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Preface to the Third Edition

This book is concerned with describing, analyzing, and discussing topical problems in the mechanics
of advanced composite materials and structural elements whose mechanical properties are controlled
by high-strength and/or high-stiffness continuous fibers embedded in a polymeric, metal, or ceramic
matrix. Although the idea of combining two or more components to produce materials with controlled
properties has been known and used from time immemorial, modern composites have been developed
only over the last five or six decades and now have widespread applications in many different fields of
engineering, but are of particular importance in aerospace structures for which high strength-to-weight
and stiffness-to-weight ratios are required.

Due to these widespread existing and potential applications, composite technology has been
developed very intensively over recent decades, and there exist publications that cover anisotropic
elasticity, mechanics of composite materials, design, analysis, fabrication, and application of composite
structures. A particular feature of this book, which distinguishes it from the existing publications, is that
it addresses a wide range of advanced problems in the mechanics of composite materials, such as the
physical statistical aspects of fiber strength, stress diffusion in composites with damaged fibers,
nonlinear elasticity, plasticity and creep of composite materials, hybrid and two-matrix composites,
spatial fibrous structures, tensor strength criteria, progressive failure, and environmental and
manufacturing effects, as well as the traditional basic composite material mechanics. In addition to
classical lamination theory and its application to beams and plates, this book covers the problems of
consistency of non-classical theories, buckling and postbuckling behavior of symmetrically and non-
symmetrically laminated plates, and applied theories of composite cylindrical shells. Since the
advantages of composite materials are best demonstrated by the optimal fibrous structures, we have
particularly addressed the issues of optimality criteria and the analysis of the most significant optimal
composite structures: filament-wound pressure vessels, rotating disks, and lattice cylindrical shells.

The authors of this book are experienced designers of composite structures who over the last 40
years have been involved in practically all the main Russian projects in composite technology. This
experience has led us to carefully select the problems addressed in our book, which can be referred to
as material problems challenging design engineers. Our discussions are illustrated with composite
parts and structures designed and built within the frameworks of these projects. In connection with
this, the authors appreciate the permission of the Russian Composite Center – Central Institute of
Special Machinery (CRISM) – to use in our book several pictures of structures developed and
fabricated at CRISM as part of the joint research and design projects.

The primary aim of the book is the combined coverage of mechanics, technology, and analysis of
composite materials and structural elements at an advanced level. Such an approach enables an
engineer to take into account the essential mechanical properties of the material itself and the special
features of practical implementation, including manufacturing technology, experimental results, and
design characteristics.

The book consists of twelve chapters and can be divided into two main parts: the first part,
including Chapters 3–7, is devoted to composite materials, whereas the second part, Chapters 8–12,
covers the analysis and design of typical composite structural elements.

Chapter 1 is an introduction in which typical reinforcing and matrix materials, as well as the typical
manufacturing processes used in composite technology, are described.

xi
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Chapter 2 is an introduction to the fundamentals of mechanics of solids, i.e., stress, strain, and
constitutive theories, governing equations, and principles that are used in the subsequent chapters for
the analysis of composite materials and structures.

Chapter 3 is devoted to the basic structural element of a composite material: a unidirectional
composite ply. In addition to the conventional description of micromechanical models and experi-
mental results, the physical nature of fiber strength, its statistical characteristics, and the interaction of
damaged fibers through the matrix are discussed, and we show that fibrous composites comprise
a special class of man-made materials utilizing the natural potentials of material strength and structure.

Chapter 4 contains a description of typical composite layers made of unidirectional, fabric, and
spatially reinforced composite materials. Conventional linear elastic models are supplemented in this
chapter with nonlinear elastic and elastic-plastic analyses demonstrating specific types of the behavior
of composites with metal and thermoplastic matrices.

Chapter 5 is concerned with the mechanics of laminates and includes a conventional description of
the laminate stiffness matrix, coupling effects in typical laminates, and procedures for stress calcu-
lations for in-plane and interlaminar stresses.

Chapter 6 presents a practical approach to the evaluation of laminate strength. Three main types of
failure criteria, i.e., structural criteria indicating the modes of failure, approximation polynomial
criteria treated as formal approximations of experimental data, and tensor-polynomial criteria are
discussed and compared with available experimental results for unidirectional and fabric composites.
A combined elastoplastic damage model and a strain-driven implicit integration procedure for fiber
reinforced composite materials and structures that involves a consideration of their mechanical
response prior to the initiation of damage, prediction of damage initiation, and modeling of postfailure
behavior are discussed.

Chapter 7 deals with environmental and special loading effects and includes analysis of thermal
conductivity, hydrothermal elasticity, material aging, creep, and durability under long-term loading,
fatigue, damping, and impact resistance of typical advanced composites. The effect of manufacturing
factors on material properties and behavior is demonstrated for filament winding accompanied by
nonuniform stress distribution between the fibers and ply waviness and laying-up processing of
nonsymmetric laminate exhibiting warping after curing and cooling.

Composite beams are discussed in Chapter 8. Along with the general solutions for static and
buckling problems, refined beam theories are considered and evaluated.

Chapter 9 is devoted to laminated composite plates and covers traditional and specific problems of
the plate theory, particularly, Kirchhoff and Thomson-Tait transformation of boundary conditions in
classical plate theory and the interaction of penetrating and boundary-layer solutions in the theory of
shear deformable plates. Exact solution of the problem of bending of a clamped plate is presented.
Buckling and postbuckling problems are discussed with application to composite plates with
symmetrically and unsymmetrically laminated structures.

Chapter 10 is concerned with laminated thin-walled composite beams. Free and restrained bending
and torsion problems are considered for composite beams with closed, open, and multi-cell contours of
the beam cross section. Coupling effects in anisotropic beams are discussed with application to
composite beams with controlled properties. Practical methods for the analysis of beams stiffened with
ribs and loaded with surface forces are presented.

Chapter 11 deals with composite cylindrical shells and covers applied theories and practical
methods of analysis, particularly the problems of engineering and semi-membrane shell theories.

xii Preface to the Third Edition
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A new approach to the study of shell buckling under axial compression, which results in simple and
boundary-condition-independent analytical solutions, is presented.

Chapter 12 is devoted to optimal composite structures, particularly to laminates of uniform
strength, numerical optimization of laminates, and structural elements: composite pressure vessels,
rotating disks, and geodesic lattice structures for which the appropriate combination of directional
material properties, design concepts, and manufacturing methods provides a dramatic improvement in
structural performance.

This third edition is a revised, updated and much extended version of the second edition, with
extended and new sections on: fiber metal laminates (Section 5.6.4), progressive failure analysis
(Section 6.5), durability (Section 7.3.2) and impact loading (Section 7.3.4), composite beams
(Chapter 8) including the analysis of refined beam and plate theories (Section 8.7), composite plates
(Chapter 9) with the exact solution for the problem of bending of clamped rectangular plates and
comprehensive analysis of the classical Poisson-Kirchhoff reconciliation boundary problem
(Section 9.4), in-plane loading and buckling of unsymmetrically laminated plates (Section 9.7),
modern theory of thin-walled composite beams (Chapter 10) including the analysis of free and
restrained bending and torsion of orthotropic beams with closed (Section 10.4) and open (Section 10.6)
cross-sectional contours and coupling effects in anisotropic beams (Section 10.4.8), applied linear and
nonlinear theories of composite cylindrical shells (Chapter 11) with a new approach to the problem of
buckling (Section 11.5) and numerical optimization of laminated composites under strength and
buckling constraints (Section 12.3). More than 280 new pages, 200 new illustrations, and 19 new tables
have been added to form the third edition.

A new title, “Advanced Mechanics of Composite Materials and Structural Elements,” has been
adopted for the third edition, since this provides a better reflection of the overall contents and
improvements, extensions, and revisions introduced in the present version.

This book offers a comprehensive coverage of the topic over a wide range, from basics and
fundamentals to advanced modeling and analysis including practical design and engineering appli-
cations, and can be used as an up-to-date introductory text book aimed at senior undergraduates and
graduate students. At the same time it includes a detailed and comprehensive coverage of the
contemporary theoretical models at the micro and macro levels of material structure, practical methods
and approaches, experimental results, and optimization of composite material properties and
component performance that can be used by researchers and engineers.

The authors would like to thank several people for their time and effort in making this book
a reality. Specifically, we would like to thank our Elsevier editors who have encouraged and partici-
pated in the preparation of the third edition. These include Graham Nisbet and Steve Merken
(Publishing Editors of the third edition), Jeffrey Freeland (Editorial Project Manager), and Lisa Jones
(Senior Project Manager). Special thanks are due to Prof. Leslie Henshall, for his work on the text
improvements.

Valery V. Vasiliev
Evgeny V. Morozov
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Introduction 1
1.1 STRUCTURAL MATERIALS
Materials are the basic elements of all natural and man-made structures. Technological progress is
associated with continuous improvement of existing material properties, as well as with the expansion
of structural material classes and types. Usually, new materials emerge due to the need to improve
structural efficiency and performance. In addition, as a rule, new materials themselves in turn provide
new opportunities to develop updated structures and technology, which then challenge materials
science with new problems and tasks. One of the best manifestations of this interrelated process in the
development of materials, structures, and technology is associated with composite materials and
structural elements, to which this book is devoted.

Structural materials possess a great number of physical, chemical and other types of properties, but
at least two principal characteristics are of primary importance. These characteristics are stiffness and
strength. They provide the structure with the ability to maintain its shape and dimensions under loading
or any other external action.

High stiffness means that material exhibits low deformation under loading. However, by saying
that stiffness is an important property, we do not necessarily mean that it should be high. The ability of
a structure to have controlled deformation (compliance) can also be important for some applications
(e.g., springs; shock absorbers; and pressure, force, and displacement gauges).

Lack of material strength causes an uncontrolled compliance, i.e., a failure after which a structure
does not exist any more. Usually, we need to have as high strength as possible, but there are some
exceptions (e.g., controlled failure of explosive bolts is used to separate rocket stages).

Thus, without controlled stiffness and strength, the structure cannot exist. Naturally, both prop-
erties depend greatly on the structure’s design, but are ultimately determined by the stiffness and
strength of the structural material, because a good design is only a proper utilization of material
properties.

To evaluate material stiffness and strength, consider the simplest test: a bar with cross-sectional
area A loaded with tensile force F, as shown in Fig. 1.1. Obviously, the higher the force causing the
bar rupture, the higher the bar’s strength. However, this strength does not only depend on the material
properties; it is proportional to the cross-sectional area A. Thus, it is natural to characterize material
strength by the ultimate stress

s ¼ F

A
(1.1)
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where F is the force causing the bar failure (here and subsequently we use the overbar notation to
indicate the ultimate characteristics). As follows from Eq. (1.1), stress is measured as force divided by
area, i.e., according to international (SI) units, in pascals (Pa), such that 1 Pa ¼ 1 N/m2. Since the
loading of real structures induces relatively high stresses, we also use kilopascals (1 kPa ¼ 103 Pa),
megapascals (1 MPa¼ 106 Pa), and gigapascals (1 GPa¼ 109 Pa). Conversion of old metric (kilogram
per square centimeter) and English (pound per square inch) units to pascals can be done using the
following relations: 1 kg/cm2¼ 98 kPa and 1 psi ¼ 6.89 kPa.

For some special (e.g., aerospace or marine) applications, i.e., for which material density, r, is also
important, a normalized characteristic

ks ¼ s

r
(1.2)

is also used to describe the material. This characteristic is called the “specific strength” of a material. If
we use old metric units, i.e., measure force and mass in kilograms and dimensions in meters,
substitution of Eq. (1.1) into Eq. (1.2) yields ks in meters. This result has a simple physical sense,
namely ks is the length of the vertically hanging fiber under which the fiber will be broken by its own
weight.

The stiffness of the bar shown in Fig. 1.1 can be characterized by an elongation D corresponding to
the applied force F or acting stress s ¼ F=A. However, D is proportional to the bar’s length L0. To
evaluate material stiffness, we introduce strain

ε ¼ D

L0
(1.3)

Since ε is very small for structural materials, the ratio in Eq. (1.3) is normally multiplied by 100, and ε
is expressed as a percentage.

Naturally, for any material, there should be some interrelation between stress and strain, i.e.,

ε ¼ f ðsÞ; or s ¼ 4 ðεÞ (1.4)

These equations specify the so-called constitutive law and are referred to as constitutive equations. They
allow us to introduce an important concept of thematerial modelwhich represents some idealized object
possessing only those features of the real material that are essential for the problem under study. The
point is that when performing design or analysis, we always operate with models rather than with real
materials. Particularly for strength and stiffness analysis, such a model is described by constitutive
equations, Eqs. (1.4), and is specified by the form of the function f ðsÞ or 4 ðεÞ.

A

FF

L0 Δ

FIGURE 1.1

A bar under tension.
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The simplest is the elastic model, which implies that f ð0Þ ¼ 0; 4 ð0Þ ¼ 0, and that Eqs. (1.4)
are the same for the processes of an active loading and an unloading. The corresponding stress-
strain diagram (or curve) is presented in Fig. 1.2. The elastic model (or elastic material) is
characterized by two important features. First, the corresponding constitutive equations, Eqs.
(1.4), do not include time as a parameter. This means that the form of the curve shown in
Fig. 1.2 does not depend on the rate of loading (naturally, it should be low enough to neglect
inertial and dynamic effects). Second, the active loading and the unloading follow one and the
same stress-strain curve as in Fig. 1.2. The work performed by force F in Fig. 1.1 is accumulated
in the bar as potential energy, which is also referred to as strain energy or elastic energy.
Consider some infinitesimal elongation dD, and calculate the elementary work performed by
the force F in Fig. 1.1 as dW ¼ FdD. Then, work corresponding to point 1 of the curve in
Fig. 1.2 is

W ¼
ZD1

0

FdD

where D1 is the elongation of the bar corresponding to point 1 of the curve. The workW is equal to the
elastic energy of the bar, which is proportional to the bar’s volume and can be presented as

E ¼ L0 A

Zε1

0

sdε

where s ¼ F=A, ε ¼ D=L0 and ε1 ¼ D1=L0. Integral

U ¼
Zε1

0

sdε ¼
Zε1

0

4 ðεÞdε (1.5)

is a specific elastic energy (energy accumulated in a unit volume of the bar) that is referred to as an
elastic potential. It is important that U does not depend on the history of loading. This means that
irrespective of the way we reach point 1 of the curve in Fig. 1.2 (e.g., by means of continuous loading,

σ

ε

1

0

FIGURE 1.2

Stress-strain curve for an elastic material.
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increasing force F step by step, or using any other loading program), the final value of U will be the
same, and will depend only on the value of final strain ε1 for the given material.

A very important particular case of the elastic model is the linear elastic model described by the
well-known Hooke’s law,

s ¼ Eε (1.6)

(see Fig. 1.3). Here, E is the modulus of elasticity. It follows from Eqs. (1.3) and (1.6), that E ¼ s if
ε ¼ 1, i.e., if D ¼ L0. Thus, modulus can be interpreted as the stress causing the elongation of the bar
in Fig. 1.1 to be the same as the initial length. Since the majority of structural materials fail before such
a high elongation can occur, the modulus is usually much higher then the ultimate stress s.

Similar to specific strength ks in Eq. (1.2), we can introduce the corresponding specific modulus

kE ¼ E

r
(1.7)

which describes a material’s stiffness with respect to its density.
Absolute and specific values of mechanical characteristics for typical materials discussed in this

book are listed in Table 1.1.
After some generalization, modulus can be used to describe nonlinear material behavior of the type

shown in Fig. 1.4. For this purpose, the so-called secant, Es, and tangent, Et, moduli are introduced as

Es ¼ s

ε

¼ s

f ðsÞ Et ¼ ds

dε
¼ d4 ðεÞ

dε
(1.8)

While the slope a in Fig. 1.4 determines the conventional modulus E, the slopes b and g determine Es

and Et, respectively. As can be seen, Es and Et, in contrast to E, depend on the level of loading, i.e., on
s or ε. For a linear elastic material (see Fig. 1.3), Es ¼ Et ¼ E.

Hooke’s law, Eq. (1.6), describes rather well the initial part of a stress-strain diagram for the
majority of structural materials. However, under a relatively high level of stress or strain, materials
exhibit nonlinear behavior.

One of the existing models is the nonlinear elastic material model introduced earlier (see Fig. 1.2).
This model allows us to describe the behavior of highly deformable rubber-type materials.

σ

ε

1

0

FIGURE 1.3

Stress-strain diagram for a linear elastic material.
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TABLE 1.1 Mechanical Properties of Structural Materials and Fibers.

Material

Ultimate
Tensile
Stress,
s ðMPaÞ

Modulus,
E (GPa )

Specific
Gravity

Maximum
Specific
Strength,
ks3103(m)

Maximum
Specific
Modulus,
kE3103(m)

Metal alloys

Steel 400e2200 180e210 7.8e7.85 28.8 2750

Aluminum 140e700 69e72 2.7e2.85 26.5 2670

Titanium 420e1200 110 4.5 26.7 2440

Magnesium 220e320 40 1.8 14.4 2220

Beryllium 620 320 1.85 33.5 17,300

Nickel 400e500 200 8.9 5.6 2250

Metal wires (diameter, mm)

Steel (20e1500) 1500e4400 180e200 7.8 56.4 2560

Aluminum (150) 290 69 2.7 10.7 2550

Titanium (100e800) 1400e1500 120 4.5 33.3 2670

Beryllium (50e500) 1100e1450 240e310 1.8e1.85 80.5 17,200

Tungsten (20e50) 3300e4000 410 19e19.3 21.1 2160

Molybdenum (25e250) 1800e2200 360 10.2 21.5 3500

Thermoset polymeric resins

Epoxy 60e90 2.4-4.2 1.2e1.3 7.5 350

Polyester 30e70 2.8e3.8 1.2e1.35 5.8 310

Phenol-formaldehyde 40e70 7e11 1.2e1.3 5.8 910

Organosilicone 25e50 6.8e10 1.35e1.4 3.7 740

Polyimide 55e110 3.2 1.3e1.43 8.5 240

Bismaleimide 80 4.2 1.2 6.7 350

Thermoplastic polymers

Polyethylene 20e45 6-8.5 0.95 4.7 890

Polystyrene 35e45 30 1.05 4.3 2860

Teflon 15e35 3.5 2.3 1.5 150

Nylon 80 2.8 1.14 7.0 240

Polyester (PC) 60 2.5 1.32 4.5 190

Polysulfone (PSU) 70 2.7 1.24 5.6 220

Polyamide-imide (PAI) 90e190 2.8e4.4 1.42 13.4 360

Polyetheretherketone
(PEEK)

90e100 3.1e3.8 1.3 7.7 300

Polyphenylene sulfide
(PPS)

80 3.5 1.36 5.9 250

(continued on next page)

1.1 Structural materials 5

www.EngineeringEBooksPdf.com



Another model developed to describe metals is the so-called elastic-plastic material model. The
corresponding stress-strain diagram is shown in Fig. 1.5. In contrast to an elastic material (see
Fig. 1.2), the processes of active loading and unloading are described with different laws in this
case. In addition to elastic strain, εe, which disappears after the load is taken off, the residual strain
(for the bar shown in Fig. 1.1, it is plastic strain, εp) remains in the material. As for an elastic
material, the stress-strain curve in Fig. 1.5 does not depend on the rate of loading (or time of
loading). However, as opposed to an elastic material, the final strain of an elastic-plastic material
can depend on the history of loading, i.e., on the law according to which the final value of stress
was reached.

TABLE 1.1 Mechanical Properties of Structural Materials and Fibers. (continued)

Material

Ultimate
Tensile
Stress,
s ðMPaÞ

Modulus,
E (GPa )

Specific
Gravity

Maximum
Specific
Strength,
ks3103(m)

Maximum
Specific
Modulus,
kE3103(m)

Synthetic fibers

Capron 680e780 4.4 1.1 70 400

Dacron 390e880 4.9e15.7 1.4 60 1430

Teflon 340e440 2.9 2.3 190 130

Nitron 390e880 4.9e8.8 1.2 70 730

Polypropylene 730e930 4.4 0.9 100 480

Viscose 930 20 1.52 60 1300

Fibers for advanced composites (diameter, mm)

Glass (3e19) 3100e5000 72e95 2.4e2.6 200 3960

Quarts (10) 6000 74 2.2 270 3360

Basalt (9e13) 3000e3500 90 2.7e3.0 130 3300

Aramid (12e15) 3500e5500 140e180 1.4e1.47 390 12,800

Polyethylene (20e40) 2600e3300 120e170 0.97 310 17,500

Carbon (5e11)

High-Strength 7000 300 1.75 400 17,100

High-Modulus 2700 850 1.78 150 47,700

Boron (100e200) 2500e3700 390e420 2.5e2.6 150 16,800

AluminaeAl2O3 (20e500) 2400e4100 470e530 3.96 100 13,300

Silicon CarbideeSiC
(10e15)

2700 185 2.4e2.7 110 7700

Titanium CarbideeTiC
(280)

1500 450 4.9 30 9100

Boron CarbideeB4C (50) 2100e2500 480 2.5 100 10,000

Boron NitrideeBN (7) 1400 90 1.9 70 4700

6 CHAPTER 1 Introduction
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Thus, for elastic or elastic-plastic materials, constitutive equations, Eqs. (1.4), do not include time.
However, under relatively high temperature practically all the materials demonstrate time-dependent
behavior (some of them do it even under room temperature). If we apply some force F to the bar shown
in Fig. 1.1 and keep it constant, we can see that for a time-sensitive material the strain increases under
a constant force. This phenomenon is called the creep of the material.

So, the most general material model that is used in this book can be described with a constitutive
equation of the following type:

ε ¼ f ðs; t; TÞ (1.9)

where t indicates the time moment, whereas s and T are stress and temperature corresponding to this
moment. In the general case, constitutive equation Eq. (1.9) specifies strain that can be decomposed
into three constituents corresponding to elastic, plastic, and creep deformation, i.e.,

ε ¼ εe þ εp þ εc (1.10)

σ

ε

σ

ε

α
β

γ

dσ
dε

FIGURE 1.4

Introduction of secant and tangent moduli.

σ

ε

εp εe

FIGURE 1.5

Stress-strain diagram for elastic-plastic material.
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However, in application to particular problems, usually this model can be substantially simplified. To
show this, consider the bar in Fig. 1.1 and assume that a force F is applied at the moment t¼ 0 and is
taken off at moment t ¼ t1, as shown in Fig. 1.6a. At the moment t¼ 0, elastic and plastic strains that
do not depend on time appear, and while time is running, the creep strain is developed. At the moment
t ¼ t1, the elastic strain disappears, while the reversible part of the creep strain, εtc, disappears with
time. Residual strain consists of the plastic strain, εp, and the residual part of the creep strain, εrc.

Now assume that εp << εe, which means that either the material is elastic, or the applied load does
not induce high stress and, hence, plastic strain. Then, we can neglect εp in Eq. (1.10) and simplify the
model. Furthermore, let εc << εe, which in turn means that either the material is not susceptible to
creep, or the force acts for a short time (t1 is close to zero). Thus, we arrive at the simplest elastic
model, which is the case for the majority of practical applications. It is important that the appropriate
choice of the material model depends not only on the material nature and properties, but also on the
operational conditions of the structure. For example, a shell-type structure made of aramid-epoxy
composite material that is susceptible to creep and designed to withstand internal gas pressure
should be analyzed with due regard to the creep, if this structure is a pressure vessel for long term gas
storage. At the same time, for a solid propellant rocket motor case working only for seconds, the creep
strain can be ignored.

A very important feature of material models under consideration is their phenomenological nature.
This means that these models ignore the actual material microstructure (e.g., crystalline structure of
metals or molecular structure of polymers) and represent the material as some uniform continuum
possessing some effective properties that are the same irrespective of how small the material volume is.
This allows us, first, to determine material properties testing material samples (as in Fig. 1.1). Second,
this formally enables us to apply methods of Mechanics of Solids that deal with equations derived for

ε c t( )

ε

F

tt1

ε εe p+

ε e

ε c
t

ε εp c
r+

tt1

(a)

(b)

FIGURE 1.6

Dependence of force (a) and strain (b) on time.
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infinitesimal volumes of material. And third, this allows us to simplify the strength and stiffness
evaluation problem and to reduce it to a reasonable practical level, not going into analysis of the actual
mechanisms of material deformation and fracture.

1.2 COMPOSITE MATERIALS
This book is devoted to composite materials that emerged in the middle of the twentieth century as
a promising class of engineering materials providing new prospects for modern technology. Generally
speaking, any material consisting of two or more components with different properties and distinct
boundaries between the components can be referred to as a composite material. Moreover, the idea of
combining several components to produce a material with properties that are not attainable with the
individual components has been used by man for thousands of years. Correspondingly, the majority of
natural materials that have emerged as a result of a prolonged evolution process can be treated as
composite materials.

With respect to the problems covered in this book, we can classify existing composite materials
(composites) into two main groups.

The first group comprises composites that are known as “filled materials.” The main feature of
these materials is the existence of some basic or matrix material whose properties are improved by
filling it with some particles. Usually the matrix volume fraction is more than 50% in such materials,
and material properties, being naturally modified by the fillers, are governed mainly by the matrix. As
a rule, filled materials can be treated as homogeneous and isotropic, i.e., traditional models of
mechanics of materials developed for metals and other conventional materials can be used to describe
their behavior. This group of composites is not touched on in the book.

The second group of composite materials that is under study here involves composites that are
called “reinforced materials.” The basic components of these materials (sometimes referred to as
“advanced composites”) are long, thin fibers possessing high strength and stiffness. The fibers are
bound with a matrix material whose volume fraction in a composite is usually less than 50%. The main
properties of advanced composites (which grant these materials a wide application in engineering) are
governed by fibers whose types and characteristics are considered later. The following sections provide
a concise description of typical matrix materials and fiber-matrix compositions. Two comments should
be made with respect to the data presented in these sections. First, only brief information concerning
material properties that are essential for the topics covered in this book is presented there, and second,
the given data are of a broad nature and are not expected to be used in design or analysis of particular
composite structures. More complete descriptions of composite materials and their components,
including the history of development and advancement, chemical compositions, physical character-
istics, manufacturing and applications, can be found elsewhere (Peters, 1998).

1.2.1 Fibers for advanced composites

Continuous glass fibers (the first type of fibers used in advanced composites) are made by pulling
molten glass (at a temperature of about 1300�C) through 0.8–3.0 mm diameter dies and then high-
speed stretching the glass to a diameter of 3–19 mm. Usually, glass fibers have solid circular cross
sections. However, there exist fibers with rectangular (square or plane), triangular, and hexagonal cross
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sections, as well as hollow circular fibers. Typical mechanical characteristics and density of glass fibers
are listed in Table 1.1, whereas a typical stress-strain diagram is shown in Fig. 1.7.

Important properties of glass fibers as components of advanced composites for engineering
applications are their high strength, which is maintained in humid environments but degrades under
elevated temperatures (see Fig. 1.8), relatively low stiffness (about 40% of the stiffness of steel), high
chemical and biological resistance, and low cost. As elements of monolithic glass, the fibers do not
absorb water and do not change their dimensions in water. For the same reason, they are brittle and
sensitive to surface damage.

Quartz fibers are similar to glass fibers and are obtained by high-speed stretching of quartz rods
made (under a temperature of about 2200�C) of fused quartz crystals or sand. The original process
developed for manufacturing glass fibers cannot be used because the viscosity of molten quartz is too

FIGURE 1.7

Stress-strain diagrams for typical fibers of advanced composites.
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high to make thin fibers directly. However, this more complicated process results in fibers with higher
thermal resistance than glass fibers.

The same process that is used for glass fibers can be employed to manufacture mineral fibers, e.g.,
basalt fibers made of molten basalt rocks. Having relatively low strength and high density (see Table
1.1), basalt fibers are not used for high-performance structures, e.g., aerospace structures, but are
promising reinforcing elements for pre-stressed reinforced concrete structures in civil engineering.

Substantial improvement of a fiber’s stiffness in comparison with glass fibers has been achieved
with the development of carbon (or graphite) fibers. Modern high-modulus carbon fibers have
a modulus that is a factor of about four higher than the modulus of steel, whereas the fiber density is
lower by the same factor. Although the first carbon fibers had lower strength than glass fibers, modern
high-strength carbon fibers have a 40% higher tensile strength than the best glass fibers, whereas the
density of carbon fibers is 30% less than that of glass fibers.

Carbon fibers are made by pyrolysis of organic fibers, of which there exist two main types–
PAN-based and pitch-based fibers. For PAN-based fibers, the process consists of three stages: stabi-
lization, carbonization, and graphitization. In the first step (stabilization), a system of polyacrylonitrile
(PAN) filaments is stretched and heated up to about 400�C in an oxidation furnace, while in the
subsequent step (carbonization under 900�C in an inert gas media), most elements of the filaments
other than carbon are removed or converted into carbon. During the successive heat treatment at
a temperature reaching 2800�C (graphitization), a crystalline carbon structure oriented along the
fiber’s length is formed, resulting in PAN-based carbon fibers. The same process is used for rayon
organic filaments (instead of PAN), but it results in carbon fibers with lower modulus and strength

FIGURE 1.8

Temperature degradation of fiber strength normalized by the strength at 20�C.
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because rayon contains less carbon than PAN. For pitch-based carbon fibers, the initial organic fila-
ments are made in approximately the same manner as for glass fibers from molten petroleum or coal
pitch, and they pass through the carbonization and graphitization processes. Since pyrolysis is
accompanied with a loss of material, carbon fibers have a porous structure and their specific gravity
(about 1.8) is less than that of graphite (2.26). The properties of carbon fibers are affected by the
crystallite size, crystalline orientation, porosity, and purity of the carbon structure.

Typical stress-strain diagrams for high-modulus (HM) and high-strength (HS) carbon fibers are
plotted in Fig. 1.7. As components of advanced composites for engineering applications, carbon fibers
are characterized by very high modulus and strength, high chemical and biological resistance, high
electric conductivity and very low coefficient of thermal expansion. The strength of carbon fibers
practically does not change with temperatures up to 1500�C (in an inert media preventing oxidation of
the fibers).

The exceptional strength of 7.06 GPa is reached in Toray T-1000 carbon fibers, whereas the highest
modulus of 850 GPa is obtained in Carbonic HM-85 fibers. Carbon fibers are anisotropic, very brittle
and sensitive to damage. They do not absorb water and do not change their dimensions in humid
environments.

There exist more than 50 types of carbon fibers with a broad spectrum of strength, stiffness, and
cost, and the process of fiber advancement is not over; one may expect fibers with strength up to
10 GPa and modulus up to 1000 GPa within a few years.

Organic fibers commonly encountered in textile applications can be employed as reinforcing
elements of advanced composites. Naturally, only high performance fibers, i.e., fibers possessing high
stiffness and strength, can be used for this purpose. The most widely used organic fibers that satisfy
these requirements are known as aramid (aromatic polyamide) fibers. They are extruded from a liquid
crystalline solution of the corresponding polymer in sulfuric acid with subsequent washing in a cold
water bath and stretching under heating. Some properties of typical aramid fibers are listed in Table
1.1, and the corresponding stress-strain diagram is presented in Fig. 1.7. As components of advanced
composites for engineering applications, aramid fibers are characterized by low density providing high
specific strength and stiffness, low thermal conductivity resulting in high heat insulation, and
a negative thermal expansion coefficient allowing us to construct hybrid composite elements that do
not change their dimensions under heating. Consisting of a system of very thin filaments (fibrils),
aramid fibers have very high resistance to damage. Their high strength in the longitudinal direction is
accompanied by relatively low strength under tension in the transverse direction. Aramid fibers are
characterized by pronounced temperature (see Fig. 1.8) and time dependence for stiffness and strength.
Unlike the inorganic fibers discussed earlier, they absorb water, resulting in moisture content up to 7%
and degradation of material properties by 15–20%.

The list of organic fibers has been supplemented recently with extended chain polyethylene fibers
demonstrating outstanding low density (less than that of water) in conjunction with relatively high
stiffness and strength (see Table 1.1 and Fig. 1.7). Polyethylene fibers are extruded from the
corresponding polymer melt in a similar manner to glass fibers. They do not absorb water and have
high chemical resistance, but demonstrate relatively low temperature and creep resistance (see
Fig. 1.8).

Boron fibers were developed to increase the stiffness of composite materials when glass fibers were
mainly used to reinforce composites of the day. Being followed by high-modulus carbon fibers with
higher stiffness and lower cost, boron fibers now have rather limited application. Boron fibers are
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manufactured by chemical vapor deposition of boron onto about 12 mm diameter tungsten or carbon
wire (core). As a result, boron fibers have a relatively large diameter, 100–200 mm. They are extremely
brittle and sensitive to surface damage. Typical mechanical properties of boron fibers are presented in
Table 1.1 and Figs 1.7 and 1.8. Mainly used in metal matrix composites, boron fibers degrade on
contact with aluminum or titanium matrices at the temperature that is necessary for processing (above
500�C). To prevent this degradation, chemical vapor deposition is used to cover the fiber surface with
about a 5 mm-thick layer of silicon carbide, SiC (such fibers are called Borsic), or boron carbide, B4C.

There exists a special class of ceramic fibers for high-temperature applications, composed of various
combinations of silicon, carbon, nitrogen, aluminum, boron, and titanium. The most commonly used
are silicon carbide (SiC) and alumina (Al2O3) fibers.

Silicon carbide is deposited on a tungsten or carbon core-fiber by the reaction of a gas mixture of
silanes and hydrogen. Thin (8–15 mm in diameter) SiC fibers can be made by pyrolysis of polymeric
(polycarbosilane) fibers at temperatures of about 1400�C in an inert atmosphere. Silicon carbide fibers
have high strength and stiffness, moderate density (see Table 1.1), and very high melting temperature
(2600�C).

Alumina (Al2O3) fibers are fabricated by sintering of fibers extruded from the viscous alumina
slurry with rather complicated composition. Alumina fibers, possessing approximately the same
mechanical properties as SiC fibers, have relatively large diameter and high density. The melting
temperature is about 2000�C.

Silicon carbide and alumina fibers are characterized by relatively low reduction in strength at
elevated temperatures (see Fig. 1.9).

Boron carbide (B4C) fibers that can be obtained either as a result of reaction of a carbon fiber with
a mixture of hydrogen and boron chloride at high temperature (around 1800�C) or by pyrolysis of

FIGURE 1.9

Temperature dependence of high-temperature fibers’ normalized strength (in comparison with stainless steel).
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cellulosic fibers soaked with boric acid solution are promising ceramic fibers for high-temperature
applications. Possessing high stiffness and strength and moderate density (see Table 1.1), boron
carbide fibers have very high thermal resistance (up to 2300�C).

Metal fibers (thin wires) made of steel, beryllium, titanium, tungsten, and molybdenum are used for
special (e.g., low-temperature and high-temperature) applications. Typical characteristics of metal
fibers are presented in Table 1.1 and Figs. 1.7 and 1.9.

In advanced composites, fibers provide not only high strength and stiffness but also a possibility to
tailor the material so that the directional dependence of its mechanical properties matches that of the
loading environment. The principle of directional properties can be traced in all natural materials that
have emerged as a result of a prolonged evolution and, in contrast to man-made metal alloys, are
neither isotropic nor homogeneous. Many natural materials have fibrous structures and utilize the high
strength and stiffness of natural fibers listed in Table 1.2. As can be seen (Tables 1.1 and 1.2), natural
fibers, having lower strength and stiffness than man-made fibers, can compete with modern metals and
plastics.

Before being used as reinforcing elements of advanced composites, the fibers are normally sub-
jected to special surface finish treatments, undertaken to prevent any fiber damage under contact with
processing equipment, provide surface wetting when the fibers are combined with matrix materials,
and improve the interface bond between fibers and matrices. The most commonly used surface
treatments are chemical sizing performed during the basic fiber formation operation and resulting in
a thin layer applied to the surface of the fiber; surface etching by acid, plasma, or corona discharge; and
coating of the fiber surface with thin metal or ceramic layers.

With only a few exceptions (e.g., metal fibers), individual fibers, being very thin and sensitive to
damage, are not used in composite manufacturing directly, but in the form of tows (rovings), yarns, and
fabrics.

TABLE 1.2 Mechanical Properties of Natural Fibers.

Fiber
Diameter
(mm)

Ultimate Tensile
Stress, s ðMPaÞ

Modulus,
E (GPa)

Specific
Gravity

Wood 15e20 160 23 1.5

Bamboo 15e30 550 36 0.8

Jute 10e50 580 22 1.5

Cotton 15e40 540 28 1.5

Wool 75 170 5.9 1.32

Coir 10e20 250 5.5 1.5

Bagasse 25 180 9 1.25

Rice 5e15 100 6 1.24

Natural
Silk

15 400 13 1.35

Spider
Silk

4 1750 12.7 e

Linen e 270 e e

Sisal e 560 e e

Asbestos 0.2 1700 160 2.5
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A unidirectional tow (roving) is a loose assemblage of parallel fibers usually consisting of thou-
sands of elementary fibers. Two main designations are used to indicate the size of the tow, namely the
K number that gives the number of fibers in the tow (e.g., 3K tow contains 3000 fibers) and the tex
number, which is the mass in grams of 1000 m of the tow. The tow tex number depends not only on the
number of fibers but also on the fiber diameter and density. For example, an AS4-6K tow consisting of
6000 AS4 carbon fibers has 430 tex.

A yarn is a fine tow (usually it includes hundreds of fibers) slightly twisted (about 40 turns per
meter) to provide the integrity of its structure necessary for textile processing. Yarn size is indicated in
tex numbers or in textile denier numbers (den) such that 1 tex ¼ 9 den. Continuous yarns are used to
make fabrics with various weave patterns. There exists a wide variety of glass, carbon, aramid, and
hybrid fabrics whose nomenclature, structure, and properties are described elsewhere (Chou and Ko,
1989; Tarnopol’skii et al., 1992; Bogdanovich and Pastore, 1996; Peters, 1998).

An important characteristic of fibers is their processability, which can be evaluated as the ratio
Kp ¼ sS=s, of the strength demonstrated by fibers in the composite structure sS to the strength of fibers
before they were processed s. This ratio depends on the fibers’ ultimate elongation, on their sensitivity
to damage, and on manufacturing equipment causing damage to the fibers. The most sensitive to
operational damage are boron and high-modulus carbon fibers possessing relatively low ultimate
elongation ε (less than 1%, see Fig. 1.7). For example, for filament wound pressure vessels Kp ¼ 0:96
for glass fibers, whereas for carbon fibers Kp ¼ 0:86.

To evaluate fiber processability under real manufacturing conditions, three simple tests are used:
tension of a straight dry tow, tension of tows with loops, and tension of a tow with a knot (see
Fig. 1.10). Similar tests are used to determine the strength of individual fibers (Fukuda et al., 1997). For
carbon tows, the normalized strength obtained in these tests is presented in Table 1.3 (for appropriate
comparison, the tows should be of the same size). As follows from this table, the tow processability
depends on the fiber’s ultimate strain (elongation). The best processability is observed for aramid tows,
whose fibers have high elongation and low sensitivity to damage (they are not monolithic and consist
of thin fibrils).

1.2.2 Matrix materials

To utilize high strength and stiffness of fibers in a monolithic composite material suitable for engi-
neering applications, fibers are bound with a matrix material whose strength and stiffness are, natu-
rally, much lower than those of fibers (otherwise, no fibers would be necessary). Matrix materials
provide the final shape of the composite structure and govern the parameters of the manufacturing
process. The optimal combination of fiber and matrix properties should satisfy a set of operational and
manufacturing requirements that are sometimes of a contradictory nature, and have not been
completely met yet in existing composites.

First of all, the stiffness of the matrix should correspond to the stiffness of the fibers and be
sufficient to provide uniform loading of fibers. The fibers are usually characterized by relatively high
scatter in strength that may be increased due to damage of the fibers caused by the processing
equipment. Naturally, fracture of the weakest or damaged fiber should not result in material failure.
Instead, the matrix should evenly redistribute the load from the broken fiber to the adjacent ones and
then load the broken fiber at a distance from the cross section at which it failed. The higher the matrix
stiffness, the smaller is this distance, and the less is the influence of damaged fibers on material
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strength and stiffness (which should be the case). Moreover, the matrix should provide the proper stress
diffusion (this is the term traditionally used for this phenomenon in the analysis of stiffened structures
(Goodey, 1946) in the material at a given operational temperature. That is why this temperature is
limited, as a rule, by the matrix rather than by the fibers. On the other hand, to provide material
integrity up to the failure of the fibers, the matrix material should possess high compliance. Obviously,
for a linear elastic material (see Fig. 1.3), a combination of high stiffness and high ultimate strain ε

results in high strength (which is not the case for modern matrix materials). Thus, close to optimal
(with respect to the foregoing requirements) and realistic matrix material should have a nonlinear
stress-strain diagram (of the type shown in Fig. 1.5) and possess high initial modulus of elasticity and
high ultimate strain.

However, matrix properties, even though being optimal for the corresponding fibers, do not
manifest in the composite material if the adhesion (the strength of fiber-matrix interface bonding) is

TABLE 1.3 Normalized Strength of Carbon Tows.

Ultimate Strain, ε (%)

Normalized Strength

Straight Tow Tow with a Loop Tow with a Knot

0.75
1.80

1
1

0.25
0.53

0.15
0.18

FIGURE 1.10

Testing of a straight tow (a), tows with a loop (b), and a tow with a knot (c).
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not high enough. High adhesion between fibers and matrices, providing material integrity up to the
failure of the fibers, is a necessary condition for high-performance composites. Proper adhesion can be
reached for appropriately selected combinations of fiber and matrix materials under some additional
conditions. First, a liquid matrix should have viscosity low enough to allow the matrix to penetrate
between the fibers of such dense systems of fibers as tows, yarns, and fabrics. Second, the fiber surface
should have good wettability with the matrix. Third, the matrix viscosity should be high enough to
retain the liquid matrix in the impregnated tow, yarn, or fabric in the process of fabrication of
a composite part. Finally, the manufacturing process providing the proper quality of the resulting
material should not require high temperature and pressure to make a composite part.

At present, typical matrices are made from polymeric, metal, carbon, and ceramic materials.
Polymeric matrices are divided into two main types, thermoset and thermoplastic. Thermoset

polymers, which are the most widely used matrix materials for advanced composites, include poly-
ester, epoxy, polyimide, and other resins (see Table 1.1) cured under elevated or room temperature. A
typical stress-strain diagram for a cured epoxy resin is shown in Fig. 1.11. Being cured (polymerized),
a thermoset matrix cannot be reset, dissolved, or melted. Heating of a thermoset material results first in
degradation of its strength and stiffness, and then in thermal destruction.

In contrast to thermoset resins, thermoplastic matrices (PSU, PEEK, PPS, and others – see Table
1.1) do not require any curing reaction. They melt under heating and convert to a solid state under
cooling. The possibility to re-melt and dissolve thermoplastic matrices allows us to reshape the
composite parts forming them under heating, and it simplifies their recycling, which is a problem for
thermoset materials.

Polymeric matrices can be combined with glass, carbon, organic, or boron fibers to yield a wide
class of polymeric composites with high strength and stiffness, low density, high fatigue resistance,
and excellent chemical resistance. The main disadvantage of these materials is their relatively low
temperature resistance (in comparison with metals) limited by the matrix. The so-called thermo-
mechanical curves are plotted to determine this important (for applications) characteristic of the
matrix. These curves, presented for typical epoxy resins in Fig. 1.12, show the dependence of some
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FIGURE 1.11

Stress-strain diagram for a typical cured epoxy matrix.
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FIGURE 1.12

Typical thermo-mechanical diagrams for cured epoxy resins with glass transition temperatures of 80�C (solid

line) and 130�C (dashed line).

stiffness parameters on the temperature, and allow us to find the so-called glass transition temperature,
Tg, which indicates a dramatic reduction in material stiffness. There exist several standard methods to
obtain a material’s thermo-mechanical diagram. The one used to plot the curves presented in Fig. 1.12
involves compression tests of heated polymeric discs. Naturally, to retain the complete set of properties
of polymeric composites, the operating temperature should not (in general) exceed Tg. However, the
actual material behavior depends on the type of loading. As follows from Fig. 1.13, heating above the
glass transition temperature only slightly influences material properties under tension in the fiber
direction and dramatically reduces its strength in longitudinal compression and transverse bending.
The glass transition temperature depends on the processing temperature, Tp, at which a material is
fabricated, and higher Tp results, as a rule, in higher Tg. Thermoset epoxy matrices cured at
a temperature in the range 120e160�C have Tg ¼ 60e140�C. There also exist a number of high
temperature thermoset matrices (e.g., organosilicone, polyimide, and bismaleimide resins) with Tg ¼
250e300�C and curing temperatures of up to 400�C. Thermoplastic matrices are also characterized by
a wide range of glass transition temperatures: from 90�C for PPS and 140�C for PEEK, to 190�C for
PSU and 270�C for PAI (see Table 1.1 for abbreviations). The processing temperature for different
thermoplastic matrices varies from 300�C to 400�C.

Further enhancement in temperature resistance of composite materials is associated with appli-
cation of metal matrices in combination with high temperature boron, carbon, ceramic fibers, and
metal wires. The most widespread metal matrices are aluminum, magnesium, and titanium alloys
possessing high plasticity (see Figure 1.14), whereas for special applications nickel, copper, niobium,
cobalt, and lead matrices can be used. Fiber reinforcement essentially improves the mechanical
properties of such metals. For example, carbon fibers increase strength and stiffness of a soft metal
such as lead by an order of magnitude.

As noted earlier, metal matrices allow us to increase operational temperatures for composite
structures. The dependencies of longitudinal strength and stiffness of boron-aluminum unidirectional
composite material on temperature, corresponding to the experimental results that can be found in
Karpinos (1985) and Vasiliev and Tarnopol’skii (1990), are shown in Fig. 1.15. Clearly, higher
temperature resistance requires higher processing temperature, Tp. Indeed, aluminum matrix
composite materials are processed at Tp ¼ 550�C, whereas for magnesium, titanium, and nickel
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Dependence of normalized longitudinal moduli (1), strength under longitudinal tension (2), bending (3), and

compression (4) on temperature for unidirectional carbon composites with epoxy matrices having Tg ¼ 130�C
(a) and Tg ¼ 80�C (b).
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FIGURE 1.14

Typical stress-strain curves for aluminum (1), magnesium (2), and titanium (3) matrices.
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matrices the appropriate temperature is about 800, 1000, and 1200�C respectively. Some processes
also require rather high pressure (up to 150 MPa).

In polymeric composites, the matrix materials play an important but secondary role of holding the
fibers in place and providing good load dispersion into the fibers, whereas material strength and
stiffness are controlled by the reinforcements. In contrast, the mechanical properties of metal matrix
composites are controlled by the matrix to a considerably larger extent, though the fibers still provide
the major contribution to the strength and stiffness of the material.

The next step in the development of composite materials that can be treated as matrix materials
reinforced with fibers rather than fibers bonded with matrix (which is the case for polymeric
composites) is associated with ceramic matrix composites possessing very high thermal resistance.
The stiffness of the fibers which are usually metal (steel, tungsten, molybdenum, niobium), carbon,
boron, or ceramic (SiC, Al2O3) and the ceramic matrices (oxides, carbides, nitrides, borides, and
silicides) are not very different, and the fibers do not carry the main fraction of the load in ceramic
composites. The function of the fibers is to provide strength and (mainly) toughness (resistance to
cracks) of the composite, because non-reinforced ceramic materials are very brittle. Ceramic
composites can operate under very high temperatures depending on the melting temperature of the
matrix, which varies from 1200 to 3500�C. Naturally, the higher the temperature, the more compli-
cated is the manufacturing process. The main shortcoming of ceramic composites is associated with
a low ultimate tensile elongation of the ceramic matrix resulting in cracks appearing in the matrix
under relatively low tensile stress applied to the material.

An outstanding combination of high mechanical characteristics and temperature resistance is
demonstrated by carbon-carbon composites in which both components (fibers and matrix) are made
from one and the same material, but with different structures. A carbon matrix is formed as a result of
carbonization of an organic resin (phenolic and furfural resin or pitch) with which carbon fibers are
impregnated, or of chemical vapor deposition of pyrolitic carbon from a hydrocarbon gas. In an inert
atmosphere or in a vacuum, carbon-carbon composites can withstand very high temperatures (more
than 3000�C). Moreover, their strength increases under heating up to 2200�C, while the modulus
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FIGURE 1.15

Temperature dependence of tensile strength (�) and stiffness (B) along the fibers for unidirectional boron-

aluminum composite.
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degrades at temperatures above 1400�C. However, in an oxygen atmosphere, they oxidize and sublime
at relatively low temperatures (about 600�C). To use carbon-carbon composite parts in an oxidizing
atmosphere, they must have protective coatings, usually made from silicon carbide. Manufacturing of
carbon-carbon parts is a very energy- and time-consuming process. To convert an initial carbon-
phenolic composite into carbon-carbon, it should receive a thermal treatment at 250�C for 150 h,
carbonization at about 800�C for about 100 h, and several cycles of densification (one-stage pyrolysis
results in high porosity of the material), each including impregnation with resin, curing, and
carbonization. To refine the material structure and to provide oxidation resistance, a further high-
temperature graphitization (at 2700�C) and coating (at 1650�C) can be required. Vapor deposition
of pyrolitic carbon is also a time-consuming process, performed at 900–1200�C under a pressure of
150–2000 kPa.

1.2.3 Processing

Composite materials do not exist separately from composite structures and are formed while the
structure is fabricated. Being a heterogeneous media, a composite material has two levels of hetero-
geneity. The first level represents a microheterogeneity induced by at least two phases (fibers and
matrix) that form the material microstructure. At the second level, the material is characterized by
a macroheterogeneity caused by the laminated or more complicated macrostructure of the material,
which consists usually of a set of layers with different orientations. A number of technologies have
been developed to manufacture composite structures, all of which involve two basic processes during
which material microstructure and macrostructure are formed.

The first basic process yielding material microstructure involves the application of a matrix
material to the fibers. The simplest way to do this, normally utilized in the manufacturing of
composites with thermosetting polymeric matrices, is a direct impregnation of tows, yarns, fabrics, or
more complicated fibrous structures with liquid resins. Thermosetting resin has relatively low
viscosity, which can be controlled using solvents or heating, and good wetting ability for the majority
of fibers.

There exist two versions of this process. According to the so-called wet process, impregnated
fibrous material (tows, fabrics, etc.) is used to fabricate composite parts directly, without any additional
treatment or interruption of the process. In contrast to that, in “dry” or “prepreg” processes,
impregnated fibrous material is dried (partially cured) and thus preimpregnated tapes (prepregs) are
stored for further utilization (usually under low temperature to prevent uncontrolled premature
polymerization of the resin). An example of a machine for making prepregs is shown in Fig. 1.16. Both
processes, having similar advantages and shortcomings, are widely used for composites with ther-
mosetting matrices. For thermoplastic matrices, application of direct impregnation (wet processing) is
limited by the relatively high viscosity of thermoplastic polymer solutions or melts. For this reason,
prepreg processes with preliminary fabricated tapes or sheets in which fibers are already combined
with the thermoplastic matrix are used to manufacture composite parts.

There also exist other processes that involve application of heat and pressure to hybrid materials,
including reinforcing fibers and a thermoplastic polymer in the form of powder, films, or fibers. A
promising process (called fibrous technology) utilizes tows, tapes, or fabrics with two types of fibers –
reinforcing and thermoplastic. Under heat and pressure, thermoplastic fibers melt and form the matrix
of the composite material. Metal and ceramic matrices are applied to fibers by means of casting,
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diffusion welding, chemical deposition, plasma spraying, processing by compression molding, or with
the aid of powder metallurgy methods.

The second basic process provides the appropriate macrostructure of a composite material cor-
responding to the loading and operational conditions of the composite part that is fabricated. There
exist three main types of material macrostructure: linear structure, which is appropriate for bars,
profiles, and beams; plane laminated structure, suitable for thin-walled plates and shells; and spatial
structure, which is necessary for thick-walled and bulk solid composite parts.

A linear structure is formed by pultrusion, table rolling, or braiding and provides high strength and
stiffness in one direction coinciding with the axis of a bar, profile, or a beam. Pultrusion results in
a unidirectionally reinforced composite profile, made by pulling a bundle of fibers impregnated with
resin through a heated die to cure the resin and to provide the desired shape of the profile cross section.
Profiles made by pultrusion and braiding are shown in Fig. 1.17. Table rolling is used to fabricate small
diameter tapered tubular bars (e.g., ski poles or fishing rods) by rolling preimpregnated fiber tapes in

FIGURE 1.16

Machine making a prepreg from fiberglass fabric and epoxy resin.

Courtesy of CRISM.
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the form of flags (triangular sheets) around the metal mandrel, which is pulled out of the composite bar
after the resin is cured. Fibers in the flags are usually oriented along the bar axis or at an angle to the
axis, thus providing more complicated reinforcement than the unidirectional one typical of pultrusion.
Even more complicated fiber placement with orientation angle varying from 5 to 85� along the bar axis
can be achieved using two-dimensional (2D) braiding, which results in a textile material structure
consisting of two layers of yarns or tows interlaced with each other while they are wound onto the
mandrel.

A plane laminated structure consists of a set of composite layers providing the necessary stiffness
and strength in at least two orthogonal directions in the plane of the laminate. Such a plane structure
would be formed by hand or machine lay-up, fiber placement, or filament winding.

Lay-up and fiber placement technology provides fabrication of thin-walled composite parts of
practically arbitrary shape by hand or automated placing of preimpregnated unidirectional or fabric
tapes onto a mold. Layers with different fiber orientations (and even with different fibers) are
combined to result in the laminated composite material exhibiting the desired strength and stiffness
in given directions. Lay-up processes are usually accompanied by pressure applied to compact the
material and to remove entrapped air. Depending on the required quality of the material, as well as
on the shape and dimensions of a manufactured composite part, compacting pressure can be provided
by rolling or vacuum bags, in autoclaves, or by compression molding. A catamaran yacht (length
9.2 m, width 6.8 m, tonnage 2.2 t) made from carbon-epoxy composite by hand lay-up is shown in
Fig. 1.18.

Filament winding is an efficient automated process of placing impregnated tows or tapes onto
a rotating mandrel (Fig. 1.19) that is removed after curing of the composite material. Varying the
winding angle, it is possible to control the material strength and stiffness within the layer and through
the thickness of the laminate. Winding of a pressure vessel is shown in Fig. 1.20. Preliminary tension
applied to the tows in the process of winding induces pressure between the layers, providing
compaction of the material. Filament winding is the most advantageous in manufacturing thin-walled
shells of revolution, though it can also be used in building composite structures with more complicated
shapes (Fig. 1.21).

Structural elements of rather complicated shapes can be fabricated by braiding, which is a sort of
combination of weaving and filament winding. In braiding, two or more tows come from spools that

FIGURE 1.17

Composite profiles made by pultrusion and braiding.

Courtesy of CRISM.
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FIGURE 1.18

Catamaran yacht Ivan-30 made from carbon-epoxy composite by hand lay-up.

Courtesy of CRISM.

FIGURE 1.19

Manufacturing of a pipe by circumferential winding of preimpregnated fabric.

Courtesy of CRISM.

24 CHAPTER 1 Introduction

www.EngineeringEBooksPdf.com



rotate in opposite directions around a mandrel that moves in the axial direction. The tows interlace with
one another making flat, tubular, shell-like, or solid structural elements. Braiding over shaped
mandrels allows us to fabricate the structures with curvature and cross sections varying along the axes.

Spatial macrostructure of the composite material that is specific for thick-walled and solid
members requiring fiber reinforcement in at least three directions (not lying in one plane) can be
formed by 3D braiding (with three interlaced yarns) or using such textile processes as weaving,
knitting, or stitching. Spatial (3D, 4D, etc.) structures used in carbon-carbon technology are assembled

FIGURE 1.20

Geodesic winding of a pressure vessel.

FIGURE 1.21

A body of a small plane made by filament winding.

Courtesy of CRISM.
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from thin carbon composite rods fixed in different directions. Such a structure that is prepared for
carbonization and deposition of a carbon matrix is shown in Fig. 1.22.

There are two specific manufacturing procedures that have an inverse sequence of the basic
processes described earlier, i.e., first the macrostructure of the material is formed, and then the matrix
is applied to fibers.

The first of these procedures is the aforementioned carbon-carbon technology that involves
chemical vapor deposition of a pyrolytic carbon matrix on sometimes rather complicated preliminary
assembled structures made from dry carbon fabric. A carbon-carbon shell made by this method is
shown in Fig. 1.23.

The second procedure is the well-known resin transfer molding (RTM). Fabrication of a composite
part starts with a preform that is assembled in the internal cavity of a mold from dry fabrics, tows,
yarns, etc., and which forms the macrostructure of a composite part. The shape of this part is governed
by the shape of the mold cavity into which liquid resin is transferred under pressure through injection
ports. Vacuum-assisted RTM (VARTM), in contrast to RTM, requires a single-sided tool on which
a dry fiber preform is placed and covered with a vacuum bag. Inlet and exit resin feed pipes go through
the bag, and vacuum is drawn at the exit to facilitate an infusion of the preform with resin.

VARTM in combination with an autoclave processing results in resin infusion (RI) processes. Low-
viscosity resins can be infused into fiber preforms by vacuum, whereas high-viscosity resins can be
applied in the form of solid films placed within the fiber preform (e.g., alternating with the dry
reinforcement layers) and subsequently melted under heating. Temperature and pressure profiles
during the curing process are controlled by relevant autoclave programs.

The basic processes described earlier are normally accompanied by a thermal treatment resulting in
the solidification of the matrix. Heating is applied to cure thermosetting resins, cooling is used to
transfer thermoplastic, metal, and ceramic matrices to a solid phase, and a carbon matrix is made by
pyrolysis. The final stages of the manufacturing procedure involve removal of mandrels and molds, or
other tooling and machining of a composite part as required.

FIGURE 1.22

A 4D spatial structure.

Courtesy of CRISM.
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The fabrication processes are described in more detail elsewhere (e.g., Peters, 1998; Baker et al.,
2004; Long, 2005; Mortensen, 2007).
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FIGURE 1.23

A carbon-carbon conical shell.

Courtesy of CRISM.
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Fundamentals of mechanics
of solids 2
The behavior of composite materials whose micro and macrostructures are much more complicated
than those of traditional structural materials such as metals, concrete, and plastics is nevertheless
governed by the same general laws and principles of mechanics briefly described below.

2.1 STRESSES
Consider a solid referred to Cartesian coordinates as in Fig. 2.1. The solid is fixed at the part Su of the
surface and loaded with body forces qv having coordinate components qx, qy, and qz, and with surface

CHAPTER

FIGURE 2.1

A solid loaded with body and surface forces and referred to Cartesian coordinates.
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tractions ps specified by coordinate components px, py, and pz. Surface tractions act on surface Ss
which is determined by its unit normal n with coordinate components lx, ly, and lz that can be referred
to as directional cosines of the normal, i.e.,

lx ¼ cos
�
n; x
�

ly ¼ cos
�
n; y
�

lz ¼ cos
�
n; z
�

(2.1)

Introduce some arbitrary cross section formally separating the upper part of the solid from its lower
part. Assume that the interaction of these parts in the vicinity of some point A can be simulated with
some internal force per unit area or stress s distributed over this cross section according to some
yet unknown law. Since the mechanics of solids is a phenomenological theory (see the closure of
Section 1.1), we do not care about the physical nature of stress, which is only a parameter of our model
of the real material (see Section 1.1) and, in contrast to forces F, has never been observed in physical
experiments. Stress is referred to the plane on which it acts and is usually decomposed into three
components: normal stress (sz in Fig. 2.1) and two shear stresses (szx and szy in Fig. 2.1). The subscript
of the normal stress and the first subscript of the shear stress indicate the plane on which the stresses
act. For stresses shown in Fig. 2.1, this is the plane whose normal is parallel to the z-axis. The second
subscript of the shear stress shows the axis along which the stress acts. If we single out a cubic element
in the vicinity of point A (see Fig. 2.1), we should apply stresses to all its sides as in Fig. 2.2, which also
shows notations and positive directions of all the stresses acting inside the solid referred to Cartesian
coordinates.

FIGURE 2.2

Stresses acting on the planes of the infinitely small cubic element.
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2.2 EQUILIBRIUM EQUATIONS
Now suppose that the solid in Fig. 2.1 is in a state of equilibrium. If so, we can write equilibrium
equations for any part of this solid. In particular, we can do this for an infinitely small tetrahedron
singled out in the vicinity of point B (see Fig. 2.1) in such a way that one of its planes coincides with Ss
and the other three planes are coordinate planes of the Cartesian frame. Internal and external forces
acting on this tetrahedron are shown in Fig. 2.3. The equilibrium equation corresponding, for example,
to the x-axis can be written as

�sxdSx � syxdSy � szxdSz þ pxdSs þ qxdV ¼ 0

Here, dSs and dVare the elements of the body surface and volume, whereas dSx ¼ dSslx, dSy ¼ dSsly,
and dSz ¼ dSslz. When the tetrahedron is infinitely diminished, the term including dV, which is of the
order of the cube of the linear dimensions, can be neglected in comparison with terms containing dS,
which is of the order of the square of the linear dimensions. The resulting equation is

sxlx þ syx ly þ szx lz ¼ px
�
x; y; z

�
(2.2)

The symbol ðx; y; zÞ, which is widely used in this chapter, denotes permutation with the aid of which we
can write two more equations corresponding to the other two axes changing x for y, y for z, and z for x.

Consider now the equilibrium of an arbitrary finite part C of the solid (see Fig. 2.1). If we single this
part out of the solid, we should apply to it body forces qv and surface tractions pi whose coordinate
components px, py, and pz can be expressed, obviously, by Eq. (2.2) in terms of stresses acting inside
the volume C. Since the sum of the components corresponding, for example, to the x-axis must be
equal to zero, we have ZZZ

v

qxdvþ
ZZ
s

pxds ¼ 0

FIGURE 2.3

Forces acting on an elementary tetrahedron.
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where v and s are the volume and the surface area of the part of the solid under consideration.
Substituting px from Eq. (2.2) we getZZ

s

ðsxlx þ syx ly þ szx lzÞdsþ
ZZZ
v

qx dv ¼ 0 ðx; y; zÞ (2.3)

Thus, we have three integral equilibrium equations, Eqs. (2.3), which are valid for any finite part of the
solid.To convert them into the correspondingdifferential equations,weuseGreen’s integral transformationZZ

s

ð fxlx þ fy ly þ fz lzÞds ¼
ZZZ
v

�
vfx
vx

þ vfy
vy

þ vfz
vz

�
dv (2.4)

which is valid for any three continuous, finite, and single-valued functions f ðx; y; zÞ and allows us to
transform a surface integral into a volume one. Taking fx ¼ sx, fy ¼ syx, and fz ¼ szx in Eq. (2.4) and
using Eqs. (2.3), we arrive atZZZ

v

�
vsx

vx
þ vsyx

vy
þ vszx

vz
þ qx

�
dv ¼ 0 ðx; y; zÞ

Since these equations hold whatever the part of the solid may be, provided only that it is within the
solid, they yield

vsx

vx
þ vsyx

vy
þ vszx

vz
þ qx ¼ 0 ðx; y; zÞ (2.5)

Thus, we have arrived at three differential equilibrium equations that could also be derived from the
equilibrium conditions for the infinitesimal element shown in Fig. 2.2.

However, in order to keep part C of the solid in Fig. 2.1 in equilibrium the sum of the moments of
all the forces applied to this part about any axis must be zero. By taking moments about the z-axis, we
get the following integral equationZZZ

v

ðqxy� qyxÞdvþ
ZZ
s

�
pxy� pyx

�
ds ¼ 0

Using again Eqs. (2.2) and (2.4) and taking into account Eq. (2.5), we finally arrive at the symmetry
conditions for shear stresses, i.e.,

sxy ¼ syx
�
x; y; z

�
(2.6)

So, we have three equilibrium equations, Eq. (2.5), which include six unknown stresses sx, sy, and sz,
and sxy, sxz, and syz.

Eq. (2.2) can be treated as force boundary conditions for the stressed state of a solid.

2.3 STRESS TRANSFORMATION
Consider the transformation of a stress system from one Cartesian coordinate frame to another.
Suppose that the elementary tetrahedron shown in Fig. 2.3 is located inside the solid and that point B
coincides with the origin 0 of Cartesian coordinates x, y, and z in Fig. 2.1. Then, the oblique plane of
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the tetrahedron can be treated as a coordinate plane z0 ¼ 0 of a new coordinate frame x0, y0, z0 shown in
Fig. 2.4 such that the normal element to the oblique plane coincides with the z0-axis, whereas axes x0
and y0 are located in this plane. Component px of the surface traction in Eq. (2.2) can now be treated as
the projection on the x-axis of stress s acting on plane z0 ¼ 0. Then, Eq. (2.2) can be presented in the
following explicit form specifying projections of stress s

px ¼ sxlz 0x þ syxlz 0y þ szxlz 0z

py ¼ sylz 0y þ szylz 0z þ sxylz 0x

pz ¼ szlz 0z þ sxzlz 0x þ syzlz 0y

(2.7)

Here, l are directional cosines of axis z0with respect to axes x, y, and z (see Fig. 2.4, in which the
corresponding cosines of axes x0 and y0 are also presented). The normal stress sz0 can be found now as

sz0 ¼ pxlz 0x þ pylz 0y þ pzlz 0z

¼ sxl
2
z 0x þ sy l

2
z 0y þ sz l

2
z 0z þ 2s xyl z 0x lz 0y þ 2s xz lz 0x lz 0z þ 2s yz lz 0y lz 0z

�
x0; y0; z0

�
(2.8)

The final result was obtained with the aid of Eqs. (2.6) and (2.7). Changing x0 for y0, y0 for z0, and z0 for x0,
i.e., performing the appropriate permutation in Eq. (2.8), we can write similar expressions for sx0and sy0 .

The shear stress in the new coordinates is

sz0x0 ¼ pxlx0x þ pylx0y þ pzlx0z

¼ sxlx0xlz0x þ sylx0ylz0y þ szlx0zlz0z þ sxyðlx0xlz0y þ lx0ylz0xÞ
þ sxzðlx0xlz0z þ lx0zlz0xÞ þ syzðlx0ylz0z þ lx0xlz0yÞ

�
x0; y0; z0

� (2.9)

Permutation yields expressions for sx0y0 and sy0z0 .

FIGURE 2.4

Rotation of the coordinate frame.
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2.4 PRINCIPAL STRESSES
The foregoing equations, Eqs. (2.8) and (2.9), demonstrate stress transformations under rotation
of a coordinate frame. There exists a special position of this frame in which the shear stresses
acting on the coordinate planes vanish. Such coordinate axes are called the principal axes, and the
normal stresses that act on the corresponding coordinate planes are referred to as the principal
stresses.

To determine the principal stresses, assume that coordinates x0, y0, and z0 in Fig. 2.4 are the
principal coordinates. Then, according to the aforementioned property of the principal coordinates, we
should take sz0x0 ¼ sz0y0 ¼ 0 and sz0 ¼ s for the plane z0 ¼ 0. This means that px ¼ slz0x, py ¼ slz0y, and
pz ¼ slz0z in Eqs. (2.7). Introducing new notations for directional cosines of the principal axis, i.e.,
taking lz0x ¼ lpx, lz0y ¼ lpy, lz0z ¼ lpz, we have from Eqs. (2.7)

ðsx � sÞlpx þ sxylpy þ sxzlpz ¼ 0

sxylpx þ ðsy � sÞlpy þ syzlpz ¼ 0

sxzlpx þ syzlpy þ ðsz � sÞlpz ¼ 0

(2.10)

These equations were transformed with the aid of symmetry conditions for shear stresses, Eq. (2.6).
For some specified point of the body in the vicinity of which the principal stresses are determined
in terms of known stresses referred to some fixed coordinate frame x, y, z, Eqs. (2.10) comprise
a homogeneous system of linear algebraic equations. Formally, this system always has the trivial
solution, i.e., lpx ¼ lpy ¼ lpz ¼ 0 which we can ignore because directional cosines should satisfy an
evident condition following from Eqs. (2.1), i.e.,

l2px þ l2py þ l2pz ¼ 1 (2.11)

So, we need to find a nonzero solution of Eqs. (2.10) which can exist if the determinant of the set is
zero. This condition yields the following cubic equation for s

s3 � I1s
2 � I2s� I3 ¼ 0 (2.12)

in which

I1 ¼ sx þ sy þ sz

I2 ¼ �sxsy � sxsz � sysz þ s2xy þ s2xz þ s2yz

I3 ¼ sxsysz þ 2sxysxzsyz � sxs2yz � sys2xz � szs2xy

(2.13)

are invariant characteristics (invariants) of the stressed state. This means that if we refer the body to
any Cartesian coordinate frame with directional cosines specified by Eqs. (2.1), take the origin of
this frame at some arbitrary point, and change stresses in Eqs. (2.13) with the aid of Eqs. (2.8) and
(2.9), the values of I1, I2, I3 at this point will be the same for all such coordinate frames. Eq. (2.12)
has three real roots that specify three principal stresses s1, s2, and s3. There is a convention
according to which s1 � s2 � s3, i.e., s1 is the maximum principal stress and s3 is the minimum
one. If, for example, the roots of Eq. (2.12) are 100 MPa, �200 MPa, and 0, then s1 ¼100 MPa,
s2 ¼ 0, and s3 ¼ �200 MPa.
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To demonstrate the procedure, consider a particular state of stress relevant to several applications,
namely, pure shear in the xy-plane. Let a thin square plate referred to coordinates x, y, z be loaded with
shear stresses s uniformly distributed over the plate thickness and along the edges (see Fig. 2.5).

One principal plane is evident; it is plane z ¼ 0, which is free of shear stresses. To find the two other
planes, we should take in Eqs. (2.13) sx ¼ sy ¼ sz ¼ 0, sxz ¼ syz ¼ 0, and sxy ¼ s. Then, Eq. (2.12)
takes the form

s3 � s2s ¼ 0

The first root of this equation gives s ¼ 0 and corresponds to plane z ¼ 0. The other two roots are
s ¼ �s. Thus, we have three principal stresses, i.e., s1 ¼ s, s2 ¼ 0, and s3 ¼ �s. To find the planes
corresponding to s1 and s3 we should put lpz ¼ 0, substitute s ¼ �s into Eqs. (2.10), write them for
the state of stress under study, and supplement this set with Eq. (2.11). The final equations allowing us
to find lpx and lpy are

Hs lpx þ s lpy ¼ 0; l2px þ l2py ¼ 1

Solution of these equations yields lpx ¼ �1=
ffiffiffi
2

p
and lpy ¼ H1=

ffiffiffi
2

p
, and this means that principal

planes (or principal axes) make 45� angles with axes x and y. Principal stresses and principal coor-
dinates x1, x2, and x3 are shown in Fig. 2.5.

2.5 DISPLACEMENTS AND STRAINS
For any point of a solid (e.g., L or M in Fig. 2.1), coordinate component displacements ux, uy, and uz
can be introduced which specify the point displacements in the directions of coordinate axes.

Consider an arbitrary infinitely small element LM characterized with its directional cosines

lx ¼ dx

ds
; ly ¼ dy

ds
; lz ¼ dz

ds
(2.14)

FIGURE 2.5

Principal stresses under pure shear.
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The positions of this element before and after deformation are shown in Fig. 2.6. Suppose that the
displacements of the point L are ux, uy, and uz. Then, the displacements of the point M should be

uð1Þx ¼ ux þ dux; uð1Þy ¼ uy þ duy; uð1Þz ¼ uz þ duz (2.15)

Since ux, uy, and uz are continuous functions of x, y, z, we get

dux ¼ vux
vx

dxþ vuy
vy

dyþ vuz
vz

dz ðx; y; zÞ (2.16)

It follows from Fig. 2.6 and Eqs. (2.15) and (2.16) that

dx1 ¼ dxþ uð1Þx � ux ¼ dxþ dux ¼
�
1þ vux

vx

�
dxþ vux

vy
dyþ vux

vz
dz ðx; y; zÞ (2.17)

Introduce the strain of element LM as

ε ¼ ds1 � ds

ds
(2.18)

After some rearrangements we arrive at

εþ 1

2
ε
2 ¼ 1

2

	�
ds1
ds

�2

� 1




where

ds21 ¼ ðdx1Þ2 þ ðdy1Þ2 þ ðdz1Þ2

Substituting for dx1; dy1; dz1 their expressions from Eqs. (2.17) and taking into account Eqs. (2.14),
we finally get

εþ 1

2
ε
2 ¼ εxxl

2
x þ εyyl

2
y þ εzzl

2
z þ εxylxly þ εxzlxlz þ εyzlylz (2.19)

FIGURE 2.6

Displacement of an infinitesimal linear element.
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where

εxx ¼ vux
vx

þ 1

2

	�
vux
vx

�2

þ
�
vuy
vx

�2

þ
�
vuz
vx

�2

ðx; y; zÞ

εxy ¼ vux
vy

þ vuy
vx

þ vux
vx

vux
vy

þ vuy
vx

vuy
vy

þ vuz
vx

vuz
vy

ðx; y; zÞ
(2.20)

Assuming that the strain is small, we can neglect the second term in the left-hand side of Eq. (2.19).
Moreover, we further suppose that the displacements are continuous functions that change rather
slowly with the change of coordinates. This allows us to neglect the products of derivatives in Eqs.
(2.20). As a result, we arrive at the following equation:

ε ¼ εxl
2
x þ εyl

2
y þ εzl

2
z þ gxylxly þ gxzlxlz þ gyzlylz (2.21)

in which

εx ¼ vux
vx

; εy ¼ vuy
vy

; εz ¼ vuz
vz

gxy ¼
vux
vy

þ vuy
vx

; gxz ¼
vux
vz

þ vuz
vx

; gyz ¼
vuy
vz

þ vuz
vy

(2.22)

can be treated as linear strain-displacement equations. Taking lx ¼ 1, ly ¼ lz ¼ 0 in Eqs. (2.22), i.e.,
directing element LM in Fig. 2.6 along the x-axis, we can readily see that εx is the strain along the same
x-axis. Similar reasoning shows that εy and εz in Eqs. (2.22) are strains in the directions of axes y and z.
To find the physical meaning of strains g in Eqs. (2.22), consider two orthogonal line elements LM and
LN and find the angle a that they make with each other after deformation (see Fig. 2.6), i.e.,

cosa ¼ dx1dx
0
1 þ dy1dy

0
1 þ dz1dz

0
1

ds1ds
0
1

(2.23)

Here, dx1, dy1, and dz1 are specified with Eqs. (2.17), ds1 can be found from Eq. (2.18), and

dx01 ¼
�
1þ vux

vx

�
dx0 þ vux

vy
dy0 þ vux

vz
dz0 ðx; y; zÞ

ds01 ¼ ds0
�
1þ ε

0� (2.24)

Introduce directional cosines of element LN as

l0x ¼
dx0

ds0
; l0y ¼

dy0

ds0
; l0z ¼

dz0

ds0
(2.25)

Since elements LM and LN are orthogonal, we have

lxl
0
x þ lyl

0
y þ lzl

0
z ¼ 0

Using Eqs. (2.14), (2.18), and (2.24)–(2.26) and introducing the shear strain g as the difference
between angles M1L1N1 and MLN, i.e., as

g ¼ p

2
� a
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we can write Eq. (2.23) in the following form:

sing ¼ 1

ð1þ εÞð1þ ε
0Þ
h
2
�
εxxlxl

0
x þ εyylyl

0
y þ εzzlzl

0
z

�
þ εxy

�
lxl

0
y þ l0xly

�
þ εxzðlxl0z þ l0xlzÞ þ εyzðlyl0z þ l0ylzÞ

i (2.26)

Linear approximation of Eq. (2.26) similarly to Eq. (2.21) yields

g ¼ 2
�
εxlxl

0
x þ εylyl

0
y þ εzlzl

0
z

�
þ gxy

�
lxl

0
y þ l0xly

�
þ gxz

�
lxl

0
z þ l0xlz

�
þ gyz

�
lyl

0
z þ l0ylz

�
(2.27)

Here, εx; εy; εz and gxy; gxz; gyz components are determined with Eqs. (2.22). If we now direct
element LM along the x-axis and element LN along the y-axis putting lx ¼ 1, ly ¼ lz ¼ 0 and l0y ¼ 1,
l0x ¼ l0z ¼ 0, Eq. (2.27) yields g ¼ gxy. Thus, gxy, gxz, and gyz are shear strains that are equal to the
changes of angles between axes x and y, x and z, and y and z, respectively.

2.6 TRANSFORMATION OF SMALL STRAINS
Consider small strains in Eqs. (2.22) and study their transformation under rotation of the coordinate
frame. Suppose that x0, y0, z0 in Fig. 2.4 form a new coordinate frame rotated with respect to the original
frame x, y, z. Since Eqs. (2.22) are valid for any Cartesian coordinate frame, we have

εx0 ¼ vux0

vx0
; gx0y0 ¼

vux0

vy0
þ vuy0

vx0
ðx; y; zÞ (2.28)

Here, ux0 , uy0 , and uz0 are displacements along the axes x0, y0, z0 which can be related to displacements
ux, uy, and uz of the same point by the following linear equation

ux0 ¼ uxlx0x þ uylx0y þ uzlx0z
�
x; y; z

�
(2.29)

Similar relations can be written for the derivatives of displacement with respect to variables x0, y0, z0
and x, y, z, i.e.,

vu

vx0
¼ vu

vx
lx0x þ vu

vy
lx0y þ vu

vz
lx0z ðx; y; zÞ (2.30)

Substituting displacements, Eqs. (2.29), into Eqs. (2.28), and transforming to variables x, y, z with the
aid of Eqs. (2.30), and taking into account Eqs. (2.22), we arrive at

εx0 ¼ εxl
2
x0x þ εyl

2
x0y þ εzl

2
x0z þ gxylx0xlx0y þ gxzlx0xlx0z þ gyzlx0ylx0z ðx; y; zÞ

gx0y0 ¼ 2εxlx0xly0x þ 2εylx0yly0y þ 2εzlx0zly0z þ gxy
�
lx0xly0y þ lx0yly0x

�
þgxz

�
lx0xly0z þ lx0zly0x

�þ gyz

�
lx0yly0z þ lx0zly0y

� �
x; y; z

� (2.31)

These strain transformations are similar to the stress transformations determined by Eqs. (2.8)
and (2.9).

