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2006 values from NIST.  For more physical constants, see http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum  c ≡ 299 792 458 m s–1  (exact) 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 = 8.61734 x 10–5 eV/K 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  

 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol–1 K–1 = 0.0820575 L-atm/(mol-K) 

calorie    4.184 J (exact) 

Electron mass   me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio  mp/me = 1836.152 672 47(80) 

Atomic mass unit (amu)  1.660 538 86  10–27 kg 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor   ge = –2.002 319 304 3622(15) 

Proton g-factor   gp = 5.585 694 713(46) 

Neutron g-factor   gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant  α–1 = 137.035 999 679(94) 

Planck constant   h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π  ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton   μB = 927.400 915(23) x 10–26 J T–1 

 

Other values and conversions: 

1 eV/particle = 96.485 kJ/mole ≈ 100 kJ/mole 

kiloton (of TNT) ≡ 4.184 x 1012 J = 1 Teracalorie 

bar ≡ 100,000 N/m2 

atm ≡ 101,325 N/m2 = 1.013 25 bar 

torr ≡ 1/760 atm ≈ 133.322 N/m2  

Typical chemical bond energy:  1-10 eV 

http://physics.nist.gov/cuu/Constants/
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1 Introduction 

Why Funky? 

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that don’t seem to 

be covered well in most texts.  The Funky series attempts to clarify those neglected concepts, and others 

that seem likely to be challenging and unexpected (funky?).  The Funky documents are intended for serious 

students of physics; they are not “popularizations” or oversimplifications.  

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  Go to 

http://physics.ucsd.edu/~emichels for the latest versions of the Funky Series, and for contact information.  

We’re looking for feedback, so please let us know what you think. 

How to Use This Document 

 This work is not a text book. 

There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used 

with a standard text, to help emphasize those things that are most confusing for new students.  When 

standard presentations don’t make sense, come here.   

You should read all of this introduction to familiarize yourself with the notation and contents.  After 

that, this work is meant to be read in the order that most suits you.  Each section stands largely alone, 

though the sections are ordered logically.  Simpler material generally appears before more advanced topics.  

You may read it from beginning to end, or skip around to whatever topic is most interesting.  The “Shorts” 

chapter is a diverse set of very short topics, meant for quick reading. 

If you don’t understand something, read it again once, then keep reading.   

Don’t get stuck on one thing.  Often, the following discussion will clarify things. 

The index is not yet developed, so go to the web page on the front cover, and text-search in this 

document. 

What’s wrong with existing SM expositions? 

In an effort to relate to something familiar, many of SM texts jump headlong into complicated 

thermodynamics before sufficient groundwork has been laid.  This leads to lots of logarithms and partial 

differential equations which obscure the underlying simplicity of SM.  They frequently use the same words 

for different things (e.g. “density of states”) and expect you to instantly understand the distinctions.  Also, 

as in almost all subjects, there are usually just too few simple examples early on to nail down the basics.  

Finally, there seems to be some kind of exclusion principle disallowing any two books from using the same 

notation; there’s not much we can do about that, except use the clearest, and then most common, notation 

we can find. 

Also, many expositions expect you to fully understand thermodynamics, and resort to thermodynamic 

definitions to “derive” mathematical relationships.  But that is circular: thermodynamics is empirical; SM is 

supposed to derive thermodynamics from basic physics.  Therefore, in this work, we never resort to 

empirical thermodynamic relationships, and derive everything from the fundamentals of SM. 

Finally, most works discuss only two specific instances of free energy, rather than the general concept.  

Here, we described what free energy is, so that you understand there are a potenitally infinite variety of free 

energies (on for each variety of system), you can derive for yourself the appropriate free energy for any 

given system. 

http://elmichelsen.physics.ucsd.edu/
http://physics.ucsd.edu/~emichels
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Note that thermodynamics is backwards: thermodynamics usually starts with cycles and engines, 

which are non-equilibrium systems.  It is much easier to start with equilibrium systems, as in statistical 

mechanics.  Also, because thermodynamics was developed empirically, temperature is fundamental, and 

entropy is derived from it.  In SM, entropy is fundamental and temperature is derived from it.  The 

fundamental nature of entropy is why lots of theoretical work is done at constant entropy, instead of 

constant temperature.   

Therefore, temporarily put aside all your thermodynamics before learning SM.   

My Story 

The Funky series of notes is the result of my going to graduate school in physics after 20 years out of 

school.  Although I had been an engineer all that time, most of my work involved software and design 

architectures that are far removed from fundamental science and mathematics.  I expected to be a little 

rusty, but I found that the rust ran deeper than I realized.   

There are many things I wish I had understood better while taking my classes (first at San Diego State 

University, then getting my PhD at University of California, San Diego).  The Funky series is my attempt 

to help other students acquire a deeper understanding of physics.    

Thank You 

Thanks to Daniel Arovas for many helpful discussions (arguments).  I owe a big thank you to many 

professors at both SDSU and UCSD, for their generosity, even when I wasn’t a real student:  Herbert 

Shore, Peter Salamon, Arlette Baljon, Andrew Cooksy, George Fuller, Tom O’Neil, Terry Hwa, and others. 

Scope 

What This Text Covers 

This text covers some of the unusual or challenging concepts in a one-quarter graduate course in 

Statistical Mechanics (SM).  It is also very suitable for undergraduate SM, as well.  We expect that you are 

taking or have taken such a SM course, and have a good text book.  Funky Statistical Mechanics Concepts 

supplements those other sources. 

What This Text Doesn’t Cover 

This text is not a SM course in itself, nor a review of such a course.  We do not cover all basic SM 

concepts; only those that are very important, unusual, or especially challenging (funky?).   

What You Already Know 

This text assumes you understand basic integral and differential calculus, partial differential equations,  

and have some familiarity with probability.  You must have a working knowledge of graduate kinematic 

physics: Hamiltonian mechanics, etc, and especially phase-space.  Further, it assumes you have a Statistical 

Mechanics text for the bulk of your studies, and are using Funky Statistical Mechanics Concepts to 

supplement it. 

Statistical Mechanics would simply fall apart without quantum mechanics [Hil p1], but surprisingly, 

the quantum statistics sections require only a basic understanding of some early quantum mechanics 

concepts, such as particle in a box, and Pauli exclusion for fermions [Hil p2].  For the most part, if you 

don’t understand the quantum mechanics, you can just take our word for a few simple rules, and run with 

them. 

Notation 

[Brackets indicate an aside, which may be interesting, but also may be omitted without loss of 

continuity.] 

http://elmichelsen.physics.ucsd.edu/
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Common misconceptions are sometimes written in dark red dashed-line boxes. 

We write the probability of an event as “Pr(event).”  We write the relative probability as 

“RelPr(event).” 

In thermodynamics, upper case variables usually refer to extensive quantities (with the notable 

historical exception of T); lower case variables usually refer to intensive quantities, which are often 

quantities per unit mass, per mole, per unit volume, or per particle. 

Quantity Extensive symbol Intensive symbol 

Temperature  T 

Pressure  p 

Entropy S s 

Energy E or U u 

Enthalpy H h 

Volume V v 

Mass M m (= M/N)  

ρ (= N/V  or  M/V) 

Number of particles N ρ (= N/V  or  M/V) 

Number of moles n  

Helmholtz free energy A or F  

Gibbs free energy G μ   (= G/N) 

MS-Word Bugs:  Word 2002 (10.3416.3501) SP-2 displays the pictures incorrectly on the screen (the 

arrows are grotesquely large), but prints them properly.  On the other hand, the integral signs display 

correctly on the screen, but print improperly.  Petition the Justice Department for the solution to this 

problem (only monopolies can get away with products so consistently bad). 

TBS stands for “To Be Supplied,” i.e., I’m working on it. 

?? For this work in progress, double question marks indicates areas that I hope to further expand in the 

final work.  Reviewers please comment on these areas, and others that may need more expansion. 

Keywords are listed in bold near their definitions.  All keywords also appear in the glossary. 

Formulas:  Evaluation between limits: we use the notation [function]a
b to denote the evaluation of the 

function between a and b, i.e.,  

[f(x)]a
b = f(b) –  f(a). For example,  ∫  01 3x2 dx = [x3]0

1 = 13 - 03 = 1. 

We write the probability of an event as “Pr(event).” 

Open and closed intervals: An open interval between c and d is written (c, d).  It means the range of 

numbers from c to d exclusive of c and d.  A closed interval between c and d is written [c, d].  It means the 

range of numbers from c to d including c and d.  A half-open interval [c, d) has the expected meaning of c 

to d including c but not d, and (c, d] means c to d excluding c but including d. 

Vector variables:  In some cases, to emphasize that a variable is a vector, it is written in bold; e.g., 

V(r) is a scalar function of the vector, r.  E(r) is a vector function of the vector, r. 

In my word processor, I can’t easily make fractions for derivatives, so I sometimes use the notation 

d/dx and ∂/∂x. 

I’ve never understood the bother about distinguishing between d/dx and ∂/∂x.  When the function 

arguments are independent, both forms of derivative are obviously the same thing; I don’t know why 

there’s even two ways to write it.  Nonetheless, only as a matter of convention, I use d/dx when a function 

http://elmichelsen.physics.ucsd.edu/
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is clearly a total derivative, and ∂/∂x when it is clearly a partial derivative.  However, in some cases, it’s not 

clear what arguments a function has, and it’s not important.  In that case, I tend to use ∂/∂x for generality, 

but don’t worry about it. 

And for the record, derivatives are fractions, despite what you might have been told in calculus.  They 

are a special case of fraction: the limiting case of differentially small changes.  But they are still fractions, 

with all the rights and privileges thereof.  Everyone treats them like fractions, multiplies and divides them 

like fractions, etc., because they are fractions.  This is especially relevant to Statistical Mechanics. 

http://elmichelsen.physics.ucsd.edu/
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2 Basic Concepts 

Meet Mr. Mole 

We’ve all heard a lot about Mr. Gaseous Mole, and how “ideal” he is.  But what do we really know 

about him?  How big is he?  How much does he weigh?  How stable is he?  How does he respond to 

pressure?  Is he dense, or an airhead?  How energetic is he?  What about his turbulent past?  Here we 

examine the legend, molecule by molecule, to see how he stacks up to common sense.  In the process, we 

gain a familiarity with the magnitudes of gaseous physical properties.  We express several of the 

macroscopic results in imperial units, for those civilizations not yet advanced to the metric system. 

We use simple formulas for ideal gasses to compute a whole bunch of physical properties, starting with 

fairly precise measures, and proceeding to more obscure, and approximate, numbers.  All you need to know 

is the ideal gas law, and some physical constants: 

231mole 6.022  10 moleculespV nRT where n= = =  . 

NB: “≈” means “approximately equals”, and “~” means “is of the order of”. 

Imagine the archetypal mole of ideal gas, in a box, sitting on your desk.  How big is it?  First, we 

express R in units of L-atm/K, which is a form of energy per unit temperature, and also a form of size, 

pressure, and temperature: 

3

3 1/3

J 1atm 1000 L-atm
8.314 .0821 24.6 L at 300 K for 1 mole

K 101,325 Pa Km

1 mole 24.6 L .0246 m . Cubic box edge 0.291 m

L
R

V

  
= = →    

  

→  = = =

 

Note that scientific (IUPAC) STP is freezing: 0 C = 273 K.  We’re more comfortable at room 

temperature, so we use 300 K, though on the absolute temperature scale, there isn’t much difference.  The 

box is a cube a little less than 1 foot on a side, about the size of a portable microwave oven, or a small dog. 

How much does it weigh?  Let’s say Mr. Mole is nitrogen, N2, since that is pretty close to air: 

2 2atomic-weight( ) 28 amu 1 28 g 0.028 kgN mole N weighs=  = . 

This is about an ounce avoirdupois. 

Density: 
3 3

3

28 g
.0011g/cm 1.1kg/m

24,600 cm

m

V


 
= = = =

 
. 

What is the specific volume, i.e. volume per particle, and approximate particle spacing? 

3
26 3 1/3 9

23

.0246
4.1 10 m particle spacing ~ 3.4 10 m or 3.4 nm

6.02 10

V m
v v

N

− − = =     = 


. 

That’s pretty tight!  Note that a nitrogen atom is ~0.1 nm across, a N2 molecule ~0.2 nm, so the 

molecular spacing is only about 15 - 30 the molecular size.  The molecular volume is about: 

( ) ( )
2

10 10 30 3
2( ) ~ 1 10 2 10 2 10 mVolume N − − −  =  . 

The specific volume is about 20,000 the molecular volume, which means that at pressures of ~200 

atm, the molecular volume is about 1% of the ideal gas specific volume, so the gas starts to become 

noticeably non-ideal from finite volume.  (In reality, inter-molecular forces make it non-ideal at much 

lower pressures.) 

How much energy does it have?  At room temperature, the rotational modes are excited, so: 

http://elmichelsen.physics.ucsd.edu/
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( )
5 5

8.314 / 300 6,236 J
2 2

E nRT J K K= = = . 

Mr. Mole is no couch potato.  He has the energy of a 100 W light bulb burning for a minute.  If you’ve 

ever touched a lit 100 W light bulb (which I don’t recommend), you can imagine what doing it for a minute 

means in terms of energy.  The kinetic energy per particle (molecule) is: 

( )23 20

19

5 5 1
1.38 10 J/K 300 1.04 10 J .0647 eV

2 2 1.60 10

E eV
kT K

N J

− −

−
= =  =  =


. 

Compared to typical chemical bond energies of ~1.5 eV, Mr. Mole is a pretty stable guy. 

??Express in kJ/mol. 

What is the molecular RMS (root mean square) speed?  The molecular mass of N2 is 28, so: 

21
2

27

1 2 2 6.21 10
515 m/s

2 28 1.67 10
rms rms

E J
E mv v

m kg

−

−

 
=  = = =

 
. 

Roughly, what is the mean free path?  How far can a molecule go, on average, before it sweeps out a 

volume equal to that containing one particle (on average)?  We approximate the cross sectional area as if 

the particle were a cube: 

2/3 20 2

26 3
6 6

20 2

~ 1.6 10 m ~

4.1 10 m
~ 2.6 10 m ~ 3 10 m 3 m

1.6 10 m

A v A mfp v

v
mfp or

A


−

−
− −

−

=   


= =    



 

Roughly, the mean time to collision?  This is just the mean free path divide by the RMS speed: 

6
92.6 10

~ ~ ~ 5 10 s 5 ns
515 /rms

mfp m
mttc or

v m s

−
−

 . 

Our insightful investigation has gleaned the following personal information about the mysterious Mr. 

Mole: 

Property Value 

size 24.6 L, or a box 29.1 cm (~1 foot) on a side 

weight 28g, or ~1 ounce avoirdupois 

density .0011 g/cm3 = 1.1 kg/m3 

specific volume 4.1  10–26 

particle spacing ~3.4 nm 

N2 molecule volume ~2  10–30 m3 

energy 6,236 J 

kinetic energy per molecule 

(including rotation) 

0.0647 eV 

RMS speed 515 m/s 

mean free path ~3 μm 

mean time to collision ~5 ns 

http://elmichelsen.physics.ucsd.edu/
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What Is Everything? 

You hear the phrase, “All the thermodynamics follows from ...”.  What is all the thermodynamics?  Is 

it only the equation of state, which relates externally visible parameters such as P, V, and T?  No, it’s more.  

Two counter examples:  

(1) a block of iron and a block of aluminum sitting on a table.  They both have the same equation of 

state (approximately):  

(block of metal)V const= . 

But they differ in their thermodynamics, because they have different heat capacities.  The equation of state 

tells us nothing about internal energy, which is related to heat capacity.  These quantities (internal energy 

and heat capacity), too, are part of the thermodynamics of the system. 

(2)  A more realistic example of the above: a monatomic ideal gas vs. a diatomic ideal gas.  They both 

have the same equation of state:  pV = nRT.  But they have different internal energies, and different heat 

capacities. 

The “thermodynamics” of a system includes the equation of state,  

and the heat capacity (as a function of the state). 

Other properties of a system that can be included are magnetization, and less commonly, polarization. 

The Fundamental Postulate of Statistical Mechanics 

Thermodynamics began as a study of systems, heat, and energy.  Every system has a macro-state, 

which comprises observable properties of the system, that could conceivably be measured in a lab.  The 

macro-state includes observables such as temperature, pressure, volume, magnetization, etc.  For 

thermodynamics, that’s all there is. 

Statistical Mechanics (SM) derives the laws of thermodynamics from (1) fundamental 

principles of physics (such as mechanics and magnetics), and (2) principles of statistics.   

Statistical Mechanics (SM) argues that hidden inside every system’s macro-state are billions of micro-

states which all appear identical from any realistic laboratory viewpoint.  For example, suppose we have a 

liter of gas at some known temperature, pressure, and volume.  These properties are related by the well-

known gas laws.  However, a liter of gas contains ~1020 molecules.  Suppose we speed up one of those 

molecules by adding a little energy to it, and at the same time slow down another molecule by removing the 

same amount of energy.  In the sense of micro-states, the modified system is different than the original.  

However, in the sense of macro-states, the difference is imperceptible, and the system is in the same state 

as the original.  Basic mechanics tells us that the extremely numerous molecules are constantly colliding 

and exchanging energy in unknowable ways.  A tiny perturbation in the energies of two particles is 

insignificant compared to natural energy exchange processes. 

A micro-state is a single state of a system, including the exact states of all of the system’s constituent 

particles.  Classically, a micro-state includes each particle’s position and momentum.  Quantum 

mechanically, a micro-state is an N-particle wave function that describes the state of every particle in the 

system.  In either case, a micro-state cannot be observed or determined in a laboratory.  However, a 

knowledge of micro-states from physical theories is essential to applying Statistical Mechanics to predict 

observable phenomena. 

Note that a system is always constrained in some way: an isolated system has fixed energy;  a system 

in a fixed container does no work;  the gas under a heavy piston is at fixed pressure;  a system in thermal 

contact with a heat bath is at fixed temperature.  Any micro-state of a system must satisfy that system’s 

macroscopic constraints.  [Knowledge of the macroscopic constraints often allows us to compute all the 

micro-states (or all those that matter), and then predict the macro-state of the system.] 

The fundamental postulate of Statistical Mechanics is that  

“All micro-states of an isolated system are equally likely.”  [Sch p57m] 
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Many people have a hard time with that, because we’ve been (wrongly) trained for so long that 

systems “seek” certain “preferred” states.  The sad truth is that systems don’t have “preferences,” and don’t 

“seek” anything.  Instead, “Probability Rules!”1  Systems fluctuate randomly, mindlessly, and are usually 

observed to be in the most likely macro-states (that’s really the definition of probability).  As we will see, 

having all micro-states equally likely does not mean that all macro-states are equally likely.  Far from it.  

Macro-states are summarizations of micro-states, and hence lose a lot of information.  This is what makes 

“most-likely” macro-states from equally-likely micro-states. 

As an example of a “most-likely” macro-state arising from equally likely micro-states, consider a roll 

of two standard dice.  All 36 permutations are equally likely, however the chance of rolling a sum of 7 is 

6X higher than the chance of rolling 2.  Tossing 100 coins is even sharper.  All 2100 possible outcomes are 

equally likely, but if we just count the number of heads, getting 50 heads is astronomically more likely than 

getting 1 head or 100 heads. 

We said systems are “usually” observed to be in the most likely macro-states; by “usually” we 

essentially mean “always.”  The probability of observing anything else is usually so fantastically small that 

it would be unlikely to happen in a billion billion lifetimes of the universe. 

A big part of SM is “Energy, energy, who’s got the energy?”  I.e., SM examines how energy is most 

likely to be distributed throughout the parts of a system. 

The Four Concepts of Statistical Mechanics 

In its simplest form, there are only 4 concepts in statistical mechanics.  They are critically important, 

and underlie all other results.  In order of dependence: 

• Conservation of energy (i.e., the first law).  Explicitly note where all the energy 

comes from, and where it all goes. 

• Equilibrium, temperature, and entropy.  These are all defined by the same 

model, so I consider them a single concept. 

• The Boltzmann distribution: the likelihood that a subsystem of any size or 

composition has a given energy. 

• Multiplicity defies energy (or, entropy attracts heat). 

Everything else is an application of these concepts.  We’ll talk about all of these.  Much of thermodynamics 

is an accounting of where all the (conserved) energy is. 

What Is ...? 

What is a System? 

A system is a thing or bunch of things which has, at any instant in time, a definite energy (though you 

might not know that energy).  A system must allow at least 2 different energies (e.g., spin-1/2 particles in a 

magnetic field).  Many systems have an infinite number of allowed energies.  Examples: 

1. A box of N atoms could be a system.   

2. Alternatively, we could consider each atom in the box a system (with excited states, or its kinetic 

energy, being the multiple energy levels).  (Then, a box of N atoms is an “ensemble” of 1-atom 

systems.) 

Choosing a microscopic thing as your system makes some important things very easy.  We will see, for 

example, that such a choice quickly shows that the Maxwell-Boltzmann distribution has essentially the 

same form as the Boltzmann distribution.  Similarly, the Fermi-Dirac and Bose-Einstein distributions are 

extremely simple with the right choice of “system.” 

 

1 Thanks to Laura Tucker for this insightful aphorism. 
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What is an Ensemble? 

An ensemble is a large (possibly hypothetical, possibly real) collection of “systems.”  Following the 

examples above:  

1. If our system is a box of atoms, we might consider a hypothetical collection of such boxes to be an 

imaginary ensemble.   

2. If each atom in the box is a system, then the box of N atoms is a real ensemble of such systems. 

What is a State? 

In general, a state is a condition of a system with a definite energy.  What we mean by “condition” 

depends on the details of the system, and whether we treat the system classically or quantum mechanically.  

As is often the case in Statistical Mechanics, the quantum version is both more accurate, and easier to 

understand [Hil p2], so we start with it. 

When our system is obviously quantum in nature, a “state” is an energy eigenstate of that system.  

Thus, for an atom or molecule, a state is a quantum energy eigenstate, i.e., with some definite energy.  For 

example, a molecule which behaves as a nearly harmonic oscillator has a large number of states, 

approximately equally spaced by ħω. 

Sometimes we use a semi-classical mechanics definition of an energy “state” of a gas of particles, but 

we still must use the energy density of states (as a function of momentum), derived from quantum 

mechanics.  In the case of a gas, a state is in reality also a quantum energy eigenstate, but the quantum 

nature of the gas is usually too small to measure.  Therefore, for a box of N particles: we sometimes say a 

state is a classical 6N dimensional phase-space state, i.e. a single point in the 6N dimensional phase space 

of (x, y, z, px, py, pz).  Such a state must be a quantum energy eigenstate, but for large energies, we 

approximate the possible states as continuous in position, momentum, and energy. 

What is an Energy Level? 

In contrast to a state, which has a definite energy, there are energy levels, which are the set of energies 

of the states.  “Energy levels” are also called allowed energies.  Note that there may be many (quantum) 

states of the same energy (called “degeneracy” in quantum mechanics);  therefore, there are often many 

more energy states than energy levels.  If we label each allowed energy as Ei, then we label the number of 

states with that energy gi (also called the multiplicity [Wan p84b] or “degeneracy” of the energy level Ei).  

This definition implies that many sums can be written two ways: in terms of energy states, or in terms of 

energy levels: 

# #

1 1

( ) ( )
states energy levels

s j j j j

s j

f E g f E where g multiplicity of energy E
= =

=   . 

We will see that having more states of the same energy matters a lot.   

What is Heat? 

Heat is random energy which can be transferred between different elements of the system.  

Commonly, heat is random kinetic energy of particles transferred by collisions.  However, thermal photons, 

which are emitted and absorbed, can also be heat.   

Bizarrely, even some respectable authorities sometimes say that “heat is infrared 

radiation.”  This is so wrong it’s hard to believe anyone says it. 

Thermally generated infrared radiation can be a form of heat, but heat comes in other forms, and in other 

wavelengths, as well.  IR is in no way what heat “is.” 
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The Thermodynamic Limit 

We frequently speak of the “thermodynamic limit.”  This refers to a system which is large enough and 

hot enough that its state variables can be taken as continuous.  Therefore, a reasonable definition of the 

“thermodynamic limit” is that the particle number N is large enough to be taken as continuous, and the 

energy is high enough that the energy density of states may be taken as continuous.  Therefore, we can do 

things like take derivatives with respect to N: 

dA

dN
  , 

and things like integrating the density of states, g(E): 

/( ) ( ) E kTZ T g E e dE−


  . 

