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Chapter 1

Preface

These notes are intended for the introductory finance course mathematics-
economics program at the University of Copenhagen. They cover (the) basic
pillars of finance: (1) analysis of deterministic cash-flows (Chapter 3), (2)
mean-variance analysis and the capital asset pricing model (CAPM) (Chapter
9), (3) valuation by absence of arbitrage in multi-period models (Chapters 4-
6). (For those with OCD: Chapter 2 is an introduction with two examples —
which we will not really return to, Chapter 7 is a brief look at the continuous-
time Black-Scholes model and formula, and Chapter 8 analyses stochastic
interest rate models.)

The aim is to be mathematically precise without abandoning neither the
economic intuition (such intuition is hard word, not just hand-waving) not
the ability be quantitative (i.e. do calculations with sensible numbers).

Except for the brief introduction to the Black-Scholes model in Chapter
7, the presentation is done through discrete-time models emphasizing defini-
tions and setups that prepare the students for the study of continuous-time
models.

The notes are not littered with references books and research papers.
Let’s say that is intentional. But let us mention two standard text-books —
from which we have learned a lot — that cover roughly the same material:
John Hull’s Options, Futures and Other Derivative Securities (it comes in a
new edition roughly every second year) and David Luenberger’s lesser known
Investment Science (whose only edition so far was published in 1997 by
Oxford University Press).
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Chapter 2

Introduction

A student applying for student loans is investing in his or her human capital.
Typically, the income of a student is not large enough to cover living expenses,
books etc., but the student is hoping that the education will provide future
income which is more than enough to repay the loans. The government
subsidizes students because it believes that the future income generated by
highly educated people will more than compensate for the costs of subsidy,
for example through productivity gains and higher tax revenues.

A first time home buyer is typically not able to pay the price of the new
home up front but will have to borrow against future income and using the
house as collateral.

A company which sees a profitable investment opportunity may not have
sufficient funds to launch the project (buy new machines, hire workers) and
will seek to raise capital by issuing stocks and/or borrowing money from a
bank.

The student, the home buyer and the company are all in need of money
to invest now and are confident that they will earn enough in the future to
pay back loans that they might receive.

Conversely, a pension fund receives payments from members and promises
to pay a certain pension once members retire.

Insurance companies receive premiums on insurance contracts and deliv-
ers a promise of future payments in the events of property damage or other
unpleasant events which people wish to insure themselves against.

A new lottery millionaire would typically be interested in investing his or
her fortune in some sort of assets (government bonds for example) since this
will provide a larger income than merely saving the money in a mattress.

The pension fund, the insurance company and the lottery winner are all
looking for profitable ways of placing current income in a way which will
provide income in the future.

7
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A key role of financial markets is to find efficient ways of connecting
the demand for capital with the supply of capital. The examples above
illustrated the need for economic agents to substitute income intertemporally.
An equally important role of financial markets is to allow risk averse agents
(such as insurance buyers) to share risk.

In understanding the way financial markets allocate capital we must un-
derstand the chief mechanism by which it performs this allocation, namely
through prices. Prices govern the flow of capital, and in financial markets
investors will compare the price of some financial security with its promised
future payments. A very important aspect of this comparison is the riskiness
of the promised payments. We have an intuitive feeling that it is reason-
able for government bonds to give a smaller expected return than stocks in
risky companies, simply because the government is less likely to default. But
exactly how should the relationship between risk and reward (return on an
investment) be in a well functioning market? Trying to answer that question
is a central part of this course. The best answers delivered so far are in a
set of mathematical models developed over the last 50 years or so. One set
of models, with the so-called CAPM which we will meet later as the prime
example, consider expected return and variance on return as the natural def-
initions of reward and risk, respectively and tries to answer how these should
be related. Another set of models are based on arbitrage pricing, which is a
very powerful application of the simple idea, that two securities which deliver
the same payments should have the same price. This is typically illustrated
through option pricing models and in the modelling of bond markets, but
the methodology actually originated partly in work which tried to answer a
somewhat different question, which is an essential part of financial theory
as well: How should a firm finance its investments? Should it issue stocks
and/or bonds or maybe something completely different? How should it (if
at all) distribute dividends among shareholders? The so-called Modigliani-
Miller theorems provide a very important starting point for studying these
issues which currently are by no means resolved.

A historical survey of how finance theory has evolved will probably be
more interesting at the end of the course since we will at that point under-
stand versions of the central models of the theory.

But let us start by considering a classical explanation of the significance
of financial markets in a microeconomic setting.
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equilibrium
utility function

2.1 The role of financial markets

Consider the definition of a private ownership economy as standard economic
textbooks: Assume for simplicity that there is only one good and one firm
with production set Y . The ith consumer is characterized by a consumption
set Xi, a preference preordering �i, an endowment ωi and shares in the firm
θi. Given a price system p, and given a profit maximizing choice of production
y, the firm then has a profit of π(p) = p · y and this profit is distributed to
shareholders such that the wealth of the ith consumer becomes

wi = p · ωi + θiπ(p) (2.1)

The definition of an equilibrium in such an economy then has three seem-
ingly natural requirements: The firm maximizes profits, consumers maximize
utility subject to their budget constraint and markets clear, i.e. consumption
equals the sum of initial resources and production. But why should the firm
maximize its profits? After all, the firm has no utility function, only con-
sumers do. But note that given a price system p, the shareholders of the firm
all agree that it is desirable to maximize profits, for the higher profits the
larger the consumers wealth, and hence the larger is the set of feasible con-
sumption plans, and hence the larger is the attainable level of utility. In this
way the firm’s production choice is separated from the shareholders’ choice
of consumption. There are many ways in which we could imagine sharehold-
ers disagreeing over the firm’s choice of production. Some examples could
include cases where the choice of production influences on the consumption
sets of the consumers, or if we relax the assumption of price taking behavior,
where the choice of production plan affects the price system and thereby the
initial wealth of the shareholders. Let us, by two examples, illustrate in what
sense the price system changes the behavior of agents.

Example 1. Consider a single agent who is both a consumer and a producer.
The agent has an initial endowment e0 > 0 of the date 0 good and has to
divide this endowment between consumption at date 0 and investment in
production of a time 1 good. Assume that only non-negative consumption is
allowed. Through investment in production, the agent is able to transform
an input of i0 into f(i0) units of date 1 consumption. The agent has a
utility function U(c0, c1) which we assume is strictly increasing. The agent’s
problem is then to maximize utility of consumption, i.e. to maximize U(c0, c1)
subject to the constraints c0 + i0 ≤ e0 and c1 = f(i0) and we may rewrite
this problem as

max v(c0) ≡ U(c0, f(e0 − c0))

subject to c0 ≤ e0
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If we impose regularity conditions on the functions f and U (for example
that they are differentiable and strictly concave and that utility of zero con-
sumption in either period is -∞) then we know that at the maximum c∗0 we
will have 0 < c∗0 < e0 and v

′
(c∗0) = 0 i.e.

D1U(c∗0, f(e0 − c∗0)) · 1−D2U(c∗0, f(e0 − c∗0))f
′
(e0 − c∗0) = 0

where D1 means differentiation after the first variable. Defining i∗0 as the
optimal investment level and c∗1 = f(e0 − c∗0), we see that

f
′
(i∗0) =

D1U(c∗0, c
∗
1)

D2U(c∗0, c
∗
1)

and this condition merely says that the marginal rate of substitution in pro-
duction is equal to the marginal rate of substitution of consumption.

The key property to note in this example is that what determines the
production plan in the absence of prices is the preferences for consumption
of the consumer. If two consumers with no access to trade owned shares in
the same firm, but had different preferences and identical initial endowments,
they would bitterly disagree on the level of the firm’s investment.

Example 2. Now consider the setup of the previous example but assume
that a price system (p0, p1) (whose components are strictly positive) gives
the consumer an additional means of transferring date 0 wealth to date
1 consumption. Note that by selling one unit of date 0 consumption the
agent acquires p0

p1
units of date 1 consumption, and we define 1 + r = p0

p1
. The

initial endowment must now be divided between three parts: consumption at
date 0 c0, input into production i0 and s0 which is sold in the market and
whose revenue can be used to purchase date 1 consumption in the market.

With this possibility the agent’s problem becomes that of maximizing
U(c0, c1) subject to the constraints

c0 + i0 + s0 ≤ e0

c1 ≤ f(i0) + (1 + r)s0

and with monotonicity constraints the inequalities may be replaced by equal-
ities. Note that the problem then may be reduced to having two decision
variables c0 and i0 and maximizing

v(c0, i0) ≡ U(c0, f(i0) + (1 + r)(e0 − c0 − i0)).

Again we may impose enough regularity conditions on U (strict concavity,
twice differentiability, strong aversion to zero consumption) to ensure that it
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Fisher Separationattains its maximum in an interior point of the set of feasible pairs (c0, i0)
and that at this point the gradient of v is zero, i.e.

D1U(c∗0, c
∗
1) · 1−D2U(c∗0, f(i∗0) + (1 + r)(e0 − c∗0 − i∗0))(1 + r) = 0

D2U(c∗0, f(i∗0) + (1 + r)(e0 − c∗0 − i∗0))(f
′
(i∗0)− (1 + r)) = 0

With the assumption of strictly increasing U, the only way the second equality
can hold, is if

f
′
(i∗0) = (1 + r)

and the first equality holds if

D1U(c∗0, c
∗
1)

D2U(c∗0, c
∗
1)

= (1 + r)

We observe two significant features:
First, the production decision is independent of the utility function of

the agent. Production is chosen to a point where the marginal benefit of
investing in production is equal to the ’interest rate’ earned in the market.
The consumption decision is separate from the production decision and the
marginal condition is provided by the market price. In such an environment
we have what is known as Fisher Separation where the firm’s decision is
independent of the shareholder’s utility functions. Such a setup rests criti-
cally on the assumptions of the perfect competitive markets where there is
price taking behavior and a market for both consumption goods at date 0.
Whenever we speak of firms having the objective of maximizing sharehold-
ers’ wealth we are assuming an economy with a setup similar to that of the
private ownership economy of which we may think of the second example as
a very special case.

Second, the solution to the maximization problem will typically have a
higher level of utility for the agent at the optimal point: Simply note that
any feasible solution to the first maximization problem is also a solution
to the second. This is an improvement which we take as a ’proof’ of the
significance of the existence of markets. If we consider a private ownership
economy equilibrium, the equilibrium price system will see to that consumers
and producers coordinate their activities simply by following the price system
and they will obtain higher utility than if each individual would act without
a price system as in example 1.

2.2 The Kelly criterion: Optimal betting

Suppose a bookie offers us the following classical scenario: for the price of
1 [units of currency] we may enter a game in which we gain b + 1 with a
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odds
edge

probability p, but lose everything with a probability of q = 1 − p. Here, b
is a positive constant known as the odds. (People familiar with betting will
note that these are so-called UK odds, i.e. how odds are quoted in Britain.
Often it’s most convenient to use decimal odds (why?), but here that would
ruin the aesthetics of the resulting formula.)

Graphically, the pay-off structure of the game may be represented as the
binomial tree diagram:

1

0

1− p

b + 1
p

Clearly, our expected winnings from entering such a game is

p · (b+ 1) + q · 0︸ ︷︷ ︸
expected pay-off

− 1︸︷︷︸
cost

= pb+ p− 1 = pb− q,

where the last equality uses the definition q = 1− p. pb− q is sometimes
referred to as your edge if greater than zero.

Insofar as we repeat the game in such a manner that we in every round
bet the fraction f of our total wealth (W (t) in round t) then we have that

W (t+ 1) = W (t)X(t+ 1),

where t = 0, 1, 2, ..., T and

X(t+ 1) =

{
1− f + (b+ 1)f = 1 + bf, with probability p

1− f, with probability q.

Using this relation repeatedly we find that

W (T ) = W (0)
T∏
t=1

X(t). (2.2)

We can now introduce the logarithmic growth rate R(T ) for our wealth:
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Kelly criterion
W (T )

W (0)
= eR(T )T ⇔ R(T ) =

1

T
ln

(
W (T )

W (0)

)
.

Inserting the relation (2.2) and using the law of large numbers we find
that

R(T ) =
1

T

T∑
t=1

lnX(t) →
T→∞

E(lnX),

where X encodes the common distribution of each of the X(t)s (which
plausibly have been assumed i.i.d.). Upon noticing that the X distribution
depends on f we may now get the idea of solving

max
f

E(lnX) := max
f
{p ln(1 + bf) + q ln(1− f)} ,

which will give us the maximal growth rate for our personal wealth
(asymptotically - but deterministically). Differentiating and equating to zero
we find that

∂E(lnX)

∂f

∣∣∣∣
f=f∗

=
pb

1 + f ∗b
− q

1− f ∗
= 0,

which may be re-arranged to give

f ∗ =
bp− q
b

(2.3)

This growth optimal betting strategy is commonly referred to as the
Kelly bet or Kelly criterion after the physicist John Larry Kelly, Jr.
who first derived the formula in 1956.1 Clearly, there’s a trade-off between
expected winnings (the numerator) and odds (the denominator). This is
hardly surprising: if the odds are high, then conceivably there is also a low
probability of winning.

Although the Kelly criterion is a well established result in investment
theory, which reportedly has been used by both Warren Buffet and James
Harries Simons, it is not altogether uncontroversial. E.g. one might argue
that an individual’s specific investing constraints may override his or her
desire for an optimal growth rate. Kelly himself apparently never used his
own criterion to make money.

1The formula may be recalled using the mnemonic “edge over odds”.
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net present value,
NPV

positivity of
vectors

Chapter 3

Payment Streams under
Certainty

3.1 Financial markets and arbitrage

In this section we consider a very simple setup with no uncertainty. There
are three reasons that we do this:

First, the terminology of bond markets is conveniently introduced in this
setting, for even if there were uncertainty in our model, bonds would be
characterized by having payments whose size at any date are constant and
known in advance.

Second, the classical net present value (NPV) rule of capital budgeting is
easily understood in this framework.

And finally, the mathematics introduced in this section will be extremely
useful in later chapters as well.

A note on notation: If v ∈ RN is a vector the following conventions for
“vector positivity” are used:

• v ≥ 0 (“v is non-negative”) means that all of v′s coordinates are non-
negative. ie. ∀i: vi ≥ 0.

• v > 0 (“v is positive” ) means that v ≥ 0 and that at least one coor-
dinate is strictly positive, ie. ∀i: vi ≥ 0 and ∃i: vi > 0, or differently
that v ≥ 0 and v 6= 0.

• v � 0 (“v is strictly positive”) means that every coordinate is strictly
positive, ∀i: vi > 0. This (when v is N -dimensional) we will sometimes
write as v ∈ RN

++. (This saves a bit of space, when we want to indicate
both strict positivity and the dimension of v.)

15
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financial market
security price

system
payment stream
portfolio
short position
long position
arbitrage

opportunity

Throughout we use v> to denote the transpose of the vector v. Vectors
without the transpose sign are always thought of as column vectors.

We now consider a model for a financial market (sometimes also called a
security market or price system; individual components are then referred to
as securities) with T + 1 dates: 0, 1, . . . , T and no uncertainty.

Definition 1. A financial market consists of a pair (π,C) where π ∈ RN

and C is an N × T−matrix.

The interpretation is as follows: By paying the price πi at date 0 one
is entitled to a stream of payments (ci1, . . . , ciT ) at dates 1, . . . , T. Negative
components are interpreted as amounts that the owner of the security has
to pay. There are N different payment streams trading. But these payment
streams can be bought or sold in any quantity and they may be combined in
portfolios to form new payment streams:

Definition 2. A portfolio θ is an element of RN . The payment stream gen-
erated by θ is C>θ ∈ RT . The price of the portfolio θ at date 0 is π · θ
(= π>θ = θ>π).

Note that allowing portfolios to have negative coordinates means that we
allow securities to be sold. We often refer to a negative position in a security
as a short position and a positive position as a long position. Short positions
are not just a convenient mathematical abstraction. For instance when you
borrow money to buy a home, you take a short position in bonds.

Before we even think of adopting (π,C) as a model of a security market
we want to check that the price system is sensible. If we think of the financial
market as part of an equilibrium model in which the agents use the market
to transfer wealth between periods, we clearly want a payment stream of
(1, . . . , 1) to have a lower price than that of (2, . . . , 2). We also want payment
streams that are non-negative at all times to have a non-negative price. More
precisely, we want to rule out arbitrage opportunities in the security market
model:

Definition 3. A portfolio θ is an arbitrage opportunity (of type 1 or 2) if it
satisfies one of the following conditions:

1. π · θ = 0 and C>θ > 0.

2. π · θ < 0 and C>θ ≥ 0.

Alternatively, we can express this as (−π · θ, C>θ) > 0.
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arbitrage, oddsIn short, an arbitrage (opportunity) is a “a money machine” or “a free
lunch”, i.e. something that is really too good to be true. Note that an
arbitrage is much better then just the favourable bets that we encountered
in Chapter 2.

Example 3. To illustrate the arguably abstract concept of an arbitrage,
consider the following odds (decimal odds to be precise; i.e. betting $1 and
winning gives you $1 · odds back) that a number internet bookmakers put
on the 2004 African Nation’s Cup match between Burkina Faso and Mali.

Burkina Faso - Mali
Bookmaker 1 X 2

(B F win) (draw) (Mali win)
Aebet 5.50 3.10 1.61
Bet-at-home.com 3.65 3.20 1.75
EasyBets 4.20 3.30 1.73
Expekt 4.05 3.15 1.85
InterWetten 3.50 2.80 2.00
MrBookmaker 4.60 3.05 1.73

Now imagine that that we pick the best odds for each outcome and bet $
1/5.5 = 0.1818 on Burkina Faso, $1/3.3 = 0.3030 on a draw, and $1/2.0 = 0.5
on Mali. The total cost of this is $0.9848. Irrespective of what happens we
win $1. This is an arbitrage. As an exercise, try to formulate this strategy in
the (C, π) and θ-formalism from above (and below). (What are we implicitly
saying about a risk-free asset/cash?) If our framework were taken completely
literally, any two different odds on the same outcome would constitute an
arbitrage. That, however, is not the situation in practice. A quoted odds
only means that the bookmaker will take your money and pay you back if
you win, not the other way round. Or differently put, they are selling prices.

The example above notwithstanding, a prudent financial assumption is
that markets do not contain arbitrages.

Definition 4. The security market is arbitrage-free if it contains no arbitrage
opportunities.

If arbitrages do exist, then we would of love to find them. The way to do
that, however, is to study closely the consequences of absence of arbitrage.
If they are violated, then there must be arbitrage, and our means of analysis
give us constructive ways of find it/them. It turns out that there is a simple
characterization of arbitrage-free markets. For that we need a lemma that
is very similar to Farkas’ theorem of alternatives, which is often encountered
when duality for linear programming is studied.
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Stiemke’s lemma
discount factors
complete market

Lemma 1. (Stiemke’s lemma) Let A be an n ×m−matrix: Then precisely
one of the following two statements is true:

1. There exists x ∈ Rm
++ such that Ax = 0.

2. There exists y ∈ Rn such that y>A > 0.

We will not prove the lemma here, but rather use it as a steppingstone
to our next theorem:

Theorem 1. The security market (π,C) is arbitrage-free if and only if there
exists a strictly positive vector d ∈ RT

++ such that π = Cd.

In the context of our security market the vector d will be referred to as
a vector of discount factors. This use of language will be clear shortly.

Proof. Define the matrix

A =


−π1 c11 c12 · · · c1T

−π2 c21 c22 · · · c2T
...

...
...

. . .
...

−πN cN1 cN2 · · · cNT


First, note that the existence of x ∈ RT+1

++ such that Ax = 0 is equivalent
to the existence of a vector of discount factors since we may define

di =
xi
x0

i = 1, . . . , T.

Hence if the first condition of Stiemke’s lemma is satisfied, a vector d exists
such that π = Cd.The second condition corresponds to the existence of an
arbitrage opportunity: If y>A > 0 then we have either

(y>A)1 > 0 and (y>A)i ≥ 0 i = 1, . . . , T + 1

or

(y>A)1 = 0 , y>A ≥ 0 and (y>A)i > 0 some i ∈ {2, . . . , T + 1}

and this is precisely the condition for the existence of an arbitrage opportu-
nity. Now use Stiemke’s lemma. �

Another important concept is market completeness (in Danish: Kom-
plethed or fuldstændighed).
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zero coupon bond,
ZCB

discount factors

Definition 5. The security market is complete if for every y ∈ RT there
exists a θ ∈ RN such that C>θ = y.

In linear algebra terms this means that the rows of C span RT , which can
only happen if N ≥ T , and in our interpretation it means that any desired
payment stream can be generated by an appropriate choice of portfolio.

Theorem 2. Assume that (π,C) is arbitrage-free. Then the market is com-
plete if and only if there is a unique vector of discount factors.

Proof. Since the market is arbitrage-free we know that there exists d � 0
such that π = Cd. Now if the model is complete then RT is spanned by the
columns of C>, ie. the rows of C of which there are N . This means that C
has T linearly independent rows, and from basic linear algebra (look around
where rank is defined) it also has T linearly independent columns, which is
to say that all the columns are independent. They therefore form a basis for
a T -dimensional linear subspace of RN (remember we must have N ≥ T to
have completeness), ie. any vector in this subspace has unique representation
in terms of the basis-vectors. Put differently, the equation Cx = y has at
most one solution. And in case where y = π, we know there is one by absence
of arbitrage. For the other direction assume that the model is incomplete.
Then the columns of C are linearly dependent, and that means that there
exists a vector d̃ 6= 0 such that 0 = Cd̃. Since d � 0, we may choose ε > 0
such that d + εd̃ � 0.Clearly, this produces a vector of discount factors
different from d. �

3.2 Zero coupon bonds and the term struc-

ture

Assume throughout this section that the model (π,C) is complete and arbitrage-
free and let d> = (d1, . . . , dT ) be the unique vector of discount factors. Since
there must be at least T securities to have a complete model, C must have
at least T rows. On the other hand if C has exactly T linearly independent
rows, then adding other securities to C will not add any more possibilities of
wealth transfer to the market. Hence we can assume that C is am invertible
T × T matrix.

Definition 6. The payment stream of a zero coupon bond with maturity t is
given by the t′th unit vector et of RT .

Next we see why the words discount factors were chosen:

Proposition 1. The price of a zero coupon bond with maturity t is dt.
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forward rates
short rate

Proof. Let θt be the portfolio such that C>θt = et. Then

π>θt = (Cd)>θt = d>C>θt = d>et = dt

�
Note from the definition of d that we get the value of a stream of payments

c by computing
∑T

t=1 ctdt. In other words, the value of a stream of payments
is obtained by discounting back the individual components. There is nothing
in our definition of d which prevents ds > dt even when s > t, but in the
models we will consider this will not be relevant: It is safe to think of dt as
decreasing in t corresponding to the idea that the longer the maturity of a
zero coupon bond, the smaller is its value at time 0.

From the discount factors we may derive/define various types of interest
rates which are essential in the study of bond markets.:

Definition 7. (Short and forward rates.) The short rate at date 0 is given
by

r0 =
1

d1

− 1.

The (one-period) time t- forward rate at date 0, is equal to

f(0, t) =
dt
dt+1

− 1,

where d0 = 1 by convention.

The interpretation of the short rate should be straightforward: Buying 1
d1

units of a maturity 1 zero coupon bond costs 1
d1
d1 = 1 at date 0 and gives a

payment at date 1 of 1
d1

= 1 + r0. The forward rate tells us the rate at which
we may agree at date 0 to borrow (or lend) between dates t and t+ 1. To see
this, consider the following strategy at time 0 :

• Sell 1 zero coupon bond with maturity t.

• Buy dt
dt+1

zero coupon bonds with maturity t+ 1.

Note that the amount raised by selling precisely matches the amount used
for buying and hence the cash flow from this strategy at time 0 is 0. Now
consider what happens if the positions are held to the maturity date of the
bonds: At date t the cash flow is then −1 and at date t + 1 the cash flow is
dt
dt+1

= 1 + f(0, t).
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term structure of
interest rates

yield to maturity
compounding

periods

Definition 8. The yield (or yield to maturity) at time 0 of a zero coupon
bond with maturity t is given as

y(0, t) =

(
1

dt

) 1
t

− 1.

Note that
dt(1 + y(0, t))t = 1.

and that one may therefore think of the yield as an ’average interest rate’
earned on a zero coupon bond. In fact, the yield is a geometric average of
forward rates:

1 + y(0, t) = ((1 + f(0, 0)) · · · (1 + f(0, t− 1)))
1
t

Definition 9. The term structure of interest rates (or the yield curve) at
date 0 is given by (y(0, 1), . . . , y(0, T )).

Note that if we have any one of the vector of yields, the vector of forward
rates and the vector of discount factors, we may determine the other two.
Therefore we could equally well define a term structure of forward rates and
a term structure of discount factors. In these notes unless otherwise stated,
we think of the term structure of interest rates as the yields of zero coupon
bonds as a function of time to maturity. It is important to note that the term
structure of interest rate depicts yields of zero coupon bonds. We do however
also speak of yields on securities with general positive payment steams:

Definition 10. The yield (or yield to maturity) of a security c> = (c1, . . . , cT )
with c > 0 and price π is the unique solution y > −1 of the equation

π =
T∑
i=1

ci
(1 + y)i

.

Example 4 (Compounding Periods). In most of the analysis in this chapter
the time is “stylized”; it is measured in some unit (which we think of and
refer to as “years”) and cash-flows occur at dates {0, 1, 2, . . . , T}. But it
is often convenient (and not hard) to work with dates that are not integer
multiples of the fundamental time-unit. We quote interest rates in units of
years−1 (“per year’), but to any interest rate there should be a number, m,
associated stating how often the interest is compounded. By this we mean
the following: If you invest 1 $ for n years at the m-compounded rate rm you
end up with (

1 +
rm
m

)mn
. (3.1)
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continuously
compounded
interest rate

annuity
serial loan
bullet bond

The standard example: If you borrow 1$ in the bank, a 12% interest rate
means they will add 1% to you debt each month (i.e. m = 12) and you
will end up paying back 1.1268 $ after a year, while if you make a deposit,
they will add 12% after a year (i.e. m = 1) and you will of course get 1.12$
back after one year. If we keep rm and n fixed in (3.1) (and then drop the
m-subscript) and and let m tend to infinity, it is well known that we get:

lim
m→∞

(
1 +

r

m

)mn
= enr,

and in this case we will call r the continuously compounded interest rate. In
other words: If you invest 1 $ and the continuously compounded rate rc for
a period of length t, you will get back etrc . Note also that a continuously
compounded rate rc can be used to find (uniquely for any m) rm such that
1 $ invested at m-compounding corresponds to 1 $ invested at continuous
compounding, i.e. (

1 +
rm
m

)m
= erc .

This means that in order to avoid confusion – even in discrete models –
there is much to be said in favor of quoting interest rates on a continuously
compounded basis. But then again, in the highly stylized discrete models
it would be pretty artificial, so we will not do it (rather it will always be
m = 1).
And then a final piece of advice: Whenever you do calculations be careful
always to plug in interest rates as decimal numbers, not as percentages.
There is a large difference between e0.12 and e12, much larger than what can
be recovered by dividing the end result by 100.

3.3 Annuities, serial loans and bullet bonds

Typically, zero-coupon bonds do not trade in financial markets and one there-
fore has to deduce prices of zero-coupon bonds from other types of bonds
trading in the market. Three of the most common types of bonds which do
trade in most bond markets are annuities, serial loans and bullet bonds. (In
literature relating to the American market, “bond” is usually understood to
mean “bullet bond with 2 yearly payments”. Further, “bills” are term short
bonds, annuities explicitly referred to as such, and serial loans rare.) We
now show how knowing to which of these three types a bond belongs and
knowing three characteristics, namely the maturity, the principal and the
coupon rate, will enable us to determine the bond’s cash flow completely.

Let the principal or face value of the bond be denoted F. Payments on the
bond start at date 1 and continue to the time of the bond’s maturity, which
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annuitywe denote τ. The payments are denoted ct. We think of the principal of a
bond with coupon rate R and payments c1, . . . , cτ as satisfying the following
difference equation:

pt = (1 +R)pt−1 − ct t = 1, . . . , τ, (3.2)

with the boundary conditions p0 = F and pτ = 0.
Think of pt as the remaining principal right after a payment at date

t has been made. For accounting and tax purposes and also as a helpful tool
in designing particular types of bonds, it is useful to split payments into a
part which serves as reduction of principal and one part which is seen as an
interest payment. We define the reduction in principal at date t as

δt = pt−1 − pt
and the interest payment as

it = Rpt−1 = ct − δt.

Definition 11. An annuity with maturity τ, principal F and coupon rate R
is a bond whose payments are constant between dates 1 and τ , and whose
principal evolves according to Equation (3.2).

With constant payments we can use (3.2) repeatedly to write the remain-
ing principal at time t as

pt = (1 +R)tF − c
t−1∑
j=0

(1 +R)j for t = 1, 2, . . . , τ.

To satisfy the boundary condition pτ = 0 we must therefore have

F − c
τ−1∑
j=0

(1 +R)j−τ = 0,

so by using the well-known formula
∑n−1

i=0 x
i = (xn − 1)/(x − 1) for the

summation of a geometric series, we get

c = F

(
τ−1∑
j=0

(1 +R)j−τ

)−1

= F
R(1 +R)τ

(1 +R)τ − 1
= F

R

1− (1 +R)−τ
.

Note that the size of the payment is homogeneous (of degree 1) in the prin-
cipal, so it’s usually enough to look at the F = 1. (This rather trivial obser-
vation can in fact be extremely useful in a dynamic context.) It is common
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alfahage; $“alpha
˙n“rceil R $

bullet bond
serial loan

to use the shorthand notation

αneR = (“Alfahage”) =
(1 +R)n − 1

R(1 +R)n
.

Having found what the size of the payment must be we may derive the
interest and the deduction of principal as well: Let us calculate the size of
the payments and see how they split into deduction of principal and interest
payments. First, we derive an expression for the remaining principal:

pt = (1 +R)tF − F

ατeR

t−1∑
j=0

(1 +R)j

=
F

ατeR

(
(1 +R)tατeR −

(1 +R)t − 1

R

)
=

F

ατeR

(
(1 +R)τ − 1

R(1 +R)τ−t
− (1 +R)τ − (1 +R)τ−t

R(1 +R)τ−t

)
=

F

ατeR
ατ−teR.

This gives us the interest payment and the deduction immediately for the
annuity:

it = R
F

ατeR
ατ−t+1eR

δt =
F

ατeR
(1−Rατ−t+1eR).

In the definition of an annuity, the size of the payments is implicitly
defined. The definitions of bullets and serials are more direct.

Definition 12. A bullet bond1 with maturity τ , principal F and coupon rate
R is characterized by having it = ct for t = 1, . . . , τ − 1 and cτ = (1 +R)F.

The fact that we have no reduction in principal before τ forces us to have
ct = RF for all t < τ.

Definition 13. A serial loan or bond with maturity τ , principal F and
coupon rate R is characterized by having δt, constant for all t = 1, . . . , τ.

1In Danish: Et st̊aende l̊an
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Since the deduction in principal is constant every period and we must have
pτ = 0, it is clear that δt = F

τ
for t = 1, . . . , τ. From this it is straightforward

to calculate the interest using it = Rpt−1.

We summarize the characteristics of the three types of bonds in the table
below:

payment interest deduction of principal
Annuity Fα−1

τeR R F
ατeR

ατ−t+1eR
F

ατeR
(1−Rατ−t+1eR)

Bullet
RF for t < τ
(1 +R)F for t = τ

RF
0 for t < τ
F for t = τ

Serial F
τ

+R
(
F − t−1

τ
F
)

R
(
F − t−1

τ
F
)

F
τ

Example 5 (A Simple Bond Market). Consider the following bond market
where time is measured in years and where payments are made at dates
{0, 1, . . . , 4}:

Bond (i) Coupon rate (Ri) Price at time 0 (πi(0))
1 yr bullet 5 100.00
2 yr bullet 5 99.10

3 yr annuity 6 100.65
4 yr serial 7 102.38

We are interested in finding the zero-coupon prices/yields in this market.
First we have to determine the payment streams of the bonds that are traded
(the C-matrix). Since α3e6 = 2.6730 we find that

C =


105 0 0
5 105 0 0

37.41 37.41 37.41 0
32 30.25 28.5 26.75


Clearly this matrix is invertible so et = C>θt has a unique solution for all
t ∈ {1, . . . , 4} (namely θt = (C>)−1et). If the resulting t-zero-coupon bond
prices, dt(0) = π(0) · θt, are strictly positive then there is no arbitrage. Per-
forming the inversion and the matrix multiplications we find that

(d1(0), d2(0), d3(0), d4(0))> = (0.952381, 0.898458, 0.839618, 0.7774332),

or alternatively the following zero-coupon yields

100 ∗ (y(0, 1), y(0, 2), y(0, 3), y(0, 4))> = (5.00, 5.50, 6.00, 6.50).
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clean price
dirty price

Now suppose that somebody introduces a 4 yr annuity with a coupon rate
of 5 % . Since α4e5 = 3.5459 this bond has a unique arbitrage-free price of

π5(0) =
100

3.5459
(0.952381 + 0.898458 + 0.839618 + 0.7774332) = 97.80.

Notice that bond prices are always quoted per 100 units (e.g. $ or DKK) of
principal. This means that if we assume the yield curve is the same at time
1 the price of the serial bond would be quoted as

π4(1) =
d1:3(0) · C4,2:4

0.75
=

76.87536

0.75
= 102.50

(where d1:3(0) means the first 3 entries of d(0) and C4,2:4 means the entries 2
to 4 in row 4 of C).

Example 6 (Reading the financial pages). This example gives concrete cal-
culations for a specific Danish Government bond traded at the Copenhagen
Stock Exchange(CSX): A bullet bond with a 4 % coupon rate and yearly
coupon payments that matures on January 1 2010. Around February 1 2005
you could read the following on the CSX homepage or on the financial pages
of decent newspapers

Bond type Current date Maturity date Price Yield
4% bullet February 1 2005 January 1 2010 104.02 3.10 %

Let us see how the yield was calculated. First, we need to set up the cash-flow
stream that results from buying the bond. The first cash-flow, π in the sense
of Definition 8 would take place today. (Actually it wouldn’t, even these days
trades take a couple of day to be in effect; valør in Danish. We don’t care
here.) And how large is it? By convention, and reasonably so, the buyer has
to pay the price (104.02; this is called the clean price) plus compensate the
seller of the bond for the accrued interest over the period from January 1 to
February 1, ie. for 1 month, which we take to mean 1/12 of a year. (This is
not as trivial as it seems. In practice there are a lot of finer - and extremely
boring - points about how days are counted and fractions calculated. Suffice
it to say that mostly actual days are used in Denmark.) By definition the
buyer has to pay accrued interest of “coupon × year-fraction”, ie. 4 × 1/12
= 0.333, so the total payment (called the dirty price) is π = 104.35. So now
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we can write down the cash-flows and verify the yield calculation:

Date tk Cash-flow (ck) dk = (1 + 0.0310)−tk PV= dk ∗ ck
Feb. 1 2005 0 - 104.35 1
Jan. 1 2006 11

12
4 0.9724 3.890

Jan. 1 2007 111
12

4 0.9432 3.772
Jan. 1 2008 211

12
4 0.9148 3.660

Jan. 1 2009 311
12

4 0.8873 3.549
Jan. 1 2010 411

12
104 0.8606 89.505

SUM = 104.38

(The match, 104.35 vs. 104.38 isn’t perfect. But to 3 significant digits 0.0310
is the best solution, and anything else can be attributed to out rough ap-
proach to exact dates.)

