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Abstract
Implicit �nite di�erence schemes for solving two dimensional and three di�

mensional Euler and Navier�Stokes equations will be addressed� The methods are
demonstrated in fully vectorized codes for a CRAY type architecture� We shall con�
centrate on the Beam and Warming implicit approximate factorization algorithm
in generalized coordinates� The methods are either time accurate or accelerated
non�time accurate steady state schemes� Various acceleration and e�ciency mod�
i�cations such as matrix reduction� diagonalization and �ux split schemes will be
presented� Examples for ��D inviscid and viscous calculations 	e�g� airfoils with a
de�ected spoiler� circulation control airfoils and unsteady bu�eting
 and also ��D
viscous �ow are included�
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Commentary� ����
These notes were developed and put together in �����
 for a lecture series en�

titled �von K�arm�an Institute For Fluid Dynamics Lecture Series � Numerical Tech�
niques for Viscous Flow Computation In Turbomachinery Bladings�� von K�arm�an
Institute� Rhode�St�Genese� Belgium � ���
� They may be a little dated today� but
they still represent current algorithms and codes being used on a day to day basis
for both research and development� I will update and correct some of the material�
but I will not be attempting to completely modernize these lectures� Newer topics�
e�g� TVD� ENO� are handled better in other forums and I will have to make my
attempt at them some other time�

Finally� I would like to recognized the in�uence of one of my best friends and
my mentor� Dr� Joseph L� Steger who passed away this year� I �rst met Joe in
the early days of CFD at NASA Ames 	circa ����
 when I started work on my
thesis and Joe became my advisor� I consider myself Joe�s �rst student and al�
though Joe went on to teach at Stanford and U�C� Davis and produced many �ne
CFD researchers� I think my years with Joe will always be special since they were
his and my �rst experiences as friends and teacher�student� Joseph Steger was a
real pioneer for CFD� he did much of the ground breaking work in transonics and
Euler�Navier�Stokes algorithms� I don�t think he gets much credit for his transonic
work� but if it wasn�t for Joe many of the important advances made here at NASA
Ames would never have happened� We always refer to the �Beam�Warming algo�
rithm�� but possibility it should be called the �Steger algorithm�� Although� Beam
and Warming can be credited with the initial development� Steger had much to do
with the �nal developments and analysis� More importantly though� is the contri�
bution Joe made in making the algorithm practical and popular� In ����� Joe wrote
what was then call AIR�D� based on the Beam�Warming algorithm and generalized
coordinate transformations� That one e�ort has blossomed into the ARC�D and
ARC�D codes and their subsequent impact on CFD today� Those kernels 	gems of
ideas
 form the basis of most of the practical and useful codes in existence today�
One only has to look anywhere in the literature to see that impact� Joe�s other
developments were equally as important to the whole picture� He developed ellip�
tic grid generators 	GRAPE
 and hyperbolic grid generating algorithms� Joe can
also be credited with producing the �rst practical Parabolized Navier�Stokes 	PNS

codes and Incompressible Navier�Stokes 	INS
 based on psuedo�compressibility� His
work on the Chimera approach for complicated geometry is currently the workhorse
of computation here at NASA Ames and has been a signi�cant part of the overall
CFD e�ort� But besides all that� we really have su�ered a great loss in losing Joe
Steger� he always will be in my heart� his laugh and friendship are dear to me and
I�m sure to all who knew him�
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I� Introduction

Computational �uid dynamics is a growing technology� Even though there is
still a substantial amount of theoretical development necessary before it becomes
an consistent engineering tool� we can produce research codes which can be applied
to relevant physical problems� At present full potential codes and panel methods
have been the most widely used tools in the design cycle� Those methods are
computational less expensive than the Euler and Navier � Stokes codes and in general
more robust and accurate 	 mainly due to the ability to employ a large number of
grid points or panels
� Euler and Navier � Stokes codes require more storage and
computational work per solution than the classical methods� Even with the present
class of super computers we still have not reached a stage where the restrictions of
computational speed and storage can be ignored� At this stage the Euler and Navier
� Stokes codes available should be considered to be research codes� At �rst we strive
to demonstrate the feasibility of the numerical technique used� then we should go on
to establish the accuracy� e�ciency and robustness of a developed code� These are
the areas in code development and application which require careful consideration�

A wide variety of numerical techniques are in use today� Some have devel�
oped to a high enough level to be used in production codes 	see Refs� �����
 while
other techniques 	for example TVD schemes� Ref� ����� 
 are just now entering the
research code realm� In this presentation we shall concentrate on methods and tech�
niques which have been applied to various computational �uid �ow problems� These
include� implicit �nite di�erences� central space di�erencing� upwind di�erencing�
approximate factorization� nonlinear dissipation models� characteristic boundary
procedures� grid re�nement � reclustering algorithms and various acceleration tech�
niques for steady state and time accurate computations� Most of the applications
are for external �ows� but the methods have been and are easily extended to internal
�ows� A lot of the development will be in ��D� with the extension to ��D relatively
straightforward�

A series of computer codes have been developed at NASA Ames Research Cen�
ter based on the implicit approximate factorization algorithm of Beam and Warming
��� will be used for demonstration� A particular application in two dimensions was
�rst presented by Steger ��� and for three dimensions by Pulliam and Steger ����
Concurrent with this work has been the paralleled development and application
of MacCormacks method ���� I shall concentrate here on the theoretical develop�
ment� application and assessment of the implicit algorithm which at this stage has
produced two codes� ARC�D a two dimensional version and ARC�D the three di�
mensional code� The original development of these codes was more in the spirit
of a demonstration e�ort� where we were more concerned with demonstrating the
feasibility of the algorithm for general geometries and varying �ow cases� A number
of applications appeared over the years in the literature� More recently we have
improved the accuracy� e�ciency and robustness of the codes� I shall present below
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some details of the current versions of the implicit codes� ARC�D and ARC�D�
Notable exceptions will be discussed� I shall not concentrate on the idiosyncrasies
of the coding� I�O or other programming aspects except where they a�ect the al�
gorithm application�

II� The Euler and Navier � Stokes Equations
The starting point is the strong conservation law form of the two�dimensional

Navier�Stokes equations in Cartesian coordinates� The strong conservation law
form is chosen because we wish to accurately capture shocks� The equations in
nondimensional form are

�tQ� �xE � �yF � Re�� 	�xEv � �yFv
 	���


where

Q �

���
�
�u
�v
e

��� � E �

���
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�u� � p
�uv

u	e� p


��� � F �
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�uv
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v	e� p
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�xy
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with
�xx � �	�ux � �vy
��
�xy � �	uy � vx


�yy � �	��ux � �vy
��
f� � u�xx � v�xy � �Pr��	� � �
���xa�
g� � u�xy � v�yy � �Pr��	� � �
���ya�

	���b


Pressure is related to the conservative �ow variables� Q� by the equation of
state

p � 	� � �

�
e� �

�
�	u� � v�


�
	���


where � is the ratio of speci�c heats� generally taken as ���� The speed of sound is a
which for ideal �uids� a� � �p��� The dynamic viscosity is � and is typically made
up of a constant plus a computed turbulent eddy viscosity� The Reynolds number
is Re and Prandtl number Pr�






The choice of nondimensional parameters is arbitrary� Here we have chosen
to scale the variables � 	density
� u v 	the Cartesian velocities
� and e 	the total
energy
 as e� � �

��
� eu � u

a�
� ev � v

a�
� ee � e

��a��
	���a


where � refers to free stream quantities� Assuming a reference length� l 	usually
taken as some characteristic physical length such as chord of an airfoil
� time t scales
as et � ta��l� The viscous coe�cients scale as

e� � �

��
� Re �

��la�
��

	���b


Note that Re uses a� and therefore Re based on u� 	the usual case for experimen�
tally given Reynolds number
 must be scaled byM� � u��a�� For the remainder
of this development the � will be dropped for simplicity�

The Euler equations are recovered from Eqs� 	���
 and 	���
 by dropping the
viscous terms� i�e� setting the right hand side of Eq� 	���
 equal to zero�

III� Generalized Curvilinear Coordinate Transformations
The Navier�Stokes equations can be transformed from Cartesian coordinates

to general curvilinear coordinates where

� � t

	 � 		x� y� t



 � 
	x� y� t


	���


The coordinate transformation introduced here follows the development of Viviand
���� and Vinokur ����� Curvilinear coordinates are a representation of n�space in
which arbritary vectors are represented by two sets of basis vectors 	not necessarily
orthogonal
� An arbritary vector V 	here demonstrated in � dimensions
 is de�ned
as

V � v�e� � v�e�

with ei covariant basis vectors and v
i the contravariant components of V� Since we

don�t require the basis vectors to be orthogonal� another set of component extracting
basis vectors are required� the contravariant basis vectors ei� The basis vectors
satisfy the relationship ei � ej � �i�j� So that� contravariant component v

i � ei �V�
Another representation of V is in terms of covariant basis vectors ei with

V � v�e
� � v�e

�

�



and vi the covariant components of V� i�e�� vi � ei �V� An excellent reference for
curvilinear transforms is Korn and Korn �aa�� This representation and sets of basis
vectors form the fundamental framework for the curvilinear transformations which
will be applied to the Euler and Navier�Stokes equations�

The transformations are chosen so that the grid spacing in the curvilinear space
is uniform and of unit length� see Fig� �� This produces a computational space 	
and 
 which is a rectangular domain and which has a regular uniform mesh so that
standard unweighted di�erencing schemes can be used in the numerical formulation�
The original Cartesian space will be referred to as the physical domain� Typically
there will be a one to one correspondence between a physical point in space and a
computational point� except for regions where there are singularities or cuts due to
the topology� In those cases it may be necessary to map one physical point to many
computational points 	this usually occurs at computational boundaries
� With this
construction we can produce one computational code for a wide variety of physical
geometries and grid systems�

Figure �� Generalized Curvilinear Coordinate Transformations�

Chain rule expansions are used to represent the Cartesian derivatives �x and
�y of Eq� 	���
 in terms of the curvilinear derivatives where in matrix form

�� �t�x
�y

�� �
�� � 	t 
t
� 	x 
x
� 	y 
y

���� ����
��

�� 	���
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Applying Eq� 	���
 to the Navier�Stokes equations� Eq� 	���
� we have

��Q� 	t��Q� 
t��Q

� 	x��E � 
x��E � 	y��F � 
y��F �

Re�� 		x��Ev � 
x��Ev � 	y��Fv � 
y��Fv


	���


��� Metric Relations

In most cases the transformation from physical space to computational space
is not known analytically� rather it is generated numerically� That is� we usually are
provided with just the x� y coordinates of grid points and we numerically generate
the metrics 		t� 	x� 	y� 
t� 
x� 
y
 using �nite di�erences�

Reversing the role of the independent variables in the chain rule formulas� Eq�
	���
� we have�

�� � �t � x��x � y��y� �� � x��x � y��y� �� � x��x � y��y 	���


which can be written in matrix form�� ����
��

�� �
�� � x� y�
� x� y�
� x� y�

���� �t�x
�y

�� 	��



Solving Eq� 	��

 for the curvilinear derivatives in terms of the Cartesian derivatives
yields�� �t�x

�y

�� � J

�� 	x�y� � y�x�
 	�x�y� � y�x�
 	x�y� � y�x�

� y� �y�
� �x� x�

���� ����
��

�� 	���


where J�� � 	x�y��x�y�
� Evaluating Eq� 	���
 for the metric terms by comparing
to the matrix of Eq� 	���
 we �nd that

	x � Jy� � 	y � �Jx�� 	t � �x� 	x � y�	y


x � �Jy�� 
y � Jx� � 
t � �x�
x � y�
y
	���


where J is de�ned to be the metric Jacobian�
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��� Invariants of the Transformation
At this point we notice that Eqs� 	���
 are in a weak conservation law form�

That is� even though none of the �ow variables 	or more appropriately functions
of the �ow variables
 occur as coe�cients in the di�erential equations� the metrics
do� There is some argument in the literature� see for instance Hindman ����� which
advocates the use of the so called �chain rule form� since it should still have good
shock capturing properties and in some ways it is a simpler form� Here� though� we
shall restrict ourselves to the strong conservation law form which will be derived
below�

To produce the strong conservation law form we �rst multiply Eqs�	���
 by J��

and use the chain rule on all terms such as

J��	x��E � ��

�
	x
J
E

�
�E��

�
	x
J

�
	���


For simplicity� we examine only the inviscid terms� the derivation for the viscous
terms is similar� Collecting all the terms into two groups�

Term� � Term� � �

where
Term� � �� 	Q�J
 � ���		tQ� 	xE � 	yF 
�J �

� ���	
tQ� 
xE � 
yF 
�J �

Term� � �Q��� 	J��
 � ��		t�J
 � ��	
t�J
�

�E���		x�J
 � ��	
x�J
� � F ���		y�J
 � ��	
y�J
�

	���


If Term� is eliminated then the strong conservation law form of the equations
results� Term� � �� Assuming solutions such that Q �� �� E �� �� and F �� �� the
expressions

�� 	J
��
 � ��		t�J
 � ��	
t�J


��		x�J
 � ��	
x�J


��		y�J
 � ��	
y�J


	����


are de�ned as invariants of the transformation and will be shown to be analytically
zero� Substituting the metric de�nitions� Eq� 	���
� into the invariants� Eq� 	����

we have

�� 	x�y� � y�x�
 � ��	�x�y� � y�x�
 � ��	x�y� � y�x�


��	y�
 � ��	�y�
 � y�� � y��

��	�x�
 � ��	x�
 � �x�� � x��

	����


Now analytically di�erentiation is commutative and each of the above terms
then sums to zero� This eliminates Term� of Eq� 	���
 and the resulting equations
are in strong conservation law form�
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There is an important problem associated with these invariants which can be
discussed now� If Term� is evaluated for uniform �ow�

� � �� u �M�� v � �� and e �
�

�	� � �
 �
�

�
M�
�

then the resulting equations which must sum to zero 	if we require that our equations
satisfy free stream
 are exactly composed of the invariants� Eq� 	����
� Now when
numerical di�erencing is applied to these equations 	as developed in the Section V

then the numerical di�erence formulas used to evaluate the spatial di�erences of
the �uxes and the �nite di�erence forms used to calculate the metrics must satisfy
the commutative law� It is not true in general that �nite di�erence derivatives are
commutative� 	second order central di�erences are� but mixing second order and
fourth order formulas is not
� As we shall see� the central di�erence formulas used
in two�dimensions can produce consistent invariants� but in three�dimensions it is
not a straightforward procedure�

It should be at least a minimum requirement of any �nite di�erence formulation
that the �nite di�erence equations satisfy free stream �ow� Care must be taken to
insure that the �nite di�erence formulation is consistent in this area or at least we
should recognize and correct as much as possible any errors of this type� Hindman
����� Pulliam and Steger ��� and Flores et� al� ���� have investigated this area for a
variety of �nite di�erence formulations�

The Navier�Stokes equations written in generalized curvilinear coordinates are

�� bQ� �� bE � �� bF � Re����� bEv � �� bFv� 	����


where

bQ � J��
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�v
e
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U	e� p
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with

