Reg.	No.	:	

Name:.....

Fourth Semester B.Sc. Degree Examination, May 2021

First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1431.1: MATHEMATICS IV – COMPLEX ANALYSIS, SPECIAL FUNCTIONS AND PROBABILITY THEORY

(2019 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Define analytic function.
- 2. If f(z) is analytic in a region R, then what we can say about the analyticity of $f^{iv}(z)$ in R.
- 3. Find $\int_C (z^2 + z + 1) dz$, where C is the circle |z| = 5.
- 4. Define residue.
- 5. Find $\Gamma(3)$.
- 6. Define Beta function.
- 7. Define sample space.

- 8. Define probability.
- 9. State Baye's formula.
- 10. Write down the probability density function of a Binomial distribution.

SECTION - II

Answer any eight questions from among the questions 11 to 26. These questions carry 2 marks each.

- 11. Distinguish between regular point and singular point of a function f(z).
- 12. State a sufficient condition for analyticity of a function f(z) in a region.
- 13. State Laurent's theorem.
- 14. Distinguish between pole and essential singular point.
- 15. Find the order of the pole at z = 0 of $\frac{\sin z}{z^5}$.
- 16. Find $\int_C \frac{z+1}{z-2} dz$, where C is the circle |z|=3, oriented in the counter clockwise direction.
- 17. Find residue at the pole z = 1 of the function $f(z) = \frac{1}{(z-2)^2(z-1)}$.
- 18. Find residue at the pole $z = \infty$ of the function $f(z) = \frac{1}{z}$.
- 19. Find $T\left(\frac{2}{3}\right) \div \Gamma\left(\frac{8}{3}\right)$.
- 20. Find $\int_{0}^{\infty} x^{2} e^{-x} dx$.

- 21. State recurrence relation for Gamma function.
- Find the probability that a single card drawn from a shuffled deck of cards will be either a diamond or a king.
- 23. What is the probability of showing two heads and one tail, when three coins are tossed?
- 24. What is the probability of being able to form a two-digit number greater than 33 with the two numbers on the dice, when two dice are thrown?
- 25. Two students are working separately on the same problem. If the first student has probability $\frac{1}{2}$ of solving it and the second student has probability $\frac{3}{4}$ of solving it, what is the probability that at least one of them solves it?
- 26. If 1500 people each select a number at random between 1 and 500, what is the probability that 2 people elected the number 29?

SECTION - III

Answer **any six** questions from among the questions 27 to 38. These questions carry **4** marks each.

- 27. Evaluate $\int_C \frac{4z-3}{z(z-1)} dz$, where C is the circle |z| = 2.
- 28. Find the reside of the function $f(z) = \frac{1}{(1+z^2)^2}$ at its singular points.
- 29. Expand $f(z) = \frac{1}{(z+2)(z+5)}$ as a Laurent series in the region 1 < |z| < 2.
- 30. Prove that $\Gamma(p+1) = p\Gamma(q)$.

- 31. Evaluate $\int_{0}^{\infty} x^5 e^{-x^2} dx$.
- 32. Evaluate $\int_{0}^{\infty} \frac{x^3}{(1+x)^5} dx$.
- 33. Express the integral $\int_{0}^{1} \frac{1}{\sqrt{1-x^3}} dx$ in beta function.
- 34. A club consists of 50 members. In how many ways can a president, vicepresident, secretary, and treasurer be chosen? In how many ways can a committee of 4 members be chosen?
- 35. Find the probability of exactly 52 heads in 100 tosses of a coin using the binomial distribution and using the normal approximation.
- 36. Find the coefficient of x^8 in the binomial expansion of $(1 + x)^{15}$.
- 37. Explain Joint Distributions.
- 38. Suppose that boxes of a certain kind of cereal have an average weight of 16 ounces and it is known that 70% of the boxes weigh within I ounce of the average. What is the probability that the box you buy weighs less than 14 ounces?

SECTION - IV

Answer any two questions from among the questions 39 to 44. These questions carry 15 marks each.

- 39. (a) State and prove Cauchy Integral formula
 - (b) Derive Cauchy Riemann equations.
- 40. Evaluate the Following integrals

(a)
$$\int_{0}^{2\pi} \frac{1}{5 + 3\cos\theta} d\theta$$

(b)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$$

- 41. (a) Verify that the function $u(x,y) = x^3 3xy^2 5y$ is harmonic. Also find a harmonic conjugate of u(x,y).
 - (b) Find the image of the given lines under the mapping $f(z) = z^2$
 - (i) y = 2,
 - (ii) x = 0
- 42. (a) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
 - (b) Prove that $B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.
- 43. (a) A preliminary test is customarily given to the students at the beginning of a certain course. The flowing data are accumulated after several years:
 - (i) 95% of the students pass the course, 5% fail.
 - (ii) 96% of the students who pass the course also passed the preliminary test.
 - (iii) 25% of the students who fail the course passed the preliminary test.
 What is the probability that a student who has failed the preliminary test will pass the course?
 - (b) Find the number r such that the area under the normal distribution curve y = f(x) from $\mu = r$ to $\mu + r$ is equal to $\frac{1}{2}$.

- 44. (a) Derive Poisson probability density function.
 - (b) There are 3 red and 5 black balls in one box and 6 red and 4 white balls in another. If you pick a box at random, and then pick a ball from it at random, what is the probability that it is
 - (i) red
 - (ii) Black?
 - (iii) White?