Reg. No. :

Third Semester B.Sc. Degree Examination, March 2021 First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1331.1 : MATHEMATICS III — CALCULUS AND LINEAR ALGEBRA (2019 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the ten questions are compulsory. They carry 1 mark each.

- 1. Write the differential equation of all straight lines in a plane.
- 2. What is the general form of Clairaut's equation?
- 3. Solve $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + 1 = 0$.
- 4. What is the electrostatic potential energy gained by moving a charge q along a path C in an electric field \overline{E} ?
- 5. Define a conservative vector field.

- 6. $f(t) = \sin 2\pi t$ is periodic with period —
- 7. If $f(x) = \sum_{-\infty}^{\infty} c_n e^{inx}$, then what is the average of $|f(x)|^2$ over a period?
- 8. Define rank of a matrix.
- 9. If A is an invertible matrix of order n and b is an $n \times 1$ matrix, then the number of solutions of Ax = b is ————.
- 10. Wronskian of $\{\sin x, \cos x\}$ is ———.

SECTION - II

Answer any eight questions. Each question carries 2 marks.

11. Solve
$$\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$$
.

12. Solve
$$\frac{dy}{dx} = (x + y + 1)^2$$
.

13. Solve
$$(1-x^2)y^1 + 2xy = (1-x^2)^{3/2}$$
.

14. Solve
$$(y-px)(p-1)=p$$
.

15. Solve
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - y = 0$$
.

16. Compute the work done by the force

 $\overline{F} = xy^2 \hat{i} + 2\hat{j} + x\hat{k}$ over a path C parameterized by $x = ct, y = c/t, z = d; 1 \le t \le 2$.

- 17. If $\vec{r} = x\hat{i} + y\hat{j} + 3\hat{k}$, show that (a) $\nabla \cdot \vec{r} = 3$ (b) $\nabla \times \vec{r} = \overline{0}$.
- 18. Prove that for any scalar valued function $\phi(x,y,z)$ whose second order partial derivatives are continuous, $Curl(grad\phi)=0$.
- 19. Find the vector area of the surface of the Hemisphere $x^2 + y^2 = a^2$, $z \ge 0$, by evaluating the line integral $S = \frac{1}{2} \oint \bar{r} \times d\bar{r}$ around its perimeter.
- 20. State Dirichlet's conditions for a Fourier series.
- 21. Find the coefficients in the Fourier series of the function f(x)=x, $-\pi \le x \le \pi$ where $f(x+2\pi)=f(x)$.
- 22. If A and B are symmetric matrices, prove that AB-BA is an antisymmetric matrix.
- 23. Determine the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$
- 24. Find a unit vector perpendicular to both $\hat{i} + \hat{j}$ and $i 2\hat{k}$.
- 25. Show that the vectors (1, 1,1), (0, 1, 1) and (0, 0,1) are linearly independent.
- 26. Find the equation of the line through (3, 4, -1) and parallel to $2\hat{i} 3\hat{j} + 6\hat{k}$.

SECTION - III

Answer any six questions. Each question carries 4 marks.

27. Solve
$$xdy - y dx = \sqrt{x^2 + y^2} dx$$
.

28. Solve
$$x \frac{dy}{dx} + y - \frac{y^2}{x^{3/2}} = 0$$
, subject to $y(1) = 1$.

29. Solve
$$\frac{dy^2}{dx^2} - 2\frac{dy}{dx} + y = e^x$$
.

- 30. Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2e^{-x}$, subject to the boundary conditions y(0) = 2, y'(0) = 1.
- 31. Show that the area of a region R enclosed by a simple closed curve C is given by $A = \frac{1}{2} \oint_C x \, dy y \, dx$. Hence prove that the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .
- 32. Find the volume enclosed between a sphere of radius a centred on the origin and a circular cone of half angle α with its vertex at the origin.
- 33. Show that the vector field $\overline{Q} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$ is conservative and find ϕ such that $\overline{Q} = \nabla \phi$.
- 34. A periodic function f(t) with period 2π is defined within the period $-\pi < t < \pi$ by $f(t) = \begin{cases} -1, & -\pi < t < 0 \\ 1, & 0 < t < \pi \end{cases}$

Find its Fourier series expansion.

- 35. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$
- 36. Find the distance from P(1,2,-1) to the line joining $P_1(0,0,0)$ and $P_2(-1,0,2)$.

- 37. Solve the equations x + y + z = 6, x y + 2z = 5, 3x + y + z = 8.
- 38. Find what transformation corresponds to the matrix

$$A = \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{bmatrix}.$$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 39. (a) Solve $(1+y^2)dx = (\tan^{-1} y x)dy$
 - (b) Solve $(1-x^2)\frac{d^2y}{dx^2} 3x\frac{dy}{dx} y = 1$.
- 40. (a) Use Green's functions to solve $\frac{d^2y}{dx^2} + y = \csc x$, subject to the boundary conditions $y(0) = y(\pi/2) = 0$.
 - (b) Solve $4x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + (x^2 1)y = 0$.
- 41. (a) Evaluate the surface integral $\int_S \overline{a} . d\overline{s}$, where $\overline{a} = (y-x)\hat{i} + x^2z\hat{j} + (z+x^2)\hat{k}$ and S is the open surface of the hemisphere $x^2 + y^2 + z^2 = a^2, z \ge 0$.
 - (b) Verify Stoke's theorem for the vector field $\overline{a} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ over the upper half surface of the unit sphere $x^2 + y^2 + z^2 = 1, z \ge 0$.

42. A periodic function f(t) of period 2π is defined within the period $0 < t < 2\pi$ by

$$f(t) = \begin{cases} t, & 0 \le t \le \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} \le t \le \pi \\ \pi - \frac{t}{2}, & \pi \le t \le 2\pi \end{cases}$$

find a Fourier series expansion of it.

- 43. Represent $f(x) = \begin{cases} 1, & 0 < x < 1/2 \\ 0, & 1/2 < x < 1 \end{cases}$ by
 - (a) A Fourier sine series
 - (b) A Fourier cosine series
 - (c) A Fourier series.
- 44. (a) Diagonalize the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.
 - (b) Find the equation relative to the principal axes of the quadric surface $x^2 + 5y^2 + z^2 + 2xy + 2yz + 6xz = 48$