U � 	t � 	xu� 	yv� V � 
t � 
xu� 
yv 	����b


the Contravariant velocities� The viscous �ux terms are bEv � J��		xEv � 	yFv


and bFv � J��	
xEv � 
yFv
�

The stress terms� such as �xx are also transformed in terms of the 	 and 


��



derivatives where

�xx � �	�		xu� � 
xu�
� �		yv� � 
yv�

��

�xy � �		yu� � 
yu� � 	xv� � 
xv�


�yy � �	��		xu� � 
xu�
 � �		yv� � 
yv�

��

f� � u�xx � v�xy � �Pr��	� � �
��		x��a� � 
x��a
�


g� � u�xy � v�yy � �Pr��	� � �
��		y��a� � 
y��a
�


	����


with terms such as ux expanded by chain rule�

IV Thin � Layer Approximation
In high Reynolds number viscous �ows the e�ects of viscosity are concentrated

near rigid boundaries and in wake regions� Typically in computations we only have
enough grid points available to us 	due to computer storage limits
 to concentrate
grid lines near the rigid surfaces� The resulting grid systems usually have �ne grid
spacing in directions nearly normal to the surfaces and coarse grid spacing along
the surface� see Fig� ��

Figure �� Thin Viscous Layer Near Body Surface�

Even though we may program the full Navier�Stokes equations� the viscous
terms associated with derivatives along the body will not be resolved and in most
cases for attached and mildly separated �ows these terms are negligible� The terms
in the near normal will be resolved for su�ciently �ne grid spacing and these are
substantial terms�
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In boundary layer theory� appropriate scaling arguments show that streamwise
components of the viscous terms can be neglected relative to the normal terms� We
rely upon similar arguments as a justi�cation for the thin layer approximation�

The thin layer approximation requires that
�� All body surfaces be mapped onto coordinate surfaces� Speci�cally� 
 � constant

coordinate surfaces� see Fig� ��
�� Grid spacing is clustered to the body surfaces such that su�cient resolution for

a particular Reynolds number is obtained� 	 At least one or two grid points in
the sublayer
�

�� All the viscous derivatives in the 	 direction are neglected� while the terms in
the 
 direction are retained� All of the inviscid terms are used�
The thin layer approximation is similar in philosophy but not the same as the

boundary layer theory� The normal momentum equation is solved and pressure can
vary through the boundary layer�

The thin layer approximation can break down for low Reynolds numbers and
in regions of massive �ow separation� It is not a necessary step in the development
of the equations and numerical algorithm� The full Navier�Stokes equations are
incorporated in cases where su�cient resolution was provided and the physical
situation warranted it� The thin layer Navier�Stokes equations have been widely
used for a variety of applications�

��� Thin � Layer Equations
Applying the thin layer approximation to Eqs�	����
� 	����
 and Eq�	����
�

where all the viscous terms associated with 	 derivatives are neglected we obtain

�� bQ� �� bE � �� bF � Re���� bS 	���


where

bS � J��
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��� Turbulence Model
The very polular and widely used Baldwin and Lomax ���� turbulence model

has been the main workhorse for most computational e�orts� at least until recently
circa ����� It is an algebraic mixing length two�layer model included to approximate
the e�ect of turbulence� The inner layer is governed by the Prandtl mixing length
with Van Driest damping� and the outer layer follows the Clauser approximation�
Computed vorticity is used in de�ning the reference mixing length required for the
outer layer� The turbulence model is detailed by Baldwin and Lomax ���� and was
designed speci�cally for use with the thin layer approximation� The model is most
appropriate to attached and mildly separated boundary layers� No attempt is made
to model wake regions and massively separated �ows� The model is used in both
two and three dimensions with very little modi�cation� It has been very successful
for computing boundary layer growth� shock�boundary layer interaction� separation
points or lines and other boundary layer properties�

More modern turbulence models include the Johnson�King model �xx�� the one
equations models of Baldwin and Barth �xx� and Spalart and Almaras �xx�� These
models are more complicated than Baldwin and Lomax� but have been shown to
be more accuate and applicable to separated and wakes �ows� A wide variety of
two equation turbulence models are available� 	e�g� �xxxxxxxx�
 and as one quickly
�nds out in this area� no single model seems universal or completely adequate�
One aspect of using turbulence models which is often overlooked is that adequate
resolution is always required to get reasonable results reguardless of the turbulence
model employed� Typically� the inaccuracy or inadequacy of a solution is not the
fault of the turbulence model� but rather a lack of proper resolution in the viscous
and even inviscid regions of the �ow�eld�
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V� Numerical Algorithm

There are a number of considerations to weigh when choosing a numerical al�
gorithm to apply to a set of partial di�erential equations� If we restrict ourselves
to �nite di�erence schemes then the possibilities are narrowed somewhat to the two
classical approaches for time integration� explicit and implicit techniques� The mer�
its of either of these two have been extensively discussed in the literature� Explicit
methods typically require less computational work and are simpler both in deriva�
tion and application� Implicit methods� while computationally expensive� have less
stringent stability bounds 	classical stability analysis shows unconditional stability
but in practice on nonlinear problems bounds are encountered
�

Implicit numerical schemes are usually chosen because we wish to obtain solu�
tions which require �ne grid spacing for numerical resolution� and we do not want
to limit the time steps by employing a conditionally stable explicit scheme� Explicit
schemes are very useful and schemes such as MacCormack�s explicit algorithm ���
have senn a lot of use and are even popular in wide use today� The extra work
required for an implicit scheme is usually o�set by the advantages obtained by the
increased stability limits� and in general implicit schemes have been very useful and
successful for a variety of inviscid and viscous �ow�eld calculations�

With the advent of high speed vector and parallel processors one must also con�
sider the degree to which a certain algorithm can be vectorized�parallelized when
choosing a scheme� As a rule explicit schemes are more easily vectorized�parallelized
than implicit schemes� But implicit schemes can be fully vectorized and have
been sucessfully employed on parallel machines� This requires though a substantial
amount of temporary storage and a commitment to the details of data management�
see for instance� Lomax and Pulliam ��
��

Another consideration is the question of time accuracy verses non�time�accurate
steady state iteration� For unsteady� transient problems we wish to employ time
accurate methods� initialize the �ow with some realizable state and integrate for�
ward in time with time steps commensurate with the unsteady phenomena which
is being calculated� Both implicit and explicit methods are capable of computing
time accurately� In steady state calculation we wish to integrate from some arbi�
trary state to the asymptotic solution in any manner which will get us there in the
least amount of computational work� Non�time�accurate techniques 	for instance
relaxation methods� variable time steps� matrix preconditioning� large time steps

can be employed as long as they are convergent and do not distort the steady state
equations so as to produce inaccurate results� The methods presented below can be
employed either for time accurate calculations or for steady state rapidly convergent
solutions�

The algorithm to be presented is an implicit approximate factorization �nite
di�erence scheme which can be either �rst or second order accurate in time� Local
time linearizations are applied to the nonlinear terms and an approximate factor�
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ization of the two�dimensional implicit operator is used to produce locally one�
dimensional operators� This results in block tridiagonal matrices� which are easy
to solve� The spatial derivative terms are approximated with second order central
di�erences� Explicit and implicit arti�cial dissipation terms are added to achieve
nonlinear stability� A spatially variable time step is used to accelerate convergence
for steady�state calculations� A diagonal form of the algorithm is also discussed�
which produces a computationally e�cient modi�cation of the standard algorithm
where the diagonalization results in scalar tridiagonal or pentadiagonal operators
in place of the block operators� This diagonal form of the algorithm produces a
robust� rapid and versatile scheme for steady state calculations� We also discuss
the details of a matrix reduction scheme� due to Barth and Steger ���� where the
block matrices of the standard implicit scheme are reduced to sets of lower rank
matrices 	e�g� two scalars and a � � � in ��D
�


�� Implicit Time Di�erencing
Consider Eq� 	���
 	the derivation will be done for the thin layer equations but

is easily extended to the full Navier�Stokes
 and apply an implicit three point time
di�erencing scheme of the form� Warming and Beam ����
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where � bQn � bQn�� � bQn and bQn � bQ	n�t
� The parameters � and 
 can be
chosen to produce di�erent schemes of either �rst or second order accuracy in time�

For � � � and 
 � �� we have the �rst order Euler implicit scheme� and for
� � � and 
 � ���� the three point implicit scheme�

Let us restrict ourselves to the �rst order in time scheme 	although all of the
subsequent development can easily be extended to any second order scheme formed
from Eq� 	
��

� Applying Eq� 	
��
 to Eq� 	���
� results in

bQn�� � bQn � h
	 bEn��

� � bFn��
� �Re�� bSn���



� � 	
��


with h � �t�
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�� Local Time Linearizations
We wish to solve Eq� 	
��
 for bQn�� given bQn� The �ux vectors bE � bF andbS are nonlinear functions of bQ and therefore Eq� 	
��
 is nonlinear in bQn��� The

nonlinear terms are linearized in time about bQn by a Taylor series such that

bEn�� � bEn � bAn� bQn �O	h�
bFn�� � bFn � bBn� bQn �O	h�


Re�� bSn�� � Re��
hbSn � cMn� bQn


i
�O	h�


	
��


where bA � � bE�� bQ � bB � � bF�� bQ and cM � � bS�� bQ are the �ux Jacobians and � bQn

is O	h
�
Note that the linearizations are second order accurate and so if a second or�

der time scheme had been chosen the linearizations would not degrade the time
accuracy�

The Jacobian matrices are bA or bB ����
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for bA or bB� respectively�
The viscous �ux Jacobian is
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Applying Eqs� 	
��
 to Eq� 	
��
 and combining the � bQn terms produces the
�delta form� of the algorithmh

I � h�� bAn � h�� bBn �Re��h��cMi
� bQn �

�h
	
�� bEn � �� bFn �Re���� bSn
 	
��


This is the unfactored form of the block algorithm� We shall call the right hand
side of Eq� 	
��
 the �explicit� part and the left hand side the �implicit� part of the
algorithm�


�� Space Di�erencing
The next step is to take the continuous di�erential operators �� and �� and

approximate them with �nite di�erence operators on a discrete mesh�
Introducing a grid of mesh points 	j� k
� variables are de�ned at mesh points

as

uj�k �� u	j�	� k�

 	
��


The grid spacing in the computational domain is chosen to be unity so that

�	 � � and �
 � �

Second order central di�erence operators can be used where for example�

��uj�k � 	uj���k � uj���k
 �� and ��uj�k � 	uj�k�� � uj�k��
 �� 	
��a


For the viscous derivatives the terms take the form

�� 	�j�k���j�k
 	
��b


which is di�erenced in the compact three point form as

�	�j�k�� � �j�k
 	�j�k�� � �j�k
� 	�j�k � �j�k��
 	�j�k � �j�k��
� �� 	
��c


The choice of the type and order of the spatial di�erencing is important both
in terms of accuracy and stability� In most applications second order accuracy has
proven to be su�cient provided the grid resolution is reasonable� The choices for
di�erencing type include central and upwind operators� These choices are dictated
by stability� and in the next section we discuss what motivates certain choices�
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�� Stability Analysis of Di�erence Forms
The choice of the type of di�erence forms to use for the Euler equations can

be justi�ed by a linear stability analysis� For simplicity� let us examine a one
dimensional coupled system of linear equations of the form

Qt �AQx � � 	
��


where A is analogous to the �ux Jacobian matrix� Assume that A has a complete
set of real eigenvalues and eigenvectors 	a property that the Euler �ux Jacobians
have
 then

 � X��AX 	
���


Multiplying Eq� 	
��
 by X�� and combining terms using Eq� 	
���
 we have

X��Qt �X��AXX��Qx �Wt �  Wx � � 	
���


with W � X��Q� Since A is linear and constant the eigenvector matrix X�� can
be brought through the derivatives�

The resulting system is now uncoupled and we can examine the representative
model equation

wt � �wx � � 	
���


where � represents an eigenvalue of A�
We shall apply di�erent �nite di�erence approximations for the spatial deriva�

tive and use Fourier analysis to determine conditions on � for stability�
If the second order central di�erence operator is applied to the model equation

one gets
	wj
t � � 	wj�� � wj��
 �	��x
 � � 	
���


where j is the spatial index� This is the ODE 	ordinary di�erential equation

approach to the analysis� since now we are dealing with a system of ODE�s�

Classical Fourier analysis can be performed by assuming periodic boundary
conditions and a solution of the form

w	xj� t
 � e�tei�j�x 	
���


with i �
p�� and x � j�x�

Substituting this into Eq� 	
���
 yields

�e�tei�j�x � �
	
e�tei��j��	�x � e�tei��j��	�x



�	��x
 � � 	
��



The stability of the ODE is dependent on the sign of �	�
 	the real part
�
Obviously� if �	�
 � � then w	x� t
 will grow unboundedly with time�
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For Eq� 	
��



� � �� �ei��x � e�i��x
�
�	��x
 � ��i sin	��x
��x 	
���


Since � is pure imaginary 	�	�
 � �
 the scheme is stable in the ODE sense inde�
pendent of the sign of ��

If one�sided di�erence formulas are employed� conditions on � arise� For sim�
plicity� let us consider �rst order one�sided di�erences�

Applying forward di�erencing to the model Eq� 	
���
 gives

	wj
t � � 	wj�� �wj
 ��x � � 	
���


Fourier analysis produces

� � �
�
ei��x � �� ��x � � 	
���


so that�

� � �
�
�� ei��x

�
��x � � ��� cos 	��x
 � i sin 	��x
� ��x 	
���


Since cos 	��x
 is bounded by �� �	�
 will be less than zero if � � �� So
for forward spatial di�erencing � must be less than zero for stability� A similar
argument for �rst order backward di�erencing shows that � � � for stability� It
can be shown that for higher order central and one sided di�erences the stability
requirements on � remain the same�

These results have a direct application to the choice of di�erencing for the
Euler equations� As we shall see below the inviscid �ux Jacobians have eigenvalues
	equivalent to �
 with both positive and negative sign� In their basic form the
only stable spatial di�erencing is central di�erencing� but as we shall see when �ux
splitting is used or when the eigenvalues can be restricted to one sign then upwind
di�erencing can be employed� A class of upwind schemes shall be discussed in
Section ����


�
 Matrix Form of Unfactored Algorithm
We now turn to examining the matrices we get when di�erence formulas are

applied to the implicit algorithm� It is always instructive to examine the matrix
structure of any �nite di�erence equation� With the application of central di�erences
to Eqs�	
��
 it is easy to show that the implicit algorithm produces a large banded
system of algebraic equations� Let the mesh size in 	 be Jmax and in 
 Kmax�

��



Then the banded matrix is a 	Jmax �Kmax ��
 � 	Jmax �Kmax ��
 square matrix
of the form��������������������
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where the variables have been ordered with j running �rst and then k�

The matrix is sparse but it would be very expensive 	computationally
 to solve
the algebraic system� For instance� for a reasonable two�dimensional calculation of
transonic �ow past an airfoil we could use approximately �� points in the 	 direction
and �� points in the 
 direction� The resulting algebraic system is a ������ � ������
matrix problem to be solved and although we could take advantage of its banded
sparse structure it would still be very costly in terms of both CPU time and storage�


�� Approximate Factorization

As we have seen� the integration of the full two�dimensional operator can be
very expensive� One way to simplify the solution process is to introduce an ap�
proximate factorization of the two�dimensional operator into two one�dimensional
operators� The implicit side of Eq� 	
��
 can be written ash

I � h�� bAn � h�� bBn � hRe����cMn
i
� bQn �h

I � h�� bAn
i h

I � h�� bBn � hRe����cMn
i
� bQn

�h��� bAn�� bBn� bQn � h�Re���� bAn��cMn� bQn

	
���


Noting that � bQn is O	h
� one sees that the cross terms 	h� terms
 are second
order in time and can be neglected without lowereing the time accuracy below
second order�
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The resulting factored form of the algorithm ish
I � h�� bAn

i h
I � h�� bBn � hRe����cMn

i
� bQn �

�h
h
�� bEn � �� bFn �Re���� bSni 	
���


We now have two implicit operators each of which is block tridiagonal� The
structure of the block tridiagonal matrix is������������

� � � �
� � � � � �

� � � � � �
� � �

� � �
� � �

�A I A
� � � � � �

� � � � � �
� � � �

������������
	
���


Note that the thin layer implicit viscous term cM is kept with the 
 factor�
Since it is a three point stencil� it will not a�ect the tridiagonal structure� Also
when vectorization and parallization issues are considered the one dimensional form
of the factored algorithm will be advantageous�

The solution algorithm now consists of two one�dimensional sweeps� one in the 	
and one in the 
 direction� The block matrix size is now at most 	max�Jmax�Kmax��
�
 � 	max�Jmax�Kmax� � �
� Each step requires the solution of a linear system
involving a block tridiagonal which is solved by block LUD 	lower�upper decompo�
sition
� The resulting solution process is much more economical than the unfactored
algorithm in terms of computer storage and CPU time�


�� Reduced Forms of The Implicit Algorithm
Even though the factorization has improved the e�ciency of the block implicit

algorithm the major expense of the implicit scheme still resides in the block tridi�
agonal inversions� Compared to standard explicit algorithms the implicit scheme
is still computationally expensive� The increased stability bounds of the implicit
scheme o�sets some of this disadvantage especially for problems where re�ned grids
are used� In general� this holds true for time accurate applications where mesh
re�nement would unduly restrict the time steps for explicit schemes� but develop�
ments in multigrid techniques� see Jespersen ���� for a review� applied to steady
state problems requires us to reexamine the implicit schemes� One way to capture
back the advantage is to make the implicit scheme less computationally expensive�
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we will discuss other ways� such as accelerated convergence and improved accuracy�
in later sections�

To improve the e�ciency of a numerical scheme we can modify or simplify the
algorithm so that the computational work is decreased� Most of the computational
work for the implicit algorithm is tied to the block tridiagonal solution process�
One way to reduce that work would be to reduce the block size for the tridiago�
nals� This can be accomplished by reducing the equation set from four variables
	density� x�momentum� y�momentum� and energy
 to three variables 	density and
the two momentum
 by assuming constant total enthalpy� H � 	e � p
�� � H


or similar thermodynamic approximations� The energy equation is then replace by
the thermodynamic relation and the simpli�ed set of equations can be solved� Such
approximations can be restrictive in terms of the physical situations where they can
be applied�


��a Diagonal Form
The computational work can also be decreased by introducing a diagonalization

of the blocks in the implicit operators as developed by Pulliam and Chaussee �����

The eigensystem of the �ux Jacobians bA and bB are used in this construction� For
now lets us again restrict ourselves just to the Euler equations� the application to
the Navier�Stokes is discussed later�

The �ux Jacobians bA and bB each have real eigenvalues and a complete set of
eigenvectors� Therefore� the Jacobian matrices can be diagonalized� see Warming�
Beam and Hyett �����

 � � T���
bAT� and  � � T���

bBT� 	
���


with T� the matrix whose columns are the eigenvectors of bA and T� the correspond�

ing eigenvector matrix for bB� They are written out in the Appendix�
Here we take the factored algorithm in delta form� Eq� 	
���
 and replace bA

and bB with their eigensystem decompositions�h
T� T

��
� � h ��
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� the explicit right hand side of Eq� 	
���
 � bRn�
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At this point Eq� 	
���
 and 	
��

 are equivalent� A modi�ed form of Eq�
	
��

 can be obtained by factoring the T� and T� eigenvector matrices outside the
spatial derivative terms �� and ��� The eigenvector matrices are functions of 	 and

 and therefore this modi�cation reduces the time accuracy to at most �rst order
in time� as shown in ����� The resulting equations are

T� �I � h ��  �� bN �I � h ��  � � T
��
� � bQn � bRn 	
���


��



where bN � T��� T�� see Appendix�
The explicit side of the diagonal algorithm 	the steady�state �nite di�erence

equations
 is exactly the same as in the original algorithm� Eq� 	
���
� The modi��
cations are restricted to the implicit side and so if the diagonal algorithm converges�
the steady�state solution will be identical to one obtained with the unmodi�ed al�
gorithm� In fact� linear stability analysis would show that the diagonal algorithm
has exactly the same unconditional stability as the original algorithm� 	This is be�
cause the linear stability analysis assumes constant coe�cients and diagonalizes the
blocks to scalars� the diagonal algorithm then reduces to the unmodi�ed algorithm�

The modi�cation 	pulling the eigenvector matrices outside the spatial derivatives

of the implicit operator does a�ect the time accuracy of the algorithm� It reduces
the scheme to at most �rst order in time and also gives time accurate shock calcu�
lations a nonconservative feature� i�e�� errors in shock speeds and shock jumps� see
����� The steady�state is in full conservation law form since the steady�state equa�
tions are unmodi�ed� Also� computational experiments by Pulliam and Chaussee
���� have shown that the convergence and stability limits of the diagonal algorithm
are similar to that of the unmodi�ed algorithm�

The diagonal algorithm reduces the block tridiagonal inversion to � � � matrix
multiplies and scalar tridiagonal inversions� The operation count associated with
the implicit side of the full block algorithm is ��� multiplies� �
� adds� and ��
divides� a total of ��� operations� while the diagonal algorithm requires ��� multi�
plies� ��
 adds� and �� divides or ��� operations� Adding in the explicit side and
other overhead such as I�O 	input�output
 and initialization� the overall savings in
computational work can be as high as ��!� In fact the computational work can be
further decreased by noting that the �rst two eigenvalues of the system are identical
	see Appendix
� This allows us to combine the coe�cient calculations and part of
the inversion work for the �rst two scalar operators�

The diagonal algorithm as presented above is really only rigorously valid for the
Euler equations� This is because we have neglected the implicit linearization of the
viscous �ux bSn in the implicit operator for the 
 direction� The viscous �ux JacobiancMn is not simultaneously diagonalizable with the �ux Jacobian bBn and therefore to
retain the full diagonalization we neglect it� For viscous �ows we have investigated
four options� One possibility is the use the block tridiagonal algorithm in the 

direction and include the viscous Jacobian cMn� This increases the computational
work and restricts us from using some of the convergence acceleration techniques
which will be discussed below� Another option is to introduce a third factor to the
implicit side of Eq� 	���
 where we useh

I � hRe����cMn
i

	
���


This again increases the computational work since we now have an added block
tridiagonal inversion� We take these measures though because of the questionable
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stability of just completely neglecting the implicit viscous terms� The third option
is to throw caution to the wind and actually neglect the viscous Jacobian� thereby
gaining the increase e�ciency of the diagonal algorithm� As long as the algorithm
remains stable and convergent� the steady state obtained is identical for all three
options since the explicit side is unchanged� The fourth option is to include a
diagonal term on the implicit side which is an approximation to the viscous Jacobian
eigenvalues� The estimate 	taken from an examination of the terms of the JacobiancM 
 currently used is

�v		
 � �Re��J��
�
	�x � 	�y

�
J���

�v	

 � �Re��J��
�

�x � 
�y

�
J���

	
���a


which are added to the appropriate implicit operators in Eq� 	
���
 with a di�er�
encing stencil taken from Eq� 	
��b
� The new form of the diagonal allgorithm is
given as

T� �I � h ��  � � h I ����v		
� bN �I � h ��  � � h I ����v	

� T
��
� � bQn � bRn

	
���b

The terms in Eq� 	
���a
 which are contained under the overbar are distinguished
from the J��� because in the application to the di�erence forms require those
terms to be averaged fashion as in Eq� 	
��c
� The 	 term is not added if the thin
layer approximation is used� In all the above cases the explicit viscous operator is
unchanged from the standard algorithm�

We have compared the four options for a number of test cases� For the �rst
option� block tridiagonal with second order implicit dissipation the convergence rate
was the slowest� For the second option� the third factor� fast convergence rates and
stability were obtained at the expense of more computation� The third option�
neglecting the viscous �ux Jacobian� produced identical stability and convergence
as the second option in most cases but required less computational work� In the
fourth option 	which is the recommended form
 the convergence rates are typically
the best and the overall robustness of a numerical code is improved� In all cases
the converged solutions are identical�


��b Pressure�Velocity Splitting
Another way is to reduce the block size by similarity transformations as pro�

posed by Steger ����� This was originally restricted to Cartesian variables� Barth
and Steger ���� have removed some of this restriction and developed an algorithm
where two scalar tridiagonals and one block two by two tridiagonal inversion is
required� The basic concept can be demonstrated in two�dimensional Cartesian
coordinates� see Barth and Steger ���� for the extension to generalized coordinates�

��



The development of the sound speed � velocity splitting begins by considering
the nonconservative form of the Euler equations

�tR�M�xR �N�yR � � 	
���a


where

R �

�B�
�
u
v
p

�CA � M �

���
u � � �
� u � ���

� � u �
� �p � u

��� � N �

���
v � � �
� v � �
� � v ���

� � �p v

��� 	
���b


The eigenvalues of coe�cient matrices� M and N� are the usual characteristic speeds

 M � �u� u� u � c� u� c� �  N � �v� v� v � c� v � c� 	
���


These coe�cient matrices can each be split into two submatrices� one derived
from the velocity part of the eigenvalues and the other from the sound speed part
of the eigenvalues� A particular matrix splitting 	there are many possibilities
 was
chosen to satisfy the following conditions

 	M
 �  	Mu
 �  	Mc
�  	Mu
 � 	u� u� u� u
�  	Mc
 � 	�� �� c��c

 	N
 �  	Nv
 �  	Nc
�  	Nv
 � 	v� v� v� v
�  	Nc
 � 	�� �� c��c


Speci�cally� M and N are split as

M �Mu �Mc �

���
u � � �
� u � �
� � u �
� � � u

����
���
� � � �
� � � ���

� � � �
� �p � �

���

N � Nv �Nc �

���
v � � �
� v � �
� � v �
� � � v

����
���
� � � �
� � � �
� � � ���

� � �p �

��� 	
���


Given the coe�cient matrices M and N� a similarity transformation exists that
transforms these matrices into their conservative counterpart� the �ux Jacobians
A and B� A � SMS��� B � SNS�� where S � �Q

�R
� Using this similarity

transformation� Mc and Nc transform to Ac � SMcS
�� and Bc � SNcS

�� written
out as

Ac �	� � �


���
� � � �

	u� � v�
�� �u �v �
� � � �
ac�� ac�� �uv u

��� �

Bc �	� � �


���
� � � �
� � � �

	u� � v�
�� �u �v �
bc�� �uv bc�� v

���
	
���


�




where

ac�� � �u	u� � v�
���� �up���	� � �
��� ac�� � �p���	� � �
��� u�

bc�� � �v	u� � v�
��� � �vp���	� � �
��� bc�� � �p���	� � �
��� v�

while Au and Bv are

Au � A�Ac� Bv � B �Bc 	
���


This splitting produces matrices Au and Bv that are more complex than A and B�
But it is found that Q is an eigenvector of Au and Bv� i�e�

AuQ � uQ� BvQ � vQ 	
���a


which motivates the following substitution

AQ � 	uI �Ac
Q� BQ � 	vI �Bc
Q 	
���b


Insertion of Eq� 	
���b
 into the equations for local linearization of the Jaco�
bians� the Cartesian equivalent of Eqs� 	
��
� produces

En�� � En � 	uI �Ac

n	Qn�� �Qn
 	
��
a


Fn�� � Fn � 	vI �Bc

n	Qn�� �Qn
 	
��
b


Utilizing these linearizations in the basic algorithm equation 	
���
 yields

LxLy�Q � ��t ��xEn � �yF
n� 	
���a


with
Lx � �I � ��t�x	uI �Ac


n� 	
���b


Ly � �I � ��t�y	vI �Bc

n� 	
���c


The end result of this splitting is that the new operators Lx and Ly form
matrices that no longer require ��� block tridiagonal inversions� In matrix operator
form� we have

Lx �

���
� � � �
� � � �
� � � �
� � � �

���� ��t�x

���
u � � �
ac�� u� ac�� ac�� ac��
� � u �
ac�� ac�� ac�� u� ac��

��� 	
���a


Ly �

���
� � � �
� � � �
� � � �
� � � �

���� ��t�y

���
v � � �
� v � �
bc�� bc�� v � bc�� bc��
bc�� bc�� bc�� v � bc��

��� 	
���b


��



where ac and bc are the respective elements of Ac and Bc given by Eq� 	
���
�
In the Lx operator� for example� the �rst and third rows decouple from the

system and can be solved as scalar tridiagonal matrices with their respective right�
hand�sides� Once these rows are solved� the elements of the �rst and third columns
can be moved to the right�hand�side� The second and fourth equations remain
coupled and are solved as a � � � block tridiagonal matrix� The block decoupling
of the Ly operator is even more conspicuous and is inverted 	i�e�� solved for
 in a
similar manner�

The use of the pressure�velocity splitting has substantially reduced the compu�
tational work over the basic block implicit scheme� A typical ��� block tridiagonal
requires 

 operations per point� so the overall inversion� including the two scalar
tridiagonals� requires �� operations per entry� Because the two scalar tridiagonals
have identical coe�cients� this work can be even further cut by solving them to�
gether�

The matrix splitting produces the �ux vectors

E � AQ � uIQ�AcQ � Eu �Ec� F � BQ � vIQ�BcQ � Fv � Fc 	
���


where

Eu �

�B�
�u
�u�

�vu
ue

�CA � Ec �

�B�
�
p
�
up

�CA � Fv �

�B�
�v
�uv
�v�

ve

�CA � Fc �

�B�
�
�
p
vp

�CA
Note that the Jacobians of Ec and Fc are not Ac and Bc as de�ned above�

Usually� the use of implicit linearizations which are not the Jacobians of the explicit
�ux vectors leads to restricted stability bounds or unconditionally instability� Linear
stability analysis presented by Barth and Steger� as well as numerical experiment
have shown though that the use of Ac and Bc leads to unconditional stability�

The generalized coordinate form of pressure�velocity splitting is developed in
Barth and Steger ����� A rotation transformation is used to align the momentum
equations with generalized coordinate directions� e�g� in the 	 direction they use

C� �

����
� � � �
� �x

L�

�y
L�

�

� � �y
L�

�x
L�

�
� � � �

���� 	
���


with L� �
q
	�x � 	�y � This produces the transformed splitting matrix

��



eAc � 	� � �


���
� � � �

L��u
��v�	
� �U �bV L�
� � � �
ac�� ac�� �UbV

L�
U

��� 	
���


where

ac�� � U �	u� � v�
��� c�

	� � �
� �� ac�� � L�
c�

	� � �
� �
U�

L�

with bU � 
yu� 
xv�
The structure of Eq� 	
���
 is identical to Eq� 	
���
 so that the implicit

operators in generalized coordinates are again reducible to � scalars and one � � �
block operator for each direction� Barth and Steger also discuss the application of
pressure�velocity splitting to the Navier�Stokes equations�


�� Metric Di�erencing and Invariants
Once a �uid dynamics code has been written� there are a number of �rst order

checks which must be passed to assess accuracy and e�ciency� A �rst test is that
the code recovers free stream or uniform �ow� In the case of arbitrary curvilinear
coordinates and general �nite di�erences this is not a trivial exercise� By construc�
tion �nite volume schemes automatically balance �uxes and therefore they are not
as susceptible to this type of error� There are a number of examples in the literature
where �nite volume schemes have been employed� see Jameson et�al� ��� or Rizzi
and Erikson �
�� We prefer to employ �nite di�erence formulations since they are
usually more �exible� especially in the implementation of boundary conditions and
in obtaining higher order accuracy� In this case the di�erencing used to form the
�ux derivatives and the di�erencing used to form the metrics must obey certain
relations if free stream is to be captured�

As discussed in Section III� applying free stream or constant �ow reduces the
�ow equations to the invariants of Eq� 	����
� Examining one of these terms ��	y�
�
��	�y�
 where central di�erences are used to form the metric terms� and using
central di�erencing for the �ux derivatives� we have�

�c��
c
�y � �c��

c
�y �

�yj���k�� � yj���k�� � yj���k�� � yj���k�����

���yj���k�� � yj���k�� � yj���k�� � yj���k����� � �

	
���


We see that central di�erencing in two dimension does satisfy the invariant
relations� This becomes obvious when one realizes that second order central di�er�
encing operators commute� i�e� �c��

c
� � �c��

c
�� This is not true for general di�erences�

��



e�g� �b��
c
� �� �c��

b
�� Take the case of central di�erencing to form metrics and one sided

backward di�erencing for the �uxes� Then we have�

r���y �r���y �

�yj�k�� � yj���k�� � yj�k�� � yj���k�����

���yj���k � yj���k�� � yj���k � yj���k����� �� �

	
���


The error associated with not satisfying the invariant relations is truncation
error equal to or less than the lowest order accurate operator used� The error can
be eliminated by modifying the di�erence formulas� for example introducing simple
averages� The equivalent relationships for three dimensions can be very complicated�
In most cases the error introduced is small except in regions of large mesh spacing
or large distorted cells 	high aspect ratios
� It should be stressed though� that the
satisfaction of the invariant relations is at least a high priority for any �ow code�
Hindman ���� has investigated this area for the Euler equations and Flores et�al� ����
give an interesting account of similar problems and solutions for the conservative
full potential equations�

��



VI� Arti�cial Dissipation Added to Implicit Schemes
Even though linear stability analysis shows unconditional stability for the im�

plicit algorithm� in practice stability bounds are encountered� This is especially
true in strongly nonlinear cases� such as �ows with shocks�

Whenever discrete methods are used to �capture� shocks 	as opposed to �tting
them
� or to compute high Reynolds number viscous behavior� scales of motion
appear which cannot be resolved by the numerics� These can be brought about
by the nonlinear interactions in the convection terms of the momentum equations�
If scale is represented by wave length or frequency� it can be easily shown that
two waves interact as products to form a wave of higher frequency 	the sum of the
original two
 and one of lower frequency 	the di�erence
� The lower frequencies do
not cause a problem� but the continual cascading into higher and higher frequencies
does� It is accounted for physically by shock formation 	the harmonic analysis
of a discontinuity contains all frequencies 
 or by viscous dissipation of the very
high wave numbers� In numerical computations it can not be ignored and must
be accounted for in the algorithm constructed� In any �nite discrete mesh the
cascading frequencies can eventually exceed the capacity of the mesh resolution at
which point they can either� a
 alias back into the lower frequencies or b
 pile up
at the higher frequency side� In either case� if uncontrolled� these terms can lead to
serious inaccuracies and possible numerical instability�

The most common way of coping with the high�frequency cascade is to add to
the complete algorithm some form of numerical dissipation with an error level that
does not interfere with the accuracy of any physical viscous e�ects� This can be
done in a variety of ways�

��� Constant Coe�cient Implicit and Explicit Dissipation
Historically� in the class of implicit �nite di�erence codes developed in the mid

�����s� a common procedure was to add explicit fourth order arti�cial dissipation
to the central di�erence algorithm of the form

��e�tJ���	r���

� � 	r���


��J bQn 	���a


which is added to the right�hand side of Eq� 	
���
 and implicit second�order smooth�
ing

��i�tJ��r���J� ��i�tJ��r���J 	���b


which was inserted into the respective implicit block operators� Second order im�
plicit dissipation was used to keep the block implicit operators tridiagonal� The
di�erence operators are de�ned as

r�qj�k � qj�k � qj���k� ��qj�k � qj���k � qj�k

r�qj�k � qj�k � qj�k��� ��qj�k � qj�k�� � qj�k
	���


��



and are applied at all interior points� The parameter �e is chosen to be O	�
 and
�i � ��e� The smoothing terms are scaled with �t which makes the steady state
independent of the time step�

It is important to assess the e�ect on stability when these terms are added�
In Section ���� we provide a linear analysis of the e�ect of added dissipation on
stability� We summarize the results here� In the original development of the implicit
algorithm we only added in the explicit dissipation� but this lead to a linear stability
bound which was dependent on the magnitude of �e�t� The implicit second order
term was added to eliminate this stability bound� The proper approach would be
to make the fourth order dissipation implicit� This would then necessitate the use
of block pentadiagonal solvers which is too computationally expensive� The second
order implicit dissipation stabilizes the algorithm and allows us to retain block
tridiagonal inversions� Linear analysis shows that if �i � �e then unconditional
stability is obtained� It should be noted that in practice for nonlinear problems the
total algorithm has large but conditional stability bounds�

Beam and Bailey ���� suggest that while the implicit second order dissipation
improves the practical stability bound� the use of fourth order implicit dissipation
matching the explicit terms produces larger stability bounds and enhanced conver�
gence� This is consistent with a concept which I will discuss in more detail below�
That is� maximum stability bounds and optimal convergence rates are only achieved
if we properly linearize the explicit side of the algorithm� In this case a proper lin�
earization of the explicit dissipation produces improved stability and convergence�
Beam and Bailey employed a block pentasolver which greatly increased the compu�
tational work and storage� We take advantage of the diagonal algorithm to produce
a much more e�cient scheme� Within the framework of the diagonal scheme we
can replace the four scalar tridiagonals with scalar pentadiagonals which is just a
minor increase in computational work� The resulting scheme has the advantage of
increased stability bounds and convergence rates with the total computation work
still less than the standard block tridiagonal scheme� Computational experiments
demonstrate the increased e�ciency and stability�

The approach of adding a constant coe�cient fourth order explicit dissipation
can produce some problems which are only evident in the case of re�ned meshes�
Initially� because of computer limitations we only employed coarse grids and this
type of dissipation was su�cient to produce stability and limited accuracy� With
the advent of more powerful computers we have gone to grid re�nement especially
to resolve shocks� The use of the above type of fourth order dissipation with re�ne
meshes produces wild oscillations near shocks even in cases where the computation
is completely stable and converged� In Fig� �� we show a converged solution for a
NACA ���� airfoil at a transonic Mach number� M� � ��� and angle of attack�
� � �� isolating the region near the shock�

As can be seen� the solution seems perfectly �ne except in the region of the
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Figure �� Coe�cient of Pressure Showing Oscillations at Shock�

shock where a large every other point oscillation is evident� Varying the coe�cient
of arti�cial dissipation over a fairly wide range did not alter the nature of this
oscillation� This is obviously an undesirable result which can be eliminated as
shown below�

��� The Upwind Connection to Arti�cial Dissipation

In the early �����s a number of schemes were developed based on upwind
di�erencing� The �ux split schemes of Steger and Warming ����� Roe ����� and
Van Leer ��
� employ a decomposition of the �ux vectors in such a way that each
element can be stably di�erenced in an upwind fashion� Other schemes of a similar
nature but based on complicated theories are the �ux di�erence scheme of Osher and
Chakravarthy ���� and Harten�s TVD methods ����� These schemes all claim 	with
good justi�cation
 to be physically consistent since they follow in some sense the
characteristics of the �ow� They in general can be shown to produce sharp oscillation
free shocks without added arti�cial dissipation� They are� though� complicated
schemes which are just now being applied to complicated �ow�eld situations� Also
these scheme have an inherent amount of internal dissipation� due to the one sided

��



di�erences� which cannot be modi�ed or decreased� It may be advantageous to have
the �exibility of a simple central di�erence scheme with a controllable amount of
arti�cial dissipation�

It can be shown 	as done below
 that the upwind schemes have an equivalence
to central di�erence schemes with added dissipation� The central schemes are much
simpler and more �exible and are therefore desirable if the dissipation can be added
in an analogous fashion to the upwind schemes�

The plus � minus �ux split method of Steger and Warming ���� will be used
here to demonstrate the dissipative nature of upwind schemes� The approach taken
is to split the eigenvalue matrix  of the �ux Jacobians into two matrices� one
with all positive eigenvalues and the other with all negative eigenvalues� Then the
similarity transformations X or Y are used to form new matrices A�� A� and B��
B�� Formally�

A � X AX
�� � X	 �A � 

�
A
X

�� � A� �A� 	���a


with

 �A �
 A 	 j Aj

�
	���b


Here� j j implies that we take the absolute values of the elements of  � The two
matrices� A� and A� have by construction all positive and all negative eigenvalues�
respectively�

New �ux vectors can be constructed as

E �AQ � 	A� �A�
Q � E� �E�

F �BQ � 	B� �B�
Q � F� � F�
	��



Di�erent type of spatial di�erencing can now be used for each of the new �ux
vectors� One stable form is to use one sided backward di�erencing for the positive
terms and one sided forward di�erencing for the negative terms� The one�sided
di�erence operators are usually either �rst order accurate

rb
� uj�k �

uj�k � uj���k
�	

and �f
� uj�k �

uj���k � uj�k
�	

	���a


or second order accurate

�b� uj�k �
�
� uj�k � �uj���k � �

� uj���k

�	

�f� uj�k �
� �

� uj�k � �uj���k � �
� uj���k

�	

	���b


��



Similar expressions are used for the 
 derivatives� Note that �	 � �� bull will
appear in formulas where its presence conveys meaning�

The plus�minus matrices� A� and A� can be written as

A� � X

�
 	 j j
�

�
X�� �

A	 jAj
�

	���a


which gives

E� � A�Q �
A

�
Q	 jAj

�
Q �

E

�
	 jAj

�
Q 	���b


Similar expressions are obtainable for the B matrices and �ux vector F �
Examining the �ux derivative

�b�E
� � �f�E

� 	���a


where second order one sided di�erence approximations are chosen

�b� � 	�I � �E�� � E��
�	��	

�f� � 	��I � �E�� � E��
�	��	
 	���b


with E i the shift operator� i�e�� E�iuj � uj�i�
Combining Eqs� 	���b
 and 	���
 we have

�

�

h
	�b� � �f� 
E � 	�

b
� � �f� 
jAjQ

i
	���


for the di�erence equation�
It is easily shown that

	�b� � �f� 
�� � 	�E�� � �E�� � �E�� � E��
�	��	
 � �� 	����a


which is a second order central di�erence operator� but not ��� The other term of
Eq� 	���
 is of more interest� where

	�b� � �f� 
�� � 	E�� � �E�� � �I � �E�� � E��
�	��	
 � �

��	
	��r�


� 	����b


which is a fourth order di�erence stencil� The di�erence operators are de�ne in Eq�
	���
�

Now Eq� 	���
 can be written as�
��E �

�

��	
	��r�


�jAjQ
�

	����a


��



The form now is a second order central di�erence term plus fourth order dissipation�
The dissipative term is a natural consequence of the upwind di�erencing� It is
interesting to note that the central di�erence term Eq� 	����a
 is not the standard
three point di�erence� If �rst order formulas are employed for the upwind di�erences
then a similar analysis would produce the standard second order three point central
di�erencing plus a second order dissipative term� For instance� Eq� 	����a
 is replace
by �

��E � �

��	
	��r�
jAjQ

�
	����b


We note a number of things from the form of Eqs� 	����
 which can guide us
in developing arti�cial dissipation models for a central di�erence scheme� Adding
fourth order dissipation to a central di�erence produces the equivalent of some
second order upwind scheme� The use of second order dissipation can produce a
�rst order upwind equivalent� Research has shown that applying �ux limiters to
upwind schemes and some of the TVD concepts suggest that the best approach
for an upwind algorithm is to use a locally �rst order upwind di�erence at a shock
and second order elsewhere� This can be accomplished by some switching and
transitioning of second order and fourth order dissipation added to a central scheme�
The coe�cients for the dissipation parts of Eq� 	����
 suggest some sort of �ux
Jacobian scaling where for instance a spectral radius of the Jacobians could be
used�

��� Nonlinear Arti�cial Dissipation Model
As seen from the previous analysis a mixed second and fourth order dissipation

model with appropriate coe�cients should produce a scheme with good shock cap�
turing capabilities� Jameson et�al� ��� has employed a dissipative model of such a
form where second and fourth order dissipation are combined� The model rewritten
in our notation is

r�

	
�j���kJ

��
j���k � �j�kJ

��
j�k


	
�
��	
j�k��Qj�k � �

��	
j�k��r���Qj�k



	����


with
�
��	
j�k ����tmax	"j���k�"j�k�"j���k


"j�k �
jpj���k � �pj�k � pj���kj
jpj���k � �pj�k � pj���kj

�
��	
j�k �max	�� ���t� �

��	
j�k


	����


where typical values of the constants are �� � ��� and �� � ������ Similar terms
are used in the 
 direction� The term �j�k is a spectral radius scaling and is de�ned

�




as

�j�k � jU j � a
q
	�x � 	�y 	����


which is the spectral radii of bA� the spectral radius of bB is used for the 
 dissipation�
The �rst term of Eq� 	����
 is a second order dissipation with an extra pressure

gradient coe�cient to increase its value near shocks� The second term is a fourth

order term where the logic to compute �
��	
j�k switches it o� when the second order

nonlinear coe�cient is larger then the constant fourth order coe�cient� This occurs
right near a shock� In Figs� � and 
 � we show solutions for the �ow problem of Fig�
�� using this nonlinear arti�cial dissipation� For Fig� � we employ just the fourth
order term� i� e� �� � ��

The oscillations at the shock are eliminated and a sharp shock is obtained� In
this case though there is an overshoot and undershoot at the top and bottom of the
shock which is eliminated in Fig� 
 by adding the second order term� �� � ����

Figure �� Coe�cient of Pressure Obtained Using Fourth Order Nonlinear Dissi�
pation�

The results shown are fully converged to machine zero and in the case of Fig� 

represent the current quality of our shock capturing capabilities� The chosen values

��



Figure �� Coe�cient of Pressure Obtained Using Second � Fourth Order Non�
linear Dissipation�

of the coe�cients have� at least to date� been static and are not changed from case
to case�

The implicit dissipation used with Eq� 	����
 is the linearization of the equa�
tion treating the pressure coe�cient " and the spectral radius � as space varying
functions but ignoring their functional dependency on Q� Then the dissipation is
linear in Qj�k and is added to the diagonal algorithm again necessitating scalar
pentadiagonal solvers� This produces a very e�cient� stable and convergent form
of the implicit algorithm�

Near computational boundaries we modify the fourth order dissipation so as
to maintain a dissipative term� A derivation and analysis of various boundary
treatments in given in Ref� ����� The modi�cation is needed at the �rst interior
point 	e�g� Qj���k
 where the �ve point fourth order term Qj���k � �Qj���k �
�Qj�k��Qj���k�Qj���k is to be applied� There the point Qj���k doesn�t exist� the
formula is modi�ed to a one sided second order term with the di�erencing stencil
��Qj���k�
Qj�k��Qj���k�Qj���k� Similar formulas are used at other boundaries�
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��� Total Variation Diminishing Schemes� TVD
The development of monotone� �ux vector�di�erence splitting� TVD and other

nonoscillatory schemes can be found in numerous publications� see for example�
Refs� ��������������
�������� Here we shall just brie�y de�ne the conditions for a
class of TVD schemes introduced by Harten �����

The conditions for a scheme to be TVD in Harten�s sense can be developed for
the scalar hyperbolic conservation law

�u

�t
�
�f	u


�x
� � 	���



where f 	the �ux
 is a nonlinear function of u � We can de�ne a characteristic speed
a	u
 � �f��u�

A one parameter family of schemes can be de�ned

un��j � ��
	
hn��
j� �

�

� hn��
j� �

�



� unj � �	�� �


	
hn
j� �

�

� hn
j� �

�



	����a


rewritten as

Lun�� � Run 	����b


�where unj � u	j�x� n�t
� � � �t��x� � parameterizes the equations from the
fully explicit to fully implicit forms� and h is the numerical �ux function with
hj� �

�

� h 	uj��� uj � uj��� uj��
�
The total variation of a mesh function un is de�ned as

TV 	un
 �
�X

j���

junj�� � unj j �
�X

j���

j�j� �

�

unj 	����


where �j� �

�

� uj�� � uj �
A numerical scheme is TVD is

TV
�
un��

� 
 TV 	un
 	����


For Equation 	����
 the conditions due to Harten ���� are

TV 	Run
 
 TV 	un
 	����a


and

TV
�
Lun��

� � TV
�
un��

�
	����b


Rewritting Eq� 	����
� assuming h is Lipschitz continuous�
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un��j ���
	
C�
j� �

�

�j� �

�

u� C�
j� �

�

�j� �

�

u

n��

�

unj��	�� �

	
C�
j� �

�

�j� �

�

u� C�
j� �

�

�j� �

�

u

n 	����


with C� bounded functions� Su�cient conditions for Eq� 	����
 are
for all j �

�	�� �
C�
j� �

�

� �

�	�� �

	
C�
j� �

�

�C�
j� �

�




 �

�� � C 
 ���C�
j� �

�


 �

	����


for �nite C�
These conditions can be used to analyze and construct various TVD schemes�

Refer to References ����� ��� and ��� for two forms of high resolution 	at least second
order accurate
 TVD schemes applied to hyperbolic conservation law equations�
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VII� Time Accuracy� Steady States� Convergence and Stability
��� Time Accuracy vrs Steady�State Computation
The implicit algorithm is designed to be time accurate where second order ac�

curacy can be maintained and the equations are integrated through time from some
meaningful initial condition to the the solution at time T � In this case the time step
is chosen to be commensurate with some time scale of the problem� The evolution
of the solution through time is physically realistic and good solution accuracy is
dependent on the mesh spacing and boundary conditions�

The equations can also be applied to steady�state problems� Typically we
employ the �rst order scheme in time and attempt to accelerate the algorithm
by various non�time�like maneuvers� The equations are then integrated from an
arbitrary initial condition to a time asymptotic state� Any procedure which drives
us to the steady�state faster must also be stable and accurate at convergence� It
might be expected that large time steps could be used to drive the solution to the
steady�state faster� As we shall see� based on linear analysis large time steps can
increase the convergence rate� but for factored forms the limit of the ampli�cation
factor 	a measure of the maximum convergence rate
 as h � �t�� is ��
A� E�ect of Factorization Errors On Convergence

Let us divide the total solution into the transient 	time�like
 and particular
	steady�state
 parts� The goal of any fast steady�state algorithm is to eliminate the
transient as quickly as possible� We can examine the ability of the implicit scheme
to eliminate transients by investigating the model problem� Eq� 	
���
� In this case�
instead of Eq� 	
���
 we take

w � ew	t
 ei� x 	���


and treat the spatial derivative �x analytically� then examine the temporal di�er�
encing schemes in one and two dimensions� This gives us the purely transient one
dimensional model problem ewt � �x ew � � 	���


with �x � i���
The delta form of the �rst order implicit algorithm is

	� � h�x
� ewn � �h�x ewn 	���


which can be rewritten as

ewn�� �

�
�

	� � h�x


� ewn

or

ewn �

�
�

	� � h�x


�n ew


	���


��



where ew
 is some initial value� The term in the brackets is the ampli�cation factor�
��

For h � �� ewn � � and the transient can actually be eliminated directly for
large h�

In contrast� let us examine a two�dimensional factored implicit scheme for the
two�dimensional transient problem

ewt � �x ew � �y ew � � � 	��



This is the two�dimensional counterpart to Eq� 	���
� Applying the �rst order
implicit approximate factorization delta algorithm to Eq� 	��

 we have

�� � h�x� �� � h�y� � ewn � �h 	�x � �y
 ewn 	���


Expanding � ewn � ewn�� � ewn and combining terms we have

ewn �

� �
� � h� �x�y

�
	� � h �x � h �y � h� �x�y


�n ew
 	���


and so j�j � � as h���
A close examination of this result shows that the factorization has destroyed

the good convergence characteristics at large time steps� The factoring error term
has introduced a h� term in the numerator of the ampli�cation factor� Therefore
the factored schemes do not have good convergence characteristics for large time
steps� Actually� there is a range of moderately large time steps where the ampli��
cation factor is a minimum� see for instance Abarbanel� Dwoyer� and Gottlieb �����
Convergence can therefore be accelerated by using a time step which minimizes the
ampli�cation factor�

Note that for the delta form of the algorithm 	either factored or unfactored

the steady�state solution is independent of the time step� h� 	There are numerical
schemes where this is not the case� such as Lax�Wendro��
 Therefore� the time step
path to the steady�state does not a�ect the �nal solution and we can envision using
time step sequences or spatially variable time steps to accelerate convergence�
B� Space Varying �t

Manipulation of the time step can have a substantial in�uence on convergence
even within the framework of the factored algorithms� If only a steady state solution
is required� one can let h 	or �t
 change in space� This approach can be view as
a way to condition the iteration matrix of the relaxation scheme de�ned via Eq�
	
���
 or Eq� 	
���
� Use of a space varying �t can also be interpreted as an
attempt to use a more uniform Courant number throughout the �eld� In any event�
changing �t can be e�ective for grid spacings that vary from very �ne to very coarse

��



� a situation usually encountered in aerodynamic simulations where grids contain a
wide variety of length scales�

A space varying �t has been used in both explicit and implicit schemes 	 e�g�
Shang and Hankey ����� McDonald and Briley ����� Shirnivasan et al ����� Coakley
����� Jameson ���� etc 
� As a rule one wishes to adjust �t at each point proportional
to the grid spacing and the characteristic speed of the �ow� Something like the
Courant number restriction 	 which for the Euler equations in multi�dimensions is
a bit of an approximation
�

For highly stretched grids the space variation of the grid is the most important
parameter to scale with� In subsonic and transonic �ow the characteristic speeds
have moderate variation and we have found that a purely geometric variation of �t
is adequate� speci�cally

�t �
�tjref
�� �

p
J

	���a


To illustrate the advantage of using a variable time step� Fig� � shows the
degradation in convergence rate when a constant step size is substituted for the
variable time step in a NACA ���� test case� For this comparison all other possible
parameters were held constant and no other changes were employed� We should
note at this time that the above variation of time step has often worked poorly
in viscous �ow until the numerical dissipation terms were also put in implicitly as
described later� Also other forms of the variable step size sometimes perform better
than Eq� 	���a�
� for example

�t �
�tjref

jU j � jV j� a
q
	�x � 	�y � 
�x � 
�y

	���b


which is approximately a constant CFL condition� However� Eq� 	���b
 is more
costly to compute then Eq� 	���a
�
C� Mesh Sequences

For inviscid airfoil calculations on a grid of O	�
� x 
�
 practical convergence is
usually obtained in 
������ �ne grid iterations when the �ow �eld has been started
from an initial condition of uniform free stream �ow� Typically the �rst ��� to ���
iterations on the �ne mesh are needed to get past the initial transients which can be
a substantial portion of the total solution time� For instance� in the above test case
it takes on the order of ��� �ne grid iterations for a tight convergence criteria 	e�g�
lift to 
 decimal places
 � ��� of which are spent on clearing out the impulsive start�
One way to accelerate convergence to a steady state is to obtain a good initial guess
for a �ne mesh by �rst iterating on a sequence of coarse grids and then interpolating
the solution up to the next re�ned grid� Such a mesh sequence procedure can often
reduce the amount of time required to obtain a solution to plotable accuracy by

��



Figure �� Convergence Improvement Due to Variable Time Step�

a factor of two� Also� because a coarse grid tends to damp high frequency waves�
using a mesh sequence procedure can improve the overall robustness of the code�

A mesh sequencing procedure can be implemented in an optionally called stand
alone routine� If a sequence of m grids are used� a coarsened grid is cut from each
previous grid by halving the number of points in the 	�direction and by regenerating
a new 
�distribution of points in the 
�direction using a fewer number of points�
The 
�distribution is regenerated because in viscous �ows the spacing near the wall
would be too coarse if the halving procedure is used� A �nite number of iterations
	perhaps 
�
 are carried out on each coarsened grid at which point the approximate
solution is interpolated onto a more re�ned grid� The �nest grid is then iterated to
convergence� The result is faster convergence to practical levels and a more robust
starting procedure�

For a NACA ���� test case a sequence of � grids has been used# �� by �� and

��



�� by �
 and the �nal grid of ��� by �� points� The convergence of Cl is shown in
Fig� � to indicate the overall improvement in convergence due to the use of mesh
sequencing in comparison to the use of a �ne grid only� Both cases were started
with a free stream initial condition�

Figure �� Improvement In Total Convergence of Lift Due to Mesh Sequencing�

��� E�ect of Dissipation Model on Convergence and Stability

As discussed in Section VI�� based on linear theory the use of explicit dissipa�
tion produces an explicit stability bounds unless implicit dissipation is added� The
second�di�erence dissipation� Eq� 	���b
� will stabilize the fourth�di�erence dissi�
pation if the coe�cients are chosen properly� Ideally though� it would be better to
treat the explicit dissipation in a fully implicit manner� That is� use implicit fourth�
di�erence dissipation which is an exact linearization of the explicit fourth�di�erence
dissipation� In fact� although the implicit second�di�erence dissipation stabilizes

��



the fourth�di�erence dissipation it can have a detrimental e�ect on the convergence
rates of an implicit algorithm for steady�state computations�

Consider the model problem in one�dimension 	equivalent to Eq�	 
���
 with a
convenient change in notation
�

qt � aqx � � 	���


Applying the �rst�order time accurate Euler implicit scheme in delta form to Eq�
	���
 and adding explicit fourth�di�erence dissipation 	�� � �
� implicit second�
di�erence dissipation 	�� � �
� and implicit fourth�di�erence dissipation 	�� � �

gives the algorithm

� � ha�x � h��rx�x � h��	rx�x


�
�
	qn�� � qn
 � �h �a�x � ��	rx�x


�
�
qn

	����

Fourier analysis using qn � wneikjj�x 	with kj the wave number in x
 produces

� � ha�x � h���x � h���

�
x

�
	wn�� � wn
 � �h �a�x � ���

�
x

�
wn 	����


where �x � �i sin	kj�x
��x represents the Fourier signature for the central di�er�
ence �x� �x � �� � � cos	kj�x
 the signature of the second�di�erence dissipation
operator rx�x� and �

�
x for the fourth�di�erence dissipation�

The ampli�cation factor for wn�� � �wn is then

� �
� � h

�
	�� � ��
�

�
x � ���x

�
� � h 	a�x � ���x � ����x


	����


The choices which will be investigated are
�� �� �� � and �� � �� � �� explicit dissipation only�
�� �� �� �� �� �� �� and �� � �� explicit fourth�di�erence dissipation and implicit
second�di�erence dissipation� no implicit fourth�di�erence dissipation�

�� �� �� �� �� �� � and �� � �� explicit and implicit fourth�di�erence dissipation
with no implicit second�di�erence dissipation�
For case �� explicit dissipation only� Eq� 	����
 becomes

� �
�� h���

�
x

� � ha�x
	����a


Now� since �x is pure imaginary and has a minimum of �� and �� 
 �x 
 � the
explicit stability bound is h�� �

�
� � This is a limit on the product of h and �� and

therefore one can always �nd a combination which will be stable� But� for arbritrary
h� especially in the case where large h are used to accelerate convergence� this bound
is too restrictive�

�




In the second case� implicit second�di�erence dissipation can eliminate the
above stability bound� The ampli�cation factor � is now

� �
�� h���

�
x � h���x

� � ha�x � h���x
	����b


The numerator term �x can only improve the stability bounds since it is pure
imaginary� so it is taken at its minimum� �� Let �� � ��� and apply the stability
condition j�j 
 � which results in the condition �� 
 �h���x	� � �x
� Since
�x 
 �� the condition can be rewritten as �� 
 h��j�xj	� � �x
 which is satis�ed
because �� 
 �x� Therefore� using �� � ��� leads to unconditional stability� The
disadvantage of this is form is evident from the ampli�cation factor� Eq� 	����b
�
Even though the scheme is unconditionally stable� � � � as h � �� In fact� the
ampli�cation factor has a minimum at a �nite h and then asymptotes rapidly to �
as h increases� For this reason� large h cannot be used to accelerate convergence
even in this simple one�dimensional example�

In contrast� the third case of implicit and explicit dissipation is unconditionally
stable and has good convergence characteristics for large h� The ampli�cation factor
� for �� � �� and �� � � is

� �
�

� � h 	a�x � ����x

	����c


which is unconditionally stable and � � � as h���
The analysis for two and three dimensions is straightforward and gives similar

results for the unfactored forms� The optimal algorithm is a fully implicit one� In
general� optimal stability and convergence only occurs for the fully implicit form of
the algorithm�

We demonstrate the improved convergence and stability bounds in Fig� ��

The curves in Fig� � are convergence histories for a transonic airfoil computa�
tion showing the e�ect of a fully implicit treatment of the arti�cial dissipation� The
upper curve is the result of second order constant coe�cient implicit dissipation�
Eq� 	���b
� with nonlinear explicit dissipation� Eq� 	����
� A much faster conver�
gence rate is obtained in this problem when the second order implicit dissipation
is replaced by an implicit linearization of the nonlinear dissipation of Eq� 	����
�
see Ref� ���� for more details� Also the maximum allowable time step is at least ��
times larger for the fully implicit scheme�

��



Figure 	� Improvement in Convergence Rate Due to Implicit Treatment of
Arti�cial Dissipation�

VIII� ARC�D � ARC�D Algorithms

General purpose centrally space di�erenced implicit �nite di�erence codes in
two ��� and three ��� dimensions have been developed at NASA Ames and have
been widely distributed since their introduction in ���� and ����� These codes�
now referred to ARC�D and ARC�D� can run either in inviscid or viscous mode for
steady or unsteady �ow� They use general coordinate systems and can be run on any
smoothly varying curvilinear mesh� even a mesh that is quite skew� Because they
use well ordered �nite di�erence grids� the codes can take advantage of vectorized
computer processors and have been implemented for the Control Data ��
 and the
CRAY ��S and X�MP� On a single processor of the X�MP a vectorized version of the
code runs approximately �� times faster than the original code which was written
for the Control Data �����

Traditionally gains in computational e�ciency due to improved numerical al�
gorithms have kept pace with gains due to increased computer power� Since the
ARC�D and ARC�D codes were introduced� a variety of algorithmic changes have
been individually tested and have been shown to improve overall computational
e�ciency� These include use of a spatially varying time step 	�t
� use of a sequence
of mesh re�nements to establish approximate solutions� implementation of various
ways to reduce inversion work� improved numerical dissipation terms� and more im�
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plicit treatment of terms� Although the various individual algorithm improvements
can interact with each other� sometimes adversely making optimization di�cult�
their combined e�ect has lead to an order of magnitude gain in computational e��
ciency for steady state applications� This is a gain equivalent to that achieved with
computer hardware� Unsteady �ow calculations have also bene�ted from some of
the above improvements�

We now summarize the two basic algorithms used in the code ARC�D� see
Section VIII for details of ARC�D� The standard algorithm is used mainly for time
accurate calculations� The equations are reproduce from Eq� 	
���
h

I � h�� bAn
i h
I � h�� bBn � hRe����cMn

i
� bQn � bRn

bRn � �h
h
�� bEn � �� bFn �Re���� bSni 	���


This scheme consists of �rst forming the right hand side� bRn then performing two
block tridiagonal inversions� Central di�erences are used for the �ux and Jacobian
di�erences� The dissipation models used are the implicit second order� Eqs� 	���b
�
added to the appropriate implicit operator to keep the band width tridiagonal and
the explicit nonlinear term Eq� 	����
� Since this scheme is used for time accurate
calculation the typical time step will be small enough to assure stability even though
the explicit dissipation operator is not properly linearized� The advantage of this
scheme is time accuracy while the disadvantage is substantial computational work�

In most instances we are interested in steady state computations� In that case
we can take advantage of simpli�cations such as the diagonal algorithm as long
as the scheme converges and we do not distort the steady state equations� The
diagonal algorithm used in ARC�D is

T� �I � h ��  �� bN �I � h ��  � � T
��
� � bQn � bRn 	���


In this case we always employ the nonlinear dissipation models� Eq� 	����
 with a
linearization of the terms which necessitates the use of scalar pentadiagonal solvers�
	Note that the implicit arti�cial dissipation terms are placed inside the bracketed
terms and are operated on by the similarity transformations
� This form of the
diagonal scheme gives us a very e�cient code in terms of computational work and
enhanced stability and convergence due to the proper linearization of the explicit
steady state equations� The time accuracy though is at most �rst order� We
also employ the variable time step Eq� 	���
 and mesh sequencing to accelerate
convergence�

We shall employ ARC�D and ARC�D to demonstrate various aspects of algo�
rithm improvements� accuracy� and application in the remainder of these notes�
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IX� Boundary Conditions
The implementation of a sophisticated numerical algorithm and the develop�

ment of a �ow code usually are trivial tasks when compared with the work of actually
solving a particular �uid dynamics problem� We can always assess the applicabil�
ity of a numerical algorithm based on stability and accuracy considerations� The
writing of specialized input and output routines� while not unimportant� is usually
mechanical� The real stumbling block comes with the selection� implementation
and assessment of boundary conditions 	BC
�

There is a hierarchy of decisions which are made when the boundary condition
problem is attacked� The important aspects of boundary condition development
are�
�� The physical de�nition of the �ow problem must be satis�ed� For example�

inviscid �ow requires tangency at solid surfaces� or we may want to specify
pressure at some boundary�

�� The physical conditions must be posed in terms of the mathematics of the
problem� Characteristic theory suggests the number of conditions required at
a boundary� The condition of no slip for viscous �ow is imposed by setting the
�ow velocities to zero at solid surfaces�

�� The mathematical conditions are numerically approximated�
�� The numerical interior scheme may require more boundary information than

the physics provides� For example� standard central di�erencing as an interior
scheme requires all �ow quantities at boundaries� but this may not be consistent
with mathematical theory� Additional numerical boundary conditions may be
adjoined�


� The combination of interior numerical scheme and boundary scheme should be
checked for stability and accuracy�

�� Finally� we must assess the e�ciency and generality of a �ow code in terms of
its ability to handle a wide variety of problems and �ow conditions�
The physical de�nition of the �ow problem is the �rst and foremost consider�

ation� Once a geometry and topology have been chosen� then physics dictates the
constraints on the boundaries�

��� Characteristic Approach
The concept of characteristic theory is best demonstrated with the one�dimensional

Euler equations� where
�tQ� �x	AQ
 � � 	���


represents the model equation� Assuming that A is a constant coe�cient matrix we
can diagonalize Eq� 	���
 using the eigenvector matrix X� so that

�t
�
X��Q

�
�  A�x

�
X��Q

�
� �� 	���


��



De�ning X��Q �W � we now have a diagonal system� with

 A �

��u � �
� u� a �
� � u� a

�� 	���


At the left boundary of a closed physical domain� see Fig� �� where say � �
u � a� 	for example� subsonic in�ow for a channel �ow
 the two characteristic
speeds u� u� a are positive� while u� a is negative� At in�ow then� only two pieces
of information enter the domain along the two incoming characteristics and one
piece leaves along the outgoing characteristic� At the out�ow boundary one piece of
information enters and two leave� We would like to specify the �rst two components
of W � which are the two incoming characteristic variables and then handle the third
characteristic variable such that its value is not constrained� i�e�� is determined by
the interior �ow�

Figure 
� Characteristics at Subsonic In�ow and Out�ow Boundaries of a Closed
Domain�

It is not necessary to �x values only in terms of the characteristic variables�
other �ow quantities could be employed� as long as they lead to well posed conditions
	that is� conditions which guarantee the stability of the mathematical problem
� Yee
���� provides an excellent survey and development of boundary conditions within the
framework of an implicit algorithm� The major constraints which occur are that the
correct number of boundary values corresponding to incoming characteristics are
speci�ed and that the actual implementation is stable and well posed� Chakravarthy
��
� presents an implicit characteristic boundary procedure� In this the eigenvectors
of the system are coupled with the chosen �xed boundary values and one sided
�nite di�erences to develop an equation which is solved for the �ow variables at the
boundaries�
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��� Well Posedness
A simple check on the well posedness of boundary conditions is obtained as part

of Chakravarthy�s development� As an example� let us consider one�dimensional �ow
with subsonic in�ow and subsonic out�ow� Then two variables can be speci�ed at
in�ow� associated with the �rst two eigenvalues� and one variable can be speci�ed
at out�ow� associated with the third eigenvalue� As speci�ed values take� � � �in�
�u � 	�u
in and p � pout� These can be written as

Bin	Q
 �

�� q�q�
�

�� � Bin	Qin
 	���a


Bout	Q
 �

�� �
�

	� � �
	q� � �
�q

�
��q�


�� � Bout	Qout
 	���b


with q� � �� q� � �u� q� � e�
Forming the Jacobians Cin � �Bin��Q� and Cout � �Bout��Q we have

Cin �

�� � � �
� � �
� � �

�� and Cout �

�� � � �
� � �

�	� � �
��� u� �	� � �
u � � �

�� 	��



The eigenvector matrix X�� is��� ��
u�

� 	� � �
a�� 	� � �
ua�� �	� � �
a��
��	� � �
u�� � ua� ��a� 	� � �
u� �	� � �

��	� � �
u�� � ua� ���a� 	� � �
u� �	� � �


��� 	���


with � � ��	
p
��a
�

The condition for well posedness of these example boundary conditions is that

C
��

in and C
��

out exist where

Cin �

�� � � �
� � �

��	� � �
u�� � ua� ���a� 	� � �
u� �	� � �


�� 	���a


and

Cout �

��� ��
u�

� 	� � �
a�� 	� � �
ua�� �	� � �
a��
��	� � �
u�� � ua� ��a� 	� � �
u� �	� � �


	� � �
u�� �	� � �
u � � �

��� 	���b



�



These matrices are formed by adjoining the eigenvector associated with the
outgoing characteristic to the Jacobian matrices of the boundary conditions� The
inverses of the above matrices will exist if det	C
 is nonzero� For the two boundaries
we have det	Cin
 � �	� � �
 �� � and det	Cout
 � �	� � �
a �� � and so the
boundary conditions are well posed� Other choices for speci�ed boundary values
can be similarly checked�

Rather than go into any more detail on boundary condition theory we refer
the reader to Refs� ���� and ��
�� For the remainder of this section� we shall discuss
some of the current types of physical conditions which are used in ARC�D�

��� Computational Mapping of Boundaries
Usually in a �ow �eld computation� we are faced with a variety of boundary

surfaces and conditions� Our experience has been mostly in external �ows and so
we shall outline below some of the more commonly used boundary conditions� The
curvilinear coordinate transformations are made such that physical boundaries are
mapped to boundaries in the computational domain� This makes the formulation
and implementation of boundary conditions easier�

At this stage in the development of ARC�D we have kept the boundary con�
ditions explicit� This gives us a more �exible clean code since all BC are handled
in just one subroutine� We realize that implicit boundary treatment will enhance
the stability and convergence rates of the codes� Our experience has been that the
basic code in its present form is fairly robust and can be implemented for a wide
variety of cases� The user is then responsible for the implementation of boundary
conditions�

A particular set of BC for an airfoil calculation is used below for demonstration
purposes� The geometry is mapped onto the computational rectangle such that all
the boundary surfaces are edges of the rectangle� for example see Fig� �� �

In �O� mesh topologies the wake cut boundary is periodic and can be handled
as such where periodic solvers are used in the implicit inversions�

A� Body Surfaces
At a rigid body surface� tangency must be satis�ed for inviscid �ow and the

no slip condition for viscous �ow� In two�dimensions body surfaces are usually
mapped to 
 � constant coordinates� The normal component of velocity in terms
of the curvilinear metrics is given by

Vn �

xu� 
yvq
	
�x � 
�y


	���a
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Figure ��� Topological Mapping of an Airfoil onto a �C� Mesh�

and the tangential component is

Vt �

yu� 
xvq
	
�x � 
�y


	���b


Therefore� tangency is satis�ed by Vn � � 	no �ow through the body
� The tan�
gential velocity Vt is obtained at the body surface through linear extrapolation for
inviscid cases and is set to zero for viscous cases� The Cartesian velocities are then
formed from the inverse relation between them and Eq� 	���
 where�

u
v

�
�

��q
	
�x � 
�y


�

y 
x
�
x 
y

� �
Vt
Vn

�
	���


The extrapolation of Vt produces less error if the mesh lines are clustered to the body
surface� The velocities of Eqs� 	���a
� and 	���b
 are scaled such that the metric
variations are removed which decreases the errors in the extrapolations� especially
for nonorthogonal meshes�

The pressure on the body surface is obtained from the normal momentum
equation

���� 
t � u�� 
x � v�� 
y� � �U	
xu� � 
yv�
 �

	
x	x � 	y
y
p� � 	
x
� � 
y

�
p� � pn

q

x� � 
y�

	����


where n is the local normal to the body surface� Equation 	����
 is solved at the
surface using central second�order accurate di�erences in 	 and one�sided �rst� or
second�order accurate di�erences in 
� For steady uniform incoming �ow free�stream
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stagnation enthalpy H
 is held constant along the body in inviscid �ow� Using the
equation for enthalpy H
 � 	e� p
�� and the computed velocities and pressure� a
value of density is obtained at the body� Adiabatic or constant temperature walls
are used for viscous and unsteady �ows to obtain density at the surface� In either
case� total energy e is decoded from the equation of state�

B� Free Surfaces Stretched grids are usually used to place far �eld bound�
aries far away from body surfaces� When bow shocks and attached shocks are
generated at a body surface care is taken to ensure that the shocks are su�ciently
weak when they reach far �eld boundaries so that they are not re�ected or at least
they re�ect outside the �ow domain� A nonre�ective characteristic like boundary
procedure is used at far �eld boundaries�

For subsonic free stream locally one�dimensional Riemann invariants are used
at the outer far �eld boundaries� The locally one�dimensional Riemann invariants
are given in terms of the normal velocity component as

R� � Vn � �a�	� � �
 and R� � Vn � �a�	� � �
 	����


The Riemann invariants R�� R� are associated with the two characteristic velocities
	locally one�dimensional
 �� � Vn�a and �� � Vn�a respectively� Two other equa�
tions are needed so that four unknowns 	the four �ow variables
 can be calculated�
We choose Vt and S � ln	p���
 where S is entropy� At the far �eld boundaries
shown in Fig� ��� the normal n is directed away from the boundary� For subsonic
in�ow Vn � � and the characteristic velocity �� � �� therefore the characteristic
variable R� can be speci�ed along with two other conditions� The Riemann invari�
ant R�� Vt and S are all set to free stream values� The other characteristic velocity
�� � � and R� is extrapolated from the interior �ow variables� On subsonic out�ow
Vn � � and �� � � while �� � � so only R� is �xed to free stream and R�� Vt and
ln	S
 are extrapolated� Once these four variables are available at the boundary the
four �ow variables Q can be obtained� For supersonic in�ow boundaries all �ow
variables are speci�ed and for supersonic out�ow all variables are extrapolated�

Along singularities or cuts in the geometry 	such as the wake cut in a �C�
mesh
� averaging is used to provide continuous �ow variables� As mentioned above
periodic conditions are used for �O� meshes�

C� Far Field Circulation Correction
For lifting airfoils in subsonic free stream� circulation at the far �eld bound�

ary is accounted for to �rst�order 	following Salas� et� al� ����
 by imposing a
compressible potential vortex solution which is added as a perturbation to the free


�



stream quantities 	u� �M� cos	�
 and v� �M� sin	�

� The perturbed far �eld
boundary velocities are de�ned as

uf � u� �
�$ sin	�


��r
�
��M�

� sin�	� � �

� 	����a


and

vf � v� � �$ cos	�


��r
�
��M�

� sin�	� � �

� 	����b


where the circulation $ � �
�M�lCl� l is the chord length� Cl the coe�cient of lift at

the surface�M� the free streamMach number� � the angle of attack� � �
p
��M�

�

and r� � are polar coordinates to the point of application on the outer boundary
relative to an origin at the quarter chord point on the airfoil center line� A corrected
speed of sound is also used which enforces constant free stream enthalpy at the
boundary where

a�f � 	� � �

�
H� � �

�
	u�f � v�f 


�
	����c


Equations 	����
 are used instead of free stream values in de�ning the �xed quan�
tities for the far �eld characteristic boundary conditions to be consistent with the
surface lift�

Figure �� shows the coe�cient of lift Cl plotted against the inverse of the
distance to the outer boundary for a NACA ���� airfoil at the transonic condition
M� � ���� � � ���
� and at subcritical conditions M� � ����� � � ����� In
these cases the outer boundary varies for ��
 chords to �� chords where outer mesh
rings were eliminated from the �� chord grid to produce the cut down meshes� This
insures that the grid spacing between the body and outer boundary is identical for
all the cases� Without the far �eld vortex correction the lift of the subcritical case
can vary by as much as �� ! as seen in Fig� ��� With the far �eld vortex logic the
subcritical case now has virtually no variation with outer boundary distance� For
the transonic case we see roughly a � � � ! change which is quite good considering
the strength of the shocks� The typical distance chosen for most cases presented
here is �
 chords�

The vortex correction logic can be modi�ed to produce boundary conditions
which allow one to compute the angle of attack for a given lift� This is done by
�xing the circulation $ in Eq� 	����
 at its value for the given lift� An iterative
procedure is used where the lift computed at the surface is compared to the desired
lift and then the initial angle of attack is modi�ed by the formula

�� � ��� 	Cl	input
�Cl	calculated



with �� a relaxation parameter on the order of � � Computations in which a speci�ed
lift resulted in an angle of attack were compared with �xed � solutions at the same







Figure ��� E�ect on Lift of Varying Outer Boundary Distances With and
Without Vortex Correction�

Mach number and showed excellent agreement� This procedure has been veri�ed in
numerious numerical examples�

X� Geometry and Grid Generation
The generalized coordinate transformation produces a system of equations

which can be applied to any regular and nonsingular geometry or grid system� The


�



advantages of this form are � Since uniform unit spacing is used� the computational
domain has a one to one correspondence with the positive integers and therefore
regular unweighted di�erence formulas can be used in the numerical scheme� This
produces a computer code which can be applied to a wide variety of problems with�
out modi�cation of the equations and numerical scheme� Physical boundary surfaces
can be mapped onto coordinate surfaces� which makes application of boundary con�
ditions easier� The transformation allows for unsteady motion of the coordinates�
so that moving meshes and distorting surfaces can be computed� Grid lines can be
concentrated in regions of high gradients� for instance clustered to body surfaces to
calculate boundary layers� or clustered near shocks�

There are a wide variety of methods for generating grid systems� Algebraic
methods such as conformal mappings� quadratic functions� or the control function
approach of Eiseman ���� have been widely employed� The numerical approach
of using elliptic solvers� Thompson� Thames and Mastin ����� is also widely used�
Thompson ���� provides a good review of the current state of the art in grid gener�
ation� Figures �� and �� show a �C� mesh and an �O� mesh topology for an airfoil
where the mesh has been generated using a variant of Eiseman�s method �����The
terminology �C� comes from the wrap around nature of the grid� In the case shown
grid lines are clustered at the leading and trailing edge� near the body in the near
normal direction and on the upper surface to capture an expected shock�

One of the major de�ciencies in computational �uid dynamics today lies in
the area of surface de�nition and grid generation� While there are a wide variety
of generation methods� there is no e�cient and accurate means to assess the use�
fulness of a particular grid� The obvious �rst checks such as not having grid lines
cross� no discontinuous changes in grid spacing and other cosmetic qualities can
be checked� But� aspects such as high skewness� curvature smoothness� and other
intrinsic properties are hard to assess� What is needed at this point is a set of well
de�ned qualitative and quantitative checks for grid systems which will allow us to
distinguish between a �bad� grid and a �good� grid� A systematic study of this
form is lacking and hopefully will be pursued in the near future�

XI� Examples and Application in ��D

���� Code Validation

Once a computational code has been written and debugged� the author is faced
with the di�cult challenge of assessing the accuracy� e�ciency and robustness of
the piece of work� Each code is obviously tailored toward a class of problems and
at least initially one should restrict attention to that class� A series of test cases
should be evaluated and then detailed goals should be attacked�
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Figure ��� �C� Mesh for a NACA���� Airfoil�

In the case of ARC�D and ARC�D a number of sample cases have been com�
puted and details of these can be found in the literature� see for instance ���� ����
�������� and numerious others� Here I shall brie�y discuss some of the more exotic
cases with the goal of demonstrating the versatility and breath of applications� I
refer the reader to the original papers 	where appropriate
 for extensive details�

���� Inviscid Airfoils
The code ARC�D has the option of computing the inviscid equations 	the

Euler equations
� The basic version of the code is written speci�cally for airfoil
computations� The particular set of boundary conditions used now though are
directed toward the solution of �ow past general airfoil shapes� The code has been
applied to a wide variety of airfoil shapes� �ow conditions� and other geometries�
We have validated the code against other computational methods� ���� ����� To
demonstrate the accuracy and e�ciency we have chosen two test cases� a NACA����
airfoil at M� � ��� � � � ���
� on a coarse grid 	��� by �� points
 and a �ne
grid 	��� by �� points
� For comparison purposes we use results from Jameson�s
multigrid Euler code FLO
�R ����� FLO
�R is an Euler code using a multistage
Runge�Kutta like algorithm with a multigrid scheme to accelerate convergence�
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Figure ��� �O� Mesh for a NACA���� Airfoil�

The code employs enthalpy damping� residual averaging and an arti�cial dissipation
model of the same form as presented in Section ���� In fact the boundary conditions
and arti�cial dissipation model used in ARC�D were modi�ed to be the same as
in FLO
�R so that quantitative as well as qualitative comparisons could be made�
The two codes were run on the same machine� the CRAY XMP at NASA Ames� on
the same meshes and at the same �ow conditions�

The �rst case is the NACA���� airfoil at M� � ��� and � � ���
�� The grid
used is an �O� mesh topology with ��� points on the airfoil surface 	running from
the lower trailing edge around the nose to the upper trailing edge
 and �� point
in the normal direction� The grid which is clustered at the leading and trailing
edges� near the expected shock locations on the upper and lower surfaces and in the
normal direction is shown in Fig� ��

Results from this case using ARC�D are shown in Fig� �
� We show here
coe�cient of pressure� Mach contours� pressure contours and contours of entropy�
In Fig� �� we show similar results for FLO
�R� Computed lift for ARC�D is CL �
�����
� and for FLO
�R CL � �������� The comparison between the two codes is
quite good� despite the di�erences in spatial discretization�

We have established a number of accuracy checks and convergence criteria for
comparison purposes� In terms of accuracy we recommend comparison of pressure
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Figure ��� NACA���� Grid Using ��� by �� Grid Points�

coe�cients� lift and other �ow quantities� It is also important to establish the
accuracy of certain �ow regions� The stagnation region near the nose of the airfoil
is particularly susceptible to errors due to poor boundary conditions� resolution�
or physical assumptions� The best measure of this error is the entropy �eld� For

��



Figure ��� ARC�D Results for ��� by �� Grid�

��



inviscid �ow there should be no generation of entropy at the leading edge of an
airfoil in the absence of a leading edge shock� Examination of the entropy at the
leading edge for the above case shows� see Fig� ��� that both codes give rise to some
error at the leading edge� although the magnitude is rather small�

Figure ��� Entropy Errors at Leading Edge� a
 ARC�D� b
 FLO
�R�

A number of convergence criteria have been chosen to assess the e�ciency and
convergence rates of the codes� We have chosen to use computer times as our
measure of relative speed� Since the two codes are run on the same machines and
with the same meshes this is an adequate measure� Other measures such as opera�
tion count� work or iteration are usually programming dependent or susceptible to
misinterpretation� The convergence criteria used here are�

�� Coe�cient of lift 	CL
 to �! of converged value�

�� Coe�cient of lift 	CL
 to ���! of converged value�

�� Coe�cient of lift 	CL
 to 
 decimal places�

�� Number of supersonic points to converged value�


� Residual to machine zero� 	����� on the Cray XMP�


The residual is the l� norm of the explicit or right hand side of Eq�	���
� We
use just the component from the continuity equation� the other components behave

��



Figure ��� FLO
�R Results for ��� by �� Grid�
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Convergence Comparison 	seconds

Criteria ARC�D FLO
�R

�! of CL � �
���! of CL �� ���

CL to 
 places 
� ��
No� S�S� pts �� ��
Machine zero ��� ��

Table �� Convergence Data for ��� by �� grid�

similarly� For the above case on the ��� by �� mesh the computer times for the
convergence criteria are given in Table ��

As can be seen for this case FLO
�R is up to twice as fast as ARC�D for
some criteria� In either event these are fairly good convergence times� In general�
these numbers carry over fairly consistently for a wide variety of airfoils and �ow
conditions for similar meshes�

A more stringent test is obtained with a �ner grid and more grid points� A
grid of ��� by �� points is employed as the second study� The mesh is re�ned more
at the nose� tail and near the shocks� Also to reduce the entropy errors at the nose
the grid is clustered more tightly in the normal direction by reducing the minimum
normal spacing by a factor of �� The mesh is shown in Fig� ���

Computational results for ARC�D and FLO
�R are shown in Figs� �� and
��� In this case the shocks are sharper and entropy errors at the leading edge are
eliminated�

Convergence data for this case is contained in Table �� In Figure ��� we show
convergence history vrs iteration for the two ARC�D results� All the results ob�
tained with ARC�D were done using the fully implicit pentadiagonal algorithm�
As mentioned above� numerious other cases and airfoils have been computed and
perform similarly�

Convergence Comparison 	seconds

Criteria ARC�D FLO
�R

�! of CL �� ��
���! of CL 
��
 �
�

CL to 
 places ��� ����

No� S�S� pts ��� ���
Machine zero ��� ����

Table �� Convergence Data for ��� by �� grid�
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Figure �	� NACA���� Mesh� ��� by ���

���� Viscous Airfoils
The code ARC�D has been applied to a wide variety of viscous computations for

airfoils ���� cascades ����� inlets ����� airfoils with a spoiler ����� circulation controlled
airfoils ����� and others� It has been used in an unsteady mode 	see the next section

and for steady viscous computations� The algorithm as presented above performs
very well for viscous cases� It is convergent� fast and accurate� Two example
cases are presented below� The cases are taken from the suggested problems of
the ���� Stanford Olympics ����� an RAE���� airfoil at M� � ������ � � ������
Re � 
�� � ��
 and M� � ����� � � ���� and Re � ��
 � ��
�

Results obtained from ARC�D for the �rst case are shown in Fig� ��� The grid
used is a ��� by 
� point �O� mesh� The turbulence model was used and transition
was �xed at ��! chord� Experimental data due to Cook et� al� �
�� is used for
comparison� We see a good comparison with experiment for pressure coe�cient�
and boundary layer properties�

The computed lift� drag and moment are compared with other computations
and the experiment in Table �� Due to the uncertainty of the angle of attack
correction all computors matched lift� We show here our computation for both the
experimentally corrected angle of attack and the values when lift is matched� Also
shown are results from computors at the Stanford Olympics and some results of
Mehta �
��� For the present computations at the two angles of attack the pressure

�




Figure �
� ARC�D Results for ��� by �� Grid�

and boundary layer quantities are almost identical� The changes in lift and drag are

��



Figure ��� FLO
�R Results for ��� by �� Grid�

noted� The overall comparison with experiment and other computations is quite

��



Figure ��� Convergence History vrs Iteration for ARC�D Results�

good�

Results obtained for the second case are shown in Fig� ��� The grid used is
a ��� by 
� point �O� mesh� The turbulence model was used and transition was
�xed at �! chord� We again see a good comparison with experiment for pressure
coe�cient� and boundary layer properties�

The computed lift� drag and moment are compared with other computations
and the experiment in Table �� Results from computors at the Stanford Olympics
and some results of Mehta �
�� are shown� The overall comparison with experiment
and other computations is again quite good� The shock location on the upper
surface compares well� In the present computations a small region of separated �ow
occurs at the base of the shock and near the trailing edge on the upper surface�

Convergence history vrs iteration for these cases are shown in Fig� ��� Table 

shows the computed convergence criteria for these cases� The convergence for these
cases is quite good�
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Figure ��� Viscous Results for RAE���� Airfoil at Re � 
��� ��
� M� � ������
� � ������

���� Unsteady Aileron Buzz

A calculation of unsteady aileron buzz was performed by Steger and Bailey
����� A composite of the results from their paper is shown in Fig� �
�
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Loads � RAE���� Airfoil � M� � ������ Re � 
��� ��

� CL CDP CDf CD CM

Experiment ���� ��
�� �����
 ������
Corrected Exp� ���� ��
�� �����
 ������
Mehta 	����
 ���� ��
�� ������ ������ ������ ������
Melnik 	����
 ���� ��
�� ������ ������ ������ ������
Le Balleur 	����
 ���� ��
�� ������ ����
� ������ ������
Present ���� ��
�� ������ ����

 ������ ������
Present Cor� � ���� ��
�� ������ ����

 ������ ������

Table �� Forces for RAE���� Viscous Calculation�

In this case a two dimensional simulation of the interaction of a shock and
the movable aileron 	�ap
 on a wing was performed� Steger and Bailey used a
predecessor of ARC�D coupled with a one degree of freedom equation describing
the motion of the aileron on an airfoil� A airfoil with a hinge point at �
! chord
was used� The aileron was free moving without damping and responded to the
aerodynamic forces in balance with the inertia forces�

The �ow conditions were in the transonic range of Mach number from M� �
���� to ���� and angles of attack of � � ����� to ����� Experiments performed
by Erikson and Stephenson �
�� on a P��� wing�aileron arrangement were used for
comparison� A buzz boundary was established in the experiments 	in terms of
Mach number and angle of attack
 where below the boundary the aileron remained
stationary� Above the buzz boundary the shock system on the airfoil moves onto the
aileron and excites the buzz motion of the aileron� An unsteady harmonic motion
occurs with the upper and lower shocks running across the hinge onto and o� of
the aileron�

Steger and Bailey simulated this �ow using the thin layer Navier Stokes equa�
tions for the conditions shown by the symbols in Fig� �
b� Figure �
c shows a case
below the buzz boundary� In this case they gave the aileron an initial de�ection of
�� and integrated forward in time� As seen the aileron motion damps to the neutral
position of �� de�ection� Above the buzz boundary even an aileron de�ection of
�� is excited to the unsteady motion� In Fig� �
d the results are compared with
the measure de�ection angles� In Fig� �
c the computed buzz boundary compares
quite well with the measured boundary�

���
 High Angle of Attack Airfoils

Application of the code ARC�D to the study of airfoils at high angles of attack
was carried out by Barton and Pulliam �
��� In this study NACA���� airfoil �ows at

��



Figure ��� Viscous Results for RAE���� Airfoil at Re � ��
 � ��
� M� � �����
� � ������

low Mach number�M� � ���
 to ���� and angles of attack up to �
� were examined�
Computations were performed for the Euler equations and thin layer Navier�Stokes�
The calculations presented were run time accurately because unsteady e�ects were
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Loads � RAE���� Airfoil � M� � ����� Re � ��
 � ��

� CL CDP CDf CD CM

Experiment ���� ����� ������ ������
Corrected Exp� ���� ����� ������ ������
Mehta 	����
 ���� ����� ������ ����
� ������ ������
Melnik 	����
 ��
� ����� ������ ����
� ����
� ������
Le Balleur 	����
 ���� ����� ������ ����

 ������ ������
Present ���� ����� ������ ����
� ������ ������
Present Cor� � ���� ����� ������ ����
� ������ ������

Table 	� Forces for RAE���� Viscous Calculation�

anticipated� In that paper unsteady separated but inviscid results were obtained�
Comparisons were made with viscous computation and experiment to demonstrate
that inviscid �ow separation can be qualitatively di�erent than viscous �ow� A
similar study which concentrated on comparisons with viscous experimental data
was carried out by Anderson� Thomas and Rumsey �
�� in which good quantitative
comparison were obtained� We shall brie�y discuss here the computations of Barton
and Pulliam�

Barton and Pulliam presented two types of inviscid �ow separation� In the
�rst case at �ow conditions� M� � ���
 � � �
� a shock free solution with
inviscid �ow separation was obtained and the cause of the separation was traced to
numerical error� At the high angle of attack� inaccurate boundary conditions and
resolution at the leading edge produced vorticity 	entropy gradients
 which was
convected downstream� resulting in an unsteady separation on the upper surface
near the trailing edge� By re�ning the grid and improving the boundary conditions
a steady error free solution was obtained� Figure �� shows the entropy contours at
the leading edge before and after the improvement� Figure �� shows a comparison
with full potential results using TAIR �

� and shows that good inviscid results are
obtained�

At a higher Mach number M� � ��� and the same angle of attack � � �
� a
shock forms at the leading edge� see Fig� ��� In this case the shock is the source
of vorticity which is then convected downstream and forms an unsteady separation�
Grid re�nement and the improved boundary conditions were used producing an
error free leading edge� but the unsteady motion was una�ected� The vorticity
	entropy
 generation is a result of the strong normal shock strength gradient and
high curvature of the leading edge�

The unsteady motion of the solution is depicted in Fig� ��� which shows the
time history of the pressure coe�cient� stream function contours and entropy �elds
over a complete cycle� A description of the evolution of this case is as follows�
As the �ow develops� a strong shock is generated at the leading edge� Entropy�
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Figure ��� Convergence History for RAE���� Viscous Cases�

vorticity� and pressure loss are created at the shock near the leading edge� and
convected downstream along the body� A small separation region appears at the
trailing edge� which grows along the body towards the leading edge� At some
point the recirculation region is captured by the oncoming �ow and is swept o� the
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Convergence Comparison 	seconds