Example 7 (Finding the yield curve). In early February you could find
prices 4%-coupon rate bullet bonds with a range of different maturities (all
maturities fall on January firsts):

Maturity year 2006 2007 2008 2009 2010
Clean price 101.46 102.69 103.43 103.88 104.02

Maturity year 2011 2012 2013 2014 2015
Clean price 103.80 103.50 103.12 102.45 102.08

These bonds (with names like 4%10DsINKx) are used for the construction of
private home-owners variable/floating rate loans such as “FlexL̊an”. (Hey!
How does the interest rate get floating? Well, it does if you (completely)
refinance your 30-year loan every year or every 5 years with shorter maturity
bonds.) In many practical contexts these are not the right bonds to use;
yield curves “should” be inferred from government bonds. (Of course this
statement makes no sense within our modelling framework.)
Dirty prices, these play the role of π, are found as in Example 6, and the (10
by 10) C-matrix has the form

Ci,j =


4 if j < i
104 if j = i
0 if j > i

The system Cd = π has the positive (∼ no arbitrage) unique (∼ complete-
ness) solution

d = (0.9788, 0.9530, 0.9234, 0.8922, 0.8593, 0.8241, 0.7895, 0.7555, 0.7200, 0.6888)>.
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Figure 3.1: The term structure of interest rates in Denmark, February 2005.
The o’s are the points we have actually calculated, the rest is just linear
interpolation.

and that corresponds to these (yearly compounded) zero coupon yields:

Maturity 0.92 1.92 2.92 3.92 4.92 5.92 6.92 7.92 8.92 9.92
ZC yield in % 2.37 2.55 2.77 2.95 3.13 3.32 3.48 3.61 3.75 3.83

as depicted in Figure 3.1. Estimating yield curves (also known determining
discount factors) is a very important, though not particularly glamorous,
task in the financial sector. Two things that make it challenging are (1) there
are more relevant payments dates than there bonds, (2) following the 2007-
8-9 financial crisis/turmoil credit/deuault/backruptcy risk can be/is being
ignored less.

Example 8. Saving for retirement. Annuity type calculations are very
useful for pension savings calculations. Suppose that a newly (i.e. at time
0) graduated person saves the fraction x of his or her salary (assumed fixed)
every year for retirement, and that the pension savings have a yearly (deter-
ministic) rate of return of r. We assume that payments are made at times
1, 2, . . ., T where the person retires. The pension is then paid out in yearly
installments of y (which can be interpreted as a fraction of the pre-retirement
salary) at times T + 1, T + 2, . . ., T + τ . Using the geometric summation
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internal rate of
return

Figure 3.2: Pension savings calculations done in Excel.

formula
∑n−1

j=0 z
j = zn−1

z−1
we can find the value at time T of the money that

has been paid in to be

V PI(T ) := x+ x(1 + r) + . . .+ x(1 + r)T−1 = x
(1 + r)T − 1

r
.

Similarly, the time-T value of the pension payouts is

V PO(T ) :=
y

1 + r
+ . . .+

y

(1 + r)τ
= y

1− (1 + r)−τ

r
.

Various strategies for saving for retirement can then be analyzed by studying
V PI(T ) = V PO(T ). Or more concretely, by fixing all-but-one input param-
eters and solving (possibly numerically) for the remaining one. A spreadsheet
is very well-suited for this. Figure 3.2 shows a numerical example. The 18%
savings rate is typical for Denmark. The 2.5% rate of return (which we
should think of as being in excess of inflation, that we ignore here) is on the
conservative side. Or rather it should be, but is actually above what most
pension companies will promise you these days.

3.4 The net present value (NPV) rule

Similarly to yield, we can define the so-called internal rate of return (IRR)
for an arbitrary cash flow strem, i.e. on securities which may have negative
cash flows as well:

Definition 14. An internal rate of return of a security (c1, . . . , cT ) with
price π 6= 0 is a solution (with y > −1) of the equation

π =
T∑
i=1

ci
(1 + y)i

.
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net present value,
NPV

NPV criterion

Hence the definitions of yield and internal rate of return are identical for
positive cash flows. It is easy to see that for securities whose future payments
are both positive and negative we may have several IRRs. This is one reason
that one should be very careful interpreting and using this measure at all
when comparing cash flows. We will see below that there are even more
serious reasons. When judging whether a certain cash flow is ’attractive’ the
correct measure to use is net present value:

Definition 15. The PV and NPV of security (c1, . . . , cT ) with price c0 given
a term structure (y(0, 1), . . . , y(0, T )) are defined as

PV (c) =
T∑
i=1

ci
(1 + y(0, i))i

NPV (c) =
T∑
i=1

ci
(1 + y(0, i))i

− c0

Next, we will see how these concepts are used in deciding how to invest under
certainty.

Assume throughout this section that we have a complete security market
as defined in the previous section. Hence a unique discount function d is
given as well as the associated concepts of interest rates and yields. We let
y denote the term structure of interest rates and use the short hand notation
yi for y(0, i).

In capital budgeting we analyze how firms should invest in projects whose
payoffs are represented by cash flows. Whereas we assumed in the security
market model that a given security could be bought or sold in any quantity
desired, we will use the term project more restrictively: We will say that the
project is scalable by a factor λ 6= 1 if it is possible to start a project which
produces the cash flow λc by paying λc0 initially. A project is not scalable
unless we state this explicitly and we will not consider any negative scaling.

In a complete financial market an investor who needs to decide on only
one project faces a very simple decision: Accept the project if and only if
it has positive NPV. We will see why this is shortly. Accepting this fact
we will see examples of some other criteria which are generally inconsistent
with the NPV criterion. We will also note that when a collection of projects
are available capital budgeting becomes a problem of maximizing NPV over
the range of available projects. The complexity of the problem arises from
the constraints that we impose on the projects. The available projects may
be non-scalable or scalable up to a certain point, they may be mutually
exclusive (i.e. starting one project excludes starting another), we may impose
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restrictions on the initial outlay that we will allow the investor to make
(representing limited access to borrowing in the financial market), we may
assume that a project may be repeated once it is finished and so on. In all
cases our objective is simple: Maximize NPV.

First, let us note why looking at NPV is a sensible thing to do:

Proposition 2. Given a cash flow c = (c1, . . . , cT ) and given c0 such that
NPV (c0; c) < 0. Then there exists a portfolio θ of securities whose price is
c0 and whose payoff satisfies

C>θ >

 c1
...
cT

 .

Conversely, if NPV (c0; c) > 0, then every θ with C> θ = c satisfies π>θ > c0.

Proof. Since the security market is complete, there exists a portfolio θc such
that C>θc = c. Now π>θc < c0 (why?), hence we may form a new portfolio by
investing the amount c0 − π>θc in some zero coupon bond (e1, say) and also

invest in θc. This generates a stream of payments equal to C>θc+ (c0−π>θc)
d1

e1 >
c and the cost is c0 by construction.
The second part is left as an exercise. �

The interpretation of this lemma is the following: One should never accept
a project with negative NPV since a strictly larger cash flow can be obtained
at the same initial cost by trading in the capital market. On the other hand,
a positive NPV project generates a cash flow at a lower cost than the cost
of generating the same cash flow in the capital market. It might seem that
this generates an arbitrage opportunity since we could buy the project and
sell the corresponding future cash flow in the capital market generating a
profit at time 0. However, we insist on relating the term arbitrage to the
capital market only. Projects should be thought of as ’endowments’: Firms
have an available range of projects. By choosing the right projects the firms
maximize the value of these ’endowments’.

Some times when performing NPV-calculations, we assume that ’the term
structure is flat’ . What this means is that the discount function has the
particularly simple form

dt =
1

(1 + r)t

for some constant r, which we will usually assume to be non-negative, al-
though our model only guarantees that r > −1 in an arbitrage-free market.
A flat term structure is very rarely observed in practice - a typical real world
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Gordon’s growth
formula

capital budgeting

term structure will be upward sloping: Yields on long maturity zero coupon
bonds will be greater than yields on short bonds. Reasons for this will be
discussed once we model the term structure and its evolution over time -
a task which requires the introduction of uncertainty to be of any interest.
When the term structure is flat then evaluating the NPV of a project having
a constant cash flow is easily done by summing the geometric series. The
present value of n payments starting at date 1, ending at date n each of size
c, is

n∑
i=1

cdi = cd

n−1∑
i=0

di = cd
1− dn

1− d
, d 6= 1

Another classical formula concerns the present value of a geometrically grow-
ing payment stream (c, c(1 + g), . . . , c(1 + g)n−1) as

n∑
i=1

c
(1 + g)i−1

(1 + r)i

=
c

1 + r

n−1∑
i=0

(1 + g)i

(1 + r)i

=
c

r − g

(
1−

(
1 + g

1 + r

)n)
.

Although we have not taken into account the possibility of infinite payment
streams, we note for future reference, that for 0 ≤ g < r we have what is
known as Gordon’s growth formula:

∞∑
i=1

c(1 + g)i−1

(1 + r)i
=

c

r − g
.

Example 9. Some seemingly sensible rules that are inconsistent with the
NPV rule. Corresponding to our definition of internal rate of return in
Chapter 3, we define an internal rate of return on a project c with initial
cost c0 > 0, denoted IRR(c0; c), as a solution to the equation

c0 =
T∑
i=1

ci
(1 + x)i

, x > −1

As we have noted earlier such a solution need not be unique unless c > 0
and c0 > 0. Note that an internal rate of return is defined without referring
to the underlying term structure. The internal rate of return describes the
level of a flat term structure at which the NPV of the project is 0. The idea
behind its use in capital budgeting would t hen be to say that the higher the
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level of the interest rate, the better the project (and some sort of comparison
with the existing term structure would then be appropriate when deciding
whether to accept the project at all). But as we will see in the following
example, IRR and NPV may disagree on which project is better: Consider
the projects shown in the table below (whose last column shows a discount
function d):

date proj 1 proj 2 d
0 -100 -100 1
1 50 50 0.95
2 5 80 0.85
3 90 4 0.75

IRR 0.184 0.197 -
NPV 19.3 18.5 -

Project 2 has a higher IRR than project 1, but 1 has a larger NPV than
2. Using the same argument as in the previous section it is easy to check,
that even if a cash flow similar to that of project 2 is desired by an in-
vestor, he would be better off investing in project 1 and then reforming the
flow of payments using the capital market. Another problem with trying
to use IRR as a decision variable arises when the IRR is not uniquely de-
fined - something which typically happens when the cash flows exhibit sign
changes. Which IRR should we then choose? One might also contemplate
using the payback method and count the number of years it takes to recover
the initial cash outlay - possibly after discounting appropriately the future
cash flows. Project 2 in the table has a payback of 2 years whereas project 1
has a payback of three years. The example above therefore also shows that
choosing projects with the shortest payback time may be inconsistent with
the NPV method.

3.4.1 Several projects

Consider someone with c0 > 0 available at date 0 who wishes to allocate
this capital over the T + 1 dates, and who considers a project c with initial
cost c0. We have seen that precisely when NPV (c0; c) > 0 this person will
be able to obtain better cash flows by adopting c and trading in the capital
market than by trading in the capital market alone.

When there are several projects available the situation really does not
change much: Think of the i′th project (pi0, p) as an element of a set Pi ⊂
RT+1. Assume that 0 ∈ Pi all i representing the choice of not starting the
i’th project. For a non-scalable project this set will consist of one point in
addition to 0.
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Given a collection of projects represented by (Pi)i∈I . Situations where
there is a limited amount of money to invest at the beginning (and borrow-
ing is not permitted), where projects are mutually exclusive etc. may then
be described abstractly by the requirement that the collection of selected
projects (pi0, p

i)i∈I are chosen from a feasible subset P of the Cartesian prod-
uct ×i∈IPi. The NPV of the chosen collection of projects is then just the sum
of the NPVs of the individual projects and this in turn may be written as
the NPV of the sum of the projects:

∑
i∈I

NPV (pi0; pi) = NPV

(∑
i∈I

(pi0, p
i)

)
.

Hence we may think of the chosen collection of projects as producing one
project and we can use the result of the previous section to note that clearly
an investor should choose a project giving the highest NPV. In practice, the
maximization over feasible “artificial” may not be easy at all.

Let us look at an example.

Example 10. (Adapted from Luenberger (1997)) A company need a certain
type of machine to produce widgets. The machine costs $10,000 (say, to paid
at time 0) to buy and its yearly maintenance costs grow linearly; $2,000 in
year 1 (say, paid at time 1), 3,000 in year 2, and so on. At any time the
company can buy a new machine (suppose the old one has 0 scrap value).
The new macjine has (even in nominal terms) the same price and cost profile.
The yield curve is flat at 10%. How often should the machine be changed?
Let’s analyze: Changing every year gives the cash flow stream (-10,-2, 0, . . .)
+ (0,-10,-2, 0, . . .) + (0, 0,-10,-2, 0 . . .) + . . .. The present value of this (up
to change of sign and division by 1,000) must (as everything starts over at
time time 1) solve

PV = 10 + 2/1.1 + PV/1.1⇒ PV = 130.

(Pedants should verify that the infinite sum we work with here are sufficiently
convergent for such manipulation to be allowed.) If instead we change every
k years and denote the present value of the all payments by PVk;total then

PVk;total = PVk;1 cycle +

(
1

1.1

)k
PVk;total,

where PVk;1 cycle = 10 +
∑k

j=1
j+1
1.1j

. The task is to chose k, such that the
total PV minimized (yes, minimized; we changed the sign). This is done
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numerically:
k PVk;total

1 130.00
2 82.38
3 69.58
4 65.36
5 64.48
6 65.20
7 66.76
8 68.79
9 71.09

10 73.53

So changing after five years is optimal.

The moral of this section is simple: Given a perfect capital market, in-
vestors who are offered projects should simply maximize NPV. This is merely
an equivalent way of saying that profit maximization with respect to the ex-
isting price system (as represented by the term structure) is the appropriate
strategy when a perfect capital market exists. The technical difficulties arise
from the constraints that we impose on the projects and these constraints
easily lead to linear programming problems, integer programming problems
or even non-linear optimization problems.

However, real world projects typically do not generate cash flows which
are known in advance. Real world projects involve risk and uncertainty and
therefore capital budgeting under certainty is really not sophisticated enough
for a manager deciding which projects to undertake. A key objective of this
course is to try and model uncertainty and to construct models of how risky
cash flows are priced. This will give us definitions of NPV which work for
uncertain cash flows as well.

3.5 Duration, convexity and immunization.

3.5.1 Duration with a flat term structure.

In this chapter we introduce the notions of duration and convexity which are
often used in practical bond risk management and asset/liability manage-
ment. It is worth stressing that when we introduce dynamic models of the
term structure of interest rates in a world with uncertainty, we obtain much
more sophisticated methods for measuring and controlling interest rate risk
than the ones presented in this section.
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duration,
Macaulay

Consider an arbitrage-free and complete financial market where the dis-
count function d = (d1, . . . dT ) satisfies

di =
1

(1 + r)i
for i = 1, . . . , T.

This corresponds to the assumption of a flat term structure. We stress that
this assumption is rarely satisfied in practice but we will see how to relax
this assumption.

What we are about to investigate are changes in present values as a
function of changes in r. We will speak freely of ’interest changes’ occurring
even though strictly speaking, we still do not have uncertainty in our model.

With a flat term structure, the present value of a payment stream c =
(c1, . . . , cT ) is given by

PV (c; r) =
T∑
t=1

ct
(1 + r)t

We have now included the dependence on r explicitly in our notation since
what we are about to model are essentially derivatives of PV (c; r) with re-
spect to r.

Definition 16. Let c be a non-negative payment stream. The Macaulay
duration D(c; r) of c is given by

D(c; r) =

(
− ∂

∂r
PV (c; r)

)
1 + r

PV (c; r)
(3.3)

=
1

PV (c; r)

T∑
t=1

t
ct

(1 + r)t

The Macaulay duration and is the classical one (many more advanced
durations have been proposed in the literature). Note that rather than saying
it is based on a flat term structure, we could refer to it as being based on the
yield of the bond (or portfolio).

If we define

wt =
ct

(1 + r)t
1

PV (c; r)
, (3.4)

then we have
∑T

t=1 wt = 1, hence

D(c; r) =
T∑
t=1

t wt.
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convexityThis shows that duration has a dual interpretation. On the one hand it is
(by our definition) a price sensitivity (a sign changed elasticity, to be precise)
to interest rate changes. On the other hand it is (as it turns out from the
math above) a value-weighted average of payment dates.

Definition 17. The convexity of c is given by

K(c; r) =
T∑
t=1

t2wt. (3.5)

where wt is given by (3.4).

Let us try to interpret D and K by computing the first and second deriva-
tives2 of PV (c; r) with respect to r.

PV ′(c; r) = −
T∑
t=1

t ct
1

(1 + r)t+1

= − 1

1 + r

T∑
t=1

t ct
1

(1 + r)t

PV ′′(c; r) =
T∑
t=1

t (t+ 1)
ct

(1 + r)t+2

=
1

(1 + r)2

[
T∑
t=1

t2ct
1

(1 + r)t
+

T∑
t=1

tct
1

(1 + r)t

]
Now consider the relative change in PV (c; r) when r changes to r + ∆r, i.e.

PV (c; r + ∆r)− PV (c; r)

PV (c; r)

By considering a second order Taylor expansion of the numerator, we obtain

PV (c; r + ∆r)− PV (c; r)

PV (c; r)
≈

PV ′(c; r)∆r + 1
2
PV ′′(c; r)(∆r)2

PV (c; r)

= −D ∆r

(1 + r)
+

1

2
(K +D)

(
∆r

1 + r

)2

Hence D and K can be used to approximate the relative change in
PV (c; r) as a function of the relative change in r (or more precisely, rela-

tive changes in 1 + r, since ∆(1+r)
1+r

= ∆r
1+r

).

2From now on we write PV ′(c; r) and PV ′′(c; r) instead of ∂
∂rPV (c; r) resp. ∂2

∂r2PV (c; r)
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duration,
modified

Sometimes one finds the expression modified duration defined by

MD(c; r) =
D

1 + r

and using this in a first order approximation, we get the relative change in
PV (c; r) expressed by −MD(c; r)∆r, which is a function of ∆r itself. The
interpretation of D as a price elasticity gives us no reasonable explanation of
the word ’duration’, which certainly leads one to think of quantity measured
in units of time. If we use the definition of wt we have the following simple
expression for the duration:

D(c; r) =
T∑
t=1

t wt.

Notice that wt expresses the present value of ct divided by the total present
value, i.e. wt expresses the weight by which ct is contributing to the total
present value. Since

∑T
t=1wt = 1 we see that D(c; r) may be interpreted as

a ’mean waiting time’. The payment which occurs at time t is weighted by
wt.

Example 11. For the bullet bond in Example 6 the present value of the
payment stream is 104.35 and y = 0.0310, so therefore the Macaulay duration
is ∑4

k=1 tkck(1 + y)−tk

PV
=

475.43

104.35
= 4.556

while the convexity is∑4
k=1 t

2
kck(1 + y)−tk

PV
=

2266.35

104.35
= 21.72,

and the following table shows the the exact and approximated relative chances
in present value when the yield changes:

Yield 4yield Exact rel. (%) First order Second order
PV-change approximation approximation

0.021 -0.010 4.57 4.42 4.54
0.026 -0.005 2.27 2.21 2.24
0.031 0 0 0 0
0.036 0.005 -2.15 -2.21 -2.18
0.041 0.010 -4.27 -4.42 - 4.30

Notice that since PV is a decreasing, convex function of y we know that the
first order approximation will underestimate the effect of decreasing y (and
overestimate the effect of increasing it).
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Notice that for a zero coupon bond with time to maturity t the duration
is t. For other kinds of bonds with time to maturity t, the duration is less
than t. Furthermore, note that investing in a zero coupon bond with yield
to maturity r and holding the bond to expiration guarantees the owner an
annual return of r between time 0 and time t. This is not true of a bond
with maturity t which pays coupons before t. For such a bond the duration
has an interpretation as the length of time for which the bond can ensure an
annual return of r :

Let FV (c; r,H) denote the (future) value of the payment stream c at time
H if the interest rate is fixed at level r. Then

FV (c; r,H) = (1 + r)HPV (c; r)

=
H−1∑
t=1

ct(1 + r)H−t + cH +
T∑

t=H+1

ct
1

(1 + r)t−H

Consider a change in r which occurs an instant after time 0. How would
such a change affect FV (c; r,H)? There are two effects with opposite direc-
tions which influence the future value: Assume that r decreases. Then the
first sum in the expression for FV (c; r,H) will decrease. This decrease can
be seen as caused by reinvestment risk: The coupons received up to time H
will have to be reinvested at a lower level of interest rates. The last sum will
increase when r decreases. This is due to price risk : As interest rates fall
the value of the remaining payments after H will be higher since they have
to be discounted by a smaller factor. Only cH is unchanged.

The natural question to ask then is for which H these two effects cancel
each other. At such a time point we must have ∂

∂r
FV (c; r,H) = 0 since an

infinitesimal change in r should have no effect on the future value. Now,

∂

∂r
FV (c; r,H) =

∂

∂r

[
(1 + r)HPV (c; r)

]
= H(1 + r)H−1PV (c; r) + (1 + r)HPV ′(c; r)

Setting this expression equal to 0 gives us

H =
−PV ′(c; r)
PV (c; r)

(1 + r)

i.e. H = D(c; r)

Furthermore, at H = D(c; r), we have ∂2

∂r2FV (c; r,H) > 0. This you can

check by computing ∂2

∂r2

(
(1 + r)HPV (c; r)

)
,reexpressing in terms D and K,
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immunization and using the fact that K > D2. Hence, at H = D(c; r), FV (c; r,H) will have
a minimum in r. We say that FV (c; r,H) is immunized towards changes in r,
but we have to interpret this expression with caution: The only way a bond
really can be immunized towards changes in the interest rate r between time
0 and the investment horizon t is by buying zero coupon bonds with maturity
t. Whenever we buy a coupon bond at time 0 with duration t, then to a first
order approximation, an interest change immediately after time 0, will leave
the future value at time t unchanged. However, as date 1 is reached (say)
it will not be the case that the duration of the coupon bond has decreased
to t − 1. As time passes, it is generally necessary to adjust bond portfolios
to maintain a fixed investment horizon, even if r is unchanged. This is true
even in the case of certainty.

Later when we introduce dynamic hedging strategies we will see how a
portfolio of bonds can be dynamically managed so as to truly immunize the
return.

3.5.2 Relaxing the assumption of a flat term structure.

What we have considered above were parallel changes in a flat term structure.
Since we rarely observe this in practice, it is natural to try and generalize
the analysis to different shapes of the term structure. Consider a family of
structures given by a function r of two variables, t and x. Holding x fixed
gives a term structure r(·, x).

For example, given a current term structure (y1, . . . , yT ) we could have
r(t, x) = yt + x in which case changes in x correspond to additive changes
in the current term structure (the one corresponding to x = 0). Or we could
have 1 + r(t, x) = (1 + yt)x, in which case changes in x would produce multi-
plicative changes in the current (obtained by letting x = 1) term structure.

Now let us compute changes in present values as x changes:

∂PV

∂x
= −

T∑
t=1

tct
1

(1 + r(t, x))t+1

∂r(t, x)

∂x

which gives us

∂PV

∂x

1

PV
= −

T∑
t=1

twt
1 + r(t, x)

∂r(t, x)

∂x

where

wt =
ct

(1 + r(t, x))t
1

PV

We want to try and generalize the ’investment horizon’ interpretation of
duration, and hence calculate the future value of the payment stream at



3.5. DURATION, CONVEXITY AND IMMUNIZATION. 41

duration
duration,

Fisher-Weil

time H and differentiate with respect to x. Assume that the current term
structure is r(·, x0).

FV (c; r(H, x0), H) = (1 + r(H, x0))HPV (c; r(t, x0))

Differentiating we get

∂

∂x
FV (c; r(H, x), H) = (1 + r(H, x))H

∂PV

∂x

+H(1 + r(H, x))H−1∂r(H, x)

∂x
PV (c; r(t, x))

Evaluate this derivative at x = x0 and set it equal to 0 :

∂PV

∂x

∣∣∣∣
x=x0

1

PV
= −H ∂r(H, x)

∂x

∣∣∣∣
x=x0

(1 + r(H, x0))−1

and hence we could define the duration corresponding to the given parametriza-
tion as the value D for which

∂PV

∂x

∣∣∣∣
x=x0

1

PV
= −D ∂r(D, x)

∂x

∣∣∣∣
x=x0

(1 + r(D, x0))−1.

The additive case would correspond to

∂r(D, x)

∂x

∣∣∣∣
x=0

= 1,

and the multiplicative case to

∂r(D, x)

∂x

∣∣∣∣
x=1

= 1 + yD.

The multiplicative case is by far the most common one. So common that
many sources other choices. This has name Fisher-Weil duration),

DFW = −∂PV
∂x

1

PV
=

T∑
t=1

twt.

Given the value-weighted average of payment dates interpretation of (Macaulay)
duration, this is exactly what we would conjecture a duration measure based
on a non-flat term structure to look like. But by going through this analysis,
we maintaing the connection to yield curve shifts.
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barbell strategy A slightly different path to Fisher-Weil duration is this: Let us write the
discount function as

d(t;x) = exp(−t× (z0(t) + x)),

where we suppose x = 0 gives us today’s zero coupon yield curve. The vari-
able x then creates parallel (additive) shifts in the continuously compounded
zero coupon rates. We have PV (c, x) =

∑
t ctd(t;x) and from this

− 1

PV (c, x)

∂PV (c, x)

∂x
|x=0 = DFW (c)

So Fisher-Weil duration is sensitivity to additive shifts in continuosly com-
pounded rates.

Example 12 (Macaulay vs. Fisher-Weil). Consider again the small bond
market from Example 5. We have already found the zero-coupon yields in
the market, and find that the Fisher-Weil duration of the 4 yr serial bond is

1

102.38

(
32

1.0500
+

2 ∗ 30.25

1.05502
+

3 ∗ 28.5

1.06003
+

4 ∗ 26.75

1.06504

)
= 2.342,

and the following table gives the yields, Macaulay durations based on yields
and Fisher-Weil durations for all the coupon bonds:

Bond Yield ( ) M-duration FW-duration
1 yr bullet 5 1 1
2 yr bullet 5.49 1.952 1.952

3 yr annuity 5.65 1.963 1.958
4 yr serial 5.93 2.354 2.342

So not much difference.
Similarly, the Fisher-Weil duration of the bullet bond from Examples 6, 7
and 11 is 4.552, whereas its Macaulay duration was 4.556.

3.6 Two examples to mess with your head

3.6.1 The Barbell. Or immunization and why that
can’t be the whole story

We finish this chapter with an example (with something usually referred to
as a barbell strategy) which is intended to cause some concern. Some of the
claims are for you to check!
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A financial institution issues 100 million $ worth of 10 year bullet bonds
with time to maturity 10 years and a coupon rate of 7 percent. Assume that
the term structure is flat at r = 7 percent. The revenue (of 100 million $) is
used to purchase 10-and 20 year annuities also with coupon rates of 7%. The
numbers of the 10 and 20 year annuities purchased are chosen in such a way
that the duration of the issued bullet bond matches that of the portfolio of
annuities. Now there are three facts you need to know at this stage. Letting
T denote time to maturity, r the level of the term structure and γ the coupon
rate, we have that the duration of an annuity is given by

Dann =
1 + r

r
− T

(1 + r)T − 1
.

Note that since payments on an annuity are equal in all periods we need not
know the size of the payments to calculate the duration.

The duration of a bullet bond is

Dbullet =
1 + r

r
− 1 + r − T (r −R)

R ((1 + r)T − 1) + r

which of course simplifies when r = R.
The third fact you need to check is that if a portfolio consists of two

securities whose values are P1 and P2 respectively, then the duration of the
portfolio P1 + P2 is given as

D(P1 + P2 ) =
P1

P1 + P2

D(P1) +
P2

P1 + P2

D(P2).

Using these three facts you will note that a portfolio consisting of 23.77
million dollars worth of the 10-year annuity and 76.23 million dollars worth of
the 20-year annuity will produce a portfolio whose duration exactly matches
that of the issued bullet bond. By construction the present value of the two
annuities equals that of the bullet bond. The present value of the whole
transaction in other words is 0 at an interest level of 7 percent. However,
for all other levels of the interest rate, the present value is strictly positive!
In other words, any change away from 7 percent will produce a profit to the
financial institution.

What this example shows is that our fundamentally deterministic frame-
work is not good enough to deal with uncertainty, with changes; from seem-
ingly sensible assumptions we get out paradoxical results. (After treating
arbitrage-free multi-period stochastic model, we will show in Section 8.6 that
we can’t have only flat yield curves in an arbitrage-free model.)



44 CHAPTER 3. PAYMENT STREAMS UNDER CERTAINTY

Riding the yield
curve

3.6.2 Riding the yield curve

For some notation. Slightly cumbersome, but we need it. For a calender
date t and a time to maturity τ , let y(t, τ) be the continuously compounded
zero-coupon rate for time to maturity τ , i.e. the (annualized) rate of return
we get by investing (at time t) in zero-coupon bonds maturing at time t+ τ
and holding them until they mature. The mapping

τ 7→ y(t, τ)

we call the (time-t zero-coupon) yield curve. In terms of zero-coupon bond
prices (P (t, T ), first argument current time t, second argument the maturity
date T ) we have

P (t, T ) = e−(T−t)y(t,T−t).

Suppose we want to invest at time 0, look one year ahead, and have at our
disposal zero-coupon bonds for all possible maturity dates. The rate of return
we get from investing in a maturity date T zero-coupon bond is

i1(T ) :=
P (t, T )− P (0, T

P (0, T )
=
P (1, T )

P (0, T )
− 1.

(The notation “:=” means “equal to by definition”, with the term nearest the
: being defined.) A natural question is: Can we maximize this rate of return
by choosing an appropriate T . The short answer is no, not without being
able to look into the future. We do not know until time 1 what P (1, T ) turns
out to be. So we need to make further modelling assumptions. A natural
first step is the hypothesis,

H0: The time 1 yield curve will be the same as the time 0 yield curve.

At time 1, a maturity date T zero-coupon bond has time to maturity
T − 1, so under the H0-hypothesis we have

P (1, T ) = e−(T−1)y(0,T−1) = P (0, T − 1).

Thus the rate of return becomes known. It is in fact our old friend the
forward rate,

i1(T ) =
P (0, T − 1)

P (0, T )
− 1 = f(0, T − 1).

So to maximize we should invest according to the highest forward rate. (Or
more precisely: Find the time to maturity for the maximal forward rate and
then invest in zero-coupon bonds with 1 year more to maturity than that.)
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Figure 3.3: UK zero-coupon yield and forward rate curves from mid-October
2010.

And that forward rate will then be our return. This strategy is called “riding
the yield curve”. Note that it can be carried out whether H0 holds or not
but only in the former case are we sure what our return will be. In words,
this strategy says that to maximize investment returns, go not where the
yield curve is at its highest, but where it is at its steepest. If the yield curve
is “truly curved” then this can have surprising effects.

A good example is provided by the UK yield curve from mid-October
2010. The zero-coupon and (1-year-ahead) forward curves are shown in Fig-
ure 3.3. The circles are (more or less) observed points on the zero-coupon
curve. The smooth curve was fitted through them with an interpolation
technique called cubic spline. The smooth curve was then used to calcu-
late forward rates. (Notice how the forward rate curve is considerable less
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smooth than the zero-coupon rate curve. How to deal with this is the focus
of numerous research articles.) We see that the forward rate curve attains its
maximum around 7.5 years, and that the maximal value (5.4% continuously
compounded) is considerably above any zero-coupon rate; that curve has its
maximum at 4.2% for 30-year maturities.Could this trick be repeated over
and over for, say, 30 years 1 would grow to e30·0.054 = 5.08, while investing in
maturity-date 30 zero coupon bonds and holding pays back only 3.57. That
difference should make any pension fund manager sit up and take notice.

Magic? Alchemy? Or: Is yield curve riding really the free lunch that is
seems to be? Of course not. First, its risky. We only get the return we think
if hypothesis H0 holds, i.e. if the yield curve does not move. And that is
a big if. And the longer the maturity of the bond we have invested in, the
greater the sensitivity. Second, we may reverse the question and ask: How
should the yield curve move for all 1-year returns to be the same? It turns
out that if future zero-coupon spot rates are realized at the current forward
rates then no gains be achieved by short term riding or rolling. (It should
be added: “for appropriately matched times to maturity and years-ahead”.
To make the statement precise wed need three time indices, so well spare
the reader.) This then leads to a the counter-argument called the unbiased
expectations hypothesis,

H1: Forward rates are expected future zero-coupon (spot) rates.

So which hypothesis is it then? Well, the truth (if such a thing exists
at all) is somewhere in between. First, these are technical arguments (to do
with expectations of non-linear functions, Jensens Inequality, and absence
of arbitrage) against the unbiased expectations hypothesis. But the main
reason is risk-aversion: If all bonds give the same expected return, then why
invest in risky ones at all? Thus prices of long-term bonds will be “low”
and one is rewarded for taking the riskier positions such as riding the the
yield curve. (But, arguably, riding the yield curve gives “double exposure:
Its risky and to the extend that its not, movements will go against you!)
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Chapter 4

Arbitrage pricing in a
one-period model

One of the biggest success stories of financial economics is the Black-Scholes
model of option pricing. But even though the formula itself is easy to use,
a rigorous presentation of how it comes about requires some fairly sophis-
ticated mathematics. Fortunately, the so-called binomial model of option
pricing offers a much simpler framework and gives almost the same level of
understanding of the way option pricing works. Furthermore, the binomial
model turns out to be very easy to generalize (to so-called multinomial mod-
els) and more importantly to use for pricing other derivative securities (i.e.
different contract types or different underlying securities) where an extension
of the Black-Scholes framework would often turn out to be difficult. The flex-
ibility of binomial models is the main reason why these models are used daily
in trading all over the world.

Binomial models are often presented separately for each application. For
example, one often sees the ”classical” binomial model for pricing options on
stocks presented separately from binomial term structure models and pricing
of bond options etc.

The aim of this chapter is to present the underlying theory at a level
of abstraction which is high enough to understand all binomial/multinomial
approaches to the pricing of derivative securities as special cases of one model.

Apart from the obvious savings in allocation of brain RAM that this pro-
vides, it is also the goal to provide the reader with a language and framework
which will make the transition to continuous-time models in future courses
much easier.

