~p). (4.102)

The spinor u(p) must satisfy

(γµpµ −mc)u = 0. (4.103)

We write

u =

(

uA
uB

)

. (4.104)

We compute

γµpµ −mc =
(

−mc E
c
− ~σ~p

E
c
+ ~σ~p −mc

)

. (4.105)

We get immediately

uA =
E
c
− ~σ~p
mc

uB. (4.106)

uB =
E
c
+ ~σ~p

mc
uA. (4.107)

A consistency condition is

uA =
E
c
− ~σ~p
mc

E
c
+ ~σ~p

mc
uA =

E2

c2
− (~σ~p)2

m2c2
uA. (4.108)

Thus one must have

E2

c2
− (~σ~p)2 = m2c2 ⇔ E2 = ~p2c2 +m2c4. (4.109)

Thus we have a single condition

uB =
E
c
+ ~σ~p

mc
uA. (4.110)
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There are four possible solutions. These are

uA =

(

1
0

)

⇔ u(1) = N (1)











1
0

E
c
+p3

mc
p1+ip2

mc











. (4.111)

uA =

(

0
1

)

⇔ u(4) = N (4)











0
1

p1−ip2

mc
E
c
−p3

mc











. (4.112)

uB =

(

1
0

)

⇔ u(3) = N (3)











E
c
−p3

mc

−p1+ip2

mc

1
0











. (4.113)

uB =

(

0
1

)

⇔ u(2) = N (2)











−p1−ip2

mc
E
c
+p3

mc

0
1











. (4.114)

The first and the fourth solutions will be normalized such that

ūu = u+γ0u = u+AuB + u+BuA = 2mc. (4.115)

We obtain

N (1) = N (2) =

√

m2c2

E
c
+ p3

. (4.116)

Clearly one must have E ≥ 0 otherwise the square root will not be well defined. In
other words u(1) and u(2) correspond to positive-energy solutions associated with
particles. The spinors u(i)(p) can be rewritten as

u(i) =

( √
σµpµξ

i

√
σ̄µpµξ

i

)

. (4.117)
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The 2−dimensional spinors ξi satisfy

(ξr)+ξs = δrs. (4.118)

The remaining spinors u(3) and u(4) must correspond to negative-energy solutions
which must be reinterpreted as positive-energy antiparticles. Thus we flip the signs
of the energy and the momentum such that the wave function (4.102) becomes

ψ(t, ~x) = a e
i
~
(Et−~p~x)u(−E,−~p). (4.119)

The solutions u3 and u4 become

v(1)(E, ~p) = u(3)(−E,−~p) = N (3)











−
E
c
−p3

mc
p1+ip2

mc

1
0











, v(2)(E, ~p) = u(4)(−E,−~p) = N (4)











0
1

−p1−ip2

mc

−
E
c
−p3

mc











.

(4.120)

We impose the normalization condition

v̄v = v+γ0v = v+AvB + v+BvA = −2mc. (4.121)

We obtain

N (3) = N (4) =

√

m2c2

E
c
− p3 . (4.122)

The spinors v(i)(p) can be rewritten as

v(i) =

( √
σµpµη

i

−√σ̄µpµηi
)

.

(4.123)

Again the 2−dimensional spinors ηi satisfy

(ηr)+ηs = δrs. (4.124)

1.5 Lorentz Covariance

In this section we will refer to the Klein-Gordon wave function φ as a scalar field
and to the Dirac wave function ψ as a Dirac spinor field although we are still
thinking of them as quantum wave functions and not classical fields.
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Scalar Fields: Let us recall that the set of all Lorentz transformations form a
group called the Lorentz group. An arbitrary Lorentz transformation acts as

xµ −→ x
′µ = Λµ

νx
ν . (5.125)

In the inertial reference frame O the Klein-Gordon wave function is φ = φ(x). It
is a scalar field. Thus in the transformed reference frame O

′

the wave function
must be φ

′

= φ
′

(x
′

) where

φ
′

(x
′

) = φ(x). (5.126)

For a one-component field this is the only possible linear transformation law. The
Klein-Gordon equation in the reference frame O

′

if it holds is of the form
(

∂
′

µ∂
′µ +

m2c2

~2

)

φ
′

(x
′

) = 0. (5.127)

It is not difficult to show that

∂
′

µ∂
′µ = ∂µ∂

µ (5.128)

The Klein-Gordon (5.127) becomes
(

∂µ∂
µ +

m2c2

~2

)

φ(x) = 0. (5.129)

Vector Fields: Let V µ = V µ(x) be an arbitrary vector field (for example ∂µφ
and the electromagnetic vector potential Aµ). Under Lorentz transformations it
must transform as a 4−vector, i.e. as in (5.125) and hence

V
′µ(x

′

) = Λµ
νV

ν(x). (5.130)

This should be contrasted with the transformation law of an ordinary vector field
V i(x) under rotations in three dimensional space given by

V
′i(x

′

) = RijV j(x). (5.131)

The group of rotations in three dimensional space is a continuous group. The
set of infinitesimal transformations (the transformations near the identity) form a
vector space which we call the Lie algebra of the group. The basis vectors of this
vector space are called the generators of the Lie algebra and they are given by the
angular momentum operators J i which satisfy the commutation relations

[J i, J j] = i~ǫijkJk. (5.132)
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A rotation with an angle |θ| about the axis θ̂ is obtained by exponentiation, viz

R = e−iθiJi

. (5.133)

The matrices R form an n−dimensional representation with n = 2j+1 where j is
the spin quantum number. The angular momentum operators J i are given by

J i = −i~ǫijkxj∂k. (5.134)

This is equivalent to

J ij = ǫijkJk

= −i~(xi∂j − xj∂i). (5.135)

Generalization of this result to 4−dimensional Minkowski space yields the six
generators of the Lorentz group given by

Jµν = −i~(xµ∂ν − xν∂µ). (5.136)

We compute the commutation relations

[Jµν , Jρσ] = i~

(

ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ

)

. (5.137)

A solution of (5.137) is given by the 4× 4 matrices

(J µν)αβ = i~(δµαδ
ν
β − δµβδνα). (5.138)

Equivalently we can write this solution as

(J µν)α β = i~(ηµαδνβ − δµβηνα). (5.139)

This representation is the 4−dimensional vector representation of the Lorentz
group which is denoted by (1/2, 1/2). It is an irreducible representation of the
Lorentz group. A scalar field transforms in the trivial representation of the Lorentz
group denoted by (0, 0). It remains to determine the transformation properties of
spinor fields.

Spinor Fields We go back to the Dirac equation in the form

(i~γµ∂µ −mc)ψ = 0. (5.140)
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This equation is assumed to be covariant under Lorentz transformations and hence
one must have the transformed equation

(i~γ
′µ∂

′

µ −mc)ψ
′

= 0. (5.141)

The Dirac γ matrices are assumed to be invariant under Lorentz transformations
and thus

γ
′

µ = γµ. (5.142)

The spinor ψ will be assumed to transform under Lorentz transformations linearly,
namely

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x). (5.143)

Furthermore we have

∂
′

ν = (Λ−1)µ ν∂µ. (5.144)

Thus equation (5.141) is of the form

(i~(Λ−1)ν µS
−1(Λ)γ

′µS(Λ)∂ν −mc)ψ = 0. (5.145)

We can get immediately

(Λ−1)ν µS
−1(Λ)γ

′µS(Λ) = γν . (5.146)

Equivalently

(Λ−1)ν µS
−1(Λ)γµS(Λ) = γν . (5.147)

This is the transformation law of the γ matrices under Lorentz transformations.
Thus the γ matrices are invariant under the simultaneous rotations of the vector
and spinor indices under Lorentz transformations. This is analogous to the fact
that Pauli matrices σi are invariant under the simultaneous rotations of the vector
and spinor indices under spatial rotations.

The matrix S(Λ) form a 4−dimensional representation of the Lorentz group
which is called the spinor representation. This representation is reducible and it
is denoted by (1/2, 0)⊕ (0, 1/2). It remains to find the matrix S(Λ). We consider
an infinitesimal Lorentz transformation

Λ = 1− i

2~
ωαβJ αβ , Λ−1 = 1 +

i

2~
ωαβJ αβ. (5.148)

We can write S(Λ) as

S(Λ) = 1− i

2~
ωαβΓ

αβ , S−1(Λ) = 1 +
i

2~
ωαβΓ

αβ. (5.149)
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The infinitesimal form of (5.147) is

−(J αβ)µ νγµ = [γν,Γ
αβ ]. (5.150)

The fact that the index µ is rotated with J αβ means that it is a vector index. The
spinor indices are the matrix components of the γ matrices which are rotated with
the generators Γαβ . A solution is given by

Γµν =
i~

4
[γµ, γν ]. (5.151)

Explicitly

Γ0i =
i~

4
[γ0, γi] = −i~

2

(

σi 0
0 −σi

)

Γij =
i~

4
[γi, γj ] = −i~

4

(

[σi, σj] 0
0 [σi, σj]

)

=
~

2
ǫijk
(

σk 0
0 σk

)

.

(5.152)

Clearly Γij are the generators of rotations. They are the direct sum of two copies
of the generators of rotation in three dimensional space. Thus immediately we
conclude that Γ0i are the generators of boosts.
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1.6 Exercises and Problems

Scalar Product Show explicitly that the scalar product of two 4−vectors in space-
time is invariant under boosts. Show that the scalar product is then invariant under all
Lorentz transformations.

Relativistic Mechanics

• Show that the proper time of a point particle -the proper time is the time mea-
sured by an inertial observer flying with the particle- is invariant under Lorentz
transformations. We assume that the particle is moving with a velocity ~u with
respect to an inertial observer O.

• Define the 4−vector velocity of the particle in spacetime. What is the spatial
component.

• Define the energy-momentum 4−vector in spacetime and deduce the relativistic
energy.

• Express the energy in terms of the momentum.

• Define the 4−vector force.

Einstein’s Velocity Addition Rule Derive the velocity addition rule in special
relativity.

Weyl Representation

• Show that the Weyl representation of Dirac matrices given by

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

,

solves Dirac-Clifford algebra.

• Show that

(γµ)+ = γ0γµγ0.

• Show that the Dirac equation can be put in the form of a schrödinger equation

i~
∂

∂t
ψ = Hψ,

with some Hamiltonian H.
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Lorentz Invariance of the D’Alembertian Show that

η = ΛT ηΛ.

Λρ
µ = (Λ−1)µ ρ.

∂
′

ν = (Λ−1)µ ν∂µ.

∂
′

µ∂
′µ = ∂µ∂

µ.

Covariance of the Klein-Gordon equation Show that the Klein-Gordon equa-
tion is covariant under Lorentz transformations.

Vector Representations

• Write down the transformation property under ordinary rotations of a vector in
three dimensions. What are the generators J i. What is the dimensions of the
irreducible representations and the corresponding quantum numbers.

• The generators of rotation can be alternatively given by

J ij = ǫijkJk.

Calculate the commutators [J ij , Jkl].

• Write down the generators of the Lorentz group Jµν by simply generalizing J ij

and show that

[Jµν , Jρσ ] = i~

(

ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ

)

.

• Verify that

(J µν)αβ = i~(δµαδ
ν
β − δµβδνα),

is a solution. This is called the vector representation of the Lorentz group.

• Write down a finite Lorentz transformation matrix in the vector representation.
Write down an infinitesimal rotation in the xy−plane and an infinitesimal boost
along the x−axis.
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Dirac Spinors

• Introduce σµ = (1, σi) and σ̄µ = (1,−σi). Show that

(σµp
µ)(σ̄µp

µ) = m2c2.

• Show that the normalization condition ūu = 2mc for u(1) and u(2) yields

N (1) = N (2) =

√

m2c2

E
c + p3

.

• Show that the normalization condition v̄v = −2mc for v(1)(p) = u(3)(−p) and
v(2)(p) = u(4)(−p) yields

N (3) = N (4) =

√

m2c2

E
c − p3

.

• Show that we can rewrite the spinors u and v as

u(i) =

( √
σµpµξ

i

√
σ̄µpµξ

i

)

.

v(i) =

( √
σµpµη

i

−√σ̄µpµηi
)

.

Determine ξi and ηi.

Spin Sums Let u(r)(p) and v(r)(p) be the positive-energy and negative-energy solu-
tions of the free Dirac equation. Show that

•

ū(r)u(s) = 2mcδrs , v̄(r)v(s) = −2mcδrs , ū(r)v(s) = 0 , v̄(r)u(s) = 0.

•

u(r)+u(s) =
2E

c
δrs , v(r)+v(s) =

2E

c
δrs.

u(r)+(E, ~p)v(s)(E,−~p) = 0 , v(r)+(E,−~p)u(s)(E, ~p) = 0.

•

2
∑

s=1

u(s)(E, ~p)ū(s)(E, ~p) = γµpµ +mc ,

2
∑

s=1

v(s)(E, ~p)v̄(s)(E, ~p) = γµpµ −mc.
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Covariance of the Dirac Equation Determine the transformation property of the
spinor ψ under Lorentz transformations in order that the Dirac equation is covariant.

Spinor Bilinears Determine the transformation rule under Lorentz transformations
of ψ̄, ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ, ψ̄γµγ5ψ and ψ̄Γµνψ.

Clifford Algebra

• Write down the solution of the Clifford algebra in three Euclidean dimensions.
Construct a basis for 2× 2 matrices in terms of Pauli matrices.

• Construct a basis for 4× 4 matrices in terms of Dirac matrices.
Hint: Show that there are 16 antisymmetric combinations of the Dirac gamma
matrices in 1 + 3 dimensions.

Chirality Operator and Weyl Fermions

• We define the gamma five matrix (chirality operator) by

γ5 = iγ0γ1γ2γ3.

Show that

γ5 = − i

4!
ǫµνρσγ

µγνγργσ.

(γ5)2 = 1.

(γ5)+ = γ5.

{γ5, γµ} = 0.

[γ5,Γµν ] = 0.

• We write the Dirac spinor as

ψ =

(

ψL

ψR

)

.

By working in the Weyl representation show that Dirac representation is reducible.
Hint: Compute the eigenvalues of γ5 and show that they do not mix under Lorentz
transformations.

• Rewrite Dirac equation in terms of ψL and ψR. What is their physical interpreta-
tion.
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1.7 Solutions

Scalar Product Straightforward.

Relativistic Mechanics

• The trajectory of a particle in spacetime is called a world line. We take two
infinitesimally close points on the world line given by (x0, x1, x2, x3) and (x0 +
dx0, x1 + dx1, x2 + dx2, x3 + dx3). Clearly dx1 = u1dt, dx2 = u2dt and dx3 = u3dt

where ~u is the velocity of the particle measured with respect to the observer O, viz

~u =
d~x

dt
.

The interval with respect to O is given by

ds2 = −c2dt2 + d~x2 = (−c2 + u2)dt2.

Let O
′

be the observer or inertial reference frame moving with respect to O with
the velocity ~u. We stress here that ~u is thought of as a constant velocity only
during the infinitesimal time interval dt. The interval with respect to O

′

is given
by

ds2 = −c2dτ2. (7.153)

Hence

dτ =

√

1− u2

c2
dt.

The time interval dτ measured with respect to O
′

which is the observer moving
with the particle is the proper time of the particle.

• The 4−vector velocity η is naturally defined by the components

ηµ =
dxµ

dτ
.

The spatial part of η is precisely the proper velocity ~η defined by

~η =
d~x

dτ
=

1
√

1− u2

c2

~u.

The temporal part is

η0 =
dx0

dτ
=

c
√

1− u2

c2

.
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• The law of conservation of momentum and the principle of relativity put together
forces us to define the momentum in relativity as mass times the proper velocity
and not mass time the ordinary velocity, viz

~p = m~η = m
d~x

dτ
=

m
√

1− u2

c2

~u.

This is the spatial part of the 4−vector momentum

pµ = mηµ = m
dxµ

dτ
.

The temporal part is

p0 = mη0 = m
dx0

dτ
=

mc
√

1− u2

c2

=
E

c
.

The relativistic energy is defined by

E =
mc2

√

1− u2

c2

.

The 4−vector pµ is called the energy-momentum 4−vector.

• We note the identity

pµp
µ = −E

2

c2
+ ~p2 = −m2c2.

Thus

E =
√

~p2c2 +m2c4.

The rest mass is m and the rest energy is clearly defined by

E0 = mc2.

• The first law of Newton is automatically satisfied because of the principle of rel-
ativity. The second law takes in the theory of special relativity the usual form
provided we use the relativistic momentum, viz

~F =
d~p

dt
.

The third law of Newton does not in general hold in the theory of special relativity.

We can define a 4−vector proper force which is called the Minkowski force by the
following equation

Kµ =
dpµ

dτ
.

The spatial part is

~K =
d~p

dτ
=

1
√

1− u2

c2

~F .
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Einstein’s Velocity Addition Rule We consider a particle in the reference frame
O moving a distance dx in the x direction during a time interval dt. The velocity with
respect to O is

u =
dx

dt
.

In the reference frame O
′

the particle moves a distance dx
′

in a time interval dt
′

given
by

dx
′

= γ(dx− vdt).

dt
′

= γ(dt− v

c2
dx).

The velocity with respect to O
′

is therefore

u
′

=
dx

′

dt
′
=

u− v
1− vu

c2
.

In general if ~V and ~V
′

are the velocities of the particle with respect to O and O
′

respec-
tively and ~v is the velocity of O

′

with respect to O. Then

~V
′

=
~V − ~v
1− ~V ~v

c2

.

Weyl Representation

• Straightforward.

• Straightforward.

• The Dirac equation can trivially be put in the form

i~
∂ψ

∂t
= (

~c

i
γ0γi∂i +mc2γ0)ψ. (7.154)

The Dirac Hamiltonian is

H =
~c

i
~α~∇+mc2β , αi = γ0γi , β = γ0. (7.155)

This is a Hermitian operator as it should be.
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Lorentz Invariance of the D’Alembertian The invariance of the interval under
Lorentz transformations reads

ηµνx
µxν = ηµνx

′µx
′ν = ηµνΛ

µ
ρx

ρΛν
λx

λ.

This leads immediately to

η = ΛT ηΛ.

Explicitly we write this as

ηµν = Λρ
µη

ρ
βΛ

β
ν

= Λρ
µΛρ

ν .

But we also have

δµν = (Λ−1)µ ρΛ
ρ

ν .

In other words

Λρ
µ = (Λ−1)µ ρ.

Since xµ = (Λ−1)µ νx
′ν we have

∂xµ

∂x
′ν

= (Λ−1)µ ν .

Hence

∂
′

ν = (Λ−1)µ ν∂µ.

Thus

∂
′

µ∂
′µ = ηµν∂

′

µ∂
′

ν

= ηµν(Λ−1)ρ µ(Λ
−1)λ ν∂ρ∂λ

= ηµνΛµ
ρΛν

λ∂ρ∂λ

= (ΛT ηΛ)ρλ∂ρ∂λ

= ∂µ∂
µ.

Covariance of the Klein-Gordon equation Straightforward.

Vector Representations

• We have

V
′i(x

′

) = RijV j(x).
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The generators are given by the angular momentum operators J i which satisfy the
commutation relations

[J i, J j ] = i~ǫijkJk.

Thus a rotation with an angle |θ| about the axis θ̂ is obtained by exponentiation,
viz

R = e−iθiJi

.

The matrices R form an n−dimensional representation with n = 2j +1 where j is
the spin quantum number. The quantum numbers are therefore given by j and m.

• The angular momentum operators J i are given by

J i = −i~ǫijkxj∂k.

Thus

J ij = ǫijkJk

= −i~(xi∂j − xj∂i).

We compute

[J ij , Jkl] = i~

(

ηjkJ il − ηikJ jl − ηjlJ ik + ηilJ jk

)

.

• Generalization to 4−dimensional Minkowski space yields

Jµν = −i~(xµ∂ν − xν∂µ).

Now we compute the commutation relations

[Jµν , Jρσ ] = i~

(

ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ

)

.

• A solution of is given by the 4× 4 matrices

(J µν)αβ = i~(δµαδ
ν
β − δµβδνα).

Equivalently

(J µν)α β = i~(ηµαδνβ − δµβηνα).
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We compute

(J µν)α β(J ρσ)β λ = (i~)2
(

ηµαηρνδσλ − ηµαησνδρλ − ηναηρµδσλ + ηναησµδ
ρ
λ

)

.

(J ρσ)α β(J µν)β λ = (i~)2
(

ηραηµσδνλ − ηραησνδµλ − ησαηρµδνλ + ησαηνρδ
µ
λ

)

.

Hence

[J µν ,J ρσ]α λ = (i~)2
(

ηµσ
[

ηναδ
ρ
λ − ηραδνλ

]

− ηνσ
[

ηµαδ
ρ
λ − ηραδ

µ
λ

]

− ηµρ
[

ηναδσλ − ησαδνλ
]

+ ηνρ
[

ηµαδσλ − ησαδµλ
]

)

= i~

[

ηµσ(J νρ)α λ − ηνσ(J µρ)α λ − ηµρ(J νσ)α λ + ηνρ(J µσ)α λ

]

.

• A finite Lorentz transformation in the vector representation is

Λ = e−
i
2~

ωµνJ µν

.

ωµν is an antisymmetric tensor. An infinitesimal transformation is given by

Λ = 1− i

2~
ωµνJ µν .

A rotation in the xy−plane corresponds to ω12 = −ω21 = −θ while the rest of the
components are zero, viz

Λα
β = (1 +

i

~
θJ 12)α β =









1 0 0 0
0 1 θ 0
0 −θ 1 0
0 0 0 1









.

A boost in the x−direction corresponds to ω01 = −ω10 = −β while the rest of the
components are zero, viz

Λα
β = (1 +

i

~
βJ 01)α β =









1 −β 0 0
−β 1 0 0
0 0 1 0
0 0 0 1









.
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Dirac Spinors

• We compute

σµp
µ =

E

c
− ~σ~p =

(

E
c − p3 −(p1 − ip2)

−(p1 + ip2) E
c + p3

)

.

σ̄µp
µ =

E

c
+ ~σ~p =

(

E
c + p3 p1 − ip2
p1 + ip2 E

c − p3
)

.

Thus

(σµp
µ)(σ̄µp

µ) = m2c2.

• Recall the four possible solutions:

uA =

(

1
0

)

⇔ u(1) = N (1)











1
0

E
c
+p3

mc
p1+ip2

mc











.

uA =

(

0
1

)

⇔ u(4) = N (4)











0
1

p1−ip2

mc
E
c
−p3

mc











.

uB =

(

1
0

)

⇔ u(3) = N (3)











E
c
−p3

mc

−p1+ip2

mc
1
0











.

uB =

(

0
1

)

⇔ u(2) = N (2)











−p1−ip2

mc
E
c
+p3

mc
0
1











.

The normalization condition is

ūu = u+γ0u = u+AuB + u+BuA = 2mc.

We obtain immediately

N (1) = N (2) =

√

m2c2

E
c + p3

.
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• Recall that

v(1)(E, ~p) = u(3)(−E,−~p) = N (3)











−
E
c
−p3

mc
p1+ip2

mc
1
0











,

v(2)(E, ~p) = u(4)(−E,−~p) = N (4)











0
1

−p1−ip2

mc

−
E
c
−p3

mc











.

The normalization condition in this case is

v̄v = v+γ0v = v+AvB + v+BvA = −2mc.

We obtain now

N (3) = N (4) =

√

m2c2

E
c − p3

.

• Let us define

ξ10 =

(

1
0

)

, ξ20 =

(

0
1

)

.

We have

u(1) = N (1)

(

ξ10
E
c
+~σ~p

mc ξ10

)

= N (1) 1√
σµpµ

( √
σµpµξ

1
0√

σ̄µpµξ
1
0

)

=

( √
σµpµξ

1

√
σ̄µpµξ

1

)

.

u(2) = N (2)

(

E
c
−~σ~p

mc ξ20
ξ20

)

= N (2) 1√
σ̄µpµ

( √
σµpµξ

2
0√

σ̄µpµξ
2
0

)

=

( √
σµpµξ

2

√
σ̄µpµξ

2

)

.

The spinors ξ1 and ξ2 are defined by

ξ1 = N (1) 1√
σµpµ

ξ10 =

√

σ̄µpµ

E
c + p3

ξ10 .

ξ2 = N (2) 1√
σ̄µpµ

ξ20 =

√

σµpµ

E
c + p3

ξ20 .
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They satisfy

(ξr)+ξs = δrs.

Similarly let us define

η10 =

(

1
0

)

, η20 =

(

0
1

)

.

Then we have

v(1) = N (3)

(

−
E
c
−~σ~p

mc η10
η10

)

= −N (3) 1√
σ̄µpµ

( √
σµpµη

1
0

−√σ̄µpµη10

)

=

( √
σµpµη

1

−√σ̄µpµη1
)

.

v(2) = N (4)

(

η20

−
E
c
+~σ~p

mc η20

)

= N (4) 1√
σµpµ

( √
σµpµη

2
0

−√σ̄µpµη20

)

=

( √
σµpµη

2

−√σ̄µpµη2
)

.

η1 = −N (3) 1√
σ̄µpµ

η10 = −
√

σµpµ

E
c − p3

η10 .

η2 = N (4) 1√
σµpµ

η20 =

√

σ̄µpµ

E
c − p3

η20 .

Again they satisfy

(ηr)+ηs = δrs.

Spin Sums

• We have

u(r)(E, ~p) =

( √
σµpµξ

r

√
σ̄µpµξ

r

)

, v(r)(E, ~p) =

( √
σµpµη

r

−√σ̄µpµηr
)

.

We compute

ū(r)u(s) = u(r)+γ0u(s) = 2ξr+
√

(σµpµ)(σ̄νpν)ξ
s = 2mcξr+ξs = 2mcδrs.

v̄(r)v(s) = v(r)+γ0v(s) = −2ηr+
√

(σµpµ)(σ̄νpν)η
s = −2mcηr+ηs = −2mcδrs.

We have used

(σµp
µ)(σ̄νp

ν) = m2c2.
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ξr+ξs = δrs , ηr+ηs = δrs.

We also compute

ū(r)v(s) = u(r)+γ0v(s) = −ξr+
√

(σµpµ)(σ̄νpν)η
s + ξr+

√

(σµpµ)(σ̄νpν)η
s = 0.

A similar calculation yields

v̄(r)u(s) = u(r)+γ0v(s) = 0.

• Next we compute

u(r)+u(s) = ξr+(σµp
µ + σ̄µp

µ)ξs =
2E

c
ξr+ξs =

2E

c
δrs.

v(r)+v(s) = ηr+(σµp
µ + σ̄µp

µ)ηs =
2E

c
ηr+ηs =

2E

c
δrs.

We have used

σµ = (1, σi) , σµ = (1,−σi).

We also compute

u(r)+(E, ~p)v(s)(E,−~p) = ξr+(
√

(σµpµ)(σ̄νpν)−
√

(σµpµ)(σ̄νpν))ξ
s = 0.

