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Abstract

The development of methods of quantum statistical mechanics is considered in light of
their applications to quantum solid-state theory. We discuss fundamental problems of the
physics of magnetic materials and the methods of the quantum theory of magnetism, includ-
ing the method of two-time temperature Green’s functions, which is widely used in various
physical problems of many-particle systems with interaction. Quantum cooperative effects and
quasiparticle dynamics in the basic microscopic models of quantum theory of magnetism: the
Heisenberg model, the Hubbard model, the Anderson Model, and the spin-fermion model are
considered in the framework of novel self-consistent-field approximation. We present a com-
parative analysis of these models; in particular, we compare their applicability for description
of complex magnetic materials. The concepts of broken symmetry, quantum protectorate,
and quasiaverages are analyzed in the context of quantum theory of magnetism and theory
of superconductivity. The notion of broken symmetry is presented within the nonequilibrium
statistical operator approach developed by D.N. Zubarev. In the framework of the latter ap-
proach we discuss the derivation of kinetic equations for a system in a thermal bath. Finally,
the results of investigation of the dynamic behavior of a particle in an environment, taking
into account dissipative effects, are presented.
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1 Introduction

The purpose of this review is to trace the development of some methods of quantum statistical
mechanics formulated by N.N. Bogoliubov, and also to show their effectiveness in applications to
problems of quantum solid-state theory, and especially to problems of quantum theory of mag-
netism. It is necessary to stress, that the path to understanding the foundations of the modern
statistical mechanics and the development of efficient methods for computing different physical
characteristics of many-particle systems was quite complex. The main postulates of the mod-
ern statistical mechanics were formulated in the papers by J.P. Joule (1818-1889), R. Clausius
(1822-1888), W. Thomson (1824-1907), J.C. Maxwell (1831-1879), L. Boltzmann (1844-1906),
and, especially, by J.W. Gibbs (1839-1903). The monograph by Gibbs ”Elementary Principles
in Statistical Mechanics Developed with Special Reference to the Rational Foundations of Ther-
modynamics”1, 2 remains one of the highest peaks of modern theoretical science. A significant
contribution to the development of modern methods of equilibrium and nonequilibrium statistical
mechanics was made by Academician N.N. Bogoliubov (1909-1992).3–7

Specialists in theoretical physics, as well as experimentalists, must be able to find their way
through theoretical problems of the modern physics of many-particle systems because of the fol-
lowing reasons. Firstly, the statistical mechanics is filled with concepts, which widen the physical
horizon and general world outlook. Secondly, statistical mechanics and, especially, quantum statis-
tical mechanics demonstrate remarkable efficiency and predictive ability achieved by constructing
and applying fairly simple (and at times even crude) many-particle models. Quite surprisingly,
these simplified models allow one to describe a wide diversity of real substances, materials, and
the most nontrivial many-particle systems, such as quark-gluon plasma, the DNA molecule, and
interstellar matter. In systems of many interacting particles an important role is played by the
so-called correlation effects,8 which determine specific features in the behavior of most diverse
objects, from cosmic systems to atomic nuclei. This is especially true in the case of solid-state
physics. Investigation of systems with strong inter-electron correlations, complicated character of
quasiparticle states, and strong potential scattering is an extremely important and topical problem
of the modern theory of condensed matter. Our time is marked by a rapid advancement in design
and application of new materials, which not only find a wide range of applications in different
areas of engineering, but they are also connected with the most fundamental problems in physics,
physical chemistry, molecular biology, and other branches of science. The quantum cooperative
effects, such as magnetism and superconductivity, frequently determine the unusual properties of
these new materials. The same can be also said about other non-trivial quantum effects like, for
instance, the quantum Hall effect, the Bose-Einstein condensation, quantum tunneling and oth-
ers. This research direction is developing very rapidly, setting a fast pace for widening the domain
where the methods of quantum statistical mechanics are applied. This review will support the
above statement by concrete examples.

2 Quantum Statistical Mechanics and Solid State Physics

The development of experimental techniques over the recent years opened the possibility for
synthesis and investigations of a wide class of new substances with unusual combination of prop-
erties.9–15 Transition and rare-earth metals and especially compounds containing transition and
rare-earth elements possess a fairly diverse range of properties. Among those, one can men-
tion magnetically ordered crystals, superconductors, compounds with variable valence and heavy
fermions, as well as substances which under certain conditions undergo a metal-insulator transi-
tion, like perovskite-type manganites, which possesses a large magneto-resistance with a negative
sign. These properties find widest applications in engineering; therefore, investigations of this
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class of substances should be classified as the currently most important problems in the physics
of condensed matter. A comprehensive description of materials and their properties (as well as
efficient predictions of properties of new materials) is possible only in those cases, when there is an
adequate quantum-statistical theory based on the information about the electron and crystalline
structures. The main theoretical problem of this direction of research, which is the essence of
the quantum theory of magnetism,16, 17 is investigations and improvements of quantum-statistical
models describing the behavior of the above-mentioned compounds in order to take into account
the main features of their electronic structure, namely, their dual ”band-atomic” nature.18, 19

The construction of a consistent theory explaining the electronic structure of these substances
encounters serious difficulties when trying to describe the collectivization- localization duality in
the behavior of electrons. This problem appears to be extremely important, since its solution
gives us a key to understanding magnetic, electronic, and other properties of this diverse group of
substances. The author of the present review investigated the suitability of the basic models with
strong electron correlations and with a complex spectrum for an adequate and correct description
of the dual character of electron states. A universal mathematical formalism was developed for
this investigation.20 It takes into account the main features of the electronic structure and allows
one to describe the true quasiparticle spectrum, as well as the appearance of the magnetically or-
dered, superconducting, and dielectric (or semiconducting) states. With a few exceptions, diverse
physical phenomena observed in compounds and alloys of transition and rare-earth metals,18, 19, 21

cannot be explained in the framework of the mean-field approximation, which overestimates the
role of inter-electron correlations in computations of their static and dynamic characteristics. The
circle of questions without a precise and definitive answer, so far, includes such extremely impor-
tant (not only from a theoretical, but also from a practical point of view) problems as the adequate
description of quasiparticle dynamics for quantum-statistical models in a wide range of their pa-
rameter values. The source of difficulties here lies not only in the complexity of calculations of
certain dynamic properties (such as, the density of states, electrical conductivity, susceptibility,
electron-phonon spectral function, the inelastic scattering cross section for slow neutrons), but also
in the absence of a well-developed method for a consistent quantum-statistical analysis of a many-
particle interaction in such systems. A self-consistent field approach was used in the papers20, 22–27

for description of various dynamic characteristics of strongly correlated electronic systems. It al-
lows one to consistently and quite compactly compute quasiparticle spectra for many-particle
systems with strong interaction taking into account damping effects. The correlation effects and
quasiparticle damping are the determining factors in analysis of the normal properties of high-
temperature superconductors, and of the transition mechanism into the superconducting phase.
We also formulated a general scheme for a theoretical description of electronic properties of many-
particle systems taking into account strong inter-electron correlations.20, 22–24, 26, 27 The scheme is
a synthesis of the method of two-time temperature Green’s functions16 and the diagram technique.
An important feature of this approach is a clear-cut separation of the elastic and inelastic scatter-
ing processes in many-particle systems (which is a highly nontrivial task for strongly correlated
systems). As a result, one can construct a correct basic approximation in terms of generalized
mean fields (the elastic scattering corrections), which allows one to describe magnetically ordered
or superconducting states of the system. The residual correlation effects, which are the source of
quasiparticle damping, are described in terms of the Dyson equation with a formally exact repre-
sentation for the mass operator. There is a general agreement that for heavy-fermion compounds,
the model Hamiltonian is well established (the periodic Anderson model or the periodic Kondo
lattice), and the main theoretical challenge in this case lies in constructing accurate approxima-
tions. However, in the case of high-temperature superconductors or perovskite-type manganites,
neither a model, nor adequate approximate analytical methods for its solution are available. Thus,
the development and improvement of the methods of quantum statistical mechanics still remains
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quite an important direction of research.28

3 Magnetic Properties of Substances and Models of Magnetic

Materials

It is widely accepted that the appearance of magnetically ordered states in transition metals is
to some extent a consequence of the atom-like character of d-states, but mostly it is the result of
interatomic exchange interactions. In order to better understand the origin of quantum models of
magnetic materials, we discuss here briefly the physical aspects of the magnetic properties of solid
materials. The magnetic properties of substances belong to the class of natural phenomena, which
were noticed a long time ago.17,29 Although it is assumed that we encounter magnetic natural
phenomena less frequently than the electric ones, nevertheless as was noticed by V. Weisskopf,
”magnetism is a striking phenomenon; when we hold a magnet in one hand and a piece of iron
in another, we feel a peculiar force, some ”force of nature”, similar to the force of gravity”.30

It is interesting to note that the experiment-based scientific approach began from investigations
of magnetic materials. This is the so called inductive method, which insists on searching for
truth about the nature not in deductions, not in syllogisms and formal logics, but in experiments
with the natural substances themselves. This method was applied for the first time by William
Gilbert (1544-1603), Queen Elizabeth’s physician. In his book, ”On the magnet, magnetic bodies,
and on the great magnet, the Earth”,31 published in 1600, he described over 600 specially per-
formed experiments with magnetic materials, which had led him to an extremely important and
unexpected for the time conclusion, that the Earth is a giant spherical magnet. Investigations
of Earth’s and other planet’s magnetism is still an interesting and quite important problem of
modern science.32–34 Thus, it is with investigations of the physics of magnetic phenomena, that
the modern experiment based science began. Note, that although the creation of the modern
scientific methods is often attributed to Francis Bacon, Gilbert’s book appeared 20 years earlier
than ”The New Organon” by Francis Bacon (1561-1626).
The key to understanding the nature of magnetism became the discovery of a close connection be-
tween magnetism and electricity.35 For a long time the understanding of magnetism’s nature was
based on the hypothesis of how the magnetic force is created by magnets. Andre Ampere (1775-
1836) conjectured that the principle behind the operation of an ordinary steel magnet should be
similar to an electric current passing over a circular or spiral wire. The essence of his hypothesis
laid in the assumption, that each atom contains a weak circular current, and if most of these
atomic currents are oriented in the same direction, then the magnetic force appears. All subse-
quent developments of the theory of magnetism consisted in the development and refinement of
Ampere’s molecular currents hypothesis.
As an extension of this idea by Ampere a conjecture was put forward that a magnet is an ensem-
ble of elementary double poles, magnetic dipoles. The dipoles have two magnetic poles which are
inseparably linked. In 1907, Pierre Weiss (1865-1940) proposed a phenomenological picture of the
magnetically ordered state of matter. He was the first to perform a phenomenological quantita-
tive analysis of the magnetic phenomena in substances.36 Weiss’s investigations were based on
the notion, introduced by him, of a molecular field. Subsequently this approach was named the
molecular (or mean, or effective) field approximation, and it is still being widely used even at the
present time.37 The simplest microscopic model of a ferromagnet in the molecular field’s approx-
imation is based on the assumption that electrons form a free gas of magnetic arrows (magnetic
dipoles), which imitate Ampere’s molecular currents. In the simplest case it is assumed that these
”elementary magnets” could orient in space either along a particular direction, or against it. In
order to find the thermodynamically equilibrium value of the magnetization 〈M〉 as a function of
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temperature T , one has to turn to general laws of thermodynamics. This is especially important
when we consider the behavior of a system at finite temperatures. Finding the equilibrium mag-
netization of a ferromagnet becomes quite a simple task if we first succeed in writing down its
energy E(〈M〉) as a function of magnetization. All we have to do after that is to minimize the
free energy F (〈M〉), which is defined by the following relationship:35

F (〈M〉) = E(〈M〉) − TS(〈M〉). (3.1)

Here, S(〈M〉) is the system entropy also written down as a function of magnetization. It is im-
portant to stress, that the problem of calculating the system entropy cannot be solved in the
framework of just thermodynamics. In order to find the entropy one has to turn to statistical
mechanics,1, 38–41 which provides a microscopic foundation to the laws of thermodynamics. Note
that derivations of equilibrium magnetization 〈M〉 as a function of temperature T , or, more gener-
ally, investigations of relationships between the free energy and the order parameter in magnetics
and pyroelectrics are still ongoing even at the present time.42–45 Of course, modern investigations
take into account all the previously accumulated experience. In the framework of the P. Weiss
approach one investigates the appearance of a spontaneous magnetization 〈M〉 6= 0 for H = 0.
This approach is based on the following postulate for the behavior of the system’s energy

E(〈M〉) ≃ NI(〈M〉)2. (3.2)

This expression takes into account the interaction between elementary magnets (arrows). Here,
I is the energy of the Weiss molecular field per atomic magnetic arrow. The question on the
microscopic nature of this field is beyond the framework of the Weiss approach. The minimization
of the free energy F (〈M〉) yields the following relationship

〈M〉 = th(TC〈M〉/T ), (3.3)

Where TC is the Curie or the critical temperature. As the temperature decreases below this
critical value a spontaneous magnetization appears in the system. The Curie temperature was
named in honor of Pierre Curie (1859-1906), who established the following law for the behavior
of susceptibility χ in paramagnetic substances

χ = lim
H→0

〈M〉
H

=
C

T
. (3.4)

Depending on the actual material, the Curie parameter C obtains different (positive) values.35

Note that Pierre Curie performed thorough investigations of the magnetic properties of iron back
in 1895. In the process of those experiments he established the existence of a critical temper-
ature for iron, above which the ferromagnetic properties disappear. These investigations laid a
foundation for investigations of order-disorder phase transitions, and other phase transformations
in gases, liquids, and solid substances. This research direction created the core of the physics of
critical phenomena, which studies the behavior of substances in the vicinity of critical tempera-
tures.46

Extensive investigations of spontaneous magnetization and other thermal effects in nickel in the
vicinity of the Curie temperature were performed by Weiss and his collaborators.47 They devel-
oped a technique for measuring the behavior of the spontaneous magnetization in experimental
samples for different values of temperature. Knowing the behavior of spontaneous magnetization
as a function of temperature one can determine the character of magnetic transformations in the
material under investigation. Investigations of the behavior of the magnetic susceptibility as a
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function of temperature in various substances remain important even at the present time.48–50

Within the P. Weiss approach we obtain the following expression for the Curie temperature

TC = 2I/kB . (3.5)

In order to obtain a rough estimate for the magnitude of I take TC = 1000K. Then one obtains
I ∼ 10−13 erg/atom. This implies that the only origin of the Weiss molecular field can be the
Coulomb interaction of electrical charges.16, 35 Computations in the framework of the molecular
field method lead to the following formula for the magnetic susceptibility

χ = Nµ2B〈M〉/H =
Nµ2B

kB(T − TC)
, (3.6)

where µB = e~/2mc is the Bohr magneton (within the Weiss approach this is the magnetic
moment of the magnetic arrows imitating Ampere’s molecular currents). The above expression
for the susceptibility is referred to as the Curie-Weiss law. Thus, the Weiss molecular field, whose
magnitude is proportional to the magnetization, is given by

HW = kBTC〈M〉/µB . (3.7)

Researchers tried to find the answer to the question on the nature of this internal molecular field
in ferromagnets for a long time. That is, they tried to figure out which interaction causes the
parallel alignment of electron spins. As was stressed in the book:51 ”At first researchers tried to
imagine this interaction of electrons in a given atom with surrounding electrons as some quasi-
magnetic molecular field, acting on the electrons of the given atom. This hypothesis served as a
foundation for the P. Weiss theory, which allowed one to describe qualitatively the main properties
of ferromagnets”. However, it was established that Weiss’s molecular field approximation is appli-
cable neither for theoretical interpretation, nor for quantitative description of various phenomena
taking place in the vicinity of the Curie temperature. Although numerous attempts aiming to
improve Weiss’s mean-field theory were undertaken, none of them led to significant progress in
this direction. Numerical estimates yield the value HW = 107 oersted for the magnitude of the
Weiss mean field. The nonmagnetic nature of the Weiss molecular field was established by direct
experiments in 1927 (see the books35,51). Ya.G. Dorfman performed the following experiment.
An electron beam passing though nickel foil magnetized to the saturation level is falling on a
photographic plate. It was expected that if such a strong magnetic field indeed exists in nickel,
then the electrons passing through the magnetized foil would deflect. However, it turned out that
the observed electron deflection is extremely small. The experiment led to the conclusion that,
contrary to the consequences of the Weiss theory, the internal fields of large intensity are not
present in ferromagnets. Therefore, the spin ordering in ferromagnets is caused by forces of a
nonmagnetic origin. It is interesting that fairly recently, in 2001, similar experiments were per-
formed again52 (in a substantially modified form, of course). A beam of polarized ”hot” electrons
was scattered by thin ferromagnetic nickel, iron, and cobalt films, and the polarization of the
scattered electrons was measured. The concept of the Weiss exchange field W(x) ∼ −JαS(x) was
used for theoretical analysis.52, 53 The real part of this field corresponds to the exchange inter-
action between the incoming electrons and the electron density of the film (the imaginary part
is responsible for absorption processes). The derived equations, describing the beam scattering,
resemble quite closely the corresponding equations for the Faraday’s rotation effect in the light
passing through a magnetized environment.52, 53 The theoretical consideration is based on using
the mean-field approximation, namely on the replacement

W ≃ 〈W(x)〉 = Jα〈S(x)〉. (3.8)
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The subsequent quite rigorous and detailed consideration53 aimed at deriving the effective quan-
tum dynamics of the field W (x) showed, that this dynamics is described by the Landau-Lifshitz
equation.35 The spatial and temporal variations of the field W (x) are described by spin waves.
The quanta of the Weiss exchange field are magnons.
One has to note that in its original version, the Weiss molecular field was assumed to be uniformly
distributed over the entire volume of the sample, and had the same magnitude in all points of
the substance. An entirely different situation takes place in a special class of substances called
antiferromagnets. As the temperature of antiferromagnets falls below a particular value, a mag-
netically ordered state appears in the form of two inserted into each other sublattices with opposite
directions of the magnetization. This special value of the temperature became known as the Neel
temperature, after the founder of the antiferromagnetism theory L. Neel (1904-2000). In order to
explain the nature of the antiferromagnetism (as well as of the ferrimagnetism) L. Neel introduced
a profound and nontrivial notion of local molecular fields.54 However, there was no a unified ap-
proach to investigations of magnetic transformations in real substances. Moreover, a consistent
consideration of various aspects of the physics of magnetic phenomena on the basis of quantum
mechanics and statistical physics was and still is an exceptionally difficult task, which to the
present days does not have a complete solution.55, 56 This was the reason why the authors of the
most complete, at that time, monograph on the magnetism characterized the state of affairs in the
physics of magnetic phenomena as follows: ”Even recently the problems of magnetism seemed to
belong to an exceptionally unrewarding area for theoretical investigations. Such a situation could
be explained by the fact that the attention of researchers was devoted mostly to ferromagnetic
phenomena, because they played and still play quite an important role in engineering. However,
the theoretical interpretation of the ferromagnetism presents such formidable difficulties, that to
the present day this area remains one of the darkest spots in the entire domain of physics”.57

The magnetic properties and the structure of matter turned out to be interconnected subjects.
Therefore, a systematic quantum-mechanical examination of the problem of magnetic substances
was considered by most researchers51, 58–60 as quite an important task. Heisenberg, Dirac, Hund,
Pauli, van Vleck, Slater, and many other researchers contributed to the development of the quan-
tum theory of magnetism. As was noted by D. Mattis,17 ”. . . by 1930, after four years of most
exciting and striking discoveries in the history of theoretical physics, a foundation for the modern
electron theory of matter was laid down, after that an epoch of consolidation and computations
had began, which continues up to the present day”.
Over the last decades the physics of magnetic phenomena became a vast and ramified domain of
modern physical science.17,35, 55, 56, 61–74 The rapid development of the physics of magnetic materi-
als was influenced by introduction and development of new physical methods for investigating the
structural and dynamical properties of magnetic substances.75 These methods include magnetic
neutron diffraction analysis,76, 77 NMR and EPR-spectroscopy, the Mossbauer effect, novel opti-
cal methods,78 as well as recent applications of synchrotron radiation.79–82 In particular, unique
possibilities of the thermal neutron’s scattering methods75–77, 83 allow one to obtain information
on the magnetic and crystalline structure of substances, on the distribution of magnetic moments,
on the spectrum of magnetic excitations, on critical fluctuations, and on many other properties
of magnetic materials. In order to interpret the data obtained via inelastic scattering of slow
neutrons one has to take into account electron-electron and electron-nuclear interactions in the
system, as well as the Pauli exclusion principle. Here, we again face the challenge of consider-
ing various aspects of the physics of magnetic phenomena, consistently on the basis of quantum
mechanics and statistical physics. In other words, we are dealing with constructing a consistent
quantum theory of magnetic substances. As was rightly noticed by K. Yosida, ”The question of
electron correlations in complex electronic systems is the beginning and the end of all research on
magnetism”.84 Thus, the phenomena of magnetism can be described and interpreted consistently
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only in the framework of quantum statistical theory of many interacting particles.