47
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binomial model,
one-period

stock
bank account
call option,

European

4.1 An appetizer.

Before we introduce our model of a financial market with uncertainty for-
mally, we present a little appetizer. Despite its simplicity it contains most
of the insights that we are about to get in this chapter.

Consider a one-period model with two states of nature, ω1 and ω2. At
time t = 0 nothing is known about the time state, at time t = 1 the state is
revealed. State ω1 occurs with probability p. Two securities are traded:

• A stock which costs S at time 0 and is worth uS at time 1 in one state
and dS in the other.1

• A money market account or bank account which costs 1 at time 0 and
is worth R at time 1 regardless of the state.

Assume 0 < d < R < u. (This condition will be explained later). We
summarize the setup with a graph:

(
1
S

)
(
R
dS

)1− p

(
R
uS

)
p

Now assume that we introduce into the economy a European call option2

on the stock with exercise (or strike) price K and expiry (sometimes called
maturity, although this is primarily used for bonds) 1. At time 1 the value
of this call is equal to (where the notation [y]+ (or sometimes (y)+) means
max(y, 0))

C1(ω) =

{
[uS −K]+ if ω = ω1

[dS −K]+ if ω = ω2

We will discuss options in more detail later. For now, note that it can be
thought of as a contract giving the owner the right but not the obligation to
buy the stock at time 1 for K.

1We use stock as a generic term for a risky asset whose stochastic price behaviour we
take as given. Words such as “share” or “equity” are largely synonymous.

2The term “European” is used for historical reasons; it has no particular meaning today,
and it is doubtful if it ever had.
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replicationTo simplify notation, let Cu = C1(ω1) and Cd = C1(ω2). The question is:
What should the price of this call option be at time 0? A simple replication
argument will give the answer: Let us try to form a portfolio at time 0 using
only the stock and the money market account which gives the same payoff
as the call at time 1 regardless of which state occurs. Let (a, b) denote,
respectively, the number of stocks and units of the money market account
held at time 0. If the payoff at time 1 has to match that of the call, we must
have

a(uS) + bR = Cu

a(dS) + bR = Cd

Subtracting the second equation from the first we get

a(u− d)S = Cu − Cd

i.e.

a =
Cu − Cd
S(u− d)

and algebra gives us

b =
1

R

uCd − dCu
(u− d)

where we have used our assumption that u > d. The cost of forming the
portfolio (a, b) at time 0 is

(Cu − Cd)
S (u− d)

S +
1

R

uCd − dCu
(u− d)

· 1 =
R (Cu − Cd)
R (u− d)

+
1

R

uCd − dCu
(u− d)

=
1

R

[
R− d
u− d

Cu +
u−R
u− d

Cd

]
.

We will formulate below exactly how to define the notion of no arbitrage
when there is uncertainty, but it should be clear that the argument we have
just given shows why the call option must have the price

C0 =
1

R

[
R− d
u− d

Cu +
u−R
u− d

Cd

]
Rewriting this expression we get

C0 =

(
R− d
u− d

)
Cu
R

+

(
u−R
u− d

)
Cd
R

and if we let

q =
R− d
u− d
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we get

C0 = q
Cu
R

+ (1− q)Cd
R
.

If the price were lower, one could buy the call and sell the portfolio (a, b),
receive cash now as a consequence and have no future obligations except to
exercise the call if necessary.

Remark 1. Notice that the hedge position in the stock (a) is positive, whilst
the hedge position in the bank (b) is negative (i.e. we borrow money). This
is quite apparent from the condition d < R < u: there are three different
scenarios which arise: (I) Cu > 0 and Cd > 0, (II) Cu > 0 and Cd = 0,
and the trivial case (III) Cu = Cd = 0. Clearly, nobody would bother hedging
(III). However, (I) and (II) are readily shown to have a > 0 and b < 0.

We are now able to draw the following highly significant conclusions about
the valuation of risky securities:

• The physical probability p plays NO role in the expression for C0. The
fair price of the option is

NOT: C0 = E[C1(ω)] = pCu + (1− p)Cd,

as one would perhaps initially conjecture.

• Rather, the fair price is given by the expression

C0 = q
Cu
R

+ (1− q)Cd
R
,

where q = R−d
u−d and 1− q = u−R

u−d .

• q and 1−q formally satisfy the requirements of being probability weights
(i.e. {q, 1 − q} ∈ (0, 1) and q + (1 − q) = 1) as per the criterion
d < R < u. To see this, consider weight q: since R > d and u > d
it immediately follows that q > 0. On the other hand, suppose q ≥ 1:
then R− d ≥ u− d⇔ R ≥ u which contradicts u > R. So q < 1.

• Hence we may equivalently write the valuation formula as theQ-expectation
of the discounted payoff

C0 = EQ

[
C1(ω)

R

]
,

where Q is defined such that Q(ω1) = q, Q(ω2) = 1− q, etc.
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numeraire asset
risk neutral

measure
equivalent

measure

• The method of pricing the call really did not use the fact that Cu and
Cd were call-values. Any security, V , with a time 1 value depending
on ω1 and ω2 could have been priced according to the key valuation
formula

V0 = EQ

[
V1(ω)

R

]
= q

Vu
R

+ (1− q)Vd
R
, (4.1)

where Vu = V1(ω1) and Vd = V1(ω2) and q is as given above.

More prosaically we might restate the implication of (4.1) as follows:
suppose we use the money market account B as our numeraire asset - i.e.
suppose we measure the value of the security V in terms of how many units of
B it corresponds to. Then the fair price of V at time zero [measured in units
of the initial money market account (=1)] is related to the terminal price
of V [measured in units of the terminal money market account (now = R)]
as though the up state occurs with a probability of q and the down state
occurs with a probability of 1− q. Since the numeraire asset B is manifestly
deterministic and therefore void of any financial risk, it is customary to refer
to Q as the risk neutral measure.

V0
B0

= V0

V1(ω2)
B1

= Vd
R

1− q

V1(ω1)
B1

= Vu
R

q

Now this exposition is bound to raise some questions: what (if anything)
is so special about the money market account? Couldn’t we have priced the
security in terms of some other numeraire asset (say, the stock price process
S)? The short answer is that there is nothing per se which singles out the
money market account as the preferred numeraire. In fact, provided that we
perform an equivalent change of probability measure, we can gracefully move
to whichever numeraire asset tickles our fancy.3 To see how this works out,
consider changing the measure in (4.1) from Q to some Q′ := ξ−1Q where ξ
is a non-negative random variable

3Two probability measures Q and Q′ are said to be equivalent provided that they agree
on which events have probability zero. We donate this property by Q ∼ Q′.
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V0 = EQ[R−1V1(ω)] = R−1 (Q(ω1)V1(ω1) +Q(ω2)V1(ω2))

= R−1ξ (Q′(ω1)V1(ω1) +Q′(ω2)V1(ω2))

= EQ′ [R−1V1(ω)ξ].

In particular, suppose we specify ξ such that

ξ =
RS

S1(ω)
,

then

V0 = SEQ′
[
V1(ω)

S1(ω)

]
= q′

Vu
u

+ (1− q′)Vd
d
, (4.2)

where q′ = Q′(ω1) = ξ−1Q(ω1) = (RS/(uS))−1q = uq/R. Make sure that
you see that (4.2) is consistent with formula (4.1).

We may thus repeat the conclusion above in an analogous manner: sup-
pose we use the stock price S as our numeraire asset - i.e. suppose we measure
the value of the security V terms of how many units of S it corresponds to.
Then the fair price of V at time zero [measured in units of initial stock (=S)]
is related to the terminal price of V [measured in units of terminal stock
(= uS or = dS)] as though the up state occurs with a probability of q′ and
the down state occurs with a probability of 1− q′.

V0
S

V1(ω2)
S1(ω2) = Vd

dS

1− q ′

V1(ω1)
S1(ω1) = Vu

uS

q
′

Whilst this numeraire-invariance (modulo a change a measure) of the val-
uation formula for risky securities is a neat theoretical result, one must in-
evitably wonder whether the result carries any practical implications. What
could possibly warrant a preference for formula (4.2) over (4.1)? In discrete
time “not too much” is generally the answer. However, upon moving to con-
tinuous time finance, an apt choice of numeraire can have a profound impact
on our quest for a closed form option pricing formula: a seemingly impenetra-
ble valuation exercise under one probability measure, may decompose into
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a few lines of routine calculations under another. Indeed the risk neutral
measure is not always to be preferred.

Example 13. Suppose we try to value a security which pays out whatever is
the stock price according to the framework above. Obviously, for our model
to be consistent with the absence of arbitrage, the time zero value should be
equal to S. Let’s check this. From (4.1):

V0 = EQ

[
S1(ω)

R

]
=

(
R− d
u− d

)
1

R
(uS) +

(
u−R
u− d

)
1

R
(dS)

=
1

(u− d)R
(RuS − duS + udS −RdS)

= S.

Equivalently, if we use equation (4.2) we find

V0 = SEQ′
[
S1(ω)

S1(ω)

]
= S(q′ + (1− q′)) = S,

as desired.

Example 14. Finally, let us show that the call option price C0 is increasing
in the interest rate R. This is quite apparent upon remembering that

C0 = aS + b,

where

a =
Cu − Cd
S(u− d)

, and b =
1

R

uCd − dCu
(u− d)

.

It follows that as R increases R−1 decreases whence b decreases. But (as a bit
of algebra shows; thsi relie explicitly on the call-option’s payoff structure),
b < 0 so C0 increases. Simply put: a call option increases with the interest
rate because borrowing becomes more expensive.

4.2 The single period model

The mathematics used when considering a one-period financial market with
uncertainty is exactly the same as that used to describe the bond market in
a multiperiod model with certainty: Just replace dates by states.

Given two time points t = 0 and t = 1 and a finite state space

Ω = {ω1, . . . , ωS} .
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probability
measure

financial market
security price

system
portfolio
arbitrage

opportunity
state-price vector
Arrow-Debreu

prices
riskfree asset

Whenever we have a probability measure P (or Q) we write pi (or qi) instead
of P ({ωi}) (or Q ({ωi})).

A financial market or a security price system consists of a vector π ∈ RN

and an N × S matrix D where we interpret the i’th row (di1, . . . , diS) of D
as the payoff at time 1 of the i’th security in states 1, . . . , S, respectively.
The price at time 0 of the i’th security is πi. A portfolio is a vector θ ∈
RN whose coordinates represent the number of securities bought at time 0.
The price of the portfolio θ bought at time 0 is π · θ.

Definition 18. An arbitrage in the security price system (π,D) is a portfolio
θ which satisfies either

π · θ ≤ 0 ∈ R and D>θ > 0 ∈ RS

or

π · θ < 0 ∈ R and D>θ ≥ 0 ∈ R S

A security price system (π,D) for which no arbitrage exists is called arbitrage-
free.

Remark 2. Our conventions when using inequalities on a vector in Rk are
the same as described in Chapter 3.

When a market is arbitrage-free we want a vector of prices of ’elementary
securities’ - just as we had a vector of discount factors in Chapter 3.

Definition 19. ψ ∈ RS
++ (i.e. ψ � 0) is said to be a state-price vector for

the system (π,D) if it satisfies

π = Dψ

Sometimes ψ is called a state-price density, or its elements referred to as
Arrow-Debreu-prices and the term Arrow-Debreu attached to the elementary
securities . Clearly, we have already proved the following in Chapter 3:

Proposition 3. A security price system is arbitrage-free if and only if there
exists a state-price vector.

Unlike the model we considered in Chapter 3, the security which pays 1
in every state plays a special role here. If it exists, it allows us to speak of
an ’interest rate’:

Definition 20. The system (π,D) contains a riskfree asset if there exists a
linear combination of the rows of D which gives us (1, . . . , 1) ∈ RS.



4.2. THE SINGLE PERIOD MODEL 55

redundant
complete market

In an arbitrage-free system the price of the riskless asset d0 is called the
discount factor and R0 ≡ 1

d0
is the return on the riskfree asset. Note that

when a riskfree asset exists, and the price of obtaining it is d0, we have

d0 = θ>0 π = θ>0 Dψ = ψ1 + · · ·+ ψS

where θ0 is the portfolio that constructs the riskfree asset.
Now define

qi =
ψi
d0

, i = 1, . . . , S

Clearly, qi > 0 and
∑S

i=1 qi = 1, so we may interpret the qi’s as probabilities.
We may now rewrite the identity (assuming no arbitrage) π = Dψ as follows:

π = d0Dq =
1

R0

Dq, where q = (q1, . . . , qS)>

If we read this coordinate by coordinate it says that

πi =
1

R0

(q1di1 + . . .+ qSdiS)

which is the discounted expected value using q of the ith security’s payoff
at time 1. Note that since R0 is a constant we may as well say ”expected
discounted . . .”.

We assume throughout the rest of this section that a riskfree asset exists.

Definition 21. A security c = (c1, . . . , cS) is redundant given the security
price system (π,D) if there exists a portfolio θc such that D>θc = c.

Proposition 4. Let an arbitrage-free system (π,D) and a redundant security

c by given. The augmented system (π̂, D̂) obtained by adding πc to the vector
π and c ∈ RS as a row of D is arbitrage-free if and only if

πc =
1

R0

(q1c1 + . . .+ qScS) ≡ ψ1c1 + . . .+ ψScS.

Proof. Assume πc < ψ1c1 + . . . + ψScS. Buy the security c and sell the
portfolio θc. The price of θc is by assumption higher than πc, so we receive
a positive cash-flow now. The cash-flow at time 1 is 0. Hence there is an
arbitrage opportunity. If πc > ψ1c1 + . . .+ ψScS reverse the strategy. �

Definition 22. The market is complete if for every y ∈ RS there exists a
θ ∈ RN such that

D>θ = y (4.3)

i.e. if the rows of D (the columns of D>) span RS.
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contingent claim
risk-neutral

pricing

Proposition 5. If the market is complete and arbitrage-free, there exists
precisely one state-price vector ψ.

The proof is exactly as in Chapter 3 and we are ready to price new
securities in the financial market; also known as pricing of contingent claim.4

Here is how it is done in a one-period model: Construct a set of securities
(the D-matrix,) and a set of prices. Make sure that (π,D) is arbitrage-free.
Make sure that either

(a) The model is complete, i.e. there are as many linearly independent se-
curities as there are states.

Or

(b) The contingent claim we wish to price is redundant given (π,D).

Clearly, (a) implies (b) but not vice versa. (a) is almost always what is
done in practice. Given a contingent claim c = (c1, . . . , cS). Now compute
the price of the contingent claim as

π (c) =
1

R0

Eq (c) ≡ 1

R0

S∑
i=1

qici, (4.4)

where qi = ψi
d0
≡ R0ψi. Again, the method in Equation (4.4) (and the

generalizations of it we’ll meet in Chapters 5 and 6) is referred to as risk-
neutral pricing . Arbitrage-free prices are calculated as discounted expected
values (with some new or artificial probabilities, the qs), i.e. as if agents were
risk-neutral. But the “as if” is important to note:

No assumption of actual agent risk-neutrality is used to
derive the risk neutral pricing formula (4.4) - just that
they prefer more to less (see the next subsection). As
a catch-phrase: “Risk-neutral pricing does not assume
risk-neutrality”.

Measure Q might therefore me construed as a mathematical convenience
tool, which allows us to do arbitrage free valuation. Of course, the exis-
tence of Q in turn depends on whether the financial market (we, the agents)

4A contingent claim just a random variable describing pay-offs; the pay-off is contingent
on ω. The term (financial) derivative (asset, contract, or security) is largely synonymous,
except thatwe are usually more specific about the pay-off being contingent on another fi-
nancial asset such as a stock. We say option, even when we more specific pay-off structures
in mind.
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have valued existing assets consistently (i.e. without arbitrage). Indeed, its
uniqueness (our ability to extract just one arbitrage free price) depends on
whether the market is complete. But in the real world this assumption is
obviously extremely hard to check, which has brought some skeptics to voice
their dissatisfaction with the risk-neutral pricing enterprise.

Let us return to our example in the beginning of this chapter: The security
price system is

(π,D) =

((
1
S

)
,

(
R R
uS dS

))
.

For this to be arbitrage-free, proposition (3) tells us that there must be a
solution (ψ1, ψ2) with ψ1 > 0 and ψ2 > 0 to the equation(

1
S

)
=

(
R R
uS dS

)(
ψ1

ψ2

)
.

u 6= d ensures that the matrix D has full rank. u > d can be assumed
without loss of generality. We find

ψ1 =
R− d

R (u− d)
, and ψ2 =

u−R
R (u− d)

,

and note that the solution is strictly positive precisely when u > R > d
(given our assumption that u > d > 0). The risk-free asset has a rate of
return of R− 1, and

q1 = Rψ1 =
R− d
u− d

, and q2 = Rψ2 =
u−R
u− d

,

are the probabilities defining the measure q which can be used for pricing.
Note that the market is complete, and this explains why we could use the
procedure in the previous example to say what the correct price at time 0 of
any claim (c1, c2) should be.

Example 15. Consider an arbitrage free market comprised three securities
all valued at 2 [units of currency] with associated pay-offs

(
2
3

)
,
(

1
5

)
, and

(
3
1

)
.

Is the market complete? Is it arbitrage free? Suppose we introduce a fourth
security with pay-off

(
0
10

)
. What is its fair price?

The security price system is

(π,D) =

2
2
2

 ,

2 3
1 5
3 1

 .
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Evidently the market is complete as we can form a basis in R2 from the
existing securities (they do not all lie on the same line). Indeed, one security
is redundant, which can be seen by noting that 2

(
2
3

)
−
(

1
5

)
=
(

3
1

)
. To check

for the absence of arbitrage, is equivalent to checking whether there exists
a strictly positive vector ψ = (ψ1, ψ2)> such that π = Dψ. To this end
we notice that D qua its dimensionality is non-invertible. However, upon
multiplying π = Dψ through by D> we have a system which is solvable.
Indeed,

ψ = (D>D)−1D>π ∈ R2
++,

so the system is arbitrage free (the reader should check that this is in fact
the case). Finally, let’s put a fair price on the (redundant) security y =

(
0
10

)
.

Now we might try to do this by solving equation (4.3) as θ = (DD>)−1Dy,
however, the matrix DD> is singular. Instead, we pick an invertible sub-
matrix D and perform the valuation accordingly (specifically, we pick two
(independent) assets and solve the problem). E.g. using assets 1 & 2 we find
that (

2 3
1 5

)(
θ1

θ2

)
=

(
0
10

)
⇔
(
θ1

θ2

)
=

(
−10

7
20
7

)
.

Hence the no-arbitrage price is −2 · 10
7

+ 2 · 20
7

= 20
7

. The important point
is that we arrive at this price irrespective of which replicating securities we
choose. Thus, the reader might like to verify that the security pairs {

(
2
3

)
,
(

3
1

)
}

and {
(

1
5

)
,
(

3
1

)
} both entail the same price for

(
0
10

)
.

Example 16. Consider the following curious set-up: suppose there are three
securities on the market with t = 0 prices 1, 1 and γ [£], where γ is a positive
constant. At time t = 1 their pay-offs are determined based on the local
temperature (T ) in London: if T ≥ 20◦ the securities respectively pay out
1, 2 and 1 [£]. If 20◦ > T ≥ 15◦ they pay out 1, 1 and γ [£]. Finally, if
T < 15◦ the securities pay out 1, 0 and 1 [£]. Is this market arbitrage free?

The security price system is

(π,D) =

1
1
γ

 ,

1 1 1
2 1 0
1 γ 1

 . (4.5)

Note that the first security is risk free. To check whether the system is
arbitrage free, we must establish whether there exists a strictly positive state
price vector ψ = (ψ1, ψ2, ψ3)> such that π = Dψ. To this end, consider the
inverse matrix
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D−1 =
1

2(γ − 1)

 1 γ − 1 −1
−2 0 2

2γ − 1 1− γ −1

 .

This is well-defined if and only if γ 6= 1. Assuming this to be the case,
we readily find that ψ = D−1π = (0, 1, 0)> which clearly does not meet the
requirement of strict positivity. γ 6= 1 thus corresponds to a complete market
with arbitrage opportunities. What about the case γ = 1? From (4.5) we see
that the market becomes incomplete: specifically, assets one and three are
now identical (both in price and in pay-off). Any residual arbitrage should
therefore be between the risk free asset and asset 2. To check if arbitrage
obtains, let us look for a vector θ such that π · θ < 0 and D>θ ≥ 0. Without
loss of generality set θ3 = 0, then we may recast this problem as the linear
programme

min θ1 + θ2

s.t. θ1 + 2θ2 ≥ 0,
θ1 + θ2 ≥ 0,
θ1 ≥ 0.

Clearly, the second constraint is incompatible with a situation in which
min θ1 + θ2 < 0. Hence, γ = 1 corresponds to an incomplete market without
arbitrage opportunities.

4.3 The economic intuition

At first, it may seem surprising that the “objective” probability p does not
enter into the expression for the option price. Even if the the probability is
0.99 making the probability of the option paying out a positive amount very
large, it does not alter the option’s price at time 0. Looking at this problem
from a mathematical viewpoint, one can just say that this is a consequence of
the linear algebra of the problem: The cost of forming a replicating strategy
does not depend on the probability measure and therefore it does not enter
into the contract. But this argument will not (and should not) convince a
person who is worried by the economic interpretation of a model. Addressing
the problem from a purely mathematical angle leaves some very important
economic intuition behind. We will try in this section to get the economic
intuition behind this ’invariance’ to the choice of p straight. This will provide
an opportunity to outline how the financial markets studied in this course fit
in with a broader microeconomic analysis.
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utility function Before the more formal approach, here is the story in words: If we argue
(erroneously) that changing p ought to change the option’s price at time 0,
the same argument should also lead to a suggested change in S0. But the
experiment involving a change in p is an experiment which holds S0 fixed.
The given price of the stock is supposed to represent a ’sensible’ model of the
market. If we change p without changing S0 we are implicitly changing our
description of the underlying economy. An economy in which the probability
of an up jump p is increased to 0.99 while the initial stock price remains
fixed must be a description of an economy in which payoff in the upstate has
lost value relative to a payoff in the downstate. These two opposite effects
precisely offset each other when pricing the option.

The economic model we have in mind when studying the financial market
is one in which utility is a function of wealth in each state and wealth is
measured by a scalar (kroner, dollars, . . .). Think of the financial market
as a way of transferring money between different time periods and different
states. A real economy would have a (spot) market for real goods also (food,
houses, TV-sets, . . .) and perhaps agents would have known endowments of
real goods in each state at each time. If the spot prices of real goods which
are realized in each state at each future point in time are known at time 0,
then we may as well express the initial endowment in terms of wealth in each
state. Similarly, the optimal consumption plan is associated with a precise
transfer of wealth between states which allows one to realize the consumption
plan. So even if utility is typically a function of the real goods (most people
like money because of the things it allows them to buy), we can formulate
the utility as a function of the wealth available in each state.

Consider5 an agent who has an endowment e = (e1, . . . , eS) ∈ RS
+. This

vector represents the random wealth that the agent will have at time 1. The
agent has a utility function U : RS

+ → R which we assume to be concave,
differentiable and strictly increasing in each coordinate. Given a financial
market represented by the pair (π,D), the agent’s problem is

max
θ

U(e + D>θ) (4.6)

s.t. π>θ ≤ 0.

If we assume that there exists a security with a non-negative payoff which
is strictly positive in at least one state, then because the utility function is
increasing we can replace the inequality in the constraint by an equality.

5This closely follows Darrell Duffie: Dynamic Asset Pricing Theory. Princeton Univer-
sity Press. 1996
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And then the interpretation is simply that the agent sells endowment in
some states to obtain more in other states. But no cash changes hands at
time 0. Note that while utility is defined over all (non-negative) consumption
vectors, it is the rank of D which decides in which directions the consumer
can move away from the initial endowment.

Proposition 6. If there exists a portfolio θ0 with D>θ0 > 0 then the agent
can find a solution to the maximization problem if and only if (π,D) is
arbitrage-free.

Proof. The “only if” part: We want to show that if (4.6) admits an optimal
solution, then there is no arbitrage - or, equivalently, if there is an arbitrage,
then there is no solution to (4.6). Suppose there is an arbitrage portfolio θ̃
and that c∗ = e + D>θ∗ is an optimal solution to (4.6). Let the arbitrage
be of the first kind, i.e. π>θ̃ ≤ 0 and D>θ̃ > 0, then the agent would be
better off investing in the arbitrage portfolio. Specifically, there must exist a
non-negative α for which D>(αθ̃) > D>θ∗ and since U is strictly increasing
U(e + D>(αθ̃)) > U(e + D>θ∗). This contradicts the assumption that θ∗ is
optimal. Now suppose the arbitrage is of the second kind, specifically the
case where π>θ̃ < 0 and D>θ̃ = 0. Then the agent may invest the proceeds
from the arbitrage portfolio into the portfolio θ0 for which D>θ0 > 0 (the
assumption that such a portfolio exists is a very mild condition). Once again,
this will allow us to contradict the assumption that θ∗ is the optimal portfolio.

The “if” part: We will now show that in the absence of arbitrage,
there exists a solution to (4.6). To this end, it would be convenient to use
the extreme value theorem which establishes that a continuous real-valued
function on a nonempty compact space is bounded above and attains its
supremum. That X = {e + D>θ ∈ RS

+|θ ∈ RN , π>θ ≤ 0} constitutes a non-
empty compact (convex) space is readily demonstrated: by assumption it is
not empty, and closure follows from the “≤”. Convexity is likewise trivial: if
θ1 and θ2 are two arbitrary portfolios which both satisfy the conditions of X,
then so does the portfolio λθ1+(1−λ)θ2 ∀λ ∈ (0, 1). Finally, we can argue for
boundedness by contradiction: suppose the convex space X is unbounded,
then each c ∈ X has an associated ray i.e. an infinite straight line which can
be traversed without leaving X.6 However, such a ray corresponds to the
existence of an arbitrage (why?), which contradicts our assumptions. Hence,
X must be non-empty and compact and the extreme value theorem entails
that (4.6) has a solution.

6The precise statement is: ∀c ∈ X ∃h ∈ RN such that h 6= 0 and ` = {x ∈ RN |x =
x+ th, t ≥ 0} ⊂ X.
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state-price vector The important insight is the following (see Proposition 1C in Duffie
(1996)):

Proposition 7. Assume that there exists a portfolio θ0 with D>θ0 > 0. If
there exists a solution θ∗ to (4.6) and the associated optimal consumption
is given by c∗ := e + D>θ∗ � 0, then the gradient ∇U(c∗) (thought of as
a column vector) is proportional to a state-price vector. The constant of
proportionality is positive.

Proof. Since c∗ is strictly positive, then for any portfolio θ there exists some
k(θ) such that c∗ + αD>θ ≥ 0 for all α in [−k(θ), k(θ)]. Define

gθ : [−k(θ), k(θ)]→ R

as
gθ(α) = U(c∗ + αD>θ)

Now consider a θ with π>θ = 0. Since c∗ is optimal, gθ must be maximized
at α = 0 and due to our differentiability assumptions we must have

g′θ(0) = (∇U(c∗))>D>θ = 0.

We can conclude that any θ with π>θ = 0 satisfies (∇U(c∗))>D>θ = 0.
Transposing the last expression, we may also write θ>D∇U(c∗) = 0. In words,
any vector which is orthogonal to π is also orthogonal to D∇U(c∗). This
means that µπ = D∇U(c∗) for some µ showing that ∇U(c∗) is proportional
to a state-price vector. Choosing a θ0 with D>θ0 > 0 we know from no
arbitrage that π>θ0 > 0 and from the assumption that the utility function is
strictly increasing, we have ∇U(c∗)D>θ0 > 0. Hence µ must be positive.

Remark 3. To understand the implications of this result we turn to the
special case where the utility function has an expected utility representation,
i.e. where we have a set of probabilities (p1, . . . , pS) and a function u such
that

U(c) =
S∑
i=1

piu(ci).

In this special case we note that the coordinates of the state-price vector
satisfy

ψi = λpiu
′(c∗i ), i = 1, . . . , S. (4.7)

where λ is some constant of proportionality. Suppose the market is complete.
Then proposition 7 effectively reduces the optimal portfolio problem (4.6) to
a one-dimensional problem. Specifically, the lefthand side of (4.7) is deter-
mined from market data independently of the agent. So we divide λ and pi
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marginal utilityover and take (u′)−1 (u is concave and smooth, so u′ is a continuous and
decreasing function, hence it has an inverse) thus determining c∗i . (At least
up to knowledge of the scalar λ, which in practical cases would be determined
from the agent’s budget constraint; λ has to be such that the time zero price
of the agent’s consumption is no more than what he has to spend.)) This is
Pliska’s martingale method of stochastic control.

So what if the market is incomplete? In this case we may construe
proposition 7 in reverse order as a way to pin down a “reasonable” martingale
measure. Specifically, some understanding of the righthand side, will lead to
a concretisation of the (underdetermined) ψ.

Now we can state the economic intuition behind the option example as
follows (and it is best to think of a complete market to avoid ambiguities in
the interpretation): Given the complete market (π,D) we can find a unique
state price vector ψ. This state price vector does not depend on p. Thus if
we change p and we are thinking of some agent out there ’justifying’ our
assumptions on prices of traded securities, it must be the case that the agent
has different marginal utilities associated with optimal consumption in each
state. The difference must offset the change in p in such a way that (4.7)
still holds. We can think of this change in marginal utility as happening in
two ways: One way is to change utility functions altogether. Then starting
with the same endowment the new utility functions would offset the change
in probabilities so that the equality still holds. Another way to think of state
prices as being fixed with new probabilities but utility functions unchanged,
is to think of a different value of the initial endowment. If the endowment
is made very large in one state and very small in the other, then this will
offset the large change in probabilities of the two states. The analysis of
the single agent can be carried over to an economy with many agents with
suitable technical assumptions. Things become particularly easy when the
equilibrium can be analyzed by considering the utility of a single, ’represen-
tative’ agent, whose endowment is the sum of all the agents’ endowments.
An equilibrium then occurs only if this representative investor has the initial
endowment as the solution to the utility maximization problem and hence
does not need to trade in the market with the given prices. In this case the
aggregate endowment plays a crucial role. Increasing the probability of a
state while holding prices and the utility function of the representative in-
vestor constant must imply that the aggregate endowment is different with
more endowment (low marginal utility) in the states with high probability
and low endowment (high marginal utility) in the states with low probability.
This intuition is very important when we discuss the Capital Asset Pricing
Model later in the course.
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A market where we are able to separate out the financial decisions as
above is the one we will have in our mind throughout this course. But do keep
in mind that this leaves out many interesting issues in the interaction between
real markets and financial markets. For example, it is easy to imagine that an
incomplete financial market (i.e. one which does not allow any distribution
of wealth across states and time periods) makes it impossible for agents to
realize consumption plans that they would find optimal in a complete market.
This in turn may change equilibrium prices on real markets because it changes
investment behavior. For example, returning to the house market, the fact
that financial markets allows young agents to borrow against future income,
makes it possible for more consumers to buy a house early in their lives. If
all of a sudden we removed the possibility of borrowing we could imagine
that house prices would drop significantly, since the demand would suddenly
decrease.

Example 17. Notice: This exercise requires programming. The reader is
strongly encouraged to have a personal go at the questions before consulting
the answers.

Consider an investor who can choose between a (risky) stock and a (risk-
free) bond investment, with the aim of maximising his expected terminal
wealth. Specifically, he wants to solve the following optimisation problem

max
xS ,xb

E(u(W (1))) s.t. xSS(0) + xb ≤ W (0),

xSS(1) + xb(1 + r) = W (1),

xS, xb ≥ 0, (i.e. no short selling)
(4.8)

where W (1) denotes his (stochastic) time-1 wealth and his criterion or utility
function has the form

u(x) =
xγ − 1

γ
,

for some γ, that is then one minus investor’s (constant) relative risk-aversion.
To get the ball rolling, let us look at a two-state model for S(1)

S(1) =

{
uS(0) with probability p,

dS(0) with probability 1− p,

As default, assume W (0) = 100, S(0) = 100, u = 1.25, d = 0.95, r = 0.095,
p = 0.5 and γ = 0.5.
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(1) Formulate and solve the problem using a program, you find suitable
(R, Excel, Maple, Matlab, GAMS, ...), i.e. find the optimal portfolio (xS, xb).
(2) How does this fraction allocated to the risky asset depend (or not depend)
onW (0)? (3) What would happen with quadratic utility? (4) What happens
to the optimal portfolio when you vary γ?

1. Since the utility function is non-linear, so is the optimisation problem.
Entering the following command in Maple

NLPSolve

(
0.5 · (xS · 1.25 · 100 + xb · (1 + 0.095))0.5 − 1

0.5
+

0.5 · (xS · 0.95 · 100 + xb · (1 + 0.095))0.5 − 1

0.5
,

{100 · xS + xb ≤ 100}, assume = nonnegative,maximize

)
one finds that the optimal investment for the stock is xS = .487, whilst
the optimal bond investment is xb = 51.3 (i.e. we place the fraction of
our initial wealth xb/W (0) = 0.513 in the bond).

2. Although the numerical results for xS and xb change for different choices
of W (0), the fraction of the investors initial wealth that go into the
stock and the bond remain unchanged. I.e. the weights

(wS, wb) := (xSS(0)/W (0), xb/W (0)),

are invariant to the investors initial wealth level.

3. For γ = 2 the investor’s utility function is convex, wherefore he is risk
loving rather than risk averse (γ < 1). This means the the investor
allocates all of his initial resources to the stock (xS = 1, xb = 0).

4. The higher the risk aversion (effectively codified by −γ) the lower
is the investors appetite for the stock. E.g. for γ = 0.3 we find
that (xS, xb) = (0.348, 65.2). Conversely, for γ = 0.7 one finds that
(xS, xb) = (0.811, 18.9).

Suppose now that γ = 1. (5) Why is that case somewhat special? (6)
What happens when you increase r? Or more accurately: When does the
solution change? And on a possibly related note: What is the expected rate
of return on the stock E(R) := E((S(1) − S(0))/S(0))? (7) What happens
if the short sales constraints are removed?
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5. When γ = 1 the investor’s utility function becomes linear (we say he is
risk neutral), whence programme (4.8) reduces to a linear optimisation
problem. It is at this value for γ that the investor shifts his entire
wealth to the stock market.

6. Upon increasing r to some value > 0.1 we find that the investor reallo-
cates his entire wealth to the bond. The reason for this is simply that
the guaranteed return from the bond now overshadows the expected
return on the stock: E(R) = p · u + (1 − p) · d − 1 = 0.1. As the
investor is not risk loving he has thus been completely disincentivised
from investing in the risky asset.

7. Removing the short selling restrictions will result in unbounded short
selling of the asset with the lowest (expected) return.

Go back to the default settings, but let’s play around with the risk-free
rate. (8) Is it correct that risk-averse investors always “diversify” i.e. invest
in both the stock and the bond?