38 CHAPTER 2 Fundamentals of mechanics of solids

www.EngineeringEBooksPdf.com



2.7 COMPATIBILITY EQUATIONS
Consider strain-displacement equations, Eqs. (2.22), and try to determine displacements ux, uy, and uz
in terms of strains εx, εy, εz and gxy, gxz, gyz. As can be seen, there are six equations containing only
three unknown displacements. In general, such a set of equations is not consistent, and some
compatibility conditions should be imposed on the strains to provide the existence of a solution. To
derive these conditions, decompose derivatives of the displacements as follows

vux
vx

¼ εx;
vux
vy

¼ 1

2
gxy � uz;

vux
vz

¼ 1

2
gxz þ uy ðx; y; zÞ (2.32)

Here

uz ¼ 1

2

�
vuy
vx

� vux
vy

�
ðx; y; zÞ (2.33)

is the angle of rotation of a body element (such as the cubic element shown in Fig. 2.1) around the
z-axis. Three equations, Eqs. (2.32), including one and the same displacement ux allow us to construct
three couples of mixed second-order derivatives of ux with respect to x and y or y and x, x and z or z and
x, and y and z or z and y. As long as the sequence of differentiation does not influence the result, and
since there are two other groups of equations in Eqs. (2.32), we arrive at nine compatibility conditions
that can be presented as

vux

vx
¼ 1

2

�
vgxz

vy
� vgxy

vz

�
ðx; y; zÞ

vux

vy
¼ 1

2

vgyz

vy
� vεy

vz
ðx; y; zÞ; vux

vz
¼ � 1

2

vgyz

vz
þ vεz

vy
ðx; y; zÞ

(2.34)

These equations are similar to Eqs. (2.32), i.e., they allow us to determine rotation angles only if some
compatibility conditions are valid. These conditions compose the set of compatibility equations for
strains and have the following final form

kxy
�
ε;g
� ¼ 0; rx

�
ε;g
� ¼ 0

�
x; y; z

�
(2.35)

where

kxyðε;gÞ ¼ v2εx

vy2
þ v2εy

vx2
� v2gxy

vxvy
ðx; y; zÞ

rxðε;gÞ ¼ v2εx

vyvz
� 1

2

v

vx

�
vgxy

vz
þ vgxz

vy
� vgyz

vx

�
ðx; y; zÞ

(2.36)

If strains εx; εy; εz and gxy; gxz; gyz satisfy Eqs. (2.35), we can find rotation angles ux; uy; uz

integrating Eqs. (2.34) and then determine displacements ux; uy; uz integrating Eqs. (2.32).
The six compatibility equations, Eqs. (2.35), derived formally as compatibility conditions for

Eqs. (2.32), have a simple physical meaning. Suppose that we have a continuous solid as shown in
Fig. 2.1 and divide it into a set of pieces that perfectly match each other. Now, apply some strains
to each of these pieces. Obviously, for arbitrary strains, the deformed pieces cannot be assembled
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into a continuous deformed solid. This will happen only under the condition that the strains satisfy
Eqs. (2.35). However, even if the strains do not satisfy Eqs. (2.35), we can assume that the solid is
continuous but in a more general Riemannian (curved) space rather than in the traditional
Euclidean space in which the solid existed before the deformation (Vasiliev and Gurdal, 1999).
Then, six quantities k and r in Eqs. (2.36), being nonzero, specify curvatures of the Riemannian
space caused by small strains ε and g. The compatibility equations, Eqs. (2.35), require these
curvatures to be equal to zero, which means that the solid should remain in the Euclidean space
under deformation.

2.8 ADMISSIBLE STATIC AND KINEMATIC FIELDS
In solid mechanics, we introduce static field variables which are stresses and kinematic field variables
which are displacements and strains.

The static field is said to be statically admissible if the stresses satisfy equilibrium equation
Eq. (2.5), and are in equilibrium with surface tractions on the body surface Ss where these tractions are
given (see Fig. 2.1), i.e., if Eq. (2.2) is satisfied on Ss.

The kinematic field is referred to as kinematically admissible if displacements and strains are
linked by strain-displacement equations, Eq. (2.22), and displacements satisfy kinematic boundary
conditions on the surface Su where displacements are prescribed (see Fig. 2.1).

Actual stresses and displacements belong, naturally, to the corresponding admissible fields, though
actual stresses must in addition provide admissible displacements, whereas actual displacements should
be associated with admissible stresses. Mutual correspondence between static and kinematic variables is
established through the so-called constitutive equations that are considered in the next section.

2.9 CONSTITUTIVE EQUATIONS FOR AN ELASTIC SOLID
Consider a solid loaded with body and surface forces as in Fig. 2.1. These forces induce some stresses,
displacements, and strains that compose the fields of actual static and kinematic variables. Introduce
some infinitesimal additional displacements dux, duy, and duz such that they belong to a kinematically
admissible field. This means that there exist equations that are similar to Eqs. (2.22), i.e.,

dεx ¼ v

vx
ðduxÞ; dgxy ¼

v

vy
ðduxÞ þ v

vx
ðduyÞ ðx; y; zÞ (2.37)

and specify additional strains.
Since additional displacements are infinitely small, we can assume that external forces do not

change under such variation of the displacements (here we do not consider special cases in which
external forces depend on displacements of the points at which these forces are applied). Then we can
calculate the work performed by the forces, multiplying forces by the corresponding increments of the
displacements, and write the total work of body forces and surface tractions as

dW ¼
ZZZ

V

ðqxdux þ qyduy þ qzduzÞdV þ
ZZ
S

ðpxdux þ pyduy þ pzduzÞdS (2.38)
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Here, Vand S are the body volume and external surface of the solid in Fig. 2.1. Actually, we must write
the surface integral in Eq. (2.38) only for the surface Ss on which the forces are given. However, since
the increments of the displacements belong to a kinematically admissible field, they are equal to zero
on Su, and the integral can be written for the whole surface of the solid. To proceed, we express px, py,
and pz in terms of stresses with the aid of Eq. (2.2) and transform the surface integral into a volume one
using Eq. (2.4). For the sake of brevity, consider only x-components of forces and displacement in Eq.
(2.38). We have in several stepsZZZ

V

qxdux þ
ZZ
S

px dux ds ¼
ZZZ
V

qx dux þ
ZZ
S

�
sxlx þ syxly þ sz x lz

�
duxdS

¼
ZZZ
V

	
qxdux þ v

vx
ðsxduxÞ þ v

vy
ðsyxduxÞ þ v

vz
ðszxduxÞ



dV

¼
ZZZ
V

	�
qx þ vsx

vx
þ vsyx

vy
þ vszx

vz

�
dux þ sx

v

vx
ðduxÞ þ syx

v

vy
ðduxÞ þ szx

v

vz
ðduxÞ



dV

¼
ZZZ
V

	
sxdεx þ sxy

v

vy
ðduxÞ þ sxz

v

vz
ðduxÞ



dV

The last transformation step has been performed with due regard to Eqs. (2.5), (2.6), and (2.37).
Finally, Eq.(2.38) takes the form

dW ¼
ZZZ
V

�
sxdεx þ sydεy þ szdεz þ sxydgxy þ sxzdgxz þ syzdgyz

�
dV (2.39)

Since the right-hand side of this equation includes only internal variables, i.e., stresses and strains, we can
conclude that the foregoing formal rearrangement actually allows us to transform the work of external
forces into the work of internal forces or into potential energy accumulated in the solid. For further
derivation, let us introduce for the sake of brevity new notations for coordinates and use subscripts 1, 2, 3
instead of x, y, z, respectively. We also use the following notations for stresses and strains

sx ¼ s11; sy ¼ s22; sz ¼ s33

sxy ¼ s12 ¼ s21; sxz ¼ s13 ¼ s31; syz ¼ s23 ¼ s32

εx ¼ ε11; εy ¼ ε22; εz ¼ ε33

gxy ¼ 2ε12 ¼ 2ε21; gxz ¼ 2ε13 ¼ 2ε31; gyz ¼ 2ε23 ¼ 2ε32

Then, Eq. (2.39) can be written as

dW ¼
ZZZ
V

dUdV (2.40)

where

dU ¼ sij dεij (2.41)
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This form of equation implies summation over repeated subscripts i; j ¼ 1; 2; 3.
It should be emphasized that by now dU is just a symbol, which does not mean that there exists

function U and that dU is its differential. This meaning for dU is correct only if we restrict ourselves to
the consideration of an elastic material described in Section 1.1. For such a material, the difference
between the body potential energy corresponding to some initial state A and the energy corresponding
to some other state B does not depend on the way used to transform the solid from state A to state B.
In other words, the integral

ZB
A

sijdεij ¼ U
�
B
�� U

�
A
�

does not depend on the path of integration. This means that the element of integration is a complete
differential of function U depending on εij, i.e., that

dU ¼ vU

vεij
dεij

Comparing this result with Eq. (2.41), we arrive at Green’s formulas

sij ¼ vU

vεij
(2.42)

that are valid for any elastic material. The function UðεijÞcan be referred to as specific strain energy
(energy accumulated in the unit of body volume) or elastic potential. The potential U can be expanded
into a Taylor series with respect to strains, i.e.,

UðεijÞ ¼ s0 þ sij εij þ 1

2
sijkl εij εkl þ/ (2.43)

where

s0 ¼ Uðεij ¼ 0Þ; sij ¼ vU

vεij

����
εij ¼ 0

; sijkl ¼ v2U

vεij vεkl

����
εij ¼ 0; εkl ¼ 0

(2.44)

Assume that for the initial state of the solid, corresponding to zero external forces, we have
εij ¼ 0, sij ¼ 0, U ¼ 0. Then, s0 ¼ 0 and sij ¼ 0, according to Eq. (2.42). For small strains, we can
neglect high-order terms in Eq. (2.43) and restrict ourselves to the first system of nonzero terms
taking

U ¼ 1

2
sijkl εij εkl

Then, Eq. (2.42) yields

sij ¼ sijkl εkl (2.45)

These linear equations correspond to a linear elastic model of the material (see Section 1.1) and, in
general, include 34 ¼ 81 coefficients s. However, since sij ¼ sji and εij ¼ εji, we have the following
equations sijkl ¼ sjikl ¼ sijlk which reduce the number of independent coefficients to 36. Then, taking
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into account that the mixed derivative specifying coefficients sijkl in Eqs. (2.44) does not depend on the
sequence of differentiation, we get 15 equations sijkl ¼ sklijðijsklÞ using which we can reduce the
number of independent coefficients to 21. Returning to coordinates x, y, z, we can write Eq. (2.45) in
the following explicit form:

fsg ¼ ½S�fεg (2.46)

where

fsg ¼

8>>>>>>>>>><
>>>>>>>>>>:

sx

sy

sz

sxy

sxz

syz

9>>>>>>>>>>=
>>>>>>>>>>;

fεg ¼

8>>>>>>>>>><
>>>>>>>>>>:

εx

εy

εz

gxy

gxz

gyz

9>>>>>>>>>>=
>>>>>>>>>>;

½S� ¼

2
66666666664

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

3
77777777775

(2.47)

Being written in the explicit form, the matrix equation, Eq. (2.46), gives six constitutive equations.
They relate stresses and strains through 21 stiffness coefficients Sij ¼ Sji that specify material
mechanical properties within the framework of a linear elastic model of the material. The inverse form
of Eq. (2.46) is

fεg ¼ ½C�fsg (2.48)

Strains are expressed in terms of stresses via the matrix of compliance coefficients that can be written as

½C� ¼

2
66666666666666666666666666664

1

Ex
�nxy

Ey
�nxz

Ez

hx;xy

Gxy

hx;xz

Gxz

hx;yz

Gyz

�nyx

Ex

1

Ey
�nyz

Ez

hy;xy

Gxy

hy;xz

Gxz

hy;yz

Gyz

� nzx

Ex
� nzy

Ey

1

Ez

hz;xy

Gxy

hz;xz

Gxz

hz;yz

Gyz

hxy;x

Ex

hxy;y

Ey

hxy;z

Ez

1

Gxy

lxy;xz

Gxz

lxy;yz

Gyz

hxz;x

Ex

hxz;y

Ey

hxz;z

Ez

lxz;xy

Gxy

1

Gxz

lxz;yz

Gyz

hyz;x

Ex

hyz;y

Ey

hyz;z

Ez

lyz;xy

Gxy

lyz;xz

Gxz

1

Gyz

3
77777777777777777777777777775

(2.49)
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This matrix is symmetric, and the following 15 symmetry conditions are valid

nxy

Ey
¼ nyx

Ex
;

nxz

Ez
¼ nzx

Ex
;

nyz

Ez
¼ nzy

Ey

hx;xy

Gxy
¼ hxy;x

Ex
;

hx;xz

Gxz
¼ hxz;x

Ex
;

hx;yz

Gyz
¼ hyz;x

Ex

hy;xy

Gxy
¼ hxy;y

Ey
;

hy;xz

Gxz
¼ hxz;y

Ey
;

hy;yz

Gyz
¼ hyz;y

Ey

hz;xy

Gxy
¼ hxy;z

Ez
;

hz;xz

Gxz
¼ hxz;z

Ey
;

hz;yz

Gyz
¼ hyz;z

Ez

lxy;xz

Gxz
¼ lxz;xy

Gxy
;

lxy;yz

Gyz
¼ lyz;xy

Gxy
;

lxz;yz

Gyz
¼ lyz;xz

Gxz

(2.50)

The compliance matrix, Eq. (2.49), includes the following engineering constants:
Ex is the modulus of elasticity in the x direction (x, y, z); nxy is the Poisson’s ratio that

determines the strain in the x direction induced by normal stress acting in the orthogonal y
direction (x, y, z); Gxy is the shear modulus in the xy-plane (x, y, z); hx;yz is the extension-shear
coupling coefficient indicating normal strain in the x direction induced by shear stress acting in
the yz-plane (x, y, z); hxy;z is the shear-extension coupling coefficient characterizing shear strain in
the xy-plane caused by normal stress acting in the z direction (x, y, z); and lxy;yz is the shear-shear
coupling coefficient that determines the shear strain taking place in the xy-plane under shear stress
acting in the yz-plane (x, y, z).

Having constitutive equations, Eq. (2.46), we can now write the finite expression for elastic
potential, U. Substituting stresses into Eq. (2.41) and integrating the resulting equation with respect to
strains, we get the following equation–after some transformation with the aid of Eq. (2.46):

U ¼ 1

2
ðsxεx þ syεy þ szεz þ sxygxy þ sxzgxz þ syzgyzÞ (2.51)

The potential energy of the solid can be found as

W ¼
ZZZ

V

UdV (2.52)

The compliance matrix, Eq. (2.49), containing 21 independent elastic constants corresponds to the
general case of material anisotropy that practically never occurs in real materials. The most common
particular case corresponds to an orthotropic (orthogonally anisotropic) material which has three
orthogonal orthotropy (coordinate) axes such that normal stresses acting along these axes do not
induce shear strains, whereas shear stresses acting in coordinate planes do not cause normal strains in
the direction of these axes. As a result, the stiffness and compliance matrices become uncoupled with
respect to normal stresses and strains on one side and shear stresses and strains on the other side. For
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the case of an orthotropic material, with axes x, y, and z coinciding with the orthotropy axes, Eq. (2.49)
takes the form

½C� ¼

2
666666666666666666666666664

1

Ex
� nxy

Ey
� nxz

Ez
0 0 0

� nyx

Ex

1

Ey
� nyz

Ez
0 0 0

� nzx

Ex
� nzy

Ey

1

Ez
0 0 0

0 0 0
1

Gxy
0 0

0 0 0 0
1

Gxz
0

0 0 0 0 0
1

Gyz

3
777777777777777777777777775

(2.53)

Symmetry conditions, Eqs. (2.50), reduce to

nxyEx ¼ nyxEy; nxzEx ¼ nzxEz; nyzEy ¼ nzyEz

These equations have a simple physical meaning. The higher the stiffness, demonstrated by the
material in some direction, the less is the strain in this direction under loading in the orthogonal
directions. Taking into account the foregoing symmetry conditions, we can conclude that an ortho-
tropic material is characterized by nine independent elastic constants.

The simplest material model corresponds to the isotropic material, whose mechanical properties
are the same for any direction or plane of loading. As a result, subscripts indicating coordinate
directions and planes in Eq. (2.53) disappear, and it reduces to

½C� ¼

2
666666666666666666666664

1

E
� n

E
� n

E
0 0 0

� n

E

1

E
� n

E
0 0 0

� n

E
� n

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G

3
777777777777777777777775

(2.54)

2.9 Constitutive equations for an elastic solid 45

www.EngineeringEBooksPdf.com



The compliance matrix, Eq. (2.54), contains three elastic constants, E, G, and n. However, only two of
them are independent. To show this, consider the case of pure shear for a plate discussed in Section 2.4
(see Fig. 2.5). For this problem, sx ¼ sy ¼ sz ¼ sxz ¼ syz ¼ 0, sxy ¼ s, and Eqs. (2.48) and (2.54)
yield

gxy ¼
s
G

The specific strain energy in Eq. (2.51) can be written as

U ¼ 1

2
sxygxy ¼

1

2G
s2 (2.55)

However, as discussed in Section 2.4, pure shear can be reduced to tension and compression in the
principal directions (see Fig. 2.5). For these directions, Eqs. (2.48) and (2.54) give

ε1 ¼ s1

E
� n

s3

E
; ε3 ¼ s3

E
� n

s1

E

Here s1 ¼ s, s3 ¼ �s, and the remaining stresses are equal to zero. The strain energy, Eq. (2.51), can
be presented now in the following form:

U ¼ 1

2
ðs1ε1 þ s3ε3Þ ¼ 1þ n

E
s2 (2.56)

Since Eqs. (2.55) and (2.56) specify one and the same quantity, we get

G ¼ E

2ð1þ nÞ (2.57)

Thus, an isotropic material is characterized within the linear elastic model with two independent
elastic constants: E and n.

2.10 FORMULATIONS OF THE PROBLEM
The problem of solid mechanics is reduced, as follows from the foregoing derivation, to a set of 15
equations, i.e., three equilibrium equations, Eqs. (2.5), six strain-displacement equations, Eqs. (2.22),
and six constitutive equations, Eq. (2.46) or (2.48). This set of equations is complete, i.e., it contains 15
unknown functions among which there are six stresses, six strains, and three displacements. Solution
of a particular problem should satisfy three boundary conditions that can be written at any point of the
body surface. Static or force boundary conditions have the form of Eqs. (2.2), whereas kinematic or
displacement boundary conditions are imposed on three displacement functions.

There exist two classical formulations of the problem–displacement formulation and stress
formulation.

According to the displacement formulation, we first determine displacements ux, uy, and uz from
three equilibrium equations, Eqs. (2.5), written in terms of displacements with the aid of constitutive
equations, Eq. (2.46), and strain-displacement equations, Eqs. (2.22). Having found the displacements,
we use Eqs. (2.22) and (2.46) to determine strains and stresses.

The stress formulation is much less straightforward than the displacement one. Indeed, we have
only three equilibrium equations, Eqs. (2.5), for six stresses which means that the problem of solid
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mechanics is not, in general, a statically determinate problem. All possible solutions of the equilibrium
equations (there is an infinite number of them because the number of equations is less than the number
of unknown stresses) satisfying force boundary conditions (solutions that do not satisfy them do
not belong to the problem under study) comprise the class of statically admissible stress fields (see
Section 2.8). Suppose that we have one such stress field. We can now readily find strains using
constitutive equations, Eq. (2.48), but to determine displacements, we need to integrate a set of six
strain-displacement equations, Eqs. (2.22). Having only three unknown displacements these equations
are, in general, not compatible. As shown in Section 2.7, this set can be integrated if strains satisfy six
compatibility equations, Eqs. (2.35). We can write these equations in terms of stresses using consti-
tutive equations, Eq. (2.48). Thus, the stress formulation of the problem is reduced to a set of nine
equations consisting of three equilibrium equations and six compatibility equations in terms of
stresses. At first glance, it looks like this set is not consistent because it includes only six unknown
stresses. However, this is not the case because of the special properties of the compatibility equations.
As was noted in Section 2.7, these equations provide the existence of Euclidean space inside the
deformed body. But this space automatically exists if strains can be expressed in terms of three
continuous displacements as in Eqs. (2.22). Indeed, substituting strains, Eqs. (2.22), into the
compatibility equations, Eqs. (2.35), we can readily see that they are identically satisfied for any three
functions ux, uy, and uz. This means that the solution of six equations, Eqs. (2.35), including six strains
is not unique. The uniqueness is ensured by three equilibrium equations.

2.11 VARIATIONAL PRINCIPLES
The equations of Solid Mechanics considered in the previous sections can be derived also from
variational principles that establish the energy criteria according to which the actual state of the body
under loading can be singled out of a system of admissible states (see Section 2.8).

Consider a linear elastic solid and introduce two mutually independent fields of variables: a stat-
ically admissible stress field s0x, s0y, s0z, s0xy, s0xz, s0yz and a kinematically admissible field characterized
with displacements u00x , u00y , u00z and corresponding strains ε

00
x , ε

00
y , ε

00
z , g

00
xy, g

00
xz, g

00
yz. To construct the

energy criteria allowing us to distinguish the actual variables from admissible ones, consider the
following integral similar to the energy integral in Eqs. (2.51) and (2.52):

I ¼
ZZZ

V

�
s0xε

00
x þ s0yε

00
y þ s0zε

00
z þ s0xyg

00
xy þ s0xzg

00
xz þ s0yzg

00
yz

�
dV (2.58)

Here, in accordance with the definition of a kinematically admissible field (see Section 2.8),

ε
00
x ¼ vu00x

vx
; g00

xy ¼
vu00x
vy

þ vu00y
vx

ðx; y; zÞ (2.59)

Substituting Eqs. (2.59) into Eq. (2.58) and using the following evident relationships between the
derivatives

s0x
vu00x
vx

¼ v

vx
ðs0xu00x Þ � u00x

vs0x
vx

; s0xy
vu00x
vy

¼ v

vy
ðs0xyu00x Þ � u00x

vs0xy
vy

;
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etc., we arrive at

I ¼
ZZZ

V

	
v

vx
ðs0xu00x þ s0xyu

00
y þ s0xzu

00
z Þ þ

v

vy
ðs0xyu00x þ s0yu

00
y þ s0yzu

00
z Þ

þ v

vz
ðs0xzu00x þ s0yzu

00
y þ s0zu

00
z Þ �

�
vs0x
vx

þ vs0xy
vy

þ vs0xz
vz

�
u00x

�
�
vs0y
vy

þ vs0xy
vx

þ vs0yz
vz

�
u00y �

�
vs0z
vz

þ vs0xz
vx

þ vs0yz
vy

�
u00z



dV

(2.60)

Applying Green’s integral transformation, Eq. (2.4), to the first three terms under the integral and
taking into account that statically admissible stresses should satisfy equilibrium equations, Eqs. (2.5)
and (2.6), and force boundary conditions, Eqs. (2.2), we obtain from Eqs. (2.58) and (2.60)ZZZ

V

�
s0xε00x þ s0yε00y þ s0zε00z þ s0xyg00xy þ s0xzg00

xz þ s0yzg00
yz

�
dV

¼
ZZ
S

�
pxu

00
x þ pyu

00
y þ pzu

00
z

�
dSþ

ZZZ
V

�
qxu

00
x þ qyu

00
y þ qzu

00
z

�
dV

(2.61)

For actual stresses, strains, and displacements, Eq. (2.61) reduces to the following equation:ZZZ
V

�
sxεx þ syεy þ szεz þ sxygxy þ sxzgxz þ syzgyz

�
dV

¼
ZZ
S

�
pxux þ pyuy þ pzuz

�
dSþ

ZZZ
V

�
qxux þ qyuy þ qzuz

�
dV

(2.62)

known as Clapeyron’s theorem.

2.11.1 Principle of minimum total potential energy

This principle allows us to distinguish the actual displacement field of the body from kinematically
admissible fields. To derive it, assume that the stresses in Eq. (2.61) are actual stresses, i.e., s0 ¼ s and
s0 ¼ s, whereas the displacements and the corresponding strains differ from the actual values by small
kinematically admissible variations, i.e., u00 ¼ uþ du, ε00 ¼ εþ dε, and g00 ¼ gþ dg. Substituting
these expressions into Eq. (2.61) and subtracting Eq. (2.62) from the resulting equation, we arrive atZZZ

V

�
sxdεx þ sydεy þ szdεz þ sxydgxy þ sxzdgxz þ syzdgyz

�
dV

¼
ZZ
S

ð pxdux þ pyduy þ pzduzÞdSþ
ZZZ

V

ðqxdux þ qyduy þ qzduzÞdV

Assume that under small variation of displacements and strains belonging to the kinematically
admissible fields the surface tractions and body forces do not change. Then, we can write the foregoing
result in the following form

dWε � dA ¼ 0 (2.63)
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Here

dWε ¼
ZZZ

V

�
sxdεx þ sydεy þ szdεz þ sxydgxy þ sxzdgxz þ syzdgyz

�
dV (2.64)

is the variation of the strain energy (internal potential energy of an elastic solid) associated with small
kinematically admissible variations of strains and

A ¼
ZZ
S

ð pxux þ pyuy þ pzuzÞdSþ
ZZZ

V

ðqxux þ qyuy þ qzuzÞdV (2.65)

can be formally treated as work performed by surface tractions and body forces on the actual
displacements. Expressing stresses in Eq. (2.64) in terms of strains with the aid of the constitutive
equations, Eq. (2.46), and integrating, we can determineWε, which is the body strain energy written in
terms of strains. The quantity T ¼ Wε � A is referred to as the total potential energy of the body. This
name historically came from problems in which external forces had a potential function F ¼ �A so
that T ¼ Wε þ F was the sum of internal and external potentials, i.e., the total potential function. Then,
the condition in Eq. (2.63) reduces to

dT ¼ 0 (2.66)

which means that T has a stationary (actually, minimum) value under small admissible variation of
displacements in the vicinity of actual displacements. Thus, we arrive at the following variational
principle of minimum total potential energy: the actual displacement field, in contrast to all
kinematically admissible fields, delivers the minimum value of the body total potential energy.
This principle is a variational form of the displacement formulation of the problem discussed in
Section 2.10. As can be shown, the variational equations ensuring the minimum value of the total
potential energy of the body coincide with the equilibrium equations written in terms of
displacements.

2.11.2 Principle of minimum strain energy

This principle is valid for a linear elastic body and establishes the criterion according to which the
actual stress field can be singled out of all statically admissible fields. Suppose that displacements and
strains in Eq. (2.61) are actual, i.e. u00 ¼ u, ε00 ¼ ε, and g00 ¼ g, whereas stresses differ from the actual
values by small statically admissible variations, i.e., s0 ¼ sþ ds, and s0 ¼ sþ ds. Substituting these
expressions in Eq. (2.61) and subtracting Eq. (2.62) for the actual state, we get

dWs ¼ 0 (2.67)

where

dWs ¼
ZZZ

V

�
εxdsx þ εydsy þ εzdsz þ gxydsxy þ gxzdsxz þ gyzdsyz

�
dV (2.68)

is the variation of the strain energy associated with the variation of stresses. Expressing strains in terms
of stresses with the aid of constitutive equations, Eq. (2.48), and integrating, we can determine Ws,
which is the body strain energy written in terms of stresses. As before, Eq. (2.67) indicates that strain
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energy, Ws, has a stationary (in fact, minimum) value under admissible variation of stresses. As
a result, we arrive at the following variational principle of minimum strain energy: the actual stress
field, in contrast to all statically admissible fields, delivers the minimum value of the body strain
energy. This principle is a variational form of the stress formulation of the problem considered in
Section 2.10. As can be shown, the variational equations providing the minimum value of the strain
energy are compatibility equations written in terms of stresses. It is important that the stress variation
in Eq. (2.68) should be performed within the statically admissible field, i.e., within stresses that satisfy
equilibrium equations and force boundary conditions.

To derive another useful result that will be used further in Section 10.4.4, we can generalize the
foregoing concept of a statically admissible stress field. In particular, assume that the statically
admissible stresses satisfy only the equilibrium equations, whereas to satisfy the force boundary
conditions, the acting loads must be slightly changed. Assume that a solid is loaded with a concen-
trated force P whose direction is specified by the directional cosines of the angles between the force
direction and axes x, y, and z, i.e.,

nx ¼ cos
�
P; x

�
; ny ¼ cos

�
P; y

�
; nz ¼ cos

�
P; z

�
Assume also that the projections of the displacement up of the point of application of this force on the
axes x, y, and z are uPx , u

P
y , and u

P
z . For a new formulation of a statically admissible stress field, to satisfy

the force boundary conditions, we need to apply the force Pþ dP in which dP is a small variation of
the force P. Then, the variational equation, Eq. (2.67), can be generalized as

dWs ¼ dP
�
uPx nx þ uPy ny þ uPz nz

�
where

uPx nx þ uPy ny þ uPz nz ¼ uP

in which uPis the projection of the displacement uP of the point of the force application on the direction
of the force P. Taking into account that variation is analogous to differentiation, we arrive at

vWs

vP
¼ uP (2.69)

This equation specifies so-called Castigliano’s theorem, according to which the derivative of the strain
energy with respect to the force is equal to the projection of the displacement of the point at which the
force is applied on the direction of the force.

Applying a concentrated moment M, we get in a similar way

vWs

vM
¼ qM (2.70)

Here, qMis the rotation angle in the plane and direction in which the moment M is applied.

2.11.3 Mixed variational principles

The two variational principles described above imply variations with respect to either displacements
only or stresses only. There exist also the so-called mixed variational principles in which variation is
performed with respect to both kinematic and static variables. The first principle from this group
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follows from the principle of minimum total potential energy considered in Section 2.11.1. Let us
expand the class of admissible kinematic variables and introduce displacements that are continuous
functions satisfying displacement boundary conditions and strains that are not related to these
displacements by strain-displacement equations, Eqs. (2.22). Then we can apply the principle of
minimum total potential energy performing a conditional minimization of the total potential energy
and introduce Eqs. (2.22) as additional constraints imposed on strains and displacements with the aid
of Lagrange’s multipliers. Using stresses as these multipliers, we can construct the following
augmented functional

TL ¼ Wε � Aþ
ZZZ

V

"
sx

 
vux
vx

� εx

!
þ sy

 
vuy
vy

� εy

!
þ sz

�
vuz
vz

� εz

�
þ sxy

 
vux
vy

þ vuy
vx

� gxy

!

þ sxz

 
vux
vz

þ vuz
vx

� gxz

!
þ syz

 
vuy
vz

þ vuz
vy

� gyz

!35dV
According to the initial principle, Eq. (2.66), dTL ¼ 0. Variation of displacements yields, as earlier,
equilibrium equations, variation of stresses results in strain-displacement equations, and variation of
strains gives constitutive equations (Wε should be expressed in terms of strains).

The second form of the mixed variational principle can be derived from the principle of minimum
strain energy discussed in Section 2.11.2. Again, expand the class of admissible static fields and
introduce stresses that satisfy force boundary conditions but do not satisfy equilibrium equations,
Eqs. (2.5). Then, we can apply the principle of minimum strain energy if we construct an augmented
functional adding Eqs. (2.5) as additional constraints. Using displacements as Lagrange’s multipliers,
we obtain

WL ¼ Ws þ
ZZZ

V

"
ux

 
vsx

vx
þ vsxy

vy
þ vsxz

vz
þ qx

!
þ uy

 
vsy

vy
þ vsxy

vx
þ vsyz

vz
þ qy

!

þ uz

 
vsz

vz
þ vsxz

vx
þ vsyz

vy
þ qz

!#
dV

According to the original principle, Eq. (2.67), dWL ¼ 0. The variation with respect to stresses (Ws

should be expressed in terms of stresses) yields constitutive equations in which strains are expressed in
terms of displacements via strain-displacement equations, Eqs. (2.22), whereas variation of
displacements gives equilibrium equations.

The equations and principles considered in this chapter will be used in the following chapters in the
book for the analysis of the mechanics of composite materials and structural elements.

2.12. Reference
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Mechanics of a unidirectional ply 3
Aply or lamina is the simplest element of a composite material, an elementary layer of unidirectional
fibers in a matrix (see Fig. 3.1) formed when a unidirectional tape impregnated with resin is placed
onto the surface of a tool, thus providing the shape of a composite part.

3.1 PLY ARCHITECTURE
As the tape consists of tows (bundles of fibers), the ply thickness (whose minimum value is about
0.1 mm for modern composites) is much higher than the fiber diameter (about 0.01 mm). In an actual
ply, the fibers are randomly distributed, as in Fig. 3.2. Since the actual distribution is not known and
can hardly be predicted, some typical idealized regular distributions (i.e., square (Fig. 3.3), hexagonal
(Fig. 3.4), and layer-wise (Fig. 3.5)) are used for the analysis.

A composite ply is generally taken to consist of two constituents: fibers and a matrix whose
quantities in the materials are specified by volume, v, and mass, m, fractions

vf ¼
V f

V c
; vm ¼ Vm

V c
(3.1)

mf ¼
Mf

Mc
; mm ¼ Mm

Mc
(3.2)

Here, V and M are volume and mass, whereas subscripts f, m, and c correspond to fibers, matrix, and
composite material, respectively. Since V c ¼ V f þ Vm and Mc ¼ Mf þMm, we have

vf þ vm ¼ 1; mf þ mm ¼ 1 (3.3)

CHAPTER

1

2

3

FIGURE 3.1

A unidirectional ply.
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There exist the following relationships between volume and mass fractions

vf ¼ rc

rf
mf ; vm ¼ rc

rm
mm (3.4)

FIGURE 3.2

Actual fiber distribution in the cross section of a ply (vf ¼ 0.65).

FIGURE 3.3

Square fiber distribution in the cross section of a ply (vf ¼ 0.65).
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where rf , rm, and rc are the densities of fibers, the matrix, and the composite respectively.
In analysis, volume fractions are used because they enter the stiffness coefficients for a ply, whereas
mass fractions are usually measured directly during processing or experimental study of the fabri-
cated material.

FIGURE 3.5

Layer-wise fiber distribution in the cross section of a ply (vf ¼ 0.65).

FIGURE 3.4

Hexagonal fiber distribution in the cross section of a ply (vf ¼ 0.65).
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Two typical situations usually occur. The first situation implies that we know the mass of the fibers
used to fabricate a composite part and the mass of the part itself. The mass of the fibers can be found if
we weigh the spools with fibers before and after they are used or calculate the total length of tows and
multiply it by the tow tex-number that is the mass in grams of a 1000 m long tow. So, we know the
values of Mf and Mc and can use the first equations of Eqs. (3.2) and (3.4) to calculate vf .

The second situation takes place if we have a sample of a composite material and know the
densities of the fibers and the matrix used for its fabrication. Then, we can find the experimental value
of material density, rec, and use the following equation for theoretical density

rc ¼ rfvf þ rmvm (3.5)

Putting rc ¼ rec and taking into account Eqs. (3.3), we obtain

vf ¼ rec � rm

rf � rm
(3.6)

Consider, for example, a carbon-epoxy composite material with fibers AS4 and matrix EPON DPL-
862, for which rf ¼ 1:79 g=cm3 and rm ¼ 1:2 g=cm3. Let rec ¼ 1:56 g=cm3. Then, Eq. (3.6) yields
vf ¼ 0:61.

This result is approximate because it ignores possible material porosity. To determine the actual
fiber fraction, we should remove the resin using matrix destruction, solvent extraction, or burning
the resin out in an oven. As a result, we getMf , and havingMc, can calculate mf and vf with the aid of
Eqs. (3.2) and (3.4). Then we find rc using Eq. (3.5) and compare it with rec. If rc > rec, the material
includes voids whose volume fraction (porosity) can be calculated using the following equation:

vp ¼ 1� rec
rc

(3.7)

For the carbon-epoxy composite material considered above as an example, assume that the foregoing
procedure results in mf ¼ 0:72. Then, Eqs. (3.4), (3.5), and (3.7) give vf ¼ 0:63, rc ¼ 1:58 g=cm3,
and vp ¼ 0:013, respectively.

For real unidirectional composite materials, we normally have vf ¼ 0:50�0:65. Lower fiber
volume content results in lower ply strength and stiffness under tension along the fibers, whereas
higher fiber content, close to the ultimate value, leads to reduction of the ply strength under longi-
tudinal compression and in-plane shear due to poor bonding of the fibers.

Since the fibers usually have uniform circular cross sections, there exists the ultimate fiber volume
fraction, vuf which is less than unity and depends on the fiber arrangement. For typical arrangements
shown in Figs. 3.3–3.5, the ultimate arrays are presented in Fig. 3.6, and the corresponding ultimate
fiber volume fractions are:

Square array

vuf ¼
1

d2

�
pd2

4

�
¼ p

4
¼ 0:785

Hexagonal array

vuf ¼
2

d2
ffiffiffi
3

p
�
pd2

4

�
¼ p

2
ffiffiffi
3

p ¼ 0:907
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Layer-wise array

vuf ¼
1

d2

�
pd2

4

�
¼ p

4
¼ 0:785

3.2 FIBER-MATRIX INTERACTION
Composite materials consist of fibers and matrix acting together, and the material properties are
governed by the properties of fibers and matrix as the result of their interaction.

3.2.1 Theoretical and actual strength

The most important property of advanced composite materials is associated with the very high strength
of a unidirectional ply, accompanied with relatively low density. This advantage of the material is
provided mainly by the fibers. Correspondingly, a natural question arises as to how such traditional
lightweight materials like glass or graphite, which were never utilized as primary load-bearing
structural materials, can be used to make fibers with a strength exceeding the strength of such tradi-
tional structural materials as aluminum or steel (see Table 1.1). The general answer is well-known: the
strength of a thin wire is usually much higher than the strength of the corresponding bulk material. This
is demonstrated in Fig. 3.7, showing that the wire strength increases as the wire diameter is reduced.

In connection with this, two questions arise. First, what is the upper limit of strength that can be
predicted for an infinitely thin wire or fiber? And second, what is the nature of this phenomenon?

d

dd

d d

d

(a) (b) (c)

FIGURE 3.6

Ultimate fiber arrays for square (a), hexagonal (b), and layer-wise (c) fiber distributions.
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The answer to the first question is given in The Physics of Solids (Feynman et al., 1964). Consider
an idealized model of a solid, namely a regular system of atoms located as shown in Fig. 3.8, and find
the stress, s, that destroys this system. The dependence of s on the atomic spacing is presented in
Fig. 3.9. Point O of the curve corresponds to the equilibrium of the unloaded system, whereas point U
specifies the ultimate theoretical stress, st. The initial tangent angle, a, characterizes the material’s
modulus of elasticity, E. To evaluate st, we can use the following sine approximation
(Gilman, 1959) for the OU segment of the curve

s ¼ st sin 2p
a� a0
a0

σ

a

σ

FIGURE 3.8

Material model.

0
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3

4
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d, mm

FIGURE 3.7

Dependence of high-carbon steel wire strength on the wire diameter.
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Introducing strain

ε ¼ a� a0
a0

we arrive at

s ¼ st sin 2pε

Now, we can calculate the modulus as

E ¼
�
ds

dε

�����
ε¼0

¼ 2pst

Thus,

st ¼ E

2p
(3.8)

This equation yields a very high value for the theoretical strength. For example, for a steel wire, st ¼
33:4 GPa. Until now, the highest strength reached in 2 mm-diameter monocrystals of iron (whiskers) is
about 12 GPa.

The model under study allows us to introduce another important characteristic of the material. The
specific energy that should be spent to destroy the material can be presented in accordance with
Fig. 3.9 as

2g ¼
ZN
a0

sðaÞda (3.9)

As material fracture results in the formation of two new free surfaces, g can be referred to as the
specific surface energy (energy spent to form the surface of the unit area).

σ t

σ

U

a
0

α

a0

FIGURE 3.9

Atoms’ interaction curve (solid line) and its sine approximation (dashed line).
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The answer to the second question (why the fibers are stronger than the corresponding bulk
materials) was in fact given by Griffith (1920), whose results have formed the basis of fracture
mechanics.

Consider a fiber loaded in tension and having a thin circumferential crack as shown in Fig. 3.10.
The crack length, l, is much less than the fiber diameter, d.

For a linear elastic fiber, s ¼ Eε, and the elastic potential in Eq. (2.51) can be presented as

U ¼ 1

2
sε ¼ s2

2E

When the crack appears, the strain energy is released in a material volume adjacent to the crack.
Suppose that this volume is comprised of a conical ring whose generating lines are represented in
Fig. 3.10 by dashed lines and whose heights are proportional to the crack length, l. Then, the total
released energy, Eq. (2.52), is

W ¼ 1

2
kp

s2

E
l2d (3.10)

σ

σ

d
dldl

l l

FIGURE 3.10

A fiber with a crack.
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where k is some constant coefficient of proportionality. On the other hand, the formation of new
surfaces consumes the energy

S ¼ 2p g ld (3.11)

where g is the surface energy, Eq. (3.9). Now assume that the crack length is increased by an infin-
itesimal increment, dl. Then, if for some value of acting stress, s

dW

dl
>

dS

dl
(3.12)

the crack will propagate, and the fiber will fail. Substituting Eqs. (3.10) and (3.11) into inequality
(3.12) we arrive at

s > sc ¼
ffiffiffiffiffiffiffiffiffi
2gE

kl

r
(3.13)

The most important result that follows from this condition specifying some critical stress, sc, beyond
which the fiber with a crack cannot exist, is the fact that sc depends on the absolute value of the crack
length (not on the ratio l/d). Now for a continuous fiber, 2l < d, so the thinner the fiber, the smaller the
length of the crack that can exist in this fiber and the higher is the critical stress, sc. More rigorous
analysis shows that, reducing l to a in Fig. 3.8, we arrive at sc ¼ st.

Consider, for example, glass fibers that are widely used as reinforcing elements in composite
materials and have been studied experimentally to support the fundamentals of fracture mechanics
(Griffith, 1920). The theoretical strength of glass, Eq. (3.8), is about 14 GPa, whereas the actual
strength of 1 mm diameter glass fibers is only about 0.2 GPa, and for 5 mm diameter fibers, this value is
much lower (about 0.05 GPa). The fact that such low actual strength is caused by surface cracks can be
readily proved if the fiber surface is smoothed by etching the fiber with acid. Then the strength of 5 mm
diameter fibers can be increased up to 2 GPa. If the fiber diameter is reduced by heating and stretching
the fibers to a diameter of about 0.0025 mm, the strength is increased to 6 GPa. Theoretical extrap-
olation of the experimental curve, showing the dependence of the fiber strength on the fiber diameter
for very small fiber diameters, yields s ¼ 11 GPa, which is close to st ¼ 14 GPa.

Thus, we arrive at the following conclusion, clarifying the nature of the high performance of
advanced composites and their place among modern structural materials. The actual strength of
advanced structural materials is much lower than their theoretical strength. This difference is caused
by defects in the material microstructure (e.g., crystalline structure) or macrocracks inside the material
and on its surface. Using thin fibers, we reduce the influence of cracks and thus increase the strength of
materials reinforced with these fibers. So, advanced composites comprise a special class of structural
materials in which we try to utilize the natural potential properties of the material, rather than the
capabilities of technology as we do developing high-strength alloys.

3.2.2 Statistical aspects of fiber strength

Fiber strength, being relatively high, is still less than the corresponding theoretical strength, which means
that fibers of advanced composites have microcracks or other defects randomly distributed along the fiber
length. This is supported by the fact that the fiber strength depends on the length of the tested fiber. The
dependence of strength on length for boron fibers (Mikelsons and Gutans, 1984) is shown in Fig. 3.11.
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The longer the fiber, the higher is the probability of a deleterious defect to exist within this length, and the
lower the fiber strength. The tensile strengths of fiber segments with the same length but taken from
different parts of a long continuous fiber, or from different fibers, also demonstrate the strength deviation.
A typical strength distribution for boron fibers is presented in Fig. 3.12.

The first important characteristic of the strength deviation is the strength scatter, Ds ¼ smax � smin.
For the case corresponding to Fig. 3.12, smax ¼ 4:2 GPa, smin ¼ 2 GPa, and Ds ¼ 2:2 GPa. To plot the
diagram presented in Fig. 3.12, Ds is divided into a set of increments, and a normalized number of fibers
n ¼ Ns=N (Ns is the number of fibers failing at that stress within the increment, andN is the total number
of tested fibers) is calculated and shown on the vertical axis. Thus, the so-called frequency histogram can
be plotted. This histogram allows us to determine the mean value of the fiber strength as

sm ¼ 1

N

XN
i¼1

si (3.14)

and the strength dispersion as

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðsm � siÞ2
vuut (3.15)

The deviation of fiber strength is characterized by the coefficient of the strength variation, which is
presented as follows

rs ¼ ds
sm

100% (3.16)
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, GPaσ
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FIGURE 3.11

Dependence of strength of boron fibers on the fiber length.
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For the boron fibers under consideration, Eqs. (3.14)–(3.16) yield sm ¼ 3:2 GPa, ds ¼ 0:4 GPa, and
rs ¼ 12:5%.

To demonstrate the influence of fiber strength deviation on the strength of a unidirectional ply,
consider a bundle of fibers, i.e., a system of approximately parallel fibers with different strengths and
slightly different lengths as in Fig. 3.13. Typical stress-strain diagrams for fibers tested under tension in
a bundle are shown in Fig. 3.14 (Vasiliev and Tarnopol’skii, 1990). As can be seen, the diagrams have
two nonlinear segments. The nonlinearity in the vicinity of zero stresses is associated with different
lengths of fibers in the bundles, whereas the nonlinear behavior of the bundle under stresses close to the
ultimate values is caused by fracture of the fibers with lower strength.

Useful qualitative results can be obtained if we consider model bundles consisting of five fibers
with different strengths. Five such bundles are presented in Table 3.1, showing the normalized strength

L

j

FIGURE 3.13

Tension of a bundle of fibers.

GPa,σ0
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FIGURE 3.12

Strength distribution for boron fibers.
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of each fiber. As can be seen, the deviation of fiber strength is such that the mean strength, sm ¼ 1, is
the same for all the bundles, whereas the variation coefficient, rs, changes from 31.6% for bundle No.1
to zero for bundle No.5. The last row in the table shows the effective (observed) ultimate force, F, for
a bundle. Consider, for example, the first bundle. When the force is increased to F ¼ 3, the stresses in
all the fibers become sj ¼ 0:6, and fiber No.1 fails. After this happens, the force, F ¼ 3, is taken by
four fibers, and sj ¼ 0:75 ( j ¼ 2, 3, 4, 5). When the force reaches the value F ¼ 3.2, the stresses
become sj ¼ 0:8, and fiber No.2 fails. After that, sj ¼ 1:07 ( j ¼ 3, 4, 5). This means that fiber No.3
also fails at force F ¼ 3.2. Then, for the two remaining fibers, s4 ¼ s5 ¼ 1:6, and they also fail. Thus,
F ¼ 3:2 for bundle No.1. In a similar way, F can be calculated for the other bundles in the table. As can
be seen, the lower the fiber strength variation, the higher the F, which reaches its maximum value,
F ¼ 5, for bundle No.5 consisting of fibers with the same strength.

Table 3.2 demonstrates that strength variation can be more important than the mean strength. In
fact, while the mean strength, sm, goes down for bundles No.1–5, the ultimate force, F, increases. So, it
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FIGURE 3.14

Stress-strain diagrams for bundles of carbon (1) and aramid (2) fibers.

TABLE 3.1 Strength of Bundles Consisting of Fibers with Different Strengths.

Fiber No.

Bundle No.

1 2 3 4 5

1 0.6 0.7 0.85 0.9 1.0

2 0.8 0.9 0.9 0.95 1.0

3 1.0 1.0 1.0 1.0 1.0

4 1.2 1.1 1.1 1.05 1.0

5 1.4 1.3 1.15 1.1 1.0

sm
1.0 1.0 1.0 1.0 1.0

rs ð %Þ 31.6 22.4 12.8 7.8 0

F 3.2 3.6 4.25 4.5 5.0
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can be better to have fibers with relatively low strength and low strength variation than high-strength
fibers with high strength variation.

3.2.3 Stress diffusion in fibers interacting through the matrix

The foregoing discussion concerned individual fibers or bundles of fibers that are not joined together.
This is not the case for composite materials in which the fibers are embedded in the matrix material.
Usually, the stiffness of the matrix is much lower than that of the fibers (see Table 1.1), and the matrix
practically does not take the load applied in the fiber direction. However, the fact that the fibers are
bonded with the matrix even with relatively low stiffness changes the mechanism of fiber interaction
and considerably increases their effective strength. To show this, the strength of dry fiber bundles can
be compared with the strength of the same bundles after impregnating them with epoxy resin and
curing. The results are listed in Table 3.3. As can be seen, composite bundles in which fibers are joined
together by the matrix demonstrate significantly higher strength, and the higher the fiber sensitivity to
damage, the higher the difference in strength of dry and composite bundles. The influence of a matrix
on the variation of strength is even more significant. As follows from Table 3.4, the variation coef-
ficients of composite bundles are lower by an order of magnitude than those of individual fibers.

To clarify the role of a matrix in composite materials, consider the simple model of a unidirectional
ply shown in Fig. 3.15 and apply the method of analysis developed for stringer panels (Goodey, 1946).

TABLE 3.3 Strength of Dry Bundles and Composite Bundles.

Fibers
Sensitivity of Fibers
to Damage

Ultimate Tensile Load F (N)

Strength Increase (%)Dry Bundle Composite Bundle

Carbon High 14 26 85.7

Glass Moderate 21 36 71.4

Aramid Low 66 84 27.3

TABLE 3.2 Strength of Bundles Consisting of Fibers with Different Strengths.

Fiber no.

Bundle No.

1 2 3 4 5

1 0.6 0.7 0.85 0.9 0.95

2 0.8 0.9 0.9 0.85 0.95

3 1.0 1.2 1.1 1.0 0.95

4 1.6 1.4 1.15 1.05 0.95

5 3.0 1.6 1.4 1.1 0.95

sm
1.4 1.16 1.08 1.0 0.95

rs ð %Þ 95.0 66.0 22.0 7.8 0

F 3.2 3.6 4.25 4.5 4.75
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Let the ply of thickness d consist of 2k fibers symmetrically distributed on both sides of the central
fiber n ¼ 0. The fibers are joined with layers of the matrix material, and the fiber volume fraction is

vf ¼
af
a
; a ¼ af þ am (3.17)

Let the central fiber have a crack induced by the fiber damage or by the shortage of this fiber’s strength.
At a distance from the crack, the fibers are uniformly loaded with stress s (see Fig. 3.15).

First, derive the set of equations describing the ply under study. Since the stiffness of the matrix is
much less than that of fibers, we neglect the stress in the matrix acting in the x direction and assume
that the matrix works only in shear. We also assume that there are no displacements in the y direction.

Considering equilibrium of the last (n ¼ k) fiber, an arbitrary fiber, and the central (n ¼ 0) fiber
shown in Fig. 3.16, we arrive at the following equilibrium equations:

afs
0
k � sk ¼ 0

afs
0
n þ snþ1 � sn ¼ 0

afs
0
0 þ 2s1 ¼ 0

(3.18)

in which ð.Þ0 ¼ dð.Þ=dx.

TABLE 3.4 Variation Coefficient for Fibers and Unidirectional Composites.

Fibers

Variation Coefficient rs (%)

Fibers Composite

Glass 29 2.0

Carbon 30 4.7

Aramid 24 5.0

Boron 23 3.0

(n − 1)

x,u
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(n + 1)
(n + 1)
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σ

σ
σ

n
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a am

af

FIGURE 3.15

Model of a unidirectional ply with a broken fiber.
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FIGURE 3.16

Stresses acting in fibers and matrix layers for the last (a), arbitrary n-th fiber (b), and the central n ¼ 0 fiber (c).

3.2 Fiber-matrix interaction 67

www.EngineeringEBooksPdf.com



Constitutive equations for fibers and the matrix can be written as

sn ¼ Ef εn; sn ¼ Gmgn (3.19)

Here, Ef is the fiber elasticity modulus and Gm is the matrix shear modulus, whereas

εn ¼ u0n (3.20)

is the fiber strain expressed in terms of the displacement in the x direction. The shear strain in the
matrix follows from Fig. 3.17, i.e.,

gn ¼
1

am
ðun � un�1Þ (3.21)

This set of equations, Eqs. (3.18)–(3.21), is complete – it includes 10k þ 3 equations and contains the
same number of unknown stresses, strains, and displacements.

Consider the boundary conditions. If there is no crack in the central fiber, the solution of the
problem is evident and has the form sn ¼ s, sn ¼ 0. Assuming that the perturbation of the stressed
state induced by the crack vanishes at a distance from the crack, we arrive at

snðx/NÞ ¼ s; snðx/NÞ ¼ 0 (3.22)

As a result of the crack in the central fiber, we have

s0ðx ¼ 0Þ ¼ 0 (3.23)

For the remaining fibers, symmetry conditions yield

unðx ¼ 0Þ ¼ 0 ðn ¼ 1; 2; 3 . kÞ (3.24)

To solve the problem, we use the stress formulation and, in accordance with Section 2.10, should
consider equilibrium equations in conjunction with compatibility equations expressed in terms of
stresses.

First, transform equilibrium equations introducing the stress function, FðxÞ, such that

sn ¼ F0
n; Fn

�
x/N

� ¼ 0 (3.25)

n un

am

n − 1 un−1

γ
n

FIGURE 3.17

Shear strain in the matrix layer.
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Substituting Eqs. (3.25) into the equilibrium equations, Eqs. (3.18), integrating them from x toN, and
taking into account Eqs. (3.22) and (3.25), we obtain

sk ¼ sþ 1

af
Fk

sn ¼ s� 1

af
ðFnþ1 � FnÞ

s0 ¼ s� 2

af
F1

(3.26)

Compatibility equations follow from Eqs. (3.20) and (3.21), i.e.,

g0
n ¼

1

am
ðεn � εn�1Þ

Using constitutive equations, Eqs. (3.19), we can write them in terms of stresses

s0n ¼
Gm

amEf
ðsn � sn�1Þ

Substituting stresses from Eqs. (3.25) and (3.26) and introducing the dimensionless coordinate x ¼ x=a
(see Fig. 3.15), we finally arrive at the following set of governing equations:

F00
k � m2

�
2Fk � Fk�1

� ¼ 0

F00
n þ m2

�
Fnþ1 � 2Fn þ Fn�1

� ¼ 0

F00
1 þ m2

�
F2 � 3F1

� ¼ 0

(3.27)

in which, in accordance with Eqns. (3.17),

m2 ¼ Gma
2

af amEf
¼ Gm

vf
�
1� vf

�
Ef

(3.28)

With due regard to the second equation in Eqs. (3.25), we can take the general solution of Eqs. (3.27)
in the form

FnðxÞ ¼ Ane
�lx (3.29)

Substitution in Eqs. (3.27) yields:

Ak

�
2� l2

m2

�
� Ak�1 ¼ 0 (3.30)

Anþ1 � An

�
2� l2

m2

�
þ An�1 ¼ 0 (3.31)

A2 � A1

�
3� l2

m2

�
¼ 0 (3.32)

3.2 Fiber-matrix interaction 69

www.EngineeringEBooksPdf.com



The finite-difference equation, Eq. (3.31), can be reduced to the following form:

Anþ1 � 2An cos qþ An�1 ¼ 0 (3.33)

where

cos q ¼ 1� l2

2m2
(3.34)

As can be readily checked, the solution for Eq. (3.33) is

An ¼ B cos nqþ C sin nq (3.35)

whereas Eq. (3.34) yields, after some transformation,

l ¼ 2m sin
q

2
(3.36)

Substituting the solution, Eq. (3.35), into Eq. (3.30), we obtain, after some transformation,

B ¼ �C tan ðk þ 1Þq
Thus, Eq. (3.35) can be written as

An ¼ C½sin nq� cos nq,tan ðk þ 1Þq� (3.37)

Substituting Eq. (3.37) into Eq. (3.32) and performing rather cumbersome trigonometric trans-
formations, we arrive at the following equation for q:

tan kq ¼ �tan
q

2
(3.38)

The periodic properties of the tangent function in Eq. (3.38) mean that it has k þ 1 different roots
corresponding to intersection points of the curves z ¼ tan kq and z ¼ �tan q=2. For the case k ¼ 4,
considered below as an example, these points are shown in Fig. 3.18. Further transformation allows us

-6

-4

-2

0

0 1 2 3 4

z k= tan θ

z

θ , rad

z = − tan
θ
2

FIGURE 3.18

Geometric interpretation of Eq. (3.38) for k ¼ 4.
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to reduce Eq. (3.38) to

sin
2k þ 1

2
q ¼ 0

from which it follows that

qi ¼ 2pi

2k þ 1
ði ¼ 0; 1; 2 . kÞ (3.39)

The first root, q0 ¼ 0, corresponds to l ¼ 0 and Fn ¼ const, i.e., to a ply without a crack in the central
fiber. So, Eq. (3.39) specifies k roots (i ¼ 1, 2, 3, ., k) for the ply under study, and the solution in
Eqs. (3.29) and (3.37) can be generalized as

FnðxÞ ¼
Xk
i¼1

Ci

h
sin nqi � cos nqi,tan ðk þ 1Þqi

i
e�lix (3.40)

where, in accordance with Eq. (3.36),

li ¼ 2m sin
qi

2
(3.41)

and qi is determined by Eq. (3.39).
Using Eq. (3.38), we can transform Eq. (3.40) to the following final form:

FnðxÞ ¼
Xk
i¼1

CiSnðqiÞe�lix (3.42)

where

SnðqiÞ ¼
sin

2n� 1

2
qi

cos
qi

2

(3.43)

Applying Eqs. (3.25) and (3.26), we can find shear and normal stresses, i.e.,

snðxÞ ¼ �1

a

Xk
i¼1

liCiSnðqiÞe�lix ðn ¼ 1; 2; 3. kÞ (3.44)

skðxÞ ¼ sþ 1

af

Xk
i¼1

CiSkðqiÞe�lix (3.45)

snðxÞ ¼ s� 1

af

Xk
i¼1

Ci

h
Snþ1ðqiÞ � SnðqiÞ

i
e�lix ðn ¼ 1; 2; 3; 4 . k � 1Þ (3.46)

s0ðxÞ ¼ s� 2

af

Xk
i¼1

CiS1ðqiÞe�lix (3.47)

3.2 Fiber-matrix interaction 71

www.EngineeringEBooksPdf.com



Displacements can be determined with the aid of Eqs. (3.19), (3.21), and (3.25). Changing x for
x ¼ x=a, we get

unðxÞ ¼ am
aGm

F0
nðxÞ þ un�1ðxÞ

For the first fiber (n ¼ 1), we have

u1ðxÞ ¼ am
aGm

F0
1ðxÞ þ u0ðxÞ

Substituting Eq. (3.42) into these equations, we arrive at

unðxÞ ¼ � am
aGm

Xk
i¼1

CiliSnðqiÞe�lix þ un�1ðxÞ ðn ¼ 2; 3; 4 . kÞ (3.48)

u1ðxÞ ¼ � am
aGm

Xk
i¼1

CiliS1ðqiÞe�lix þ u0ðxÞ (3.49)

To determine coefficients Ci, we should apply the boundary conditions and write Eqs. (3.23) and (3.24)
in the explicit form using Eqs. (3.47)–(3.49). Substituting Sn from Eq. (3.43) and li from Eq. (3.41),
we have

Xk
i¼1

Ci tan
qi

2
¼ saf

2

Xk
i¼1

Ci tan
qi

2
sin

2n� 1

2
qi ¼ 0 ðn ¼ 2; 3; 4 . kÞ

Xk
i¼1

Ci tan
qi

2
sin

qi

2
¼ aGm

2mam
u0ð0Þ

Introducing new coefficients

Di ¼ Ci tan
qi

2
(3.50)

we arrive at the final form of the boundary conditions, i.e.,

Xk
i¼1

Di ¼ saf
2

(3.51)

Xk
i¼1

Di sin
2n� 1

2
qi ¼ 0 ðn ¼ 2; 3; 4 . kÞ (3.52)

Xk
i¼1

Di sin
qi

2
¼ aGm

2mam
u0ð0Þ (3.53)

This set contains k þ1 equations and includes k unknown coefficients Di and displacement u0ð0Þ.
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The foregoing set of equations allows us to obtain the exact analytical solution for any number of
fibers, k. To find this solution, some transformations are required. First, multiply Eq. (3.52) by
sin½ð2n� 1Þqs=2� and sum up all the equations from n ¼ 2 to n ¼ k. Adding Eq. (3.53) for n ¼ 1
multiplied by sinðqs=2Þ, we obtainXk

n¼1

Xk
i¼1

Di sin
2n� 1

2
qi sin

2n� 1

2
qs ¼ aGm

2mam
u0ð0Þ sin qs

2

Now the sequence of summation can be changed, as followsXk
i¼1

Di

Xk
n¼1

sin
2n� 1

2
qi sin

2n� 1

2
qs ¼ aGm

2mam
u0ð0Þ sin qs

2
(3.54)

Using the following known series Xk
n¼1

cosð2n� 1Þq ¼ sin 2kq

2 sin q

we get in several steps

Ris ¼
Xk
n¼1

sin
2n� 1

2
qi sin

2n� 1

2
qs

¼ 1

2

Xk
n¼1

�
cos

2n� 1

2
ðqi � qsÞ � cos

2n� 1

2
ðqi þ qsÞ

	

¼ 1

4

2
64 sin kðqi � qsÞ
sin

1

2
ðqi � qsÞ

� sin kðqi þ qsÞ
sin

1

2
ðqi þ qsÞ

3
75

¼
cos

qi

2
cos kqi cos

qs

2
cos kqs

cos qs � cos qi

�
tan kqi tan

qi

2
� tan kqs tan

qs

2

�

Using Eq. (3.38), we can conclude that Ris ¼ 0 for iss. For the case i ¼ s, we have

Rss ¼
Xk
n¼1

sin2
2n� 1

2
qs ¼ 1

2

Xk
n¼1

½1� cosð2n� 1Þqs� ¼ 1

2

�
k � sin 2kqs

2 sin qs

�

As a result, Eq. (3.54) yields

Ds ¼
2aGmu0ð0Þ sin qs

2
sin qs

mamð2k sin qs � sin 2kqsÞ ðs ¼ 1; 2; 3 .kÞ (3.55)
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Substituting these coefficients into Eq. (3.51), we can find u0ð0Þ, i.e.,

u0ð0Þ ¼ smaf am

4aGm

0
B@Xk

i¼1

sin
qi

2
sin qi

2k sin qi � sin 2kqi

1
CA

�1

(3.56)

Thus, the solution for the problem under study is specified by Eqs. (3.44)–(3.50), (3.55), and (3.56).
For example, consider a carbon-epoxy ply with the following parameters: Ef ¼ 250 GPa, Gm ¼ 1

GPa, vf ¼ 0:6, and k ¼ 4. The distribution of the normalized stresses in the fibers along the ply is
shown in Fig. 3.19, whereas the same distribution of shear stresses in the matrix is presented in
Fig. 3.20. As can be seen, in the vicinity of the crack in the central fiber, the load carried by this fiber is
transmitted by shear through the matrix to adjacent fibers. At a distance from the end of the fiber,
greater than li, the stress in the broken fiber becomes close to s, and for x > li, the fiber behaves as if
there is no crack. A portion of the broken fiber corresponding to 0 � x � li is not fully effective in
resisting the applied load, and li ¼ lia is referred to as the fiber ineffective length. Since the fiber
defects are randomly distributed along its length, their influence on the strength of the ply is minimal if
there are no other defects in the central fiber and its adjacent fibers within distance li from the crack.
To minimize the probability of such defects, we should minimize li which depends on fiber and matrix
stiffness and material microstructure.

To evaluate li, consider Eq. (3.47) and assume that s0ðxÞ becomes close to s if

e�li li ¼ k

where k is some small parameter indicating how close s0ðxÞ should be to s to neglect the difference
between them (as a matter of fact, this difference vanishes only for x/N). Taking approximately
li ¼ 2m in accordance with Eq. (3.41) and using Eq. (3.28) specifying m, we arrive at

li ¼ �1

2
lnk ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vf ð1� vf Þ

Ef

Gm

r
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FIGURE 3.19

Distribution of normal stresses along the fibers n ¼ 0, 1, 2, 3, 4 for k ¼ 4; Ef ¼ 250 GPa;Gm ¼ 1 GPa.
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For k ¼ 0.01, we get

li ¼ 2:3a ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vf ð1� vf Þ

Ef

Gm

r
(3.57)

For a typical carbon-epoxy ply (see Fig. 3.19) with a ¼ 0.016 mm and vf¼ 0.6, Eq. (3.57) yields
0.29 mm.

Thus, for real composites, the length li is very small, and this explains why a unidirectional
composite demonstrates much higher strength in longitudinal tension than a dry bundle of fibers (see
Table 3.3). Reducing Gm, i.e., the matrix stiffness, we increase the fiber ineffective length which
becomes infinitely large for Gm/0. This effect is demonstrated in Fig. 3.21 which corresponds to
a material whose matrix shear stiffness is much lower than that in the foregoing example (see
Fig. 3.19). For this case, li ¼ 50, and Eq. (3.57) yields li ¼ 0.8 mm. The distribution of shear stresses in
this material is shown in Fig. 3.22. Experiments with unidirectional glass-epoxy composites
(Ef ¼ 86:8 GPa, vf ¼ 0:68, and a ¼ 0.015) have shown that reduction of the matrix shear modulus
from 1.08 GPa (li ¼ 0.14 mm) to 0.037 GPa (li ¼ 0.78 mm) results in reduction of longitudinal tensile
strength from 2010 MPa to 1290 MPa, i.e., by 35.8% (Chiao, 1979).

The ineffective length of a fiber in a matrix can be found experimentally by using the single-fiber
fragmentation test. For this test, a fiber is embedded in a matrix, and tensile load is applied to the fiber
through the matrix until the fiber breaks. Further loading results in fiber fragmentation, and the length
of the fiber fragment that no longer breaks is the fiber ineffective length. For a carbon fiber in epoxy
matrix, li ¼ 0.3 mm (Fukuda et al., 1993).

According to the foregoing reasoning, it looks as though the stiffness of the matrix should be as
high as possible. However, there exists an upper limit of this stiffness. Comparing Figs. 3.20 and 3.22,
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FIGURE 3.20

Distribution of shear stresses along the fibers for k ¼ 4; Ef ¼ 250 GPa;Gm ¼ 1 GPa.

Numbers of the matrix layers:

n ¼ 1;
n ¼ 2;
n ¼ 3;
n ¼ 4.
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we can see that the higher the value of Gm, the higher is the shear stress concentration in the matrix in
the vicinity of the crack. If the maximum shear stress, sm, acting in the matrix reaches its ultimate
value, sm, delamination will occur between the matrix layer and the fiber, and the matrix will not
transfer the load from the broken fiber to the adjacent ones. This maximum shear stress depends on the
fiber stiffness – the lower the fiber modulus, the higher the value of sm. This is shown in Figs. 3.23 and
3.24, where shear stress distributions are presented for aramid fibers (Ef ¼ 150 GPa) and glass fibers
(Ef ¼ 90 GPa), respectively.

Finally, it should be emphasized that the plane model of a ply, considered in this section (see
Fig. 3.15), provides only qualitative results concerning fibers and matrix interaction. In real materials,
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FIGURE 3.22

Distribution of shear stresses along the fibers for k ¼ 4; Ef ¼ 250 GPa;Gm ¼ 0:125 GPa. Numbers of the matrix

layers:

n ¼ 1;
n ¼ 2;
n ¼ 3;
n ¼ 4.
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FIGURE 3.21

Distribution of normal stresses along the fibers n ¼ 0, 1, 2, 3, 4 for k ¼ 4; Ef ¼ 250 GPa;Gm ¼ 0:125 GPa.

76 CHAPTER 3 Mechanics of a unidirectional ply

www.EngineeringEBooksPdf.com



-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 5 10 15 20 25 30 35 40 45 50

τ σn

x

FIGURE 3.24

Distribution of shear stresses along the fibers for k ¼ 4; Ef ¼ 90 GPa;Gm ¼ 1 GPa. Numbers of the matrix layers:

n ¼ 1;
n ¼ 2;
n ¼ 3;
n ¼ 4.
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FIGURE 3.23

Distribution of shear stresses along the fibers for k ¼ 4; Ef ¼ 150 GPa;Gm ¼ 1 GPa. Numbers of the matrix

layers:

n ¼ 1;
n ¼ 2;
n ¼ 3;
n ¼ 4.
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a broken fiber is surrounded with more than two fibers (at least five or six as can be seen in Fig. 3.2), so
the stress concentration in these fibers and in the matrix is much lower than would be predicted by the
foregoing analysis. For a hexagonal fiber distribution (see Fig. 3.4), the stress concentration factor for
the fibers does not exceed 1.105 (Tikhomirov and Yushanov, 1980). The effect of fiber breakage on
tensile strength of unidirectional composites has been studied by Abu-Farsakh et al. (2000).

3.2.4 Fracture toughness

Fracture toughness is a very important characteristic of a structural material indicating resistance of
a material to cracks and governed by the work needed to fracture a material (work of fracture). It is well
known that there exist brittle and ductile metal alloys, whose typical stress-strain diagrams are shown
in Fig. 3.25. Comparing alloys with one and the same basic metal (e.g., steel alloys), we can see that
while brittle alloys have higher strength, s, ductile alloys have higher ultimate elongation, ε, and, as
a result, higher work of fracture that is proportional to the area under the stress-strain diagram. Though
brittle materials have, in general, higher strength, they are sensitive to cracks that, by propagating, can
cause material failure for a stress that is much lower than the static strength. That is why design
engineers usually prefer ductile materials with lower strength but higher fracture toughness. A typical
dependence of fracture toughness on static strength for metals is shown in Fig. 3.26 (line 1). For
composites, this dependence is entirely different (line 2) – a higher static strength corresponds usually
to higher fracture toughness (Mileiko, 1982). This phenomenon is demonstrated for a unidirectional
boron-aluminum composite in Fig. 3.27 (Mileiko, 1982). As can be seen, an increase in fiber volume
fraction, vf , results not only in higher static strength along the fibers (line 1), which is quite natural, but
also is accompanied by an increase in the work of fracture (curve 2) and, consequently, in an increase
in the material fatigue strength (bending under 106 cycles, line 3), which shows a material’s sensitivity
to cracks.

The reason for such a specific behavior in composite materials is associated with their inhomo-
geneous microstructure, particularly with fiber-matrix interfaces that restrain free propagation of
a crack (see Fig. 3.28). Of some importance are also fiber defects, local delaminations, and fiber
strength deviation, which reduce the static strength but increase the fracture toughness. As a result, by

2

σ

ε

1
σ

ε

FIGURE 3.25

Typical stress-strain diagrams of brittle (1) and ductile (2) metal alloys.
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combining brittle fibers and brittle matrix, we usually arrive at a composite material whose fracture
toughness is higher than that of its constituents.

Thus, we can conclude that composites comprise a new class of structural materials that are entirely
different from traditional man-made materials for several reasons. Firstly, using thin fibers, we make
an attempt to utilize the high strength capacity that is naturally inherent in all the materials. Secondly,
this utilization is provided by the matrix material, which increases the fiber performance and makes it
possible to manufacture composite structures. Thirdly, combination of fibers and matrices can result in
new qualities of composite materials that are not inherent either in individual fibers or in the matrices,

K

σ

1

2

FIGURE 3.26

Typical relations between fracture toughness (K) and strength (s) for metals (1) and composites (2).
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FIGURE 3.27

Dependence of static strength (1), work of fracture (2), and fatigue strength (3) on fiber volume fraction for

a boron-aluminum composite material.
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and are not described by the laws of mechanical mixtures. For example, as noted above, brittle fiber
and matrix materials, both having low fracture toughness on their own, can provide a heterogeneous
composite material with higher fracture toughness.

3.3 MICROMECHANICS OF A PLY
Consider a unidirectional composite ply under the action of in-plane normal and shear stresses as in
Fig. 3.29. Since the normal stresses do not change the right angle between axes 1 and 2, and shear
stresses do not cause elongations in the longitudinal and transverse directions 1 and 2, the ply is
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τ 12

τ 12

τ 12
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3

FIGURE 3.29

A unidirectional ply under in-plane loading.
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FIGURE 3.28

Mechanism of the crack stopping at the fiber-matrix interface.
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orthotropic, and the corresponding constitutive equations, Eqs. (2.48) and (2.53), yield for the case
under study

ε1 ¼ s1

E1
� n12

s2

E2

ε2 ¼ s2

E2
� n21

s1

E1

g12 ¼
1

G12
s12

(3.58)

The inverse form of these equations is

s1 ¼ E1

�
ε1 þ n12ε2

�
s2 ¼ E2

�
ε2 þ n21ε1

�
s12 ¼ G12g12

(3.59)

where

E1;2 ¼ E1;2

1� n12 n21

and the following symmetry condition is valid

E1n12 ¼ E2 n21 (3.60)

The constitutive equations, Eqs. (3.58) and (3.59), include effective or apparent longitudinal, E1,
transverse, E2, and shear, G12, moduli of a ply and Poisson’s ratios n12 and n21, only one of which is
independent, since the second one can be found from Eq. (3.60).

The elastic constants, E1, E2, and G12, and n12 or n21, are governed by fibers and matrix properties
and the ply microstructure, i.e., the shape and size of the fibers’ cross-sections, fiber volume fraction,
distribution of fibers in the ply. The task of micromechanics is to derive the corresponding governing
relationships, i.e., to establish the relation between the properties of a unidirectional ply and those of its
constituents.

To achieve this, we should first know the mechanical characteristics of the fibers and the matrix
material of the ply. To determine the matrix modulus, Em, its Poisson’s ratio, nm, and strength, sm,
conventional material specimens and testing procedures can be used (see Figs. 3.30 and 3.31). The
shear modulus, Gm, can be calculated with the aid of Eq. (2.57). To find the fibers’ properties is a more
complicated problem. There exist several methods to test elementary fibers by bending or stretching
10–30 mm long fiber segments. All of them are rather specific because of the small (about 0.01 mm)

FIGURE 3.30

Specimens of matrix material.
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fiber diameter, and, more important, the fiber properties in a composite material can be different from
those of individual fibers (see Section 3.2.3) with the preassigned lengths provided by these methods.

It is worth knowing a fiber’s actual modulus and strength, not only for micromechanics but also to
check the fiber’s quality before it is used to fabricate a composite part. For this purpose, a simple and
reliable method has been developed to test the fibers in simulated actual conditions. According to this
method, a fine tow or an assembly of fibers is carefully impregnated with resin, slightly stretched to
avoid fiber waviness, and cured to provide a specimen of the so-called microcomposite material. The
microcomposite strand is overwrapped over two discs as in Fig. 3.32, or fixed in special friction grips
as in Fig. 3.33, and tested under tension to determine the ultimate tensile force F and strain ε cor-
responding to some force F < F. Then, the resin is removed by burning it out, and the mass of fibers
being divided by the strand length and fiber density yields the cross-sectional area of fibers in the
strand, Af . Fiber strength and modulus can be calculated as

sf ¼ F

Af
; Ef ¼ F

Af ε

FIGURE 3.31

Testing of the matrix specimen.
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In addition to fiber and matrix mechanical properties, micromechanical analysis requires information
about the ply microstructure. Depending on the level of this information, there exist micromechanical
models of different levels of complexity.

The simplest or zero-order model of a ply is a monotropic model ignoring the strength and stiffness
of the matrix and assuming that the ply works only in the fiber direction. Taking E2 ¼ 0 andG12 ¼ 0 in
Eqs. (3.59) and putting n12 ¼ 0 in accordance with Eq. (3.60), we arrive at the following equations
describing this model:

s1 ¼ E1ε1; s2 ¼ 0; s12 ¼ 0 (3.61)

in which E1 ¼ Efvf . Being very simple and too approximate to be used in the stress-strain analysis of
composite structures, Eqs. (3.61) are extremely efficient for the design of optimal composite structures
in which the loads are carried mainly by the fibers (see Chapter 12).

First-order models allow for the matrix stiffness but require only one structural parameter to be
specified: fiber volume fraction, vf . Since the fiber distribution in the ply is not important for these
models, the ply can be presented as a system of strips (shown in Fig. 3.34, simulating fibers (shaded

FIGURE 3.32

Testing of a microcomposite specimen overwrapped over discs.
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FIGURE 3.33

Testing of a microcomposite specimen gripped at the ends.

1

2
3

fama

σ 1

σ 2σ 2

τ12

τ 12

τ 12

σ 1

τ 12

a

FIGURE 3.34

A first-order model of a unidirectional ply.
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areas) and matrix (light areas)). The structural parameters of the model can be expressed in terms of
fiber and matrix volume fractions only, i.e.,

af
a
¼ vf ;

am
a

¼ vm; vf þ vm ¼ 1 (3.62)

Suppose that the ply is under in-plane loading with some effective stresses s1, s2, and s12 as in
Fig. 3.34, and find the corresponding effective elastic constants E1, E2, G12, n12, and n21 entering
Eqs. (3.58). Constitutive equations for isotropic fiber and matrix strips can be written as

ε
f ;m
1 ¼ 1

Ef ;m

�
s
f ;m
1 � nf ;ms

f ;m
2

�

ε
f ;m
2 ¼ 1

Ef ;m

�
s
f ;m
2 � nf ;ms

f ;m
1

�

g
f ;m
12 ¼ 1

Gf ;m
s f ;m12

(3.63)

Here, f and m indices correspond, as earlier, to fibers and matrix, respectively.
Let us make some assumptions concerning the model behavior. First, it is natural to assume that

effective stress resultant s1a is distributed between fiber and matrix strips and that the longitudinal
strains of these strips are the same as the effective (apparent) longitudinal strain of the ply, ε1, i.e.,

s1a ¼ s
f
1af þ sm1 am (3.64)

ε
f
1 ¼ ε

m
1 ¼ ε1 (3.65)

Second, as can be seen in Fig. 3.34, under transverse tension the stresses in the strips are the same and
are equal to the effective stress s2, whereas the ply elongation in the transverse direction is the sum of
the fiber and matrix strips’ elongations, i.e.,

s
f
2 ¼ sm

2 ¼ s2 (3.66)

Da ¼ Daf þ Dam (3.67)

Introducing transverse strains

ε2 ¼ Da

a
; ε

f
2 ¼ Daf

af
; ε

m
2 ¼ Dam

am

we can write Eq. (3.67) in the following form:

ε2a ¼ ε
f
2af þ ε

m
2 am (3.68)

The same assumptions can be made for shear stresses and strains, so that

s f
12 ¼ sm12 ¼ s12 (3.69)

g12a ¼ g
f
12af þ gm

12am (3.70)
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With due regard to Eqs. (3.65), (3.66), and (3.69), constitutive equations, Eqs. (3.63) can be
reduced to

ε1 ¼ 1

Ef

�
s
f
1 � nfs2

�
; ε1 ¼ 1

Em

�
sm1 � nms2

�
(3.71)

ε
f
2 ¼

1

Ef

�
s2 � nfs

f
1

�
; ε

m
2 ¼ 1

Em

�
s2 � nms

m
1

�
(3.72)

g
f
12 ¼

1

Gf
s12; gm12 ¼

1

Gm
s12 (3.73)

The first two equations, Eqs. (3.71), allow us to find longitudinal stresses, i.e.,

s
f
1 ¼ Ef ε1 þ nfs2; sm

1 ¼ Emε1 þ nms2 (3.74)

Equilibrium equation, Eq. (3.64), can be rearranged with the aid of Eqs. (3.62) to the form

s1 ¼ s
f
1vf þ sm

1 vm (3.75)

Substituting Eqs. (3.74) into this equation, we can express ε1 in terms of s1 and s2. Combining this
result with the first constitutive equation in Eqs. (3.58), we arrive at

E1 ¼ Efvf þ Emvm (3.76)

n12

E2
¼ nf vf þ nmvm

Ef vf þ Emvm
(3.77)

The first of these equations specifies the apparent longitudinal modulus of the ply and corresponds to
the so-called rule of mixtures, according to which the property of a composite can be calculated as the
sum of its constituent material properties multiplied by the corresponding volume fractions.