That’s Intense-ive 

Each measurable property of a system is either “intensive” or “extensive.”  Crudely, “intensive” means 

the property does not scale with the system size (e.g., T), and “extensive” means it is proportional to system 

size (e.g., mass).  More precisely, consider a system, with measurable (macroscopic) parameters such as P, 

V, T, M (magnetization).  Now consider a subset of the system (a subsystem), which has the same set of 

measurable properties.  Those properties of the subsystem which are the same as the whole-system are 

intensive properties: e.g., P, T.  Those properties of the subsystem which are proportional to the subsystem 

size are extensive properties: e.g., Mass (M), V. 

I don’t know of any properties which are neither the same as the whole-system, nor proportional to the 

subsystem size, but if there are any, they would be neither intensive nor extensive. 

Don’t Be Dense 

In SM, the ambiguous phrase “density of states” is often tossed about with inadequate definition.  

Here, we try to clear up some of the confusion.  There are actually several kinds of “density of states,” and 

they are quite different: there are at least three kinds of energy-density of states, and a classical phase space 

(position-momentum space) density of states: 

• Energy density of states per particle, each particle is in exactly one such state. 

• Energy density of states for the system, each state possibly being occupied by a particle. 

• Energy density of states per unit volume for the system, each state possibly being occupied by a 

particle. 

• Phase-space density of states 

We now describe each in turn. 

Energy Density of States Per Particle 

Energy density of states can be the number of stationary quantum states (energy eigenstates) per unit 

energy, per particle.  For example, for a hypothetical “harmonic oscillator molecule,” the energy states are 

uniformly spaced at ħω, so the density of states for 1 particle is 

1
states per unit energy, per particleparticle


= . 

Energy density of states is usually a function of energy, so we write it ρ(E).  Example: For a hydrogen 

atom, we can find ρ(E) from knowledge of En, the quantized energy levels.  When n is large, the energy 

levels are very closely spaced, and we can approximate them as continuous: 
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( )

( )

2

2

1/ 2

3 / 2

, is the Rydberg constant 13.6 eV, and all 0

( ) , is now considered a continuous variable

( )

( )
2

n n

Ry
E where Ry E

n

Ry
E n where n

n

n E Ry E

Rydn
E E

dE


−

−

= − 

  −

= −

 = −

 

ρ(E) is sometimes written as g(E). 

A bad example:  For a quantum particle in a box (which some long, straight molecules approximate for 

their outer electrons), the energy of successive quantum states, labeled with quantum number n, increases 

as n2.  For small ground-state energy  and large n, we try to approximate the energies as a continuous 

function E(n); hence,  

1/ 2
2 1/ 2 1/ 21 1 1

( ) ( ) ( )
2 2

E dn
E n n n E E E E

dE E
 

   

− 
=  = =  = = = 

 
. 

The energy density of states decreases as E–1/2.  In this case, the continuum approximation fails 

because the energy states get farther apart with increasing energy.  The energy states do not approximate a 

continuum.  We don’t discuss such systems in this work. 

Energy Density of States For a System 

Following the example above, for a box with N “harmonic oscillator molecules” that don’t interact, the 

system energy density of states is: 

 states per unit energysystem

N



= . 

Energy density of states is usually a function of the energy of the system, so we write it ρ(E).  If n(E) is 

the number of states with energy E, we define: 

( ) ( )
d

E n E
dE

  . 

Density of states may, in general, depend on temperature.  For example, consider a gas at constant 

pressure.  Its volume varies with temperature.  The density of states per unit volume (see below) is 

constant, so the density of states for the system is proportional to volume, and hence a function of 

temperature. 

Energy Density of States Per Unit Volume For a System 

The energy density of states per unit volume for a system is a minor variant on the above energy 

density of states for a system.  This is typically used for a system which is arbitrary in size, and therefore 

could be made an arbitrary volume.  An example is the classical energy density of states for a gas, or the 

electron density of states near the top of a crystal valence band (or near the bottom of the conduction band).  

This density of states is determined by the nature of the system (gas of particles, or atomic structure of the 

crystal).  If the particles are non-interacting, the density of states is independent of the number of those 

states that are occupied by particles (to a good approximation).  Because this density of states is per unit 

volume, it is independent of the size of the system.   

For an ideal gas, the density of states per unit volume is not a function of temperature.  But for some 

systems, the density of states per unit volume may be a function of temperature.  For a crystal, it is typically 

a weak function of temperature (so its temperature dependence may often be ignored) [Wan p85t]. 
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Phase-Space Density of States 

In classical SM, you usually use phase-space density of states, which is often called just “density of 

states.”  We assume you are familiar with phase-space from classical mechanics. 

Phase space for a system of N particles in 3D is a 6N-dimensional space of the positions and  

momenta of all N particles:  (x1, y1, z1, px1, py1, pz1,   x2, y2, z2, px2, py2, pz2, ...   xN, yN, zN, pxN, pyN, pzN).  We 

save lots of writing by defining a point in phase space as: 

1 1 1 1 1 1 2 2 2 2 2 2( ,  ,  ,  ,  ,  ,    ,  ,  ,  ,  ,  ,  ...   ,  ,  ,  ,  ,  )x y z x y z N N N xN yN zNx y z p p p x y z p p p x y z p p p  . 

Analogous to the position vector in real space, r, you may think of Γ as a position vector in phase 

space (but it is not usually written in bold).  Just as real space has a differential volume element which may 

be written in a coordinate independent way as d3r, phase space has a differential hyper-volume element 

which we can write as 

6 3 3 3 3
1 1 1 1 1 1 1 1... ... ,

( , , ), ( , , )

N
x y z N N N xN yN zN N N

i i i i i xi yi zi

d d dx dy dz dp dp dp dx dy dz dp dp dp d d d d

where x y z p p p

   = =

= =

x p x p

x p
   

Each point in phase space specifies the positions and momenta (i.e., the classical or quantum “state”) 

of all N particles of a system, at some instant of time.  But quantum mechanics says that only some points 

in phase space are allowed energy eigenstates.  Each eigenstate can be represented as a point in phase 

space.  The set of all allowed states is a collection of points in phase space.  Then the phase space density 

of states is the number of quantum states per unit (hyper-)volume of phase space: 

( )( ) phase space density of states
dn

d
  


. 

Combining Systems 

How do phase space densities of states combine when we combine two subsystems?  For an N-particle 

system, the dimension of phase space (= 6N) depends on N (the number of particles), and therefore ρ(Γ), 

the N-particle phase-space density of states, must also depend on N.  If we combine two subsystems into a 

single system, each subsystem has its own phase-space density of states, and the combined system has a 3rd 

phase-space density of states.  The total number of particles is: 

1 2sN N N= + . 

The combination of all the dynamic variables of subsystem 1 and subsystem 2 are the dynamic 

variables of the combined system: 

1 26 6 6sN N N= + . 

We can find ρs(Γs) from ρ1(Γ1) and ρ2(Γ2).  First note that, from the definition of differential hyper-

volume above, the differential hyper-volume of the combined-system phase-space is the product of the 

differential hyper-volumes of the subsystem phase-spaces: 

1 2sd d d =   . 

For each volume element in the combined system, there are ρ1(Γ1)dΓ1 states in subsystem 1, and 

ρ2(Γ2)dΓ2 states in subsystem 2.  Every combination of these subsystem states is a state in the combined 

system.  Therefore, 

1 1 1 2 2 2 1 2

1 1 2 2

( ) ( ) ( ) ,

( ) ( ) ( )

s s s s

s s

d d d and d d d  

  

  =      =  

  =  
 

That is: 

When combining two systems, phase-space densities of states multiply. 
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A word about temperature dependence of density of states:  In many systems, the energy levels of 

the states, and therefore the density of states, are fairly insensitive to temperature (e.g., gasses, crystals).  In 

most problems, we treat the energies and densities of the system as fixed with temperature.  However, the 

distribution of systems among the states is highly temperature dependent. 

Aside:  Each point in phase space can specify the positions and momenta (i.e., the quantum “state”) of all N 

particles of a system, at some instant of time.  An ensemble of systems, each in a different state, can be 

represented as a collection of points in phase space, each point representing all the particles of a system in the 

ensemble.  This set of ensemble points is a subset of the allowed states, since each system of the ensemble must 

always be in an allowed state.  If you now forget quantum mechanics, and allow the systems to evolve classically 

in time, their phase-space points evolve continuously through phase space.  Hamilton’s equations show that the 

density of these points (points per unit volume of phase space), seen by an observer “moving” with the points, 

cannot change through time evolution (Liouville’s theorem) [Pat p33].  It is this flow of points (“phase space 

flow”) that is said to be “incompressible.” 

μ-Space Particle Density 

μ-space particle density is not a density of states, it’s a density of particles, but we describe it here for 

completeness.  (This μ has nothing to do with chemical potential.)  What is μ-space?  μ-space is the phase-

space for a single particle.  Imagine a gas of particles (in a container).  Each particle has a position (x, y, z) 

and momentum (px, py, pz).  For each particle, we could plot a point in this 6-D space representing its 

position and momentum.  For the gas, we would have N points in the 6-D space.  This 6-D space is called 

μ-space.  In any small region of space and momentum, i.e. small region of μ-space, (dx dy dz dpx dpy dpz) 

around a point (x, y, z, px, py, pz), we would find some number of particles.  The μ-space particle density is 

the number of particles per unit of μ-space “volume:” 

( )#
( , , , , , )

x y z

x y z

x y z

particles in the region dx dy dz dp dp dp
x y z p p p

dx dy dz dp dp dp
 = . 

Each point in μ-space represents the position and momentum of a single particle of the system.  The 

collection of N points in μ-space represents the positions and momenta of all particles of the system. 

The Maxwell-Boltzmann distribution of momenta for particles in a gas is a μ-space particle density, 

where (in the absence of an external potential) the density happens to be uniform over all x, y, z positions.  

(Therefore, we could also call it a momentum-space particle density, since it is only a function of (px, py, 

pz), and not a function of position.)  However, for a gas in a container, with significant gravity, the μ-space 

particle density would be a function of z, and of  (px, py, pz). 

Impartial Derivatives and the Constants of Nature 

We often write state functions as functions of 3 independent variables, e.g. entropy is S(N, V, T).  

However, we get to choose what our independent variables are.  Typically, for idealized isolated systems, 

we would specify one of E, T, or S to indicate how hot something is, and V for its volume (if fixed) or else 

p for its pressure, and N for number of particles.  So we could write: 

( , , ), ( , , ), ( , , )

( , , ), ( , , ), ( , , )

( , , ), ( , , ), ( , , )

A N V T E N V T and S N V T OR

A N V S E N V S and T N V S OR

A N V E T N V E and S N V E

 

The energy of a system is exactly defined only in an idealized system that is not in contact with 

another system.  For a system that is in thermal equilibrium with another, we can only specify the average 

energy, and still call it E.  But this is also true of other state variables: S, p, etc.  Many things can fluctuate 

in a system in thermal equilibrium with another system (some things, like particle number, may be fixed).  

Also, we will sometimes consider systems that are not in equilibrium, and consider how they change as 

they approach equilibrium, when in contact with a heat bath at fixed T.  In such cases, the energy, entropy, 

etc. of the system change during the approach to equilibrium.  Mathematically then, T is fixed, but one of E 

or S is still a non-equilibrium state parameter of the system, so we might have: 
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( , , ), ( , , )
non-equilibrium at fixed :

( , , ), ( , , )

A N V S and E N V S OR
T

A N V E and S N V E





 

When considering parameters of non-equilibrium systems, such as free energy, A, we sometimes call 

the non-equilibrium parameters “variational,” such as “variational free energy.”  This means it is a 

temporary, or hypothetical, value of free energy at a single instant when the system has not yet reached 

equilibrium. 

In SM, we often write partial derivatives with a qualifier specifying which variables to hold constant: 

V

V

E
C

T

 
  

 
. 

A common question is “Why do we have to specify which variables to hold constant when we take partial 

derivatives?  Doesn’t the definition of a partial derivative require holding all the other variables constant?” 

Good question.  The problem is that, as shown above, a given thermodynamic function can often be 

written several ways, with different independent variables.  If the thermodynamic function is given as a 

function of the derivative variable, and the variables to hold constant, then the qualified partial derivative is 

an ordinary partial derivative: 

( , )
If ( , ) then V

V

E E T V
E E T V C

T T

  
=  = 

  
. 

However: 

( , )
If ( , ) then V

V

E E T P
E E T P C

T T

  
=   

  
. 

In principle, we can write E as a function of either (T, V) or (T, P) because there is an equation of state 

which relates T, V, and P.  Therefore, we can always eliminate any one of (T, V, P) in favor of the other 

two. 

As a simple abstract example, we do problem 1.45 in [Sch p31], with clarified notation:   

2

Let ( , ) with an equation of state .

Then ( , ) /

2
Thus , but 2

So

y z

y z

w x y xy x yz

w x z x z

w w x
y y

x x z

w w

x x

= =

=

    
= = =   

    

    
   

    

 

Similarly, w(y, z) = y2z.  So: 

2 2 2 2 2

but 2 2

but .

x z

x y

w w
x yz x

y y

w w
x z y x z

z z

− −

    
= = =   

    

    
= − = = +     

    

 

Statistics Refresher 

Few topics in science are more counter-intuitive than statistics.  As should be obvious from the name 

“Statistical Mechanics,” it is essential to have a basic understanding of probability.  Surprisingly, though: 

For introductory Statistical Mechanics, it is not necessary to know advanced statistics.   
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We quickly outline here the basic concepts needed.  See Funky Mathematical Physics Concepts [FMPC] 

for more information on statistics. 

The probability, or absolute probability, of an event is a number in [0,1] (inclusive) that quantifies 

how likely an event is to occur.  Given a large sample of trials, the fraction of occurrences of the event 

approaches its absolute probability.  Zero means the event will never happen; one means the event happens 

with certainty.  We write the probability of an event as “Pr(event).”  If an experiment must produce one of 

N mutually exclusive results, each with probability Pr(result i), then: 

1

Pr( ) 1

N

i

result i

=

= , since it is certain that one of the results is produced. 

The relative probability of an event is a number that quantifies how likely an event is to occur, out of 

a pool of say, M trials.  Therefore, the relative probability of an event is proportional to its probability.  

Given M, absolute probability = (relative probability) / M.  Given a complete set of relative probabilities, 

that cover all possible outcomes of an experiment, we can find M, and therefore all the absolute 

probabilities: 

RelPr( )
RelPr( ), and Pr( )

all results

i

result i
M result i result i

M

 

= = . 

M (or sometimes 1/M) is called the normalization factor for the relative probabilities.  Even without M, 

you can compare the relative probabilities of two events, to determine the ratio of their absolute 

probabilities.   

The average of some random variable (or some probability distribution) is simply the limit of the 

average of M trials, as M → ∞.  The term expected value is often used for average, but it’s a terrible 

misnomer.  In many cases, the so-called “expected” value is very unlikely, or even impossible, to occur.  

For example, the “expected” value of a roll of a standard 6-sided die is 3.5, but you would never expect to 

actually roll a 3.5.  Therefore, we do not use the term “expected value” in this work. 

The Nature of Nature 

Early in our studies of physics, we learn (incorrectly) that systems seek a state of “minimum energy.”  

This is obviously wrong: if I put a glass of cold water on the table, it warms up, and its internal energy 

increases.  The truth is that systems stumble into a state of equilibrium.  “Exactly what macroscopic state is 

equilibrium?” is one of the questions answered by SM. 

Of course, systems don’t actually “seek” states with given properties.  Particles don’t have preferences, 

and nature doesn’t favor disorder or shun neatness.  Systems fluctuate essentially randomly between states.  

After a change in external constraints, these fluctuations wander aimlessly between the new sets of allowed 

micro-states of the system.   

The equilibrium macroscopic state is the most likely macro-state for the system.   

It has the largest probability-weighted sum of micro-states. 

More precisely, SM says that (given enough time) large systems are essentially certain to be found in an 

equilibrium state, with insignificant probability of deviation from that state.   

There’s really no physics in this; it’s just probabilities.  If you flip a coin 100 times, it’s almost certain 

to produce close to 50 heads, even though 100 tosses is a small number.  In SM, you may deal with systems 

of  >>1020 states.  If you flip a coin 1020 times, you will almost certainly get 50% heads, to nine decimal 

places. 

Introduction to Entropy 

Entropy is almost surely the most misunderstood concept in SM and thermodynamics.  We introduce it 

briefly here, to lay out the big picture of the road leading to a more rigorous definition.  Multiplicity is the 
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number of ways a given system can meet some given conditions (constraints).  Entropy is the logarithm of  

multiplicity: 

ln Boltzmann's constantS k where k   . 

We illustrate entropy with the common discussion of the “entropy of mixing” [ref??]. 

Let us compare two systems with two different sets of constraints; that is the only way to compare 

entropies.  In the first, a box is divided with gas A confined to one half, and gas B confined to the other.  

The system is isolated with (essentially) fixed total energy.  We do not specify any further details.  Since 

there are many discrete quantum states that satisfy these constraints, we can (in principle) count them.  That 

is the multiplicity of our first system with those conditions. 

The second system has the same total energy, and the same gas particles, but the divider is removed.  

Both gasses are free to occupy the entire box.  Again, we specify no further details.  The number of 

quantum states satisfying these conditions is more than the first system, therefore, it has higher entropy. 

Note: we cannot meaningfully discuss the entropy of a single, given microstate of particles.  By 

definition, there is only one such state (multiplicity = 1), and its entropy is therefore zero. 

We do not find the imagery of entropy as “chaos” or “disorder” useful.   

Multiplicity is what matters, and nothing else. 

Chaos and disorder are human aesthetic values, and therefore likely to mislead a scientist. 

Equilibrium, Temperature, and the One True Entropy 

[?? I know this can be simplified somehow, but jeepers, it’s hard to do.] 

The concepts in this section are crucial;  

not only do they define the fundamental concepts of temperature and entropy,  

but they underlie the Boltzmann distribution, which in turn underlies everything.  

This section is similar to section 1.2 of [Pat p11]. 

Overview 

We will show that entropy is a function of the macrostate of a system that defines the difference in 

heat the system has absorbed from the heat-bath, compared to some other macrostate (state 1) at the same 

temperature, through the equation (derived later): 

( )1 2 2 1Q T S S→ = − . 

This helps compute thermal equilibrium parameters.  Microscopically, entropy is essentially just a 

measure of multiplicity: the number of micro-states with a given macro-state.  Many definitions of entropy 

are possible, but I believe the following one is the most fundamental, and has the fewest approximations 

(only one: the energy continuum approximation).  The energy continuum approximation assumes 

quantized energy states, so we can count them, but also assumes that the quantum energy states are so close 

together that they compose a virtual continuum of energies (more later).  In practice, this is a very realistic 

approximation.  [We do not need the law of large numbers in this derivation.] 

For counting states, we define a quantity: 

( ) ( ) # of states in range around the energyE g E E E E   =  ,    where ΔE is very small. 

We will call  “density of states,” since it is proportional to g(E), with a constant factor of ΔE.  We 

will see that the exact value of ΔE has no bearing on the following derivations; therefore we don’t need to 

specify ΔE exactly; the only requirement is that it satisfy:  

quantum spacing << ΔE ~ dE << observable energy changes. 
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A B

BA

EA
EB

dE

ΩA(EA) ΩB(EB)

Total Energy E = EA + EB

Ωt(EA) = ΩA(EA)ΩB(E − EA)

 
Two systems brought into thermal contact.  

Consider a total system comprising two dissimilar subsystems, A and B, each with some internal 

energy, EA and EB.  The total system is isolated, so the total energy of the system, E, is fixed: 

A B B AE E E E E E= +  = − . 

There are no other constraints on the system, i.e., volume, pressure, etc. are arbitrary.  We bring the 

subsystems into contact such that they can freely exchange their internal energy.  We wish to find how the 

total energy divides between systems A and B in equilibrium, i.e. how much energy ends up in A, and how 

much in B.  Equilibrium between systems which can exchange their internal energy is called thermal 

equilibrium.  Along the way to equilibrium, we define both temperature and entropy. 

We proceed by providing detail to these steps: 

1. The total density of states t is the product of the subsystem densities of states: t = AB. 

2. The equilibrium density of states is the maximum total density of states, t . 

3. The maximum occurs when dt / dE is zero, and so that the fractional changes dA / A =  dB / 

B , which defines temperature. 

4. We recognize that d /  = d ln , which defines entropy. 

Details 

Each subsystem has its own energy density of states as a function of energy, here called A(E) and 

B(E).  [See “Don’t Be Dense” above.]  The graphs below illustrate typical functions for A(E) and B(E).  

Most density of states functions are strictly increasing with E [but see Negative Temperature in another 

section].  The 3rd graph is of t(EA).  In equilibrium, system A must have some energy between 0 and E, so 

 t(EA > E) = 0.   

EA

A(EA)

EA

t(EA)

Eequilibrium

total system 

energy

dt/dEA = 0

EB

B(EB)

B(E - EB)

 

Density of states vs. energy for systems A, B, and the combined system.  
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We know from the fundamental postulate of SM that the equilibrium macrostate is the one with the 

most microstates having total energy Etot.  We’ll compute the function t(EA), the density of microstates of 

the total system as a function of A’s energy, EA .  Then we find the maximum of  t(EA), and the value of 

EA at that maximum.  This will be the total system equilibrium macrostate.  We will see that the equilibrium 

state is such that a small transfer of energy from A to B causes the fractional decrease in subsystem A’s 

density of states to be equal to the fractional increase in subsystem B’s density of states. 

From the discussion of combining density of states, we have: 

( ) ( ) ( )t A A A B tot AE E E E =   − . 

That is, for any given amount of energy in A, EA, there are t(EA) microstates consistent with that  (within 

ΔE of EA), and t(EA) is the product of the number of states of A with EA times the number of states of B 

with the remaining energy.  At equilibrium, consider what happens if a small amount of energy, dE, moves 

from A to B.  For A, the energy change is – dE; for B, the energy change is +dE.  A and B change by: 

(1) 0, 0,A B
A B

d d
dE dE where all are functions of E

dE dE

 
 = −   =   . 

At the equilibrium point, the slope of t(EA) is zero, 

0 at equilibriumtd

dE


= . 

I.e., the total number of states is stationary (does not change) with small transfers of energy.   

Since t(EA) is the product of A(EA) and B(Etot – EA), the tiny fractional decrease in A 

must equal the tiny fractional increase in B, so that the product is constant. 

In other words, if ΩA decreases by 1%, then ΩB must increase by 1% for the product to remain constant: 

  ( ) ( ) , 0, 1A B A
A A B B A B A

A B A

  
− =   +   +  =     

  
. 

Since ΔΩA and ΔΩB are proportional to the energy transfer dE (see (1) above), we have: 

A B

A B

d d 
=

 
. 

We recognize these fractions as the derivative of the logarithms.  Therefore, in equilibrium, for any 

small energy transfer dE: 

ln ln ln lnA B A B

d d
d d

dE dE
 =    =  . 

Conveniently, the left hand side is a function of system A only, and the right hand side is a function of 

system B only.  Therefore, for each system in thermal equilibrium, there exists an equilibrium parameter, 

(d/dE) (ln ), which is the same for both systems. 

We might have called this parameter “temperature,” but historically, it is inverse temperature.  For 

traditional units, we also scale this parameter by a constant scale factor, and define temperature as a 

function of internal energy.  This definition applies to any system, so we drop the subscripts A and B: 

1

( ) ln ( ) , is Boltzmann's constant
d

T E k E where k
dE

−
 

  
 

. 

We will find that the quantity ln  appears frequently in statistical mechanics.  We therefore define it, 

when scaled by the same factor, k, as a system quantity, entropy: 
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1

( ) ln ( ) ( )
dS dE

S E k E T E
dE dS

−
 

    = 
 

. (2.1) 

From the above, we see that in traditional units, entropy has units of energy / temperature, or J / K.   

Entropy is a measure of the multiplicity of a macro-state, on a logarithmic scale. 

We see now that the equilibrium state was the one of maximum multiplicity, which is to say: 

The equilibrium macrostate of an isolated system is that of maximum entropy,  

or equivalently, maximum multiplicity. 

What Entropy Is Not 

We do not find the imagery of entropy as “chaos” or “disorder” useful.   

Multiplicity is what matters, and nothing else. 

The fallacy of “disorder” derives from the fact that usually there are many more states that appear 

(subjectively) “disordered” than ordered.  If a gust of wind blows across a pile of paper, the papers will 

land randomly around the room.  They are unlikely to land in a neat pile, because there are many more 

ways to land that look “disordered” to our sensibilities than ways that look “ordered.”  But the probability 

of the papers landing in a neat pile at a given place is the same as them landing in any single given 

“disordered” set of locations.  The incorrect association of entropy with disorder is more a statement of our 

feelings about neatness than a statement about physics, and it can be misleading.   