4 Quantum Theory of Magnetism

It is well known that ”quantum mechanics is the key to understanding magnetism”.85 One of
the first steps in this direction was the formulation of ”Hund’s rules” in atomic physics.63 As
was noticed by D. Mattis,17 ”The accumulated spectroscopic data allowed Stoner (1899-1968) to
attribute the correct number of equivalent electrons to each atomic shell, and Hund (1896-1997)
to state his rules, related to the spontaneous magnetic moments of a free atom or ion”. Hund’s
rules are empirical recipes. Their consistent derivation is a difficult task. These rules are stated
as follows:
(1) The ground state of an atom or an ion with a L − S coupling is a state with the maximal
multiplicity (2S + 1) for a given electron configuration.
(2) From all possible states with the maximal multiplicity, the ground state is a state with the
maximal value of L allowed by the Pauli exclusion principle.
Note that the applicability of these empirical rules is not restricted to the case, when all electrons
lie in a single unfilled valency shell. A rigorous derivation of Hund’s rules is still missing. How-
ever, there are a few particular cases which show their validity under certain restrictions63, 86 (see
a recent detailed analysis of this question in the papers87, 88). Nevertheless Hund’s rules are very
useful and are widely used for analysis of various magnetic phenomena. A physical analysis of
the first Hund’s rule leads us to the conclusion, that it is based on the fact, that the elements of
the diagonal matrix of the electron-electron’s Coulomb interaction contain the exchange’s inter-
action terms, which are entirely negative. This is the case only for electrons with parallel spins.
Therefore, the more electrons with parallel spins involved, the greater the negative contribution
of the exchange to the diagonal elements of the energy matrix. Thus, the first Hund’s rule implies
that electrons with parallel spins ”tend to avoid each other” spatially. Here, we have a direct
connection between Hund’s rules and the Pauli exclusion principle.
One can say that the Pauli exclusion principle (1925) lies in the foundation of the quantum theory
of magnetic phenomena. Although this principle is merely an empirical rule, it has deep and
important implications.89 W. Pauli (1900-1958) was puzzled by the results of the ortho-helium
terms analysis, namely, by the absence in the term structure of the presumed ground state, that
is the (13S) level. This observation stimulated him to perform a general examination of atomic
spectra, with the aim to find out, if certain terms are absent in other chemical elements and under
other conditions as well. It turned out, that this was indeed the case. Moreover, the conducted
analysis of term systems had shown that in all the instances of missing terms the entire sets of
the quantum numbers were identical for some electrons. And vice versa, it turned out that terms
always drop out in the cases when entire sets of quantum numbers are identical. This observation
became the essence of the Pauli exclusion principle:
The sets of quantum numbers for two (or many) electrons are never identical; two sets of quantum
numbers, which can be obtained from one another by permutations of two electrons, define the
same state.
In the language of many-electron wave functions one has to consider permutations of spatial and
spin coordinates of electrons i and j in the case when both the spin variables σi = σj = σ0 and
the spatial coordinates ~ri = ~rj = ~r0 of these two electrons are identical. Then, we obtain:

Pijψ(~r1σ1, . . . ~riσi, . . . ~rjσj , . . .) = ψ(~r1σ1, . . . ~riσi, . . . ~rjσj, . . .). (4.1)

The Pauli exclusion principle implies that

Pijψ(~r1σ1, . . . ~riσi, . . . ~rjσj, . . .) = −ψ(~r1σ1, . . . ~riσi, . . . ~rjσj, . . .). (4.2)
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The above conditions are satisfied simultaneously only in the case, when ψ is equal to zero iden-
tically. Therefore, we arrive at the following conclusion: electrons are indistinguishable, that
is, their permutations must not change observable properties of the system. The wave function
changes or retains its sign under permutations of two particles depending on whether these indis-
tinguishable particles are bosons or fermions. A consequence of the Pauli exclusion principle is
the Aufbau principle, which leads to the periodicity in the properties of chemical elements. The
fact that not more than one electron can occupy any single state leads also to such fundamental
consequences as the very existence of solid bodies in nature. If the Pauli exclusion principle was
not satisfied, no substance could ever be in a solid state. If the electrons would not have spin
(that is, if they were bosons) all substances would occupy much smaller volumes (they would have
higher densities), but they would not be rigid enough to have the properties of solid bodies.
Thus, the tendency of electrons with parallel spins ”to avoid each other” reduces the energy of
electron-electron Coulomb interaction, and hence, lowers the system energy. This property has
many important implications, in particular, the existence of magnetic substances. Due to the
presence of an internal unfilled nd- or nf -shell, all free atoms of transition elements are strong
magnetic, and this is a direct consequence of Hund’s rules. When crystals are formed17, 35, 63, 68

the electronic shells in atoms reorganize, and in order to understand clearly the properties of crys-
talline substances, one has to know the wave function and the energies of (previously) outer-shell
electrons. At the present time there are well-developed efficient methods for computing electronic
energy levels in crystals.90–92 Speaking qualitatively, we have to find out how the atomic wave’s
functions change when crystals are formed, and how significantly they delocalize.19

4.1 The Method of Model Hamiltonians

The method of model Hamiltonians proved to be very efficient in the theory of magnetism. With-
out any exaggeration one can say, that the tremendous successes in the physics of magnetic phe-
nomena were achieved, largely, as a result of exploiting a few simple and schematic model concepts
for ”the theoretical interpretation of ferromagnetism”.93 One can regard the Ising model94, 95 as
the first model of the quantum theory of magnetism. In this model, formulated by W. Lenz (1888-
1957) in 1920 and studied by E. Ising (1900-1998), it was assumed that the spins are arranged at
the sites of a regular one-dimensional lattice. Each spin can obtain the values ±~/2:

H = −
∑

<ij>

IijS
z
i S

z
j . (4.3)

This was one of the first attempts to describe the magnetism as a cooperative effect. It is interest-
ing that the one-dimensional Ising model was solved by Ising in 1925, while the exact solution of
the Ising model on a two-dimensional square lattice was obtained by L. Onsager (1903-1976)96, 97

only in 1944. However, the Ising model oversimplifies the situation in real crystals. W. Heisen-
berg (1901-1976)98 and P. Dirac (1902-1984)99 formulated the Heisenberg model, describing the
interaction between spins at different sites of a lattice by the following isotropic scalar function

H = −
∑

ij

J(i − j)~Si ~Sj − gµBH
∑

i

Sz
i . (4.4)

Here J(i − j) (the ”exchange integral”) is the strength of the exchange interaction between the
spins located at the lattice sites i and j. It is usually assumed that J(i − j) = J(j − i) and
J(i − j = 0) = 0, which means that only the inter-site interaction is present (there is no self-
interaction). The Heisenberg Hamiltonian (4.4) can be rewritten in the following form:

H = −
∑

ij

J(i− j)(Sz
i S

z
j + S+

i S
−
j ). (4.5)
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Here, S± = Sx ± iSy are the spin raising and lowering operators. They satisfy the following set
of commutation relationships:

[S+
i , S

−
j ]− = 2Sz

i δij ; [S+
i , S

−
i ]+ = 2S(S + 1)− 2(Sz

i )
2;

[S∓
i , S

z
j ]− = ±S∓

i δij ; Sz
i = S(S + 1)− (Sz

i )
2 − S−

i S
+
i ;

(S+
i )

2S+1 = 0, (S−
i )

2S+1 = 0.

Note that in the isotropic Heisenberg model the z-component of the total spin Sz
tot =

∑

i S
z
i is a

constant of motion, that is [H,Sz
tot] = 0.

Thus, in the framework of the Heisenberg-Dirac-van Vleck model,59,98–101 describing the interac-
tion of localized spins, the necessary conditions for the existence of ferromagnetism involve the
following two factors. Atoms of a ”ferromagnet to be” must have a magnetic moment, arising
due to unfilled electron d- or f -shells. The exchange integral Jij related to the electron exchange
between neighboring atoms must be positive. Upon fulfillment of these conditions the most en-
ergetically favorable configurations in the absence of an external magnetic field correspond to
parallel alignment of magnetic moments of atoms in small areas of the sample (domains).101 Of
course, this simplified picture is only schematic. A detail derivation of the Heisenberg-Dirac-van
Vleck model describing the interaction of localized spins is quite complicated. Because of a short-
age of space we cannot enter into discussion of this quite interesting topic.102–104 An important
point to keep in mind here is that magnetic properties of substances are born by quantum effects,
the forces of exchange interaction.105

As was already mentioned above, the states with antiparallel alignment of neighboring atomic
magnetic moments are realized in a fairly wide class of substances. As a rule, these are various
compounds of transition and rare-earth elements, where the exchange integral Jij for neighboring
atoms is negative. Such a magnetically ordered state is called antiferromagnetism.54, 106–116

In 1948, L. Neel introduced the notion of ferrimagnetism117–122 to describe the properties of
substances in which spontaneous magnetization appears below a certain critical temperature due
to nonparallel alignment of the atomic magnetic moment.109–116,123 These substances differ from
antiferromagnets where sublattice magnetizations mA and mB usually have identical absolute
values, but opposite orientations. Therefore, the sublattice magnetizations compensate for each
other and do not result in a macroscopically observable value for magnetization. In ferrimagnetics
the magnetic atoms occupying the sites in sublattices A and B differ both in the type and in the
number. Therefore, although the magnetizations in the sublattices A and B are antiparallel to
each other, there exists a macroscopic overall spontaneous magnetization.109, 111, 112, 116, 118

Later, substances possessing weak ferromagnetism were investigated.109–116 It is interesting that
originally Neel used the term parasitic ferromagnetism125 when referring to a small ferromagnetic
moment, which was superimposed on a typical antiferromagnetic state of the α iron oxide Fe2O3

(hematite).124 Later, this phenomenon was called canted antiferromagnetism, or weak ferromag-
netism.124,126 The weak ferromagnetism appears due to antisymmetric interaction between the
spins ~S1 and ~S2 and which is proportional to the vector product ~S1× ~S2. This interaction is written
in the following form

HDM ∼ ~D~S1 × ~S2. (4.6)

The interaction (4.6) is called the Dzyaloshinsky-Moriya interaction [127, 128]. Hematite is one
of the most well known minerals,124, 126, 129–131 which is still being intensively studied132 even at
the present time.133–136

Thus, there exist a large number of substances and materials that possess different types of
magnetic behavior: diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferri-
magnetism, and weak ferromagnetism. We would like to note that the variety of magnetism is
not exhausted by the above types of magnetic behavior; the complete list of magnetism types is
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substantially longer.137 As was already stressed, many aspects of this behavior can be reasonably
well described in the framework of a very crude Heisenberg-Dirac-van Vleck model of localized
spins. This model, however, admits various modifications (see, for instance, the book138). There-
fore, various nontrivial generalizations of the localized spin models were studied. In particular,
a modification of the Heisenberg model was investigated, where, in addition to the exchange in-
teraction between different sites, an exchange interaction between the spins at the same site was
considered:139

H = −µBH
∑

<iα>

Sz
iα − 1

2

∑

i 6=j

∑

αβ

J(iα; jβ)
(

λS+
iαS

−
jβ + Sz

iαS
z
jβ

)

− (4.7)

1

2

∑

i

∑

α6=β

J(iα; iβ)
(

λS+
iαS

−
iβ + Sz

iαS
z
iβ

)

.

In the case when J(iα; iβ) ≫ J(iα; jβ), this model Hamiltonian in some sense imitates Hund’s
rules. Indeed, Hund’s rules state that the triplet’s spin state of two electrons occupying one and
the same site is energetically more favorable than the singlet state. It is this feature that is taken
into account by the model (4.7). A model of this type was used for description of composite
ferrites, which contain different types of atoms with different spins (magnetic moments). In the
limiting case J(iα; iβ) 6= 0;J(iα; jβ) ≡ 0 the model (4.7) can be considered as the simplest
version of the Heisenberg model.140 In this case, the two-spin system is interpreted140 as the
simplest one-dimensional periodic magnet with the periodN = 2. Despite the apparent ’shortages’
model (4.7) has found numerous applications for description of real substances,141 including the
composite Cu(NO3)2 · 2.5H2O-type salts,142, 143 of clusters,144, 145 as well as for improving mean-
field approximation by using various cluster methods.146

4.2 The Problem of Magnetism of Itinerant Electrons

The Heisenberg model describing localized spins is mostly applicable to substances where the
ground state’s energy is separated from the energies of excited current-type states by a gap of
a finite width. That is, the model is mostly applicable to semiconductors and dielectrics.111, 147

However, the main strongly magnetic substances, nickel, iron, and cobalt, are metals, belonging
to the transition group.35 The development of quantum statistical theory of transition metals
and of their compounds followed a more difficult path than that of the theory of simple met-
als.148–151 The traditional physical picture of the metal state was based on the notion of Bloch
electron waves.148–152 However, the role played by the inter-electron interaction remained un-
clear within the conventional approach. On the other hand, the development of the band theory
of magnetism,62, 153–157 and investigations of the electronic phase’s transitions in transition and
rare-earth metal compounds gradually led to realization of the determining role of electron correla-
tions.158–160 Moreover, in many cases inter-electron interaction is very strong and the description
in terms of the conventional band theory is no longer applicable. Special properties of transi-
tion metals and of their alloys and compounds are largely determined by the dominant role of
d-electrons. In contrast to simple metals, where one can apply the approximation of quasi-free
electrons, the wave functions of d-electrons are much more localized, and, as a rule, have to be
described by the tight-binding approximation.90, 91, 161 The main aim of the band theory of mag-
netism and of related theories, describing phase ordering and phenomena of phase transition in
complex compounds and oxides of transition and rare-earth metals, is to describe in the frame-
work of a unified approach both the phenomena revealing the localized character of magnetically
active electrons, and the phenomena where electrons behave as collectivized band entities.19 A
resolution of this apparent contradiction requires a very deep understanding of the relationship
between the localized and the band description of electron states in transition and rare-earth
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metals, as well as in their alloys and compounds. The quantum statistical theory of systems with
strong inter-electron correlations began to develop intensively when the main features of early
semi-phenomenological theories were formulated in the language of simple model Hamiltonians.
Both the Anderson model,162, 163 which formalized the Friedel theory of impurity levels, and the
Hubbard model,164–169 which formalized and developed early theories by Stoner, Mott, and Slater,
equally stress the role of inter-electron correlations. The Hubbard Hamiltonian and the Anderson
Hamiltonian (which can be considered as the local version of the Hubbard Hamiltonian) play an
important role in the electron’s solid-state theory.20 Therefore, as was noticed by E. Lieb,170 the
Hubbard model is ’definitely the first candidate’ for constructing a ’more fundamental’ quan-
tum theory of magnetic phenomena than the ’theory based on the Ising model’170 (see also the
papers171–175).
However, as it turned out, the study of Hamiltonians describing strongly-correlated systems is an
exceptionally difficult many-particle problem, which requires applications of various mathematical
methods.170, 172–178 In fact, with the exception of a few particular cases, even the ground state
of the Hubbard model is still unknown. Calculation of the corresponding quasiparticle spectra in
the case of strong inter-electron correlations also turned out to be quite a complicated problem.
As was quite rightly pointed out by J. Kanamori,179 when one is dealing with ”a metal state
with the values of parameters close to the critical point, where the metal turns into a dielectric”,
then ”the calculation of excited states in such crystals becomes very difficult (especially at low
temperatures)”. Therefore, in contrast to quantum many-body systems with weak interaction,
the definition of such a notion as elementary excitations for strongly-interacting electrons with
strong inter-electron correlations is quite a nontrivial problem requiring special detailed investiga-
tions.20, 22–26 At the same time, one has to keep in mind, that the Anderson and Hubbard models
were designed for applications to real systems, where both the case of strong and the case weak
inter-electron correlations are realized.
Often, a very important role is played by the electron interaction with the lattice vibrations, the
phonons.180–182 Therefore, the number one necessity became the development of a systematic
self-consistent theory of electron correlations applicable for a wide range of the parameter val-
ues of the main model, and the development of the electron-phonon’s interaction theory in the
framework of a modified tight-binding approximation of strongly correlated electrons, as well as
the examination of various limiting cases.183, 184 All this activity allowed one to investigate the
electric conductivity,185,186 and the superconductivity187, 188 in transition metals, and in their
disordered alloys.

4.3 The Anderson and Hubbard Models

The Hamiltonian of the single-impurity Anderson model26, 162, 163 is written in the following form:

H =
∑

kσ

ǫkc
†
kσckσ +

∑

σ

E0σf
†
0σf0σ + U/2

∑

σ

n0σn0−σ +
∑

kσ

Vk(c
†
kσf0σ + f †0σckσ). (4.8)

Here, c†kσ and f †0σ are the creation operators of conduction electrons and of localized impurity
electrons, respectively, ǫk are the energies of conduction electrons, E0σ is the energy level of
localized impurity electrons, and U is the intra-atomic Coulomb interaction of the impurity-site
electrons; Vk is the s−f hybridization. One can generalize the Hamiltonian of the single-impurity
Anderson model to the periodic case:

H =
∑

kσ

ǫkc
†
kσckσ +

∑

iσ

Eσf
†
iσfiσ + U/2

∑

iσ

niσni−σ +
∑

kjσ

Vkj(c
†
kσfjσ + f †jσckσ). (4.9)
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The above Hamiltonian is called the periodic Anderson model. The Hamiltonian of the Hubbard
model164 is given by:

H =
∑

ijσ

tija
†
iσajσ + U/2

∑

iσ

niσni−σ. (4.10)

The above Hamiltonian includes the repulsion of the single-site intra-atomic Coulomb U , and tij,
the one-electron hopping energy describing jumps from a J site to an i site. As a consequence of
correlations electrons tend to ”avoid one another”. Their states are best modeled by atom-like
Wannier wave functions [φ(~r − ~Rj)]. The Hubbard model’s Hamiltonian can be characterized by
two main parameters: U , and the effective band width of tightly bound electrons

∆ = (N−1
∑

ij

|tij |2)1/2.

The band energy of Bloch electrons ǫ(~k) is given by

ǫ(~k) = N−1
∑

~k

tij exp[−i~k(~Ri − ~Rj],

where N is the total number of lattice sites. Variations of the parameter γ = ∆/U allow one to
study two interesting limiting cases, the band regime (γ ≫ 1) and the atomic regime (γ → 0).
Note that the single-band Hubbard model (4.10) is a particular case of a more general model,
which takes into account the degeneracy of d-electrons. In this case the second quantization is
constructed with the aid of the Wannier functions of the form [φλ(r − Ri)], where λ is the band
index (λ= 1,2,. . . 5). The corresponding Hamiltonian of the electron system is given by

H =
∑

ijµνσ

tµνij a
†
iµσajνσ +

1

2

∑

ij,mn

∑

αβγδσσ′

〈iα, jβ|W |mγ,nδ〉a†iασa
†
jβσ′amγσ′anδσ. (4.11)

It can be rewritten in the following form

H = H1 +H2 +H3. (4.12)

The first term here represents the kinetic energy of moving electrons

H1 =
∑

ij

∑

µνσ

tµνij a
†
iµσajνσ. (4.13)

The second term H2 describes the single-center Coulomb interaction terms:

H2 =
1

2

∑

iµσ

Uµµniµσniµ−σ +
1

2

∑

iµν

∑

σσ′

Vµνniµσniνσ′(1− δµν)− (4.14)

1

2

∑

iµνσ

Iµνniµσniνσ(1− δµν) +
1

2

∑

iµνσ

Iµνa
†
iµσa

†
iµ−σaiν−σaiνσ(1− δµν)−

1

2

∑

iµνσ

Iµνa
†
iµσaiµ−σa

†
iν−σaiνσ(1− δµν).

Except for the integral of single-site repulsion Uµµ, which is also present in the single-band Hubbard
model, H2 also contains three additional contributions from the interorbital interaction. The last
term H3 describes the direct inter-site’s exchange interaction:

H3 = −1

2

∑

ijµ

∑

σσ′

Jµµ
ij a

†
iµσaiµ−σ′a†jµσ′ajµσ. (4.15)
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It is usually assumed that

Uµµ = U ; Vµν = V ; Iµν = I; Jµµ
ij = Jij . (4.16)

It is necessary to stress that the Hubbard model is most closely connected with the Pauli ex-

clusion principle, which in this case can be written as n2iσ = niσ. Thus, the Anderson and the
Hubbard models take into account both the collectivized (band) and the localized behavior of
electrons. The problem of the relationship between the collectivized and the localized description
of electrons in transition and rare-earth metals and in their compounds is closely connected with
another fundamental problem. The case in point is the adequacy of the simple single-band Hub-
bard model, which does not take into account the interaction responsible for Hund’s rules and the
orbital degeneracy for description of magnetic and some other properties of matter. Therefore,
it is interesting to study various generalizations of the Anderson and the Hubbard models. In a
series of paper18, 19, 189 we pointed out that the difference between these models is most clearly
visible when we consider dynamic (as opposed to static) characteristics. Therefore, the response
of the systems to the action of external fields and the spectra of excited quasiparticle states are
of particular interest. Introduction of additional terms in the Anderson and the Hubbard model’s
Hamiltonians makes the quasiparticle spectrummuch more complicated, leading to the appearance
of new excitation branches, especially in the optical region.18, 19, 189

4.4 The s-d Exchange Model and the Zener model

A generalized spin-fermion model, which is also called the Zener model, or the s-d- (d-f)-model
is of primary interest in the solid-state theory. The Hamiltonian of the s-d exchange model55 is
given by:

H = Hs +Hs−d, (4.17)

Hs =
∑

kσ

ǫkc
†
kσckσ, (4.18)

Hs−d = J~σi~Si = −JN−1/2
∑

kk′

(

c†k′↑ck↓S
− + c†k′↓ck↑S

+ + (c†k′↑ck↑ − c†k′↓ck↓)S
z
)

. (4.19)

Here, c†kσ and ckσ are the second-quantized operators creating and annihilating conduction elec-
trons. The Hamiltonian (4.17) describes the interaction of the localized spin of an impurity atom
with a subsystem of the host-metal conduction’s electrons. This model is used for description of
the Kondo effect, which is related to the anomalous behavior of electric conductivity in metals
containing a small amount of transition metal impurities.55, 190–192

It is rather interesting to consider a generalized spin-fermion model, which can be used for de-
scription of a wider range of substances.55, 191, 193 The Hamiltonian of the generalized spin-fermion
d-f model193 is given by:

H = Hd +Hd−f , (4.20)

Hd =
∑

ij

∑

σ

tija
†
iσajσ +

1

2

∑

iσ

Uniσni−σ. (4.21)

The Hd−f operator describes the interaction of a subsystem of strongly localized 4f(5f)-electrons
with the spin density of collectivized d-electrons.