Similarly we compute that

v(r)+(E,−~p)u(s)(E, ~p) = 0.

In the above two equation we have used the fact that

v(r)(E,−~p) =
( √

σ̄µpµη
r

−√σµpµηr
)

.

• Next we compute

∑

s

u(s)(E, ~p)ū(s)(E, ~p) =
∑

s

u(s)(E, ~p)u(s)+(E, ~p)γ0

=
∑

s

( √
σµpµξ

sξs+
√
σµpµ

√
σµpµξ

sξs+
√
σ̄µpµ√

σ̄µpµξ
sξs+
√
σµpµ

√
σ̄µpµξ

sξs+
√
σ̄µpµ

)(

0 1
1 0

)

.

We use

∑

s

ξsξs+ = 1.
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We obtain

∑

s

u(s)(E, ~p)ū(s)(E, ~p) =

(

mc σµp
µ

σ̄µp
µ mc

)

= γµpµ +mc.

Similarly we use

∑

s

ηsηs+ = 1,

to calculate

∑

s

v(s)(E, ~p)v̄(s)(E, ~p) =

(

−mc σµp
µ

σ̄µp
µ −mc

)

= γµpµ −mc.

Covariance of the Dirac Equation Under Lorentz transformations we have the
following transformation laws

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x).

γµ −→ γ
′

µ = γµ.

∂µ −→ ∂
′

ν = (Λ−1)µ ν∂µ.

Thus the Dirac equation (i~γµ∂µ −mc)ψ = 0 becomes

(i~γ
′µ∂

′

µ −mc)ψ
′

= 0,

or equivalently

(i~(Λ−1)ν µS
−1(Λ)γ

′µS(Λ)∂ν −mc)ψ = 0.

We must have therefore

(Λ−1)ν µS
−1(Λ)γµS(Λ) = γν ,

or equivalently

(Λ−1)ν µS
−1(Λ)γµS(Λ) = γν .

We consider an infinitesimal Lorentz transformation

Λ = 1− i

2~
ωαβJ αβ , Λ−1 = 1 +

i

2~
ωαβJ αβ .

The corresponding S(Λ) must also be infinitesimal of the form

S(Λ) = 1− i

2~
ωαβΓ

αβ , S−1(Λ) = 1 +
i

2~
ωαβΓ

αβ.
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By substitution we get

−(J αβ)µ νγµ = [γν ,Γ
αβ].

Explicitly this reads

−i~(δβν γα − δαν γβ) = [γν ,Γ
αβ ],

or equivalently

[γ0,Γ
0i] = i~γi

[γj ,Γ
0i] = −i~δijγ0

[γ0,Γ
ij ] = 0

[γk,Γ
ij ] = −i~(δjkγi − δikγj).

A solution is given by

Γµν =
i~

4
[γµ, γν ].

Spinor Bilinears The Dirac spinor ψ changes under Lorentz transformations as

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x).

S(Λ) = e−
i
2~

ωαβΓ
αβ

.

Since (γµ)+ = γ0γµγ0 we get (Γµν)+ = γ0Γµνγ0. Therefore

S(Λ)+ = γ0S(Λ)−1γ0.

In other words

ψ̄(x) −→ ψ̄
′

(x
′

) = ψ̄(x)S(Λ)−1.

As a consequence

ψ̄ψ −→ ψ̄
′

ψ
′

= ψ̄ψ.

ψ̄γ5ψ −→ ψ̄
′

γ5ψ
′

= ψ̄ψ.

ψ̄γµψ −→ ψ̄
′

γµψ
′

= Λµ
ν ψ̄γ

νψ.

ψ̄γµγ5ψ −→ ψ̄
′

γµγ5ψ
′

= Λµ
νψ̄γ

νγ5ψ.

We have used [γ5,Γµν ] = 0 and S−1γµS = Λµ
νγ

ν . Finally we compute

ψ̄Γµνψ −→ ψ̄
′

Γµνψ
′

= ψ̄S−1ΓµνSψ

= ψ̄
i~

4
[S−1γµS, S−1γνS]ψ

= Λµ
αΛ

ν
βψ̄Γ

αβψ.
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Clifford Algebra

• The Clifford algebra in three Euclidean dimensions is solved by Pauli matrices, viz

{γi, γj} = 2δij , γi ≡ σi.

Any 2× 2 matrix can be expanded in terms of the Pauli matrices and the identity.
In other words

M2×2 =M01+Miσi.

• Any 4 × 4 matrix can be expanded in terms of a 16 antisymmetric combinations
of the Dirac gamma matrices.

The 4−dimensional identity and the Dirac matrices provide the first five indepen-
dent 4× 4 matrices. The product of two Dirac gamma matrices yield six different
matrices which because of {γµ, γν} = 2ηµν can be encoded in the six matrices Γµν

defined by

Γµν =
i~

4
[γµ, γν ].

There are four independent 4 × 4 matrices formed by the product of three Dirac
gamma matrices. They are

γ0γ1γ2 , γ0γ1γ3 , γ0γ2γ3 , γ1γ2γ3.

These can be rewritten as

iǫµναβγβγ
5.

The product of four Dirac gamma matrices leads to an extra independent 4 × 4
matrix which is precisely the gamma five matrix. In total there are 1+4+6+4+1 =
16 antisymmetric combinations of Dirac gamma matrices. Hence any 4× 4 matrix
can be expanded as

M4×4 =M01+Mµγ
µ +MµνΓ

µν +Mµναiǫ
µναβγβγ

5 +M5γ
5.

Chirality Operator and Weyl Fermions

• We have

γ5 = iγ0γ1γ2γ3.
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Thus

− i

4!
ǫµνρσγ

µγνγργσ = − i

4!
(4)ǫ0abcγ

0γaγbγc

= − i

4!
(4.3)ǫ0ij3γ

0γiγjγ3

= − i

4!
(4.3.2)ǫ0123γ

0γ1γ2γ3

= iγ0γ1γ2γ3

= γ5.

We have used

ǫ0123 = −ǫ0123 = −1.

We also verify

(γ5)2 = −γ0γ1γ2γ3.γ0γ1γ2γ3

= γ1γ2γ3.γ1γ2γ3

= −γ2γ3.γ2γ3

= 1.

(γ5)+ = −i(γ3)+(γ2)+(γ1)+(γ0)+

= iγ3γ2γ1γ0

= −iγ0γ3γ2γ1

= −iγ0γ1γ3γ2

= iγ0γ1γ2γ3

= γ5.

{γ5, γ0} = {γ5, γ1} = {γ5, γ2} = {γ5, γ3} = 0.

From this last property we conclude directly that

[γ5,Γµν ] = 0.

• Hence the Dirac representation is reducible. To see this more clearly we work in
the Weyl or chiral representation given by

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

.

In this representation we compute

γ5 = i

(

σ1σ2σ3 0
0 σ1σ2σ3

)

=

(

−1 0
0 1

)

.
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Hence by writing the Dirac spinor as

ψ =

(

ψL

ψR

)

,

we get

ΨR =
1 + γ5

2
ψ =

(

0
ψR

)

,

and

ΨL =
1− γ5

2
ψ =

(

ψL

0

)

.

In other words

γ5ΨL = −ΨL , γ
5ΨR = ΨR.

The spinors ΨL and ΨR do not mix under Lorentz transformations since they are
eigenspinors of γ5 which commutes with Γab. In other words

ΨL(x) −→ Ψ
′

L(x
′

) = S(Λ)ΨL(x).

ΨR(x) −→ Ψ
′

R(x
′

) = S(Λ)ΨR(x).

• The dirac equation is

(i~γµ∂µ −mc)ψ = 0.

In terms of ψL and ψR this becomes

i~(∂0 + σi∂i)ψR = mcψL , i~(∂0 − σi∂i)ψL = mcψR.

For a massless theory we get two fully decoupled equations

i~(∂0 + σi∂i)ψR = 0 , i~(∂0 − σi∂i)ψL = 0.

These are known as Weyl equations. They are relevant in describing neutrinos. It
is clear that ψL describes a left-moving particles and ψR describes a right-moving
particles.



2
Canonical Quantization of Free Fields

2.1 Classical Mechanics

2.1.1 D’Alembert Principle

We consider a system of many particles and let ~ri and mi be the radius vector and
the mass respectively of the ith particle. Newton’s second law of motion for the
ith particle reads

~Fi = ~F
(e)
i +

∑

j

~Fji =
d~pi
dt
. (1.1)

The external force acting on the ith particle is ~F
(e)
i whereas ~Fji is the internal

force on the ith particle due to the jth particle (~Fii = 0 and ~Fij = −~Fji). The
momentum vector of the ith particle is ~pi = mi~vi = mi

d~ri
dt

. Thus we have

~Fi = ~F
(e)
i +

∑

j

~Fji = mi
d2~ri
dt2

. (1.2)

By summing over all particles we get

0
∑

i

~Fi =
∑

i

~F
(e)
i =

∑

i

mi
d2~ri
dt2

=M
d2 ~R

dt2
. (1.3)
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The total mass M is M =
∑

imi and the average radius vector ~R is ~R =
∑

imi~ri/M . This is the radius vector of the center of mass of the system. Thus
the internal forces if they obey Newton’s third law of motion will have no effect
on the motion of the center of mass.

The goal of mechanics is to solve the set of second order differential equations
(1.2) for ~ri given the forces ~F (e)

i and ~Fji. This task is in general very difficult and it
is made even more complicated by the possible presence of constraints which limit
the motion of the system. As an example we take the class of systems known as
rigid bodies in which the motion of the particles is constrained in such a way that
the distances between the particles are kept fixed and do not change in time. It is
clear that constraints correspond to forces which can not be specified directly but
are only known via their effect on the motion of the system. We will only consider
holonomic constraints which can be expressed by equations of the form

f(~r1, ~r2, ~r3, ..., t) = 0. (1.4)

The constraints which can not be expressed in this way are called nonholonomic.
In the example of rigid bodies the constraints are holonomic since they can be
expressed as

(~ri − ~rj)2 − c2ij = 0. (1.5)

The presence of constraints means that not all the vectors ~ri are independent,
i.e not all the differential equations (1.2) are independent. We assume that the
system contains N particles and that we have k holonomic constraints. Then there
must exist 3N − k independent degrees of freedom qi which are called generalized
coordinates. We can therefore express the vectors ~ri as functions of the independent
generalized coordinates qi as

~r1 = ~r1(q1, q2, ...., q3N−k, t)

.

.

.

~rN = ~rN(q1, q2, ...., q3N−k, t). (1.6)

Let us compute the work done by the forces ~F
(e)
i and ~Fji in moving the system

from an initial configuration 1 to a final configuration 2. We have

W12 =
∑

i

∫ 2

1

~Fid~si =
∑

i

∫ 2

1

~F
(e)
i d~si +

∑

i,j

∫ 2

1

~Fjid~si. (1.7)
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We have from one hand

W12 =
∑

i

∫ 2

1

~Fid~si =
∑

i

∫ 2

1

mi
d~vi
dt
~vidt

=
∑

i

∫ 2

1

d(
1

2
miv

2
i )

= T2 − T1. (1.8)

The total kinetic energy is defined by

T =
∑

i

1

2
miv

2
i . (1.9)

We assume that the external forces ~F (e)
i are conservative, i.e they are derived from

potentials Vi such that

~F
(e)
i = −~∇iVi. (1.10)

Then we compute

∑

i

∫ 2

1

~F
(e)
i d~si = −

∑

i

∫ 2

1

~∇iVid~si = −
∑

i

Vi|21. (1.11)

We also assume that the internal forces ~Fji are derived from potentials Vij such
that

~Fji = −~∇iVij. (1.12)

Since we must have ~Fij = −~Fji we must take Vij as a function of the distance
|~ri − ~rj| only, i.e Vij = Vji. We can also check that the force ~Fij lies along the line
joining the particles i and j.

We define the difference vector by ~rij = ~ri−~rj . We have then ~∇iVij = −~∇jVij =
~∇ijVij. We then compute

∑

i,j

∫ 2

1

~Fjid~si = −1
2

∑

i,j

∫ 2

1

(~∇iVijd~si + ~∇jVijd~sj)

= −1
2

∑

i,j

∫ 2

1

~∇ijVij(d~si − d~sj)

= −1
2

∑

i,j

∫ 2

1

~∇ijVijd~rij

= −1
2

∑

i 6=j

Vij |21. (1.13)
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Thus the work done is found to be given by

W12 = −V2 + V1. (1.14)

The total potential is given by

V =
∑

i

Vi +
1

2

∑

i 6=j

Vij. (1.15)

From the results W12 = T2 − T1 and W12 = −V2 + V1 we conclude that the total
energy T+V is conserved. The term 1

2

∑

i 6=j Vij in V is called the internal potential
energy of the system.

For rigid bodies the internal energy is constant since the distances |~ri−~rj| are
fixed. Indeed in rigid bodies the vectors d~rij can only be perpendicular to ~rij and
therefore perpendicular to ~Fij and as a consequence the internal forces do no work
and the internal energy remains constant. In this case the forces ~Fij are precisely
the forces of constraints, i.e. the forces of constraint do no work.

We consider virtual infinitesimal displacements δ~ri which are consistent with
the forces and constraints imposed on the system at time t. A virtual displacement
δ~ri is to be compared with a real displacement d~ri which occurs during a time
interval dt. Thus during a real displacement the forces and constraints imposed
on the system may change. To be more precise an actual displacement is given in
general by the equation

d~ri =
∂~ri
∂t
dt+

3N−k
∑

j=1

∂~ri
∂qj

dqj. (1.16)

A virtual displacement is given on the other hand by an equation of the form

δ~ri =
3N−k
∑

j=1

∂~ri
∂qj

δqj . (1.17)

The effective force on each particle is zero, i.e ~Fi eff = ~Fi− d~pi
dt

= 0. The virtual work
of this effective force in the displacement δ~ri is therefore trivially zero. Summed
over all particles we get

∑

i

(~Fi −
d~pi
dt

)δ~ri = 0. (1.18)

We decompose the force ~Fi into the applied force ~F
(a)
i and the force of constraint

~fi, viz ~Fi = ~F
(a)
i + ~fi. Thus we have

∑

i

(~F
(a)
i −

d~pi
dt

)δ~ri +
∑

i

~fiδ~ri = 0. (1.19)
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We restrict ourselves to those systems for which the net virtual work of the forces
of constraints is zero. In fact virtual displacements which are consistent with the
constraints imposed on the system are precisely those displacements which are
prependicular to the forces of constraints in such a way that the net virtual work
of the forces of constraints is zero. We get then

∑

i

(~F
(a)
i −

d~pi
dt

)δ~ri = 0. (1.20)

This is the principle of virtual work of D’Alembert. The forces of constraints which
as we have said are generally unknown but only their effect on the motion is known
do not appear explicitly in D’Alembert principle which is our goal. Their only effect
in the equation is to make the virtual displacements δ~ri not all independent.

2.1.2 Lagrange’s Equations

We compute

∑

i

~F
(a)
i δ~ri =

∑

i,j

~F
(a)
i

∂~ri
∂qj

δqj

=
∑

j

Qjδqj. (1.21)

The Qj are the components of the generalized force. They are defined by

Qj =
∑

i

~F
(a)
i

∂~ri
∂qj

. (1.22)

Let us note that since the generalized coordinates qi need not have the dimensions
of lenght the components Qi of the generalized force need not have the dimensions
of force.

We also compute

∑

i

d~pi
dt
δ~ri =

∑

i,j

mi
d2~ri
dt2

∂~ri
∂qj

δqj

=
∑

i,j

mi

[

d

dt

(

d~ri
dt

∂~ri
∂qj

)

− d~ri
dt

d

dt

(

∂~ri
∂qj

)]

δqj

=
∑

i,j

mi

[

d

dt

(

~vi
∂~ri
∂qj

)

− ~vi
∂~vi
∂qj

]

δqj. (1.23)
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By using the result ∂~vi
∂q̇j

= ∂~ri
∂qj

we obtain

∑

i

d~pi
dt
δ~ri =

∑

i,j

mi

[

d

dt

(

~vi
∂~vi
∂q̇j

)

− ~vi
∂~vi
∂qj

]

δqj

=
∑

j

[

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj

]

δqj . (1.24)

The total kinetic term is T =
∑

i
1
2
miv

2
i . Hence D’Alembert’s principle becomes

∑

i

(~F
(a)
i −

d~pi
dt

)δ~ri = −
∑

j

[

Qj −
d

dt

(

∂T

∂q̇j

)

+
∂T

∂qj

]

δqj = 0. (1.25)

Since the generalized coordinates qi for holonomic constraints can be chosen such
that they are all independent we get the equations of motion

−Qj +
d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
= 0. (1.26)

In above j = 1, ..., n where n = 3N − k is the number of independent generalized
coordinates. For conservative forces we have ~F

(a)
i = −~∇iV , i.e

Qj = −
∂V

∂qj
. (1.27)

Hence we get the equations of motion

d

dt

(

∂L

∂q̇j

)

− ∂L

∂qj
= 0. (1.28)

These are Lagrange’s equations of motion where the Lagrangian L is defined by

L = T − V. (1.29)

2.1.3 Hamilton’s Principle: The Principle of Least Action

In the previous section we have derived Lagrange’s equations from considerations
involving virtual displacements around the instantaneous state of the system using
the differential principle of D’Alembert. In this section we will rederive Lagrange’s
equations from considerations involving virtual variations of the entire motion
between times t1 and t2 around the actual entire motion between t1 and t2 using
the integral principle of Hamilton.

The instantaneous state or configuration of the system at time t is described
by the n generalized coordinates q1, q2,...,qn. This is a point in the n-dimensional
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configuration space with axes given by the generalized coordinates qi. As time
evolves the system changes and the point (q1, q2, ..., qn) moves in configuration
space tracing out a curve called the path of motion of the system.

Hamilton’s principle is less general than D’Alembert’s principle in that it de-
scribes only systems in which all forces (except the forces of constraints) are derived
from generalized scalar potentials U . The generalized potentials are velocity-
dependent potentials which may also depend on time, i.e U = U(qi, q̇i, t). The
generalized forces are obtained form U as

Qj = −
∂U

∂qj
+
d

dt

(

∂U

∂q̇j

)

. (1.30)

Such systems are called monogenic where Lagrange’s equations of motion will still
hold with Lagrangians given by L = T − U . The systems become conservative if
the potentials depend only on coordinates. We define the action between times t1
and t2 by the line integral

I[q] =

∫ t2

t1

Ldt , L = T − V. (1.31)

The Lagrangian is a function of the generalized coordinates and velocities qi and
q̇i and of time t, i.e L = L(q1, q2, ..., qn, q̇1, q̇2, ..., q̇n, t). The action I is a functional.

Hamilton’s principle can be states as follows. The line integral I has a sta-
tionary value, i.e it is an extremum for the actual path of the motion. Therefore
any first order variation of the actual path results in a second order change in
I so that all neighboring paths which differ from the actual path by infintesimal
displacements have the same action. This is a variational problem for the action
functional which is based on one single function which is the Lagrangian. Clearly
I is invariant to the system of generalized coordinates used to express L and as a
consequence the equations of motion which will be derived from I will be covariant.
We write Hamilton’s principle as follows

δ

δqi
I[q] =

δ

δqi

∫ t2

t1

L(q1, q2, ..., qn, q̇1, q̇2, ..., q̇n, t)dt. (1.32)

For systems with holonomic constraints it can be shown that Hamilton’s principle
is a necessary and sufficient condition for Lagrange’s equations. Thus we can take
Hamilton’s principle as the basic postulate of mechanics rather than Newton’s laws
when all forces (except the forces of constraints) are derived from potentials which
can depend on the coordinates, velocities and time.

Let us denote the soultions of the extremum problem by qi(t, 0). We write any
other path around the correct path qi(t, 0) as qi(t, α) = qi(t, 0) + αηi(t) where the
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ηi are arbitrary functions of t which must vanish at the end points t1 and t2 and
are continuous through the second derivative and α is an infinitesimal parameter
which labels the set of neighboring paths which have the same action as the correct
path. For this parametric family of curves the action becomes an ordinary function
of α given by

I(α) =

∫ t2

t1

L(qi(t, α), q̇i(t, α), t)dt. (1.33)

We define the virtual displacements δqi by

δqi =

(

∂qi
∂α

)

|α=0dα = ηidα. (1.34)

Similarly the infinitesimal variation of I is defined by

δI =

(

dI

dα

)

|α=0dα. (1.35)

We compute

dI

dα
=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α

+
∂L

∂q̇i

∂q̇i
∂α

)

dt

=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α

+
∂L

∂q̇i

∂

∂t

∂qi
∂α

)

dt

=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α

+
∂L

∂q̇i

d

dt

∂qi
∂α

)

dt

=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α
− d

dt

(

∂L

∂q̇i

)

∂qi
∂α

)

dt+

(

∂L

∂q̇i

∂qi
∂α

)t2

t1

. (1.36)

The last term vanishes since all varied paths pass through the points (t1, yi(t1, 0)
and (t2, yi(t2, 0)). Thus we get

δI =

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

δqidt. (1.37)

Hamilton’s principle reads

δI

dα
=

(

dI

dα

)

|α=0 = 0. (1.38)

This leads to the equations of motion
∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηidt = 0. (1.39)
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This should hold for any set of functions ηi. Thus by the fundamental lemma of
the calculus of variations we must have

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0. (1.40)

Formaly we write Hamilton’s principle as

δI

δqi
=

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0. (1.41)

These are Lagrange’s equations.

2.1.4 The Hamilton Equations of Motion

Again we will assume that the constraints are holonomic and the forces are mono-
genic, i.e they are derived from generalized scalar potentials as in (1.30). For a
system with n degrees of freedom we have n Lagrange’s equations of motion. Since
Lagrange’s equations are second order differential equations the motion of the sys-
tem can be completely determined only after we also supply 2n initial conditions.
As an example of initial conditions we can provide the n qis and the n q̇i’s at an
initial time t0.

In the Hamiltonian formulation we want to describe the motion of the system
in terms of first order differential equations. Since the number of initial conditions
must remain 2n the number of first order differential equation which are needed to
describe the system must be equal 2n, i.e we must have 2n independent variables.
It is only natural to choose the first half of the 2n independent variables to be the
n generalized coordinates qi. The second half will be chosen to be the n generalized
momenta pi defined by

pi =
∂L(qj , q̇j , t)

∂q̇i
. (1.42)

The pairs (qi, pi) are known as canonical variables. The generalized momenta pi
are also known as canonical or conjugate momenta.

In the Hamiltonian formulation the state or configuration of the system is de-
scribed by the point (q1, q2, ..., qn, p1, p2, ..., pn) in the 2n-dimensional space known
as the phase space of the system with axes given by the generalized coordinates and
momenta qi and pi. The 2n first order differential equations will describe how the
point (q1, q2, ..., qn, p1, p2, ..., pn) moves inside the phase space as the configuration
of the system evolves in time.

The transition from the Lagrangian formulation to the Hamiltonian formulation
corresponds to the change of variables (qi, q̇i, t) −→ (qi, pi, t) which is an example
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of a Legendre transformation. Instead of the Lagrangian which is a function of
qi,q̇i and t, viz L = L(qi, q̇i, t) we will work in the Hamiltonian formulation with
the Hamiltonian H which is a function of qi, pi and t defined by

H(qi, pi, t) =
∑

i

q̇ipi − L(qi, q̇i, t). (1.43)

We compute from one hand

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt. (1.44)

From the other hand we compute

dH = q̇idpi + pidq̇i −
∂L

∂q̇i
dq̇i −

∂L

∂qi
dqi −

∂L

∂t
dt

= q̇idpi −
∂L

∂qi
dqi −

∂L

∂t
dt

= q̇idpi − ṗidqi −
∂L

∂t
dt. (1.45)

By comparison we get the canonical equations of motion of Hamilton

q̇i =
∂H

∂pi
, − ṗi =

∂H

∂qi
. (1.46)

We also get

−∂L
∂t

=
∂H

∂t
. (1.47)

For a large class of systems and sets of generalized coordinates the Lagrangian can
be decomposed as L(qi, q̇i, t) = L0(qi, t) + L1(qi, q̇i, t) + L2(qi, q̇i, t) where L2 is a
homogeneous function of degree 2 in q̇i whereas L1 is a homogeneous function of
degree 1 in q̇i. In this case we compute

q̇ipi = q̇i
∂L1

∂q̇i
+ q̇i

∂L2

∂q̇i
= L1 + 2L2. (1.48)

Hence

H = L2 − L0. (1.49)

If the transformation equations which define the generalized coordinates do not
depend on time explicitly, i.e ~ri = ~ri(q1, q2, ..., qn) then ~vi =

∑

j
∂~ri
∂qj
q̇j and as a

consequence T = T2 where T2 is a function of qi and q̇i which is quadratic in the
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q̇i’s. In general the kinetic term will be of the form T = T2(qi, q̇i, t) + T1(qi, q̇i, t) +
T0(qi, t). Further if the potential does not depend on the generalized velocities q̇i
then L2 = T , L1 = 0 and L0 = −V . Hence we get

H = T + V. (1.50)

This is the total energy of the system. It is not difficult to show using Hamilton’s
equations that dH

dt
= ∂H

∂t
. Thus if V does not depend on time explicitly then L will

not depend on time explicitly and as a consequence H will be conserved.

2.2 Classical Free Field Theories

2.2.1 The Klein-Gordon Lagrangian Density

The Klein-Gordon wave equation is given by
(

∂µ∂
µ +

m2c2

~2

)

φ(x) = 0. (2.51)

We will consider a complex field φ so that we have also the independent equation
(

∂µ∂
µ +

m2c2

~2

)

φ∗(x) = 0. (2.52)

From now on we will reinterpret the wave functions φ and φ∗ as fields and the
corresponding Klein-Gordon wave equations as field equations.

A field is a dynamical system with an infinite number of degrees of freedom.
Here the degrees of freedom q~x(t) and q̄~x(t) are the values of the fields φ and φ∗ at
the points ~x, viz

q~x(t) = φ(x0, ~x)

q̄~x(t) = φ∗(x0, ~x). (2.53)

Remark that

q̇~x =
dq~x
dt

= c∂0φ+
dxi

dt
∂iφ

˙̄q~x =
dq̄~x
dt

= c∂0φ
∗ +

dxi

dt
∂iφ

∗. (2.54)

Thus the role of q̇~x and ˙̄q~x will be played by the values of the derivatives of the
fields ∂µφ and ∂µφ∗ at the points ~x.