8. No. Consider e.g. the extreme example of a negative interest rate.
Clearly, even though the investor is risk averse, he would prefer to have
an expected positive return over a guaranteed negative return. The
catchy way to put this is: “he’s risk averse - not stupid”.

Still default settings. (9) Now what if the short sales constraints are
removed? (10) How does the solution look (or: the solver behave) for r =
0.05, r = 0, r = −0.1, r = 0.2, and r = 0.3?

9. Removing the restriction on short selling, will not perturb the values
of the original optimal investment (xS, xb) = (0.487, 51.3).

10. For r = −0.1 and r = 0.3 there is arbitrage on the market (the reader
should verify that the associated state price vectors are not strictly
positive). This incentivises the investor to perform unlimited short
selling of the under-performing asset (respectively the bond and the
stock) for an unlimited profit (i.e. no maximum in programme (4.8) can
be found). For the remaining no-arbitrage values of r the situation is
exactly as you would expect: the higher the risk free return, the keener
is the investor on allocating his funds to the bond. Maple returns the
following values:

r 0 0.05 0.2
xS 16 5.25 -19.2
xb -1500 -425 2020
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This can be seen a numerical illustration of Proposition 6.7 Only when
the market is arbitrage free can the investor find an optimum to his
utility maximisation problem.

7Purists can rightly claim than the utility function here does not satisfy the assumptions
for said Proposition. Specifically, for γ ≤ 0 the utility function is non-defined (non-finite)
in x = 0. However, for our choice of γ = 0.5 this is obviously not a problem.
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multi-period
model

Chapter 5

Arbitrage pricing in the
multi-period model

5.1 An appetizer

It is fair to argue that to get realism in a model with finite state space we
need the number of states to be large. After all, why would the stock take
on only two possible values at the expiration date of the option? On the
other hand, we know from the previous section that in a model with many
states we need many securities to have completeness, which (in arbitrage-free
models) is a requirement for pricing every claim. And if we want to price
an option using only the underlying stock and a money market account, we
only have two securities to work with. Fortunately, there is a clever way out
of this.

Assume that over a short time interval the stock can only move to two
different values and split up the time interval between 0 and T (the expiry
date of an option) into small intervals in which the stock can be traded.
Then it turns out that we can have both completeness and therefore arbitrage
pricing even if the number of securities is much smaller than the number of
states. Again, before we go into the mathematics, we give an example to
help with the intuition.

Assume that Ω = {ω1, ω2, ω3, ω4} and that there are three dates: t ∈
{0, 1, 2}. We specify the behavior of the stock and the money market account
as follows: Assume that 0 < d < R < u and that S > 0. Consider the
following graph:

69
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At time 0 the stock price is S, the bank account is worth 1. At time 1,
if the state of the world is ω1 or ω2, the prices are uS and R , respectively,
whereas if the true state is ω3 or ω4, the prices are dS and R. And finally,
at time t = 2, the prices of the two instruments are as shown in the figure
above. Note that ω ∈ Ω describes a whole ”sample path” of the stock price
process and the bank account, i.e. it tells us not only the final time 2 value,
but the entire history of values up to time 2.

Now suppose that we are interested in the price of a European call option
on the stock with exercise price K and expity T = 2. At time 2, we know it
is worth

C2 (ω) = [S2 (ω)−K]+

where S2 (ω) is the value of the stock at time 2 if the true state is ω.
At time 1, if we are in state ω1 or ω2, the money market account is

worth R and the stock is worth uS, and we know that there are only two
possible time 2 values, namely (R2, u2S) or (R2, duS). But then we can use
the argument of the one period example to see that at time 1 in state ω1 or
ω2 we can replicate the calls payoff by choosing a suitable portfolio of stock
and money market account: Simply solve the system:

au2S + bR2 =
[
u2S −K

]+ ≡ Cuu

aduS + bR2 = [duS −K]+ ≡ Cdu
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for (a, b) and compute the price of forming the portfolio at time 1. We find

a =
Cuu − Cdu
uS (u− d)

, b =
uCdu − dCuu
(u− d)R2

.

The price of this portfolio is

auS + bR =
R

R

(Cuu − Cdu)
(u− d)

+
uCdu − dCuu

(u− d)R

=
1

R

[
(R− d)

(u− d)
Cuu +

(u−R)

(u− d)
Cud

]
=: Cu

This is clearly what the call is worth at time t = 1 if we are in ω1

or ω2, i.e. if the stock is worth uS at time 1. Similarly, we may define
Cud := [udS −K]+ (which is equal to Cdu) and Cdd = [d2S −K]

+
. And now

we use the exact same argument to see that if we are in state ω3 or ω4, i.e. if
the stock is worth dS at time 1, then at time 1 the call should be worth Cd
where

Cd :=
1

R

[
(R− d)

(u− d)
Cud +

(u−R)

(u− d)
Cdd

]
.

Now we know what the call is worth at time 1 depending on which state
we are in: If we are in a state where the stock is worth uS, the call is worth
Cu and if the stock is worth dS, the call is worth Cd.

Looking at time 0 now, we know that all we need at time 1 to be able to
”create the call”, is to have Cu when the stock goes up to uS and Cd when
it goes down. But that we can accomplish again by using the one-period
example: The cost of getting

(
Cu
Cd

)
is

C0 :=
1

R

[
(R− d)

(u− d)
Cu +

(u−R)

(u− d)
Cd

]
.

If we let q = R−d
u−d and if we insert the expressions for Cu and Cd, noting

that Cud = Cdu, we find that

C0 =
1

R2

[
q2Cuu + 2q (1− q)Cud + (1− q)2Cdd

]
which the reader will recognize as a discounted expected value, just as in the
one period example. (Note that the representation as an expected value does
not hinge on Cud = Cdu.)

The important thing to understand in this example is the following: Start-
ing out with the amount C0, an investor is able to form a portfolio in the
stock and the money market account which produces the payoffs Cu or Cd
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replication
hedging
derivative security
information
filtration
partition

at time 1 depending on where the stock goes. Now without any additional
costs, the investor can rearrange his/her portfolio at time 1, such that at
time 2, the payoff will match that of the option. Therefore, at time 0 the
price of the option must be C0.

This dynamic replication or hedging argument (If we create the pay-off
of the call, we typically say that we replicate, when we create minus the call
pay-off, we say hedge.) is the key to pricing derivative securities (another
word for contingent claims) in discrete-time, finite state space models. We
now want to understand the mathematics behind this example.

5.2 Price processes, trading and arbitrage

Given a probability space (Ω,F , P ) with Ω finite, let F := 2Ω (i.e. the set of
all subsets of Ω) and assume that P (ω) > 0 for all ω ∈ Ω. Also assume that
there are T + 1 dates, starting at date 0, ending at date T . To formalize how
information is revealed through time, we introduce the notion of a filtration:

Definition 23. A filtration F = {Ft}Tt=0 is an increasing sequence of σ-
algebras contained in F :F0 ⊆ F1 ⊆ . . . ⊆ FT .

We will always assume that F0 = {∅,Ω} and FT = F . Since Ω is finite,
it will be easy to think of the σ−algebras in terms of partitions:

Definition 24. A partition Pt of Ω is a collection of non-empty subsets of
Ω such that

•
⋃

Pi∈PtPi = Ω

• Pi ∩ Pj = ∅ whenever i 6= j, Pi, Pj ∈ Pt.

Because Ω is finite, there is a one-to-one correspondence between parti-
tions and σ−algebras: The elements of Pt corresponds to the atoms of Ft.

The concepts we have just defined are well illustrated in an event-tree:
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The event tree illustrates the way in which we imagine information about
the true state being revealed over time. At time t = 1, for example, we may
find ourselves in one of two nodes: ξ11 or ξ12. If we are in the node ξ11, we
know that the true state is in the set {ω1, ω2, . . . , ω5}, but we have no more
knowledge than that. In ξ12, we know (only) that ω ∈ {ω6, ω7, . . . , ω9}. At
time t = 2 we have more detailed knowledge, as represented by the partition
P2. Elements of the partition Pt are events which we can decide as having
occurred or not occurred at time t, regardless of what the true ω is. At
time 1, we will always know whether {ω1, ω2, . . . , ω5} has occurred or not,
regardless of the true ω. If we are at node ξ12, we would be able to rule out
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measurable
adapted process
dividend process

the event {ω1, ω2} also at time 1, but if we are at node ξ11, we will not be
able to decide whether this event has occurred or not. Hence {ω1, ω2} is not
a member of the partition.

Make sure you understand the following:

Remark 4. A random variable defined on (Ω,F , P ) is measurable with re-
spect to Ft precisely when it is constant on each member of Pt.

A stochastic process X := (Xt)t=0,...,T is a sequence of random variables
X0, X1, . . . , XT . The process is adapted to the filtration F, if Xt is Ft-
measurable (which we will often write: Xt ∈ Ft) for t = 0, . . . , T. Returning
to the event tree setup, it must be the case, for example, that X1(ω1) =
X1(ω5) if X is adapted, but we may have X1(ω1) 6= X1(ω6).

Given an event tree, it is easy to construct adapted processes: Just assign
the values of the process using the nodes of the tree. For example, at time
1, there are two nodes ξ11 and ξ12. You can choose one value for X1 in ξ11

and another in ξ12. The value chosen in ξ11 will correspond to the value of
X1 on the set {ω1, ω2, . . . , ω5} , the value chosen in ξ12 will correspond to
the common value of X1 on the set {ω6, . . . , ω9}. When Xt is constant on an
event At we will sometimes write Xt(At) for this value. At time 2 there are
five different values possible for X2. The value chosen in the top node is the
value of X2 on the set {ω1, ω2}.

As we have just seen it is convenient to speak in terms of the event tree
associated with the filtration. From now on we will refer to the event tree
as the graph Ξ and use ξ to refer to the individual nodes. The notation
p(ξ) will denote the probability of the event associated with ξ; for example
P (ξ11) = P ({ω1, ω2, . . . , ω5}). This graph Ξ will also allow us to identify
adapted processes with vectors in RΞ. The following inner products on the
space of adapted processes will become useful later: Let X, Y be adapted
processes and define∑

ξ∈Ξ

X(ξ)Y (ξ) ≡
∑

{(t,Au):Au∈Pt,0≤t≤T}

Xt(Au)Yt(Au)

E
∑
ξ∈Ξ

X(ξ)Y (ξ) ≡
∑
ξ∈Ξ

P (ξ)X(ξ)Y (ξ)

≡
∑

{(t,Au):Au∈Pt,0≤t≤T}

P (Au)Xt(Au)Yt(Au)

Now we are ready to model financial markets in multi-period models.
Given is a vector of adapted dividend processes

δ = (δ1, . . . , δN)
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price process
locally riskfree

asset
short rate process
locally riskfree

asset

and a vector of adapted security price processes

S = (S1, . . . , SN).

The interpretation is as follows: Sit(ω) is the price of security i at time t if the
state is ω. Buying the i′th security at time t ensures the buyer (and obligates
the seller to deliver) the remaining dividends δit+1, δ

i
t+2, . . . , δ

i
T .

1 Hence the
security price process is to be interpreted as an ex-dividend price process
and in particular we should think of ST as 0. In all models considered in
these notes we will also assume that there is a bank account which provides
locally riskfree borrowing and lending. T his is modeled as follows: Given an
adapted process - the short rate process

ρ = (ρ0, ρ1, . . . , ρT−1).

To make the math work, all we need to assume about this process is that it
is strictly greater than −1 at all times and in all states, but for modelling
purposes it is desirable to have it non-negative. Now we may define the
money market account as follows:

Definition 25. The bank account has the security price process

S0
t = 1, t = 0, 1, . . . , T − 1

S0
T = 0.

and the dividend process

δ0
t (ω) = ρt−1(ω) for all ω and t = 1, . . . , T − 1,

δ0
T (ω) = 1 + ρT−1(ω).

This means that if you buy one unit of the money market account at time
t you will receive a dividend of ρt at time t + 1. Since ρt is known already
at time t, the dividend received on the money market account in the next
period t + 1 is known at time t. Since the price is also known to be 1 you
know that placing 1 in the money market account at time t, and selling the
asset at time t+ 1 will give you 1 + ρt. This is why we refer to this asset as a
locally riskfree asset. You may of course also choose to keep the money in the
bank account and receive the stream of dividends. Reinvesting the dividends
in the money market account will make this account grow according to the
process R defined as

Rt = (1 + ρ0) · · · (1 + ρt−1).

1We will follow the tradition of probability theory and often suppress the ω in the
notation.
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self-financing
trading strategy

We will need this process to discount cash flows between arbitrary periods
and therefore introduce the following notation:

Rs,t ≡ (1 + ρs) · · · (1 + ρt−1).

Definition 26. A trading strategy is an adapted process

φ = (φ0
t , . . . , φ

N
t )t=0,...,T−1.

and the interpretation is that φit(ω) is the number of the i′th security
held at time t if the state is ω. The requirement that the trading strategy
is adapted is very important. It represents the idea that the strategy should
not be able to see into the future. Returning again to the event tree, when
standing in node ξ11, a trading strategy can base the number of securities on
the fact that we are in ξ11 (and not in ξ12), but not on whether the true state
is ω1 or ω2.

The dividend stream generated by the trading strategy φ is denoted δφ

and it is defined as

δφ0 = −φ0 · S0δ
φ
t = φt−1 · (St + δt)− φt · St for t = 1, . . . , T.

Definition 27. An arbitrageis a trading strategy for which δφt is a positive
process, i.e. always nonnegative and δφt (ω) > 0 for some t and ω. The model
is said to be arbitrage-free if it contains no arbitrage opportunities.

In words, there is arbitrage if we can adopt a trading strategy which at
no point in time requires us to pay anything but which at some time in some
state gives us a strictly positive payout. Note that since we have included the
initial payout as part of the dividend stream generated by a trading strategy,
we can capture the definition of arbitrage in this one statement. This one
statement captures arbitrage both in the sense of receiving money now with
no future obligations and in the sense of paying nothing now but receiving
something later.

Definition 28. A trading strategy φ is self-financing if it satisfies

φt−1 · (St + δt) = φt · St for t = 1, . . . , T.

The interpretation is as follows: Think of forming a portfolio φt−1 at
time t − 1. Now as we reach time t, the value of this portfolio is equal to
φt−1 · (St + δt), and for a self-financing trading strategy, this is precisely the
amount of money which can be used in forming a new portfolio at time t.
We will let Φ denote the set of self-financing trading strategies.
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Example 18. A classical exercise in filtrations and measurability runs along
the following lines: Suppose we have a fair coin which we flip twice. The
outcome ω of this experiment is the sequence ω = ω1ω2 ∈ Ω where each
individual coin flip ωi (i = 1, 2) can come out either heads (H) or tails (T).
We also imagine that we monitor the evolution of the experiment: first at
time t = 1 after the coin is flipped for the first time, and subsequently at
time t = 2 when the coin has been flipped again. Question: what is the
associated probability space (Ω,F ,P) and filtration F = {Ft}t=0,1,2 for this
experiment?

Clearly, the experiment has a totality of 22 = 4 possible outcomes, which
we represent by the sample space Ω = {HH,HT, TH, TT}. The associated
event space is the power set 2Ω :

F = {∅, HH,HT, TH, TT,HH ∪HT,HH ∪ TH,HH ∪ TT,
HT ∪ TH,HT ∪ TT, TH ∪ TT,HH ∪HT ∪ TH,
HH ∪HT ∪ TT,HH ∪ TH ∪ TT,HT ∪ TH ∪ TT,Ω}.

(5.1)

You should check for yourself that F satisfies the σ-algebra properties of
closure under complementation and countable unions. Notice that the car-
dinality of the filtration is |F| = 16 or, equivalently, |F| = 2|Ω| = 24 (this
explains the notation for the power set). Finally, the real world probability
measure P specifies the probability of every event in F : e.g. since the coin is
fair, we have for each of the elementary events ω ∈ {HH,HT, TH, TT} that
P(ω) = 1

2
× 1

2
= 1

4
. Other probabilities follow from the axioms of probability:

e.g. P(Ω) = 1, P(∅) = 0, P(HH ∪HT ) = P(HH) + P(HT ) = 1
4

+ 1
4

= 1
2

and
so forth.

As for the filtration F = {Ft}t=0,1,2, the three σ-algebras F0, F1 and
F2 effectively encode the information available to us at times t = 0, t = 1
and t = 2. Clearly, at t = 0, before any observation is made, we can only
deduce the trivial events something happened or nothing happened, whence
F0 = {∅,Ω}. At t = 1 the outcome of the first coin flip has been revealed
(either ω1 = H occurred, or ω1 = T occurred) while ω2 remains undisclosed.
Hence, F1 = {∅, HH ∪ HT, TT ∪ TH,Ω} where HH ∪ HT and TT ∪ TH
are the atoms of F1. Finally, at t = 2 the outcome of the second coin flip
has been revealed, thus resolving any ambiguity about the experiment. The
σ-algebra of identifiable events is therefore F2 = F , where F is given by
(5.1).

Now suppose we (costlessly) enter a game which pays out $1 every time
the coin comes out heads, but deducts $1 every time the coin comes out
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pricing
functional

tails. Our cumulative gains are thus represented by the stochastic process
Gt : Ω× {0, 1, 2} 7→ R where G0 = 0 and

G1(ω) =

{
+1, if ω ∈ {HH,HT}
−1, if ω ∈ {TH, TT}

G2(ω) =


+2, if ω = HH

0, if ω ∈ {HT, TH}
−2, if ω = TT

What is the smallest σ-algebras FG1 and FG2 generated by the random vari-
ables G1 and G2? I.e. what are the sets of possible outcomes that can be
deduced solely by monitoring our cumulative gains and not the actual coin
flips? With respect to which of the six σ-algebras F ,F0,F1,F2,FG1 ,FG2 are
the random variables G1 and G2 measurable?

It is quite clear that FG1 = F1: there is no information difference between
calling out +1/− 1 or calling out H/T after the first coin flip. On the other
hand, FG2 6= F2: clearly, G2 encodes less information since the outcome 0
tells us nothing about whether ω = HT or ω = TH occurred. The correct
σ-algebra is readily shown to be

FG2 = {∅, HH, TT,HT ∪ TH,HH ∪ TT,HH ∪HT ∪ TH
TT ∪HT ∪ TH,Ω}.

To determine the measurability of a random variable X with respect to
a given σ-algebra F , we must check that the σ-algebra generated by X, FX ,
is a subset of F . Since FG1 ⊆ F ,F1,F2,FG1 the random variable G1 is
measurable with respect to those filtrations. Analogously, you should check
that G2 is measurable with respect to F ,F2 and FG2 .

5.3 No arbitrage and price functionals

We have seen in the one period model that there is equivalence between the
existence of a state price vector and absence of arbitrage. In this section we
show the multi-period analogue of this theorem.

The goal of this section is to prove the existence of the multi-period
analogue of state-price vectors in the one-period model. Let L denote the set
of adapted processes on the given filtration.

Definition 29. A pricing functional F is a linear functional

F : L→R
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which is strictly positive, i.e.

F (X) ≥ 0 for X ≥ 0

F (X) > 0 for X > 0.

Definition 30. A pricing functional F is consistent with security prices if

F (δφ) = 0 for all trading strategies φ.

Note that if there exists a consistent pricing functional we may arbitrarily
assume that the value of the process 1{t=0} (i.e. the process which is 1 at time
0 and 0 thereafter) is 1. By Riesz’representation theorem we can represent
the functional F as

F (X) =
∑
ξ∈Ξ

X(ξ)f(ξ)

With the convention F (1{t=0}) = 1, we then note that if there exists a trading
strategy φwhich is initiated at time 0 and which only pays a dividend of 1 in
the node ξ, then

φ0 · S0 = f(ξ).

Hence f(ξ) is the price at time 0 of having a payout of 1 in the node ξ.

Proposition 8. The model (δ, S) is arbitrage-free if and only if there exists
a consistent pricing functional.

Proof. First, assume that there exists a consistent pricing functional F. Any
dividend stream δφ generated by a trading strategy which is positive must
have F (δφ) > 0 but this contradicts consistency. Hence there is no arbitrage.
The other direction requires more work:

Define the sets

L1 =

{
X ∈ L

∣∣∣∣∣X > 0 and
∑
ξ∈Ξ

X(ξ) = 1

}
L0 =

{
δφ ∈ L |φ trading strategy

}
and think of both sets as subsets of RΞ. Note that L1is convex and compact
and that L0 is a linear subspace, hence closed and convex. By the no arbitrage
assumption the two sets are disjoint. Therefore, there exists a separating
hyperplane H(f ;α) := {x ∈ RΞ : f · x = α} which separates the two sets
strictly and we may choose the direction of f such that f · x ≤ α for x ∈ L0.
Since L0 is a linear subspace we must have f · x = 0 for x ∈ L0 (why?).
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complete market Strict separation then gives us that f · x > 0 for x ∈ L1, and that in turn
implies f � 0 (why?). Hence the functional

F (X) =
∑
ξ∈Ξ

f(ξ)X(ξ)

is consistent.�
By using the same geometric intuition as in Chapter 2, we note that there

is a connection between completeness of the market and uniqueness of the
consistent price functional:

Definition 31. The security model is complete if for every X ∈ L there
exists a trading strategy φ such that δφt = Xt for t ≥ 1.

If the model is complete and arbitrage-free, there can only be one consis-
tent price functional (up to multiplication by a scalar). To see this, assume
that if we have two consistent price functionals F,G both normed to have
F (1{t=0}) = G(1{t=0}) = 1. Then for any trading strategy φ we have

0 = −φ0 · S0 + F (1{t>0}δ
φ)

= −φ0 · S0 +G(1{t>0}δ
φ)

hence F and G agree on all processes of the form 1{t>0}δ
φ. But they also

agree on 1{t=0} and therefore they are the same since by the assumption of
completeness every adapted process can be obtained as a linear combination
of these processes.

Given a security price system (π,D), the converse is shown in a way
very similar to the one-period case. Assume the market is arbitrage-free and
incomplete. Then there exists a process π in L, whose restriction to time
t ≥ 1 is orthogonal to any dividend process generated by a trading strategy.
By letting π0 = 0 and choosing a sufficiently small ε > 0, the functional
defined by

(F + επ) (δφ) =
∑
ξ∈Ξ

(f(ξ) + επ(ξ)) δφ(ξ)

is consistent. Hence we have shown:

Proposition 9. If the market is arbitrage-free, then the model is complete if
and only if the consistent price functional is unique.

5.4 Conditional expectations and martingales

Consistent price systems turn out to be less interesting for computation when
we look at more general models, and they do not really explain the strange
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conditional
expectation

Iterated
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probability measure q which we saw earlier. We are about to remedy both
problems, but first we need to make sure that we can handle conditional
expectations in our models and that we have a few useful computational
rules at our disposal.

Definition 32. The conditional expectation of an Fu−measurable random
variable Xu given Ft,where Ft ⊆ Fu, is given by

E(Xu |Ft )(ω) =
1

P (At)

∑
Av∈Pu:Av⊆At

P (Av)Xu(Av) for ω ∈ At

where we have written Xu(Av) for the value of Xu(ω) on the set Av and
where At ∈ Pt.

We will illustrate this definition in the exercises. Note that we obtain
an Ft−measurable random variable since it is constant over elements of the
partition Pt. The definition above does not work when the probability space
becomes uncountable. Then one has to adopt a different definition which we
give here and which the reader may check is satisfied by the random variable
given above in the case of finite sample space:

Definition 33. The conditional expectation of an Fu−measurable random
variable Xu given Ft is a random variable E(Xu |Ft ) which is Ft−measurable
and satisfies ∫

At

E(Xu |Ft )dP =

∫
At

XudP

for all At ∈ Ft.

It is easy to see that the conditional expectation is linear, i.e. if Xu, Yu ∈
Fu and a, b ∈ R, then

E(aXu + bYu |Ft ) = aE(Xu |Ft ) + bE(Yu |Ft ).

We will also need the following computational rules (all of which can be
derived by elementary methods from the definition) for conditional expecta-
tions:

E(E(Xu |Ft )) = EXu (5.2)

E(ZtXu |Ft ) = ZtE(Xu |Ft ) whenever Zt ∈ Ft (5.3)

E(E(Xu |Ft ) |Fs ) = E(Xu |Fs ) whenever s ≤ t ≤ u (5.4)

Equation (5.4) is called (the rule of) iterated expectations or the tower law.
It is very useful. (But the so-called useful rule is some different.) Using
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martingale Equation (5.3) is sometimes referred to as “taking out what is known”. A
consequence of (5.3) obtained by letting Xu = 1, is that

E(Zt |Ft ) = Zt whenever Zt ∈ Ft. (5.5)

Another fact that we will often need: If a random variable Y is indepen-
dent of the σ-algebra F (which means exactly what you think it means), then
conditional expectation reduces to ordinary expectation, E(Y |F) = E(Y ).

Example 19. The conditional expectation can be interpreted as “our best
estimate given the available information”. Or expressed mathematically: For
any random variable X and any σ-algebra F we have that

E(X|F) = arg min
Z:F−measurable

E((X − Z)2).

Mathematicians would refer to this as a projection property. To prove it let
us first note that for any F -measurable random variable Y we have that

E(Y (X − E(X|F))) = E(E(Y (X − E(X|F))|F))

= E(Y E(X − E(X|F)|F))

= E(Y (E(X|F)− E(X|F))) = 0,

where the first equality comes from iterated expectations and the second
from taking out the known Z. Now let us write

E((X − Z)2) = E(((X − E(X|F)) + (E(X|F)− Z))2)

= E((X − E(X|F))2)

+2E((X − E(X|F))(E(X|F)− Z))

+E((E(X|F).− Z)2).

The first term on the (last) right hand side does not depend on Z. By using
E(X|F)−Z, which is F -measurable, in the role of Y above, we see that the
second term is 0. The third term is positive, but by choosing Z = E(X|F),
which is allowed in the minimization problem, we can make it 0, which is as
small as it can possibly get. Thus the desired result follows.

Now we can state the important definition:

Definition 34. A stochastic process X is a martingale with respect to the
filtration F if it satisfies

E(Xt |Ft−1 ) = Xt−1 all t = 1, . . . , T.
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You can try out the definition immediately by showing:

Lemma 2. A stochastic process defined as

Xt = E(X |Ft ) t = 0, 1, . . . , T

where X ∈ FT , is a martingale.

Let EP (Y ;A) ≡
∫
A
Y dP for any random variable Y and A ∈ F . Using

this notation and the definition (33) of a martingale, this lemma says that

E(X;A) = E(Xt;A) for all t andA ∈ Ft

When there can be no confusion about the underlying filtration we will
often write Et(X) instead of E(X |Ft ).

Two probability measures are said to be equivalent when they assign zero
probability to the same sets and since we have assumed that P (ω) > 0 for all
ω, the measures equivalent to P will be the ones which assign strictly positive
probability to all events.

We will need a way to translate conditional expectations under one mea-
sure to conditional expectations under an equivalent measure. To do this we
need the density process:

Definition 35. Let the density (or likelihood) process Z be defined as

ZT (ω) =
Q(ω)

P (ω)

and
Zt = EP (ZT | Ft) t = 0, 1, . . . , T.

We will need (but will not prove) the following result of called the Abstract
Bayes Formula.

Proposition 10. Let X be a random variable on (Ω,F). Then

EQ(X| Ft) =
1

Zt
EP (XZT | Ft).

5.5 Equivalent martingale measures

In this section we state and prove what is sometimes known as the funda-
mental theorems of asset pricing. These theorems will explain the mysterious
q−probabilities which arose earlier and they will provide an indispensable
tool for constructing arbitrage-free models and pricing contingent claims in
these models.
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We maintain the setup with a bank account generated by the short rate
process ρ andN securities with price- and dividend processes S = (S1, . . . , SN), δ =

(δ1, . . . , δN). Define the corresponding discounted processes S̃, δ̃ by defining
for each i = 1, . . . , N

S̃it =
Sit
R0,t

t = 0, . . . , T,

δ̃it =
δit
R0,t

t = 1, . . . , T.

Definition 36. A probability measure Q on F is an equivalent martingale
measure (EMM) if Q(ω) > 0 all ω and for all i = 1, . . . , N

S̃it = EQ
t

(
T∑

j=t+1

δ̃ij

)
t = 0, . . . , T − 1. (5.6)

The term martingale measure has the following explanation: Given a
(one-dimensional) security price process S whose underlying dividend process
only pays dividend δT at time T. Then the existence of an EMM gives us
that

S̃t = EQ
t

(
δ̃T

)
t = 0, . . . , T − 1.

and therefore Lemma 2 tell us that the discounted price process (S̃0, S̃1, . . . , S̃T−1, δ̃T ) is
a martingale, which we may more tellingly write as

St = EQ
t

(
St+1

1 + ρt

)
.

We can rewrite the definition of an equavalent martingale measure into
the follow local charactrization:

Theorem 3. A measure Q is an equivalent martingale measure if and only
if the following holds

Sit = EQ
t

(
Sit+1 + δit+1

1 + ρt

)
for all i and t (and ω).

Proof. (Short form. The reader is encouraged to “cross the dot the i’s and
cross the t’s” him- or herself.) Rewrite Equation (5.6) as

Sit
R0,t

= EQ
t

(
δit+1

R0,t+1

+
T∑

j=t+2

δ̃ij

)
.
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Now use linearity of conditional expectation, use iterated expectations to
write “EQ

t = EQ
t E

Q
t+1”, use the definition of R (a couple of times), and

finally use Equation (5.6) for t+ 1. �

We are now ready to formulate and prove what is sometimes known as
the first fundamental theorem of asset pricing in a version with discrete time
and finite state space:

Theorem 4. In our security market model the following statements are
equivalent:

1. There are no arbitrage opportunities.

2. There exists an equivalent martingale measure.

Proof. We have already seen that no arbitrage is equivalent to the existence
of a consistent price functional F. Therefore, what we show in the following
is that there is a one-to-one correspondence between consistent price func-
tionals (up to multiplication by a positive scalar) and equivalent martingale
measures. We will need the following notation for the restriction of F to an
Ft−measurable random variable: Let δX be a dividend process whose only
payout is X at time t.Define

Ft(X) = F (δX).

If we assume (as we do from now on) that F0(1) = 1, we may think of
Ft(1A) as the price a time 0 of a claim (if it trades) paying off 1 at time t if
ω ∈ A. Note that since we have a assumed the existence of a money market
account, we have

FT (R0,T ) = 1 (5.7)

First, assume there is no arbitrage and let F be a consistent price func-
tional. Our candidate as equivalent martingale measure is defined as follows:

Q(A) = FT (1AR0,T ) A ∈ F ≡ FT . (5.8)

By the strict positivity, linearity and (5.7) we see that Q is a probability
measure which is strictly positive on all ω.We may write (5.8) as

EQ1A = FT (1AR0,T ) A ∈ F ≡ FT

and by writing a random variable X as a sum of constants times indicator
functions, we note that

EQ(X) = FT (XR0,T ) (5.9)
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Now we want to check the condition (5.6). By definition (33) this is equivalent
to showing that for every security we have

EQ(1AS̃
i
t) = EQ

(
1A

T∑
j=t+1

δ̃ij

)
t = 1, . . . , T. (5.10)

Consider for given A ∈ Ft the following trading strategy φ:

• Buy one unit of stock i at time 0 (this costs Sit ). Invest all dividends
before time t in the money market account and keep them there at
least until time t.

• At time t, if ω ∈ A (and this we know at time t since A ∈ Ft) sell the
security and invest the proceeds in the money market account, i.e. buy
Sit units of the 0′th security and roll over the money until time T .

• If ω /∈ A, then hold the i′th security to time T.

This strategy clearly only requires an initial payment of Si0. The dividend
process generated by this strategy is non-zero only at time 0 and at time
T.At time T the dividend is

δφT = 1ARt,T

(
Sit +

t∑
j=1

δijRj,t

)
+ 1Ac

T∑
j=1

δijRj,T

= 1AR0,T

(
S̃it +

t∑
j=1

δ̃ij

)
+ 1Ac

T∑
j=1

δijRj,T

One could also choose to just buy the i’th security and then roll over the
dividends to time T. Call this strategy ψ.This would generate a terminal
dividend which we may write in a complicated but useful way as

δψT = 1A

T∑
j=1

δijRj,T + 1Ac
T∑
j=1

δijRj,T

= 1AR0,T

T∑
j=1

δ̃ij + 1Ac
T∑
j=1

δijRj,T

The dividend stream of both strategies at time 0 is −Si0.We therefore have

FT (δφT ) = FT (δψT )
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which in turn implies

FT

(
1AR0,T

(
S̃it +

t∑
j=1

δ̃ij

))
= FT

(
1AR0,T

T∑
j=1

δ̃ij

)

i.e.

FT

(
1AR0,T S̃

i
t

)
= FT

(
1AR0,T

T∑
j=t+1

δ̃ij

)
.

Now use (5.9) to conclude that

EQ(1AS̃
i
t) = EQ(1A

T∑
j=t+1

δ̃ij)

and that is what we needed to show. Q is an equivalent martingale measure.

Now assume that Q is an equivalent martingale measure. Define for an
arbitrary dividend process δ

F (δ) = EQ

T∑
j=0

δ̃j

Clearly, F is linear and strictly positive. Now consider the dividend process
δφ generated by some trading strategy φ. To show consistency we need to
show that

φ0 · S̃0 = EQ

T∑
j=1

δ̃φj .

Notice that we know that for individual securities we have

S̃i0 = EQ

T∑
j=1

δ̃ij.

We only need to extend that to portfolios. We do some calculations (where
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fundamental
theorem of asset
pricing, second

we make good use of the iterated expectations rule EQEQ
j = EQEQ

j−1)

EQ

T∑
j=1

δ̃φj = EQ

(
T∑
j=1

φj−1 · (S̃j + δ̃j)− φj · S̃j

)

= EQ

(
T∑
j=1

φj−1 ·

(
EQ
j

(
T∑
k=j

δ̃k

))
− φj · EQ

j

(
T∑

k=j+1

δ̃k

))

= EQ

(
T∑
j=1

φj−1 ·

(
EQ
j−1

(
T∑
k=j

δ̃k

))
−

T∑
j=2

φj−1 · EQ
j−1

(
T∑
k=j

δ̃k

))

= EQ

(
φ0 ·

(
EQ

0

T∑
k=1

δ̃k

))
= EQ

(
φ0 · S̃0

)
= φ0 · S̃0�

Earlier, we established a one-to-one correspondence between consistent
price functionals (normed to 1 at date 0) and equivalent martingale measures.
Therefore we have also proved the following second fundamental theorem of
asset pricing:

Corollary 1. Assume the security model is arbitrage-free. Then the market
is complete if and only if the equivalent martingale measure is unique.

Another immediate consequence from the definition of consistent price
functionals and equivalent martingale measures is the following

Corollary 2. Let the security model defined by (S, δ) (including the money
market account) on (Ω, P,F ,F) be arbitrage-free and complete. Then the
augmented model obtained by adding a new pair (SN+1, δN+1) of security price
and dividend processes is arbitrage-free if and only if

S̃N+1
t = EQ

t

(
T∑

j=t+1

δ̃N+1
j

)
(5.11)

i.e.