Now consider Eq. (3.68) that can be written as

ε2 ¼ ε
f
2vf þ ε

m
2 vm

Substituting strains ε f2 and εm2 from Eqs. (3.72), stresses s f
1 and sm1 from Eqs. (3.74), and ε1 from Eqs.

(3.58) with due regard to Eqs. (3.76) and (3.77), we can express ε2 in terms of s1 and s2. Comparing
this expression with the second constitutive equation in Eqs. (3.58), we get

1

E2
¼ vf

Ef
þ vm
Em

� vf vm
�
Ef nm � Emnf

�2
Ef Em

�
Efvf þ Emvm

� (3.78)

n21

E1
¼ nf vf þ nmvm

Ef vf þ Emvm
(3.79)

Using Eqs. (3.76) and (3.79), we have

n21 ¼ nf vf þ nmvm (3.80)
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This result corresponds to the rule of mixtures. The second Poisson’s ratio can be found from Eqs.
(3.77) and (3.78). Finally, Eqs. (3.58), (3.70), and (3.73) yield the apparent shear modulus

1

G12
¼ vf

Gf
þ vm
Gm

(3.81)

This expression can be derived from the rule of mixtures if we use compliance coefficients instead of
stiffness, as in Eq. (3.76).

Since the fiber modulus is typically many times greater than the matrix modulus, Eqs. (3.76),
(3.78), and (3.81) can be simplified, neglecting small terms, and presented in the following approx-
imate form:

E1 ¼ Ef vf ; E2 ¼ Em

vm
�
1� n2m

�; G12 ¼ Gm

vm

Only two of the foregoing expressions, namely Eq. (3.76) for E1 and Eq. (3.80) for n21, both following
from the rule of mixtures, demonstrate good agreement with experimental results. Moreover,
expressions analogous to Eqs. (3.76) and (3.80) follow practically from the numerous studies based on
different micromechanical models. Comparison of predicted and experimental results is presented in
Figs. 3.35–3.37, where theoretical dependencies of normalized moduli on the fiber volume fraction are
shown with lines. The dots correspond to the test data for epoxy composites reinforced with different
fibers that have been measured by the authors or taken from publications of Tarnopol’skii and Roze
(1969), Kondo and Aoki (1982), and Lee et al. (1995). As can be seen in Fig. 3.35, not only the first-
order model, Eq. (3.76), but also the zero-order model, Eqs. (3.61), provide fair predictions for E1,
whereas Figs. 3.36 and 3.37 for E2 and G12 call for an improvement to the first-order model
(the corresponding results are shown with solid lines).
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FIGURE 3.35

Dependence of the normalized longitudinal modulus on fiber volume fraction

zero-order model, Eq. (3.61);

first-order model, Eq. (3.76);

experimental data.
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FIGURE 3.36

Dependence of the normalized transverse modulus on fiber volume fraction.

first-order model, Eq. (3.78);

second-order model, Eq. (3.89);

higher-order model (elasticity solution) (Van Fo Fy , 1966);

the upper bound;

experimental data.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8

G Gm12

vf

FIGURE 3.37

Dependence of the normalized in-plane shear modulus on fiber volume fraction.

first-order model, Eq. (3.81);

second-order model, Eq. (3.90);

higher-order model (elasticity solution) (Van Fo Fy , 1966);

experimental data.
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Second-order models allow for the fiber shape and distribution, but in contrast to higher-order
models, ignore the complicated stressed state in the fibers and matrix under loading of the ply as
shown in Fig. 3.29. To demonstrate this approach, consider a layer-wise fiber distribution (see Fig. 3.5)
and assume that the fibers are absolutely rigid and the matrix is in the simplest uniaxial stressed state
under transverse tension. The typical element of this model is shown in Fig. 3.38 from which we can
obtain the following equation:

vf ¼ pR2

2Ra
¼ pR

2a
(3.82)

Since 2R < a, vf < p=4 ¼ 0:785. The equilibrium condition yields

2Rs2 ¼
ZR
�R

smdx3 (3.83)

where x3 ¼ R cos a and s2 is some average transverse stress that induces average strain

ε2 ¼ Da

a
(3.84)

such that the effective (apparent) transverse modulus is calculated as

E2 ¼ s2

ε2
(3.85)

The strain in the matrix can be determined with the aid of Fig. 3.38 and Eq. (3.84), i.e.,

εm ¼ Da

lðaÞ ¼
Da

a� 2R sin a
¼ ε2

1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�


x3
R

�2r (3.86)

where in accordance with Eq. (3.82),

l ¼ 2R

a
¼ 4vf

p
(3.87)
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FIGURE 3.38

Microstructural model of the second order.
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Assuming that there is no strain in the matrix in the fiber direction and there is no stress in the matrix in
the x3 direction, we have

sm ¼ Emεm

1� n2m
(3.88)

Substituting s2 from Eq. (3.85) and sm from Eq. (3.88) into Eq. (3.83), and using Eq. (3.86) to express
εm, we arrive at

E2 ¼ Em

2R
�
1� n2m

� ZR
�R

dx3

1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�



x3
R

�2r
Calculating the integral and taking into account Eq. (3.87), we finally get

E2 ¼ pEmrðlÞ
2vf
�
1� n2m

� (3.89)

where

rðlÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ l

1� l

r
� p

4

Similar derivation for an in-plane shear yields

G12 ¼ pGm

2vf
rðlÞ (3.90)

The dependencies of E2 and G12 on the fiber volume fraction corresponding to Eqs. (3.89) and (3.90)
are shown in Figs. 3.36 and 3.37 (dotted lines). As can be seen, the second-order model of a ply
provides better agreement with the experimental results than the first-order model. This agreement can
be further improved if we take a more realistic microstructure of the material. Consider the actual
microstructure shown in Fig. 3.2 and single out a typical square element with size a as in Fig. 3.39. The
dimension a should provide the same fiber volume fraction for the element as for the material under

a

a
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j

h

lij

x 2

x 3

FIGURE 3.39

Typical structural element.
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study. To calculate E2, we divide the element into a system of thin (h<<a) strips parallel to axis x2.
The ith strip is shown in Fig. 3.39. For each strip, we measure the lengths, lij, of the matrix elements,
the jth of which is shown in Fig. 3.39. Then, equations analogous to Eqs. (3.83), (3.88), and (3.86) take
the form

s2a ¼ h
X
i

sðiÞm ; sðiÞm ¼ Em

1� n2m
ε
ðiÞ
m ; ε

ðiÞ
m ¼ ε2aP

j
lij

and the final result is

E2 ¼ Emh

1� n2m

X
i

 X
j

lij

!�1

where h ¼ h=a, lij ¼ lij=a. The second-order models considered above can be readily generalized to
account for the fiber transverse stiffness and matrix nonlinearity.

Numerous higher-order microstructural models and descriptive approaches have been proposed,
including:

• Analytical solutions in the problems of elasticity for an isotropic matrix having regular inclusions:
fibers or periodically spaced groups of fibers

• Numerical (finite element, finite difference methods) stress analysis of the matrix in the vicinity of
fibers

• Averaging of stress and strain fields for a media filled in with regularly or randomly distributed
fibers

• Asymptotic solutions of elasticity equations for inhomogeneous solids characterized by a small
microstructural parameter (fiber diameter)

• Photoelasticity methods

An exact elasticity solution for a periodical system of fibers embedded in an isotropic matrix
(Van Fo Fy (Vanin), 1966) is shown in Figs. 3.36 and 3.37. As can be seen, due to the high scatter in
experimental data, the higher-order model does not demonstrate significant advantages with respect to
elementary models.

Moreover, all the micromechanical models can hardly be used for practical analysis of composite
materials and structures. The reason for this is that irrespective of how rigorous the micromechanical
model is, it cannot describe adequately enough a real material microstructure governed by a particular
manufacturing process, taking into account voids, microcracks, randomly damaged or misaligned
fibers, and many other effects that cannot be formally reflected in a mathematical model. As a result of
this, micromechanical models are mostly used for qualitative analysis, providing us with the under-
standing of how material microstructural parameters affect the mechanical properties rather than with
quantitative information about these properties. In particular, the foregoing analysis should result in
two main conclusions. First, the ply stiffness along the fibers is governed by the fibers and linearly
depends on the fiber volume fraction. Second, the ply stiffness across the fibers and in shear is
determined not only by the matrix (which is natural), but by the fibers as well. Although the fibers do
not directly take the load applied in the transverse direction, they significantly increase the ply
transverse stiffness (in comparison with the stiffness of a net matrix), acting as rigid inclusions in the
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matrix. Indeed, as can be seen in Fig. 3.34, the higher the fiber fraction, af , the lower the matrix
fraction, am, for the same a, and the higher stress s2 should be applied to the ply to cause the same
transverse strain ε2, because only matrix strips are deformable in the transverse direction.

Due to the aforementioned limitations of micromechanics, only the basic models were considered
in the previous examples. Historical overview of micromechanical approaches and more detailed
description of the corresponding results can be found elsewhere (Bogdanovich and Pastore, 1996;
Jones, 1999).

To analyze the foregoing micromechanical models, we used the traditional approach based on
direct derivation and solution of the system of equilibrium, constitutive, and strain-displacement
equations. Alternatively, the same problems can be solved with the aid of variational principles dis-
cussed in Section 2.11. In their application to micromechanics, these principles allow us not only to
determine the apparent stiffnesses of the ply, but also to establish the upper and the lower bounds on
them.

Consider, for example, the problem of transverse tension of a ply under the action of some average
stress s2 (see Fig. 3.29) and apply the principle of minimum strain energy (see Section 2.11.2).
According to this principle, the actual stress field provides the value of the body strain energy, which is
equal to or less than that of any statically admissible stress field. Equality takes place only if the
admissible stress state coincides with the actual one. Excluding this case, i.e., assuming that the class
of admissible fields under study does not contain the actual field, we can write the following strict
inequality

Wadm
s > Wact

s (3.91)

In the case of transverse tension, the fibers can be treated as absolutely rigid, and only the matrix strain
energy needs to be taken into account. We can also neglect the energy of shear strain and consider the
energy corresponding to normal strains only. With due regard to these assumptions, we use Eqs. (2.51)
and (2.52) to get

W ¼
ZZZ
Vm

UdVm (3.92)

where Vm is the volume of the matrix, and

U ¼ 1

2

�
sm1 ε

m
1 þ sm2 ε

m
2 þ sm3 ε

m
3

�
(3.93)

To find energyWs entering inequality (3.91), we should express strains in terms of stresses with the aid
of constitutive equations, i.e.,

ε
m
1 ¼ 1

Em

�
sm1 � nms

m
2 � nms

m
3

�

ε
m
2 ¼ 1

Em

�
sm2 � nms

m
1 � nms

m
3

�

ε
m
3 ¼ 1

Em

�
sm3 � nms

m
1 � nms

m
2

�
(3.94)
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Consider first the actual stress state. Let the ply in Fig. 3.29 be loaded with stress s2 inducing apparent
strain ε2 such that

ε2 ¼ s2

Eact
2

(3.95)

Here, Eact
2 is the actual apparent modulus, which is not known. With due regard to Eqs. (3.92) and

(3.93), we get

W ¼ 1

2
s2ε2V ; Wact

s ¼ s22
2Eact

2

V (3.96)

where V is the volume of the material. As an admissible field, we can take any state of stress that
satisfies the equilibrium equations and force boundary conditions. Using the simplest first-order model
shown in Fig. 3.34, we assume that

sm
1 ¼ sm

3 ¼ 0; sm
2 ¼ s2

Then, Eqs. (3.92)–(3.94) yield

Wadm
s ¼ s22

2Em
Vm (3.97)

Substituting Eqs. (3.96) and (3.97) into the inequality (3.91), we arrive at

Eact
2 > El

2

where, in accordance with Eqs. (3.62) and Fig. 3.34,

El
2 ¼

EmV
Vm

¼ Em

vm

This result, specifying the lower bound on the apparent transverse modulus, follows from Eq. (3.78)
if we put Ef/N. Thus, the lower (solid) line in Fig. 3.36 actually represents the lower bound on E2.

To derive the expression for the upper bound, we should use the principle of minimum total
potential energy (see Section 2.11.1), according to which (we again assume that the admissible field
does not include the actual state)

Tadm > Tact (3.98)

where T ¼ Wε � A. Here,Wε is determined with Eq. (3.92), in which stresses are expressed in terms of
strains with the aid of Eqs. (3.94), and A, for the problem under study, is the product of the force acting
on the ply and the ply extension induced by this force. Since the force is the resultant of stress s2 (see
Fig. 3.29) which induces strain ε2, the same for actual and admissible states, A is also the same for both
states, and we can present inequality (3.98) as

Wadm
ε

> Wact
ε

(3.99)

For the actual state, we can write equations similar to Eqs. (3.96), i.e.,

W ¼ 1

2
s2ε2V ; Wact

ε
¼ 1

2
Eact
2 ε

2
2V (3.100)
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in which V ¼ 2Ra in accordance with Fig. 3.38. For the admissible state, we use the second-order
model (see Fig. 3.38) and assume that

ε
m
1 ¼ 0; ε

m
2 ¼ εm; ε

m
3 ¼ 0

where εm is the matrix strain specified by Eq. (3.86). Then, Eqs. (3.94) yield

sm1 ¼ mms
m
2 ; sm3 ¼ mms

m
2 ; sm2 ¼ Emεm

1� 2nmmm
(3.101)

where

mm ¼ nmð1þ nmÞ
1� n2m

Substituting Eqs. (3.101) into Eq. (3.93) and performing integration in accordance with Eq. (3.92),
we have

Wadm
ε

¼ Emε
2
2

1� 2nmmm
$

ZR
�R

dx3

Za2 y
0

dx2
y2

¼ pRaEmε
2
2r
�
l
�

2vf
�
1� 2nmmm

� (3.102)

Here,

y ¼ 1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�


x3
R

�2r

and rðlÞ is given above (see also Eq. (3.89)). Applying Eqs. (3.100) and (3.102) in conjunction with
inequality (3.99), we arrive at

Eact
2 < Eu

2

where

Eu
2 ¼ pEm

2vf
�
1� 2nmmm

�
is the upper bound on E2, shown in Fig. 3.36 with a dashed curve.

Taking statically and kinematically admissible stress and strain fields that are closer to the actual
state of stress and strain, one can increase El

2 and decrease Eu
2, making the difference between the

bounds smaller (Hashin and Rosen, 1964).
It should be emphasized that the bounds established thus are not the bounds imposed on the

modulus of a real composite material but on the result of calculation corresponding to the accepted
material model. Indeed, we can return to the first-order model shown in Fig. 3.34 and consider in-plane
shear with stress s12. As can be readily proved, the actual stress-strain state of the matrix in this case is
characterized by the following stresses and strains

sm1 ¼ sm2 ¼ sm3 ¼ 0; sm12 ¼ s12; sm13 ¼ sm23 ¼ 0

ε
m
1 ¼ ε

m
2 ¼ ε

m
3 ¼ 0; gm

12 ¼ g12; gm13 ¼ gm
23¼ 0

(3.103)
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Assuming that the fibers are absolutely rigid and considering stresses and strains in Eqs. (3.103) as
statically and kinematically admissible, we can readily find that

Gact
12 ¼ Gl

12 ¼ Gu
12 ¼

Gm

vm

Thus, we have found the exact solution, but its agreement with experimental data is rather poor (see
Fig. 3.37) because the material model is not sufficiently adequate.

As follows from the foregoing discussion, micromechanical analysis provides only qualitative
prediction of the ply stiffness. The same is true for the ply strength. Although the micromechanical
approach can be used in principle for strength analysis (Skudra et al., 1989), it mainly provides better
understanding of the failure mechanism rather than the values of the ultimate stresses for typical
loading cases. For practical applications, these stresses are determined by experimental methods
described in the next section.

3.4 MECHANICAL PROPERTIES OF A PLY UNDER TENSION,
SHEAR, AND COMPRESSION
As shown in Fig. 3.29, a ply can experience five types of elementary loading:

• Tension along the fibers
• Tension across the fibers
• In-plane shear
• Compression along the fibers
• Compression across the fibers

Actual mechanical properties of a ply under these loading cases are determined experimentally
by testing of specially fabricated specimens. Since the thickness of an elementary ply is very small
(0.1–0.2 mm), the specimen usually consists of tens of plies having the same fiber orientations.

Mechanical properties of composite materials depend on the processing method and parameters.
So, to obtain the adequate material characteristics that can be used for analysis of structural elements,
the specimens should be fabricated by the same processes that are used to manufacture the structural
elements. In connection with this, there exist two standard types of specimens – flat ones that are used
to test materials made by hand or machine lay-up and cylindrical (tubular or ring) specimens that
represent materials made by winding.

Typical mechanical properties of unidirectional advanced composites are presented in Table 3.5
and in Figs. 3.40–3.43. More data relevant to the various types of particular composite materials can be
found in Peters (1998).

We now consider typical loading cases.

3.4.1 Longitudinal tension

Stiffness and strength of unidirectional composites under longitudinal tension are determined by the
fibers. As follows from Fig. 3.35, material stiffness linearly increases with increase in the fiber volume
fraction. The same law following from Eq. (3.75) is valid for the material strength. If the fiber’s
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TABLE 3.5 Typical Properties of Unidirectional Composites.

Property
Glass-
Epoxy

Carbon-
Epoxy

Carbon-
PEEK

Aramid-
Epoxy

Boron-
Epoxy Boron-Al

Carbon-
Carbon Al2O3-Al

Fiber volume
fraction, vf

0.65 0.62 0.61 0.6 0.5 0.5 0.6 0.6

Density, r (g/cm3) 2.1 1.55 1.6 1.32 2.1 2.65 1.75 3.45

Longitudinal
modulus, E1 (GPa)

60 140 140 95 210 260 170 260

Transverse
modulus, E2 (GPa)

13 11 10 5.1 19 140 19 150

Shear modulus,
G12 (GPa)

3.4 5.5 5.1 1.8 4.8 60 9 60

Poisson’s ratio, n12 0.3 0.27 0.3 0.34 0.21 0.3 0.3 0.24

Longitudinal
tensile strength,
sþ1 (MPa)

1800 2000 2100 2500 1300 1300 340 700

Longitudinal
compressive
strength, s�1 (MPa)

650 1200 1200 300 2000 2000 180 3400

Transverse tensile
strength, sþ2 (MPa)

40 50 75 30 70 140 7 190

Transverse
compressive
strength, s�2 (MPa)

90 170 250 130 300 300 50 400

In-plane shear
strength, s12 (MPa)

50 70 160 30 80 90 30 120
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ultimate elongation, εf , is less than that of the matrix (which is normally the case), the longitudinal
tensile strength is determined as

sþ1 ¼ �Ef vf þ Emvm
�
εf (3.104)

However, in contrast toEq. (3.76) forE1, this equation isnot valid for very small andvery highfiber volume
fractions. The dependence of sþ1 on vf is shown in Fig. 3.44. For very low vf , the fibers do not restrain the
matrix deformation. Being stretched by the matrix, the fibers fail because their ultimate elongation is less
than that of the matrix and the induced stress concentration in the matrix can reduce material strength
below the strength of thematrix (pointB). LineBC in Fig. 3.44 corresponds to Eq. (3.104). At pointC, the
amount of matrix reduces below the level necessary for a monolithic material, and the material strength at
pointD approximately corresponds to the strength of a dry bundle of fibers, which is less than the strength
of a composite bundle of fibers bound with matrix (see Table 3.3).

Strength and stiffness under longitudinal tension are determined using unidirectional strips or
rings. The strips are cut out of unidirectionally reinforced plates, and their ends are made thicker
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FIGURE 3.40

Stress-strain curves for unidirectional glass-epoxy composite material under longitudinal tension and

compression (a), transverse tension and compression (b), and in-plane shear (b).
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(usually glass-epoxy tabs are bonded onto the ends) to avoid specimen failure in the grips of the testing
machine (Jones, 1999; Lagace, 1985). Rings are cut out of a circumferentially wound cylinder or
wound individually on a special mandrel, as shown in Fig. 3.45. The strips are tested using traditional
approaches, whereas the rings should be loaded with internal pressure. There exist several methods to
apply the pressure (Tarnopol’skii and Kincis, 1985), the simplest of which involves the use of
mechanical fixtures with various numbers of sectors as in Figs. 3.46 and 3.47. The failure mode is
shown in Fig. 3.48. Longitudinal tension yields the following mechanical properties of the material:

• Longitudinal modulus, E1

• Longitudinal tensile strength, sþ1
• Poisson’s ratio, n21
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FIGURE 3.41

Stress-strain curves for unidirectional carbon-epoxy composite material under longitudinal tension and

compression (a), transverse tension and compression (b), and in-plane shear (b).
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Typical values of these characteristics for composites with various fibers and matrices are listed in
Table 3.5. It follows from Figs. 3.40–3.43 that the stress-strain diagrams are linear practically up
to failure.

3.4.2 Transverse tension

There are three possible modes of material failure under transverse tension with stress s2 shown in
Fig. 3.49: failure of the fiber-matrix interface (adhesion failure), failure of the matrix (cohesion
failure), and fiber failure. The last failure mode is specific for composites with aramid fibers, which
consist of thin filaments (fibrils) and have low transverse strength. As follows from the
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FIGURE 3.42

Stress-strain curves for unidirectional aramid-epoxy composite material under longitudinal tension and

compression (a), transverse tension and compression (b), and in-plane shear (b).
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micromechanical analysis (Section 3.3), material stiffness under tension across the fibers is higher than
that of a net matrix (see Fig. 3.36).

For qualitative analysis of transverse strength, consider again the second-order model in Fig. 3.38.
As can be seen, the stress distribution smðx3Þ is not uniform, and the maximum stress in the matrix
corresponds to a ¼ 90

�
. Using Eqs. (3.85), (3.86), and (3.88), we obtain

smax
m ¼ Ems2�

1� n2m
�
E2

�
1� l

�
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FIGURE 3.43

Stress-strain curves for unidirectional boron-epoxy composite material under longitudinal tension and

compression (a), transverse tension and compression (b), and in-plane shear (b).
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Taking smax
m ¼ sm and s2 ¼ sþ2 , where sm and sþ2 are the ultimate stresses for the matrix and

composite material, respectively, and substituting for l and E2 their expressions given by Eqs. (3.87)
and (3.89), we arrive at

sþ2 ¼ sm
rðlÞ
2vf

ðp� 4vf Þ (3.105)

The variation of the ratio sþ2 =sm for epoxy composites is shown in Fig. 3.50. As can be seen, the
transverse strength of a unidirectional material is considerably lower than the strength of the matrix.
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FIGURE 3.44

Dependence of normalized longitudinal strength on fiber volume fraction ( – experimental results).

FIGURE 3.45

A mandrel for test rings.
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It should be noted that for the first-order model, which ignores the shape of the fiber cross sections
(see Fig. 3.34), sþ2 is equal to sm. Thus, the reduction of sþ2 is caused by stress concentration in the
matrix induced by cylindrical fibers.

However, both polymeric and metal matrices exhibit elastic-plastic behavior, as follows from
Figs. 1.11 and 1.14, and it is known that plastic deformation reduces the effect of stress concen-
tration. Nevertheless, the stress-strain diagrams sþ2 – ε2 shown in Figs. 3.40–3.43 are linear up to the

FIGURE 3.46

Two-, four-, and eight-sector test fixtures for composite rings.

FIGURE 3.47

A composite ring on an eight-sector test fixture.
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failure point. To explain this phenomenon, consider element A of the matrix located in the vicinity of
a fiber as in Fig. 3.38. Assuming that the fiber is absolutely rigid, we can conclude that the matrix
strains in directions 1 and 3 are close to zero. Taking ε

m
1 ¼ ε

m
3 ¼ 0 in Eqs. (3.94), we arrive at

Eqs. (3.101) for stresses, according to whichsm
1 ¼ sm

3 ¼ mms
m
2 . The dependence of parameter mm

on the matrix Poisson’s ratio is presented in Fig. 3.51. As follows from this figure, in the limiting case
nm ¼ 0:5, we have mm ¼ 1 and sm

1 ¼ sm
2 ¼ sm

3 , i.e., the state of stress under which all the materials
behave as absolutely brittle. For epoxy resin, nm ¼ 0:35 and mm ¼ 0:54 which, as can be expected,
does not allow the resin to demonstrate its rather limited (see Fig. 1.11) plastic properties.

Strength and stiffness under transverse tension are experimentally determined using flat strips
(see Fig. 3.52) or tubular specimens (see Fig. 3.53). These tests allow us to determine transverse
modulus, E2, and transverse tensile strength, s

þ
2 . For typical composite materials, these properties are

given in Table 3.5.

FIGURE 3.48

Failure modes of unidirectional rings.

σ 2 σ 2

1

2

3

FIGURE 3.49

Modes of failure under transverse tension:

1 – Adhesion failure
2 – Cohesion failure
3 – Fiber failure
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3.4.3 In-plane shear

The failure modes in unidirectional composites under in-plane pure shear with stress s12 shown in
Fig. 3.29 are practically the same as those for the case of transverse tension (see Fig. 3.49). However,
there is a significant difference in material behavior. As follows from Figs. 3.40–3.43, the stress-strain
curves s12�g12 are not linear, and s12 exceeds sþ2 . This means that the fibers do not restrict the free
shear deformation of the matrix, and the stress concentration in the vicinity of the fibers does not
significantly influence material strength because of matrix plastic deformation.
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Dependence of material strength under transverse tension on fiber volume fraction:

Eq. (3.105); (�) Experimental data.
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Dependence of parameter mm on the matrix Poisson’s ratio.
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Strength and stiffness under in-plane shear are determined experimentally by testing plates and
thin-walled cylinders. A plate is reinforced at 45

�
to the loading direction and is fixed in a square frame

consisting of four hinged members, as shown in Fig. 3.54. Simple equilibrium consideration and
geometric analysis with the aid of Eq. (2.27) yield the following equations:

s12 ¼ Pffiffiffi
2

p
ah

; g12 ¼ εy � εx; G12 ¼ s12
g12

FIGURE 3.52

Test fixture for transverse tension and compression of unidirectional strips.
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FIGURE 3.54

Simulation of pure shear in a square frame.

FIGURE 3.53

Test fixture for transverse tension or compression of unidirectional tubular specimens.
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in which h is the plate thickness. Thus, for given P and measured strains in the x and y directions, we
can determine s12 and G12. More accurate and reliable results can be obtained if we induce pure shear
in a twisted tubular specimen reinforced in the circumferential direction (Fig. 3.55). Again, using
simple equilibrium and geometric analysis, we get

s12 ¼ M

2pR2h
; g12 ¼

4R

l
; G12 ¼ s12

g12

Here, M is the torque, R and h are the cylinder radius and thickness, and 4 is the twist angle between
two cross-sections located at some distance l from each other. Thus, for given M and measured 4, we
can find s12 and G12.

3.4.4 Longitudinal compression

Failure under compression along the fibers can occur in different modes, depending on the material
microstructural parameters, and canhardlybepredicted bymicromechanical analysis because of the rather
complicated interaction of these modes. Nevertheless, useful qualitative results allowing us to understand
material behavior and hence to improve properties can be obtained with microstructural models.

Consider typical compression failure modes. The usual failure mode under compression is asso-
ciated with shear in some oblique plane as in Fig. 3.56. The shear stress can be calculated using
Eq. (2.9), i.e.,

s ¼ s1 sin a cos a;

and reaches its maximum value at a ¼ 45
�
. Shear failure under compression is usually typical for

unidirectional composites that demonstrate the highest strength under longitudinal compression. On
the other hand, materials showing the lowest strength under compression exhibit a transverse extension
failure mode typical of wood compressed along the fibers, as shown in Fig. 3.57. This failure is caused
by tensile transverse strain, whose absolute value is

ε2 ¼ n21ε1 (3.106)

FIGURE 3.55

A tubular specimen for shear test.
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where n21 is Poisson’s ratio and ε1 ¼ s1=E1 is the longitudinal strain. Consider Table 3.6, showing
some data taken from Table 3.5 and the results of calculations for epoxy composites. The fourth
column displays the experimental ultimate transverse strains εþ2 ¼ sþ2 =E2 calculated with the aid of
data presented in Table 3.5, whereas the last column shows the results following from Eq. (3.106).
As can be seen, the failure mode associated with transverse tension under longitudinal compression
is not dangerous for the composites under consideration because εþ2 > ε2. However, this is true only
for fiber volume fractions vf ¼ 0:50�0:65, to which the data presented in Table 3.6 correspond.
To see what happens for higher fiber volume fractions, let us use the second-order micromechanical
model and the corresponding results in Figs. 3.36 and 3.50. We can plot the strain concentration
factor kε (which is the ratio of the ultimate matrix elongation, εm, to ε

þ
2 for the composite material)

versus the fiber volume fraction. As can be seen in Fig. 3.58, this factor, being about 6 for vf ¼ 0:6,
becomes as high as 25 for vf ¼ 0:75. This means that εþ2 dramatically decreases for higher vf , and
the fracture mode shown in Fig. 3.57 becomes conventional for composites with high fiber volume
fractions.

σ 1 σ 1

τ
τ

α

FIGURE 3.56

Shear failure under compression.

σ 1 σ 1

1

2

FIGURE 3.57

Transverse extension failure mode under longitudinal compression.

TABLE 3.6 Characteristics of Epoxy Composites.

Material

Characteristic

sL1 (MPa) ε
L
1 ( %) n21 ε

D
2 ( %) ε2 [ n21ε

L
1

Glass-epoxy 600 1.00 0.30 0.31 0.30

Carbon-epoxy 1200 0.86 0.27 0.45 0.23

Aramid-epoxy 300 0.31 0.34 0.59 0.11

Boron-epoxy 2000 0.95 0.21 0.37 0.20
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Both fracture modes shown in Figs. 3.56 and 3.57 are accompanied with fibers bending, induced by
local buckling of fibers. According to N.F. Dow and B.W. Rosen (Jones, 1999), there can exist two
modes of fiber buckling, as shown in Fig. 3.59, i.e., a shear mode and a transverse extension mode. To
study the fiber’s local buckling (or microbuckling, which means that the material specimen is straight,
whereas the fibers inside the material are curved), consider a plane model of a unidirectional ply,
shown in Figs. 3.15 and 3.60, and take am ¼ a and af ¼ d ¼ d, where d is the fiber diameter. Then,
Eqs. (3.17) yield

vf ¼ d

1þ d
; d ¼ d

a
(3.107)
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FIGURE 3.58

Dependence of the strain concentration factor on the fiber volume fraction.
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FIGURE 3.59

Shear (a) and transverse extension (b) modes of fiber local buckling.
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Due to the symmetry conditions, consider two fibers 1 and 2 in Fig. 3.60 and the matrix between these
fibers. The buckling displacement, v, of the fibers can be represented with a sine function as

v1ðxÞ ¼ V sin lnx; v2ðxÞ ¼ V sin lnðx� cÞ (3.108)

where V is an unknown amplitude value, the same for all the fibers, ln ¼ p=ln, ln is a half of a fiber
wavelength (see Fig. 3.60), and c ¼ ðaþ dÞcota is a phase shift. Taking c ¼ 0, we can describe the
shear mode of buckling (Fig. 3.59a), whereas c ¼ ln corresponds to the extension mode (Fig. 3.59b).
To find the critical value of stress s1, we use the Timoshenko energy method (Timoshenko and Gere,
1961), yielding the following buckling condition:

A ¼ W (3.109)

Here, A is the work of external forces, andW is the strain energy accumulated in the material while the
fibers undergo buckling. Work A and energy W are calculated for a typical ply element consisting of
two halves of fibers 1 and 2 and the matrix between them (see Fig. 3.61). The work, A, can be
calculated as

A ¼ s1ðaþ dÞd,d (3.110)
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FIGURE 3.60

Local buckling of fibers in unidirectional ply.
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FIGURE 3.61

A typical ply element.
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with displacement d following from Fig. 3.62, i.e.,

d ¼ ln �
Zln�d

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dv1
dx

�2
s

dx

Using conventional assumptions, i.e., taking ðdv1=dxÞ << 1 and d << l and substituting v1 from
Eqs. (3.108), we arrive at

d ¼ 1

2

Zln
0

�
dv1
dx

�2

dx ¼ 1

4
V 2l2nln

Thus, Eq. (3.110) yields

A ¼ p2

4ln
s1V

2adð1þ dÞ (3.111)

Strain energy consists of three parts, i.e.,

W ¼ Wf þWs
m þWe

m (3.112)

whereWf is the energy of buckled fibers, whereasW
s
m andWe

m correspond to shear strain and transverse
extension of the matrix that supports the fibers. The strain energy of fibers deformed in accordance
with Eqs. (3.108) and shown in Fig. 3.61 has the form

Wf ¼ 1

4
Df

Zln
0

��
d2v1
dx2

�2

þ
�
d2v2
dx2

�2	
dx

where Df is the fiber bending stiffness. Substituting Eqs. (3.108) and calculating the integrals, we get

Wf ¼ p4

4l3n
DfV

2 (3.113)
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FIGURE 3.62

Deformation of a fiber.
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To determine the strain energy of the matrix, we assume that the matrix element shown in Fig. 3.61 is
in a state of plane stress (nonzero stresses are sx, sy, and sxy), and the equilibrium equations, Eqs. (2.5),
can be written as

vsx

vx
þ vsxy

vy
¼ 0;

vsy

vy
þ vsxy

vx
¼ 0 (3.114)

To simplify the solution, we assume that the longitudinal stress, sx, acting in the matrix can be
neglected in comparison with the corresponding stress acting in the fibers. Thus, we can set sx ¼ 0.
Then, Eqs. (3.114) can be integrated and yield

sxy ¼ s
�
x
�
; sy ¼ s

�
x
�� s0

�
x
�
y (3.115)

Here, sðxÞ and sðxÞ are arbitrary functions of integration and ð Þ0 ¼ dð Þ=dx. Also neglecting the
Poisson effects, we can express the strains as follows:

gxy ¼
sðxÞ
Gm

; εy ¼ 1

Em

h
sðxÞ � s0ðxÞy

i
(3.116)

which in turn can be expressed in terms of displacements with the aid of Eqs. (2.22), i.e.,

gxy ¼
vux
vy

þ vuy
vx

; εy ¼ vuy
vy

(3.117)

Substituting Eqs. (3.116) into Eqs. (3.117) and integrating, we can determine the displacements as

ux ¼ uðxÞ þ
�
sðxÞ
Gm

� v0ðxÞ
	
y� 1

2Em

�
s0ðxÞy2 � 1

3
s00ðxÞy3

	

uy ¼ vðxÞ þ 1

Em

�
sðxÞy� 1

2
s0ðxÞy2

	

Here, uðxÞ and vðxÞ are functions of integration that, in addition to the functions sðxÞ and sðxÞ, should
be found using compatibility conditions at fiber-matrix interfaces. Using Fig. 3.63, we can write these
conditions in the following form:

uxðy ¼ 0Þ ¼ �d

2
v01ðxÞ; uxðy ¼ aÞ ¼ d

2
v02ðxÞ

uy
�
y ¼ 0

� ¼ v1
�
x
�
; uy

�
y ¼ a

� ¼ v2
�
x
�

Satisfying them, we can find uðxÞ and vðxÞ directly as

uðxÞ ¼ �d

2
Vln cos lnx; vðxÞ ¼ V sin lnx

and derive the following equations for sðxÞ and sðxÞ:

sðxÞ ¼ Em

a
V ½ sin lnðx� cÞ � sin lnx� þ 1

2
s0ðxÞa (3.118)

a2

6Em
s00ðxÞ � 2

Gm
sðxÞ ¼ �Vlnð1þ dÞ½cos lnðx� cÞ þ cos lnx� (3.119)
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We need a periodic solution of Eq. (3.119), and can find it in the following form:

sðxÞ ¼ C½cos lnðx� cÞ þ cos lnx� (3.120)

Substituting into Eq. (3.119) and taking into account that ln ¼ p=ln, we have

C ¼ V
pGm

�
1þ d

�
2lnð1þ bnÞ

; bn ¼
p2a2Gm

12l2nEm
(3.121)

Now, using Eqs. (3.115), (3.118), and (3.120), we can write the final expressions for the stresses acting
in the matrix

sxy ¼ C
�
cos ln

�
x� c

�þ cos lnx

;

sy ¼ �
�
Cln

�
a

2
� y

�
� Em

a
V

	
sin lnðx� cÞ

�
�
Cln

�
a

2
� y

�
þ Em

a
V

	
sin lnx

(3.122)

in which C is specified with Eqs. (3.121). The corresponding strain energies of the typical element in
Fig. 3.61 are

Ws
m ¼ ad

2Gm

Zln
0

s2xydx; We
m ¼ ad

2Em

Zln
0

s2ydx

Substituting Eqs. (3.122) and integrating, we arrive at

Ws
m ¼ adln

2Gm
C2ð1þ cos lncÞ

v x2 ( )

d 2

d 2

d 2

d 2

v x' ( )1

v x' ( )2

v x1( )

1

2

FIGURE 3.63

Compatible fiber-matrix deformation.
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We
m ¼ adln

2Em

"
p2a2

12l2n
C2ð1þ cos lncÞ þ E2

m

a2
V 2ð1� cos lncÞ

#

In conjunction with these results, Eqs. (3.109), (3.111)–(3.113), and (3.121) allow us to determine s1,
which takes the following final form:

s1 ¼ p2Df

l
2
nd


1þ d

�
a4

þ Gm

�
1þ d

�
2

 
1þ p2Gm

12l
2
nEm

!
 
1þ cos

pc

ln

!
þ 2Eml

2
n

p2
�
1þ d

�
 
1� cos

pc

ln

!
(3.123)

where d ¼ d=a, ln ¼ ln=a, and c ¼ c=a. The critical value of s1 can be found by minimization of the
right-hand part of Eq. (3.123) with respect to ln and c. However, having in mind only qualitative
analysis, we can omit this cumbersome procedure and use Eq. (3.123) for qualitative assessments and
estimates.

As follows from this equation, the strength of a unidirectional composite under longitudinal
compression should increase with an increase in the fiber bending stiffness. This prediction is defi-
nitely supported with experimental data presented in Table 3.6. The highest strength is demonstrated
by composites reinforced with boron fibers that have relatively large diameter and high modulus,
providing very high fiber bending stiffness. Carbon fibers, also having high modulus but smaller
diameter than boron fibers, provide compressive strength that is 40% lower than that of boron
composites, but is twice the strength of a composite reinforced with glass fibers having the same
diameter but lower modulus. The lowest strength in compression is demonstrated by composites with
aramid fibers. As was already noted, these fibers, although having high tensile stiffness, consist of
a system of poorly bonded thin filaments and possess low bending stiffness. As can be seen in Eq.
(3.123), compressive strength also increases with an increase in the matrix stiffness. Available
experimental results (Woolstencroft et al., 1982; Crasto and Kim, 1993) show that the strength of
carbon composites in compression increases linearly, while the matrix shear modulus rises up to Gm ¼
1500 MPa, which is the value typical for epoxy resins. For higher values of Gm, the compressive
strength does not change, and we can expect that there exists some maximum value of Gm beyond
which the matrix does not allow fibers to buckle, and the material strength is controlled by the fiber
strength in compression. Results listed in Table 3.5 support this conclusion. As can be seen, changing
an epoxy matrix for an aluminum one with higher stiffness does not increase the compressive strength
of boron fiber composites. Moreover, by increasing the matrix stiffness, we usually reduce its ultimate
elongation. As a result, the material can fail under relatively low stress because of delamination (see
Fig. 3.57). An example of such a material can also be found in Table 3.5. Carbon-carbon unidirectional
composites with brittle carbon matrices possessing very high stiffness demonstrate very low strength
under longitudinal compression.

Fracture of actual unidirectional composites usually occurs as a result of the interaction of fracture
modes discussed above. Such fracture is shown in Fig. 3.64. The ultimate stress depends on material
structural and manufacturing parameters, has considerable scatter, and can hardly be predicted
theoretically. For example, the compressive strength of composites with the same fibers and matrices
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having the same stiffness but different nature (thermoset or thermoplastic) can be different (Crasto and
Kim, 1993).

The strength of composites under longitudinal compression is determined experimentally using
ring or flat specimens and special methods to prevent the specimen buckling (Tarnopol’skii and Kincis,
1985). The most accurate results are provided by compression of sandwich specimens with composite
facings made from the material under study (Crasto and Kim, 1993).

3.4.5 Transverse compression

Under compression across the fibers, unidirectional composites exhibit a conventional shear mode of
fracture of the type shown in Fig. 3.65. The transverse compression strength is higher than in-plane
shear strength (see Table 3.5) due to two main reasons. Firstly, the area of the oblique failure plane
is larger than the area of the orthogonal longitudinal ply cross-section in which the ply fails under in-
plane shear. Secondly, additional compression across the oblique failure plane (see Fig. 3.65) increases
the shear strength. Strength under transverse compression is measured using flat or tubular specimens
(shown in Figs. 3.52 and 3.53).

FIGURE 3.64

Failure mode of a unidirectional carbon-epoxy composite under longitudinal compression.

σ 2 σ 2

FIGURE 3.65

Failure under transverse compression.
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3.5 HYBRID COMPOSITES
The foregoing sections of this chapter are concerned with the properties of unidirectional plies rein-
forced with fibers of a certain type: glass, carbon, aramid, etc. In hybrid composites, the plies can
include fibers of two or maybe more types, e.g., carbon and glass, glass and aramid, and so on. Hybrid
composites provide wider opportunities to control material stiffness, strength, and cost. A promising
application of these materials is associated with the so-called thermostable structures, which do not
change their dimensions under heating or cooling. For some composites, e.g., with glass or boron
fibers, the longitudinal coefficient of thermal expansion is positive, whereas for other materials, e.g.,
with carbon or aramid fibers, it is negative (see Table 7.1 and Section 7.1.2 of Chapter 7). So, the
appropriate combination of fibers with positive and negative coefficients can result in material with
zero thermal expansion.

Consider the problem of micromechanics for a unidirectional ply reinforced with two types of

fibers. Naturally, the stiffness of these fibers should be different, and we assume that E
ð1Þ
f > E

ð2Þ
f . The

first-order model of the ply that generalizes the model in Fig. 3.34 is presented in Fig. 3.66. For tension
in the fiber direction, the apparent stress and strain, s1 and ε1, are linked by Hooke’s law

s1 ¼ E1ε1 (3.124)

in which the effective modulus is specified by the following equation, generalizing Eq. (3.76)

E1 ¼ E
ð1Þ
f vð1Þf þ E

ð2Þ
f vð2Þf þ Emvm (3.125)

Here, vð1Þf and vð2Þf are volume fractions of the fibers of the first and second type, and vm is the matrix
volume fraction, so that

vð1Þf þ vð2Þf þ vm ¼ 1

We also introduce the total volume fraction of the fibers

vf ¼ vð1Þf þ vð2Þf

1σ

1σ

1

2

3

FIGURE 3.66

A first-order microstructural model of a hybrid unidirectional ply.
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and normalized volume fractions of fibers as

w
ð1Þ
f ¼ vð1Þf

vf
; w

ð2Þ
f ¼ vð2Þf

vf

Obviously,

w
ð1Þ
f þ w

ð2Þ
f ¼ 1

Then, Eq. (3.125) can be written in the form

E1 ¼ vf
h
E
ð1Þ
f w

ð1Þ
f þ E

ð2Þ
f



1� w

ð1Þ
f

�i
þ Emð1� vf Þ (3.126)

The linear dependence of E1 on w
ð1Þ
f predicted by Eq. (3.126) is in good correlation with the

experimental data reported by Zabolotskii and Varshavskii (1984), and is presented in
Fig. 3.67.

Since the fibers of hybrid composites have different stiffness, they are characterized as
a rule with different ultimate elongations. As follows from Fig. 3.68, plotted with the data listed in
Table 3.5, there exists an inverse linear dependence between the ply longitudinal modulus and the

ultimate elongation ε1. So, assuming E
ð1Þ
f > E

ð2Þ
f , we should take into account that ε

ð1Þ
f < ε

ð2Þ
f . This

means that Eq. (3.124) is valid for ε1 � ε
ð1Þ
f . Strain ε1 ¼ ε

ð1Þ
f is accompanied by the failure of fibers
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FIGURE 3.67

Experimental dependencies of longitudinal modulus on the volume fraction of the higher modulus fibers in hybrid

unidirectional composites:

1 – boron-carbon, 2 – boron-aramid, 3 – boron-glass, 4 – carbon-aramid, 5 – carbon-glass, 6 – aramid-glass.
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of the first type. The corresponding part of a possible stress-strain diagram is shown in Fig. 3.69

with the line OA. The stress at point A is s
ð1Þ
1 ¼ E1ε

ð1Þ
f . After the fibers of the first type fail, the

material modulus reduces to

E�
1 ¼ E

ð2Þ
f vf



1� w

ð1Þ
f

�
þ Emð1� vf Þ

This modulus determines the slope of line OC in Fig. 3.69.
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FIGURE 3.68

Longitudinal modulus versus ultimate tensile strain for advanced epoxy unidirectional composites.
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FIGURE 3.69

Typical stress-strain diagrams for hybrid unidirectional composites.

118 CHAPTER 3 Mechanics of a unidirectional ply

www.EngineeringEBooksPdf.com



Since E�
1 < E1, the ply experiences a jump in strain under constant stress s1 ¼ s

ð1Þ
1 . As follows

from Fig. 3.69, the final strain is

ε
�
1 ¼

s
ð1Þ
1

E�
1

There are two possible scenarios of the further material behavior, depending on the relation between

strain ε�1 and the ultimate strain of the fibers of the second type, ε
ð2Þ
f . If ε�1 � ε

ð2Þ
f , these fibers will also

fail under stress s
ð1Þ
1 , and the material stress-strain diagram corresponds to the dashed line OA in

Fig. 3.69. If ε
ð2Þ
f > ε

�
1, the material would work up to point C in this figure. Experimental diagrams

supporting this prediction are shown in Fig. 3.70 (Gunyaev, 1981).
The threshold value of w

ð2Þ
f , indicating the minimum amount of the fibers of the second type that is

sufficient to withstand the load after the failure of the first type fibers, can be found from the condition
ε
�
1 ¼ ε

ð2Þ
f (Skudra et al., 1989). The final result is as follows

w
ð2Þ
f ¼

E
ð1Þ
f vf ε

ð1Þ
f �



1� vf

�
Em



ε
ð2Þ
f � ε

ð1Þ
f

�
vf
h
E
ð1Þ
f ε

ð1Þ
f þ E

ð2Þ
f



ε
ð2Þ
f � ε

ð1Þ
f

�i
For w

ð2Þ
f < w

ð2Þ
f , material strength can be calculated as s1 ¼ E1ε

ð1Þ
f , whereas for w

ð2Þ
f > w

ð2Þ
f ,

s1 ¼ E�
1ε

ð2Þ
f . The corresponding theoretical prediction of the dependence of material strength on w

ð2Þ
f

is shown in Fig. 3.71 (Skudra et al., 1989).

3.6 COMPOSITES WITH HIGH FIBER FRACTION
We now return to Fig. 3.44, which shows the dependence of the tensile longitudinal strength of
unidirectional composites on the fiber volume fraction vf . As follows from this figure, the strength
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FIGURE 3.70

Experimental stress-strain diagrams for hybrid carbon-glass epoxy unidirectional composite with various volume

fraction of glass fibers vg and carbon fibers vc : 1� vg ¼ 0 ; 2� vg ¼ 0:07 ; 3� vg ¼ 0:14; 4� vg ¼ 0:25 ;

5� vg ¼ 0:5 ; 6� vc ¼ 0.
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FIGURE 3.71

Dependence of the longitudinal strength of unidirectional carbon-glass epoxy composite on the volume fraction

of glass fibers.
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FIGURE 3.72

Cross section of aramid-epoxy composite with high fiber fraction: (a) initial structure; (b) structure with

delaminated fibers.
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increases up to vf , which is close to 0.7 and becomes lower for higher fiber volume fractions. This is
a typical feature of unidirectional fibrous composites (Andreevskaya, 1966). However, there are some
experimental results (e.g., Roginskii and Egorov, 1966) showing that material strength can increase up
to vf ¼ 0:88, which corresponds to the maximum theoretical fiber volume fraction discussed in
Section 3.1. The reason that the material strength usually starts to decrease at higher fiber volume
fractions is associated with material porosity, which becomes significant for materials with a shortage
of resin. By reducing the material porosity, we can increase material tensile strength for high fiber
volume fractions.

Moreover, applying the correct combination of compacting pressure and temperature to composites
with organic (aramid or polyethylene) fibers, we can deform the fiber cross sections and reach a value
of vf that would be close to unity. Such composite materials studied by Golovkin (1985), Kharchenko
(1999), and other researchers are referred to as Composites with High Fiber Fraction (CHFF). The
cross section of a typical CHFF is shown in Fig. 3.72.

The properties of aramid-epoxy CHFF are listed in Table 3.7 (Kharchenko, 1999). Comparing
traditional composites (vf ¼ 0:65) with CHFF, we can conclude that CHFF have significantly higher
longitudinal moduli (up to 50%) and longitudinal tensile strengths (up to 30%), whereas their densities
are only 6% higher. However, the transverse and shear strengths of CHFF are lower than those of
traditional composites. Due to this, composites with high fiber fraction can be efficient in composite
structures whose loading induces high tensile stresses acting mainly along the fibers, in cables,
pressure vessels, etc.

TABLE 3.7 Properties of Aramid-epoxy Composites with High Fiber Fraction.

Property

Fiber Volume Fraction, vf

0.65 0.92 0.96

Density, r (g=cm3) 1.33 1.38 1.41

Longitudinal modulus, E1 (GPa) 85 118 127

Transverse modulus, E2 (GPa) 3.3 2.1 4.5

Shear modulus, G12 (GPa) 1.6 1.7 e

Longitudinal tensile strength, sþ1
(MPa)

2200 2800 2800

Longitudinal compressive
strength, s�1 (MPa)

293 295 310

Transverse tensile strength, sþ2
(MPa)

22 12 e

Transverse compressive strength,
s�2 (MPa)

118 48 e

In-plane shear strength, s12 (MPa) 41 28 18
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3.7 PHENOMENOLOGICAL HOMOGENEOUS MODEL OF A PLY
It follows from the foregoing discussion that micromechanical analysis provides rather approximate
predictions for the ply stiffness and only qualitative information concerning the ply strength. However,
the design and analysis of composite structures require quite accurate and reliable information about
the properties of the ply as the basic element of composite structures. This information is provided by
experimental methods as discussed above. As a result, the ply is presented as an orthotropic homo-
geneous material possessing some apparent (effective) mechanical characteristics determined exper-
imentally. This means that, on the ply level, we use a phenomenological model of a composite material
(see Section 1.1) that ignores its actual microstructure.

It should be emphasized that this model, being quite natural and realistic for the majority of
applications, sometimes does not allow us to predict actual material behavior. To demonstrate this,
consider a problem of biaxial compression of a unidirectional composite in the 23-plane as in
Fig. 3.73. Testing a glass-epoxy composite material described by Koltunov et al. (1977) shows
a surprising result – its strength is about s ¼ 1200 MPa, which is quite close to the level of material
strength under longitudinal tension, and material failure is accompanied by fiber breakage typical for
longitudinal tension.

The phenomenological model fails to predict this mode of failure. Indeed, the average stress in the
longitudinal direction specified by Eq. (3.75) is equal to zero under loading (shown in Fig. 3.73), i.e.,

s1 ¼ s
f
1vf þ sm

1 vm ¼ 0 (3.127)

To apply the first-order micromechanical model considered in Section 3.3, we generalize constitutive
equations, Eqs. (3.63), for the three-dimensional stress state of the fibers and the matrix as

ε
f ;m
1 ¼ 1

Ef ;m

�
s
f ;m
1 � nf ;m

�
s
f ;m
2 þ s

f ;m
3

�	 �
1; 2; 3

�
(3.128)

Changing 1 for 2, 2 for 3, and 3 for 1, we can write the corresponding equations for ε2 and ε3.

1

σ σ

σ

σ

3 2

FIGURE 3.73

Biaxial compression of a unidirectional composite.
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Suppose that the stresses acting in the fibers and in the matrix in the plane of loading are the same, i.e.,

s
f
2 ¼ s

f
3 ¼ sm

2 ¼ sm
3 ¼ �s (3.129)

and that ε f1 ¼ ε
m
1 . Substituting ε

f
1 and ε

m
1 from Eqs. (3.128), we get (with due regard to Eqs. (3.129))

1

Ef

�
s
f
1 þ 2nfs

�
¼ 1

Em

�
sm
1 þ 2nms

�

In conjunction with Eq. (3.127), this equation allows us to find s
f
1, which has the form

s
f
1 ¼ 2s

�
Ef nm � Emnf

�
vm

Efvf þ Emvm

Simplifying this result for the situation Ef >> Em, we arrive at

s
f
1 ¼ 2s

nmvm
vf

Thus, the loading shown in Fig. 3.73 indeed induces tension in the fibers as can be revealed using the
micromechanical model. The ultimate stress can be expressed in terms of the fibers’ strength sf , as

s ¼ 1

2
sf

vf
nmvm

The actual material strength is not as high as follows from this equation, which is derived under the
condition that the adhesive strength between the fibers and the matrix is infinitely high. Tension of fibers
is induced by the matrix which expands in the 1 direction (see Fig. 3.73) due to Poisson’s effect and
interacts with fibers through shear stresses whose maximum value is limited by the fiber-matrix adhesion
strength. Under high shear stress, debonding of the fibers can occur, reducing the material strength,
which is, nevertheless, very high. This effect is utilized in composite shells with radial reinforcement
designed to withstand an external pressure of high intensity (Koltunov et al., 1977).
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Mechanics of a composite layer 4
A typical composite laminate consists of individual layers (see Fig. 4.1), which are usually made of
unidirectional plies with the same or regularly alternating orientations. A layer can also be made from
metal, thermosetting or thermoplastic polymer, or fabric, or can have a spatial three-dimensionally
reinforced structure. In contrast to a ply as considered in Chapter 3, a layer is generally referred to
the global coordinate frame x, y, and z of the structural element rather than to coordinates 1, 2, and 3
associated with the ply orientation. Usually, a layer is much thicker than a ply and has a more
complicated structure, but this structure does not change through its thickness, or this change is
ignored. Thus, a layer can be defined as a three-dimensional structural element that is uniform in the
transverse (normal to the layer plane) direction.

4.1 ISOTROPIC LAYER
The simplest layer that can be observed in composite laminates is an isotropic layer of metal or
thermoplastic polymer that is used to protect the composite material (Fig. 4.2) and to provide tightness.
For example, filament-wound composite pressure vessels usually have a sealing metal (Fig. 4.3) or
thermoplastic (Fig. 4.4) internal liner, which can also be used as a mandrel for winding. Since the layer
is isotropic, we need only one coordinate system and let it be the global coordinate frame shown in
Fig. 4.5.

4.1.1 Linear elastic model

The explicit form of Hooke’s law in Eqs. (2.48) and (2.54) can be written as

εx ¼ 1

E
ðsx � nsy � nszÞ; gxy ¼

sxy
G

εy ¼ 1

E
ðsy � nsx � nszÞ; gxz ¼

sxz
G

εz ¼ 1

E
ðsz � nsx � nsyÞ; gyz ¼

syz
G
;

(4.1)

where E is the modulus of elasticity, n Poisson’s ratio, and G the shear modulus, which can be
expressed in terms of E and n with Eq. (2.57). Adding Eqs. (4.1) for normal strains we get

ε0 ¼ 1

K
s0 (4.2)

CHAPTER

Advanced Mechanics of Composite Materials and Structural Elements. http://dx.doi.org/10.1016/B978-0-08-098231-1.00004-2

Copyright � 2013 Elsevier Ltd. All rights reserved.
125

www.EngineeringEBooksPdf.com

http://dx.doi.org/10.1016/B978-0-08-098231-1.00004-2


where

ε0 ¼ εx þ εy þ εz (4.3)

is the volume deformation (dilatation). For small strains, the volume dV 1 of an infinitesimal
material element after deformation can be found knowing the volume dV before the deformation
and ε0 as

dV 1 ¼ ð1þ ε0ÞdV

Volume deformation is related to the mean stress

s0 ¼ 1

3
ðsx þ sy þ szÞ (4.4)

through the volume or bulk modulus

K ¼ E

3ð1� 2nÞ (4.5)

It follows fromEq. (4.5) that for n ¼ 1=2 we have K/N:Then,Eq. (4.2) yields ε0 ¼ 0 and dV 1 ¼ dV
for any stress. Such materials are called incompressible – they do not change their volume under defor-
mation and can change only their shapes.

The foregoing equations correspond to the general three-dimensional stress state of a layer.
However, working as a structural element of a thin-walled composite laminate, a layer is usually

FIGURE 4.1

Laminated structure of a composite pipe.
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FIGURE 4.2

Composite drive shaft with external metal protection layer.

Courtesy of CRISM.

FIGURE 4.3

Aluminum liner for a composite pressure vessel.
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loaded with a system of stresses one of which, namely transverse normal stress sz, is much less than the
other stresses. Bearing this in mind, we can neglect the terms in Eqs. (4.1) that include sz and write
these equations in a simplified form

εx ¼ 1

E
ðsx � nsyÞ; εy ¼ 1

E
ðsy � nsxÞ

gxy ¼
sxy
G
; gxz ¼

sxz
G
; gyz ¼

syz
G

(4.6)

FIGURE 4.4

Thermoplastic liners for composite pressure vessels.
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or

sx ¼ E
�
εx þ nεy

�
; sy ¼ E

�
εy þ nεx

�
sxy ¼ Ggxy; sxz ¼ Ggxz; syz ¼ Ggyz

(4.7)

where E ¼ E=ð1� n2Þ.

4.1.2 Nonlinear models

Materials of metal and polymeric layers considered in this section demonstrate linear response only
under moderate stresses (see Figs. 1.11 and 1.14). Further loading results in nonlinear behavior, to
describe which we need to apply one of the nonlinear material models discussed in Section 1.1.

A relatively simple nonlinear constitutive theory suitable for polymeric layers can be constructed
using a nonlinear elastic material model (see Fig. 1.2). In the strict sense, this model can be applied to
materials whose stress-strain curves are the same for active loading and unloading. However, normally
structural analysis is undertaken only for active loading. If unloading is not considered, an elastic
model can be formally used for materials that are not perfectly elastic.

There exist a number of models developed to describe the nonlinear behavior of highly deformable
elastomers such as rubber (Green and Adkins, 1960). Polymeric materials used to form isotropic layers
of composite laminates admitting, in principle, high strains usually do not demonstrate them in
composite structures whose deformation is governed by fibers with relatively low ultimate elongation
(1–3%). So, creating the model, we can restrict ourselves to the case of small strains, i.e., to materials
whose typical stress-strain diagram is shown in Fig. 4.6.

A natural way is to apply Eqs. (2.41) and (2.42), i.e.,

dU ¼ sijdεij; sij ¼ vU

vεij
(4.8)

σ z

σ x

σ y

τ xz τ xz

τ xy

τ xy

τ yz

τ yz

x

y

z

FIGURE 4.5

An isotropic layer.
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(we use tensor notations for stresses and strains introduced in Section 2.9 and the rule of
summation over repeated subscripts). Approximation of elastic potential U as a function of εij with
some unknown parameters allows us to write constitutive equations directly using the second
relation in Eqs. (4.8). However, the polynomial approximation similar to Eq. (2.43), which is the
most simple and natural, results in a constitutive equation of the type s ¼ Sεn, in which S is some
stiffness coefficient and n is an integer. As can be seen in Fig. 4.7, the resulting stress-strain curve
is not typical for the materials under study. Better agreement with nonlinear experimental
diagrams presented (e.g., in Fig. 4.6) is demonstrated by the curve specified by the equation
ε ¼ Csn, in which C is some compliance coefficient. To arrive at this form of a constitutive
equation, we need to have a relationship similar to the second one in Eqs. (4.8), but allowing us to
express strains in terms of stresses. Such relationships exist and are known as Castigliano’s
formulae. To derive them, introduce the complementary elastic potential Uc in accordance with the
following equation:

dUc ¼ εijdsij (4.9)

The term “complementary” becomes clear if we consider a bar in Fig. 1.1 and the corresponding
stress-strain curve in Fig. 4.8. The area 0BC below the curve represents U in accordance with the
first equation in Eqs. (4.8), whereas the area 0AC above the curve is equal to Uc. As shown in
Section 2.9, dU in Eqs. (4.8) is an exact differential. To prove the same for dUc, consider the
following sum

dU þ dUc ¼ sijdεij þ εijdsij ¼ d
�
sijεij

�

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5

σ , MPa

ε , %

FIGURE 4.6

A typical stress-strain diagram (circles) for a polymeric film and its cubic approximation (solid line).
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which is obviously an exact differential. Since dU in this sum is also an exact differential, dUc should
have the same property and can be expressed as

dUc ¼ vUc

vsij
dsij

σ

ε

σ ε= S n

ε σ= C n

FIGURE 4.7

Two forms of approximation of the stress-strain curve.

A B

C

σ

dσ

σ

0

ε

dεε

Uc

U

FIGURE 4.8

Geometric interpretation of elastic potential, U, and complementary potential, Uc .
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Comparing this result with Eq. (4.9), we arrive at Castigliano’s formulae

εij ¼ vUc

vsij
(4.10)

which are valid for any elastic solid (for a linear elastic solid, Uc ¼ U).
The complementary potential, Uc, in general, depends on stresses, but for an isotropic material,

Eq. (4.10) should yield invariant constitutive equations that do not depend on the direction of coor-
dinate axes. This means that Uc should depend on stress invariants I1; I2; and I3 in Eqs. (2.13). Using
different approximations for the function UcðI1; I2; I3Þ, we can construct different classes of nonlinear
elastic models. Existing experimental verification of such models shows that the dependence of Uc on
I3 can be neglected. Thus, we can present the complementary potential in a simplified form UcðI1; I2Þ
and expand this function as a Taylor series as follows

Uc ¼ c0 þ c11I1 þ 1

2
c12I

2
1 þ

1

3!
c13I

3
1 þ

1

4!
c14I

4
1 þ/

þ c21I2 þ 1

2
c22I

2
2 þ

1

3!
c23I

3
2 þ

1

4!
c24I

4
2 þ/

þ 1

2
c1121I1I2 þ 1

3!
c1221I

2
1 I2 þ

1

3!
c1122I1I

2
2 þ/

þ 1

4!
c1321I

3
1 I2 þ

1

4!
c1222I

2
1 I

2
2 þ

1

4!
c1123I1I

3
2 þ/

(4.11)

where

cin ¼ vnUc

v Ini

����
sij¼0

; cinjm ¼ vnþmUc

v Ini v Imj

�����
sij¼0

Constitutive equations follow from Eq. (4.10) and can be written in the form

εij ¼ vUc

vI1

vI1
vsij

þ vUc

vI2

vI2
vsij

(4.12)

Assuming that for zero stresses Uc ¼ 0 and εij ¼ 0, we should take c0 ¼ 0 and c11 ¼ 0 in Eq. (4.11).
Consider a plane stress state with stresses sx; sy; and sxy shown in Fig. 4.5. The stress invariants in

Eqs. (2.13) to be substituted into Eq. (4.12) are

I1 ¼ sx þ sy; I2 ¼ �sxsy þ s2xy (4.13)

A linear elastic material model is described with Eq. (4.11) if we take

Uc ¼ 1

2
c12I

2
1 þ c21I2 (4.14)

Using Eqs. (4.12)–(4.14) and engineering notations for stresses and strains, we arrive at

εx ¼ c12ðsx þ syÞ � c21sy; εy ¼ c12ðsx þ syÞ � c21sx;

gxy ¼ 2c21sxy
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These equations coincide with the corresponding equations in Eqs. (4.6) if we take

c12 ¼ 1

E
; c21 ¼ 1þ n

E

To describe a nonlinear stress-strain diagram of the type shown in Fig. 4.6, we can generalize
Eq. (4.14) as

Uc ¼ 1

2
c12I

2
1 þ c21I2 þ 1

4!
c14I

4
1 þ

1

2
c22I

2
2

Then, Eq. (4.12) yields the following cubic constitutive law

εx ¼ c12ðsx þ syÞ � c21sy þ 1

6
c14
�
sx þ sy

�3 þ c22ðsxsy � s2xyÞsy

εy ¼ c12ðsx þ syÞ � c21sx þ 1

6
c14
�
sx þ sy

�3 þ c22ðsxsy � s2xyÞsx

gxy ¼ 2
h
c21 � c22

�
sxsy � s2xy

�i
sxy

The corresponding approximation is shown in Fig. 4.6 with a solid line. Retaining more higher-order
terms in Eq. (4.11), we can describe the nonlinear behavior of any isotropic polymeric material.

To describe the nonlinear elastic-plastic behavior of metal layers, we should use constitutive
equations of the theory of plasticity. There exist two basic versions of this theory – the deformation
theory and the flow theory, which are briefly described later.

According to the deformation theory of plasticity, the strains are decomposed into two
components – elastic strains (with superscript “e”) and plastic strains (superscript “p”), i.e.,

εij ¼ ε
e
ij þ ε

p
ij (4.15)

We again use the tensor notations of strains and stresses (i.e., εij and sij) introduced in Section 2.9.
Elastic strains are related to stresses by Hooke’s law, Eqs. (4.1), which can be written with the aid of
Eq. (4.10) in the form

ε
e
ij ¼

vUe

vsij
(4.16)

where Ue is the elastic potential that for a linear elastic solid coincides with the complementary
potential Uc in Eq. (4.10). An explicit expression for Ue can be obtained from Eq. (2.51) if we change
strains for stresses with the aid of Hooke’s law, i.e.,

Ue ¼ 1

2E

h
s211 þ s222 þ s233 � 2nðs11s22 þ s11s33 þ s22s33Þ

i

þ 1

2G
ðs212 þ s213 þ s223Þ

(4.17)

Now represent the plastic strains in Eq. (4.15) in a form similar to Eq. (4.16)

ε
p
ij ¼

vUp

vsij
(4.18)
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where Up is the plastic potential. To approximate the dependence of Up on stresses, a special
generalized stress characteristic, i.e., the so-called stress intensity s, is introduced in the classical
theory of plasticity as

s ¼ 1ffiffiffi
2

p
�
ðs11 � s22Þ2 þ ðs22 � s33Þ2 þ ðs11 � s33Þ2 þ 6

�
s212 þ s213 þ s223

�	1
2

(4.19)

Transforming Eq. (4.19) with the aid of Eqs. (2.13), we can reduce it to the following form

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 þ 3I2

q
This means that s is an invariant characteristic of a stress state, i.e., that it does not depend on the
orientation of a coordinate frame. For unidirectional tension as in Fig. 1.1, we have only one nonzero
stress, e.g., s11. Then, Eq. (4.19) yields s ¼ s11. In a similar way, the strain intensity ε can be
introduced as

ε ¼
ffiffiffi
2

p

3

�
ðε11 � ε22Þ2 þ ðε22 � ε33Þ2 þ ðε11 � ε33Þ2 þ 6

�
ε
2
12 þ ε

2
13 þ ε

2
23

�	1
2

(4.20)

The strain intensity is also an invariant characteristic. For uniaxial tension (Fig. 1.1) with stress s11
and strain ε11 in the loading direction, we have ε22 ¼ ε33 ¼ �npε11, where np is the elastic-plastic
Poisson’s ratio which, in general, depends on s11. For this case, Eq. (4.20) yields

ε ¼ 2

3
ð1þ npÞε11 (4.21)

For an incompressible material (see Section 4.1.1), np ¼ 1=2 and ε ¼ ε11. Thus, the numerical coef-
ficients in Eqs. (4.19) and (4.20) provide s ¼ s11 and ε ¼ ε11 for uniaxial tension of an incompressible
material. The stress and strain intensities in Eqs. (4.19) and (4.20) have an important physical meaning.
As known from experiments, metals do not demonstrate plastic properties under loading with stresses
sx ¼ sy ¼ sz ¼ s0 resulting only in a change of material volume. Under such loading, materials
exhibit only elastic volume deformation specified by Eq. (4.2). Plastic strains occur in metals if we
change material shape. For a linear elastic material, the elastic potential U in Eq. (2.51) can be reduced
after rather cumbersome transformation with the aid of Eqs. (4.3) and (4.4), and (4.19) and (4.20) to the
following form

U ¼ 1

2
s0ε0 þ 1

2
sε (4.22)

The first term in the right-hand part of this equation (s0ε0=2) is the strain energy associated with the
volume change, whereas the second term (sε=2) corresponds to the change of material shape. Thus,
s and ε in Eqs. (4.19) and (4.20) are stress and strain characteristics associated with the change of
a material’s shape under which it demonstrates the plastic behavior.

In the theory of plasticity, the plastic potential Up is assumed to be a function of stress intensity s,
and according to Eq. (4.18), the plastic strains are given by

ε
p
ij ¼

dUp

ds

vs

vsij
(4.23)
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Consider further a plane stress state with stresses sx; sy; and sxy in Fig. 4.5. For this case, Eq. (4.19)
takes the form

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y � sxsy þ 3s2xy

q
(4.24)

Using Eqs. (4.15)–(4.17), (4.23), and (4.24), we finally arrive at the following constitutive equations

εx ¼ 1

E
ðsx � nsyÞ þ uðsÞ



sx � 1

2
sy

�

εy ¼ 1

E
ðsy � nsxÞ þ uðsÞ



sy � 1

2
sx

�

gxy ¼
1

G
sxy þ 3uðsÞsxy

(4.25)

in which

uðsÞ ¼ 1

s

dUp

ds
(4.26)

To find uðsÞ, we need to specify the dependence ofUc on s. The most simple and suitable for practical
applications is the power approximation

Up ¼ Csn (4.27)

where C and n are some experimental constants. As a result, Eq. (4.26) yields

u
�
s
� ¼ Cnsn�2 (4.28)

To determine coefficients C and n, we introduce the basic assumption of the plasticity theory con-
cerning the existence of a universal stress-strain diagram (master curve). According to this assumption,
for any particular material, there exists a relationship between stress and strain intensities,
i.e., s ¼ 4ðεÞ (or ε ¼ f ðsÞ), that is one and the same for all loading cases. This fact enables us to find
coefficients C and n from a test under uniaxial tension and thus extend the obtained results to an
arbitrary state of stress.

Indeed, consider uniaxial tension as in Fig. 1.1 with stress s11. For this case, s ¼ sx, and
Eqs. (4.25) yield

εx ¼ sx

E
þ uðsxÞsx (4.29)

εy ¼ �n

E
sx � 1

2
uðsxÞsx

gxy ¼ 0

(4.30)

Solving Eq. (4.29) for uðsxÞ, we get

uðsxÞ ¼ 1

EsðsxÞ �
1

E
(4.31)
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where Es ¼ sx=εx is the secant modulus introduced in Section 1.1 (see Fig. 1.4). Using now the
assumption regarding the existence of the universal diagram for stress intensity s and taking into
account that s ¼ sx for uniaxial tension, we can generalize Eq. (4.31) and write it for an arbitrary state
of stress as

uðsÞ ¼ 1

EsðsÞ �
1

E
(4.32)

To determine EsðsÞ ¼ s=ε, we need to plot the universal stress-strain curve. For this purpose, we
can use an experimental diagram sxðεxÞ for the case of uniaxial tension, e.g., the one shown in
Fig. 4.9 for an aluminum alloy with a solid line. To plot the universal curve sðεÞ, we should put
s ¼ sx and change the scale on the strain axis in accordance with Eq. (4.21). To do this, we need to
know the plastic Poisson’s ratio np, which can be found from np ¼ �εy=εx. Using Eqs. (4.29) and
(4.30), we arrive at

np ¼ 1

2
� Es

E



1

2
� n

�

It follows from this equation that np ¼ n if Es ¼ E and np/1=2 for Es/0: The dependencies of
Es and np on ε for the aluminum alloy under consideration are presented in Fig. 4.10. With the aid of
this figure and Eq. (4.21) in which we should take ε11 ¼ εx, we can calculate ε and plot the universal
curve shown in Fig. 4.9 with a dashed line. As can be seen, this curve is slightly different from that in
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ε εx , , %

FIGURE 4.9

Experimental stress-strain diagram for an aluminum alloy under uniaxial tension (solid line); the universal stress-

strain curve (dashed line), and its power approximation (dots).
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the diagram corresponding to a uniaxial tension. For the power approximation in Eq. (4.27), we get
from Eqs. (4.26) and (4.32) the following equations:

uðsÞ ¼ Cnsn�2; uðsÞ ¼ ε

s
� 1

E

Matching these results, we find

ε ¼ s

E
þ Cnsn�1 (4.33)

This is a traditional approximation for a material with a power hardening law. Now, we can find C and
n using Eq. (4.33) to approximate the dashed line in Fig. 4.9. The results of this approximation are
shown in this figure with dots that correspond to E ¼ 71:4 GPa, n ¼ 6; and C ¼ 6:23$10�15ðMPaÞ�5.

Thus, constitutive equations of the deformation theory of plasticity are specified by Eqs. (4.25)
and (4.32). These equations are valid only for active loading that can be identified by the condition
ds > 0. Applied for unloading (i.e., for ds < 0), Eqs. (4.25) correspond to nonlinear elastic material
with the stress-strain diagram shown in Fig. 1.2. For an elastic-plastic material (see Fig. 1.5), the
unloading diagram is linear. So, if we reduce the stresses by some decrements Dsx; Dsy; and Dsxy, the
corresponding decrements of strains will be

Dεx ¼ 1

E
ðDsx � nDsyÞ; Dεy ¼ 1

E
ðDsy � nDsxÞ;

Dgxy ¼
1

G
Dsxy
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FIGURE 4.10

Dependencies of the secant modulus (Es), tangent modulus (Et ), and the plastic Poisson’s ratio (np ) on strain for an
aluminum alloy.
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Direct application of the nonlinear equations (4.25) substantially hinders the problem of stress-strain
analysis because these equations include function uðsÞ in Eq. (4.32) which, in turn, contains the secant
modulus EsðsÞ. For the power approximation corresponding to Eq. (4.33), Es can be expressed
analytically, i.e.,

1

Es
¼ 1

E
þ Cnsn�2

However, in many cases Es is given graphically (as in Fig. 4.10) or numerically in the form of a table.
Thus, Eqs. (4.25) sometimes cannot even be written in an explicit analytical form. This implies
application of numerical methods in conjunction with iterative linearization of Eqs. (4.25).

There exist several methods of such linearization that will be demonstrated using the first equation
in Eqs. (4.25), i.e.,

εx ¼ 1

E
ðsx � nsyÞ þ uðsÞ



sx � 1

2
sy

�
(4.34)

In the method of elastic solutions (Ilyushin, 1948), Eq. (4.34) is used in the following form

ε
s
x ¼

1

E

�
ssx � nssy

�
þ hs�1 (4.35)

where s is the number of the iteration step and

hs�1 ¼ uðss�1Þ


ss�1
x � 1

2
ss�1
y

�

For the first step (s ¼ 1), we take h0 ¼ 0 and solve the problem of linear elasticity with Eq. (4.35) in
the form

ε
1
x ¼

1

E

�
s1x � ns1y

�
(4.36)

Finding the stresses, we calculate h1 and write Eq. (4.35) as

ε
2
x ¼

1

E

�
s2x � ns2y

�
þ h1

where the first term is linear, whereas the second term is a known function of coordinates. Thus we
have another linear problem, resolving which we find stresses, calculate h2, and switch to the third
step. This process is continued until the strains corresponding to some step become sufficiently close
within the stipulated accuracy to the results found at the previous step.

Thus, the method of elastic solutions reduces the initial nonlinear problem to a sequence of linear
problems of the theory of elasticity for the same material, but with some initial strains that can be
transformed into initial stresses or additional loads. This method readily provides a nonlinear solution
for any problem that has a linear solution, analytical or numerical. The main shortcoming of the
method is its poor convergence. Graphical interpretation of this process for the case of uniaxial tension
with stress s is presented in Fig. 4.11a. This figure shows a simple way to improve the convergence of
the process. If we need to find the strain at the point of the curve that is close to point A, it is not
necessary to start the process with initial modulus E. Taking E0 < E in Eq. (4.36) we can reach the
result with many fewer steps.

138 CHAPTER 4 Mechanics of a composite layer

www.EngineeringEBooksPdf.com



According to the method of elastic variables (Birger, 1951), we should present Eq. (4.34) as

ε
s
x ¼

1

E

�
ssx � nssy

�
þ uðss�1Þ

�
ssx �

1

2
ssy

�
(4.37)

In contrast to Eq. (4.35), stresses ssx and ssy in the second term correspond to the current step rather than
to the previous one. This enables us to write Eq. (4.37) in a form analogous to Hooke’s law, i.e.,

ε
s
x ¼

1

Es�1

�
ssx � ns�1s

s
y

�
(4.38)
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FIGURE 4.11

Geometric interpretation of (a) the method of elastic solutions, (b) the method of variable elasticity parameters,

(c) Newton’s method, and (d) method of successive loading.
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where

Es�1 ¼
�
1

E
þ uðss�1Þ

	�1

; ns�1 ¼ Es�1

�
n

E
þ 1

2
uðss�1Þ

	
(4.39)

are elastic variables corresponding to the stepwith number s� 1. The iteration procedure is similar to that
described previously. For the first step we take E0 ¼ E and n0 ¼ n in Eq. (4.38). We then find
s1x ; s

1
y ; and s1, determine E1 and n1, switch to the second step, and so on. Graphical interpretation of the

process is shown in Fig. 4.11b. Convergence of this method is by an order faster than that of the method of
elastic solutions. However, elastic variables in the linear constitutive equation of the method, Eq. (4.38),
depend on stresses, and hence, on coordinates whence the method has obtained its name. This method can
be efficiently applied in conjunction with the finite element method, according to which the structure is
modeled with the system of elements with constant stiffness coefficients. Being calculated for each step
with the aid of Eqs. (4.39), stiffness will change only with transition from one element to another, which
clearly would not practically hinder the calculation procedure for the finite element method.

The iteration process having the best convergence is provided by the classical Newton method,
requiring the following form of Eq. (4.34)

ε
s
x ¼ ε

s�1
x þ cs�1

11

�
ssx � ss�1

x

�
þ cs�1

12

�
ssy � ss�1

y

�
þ cs�1

13

�
ssxy � ss�1

xy

� (4.40)

where

c s�1
11 ¼ 1

E
þ uðss�1Þ þ



ss�1
x � 1

2
ss�1
y

�
v

vss�1
x

uðss�1Þ

c s�1
12 ¼ � n

E
� 1

2
uðss�1Þ þ



ss�1
x � 1

2
ss�1
y

�
v

vss�1
y

uðss�1Þ

c s�1
13 ¼



ss�1
x � 1

2
ss�1
y

�
v

vs s�1
xy

uðss�1Þ

Since coefficients c are known from the previous step ðs� 1Þ, Eq. (4.40) is linear with respect to stresses
and strains corresponding to step number s. Graphical interpretation of this method is presented in
Fig. 4.11c. In contrast to themethods discussed previously, Newton’smethod has no physical interpretation
and, being characterized with very high convergence, is rather cumbersome for practical applications.