For example: if we are mixing the sugar with the flour to bake a cake, we dump the two in a bowl.  At 

first, the mixture looks “messy,” because the sugar and the flour are not well mixed.  We could define such 

a “not-well-mixed” system by some conditions requiring isolated local groups of sugar particles, and 

similarly for flour.  After we stir for a while, the sugar and flour are mixed very uniformly, and the mixture 

looks “neat” to us.  We could define a “well-mixed” system by requiring all local groups of particles to be 

smaller than some size.  The not-well-mixed system has lower entropy than the well-mixed system.  

However, to make a nice cake we want uniformity; therefore, our perception is that the state of higher 

entropy is “neater” or “more orderly.”  This is the opposite of the papers, where our perception of neatness 

is the state of lower entropy.  The physics hasn’t changed, only our aesthetics have. 

Equilibrium More Mathematically 

For another perspective, we now do the same thing more mathematically.  We find the equilibrium 

macrostate using basic calculus: we’re looking for the equilibrium point, where A decreases by the same 

factor that B increases, so the product is constant.  That is the point where the change in ln A is equal and 

opposite to the change in ln B.  A crucial point is that the absolute magnitudes of dA and dB don’t 

matter; only the fractional change matters, because we are finding the maximum of the product of A and 

B: 

( ) ( ) ( )

' ( ) ( ) ( ) ' ( ) 0 (at the maximum)

' ( ) ( ) ( ) ' ( )

t A A A B tot A

t
A A B tot A A A B tot A

A

A A B tot A A A B tot A

E E E E

d
E E E E E E

dE

E E E E E E

 =   −


=   − −   − =

   − =   −

 

This is the condition for thermal equilibrium, however, it is messy, because each side of the equation 

involves mixing properties of two dissimilar systems.  Can we separate the functions of A from the 

functions of B, so that we can compute something about A from a knowledge of A alone, and something 

about B from a knowledge of B alone, and know that they are equal in equilibrium?  Separating the pieces 

of the equation above, we find that at equilibrium: 
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' ( )' ( )
ln ( ) ln ( )

( ) ( )

B tot AA A
A A B tot A

A A B tot A

E EE d d
E E E

E E E dE dE

 −
=   =  −

  −
. 

This is consistent, because conceptually, a change in the logarithm of a number corresponds to a 

fractional change of that number: 

( )ln ln , is the factor by which changesx e x where e x  + = . 

The rest follows the above reasoning: 

 

1 1

( ) ln ( ) ( ) ln ( ) ( )
d dS dE

T E k E and S E k E T E
dE dE dS

− −
   

      =   
   

. 

Sawing Logs 

There are at least 3 reasons why it’s convenient to define entropy proportional to the logarithm of , 

S ≡ k ln  . 

(1) ln  comes up naturally when we see that (d / ) is important, because d /  = d(ln ).   

(2) ln  comes up naturally when expressing multiplicity in units of energy to combine it with the 

Boltzmann factor (more on this later), and we see that: 

( )ln // ( ) /U kT kTU kT U TS kTe e e
− − − − − = = . 

(3) When combining systems A and B, the total density of states t = A· B.  This means that when 

combining systems, ln  adds, so entropy becomes a convenient extensive property of a system: 

t A BS S S= + . 

The Energy Continuum Approximation 

The energy continuum approximation is so good, that it almost doesn’t count as an approximation.  It 

is a subtle point about system states.  It’s a digression from the main reasoning above, but ignoring it risks 

confusion.  The method we used above depends on counting energy states.  Therefore, we must avoid 

constraining our system energy too tightly, or we run into the “granularity” of allowed quantum energies.  

The standard “trick” is to allow each system some small constant latitude in energy, ΔE  [Hua p176b, Kub 

p7b].  ΔE must be large compared to quantum energy spacings, i.e. must include a large number of 

quantum states so they look like a continuum.  It may be comparable to our differential energy changes:   

quantum spacing << ΔE ~ dE << observable energy changes . 

ΔE

quantum energy levels

macroscopic energies

energy ΔE

probability weighted 
density of states

 
Figure 2.1  (Left) Qualitative view of the three scales of energy: quantum, mesoscopic, 

macroscopic.  (Right) ΔE has no practical effect on the number of accessible quantum states. 

This allows us to use the energy continuum approximation (ΔE >> quantum spacing), while still 

constraining the system to almost fixed energy, at least within measurement accuracy.  In practice, this is a 

very realistic requirement.   

For counting states, we define a quantity: 
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( ) ( ) # of states in range around the energyE E E E E   =  . 

We will call this “density of states,” since it is proportional to ρ(E), with a constant factor of ΔE.  We will 

see that the exact value of ΔE has no bearing on the above derivations; therefore we don’t need to specify 

ΔE exactly; the only requirement is that it satisfy the above inequality.   

Properties of Temperature and Entropy 

The definition of temperature requires a fairly smooth entropy function of energy, S(E), whose 

derivative is the inverse of temperature.  Therefore, small systems, such as atoms, whose energy range is 

broken up into discrete quantum levels with large spacing (compared to the range) do not have a 

temperature!  It’s just not defined. 

Temperature is only defined for systems with dense energy levels, such that the entropy 

S(E) has a well-defined derivative over the energies of interest. 

TBS: Extensivity of entropy.  Arbitrary additive constant; effect of choice of ΔE.  Intensivity of 

temperature.  How is this definition of entropy related to the thermodynamic one:  dS = dQreversible / T ?? 

General Equilibrium 

The arguments above defining entropy and temperature generalize to any two systems exchanging any 

conserved thing which affects the multiplicity of a macro-state, i.e. which affects the entropy.  It will 

always be the case that equilibrium is reached when the product of the density of states of the two systems 

is at a maximum: 

( ) ( ) ( ) is the total of some conserved thing

is amount of in , is amount of in

0 (at the maximum) (at equilibrium)

t A A A B A

A B

t

A system A system B

X X X X where X

X X A X X B

d S S

dX X X− −

 =   −

  
=  =

 

 

Conserved 

quantity that is 

exchanged 

Equilibriu

m parameter 

 

Comments 

energy 1/T ~ ∂S/∂E defines temperature 

volume P ~ ∂S/∂V say, for A and B separated by movable piston 

particles μ ~ ∂S/∂N defines chemical potential μ  

any conserved thing, X ~ ∂S/∂X defines some equilibrium parameter 

The chemical potential μ is special, because it can also be used in the case of non-conserved particles, 

i.e. when particles can be created or destroyed, e.g. through chemical reactions.  In this case, the 

“conserved” quantity seems somewhat mathematical, but has very real significance.  For example, in some 

reaction: 

A + B ↔ C e.g. 2H2 + O2 ↔ 2H2O 

The conserved quantity is (NH2 / 2 + NO2) + NH2O.  See later section on μ. 

Spontaneous Processes 

There is a fundamental contradiction between the statement that “entropy is only defined for systems 

in thermal equilibrium,” and then comparing the entropies of systems that are clearly not in thermal 

equilibrium.  This is the most egregious failure of most references.  Equilibrium is defined as stationary 

properties (properties don’t change with time).  Therefore, by definition, any system which spontaneously 
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time evolves was not initially in thermal equilibrium.  By our restriction of entropy to equilibrium, it is then 

meaningless to ask if its entropy has changed.  The resolution of this is to define “local thermal 

equilibrium” (LTE), which allows us to define local entropies in subsystems of the whole system.  We then 

define the total system entropy as the sum of the local entropies, and only then can we say the system 

“entropy” has increased after a spontaneous process. 

Seeing Entropy 

We can define that two systems have “significantly” different entropies if a simple tabletop, 

earthbound experiment at realistic temperatures can demonstrate the difference.  I describe some examples 

shortly.  This definition overrides any attempt at quantitative comparisons of absolute entropy vs. entropy 

differences.  A huge baseline entropy has no effect when systems with small entropy differences interact.  

As often stated in thermodynamics, the zero of entropy is almost always irrelevant: it is entropy differences 

that matter.  Furthermore, an appropriate quantitative test of entropy differences compares them in light of 

the height of the free energy barriers between quasi-equilibrium states (which includes system 

temperature). 

I generally think of entropy in the Statistical Mechanics sense: the logarithm of the number of 

microstates of a system satisfying some conditions.  This has the advantage of being inherently path-

independent: entropy is a state function, and independent of how the system got into that state.  In contrast, 

the classical thermodynamic definition of integrating reversible heat (đQrev/T) from absolute zero can be 

misleading, in part because it emphasizes some path of constructing the system, and in part because it is 

easy to build up to a state which is not in thermal equilibrium. 

An example: consider a thin, horizontal sheet of oil at room temperature, in which are suspended 

particles of sugar and coffee.  The Brownian motion of those particles is visible under a hand magnifier.  

For a sheet of a few cm on edge, we could sprinkle sugar on one half, and coffee on the other.  Within a 

few hours or days, the particles would mix.  This clearly demonstrates that the system was not in thermal 

equilibrium at first.  This initial entropy must be the sum of that of the sugar half of the system plus that of 

the coffee half.  Entropy increases as systems evolve toward equilibrium.  Therefore, by my definition, this 

experiment demonstrates that the entropy is significantly lower at first. 

Note that if we sprinkled particles directly on a table top, there would be no mixing, even though there 

is still an entropy difference.  However, this experiment introduces large potential barriers between quasi-

equilibrium states.  The entropy difference between the separated and mixed states is just as large as in the 

oil-film case, but the experimental setup makes it hard to spontaneously evolve from one state to another, 

so the difference is not “significant.”  This has nothing to do with entropy; it has to do with the free-energy 

barriers.  Those are very different things. 

A second factor is that the sugar/coffee-on-table experiment conjures the image of the reality of 

friction on the table top, which our minds must work hard to overcome. If we eliminate friction from the 

desktop, the particles skitter freely across the surface.  They would exhibit Brownian motion, and 

collisions.  It would be a high-speed version of the oil-film experiment, with the same outcome: a 

significant entropy difference. 

In short, the stability of two quasi-equilibrium states says nothing about their entropy differences.  

Instead, the barriers in the free-energy landscape determine the quasi-equilibrium state lifetimes.   

We can visualize which of two systems has higher entropy with the “shake test.”  Shake up both 

systems.  If one turns into the other, then the latter has higher entropy.  One benefit of the “shake test” is 

that it is independent of the free energy, and intentionally isolates only the entropy.  Shaking temporarily 

adds a large amount of energy, so that the free-energy landscape presents no barriers.  This focuses in on 

the entropy alone.  When we stop shaking, we remove that temporary energy, recalling that final state 

entropy is independent of path.  If the shake test consistently transforms one set of conditions into another, 

then it must be that the latter state has significantly higher entropy. 

We can also see such entropy differences in the classical thermodynamic definition of entropy by 

integrating from absolute zero.  Since entropy is independent of path, there is no need to raise the 

temperature monotonically.  In fact, we can overshoot the final temperature by a large amount, and then 
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come back down.  If overshooting results in a different final condition than the monotonic increase, it must 

be because this new final condition is significantly higher entropy. 

In summary, the shake-test isolates entropy, independent of the free-energy landscape, 

and allows simple, realistic comparisons of entropy differences. 

Summary:  A key point is that entropy is not the whole story, and sometimes not even an important 

part of the story.  Entropy differences are not the only driving factor for spontaneous change.  In fact, the 

free-energy landscape, i.e. the availability of paths of evolution that transpire on reasonable time scales, is 

also a huge factor.  In many everyday examples (such as particles on a table), it is the largeness of the 

energy barriers, not the smallness of the entropy differences, that make thermodynamics inapplicable. 

Furthermore, even without large energy barriers, the importance of entropy differences must take into 

account the temperature.  A difference of 1e-20 J/K says nothing directly about how long a spontaneous 

process might take, or how much energy is absorbed/released.  Those depend on the temperature.  Smelting 

ore, carbonizing steel, and diffusing dopants in semiconductors, are all hugely important processes that rely 

on the tiny entropy difference of mixing, so I must say that the entropy difference is significant.  Note that 

in practice, they are made significant by using high temperatures. 

For some applications, it is important to be able to separate entropy differences from energy barriers.  

My definition for significant entropy differences intentionally isolates an entropy difference: “If I can 

easily demonstrate it, it is significant.”  But by itself, this says little about practical consequences.  A given 

entropy difference may have no practical consequences in some processes (high barriers or low 

temperature), but may be clearly significant in others (low barriers or high temperatures). 

Nuts and Boltzmann: The Canonical Distribution 

The Boltzmann distribution (aka canonical distribution)  “is the most useful formula in all of 

statistical mechanics.” [Sch p223b].  It underlies a huge amount of SM, and is therefore critically 

important.  In particular, it underlies the “partition function,” which we will use heavily later.   

The Boltzmann distribution gives the relative probability of a system in thermal 

equilibrium with a heat bath to be in a single microstate of given energy;   

it is independent of the internal structure of the system  

(big, small, classical, quantum, fermion, boson, etc.)  [Wan p65t] 

The two constraints for the Boltzmann distribution to apply are:  

(1) the system in question must have as its only significant interaction the thermal exchange of energy 

with a large temperature reservoir (aka “heat bath”) at fixed temperature, T; and  

(2) the system must be distinguishable (among an ensemble).   

For example, in a classical gas of non-interacting helium atoms, a given atom could be a “system”.  Its 

only interactions are through collisions with the other atoms, which compose the heat bath.  By definition, 

“classical” atoms are distinguishable.  Therefore the energies of the atoms follow the Boltzmann 

distribution. 

As a counter-example, a single fermion in a fermion gas has significant quantum interactions with the 

other fermions (via the Pauli exclusion principle), and so such fermions do not meet the requirements of the 

Boltzmann distribution, and their energies do not follow it.  [We consider the microscopic distribution of 

such systems later.] 
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Ensemble of distinguishable 

systems in a large heat bath

Heat Bath

system

Heat Bath

system

system 3

system 2
system 4

system 5

System in a large heat bath

 

We derive the probability of the system having a given energy from only the properties of the heat 

bath!  This proves that the construction of the system is irrelevant [Wan p65b].  Many texts use multiple 

copies of the system (i.e., an ensemble) as the heat bath.  This is confusing, and unnecessary.  It suggests 

that there is something special about using identical systems for the heat bath, when there is not.  Any large 

system which can exchange energy with the given system is a heat bath [Wan p64t].  The heat bath’s 

internal structure is not relevant. 

Consider a system in thermal equilibrium with a large heat bath (above left).  We must work with 3 

things: (1) the system, (2) the heat bath, and (3) the combination system/heat-bath.  The combination is 

isolated, therefore all microstates of the combination are equally likely; it has temperature T, and it has 

fixed total energy Et.   

What is the probability that the (blue) system is in a microstate s1 of zero energy, Es1 = 0?  The 

probability of the system being in that microstate is proportional to the number of microstates of the heat 

bath to have energy Et , ΩB(Et): 

RelPr( ) ( )B ts1 E=  . 

Consider another single microstate s2 of the system, of higher energy Es2.  Its relative probability is  

2RelPr( ) ( )B t ss2 E E=  − . 

Recall that the definition of temperature tells us something about how B changes with energy: 

ln1
lnBd dE

k d
T dE kT


   = . 

dE < 0, since we’re considering energy taken from the heat bath and put into the system.  Since the heat 

bath is large and the system small, we can use the linear approximation for d ln B: 

2

2 2 2

2 2

/2

ln ln ( ) ln ( ) 0, 0

( )
ln (exponentiate both sides)

( )

( ) RelPr( 2)

( ) RelPr( 1)
s

B B t s B t s s

B t s s

B t

E kTB t s

B t

dE
d E E E where dE E E

kT

E E E

E kT

E E s
e

E s

−

 =  − −  = = −  

 − −
=



 −
= =



 

The Boltzmann distribution is derived from the properties of only the heat bath, and not 

the system.  That is why it is independent of the internal structure of the system. 

Since relative probabilities have an arbitrary multiplicative factor, we choose RelPr(s1) = 1.  Then we 

can write: 

2 /
RelPr( 2) sE kT

s e
−

= . 

Or, for any single microstate: 

/
Pr( ) sE kT

sstate s with energy E e
−

=  . 
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We can normalize this to absolute probability by noting that the sum of probabilities of the system being in 

all possible states (or equivalently, having all possible energies) is 1: 

/

/

1

/

/

1

Pr( ) , are the quantum energies of the states & ,

are the allowed energies, and are their multiplicities

s

r

s

j

E kT

s r
E kT

r

E kT

j j
E kT

j

j

e
state s where E E s r OR

e

e
where E g

g e

−


−

=

−


−

=

=

=





 

The distribution gj of allowed energies Ej affects the absolute probabilities of microstates only through 

the normalization factor.  However, the relative probabilities of individual microstates are independent of 

the allowed energies.   

Often, we are interested in the probability of the system having a specified energy, rather than being in 

a specified state.  Then we can simply sum the probabilities of all system states with that energy: 

/

//

1 1

Pr( ) is the multiplicity of energy , and
( )

, are states and their energies,
( )

, are energy levels and their multiplicites (as above)
jr

E kT
E

E

E kT rE kT
j

j jr j

g e
energy E where g E

Z T

r E and
Z T e g e where

E g

−

 
−−

= =

= =


 = 


 

 

Z(T) is the famous partition function.  We’ll say more about this later.  Notice, though, that the 

normalization factor, Z(T), is a function of temperature.  Therefore: 

We can only compare relative probabilities, or Boltzmann factors,  

for two things at the same temperature. 

For a system of continuous energies (a classical system), we have the continuum equivalent of the 

above: 

/

/

_ min

( )
Pr( ) ( ) is the energy density of states, and

( ) ( )

E kT

E kT

E

g E dE e
E energy E dE where g E

Z

Z T dE g E e

−

 −

  + =

 

 

Recall that systems with large gaps in their quantum energy levels do not have a well-defined temperature. 

A system to which the Boltzmann distribution applies may be too small to have a well-

defined temperature (e.g., an atom); T is the temperature of the heat bath, not the system. 

Related to the Boltzmann distribution is the Maxwell-Boltzmann distribution, which is a microscopic 

distribution of particle states inside a single system in thermal equilibrium.  For distinguishable particles, 

the Maxwell-Boltzmann distribution is actually an example of the more-general Boltzmann distribution.  

More on this later. 

Finally, if the Boltzmann distribution seems to suggest that a system “seeks lower energy,” remember 

two things: (1) the Boltzmann distribution describes a microstate, not a macrostate; and (2) the reason the 

lower-energy microstate is more likely is because the higher energy macrostate of the heat bath is more 

likely, almost as if the heat bath seeks higher energy. 

Multiplicity Defies Energy 

This is one of the most important concepts in Statistical Mechanics.  We now use the Boltzmann 

distribution to show: 
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The equilibrium macrostate of a system is not the lowest energy state;  

it is the most likely state.   

We consider a system which has discrete (i.e. quantized) microstates, each with a definite energy.  The 

energies may be microscopically close together, and indistinguishable at the scale of laboratory 

measurements, but QM says the states are discrete.  (Fortunately, it is usually easier to think of them as 

discrete states, so this is a rare case where QM simplifies our lives.  In most of what follows, the continuum 

approximations that might replace the discrete analysis are straightforward.)  We can label each system 

microstate with an index, such as s.  Note that many states may have exactly the same energy.  The number 

of states with a given energy is the multiplicity of that energy (sometimes called the “degeneracy” of the 

energy). 

When a system (be it a molecule, or a macroscopic sample) is in thermal equilibrium with a reservoir, 

the temperature, or equivalently, the parameter β = 1/kT , with units of inverse energy, characterizes the 

system (see Equilibrium, Temperature, and the One True Entropy, above).  The Boltzmann distribution 

shows that the relative probability of the system being in a particular quantum-state, or “micro-state,” is 

related to the state’s energy, and β, by the Boltzmann factor as follows: 

Pr( ) . . RelPr( )s sE E
state s e i e state s e

 − −
 = . 

This formula states that for systems which can exchange energy with a large reservoir, a micro-state 

with a lower energy is more likely to be occupied than another micro-state with higher energy.  (We’ll 

assume β > 0 for now,  which is by far the most common case.)   

Example:  It turns out that at room temperature, β  1/(26 meV).  Consider two states with energies E1 

= 0, and E2 = 18 meV.  Then: 

(0) (18 )
1 2Pr( ) 1, Pr( ) 0.5meVE e E e − − =  = . 

State 1 is twice as likely to be occupied as state 2.  If a system has only those two states, then we can 

normalize the probabilities to find Pr(state 1) = 2/3, and Pr(state 2) = 1/3.  Therefore (diagram, below left): 

Pr(system energy = E1) = 2/3, and Pr(system energy = E2) = 1/3.   

E
E1 E2

<E>

Relative Probability

E
E1 E2

<E>

E

<E>

g1 = 1 g2 = 1 g1 = 1 g2 = 10 g1=1 g2=10 g3=40

E1 E2 E3

micro 

states

Relative Probability Relative Probability

E4

g4>40

 

(Left)  A system of two microstates.  (Center)  A system of 11 microstates.   

(Right)  A system with more energy levels, and still more microstates. 

In the diagram, each box is a single microstate.  The height of the box is the relative probability 

(Boltzmann factor) for its energy; all microstates of the same energy have the same relative probability.  

Higher energies have smaller relative probabilities.  The relative probability for an energy is the sum of the 

relative probabilities of all its microstates, or just the multiplicity, g, times the Boltzmann factor.   

/
RelPr( ) jE kT

j jE g e
−

= . 

The average energy of an ensemble of the 2-state systems is: 
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1 2

2 1 2 1
(0) (18 meV) 6 meV

3 3 3 3
E E E= + = + = . 

which is in the ball park of the minimum energy, but clearly above it.  [Almost always, the time average of 

a single system equals the ensemble average: <E>time = <E>ensemble.  Such a system is called ergodic.] 

If a similar system had the same two energies, but there were 10 microstates with energy E2, the 

average energy would be much closer to E2 (above center).  With more energies and microstates (above 

right), we see the average energy is close to the dominant energy level, where dominance is given by the 

product of the Boltzmann factor times the multiplicity. 

Now consider a system with the same energies, but where there are 1,000 states of energy E1, and 

1,000,000 states of energy E2.  (This is quite plausible.)  The relative probability of being in a particular 

micro-state of energy E1 is still 1, and the relative probability of being in a particular micro-state of energy 

E2 is still 0.5.  What is the ensemble average energy of this new system?  We have 1000 states with relative 

probability 1, and 1,000,000 states with relative probability 0.5: 

(0)
1

(18 )
2

RelPr( ) 1000 1000

RelPr( ) (1,000,000) 500,000meV

energy E e

energy E e





−

−

= = =

= = =

 

We’re 500 times more likely to have E = E2 than E1.  To find <E>, we must convert relative probabilities to 

absolute probabilities.  The probability normalization constant is: 

1 2

RelPr( ) 1,000 500,000 501,000. Then

1,000 500,000
(~ 0)(0) (~ 1.0)(18 meV) 18 meV

501,000 501,000

s

N state s

E E E

= = + =

= + = + 


 

Even though the probability of being in any given high energy state is only half that of being in a given 

low energy state, the multiplicity of the high energy state vastly outweighs the small energy “advantage” of 

the lower energy state.  Multiplicity defies energy, and raises the average energy to essentially equal the 

higher energy level.  In other words, the system is nearly guaranteed to be in the higher energy level (not 

what we were taught as freshmen). 

We will see in “Free Energy” how much energy a given multiplicity is worth.  This quantification of 

multiplicity leads to the concept of entropy: 

Entropy is a measure of multiplicity, on a logarithmic scale, which in turn, is a measure 

of a macro-state’s ability to acquire more energy when in thermal equilibrium. 

More on entropy and free energy later. 

Example: The Statistical Chain 

Consider a chain of N links, hanging vertically with a constant weight F pulling on the bottom.  Each 

link in the chain has length l , and can be in one of 3 positions: left, right, or down.  Note that this system is 

simplified because it has no kinetic energy (which we will see leads to it having a finite maximum energy, 

even at arbitrarily large temperature).  However, it is realistic, in that some spin-systems have this same 

property (and even weirder ones; see “Negative Temperature” later on).  Questions: 

1. What is the low temperature average vertical length of the chain? 

2. What is the high temperature vertical length? 

3. What is the average length at temperature T ? 
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Answers:  1.  At low temperature, there is “no” energy available from the thermal bath.  Therefore, all 

the links are pulled vertically down by the weight.  The length is Nl.  This is the state of lowest energy. 

2.  At high temperature, there is “infinite” energy available from the thermal bath, so the work 

involved in pulling the chain up, left, or right, is negligible.  Therefore, all 3 states of each link are equally 

likely.  Only the down state contributes to vertical length.  The average length is simply Nl / 3.  Notice that 

this is not the state of lowest energy, since some links are Left or Right, and have more energy than Down 

links. 