The field equations (2.51) and (2.52) should be thought of as the equations of
motion of the degrees of freedom q~x and q̄~x respectively. These equations of motion
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should be derived from a Lagrangian density L which must depend only on the
fields and their first derivatives at the point ~x. In other words L must be local.
This is also the reason why L is a Lagrangian density and not a Lagrangian. We
have then

L = L(φ, φ∗, ∂µφ, ∂µφ
∗) = L(x0, ~x). (2.55)

The Lagrangian is the integral over ~x of the Lagrangian density, viz

L =

∫

d~xL(x0, ~x). (2.56)

The action is the integral over time of L, namely

S =

∫

dtL =

∫

d4xL. (2.57)

The Lagrangian density L is thus a Lorentz scalar. In other words it is a scalar
under Lorentz transformations since the volume form d4x is a scalar under Lorentz
transformations. We compute

δS =

∫

d4xδL

=

∫

d4x

[

δφ
δL
δφ

+ δ∂µφ
δL
δ∂µφ

+ h.c

]

=

∫

d4x

[

δφ
δL
δφ

+ ∂µδφ
δL
δ∂µφ

+ h.c

]

=

∫

d4x

[

δφ
δL
δφ
− δφ∂µ

δL
δ∂µφ

+ ∂µ

(

δφ
δL
δ∂µφ

)

+ h.c

]

. (2.58)

The surface term is zero because the field φ at infinity is assumed to be zero and
hence

δφ = 0 , xµ −→ ±∞. (2.59)

We get

δS =

∫

d4x

[

δφ

(

δL
δφ
− ∂µ

δL
δ∂µφ

)

+ h.c

]

. (2.60)

The principle of least action states that

δS = 0. (2.61)
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We obtain the Euler-Lagrange equations

δL
δφ
− ∂µ

δL
δ∂µφ

= 0. (2.62)

δL
δφ∗
− ∂µ

δL
δ∂µφ∗

= 0. (2.63)

These must be the equations of motion (2.52) and (2.51) respectively. A solution
is given by

LKG =
~
2

2

(

∂µφ
∗∂µφ− m2c2

~2
φ∗φ

)

. (2.64)

The factor ~2 is included so that the quantity
∫

d3xLKG has dimension of energy.
The coefficient 1/2 is the canonical convention.

The conjugate momenta π(x) and π∗(x) associated with the fields φ(x) and
φ∗(x) are defined by

π(x) =
δLKG

δ∂tφ
, π∗(x) =

δLKG

δ∂tφ∗
. (2.65)

We compute

π(x) =
~
2

2c2
∂tφ

∗ , π∗(x) =
~
2

2c2
∂tφ. (2.66)

The Hamiltonian density HKG is the Legendre transform of LKG defined by

HKG = π(x)∂tφ(x) + π∗(x)∂tφ
∗(x)−LKG

=
~
2

2

(

∂0φ
∗∂0φ+ ~∇φ∗~∇φ+

m2c2

~2
φ∗φ

)

. (2.67)

The Hamiltonian is given by

HKG =

∫

d3xHKG. (2.68)

2.2.2 The Dirac Lagrangian Density

The Dirac equation and its Hermitian conjugate are given by

(i~γµ∂µ −mc)ψ = 0. (2.69)
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ψ̄(i~γµ
←−
∂µ +mc) = 0. (2.70)

The spinors ψ and ψ̄ will now be interpreted as fields. In other words at each point
~x the dynamical variables are ψ(x0, ~x) and ψ̄(x0, ~x). The two field equations (2.69)
and (2.70) will be viewed as the equations of motion of the dynamical variables
ψ(x0, ~x) and ψ̄(x0, ~x). The local Lagrangian density will be of the form

L = L(ψ, ψ̄, ∂µψ, ∂µψ̄) = L(x0, ~x). (2.71)

The Euler-Lagrange equations are

δL
δψ
− ∂µ

δL
δ∂µψ

= 0. (2.72)

δL
δψ̄
− ∂µ

δL
δ∂µψ̄

= 0. (2.73)

A solution is given by

LDirac = ψ̄(i~cγµ∂µ −mc2)ψ. (2.74)

The conjugate momenta Π̄(x) and Π(x) associated with the fields ψ(x) and ψ̄(x)
are defined by

Π(x) =
δLDirac

δ∂tψ
, Π̄(x) =

δLDirac

δ∂tψ̄
. (2.75)

We compute

Π(x) = ψ̄i~γ0 , Π̄(x) = 0. (2.76)

The Hamiltonian density HDirac is the Legendre transform of LDirac defined by

HDirac = Π(x)∂tψ(x) + ∂tψ̄(x)Π̄(x)− LDirac

= ψ̄(−i~cγi∂i +mc2)ψ

= ψ+(−i~c~α~∇+mc2β)ψ. (2.77)

2.3 Canonical Quantization of a Real Scalar Field

We will assume here that the scalar field φ is real. Thus φ∗ = φ. This is a classical
field theory governed by the Lagrangian density and the Lagrangian

LKG =
~
2

2

(

∂µφ∂
µφ− m2c2

~2
φ2

)

. (3.78)
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LKG =

∫

d3xLKG. (3.79)

The conjugate momentum is

π =
δLKG

δ∂tφ
=

~
2

c2
∂tφ. (3.80)

We expand the classical field φ as

φ(x0, ~x) =
c

~

∫

d3p

(2π~)3
Q(x0, ~p)e

i
~
~p~x. (3.81)

In other words Q(x0, ~p) is the Fourier transform of φ(x0, ~x) which is given by

c

~
Q(x0, ~p) =

∫

d3xφ(x0, ~x)e−
i
~
~p~x. (3.82)

Since φ∗ = φ we have Q(x0,−~p) = Q∗(x0, ~p). We compute

LKG =
1

2

∫

d3p

(2π~)3

[

∂tQ
∗(x0, ~p)∂tQ(x

0, ~p)− ω(~p)2Q∗(x0, ~p)Q(x0, ~p)

]

=

∫

+

d3p

(2π~)3

[

∂tQ
∗(x0, ~p)∂tQ(x

0, ~p)− ω(~p)2Q∗(x0, ~p)Q(x0, ~p)

]

. (3.83)

ω2(~p) =
1

~2
(~p2c2 +m2c4). (3.84)

The sign
∫

+
stands for the integration over positive values of p1, p2 and p3. The

equation of motion obeyed by Q derived from the Lagrangian LKG is

(∂2t + ω(~p))Q(x0, ~p) = 0. (3.85)

The general solution is of the form

Q(x0, ~p) =
1

√

2ω(~p)

[

a(~p) e−iω(~p)t + a(−~p)∗ eiω(~p)t
]

. (3.86)

This satisfies Q(x0,−~p) = Q∗(x0, ~p). The conjugate momentum is

π(x0, ~x) =
~

c

∫

d3p

(2π~)3
P (x0, ~p)e

i
~
~p~x , P (x0, ~p) = ∂tQ(x

0, ~p). (3.87)
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~

c
P (x0, ~p) =

∫

d3xπ(x0, ~x)e−
i
~
~p~x. (3.88)

Since π∗ = π we have P (x0,−~p) = P ∗(x0, ~p). We observe that

P (x0, ~p) =
δLKG

δ∂tQ∗(x0, ~p)
. (3.89)

The Hamiltonian is

HKG =

∫

+

d3p

(2π~)3

[

P ∗(x0, ~p)P (x0, ~p) + ω2(~p)Q∗(x0, ~p)Q(x0, ~p)

]

. (3.90)

The real scalar field is therefore equivalent to an infinite collection of independent
harmonic oscillators with frequencies ω(~p) which depend on the momenta ~p of the
Fourier modes.

Quantization of this dynamical system means replacing the scalar field φ and
the conjugate momentum field π by operators φ̂ and π̂ respectively which are acting
in some Hilbert space. This means that the coefficients a and a∗ become operators
â and â+ and hence Q and P become operators Q̂ and P̂ . The operators φ̂ and π̂
will obey the equal-time canonical commutation relations due to Dirac, viz

[φ̂(x0, ~x), π̂(x0, ~y)] = i~δ3(~x− ~y). (3.91)

[φ̂(x0, ~x), φ̂(x0, ~y)] = [π̂(x0, ~x), π̂(x0, ~y)] = 0. (3.92)

These commutation relations should be compared with

[qi, pj] = i~δij. (3.93)

[qi, qj ] = [pi, pj] = 0. (3.94)

The field operator φ̂ and the conjugate momentum operator π̂ are given by

~

c
φ̂(x0, ~x) =

∫

d3p

(2π~)3
Q̂(x0, ~p)e

i
~
~p~x =

∫

+

d3p

(2π~)3
Q̂(x0, ~p)e

i
~
~p~x +

∫

+

d3p

(2π~)3
Q̂+(x0, ~p)e−

i
~
~p~x.(3.95)

c

~
π̂(x0, ~x) =

∫

d3p

(2π~)3
P̂ (x0, ~p)e

i
~
~p~x =

∫

+

d3p

(2π~)3
P̂ (x0, ~p)e

i
~
~p~x +

∫

+

d3p

(2π~)3
P̂+(x0, ~p)e−

i
~
~p~x.(3.96)

It is then not difficult to see that the commutation relations (3.91) and (3.92) are
equivalent to the equal-time commutation rules

[Q̂(x0, ~p), P̂+(x0, ~q)] = i~(2π~)3δ3(~p− ~q). (3.97)



YDRI’s QFT. 65

[Q̂(x0, ~p), P̂ (x0, ~q)] = 0. (3.98)

[Q̂(x0, ~p), Q̂(x0, ~q)] = [P̂ (x0, ~p), P̂ (x0, ~q)] = 0. (3.99)

We have

Q̂(x0, ~p) =
1

√

2ω(~p)

[

â(~p) e−iω(~p)t + â(−~p)+ eiω(~p)t
]

. (3.100)

P̂ (x0, ~p) = −i
√

ω(~p)

2

[

â(~p) e−iω(~p)t − â(−~p)+ eiω(~p)t
]

. (3.101)

Since Q̂(x0, ~p) and P̂ (x0, ~p) satisfy (3.97), (3.98) and (3.99) the annihilation and
creation operators a(~p) and a(~p)+ must satisfy

[â(~p), â(~q)+] = ~(2π~)3δ3(~p− ~q). (3.102)

The Hamiltonian operator is

ĤKG =

∫

+

d3p

(2π~)3

[

P̂+(x0, ~p)P̂ (x0, ~p) + ω2(~p)Q̂+(x0, ~p)Q̂(x0, ~p)

]

=

∫

+

d3p

(2π~)3
ω(~p)

[

â(~p)+â(~p) + â(~p)â(~p)+
]

= 2

∫

+

d3p

(2π~)3
ω(~p)

[

â(~p)+â(~p) +
~

2
(2π~)3δ3(0)

]

=

∫

d3p

(2π~)3
ω(~p)

[

â(~p)+â(~p) +
~

2
(2π~)3δ3(0)

]

. (3.103)

Let us define the vacuum (ground) state |0 > by

â(~p)|0 >= 0. (3.104)

The energy of the vacuum is therefore infinite since

ĤKG|0 > =

∫

d3p

(2π~)3
ω(~p)

[

~

2
(2π~)3δ3(0)

]

|0 > . (3.105)

This is a bit disturbing. But since all we can measure experimentally are energy
differences from the ground state this infinite energy is unobservable. We can
ignore this infinite energy by the so-called normal (Wick’s) ordering procedure
defined by

: â(~p)â(~p)+ := â(~p)+â(~p) , : â(~p)+â(~p) := â(~p)+â(~p). (3.106)
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We then get

: ĤKG : =

∫

d3p

(2π~)3
ω(~p)â(~p)+â(~p). (3.107)

Clearly

: ĤKG : |0 > = 0. (3.108)

It is easy to calculate

[ĤKG, â(~p)
+] = ~ω(~p)â(~p)+ , [Ĥ, â(~p)] = −~ω(~p)â(~p). (3.109)

This establishes that â(~p)+ and â(~p) are raising and lowering operators. The one-
particle states are states of the form

|~p >= 1

c

√

2ω(~p)â(~p)+|0 > . (3.110)

Indeed we compute

ĤKG|~p >= ~ω(~p)|~p >= E(~p)|~p > , E(~p) =
√

~p2c2 +m2c4. (3.111)

The energy E(~p) is precisely the energy of a relativistic particle of mass m and
momentum ~p. This is the underlying reason for the interpretation of |~p > as a
state of a free quantum particle carrying momentum ~p and energy E(~p). The
normalization of the one-particle state |~p > is chosen such that

< ~p|~q >= 2

c2
(2π~)3E(~p)δ3(~p− ~q). (3.112)

We have assumed that < 0|0 >= 1. The factor
√

2ω(~p) in (3.110) is chosen so
that the normalization (3.112) is Lorentz invariant.

The two-particle states are states of the form (not bothering about normaliza-
tion)

|~p, ~q >= â(~p)+â(~q)+|0 > . (3.113)

We compute in this case

ĤKG|~p, ~q >= ~(ω(~p) + ω(~q))|~p > . (3.114)

Since the creation operators for different momenta commute the state |~p, ~q >
is the same as the state |~q, ~p > and as a consequence our particles obey the
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Bose-Einstein statistics. In general multiple-particle states will be of the form
â(~p)+â(~q)+...â(~k)+|0 > with energy equal to ~(ω(~p) + ω(~q) + ...+ ω(~k)).

Let us compute (with px = cp0t− ~p~x)

~

c
φ̂(x) =

∫

d3p

(2π~)3
Q̂(x0, ~p)e

i
~
~p~x

=

∫

d3p

(2π~)3
1

√

2ω(~p)

(

â(~p)e−
i
~
px + â(~p)+e

i
~
px

)

p0=E(~p)/c

. (3.115)

Finally we remark that the unit of ~ is [~] = ML2/T , the unit of φ is [φ] =
1/(L3/2M1/2), the unit of π is [π] = (M3/2L1/2)/T , the unit of Q is [Q] =M1/2L5/2,
the unit of P is [P ] = (M1/2L5/2)/T , the unit of a is [a] = (M1/2L5/2)/T 1/2, the
unit of H is [H ] = (ML2)/T 2 and the unit of momentum p is [p] = (ML)/T .

2.4 Canonical Quantization of Free Spinor Field

We expand the spinor field as

ψ(x0, ~x) =
1

~

∫

d3p

(2π~)3
χ(x0, ~p)e

i
~
~p~x. (4.116)

The Lagrangian in terms of χ and χ+ is given by

LDirac =

∫

d3xLDirac

=

∫

d3xψ̄(i~cγµ∂µ −mc2)ψ

=
c

~2

∫

d3p

(2π~)3
χ̄(x0, ~p)(i~γ0∂0 − γipi −mc)χ(x0, ~p). (4.117)

The classical equation of motion obeyed by the field χ(x0, ~p) is

(i~γ0∂0 − γipi −mc)χ(x0, ~p) = 0. (4.118)

This can be solved by plane-waves of the form

χ(x0, ~p) = e−
i
~
Etχ(~p), (4.119)

with

(γµpµ −mc)χ(~p) = 0. (4.120)
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We know how to solve this equation. The positive-energy solutions are given by

χ+(~p) = u(i)(E, ~p). (4.121)

The corresponding plane-waves are

χ+(x
0, ~p) = e−iω(~p)tu(i)(E(~p), ~p) = e−iω(~p)tu(i)(~p). (4.122)

ω(~p) =
E

~
=

√

~p2c2 +m2c4

~
. (4.123)

The negative-energy solutions are given by

χ−(~p) = v(i)(−E,−~p). (4.124)

The corresponding plane-waves are

χ+(x
0, ~p) = eiω(~p)tv(i)(E(~p),−~p) = eiω(~p)tv(i)(−~p). (4.125)

In the above equations

E(~p) = E = ~ω(~p). (4.126)

Thus the general solution is a linear combination of the form

χ(x0, ~p) =

√

c

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b(~p, i) + eiω(~p)tv(i)(−~p)d(−~p, i)∗
)

.(4.127)

The spinor field becomes

ψ(x0, ~x) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)
e

i
~
~p~x
∑

i

(

e−iω(~p)tu(i)(~p)b(~p, i) + eiω(~p)tv(i)(−~p)d(−~p, i)∗
)

.

(4.128)

The conjugate momentum field is

Π(x0, ~x) = i~ψ+

= i

∫

d3p

(2π~)3
χ+(x0, ~p)e−

i
~
~p~x. (4.129)

After quantization the coefficients b(~p, i) and d(−~p, i)∗ and a s a consequence the
spinors χ(x0, ~p) and χ+(x0, ~p) become operators b̂(~p, i), d̂(−~p, i)+, χ̂(x0, ~p) and
χ̂+(x0, ~p) respectively. As we will see shortly the quantized Poisson brackets for a
spinor field are given by anticommutation relations and not commutation relations.
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In other words we must impose anticommutation relations between the spinor field
operator ψ̂ and the conjugate momentum field operator Π̂. In the following we
will consider both possibilities for the sake of completeness. We set then

[ψ̂α(x
0, ~x), Π̂β(x

0, ~y)]± = i~δαβδ
3(~x− ~y). (4.130)

The plus sign corresponds to anticommutator whereas the minus sign corresponds
to commutator. We can immediately compute

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± = ~

2δαβ(2π~)
3δ3(~p− ~q). (4.131)

This is equivalent to

[b̂(~p, i), b̂(~q, j)+]± = ~δij(2π~)
3δ3(~p− ~q), (4.132)

[d̂(~p, i)+, d̂(~q, j)]± = ~δij(2π~)
3δ3(~p− ~q), (4.133)

and

[b̂(~p, i), d̂(~q, j)]± = [d̂(~q, j)+, b̂(~p, i)]± = 0. (4.134)

We go back to the classical theory for a moment. The Hamiltonian in terms of χ
and χ+ is given by

HDirac =

∫

d3xHDirac

=

∫

d3xψ̄(−i~cγi∂i +mc2)ψ

=
c

~2

∫

d3p

(2π~)3
χ̄(x0, ~p)(γipi +mc)χ(x0, ~p)

=
c

~2

∫

d3p

(2π~)3
χ+(x0, ~p)γ0(γipi +mc)χ(x0, ~p). (4.135)

The eigenvalue equation (4.120) can be put in the form

γ0(γipi +mc)χ(x0, ~p) =
E

c
χ(x0, ~p). (4.136)

On the positive-energy solution we have

γ0(γipi +mc)χ+(x
0, ~p) =

~ω(~p)

c
χ+(x

0, ~p). (4.137)
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On the negative-energy solution we have

γ0(γipi +mc)χ−(x
0, ~p) = −~ω(~p)

c
χ−(x

0, ~p). (4.138)

Hence we have explicitly

cγ0(γipi +mc)χ(x0, ~p) =
~ω(~p)
√

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b(~p, i)− eiω(~p)tv(i)(−~p)d(−~p, i)∗
)

.

(4.139)

The Hamiltonian becomes

HDirac =
1

~

∫

d3p

(2π~)3
E(~p)

∑

i

(

b(~p, i)∗b(~p, i)− d(−~p, i)d(−~p, i)∗
)

=

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b(~p, i)∗b(~p, i)− d(~p, i)d(~p, i)∗
)

. (4.140)

After quantization the Hamiltonian becomes an operator given by

ĤDirac =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i)− d̂(~p, i)d̂(~p, i)+
)

. (4.141)

At this stage we will decide once and for all whether the creation and annihilation
operators of the theory obey commutation relations or anticommutation relations.
In the case of commutation relations we see from the commutation relations (4.133)
that d̂ is the creation operator and d̂+ is the annihilation operator. Thus the second
term in the above Hamiltonian operator is already normal ordered. However we
observe that the contribution of the d−particles to the energy is negative and thus
by creating more and more d particles the energy can be lowered without limit.
The theory does not admit a stable ground state.

In the case of anticommutation relations the above Hamiltonian operator be-
comes

ĤDirac =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

. (4.142)

This expression is correct modulo an infinite constant which can be removed by
normal ordering as in the scalar field theory. The vacuum state is defined by

b̂(~p, i)|0 >= d̂(~p, i)|0 >= 0. (4.143)

Clearly

ĤDirac|0 > = 0. (4.144)
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We calculate

[ĤDirac, b̂(~p, i)
+] = ~ω(~p)b̂(~p, i)+ , [ĤDirac, b̂(~p, i)] = −~ω(~p)b̂(~p, i). (4.145)

[ĤDirac, d̂(~p, i)
+] = ~ω(~p)d̂(~p, i)+ , [ĤDirac, d̂(~p, i)] = −~ω(~p)d̂(~p, i). (4.146)

Excited particle states are obtained by acting with b̂(~p, i)+ on |0 > and excited
antiparticle states are obtained by acting with d̂(~p, i)+ on |0 >. The normalization
of one-particle excited states can be fixed in the same way as in the scalar field
theory, viz

|~p, ib >=
√

2ω(~p)b̂(~p, i)+|0 > , |~p, id >=
√

2ω(~p)d̂(~p, i)+|0 > . (4.147)

Indeed we compute

ĤDirac|~p, ib >= E(~p)|~p, ib > , ĤDirac|~p, id >= E(~p)|~p, id > . (4.148)

< ~p, ib|~q, jb >=< ~p, id|~q, jd >= 2E(~p)δij(2π~)
3δ3(~p− ~q). (4.149)

Furthermore we compute

< 0|ψ̂(x)|~p, ib >= u(i)(~p)e−
i
~
px. (4.150)

< 0| ¯̂ψ(x)|~p, id >= v̄(i)(~p)e−
i
~
px. (4.151)

The field operator ¯̂
ψ(x) acting on the vacuum |0 > creates a particle at ~x at time

t = x0/c whereas ψ̂(x) acting on |0 > creates an antiparticle at ~x at time t = x0/c.
General multiparticle states are obtained by acting with b̂(~p, i)+ and d̂(~p, i)+

on |0 >. Since the creation operators anticommute our particles will obey the
Fermi-Dirac statistics. For example particles can not occupy the same state, i.e.
b̂(~p, i)+b̂(~p, i)+|0 >= 0.

The spinor field operator can be put in the form

ψ̂(x) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)b̂(~p, i) + e

i
~
pxv(i)(~p)d̂(~p, i)+

)

.

(4.152)
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2.5 Propagators

2.5.1 Scalar Propagator

The probability amplitude for a scalar particle to propagate from the spacetime
point y to the spacetime x is

D(x− y) =< 0|φ̂(x)φ̂(y)|0 > . (5.153)

We compute

D(x− y) =
c2

~2

∫

d3p

(2π~)3

∫

d3q

(2π~)3
e−

i
~
px

√

2ω(~p)

e
i
~
qy

√

2ω(~q)
< 0|â(~p)â(~q)+|0 >

= c2
∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y). (5.154)

This is Lorentz invariant since d3p/E(~p) is Lorentz invariant. Now we will relate
this probability amplitude with the commutator [φ̂(x), φ̂(y)]. We compute

[φ̂(x), φ̂(y)] =
c2

~2

∫

d3p

(2π~)3

∫

d3q

(2π~)3
1

√

2ω(~p)

1
√

2ω(~q)

×
(

e−
i
~
pxe

i
~
qy[â(~p), â(~q)+]− e i

~
pxe−

i
~
qy[â(~q), â(~p)+]

)

= D(x− y)−D(y − x). (5.155)

In the case of a spacelike interval, i.e. (x − y)2 = (x0 − y0)2 − (~x − ~y)2 < 0 the
amplitudes D(x − y) and D(y − x) are equal and thus the commutator vanishes.
To see this more clearly we place the event x at the origin of spacetime. The event
y if it is spacelike it will lie outside the light-cone. In this case there is an inertial
reference frame in which the two events occur at the same time, viz y0 = x0. In
this reference frame the amplitude takes the form

D(x− y) = c2
∫

d3p

(2π~)3
1

2E(~p)
e

i
~
~p(~x−~y). (5.156)

It is clear that D(x− y) = D(y − x) and hence

[φ̂(x), φ̂(y)] = 0 , iff (x− y)2 < 0. (5.157)

In conclusion any two measurements in the Klein-Gordon theory with one mea-
surement lying outside the light-cone of the other measurement will not affect each
other. In other words measurements attached to events separated by spacelike in-
tervals will commute.
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In the case of a timelike interval, i.e. (x − y)2 > 0 the event y will lie inside
the light-cone of the event x. Furthermore there is an inertial reference frame in
which the two events occur at the same point, viz ~y = ~x. In this reference frame
the amplitude is

D(x− y) = c2
∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p0(x0−y0). (5.158)

Thus in this case the amplitudes D(x − y) and D(y − x) are not equal. As a
consequence the commutator [φ̂(x), φ̂(y)] does not vanish and hence measurements
attached to events separated by timelike intervals can affect each.

Let us rewrite the commutator as

< 0|[φ̂(x), φ̂(y)]|0 > = [φ̂(x), φ̂(y)]

= c2
∫

d3p

(2π~)3
1

2E(~p)

(

e−
i
~
p(x−y) − e i

~
p(x−y)

)

= c2
∫

d3p

(2π~)3

(

1

2E(~p)
e−

i
~

(

E(~p)
c

(x0−y0)−~p(~x−~y)
)

+
1

−2E(~p)e
− i

~

(

−
E(~p)

c
(x0−y0)−~p(~x−~y)

)

)

. (5.159)

Let us calculate from the other hand
1

c

∫

dp0

2π

i

p2 −m2c2
e−

i
~
p(x−y) =

1

c

∫

dp0

2π

i

(p0)2 − E(~p)2

c2

e−
i
~
p(x−y)

=
1

c

∫

dp0

2π

i

(p0)2 − E(~p)2

c2

e−
i
~

(

p0(x0−y0)−~p(~x−~y)
)

.

(5.160)

There are two poles on the real axis at p0 = ±E(~p)/c. In order to use the residue
theorem we must close the contour of integration. In this case we close the contour
such that both poles are included and assuming that x0−y0 > 0 the contour must
be closed below. Clearly for x0 − y0 < 0 we must close the contour above which
then yields zero. We get then

1

c

∫

dp0

2π

i

p2 −m2c2
e−

i
~
p(x−y) =

i

2πc
(−2πi)

[(

p0 − E(~p)
c

(p0)2 − E(~p)2

c2

e−
i
~

(

p0(x0−y0)−~p(~x−~y)
)

)

p0=E(~p)/c

+

(

p0 + E(~p)
c

(p0)2 − E(~p)2

c2

e−
i
~

(

p0(x0−y0)−~p(~x−~y)
)

)

p0=−E(~p)/c

]

=
1

2E(~p)
e−

i
~

(

E(~p)
c

(x0−y0)−~p(~x−~y)
)

+
1

−2E(~p)e
− i

~

(

−
E(~p)
c

(x0−y0)−~p(~x−~y)
)

.

(5.161)
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Thus we get

DR(x− y) = θ(x0 − y0) < 0|[φ̂(x), φ̂(y)]|0 >

= c~

∫

d4p

(2π~)4
i

p2 −m2c2
e−

i
~
p(x−y). (5.162)

Clearly this function satisfies

(∂µ∂
µ +

m2c2

~2
)DR(x− y) = −i c

~
δ4(x− y). (5.163)

This is a retarded (since it vanishes for x0 < y0) Green’s function of the Klein-
Gordon equation.