Hd−f =
∑

i

J~σi~Si = −JN−1/2
∑

kq

∑

σ

[S−σ
−q a

†
kσak+q−σ + zσS

z
−qa

†
kσak+qσ]. (4.22)
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The sign factors zσ, introduced here for convenience, are given by

zσ = (+,−);−σ = (↑, ↓); S−σ
−q =

{

S−
−q, −σ = +,

S+
−q −σ = −.

(4.23)

In the general case, the indirect exchange integral J depends significantly on the wave vector
J(~k;~k + ~q) and attains the maximum value at the point k = q = 0. Note that the conduction
electrons from the metal s-band are also taken into account by the model, and their role is
the renormalization of the model parameters due to screening and other effects. Note that the
Hamiltonian of the s-d model is a low-energy realization of the Anderson model. This can be
demonstrated by applying the Schrieffer-Wolf canonical transformation55, 192, 194, 195 to the latter
model.

4.5 Falicov-Kimball Model

In 1969, Falicov and Kimball proposed a ”simple” (in their opinion) model for description of
the metal-insulator transition in rare-earth metal compounds. This model describes two subsys-
tems, namely, the band and the localized electrons and their interaction with each other. The
Hamiltonian of the Falicov-Kimball model196 is given by

H = H0 +Hint, (4.24)

where
H0 =

∑

k

∑

νσ

ǫν(~k)a
†
νkσaνkσ +

∑

i

∑

σ

Eb†iσbiσ′ . (4.25)

Here, a†νkσ is the operator creating in the band ν an electron in the state with the momentum ~k

and the spin σ, and b†iσ is the operator creating an electron (hole) with the spin σ in the Wannier

state at the lattice site ~Ri. The energies ǫν(~k) and E are positive and such that min[E+ǫν(~k)] > 0.
It is assumed that due to screening effects only intra-atomic interactions play a significant role.
Falicov and Kimball196 took into account six different types of intra-atomic interactions, and
described them by six different interaction integrals Gi. In a simplified mean-field approximation
the Hamiltonian of the model (4.24) was given by

H = N [ǫna + Enb −Gnanb], (4.26)

where nb = N−1
∑

iσ b
†
iσbiσ. Then, one can calculate the free energy of the system, and to in-

vestigate the transition of the first-order semiconductor-metal phase. The Falicov-Kimball model
together with its various modifications and generalizations became very popular197–203 in investi-
gating various aspects of the theory of phase transitions, in particular, the metal-insulator transi-
tion. It was also used in investigations of compounds with mixed valence, and as a crystallization
model. Lately, the Falicov-Kimball model was used in investigations of electron ferroelectricity
(EFE).204 It also turned out that the behavior of a wide class of substances can be described
in the framework of this model. This class includes, for instance, the compounds Y bInCu4,
EuNi2(Si1−xGex)2, NiI2, TaxN. Thus, the Falicov-Kimball model is a microscopic model of the
metal-insulator phase’s transition; it takes into account the dual band-atomic behavior of elec-
trons. Despite the apparent simplicity, a systematic investigation of this model, as well as of the
Hubbard model, is very difficult, and it is still intensively studied.197–203
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4.6 The Adequacy of the Model Description

As one can see, the Hamiltonians of s−d- and d−f - models especially, clearly demonstrate the man-
ifestation of collectivized (band) and the localized behavior of electrons. The Anderson, Hubbard,
Falicov-Kimball, and spin-fermion models are widely used for description of various properties
of the transition and rare-earth metal compounds.18,19, 21, 22, 24–26, 193, 205–208 In particular, they
are applied for description of various phenomena in the chemical adsorption theory,209 surface
magnetism, in the theory of the quantum diffusion in solid He3, for description of vacancy motion
in quantum crystals, and the properties of systems containing heavy fermions.55, 192, 195, 210, 211

The latter problem is especially interesting and it is still an unsolved problem of the physics
of condensed matter. Therefore, development of a systematic theory of correlation effects, and
description of the dynamics in the many-particle models (4.8) - (4.10), (4.17) and (4.20), were
and still are very interesting problems. All these models are different description languages,
different ways of describing similar many-particle systems. They all try to give an answer on the
following questions: how the wave functions of, formerly, valence electrons change, and how large
the effects of changes are; how strongly do they delocalize? Their applicability in concrete cases
depends on the answers to those questions. On the whole, applications of the above mentioned
models (and their combinations) allow one to describe a very wide range of phenomena and to
obtain qualitative, and frequently quantitative, correct results. Sometimes (but not always) very
difficult and labor-intensive computations of the electron band’s structure add almost nothing
essential to results obtained in the framework of the schematic and crude models described above.
In investigations of concrete substances, transition and rare-earth metals and their compounds,
actinides, uranium compounds, magnetic semiconductors, and perovskite-type manganites, most
of the described above models (or their combinations) are used to a greater or lesser degree. This
reflects the fact that the electron states, which are of interest to us, have a dual collectivized and
localized character and can not be described in either an entirely collectivized or entirely localized
form. As far back as 1960, C. Herring,212 in his paper on the d-electron states in transition metals,
stressed the importance of a ”cocktail” of different states. This is why efforts of many researchers
are directed towards building synthetic models, which take into account the dual band-atomic
nature of transition and rare-earth metals and their compounds.
It was not by accident, that E. Lieb170 made the following statement: ”Search for a model Hamil-
tonian describing collectivized electrons, which, at the same time, is capable of describing correctly
ferromagnetic properties, is one of the main current problems of statistical mechanics. Its impor-
tance can be compared to such widely known recent achievements, as the proof of the existence
of extensive free energy for macroscopically large systems” (see also172, 213, 214). Solution of this
problem is a part of the more general task of a unified quantum-statistical description of electrical,
magnetic, and superconducting properties of transition and rare-earth metals, their alloys, and
compounds. Indeed, the dual band-atomic character of d- and, to some extent, f -states manifests
itself not only in various magnetic properties, but also in superconductivity, as well as in the
electrical and thermal conduction processes.
The Nobel Prize winner K.G. Wilson noticed:215 ”There are a number of problems in science which
have, as a common characteristic, a complex microscopic behavior that underlies macroscopic ef-
fects” (see also216, 217). Eighty years since the formulation of the Heisenberg model (in 1928),
we still do not have a complete and systematic theory, which would allow us to give an unam-
biguous answer to the question:218 ”Why is iron magnetic?” Although over the past decades the
physics of magnetic phenomena became a very extensive domain of modern physics, and numer-
ous complicated phenomena taking place in magnetically ordered substances found a satisfactory
explanation, nevertheless recent investigations have shown that there are still many questions that
remain without an answer. The model Hamiltonians described above were developed to provide
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an understanding (although only a schematic one) of the main features of real-system behavior,
which are of interest to us. It is also necessary to stress, that the two types of electronic states, the
collectivized and the localized ones, do not contradict each other, but rather are complementary
ways of quantum mechanical description of electron states in real transition and rare-earth metals
and in their compounds. In some sense, all the Hamiltonians described above can be considered as
a certain special extension of the Hubbard Hamiltonian that takes into account additional crystal
subsystems and their mutual interaction.
The variety of the available models reflects the diversity of magnetic, electrical, and superconduc-
tivity properties of matter, which are of interest to us. We would like to stress that the creation

of physical models is one of the essential features of modern theoretical physics.93 According to
Peierls, ”various models serve absolutely different purposes and their nature changes accordingly
. . . A common element of all these different types of models is the fact, that they help us to imag-
ine more clearly the essence of physical phenomena via analysis of simplified situations, which are
better suited for our intuition. These models serve as footsteps on the way to the rational expla-
nation of real-world phenomena . . .We can take those models, turn them around, and most likely
we would obtain a better idea on the form and structure of real objects, than directly from the
objects themselves”.93 The development of the physics of magnetic phenomena157, 219, 220 proves
most convincingly the validity of Peierls’ conclusion.

5 Theory of Many-particle Systems with Interactions

The research program, which later became known as the theory of many-particle systems with
interaction, began to develop intensively at the end of 1950s – beginning of 60s.221 Due to
the efforts of numerous researchers: F. Bloch, H. Fröhlich, J. Bardeen, N.N. Bogoliubov, H.
Hugenholtz, L. Van Hove, D. Pines, K. Brueckner, R. Feynman, M. Gell-Mann, F. Dyson, R.
Kubo, D. ter Haar, and many others, this theory achieved significant successes in solving many
difficult problems of the physics of condensed matter.222–225 The book226 contains an interesting
details and the story about the development of some aspects of the theory of many-particle
systems with interaction, and about its applications to solid-state physics. For a long time the
perturbation theory (in its most diverse formulations) remained the main method for theoretical
investigations of many-particle systems with interaction. In the framework of that theory, the
complete Hamiltonian of a macroscopic system under investigation was represented as a sum of
two parts, the Hamiltonian of a system of noninteracting particles and a weak perturbation:

H = H0 + V. (5.1)

In many practically important cases such approach was quite satisfactory and efficient. Theory of
many particle systems found numerous applications to concrete problems, for instance, in solid-
state physics, plasma, superfluid helium theory, to heavy nuclei, and many others. It is intensive
development of the theory of many-particle systems that led to development of the microscopic
superconductivity theory.227, 228 Quite possibly, this was historically the first microscopic theory
based on a sound mathematical foundation.229–232 The development of the many-particle systems
theory led to adaptation of many methods from quantum field theory to problems in statistical
mechanics. Among the most important adaptations are the methods of Green’s functions,233–236

and the diagram technique.237 However, as the range of problems under investigation widened,
the necessity to go beyond the framework of perturbation theory was felt more and more acutely.
This became a pressing necessity with the beginning of theoretical investigations of transition and
rare-earth metals and their compounds, metal-insulator transitions,238 and with the development
of the quantum theory of magnetism. This necessity to go beyond the perturbation theory’s
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framework was felt by the founders of the Green’s functions theory themselves. Back in 1951 J.
Schwinger wrote:233

”... it is desirable to avoid founding the formal theory of the Green’s functions on the

restricted basis provided by the assumption of expandability in powers of coupling

constants.”
Since the most important point of the theory of many-particle systems with interaction is an ade-
quate and accurate treatment of the interaction, which can change (sometimes quite significantly)
the character of the system behavior, in comparison to the case of noninteracting particles, the
above remark by J. Schwinger seems to be quite farsighted. It is interesting to note, that, ap-
parently, admitting the prominent role of J. Schwinger in development of the Green’s functions
method, N.N. Bogoliubov in his paper239 uses the term Green-Schwinger function (for an interest-
ing analysis of the origin of the Green’s functions method see the paper240 and also the book241).
As far as the application of the Green’s functions method to the problems of statistical physics is
concerned, here, an essential progress was achieved after reformulation of the original method in
the form of the two-time temperature Green’s functions method.

5.1 Two-time Temperature Green’s Functions

In statistical mechanics of quantum systems the advanced and retarded two-time temperature
Green’s functions (GF) were introduced by N.N. Bogoliubov and S.V. Tyablikov.242 In contrast
to the causal GF, the above function can be analytically continued to the complex plane. Due to
the convenient analytical property the two-time temperature GF is a very widespread method in
statistical mechanics.4, 16, 242–245 In order to find the retarded and advanced GF we have to use a
hierarchy of coupled equations of motion together with the corresponding spectral representations.
Let us consider a many-particle system with the Hamiltonian H = H−µN ; here µ is the chemical
potential and N is the operator of the total number of particles. If A(t) and B(t′) are some
operators relevant to the system under investigation, then their time evolution in the Heisenberg
representation has the following form

A(t) = exp

(
iHt
~

)

A(0) exp

(−iHt
~

)

. (5.2)

The corresponding two-time correlation function is defined as follows:

〈A(t)B(t′)〉 = Tr(ρA(t)B(t′)), ρ = Z−1 exp(−βH).

This correlation function has the following property

〈A(t)B(t′)〉 = (5.3)

Z−1Tr

(

exp(−βH) exp

(
iHt
~

)

A(0) exp

(−iH(t− t′)

~

)

B(0) exp

(−iHt′
~

))

= Z−1Tr

(

exp(−βH) exp

(
iH(t− t′)

~

)

A(0) exp

(−iH(t− t′)

~

)

B(0)

)

= 〈A(t− t′)B(0)〉 = 〈A(0)B(t′ − t)〉.

Usually it is more convenient to use the following compact notations 〈A(t)B〉 and 〈BA(t)〉, where
t− t′ is replaced by t. Since

− βH +
iHt
~

=
iH(t+ i~β)

~
(5.4)
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these two correlation functions are related to each other. Indeed, we have

〈A(t)B〉 = (5.5)

Z−1Tr

(

exp(−βH) exp

(
iHt
~

)

A exp

(−iHt
~

)

exp(βH) exp(−βH)B

)

= Z−1Tr

(

exp(−βH)B exp

(
iH(t+ i~β)

~

)

A exp

(−iH(t+ i~β)

~

))

= 〈BA(t+ i~β)〉.

On can consider the correlation function 〈BA(t)〉 as the main one, because one can obtain the
other function 〈A(t)B〉 by replacing the variable t → t1 = t + i~β in 〈BA(t)〉. The spectral
representation (Fourier transform over ω) of the function 〈BA(t)〉 is defined as follows:

〈BA(t)〉 =
∫ +∞

−∞

dω exp[− i

~
ωt]J(B,A;ω), (5.6)

J(B,A;ω) =
1

2π~

∫ +∞

−∞

dt exp[
i

~
ωt]〈BA(t)〉.

Equation (5.6) is the spectral representation of the corresponding time correlation function.
The quantities J(B,A;ω) and J(A,B;ω) are the spectral densities (or the spectral intensities).
It is convenient to assume that ω = ~ωclas, where ωclas is the classical angular frequency. The
time correlation function can be written down in the following form

〈BA(t)〉 = Z−1
∑

nml

〈n|B|m〉〈m| exp[ i
~
Ht]A exp[

−i
~
Ht]|l〉〈l| exp(−βH)|n〉 (5.7)

= Z−1
∑

nm

〈n|B|m〉〈m|A|n〉 exp(−βǫn) exp
(

− i

~
(ǫn − ǫm)t

)

,

where

H|n〉 = ǫn|n〉, exp[− i

~
Ht]|n〉 = exp(− i

~
ǫnt)|n〉.

Therefore, taking into account the identity

1

2π~

∫ +∞

−∞

dt exp[− i

~
(ǫn − ǫm − ω)t] = δ(ǫn − ǫm − ω), (5.8)

we obtain

J(B,A;ω) = Z−1
∑

nm

〈n|B|m〉〈m|A|n〉 exp(−βǫn)δ(ǫn − ǫm − ω). (5.9)

Hence, the Fourier transform of the time correlation function is given by

〈A(t)B〉 = 〈AB(−t)〉 =
∫ +∞

−∞

dω exp[
i

~
ωt]J(A,B;ω) (5.10)

=

∫ +∞

−∞

dωJ(A,B;−ω) exp[− i

~
ωt],

where

J(A,B;−ω) = Z−1
∑

nm

〈m|A|n〉〈n|B|m〉 exp(−βǫm)δ(ǫm − ǫn + ω) (5.11)

= Z−1
∑

nm

〈n|B|m〉〈m|A|n〉 exp(−βǫn)δ(ǫn − ǫm − ω) exp(βω).
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It is easy to check, that the following identity holds

J(A,B;−ω) = exp(βω)J(B,A;ω). (5.12)

For the spectral density of a higher order correlation function 〈B[A(t),H]−〉 we obtain

J(B, [A,H]−;ω) = ωJ(B,A;ω), (5.13)

ωJ(A,B;ω) = J(A, [H, B]−;ω) = J([A,H]−, B;ω),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now we introduce the retarded, advanced, and causal GF:

Gr(A,B; t− t′) = 〈〈A(t), B(t′)〉〉r = −iθ(t− t′)〈[A(t), B(t′)]η〉, η = ±, (5.14)

Ga(A,B; t− t′) = 〈〈A(t), B(t′)〉〉a = iθ(t′ − t)〈[A(t), B(t′)]η〉, η = ±, (5.15)

Gc(A,B; t− t′) = 〈〈A(t), B(t′)〉〉c = iT 〈A(t)B(t′)〉 = (5.16)

iθ(t− t′)〈A(t)B(t′)〉+ ηiθ(t′ − t)〈B(t′)A(t)〉, η = ±.

Here 〈. . .〉 is the average over the grand canonical ensemble, θ(t) is the Heaviside step function;
the square brackets denote either commutator or anticommutator (η = ±):

[A,B]−η = AB − ηBA. (5.17)

An important ingredient for GF application is their temporal evolution. In order to derive the
corresponding evolution’s equation, one has to differentiate GF over one of its arguments. Let us
differentiate, for instance, over the first one, the time t. The differentiation yields the following
equation of motion:

id/dtGα(t, t′) = δ(t− t′)〈[A,B]η〉+ 〈〈[A,H]−(t), B(t′)〉〉α. (5.18)

Here, the upper index α = r, a, c indicates the type of the GF: retarded, advanced, or causal,
respectively. Because this differential equation contains the delta function in the inhomogeneous
part, it is similar in its form and structure to the defining equation of Green’s function from
the differential equation theory246 (about the George Green (1793-1841) creative activity see a
detailed paper247). It is this similarity that allows one to use the term Green’s function for the
complicated object defined by Eqs. (5.14) - (5.17). It is necessary to stress that the equations of
motion for the three GF: retarded, advanced, and causal, have the same functional form. Only
the temporal boundary conditions are different there. The characteristic feature of all equations
of motion for GF is the presence of a higher order GF (relative to the original one) in the right
hand side. In order to find the higher-order function, one has to write down the corresponding
equation of motion for the GF 〈〈[A,H](t), B(t′)〉〉, which will contain a new GF of even higher
order. Writing down consecutively the corresponding equations of motion we obtain the hierarchy
of coupled equations of motion for GF. In principle, one can write down infinitely many of such
equations of motion:

(i)ndn/dtnG(t, t′) = (5.19)
n∑

k=1

(i)n−kdn−k/dtn−kδ(t− t′)〈[[. . . [A,H]...H]
︸ ︷︷ ︸

k−1

, B]η〉

+〈〈[[. . . [A,H]− . . .H]−
︸ ︷︷ ︸

n

(t), B(t′)〉〉.
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The infinite hierarchy of coupled equations of motion for GF is an obvious consequence
of interaction in many-particle systems. It reflects the fact that none of the particles (or, no
group of interacting particles) can move independently of the remaining system. The next task
is the solution of the differential equation of motion for GF. In order to do that one can use
the temporal Fourier transform, as well as the corresponding boundary conditions, taking into
account particular features of the problem under consideration. The spectral representation for
GF, generalizing Eqs. (5.6) - (5.9) is given by

Gr(A,B; t− t′) = (2π~)−1

∫ ∞

∞

dEG(A,B;E) exp[− i

~
E(t− t′)], (5.20)

G(A,B;E) = 〈〈A|B〉〉E =

∫ ∞

∞

dtG(A,B; t) exp(
i

~
Et). (5.21)

On substitution of Eq. (5.20) in Eqs. (5.18) and (5.19) one obtains

EG(A,B;E) = 〈[A,B]η〉+ 〈〈[A,H]−|B〉〉E ; (5.22)

EnG(A,B;E) =

n∑

k=1

En−k〈[[. . . [A,H] . . .H]
︸ ︷︷ ︸

k−1

, B]η〉 (5.23)

+〈〈[[. . . [A,H]− . . .H
︸ ︷︷ ︸

n

]−|B〉〉E .