SN+1
t

R0,t

= EQ
t

(
T∑

j=t+1

δN+1
j

R0,j

)
where Q is the unique equivalent martingale measure for (S, δ).
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splitting indexIn the special case where the discount rate is deterministic the expression
simplifies somewhat. For ease of notation assume that the spot interest rate
is not only deterministic but also constant and let R = 1 + ρ. Then (5.11)
becomes

SN+1
t = RtEQ

t

(
T∑

j=t+1

δN+1
j

R0,j

)
(5.12)

= EQ
t

(
T∑

j=t+1

δN+1
j

Rj−t

)

5.6 One-period submodels

Before we turn to applications we note a few results for which we do not
give proofs. The results show that the one-period model which we analyzed
earlier actually is very useful for analyzing multi-period models as well.

Given the market model with the N−dimensional security price process
S and dividend process δ and assume that a money market account exists as
well. Let At ∈ Pt and let

N (At) ≡ |{B ∈ Pt+1 : B ⊆ At}| .

This number is often referred to as the splitting index at At. In our
graphical representation where the set At is represented as a node in a graph,
the splitting index at At is simply the number of vertices leaving that node.
At each such node we can define a one-period submodel as follows: Let

π(t, At) ≡
(
1, S1

t (At), . . . , S
N
t (At)

)
.

Denote by B1, . . . , BN(At) the members of Pt+1 which are subsets of At and
define

D(t, At) ≡


1 + ρt(At) · · · 1 + ρt(At)

S1
t+1(B1) + δ1

t+1(B1)
... S1

t+1(BN(At)) + δ1
t+1(BN(At))

...
...

...
SNt+1(B1) + δNt+1(B1) · · · SNt+1(BN(At)) + δNt+1(BN(At))

 .

Then the following results hold:

Proposition 11. The security market model is arbitrage-free if and only if
the one-period model (π(t, At), D(t, At)) is arbitrage-free for all (t, At) where
At ∈ Pt.
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Proposition 12. The security market model is complete if and only if the
one-period model (π(t, At), D(t, At)) is complete for all (t, At) where At ∈
Pt.

In the complete, arbitrage-free case we obtain from each one-period sub-
model a unique state price vector ψ(t, At) and by following the same proce-
dure as outlined in chapter (4) we may decompose this into a discount factor,
which will be 1 + ρt(At), and a probability measure q1, . . . , qN(At). The prob-
abilities thus obtained are then the conditional probabilities qi = Q(Bi |At )
for i = 1, . . . , N(At). From these conditional probabilities the martingale
measure can be obtained.

The usefulness of these local results is that we often build multi-period
models by repeating the same one-period structure.We may then check ab-
sence of arbitrage and completeness by looking at a one-period submodel
instead of the whole tree.

5.7 The Standard Binomial Model

Theory. The binomial option pricing formula hitherto considered consti-
tutes an elegant self-contained theory of no-arbitrage pricing, yet a number
of relevant questions still remain unanswered. First, there is purely prac-
tical question of how we should go about calibrating our model to market
data. Specifically, how do we most easily measure the up and down state
coefficients u and d from a time series of the underlying asset price process?
Secondly, from an inter-theoretic perspective, how do we bring the binomial
model into congruence with the continuous time framework of the Black Sc-
holes formula? As we shall see, an answer to the latter question immediately
suggests an answer to the former.

A central assumption of the Black Scholes model is that the underlying
stock process S obeys Geometric Brownian Motion. Specifically, over the
time interval [0,∆t] the stock price S(∆t) is assumed related to the stock
price S(0) = S through the equation

S(∆t) = Se(µ−1
2
σ2)∆t+σ

√
∆tZ , (5.13)

where µ and σ are constant parameters, and Z is a standard normal random
variable, i.e. Z ∼ N(0, 1). S(∆t) is in other words assumed to be a log-
normal random variable. Do not worry too much about the implications of
this result (it will become much clearer in chapter 7): for now, simply take
equation (5.13) at face value, whilst appreciating the following point: µ and
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σ both have clear empirical meanings, which quickly become apparent upon
scrutinising the moments of S(∆t). In fact, using standard results2 about
the log-normal distribution we find that

E(S(∆t)) = Seµ∆t, E(S(∆t)2) = S2e(2µ+σ2)∆t, (5.14)

or, equivalently3,

E(ln(S(∆t)/S)) =
(
µ− 1

2
σ2
)

∆t, V ar(ln(S(∆t)/S)) = σ2∆t.

Hence, α := µ− 1
2
σ2 codifies the expected log return per unit time, while σ2

encodes the associated variance. Unbiased sample estimates of α and σ are
given by

α̂ =
1

N∆t

N∑
t=1

ln

(
St+1

St

)
, σ̂2 =

1

(N − 1)∆t

N∑
t=1

[
ln

(
St+1

St

)
− α̂∆t

]2

,

(5.15)
where {St}N+1

1 is a time series of stock prices sampled every ∆tth [unit of
time]. Clearly, from these estimators we may also extract an expression for
µ̂, although this turns out to be irrelevant for our present purposes.

Now, in order to align this machinery with binomial option pricing, it is
quite clear that we must bring the moments into agreement i.e. the binomial
moments

E[S(∆t)] = puS + (1− p)dS, E[S(∆t)] = pu2S2 + (1− p)d2S2, (5.16)

must be equated to the corresponding expression in (5.14). Defining m :=
eµ∆t and v := e(2µ+σ2)∆t this means that

pu+ (1− p)d = m, pu2 + (1− p)d2 = v.

Clearly this system is underdetermined: to solve for (p, u, d) in terms of (m, v)
an auxiliary constraint will need to be enforced. A particularly popular choice
in this regard is to arbitrarily fix p = 1

2
whence

2Here it is helpful to recall that if X ∼ N(µ, σ2) then the lognormal variable Y =
exp(X) has the property that E(Y ) = exp(µ+ 1

2σ
2). Indeed, for any n ∈ C we have that

E(Y n) = exp(nµ+ 1
2n

2σ2), so we can readily compute any moment. Hence, you can also
quickly compute the variance.

3Careful here: the operations ln and E do not commute: ln(E(X)) 6= E(ln(X)).
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u+ d = 2m, u2 + d2 = 2v.

Combining these results we readily find that

u2 − 2mu+ 2m2 − v = 0

which is a quadratic equation in u. The only meaningful solution (why?) is

u = m+
√
v −m2 = eµ∆t(1 +

√
eσ2∆t − 1). (5.17)

Analogously, one can solve for d to find

d = m−
√
v −m2 = eµ∆t(1−

√
eσ2∆t − 1). (5.18)

(5.17) and (5.18) may in turn be approximated4 by the slightly more appetis-
ing expressions

u = e(µ−1
2
σ2)∆t+σ

√
∆t, d = e(µ−1

2
σ2)∆t−σ

√
∆t,

at the cost of an O(∆t2) error in the moment matching. We have thus suc-
ceeded in deriving a binomial model which is (I) consistent with the frame-
work of the Black Scholes model, and which (II) is stated in terms of param-
eters which quickly can be estimated form market data. The gravity of this
result is well worth restating in a theorem:

Theorem 5. Let p = 1
2

and let u and d be given by

u = eα∆t+σ
√

∆t, d = eα∆t−σ
√

∆t, (5.19)

where α := µ− 1
2
σ2. Then (I) up to O(∆t2) we have a model which matches

the first and second moment of Geometric Brownian Motion, and (II) can be
calibrated to market data through the estimators α̂ and σ̂ given (5.15). This
is the so-called standard binomial model.

It is somewhat gratifying to observe that the specification (5.19) “pre-
serves the moment matching” under the change of measure P → Q. Explic-
itly, up to O(∆t2) we find that the Q-expectation of S(∆) under Geometric
Brownian Motion matches the Q-expectation of S(∆t) under the binomial
model (and similarly for the second moment). To see how this pans out,
the reader should be aware (accept at face value) that we in continuous time
have the results

4Taylor’s formula suggests that these expressions are O(∆t3/2) close to their exact
counterparts.
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EQ(S(∆t)) = Ser∆t, EQ(S(∆t)2) = S2e(2r+σ2)∆t, (5.20)

where r is the continuously compounded risk free rate. On the other hand,
the binomial model clearly implies

EQ(S(∆t)) = quS+ (1− q)dS EQ(S(∆t)2) = qu2S2 + (1− q)d2S2, (5.21)

where q = (R − d)/(u − d) and R = er∆t. Substituting in the expression
for q we see that the first moment is trivially satisfied. The second moment
requires a bit more work. To see that the error between the second moment
in (5.20) and (5.21) is no greater than O(∆t2) consider the Taylor expansion
of the continuous case:

EQ[S(∆t)2/S2] = 1 + (2r + σ2)∆t+O(∆t2).

Next, observe that the binomial moment may be written as

EQ[S(∆t)2/S2] = q(u2 − d2) + d2 =
R− d
u− d

(u− d)(u+ d) + d2,

= (R− d)(u+ d) + d2 = R(u+ d)− du,

which on Taylor form reads

EQ[S(∆t)2/S2] = (1 + r∆t+O(∆t2))(2 + 2µ∆t+O(∆t2))

− (1 + 2µ∆t− σ2∆t+O(∆t2))

= 2(1 + µ∆t+ r∆t+O(∆t2))− (1 + 2µ∆t− σ2∆t+O(∆t2))

= 1 + (2r + σ2)∆t+O(∆t2).

The result follows immediately.

Remark 5. Whilst the standard binomial model emulates the moments of
the underlying asset in the continuous time framework, we have yet to for-
mally establish that binomial option prices converge to the prices of the Black
Scholes formula as ∆t → 0. In rigorous terms this corresponds to showing
that the binomial pricing formula

V (t, S) = e−r∆t(qV (t+ ∆t, uS) + (1− q)V (t+ ∆t, dS)), (5.22)

converges to the Black Scholes PDE
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Figure 5.1: In the limit where ∆t → 0 the binomially computed call option
price converges towards the Black Scholes price.

rV (t, S) =
∂V

∂t
(t, S) + rS

∂V

∂S
(t, S) + 1

2
σ2S2∂

2V

∂S2
(t, S).

This can be done by performing a second order Taylor expansion of (5.22)
and using the fact that the binomial moments are O(∆t2)-close to their con-
tinuous counterparts. We leave this as an advanced exercise for the reader.
To emphasise the validity of the purported convergence, we have in figure
5.1 plotted the binomial call option price for various step values N = T/∆t.
Clearly, as N →∞ (∆t→ 0) the binomial price converges towards the Black
Scholes price (illustrated by the dotted line).

Remark 6. Crucially, we notice that continuum limit does not depend on
the parameter µ. This result is intimately connected to a deep result known as
the First Fundamental Theorem of Asset Pricing which establishes that asset
price processes under Q have a drift coefficient equal to the risk free rate, r.
This gives us considerable freedom in choosing our α: Jarrow & Rudd e.g.
set α = r − 1

2
σ2.
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Empirics. We will end this section on a practical note, with some brief
comments on calibration. First we might wonder how frequently we should
sample our data in the estimation of α̂ and σ̂. Is there any noticeable discrep-
ancy between opting for daily, weekly or even monthly observations? The
∆t parameter in (5.15) clearly suggests that the estimators are time scaled,
and thus insensitive to our sampling frequency. To put this observtion to
the test, consider the table below in which we exhibit the raw returns and
standard deviations (alongside their temporally scaled counterparts α̂, σ̂) for
the Danish C20 Index, computed on a daily, weekly and monthly basis over
the horizon 1994-2014.

Horizon Avg. raw return α̂ St.d. raw return σ̂

1 day 0.00036 0.092 0.0122 0.195
5 days (∼ 1 week) 0.00181 0.092 0.0280 0.198
21 days (∼ 1 month) 0.00734 0.090 0.0578 0.200

Evidently, the variation in α̂ and σ̂ is quite modest among the three sampling
strategies. The presence of the temporal scaling factor ∆t in α̂ and σ̂ does
indeed seem to calibrate the parameters “just right” (in a sense this cor-
roborates the standard binomial model). Nonetheless, there is an important
caveat to this, which should be illuminated. Due to the telescoping nature
of the summation in α̂, this estimator will generally be unstable for different
choices of ∆t. Specifically, since

α̂ =
1

N∆t

N∑
t=1

ln

(
St+1

St

)
=

1

N∆t

N∑
t=1

[ln(St+1)− ln(St)]

=
1

N∆t
[ln(S2)− ln(S1) + ln(S3)− ln(S2) + ...+ ln(SN+1)− ln(SN)]

=
1

N∆t
[ln(SN+1)− ln(S1)] =

1

N∆t
ln

(
SN+1

S1

)
,

our daily, weekly and monthly estimators for α̂ will generally only be in
agreement if they all employ the same initial and terminal stock values (which
surely occurs if S1 is chosen identically and N mod 5 = N mod 21 = 0).
The upshot is that α̂ generally will fluctuate based on how you choose your
sample. However, based on remark 6 you shouldn’t be too perturbed by this.
What matters is really that σ̂ is stable (which is mostly the case despite the
dependence of α̂ - instability in σ̂ is mostly caused by lack of independence
between the sample returns, which would give rise to non-zero covariance
terms).
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The second (interrelated) calibration issue we will discuss is the question
how we should handle dates with no trading data such as weekends and
public holidays? The short answer is that the totality of non-trading days
are chopped up and distributed evenly across all trading days: e.g. the
temporal distance between the two trading days Monday and Tuesday is not
viewed as (1/365.25) years, but rather (1/252) years, cf. the calculation

365.25︸ ︷︷ ︸
[days on avg.

per year]

× 5
7︸︷︷︸

[proportion
trading days

per week]

− 9︸︷︷︸
[trading holidays

in the U.S. ]

≈ 252︸︷︷︸
[trading days

per year]

.

To put this idea to the test, let us consider what happens to the volatility
of an Index (again, the Danish C20) as we move between consecutive trading
days. If non-trading days are truly important, then we would expect the
change in volatility to be about a factor of

√
3 higher over the weekend

compared to the remaining days. From the data presented in the table this
is clearly not the case! Two consecutive trading days nesting a weekend or
a bank holiday can comfortably be approximated as though separated by a
single day of trading.

day-to-day σ̂

Monday → Tuesday 0.189
Tuesday → Wednesday 0.200
Wednesday → Thursday 0.192
Thursday → Friday 0.178
Friday → Monday 0.214



option pricing

Chapter 6

Option pricing

The classical application of the arbitrage pricing machinery we have devel-
oped is to the pricing of options. The pricing models we obtain are used
with minor modifications all over the world as the basis for trading billions
of dollars worth of contracts every day. For students planning to become
traders of financial derivatives this of course gives plenty of motivation for
learning these models. But recent collapses of financial institutions have also
reminded us that financial managers and executives must understand the way
the derivatives markets work. A manager who understands the markets well
may use them for effective risk management and will be able to implement
effective control mechanisms within a firm to make sure that traders use the
markets in accordance with the firm’s overall objectives.

From a theoretical perspective, options are very important in several areas
of finance. We will see later in the course how they are indispensable for
our understanding of a firm’s choice of capital structure. Also, a modern
theory of capital budgeting relies critically on recognizing options involved
in projects, so-called real options. And in actuarial science options appear
when modelling reinsurance contracts.

6.1 Terminology

A European (American) call option on an underlying security S, with strike price K
and expiration date T, gives the owner the right, but not the obligation, to
buy S at a price of K at (up to and including) time T.

A European (American) put option on an underlying security S, with
strike price K and expiration date T, gives the owner the right, but not the
obligation, to sell S at a price of K at (up to and including) time T.

The strike price is also referred to as the exercise price, and using the

97
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put-call parity
frictionless market

right to buy or sell is referred to as exercising the option.
There is no good reason for the American/European terminology - both

types are traded in America and Europe.
In the definition above, we think of the person selling a call option (say),

often referred to as the person writing an option, as actually delivering the
underlying security to the option holder if the option holder decides to ex-
ercise. This is referred to as physical delivery. In reality, options are often
cash settled. This means that instead of the option holder paying K to the
writer of the call and the writer delivering the stock, the holder merely re-
ceives an amount ST −K from the option writer.

Some common examples of options are stock options in which the under-
lying security is a stock, currency options in which the underlying security
is a foreign currency and where the strike price is to be thought of as an
exchange rate, bond options which have bonds as underlying security and
index options whose underlying security is not really a security but a stock
market index (and where the contracts are then typically cash settled.) It
will always be assumed that the underlying security has non-negative value.

6.2 Diagrams, strategies and put-call parity

Before we venture into constructing exact pricing models we develop some
feel for how these instruments work. In this section we focus on what can
be said about options if all we assume is that all securities (stocks, bonds,
options) can be bought and sold in arbitrary quantities at the given prices
with no transactions costs or taxes. This assumption we will refer to as an
assumption of frictionless markets. We will also assume that at any time t
and for any date T > t, there exists a zero coupon bond with maturity T in
the market whose price at time t is d(t, T ).

An immediate consequence of our frictionless markets assumption is the
following

Proposition 13. The value of an American or European call option at the
expiration date T is equal to CT = max(ST − K, 0), where ST is the price
of the underlying security at time T.The value of an American or European
put option at the expiration date T is equal to max(K − ST , 0).

Proof. Consider the call option. If ST < K, we must have CT = 0, for if
CT > 0 you would sell the option, receive a positive cash flow, and there
would be no exercise.1 If ST ≥ K, we must have CT = ST − K. For if

1Actually, here we need to distinguish between whether the person who bought the
option is an idiot or a complete idiot. Both types are not very smart to pay something for
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pay-off diagramCT > ST −K you would sell the option and buy the stock. After the option
has been exercised, you are left with a total cash flow of CT−ST +K > 0, and
you would have no future obligations arising from this trade. If CT < ST−K,
buy the option, exercise it immediately, and sell the stock. The total cash
flow is −CT + ST −K > 0, and again there would be no future obligations
arising from this trade. The argument for the put option is similar.

We often represent payoffs of options at an exercise date using payoff
diagrams, which show the value of t he option as a function of the value of
the underlying:

6

-

CT

K ST

45◦

�
�
�
�
�
�
��

6

-

PT

ST

K

K

@
@
@
@@

the option at time T . The idiot, however, would realize that there is no reason to pay K
to receive the stock which can be bought for less in the market. The complete idiot would
exercise the option. Then you as the person having sold the option would have to buy the
stock in the market for ST , but that would be more than financed by the K you received
from the complete idiot.
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moneyness Of course, you can turn these hockey sticks around in which case you are
looking at the value of a written option:
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Note that we are only looking at the situation at an exercise date (i.e.
date T for a European option). Sometimes we wish to take into account that
the option had an initial cost at date 0, c0 for a call, p0 for a put, in which
case we get the following profit diagrams:
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Of course, we are slightly allergic to subtracting payments occurring at dif-
ferent dates without performing some sort of discounting. Therefore, one
may also choose to represent the prices of options by their time T forward
discounted values c0

d(0,T )
and p0

d(0,T )
.

The world of derivative securities is filled with special terminology and
here are a few additions to your vocabulary: A call option with strike price
K is said to be (deep) in-the-money at time t if St > K (St � K).The
opposite situation St < K (St � K) is referred to as the call option being
(deep) out-of-the-money. If St ≈ K, the option is said to be at-the-money.
The same terminology applies to put options but with ’opposite signs’: A



6.2. DIAGRAMS, STRATEGIES AND PUT-CALL PARITY 101

put option is in-the-money if St < K.
The diagrams we have seen so far considered positions consisting of just

one option. We considered a long position, i.e. a position corresponding
to holding the option, and we considered a short position, i.e. a position
corresponding to having written an option. One of the attractive features
of options is that they can be combined with positions in other options, the
underlying security and bonds to produce more complicated payoffs than
those illustrated in the profit diagrams above. We will see examples of this
in the exercises. Note that you should think of the payoff diagram for holding
the stock and the diagram for holding the bond as being represented by:
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d(T, T )

ST

1

Until further notice we will assume that the stock does not pay any dividends
in the time interval [0, T ]. This means that if you own the stock you will not
receive any cash unless you decide to sell the stock. With this assumption
and the maintained assumption of frictionless markets we will give some re-
strictions on option prices which follow solely from arbitrage considerations.

The most important relation is the so-called put-call parity for European
options. Consider the portfolio strategy depicted in the table below and the
associated cash flows at time t and time T. Assume that both options are
European, expire at date T and have strike price equal to K :

strategy/cashflow date t date T, ST ≤ K date T, ST > K

sell 1 call ct 0 K − ST
buy 1 put −pt K − ST 0
buy stock −St ST ST
sell K bonds Kd(t, T ) −K −K
total cash flow must be 0 0 0

Note that we have constructed a portfolio which gives a payoff of 0 at time
T no matter what the value of ST . Since the options are European we need
not consider any time points in (t, T ). This portfolio must have price 0, or else
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put-call parity
forward price
forward contract

there would be an obvious arbitrage strategy. If, for example, the portfolio
had positive value, we would sell the portfolio (corresponding to reversing
the strategy in the table) and have no future obligations. In other words
we have proved that in a frictionless market we have the following

Proposition 14. (Put-call parity) The price ct of a European call and the
price pt of a European put option with expiration date T and exercise price
K must satisfy

ct − pt = St −Kd(t, T ).

Note one simple but powerful consequence of this result: When deciding
which parameters may influence call and put prices the put-call parity gives
a very useful way of testing intuitive arguments. If St, K and d(t, T ) are
fixed, then a change in a parameter which produces a higher call price, must
produce a higher put-price as well. One would easily for example be tricked
into believing that in a model where ST is stochastic, a higher mean value of
ST given St would result in a higher call price since the call option is more
likely to finish in-the-money and that it would result in a lower put price since
the put is more likely then to finish out-of-the money. But if we assume that
St and the interest rate are held fixed, put-call parity tells us that this line
of reasoning is wrong.

Also note that for K = St
d(t,T )

we have ct = pt. This expresses the fact that
the exercise price for which ct = pt is equal to the forward price of S at time
t. A forward contract is an agreement to buy the underlying security at the
expiration date T of the contract at a price of Ft. Note that Ft is specified
at time t and that the contract unlike an option forces the holder to buy. In
other words you can lose money at expiration on a forward contract. The
forward price Ft is decided so that the value of the forward contract at date
t is 0. Hence the forward price is not a price to be paid for the contract at
date t. It is more like the exercise price of an option. Which value of Ft then
gives the contract a value of 0 at date t? Consider the following portfolio
argument:

strategy / cashflow date t date T

buy 1 stock −St ST
sell St

d(t,T )
bonds St − St

d(t,T )

sell 1 forward 0 Ft − ST
total cash flow 0 Ft − St

d(t,T )

Note that the cash flow at timeT is known at time t and since the cash flow
by definition of the forward price is equal to 0 at date t, the cash flow at
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date T must be 0 as well. Hence

Ft =
St

d(t, T )
.

Note that buying a call and selling a put, both with exercise price K and
expiration date T, is equivalent to buying forward at the price K. Therefore
the convention that the forward contract has value 0 at date t is exactly
equivalent to specifying K so that ct = pt.

6.3 Restrictions on option prices

In this section we derive some bounds on call prices which much be satisfied
in frictionless markets. The line of reasoning used may of course be used on
put options as well.

Consider a European call option with expiration date T and exercise price
K. Assume that the underlying security does not pay any dividends during
the life of the option. Then the value of the option ct satisfies

St ≥ ct ≥ max (0, St −Kd(t, T )) , (6.1)

which is sometimes called Merton’s tunnel.

Proof. Clearly, ct ≥ 0.Also, the corresponding put option satisfies pt ≥ 0.
Hence

ct ≥ ct − pt = St −Kd(t, T ) (6.2)

where we have used put-call parity. To see that St ≥ ct, assume that St < ct
and consider the strategy of buying the stock and selling the option. That
gives a positive cash flow at time t. If at time T, ST > K and the option is
exercised the stock is delivered to the option holder and K is received. If
the option is not exercised, the stock can be sold at non-negative value. �

It is clear that an American option is more valuable than the correspond-
ing European option, hence we note that the price Ct of an American option
also satisfies Ct ≥ St−Kd(t, T ). If interest rates are positive, i.e. d(t, T ) < 1,
this produces the interesting result that the value of the American call is al-
ways strictly greater than the immediate exercise value St −K when t < T.
This shows the important result that an American option on a non-dividend
paying stock should never be exercised early. Our inequalities above show
that it will be better to sell the option. A corresponding result does not hold
for put options. This is perhaps not so surprising considering that postpon-
ing the exercise of a put postpones the receipt of K, whereas delaying the
exercise of a call delays the payment of K.
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Typically, stocks pay dividends and it is important to take this into ac-
count when pricing options. It will often be the case that the option contract
does not take into account whether the underlying stock pays dividends. A
dividend payment will normally produce a drop in the stock price and an
owner of a call option will be hurt by this drop without receiving the benefit
of a dividend. A date t is denoted an ex-dividend date if purchasing the stock
at time s < t gives the new owner part in the next dividend payment whereas
a purchase at time t does not. For simplicity, we assume in the following
that the dividend payment takes place at the ex-dividend date. Furthermore,
we will assume that the size of the dividend is known some time before the
dividend date. In a world with no taxes it ought to be the case then that
the drop in the stock price around the dividend date is equal to the size of
the dividend. Assume, for example, that the drop in the stock price is less
than D. Then buying the stock right before the dividend date for a price of
St− and selling it for St+ immediately after the dividend date will produce a
cash flow of St+ +D−St− > 0. This resembles an arbitrage opportunity and
it is our explanation for assuming in the following that St− = St+ +D.

Now let us consider the price at time 0 of a European call option on a
stock which is known to pay one dividend D at time t. Then

c0 ≥ max (0, S0 −Kd(0, T )−Dd(0, t)) .

Again, c0 ≥ 0 is trivial. Assume c0 < S0 − Kd(0, T ) − Dd(0, t). Then
buy the left hand side and sell the right hand side. At time t, we must pay
dividend D on the stock we have sold, but that dividend is exactly received
from the D zero coupon bonds with maturity t. At time T the value of the
option we have sold is equal to max (0, ST −K) . The value of the right hand
side is equal to ST − K. If ST ≥ K the total position is 0.If ST < K the
total position has value K − ST . Hence we have constructed a positive cash
flow while also receiving money initially. This is an arbitrage opportunity
and hence we rule out c0 < S0 −Kd(0, T )−Dd(0, t).

There are many possible variations on the dividend theme. If dividends
are not known at time 0 we may assume that they fall within a certain
interval and then use the endpoints of this interval to bound calls and puts.
The reader may verify that the maximal dividend is important for bounding
calls and the minimum dividend for bounding put prices.

However, we maintain the assumption of a known dividend and finish this
section by another important observation on the early exercise of American
calls on dividend paying stocks. Assume that the stock pays a dividend at
time t and that we are at time 0 < t. It is then not optimal to exercise the
option at time 0 whereas it may be optimal right before time t. To see that it
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is not optimal at time 0, note that the American option contains as a part of
its rights an option with expiration date s ∈ (0, t), and since this option is an
option on a non-dividend paying stock we know that its value is larger than
S0 −K, which is the value of immediate exercise. Therefore, the American
option is also more worth than S0 − K and there is no point in exercising
before t. To see that it may be optimal to exercise right before t, consider
a firm which pays a liquidating dividend to all its shareholders. The stock
will be worthless after the liquidation and so will the call option. Certainly,
the option holder is better off to exercise right before the dividend date to
receive part of the liquidating dividend.

The picture is much more complicated for puts. In the next section we
will see how to compute prices for American puts in binomial models and
this will give us the optimal exercise strategy as well.

6.4 Binomial models for stock options

In this section we will go through the binomial model for pricing stock op-
tions. Our primary focus is the case where the underlying security is a
non-dividend paying stock but it should be transparent that the binomial
framework is highly flexible and will easily handle the pricing and hedging
of derivative securities with more complicated underlying securities.

We consider a model with T periods and assume throughout that the
following two securities trade:

1. A bank account with a constant short rate process ρ, so 1 + ρt = R,
and

Rs,t = Rt−s for s < t.

2. A stock2 S , which pays no dividends3 , whose price at time 0 is S0 and
whose evolution under the measure P is described in the tree (where
we have assumed that u > R > d > 0) shown below.

2Since there is only one stock we will write S instead of S1.
3To comply with the mathematical model of the previous chapter we should actually

say that the stock pays a liquidating dividend of ST at time T . We will however speak of
ST as the price at time T of the stock.
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The mathematical description of the process is as follows: Let U1, . . . , UT
be a sequence of i.i.d. Bernoulli variables, let p = P (U1 = 1) and define

Nt =
t∑
i=1

Ui.

Think of Nt as the number of up-jumps that the stock has had between
time 0 and t. Clearly, this is a binomially distributed random variable. Let
u > R > d > 0 be constants. Later, we will see how these parameters are
chosen in practice. Then

St = S0u
Ntdt−Nt . (6.3)

Using the results on one-period submodels it is clear that the model is
arbitrage free and complete and that the equivalent martingale measure is
given in terms of conditional probabilities as

Q(St = uSt−1|St−1) ≡ q =
R− d
u− d

Q(St = dSt−1|St−1) = 1− q =
u−R
u− d

.
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6.5 Pricing the European call

We now have the martingale measure Q in place and hence the value at time
t of a European call with maturity T is given in an arbitrage-free model by

Ct =
1

RT−tE
Q (max(0, ST −K) |Ft ) .

Using this fact we get the following

Proposition 15. Let the stock and money market account be as described in
section 6.4. Then the price of a European call option with exercise price K
and maturity date T is given as

Ct =
1

RT−t

T−t∑
i=0

(
T − t
i

)
qi(1− q)T−t−i max(0, Stu

idT−t−i −K).

Proof. Since the money market account and S0 are deterministic, we
have that we get all information by observing just stock-prices, or equiva-
lently the U ’s, i.e. Ft = σ(S1, . . . , St) = σ(U1, . . . , Ut). By using (6.3) twice
we can write

ST = Stu
(NT−Nt)d(T−t)−(NT−Nt) = Stu

Zd(T−t)−Z ,

where Z = NT − Nt =
∑T

j=t+1 Uj
Q∼ bi(q; (T − t)), and Z is independent of

Ft (because the U ’s are independent). Therefore

RT−tCt = EQ((ST −K)+|Ft) = EQ((Stu
Zd(T−t)−Z −K)+|Ft).

At this point in the narrative we need something called “the useful rule”. It
states the following: Suppose we are given a function f : R2 7→ R, a σ-algebra
F , an F -measurable random variable X and a random variable Y that is
independent of F . Define the function g : R 7→ R by g(x) = E(f(x, Y )).
Then E(f(X, Y )|F) = g(X). We then use this in the above expression with
St playing the role of X, Z as Y , and f(x, y) = (xuyd(T−t)−y−K)+. By using
the general transformation rule for discrete random variables E(h(Y )) =∑

yi
h(yi)P (Y = yi), and the fact that Z is Q-binomially distributed we get

in the notation of “the useful rule” that

g(x) =
T−t∑
i=0

(
T − t
i

)
qi(1− q)(T−t)−i(xuid(T−t)−i −K)+,

and the desired result follows. �
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We rewrite the expression for C0 using some handy notation. Let a be
the smallest number of upward jumps needed for the option to finish in the
money, i.e.

a = min
j∈N
{j|S0u

jdT−j > K}

= min
j∈N
{j|j lnu+ (T − j) ln d > ln(K/S0)}

= min
j∈N
{j|j > ln(K/(S0d

T ))/ ln(u/d)}

=

 ln
(

K
S0dT

)
ln
(
u
d

)
+ 1.

Letting

Ψ(a;T, q) =
T∑
i=a

(
T
i

)
qi(1− q)T−i,

we may write (you may want to check the first term on the RHS)

C0 = S0Ψ (a;T, q′)− K

RT
Ψ (a;T, q) (6.4)

where
q′ =

u

R
q.

Using put-call parity gives us the price of the European put:

Corollary 3. The price of a European put option with T periods to maturity,
exercise price T and the stocks as underlying security has a price at time
0 given by

P0 =
K

RT
(1−Ψ (a;T, q))− S0 (1−Ψ (a;T, q′))

Note that our option pricing formulae use T to denote the number of
periods until maturity. Later, we will be more explicit in relating this to
actual calendar time.

6.6 Hedging the European call

We have already seen in a two period model how the trading strategy repli-
cating a European call option may be constructed. In this section we simply
state the result for the case with T periods and we then note an interesting
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way of expressing the result. We consider the case with a bank account and
one risky asset S and assume that the market is complete and arbitrage-free.
The European call option has a payout at maturity of

δcT = max(ST −K, 0).

Proposition 16. A self-financing trading strategy replicating the dividend
process of the option from time 1 to T is constructed recursively as follows:
Find φT−1 = (φ0

T−1, φ
1
T−1) such that

φ0
T−1R + φ1

T−1ST = δcT .

For t = T − 2, T − 3, . . . , 1 find φt = (φ0
t , φ

1
t ) such that

φ0
tR + φ1

tSt+1 = φ0
t+1 + φ1

t+1St+1.

The trading strategy is self-financing by definition, replicates the call
and its initial price of φ0

0 + φ1
0S0 is equal to the arbitrage-free price of the

option. We may easily extend to the case where both the underlying and the
contingent claim have dividends other than the one dividend of the option
considered above. In that case the procedure is the following: Find φT−1 =
(φ0

T−1, φ
1
T−1) such that

φ0
T−1R + φ1

T−1(ST + δT ) = δcT .

For t = T − 2, T − 3, . . . , 1 find φt = (φ0
t , φ

1
t ) such that

φ0
tR + φ1

t (St+1 + δt+1) = φ0
t+1 + φ1

t+1St+1 + δct+1. (6.5)

In this case the trading strategy is not self-financing in general but it matches
the dividend process of the contingent claim, and the initial price of the
contingent claim is still φ0

0 + φ1
0S0.

In general, Equation (6.5) is compact notation for a whole bunch of linear
equations, namely one for each submodel; the number of unknowns is equal
to dim(S), the number of equations is the splitting index, ie. the number of
future states. And the equations most be solved recursively backwards. But
in many applications things simple. If S is 1-dimensional, the splitting index
is 2 (so we have simple binomial submodels; refer to their states as “up” and
“down”), and neither S nor the derivative pay dividends, then

• The RHSs of (6.5) are just the option’s price in different states, say πu

and πd.
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delta hedging • Subtract the up-equation from the down-equation to get the replication
portfolio(’s stock holdings)

φ1
t =

πu − πd

Su − Sd
= “

∆π

∆S
“ := ∆.

• This procedure/technique is called delta hedging. A very good mnemomic.
The ∆ is the equation above is called the option’s (delta) hedge ratio.