In the above analysis the contour used is only one possibility among four pos-
sible contours. It yielded the retarded Green’s function which is non-zero only for
x0 > y0. The second contour is the contour which gives the advanced Green’s
function which is non-zero only for x0 < y0. The third contour corresponds to the
so-called Feynman prescription given by

DF (x− y) = c~

∫

d4p

(2π~)4
i

p2 −m2c2 + iǫ
e−

i
~
p(x−y). (5.164)

The convention is to take ǫ > 0. The fourth contour corresponds to ǫ < 0.
In the case of the Feynman prescription we close for x0 > y0 the contour below

so only the pole p0 = E(~p)/c−iǫ′ will be included. The integral reduces toD(x−y).
For x0 < y0 we close the contour above so only the pole p0 = −E(~p)/c + iǫ

′

will
be included. The integral reduces to D(y − x). In summary we have

DF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x)
= < 0|T φ̂(x)φ̂(y)|0 > . (5.165)

The time-ordering operator is defined by

T φ̂(x)φ̂(y) = φ̂(x)φ̂(y) , x0 > y0

T φ̂(x)φ̂(y) = φ̂(y)φ̂(x) , x0 < y0. (5.166)

By construction DF (x − y) must satisfy the Green’s function equation (5.163).
The Green’s function DF (x−y) is called the Feynman propagator for a real scalar
field.

2.5.2 Dirac Propagator

The probability amplitudes for a Dirac particle to propagate from the spacetime
point y to the spacetime x is

Sab(x− y) =< 0|ψ̂a(x)
¯̂
ψb(y)|0 > . (5.167)
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The probability amplitudes for a Dirac antiparticle to propagate from the space-
time point x to the spacetime y is

S̄ba(y − x) =< 0| ¯̂ψb(y)ψ̂a(x)|0 > . (5.168)

We compute

Sab(x− y) =
1

c
(i~γµ∂xµ +mc)abD(x− y). (5.169)

S̄ba(y − x) = −1
c
(i~γµ∂xµ +mc)abD(y − x). (5.170)

The retarded Green’s function of the Dirac equation can be defined by

(SR)ab(x− y) =
1

c
(i~γµ∂xµ +mc)abDR(x− y). (5.171)

It is not difficult to convince ourselves that

(SR)ab(x− y) = θ(x0 − y0) < 0|{ψ̂a(x),
¯̂
ψb(y)}+|0 > . (5.172)

This satisfies the equation

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = i~δ4(x− y)δcb. (5.173)

Another solution of this equation is the so-called Feynman propagator for a Dirac
spinor field given by

(SF )ab(x− y) =
1

c
(i~γµ∂xµ +mc)abDF (x− y). (5.174)

We compute

(SF )ab(x− y) = < 0|T ψ̂a(x)
¯̂
ψb(y)|0 > . (5.175)

The time-ordering operator is defined by

T ψ̂(x)ψ̂(y) = ψ̂(x)ψ̂(y) , x0 > y0

T ψ̂(x)ψ̂(y) = −ψ̂(y)ψ̂(x) , x0 < y0. (5.176)

By construction SF (x−y) must satisfy the Green’s function equation (5.173). This
can also be checked directly from the Fourier expansion of SF (x− y) given by

(SF )ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2 + iǫ

e−
i
~
p(x−y). (5.177)
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2.6 Discrete Symmetries

In the quantum theory corresponding to each continuous Lorentz transformation Λ
there is a unitary transformation U(Λ) acting in the Hilbert space of state vectors.
Indeed all state vectors |α > will transform under Lorentz transformations as
|α >−→ U(Λ)|α >. In order that the general matrix elements < β|O(ψ̂, ¯̂ψ)|α >
be Lorentz invariant the field operator ψ̂(x) must transform as

ψ̂(x) −→ ψ̂
′

(x) = U(Λ)+ψ̂(x)U(Λ). (6.178)

Hence we must have

S(Λ)ψ̂(Λ−1x) = U(Λ)+ψ̂(x)U(Λ). (6.179)

In the case of a scalar field φ̂(x) we must have instead

φ̂(Λ−1x) = U(Λ)+φ̂(x)U(Λ). (6.180)

There are two discrete spacetime symmetries of great importance to particle physics.
The first discrete transformation is parity defined by

(t, ~x) −→ P (t, ~x) = (t,−~x). (6.181)

The second discrete transformation is time reversal defined by

(t, ~x) −→ T (t, ~x) = (−t, ~x). (6.182)

The Lorentz group consists of four disconnected subroups. The subgroup of
continuous Lorentz transformations consists of all Lorentz transfomrations which
can be obtained from the identity transformation. This is called the proper or-
thochronous Lorentz group. The improper orthochronous Lorentz group is ob-
tained by the action of parity on the proper orthochronous Lorentz group. The
proper nonorthochronous Lorentz group is obtained by the action of time rever-
sal on the proper orthochronous Lorentz group. The improper nonorthochronous
Lorentz group is obtained by the action of parity and then time reversal or by
the action of time reversal and then parity on the proper orthochronous Lorentz
group.

A third discrete symmetry of fundamental importance to particle physics is
charge conjugation operation C. This is not a spacetime symmetry. This is a
symmetry under which particles become their antiparticles. It is well known that
parity P, time reversal T and charge conjugation C are symmetries of gravitational,
electromagnetic and strong interactions. The weak interactions violate P and C
and to a lesser extent T and CP but it is observed that all fundamental forces
conserve CPT.
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2.6.1 Parity

The action of parity on the spinor field operator is

U(P )+ψ̂(x)U(P ) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)U(P )+b̂(~p, i)U(P )

+ e
i
~
pxv(i)(~p)U(P )+d̂(~p, i)+U(P )

)

= S(P )ψ̂(P−1x). (6.183)

We need to rewrite this operator in terms of x̃ = P−1x = (x0,−~x). Thus px = p̃x̃
where p̃ = P−1x = (p0,−~p). We have also σp = σ̄p̃ and σ̄p = σp̃. As a consequence
we have

u(i)(~p) = γ0u(i)(~̃p) , v(i)(~p) = −γ0v(i)(~̃p). (6.184)

Hence

U(P )+ψ̂(x)U(P ) = γ0
1

~

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(i)(~̃p)U(P )+b̂(~p, i)U(P )

− e
i
~
p̃x̃v(i)(~̃p)U(P )+d̂(~p, i)+U(P )

)

. (6.185)

The parity operation flips the direction of the momentum but not the direction of
the spin. Thus we expect that

U(P )+b̂(~p, i)U(P ) = ηbb̂(−~p, i) , U(P )+d̂(~p, i)U(P ) = ηdd̂(−~p, i). (6.186)

The phases ηb and ηa must clearly satisfy

η2b = 1 , η2d = 1. (6.187)

Hence we obtain

U(P )+ψ̂(x)U(P ) = γ0
1

~

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

ηbe
− i

~
p̃x̃u(i)(~̃p)b̂(~̃p, i)− η∗de

i
~
p̃x̃v(i)(~̃p)d̂(~̃p, i)+

)

.

(6.188)

This should equal S(P )ψ̂(x̃). Immediately we conclude that we must have

η∗d = −ηb. (6.189)

Hence

U(P )+ψ̂(x)U(P ) = ηbγ
0ψ̂(x̃). (6.190)
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2.6.2 Time Reversal

The action of time reversal on the spinor field operator is

U(T )+ψ̂(x)U(T ) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

U(T )+e−
i
~
pxu(i)(~p)b̂(~p, i)U(T )

+ U(T )+e
i
~
pxv(i)(~p)d̂(~p, i)+U(T )

)

= S(T )ψ̂(T−1x). (6.191)

This needs to be rewritten in terms of x̃ = T−1x = (−x0, ~x). Time reversal
reverses the direction of the momentum in the sense that px = −p̃x̃ where p̃ =
(p0,−~p). Clearly if U(T ) is an ordinary unitary operator the phases e∓

i
~
px will go

to their complex conjugates e±
i
~
px under time reversal. In other words if U(T ) is an

ordinary unitary operator the field operator U(T )+ψ̂(x)U(T ) can not be written as
a constant matrix times ψ̂(x̃). The solution is to choose U(T ) to be an antilinear
operator defined by

U(T )+c = c∗U(T )+. (6.192)

Hence we get

U(T )+ψ̂(x)U(T ) =
1

~

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(i)∗(~p)U(T )+b̂(~p, i)U(T )

+ e
i
~
p̃x̃v(i)∗(~p)U(T )+d̂(~p, i)+U(T )

)

. (6.193)

We recall that

u(1)(~p) = N (1)

(

ξ10
E
c
+~σ~p

mc
ξ10

)

, v(1) = N (3)

(

−
E
c
−~σ~p

mc
η10

η10

)

. (6.194)

Hence (by using σi∗ = −σ2σiσ2) we obtain

u(1)∗(~p) = N (1)

(

ξ1∗0

σ2
E
c
−~σ~p

mc
σ2ξ1∗0

)

= N (1)γ1γ3

(

−iσ2ξ1∗0
E
c
−~σ~p

mc
(−iσ2ξ1∗0 )

)

.

(6.195)

v(1)∗(~p) = N (3)

(

σ2−
E
c
+~σ~p

mc
σ2η1∗0

η1∗0

)

= N (3)γ1γ3

(

−E
c
+~σ~p

mc
(−iσ2η1∗0 )
−iσ2η1∗0

)

.

(6.196)
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We define

ξ−s
0 = −iσ2ξs∗0 , η−s

0 = iσ2ηs∗0 . (6.197)

Note that we can take ξ−s
0 proportional to ηs0. We obtain then

u(1)∗(~p) = N (1)γ1γ3

(

ξ−1
0

E
c
−~σ~p

mc
ξ−1
0

)

= γ1γ3
( √

σµp̃µξ
−1

√

σ̄µp̃µξ
−1

)

= γ1γ3u(−1)(~̃p).

(6.198)

v(1)∗(~p) = −N (3)γ1γ3

(

−E
c
+~σ~p

mc
η−1
0

η−1
0

)

= −γ1γ3
( √

σµp̃µη
−1

−
√

σ̄µp̃µη
−1

)

= −γ1γ3v(−1)(~̃p).

(6.199)

Similarly we can show that

u(2)∗(~p) = γ1γ3u(−2)(~̃p) , v(2)∗(~p) = −γ1γ3v(−2)(~̃p). (6.200)

In the above equations

ξ−s = N (1)(−p̃3) 1
√

σµp̃µ
ξ−s
0 , η−s = −N (3)(−p̃3) 1

√

σ̄µp̃µ
ηs0. (6.201)

Let us remark that if ξi0 is an eigenvector of ~σn̂ with spin s then ξ−i
0 is an eigenvector

of ~σn̂ with spin −s, viz

~σn̂ξi0 = sξi0 ⇔ ~σn̂ξ−i
0 = −sξ−i

0 . (6.202)

Now going back to equation (6.193) we get

U(T )+ψ̂(x)U(T ) =
1

~
γ1γ3

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(−i)(~̃p)U(T )+b̂(~p, i)U(T )

− e
i
~
p̃x̃v(−i)(~̃p)U(T )+d̂(~p, i)+U(T )

)

. (6.203)

Time reversal reverses the direction of the momentum and of the spin. Thus we
write

U(T )+b̂(~p, i)U(T ) = ηbb̂(−~p,−i) , U(T )+d̂(~p, i)U(T ) = ηdd̂(−~p,−i). (6.204)
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We get then

U(T )+ψ̂(x)U(T ) =
1

~
γ1γ3

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

ηbe
− i

~
p̃x̃u(−i)(~̃p)b̂(~̃p,−i)

− η∗de
i
~
p̃x̃v(−i)(~̃p)d̂(~̃p,−i)+

)

. (6.205)

By analogy with ξ−s
0 = −iσ2ξs∗0 we define

b̂(~̃p,−i) = −(−iσ2)ij b̂(~̃p, j) , d̂(~̃p,−i) = −(−iσ2)ijd̂(~̃p, j). (6.206)

Also we choose

η∗d = −ηb. (6.207)

Hence

U(T )+ψ̂(x)U(T ) =
ηb
~
γ1γ3

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(−i)(~̃p)b̂(~̃p,−i) + e

i
~
p̃x̃v(−i)(~̃p)d̂(~̃p,−i)+

)

= ηbγ
1γ3ψ̂(−x0, ~x). (6.208)

2.6.3 Charge Conjugation

This is defined simply by (with C+ = C−1 = C)

Cb̂(~p, i)C = d̂(~p, i) , Cd̂(~p, i)C = b̂(~p, i) (6.209)

Hence

Cψ̂(x)C =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)d̂(~p, i) + e

i
~
pxv(i)(~p)b̂(~p, i)+

)

.

(6.210)

Let us remark that (by choosing N (1)ξ−i
0 = −N (3)ηi0 or equivalently ξ−i = ηiŘş)

u(1)∗(~p) = iN (1)γ2

(

−
E
c
−~σ~p

mc
ξ−1
0

ξ−1
0

)

= −iN (3)γ2

(

−
E
c
−~σ~p

mc
η10

η10

)

= −iγ2v(1)(~p).

(6.211)

In other words

u(1)(~p) = −iγ2v(1)∗(~p) , v(1)(~p) = −iγ2u(1)∗(~p). (6.212)
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Similarly we find

u(2)(~p) = −iγ2v(2)∗(~p) , v(2)(~p) = −iγ2u(2)∗(~p). (6.213)

Thus we have

Cψ̂(x)C =
1

~
(−iγ2)

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxv(i)∗(~p)d̂(~p, i) + e

i
~
pxu(i)∗(~p)b̂(~p, i)+

)

=
1

~
(−iγ2)

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e
i
~
pxv(i)(~p)d̂(~p, i)+ + e−

i
~
pxu(i)(~p)b̂(~p, i)

)∗

= −iγ2ψ∗(x). (6.214)
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2.7 Exercises and Problems

Scalars Commutation Relations Show that

•

Q̂(x0,−~p) = Q̂+(x0, ~p).

•

[Q̂(x0, ~p), P̂+(x0, ~q)] = i~(2π~)3δ3(~p− ~q).

•

[â(~p), â(~q)+] = ~(2π~)3δ3(~p− ~q).

The One-Particle States For a real scalar field theory the one-particle states
are defined by

|~p >= 1

c

√

2ω(~p)â(~p)+|0 > .

• Compute the energy of this state.

• Compute the scalar product < ~p|~q > and show that it is Lorentz invariant.

• Show that φ̂(x)|0 > can be interpreted as the eigenstate |~x > of the position
operator at time x0.

Momentum Operator

1) Compute the total momentum operator of a quantum real scalar field in
terms of the creation and annihilation operators â(~p)+ and â(~p).

2) What is the total momentum operator for a Dirac field.

Fermions Anticommutation Relations Show that

•

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]+ = ~

2δαβ(2π~)
3δ3(~p− ~q).

•

[b̂(~p, i), b̂(~q, j)+]+ = [d̂(~p, i)+, d̂(~q, j)]+ = ~δij(2π~)
3δ3(~p− ~q).

[b̂(~p, i), d̂(~q, j)]+ = [d̂(~q, j)+, b̂(~p, i)]± = 0.
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Retarded Propagator The retarded propagator is

DR(x− y) = c~

∫

d4p

(2π~)4
i

p2 −m2c2
e−

i
~
p(x−y).

Show that the Klein-Gordon equation with contact term, viz

(∂µ∂
µ +

m2c2

~2
)DR(x− y) = −i c

~
δ4(x− y).

Feynman Propagator We give the scalar Feynman propagator by the equation

DF (x− y) = c~

∫

d4p

(2π~)4
i

p2 −m2c2 + iǫ
e−

i
~
p(x−y).

• Perform the integral over p0 and show that

DF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x).

• Show that

DF (x− y) = < 0|T φ̂(x)φ̂(y)|0 >,
where T is the time-ordering operator.

The Dirac Propagator The probability amplitudes for a Dirac particle (an-
tiparticle) to propagate from the spacetime point y (x) to the spacetime x (y)
are

Sab(x− y) =< 0|ψ̂a(x)
¯̂
ψb(y)|0 > .

S̄ba(y − x) =< 0| ¯̂ψb(y)ψ̂a(x)|0 > .

1) Compute S and S̄ in terms of the Klein-Gordon propagator D(x− y) given
by

D(x− y) =

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y).

2) Show that the retarded Green’s function of the Dirac equation is given by

(SR)ab(x− y) = < 0|{ψ̂a(x),
¯̂
ψb(y)}|0 > .

3) Verify that SR satisfies the Dirac equation

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = i
~

c
δ4(x− y)δcb.

4) Derive an expression of the Feynman propagator in terms of the Dirac fields
ψ̂ and ¯̂

ψ and then write down its Fourier Expansion.
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Dirac Hamiltonian Show that the Dirac Hamiltonian

ĤDirac =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

,

satisfies

[ĤDirac, b̂(~p, i)
+] = ~ω(~p)b̂(~p, i)+ , [ĤDirac, d̂(~p, i)

+] = ~ω(~p)d̂(~p, i)+.

Energy-Momentum Tensor Noether’s theorem states that each continuous
symmetry transformation which leaves the action invariant corresponds to a con-
servation law and as a consequence leads to a constant of the motion.

We consider a single real scalar field φ with a Lagrangian density L(φ, ∂µφ).
Prove Noether’s theorem for spacetime translations given by

xµ −→ x
′µ = xµ + aµ.

In particular determine the four conserved currents and the four conserved charges
(constants of the motion) in terms of the field φ.

Electric Charge

1) The continuity equation for a Dirac wave function is

∂µJ
µ = 0 , Jµ = ψ̄γµψ.

The current Jµ is conserved. According to Noether’s theorem this conserved
current (when we go to the field theory) must correspond to the invariance
of the action under a symmetry principle. Determine the symmetry trans-
formations in this case.

2) The associated conserved charge is

Q =

∫

d3xJ0.

Compute Q for a quantized Dirac field. What is the physical interpretation
of Q.

Chiral Invariance

1) Rewrite the Dirac Lagrangian in terms of ψL and ψR.
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2) The Dirac Lagrangian is invariant under the vector transformations

ψ −→ eiαψ.

Derive the conserved current jµ.

3) The Dirac Lagrangian is almost invariant under the axial vector transforma-
tions

ψ −→ eiγ
5αψ.

Derive the would-be current jµ5 in this case. Determine the condition under
which this becomes a conserved current.

4) Show that in the massless limit

jµ = jµL + jµR , jµ5 = −jµL + jµR.

jµL = Ψ̄Lγ
µΨL , j

µ
R = Ψ̄Rγ

µΨR.

Parity and Time Reversal Determine the transformation rule under parity
and time reversal transformations of ψ̄, ψ̄ψ, iψ̄γ5ψ, ψ̄γµψ and ψ̄γµγ5ψ.

Angular Momentum of Dirac Field

• Write down the infinitesimal Lorentz transformation corresponding to an
infintesimal rotation around the z axis with an angle θ.

• From the effect of a Lorentz transformation on a Dirac spinor calculate the
variation in the field at a fixed point, viz

δψ(x) = ψ
′

(x)− ψ(x).

• Using Noether’s theorem compute the conserved current jµ associated with
the invariance of the Lagrangian under the above rotation. The charge J3 is
defined by

J3 =

∫

d3xj0.

Show that J3 is conserved and derive an expression for it in terms of the
Dirac field. What is the physical interpretation of J3. What is the charge in
the case of a general rotation.
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• In the quantum theory J3 becomes an operator. What is the angular mo-
mentum of the vacuum.

• What is the angular momentum of a one-particle zero-momentum state de-
fined by

|~0, sb >=
√

2mc2

~
b̂(~0, s)+|0 > .

Hint: In order to answer this question we need to compute the commutator
[Ĵ3, b̂(~0, s)+].

• By analogy what is the angular momentum of a one-antiparticle zero-momentum
state defined by

|~0, sd >=
√

2mc2

~
d̂(~0, s)+|0 > .
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2.8 Solutions

Scalars Commutation Relations Straightforward.

The One-Particle States

• The Hamiltonian operator of a real scalar field is given by (ignoring an infinite
constant due to vacuum energy)

ĤKG =

∫

d3p

(2π~)3
ω(~p)â(~p)+â(~p).

It satisfies

ĤKG|0 > = 0.

[ĤKG, â(~p)
+] = ~ω(~p)â(~p)+ , [Ĥ, â(~p)] = −~ω(~p)â(~p).

Thus we compute

ĤKG|~p > =
1

c

√

2ω(~p)ĤKGâ(~p)
+|0 >

=
1

c

√

2ω(~p)[ĤKG, â(~p)
+]|0 >

=
1

c

√

2ω(~p)~ω(~p)â(~p)+|0 >
= ~ω(~p)|~p > .

• Next we compute

< ~p|~q >= 2

c2
(2π~)3E(~p)δ3(~p− ~q).

We have assumed that< 0|0 >= 1. This is Lorentz invariant since E(~p)δ3(~p−
~q) is Lorentz invariant. Let us consider a Lorentz boost along the x−direction,
viz

x0
′

= γ(x0 − βx1) , x1′ = γ(x1 − βx0) , x2′ = x2 , x3
′

= x3.

The energy-momentum 4−vector pµ = (p0, pi) = (E/c, pi) will transform as

p0
′

= γ(p0 − βp1) , p1′ = γ(p1 − βp0) , p2′ = p2 , p3
′

= p3.
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We compute

δ(p1 − q1) = δ(p1
′ − q1′)dp

1′

dp1

= δ(p1
′ − q1′)γ(1− βdp

0

dp1
)

= δ(p1
′ − q1′)γ(1− βp

1

p0
)

= δ(p1
′ − q1′)p

0′

p0
.

Hence we have

p0δ(~p− ~q) = p0
′

δ(~p
′ − ~q′

).

• The completeness relation on the Hilbert subspace of one-particle states is

1one−particle = c2
∫

d3p

(2π~)3
1

2E(~p)
|~p >< ~p|. (8.215)

It is straightforward to compute

φ̂(x0, ~x)|0 >= c2
∫

d3p

(2π~)3
1

2E(~p)
|~p > e

i
~
(E(~p)t−~p~x). (8.216)

This is a linear combination of one-particle states. For small ~p we can make
the approximation E(~p) ≃ mc2 and as a consequence

φ̂(x0, ~x)|0 >= e
i
~
mc2t

2m

∫

d3p

(2π~)3
|~p > e−

i
~
~p~x. (8.217)

In this case the Dirac orthonormalization and the completeness relations read

< ~p|~q >= 2m(2π~)3δ3(~p− ~q). (8.218)

1one−particle =
1

2m

∫

d3p

(2π~)3
|~p >< ~p|. (8.219)

The eigenstates |~x > of the position operator can be defined by

< ~p|~x >=
√
2me−

i
~
~p~x. (8.220)
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Hence

φ̂(x0, ~x)|0 >= e
i
~
mc2t

√
2m
|~x > . (8.221)

In other words in the relativistic theory the operator φ̂(x0, ~x)|0 > should be
interpreted as the eigenstate |~x > of the position operator. Indeed we can
compute in the relativistic theory

< 0|φ̂(x0, ~x)|~p >= e−
i
~
px , px = E(~p)t− ~p~x. (8.222)

We say that the field operator φ̂(x0, ~x) creates a particle at the point ~x at
time t = x0/c.

Momentum Operator

• For a real scalar field

P̂i = c

∫

d3xπ̂∂iφ̂

=
1

~

∫

d3p

(2π~)3
~pâ(~p)+â(~p).

• For a Dirac field

P̂i =
1

~

∫

d3p

(2π~)3
~p
∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

.

Fermions Anticommutation Relations

• We have

χ̂(x0, ~p) =

√

c

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b̂(~p, i) + eiω(~p)tv(i)(−~p)d̂(−~p, i)+
)

.

We compute

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± =

c

2
√

ω(~p)ω(~q)

∑

i,j

ei(ω(~p)−ω(~q))tu(i)α (~p)u
(j)∗
β (~q)[b̂(~p, i), b̂(~q, j)+]±

+
c

2
√

ω(~p)ω(~q)

∑

i,j

e−i(ω(~p)+ω(~q))tu(i)α (~p)v
(j)∗
β (−~q)[b̂(~p, i), d̂(−~q, j)]±

+
c

2
√

ω(~p)ω(~q)

∑

i,j

ei(ω(~p)+ω(~q))tv(i)α (−~p)u(j)∗β (~q)[d̂(−~p, i)+, b̂(~q, j)+]±

+
c

2
√

ω(~p)ω(~q)

∑

i,j

ei(ω(~p)−ω(~q))tv(i)α (−~p)v(j)∗β (−~q)[d̂(−~p, i)+, d̂(−~q, j)]±.
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We impose

[b̂(~p, i), b̂(~q, j)+]± = ~δij(2π~)
3δ3(~p− ~q),

[d̂(~p, i)+, d̂(~q, j)]± = ~δij(2π~)
3δ3(~p− ~q),

and

[b̂(~p, i), d̂(~q, j)]± = [d̂(~q, j)+, b̂(~p, i)]± = 0.

Thus we get

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± =

c~

2ω(~p)

∑

i

u(i)α (~p)u
(i)∗
β (~p)(2π~)3δ3(~p− ~q)

+
c~

2ω(~p)

∑

i

v(i)α (−~p)v(i)∗β (−~p)(2π~)3δ3(~p− ~q).

By using the completeness relations
∑

s u
(s)(E, ~p)ū(s)(E, ~p) = γµpµ+mc and

∑

s v
(s)(E, ~p)v̄(s)(E, ~p) = γµpµ −mc we derive

∑

i

u(i)α (E, ~p)u
(i)∗
β (E, ~p) +

∑

i

v(i)α (E,−~p)v(i)∗β (E,−~p) = 2E(~p)

c
δαβ .

We get then the desired result

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± = ~

2δαβ(2π~)
3δ3(~p− ~q).

• Straightforward.

Retarded Propagator Straightforward.

Feynman Propagator Straightforward.

The Dirac Propagator
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• We compute

Sab(x− y) = c

∫

d3p

(2π~)3

∫

d3q

(2π~)3
1

2E(~p)

1

2E(~q)

∑

i,j

e
i
~
pye−

i
~
qxu(i)a (~q)ū

(j)
b (~p) < ~q, ib|~p, jb >

= c

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)

∑

i

u(i)a (~p)ū
(i)
b (~p)

= c

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)(γµpµ +mc)ab

= c(i~γµ∂xµ +mc)ab

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)

=
1

c
(i~γµ∂xµ +mc)abD(x− y).