The above hierarchy of coupled equations of motion for GF (5.23) is an extremely complicated
and nontrivial object for investigations. Frequently it is convenient to rederive the same hierarchy
of coupled equations of motion for GF starting from differentiation over the second time t′. The
corresponding equations of motion analogous to Eqs. (5.22) and (5.23) are given by

− EG(A,B;E) = −〈[A,B]η〉+ 〈〈A|[B,H]−〉〉E ; (5.24)

(−1)nEnG(A,B;E) = −
n∑

k=1

(−1)n−kEn−k〈[A, [. . . [B,H] . . .H]
︸ ︷︷ ︸

k−1

]η〉

+〈〈A|[. . . [B,H]− . . .H
︸ ︷︷ ︸

n

]−〉〉E . (5.25)

The main problem is how to find solutions of the hierarchy of coupled equations of motion for GF
given by either Eq. (5.23) or Eq. (5.25)? In order to approach this difficult task one has to turn
to the method of dispersion relations, which, as was shown in the papers by N.N. Bogoliubov and
collaborators,4,242, 243 is quite an effective mathematical formalism. The method of retarded and
advanced GF is closely connected with the dispersion relations technique,4 which allows one to
write down the boundary conditions in the form of a spectral representation for GF. The spectral
representations for correlation functions were used for the first time in the paper248 by Callen and
Welton (see also249) devoted to the fluctuation theory and the statistical mechanics of irreversible
processes. GF are combinations of correlation functions

FAB(t− t′) = 〈A(t)B(t′)〉 = 〈A(t− t′)B〉 =
∫ +∞

−∞

dω exp[
i

~
ωt]J(A,B;ω), (5.26)

FBA(t
′ − t) = 〈B(t′)A(t)〉 = 〈BA(t− t′)〉 =

∫ +∞

−∞

dω exp[− i

~
ωt]J(B,A;ω). (5.27)

Therefore, the spectral representations for two-time temperature Green’s functions can be written
in the following form

〈〈A|B〉〉E =

∫ +∞

−∞

dω
J(B,A;ω)(exp(βω)− η)

E − ω
=

∫ +∞

−∞

dω
J ′(B,A;ω)

E − ω
, (5.28)
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where

J ′(B,A;ω) = (exp(βω)− η)J(B,A;ω) (5.29)

and E is the complex energy E = ReE + iImE .
Hence,

∫ +∞

−∞

dω

(

J(B,A;ω) exp(βω)− ηJ(B,A;ω)

)

=

∫ +∞

−∞

dω

(

J(B,A;−ω)− ηJ(B,A;ω)

)

= 〈AB − ηBA〉. (5.30)

Therefore, we obtain the following equation

〈〈A|B〉〉E = 〈AB − ηBA〉+ 〈〈[A,H]−|B〉〉E . (5.31)

One should note that the two-time temperature Green’s functions are not defined for t = t′; more-
over, 〈〈A(t)B(t′)〉〉r = 0 for t < t′ 〈〈A(t)B(t′)〉〉a = 0 t > t′. Using the following representations
for the step-function θ(t) :

θ(t) = exp(−εt)(ε → 0, ε > 0), t > 0; θ(t) = 0, t < 0. (5.32)

we can rewrite the Fourier transform of the retarded (advanced) GF in the following form

lim
ε→0

〈〈A|B〉〉E±iε = Gr(a)(A,B;E). (5.33)

It is clear that the two functions, Gr(A,B;E) and Ga(A,B;E), are functions of a real variable
E; they are defined as limiting values of the Green’s function 〈〈A|B〉〉E in the upper and lower
half-plane, respectively. According to the Bogoliubov-Parasiuk theorem16, 242–244 the function

〈〈A|B〉〉E =

∫ +∞

−∞

dω
J(B,A;ω)(exp(βω)− η)

E − ω
(5.34)

is an analytic function in the complex E-plane; this function coincides with Gr(A,B;E) everywhere
in the upper half-plane, and with Ga(A,B;E) everywhere in the lower half-plane. It has singular-
ities on the real axis; therefore, one has to make a cut along the real axis. Note that Gr(a)(A,B; t)
is a generalized function in the Sobolev-Schwartz sense.16,242–244 The function G(A,B; E) is an
analytic function in the complex plane with the cut along the real axis. It has two branches; one
is defined in the upper half-plane, the other in the lower half-plane for complex values of E :

〈〈A|B〉〉E =

{

Gr(A,B; E), E > 0,

Ga(A,B; E), E < 0.
(5.35)

The corresponding Fourier transform is given by

Gr(a)(A,B; t) = (2π~)−1

∫ +∞

−∞

dEGr(a)(A,B;E) exp[− i

~
Et] =

(2π~)−1

∫ +∞

−∞

dE exp[− i

~
Et]

∫ +∞

−∞

dω
J ′(B,A;ω)

E − ω ± iε
. (5.36)

Here, J ′(B,A;ω) can be written down as follows (ε→ 0)

J ′(B,A;ω) = − 1

2πi
(〈〈A|B〉〉ω+iε − 〈〈A|B〉〉ω−iε) . (5.37)
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Therefore, the spectral representations for the retarded and the advanced GF are determined by
the following relationships:

Gr(A,B;E) = 〈〈A|B〉〉rω+iε = (5.38)
∫ +∞

−∞

dω

E − ω + iε
J ′(B,A;ω)

= P

∫ +∞

−∞

dω
J ′(B,A;ω)

E − ω
− iπJ ′(B,A;E),

Ga(A,B;E) = 〈〈A|B〉〉aω−iε = (5.39)
∫ +∞

−∞

dω

E − ω − iε
J ′(B,A;ω)

= P

∫ +∞

−∞

dω
J ′(B,A;ω)

E − ω
+ iπJ ′(B,A;E).

In the derivation of the above equations we made use of the following relationship16, 242–244

lim
ε→0

1

x± iε
→ P

1

x
∓ iπδ(x). (5.40)

Here, P (1/x) indicates that one has to take the principal value when calculating integrals. As a
result we obtain the following fundamental relationship for the spectral density

J(B,A;E) = − 1

2πi

Gr(A,B;E) −Ga(A,B;E)

exp(βE)− η
. (5.41)

Thus, once we know the Green’s function Gr(a)(A,B;E) we can find J(B,A;E), and then calculate
the corresponding correlation function. Using the relationship (5.41), one can obtain the following
dispersion relationships:

ReGr(a)(A,B;E) = ∓ 1

π
P

∫ +∞

−∞

dω
ImGr(a)(A,B;E)

E − ω
. (5.42)

The most important practical consequence of the spectral representations for the retarded and
advanced GF is the so called spectral theorem:

〈B(t′)A(t)〉 = (5.43)

− 1

π

∫ +∞

−∞

dE exp[
i

~
E(t− t′)][exp(βE)− η]−1ImGAB(E + iε),

〈A(t)B(t′)〉 = (5.44)

− 1

π

∫ +∞

−∞

dE exp(βE) exp[
i

~
E(t− t′)][exp(βE)− η]−1ImGAB(E + iε).

Equations (5.43) and (5.44) are of a fundamental importance for the entire method of two-time
temperature GF. They allow one to establish a connection between statistical averages and the
Fourier transforms of Green’s functions, and are the basis for practical applications of the entire
formalism for solutions of concrete problems.4,16, 242–244

5.2 The Method of Irreducible Green’s Functions

When working with infinite hierarchies of equations for GF the main problem is finding the meth-
ods for their efficient decoupling, with the aim of obtaining a closed system of equations, which
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determine the GF. A decoupling approximation must be chosen individually for every particular
problem, taking into account its character. This ”individual approach” is the source of critique
for being too ad hoc, which sometimes appear in the papers using the causal GF and diagram
technique. However, the ambiguities are also present in the diagram technique, when the choice
of an appropriate approximation is made there. The decision, which diagrams one has to sum
up, is obvious only for a narrow range of relatively simple problems. In the papers250–253 devoted
to Bose-systems, and in the papers by the author of this review20, 22–24, 26, 193, 254–256 devoted to
Fermi systems it was shown that for a wide range of problems in statistical mechanics and theory
of condensed matter one can outline a fairly systematic recipe for constructing approximate so-
lutions in the framework of irreducible Green’s functions method. Within this approach one can
look from a unified point of view at the main problems of fundamental characters arising in the
method of two-time temperature GF.
The method of irreducible Green’s functions is a useful reformulation of the ordinary Bogoliubov-
Tyablikov method of equations of motion. The constructive idea can be summarized as follows.
During calculations of single-particle characteristics of the system (the spectrum of quasiparticle
excitations, the density of states, and others) it is convenient to begin from writing down GF
(5.14) as a formal solution of the Dyson equation. This will allow one to perform the neces-
sary decoupling of many-particle correlation functions in the mass operator. This way one can
to control the decoupling procedure conditionally, by analogy with the diagrammatic approach.
The method of irreducible Green’s functions is closely related to the Mori-Zwanzig’s projection
method,257–263 which essentially follows from Bogoliubov’s idea about the reduced description of
macroscopic systems.264 In this approach the infinite hierarchy of coupled equations for correla-
tion functions is reduced to a few relatively simple equations that effectively take into account the
essential information on the system under consideration, which determine the special features of
this concrete problem.
It is necessary to stress that the structure of solutions obtained in the framework of irreducible
GF method is very sensitive to the order of equations for GF20, 23 in which irreducible parts are
separated. This in turn determines the character of the approximate solutions constructed on the
basis of the exact representation. In order to clarify the above general description, let us consider
the equations of motion (5.22) for the retarded GF (5.14) of the form 〈〈A(t), A†(t′)〉〉

ωG(ω) = 〈[A,A†]η〉+ 〈〈[A,H]−|A†〉〉ω. (5.45)

The irreducible (ir) GF is defined by

(ir)〈〈[A,H]−|A†〉〉 = 〈〈[A,H]− − zA|A†〉〉. (5.46)

The unknown constant z is found from the condition

〈[(ir)[A,H]−, A
†]η〉 = 0. (5.47)

In some sense the condition (5.47) corresponds to the orthogonality conditions within the Mori
formalism.257–263 It is necessary to stress, that instead of finding the irreducible part of GF
((ir)〈〈[A,H]−|A†〉〉) , one can absolutely equivalently consider the irreducible operators ((ir)[A,H]−) ≡
([A,H]−)

(ir). Therefore, we will use both the notation ((ir)〈〈A|B〉〉) and 〈〈(A)(ir)|B〉〉), whichever
is more convenient and compact. Equation (5.47) implies

z =
〈[[A,H]−, A

†]η〉
〈[A,A†]η〉

=
M1

M0
. (5.48)

Here,M0 andM1 are the zero and first moments of the spectral density.16, 242–244 Green’s function
is called irreducible (i.e. impossible to reduce to a desired, simpler, or smaller form or amount)
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if it cannot be turned into a lower order GF via decoupling. The well-known objects in statistical
physics are irreducible correlation functions (see, e.g. papers258,265). In the framework of the
diagram technique237 the irreducible vertices are a set of graphs, which cannot be cut along
a single line. The definition (5.46) translates these notions to the language of retarded and
advanced Green’s functions. We attribute all the mean-field renormalizations that are separated
by Eq. (5.46) to GF within a generalized mean field approximation

G0(ω) =
〈[A,A†]η〉
(ω − z)

. (5.49)

For calculating GF (5.46), (ir)〈〈[A,H]−(t), A
†(t′)〉〉, we make use of differentiation over the second

time t′. Analogously to Eq. (5.46) we separate the irreducible part from the obtained equation
and find

G(ω) = G0(ω) +G0(ω)P (ω)G0(ω). (5.50)

Here, we introduced the scattering operator

P = (M0)
−1

(

〈〈([A,H]−)
(ir)|([A†,H]−)

(ir)〉〉
)

(M0)
−1. (5.51)

In complete analogy with the diagram technique one can use the structure of Eq. (5.50) to define
the mass operator M :

P =M +MG0P. (5.52)

As a result we obtain the exact Dyson equation (we did not perform any decoupling yet) for
two-time temperature GF:

G = G0 +G0MG. (5.53)

According to Eq. (5.52), the mass operator M (also known as the self-energy operator) can be
expressed in terms of the proper (called connected within the diagram technique) part of the
many-particle irreducible GF. This operator describes inelastic scattering processes, which lead
to damping and to additional renormalization of the frequency of self-consistent quasiparticle
excitations. One has to note that there is quite a subtle distinction between the operators P
and M . Both operators are solutions of two different integral equations given by Eqs. (5.52)
and (5.53), respectively. However, only the Dyson equation (5.53) allows one to write down the
following formal solution for the GF:

G = [(G0)−1 −M ]−1. (5.54)

This fundamental relationship can be considered as an alternative form of the Dyson equation,
and as the definition of the mass operator under the condition that the GF within the generalized
mean-field approximation, G0, was appropriately defined using the equation

G0G−1 +G0M = 1. (5.55)

In contrast, the operator P does not satisfy Eq. (5.55). Instead we have

(G0)−1 −G−1 = PG0G−1. (5.56)

Thus, it is the functional structure of Eq. (5.54) that determines the essential differences
between the operators P and M . To be absolutely precise, the definition (5.52) has a symbolic
character. It is assumed there that due to the similar structure of equations (5.14) - (5.17) defining
all three types of GF, one can use the causal GF at all stages of calculation, thus confirming the
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sensibility of the definition (5.52). Therefore, one should rather use the phrase ”an analogue of
the Dyson equation”. Below we will omit this stipulation, because it will not lead to misunder-
standings. One has to stress that the above definition of irreducible parts of the GF (irreducible
operators) is nothing but a general scheme. The specific way of introducing the irreducible parts
of the GF depends on the concrete form of the operator A on the type of the Hamiltonian, and
on the problem under investigation.
Thus, we managed to reduce the derivation of the complete GF to calculation of the GF in the
generalized mean-field approximation and with the generalized mass operator. The essential part
of the above approach is that the approximate solutions are constructed not via decoupling of
the equation-of-motion hierarchy, but via choosing the functional form of the mass operator in an
appropriate self-consistent form. That is, by looking for approximations of the form M ≈ F [G].
Note that the exact functional structure of the one-particle GF (5.54) is preserved in this approach,
which is quite an essential advantage in comparison to the standard decoupling schemes.

6 The Generalized Mean Fields

Apparently, the mean field concept was originally formulated for many-particle systems (in an
implicit form) in Van der Waals (1837-1923) Ph.D. thesis ”On the Continuity of Gaseous and
Liquid States”. This classical paper was published in 1874 and became widely known.266 At
first, Van der Waals expected that the volume correction to the equation of state would lead only
to an obvious reduction of the available space for the molecular motion by an amount b equal
to the overall volume of the molecules. However, the actual situation turned out to be much
more complicated. It was necessary to take into account both corrections, the volume correction
b, and the pressure correction a/V 2, which led to the Van der Waals equation.267 Thus, Van
der Waals realized that ”the range of attractive forces contains many neighboring molecules”.
The development of this approach led to the insight, that one can try to describe the complex
many-particle behavior of gases, liquids, and solids in terms of a single particle moving in an
average (or effective) field created by all the other particles, considered as some homogeneous
(or inhomogeneous) environment. That is, the many-particle behavior was reduced to effective
(or renormalized) behavior of a single particle in a medium (or a field). Later, these ideas were
extended to the physics of magnetic phenomena, where magnetic substances were considered
as some kind of a peculiar liquid. That was the origin of the terminology magnetically soft
and hard materials. Beginning from 1907 the Weiss molecular-field approximation36 became
widespread in the theory of magnetic phenomena,37 and even at the present time it is still being
used efficiently.268 Nevertheless, back in 1965 it was noticed that269

”The Weiss molecular field theory plays an enigmatic role in the statistical mechanics
of magnetism”.

In order to explain the concept of the molecular field on the example of the Heisenberg ferromagnet
one has to transform the original many-particle Hamiltonian (4.4) into the following reduced one-
particle Hamiltonian

H = −2µ0µB~S · ~h(mf)
.

This transformation is achieved with the help of the identity

~S · ~S′ = ~S · 〈~S′〉+ 〈~S〉 · ~S′ − 〈~S〉 · 〈~S′〉+ C.

Here, the constant C = (~S − 〈~S〉) · (~S′ − 〈~S′〉) describes spin correlations. The usual molecular-
field approximation is equivalent to discarding the third term in the right hand side of the above
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equation, and using the approximation C ∼ 〈C〉 = 〈~S · ~S′〉 − 〈~S〉 · 〈~S′〉. for the constant C.
Let us consider this point in more detail. It is instructive to trace the evolution of the mean or
concept of the molecular field for different systems. The list of some papers, which contributed to
the development of the mean-field concept, is presented in Table 1. A brief look at that table allows
one to notice a certain tendency. Earlier molecular-field concepts described the mean-field in terms
of some functional of the average density of particles 〈n〉 (or, using the magnetic terminology, the
average magnetization 〈M〉), that is, as F [〈n〉, 〈M〉]. Using the modern language, one can say that
the interaction between the atomic spins Si and their neighbors can be equivalently described by
effective (or mean) field h(mf). As a result one can write down

Mi = χ0[h
(ext)
i + h

(mf)
i ].

The mean field h(mf) can be represented in the form (in the case T > Tc)

h(mf) =
∑

i

J(Rji)〈Si〉. (6.1)

Here, hext is the external magnetic field, χ0 is the system’s response function, and J(Rji) is the
interaction between the spins. In other words, in the mean-field approximation a many-particle
system is reduced to the situation, where the magnetic moment at any site aligns either parallel
or anti-parallel to the overall magnetic field, which is the sum of the applied external field and
the molecular field.
Note that only the ”averaged” interaction with i neighboring sites is taken into account, while the
fluctuation effects are ignored. We see that the mean-field approximation provides only a rough
description of the real situation and overestimates the interaction between particles. Attempts to
improve the homogeneous mean-field approximation were undertaken along different directions.270

An extremely successful and quite nontrivial approach was developed by L. Neel,54 who essentially
formulated the concept of local mean fields (1932). Neel assumed that the sign of the mean-field
could be both positive and negative. Moreover, he showed that below some critical temperature
(the Neel temperature) the energetically most favorable arrangement of atomic magnetic moments
is such, that there is an equal number of magnetic moments aligned against each other. This novel
magnetic structure became known as the antiferromagnetism.271 It was established that the
antiferromagnetic interaction tends to align neighboring spins against each other. In the one-
dimensional case this corresponds to an alternating structure, where an ”up” spin is followed by a
”down” spin, and vice versa. Later it was conjectured that the state made up from two inserted
into each other sublattices is the ground state of the system (in the classical sense of this term).
Moreover, the mean-field sign there alternates in the ”chessboard” (staggered) order.
The question of the true antiferromagnetic ground state is not completely clarified up to the
present time.272–276 This is related to the fact that, in contrast to ferromagnets, which have a
unique ground state, antiferromagnets can have several different optimal states with the lowest
energy. The Neel ground state is understood as a possible form of the system’s wave function,
describing the antiferromagnetic ordering of all spins.276 Strictly speaking, the ground state is
the thermodynamically equilibrium state of the system at zero temperature. Whether the Neel
state is the ground state in this strict sense or not, is still unknown. It is clear though, that in the
general case, the Neel state is not an eigenstate of the Heisenberg antiferromagnet’s Hamiltonian.
On the contrary, similar to any other possible quantum state, it is only some linear combination
of the Hamiltonian eigenstates. Therefore, the main problem requiring a rigorous investigation is
the question of Neel state’s277 stability. In some sense, only for infinitely large lattices, the Neel
state becomes the eigenstate of the Hamiltonian and the ground state of the system. Nevertheless,
the sublattice structure is observed in experiments on neutron scattering,76 and, despite certain
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Table 1: The development of the mean-field concept

Mean-field type Author Year

A homogeneous molecular field in dense gases J.D. Van der Waals 1873

A homogenous quasi-magnetic mean-field
in magnetics P.Weiss 1907

A mean-field in atoms:
the Thomas-Fermi model L.H.Thomas, E.Fermi 1926-28

A homogeneous mean-field
in many-electron atoms D.Hartree, V.A. Fock 1928-32

A molecular field in ferromagnets Ya. G. Dorfman, F.Bloch, 1927 - 1930

Inhomogeneous (local) mean-fields
in antiferromagnets L.Neel 1932

A molecular field, taking into account
the cavity reaction in polar substances L.Onsager 1936

The Stoner model of band magnetics E.Stoner 1938

Generalized mean-field approximation
in many-particle systems T.Kinoshita, Y. Nambu 1954

The BCS-Bogoliubov mean-field
in superconductors N.N. Bogoliubov 1958

The Tyablikov decoupling for ferromagnets S. V. Tyablikov 1959

The mean-field theory for the Anderson model P.W.Anderson 1961

The density functional theory for electron gas W.Kohn 1964

The Callen decoupling for ferromagnets H.B.Callen 1963

The alloy analogy (mean-field)
for the Hubbard model J.Hubbard 1964

The generalized H-F approximation
for the Heisenberg model Yu.A. Tserkovnikov, Yu.G. Rudoi 1973-1975

A generalized mean-field approximation
for ferromagnets N.M. Plakida 1973

A generalized mean-field approximation
for the Hubbard model A.L. Kuzemsky 1973-2002

A generalized mean-field approximation
for antiferromagnets A.L. Kuzemsky, D. Marvakov 1990

A generalized random-phase approximation
in the theory of ferromagnets A.Czachor, A.Holas 1990

A generalized mean-field approximation
for band antiferromagnets A.L. Kuzemsky 1999

The Hartree-Fock-Bogoliubov mean-field
in Fermi systems N.N. Bogoliubov, Jr. 2000
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worries,35 the actual existence of sublattices108 is beyond doubt.
Once Neel’s investigations were published, the effective mean-field concept began to develop at a
much faster pace. An important generalization and development of this concept was proposed in
1936 by L. Onsager278 in the context of the polar liquid theory. This approach is now called the

Onsager reaction field approximation. It became widely known, in particular, in the physics of
magnetic phenomena.279–282 In 1954, Kinoshita and Nambu283 developed a systematic method for
description of many-particle systems in the framework of an approach which corresponds to the
generalized mean-field concept. Later, various schemes of ”effective mean-field theory taking
into account correlations” were proposed (see the review20). One can show in the framework of
the variation principle16, 284, 285 that various mean-field approximations can be described on the
basis of the Bogoliubov inequality:4

F = −β−1 ln(Tre−βH) ≤

−β−1 ln(Tre−βHmf

) +
Tre−βHmf

(H −Hmf )

Tre−βHmf
. (6.2)

Here, F is the free energy of the system under consideration, whose calculation is extremely
involved in the general case. The quantity Hmf is some trial Hamiltonian describing the effective-
field approximation. The inequality (6.2) yields an upper bound for the free energy of a many-
particle system. One should note that the BCS-Bogoliubov superconductivity theory227–230 is
formulated in terms of a trial (approximating) Hamiltonian, which is a quadratic form with respect
to the second-quantized creation and annihilation operators, including the terms responsible for
anomalous (or non-diagonal) averages. For the single-band Hubbard model the BCS-Bogoliubov
functional of generalized mean fields can be written in the following form20

Σc
σ = U

(

〈a†i−σai−σ〉 −〈aiσai−σ〉
−〈a†i−σa

†
iσ〉 −〈a†iσaiσ〉

)

. (6.3)

The anomalous (or nondiagonal) mean values in this expression fix the vacuum state of the system
exactly in the BCS-Bogoliubov form. A detailed analysis of Bogoliubov’s approach to investiga-
tions of (Hartree- Fock-Bogoliubov) mean-field type approximations for models with a four-fermion
interaction is given in the papers.6, 286

There are many different approaches to construction of generalized mean-field approximations;
however, all of them have a special-case character. The method of irreducible Green’s functions
allows one to tackle this problem in a more systematic fashion. In order to clarify this statement
let us consider as an example two approaches for linearizing GF equations of motion. Namely, the
Tyablikov approximation16 and the Callen approximation287 for the isotropic Heisenberg model
(4.4). We begin from the equations of motion (5.18) for GF of the form 〈〈S+|S−〉〉:

ω〈〈S+
i |S−

j 〉〉ω = 2〈Sz〉δij +
∑

g

J(i− g)〈〈S+
i S

z
g − S+

g S
z
i |S−

j 〉〉ω.