Further insight into the hedging strategy is given by the proposition be-
low. Recall the notation

S̃t =
St
R0,t

for the discounted price process of the stock. Let Ct denote the price process
of a contingent claim whose dividend process is δc and let

C̃t =
Ct
R0,t

δ̃ct =
δct
R0,t

denote the discounted price and dividend processes of the contingent claim.
Define the conditional covariance under the martingale measure Q as follows:

covQ (Xt+1, Yt+1 |Ft ) = EQ ((Xt+1 −Xt) (Yt+1 − Yt)| Ft)

The following can be shown (but we omit the proof):

Proposition 17. Assume that the stock pays no dividends during the life of
the option. The hedging strategy which replicates δc is computed as follows:

φ1
t =

covQ
(
S̃t+1, C̃t+1 + δ̃ct+1

∣∣∣Ft)
varQ (St+1 |Ft )

t = 0, 1, . . . , T − 1

φ0
t = C̃t − φ1

t S̃t t = 0, 1, . . . , T − 1

Note the similarity with regression analysis. We will not go further into
this at this stage. But this way of looking at hedging is important when
defining so-called risk minimal trading strategies in incomplete markets.
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Figure 6.1: A lattice, i.e. a recombining tree.

6.7 Recombining tree representation

If the number of time periods T is large it the tree representing the stock
price evolution grows very rapidly. The number of nodes at time t is equal
to 2t, and since for example 220 = 1048576 we see that when you implement
this model in a spreadsheet and you wish to follow Ct and the associated
hedging strategy over time, you may soon run out of space. Fortunately, in
many cases there is a way around this problem: If your security price process
is Markov and the contingent claim you wish to price is path-independent,
you can use a recombining tree to do all of your calculations. Let us look
at each property in turn4: The process S is a Markov chain under Q if it
satisfies

Q(St+1 = st+1 |St = st, . . . S1 = s1, S0 = s0 ) = Q(St+1 = st+1 |St = st )

for all t and all (st+1, st, . . . , s1, s0). Intuitively, standing at time t, the current
value of the process st is sufficient for describing the distribution of the

4These properties are interesting to consider for the stock only since the money market
account trivially has all nice properties discussed in the following.
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Figure 6.2: A tree that’s not a lattice.

process at time t+ 1. The binomial model of this chapter is clearly a Markov
chain. An important consequence of this is that when Ft = σ(S0, . . . , St)
then for any (measurable) function f and time points t < u there exists a
function g such that

EQ (f(Su) |Ft ) = g(St). (6.6)

In other words, conditional expectations of functions of future values given
everything we know at time t can be expressed as a function of the value
of St at time t. The way S arrived at St is not important. We used this
fact in the formula for the price of the European call: There, the conditional
expectation given time t information became a function of St. The past did
not enter into the formula. We can therefore represent the behavior of the
process S in a recombining tree, also known as a lattice, as shown in Figure
6.1 in which one node at time t represents exactly one value of St. Another
way of stating this is to say that the tree keeps track of the number of up-
jumps that have occurred, not the order in which they occurred. A full event
tree would keep track of the exact timing of the up-jumps.

To see what can go wrong, Figure 6.2 shows a process that is not Markov.
The problem is at time 2 when the value of the process is S0, we need to
know the pre-history of S to decide whether the probability of going up to
uS is equal to q or q′. In standard binomial models such behavior is normally
precluded.
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Note that now the number of nodes required at time t is only t+ 1, and
then using several hundred time periods is no problem for a spreadsheet.

A technical issue which we will not address here is the following: Normally
we specify the process under the measure P, and it need not be the case that
the Markov property is preserved under a change of measure. However,
one may show that if the price process is Markov under P and the model
is complete and arbitrage-free, then the price process is Markov under the
equivalent martingale measure Q as well.

A second condition for using a recombining tree to price a contingent
claim is a condition on the contingent claim itself:

Definition 37. A contingent claim with dividend process δc is path independent
if δt = ft(St) for some (measurable) function f.

Indeed if the claim is path independent and the underlying process is
Markov, we have

Ct = R0,tE

(
T∑

i=t+1

δ̃ci

∣∣∣∣∣Ft
)

= R0,tE

(
T∑

i=t+1

fi(Si)

∣∣∣∣∣Ft
)

= R0,tE

(
T∑

i=t+1

fi(Si)

∣∣∣∣∣St
)

and the last expression is a function of St by the Markov property. A Euro-
pean option with expiration date T is path-independent since its only divi-
dend payment is at time T and is given as max(ST −K, 0).

The Asian option is an example of a contingent claim which is not path-
independent. An Asian option on the stock, initiated at time 0, expiration
date T and exercise price K has a payoff at date T given by

Casian
T = max

(
0,

(
1

T + 1

T∑
t=0

St

)
−K

)

Hence the average of the stock price over the period determines the option
price. Clearly, ST is not sufficient to describe the value of the Asian option
at maturity. To compute the average value one needs the whole path of S.
As noted above, even in a binomial model keeping track of the whole path
for, say, 50 periods becomes intractable.
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6.8 The binomial model for American puts

We describe in this section a simple way of pricing the American put option
in a binomial model. Strictly speaking, an American put is not a contingent
claim in the sense we have thought of contingent claims earlier. Generally, we
have thought of contingent claims as random variables or sometimes as pro-
cesses but a put is actually not specified until an exercise policy is associated
with the put. What we will do in the following is to simultaneously solve
for the optimal exercise policy, i.e. the one that maximizes the expected,
discounted value of the cash flows under the martingale measure, and the
price of the option. The argument given is not a proof but should be enough
to convince the reader that the right solution is obtained (it is fairly easy to
show that another exercise policy will create arbitrage opportunities for the
option writer).

The value of an American put at its maturity is easy enough:5

PT = max(0, K − ST ). (6.7)

Now consider the situation one period before maturity. If the put has not
been exercised at that date, the put option holder has two possibilities: Ex-
ercise the put at time T −1 or hold the put to maturity. The value of holding
the put to maturity is given as the discounted (back to time T − 1) value of
(6.7), whereas the value at time T − 1 of exercising immediately is K −ST−1

something only to be considered of course if K > ST−1. Clearly, the put
option holder has a contract whose value is given by the maximal value of
these two strategies, i.e.6

PT−1 = max

(
K − ST−1, E

Q

(
PT
R

∣∣∣∣FT−1

))
.

Continue in this fashion by working backwards through the tree to obtain
the price process of the American put option given by the recursion

Pt−1 = max

(
K − St−1, E

Q

(
Pt
R

∣∣∣∣Ft−1

))
t = 1, . . . , T.

Once this price process is given we see that the optimal exercise strategy is
to exercise the put the first time t for which

K − St > EQ

(
Pt+1

R

∣∣∣∣Ft) .
5Or is it? As it stands Pt is really the value at time t given that the put has not been

exercised at times 0, 1, t − 1. But that will most often be exactly what we are interested
in; if we exercised the put to years ago, we really don’t care about it anymore.

6We do not need 0 in the list of arguments of max since positivity is assured by PT ≥ 0.
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This way of thinking is easily translated to American call options on dividend
paying stocks for which early exercise is something to consider.

6.9 Implied volatility

We assume in this section that the Black-Scholes formula is known to the
reader: The price at time t of a European call option maturing at time T ,
when the exercise price is K and the underlying security is a non-dividend
paying stock with a price of St, is given in the Black-Scholes framework by

Ct = StΦ (d1)−Ke−r(T−t)Φ (d2)

where

d1 =
log
(
St
K

)
+
(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

and

d2 = d1 − σ
√
T − t

where Φ is the cumulative distribution function of a standard normal distri-
bution.

Consider the Black-Scholes formula for the price of a European call on an
underlying security whose value at time 0 is S0: Recall that Φ is a distribution
function, hence Φ(x) → 1 as x → ∞ and Φ(x) → 0 as x → −∞. Assume
throughout that T > 0. From this it is easy to see that c0 → S0 as σ →
∞. By considering the cases S0 < K exp(−rT ) , S0 = K exp(−rT ) and
S0 > K exp(−rT ) separately, it is easy to see that as σ → 0, we have
c0 → max (0, S0 −K exp(−rT )) . By differentiating c0 with respect to σ,
one may verify that c0 is strictly increasing in σ. Therefore, the following
definition makes sense:

Definition 38. Given a security with price S0. Assume that the risk free
rate (i.e. the rate of the money market account) is equal to r. Assume that
the price of a call option on the security with exercise price K and time to
maturity T is observed to have a price of cobs with

max(0, S0 −K exp(−rT )) < cobs < S0.

Then the implied volatility of the option is the unique value of σ for which

c0(S0, K, T, σ, r) = cobs. (6.8)
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In other words, the implied volatility is the unique value of the volatility
which makes the Black-Scholes model ’fit’ cobs. Clearly, we may also asso-
ciate an implied volatility to a put option whose observed price respects the
appropriate arbitrage bounds.

There is no closed-form expression for implied volatility; Equation 6.8
must be solved numerically. Bisection works nicely (whereas a Newton-
Raphson search without safety checks may diverge for deep out-of-the money
options).

A very important reason for the popularity of implied volatility is the
way in which it allows a transformation of option prices which are hard to
compare into a common scale. Assume that the price of a stock is 100 and
the riskfree rate is 0.1. If one observed a price of 9.58 on a call option on the
stock with exercise price 100 and 6 months to maturity and a price of 2.81
on a put option on the stock with exercise price 95 and 3 months to maturity
then it would require a very good knowledge of the Black-Scholes model to
see if one price was in some way higher than the other. However, if we are
told that the implied volatility of the call is 0.25 and the implied volatility
of the put is 0.30, then at least we know that compared to the Black-Scholes
model, the put is more expensive than the call. This way of comparing is in
fact so popular that traders in option markets typically do not quote prices
in (say) dollars, but use ’vols’ instead.

If the Black-Scholes model were true the implied volatility of all options
written on the same underlying security should be the same, namely equal
to the volatility of the stock and this volatility would be a quantity we could
estimate from historical data. In short, in a world where the Black-Scholes
model holds, historical volatility (of the stock) is equal to implied volatility
(of options written on the stock). In practice this is not the case - after
all the Black-Scholes model is only a model. The expenses of hedging an
option depend on the volatility of the stock during the life of the option.
If, for example, it is known that, after a long and quiet period, important
news about the underlying stock will arrive during the life of the option, the
option price should reflect the fact that future fluctuations in the stock price
might be bigger than the historical ones. In this case the implied volatility
would be higher than the historical.

However, taking this knowledge of future volatility into account one could
still imagine that all implied volatilities of options on the same underlying
were the same (and equal to the ’anticipated’ volatility). In practice this is
not observed either. To get an idea of why, we consider the notion of portfolio
insurance.
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6.10 Portfolio insurance, implied volatility and

crash fears

Consider a portfolio manager who manages a portfolio which is diversified
so that the value of her portfolio follows that of the market stock index.
Assume that the value of her portfolio is 1000 times the value of the index
which is assumed to be at 110. The portfolio manager is very worried about
losing a large portion of the value of the portfolio over the next year - she
thinks that there is a distinct possibility that the market will crash. On the
other hand she is far from certain. If she were certain, she could just move
the money to a bank at a lower but safer expected return than in the stock
market. But she does not want to exclude herself from the gains that a surge
in the index would bring. She therefore decides to buy portfolio insurance in
such a way that the value of her portfolio will never fall below a level of
(say) 90.000. More specifically, she decides to buy 1000 put options with one
year to maturity and an exercise price of 90 on the underlying index. Now
consider the value of the portfolio after a year as a function of the level of
the index ST :

value of index ST ≥ 90 ST < 90
value of stocks ST × 1000 ST × 1000
value of puts 0 1000× (90− ST )

total value ST × 1000 > 90.000 90.000

Although it has of course not been costless to buy put options, the port-
folio manager has succeeded in preventing the value of her portfolio from
falling below 90.000. Since the put options are far out-of-the-money (such
contracts are often called “lottery tickets”) at the time of purchase they are
probably not that expensive. And if the market booms she will still be a
successful portfolio manager.

But what if she is not alone with her fear of crashes. We may then imagine
a lot of portfolio managers interested in buying out-of-the-money put options
hence pushing up the price of these contracts. This is equivalent to saying
that the implied volatility goes up and we may experience the scenario shown
in the graph below, in which the implied volatility of put options is higher
for low exercise price puts:
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This phenomenon is called a “smirk”. If (as it is often seen from data) the
implied volatility is increasing (the dotted part of the curve) for puts that are
in the money, then we have what is known as a “smile”. Actually options that
are deeply in-the-money are rarely traded, so the implied volatility figures
used to draw “the other half” of the smile typically comes from out-of-the-
money calls. (Why/how? Recall the put-call parity.)

A smirk has been observed before crashes and it is indicative of a situation
where the Black-Scholes model is not a good model to use. The typical
modification allows for stock prices to jump discontinuously but you will
have to wait for future courses to learn about this.

6.11 Debt and equity as options on firm value

In this section we consider a very important application of option pricing.
Our goal is to learn a somewhat simplified but extremely useful way of think-
ing about a firm which is financed by debt and equity (see below). A funda-
mental assumption in this section is that a firm has a market value given by
a stochastic process V . In economies with Arrow-Debreu securities in which
we know prices and production plans adopted by the firms, it is easy to define
the value of a firm as the (net) value of its production. In reality things are
of course a lot more complicated. It is hard to know, for example, what the
value of NovoNordisk is - i.e. what is the market value of the firm’s assets
(including know-how, goodwill etc.). Part of the problem is of course that it
is extremely difficult to model future prices and production levels. But in a
sense the actual value does not matter for this section in that the ’sign’ of
the results that we derive does not depend on what the value of the firm is -
only the ”magnitude’ does.
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The fundamental simplification concerns the capital structure of the firm.
Assume that the firm has raised capital to finance its activities in two ways:
It has issued stocks (also referred to as equity)and debt The debt consists
of zero coupon bonds with face value D maturing at time T. Legally what
distinguishes the debt holders from the stock holders is the following: The
stock holders control the firm and they decide at time T whether the firm
should repay its debt to the bondholders. If the bondholders are not repaid
in full they can force the firm into bankruptcy and take over the remaining
assets of the firm (which means both controlling and owning it). The stocks
will then be worthless. If the stockholders pay back D at maturity to the
bondholders, they own the firm entirely. They may then of course decide to
issue new debt to finance new projects but we will not worry about that now.

It is clear that the stockholders will have an interest in repaying the
bondholders precisely when VT > D. Only then will the expense in paying
back the debt be more than outweighed by the value of the firm. If VT < D
(and there are no bankruptcy costs) the stockholders will default on their
debt, the firm will go into bankruptcy and the bondholders will take over.
In short, we may write the value of debt and equity at time T as

BT = min (D, VT ) = D −max (D − VT , 0)

ST = max(VT −D, 0).

In other words, we may think of equity as a call option on the value of
the firm and debt as a zero coupon bond minus a put option on the value
of the firm. Assuming then that V behaves like the underlying security in
the Black-Scholes model and that there exists a money market account with
interest rate r, we can use the Black-Scholes model to price debt and equity
at time 0 :

B0 = D exp(−rT )− p0(V0, D, T, σ, r)

S0 = c0(V0, D, T, σ, r)

where p0, c0 are Black-Scholes put and call functions.
Let us illustrate a potential conflict between stockholders and bondholders

in this model. Assume that at time 0 the firm has the possibility of adopting
a project which will not alter the value of the firm at time 0, but which will
have the effect of increasing the volatility of the process V. Since both the
value of the call and the put increases when σ increases we see that the
stockholders will like this project since it increases the value of the equity
whereas the bondholders will not like the project since the put option which
they have in a sense written will be a greater liability to them. This is a very
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clear and very important illustration of so-called asset substitution, a source
of conflict which exists between stock-and bondholders of a firm. This setup
of analyzing the value of debt and equity is useful in a number of contexts
and you should make sure that you understand it completely. We will return
to this towards the end of the course when discussing corporate finance.
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The Black-Scholes formula

7.1 Black-Scholes as a limit of binomial mod-

els

So far we have not specified the parameters p, u, d and R which are of course
critical for the option pricing model. Also, it seems reasonable that if we
want the binomial model to be a realistic model for stock prices over a certain
interval of time we should use a binomial model which divides the (calendar)
time interval into many sub-periods. In this chapter we will first show that if
one divides the interval into finer and finer periods and choose the parameters
carefully, the value of the option converges to a limiting formula, the Black-
Scholes formula, which was originally derived in a continuous time framework.
We then describe that framework and show how to derive the formula in it.

Our starting point is an observed stock price whose logarithmic return
satisfies

EP

[
ln

(
St
St−1

)]
= µ

and

V P

(
ln

(
St
St−1

))
= σ2,

where St is the price of the stock t years after the starting date 0. Also,
assume that the bank account has a continuously compounded interest rate
of r, i.e. an amount of 1 placed in the bank grows to exp(r) in one year. Note
that since RT = exp (T ln (R)), a yearly rate of R = 1.1 (corresponding to
a yearly rate of 10%) translates into the continuous compounding analogue
r = ln (1.1) and this will be a number smaller than 0.1.

Suppose we construct a binomial model covering T years, and that we
divide each year into n periods. This gives a binomial model with nT periods.

121
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In each 1-period submodel choose

un = exp
(
σ/
√
n
)
,

dn = exp
(
−σ
√
n
)

= u−1
n ,

Rn = exp
( r
n

)
.

Further, let us put

pn =
1

2
+

1

2

µ

σ
√
n
,

not that it matters much for our purposes. With the setup in the nth model
specified above you may show by simple computation that the one-year log-
arithmic return satisfies

EP

[
ln

(
S1

S0

)]
= n {pn ln (un) + (1− pn) ln (dn)} = µ

and

V P

(
ln

(
S1

S0

))
= σ2 − 1

n
µ2,

so the log-return of the price process has the same mean and almost the same
variance as the process we have observed. And since

V P

(
ln

(
S1

S0

))
→ σ2 for n→∞,

it is presumably so that large values of n brings us closer to to “desired”
model.

Let us now investigate precisely what happens to stock and call prices
when n tends to infinity. For each n we may compute the price of an expiry-
T call option the binomial model and we know that it is given as

Cn = S0Ψ
(
an;nT ; q

′

n

)
− K

(Rn)T
Ψ (an;nT ; qn) (7.1)

where

qn =
Rn − dn
un − dn

, q′n =
un
Rn

qn

and an is the smallest integer larger than ln
(
K/(S0d

Tn
n )
)
/ ln (un/dn). Note

that alternatively we may write(7.1) as

Cn = S0Q
′(Sn(T ) > K)−Ke−rTQ(Sn(T ) > K) (7.2)
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where Sn(T ) = S0u
j
nd

Tn−j
n and j

Q∼ bi(Tn, qn) and j
Q′∼ bi(Tn, q′n). It is easy

to see that

MQ
n := EQ(lnSn(T )) = lnS0 + Tn(qn lnun + (1− qn) ln dn)

V Q
n := V Q(lnSn(T )) = Tnqn(1− qn)(lnun − ln dn)2,

and that similar expressions (with q′n instead of qn) hold for Q′-moments.
Now rewrite the expression for MQ

n in the following way:

MQ
n − lnS0 = Tn

(
σ√
n

er/n − e−σ/
√
n

eσ/
√
n − e−σ/

√
n
− σ√

n

eσ/
√
n − er/n

eσ/
√
n − e−σ/

√
n

)
= T

√
nσ

(
2er/n − eσ/

√
n − e−σ/

√
n

eσ/
√
n − e−σ/

√
n

)
.

Recall the Taylor-expansion to the second order for the exponential function:
exp(±x) = 1± x+ x2/2 + o(x2). From this we get

er/n = 1 + r/n+ o(1/n)

e±σ/
√
n = 1± σ/

√
n+ σ2/(2n) + o(1/n).

Inserting this in the MQ
n expression yields

MQ
n − lnS0 = T

√
nσ

(
2r/n− σ2/n+ o(1/n)

2σ/
√
n+ o(1/n)

)
= Tσ

(
2r − σ2 + o(1)

2σ + o(1/
√
n)

)
→ T

(
r − σ2

2

)
for n→∞.

Similar Taylor expansions for V Q
n , MQ′

n and V Q′
n show that

V Q
n → σ2T,

MQ′

n − lnS0 → T

(
r +

σ2

2

)
(note the change of sign on σ2),

V Q′

n → σ2T.

So now we know what the Q/Q′ moments converge to. Yet another way
to think of lnSn(T ) is as a sum of Tn independent Bernoulli-variables with
possible outcomes (ln dn, lnun) and probability parameter qn (or q′n). This
means that we have a sum of (well-behaved) independent random variables
for which the first and second moments converge. Therefore we can use a
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Central Limit
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version of the Central Limit Theorem1 to conclude that the limit of the sum
is normally distributed, i.e.

lnSn(T )
Q/Q′→ N(lnS0 + (r ± σ2/2)T, σ2T ).

This means (almost by definition of the form of convergence implied by CLT)
that when determining the limit of the probabilities on the right hand side of
(7.2) we can (or: have to) substitute lnSn(T ) by a random variable X such
that

X
Q/Q′∼ N(lnS0 +(r±σ2/2)T, σ2T )⇔ X − lnS0 − (r ± σ2/2)T

σ
√
T

Q/Q′∼ N(0, 1).

The final analysis:

lim
n→∞

Cn = lim
n→∞

(
S0Q

′(lnSn(T ) > lnK)−Ke−rTQ(lnSn(T ) > lnK)
)

= S0Q
′(X > lnK)−Ke−rTQ(X > lnK)

= S0Q
′
(
X − lnS0 − (r + σ2/2)T

σ
√
T

>
lnK − lnS0 − (r + σ2/2)T

σ
√
T

)
−Ke−rTQ

(
X − lnS0 − (r − σ2/2)T

σ
√
T

>
lnK − lnS0 − (r − σ2/2)T

σ
√
T

)
Now multiply by −1 inside the Q’s (hence reversing the inequalities), use that
the N(0, 1)-variables on the left hand sides are symmetric and continuous,
and that ln(x/y) = lnx− ln y. This shows that

lim
n→∞

Cn = S0Φ (d1)−Ke−rTΦ (d2) ,

where Φ is the standard normal distribution function and

d1 =
ln
(
S0

K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

,

d2 =
ln
(
S0

K

)
+
(
r − 1

2
σ2
)
T

σ
√
T

= d1 − σ
√
T .

This formula for the call price is called the Black-Scholes formula.
So far we can see it just as an artifact of going to the limit in a particular

way in a binomial model. But the formula is so strikingly beautiful and simple

1Actually, the most basic De Moivre-version will not quite do because we do not have a
scaled sum of identically distributed random variables; the two possible outcomes depend
on n. You need the notion of a triangular array and the Lindeberg-Feller-version of the
Central Limit Theorem.
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that there must be more to it than that. In particular, we are interested in
the question: Does that exist a “limiting” model in which the above formula
is the exact call option price? The answer is: Yes. In the next section we
describe what this “limiting” model looks like, and show that the Black-
Scholes formula gives the exact call price in the model. That does involve
a number of concepts, objects and results that we cannot possibly make
rigorous in this course, but the reader should still get a “net benefit” and
hopefully an appetite for future courses in financial mathematics.

7.2 The Black-Scholes model

The Black-Scholes formula for the price of a call option on a non-dividend
paying stock is one of the most celebrated results in financial economics. In
this section we will indicate how the formula is derived, or with the previous
limiting argument in mind: A different way to derive the formula. A rigorous
derivation requires some fairly advanced mathematics which is beyond the
scope of this course. Fortunately, the formula is easy to interpret and to
apply. Even if there are some technical details left over for a future course,
the rigorous understanding we have from our discrete-time models of how
arbitrage pricing works will allow us to apply the formula safely.

The formula is formulated in a continuous time framework with random
variables that have continuous distribution. The continuous-time and infinite
state space setup will not be used elsewhere in the course.2 But let us mention
that if one wants to develop a theory which allows random variables with
continuous distribution and if one wants to obtain results similar to those of
the previous chapters, then one has to allow continuous trading as well. By
’continuous trading’ we mean that agents are allowed to readjust portfolios
continuously through time.

If X is normally distributed X ∼ N (α, σ2) , then we say that Y :=
exp(X) is lognormally distributed and write Y ∼ LN(α, σ2). There is one
thing you must always remember about lognormal distributions:

If Y ∼ LN(α, σ2) then E(Y ) = exp

(
α +

σ2

2

)
.

If you have not seen this before, then you are strongly urged to check it.
(With that result you should also be able to see why there is no need to

2A setup which combines discrete time and continuous distributions will be encountered
later when discussing CAPM and APT, but the primary focus of these models will be to
explain stock price behavior and not – as we are now doing – determining option prices
for a given behavior of stock prices
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Brownian motion use “brain RAM” remembering the variance of a lognormally distributed
variable.) Often the lognormal distribution is preferred as a model for stock
price distributions since it conforms better with the institutional fact that
prices of a stock are non-negative and the empirical observation that the
logarithm of stock prices seem to show a better fit to a normal distribution
than do prices themselves. However, specifying a distribution of the stock
price at time t, say, is not enough. We need to specify the whole process of
stock prices, i.e. we need to state what the joint distribution (St1 , . . . , StN )
is for any 0 ≤ t1 < . . . < tN . To do this the following object is central.

Definition 39. A Brownian motion (BM) is a stochastic process B = (Bt)t∈[0;∞[

-i.e. a sequence of random variables indexed by t such that:

1. B0 = 0

2. Bt −Bs ∼ N (0, t− s) ∀ s < t

3. B has independent increments, i.e. for every N and a set of N time
points t1 < . . . < tN , Bt1 , Bt2 − Bt1 , Bt3 − Bt2 , . . . , BtN − BtN−1

are
independent random variables.

That these demands on a process can be satisfied simultaneously is not
trivial. But don’t worry, Brownian motion does exist. It is, however, a fairly
“wild” object. The sample paths (formally the mapping t 7→ Bt and intu-
itively simply the graph you get by plotting “temperature/stock price/. . .”
against time) of Brownian motion are continuous everywhere but differen-
tiable nowhere. The figure shows a simulated sample path of a BM and
should give an indication of this.

A useful fact following from the independent increment property is that
for any measurable f : R→R for which E [|f (Bt −Bs)|] <∞ we have

E [f (Bt −Bs)| Fs] = E [f (Bt −Bs)] (7.3)

where Fs = σ {Bu : 0 ≤ u ≤ s} .
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The fundamental assumption of the Black-Scholes model is that the stock
price can be represented by

St = S0 exp (αt+ σBt) (7.4)

whereBt is a Brownian motion. Such a process is called a geometric Brownian
motion. Furthermore, it assumes that there exists a riskfree bank account
that behaves like

βt = exp(rt) (7.5)

where r is a constant (typically r > 0). Hence βt is the continuous time
analogue of R0,t.

What does (7.4) mean? Note that since Bt ∼ N (0, t), St has a lognormal
distribution and

ln

(
St1
S0

)
= αt1 + σBt1 ,

ln

(
St2
St1

)
= α (t2 − t1) + σ (Bt2 −Bt1)

Since αt, α (t2 − t1), and σ are constant, we see that ln
(
St1
S0

)
and ln

(
St2
St1

)
are independent. The return, defined in this section as the logarithm of the
price relative, that the stock earns between time t1 and t2 is independent
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volatility of the return earned between time 0 and time t1, and both are normally
distributed. We refer to σ as the volatility of the stock - but note that it
really describes a property of the logarithmic return of the stock. There are
several reasons for modelling the stock price as geometric BM with drift or
equivalently all logarithmic returns as independent and normal. First of all,
unless it is blatantly unreasonable, modelling “random objects” as “niid”
is the way to start. Empirically it is often a good approximation to model
the logarithmic returns as being normal with fixed mean and fixed variance
through time.3 From a probabilistic point of view, it can be shown that if
we want a stock price process with continuous sample paths and we want
returns to be independent and stationary (but not necessarily normal from
the outset), then geometric BM is the only possibility. And last but not
least: It gives rise to beautiful financial theory.

If you invest one dollar in the money market account at time 0, it will
grow as βt = exp(rt). Holding one dollar in the stock will give an uncertain
amount at time t of exp(αt+σBt) and this amount has an expected value of

E exp(αt+ σBt) = exp(αt+
1

2
σ2t).

The quantity µ = α + 1
2
σ2 is often referred to as the drift of the stock. We

have not yet discussed (even in our discrete models) how agents determine µ
and σ2, but for now think of it this way: Risk averse agents will demand µ
to be greater than r to compensate for the uncertainty in the stock’s return.
The higher σ2 is, the higher should µ be.

7.3 A derivation of the Black-Scholes formula

In this section we derive the Black-Scholes model taking as given some facts
from continuous time finance theory. The main assertion is that the funda-
mental theorem of asset pricing holds in continuous time and, in particular,
in the Black-Scholes setup:

St = S0 exp (αt+ σBt)

βt = exp(rt)

What you are asked to believe in this section are the following facts:

• There is no arbitrage in the model and therefore there exists an equiv-
alent martingale measure Q such that the discounted stock price St

βt
is

3But skeptics would say many empirical analyses of financial data is a case of “believing
is seeing”rather than the other way around.
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a martingale under Q. (Recall that this means that EQ
[
St
βt
|Fs
]

= Ss
βs

).

The probabilistic behavior of St under Q is given by

St = S0 exp

((
r − 1

2
σ2

)
t+ σB̃t

)
, (7.6)

where B̃t is a SBM under the measure Q.

• To compute the price of a call option on S with expiration date T
and exercise price K, we take the discounted expected value of CT =
[ST −K]+ assuming the behavior of St given by (7.6).

Recall that in the binomial model we also found that the expected return
of the stock under the martingale measure was equal to that of the riskless
asset.(7.6) is the equivalent of this fact in the continuous time setup. Before
sketching how this expectation is computed note that we have not defined
the notion of arbitrage in continuous time. Also we have not justified the
form of St under Q. But let us check at least that the martingale behavior
of St

βt
seems to be OK (this may explain the ”−1

2
σ2t”-term which is in the

expression for St). Note that

EQ

[
St
βt

]
= EQ

[
S0 exp

(
−1

2
σ2t+ σB̃t

)]
= S0 exp

(
−1

2
σ2t

)
EQ
[
exp

(
σB̃t

)]
.

But σB̃t ∼ N (0, σ2t) and since we know how to compute the mean of the
lognormal distribution we get that

EQ

[
St
βt

]
= S0 =

S0

β0

, since β0 = 1.

By using the property (7.3) of the Brownian motion one can verify that

EQ

[
St
βt

∣∣∣∣Fs] =
Ss
βs

, (Fs = ”information at time s”).

but we will not do that here.4

4If you want to try it yourself, use

E

[
St

βt

∣∣∣∣Fs

]
= E

[
StβsSs

Ssβtβs

∣∣∣∣Fs

]
=

Ss

βs
E

[
Stβs
Ssβt

∣∣∣∣Fs

]
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Accepting the fact that the call price at time 0 is

C0 = exp (−rT )EQ

[
S0 exp

((
r − 1

2
σ2

)
T + σB̃T

)
−K

]+

we can get the Black-Scholes formula: We know that σBT ∼ N (0, σ2T ) and
also “the rule of the unconscious statistician”, which tells us that to compute
E [f (X)] for some random variable X which has a density p (x), we compute∫
f (x) p (x) dx. This gives us

C0 = e−rT
∫
R

[
S0e

(r−σ2/2)T+x −K
]+ 1√

2πσ
√
T
e−

1
2
x2

σ2T dx

The integrand is different from 0 when

S0e
(r−σ2/2)T+x > K

i.e. when5

x > ln(K/S0)−
(
r − σ2/2

)
T ≡ d

So

C0 = e−rT
∫ ∞
d

(
S0e

(r− 1
2
σ2)T+x −K

) 1√
2πσ
√
T
e−

1
2
x2

σ2T dx

= e−rTS0

∫ ∞
d

1√
2πσ
√
T
e(r− 1

2
σ2)T+xe−

1
2
x2

σ2T︸ ︷︷ ︸
:=A

dx−Ke−rT
∫ ∞
d

1√
2πσ
√
T
e−

1
2
x2

σ2T dx︸ ︷︷ ︸
:=B

.

It is easy to see that B = Ke−rTProb(Z > d), where Z ∼ N(0, σ2T ). So by
using symmetry and scaling with σ

√
T we get that

B = Ke−rTΦ (d2) ,

where (as before)

d2 = − d

σ
√
T

=
ln
(
S0

K

)
+
(
r − 1

2
σ2
)
T

σ
√
T

.

and then see if you can bring (7.3) into play and use

E [exp (σ(Bt −Bs))] = exp

(
1

2
σ2(t− s)

)
.

5This should bring up memories of the quantity a which we defined in the binomial
model.
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So “we have half the Black-Scholes formula”. The A-term requires a little
more work. First we use the change of variable y = x/(σ

√
T ) to get (with

a few rearrangements, a completion of the square, and a further change of
variable (z = y − σ

√
T ))

A = S0e
−Tσ2/2

∫ ∞
−d2

1√
2π
eσ
√
Ty−y2/2dy

= S0e
−Tσ2/2

∫ ∞
−d2

1√
2π
e−(y−σ

√
T )2/2+Tσ2/2dy

= S0

∫ ∞
−d1

1√
2π
e−z

2/2dz,

where as per usual d1 = d2 + σ
√
T . But the last integral we can write as

Prob(Z > d1) for a random variable Z ∼ N(0, 1), and by symmetry we get

A = S0Φ(d1),

which yields the “promised” result.

Theorem 6. The unique arbitrage-free price of a European call option on a
non-dividend paying stock in the Black-Scholes model is given by

C0 = S0Φ (d1)−Ke−rTΦ (d2)

where

d1 =
ln
(
S0

K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

and
d2 = d1 − σ

√
T ,

where Φ is the distribution function of a standard normal distribution.

As stated, the Black-Scholes formula says only what the call price is at
time 0. But it is not hard to guess what happens if we want the price at some
time t ∈ [0;T ]: The same formula applies with S0 substituted by St and T
substituted by T − t. You may want to “try your hand” with conditional
expectations and properties of Brownian motion by proving this.

7.3.1 Hedging the call

There is one last thing about the Black-Scholes model/formula you should
know. Just as in the binomial model the call option can be hedged in the
Black-Scholes model. This means that there exists a self-financing trading
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delta-hedging strategy involving the stock and the bond such that the value of the strategy
at time T is exactly equal to the payoff of the call, (ST −K)+. (This is in
fact the very reason we can talk about a unique arbitrage-free price for the
call.) It is a general fact that if we have a contract whose price at time t can
be written as

π(t) = F (t, St)

for some deterministic function F , then the contract is hedged by a continu-
ously adjusted strategy consisting of (the two last equation is just notation;
deliberately deceptive as all good notation)

φ1(t) =
∂F

∂x
(t, x)

∣∣∣∣
x=St

=
∆π

∆S
:= ∆(t)

units of the stock and φ0(t) = π(t)− φ1(t)St $ in the bank account. This is
called delta hedging.

For the Black-Scholes model this applies to the call with

FBScall(t, x) = xΦ

(
ln
(
x
K

)
+ (r + σ2/2) (T − t)
σ
√
T − t

)

−Ke−r(T−t)Φ

(
ln
(
x
K

)
+ (r − σ2/2) (T − t)
σ
√
T − t

)
.