The iteration methods discussed previously are used to solve direct problems of stress analysis, i.e.,
to find stresses and strains induced by a given load. However, there exists another class of problems
requiring us to evaluate the load-carrying capacity of the structure. To solve these problems, we need to
trace the evolution of stresses while the load increases from zero to some ultimate value. To do this, we
can use the method of successive loading. According to this method, the load is applied with some
increments, and for each s-step of loading the strain is determined as

ε
s
x ¼ ε

s�1
x þ 1

Es�1

�
Dssx � ns�1Ds

s
y

�
(4.41)
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where Es�1 and ns�1 are specified by Eqs. (4.39) and correspond to the previous loading step.
Graphical interpretation of this method is shown in Fig. 4.11d. To obtain reliable results, the load
increments should be as small as possible, because the error of calculation is cumulative in this
method. To avoid this effect, the method of successive loading can be used in conjunction with the
method of elastic variables. Being applied after several loading steps (black circles in Fig. 4.11d), the
latter method allows us to eliminate the accumulated error and to start the process of loading again
from a “correct” initial state (light circles in Fig. 4.11d).

Returning to the constitutive equations of the deformation theory of plasticity, Eq. (4.25), it is
important to note that these equations are algebraic. This means that strains corresponding to some
combination of loads are determined by the stresses induced by these loads and do not depend on the
history of loading, i.e., on what happened to the material before this combination of loads was
reached.

However, existing experimental data show that, in general, strains should depend on the history of
loading. This means that constitutive equations should be differential, rather than algebraic as they are
in deformation theory. Such equations are provided by the flow theory of plasticity. According to this
theory, decomposition in Eq. (4.15) is used for infinitesimal increments of stresses, i.e.,

dεij ¼ dεeij þ dε
p
ij (4.42)

Here, increments of elastic strains are related to the increments of stresses by Hooke’s law, e.g., for the
plane stress state

dεex ¼
1

E
ðdsx � ndsyÞ; dεey ¼

1

E
ðdsy � ndsxÞ;

dgxy ¼
1

G
dsxy

(4.43)

whereas increments of plastic strains

dε
p
ij ¼

vUp

vsij
dl

are expressed in the form of Eqs. (4.18) but include a parameter l which characterizes the loading
process.

Assuming thatUp ¼ UpðsÞ, where s is the stress intensity specified by Eqs. (4.19) or (4.24), we get

dε pij ¼
dUp

ds

vs

vsij
dl

The explicit form of these equations for the plane stress state is

dεpx ¼ duðsÞ


sx � 1

2
sy

�

dεpy ¼ duðsÞ


sy � 1

2
sx

�

dgp
xy ¼ 3duðsÞsxy

(4.44)
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where

duðsÞ ¼ 1

s

dUp

ds
dl (4.45)

To determine the parameter l, assume that the plastic potential Up, being on the one hand a function of
s, can be treated as the work performed by stresses on plastic strains, i.e.,

dUp ¼ vUp

vs
ds ¼ sxdε

p
x þ sydε

p
y þ sxydg

p
xy

Substituting strain increments from Eqs. (4.44) and taking into account Eq. (4.24) for s, we have

vUp

vs
ds ¼ s2duðsÞ

With due regard to Eq. (4.45), we arrive at the following simple and natural relationship, dl ¼ ds=s.
Thus, Eq. (4.45) takes the form

duðsÞ ¼ ds

s2
dUp

ds
(4.46)

and Eqs. (4.42)–(4.44) result in the following constitutive equations for the flow theory

dεx ¼ 1

E
ðdsx � ndsyÞ þ duðsÞ



sx � 1

2
sy

�

dεy ¼ 1

E
ðdsy � ndsxÞ þ duðsÞ



sy � 1

2
sx

�

dgxy ¼
1

G
dsxy þ 3duðsÞsxy

(4.47)

As can be seen, in contrast to the deformation theory, stresses govern the increments of plastic strains
rather than the strains themselves.

In the general case, irrespective of any particular approximation of plastic potential Up, we can
obtain for function duðsÞ in Eqs. (4.47) an expression similar to Eq. (4.32). Consider uniaxial tension,
for which Eqs. (4.47) yield

dεx ¼ dsx
E

þ duðsxÞsx
Repeating the derivation of Eq. (4.32), we finally have

duðsÞ ¼ ds

s



1

EtðsÞ �
1

E

�
(4.48)

where EtðsÞ ¼ ds=dε is the tangent modulus introduced in Section 1.1 (see Fig. 1.4). The dependence
of Et on strain for an aluminum alloy is shown in Fig. 4.10. Consider the power approximation for
plastic potential

Up ¼ Bsn (4.49)
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Then, matching Eqs. (4.46) and (4.48), we arrive at the following equation

dε

ds
¼ 1

E
þ Bnsn�2

Upon integration, we get

ε ¼ s

E
þ Bn

n� 1
sn�1 (4.50)

As can be seen, this equation has the same form as Eq. (4.33). The only difference is in the form of
coefficients C and B. As in the theory of deformation, Eq. (4.50) can be used to approximate the
experimental stress-strain curve and to determine coefficients B and n. Thus, the constitutive equations
for the flow theory of plasticity are specified by Eqs. (4.47) and (4.48).

For a plane stress state, introduce the stress space shown in Fig. 4.12 and referred to a Cartesian
coordinate frame with stresses as coordinates. In this space, any loading can be presented as a curve
specified by the parametric equations sx ¼ sxðpÞ; sy ¼ syðpÞ; and sxy ¼ sxyðpÞ, in which p is the
loading parameter. To find strains corresponding to point A on the curve, we should integrate
Eqs. (4.47) along this curve, thus taking into account the whole history of loading. In the general case,
the obtained result will be different from what follows from Eqs. (4.25) of the deformation theory for
point A. However, there exists one loading path (the straight line 0A in Fig. 4.12) that is completely
determined by the location of its final point A. This is the so-called proportional loading during which
the stresses increase in proportion to parameter p, i.e.,

sx ¼ s0xp; sy ¼ s0yp; sxy ¼ s0xyp (4.51)

where stresses with superscript “0” can depend on coordinates only. For such loading,
s ¼ s0p; ds ¼ s0dp, and Eqs. (4.46) and (4.49) yield

du
�
s
� ¼ Bnsn�3ds ¼ Bnsn�2

0 pn�3dp (4.52)

σ x

σ y

τ xy

A

0

FIGURE 4.12

Loading path (0A) in the stress space.
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Consider, for example, the first equation of Eqs. (4.47). Substituting Eqs. (4.51) and (4.52), we have

dεx ¼ 1

E



s0x � ns0y

�
dpþ Bnsn�2

0



s0x �

1

2
s0y

�
pn�2dp

This equation can be integrated with respect to p. Again using Eqs. (4.51), we arrive at the constitutive
equation of the deformation theory

εx ¼ 1

E
ðsx � nsyÞ þ B

n

n� 1
sn�2



sx � 1

2
sy

�

Thus, for a proportional loading, the flow theory reduces to the deformation theory of plasticity.
Unfortunately, before the problem is solved and the stresses are found we do not know whether the
loading is proportional or not and which particular theory of plasticity should be used. There exists
a theorem of proportional loading (Ilyushin, 1948), according to which the stresses increase propor-
tionally and the deformation theory can be used if:

1. external loads increase in proportion to one loading parameter,
2. the material is incompressible and its hardening can be described with the power law s ¼ Sεn.

In practice, both conditions of this theorem are rarely met. However, existing experience shows that
the second condition is not very important and that the deformation theory of plasticity can be
reliably (but approximately) applied if all the loads acting on the structure increase in proportion to
one parameter.

4.2 UNIDIRECTIONAL ORTHOTROPIC LAYER
A composite layer with the simplest structure consists of unidirectional plies whose material coor-
dinates, 1, 2, and 3, coincide with coordinates of the layer, x, y, and z, as in Fig. 4.13. An example of
such a layer is presented in Fig. 4.14: the principal material axes of an outer circumferential unidi-
rectional layer of a pressure vessel coinciding with global (axial and circumferential) coordinates of
the vessel.

4.2.1 Linear elastic model

For the layer under study, the constitutive equations, Eqs. (2.48) and (2.53), yield

ε1 ¼ s1

E1
� n12

s2

E2
� n13

s3

E3

ε2 ¼ s2

E2
� n21

s1

E1
� n23

s3

E3

ε3 ¼ s3

E3
� n31

s1

E1
� n32

s2

E2

g12 ¼
s12
G12

; g13 ¼
s13
G13

; g23 ¼
s23
G23

(4.53)
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FIGURE 4.13

An orthotropic layer.

FIGURE 4.14

Filament-wound composite pressure vessel.
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where

n12E1 ¼ n21E2; n13E1 ¼ n31E3; n23E2 ¼ n32E3

The inverse form of Eqs. (4.53) is

s1 ¼ A1ðε1 þ m12ε2 þ m13ε3Þ
s2 ¼ A2ðε2 þ m21ε1 þ m23ε3Þ
s3 ¼ A3ðε3 þ m31ε1 þ m32ε2Þ
s12 ¼ G12g12; s13 ¼ G13g13; s23 ¼ G23g23

(4.54)

where

A1 ¼ E1

D
ð1� n23n32Þ; A2 ¼ E2

D
ð1� n13n31Þ; A3 ¼ E3

D
ð1� n12n21Þ

D ¼ 1� n12n23n31 � n13n21n32 � n13n31 � n12n21 � n23n32

m12 ¼
n12 þ n13n32

1� n23n32
; m21 ¼

n21 þ n23n31

1� n13n31

m13 ¼
n13 þ n12n23

1� n23n32
; m31 ¼

n31 þ n21n32

1� n12n21

m23 ¼
n23 þ n13n21

1� n13n31
; m32 ¼

n32 þ n12n31

1� n12n21

As for an isotropic layer considered in Section 4.1, the terms including the transverse normal stress s3
can be neglected for a thin layer in Eqs. (4.53) and (4.54), and they can be written in the following
simplified forms

ε1 ¼ s1

E1
� n12

s2

E2
; ε2 ¼ s2

E2
� n21

s1

E1

g12 ¼
s12
G12

; g13 ¼
s13
G13

; g23 ¼
s23
G23

(4.55)

and

s1 ¼ E1

�
ε1 þ n12ε2

�
; s2 ¼ E2

�
ε2 þ n21ε1

�
s12 ¼ G12g12; s13 ¼ G13g13; s23 ¼ G23g23

(4.56)

where

E1;2 ¼ E1;2

1� n12n21

The constitutive equations presented earlier include elastic constants for a layer that are determined
experimentally. For in-plane characteristics E1; E2; G12; and n12, the corresponding test methods are
discussed in Chapter 3. The transverse modulus E3 is usually found by testing the layer under
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compression in the z direction. The transverse shear moduli G13 and G23 can be obtained by various
methods, e.g., by inducing pure shear in two symmetric specimens shown in Fig. 4.15 and calculating
the shear modulus as G13 ¼ P=ð2AgÞ, where A is the in-plane area of the specimen.

For unidirectional composites, G13 ¼ G12 (see Table 3.5), whereas typical values of G23 are listed
in Table 4.1 (Herakovich, 1998).

Poisson’s ratios n31 and n32 can be determined by measuring the change in the layer thickness
under in-plane tension in directions 1 and 2.

4.2.2 Nonlinear models

Consider Figs. 3.40–3.43, showing typical stress-strain diagrams for unidirectional advanced
composites. As can be seen, the materials demonstrate linear behavior only under tension. The
curves corresponding to compression are slightly nonlinear, whereas the shear curves are definitely
nonlinear. It should be emphasized that this does not mean that the linear constitutive equations
presented in Section 4.2.1 are not valid for these materials. First, it should be taken into account
that the deformations of properly designed composite materials are controlled by the fibers, and
they do not allow the shear strain to reach the values at which the shear stress-strain curve is highly
nonlinear. Second, the shear stiffness is usually very small in comparison with the longitudinal
one, and so is its contribution to the apparent material stiffness. The material behavior is usually
close to linear even if the shear deformation is nonlinear. Thus, a linear elastic model provides, as

γ

P

1

3

1

3

FIGURE 4.15

A test to determine transverse shear modulus.

TABLE 4.1 Transverse Shear Moduli of Unidirectional Composites (Herakovich, 1998).

Material Glass-epoxy Carbon-epoxy Aramid-epoxy Boron-Al

G23 (GPa) 4.1 3.2 1.4 49.1
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a rule, a reasonable approximation to the actual material behavior. However, there exist problems
to solve which we need to allow for material nonlinearity and apply one of the nonlinear
constitutive theories discussed later.

First, note that material behavior under elementary loading (pure tension, compression, and shear)
is specified by experimental stress-strain diagrams of the type shown in Figs. 3.40–3.43, and we do not
need any theory. The necessity for a theory arises if we are to study the interaction of simultaneously
acting stresses. Since for the layer under study this interaction usually takes place for in-plane stresses
s1; s2; and s12 (see Fig. 4.13), we consider further the plane state of stress.

In the simplest (but quite useful for practical engineering analysis) approach, the stress interaction
is ignored completely, and the linear constitutive equations, Eqs. (4.55), are generalized as

ε1 ¼ s1

Es
1

� ns12
s2

Es
2

; ε2 ¼ s2

Es
2

� ns21
s1

Es
1

; g12 ¼
s12
Gs
12

(4.57)

where the superscript “s” indicates the corresponding secant characteristics specified by Eqs. (1.8).
These characteristics depend on stresses and are determined using experimental diagrams similar to
those presented in Figs. 3.40–3.43. In particular, diagrams s1ðε1Þ and ε2ðε1Þ plotted under uniaxial
longitudinal loading yield Es

1ðs1Þ and ns21ðs1Þ, and secant moduli Es
2ðs2Þ and Gs

12ðs12Þ are determined
from experimental curves for s2ðε2Þ and s12ðg12Þ, respectively, whereas ns12 is found from the
symmetry condition in Eqs. (4.53). In a more rigorous model (Jones, 1977), the secant characteristics
of the material in Eqs. (4.57) are also functions, but in this case they are functions of strain energy U in
Eq. (2.51) rather than of individual stresses. Models of this type provide adequate results for unidi-
rectional composites with moderate nonlinearity.

To describe pronounced nonlinear elastic behavior of a unidirectional layer, we can use Eq. (4.10).
Expanding the complementary potential Uc into a Taylor series with respect to stresses, we have

Uc ¼ c0 þ cijsij þ 1

2
cijklsijskl þ 1

3!
cijklmn sijsklsmn þ 1

4!
cijklmnpq sijsklsmnspq

þ 1

5!
cijklmnpqrs sijsklsmnspqsrs þ 1

6!
cijklmnpqrstw sijsklsmnspqsrsstw þ..

(4.58)

where

c0 ¼ Ucðsij ¼ 0Þ; cij ¼ vUc

vsij

����
sij¼0

; cijkl ¼ v2Uc

vsijvskl

����
sij¼0;skl¼0

; etc:

A sixth-order approximation with the terms presented in Eq. (4.58) (where summation over repeated
subscripts is implied) allows us to construct constitutive equations including stresses in the fifth power.
The coefficients “c” should be found from experiments with material specimens. Since these coeffi-
cients are partial derivatives that do not depend on the sequence of differentiation, the sequence of their
subscripts is not important. As a result, the sixth-order polynomial in Eq. (4.58) includes 84
“c”-coefficients. This is clearly far too many for the practical analysis of composite materials. To
reduce the number of coefficients, we can first use some general considerations. Namely, assume that
Uc ¼ 0 and εij ¼ 0 if there are no stresses ðsij ¼ 0Þ. Then, c0 ¼ 0 and cij ¼ 0. Second, we should take
into account that the material under study is orthotropic. This means that normal stresses do not induce
shear strain, and shear stresses do not cause normal strains. Third, the direction of shear stresses should
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influence only shear strains, i.e., shear stresses should have only even powers in constitutive equations
for normal strains, whereas the corresponding equation for shear strain should include only odd powers
of shear stresses. As a result, the constitutive equations will contain 37 coefficients and take the
following form (in new notations for coefficients and stresses)

ε1 ¼ a1s1 þ a2s
2
1 þ a3s

3
1 þ a4s

4
1 þ a5s

5
1 þ d1s1

þ 2d2s1s2 þ d3s
2
2 þ 3d4s

2
1s2 þ d5s

3
2 þ d6s1s

2
2 þ 4d7s

3
1s2 þ 3d8s

2
1s

2
2 þ 2d9s1s

3
2

þ d10s
4
2 þ 5d11s

4
1s2 þ 4d12s

3
1s

2
2 þ 3d13s

2
1s

3
2 þ 2d14s1s

4
2 þ d15s

5
2 þ k1s1s212 þ k2s2s212

þ 3k3s
2
1s

2
12 þ 4k4s

3
1s

2
12 þ 2k5s1s412

ε2 ¼ b1s2 þ b2s
2
2 þ b3s

3
2 þ b4s

4
2 þ b5s

5
2

þ d1s1 þ d2s
2
1 þ 2d3s1s2 þ d4s

3
1 þ 3d5s1s

2
2 þ d6s

2
1s2 þ d7s

4
1 þ 2d8s

3
1s2

þ 3d9s
2
1s

2
2 þ 4d10s1s

3
2 þ d11s

5
1 þ 2d12s

4
1s2 þ 3d13s

3
1s

2
2 þ 2d14s

2
1s

3
2 þ 5d15s1s

4
2

þm1s2s212 þ k2s1s212 þ 3m2s
2
2s

2
12 þ 4m3s

3
2s

2
12 þ 2m4s2s412

g12 ¼ c1s12 þ c2s312 þ c3s512 þ k1s12s21 þ m1s12s22

þ 2k2s12s1s2 þ 2k3s12s31 þ 2m2s12s32

þ 2k4s12s41 þ 4k5s312s
2
1 þ 2m3s12s42 þ 4m4s312s

2
2

(4.59)

For unidirectional composites, the dependence ε1ðs1Þ is linear, which means that we should put
d2 ¼ . d15 ¼ 0; k1 ¼ . k5 ¼ 0. Then, the foregoing equations reduce to

ε1 ¼ a1s1 þ d1s2

ε2 ¼ b1s2 þ b2s
2
2 þ b3s

3
2 þ b4s

4
2 þ b5s

5
2

þ d1s1 þ m1s2s212 þ 3m2s
2
2s

2
12 þ 4m3s

3
2s

2
12 þ 2m4s2s412

g12 ¼ c1s12 þ c2s312 þ c3s512 þ m1s12s22

þ 2m2s12s32 þ 2m3s12s42 þ 4m4s312s
2
2

(4.60)

As an example, consider a specific unidirectional two-matrix fiberglass composite with high in-plane
transverse and shear deformation (see Section 4.4.3 for further details). The stress-strain curves cor-
responding to transverse tension, compression, and in-plane shear are shown in Fig. 4.16. Solid lines
correspond to Eqs. (4.60) used to approximate the experimental results (circles in Fig. 4.16). The
coefficients a1 and d1 in Eqs. (4.60) are found using diagrams ε1ðs1Þ and ε2ðs2Þ, which are linear and
not shown here. The coefficients b1.b5 and c1; c2; and c3 are determined using the least-squares
method to approximate curves sþ2 ðε2Þ; s�2 ðε2Þ; and s12ðg12Þ. The other coefficients, i.e., m1.m4,
should be determined with the aid of a more complicated experiment involving loading that induces
both stresses s2 and s12 acting simultaneously. This experiment is described in Section 4.3.
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As follows from Figs. 3.40–3.43, unidirectional composites demonstrate pronounced nonlinearity
only under shear. Assuming that the dependence ε2ðs2Þ is also linear, we can reduce Eqs. (4.60) to

ε1 ¼ a1s1 þ d1s2; ε2 ¼ b1s2 þ d1s1; g12 ¼ c1s12 þ c2s
3
12 þ c3s

5
12

For practical analysis, an even simpler form of these equations (with c3 ¼ 0) can be used (Hahn and
Tsai, 1973).

Nonlinear behavior in composite materials can also be described with the aid of the theory of
plasticity, which can be constructed as a direct generalization of the classical plasticity theory
developed for metals and described in Section 4.1.2.

To construct such a theory, we decompose strains in accordance with Eq. (4.15) and use Eqs. (4.16)
and (4.18) to determine elastic and plastic strains as

ε
e
ij ¼

vUe

vsij
; ε

p
ij ¼

vUp

vsij
(4.61)

where Ue and Up are elastic and plastic potentials. For elastic potential, elasticity theory yields

U ¼ cijklsijskl; (4.62)

where cijkl are compliance coefficients, and summation over repeated subscripts is implied. The plastic
potential is assumed to be a function of stress intensity, s, which is constructed for a plane stress state
as a direct generalization of Eq. (4.24), i.e.,

s ¼ aijsij þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijklsijskl

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijklmnsijsklsmn3

p þ// (4.63)
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FIGURE 4.16

Calculated (solid lines) and experimental (circles) stress-strain diagrams for a two-matrix unidirectional

composite under in-plane transverse tension (sþ2 ), compression (s�2 ), and shear (s12).
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where the coefficients “a” are material constants characterizing its plastic behavior. Finally, we use the
power law in Eq. (4.27) for the plastic potential.

To write constitutive equations for a plane stress state, we return to engineering notations for
stresses and strains and use conditions that should be imposed on an orthotropic material and
which are discussed earlier in application to Eqs. (4.59). Finally, Eqs. (4.15), (4.27) and (4.61)–
(4.63) yield

ε1 ¼ a1s1 þ d1s2 þ nsn�1

"
1

R1
ðb11s1 þ c12s2Þ þ 1

R2
2

�
d11s

2
1 þ 2e12s1s2 þ e21s

2
2

�#

ε2 ¼ b1s2 þ d1s1 þ nsn�1

"
1

R1
ðb22s2 þ c12s1Þ þ 1

R2
2

�
d22s

2
2 þ 2e21s2s1 þ e12s

2
1

�#

g12 ¼ c1s12 þ 2nsn�1b12
R1

s12

(4.64)

where

s ¼ R1 þ R2

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11s

2
1 þ b22s

2
2 þ b12s212 þ 2c12s1s2

q
; R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d11s

3
1þd22s

3
2 þ 3e12s

2
1s2 þ 3e21s1s

2
2

3

q
Deriving Eqs. (4.64), we use new notations for coefficients and restrict ourselves to the three-term
approximation for s as in Eq. (4.63).

For independent uniaxial loading along the fibers, across the fibers, and in pure shear, Eqs. (4.64)
reduce to

ε1 ¼ a1s1 þ n


 ffiffiffiffiffiffiffiffiffiffiffi
b11s

2
1

q
þ s1

ffiffiffiffiffiffiffi
d11

3
p �n�1

 ffiffiffiffiffiffiffi
b11

p s1ffiffiffiffiffi
s21

q þ
ffiffiffiffiffiffiffi
d11

3
p !

ε2 ¼ b1s2 þ n


 ffiffiffiffiffiffiffiffiffiffiffi
b22s

2
2

q
þ s2

ffiffiffiffiffiffiffi
d22

3
p �n�1

 ffiffiffiffiffiffiffi
b22

p s2ffiffiffiffiffi
s22

q þ
ffiffiffiffiffiffiffi
d22

3
p !

g12 ¼
�
c1 þ 2n

ffiffiffiffiffiffiffi
bn12

p � ffiffiffiffiffiffi
s212

q �n�1
	
s12

(4.65)

If nonlinear material behavior does not depend on the sign of normal stresses, then d11 ¼ d22 ¼ 0 in
Eqs. (4.65). In the general case, Eqs. (4.65) allow us to describe materials with high nonlinearity and
different behaviors under tension and compression.

As an example, consider a boron-aluminum unidirectional composite whose experimental stress-
strain diagrams (Herakovich, 1998) are shown in Fig. 4.17 (circles) along with the corresponding
approximations (solid lines) plotted with the aid of Eqs. (4.65).
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FIGURE 4.17

Calculated (solid lines) and experimental (circles) stress-strain diagrams for a boron-aluminum composite under

transverse loading (a) and in-plane shear (b).

4.3 UNIDIRECTIONAL ANISOTROPIC LAYER
Consider now a unidirectional layer as studied in the previous section and assume that its principal
material axis 1 makes some angle f with the x-axis of the global coordinate frame (see Fig. 4.18).
An example of such a layer is shown in Fig. 4.19.

4.3.1 Linear elastic model

Constitutive equations of the layer under study referred to the principal material coordinates are given
by Eqs. (4.55) and (4.56). We now need to derive such equations for the global coordinate frame x, y, z
(see Fig. 4.18). To do this, we should transfer stresses s1; s2; s12; s13; and s23 acting in the layer and
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FIGURE 4.18

A composite layer consisting of a system of unidirectional plies with the same orientation.

FIGURE 4.19

An anisotropic outer layer of a composite pressure vessel.

Courtesy of CRISM.

the corresponding strains ε1; ε2; g12; g13; and g23 into stress and strain components
sx; sy; sxy; sxz; and syz and εx; εy; gxy; gxz; and gyz using Eqs. (2.8), (2.9), (2.21), and (2.27) for
coordinate transformation of stresses and strains. According to Fig. 4.18, the directional cosines,
Eqs. (2.1), for this transformation are (we take x0 ¼ 1; y0 ¼ 2; z0 ¼ 3)

lx1x ¼ c; lx1y ¼ s; lx1z ¼ 0

ly1x ¼ �s; ly1y ¼ c; ly1z ¼ 0

lz1x ¼ 0; lz1y ¼ 0; lz1z ¼ 1

(4.66)
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where c ¼ cos f and s ¼ sin f. Using Eqs. (2.8) and (2.9), we get

s1 ¼ sxc
2 þ sys

2 þ 2sxycs

s2 ¼ sxs
2 þ syc

2 � 2sxycs

s12 ¼
�
sy � sx

�
csþ sxy

�
c2 � s2

�
s13 ¼ sxzcþ syzs

s23 ¼ �sxzsþ syzc

(4.67)

The inverse form of these equations is

sx ¼ s1c
2 þ s2s

2 � 2s12cs

sy ¼ s1s
2 þ s2c

2 þ 2s12cs

sxy ¼
�
s1 � s2

�
csþ s12

�
c2 � s2

�
sxz ¼ s13c� s23s

syz ¼ s13sþ s23c

(4.68)

The corresponding transformation for strains follows from Eqs. (2.21) and (2.27), i.e.,

ε1 ¼ εxc
2 þ εys

2 þ gxycs

ε2 ¼ εxs
2 þ εyc

2 � gxycs

g12 ¼ 2
�
εy � εx

�
csþ gxy

�
c2 � s2

�
g13 ¼ gxzcþ gyzs

g23 ¼ �gxzsþ gyzc

(4.69)

or

εx ¼ ε1c
2 þ ε2s

2 � g12cs

εy ¼ ε1s
2 þ ε2c

2 þ g12cs

gxy ¼ 2
�
ε1 � ε2

�
csþ g12

�
c2 � s2

�
gxz ¼ g13c� g23s

gyz ¼ g13sþ g23c

(4.70)

To derive constitutive equations for an anisotropic unidirectional layer, we substitute strains, Eqs. (4.69),
into Hooke’s law, Eqs. (4.56), and the resulting expressions for stresses s1; s2 and s12 and into Eqs.
(4.68). The final result is as follows

sx ¼ A11εx þ A12εy þ A14gxy

sy ¼ A21εx þ A22εy þ A24gxy

sxy ¼ A41εx þ A42εy þ A44gxy

sxz ¼ A55gxz þ A56g

syz ¼ A65gxz þ A66gyz

(4.71)
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The stiffness coefficients in these equations are

A11 ¼ E1c
4 þ E2s

4 þ 2E12c
2s2

A12 ¼ A21 ¼ E1n12 þ
�
E1 þ E2 � 2E12

�
c2s2

A14 ¼ A41 ¼
�
E1c

2 � E2s
2 � E12

�
c2 � s2

�
cs

A22 ¼ E1s
4 þ E2c

4 þ 2E12c
2s2

A24 ¼ A42 ¼
�
E1s

2 � E2c
2 þ E12

�
c2 � s2

�
cs

A44 ¼
�
E1 þ E2 � 2E1n12

�
c2s2 þ G12

�
c2 � s2

�2
A55 ¼ G13c

2 þ G23s
2

A56 ¼ A65 ¼ ðG13 � G23Þcs

A66 ¼ G13s
2 þ G23c

2

(4.72)

where

E1;2 ¼ E1;2

1� n12n21
; E12 ¼ E1n12 þ 2G12; c ¼ cos f; s ¼ sin f

The dependence of stiffness coefficients Amn in Eqs. (4.72) on f has been studied by Tsai and Pagano
(see, e.g., Tsai, 1987; Verchery, 1999). Changing the powers of sin f and cos f in Eqs. (4.72) for
multiple-angle trigonometric functions, we can reduce these equations to the following form:

A11 ¼ S1 þ S2 þ 2S3 cos 2fþ S4 cos 4f

A12 ¼ �S1 þ S2 � S4 cos 4f

A14 ¼ S3 sin 2fþ S4 sin 4f

A22 ¼ S1 þ S2�2S3 cos 2fþ S4 cos 4f

A24 ¼ S3 sin 2f� S4 sin 4f

A44 ¼ S1 � S4 cos 4f

A55 ¼ S5 þ S6 cos 2f

A56 ¼ 4S6 sin 2f

A66 ¼ S5 � S6 cos 2f

(4.73)
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(Verchery, 1999). In these equations,

S1 ¼ 1

8

�
A0
11 þ A0

22 � 2A0
12 þ 4A0

44

�

S2 ¼ 1

4

�
A0
11 þ A0

22 þ 2A0
12

�

S3 ¼ 1

4

�
A0
11 � A0

22

�

S4 ¼ 1

8

�
A0
11 þ A0

22 � 2A0
12 � 4A0

44

�

S5 ¼ 1

2

�
A0
55 þ A0

66

�

S6 ¼ 1

2

�
A0
55 � A0

66

�
where A0

n are stiffness coefficients corresponding to f ¼ 0. It follows from Eqs. (4.72) that

A0
11 ¼ E1; A0

12 ¼ E1n12; A0
14 ¼ A0

24 ¼ A0
56 ¼ 0

A0
22 ¼ E2; A0

44 ¼ G12; A0
55 ¼ G13; A0

66 ¼ G23

As can be seen in Eqs. (4.73), there exist the following differential relationships between tensile and
coupling stiffnesses (Verchery and Gong, 1999)

dA11

df
¼ �4A14;

dA22

df
¼ 4A24

It can be directly checked that Eqs. (4.73) provide three invariant stiffness characteristics whose forms
do not depend on f, i.e.,

A11

�
f
�þ A22

�
f
�þ 2A12

�
f
� ¼ A0

11 þ A0
22 þ 2A0

12

A44

�
f
�� A12

�
f
� ¼ A0

44 � A0
12

A55

�
f
�þ A66

�
f
� ¼ A0

55 þ A0
66

(4.74)

Any linear combination of these equations is also an invariant combination of stiffness coefficients.
The inverse form of Eqs. (4.71) can be obtained if we substitute stresses, Eqs. (4.67), into Hooke’s

law, Eqs. (4.55), and the derived strains in Eqs. (4.70). As a result, we arrive at the following particular
form of Eqs. (2.48), (2.49)

εx ¼ sx

Ex
� nxy

sy

Ey
þ hx;xy

sxy
Gxy

; εy ¼ sy

Ey
� nyx

sx

Ex
þ hy;xy

sxy
Gxy

gxy ¼
sxy
Gxy

þ hxy;x
sx

Ex
þ hxy;y

sy

Ey

gxz ¼
sxz
Gxz

þ lxz;yz
syz
Gyz

; gyz ¼
syz
Gyz

þ lyz;xz
sxz
Gxz

(4.75)
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in which the compliance coefficients are

1

Ex
¼ c4

E1
þ s4

E2
þ



1

G12
� 2n21

E1

�
c2s2

nxy

Ey
¼ nyx

Ex
¼ n21

E1
�



1

E1
þ 1

E2
þ 2n21

E1
� 1

G12

�
c2s2

hx;xy

Gxy
¼ hxy;x

Ex
¼ 2

�
c2

E1
� s2

E2
�



1

2G12
� n21

E1

��
c2 � s2

�	
cs

1

Ey
¼ s4

E1
þ c4

E2
þ



1

G12
� 2n21

E1

�
c2s2

hy;xy

Gxy
¼ hxy;y

Ey
¼ 2

�
s2

E1
� c2

E2

þ



1

2G12
� n21

E1

��
c2 � s2

�	
cs

1

Gxy
¼ 4



1

E1
þ 1

E2
þ 2n21

E1

�
c2s2 þ 1

G12

�
c2 � s2

�2

1

Gxz
¼ c2

G13
þ s2

G23
;

lxz;yz

Gyz
¼ lyz;xz

Gxz
¼



1

G13
� 1

G23

�
cs;

1

Gyz
¼ s2

G13
þ c2

G23

(4.76)

There exist the following dependencies between the coefficients of Eqs. (4.71) and (4.75)

1

Ex
¼ 1

D1

�
A22A44 � A2

24

�
;

nxy

Ey
¼ nyx

Ex
¼ 1

D1

�
A12A44 � A14A24

�

hx;xy

Gxy
¼ hxy;x

Ex
¼ 1

D1

�
A12A24 � A22A14

�
;

1

Ey
¼ 1

D1

�
A11A44 � A2

14

�

hy;xy

Gxy
¼ hxy;y

Ey
¼ 1

D1

�
A12A14 � A11A24

�
;

1

Gxy
¼ 1

D1

�
A11A22 � A2

12

�

1

Gxz
¼ A66

D2
;

1

Gyz
¼ A55

D2
;

lxz;yz

Gyz
¼ lyz;xz

Gxz
¼ �A56

D2

Here,

D1 ¼ A11A22A44 � A11A
2
24 � A22A

2
14 � A44A

2
12 þ 2A12A14A24; D2 ¼ A55A66 � A2

56
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and

A11 ¼
1� hy;xyhxy;y

D3EyGxy
; A12 ¼

nxy � hx;xyhxy;y

D3EyGxy

A14 ¼ �hx;xy þ nxyhy;xy

D3EyGxy
; A22 ¼

1� hx;xyhxy;y

D3ExGxy

A24 ¼ �hy;xy þ nyxhx;xy

D3ExGxy
; A44 ¼ 1� nxynyx

D3ExEy

A55 ¼ 1

D4Gyz
; A56 ¼ � lxz;yz

D4Gyz
; A66 ¼ 1

D4Gxz

where

D3 ¼ 1

ExEyGxy

�
1� nxynyx � hx;xyhxy;x � hy;xyhxy;y � nxyhy;xyhxy;x � nyxhx;xyhxy;y

�

D4 ¼ 1

GxzGyz

�
1� lxz;yzlyz;xz

�
As can be seen in Eqs. (4.71) and (4.75), the layer under study is anisotropic in plane xy because the
constitutive equations include shear-extension and shear-shear coupling coefficients h and l. For
f ¼ 0, the foregoing equations degenerate into Eqs. (4.55) and (4.56) for an orthotropic layer.

The dependencies of stiffness coefficients on the orientation angle for a carbon-epoxy composite
with properties listed in Table 3.5 are presented in Figs. 4.20 and 4.21.

Uniaxial tension of the anisotropic layer (the so-called off-axis test of a unidirectional composite)
is often used to determine material characteristics that cannot be found in tests with orthotropic
specimens or to evaluate constitutive and failure theories. Such a test is shown in Fig. 4.22. To study
this loading case, we should take sy ¼ sxy ¼ 0 in Eqs. (4.75). Then,

εx ¼ sx

Ex
; εy ¼ �nxy

sx

Ex
; gxy ¼ hxy;x

sx

Ex
(4.77)

As can be seen in these equations, tension in the x direction is accompanied not only by transverse
contraction, as in orthotropic materials, but also by shear. This results in the deformed shape of the
sample shown in Fig. 4.23. This shape is expected because the material stiffness in the fiber direction is
much higher than that across the fibers.

Such an experiment, in cases where it can be performed, allows us to determine the in-plane shear
modulus, G12, in principal material coordinates using a simple tensile test as opposed to the much
more complicated tests described in Section 3.4.3 and shown in Figs. 3.54 and 3.55. Indeed, if we
know Ex from the tensile test in Fig. 4.23 and find E1; E2; and n21 from tensile tests along and across
the fibers (see Sections 3.4.1 and 3.4.2), we can use the first equation of Eqs. (4.76) to determine

G12 ¼ sin2 f cos2 f

1

Ex
� cos4 f

E1
� sin4 f

E2
þ 2n21

E1
sin2 f cos2 f

(4.78)
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FIGURE 4.20

Dependencies of tensile ( A11;A22) and shear (A44) stiffnesses of a unidirectional carbon-epoxy layer on the orientation
angle.
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FIGURE 4.21

Dependencies of coupling stiffnesses of a unidirectional carbon-epoxy layer on the orientation angle.
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FIGURE 4.23

Deformation of a unidirectional layer loaded at an angle to fiber orientation.

FIGURE 4.22

An off-axis test.

In connection with this, a question arises as to what angle should be substituted into this equation to
provide the most accurate result. The answer is given in Fig. 4.24, which displays the strains in
principal material coordinates for a carbon-epoxy layer calculated with the aid of Eqs. (4.69) and
(4.77). As can be seen in this figure, the most appropriate angle is about 10�. At this angle, the shear
strain g12 is much higher than normal strains ε1 and ε2, so that material deformation is associated
mainly with shear. An off-axis test with f ¼ 10� can be also used to evaluate material strength in shear
s12 (Chamis, 1979). Stresses acting under off-axis tension in the principal material coordinates are
statically determinate and can be found directly from Eqs. (4.67) as

s1 ¼ sx cos
2 f; s2 ¼ sx sin

2 f; s12 ¼ �sx sin f cos f (4.79)

Thus, applying stress sx and changing f we can induce proportional loading with different combi-
nations of stresses s1; s2; and s12 to evaluate putative constitutive or failure theories for a material
under study.
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However, the test shown in Fig. 4.23 can hardly be performed because the test fixture
(see Fig. 4.22) restrains the shear deformation of the specimen and induces a corresponding shear
stress. The constitutive equations for the specimen loaded with uniaxial tension as in Fig. 4.23 and
fixed as in Fig. 4.22 follow from Eqs. (4.75) if we take sy ¼ 0, i.e.,

εx ¼ sx

Ex
þ hx;xy

sxy
Gxy

(4.80)

gxy ¼
sxy
Gxy

þ hxy;x
sx

Ex
(4.81)

in which elastic constants are specified by Eqs. (4.76). The shear stress, being of a reactive nature, can
be found from Eq. (4.81) if we put gxy ¼ 0. Then,

sxy ¼ �hxy;x
Gxy

Ex
sx

Substituting this result into Eq. (4.80), we arrive at

εx ¼ sx

Ea
x

(4.82)

Here,

Ea
x ¼

Ex

1� hx;xyhxy;x
(4.83)

is the apparent elastic modulus that can be found from the test shown in Fig. 4.22. As follows from
Eq. (4.83), Ea

x, in general, does not coincide with Ex as used in Eq. (4.78) for G12.
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FIGURE 4.24

Dependencies of normalized strains in the principal material coordinates on the angle of the off-axis test.
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Thus, measuring sx and εx we can determine Ex from Eq. (4.82) only under the condition Ea
x ¼ Ex,

which means that the shear-extension coupling coefficient h must be zero. Applying Eqs. (4.76) and
assuming that fs0 and fs90�, we arrive at the following condition providing h ¼ 0

sin2 f0 ¼
e1
e2

(4.84)

in which

e1 ¼ 1þ n21

E1
� 1

2G12
; e2 ¼ 1þ n21

E1
þ 1þ n12

E2
� 1

G12

Since 0� sin2f� 1, there exist two cases in which Eq. (4.84) is valid. The first case corresponds to the
following set of inequalities

e1 � 0; e2 > 0; e2 � e1 (4.85)

whereas for the second case,

e1 � 0; e2 < 0; e2 � e1 (4.86)

To be specific, suppose that E1 > E2. Then, taking into account the symmetry condition n12E1 ¼ n21E2

we have

1þ n12

E2
>

1þ n21
E1

(4.87)

Consider the first set of inequalities in Eqs. (4.85) and assume that the first of them, which has the
following explicit form

1þ n21

E1
� 1

2G12
(4.88)

is valid. Then, Eq. (4.87) yields

1þ n12

E2
>

1þ n21

E1
� 1

2G12
or

1þ n12

E2
>

1

2G12
:

Matching this result with the last inequality in Eqs. (4.85) presented in the form

1þ n12

E2
� 1

2G12
(4.89)

we can conclude that if the first condition in Eqs. (4.85) is valid, then the last of these conditions holds too.
Consider the second condition in Eqs. (4.85) and write it in explicit form, i.e.,

1þ n12

E2
þ 1þ n21

E1
� 1

G12
(4.90)

Transforming Eq. (4.87) and using Eq. (4.89), we have

1þ n12

E2
þ 1þ n21

E1
> 2

1þ n21

E1
� 1

G12

which means that the condition in Eq. (4.90) is valid.
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So, the set of conditions in Eqs. (4.85) can be reduced to one inequality in Eq. (4.88), which can be
written in a final form as

G12 � E1

2ð1þ n21Þ (4.91)

Consider conditions given by Eqs. (4.86) and assume that the last of them, which can be presented in
the following explicit form

1þ n12

E2
� 1

2G12
(4.92)

is valid. Using Eqs. (4.87) and (4.92), we get

1þ n21

E1
<

1þ n12

E2
� 1

2G12
or

1þ n21

E1
<

1

2G12

Since the first condition in Eqs. (4.86) can be presented as

1þ n21

E1
� 1

2G12

we can conclude that it is satisfied.
Consider the second inequality in Eqs. (4.86) and write it in an explicit form, i.e.,

1þ n21

E1
þ 1þ n12

E2
<

1

G12
(4.93)

Using Eqs. (4.87) and (4.92), we get

1þ n21

E1
þ 1þ n12

E2
< 2

1þ n12

E2
� 1

G12

which means that the condition in Eqn. (4.93) is satisfied.
So, the set of conditions in Eqs. (4.86) is reduced to one inequality in Eq. (4.92), which can be

written in the following final form

G12 � E2

2ð1þ n12Þ (4.94)

Thus, Eq. (4.84) determines the angle f0 for the orthotropic materials whose mechanical character-
istics satisfy the conditions in Eqs. (4.91) or (4.94). Such materials, being loaded at an angle f ¼ f0,
do not experience shear-stretching coupling. The shear modulus can be found from Eq. (4.78) in which
Ex ¼ sx=εx, where sx and εx are the stress and the strain determined in the off-axis tension test shown
in Fig. 4.22.

Consider as examples unidirectional composites with typical properties (Table 3.5).

1. For fiberglass-epoxy composite, we have E1 ¼ 60 GPa, E2 ¼ 13 GPa, G12 ¼ 3.4 GPa, n12 ¼ 0.065,
n21 ¼ 0.3. Calculation in accordance with Eqs. (4.91) and (4.94) yields

E1

2ð1þ n21Þ ¼ 23:08 GPa
E2

2ð1þ n12Þ ¼ 6:1 GPa

Thus, the condition in Eq. (4.94) is satisfied, and Eq. (4.84) gives f0 ¼ 54:31�.
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2. For aramid-epoxy composite with E1 ¼ 95 GPa, E2 ¼ 5:1 GPa, G12 ¼ 1:8 GPa; n12 ¼ 0:018;

n21 ¼ 0:34; we have
E1

2ð1þ n21Þ ¼ 36:45 GPa;
E2

2ð1þ n12Þ ¼ 2:5 GPa; and f0 ¼ 61:45�

3. For carbon-epoxy composite with E1 ¼ 140 GPa, E2 ¼ 11 GPa; G12 ¼ 5:5 GPa n12 ¼ 0:021;

n21 ¼ 0:27, we have
E1

2ð1þ n21Þ ¼ 55:12 GPa;
E2

2ð1þ n12Þ ¼ 5:39 GPa

As can be seen, the conditions in Eqs. (4.91) and (4.94) are not satisfied, and angle f0 does not exist for
this material.

As can be directly checked with the aid of Eqs. (4.76), there exists the following relationship
between the elastic constants of anisotropic materials (Verchery and Gong, 1999)

d

df



1

Ex

�
¼ �2

hx;xy

Gxy

This equation means that hx;xy ¼ 0 for materials whose modulus Ex reaches the extremum in the
interval 0 < f < 90�. The dependencies of Ex=E1 on f for the materials with properties listed in
Table 3.5 are shown in Fig. 4.25.

As can be seen, curves 1 and 2 corresponding to glass and aramid composites reach the minimum
value at f0 ¼ 54:31� and f0 ¼ 61:45�, respectively, whereas curve 3 for carbon composite does not
have a minimum at 0 < f < 90�.

The dependence ExðfÞ with the minimum value of Ex reached at f ¼ f0, where 0 < f < 90�, is
typical for composites reinforced in two orthogonal directions. For example, for a fabric composite having
E1 ¼ E2 and n12 ¼ n21, Eq. (4.84) yields the well-known result f0 ¼ 45�. For a typical fiberglass fabric
composite with E1 ¼ 26 GPa; E2 ¼ 22 GPa; G12 ¼ 7:2 GPa; n12 ¼ 0:11; and n21 ¼ 0:13, we have
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FIGURE 4.25

Dependencies of Ex=E1 on f for fiberglass- (1), aramid- (2), and carbon- (3) epoxy composites.
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FIGURE 4.26

Off-axis tension of a strip fixed at the ends.

E1

2ð1þ n21Þ ¼ 11:5 GPa;
E2

2ð1þ n12Þ ¼ 9:9 GPa; and f0 ¼ 49:13�

In conclusion, it should be noted that the actual application of Eq. (4.78) is hindered by the fact that the
angle f0 specified by Eq. (4.84) depends on G12, which is not known and needs to be determined from
Eq. (4.78). To find G12, we actually need to perform several tests for several values of G12 in the
vicinity of the expected value and the corresponding values of f0 following from Eq. (4.84), and select
the correct value of G12, which satisfies in conjunction with the corresponding value of f0, both
equations: Eqs. (4.78) and (4.84) (Morozov and Vasiliev, 2003).

Consider the general case of an off-axis test (see Fig. 4.22) for a composite specimen with an
arbitrary fiber orientation angle f (see Fig. 4.26). To describe this test, we need to study the coupled
problem for an anisotropic strip in which shear is induced by tension but is restricted at the strip ends
by the jaws of a test fixture as in Figs 4.22 and 4.26. As follows from Fig. 4.26, the action of the grip
can be simulated if we apply a bending momentM and a transverse force V such that the rotation of the
strip ends (g in Fig. 4.23) will become zero. As a result, bending normal and shear stresses appear in
the strip that can be analyzed with the aid of composite beam theory (Vasiliev, 1993).

To derive the corresponding equations, introduce the conventional assumptions of beam theory
according to which axial, ux, and transverse, uy, displacements can be presented as

ux ¼ u
�
x
�þ yq; uy ¼ v

�
x
�

where u and q are the axial displacement and the angle of rotation of the strip cross section,
x ¼ constant , and v is the strip deflection in the xy-plane (see Fig. 4.26). The strains corresponding to
these displacements follow from Eqs. (2.22), i.e.,

εx ¼ vux
vx

¼ u0 þ yq0 ¼ εþ yq0

gxy ¼
vux
vy

þ vuy
vx

¼ qþ v0
(4.95)

where ð.Þ0 ¼ dð.Þ=dx, and ε is the deformation of the strip axis. These strains are related to stresses
by Eqs. (4.75) which reduce to

εx ¼ sx

Ex
þ hx;xy

sxy
Gxy

gxy ¼
sxy
Gxy

þ hxy;x
sx

Ex

(4.96)
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The inverse form of these equations is

sx ¼ B11εx þ B14gxy; sxy ¼ B41εx þ B44gxy (4.97)

where

B11 ¼ Ex

1� hx;xyhxy;x
; B44 ¼ Gxy

1� hx;xyhxy;x

B14 ¼ B41 ¼ � Exhx;xy

1� hx;xyhxy;x
¼ � Gxyhxy;x

1� hx;xyhxy;x

(4.98)

Now, decompose the strip displacements, strains, and stresses into two components corresponding to

1. free tension (see Fig. 4.23), and
2. bending.

For free tension, we have sxy ¼ 0 and v ¼ 0. So, Eqs. (4.95) and (4.96) yield

ε
ð1Þ
x ¼ ε1 þ yq01; g

ð1Þ
xy ¼ q1

ε
ð1Þ
x ¼ s

ð1Þ
x

Ex
; gð1Þ

xy ¼ hxy;x
s
ð1Þ
x

Ex

(4.99)

Here, ε1 ¼ u01 and s
ð1Þ
x ¼ s ¼ F=ah, where F is the axial force applied to the strip, a is the strip width,

and h is its thickness. Since s
ð1Þ
x ¼ constant, Eqs. (4.99) give

q1 ¼ hxy;x
s

Ex
¼ constant ; ε

1
x ¼ ε1 ¼ s

Ex
¼ F

ah
(4.100)

Adding components corresponding to bending (with index 2), we can write the total displacements and
strains as

ux ¼ u1 þ u2 þ y
�
q1 þ q2

�
; uy ¼ v2

εx ¼ ε1 þ ε2 þ yq02 ; gxy ¼ q1 þ q2 þ v02

The total stresses can be expressed with the aid of Eqs. (4.97), i.e.,

sx ¼ B11

�
ε1 þ ε2 þ yq02

�þ B14

�
q1 þ q2 þ v02

�
sxy ¼ B41

�
ε1 þ ε2 þ yq02

�þ B44

�
q1 þ q2 þ v02

�
Transforming these equations with the aid of Eqs. (4.98) and (4.100), we arrive at

sx ¼ sþ B11

�
ε2 þ yq02

�þ B14

�
q2 þ v02

�
sxy ¼ B41

�
ε2 þ yq02

�þ B44

�
q2 þ v02

� (4.101)

These stresses are statically equivalent to the axial force P, the bending moment M, and the transverse
force V, which can be introduced as

P ¼ h

Za=2
�a=2

sxdy ; M ¼ h

Za=2
�a=2

sxydy ; V ¼ h

Za=2
�a=2

sxydy

Substitution of Eqs. (4.101) and integration yields

P ¼ ah
�
sþ B11ε2 þ B14

�
q2 þ v02

�
(4.102)
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M ¼ B11h
a3

12
q02 (4.103)

V ¼ ah
�
B41ε2 þ B44

�
q2 þ v02

�
(4.104)

These forces and this moment should satisfy the equilibrium equation that follows from Fig. 4.27, i.e. ,

P0 ¼ 0; V 0 ¼ 0; M0 ¼ V (4.105)

Solution of the first equation is P ¼ F ¼ s ah. Then, Eq. (4.102) gives

ε2 ¼ �B14

B11
ðq2 þ v02Þ (4.106)

The second equation of Eqs. (4.105) shows that V ¼ C1, where C1 is a constant of integration. Then,
substituting this result into Eq. (4.104) and eliminating ε2 with the aid of Eq. (4.106), we have

q2 þ v02 ¼
C1

ahB44
(4.107)

where B44 ¼ B44 � B14B41.
Taking in the third equation of Eqs. (4.105), V ¼ C1, and substituting M from Eq. (4.103), we

arrive at the following equation for q2

q002 ¼ 12C1

a3hB11

Integration yields

q2 ¼ 6C1

a3hB11
þ C2xþ C3

The total angle of rotation q ¼ q1 þ q2, where q1 is specified by Eqs. (4.100), should be zero at the
ends of the strip, i.e., qðx ¼ �l=2Þ ¼ 0. Satisfying these conditions, we have

q2 ¼ 3C1

a3hB11



2x2 � l2

2

�
� hxy;x

s

Ex
(4.108)

Substitution into Eq. (4.107) and integration allows us to find the deflection

v2 ¼ C1x

ahB44
� 3C1x

a3hB11



2x2

3
� l2

2

�
þ hxy;x

s0x

Ex
þ C4 (4.109)

P

M
V

dx

P + P' dx

V + V' dx

M + M' dx

FIGURE 4.27

Forces and moments acting on the strip element.
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This expression includes two constants, C1 and C4, which can be determined from the boundary
conditions v2ðx ¼ � l=2Þ ¼ 0. The final result, following from Eqs. (4.100), (4.108), and (4.109), is

v ¼ lhxy;x
sx

Ex

"
1�

B11 þ l
2
B44

�
3=2� 2x2

�
B11 þ l

2
B44

#

q ¼ hxy;x
3sl

2

Ex

B44

�
2x2 � 1=2

�
B11 þ l

2
B44

(4.110)

where l ¼ l=a and x ¼ x=l. The deflection of a carbon-epoxy strip having f ¼ 45� and l ¼ 10 is shown
in Fig. 4.28.

Now, we can write the relationship between modulus Ex corresponding to the ideal test shown in
Fig. 4.23 and apparent modulus Ea

x that can be found from the real test shown in Figs. 4.22 and 4.26.
Using Eqs. (4.98), (4.100), (4.106), and (4.110), we finally get

s ¼ Ea
xε

where

Ea
x ¼

Ex

1� Exhx;xyhxy;x

Ex þ l
2
Gxyð1� hx;xyhxy;xÞ

Consider two limiting cases. For an infinitely long strip (l/N), we have Ea
x ¼ Ex. This result

corresponds to the case of free shear deformation specified by Eqs. (4.77). For an infinitely short strip
(l/0), taking into account Eqs. (4.98), we get

Ea
x ¼

Ex

1� hx;xyhxy;x
¼ B11

In accordance with Eq. (4.97), this result corresponds to a restricted shear deformation (gxy ¼ 0). For
a strip with finite length, Ex < Ea

x < B11. The dependence of the normalized apparent modulus on the
length-to-width ratio for a 45� carbon-epoxy layer is shown in Fig. 4.29. As can be seen, the difference
between Ea

x and Ex becomes less than 5% for l > 3a.
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FIGURE 4.28

Normalized deflection of a carbon-epoxy strip (f ¼ 45�; l ¼ 10).
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FIGURE 4.29

Dependence of the normalized apparent modulus on the strip length-to-width ratio for a 45� carbon-epoxy layer.

4.3.2 Nonlinear models

Nonlinear deformation of an anisotropic unidirectional layer can be studied rather straightforwardly
because stresses s1; s2; and s12 in the principal material coordinates (see Fig. 4.18) are statically
determinate and can be found using Eqs. (4.67). Substituting these stresses into the nonlinear
constitutive equations, Eqs. (4.60) or Eqs. (4.64), we can express strains ε1; ε2; and g12 in terms of
stresses sx; sy; and sxy. Further substitution of the strains ε1; ε2; and g12 into Eqs. (4.70) yields
constitutive equations that link strains εx, εy; and gxy with stresses sx; sy; and sxy, thus allowing us to
find strains in the global coordinates x, y, and z if we know the corresponding stresses.

As an example of the application of a nonlinear elastic material model described by Eqs. (4.60),
consider a two-matrix fiberglass composite (see Section 4.4.3) whose stress-strain curves in the
principal material coordinates are presented in Fig. 4.16. These curves allow us to determine coeffi-
cients “b” and “c” in Eqs. (4.60). To find the coupling coefficients “m”, we use a 45� off-axis test.
Experimental results (circles) and the corresponding approximation (solid line) are shown in Fig. 4.30.
Thus, the constructed model can be used now to predict material behavior under tension at any other
angle (different from 0; 45; and 90� – the corresponding results are given in Fig. 4.31 for 60�) or to
study more complicated material structures and loading cases (see Section 4.5).

As an example of the application of the elastic-plastic material model specified by Eq. (4.64),
consider a boron-aluminum composite whose stress-strain diagrams in principal material coordinates
are shown in Fig. 4.17. Theoretical and experimental curves (Herakovich, 1998) for 30 and 45� off-
axis tension of this material are presented in Fig. 4.32.

4.4 ORTHOGONALLY REINFORCED ORTHOTROPIC LAYER
The simplest layer reinforced in two directions is the so-called cross-ply layer that consists of alter-
nating plies with 0 and 90� orientations with respect to the global coordinate frame x, y, z as in
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Fig. 4.33. Actually, this is a laminated structure, but being formed with a number of plies, it can be
treated as a homogeneous orthotropic layer (see Section 5.4.2).

4.4.1 Linear elastic model

Let the layer consist of m longitudinal (0�) plies with thicknesses h
ðiÞ
0 (i ¼ 1; 2; 3; .; m) and n

transverse (90�) plies with thicknesses h
ðjÞ
90 (j ¼ 1; 2; 3; .; n) made from one and the same

0

4

8

12

16

0 2 4 6

x , MPaσ

, %xε

FIGURE 4.30

Calculated (solid line) and experimental (circles) stress-strain diagram for 45� off-axis tension of a two-matrix
unidirectional composite.
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FIGURE 4.31

Theoretical (solid line) and experimental (dashed line) stress-strain diagrams for 60� off-axis tension of a two-
matrix unidirectional composite.
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composite material. Then, stresses sx; sy; and sxy that comprise the plane stress state in the global

coordinate frame can be expressed in terms of stresses in the principal material coordinates of the
plies as

sxh ¼ Pm
i¼1

s
ðiÞ
1 h

ðiÞ
0 þPn

j¼1
s
ðjÞ
2 h

ðjÞ
90

syh ¼ Pm
i¼1

s
ðiÞ
2 h

ðiÞ
0 þPn

j¼1
s
ðjÞ
1 h

ðjÞ
90

sxyh ¼ Pm
i¼1

sðiÞ12h
ðiÞ
0 þPn

j¼1
sðjÞ12h

ðjÞ
90

(4.111)
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FIGURE 4.32

Theoretical (solid lines) and experimental (dashed lines) stress-strain diagrams for 30� and 45� off-axis tension of
a boron-aluminum composite.
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A cross-ply layer.
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Here, h is the total thickness of the layer (see Fig. 4.33), i.e.,

h ¼ h0 þ h90

where

h0 ¼
Xm
i¼1

h
ðiÞ
0 ; h90 ¼

Xn
j¼1

h
ðjÞ
90

are the total thicknesses of the longitudinal and transverse plies.
The stresses in the principal material coordinates of the plies are related to the corresponding

strains by Eqs. (3.59) or Eqs. (4.56)

s
ði;jÞ
1 ¼ E1

�
ε
ði;jÞ
1 þ n12ε

ði;jÞ
2

�
s
ði;jÞ
2 ¼ E2

�
ε
ði;jÞ
2 þ n21ε

ði;jÞ
1

�
sði;jÞ12 ¼ G12g

ði;jÞ
12

(4.112)

in which, as earlier, E1;2 ¼ E1;2=ð1� n12n21Þ and E1n12 ¼ E2n21. Now assume that the deformation of
all the plies is the same as that of the deformation of the whole layer, i.e., that

ε
ðiÞ
1 ¼ ε

ðjÞ
2 ¼ εx; ε

ðiÞ
2 ¼ ε

ðjÞ
1 ¼ εy; g

ðiÞ
12 ¼ g

ðjÞ
12 ¼ gxy

Then, substituting the stresses, Eqs. (4.112), into Eqs. (4.111), we arrive at the following constitutive
equations

sx ¼ A11εx þ A12εy

sy ¼ A21εx þ A22εy

sxy ¼ A44gxy

(4.113)

in which the stiffness coefficients are

A11 ¼ E1h0 þ E2h90; A22 ¼ E1h90 þ E2h0
A12 ¼ A21 ¼ E1n12 ¼ E2n21; A44 ¼ G12

(4.114)

and

h0 ¼ h0
h
; h90 ¼ h90

h

The inverse form of Eqs. (4.113) is

εx ¼ sx

Ex
� nxy

sy

Ey
; εy ¼ sy

Ey
� nyx

sx

Ex
; gxy ¼

sxy
Gxy

(4.115)

where

Ex ¼ A11 � A2
12

A22
; Ey ¼ A22 � A2

12

A21
; Gxy ¼ A44

nxy ¼ A12

A11
; nyx ¼ A12

A22

(4.116)
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To determine the transverse shear moduli Gxz and Gyz, consider, for example, pure shear in the xz–
plane (see Fig. 4.34). It follows from the equilibrium conditions for the plies that

sðiÞ13 ¼ sðjÞ23 ¼ sxz ; sðiÞ23 ¼ sðjÞ13 ¼ syz (4.117)

The total shear strains can be found as

gxz ¼
1

h

 Xm
i¼1

g
ðiÞ
13h0 þ

Xn
j¼1

g
ðjÞ
23h90

!

gyz ¼
1

h

 Xm
i¼1

g
ðiÞ
23h0 þ

Xn
j¼1

g
ðjÞ
13h90

! (4.118)

where in accordance with Eqs. (4.56)

g
ði;jÞ
13 ¼ sði;jÞ13

G13
; g

ði;jÞ
23 ¼ sði;jÞ23

G23
(4.119)

Substituting Eqs. (4.119) into Eqs. (4.118) and using Eqs. (4.117), we arrive at

gxz ¼
sxz
Gxz

; gyz ¼
syz
Gyz

where

1

Gxz
¼ h0

G13
þ h90
G23

;
1

Gyz
¼ h0

G23
þ h90
G13

4.4.2 Nonlinear models

The nonlinear behavior of a cross-ply layer associated with nonlinear material response under loading
in the principal material coordinates (e.g., see Figs. 4.16 and 4.17) can be described using nonlinear
constitutive equations, Eqs. (4.60) or Eqs. (4.64), instead of linear equations, Eqs. (4.113).

xzτ

xzτxzτ

xzτ

13τ

13τ

23τ

23τ

FIGURE 4.34

Pure transverse shear of a cross-ply layer.
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However, this layer can demonstrate nonlinearity which is entirely different from that studied in the
previous sections. This nonlinearity is observed in the cross-ply layer composed of linear elastic plies
and is caused by microcracking of the matrix.

To study this phenomenon, consider a cross-ply laminate consisting of three plies as in Fig. 4.35.
Equilibrium conditions yield the following equations

2
�
sx1h1 þ sx2h2

� ¼ s

2
�
sy1h1 þ sy2h2

� ¼ 0
(4.120)

in which

h1 ¼ h1=h; h2 ¼ h2=h; h ¼ 2
�
h1 þ h2

�
The constitutive equations are

sx1;2 ¼ E1;2

�
εx þ n12;21εy

�
sy1;2 ¼ E2;1

�
εy þ n21;12εx

� (4.121)

in which E1;2 ¼ E1;2=ð1� n12n21Þ. We assume that strains εx and εy do not change through the
laminate thickness. Substituting Eqs. (4.121) into Eqs. (4.120), we can find strains and then stresses
using again Eqs. (4.121). The final result is

sx1;2 ¼
sE1;2

h
E2h1 þ E1h2 � E1;2n

2
12;21

�
h1 þ h2

�i
2
h�
E1h1 þ E2h2

��
E2h1 þ E1h2

�� E2
1n

2
12ðh1 þ h2Þ2

i
To simplify the analysis, neglect Poisson’s effect, i.e. taking n12 ¼ n21 ¼ 0. Then

sx1 ¼ s01 ¼
sE1

2
�
E1h1 þ E2h2

�; sx2 ¼ s02 ¼
sE2

2
�
E1h1 þ E2h2

� (4.122)

Consider, for example, the case h1 ¼ h2 ¼ 0:5 and find the ultimate stresses corresponding to the
failure of longitudinal plies or to the failure of the transverse ply. Putting s01 ¼ sþ1 and s02 ¼ sþ2 , we get

sð1Þx ¼ sþ1



1þ E2

E1

�
; sð2Þx ¼ sþ2



1þ E1

E2

�

The results of calculation for the composites listed in Table 3.5 are presented in Table 4.2.

σ σ
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22h
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FIGURE 4.35

Tension of a cross-ply laminate.
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As can be seen, s
ð1Þ
x >> s

ð2Þ
x . This means that the first failure occurs in the transverse ply under

stress

s ¼ s ¼ 2sþ2



h2 þ E1

E2
h1

�
(4.123)

This stress does not cause failure of the whole laminate, because the longitudinal plies can
carry the load, but the material behavior becomes nonlinear. Actually, the effect under
consideration is the result of the difference between the ultimate elongations of the unidirec-
tional plies along and across the fibers. From the data presented in Table 4.2 we can see that
for all the materials listed in this table ε1 >> ε2. As a result, transverse plies drawn under
tension by longitudinal plies that have much higher stiffness and elongation fail because their
ultimate elongation is smaller. This failure is accompanied by a system of cracks parallel to the
fibers which can be observed not only in cross-ply layers but also in many other laminates that
include unidirectional plies experiencing transverse tension caused by interaction with the
adjacent plies (see Fig. 4.36).

Now assume that the acting stress s� s, where s is specified by Eq. (4.123) and corresponds to the
load causing the first crack in the transverse ply as in Fig. 4.37. To study the stress state in the vicinity
of the crack, decompose the stresses in the three plies shown in Fig. 4.37 as

sx1 ¼ sx3 ¼ s01 þ s1; sx2 ¼ s02 � s2 (4.124)

and assume that the crack also induces transverse through-the-thickness shear and normal stresses

sxzi ¼ si ; szi ¼ si ; i ¼ 1; 2; 3 (4.125)

The stresses s01 and s02 in Eqs. (4.124) are specified by Eqs. (4.122) with s ¼ s, corresponding to the
acting stress under which the first crack appears in the transverse ply. Stresses s1 and s2 should be self-
balanced, i.e.,

s1h1 ¼ s2h2 (4.126)

TABLE 4.2 Ultimate stresses causing the failure of longitudinal
�
s
ð1Þ
x

�
or transverse

�
s
ð2Þ
x

�
plies and

deformation characteristics of typical advanced composites.

s(MPa);
ε (%)

Glass-
epoxy

Carbon-
epoxy

Carbon-
PEEK

Aramid-
epoxy

Boron-
epoxy

Boron-
Al

Carbon-
Carbon

Al2O3-
Al

s
ð1Þ
x

2190 2160 2250 2630 1420 2000 890 1100

s
ð2Þ
x

225 690 1125 590 840 400 100 520

ε1
3 1.43 1.5 2.63 0.62 0.50 0.47 0.27

ε2
0.31 0.45 0.75 0.2 0.37 0.1 0.05 0.13

ε1=ε2
9.7 3.2 2 13.1 1.68 5 9.4 2.1
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The total stresses in Eqs. (4.124) and (4.125) should satisfy equilibrium equations, Eqs. (2.5), which
yield for the problem under study

vsxi

vx
þ vsxzi

vz
¼ 0;

vszi

vz
þ vsxzi

vx
¼ 0 (4.127)

where i ¼ 1; 2; 3:
To simplify the problem, suppose that the additional stresses s1 and s2 do not depend on z, i.e., that

they are uniformly distributed through the thickness of longitudinal plies. Then, Eqs. (4.127) upon
substitution of Eqs. (4.124) and (4.125) can be integrated with respect to z. The resulting stresses
should satisfy the following boundary and interface conditions (see Fig. 4.37)

s1ðz ¼ h1 þ h2Þ ¼ 0 s1ðz ¼ h1 þ h2Þ ¼ 0
s1ðz ¼ h2Þ ¼ s2ðz ¼ h2Þ s1ðz ¼ h2Þ ¼ s2ðz ¼ h2Þ
s2ðz ¼ �h2Þ ¼ s3ðz ¼ �h2Þ s2ðz ¼ �h2Þ ¼ s3ðz ¼ �h2Þ
s3ðz ¼ �h1 � h2Þ ¼ 0 s3ðz ¼ �h1 � h2Þ ¼ 0

z

x2

3

1

σ σ

1h

1h

22h

FIGURE 4.37

A cross-ply layer with a crack in the transverse ply.

FIGURE 4.36

Cracks in the circumferential layer of a failed pressure vessel induced by transverse (for the vessel, axial) tension

of the layer.
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Finally, using Eq. (4.126) to express s1 in terms of s2, we arrive at the following stress distribution
(Vasiliev et al., 1970)

sx1 ¼ sx3 ¼ s01 þ s2ðxÞ h2
h1
; sx2 ¼ s02 � s2ðxÞ

s1 ¼ �h2
h1

s02ðxÞz1; s2 ¼ s02ðxÞz; s3 ¼ �h2
h1

s02ðxÞz2

s1 ¼ h2
2h1

s002ðxÞz21; s2 ¼ �1

2
s002ðxÞðz2 � h1h2 � h22Þ

s3 ¼ h2
2h1

s002ðxÞz22

(4.128)

where

z1 ¼ z� h1 � h2 ; z2 ¼ zþ h1 þ h2 ; and
� �0 ¼ d

� ��
dx

Thus, we need to find only one unknown function: s2ðxÞ. To do this, we can use the principle of
minimum strain energy (see Section 2.11.2), according to which the function s2ðxÞ should deliver the
minimum value of

Ws ¼ 1

2

Z l
0

X3
i¼1

Z
hi



s2xi
Exi

þ s2zi
Ezi

� 2
nxzi

Ezi
sxiszi þ

s2xzi
Gxzi

�
dx (4.129)

where Ex1 ¼ Ex3 ¼ E1; Ex2 ¼ E2; Ezi ¼ E2; Gxz1 ¼ Gxz3 ¼ G13; Gxz2 ¼ G23; nxz1 ¼ nxz3 ¼ n13;
and nxz2 ¼ n23; whereas E1; E2; G12G23; n13 and n23 are elastic constants of a unidirectional ply.
Substituting stresses, Eqs. (4.128), into the functional in Eq. (4.129), integrating with respect to z, and
using the traditional procedure of variational calculus providing dWs ¼ 0, we arrive at the following
equation for s2ðxÞ

d4s2
dx4

� 2a2
d2s2
dx2

þ b4s2 ¼ 0

in which

a2 ¼ 1

d

�
h2

3G23
þ h1
3G13

� n23

E2



h1 þ 2

3
h2

�
þ h1n23

3E2

	
;

b4 ¼ 1

d



1

h1E1
þ 1

h2E2

�

d ¼ 1

2E2

�
1

5

�
h31 þ h32

�� 2

3
h22ðh1 þ h2Þ þ h2ðh1 þ h2Þ2

	

The general solution for this equation is

s2 ¼ e�k1x
�
c1 sin k2xþ c2 cos k2x

�þ ek1x
�
c3 sin k2xþ c4 cos k2x

�
(4.130)
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where

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
a2 þ b2

�r
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
b2 � a2

�r

Suppose that the strip shown in Fig. 4.37 is infinitely long in the x direction. Then, we should have
s1/0 and s2/0 for x/N in Eqs. (4.124). This means that we should put c3 ¼ c4 ¼ 0 in Eq.
(4.130). The other two constants, c1 and c2, should be determined from the conditions on the crack
surface (see Fig. 4.37), i.e.,

sx2ðx ¼ 0Þ ¼ 0; sxz2ðx ¼ 0Þ ¼ 0

Satisfying these conditions, we obtain the following expressions for stresses

sx1¼ sx3 ¼ s01 þ s02
h2
h1
e�k1x



k1
k2

sin k2xþ cos k2x

�

sx2 ¼ s02

�
1� e�k1x



k1
k2

sin k2xþ cos k2x

�	
; sxz2 ¼ �s02

k2

�
k21 þ k22

�
ze�k1x sin k2x

sz2 ¼ � s02
2k2

�
k21 þ k22

��
z2 � h2ðh1 þ h2Þ


e�k1x

�
k1 sin k2x� k2 cos k2x

�
(4.131)

As an example, consider a glass-epoxy sandwich layer with the following parameters: h1 ¼ 0:365 mm,
h2 ¼ 0:735 mm, E1 ¼ 56 GPa, E2 ¼ 17 GPa, G13 ¼ 5:6 GPa, G23 ¼ 6:4 GPa, n13 ¼ 0:095;
n23 ¼ 0:35; and sþ2 ¼ 25:5 MPa. The distributions of stresses normalized to the acting stress s are
presented in Fig. 4.38. As can be seen, there is a stress concentration in the longitudinal plies in the
vicinity of the crack, whereas the stress in the transverse ply, being zero on the crack surface,
practically reaches s02 at a distance of about 4 mm (or about twice the thickness of the laminate) from
the crack. The curves have the expected forms for this problem of stress diffusion. However,
analysis of the second equation of Eqs. (4.131) allows us to reveal an interesting phenomenon
which can be demonstrated if we increase the vertical scale of the graph in the vicinity of points A and
B (see Fig. 4.38). It follows from this analysis that stress sx2 becomes equal to s02 at point A with
coordinate

xA ¼ 1

k2

�
p� tan�1



k2
k1

�	

and reaches a maximum value at point B with coordinate xB ¼ p=k2. This maximum value

smax
x2 ¼ s02



1þ e

�p
k1
k2

�

is higher than stress s02, which causes failure of the transverse ply. This means that a single crack
cannot exist. When stress s02 reaches its ultimate value sþ2 , a regular system of cracks located at
a distance of lc ¼ p=k2 from one to another appears in the transverse ply (see Fig. 4.39). For the
previous example, lc ¼ 12:6 mm.
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To study the stress state of a layer with cracks shown in Fig. 4.39, we can use solution (4.130) but
should write it in a different form, i.e.,

s2 ¼ C1 sinh k1x sin k2xþ C2 sinh k1x cos k2x
þ C3 cosh k1x sin k2xþ C4 cosh k1x cos k2x

(4.132)

Since the stress state of an element �lc=2 � x � lc=2 is symmetric with respect to coordinate x, we
should put C2 ¼ C3 ¼ 0 and find constants C1 and C4 from the following boundary conditions

sx2ðx ¼ lc=2Þ ¼ 0; sxz2ðx ¼ lc=2Þ ¼ 0 (4.133)

where lc ¼ p=k2.
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Variation of normalized normal stresses in longitudinal ðsx1Þ and transverse ðsx2Þ plies with distance from the crack.
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A system of cracks in the transverse ply.
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The final expressions for stresses are

sx1 ¼ sx3 ¼ s01 þ s02
h2
h1c



k1
k2

cosh k1x cos k2xþ sinh k1x sin k2x

�

sx2 ¼ s02

�
1� 1

c



k1
k2

cosh k1x cos k2xþ sinh k1x sin k2x

�	

sxz2 ¼ s02
k2c

�
k21 þ k22

�
z sinh k1x cos k2x

sz2 ¼ � s02
2k2c

�
k21 þ k22

��
z2 � h2

�
h1 þ h2

��
k1cosh k1x cos k2x� k2 sinh k1x sin k2x

�

(4.134)

in which c ¼ sinhðpk1=2k2Þ.
For the layer under consideration, stress distributions corresponding to s ¼ s ¼ 44:7 MPa are

shown in Figs. 4.40 and 4.41. Under further loading (s > s), two modes of the layer failure are
possible. The first one is the formation of another transverse crack dividing the block with length lc in
Fig. 4.39 into two pieces. The second one is a delamination in the vicinity of the crack caused by
stresses sxz and sz (see Fig. 4.41). Usually, the first situation takes place because stresses sxz and sz are
considerably lower than the corresponding ultimate stresses, whereas the maximum value of sx2 is
close to the ultimate stress s02 ¼ sþ2 . Indeed, the second equation of Eqs. (4.134) yields

smax
x2 ¼ sx2

�
x ¼ 0

� ¼ s02
�
1� k

�

1

2

3
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FIGURE 4.40

Distribution of normalized stresses in longitudinal ðsx1Þ and transverse ðsx2Þ plies between the cracks.
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where k ¼ k1=ðk2cÞ. For the foregoing example, k ¼ 3:85� 10�4. So, smax
x2 is so close to s02 that we

can assume that under practically the same load, another crack occurs in the central cross section x ¼ 0
of the central block in Fig. 4.39 (as well as in all the other blocks). Thus, the distance between the
cracks becomes lc ¼ p=2k2 (6.4 mm for the example under study). The corresponding stress distri-
bution can be determined with the aid of Eqs. (4.128) and (4.132), and boundary conditions (4.133) in
which we should take lc ¼ p=2k2. The next crack will again appear at the block center and this process
will be continued until failure of the longitudinal plies.

To plot the stress-strain diagram of the cross-ply layer with allowance for the cracks in the
transverse ply, we introduce the mean longitudinal strain

εx ¼ 2

h2lc

Zlc=2
0

dx

Zh2
0

εx2dz

where

εx2 ¼ 1

E2
ðsx2 � n23sz2Þ

For a layer with the properties given previously, such a diagram is shown in Fig. 4.42 with a solid line,
and it is in good agreement with experimental results (circles). The formation of cracks is accompanied
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FIGURE 4.41

Distribution of normalized shear ðsxz2Þ and transverse normal stresses ðsz2Þ at the ply interface ðz ¼ h2Þ between the
cracks.
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by horizontal jumps and reduction in material stiffness. The stress-strain diagram for the transverse
layer that is formally singled out of the diagram in Fig. 4.42 is presented in Fig. 4.43.

To develop a nonlinear phenomenological model of the cross-ply layer, we need to approximate the
diagram in Fig. 4.43. As follows from this figure and numerous experiments, the most suitable and
simple approximation is that shown by the dashed line. It implies that the ply is linear elastic until its
transverse stress s2 reaches its ultimate value sþ2 , and after that, s2 ¼ sþ2 , i.e., s2 remains constant up
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FIGURE 4.42

Stress-strain diagram for a glass-epoxy cross-ply layer:

experiment;

theoretical prediction;

model.
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Stress-strain diagram for a transverse ply.
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to failure of the longitudinal plies. This means that under transverse tension, a unidirectional ply is in
a state of permanent failure and takes from the longitudinal plies the necessary load to support this
state (Vasiliev and Elpatievskii, 1967). The stress-strain diagram of the cross-ply layer corresponding
to this model is shown in Fig. 4.42 with a dashed line.

Now consider a general plane stress state with stresses sx, sy; and sxy as in Fig. 4.44. As can be
seen, stress sx induces cracks in the inner ply and stress sy causes cracks in the outer orthogonal plies,
whereas shear stress sxy can give rise to cracks in all the plies. The ply model that generalizes the
model introduced previously for a uniaxial tension is demonstrated in Fig. 4.45. To determine strains
corresponding to a given combination of stresses sx, sy; and sxy, we can use the following procedure.

1. For the first stage of loading (before the cracks appear), the strains are calculated with the aid of
Eqs. (4.114) and (4.115) providing ε

ð1Þ
x ðsÞ; εð1Þy ðsÞ; and g

ð1Þ
xy ðsÞ, where s ¼ ðsx; sy; sxyÞ is the

xσ

yσ

xyτ

xyτ

FIGURE 4.44

A cross-ply layer in a plane stress state.
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FIGURE 4.45

Stress-strain diagrams of a unidirectional ply simulating its behavior in the laminate and allowing for cracks in the

matrix.
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given combination of stresses. Using Eqs. (4.112), we find stresses s1, s2; and s12 in principal
material coordinates for all the plies.

2. We determine the combination of stresses s�1k, s
�
2k; and s�12k which induce the first failure of the

matrix in some ply and indicate the number of this ply, say k, applying the appropriate strength
criterion (see Section 6.2). Then, the corresponding stresses s� ¼ ðs�x ; s�y ; s�xyÞ and strains

ε
ð1Þ
x ðs�Þ; εð1Þy ðs�Þ; and g

ð1Þ
xy ðs�Þ are calculated.