Within the Tyablikov approximation the second order GF is written in terms of the first-order
GF as follows:16

〈〈S+
i S

z
g |S−

j 〉〉 ≃ 〈Sz〉〈〈S+
i |S−

j 〉〉. (6.4)

It is well know, that the Tyablikov approximation (6.4) corresponds to the random phase approx-
imation for a gas of electrons. The spin-wave’s excitation spectrum does not contain damping in
this approximation:

E(q) =
∑

g

J(i− g)〈Sz〉 exp[i(~Ri − ~Rg)~q] = 2〈Sz〉(J0 − Jq). (6.5)
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This is due to the fact that the Tyablikov approximation does not take into account the in-
elastic quasiparticle’s scattering processes. One should also mention that within the Tyablikov
approximation the exact commutation relations [S+

i , S
−
j ]− = 2Sz

i δij are replaced by approximate

relationships of the form [S+
i , S

−
j ]− ≃ 2〈Sz〉δij . Despite being simple, the Tyablikov approxima-

tion is widely used in different problems even at the present time.288

Callen proposed a modified version of the Tyablikov approximation, which takes into account
some correlation effects. The following linearization of equations-of- motion is used within the
Callen approximation:287

〈〈Sz
gS

+
f |B〉〉 → 〈Sz〉〈〈S+

f |B〉〉 − α〈S−
g S

+
f 〉〈〈S+

g |B〉〉. (6.6)

Here, 0 ≤ α ≤ 1. In order to better understand Callen’s decoupling idea one has to take into
account that the spin 1/2 operator Sz can be represented in the form Sz

g = S − S−
g S

+
g or Sz

g =
1
2(S

+
g S

−
g − S−

g S
+
g ). Therefore, we have

Sz
g = αS +

1− α

2
S+
g S

−
g − 1 + α

2
S−
g S

+
g .

The operator S−
g S

+
g is the ”deviation” of the quantity 〈Sz〉 from S. In the low-temperature

domain that ”deviation” is small and α ∼ 1. Analogously, the operator 1
2(S

+
g S

−
g − S−

g S
+
g ) is the

”deviation” of the quantity 〈Sz〉 from 0. Therefore, when 〈Sz〉 approaches zero one can expect
that α ∼ 0. Thus, the Callen approximation has an interpolating character. Depending on the
choice of the value for the parameter α, one can obtain both positive and negative corrections to
the Tyablikov approximation, or even almost vanishing corrections. The particular case α = 0
corresponds to the Tyablikov approximation.
We would like to stress that the Callen approach is by no means rigorous. Moreover, it has
serious drawbacks.20 However, one can consider this approximation as the first serious attempt
to construct an approximating interpolation scheme in the framework of the GF’s equations-of-
motion method. In contrast to the Tyablikov approximation, the spectrum of spin-wave excitations
within the Callen approximation is given by

E(q) = 2〈Sz〉
(
(J0 − Jq) +

〈Sz〉
NS2

∑

k

[J(k)− J(k − q)]N(E(k))
)
. (6.7)

Here, N(E(k)) is the Bose’s distribution function N(E(k)) = [exp(E(k)β) − 1]−1 Equation (6.7)
clearly shows how the Callen approximation improves Tyablikov’s approximation. From a general
point of view, one has to find the form of the effective self-consistent generalized mean-field
functional. That is, to find which averages determine that field

F = {〈Sz〉, 〈Sx〉, 〈Sy〉, 〈S+S−〉, 〈SzSz〉, 〈SzS+S−〉, . . .}.

Later many approximate schemes for decoupling the hierarchy of equations for GF were pro-
posed,16 improving the Tyablikov and Callen decouplings. Various approaches generalizing the
random phase’s approximation in the ferromagnetism theory for wide ranges of temperature were
considered in the paper289 by Czachor and Holas.

6.1 Heisenberg Antiferromagnet and Anomalous Averages

In order to illustrate the scheme of the irreducible GF method we are going to consider now the
Heisenberg antiferromagnet. Note that a systematic microscopic theory of antiferromagnetism
has not been built yet. In the framework of the model of localized spins the appearance of the
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antiferromagnetic phase is usually associated with the first divergence of the generalized spin’s
susceptibility, if the exchange integral between the nearest neighbors is negative. The first di-
vergence appears at ~Q = π/a(~a + ~b + ~c). Which means that when transiting from one atomic
plane to another along the vector the phase of the magnetization vectors changes by π. Generally
speaking, in crystals with a complicated structure the exchange interaction may be different for
different pairs of neighbors. In this case, we have a large variety of antiferromagnetic configura-
tions. The simplest and the most frequently used model of localized spins of antiferromagnetic
phenomena is the Heisenberg model of two-sublattice antiferromagnets. Let us consider now the
calculation of the renormalized quasiparticle spectrum of magnetic excitations in the framework
of the irreducible GF method.290 The Hamiltonian of the system is given by

H = −1

2

∑

ij

∑

αα′

Jαα′
(i− j)~Siα ~Sjα′ = −1

2

∑

q

∑

αα′

Jαα′

q
~Sqα~S−qα′ . (6.8)

Here, Siα is the spin operator at the site i of the sublattice α, and Jαα′
(i − j) is the exchange

integral between the spins at the sites Riα and Rjα′ ; the indexes α,α′ assume two values (a) and
(b). It is assumed that all the atoms in a sublattice α are identical and have the spin Sα. It is
convenient to rewrite the Hamiltonian (6.8) in the following form:

H = −1

2

∑

q

∑

αα′

Iαα
′

q (S+
qαS

−
−qα′ + Sz

qαS
z
−qα′), (6.9)

where
Iαα

′

q = 1/2(Jαα′

q + Jα′α
−q ).

Let us again consider the equations of motion (5.18) for the Green’s function of the form〈〈S+|S−〉〉.
In contrast to Heisenberg’s ferromagnet model, for the two-sublattice antiferromagnet we have to
use the matrix GF of the form

Ĝ(k;ω) =

(
〈〈S+

ka|S−
−ka〉〉 〈〈S+

ka|S−
−kb〉〉

〈〈S+
kb|S−

−ka〉〉 〈〈S+
kb|S−

−kb〉〉

)

. (6.10)

Here, the GF on the main diagonal are the usual or normal GF, while the off-diagonal GF describe
contributions from the so-called anomalous terms, analogous to the anomalous terms in the BCS-
Bogoliubov superconductivity theory (6.3). The anomalous (or off-diagonal) average values in this
case select the vacuum state of the system precisely in the form of the two-sublattice Neel state.
The Dyson equation (5.53) is derived with the help of irreducible operators of the form

(Sab
kq)

(ir) = Sab
kq −Aab

q S
+
ka +Aba

k−qS
+
kb, (6.11)

(Sz
qα)

(ir) = Sz
qα −N1/2 < Sz

α > δq,0, (6.12)

where Sab
kq = (S+

k−q,aS
z
qb−S+

qbS
z
k−q,a). On performing standard transformations one can obtain the

Dyson equation in the matrix form:

Ĝ(k, ω) = Ĝ0(k, ω) + Ĝ0(k, ω)M̂ (k, ω)Ĝ(k, ω). (6.13)

Here, Ĝ0(k, ω) is the GF within the generalized mean field approximation

Ĝ0 =

(
Gaa

0 (k, ω) Gab
0 (k, ω)

Gba
0 (k, ω) Gbb

0 (k, ω)

)

=
2 < Sz

a >

detΩ̂

(
(ω − ωaa) ωab

ωab (ω − ωbb)

)

, (6.14)

where
detΩ̂ = (ω − ωaa)(ω − ωbb)− ωaaωab.
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The poles of the GF (6.14) determine the spectrum of magnetic excitations in the generalized
mean-field approximation (the elastic scattering corrections):

detΩ̂ = 0.

As a result we obtain

ω±(k) = ±
√

(ω2
aa(k)− ω2

ab(k)), (6.15)

ω(k) = Iz〈Sz
a〉
[

1− 1

N1/2〈Sz
a〉
∑

q

γqA
ab
q

]√

(1− γ2k), (6.16)

where Iq = zIγq, γk = 1/z
∑

i exp(ikRi) and z is the number of nearest neighbors. The first term
in (6.16) corresponds to the Tyablikov approximation. The second term describes the corrections
of elastic scattering within the generalized mean-field approximation. Note that the quantity
which determines these corrections, is given by

Aab
q =

2〈(Sz
−qa)

(ir)(Sz
qb)

(ir)〉+ 〈S−
−qaS

+
qb〉

2N1/2〈Sz
a〉

. (6.17)

This expression contains anomalous averages 〈S−
−qaS

+
qb〉, which characterize the Neel ground state.

6.2 Many-particle Systems with Strong and Weak Electron Correlations

The efficiency of the method of the irreducible Green’s functions for description of normal and
superconducting properties of systems with a strong interaction and complicated character of
the electron spectrum was demonstrated in the papers.20,22–24, 254 Let us consider the Hubbard
model (4.10). The properties of this Hamiltonian are determined by the relationship between
the two parameters: the effective band’s width ∆ and the electron’s repulsion energy U . Drastic
transformations of the metal-dielectric phase transition’s type take place in the system as the ratio
of these parameters changes. Note that, simultaneously, the character of the system description
must change as well, that is, we always have to describe our system by the set of relevant variables.
In the case of weak correlation20, 22–24, 254 the corresponding set of relevant variables contains the
ordinary second-quantized Fermi operators and a†iσ aiσ, as well as the number of particles operator

niσ = a†iσaiσ. These operators have the following properties:

a†iΨ
(0) = Ψ

(1)
i ; aiΨ

(1) = Ψ(0),

aiΨ
(0) = 0, ajΨ

(1)
i = 0 (i 6= j).

Here Ψ(0) and Ψ(1) describe the vacuum and the single-particle states, respectively [159]. In order
to find the low-lying excited quasiparticle states of the many-electron system with the Hamiltonian
(4.10), one has to pass to the vector space of Bloch states

a~kσ = N−1/2
∑

i

exp(−i~k ~Ri)aiσ .

In this representation the Hamiltonian (4.10) is given by

H =
∑

kσ

ǫ(k)a†kσakσ + U/2N
∑

pqrs

∑

σ

a†p+r−qσapσa
†
q−σar−σ. (6.18)

Let us now consider the one-particle electron’s GF of the form

Gkσ(t− t′) = 〈〈akσ, a†kσ〉〉 = −iθ(t− t′)〈[akσ(t), a†kσ(t′)]+〉. (6.19)
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The corresponding equation of motion (5.18) for Gkσ(ω) is given by

(ω − ǫk)Gkσ(ω) = 1 + U/N
∑

pq

〈〈ak+pσa
†
p+q−σaq−σ|a†kσ〉〉ω. (6.20)

In line with Eq.(5.46) we introduce the irreducible GF

(ir)〈〈ak+pσa
†
p+q−σaq−σ|a†kσ〉〉ω =

〈〈ak+pσa
†
p+q−σaq−σ|a†kσ〉〉ω − δp,0〈nq−σ〉Gkσ . (6.21)

The irreducible (ir) GF in Eq. (6.21) is defined in such a way that it can not be transformed to a
lower order GF by arbitrary pairings of second-quantized fermion operators. Next, according to
Eqs. (5.46) - (5.54) we find

Gkσ(ω) = GMF
kσ (ω) + (6.22)

GMF
kσ (ω)U/N

∑

pq

(ir)〈〈ak+pσa
†
p+q−σaq−σ|a†kσ〉〉ω.

The following notation were introduced here

GMF
kσ (ω) = (ω − ǫ(kσ))−1; ǫ(kσ) = ǫ(k) + U/N

∑

q

〈nq−σ〉. (6.23)

Below, for simplicity we consider only paramagnetic solutions, where 〈nσ〉 = 〈n−σ〉. According to
Eqs. (5.46) - (5.54) we obtain

Gkσ(ω) = GMF
kσ (ω) +GMF

kσ (ω)Pkσ(ω)G
MF
kσ (ω). (6.24)

The operator P is given by

Pkσ(ω) =
U2

N2

∑

pqrs

D
(ir)
kσ (p, q|r, s, ;ω) = (6.25)

U2

N2

∑

pqrs

(

(ir)〈〈ak+pσa
†
p+q−σaq−σ|a†r−σar+s−σa

†
k+sσ〉〉(ir)ω

)

.

The proper part of the operator P is given by

D
(ir)
kσ (p, q|r, s;ω) = L

(ir)
kσ (p, q|r, s;ω)

+
U2

N2

∑

r′s′p′q′

L
(ir)
kσ (p, q|r′s′;ω)GMF

kσ (ω)D
(ir)
kσ (p′, q′|r, s;ω). (6.26)

Here, L
(ir)
kσ (p, q|r, s;ω) is the proper part of the GF D

(ir)
kσ (p, q|r, s;ω) Therefore, we obtain

Gkσ = GMF
kσ (ω) +GMF

kσ (ω)Mkσ(ω)Gk,σ(ω). (6.27)

Equation (6.27) is the desired Dyson equation for two-time temperature GF Gkσ(ω). It has the
following formal solutions, cf. (5.54):

Gkσ(ω) = [ω − ǫ(kσ)−Mkσ(ω)]
−1. (6.28)
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The mass operator M is given by

Mkσ(ω) =
U2

N2

∑

pqrs

L
(ir)
kσ (p, q|r, s;ω) = (6.29)

U2

N2

∑

pqrs

(

(ir)〈〈ak+pσa
†
p+q−σaq−σ|a†r−σar+s−σa

†
k+sσ〉〉(ir)

)(p)

.

As was shown in the papers,20, 22–24, 254 an approximation to the mass operatorM can be calculated
as follows:

Mkσ(ω) ≃
U2

N2

∑

pq

∫
dω1dω2dω3

ω + ω1 − ω2 − ω3
×

[

n(ω2)n(ω3) + n(ω1)
(

1− n(ω2)− n(ω3)
)]

gp+q−σ(ω1)gk+pσ(ω2)gq−σ(ω3). (6.30)

Here,

n(ω) = [exp(βω) + 1]−1; gkσ(ω) = − 1

π
ImGkσ(ω + iε).

Equations (6.28) and (6.30) are a self-consistent system of equations for calculating the one-particle
GF Gkσ(ω). As the first iteration one can substitute the expression

gkσ(ω) ≈ δ(ω − ǫ(kσ)). (6.31)

in the right hand side of Eq.(6.30). The substitution yields

Mkσ(ω) =
U2

N2

∑

pq

np+q−σ(1− nk+pσ − nq−σ) + nk+pσnq−σ

ω + ǫ(p+ qσ)− ǫ(k + pσ)− ǫ(qσ)
. (6.32)

Equation (6.32) describes the renormalization of the electron spectrum due to the inelastic elec-
tron’s scattering processes. All elastic scattering corrections have already been taken into account
by the electron energy’s renormalization, see Eq. (6.23). Thus, the investigation of the Hubbard
model in the weak coupling limit is relatively easy.
The most challenging case is the solution of the Hubbard model when the electron correlations are
strong, but are finite. In this limit it is convenient to consider the one-particle GF in the Wannier
representations

Gijσ(t− t′) = 〈〈aiσ(t); a†jσ(t′)〉〉. (6.33)

In the case of strong correlation, the algebra of relevant operators must be chosen according
to specific features of the problem under investigation. It is convenient to use the Hubbard
operators:166

diασ = nαi−σaiσ, (α = ±); n+iσ = niσ, n−iσ = (1− niσ);
∑

nαiσ = 1; nαiσn
β
iσ = δαβn

α
iσ;

∑

α

diασ = aiσ. (6.34)

The new operators diασ and d†jβσ have complicated commutation relations, namely

[diασ , d
†
jβσ]+ = δijδαβn

α
i−σ.

The advantages of using these operators become clear when we consider their equations of motion:

[diασ ,H]− = Eαdiασ +
∑

ij

tij(n
α
i−σajσ + αaiσbij−σ),

bijσ = (a†iσajσ − a†jσaiσ). (6.35)
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According to Hubbard,166 the contributions to the above equation describe the ”alloy analogy”
corrections and the resonance broadening corrections. Using the Hubbard operators one can write
down GF (6.33) in the following form

Gijσ(ω) =
∑

αβ

〈〈diασ |d†jβσ〉〉ω =
∑

αβ

Fαβ
ijσ(ω). (6.36)

The equation of motion for the auxiliary GF F

Fαβ
ijσ(ω) =

(

〈〈di+σ |d†j+σ〉〉ω 〈〈di+σ|d†j−σ〉〉ω
〈〈di−σ |d†j+σ〉〉ω 〈〈di−σ|d†j−σ〉〉ω

)

(6.37)

is now given by

(EFijσ(ω)− Iδij)αβ =
∑

l 6=i

til〈〈nαi−σalσ + αaiσbil−σ|d†jβσ〉〉ω. (6.38)

Here, we used the following notation:

E =

(
(ω − E+) 0

0 (ω − E−)

)

; I =

(
n+−σ 0
0 n−−σ

)

. (6.39)

The determination of the irreducible parts of the GF is more involved:

D
(ir)
il,j (ω) =

(

〈〈Z11|d†j+σ〉〉ω 〈〈Z12|d†j−σ〉〉ω
〈〈Z21|d†j+σ〉〉ω 〈〈Z22|d†j−σ〉〉ω

)

−

∑

α′

([
A+α′

il

A−α′

il

]

[Fα′+
ijσ Fα′−

ijσ ]−
[
B+α′

li

B−α′

li

]

[Fα′+
ljσ Fα′−

ljσ ]

)

. (6.40)

In order to make the equations more compact we have introduced the following notation:

Z11 = Z12 = n+i−σalσ + aiσbil−σ; Z21 = Z22 = n−i−σalσ − aiσbil−σ.

One has to stress that the definition (6.40) plays the central role in this method. The coefficients
A and B are found from the orthogonality condition (5.47)

〈[(D(ir)
il,j )αβ , d

†
jβσ]+〉 = 0. (6.41)

Next, the exact Dyson equation is derived according to Eqs.(5.45) - (5.54). Its mass operator is
given by

Mqσ(ω) = (Pqσ(ω))
p =

(

I−1[
∑

lm

tiltmj〈〈D(ir)
il,j |D

(ir)†
i,mj 〉〉ω]qI−1

)p

. (6.42)

The GF in the generalized mean-field’s approximation has the following very complicated func-
tional structure:20, 22–24, 254

GMF
kσ (ω) =

ω − (n+−σE− + n−−σE+)− λ(k)

(ω − E+ − n−−σλ1(k))(ω − E− − n+−σλ2(k))− n−−σn
+
−σλ3(k)λ4(k)

. (6.43)

Here, the quantities λi(k) are the components of the generalized mean field, which cannot be
reduced to the functional of the mean particle’s densities. The expression for GF (6.43) can be
written down in the form of the following generalized two-pole solution

GMF
kσ (ω) =

n+−σ(1 + cb−1)

a− db−1c
+
n−−σ(1 + da−1)

b− ca−1d
≈

n−−σ

ω − E− − n+−σW
−
k−σ

+
n+−σ

ω − E+ − n−−σW
†
k−σ

, (6.44)
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where

n+−σn
−
−σW

±
k−σ = N−1

∑

ij

tij exp[−ik(Ri −Rj)]× (6.45)

(

(〈a†i−σn
±
iσaj−σ〉+ 〈ai−σn

∓
iσa

†
j−σ〉) +

(〈n±j−σn
±
i−σ〉+ 〈aiσa†i−σaj−σa

†
jσ〉 − 〈aiσai−σa

†
j−σa

†
jσ〉)

)

.

Green’s function (6.44) is the most general solution of the Hubbard model within the generalized
mean field approximation. Equation (6.45) is nothing else but the explicit expression for the
generalized mean field. As we see, this mean field is not a functional of the mean particle’s
densities. The solution (6.44) is more general than the solution ”Hubbard III”166 and the two-
pole solution from the papers291, 292 by Roth. It was shown in the papers20, 22–24, 254 by the author
of this review, that the solution ”Hubbard I”164 is a particular case of the solution (6.44), which
corresponds to the additional approximation

n+−σn
−
−σW

±(k) ≈ N−1
∑

ij

tijexp[−ik(Ri −Rj)]〈n±j−σn
±
i−σ〉. (6.46)

Assuming 〈nj−σni−σ〉 ≈ n2−σ, we obtain the approximation ”Hubbard I”.164 Thus, we have
shown that in the cases of systems of strongly correlated particles with a complicated character of
quasiparticle spectrums the generalized mean fields can have quite a nontrivial structure, which is
difficult to establish by using any kind of independent considerations. The method of irreducible
GF allows one to obtain this structure in the most general form.