3.  The chain is an ensemble of links; therefore, the links follow the Boltzmann ensemble statistics: 

/RelPr( ) 1/ is the temperature parameterE kT EE e e where kT − −= =   

In this system, there is no kinetic energy, only potential energy.  Consider one link of the ensemble.  

We could say that being in the left or right position requires doing Fl units of work to lift the weight, and 

being down requires no work.  We would then write the energies of the 3 states as 

, 0L R DE E Fl E= = = . 

But we can choose the zero-point of energy as we like, and it is equally valid to say that the L and R 

position are 0 energy, EL = ER = 0, and the down position has ED = –Fl (the system gives up potential 

energy).  We choose the latter, because it will make our equations a little simpler if more of the energies are 

zero: 

0,L R DE E E Fl= = = −  

We use the Boltzmann distribution to write the relative probabilities of the 3 states: 

( )(0)RelPr( ) RelPr( ) 1, RelPr( )
Fl FlL R e D e e

 − −−= = = = =  

We normalize the relative probabilities into absolute probabilities in the usual way: since a link must be in 

one of the 3 positions, the sum of the absolute probabilities is 1: 

RelPr( ) 1
Pr( ) Pr( ) Pr( ) , Pr( )

1 1 2RelPr( )

Fl

Fl Fl
i

i all states

E e
E L R D

e eE



 

=

=  = = =
+ + +

 

Each link has the same probability of being down, so the average length is: 

Pr( )
2

Fl

Fl

e
length Nl D Nl

e




= =

+
.           QED. 

Notice that this is not the state of lowest energy. 

Since this is the general answer for any temperature, we check our first two answers: (1) at high 

temperature, β → 0.  <length> = Nl(1 / 3).  (2) at low temperature, β → ∞.  <length> = Nl. 

Now we can answer more questions: 

4. What is the internal energy of the system at low temperature?  High temperature? 

5. What is the entropy of the system at low temperature?  High temperature? 

Answers: 4. At low temperature, all the links are down (from answer above) and: 

( )E NFl lowT= −  

At high temperature, 1/3 of the links (the Down ones) have energy –Fl, so internal energy is: 

( )
3

NFl
E high T

−
=  
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This is relative to our zero point of energy where every link is Left or Right, and the chain has zero vertical 

length.  This is somewhat unusual that the system has an upper bound on energy.  Most systems (e.g. a gas) 

have kinetic energy which is unbounded, so internal energy is unbounded with increasing T. 

5.  This is a system with discrete energies (rather than a continuum of energies).  Therefore, we define 

(T) as the number of states available at temperature T (rather than the density of states at temperature T).  

At low temperature, there is only one possible state: 

( 0) 1, ( ) ln ( ) ln1 0T S T k T k → =   = = . 

  At high temperature, all states are equally likely, and each link has 3 states: 

( )( ) 3 , ( ) ln ( ) ln 3 ln 3N NT S T k T k Nk →  =   = = . 

Notice that entropy varies linearly with N, so entropy is extensive.   

We can answer still more questions: 

6. At finite temperature, the chain is like a spring: if we pull down on it and let go, it springs back up 

to its equilibrium length.  If we push up the weight, it falls back down to the equilibrium length.  

Find the effective spring constant in force/length. 

7. What is the fractional fluctuation in energy (and length) for a chain of 100 links at temperature T?  

For a chain of 1020 links? 

8. What is the entropy of a long chain at temperature T?   

Answers:  6.  The spring constant is dF/dX, where X is length.  We already have X(F) from (3) above.  

We invert it to find F(X), and take the derivative: 

( )

( )

( ) , 2 , 2
2

2 1
ln , ln 2 ln ln

1 1 1

( ) ( )

Fl
Fl Fl Fl Fl Fl

Fl

spring

e
X F Nl X Xe Nle X Nle Xe e Nl X

e

X
Fl F X Nl X

Nl X l

dF
k

dX l X F Nl X F


    










= + = = − = −
+

= = + − −  −

  
 = +  

−   

 

This is called entropic elasticity.  It results because the chain is not in the state of lowest energy, and the 

number-of-states function (T) combined with the Boltzmann distribution makes one particular macrostate 

(length) more likely than any other.  At high temperature (β → 0), the spring constant goes to infinity: with 

infinite thermal energy, the chain can lift any weight. 

7.  In this system, there is no kinetic energy, only potential energy.  Length is proportional to energy:  

# of Down linksD D

E
X n l where n

F
= − =  . 

The order of magnitude for any fractional fluctuation is almost always 1/√N .  This gives us 10% length (or 

energy) fluctuation for 100 links, and 10–10 for 1020 links.  The exact answer uses the binomial distribution: 

a link is either down, or it’s not.  The standard deviation of a binomial distribution (see Funky 

Mathematical Physics Concepts) is: 
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( )

( ) ( )

1 is the number of "trials" (links)

Pr( )
2

1 11 1 1

Fl

Fl

Np p where N

e
p Down

e

Np p p p p

X Nlp p pN N









= −

 =
+

− − −
= = =

 

At high T, p = 1/3, and the correction factor to 1/√N is only √2.  As T goes down, the fractional fluctuation 

increases. 

8.  The entropy is computed from the number-of-(micro)states of the system that match the macrostate: 

ln ( )S k T  . 

For large N, the all fluctuations are tiny, so we can use the most likely macrostate, and find S(T) = S(most-

likely-macrostate).  Also for large N, the most-likely number of down links is virtually identical to the 

average number of down links, which we found above: 

*
2

Fl

D D Fl

e
n n N

e




 =

+
. 

Since this is a discrete system, we can find  as the # of ways to choose nD down links from N links total: 

( )

( )
( ) ( ) ( )( )

!
( ) ( ) choose *

* *! * !

!
( ) ln ln ! ln *! ln * !

*! * !

D
D D D

D D
D D

N N
T or N n

n n N n

N
S T k k N n N n

n N n


 

  =  = 
− 

 = = − − − −

 

We can use some approximations here?? 
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3 Classical Statistical Mechanics 

So far, we’ve mostly talked in terms of quantum states.  But statistical mechanics is often useful in 

analysis of classical macroscopic systems, whose detailed quantum behavior is not important.  For such 

cases, we derive some simple rules to obtain SM equations for classical systems.  But remember that 

statistical mechanics cannot exist outside quantum mechanics, because there is no way to count states 

without quantum mechanics.  Our simple rule is based on the fact that, for each dynamic variable of a 

system, the number of quantum states of a system equals the phase space volume divided by Planck’s 

constant, h: 

1 1 2 2

1

1 1
...

# dynamic variables (degrees of freedom) of the system

f

i i i system i f ff f
i

phase space volume
n dx dp n n dx dp dx dp dx dp

h h h

where f

=

− −
=  = = =



   

The continuous energy approximation: Since the detailed structure of the quantum energy states is 

not important, we aggregate discrete quantum states into a continuous energy density of states: 

( ) quantum multiplicity of state

( ) continuous energy density of states

i ig g E dE where g i

g E

→ 


 

This converts formulas with a summation over energies into an integral over energy.  For example, the 

partition function goes to: 

0
1

( ) ( ) ( )jE E

j

j

Z g e Z dE g E e
  

 − −

=

= → =  . 

This often isn’t good enough, since we don’t know g(E).  However, we generally know the 

hamiltonian, which gives E as a function of p and x: 

1 1 2 2( , , , , ... , , ) ( , )

# dynamic variables (degrees of freedom) of the system

f f i iE H p x p x p x H p x

where f

= 


 

H is a function of the phase-space state of the system.  There are many states with the same energy, but 

rather than finding g(E) explicitly, we use the sum-over-states formula for Z, and count each hf units of 

phase space as one quantum state: 

1 1

1

...
( ) ( , )s

all states
f fE

i if
s

dx dp dx dp
Z e H p x

h

 −

=

 =  . 

However, Z(β) is arbitrary up to a multiplicative constant, so we can drop the hf: 

1 1( ) ... ( , )f f i iZ dx dp dx dp H p x =  . 

Example: One Dimensional Gas: TBS 

Terms of Endearment 

You see these same mathematical terms over and over in SM, and they generally have the same 

meaning everywhere.  So here’s a simple summary of each common mathematical term.  Isolating internal 

energy on the left hand side, we have: 

dU dN T dS P dV F dX= + − − . 

Alternatively, we can put free energy (described below) on the left hand side: 

(free-energy)d dU PdV F dX T dS= + + − . 

dU The change in internal energy. 
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μ dN The free-energy it takes to create/add N particles. 

T dS At constant temperature (i.e., in a heat bath), T dS is the heat energy that flows from the 

heat bath into the system due to an increase in entropy (or out from a decrease).  This is 

the “multiplicity defies energy” principle, also known as the “entropy attracts heat” 

principle (as shown by the canonical ensemble). 

P dV At constant pressure, the work done by the system on its surrounding from volume 

expansion.  The surroundings store this work as potential energy, and it could be 

considered part of the total energy of the system.  P dV is just a special case of F dx work. 

F dX The generalization of P dV, where F is any kind of “force” (force, tension, pressure, etc.), 

and X is the associated “size” of the system (length, area, volume, etc.), such that F dX is 

work done by the system.  At “force” F, when X increases by dX, the work done by the 

system is δW = F dX.  The surroundings store this work as energy, and it can be 

considered part of the total energy of the system.   

Other work terms include σ dA (surface tension times area), and H•dB (magnetic work). 

Free Energy 

Free energy is of fundamental importance to all of statistical mechanics, thermodynamics, and 

chemistry.  However, it can be confusing, so we start with a simple example of free energy, then give 

several brief high-level views of free energy, and then describe each of these in more detail.  This section 

assumes a thorough understanding of the Boltzmann distribution (described earlier).   

Example of Free Energy: Water Absorbed in a Paper Towel 

As an example of free-energy in action, consider a glass of water with a paper towel suspended 

partially immersed (diagram below). 

water

dry paper 

towel

water

soaked 

paper towel

water

partly wet 

(equilibrium) 

paper towel

 
(Left) System with minimum energy.  (Center) System with maximum entropy.   

(Right) System with minimum free-energy (in equilibrium). 

We find that the equilibrium position has the water soaked part way up the towel (above, right).  The 

system on the left is minimum energy, since all the water is a low as possible (least gravitational potential 

energy).  The system in the middle is maximum entropy, since the water is dispersed among the largest 

possible area, and consequently has many more ways of rearranging its molecules (maximum number of 

states).  But the equilibrium position is neither minimum energy nor maximum entropy: it is minimum free-

energy.  The system on the right has made the equilibrium tradeoff between energy and entropy, such that 

its macro-state is the most likely. 

This cannot be completely explained by surface adhesion, as shown by the system with two glasses, 

and a paper “bridge.”  TBS. 

Physical View of Free Energy 

There are several ways to look at free energy: 

1. Free energy is a measure of macrostate probability, on a log scale, and with a minus sign:  

A = –kT ln RelPr(macrostate).  This implies ... 
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2. Much like the Boltzmann factor gives the relative probability for a system to be in a single 

microstate of given energy, the Boltzmann factor formula acting on free energy gives the relative 

probability of a system to be in a macrostate of given free energy.  This implies ... 

3. Free energy is minimized within a system in thermal equilibrium (maximum likelihood 

macrostate). 

4. In other words, free energy is a state function of a system at fixed T, which when minimized, 

maximizes the entropy of the universe.  Being a state function only of the system in question, it 

allows us to ignore the rest of the universe, and focus on what we know. 

5. Free energy includes the effect of energy “borrowed” from the heat bath due to the system’s 

entropy.  This implies that for a system spontaneously evolving from an initial to a final state of 

equal temperature, the maximum useful work you can get is the difference between the free 

energies of the initial and final states. 

6. Free energy accounts for the “Multiplicity Defies Energy” principle in a single parameter, with 

units of energy.  Essentially, free energy includes a way of measuring multiplicity in energy units, 

and adding it to the real energy.   

Because of a subtlety of potential energy, there is a different “free energy” defined for each set of 

constraints on (or energy stores in) a system (more later).  However:  

A given system with constraints has only one kind of free energy relevant to it.   

The free energy is always a quantity that is minimized  

when a constrained system reaches equilibrium within its constraints.   

Also, free energy is only relevant for systems at fixed temperature; i.e., for free energy to be 

meaningful, one of the constraints must be fixed temperature.  However, for the “maximum useful work” 

measure described above, the process can change temperature in the middle, but the final temperature must 

be the same as the initial temperature.  We examine this in more detail later. 

I would say that it is almost a coincidence that the free energy is both a state-function which is 

minimized for a system in thermal equilibrium, and also the state-function which gives the maximum 

useful work obtainable from a spontaneous process.  I see no obvious connection between the two, and one 

might imagine that in some alternate universe, these two phenomena might have been given by two 

different state-functions. 

Helmholtz Free Energy 

The simplest constraint is that of constant temperature: a system held in a heat bath.  We now show 

that for such a system, the free energy is the Helmholtz free energy: 

A(T, V, N) ≡ U – TS for a system at given temperature. 

RelPr(system energy = E)

equilibrium
E

density of 

states, g(E)

exp(−E/kT)

free energy, 

A(E)

 

Interaction of density of states and the Boltzmann factor to produce the relative probability of the 

system having a given energy, and the free energy associated with that probability.  
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This is just an example of the “multiplicity defies energy” concept shown above.  First, recall that the 

relative probability of the system having energy Ei is: 

/
RelPr(system-energy is ) are distinct energies of the system,

are # microstates with energy (multiplicities)

iE kT

i i i

i i

E g e where E

g E

−
=

 

The energy with the maximum relative probability is the most likely energy (macro-state).  Finding 

this state involves dealing with two parameters: gi and Ei.  It’d be nice if we could combine these two into a 

single parameter (which we will call free energy) which combines the energy and the multiplicity.  To do 

this, we first bring the factor of gi up into the exponent: 

 / / ln
RelPr(system-energy ) i i iE kT E kT g

i iE g e e
− − +

= = = . 

Next, we measure the multiplicity in energy units, by multiplying ln gi  by kT: 

( ) ( )

( )

ln
RelPr(system-energy ) exp exp ln

exp / ln

i i i i

i i i

i i i i i i

E kT g E TS
E where S k g

kT kT

A kT where A E TS E kT g

− − − −   
= = =    

   

= −  − = −

 

The energy equivalent of multiplicity depends on temperature: the higher the 

temperature, the more energy a given multiplicity is “worth”. 

lnequivalent iE kT g TS= = . 

Notice that we could restate the aphorism “Multiplicity defies energy” as “Multiplicity attracts thermal 

energy (heat).”  Higher multiplicity allows for higher energy only for a system in a heat bath, because 

higher multiplicity allows the system to offset its lower Boltzmann factor for higher energy:  

RelPr(E) = g(E)exp(–βE) .   

Where does that higher energy come from?  From the heat bath (which keeps the system at constant 

temperature).  For a system with low energy and low entropy, heat flows from the heat bath into the 

system, because the increase in system entropy more than offsets the decrease in Boltzmann factor for 

higher energy.  When these two effects just balance, the system is in thermal equilibrium.  Hence, the 

multiplicity (entropy) “attracts” heat into the system from the heat bath: Multiplicity attracts heat.  The 

T ΔS term in the Helmholtz free energy is real energy that goes into the system from the heat bath. 

The most likely macro-state is that with the highest relative probability, 
/iA kT

e
−

, which is that when Ai 

is minimized.   

Free energy is a measure of the relative probability of a macro-state.  Therefore,  

random energy transfer causes systems to evolve to the state of minimum free energy. 

What’s Free About Energy? 

Why is it called “free energy”?  Perhaps a better term would be “available energy”.  Given a system 

with constraints, you can extract energy from it to do useful work, by letting the system evolve 

spontaneously to a more likely state.  In doing so, its state changes from ‘initial’ to ‘final’.  How much 

useful work can you get out?  I.e., how much of the system energy is “free” (available) to do useful work?  

It is the difference between the “free energy” of the initial state, and the “free energy” of the final state.  If 

the initial state has 10 J of free energy, and the final state has 3 J of free energy, then the maximum work I 

can get done when the system evolves from initial to final state is 7 J.   

But here's the really cool part: the difference between the internal energy of the system at initial and 

final states, in some cases, is less than 7 J [Sch p154].   
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The maximum useful work can be more than the internal energy lost  

from the initial to the final state. 

That's possible if the final state has higher entropy than initial, and hence the system absorbs heat energy 

during the process, some of which can then go out as useful work.  This is exactly the case with a car 

battery: the useful (electrical) work out is more than the difference in internal energies of the chemicals 

before and after delivering electrical work, because the car battery entropy increases while discharging, so 

it absorbs some heat from the environment.   

ΔU = -320 kJ

Q = +80 kJ

W = 400 kJ

Electrical 

work out

 
A car batter converts ambient heat to useful work,  

thereby producing more work than the decrease in internal energy. 

Part of that absorbed heat goes out as useful electrical energy [Sch p154].  This means that your car 

battery won't work as well if it's thermally insulated, because it can't absorb any heat.  The available energy 

would be less than normal.  [Reactions which absorb heat are called endothermic.] 

Another way the useful work can be more than the change in internal energy is if the size of the system 

changes.  If it shrinks, then the ambient does work on the system, some of which could find its way out as 

useful work.  For a system at constant pressure, the Gibbs free energy accounts for this in the +PV term. 

TBS: example of burning hydrogen from [Sch]. 

Gibbs Free Energy and Enthalpy 

Gibbs free energy is just Helmholtz free energy in disguise.  We will see this by considering a 

sequence of 3 systems, each slightly different from the previous, starting with a system minimizing 

Helmholtz free energy, and inevitably ending up at a system minimizing Gibbs free energy.  Thus, we will 

derive the Gibbs free energy from the Helmholtz free energy.  Similar arguments apply to enthalpy, which 

is just the sum of internal energy plus the associated potential energy of PV work [Wan p137t]: 

H E PV + . 

Consider a gas, in a rubber balloon, in a vacuum (below left): 

vacuum

gas

balloon

constant temperature box

atmosphere

gas

flexible container

constant temperature 

heat bath

 

Suppose our balloon can stretch, but for simplicity, always exerts constant pressure on the gas.  If the gas 

expands inside the balloon, it does work on the balloon equal to P dV, which the balloon stores in its 

stretched rubber.  The box is held at constant temperature, and exchanges energy with the balloon/gas 

system through thermal radiation (e.g., black body).  Hence, the gas is also at the same temperature. 
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Case 1:  As a first case, take our system to be the balloon and the gas.  The internal energy of the 

system, E,  then includes the kinetic energy of the gas, and the potential energy stored in the stretched 

rubber of the balloon, which equals PV.  There is no other energy, so we have the simple case of Helmholtz 

free energy being minimized.   

Case 2: Define the system as the gas inside, but not including the balloon.  Changing our definition has 

no effect on the physics of anything, but now we would say that the PV potential energy is not in our 

system.  But clearly, when the volume expands, the gas particles lose kinetic energy through PV work.  

When the gas contracts, the gas particles acquire energy from PV work done on them.  The PV work is still 

a store of potential energy connected to the gas.  Our choice of system boundary which excludes this 

potential energy store is perhaps, then, misguided, but we can make up for it by including the PV potential 

energy “by hand”: 

free energy = E + PV – TS . 

We can think of (E + PV ) as a sort of “effective internal energy.” 

Case 3: Replace the balloon with a flexible, but non-stretchy, gas bag, such as a hot-air balloon.  

Immerse the balloon in a constant pressure environment, such as the atmosphere.  Define our system to be 

the gas in the balloon.  (Including or not the balloon itself doesn’t matter, since it has no energy.)  In this 

case again, when the gas expands, it loses KE through PV work done on the atmosphere.  When it 

contracts, it acquires KE from the PV work done by the atmosphere on the gas.  The gas itself doesn’t know 

or care where this PV energy goes, or where it comes from.  Hence, the behavior of our 3rd system is 

identical to that of both the 1st and 2nd systems.  In this case, though, it’s even harder to ascribe the PV 

potential energy to the system itself.  In fact, the PV potential energy is stored in the gravitational potential 

energy of the air in the atmosphere, as the atmosphere is lifted by an expanding gas bag, and the 

atmosphere falls when the gas bag contracts.  But the system behavior is the same as if the PV work were 

potential energy of the system, so we again include it “by hand” as a kind of “effective internal energy.”  

Since this case arises so often in the real world, we give it a special name, Gibbs free energy: 

G ≡ E + PV – TS 

Generalized Free Energy 

As a generalization beyond Gibbs free energy, we note that the nature of the “external” state-

dependent energy, which is effectively internal energy of the system, does not matter.  It could be PV work, 

magnetic work, or any other kind of energy store which is returned to the system upon a change of some 

observable property [Wan p137m]: 

[Reif p??]

( )

is arbitrary work done by the system, and stored as a function of the state

i i

i

i i

i

i i

free energy E F X TS

d free energy dE F dX T dS

where F dX

− = + −

 − = + −



  

Such a free energy is valid for fixed “forces” Fi: For Gibbs free energy, P is fixed.  For Helmholtz free 

energy, there is no state-dependent energy term, so we have the simplest case: just internal energy minus 

the heat from the bath, F = U – TS.   

For Gibbs free energy, with fixed P, we have the state-dependent energy of PV (FX where F → P, X 

→ V), which could have been considered part of the internal energy of the system, so G = E + PV – TS.  

The case of just PV work is so common in real systems that its free energy has a special name: Gibbs free 

energy. 

For any other free energy, we add internal energy plus all stores of potential energy, minus TS.  For 

example, a magnetically permeable material responds to an applied magnetic field vector H with a 

magnetization vector M.  The energy stored by the magnetic dipoles in M is: 

magnetic-energy = −H M . 
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Therefore, we would define a free-energy for such a system, valid at fixed H, as: 

( )F U PV TS + + − −H M  

Free energies in general are the sum of the internal energy; plus potential energy terms (often 

confusingly considered “energy out”); minus TS, the contribution to internal energy that comes from the 

heat bath.  When a system changes state, the available work comes from changes in the internal energy, 

heat energy that comes for “free” from the heat bath, and energy returned to the system from a potential 

energy store (e.g., PV, or magnetic).   

More on free energy after the Partition Function, below. 

Free Energy Ladder 

Each set of external constraints has only one meaningful “free energy” associated with it, i.e. some 

thermodynamic function which is minimized at equilibrium.  Three common sets of constraints are these: 

Constraints Free energy Comments 

Isolated system 

(no heat 

exchanged or 

work done) 

–S Entropy is maximized, so –S is minimized.  This 

isn’t really an “energy” (see Note). 

Fixed temperature Helmholtz: A = E – TS Heat is exchanged with heat bath.   

Fixed temperature 

and pressure 

Gibbs: G = E – TS + PV Heat is exchanged with heat bath, work can be 

done and stored in the ambient pressure. 

Other (general) 

energy stores free-energy i i

i

E F X TS= + −  
Heat is exchanged with heat bath, work can be 

done and stored in various state-dependent ways. 

Note –S isn’t really an “energy”, but temperature is not relevant for a system not in 

equilibrium with a heat bath, so we don’t define the free energy as –TS.  We could 

instead consider A = E – TS as the free energy of an isolated system, since E is fixed, 

and T doesn’t matter. 

Notice that entropy always has a negative sign in front of it, because increasing multiplicity (without 

changing other parameters) will increase likelihood, and therefore be closer to equilibrium.  The minus sign 

means that because higher entropy is more likely, it is lower free energy that is more likely. 

TBS: Grand free energy?? 

How Much Energy Is Multiplicity Worth? 

So how much energy is multiplicity worth?  In other words, how much energy surplus can multiplicity 

overcome?  We take as our measure of worth the occupation number: given an energy E1 with multiplicity 

1, and some other energy E2 of multiplicity g2, how much more energy can the higher state have, and still 

have the same occupation number as the lower state?  Without loss of generality, we take E1 = 0: 

1 2
1 2 2 1 2 2

1
1 1, 1 ln

E E
N e N e g N E g

 



− −
=  = =  = =  = . 

Note that how much energy g2 is worth depends on the equilibrium parameter β (which we will see 

means that it depends on temperature).  Also, for any β, the energy-equivalent of multiplicity goes as ln g2.  

In other words, at some β, the occupation number of an energy of multiplicity g is the same as a single 

multiplicity of energy (ln g)/β lower. 

The free energy of a system starts with the internal energy, and de-rates it by the energy equivalent of 

multiplicity.  In other words, it gives you an energy equivalent to tell you the occupation number due to a 

(multiple) energy level, as if it were a single-state energy level (g = 1) of lower energy. 
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How does free energy become the maximum amount of useful work you can get from a state change??  

Because it directly includes the amount of heat “borrowed” from the heat bath. 