3. To proceed, i.e., to study the material behavior for s > s�, we need to consider two possible cases
for the layer stiffnesses. For this purpose, we should write Eqs. (4.114) for stiffness coefficients in
a more general form, i.e.,

A11 ¼
Xm
i¼1

E
ðiÞ
1 h

ðiÞ
0 þ

Xn
j¼1

E
ðjÞ
2 h

ðjÞ
90 ; A22 ¼

Xm
i¼1

E
ðiÞ
2 h

ðiÞ
0 þ

Xn
j¼1

E
ðjÞ
1 h

ðjÞ
90

A12 ¼
Xm
i¼1

n
ðiÞ
12E

ðiÞ
1 h

ðiÞ
0 þ

Xn
j¼1

n
ðjÞ
12E

ðjÞ
1 h

ðjÞ
90 ; A44 ¼

Xm
i¼1

G
ðiÞ
12h

ðiÞ
0 þ

Xn
j¼1

G
ðjÞ
12h

ðjÞ
90 (4.135)

where

h
ðiÞ
0 ¼ h

ðiÞ
0 =h and h

ðjÞ
90 ¼ h

ðjÞ
90=h:

a. If s2k > 0 in the kth ply, it can work only along the fibers, and we should calculate the
stiffnesses of the degraded layer taking Ek

2 ¼ 0; Gk
12 ¼ 0; and nk12 ¼ 0 in Eqs. (4.135).

b. If s2k < 0 in the kth ply, it cannot work only in shear, so we should take Gk
12 ¼ 0 in

Eqs. (4.135).

Thus, we find coefficients A
ð2Þ
st (st ¼ 11, 12, 22, 44) corresponding to the second stage of loading (with

one degraded ply). Using Eqs. (4.116) and (4.115) we can determine E
ð2Þ
x ; E

ð2Þ
y ; G

ð2Þ
xy ; n

ð2Þ
xy ; and n

ð2Þ
yx

and express the strains in terms of stresses, i.e., ε
ð2Þ
x ðsÞ; εð2Þy ðsÞ; and g

ð2Þ
xy ðsÞ. The final strains cor-

responding to the second stage of loading are calculated as

ε
f
x ¼ ε

ð1Þ
x ðs�Þ þ ε

ð2Þ
x ðs� s�Þ; ε

f
y ¼ ε

ð1Þ
y ðs�Þ þ ε

ð2Þ
y ðs� s�Þ

gf
xy ¼ g

ð1Þ
xy ðs�Þ þ g

ð2Þ
xy ðs� s�Þ

To study the third stage, we should find s1; s2; and s12 in all the plies, except the kth one, identify the
next degraded ply, and repeat step 3 of the procedure which is continued up to failure of the fibers. The
resulting stress-strain curves are multi-segmented broken lines with straight segments and kinks
corresponding to degradation of particular plies.

The foregoing procedure was described for a cross-ply layer consisting of plies with different
properties. For the layer made of one and the same material, there are only three stages of loading: first,
before the plies’ degradation; second, after the degradation of the longitudinal or the transverse ply
only; and third, after the degradation of all the plies.

As a numerical example, consider a carbon-epoxy cylindrical pressure vessel consisting of axial plies
with total thickness h0 and circumferential plies with total thickness h90. The vessel has the following
parameters: radius R ¼ 500 mm, and total thickness of the wall h ¼ 7:5 mm, h0 ¼ 2:5 mm, and
h90 ¼ 5 mm. The mechanical characteristics of a carbon-epoxy unidirectional ply are E1 ¼ 140 GPa,
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E2 ¼ 11 GPa, n12 ¼ 0:0212; n21 ¼ 0:27; sþ1 ¼ 2000 MPa, and sþ2 ¼ 50 MPa. Axial, sx, and circum-
ferential, sy, stresses are expressed as (see Fig. 4.46)

sx ¼ pR

2h
; sy ¼ pR

h
(4.136)

where p is the internal pressure.
Using Eqs. (4.114) and (4.116), we calculate first the stiffness coefficients. The result is as follows:

A11 ¼ 54:1 GPa; A12 ¼ 3 GPa; A22 ¼ 97:1 GPa
Ex ¼ 54 GPa; Ey ¼ 97 GPa; nxy ¼ 0:055; nyx ¼ 0:031

(4.137)

Substituting stresses, Eqs. (4.136), into the constitutive equations, Eqs. (4.115), we obtain

ε
ð1Þ
x ðpÞ ¼ pR

h



1

2Ex
� nxy

Ey

�
¼ 0:58$10�3p; ε

ð1Þ
y ðpÞ ¼ pR

h



1

Ey
� nyx

2Ex

�
¼ 0:66$10�3p

where p is measured in megapascals. For axial plies, εx ¼ ε1;0 and εy ¼ ε2;0. The corresponding
stresses are

s
ð1Þ
1;0ðpÞ ¼ E1ðε1;0 þ n12ε2;0Þ ¼ 83:2 p; s

ð1Þ
2;0ðpÞ ¼ E2ðε2;0 þ n21ε1;0Þ ¼ 9:04 p

For circumferential plies, εx ¼ ε2;90; εy ¼ ε1;90 and

s
ð1Þ
1;90ðpÞ ¼ E1ðε1;90 þ n12ε2;90Þ ¼ 94:15 p; s

ð1Þ
2;90ðpÞ ¼ E2ðε2;90 þ n21ε1;90Þ ¼ 8:4 p

As can be seen, s
ð1Þ
2;0 > s

ð1Þ
2;90. This means that the cracks appear first in the axial plies under the pressure

p� that can be found from the equation s
ð1Þ
2;0ðp�Þ ¼ sþ2 . The result is p� ¼ 5:53 MPa.

To study the second stage of loading for p > p�, we should put E2 ¼ 0; and n12 ¼ 0 in Eqs. (4.135)
for the axial plies. Then, the stiffness coefficients and elastic constants become

A11 ¼ 54:06 GPa; A12 ¼ 2 GPa; A22 ¼ 93:4 GPa
Ex ¼ 54 GPa; Ey ¼ 93:3 GPa; nxy ¼ 0:037; nyx ¼ 0:021

x

y xσ

yσ

FIGURE 4.46

Element of a composite pressure vessel.
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The strains and stresses in the plies are

ε
ð2Þ
x ð pÞ ¼ 0:59$10�3p; ε

ð2Þ
y ð pÞ ¼ 0:7$10�3p

s
ð2Þ
1;0ð pÞ ¼ 82:6 p; s

ð2Þ
1;90ð pÞ ¼ 99:8 p

s
ð2Þ
2;90ð pÞ ¼ 8:62 p

The total transverse stress in the circumferential plies can be calculated as

s2;90 ¼ s
ð1Þ
2;90ð p�Þ þ 8:62ð p� p�Þ

Using the condition s2;90ðp��Þ ¼ sþ2 , we find the pressure p�� ¼ 5:95 MPa at which cracks appear in
the matrix of the circumferential plies.

For p � p��, we should take E2 ¼ 0 and n12 ¼ 0 for all the plies. Then

A11 ¼ 46:2 GPa; A12 ¼ 0; A22 ¼ 93:4 GPa

Ex ¼ 46:2 GPa; Ey ¼ 93:4 GPa; nxy ¼ nyx ¼ 0

ε
ð3Þ
x ð pÞ ¼ 0:72$10�3p; ε

ð3Þ
y ð pÞ ¼ 0:71$10�3p

s
ð3Þ
1;0ð pÞ ¼ 100:8 p; s

ð3Þ
1;90ð pÞ ¼ 99:4 p

(4.138)

The total stresses acting along the fibers are

s1;0ð pÞ ¼ s
ð1Þ
1;0ð p�Þ þ s

ð2Þ
1;0ð p�� � p�Þ þ s

ð3Þ
1;0ð p� p��Þ ¼ 100:8p� 105

s1;90ð pÞ ¼ s
ð1Þ
1;90ð p�Þ þ s

ð2Þ
1;90ð p�� � p�Þ þ s

ð3Þ
1;90ð p� p��Þ ¼ 99:4p� 28:9

To determine the ultimate pressure, we can use two possible strength conditions – for axial fibers and
for circumferential fibers. The criterion s1;0ðpÞ ¼ sþ1 yields p ¼ 20:9 MPa, whereas the criterion
s1;90ðpÞ ¼ sþ1 gives p ¼ 20:4 MPa. Thus, the burst pressure governed by failure of the fibers in the
circumferential plies is p ¼ 20:4 MPa.

The strains can be calculated for all three stages of loading using the following equations

• for p � p�

εx;yð pÞ ¼ ε
ð1Þ
x;y ð pÞ

• for p� < p � p��

εx;yð pÞ ¼ ε
ð1Þ
x;y ð p�Þ þ ε

ð2Þ
x;y ð p� p�Þ

• for p�� < p � p

εx;yð pÞ ¼ ε
ð1Þ
x;y ð p�Þ þ ε

ð2Þ
x;y ð p�� � p�Þ þ ε

ð3Þ
x;y ð p� p��Þ

For the pressure vessel under study, the dependency of the circumferential strain on pressure is
shown in Fig. 4.47 (solid line). The circles correspond to failure of the matrix and fibers.

For comparison, consider two limiting cases. First, assume that no cracks occur in the matrix, and
the material stiffness is specified by Eqs. (4.137). The corresponding diagram is shown in Fig. 4.47
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with a dashed line. Second, suppose that the load is taken by the fibers only, i.e., use the monotropic
model of a ply introduced in Section 3.3. Then, the material stiffness is given by Eqs. (4.138). The
corresponding result is also presented in Fig. 4.47. It follows from this figure that all three models give
close results for the burst pressure (which is expected since sþ2 << sþ1 ), but provide different strains.

4.4.3 Two-matrix composites

The problem of the analysis of a cracked cross-ply composite laminate has been studied by Tsai and
Azzi (1966), Vasiliev and Elpatievskii (1967), Vasiliev et al. (1970), Hahn and Tsai (1974), Reifsnaider
(1977), Hashin (1987), and many other authors. In spite of this, the topic is still receiving repeated
attention in the literature (Lungren and Gudmundson, 1999). Taking into account that matrix degra-
dation leads to reduction of material stiffness and fatigue strength, absorption of moisture, and many
other consequences that are difficult to predict but are definitely undesirable, it is surprising how many
efforts have been undertaken to study this phenomenon rather than try to avoid it. At first glance, the
problem looks simple; all we need is to synthesize a unidirectional composite whose ultimate elon-
gations along and across the fibers, i.e. ε1 and ε2, are the same. Actually, the problem is even simpler,
because ε2 can be less than ε1 by a factor that is equal to the safety factor of the structure. This means
that matrix degradation can occur, but at the load that exceeds the operational level (the safety factor is
the ratio of the failure load to the operational load and can vary from 1.25 up to 3 or more depending on
the application of a particular composite structure). Returning to Table 4.2, in which ε1 and ε2 are given
for typical advanced composites, we can see that ε1 > ε2 for all the materials and that for polymeric
matrices the problem could be, in principle, solved if we could increase ε2 up to about 1%.

Two main circumstances hinder the direct solution of this problem. The first is that being locked
between the fibers, the matrix does not show the high elongation that it has under uniaxial tension and
behaves as a brittle material (see Section 3.4.2). To study this effect, epoxy resins were modified to
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FIGURE 4.47

Dependence of the circumferential strain of the carbon-epoxy pressure vessel on pressure:

model allowing for cracks in the matrix;

model ignoring cracks in the matrix;

model ignoring the matrix.
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have different ultimate elongations. The corresponding curves are presented in Fig. 4.48 (only the
initial part of curve 4 is shown in this figure; the ultimate elongation of this resin is 60%). Fiberglass
composites that have been fabricated with these resins were tested under transverse tension. As can be
seen in Fig. 4.49, the desired value of ε2 (that is, about 1%) is reached if the matrix elongation is about
60%. However, the stiffness of this matrix is relatively low, and the second circumstance arises; matrix
material with low stiffness cannot provide sufficient stress diffusion in the vicinity of damaged or
broken fibers (see Section 3.2.3). As a result, the main material characteristic – its longitudinal tensile
strength – decreases. Experimental results corresponding to composites with resins 1, 2, 3, and 4 are
presented in Fig. 4.50. Thus, a significant increase in transverse elongation is accompanied by an
unacceptable drop in longitudinal strength (see also Chiao, 1979).

One of the possible ways for synthesizing composite materials with high transverse elongation and
high longitudinal strength is to combine two matrix materials: one with high stiffness to bind the fibers
and the other with high elongation to provide the appropriate transverse deformability (Vasiliev and
Salov, 1984). The manufacturing process involves two-stage impregnation. At the first stage, a fine tow
is impregnated with a high-stiffness epoxy resin (of the type 2 in Fig. 4.48) and cured. The properties
of the composite fiber fabricated in this way are as follows:

• Number of elementary glass fibers in the cross section – 500
• Mean cross-sectional aread0.15 mm2

• Fiber volume fractiond0.75
• Densityd2.2 g=cm3

• Longitudinal modulusd53.5 GPa
• Longitudinal strengthd2100 MPa
• Longitudinal elongationd4.5%
• Transverse modulusd13.5 GPa
• Transverse strengthd40 MPa
• Transverse elongationd0.32%
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FIGURE 4.48

Stress-strain curves for epoxy matrices modified for various ultimate elongations.
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FIGURE 4.49

Stress-strain curves for transverse tension of unidirectional fiberglass composites with various epoxy matrices

(numbers on the curves correspond to Figure 4.48).
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Dependence of the longitudinal strength on the matrix ultimate elongation (numbers on the curve correspond to

Figs. 4.48 and 4.49).
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At the second stage, a tape formed of composite fibers is impregnated with a highly deformable
epoxy matrix whose stress-strain diagram is presented in Fig. 4.51. The microstructure of the resulting
two-matrix unidirectional composite is shown in Fig. 4.52 (the dark areas are cross-sections of
composite fibers; the magnification is not sufficient to see the elementary glass fibers). Stress-strain
diagrams corresponding to transverse tension, compression, and in-plane shear of this material are
presented in Fig. 4.16.

The main mechanical characteristics of the two-matrix fiberglass composite are listed in Table 4.3
(material No.1). As can be seen, two-stage impregnation results in relatively low fiber volume content
(about 50%). Material No.2, composed of composite fibers and a conventional epoxy matrix, has also
a low fiber fraction; however, its transverse elongation is 10 times lower than that of material No.1.
Material No.3 is a conventional glass-epoxy composite that has the highest longitudinal strength and
the lowest transverse strain. Comparing materials No.1 and No.3, we can see that although the fiber
volume fraction of the two-matrix composite is lower by 24%, its longitudinal strength is less than that
of a traditional composite by only 3.4% (because the composite fibers are not damaged in the pro-
cessing of composite materials), whereas its specific strength is a bit higher (due to its lower density).
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FIGURE 4.51

Stress-strain diagram of a deformable epoxy matrix.

FIGURE 4.52

Microstructure of a unidirectional two-matrix composite.
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Material No.4 demonstrates that direct application of a highly deformable matrix allows us to increase
transverse strains but results in a 23% reduction in longitudinal specific strength.

Thus, two-matrix glass-epoxy composites have practically the same longitudinal strength as
conventional materials but their transverse elongation is greater by an order of magnitude.

Comparison of a conventional cross-ply glass-epoxy layer and a two-matrix one is presented in
Fig. 4.53. Line 1 corresponds to a traditional material and, typical for this material, has a kink cor-
responding to matrix failure in the transverse plies (see also Fig. 4.37). A theoretical diagram was
plotted using the procedure described earlier. Line 2 corresponds to a two-matrix composite and was
plotted using Eqs. (4.60). As can be seen, there is no kink on the stress-strain diagram. To prove that no
cracks appear in the matrix of this material under loading, the intensity of acoustic emission was
recorded during loading. The results are shown in Fig. 4.54.

Composite fibers of two-matrix materials can be also made from fine carbon or aramid tows, and
the deformable thermosetting resin can be replaced with a thermoplastic matrix (Vasiliev et al., 1997).
The resulting hybrid thermoset-thermoplastic unidirectional composite is characterized by high
longitudinal strength and transverse strain exceeding 1%. Having high strength, composite fibers are
not damaged in the process of laying-up or winding, and the tapes formed from these fibers are readily
impregnated even with high-viscosity thermoplastic polymers.

4.4.4 Composites with controlled cracks

Now we return to the conventional composites discussed in Section 4.4.2. Since the transverse ultimate
elongation of a ply, ε2, is less than the corresponding longitudinal elongation, ε1 (see Table 4.2), the
stress s in Eq. (4.123) induces a system of cracks in the matrix of the transverse ply as in Fig. 4.39.

TABLE 4.3 Properties of glass-epoxy unidirectional composites.

No
Material
components

Fiber
volume
fraction

Longitudinal
strength sD1
(MPa)

Ultimate
transverse
strain ε

D
2 ( %)

Density
r (g/cm3)

Specific
strength
sD1 =r3103(m)

1 Composite
fibers and
deformable
matrix

0.51 1420 3.0 1.83 77.6

2 Composite
fibers and
high-stiffness
matrix

0.52 1430 0.3 1.88 76.1

3 Glass fibers
and high-
stiffness
matrix

0.67 1470 0.2 2.07 71.0

4 Glass fibers
and
deformable
matrix

0.65 1100 1.2 2.02 54.4
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FIGURE 4.53

Stress-strain diagrams of a conventional (1) and two-matrix (2) cross-ply glass-epoxy layer under tension:

theoretical prediction;

experiment.

FIGURE 4.54

Intensity of acoustic emission for a cross-ply two-matrix composite (upper) and a conventional fiberglass

composite (lower).
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As has been already noted, these cracks do not cause laminate failure because strength is controlled by
the longitudinal plies. What is actually not desirable is matrix failure in the process of laminate
loading. So, since the cracks shown in Fig. 4.39 will occur anyway at some stress s, suppose that the
material has these cracks before loading, i.e., that the transverse ply consists of individual strips with
width lc as in Fig. 4.39. The problem is to find the width lc for which no other cracks will appear in the
transverse ply up to failure of the fibers in the longitudinal plies.

Consider the solution in Eq. (4.132), take C2 ¼ C3 ¼ 0, and find the constants C1 and C4 from the
boundary conditions in Eqs. (4.133) in which lc is some unknown width. The resulting expression for
the stress in the transverse ply is

sx2 ¼ s02

�
1� 1

k1 sin l2 cos l2 þ k2 sinh l1 cosh l1
½ðk2 cosh l1 sin l2

�k1 sinh l1 cos l2Þ sinh k1x sin k2x

þðk1 cosh l1 sin l2 þ k2 sinh l1 cos l2Þ cosh k1x cos k2x	
�

in which l1 ¼ k1lc=2 and l2 ¼ k2lc=2. The maximum stress acts at x ¼ 0 (see Fig. 4.40) and can be
presented as

sm2 ¼ s02½1� FðlcÞ	 (4.139)

where

FðlcÞ ¼ 2ðk1 cosh l1 sin l2 þ k2 sinh l1 cos l2Þ
k1 sin 2l2 þ k2 sinh 2l1

(4.140)

The stress s02 in Eq. (4.139) is specified by the second equation of Eqs. (4.122). Taking into account the
first equation, we have

s02 ¼
E2

E1
s01

where s01 is the stress in the longitudinal plies. So, Eq. (4.139) can be written as

sm2 ¼ E2

E1
s01½1� FðlcÞ	 (4.141)

Now suppose that s1 ¼ s1, i.e., that the longitudinal stress reaches the corresponding ultimate value.
The cracks in the matrix of the transverse ply do not appear if sm2 � s2, where s2 is the transverse
tensile strength of the ply. Then, Eq. (4.141) yields

FðlcÞ � t (4.142)

Where

t ¼ 1� E1s2

E2s1
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As an example, consider a cross-ply (see Fig. 4.35) carbon-epoxy composite with the following
parameters

E1 ¼ 140 GPa; E2 ¼ 11 GPa; G13 ¼ 5:5 GPa; G23 ¼ 4:1 GPa;
n23 ¼ 0:3; s1 ¼ 2000 MPa; s2 ¼ 50 MPa

for which t ¼ 0:68. Introduce normalized thicknesses of the plies as

h1 ¼ 2h1
h
; h2 ¼ 2h2

h

where h ¼ 2ðh1 þ h2Þ (see Fig. 4.37). Let h1 ¼ 1� a and h2 ¼ a, where the parameter a specifies the

relative thickness of the transverse ply. The dependencies of the coefficients k1 ¼ k1=h and k2 ¼ k2=h
(in which k1 and k2 are given in the notations to Eq. (4.130)) on the parameter a are shown in Fig. 4.55.

The dependence of function F in Eq. (4.140) on the normalized distance between the cracks lc ¼ lc=h
is presented in Fig. 4.56 for a ¼ 0:1; 0:5; and 0:9 . The intersections of the horizontal line F ¼ t ¼
0:68 give the values of lc for which no new cracks appear in the transverse ply up to the fibers’ failure.

The final dependence of lc on a is shown in Fig. 4.57. As can be seen, lc varies from about two up to
four thicknesses of the laminate. For h1 ¼ h2 ¼ d, where d ¼ 0:15 mm is the thickness of the
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FIGURE 4.55

Dependencies of the coefficients k1 and k2 on the relative thickness of the transverse ply a.
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Normalized width of the strip lc as a function of the relative thickness of transverse ply a.
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unidirectional ply, we get h ¼ 4d; a ¼ 0:5; and lc ¼ 1:9 mm. A yarn of such width is typical for
carbon fabrics made of 3K carbon tows. Experiments with such fabric composites show that the tensile
stress-strain diagram of the material is linear up to failure, and no cracks are observed in the matrix.

4.5 ANGLE-PLY ORTHOTROPIC LAYER
The angle-ply layer is a combination of an even number of alternating plies with angles þf and �f as
in Fig. 4.58. The structure of this layer is typical for the process of filament winding (see Fig. 4.59). As
for the cross-ply layer considered in the previous section, an angle-ply layer is actually a laminate, but
for a large number of plies it can be approximately treated as a homogeneous orthotropic layer (see
Section 5.6.3).

4.5.1 Linear elastic model

Consider two symmetric systems of unidirectional anisotropic plies (see Section 4.3) consisting of the
same number of plies, made of one and the same material and having alternating angles þf and �f.

+
xyτ

+
yσ

+
xσ

φ+

−
yσ

−
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−
xyτφ−
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xσ

xyτ

xzτ

yzτ

FIGURE 4.58

Two symmetric plies forming an angle-ply layer.

FIGURE 4.59

Angle-ply layer of a filament wound shell.

Courtesy of CRISM.
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Then, the total stresses sx; sy; and sxy acting on the layer can be expressed in terms of the corre-
sponding stresses acting in the þf and �f plies as

sxh ¼ sþx
h

2
þ s�x

h

2
; syh ¼ sþy

h

2
þ s�y

h

2

sxyh ¼ sþxy
h

2
þ s�xy

h

2

(4.143)

where h is the total thickness of the layer. Stresses with superscripts “þ” and “�” are related to strains
εx; εy; and gxy (which are assumed to be the same for all the plies) by Eqs. (4.71), i.e.,

s�x ¼ A�
11εx þ A�

12εy þ A�
14gxy; s�y ¼ A�

21εx þ A�
22εy þ A�

24gxy

s�xy ¼ A�
41εx þ A�

42εy þ A�
44gxy

(4.144)

in which Aþ
11 ¼ A�

11 ¼ A11; A
þ
12 ¼ A�

12 ¼ A12; A
þ
22 ¼ A�

22 ¼ A22; A
þ
14 ¼ �A�

14 ¼ A14; A
þ
24 ¼ �A�

24 ¼
A24; and Aþ

44 ¼ A�
44 ¼ A44, where Amn (mn ¼ 11, 12, 22, 14, 24, 44) are specified by Eqs. (4.72).

Substituting Eqs. (4.144) into Eqs. (4.143), we arrive at the following constitutive equations for an
angle-ply layer

sx ¼ A11εx þ A12εy

sy ¼ A21εx þ A22εy

sxy ¼ A44gxy

(4.145)

The inverse form of these equations is

εx ¼ sx

Ex
� nxy

sy

Ey
; εy ¼ sy

Ey
� nyx

sx

Ex
; gxy ¼

sxy
Gxy

(4.146)

where

Ex ¼ A11 � A2
12

A22
; Ey ¼ A22 � A2

12

A11
; Gxy ¼ A44

nxy ¼ A12

A11
; nyx ¼ A12

A22
(4.147)

It follows from Eqs. (4.145) and (4.146) that the layer under study is orthotropic.
Now derive constitutive equations relating transverse shear stresses sxz and syz and the corresponding

shear strains gxz and gyz. Let the angle-ply layer be loaded by stress sxz. Then for all the plies,

sþxz ¼ s�xz ¼ sxz, and because the layer is orthotropic, gþxz ¼ g�xz ¼ gxz and g
þ
yz ¼ g�yz ¼ gyz ¼ 0. In a

similar way, applying stress syz we have sþyz ¼ s�yz ¼ syz; gþ
yz ¼ g�

yz ¼ gyz; and g
þ
xz ¼ g�

xz ¼ gxz ¼ 0.

Writing the last two constitutive equations of Eqs. (4.71) for these two cases, we arrive at

sxz ¼ A55gxz; syz ¼ A66gyz (4.148)

where the stiffness coefficients A55 and A66 are specified by Eqs. (4.72).
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The dependencies of Ex and Gxy on f, plotted using Eqs. (4.147), are shown in Fig. 4.60
with solid lines. The theoretical curve for Ex is in very close agreement with experimental data
shown with circles (Lagace, 1985). For comparison, the same moduli are presented for the þf

anisotropic layer considered in Section 4.3.1. As can be seen, Exð�fÞ � Eþ
x . To explain this

effect, consider uniaxial tension of both layers in the x direction. Whereas tension of the
þf and �f individual plies shown in Fig. 4.61 is accompanied with shear strain, the system of
these plies does not demonstrate shear under tension and, as a result, has higher stiffness.
Working as plies of a symmetric angle-ply layer, individual anisotropic þf and �f plies are
loaded not only with a normal stress sx that is applied to the layer, but also with shear stress
sxy that restricts the shear of individual plies (see Figure 4.61). In order to find the reactive
shear stress, which is balanced between the plies, we can use Eqs. (4.75). Taking sy ¼ 0, we
can simulate the stress-strain state of the ply in the angle-ply layer putting gxy ¼ 0. Then, the
third equation yields

sxy ¼ �hþxy;x
Gþ
xy

Eþ
x

sx

0
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FIGURE 4.60

Dependencies of the moduli of a carbon-epoxy layer on the orientation angle:

orthotropic angle-ply �f layer;

anisotropic þf layer;

experiment for an angle-ply layer.
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Superscript “þ” indicates that elastic constants correspond to an individual þf ply. Substituting this
shear stress into the first equation of Eqs. (4.75), we arrive at sx ¼ Exεx, where

Ex ¼ Eþ
x

1� hþx;xyhþxy;x
¼ Eþ

x

1� Gþ
xy

Eþ
x

�
hþxy;x

�2 (4.149)

is the modulus of the �f angle-ply layer.
Under pure shear of an angle-ply layer, its plies are loaded with the additional normal stresses.

These stresses can be found if we take εx ¼ 0 and εy ¼ 0 in the first two equations of Eqs. (4.75). The
result is

sx ¼ �sxy
Eþ
x

�
hþx;xy � nþxyhþy;xy

�
Gþ
xy

�
1� nþxynþyx

� ; sy ¼ �sxy
Eþ
y

�
hþy;xy � nþyxhþx;xy

�
Gþ
xy

�
1� nþxynþyx

�
Substituting these expressions in the third equation, we get sxy ¼ Gxygxy, where

Gxy ¼
Gþ
xy

�
1� nþxynþyx

�
1� nþxynþyx � hþx;xyhþxy;x � hþy;xyhþxy;y � nþxyhþy;xyhþxy;x � nþyxhþx;xyhþxy;y

is the shear modulus of an angle-ply layer which is much higher than Gþ
xy (see Fig. 4.60).

Tensile loading of a �45� angle-ply specimen provides a simple way to determine the in-plane
shear modulus of a unidirectional ply, G12. Indeed, for this layer, Eqs. (4.72) and (4.147) yield

A45
11 ¼ A45

22 ¼
1

4

�
E1 þ E2 þ 2E1n12 þ 4G12

�
; A45

12 ¼ E1n12 þ 1

4

�
E1 þ E2 � 2E1n12 � 4G12

�
and

E45 ¼ 1

A45
11

�
A45
11 þ A45

12

��
A45
11 � A45

12

�
; 1þ n45 ¼ 1

A45
11

�
A45
11 þ A45

12

�

Taking into account that A45
11 � A45

12 ¼ 2G12, we have

FIGURE 4.61

Deformation and stresses induced in individual plies (a) and bonded symmetric plies (b) by uniaxial tension.

4.5 Angle-ply orthotropic layer 199

www.EngineeringEBooksPdf.com



G12 ¼ E45

2ð1þ n45Þ (4.150)

Thus, to find G12, we can test a �45� specimen under tension, measure εx and εy, determine
E45 ¼ sx=εx; n45 ¼ �εy=εx, and use Eq. (4.150) rather than perform the cumbersome tests described
in Section 4.3.1.

4.5.2 Nonlinear models

To describe nonlinear behavior of an angle-ply layer associated with material nonlinearity in its plies,
we can use nonlinear constitutive equations, Eqs. (4.60) or (4.64), instead of Hooke’s law. Indeed,
assuming that the ply behavior is linear under tension or compression along the fibers, we can write
these equations in the following general form

ε1 ¼ c11s1 þ c12s2; ε2 ¼ c12s1 þ c22s2 þ u2ðs2; s12Þ; g12 ¼ c44s12 þ u12ðs2; s12Þ
Functions u2 and u12 include all the nonlinear terms. The inverse form of these equations is

s1 ¼ C11ε1 þ C12ε2 � C12u2; s2 ¼ C12ε1 þ C22ε2 � C22u2;

s12 ¼ C44g12 � C44u12
(4.151)

in which

C11 ¼ c22
c
; C22 ¼ c11

c
; C44 ¼ 1

c44
; C12 ¼ � c12

c
; c ¼ c11c22 � c212:

Repeating the derivation of Eqs. (4.145) and this time using Eqs. (4.151) as the constitutive equations
for the ply, we arrive at

sx ¼ A11εx þ A12εy � Au
11; sy ¼ A21εx þ A22εy � Au

22;

sxy ¼ A44gxy � Au
44

where s ¼ sin f; and c ¼ cos f.

Au
11 ¼

�
C22s

2 þ C12c
2
�
u2 � 2C44csu12; Au

22 ¼
�
C22c

2 þ C12s
2
�
u2 þ 2C44csu12;

Au
44 ¼

�
C12 � C22

�
csu2 þ C44

�
c2 � s2

�
u12

These equations can be used in conjunction with the method of elastic solutions described in
Section 4.1.2.

As an example, consider the two-matrix glass-epoxy composite described in Section 4.4.3 (see also
Figs. 4.16, 4.30, and 4.31). Theoretical (solid lines) and experimental (dashed lines) stress-strain
diagrams for �30�; �45�; and �75� angle-ply layers under tension along the x-axis are shown in
Fig. 4.62.

Angle-ply layers demonstrate a specific type of material nonlinearity: structural nonlinearity that
can occur in the layers composed of linear elastic plies due to the change of the plies’ orientations
caused by loading. Since this effect manifests itself at high strains, consider a geometrically nonlinear
problem of the ply deformation. This deformation can be described with the longitudinal, ε1,
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transverse, ε2, and shear, g12, strains that follow from Fig. 4.63 and can be expressed as

ε1 ¼ 1

ds1

�
ds01 � ds1

�
; ε2 ¼ 1

ds2

�
ds02 � ds2

�
; g12 ¼

p

2
� j (4.152)

In addition to this, we introduce strain ε
00
2 in the direction normal to the fibers

ε
00
2 ¼ 1

ds2

�
ds002 � ds2

�
(4.153)

and the angle of rotation of the element as a solid in the 12-plane

u12 ¼ 1

2

�
u1 � u2

�
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FIGURE 4.62

Theoretical (solid lines) and experimental (dashed lines) stress-strain diagrams for�30�ðaÞ; �45�ðbÞ; and�75�ðcÞ
angle-ply two-matrix composites under uniaxial tension.
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where u1 ¼ f0 � f; u2 ¼ p

2
þ f� �f0 þ j

�
are the angles of rotation of axes 10 and 20 (see Fig. 4.63). Thus,

u12 ¼ f0 � fþ j

2
� p

4
(4.154)

Consider some arbitrary element dsa, shown in Fig. 4.64, and introduce its strain

dsa ¼ 1

dsa

�
ds0a � dsa

�
(4.155)

Repeating the derivation described in Section 2.5, we have

ds2a ¼ dx2 þ dy2�
ds0a
�2 ¼ ðdx0Þ2 þ ðdy0Þ2 ¼ ðdxþ duxÞ2 þ

�
dyþ duy

�2
¼ ð1þ εxÞ2dx2 þ

�
1þ εy

�2
dy2 þ 2εxydxdy

y

x

1

2
1ds

2ds
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FIGURE 4.63

Ply element before and after deformation.
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FIGURE 4.64

Linear element before and after deformation.
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where

ð1þ εxÞ2 ¼ 1þ 2

�
vux
vx

þ 1

2



vux
vx

�2

þ 1

2



vuy
vx

�2	

�
1þ εy

�2 ¼ 1þ 2

�
vuy
vy

þ 1

2



vux
vy

�2

þ 1

2



vuy
vy

�2	

εxy ¼ vux
vy

þ vuy
vx

þ vux
vx

vux
vy

þ vuy
vx

vuy
vy

(4.156)

Using Eq. (4.155), we arrive at

ð1þ εaÞ2 ¼ ð1þ εxÞ2 cos2 aþ �1þ εy

�2
sin2 aþ εxy sin 2a (4.157)

where cos a ¼ dx=dsa and sin a ¼ dy=dsa.
In a similar way, we can find the angle a0 after the deformation, i.e.,

sin a0 ¼ dy0

dsa
¼ 1

1þ εa

�

1þ vuy

vy

�
sin aþ vuy

vx
cos a

	

cos a0 ¼ dx0

dsa
¼ 1

1þ εa

�

1þ vux

vx

�
cos aþ vux

vy
sin a

	 (4.158)

Now return to the ply element in Fig. 4.63. Taking a ¼ f in Eqs. (4.157) and (4.158), we obtain

ð1þ ε1Þ2 ¼ ð1þ εxÞ2 cos2 fþ �1þ εy

�2
sin2 fþ εxy sin 2f

sin f0 ¼ 1

1þ ε1

�

1þ vuy

vy

�
sin fþ vuy

vx
cos f

	

cos f0 ¼ 1

1þ ε1

�

1þ vux

vx

�
cos fþ vux

vy
sin f

	 (4.159)

Putting a ¼ p

2
þ f, we have

ð1þ ε2Þ2 ¼ ð1þ εxÞ2 sin2 fþ �1þ εy

�2
cos2 f� 2εxy sin 2f

sin
�
f0 þ j

� ¼ 1

1þ ε2

�

1þ vuy

vy

�
cos f� vuy

vx
sin f

	

cos
�
f0 þ j

� ¼ 1

1þ ε2

�
�


1þ vux

vx

�
cos fþ vux

vy
sin f

	 (4.160)

Using the last equation of Eqs. (4.152), we can find the shear strain as sin g12 ¼ cos j. After some
rearrangement, with the aid of Eqs. (4.159) and (4.160), we arrive at

sin g12 ¼
1

ð1þ ε1Þð1þ ε2Þ
nh�

1þ εy

�2 � ð1þ εxÞ2
i
sin f cos fþ εxy cos 2f

o
(4.161)

4.5 Angle-ply orthotropic layer 203

www.EngineeringEBooksPdf.com



For f ¼ 0, axes 1 and 2 coincide, respectively, with axes x and y (see Fig. 4.63), and Eq. (4.161)
yields

sin gxy ¼
εxy�

1þ εx

��
1þ εy

� (4.162)

Using this result to express εxy, we can write Eqs. (4.159)–(4.161) in the following final form

ð1þ ε1Þ2 ¼ ð1þ εxÞ2 cos2 fþ �1þ εy

�2
sin2 f

þ�1þ εx

��
1þ εy

�
sin gxy sin 2f

ð1þ ε2Þ2 ¼ ð1þ εxÞ2 sin2 fþ �1þ εy

�2
cos2 f

��1þ εx

��
1þ εy

�
sin gxy sin 2f

sin g12 ¼
1

ð1þ ε1Þð1þ ε2Þ
nh�

1þ εy

�2 � ð1þ εxÞ2
i
sin f cos f

þ�1þ εx

��
1þ εy

�
sin gxy cos 2f

o

(4.163)

It follows from Fig. 4.63 and the last equation of Eqs. (4.152) that ds002 ¼ ds02 sin j ¼ ds02 cos g12. So,
in accordance with Eqs. (4.152) and (4.153),

1þ ε
00
2 ¼ �1þ ε2

�
cos g12

Using Eqs. (4.163) to transform this equation, we get

1þ ε
00
2 ¼

�
1þ εx

��
1þ εy

�
1þ ε1

cos gxy (4.164)

To express f0 in terms of f and strains referred to the global coordinate frame x, y, consider Eq. (4.154).
After rather cumbersome transformation with the aid of Eqs. (4.159) and (4.160), we obtain

sin2u12 ¼ 1

ð1þ ε1Þð1þ ε2Þ
�


vuy
vx

� vux
vy

þ vuy
vx

vuy
vy

� vux
vx

vux
vy

�
cos2 2f

þ


vuy
vx

� vux
vy

þ vux
vx

vuy
vx

� vux
vy

vuy
vy

�
sin22f

þ1

4

�

vux
vx

� vuy
vy

�2

�


vuy
vx

þ vux
vy

�2	
sin4f

�

Taking f ¼ 0, we can express rotation angle uz around the z-axis of the global coordinate frame, i.e.,

sin 2uz ¼ 1�
1þ εx

��
1þ εy

�
vuy
vx

� vux
vy

þ vuy
vx

vuy
vy

� vux
vx

vux
vy

�
(4.165)
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Consider now Eqs. (4.156), (4.162), and (4.165) which form a set of four algebraic equations with
respect to the derivatives of the displacements. Omitting the solution procedure, we can write the final
outcome as

vux
vx

¼ �1þ εx

�
cos



gxy

2
þ uz

�
� 1;

vux
vy

¼ �1þ εy

�
sin



gxy

2
� uz

�
;

vuy
vx

¼ �1þ εx

�
sin



gxy

2
þ uz

�
;

vuy
vy

¼ �1þ εy

�
cos



gxy

2
� uz

�
� 1

Substituting these expressions in Eqs. (4.159), we have

sin f0 ¼ 1

1þ ε1

��
1þ εx

�
sin



gxy

2
þ uz

�
cos f

þ�1þ εy

�
cos



gxy

2
� uz

�
sin f

cosf0 ¼ 1

1þ ε1

��
1þ εx

�
cos



gxy

2
þ uz

�
cos f

þ�1þ εy

�
sin
�gxy

2
� uz

�
sin f

(4.166)

The derived nonlinear equations, Eqs. (4.163), generalize Eqs. (4.69) for the case of large strains,
whereas Eqs. (4.166) allow us to find the fiber orientation angle after deformation.

The equilibrium equations, Eqs. (4.68), retain their form but should be written for the deformed
state, i.e.,

sx ¼ s01 cos
2 f0 þ s002 sin

2 f0 � s012 sin2 f
0

sy ¼ s01 sin
2 f0 þ s002 cos

2 f0 þ s012 sin2 f
0

sxy ¼
�
s01 � s001

�
sin f0 cos f0 þ s012 cos2 f

0
(4.167)

where s01; s
00
2; and s012 are stresses referred to coordinate frame 10200 (see Fig. 4.63) and to the current

thickness of the ply.
Consider a problem of uniaxial tension of a �f angle-ply layer with stress sx. For this case,

gxy ¼ 0; uz ¼ 0, and Eqs. (4.163), (4.164), (4.166) take the form

ð1þ ε1Þ2 ¼ ð1þ εxÞ2 cos2 fþ �1þ εy

�2
sin2 f

ð1þ ε2Þ2 ¼ ð1þ εxÞ2 sin2 fþ �1þ εy

�2
cos2 f

sin g12 ¼
sin f cos f

ð1þ ε1Þð1þ ε2Þ
��
1þ εy

�2 � ð1þ εxÞ2
	

1þ ε
00
2 ¼

�
1þ εx

��
1þ εy

�
1þ ε1

sin f0 ¼ 1þ εy

1þ ε1
sin f; cos f0 ¼ 1þ εx

1þ ε1
cos f
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For composite materials, the longitudinal strain ε1 is usually small, and these equations can be further
simplified as follows

ε1 ¼ εx cos
2 fþ εy sin

2 fþ 1

2

�
ε
2
xcos

2fþ ε
2
ysin

2f
�

ð1þ ε2Þ2 ¼ ð1þ εxÞ2 sin2 fþ �1þ εy

�2
cos2 f

sin g12 ¼
1

1þ ε2

��
1þ εy

�2 � ð1þ εxÞ2
	
sin f cos f

1þ ε
00
2 ¼ �1þ εx

��
1þ εy

�
tan f0 ¼ 1þ εy

1þ εx
tan f (4.168)

As an example, consider a specially synthesized highly deformable composite material made from
glass composite fibers and thermoplastic matrix as discussed in Section 4.4.3. Neglecting interaction of
strains, we take constitutive equations for the unidirectional ply as

s01 ¼
E1ε1

1þ ε
00
2

; s02 ¼ u2

�
ε
00
2

�
; s012 ¼ u12

�
g12

�
(4.169)

where E1 in the first equation is the longitudinal elasticity modulus, whereas ε2 in the denominator
takes account of the decrease of the ply stiffness due to the increase in the fiber spacing. The constant
E1 and functions u2 and u12 are determined from the experimental stress-strain diagrams for
0; 90; and �45� specimens that are shown in Fig. 4.65. The results of calculations with the aid of
Eqs. (4.167)–(4.169) are presented together with the corresponding experimental data in Fig. 4.66.

The foregoing equations comprise the analytical background for a promising manufacturing
process that allows us to fabricate composite parts with complicated shapes by deforming partially
cured preforms of simple shapes made by winding or laying-up (see, e.g., Cherevatsky, 1999).
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FIGURE 4.65

Experimental stress-strain diagrams for 0;�45; and 90� angle-ply layers.
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An example of such a part is presented in Fig. 4.67. The curved composite pipe shown in this figure
was fabricated from a straight cylinder that was partially cured, loaded with pre-assigned internal
pressure and end forces and moments, and cured completely in this state. The desired deformation of
the part under loading is provided by the appropriate change of the fibers’ orientation angles governed
by Eqs. (4.163), (4.166), and (4.167).

Angle-ply layers can also demonstrate nonlinear behavior caused by the matrix cracking described
in Section 4.4.2. To illustrate this type of nonlinearity, consider carbon-epoxy
�15; �30; �45; �60; and �75� angle-ply specimens studied experimentally by Lagace (1985).
The unidirectional ply has the following mechanical properties: E1 ¼ 131 GPa, E2 ¼ 11 GPa,

G12 ¼ 6 GPa, n21 ¼ 0:28; sþ1 ¼ 1770 MPa, sþ2 ¼ 54 MPa, s�2 ¼ 230 MPa, and s12 ¼ 70 MPa. The
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°30±

°75±
°60±

FIGURE 4.66

Calculated (circles) and experimental (solid lines) stress-strain diagrams for �15; �30; �60; and �75� angle-ply
layers.

FIGURE 4.67

A curved angle-ply pipe made by deformation of a filament wound cylinder.
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dependencies s1ðε1Þ and s2ðε2Þ are linear, whereas for in-plane shear, the stress-strain diagram is not
linear, and is shown in Fig. 4.68. To take into account the material nonlinearity associated with shear,
we use the constitutive equation derived in Section 4.2.2, i.e.,

g12 ¼ c1s12 þ c2s
3
12

in which c1 ¼ 1=G12 and c2 ¼ 5:2$10�8ðMPaÞ�3.
The specimens were tested in uniaxial tension in the x direction. To calculate the applied stress sx

that causes failure of the matrix, we use the simplest maximum stress strength criterion (see Chapter 6)
which ignores the interaction of stresses, i.e.,

�s�2 � s2 � sþ2 ; js12j � s12

Nonlinear behavior associated with ply degradation is predicted applying the procedure described in
Section 4.4.2. Stress-strain diagrams are plotted using the method of successive loading (see
Section 4.1.2).

Consider a �15� angle-ply layer. Point 1 on the theoretical diagram, shown in Fig. 4.69, corre-
sponds to cracks in the matrix caused by shear. These cracks do not result in complete failure of the
matrix because the transverse normal stress s2 is compressive (see Fig. 4.70) and does not reach s�2
before the failure of fibers under tension (point 2 on the diagram). As can be seen, the theoretical
prediction of the material stiffness is quite good, whereas the predicted material strength (point 2) is
much higher than the experimental (dot on the solid line). The reasons for this are discussed in the next
section.

The theoretical diagram corresponding to the �30� layer (see Fig. 4.69) also has two specific
points. Point 1 again corresponds to cracks in the matrix induced by the shear stress s12, whereas point
2 indicates complete failure of the matrix caused by the compressive stress s2, which reaches s

�
2 at this

, %, 122 γε

, MPa, 122 τσ
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FIGURE 4.68

Experimental stress-strain diagrams for transverse tension (1) and in-plane shear (2) of a carbon-epoxy unidi-

rectional ply.
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point. After the matrix fails, the fibers of an angle-ply layer cannot take the load. Indeed, putting E2 ¼
G12 ¼ n12 ¼ 0 in Eqs. (4.72), we obtain the following stiffness coefficients

A11 ¼ E1 cos
4 f; A22 ¼ E1 sin

4 f; A12 ¼ E1 sin
2 f cos2 f

With these coefficients, the first equation of Eqs. (4.147) yields Ex ¼ 0, which means that the system of
fibers becomes a mechanism, and the stresses in the fibers, no matter how high they are, cannot balance
the load. A typical failure mode for a �30� angle-ply specimen is shown in Fig. 4.71.

Angle-ply layers with fiber orientation angles exceeding 45� demonstrate a different type of
behavior. As can be seen in Fig. 4.70, the transverse normal stress s2 is tensile for f� 45�. This means
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FIGURE 4.69

Experimental (solid lines) and calculated (dashed lines) stress-strain diagrams for 0; �15; and �30� angle-ply
carbon-epoxy layers.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

15 30 45 60 75 90

xσσ1

xσσ 2

xστ12

°φ

FIGURE 4.70

Dependencies of the normalized stresses in the plies on the ply orientation angle.
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that the cracks induced in the matrix by normal, s2, or shear, s12, stresses cause failure of the layer. The
stress-strain diagrams for �60� and �75� layers are shown in Fig. 4.72. As follows from this figure,
the theoretical curves are linear and are close to the experimental ones, whereas the predicted ultimate
stresses (circles) are again higher than the experimental values (dots).

Now consider the�45� angle-ply layer, which demonstrates a very specific behavior. For this layer,
the transverse normal stress, s2, is tensile but not high (see Fig. 4.70), and the cracks in the matrix are
caused by the shear stress, s12. According to the ply model we use, to predict material response after
the cracks’ appearance, we should take G12 ¼ 0 in the stiffness coefficients. Then, Eqs. (4.72) yield

A11 ¼ A12 ¼ A22 ¼ 1

4

�
E1 þ E2

�þ 1

2
E1n12

FIGURE 4.71

A failure mode of �30� angle-ply specimen.
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FIGURE 4.72

Experimental (solid lines) and calculated (dashed lines) stress-strain diagrams for �60 and �75� angle-ply carbon-
epoxy layers.
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whereas Eqs. (4.146) and (4.147) give

εx ¼ A22sx

A11A22 � A2
12

; εy ¼ � A12sx

A11A22 � A2
12

The denominator of both expressions is zero, so it looks as though the material becomes a mechanism
and should fail under the load that causes cracks in the matrix. However, this is not the case. To explain
why, consider the last equation of Eqs. (4.168), i.e.,

tan f0 ¼ 1þ εy

1þ εx
tan f

For the layer under study, tan f ¼ 1; εy < 0 and εx > 0, so tanf0 < 1 and f0 < 45�. However, in the
plies with f < 45� the transverse normal stresses, s2, become compressive (see Fig. 4.70) and close
the cracks. Thus, the load exceeding the level at which the cracks appear due to shear locks the cracks
and induces compression across the fibers, thus preventing material failure. Since f0 is only slightly
less than 45�, the material stiffness, Ex, is very low and slightly increases with the increase in strains
and decrease of f0. For the material under study, the calculated and experimental diagrams are shown
in Fig. 4.73. The circle on the theoretical curve indicates the stress sx that causes cracks in the matrix.
More pronounced behavior of this type is demonstrated by the glass-epoxy composites whose stress-
strain diagram is presented via curve 1 in Fig. 4.74 (Alfutov and Zinoviev, 1982). A specific plateau on
the curve and material hardening at high strain are the result of the angle variation as is also shown in
Fig. 4.74 (line 2).

4.5.3 Free-edge effects

As shown in the previous section, there is a significant difference between the predicted and measured
strength of an angle-ply specimen loaded in tension. This difference is associated with the stress

x , MPaσ
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FIGURE 4.73

Experimental (solid line) and calculated (dashed line) stress-strain diagrams for a �45� angle-ply carbon-epoxy
layer.
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concentration that occurs in the vicinity of the specimen longitudinal edges and was not taken into
account in the analysis.

To study a free-edge effect in an angle-ply specimen, consider a strip whose initial width a is much
smaller than the length l. Under tensionwith longitudinal stress s, symmetric plies with orientation angles
þf and �f tend to deform as shown in Fig. 4.75. As can be seen, deformation of the plies in the y
direction is the same, whereas the deformation in the x direction tends to be different. This means that
symmetric plies forming the angle-ply layer interact through the interlaminar shear stress sxz acting
between the plies in the longitudinal direction. To describe the ply interaction, introduce themodel shown
in Fig. 4.76, according to which the in-plane stresses in the plies are applied to their middle surfaces,
whereas transverse shear stresses act in some hypothetical layers introduced between these surfaces.

To simplify the problem, we further assume that the transverse stress can be neglected, i.e., sy ¼ 0,
and that the axial strain in the middle part of the long strip is constant, i.e., εx ¼ ε ¼ constant. Thus, the
constitutive equations, Eqs. (4.75), for a þf ply have the form

εx ¼ sx

Eþ
x

þ hþx;xy
sxy
Gþ
xy

(4.170)
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FIGURE 4.74

Experimental dependencies of stress (1) and ply orientation angle (2) on strain for �45� angle-ply glass-epoxy
composite.
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FIGURE 4.75

Deformation of symmetric plies under tension.
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εy ¼ �nþyx
sx

Eþ
x

þ hþy;xy
sxy
Gþ
xy

(4.171)

gxy ¼ hþxy;x
sx

Eþ
x

þ sxy
Gþ
xy

(4.172)

where the elastic constants for an individual ply are specified by Eqs. (4.76). The strain-displacement
equations, Eqs. (2.22), for the problem under study are

εx ¼ ε ¼ vux
vx

; εy ¼ vuy
vy

; gxy ¼
vux
vy

þ vuy
vx

(4.173)

Integration of the first equation yields

uþf
x ¼ ε$xþ u

�
y
�
; u�f

x ¼ ε$x� u
�
y
�

(4.174)

for the þf and �f plies where uðyÞ is the displacement shown in Fig. 4.76. This displacement results
in the following transverse shear deformation and transverse shear stress

gxz ¼
2

d
u
�
y
�
; sxz ¼ Gxzgxz; (4.175)

where Gxz is the transverse shear modulus of the ply specified by Eqs. (4.76). Consider the equilibrium
state of the þf ply element shown in Fig. 4.77. Equilibrium equations can be written as

d
vsxy
vx

¼ 0; d
vsxy
vy

� 2sxz ¼ 0 (4.176)

FIGURE 4.76

A model simulating the plies’ interactions.
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FIGURE 4.77

Forces acting on the infinitesimal element of a ply.
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The first of these equations shows that sxy does not depend on x. Since the axial stress, sx, in the middle
part of a long specimen also does not depend on x, Eqs. (4.171) and (4.173) allow us to conclude that
εy, and hence uy, do not depend on x. As a result, the last equation of Eqs. (4.173) yields, in conjunction
with the first equation of Eqs. (4.174),

gxy ¼
vux
vy

¼ du

dy

Substituting this expression into Eq. (4.172) and taking into account the equation for ε, Eq. (4.170), we
arrive at

sxy ¼
Gþ
xy

1� h



du

dy
� hþxy;xε

�
(4.177)

where h ¼ hþx;xyhþxy;x.
Substitution of Eqs. (4.175) and (4.177) into the second equation of Eqs. (4.176) provides the

following governing equation for the problem under study

d2u

dy2
� k2u ¼ 0 (4.178)

in which

k2 ¼ 4Gxzð1� hÞ
Gþ
xyd

2

Using the symmetry conditions, we can present the solution of Eq. (4.178) as

u ¼ C sinh ky

The constant C can be determined from the boundary conditions for the free longitudinal edges of the
specimen (see Fig. 4.75), according to which sxyðy ¼ �a=2Þ ¼ 0. Satisfying these conditions and
using Eqs. (4.170), (4.171), (4.175), and (4.177), we finally obtain

εx ¼ ε

εy ¼ ε

1� h

�
hþy;xyh

þ
xy;x



cosh ly

cosh l
� 1

�
þ nþyx



h
cosh ly

cosh l
� 1

�	

gxy ¼ εhþxy;x
cosh ly

cosh l
;

sx ¼ εEþ
x

�
1� h

1� h



cosh ly

cosh l
� 1

�	

sxy ¼
Gþ
xyh

þ
xy;x

1� h



cosh ly

cosh l
� 1

�

sxz ¼ 2ε

kd
Gxzh

þ
xy;x

sinh ly

cosh l

(4.179)
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where

l ¼ ka

2
¼ a

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� hÞGxz

Gþ
xy

s
; y ¼ 2y

a
(4.180)

The axial stress, sx, should provide the stress resultant equal to sa (see Fig. 4.75), i.e.,

Za=2
�a=2

sxdy ¼ s a

This condition allows us to determine the axial strain as

ε ¼ s

Ex

where

Ex ¼ Eþ
x

�
1þ h

1� h



1� 1

l
tan h l

�	
(4.181)

is the apparent modulus of an angle-ply specimen.
Consider two limiting cases. First, suppose that Gxz ¼ 0, i.e., that the plies are not bonded. Then

l ¼ 0 and because

lim
1

l
tan h l ¼ 1

l/0

;

Ex ¼ Eþ
x . Second, assume that Gxz/N, i.e., that the interlaminar shear stiffness is infinitely high.

Then l/N and Eq. (4.181) yields

Ex ¼ Eþ
x

1� h
(4.182)

This result coincides with Eq. (4.149), which specifies the modulus of an angle-ply layer.
For finite values of Gxz, the parameter l in Eqs. (4.180) is rather large because it includes the ratio

of the specimen width, a, to the ply thickness, d, which is, usually, a large number. Taking into account
that tan h l � 1, we can neglect the last term in Eq. (4.181) in comparison with unity. Thus, this
equation reduces to Eq. (4.182). This means that the tensile loading of angle-ply specimens allows us
to measure material stiffness with good accuracy despite the fact that the fibers are cut on the
longitudinal edges of the specimens.

However, this does not hold for the strength. The distribution of stresses over the half-width of the
carbon-epoxy specimen with the properties given earlier and a=d ¼ 20 and f ¼ 45� is shown in
Fig. 4.78. The stresses sx; sxy; and sxz were calculated with the aid of Eqs. (4.179), whereas stresses
s1; s2; and s12 in the principal material directions of the plies were found using Eqs. (4.69) for the
corresponding strains and Hooke’s law for the plies. As can be seen in Fig. 4.78, there exists
a significant concentration of stress s2 that causes cracks in the matrix. Moreover, the interlaminar
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shear stress sxz that appears in the vicinity of the specimen edge can induce delamination of the
specimen. The maximum value of stress s2 is

smax
2 ¼ s2ðy ¼ 1Þ ¼ E2ε

h
ð1� n21n

þ
yxÞsin2fþ ðn21 � nyxÞcos2f� ð1� n21Þhþxy;xsin f cos f

i
Using the modified strength condition, i.e., smax

2 ¼ sþ2 , to evaluate the strength of the �60� specimen,
we arrive at the result shown with a triangular symbol in Fig. 4.72. As can be seen, the allowance for
the stress concentration results in fair agreement with the experimental strength (dot).

Thus, the strength of angle-ply specimens is reduced by the free-edge effects, which causes
a dependence of the observed material strength on the width of the specimen. Such dependence is
shown in Fig. 4.79 for 105 mm diameter and 2.5 mm thick fiberglass rings made by winding at �35�
angles with respect to the axis and loading with internal pressure by two half-discs as in Fig. 3.46
(Fukui et al., 1966).

It should be emphasized that the free-edge effect occurs in specimens only and does not show itself
in composite structures which, being properly designed, must not have free edges of such a type.

4.6 LAYER MADE BY ANGLE-PLY CIRCUMFERENTIAL WINDING
Composite materials with a special spatial structure can be fabricated using the so-called angle-ply
circumferential winding process which is a combination of winding and weaving (shown in Fig. 4.80).
The schematic of the process is shown in Fig. 4.81. A system of tows is placed on the rotating mandrel
and moves in the axial direction. On the way to the mandrel, the tows are overwrapped with fine yarns
drawn from the spools placed on the ring which rotates around the system of tows. The resulting
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FIGURE 4.78

Distribution of normalized stresses over the width of a �45� angle-ply carbon-epoxy specimen.
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FIGURE 4.79

Experimental dependence of strength of a �35� angle-ply layer on the width of the specimen.

FIGURE 4.80

Angle-ply circumferential winding.
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composite layer is reinforced in four directions. First, it has hoop tows; second, the �f angle-ply
structure is formed by the yarns drawn from the rotating ring; and finally, the yarns also provide
through-the-thickness reinforcement of the layer. Composite materials made by angle-ply winding may
have at least two applications. First, in composite pipes and pressure vessels made by continuous hoop
filament winding (Vasiliev et al., 2003). Second, they can be utilized to fabricate wing and fuselage skin
panels for composite aircraft structures using circular mandrels of large diameter or mandrels with
rectangular cross-sections. For the panels, the primary tows should be oriented along the major loading
direction of the panel. It is important that the panel with the material structure under consideration can be
made as thick as required. This is achieved by controlling (reducing) the speed of the carriage V c (see
Fig. 4.81). Additional advantage is the higher resistance of the panel to the delaminations caused by
impact. This is achieved due to the inherent through-the-thickness reinforcement introduced in the
process of fabrication and the resulting non-laminated structure of the material.

Mechanical properties of the composite material made by angle-ply circumferential winding
depend on the material structural parameters and normally could be determined experimentally.
However, some theoretical predictions can also be made.

Assume that the circumferential tape (primary system of tows) consists of Nc fibers with cross-
sectional areas fc, modulus of elasticity Ec, and strength under tension sc. Then, the total area of
the fiber cross-section is

Ac ¼ Ncfc ¼ ntnftfc

where nt is the number of circumferential tows and nft is the number of fibers in the tow. The effective
thickness of the resulting circumferential layer can be found by dividing the area Ac by the tape width
w (see Fig. 4.81), i.e.,

hc ¼ Ac

w
¼ fc

w
ntnft

w

yarns

Axial
φ

mω

rω

ring

Rotating

cV

Circumferential 
tows (yarns) 

Mandrel

FIGURE 4.81

Parameters of angle-ply circumferential winding.
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To find the corresponding parameter for the axial yarns, assume that the mandrel makes rm rotations
per minute, so that the time of one rotation is tm ¼ 1=rm. Let the ring with nr spools (see Fig. 4.80)
make rr rotations per minute. Taking into account that the ring places 2nr yarns onto the hoop tape
during one rotation, we can find the number of axial fibers Na that are placed onto the mandrel while it
makes this rotation, i.e.,

Na ¼ 2nrnfarrtm ¼ 2nrnfa
rr
rm

where nfa is the number of fibers in the yarn. Then, the total area of the fiber cross-sections becomes
Aa ¼ Nafa, where fa is the area of the fiber cross section, and the effective thickness of the axial layer is

ha ¼ Aa

2pR
¼ nrnfarrfa

pRrm

where R is the radius of the mandrel cross-section. Introduce the total effective thickness of the layer h
and the normalized thickness as

h ¼ hc þ ha; hc ¼ hc
h
; ha ¼ ha

h
; hc þ ha ¼ 1

Introducing parameter

l ¼ ha

hc
¼ nrnfarrfaw

pRrmfcntnft
; (4.183)

we arrive at

hc ¼ 1

1þ l
; ha ¼ l

1þ l
; (4.184)

The axial yarns make angles �f with the tows’ direction. The linear velocity of the circumferential
tow is vc ¼ umR, where um is the mandrel angular velocity um ¼ prm=30, where, as earlier, rm is the
number of the mandrel rotations per minute. The time, tr , over which the ring makes one complete
rotation, is tr ¼ 2p=ur , whereur ¼ prr=30 is the angular velocity of the ring. It follows from Fig. 4.81
that

a ¼ vctr ¼ 2pR
rm
rr
; tan f ¼ 2w

a
¼ wrr

pRrm

Effects of the manufacturing parameters on the mechanical properties of composite material have been
studied experimentally. The materials under consideration have been manufactured using the angle-ply
circumferential winding process shown in Fig. 4.80. The mandrel radius is R ¼ 75 mm and the tape
width is w ¼ 200 mm. Fiberglass yarns are used to reinforce material in the circumferential and axial
directions, so that nfa ¼ nft and fa ¼ fc. Correspondingly, the parameter l in Eq. (4.183) becomes

l ¼ nrrrw

pRrmnt

The manufacturing parameters of five different versions of the fabrication process are presented in
Table 4.4. Experimental mechanical properties are listed in Table 4.5. Dependencies of
Ec and Ea; and sc and sa on the relative effective thickness of circumferential yarns hc (see
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Eq. (4.184)) are given in Figs. 4.82 and 4.83. It follows from the graphs that the sums
Ec þ Ea ¼ E and sc þ sa ¼ s do not depend on the material structure. For the material under study,
E ¼ 49:5 GPa and s ¼ 1350 MPa. Compare these characteristics with the corresponding properties
of the unidirectional composite. The glass fibers used to fabricate the material with properties as per
Figs. 4.82 and 4.83 have the following modulus of elasticity and strength:

Ef ¼ 85 GPa; sf ¼ 2350 MPa

The fiber volume fraction in the composite material made by the angle-ply circumferential winding is
usually lower than that typical for conventional composites fabricated by winding. For the material

TABLE 4.4 Manufacturing parameters of the process.

Process parameters

Process version

1 2 3 4 5

Number of
circumferential yarns, nt

154 132 132 132 132

Number of spools
on the ring, nr

5 7 9 3 11

Mandrel rotational
speed, rm (rpm)

31 34 33 10 32

Ring rotational
speed, rr (rpm)

220 220 220 220 220

Parameter l 0.196 0.291 0.386 0.463 0.487

hc
0.836 0.774 0.721 0.683 0.673

ha
0.164 0.226 0.279 0.317 0.327

f� 80.6 79.7 80 87.2 80.3

TABLE 4.5 Mechanical properties of the composite material.

Property

Process version

1 2 3 4 5

Circumferential modulus,
Ec (GPa)

39.5 36.3 33.4 30.1 29.6

Axial modulus, Ea (GPa) 9.8 11.7 16.8 19.5 20.1

Poisson’s ratio, vac 0.15 0.13 0.13 0.11 0.11

Circumferential strength,
sc (MPa)

1070 1010 960 930 900

Axial strength, sa (MPa) 290 350 390 430 440
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under consideration, it is vf ¼ 0:59. The products Ef vf ¼ 50:15 GPa and sfvf ¼ 1386 MPa are
slightly higher than E (by 1.3%) and s (by 2.7%), respectively. This means that angle-ply circum-
ferential winding, as opposed to weaving, allows us to utilize completely the original fiber stiffness and
strength.
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FIGURE 4.82

Dependencies of material moduli on parameter hc, experiment, analysis.

ch

, MPaσ

ac σσ +

cσ

aσ

0

800

1200

1600

400

0.6 0.7 0.8 0.9

FIGURE 4.83

Dependencies of material tensile strength on parameter hc , experiment, analysis.

4.6 Layer made by angle-ply circumferential winding 221

www.EngineeringEBooksPdf.com



To evaluate approximately the stiffness and strength of the material under consideration, assume
that it consists of two layers of fibers with relative thicknesses hc and ha in Eqs. (4.184) and apply the
approach described in Sections 4.4 and 4.5. Neglecting the contribution of the matrix, we can present
the stiffness coefficients of the layers using Eqs. (4.72), i.e.,

Ac
11 ¼ vf Ec

f ; Ac
12 ¼ Ac

22 ¼ Ac
33 ¼ 0

Aa
11 ¼ vf Ea

f cos
4f; Aa

12 ¼ Aa
33 ¼ vf Ea

f sin
2f cos2f; Aa

22 ¼ vf Ea
f sin

4f

Here, vf is the fiber volume fraction which can be found only experimentally and Ec
f and Ea

f are the
fiber moduli of the circumferential and axial yarns. The stiffness coefficients of the material can be
calculated using Eqs. (4.114), i.e.,

A11 ¼ vf
�
Ec
f hc þ Ea

f hacos
4f
�

A12 ¼ A33 ¼ vf Ea
f sin

2f cos2f

A22 ¼ vf Ea
f sin4f

whereas the elastic constants can be found from Eqs. (4.116)

Ec ¼ A11 � A2
12

A22
; Ea ¼ A22 � A2

12

A11
; Gca ¼ A33

vca ¼ A12

A11
; vac ¼ A12

A22

(4.185)

For vf ¼ 0:59, the results of the calculations are presented in Fig. 4.82 and qualitatively correlate with
the experimental data.

To predict the strength, apply Eqs. (4.69) in conjunction with Hooke’s law to find the stresses in the
fibers

scf ¼ Ec
f εc; saf ¼ Ea

f

�
εc cos

2fþ εa sin
2f
�

(4.186)

The strains, εc and εa, specify the corresponding stresses

sc ¼ Ecðεc þ vcaεaÞ; sa ¼ Eaðεa þ vacεcÞ (4.187)

where E ¼ E=ð1� vcavacÞ, whereas E and v are given by Eqs. (4.185). Substituting Eqs. (4.186) into
Eqs. (4.187), we arrive at

sc ¼ Ec

"
scf

Ec
f

�
1� vca cotan

2 f
� þ vca

sin2f

saf

Ea
f

#

sa ¼ Ea

"
1

sin2f

saf

Ea
f

þ scf

Ec
f

�
vac � cotan2 f

�#

For the ultimate state, taking scf ¼ scf and saf ¼ saf , we can find material strength, i.e., sc and sa.
The results of the calculations are presented in Fig. 4.83 and are in fair agreement with experimental
data.
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4.7 FABRIC LAYERS
Textile preforming plays an important role in composite technology, providing glass, aramid, carbon
(see Fig. 4.84), and hybrid fabrics that are widely used as reinforcing materials. The main advantages
of woven composites are their cost efficiency and high processability, particularly in lay-up
manufacturing of large-scale structures (see Figs. 4.85 and 4.86). However, on the other hand, pro-
cessing of fibers and their bending in the process of weaving results in substantial reduction of material
strength and stiffness. As can be seen in Fig. 4.87, in which a typical woven structure is shown, the
warp (lengthwise) and fill (crosswise) yarns forming the fabric make angle a � 0 with the plane of the
fabric layer.

To demonstrate how this angle influences material stiffness, consider the tension of the structure
shown in Fig. 4.87 in the warp direction. The apparent modulus of elasticity can be expressed as

EaAa ¼ Ef Af þ EwAw (4.188)

where Aa ¼ hð2t1 þ t2Þ is the apparent cross-sectional area and

Af ¼ h

2
ð2t1 þ t2

�
; Aw ¼ h

4
ð4t1 þ t2Þ

are the areas of the fill and warp yarns in the cross section. Substitution into Eq. (4.188) yields

Ea ¼ 1

2

�
Ef þ Ewð4t1 þ t2Þ

2ð2t1 þ t2Þ
	

Since the fibers of the fill yarns are orthogonal to the loading direction, we can take Ef ¼ E2, where E2

is the transverse modulus of a unidirectional composite. The compliance of the warp yarn can be

FIGURE 4.84

A carbon fabric tape.
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FIGURE 4.85

A composite hull of a boat made of fiberglass fabric by lay-up method.

Courtesy of CRISM.

FIGURE 4.86

A composite leading edge of an aeroplane wing made of carbon fabric by lay-up method.

Courtesy of CRISM.
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decomposed into two parts corresponding to t1 and t2 in Fig. 4.87, i.e.,

2t1 þ t2
Ew

¼ 2t1
E1

þ t2
Ea

where E1 is the longitudinal modulus of a unidirectional composite, whereas Ea can be determined
with the aid of the first equation of Eqs. (4.76) if we change f for a, i.e.,

1

Ea
¼ cos4a

E1
þ sin4a

E2
þ



1

G12
� 2n21

E1

�
sin2a cos2a (4.189)

The final result is as follows

Ea ¼ E2

2
þ E1ð4t1 þ t2Þ
4

�
2t1 þ t2

�
cos4aþ E1

E2
sin4aþ



E1

G12
� 2n21

�
sin2a cos2a

	� (4.190)

For example, consider a glass fabric with the following parameters: a ¼ 12�; t2 ¼ 2t1. Taking elastic
constants for a unidirectional material from Table 3.5, we get Ea ¼ 23:5 GPa for the fabric composite.
For comparison, a cross-ply ½0�=90�	 laminate made of the same material has E ¼ 36:5 GPa. Thus, the
modulus of a woven structure is lower by 37% than the modulus of the same material reinforced with
straight fibers. Typical mechanical characteristics of fabric composites are listed in Table 4.6.

The stiffness and strength of fabric composites depend not only on the yarns and matrix prop-
erties, but on the material structural parameters, i.e., on fabric count and weave. The fabric count
specifies the number of warp and fill yarns per inch (25.4 mm), whereas the weave determines how
the warp and the fill yarns are interlaced. Typical weave patterns are shown in Fig. 4.88 and include
plain, twill, and triaxial woven fabrics. In the plain weave (see Fig. 4.88a), which is the most
common and the oldest, the warp yarn is repeatedly woven over the fill yarn and under the next fill
yarn. In the twill weave, the warp yarn passes over and under two or more fill yarns (as in Fig. 4.88b
and c) in a regular way.

Being formed from one and the same type of yarns, plain and twill weaves provide approximately
the same strength and stiffness of the fabric in the warp and the fill directions. Typical stress-strain
diagrams for a fiberglass fabric composite of such a type are presented in Fig. 4.89. As can be
seen, this material demonstrates relatively low stiffness and strength under tension at an angle of 45�
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FIGURE 4.87

Unit cell of a fabric structure.
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TABLE 4.6 Typical properties of fabric composites.

Property
Glass
fabric-epoxy

Aramid
fabric-epoxy

Carbon
fabric-epoxy

Fiber volume fraction 0.43 0.46 0.45

Density (g/cm3) 1.85 1.25 1.40

Longitudinal Modulus, GPa 26 34 70

Transverse modulus (GPa) 22 34 70

Shear modulus (GPa) 7.2 5.6 5.8

Poisson’s ratio 0.13 0.15 0.09

Longitudinal tensile strength (MPa) 400 600 860

Longitudinal compressive strength (MPa) 350 150 560

Transverse tensile strength (MPa) 380 500 850

Transverse compressive strength (MPa) 280 150 560

In-plane shear strength (MPa) 45 44 150

(a)

(d)(c)

(b)

FIGURE 4.88

Plain (a), twill (b) and (c), and triaxial (d) woven fabrics.
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with respect to the warp or fill directions. To improve these properties, multiaxial woven fabrics, one of
which is shown in Fig. 4.88d, can be used.

Fabric materials whose properties are closer to those of unidirectional composites are made by
weaving a greater number of larger yarns in the longitudinal direction and fewer and smaller yarns in
the orthogonal direction. Such a weave is called unidirectional. It provides materials with high stiffness
and strength in one direction, which is specific for unidirectional composites and the high process-
ability typical of fabric composites.

Being fabricated as planar structures, fabrics can be shaped on shallow surfaces using the material’s
high stretching capability under tension at 45� to the yarns’ directions. Many more possibilities for
such shaping are provided by the implementation of knitted fabrics whose strain to failure exceeds
100%. Moreover, knitting allows us to shape the fibrous preform in accordance with the shape of the
future composite part. There exist different knitting patterns, some of which are shown in Fig. 4.90.
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FIGURE 4.89

Stress-strain curves for fiberglass fabric composite loaded in tension at different angles with respect to the warp

direction.

FIGURE 4.90

Typical knitted structures.
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Relatively high curvature of the yarns in knitted fabrics, and possible fiber breakage in the process of
knitting, result in materials whose strength and stiffness are less than those of woven fabric composites
but whose processability is better and cost is lower. Typical stress-strain diagrams for composites
reinforced by knitted fabrics are presented in Fig. 4.91.

Material properties close to those of woven composites are provided by braided structures which,
being usually tubular in shape, are fabricated by mutual intertwining, or twisting of yarns about each
other. Typical braided structures are shown in Fig. 4.92. The biaxial braided fabrics in Fig. 4.92 can
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FIGURE 4.91

Typical stress-strain curves for fiberglass knitted composites loaded in tension at different angles with respect to

direction indicated by the arrow in Fig. 4.90.
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FIGURE 4.92

Diamond (a) and regular (b) braided fabric structures.
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incorporate longitudinal yarns, forming a triaxial braid whose structure is similar to that shown in
Fig. 4.88d. Braided preforms are characterized with very high processability providing near net-shape
manufacturing of tubes and profiles with various cross-sectional shapes.

Although microstructural models of the type shown in Fig. 4.87 which lead to equations similar to
Eq. (4.190) have been developed to predict the stiffness and even strength characteristics of fabric
composites (e.g., Skudra et al., 1989), for practical design and analysis, these characteristics are
usually determined by experimental methods. The elastic constants entering the constitutive equations
written in principal material coordinates, e.g., Eqs. (4.55), are determined by testing strips cut out of
fabric composite plates at different angles with respect to the orthotropy axes. The 0 and 90� speci-
mens are used to determine moduli of elasticity E1 and E2 and Poisson’s ratios n12; n21 (or parameters
for nonlinear stress-strain curves), whereas the in-plane shear stiffness can be obtained with the aid of
off-axis tension described in Section 4.3.1. For fabric composites, the elastic constants usually satisfy
conditions in Eqs. (4.85) and (4.86), and there exists the angle f specified by Eq. (4.84) such that off-
axis tension under this angle is not accompanied by shear-extension coupling.

Since Eq. (4.84) specifying f includes the shear modulus G12, which is not known, we can
transform the results presented in Section 4.3.1. Using Eqs. (4.76) and assuming that there is no shear-
extension coupling ðhx;xy ¼ 0Þ, we can write the following equations

1

Ex
¼ 1þ n21

E1
cos4fþ 1þ n12

E2
sin4f� n21

E1
þ 1

G12
sin2f cos2f

nyx

Ex
¼ n21

E1
�


1þ n21

E1
þ 1þ n12

E2
� 1

G12

�
sin2f cos2f

1þ n21

E1
cos2f� 1þ n12

E2
sin2f� 1

2G12
cos2f ¼ 0

(4.191)

Summing up the first two of these equations, we get

1þ nyx

Ex
¼


1þ n21

E1
cos2f� 1þ n12

E2
sin2f

�
cos2fþ 2

G12
sin2f cos2f

Using the third equation, we arrive at the following remarkable result

G12 ¼ Ex

2
�
1þ nyx

� (4.192)

similar to the corresponding formula for isotropic materials, Eq. (2.57). It should be emphasized that
Eq. (4.192) is valid for off-axis tension in the x direction making some special angle f with the
principal material axis 1. This angle is given by Eq. (4.84). Another form of this expression follows
from the last equation of Eqs. (4.191) and (4.192), i.e.,

sin2f ¼
1þ nyx

Ex
� 1þ n21

E1

2
1þ nyx

Ex
� 1þ n21

E1
� 1þ n12

E2

(4.193)

For fabric composites whose stiffness in the warp and the fill directions is the same ðE1 ¼ E2Þ, Eq.
(4.193) yields f ¼ 45�.
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4.8 LATTICE LAYER
A layer with a relatively low density and high stiffness can be obtained with a lattice structure which
can be made by a winding modified in such a way that the tapes are laid onto preceding tapes and not
beside them, as in conventional filament winding (see Fig. 4.93). The lattice layer can be the single
layer of the structure as in Fig. 4.94, or can be combined with a skin as in Fig. 4.95. As a rule, lattice
structures have the form of cylindrical or conical shells in which the lattice layer is formed with two
systems of ribs: a symmetric system of helical ribs and a system of circumferential ribs (see Figs. 4.94
and 4.95). However, there exist lattice structures with three systems of ribs, as shown in Fig. 4.96.

In general, a lattice layer can consist of k symmetric systems of ribs making angles
�fjðj ¼ 1; 2; 3 . kÞ with the x-axis and having the geometric parameters shown in Fig. 4.97.
Particularly, the lattice layer presented in this figure has k ¼ 2; f1 ¼ f; f2 ¼ 90�:

Since the lattice structure is often formed with dense and regular systems of ribs, the ribs can be
smeared over the layer surface when modeled, which is simulated with a continuous layer having some
effective (apparent) stiffness. Taking into account that the ribs work in their axial directions only,
neglecting the ribs’ torsion and bending in the plane of the lattice layer, and using Eqs. (4.72), we get

A11 ¼
Pk
j¼1

Bjcos
4fj; A22 ¼

Pk
j¼1

Bjsin
4fj;

A12 ¼ A21 ¼ A44 ¼
Pk
j¼1

Bjsin
2fjcos

2fj;

A44 ¼
Pk
j¼1

Cjcos
2fj; A55 ¼

Pk
j¼1

Cjsin
2fj

(4.194)

FIGURE 4.93

Winding of a lattice layer.

Courtesy of CRISM.
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FIGURE 4.94

Carbon-epoxy lattice spacecraft adapter.

Courtesy of CRISM.

FIGURE 4.95

Interstage composite lattice structure.

Courtesy of CRISM.
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Here, Bj ¼ Ejdj=aj and Cj ¼ Gjdj=aj, where Ej and Gj are the modulus of elasticity and the shear
modulus of the ribs’ materials, dj are the ribs’ widths, and aj are the ribs’ spacings (see Figure 4.97).

4.9 SPATIALLY REINFORCED LAYERS AND BULK MATERIALS
The layers considered in the previous sections and formed of unidirectionally reinforced plies and
tapes (Sections 4.2–4.5 and 4.8) or fabrics reinforced in the layer plane (Section 4.7) suffer from
a serious shortcoming: their transverse (normal to the layer plane) stiffness and strength are
substantially lower than the corresponding in-plane characteristics. To improve the material properties
under tension or compression in the z direction and in shear in the xz- and the yz-planes (see, e.g.,
Fig. 4.18), the material should be additionally reinforced with fibers or yarns directed along the z-axis
or making some angles (less than a right angle) with this axis.