6.3 Superconductivity Equations

The nontrivial structure of the generalized mean fields in many-particle systems is vividly revealed
in the description of the superconductivity phenomenon. Let us now briefly consider this topic
following the papers.20, 23, 183, 293 We describe our system by the following Hamiltonian:

H = He +Hi +He−i. (6.47)

Here, the operator He is the Hamiltonian of the crystal’s electron subsystem, which we describe
by the Hubbard Hamiltonian (4.10). The Hamiltonian of the ion subsystem and the operator
describing the interaction of electrons with the lattice are given by

Hi =
1

2

∑

n

P 2
n

2M
+

1

2

∑

mnαβ

Φαβ
nmu

α
nu

β
m, (6.48)

He−i =
∑

σ

∑

n,i 6=j

V α
ij (~R

0
n)a

†
iσajσu

α
n, (6.49)

where
∑

n

V α
ij (~R

0
n)u

α
n =

∂tij(~R
0
ij)

∂R0
ij

(~ui − ~uj). (6.50)

Here, Pn is the momentum operator, M is the ion mass, and un is the ion displacement relative
to its equilibrium position at the lattice site Rn. Using more convenient notations one can write
down the operator describing the interaction of electrons with the lattice as follows23, 183, 293

He−i =
∑

νσ

∑

kq

V ν(~k,~k + ~q)Q~qνa
†
k+qσakσ, (6.51)
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where

V ν(~k,~k + ~q) =
2iq0

(NM)1/2

∑

α

t(~aα)e
α
ν (~q)[sin~aα

~k − sin~aα(~k − ~q)]. (6.52)

Here, q0 is the Slater coefficient,20, 183, 293 describing the exponential decay of the d-electrons’ wave
function. The quantities ~eν(~q) are the phonon-mode’s polarization vectors. The Hamiltonian of
the ion subsystem can be rewritten in the following form

Hi =
1

2

∑

qν

(P †
qνPqν + ω2(~qν)Q†

qνQqν) (6.53)

Here, Pqν and Qqν are the normal coordinates, ω(qν) are the acoustic phonons’ frequencies.
Consider now the generalized one-electron GF of the following form:

Gij(ω) =

(
G11 G12

G21 G22

)

=






〈〈aiσ |a†jσ〉〉 〈〈aiσ|aj−σ〉〉
〈〈a†i−σ|a

†
jσ〉〉 〈〈a†i−σ |aj−σ〉〉




 .

As was already discussed above, the off-diagonal entries of the above matrix select the vacuum
state of the system in the BCS-Bogoliubov form, and they are responsible for the presence of
anomalous averages. The corresponding equations of motion are given by

∑

j

(ωδij − tij)〈〈ajσ|a†i′σ〉〉 = δii′ + (6.54)

U〈〈aiσni−σ|a†i′σ〉〉+
∑

nj

Vijn〈〈ajσun|a†i′σ〉〉,

∑

j

(ωδij + tij)〈〈a†j−σ|a
†
i′σ〉〉 = (6.55)

−U〈〈a†i−σniσ|a
†
i′σ〉〉+

∑

nj

Vjin〈〈a†j−σun|a
†
i′σ〉〉.

Following the general scheme of the irreducible GF method, see Eqs. (5.46) - (5.54), we introduce
the irreducible GF as follows

((ir)〈〈aiσa†i−σai−σ|a†i′σ〉〉ω) = 〈〈aiσa†i−σai−σ|a†i′σ〉〉ω − (6.56)

−〈ni−σ〉G11 + 〈aiσai−σ〉〈〈a†i−σ |a
†
i′σ〉〉ω,

((ir)〈〈a†iσaiσa
†
i−σ|a

†
i′σ〉〉ω) = 〈〈a†iσaiσa

†
i−σ|a

†
i′σ〉〉ω −

−〈niσ〉G21 + 〈a†iσa
†
i−σ〉〈〈aiσ |a

†
i′σ〉〉ω.

Therefore, instead of the algebra of the normal state’s operator (aiσ, a
†
iσ, niσ) , for description of

superconducting states, one has to use a more general algebra, which includes the operators (aiσ,

a†iσ, niσ, a
†
iσa

†
i−σ, and ai−σaiσ). The self-consistent system of superconductivity equations follows

from the Dyson equation

Ĝii′(ω) = Ĝ0
ii′(ω) +

∑

jj′

Ĝ0
ij(ω)M̂jj′(ω)Ĝj′i′(ω). (6.57)

Green’s function in the generalized mean-field’s approximation, G0, and the mass operator Mjj′

are defined as follows ∑

j

(ωτ0δij − tijτ3 − Σc
iσ)G

0
ji′ = δii′τ0, (6.58)
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Mkk′ =
∑

jj′

(〈〈(ρkjτ3ψj)
(ir)|(ψ†

j′τ3ρj′k′)
(ir)〉〉)(p)ω , (6.59)

M̂ii′(ω) = (6.60)

∑

jj′

(

((ir)〈〈aj↑ρij↑|ρj′i′↑a†j′↑〉〉(ir))(p) ((ir)〈〈aj↑ρij↑|ρj′i′↓aj′↓〉〉(ir))(p)
((ir)〈〈a†j↓ρji↓|ρj′i′↑a

†
j′↑〉〉(ir))(p) ((ir)〈〈a†j↓ρji↓|ρi′j′↓aj′↓〉〉(ir))(p)

)

.

The mass operator (6.60) describe the processes of inelastic electron scattering on lattice vibra-
tions. The elastic processes are described by the quantity Σc

iσ, see Eq. (6.3). An approximate
expression for the mass operator (6.60) follows from the following trial solution:

〈ρj′i′σ(t)a†j′σ(t)ajσρijσ〉(ir) ≈ 〈ρj′i′σ(t)ρijσ〉〈a†i′σ(t)ajσ〉. (6.61)

This approximation corresponds to the standard approximation in the superconductivity theory,
which in the diagram-technique language is known as neglecting vertex corrections, that is, ne-
glecting electron correlations in the propagation of fluctuations of charge density. Taking into
account this approximation, one can write down the mass operator (6.60) in the following form

M̂ii′(ω) = M̂1
ii′(ω) + M̂2

ii′(ω). (6.62)

The first term,M1, has the form typical for an interacting electron-phonon system

M1
ii′(ω) =

∑

nn′

∑

jj′

VijnVj′i′n′
1

2

∫ +∞

−∞

dω1dω2

ω − ω1 − ω2

(

cot
βω1

2
+ tan

βω2

2

)

×

(

− 1

π
Im〈〈un|un′〉〉ω2

)(

− 1

π
τ3Im〈〈ψj |ψ†

j′〉〉ω1
τ3

)

. (6.63)

The second term M2
ii′ has a more complicated structure

M2
ii′ =

U2

2

∫ +∞

−∞

dω1dω2

ω − ω1 − ω2

(

cot
βω1

2
+ tan

βω2

2

)(
m11 m12

m21 m22

)

, (6.64)

where

m11 =

(

− 1

π
Im〈〈ni↓|ni′↓〉〉ω2

)(

− 1

π
Im〈〈ai↑|a†i′↑〉〉ω1

)

, (6.65)

m12 =

(
1

π
Im〈〈ni↓|ni′↑〉〉ω2

)(

− 1

π
Im〈〈ai↑|a†i′↓〉〉ω1

)

,

m21 =

(
1

π
Im〈〈ni↑|ni′↓〉〉ω2

)(

− 1

π
Im〈〈ai↓|a†i′↑〉〉ω1

)

,

m22 =

(

− 1

π
Im〈〈ni↑|ni′↑〉〉ω2

)(

− 1

π
Im〈〈ai↓|a†i′↓〉〉ω1

)

.

The definition (6.56) and Eqs. (6.57) - (6.65) allowed us to perform a systematic derivation of
superconductivity equations for transition metals20, 23, 183, 293 and disordered binary alloys187, 188

in the strong coupling approximation. Thus, it is the adequate description of the generalized
mean-field in superconductors, taking into account anomalous mean values, which allowed us to
construct compactly and self-consistently, the superconductivity equations in the strong coupling
approximation.
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6.4 Magnetic Polaron Theory

To obtain a clear idea of the fundamental importance of the complex structure of mean fields
let us investigate the problem of the magnetic polaron294, 295 in magnetic semiconductors.147

That is, in substances which have a subsystem of itinerant carriers and a subsystem of lo-
cal magnetic moments.27,294, 295 Usually the model of s − d exchange (4.23) is used for de-
scription of magnetic semiconductors. It is important to keep in mind that there are differ-
ent spin and charge degrees of freedom in that model, which are described by the operators:
akσ, a†kσ, nkσ = a†kσakσ; S+

k , S−
−k = (S+

k )
†; bkσ =

∑

q(S
−σ
−q aq+k−σ + zσS

z
−qaq+kσ); and

σ+k =
∑

q a
†
k↑ak+q↓; σ−k =

∑

q a
†
k↓ak+q↑. The complete algebra of relevant operators is given

by
{aiσ , Sz

i , S−σ
i , Sz

i aiσ, S−σ
i ai−σ}.

Three additional GFs arise upon calculating the one-electron GF, because of the interaction be-
tween the subsystems. In order to describe correctly the spin and charge degrees of freedom in
magnetic semiconductors, as well as their interaction, the original GF must have the following
matrix form:








〈〈aiσ |a
†

jσ′ 〉〉 〈〈aiσ |Sz
j 〉〉 〈〈aiσ |Sσ′

j 〉〉 〈〈aiσ |a
†

jσ′S
z
j 〉〉 〈〈aiσ |a

†

j−σ′S
σ′

j 〉〉

〈〈Sz
i |a

†

jσ′ 〉〉 〈〈Sz
i |Sz

j 〉〉 〈〈Sz
i |Sσ′

j 〉〉 〈〈Sz
i |a

†

jσ′S
z
j 〉〉 〈〈Sz

i |a
†

j−σ′S
σ′

j 〉〉

〈〈S−σ
i

|a
†

jσ′ 〉〉 〈〈S−σ
i

|Sz
j 〉〉 〈〈S−σ

i
|Sσ′

j 〉〉 〈〈S−σ
i

|a
†

jσ′S
z
j 〉〉 〈〈S−σ

i
|a

†

j−σ′S
σ′

j 〉〉

〈〈Sz
i aiσ|a

†

jσ′ 〉〉 〈〈Sz
i aiσ|Sz

j 〉〉 〈〈Sz
i aiσ|Sσ′

j 〉〉 〈〈Sz
i aiσ |a

†

jσ′S
z
j 〉〉 〈〈Sz

i aiσ|a
†

j−σ′S
σ′

j 〉〉

〈〈S−σ
i

ai−σ|a
†

jσ′ 〉〉 〈〈S−σ
i

ai−σ |Sz
j 〉〉 〈〈S−σ

i
ai−σ |Sσ′

j 〉〉 〈〈S−σ
i

ai−σ|a
†

jσ′S
z
j 〉〉 〈〈S−σ

i
ai−σ|a

†

j−σ′S
σ′

j 〉〉







. (6.66)

The functional structure of GF (6.66) shows that there are two regimes of quasiparticle dynamics:
the scattering regime and the regime, where the electron-magnon’s bound states (the magnetic
polaron) are formed. To somewhat simplify our task we will use the following reduced algebra

of relevant operators (akσ, a
†
kσ, bkσ, b

†
kσ). In this case, however, we will need a separate consistent

consideration of the dynamic in the localized spin’s subsystem.294,295 For this purpose we use GF

G+−(k; t− t′) = 〈〈S+
k (t), S

−
−k(t

′)〉〉. (6.67)

Now, the relevant matrix’s GF for the problem of magnetic dynamics is given by

Ĝ(k;ω) =
(
〈〈S+

k |S−
−k〉〉 〈〈S+

k |σ−−k〉〉
〈〈σ+k |S−

−k〉〉 〈〈σ+k |σ−−k〉〉

)

. (6.68)

The Dyson equation for GF (6.68)
Ĝ = Ĝ0 + Ĝ0M̂ Ĝ (6.69)

determines GF Ĝ0 in the generalized mean-field approximation, and the mass operator M̂ .295 For
description of the charge-carriers subsystem we use the GF in the form

gkσ(t− t′) = 〈〈akσ(t), a†kσ(t′)〉〉. (6.70)

The Dyson equation for this GF is given by295

gkσ(ω) = g0kσ(ω) + g0kσ(ω)Mkσ(ω)gkσ(ω). (6.71)

Equations (6.69) and (6.71) allow one to investigate self-consistently, the spin and the charge’s
quasiparticle dynamics in the system. In contrast to the scattering regime, for the one-electron
GF (6.70) in the bound state’s formation regime we find the following expression for the GF in
the generalized mean-field’s approximation

〈〈akσ |a†kσ〉〉0 = (detΩ̂)−1 = (ω − ε(kσ) − I2N−1χb
kσ(ω))

−1, (6.72)
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where

χb
kσ(ω) =

∑

q

{
〈S−σ

−q S
σ
q 〉

(1 − IΛkσ(ω))(ω + zσω(q)− ε(k + q − σ))

+
(1 + IΛkσ(ω))〈(Sz

−q)
ir(Sz

q )
ir〉

(1− IΛkσ(ω))(ω − ε(k + qσ))
}, (6.73)

Λkσ(ω) =
1

N

∑

q

1

(ω + zσω(q)− ε(k + q − σ))
. (6.74)

The quantity χb
kσ(ω) plays the role of the generalized susceptibility for spin-electron bound states.

It is this property that distinguishes the bound-state regime from the scattering regime, where
instead of the electron-spin susceptibility χb

kσ(ω) appears χ
s
0(k, ω)

χs
0(k, ω) = N−1

∑

p

(fp+k↓ − fp↑)

ωp,k
. (6.75)

We use the following notation

ωs
p,k = (ω + ǫp − ǫp+k −∆I); ∆I = 2ISz,

nσ =
1

N

∑

q

〈a†qσaqσ〉 =
1

N

∑

q

fqσ =
∑

q

(exp(βε(qσ)) + 1),

ε(qσ) = ǫq − zσISz,

n̄ =
∑

(n↑ + n↓); 0 ≤ n̄ ≤ 2; Sz = N−1/2〈Sz
0〉.

. The magnetic polaron’s spectrum is given by

Ekσ = ε(kσ) + I2N−1χb
kσ(Ekσ). (6.76)

One can show that for any value of the electron’s spin projection the polaron spectrum of the
bound electron-magnon’s state contains two branches. In the so-called atomic limit (ǫk = 0 ),
when k → 0, ω → 0, we obtain

〈〈akσ|a†kσ〉〉0 =
S + zσSz
2S + 1

(ω + IS)−1 +
S − zσSz
2S + 1

(ω − I(S + 1))−1. (6.77)

Here, S and Sz = 〈Sz
0〉/

√
N denote the spin magnitude and the magnetization, respectively. The

obtained result, Eq. (6.76), is in perfect agreement with the result of Mattis and Shastry,296 who
investigated the magnetic polaron’s problem for T = 0

〈〈akσ|a†kσ〉〉0|T=0 = {ω − ε(kσ)− δσ↓2I
2S

Λkσ(ω)

(1− IΛkσ(ω))
}−1 (6.78)

Thus, the magnetic polaron is formed in the case of antiferromagnetic s-d interaction (I < 0). In
order to get a clear idea of the spectrum character let us now consider two limiting cases:

(i) a wide-band semiconductor (|I|S ≪W )

Ek↓ ≃ ǫk + I
S(S + Sz + 1) + Sz(S − Sz + 1)

2S
+ (6.79)

(−I)
N

∑

q

(ǫk−q − ǫk + 2I(S − Sz))

(ǫk−q − ǫk + 2ISz)

〈S+
q S

−
−q〉

2S
,
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(ii) a narrow-band semiconductor (|I|S ≫ W )

Ek↓ ≃ I(S + 1) +
2(S + 1)(S + Sz)

(2S + 1)(S + Sz + 1)
ǫk +

1

N

∑

q

(ǫk−q − ǫk)

(2S + 1)

〈S+
q S

−
−q〉

(S + Sz + 1)
. (6.80)

Here, W is the band width for I = 0. Note that in order to make expressions more compact we
omitted the correlation function Kzz

q in the above formulae.
Consider now the low-temperature spin-wave regime, where one can assume that Sz ≃ S. In this
case we have

〈S+
q S

−
−q〉 ≃ 2S(1 +N(ω(q))).

One can show that for

(i) a wide-band semiconductor (|I|S ≪W )

Ek↓ ≃ ǫk + IS +
2I2S

N

∑

q

1

(ǫk − ǫk−q + 2IS)
+

(−I)
N

∑

q

(ǫk−q − ǫk)

(ǫk−q − ǫk − 2IS)
N(ω(q)), (6.81)

(ii) a narrow-band semiconductor (|I|S ≫ W )

Ek↓ ≃ I(S + 1) +
2S

(2S + 1)
ǫk +

1

N

∑

q

2S

(2S + 1)

(ǫk−q − ǫk)

(2S + 1)
N(ω(q)). (6.82)

Let us now estimate the energy of the bound state of the magnetic polaron

εB = εk↓ − Ek↓. (6.83)

Taking into account that
εk↓ = ǫk + IS.

we obtain the following expressions for the binding energy εB :

(i) a wide-band semiconductor (|I|S ≪W )

εB = ε0B1 −
(−I)
N

∑

q

(ǫk−q − ǫk)

(ǫk−q − ǫk − 2IS)
N(ω(q)), (6.84)

(ii) a narrow-band semiconductor (|I|S ≫ W )

εB = ε0B2 −
1

N

∑

q

2S

(2S + 1)

(ǫk−q − ǫk)

(2S + 1)
N(ω(q)), (6.85)

41



ε0B1 =
(2I2S)

N

∑

q

1

(ǫk−q − ǫk − 2IS)
≃ |I|S

W
|I|,

ε0B2 = −I + ǫk
(2S + 1)

≃ |I|. (6.86)

The outlined theory gives a complete description of the magnetic polaron for finite tempera-
tures,294,295 revealing the fundamental importance of the complicated structure of generalized
mean-fields, which cannot be reduced to simple functionals of mean spin and particle densities.

7 Broken Symmetry, Quasiaverages, and Physics of Magnetic

Materials

It is well known that the concept of spontaneously broken symmetry297–306 is one of the most
important notions in the quantum field theory and elementary particle physics. This is especially
so as far as creating a unified field theory, uniting all the different forces of nature,307 is concerned.
One should stress that the notion of spontaneously broken symmetry came to the quantum field
theory from solid-state physics. It was originated in quantum theory of magnetism, and later was
substantially developed and found wide applications in the gauge theory of elementary particle
physics.308, 309 It was in the quantum field theory where the ideas related to that concept were
quite substantially developed and generalized. The analogy between the Higgs mechanism giving
mass to elementary particles and the Meissner effect in the Ginzburg-Landau superconductivity
theory is well known.297, 298, 301–303, 306, 310 Both effects are consequences of spontaneously broken
symmetry in a system containing two interacting subsystems.
A similar situation is encountered in the quantum solid-state theory.311 Analogies between the
elementary particle and the solid-state theories have both cognitive and practical importance for
their development.312 We have already mentioned the analogies with the Higgs effect playing an
important role in these theories.313 However, we have every reason to also consider analogies with
the Meissner effect in the Ginzburg-Landau superconductivity model, because the Higgs model
is, in fact, only a relativistic analogue of that model.297, 301–303, 306 On the same ground one can
consider the existence of magnons in spin systems at low temperatures,314 acoustic and optical
vibration modes in regular lattices or in multi-sublattice magnets, as well as the vibration spectra
of interacting electron and nuclear spins in magnetically-ordered crystals.315

The isotropic Heisenberg ferromagnet (4.4) is often used as an example of a system with spon-
taneously broken symmetry.305 This means that the Hamiltonian symmetry, the invariance with
respect to rotations, is no longer the symmetry of the equilibrium-state. Indeed the ferromag-
netic states of the model are characterized by an axis of the preferred spin alignment, and, hence,
they have a lower symmetry than the Hamiltonian itself. However, as was stressed by Ander-
son,311, 316, 317 the ground state of the Heisenberg ferromagnet is an eigenstate of the relevant
transformation of continuous symmetry (spin rotation). Therefore, the symmetry is not bro-

ken and the low-energy excitations do not have novel properties. The symmetry breaking takes
place when the ground state is no longer an eigenstate of a particular symmetry group, as in anti-
ferromagnets or in superconductors. Only in this case the concepts of quasi-degeneracy, Goldstone
bosons, and Higgs phenomenon can be applied.311,316, 317

The essential role of the physics of magnetism in the development of symmetry ideas was noted in
the paper318 by the 2008 Nobel Prize Winner Y. Nambu, devoted to the development of the elemen-
tary particle physics and the origin of the concept of spontaneous symmetry breakdown. Nambu
points out that back at the end of the 19th century P. Curie319, 320 used symmetry principles in
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the physics of condensed matter. P. Curie319 used symmetry ideas in order to obtain analogues of
selection rules for various physical effects, for instance, for the Wiedemann effect319, 320 (see the
books320–322). Nambu also notes:
”More relevant examples for us, however, came after Curie. The ferromagnetism is the prototype
of today’s spontaneous symmetry breaking, as was explained by the works of Weiss,36 Heisen-
berg,98 and others. Ferromagnetism has since served us as a standard mathematical model of
spontaneous symmetry breaking”.
This statement by Nambu should be understood in light of the clarification made by Ander-
son311, 316, 317 (see also the paper323). P. Curie was indeed a forerunner of the modern concepts of
the quantum theory of magnetism. He formulated the Curie principle: ”Dissymmetry creates
the phenomenon”. According to this principle:319, 320

”A phenomenon can exist in a medium possessing a characteristic symmetry (G1) or
the symmetry of one of that characteristic symmetry subgroups (G ⊆ Gi)”.

