Da	400		61
(Pa	ges	•	v

Reg. No.	:	
Name:		

Second Semester B.Sc. Degree Examination, September 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1231.1: MATHEMATICS II – APPLICATIONS OF CALCULUS AND VECTOR DIFFERENTIATION

(2021 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Find the intervals on which $f(x) = x^2 4x + 3$ is increasing.
- 2. If f''(a) exists and f has an inflection point at x = a, then f''(a) = ----
- 3. Determine where the graph of the function $f(x) = x + 2 \sin x$ is concave up.
- 4. Define critical point of a function.
- 5. State Mean value theorem.
- 6. What is the value of $\lim_{x\to 0} \frac{e^x 1}{\sin x}$?

- 7. Find the rectangular coordinates of the point P whose polar coordinates are given by $(r,\theta)=(6,2\pi/3)$.
- 8. Identify the quadric surface $z = \frac{x^2}{4} + \frac{y^2}{25}$.
- 9. Find the gradient of $f(x, y) = x^2 + xy + z^2$.
- 10. Find r'(t) if $r(t) = t^2i + e^tj (2\cos \pi t)k$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any **eight** questions from among the questions 11 to 26. These questions carry **2** marks each.

- 11. Find the x-coordinates of all inflection points of $3x^4 4x^3$.
- 12. Find the critical points of $f(x) = 3x^{5/3} 15x^{2/3}$.
- 13. Let $f(x) = x^2 + bx + c$. Find the values of b and c such that f(1) = 5 is an extreme value of f on [0, 2]. Is this value a maximum or minimum?
- 14. Find an interval [a, b] on which $f(x) = x^4 + x^3 x^2 + x 2$ satisfies the hypotheses of Rolle's theorem.
- 15. Find all values of k and I such that $\lim_{x\to 0} \frac{k + \cos lx}{x^2} = -4$.
- 16. Find the total area between the curve $y = 1 x^2$ and the x axis over the interval [0, 2].
- 17. Find area of the surface that is generated by revolving the portion of the curve $y^2 = x$ from origin to the point where x = 2 about the x-axis.
- 18. Find the exact arc length of the curve $y = 3x^{3/2} 1$ from x = 0 to x = 1.

19. Evaluate :
$$\int_{2}^{a} \int_{2}^{b} \frac{dy \, dx}{xy}$$
.

20. Evaluate:
$$\int_{-1}^{2} \int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2} + z^{2}) dx dy dz.$$

- 21. Find the perimeter of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.
- 22. Find the length of the arc of the parabola $y^2 = 4ax$ from the vertex to the extremity of the latus rectum.
- 23. Find the area of the surface that is generated by revolving the curve $y = \sqrt{4 x^2}$, $-1 \le x \le 1$.
- 24. Find the domain of r(t) and the value of $r(t_0)$ if $r(t) = \sqrt{5t+1} i + t^2 j$; $t_0 = 1$.
- 25. Describe the graph of $r(t) = \langle 1+2t, -1+3t \rangle$.
- 26. If $f(x,y) = (1+xy)^{3/2}$, find $D_u f(8,1)$ for the unit vector $u = \frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}j$.

 (8 × 2 = 16 Marks)

SECTION - III

Answer any **six** questions from among the questions 27 to 38. These questions carry **4** marks each.

- 27. Find the relative extrema of $f(x) = 3x^5 5x^3$.
- 28. Use cylindrical shells to find the volume of the solid generated when the region enclosed between $y = x^3 3x^2 + 2x$ over [0, 1] is revolved about the *y*-axis.
- 29. Use double integral to find the area bounded by the x-axis, y = 2x and x + y = 1.

- 30. Evaluate the triple integral $\iiint_G 12xy^2 z^3 dV$ over the rectangular box G defined by the inequalities $-1 \le x \le 2, 0 \le y \le 3, 0 \le z \le 2$.
- 31. Evaluate $\lim_{x\to\infty} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$.
- 32. Evaluate $\iint xy \, dx \, dy$ over the positive quadrant bounded by $\frac{x}{a} + \frac{y}{b} = 1$.
- 33. Find the length of the curve $27y^2 = 4x^3$ from (0, 0) to (3, 2).
- 34. Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.
- 35. Use polar coordinates to evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{3/2} dy dx$.
- 36. Using double integral, find the area of the region R bounded by y = x and $y = x^2$ in the first quadrant.
- 37. If $r_1(t) = 2ti + 3t^2j + t^3k$ and $r_2(t) = t^4k$. Find $\frac{d}{dt}(r_1 \circ r_2)$ and $\frac{d}{dt}(r_1 \times r_2)$.
- 38. Find the directional derivative of $f(x, y, z) = x^2y yz^3 + z$ at the point (1, -2, 0) in the direction of the vector a = 2i + j 2k.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any **two** questions from among the questions 39 to 44. These question carry

- 39. (a) Show that the function $f(x) = \frac{1}{4}x^3 + 1$ satisfies the hypotheses of the Mean (0, 2).
 - (b) An open box is to be made from a 16-inch by 30-inch piece of cardboard by sides. What size should the squares be to obtain a box with the largest

- 40. (a) Use cylindrical shells to find the volume of the solid generated when the region enclosed between $y = x^3 3x^2 + 2x$ over [0, 1] is revolved about the y-axis.
 - (b) Find the area of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.
- 41. (a) Find the area of the surface that is generated by revolving the portion of the curve $y = x^2$ between x = 1 and x = 2 about the y-axis.
 - (b) Find the volume of the solid that results when the region above the *x*-axis and below the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > 0, b > 0)$ is revolved about the *x*-axis.
 - 42. (a) Use double integration to find the area of the region R enclosed between the parabola $y = \frac{1}{2}x^2$ and the line y = 2x.
 - (b) Use triple integration in cylindrical coordinates to evaluate $\int\limits_0^a\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}\int\limits_0^{a^2-x^2-y^2}x^2\,dz\,dy\,dx(a>0).$
 - 43. (a) Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.
 - (b) Find the volume of the solid that results when the region enclosed by the curves $f(x)\sin x$ and $g(x)=\cos x$ is revolved about the x-axis from x=0 to $x=\pi/4$.

- 44. If the electrical potential at a point (x, y) in the xy-plane is V(x, y), then the electrical intensive vector at the point (x, y) is $E = -\nabla V(x, y)$. Suppose that $V(x, y) = e^{-2x} \cos 2y$.
 - (a) Find the electric intensity vector at $(\pi/4,0)$.
 - (b) If $f(x, y, z) = 3x^2y y^3z^2$, find the maximum value of direction derivative of f at the point (1, -2, -1). (2 × 15 = 30 Marks)