Reg. No. :

Name :

First Semester M.Sc. Degree Examination, November 2021

Physics with specialization in Nano Science/ Physics with specialization in Space Physics

PHNS 512/PHSP 512: MATHEMATICAL PHYSICS

(2020 Admission)

Time : 3 Hours

Max. Marks : 75

SECTION - A

Answer any **five** questions. Each question carries 3 marks:

- I. (a) Prove that the matrix $\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix}$ is unitary.
 - (b) Express the gradient of a function f in cylindrical coordinates.
 - (c) Using the Cauchy -Riemann equations show that $f(z) = z^3$ is analytic in the entire z-plane.
 - (d) Write down the complex form of Fourier integral.
 - (e) Find the inverse Laplace transform of $\frac{1}{s^2 5s + 6}$.
 - (f) Prove the recurrence relation $nP_n = (2n-1)xP_{n-1} (n-1)P_{n-2}$.
 - (g) What is meant by contraction of a tensor?
 - (h) What are cyclic groups?

(5 × 3 = 15 Marks)

P.T.O.

M - 5852

SECTION – B

Answer all questions. Each question caries **15** marks.

- II. (A) (a) Find the Fourier transform of the Gaussian distribution function $f(x) = Ne^{-\infty x^2}$ where N and ∞ are constants.
 - (b) Prove that the Fourier transform of a product of two functions is given by a convolution integral.

OR

- (B) (a) Find the Eigen values and normalised eigen vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$
 - (b) Find the characteristic equation of the following matrix and verify the Cayley Hamilton theorem. $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$.
- III. (A) (a) Apply calculus of residues to evaluate $\int_{0}^{2\pi} \frac{d\theta}{a + b\cos\theta}$ where a >b>0.
 - (b) Evaluate $\int_{-\infty}^{+\infty} \frac{dx}{(x^2-1)^3}$ using complex analysis.

OR

- (B) (a) Prove the orthogonality of Legendre polynomial.
 - (b) Prove the recurrence relation for the Bessel function.

$$\mathbf{x}\mathbf{J}'(\mathbf{x}) = n\mathbf{J}_n(\mathbf{x}) - \mathbf{x}\mathbf{J}_{n+1}(\mathbf{x})$$

IV. (A) (a) Discuss the three theoretical probability distributions.

(b) Define mean, median, and mode of a distribution.

OR

(B) (a) Find the Laplace transform of (i) $t \sin at$ (ii) $t^n e^{at}$ (iii) $\frac{\sin at}{t}$

(b) Solve
$$\frac{dx}{dy} + xy = x^3y^3$$

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three of the following questions. Each question carries 5 marks:

- V. (a) Find the Green's function for the boundary value problem $\frac{d^2y}{dx^2} k^2y = f(x)$ with boundary conditions, $y(\pm \infty) = 0$.
 - (b) Determine metric tensor in (i) spherical coordinates and (ii) cylindrical

(c) Diagonalise the matrix
$$A = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
.

- (d) Using the Rodrigue's formula for Hermite polynomial, find $H_0(x)$, $H_1(x)$, $H_2(x)$ and $H_3(x)$.
- (e) Show that $V(x, y, z) = 2xyzi + (x^2z + 2y)j + x^2yk$ is irrotational and find a scalar function u(x, y, z) such that V = grad(u)
- (f) Find the inverse Laplace transform of $\frac{1}{(s+1)(s^2+1)}$.

 $(3 \times 5 = 15 \text{ Marks})$

M – 5852