In other words, some symmetry elements may coexist with some phenomena, but this is not
necessarily the case. What is required is that some symmetry elements are absent. This is
that dissymmetry, which creates the phenomenon. One of the formulations of the dissymmetry
principle has the following form324

Gphenomena
i ⊇ Gmedia =

⋂

Gphenomena
i , (7.1)

or, alternatively

Gproperties
i ⊇ Gobject =

⋂

Gproperties
i . (7.2)

Note that the concepts of symmetry, dissymmetry, and broken symmetry became very widespread
in various branches of science and art.324–326

Essential progress in the understanding of the spontaneously broken symmetry concept is con-
nected with Bogoliubov’s ideas about quasiaverages.327, 328

Indeed, as was noticed in the book:305 ”. . . the canonical ensemble ρ ∼ exp(−βH) is no longer a
good ensemble for the spontaneously ordered systems. Averaging over this ensemble would be to
average, among other properties, over all directions of the total spin. That is fine in a paramagnet,
and passes for a number of purposes in the ferromagnetic regime as well, but for other purposes,
such as the calculation of 〈~Stot〉, it would be a foolish thing to do. One could use exp(−βH) to
weight states of different energy, but in addition one should specify that the trace is to be taken
only over those states for which ~Stot points in the z-direction. Formally, one would then have
something like

ρ = constP ~Stot exp(−βH),

where the projection operator P ~Stot eliminates all but those states for which ~Stot points along z.”
As we see, this statement written in 1975 contains in a concise form an argumentation in favor
of using the ideas of quasiaverages,327, 328 but it does not mention them explicitly. However, the
notion of quasiaverages327,328 was formulated by N.N. Bogoliubov back in 1960-1961 (see also the
paper304).
It is necessary to stress, that the starting point for Bogoliubov’s paper327, 328 was an investigation
of additive conservation laws and selection rules, continuing and developing the already
mentioned above approach by P. Curie for derivation of selection rules for physical effects. Bo-
goliubov demonstrated that in the cases when the state of statistical equilibrium is degenerate, as
in the case of a ferromagnet, one can remove the degeneracy of equilibrium states with respect to
the group of spin rotations by including in the Hamiltonian H an additional noninvariant term
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νMzV with an infinitely small ν. This replaces the ordinary averages by quasiaverages327, 328 of
the form

2 A 3= lim
ν→0

〈A〉ν~e, (7.3)

where 〈A〉ν~e is the ordinary average of the quantity A with respect to the Hamiltonian Hν~e =
H+ν(~e · ~M)V. Thus, the presence of degeneracy is directly reflected on quasiaverages via their de-
pendence on the arbitrary vector ~e. The ordinary averages can be obtained from the quasiaverages
by integrating over all possible directions of ~e

〈A〉 =
∫

2 A 3 d~e. (7.4)

The question of symmetry breaking within the localized and band models of antiferromagnets
was studied by the author of this review in the papers.20, 256, 290 It has been found there that the
concept of symmetry breaking in the band model of magnetism256 is much more complicated than
in the localized model. In the framework of the band model of magnetism one has to additionally
consider the so-called anomalous propagators of the form

FM : Gfm ∼ 〈〈akσ; a†k−σ〉〉,
AFM : Gafm ∼ 〈〈ak+Qσ; a

†
k+Q′σ′〉〉.

In the case of the band antiferromagnet the ground state of the system corresponds to a spin-
density wave (SDW), where a particle scattered on the internal inhomogeneous periodic field gains
the momentum Q−Q′ and changes its spin: σ → σ′. The long-range order parameters are defined
as follows

FM : m = 1/N
∑

kσ

〈a†kσak−σ〉, (7.5)

AFM :MQ =
∑

kσ

〈a†kσak+Q−σ〉. (7.6)

It is important to stress, that the long-range order parameters here are functionals of the internal
field, which in turn is a function of the order parameter. Thus, in the cases of rotation and trans-
lation invariant Hamiltonians of band ferro- and antiferromagnetics one has to add the following
infinitesimal sources removing the degeneracy:

FM : νµBHx

∑

kσ

a†kσak−σ, (7.7)

AFM : νµBH
∑

kQ

a†kσak+Q−σ. (7.8)

Here, ν → 0 after the usual in statistical mechanics infinite-volume limit V → ∞. The ground state
in the form of a spin-density wave was obtained for the first time by Overhauser in investigations
of nuclear matter.329 There, the vector ~Q is a measure of inhomogeneity or translation symmetry
breaking in the system. It was written in the paper330 (see also331–333) that

”. . . in antiferromagnets a staggered magnetic field plays the role of a symmetry-
breaking field. No mechanism can generate a real staggered magnetic field in antifer-
romagnetic materials”.

The analysis performed in the papers by Penn334, 335 showed (see also336) that the antiferromag-
netic and more complicated states (for instance, ferrimagnetic) can be described in the framework
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of a generalized mean-field approximation. In doing that we have to take into account both the
normal averages 〈a†iσaiσ〉, and the anomalous averages 〈a†iσai−σ〉.
It is clear that the anomalous terms (7.7) and (7.8) break the original rotational symmetry of
the Hubbard Hamiltonian. Thus, the generalized mean-field’s approximation has the following
form ni−σaiσ ≃ 〈ni−σ〉aiσ − 〈a†i−σaiσ〉ai−σ. A self-consistent theory of band antiferromagnetism
was developed by the author of this review in the papers20, 256 using the method of the irreducible
GF. The following definition was used:

ir〈〈ak+pσa
†
p+q−σaq−σ|a†kσ〉〉ω = 〈〈ak+pσa

†
p+q−σaq−σ|a†kσ〉〉ω −

δp,0〈nq−σ〉Gkσ − 〈ak+pσa
†
p+q−σ〉〈〈aq−σ |a†kσ〉〉ω. (7.9)

The algebra of relevant operators must be chosen as follows (aiσ , a
†
iσ, niσ, a

†
iσai−σ). The corre-

sponding initial GF will have the following matrix structure

GAFM ∼
(

〈〈aiσ |a†jσ〉〉 〈〈aiσ |a†j−σ〉〉
〈〈ai−σ|a†jσ〉〉 〈〈ai−σ|a†j−σ〉〉

)

.

The off-diagonal terms select the vacuum state of the band’s antiferromagnet in the form of a spin-
density wave. It is necessary to stress that the problem of the band’s antiferromagnetism157, 337

is quite involved, and the construction of a consistent microscopic theory of this phenomenon
remains a topical problem.

7.1 Quantum Protectorate and Microscopic Models of Magnetism

The ”quantum protectorate” concept was formulated in the paper.216 Its authors, R. Laughlin
and D. Pines, discussed the most fundamental principles of matter description in the widest sense
of this word:
”It is possible to perform approximate calculations for larger systems, and it is through such
calculations that we have learned why atoms have the size they do, why chemical bonds have the
length and strength they do, why solid matter has the elastic properties it does, why some things
are transparent while others reflect or absorb light. With a little more experimental input for
guidance it is even possible to predict atomic conformations of small molecules, simple chemical
reaction rates, structural phase transitions, ferromagnetism, and sometimes even superconducting
transition temperatures. But the schemes for approximating are not first-principles deductions
but are rather art keyed to experiment, and thus tend to be the least reliable precisely when reli-
ability is most needed, i.e., when experimental information is scarce, the physical behavior has no
precedent, and the key questions have not yet been identified. . . .We have succeeded in reducing
all of ordinary physical behavior to a simple, correct Theory of Everything only to discover that
it has revealed exactly nothing about many things of great importance.”216

R. Laughlin and D. Pines show that there are facts that are clearly true, (for instance, the value
e2/hc) yet they cannot be deduced by direct calculation from the Theory of Everything, for exact
results cannot be predicted by approximate calculations. Thus, the existence of these effects is
profoundly important, for it shows us that for at least some fundamental things in nature the The-
ory of Everything is irrelevant. Next, the authors formulate their main thesis: emergent physical
phenomena, which are regulated by higher physical principles, have a certain property, typical for
these phenomena only. This property is their insensitivity to microscopic description. Thus, here,
in essence, a most broad question is posed:
”what is knowable in the deepest sense of the term?”
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For instance, the low-energy excitation spectrum of ordinary crystal dielectrics contains a
transversal and longitudinal sound wave and nothing else, irrespective of microscopic details (see
also217). Therefore, in the opinion of R. Laughlin and D. Pines, there is no need ”to prove” the
existence of sound in solid bodies; this is a consequence of the existence of elastic modules in the
long-wave scale, which in turn follows from the spontaneous breaking of translation and rotation
symmetries, typical for the crystal state. This implies the converse statement: very little one
can learn about the atomic structure of the solid bodies of crystal by investigating their acoustic
properties. Therefore, the authors summarize, the crystal state is the simplest known example of
the quantum protectorate, a stable state of matter with low-energy properties deter-

mined by higher physical principles and by nothing else.
The existence of two scales, the low-energy and high-energy scales, relevant to the description of
magnetic phenomena was stressed by the author of this review in the papers18, 19, 189 devoted to
comparative analysis of models of localized and band models of quantum theory of magnetism. It
was shown there, that the low-energy spectrum of magnetic excitations in the magnetically-ordered
solid bodies corresponds to a hydrodynamic pole (~k, ω → 0) in the generalized spin susceptibility,
which is present in the Heisenberg, Hubbard, and the combined s− d model (see Fig. 1).
In the Stoner band model the hydrodynamic pole is absent, there are no spin waves there. At the

Figure 1: Schematic diagrams of excitation spectra in four microscopic models of theory of mag-
netism. Upper left: the Heisenberg model; upper right: the Hubbard model; lower left: the Zener
model; lower right: the multiband Hubbard model.

same time, the Stoner single-particle’s excitations are absent in the Heisenberg model’s spectrum.
The Hubbard model18, 19, 189 with narrow energy bands contains both types of excitations: the
collective spin waves (the low energy spectrum) and Stoner single-particle’s excitations (the high-
energy spectrum). This is a big advantage and flexibility of the Hubbard model in comparison
to the Heisenberg model. The latter, nevertheless, is a very good approximation to the realistic
behavior in the domain where the hydrodynamic description is applicable, that is, for long wave-
lengths and low energies. The quantum protectorate concept was applied to the quantum theory
of magnetism by the author of this review in the paper,189 where a criterion of models of the
quantum theory of magnetism applicability to description of concrete substances was formulated.
The criterion is based on the analysis of the model’s low energy and high-energy spectra.
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8 The Lawrence-Doniach Model

The Ginzburg-Landau model310,338 is a special form of the mean-field theory. This model operates
with a pseudo-wave function Ψ(~r), which plays the role of a parameter of complex order, while
the square of this function modulus |Ψ(~r)|2 should describe the local density of superconducting
electrons. It is well known, that the Ginzburg-Landau theory is applicable if the temperature of
the system is sufficiently close to its critical value Tc, and if the spatial variations of the functions
Ψ and of the vector potential ~A are not too large. The main assumption of the Ginzburg-Landau
approach is the possibility to expand the free-energy density f in a series under the condition,
that the values of Ψ are small, and its spatial variations are sufficiently slow. Then, we have

f = fn0 + α|Ψ|2 + β

2
|Ψ|4 + 1

2m∗

∣
∣
∣
∣
∣

(

− i~∇+
2e ~A

c

)

Ψ

∣
∣
∣
∣
∣

2

+
~
2

8π
. (8.1)

The Ginzburg-Landau equations follow from an applications of the variational method to the
proposed expansion of the free energy density in powers of |Ψ|2 and |∇Ψ|2, which leads to a pair
of coupled differential equations for Ψ(~r) and the vector potential ~A.
The Lawrence-Doniach model was formulated in the paper339 for analysis of the role played by
layered structures in superconducting materials.340–342 The model considers a stack of parallel
two dimensional superconducting layers separated by an insulated material (or vacuum), with
a nonlinear interaction between the layers. It is also assumed that an external magnetic field
is applied to the system. In some sense, the Lawrence-Doniach model can be considered as
an anisotropic version of the Ginzburg- Landau model.310, 338 More specifically, an anisotropic
Ginzburg-Landau model can be considered as a continuous limit approximation to the Lawrence-
Doniach model. However, when the coherence length in the direction perpendicular to the layers is
less than the distance between the layers, these models are difficult to compare. In the framework
of the approach used by Lawrence and Doniach the superconducting properties of the layered
structure were considered under the assumption that in the superconducting state the free energy
per cell relative to its value in the zero external field can be written in the following form

f(~r) =
n∑

i

[

αi(T )|Ψi(~r)|2 + β|Ψi(~r)|4 +
1

2mab

∣
∣
∣
∣
∣

(

− i~∇+
2e ~A

c

)

Ψi(~r)

∣
∣
∣
∣
∣

2]

+

+
∑

<ij>

ηij

∣
∣
∣Ψi(~r)−Ψj(~r)

∣
∣
∣

2
. (8.2)

Here, Ψi(~r) is the order parameter of the Ginzburg-Landau order of the layer number i, (Ψi(x, y)
is a function of two variables), the operator ∇ acts in the x-y plane; ~A is the corresponding
vector’s potential, α and β are the usual Ginzburg-Landau parameters, ηij describes a positive
Josephson interaction between the layers; and < ij > denotes summation over neighboring layers.
It is assumed that the layers correspond to planes ab, and the c axis is perpendicular to these
planes. Accordingly, the z axis is aligned with c, and the coordinates x-y belong to the plane ab.
The quantities ηij are usually written as follows

ηij =
~
2

2mcs2
. (8.3)

Here, s is the distance between the layers. As one can see, for a rigorous treatment of the
problem one has to take into account the anisotropy of the effective mass at the planes ab and
between them, mab and mc, respectively. Frequently, the distinction between these two types of
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anisotropy is ignored, and a quasi-isotropic case is considered. If we write down Ψi in the form
Ψi = |Ψi| exp(iϕi) and assume that all |Ψi| are equal, then ηij is given by

ηij =
~
2

2mcs2
|Ψi|2[1− cos(ϕi − ϕi−1)]. (8.4)

The coefficient αi(T ) for the layer number i is given by

αi(T ) = α′
i

(T − T 0
i )

T 0
i

, (8.5)

where T 0
i denotes the critical temperature for the layer number i. Next, one can consider the

situation where Ψi(~r) = Ψi(r) and ~A = 0. In the vicinity of Tc the contribution from β|Ψi|4 is
small. Taking into account all these simplifications one can write down the free energy’s density
in the following form

f =

n∑

i

αi(T )|Ψi|2 +
∑

<ij>

ηij |Ψi −Ψj|2. (8.6)

This is the quasi-isotropic approximation with single mass parameter α. The Ginzburg-Landau
equations follow from the free-energy extremum conditions with respect to variations of Ψi

δf

δΨ∗
i

= (αi + ηi−1 i + ηi i−1)Ψi − (ηi−1 iΨi−1 + ηi i+1Ψi+1) = 0. (8.7)

The corresponding secular equation is given by
∣
∣
∣(αi(T ) + ηi−1 i + ηi i+1)δij − ηijδi j±1

∣
∣
∣ = 0. (8.8)

It is assumed in the framework of the Lawrence-Doniach model339 that the transition temperature
corresponds to the largest root of the secular equation. In other words, one has to investigate
solutions of the equation

∣
∣
∣
∣
(T − T 0

i +
ηi−1 i

α′
i

T 0
i +

ηi i+1

α′
i

T 0
i )δij −

ηij
α′
i

T 0
i δi j±1

∣
∣
∣
∣
= 0, (8.9)

or, in other form

det(TI −M) = 0, where Mij =

(

T 0
i − ηi−1 i

α′
i

T 0
i − ηi i+1

α′
i

T 0
i

)

δij +
ηij
α′
i

T 0
i δi j±1. (8.10)

Thus, the problem is reduced to finding the maximal eigenvalue of the matrix M . If we take into
account the external field, then the complete form of the Lawrence-Doniach equation339 is given
by

αΨi + β|Ψi|2Ψi −
~
2

2mab

(

∇+ i
2e

~c
~A

)2

Ψi

− ~
2

2mcs2

(

Ψi+1e
2ieAzs/~c − 2Ψi −Ψi−1e

2ieAzs/~c

)

= 0. (8.11)

A large number of papers are devoted to investigations of the Lawrence-Doniach model and
to development of various methods for its solution.340–345 In many respects this model corre-
sponds to layered structures of high-temperature superconductors,346 and in particular to mer-
curocuprates.340–342 A relativistic version of the Lawrence-Doniach model was studied in the pa-
per,313 where violation of the local U(1) gauge’s symmetry was considered by analogy with Higgs
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mechanism.303 A spontaneous breaking of the global U(1) invariance is taking place through the
superconducting condensate. The paper313 also studied in detail the consequences of spontaneous
symmetry breaking in connection with the Anderson-Higgs phenomenon.303 As was mentioned
already, the concept of spontaneous symmetry breaking corresponds to situations with symmetric
action, but asymmetric realization (the vacuum condensate) in the low-energy regime. As a result
the realization has a lower symmetry than the causing action.302, 308

In essence, the Higgs mechanism303 follows from the Anderson idea302 on the connection between
the gauge’s invariance breaking and appearance of the zero-mass collective mode in superconduc-
tors. Difference-differential equations for the order parameter, as well as for the vector potential at
the plane and between the planes were also derived in the paper.313 These equations correspond
to the Klein-Gordon, Proca and sine-Gordon equations. The paper also contains a comparison
of the superconducting phase shift (ϕi − ϕi−1) between the layers in the London limit with the
standard sine-Gordon equation. A possible application of this approach to description of the
high-temperature superconductivity in layered cuprates with a single plane in the elementary cell
and with a weak Josephson interaction between the layers was also considered.
Thus, a systematic scheme for a phenomenological description of the macroscopic behavior of
layered superconductors can be constructed by applying the covariance and gauge invariance
principles to a four-dimensional generalization of the Lawrence-Doniach model. The Higgs mech-
anism303 plays the role of a guiding idea, which allows one to place this approach on a deep and
nontrivial foundation. The surprising formal simplicity of the Lawrence-Doniach model once again
stresses the R. Peierls idea93 on the efficiency of physical model creating.

9 Nonequilibrium Statistical Operators and Quasiaverages in the

Theory of Irreversible Processes

It has been mentioned above that Bogoliubov’s quasiaverages concept327, 328 plays an important
role in equilibrium statistical mechanics. According to that concept, infinitely small perturba-
tions can trigger macroscopic responses in the system if they break some symmetry and remove
the related degeneracy (or quasidegeneracy) of the equilibrium state. As a result, they can pro-
duce macroscopic effects even when the perturbation magnitude is tend to zero, provided that
happens after passing to the thermodynamic limit. D.N. Zubarev showed347,348 that the concepts
of symmetry breaking perturbations and quasiaverages play an important role in the theory of
irreversible processes as well.38 The method of the construction of a nonequilibrium statistical
operator38 becomes especially deep and transparent when it is applied in the framework of the
quasiaverage concept. The main idea of the papers347, 348 was to consider infinitesimally small
sources breaking the time-reversal symmetry of the Liouville equation

∂ρ(t, 0)

∂t
+

1

i~
[ρ(t, 0),H] = 0 (9.1)

which become vanishingly small after a thermodynamic limiting transition.
The main idea of the method of a nonequilibrium statistical operator (NESO)38 can be summarized
as follows. In the scale of sufficiently large times the nonequilibrium state of the system can be
described by some set of parameters Fm(t), and one can find such a particular solution of the
Liouville equation (9.1) which depends on time only through Fm(t). The first argument of the
operator ρ(t, 0) refers to an implicit time dependence. It is assumed that the nonequilibrium
statistical ensemble can be characterized by a small set of relevant operators Pm(t) (quasi-
integrals of motion). The corresponding NESO is a functional of Pm(t):

ρ(t) = ρ{. . . Pm(t) . . .}. (9.2)
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One can show, see,38 that if the statistical operator ρ(t, 0) satisfies the Liouville equation, then it
is given by

ρ = exp
(
Λ−

∫ 0

−∞

dt1
∑

m

Gm(t1)Pm(t1)
)
; Λ = 1− λ, (9.3)

where
Gm(t1) = εeεt1Fm(t+ t1), (9.4)

Λ = ε

∫ 0

−∞

dt1e
εt1λ(t+ t1) = λ(t)−

∫ 0

−∞

dt1e
εt1 λ̇(t+ t1). (9.5)

Alternatively, it can be written as follows

ρ = exp(ln ρq) = exp
(
ε

∫ 0

−∞

dt1e
εt1e(

iHt1
~

) ln ρq(t+ t1)e
(−iHt1

~
)
)
= (9.6)

exp(−S(t, 0)) = exp(−ε
∫ 0

−∞

dt1e
εt1S(t+ t1, t1)) =

exp
(
−S(t, 0) +

∫ 0

−∞

dt1e
εt1 Ṡ(t+ t1, t1)

)
,

where

ρq = exp

(

Ω−
∑

m

Fm(t)Pm

)

≡ exp(−S(t, 0)), Ω = lnTr exp

(

−
∑

m

Fm(t)Pm

)

, (9.7)

Ṡ(t, 0) =
∂S(t, 0)

∂t
+

1

i~
[S(t, 0),H]; (9.8)

Ṡ(t, t1) = exp

(
iHt1
~

)

Ṡ(t, 0) exp

(−iHt1
~

)

.