Similarly

S̄ba(y − x) = c

∫

d3p

(2π~)3

∫

d3q

(2π~)3
1

2E(~p)

1

2E(~q)

∑

i,j

e−
i
~
pye

i
~
qxv(i)a (~q)v̄

(j)
b (~p) < ~p, jd|~q, id >

= c

∫

d3p

(2π~)3
1

2E(~p)
e

i
~
p(x−y)

∑

i

v(i)a (~p)v̄
(i)
b (~p)

= c

∫

d3p

(2π~)3
1

2E(~p)
e

i
~
p(x−y)(γµpµ −mc)ab

= −c(i~γµ∂xµ +mc)ab

∫

d3p

(2π~)3
1

2E(~p)
e

i
~
p(x−y)

= −1
c
(i~γµ∂xµ +mc)abD(y − x).

• The retarded Green’s function of the Dirac equation can be defined by

(SR)ab(x− y) =
1

c
(i~γµ∂xµ +mc)abDR(x− y).

We compute

(SR)ab(x− y) =
1

c
(i~γµ∂xµ +mc)ab

(

θ(x0 − y0) < 0|[φ̂(x), φ̂(y)]|0 >
)

=
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)ab < 0|[φ̂(x), φ̂(y)]|0 >

+
i~

c
γ0ab∂

x
0 θ(x

0 − y0). < 0|[φ̂(x), φ̂(y)]|0 >

=
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)ab < 0|[φ̂(x), φ̂(y)]|0 >

+
i~

c
γ0abδ(x

0 − y0). < 0|[φ̂(x), φ̂(y)]|0 > .
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By inspection we will find that the second term will vanish. Thus we get

(SR)ab(x− y) =
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)ab < 0|[φ̂(x), φ̂(y)]|0 >

=
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)abD(x− y)

− 1

c
θ(x0 − y0)(i~γµ∂xµ +mc)abD(y − x)

= θ(x0 − y0) < 0|ψ̂a(x)
¯̂
ψb(y)|0 > +θ(x0 − y0) < 0| ¯̂ψb(y)ψ̂a(x)|0 >

= θ(x0 − y0) < 0|{ψ̂a(x),
¯̂
ψb(y)}|0 > .

• From the Fourier expansion of the retarded Green’s function DR(x − y) we
obtain

(SR)ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2

e−
i
~
p(x−y).

We can immediately compute

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ −mc)ca(γµpµ +mc)ab

p2 −m2c2
e−

i
~
p(x−y)

= i~δ4(x− y)δcb.

• The Feynman propagator is defined by

(SF )ab(x− y) =
1

c
(i~γµ∂xµ +mc)abDF (x− y).

We compute

(SF )ab(x− y) = θ(x0 − y0) < 0|ψ̂a(x)
¯̂
ψb(y)|0 > −θ(y0 − x0) < 0| ¯̂ψb(y)ψ̂a(x)|0 >

+
i~

c
(γ0)abδ(x

0 − y0)(D(x− y)−D(y − x)).

Again the last term is zero and we end up with

(SF )ab(x− y) = < 0|T ψ̂a(x)
¯̂
ψb(y)|0 > .

T is the time-ordering operator. The Fourier expansion of SF (x− y) is

(SF )ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2 + iǫ

e−
i
~
p(x−y).
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Dirac Hamiltonian Straightforward.

Energy-Momentum Tensor We consider spacetime translations

xµ −→ x
′µ = xµ + aµ.

The field φ transforms as

φ −→ φ
′

(x
′

) = φ(x+ a) = φ(x) + aµ∂µφ.

The Lagrangian density L = L(φ, ∂µφ) is a scalar and therefore it will transform
as φ(x), viz

L −→ L′

= L+ δL , δL = δxµ
∂L
∂xµ

= aµ∂µL.

This equation means that the action changes by a surface term and hence it is
invariant under spacetime translations and as a consequence Euler-Lagrange equa-
tions of motion are not affected.

From the other hand the Lagrangian density L = L(φ, ∂µφ) transforms as

δL =
δL
δφ
δφ+

δL
δ∂µφ

δ∂µφ

=

(

δL
δφ
− ∂µ

δL
δ(∂µφ)

)

δφ+ ∂µ(
δL

δ(∂µφ)
δφ).

By using Euler-Lagrange equations of motion we get

δL = ∂µ(
δL

δ(∂µφ)
δφ).

Hence by comparing we get

aν∂µ
(

− ηµνL+
δL

δ(∂µφ)
δφ

)

= 0.

Equivalently

∂µTµν = 0.

The four conserved currents j(0)µ = Tµ0 (which is associated with time translations)
and j(i)µ = Tµi (which are associated with space translations) are given by

Tµν = −ηµνL+
δL

δ(∂µφ)
∂νφ.
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The conserved charges are (with π = δL/δ(∂tφ))

Q(0) =

∫

d3xj
(0)
0 =

∫

d3xT00 =

∫

d3x(π∂tφ− L).

Q(i) =

∫

d3xj
(i)
0 =

∫

d3xT0i = c

∫

d3xπ∂iφ.

Clearly T00 is a Hamiltonian density and hence Q(0) is the Hamiltonian of the scalar
field. By analogy T0i is the momentum density and hence Q(i) is the momentum
of the scalar field. We have then

Q(0) = H , Q(i) = Pi.

We compute

dH

dt
=

∫

d3x
∂T00
∂t

= −c
∫

d3x∂iTi0 = 0.

Similarly

dPi

dt
= 0.

In other words H and Pi are constants of the motion.

Electric Charge

• The Dirac Lagrangian density and as a consequence the action are invariant
under the global gauge transformations

ψ −→ eiαψ.

Under a local gauge transformation the Dirac Lagrangian density changes
by

δLDirac = −~c∂µ(ψ̄γµψα) + ~c∂µ(ψ̄γ
µψ)α.

The total derivative leads to a surface term in the action and thus it is
irrelevant. We get then

δLDirac = ~c∂µ(ψ̄γ
µψ)α.

Imposing δLDirac = 0 leads immediately to ∂µJµ = 0.

• We compute

Q̂ =
1

~

∫

d3p

(2π~)3

∑

i

(

b̂(~p, i)+b̂(~p, i)− d̂(~p, i)+d̂(~p, i)
)

.

Q̂ is the electric charge.
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Chiral Invariance

• The Dirac Lagrangian in terms of ψL and ψR reads

LDirac = ψ̄(i~cγµ∂µ −mc2)ψ

= i~c

(

ψ+
R(∂0 + σi∂i)ψR + ψ+

L (∂0 − σi∂i)ψL

)

−mc2
(

ψ+
RψL + ψ+

LψR

)

.

• This Lagrangian is invariant under the vector transformations

ψ −→ eiαψ ⇔ ψL −→ eiαψL and ψR −→ eiαψR.

The variation of the Dirac Lagrangian under these transformations is

δLDirac = ~c(∂µj
µ)α + surface term , jµ = ψ̄γµψ.

According to Noether’s theorem each invariance of the action under a sym-
metry transformation corresponds to a conserved current. In this case the
conserved current is the electric current density

jµ = ψ̄γµψ.

• The Dirac Lagrangian is also almost invariant under the axial vector (or
chiral) transformations

ψ −→ eiγ
5αψ ⇔ ψL −→ eiγ

5αψL and ψR −→ eiγ
5αψR.

The variation of the Dirac Lagrangian under these transformations is

δLDirac =

(

~c(∂µj
µ5)− 2imc2ψ̄γ5ψ

)

α + surface term , jµ5 = ψ̄γµγ5ψ.

Imposing δLDirac = 0 yields

∂µj
µ5 = 2i

mc

~
ψ̄γ5ψ.

Hence the current jµ5 is conserved only in the massless limit.

• In the massless limit we have two conserved currents jµ and jµ5. They can
be rewritten as

jµ = jµL + jµR , jµ5 = −jµL + jµR.

jµL = Ψ̄Lγ
µΨL , j

µ
R = Ψ̄Rγ

µΨR.

These are electric current densities associated with left-handed and right-
handed particles.
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Parity and Time Reversal Under parity we have

U(P )+ψ̂(x)U(P ) = ηbγ
0ψ̂(x̃).

Immediately we get

U(P )+
¯̂
ψ(x)U(P ) = η∗b

¯̂
ψ(x̃)γ0.

Hence

U(P )+
¯̂
ψψ̂(x)U(P ) = |ηb|2 ¯̂ψψ̂(x̃) = ¯̂

ψψ̂(x̃).

U(P )+i
¯̂
ψγ5ψ̂(x)U(P ) = −|ηb|2i ¯̂ψγ5ψ̂(x̃) = −i ¯̂ψγ5ψ̂(x̃).

U(P )+
¯̂
ψγµψ̂(x)U(P ) = +|ηb|2 ¯̂ψγµψ̂(x̃) = +

¯̂
ψγµψ̂(x̃) , µ = 0

= −|ηb|2 ¯̂ψγµψ̂(x̃) = − ¯̂
ψγµψ̂(x̃) , µ 6= 0.

U(P )+
¯̂
ψγµγ5ψ̂(x)U(P ) = −|ηb|2 ¯̂ψγµγ5ψ̂(x̃) = − ¯̂

ψγµγ5ψ̂(x̃) , µ = 0

= +|ηb|2 ¯̂ψγµγ5ψ̂(x̃) = +
¯̂
ψγµγ5ψ̂(x̃) , µ 6= 0.

Under time reversal we have

U(T )+ψ̂(x)U(T ) = ηbγ
1γ3ψ̂(−x0, ~x).

We get

U(T )+
¯̂
ψ(x)U(T ) = η∗b

¯̂
ψ(−x0, ~x)γ3γ1.

We compute

U(T )+
¯̂
ψψ̂(x)U(T ) = |ηb|2 ¯̂ψψ̂(−x0, ~x) = ¯̂

ψψ̂(−x0, ~x).

U(T )+i
¯̂
ψγ5ψ̂(x)U(T ) = −iU(T )+ ¯̂

ψγ5ψ̂(x)U(T )

= −|ηb|2i ¯̂ψγ5ψ̂(−x0, ~x) = −i ¯̂ψγ5ψ̂(−x0, ~x).

U(T )+
¯̂
ψγµψ̂(x)U(T ) = U(T )+

¯̂
ψ(x)U(T ).(γµ)∗.U(T )+ψ̂(x)U(T )

= +|ηb|2 ¯̂ψγµψ̂(−x0, ~x) = +
¯̂
ψγµψ̂(−x0, ~x) , µ = 0

= −|ηb|2 ¯̂ψγµψ̂(−x0, ~x) = − ¯̂
ψγµψ̂(−x0, ~x) , µ 6= 0.

U(T )+
¯̂
ψγµγ5ψ̂(x)U(T ) = U(T )+

¯̂
ψ(x)U(T ).(γµ)∗γ5.U(T )+ψ̂(x)U(T )

= +|ηb|2 ¯̂ψγµγ5ψ̂(−x0, ~x) = +
¯̂
ψγµγ5ψ̂(−x0, ~x) , µ = 0

= −|ηb|2 ¯̂ψγµγ5ψ̂(−x0, ~x) = − ¯̂
ψγµγ5ψ̂(−x0, ~x) , µ 6= 0.
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Angular Momentum of Dirac Field

• An infintesimal rotation aroun the z axis with an angle θ is given by the
Lorentz transformation

Λ = 1 +
i

~
θJ 12 =









1 0 0 0
0 1 θ 0
0 −θ 1 0
0 0 0 1









.

Clearly

t
′

= t , x
′

= x+ θy , y
′

= −θx+ y , z
′

= z.

• Under this rotation the spinor transforms as

ψ
′

(x
′

) = S(Λ)ψ(x).

From one hand

ψ
′

(x
′

) = ψ
′

(t, x+ θy, y − θx, z)
= ψ

′

(x)− θ(x∂y − y∂x)ψ
′

(x)

= ψ
′

(x)− iθ

~
(~x× ~p)3ψ′

(x).

From the other hand

ψ
′

(x
′

) = S(Λ)ψ
′

(x)

= ψ(x)− i

2~
ωαβΓ

αβψ(x)

= ψ(x)− i

~
ω12Γ

12ψ(x)

= ψ(x) +
i

~
θΓ12ψ(x)

= ψ(x) + iθ
Σ3

2
ψ(x),

where

Σ3 =

(

σ3 0
0 σ3

)

.

Hence

δψ(x) = ψ
′

(x)− ψ(x) = iθ

~
[~x× ~p+ ~

2
~Σ]3ψ.

The quantity ~x× ~p+ ~

2
~Σ is the total angular momentum.
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• Under the change ψ(x) −→ ψ
′

(x) = ψ(x) + δψ(x) the Dirac Lagrangian
LDirac = ψ̄(i~cγµ∂µ −mc2)ψ changes by

δLDirac = ∂µ

(

δLDirac

δ(∂µψ)
δψ

)

+ h.c

= −cθ∂µjµ + h.c.

The current jµ is given by

jµ = ψ̄γµ[~x× ~p+ ~

2
~Σ]3ψ.

Assuming that the Lagrangian is invariant under the above rotation we have
δLDirac = 0 and as a consequence the current jµ is conserved. This is an
instance of Noether’s theorem. The integral over space of the zero-component
of the current j0 is the conserved charge which is identified with the angular
momentum along the z axis since we are considering the invariance under
rotations about the z axis. Hence the angular momentum of the Dirac field
along the z direction is defined by

J3 =

∫

d3xj0

=

∫

d3xψ+(x)[~x× ~p + ~

2
~Σ]3ψ.

This is conserved since

dJ3

dt
=

∫

d3x∂tj
0

= −
∫

d3x∂ij
i

= −
∮

S

~j ~dS.

The surface S is at infinity where the Dirac field vanishes and hence the
surface integral vanishes. For a general rotation the conserved charge will be
the angular momentum of the Dirac field given by

~J =

∫

d3xψ+(x)[~x× ~p + ~

2
~Σ]ψ.

• In the quantum theory the angular momentum operator of the Dirac field
along the z direction is

Ĵ3 =

∫

d3xψ̂+(x)[~̂x× ~̂p+ ~

2
Σ3]ψ̂(x).
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It is clear that the angular momentum of the vacuum is zero, viz

Ĵ3|0 >= 0. (8.223)

• Next we consider a one-particle zero-momentum state. This is given by

|~0, sb >=
√

2mc2

~
b̂(~0, s)+|0 > .

Hence

Ĵ3|~0, sb > =

√

2mc2

~
Ĵ3b̂(~0, s)+|0 >

=

√

2mc2

~
[Ĵ3, b̂(~0, s)+]|0 > .

Clearly for a Dirac particle at rest the orbital piece of the angular momentum
operator vanishes and thus

Ĵ3 =

∫

d3xψ̂+(x)[
~

2
Σ3]ψ̂(x).

We have

ψ̂(x0, ~x) =
1

~

∫

d3p

(2π~)3
χ̂(x0, ~p)e

i
~
~p~x.

We compute

Ĵ3 =
1

~2

∫

d3p

(2π~)3
χ̂+(x0, ~p)[

~

2
Σ3]χ̂(x0, ~p).

Next we have

χ̂(x0, ~p) =

√

c

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b̂(~p, i) + eiω(~p)tv(i)(−~p)d̂(−~p, i)+
)

.

We get

Ĵ3 =

∫

d3p

(2π~)3
c

4E(~p)

∑

i

∑

j

[

u(i)+(~p)Σ3u(j)(~p)b̂(~p, i)+b̂(~p, j) + v(i)+(~p)Σ3v(j)(~p)d̂(~p, i)d̂(~p, j)+

+ e2iω(~p)tu(i)+(~p)Σ3v(j)(−~p)b̂(~p, i)+d̂(−~p, j)+ + e−2iω(~p)tv(i)+(−~p)Σ3u(j)(~p)d̂(−~p, i)b̂(~p, j)
]

.
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We can immediately compute

[b̂(~p, i)+b̂(~p, j), b̂(~0, s)+] = ~δsj(2π~)
3δ3(~p)b̂(~p, i)+

[d̂(~p, i)d̂(~p, j)+, b̂(~0, s)+] = 0

[b̂(~p, i)+d̂(−~p, j)+, b̂(~0, s)+] = 0

[d̂(−~p, i)b̂(~p, j), b̂(~0, s)+] = ~δsj(2π~)
3δ3(~p)d̂(−~p, i).

Thus (by using u(i)+(~0)Σ3u(s)(~0) = (2E(~0)ξi+σ3ξs)/c)

[Ĵ3, b̂(~0, s)+]|0 >=
∑

i

ξi+
~σ3

2
ξsb̂(~0, i)+|0 > .

Hence

Ĵ3|~0, sb >=
∑

i

ξi+
~σ3

2
ξs|~0, ib > .

Let us choose the basis

ξ10 =

(

1
0

)

, ξ20 =

(

0
1

)

.

Thus one-particle zero-momentum states have spins given by

Ĵ3|~0, 1b >= ~

2
|~0, 1b > , Ĵ3|~0, 2b >= −~

2
|~0, 2b > .

• A similar calculation will lead to the result that one-antiparticle zero-momentum
states have spins given by

Ĵ3|~0, 1d >= −~
2
|~0, 1d > , Ĵ3|~0, 2d >= ~

2
|~0, 2d > .



Part II: Canonical Quantization of

Interacting Fields





3
The S−Matrix and Feynman Diagrams

For φ−Four Theory

In this chapter we will follow the ICTP lecture notes by Strathdee and the book
by Peskin and Schroeder.

3.1 Forced Scalar Field

3.1.1 Asymptotic Solutions

We have learned that a free neutral particle of spin 0 can be described by a real
scalar field with a Lagrangian density given by (with ~ = c = 1)

L0 =
1

2
∂µφ∂

µφ− m2

2
φ2. (1.1)

The free field operator can be expanded as (with p0 = E(~p) = E~p)

φ̂(x) =

∫

d3p

(2π)3
1

√

2E(~p)

(

â(~p)e−ipx + â(~p)+eipx
)

=

∫

d3p

(2π)3
Q̂(t, ~p)ei~p~x. (1.2)

Q̂(t, ~p) =
1

√

2E~p

(

â(~p)e−iE~pt + â(−~p)+eiE~pt

)

. (1.3)
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The simplest interaction we can envisage is the action of an arbitrary external
force J(x) on the real scalar field φ(x). This can be described by adding a term of
the form Jφ to the Lagrangian density L0. We get then the Lagrangian density

L =
1

2
∂µφ∂

µφ− m2

2
φ2 + Jφ. (1.4)

The equations of motion become

(∂µ∂
µ +m2)φ = J. (1.5)

We expand the source in Fourier modes as

J(x) =

∫

d3p

(2π)3
j(t, ~p)ei~p~x. (1.6)

We get then the equations of motion in momentum space

(∂2t + E2
~p)Q(t, ~p) = j(t, ~p). (1.7)

By assuming that j(t, ~p) vanishes outside a finite time interval we conclude that
for early and late times where j(t, ~p) is zero the field is effectively free. Thus for
early times we have

Q̂(t, ~p) = Q̂in(t, ~p) =
1

√

2E~p

(

âin(~p)e
−iE~pt + âin(−~p)+eiE~pt

)

, t −→ −∞. (1.8)

For late times we have

Q̂(t, ~p) = Q̂out(t, ~p) =
1

√

2E~p

(

âout(~p)e
−iE~pt + âout(−~p)+eiE~pt

)

, t −→ +∞. (1.9)

The general solution is of the form

Q̂(t, ~p) = Q̂in(t, ~p) +
1

E~p

∫ t

−∞

dt
′

sinE~p(t− t
′

)j(t
′

, ~p). (1.10)

Clearly for early times t −→ −∞ we get Q̂ −→ Q̂in. On the other hand since for
late times t −→ +∞ we have Q̂ −→ Q̂out we must have

Q̂out(t, ~p) = Q̂in(t, ~p) +
1

E~p

∫ +∞

−∞

dt
′

sinE~p(t− t
′

)j(t
′

, ~p). (1.11)

We define the positive-energy and the negative-energy parts of Q̂ by

Q̂+(t, ~p) =
1

√

2E~p

â(~p)e−iE~pt , Q̂−(t, ~p) =
1

√

2E~p

â(−~p)+eiE~pt. (1.12)
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Equation (1.10) is equivalent to the two equations

Q̂±(t, ~p) = Q̂±
in(t, ~p)±

i

2E~p

∫ t

−∞

dt
′

e∓iE~p(t−t
′

)j(t
′

, ~p). (1.13)

The Feynman propagator in one-dimension is given by

G~p(t− t
′

) =
e−iE~p|t−t

′

|

2E~p
=

∫

dE

2π

i

E2 − E2
~p + iǫ

e−iE(t−t
′

). (1.14)

Note that in our case t− t′ > 0. Hence

Q̂+(t, ~p) = Q̂+
in(t, ~p) + i

∫ t

−∞

dt
′

G~p(t− t
′

)j(t
′

, ~p). (1.15)

Q̂−(t, ~p) = Q̂−
in(t, ~p)− i

∫ t

−∞

dt
′

G~p(t
′ − t)j(t′ , ~p). (1.16)

For late times we get

Q̂+
out(t, ~p) = Q̂+

in(t, ~p) + i

∫ +∞

−∞

dt
′

G~p(t− t
′

)j(t
′

, ~p). (1.17)

Q̂−
out(t, ~p) = Q̂−

in(t, ~p)− i
∫ +∞

−∞

dt
′

G~p(t
′ − t)j(t′ , ~p). (1.18)

These two equations are clearly equivalent to equation (1.11).
The above two equations can be rewritten as

Q̂±
out(t, ~p) = Q̂±

in(t, ~p)±
i

2E~p

∫ +∞

−∞

dt
′

e∓iE~p(t−t
′

)j(t
′

, ~p). (1.19)

In terms of the creation and annihilation operators this becomes

âout(~p) = âin(~p) +
i

√

2E~p

j(p) , âout(~p)
+ = âin(~p)

+ − i
√

2E~p

j(−p). (1.20)

j(p) ≡ j(E~p, ~p) =

∫

dteiE~ptj(t, ~p). (1.21)

We observe that the "in" operators and the "out" operators are different. Hence
there exists two different Hilbert spaces and as a consequence two different vacua
|0 in > and |0 out > defined by

âout(~p)|0 out >= 0 , âin(~p)|0 in >= 0 ∀~p. (1.22)
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3.1.2 The Schrodinger, Heisenberg and Dirac Pictures

The Lagrangian from which the equation of motion (1.7) is derived is
∫

+

d3p

(2π)3

(

∂tQ(t, ~p)
∗∂tQ(t, ~p)− E2

~pQ(t, ~p)
∗Q(t, ~p) + j(t, ~p)∗Q(t, ~p) + j(t, ~p)Q(t, ~p)∗

)

.

(1.23)

The corresponding Hamiltonian is (with P (t, ~p) = ∂tQ(t, ~p))
∫

+

d3p

(2π)3

(

P (t, ~p)∗P (t, ~p) + E2
~pQ(t, ~p)

∗Q(t, ~p)− j(t, ~p)∗Q(t, ~p)− j(t, ~p)Q(t, ~p)∗
)

.

(1.24)

The operators P̂ (t, ~p) and Q̂(t, ~p) are the time-dependent Heisenberg operators.
The time-independent Schrodinger operators will be denoted by P̂ (~p) and Q̂(~p).
In the Schrodinger picture the Hamiltonian is given by

∫

+

d3p

(2π)3

(

P (~p)∗P (~p) + E2
~pQ(~p)

∗Q(~p)− j(t, ~p)∗Q(~p)− j(t, ~p)Q(~p)∗
)

. (1.25)

This Hamiltonian depends on time only through the time-dependence of the source.
Using box normalization the momenta become discrete and the measure

∫

d3p/(2π)3

becomes the sum
∑

~p /V . Thus the Hamiltonian becomes

∑

p1>0

∑

p2>0

∑

p3>0

H~p(t). (1.26)

We recall the equal time commutation relations [Q̂(t, ~p), P̂ (t, ~p)+] = i(2π)3δ3(~p −
~q) and [Q̂(t, ~p), P̂ (t, ~p)] = [Q̂(t, ~p), Q̂(t, ~p)] = [P̂ (t, ~p), P̂ (t, ~p)] = 0. Using box
normalization the equal time commutation relations take the form

[Q̂(t, ~p), P̂ (t, ~p)+] = iV δ~p,~q

[Q̂(t, ~p), P̂ (t, ~p)] = [Q̂(t, ~p), Q̂(t, ~p)] = [P̂ (t, ~p), P̂ (t, ~p)] = 0. (1.27)

The Hamiltonian of a single forced oscillator which has a momentum ~p is

H~p(t) =
1

V

(

P (~p)∗P (~p) + E2
~pQ(~p)

∗Q(~p)

)

+ V (t, ~p). (1.28)

The potential is defined by

V (t, ~p) = − 1

V

(

j(t, ~p)∗Q(~p) + j(t, ~p)Q(~p)∗
)

. (1.29)
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The unitary time evolution operator must solve the Schrodinger equation

i∂tU(t) = Ĥ~p(t)U(t). (1.30)

The Heisenberg and Schrodinger operators are related by

Q̂(t, ~p) = U(t)−1Q̂(~p)U(t). (1.31)

We introduce the interaction picture through the unitary operator Ω defined by

U(t) = e−itĤ~pΩ(t). (1.32)

In the above equation H~p is the free Hamiltonian density, viz

H~p =
1

V

(

P (~p)∗P (~p) + E2
~pQ(~p)

∗Q(~p)

)

. (1.33)

The operator Ω satisfies the Schrodinger equation

i∂tΩ(t) = V̂I(t, ~p)Ω(t). (1.34)

V̂I(t, ~p) = eitĤ~p V̂ (t, ~p)e−itĤ~p

= − 1

V
(j(t, ~p)∗Q̂I(t, ~p) + j(t, ~p)Q̂I(t, ~p)

+). (1.35)

The interaction, Schrodinger and Heisenberg operators are related by

Q̂I(t, ~p) = eitĤ~pQ̂(~p)e−itĤ~p

= Ω(t)U(t)−1Q̂(~p)U(t)Ω(t)−1

= Ω(t)Q̂(t, ~p)Ω(t)−1. (1.36)

We write this as

Q̂(t, ~p) = Ω(t)−1Q̂I(t, ~p)Ω(t). (1.37)

It is not difficult to show that the operators Q̂I(t, ~p) and P̂I(t, ~p) describe free
oscillators, viz

(∂2t + E2
~p)Q̂I(t, ~p) = 0 , (∂2t + E2

~p)P̂I(t, ~p) = 0. (1.38)
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3.1.3 The S−Matrix

Single Oscillator: The probability amplitude that the oscillator remains in the
ground state is < 0 out|0 in >. In general the matrix of transition amplitudes is

Smn =< m out|n in > . (1.39)

We define the S−matrix S by

Smn =< m in|S|n in > . (1.40)

In other words

< m out| =< m in|S. (1.41)

It is not difficult to see that S is a unitary matrix since the states |m in > and
|m in > are normalized and complete. Equation (1.41) is equivalent to

< 0 out|(âout(~p))m = < 0 in|(âin(~p))mS
= < 0 out|S−1(âin(~p))

mS

= < 0 out|(S−1âin(~p)S)
m. (1.42)

Thus

âout(~p) = S−1âin(~p)S. (1.43)

This can also be written as

Q̂out(t, ~p) = S−1Q̂in(t, ~p)S. (1.44)

From the other hand, the solution of the differential equation (1.34) can be
obtained by iteration as follows. We write

Ω(t) = 1 + Ω1(t) + Ω2(t) + Ω3(t) + ... (1.45)

The operator Ωn(t) is proportional to the nth power of the interaction V̂I(t). By
substitution we get the differential equations

i∂tΩ1(t) = V̂I(t, ~p)⇔ Ω1(t) = −i
∫ t

−∞

dt1V̂I(t1, ~p). (1.46)

i∂tΩn(t) = V̂I(t, ~p)Ωn−1(t)⇔ Ωn(t) = −i
∫ t

−∞

dt1V̂I(t, ~p)Ωn−1(t1) , n ≥ 2. (1.47)
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Thus we get the solution

Ω(t) = 1− i
∫ t

−∞

dt1V̂I(t1, ~p) + (−i)2
∫ t

−∞

dt1V̂I(t1, ~p)

∫ t1

−∞

dt2V̂I(t2, ~p)

+ (−i)3
∫ t

−∞

dt1V̂I(t1, ~p)

∫ t1

−∞

dt2V̂I(t2, ~p)

∫ t2

−∞

dt3V̂I(t3, ~p) + ...

