(Pages : 3)

Reg. N	lo.	:	•••	••	••	••	••	••	••	• •	•	••	• •	•	• •	• 1	•	•
Name	:			•••				••	•				•		•			•

Fourth Semester M.Sc. Degree Examination, August 2022 Physics with Specialization in Nano Science/Space Physics PHNS 541/PHSP 541: NUCLEAR AND PARTICLE PHYSICS (2020 Admission)

Time: 3 Hours

١.

Max. Marks: 75

PART - A

(Answer any **five** questions. Each question carries **3** marks)

- a) An incident neutron of 500keV is scattered by a hydrogen molecule (atomic separation~10⁻⁸cm). Find out whether the scattering is coherent or incoherent.
- b) Give the importance of spin-orbit interaction n the origin if magic numbers in the nuclei.
- c) What is meant by plasma confinement in fusion reaction?
- d) Explain the term 'resonance reaction'.
- e) Explain the working of a GM counter.
- f) Give the fundamental difference between baryons and mesons.
- g) Will a free proton go through the process $p \to r + e^+ + v_e$? If yes, how? If not, why not?
- h) What do you mean by flavors in quarks?

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

(Answer all questions. Each question carries 15 marks)

II. A

- a) Discuss the neutron-proton scattering at low energies.
- b) List out atleast five differences between p-p and n-p scattering

OR

B.

- a) Discuss the partial wave analysis of nuclear reaction cross section.
- b) Explain the Q-value equation

III.A

- a) Describe the nuclear fission process and explain the reason why this process does not occur spontaneously in heavy nucleus always.
- b) Show that the liquid drop model gives a natural explanation for the process.

OR

B.

- a) Describe the nuclear fusion reaction in stellar interior using pp reaction model.
- b) Explain how CNO cycle of thermonuclear reactions is used to explain the formation of star.

IV.A

- a) Draw the schematic representation of a scintillation counter and explain the various components associated with it.
- b) Explain its basic operation.

OR

- a) What do you understand by fundamental forces? Give the properties of strong, electromagnetic and weak forces.
- b) Give an idea of charm, beauty and truth quantum numbers associated with quarks.

 $(3 \times 15 = 45 \text{ Marks})$

PART - C

(Answer three questions. Each question carries 5 marks.)

V

- a) Evaluate the approximate minimum energy for a proton to penetrate the Coulomb barrier of a light nucleus.
- b) The deuteronis a bound state of a proton and a neutron. Give the total angular momentum J of the deuteron. What are the principal and small states involved. Also obtain the value of its magnetic moment.
- c) Each fusion of Uranium nucleus releases about 200 MeV. Find the number of fusion per second in 100 MW reactor.
- d) Proton from a van de Graff generator collides with hydrogen. Evaluate the minimum energy required to create anti protons.
- e) Write the reaction equation for the decay of a negative muon. Identify in words all the particles involved.
- f) Give the quantum number and quark content of neutron which is a hadron.

 $(3 \times 5 = 15 \text{ Marks})$