The remarkable result (and what you must forever remember) is that the
partial derivative (wrt. x) of this lengthy expression is simple:6

∂FBScall

∂x
(t, x) = Φ

(
ln
(
x
K

)
+ (r + σ2/2) (T − t)
σ
√
T − t

)
= Φ(d1),

where the last part is standard and understandable but slightly sloppy no-
tation. So to hedge the call option in a Black-Scholes economy you have to
hold (at any time t) Φ(d1) units of the stock. This quantity is called the delta
(or: 4) hedge ratio for the call option. The “lingo” comes about because of
the intimate relation to partial derivatives; 4 is approximately the amount
that the call price changes, when the stock price changes by 1. In this course
we will use computer simulations to illustrate, justify, and hopefully to some
degree understand the result.

6At one time or another you are bound to be asked to verify this, so you may as well
do it right away. Note that if you just look at the B-S formula, forget that S0 (or x) also
appears inside the Φ’s, and differentiate, then you get the right result with a wrong proof.
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Chapter 8

Stochastic Interest Rates

8.1 Introduction

After the brief encounter with continuous time modelling in Chapter 7 we
now return to the discrete time, finite state space models of Chapter 5. They
still have a great deal to offer.

One of the most widespread applications of arbitrage pricing in the multi-
period finite state space model is in the area of term structure modelling. We
saw in Chapter 3 how the term structure could be defined in several equiv-
alent ways through the discount function, the yields of zero coupon bonds
and by looking at forward rates. In this chapter we will think of the term
structure as the yield of zero coupon bonds as a function of time to maturity.
In Chapter 3 we considered the term structure at a fixed point in time. In
this chapter our goal is to look at dynamic modelling of the evolution of the
term structure. This topic could easily occupy a whole course in itself so
here we focus merely on explaining a fundamental method of constructing
arbitrage-free systems of bond prices. Once this method is understood the
reader will be able to build models for the evolution of the term structure
and price interest rate related contingent claims.

We also consider a few topics which are related to term structure mod-
elling and which we can discuss rigorously with our arbitrage pricing tech-
nology. These topics are the difference between forwards and futures and
the role of ’convexity effects’ - or Jensen’s inequality - can rule out various
properties of term structure evolutions. We also look briefly at so-called swap
contracts which are quite important in bond markets.

133
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short rate process

8.2 Constructing an arbitrage free model

Our goal is to model prices of zero coupon bonds of different maturities and
through time. Let P (t, Ti), 0 ≤ t ≤ Ti ≤ T , denote the price at time t of
a zero coupon bond with maturity Ti. To follow the notation which is most
commonly used in the literature we will deviate slightly from the notation
of Chapter 5. To be consistent with Chapter 5 we should write P (t, Ti) for
the price of the bond prior to maturity. i.e. when t < Ti and then have
a dividend payment δ(Ti) = 1 at maturity and a price process satisfying
P (t, Ti) = 0 for t ≥ Ti. We will instead write the dividend into the price and
let

P (t, t) = 1

for all t. (You should have gotten used to this deceptive notation in Chapters
6 and 7.)

We will consider models of bond prices which use the short rate process
ρ = (ρt)t=0,...,T−1 as the fundamental modelling variable. Recall that the
money market account is a process with value 1 and dividend at date t <
T given by ρt−1 and a dividend of 1 + ρT at time T. We will need our simple
notation for returns obtained by holding money over several periods in the
money market account:

Definition 40. The return of the bank account from period t to u is

Rt,u = (1 + ρt)(1 + ρt+1) · · · (1 + ρu−1), for t < u

Make sure you understand that Rt,t+1 is known at time t, whereas Rt,t+2

is not.
From the fundamental theorem of asset pricing (Theorem 4) we know

that the system consisting of the money market account and zero coupon
bonds will be arbitrage free if and only if(

P (t, Ti)

R0,t

)
0≤t≤Ti

is a martingale for every Ti under some measure Q. Here, we use the fact
that the zero coupon bonds only pay one dividend at maturity and we have
denoted this dividend P (Ti, Ti) for the bond maturing at date Ti. It is not
easy, however, to specify a family of sensible and consistent bond prices. If
T is large there are many maturities of zero coupon bonds to keep track of.
They all should end up having price 1 at maturity, but that is about all we
know. How do we ensure that the large system of prices admits no arbitrage
opportunities?
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short rate latticeWhat is often done is the following: We simply construct zero coupon
bond prices as expected discounted values of their terminal price 1 under a
measure Q which we specify in advance (as opposed to derived from bond
prices). More precisely:

Proposition 18. Given a short rate process ρ = (ρt)t=0,...,T−1. Let

Ft = σ(ρ0, ρ1, . . . , ρT ).

For a given Q define

P (t, Ti) = EQ
t

[
1

Rt,Ti

]
for 0 ≤ t ≤ Ti ≤ T ,

where EQ
t [·] is short hand for EQ [· | Ft] . Then the system consisting of the

money market account and the bond price processes (P (t, Ti))t=0,...,T is arbi-
trage free.

Proof. The proof is an immediate consequence of the definition of prices,
since

P (t, Ti)

R0,t

=
1

R0,t

EQ
t

[
1

Rt,Ti

]
= EQ

t

[
1

R0,Ti

]
and this we know defines a martingale for each Ti by Lemma 2. �

It is important to note that we take Q as given. Another way of putting
this is that a P -specification of the short rate (however well it may fit the
data) is not enough to determine Q, bond prices and the Q-dynamics of the
short rate. If you only have a short rate process, the only traded asset is the
bank account and you cannot replicate bonds with that. Later courses will
explain this in more detail.

Example 20. Here is a simple illustration of the procedure in a model
where the short rate follows a binomial process.
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(
0.9009
0.8117

)

(
0.9174
0.8418

)

(
0.8929

)

(
0.9091

)

(
0.9259

)
ZCB prices

The short rate at time 0 is 0.10. At time 1 it becomes 0.11 with probability
1
2

and 0.09 with probability 1
2

(both probabilities under Q) Given that it is
0.09 at time 1, it becomes either 0.10 or 0.08 at time 2, both with probability
1
2
. The bond prices have been computed using Proposition 18. Note that a

consequence of Proposition 18 is that (check it!)

P (t, Ti) =
1

1 + ρt
EQ
t [P (t+ 1, Ti)]

and therefore the way to use the proposition is to construct bond prices
working backwards through the tree. For a certain maturity Ti we know
P (Ti, Ti) = 1 regardless of the state. Now the price of this bond at time
Ti − 1 can be computed as a function of ρTi−1, and so forth. The term
structure at time 0 is now computed as follows

r(0, 1) =
1

P (0, 1)
− 1 = 0.1

r(0, 2) =

(
1

P (0, 2)

) 1
2

− 1 = 0.09995

r(0, 3) =

(
1

P (0, 3)

) 1
3

− 1 = 0.0998

using definitions in Chapter 3. So the term structure in this example is
decreasing in t - which is not what is normally seen in the market (but it
does happen, for instance in Denmark in 1993 and in the U.S. in 2000). In
fact, one calls the term structure ”inverted” in this case. Note that when the
Q-behavior of r has been specified we can determine not only the current term
structure, we can find the term structure in any node of the tree. (Since the
model only contains two non-trivial zero-coupon bonds at time 1, the term
structure only has two points at time 1.)
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short rate
lattice,
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So Example 20 shows how the term structure is calculated from a Q-tree
of the short rate. But what we (or: practitioners) are really interested in
is the reverse question: Given todays (observed) term structure, how do we
construct a Q-tree of the short rate that is consistent with the term structure?
(By consistent we mean that if we use the tree for ρ in Example 20-fashion we
match the observed term structure at the first node.) Such a tree is needed
for pricing more complicated contracts (options, for instance).

First, it is easy to see that generally such an “inversion” is in no way
unique; a wide variety of ρ-trees give the same term structure. But that is
not bad; it means that we impose a convenient structure on the ρ-process
and still fit observed term structures. Two such conveniences are that the
development of ρ can be represented in a recombining tree (a lattice), or in
other words that ρ is Markovian, and that the Q-probability 1/2 is attached
to all branches. (It may not be totally clear that we can do that, but it is
easily seen from the next example/subsection.)

8.2.1 Constructing a Q-tree/lattice for the short rate
that fits the initial term structure

Imagine a situation where two things have been thrust upon us.

1. The almighty (“God “or “The Market”) has determined todays term
structure,

(P (0, 1), P (0, 2), . . . , P (0, T )).

2. Our not-so-almighty boss has difficulties understanding probability be-
yond the tossing of a fair coin and wants answers fast, so he(s secretary)
has drawn the ρ-lattice in Figure 8.1.

All we have to do is “fill in the blanks’. Optimistically we start, and in
the box corresponding to (t = 0, i = 0) we have no choice but to put

ρ0(0) =
1

P (0, 1)
− 1.

To fill out boxes corresponding to (t = 1, i = 0) and (t = 1, i = 1) we have
the equation

P (0, 2) =
1

1 + ρ0(0)

(
1

2
× 1

1 + ρ1(0)
+

1

2
× 1

1 + ρ1(1)

)
, (8.1)

which of course has many solutions. (Even many sensible ones.) So we
can/have to put more structure on the problem. Two very popular ways of
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Figure 8.1: The ρ-lattice we must complete.

doing this are these functional forms: 1

Ho/Lee-specification: ρt(i) = aimp(t) + bhisti

Black/Derman/Toy-specification: ρt(i) = aimp(t) exp(bhisti)

For each t we fit by choosing an appropriate aimp, while bhist is considered a
known constant. bhist is called a volatility parameter and is closely related
(as you should be able to see) to the conditional variance of the short rate (or
its logarithm). This means that it is fairly easy to estimate from historical
time series data of the short rate. With bhist fixed, (8.1) can be solved hence
determining what goes in the two “t = 1”-boxes. We may have to solve the
equation determining aimp(1) numerically, but monotonicity makes this an
easy task (by bisection or Newton-Raphson, for instance).

And now can can do the same for t = 2, . . . , T − 1 and we can put our
computer to work and go to lunch. Well, yes and no. Even though we take
a long lunch there is a good chance that the computer is not finished when
we get back. Why? Note that as it stands, every time we make a guess at
aimp(t) (and since a numerical solution is involved we are likely to be making a
number of these) we have to work our way backward trough the lattice all the
way down to 0. And this we have to do for each t. While not a computational
catastrophe (a small calculation shows that the computation time grows as
T 3), it does not seem totally efficient. We would like to go through the lattice
only once (as it was the case when the initial term structure was determined

1Of course there is a reason for the names attached. As so often before, this is for later
courses to explain.
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from a known ρ-lattice). Fortunately there is a way of doing this. We need
the following lemma.

Lemma 3. Consider the binomial ρ-lattice in Figure 8.1. Let ψ(t, i) be the
price at time 0 of a security that pays 1 at time t if state/level i occurs at
that time. Then ψ(0, 0) = 1, ψ(0, i) = 0 for i > 0 and the following forward
equation holds:

ψ(t+ 1, i) =


ψ(t,i)

2(1+ρt(i))
+ ψ(t,i−1)

2(1+ρt(i−1))
0 < i < t+ 1,

ψ(t,i−1)
2(1+ρt(i−1))

i = t+ 1,
ψ(t,i)

2(1+ρt(i))
i = 0.

Proof. We do the proof only for the “0 < i < t+ 1”-case, the others are
similar. Recall that we can think of Ft-measurable random variables (of the
type considered here) as vectors in in Rt+1. Since conditional expectation
is linear, we can (for s ≤ t) think of the Fs-conditional expectation of an
Ft-measurable random variable as a linear mapping from Rt+1 to Rs+1. In
other words it can be represented by a (s+ 1)× (t+ 1)-matrix. In particular
the time t− 1 price of a contract with time t price X can be represented as

EQ
t

(
X

1 + ρt−1

)
= Πt−1X

Now note that in the binomial model there are only two places to go from a
given point, so the Πt−1-matrices have the form

Πt−1 =


1−q

1+ρt−1(0)
q

1+ρt−1(0)
0

1−q
1+ρt−1(1)

q
1+ρt−1(1)

. . . . . .

0 1−q
1+ρt−1(t−1)

q
1+ρt−1(t−1)


︸ ︷︷ ︸

t+1 columns

t rows

Let ei(t) be the i’th vector of the standard base in Rt. The claim that pays
1 in state i at time t+ 1 can be represented in the lattice by ei+1(t+ 2) and
by iterated expectations we have

ψ(t+ 1, i) = Π0Π1 · · ·Πt−1Πtei+1(t+ 2).

But we know that multiplying a matrix by ei(t) from the right picks out the
i’th column. For 0 < i < t + 1 we may write the i + 1’st column of Πt as
(look at i = 1)

1− q
1 + ρt(i− 1)

ei(t+ 1) +
q

1 + ρt(i)
ei+1(t+ 1).
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Hence we get

ψ(t+ 1, i) = Π0Π1 · · ·Πt−1

(
1− q

1 + ρt(i− 1)
ei(t+ 1) +

q

1 + ρt(i)
ei+1(t+ 1)

)
=

1− q
1 + ρt(i− 1)

Π0Π1 · · ·Πt−1ei(t+ 1)︸ ︷︷ ︸
ψ(t,i−1)

+
q

1 + ρt(i)
Π0Π1 · · ·Πt−1ei+1(t+ 1)︸ ︷︷ ︸

ψ(t,i)

,

and since q = 1/2, this ends the proof. �

Since P (0, t) =
∑t

i=0 ψ(t, i), we can use the following algorithm to fit the
initial term structure.

1. Let ψ(0, 0) = 1 and put t = 1.

2. Let λt(aimp(t − 1)) =
∑t

i=0 ψ(t, i) where ψ(t, i) is calculated from the
ψ(t−1, ·)’s using the specified aimp(t−1)-value in the forward equation
from Lemma 3.
Solve λt(aimp(t− 1)) = P (0, t) numerically for aimp(t− 1).

3. Increase t by one. If t ≤ T then go to 2., otherwise stop.

An inspection reveals that the computation time of this procedure only
grows as T 2, so we have “gained an order”, which can be quite significant
when T is large. And don’t worry: There will be exercises to help you
understand and implement this algorithm.

8.3 Flat shifts of flat term structures

Now let us demonstrate that in our term structure modelling framework it
is impossible to have only parallel shifts of a flat term structure. In other
words, in a model with no arbitrage we cannot have bond prices at time 0
given as

P (0, t) =
1

(1 + r)t

for some r ≥ 0, t = 1, . . . , T and

P (1, t) =
1

(1 + r̃)t−1 , t = 2, . . . , T,
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where r̃ is a random variable (which takes on at least two different values
with positive probability). To assign meaning to a ”flat term structure” at
time 1 we should have T ≥ 3.

Now consider the zero-coupon bonds with maturity dates 2 and 3. If the
term structure is flat at time 0 we have for some r ≥ 0

P (0, 2) =
1

(1 + r)2 and P (0, 3) =
1

(1 + r)3

and if it remains flat at time 1, there exist a random variable r̃ such that

P (1, 2) =
1

1 + r̃
and P (1, 3) =

1

(1 + r̃)2 .

Furthermore, in an arbitrage-free model it will be the case that

P (0, 2) =
1

1 + r
EQ [P (1, 2)]

=
1

1 + r
EQ

[
1

1 + r̃

]
and

P (0, 3) =
1

1 + r
EQ [P (1, 3)]

=
1

1 + r
EQ

[
1

(1 + r̃)2

]
Combining these results, we have

1

1 + r
= EQ

[
1

(1 + r̃)

]
and

1

(1 + r)2 = EQ

[
1

(1 + r̃)2

]
which contradicts Jensen’s inequality, for if

1

1 + r
= EQ

[
1

(1 + r̃)

]
then since u 7−→ u2 is strictly convex and r̃ not constant we must have

1

(1 + r)2 < EQ

[
1

(1 + r̃)2

]
.
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Note that the result does not say that it is impossible for the term structure to
be flat. But it is inconsistent with no arbitrage to have a flat term structure
and only have the possibility of moves to other flat term structures.

This explains what goes “wrong” in the example in Section 3.6.1. There
the term structure was flat. We then created a position that had a value of
0 at that level of interest rates, but a strictly positive value with at flat term
structure at any other level. But if interest rates are really stochastic then
an arbitrage-free model cannot have only flat shifts of flat structure.

8.4 Forwards and futures

A forward and a futures contract are very similar contracts: The buyer
(seller) of either type of contract is obligated to buy (sell) a certain asset
at some specified date in the future for a price - the delivery price - agreed
upon today. The forward/futures price of a certain asset is the delivery price
which makes the forward/futures contract have zero value initially. It is very
important to see that a forward/futures price is closer in spirit to the exercise
price of an option than to the price of an option contract. Whereas an option
always has positive value (and usually strictly positive) initially, both futures
and forwards have zero value initially because the delivery price is used as a
balancing tool.

The following example might clarify this: If a stock trades at $100 today
and we were to consider buying a futures contract on the stock with delivery
in three months and if we had an idea that this stock would not move a
lot over the next three months, then we would be happy to pay something
for a contract which obligated us to buy the stock in three months for, say,
$50. Even though things could go wrong and the stock fall below $50 in
three months we consider that a much smaller risk of loss than the chance of
gaining a lot from the contract. Similarly, we would not obligate ourselves
to buying the stock in three months for, say, $150 without receiving some
money now. Somewhere in between $50 and $150 is a delivery price at which
we would neither pay nor insist on receiving money to enter into the contract.

In a market with many potential buyers and sellers there is an equilib-
rium price at which supply meets demand: The number of contracts with
that delivery price offered at zero initial cost equals the number of contracts
demanded. This equilibrium price is the forward/futures price (depending
on which contract we consider). In the following we will look at this defini-
tion in a more mathematical way and we will explain in what sense futures
and forwards are different. Although they produce different cash flows (see
below) that only results in a price difference when interest rates are stochas-
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futures price
forward price

tic. Therefore, we will illustrate this difference with an example involving
futures/forwards on bonds. We will ignore margin payments (i.e. payments
that one or both sides of the contract have to make initially to guarantee
future payments) in this presentation.

First, let us look at the key difference between forwards and futures by
illustrating the cash flows involved in both types of contracts: Let Ft denote
the forward price at time t for delivery of an underlying asset at time T and
let Φt denote the futures price of the same asset for delivery at T , where
t ≤ T . Strictly speaking, we should write Ft,T and Φt,T instead of Ft and
Φt respectively, since it is important to keep track of both the date at which
the contract is entered into and the delivery date. But we have chosen to
consider the particular delivery date T and then keep track of how the futures
and forward prices change as a function of t. The cash flows produced by the
two types of contracts, if bought at time t, are as follows:

t t+1 t+2 · · · T-1 T
Forward 0 0 0 · · · 0 ST − Ft
Futures 0 Φt+1 − Φt Φt+2 − Φt+1 · · · ΦT−1 − ΦT−2 ST − ΦT−1

where ST is the price of the underlying asset at time T . The forward cash
flow is self-explanatory. The futures cash flow can be explained as follows:
If you buy a futures contract at date t you agree to buy the underlying
asset at time T for Φt. At time t + 1 markets may have changed and
the price at which futures trade changed to Φt+1. What happens is now
a resettlement of the futures contract. If Φt+1 is bigger than Φt you (the
buyer of the futures at time t) receive the amount Φt+1 − Φt from the seller
at time t+1 whereas you pay the difference between Φt+1 and Φt to the seller
if Φt+1 < Φt. The story continues as shown in the figure.

We have already seen that if the underlying asset trades at time t and
a zero coupon bond with maturity T also trades then the forward price is
given as

Ft =
St

P (t, T )

i.e.

Ft = St (1 + r (t, T ))T−t (8.2)

where r(t, T ) is the internal rate of return on the zero coupon bond.
To see what Φt is requires a little more work: First of all to avoid arbitrage

we must have ΦT = ST . Now consider ΦT−1. In an arbitrage free system there
exists an equivalent martingale measure Q. The futures price ΦT−1 is such
that the cash flow promised by the contract (bought at T − 1) has value 0.
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We must therefore have

0 = EQ
T−1

[
ST − ΦT−1

RT−1,T

]
but since RT−1,T is FT−1-measurable this implies

0 =
1

RT−1,T

EQ
T−1 [ST − ΦT−1]

i.e.
ΦT−1 = EQ

T−1 [ST ] (8.3)

Since Q is a martingale measure recall that

ST−1

R0,T−1

= EQ
T−1

[
ST
R0,T

]
i.e.

ST−1 =
1

1 + ρT−1

EQ
T−1 [ST ]

hence we can write (8.3) as

ΦT−1 = (1 + ρT−1)ST−1

and that is the same as (8.2) since the yield on a one period zero coupon bond
is precisely the short rate. So we note that with one time period remaining
we have ΦT−1 = FT−1. But that also follows trivially since with one period
remaining the difference in cash flows between forwards and futures does not
have time to materialize.

Now consider ΦT−2. By definition ΦT−2 should be set such that the cash
flow of the futures contract signed at T − 2 has zero value:

0 = EQ
T−2

[
ΦT−1 − ΦT−2

RT−2,T−1

+
ST − ΦT−1

RT−2,T

]
(8.4)

Now note that using the rule of iterated expectations and the expression for
ΦT−1 we find

EQ
T−2

[
ST − ΦT−1

RT−2,T

]
=

1

RT−2,T−1

EQ
T−2

[
EQ
T−1

[
ST − ΦT−1

RT−1,T

]]
= 0
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so (8.4) holds precisely when

0 = EQ
T−2

[
ΦT−1 − ΦT−2

RT−2,T−1

]
=

1

RT−2,T−1

EQ
T−2 [ΦT−1 − ΦT−2]

i.e. we have
ΦT−2 = EQ

T−2 [ΦT−1] = EQ
T−2 [ST ] .

This argument can be continued backwards and we arrive at the expression

Φt = EQ
t [ST ] (8.5)

Note that (8.5) is not in general equal to (8.2):

Under Q, we have St = EQ
t

[
ST
Rt,T

]
so if 1

Rt,T
and ST are uncorrelated under

Q we may write

St = EQ
t

[
1

Rt,T

]
EQ
t [ST ] = P (t, T )Φt

which would imply that

Φt =
St

P (t, T )
= Ft

Hence, if 1
Rt,T

and ST are uncorrelated under Q, the forward price Ft and the futures price Φt are the same.

A special case of this is when interest rates are deterministic, i.e. all future
spot rates and hence Rt,T are known at time t.

Note that in general,

Φt − Ft =
1

P (t, T )

(
P (t, T )EQ

t [ST ]− St
)

=
1

P (t, T )

(
EQ
t

[
1

Rt,T

]
EQ
t [ST ]− St

)
=

1

P (t, T )

(
EQ
t

(
ST
Rt,T

)
− CovQt

(
1

Rt,T

, ST

)
− St

)
=

−1

P (t, T )

(
CovQt

(
1

Rt,T

, ST

))
.

Note that margin payments go to the holder of a futures contract when
spot prices rise, i.e. in states where ST is high. If 1

R(t,T )
is negatively correlated

with ST , then interest rates tend to be high when the spot price is high and
hence the holder of a futures contract will receive cash when interest rates
are high. Hence a futures contract is more valuable in that case and the
futures price should therefore be set higher to keep the contract value at 0.
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swap contract 8.5 Swap contracts

A swap contract is an agreement to exchange one stream of payments for
another. A wide variety of swaps exists in financial markets; they are of-
ten tailor-made to the specific need of a company/an investor and can be
highly complex. However, we consider only the valuation of the simplest2

interest rate swap where fixed interest payments are exchanged for floating
rate interest payments.

This swap you may see referred to as anything from “basis” to “forward
starting ???monthly payer swap settled in arrears”. Fortunately the pay-
ments are easier to describe. For a set of equidistant dates (Ti)

n
i=0, say δ

apart, it is a contract with cash flow (per unit of notational principal) 1

P (Ti−1, Ti)
− 1︸ ︷︷ ︸

floating leg

− δκ︸︷︷︸
fixed leg

 at date Ti for i = 1, . . . , n,

where κ is a constant (an interest rate with δ-compounding quoted on yearly
basis.) You should convince yourself why the so-called floating leg does
in fact correspond to receiving floating interest rate payments. The term
(1/P (Ti−1, Ti) − 1)/δ is often called the (12*δ)-month LIBOR (which an
acronym for London Interbank Offer Rate, and does not really mean anything
nowadays, it is just easy to pronounce). Note that the payment made at Ti
is known at Ti−1.

It is clear that since the payments in the fixed leg are deterministic, they
have a value of

δκ

n∑
i=1

P (t, Ti).

The payments in the floating leg are not deterministic. But despite this,
we can find their value without a stochastic model for bond prices/interest
rates. Consider the following simple portfolio strategy:

Time Action Net cash flow
t Sell 1 Ti-ZCB

Buy 1 Ti−1-ZCB P (t, Ti)− P (t, Ti−1)
Ti−1 Use principal received from Ti−1-ZCB

to buy 1/P (Ti−1, Ti) Ti-ZCBs 0
Ti Close position 1/P (Ti−1, Ti)− 1

2Simple objects are often referred to as plain vanilla objects. But what is seen as simple
depends very much on who is looking.



8.5. SWAP CONTRACTS 147

swap rateThis means that the Ti-payment in the floating leg has a value of P (t, Ti−1)−
P (t, Ti), so when summing over i see that the value of the floating leg is

P (t, T0)− P (t, Tn).

In the case where t = T0 this is easy to remember/interpret. A bullet-like
bond that has a principal of 1 pays a coupon that is the short rate must
have a price of 1 (lingo: “it is trading at par”). The only difference between
this contract and the floating leg is the payment of the principal at time
Tn; the time t value of this is P (t, Tn) hence the value of the floating leg is
1− P (t, Tn).

All in all the swap has a value of

V = P (t, T0)− P (t, Tn)− δκ
n∑
i=1

P (t, Ti)).

But there is a further twist; these basis swaps are only traded with one κ
(for each length; each n), namely the one that makes the value 0. This rate
is called the swap rate (at a given date for a given maturity)

κn(t) =
P (t, T0)− P (t, Tn)

δ
∑n

i=1 P (t, Ti)
. (8.6)

In practice (8.6) is often used “backwards”, meaning that swap rates for
swaps of different lengths (called the “swap curve”) are used to infer discount
factors/the term structure. Note that this is easy to do recursively if we can
“get started”, which is clearly the case if t = T0.3

The main point is that the basis swap can be priced without using a
full dynamic model, we only need today’s term structure. But it takes only
minor changes in the contract specification for this conclusion to break down.
For instance different dynamic models with same current term structure give
different swap values if the ith payment in the basis swap is transferred to
date Ti−1 (where it is first known; this is called settlement in advance) or if
we swap every 3 months against the 6-month LIBOR.

The need for a swap-market can also be motivated by the following exam-
ple showing swaps can offer comparative advantages. In its swap-formulation
it is very inspired by Hull’s book, but you you should recognize the idea from
introductory economics courses (or David Ricardo’s work of 1817, whichever
came first). Consider two firms, A and B, each of which wants to borrow

3There should be a “don’t try this at work” disclaimer here. In the market different
day count conventions are often used on the two swap legs, so things may not be quite
what they seem.
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$10M for 5 years. Firm A prefers to pay a floating rate, say one that is
adjusted every year. It could be that the cash-flows generated by the invest-
ment (that it presumably needs the $10M for) depend (positively) on the
interest rate market conditions. So from their point of view a floating rate
loan removes risk. Firm B prefers to borrow at a fixed rate. In this way is
knows in advance exactly how much it has to pay over the 5 years, which it
is quite conceivable that someone would want. The firms contact their banks
and receive the following loan offers: (Lingo: “bp” means basispoints (pro-
nounced “beeps” if you’re really cool) and is one hundredth of a percentage
point, i.e. “100bp = 1%” )

Firm Fixed Floating
A 5Y-ZCB-rate + 50bp 1Y-ZCB-rate + 30bp
B 5Y-ZCB-rate + 170bp 1Y-ZCB-rate + 100bp

So B gets a systematically “worse deal” than A, which could be because is of
lower credit quality than A. But “less worse” for a floating rate loan, where
they only have to pay 70bp more than A compared to 120bp for a fixed rate
loan. So A could take the floating rate offer and B the fixed rate offer, and
everybody is mildly happy. But consider the following arrangement: A takes
the fixed rate offer from the bank and B the floating rate. A then offers to
lend B the 10M as a fixed rate loan “at the 5Y-ZCB-rate + 45bp”, whereas B
offers to lend A its 10M floating rate loan “at the 1Y-ZCB-rate” (and would
maybe add “flat” to indicate that there is no spread). In other words A and
B are exchanging, or swapping, their bank loans. The result:

A: Pays (5Y-ZCB-rate + 50bp) (to bank), Pays 1Y-ZCB-rate (to B)
and receives (5Y-ZCB-rate + 45bp) (from B). In net-terms: Pays 1Y-ZCB-
rate+5bp

B: Pays (1Y-ZCB-rate + 100bp) (to bank), Pays (5Y-ZCB-rate + 45bp)
(to A) and receives (1Y-ZCB-rate) (from A). In net-terms: Pays 5Y-ZCB-
rate+145bp
So this swap-arrangement has put both A and B in a better position (by
25bp) than they would have been had they only used the bank.

But when used in the finance/interest rate context, there is somewhat of
a snag in this story. We argued that the loans offered reflected differences in
credit quality. If that is so, then it must mean that default (“going broke”) is
a possibility that cannot be ignored. It is this risk that the bank is “charging
extra” for. With this point of view the reason why the firms get better deals
after swapping is that each chooses to take on the credit risk from the other
party. If firm B defaults, firm A can forget about (at least part of) what’s
in the “receives from B”-column, but will (certainly with this construction)
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term structure
of interest
rates, parallel
shifts

only be able to get out of its obligations to B to a much lesser extent. So
the firms are getting lower rates by taking on default risk, which a risk of
the type “a large loss with a small probability”. One can quite sensibly ask
if that is the kind of risks that individual firms want to take.

One could try to remedy the problem by saying that we set up a financial
institution through which the swapping takes place. This institution should
ensure payments to the non-defaulting party (hence taking “credit risk” ×
2), in return for a share of the possible “lower rate”-gain from the swap, and
hope for some “law of large numbers”-diversification effect. But that story
is questionable; isn’t that what the bank is doing in the first place?

So the morale is two-fold: i) If something seems to be too good to be true
it usually is. Also in credit risk models. ii) The only way to see if the spreads
offered to firms A and B are set such that there is no gain without extra risk,
i.e. consistent with no arbitrage, is to set up a real dynamic stochastic model
of the defaults (something that subsequent courses will do), just as stochastic
term structure models help us realize that non-flat yield curves do not imply
arbitrage.

8.6 Flat shifts of flat term structures

Now let us demonstrate that in our term structure modelling framework it
is impossible to have only parallel shifts of a flat term structure. In other
words, in a model with no arbitrage we cannot have bond prices at time 0
given as

P (0, t) =
1

(1 + r)t

for some r ≥ 0, t = 1, . . . , T and

P (1, t) =
1

(1 + r̃)t−1 , t = 2, . . . , T,

where r̃ is a random variable (which takes on at least two different values
with positive probability). To assign meaning to a ”flat term structure” at
time 1 we should have T ≥ 3.

Now consider the zero-coupon bonds with maturity dates 2 and 3. If the
term structure is flat at time 0 we have for some r ≥ 0

P (0, 2) =
1

(1 + r)2 and P (0, 3) =
1

(1 + r)3

and if it remains flat at time 1, there exist a random variable r̃ such that

P (1, 2) =
1

1 + r̃
and P (1, 3) =

1

(1 + r̃)2 .
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Furthermore, in an arbitrage-free model it will be the case that

P (0, 2) =
1

1 + r
EQ [P (1, 2)]

=
1

1 + r
EQ

[
1

1 + r̃

]
and

P (0, 3) =
1

1 + r
EQ [P (1, 3)]

=
1

1 + r
EQ

[
1

(1 + r̃)2

]
Combining these results, we have

1

1 + r
= EQ

[
1

(1 + r̃)

]
and

1

(1 + r)2 = EQ

[
1

(1 + r̃)2

]
which contradicts Jensen’s inequality, for if

1

1 + r
= EQ

[
1

(1 + r̃)

]
then since u 7−→ u2 is strictly convex and r̃ not constant we must have

1

(1 + r)2 < EQ

[
1

(1 + r̃)2

]
.

Note that the result does not say that it is impossible for the term structure to
be flat. But it is inconsistent with no arbitrage to have a flat term structure
and only have the possibility of moves to other flat term structures.

This explains what goes “wrong” in the example in Section 3.6.1. There
the term structure was flat. We then created a position that had a value of
0 at that level of interest rates, but a strictly positive value with at flat term
structure at any other level. But if interest rates are really stochastic then
an arbitrage-free model cannot have only flat shifts of flat structure.



Chapter 9

Portfolio Theory

Matrix Algebra

First we need a few things about matrices. (A very useful reference for
mathematical results in the large class imprecisely defined as “well-known”is
Berck & Sydsæter (1992), “Economists’ Mathematical Manual”, Springer.)

• When x ∈ Rn and V ∈ Rn×n then

∂

∂x
(x>Vx) = (V + V>)x

• A matrix V ∈ Rn×n is said to be positive definite if z>Vz > 0 for all
z 6= 0. If V is positive definite then V−1 exists and is also positive
definite.

• Multiplying (appropriately) partitioned matrices is just like multiplying
2× 2-matrices.

• Covariance is bilinear. Or more specifically: WhenX is an n-dimensional
random variable with covariance matrix Σ then

Cov(AX + B,CX + D) = AΣC>,

where A, B, C, and D are deterministic matrices such that the multi-
plications involved are well-defined.

Basic Definitions and Justification of Mean/Variance Analysis

We will consider an agent who wants to invest in the financial markets. We
look at a simple model with only two time-points, 0 and 1. The agent has
an initial wealth of W0 to invest. We are not interested in how the agent
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rate of return
relative portfolio

weights

determined this amount, it’s just there. There are n financial assets to choose
from and these have prices

Si,t for i = 1, . . . , n and t = 0, 1,

where Si,1 is stochastic and not known until time 1. The rate of return on
asset i is defined as

ri =
Si,1 − Si,0

Si,0
,

and r = (r1, . . . , rn)> is the vector of rates of return. Note that r is stochastic.
At time 0 the agent chooses a portfolio, that is he buys ai units of asset

i and since all in all W0 is invested we have

W0 =
n∑
i=1

aiSi,0.

(If ai < 0 the agent is selling some of asset i; in most of our analysis short-
selling will be allowed.)

Rather than working with the absolute number of assets held, it is more
convenient to work with relative portfolio weights. This means that for the
ith asset we measure the value of the investment in that asset relative to
total investment and call this wi, i.e.

wi =
aiSi,0∑n
i=1 aiSi,0

=
aiSi,0
W0

.

We put w = (w1, . . . wn)>, and have that w>1 = 1. In fact, any vector
satisfying this condition identifies an investment strategy. Hence in the fol-
lowing a portfolio is a vector whose coordinate sum to 1. Note that in this
one period model a portfolio w is not a stochastic variable (in the sense of
being unknown at time 0).