Enthalpy 

Enthalpy uses the same idea as the Gibbs free energy: the energy of a system at fixed pressure can be 

divided into “internal” energy, U, and the energy stored in the “atmosphere” which provides the fixed 

pressure.  Note that the “atmosphere” doesn’t have to be the earth’s air; it could be a piston, or any other 

energy storage mechanism that depends on a “size” parameter of the system.  In effect, this “external” 

energy store must be included as part of the energy of your system, but we write the “internal” energy and 

“external” energy as separate terms.  For a typical system of varying volume in a fixed pressure, we have: 

H U PV + . 

and this is the true total energy of our system.   

Enthalpy is useful for thermally insulated systems, where the heat flow is zero (Q = 0).  

In this case, all the energy of the system is accounted for in the enthalpy. 

An exam question provides a good example of enthalpy in action:  Given 1g (10–6 m3) of liquid water 

at 20 C, force it through a thermally insulated porous plug at 104 atm.  The plug empties into a room at 1 

atm.  What happens to the water?  (I.e., what is the final state of the water?)  Assume that liquid water is 

incompressible (same volume at 104 atm as at 1 atm). 

Since the plug is insulated, there’s no heat flow, and enthalpy accounts for all the energy of the system.  

Even though the pressure of the water changes as a result of the process, the pressure is fixed before, and 

fixed after, the process.  Hence the enthalpy measures the total system energy in each case.  We take as our 

initial state the water at 104 atm.  It’s total energy is then: 

( )( )4 6 3(20 ) 10 10i i i iH U PV U C atm m−= + = + . 

Since total energy is conserved, the final enthalpy equals the initial enthalpy: 

f iH H= . 

The 104 atm does a lot of work on the water to force it through the plug, so we expect the water 

temperature to rise.  How much does it rise?  The work done to get it through the plug is (104 atm)(10–6 

m3), but on the other side, the water does (1 atm)(10–6 m3) of work to push the atmosphere out of the way.  

The difference in work heats the water: 

i f i i i f f f f i i i f fH H U PV U P V U U PV P V=  + = +  − = − . 

But the change in internal energy is just from the temperature rise of the water: 

( )

4 6 3 6 3
5 2

( ) 4.186 /( - )

(10 )(10 ) (1 )(10 )
1 10 /

4.186 /( - ) (1 )

239

f iU U C T where C heat capacity J g C

atm m atm m
T Use atm N m

J g C g

C

− −

− =   =

−
  = 

=

 

Whoops.  The liquid water will boil.  So the final state is either a mixture of liquid/gas at 100 C, or 

pure steam at some higher temperature.  We know the “heat of vaporization” of water at 1 atm is 540 

kcal/g, or 2,260 J/g.  Note that to vaporize water, we must add energy to do 2 things: (1) overcome the 

attractive potential between liquid water molecules, and (2) push the atmosphere out of the way to make 

room for the greater volume of steam.  In other words, 

“Heat of vaporization” is really “enthalpy of vaporization.” 

We must consider the process in at least 2 steps: first, raise the water temperature to 100 C, then 

convert some (or all) of the water to steam.  As above, the work done is: 
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9 2 6 3 5 2 6 3(10 N/m )(10 m ) (10 N/m )(10 m ) 1,000 Jf f i iP V PV − −− = − = . 

Raising the water temperature requires (100 C - 20 C)(4.186 J/(g-C)) = 335 J, leaving 665 J to boil the 

water.  It would take 2,260 J to boil the whole gram of water, so the process boils: 

665 J
0.29 g

2260 J/g
= of water. 

Thus the final state is 0.71 g of liquid water and 0.29 g of steam, both at 100 C. 

Schrodinger’s Cat Says “mu”: Chemical Potential 

A large number of practical systems involve two or more source particles (reactants) combining or 

splitting up to produce two or more final (product) particles.  For example: 

,A B C A B C D+ + + . 

In chemistry, the “particles” are usually atoms or molecules.  In cosmology, the particles may be primordial 

subatomic particles such as electrons, positrons, neutrinos, photons, etc. 

When a system can have a variable number of particles in it, we consider the possibility of adding (or 

removing) one particle to the system, and ask: Is the system more likely to be found (in a macrostate) with 

this added particle, or without it?  And how much more or less likely?  Chemical potential answers these 

questions.  

This section assumes a thorough understanding of macrostate probability and free energy (discussed 

earlier).   

Very brief review of free energy:  A system at constant temperature can potentially be in one of a 

large number of macrostates.  The probability of a given macrostate depends on both its energy (due to the 

Boltzmann distribution), and its multiplicity (entropy): macrostates with more microstates (i.e., higher 

multiplicity = more entropy) are more likely.  Free energy is a way of adjusting the true energy to account 

for multiplicity, so that: 

Free energy is a direct measure of the macrostate relative probability,  

on a logarithmic scale, and with a minus sign: 

RelPr( state with free energy ) appropriate free energy for the systemAmacro A e where A−=  . 

Recall that free energy also includes any energy stored as a byproduct of the macrostate, i.e. 

“reversible work” such as the pV work in a constant pressure system, or work from surface tension.  

Because of this, different system constraints require different definitions of free energy.  Any given system 

has only one relevant definition of free energy.  The most common examples of free energy are: (1) a 

system at constant temperature that does no work (e.g., constant volume) is characterized by Helmholtz free 

energy (F ≡ E – TS); and (2) a system at constant temperature and constant pressure (which therefore 

includes the reversible pV work) is characterized by Gibbs free energy (F ≡ E + pV – TS).  NB: Free 

energies can only be compared between systems at the same temperature. 

The chemical potential of a particle in a system is the free energy cost of adding the particle: 

appropriate free energy for the system
A

where A
N




 


. 

Thus, we can say μ measures the relative probability of adding a particle to that system.  Note that free 

energy A usually includes an arbitrary additive constant for its energy term, and often another arbitrary 

additive constant for its entropy.  However, since μ is a difference, the additive constants cancel, and 

therefore: 

The chemical potential is an absolute quantity, without an additive constant. 
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(For some applications, however, only differences in chemical potential are important, and such 

applications would tolerate an additive constant in μ.  See below.) 

Many systems are a mixture of different kinds of particles, which we label here with the subscript i.  

Each kind of particle has its own chemical potential: 

( , , ,...)
( , ,...) , ( , , ,...) relevant free energy for the systemi

i i

i

dA T V N
T N where A T V N

dN
   . 

For example, for a system at fixed T and V: 

,

( , , )
( , , ) , [Rei 8.7.10 p313]

( , , ) ( , , ) ( , , ) is the Helmholtz free energy for the system.

T V

dF T N V F
T N V where

dN N

F T N V U T N V TS T N V


 

 =  
 

 −  

 

For a system at fixed T and P: 

,

( , , )
( , , ) , [Rei 8.7.12 p313]

( , , ) ( , , ) ( , , ) ( , , ) is the Gibbs free energy for the system.

T p

dG T N P G
T N p where

dN N

G T N p U T N p PV T N p TS T N p


 

 =  
 

 + −  

 

The chemical potential is the free-energy cost of adding a particle to the system. 

Therefore, chemical potential includes both real energy and system multiplicity as a function of N, the 

number of particles of a species.  The chemical potential can be positive or negative.  If μ > 0, the system is 

more likely to be found without the particle, because adding it would increase the system free energy, and 

removing such a particle decreases the free energy.  If μ < 0, the system is more likely to be found with the 

particle, because adding it would decrease the free energy. 

The chemical potential for a particle is a function of the macrostate, just like particle density, or 

pressure.   

The chemical potential is not an intrinsic property of a particle.   

Sometimes, the chemical potential is misleadingly described as the “energy cost” of 

creating a particle.  However, it is the free energy cost, which is different. 

As previously noted, “probability rules,” not energy; equivalently, “free energy” rules (not energy).  We 

can think of the chemical potential of a particle as the “probability cost” of adding a particle, measured by 

free energy. 

For example, consider a monatomic ideal gas at constant temperature (not constant entropy), and 

constant volume.  If we add an atom, the system energy increases because the particle must acquire a 

kinetic energy of (3/2)kT.  That is the true energy cost.  However, the entropy of the system also increases, 

which means some heat will flow in from the thermal bath to the system (entropy attracts heat).  So the 

system doesn’t lose probability according to the full energy cost of adding the particle: the heat inflow 

offsets some of the energy cost.  I.e., the entropy increase results in a heat inflow: 

dQ T dS=  . 

So the probability cost of creating the particle (in units of energy) is only the difference between the true 

energy increase and the energy inflow from the heat bath: 

probability cost the change in free energydE TdS dA where dA −   . 

Another way to think of this is: chemical potential for a particle is the real energy cost (dE) minus the 

entropy benefit (T dS).  Once again, this includes the “multiplicity defies energy” principle for the particle. 

For many systems, especially chemical ones, the pressure is fixed, and the volume varies.  We have 

seen previously that this leads to Gibbs free energy:  G ≡ E + pV – TS.  This is because the work done by 
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the system expanding against the pressure (1) is a store of energy, (2) is a function of the system state, and 

(3) is returned when the system contracts.  Therefore, that work can be included as part of the “total 

energy” of the system [Wan p137t].  The chemical potential is always defined as the change in free energy 

per particle, using the one-and-only free energy that is appropriate for the constraints of the system.  For 

constant pressure, then, the chemical potential is: 

,

probability cost of one particle

(system at constant , ) .
T p

dE pdV TdS dG

dG
T p

dN


= + −  →

 
   

 

 

But for constant pressure and temperature, G is extensive, i.e. is proportional to N.  In this case, the 

chemical potential is the same for any sized system (i.e., any number of particles), because any sized 

system has the same particle density, and temperature.  Each particle “feels” the same environment, no 

matter how many other particles are in the system.  Therefore, for a system of just one particle type: 

/ (system at constant , )G N T p = . (3.1) 

This situation of each particle “feeling” the same environment comes about any time we fix two intensive 

properties (in this case, pressure and temperature). 

Note that in this case, G for the system may include an arbitrary additive constant for the energy of 

each particle, and possibly for the entropy.  Therefore, the μ in (3.1) is not absolute, since it includes any 

per-particle additive constants. 

The chemical potential is sometimes described as the “Gibbs free energy per particle.”  

That is misleading on several counts. 

For one, it confuses the fact that chemical potential is the free energy cost of adding a particle, using the 

one-and-only free energy that is relevant for the system at hand.  In particular, Gibbs free energy is only 

meaningful for systems constrained by constant temperature and pressure.  For systems with other 

constraints, the Gibbs free energy is meaningless.  For example, systems that include other forms of 

reversible work, such as surface tension or magnetic work, use a different free energy.  And finally, for 

systems of multiple particle types, each type has its own chemical potential.  The definition above says 

nothing about how to divide up the Gibbs free energy among different particle types, and assign each type 

some piece of the total Gibbs free energy.   

Maxwell relations for chemical potential:  TBS.   

Comments on the Chemical Potential 

At least one reference says μ is due to inter-molecular forces.  The potential energy of 

such forces are sometimes part of μ, but such forces are not required.   

In fact, in [Car] problem 9.2, he asks you to compute the chemical potential of an ideal gas.  An ideal gas, 

by definition, has no inter-molecular forces.  If chemical potential were due to inter-molecular forces, an 

ideal gas particle could not have μ ≠ 0. 

As a free energy, the chemical potential includes kinetic energy, potential energy, possibly other 

energies, and entropy: 

for one particlekinetic U TS = + − . 

However, recall that the potential energy U and the entropy S both include arbitrary zero points.  If we 

change the zero of either, we also change the zero of μ, at least, for any particle affected by the change.  For 

example, if we add an arbitrary constant to an electrostatic potential energy, then all charged particles have 

their μ changed by that amount.  However, the μ for photons and neutral particles such as atoms, molecules, 

and neutrons, are not affected. 
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The Partition Function 

The partition function is an odd beast.  To my knowledge, it has only one worthwhile use, which is to 

compute (as a highly accurate approximation) the free energy of a system.  But from the free energy, we get 

all other thermodynamic properties.  The partition function is also sometimes used as the normalization 

constant for the relative probabilities of microstates, and to compute the average energy for a system.  

These latter two uses are trivial, though, and simply restate basic definitions that don’t require the bother of 

defining any partition function.   

The partition function is defined for all systems for which the Boltzmann distribution 

applies, from single atoms to macroscopic systems.  In other words,  

the partition function is defined for all systems in thermal equilibrium with a heat bath. 

This section relies on the Boltzmann distribution.  Recall that the Boltzmann distribution gives the 

relative probability of a system, in thermal equilibrium with a heat bath, to be in a single microstate of 

given energy (see “Nuts and Boltzmann,” earlier): 

RelPr(microstate of energy ) exp( / )s sE E kT= − . 

The partition function is also called the “sum of states,” which so far as I can tell, means absolutely 

nothing.  It should be called the “sum of relative probabilities of all the microstates,” but that doesn’t roll 

off the tongue so well. 

We proceed on these lines: 

1. Partition function as a normalization factor 

2. Using the partition function to compute average energy and such  

3. Partition function tells all 

4. Partition function and free energy 

The partition function as a normalization factor:  As shown in the section on the Boltzmann 

distribution, Z(β) is the sum of relative probabilities of all the microstates, or equivalently, the sum of the 

relative probabilities of each energy value.  It is defined only for a system in thermal equilibrium (which 

means it can exchange energy with a temperature bath).  For a system with discrete energies: 

( ) ( )
RelPr(state ) 1 RelPr(ener y1 g )

( ) exp exp , multiplicity of energy

j

all energy
all states levels

s j j j j

Es js

Z E g E where g E  

=  =

 − = −   . 

This readily generalizes to a system with continuous energies: 

RelPr(ener
min

gy )

( ) ( )exp( ) ( ) energy density of states
E

E

Z dE g E E where g E 


−
 

 −  . (3.2) 

Note that for a system held in a heat bath, the system energy is a variable (not a constraint).  The 

system may have more energy than the average, or less, all the way down to zero.  That’s very unlikely for 

most systems, but for mathematical expedience, it is still counted as a possibility in Z(β).   

Since the partition function is a sum of relative probabilities,  

The partition function includes an arbitrary multiplicative constant.   

This arbitrariness also reflects the arbitrary zero of energy.  Changing the zero-energy simply multiplies the 

partition function by a constant, with no effect on the physics. 

The partition function serves as the (inverse of the) normalization factor to convert the relative 

probability of the system being in some microstate, or having some energy, into an absolute probability: 
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( )

( )

1

1

RelPr( ) exp( )
Pr(state )

( )
RelPr(state )

RelPr( ) exp( )
Pr energy

( )

RelPr

r r

all states

s

k k k
k all energy

levels

j

j

E E
r

Z
s

E g E
E

Z

E









=

=

−
 = =

−
= = =





 

But this is trivial, and simply uses the letter Z for something that is already well known. 

Partition function for average energy, and such:  Another use for Z(β) is to compute average 

energy.  (This is also trivial, and provides no new physical insight.)  Recall from basic statistics that for any 

discrete random variable, say E: 

Pr( )i i

i

E E E=  .  (3.3) 

Therefore, for the energy of a system, we have: 

1 1 1

RelPr( ) 1
Pr( )

( ) ( )
s

all states all states all states
Es

s s s s

s s s

E
E E E E e E

Z Z



 

−

= = =

= = =   . 

But purely as a mathematical trick, with no deep physical meaning, we notice that the factor: 

1 1

1 1 1
( )

( ) ( ) ( )

s s

s s

E E
s

all states all states
E E

s s

e E e

E e e Z
Z Z Z

 

 




     

− −

− −

= =


= − 



 −  − 
= − = =

   
 

This gives us nothing new, simply using Z for something already well-known.  Since the partition function 

includes all the terms needed for the fundamental formula for average energy, as in Eq (3.3) above, we 

could have more easily computed the average energy from the fundamental formula.  I don’t know why 

anyone bothers tying average energy to the partition function. 

As another trick, notice that: 

1
( ) ln ( )

( )
Z Z

Z
 

  

−  
= −

 
. 

This has the advantage, however, that ln Z(β) ≡ free energy, so there is some physical significance to this.  

Notice that this leads directly to a thermodynamic identity: 

ln ( ) ( ) ( ) free energy of the systemE Z A where A  
 

 
= − = − 

 
. 

Partition function tells all:  In the end, given the partition function Z(β) for all values of β, we can 

compute every (thermodynamic) thing there is to know about the system.  That is, a system’s 

thermodynamics is fully characterized by its partition function.  Recall that a system is also fully 

characterized by its energy density of states.  Therefore, knowing the partition function and knowing the 

density of states are equivalent.  How are the two related?  Recall the partition function for continuous 

systems (3.2): 

min
( ) ( )exp( ) ( ) energy density of states

E
Z dE g E E where g E 



−
 −  . 
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This is the definition of the Laplace transform of g(E), with transform variable β.  Recall the Laplace 

transform is uniquely related to the original function.  Therefore: 

The partition function Z(β) is the Laplace transform of the density of states g(E),  

so knowledge of one is equivalent to knowledge of the other.   

Either one fully defines the thermodynamic properties of the system. 

However, in practice, you usually need to know g(E) to find the partition function, so this Laplace 

transform relationship isn’t usually very useful.  [Pathria’s example where it is useful??] 

Example: Thermodynamic zipper 

A horizontal zipper has N links. Each link has two states: closed with energy 0, and open with energy 

.  The zipper can only unzip from the left end and the sth link cannot open unless all of the links to its left 

(1, 2, ..., s–1)  are already open. 

(a) Find the partition function for the zipper. 

(b) Find the mean number of open links.  These kinds of questions always mean “as a function of 

temperature.” 

(c) Evaluate your result in both the low and high temperature limits.  (The high temperature limit is 

tricky.)  Explain conceptually each result of low, middling, and high temperatures. 

Answer:  (a)  We use the variable s as the state variable, defined as number of open links.  s runs from 

0 to N.  The system energy is a function of s, E(s) = sε.  Then the partition function is: 

( ) ( ) ( )

( )

( )

1

0 0 0Relative Pr
of state

1
( ) exp exp exp . Use

1

1 exp ( 1)
( )

1 exp

all states N N n n
s i

k

k s s i

k

r
Z E s ar a

r

N
Z

    






−

= = = 
  

−
 = − = − = −   =  −

− − +
=

− −

   

 

This is exact, and the magnitude of N is irrelevant. 

( ) ( )( ) ( )( )

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

1 1
(b) ln ( ) ln 1 exp ( 1) ln 1 exp

1 exp ( 1) exp1

1 exp ( 1) 1 exp

1 exp ( 1) exp

1 exp ( 1) 1 exp

E
s Z N

N N

N

N N

N

  
    

   

  

 

 

−  − 
      = = = − − + − − −  

 + − + −
= − − 

− − + − −  

+ − + −
= − +

− − + − −

 

(c)  We expect at low temperature the zipper is fully closed, since the thermal energy is too low to 

open even one link.  Mathematically, as T → 0, β → ∞, exp(–βε) → 0: 

0

0 0
lim 0

1 1T
s

→
= − + = , 

as expected. 

The high temperature limit turns out to be more complicated than I expected, and you can skip this if 

you want.  At high temperature, there is unlimited energy, and we might expect every link to open.  As 

T → ∞, β → 0, exp(–βε) → 1.  The denominators go to zero in <s>, but a 1st order expansion of  

(1 – exp(–x)) = x + O(x2) resolves the problem: 

( )
1 1

lim 0
1T

N
s

N  →

+
= − + =

+
. 
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Whoa!  Can this be right?  Yes.  Consider the temperature of our zipper, as a function of energy (from 

(2.1)): 

( )
1

( ) , ( ) ln ( ) measurable energy change
dS

T E S E k g E E where E const
dE

−
 

         
 

. 

Strictly speaking, temperature is only defined for a continuous g(E).  If N is large, we can take the states as 

continuous, and to define a temperature, we take ΔE ~ ε.  The approximate (or “smoothed”) density of 

states is g(E) = 1/ε, since there is only one state of any given energy, and energies are spaced by ε.  (We’ll 

analyze the high-temperature limit shortly in a different way.)  There is only one microstate for each energy 

E, so: 

1

( ) ln1 0 (constant), 0, ( )
dS dS

S E k T E
dE dE

−
 

= =    =     = →  
 

. 

The temperature of the zipper is hotter than any heat bath at finite temperature.  It will always transfer 

energy from the zipper to the heat bath, until it has no more energy to give.  Thus <s> = 0. 

A different analysis avoids any zipper temperature by directly considering the entropy of the heat-

bath/zipper combined system.  It is an isolated system, and so equilibrates in the macrostate of maximum 

entropy.  The entropy of the zipper is fixed at 0, so the maximum entropy of the system occurs at the 

maximum entropy of the heat bath.  The heat bath has finite (and positive) temperature, so its maximum 

S(E) is at maximum E.  Thus all the energy leaves the zipper, and goes into the heat bath.  The zipper has 

no open links, as above.  But there is still more to the story. 

The careful reader must now wonder about <s> at middling temperatures.  The entropy argument 

above suggests that energy will always leave the zipper until its energy is zero.  How does that square with 

<s> found in part (b), which is sometimes positive?  To illustrate the principle, consider a zipper of only 3 

links, at a temperature such that exp(–βε) = ½.  Then: 

3

0

RelPr( 0) 1, RelPr(1) 1/ 2, RelPr(2) 1/ 4, RelPr(3) 1/ 8 .

RelPr( ) 15 / 8, Pr( ) RelPr( ) /

Pr(0) 8 /15, Pr(1) 4 /15, Pr(2) 2 /15, Pr(3) 1/15 .

i

s

Z i s s Z

=

= =      =      =      =  

 = = 

=  = = =  

  

This shows that the most likely state is that of zero energy, but there are always thermal fluctuations.  In this 

case, the probability of an excited state is nearly ½.  For N >> 1, the probability of an excited state 

approaches ½.  In other words, when kT ~ ε, the probability of an excited zipper is finite.  In the high-T 

limit, though, the entropy of the heat bath is huge, and essentially draws all the energy into it, leaving <s> 

→ 0. 

Summary:  At low T, <s> = 0, because there is no energy to open a link.  At high T, <s> = 0 because 

the entropy change of the heat bath for even one link’s worth of energy is so huge, it overwhelms the 

energy fluctuations in the zipper, which approach zero.  In the middle, the energy fluctuations of the zipper 

are substantial, and therefore the average energy (number of open links) is finite. 

Perhaps I should find a simpler example for a partition function. 

Free Energy and the Partition Function 

When considering the possible macrostates of a system, what really matters is the most-probable 

macrostate of a system, and to be meaningful, it must be the only macrostate with any significant chance of 

occurring.  To compute free-energy from the partition function, we use the general conclusion that,  

For macroscopic systems,  

the partition function is dominated by the one most-probable macrostate.   
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Why do we bother with a partition function?  If we know the most-probable state, shouldn’t we just 

use that?  Yes.  But often we don’t know the most-probable state.  And mathematically, it may be easier to 

compute the complete sum Z ≡ sum-of-(all)-state-relative-probabilities [Rei p219b].  In the thermodynamic 

limit (macroscopic systems), the most-probable state and the complete sum are equivalent (to 10 orders of 

magnitude or so), so we do whatever’s easier. 

The equilibrium macrostate of a system is simply the most-likely macrostate in thermal equilibrium; 

this, in turn, is that macrostate with the largest number of likely microstates, i.e. largest product of 

(Boltzmann-factor)  (#-microstates): 

( )max jE
most likely j

j all energies
E g e

−
−

=
= . 

Therefore in principle, we can find the equilibrium macrostate by first identifying all the microstates, their 

probabilities, and the macrostate for each, and pick that macrostate with the largest number of likely 

microstates.  This is only meaningful if the most likely macrostate has probability near 1, so that all other 

macrostates are so unlikely they can be ignored.  For systems with a large number of subsystems, N  (e.g., 

large number of particles), this condition is true: only one macrostate has any reasonable chance of 

occurring. 

In practice, though, finding the “most likely” thing often has no closed-form mathematical expression.  

But we like formulas, so we use an approximation to the most-likely macrostate.  For systems of large N, 

almost all of the likely microstates are crowded very near the most-likely macrostate; therefore, it’s usually 

more convenient to simply sum the relative probabilities of all the microstates, as an approximation to the 

number of likely microstates near the most-likely energy.  This often allows closed-form mathematical 

answers, which would otherwise be mathematically untenable. 

E

# of likely 

microstates

most likely 

macrostate  
Figure 3.1  Number of likely microstates of a system as a function of energy 

We now show that for systems with a large number of component subsystems (systems of large N), 

there is a simple approximation to the Helmholtz free energy of the system from the partition function: 

( ) ln ( ) (large system)A kT Z  − . 