Here, ρq is the quasi-equilibrium statistical operator, which corresponds to the extremum value
of the information’s entropy

S = −Tr(ρ ln ρ), (9.9)

under the additional conditions that Tr(ρPm) = 〈Pm〉q; Trρ = 1. In this case

δΦ

δFm
= −〈Pm〉q; 〈. . .〉q = Tr(ρq . . .), (9.10)

Φ(ρ) = −Tr(ρ ln ρ)−
∑

m

FmTr(ρPm) + λTrρ, (9.11)

〈Pm〉t = 〈Pm〉tq. (9.12)

The quantum Liouville equation (9.1) (as well as the classical one) is invariant with respect to the
time reversal. One can show347, 348 that ρ(t, 0) satisfies the Liouville equation with an additional
infinitesimally small (proportional to ε) source-term in the right hand side, and we send ε to zero
after the thermodynamic limit. Indeed, let us consider the equation

∂ρε
∂t

+
1

i~
[ρε,H] = −ε(ρε − ρq) (9.13)

or, equivalently,
∂ ln ρε
∂t

+
1

i~
[ln ρε,H] = −ε(ln ρε − ln ρq), (9.14)
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where ε → 0 after passage to the thermodynamic limit. Equation (9.13) is an analogue of the
corresponding equation in the quantum scattering theory.349,350 The introduction of infinitely
small sources in the Liouville equation corresponds to imposing the following boundary conditions

exp

(
iHt1
~

)

(ρ(t+ t1)− ρq(t+ t1)) exp

(−iHt1
~

)

→ 0. (9.15)

Here,t1 → −∞ after the thermodynamic limit. It was shown in the papers38, 347, 348 that the
operatorρε is given by

ρε(t, t) = ε

∫ t

−∞

dt1e
ε(t1−t)ρq(t1, t1) = ε

∫ 0

−∞

dt1e
εt1ρq(t+ t1, t+ t1). (9.16)

Here, the first argument in ρ(t, t) refers to the implicit time dependence via the parameters Fm(t),
while the second argument refers to the time dependence via the Heisenberg representation. The
desired statistical operator is given by

ρε = ρε(t, 0) = ρq(t, 0) = ε

∫ 0

−∞

dt1e
εt1ρq(t+ t1, t1). (9.17)

Hence, the nonequilibrium statistical operator is given by

ρ = Q−1 exp

(

−
∑

m

Bm

)

= Q−1 exp

(

−
∑

m

ε

∫ 0

−∞

dt1e
εt1 (Fm(t+ t1)Pm(t1))

)

= (9.18)

Q−1 exp

(

−
∑

m

Fm(t)Pm +
∑

m

∫ 0

−∞

dt1e
εt1 [Ḟm(t+ t1)Pm(t1) + Fm(t+ t1)Ṗm(t1)]

)

.

One can rewrite Eq. (9.14) in the following form

d

dt

(
eεt ln ρ(t, t)

)
= εeεt ln ρq(t, t), (9.19)

where

ln ρ(t, t) = U †(t, 0) ln ρ(t, 0)U(t, 0); U(t, 0) = exp

(
iHt

~

)

. (9.20)

Integrating Eq. (9.19) over the interval (−∞, 0) we obtain

ln ρ(t, t) = ε

∫ 0

−∞

dt1e
εt1 ln ρq(t+ t1, t+ t1). (9.21)

It is assumed that limε→0+ ln ρ(t, t) = 0. Therefore,

ρ(t, 0) = exp

(

−ε
∫ 0

−∞

dt1e
εt1 ln ρq(t+ t1, t1)

)

= exp (ln ρq(t, 0)) ≡ exp (−S(t, 0)). (9.22)

The average value of any dynamic variable A is now given by

〈A〉 = lim
ε→0+

Tr(ρ(t, 0)A). (9.23)

We see that the above average is in fact nothing else but a quasiaverage. The normalization of
the quasi-equilibrium distribution ρq is preserved if

Tr(ρ(t, 0)Pm) = 〈Pm〉 = 〈Pm〉q; Trρ = 1. (9.24)

Thus, one can assert that the origin of the irreversibility effect is closely related to the viola-
tion of the time-reversal symmetry,351 as well as to the notion of quasiaverages from statistical
mechanics.38, 347, 348
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9.1 Generalized Kinetic Equations

The NESO method38 found wide applications in various problems of statistical mechanics. An
important contribution to the development of the kinetic equations’ theory in the framework of
NESO method was made by L.A. Pokrovskii.352–354 Generalized kinetic and transport equations
describing the time evolution of the variables 〈Pm〉 and Fm(t) are obtained by averaging the
equation of motion for Pm over the derived NESO

〈Pm〉 = − δΩ

δFm(t)
; Fm(t) =

δS

δ〈Pm〉 . (9.25)

The generalized transport equations are given by

〈Ṗm〉 = −
∑

n

δ2Ω

δFm(t)δFn(t)
Ḟn(t); Ḟm(t) =

∑

n

δ2S

δ〈Pm〉δ〈Pn〉
〈Ṗn〉. (9.26)

The corresponding entropy production can be written down in the following form

Ṡ(t) = 〈Ṡ(t, 0)〉 = −
∑

m

〈Ṗm〉Fm(t) = −
∑

n,m

δ2Ω

δFm(t)δFn(t)
Ḟn(t)Fm(t). (9.27)

The two equations in (9.26) are mutually conjugate, and together with Eq. (9.27) they form a
complete system of equations for calculation of the quantities 〈Pm〉 and Fm.
Now, following the paper,354 we are going to write down kinetic equations for a system with weak
interaction. The corresponding Hamiltonian is given by

H = H0 + V. (9.28)

Here, H0 is the Hamiltonian of noninteracting particles (or quasiparticles) and V is the interaction

operator. As the set of relevant operators we choose the operators Pm = Pk of the form a†kak or

a†kak+q. Here, a
†
k and ak are the usual creation and the annihilation operators (either Fermi or

Bose). We begin with the following equations of motion:

Ṗk =
1

i~
[Pk,H]. (9.29)

It is usually assumed that

[Pk,H0] =
∑

l

cklPl, (9.30)

where ckl are some coefficients (c-numbers).
According to Eq. (9.18) we have

ρ = Q−1 exp

(

−
∑

k

Fk(t)Pk +
∑

k

∫ 0

−∞

dt1e
εt1 [Ḟk(t+ t1)Pk(t1) + Fk(t+ t1)Ṗk(t1)]

)

. (9.31)

Keeping in mind that 〈Pk〉 = 〈Pk〉q, we can write down the generalized kinetic equations354 for
〈Pk〉 as follows

d〈Pk〉
dt

=
1

i~
〈[Pk,H]〉 = 1

i~

∑

l

ckl〈Pl〉+
1

i~
〈[Pk, V ]〉. (9.32)

The right hand side of Eq. (9.32) contains the generalized collision integral, which, using an
expansion in powers of V , can be written as follows

d〈Pk〉
dt

= L0
k + L1

k + L21
k + L22

k , (9.33)
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where

L0
k =

1

i~

∑

l

ckl〈Pl〉q, (9.34)

L1
k =

1

i~
〈[Pk, V ]〉q, (9.35)

L21
k =

1

~2

∫ 0

−∞

dt1e
εt1〈[V (t1), [Pk, V ]]〉q, (9.36)

L22
k =

1

~2

∫ 0

−∞

dt1e
εt1〈[V (t1), i~

∑

l

Pl
∂L1

k(. . . 〈Pl〉 . . .)
∂〈Pl〉

]〉q. (9.37)

Analogously one can find the higher-order terms V 3, V 4 and so on.

9.2 Generalized Kinetic Equations for a System in a Thermal Bath

The papers355–357 (see also7) generalize the equations in (9.32) for the case of a system interacting
with a thermal bath. The concept of a thermal bath or heat reservoir is fairly complicated and
has certain specific features.358 According to the standard definition, a thermal bath is a system
with, effectively, an infinite number of degrees of freedom. A thermal bath is a heat reservoir
maintaining the investigated system under a particular temperature. Following Bogoliubov,359 we
will assume that a thermal bath is a source of stochasticity for a small subsystem (which in an
extreme situation can be just a single particle). Such a small subsystem can be, for example, an
atomic or a molecular system interacting with an electromagnetic field, or a system of nuclear or
electron spins interacting with the crystal lattice, etc. We will describe the entire system by the
Hamiltonian

H = H1 +H2 + V, (9.38)

where
H1 =

∑

α

Eαa
†
αaα; V =

∑

α,β

Φαβa
†
αaβ, Φαβ = Φ†

βα. (9.39)

Here, H1 is the Hamiltonian of the small subsystem; a†α, aα are the creation and annihilation
operators of quasiparticles with the energies Eα in the small subsystem; V is the operator describ-
ing the interaction between the small subsystem and the thermal bath; and H2 is the thermal
bath’s Hamiltonian, which we do not write down explicitly. The quantities Φαβ are operators
acting on the thermal bath’s degrees of freedom. We assume that the state of the system can
be characterized by a set of operators 〈Pαβ〉 = 〈a†αaβ〉, and the state of the thermal bath by the
operator 〈H2〉. Here, 〈. . .〉 denotes the averaging with respect to the NESO, which is defined as
follows:

ρq(t) = exp(−S(t, 0)), S(t, 0) = Ω(t) +
∑

αβ

PαβFαβ(t) + βH2, (9.40)

Ω = lnTr exp(−
∑

αβ

PαβFαβ(t)− βH2).

Here, Fαβ(t) are the thermodynamic parameters conjugate to Pαβ , β is the inverse temperature of
the thermal bath. All operators are considered in the Heisenberg representation. We write down
the nonequilibrium statistical operator as follows

ρ(t) = exp(−S(t, 0)), (9.41)

S(t, 0) = ε

∫ 0

−∞

dt1e
εt1



Ω(t+ t1) +
∑

αβ

PαβFαβ(t) + βH2



 .

53



The parameters Fαβ(t) are determined by the condition 〈Pαβ〉 = 〈Pαβ〉q. To derive the kinetic
equations we will use an expansion over the small parameter in the interaction V . It is also
assumed that the equation 〈Φαβ〉q = 0. holds. It is convenient to rewrite ρq as follows

ρq = ρ1ρ2 = Q−1
q exp(−L0(t)), (9.42)

where

ρ1 = Q−1
1 exp



−
∑

αβ

PαβFαβ(t)



 ; Q1 = Tr exp



−
∑

αβ

PαβFαβ(t)



 , (9.43)

ρ2 = Q−1
2 e−βH2 ; Q2 = Tr exp(−βH2), (9.44)

Qq = Q1Q2; L0 =
∑

αβ

PαβFαβ(t) + βH2. (9.45)

We begin from the following relationship:

d〈Pαβ〉
dt

=
1

i~
〈[Pαβ ,H]〉 = 1

i~
(Eβ −Eα)〈Pαβ〉+

1

i~
〈[Pαβ , V ]〉. (9.46)

We terminate the expansions at the second order terms in V . The kinetic equations for the
quantities 〈Pαβ〉 of a system in a thermal bath are given by

d〈Pαβ〉
dt

=
1

i~
(Eβ − Eα)〈Pαβ〉 −

1

~2

∫ 0

−∞

dt1e
εt1〈[[Pαβ , V ], V (t1)]〉q. (9.47)

These equations generalize the results of the paper354 for a system in a thermal bath. One can
show that the choice of the concrete model’s form for the Hamiltonian (9.38) is not essential. For
arbitrary H1 and V , and for some set of variables 〈Pk〉 satisfying the condition [H1, Pk] =

∑

l cklPl,
one can construct a quasi-equilibrium statistical operator ρq in the following form

ρq = Q−1
q exp

(

−
∑

k

PkFk(t)− βH2

)

. (9.48)

Here, Fk(t) are the parameters conjugate to 〈Pk〉. The kinetic equations for 〈Pk〉 are given by

d〈Pk〉
dt

=
i

~

∑

l

ckl〈Pl〉 −
1

~2

∫ 0

−∞

dt1e
εt1〈[[Pk, V ], V (t1)]〉q. (9.49)

9.3 A Schrödinger-Type Equation for a Dynamic System in a Thermal Bath

Following the papers,7, 355–357 we consider now the behavior of a small dynamical subsystem with
a Hamiltonian H1, which interacts with a thermal bath described by the Hamiltonian H2. As
the operators characterizing the state of the small subsystem we choose the operators a†α, aα, and
nα = a†αaα. In this case the quasi-equilibrium statistical operator ρq is given by

ρq = exp

(

Ω−
∑

α

(fα(t)aα + f †α(t)a
†
α + Fα(t)nα)− βH2

)

≡ exp(−S(t, 0)), (9.50)

Ω = lnTr exp

(

−
∑

α

(fα(t)aα + f †α(t)a
†
α + Fα(t)nα)− βH2

)

.
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Here, fα, f
†
α and Fα, play the role of Lagrange multipliers. They are the parameters conjugate to

〈aα〉q, 〈a†α〉q and 〈nα〉q:

〈aα〉q = − δΩ

δfα(t)
, 〈nα〉q = − δΩ

δFα(t)
,

δS

δ〈aα〉q
= fα(t),

δS

δ〈nα〉q
= Fα(t). (9.51)

The quantities aα, a
†
α in the statistical operator can be interpreted as sources of quantum noise

(those terms break the spin conservation law in the case of fermions; see the papers7, 357). Let us
write down the quasi-equilibrium statistical operator as follows

ρq = ρ1ρ2, (9.52)

where

ρ1 = exp

(

Ω1 −
∑

α

(fα(t)aα + f †α(t)a
†
α + Fα(t)nα)

)

(9.53)

Ω1 = lnTr exp

(

−
∑

α

(fα(t)aα + f †α(t)a
†
α + Fα(t)nα)

)

ρ2 = exp (Ω2 − βH2) , Ω2 = lnTr exp (−βH2) (9.54)

As a result we obtain the expression (9.41) for the NESO ρ. We assume that the following
conditions are satisfied:

〈aα〉q = 〈aα〉, 〈a†α〉q = 〈a†α〉, 〈nα〉q = 〈nα〉. (9.55)

We start from the equations of motion

i~
d〈aα〉
dt

= 〈[aα,H1]〉+ 〈[aα, V ]〉, (9.56)

i~
d〈nα〉
dt

= 〈[nα,H1]〉+ 〈[nα, V ]〉. (9.57)

In the second order in V we obtain

i~
d〈aα〉
dt

= Eα〈aα〉+
1

i~

∫ 0

−∞

dt1e
εt1〈[[aα, V ], V (t1)]〉q, (9.58)

i~
d〈nα〉
dt

=
1

i~

∫ 0

−∞

dt1e
εt1〈[[nα, V ], V (t1)]〉q. (9.59)

Here, V (t1) denotes the operator V in the interaction representation. The expansion yields

i~
d〈aα〉
dt

= Eα〈aα〉+

1

i~

∫ 0

−∞

dt1e
εt1




∑

βµν

〈Φαβφµν(t1)〉q〈aβa†µaν〉q − 〈φµν(t1)Φαβ〉q〈a†µaνaβ〉q



 , (9.60)

where φµν(t1) = Φµν(t1) exp(
i
~
(Eµ − Eν)t1), or, equivalently

i~
d〈aα〉
dt

= Eα〈aα〉+
1

i~

∑

βµ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉q〈aβ〉+ (9.61)

1

i~

∑

βµν

∫ 0

−∞

dt1e
εt1〈[Φαν , φµν(t1)]〉q〈a†µaνaβ〉q.
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Therefore, we obtain

i~
d〈aα〉
dt

= Eα〈aα〉+
1

i~

∑

βµ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉q〈aβ〉. (9.62)

Using the spectral representations for the correlation functions we can write down

i~
d〈aα〉
dt

= Eα〈aα〉+
∑

β

Kαβ〈aβ〉, (9.63)

where Kαβ are defined as follows:

1

i~

∑

µ

∫ 0

−∞

dt1e
εt1〈Φβµφµν(t1)〉q = (9.64)

1

2π

∑

µ

∫ +∞

−∞

dω
Jµν,βµ(ω)

~ω − Eµ − Eν + iε
= Kβν .

Thus, we have obtained a Schrödinger-type equation for the mean amplitudes 〈aα〉. In a certain
sense this equation is an analogue (or a generalization) of the Schrödinger equation for the case
of a particle moving in a medium. Let us consider this analogy in a more detail. First, we write
down the analogue of the wave function in the following form

ψ(~r) =
∑

α

χα(~r)〈aα〉. (9.65)

Here, {χα(~r)} is a complete orthonormal set of single-particle eigenfunctions of the operator
(

− ~
2

2m∇2 + v(~r)
)

, where v(~r) is the potential energy,

(

− ~
2

2m
∇2 + v(~r)

)

χα(~r) = Eαχα(~r). (9.66)

Thus, the quantity ψ(~r) plays the role of a wave function describing a particle moving in a medium.
Equation (9.63) can be rewritten in the following form

i~
∂ψ(~r)

∂t
=

(

− ~
2

2m
∇2 + v(~r)

)

ψ(~r) +

∫

K(~r, ~r′)ψ(~r′)d~r′. (9.67)

The kernel K(~r, ~r′) of the integral equation (9.67) is given by

K(~r, ~r′) =
∑

αβ

Kαβχα(~r)χ
†
β(
~r′) =

1

i~

∑

α,β,µ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉qχα(~r)χ

†
β(
~r′). (9.68)

We see that Eq. (9.67) can indeed be classified as a Schrödinger-type equation for a dynamical
system in a thermal bath. It is interesting to note that very similar equations of the Schrödinger-
type with a nonlocal interaction were used in the collision theory360 for description of particle
scattering on a cluster of many scattering centers.
In order to make clear some special features of Eq. (9.67) let us consider the translation operator
exp(i~q~p/~), ~q = ~r′−~r, where ~p = −i~∇r, Then, Eq. (9.67) can be rewritten in the following form

i~
∂ψ(~r)

∂t
=

(

− ~
2

2m
∇2 + v(~r)

)

ψ(~r) +
∑

p

D(~r, ~p)ψ(~r), (9.69)
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where

D(~r, ~p) =

∫

d3qK(~r,~r + ~q)e
i~q~p
~ . (9.70)

It is reasonable to assume that the wave function ψ(~r) does not change very rapidly over distances
comparable to the characteristic correlation length of the kernel K(~r, ~r′). Then, using the series
expansion for exp(i~q~p/~) in Eq. (9.69) we obtain in the zeroth order

i~
∂ψ(~r)

∂t
=

(

− ~
2

2m
∇2 + v(~r) + ReU(~r)

)

ψ(~r) + iImU(~r)ψ(~r), (9.71)

where

U(~r) = ReU(~r) + iImU(~r) =

∫

d3qK(~r,~r + ~q). (9.72)

Equation (9.71) has the exact functional form of a Schrödinger equation with a complex potential
well known in the collision theory.360 Note that the introduction of the quantity ψ(~r) does not
mean that the state of the small dynamical subsystem becomes pure. The state remains mixed
because it is described by a statistical operator. The dynamics of the system is described by a
system of coupled evolution equations for the quantities fα, f

†
α and Fα. Note, that there were many

attempts to derive a Schrödinger-type equation for a particle in a medium.361–363 Korringa361 tried
to obtain such an equation in the form of an evolution equation with a non-hermitian Hamiltonian.
However, his equation (cf. Eq. (29) from361)

i
∂W ′

∂t
=

(

H ′(t) + h′(t)) +
i

2θ

dh′

dt
+ . . .

)

W ′(t), (9.73)

whereW ′(t) is a statistical density matrix describing the original system, is rather a modified Bloch
equation. An attempt to derive a Schroedinger-type equation for a Brownian particle interacting
with a thermal environment was made in the paper.362 The evolution equation obtained there is
given by

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V ψ + VRψ + [

~f

2im
ln(

ψ

ψ∗
) +W (t)]ψ(~r, t), (9.74)

where

W (t) = −(
~f

2im
)

∫

ψ∗ ln(
ψ

ψ∗
)ψdr. (9.75)

Here, f is the friction coefficient, VR is a random potential, and VR(~r, t) = −~r ~FR(t), where ~FR(t) is
a random vector-function of time. Excluding the functionW (t) with the help of the transformation

ψ(~r, t) = exp[iθ(t)]φ(~r, t), (9.76)

where

θ(t) = −~
−1 exp(− tf

m
)

∫ t

0t
exp(

sf

m
)W (s)ds,

one obtains the equation for φ(~r, t) in the following form

i~
∂φ

∂t
= − ~

2

2m
∇2φ(~r, t) + V (~r)φ(~r, t) + VR(~r, t)φ(~r, t) + (9.77)

~f

2im
φ(~r, t) ln[

φ(~r, t)

φ∗(~r, t)
].

It is clear that the dynamic behavior of a particle in a dissipative environment is most accurately
described by a Schrödinger-type equation with damping, see Eq.(9.67) above. This is actually
the reason for applications of this equation in numerous problems of physics, physical chemistry,
biophysics, and other areas.364–372 A more detailed discussion of various aspects of dissipative
behavior and of stochastic process in complex systems is given in the reviews.7, 373–376

57



10 Conclusion

In the present paper we have shown the determining role played by correlation effects in system-
atic microscopic descriptions of magnetic, electrical, and superconducting properties of complex
substances. We have stressed that the approximation of tight-binding electrons and the method
of model Hamiltonians are very effective tools for description of these substances. In many cases
the methods of quantum statistical mechanics, many of which were formulated and developed by
N.N. Bogoliubov, allow one to develop efficient approaches for solution of complicated problems
from microscopic theory of correlation effects, especially in the case of strong electron correlations.
The method of two-time temperature Green’s functions allows one to efficiently investigate the
quasiparticle dynamics generated by the main model Hamiltonians from the quantum solid state
theory and the quantum theory of magnetism. The method of quasiaverages allows one to take
a deeper look at the problems of spontaneous symmetry breaking, as well as at the problems
of symmetry and dissymmetry in the physics of condensed matter. Further development of the
theory describing many-particle effects and investigations of more realistic models will allow one
to gain more precise ideas on the effective interactions in the systems, which determine various
phenomena, the main features of electron states, and therefore, the physical properties of real
substances. The methods developed by N.N. Bogoliubov are and will remain the important core
of a theoretician’s toolbox, and of the ideological basis behind this development.
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