The terminal wealth is

W1 =
n∑
i=1

aiSi,1 =
n∑
i=1

ai(Si,1 − Si,0) +
n∑
i=1

aiSi,0

= W0

(
1 +

n∑
i=1

Si,0ai
W0

Si,1 − Si,0
Si,0

)
= W0(1 + w>r), (9.1)

so if we know the relative portfolio weights and the realized rates of return,
we know terminal wealth. We also see that

E(W1) = W0(1 + w>E(r))



153

utility functionand

Var(W1) = W 2
0 Cov(w>r,w>r) = W 2

0 w>Cov(r)︸ ︷︷ ︸
n×n

w.

In this chapter we will look at how agents should choose w. We will
focus on how to choose w such that for a given expected rate of return, the
variance on the rate of return is minimized. This is called mean-variance
analysis. Intuitively, it sounds reasonable enough, but can it be justified?

An agent has a utility function, u, and let us for simplicity say that he
derives utility from directly from terminal wealth. (So in fact we are saying
that we can eat money.) We can expand u in a Taylor series around the
expected terminal wealth,

u(W1) = u(E(W1)) + u′(E(W1))(W1 − E(W1))

+
1

2
u′′(E(W1))(W1 − E(W1))2 +R3,

where the remainder term R3 is

R3 =
∞∑
i=3

1

i!
u(i)(E(W1))(W1 − E(W1))i,

“and hopefully small”. With appropriate (weak) regularity condition this
means that expected terminal wealth can be written as

E(u(W1)) = u(E(W1)) +
1

2
u′′(E(W1))Var(W1) + E(R3),

where the remainder term involves higher order central moments. As usual
we consider agents with increasing, concave (i.e. u′′ < 0) utility functions
who maximize expected wealth. This then shows that to a second order
approximation there is a preference for expected wealth (and thus, by (9.1),
to expected rate of return), and an aversion towards variance of wealth (and
thus to variance of rates of return).

But we also see that mean/variance analysis cannot be a completely gen-
eral model of portfolio choice. A sensible question to ask is: What restrictions
can we impose (on u and/or on r) to ensure that mean-variance analysis is
fully consistent with maximization of expected utility?

An obvious way to do this is to assume that utility is quadratic. Then the
remainder term is identically 0. But quadratic utility does not go too well
with the assumption that utility is increasing and concave. If u is concave
(which it has to be for mean-variance analysis to hold ; otherwise our interest
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mean/variance
analysis

Markowitz
analysis

would be in maximizing variance) there will be a point of satiation beyond
which utility decreases. Despite this, quadratic utility is often used with a
“happy-go-lucky” assumption that when maximizing, we do not end up in
an area where it is decreasing.

We can also justify mean-variance analysis by putting distributional re-
strictions on rates of return. If rates of return on individual assets are nor-
mally distributed then the rate of return on a portfolio is also normal, and
the higher order moments in the remainder can be expressed in terms of the
variance. In general we are still not sure of the signs and magnitudes of
the higher order derivatives of u, but for large classes of reasonable utility
functions, mean-variance analysis can be formally justified.

9.1 Mathematics of Minimum Variance Port-

folios

9.1.1 The case with no riskfree asset

First we consider a market with no riskfree asset and n risky assets. Later
we will include a riskfree asset, and it will become apparent that we have
done things in the right order.

The risky assets have a vector of rates of return of r, and we assume that

E(r) = µ, (9.2)

Cov(r) = Σ, (9.3)

where Σ is positive definite (hence invertible) and not all coordinates of µ
are equal. As a covariance matrix Σ is always positive semidefinite, the
definiteness means that there does not exist an asset whose rate of return
can be written as an affine function of the other n− 1 assets’ rates of return.
Note that the existence of a riskfree asset would violate this.

Consider the following problem:

minw
1

2
w>Σw︸ ︷︷ ︸ := σ2

P subject to w>µ = µP

w>1 = 1

Analysis of such a problem is called mean/variance analysis, or Markowitz
analysis after Harry Markowitz who studied the problem in the 40’ies and
50’ies. (He won the Nobel prize in 1990 together with William Sharpe and
Merton Miller both of whom we’ll meet later.)
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Our assumptions on µ and Σ ensure that a unique finite solution exits
for any value of µP . The problem can be interpreted as choosing portfolio
weights (the second constraint ensures that w is a vector of portfolio weights)
such that the variance portfolio’s rate return (w>Σw; the “1/2” is just there
for convenience) is minimized given that we want a specific expected rate of
return (µP ; “P is for portfolio”).

To solve the problem we set up the Lagrange-function with multipliers

L(w, λ1, λ2) =
1

2
w>Σw − λ1(w>µ− µP )− λ2(w>1− 1).

The first-order conditions for optimality are

∂L
∂w

= Σw − λ1µ− λ21 = 0, (9.4)

w>µ− µP = 0, (9.5)

w>1− 1 = 0. (9.6)

Usually we might say “and these are linear equations that can easily be
solved”, but working on them algebraically leads to a deeper understanding
and intuition about the model. Invertibility of Σ gives that we can write
(9.4) as (check for yourself)

w = Σ−1[µ 1]

[
λ1

λ2

]
, (9.7)

and (9.5)-(9.6) as

[µ 1]>w =

[
µP
1

]
. (9.8)

Multiplying both sides of (9.7) by [µ 1]> and using (9.8) gives[
µP
1

]
= [µ 1]>w = [µ 1]>Σ−1[µ 1]︸ ︷︷ ︸

=:A

[
λ1

λ2

]
. (9.9)

Using the multiplication rules for partitioned matrices we see that

A =

[
µ>Σ−1µ µ>Σ−11
µ>Σ−11 1>Σ−11

]
=:

[
a b
b c

]
We now show that A is positive definite, in particular it is invertible. To this
end let z> = (z1, z2) 6= 0 be an arbitrary non-zero vector in R2. Then

y = [µ 1]

[
z1

z2

]
= z1µ+ z21 6= 0,
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minimum variance
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because the coordinates of µ are not all equal. From the definition of A we
get

∀z 6= 0 : z>Az = y>Σ−1y > 0,

because Σ−1 is positive definite (because Σ is). In other words, A is positive
definite. Hence we can solve (9.9) for the λ’s,[

λ1

λ2

]
= A−1

[
µP
1

]
,

and insert this into (9.7) in order to determine the optimal portfolio weights

ŵ = Σ−1[µ 1]A−1

[
µP
1

]
. (9.10)

The portfolio ŵ is called the minimum variance portfolio for a given mean
µP . (We usually can’t be bothered to say the correct full phrase: “minimum
variance on rate of return for a given mean rate on return µP ”.) The minimal
portfolio return variance is

σ̂2
P = ŵ>Σŵ

= [µP 1]A−1[µ 1]>Σ−1ΣΣ−1[µ 1]A−1[µP 1]>

= [µP 1]A−1
(
[µ 1]>Σ−1[µ 1]

)︸ ︷︷ ︸
=A by def.

A−1[µP 1]>

= [µP 1]A−1

[
µP
1

]
,

where symmetry (of Σ and A and their inverses) was used to obtain the
second line. But since

A−1 =
1

ac− b2

[
c −b
−b a

]
,

we have

σ̂2
P =

a− 2bµP + cµ2
P

ac− b2
. (9.11)

In (9.11) the relation between the variance of the minimum variance portfolio
for a given rp, σ̂

2
P , is expressed as a parabola and is called the minimum

variance portfolio frontier or locus.
Note that we have not just solved one “minimize variance” problem, but

a whole bunch of them, namely one for each conceivable expected rate of
return.



9.1. MATHEMATICS OF MINIMUM VARIANCE PORTFOLIOS 157

efficient portfolio
two-fund

separation

In mean-standard deviation-space the relation is expressed as a hyper-
bola. Figure 9.1 illustrates what things look like in mean-variance-space.
(When using graphical arguments you should be quite careful to use “the
right space”; for instance lines that are straight in one space, are not straight
in the other.) The upper half of the curve in Figure 9.1 (the solid line)
identifies the set of portfolios that have the highest mean return for a given
variance; these are called mean-variance efficient portfolios .

Figure 9.1 also shows the global minimum variance portfolio, the portfolio
with the smallest possible variance for any given mean return. Its mean, µG,
is found by minimizing (9.11) with respect to µP , and is µgmv = b

c
. By

substituting this in the general σ̂2-expression we obtain

σ̂2
gmv =

a− 2bµgmv + cµ2
gmv

ac− b2
=
a− 2b(b/c) + c(b/c)2

ac− b2
=

1

c
,

while the general formula for portfolio weights gives us

ŵgmv =
1

c
Σ−11.

Example 21. Consider the case with 3 assets (referred to as A, B, and C)
and

µ =

 0.1
0.12
0.15

 , Σ =

 0.25 0.10 −0.10
0.10 0.36 −0.30
−0.10 −0.30 0.49

 .
The all-important A-matrix is then

A =

[
0.33236 2.56596

2.565960 20.04712

]
,

which means that the locus of mean-variance portfolios is given by

σ̂2
P = 4.22918− 65.3031µP + 255.097µ2

P .

The locus is illustrated in Figure 9.2 in both in (variance, expected return)-
space and (standard deviation, expected return)-space.

An important property of the set of minimum variance portfolios is is so-
called two-fund separation. This means that the minimum variance portfolio
frontier can be generated by any two distinct minimum variance portfolios.

Proposition 19. Let xa and xb be two minimum variance portfolios with
mean returns µa and µb, µa 6= µb. Then every minimum variance portfolio,
xc is a linear combination of xa and xb. Conversely, every portfolio that is
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Figure 9.1: The minimum variance portfolio frontier.

a linear combination of xa and xb (i.e. can be written as αxa + (1 − α)xb)
is a minimum variance portfolio. In particular, if xa and xb are efficient
portfolios, then αxa + (1− α)xb is an efficient portfolio for α ∈ [0; 1].

Proof. To prove the first part let µc denote the mean return on a given
minimum variance portfolio xc. Now choose α such that µc = αµa+(1−α)µb,
that is α = (µc− µb)/(µa− µb) (which is well-defined because µa 6= µb). But
since xc is a minimum variance portfolio we know that (9.10) holds, so

xc = Σ−1[µ 1]A−1

[
µc
1

]
= Σ−1[µ 1]A−1

[
αµa + (1− α)µb
α + (1− α)

]
= αxa + (1− α)xb,

where the third line is obtained because xa and xb also fulfill (9.10). This
proves the first statement. The second statement is proved by “reading from
right to left” in the above equations. This shows that xc = αxa+(1−α)xb is
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zero-beta
portfolio

Figure 9.2: The minimum variance frontiers and individual assets

the minimum variance portfolio with expected return αµa + (1−α)µb. From
this, the validity of the third statement is clear.

Another important notion is orthogonality of portfolios. We say that two
portfolios xP and xzP (“z is for zero”) are orthogonal if the covariance of
their rates of return is 0, i.e.

x>zPΣxP = 0. (9.12)

Often xzP is called xP ’s 0-β portfolio (we’ll see why later).

Proposition 20. For every minimum variance portfolio, except the global
minimum variance portfolio, there exists a unique orthogonal minimum vari-
ance portfolio. Furthermore, if the first portfolio has mean rate of return µP ,
its orthogonal one has mean

µzP =
a− bµP
b− cµP

.
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Proof. First note that µzP is well-defined for any portfolio except the global
minimum variance portfolio. By (9.10) we know how to find the minimum
variance portfolios with means µP and µzP = (a−bµP )/(b−cµP ). This leads
to

x>zPΣxP = [µzP 1]A−1[µ 1]>Σ−1ΣΣ−1[µ 1]A−1[µP 1]>

= [µzP 1]A−1
(
[µ 1]>Σ−1[µ 1]

)︸ ︷︷ ︸
=A by def.

A−1[µP 1]>

= [µzP 1]A−1

[
µP
1

]
(9.13)

=

[
a− bµP
b− cµP

1

]
1

ac− b2

[
c −b
−b a

] [
µP
1

]
=

1

ac− b2

[
a− bµP
b− cµP

1

] [
cµP − b
a− bµP

]
= 0,

which was the desired result.

Proposition 21. Let xmv (6= xgmv, the global minimum variance portfolio) be
a portfolio on the mean-variance frontier with rate of return rmv, expected rate
of return µmv and variance σ2

mv. Let xzmv be the corresponding orthogonal
portfolio, xP be an arbitrary portfolio, and use similar notation for rates of
return on these portfolios. Then the following holds:

µP − µzmv = βP,mv(µmv − µzmv),

where

βP,mv =
Cov(rP , rmv)

σ2
mv

.

Proof. Consider first the covariance between return on asset i and xmv.
By using (9.10) we get

Cov(ri, rmv) = e>i Σxmv

= e>i [µ 1]A−1

[
µmv

1

]
= [µi 1]A−1

[
µmv

1

]
.

From calculations in the proof of Proposition 20 we know that the covari-
ance between xmv and xzvp is given by (9.13). We also know that it is 0.
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Subtracting this 0 from the above equation gives

Cov(ri, rmv) = [µi − µzmv 0]A−1

[
µmv

1

]
= (µi − µzmv)

cµmv − b
ac− b2︸ ︷︷ ︸

:=γ

, (9.14)

where we have used the formula for A−1. Since this holds for all individual
assets and covariance is bilinear, it also holds for portfolios. In particular for
xmv,

σ2
mv = γ(µmv − µzmv),

so γ = σ2
mv/(µmv−µzmv). By substituting this into (9.14) we get the desired

result for individual assets. But then linearity ensures that it holds for all
portfolios. �

Proposition 21 says that the expected excess return on any portfolio (over
the expected return on a certain portfolio) is a linear function of the expected
excess return on a minimum variance portfolio. It also says that the expected
excess return is proportional to covariance.

The converse of Proposition 21 holds in the following sense: If there is a
candidate portfolio xC and a number µzC such that for any individual asset
i we have

µi − µzC = βi,C(µC − µzC), (9.15)

with βi,C = Cov(ri, rC)/σ2
C , then xC is a minimum-variance portfolio. To see

why, put γi = σ2
C(µi−µzC)/(µC−µzC), note that we have γ = ΣxC , and that

that uniquely determines the candidate portfolio. But by Proposition 32 we
know that the minimum variance portfolio with expected rate of return µC
is (the then) one (and only) portfolio for which (9.15) holds.

9.1.2 The case with a riskfree asset

We now consider a portfolio selection problem with n + 1 assets. These are
indexed by 0, 1, . . . , n, and 0 corresponds to the riskfree asset with (deter-
ministic) rate of return µ0. For the risky assets we let µi

e denote the excess
rate of return over the riskfree asset, i.e. the actual rate of return less µ0. We
let µe denote the mean excess rate of return, and Σ the variance (which is of
course unaffected). A portfolio is now a n+ 1-dimensional vector whose co-
ordinate sum to unity. But in the calculations we let w denote the vector of
weights w1, . . . , wn corresponding to the risky assets and write w0 = 1−w>1.
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capital market
line, CML

tangent portfolio

With these conventions the mean excess rate of return on a portfolio P
is

µeP = w>µe

and the variance is
σ2
P = w>Σw.

Therefore the mean-variance portfolio selection problem with a riskless asset
can be stated as

minw
1

2
w>Σw subject to w>µe = µeP .

Note that w>1 = 1 is not a constraint; some wealth may be held in the
riskless asset.

As in the previous section we can set up the Lagrange-function, differen-
tiate it, at solve to first order conditions. This gives the optimal weights

ŵ =
µeP

(µe)>Σ−1µe
Σ−1µe, (9.16)

and the following expression for the variance of the minimum variance port-
folio with mean excess return µP :

σ̂2
P =

(µeP )2

(µe)>Σ−1µe
. (9.17)

So we have determined the efficient frontier. For required returns above
the riskfree rate, the efficient frontier in standard deviation-mean space is a
straight line passing through (0, µ0) with a slope of

√
(µe)>Σ−1µe. This line

is called the capital market line (CML).
The tangent portfolio, x, is the minimum variance portfolio with all

wealth invested in the risky assets, i.e. x>tan1 = 1. The mean excess re-
turn on the tangent portfolio is

µetan =
(µe)>Σ−1µe

1>Σ−1µe
,

which may be positive or negative. It is economically plausible to assert
that the riskless return is lower than the mean return of the global minimum
variance portfolio of the risky assets. In this case the situation is as illustrated
in Figure 9.3, and that explains why we use the term “tangency”. When
µetan > 0, the tangent portfolio is on the capital market line. But the tangent
portfolio must also be on the “risky assets only” efficient frontier. So the
straight line (the CML) and the hyperbola intersect at a point corresponding
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Figure 9.3: The capital market line.

to the tangency portfolio. But clearly the CML must be above the efficient
frontier hyperbola (we are minimizing variance with an extra asset). So the
CML is a tangent to the hyperbola.

For any portfolio, P we define the Sharpe-ratio (after William Sharpe) as
excess return relative to standard deviation,

Sharpe-ratioP =
µP − µ0

σP
.

In the case where µetan > 0, we see note from Figure 9.3 that the tangency
portfolio is the “risky assets only”-portfolio with the highest Sharpe-ratio
since the slope of the CML is the Sharpe-ratio of tangency portfolio. (Gen-
erally/”strictly algebraically” we should say that xtan has maximal squared
Sharpe-ratio.) The observation that “Higher Sharpe-ratio is better. End of
story.” makes it a frequently used tool for evaluating/comparing the perfor-
mance for investment funds.

Note that a portfolio with full investment in the riskfree asset is orthogo-
nal to any other portfolio; this means that we can prove the following result
in exactly the manner as Proposition 21 (and its converse).
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Proposition 22. Let xmv be a portfolio on the mean-variance frontier with
rate of return rmv, expected rate of return µmv and variance σ2

mv. Let xP be
an arbitrary portfolio, and use similar notation for rates of return on these
portfolios. Then the following holds:

µP − µ0 = βP,mv(µmv − µ0),

where

βP,mv =
Cov(rP , rmv)

σ2
mv

.

Conversely, a portfolio for which these equations hold for all individual assets
is on the mean-variance frontier.

9.2 The Capital Asset Pricing Model (CAPM)

With the machinery of portfolio optimization in place, we are ready to for-
mulate one of the key results of modern finance theory, the CAPM-relation.
Despite the clearly unrealistic assumptions on which the result is built it still
provides invaluable intuition on what factors determine the price of assets in
equilibrium. Note that until now, we have mainly been concerned with pric-
ing (derivative) securities when taking prices of some basic securities as given.
Here we try to get more insight into what determines prices of securities to
begin with.

We consider an economy with n risky assets and one riskless asset. Here,
we let µi denote the rate of return on the i’th risky asset and we let µ0 = r0

denote the riskless rate of return. We assume that µ0 is strictly smaller than
the return of the global minimum variance portfolio.

Just as in the case of only risky assets one can show that with a riskless
asset the expected return on any asset or portfolio can be expressed as a
function of its beta with respect to an efficient portfolio. In particular, since
the tangency portfolio is efficient we have

Eri − µ0 = βi,tan(E(rtan)− µ0) (9.18)

where

βi,tan =
Cov(ri, rtan)

σ2
tan

(9.19)

The critical component in deriving the CAPM is the identification of the
tangency portfolio as the market portfolio. The market portfolio is defined
as follows: Assume that the initial supply of risky asset j at time 0 has a
value of P j

0 . (So P j
0 is the number of shares outstanding times the price per
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share.) The market portfolio of risky assets then has portfolio weights given
as

wj =
P j

0∑n
i=1 P

i
0

(9.20)

Note that it is quite reasonable to think of a portfolio with these weights as
reflecting “the average of the stock market”.

Now if all (say K) agents are mean-variance optimizers (given wealths of
Wi(0) to invest), we know that since there is a riskless asset they will hold a
combination of the tangency portfolio and the riskless asset since two fund
separation applies. Hence all agents must hold the same mix of risky assets
as that of the tangency portfolio. This in turn means that in equilibrium
where market clearing requires all the risky assets to be held, the market
portfolio (which is a convex combination of the individual agents’ portfolios)
has the same mixture of assets as the tangency portfolio. Or in symbols: Let
φi denote the fraction of his wealth that agent i has invested in the tangency
portfolio. By summing over all agents we get

Total value of asset j =
K∑
i=1

φiWi(0)xtan(j)

= xtan(j)× Total value of all risky assets,

where we have used that market clearing condition that all risky assets must
be held by the agents. This is a very weak consequence of equilibrium; some
would just call it an accounting identity. The main economic assumption is
that agents are mean-variance optimizers so that two fund separation applies.
Hence we may as well write the market portfolio in equation (9.18). This is
the CAPM:

E(ri)− µ0 = βi,m(E(rm)− µ0) (9.21)

where βi,m is defined using the market portfolio instead of the tangency
portfolio. Note that the type of risk for which agents receive excess returns
are those that are correlated with the market. The intuition is as follows: If
an asset pays off a lot when the economy is wealthy (i.e. when the return of
the market is high) that asset contributes wealth in states where the marginal
utility of receiving extra wealth is small. Hence agents are not willing to pay
very much for such an asset at time 0. Therefore, the asset has a high return.
The opposite situation is also natural at least if one ever considered buying
insurance: An asset which moves opposite the market has a high pay off in
states where marginal utility of receiving extra wealth is high. Agents are
willing to pay a lot for that at time 0 and therefore the asset has a low return.
Indeed it is probably the case that agents are willing to accept a return on
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an insurance contract which is below zero. This gives the right intuition but
the analogy with insurance is actually not completely accurate in that the
risk one is trying to avoid by buying an insurance contract is not linked to
market wide fluctuations.

Note that one could still view the result as a sort of relative pricing result
in that we are pricing everything in relation to the given market portfolio.
To make it more clear that there is an equilibrium type argument underlying
it all, let us see how characteristics of agents help in determining the risk
premium on the market portfolio. Consider the problem of agent i in the one
period model. We assume that returns are multivariate normal and that the
utility function is twice differentiable and concave1:

max
w

E(ui(W
i
1))

s.t.W i
1 = W0(w>r + (1−w>1)r0)

When forming the Lagrangian of this problem, we see that the first order
condition for optimality is that for each asset j and each agent i we have

E
(
u′i(W

i
1)(rj − r0)

)
= 0 (9.22)

Remembering that Cov(X, Y ) = EXY − EXEY we rewrite this as

E
(
u′i(W

i
1)
)
E(rj − r0) = −Cov(u′i(W

i
1), rj)

A result known as Stein’s lemma says that for bivariate normal distribution
(X, Y ) we have

Cov(g(X), Y ) = Eg′(X)Cov(X, Y )

and using this we have the following first order condition:

E
(
u′i(W

i
1)
)
E(rj − r0) = −Eu′′i (W i

1)Cov(W i
1, rj)

i.e.
−E (u′i(W

i
1))E(rj − r0)

Eu′′i (W
i
1)

= Cov(W i
1, rj)

Now define the following measure of agent i’s absolute risk aversion:

θi :=
−Eu′′i (W i

1)

Eu′i(W
i
1)

.

1This derivation follows Huang and Litzenberger: Foundations for Financial Eco-
nomics. If prices are positive, then returns are bigger than −1, so normality must be
an approximation.
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Summation over all agents gives us

E(rj − r0) =
1∑K
i=1

1
θi

Cov(W1, rj)

=
1∑K
i=1

1
θi

W0Cov(rm, rj)

where the total wealth at time 1 held in risky assets is W1 =
∑K

i=1W
i
1, W0

is the total wealth in risky assets at time 0, and

rm =
W1

W0

− 1

therefore is the return on the market portfolio. Note that this alternative
representation tells us more about the risk premium as a function of the
aggregate risk aversion across agents in the economy. By linearity we also
get that

Erm − µ0 = WM
0 Var(rm)

1∑K
i=1

1
θi

,

which gives a statement as to the actual magnitude expected excess return
on the market portfolio. A high θi corresponds to a high risk aversion and
this contributes to making the risk premium larger, as expected. Note that if
one agent is very close to being risk neutral then the risk premium (holding
that person’s initial wealth constant) becomes close to zero. Can you explain
why that makes sense?

The derivation of the CAPM when using returns is not completely clear
in the sense that finding an equilibrium return does not separate out what
is found exogenously and what is found endogenously. One should think
of the equilibrium argument as determining the initial price of assets given
assumptions on the distribution of the price of the assets at the end of the
period. A sketch of how the equilibrium argument would run is as follows:

1. Let the expected value and the covariance of end-of-period asset prices
for all assets be given.

2. Suppose further that we are given a utility function for each investor
which depends only on mean and variance of end-of-period wealth.
Assume that utility decreases as a function of variance and increases
as a function of mean. Assume also sufficient differentiability

3. Let investor i have an initial fraction of the total endowment of risky
asset j.
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Roll’s cirtique 4. Assume that there is riskfree lending and borrowing at a fixed rate r.
Hence the interest rate is exogenous.

5. Given initial prices of all assets, agent i chooses portfolio weights on
risky assets to maximize end of period utility. The difference in price
between the initial endowment of risky assets and the chosen portfolio
of risky assets is borrowed n/placed in the money market at the riskless
rate. (In equilibrium where all assets are being held this implies zero
net lending/borrowing.)

6. Compute the solution as a function of the initial prices.

7. Find a set of initial prices such that markets clear, i.e such that the
sum of the agents positions in the risky assets sum up to the initial
endowment of assets.

8. The prices will reflect characteristics of the agents’ utility functions,
just as we saw above.

9. Now it is possible to derive the CAPM relation by computing expected
returns etc. using the endogenously determined initial prices. This is
a purely mathematical exercise translating the formula for prices into
formulas involving returns.

Hence CAPM is to be thought of as an equilibrium argument explaining asset
prices.

There are of course many unrealistic assumptions underlying the CAPM.
The distributional assumptions are clearly problematic. Even if basic secu-
rities like stocks were well approximated by normal distributions there is no
hope that options would be well approximated due to their truncated payoffs.
An answer to this problem is to go to continuous time modelling where ’local
normality’ holds for very broad classes of distributions but that is outside
the scope of this course. Note also that a conclusion of CAPM is that all
agents hold the same mixture of risky assets which casual inspection show is
not the case.

A final problem, originally raised by Roll, and thus refrerred to as Roll’s
cirtique2, concerns the observability of the market portfolio and the logical
equivalence between the statement that the market portfolio is efficient and
the statement that the CAPM relation holds. To see that observability is
a problem think for example of human capital. Economic agents face many

2R. Roll (1977): A critique of the asset pricing theory’s test; Part I, Journal of Financial
Economics, 4:pp 129 - 76
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decisions over a life time related to human capital - for example whether it is
worth taking a loan to complete an education, weighing off leisure against ad-
ditional work which may increase human capital etc. Many empirical studies
use all traded stocks (and perhaps bonds) on an exchange as a proxy for the
market portfolio but clearly this is at best an approximation. And what if the
test of the CAPM relation is rejected using that portfolio? At the intuitive
level, the relation (9.18) tells us that this is equivalent to the inefficiency of
the chosen portfolio. Hence one can always argue that the reason for rejec-
tion was not that the model is wrong but that the market portfolio is not
chosen correctly (i.e. is not on the portfolio frontier). Therefore, it becomes
very hard to truly test the model. While we are not going to elaborate on
the enormous literature on testing the CAPM, note also that even at first
glance it is not easy to test what is essentially a one period model. To get
estimates of the fundamental parameters (variances, covariances, expected
returns) one will have to assume that the model repeats itself over time, but
when firms change the composition of their balance sheets they also change
their betas.

Hence one needs somehow to accommodate betas which change over time
and this inevitably requires some statistical compromises.

9.3 Relevant but unstructured remarks on CAPM

9.3.1 Systematic and non-systematic risk

This section follows Huang and Litzenberger’s Chapters 3 and 4. We have
two versions of the capital asset pricing model. The most “popular” version,
where we assumed the existence of a riskless asset whose return is r0, states
that the expected return on any asset satisfies

Eri − r0 = βi,m(Erm − r0). (9.23)

This version we derived in the previous section. The other version is the
so-called zero-beta CAPM, which replaces the return on the riskless asset by
the expected return on m′s zero-covariance portfolio:

Eri − Erzm = βi,m(Erm − Erzm).

This version is proved by assuming mean-variance optimizing agents, using
that two-fund separation then applies, which means that the market portfolio
is on the mean-variance locus (note that we cannot talk about a tangent
portfolio in the model with no riskfree asset) and using Proposition 21. Note
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that both relations state that excess returns (i.e. returns in addition to the
riskless returns) are linear functions of βim.

From now on we will work with the case in which a riskless asset exists, but
it is easy to translate to the zero-beta version also. Dropping the expectations
(and writing “error terms” instead) we have also seen that if the market
portfolio m is efficient, the return on any portfolio (or asset) q satisfies

rq = (1− βq,m)rf + βq,mrm + εq,m

where
Eεq,m = Eεq,mrm = 0.

Hence
Var(rq) = β2

q,mVar (rm) + Var(εq,m).

This decomposes the variance of the return on the portfolio q into its system-
atic risk β2

qmVar (rm) and its non-systematic or idiosyncratic risk Var(εq,m).
The reason behind this terminology is the following: We know that there ex-
ists a portfolio which has the same expected return as q but whose variance
is β2

qmVar (rm) - simply consider the portfolio which invests 1 − βqm in the
riskless asset and βq,m, in the market portfolio. On the other hand, since this
portfolio is efficient, it is clear that we cannot obtain a lower variance if we
want an expected return of Erq. Hence this variance is a risk which is corre-
lated with movements in the market portfolio and which is non-diversifiable,
i.e. cannot be avoided if we want an expected return of Erq. On the other
hand as we have just seen the risk represented by the term VAR(εq,m) can
be avoided simply by choosing a different portfolio which does a better job
of diversification without changing expected return.

9.3.2 Problems in testing the CAPM

Like any model CAPM builds on simplifying assumptions. The model is
popular nonetheless because of its strong conclusions. And it is interesting
to try and figure out whether the simplifying assumptions on the behavior of
individuals (homogeneous expectations) and on the institutional setup (no
taxation, transactions costs) of trading are too unrealistic to give the model
empirical relevance. What are some of the obvious problems in testing the
model?

First, the model is a one period model. To produce estimates of mean
returns and standard deviations, we need to observe years of price data. Can
we make sure that the distribution of returns over several years remain the
same3?

3Mulitiperiod versions exist, but they also face problems with time varying parameters.
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Second (and this a very important problem) what is the ’market portfo-
lio’ ? Since investments decisions of firms and individuals in real life are not
restricted to stocks and bonds but include such things as real estate, edu-
cation, insurance, paintings and stamp collections, we should include these
assets as well, but prices on these assets are hard to get and some are not
traded at all.

A person rejecting the CAPM could always be accused of not having
chosen the market portfolio properly. However, note that if ’proper choice’
of the market portfolio means choosing an efficient portfolio then this is
mathematically equivalent to having the CAPM hold.

This point is the important element in what is sometimes referred to as
Roll’s critique of the CAPM. When discussing the CAPM it is important to
remember which facts are mathematical properties of the portfolio frontier
and which are behavioral assumptions. The key behavioral assumption of
the CAPM is that the market portfolio is efficient. This assumption gives
the CAPM-relation mathematically. Hence it is impossible to separate the
claim ’the portfolio m is efficient’ from the claim that ’CAPM holds with
m acting as market portfolio’.

9.3.3 Testing the efficiency of a given portfolio

Since the question of whether CAPM holds is intimately linked with the
question of the efficiency of a certain portfolio it is natural to ask whether
it is possible to devise a statistical test of the efficiency of a portfolio with
respect to a collection of assets. If we knew expected returns and variances
exactly, this would be a purely mathematical exercise. However, in practice
parameters need to be estimated and the question then takes a more statis-
tical twist: Given the properties of estimators of means and variances, can
we reject at (say) a 5% level that a certain portfolio is efficient? Gibbons,
Ross and Shanken (Econometrica 1989, 1121-1152) answer this question -
and what follows here is a sketch of their test.

Given a portfolio m and N assets whose excess returns are recorded in T
time periods. It is assumed that a sufficiently clear concept of riskless return
can be defined so that we can really determine excess returns for each period.
NOTE: We will change our notation in this section slightly and assume that
rp, Erp and µp refer to excess returns, mean excess returns and estimated
mean excess returns of an asset or portfolio p. Hence using this notation the
CAPM with a riskless asset will read

Erp = βp,mErm.

We want to test this relation or equivalently whetherm is an efficient portfolio
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in a market consisting of N assets. Consider the following statistical model
for the excess returns of the assets given the excess return on the portfolio
m :

rit = αi + γi rmt + εit

i = 1, . . . , N and t = 1, . . . ., T

where rit is the (random) excess return4 of asset i in the t′th period, rmt
is the observed excess return on the portfolio in the t′th period, αi, γi are
constants and the εit’s are normally distributed with Cov(εit, εjt) = σij and
Cov(εit, εis) = 0 for t 6= s. Given these data a natural statistical representa-
tion of the question of whether the portfolio m is efficient is the hypothesis
that α1 = · · · = αN = 0. This condition must hold for (9.23) to hold.

To test this is not difficult in principle (but there are some computational
tricks involved which we will not discuss here): First compute the MLE’s
of the parameters. It turns out that in this model this is done merely by
computing Ordinary Least Squares estimators for α, γ and the covariance
matrix for each period Σ. A so-called Wald test of the hypothesis α = 0 can
then be performed by considering the test statistic

W0 = α̂V ar(α̂)α̂−1

which you will learn more about in a course on econometrics. Here we simply
note that the test statistic measures a distance of the estimated value of
α from the origin. Normally, this type of statistics leads to an asymptotic
chi squared test, but in this special model the distribution can be found
explicitly and even more interesting from a finance perspective, it is shown
in GRS that W0 has the following form

W0 =
(T −N − 1)

N

(
µ̂2
q

σ̂2
q
− µ̂2

m

σ̂2
m

)
(

1 + µ̂2
m

σ̂2
m

)
where the symbols require a little explanation: In the minimum variance
problem with a riskless asset we found that the excess return of any portfolio
satisfies

Erp = βpmErm.

We refer to the quantity
Erp
σ(rp)

4Note this change to excess returns.
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as the Sharpe ratio for portfolio p. The Sharpe ratio in words compares excess
return to standard deviation. Note that using the CAPM relation we can
write

Erp
σ(rp)

=
σ(rm)ρmp
σ2(rm)

(Erm)

where ρmp is the correlation coefficient between the return of portfolios p and
m. From this expression we see that the portfolio which maximizes the Sharpe
ratio is (proportional) to m.Only portfolios with this Sharpe ratio are effi-
cient. Now the test statistic W0 compares two quantities: On one side, the
maximal Sharpe ratio that can be obtained when using for parameters in
the minimum variance problem the estimated covariance matrix and the es-
timated mean returns for the economy consisting of the N assets and the
portfolio m. On the other side, the Sharpe ratio for the particular portfolio
m (based on its estimated mean return and standard deviation).

Large values of W0 will reject the hypothesis of efficiency and this corre-
sponds to a case where the portfolio m has a very poor expected return per
unit of standard deviation compared to what is obtained by using all assets.
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