FIGURE 4.96

A composite lattice shear web structure.

FIGURE 4.97

Geometric parameters of a lattice structure.
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A simple and natural way to gain such triaxial reinforcement is provided by the implementation of
three-dimensionally woven or braided fabrics. Three-dimensional weaving or braiding is a variant of
the corresponding planar process wherein some yarns are going in the thickness direction. An alter-
native method involves assembling elementary fabric layers or unidirectional plies into a three-
dimensionally reinforced structure by sewing or stitching. Depending on the size of the additional
yarn and frequency of sewing or stitching, the transverse mechanical properties of the two-
dimensionally reinforced composite can be improved to a greater or lesser extent. A third way is
associated with the introduction of composite or metal pins parallel to the z-axis that can be inserted in
the material before or after it is cured. A similar effect can be achieved by so-called needle punching.
The needles puncture the fabric, break the fibers that compose the yarns, and direct the broken fibers
through the layer thickness. Short fibers (or whiskers) may also be introduced into the matrix with
which the fabrics or the systems of fibers are impregnated.

Another class of spatially reinforced composites, used mainly in carbon-carbon technology, is
formed by bulk materials multi-dimensionally reinforced with fine rectilinear yarns composed of
carbon fibers bound with a polymeric or carbon matrix. The basic structural element of these materials
is a parallelepiped, shown in Fig. 4.98. The simplest spatial structure is the so-called 3D (three-
dimensionally reinforced), in which reinforcing elements are placed along the ribs AA1; AB, and AD of
the basic parallelepiped in Fig. 4.98. This structure is shown in Fig. 4.99 (Vasiliev and Tarnopol’skii,
1990). A more complicated 4D structure with reinforcing elements directed along the diagonals
AC1; A1C; BD1; and B1D (see Fig. 4.98) is shown in Fig. 4.100 (Tarnopol’skii et al., 1987). An
example of this structure is presented in Fig. 1.22. A cross section of a 5D structure reinforced along
diagonals AD1and A1D and ribs AA1; AB; and AD is shown in Fig. 4.101 (Vasiliev and Tarnopol’skii,
1990). There exist structures with a greater number of reinforcing directions. For example, combi-
nation of a 4D structure (Fig. 4.100) with reinforcements along the ribs AB and AD (see Fig. 4.98)

1A

DA

1D

B

1B

C

1C

FIGURE 4.98

The basic structural element of multi-dimensionally reinforced materials.
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FIGURE 4.99

3D spatially reinforced structure.

FIGURE 4.100

4D spatially reinforced structure.
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results in a 6D structure; addition of reinforcements in the direction of the rib AA1 gives a 7D structure;
and so on, up to 13D, which is the most complicated of the spatial structures under discussion.

The mechanical properties of multi-dimensional composite structures can be qualitatively predicted
with the microstructural models discussed, e.g., by Tarnopol’skii et al. (1992). However, for practical
applications these characteristics are usually obtained by experimental methods. Being orthotropic in the
global coordinates of the structure x, y, and z, spatially reinforced composites are described within the
framework of a phenomenological model, ignoring their microstructure by three-dimensional consti-
tutive equations analogous to Eqs. (4.53) or Eqs. (4.54), in which 1 should be changed for x, 2 for y, and 3
for z. These equations include nine independent elastic constants. Stiffness coefficients in the basic
plane, i.e., Ex; Ey; Gxy; and nxy, are determined using traditional tests developed for unidirectional and
fabric composites as discussed in Sections 3.4, 4.2, and 4.7. The transverse modulus Ez and the cor-
responding Poisson’s ratios nxz and nyz can be determined using material compression in the z direction.
Transverse shear moduli Gxz and Gyz can be calculated using the results of a three-point beam bending
test shown in Fig. 4.102. A specimen cut out of the material is loaded with force P, and the deflection at
the central point, w, is measured. According to the theory of composite beams (Vasiliev, 1993),

w ¼ Pl3

4bh3Ex



1þ h2Ex

l2Gxz

�
:

For given P, the corresponding w, and modulus Ex (or Ey), we can calculate Gxz (or Gyz). It should be
noted that for reliable calculation the beam should be rather short, because for high ratios of l/h the
second term in parenthesis is small in comparison with unity.

The last spatially reinforced structure that is considered here is formed by a unidirectional
composite material whose principal material axes 1, 2, and 3 make some angles with the global
structural axes x, y, and z (see Fig. 4.103). In the principal material coordinates, the constitutive
equations have the form of Eqs. (4.53) or Eqs. (4.54). Introducing directional cosines lxi; lyi; and lzi
which are cosines of the angles that the i-axis ði ¼ 1; 2; 3Þ makes with axes x, y, and z, respectively,
applying Eqs. (2.8), (2.9), and (2.31) to transform stresses and strains in coordinates 1, 2, and 3 to

FIGURE 4.101

Cross section of a 5D spatially reinforced structure.
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stresses and strains referred to coordinates x, y, and z, and using the procedure described in Section
4.3.1, we finally arrive at the following constitutive equations in the global structural coordinate frame8>>>>>><

>>>>>>:

sx
sy
sz
sxy
sxz
syz

9>>>>>>=
>>>>>>;

¼ ½S	

8>>>>>><
>>>>>>:

εx

εy

εz

gxy

gxz

gyz

9>>>>>>=
>>>>>>;

(4.195)

in which

½S	 ¼

2
666666664

S1111 S1122 S1133 S1112 S1113 S1123

S2222 S2233 S2212 S2213 S2223

S3333 S3312 S3313 S3323

S1212 S1213 S1223

sym S1313 S1323

S2323

3
777777775
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2l 2l
w

h

b

y

FIGURE 4.102

Three-point bending test.
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FIGURE 4.103

Material elements referred to the global structural coordinate frame x, y, z and to the principal material axes 1, 2, 3.
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is the stiffness matrix where

S1111 ¼ A1l
4
x1 þ A2l

4
x2 þ A3l

4
x3 þ 2A112l

2
x1l

2
x2 þ 2A113l

2
x1l

2
x3 þ 2A223l

2
x2l

2
x3

�
1; 2; 3

�
S1122 ¼ A1l

2
x1l

2
y1 þ A2l

2
x2l

2
y2 þ A3l

2
x3l

2
y3 þ A1m12

�
l2x1l

2
y2 þ l2x2l

2
y1

�
þ A1m13

�
l2x1l

2
y3 þ l2x3l

2
y1

�
þ A2m23

�
l2x2l

2
y3 þ l2x3l

2
y3

�
þ 4ðG12lx1lx2ly1ly2 þ G13lx1lx3ly1ly3

þ G23lx2lx3ly2ly3Þ ð1; 2; 3Þ
S1112 ¼ A1l

3
x1ly1 þ A2l

3
x2ly2 þ A3l

3
x3ly3 þ A112

�
lx1ly2 þ lx2ly1

�
lx1l

2
x þ A113

�
lx1ly3 þ lx3ly1

�
lx1lx3

þ A223

�
lx2ly3 þ lx3ly2

�
lx2lx3

�
1; 2; 3

�
S1113 ¼ A1l

3
x3lz1 þ A2l

3
x2lz2 þ A3l

3
x3lz3 þ A112

�
lx1lz2 þ lx2lz1

�
lx1lx2 þ A113

�
lx1lz2 þ lx3lz1

�
lx1lx3

þ A223

�
lx2lz3 þ lx3lz2

�
lx2lx3

�
1; 2; 3

�
S1123 ¼ A1l

2
x1ly1lz1 þ A2l

2
x2ly2lz2 þ A3l

2
x3ly3lz3 þ A1m12

�
l2x1ly2lz2 þ l2x2ly1lz1

�þ A1m13
�
l2x1ly3lz3

þ l2x3ly1lz1
�þ A2m23

�
l2x2ly3lz3 þ l2x3ly2lz2

�þ 2
�
G12

�
ly1lz2 þ lz1ly2

�
lx1lx2 þ G13

�
ly1lz2

þ lz1ly2
�
lx1lx3 þ G23

�
ly3lz2 þ ly2lz3

�
lx2lx3

 �
1; 2; 3

�
S1212 ¼ A1l

2
x1l

2
y1 þ A2l

2
x2l

2
y2 þ A3l

2
x3l

2
y3

þ2
�
A1m12lx1lx2ly1ly2 þ A1m13lx1lx3ly1ly3 þ A2m23lx2lx3ly2ly3

�
þG12

�
lx1ly2 þ lx2ly1

�2 þ G13

�
lx1ly3 þ lx3ly1

�2 þ G23

�
lx2ly3 þ lx3ly2

�2 ð1; 2; 3
�

(4.196)

S1213 ¼ A1l
2
x1ly1lz1 þ A2l

2
x2ly2lz2 þ A3l

2
x3ly3lz3

þA1m12
�
ly1lz2 þ ly2lz1

�
lx1lx2 þ A1m13

�
ly1lz3 þ ly2lz1

�
lx1lx3

þA2m23
�
ly2lz3 þ ly3lz2

�
lx1lx3 þ G12

�
lx1ly2 þ lx2ly1

��
lx1ly2 þ lx2lz1

�
þG13

�
lx1ly3 þ lx3ly1

��
lx1lz3 þ lx3lz2

�þ G23

�
lx2ly3 þ lx3ly2

��
lx2lz3 þ lx3lz2

� �
1; 2; 3

�
It should be noted that stiffness coefficients are symmetric with respect to the couples of subscripts
ðSijkl ¼ SklijÞ and that notation (1, 2, 3) means that performing permutation, i.e., changing 1 for 2, 2
for 3, and 3 for 1, we can use Eqs. (4.196) to write the expressions for all the stiffness coefficients
entering Eq. (4.195). The coefficients Ai and mij in Eqs. (4.196) are given in the notations to Eqs.
(4.54) and

A112 ¼ A1m12 þ 2G12; A113 ¼ A1m13 þ 2G13; A223 ¼ A2m23 þ 2G23

Resolving Eqs. (4.195) for strains, we arrive at Eq. (2.48) with the following coefficients for the
compliance matrix in Eq. (2.49)

1

Ex
¼ l4x1

E1
þ l4y1
E2

þ l4z1
E3

þ C122l
2
x1l

2
y1 þ C133l

2
x1l

2
z1 þ C233l

2
y1l

2
z1 ð1; 2; 3Þ; ðx; y; zÞ

4.9 Spatially reinforced layers and bulk materials 237

www.EngineeringEBooksPdf.com



nxy

Ey
¼ nyx

Ex
¼ n12

E2

�
l2x1l

2
y2 þ l2x2l

2
y1

�
þ n13

E3

�
l2x1l

2
z2 þ l2x2l

2
z1

�
þ n23

E3

�
l2y1l

2
z2 þ l2y2l

2
z1

�

� l2x1l
2
x2

E1
� l2y1l

2
y2

E2
� l2z1l

2
z2

E3
� 1

G12
lx1lx2ly1ly2 � 1

G13
lx1lx2lz1lz2

� 1

G23
ly1ly2lz1lz2 ð1; 2; 3Þ; ðx; y; zÞ

(4.197)

hx;xy

Gxy
¼ hxy;x

Ex

¼ 2

 
l3x1lx2
E1

þ l3y1ly2

E2
þ l3z1lz2

E3

!
þ C122

�
lx1ly2 þ lx2ly1

�
lx1ly1 þ C133ðlx1lz2 þ lx2lz1Þlx1lz1

þ C233ðly1lz2 þ ly2lz1Þly1lz1 ð1; 2; 3Þ; ðx; y; zÞ
hx;xz

Gxz
¼hxz;x

Ex
¼ 2

 
l3x1lx3
E1

þ l3y1ly3

E2
þ l3z1lz3

E3

!

þ C122ðlx1ly3 þ ly1lx3Þlx1ly1 þ C133ðlx1lz3 þ lx3lz1Þlx1lz1
þ C233ðly1lz3 þ ly3lz1Þly1lz1 ð1; 2; 3Þ; ðx; y; zÞ

hx;yz

Gyz
¼ hyz;x

Ex
¼2

"
l2x1lx2lx3

E1
þ l2y1ly2ly3

E2
þ l2z1lz2lz3

E3
� n12

E2

�
l2x1ly2ly3 þ l2y1lx2lx3

�

� n13

E3

�
l2x1lz2lz3 þ l2z1lx2lx3

�
� n23

E3

�
l2y1lz2lz3 þ l2z1ly2ly3

�	

þ lx1ly1
G12

�
lx2ly3 þ lx3ly2

�
þ lx1lz1

G13

�
lx2lz3 þ lx3lz2

�

þ ly1lz1
G23

�
ly2lz3 þ ly3lz2

�
ð1; 2; 3Þ; ðx; y; zÞ

1

Gxy
¼ 4

"
l2x1l

2
x2

E1
þ l2y1l

2
y2

E2
þ l2z1l

2
z2

E3
� 2



n12

E2
lx1lx2ly1ly2 þ n13

E3
lx1lx2lz1lz2 þ n23

E3
ly1ly2lz1lz2

�	

þ 1

G12

�
lx1ly2 þ lx2ly1

�2 þ 1

G13
ðlx1lz2 þ lx2lz1Þ2

þ 1

G23

�
ly1lz2 þ ly2lz1

�2 ð1; 2; 3Þ; ðx; y; zÞ
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lxy;xz

Gxz
¼ lxz;xy

Gxy
¼ 4

"
l2x1lx2lx3

E1
þ l2y1ly2ly3

E2
þ l2z1lz2lz3

E3

� n12

E2
ðlx3ly2 þ lx2ly3Þlx1ly1 � n13

E3
ðlx2lz3 þ lz2lx3Þlx1lz1 � n23

E3
ðly2lz3 þ ly3lz2Þly1lz1

#

þ 1

G12
ðlx1ly3 þ lx3ly1Þðlx1ly2 þ lx2ly1Þ þ 1

G13
ðlx1lz3 þ lx3lz1Þðlx1lz2 þ lx2lz1Þ

þ 1

G23
ðly1lz3 þ ly3lz1Þðly1lz2 þ ly2lz1Þ ð1; 2; 3Þ; ðx; y; zÞ

in which

C122 ¼ 1

G12
� 2n12

E2
; C133 ¼ 1

G13
� 2n13

E3
;

C233 ¼ 1

G23
� 2n23

E3

Consider a special spatial structure (Pagano and Whitford, 1985) formed by a fabric composite
in which the plies reinforced at angle f (warp direction) with respect to the x-axis make angles
a and b with the x-axis and the y-axis, respectively, as in Fig. 4.104. The directional cosines for this
structure are

lx1 ¼ cos l cos j; lx2 ¼ �sin l cos j

lx3 ¼ �sin j; ly1 ¼ sin l cos b� cos l sin b sin j

ly2 ¼ cos l cos bþ sin l sin b sin j; ly3 ¼ �sin b cos j

lz1 ¼ sin l sin bþ cos l cos b sin j

lz2 ¼ cos l sin b� sin l cos b sin j; lz3 ¼ cos b cos j

where

l ¼ fþ tan�1
�
tan b sin j

�
; j ¼ tan�1

�
tan a cos b

�

α
φ

β

z

12

3

x

y

FIGURE 4.104

Orientation angles in a spatial composite structure.
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The dependencies of elastic constants Ex; Ey; Gxz; and Gyz calculated with the aid of Eqs. (4.197) for
the material with E1 ¼ 12:9 GPa, E2 ¼ 5:2 GPa, E3 ¼ 3 GPa, G12 ¼ G13 ¼ 1:5 GPa, G23 ¼ 1 GPa,
n21 ¼ 0:15; n31 ¼ 0:2 and n32 ¼ 0:2 are presented in Fig. 4.105 (Vasiliev and Morozov, 1988).

For planar structures ða ¼ b ¼ 0Þ, Eqs. (4.196) and (4.197) generalize Eqs. (4.72) and (4.76) for
a three-dimensional stress state of a layer.
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Mechanics of laminates 5
Atypical composite structure consists of a system of layers bonded together. The layers can be made of
different isotropic or anisotropic materials, and have different structures (see Chapter 4), thicknesses,
andmechanical properties. In contrast to typical layerswhich are described inChapter 4 andwhose basic
properties are determined experimentally, the laminate characteristics are usually calculated using
information concerning the number of layers, their stacking sequence, and geometric and mechanical
properties, which must be known. A finite number of layers can be combined to form so many different
laminates that the concept of studying them using experimental methods does not seem realistic.
Whereas the most complicated typical layer is described with nine stiffness coefficients Amn (mn ¼ 11,
22, 12, 14, 24, 44, 55, 56, and 66), some of which can be calculated, the laminate is characterized by 21
coefficients and demonstrates coupling effects that are difficult to simulate in experiments.

Thus, the topic of this chapter is to provide equations allowing us to predict the behavior of
a laminate as a system of layers with given properties. The only restriction that is imposed on the
laminate as an element of a composite structure concerns its total thickness, which is assumed to be
much smaller than the other dimensions of the structure.

5.1 STIFFNESS COEFFICIENTS OF A NONHOMOGENEOUS ANISOTROPIC
LAYER
Consider a thin nonhomogeneous layer, which is anisotropic in the xy-plane and whose mechanical
properties are some functions of the normal coordinate z (see Fig. 5.1). A typical example of such
a generalized layer is a laminate composed of different plies. Another practical example is a plate
made of functionally graded material (FGM) which is characterized by gradual variation in
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FIGURE 5.1

An element of a nonhomogeneous layer.
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composition and/or in microstructure over the material thickness, resulting in corresponding changes
in the material properties. Coordinate axes x and y belong to some plane which is referred to as
a reference plane such that z ¼ 0 on this plane and �e � z � s for the layer under study. There exist
some special locations of the reference plane discussed later, but in this section its coordinates e and s
are not specified. We introduce two assumptions, both based on the fact that the thickness h ¼ eþ s is
small.

First, it is assumed that the layer thickness, h, does not change under the action of stresses shown in
Fig. 5.1. Actually, the thickness does change, but because it is small, this change is negligible. This
means that there is no strain in the z direction, and in accordance with Eqs. (2.22),

εz ¼ vuz
vz

¼ 0; uz ¼ wðx; yÞ: (5.1)

Here, wðx; yÞ is the so-called normal deflection which is a translational displacement of a normal
element a–b (see Fig. 5.1) as a solid in the z direction.

Second, we assume that in-plane displacements ux and uy are linear functions of the thickness
coordinate z, i.e.,

uxðx; y; zÞ ¼ uðx; yÞ þ zqxðx; yÞ
uyðx; y; zÞ ¼ vðx; yÞ þ zqyðx; yÞ (5.2)

where u and v are the displacements of the points of the reference plane z ¼ 0 or, which is the same, the
translational displacements of the normal element a–b (see Fig. 5.1) as a solid in the x and y direction,
whereas qx and qy are the angles of rotations (usually referred to as “rotations”) of the normal element a–b
in thexz- and yz-planes.Geometric interpretation of thefirst expression inEqs. (5.2) is presented in Fig. 5.2.

In-plane strains of the layer, εx; εy; and gxy, can be found using Eqs. (2.22), (5.1), and (5.2) as

εx ¼ vux
vx

¼ ε
0
x þ zkx

εy ¼ vuy
vy

¼ ε
0
y þ zky

gxy ¼
vux
vy

þ vuy
vx

¼ g0
xy þ zkxy

(5.3)

a

xu

u

A

b′
A′

xθ

a′
v

x

b

FIGURE 5.2

Decomposition of displacement ux of point A into translational ðuÞ and rotation ðzqx Þ components.
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where

ε
0
x ¼

vu

vx
; ε0y ¼

vv
vy
; g0xy ¼

vu

vy
þ vv

vx

kx ¼ vqx

vx
; ky ¼ vqy

vy
; kxy ¼ vqx

vy
þ vqy

vx
:

These generalized strains correspond to the following four basic deformations of the layer shown in
Fig. 5.3:

• In-plane tension or compression ðε0x ; ε0yÞ
• In-plane shear ðg0

xyÞ
• Bending in the xz- and yz-planes ðkx; kyÞ and
• Twisting ðkxyÞ

00 , yx εε

0
xyγ

xκ

xyκ

(a)

(b)

(c)

(d)

FIGURE 5.3

Basic deformations of the layer: (a) in-plane tension and compression ðε0x ; ε0y Þ; (b) in-plane shear ðg0xy Þ;
(c) bending ðkx Þ; (d) twisting ðkxy Þ.
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The constitutive equations for an anisotropic layer, Eqs. (4.71), upon substitution of Eqs. (5.3),
yield

sx ¼ A11ε
0
x þ A12ε

0
y þ A14g

0
xy þ z

�
A11kx þ A12ky þ A14kxy

�
sy ¼ A21ε

0
x þ A22ε

0
y þ A24g

0
xy þ z

�
A21kx þ A22ky þ A24kxy

�
sxy ¼ A41ε

0
x þ A42ε

0
y þ A44g

0
xy þ z

�
A41kx þ A42ky þ A44kxy

� (5.4)

where Amn ¼ Anm are the stiffness coefficients of the material that depend, in general, on the coor-
dinate z.

It follows from Eqs. (5.4) that the stresses depend on six generalized strains ε;g; and k, which are
functions of coordinates x and y only. To derive the constitutive equations for the layer under study, we
introduce the corresponding force functions as stress resultants and couples shown in Fig. 5.4 and
specified as

Nx ¼
Zs

�e

sxdz; Ny ¼
Zs

�e

sydz; Nxy ¼
Zs

�e

sxydz

Mx ¼
Zs

�e

sxzdz; My ¼
Zs

�e

syzdz; Mxy ¼
Zs

�e

sxyzdz

(see also Fig. 5.1). Substituting the stresses, Eqs. (5.4), into these equations, we arrive at the following
constitutive equations that relate stress resultants and couples to the corresponding generalized strains,
i.e.,

Nx ¼ B11ε
0
x þ B12ε

0
y þ B14g

0
xy þ C11kx þ C12ky þ C14kxy

Ny ¼ B21ε
0
x þ B22ε

0
y þ B24g

0
xy þ C21kx þ C22ky þ C24kxy

Nxy ¼ B41ε
0
x þ B42ε

0
y þ B44g

0
xy þ C41kx þ C42ky þ C44kxy

Mx ¼ C11ε
0
x þ C12ε

0
y þ C14g

0
xy þ D11kx þ D12ky þ D14kxy

My ¼ C21ε
0
x þ C22ε

0
y þ C24g

0
xy þ D21kx þ D22ky þ D24kxy

Mxy ¼ C41ε
0
x þ C42ε

0
y þ C44g

0
xy þ D41kx þ D42ky þ D44kxy:

(5.5)

yM

yN

xyM

xyN

xyN

xN
xM xyM

xyN

xN

xyM

xyN

yM
yN

xM

xyM

FIGURE 5.4

Stress resultants and couples applied to the reference plane of the layer.
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These equations include membrane stiffness coefficients

Bmn ¼ Bnm ¼
Zs

�e

Amndz (5.6)

which specify the layer stiffness under in-plane deformation (Figs. 5.3a and b), bending stiffness
coefficients

Dmn ¼ Dnm ¼
Zs

�e

Amnz
2dz (5.7)

which are associated with the layer bending and twisting (Figs. 5.3c and d), and membrane-bending
coupling coefficients

Cmn ¼ Cnm ¼
Zs

�e

Amnzdz (5.8)

through which in-plane stress resultants are related to bending deformations, and stress couples are
linked with in-plane strains.

Coefficients with subscripts 11, 12, 22, and 44 compose the basic set of the layer stiffnesses
associated with in-plane extension, contraction, and shear (B11, B12, B22, and B44), bending and
twisting (D11, D12, D22, and D44), and coupling effects (C11, C12, C22, and C44). For an anisotropic
layer there also exists coupling between extension (a) and shear (b) in Fig. 5.3 (coefficients B14 and
B24), extension (a) and twisting (d) in Fig. 5.3 (coefficients C14 and C24), and bending (c) and twisting
(d) in Fig. 5.3 (coefficients D14 and D24).

The forces and moments N and M specified by Eqs. (5.5) are resultants and couples of in-plane
stresses sx, sy; and sxy (see Fig. 5.1). However, there also exist transverse shear stresses sxz and syz
which should be expressed in terms of the corresponding shear strains. Unfortunately, we cannot apply
the direct approach that was used earlier to derive Eqs. (5.5) for this purpose. This direct approach
involves strain-displacement equations, Eqs. (2.22),

gxz ¼
vux
vz

þ vuz
vx

; gyz ¼
vuy
vz

þ vuz
vy

(5.9)

in conjunction with Hooke’s law

sxz ¼ A55gxz þ A56gyz; syz ¼ A65gxz þ A66gyz (5.10)

or

gxz ¼ a55sxz þ a56syz; gyz ¼ a65sxz þ a66syz (5.11)

where Amn and amn are stiffness and compliance coefficients, respectively. The problem is associated
with Eqs. (5.2) which specify only approximate dependence of displacements ux and uy on coordinate z
(the actual distribution of ux and uy through the layer thickness is not known) and must not be
differentiated with respect to z. So, we cannot substitute Eqs. (5.2) into Eqs. (5.9) which include
derivatives of ux and uy with respect to z. To see what can happen if we violate this well-known
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mathematical restriction, consider a sandwich laminate shown in Fig. 5.5. It can be seen that while
linear approximation of uðzÞ (dashed line) looks reasonable, the derivatives of the actual
displacements and the approximate ones have little in common.

To derive constitutive equations for transverse shear, consider Fig. 5.6. The actual
distribution of shear stresses sxz and syz across the layer thickness is not known, but we can
assume that it is not important. Indeed, as follows from Eqs. (5.1), elements a–b (see Fig. 5.6)
along which the shear stresses act are absolutely rigid. This means (in accordance with the
corresponding theorem of Statics of Solids) that the displacements of these elements in
the z direction depend only on the resultants of the shear stresses, i.e., on transverse shear
forces

V x ¼
Zs

�e

sxzdz; V y ¼
Zs

�e

syzdz (5.12)

Since the particular distributions of sxz and syz do not influence the displacements, we can introduce
some average stresses having the same resultants as the actual ones, i.e.,

sx ¼ V x

h
¼ 1

h

Zs

�e

sxzdz; sy ¼ V y

h
¼ 1

h

Zs

�e

syzdz

However, according to Eqs. (5.11), shear strains are linear combinations of shear stresses. So, we can
use the same law to introduce average shear strains as

gx ¼
1

h

Zs

�e

gxzdz; gy ¼
1

h

Zs

�e

gyzdz (5.13)

x

)(u

u

∂
∂

(a) (b)

FIGURE 5.5

Actual (solid lines) and approximate (dashed lines) distributions of a displacement (a) and its derivative (b)

through the thickness of a sandwich laminate.
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Average shear strains gx and gy can be readily expressed in terms of displacements if we substitute
Eqs. (5.9) into Eqs. (5.13), i.e.,

gx ¼
1

h

�
ux
�
s
�� ux

�� e
�þ Zs

�e

vuz
vx

dz

�

gy ¼
1

h

�
uy
�
s
�� ux

�� e
�þ Zs

�e

vuz
vy

dz

�
:

These equations, in contrast to Eqs. (5.9), do not include derivatives with respect to z. So, we can
substitute Eqs. (5.1) and (5.2) to get the final result

gx ¼ qx þ vw

vx
; gy ¼ qy þ vw

vy
: (5.14)

Consider Eqs. (5.10) and (5.11). Integrating them over the layer thickness and using Eqs. (5.12) and
(5.13), we get

V x ¼
Zs

�e

�
A55gxz þ A56gyz

�
dz; V y ¼

Zs

�e

�
A65gxz þ A66gyz

�
dz

gx ¼
1

h

Zs

�e

�
a55sxz þ a56syz

�
dz; gy ¼

1

h

Zs

�e

�
a65sxz þ a66syz

�
dz

Since the actual distribution of stresses and strains according to the foregoing reasoning is not
significant, we can change them for the corresponding average stresses and strains:

V x ¼ S55gx þ S56gy; V y ¼ S65gx þ S66gy (5.15)

gx ¼ s55V x þ s56V y; gy ¼ s65V x þ s66V y (5.16)

z

a

b

τ yz

e

s
τ xz

a

b

Vy

Vx

FIGURE 5.6

Reduction of transverse shear stresses to stress resultants (transverse shear forces).
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where

Smn ¼ Snm ¼
Zs

�e

Amndz (5.17)

smn ¼ snm ¼ 1

h2

Zs

�e

amndz (5.18)

It should be emphasized that Eqs. (5.16) are not the inverse form of Eqs. (5.15). Indeed, solving Eqs.
(5.16), using Eqs. (5.18), and taking into account that

a55 ¼ A66; a56 ¼ �A56; a66 ¼ A55;

Amn ¼ Amn

A55A66 � A2
56

we arrive at Eqs. (5.15) in which Smn should be changed to

Smn ¼
h2

Zs

�e

Amndz

Zs

�e

A55dz

1
A
0
@ Zs

�e

A66dz

1
A�

0
@ Zs

�e

A56dz

1
A20

@
(5.19)

These expressions, in general, do not coincide with Eqs. (5.17).
Thus, the constitutive equations for transverse shear are specified by Eqs. (5.15), and there exist

two–in general–different approximate forms of stiffness coefficients: Eqs. (5.17) and (5.19). The fact
that equations obtained in this way are approximate is quite natural because the assumed displacement
field, Eqs. (5.1) and (5.2), is also approximate.

To compare two possible forms of constitutive equations for transverse shear, consider for the sake
of brevity an orthotropic layer for which

A56 ¼ 0; a56 ¼ 0; A55 ¼ Gxz; A66 ¼ Gyz;

a55 ¼ A66 ¼ 1

Gxz
; a66 ¼ A55 ¼ 1

Gyz

For transverse shear in the xz-plane, Eqs. (5.15) yield

V x ¼ S55gx or V x ¼ S55gx (5.20)

in which, in accordance with Eq. (5.17)

S55 ¼
Zs

�e

Gxzdz (5.21)
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whereas Eq. (5.19) yields

S55 ¼ h2Zs

�e

dz

Gxz

(5.22)

If the shear modulus does not depend on z Eqs. (5.21) and (5.22) both, give the same result,
S55 ¼ S55 ¼ Gxzh. The same, of course, holds for the transverse shear in the yz-plane.

Using the energy method applied in Section 3.3, we can show that Eqs. (5.21) and (5.22)
provide the upper and the lower bounds for the exact transverse shear stiffness. Indeed, consider
a strip with unit width experiencing transverse shear induced by force V x as in Fig. 5.7. Assume
that Eq. (5.20) links the actual force V x with the exact angle gx ¼ D=l through the exact shear
stiffness Se55, which we do not know, and which we would like to evaluate. To do this, we can use
the two variational principles described in Section 2.11. According to the principle of minimum
total potential energy

Text � Tadm (5.23)

where

Text ¼ Uε

ext � Aext; Tadm ¼ Uε

adm � Aadm

are the total energies of the exact state and some admissible kinematic state expressed in terms of the
strain energy, U, and work A performed by force V x on displacement D (see Fig. 5.7). For both states

Aext ¼ Aadm ¼ V xD

and condition (5.23) reduces to

Uε

ext � Uε

adm (5.24)

For the exact state, with due regard to Eq. (5.20), we get

Uext ¼ l

2
V xgx ¼

l

2
Se55g

2
x (5.25)

Δ

z

s
e

x

y

xV

xγ

l

h

1

FIGURE 5.7

Transverse shear of a strip with unit width.
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For the admissible state, we should use the following general equation

U ¼ 1

2

Z l

0

dx

Zs

�e

sxzgxzdz ¼
1

2

Z l

0

dx

Zs

�e

Gxzg
2
xzdz ¼ Uε

and admit some approximation for gxz. The simplest one is gxz ¼ gx, so that

Uε

adm ¼ l

2
g2
x

Zs

�e

Gxzdz (5.26)

Then, Eqs. (5.24)–(5.26) yield

S e
55 �

Zs

�e

Gxzdz

Comparing this inequality with Eq. (5.21), we can conclude that this equation specifies the upper
bound for Se55.

To determine the lower bound, we should apply the principle of minimum strain energy, according
to which

Uext � Us
adm (5.27)

where

Uext ¼ l

2
V xgx ¼

l

2
,
V 2

x

Se55

For the admissible state we should apply

U ¼ 1

2

Z l

0

dx

Zs

�e

sxzgxzdz ¼
1

2

Z l

0

dx

Zs

�e

s2xz
Gxz

dz ¼ Us

and use some admissible distribution for sxz. The simplest approximation is sxz ¼ V x=h, so that

Us
adm ¼ l

2h2
V 2

x

Zs

�e

dz

Gxz
:

Substitution in the condition (5.27) yields

Se55 �
h2Zs

�e

dz

Gxz

:
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Thus, Eq. (5.22) provides the lower bound for Se55, and the exact stiffness satisfies the following
inequality

h2Zs

�e

dz

Gxz

� Se55 �
Zs

�e

Gxzdz

It should be emphasized that Se55 in this analysis is not the actual shear stiffness coefficient of the
laminate. It is the exact value of the stiffness coefficient which can be found using the exact stress and
strain fields following from three-dimensional elasticity equations.

So, constitutive equations for the laminate under study are specified by Eqs. (5.5) and (5.15).
Stiffness coefficients, which are given by Eqs. (5.6–5.8) and (5.17/5.19), can be written in a form more
suitable for calculations. To do this, introduce the new coordinate t ¼ zþ e such that 0 � t � h (see
Fig. 5.8). Transforming the integrals to this new variable, we have

Bmn ¼ I
ð0Þ
mn ; Cmn ¼ I

ð1Þ
mn � eI

ð0Þ
mn ;

Dmn ¼ I
ð2Þ
mn � 2eI

ð1Þ
mn þ e2I

ð0Þ
mn

(5.28)

where mn ¼ 11, 12, 22, 14, 24, and 44 and

IðrÞmn ¼
Zh
0

Amnt
rdt; r ¼ 0; 1; 2 (5.29)

The transverse shear stiffnesses, Eqs. (5.17) and (5.19), take the form

Smn ¼ Ið0Þmn (5.30)

and

Smn ¼ h2I
ð0Þ
mn

I
ð0Þ
55 I

ð0Þ
66 �

�
I
ð0Þ
56

�2 (5.31)

z

xxh t

A

z

e

s

FIGURE 5.8

Coordinates of an arbitrary point A.
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where mn ¼ 55, 56, and 66 and

I
ð0Þ
mn ¼

Zh
0

Amndt: (5.32)

The coefficients Amn are specified by the expression given in notations to Eq. (5.19).

5.2 STIFFNESS COEFFICIENTS OF A HOMOGENEOUS LAYER
Consider a layer whose material stiffness coefficients Amn do not depend on coordinate z. Then

IðrÞmn ¼ Amn

r þ 1
hrþ1; I

ð0Þ
mn ¼ Amnh (5.33)

and Eqs. (5.28), (5.30), and (5.31) yield the following stiffness coefficients for the layer

Bmn ¼ Amnh; Cmn ¼ Amn

�
h

2
� e

	
;

Dmn ¼ Amn

�
h3

3
� ehþ e2

	
; Smn ¼ Amnh

(5.34)

Both Eqs. (5.30) and (5.31) give the same result for Smn. It follows from the second of Eqs. (5.34) that
the membrane-bending coupling coefficients Cmn become equal to zero if we take e ¼ h=2, i.e., if the
reference plane coincides with the middle-plane of the layer shown in Fig. 5.9. In this case, Eqs. (5.5)
and (5.15) take the following decoupled form

Nx ¼ B11ε
0
x þ B12ε

0
y þ B14g

0
xy; Ny ¼ B21ε

0
x þ B22ε

0
y þ B24g

0
xy;

Nxy ¼ B41ε
0
x þ B42ε

0
y þ B44g

0
xy;

Mx ¼ D11kx þ D12ky þ D14kxy; My ¼ D21kx þ D22ky þ D24kxy;

Mxy ¼ D41kx þ D42ky þ D44kxy;

V x ¼ S55gx þ S56gy; V y ¼ S65gx þ S66gy

(5.35)

2/h
2/h

x

z

y

FIGURE 5.9

Middle plane of a laminate.
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As can be seen, we have arrived at three independent groups of constitutive equations, i.e., for the
in-plane stressed state of the layer, bending and twisting, and transverse shear. The stiffness coeffi-
cients, Eqs. (5.34), become

Bmn ¼ Amnh; Dmn ¼ Amn

12
h3; Smn ¼ Amnh (5.36)

For an orthotropic layer, there are no in-plane stretching-shear coupling ðB14 ¼ B24 ¼ 0Þ and trans-
verse shear coupling ðS56 ¼ 0Þ. Then, Eqs. (5.35) reduce to

Nx ¼ B11ε
0
x þ B12ε

0
y ; Ny ¼ B21ε

0
x þ B22ε

0
y ; Nxy ¼ B44g

0
xy

Mx ¼ D11kx þ D12ky; My ¼ D21kx þ D22ky; Mxy ¼ D44kxy

V x ¼ S55gx; V y ¼ S66gy

(5.37)

In terms of engineering elastic constants, the material stiffness coefficients of an orthotropic layer can
be expressed as

A11 ¼ Ex; A12 ¼ nxyEx; A22 ¼ Ey; A44 ¼ Gxy;
A55 ¼ Gxz; A66 ¼ Gyz

(5.38)

where Ex;y ¼ Ex;y=ð1� nxynyxÞ. Then, Eqs. (5.36) yield
B11 ¼ Exh; B12 ¼ nxyExh; B22 ¼ Eyh; B44 ¼ Gxyh

D11 ¼ 1

12
Exh

3; D12 ¼ nxy

12
Exh

3; D22 ¼ 1

12
Eyh

3; D44 ¼ 1

12
Gxyh

3

S55 ¼ Gxzh; S66 ¼ Gyzh

(5.39)

Finally, for an isotropic layer, we have

Ex ¼ Ey ¼ E; nxy ¼ nyx ¼ n; Gxy ¼ Gxz ¼ Gyz ¼ G ¼ E

2ð1þ nÞ
and

B11 ¼ B22 ¼ Eh; B12 ¼ nEh; B44 ¼ S55 ¼ S66 ¼ Gh

D11 ¼ D22 ¼ 1

12
Eh3; D12 ¼ n

12
Eh3; D44 ¼ 1

12
Gh3

(5.40)

where E ¼ E=ð1� n2Þ:

5.3 STIFFNESS COEFFICIENTS OF A LAMINATE
Consider the general case, i.e., a laminate consisting of an arbitrary number of layers with different
thicknesses hi and stiffnesses A

ðiÞ
mn ði ¼ 1; 2; 3;.; kÞ. The location of an arbitrary ith layer of the

laminate is specified by the coordinate ti, which is the distance from the bottom plane of the laminate to
the top plane of the ith layer (see Fig. 5.10). Assuming that the material stiffness coefficients do not
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change within the thickness of the layer, and using piece-wise integration, we can write parameter Imn
in Eqs. (5.29) and (5.32) as

IðrÞmn ¼ 1

r þ 1

Xk
i¼1

AðiÞ
mn

�
trþ1
i � trþ1

i�1

�
; I

ð0Þ
mn ¼

Xk
i¼1

A
ðiÞ
mn

�
ti � ti�1

�
(5.41)

where r ¼ 0, 1, 2 and t0 ¼ 0; tk ¼ h (see Fig. 5.10). For thin layers, Eqs. (5.41) can be reduced to the
following form, which is more suitable for calculations

I
ð0Þ
mn ¼

Xk
i¼1

A
ðiÞ
mnhi; I

ð0Þ
mn ¼

Xk
i¼1

A
ðiÞ
mnhi

I
ð1Þ
mn ¼ 1

2

Xk
i¼1

AðiÞ
mn hiðti þ ti�1Þ

Ið2Þmn ¼ 1

3

Xk
i¼1

AðiÞ
mn hi

�
t2i þ titi�1 þ t2i�1

� (5.42)

in which hi ¼ ti � ti�1 is the thickness of the ith layer.
The membrane, coupling, and bending stiffness coefficients of the laminate are specified by

Eqs. (5.28) and (5.42).
Consider transverse shear stiffnesses that have two different forms determined by Eqs. (5.30) and

(5.31) in which

Ið0Þmn ¼
Xk
i¼1

AðiÞ
mnhi; I

ð0Þ
mn ¼

Xk
i¼1

A
ðiÞ
mnhi: (5.43)

s

e
it1−it

htk =

ih

1t

kt

2t

00 =t

x

z

y 1
2

i

k

FIGURE 5.10

Structure of the laminate.
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A particular case, important for practical applications, is an orthotropic laminate for which Eqs. (5.5)
take the form

Nx ¼ B11ε
0
x þ B12ε

0
y þ C11kx þ C12ky

Ny ¼ B21ε
0
x þ B22ε

0
y þ C12kx þ C22ky

Nxy ¼ B44g
0
xy þ C44kxy

Mx ¼ C11ε
0
x þ C12ε

0
y þ D11kx þ D12ky

My ¼ C21ε
0
x þ C22ε

0
y þ D21kx þ D22ky

Mxy ¼ C44g
0
xy þ D44kxy

(5.44)

Here, membrane, coupling, and bending stiffnesses Bmn;Cmn; and Dmn, are specified by Eqs. (5.28),
i.e.,

Bmn ¼ I
ð0Þ
mn ; Cmn ¼ I

ð1Þ
mn � eI

ð0Þ
mn ;

Dmn ¼ I
ð2Þ
mn � 2eI

ð1Þ
mn þ e2I

ð0Þ
mn

(5.45)

where mn ¼ 11, 12, 22, and 44 .
Transverse shear forces V x and V y are specified by equations similar to Eqs. (5.20)

V x ¼ S55gx; V y ¼ S66gy

in which the corresponding stiffness coefficients, Eqs. (5.30) and (5.31), reduce to (mn ¼ 55, 66)

Smn ¼
Xk
i¼1

AðiÞ
mnhi; Smm ¼ h2Xk

i¼1

hi

A
ðiÞ
mm

(5.46)

Laminates composed of unidirectional plies have special stacking-sequence notations. For example,
notation ½0�2=þ 45�=� 45�=90�2� means that the laminate consists of a 0� layer having two plies,
a �45� angle-ply layer, and a 90� layer also having two plies. Notation ½0�=90��5 means that the
laminate has five cross-ply layers.

5.4 SYMMETRIC LAMINATES
Symmetric laminates are composed of layers that are symmetrically arranged with respect to the
laminate’s middle plane as shown in Fig. 5.11. Introduce the layer coordinate zi (see Fig. 5.11). Since
for any layer which is above the middle surface z ¼ 0 and has the coordinate zi there is a similar layer
which is located under the middle surface and has the coordinate (�zi), the integration over the
laminate thickness can be performed from z ¼ 0 to z ¼ h=2 (see Fig. 5.11). Then, the integrals for Bmn

and Dmn similar to Eqs. (5.6) and (5.7) must be doubled, whereas the integral for Cmn similar to Eqs.
(5.8) is equal to zero. Thus, the stiffness coefficients entering Eqs. (5.5) become

Bmn ¼ 2

Zh=2
0

Amndz; Dmn ¼ 2

Zh=2
0

Amnz
2dz; Cmn ¼ 0 (5.47)
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For a symmetric laminate (shown in Fig. 5.11), we get

Bmn ¼ 2
Xk=2
i¼1

A
ðiÞ
mn

�
zi � zi�1

� ¼ 2
Xk=2
i¼1

A
ðiÞ
mnhi

Cmn ¼ 0

Dmn ¼ 2

3

Xk=2
i¼1

AðiÞ
mn

�
z3i � z3i�1

�
¼ 2

3

Xk=2
i¼1

AðiÞ
mnhi

�
z2i þ zizi�1 þ z2i�1

�
(5.48)

where hi ¼ zi � zi�1. The transverse shear stiffness coefficients are given by Eqs. (5.30) and (5.31) in
which

Ið0Þmn ¼ 2
Xk
i¼1

AðiÞ
mnhi; I

ð0Þ
mn ¼ 2

Xk=2
i¼1

A
ðiÞ
mnhi; A

ðiÞ
mn ¼

A
ðiÞ
mn

A
ðiÞ
55A

ðiÞ
66 �

�
A
ðiÞ
56

�2: (5.49)

To indicate symmetric laminates, a contracted stacking-sequence notation is used, e.g., ½0�=90�=45��s
instead of ½0�=90�=45�=45�=90�=0��. Symmetric laminates are characterized by a specific feature:
their bending stiffness is higher than the bending stiffness of any asymmetric laminate composed of the
same layers. To show this property of symmetric laminates, consider Eqs. (5.28) and (5.29) and apply
them to calculate stiffness coefficients with some combination of subscripts, e.g., m ¼ 1 and n ¼ 1.
Since the coordinate of the reference plane, e, is an arbitrary parameter, we can find it from the
condition C11 ¼ 0. Then,

e ¼ I
ð1Þ
11

I
ð0Þ
11

(5.50)

2k

2k

i

i

1−iz iz

2

h

2

h

FIGURE 5.11

Layer coordinates of a symmetric laminate.
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and

D11 ¼ I
ð2Þ
11 �

"�
I
ð1Þ
11

�2
I
ð0Þ
11

#
: (5.51)

Introduce a new coordinate for an arbitrary point A in Fig. 5.12 as z ¼ t � ðh=2Þ. Changing t to z, we
can present Eq. (5.29) in the form

I
ðrÞ
11 ¼

Zh=2
�h=2

A11

�
h

2
þ z

	r

dz

Substituting these integrals into Eqs. (5.50) and (5.51), we have

e ¼ h

2
þ J

ð1Þ
11

J
ð0Þ
11

(5.52)

and

D11 ¼ J
ð2Þ
11 �

"�
J
ð1Þ
11

�2

J
ð0Þ
11

#
(5.53)

where

J
ðrÞ
11 ¼

Zh=2
�h=2

A11z
rdz (5.54)

and r ¼ 0, 1, 2.
Now decompose A11 as a function of z into symmetric and antisymmetric components, i.e.,

A11

�
z
� ¼ As

11

�
z
�þ Aa

11

�
z
�

Then, Eq. (5.54) yields

J
ð0Þ
11 ¼

Zh=2
�h=2

As
11dz; J

ð1Þ
11 ¼

Zh=2
�h=2

Aa
11zdz; J

ð2Þ
11 ¼

Zh=2
�h=2

As
11z

2dz

h/2

h/2

t

z
A

FIGURE 5.12

Coordinate of point A referred to the middle plane.
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As can be seen from Eq. (5.53), D11 reaches its maximum value if J
ð1Þ
11 ¼ 0. Then, Aa

11 ¼ 0 and
A11 ¼ As

11, which means that the laminate is symmetric. In this case, Eq. (5.52) gives e ¼ h=2.
Thus, symmetric laminates provide the maximum bending stiffness for a given number and for

mechanical properties of layers and, being referred to the middle-plane, do not have membrane-
bending coupling effects. This essentially simplifies the behavior of the laminate under loading and
constitutive equations which have the form specified by Eqs. (5.35).

5.5 ENGINEERING STIFFNESS COEFFICIENTS OF ORTHOTROPIC
LAMINATES
It follows from Eqs. (5.28) that the laminate stiffness coefficients depend, in the general case, on the
coordinate of the reference surface e. By changing e, we can change the bending stiffness coefficient
Dmn. Naturally, the result of the laminate analysis undertaken with the aid of the constitutive
equations, Eqs. (5.5), does not depend on the particular pre-assigned value of the coordinate e
because of the coupling coefficients Cmn which also depend on e. To demonstrate this, consider an
orthotropic laminated element loaded with axial forces N and bending moments M uniformly
distributed over the element width as in Fig. 5.13. Suppose that the element displacement does not
depend on coordinate y. Then, taking Nx ¼ N;Mx ¼ M; ε0y ¼ 0; and ky ¼ 0 in Eqs. (5.44), we get

N ¼ B11ε
0
x þ C11kx; M ¼ C11ε

0
x þ D11kx (5.55)

where, in accordance with Eqs. (5.28),

B11 ¼ I
ð0Þ
11 ; C11 ¼ I

ð1Þ
11 � eI

ð0Þ
11

D11 ¼ I
ð2Þ
11 � 2eI

ð1Þ
11 þ e2I

ð0Þ
11

(5.56)

Here, as follows from Eqs. (5.41),

I
ðrÞ
11 ¼ 1

r þ 1

Xk
i¼1

A
ðiÞ
11

�
trþ1
i � trþ1

i�1

�
(5.57)

(r ¼ 0, 1, 2) are the coefficients which do not depend on the coordinate of the reference plane e.

M

M

N N
h

e

xy

z

FIGURE 5.13

Laminated element under tension and bending.
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It is important to emphasize that forces N in Fig. 5.13 act in the reference plane z ¼ 0, and the strain
ε
0
x in Eqs. (5.55) is the strain of the reference plane. Solving Eqs. (5.55) for ε0x and kx, we have

ε
0
x ¼

1

D1

�
D11N � C11M

�
; kx ¼ 1

D1

�
B11M � C11N

�
(5.58)

where

D1 ¼ B11D11 � C2
11 (5.59)

Substituting B, D, and C from Eqs. (5.56), we find

D1 ¼ I
ð0Þ
11 I

ð2Þ
11 �

�
I
ð1Þ
11

�2

As can be seen, the parameter D1 does not depend on e.
Consider now the same element but loaded with forces P applied to the middle plane of the element

as in Fig. 5.14. As follows from Fig. 5.15 showing the element cross section, the forces and the
moments in Fig. 5.13 induced by the forces shown in Fig. 5.14 are

N ¼ P; M ¼ P

�
h

2
� e

	
(5.60)

Substitution of Eqs. (5.60) into Eqs. (5.58) yields

ε
0
x ¼

P

D1

�
I
ð2Þ
11 � eI

ð1Þ
11 � h

2

�
I
ð1Þ
11 � eI

ð0Þ
11

	�
(5.61)

kx ¼ P

D1

�
h

2
I
ð0Þ
11 � I

ð1Þ
11

	
(5.62)

It follows from Eq. (5.62) that kx does not depend on e, which is expected because the curvature
induced by forces P in Fig. 5.14 is the same for all the planes z ¼ constant of the element. However,
Eq. (5.61) includes e which is also expected because ε0x is the strain in the plane z ¼ 0 located at the
distance e from the lower plane of the element (see Fig. 5.15). Let us find the strain εtx at some arbitrary
point A of the cross section for which z ¼ t � e (see Fig. 5.15). Using the first equation of Eqs. (5.3),

P

2/h
2/h

FIGURE 5.14

Laminated element under tension.
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we have

ε
t
x ¼ ε

0
x þ

�
t � e

�
kx ¼ P

D1

�
I
ð2Þ
11 � h

2

�
tI
ð0Þ
11 � I

ð1Þ
11

	
� tI

ð1Þ
11

�

This equation includes the coordinate of point A and does not depend on e. Thus, taking an arbitrary
coordinate of the reference plane, and applying Eqs. (5.56) for the stiffness coefficients, we arrive at
values of C11 and D11, the combination of which provides the final result that does not depend on e.
However, the derived stiffness coefficient D11 is not the actual bending stiffness of the laminate which
cannot depend on e.

To determine the actual stiffness of the laminate, return to Eqs. (5.58) for ε0x and kx. Suppose that
C11 ¼ 0, which means that the laminate has no bending-stretching coupling effects. Then, Eq. (5.59)
yields D ¼ B11D11 and Eqs. (5.58) become

ε
0
x ¼

N

B11
; kx ¼ M

D11
(5.63)

It is obvious that now B11 is the actual axial stiffness and D11 is the actual bending stiffness of the
laminate. However, Eqs. (5.63) are valid only if C11 ¼ 0. Using the second equation of Eqs. (5.56), we
get

e ¼ I
ð1Þ
11

I
ð0Þ
11

(5.64)

Substituting this result into Eqs. (5.56) and introducing new notations Bx ¼ B11 and Dx ¼ D11 for the
actual axial and bending stiffnesses of the laminate in the x direction, we arrive at

Bx ¼ I
ð0Þ
11 ; Dx ¼ I

ð2Þ
11 �

�
I
ð1Þ
11

�2

I
ð0Þ
11

(5.65)

Here, coefficients I
ðrÞ
11 (r ¼ 0, 1, 2) are specified by Eqs. (5.57). The corresponding stiffnesses in the y

direction (see Fig. 5.13) are determined from similar equations, i.e.,

By ¼ I
ð0Þ
22 ; Dy ¼ I

ð2Þ
22 �

�
I
ð1Þ
22

�2
I
ð0Þ
22

(5.66)

e
t

A

z

2/h

2/h

FIGURE 5.15

Cross-section of the element.
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in which

I
ðrÞ
22 ¼ 1

r þ 1

Xk
i¼1

A
ðiÞ
22

�
trþ1
i � trþ1

i�1

�

For symmetric laminates, as discussed in Section 5.4, Cmn ¼ 0 and coefficients Dmn in Eqs. (5.48)
specify the actual bending stiffnesses of the laminate, i.e.,

Dx ¼ 2

3

Xk=2
i¼1

A
ðiÞ
11hi

�
z2i þ zizi�1 þ z2i�1

�

Dy ¼ 2

3

Xk=2
i¼1

A
ðiÞ
22hi

�
z2i þ zizi�1 þ z2i�1

� (5.67)

where coordinates zi and zi�1 are shown in Fig. 5.11. Note that if the number of layers k is not even, the
central layer is divided by the plane z ¼ 0 into two identical layers so k becomes even.

To find the shear stiffness, consider the element in Fig. 5.13, but loaded with shear forces, S, and
twisting moments H, uniformly distributed along the element edges as shown in Fig. 5.16. It should be
recalled that forces and moments are applied to the element reference plane z ¼ 0 (see Fig. 5.13).
Taking Nxy ¼ S and Mxy ¼ H in the corresponding Eqs. (5.44), we get

S ¼ B44g
0
xy þ C44kxy; H ¼ C44g

0
xy þ D44kxy (5.68)

in which, in accordance with Eqs. (5.28) and (5.41),

B44 ¼ I
ð0Þ
44 ; C44 ¼ I

ð1Þ
44 � eI

ð0Þ
44 ; D44 ¼ I

ð2Þ
44 � 2eI

ð1Þ
44 þ e2I

ð0Þ
44 (5.69)

where

I
ðrÞ
44 ¼ 1

r þ 1

Xk
i¼1

A
ðiÞ
44

�
trþ1
i � trþ1

i�1

�

x
y

H

S

FIGURE 5.16

Shear and torsion of the element.
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The solution of Eqs. (5.68) is

g0
xy ¼

1

D4

�
D44S� C44H

�
; kxy ¼ 1

D4

�
B44M � C44S

�
(5.70)

in which D4 ¼ I
ð0Þ
44 I

ð2Þ
44 � ðIð1Þ44 Þ2.

A further transformation is used similar to that for Eqs. (5.58) and (5.59). Taking the coordinate of the
reference plane as

e ¼ I
ð1Þ
44

I
ð0Þ
44

(5.71)

we get C44 ¼ 0, and Eqs. (5.70) reduce to

g0
xy ¼

S

B44
; kxy ¼ H

D44
(5.72)

Using the new notations B44 ¼ Bxy and D44 ¼ Dxy and applying Eqs. (5.69) and (5.71), we arrive at

Bxy ¼ I
ð0Þ
44 ; Dxy ¼ I

ð2Þ
44 �

�
I
ð1Þ
44

�2
I
ð0Þ
44

(5.73)

where Bxy is the actual in-plane shear stiffness of the laminate, whereas Dxy needs some comments.
The second equation of Eqs. (5.72) yields

H ¼ Dxykxy (5.74)

where kxy is given in notations to Eqs. (5.3), i.e.,

kxy ¼ vqx

vy
þ vqy

vx
(5.75)

The deformed state of the laminated element (see Fig. 5.16) loaded with twisting moments only is
shown in Fig. 5.17. Consider the deflection of point A with coordinates x and y. It follows from
Fig. 5.17 that w ¼ xqx or w ¼ yqy. Introduce the gradient of the torsional angle

q0 ¼ vqx

vy
¼ vqy

vx

Since q0 does not depend on x and y, qx ¼ yq0; qy ¼ xq0; and w ¼ xyq0. Using Eq. (5.75), we have
kxy ¼ 2q0. Then, Eq. (5.74) yields

H ¼ Dp
t q

0 (5.76)

where

Dp
t ¼ 2Dxy (5.77)

is the plate torsional stiffness specifying the stiffness of the element which is loaded with twisting
moments applied to all four edges of the element, as shown in Fig. 5.16.
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However, in practice we usually need the torsional stiffness of the element loaded with twisting
moments applied to only two opposite edges of the element, whereas the two other edges are free. Since
such loading induces not only twisting moments (see Fig. 5.4) but also transverse shear forces V (see
Fig. 5.6), we must first determine the actual transverse (through-the-thickness) stiffnesses of a laminate.

Consider an orthotropic laminated element loaded with transverse shear forces V x ¼ V uniformly
distributed over the element edge as in Fig. 5.18. From Eqs. (5.20), we have two possible constitutive
equations, i.e.,

V ¼ S55gx; V ¼ S55gx (5.78)

in which, in accordance with Eqs. (5.46),

S55 ¼
Xk
i¼1

A
ðiÞ
55hi; S55 ¼ h2Pk

i¼1

hi

A
ðiÞ
55

(5.79)

For the orthotropic material, A
ðiÞ
55 ¼ G

ðiÞ
xz , where G

ðiÞ
xz is the transverse shear modulus of the ith layer.

Thus, Eqs. (5.79) take the form

S55 ¼
Xk
i¼1

GðiÞ
xz hi; S55 ¼ h2Pk

i¼1

hi

G
ðiÞ
xz

(5.80)

x

x

y y

yθ
xθ

w

A

FIGURE 5.17

Deformation of the element under torsion.

V

h

x

y

z

FIGURE 5.18

Laminated element loaded with transverse shear forces.
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As shown in Section 5.1, S55 gives the upper bound and S55 gives the lower bound of the actual
transverse shear stiffness of the laminate. For a laminate consisting of identical layers, i.e., for

the case G
ðiÞ
xz ¼ Gxz for all the layers, both equations of Eqs. (5.80) give the same result,

S55 ¼ S55 ¼ Gxzh. However, in some cases, the results following from Eqs. (5.80) can be dramati-
cally different, whereas for engineering applications we must have a unique constitutive equation
instead of Eqs. (5.78), i.e.,

V ¼ Sxgx (5.81)

and the question arises whether S55 or S55 should be taken as Sx in this equation. Since for a homo-
geneous material there is no difference between S55 and S55, we can expect that this difference shows
itself in the laminates consisting of layers with different transverse shear moduli.

Consider, for example, sandwich structures composed of high-stiffness thin facing layers (facings)
and low-stiffness light foam core (Fig. 5.19a). The facings (2 in Fig. 5.19a) are made of aluminum
alloy with modulus Ef ¼ 70 GPa and shear modulus Gf ¼ 26:9 GPa. The foam core (1 in Fig. 5.19a)
has Ec ¼ 0:077 GPa and Gc ¼ 0:0385 GPa. The geometric and stiffness parameters of two sandwich
beams studied experimentally (Aleksandrov et al., 1960) are presented in Table 5.1. The beams with
length l ¼ 280 mm have been tested under transverse bending. The coefficient Sa in the table corre-
sponds to the actual shear stiffness found from experimental results. Actually, experimental study
allows us to determine the shear parameter (Vasiliev, 1993)

kG ¼ D

Sal2
(5.82)

which is presented in the third column of the table and depends on the bending stiffness, D, and the
beam length, l. Since the sandwich structure is symmetric, we can use Eq. (5.67) for Dx in which
2k ¼ 2 (the core is divided into two identical layers as in Fig. 5.19a)

A
ð1Þ
11 ¼ Ec; A

ð2Þ
11 ¼ Ef ;

h1 ¼ hc
2
; h2 ¼ hf ; z0 ¼ 0; z1 ¼ hc

2
; z2 ¼ hc

2
þ hf

fhfh

fh

ch
ch1 1

22

(a) (b)

FIGURE 5.19

Three-layered (a) and two-layered (b) laminates.
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The final expression is

Dx ¼ 2

3

�
1

8
Ech

3
c þ Ef hf

�
3

4
h2c þ

3

2
hchf þ h2f

	�

The results of the calculation are listed in the last column of Table 5.1. The shear stiffness coefficients
S55 and S55 can be found from Eqs. (5.80) which for the structure in Fig. 5.19a take the form

S55 ¼ hcGc þ 2hfGf

S55¼
�
hc þ 2hf

�2
hc
Gc

þ 2hf
Gf

The results of the calculation are presented in Table 5.1. As can be seen, coefficients S55 are in good
agreement with the corresponding experimental data, whereas coefficients S55 are higher by an order
of magnitude. Note that S55, providing the lower boundary for the exact shear stiffness, is higher than
the actual stiffness Sa. The reason for this effect has been discussed in Section 5.1. Coefficient S55
specifies the lower boundary for the theoretical exact stiffness corresponding to the applied model of
the laminate, but not for the actual stiffness following from experiment. For example, the actual shear
stiffness of the sandwich beams described previously can be affected by the compliance of adhesive
layers which bond the facings and the core and are not allowed for in the laminate model.

So, it can be concluded that the shear stiffness coefficient S55 specified by the corresponding
equation of Eqs. (5.79) can be used to describe the transverse shear stiffness of composite laminates.
However, there are special structures for which coefficient S55 provides a better approximation of shear
stiffness than coefficient S55. Consider, for example, a two-layered structure shown in Fig. 5.19b and
composed of a high-stiffness facing (2 in Fig. 5.19b) and a low-stiffness core (1 in Fig. 5.19b). Assume,
as for the sandwich structure considered earlier, that Gf ¼ 26:9 GPa and Gc ¼ 0:0385 GPa, so that
Gf =Gc ¼ 699, and take hc ¼ 9:9 mm; and hf ¼ 2:4 mm. It is obvious that the core, having such a low-
shear modulus, does not work, and the transverse shear stiffness of the laminate is governed by the
facing layer. For this layer only, we get

S55 ¼ S55 ¼ Gf hf ¼ 64:6 GPa,mm

whereas for the laminate, Eqs. (5.80) yield

S55 ¼ hcGc þ hfGf ¼ 65 GPa,mm

TABLE 5.1 Parameters of Sandwich Structures.

hf (mm) hc (mm) kG

Shear Stiffness (GPa 3 mm)
Bending Stiffness
(GPa 3 mm3)Sa S55 S55

2.4 18.8 0.444 1.09 1.14 130 37,960

1.0 17.0 0.184 0.79 0.82 54.5 11,380
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S55¼
�
hc þ hf

�2
hc
Gc

þ hf
Gf

¼ 0:59 GPa,mm

As can be seen, coefficient S55 is too far from the value that would be expected. However, structures of
the type for which the stiffness coefficient S55 is more appropriate than the coefficient S55 are not
typical in composite technology and, being used, they usually do not require the calculation of
transverse shear stiffnesses. For laminated composites it can be recommended to use the coefficient S55
(Chen and Tsai, 1996). Thus, the transverse shear stiffness coefficient in Eq. (5.81) can be taken in the
following form

Sx ¼ h2Pk
i¼1

hi

G
ðiÞ
xz

(5.83)

For shear in the yz-plane (see Fig. 5.18), we get a similar expression, i.e.,

Sy ¼ h2Pk
i¼1

hi

G
ðiÞ
yz

(5.84)

In engineering analysis of laminated composites, transverse shear stiffnesses are mainly used to study
the problems of transverse bending of composite beams and plates. Note that the so-called classical
theory of laminated beams and plates ignores the transverse shear deformation of the laminate.
Consider the constitutive equations for the shear forces and write them in the following form:

gx ¼
V x

Sx
; gy ¼

V y

Sy

Taking Sx/N and Sy/N, we get gx ¼ 0 and gy ¼ 0. Applying Eqs. (5.14) for gx and gy, we can
express the rotation angles in terms of the deflection as

qx ¼ �vw

vx
; qy ¼ �vw

vy

Then, the expressions for curvatures entering Eqs. (5.3) take the form

kx ¼ �v2w

vx2
; ky ¼ �v2w

vy2
; kxy ¼ �2

v2w

vxvy

For actual laminates, the transverse shear stiffness coefficients are not infinitely high, but nevertheless,
the classical theories ignoring the corresponding deformation are widely used in the analysis of
composite structures. To evaluate the possibility of neglecting transverse shear deformation, we can
use parameter kG specified by Eq. (5.82) and compare it with unity. The effect of the transverse shear
deformation is demonstrated in Table 5.2 for the problem of transverse bending of simply supported
sandwich beams with various parameters kG listed in the table. The right-hand column of the table
shows the ratio of the maximum deflections of the beam, w, found with allowance for transverse shear
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deformation (wG) and corresponding to the classical beam theory (wN). As can be seen, for beams
number 4 and 5, having parameter kG which is negligible in comparison with unity, the shear
deformation practically does not affect the beams’ deflections.

Returning to the problem of torsion, we consider an orthotropic laminated strip with width b loaded
with a torque Mt as in Fig. 5.20. In contrast to the laminate shown in Fig. 5.6, the strip in Fig. 5.20 is
loaded only at the transverse edges, whereas the longitudinal edges y ¼ � b=2 are free. The shear
stresses sxz and syz induced by torsion give rise to the shear forces Nxy, twisting moment Mxy,
and transverse shear force V x shown in Fig. 5.21. Applying the corresponding constitutive equations,
Eqs. (5.44) and (5.81), we get

Nxy ¼ B44g
0
xy þ C44kxy; Mxy ¼ C44g

0
xy þ D44kxy (5.85)

V x ¼ Sxgx (5.86)

where the stiffness coefficients B, C, D, and S are specified by Eqs. (5.69) and (5.82). Pre-assign the
coordinate of the reference plane e in accordancewith Eq. (5.71). Then,C44 ¼ 0 and Eqs. (5.85) reduce to

Nxy ¼ Bxyg
0
xy (5.87)

Mxy ¼ Dxykxy (5.88)

where Bxy and Dxy are given by Eqs. (5.73). Since the strip is loaded with a torque Mt only (see
Fig. 5.20), Nxy ¼ 0, and as follows from Eq. (5.87), g0xy ¼ 0. So, we have only two constitutive
equations, i.e., Eqs. (5.86) and (5.88), for V x and Mxy which are expressed in terms of the transverse
shear strain gx and the twisting deformation kxy. Applying Eqs. (5.14) and (5.75), we have

gx ¼ qx þ vw

vx
; kxy ¼ vqx

vy
þ vqy

vx
(5.89)

TABLE 5.2 The Effect of Transverse Shear Deformation on the Deflection of Sandwich Beams.

Beam No. kG [
D

Sl2
wG

wN

1 0.444 5.386

2 0.184 2.805

3 0.015 1.152

4 0.0015 1.014

5 0.0004 1.002

tMb

xyτ
h

e

xy

z

xzτ
tM

FIGURE 5.20

Torsion of a laminated strip.
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Consider the deformation of the strip. Assume that the strip cross section rotates around the longi-
tudinal axis x through an angle qwhich depends only on x (Fig. 5.22). Then, as follows from Fig. 5.22,

w ¼ �yq; qy ¼ q

and the corresponding substitution in Eqs. (5.89) yields

gx ¼ qx � q0y; kxy ¼ vqx

vy
þ q0

where q0 ¼ dq=dx. Using the first of these equations to transform the second one, we get

kxy ¼ vgx

vy
þ 2q0

Thus, the constitutive equations, Eqs. (5.86) and (5.88), take the following final form

V x ¼ Sxgx; Mxy ¼ Dxy

�
vgx

vy
þ 2q0

	
(5.90)

Consider the equilibrium of the strip element shown in Fig. 5.23. The equilibrium equations in this
case are

vV x

vx
¼ 0;

vMxy

vx
¼ 0 (5.91)

vMxy

vy
� V x ¼ 0 (5.92)

The first two equations, Eqs. (5.91) show that V x ¼ V xðyÞ and Mxy ¼ MxyðyÞ. Then, as follows from
Eq. (5.90) for V x;gx ¼ gxðyÞ. Substituting Mxy and V x from Eqs. (5.90) into Eq. (5.92) and taking

tM

z

exyM

xV
xyN y

FIGURE 5.21

Forces and moments acting in the strip cross section.

wz,

θy

w
yθ

FIGURE 5.22

Rotation of the strip cross-section.
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into account that q0 does not depend on y, we arrive at the following ordinary differential equation
for gx

d2gx
dy2

� k2gx ¼ 0

in which k2 ¼ Sx=Dxy. The general solution of this equation is

gx ¼ C1 sinh kyþ C2 cosh ky

Substitution in Eq. (5.90) for Mxy yields

Mxy ¼ Dxy



2q0 þ k

�
C1 cosh kyþ C2 sinh ky

��
The constants of integration C1 and C2 can be found from the boundary conditions according to which
Mxyðy ¼ �b=2Þ ¼ 0 (see Fig. 5.20). The final solution is

V x ¼ �2Sx sinh ky

k cosh l
q0; Mxy ¼ 2Dxyq

0
�
1� cosh ky

cosh l

	
(5.93)

in which

l ¼ 1

2
kb ¼ b

2

ffiffiffiffiffiffiffi
Sx
Dxy

s
(5.94)

Consider Fig. 5.21 and express the applied torque Mt in terms of internal forces and moments V x and
Mxy as

Mt ¼
Zb=2

�b=2

�
Mxy � V xy

�
dy

Substituting Mxy and V x from Eqs. (5.93), we arrive at

Mt ¼ Dtq
0

dx
dy

h

xyM

xyM

xV

dy
y

M
M xy

xy ∂
∂

+

dy
x

M
M xy

xy ∂
∂

+

dx
x

V
V x

x ∂
∂+

FIGURE 5.23

Forces and moments acting on the strip element.
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where

Dt ¼ 4Dxyb

�
1� 1

l
tanh l

	
(5.95)

is the torsional stiffness of the strip. For a homogeneous orthotropic laminate (discussed in
Section 5.2),

Dxy ¼ 1

12
Gxyh

3; Sx ¼ Gxzh

and Eq. (5.95) reduces to

Dt ¼ 1

3
bh3Gxy

�
1� 1

l
tanh l

	
(5.96)

where

l ¼ b

h

ffiffiffiffiffiffiffiffiffiffi
3Gxz

Gxy

s

The stiffness coefficient in Eq. (5.96) is in close agreement with the exact elasticity theory solutions
(Vasiliev, 1993). Particularly, for b=h � 3 the difference between Dt given by Eq. (5.96) and the exact
result is less than 2%. For a wide strip with relatively large b, the parameter l in Eq. (5.94) is also large,
and Eq. (5.95) can be approximately reduced to

Dt ¼ 4Dxyb (5.97)

Dividing Dt by b, we can find the stiffness of the laminate with a unit width, i.e.,

Db
t ¼ 4Dxy (5.98)

This is a beam torsional stiffness which is twice as high as the plate stiffness specified by Eq. (5.77).
The difference between Eqs. (5.77) and (5.98) is expected because Eq. (5.77) corresponds to torsion
with the moments acting on all four edges of the element (see Fig. 5.16), whereas Eq. (5.98) describes
torsion with only two moments applied at the transverse edges (see Fig. 5.20).

Thus, the laminate membrane, bending, transverse shear, and torsional stiffness coefficients are
specified by Eqs. (5.65; 5.66; 5.82; 5.83 and 5.95).

5.6 QUASI-HOMOGENEOUS LAMINATES
Some typical layers considered in Chapter 4 were actually quasi-homogeneous laminates (see Sections
4.4 and 4.5), but being composed of a number of identical plies, they were treated as homogeneous
layers. The accuracy of this assumption is evaluated ahead.

5.6.1 Laminate composed of identical homogeneous layers

Consider a laminate composed of layers with different thicknesses but the same stiffnesses, i.e.,
A
ðiÞ
mn ¼ Amn for all i ¼ 1, 2, 3, . k. Then, Eqs. (5.29) and (5.32) yield

IðrÞmn ¼ Amn

r þ 1
hrþ1; I

ð0Þ
mn ¼ Amnh
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This result coincides with Eqs. (5.33), which means that a laminate consisting of layers with the same
mechanical properties is a homogeneous laminate (layer) as studied in Section 5.2.

5.6.2 Laminate composed of inhomogeneous orthotropic layers

Let the laminate have the following structure ½0�=90��p, where p ¼ 1, 2, 3, . specifies the number of
elementary cross-ply couples of 0� and 90� plies. In Section 4.4, this laminate was treated as a homo-
geneous layer with material stiffness coefficients specified by Eqs. (4.114). Taking h0 ¼ h90 ¼ 0:5 in
these equations, we have

A11 ¼ A22 ¼ 1

2

�
E1 þ E2

�
; A12 ¼ E1n12; A44 ¼ G12 (5.99)

In accordance with Eqs. (5.36), the stiffness coefficients of this layer should be

B0
mn ¼ Amnh; C0

mn ¼ 0; D0
mn ¼

1

12
Amnh

3 (5.100)

To calculate the actual stiffnesses of the laminate, we should put hi ¼ d; ti ¼ id; k ¼ 2p; e ¼ h=2;
and h ¼ 2pd (see Fig. 5.10), where d is the thickness of a unidirectional ply. Then, Eqs. (5.28) and
(5.42) yield

Bmn ¼ I
ð0Þ
mn ; Cmn ¼ I

ð1Þ
mn � pd I

ð0Þ
mn ;

Dmn ¼ I
ð2Þ
mn � 2pd I

ð1Þ
mn þ p2d2I

ð0Þ
mn

(5.101)

Here,

I
ð0Þ
11 ¼ I

ð0Þ
22 ¼ pd E1

�
1þ a

� ¼ h

2
E1

�
1þ a

�
; I

ð0Þ
12 ¼ 2pd E1 n12 ¼ E1 n12h;

I
ð0Þ
44 ¼ 2pd G12 ¼ G12h; I

ð1Þ
11 ¼ d2

2
E1

Xp
j¼1

½4jð1þ aÞ � ð3þ aÞ�;

I
ð1Þ
22 ¼ d2

2
E1

Xp
j¼1

½4jð1þ aÞ � ð3aþ 1Þ�; I
ð1Þ
12 ¼ 1

2
E1n12h

2;

I
ð1Þ
44 ¼ 1

2
G12h

2;

I
ð2Þ
11 ¼ d3

3
E1

Xp
j¼1



12j2

�
1þ a

�� 6j
�
3þ a

�þ 7þ a
�
;

I
ð2Þ
22 ¼ d3

3
E1

Xp
j¼1



12j2

�
1þ a

�� 6j
�
3aþ 1

�þ 7aþ 1
�
;

I
ð2Þ
12 ¼ 1

3
E1n12h

3; I
ð2Þ
44 ¼ 1

3
G12h

3

(5.102)

where a ¼ E2=E1.
Matching Eqs. (5.99), (5.100), (5.101), and (5.102), we can see that Bmn ¼ B0

mn, i.e., membrane
stiffnesses are the same for both models of the laminate. The coupling and bending stiffnesses are also
the same for mn ¼ 12, 44. There is no difference between the models for a ¼ 1 because the laminate
reduces in this case to a homogeneous layer.
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Summing up the series in Eqs. (5.102) and using Eqs. (5.101), we arrive at

C11 ¼ �C22 ¼ 1

2
E1d

2p
�
a� 1

�
; C12 ¼ C44 ¼ 0;

D11 ¼ D22 ¼ 1

3
E1d

3p3
�
1þ a

�
; D12 ¼ D0

12; D44 ¼ D0
44

(5.103)

Taking into account that in accordance with Eqs. (5.100) and accepted notations

D0
11 ¼ D0

22 ¼
1

3
E1d

3p3
�
1þ a

�
we can conclude that the only difference between the homogeneous and the laminated models is
associated with the coupling coefficients C11 and C22, which are equal to zero for the homogeneous
model and are specified by Eqs. (5.103) for the laminated one. Since pd ¼ h=2, we can write these
coefficients in the form

C11 ¼ �C22 ¼ 1

4
E1hd

�
1þ a

�
showing that Cmn/0 for d/0:

5.6.3 Laminate composed of angle-ply layers

Consider a laminate with the following structure ½þ f =� f �p, where p is the number of layers each
consisting of þf and �f unidirectional plies. Taking the coordinate of the reference surface e ¼ h/2,
we can write the constitutive equations, Eqs. (5.5), as

Nx ¼ B11ε
0
x þ B12ε

0
y þ C14kxy

Ny ¼ B21ε
0
x þ B22ε

0
y þ C24kxy

Nxy ¼ B44g
0
xy þ C41kx þ C42ky

Mx ¼ C14g
0
xy þ D11kx þ D12ky

My ¼ C24g
0
xy þ D21kx þ D22ky

Mxy ¼ C41ε
0
x þ C42ε

0
y þ D44kxy

(5.104)

in which

Bmn ¼ Amnh; Cmn ¼ �1

2
Amnhd; Dmn

1

12
Amnh

3

where, h is the laminate thickness, d is the ply thickness, and Amn are material stiffness coefficients
specified by Eqs. (4.72). As can be seen, the laminate is anisotropic because þf and �f plies are
located in different planes. The homogeneous model of the laminate ignores this fact and yields
C14 ¼ C24 ¼ 0. Calculations show that these coefficients, although not actually equal to zero, have
virtually no practical influence on the laminate behavior for h=d � 20.

Laminates in which any ply or layer with orientation angle þf is accompanied by the same
ply or layer but with angle �f are referred to as balanced laminates. Being composed of only
angle-ply layers, these laminates have no shear-extension ðB14 ¼ B24 ¼ 0Þ, bending-stretching,
and shear-twisting coupling ðC11 ¼ C12 ¼ C22 ¼ C44 ¼ 0Þ. As follows from Eqs. (5.104), only
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stretching-twisting and bending-shear coupling can exist in balanced laminates. These laminates
can include also 0� and 90� layers; however, membrane-bending coupling can appear in such
laminates.

5.6.4 Fiber metal laminates

Fiber metal laminates (FML) are composed of thin (0.3–0.5 mm thick) metal layers alternating
with composite plies. To provide an appropriate adhesion, the metal layers are subjected to
a special surface treatment, whereas the pre-impregnated with resin, high-strength fibers are used
to form the composite layers having a unidirectional, cross-ply, or fabric structure. Fiber metal
laminates are normally made by hot pressing, during which metal layers are formed to a required
shape and composite plies are cured. To date, there exist a number of fiber metal laminates, e.g.
ARALL (aramid fibers and aluminum), ALOR (aluminum and organic fibers), GLARE and SIAL
(glass fibers and aluminum), and TIGR (titanium and graphite fibers), described elsewhere (Bucci
et al., 1987, 1988; Vlot et al., 1992; Fridlyander et al., 1997; Vlot and Gunnik, 2001; Vermeeren,
2003). Being originally developed to increase the strength of bolted joints for composite laminates
(Sirotkin, 1973; Vorobey and Sirotkin, 1985; Kolesnikov et al., 2008), fiber metal laminates are
now used to fabricate the airframe skin of modern airplanes (Ohrloff and Horst, 1992). Rein-
forcement of carbon-epoxy laminate with titanium layers is shown in Fig. 5.24, whereas the
GLARE skin of an airplane fuselage is presented in Fig. 5.25. Compared to monolithic metals,
fiber metal laminates have the following advantages, partially combining the benefits of metals and
composites:

• Considerably (by about 60%) higher tensile strength due to higher fiber strength
• Lower (by about 15–20%) density, since the density of composite materials is usually lower than

that of metals included in the laminate
• Ability to demonstrate elastic-plastic behavior in contrast to pure composites which are normally

linear elastic
• Higher (by an order of magnitude) fatigue strength, since transverse (through the thickness) cracks

in metal layers are arrested by fibers of cross-ply or fabric composite layers
• Considerably higher damping properties which provide acoustic fatigue strength
• FML skin able to be efficiently joined with mechanical fasteners, such as bolts or rivets
• Impact damage resistance of FML usually higher than that of pure composite laminates
• Parts with variable thickness readily fabricated by terminating the layers (see Fig. 5.25)

FIGURE 5.24

Titanium reinforcement of carbon-epoxy laminate. (This picture has been provided courtesy of B. Kolesnikov.)
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On the other hand, FMLs suffer from the following shortcomings:

• Since Young’s and shear moduli of cross-ply or fabric glass or aramid plies are lower than the
corresponding characteristics of aluminum, the stiffness of FML is also lower than the stiffness
of aluminum. The same holds for FMLs composed of titanium and carbon-epoxy plies.