Criteria M� � ����� M� � ����

�! of CL ��� ���
���! of CL ��� ��

CL to 
 places ��� ���
No� S�S� pts ��� 
��
Machine zero ���� ����

Table 
� Convergence Data RAE���� Viscous Cases�

airfoil by convection� As the recirculation region passes the trailing edge� another
pocket of recirculation forms at the trailing edge� rotating in the opposite direction�
This counter�rotation is caused by the �ow o� the lower surface� whose direction is
opposite to that of the original region of recirculation� The shock then collapses� and
begins to slowly grow in strength as the pattern repeats itself� This �ow pattern has
a well de�ned period and amplitude and has been reproduced in other computations
with similar grids and di�erent values of time step and arti�cial viscosity�

As a �nal case Barton and Pulliam computed a viscous calculation at similar
conditions� a Mach number M� � ����� and � � ���
�� The Reynolds number
used was Re � ���� � ��
 and the calculation was performed using the algebraic
eddy�viscosity turbulence model� In this case experimental data due to McCroskey
�
�� was available� For an inviscid simulation unsteady results similar to the above
M� � ��� case were obtained� but for the viscous computation a steady results
occurred which compared well with the experimental data� The steady viscous
comparison is shown in Fig� ���

Assuming the validity of the inviscid oscillation for this case� it was concluded
conclude that the Euler solution is not a good approximation to the Navier�Stokes
solution� under these conditions� I refer the reader to the full paper for more details�

��



Figure ��� Unsteady Aileron Buzz� Steger and Bailey �����

XII� Three � Dimensional Algorithm

The � � D form of the implicit algorithm follows the same development as the �
� D algorithm� The curvilinear transformations are carried out in the same fashion�
The standard and diagonal algorithm take the same format� We also employ the
thin layer approximation� Boundary conditions are similar� The equations� algo�
rithm� and other details can be found in Pulliam and Steger ���� We shall brie�y
outline the important aspects and point out the pertinent di�erences from the � �
D development�

�




Figure ��� Entropy Contours at Leading Edge Before and After Improved
Accuracy�

Figure ��� Inviscid Solution Compared with TAIR Result�

���� Flow Equations

The full three dimensional Navier�Stokes equations in strong conservation law
form are reduced to the thin layer form under the same restrictions and assumptions

��



Figure �	 Mach Contours at Leading Edge Showing Shock�

as in two dimensions� The equations in generalized curvilinear coordinates are

�� bQ� �� bE � �� bF � �	 bG � Re���	 bS 	����


where now

bQ � J��

�����
�
�u
�v
�w
e

����� � bE � J��

�����
�U

�uU � 	xp
�vU � 	yp
�wU � 	zp

U	e� p
� 	tp

����� �

bF � J��

�����
�V

�uV � 
xp
�vV � 
yp
�wV � 
zp

V 	e� p
� 
tp

����� � bG � J��

�����
�W

�uW � �xp
�vW � �yp
�wW � �zp

W 	e� p
� �tp

�����
	����a


with
U � 	t � 	xu� 	yv � 	zw�

V � 
t � 
xu� 
yv � 
zw

W � �t � �xu� �yv � �zw

	����b
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Figure �
� Unsteady Solution at M� � ���� � � �
��
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Figure �
� Continued�
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Figure �
� Continued�
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Figure ��� Viscous Solution Compared with Experimental Data of McCroskey�
et� al�

with

bS � J��

�����
�

�m�u	 � 	���
m��x
�m�v	 � 	���
m��y
�m�w	 � 	���
m��z

�m�m� � 	���
m�	�xu� �yv � �zw


����� 	����c


here m� � ��x � ��y � ��z � m� � �xu	 � �yv	 � �zw	 � and m� � 	u� � v� � w�
	�� �
Pr��	� � �
��	a�
	 �

Pressure is again related to the conservative �ow variables� Q� by the equation
of state

p � 	� � �

�
e� �

�
�	u� � v� �w�


�
	����


The metric terms are de�ned as

	x � J	y�z	 � y	z�
� 
x � J	z�y	 � y�z	


	y � J	z�x	 � z	x�
� 
y � J	x�z	 � z�x	


	z � J	x�y	 � y�x	
� 
z � J	y�x	 � x�y	


�x � J	y�z� � z�y�
� 	t � �x�	x � y� 	y � z� 	z

�y � J	z�x� � x�z�
� 
t � �x�
x � y�
y � z�
z

�z � J	x�y� � y�x�
� �t � �x� �x � y� �y � z� �z

	����a


with

J�� � x�y�z	 � x	y�z� � x�y	z� � x�y	z� � x�y�z	 � x	y�z� 	����b


��



���� Numerical Methods
The implicit approximate factorization algorithm applied to the three dimen�

sional equations ish
I � h�� bAn

i h
I � h�� bBn

i h
I � h�	 bCn � hRe���	cMn

i
� bQn �

�h
	
�� bEn � �� bFn � �	 bGn �Re���	 bSn
 	���



The inviscid three dimensional �ux Jacobians� bA� bB� bC are de�ned in the Ap�
pendix along with the viscous �ux Jacobian cM � Arti�cial dissipation terms can be
added in the constant coe�cient form� straightforward extension of Eqs� 	���
� or
in the nonlinear form Eq� 	����
�

The scalar pentadiagonal algorithm in three dimensions has the form

T� �I � h ��  �� bN �I � h ��  �� bP �I � h �	  	 � T
��
	 � bQn � bRn 	����


with bN � T��� T� and bP � T��� T	 � Just as in two dimensions we use the explicit
and implicit nonlinear arti�cial dissipation terms�

It is interesting 	 and somewhat disturbing
 to note that linear constant coe��
cient Fourier analysis 	periodic BC
 for the three dimensional model wave equation
shows unconditional instability for the three dimensional factored algorithm� This
is due to the cross term errors� In contrast to the case of two dimensions where
the cross terms error just a�ect the rapid convergence capability 	 at large time
steps
 of the algorithm� In three dimensions we also have a weak instability due to
the cross terms� Linear analysis shows that the instability is a weak one where the
ampli�cation factor is very close but greater than one� It can be shown though that
a small amount of added arti�cial dissipation moves the ampli�cation factor below
one and therefore we have conditional stability� Also practical model equation anal�
ysis using nonperiodic boundary conditions also shows a stability range� In actual
practice on three dimensional nonlinear problems we have never encountered a case
where we could attribute an instability to this problem area� In fact� numerical ex�
periments show that if anything the three dimensional algorithm seems to be more
stable and convergent for a given problem than in two dimensions� Numerous cases
have been calculated where the three dimensional algorithm converges and residuals
go to machine zero�

���� Boundary Conditions and Geometry
Physical boundaries are again mapped to computational boundaries� Explicit

numerical and physical conditions can be applied are necessary� The actual condi�
tions used are the straightforward extensions of the methods outlined in Section IX�

��



One aspect of the three dimensional application which is more complicated then in
two dimensions is the development of grid topology and mesh systems� Surface def�
inition and the computational map are complicated by the many surfaces involved�
coordinate singularities 	 unavoidable when mapping a closed ��D body
� the lack of
an adequate number of grid points since ��D is a bigger strain on computer storage
limitations� This will de�nitely drive the computational community towards zonal
or patch methods� i�e� the large ��D problem is broken into multiple sections and
each section is handled separately� The interaction between zones can be explicit�
see Rai �
�� or implicit� Hessenius and Pulliam �
��� Also grid re�nement tech�
niques need more development� see Berger �
�� and Nakahashi and Deiwert ���� for
examples of these concepts�

Geometry seems to be one of the biggest stumbling blocks in three dimensions�
Another aspect of ��D which causes problems is the question of the metric invariants�
If central di�erencing is used to compute the metrics and for the �ux derivatives then
for ��D the metric invariants are not satis�ed� This was pointed out in the original
paper by Pulliam and Steger ���� By modifying the computation of the metrics
we can satisfy the invariants� This is done by averaging the central di�erences of
the grid values� 	x�� x� � etc� 
 to produce metrics which are similar to terms which
would be computed by a �nite volume method� For instance� 	x would be computed
as

	x � J �	�	��y
	���	z
� 	���	y
	�	��z
� 	����


where � is the standard central di�erence operator and � is an average operator�
for instance ��xk � 	xk�� � xk��
��� If all the metric terms are calculated is this
manner then the metric invariants are satis�ed�

���� Code Structure and Vectorization

With the advent of vectorized computer architecture one cannot just program
in a linear fashion without regard to code structure and expect to produce e�cient
code� Two major decisions face the programmer when writing code for a vector
machine� for instance CRAY type architecture� First you must identify the vector
length or construct� Which indices can be considered vectors� what are the vector
lengths 	 some machines require long vectors 
 and how is a vector loop implemented�
Secondly� how do we manage the large data bases which now can be processed
because of the e�ciency and speed of vector machines� Many of the near future
computers will have either large in�core memory or high speed out�of�core storage�
These large amounts of data will have to be managed e�ciently� In three dimensions
for instance a data base of � million grid points and �� variables will be common
place requiring us to manage �� millions words� To e�ciently handle this data
base� management systems such as plane slices or pencil concepts� see Lomax and

��



Pulliam ��
�� need to be developed and re�ned� The proper way to handle this is to
divide memory into two parts� the operating part of memory and the storage part�
Identi�able blocks of data are brought into the working area� processed and then
moved back to storage� There are a number of advantages to such a system� One
is that large blocks of data can be moved more e�ciently especially for out�of�core
storage devices but even for in�core storage� The dimensions of the blocks de�ne the
vector lengths� For SIMD 	single instruction � multiple data
 or MIMD 	multiple
instruction � multiple data
 architecture the blocks de�ne multiple data strings to
be operated on� In general� as machines become larger and more powerful we will
have to take more care in the development of a well structure e�cient code�

���
 Application in Three Dimensions
Applications in three dimensions require substantial computational resources�

Most of the problems attempted so far have been for simple geometries and limited
�ow conditions� The advent of the high speed � large memory machines� such as
the CRAY �S� XMP or CYBER ��
� will enable us to attempt realistic problems
but even they fall short of providing enough computer power for general purposes�
I shall present below applications of the code ARC�D for simple body shapes� The
�ow conditions used� though� produce some interesting and complicated �ow�elds�
These computations demonstrate the capabilities of the code and demonstrate the
accuracy and e�ciency�

A� Hemisphere�Cylinder At High Angle Of Attack
The �rst application is �ow past a semi�in�nite hemisphere�cylinder at a su�

personic Mach numberM� � ��� and high angle of attack � � ���� The calculation
is for a laminar Reynolds number RE � ���
���� This calculation was originally
presented by Pulliam and Steger ��� where it was computed on a grid with �� points
in the axial direction � �� points circumferentially and �� points in the normal direc�
tion� a total of ����� grid points� The grid is a warped spherical topology� see Fig�
�� and is clustered in the normal direction for boundary layer resolution� In the
original code ��� the convergence rate 	reduction in residual per iteration 
 for typ�
ical cases was on the order of ������ for the current algorithm it has been reduced
to approximately ������ Employing the algorithm as described above and using
the fully implicit pentadiagonal algorithm the computation time for three orders of
magnitude drop in residual 	plotting accuracy
 was reduced from about ��� minutes
for a converged case on the CDC���� to about 
 minutes on a CRAY�XMP� In fact
cases which could not be converged before on the CDC ���� are now convergent�
This is a substantial reduction in the compute time and can be improved further�

An example of the computation is shown in Fig� �� and ��� A cross�ow sep�
aration occurs at this angle of attack which is indicated by the pressure contours
and velocity vectors at the cross sectional plane shown� In Fig� �� pressure along

��



Figure ��� Warped Spherical Topology for Hemisphere�Cylinder�

the body at three circumferential locations is compared with experimental data
due to Hsieh ���� and compares quite well� Also shown is the computed cross�ow
separation angle against experiment�

Details of the interaction of the cross�ow and symmetry plane as well as other
features of this �ow require further study� Results by Pan and Pulliam ���� have
expanded ARC�D to use the SSD 	solid state disk
 on the XMP� This give us the
capacity for up to � million grid points� With that resolution and the increase
e�ciency of the code we are carring out a detailed study of high angle of attack
�ow�elds�

Other computations presented for this con�guration at lower Mach numbers
and angles of attack were reported by Pulliam and Steger and compared well with
data� The code is also used to obtain starting solutions for a PNS 	parabolized
Navier�Stokes
 code� see Schi� and Steger ����� Chaussee� et� al� �����

B� Boattail

As a second application� Deiwert employed a version of the code to study
boattails at angles of attack ���� and boattail exhaust plumes ��
�� A composite of
Deiwerts boattail computation is given in Fig� ��� The computation was performed
using a boattail con�guration with a in�nite sting� The region of interest is the
converging area of the boattail� The �ow conditions are M� � ���� Re � ��
 � ���
and angles of attack from �� to ���� Computed pressures at various angles of attack

�




Figure ��� Hemisphere�Cylinder at M� � ���� � � ����

Figure ��� Comparison with Experiment�

��



are compared with experiment in the paper� The case shown here is for � � ��

and shows comparison at three circumferential stations� Computed surface oil �ow
	particle paths restricted to the body
 and surface pressure for � � �� show the
type of results presented� The results reported by Deiwert ���� compared very well
with the experimental data of Shrewsbury �����

Figure ��� Boattail Study at M� � ���� � � ��� Re � ��
� ����

The boattail study was undertaken as a �rst step toward the simulation of
boattail exhaust plumes which has been carried out in a preliminary stage by Dei�
wert ��
�� In this simulation the boattail sting is eliminated and a conical exhaust
jet is added at the base region� Figures �
 and �� show comparisons of density
contours and streamlines with Schlieren photographs from Agrell and White �����
In Fig� �
 the pressure ratio for the jet was � and we see an expanded exhaust
plume and a complicated shock shear �ow pattern 	 depicted by the bold lines
�
The qualitative comparison with the photograph is quite remarkable� At a higher
exhaust ratio� Fig� �� the jet is tighter and the shock shear surface pattern more
complicated� Again the qualitative comparison with the photograph is quite good�
I refer the reader to the original papers and one by Nakahashi and Deiwert ���� for
a more detailed analysis of these �ow�elds�
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Figure ��� Boattail Exhaust Plume Flow Details at Pressure Ratio � ��
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Figure ��� Boattail Exhaust Plume Flow Details at Pressure Ratio � ����



Summary

In summary� the development of some computational algorithms in two� and
three�dimensions have been presented� Details of two computational codes� ARC�D
and ARC�D have been presented� The basic algorithm used is the Beam and
Warming implicit approximate factorization scheme or variants of that scheme such
as the diagonalization� The codes employ improvements to enhance accuracy� 	grid
re�nement� better boundary conditions� more versatile arti�cial dissipation model

and e�ciency 	diagonal algorithm� implicit treatment of arti�cial dissipation terms�
variable time steps
� Results for a wide variety of cases substantiate the accuracy
and e�ciency claims�

Future work is required to address improvement of boundary conditions� ex�
amining stability questions� eliminating cross term errors and more� We are also
interested in developing new grid generation concepts both in terms of generation
and grid quality� In three dimensions we see the area of zonal concepts as the newest
horizon and envision substantial gains in solution capability as a result�
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Appendix
The �ux Jacobian matrices of Eq� 	
��
 have real eigenvalues and a complete

set of eigenvectors� The similarity transforms are

bA � T� �T
��
� and bB � T� �T

��
� 	A��
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Relations exist between T� and T� of the form
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It is interesting to note that the matrix bN is only a function of the metrics and
not the �ow variables�
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The viscous �ux Jacobian is
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The eigensystem decomposition of the three dimensional Jacobians have the
form bA � T� �T
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