Here’s why: for large N, there will be only a few terms in the partition function which dominate not only all 

the other terms, but all the other terms combined.  These few terms all have very nearly the same energy, so 

they can be lumped together as a single multiplicity for that energy: 

( ) ( )
1

( ) exp / exp / ,

is the dominant energy in the sum

all energy states near
levels maximum

j j m max

j m

max

Z g E kT g E kT

where E



=

= −  −   

This means that the probability of the system being at Emax is essentially 1: 
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( )

( ) ( )

exp /
( )

Pr( ) 1

states near
maximum

m max

m
max

g E kT
Z

E
Z Z



 

−

=  =


. 

This is as we expect: for systems of large N in thermal equilibrium, there is only 1 realistic macrostate. 

Now if Z(β) has only one significant energy Emax, then we can rewrite Z(β) or Z(T) to follow the 

reasoning of free energy.  We can replace the sum of the few gm near Emax with a single geff, since they all 

have essentially the same energy, Emax. 

( )

( )

( ) ( )

( ) exp / is the dominant energy level in the sum

exp(ln )exp / writing as an exponential

exp ln / exp / ln writes in terms of energy

( )
exp

eff max max

eff max eff

eff max eff eff

max max

Z T g E kT where E

g E kT g

kT g kT E kT where kT g g

E TS E

kT

 −

= −      

= −

−
= − ( ) ln

( )
exp ( ) free energy of the macrostate at temp

max effwhere S E k g

A T
where A T T

kT


    

 

 
= −  

 

 

Once again, we’re simply quantifying how multiplicity defies energy, as before, and measuring multiplicity 

in units of energy.  Solving for A(T) yields the result given above:  

( ) ln ( ) (large system)A T kT Z T − . 

Note that since Z is defined only up to a multiplicative constant, A(T) is defined only up to an additive 

constant, which is always true for energy (free or otherwise). 

Note that for small systems, such as atoms, “temperature” is not defined, and therefore, 

neither is free energy.  The above approximation only works for large systems,  

where the thermal equilibrium macrostate is sharply defined. 

What kind of free energy?   

The partition function is calculated for a given set of constraints,  

just like the various kinds of free energies.   

For a system constrained as for Helmholtz free energy (fixed T, no work done), we compute Z(T) within 

those constraints, and A = –kT ln Z gives Helmholtz free energy.  If the system had different constraints, 

such as those of Gibbs free energy (fixed T and P), then Z(T) is different, and G = –kT ln Z gives Gibbs free 

energy.  And so on. 

Big Partition Functions From Little Ones 

To effectively use the partition function to compute free energies, we must know how to construct big 

partition functions from little ones.  It is quite common to have a system comprising a large number of 

simple subsystems, e.g. a gas of particles.  We know how to find the partition function for a single 

subsystem with known energy states.  Is there a simple relationship between the 1-particle partition 

function and the N-particle partition function?  Of course there is. 

We start with a simple case: we define a new system as the combination of two smaller subsystems, A 

and B.  It doesn’t matter if they are identical or not, so let’s be general, and assume they are different.  A 

microstate of the combined system is defined by specifying the two microstates of the subsystems.  If the 

two subsystems interact, and their energies depend on each other’s states, then we can’t compute anything.  

But if the two subsystems are independent, we have a simple result: the probability of being in two given 
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microstates of the subsystems, which is the same as one microstate of the combined system, is just the 

product of the two probabilities: 

/ / ( ) /

RelPr( , ) RelPr( )RelPr( )

A B A B

A A B B A B

E kT E kT E E kT

A in S with energy E and B in S with energy E A in S B in S

e e e
− − − +

=

= =

 

This is nothing more than the statement that the combined system, with energy EA + EB , follows the 

Boltzmann distribution.  [It almost seems like a way to derive the Boltzmann distribution.] 

A few short steps of algebra then shows [Wan p86t]:  

Independent distinguishable subsystems combine to give a partition function that is the 

product of the individual partition functions.   

( )( )

( ) ( )

( ) ( )

( ) exp /

exp / exp /

exp / exp / ( ) ( )

states of A states of B

AB r s

r s

states of A states of B

r s

r s

states of A states of B

r s A B

r s

Z E E kT

E kT E kT

E kT E kT Z Z



 

 − +

= − −

  
  = − − =
  
  

 

 

 

 

This immediately gives, for a system of N identical, but distinguishable, subsystems, 

( )1( ) ( ) (distinguishable subsystems)
N

NZ Z = . 

If the subsystems are identical, such as atoms, then strictly speaking, we should divide by N!, to account for 

the N! ways that the N-particle quantum state has been overcounted in the above equation (i.e., we should 

use correct Boltzmann counting): 

( )1( )
( ) (identical subsystems)

!

N

N

Z
Z

N


 = . 

This will be critically important later, for the grand partition function.  If N is fixed, though, then N! is 

simply a multiplicative constant.  Since the partition function is defined only up to a multiplicative 

constant, the N! has no effect when N is fixed. 

A microscopic individual subsystem, such as an atom, is too small to have a temperature or free 

energy, but a large number of such subsystems (e.g., gas of atoms) do have a temperature and a free energy.  

This gives the simple result that: 

1ln ( ) ln ( )NA kT Z NkT Z = − = − . 

Here again, for identical subsystems, there would be a (–ln N!) term, but that is an additive constant to the 

(free) energy.  Since energy and free energy are only defined up to an additive constant, the (–ln N!) term 

can be dropped.  The important point is that: 

 ln Z1(β), for a single small subsystem, doesn’t mean anything, because the subsystem is 

too discrete to have a temperature or free energy.  But N ln Z1(β) is meaningful for large 

N, because it describes a system with a nearly continuous energy density of states. 

For example, a normal six-sided die has an average roll of 3.5.  If I ask you to predict a single roll of a 

die, knowing the average tells you nothing.  However, if I ask you to predict the sum of a billion rolls, 

knowing the average tells you a lot [Wan p11m]. 
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4 The Ensembles 

Whole chapter under construction. 

There are 3 main classes of systems we consider, distinguished by their constraints.  An ensemble is a 

(possibly imaginary) set of systems in identical macro states.  Here, we use 

N # of particles (or moles, or quantity) of a system 

E energy of a system 

Micro-canonical ensemble (MCE) N, E fixed 

Canonical ensemble (CE) N fixed, E 

variable 

Grand canonical ensemble (GCE) N, E both 

variable 

Ergodicity applies to all the ensembles, i.e. the time average of any observable (macroscopic) quantity 

equals the ensemble average.  This is equivalent to saying that given enough time, the system would visit 

every possible microstate.  (However, in practice, it would take inconceivably many multiples of the age of 

the universe for this to happen.) 

Micro-canonical Ensemble 

A micro-canonical ensemble is a set of systems, where each is completely isolated from its 

surroundings: no energy or particle exchange, no work done.  The micro-canonical ensemble is an 

idealization used to develop methods of calculating thermodynamic quantities from microscopic physics.  

[I’m not sure the “ensemble” idea is a good one.] 

TBS.   

System of (nearly) fixed energy [Hua p176b, Kub p7b], volume, particle number.  Stop appealing to 

“classical” thermodynamics; pretend we don’t know thermodynamics (stretch).  T is defined and it is 

intensive (see Introduction to Entropy, above). 

(Ordinary) Canonical Ensemble 

A canonical ensemble is a set of systems, each in thermal equilibrium with a large heat bath at a fixed 

temperature T.  This means heat can be exchanged with the heat bath, but no other exchanges occur: no 

particles or work. 

Many works have the systems in an ensemble exchanging stuff with each other.  This is not necessary, 

and I think confuses the real issues.  Such works have a single system in the ensemble use all the other 

systems in the ensemble as their heat bath.  However: 

The nature of the heat bath is irrelevant, and in particular, it need not be other identical 

systems.  Only its temperature matters. 

TBS.  Can’t fix energy. 

 

 ( )  ( )

( , , )3 3

3

1
( , , ) [Hua p149]

!

( , , ) ,

i i

i

i

p q NN N

N

E n
i i i i

n i i

Z V N d p d q e or
N h

Z V N n N e where E n n







  

−



−

=

 
 = − =
 
 



  

H
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Helmholtz free energy: ( , , ) ln
F F

A N V T U TS kT Z P
N V


 

= − = −  = −
 

. 

Grand Canonical Ensemble 

A grand canonical ensemble is a set of systems, each in thermal equilibrium with a large heat bath at 

a fixed temperature T, and which can also exchange particles with the heat bath.  Thus heat and particles 

can both be exchanged with the heat bath, but no other exchanges occur: no work. 

Many works have the systems in an ensemble exchanging stuff with each other.  This is not necessary, 

and I think confuses the real issues.  Such works have a single system in the ensemble use all the other 

systems in the ensemble as their heat and particle bath.  However: 

The nature of the heat and particle bath is irrelevant, and in particular, it need not be other 

identical systems.  Only its temperature and chemical potential matter. 

TBS. 

( )

0 0

( , , ) labels the microstates [Sch 7.7 p258]

ln

sE N

N s

V e where s

PV

 
 



 
− −

= =

=

=

 Z

Z

 

Though I think it’s confusing, the grand partition function is sometimes written in terms of “fugacity,” 

z, by pulling out the chemical potential factor z = exp(βμ): 

0 0

( , , ) ( , , ) ( , , )N N

N N

V e Z V N z Z V N where z e    
 

= =

= =  Z . 

This hides the relative nature of the energies with respect to the chemical potential. 

Classically: 

( )

3 3 ( , )

3

indistin-
guishable

( , )( , )

3 3

1 1
( , , )

!

1 1
( , , )

! !

N N q p

N

PV q p NN PV q p
i i N N

Z V N d p d q e
N h

p q N e e e e
N h N h



   





−



− + −− −

=

= =


H

HH

 

If the particles are distinguishable, the factors of N! are not present. 

Quantum mechanically: 

 
( )

 0 0 0

( , , ) ( , , ) exp exp

( , , ) may vary within the summation

ln (grand canonical ensemble)

j j

energy energy
levels levels

N
j j j j j

N N j j Nn n

V e Z V N n n n

but T V N

PV

        

 



  

= = =

 
 

 = = − = − −   
 
  

=

=

      Z

Z

 

Equipartition of Energy 

Equipartition of energy is a classical result, not strictly true quantum mechanically.   
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Short version: anything that stores energy is a “system.”  Ergo, any dynamic variable, x (a position or 

momentum) whose value determines its energy content (position for potential energy, momentum for 

kinetic energy), is a “system.”  Any ensemble of systems in thermal equilibrium follows the Boltzmann 

distribution for energy: 

pdf( ) , 1/Estate with energy E e where kT − =  for continuous states. 

Knowing the energy as a function of the dynamic variable, E(x), and plugging into the Boltzmann 

distribution, gives the PDF for that variable:   

( )
( )

( )

pdf( )
E x

E x

E x

all x

e
x e

e dx






−
−

−

= 


. 

Integrating energy weighted by pdf(x) gives the average energy of a system for the ensemble: 

( )

( )

( )

( ) pdf( )

E x

all x
avg

all x E x

all x

E x e dx

E E x x dx

e dx





−

−

= =





. 

Therefore, any dynamic variables whose energy functions have the same form (e.g., 
2( )E x Cx= ) will 

store the same average energy in thermal equilibrium.  For this quadratic form, do the math, and 

1

2
avgE kT= . 

Even Reif kind of overcomplicates the derivation, and misses the real point.  The key is that you can 

consider any term in the total system energy as a “system” of its own [Sch ??].  For example, in the boring 

example of a particle in 3D space, you can consider its x-motion as a system in thermal equilibrium with 

the “systems” of y- and z- motion, and other terms (say, potential energy).  A gas of such particles is an 

ensemble of these systems at a fixed temperature, and hence follows the canonical (i.e. Boltzmann) 

distribution.  The rest is just math (following the short version above): 

pdf( ) , 1/Estate with energy E e where kT − =  for continuous states. 

Now 
2 2( )E p Cp p=  , (or 

2( )E x Cx= , then substitute x for p in the following), so 

( )

( )

( )
( ) pdf( )

E p

avg
E p

E p e dp
E E p p dp

e dp






−


−

− −

−

= =





. 

Again, the key is recognizing that: 

Each independent dynamic variable (coordinate or momentum) is a “system” in the 

Statistical Mechanics sense, in thermal equilibrium with its surroundings.  Hence the 

energy of that dynamic variable follows the Boltzmann distribution.   

If you know the energy as a function of the dynamic variable (coordinate or momentum), that gives you the 

PDF for the dynamic variable.  Then you use the standard formula for computing the average energy given 

the probability density function for the dynamic variable.  This process allows you to answer questions 

about partition of energy if E is not quadratic in x. 

Note that we don’t aim to separate potential energy from kinetic energy;  instead, we separate 

individual dynamic variables (Hamiltonian coordinates or momenta).  In the classic 1D ball-on-a-fixed-

spring example, there are two dynamic variables: position of the ball, and momentum of the ball.  In a set 

of N such balls-and-springs, energy can be exchanged between any of the 2N dynamic variables.  Thermal 

equilibrium is by definition the stable state of a system when energy can be exchanged between its 
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component subsystems.  In this example of N springs/balls, a single ball on a spring is a subsystem, but the 

position of the ball is a smaller subsystem, and its momentum is another subsystem.  The set of N 

springs/balls is a true, physical ensemble (as opposed to the oft-used “imaginary” ensemble) of 2N little 

systems.  Since each of the 2N little systems is in thermal equilibrium with all the others, the ensemble 

statistics follow those of Boltzmann.  Hence, we can compute the average energy of each of the 2N little 

systems using Boltzmann statistics.  Ergo, (with some math): equipartition of energy. 

Once the concepts of equipartition are clear, Reif’s derivation provides a solid mathematical 

foundation for it. 

The increasing heat capacity of diatomic gases with temperature, from 3/2 R to 5/2 R, and 

sometimes to 7/2 R, demonstrates that equipartition does not apply to quantum systems. 

[Aside:  Reif cleverly points out that we can find Eavg above without evaluating the integral, by using a math 

trick.  Note that the denominator is just a normalization constant for fixed β, but is a function of β.  Rewrite the 

numerator in terms of the denominator (we do this all the time in Stat Mech): 

( )

( )

E p

avg
E p

d
e dp

d
E

e dp








−

−


−

−

−

=



 

Now interchange the order of integration and differentiation, since they operate on different variables: 

( )

( )

E p

avg
E p

d
e dp

d
E

e dp








−

−


−

−

−

=



 

But this is of the form 
1

ln
dU d

U
U d d 

= .  Hence, 

( )ln E p
avg

d
E e dp

d






−

−
= −  . Now use 

2( )E p Cp= , 

 
2

ln Cp
avg

d
E e dp

d






−

−
= −   (Eq. 1) 

Focus on the integral for a while: Since we only care about a derivative with respect to β, we can remove β from 

the integral with a variable substitution: 

2 2

2

2 2 1/ 2 1/ 2 1/ 2

1/ 2

1/ 2 1/ 2

, , , .

1
ln ln ln

2

1 1 1 1
ln

2 2 2

Cp Cy

Cy

avg

Let y p y p dy dp and dp dy Then

e dp e and

e const const

d
E const kT

d



   



  


 

−

 
− − −

− −


− − −

−

=  = = =

=

= + = − +

  
= − − + = =  

   

 



   

Wasn't that fun? ] 
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5 Microscopic Distributions and Quantum Statistics 

Given a system of N particles (N large), our purpose here is to derive the average occupation number 

of a single-particle quantum state (of known energy) within the system.  As usual, we consider the particles 

as “weakly-interacting,” which means their interaction energy is negligible, except at very close range 

where they collide elastically.  However, fermions still “interact,” not through a potential energy between 

them, but through the exclusion principle.  Similarly, bosons’ indistinguishability causes their behavior to 

deviate from classical behavior.  This will have enormous consequences. 

We consider the single quantum state in question to be a “subsystem” within a bath, which is the rest 

of the system.  Since we are concerned with how many particles are in the quantum state, we must be 

concerned with particle exchange between that state and the bath.  Therefore, we must include the effects of 

particle gain or loss by the bath, i.e. we must include the chemical potential of particles in the bath. 

[Some references start the quantum distribution discussion with a bunch of stuff about multi-particle wave-

functions and density matrices.  They then proceed to derive the microscopic distributions without using any of the 

introductory quantum physics review material.  Here, we skip the multi-particle wave-functions and density 

matrices, since they aren’t needed for a proper understanding.] 

Recall that any system in equilibrium has only one relevant state function called the “free energy.”  

The particular form of the free energy depends on the constraints of the system. (Free energy is discussed in 

detail elsewhere).   The chemical potential of a particle in a system is the free energy “cost” to add a 

particle to the system in equilibrium.  Mathematically: 

relevant free energy for the system
A

where A
N




 


. 

Since systems time-evolve toward lower free energy, a system favors particles with lower chemical 

potential over those with higher chemical potential. 

The term “Maxwell-Boltzmann distribution” is ambiguous, because it has at least 3 different meanings.  

We use it in this chapter as an approximation to either the Fermi-Dirac distribution, or the Bose-Einstein 

distribution, at higher energy.  We call this the Maxwell-Boltzmann occupation number.  [Another 

commonly used meaning is “the speed distribution of atoms in a gas.”  What is the other meaning?? Need 

refs.] 

The Interactions of Non-Interacting Quantum Particles 

When we speak of non-interacting bosons or non-interacting fermions, we mean that there is no 

energetic interaction, i.e. no inter-molecular forces, which means the inter-particle potential energy is 

negligible.  However:  

So-called “non-interacting” quantum particles actually do interact: though there may be 

negligible potential energy, fermions still interact through the exclusion principle, and 

bosons interact in a way that allows them to occupy the same quantum state. 

It is in this sense that we speak of three things: (1) “ideal classical gases” (of non-interacting classical 

particles), (2) “ideal fermion gases,” and (3) “ideal boson gases.”  “Ideal” means no forces, or equivalently, 

no potential energy between particles, but there may still be quantum interactions [Wan p179b].  These 

quantum interactions derive from the symmetry (for bosons) and anti-symmetry (for fermions) of their 

multi-particle wave-functions.  The anti-symmetry of fermions implies the Pauli exclusion principle. 

Therefore, systems at low density tend to act as ideal classical gases for two separate reasons:  

1. Low density implies the particles are far apart, and so their Coulomb potential is low (“ideal,” i.e. 

“non-interacting”). 

2. Low density implies low fractional occupancy of quantum states, so the fermion or boson quantum 

interactions are negligible (“classical”). 
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At low energies, the M-B occupation number is unrealistic, because it ignores the quantum implication 

of indistinguishability.  Real particles are quantum, and often indistinguishable (e.g., a gas of identical 

molecules).  When the particles are indistinguishable, then the conditions for the particles to obey the 

Maxwell-Boltzmann occupation number do not strictly apply.  Specifically, the Maxwell-Boltzmann 

occupation number requires that the only interaction is thermal exchange of energy.  But identical quantum 

particles interact through their quantum nature, as noted above.  Therefore, the system, as a whole at fixed 

T, obeys the Boltzmann (not Maxwell) distribution for energy, because (as we saw earlier) the Boltzmann 

distribution for system energy is independent of the nature of the system.  But the quantum states do not 

follow the Maxwell-Boltzmann occupation number, because of the particles’ quantum interactions. 

An Ideal World 

Now that we know that ideal (so-called “non-interacting”) systems do, in fact, interact, it is time to 

more precisely define an “ideal” system, at a given temperature. [This is out of place??] 

The Amazing Fermi-Dirac Distribution 

We start with fermions, because they are conceptually simpler for this topic.   

The Fermi-Dirac distribution tells us, for a given temperature,  

the average number of fermions in a single quantum state of given energy;  

or equivalently, what is the probability of occupancy of a single quantum state. 

When gas particles are fermions, they interact through the Pauli exclusion principle.  We usually think of 

interactions in terms of energy: an interaction potential.  But fermions also interact through exclusion, and 

this isn’t described by an interaction potential [Wan p179b]. 

For any system of identical fermions in thermal equilibrium, the chemical potential, μ, serves as a 

natural energy reference level.  The chemical potential need not be zero, and it follows the arbitrary 

additive constant of energy (allowed by any system).  This allows the Fermi-Dirac distribution to be written 

with absolute probabilities: 

( ) /

Pr( )

1
chemical potential .

1s

s

E kT

occupation number state s with energy E is occupied

where
e




−

=

= 
+

 

For fermions, the average occupation number of a state is between 0 and 1,  

and therefore equals the probability of occupation of the state.   

Note that the probability of occupancy of a state at E = μ is exactly ½. 

μ can be determined by the density of states, g(E), the number of particles in the system, N, and the 

temperature, T.  Given fixed conditions, there is a unique μ which satisfies both the Fermi-Dirac 

distribution, and adds up to the right number of particles: 

( ) /0

1
chemical potential ( , ) such that ( )

1sE kT
N T N dE g E

e





−
 =

+
 . 

This equation implicitly determines μ. 

Some physicists define the Fermi energy, or the “Fermi level,” as εF ≡ μ(T = 0), the chemical potential 

at absolute zero.  Others, such as [Wan]. [Rei], and semiconductor physicists, call μ the Fermi energy at all 

temperatures:  εF(T) ≡ μ(T), i.e. the Fermi level is just another name for chemical potential. 
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E

<n> = 

Pr(occupancy)

1

0.5

E

<n> 

2

1

EF = μ μ

Fermi-Dirac 

distribution

Bose-Einstein 

distribution

 
Figure 5.1  (Left) Fermi-Dirac distribution: <occupation number> = Pr(occupancy).   

(Right)  Bose-Einstein distribution: <occupation number> is unbounded. 

We derive the Fermi-Dirac distribution [following Sch p266] by [TBS]. 

Summary of the Four Main Statistical Mechanics Distributions 

All of these distributions only apply in thermal equilibrium, at temperature T. 

 

Distribution Formula What it gives you What it applies to Examples 

Boltzman /E kTe−  relative probability of 

being in a single 

microstate, of energy E. 

any system of any 

size or complexity, 

quantum or 

classical. 

an atom moving in a 

gas, electronic 

excitations of an 

atom in a gas, a 

magnetic dipole in a 

lattice  

Maxwell-

Boltzmann ( )

( )

/

/

1

E kT

E kT

e

e





−

− −
=

 

average occupation 

number of a given 

single-particle quantum 

state  of energy E; this 

equals the absolute 

probability that the state 

is occupied, since <N> 

<< 1.  

A single-particle 

quantum state in a 

classical system at 

low density, or high 

temperature, so that  

<N> << 1. 

an atom moving in a 

gas, an electron 

state in a 

semiconductor 

energy band 

Fermi-Dirac 

( ) /

1

1
E kT

e
−

+
 

average occupation 

number of a given 

single-particle fermion 

quantum state of energy 

E; since <N> < 1, this 

exactly equals the 

absolute probability 

that the state is 

occupied.  

A single-particle 

fermion state in any 

system; note that 0 

< <N> < 1. 

an electron state in a 

semiconductor 

energy band, an 

electronic energy 

state in an atom 

Bose-

Einstein ( ) /

1

1
E kT

e
−

−
 

average occupation 

number of a given 

single-particle boson 

quantum state of energy 

E.  

A single-particle 

fermion state in any 

system; note that 

<N> > 0, and 

unbounded. 

a photon state in a 

photon gas, a 4He 

atom state in a 

collection of 4He 

atoms 
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The Amazing Bose-Einstein Distribution 

The Bose-Einstein distribution tells us the average number of bosons in a single quantum 

state of given energy; for bosons, this is unbounded. 

The Bose-Einstein (B-E) distribution results from the quantum property of bosons which allows any 

number of bosons to occupy the same quantum state.  This quantum constraint is different than fermions.  

Many books introduce a “fugacity” to describe the B-E distribution, but I think it is easier to start by 

thinking in analogy to F-D statistics.  In F-D statistics, the Fermi energy, EF, served as a “reference point” 

for energy: the energy that appears in the exponential is the difference between the energy of the quantum 

state and EF.  Similarly, in the B-E distribution, the chemical potential, μ, serves as the “reference point” for 

energy.  An important difference is that in F-D distributions, the average occupation number equals the 

probability of occupancy.  In the B-E distribution, that is not the case [Wan p186].  Also, there is a minus 

sign in the denominator: 

( ) /

1
chemical potential

1sE kT
occupation number N where

e



−

 = 
−

. 

An important thing to notice is the behavior at low energy Es: the occupation number gets very large;  

similarly, at low T, the occupation number gets large.  At some point, almost all the particles are in the 

ground state, which is Bose-Einstein condensation. 

The occupation number is valid only if μ < E.  It blows up when μ = E, and would be negative for μ > 

E, which is physically meaningless.  Therefore: 

For bosons, μ must be less than the ground state energy. 