• In metal layers, yielding starts once the strain exceeds the yield limit, and lower modulus of FMLs
results in lower effective yield stress.

• Hot pressing of FMLs induces residual interlaminar stresses.
• Delamination caused by the impact impedes the application of FMLs in compressed areas of the

structure.
• The cost of FMLs is an order of magnitude higher than the cost of metals.

Consider the FML shown in Fig. 5.26. Since the thickness of individual layers is very small, the
laminate can be treated as quasi-homogeneous and composed of the isotropic metal layer with total

FIGURE 5.25

GLARE aircraft skin of variable thickness.
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thickness of hm and the orthotropic composite layer of thickness hc. The stiffness coefficients of the
metal (m) and composite (c) layers are

Ac
11 ¼ E1; Ac

12 ¼ E1v12; Ac
22 ¼ E2; Ac

44 ¼ G12; Ac
55 ¼ Ac

66 ¼ Gc
xz ¼ Gc

yz

Am
11 ¼ Am

22 ¼ E; Am
12 ¼ Ev; Am

44 ¼ Am
55 ¼ Am

66 ¼ G ¼ E=
�
2
�
1þ v

��
(the subscripts 1, 2, 3 correspond to the x, y, and z coordinate axes shown in Fig. 5.26). Membrane
stiffness coefficients of the laminate become

B11 ¼ E1hc þ Ehm; B22 ¼ E2hc þ Ehm; B12 ¼ E1v12hc þ Evhm
B44 ¼ G12hc þ Ghm

where, as earlier, E1:2 ¼ E1:2=ð1� v12v21Þ and E ¼ E=ð1� v2Þ. The corresponding bending stiffness
coefficients are expressed in terms of Bmn in accordance with Eqs. (5.100), i.e.,

Dmn ¼ h2

12
Bmn

where h ¼ hc þ hm is the total thickness of the laminate. Transverse shear stiffness coefficients are
specified by Eqs. (5.83) and (5.84), which yield

Sx ¼ Sy ¼ h2

hc
Gxz

þ hm
G

5.7 QUASI-ISOTROPIC LAMINATES IN THE PLANE STRESS STATE
The layers of a laminate can be arranged in such a way that the laminate will behave as an
isotropic layer under in-plane loading. Actually, the laminate is not isotropic (that is why it is

x

y

z

metal composite

FIGURE 5.26

Fiber metal laminate.
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called a quasi-isotropic laminate) because under transverse (normal to the laminate plane) loading
and under interlaminar shear its behavior is different from that of an isotropic (e.g., metal) layer.

To derive the conditions that should be met by the structure of a quasi-isotropic laminate, consider
in-plane loading with stresses sx; sy; and sxy that are shown in Fig. 5.1 and induce only in-plane strains
ε
0
x ; ε

0
y ; andg

0
xy. Taking kx ¼ ky ¼ kxy ¼ 0 in Eqs. (5.5) and introducing average (through the laminate

thickness h) stresses as

sx ¼ Nx=h; sy ¼ Ny=h; sxy ¼ Nxy=h

we can write the first three equations of Eqs. (5.5) in the following form

sx ¼ B11ε
0
x þ B12ε

0
y þ B14g

0
xy

sy ¼ B21ε
0
x þ B22ε

0
y þ B24g

0
xy

sxy ¼ B41ε
0
x þ B42ε

0
y þ B44g

0
xy

(5.105)

in which, in accordance with Eqs. (5.28) and (5.42),

Bmn ¼
Xk
i¼1

AðiÞ
mnhi; hi ¼ hi=h (5.106)

where hi is the thickness of the ith layer normalized to the laminate thickness and Amn are the stiffness
coefficients specified by Eqs. (4.72). For an isotropic layer, the constitutive equations analogous to
Eqs. (5.105) are

sx ¼ E
�
ε
0
x þ nε0y

�
; sy ¼ E

�
ε
0
y þ nε0x

�
; sxy ¼ Gg0

xy (5.107)

where

E ¼ E

1� n2
; G ¼ E

2ð1þ nÞ ¼
1

2

�
1� n

�
E (5.108)

Comparing Eqs. (5.105) and (5.107), we can see that the shear-stretching coefficients of the laminate,
i.e., B14 ¼ B41 and B24 ¼ B42, should be equal to zero. As follows from Eqs. (4.72) and Section 5.6.3,
this means that the laminate should be balanced, i.e., it should be composed of 0�;�fi (or fi and
p� fi), and 90

� layers only. Since the laminate stiffness in the x- and the y-direction must be the same,
we require that B11 ¼ B22. Using Eqs. (4.72), taking hi ¼ h for all i, and performing the appropriate
transformation, we arrive at the following condition

Xk
i¼1

cos2fi ¼ 0

As can be checked by direct substitutions, for k ¼ 1 this equation is satisfied if f1 ¼ 45� and for k ¼ 2
if f1 ¼ 0 and f2 ¼ 90�. Naturally, such one- and two-layered materials cannot be isotropic even in one
plane. So, consider the case k � 3, for which the solution has the form

fi ¼
�
i� 1

�p
k
; i ¼ 1; 2; 3;.; k (5.109)

278 CHAPTER 5 Mechanics of laminates

www.EngineeringEBooksPdf.com



Using the sums that are valid for angles specified by Eq. (5.109), i.e.,

Xk
i¼1

sin2fi ¼
Xk
i¼1

cos2fi ¼
k

2

Xk
i¼1

sin4fi ¼
Xk
i¼1

cos4fi ¼
3k

8

Xk
i¼1

sin2fi cos
2fi ¼

k

8

and calculating stiffness coefficients from Eqs. (5.106) and (4.72), we get

B11 ¼ B22 ¼ 1

8

�
3
�
E1 þ E2

�þ 2
�
E1n12 þ 2G12

��

B12 ¼ 1

8

�
E1 þ E2 þ 2

�
3E1n12 � 2G12

��

B44 ¼ 1

8

�
E1 þ E2 � 2

�
E1n12 � 2G12

��

These stiffnesses provide constitutive equations in the form of Eqs. (5.107) and satisfy the conditions
in Eqs. (5.108) which can be written as

B11 ¼ B22 ¼ E

1� n2
; B44 ¼ G

if

E ¼
�
E1 þ E2 þ 2E1n12

��
E1 þ E2 � 2E1n12 þ 4G12

�
3
�
E1 þ E2

�þ 2
�
E1n12 þ 2G12

�
n ¼ E1 þ E2 þ 2

�
3E1n12 � 2G12

�
3
�
E1 þ E2

�þ 2
�
E1n12 þ 2G12

�; G ¼ E

2ð1þ nÞ

(5.110)

Possible solutions to Eqs. (5.109) providing quasi-isotropic properties of the laminates with different
number of layers are listed in Table 5.3 for k � 6.

TABLE 5.3 Angles Providing Quasi-isotropic Properties of the Laminates.

Number of Layers, k

Orientation Angle of the ith layer

f�
1 f�

2 f�
3 f�

4 f�
5 f�

6

3 0 60 120 e e e

4 0 45 90 135 e e

5 0 36 72 108 144 e

6 0 30 60 90 120 150
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All quasi-isotropic laminates, having different structures determined by Eq. (5.109) for a given
number of layers, k, possess the same apparent modulus and Poisson’s ratio specified by Eqs. (5.110).
For typical advanced composites with the properties listed in Table 3.5, these characteristics are
presented in Table 5.4.

It follows from Tables 5.4 and 1.1 that the specific stiffness of quasi-isotropic composites with
carbon and boron fibers exceeds the corresponding characteristic of traditional isotropic structural
materials: steel, aluminum, and titanium.

Consider in more detail the behavior of the most popular quasi-isotropic laminate composed
of the layers with angles 0�; 90�; þ 45�; and � 45� (second row in Table 5.3) and equal
thicknesses. The laminate under study is made by filament winding of carbon tows HTS 5131
impregnated with epoxy resin on the flat mandrel. Material density is 1510 kg/m3, fiber volume
fraction 55%, and porosity 1.65%. Mechanical properties of unidirectional plies are:
longitudinal modulus E1 ¼ 105 GPa, transverse modulus E2 ¼ 8:9 GPa, shear modulus
G12 ¼ 5 GPa, Poisson’s ratios v12 ¼ 0:025 and v21 ¼ 0:3, tensile and compressive longitudinal

ultimate stresses sþ1 ¼ 1700 MPa and s�1 ¼ 1300 MPa, tensile and compressive transverse

ultimate stresses sþ2 ¼ 35 MPa and s�2 ¼ 170 MPa, and in-plane shear ultimate stress

s12 ¼ 35 MPa.
The experimental stress-strain diagram for this laminate is shown in Fig. 5.27 with the solid

line. As can be seen, the tensile diagram has two knees corresponding to the matrix failure (the
so-called first and second ply failures) in the plies with angles 90� and �45�. To describe
analytically the laminate deformation under uniaxial tension in the x direction (see, e.g.,
Fig. 4.33), apply the model presented in Section 4.4. Stiffness coefficients of the plies specified by
Eqs. (4.72) are

A0
11 ¼ E1; A0

12 ¼ E1v12; A0
22 ¼ E2

A45
11 ¼ A45

22 ¼
1

4

�
E1 þ E2 þ 2E12

�
A45
11 ¼ E1v12 þ 1

4

�
E1 þ E2 � 2E12

�
A90
11 ¼ E2; A90

12 ¼ E1v12; A90
22 ¼ E1

TABLE 5.4 Modulus of Elasticity and Poisson’s Ratio of Quasi-isotropic Laminates Made of Typical

Advanced Composites.

Property Glass-Epoxy
Carbon-
Epoxy

Aramid-
Epoxy

Boron-
Epoxy Boron-Al

Modulus, E (GPa) 27.0 54.8 34.8 80.3 183.1

Poisson’s ratio, n 0.34 0.31 0.33 0.33 0.28

Specific modulus
kE � 103 (m)

1290 3530 2640 3820 6910
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in which, as earlier, E1:2 ¼ E1:2=ð1� v12v21Þ; E12 ¼ E1v12 þ 2G12. Taking h0 ¼ h90 ¼ 0:25;
h45 ¼ 0:5; we can calculate the normalized membrane stiffness coefficients of the laminate
using Eqs. (5.106), i.e.,

B11 ¼ B22 ¼ 1

4

�
E1 þ 1

2

�
E1 þ E2 þ 2E12

�þ E2

�

B12 ¼ 1

4

�
E1v12 þ 2E1v12 þ 1

2

�
E1 þ E2 � 2E12

�þ E1v12

�
¼ E1v12 þ 1

8

�
E1 þ E2 � 2E12

�
(5.111)

For uniaxial tension in the x direction,

sx ¼ B11εx þ B12εy; sy ¼ B12εx þ B22εy ¼ 0; sxy ¼ 0

Thus,

sx ¼ Exεx; εy ¼ �vxyεx (5.112)

4

5
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FIGURE 5.27

Stress-strain diagram for the quasi-isotropic carbon-epoxy laminate: analysis ( ), experiment

( ).
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where

Ex ¼ B11 � B
2
12

B22
; nyx ¼ B12

B22
(5.113)

Strains in the principal ply directions are specified by Eqs. (4.69), according to which

ε
0
1 ¼ εx; ε

0
2 ¼ εy; ε

0
12 ¼ 0

ε
45
1 ¼ ε

45
2 ¼ 1

2

�
εx þ εy

�
; ε4512 ¼ ðεy þ εxÞ

ε
90
1 ¼ εy; ε

90
2 ¼ εx; ε

90
12 ¼ 0

(5.114)

The corresponding stresses can be found using Hooke’s law, i.e.,

s1 ¼ E1

�
ε1 þ v12ε2

�
; s2 ¼ E2

�
ε2 þ v21ε1

�
; s12 ¼ G12ε12 (5.115)

For the laminate under study, Eqs. (5.111) and (5.113) yield

B11 ¼ B22 ¼ 49:39 GPa; B12 ¼ 15:02 GPa
Ex ¼ 44:82 GPa; vyx ¼ 0:304

(5.116)

Then, it follows from Eqs. (5.112) and (5.114) that

εx ¼ 2:23,10�3sx; εy ¼ �0:68,10�3sx (5.117)

Here and further in this section, stresses are measured in MPa, whereas strains are expressed in %.
The theoretical stress-strain diagram is shown in Fig. 5.27 by the dashed line. For the initial loading

(before the first ply failure) the dashed line corresponding to the first equation of Eqs. (5.117) closely
coincides with the experimental solid line.

To find the stress which causes the first ply failure, we apply the strength criterion, Eq. (6.17)
derived in Section 6.1.2, i.e. �

s2

s2

	2

þ
�
s12
s12

	2

¼ 1 (5.118)

For the stresses in the plies, Eqs. (5.114) and (5.115) yield

s01 ¼ 2:51sx; s02 ¼ �0:0009sx; s012 ¼ 0

s451 ¼ 0:9sx; s
45
2 ¼ 0:097sx; s4512 ¼ �0:145sx

s901 ¼ �0:71sx; s
90
2 ¼ 0:195sx; s9012 ¼ 0

Substitution of these stresses in Eq. (5.118) allows us to conclude that the first ply failure occurs in
the 90�-layer under the stress s	x ¼ 179:5 MPa. The corresponding strains which can be found from
Eqs. (5.112) are ε

	
x ¼ 0:4% and ε

	
y ¼ 0:122%. The experimental results are sx ¼ 171 MPa

and εx ¼ 0:39%. First ply failure is indicated in Fig. 5.27 by circle 1 (analysis) and dot 1
(experiment).
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Now we consider further loading corresponding to sx � s	x . According to the model described in
Section 4.4, we should take in Eqs. (5.111) E2 ¼ 0; G12 ¼ 0; and v12 ¼ 0 for the 90�-layer. Then, we
arrive at the stiffness coefficients and elastic constants

B11 ¼ 46:98 GPa; B12 ¼ 14:3 GPa; B22 ¼ 49:39 GPa
Ex ¼ 42:83 GPa; vyx ¼ 0:29

Comparing Ex with Eq. (5.116), we can conclude that the first ply failure reduces the laminate stiff-
ness. For sx � s	x, the strains can be found as

εx ¼ ε
	
x þ 2:33ðsx � s	xÞ,10�3; εy ¼ ε

	
y � 0:68ðsx � s	xÞ,10�3

(see Section 4.4). The stresses acting in the plies are

s01 ¼ 2:51s	x þ 2:63
�
sx � s	x

�
; s02 ¼ �0:009s	x � 0:0023

�
sx � s	x

�
; s012 ¼ 0

s451 ¼ 0:9s	x þ 0:96
�
sx � s	x

�
; s452 ¼ 0:097s	x þ 0:1

�
sx � s	x

�
s4512 ¼ �0:145s	x � 0:151

�
sx � s	x

�
Substitution in Eq. (5.118) yields the stress s		x ¼ 211:4 MPa which induces the matrix failure in the
45� plies. The corresponding strain is ε		x ¼ 0:474% (circle 2 in Fig. 5.27). The experimental results
are sx ¼ 203 MPa and εx ¼ 0:48% (dot 2 in Fig. 5.27).

To describe further loading (sx � s		x ), we should take E2 ¼ 0; G12 ¼ 0; and v12 ¼ 0 for the 45�
layer and arrive at

B11 ¼ 42:57 GPa; B12 ¼ 14:9 GPa; B22 ¼ 44:97 GPa
Ex ¼ 37:63 GPa; vyx ¼ 0:33

The strains become

εx ¼ ε
		
x þ 2:66ðsx � s		x Þ,10�3; εy ¼ ε

		
y � 0:88ðsx � s		x Þ,10�3

and the stress along the fibers of the 0� layer is

s01 ¼ 2:51s	x þ 2:63
�
s		x � s	x

�þ 2:99
�
sx � s		x

�
The ultimate stress can be found using the strength condition s01 ¼ sþ1 which yields sx ¼ 601:4 MPa
and εx ¼ 1:52%. This result corresponds to circle 3 in Fig. 5.27. It follows from this figure that the
experimental ultimate stress (dot 3) is only 439 MPa, i.e., 27% lower. The reason for this difference is
discussed in Section 4.5 (see Figs. 4.69 and 4.72). Whereas the theoretical results correspond to the
laminate reinforced with continuous fibers, experimental data are obtained using 38 mm wide and 2.6
mm thick samples cut out of a 250 � 250 mm plate. Thus, the fibers of the 45� and 90� layers are not
continuous and the edge effects discussed in Section 4.5 reduce the effective strength of the laminate.
Intralaminar and interlaminar cracks in the matrix result in low efficiency of 45� plies. Indeed, if we
assume that the load is taken by 0� plies only, we arrive at sx ¼ 425 MPa, which is fairly close to the
experimental strength (439 MPa).

Under compression, the strains are specified by Eqs. (5.117) and the strength criterion, Eq. (5.118),
in which s2 ¼ s�2 shows that the first ply failure occurs in the 45� layer under stress s	x ¼ 231:3 MPa

and strain ε
	
x ¼ 0:516% (circle 4 on the graph shown in Fig. 5.27). To describe further loading
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(sx > s	x), we should take G12 ¼ 0 for the 45� layer (see Section 4.4). Then, the stiffness coefficients
become

�B11 ¼ �B22 ¼ 46:9 GPa; �B12 ¼ 17:52 GPa
Ex ¼ 40:34 GPa; vyx ¼ 0:37

The modulus obtained is close to the initial one and the knee on the experimental diagram is usually
not observed. For sx > s	x, the strains become

εx ¼ ε
	
x þ 2:48ðsx � s	xÞ,10�3; εy ¼ ε

	
y � 0:93ðsx � s	xÞ,10�3

These strains correspond to the dashed line between points 4 and 5 in Fig. 5.27. No other cracks in the
matrix appear up to the failure of the 0� ply fibers. The corresponding stress is

s01 ¼ 2:51s	x þ 2:79
�
sx � s	x

�
Putting s01 ¼ s�1 , we get sx ¼ 489:2 MPa and εx ¼ 1:156% (circle 5 in Fig. 5.27). The corresponding
experimental results, i.e., sx ¼ 490 MPa and εx ¼ 1:13% (dot 5 in Fig. 5.27), are very close to the
theoretical ones.

The quasi-isotropic laminate under discussion is widely used as the skin of modern composite
airplanes. Demonstrating relatively high tensile and compressive strength and low density, this
material is characterized, on the other hand, by relatively low stresses, inducing cracks in the matrix.
Clearly, such cracks are not acceptable under limit loads for commercial airplanes. That is why the
weight savings that such composite structures demonstrate in comparison with aluminum prototypes
are relatively low (about 10–15%).

5.8 ANTISYMMETRIC LAMINATES
In antisymmetric laminates, symmetrically located layers have mutually reversed orientations. For
example, whereas laminates ½0�=90�=90�=0�� and ½þ f =� f =� f =þ f � are symmetric, lami-
nates ½0�=90�=0�=90�� or ½0�=0�=90�=90�� and ½þ f=� f=þ f=� f� are antisymmetric. In contrast
to symmetric laminates which have maximum bending and zero coupling stiffness coefficients,
antisymmetric laminates demonstrate pronounced coupling that can be important for some particular
applications (robotic parts undergoing complicated deformation under simple loading, rotor blades
that twist under centrifugal forces, airplane wings twisting under bending, etc.).

The simplest antisymmetric laminate is a cross-ply layer consisting of two plies with angles 0 and
90�, and the same thickness h/2 (see Fig. 5.28). Taking e ¼ h=2 and using Eqs. (5.28) and (5.41), we
arrive at the following stiffness coefficients entering Eqs. (5.44)

B11 ¼ B22 ¼ h

2
ðE1 þ E2Þ; B12 ¼ E1n12h; B44 ¼ G12h;

C11 ¼ �C22 ¼ h2

8
ðE2 � E1Þ; C12 ¼ 0; C44 ¼ 0;

D11 ¼ D22 ¼ h3

24
ðE1 þ E2Þ; D12 ¼ h3

12
E1n12; D44 ¼ h3

12
G12
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Comparing these results with Eqs. (5.99) and (5.100), corresponding to a quasi-homogeneous cross-
ply laminate, we can see that the antisymmetric cross-ply laminate has the same membrane and
bending stiffnesses, but nonzero coupling coefficients C11 and C22. This fact shows, in accordance
with Eqs. (5.44), that in-plane tension or compression of this laminate induces bending.

As another typical example of an antisymmetric laminate, consider an angle-ply structure con-
sisting of two plies with the same thickness h/2 and orientation angles þf and �f, respectively (see
Fig. 5.29). The plies (or layers) are characterized by the following stiffness coefficients

A
ð1Þ
11 ¼ A

ð2Þ
11 ¼ A11; A

ð1Þ
12 ¼ A

ð2Þ
12 ¼ A12; A

ð1Þ
22 ¼ A

ð2Þ
22 ¼ A22;

A
ð1Þ
14 ¼ �A

ð2Þ
14 ¼ A14; A

ð1Þ
24 ¼ �A

ð2Þ
24 ¼ A24; A

ð1Þ
44 ¼ A

ð2Þ
44 ¼ A44

where coefficients Amn are specified by Eqs. (4.72). Taking again e ¼ h=2, we arrive at constitutive
equations in Eqs. (5.104) in which

Bmn ¼ Amnh; Cmn ¼ �h2

4
Amn; Dmn ¼ h3

12
Amn (5.119)

Comparing these coefficients with those entering Eqs. (5.104) and corresponding to a quasi-
homogeneous angle-ply laminate, we can conclude that the antisymmetric laminate has much larger

x

y

z

2h

2h

FIGURE 5.28

An antisymmetric cross-ply laminate.

z

x

y

2h

2h

φ−

φ+

FIGURE 5.29

Unbonded view of an antisymmetric angle-ply laminate.
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coupling coefficients C14 and C24, and thus a much more pronounced extension-twisting coupling
effect.

In composite technology, an antisymmetric �f angle-ply laminate is usually fabricated by
a continuous filament winding process. A typical structure made by filament winding is shown in
Fig. 4.59 of Chapter 4. As can be seen in this figure, the angle-ply layer is composed from two plies
with þf and �f orientation of the fibers and these plies are interlaced in the process of filament
winding. As a result, the structure of the layer is characterized by the distinctive regular mosaic pattern
consisting of triangular-shaped, two-ply segments (T-segments) repeating in chessboard fashion, with
alternating �f and Hf reinforcement. The T-segments are arranged in a regular geometric pattern
around the circumference and along the axis forming the so-called cross-over circles (see Fig. 4.59).
Depending on the parameters of the winding process, various numbers nT of T-segments located along
the circumference can be obtained. For a cylindrical shell, the structures corresponding to
nT ¼ 2; 4; 8; and 16 are shown in Fig. 5.30.

Each T-segment consists of two plies with either [þf/�f] or [�f/þf] structure, and the plies are
not interlaced within the T-segment area. If, for instance, a T-segment consists of the top curvilinear-
triangular-shaped ply, reinforced with fibers oriented at angle þf, and the bottom one reinforced with
an angle �f, then the neighboring adjacent T-segments have an inverse structure: their top plies are
reinforced at angle �f, and the bottom ones are reinforced at þf.

FIGURE 5.30

Filament-wound cylinders with various numbers nT of T-segments: nT ¼ 2 (a), 4 (b), 8 (c), and 16 (d).
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The traditional approach used to analyze the laminates under consideration is based on the model
discussed in Section 4.5, according to which the laminate is treated as a homogeneous orthotropic layer
with stiffness coefficients specified by Eqs. (4.72) and (4.147). The constitutive equations are taken in
accordance with Eqs. (5.44), i.e.,

Nx ¼ B11ε
0
x þ B12ε

0
y ; Ny ¼ B21ε

0
x þ B22ε

0
y ; Nxy ¼ B44g

0
xy;

Mx ¼ D11kx þ D12ky; My ¼ D21kx þ D22ky; Mxy ¼ D44kxy

where

Bmn ¼ Amnh; Dmn ¼ h3

12
Amn

and Amn are specified by Eqs. (4.72). The approach based on these constitutive equations corresponds
to an infinite number of T-segments, i.e., to nT/N.

Considering a T-segment as an antisymmetric laminate, we must apply a more general version of
Eqs. (5.44) including the coupling stiffness coefficients, i.e.,

Nx ¼ B11ε
0
x þ B12ε

0
y þ C14kxy;

Ny ¼ B21ε
0
x þ B22ε

0
y þ C24kxy;

Nxy ¼ B44g
0
xy þ C41kx þ C42ky;

Mx ¼ C14g
0
xy þ D11kx þ D12ky;

My ¼ C24g
0
xy þ D21kx þ D22ky;

Mxy ¼ C41ε
0
x þ C42ε

0
y þ D44kxy;

where the stiffness coefficients are specified by Eqs. (5.119). It is important that, whereas for the
laminate with [þf/�f] structure shown in Fig. 5.29 the coupling stiffness coefficient is negative, for
the adjacent T-segment having [�f/þf], this coefficient is positive. This difference results in the
specific behavior of the two different laminate structures of T-segments that exhibit antisymmetric
opposite anisotropic stretching-twisting and bending-shear coupling effects alternating along the
circumference and axis of rotation of the shell. Due to the general alternating pattern of the T-segments
(chessboard structure) and their interactions within a layer, the anisotropic effects are balancing each
other inducing, at the same time, additional stresses in the plies.

To study the effect of the filament-wound mosaic pattern, the stress analysis of cylindrical shells
has been performed (Morozov, 2006). The shells under consideration consist of one filament-wound
�f angle-ply layer and are loaded with internal pressure. The solid modelling (Solid Edge) and
finite-element analysis (MSC NASTRAN) techniques have been employed to model the shells with
different mosaic pattern structures. Each shell is partitioned into triangular-shaped T-segments
according to the particular filament-wound pattern. Correspondingly, the finite elements are also
combined into the respective alternating groups. The material structure of the finite elements for each
of these groups is defined as either [þf/�f] or [�f/þf] laminate. The cylindrical shells under
consideration are reinforced with a winding angle f ¼ �60

�
and loaded with internal pressure 1 MPa.

The mechanical properties of the unidirectional glass-epoxy composite ply correspond to Table 3.5.
The ends of the shells are clamped and the distance between the ends (length of the cylinder) is fixed
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and equal to 140 mm. The diameter of the cylinder is 60 mm and the total thickness of the wall is
h ¼ 1.4 mm (with the thickness of the unidirectional ply being 0:7 mm). The stress analysis was
performed for four types of shells.

The first cylinder is modeled with a homogeneous orthotropic angle-ply layer and analyzed using
finite-element models available within the MSC NASTRAN software. This model corresponds to
nT/N. The other three cylinders have 2, 4, and 8 triangular-shaped segments around the circum-
ference (nT ¼ 2; 4 and 8) and are analyzed using the FE modelling of the shells with allowance for
their mosaic structure. The finite-element models and the deformed shapes for
nT/N; nT ¼ 2; and nT ¼ 4 are shown in Fig. 5.31.

As can be seen, the deformation of the shells distinctively reflects the corresponding filament-
wound mosaic texture. The calculated maximum values of stresses along and across fibers, s1 and
s2, and shear stresses, s12, acting in the plies are presented in Table 5.5. It can be noted from this table
that the maximum stresses strongly depend on the laminate structure. The traditional model (nT/N)
significantly underestimated the stresses. With an increase in the structural parameter nT , the stresses
acting along the fibers reduce and approach the value following from the traditional laminate model.

Thus, it can be expected that the higher the parameter nT , the higher the strength of �f angle-ply
filament-wound structures. This prediction is confirmed by the test results presented in Fig. 5.32
(Vorobey et al., 1992). Carbon-phenolic cylindrical shells with the geometrical parameters given
previously have been loaded with internal pressure up to failure. As follows from Fig. 5.32, the
increase of parameter nT from 2 (Fig. 5.32a) to 16 (Fig. 5.32c) results in a significant increase in the
burst pressure.

In conclusion, it should be noted that the effect under discussion shows itself mainly in �f angle-
ply structures consisting of two symmetric plies. For laminated structures consisting of a system of�f

angle-ply layers, the coupling stiffness coefficient which causes the specific behavior discussed earlier
is given in notations to Eqs. (5.104) and has the form

Cmn ¼ �1

2
Amnhd; (5.120)

in which h is the laminate thickness and d is the thickness of the ply. Since d is relatively small, the
coefficient Cmn in Eq. (5.120) is smaller than the corresponding coefficient in Eqs. (5.119), and the
coupling effect caused by this coefficient is less pronounced.

5.9 SANDWICH STRUCTURES
Sandwich structures are three-layered laminates consisting of thin facings and a light-weight
honeycomb or foam core as in Figs. 5.33 and 5.34. Since the in-plane stiffnesses of the facings are
much higher than those of the core, whereas their transverse shear compliance is much lower than the
same parameter of the core, the stiffness coefficients of sandwich structures are usually calculated
presuming that the in-plane stiffnesses of the core are equal to zero. The transverse shear stiffnesses of
the facings are assumed to be infinitely high. For the laminate shown in Fig. 5.35, this means that

A
ð2Þ
mn ¼ 0; mn ¼ 11; 12; 14; 24; 44;

A
ð1;3Þ
mn /N; mn ¼ 55; 56; 66
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TABLE 5.5 Maximum Stresses in the Plies of the Shells with Various Filament-wound Structures.

Structural
Parameter, nT s1 (MPa) s2 (MPa) s21 (MPa)

N 24.9 3.79 1.98

2 40.99 17.7 4.82

4 33.2 20.3 5.33

8 27.30 18.2 4.94

∞→Tn

2=Tn

                      4=Tn

(a) (b)

FIGURE 5.31

Finite-element models (a) and deformed shapes (b) of the cylinders with nT/N; nT ¼ 2; and nT ¼ 4.
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FIGURE 5.32

Dependencies of the axial (εx ) and the circumferential (εy ) strains on internal pressure (p) for cylindrical shells

with nT ¼ 2- (a), nT ¼ 4- (b), nT ¼ 16- (c), and the corresponding failure modes (d).

FIGURE 5.33

Composite sandwich panel with honeycomb core.
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As a result, the coefficients in Eqs. (5.29) become

IðrÞmn ¼ 1

r þ 1

�
Að1Þ
mnt

rþ1
1 þ Að3Þ

mn

�
trþ1
3 � trþ1

2

��
; (5.121)

where mn ¼ 11, 12, 22, 14, 24, and 44. Membrane, bending, and coupling stiffness coefficients can be
determined using Eqs. (5.28). Transverse shear stiffnesses, Eqs. (5.83) and (5.84), for an orthotropic
core, can be presented in the form

Sx ¼ h2

h2
Gxz; Sy ¼ h2

h2
Gyz

where Gxz and Gyz are the shear moduli of the core.

FIGURE 5.34

Composite sandwich rings with foam core.
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FIGURE 5.35

Sandwich laminate with two laminated facings (1 and 3) and foam core (2).
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5.10 COORDINATE OF THE REFERENCE PLANE
Stiffness coefficients specified by Eqs. (5.28) include the coordinate of the reference plane e (see
Fig. 5.1) that, being appropriately pre-assigned, allows us to simplify the constitutive equations for the
laminate. As was shown in Sections 5.2 and 5.4, taking the middle plane as the reference plane, i.e.,
putting e ¼ h=2 for homogeneous and symmetric laminate, we have Cmn ¼ 0, and the constitutive
equations take their simplest form with zero membrane-bending coupling terms.

Now, a natural question as to whether it is possible to reduce Eqs. (5.5) to this form in the general
case arises. Taking Cmn ¼ 0 in Eqs. (5.28), we have

e ¼ I
ð1Þ
mn

I
ð0Þ
mn

(5.122)

It is important that the reference plane should be one and the same for all mn ¼ 11, 12, 22, 14, 24, and
44, and these six equations should give the same value of e. In the general case, this is not possible, so
a universal reference plane providing Cmn ¼ 0 cannot exist.

However, there are some other particular laminates (in addition to homogeneous and symmetric
structures) for which this condition can be met. For example, consider a laminate composed of
isotropic layers (see Sections 4.1 and 5.2). For such laminates,

A
ðiÞ
11 ¼ A

ðiÞ
22 ¼ Ei

1� n2i
; A

ðiÞ
12 ¼ Eini

1� n2i
; A

ðiÞ
44 ¼ Ei

2ð1þ niÞ
and in accordance with Eqs. (5.42),

I
ð0Þ
11 ¼ I

ð0Þ
22 ¼

Xk
i¼1

Eihi

1� n2i
; I

ð0Þ
12 ¼

Xk
i¼1

Einihi

1� n2i
; I

ð0Þ
44 ¼

Xk
i¼1

Eihi
2ð1þ niÞ;

I
ð1Þ
11 ¼ I

ð1Þ
22 ¼ 1

2

Xk
i¼1

Eihi

1� n2i
ðti þ ti�1Þ; I

ð1Þ
12 ¼ 1

2

Xk
i¼1

Einihi

1� n2i
ðti þ ti�1Þ;

I
ð1Þ
44 ¼ 1

2

Xk
i¼1

Eihi
2ð1þ niÞ ðti þ ti�1Þ

As can be seen, these parameters, when substituted into Eqs. (5.122), do not provide one and the same
value of e. However, if Poisson’s ratio is the same for all the layers, i.e., ni ¼ n (i ¼ 1, 2, 3,., k), we get

e ¼
Xk

i¼1
Eihiðti þ ti�1Þ

2
Xk

i¼1
Eihi

For practical analysis, this result is often used even if the Poisson’s ratios of the layers are different. In
these cases, it is assumed that all the layers can be approximately characterized with some average
value of Poisson’s ratio, i.e.,

n ¼ 1

h

Xk
i¼1

nihi
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As another example, consider the sandwich structure described in Section 5.9 (see Fig. 5.35). In the
general case, we again fail to find the desired reference plane. However, if we assume that the facings
are made of one and the same material (only the thicknesses are different), Eqs. (5.121) and (5.122)
yield

e ¼ h21 þ h3
�
h3 þ 2h1 þ 2h2

�
2ðh1 þ h3Þ

Returning to the general case, we should emphasize that the reference plane providing Cmn ¼ 0 for all
themn values cannot be found in the general case only if the laminate structure is given. If the stacking-
sequence of the layers is not pre-assigned and there is a sufficient number of layers, they can be
arranged in such a way that Cmn ¼ 0. Indeed, consider a laminate in Fig. 5.36 and suppose that its
structure is, in general, not symmetric, i.e., that z0iszi and k0sk. Using plane z ¼ 0 as the reference
plane, we can write the membrane-bending coupling coefficients as

Cmn ¼ 1

2

Xk=2
i¼1

AðiÞ
mnhiðzi þ zi�1Þ � 1

2

Xk0=2
i0¼1

Aði0Þ
mnh

0
iðz0i þ z0i�1Þ

where zi � 0 and z0i � 0. Introduce a new layer coordinate zi ¼ ðzi þ zi�1Þ=2, which is the distance
between the reference plane of the laminate and the middle plane of the ith layer. Then, the condition
Cmn ¼ 0 yields

Xk=2
i¼1

AðiÞ
mnhizi ¼

Xk0=2
i0¼1

Aði0Þ
mnh

i
0z
0
i

Now assume that we have a group of identical layers or plies with the same stiffness coefficients Amn

and thicknesses. For example, the laminate could include a 1.5 mm thick 0� unidirectional layer which

z

k

i

1−iz iz

1−′iz iz′

i′

k ′

e

x

FIGURE 5.36

Layer coordinates with respect to the reference plane.
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consists of 10 plies (the thickness of an elementary ply is 0.15 mm). Arranging these plies above ðziÞ
and below ðz0iÞ the reference plane in such a way thatX10

j¼1

�
zj � z0j

�
¼ 0 (5.123)

we have no coupling for this group of plies. Doing the same with the other layers, we arrive at
a laminate with no coupling. Naturally, some additional conditions following from the fact that the
laminate is a continuous structure should be satisfied. However even with these conditions, Eq. (5.123)
can be met with several systems of ply coordinates, and a symmetric arrangement of the plies ðzj ¼ z0jÞ
is only one of these systems. The general analysis of the problem under discussion has been presented
by Verchery (1999).

Return to laminates with pre-assigned stacking-sequences for the layers. It follows from Eqs.
(5.122) that we can always make one of the coupling stiffness coefficients equal to zero, e.g., taking
e ¼ est where

est ¼ I
ð1Þ
st

I
ð0Þ
st

(5.124)

we get Cst ¼ 0 (the rest of the coupling coefficients are not zero).
Another way to simplify the equations for stiffnesses is to take e ¼ 0, i.e., to take the surface of the

laminate as the reference plane. In this case, Eqs. (5.28) take the form

Bmn ¼ Ið0Þmn ; Cmn ¼ Ið1Þmn ; Dmn ¼ Ið2Þmn

In practical analysis, the constitutive equations for laminates with arbitrary structure are often
approximately simplified using the method of reduced or minimum bending stiffnesses described, e.g.,
by Ashton (1969), Karmishin (1974), and Whitney (1987). To introduce this method, consider the
corresponding equation of Eqs. (5.28) for bending stiffnesses, i.e.,

Dmn ¼ Ið2Þmn � 2eIð1Þmn þ e2Ið0Þmn (5.125)

and find the coordinate e delivering the minimum value of Dmn. Using the minimum conditions

d

de
Dmn ¼ 0;

d2

de2
Dmn > 0

we have

e ¼ emn ¼ I
ð1Þ
mn

I
ð0Þ
mn

(5.126)

This result coincides with Eq. (5.124) and yields Cmn ¼ 0. Thus, calculating I
ð1Þ
mn and I

ð0Þ
mn , we use for

each mn ¼ 11; 12; 22; 14; 24 and 44 the corresponding value emn specified by Eq. (5.126). Substi-
tution yields

Dr
mn ¼ Ið2Þmn �

�
I
ð1Þ
mn

�2

I
ð0Þ
mn

; Cr
mn ¼ 0 (5.127)
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and the constitutive equations, Eqs. (5.5), become uncoupled. Naturally, this approach is only
approximate because the reference plane coordinate should be the same for all stiffnesses, but it is not
in the method under discussion. It follows from the foregoing derivation that the coefficients Dr

mn
specified by Eqs. (5.127) do not exceed the actual values of bending stiffnesses, i.e., Dr

mn � Dmn. So,
the method of reduced bending stiffnesses leads to underestimation of the laminate bending stiffness.
In conclusion, it should be noted that this method is not formally grounded and can yield both good and
poor approximation of the laminate behavior, depending on the laminate structure.

5.11 STRESSES IN LAMINATES
The constitutive equations derived in the previous sections of this chapter relate forces and
moments acting on the laminate to the corresponding generalized strains. For composite structures,
forces and moments should satisfy equilibrium equations, whereas strains are expressed in terms of
displacements. As a result, a complete set of equations is formed allowing us to find forces,
moments, strains, and displacements corresponding to a given system of loads acting on the
structure. We assume that this problem has already been solved, i.e., we know either generalized
strains ε;g; and k entering Eqs. (5.5) or forces and moments N and M. If the latter is the case, we
can use Eqs. (5.5) to find ε;g; and k. Now, to complete the analysis, we need to determine the
stresses acting in each layer of the laminate.

To do this, we should first find strains in any ith layer using Eqs. (5.3) which yield

ε
ðiÞ
x ¼ ε

0
x þ zikx; ε

ðiÞ
y ¼ ε

0
y þ ziky; gðiÞxy ¼ g0

xy þ zikxy (5.128)

where zi is the layer normal coordinate changing over the thickness of the ith layer. If the ith layer is
orthotropic with principal material axes coinciding with axes x and y (e.g., made of fabric), Hooke’s
law provides the stresses we need, i.e.,

sðiÞx ¼ E
ðiÞ
x

�
ε
ðiÞ
x þ nðiÞxy ε

ðiÞ
y

�
; sðiÞy ¼ E

ðiÞ
y

�
ε
ðiÞ
y þ nðiÞyx ε

ðiÞ
x

�
; sðiÞxy ¼ GðiÞ

xyg
ðiÞ
xy (5.129)

where E
ðiÞ
x;y ¼ E

ðiÞ
x;y=ð1� n

ðiÞ
xy n

ðiÞ
yx Þ and E

ðiÞ
x ;E

ðiÞ
y ;G

ðiÞ
xy ; n

ðiÞ
xy ; and n

ðiÞ
yx are the elastic constants of the layer

referred to the principal material axes. For an isotropic layer (e.g., metal or polymeric), we should take
in Eqs. (5.129) E

ðiÞ
x ¼ E

ðiÞ
y ¼ Ei; n

ðiÞ
xy ¼ n

ðiÞ
yx ¼ ni; and Gi

xy ¼ Gi ¼ Ei=2ð1þ niÞ.
Consider a layer composed of unidirectional plies with orientation angle fi. Using Eqs. (4.69), we

can express strains in the principal material coordinates as

ε
ðiÞ
1 ¼ ε

ðiÞ
x cos2fi þ ε

ðiÞ
y sin2fi þ g

ðiÞ
xy sinfi cosfi;

ε
ðiÞ
2 ¼ ε

ðiÞ
x sin2fi þ ε

ðiÞ
y cos2fi � g

ðiÞ
xy sinfi cosfi;

g
ðiÞ
12 ¼ 2

�
ε
ðiÞ
y � ε

ðiÞ
x

�
sinfi cosfi þ g

ðiÞ
xy cos2fi;

(5.130)

and find the corresponding stresses, i.e.,

s
ðiÞ
1 ¼ E

ðiÞ
1

�
ε
ðiÞ
1 þ n

ðiÞ
12ε

ðiÞ
2

�
; s

ðiÞ
2 ¼ E

ðiÞ
2

�
ε
ðiÞ
2 þ n

ðiÞ
21ε

ðiÞ
1

�
; sðiÞ12 ¼ G

ðiÞ
12g

ðiÞ
12 (5.131)
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where E
ðiÞ
1;2 ¼ E

ðiÞ
1;2=ð1� n

ðiÞ
12n

ðiÞ
21Þ and EðiÞ

1 ;E
ðiÞ
2 ;G

ðiÞ
12 ; n

ðiÞ
12 ; n

ðiÞ
21 are the elastic constants of a unidirectional

ply. Thus, Eqs. (5.128)–(5.131) allow us to find in-plane stresses acting in each layer or in an
elementary composite ply.

Compatible deformation of the layers is provided by interlaminar stresses sxz; syz; and sz. To find
these stresses, we need to use the three-dimensional equilibrium equations, Eqs. (2.5), which yield

vsxz
vz

¼ �
�
vsx

vx
þ vsxy

vy

	
;

vsyz
vz

¼ �
�
vsy

vy
þ vsxy

vx

	
;

vsz

vz
¼ �

�
vsxz
vx

þ vsxz
vy

	 (5.132)

Substituting stresses sx; sy; and sxy from Eqs. (5.4), and integrating Eqs. (5.132) with due regard to the
forces that can act on the laminate surfaces, we can calculate the transverse shear and normal stresses
sxz; syz; and sz.
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Failure criteria and strength
of laminates 6
Consider a laminate consisting of orthotropic layers or plies whose principal material axes 1, 2, and
3, in general, do not coincide with the global coordinates of the laminate (x, y, z) and assume that this
layer or ply is in a state of plane stress as depicted in Fig. 6.1. It should be emphasized that, in contrast
to a laminate that can be anisotropic and demonstrate coupling effects, the layer under consideration is
orthotropic and is referred to its principal material axes. Using the procedure that is described in
Section 5.11, we can find stresses s1, s2, and s12 corresponding to a given system of loads acting on the
laminate. The problem that we approach now is to evaluate the laminate load-carrying capacity, i.e., to
calculate the loads that cause failure of the individual layers and of the laminate as a whole. For a layer,
this problem can be readily solved if we have a failure or strength criterion

Fðs1; s2; s12Þ ¼ 1 (6.1)

specifying the combination of stresses that causes layer fracture. In other words, the layer functions
while F < 1, fails if F ¼ 1, and does not exist as a load-carrying structural element if F > 1. In the
relevant stress space, i.e., s1, s2, and s12, Eq. (6.1) specifies the so-called failure surface (or failure
envelope) shown in Fig. 6.2. Each point in this space corresponds to a particular stress state, and if
a point is inside the surface, the layer withstands the corresponding combination of stresses
without failure.

Thus, the problem of strength analysis is reduced to the construction of a failure criterion in its
analytical, Eq. (6.1), or graphical, Fig. 6.2, form. Up to the present time, numerous variants of these
forms have been proposed for traditional and composite structural materials (Gol’denblat and Kopnov,
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FIGURE 6.1

An orthotropic layer or ply in a plane stressed state.
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1968; Wu, 1974; Rowlands, 1975; Tsai and Hahn, 1975; Vicario and Toland, 1975; Hashin, 1980; etc.)
and these have been described by the authors of many textbooks on composite materials. Omitting
the history and comparative analysis of particular criteria that can be found elsewhere (Hinton
et al., 2004), we mainly discuss here the practical aspects of the problem.

In addition, in many applications, a progressive failure analysis of composite laminates is required
to predict their mechanical behavior under various loading conditions. We present a combined elas-
toplastic damage model and a strain-driven implicit integration procedure for fiber reinforced
composite materials and structures that involves a consideration of their mechanical response prior to
the initiation of damage, prediction of damage initiation, and modeling of postfailure behavior.

6.1 FAILURE CRITERIA FOR AN ELEMENTARY COMPOSITE LAYER OR PLY
There exist, in general, two approaches to construct the failure surface, the first of which can be
referred to as the microphenomenological approach. The term “phenomenological” means that the
actual physical mechanisms of failure at the microscopic material level are not considered and that we
deal with stresses and strains, i.e., with conventional and not actually observed state variables intro-
duced in Chapter 2. In the micro-approach, we evaluate the layer strength using microstresses acting in
the fibers and in the matrix and failure criteria proposed for homogeneous materials. To a certain extent
(see, e.g., Skudra et al., 1989), this approach requires the minimum number of experimental material
characteristics, i.e., only those determining the strengths of fibers and matrices. As a result, the
coordinates of all the points of the failure surface in Fig. 6.2 including points A, B, and C corre-
sponding to uniaxial and pure shear loading are found by calculation. To do this, we should simulate
the layer or the ply with a suitable microstructural model (see, e.g., Section 3.3), apply a pre-assigned
system of average stresses s1, s2, and s12 (e.g., corresponding to vector 0D in Fig. 6.2), find the
stresses acting in the material components, specify the failure mode that can be associated with the
fibers or with the matrix, and determine the ultimate combination of average stresses corresponding,
for example, to point D in Fig. 6.2. Thus, the whole failure surface can be constructed. However, the
uncertainty and approximate character of the existing micromechanical models discussed in Section
3.3 result in relatively poor accuracy using this method which, being in principle rather promising, has
not found wide practical application at the present time.
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FIGURE 6.2

Failure surface in the stress space.
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The second basic approach, which can be referred to as the macrophenomenological one, deals
with the average stresses s1, s2, and s12 shown in Fig. 6.1 and ignores the ply’s microstructure. For
a plane stress state in an orthotropic ply, this approach requires at least five experimental results
specifying material strength under:

• Longitudinal tension, sþ1 (point A in Fig. 6.2)
• Longitudinal compression, s�1
• Transverse tension, sþ2 (point B in Fig. 6.2)
• Transverse compression, s�2
• In-plane shear, s12 (point C in Fig. 6.2)

Obviously, these data are insufficient to construct the complete failure surface, and two possible ways
leading to two types of failure criteria can be used.

The first type, referred to as structural failure criteria, involves some assumptions concerning the
possible failure modes that can help us to specify the shape of the failure surface. According to the
second type, which provides a failure surface of an approximate form, experiments simulating a set of
complicated stress states (such that two or all three stresses s1, s2, and s12 are induced simultaneously)
are undertaken. As a result, a system of points, similar to point D in Fig. 6.2, is determined and
approximated with some suitable surface.

The experimental data that are necessary to construct the failure surface are usually obtained by
testing thin-walled tubular specimens such as those shown in Figs. 6.3 and 6.4. These specimens
are loaded with internal or external pressure p, tensile or compressive axial forces P, and end torques
T, providing a prescribed combination of axial stress sx, circumferential stress sy, and shear stress sxy
that can be calculated as

sx ¼ P

2pRh
; sy ¼ pR

h
; sxy ¼ T

2pR2h

Here, R is the cylinder radius and h is its thickness. For the tubular specimens shown in Fig. 6.4, which
were made from unidirectional carbon-epoxy composite by circumferential winding, sx ¼ s2,
sy ¼ s1, and sxy ¼ s12 (see Fig. 6.1).

We shall now consider typical structural and approximation strength criteria developed for typical
composite layers and plies.

6.1.1 Maximum stress and strain criteria

These criteria belong to a structural type and are based on the assumption that there can exist three
possible modes of failure caused by stresses s1, s2, and s12 or strains ε1, ε2, and g12 when they reach
the corresponding ultimate values.

The maximum stress criterion can be presented in the form of the following inequalities

s1 � sþ1 ; s2 � sþ2 if s1 > 0 s2 > 0

js1j � s�1 ; js2j � s�2 if s1 < 0 s2 < 0

js12j � s12

(6.2)
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It should be noted here, and subsequently, that all the ultimate stresses s and s including compressive
strength values are taken as positive quantities. The failure surface corresponding to the criterion in
Eqs. (6.2) is shown in Fig. 6.5. As can be seen, according to this criterion, failure is associated with
independently acting stresses, and any possible stress interaction is ignored.

It can be expected that the maximum stress criterion adequately describes the behavior of those
materials in which stresses s1, s2, and s12 are taken by different structural elements. A typical
example of such a material is the fabric composite layer discussed in Section 4.7. Indeed, warp and
filling yarns (see Fig. 4.87) working independently provide material strength under tension and
compression in two orthogonal directions (1 and 2), whereas the polymeric matrix controls the layer
strength under in-plane shear. A typical failure envelope in the plane ðs1; s2Þ for a glass-epoxy fabric
composite is shown in Fig. 6.6. The corresponding results in the plane ðs1; s12Þ, but for a different
glass fabric experimentally studied by Annin and Baev (1979), are presented in Fig. 6.7. It follows

FIGURE 6.3

Glass-epoxy fabric test tubular specimens.
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from Figs. 6.6 and 6.7 that the maximum stress criterion provides a satisfactory prediction of the
strength for fabric composites within the accuracy determined by the scatter of experimental results.
As has been already noted, this criterion ignores the interaction of stresses. However, this interaction
occurs in fabric composites that are loaded with compression in two orthogonal directions, because
compression of the filling yarns increases the strength in the warp direction and vice versa. The
corresponding experimental results from Belyankin et al. (1971) are shown in Fig. 6.8. As can be
seen, there is a considerable discrepancy between the experimental data and the maximum stress
criterion shown with solid lines. However, even in such cases, this criterion is sometimes used to
design composite structures because it is simple and conservative, i.e., it underestimates material
strength, thus increasing the safety factor for the structure under design. There exist fabric composites

FIGURE 6.4

Carbon-epoxy test tubular specimens made by circumferential winding (the central cylinder failed under axial

compression and the right one under torsion).

12τ

12τ

−− 2σ
−− 1σ +

1σ

+
2σ

1σ

2σ

FIGURE 6.5

Failure surface corresponding to maximum stress criterion.
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for which the interaction of normal stresses is exhibited in tension as well. An example of such
a material is presented in Fig. 6.9 (experimental data from Gol’denblat and Kopnov (1968)). Natu-
rally, the maximum stress criterion (solid lines in Fig. 6.9) should not be used in this case because it
overestimates the material strength, and the structure can fail under loads that are lower than those
predicted by this criterion.
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FIGURE 6.6

Failure envelope for glass-epoxy fabric composite in plane (s1; s2).

( ) maximum stress criterion, Eqs. (6.2);

( ) experimental data.
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FIGURE 6.7

Failure envelope for glass-epoxy fabric composite in plane (s1; s12).
( ) maximum stress criterion, Eqs. (6.2);

( ) experimental data.
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FIGURE 6.8

Failure envelope for glass-phenolic fabric composite loaded with compression in plane (s1; s2).

( ) maximum stress criterion, Eqs. (6.2);

( ) polynomial criterion, Eqs. (6.16);

( ) experimental data.
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FIGURE 6.9

Failure envelope for glass-epoxy fabric composite in plane (s1; s2).

( ) maximum stress criterion, Eqs. (6.2);

( ) approximation criterion, Eqs. (6.11), (6.12);

( ) approximation criterion, Eqs. (6.15);

( ) experimental data.
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The foregoing discussion concerns fabric composites. Now consider a unidirectional ply and try to
apply the maximum stress criterion in this situation. First of all, since the longitudinal strength of the
ply is controlled by the fibers whose strength is much higher than that of the matrix, it is reasonable to
neglect the interaction of stress s1 on one side and stresses s2 and s12 on the other side. In other words,
we can apply the maximum stress criterion to predict material strength under tension or compression in
the fiber direction and, hence, use the first part of Eqs. (6.2), i.e.,

s1 � sþ1 if s1 > 0

js1j � s�1 if s1 < 0
(6.3)

Actually, there exist unidirectional composites with a very brittle matrix (carbon or ceramic) for which
the other conditions in Eqs. (6.2) can be also applied. As an example, Fig. 6.10 displays the failure
envelope for a carbon-carbon unidirectional material (experimental data from Vorobey et al., 1992).
However, for the majority of unidirectional composites, the interaction of transverse normal and shear
stresses is essential and should be taken into account. This means that we should apply Eq. (6.1)
but can simplify it as follows

Fðs2; s12Þ ¼ 1 (6.4)

The simplest way to induce a combined stress state for a unidirectional ply is to use the off-axis tension
or compression test as discussed in Section 4.3.1. Applying stress sx as in Figs. 4.22 and 4.23, we have
stresses s1, s2, and s12 specified by Eqs. (4.78). Then, Eqs. (6.2) yield the following ultimate stresses:

For sx > 0,

sx ¼ sþ1
cos2f

; sx ¼ sþ2
sin2f

; sx ¼ s12
sinf cosf

(6.5)
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FIGURE 6.10

Failure envelope for carbon-carbon unidirectional composite in plane (s2; s12).
( ) maximum stress criterion, Eqs. (6.2);

( ) experimental data.
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For sx < 0,

sx ¼ s�1
cos2f

; sx ¼ s�2
sin2f

; sx ¼ s12
sinf cosf

(6.6)

The actual ultimate stress is the minimum sx value of the three values provided by Eqs. (6.5) for
tension or Eqs. (6.6) for compression. The experimental data of S.W. Tsai (taken from Jones (1999))
and corresponding to a glass-epoxy unidirectional composite are presented in Fig. 6.11. As can be
seen, the maximum stress criterion (solid lines) demonstrates fair agreement with experimental results
for angles close to 0 and 90� only. An important feature of this criterion belonging to a structural
type is its ability to predict the failure mode. Curves 1, 2, and 3 in Fig. 6.11 correspond to the first,
the second, and the third equations of Eqs. (6.5) and (6.6). It follows from Fig. 6.11a that fiber failure
occurs only for f ¼ 0�. For 0�< f < 30�, material failure is associated with in-plane shear, whereas
for 30�< f � 90�, it is caused by the transverse normal stress s2.

The maximum strain failure criterion is similar to the maximum stress criterion discussed earlier,
but is formulated in terms of strains, i.e.,

ε � ε
þ
1 ; ε2 � ε

þ
2 if ε1 > 0 ε2 > 0

jε1j � ε
�
1 ; jε2j � ε

�
2 if ε1 < 0 ε2 < 0

jg12j � g12

(6.7)
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FIGURE 6.11

Dependence of the stress on the fiber orientation angle for off-axis tension (a) and compression (b) of glass-epoxy

unidirectional composite.

maximum stress criterion, Eqs. (6.2);

approximation criterion, Eqs. (6.3) and (6.17);

approximation criterion, Eqs. (6.3) and (6.18).
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where

ε1 ¼ s1

E1
� n12

s2

E2
; ε2 ¼ s2

E2
� n12

s1

E1
; g12 ¼

s12
G12

(6.8)

The maximum strain criterion ignores the strain interaction but allows for the stress interaction caused
by Poisson’s effect. This criterion provides results that are generally closely similar to those following
from the maximum stress criterion.

There exists a unique stress state which can only be studied using the maximum strain criterion.
This is longitudinal compression of a unidirectional ply as discussed earlier in Section 3.4.4. Under
this type of loading, only longitudinal stress s1 is induced, whereas s2 ¼ 0 and s12 ¼ 0. Never-
theless, fracture is accompanied with cracks parallel to the fibers (see Fig. 6.12, showing tests
performed by Katarzhnov (1982)). These cracks are caused by the transverse tensile strain ε2

induced by Poisson’s effect. The corresponding strength condition follows from Eqs. (6.7) and (6.8)
and can be written as

js1j � ε
þ
2

E1

n21

It should be emphasized that the test shown in Fig. 6.12 can be misleading because transverse
deformation of the ply is not restricted in this test, whereas it is normally restricted in actual laminated

FIGURE 6.12

Failure modes of a unidirectional glass-epoxy composite under longitudinal compression.
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composite structural elements. Indeed, a long cylinder with material structure ½0�11� being tested under
compression yields a material strength s�1 ¼ 300 MPa, whereas the same cylinder with material
structure ½0�10=90�� gives s�1 ¼ 505 MPa (Katarzhnov, 1982). Thus, if we change one longitudinal ply
for a circumferential ply which practically does not bear any of the load in compression along the
cylinder axis, but restricts its circumferential deformation, we increase the material strength in
compression by 68.3%. Correspondingly, the failure mode becomes quite different (see Fig. 6.13).

6.1.2 Approximation strength criteria

In contrast to structural strength criteria, approximation criteria do not indicate the mode of failure and
are constructed by approximation of available experimental results with some appropriate function
depending on stresses s1; s2, and s12. The simplest and the most widely used criterion is a second-
order polynomial approximation, typical forms of which are presented in Fig. 6.14. In the stress
space shown in Fig. 6.2, the polynomial criterion corresponding to Fig. 6.14a can be written as

F
�
s1; s2; s12

� ¼ R11s
2
1 þ R22s

2
2 þ S12s

2
12 ¼ 1 (6.9)

To determine the coefficients R and S, we need to perform three tests providing material strength under
uniaxial loading in 1 and 2 directions and in shear. Then, applying the following conditions

Fðs1 ¼ s1; s2 ¼ 0; s12 ¼ 0Þ ¼ 1

Fðs1 ¼ 0; s2 ¼ s2; s12 ¼ 0Þ ¼ 1

Fðs1 ¼ 0; s2 ¼ 0; s12 ¼ s12Þ ¼ 1

(6.10)

(a) (b)

FIGURE 6.13

Failure mode of a glass-epoxy tubular specimen with 10 longitudinal plies and one outside circumferential ply:

(a) inside view;

(b) outside view.
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we can find R and S and write Eq. (6.9) in its final form�
s1

s1

�2

þ
�
s2

s2

�2

þ
�
s12
s12

�2

¼ 1 (6.11)

It appears as though this criterion yields the same strength estimate in tension and compression.
However, it can be readily made specific for tension or compression. It is important to realize that when
evaluating a material’s strength we usually know the stresses acting in this material. Thus, we can take
in Eq. (6.10)

s1 ¼ sþ1 if s1 > 0 or s1 ¼ s�1 if s1 < 0

s2 ¼ sþ2 if s2 > 0 or s2 ¼ s�2 if s2 < 0
(6.12)

describing in this way the cases of tension and compression. The failure criterion given by Eqs. (6.11)
and (6.12) is demonstrated in Fig. 6.9 with application to a fabric composite loaded with stresses s1
and s2ðs12 ¼ 0Þ. Naturally, this criterion requires different equations for different quadrants in Fig. 6.9.

For some problems, e.g., for the problem of design, for which we usually do not know the signs of
the stresses, we may need to use a universal form of the polynomial criterion valid both for tension and
for compression. In this case, we should apply an approximation of the type shown in Fig. 6.14b and
generalize Eq. (6.9) as

F
�
s1; s2; s12

� ¼ R1s1 þ R2s2 þ R11s
2
1 þ R22s

2
2 þ S12s

2
12 ¼ 1 (6.13)
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FIGURE 6.14

Typical shapes of the curves corresponding to the second-order polynomials specified by equations (a), (b) and (c).

310 CHAPTER 6 Failure criteria and strength of laminates

www.EngineeringEBooksPdf.com



Using criteria similar to Eqs. (6.10), i.e.,

F
�
s1 ¼ sþ1 ; s2 ¼ 0; s12 ¼ 0

� ¼ 1 if s1 > 0

F
�
s1 ¼ �s�1 ; s2 ¼ 0; s12 ¼ 0

� ¼ 1 if s1 < 0

F
�
s1 ¼ 0; s2 ¼ sþ2 ; s12 ¼ 0

� ¼ 1 if s2 > 0

F
�
s1 ¼ 0; s2 ¼ �s�2 ; s12 ¼ 0

� ¼ 1 if s2 < 0

Fðs1 ¼ 0; s2 ¼ 0; s12 ¼ s12Þ ¼ 1

(6.14)

we arrive at

s1

 
1

sþ1
� 1

s�1

!
þ s2

 
1

sþ2
� 1

s�2

!
þ s21
sþ1 s

�
1

þ s22
sþ2 s

�
2

þ
�
s12
s12

�2

¼ 1 (6.15)

Comparison of this criterion with the criteria discussed earlier and with experimental results is
presented in Fig. 6.9. As can be seen, the criteria specified by Eqs. (6.11), (6.12), and (6.15) provide
results which are in fair agreement with the experimental data for all the stress states except, possibly,
biaxial compression for which there are practically no experimental results shown in Fig. 6.9. Such
results are presented in Fig. 6.8 and allow us to conclude that the failure envelope can be approximated
in this case by a polynomial of the type shown in Fig. 6.14c, i.e.,

F
�
s1; s2; s12

� ¼ R11s
2
1 þ R12s1s2 þ R22s

2
2 þ S12s

2
12 ¼ 1

The coefficients R11; R22; and S12 can be found as earlier from Eqs. (6.10), and we need to use an
additional strength condition to determine the coupling coefficient, R12. A reasonable form of this
condition is Fðs1 ¼ �s�1 ; s2 ¼ �s�2 ; s12 ¼ 0Þ ¼ 1. This means that whereas for js1j < s�1 and
js2j < s�2 the interaction of stresses increases material strength under compression, the combination
of compressive failure stresses js1j ¼ s�1 and js2j ¼ s�2 results in material failure. Then 

s1

s�1

!2

� s1s2

s�1 s
�
2

þ
 
s2

s�2

!2

þ
�
s12
s12

�2

¼ 1 (6.16)

Comparison of this criterion with experimental data is presented in Fig. 6.8. The term allowing for the
interaction of stresses s1 and s2 can be added to the strength criterion in Eq. (6.15), which is
generalized as

s1

 
1

sþ1
� 1

s�1

!
þ s2

 
1

sþ2
� 1

s�2

!
þ s21
sþ1 s

�
1

� s1s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ1 s

�
1 s

þ
2 s

�
2

q þ s22
sþ2 s

�
2

þ
�
s12
s12

�2

¼ 1

(Tsai and Wu, 1971). Now consider unidirectional composites and return to Fig. 6.11. As can be seen,
the maximum stress criterion (solid lines), ignoring the interaction of stresses s2 and s12, demonstrates
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rather poor agreement with the experimental data. The simplest approximation criterion, Eqs. (6.11)
and (6.12), takes, for the case under study, the form

Fðs2; s12Þ ¼
�
s2

s2

�2

þ
�
s12
s12

�2

¼ 1 (6.17)

and the corresponding failure envelope is shown in Fig. 6.11 with dotted lines. Although providing fair
agreement with experimental results for tension (Fig. 6.11a), this criterion fails to predict material
strength under compression (Fig. 6.11b). Moreover, for this case, the approximation criterion yields
worse results than those demonstrated by themaximumstress criterion.There are simple physical reasons
for this discrepancy. In contrast to the maximum stress criterion, Eq. (6.17) allows for stress interaction,
but in such a way that the transverse stress s2 reduces the material strength under shear. However, this
holds true only if the transverse stress is tensile. As can be seen in Fig. 6.15, in which the experimental
results taken from Barbero’s (1998) book are presented, a compressive stress s2 increases the ultimate
value of shear stress s12. As a result, the simplest polynomial criterion in Eq. (6.17), being, as it has been
already noted, quite adequate for s2 > 0, significantly underestimatesmaterial strength for s2 < 0 (solid
line in Fig. 6.15). As also follows from Fig. 6.15, a reasonable approximation to the experimental results
can be achieved if we use a curve of the type shown in Fig. 6.14b (but moved to the left with respect to the
y-axis), i.e., if we apply for this case the criterion presented by Eq. (6.15) which can be written as

Fðs2; s12Þ ¼ s2

 
1

sþ2
� 1

s�2

!
þ s22
sþ2 s

�
2

þ
�
s12
s12

�2

¼ 1 (6.18)

The corresponding approximations are shown in Figs 6.11 and 6.15 by dashed lines.

20

40

80

-160 -120 -80 -40 0 40

, MPa12τ

, MPa2σ

FIGURE 6.15

Failure envelope for glass-epoxy unidirectional composite in plane (s2; s12).
( ) approximation criterion, Eqs. (6.12), (6.17);

( ) approximation criterion, Eqs. (6.18);

( ) experimental data.
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In conclusion, it should be noted that there exist more complicated polynomial strength criteria
than those considered earlier, e.g., the fourth-order criterion of Ashkenazi (1966) and cubic criterion
proposed by Tennyson et al. (1980).

6.1.3 Tensor strength criteria

The polynomial approximation strength criteria discussed in Section 6.1.2 have been introduced as
some formal approximations of the experimental data in the principal material coordinates. When
written in some other coordinate frame, these criteria become much more complicated. Consider, for
example, an orthotropic material shown in Fig. 6.16 and referred to the principal material axes 1 and 2,
and to some axes 10 and 20 which make an angle f ¼ 45� with the principal axes. For the principal
material axes 1 and 2, apply a generalized form of the criterion in Eq. (6.13), i.e.,

F
�
s1; s2; s12

� ¼ R1s1 þ R2s2 þ R11s
2
1 þ R12s1s2 þ R22s

2
2 þ S12s

2
12 ¼ 1 (6.19)

Using the strength conditions in Eqs. (6.14) to determine the coefficients R and S, we arrive at

Fðs1; s2; s12Þ ¼
 

1

sþ1
� 1

s�1

!
s1 þ

 
1

sþ2
� 1

s�2

!
s2 þ s21

sþ1 s
�
1

þ R12s1s2

þ s22
sþ2 s

�
2

þ
�
s12
s12

�2

¼ 1 (6.20)

This criterion is similar to the criterion in Eq. (6.15); however, it includes the coefficient R12, which
cannot be found from simple tests using Eqs. (6.14). Treating Eq. (6.20) as the approximation strength
criterion, we can undertake some additional testing or adopt additional assumptions similar to those
used for the derivation of Eq. (6.16) to determine the coefficient R12. We can also simplify the problem
and take R12 ¼ 0, arriving at Eq. (6.15), i.e.,

Fðs1; s2; s12Þ ¼
 

1

sþ1
� 1

s�1

!
s1 þ

 
1

sþ2
� 1

s�2

!
s2 þ s21

sþ1 s
�
1

þ s22
sþ2 s

�
2

þ
�
s12
s12

�2

¼ 1 (6.21)

1′

1

2 ′

2

45 °=φ

FIGURE 6.16

An orthotropic material referred to coordinates (1, 2) and ð10; 20Þ.
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which is in good agreement with experimental results (see Fig. 6.9). To simplify the analysis,
assume that the material strength in tension and compression is the same for both principal directions
1 and 2, i.e.,

sþ1 ¼ s�1 ¼ sþ2 ¼ s�2 ¼ s0; s12 ¼ s0 (6.22)

Then, Eq. (6.21) reduces to

Fðs1; s2; s12Þ ¼
�
s21 þ s22

�
s20

þ
�
s12
s0

�2

¼ 1 (6.23)

Now, let us write Eq. (6.23) in coordinates 10 and 20 (see Fig. 6.16). To transform the stresses s1, s2,
and s12 to the stresses s451 , s452 , and s4512 corresponding to coordinates 1

0 and 20, we can use Eqs. (4.68).
Taking f ¼ 45�, sx ¼ s1, sy ¼ s2, and sxy ¼ s12, and s1 ¼ s451 , s2 ¼ s452 , and s12 ¼ s4512, we get

s1 ¼ 1

2

�
s451 þ s452

�� s4512

s2 ¼ 1

2

�
s451 þ s452

�þ s4512

s12 ¼ 1

2

�
s451 � s452

�
(6.24)

Substitution in Eq. (6.23) yields

Fðs451 ; s452 ; s4512Þ ¼
1

4

�
2

s20
þ 1

s20

�h�
s451
�2 þ �s452 �2iþ 1

2

�
2

s20
� 1

s20

�
s451 s452

þ 2

s20

�
s4512
�2 ¼ 1 (6.25)

For tension in the directions of axes 10 and 20 in Fig. 6.16 and for shear in plane 10 20, we can write
Eq. (6.25) in the following forms similar to Eqs. (6.10)

F
�
s451 ¼ s45; s452 ¼ 0; s4512 ¼ 0

� ¼ 1

F
�
s451 ¼ 0; s452 ¼ s45; s4512 ¼ 0

� ¼ 1

F
�
s451 ¼ 0; s452 ¼ 0; s4512 ¼ s45

� ¼ 1

(6.26)

Here, s45 and s45 determine material strength in coordinates 10 and 20 (see Fig. 6.16). Then, Eq. (6.25)
can be reduced to

Fðs451 ; s452 ; s4512Þ ¼
1

s245

h�
s451
�2 þ �s452 �2iþ � 1

s245
� 2

s245

�
s451 s452 þ

�
s4512
s45

�
¼ 1 (6.27)

where s45 and s45 are given by

1

s245
¼ 1

4

�
2

s20
þ 1

s20

�
; s245 ¼

1

2
s20
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Comparing Eq. (6.27) with Eq. (6.23), we can see that Eq. (6.27), in contrast to Eq. (6.23), includes
a term with the product of stresses s451 and s452 . So, the strength criterion under study changes its form
with a transformation of the coordinate frame (from 1 and 2 to 10 and 20 in Fig. 6.16) which means that
the approximation polynomial strength criterion in Eq. (6.23) and, hence, the original criterion in
Eq. (6.21), is not invariant with respect to rotation of the coordinate frame.

Consider the class of invariant strength criteria which are formulated in a tensor-polynomial form
as linear combinations of mixed invariants of the stress tensor sij and the strength tensors of different
ranks Sij; Sijkl, etc., i.e., X

i;k

Siksik þ
X
i;k;m;n

Sikmnsiksmn þ.¼ 1 (6.28)

Using the standard transformation for tensor components we can readily write this equation for an
arbitrary coordinate frame. However, the fact that the strength components form a tensor induces some
conditions that should be imposed on these components which do not necessarily correlate with
experimental data.

To be specific, consider a second-order tensor criterion. Introducing contracted notations for tensor
components and restricting ourselves to the consideration of orthotropic materials referred to the
principal material coordinates 1 and 2 (see Fig. 6.16), we can present Eq. (6.22) as

F
�
s1; s2; s12

� ¼ R0
1s1 þ R0

2s2 þ R0
11s

2
1 þ 2R0

12s1s2 þ R0
22s

2
2 þ 4S012s

2
12 ¼ 1 (6.29)

which corresponds to Eq. (6.28) if we put

s11 ¼ s1; s12 ¼ s12; s22 ¼ s2

and

S11 ¼ R1; S22 ¼ R2;

S1111 ¼ R0
11; S1122 ¼ S2211 ¼ R0

12; S2222 ¼ R0
22; S1212 ¼ S2121 ¼ S1221 ¼ S2112 ¼ S012

The superscript “0” indicates that the components of the strength tensors are referred to the principal
material coordinates. Applying the strength conditions in Eqs. (6.14), we can reduce Eq. (6.29) to the
following form

Fðs1; s2; s12Þ ¼ s1

�
1

sþ1
� 1

s�1

�
þ s2

�
1

sþ2
� 1

s�2

�
þ s21
sþ1 s

�
1

þ 2R0
12s1s2

þ s22
sþ2 s

�
2

þ
�
s12
s12

�2

¼ 1 (6.30)

This equation looks similar to Eq. (6.20); however, there is a difference in principle between them.
Whereas Eq. (6.20) is only an approximation to the experimental results, and we can take any suitable
value of coefficient R12 (in particular, we put R12 ¼ 0), the criterion in Eq. (6.30) has an invariant
tensor form, and coefficient R0

12 should be determined using this characteristic of the criterion.
Following Gol’denblat and Kopnov (1968), consider two cases of pure shear in coordinates

10 and 20 shown in Fig. 6.17 and assume that sþ45 ¼ sþ45 and s�45 ¼ s�45, where the overbar denotes, as
earlier, the ultimate value of the corresponding stress. In the general case, sþ45s s�45. Indeed, for
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a unidirectional composite, stress sþ45 induces tension in the fibers, whereas s
�
45 causes compression of

the fibers, and the corresponding ultimate values can be different. Using the results presented in
Section 2.4, we can conclude that for the loading case shown in Fig. 6.17a, s1 ¼ sþ45; s2 ¼ �sþ45,
and s12 ¼ 0, whereas for the case in Fig. 6.17b, s1 ¼ �s�45; s2 ¼ s�45, and s12 ¼ 0. Applying the
strength criterion in Eq. (6.30) for these loading cases, we arrive at

Fðs1 ¼ sþ45; s2 ¼ �sþ45; s12 ¼ 0Þ

¼ sþ45

�
1

sþ1
� 1

s�1
� 1

sþ2
þ 1

s�2

�
þ �sþ45�2� 1

sþ1 s
�
1

þ 1

sþ2 s
�
2

� 2R0
12

�
¼ 1

Fðs1 ¼ �s�45; s2 ¼ s�45; s12 ¼ 0Þ

¼ s�45

�
1

s�1
� 1

sþ1
þ 1

sþ2
� 1

s�2

�
þ �s�45�2� 1

sþ1 s
�
1

þ 1

sþ2 s
�
2

� 2R0
12

�
¼ 1

In general, these two equations give different solutions for R0
12. A unique solution exists if the

following compatibility condition is valid

1

sþ1
� 1

s�1
� 1

sþ2
þ 1

s�2
¼ 1

sþ45
� 1

s�45
(6.31)

If the actual material strength characteristics do not satisfy this equation, the strength criteria in Eq.
(6.30) cannot be applied to this material. If they do, the coefficient R0

12 can be found as

R0
12 ¼

1

2

�
1

sþ1 s
�
1

þ 1

sþ2 s
�
2

� 1

sþ45s
�
45

�
(6.32)

For further analysis, consider for the sake of brevity a particular orthotropic material shown in
Fig. 6.16 for which, in accordance with Eqs. (6. 22), sþ1 ¼ s�1 ¼ sþ2 ¼ s�2 ¼ s0; s

þ
45 ¼ s�45 ¼ s45, and

s12 ¼ s0. As can be seen, Eq. (6.31) is satisfied in this case, and the strength criterion, Eq. (6.30),
referred to the principal material coordinates (1, 2) in Fig. 6.16 takes the form

1

s20
ðs21 þ s22Þ þ 2R0

12s1s2 þ
�
s12
s0

�2

¼ 1 (6.33)

1′

1

2 ′

2

45°

+
45τ

1′

1

2 ′

2

45°

−
45τ

(a) (b)

FIGURE 6.17

Two cases of pure shear in coordinates (10; 20) rotated by 45�with respect to the principal material coordinates

(1, 2): (a) sþ45; (b) s
�
45.
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where, in accordance with Eq. (6.32),

R0
12 ¼

1

s20
� 1

2s245
(6.34)

Substituting Eq. (6.34) into Eq. (6.33), we arrive at the final form of the criterion under
consideration

Fðs1; s2; s12Þ ¼
�
s21 þ s22

�
s20

þ
�
2

s20
� 1

s245

�
s1s2 þ

�
s12
s0

�2

¼ 1 (6.35)

Now, present Eq. (6.33) in the following matrix form

fsgT�R0
�fsg ¼ 1 (6.36)

where

fsg ¼
8<: s1

s2
s12

9=;;
�
R0
� ¼

2664
R0
11 R0

12 0

R0
12 R0

11 0

0 0 4S012

3775
R0
11 ¼

1

s20
; R0

12 ¼
1

s20
� 1

2s245
; S012 ¼

1

4s20
(6.37)

Superscript “T” means transposition, i.e. converting the column vector fsg into the row vector fsgT.
Let us transform stresses referred to axes (1, 2) into stresses corresponding to axes ð10; 20Þ shown in

Fig. 6.16. Such a transformation can be performed with the aid of Eqs. (6.24). The matrix form of this
transformation is

fsg ¼ ½T�	s45
 (6.38)

where

½T � ¼

26666664

1

2

1

2
�1

1

2

1

2
1

1

2
�1

2
0

37777775
Substitution of the stresses in Eq. (6.38) into Eq. (6.36) yields	

s45

T ½T �T�R0

�½T�	s45
 ¼ 1

This equation, being rewritten as 	
s45

T�

R45
�	
s45

 ¼ 1 (6.39)
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specifies the strength criterion for the same material but referred to coordinates ð10; 20Þ. The strength
matrix has the following form

�
R45
� ¼ ½T�T�R0

�½T � ¼
2664
R45
11 R45

12 0

R45
12 R45

11 0

0 0 4S4512

3775
where

R45
11 ¼

1

s20
þ 1

4

�
1

s20
� 1

s245

�

R45
12 ¼

1

s20
� 1

4

�
1

s20
þ 1

s245

�
S4512 ¼

1

4s245

(6.40)

The explicit form of Eq. (6.39) is"
1

s20
þ 1

4

�
1

s20
� 1

s245

�# h�
s451
�2 þ �s452 �2iþ 2

"
1

s20
� 1

4

�
1

s20
þ 1

s245

�#
s451 s452 þ

�
s4512
s45

�2

¼ 1 (6.41)

Now apply the strength conditions in Eqs. (6.26) to give

1

s245
¼ 1

s20
þ 1

4

�
1

s20
� 1

s245

�
(6.42)

Then, the strength criterion in Eq. (6.41) can be presented as

F

�
s451 ; s452 ; s4512

�
¼ 1

s245

h�
s451
�2 þ �s452 �2iþ � 2

s245
� 1

s20

�
s451 s452 þ

�
s4512
s45

�2

¼ 1 (6.43)

Thus, we have two formulations of the strength criterion under consideration which are specified by
Eq. (6.35) for coordinates (1, 2) and by Eq. (6.43) for coordinates (10; 20) (see Fig. 6.16). As can be
seen, Eqs. (6.35) and (6.43) have similar forms and follow from each other if we change the stresses in
accordance with the following rule:

s14s451 ; s24s452 ; s124s4512; s04s45; s04s45

However, such correlation is possible under the condition imposed by Eq. (6.42), which can be written
in the form

Is ¼ 1

s20
þ 1

4s20
¼ 1

s245
þ 1

4s245
(6.44)
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This result means that Is is the invariant of the strength tensor, i.e., that its value does not
depend on the coordinate frame for which the strength characteristics entering Eq. (6.44) have
been found.