=

∞
∑

n=0

(−i)n
∫ t

−∞

dt1

∫ t1

−∞

dt2...

∫ tn−1

−∞

dtnV̂I(t1, ~p)...V̂I(tn, ~p). (1.48)

This expression can be simplified by using the time-ordering operator T . Let us
first recall that

T (V̂I(t1)V̂I(t2)) = V̂I(t1)V̂I(t2) , if t1 > t2

T (V̂I(t1)V̂I(t2)) = V̂I(t2)V̂I(t1) , if t2 > t1. (1.49)

For ease of notation we have suppressed momentarily the momentum-dependence
of V̂I . Clearly T (V̂I(t1)V̂I(t2)) is a function of t1 and t2 which is symmetric about
the axis t1 = t2. Hence

1

2

∫ t

−∞

dt1

∫ t

−∞

dt2T (V̂I(t1)V̂I(t2)) =
1

2

∫ t

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2) +
1

2

∫ t

−∞

dt2

∫ t2

−∞

dt1V̂I(t2)V̂I(t1)

=

∫ t

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2). (1.50)

The generalized result we will use is therefore given by

1

n!

∫ t

−∞

dt1...

∫ t

−∞

dtnT (V̂I(t1)...V̂I(tn)) =

∫ t

−∞

dt1

∫ t1

−∞

dt2...

∫ tn−1

−∞

dtnV̂I(t1)V̂I(t2)...V̂I(tn).

(1.51)

By substituting this identity in (1.48) we obtain

Ω(t) =
∞
∑

n=0

(−i)n 1

n!

∫ t

−∞

dt1

∫ t

−∞

dt2...

∫ t

−∞

dtnT (V̂I(t1, ~p)V̂I(t2, ~p)...V̂I(tn, ~p))

= T

(

e−i
∫ t
−∞

dsV̂I (s,~p)

)

. (1.52)

It is clear that

Ω(−∞) = 1. (1.53)

This can only be consistent with the assumption that j(t, ~p) −→ 0 as t −→ −∞.
As we will see shortly we need actually to assume the stronger requirement that
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the source j(t, ~p) vanishes outside a finite time interval. Hence for early times
t −→ −∞ we have Ω(t) −→ 1 and as a consequence we get Q̂(t, ~p) −→ Q̂I(t, ~p)
from (1.37). However we know that Q̂(t, ~p) −→ Q̂in(t, ~p) as t −→ −∞. Since
Q̂I(t, ~p) and Q̂in(t, ~p) are both free fields, i.e. they solve the same differential
equation we conclude that they must be the same field for all times, viz

Q̂I(t, ~p) = Q̂in(t, ~p) , ∀t. (1.54)

Equation (1.37) becomes

Q̂(t, ~p) = Ω(t)−1Q̂in(t, ~p)Ω(t). (1.55)

For late times t −→ ∞ we know that Q̂(t, ~p) −→ Q̂out(t, ~p). Thus from the above
equation we obtain

Q̂out(t, ~p) = Ω(+∞)−1Q̂in(t, ~p)Ω(+∞). (1.56)

Comparing this equation with (1.44) we conclude that the S−matrix is given by

S = Ω(+∞) = T

(

e−i
∫+∞

−∞
dsV̂I (s,~p)

)

. (1.57)

Scalar Field: Generalization of (1.57) is straightforward. The full S−matrix of
the forced scalar field is the tensor product of the individual S−matrices of the
forced harmonic oscillators one for each momentum ~p. Since Q̂(t,−~p) = Q̂(t, ~p)+

we only consider momenta ~p with positive components. In the tensor product all
factors commute because they involve momenta which are different. We obtain
then the evolution operator and the S−matrix

Ω(t) = T

(

e−i
∫ t
−∞

ds
∑

p1>0

∑
p2>0

∑
p3>0 V̂I(s,~p)

)

= T

(

e

i
2

∫ t
−∞

ds
∫ d3p

(2π)3

(

j(s,~p)∗Q̂I(s,~p)+j(s,~p)Q̂I(s,~p)
+

)

)

= T

(

ei
∫ t
−∞

ds
∫
d3xJ(x)φ̂I(x))

= T

(

ei
∫ t
−∞

ds
∫
d3xLint(x)

)

. (1.58)

S = Ω(+∞) = T

(

ei
∫
d4xLint(x)

)

. (1.59)
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The interaction Lagrangian density depends on the interaction field operator φ̂I =
φ̂in, viz

Lint(x) = Lint(φ̂in)

= J(x)φ̂in(x). (1.60)

3.1.4 Wick’s Theorem For Forced Scalar Field

Let us recall the Fourier expansion of the field φ̂in given by

φ̂in(x) =

∫

d3p

(2π)3
Q̂in(t, ~p)e

i~p~x. (1.61)

We compute immediately
∫

d3xLint(x) =
1

V

∑

~p

j(t, ~p)∗Q̂in(t, ~p)

=
1

V

∑

~p

j(t, ~p)∗
√

2E~p

(

âin(~p)e
−iE~pt + âin(−~p)+eiE~pt

)

. (1.62)

Also we compute

Ω(t) = T

(

e
∑

~p

(

α~p(t)âin(~p)
+−α~p(t)

∗âin(~p)
)

)

= T
∏

~p

(

eα~p(t)âin(~p)
+−α~p(t)

∗âin(~p)

)

. (1.63)

α~p(t) =
i

V

1
√

2E~p

∫ t

−∞

dsj(s, ~p)eiE~ps. (1.64)

It is clear that the solution Ω(t) is of the form (including also an arbitrary phase
β~p(t))

Ω(t) =
∏

~p

(

eα~p(t)âin(~p)
+−α~p(t)

∗âin(~p)+iβ~p(t)

)

. (1.65)

We use the Campbell-Baker-Hausdorff formula

eA+B = eAeBe−
1
2
[A,B] , if [A, [A,B]] = [B, [A,B]] = 0. (1.66)
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We also use the commutation relations

[âin(~p), âin(~q)
+] = V δ~p,~q. (1.67)

Ω(t) =
∏

~p

(

eα~p(t)âin(~p)
+

e−α~p(t)
∗âin(~p)e−

1
2
V |α~p(t)|

2+iβ~p(t)

)

=
∏

~p

Ω~p(t). (1.68)

In the limit t −→∞ we compute

−1
2
V
∑

~p

|α~p(+∞)|2 = −1
2

∫

d4x

∫

d4x
′

J(x)J(x
′

)
1

V

∑

~p

1

2E~p
eip(x−x

′

).

(1.69)

We also need to compute the limit of iβ~p(t) when t −→ +∞. After some calcula-
tion, we obtain

i
∑

~p

β~p(+∞) =
1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t− t′)
V

∑

~p

1

2E~p
eip(x−x

′

) − θ(t− t′)
V

∑

~p

1

2E~p
e−ip(x−x

′

)

)

.

(1.70)

Putting (1.69) and (1.70) together we get finally

−1
2
V
∑

~p

|α~p(+∞)|2 + i
∑

~p

β~p(+∞) = −1
2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t
′ − t)
V

∑

~p

1

2E~p
eip(x−x

′

)

+
θ(t− t′)

V

∑

~p

1

2E~p

e−ip(x−x
′

)

)

= −1
2

∫

d4x

∫

d4x
′

J(x)J(x
′

)DF (x− x
′

). (1.71)

From this last equation and from equation (1.68) we obtain the S−matrix in its
pre-final form given by

S = Ω(+∞) =
∏

~p

(

eα~p(+∞)âin(~p)
+

e−α~p(+∞)∗âin(~p)

)

e−
1
2

∫
d4x

∫
d4x

′

J(x)J(x
′

)DF (x−x
′

).

(1.72)
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This expression is already normal-ordered since

:

(

e
∑

~p

(

α~p(+∞)âin(~p)
+−α~p(+∞)∗âin(~p)

)

)

: =
∏

~p

(

eα~p(+∞)âin(~p)
+

e−α~p(+∞)∗âin(~p)

)

.

(1.73)

In summary we have

S = Ω(+∞) = T

(

e
∑

~p

(

α~p(+∞)âin(~p)
+−α~p(+∞)∗âin(~p)

)

)

= :

(

e
∑

~p

(

α~p(+∞)âin(~p)
+−α~p(+∞)∗âin(~p)

)

)

: e−
1
2

∫
d4x

∫
d4x

′

J(x)J(x
′

)DF (x−x
′

).

(1.74)

More explicitly we write

S = T

(

ei
∫
d4xJ(x)φ̂in(x)

)

=: ei
∫
d4xJ(x)φ̂in(x) : e−

1
2

∫
d4x

∫
d4x

′

J(x)J(x
′

)DF (x−x
′

). (1.75)

This is Wick’s theorem.

3.2 The Φ−Four Theory

3.2.1 The Lagrangian Density

In this section we consider more general interacting scalar field theories. In prin-
ciple we can add any interaction Lagrangian density Lint to the free Lagrangian
density L0 given by equation (1.1) in order to obtain an interacting scalar field
theory. This interaction Lagrangian density can be for example any polynomial in
the field φ. However there exists only one single interacting scalar field theory of
physical interest which is also renormalizable known as the φ−four theory. This is
obtained by adding to (1.1) a quartic interaction Lagrangian density of the form

Lint = −
λ

4!
φ4. (2.76)

The equation of motion becomes

(∂µ∂
µ +m2)φ =

δLint

δφ

= −λ
6
φ3. (2.77)
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Equivalently

(∂2t + E2
~p)Q(t, ~p) =

∫

d3x
δLint

δφ
e−i~p~x. (2.78)

We will suppose that the right-hand side of the above equation goes to zero as
t −→ ±∞. In other words we must require that δLint/δφ −→ 0 as t −→ ±∞. If
this is not true (which is generically the case) then we will assume implicitly an
adiabatic switching off process for the interaction in the limits t −→ ±∞ given by
the replacement

Lint −→ e−ǫ|t|Lint. (2.79)

With this assumption the solutions of the equation of motion in the limits t −→
−∞ and t −→ +∞ are given respectively by

Q̂in(t, ~p) =
1

√

2E~p

(

âin(~p)e
−iE~pt + âin(−~p)+eiE~pt

)

, t −→ −∞. (2.80)

Q̂out(t, ~p) =
1

√

2E~p

(

âout(~p)e
−iE~pt + âout(−~p)+eiE~pt

)

, t −→ +∞. (2.81)

3.2.2 The S−Matrix

The Hamiltonian operator in the Schrodinger picture is time-independent of the
form

Ĥ = Ĥ0(Q̂, Q̂
+, P̂ , P̂+) + V̂ (Q̂, Q̂+). (2.82)

Ĥ0(Q̂, Q̂
+, P̂ , P̂+) =

∫

+

d3p

(2π)3

[

P̂+(~p)P̂ (~p) + E2
~pQ̂

+(~p)Q̂(~p)

]

=
1

2

∑

~p

Ĥ~p. (2.83)

V̂ (Q̂, Q̂+) = (+
λ

4!
)
1

V 3

∑

~p1,~p2,~p3

Q̂(~p1)Q̂(~p2)Q̂(~p3)Q̂(~p1 + ~p2 + ~p3)
+

= −
∫

d3xLint. (2.84)
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The scalar field operator and the conjugate momentum field operator in the Schrodinger
picture are given by

φ̂(~x) =
1

V

∑

~p

Q̂(~p)ei~p~x. (2.85)

π̂(~x) =
1

V

∑

~p

P̂ (~p)ei~p~x. (2.86)

The unitary time evolution operator of the scalar field must solve the Schrodinger
equation

i∂tU(t) = ĤU(t). (2.87)

The Heisenberg and Schrodinger operators are related by

φ̂(t, ~x) = U(t)−1φ̂(~x)U(t). (2.88)

We introduce the interaction picture through the unitary operator Ω defined by

U(t) = e−itĤ0Ω(t). (2.89)

The operator Ω satisfies the Schrodinger equation

i∂tΩ(t) = V̂I(t)Ω(t). (2.90)

V̂I(t) ≡ V̂I(Q̂, Q̂
+, t) = eitĤ0 V̂ (Q̂, Q̂+)e−itĤ0 . (2.91)

The interaction, Schrodinger and Heisenberg operators are related by

φ̂I(t, ~x) = eitĤ0 φ̂(~x)e−itĤ0

= Ω(t)U(t)−1φ̂(~x)U(t)Ω(t)−1

= Ω(t)φ̂(t, ~x)Ω(t)−1. (2.92)

We write this as

φ̂(x) = Ω(t)−1φ̂I(x)Ω(t). (2.93)

Similarly we should have for the conjugate momentum field π̂(x) = ∂tφ̂(x) the
result

π̂I(x) = eitĤ0 π̂(~x)e−itĤ0 . (2.94)
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π̂(x) = Ω(t)−1π̂I(x)Ω(t). (2.95)

It is not difficult to show that the interaction fields φ̂I and π̂I are free fields. Indeed
we can show for example that φ̂I obeys the equation of motion

(∂2t − ~∇2 +m2)φ̂I(t, ~x) = 0. (2.96)

Thus all information about interaction is encoded in the evolution operator Ω(t)
which in turn is obtained from the solution of the Schrodinger equation (2.90).
From our previous experience this task is trivial. In direct analogy with the solution
given by the formula (1.52) of the differential equation (1.34) the solution of (2.90)
must be of the form

Ω(t) =

∞
∑

n=0

(−i)n 1

n!

∫ t

−∞

dt1

∫ t

−∞

dt2...

∫ t

−∞

dtnT (V̂I(t1)V̂I(t2)...V̂I(tn))

= T

(

e−i
∫ t
−∞

dsV̂I (s)

)

= T

(

ei
∫ t
−∞

ds
∫
d3xLint(φ̂I (s,~x))

)

. (2.97)

Clearly this satisfies the boundary condition

Ω(−∞) = 1. (2.98)

As before this boundary condition can only be consistent with the assumption that
VI(t) −→ 0 as t −→ −∞. This requirement is contained in the condition (2.79).

The S−matrix is defined by

S = Ω(+∞) = T

(

e−i
∫+∞

−∞
dsV̂I (s)

)

= T

(

ei
∫
d4xLint(φ̂I(x))

)

. (2.99)

Taking the limit t −→ −∞ in equation (2.93) we see that we have φ̂(x) −→ φI(x).
But we already know that φ̂(x) −→ φ̂in(x) when t −→ −∞. Since the fields φ̂I(x)
and φ̂in(x) are free fields and satisfy the same differential equation we conclude
that the two fields are identical at all times, viz

φ̂I(x) = φ̂in(x) , ∀t. (2.100)

The S−matrix relates the "in" vacuum |0 in > to the "out" vacuum |0 out > as
follows

< 0 out| =< 0 in|S. (2.101)
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For the φ−four theory (as opposed to the forced scalar field) the vacuum is stable.
In other words the "in" vacuum is identical to the "out" vacuum, viz

|0 out >= |0 in >= |0 > . (2.102)

Hence

< 0| =< 0|S. (2.103)

The consistency of the supposition that the "in" vacuum is identical to the "out"
vacuum will be verified order by order in perturbation theory. In fact we will also
verify that the same holds also true for the one-particle states, viz

|~p out >= |~p in > . (2.104)

3.2.3 The Gell-Mann Low Formula

We go back to equation

φ̂(x) = Ω(t)+φ̂I(x)Ω(t). (2.105)

We compute

φ̂(x) = Ω(t)+φ̂I(x)Ω(t)

= S−1T

(

e−i
∫+∞

t
dsV̂in(s)

)

φ̂in(x)T

(

e−i
∫ t
−∞

dsV̂in(s)

)

= S−1

(

1− i
∫ +∞

t

dt1V̂in(t1) + (−i)2
∫ +∞

t

dt1

∫ +∞

t1

dt2V̂in(t2)V̂in(t1) + ...

)

φ̂in(x)

×
(

1− i
∫ t

−∞

dt1V̂in(t1) + (−i)2
∫ t

−∞

dt1

∫ t1

−∞

dt2V̂in(t1)V̂in(t2) + ...

)

= S−1

(

φ̂in(x)− i
∫ +∞

t

dt1V̂in(t1)φ̂in(x) + (−i)2
∫ +∞

t

dt1

∫ +∞

t1

dt2V̂in(t2)V̂in(t1)φ̂in(x)

− iφ̂in(x)

∫ t

−∞

dt1V̂in(t1) + (−i)2
∫ +∞

t

dt1

∫ t

−∞

dt2V̂in(t1)φ̂in(x)V̂in(t2)

+ (−i)2φ̂in(x)

∫ t

−∞

dt1

∫ t1

−∞

dt2V̂in(t1)V̂in(t2) + ...

)

. (2.106)

We use the identities
∫ +∞

−∞

dt1T (φ̂in(x)V̂in(t1)) = φ̂in(x)

∫ t

−∞

dt1V̂in(t1) +

∫ +∞

t

dt1V̂in(t1)φ̂in(x).

(2.107)
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∫ +∞

t

dt1

∫ +∞

t1

dt2T (V̂in(t2)V̂in(t1)) =

∫ +∞

t

dt1

∫ t1

t

dt2T (V̂in(t1)V̂in(t2)). (2.108)

∫ +∞

−∞

dt1

∫ t1

−∞

dt2T (φ̂in(x)V̂in(t1)V̂in(t2)) =

∫ +∞

t

dt1

∫ t1

t

dt2V̂in(t1)V̂in(t2)φ̂in(x)

+

∫ +∞

t

dt1

∫ t

−∞

dt2V̂in(t1)φ̂in(x)V̂in(t2)

+ φ̂in(x)

∫ t

−∞

dt1

∫ t1

−∞

dt2V̂in(t1)V̂in(t2).

(2.109)

We get

φ̂(x) = S−1T

(

φ̂in(x)

(

1− i
∫ +∞

−∞

dt1V̂in(t1) + (−i)2
∫ +∞

−∞

dt1

∫ t1

−∞

dt2V̂in(t1)V̂in(t2) + ...

))

= S−1T

(

φ̂in(x)S

)

. (2.110)

This result holds to all orders in perturbation theory. A straightforward general-
ization is

T (φ̂(x)φ̂(y)...) = S−1T

(

φ̂in(x)φ̂in(y)...S

)

. (2.111)

This is known as the Gell-Mann Low formula.

3.2.4 LSZ Reduction Formulae and Green’s Functions

We start by writing equations (2.80) and (2.81) in the form

eiE~pt(i∂t + E~p)Q̂in(t, ~p) =
√

2E~p âin(~p). (2.112)

eiE~pt(i∂t + E~p)Q̂out(t, ~p) =
√

2E~p âout(~p). (2.113)

Now we compute trivially the integral

∫ +∞

−∞

dt∂t

(

eiE~pt(i∂t + E~p)Q̂(t, ~p)

)

=
√

2E~p (âout(~p)− âin(~p)). (2.114)
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From the other hand we compute
∫ +∞

−∞

dt∂t

(

eiE~pt(i∂t + E~p)Q̂(t, ~p)

)

= i

∫ +∞

−∞

dteiE~pt(∂2t + E2
~p)Q̂(t, ~p)

= i

∫

d4x
δLint

δφ
eipx. (2.115)

We obtain then the identity

i

∫ +∞

−∞

dteiE~pt(∂2t + E2
~p)Q̂(t, ~p) =

√

2E~p (âout(~p)− âin(~p)). (2.116)

This is the first instance of LSZ reduction formulae. Generalizations of this result
read

i

∫ +∞

−∞

dteiE~pt(∂2t + E2
~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...) =

√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)
)

. (2.117)

Next we put to use these LSZ reduction formulae. We are interested in calculat-
ing the matrix elements of the S−matrix. We consider an arbitrary "in" state
|~p1~p2... in > and an arbitrary "out" state |~q1~q2... out >. The matrix elements of
interest are

< ~q1~q2... out|~p1~p2... in >=< ~q1~q2... in|S|~p1~p2... in > . (2.118)

We recall that

|~p1~p2... in > = ain(~p1)
+ain(~p2)

+...|0 > . (2.119)

|~q1~q2... out > = aout(~q1)
+aout(~q2)

+...|0 > . (2.120)

We also recall the commutation relations (using box normalization)

[â(~p), â(~q)+] = V δ~p,~q , [â(~p), â(~q)] = [â(~p)+, â(~q)+] = 0. (2.121)

We compute by using the LSZ reduction formula (2.116) and assuming that the
~pi are different from the ~qi the result

< ~q1~q2... out|~p1~p2... in > = < ~q2... out|âout(~q1)|~p1~p2... in >

= < ~q2.. out|
(

âin(~q1) +
i

√

2E~q1

∫ +∞

−∞

dt1e
iE~q1

t1(∂2t1 + E2
~q1
)Q̂(t1, ~q1)

)

× |~p1~p2.. in >

=
1

√

2E~q1

∫ +∞

−∞

dt1e
iE~q1

t1i(∂2t1 + E2
~q1
) < ~q2... out|Q̂(t1, ~q1)|~p1~p2... in > .

(2.122)
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From the LSZ reduction formula (2.117) we have

i

∫ +∞

−∞

dt2e
iE~q2

t2(∂2t2 + E2
~q2
)T (Q̂(t2, ~q2)Q̂(t1, ~q1)) =

√

2E~q2

(

âout(~q2)Q̂(t1, ~q1)− Q̂(t1, ~q1)âin(~q2)
)

.

(2.123)

Thus immediately

i

∫ +∞

−∞

dt2e
iE~q2

t2(∂2t2 + E2
~q2) < ~q3.. out|T (Q̂(t2, ~q2)Q̂(t1, ~q1))|~p1~p2.. in > =

√

2E~q2 < ~q2.. out|Q̂(t1, ~q1)|~p1~p2.. in > . (2.124)

Hence

< ~q1~q2... out|~p1~p2... in > =
1

√

2E~q1

1
√

2E~q2

∫ +∞

−∞

dt1e
iE~q1

t1i(∂2t1 + E2
~q1
)

∫ +∞

−∞

dt2e
iE~q2

t2i(∂2t2 + E2
~q2
)

× < ~q3... out|T (Q̂(t1, ~q1)Q̂(t2, ~q2))|~p1~p2... in > . (2.125)

By continuing this reduction of all "out" operators we end up with the expression

< ~q1~q2... out|~p1~p2... in > =
1

√

2E~q1

1
√

2E~q2

...

∫ +∞

−∞

dt1e
iE~q1

t1i(∂2t1 + E2
~q1)

∫ +∞

−∞

dt2e
iE~q2

t2i(∂2t2 + E2
~q2)...

× < 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...)|~p1~p2... in > . (2.126)

In order to reduce the "in" operators we need other LSZ reduction formulae which
involve the creation operators instead of the annihilation operators. The result we
need is essentially the Hermitian conjugate of (2.117) given by

−i
∫ +∞

−∞

dte−iE~pt(∂2t + E2
~p)T (Q̂(t, ~p)

+Q̂(t1, ~p1)
+Q̂(t2, ~p2)

+...) =

√

2E~p

(

âout(~p)
+T (Q̂(t1, ~p1)

+Q̂(t2, ~p2)
+...)− T (Q̂(t1, ~p1)+Q̂(t2, ~p2)+...)âin(~p)+

)

.

(2.127)

By using these LSZ reduction formulae we compute

< 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...)|~p1~p2... in > =

1
√

2E~p1

∫ +∞

−∞

dt
′

1e
−iE~p1

t
′

1i(∂2
t
′

1
+ E2

~p1
) < 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...Q̂(t

′

1, ~p1)
+)|~p2... in > .

(2.128)
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Full reduction of the "in" operators leads to the expression

< 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...)|~p1~p2... in > =

1
√

2E~p1

1
√

2E~p2

...

∫ +∞

−∞

dt
′

1e
−iE~p1

t
′

1i(∂2
t
′

1
+ E2

~p1)

∫ +∞

−∞

dt
′

2e
−iE~p2

t
′

2i(∂2
t
′

2
+ E2

~p2)... ×

< 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...Q̂(t
′

1, ~p1)
+Q̂(t

′

2, ~p2)
+...)|0 > .

(2.129)

Hence by putting the two partial results (2.126) and (2.129) together we obtain

< ~q1... out|~p1... in > =
1

√

2E~q1

...
1

√

2E~p1

...

∫ +∞

−∞

dt1e
iE~q1

t1i(∂2t1 + E2
~q1
)...

∫ +∞

−∞

dt
′

1e
−iE~p1

t
′

1i(∂2
t
′

1
+ E2

~p1
)...

× < 0|T (Q̂(t1, ~q1)...Q̂(t
′

1, ~p1)
+...)|0 > . (2.130)

The final (fundamental) result is that S−matrix elements < ~q1... out|~p1... in > can
be reconstructed from the so-called Green’s functions < 0|T (φ̂(x1)...φ̂(x′

1)...)|0 >.
Indeed we can rewrite equation (2.130) as

< ~q1... out|~p1... in > =
1

√

2E~q1

...
1

√

2E~p1

...

∫

d4x1e
iq1x1i(∂21 +m2)...

∫

d4x
′

1e
−ip1x

′

1i(∂
′2
1 +m2)...

× < 0|T (φ̂(x1)...φ̂(x
′

1)...)|0 > . (2.131)

The factor 1/
√

2E~q1 ...1/
√

2E~p1 is only due to our normalization of the one-particle
states given in equations (2.119) and (2.120).