Photons are a special case of bosons: they have no mass, and cannot exist with zero momentum or zero 

kinetic energy.  This means their particle number is not conserved: photons are freely created (radiated) or 

destroyed (absorbed).  This implies that a system in thermal equilibrium has evolved to a point where every 

photon’s chemical potential μ = 0.  Thus, there is no free-energy advantage to creating or destroying any 

photons: they are in equilibrium with the system. 

TBS: B-E statistics favor multiple occupation of states [Wan p185].  E.g., for 2 bosons distributed 

among 2 states, the probability of being in the same state is ½ for classical particles, vs. 2/3 for identical 

bosons: 

state 1

state 2

 
Figure 5.2  (Left) Classical distribution of two particles.  (Right)  B-E distribution of two identical 

particles. 

Black Body Radiation (a Special Case of B-E) 

We now derive the black body radiation spectrum from the Boltzmann distribution, and the occupation 

number formula for bosons, since photons are bosons.  We repeat here in brief the derivation of density of 

quantum states for a 3D system. 

Occupation numbers of boson states:  If we treat each EM radiation mode (k, ε) as a “system” (e.g., 

an oscillator with discrete energy states), then we can use the Boltzmann distribution to find the 

probabilities of every excitation level.  (Recall the Boltzmann distribution applies to any system held at 

fixed temperature [say, by a heat bath], including continuous, discrete, classical, quantum, etc.  The 

Boltzmann distribution applies to all systems because it relies only on the properties of the heat bath, and 

not at all on properties of the system).  Then: 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

10/10/2019  17:26 Copyright 2002 - 2019 Eric L. Michelsen.  All rights reserved. Page 61 of 83 

( )/ ( , ) /

/

0

/0

0

RelPr( ) RelPr ( , )

Pr( ) , ( , ) .

sE kT N kT

N kT

N

N kTN

N

s e N e

Ne

N N N N N

e







− −


−


=


−=

=

=  =

= = 






k ε
k ε

k ε
 

The numerator of the above sums relative probabilities, while the denominator normalizes the result to 

absolute probabilities.  Consider the denominator: 

/ 2 3 /
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This is a geometric series, with sum: 
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Now consider the numerator: 
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The final average excitation level is: 
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Equivalent to the above, we can think of each mode as a single-photon quantum state.  Photons are 

bosons, so each state has an occupation number, N.  The average N is that just derived. 

The average occupation number of a photon quantum state at temperature T  

follows directly from the Boltzmann distribution. 

Note that N may be greater or less than 1: N = 0, 1, 2, ... . 

Black Body Radiation and Einstein Coefficients 

We somewhat follow [Bay p276-8].  Einstein used the photon occupation numbers to learn something 

about the quantized interaction of matter with radiation (which was a mystery at the time).  Imagine a box 

with a photon gas at temperature T.  The walls have atoms or molecules which can absorb and emit 

photons; we treat the photons as particles.  Consider a wall molecule with two states, separated in energy 

by ħω, and a photon state (mode) (k, ε).  Let M ≡ # molecules.   

We determine the ratio of excited molecules to ground-state molecules by again using the Boltzmann 

distribution: 
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( ) ( )/
0

0

Pr molecule being excited , Pr molecule in ground statekTe
e

P
e where P P

P

−=   . 

On average, the absorption rate (in photons/s) is proportional to the number of photons in the gas, 

N(k, ε) ≡ N, and the number of ground-state molecules (excited molecules cannot absorb another photon): 

0 (photons/s)abs absw B NMP= . (5.1) 

Since M (the # molecules in the system) is fixed, we could “absorb” it into the coefficient Babs, but we are 

trying to see how a single molecule interacts with radiation, so it helps to include M explicitly. 

In thermal equilibrium, the overall absorption rate of photons by the molecules must equal the overall 

emission rate.  The fact that thermal equilibrium between the photons and the molecules can be established 

at every temperature says that the emission rate must go up with temperature. 

From common experience, we expect that an excited molecule will eventually “decay,” and radiate a 

photon: hot bodies radiate and cool, phosphors glow in the dark.  Also from macroscopic experience, we 

might expect to dislodge a photon from an excited molecule if we whack it (a collision).  Therefore, we 

take a leap, and suppose that emission can occur from two causes: spontaneous emission, and stimulated 

emission (aka “induced emission”).  Stimulated emission is ambient radiation causing an excited molecule 

to radiate; in other words, a collision with a photon can stimulate emission much like a collision with a 

particle can.  (At the time, 1917, some physicists thought of this as absorption of a photon followed by 

emission of two photons, but this “indirect” stimulated emission model is not necessary, and has no 

supporting evidence.)  Einstein guessed that stimulated emission is proportional to the ambient intensity, N, 

which seems reasonable: more collisions induce more radiation.  Thus: 

, # ambient photonsem stim em ew B NMP where N=  . (5.2) 

We will see shortly that at high temperature, this must be true.  But each molecule has no “idea” of 

temperature; it knows only that there is an EM field of some intensity impinging on it.  (Recall that 

temperature is an aggregate concept defined by 1/T = dS/dE; a single molecule does not have a temperature, 

but it can be in equilibrium with a heat bath that does have a temperature.) 

For independent molecules, the overall spontaneous emission rate is proportional to the number of 

excited molecules: 

, decay constant of proportionalityem spon ew AMP where A=  . (5.3) 

In thermal equilibrium, to total emission rate must equal the total absorption rate: 

( ), , 0abs em stim em spon abs em e e em ew w w B NP B NP AP NB A P= +  = + = + . (5.4) 

As noted, all the coefficients are properties of the molecules, and therefore independent of temperature.  

We see that for large N (corresponding to high T), A becomes insignificant.  That is, as T → ∞: 

/
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We can therefore drop the subscript on B.  Now, at finite temperature, this allows us to solve for A in terms 

of B, recalling that we supposed that A is independent of T.  Then the equilibrium of rates, (5.4), we have: 
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kT kT

NMB NMB MA e
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−

− −

= +
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From our earlier analysis of occupation numbers of boson states, we can use for N the average occupation 

number, and solve for the spontaneous emission coefficient A: 
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I other words, the spontaneous emission rate is the same as the stimulated rate from an EM field of a single 

photon. 

Now we return to a single molecule in the presence of N ambient photons; thermal equilibrium is no 

longer a consideration.  From the emission and absorption rates (5.1) - (5.3), the emission rate of an excited 

atom must relate to the absorption rate of a ground-state atom according to: 

1em

abs

w BN A N

w BN N

+ +
= = . 

How does this square with quantum mechanics?  Recall that the dipole radiation matrix element 

includes a matrix element of the magnetic vector potential (or the electric field with the same result): 

( ) ( )
2 †

1 2 0 ,

2

1 2

ˆ ˆ1 1 ( , ), ( )

ˆ1

1
.

em

abs

em

abs

w C N N C N where N N A A A

w C N N C N

w N

w N

= + = +   +

= − =

+
=

kA k ε A k ε

A  

Thus, our quantum formulas for the interaction of quantized radiation with matter agree with results 

demanded by statistical mechanics, and are thoroughly verified by experiment. 

Energy Spectrum of a Photon Gas in Thermal Equilibrium 

What is the spectrum of black body radiation?  Perhaps the most famous spectrum in physics, this is 

the spectrum of the Cosmic Microwave Background radiation.  We find the energy spectrum from first 

principles by simply multiplying the photon density of states by the average energy of each state, at a 

temperature T: 

( ) ( ) ( , ) such that ( ) energy in ( , )su E T u d d        = = + . 

The density of states ρs(ω) is the density of EM modes per unit angular frequency.  We now find ρs(ω) by 

fitting waves into a finite rectangular box, and then changing variables from k to ω in several steps.  (It is 

not hard to show that for “large” boxes [compared to the significant wavelengths of the photons], neither 

the actual shape of the box nor the exact boundary conditions significantly matter.)  For simplicity, we start 

with a 1D “particle in a box.”  We can take the wave-function (or EM wave) to be a standing wave that is 

zero at the edges: 

0
, 0 ( ) , ( ) , ( ) ( ') '

k

k k

L dn L
k n k n k k k n k k dk

L dk


 

 
+ +

 
=   = = = = 

   . 

Each standing wave is a superposition of left- and right- momenta, but we’d like to count those momenta 

(k-values) separately, so we allow k to be negative, and then count those states separately.  This halves the 

k-space density of states: 

( ) , ; ( ) ( ') '
2

k

k k
k

dn L
k k n k k dk

dk
 

 −
= = −    + =  . 

Generalizing to a 3D box: 
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3 3
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 
= = k k . 

[This implies that each state occupies a volume in phase space of (2πħ)3 = h3.  TBS.] 

We are often interested in the energy spectrum (not k or momentum spectrum), so we must convert this 

to an energy density of states (and then to frequency density of states).  Since the energy of a photon E 

depends only on |k|, we change variables to E in two steps: (1) we convert ρk to the density per unit 

magnitude of k; and (2) convert from k ≡ |k| to E.  First, the number of states in a k-space spherical shell of 

fixed k is simply the surface area of the shell times its thickness: 

( )

2 2

3

Define: . Then:

ˆ( ) 4 ( ) , or ( ) 4
2

k k

k

V
k dk k k dk k k    





= =k

k

n
. 

Second, we use the relation between momentum and energy (i.e., the “dispersion relation”) for a photon: 
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We must now include a factor of 2, because each k value has 2 independent polarization modes, yielding: 
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Finally, converting to energy density per unit ω: 

( )

( ) ( )

2 3

/ 3 2 3 /2

( ) ( ) ( ) ,

1
.

1 1

E

kT kT

dE dE
u N E where E

d d

V
V

e c ec
 

    
 

 



= = =

=  =  
− −

 

Massive Non-interacting Boson Gas: Bose-Einstein Condensation 

Many systems exhibit interesting and useful properties when they are very cold.  One example of this 

is Bose-Einstein condensation (BEC), defined as a system of bosons so cold that a “significant” fraction of 

the particles is in the system’s ground state.  There are many variations of BEC, depending on the particle 

interactions and sometimes the confining potential.  For example, liquid 4He becomes a superfluid at 2.17 

K, and involves significant inter-molecular forces. 

We consider here a very simple case: bosons in a cube (3D particles in a box).  The ground state 

wavelength is always about twice the box size, regardless of the size of the box, or the details of the 

confining potential (Figure 5.3).  The ground state kinetic energy is not zero; for the idealized particle in a 

cube, it is: 

2 2 2
0 3 (in some units) kinetic energyx y zKE n n n where KE= + + =  .   
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xLx

confining potential 
U(x) (the “box”)

ψ0(x)

E0

0  
Figure 5.3  The ground state wave-function is always about a half-wavelength, regardless of the 

size of the box, or the details of the confining potential. 

In a large system, this is tiny, but conceptually, it is finite.  The 1st excited state has kinetic energy: 

KE1 = 12 + 12 + 22 = 6  (twice E0). 

We choose U(r) = 0 everywhere, so: 

En = KEn, and in particular: E0 = KE0 . 

(Some references choose U(r) = –KE0, so E0 = 0.  In this case, one cannot then claim that the momentum is 

zero because the energy is zero.  Other references invoke periodic boundary conditions, which would allow 

the ground state energy and momentum to be zero, but periodic boundary conditions are inconsistent with 

the ground state.  Any bound particle has nonzero KE, and therefore a nonzero momentum.) 

Despite many claims to the contrary, the ground-state momentum is not zero.  In an idealized box: 

( ) ( ) ( )( )0 ( , , ) sin sin sin / , etc.x y z x xx y y N k x k y k z where k L = =  

In each dimension (x, y, and z) the momentum is a superposition of a positive-going and negative-going 

nonzero momentum.  This is consistent with the fact that the ground-state kinetic energy is nonzero. 

At all temperatures, there must exist a chemical potential μ = μ(T) such that the average occupation 

numbers of all the states of the system add up to N, the known number of particles: 

( ) /

1
(exact)

1sE kT
quantum
states s

N
e

−
=

−
 . 

At warm temperatures, we can approximate the sum of average occupation numbers with an integral 

(Figure 5.4, left): 

( ) /0

1
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1
E kT

N g E dE
e





−


−
 . 

At every temperature, the ground state occupation number N0 is finite, but above the critical temperature, it 

is nearly zero (negligibly small). 

N(E)

E

N(E)

E

warm

T > Tc

cold

T < Tc

missing 
from 

integral

E0 E0

actual 
occupation 
numbers

integral 
approximation

density of 
states, g(E)

 
Figure 5.4  (Left) The integral approximation to the occupation number sum works well at high T.  

(Right) The integral approximation to the occupation number sum fails at low temperatures. 
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However, at very low temperatures, the integral approximation for N fails because the ground state 

occupation number is mostly excluded from the integral (Figure 5.4, right).  To get a more accurate 

counting of the occupation numbers, we must separate the ground state occupation number (N0) from all the 

excited state occupation numbers (Nex): 

( )0 0 /0

1
( )

1
ex E kT

N N N N g E dE
e





−
= +  +

−
 . (5.5) 

It can be shown that for large N, only the ground state needs to be taken outside the integral [Mandl p294b]. 

The rapid increase in the ground state occupation number N0 as T decreases  

leads to a “critical behavior” of the system. 

To see the behavior of the occupation number sum (5.5), we must find g(E).  This is a standard result: 

we start with our known density of states for  k ≡ |k|, and change variables to the energy density of states: 
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The important point is that g(E) ~ E1/2 (and this depends on our having chosen U(r) = 0, so that E0 = KE0).  

Note that if we had chosen to make the ground state zero energy by shifting E0 to 0, then in principle, we 

should shift our energy density of states function by the same amount.  In practice, the difference is small, 

and is often neglected. 

E0 E1

μ

N0 T → 0

E2 Tc

T

N0N

critical 
behavior

“normal” 
behavior

kTc  
Figure 5.5  (Left) As T decreases below Tc, μ → E0, and N0 → N.  (Right) Ground state 

occupation number vs. temperature, showing the critical region. 

At low temperatures, as more particles go into the ground state, μ must approach E0.  Nex can then be 

upper-bounded (and approximated) by letting μ(T) → E0: 

( ) ( )0 0

1/ 2

/ /0 0

1
( )

1 1
upper E E kT E E kT

E
N g E dE C dE

e e
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 =

− −
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To evaluate the integral, we substitute ( )0 /x E E kT= −  in the denominator, and /x E kT  in the 

numerator (which inflates Nupper a little, but that’s OK, because it’s an upper bound).  Finally, dE = kT dx, 

which leaves us with a temperature dependence times a definite integral (a constant): 
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We define the critical temperature Tc as that when the upper bound matches the actual number of particles, 

Nupper = N.  Rearranging the above equation: 

( )
2 2 / 3

2
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At the critical temperature, μ is very close to E0 (Figure 5.5, left), such that: 

0 1 0 [cf Schroeder p319m]cE E E kT−  −  . 

Tc is typically very small, millikelvins or less.  Using Tc, we can simplify the expression for Nex ≈ Nupper for 

T < Tc: 
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This shows that below Tc, a significant fraction of the particles are in the ground state, with minimum 

momentum (but finite), and minimum KE (also finite). 

Note that μ(T), and also N0(T), are smooth functions of T, so there is no true “kink” in N0(T) at T = Tc; 

however, the transition from N0 ≈ 0 to N0 ~ (Tc – T)3/2 is a small range: ΔT << Tc, so the transition is 

considered “abrupt.” 

When a parameter (such as N0, or an observable consequence of N0) varies as a power law of (Tc – T), 

for some critical temperature Tc, the parameter is said to exhibit critical behavior (Figure 5.5, right).  Since 

N0 is continuous, this is sometimes said to be a higher order phase transition.  Note that this is distinct from, 

say, steam condensing to liquid water (a 1st-order phase transition), which involves two distinct phases: gas 

and liquid.  In contrast, the BEC critical behavior goes all the way to absolute zero.  There is no phase 

below the temperature range of critical behavior, i.e. no analog to the liquid phase. 

It is often said that BEC occurs when the particles’ de Broglie wavelength is of the order of the particle 

spacing, so multiple particles have to start crowding into a single quantum state.  It’s not clear this is 

physically valid, though, because 2D systems experience the same de Broglie wavelength effect, but do not 

exhibit critical behavior. 

Thermodynamic limit?  A reasonable definition of the “thermodynamic limit” is that the particle 

number N is large enough to be taken as continuous, and the energy is high enough that the energy density 

of states may be taken as continuous.  By this definition, a BEC is not in the thermodynamic limit, because 

it specifically distinguishes the ground state from all the excited states.  Therefore, N may be large, but the 

energy is insufficient to allow the energy density of states to be considered continuous. 

Other forms of BEC: Liquid 4He exhibits a superfluid transition at 2.17 K.  It can be explained as a 

kind of BEC, however it is quite different from the ideal gas we analyzed above.  After all, it’s a liquid and 

so must have strong intermolecular forces.  The critical exponent is different from 3/2, as well. 

The Amazing Maxwell-Boltzmann Occupation Number Distribution 

The term “Maxwell-Boltzmann distribution” is ambiguous, because it has at least 3 different meanings.  

We use it here as an approximation to either the Fermi-Dirac distribution, or the Bose-Einstein distribution, 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

10/10/2019  17:26 Copyright 2002 - 2019 Eric L. Michelsen.  All rights reserved. Page 68 of 83 

at higher energy.  It therefore gives the average occupation number of a single quantum state of given 

energy, which must be << 1 for the approximation to hold.  When (E – μ) > (few)kT, the Fermi-Dirac and 

the Bose-Einstein distributions both approach the Maxwell-Boltzmann distribution: 

( ) ( ) ( )

( ) ( ) ( )
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Note that at the higher energies where this approximation applies, the occupation number is << 1, and is 

therefore equal to the probability that the state is occupied, since the chance of double occupancy is 

negligible. 

At higher energies, for any particles, the average occupation number of a state << 1,  

and therefore equals the probability of occupation of the state.   

Maxwell-Boltzmann energy distribution:  The Maxwell-Boltzmann energy distribution describes the 

distribution of energies of molecules in an ideal gas.  (This is different than the occupation number 

distribution, though they can be related through the density of states.)  There’s no physics here.  Just 

combinatorics.  We can use the reasoning of the Boltzmann distribution to show that the most populous 

way to distribute a fixed number of N distinguishable particles throughout arbitrary energy levels, while 

maintaining a fixed total energy, is to populate each possible quantum state according to these relative 

probabilities 

Pr( ) RelPr( )s sE E
s sE e or E e

 − −
 =  

We show this by considering each particle to be a microscopic “system” which is in thermal 

equilibrium with the “bath” of other particles [Sch??].  Our given macro-system is then an ensemble of 

little-systems (particles) in thermal equilibrium.  These are exactly the conditions of the canonical 

ensemble, and hence the ensemble (i.e., the little-systems, aka particles) follow the Boltzmann distribution.  

When applied to the microscopic distribution of states within a system, these statistics are called Maxell-

Boltzmann statistics. 

Because this is a Boltzmann distribution, it has the amazing property that the relative probability of a 

particle being in a given state depends only on the state’s energy E, and is independent of the distribution of 

energy levels, ρ(E)!  However, the absolute probabilities do depend on ρ(E) through the normalization 

factor, just as for any Boltzmann distribution. 

I repeat: there is no physics here.  Nature doesn’t really “seek” this distribution; it doesn’t “seek” 

disorder; it doesn’t “favor” lower energy states.  The particles stumble about randomly between all possible 

configurations, with each configuration as likely as any other.  There are simply more ways to distribute 

your particles among the energy levels according to the M-B (Maxwell-Boltzmann) distribution than there 

are any other ways to distribute them (keeping total energy fixed).  This means if you examine a system at 

some random time, it’s simply much more likely to be in the M-B distribution than any other.  No physics, 

just combinatorics (unless you consider combinatorics a part of physics.  Hint, hint.) 

But how likely is a system to be in the M-B distribution?  For N ~ 1020 systems (particles), it’s virtually 

guaranteed.  Deviations from the M-B distribution are exponentially unlikely, i.e. their probabilities fall off 

rapidly. 

Subtle point: in some works, the derivation of the M-B distribution uses phrases like “we seek to 

maximize” some thing.  Actually, we don’t try to maximize anything.  The distribution is fixed by 

combinatorics, and we have no freedom.  There’s no knob we can turn to change (or maximize) anything.  

We seek to find the most populous distribution, knowing that our large-N system is exceedingly likely to be 

in such a state.  This is a subtle, but important, point.  Nature isn’t trying to maximize or minimize 

anything.  Some things just come out maximized or minimized by combinatorics.  All we can do is find out 

what things those are. 
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Maxwell-Boltzmann speed distribution:  The Maxwell-Boltzmann speed distribution describes the 

distribution of speeds of molecules in an ideal gas.  You can derive it from the M-B energy distribution by 

noting that speed = (2E/m)1/2. 
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6 Thermodynamics 

Thermodynamics isn’t really Statistical Mechanics, because it’s empirically based on observations of 

macroscopic systems.  But SM is supposed to be able to derive all of thermodynamics, so they are related. 

In thermodynamics, “temperature” isn’t even well defined.  Usually, the best one can do is define 

“temperature” in terms of ideal gasses at low density and/or high temperature, where they experimentally 

follow the ideal gas law very closely.  Lower temperatures are defined with “ladders” of connections to 

other materials that have some simple, accurate equation of state at low temperatures.  Therefore, in 

thermodynamics, the relation: 

,

1
is empirical in thermodynamics.

N V

S
k

T E

 
=  

 
 

But in Statistical Mechanics, the relation: 

1
is a precise in Statistical Mechanics.

dS
k definition

T dE
  

Reversible Vs. Irreversible, and Entropy 

Reversibility is a huge stumbling block for many people, and many (most?) textbook descriptions are 

weak.   

A process is defined as reversible if an arbitrarily small change in system (or outside) 

conditions will make the process spontaneously reverse direction,  

and restore the original state.   

Any process is “reversible” if: 

(1) there is only infinitesimal temperature difference causing any heat flow, and 

(2) only infinitesimal force differences doing any work, and  

(3) there are no dissipative forces (e.g., friction).   

But there are many ways to draw system boundaries, and a process that is reversible within a subsystem, 

may not be reversible within the larger system.  Therefore, it is important to distinguish between 

reversibility of changes that occur within a system, from changes that are done to a system by outside 

influences.  We talk first about reversibility within a system. 

Reversibility Within a System 

Consider a system comprising two parts: subsystem A and subsystem B.  Imagine A is infinitesimally 

hotter than B; then heat flows slowly from A to B.  It’s reversible because with only an infinitesimal 

change of system conditions, we could make B slightly hotter than A, and let the heat flow back.  A system 

with only infinitesimal temperature differences within it is in quasi-equilibrium,  i.e., it’s almost in 

equilibrium, but not quite.  Because the temperature difference is very small, the heat flow rate is very 

slow. 

In general, entropy increases when you equilibrate subsystems at finitely different temperatures.  This 

is intuitive, because once you equilibrate finitely different temperatures, you can’t separate them back into 

hot and cold parts without substantial effort.  But a quasi-equilibrium process is (essentially) isentropic, that 

is, we can make the entropy change arbitrarily small by making the temperature difference small enough.  

Continuing our example of subsystems A and B, we can see mathematically why entropy does not increase 

when the system is in quasi-equilibrium.  Imagine đQ joules of heat flow from A to B: 
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, ,

But 0 .

reversible
A B system A B

A A B

A B system
A B

đQ đQ đQ
dS dS dS dS dS

T T T

đQ đQ
T T dS

T T

−
 = = = +

−
=  = + =

 

Quasi-equilibrium is isentropic (constant entropy), and slow.  But slow is not necessarily quasi-

equilibrium (= isentropic).  Consider a thermos bottle filled with hot water, sitting in a box (our system).  

The heat flows very slowly from the hot water into the box, because the thermos is well insulated, but the 

system is not quasi-equilibrium.  There is a large temperature difference between the hot water and the air 

in the box.  The entropy of the system increases as the temperatures equilibrate, even though it happens 

slowly. 

Some references use the term “quasi-static” to mean “quasi-equilibrium.”  This is misleading, because 

“static” implies motionless, and “quasi-static” suggests “slow.”  But we have already seen that being slow 

doesn’t mean being isentropic.  However, being nearly in equilibrium does mean isentropic, i.e. reversible. 

When considering changes within a system, reversible  

implies slow, but slow does not imply reversible. 

Notice that any friction or other dissipative losses (e.g., magnetic hysteresis) converts energy into heat, 

and cannot be undone by infinitesimal changes within the system. 

Reversible Changes To a System 

Now let’s consider a different view: we have a system, and outside influences change its state.  These 

changes can be made to happen slowly, with the system continually in quasi-equilibrium, or they may be 

made quickly, where the system doesn’t have time to equilibrate after transfer of significant heat or work.  

