(Pages: 3)

Reg. N	10.	:	••	••	•	••	• •	•	••	••	•	••	•		•	•	•	•	•	•	• •	
Name	:													_			_			_		

First Semester M.Sc. Degree Examination, September 2022

Physics with Specialization in Nano science/Physics with Specialization in Space Physics

PHNS 511/PHSP 511: CLASSICAL MECHANICS

(2020 Admission onwards)

Time: 3 Hours

Max. Marks: 75

PART - A

Answer any five questions. Each question carries 3 marks.

- 1. Differentiate between holonomic and non-holonomic constraints.
- 2. How does the value of eccentricity and energy determine the shape of the orbit in a central force problem?
- 3. Define stable, unstable and neutral equilibrium.
- 4. Write down the Hamilton-Jacobi equation and give its significance.
- 5. Obtain Hamilton's equations of motion. Explain their importance.
- 6. State the postulates of the special theory of relativity.
- Write a short note on nonlinear differential equations.
- 8. Define Euler's angles for the orientation of a rigid body.

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

Answer three questions. Each question carries 15 marks.

- 9. (a) State and explain the inverse square law of force.
 - (b) Derive Kepler's law of planetary motion.

OR

- 10. (a) State and Explain D'Alembert's Principle.
 - (b) Obtain Lagrange's equations of motion from D'Alembert's principle.
- (a) Obtain the Hamilton-Jacobi equation.
 - (b) Discuss harmonic oscillator problem using Hamilton Jacobi theory.

OR

- 12. (a) Obtain the first integrals of motion of a heavy symmetric top under gravity.
 - (b) Explain steady precession and nutation of a heavy symmetric top.
- 13. (a) Discuss the linear stability analysis.
 - (b) Explain the classification of fixed points based on this analysis.

OR

- 14. (a) Discuss mass-energy equivalence.
 - (b) Obtain the mass-energy relation and momentum.

PART - C

Answer any three questions. Each question carries 5 marks.

- 15. Obtain the equation of motion of a compound pendulum and find the period of small amplitude oscillations of the compound pendulum.
- 16. A simple pendulum has a bob of mass m with a mass m_1 at the moving support (pendulum with moving support). Mass m_1 moves on a horizontal line in the vertical plane where the pendulum oscillates. Find the normal modes and normal frequencies of vibration.
- 17. Obtain the fundamental frequencies of a simple harmonic oscillator by setting up the, action variables.
- 18. Obtain Hamilton's equations of motion for a simple pendulum. Hence find the expression for its period.
- 19. Define fractals and explain the meaning of fractal dimension by taking an example.
- 20. Give an account of Einstein's principle of equivalence. Explain the observable consequences of the general theory of relativity.

 $(3 \times 5 = 15 \text{ Marks})$