3.3 Feynman Diagrams For φ−Four Theory

3.3.1 Perturbation Theory

We go back to our most fundamental result (2.111) and write it in the form (with
Lint(φ̂in(x)) = Lint(x))

< 0|T (φ̂(x1)φ̂(x2)...)|0 > = < 0|T
(

φ̂in(x1)φ̂in(x2)...S

)

|0 >

= < 0|T
(

φ̂in(x1)φ̂in(x2)...e
i
∫
d4yLint(y)

)

|0 >

=
∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

φ̂in(x1)φ̂in(x2)..Lint(y1)..Lint(yn)

)

|0 > .

(3.132)
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These are the Green’s functions we need in order to compute the S−matrix el-
ements. They are written solely in terms of free fields and the interaction La-
grangian density. This expansion is the key perturbative series in quantum field
theory.

Another quantity of central importance to perturbation theory is the vacuum-
to-vacuum amplitude given by

< 0|0 >=< 0|S|0 > =

∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

Lint(y1)..Lint(yn)

)

|0 > .(3.133)

Naively we would have thought that this norm is equal to 1. However it turns out
that this is not the case and taking this fact into account will simplify considerably
our perturbative calculations.

3.3.2 Wick’s Theorem For Green’s Functions

From the above discussion it is clear that the remaining task is to evaluate terms
of the generic form

< 0|T
(

φ̂in(x1)φ̂in(x2)...φ̂in(x2n)

)

|0 > . (3.134)

To this end we rewrite the Wick’s theorem (1.75) in the form

< 0|T
(

ei
∫
d4xJ(x)φ̂in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′

J(x)J(x
′

)DF (x−x
′

). (3.135)

Because the scalar field is real we also have

< 0|T
(

e−i
∫
d4xJ(x)φ̂in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′

J(x)J(x
′

)DF (x−x
′

). (3.136)

This means that only even powers of J appear. We expand both sides in powers
of J we get

∑

n=0

i2n

2n!

∫

d4x1...d
4x2nJ(x1)...J(x2n) < 0|T

(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

∑

n=0

1

n!
(−1

2
)n
∫

d4x1

∫

d4x2...

∫

d4x2n−1

∫

d4x2n ×

J(x1)J(x2)...J(x2n−1)J(x2n)DF (x1 − x2)...DF (x2n−1 − x2n). (3.137)
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Let us look at few examples. The first non-trivial term is

i2

2!

∫

d4x1d
4x2J(x1)J(x2) < 0|T

(

φ̂in(x1)φ̂in(x2)

)

|0 > =

1

1!
(−1

2
)1
∫

d4x1

∫

d4x2J(x1)J(x2)DF (x1 − x2). (3.138)

Immediately we get the known result

< 0|T
(

φ̂in(x1)φ̂in(x2)

)

|0 >= DF (x1 − x2). (3.139)

The second non-trivial term is

i4

4!

∫

d4x1d
4x2d

4x3d
4x4J(x1)J(x2)J(x3)J(x4) < 0|T

(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > =

1

2!
(−1

2
)2
∫

d4x1

∫

d4x2

∫

d4x3

∫

d4x4 ×

J(x1)J(x2)J(x3)J(x4)DF (x1 − x2)DF (x3 − x4).(3.140)

Equivalently

i4

4!

∫

d4x1d
4x2d

4x3d
4x4J(x1)J(x2)J(x3)J(x4) < 0|T

(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > =

1

2!
(−1

2
)2
1

3

∫

d4x1

∫

d4x2

∫

d4x3

∫

d4x4 ×

J(x1)J(x2)J(x3)J(x4)

(

DF (x1 − x2)DF (x3 − x4) +

DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3)
)

.(3.141)

In the last equation we have symmetrized the right-hand side under the permuta-
tions of the spacetime points x1, x2, x3 and x4 and then divided by 1/3 where 3
is the number of independent permutations in this case. This is needed because
the left-hand side is already symmetric under the permutations of the xi’s. By
comparing the two sides we then obtain

< 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4)

+ DF (x1 − x4)DF (x2 − x3). (3.142)

The independent permutations are called contractions and we write

< 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > =
∑

contraction

∏

DF (xi − xj).(3.143)
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This generalizes to any Green’s function. In equation (3.137) we need to sym-
metrize the right-hand side under the permutations of the spacetime points xi’s
before comparing with the left-hand side. Thus we need to count the number of
independent permutations or contractions. Since we have 2n points we have (2n)!
permutations not all of them independent. Indeed we need to divide by 2n since
DF (xi − xj) = DF (xj − xi) and we have n such propagators. Then we need to
divide by n! since the order of the n propagators DF (x1−x2),...,DF (x2n−1−x2n) is
irrelevant. We get then (2n)!/(2nn!) independent permutations. Equation (3.137)
becomes

∑

n=0

i2n

2n!

∫

d4x1...d
4x2nJ(x1)...J(x2n) < 0|T

(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

∑

n=0

1

n!
(−1

2
)n

2nn!

(2n)!

∫

d4x1

∫

d4x2...

∫

d4x2n−1

∫

d4x2n ×

J(x1)J(x2)...J(x2n−1)J(x2n)
∑

contraction

∏

DF (xi − xj). (3.144)

By comparison we obtain

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 >=
∑

contraction

∏

DF (xi − xj). (3.145)

This is Wick’s theorem for Green’s functions.
An alternative more systematic way of obtaining all contractions goes as fol-

lows. First let us define

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 >=< 0|T
(

F (φ̂in)

)

|0 > . (3.146)

We introduce the functional Fourier transform

F (φ̂in) =

∫

DJF̃ (J) ei
∫
d4xJ(x)φ̂in(x). (3.147)

Thus

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > = < 0|T
(
∫

DJF̃ (J) ei
∫
d4xJ(x)φ̂in(x)

)

|0 >

=

∫

DJF̃ (J) < 0|T
(

ei
∫
d4xJ(x)φ̂in(x)

)

|0 >

=

∫

DJF̃ (J)e− 1
2

∫
d4x

∫
d4x

′

J(x)DF (x−x
′

)J(x
′

).(3.148)
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We use the identity (starting from here we only deal with classical fields instead
of field operators)

f

(

δ

δφ

)

ei
∫
d4xJ(x)φ(x) = f(iJ)ei

∫
d4xJ(x)φ(x) (3.149)

In particular we have

e
1
2

∫
d4x

∫
d4x

′ δ
δφ(x)

DF (x−x
′

) δ

δφ(x
′
) ei

∫
d4xJ(x)φ(x) = e−

1
2

∫
d4x

∫
d4x

′

J(x)DF (x−x
′

)J(x
′

)ei
∫
d4xJ(x)φ(x).(3.150)

Thus

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

∫

DJF̃ (J)
[

e
1
2

∫
d4x

∫
d4x

′ δ
δφ(x)

DF (x−x
′

) δ

δφ(x
′
) ei

∫
d4xJ(x)φ(x)

]

φ=0

=

[

e
1
2

∫
d4x

∫
d4x

′ δ
δφ(x)

DF (x−x
′

) δ

δφ(x
′
)F (φ)

]

φ=0

. (3.151)

We think of F as a function in several variables which are the classical fields φ(xi).
Thus we have

δF

δφ(x)
= δ4(x− x1)

∂F

∂φ(x1)
+ δ4(x− x2)

∂F

∂φ(x2)
+ ... (3.152)

Hence

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

[

e
1
2

∑
i,j

∂
∂φ(xi)

DF (xi−xj)
∂

∂φ(xj)F (φ)

]

φ=0

=

[

e
1
2

∑
i,j

∂
∂φ(xi)

DF (xi−xj)
∂

∂φ(xj)

(

φ(x1)...φ(x2n)

)]

φ=0

.(3.153)

This is our last version of the Wick’s theorem.

3.3.3 The 2−Point Function

We have

< 0|T (φ̂(x1)φ̂(x2))|0 > =
∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)..Lint(yn)

)

|0 >

= < 0|T
(

φ̂in(x1)φ̂in(x2)

)

|0 > +i

∫

d4y1 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)

)

|0 >

+
i2

2!

∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)Lint(y2)

)

|0 > +... (3.154)
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By using the result (3.153) we have (since we are considering only polynomial
interactions)

< 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)..Lint(yn)

)

|0 > =

[

e∂DF ∂

(

φ(x1)φ(x2)Lint(y1)..Lint(yn)

)]

φ=0

.

(3.155)

∂DF∂ =
1

2

∑

i,j

∂

∂φ(xi)
DF (xi − xj)

∂

∂φ(xj)
+

1

2

∑

i,j

∂

∂φ(yi)
DF (yi − yj)

∂

∂φ(yj)

+
∑

i,j

∂

∂φ(xi)
DF (xi − yj)

∂

∂φ(yj)
. (3.156)

The 0th order term is the free propagator, viz

< 0|T
(

φ̂in(x1)φ̂in(x2)

)

|0 >= DF (x1 − x2). (3.157)

We represent this amplitude by a line joining the external points x1 and x2 (figure
1). This is our first Feynman diagram. Physically this represents a scalar particle
created at x2 then propagates in spacetime before it gets annihilated at x1.

The first order is given by

i

∫

d4y1 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)

)

|0 > = i(− λ
4!
)

∫

d4y1 < 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(y1)
4

)

|0 > .

(3.158)

We apply the Wick’s theorem. There are clearly many possible contractions. For
six operators we can have in total 15 contractions which can be counted as follows.
The first operator can be contracted in 5 different ways. The next operator can
be contracted in 3 different ways and finally the remaining two operators can only
be contracted in one way. Thus we get 5.3.1 = 15. However there are only two
distinct contractions among these 15 contractions. They are as follows

a)− We can contract the two external points x1 and x2 together. The internal
point z = y1 which we will call a vertex since it corresponds to an interaction
corresponds to 4 internal points (operators) which can be contracted in 3.1 =
3 different ways. We have therefore three identical contributions coming from
these three contractions. We get

3× i(− λ
4!
)DF (x1 − x2)

∫

d4zDF (0)
2 =

1

8
(−iλ)

∫

d4zDF (x1 − x2)DF (0)
2.(3.159)
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b)− We can contract one of the external points with one of the internal points.
There are four different ways for doing this. The remaining external point
must then be contracted with one of the remaining three internal points.
There are three different ways for doing this. In total we have 4.3 = 12
contractions which lead to the same contribution. We have

12× i(− λ
4!
)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0) =
1

2
(−iλ)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0).

(3.160)

The two amplitudes (3.159) and (3.160) stand for the 15 possible contractions
which we found at first order. These contractions split into two topologically
distinct sets represented by the two Feynman diagrams a) and b) on figure 2 with
attached values given precisely by (3.159) and (3.160). We observe in constructing
these diagrams the following

• Each line (internal or external) joining two spacetime points x and y is
associated with a propagator DF (x− y).

• Interaction is represented by a vertex. Each vertex is associated with a factor
−iλ.

• We multiply the propagators and vertices together then we integrate over
the internal point.

• We divide by a so-called symmetry factor S. The symmetry factor is equal to
the number of independent permutations which leave the diagram invariant.

A diagram containing a line which starts and ends on the same vertex will
be symmetric under the permutation of the two ends of such a line. This is
clear from the identity

∫

d4zDF (0) =

∫

d4z

∫

d4uDF (z − u)δ4(z − u). (3.161)

Diagram b) contains such a factor and thus the symmetry factor in this case
is S = 2. Diagram a) contains two such factors and thus one must divide
by 2.2. Since this diagram is also invariant under the permutation of the
two DF (0) we must divide by an extra factor of 2. The symmetry factor for
diagram a) is therefore S = 2.2.2 = 8.

The second order in perturbation theory is given by

i2

2!

∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)Lint(y2)

)

|0 > =

−1
2
(
λ

4!
)2
∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(y1)
4φ̂in(y2)

4

)

|0 > . (3.162)
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Again we apply Wick’s theorem. There are in total 9.7.5.3 = 9.105 contractions
which can be divided into three different classes (figure 3) as follows

1) The first class corresponds to the contraction of the two external points x1
and x2 to the same vertex y1 or y2. These contractions correspond to the
two topologically different contractions a)1 and b)1 on figure 3.

In a)1 we contract x1 with one of the internal points in 8 different ways, then
x2 can be contracted in 3 different ways to the same internal point (say y1).
If the two remaining y1 points are contracted together the remaining internal
points y2 can then be contracted together in 3 different ways. There are in
total 8.3.3 contractions. The analytic expression is

−8.3.3
2

(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (0)
3 =

(−iλ)2
16

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (0)
3. (3.163)

In b)1 we consider the case where one of the remaining y1 points is contracted
with one of the internal points y2 in 4 different ways. The last y1 must then
also be contracted with one of the y2 in 3 different ways. This possibility
corresponds to 8.3.4.3 contractions. The analytic expression is

−8.3.4.3
2

(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0) =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0).(3.164)

2) The second class corresponds to the contraction of the external point x1
to one of the vertices whereas the external point x2 is contracted to the
other vertex. These contractions correspond to the two topologically different
contractions a)2 and b)2 on figure 3.

In a)2 we contract x1 with one of the internal points (say y1) in 8 different
ways, then x2 can be contracted in 4 different ways to the other internal point
(i.e. y2). There remains three internal points y1 and three internal points y2.
Two of the y1 can be contracted in 3 different ways. The remaining y1 must
be contracted with one of the y2 in 3 different ways. Thus we have in total
8.4.3.3 contractions. The expression is

−8.4.3.3
2

(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2 =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2.(3.165)
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In b)2 we consider the case where the three remaining y1 are paired with the
three remaining y2. The first y1 can be contracted with one of the y2 in 3
different ways, the second y1 can be contracted with one of the remaining
y2 in 2 different ways. Thus we have in total 8.4.3.2 contractions. The
expression is

−8.4.3.2
2

(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3 =

(−iλ)2
6

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3. (3.166)

3) The third class corresponds to the contraction of the two external points x1
and x2 together. These contractions correspond to the three topologically
different contractions a)3, b)3 and c)2 on figure 3.

In a)3 we can contract the y1 among themselves in 3 different ways and
contract the y2 among themselves in 3 different ways. Thus we have 3.3
contractions. The expression is

−3.3
2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − x2)DF (0)
4 =

(−iλ)2
128

∫

d4y1

∫

d4y2DF (x1 − x2)DF (0)
4. (3.167)

In b)3 we can contract two of the y1 together in 6 different ways, then contract
one of the remaining y1 with one of the y2 in 4 different ways, and then
contract the last y1 with one of the y2 in 3 different ways. Thus we have
6.4.3 contractions. The expression is

−6.4.3
2

(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)2DF (0)
2 =

(−iλ)2
16

∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)2DF (0)
2. (3.168)

In c)3 we can contract the first y1 with one of the y2 in 4 different ways, then
contract the second y1 with one of the y2 in 3 different ways, then contract
the third y1 with one of the y2 in 2 different ways. We get 4.3.2 contractions.
The expression is

−4.3.2
2

(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)4 =

(−iλ)2
48

∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)4. (3.169)
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The above seven amplitudes (3.163), (3.164), (3.165), (3.166), (3.167), (3.168) and
(3.169) can be represented by the seven Feynman diagrams a)1, b)1, a)2, b)2, a)3,
b)3 and c)3 respectively. We use in constructing these diagrams the same rules as
before. We will only comment here on the symmetry factor S for each diagram.
We have

• The symmetry factor for the first diagram is S = (2.2.2).2 = 16 where the
first three factors of 2 are associated with the three DF (0) and the last factor
of 2 is associated with the interchange of the two DF (0) in the figure of eight.

• The symmetry factor for the second diagram is S = 2.2 = 4 where the first
factor of 2 is associated with DF (0) and the second factor is associated with
the interchange of the two internal lines DF (y1 − y2).

• The symmetry factor for the third diagram is S = 2.2 where the two factors
of 2 are associated with the two DF (0).

• The symmetry factor of the 4th diagram is S = 3! = 6 which is associated
with the permutations of the three internal lines DF (y1 − y2).

• The symmetry factor of the 5th diagram is S = 27 = 128. Four factors of 2
are associated with the four DF (0). Two factors of 2 are associated with the
permutations of the two DF (0) in the two figures of eight. Another factor of
2 is associated with the interchange of the two figures of eight.

• The symmetry factor of the 6th diagram is S = 24 = 16. Two factors of 2
comes from the two DF (0). A factor of 2 comes from the interchange of the
two internal lines DF (y1 − y2). Another factor comes from the interchange
of the two internal points y1 and y2.

• The symmetry factor of the last diagram is S = 4!.2 = 48. The factor 4!
comes from the permutations of the four internal lines DF (y1 − y2) and the
factor of two comes from the interchange of the two internal points y1 and
y2.

3.3.4 Connectedness and Vacuum Energy

From the above discussion we observe that there are two types of Feynman dia-
grams. These are

• Connected Diagrams: These are diagrams in which every piece is connected
to the external points. Examples of connected diagrams are diagram b) on
figure 2) and diagrams b)1, a)2 and b)2 on figure 4.
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• Disconnected Diagrams: These are diagrams in which there is at least one
piece which is not connected to the external points. Examples of discon-
nected diagrams are diagram a) on figure 2) and diagrams a)1, a)3, b)3 and
c)3 on figure 4.

We write the 2−point function up to the second order in perturbation theory as

< 0|T (φ̂(x1)φ̂(x2))|0 > = D0(x1 − x2)[V1 +
1

2
V 2
1 + V2 + V3] +D1(x1 − x2)[1 + V1]

+D1
2(x1 − x2) +D2

2(x1 − x2) +D3
2(x1 − x2). (3.170)

The "connected" 2−point function at the 0th and 1st orders is given respectively
by

D0(x1 − x2) = diagram 1) = DF (x1 − x2). (3.171)

D1(x1 − x2) = diagram 2b) =
1

2
(−iλ)

∫

d4y1DF (x1 − y1)DF (x2 − y1)DF (0).(3.172)

The "connected" 2−point function at the 2nd order is given by the sum of the
three propagators D1

2, D
2
2 and D3

2. Explicitly they are given by

D1
2(x1 − x2) = diagram 4b)1 =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0).

(3.173)

D2
2(x1 − x2) = diagram 4a)2 =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2.

(3.174)

D3
2(x1 − x2) = diagram 4b)2 =

(−iλ)2
6

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3.

(3.175)

The connected 2−point function up to the second order in perturbation theory is
therefore

< 0|T (φ̂(x1)φ̂(x2))|0 >conn = D0(x1 − x2) +D1(x1 − x2) +D1
2(x1 − x2) +D2

2(x1 − x2) +D3
2(x1 − x2)

(3.176)



132 YDRI’s QFT.

The corresponding Feynman diagrams are shown on figure 5. The disconnected
diagrams are obtained from the product of these connected diagrams with the so-
called vacuum graphs which are at this order in perturbation theory given by V1,
V2 and V3 (see (3.170)). The vacuum graphs are given explicitly by

V1 =
−iλ
8

∫

d4y1DF (0)
2. (3.177)

V2 =
(−iλ)2
16

∫

d4y1

∫

d4y2DF (y1 − y2)2DF (0)
2. (3.178)

V3 =
(−iλ)2
48

∫

d4y1

∫

d4y2DF (y1 − y2)4. (3.179)

The corresponding Feynman diagrams are shown on figure 6. Clearly the "full"
and the "connected" 2−point functions can be related at this order in perturbation
theory as

< 0|T (φ̂(x1)φ̂(x2))|0 >=< 0|T (φ̂(x1)φ̂(x2))|0 >conn exp(vacuum graphs).(3.180)

We now give a more general argument for this identity. We will label the various
vacuum graphs by Vi, i = 1, 2, 3, .... A generic Feynman diagram will contain a
connected piece attached to the external points x1 and x2 call it Wj , n1 discon-
nected pieces given by V1, n2 disconnected pieces given by V2, and so on. The
value of this Feynman diagram is clearly

Wj

∏

i

1

ni!
V ni

i . (3.181)

The factor 1/ni! is a symmetry factor coming from the permutations of the ni

pieces Vi among themselves. Next by summing over all Feynman diagrams (i.e, all
possible connected diagrams and all possible values of ni) we obtain

∑

j

∑

n1,...,ni,...

Wj

∏

i

1

ni!
V ni

i =
∑

j

Wj

∑

n1,...,ni,...

∏

i

1

ni!
V ni

i

=
∑

j

Wj

∏

i

∑

ni

1

ni!
V ni

i

=
∑

j

Wj

∏

i

exp(Vi)

=
∑

j

Wj exp(
∑

i

Vi). (3.182)
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This is the desired result. This result holds also for any other Green’s function,
viz

< 0|T (φ̂(x1)φ̂(x2)...)|0 >=< 0|T (φ̂(x1)φ̂(x2)...)|0 >conn exp(vacuum graphs).(3.183)

Let us note here that the set of all vacuum graphs is the same for all Green’s
functions. In particular the 0−point function (the vacuum-to-vacuum amplitude)
will be given by

< 0|0 >= exp(vacuum graphs). (3.184)

We can then observe that

< 0|T (φ̂(x1)φ̂(x2)...)|0 >conn =
< 0|T (φ̂(x1)φ̂(x2)...)|0 >

< 0|0 >
= sum of connected diagrams with n external points.

(3.185)

We write this as

< 0|T (φ̂(x1)φ̂(x2)...)|0 >conn = < Ω|T (φ̂(x1)φ̂(x2)...)|Ω > . (3.186)

|Ω >=
|0 >

√

< 0|0 >
= e−

1
2
(vacuum graphs)|0 > . (3.187)

The vacuum state |Ω > will be interpreted as the ground state of the full Hamilto-
nian Ĥ in contrast to the vacuum state |0 > which is the ground state of the
free Hamiltonian Ĥ0. The vector state |Ω > has non-zero energy Ê0. Thus
Ĥ|Ω >= Ê0|Ω > as opposed to Ĥ0|0 >= 0. Let |n > be the other vector states of
the Hamiltonian Ĥ , viz Ĥ|n >= Ên|n >.

The evolution operator Ω(t) is a solution of the differential equation i∂tΩ(t) =
V̂I(t)Ω(t) which satisfies the boundary condition Ω(−∞) = 1. A generalization of
Ω(t) is given by the evolution operator

Ω(t, t
′

) = T

(

e−i
∫ t

t
′ dsV̂I(s)

)

. (3.188)

This solves essentially the same differential equation as Ω(t), viz

i∂tΩ(t, t
′

) = V̂I(t, t0)Ω(t). (3.189)

V̂I(t, t0) = eiĤ0(t−t0)V̂ e−iĤ0(t−t0). (3.190)
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This evolution operator Ω(t, t′) satisfies obviously the boundary condition Ω(t, t) =
1. Furthermore it is not difficult to verify that an equivalent expression for Ω(t, t

′

)
is given by

Ω(t, t
′

) = eiĤ0(t−t0)e−iĤ(t−t
′

)e−iĤ0(t
′

−t0). (3.191)

We compute

e−iĤT |0 > = e−iĤT |Ω >< Ω|0 > +
∑

n 6=0

e−iĤT |n >< n|0 >

= e−iÊ0T |Ω >< Ω|0 > +
∑

n 6=0

e−iÊnT |n >< n|0 > . (3.192)

In the limit T −→∞(1− iǫ) the second term drops since Ên > Ê0 and we obtain

e−iĤT |0 > = e−iÊ0T |Ω >< Ω|0 > . (3.193)

Equivalently

e−iĤ(t0−(−T ))|0 > = e−iÊ0(t0+T )|Ω >< Ω|0 > . (3.194)

Thus

|Ω >=
eiÊ0(t0+T )

< Ω|0 > Ω(t0,−T )|0 > . (3.195)

By choosing t0 = T and using the fact that Ω(T,−T ) = S we obtain

|Ω >=
eiÊ0(2T )

< Ω|0 > |0 > . (3.196)

Finally by using the definition of |Ω > in terms of |0 > and assuming that the sum
of vacuum graphs is pure imaginary we get

Ê0

vol
= i

vacuum graphs

2T.vol
. (3.197)

Every vacuum graph will contain a factor (2π)4δ4(0) which in the box normaliza-
tion is equal exactly to 2T.vol where vol is the volume of the three dimensional
space. Hence the normalized sum of vacuum graphs is precisely equal to the vac-
uum energy density.
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3.3.5 Feynman Rules For Φ−Four Theory

We use Feynman rules for perturbative φ−four theory to calculate the nth order
contributions to the Green’s function < 0|T (φ̂(x1)...φ̂(xN ))|0 >. They are given
as follows

1) We draw all Feynman diagrams with N external points xi and n internal
points (vertices) yi.

2) The contribution of each Feynman diagram to the Green’s function< 0|T (φ̂(x1)...φ̂(xN ))|0 >
is equal to the product of the following three factors

– Each line (internal or external) joining two spacetime points x and y
is associated with a propagator DF (x − y). This propagator is the
amplitude for propagation between the two points x and y.

– Each vertex is associated with a factor −iλ. Interaction is represented
by a vertex and thus there are always 4 lines meeting at a given vertex.
The factor −iλ is the amplitude for the emission and/or absorption of
scalar particles at the vertex.

– We divide by the symmetry factor S of the diagram which is the number
of permutations which leave the diagram invariant.

3) We integrate over the internal points yi, i.e. we sum over all places where
the underlying process can happen. This is the superposition principle of
quantum mechanics.

These are Feynman rules in position space. We will also need Feynman rules in
momentum space. Before we state them it is better we work out explicitly few
concrete examples. Let us go back to the Feynman diagram b) on figure 2. It is
given by

1

2
(−iλ)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0). (3.198)

We will use the following expression of the Feynman scalar propagator

DF (x− y) =

∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−y). (3.199)

We compute immediately

1

2
(−iλ)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0) =

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q

(2π)4

(

1

2
(−iλ)(2π)4δ4(p1 + p2)

× e−ip1x1e−ip2x2∆(p1)∆(p2)∆(q)

)

. (3.200)
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∆(p) =
i

p2 −m2 + iǫ
. (3.201)

In the above equation p1 and p2 are the external momenta and q is the internal
momentum. We integrate over all these momenta. Clearly we still have to multiply
with the vertex −iλ and divide by the symmetry factor which is here 2. In momen-
tum space we attach to any line which carries a momentum p a propagator ∆(p).
The new features are two things 1) we attach a plane wave e−ipx to each external
point x into which a momentum p is flowing and 2) we impose momentum conser-
vation at each vertex which in this case is (2π)4δ4(p1+p2+q−q) = (2π)4δ4(p1+p2).
See figure 7.

We consider another example given by the Feynman diagram b)2 on figure 4).
We find

(−iλ)2
6

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3 =

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4q3
(2π)4

(

1

6
(−iλ)2(2π)4δ4(p1 + p2)(2π)

4δ4(p1 − q1 − q2 − q3) ×

e−ip1x1e−ip2x2∆(p1)∆(p2)∆(q1)∆(q2)∆(q3)

)

.(3.202)

This expression can be reconstructed from the same rules we have discussed in the
previous case. See figure 8.