If changes are made slowly, the system is said to be changed reversibly, because infinitesimal changes in 

the outside influences can cause the system to slowly retrace its path back to its original state.  In this case, 

slow does mean reversible!  However, if the changes were done quickly, so that the system was knocked 

out of equilibrium, there is no easy way to make the system go out of equilibrium in the reverse direction.  

Such changes to the system are said to be irreversible.   

When considering changes to a system, reversible and slow are equivalent. 

For example, if a very hot reservoir conducts heat slowly through an insulator to a system, the system 

has no way of “knowing” how the heat got there, or that it was a large temperature difference.  All the 

system can respond to is how fast heat flows into it.  If it’s slow, the system is in quasi-equilibrium.  In this 

case, the formula for the entropy change of the system can be written 

(changes a system)slowđQ
dS to

T
= . 

Notice that isothermal changes to a system (system remains at constant temperature) require the system to 

be in quasi-equilibrium the whole time, are necessarily slow, and therefore dS = đQ/T. 

The reasons for “slow” are (1) to have well-defined temperatures throughout the system, and (2) to 

avoid accelerations, which result in kinetic energy of motion, which then is usually lost to the environment 

when the motion stops, through heat-of-deformation, friction, sound, etc.  However, if there are no losses 

(e.g., if the system is constant volume, and does no work), then the internal energy increases by the heat 

input: 

(no losses)dU đQ= , 

no matter how fast or slowly the heat is transferred.  In that case, since entropy is a function of the system 

state, we can remove the restriction of “slow,” and: 

(any heat flow a system that has no energy losses)
đQ dU

dS fast or slow to
T T

= = . 
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Furthermore, the state of the system after energy input, with no energy losses, is determined only by the 

new internal energy.  This means that the energy input doesn’t have to be heat: it can be radiation, 

mechanical agitation, chemical reaction, etc.  Therefore: 

(any flow a system that has no energy losses)
dU

dS energy to
T

= . 

The Second Law of Thermodynamics, and Touchy, Feely Entropy 

From our Statistical Mechanics, we know that entropy is multiplicity, measured on a logarithmic scale, 

and usually measured in units of energy per unit temperature.  Here are some qualitative implications of 

this. 

The second law quantifies the fact that there are 2 kinds of energy: “ordered” energy, which can 

theoretically be converted without loss, and random or “thermal” energy, which is harder to get ordered 

work from.  It’s natural that a bunch of particles flying randomly about in all directions are less useful than 

an orderly chunk of energy waiting to be put to use, even if the two sources have the same energy.  The 

second law quantifies how much useful work you can get out of thermal (random) energy.  Any time you 

change energy from ordered to random, you decrease its usefulness.  Hence, friction is bad.  It’s not that 

friction destroys energy; total energy is always conserved.  But friction converts useful ordered energy into 

less useful thermal energy.  Note that having separate hot and cold reservoirs is some kind of order, and 

more useful than having a single tepid reservoir.  Hence, mixing hot and cold reservoirs wastes potential for 

useful work (i.e. increases entropy). 

There are two kinds of energy: ordered, and thermal (random).   

Ordered energy is more useful than thermal energy. 

Crudely, entropy is a way of quantifying how random, or how disordered, the energy of a system is.  

Hence, for a given amount of energy, lower entropy means greater usefulness; higher entropy means less 

usefulness.  As we’ve seen in Statistical Mechanics, however, it is not really disorder that matters, it is 

multiplicity of the system state.  More accurately, entropy is a measure of the number of micro-states of a 

given macro-state (set of constraints), on a log scale.  Lower multiplicity states evolve into higher 

multiplicity states; higher multiplicity states are those that often seem “disordered” to us, because there are 

lots of ways to be disordered, and only a few ways to be ordered. 

Thermodynamics is backwards: in thermodynamics, temperature is fundamental, and entropy is 

derived from it.  In SM, entropy is fundamental and temperature is derived from it.  Before you learn SM, 

forget all your thermodynamics.  The fundamental nature of entropy is why lots of theoretical work is done 

at constant entropy, instead of constant temperature. 
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Figure 6.1  A typical refrigerator. 
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At a high level, compressor/expander refrigerators work by: 

1. “storing” the ability to get cold in the refrigerant, by compressing it.  Then ... 

2. bringing the refrigerant to ambient temperature with a simple heat exchanger, and ... 

3. releasing the ability to get cold from the refrigerant (by expanding it), which brings it below 

ambient temperature. 

One way to implement a refrigerator is to essentially “store” the ability to get cold in the refrigerant. 

We do this by compressing it, which makes it hotter.  If we expanded it now, it would cool back to near 

where it started.  But instead, we first run the refrigerant through a heat exchanger with the ambient, 

cooling the compressed gas down to ambient.  But it’s still compressed, and will cool off when we expand 

it.  So we have, in a sense, “stored” the ability to get cooler in the gas.  We now expand the gas (in an 

expansion valve, which is often called the “evaporator”).  As the gas expands, it cools.  We run the cold gas 

through a pipe in the box, and voila, the box gets cold.  This also warms the gas slightly to the box 

temperature.  We then compress the mostly-cold gas to complete the cycle, and return us to where we 

began.   

More TBS. 

Why does a refrigerant get cold when it expands?   

Because it has attractive inter-molecular forces.  The energy vs. distance curve looks like Figure 6.2.  The 

internal energy is fixed (if expanded quickly or adiabatically).  But the potential energy increases as the 

molecules separate, so the kinetic energy decreases.  For unbound particles (a gas), temperature is 

proportional to kinetic energy.  Lower kinetic energy means colder.  QED. 

separation

V(r)

r

internal energy 
per molecule

kinetic energy 
at high density

kinetic energy 
at low density

 
Figure 6.2  Energy vs. distance for refrigerant molecules. 

This means the refrigerant is not an ideal gas, because it has intermolecular forces.  In fact, we want it 

very non-ideal, because stronger forces make the gas cool more when it expands. 

The Carnot Conspiracy 

The Carnot cycle (or Carnot engine) is an important theoretical construction in thermodynamics, which 

sets the maximum possible efficiency for a heat engine to convert heat into work.  Virtually all fossil fuel 

and nuclear energy conversions today are forms of heat engine: cars, trains, planes, and oil, coal, and 

nuclear power plants.  The Carnot cycle is used in engineering practice as a standard for comparison: heat 

engine efficiency is sometimes stated in terms of “percent of Carnot,” which is to say, what fraction of the 

theoretical maximum efficiency is achieved.  For example, if the Carnot (theoretical maximum) efficiency 

for the given hot and cold temperatures is 60%, and the actual engine achieves 30% efficiency, then it is 

“50% of Carnot.”  This is a typical efficiency for small-scale conversion such as cars.  Large power plants 

can afford more expensive designs that achieve 70-80% of Carnot, which is only about 34% - 40% 

conversion efficiency [Wolfson & Pasachoff, "Physics for Scientists and Engineers," 3rd Ed., Addison 

Wesley Longman, Inc., 1999, p551]. 

Carnot engine operation also illustrates several important concepts in thermodynamics.  The Carnot 

engine is an idealization which can never be achieved in practice, and if it were, would take an infinite 
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amount of time to run.  We describe the Carnot engine, from concepts, through construction, operation, and 

implications.  We then briefly describe the Carnot refrigerator, and give conclusions. 

This section assumes you understand the concept of reversible (isentropic) processes. 

The Carnot Concept:  In general, low entropy implies the ability to get useful work done.  Increasing 

entropy wastes the opportunity for useful work.  For example, if I have a hot gas, and a cold gas, I can 

make a heat engine which takes heat from the hot gas, exhausts heat to the cold gas, and creates useful 

work in the process.  However, if I simply mix the two gasses, I get no work, and end up with a warm gas 

that cannot (by itself) do work.  Such mixing increases entropy, and thus wastes the opportunity for work.  

Any time I increase entropy, I am wasting some opportunity for work.  Therefore, if I make an engine in 

which every step is isentropic (reversible), I waste nothing, and achieve the maximum possible efficiency 

of converting heat to work. 

The Carnot Contraption:  The Carnot engine uses a 4-step cycle, which converts heat from a hot 

reservoir into useful work and exhaust into a cold reservoir.  Each of the 4 steps is isentropic (reversible), 

and hence the entire cycle is isentropic.  Therefore, the Carnot engine has the maximum possible efficiency 

of converting heat to work.  As illustrated below, we can imagine the engine as a piston enclosing a gas, 

which expands and contracts during the cycle. 
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Figure 6.3  The Carnot engine (aka Carnot cycle).  Ideal gas formulas are given, but the engine 

operation is independent of the working fluid. 

Note that the P-V diagram tells us nothing about temperature, or time.  Recall that all reversible 

operations must be slow, since they are quasi-equilibrium, and take place with only infinitesimal 

temperature differences and/or pressure differences. 

Our cycle starts at point A, where the piston begins fully compressed, and the gas temperature is a 

smidge below Th; the outside pressure is a smidge below the gas pressure.  The engine reaches out and 

touches the hot reservoir, so heat slowly flows in, and from the tiny pressure difference, the gas slowly 

expands and the piston pushes out, slowly doing work.  This continues to point B.  Since heat flows in at 

constant temperature, the entropy of the engine increases, and the entropy of the hot reservoir decreases by 

the same amount: 

- engine entropy increasesin
A B

h

QđQ
S

T T
 = = + . 

Thus the entropy of the universe remains the same.  Note that this process is independent of the working 

fluid of the engine; in particular, it need not be an ideal gas. 

At B, the engine releases its touch of the hot reservoir, and continues to slowly expand with no heat 

flow in or out (adiabatically).  The outside pressure (magically) follows the P-V diagram, always staying an 
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infinitesimal amount below the gas pressure.  This expansion does more work until point C, which is 

chosen to be the point at which the adiabatic expansion leaves the gas a smidge above Tc. 

At point C, the engine reaches out and touches the cold reservoir.  Heat flows slowly into the reservoir.  

The outside pressure is changed to slightly above the gas pressure (an infinitesimal change), so the piston 

slowly compresses, taking in work (but less than the outward work done already).  Since heat flows out of 

the engine, the entropy of the engine decreases, and that of the cold reservoir increases, by: 

- engine entropy decreasesout
C D

c

QđQ
S

T T
 = = − . 

The entropy of the universe is still unchanged, and now the entropy of the engine has been restored to 

that of point A.  Since Tc < Th, and |ΔSC–D| = |ΔSA–B|, it must be that Qout < Qin, and net work is done on the 

piston and outside world. 

At point D, the engine releases its touch on the cold reservoir.  The outside pressure continues to 

slowly increase just enough to compress the piston, adiabatically, to point A.  Point D is carefully chosen so 

that the temperature of the gas at point A is infinitesimally below Th.  This D-A step takes in more work.  

The cycle has now returned to its initial state. 

The net effect of one cycle is that heat is transferred from the hot to cold reservoirs, and more work 

was done on the outside world than was taken in.  The engine converted heat to (potentially useful) work.  

The entire process is reversible. 

The Carnot Contrivance:  Most discussions of the Carnot cycle omit the difficult requirements that 

the temperatures and pressures must be within a smidge of the outside conditions.  While the engine itself 

can control its own gas temperature (by choosing the points B and D), the engine requires some kind of 

magic outside pressure regulator, which follows the gas P-V curve, but slightly lower for the expansion 

steps, and slightly higher for the compression steps. 

The Carnot Cooler:  The Carnot cycle can be run in reverse, such that it takes work in, and moves 

heat from the cold to hot reservoir, like a refrigerator.  All that is necessary is that the infinitesimal 

temperature and pressure differences be reversed, so that the piston expands from A-D, heat comes in from 

the cold reservoir from D-C, the piston compresses from C-B, and heat goes into the hot reservoir from B-

A.  Each step in the cycle is still reversible. 

The Carnot Conclusion:  Because any increase in entropy represents a lost opportunity for doing 

useful work, a fully reversible (isentropic) process is necessarily maximum efficiency, because there is no 

entropy increase.  The Carnot cycle is such an idealized process which, in principle, comes arbitrarily close 

to zero entropy increase, and therefore is the maximum possible efficiency in converting heat to work. 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

10/10/2019  17:26 Copyright 2002 - 2019 Eric L. Michelsen.  All rights reserved. Page 76 of 83 

7 Etcetera 

Temperature and Internal Energy 

The question of internal energy vs. temperature is a very important one.  It's only for systems of non-

interacting particles that an isothermal process causes no change in internal energy.  Better stated, “For a 

system of negligible particle interaction around the mean particle separation, the internal energy is 

proportional to temperature.”  Note that this is true without reference to any “process.”  Hence, a process 

need not be isothermal, so long as the final temperature equals the initial temperature.  By “negligible” we 

mean that the interaction potential difference over, say, 1/10 to 10 times the mean particle spacing is small 

compared to the particle kinetic energy.  Inside 1/10 the mean spacing, we say the particles are colliding 

elastically.   

We now derive that the internal energy of a non-interacting gas is proportional to temperature, 

following these steps: E α p2;  T is a derivative of entropy;  entropy, S is a known function of density of 

states;  find S; find T; find E.  T and E are proportional. 

We choose our zero of potential at the mean spacing (same as at infinity, because the interaction 

potential is negligible beyond that distance).  So the total particle energy is all kinetic: 

2

2

p
E dE p dp

m
=    

Now we recall that the definition of temperature is [see Introduction to Entropy, earlier]: 

1
dS

T
dE

−
 

  
 

. 

(The derivation is nontrivial, but straightforward, and we take it as a given for now.)  We also recall that we 

can define S to be (within an additive constant) 

( )ln lnS k k V E     

where ρ  is the density of states in states/volume/energy,   

 δE  is a finite, but small, energy range (how to justify this??),   

 V  is an arbitrary system volume.   

So now we must derive the density of states as a function of energy, and then we can simply plug into 

our formulas for entropy and temperature.  Recall that the number of states in a small region of momentum 

δp is the number of quantized lattice points (allowed momenta) in the spherical shell in momentum space 

of thickness δp.  That is 

2( )E E p p    

 where  δp is the variation in momentum giving rise to δE variation in energy. 

But from the first equations above, 
1/ 2,p p E and p E   , so 

1/ 2( ) ( )E E p p p E E     , 

and at any arbitrary volume, V: 
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independent of volume.  QED. 

When there is particle interaction, E is not proportional to p2, and the above derivation fails; however 

since KE  (kinetic energy) is proportional to p2, the above derivation is valid if we replace E with KE.  

Hence, for “interacting” particles (with significant potential energy changes on the scale of the mean 

particle spacing), T is not proportional to E, but T α KE.  This gives rise to the high-school definition of 

temperature as “a measure of the kinetic energy of particles in a gas.”   

For example, for repulsive particles, if the gas expanded, the average potential energy between 

particles goes down, even if heat flow keeps their kinetic energies the same.  So the total internal energy 

goes down, while the temperature remains the same.  In this case, temperature is not proportional to 

internal energy, but is proportional to KE. 

However, even the kinetic energy definition breaks down for bound particles (liquids and solids), 

hence the more general definition 

1
dS

T
dE

−
 

  
 

. 

Negative Temperature (Negative ) 

Negative temperature is hotter than positive temperature.  Increasing T just beyond +∞ takes you to  

–∞.  Sounds ridiculous?  That’s because T isn’t always the best parameter of thermal equilibrium;  

sometimes β is.  β can be a more natural measure of temperature than T, because negative temperatures go 

smoothly through β = 0, not T = 0 (in fact, T jumps discontinuously from +∞ to –∞) [Wan p71m] [Pat fig 

3.15 p81] [Kub p148m]. 
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Figure 7.1  Why  is a better parameter for temperature than T, including negative temperature. 

Negative temperature, or better, negative β, means that the probability of occupancy of an energy level 

increases with energy, instead of decreasing as with positive β [Wan p68t].  For most systems, this is 

impossible because there are an infinite number of increasing energy levels: kinetic energy alone has an 

ever increasing density of states.  If the probability of occupancy increased with energy, the system would 

contain an infinite amount of energy, which is unphysical.  That is: 

( ) /
Pr 0, or else probability blows uprE kT

rE e T
−

   . 

However, some systems have a finite number of energy states, or a decreasing density of states with energy 

that integrates to a finite number.  A spin system is an example of a system with a bounded energy density 
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of states, and a finite number of energy states.  Such systems can easily have internal energies that make 

higher energy states more likely to be occupied than lower energy states.  Such a system has a negative β. 

energy

1

probability of occupancy

β > 0

maximum 

energy

β < 0

 
Figure 7.2  Probability of occupancy vs. system energy for a finite system. 

1 S

T E



 =


. 

Now, even for β < 0, larger β is always colder, smaller β is always hotter.  Heat flows spontaneously from 

low β to high β [Wan p69m][Pat p83].  Riciprically, applying heat to the system lowers β.  Heating beyond 

β = 0+ smoothly changes the system temperature to β = 0–. 

To create such a system in a solid, there must be good isolation of the spins from the lattice.  Otherwise, 

the lattice steals the energy, and the spin-subsystem reverts to the Boltzmann distribution at the lattice 

temperature. 
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8 Appendices 

Future Statistical Mechanifesto Topics 

1. Why change in free energy is the maximal useful work to be gotten from change in system state 

(and that’s why it’s called “free” (available) energy). 

2. Show how for bosons, multiple quantum states of the same energy affect the microscopic 

statistics.  Since all energy levels can have any number of particles, show how having two levels at 

the same energy matters.  It is due to distinguishability. 

3. How can we treat Coulomb repulsion as just collisions, but not interactions?  Because, over 99.9% 

of the volume, δV << kT. 

4. Derive the Fermi-Dirac and Bose-Einstein energy distributions. 

5. Grand potential (Schroeder) 

6. Endothermic reactions: N2O → N2 + ½O2    S → 1.5S 

7. Legendre transformations 

8. Greg’s example of a system of 3 doubly degenerate energy levels. 

9. Note: avg over time = avg over ensemble.  Ergodicity. 

10. Photon gas: E ~ VT4 (extensive).  Related to P = σT4 ?  For any ultra-relativistic particle, PV = E/3.  

For classical gas, PV = 2E/3.  Photon eq. of state: photon reflects off wall, solid angle of impact is 

2 steradians. 

2

2 / 2
2 2

0 0

2 cos
cos

(2 / cos

1 1
cos 1/ 3 cos sin

2 3 3

p p pc
Force

t L c L

pc
d d P PV E

V

 






    



= = =



= =  =  = 

 

11. Fermi level of non-interacting ultra-relativistic electrons: 

( )

( )

3 1/ 3
3 2

3 20

3
0 3

2 3
32

3
2

42

fk f
f

spin
factor

f

E

VkV N
N d k k

V

ck
E V d k ck N






 
= =  =  

 

= =





 

12. 3 24d k k dk→  

13. Gaussian integral approximation (saddle point method) 

14. S = -k sum(pi ln pi)  [Wan p87] 

15. Isothermal work done on a system decreases its entropy [Wan p103] 
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Glossary 

Definitions of common Statistical Mechanics terms: 

<x> the average (sometimes called “expectation”) value of ‘x’ 

absolute probability a number in [0,1] (inclusive) that quantifies how likely an event is to occur.  

Given a large sample of trials, the fraction of occurrences of the event approaches its 

absolute probability.  Zero means the event will never happen; one means the event 

happens with certainty.  See also relative probability. 

adiabatic without heat transfer 

Boltzmann distribution Given a system in thermal equilibrium with a heat bath (i.e. at some fixed 

temperature), the Boltzmann distribution gives the relative probability of the system 

being in a single microstate of known energy. 

Bose-Einstein distribution The average occupation number of a single quantum state in a system of many 

bosons, which may be > 1.  Cf “Bose-Einstein distribution” and “Maxwell-Boltzmann 

occupation number.” 

classical system a hypothetical system obeying classical mechanics.  This is useful as an approximation to 

real (i.e. quantum) systems.  In the high energy limit, classical mechanics gives real 

results. 

combinatorics the mathematical study of permutations and combinations of things (elements of sets). 

density of states In SM, usually means “phase-space density of states.”  This is the number of states per 

unit “volume” (really hyper-volume) of phase space.  Can also mean “energy density of 

states”: # states per unit energy. 

dynamic variable generalized coordinate or momentum 

energy state micro-state 

energy eigenstate micro-state 

ensemble a real or imaginary set of “systems.”  Typically, the set is very large. 
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entropy  the multiplicity of a macro-state measured on a logarithmic scale.  Entropy is a function 

of the macro-state of a system which helps compute thermal equilibrium parameters.   

extensive (briefly) a property that is proportional to system size (e.g., mass). 

Fermi-Dirac distribution The average occupation number of a single quantum state in a system of many 

fermions, which must be < 1.  Cf “Bose-Einstein distribution” and “Maxwell-Boltzmann 

occupation number.” 

free energy Where entropy is a measure of a system’s ability to defy energy, free energy incorporates 

that defiance in units of energy, and is the actual quantity minimized by a system in 

equilibrium.  There are several kinds of free energy, because each set of constraints on a 

system requires its own definition of free energy.  

Gibbs distribution = Boltzmann distribution = Maxwell-Boltzmann distribution [Wan ch. 4.??] 

heat random energy which can be transferred between different elements of the system.  

Commonly, heat is random kinetic energy of particles transferred by collisions. 

ideal particles have insignificant interactions over most inter-particle distances, and significant 

interactions (i.e., collisions) only at tiny fractions of the average inter-particle distance. 

intensive (briefly) a property that does not scale with the system size (e.g., T). 

isobaric constant pressure 

isochoric constant volume 

isothermal constant temperature 

macro-state An observable state of a system, which could conceivably be measured in a lab.  The 

macro-state includes observables such as temperature, pressure, volume, magnetization, 

etc.  See also micro-state. 

Maxwell-Boltzmann speed distribution The distribution of particle speeds in a gas in thermal 

equilibrium. 

Maxwell-Boltzmann energy distribution The distribution of particle energies in a gas in thermal 

equilibrium. 

Maxwell-Boltzmann occupation number The approximate average occupation number of a given 

quantum state in a sparse system (average occupation number << 1). 

micro-state A single state of a system, including the states of all of the system’s constituent particles.  

Classically, a micro-state includes each particle’s position and momentum.  Quantum 

mechanically, a micro-state is an N-particle energy eigenstate.  It is a wave function that 

describes the state of every particle in the system.  In either case, a micro-state usually 

cannot be observed or determined in a laboratory.  However, a knowledge of micro-states 

from physical theories is essential to applying Statistical Mechanics to predict observable 

phenomena. 

multiplicity the number of micro-states with a given macro-state 

normalization factor a number by which you can divide (or perhaps multiply) relative probability to 

get absolute probability. 

occupation number The average number of particles in a state, for some fixed N total particles.  The 

occupation number is a relative probability of occupancy for the energy. 

PDF Probability distribution function: ( )Pr ( )Xx X x dx pdf x dx  + =  . 

phase-space a 6N dimensional space of coordinates and their conjugate momenta.  Each particle has 3 

position coordinates (e.g., x, y, z), and 3 momenta (e.g., px, py, pz). 

probability absolute probability. 
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quantum system a system obeying quantum mechanics, as all real systems do. 

relative probability a number that quantifies how likely an event is to occur, out of a pool of N 

samples.  Given N, absolute probability = (relative probability) / N.  Even without N, you 

can compare the relative probabilities of two events, to determine the ratio of their 

absolute probabilities.  See also absolute probability. 

smidge an infinitesimal amount 

usually always.  In SM, saying a system is “usually” in the most-likely macro-state pretty much 

means it is “always” in that state. 

Formulas 

Generalized factorial: 
0

! , reala xa x e dx a
 −   

Gamma function:  ( ) 1

0
( ) 1 ! , reala xa a x e dx a


− −  − =   

( )
( ) ( )

2 32 3 1 1
ln(1 ) , 1 ln 1 , 0 2

2 3 2 3

x xx x
x x x or x x x

− −
+ = − + −  = − − + −    

Stirling’s approximation for factorials (or Γ( ) functions): 

( ) ( )For large : ln ! ln 1 ! /
a

a a a a or a a e −   

ln ( , ) ( , ) phase space volume for (Hua 6.27 p134)

ln ( ) ( ) phase-space density of states (Hua 6.28 p134)

ln ( ) ( ) phase space volume of (Hua 6.28 p134)
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Entropy of ideal gas (Sackur-Tetrode equation): 
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Helmholtz free energy: ( , , ) ln

Gibbs free energy: [Car 9.11 p154, & inside cover]

Enthalpy:

Chemical potential:
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Index 

The index is not yet developed, so go to the web page on the front cover, and text-search in this 

document. 
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