In summary Feynman rules in momentum space read

1) We draw all Feynman diagrams with N external points xi and n internal
points (vertices) yi.

2) The contribution of each Feynman diagram to the Green’s function< 0|T (φ̂(x1)...φ̂(xN ))|0 >
is equal to the product of the following five factors

– Each line (internal or external) joining two spacetime points x and y
is associated with a propagator ∆(p) where p is the momentum carried
by the line.

– Each vertex is associated with a factor −iλ.

– We attach a plane wave exp(−ipx) to each external point x where p is
the momentum flowing into x.

– We impose momentum conservation at each vertex.

– We divide by the symmetry factor S of the diagram.

3) We integrate over all internal and external momenta.
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3.4 Exercises and Problems

Asymptotic Solutions

• Show that

Q̂(t, ~p) = Q̂in(t, ~p) +
1

E~p

∫ t

−∞

dt
′

sinE~p(t− t
′

)j(t
′

, ~p),

is a solution of the equation of motion

(∂2t + E2
~p)Q(t, ~p) = j(t, ~p).

• Show that

Q̂(t, ~p) = Q̂+
in(t, ~p) + Q̂−

out(t, ~p) + i

∫ +∞

−∞

dt
′

G~p(t− t
′

)j(t
′

, ~p),

is also a solution of the above differential equation.

• Express the Feynman scalar propagator DF (x− x
′

) in terms of G~p(t− t
′

).

• Show that this solution leads to

φ̂(x) = φ̂+
in(x) + φ̂−

out(x) + i

∫

d4x
′

DF (x− x
′

)J(x
′

).

Hint: Use

d

dt

∫ t

−∞

dt
′

f(t
′

, t) =

∫ t

−∞

dt
′ ∂f(t

′

, t)

∂t
+ f(t, t).

(∂2t + E2
~p)G~p(t− t

′

) = −iδ(t− t′).

Feynman Scalar Propagator Verify that the Feynman propagator in one-
dimension is given by

G~p(t− t
′

) =

∫

dE

2π

i

E2 −E2
~p + iǫ

e−iE(t−t
′

) =
e−iE~p|t−t

′

|

2E~p
.

Fourier Transform Show that the Fourier transform of the Klein-Gordon equa-
tion of motion

(∂µ∂
µ +m2)φ = J

is given by

(∂2t + E2
~p)Q(t, ~p) = j(t, ~p).
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Forced Harmonic Oscillator We consider a single forced harmonic oscillator
given by the equation of motion

(∂2t + E2)Q(t) = J(t).

• Show that the S−matrix defined by the matrix elements Smn =< m out|n in >
is unitary.

• Determine S from solving the equation

S−1âinS = âout = âin +
i√
2E

j(E).

• Compute the probability | < n out|0 in > |2.

• Determine the evolution operator in the interaction picture Ω(t) from solving
the Schrodinger equation

i∂tΩ(t) = V̂I(t)Ω(t) , V̂I(t) = −J(t)Q̂I(t).

• Deduce from the fourth question the S−matrix and compare with the result
of the second question.

Interaction Picture Show that the fields Q̂I(t, ~p) and P̂I(t, ~p) are free fields.

Time Ordering Operator Show that

1

3!

∫ t

−∞

dt1

∫ t

−∞

dt2

∫ t

−∞

dt3T (V̂I(t1)V̂I(t2)V̂I(t3)) =

∫ t

−∞

dt1

∫ t1

−∞

dt2

∫ t2

−∞

dt3V̂I(t1)V̂I(t2)V̂I(t3).

Wick’s Theorem For Forced Scalar Field Show that

i
∑

~p

β~p(+∞) =
1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t− t′)
V

∑

~p

1

2E~p

eip(x−x
′

) − θ(t− t′)
V

∑

~p

1

2E~p

e−ip(x−x
′

)

)

.

Unitarity of The S−Matrix

• Show that

S−1 = T̄

(

ei
∫+∞

−∞
dsV̂I (s)

)

.

• Use the above result to verify that S is unitary.
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Evolution Operator Ω(t) and Gell-Mann Low Formula Verify up to the
third order in perturbation theory the following equations

Ω(t) = T̄

(

ei
∫+∞

t
dsV̂I(s)

)

S.

φ̂(x) = S−1

(

T φ̂in(x)S

)

.

Interaction Fields are Free Fields Show that the interaction fields φ̂I(t, ~x)
and π̂I(t, ~x) are free fields.

LSZ Reduction Formulae

• Show the LSZ reduction formulae

i

∫ +∞

−∞

dteiE~pt(∂2t + E2
~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...) =

√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)
)

.

• Show that

i

∫

d4xeipx(∂µ∂
µ +m2)T (φ̂(x)φ̂(x1)φ̂(x2)...) =

√

2E~p

(

âout(~p)T (φ̂(x1)φ̂(x2)...)− T (φ̂(x1)φ̂(x2)...)âin(~p)
)

.

• Derive the LSZ reduction formulae

−i
∫ +∞

−∞

dte−iE~pt(∂2t + E2
~p)T (Q̂(t, ~p)

+Q̂(t1, ~p1)
+Q̂(t2, ~p2)

+...) =

√

2E~p

(

âout(~p)
+T (Q̂(t1, ~p1)

+Q̂(t2, ~p2)
+...)− T (Q̂(t1, ~p1)+Q̂(t2, ~p2)+...)âin(~p)+

)

.

Hint: Start from

e−iE~pt(−i∂t + E~p)Q̂in(t, ~p)
+ =

√

2E~p âin(~p)
+.

e−iE~pt(−i∂t + E~p)Q̂out(t, ~p)
+ =

√

2E~p âout(~p)
+.
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Wick’s Theorem Show that
[

e
1
2

∑
i,j

∂
∂φ(xi)

DF (xi−xj)
∂

∂φ(xj)

(

φ(x1)...φ(x2n)

)]

φ=0

=
∑

contraction

∏

DF (xi − xj).

The 4−Point Function in Φ−Four Theory Calculate the 4−point function
in φ−four theory up to the second order in preturbation theory.

Evolution Operator Ω(t, t
′

) Show that the evolution operators

Ω(t, t
′

) = T

(

e−i
∫ t

t
′ dsV̂I(s)

)

,

and

Ω(t, t
′

) = eiĤ0(t−t0)e−iĤ(t−t
′

)e−iĤ0(t
′

−t0).

solve the differential equation

i∂tΩ(t, t
′

) = V̂I(t, t0)Ω(t).

Determine V̂I(t, t0).

Φ−Cube Theory The φ−cube theory is defined by the interaction Lagrangian
density

Lint = −
λ

3!
φ3.

Derive Feynman rules for this theory by considering the 2−point and 4−point
functions up to the second order in perturbation theory.
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3.5 Solutions

Asymptotic Solutions

• Straightforward.

• Straightforward. This is a different solution in which we do not have the
constraint t− t′ > 0 in the Feynman Green’s function G~p(t− t

′

).

•
∫

d3p

(2π)3
G~p(t− t

′

)ei~p(~x−~x
′

) =

∫

d3p

(2π)3

∫

dp0

(2π)3
i

(p0)2 −E2
~p + iǫ

e−ip0(t−t
′

)+i~p(~x−~x
′

)

=

∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−x

′

)

= DF (x− x
′

).

• Thus the second solution corresponds to the causal Feynman propagator.
Indeed by integrating both sides of the equation over ~p we obtain

φ̂(x) = φ̂+
in(x) + φ̂−

out(x) + i

∫

d3p

(2π)3
ei~p~x

∫ +∞

−∞

dt
′

G~p(t− t
′

)j(t
′

, ~p)

= φ̂+
in(x) + φ̂−

out(x) + i

∫

d3p

(2π)3

∫

d4x
′

G~p(t− t
′

)J(x
′

)ei~p(~x−~x
′

).

In other words

φ̂(x) = φ̂+
in(x) + φ̂−

out(x) + i

∫

d4x
′

DF (x− x
′

)J(x
′

).

Feynman Scalar Propagator Perform the integral using the residue theorem.

Fourier Transform Straightforward.

Forced Harmonic Oscillator

• Verify that
∑

l

S∗
lmSln = δmn.
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• We get

S = exp(αâ+in − α∗âin + iβ) = eαâ
+
ine−α∗âine+iβ− 1

2
|α|2.

α =
i√
2E

j(E).

In this result β is still arbitrary. We use [âin, â
+
in] = 1 and the BHC formula

eAeB = eA+Be
1
2
[A,B].

In particular

âine
αâ+in = eαâ

+
in(âin + α).

• We find

| < n out|0 in > |2 = xn

n!
e−x , x = |α|2.

We use |n in >= ((â+in)
n/
√
n!)|0 in > and < n in|m in >= δnm.

• We use

Q̂I(t) = Q̂in(t) =
1√
2E

(âine
−iEt + â+ine

iEt).

We find

Ω(t) = exp(α(t)â+in − α∗(t)âin + iβ(t)) = eα(t)â
+
ine−α∗(t)âine+iβ(t)− 1

2
|α(t)|2 .

α(t) =
i√
2E

∫ t

−∞

dsJ(s)eiEs.

The Schrodinger equation i∂tΩ(t) = V̂I(t)Ω(t) becomes

i∂tΩ = i

(

∂tαâ
+
in − ∂tα∗âin + i∂tβ −

1

2
∂tα.α

∗ +
1

2
∂tα

∗.α

)

Ω.

This reduces to

∂tβ(t) =
i

2
(α∂tα

∗ − α∗∂tα).

Thus

β(t) =
i

2

∫ t

−∞

ds(α∂sα
∗ − α∗∂sα).
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• In the limit t −→∞ we obtain

α(+∞) =
i√
2E

∫ +∞

−∞

dsJ(s)eiEs =
i√
2E

j(E) = α.

−1
2
|α(+∞)|2 = − 1

4E

∫ +∞

−∞

ds

∫ +∞

−∞

ds
′

J(s)J(s
′

)eiE(s−s
′

).

Also

iβ(+∞) = − 1

4E

∫ +∞

−∞

ds

∫ +∞

−∞

ds
′

J(s)J(s
′

)e−iE(s−s
′

)θ(s− s′)

+
1

4E

∫ +∞

−∞

ds

∫ +∞

−∞

ds
′

J(s)J(s
′

)eiE(s−s
′

)θ(s− s′).

Hence (by using 1− θ(s− s′) = θ(s
′ − s))

iβ(+∞)− 1

2
|α(+∞)|2 = − 1

4E

∫ +∞

−∞

ds

∫ +∞

−∞

ds
′

J(s)J(s
′

)e−iE(s−s
′

)θ(s− s′)

− 1

4E

∫ +∞

−∞

ds

∫ +∞

−∞

ds
′

J(s)J(s
′

)eiE(s−s
′

)θ(s
′ − s)

= −1
2

∫ +∞

−∞

ds

∫ +∞

−∞

ds
′

J(s)J(s
′

)G(s− s′).

The Feynman propagator in one-dimension is

G(s− s′) = 1

2E

(

e−iE(s−s
′

)θ(s− s′) + eiE(s−s
′

)θ(s
′ − s)

)

.

The S−matrix is

S = eαâ
+
ine−α∗âine−

1
2

∫+∞

−∞
ds

∫+∞

−∞
ds

′

J(s)J(s
′

)G(s−s
′

).

This is the same formula obtained in the second question except that β is
completely fixed in this case.

Interaction Picture From one hand we compute that

i∂tQ̂I(t, ~p) = −[Q̂I(t, ~p), V̂I(t, ~p)] + Ω(t)i∂tQ̂I(t, ~p)Ω
−1(t).

From the other hand we compute

i∂tQ̂(t, ~p) = U−1(t)[Q̂(~p), Ĥ~p]U(t) + U−1(t)[Q̂(~p), V̂ (t, ~p)]U(t)

= Ω−1(t)[Q̂I(t, ~p), Ĥ~p]Ω(t) + Ω−1(t)[Q̂I(t, ~p), V̂I(t, ~p)]Ω(t).
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We can then compute immediately that

i∂tQ̂I(t, ~p) = [Q̂I(t, ~p), Ĥ~p].

Next we compute

i∂tQ̂I(t, ~p) = [Q̂I(t, ~p), Ĥ~p] = eitĤ~p [Q̂(~p), Ĥ~p]e
−itĤ~p

= ieitĤ~pP̂ (~p)e−itĤ~p

= iP̂I(t, ~p).

Similarly we compute

i∂tP̂I(t, ~p) = [P̂I(t, ~p), Ĥ~p] = eitĤ~p [P̂ (~p), Ĥ~p]e
−itĤ~p

= −iE2
~pe

itĤ~pQ̂(~p)e−itĤ~p

= −iE2
~pQ̂I(t, ~p).

Thus the operators Q̂I(t, ~p) and P̂I(t, ~p) describe free oscillators.

Time Ordering Operator We have

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t1)V̂I(t2)V̂I(t3) , if t1 > t2 > t3

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t2)V̂I(t1)V̂I(t3) , if t2 > t1 > t3

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t1)V̂I(t3)V̂I(t2) , if t1 > t3 > t2

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t3)V̂I(t1)V̂I(t2) , if t3 > t1 > t2

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t2)V̂I(t3)V̂I(t1) , if t2 > t3 > t1

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t3)V̂I(t2)V̂I(t1) , if t3 > t2 > t1.

Thus T (V̂I(t1)V̂I(t2)V̂I(t3)) is a function of t1, t2 and t3 which is symmetric about
the axis t1 = t2 = t3. Therefore the integral of T (V̂I(t1)V̂I(t2)V̂I(t3)) in the different
six regions t1 > t2 > t3, t2 > t1 > t3, etc gives the same result. Hence

1

6

∫ t

−∞

dt1

∫ t

−∞

dt2

∫ t

−∞

dt3T (V̂I(t1)V̂I(t2)V̂I(t3)) =

∫ t

−∞

dt1

∫ t1

−∞

dt2

∫ t2

−∞

dt3V̂I(t1)V̂I(t2)V̂I(t3).

Wick’s Theorem For Forced Scalar Field In order to compute iβ~p(t) when
t −→ +∞ we start from

∂tΩ~p(t)Ω~p(t)
−1 = α̇~p âin(~p)

+ − α̇∗
~p âin(~p) +

V

2
α̇∗
~p α~p −

V

2
α̇~p α

∗
~p + iβ̇~p.
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In deriving this last result we used

eα~p(t)âin(~p)
+

âin(~p) = (âin(~p)− V α~p(t))e
α~p(t)âin(~p)

+

.

Clearly we must have

∂tΩ~p(t)Ω~p(t)
−1 = −iVI(t, ~p).

From the second line of (1.58) we have

Ω(t) = T

(

e

i
V

∫ t
−∞

ds
∑

~p
1√
2E~p

(

j(s,~p)∗âin(~p)e
−iE~ps+j(s,~p)âin(~p)

+e
iE~ps
)

)

.

The potential V̂I(t, ~p) can then be defined by

V̂I(t, ~p) = − 1

V

1
√

2E~p

(

j(t, ~p)∗âin(~p)e
−iE~pt + j(t, ~p)âin(~p)

+eiE~pt

)

.

The differential equation ∂tΩ~p(t)Ω~p(t)
−1 = −iVI(t, ~p) yields then the results

α̇~p =
i

V

j(t, ~p)
√

2E~p

eiE~pt.

β̇~p =
iV

2

(

α̇∗
~p α~p − α̇~p α

∗
~p

)

.

The first equation yields precisely the formula (1.64). The second equation in-
dicates that the phase β(t) is actually not zero. The integration of the second
equation gives

β~p =
1

4iV E~p

∫ t

−∞

ds

∫ s

−∞

ds
′

j(s, ~p)j(s
′

, ~p)∗eiE~p(s−s
′

)

− 1

4iV E~p

∫ t

−∞

ds

∫ s

−∞

ds
′

j(s, ~p)∗j(s
′

, ~p)e−iE~p(s−s
′

).

By summing over ~p and taking the limit t −→ ∞ we obtain

i
∑

~p

β~p(+∞) =
1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t− t′)
V

∑

~p

1

2E~p
eip(x−x

′

) − θ(t− t′)
V

∑

~p

1

2E~p
e−ip(x−x

′

)

)

.
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Unitarity of The S−Matrix

• The solution Ω(t) can be written explicitly as

Ω(t) =

∞
∑

n=0

(−i)n
∫ t

−∞

dt1

∫ t1

−∞

dt2...

∫ tn−1

−∞

dtnV̂I(t1)V̂I(t2)...V̂I(tn).

The first few terms of this expansion are

Ω(t) = 1− i
∫ t

−∞

dt1V̂I(t1) + (−i)2
∫ t

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2) + ...

Let us rewrite the different terms as follows
∫ t

−∞

dt1V̂I(t1) =

∫ +∞

−∞

dt1V̂I(t1)−
∫ +∞

t

dt1V̂I(t1).

∫ t

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2) =

∫ +∞

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2) +

∫ +∞

t

dt1

∫ +∞

t1

dt2V̂I(t1)V̂I(t2)

−
∫ +∞

t

dt1

∫ +∞

−∞

dt2V̂I(t1)V̂I(t2).

Hence to this order we have

Ω(t) =

(

1 + i

∫ +∞

t

dt1V̂I(t1) + i2
∫ +∞

t

dt1

∫ +∞

t1

dt2V̂I(t1)V̂I(t2) + ...

)

×
(

1− i
∫ +∞

−∞

dt1V̂I(t1) + (−i)2
∫ +∞

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2) + ...

)

= T̄

(

ei
∫+∞

t
dsV̂I(s)

)

S.

The operator T̄ is the anti time-ordering operator, i.e. it orders earlier times
to the left and later times to the right. This result is actually valid to all
orders in perturbation theory. Taking the limit t −→ −∞ in this equation
we obtain

S−1 = T̄

(

ei
∫+∞

−∞
dsV̂I (s)

)

.
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• Recall that

Ω(t) = T

(

e−i
∫ t
−∞

dsV̂I (s)

)

.

By taking the Hermitian conjugate we obtain

S+ = T̄

(

ei
∫+∞

−∞
dsV̂I(s)

)

.

In other words S is unitary as it should be. This is expected since by con-
struction the operators U(t) and Ω(t) are unitary.

Evolution Operator Ω(t) and Gell-Mann Low Formula Straightforward.

Interaction Fields are Free Fields We compute

i∂tφ̂I(t, ~x) = [φ̂I(t, ~x), Ĥ0]

= eitĤ0 [φ̂(~x), Ĥ0]e
−itĤ0

= eitĤ0

∫

d3~p

(2π)3
ei~p~x

∫

+

d3~q

(2π)3
[Q̂(~p), P̂+(~q)]P̂ (~q)e−itĤ0

= ieitĤ0

∫

d3~p

(2π)3
ei~p~xP̂ (~p)e−itĤ0

= ieitĤ0 π̂(~x)e−itĤ0

= iπ̂I(t, ~x).

Similarly

i∂tπ̂I(t, ~x) = [π̂I(t, ~x), Ĥ0]

= eitĤ0 [π̂(~x), Ĥ0]e
−itĤ0

= eitĤ0

∫

d3~p

(2π)3
ei~p~x

∫

+

d3~q

(2π)3
E2

~q [P̂ (~p), Q̂
+(~q)]Q̂(~q)e−itĤ0

= −ieitĤ0

∫

d3~p

(2π)3
E2

~pe
i~p~xQ̂(~p)e−itĤ0

= i(~∇2 −m2)eitĤ0 φ̂(~x)e−itĤ0

= i(~∇2 −m2)φ̂I(t, ~x).

These last two results indicates that the interaction field φ̂I is a free field since it
obeys the equation of motion

(∂2t − ~∇2 +m2)φ̂I(t, ~x) = 0.
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LSZ Reduction Formulae

• Let us consider the integral
∫ +∞

−∞

dt∂t

(

eiE~pt(i∂t + E~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...)

)

.

We compute
∫ +∞

−∞

dt∂t

(

eiE~pt(i∂t + E~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...)

)

=
√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...

− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)

)

.

On the other hand we compute
∫ +∞

−∞

dt∂t

(

eiE~pt(i∂t + E~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...)

)

=

i

∫ +∞

−∞

dteiE~pt(∂2t + E2
~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...).

Hence we obtain the LSZ reduction formulae

i

∫ +∞

−∞

dteiE~pt(∂2t + E2
~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...) =

√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)
)

.

• We use the identity (with the notation ∂2 = ∂µ∂
µ)

∫

d3xe−i~p~x(∂2 +m2)φ̂(x) = (∂2t + E2
~p)Q̂(t, ~p).

The above LSZ reduction formulae can then be put in the form

i

∫

d4xeipx(∂µ∂
µ +m2)T (φ̂(x)φ̂(x1)φ̂(x2)...) =

√

2E~p

(

âout(~p)T (φ̂(x1)φ̂(x2)...)− T (φ̂(x1)φ̂(x2)...)âin(~p)
)

.

• Straightforward.
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Wick’s Theorem Straightforward.

The 4−Point Function in Φ−Four Theory The first order in perturbation
theory is given by

i

∫

d4y1 < 0|T
(

φ̂in(x1)...φ̂in(x4)Lint(y1)

)

|0 > = i(− λ
4!
)

∫

d4y1 < 0|T
(

φ̂in(x1)...φ̂in(x4)φ̂in(y1)
4

)

|0 >

In total we 7.5.3 = 105 contractions which we can divide into three classes

• We contract only two external points together and the other two external
points are contracted with the internal points. Here we have six diagrams
corresponding to contracting (x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4) and
(x3, x4). Each diagram corresponds to 12 contractions coming from the 4
possibilities opened to the first external point to be contracted with the
internal points times the 3 possibilities opened to the second external point
when contracted with the remaining internal points. See figure 9a). The
value of these diagrams is

12i(− λ
4!
)

∫

d4y1DF (0) ×
[

DF (x1 − x2)DF (x3 − y1)DF (x4 − y1)

+DF (x1 − x3)DF (x2 − y1)DF (x4 − y1)
+DF (x1 − x4)DF (x3 − y1)DF (x2 − y1)
+DF (x2 − x3)DF (x1 − y1)DF (x4 − y1)
+DF (x2 − x4)DF (x3 − y1)DF (x1 − y1)

+DF (x3 − x4)DF (x1 − y1)DF (x2 − y1)
]

.

The corresponding Feynman diagram is shown on figure 10a).

• We can contract all the internal points among each other. In this case we
have three distinct diagrams corresponding to contracting x1 with x2 and x3
with x4 or x1 with x3 and x2 with x4 or x1 with x4 and x2 with x3. Each
diagram corresponds to 3 contractions coming from the three possibilities of
contracting the internal points among each other. See figure 9b). The value
of these diagrams is

3i(− λ
4!
)

∫

d4y1DF (0)
2

[

DF (x1 − x2)DF (x3 − x4) +

DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3)
]

.

The corresponding Feynman diagram is shown on figure 10b).
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• The last possibility is to contract all the internal points with the external
points. The first internal point can be contracted in 4 different ways with the
external points, the second internal point will have 3 possibilities, the third
internal point will have two possibilities and the fourth internal point will
have one possibility. Thus there are 4.3.2 = 24 contractions corresponding
to a single diagram. See figure 9c). The value of this diagram is

24i(− λ
4!
)

∫

d4y1

[

DF (x1 − y1)DF (x2 − y1)DF (x3 − y1)DF (x4 − y1)
]

.

The corresponding Feynman diagram is shown on figure 10c).

The second order in perturbation theory is given by

i2

2!

∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)...φ̂in(x4)Lint(y1)Lint(y2)

)

|0 > =

−1
2
(
λ

4!
)2
∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)...φ̂in(x4)φ̂in(y1)
4φ̂in(y2)

4

)

|0 > .

There are in total 11.9.7.5.3 contractions.

• We contract two of the internal points together whereas we contract the other
two with the external points. We have 6 possibilities corresponding to the
6 contractions (x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4) and (x3, x4). Thus
we have (6).8.7.5.3 contractions in all involved. We focus on the contraction
(x3, x4) since the other ones are similar. In this case we obtain 4 contractions
which are precisely a)1, b)1 ,a)2 and b)2 shown on figure 3). The value of
these diagrams is

−1
2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x3 − x4) ×
[

8.3.3DF (x1 − y1)DF (x2 − y1)DF (0)
3

+8.3.4.3DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0)

+8.4.3.3DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2

+8.4.3.2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3
]

.

Clearly these diagrams are given by

DF (x3 − x4)×
(

a)1 + b)1 + a)2 + b)2 of figure 4

)

.

To get the other 5 possibilities we should permute the points x1,x2,x3 and
x4 appropriately.
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• Next we can contract the 4 internal points together giving

DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3).
This should be multiplied by the sum of 7.5.3 contractions of the external
points given on figure 11. Compare with the contractions on figure 3a)3, 3b)3
and 3c)3. The value of these diagrams is

−1
2
(
λ

4!
)2
(

DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +

DF (x1 − x4)DF (x2 − x3)
)∫

d4y1

∫

d4y2

(

3.3DF (0)
4 +

6.4.3DF (0)
2DF (y1 − y2)2 + 4.3.2DF (y1 − y2)4

)

.

The corresponding Feynman diagrams are shown on figure 12.

• There remains 48.7.5.3 contractions which must be accounted for. These
correspond to the contraction of all of the internal points with the external
points. The set of all these contractions is shown on figure 13. The cor-
responding Feynman diagrams are shown on figure 14. The value of these
diagrams is

−1
2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1) ×
[

8.3.2.3.4DF (x2 − y1)DF (x3 − y1)DF (x4 − y2)DF (y1 − y2)DF (0) +

8.3.2.3DF (x2 − y1)DF (x3 − y1)DF (x4 − y1)DF (0)
2 +

8.3.4.2.3DF (x2 − y1)DF (x3 − y2)DF (x4 − y1)DF (y1 − y2)DF (0) +

8.3.4.3DF (x2 − y1)DF (x3 − y2)DF (x4 − y2)DF (0)
2 +

8.3.4.3.2DF (x2 − y1)DF (x3 − y2)DF (x4 − y2)DF (y1 − y2)2 +

8.4.3.3DF (x2 − y2)DF (x3 − y1)DF (x4 − y2)DF (0)
2 +

8.4.3.3.2DF (x2 − y2)DF (x3 − y1)DF (x4 − y2)DF (y1 − y2)2 +

8.4.3.2.3DF (x2 − y2)DF (x3 − y1)DF (x4 − y1)DF (y1 − y2)DF (0) +

8.4.3.3DF (x2 − y2)DF (x3 − y2)DF (x4 − y1)DF (0)
2 +

8.4.3.2.3DF (x2 − y2)DF (x3 − y2)DF (x4 − y2)DF (y1 − y2)DF (0) +

8.4.3.3.2DF (x2 − y2)DF (x3 − y2)DF (x4 − y1)DF (y1 − y2)2
]

.

Evolution Operator Ω(t, t
′

) Straightforward.

Φ−Cube Theory Straightforward.