If the actual material characteristics do not satisfy Eq. (6.44), the tensor strength criterion cannot be
applied to this material. However, if this equation is consistent with experimental data, the tensor
criterion offers considerable possibilities to study material strength. Indeed, restricting ourselves to
two terms presented in Eq. (6.28), let us write this equation in coordinates ð10; 20Þ shown in Fig. 6.16
and assume that fs 45

�
. Then X

i;k

Sfiks
f
ik þ

X
i;k;m;n

Sfikmns
f
iks

f
mn ¼ 1 (6.45)

Here, Sfik and Sfikmn are the components of the second and the fourth rank strength tensors which are
transformed in accordance with tensor calculus as

S
f

ik ¼
X
p;q

liplkqS
0
pq

Sfikmn ¼
X
p;q;r;s

liplkqlmrlnsS
0
pqrs

(6.46)

Here, l are directional cosines of axes 10 and 20 on the plane referred to coordinates 1 and 2 (see Fig. 6.16),
i.e., l11 ¼ cosf; l12 ¼ sinf; l21 ¼ �sinf; l22 ¼ cosf: Substitution of Eqs. (6.46) into
Eq. (6.45) yields the strength criterion in coordinates (10, 20) but written in terms of strength components
corresponding to coordinates (1, 2), i.e.,X

i;k

X
p;q

liplkqS
0
pqs

f
ik þ

X
i;k;m;n

X
p;q;r;s

liplkqlmrlnsS
0
pqrss

f
iks

f
mn ¼ 1 (6.47)

Apply Eq. (6.47) to the special orthotropic material studied earlier (see Fig. 6.16) and for which, in
accordance with Eq. (6.22),

Spq ¼ 0; S1111 ¼ S2222 ¼ R0
11 ¼ R0

22 ¼
1

s20

S1122 ¼ S2211 ¼ R0
12 ¼

1

s20
� 1

2s245

S1212 ¼ S2121 ¼ S1221 ¼ S2112 ¼ S012 ¼
1

4s20

(6.48)

Following Gol’denblat and Kopnov (1968), consider the material strength under tension in the
10 direction and in shear in plane ð10; 20Þ. Taking first s

f
11 ¼ sf; s

f
22 ¼ 0; sf12 ¼ 0 and then

sf12 ¼ sf; s
f
11 ¼ 0; sf22 ¼ 0, we get from Eq. (6.47)

s2f ¼ 1P
p;q;r;s

l1pl1ql1rl1sS0pqrs
; s2f ¼ 1P

p;q;r;s
l1pl2ql1rl2sS0pqrs
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or in explicit form,

s2f ¼ �R0
11

�
cos4fþ sin4f

�þ 2
�
S012 þ 2R0

12

�
sin2f cos2f

��1

s2f ¼ 4
�
2
�
R0
11 � R0

12

�
sin2f cos2fþ S012cos

22f
��1

(6.49)

These equations allow us to calculate the material strength in any coordinate frame whose axes make
angle fwith the corresponding principal material axes. Taking into account Eqs. (6.44) and (6.48), we
can derive the following relationship from Eqs. (6.49)

1

s2f
þ 1

4s2f
¼ 1

s20
þ 1

4s20
¼ Is (6.50)

So, Is is indeed the invariant of the strength tensor whose value for a given material does not
depend on f.

Thus, tensor-polynomial strength criteria provide universal equations that can be readily written in
any coordinate frame, but on the other hand, the material mechanical characteristics, particularly
material strength in different directions, should follow the rules of tensor transformation, i.e.,
composed invariants (such as Is) must be the same for all coordinate frames.

6.1.4 Interlaminar strength

The failure of composite laminates can also be associated with interlaminar fracture caused by
transverse normal and shear stresses s3 and s13; s23 or sz and sxz; syz (see Fig. 4.18). Since s3 ¼ sz
and shear stresses in coordinates (1, 2, 3) are linked with stresses in coordinates (x, y, z) by simple
relationships in Eqs. (4.67) and (4.68), the strength criterion is formulated here in terms of stresses
sz; sxz; syz which can be found directly from Eqs. (5.132). Since the laminate strength in tension and
compression across the layers is different, we can use the polynomial criterion similar to Eq. (6.15).
For the stress state under study, we get

sz

�
1

sþ3
� 1

s�3

�
þ
�
sr
si

�2

¼ 1 (6.51)

where

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s213 þ s223

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xz þ s2yz

q
is the resultant transverse shear stress, and si determines the interlaminar shear strength of the material.

In thin-walled structures, the transverse normal stress is usually small and can be neglected in
comparison with the shear stress. Then, Eq. (6.51) can be simplified and written as

sr ¼ si (6.52)

As an example, Fig. 6.18 displays the dependence of the normalized maximum deflection w/R on the
force P for a fiberglass-epoxy cross-ply cylindrical shell of radius R loaded with a radial concentrated
force P (Vasiliev, 1970). Failure of the shell was caused by delamination. The shaded interval shows
the possible values of the ultimate force calculated with the aid of Eq. (6.52) (this value is not unique
because of the scatter in interlaminar shear strength).
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6.2 PRACTICAL RECOMMENDATIONS
It follows from the foregoing analysis that for the practical strength evaluationof fabric composites,wecan
use either the maximum stress criterion, Eqs. (6.2), or second-order polynomial criterion in Eq. (6.15) in
conjunction with Eq. (6.16) for the case of biaxial compression. For unidirectional composites with
polymeric matrices, we can apply Eqs. (6.3) and (6.4) in which the functionF is specified by Eq. (6.18). It
should be emphasized that the experimental data usually have rather high scatter, and the accuracy ofmore
complicated and rigorous strength criteria can be more apparent than real.

Comparing the tensor-polynomial and approximation strength criteria, we can conclude the
following. The tensor criteria should be used if our purpose is to develop a theory of material strength,
because a consistent physical theory must be covariant, i.e., the constraints that are imposed on
material properties within the framework of this theory should not depend on a particular coordinate
frame. For practical applications, the approximation criteria are more suitable, however in the forms
they are presented here they should be used only for orthotropic unidirectional plies or fabric layers in
coordinates whose axes coincide with the fibers’ directions.

To evaluate the laminate strength, we should first determine the stresses acting in the plies or layers
(see Section 5.11), identify the layer that is expected to fail first, and apply one of the foregoing
strength criteria. The fracture of the first ply or layer may not necessarily result in failure of the whole
laminate. Then, simulating the failed element with a suitable model (see, e.g., Section 4.4.2), the
strength analysis is repeated and continued up to failure of the last ply or layer.

In principle, failure criteria can be constructed for the whole laminate as a quasi-homogeneous
material. This is not realistic for design problems, since it would be necessary to compare the
solutions for numerous laminate structures which cannot practically be tested. However, this approach
can be used successfully for structures that arewell developed and in mass production. For example, the

0
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FIGURE 6.18

Experimental dependence of the normalized maximum deflection of a fiberglass-epoxy cylindrical shell on the

radial concentrated force.
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segments of two structures of composite drive shafts, one made of fabric and the other of unidirectional
composite, are shown in Fig. 6.19. Testing these segments in tension, compression, and torsion, we can
plot the strength envelope on the plane (M, T), whereM is the bending moment and T is the torque, and
thus evaluate the shaft strength for different combinations ofM and Twith high accuracy and reliability.

6.3 EXAMPLES
For the first example, consider a problem of torsion of a thin-walled cylindrical drive shaft
(see Fig. 6.20) made by winding a glass-epoxy fabric tape at angles �45�. The material properties
are E1 ¼ 23:5 GPa, E2 ¼ 18:5 GPa, G12 ¼ 7:2 GPa, n12 ¼ 0:16, n21 ¼ 0:2, sþ1 ¼ 510 MPa,

FIGURE 6.19

Segments of composite drive shafts with test fixtures.

Courtesy of CRISM.
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s�1 ¼ 460 MPa, sþ2 ¼ 280 MPa, s�2 ¼ 260 MPa, and s12 ¼ 85 MPa. The shear strain induced by
torque T is

gxy ¼
T

2pR2B44

(Vasiliev, 1993). Here, T is the torque, R ¼ 0.05 m is the shaft radius, and B44 is the shear stiffness of
the wall. According to Eqs. (5.39), B44 ¼ A44h, where h ¼ 5 mm is the wall thickness, and A44 is
specified by Eqs. (4.72) and can be written as

A44 ¼ 1

4ð1� n12n21Þ ðE1 þ E2 � 2E1n12Þ

ðf ¼ 45�Þ. Using Eqs. (5.130), we can determine the strains in the principal material coordinates 1 and
2 of �45� layers (see Fig. 6.20)

ε
�
1 ¼ �1

2
gxy; ε

�
2 ¼ H

1

2
gxy; g�

12 ¼ 0

Applying Eqs. (5.131) and the foregoing results, we can express stresses in terms of T as

s�1 ¼ � TE1ð1� n12Þ
pR2hðE1 þ E2 � 2E1n12Þ

s�2 ¼ H
TE2ð1� n21Þ

pR2hðE1 þ E2 � 2E1n12Þ
s�12 ¼ 0

The task is to determine the ultimate torque, Tu.
First, use the maximum stress criterion, Eqs. (6.2), which gives the following four values of the

ultimate torque corresponding to tensile or compressive failure of �45
�
layers

sþ1 ¼ sþ1 ; Tu ¼ 34 kNm

s�1 ¼ s�1 ; Tu ¼ 30:7 kNm

sþ2 ¼ sþ2 ; Tu ¼ 25:5 kNm

s�2 ¼ s�2 ; Tu ¼ 23:7 kNm

The actual ultimate torque is the lowest of these values, i.e., Tu ¼ 23:7 kNm.

45°−

45°+

1

1

2

2

T

T

R

hy

x

FIGURE 6.20

Torsion of a drive shaft.
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Now apply the polynomial criterion in Eq. (6.15), which has the form

s�1

�
1

sþ1
� 1

s�1

�
þ s�2

�
1

sþ2
� 1

s�2

�
þ
�
s�1
�2

sþ1 s
�
1

þ
�
s�2
�2

sþ2 s
�
2

¼ 1

For þ45 and �45� layers, we get, respectively, Tu ¼ 21:7 kNm and Tu ¼ 17:6 kNm. Thus,
Tu ¼ 17:6 kNm.

As a second example, consider a two-layered cylindrical shell which consists of a �36� angle-ply
layer with total thickness h1 ¼ 0:62 mm and a 90� unidirectional layer with thickness
h2 ¼ 0:60 mm. A 200 mm diameter cylinder is made by filament winding from glass-epoxy
composite with the following mechanical properties: E1 ¼ 44 GPa, E2 ¼ 9:4 GPa, G12 ¼ 4
GPa, and n21 ¼ 0:26, and loaded with internal pressure p. Axial, Nx, and circumferential, Ny, stress
resultants can be found as

Nx ¼ 1

2
pR; Ny ¼ pR

where R ¼ 100 mm is the shell radius. Applying the constitutive equations, Eqs. (5.44), and
neglecting the change in the cylinder curvature ðkx ¼ ky ¼ 0Þ, we arrive at the following equations
for strains

B11ε
0
x þ B12ε

0
y ¼

1

2
pR; B12ε

0
x þ B22ε

0
y ¼ pR (6.53)

Using Eqs. (5.130) and (5.131) to determine strains and stresses in the principal material coordinates
of the plies, we have

s
ðiÞ
1 ¼ pR

2B
E1½ðB22 � 2B12Þðcos2fi þ n12sin

2fiÞ þ ð2B11 � B12Þðsin2fi þ n12 cos
2fiÞ�

s
ðiÞ
2 ¼ pR

2B
E2½ðB22 � 2B12Þðsin2fi þ n21 cos

2fiÞ þ ð2B11 � B12Þðcos2fi þ n21 sin
2fiÞ�

sðiÞ12 ¼ pR

2B
G12ð2B11 þ B12 � B22Þsin2fi

(6.54)

Here, B ¼ B11B22 � B2
12, and the membrane stiffnesses Bmn for the shell under study are:

B11 ¼ I
ð0Þ
11 ¼ 21:2 GPa mm, B12 ¼ I

ð0Þ
12 ¼ 7:7 GPa mm, and B22 ¼ I

ð0Þ
22 ¼ 35:6 GPa mm. Subscript “i”

in Eqs. (6.54) denotes the helical plies for which i ¼ 1;f1 ¼ f ¼ 36� and circumferential plies for
which i ¼ 2 and f2 ¼ 90�.

The task that we consider is to find the ultimate pressure pu. For this purpose, we use the strength
criteria in Eqs. (6.3), (6.4), and (6.17), and the following material properties: sþ1 ¼ 1300 MPa,
sþ2 ¼ 27 MPa, and s12 ¼ 45 MPa.

Calculation with the aid of Eqs. (6.54) yields

s
ð1Þ
1 ¼ 83:9p; s

ð1Þ
2 ¼ 24:2p; sð1Þ12 ¼ 1:9p

s
ð2Þ
1 ¼ 112p; s

ð2Þ
2 ¼ 19:5p; sð2Þ12 ¼ 0
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Applying Eqs. (6.3) to evaluate the plies’ strength along the fibers, we get

s
ð1Þ
1 ¼ sþ1 ; pu ¼ 14:9 MPa

s
ð2Þ
1 ¼ sþ1 ; pu ¼ 11:2 MPa

The failure of the matrix can be identified using Eq. (6.17), i.e., 
s
ð1Þ
2

sþ2

!2

þ
 
sð1Þ12

s12

!2

¼ 1; pu ¼ 1:1 MPa

 
s
ð2Þ
2

sþ2

!2

þ
 
sð2Þ12

s12

!2

¼ 1; pu ¼ 1:4 MPa

Thus, we can conclude that failure occurs initially in the matrix of helical plies and takes place
at an applied pressure p

ð1Þ
u ¼ 1:1 MPa. This pressure destroys only the matrix of the helical

plies, whereas the fibers are not damaged and continue to work. According to the model
of a unidirectional layer with failed matrix discussed in Section 4.4.2, we should take
E2 ¼ 0;G12 ¼ 0; and n12 ¼ 0 in the helical layer. Then, the stiffness coefficients, Eqs. (4.72) for
this layer, become

A
ð1Þ
11 ¼ E1 cos

4f; A
ð1Þ
12 ¼ E1 sin

2f cos2f; A
ð1Þ
22 ¼ E1 sin

4f (6.55)

Calculating again the membrane stiffnesses Bmn (see Eq. (5.28)) and using Eqs. (6.53), we get for
p � p

ð1Þ
u

s
ð1Þ
1 ¼ 92:1p; s

ð1Þ
2 ¼ 24:2p

ð1Þ
u ¼ 26:6 MPa; sð1Þ12 ¼ 1:9p

ð1Þ
u ¼ 2:1 MPa;

s
ð2Þ
1 ¼ 134:6p; s

ð2Þ
2 ¼ 22:6p; sð2Þ12 ¼ 0

For a pressure p � p
ð1Þ
u , three modes of failure are possible. The pressure causing failure of the helical

plies under longitudinal stress s
ð1Þ
1 can be calculated from the following equation

s
ð1Þ
1 ¼ 83:9pð1Þu þ 92:1

�
pu � pð1Þu

�
¼ sþ1

which yields pu ¼ 14:2 MPa. The analogous value for the circumferential ply is determined by the
following condition

s
ð2Þ
1 ¼ 112pð1Þu þ 134:6

�
pu � pð1Þu

�
¼ sþ1

which gives pu ¼ 9:84 MPa. Finally, the matrix of the circumferential layer can fail under tension
across the fibers. Since sð2Þ12 ¼ 0, we put

s
ð2Þ
2 ¼ 19:5pð1Þu þ 22:6

�
pu � pð1Þu

�
¼ sþ2

and find pu ¼ 1:4 MPa.
Thus, the second failure stage takes place at p

ð2Þ
u ¼ 1:4 MPa and is associated with cracks in the

matrix of the circumferential layer (see Fig. 4.36).
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For p � p
ð2Þ
u , we should put E2 ¼ 0;G12 ¼ 0; and n12 ¼ 0 in the circumferential layer whose

stiffness coefficients become

A
ð2Þ
11 ¼ 0; A

ð2Þ
12 ¼ 0; A

ð2Þ
22 ¼ E1 (6.56)

The membrane stiffnesses of the structure now correspond to the monotropic model of a composite
unidirectional ply (see Section 3.3) and can be calculated as

Bmn ¼ Að1Þ
mnh1 þ Að2Þ

mnh2

0
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FIGURE 6.21

Dependence of the axial (a) and the circumferential (b) strains on internal pressure.

( ) analysis;

( ) experimental data.
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where Amn are specified by Eqs. (6.55) and (6.56), and h1 ¼ 0:62 mm and h2 ¼ 0:6 mm are the
thicknesses of the helical and the circumferential layers. Again using Eqs. (6.54), we have for p � p

ð2Þ
u

s
ð1Þ
1 ¼ 137:7p; s

ð2Þ
1 ¼ 122:7p

The cylinder’s failure can now be caused by fracture of either helical fibers or circumferential fibers.
The corresponding values of the ultimate pressure can be found from the following equations

s
ð1Þ
1 ¼ 83:9pð1Þu þ 92:1

�
pð2Þu � pð1Þu

�
þ 137:7

�
pu � pð2Þu

�
¼ sþ1

s
ð2Þ
1 ¼ 112pð1Þu þ 134:6

�
pð2Þu � pð1Þu

�
þ 122:7

�
pu � pð2Þu

�
¼ sþ1

in which p
ð1Þ
u ¼ 1:1 MPa and p

ð2Þ
u ¼ 1:4 MPa. The first of these equations yields pu ¼ 10 MPa,

whereas the second gives pu ¼ 10:7 MPa.
Thus, failure of the structure under study occurs at pu ¼ 10 MPa as a result of fiber fracture in the

helical layer.
The dependencies of the strains, which can be calculated using Eqs. (6.53) and the appropriate

values of Bmn, are shown in Fig. 6.21 (solid lines). As can be seen, the theoretical prediction is in fair
agreement with the experimental results. The same conclusion can be drawn for the burst pressure
which is listed in Table 6.1 for two types of filament-wound fiberglass pressure vessels. A typical
example of the failure mode for the vessels presented in Table 6.1 is shown in Fig. 6.22.

6.4 ALLOWABLE STRESSES FOR LAMINATES CONSISTING
OF UNIDIRECTIONAL PLIES
It follows from Section 6.3 (see also Section 4.4.2) that a unidirectional fibrous composite ply can
experience two modes of failure associated with

• fiber failure, and
• cracks in the matrix.

The first mode can be identified using the strength criterion in Eqs. (6.3), i.e.,

s
ðiÞ
1 � sþ1 if s

ðiÞ
1 > 0sðiÞ1  � s�1 if s
ðiÞ
1 < 0

(6.57)

Table 6.1 Burst Pressure for the Filament-Wound Fiberglass Pressure Vessels.

Diameter of
the Vessel
(mm)

Layer
Thickness

(mm)

Calculated Burst
Pressure (MPa)

Number
of Tested
Vessels

Experimental Burst
Pressure

h1 h2

Mean Value
(MPa)

Variation
Coefficient (%)

200
200

0.62
0.92

0.60
0.93

10
15

5
5

9.9
13.9

6.8
3.3
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in which sþ1 and s�1 are the ultimate stresses of the ply under tension and compression along the fibers,
and i is the ply number. For the second failure mode, we have the strength criterion in Eq. (6.18), i.e.,

s
ðiÞ
2

 
1

sþ2
� 1

s�2

!
þ
�
s
ðiÞ
2

�2
sþ2 s

�
2

þ
 
sðiÞ12
s12

!2

¼ 1 (6.58)

in which sþ2 and s�2 are the ultimate stresses of the ply under tension and compression across the
fibers, and s12 is the ultimate in-plane shear stress.

Consider a laminate loaded with normal, sx and sy, and shear, sxy, stresses as in Fig. 6.23. Assume
that the stresses are increased in proportion to some loading parameter p. Applying the strength criteria

FIGURE 6.22

The failure mode of a composite pressure vessel.

xyτ

xyτ

xσ xσ

yσ

yσ

FIGURE 6.23

A laminate loaded with normal and shear stresses.
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in Eqs. (6.57) and (6.58), we can find two values of this parameter, i.e., p ¼ pf which corresponds to
fiber failure in at least one of the plies and p ¼ pm for which the loading causes a matrix failure in one
or more plies. Since the parameters pf and pm usually do not coincide with each other for modern
composites, a question concerning the allowable level of stresses acting in the laminate naturally
arises. Obviously, the stresses under which the fibers fail must not be treated as allowable stresses.
Moreover, the allowable value pa of the loading parameter must be less than pf by a specified safety
factor sf , i.e.,

pfa ¼ pf =sf (6.59)

However, for the matrix failure, the answer is not evident, and at least two different situations may
take place.

First, failure of the matrix can result in failure of the laminate. As an example, we can take a �f

angle-ply layer discussed in Section 4.5 whose moduli in the x and y directions are specified by
Eqs. (4.147), i.e.,

Ex ¼ A11 � A2
12

A22
; Ey ¼ A22 � A2

12

A11

Ignoring the load-carrying capacity of the failed matrix, i.e., taking E2 ¼ 0,G12 ¼ 0 and n12 ¼ n21 ¼ 0
in Eqs. (4.72) to get

A11 ¼ E1 cos
4f; A12 ¼ E1 sin

2f cos2f; A22 ¼ E1 cos
4f

we arrive at Ex ¼ 0 and Ey ¼ 0, which means that the layer under consideration cannot work without
the matrix. For such a mode of failure, we should take the allowable loading parameter as

pma ¼ pm=sm (6.60)

where sm is the corresponding safety factor.
Secondly, matrix fracture does not result in laminate failure. As an example of such a structure,

we can take the pressure vessel considered in Section 6.3 (see Figs. 6.21 and 6.22). Now we have
another question as to whether the cracks in the matrix are allowed even if they do not affect the
structure’s strength. The answer to this question depends on the operational requirements for the
structure. For example, suppose that the pressure vessel in Fig. 6.22 is a model of a filament-wound
solid propellant rocket motor case which works only once and for a short period of time. Then, it is
appropriate to ignore the cracks appearing in the matrix and take the allowable stresses in accordance
with Eq. (6.59). We can also suppose that the vessel may be a model of a pressurized passenger cabin
in a commercial airplane for which no cracks in the material are allowed in flight. Then, in principle,
we must take the allowable stresses in accordance with Eq. (6.60). However, it follows from the
examples considered in Sections 4.4.2 and 6.3 that for modern composites the loading parameter pm
is reached at the initial stage of the loading process. As a result, the allowable loading parameter, pma
in Eq. (6.60), is so small that modern composite materials cannot demonstrate their high strength
governed by the fibers and cannot compete with metal alloys. A more realistic approach allows the
cracks in the matrix to occur only if pm is higher than the operational loading parameter p0. Using
Eq. (6.60), we can assume that

p0 ¼ pma ¼ pm=sm
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The ultimate loading parameter p is associated with fiber failure, so that p ¼ pf . Thus, the actual
safety factor for the structure becomes

s ¼ p

p0
¼ pf

pm
sm (6.61)

and depends on the ratio pf =pm.
To be specific, consider a four-layered ½0�=45�=� 45�=90�� quasi-isotropic carbon-epoxy laminate

shown in Fig. 6.23 which is widely used in aircraft composite structures. The mechanical properties of
quasi-isotropic laminates are discussed in Section 5.7. The constitutive equations for such laminates
have the form typical for isotropic materials, i.e.,

εx ¼ 1

E
ðsx � nsyÞ; εy ¼ 1

E
ðsy � nsxÞ; gxy ¼

sxy
G

(6.62)

where E, n, and G are given by Eqs. (5.110). For a typical carbon-epoxy fibrous composite, Table 5.4
yields E ¼ 54:8 GPa, n ¼ 0:31, and G ¼ 20:9 GPa. The strains in the plies’ principal coordinates (see
Fig. 4.18) can be found using Eqs. (4.69) from which we have for the 0� layer,

ε1 ¼ εx; ε2 ¼ εy; g12 ¼ gxy

for the �45�layer,

ε1 ¼ 1

2
ðεx þ εy � gxyÞ; ε2 ¼ 1

2
ðεx þ εyHgxyÞ; g12 ¼ �ðεy � εx

�
for the 90�layer,

ε1 ¼ εy; ε2 ¼ εx; g12 ¼ gxy

The stresses in the plies are

s1 ¼ E1

�
ε1 þ n12ε2

�
; s2 ¼ E2

�
ε2 þ n21ε1

�
; s12 ¼ G12g12 (6.63)

where E1;2 ¼ E1;2=ð1� n12n21Þ, n12E1 ¼ n21E2, and the elastic constants E1, E2, n21, and G12 are
given in Table 3.5. For given combinations of the acting stresses sx, sy, and sxy (see Fig. 6.23), the
strains εx, εy, and gxy found with the aid of Eqs. (6.62) are transformed to the ply strains ε1, ε2 and g12,
and then substituted into Eqs. (6.63) for the stresses s1, s2, and s12. These stresses are substituted into
the strength criteria in Eqs. (6.57) and (6.58), the first of which gives the combination of stresses sx, sy,
and sxy causing failure of the fibers, whereas the second one enables us to determine the stresses
inducing matrix failure.

Consider biaxial loading with stresses sx and sy as shown in Fig. 6.23. The corresponding
failure envelopes are presented in Fig. 6.24. The solid lines determine the domain within which the
fibers do not fail, whereas within the area bound by the dashed lines no cracks in the matrix appear.
Consider, for example, the cylindrical pressure vessel discussed in Section 6.3, for which

sx ¼ pR

2h
; sy ¼ pR

h
(6.64)

are the axial and circumferential stresses expressed in terms of the vessel radius and thickness, R
and h, and the applied internal pressure, p. Let us take R=h ¼ 100. Then, sx ¼ 50p and
sy ¼ 100p, whereby sy=sx ¼ 2. This combination of stresses is shown with the line 0BA in
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Fig. 6.24. Point A corresponds to failure of the fibers in the circumferential (90�) layer and gives
the ultimate loading parameter (which is the pressure in this case) p ¼ pf ¼ 8 MPa. Point B
corresponds to matrix failure in the axial (0�) layer and to the loading parameter pm ¼ 2:67 MPa.
Taking sm ¼ 1:5, which is a typical value for the safety factor preventing material damage under
the operational pressure, we get s ¼ 4:5 from Eq. (6.61). If such a high safety factor is not
appropriate, then we should either allow the cracks in the matrix to appear under the operational
pressure, or change the carbon-epoxy composite to some other material. It should be noted that
the significant difference between the loading parameters pf and pm is typical mainly for tension.
For compressive loads, the fibers usually fail before the matrix (see point C in Fig. 6.24).

Similar results for uniaxial tension with stresses sx combined with shear stresses sxy (see Fig. 6.23)
are presented in Fig. 6.25. As can be seen, shear can induce the same effect as tension.

The problem of matrix failure discussed earlier significantly reduces the application of modern
fibrous composites to structures subjected to long-term cyclic loading. It should be noted that
Figs. 6.24 and 6.25 correspond to static loading at room temperature. Temperature, moisture, and
fatigue can considerably reduce the areas bounded by the dashed lines in Figs. 6.24 and 6.25
(see Sections 7.1.2 and 7.3.3). Some methods developed to solve the problem of matrix failure are
discussed in Sections 4.4.3 and 4.4.4.
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Failure envelops for biaxial loading corresponding to the failure criteria in Eqs. (6.57) ( ), and Eq. (6.58)
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6.5 PROGRESSIVE FAILURE: MODELING AND ANALYSIS
The development of a representative constitutive model for fiber reinforced composite materials and
structures should involve the consideration of their mechanical responses prior to the initiation of
damage, the prediction of damage initiation, and the modeling of postfailure behavior. Continuum
Damage Mechanics (CDM) provides a tractable framework for modeling damage initiation and
development, as well as stiffness degradation. It is applied at the ply level and reflects on the corre-
sponding failure modes. A number of material models employing continuum damage mechanics have
been reported in the literature (see, e.g., Ladeveze and Le Dantec, 1992; Lapczyk and Hurtado, 2007;
Maimi et al., 2007a, b; Matzenmiller et al., 1995; Van Der Meer and Sluys, 2009). Most of the
CDM-based material approaches employ elastic-damage models which are suitable for modeling
the mechanical behavior of elastic-brittle composites that do not exhibit noticeable nonlinearity or
irreversible strains prior to the initiation of damage development. However, these models may be
insufficient in describing the nonlinear or plastic behavior that some thermoset or thermoplastic
composites might exhibit, particularly under transverse and/or shear loading.

The results of experiments reported by Lafarie-Frenot and Touchard (1994), Van Paepegem et al.,
(2006), Vogler and Kyriakides (1999) and Wang et al. (2004) show that some composite materials
experience significant nonlinearity or plasticity before the collapse of the structures. In particular, such
composites as carbon fiber reinforced epoxy T300/914, T300/1034-C, and AS4/3501-6, and fiber
reinforced PEEK composite AS4/PEEK might manifest this type of mechanical behavior under certain
conditions.
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In addition to plasticity effects, the deterioration of material properties under loading is another
significant feature of composite laminates. Defects such as fiber ruptures, matrix cracks, or fiber/
matrix debonding developing in a ply do not lead to the collapse of a laminate immediately as they
occur. These defects can accumulate gradually within the laminates. As a result, the material properties
degrade progressively. Thus, the consideration of postfailure behavior is important for an accurate
prediction of failure loads.

Physically, the nonlinearity and/or irreversible deformations of fiber reinforced composites stem
from the various mechanisms, such as the nonlinearity of each individual constituent, damage accu-
mulation resulting from fiber or matrix cracking, and fiber/matrix interface debonding. Drucker (1975)
has proposed that such micromechanical phenomena can be described macroscopically within the
framework of plasticity theory. In combined plasticity and damage theories, the plastic strain repre-
sents all the irreversible deformations, including those caused by microcracks. This approach has been
employed by Morozov et al. (2011) and Chen et al. (2012) in the development of a combined elas-
toplastic damage model for progressive failure analysis that accounts for both the plasticity effects and
material properties degradation of composite materials under loading and which is presented in this
section. The plasticity effects are modeled using an equivalent form of Sun and Chen’s (1989) plastic
model. The prediction of the damage initiation and propagation in the laminated composites is per-
formed taking into account various failure mechanisms employing Hashin’s (1980) failure criterion.

Once the damage development process initiates in a material, the local stresses are redistributed in
the undamaged area. As a result, the effective stresses in the undamaged area become higher than the
nominal stresses in the damaged material. Plasticity is assumed to be developed in the undamaged area
of the damaged material. Correspondingly, the effective stresses are used in the plastic model. Since
the nominal stresses in the postfailure branch of the stress-strain curves decrease with an increase in
strain, the use of these stresses in the failure criteria does not provide a prediction for further damage
growth. Thus, the effective stresses are also used in the failure criterion (Hashin, 1980). It is assumed
that under transverse and shear loading, the irreversible deformations are exhibited prior to the damage
initiations, however, there is no stiffness degradation. Beyond the damage initiation points, both
irreversible deformations and stiffness degradations are taken into account. Once the damage initiation
is detected, both the damage development and plasticity evolve in the post-failure regime. In addition
to the plastic strain accumulation at this stage, the material’s stiffness degrades as well. The model
accounts for both of these effects.

The plastic damage model is implemented in Abaqus/Standard using a user-defined subroutine
(UMAT). The strain-driven implicit integration procedure for the proposed model is developed using
equations of continuum damage mechanics, plasticity theory, and applying the return mapping
algorithm. To ensure the algorithmic efficiency of the Newton-Raphson method in the finite element
analysis, a tangent operator consistent with the developed integration algorithm is derived and
implemented. The efficiency of the proposed model is verified by performing progressive failure
analysis of various composite laminates subjected to in-plane tensile loads. The predicted results agree
well with the test data reported in the literature and provide accurate estimates of the failure loads.

6.5.1 Constitutive equations

Damage development affects the behavior of fiber-reinforced composite materials considerably.
Material properties, such as elastic moduli and Poisson’s ratio, degrade due to damage accumulation
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and growth. These effects are taken into account by introducing damage variables in the stiffness
matrix using the CDM-based approach. According to this, the relation between the nominal stress and
effective stress under uniaxial loading is given as

s ¼ ð1� dÞbs (6.65)

where s ¼ P=A0 is the Cauchy nominal stress (P is the normal internal force applied to the resisting
surface and A0 is the original area), bs ¼ P=Aeff is the effective stress (Aeff is the effective resisting area
of the damaged surface), and d is the damage variable.

For composite materials exhibiting plasticity response, the total strain tensor ε is presented as a sum
of the elastic and plastic strain parts εe and ε

p

ε ¼ ε
e þ ε

p (6.66)

where the plastic strain ε
p represents all the irreversible deformations, including those caused by

microcracks.
According to the continuum damage mechanics theory, the stress-strain relationships for the

damaged and undamaged composite materials are presented in the following forms:

s ¼ SðdÞ: εe; bs ¼ S0: ε
e (6.67)

where boldface symbols are used for variables of tensorial character and the symbol “:” denotes the
inner product of two tensors with double contraction, e.g., ðSðdÞ: εeÞij ¼ SðdÞijklεekl, where the
summation convention is applied to the subscripts; s and bs are the Cauchy nominal stress tensor and
the effective stress tensor (both are of the second order); S0 is the fourth-order constitutive tensor for
linear-elastic undamaged unidirectional laminated composite (see Section 2.9); SðdÞ is the similar
tensor for the associated damaged material. The explicit form of S0 is determined by elasticity theory
for orthotropic materials (see, e.g., Eq. (2.41) and/or Eq. (4.195)). The Voigt form of SðdÞ adopted in
the model under consideration is similar to that presented by Matzenmiller et al. (1995)

SðdÞ ¼ 1

D

26664
ð1� d1ÞE0

1 ð1� d1Þð1� d2Þv012E0
1 0

ð1� d1Þð1� d2Þv021E0
1 ð1� d2ÞE0

2 0

0 0 Dð1� d3ÞG0
12

37775 (6.68)

where S(d) in italic is used to identify the Voigt form of S(d); D ¼ 1� ð1� d1Þð1� d2Þv012v021; the
parameters d1, d2, and d3 denote damage developed in the fiber direction, transverse direction, and
under shear stress, respectively (they are scalar damage variables that remain constant throughout the
ply thickness); E0

1; E
0
2; G

0
12 and v012; v

0
21 are the elastic moduli and Poisson’s ratios of undamaged

unidirectional composite ply (as earlier, E0
1v

0
12 ¼ E0

2v
0
21).

In order to differentiate between the effects of compression and tension on the failure modes, the
damage variables are introduced as follows:

d1 ¼
(

d1t if bs1 � 0
d1c if bs1 < 0

d2 ¼
(

d2t if bs2 � 0
d2c if bs2 < 0

(6.69)
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where d1t, d1c characterize the damage development caused by tension and compression in the fiber
direction, and d2t, d2c reflect the damage development caused by tension and compression in the
transverse direction, respectively; bs1, bs2 are the effective stresses in the fiber and transverse directions,
respectively.

We assume that the shear stiffness reduction is caused by the fiber and matrix cracking. To take this
effect into account, the corresponding damage variable d3 is expressed as:

d3 ¼ 1� ð1� d6Þð1� d1tÞ (6.70)

where d6 represents the damage effects on shear stiffness caused by matrix cracking.
As previously mentioned, all the irreversible deformations are represented by the plastic strain ε

p.
These effects are allowed for by the plastic model which includes the yield criterion, plastic flow rule,
hardening rule, and the hardening law.

6.5.2 Plastic model

In the damaged materials, the internal forces are resisted by the effective area. Thus, it is reasonable to
assume that plastic deformation occurs in the undamaged area of the damaged composites. According
to this, the plastic flow rule and hardening law are expressed in terms of effective stresses bs , equivalent
plastic strain ~ε p, and equivalent stress ~s, which are based on the effective stress space concept.

The plastic yield function is expressed in terms of effective stresses as follows:

Fðbs; ~ε pÞ ¼ FpðbsÞ � kð~ε pÞ ¼ 0 (6.71)

where Fp is the plastic potential and k is the hardening parameter, which depends on the plastic
deformations and is expressed in terms of equivalent plastic strain ~εp.

Due to its simplicity and accuracy, an equivalent form of the one-parameter plastic potential for the
plane stress state proposed by Sun and Chen (1989) is adopted in this study to describe the irreversible
strains exhibited by composites under transverse and/or shear loading:

Fðbs; ~ε pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�bs2
2 þ 2abs2

3

�s
� ~sð~ε pÞ ¼ 0 (6.72)

where a is a material parameter which describes the level of plastic deformation developed under
shear loading compared to the transverse loading; bs3 is the effective in-plane shear stress; and ~sð~εpÞ
represents the isotropic hardening law. Note that the use of the yield criterion in the form of
Eq. (6.72) in the model under consideration improves the efficiency and accuracy of the computa-
tional algorithm.

The equivalent stress is expressed in terms of bs2 and bs3 as follows (Sun and Chen, 1989):

~s ¼
�
3

2

�bs2
2 þ 2abs2

3

��1
2

(6.73)

Assuming the associated plastic flow rule for composite materials, the plastic strain rate _εp is
expressed as:

_εp ¼ _l
p
vbsF (6.74)
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where _l
p � 0 is a nonnegative plastic consistency parameter (hereafter in this section the following

notations are used for the derivatives: vxy ¼ vy=vx and _y ¼ dy=dt).
Substituting Eq. (6.72) into Eq. (6.74), the following explicit form of plastic strain rate is

derived:

264 _εp1

_εp2

_εp3

375 ¼ _l
p
vbsF ¼ _l

p

266666666666664

0

3

2

bs2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�bs2
2 þ 2abs2

3

�s

3abs3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�bs2
2 þ 2abs2

3

�s

377777777777775
(6.75)

Also, the associated hardening rule is assumed for the equivalent plastic strain rate to have the
following form:

_~ε
p ¼ _l

p
hp ¼ � _l

p
v_~ε

p
F (6.76)

where hp defines the evolution direction of the equivalent plastic strain.
The equivalent plastic strain rate can be obtained from the equivalence of the rates of the plastic

work per unit volume Wp presented as follows:

_W
p ¼ bs: _εp¼ v _~ε

p
(6.77)

Substituting Eq. (6.75) and Eq. (6.73) into Eq. (6.77), the following relation is derived

_~ε
p ¼ _l

p
(6.78)

It follows from the comparison of Eqs. (6.76) and (6.78) that the value of hp is unity. Note that this
does not hold if the original quadratic form of the Sun and Chen yield criterion is adopted (Sun and
Chen, 1989). As a result, the application of the original yield criterion leads to higher computational
cost in the integration procedure. The current approach based on the use of Eq. (6.72) avoids this
inefficiency.

For the sake of simplicity, an isotropic hardening law expressed in terms of equivalent plastic strain
~εp is adopted in this study. The following formulation of this law proposed by Sun and Chen (1989) is
employed in this work to represent the equivalent stress versus equivalent plastic strain hardening
curve:

kð~εpÞ ¼ ~sð~εpÞ ¼ bð~εpÞn (6.79)

where b and n are coefficients that fit the experimental hardening curve. These parameters along with
the material parameter a are determined using an approach based on linear regression analyses of the
off-axis tensile tests performed on unidirectional composite specimens (Sun and Chen, 1989; Winn
and Sridharan, 2001).
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6.5.3 Damage model

The prediction of the damage initiation and progression in the laminated composites under consid-
eration is performed taking into account various modes of failure, including those caused by tensile
and compressive loading for the fibers and matrix, and also combined action of transverse and shear
stresses.

6.5.3.1 Damage initiation and propagation criteria
In order to predict the damage initiation and propagation of each intralaminar failure of the material
and evaluate the effective stress state, the damage initiation and propagation criteria fI are presented in
the following form:

fIðfI; rIÞ ¼ fI � rI � 0 I ¼ f1t; 1c; 2t; 2c; 6g (6.80)

where fI are the loading functions for different failure mechanisms adopted in the form of Hashin’s
failure criterion (Hashin, 1980):

f1t ¼
�bs1

sþ1

�2

ðbs1 � 0Þ ðtensile fiber damage modeÞ

f1c ¼
�bs1

s�1

�2

ðbs1 < 0Þ ðcompressive fiber damage modeÞ

f2t ¼
�bs2

sþ2

�2

þ
�bs3

s12

�2

ðbs2 � 0Þ ðtensile matrix damage modeÞ

f2c ¼
�bs2

s�2

�2

þ
�bs3

s12

�2
ðbs2 < 0Þ ðcompressive matrix damage modeÞ

(6.81)

where sþ1 and s�1 are the tensile and compressive strengths in fiber direction; sþ2 and s�2 are the
transverse tensile and compressive strengths; and s12 is the shear strength. Each damage
threshold parameter rI controls the size of the expanding damage surface and depends on the
loading history. The damage development in the material initiates when the value of fI exceeds
the initial damage threshold rI;0 ¼ 1. Further damage growth occurs when the value of fI in the
current stress state exceeds the value of rI in the previous loading history. As mentioned
previously, the damage variable d6 represents the damage effects on the shear stiffness due to
matrix fracture caused by the combined action of transverse and shear stresses. However, the
compressive transverse stress has beneficial effects on matrix cracking. Thus, it is reasonable to
assume that the damage effects are governed by the tensile matrix cracking only, i.e.,
f6 ¼ f2t; r6 ¼ r2t.

Once the damage initiation criterion is satisfied, then further damage evolution could be
developed. The way the damage would evolve depends on the level of the stress caused by the
strain increment. The damage propagation criteria, Eq. (6.80), define the growing damage surfaces
when the value of rI corresponding to the current stress state in Eq. (6.80) is greater than unity. The
modeling of the evolution of damage is discussed in the following subsection.
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6.5.3.2 Damage evolution
The evolution of damage is possible only when the stresses reach the level corresponding to the
damage surface, i.e., when Eq. (6.80) is converted to equality. In the further process of damage
evolution, the following damage consistency condition should be satisfied: _f ðfI ; rIÞ ¼ _fI � _rI ¼ 0.
Based on this condition, the values of the thresholds could be found by integrating equation _rI ¼ _fI ,
i.e.,

R t
0 _rIdt ¼

R t
0
_fIdt, and taking into account the initial condition fI;0 ¼ 0. The following expressions

for damage thresholds rI can be derived:

rI ¼ max
	
1;max

	
fs
I




I ¼ f1t; 1c; 2t; 2c; 6g s˛½0; t� (6.82)

Since damage is irreversible, the damage evolution rate should satisfy the following condition: _dI � 0.
The exponential damage evolution law is adopted for each damage variable and expressed in the
following form (Faria et al., 1998):

dI ¼ 1� 1

rI
expðAIð1� rIÞÞ I ¼ f1t; 1c; 2t; 2c; 6g (6.83)

where AI is the parameter that defines the exponential softening law. This parameter is determined by
regularizing the softening branch of the stress-strain curve to ensure that the dissipated energy in the
formation and opening of all microcracks per unit area of the fracture surface computed according to
the numerical procedure proposed is independent of mesh size. This approach helps alleviate the mesh
dependency of the finite element results. The regularization is based on Bazant’s crack band theory
(Bazant and Oh, 1983). According to this, the damage energy dissipated per unit volume gI for
a uniaxial or shear stress state is related to the critical strain energy release rate GI;c along with the
characteristic length of the finite element l* as follows:

gI ¼ GI;c

l�
I ¼ f1t; 1c; 2t; 2c; 6g (6.84)

where the parameters G1t;c and G1c;c are the mode I fracture toughness parameters related to fiber
breakage under tension and compression. The critical strain energy release rates G2t;c and G2c;c are
referred to as the intralaminar mode I fracture toughness parameters under transverse tension and
compression. The parameter G6;c is the intralaminar mode II fracture toughness parameter. The
identification of these parameters and the characteristic length l* is discussed in Maimi et al. (2007b)
and Pinho (2005).

The damage energy dissipated per unit volume for a uniaxial or shear stress state is obtained by
integration of the damage energy dissipation during the process of damage development:

gIðAIÞ ¼
ZN
0

YI _dIðAIÞdt; YI ¼ �vj

vdI
; j ¼ 1

2
s: ε I ¼ f1t; 1c; 2t; 2c; 6g (6.85)

where YI is the damage energy release rate; _dI is the rate of damage development defined as
_dI ¼ ddI=dt; and j is the Helmholtz free energy. The parameters AI correspond to each uniaxial or
shear loading condition applied to the elementary ply and these parameters should be determined for
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a given material and a given finite element size to avoid mesh dependency in the finite element
analysis. Equating Eq. (6.84) and Eq. (6.85), we can derive the following equation:

gI;cðAIÞ ¼ GI;c

l�
I ¼ f1t; 1c; 2t; 2c; 6g (6.86)

The values of AI for I ¼ f1t; 1c; 2t; 2c; 6g are found by solving Eq. (6.86) iteratively using
a root-finding algorithm described in Chen et al. (2012). These parameters are determined for a
given material and finite element size to avoid mesh dependency in the finite element analysis.

The loading/unloading stress-strain curves illustrating the combined elastoplastic damage model
under consideration are shown in Fig. 6.26. It is assumed that under loading in the fiber direction the
material exhibits linear elastic-brittle behavior and the irreversible strain is not developed. Note that
the model can be easily extended to the case where the material would exhibit nonlinear inelastic
behavior in the fiber direction, if required. After the damage initiation, the elastic modulus E1 is
assumed to degrade gradually. It is also assumed that under transverse and shear loading the irre-
versible deformations are exhibited prior to the damage initiations; however, there is no stiffness
degradation at that stage. Beyond the damage initiation points, both irreversible deformations and
stiffness degradations are taken into account.
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σ2σ1
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σ3
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FIGURE 6.26

Loading/unloading stress-strain curves curves for in-plane loading along the fibers (a), in transverse direction

(b), and shear (c).
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6.5.4 Numerical implementation

The combined elastoplastic damage material model discussed earlier has been implemented in the
Abaqus/Standard finite element software package using the user-defined subroutine UMAT. The
numerical integration algorithms updating the Cauchy nominal stresses and solution-dependent state
variables have been derived, as well as the tangent matrix that is consistent with the numerical inte-
gration algorithm ensuring the quadratic convergence rate of the Newton-Raphson method in the finite
element analysis (Morozov et al., 2011; Chen et al., 2012).

6.5.4.1 Integration algorithm
The solution of the nonlinear inelastic problem under consideration is based on the incremental
approach and is regarded as strain-driven. The loading history is discretized into a sequence of time
steps ½tn; tnþ1�; n ˛f0; 1; 2; 3;.g where each step is referred to as the ðnþ 1Þth increment. Driven by
the strain increment Dεnþ1, the discrete problem in the context of a backward Euler scheme for the
combined elastoplastic damage model can be stated as follows: for a given variable set
fεnþ1; ε

p
n;~ε

p
n; bsn;sn; ~sn; rI;n; dI;ng at the beginning of the ðnþ 1Þth increment, find the updated vari-

able set fεpnþ1;~ε
p
nþ1; bsnþ1;snþ1; ~snþ1; rI;nþ1; dI;nþ1g at the end of the ðnþ 1Þth increment.

The updated stresses and solution-dependent state variables are stored at the end of the ðnþ 1Þth
increment and are passed on to the user subroutine UMAT at the beginning of the next increment.

The effective stress-strain relationship, Eq. (6.67) yield criterion, Eq. (6.72), associated plastic flow
rule, Eq. (6.74), and hardening power law, Eq. (6.79), represent the nonlinear plastic constitutive
material model. Using the backward Euler implicit integration procedure, the corresponding
integration algorithm is formulated as follows:

εnþ1 ¼ εn þ Dεnþ1

ε
p
nþ1 ¼ ε

p
n þ Dl

p
nþ1vbsnþ1

F
p
nþ1

~εpnþ1 ¼ ~εpn þ Dl
p
nþ1

bsnþ1 ¼ S0: ðεnþ1 � ε
p
nþ1Þ

Fnþ1 ¼ F
�bsnþ1;~ε

p
nþ1

�
� 0

(6.87)

where Dlpnþ1 ¼ _l
p
nþ1Dt is the increment of the plastic consistency parameter.

The closest point return mapping algorithm is employed to solve this nonlinear coupled system. The
solutions fεpnþ1;~ε

p
nþ1; bsnþ1g are the converged values at the end of the ðnþ 1Þth increment. They

ensure that upon yielding, the determined stress state lies on the yield surface and they prevent drift from
the yield surface due to the unconverged solutions obtained from the forward Euler integration scheme.

The nonlinear system, Eq. (6.87), is linearized and solved iteratively using the Newton-
Raphson scheme. The iterations are performed until the final set of state variables

fbsðkþ1Þ
nþ1 ; ε

p;ðkþ1Þ
nþ1 ; ~ε

p;ðkþ1Þ
nþ1 g in the ðk þ 1Þth iteration fulfills the yield criterion Fðbsðkþ1Þ

nþ1 ; ~ε
p;ðkþ1Þ
nþ1 Þ �

TOL, where TOL is the error tolerance which was set to 1	 10�6 in the analyses performed.
Substituting the effective stresses bsnþ1 into the damage model, the damage variables are updated.

According to Eq. (6.67), the Cauchy stresses are calculated as snþ1 ¼ Sðdnþ1Þ: εenþ1.
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6.5.4.2 Consistent tangent stiffness matrix
The consistent tangent matrix for the proposed constitutive model is derived in the following form:

dsnþ1

dεnþ1
¼ ½Mnþ1 þ Sðdnþ1Þ�: C0: S

alg
nþ1 (6.88)

in which the fourth-order tensorMnþ1 can be presented in Voigt notation (in indicial form) as follows:

Mik


nþ1

¼ vSðdÞijεej
vεek


nþ1

¼ ε
e
j

vSðdÞij
vdp

vdp
vrx

vrx
vfx

vfx

vbsq

vbsq

vεek


nþ1

i; j; p; q; k ¼ f1; 2; 3g; x ¼ f1; 2g
(6.89)

where matrixMnþ1 ¼ [Mik]nþ1 is asymmetric. This results in the asymmetry of the consistent tangent
matrix of the combined elastoplastic damage model. The explicit expression for matrix M, along with
the associated derivatives, can be found in Morozov et al. (2011) and Chen et al. (2012). In Eq. (6.88),
C0 ¼ S�1

0 is the fourth-order compliance tensor of the undamaged composite material and S
alg
nþ1 is the

consistent tangent tensor for the discrete plastic problem Eq. (6.87). The latter is expressed as:

S
alg
nþ1 ¼

dbsnþ1

dεnþ1
¼ ~Snþ1 �

�
~Snþ1: vsF

p
nþ1

�
5

�
~Snþ1: vbsFnþ1

�
vbsFnþ1: ~Snþ1: vbsFp

nþ1 � v
~ε
pFnþ1

(6.90)

where ~Snþ1 ¼ ðC0 þ Dl
p
nþ1v

2
ŝŝF

p
nþ1Þ�1; Dl

p
nþ1 denotes the increment of plastic consistency

parameter lp in the ðnþ 1Þth increment, v2xxy ¼ v2y=vx2, and (5) denotes a tensor product. As the

time increment Dt approaches zero, the increment of the plastic consistency parameter Dlpnþ1 also

approaches zero. Thus, ~Snþ1 approaches S0, and S
alg
nþ1 reduces to the elastoplastic tangent operator

when standard procedures of classical plasticity theory are applied.

6.5.4.3 Viscous regularization
Numerical simulations based on the implicit procedures, such as Abaqus/Standard, and the use of
material constitutive models that are considering strain softening and material stiffness degradation
often abort prematurely due to convergence problems. In order to alleviate these computational
difficulties and improve convergence, a viscous regularization scheme has been implemented in the
following form (Lapczyk and Hurtado, 2007):

_d
v
m ¼ 1

h

�
dm � dvm

�
; m ¼ f1; 2; 3g (6.91)

where dm is the damage variable obtained as described previously, dvm is the regularized viscous
damage variable, and h is the viscosity coefficient.

The regularized damage variable in the ðnþ 1Þth increment is derived as

dvm;nþ1 ¼
Dt

hþ Dt
dm;nþ1 þ h

hþ Dt
dvm;n (6.92)

The corresponding regularized consistent tangent matrix is derived as

dsnþ1

dεnþ1


v
¼ �Mv

nþ1 þ S
�
dvnþ1

��
: C0: S

alg
nþ1 (6.93)
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where the fourth-order tensor Mv
nþ1 can be presented in Voigt notation (in indicial form) as follows:

Mv
ikjnþ1 ¼

vSðdnÞijεej
vεek


nþ1

¼
24
ε
e
j

vSðdnÞij
vdnp

vdp
vrx

vrx
vfx

vfx

vbsq

vbsq

vεek


nþ1

:
Dt

hþ Dt

35
i; j; p; q; k ¼ f1; 2; 3g x ¼ f1; 2g

6.5.4.4 Computational procedure
The user subroutine UMAT for the numerical algorithm based on the model discussed previously has
been coded and is called by Abaqus/Standard at each material integration point of the elements where
user-defined materials are used to update the Cauchy nominal stresses and provide the consistent
tangent matrix of the material for the calculation of the element tangent stiffness matrix. This process
includes the use of the elastic predictor, plastic corrector, damage corrector parts of the algorithm and
calculation of the regularized consistent tangent matrix as follows:

1. Initial conditions:

εnþ1; Dεnþ1; ε
p
n; ~εpn; bsn; sn; ~sn; rI;n dI;n; dm;n; dvm;n

2. Elastic predictor:
a. Assign and compute the trial state variables:

ε
p;trial
nþ1 ¼ ε

p
n; ~εp;trialnþ1 ¼ ~εpn; ~sp;trialnþ1 ¼ ~sn;

bstrial
nþ1 ¼ bsn þ S0: Dεnþ1; dtrialI;nþ1 ¼ dI;n

b. Check the yield criterion:

Ftrial
nþ1 ¼ Fp;trial

nþ1 � ~strialnþ1 � 0

If Ftrial
nþ1 � 0, then set bsnþ1 ¼ bstrial

nþ1. Otherwise, plasticity evolves, go to step 3.
3. Plastic corrector:

The Newton-Raphson method is employed to solve the nonlinear problem

Fnþ1 ¼ FðbsðDlpÞ;~εpðDlpÞÞ ¼ 0 iteratively in order to compute the real plastic state variables

(εpnþ1;~ε
p
nþ1; ~snþ1):

a. Initialize:

k ¼ 0; bsð0Þ
nþ1 ¼ bstrial

nþ1; ε
p;ð0Þ
nþ1 ¼ ε

p
n; ~ε

p;ð0Þ
nþ1 ¼ ~εpn; Dl

p;ð0Þ
nþ1 ¼ 0:

b. Calculate dðDlpÞ, dεp, d~εp in the (kþ1) iteration;
c. Update the plastic state variables in the (kþ1) iteration:

Dl
p;ðkþ1Þ
nþ1 ¼ Dl

p;ðkÞ
nþ1 þ dðDlpÞ;

ε
p;ðkþ1Þ
nþ1 ¼ ε

p;ðkÞ
nþ1 þ dεp;

~ε
p;ðkþ1Þ
nþ1 ¼ ~ε

p;ðkÞ
nþ1 þ d~εp

d. Calculate bsðkþ1Þ
nþ1 ¼ S0:

�
εnþ1 � ε

p;ðkþ1Þ
nþ1

�
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e. Calculate F
ðkþ1Þ
nþ1 ¼ F

�bsðkþ1Þ
nþ1 ;~ε

p;ðkþ1Þ
nþ1

�
; If F

ðkþ1Þ
nþ1 ¼ TOL; then bsnþ1 ¼ bsðkþ1Þ

nþ1 , εpnþ1 ¼ ε
p;ðkþ1Þ
nþ1 ,

~εpnþ1 ¼ ~ε
p;ðkþ1Þ
nþ1 , calculate Salgnþ1. Otherwise, set k ¼ k þ 1, go to b.

4. Damage corrector (updating the nominal Cauchy stresses):
a. Calculate fI;nþ1, updating rI;nþ1 ¼ maxf1;fI;nþ1; rI;ng
b. Calculate damage variables dI;nþ1; dm;nþ1; dvm;nþ1 and Sðdnm;nþ1Þ
c. Update the nominal stresses: snþ1 ¼ Sðdvm;nþ1Þ: ðεnþ1 � ε

p
nþ1Þ

5. Calculation of the tensor Mv
nþ1 and the regularized consistent tangent matrix:

dsnþ1

dεnþ1
¼ ½Mv

nþ1 þ Sðdvm;nþ1Þ�: C0: S
alg
nþ1

The flow chart of this subroutine is shown in Fig. 6.27.

6.5.5 Numerical analyses

To illustrate the effectiveness of the model, numerical simulations of the progressive failure of flat
composite laminates containing central through holes (see Fig. 6.28a) and subjected to uniform in-
plane tensile loading have been undertaken. In addition, ½�45��2s laminate without cutouts under
in-plane tensile loading has been analyzed.

6.5.5.1 Composite laminates with through holes
Two groups of different laminates are considered in this section. The rectangular laminates from the
first group are composed of plies made from T300/1034-C carbon-epoxy composite and have the
following dimensions: length L ¼ 203:2 mm, thickness H ¼ 2:616 mm, and widths W ¼ 19:05;
38:1; 12:7; and 25:4 mm. The corresponding diameters of the central holes for this set of laminates
are: D ¼ 3:175; 6:35; 3:175; and 6:35 mm.

The rectangular laminates from the second group are made from AS4/PEEK composite and have
the length, width, and thickness of 100, 20, and 2 mm, respectively. The simulations have been per-
formed for five different laminates having central through holes with the following diameters:
D ¼ 2; 3; 5; 8; and 10 mm.

The laminates are modeled using the Composite Layup function available within Abaqus.
Considering the symmetry of the laminate and loading, only one quarter of the laminate is simulated.
The boundary conditions for the one quarter laminate FE model are illustrated in Fig. 6.28b. Nodes on
the vertical central line are constrained to move along the vertical (x) direction. Nodes on the hori-
zontal central line are restrained to move along the horizontal (y) direction. The laminates are sub-
jected to tensile displacement-controlled loading. A reference point RP is appointed to the lower-left
corner of the loaded surface (see Fig. 6.28b). Displacement-controlled loading is applied to this
reference point. A linear constraint equation between this reference point and the loaded surface is
implemented so that the displacements of all the nodes on the loaded surface are constrained to have
equal displacements with the applied displacement on the reference point RP. By doing this, the
reaction force and corresponding displacement on the loaded surface can be conveniently output to this
reference point. The laminates are modeled using continuum shell elements SC8R available within
Abaqus. The element size of the numerical simulations of the T300/1034-C carbon-epoxy composite
laminates group is 0.635 mm; whereas the one for AS4/PEEK group is 0.5 mm.

As indicated earlier, both aforementioned materials could exhibit nonlinearity or plasticity under
certain loading conditions. The details of the progressive failure analyses are discussed below.
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Three different material lay-ups were considered for the laminates made of T300/1034-C carbon-
epoxy composite, namely ½0�=ð�45�Þ3=90�3�s, ½0�=ð�45�Þ2=90�5�s, and ½0�=ð�45�Þ1=90�7�s. The
material properties along with model parameters used in the finite-element simulations are shown in
Table 6.2. The material properties, strength characteristics, and critical strain energies were taken from
Maimi et al. (2007b). The set of plastic model parameters reported by Chen and Sun (1987) for

FIGURE 6.27

Flow chart of the user subroutine UMAT.
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AS/3501-5 graphite-epoxy composite have been adopted for the simulations. The appropriateness of
such selection has been verified by comparison of the shear stress-strain curve predicted using these
parameters and that generated by the shear stress-strain relation suggested by Maimi et al. (2007b)
for the material under consideration. The corresponding geometric parameters (hole diameters D and

FIGURE 6.28

Geometry and boundary conditions of the composite laminate containing through hole

(L ¼ 203:2 mm;H ¼ 2:616 mm).

Table 6.2 Material Properties of T300/1034-C and Model Parameters.

E0
1 E0

2 G0
12 n021 s1t s1c s2t s2c ss

146.8
GPa

11.4
GPa

6.1
GPa

0.3 1730.0
MPa

1379.0
MPa

66.5
MPa

268.2
MPa

58.7
MPa

G1t;c G1c;c G2t;c G2c;c G6;c a b n h

89.83
N/mm

78.27
N/mm

0.23
N/mm

0.76
N/mm

0.46
N/mm

1.25 567.9092 0.272405 0.0002
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widthsW) are presented in Table 6.3. According to the geometries, the laminates are grouped into four
categories, labeled A, B, C, and D in Table 6.3.

The results of the simulations are shown in Table 6.3 and Fig. 6.29. The predicted failure stresses
su ðsu ¼ Pu=ðWHÞ, where Pu is the failure load) obtained in this study, have been compared with the
experimental results reported by Chang et al. (1984) along with the numerical results obtained by
Chang and Chang (1987), Tan (1991), and Maimi et al. (2007b). It follows from Table 6.3 that the
failure stresses predicted by the simulations performed in this study correlate well with the test data
and generally are more accurate compared to the computational predictions made by Chang and Chang
(1987), and Tan (1991). The comparison of load versus displacement curves obtained for the laminates
from group D (see Table 6.3) using the model presented in this work and those reported by Maimi et al.
(2007b) is shown in Fig. 6.29. The differences in the results could be attributable to the fact that in the
model proposed by Maimi et al. (2007b) the nonlinear phenomenon observed under shear loading was
simulated using only a nonlinear shear stress-strain relationship and the nonlinearity exhibited under
transverse loading has been ignored. Also, different damage and failure criteria are adopted in the
current model compared to those presented in Maimi et al. (2007b). It follows from these comparisons
that the force versus displacement curves predicted by the present model are in good agreement with
the experimental and computational results reported in the literature.

All five laminates made from AS4/ PEEK composite have the same lay-up: ½0�=45�=90�=�45��2s.
The material elastic properties and plastic model parameters were obtained from Sun and Yoon (1992).
The compressive strengths were taken from Sun and Rui (1990), whereas the tensile strength and shear
strength were obtained from Kawai et al. (2001). The values of the critical strain energies G1t;c and
G2t;c were taken from the experimental data reported by Carlile et al. (1989). The value of the
parameter G6;c was taken from Donaldson (1985). Using this value, the critical strain energy G2c;c was
calculated approximately based on the equation proposed by Maimi et al. (2007b). The values for all
these parameters are listed in Table 6.4.

The failure loads predicted by the simulations were compared with the experimental data reported
by Maa and Cheng (2002) and also with the results of their numerical analyses based on the so-called
“principal damage model” and modified “principal damage model” (see Maa and Cheng (2002))
referred to as Model 1 and Model 2 in this section. As shown in Table 6.5, the results obtained from the
simulations based on the present model agree well with the test data. Moreover, it follows from Table
6.5 that these results are more accurate than those obtained using Model 1 and have similar accuracy to
those based on Model 2. The corresponding force versus displacement curves are shown in Fig. 6.30. It
follows from Table 6.5 that in Maa and Cheng’s (2002) study the use of Model 2 substantially improves
the predicted results compared to Model 1. This improvement can be attributed to the inclusion of the
post-failure fiber damage development process simulation in Model 2. The current model is similar to
Maa and Cheng’s model in that the in-plane shear behavior is also allowed for using an isotropic
hardening plastic model. However, the postfailure development of the shear failure was not considered
by Maa and Cheng. In their work, the shear failure was assumed to occur once the shear stress reached
the ultimate shear strength and no further damage progression was simulated. Also they did not include
any plasticity evolution in the transverse direction, whereas this effect is taken into account by the
present model. The comparable good accuracy of the present model and Model 2 (Maa and Cheng,
2002) provides some evidence that consideration of the two significant features, i.e., plasticity and
damage development effects, is important when analyzing the progressive failure of composite
materials and structures. Although both models provide accurate results in the simulations, it should be
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Table 6.3 Comparison of the Tensile Failure Stresses of T300/1034-C Carbon/Epoxy Laminates.

Failure stress su MPa Error %

Lay-up Label
D
(mm)

W
(mm) Present Changa Tana Maimi

Test
Data Present Chang Tan Maimi

½0=ð�45Þ3=903�s A 3.175 19.05 293.07 227.53 275.75 d 277.17 5.74 -17.91 -0.5 d

½0=ð�45Þ3=903�s B 6.35 38.1 252.22 206.84 275.79 d 256.48 -1.66 -19.35 7.53 d

½0=ð�45Þ3=903�s C 3.175 12.7 269.05 206.84 262.00 d 226.15 18.97 -8.54 15.85 d

½0=ð�45Þ3=903�s D 6.35 25.4 238.30b 179.26 248.21 263.1b 235.80b 1.06 -23.98 5.26 11.6

½0=ð�45Þ2=905�s A 3.175 19.05 239.13 193.05 186.16 d 236.49 1.12 -18.37 -21.28 d

½0=ð�45Þ2=905�s B 6.35 38.1 214.30 172.37 186.16 d 204.08 5.00 -15.54 -8.78 d

½0=ð�45Þ2=905�s C 3.175 12.7 216.28 165.47 172.37 d 177.88 21.58 -6.98 -3.10 d

½0=ð�45Þ2=905�s D 6.35 25.4 205.83b 151.68 158.58 200.1b 185.47b 10.98 -18.22 -14.50 7.7

½0=ð�45Þ1=907�s A 3.175 19.05 171.03 144.79 227.53 d 190.98 -10.45 -24.19 19.13 d

½0=ð�45Þ1=907�s B 6.35 38.1 150.36 124.11 227.53 d 158.58 -5.18 -21.74 43.48 d

½0=ð�45Þ1=907�s C 3.175 12.7 154.96 124.11 213.74 d 134.45 15.25 -7.69 58.97 d

½0=ð�45Þ1=907�s D 6.35 25.4 135.67b 103.42 199.95 148.2b 159.96b -15.19 -35.34 25.00 -7.4

aChang and Chang (1987) and Tan (1991).
bThe load vs. displacement curves of these analyses using the present and Maimi models are shown in Fig. 6.29.
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noted that the damage accumulation parameter in Model 2 was obtained as a result of an inverse
analysis to match the test data obtained for ½0�=45�=90�=�45��2s laminate with a hole diameter of
5 mm and then applied as an input parameter in the analyses of the other laminates with different hole
diameters. From this point of view, one of the substantial advantages of the model presented in this
section compared to Model 2 is that all the material properties or parameters are obtained indepen-
dently for an elementary unidirectional ply. A graphical illustration of the damage evolution char-
acterized by the variation of the damage variables d1, d2, d6 and d3 in each ply of the laminates under
consideration can be found in Chen et al. (2012).

FIGURE 6.29

Comparison of load vs. displacement curves for T300/1034-C composite laminates.

Table 6.4 Material Properties of AS4/PEEK and Model Parameters.

E0
1 E0

2 G0
12 v021 s1t s1c s2t s2c ss

127.6
GPa

10.3
GPa

6.0
GPa

0.32 2023.0
MPa

1234.0
MPa

92.7
MPa

176.0
MPa

82.6
MPa

G1t;c G1c;c G2t;c G2c;c G12;c a b n h

128.0
N/mm

128.0
N/mm

5.6
N/mm

9.31
N/mm

4.93
N/mm

1.5 295.0274 0.142857 0.0002
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6.5.5.2 AS4/PEEK [�45�]2s composite laminates
In order to demonstrate the capability of the proposed model to represent the post-failure regime and to
validate its ability to reflect on the plasticity behavior, a numerical analysis of the AS4/PEEK ½�45��2s
composite laminate subjected to tensile loading has been performed. The length, width, and thickness
of the coupon are 230, 20, and 1 mm, respectively. The experimental stress-strain curve for this
laminate was obtained by Lafarie-Frenot and Touchard (1994). The results of the simulation and
testing are shown in Fig. 6.31. The material properties of the unidirectional AS4/PEEK CFRP material
listed in Table 6.4 were adopted in the numerical analysis. It follows from Fig. 6.31 that the

Table 6.5 Comparison of the Failure Loads between Experimental Data and the FE Analyses of AS4/

PEEK [0�/45�/90�/�45�]2s Composite Laminates.

Failure Load P (kN) Error %

D (mm) Test Present Model 1 Model 2 Present Model 1 Model 2

2 22.98 21.649 19.94 21.69 -5.792 -15.246 -5.614

3 19.31 18.122 13.63 17.65 -6.151 -41.673 -8.597

5 15.31 16.431 12.00 15.34 7.325 -27.583 0.196

8 11.67 13.105 10.06 12.46 12.296 -16.004 6.769

10 9.22 10.581 8.67 10.77 14.768 -6.344 16.811

FIGURE 6.30

Predicted load vs. displacement curves of AS4/PEEK ½0�=45�=90�=�45��2s composite laminates.
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stress-strain curve predicted by the numerical simulation performed in this study correlates well with
that obtained from the experimental study.

The aforementioned results of numerical simulations show the capability of the model and
numerical procedure discussed in this section in simulating a progressive failure process for composite
laminates and capturing and reflecting the key features of the damage initiation and progression.
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Environmental, special loading,
and manufacturing effects 7
The properties of composite materials, as well as those of all structural materials, are affected by
environmental and operational conditions. Moreover, for polymeric composites, this influence is
more pronounced than for conventional metal alloys, because polymers are more sensitive to
temperature, moisture, and time than are metals. There is also a specific feature of composites
associated with the fact that they do not exist apart from composite structures and are formed while
these structures are fabricated. As a result, the material characteristics depend on the type and
parameters of the manufacturing process; e.g., unidirectional composites made by pultrusion, hand
lay-up, and filament winding can demonstrate different properties.

This section of the book is concerned with the effect of environmental, loading, and manufacturing
factors on the mechanical properties and behavior of composites.

7.1 TEMPERATURE EFFECTS
Temperature is the most important of the environmental factors affecting the behavior of
composite materials. First of all, polymeric composites are rather sensitive to temperature and
have relatively low thermal conductivity. This combination of properties allows us, on one hand,
to use these materials in structures subjected to short-term heating, and on the other hand,
requires the analysis of these structures to be performed with due regard to temperature effects.
Secondly, there exist composite materials, e.g., carbon-carbon and ceramic composites that are
specifically developed for operation under intense heating, and materials such as mineral-fiber
composites, that are used to form heatproof layers and coatings. Thirdly, the fabrication of
composite structures is usually accompanied by more or less intensive heating (e.g., for curing or
carbonization), and the subsequent cooling induces thermal stresses and strains, to calculate
which we need to utilize the equations of thermal conductivity and thermoelasticity as discussed
below.

7.1.1 Thermal conductivity

Heat flow through a unit area of a surface with normal n is related to the temperature gradient in the n
direction according to Fourier’s law as

q ¼ �l
vT

vn
(7.1)
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where l is the thermal conductivity of the material. The temperature distribution along the n-axis is
governed by the following equation:

v

vn

�
l
vT

vn

�
¼ cr

vT

vt
(7.2)

in which c and r are the specific heat and density of the material, and t is time. For a steady (time-
independent) temperature distribution, vT=vt ¼ 0, and Eq. (7.2) yields

T ¼ C1

Z
dn

l
þ C2 (7.3)

Consider a laminated structure referred to coordinates x, z as shown in Fig. 7.1. To determine the
temperature distribution along the x-axis only, we should take into account that l does not depend on x,
and assume that T does not depend on z. Using conditions Tðx ¼ 0Þ ¼ T0 and Tðx ¼ lÞ ¼ Tl to find the
constants C1 and C2 in Eq. (7.3), in which n ¼ x, we get

T ¼ T0 þ x

l
ðTl � T0Þ

Introduce the apparent thermal conductivity of the laminate in the x direction, lx, and write Eq. (7.1)
for the laminate as

qx ¼ �lx
Tl � T0

l

The same equation can be written for the ith layer, i.e.,

qi ¼ �li
Tl � T0

l

The total heat flow through the laminate in the x direction is

qxh ¼
Xk
i¼1

qihi

Combining the foregoing results, we arrive at

lx ¼
Xk
i¼1

lihi (7.4)

where hi ¼ hi=h:

–

FIGURE 7.1

Temperature distribution in a laminate.
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Consider the heat transfer in the z direction and introduce the apparent thermal conductivity lz in
accordance with the following form of Eq. (7.1)

qz ¼ �lz
Th � T0

h
(7.5)

Taking n ¼ z and l ¼ li for zi�1 � z � zi in Eq. (7.3) and using step-wise integration and
the conditions Tðz ¼ 0Þ ¼ T0; Tðz ¼ hÞ ¼ Th to find constants C1, and C2, we obtain for the ith
layer

Ti ¼ T0 þ Th � T0Pk
i¼1

hi
li

 
z� zi�1

li
þ
Xi�1

j¼1

hj
lj

!
(7.6)

The heat flow through the ith layer follows from Eqs. (7.1) and (7.6), i.e.,

qi ¼ �li
vTi
vz

¼ � Th � T0Pk
i¼1

hi
li

Obviously, qi ¼ qz (see Fig. 7.1), and with due regard to Eq. (7.5)

1

lz
¼
Xk
i¼1

hi
li

(7.7)

where, as earlier, hi ¼ hi=h.
The results obtained, Eqs. (7.4) and (7.7), can be used to determine the thermal conductivity of

a unidirectional composite ply. Indeed, comparing Fig. 7.1 with Fig. 3.34 showing the structure of the
first-order ply model, we can write the following equations specifying thermal conductivity of
a unidirectional ply along and across the fibers:

l1 ¼ l1fvf þ lmvm

1

l2
¼ vf

l2f
þ vm

lm

(7.8)

Here, l1f and l2f are the thermal conductivities of the fiber in the longitudinal and transverse directions
(for some fibers they are different), lm is the corresponding characteristic of the matrix, and vf , vm ¼
1� vf are the fiber and matrix volume fractions, respectively. The conductivity coefficients in
Eqs. (7.8) are analogous to elastic constants specified by Eqs. (3.76) and (3.78), and the discussion
presented in Section 3.3 is valid for Eqs. (7.8) as well. In particular, it should be noted that application
of higher-order microstructural models has practically no effect on l1 but substantially improves l2,
determined by Eqs. (7.8). Typical properties for unidirectional and fabric composites are listed in
Table 7.1.

Consider heat transfer in an orthotropic ply or layer in coordinate frame x, y whose axes x and y
make angle fwith the principal material coordinates x1 and x2, as in Fig. 7.2. Heat flows in coordinates
x, y and x1; x2 are linked by the following equations:

qx ¼ q1 cos f � q2 sin f; qy ¼ q1 sin f þ q2 cos f (7.9)
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Here, in accordance with Eq. (7.1)

q1 ¼ �l1
vT

vx1
; q2 ¼ �l2

vT

vx2

Changing variables x1; x2 to x, y with the aid of the following transformation relationships

x ¼ x1 cos f � x2 sin f; y ¼ x1 sin f þ x2 cos f

and substituting q1 and q2 into Eqs. (7.9), we arrive at

qx ¼ �lx
vT

vx
� lxy

vT

vy
; qy ¼ �ly

vT

vy
þ lxy

vT

vx

where

lx ¼ l1 cos
2f þ l2 sin

2f

ly ¼ l1 sin
2f þ l2 cos

2f

lxy ¼
�
l2 � l1

�
sin f cos f

(7.10)

Table 7.1 Typical Thermal Conductivity and Expansion Coefficients of Composite Materials.

Property
Glass-
epoxy

Carbon-
epoxy

Aramid-
epoxy

Boron-
epoxy

Glass
fabric-
epoxy

Aramid
fabric-
epoxy

Longitudinal conductivity
l1 (W/m K)

0.6 1 0.17 0.5 0.35 0.13

Transverse conductivity
l2 (W/m K)

0.4 0.6 0.1 0.3 0.35 0.13

Longitudinal
CTE 106 a1 ð1=�C)

7.4 �0.3 �3.6 4.1 8 0.8

Transverse
CTE 106 a2 ð1=�C)

22.4 34 60 19.2 8 0.8

x

x1

x2

y

1q

1q

2q

2q–

yq

xq
φ

FIGURE 7.2

Heat flows in coordinates x ; y and x1; x2.
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can be treated as the ply thermal conductivities in coordinates x, y. Since the ply is anisotropic in these
coordinates, the heat flow in for example, the x direction induces a temperature gradient not only in the
x direction, but in the y direction as well. Using Eq. (7.4), we can now determine the in-plane thermal
conductivities of the laminate as

Lx ¼
Pk
i¼1

lðiÞx hi; Ly ¼
Pk
i¼1

lðiÞy hi;

Lxy ¼
Pk
i¼1

lðiÞxy hi
(7.11)

where lðiÞx;y are specified by Eqs. (7.10) in which l1;2 ¼ l
ðiÞ
1;2 and f ¼ fi. For �f angle-ply laminates

that are orthotropic, Lxy ¼ 0.
As an example, consider the composite body of a space telescope, a section of which is shown in

Fig. 7.3. The cylinder having diameter D ¼ 1 m and total thickness h ¼ 13.52 mm consists of four
layers, i.e.,

• �fs angle-ply carbon-epoxy external skin with the following parameters:

fs ¼ 20�; hes ¼ 3:5 mm; Ee
1 ¼ 120 GPa;

Ee
2 ¼ 11 GPa; Ge

12 ¼ 5:5 GPa; ne21 ¼ 0:27;

le1 ¼ 1 W=m K; le2 ¼ 0:6 W=m K;

ae1 ¼ �0:3,10�6 1= �C; ae2 ¼ 34,10�6 1= �C;

• carbon-epoxy lattice layer (see Fig. 4.93) formed by a system of �fr helical ribs with

fr ¼ 26�; hr ¼ 9 mm; dr ¼ 4 mm; ar ¼ 52 mm; Er ¼ 80 GPa;

lr ¼ 0:9 W=m K; ar ¼ �1,10�6 1=�C;

FIGURE 7.3

A composite section of a space telescope.

Courtesy of CRISM.
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• internal skin made of aramid fabric with

his ¼ 1 mm; Ei
x ¼ Ei

y ¼ 34 GPa; Gi
xy ¼ 5:6 GPa;

nixy ¼ niyx ¼ 0:15; lix ¼ liy ¼ 0:13 W=m K;

aix ¼ aiy ¼ 0:8,10�6 1=�C (x and y are the axial and the circumferential coordinates of the
cylinder),

• internal layer of aluminum foil with

hf ¼ 0:02 mm; Ef ¼ 70 GPa; nf ¼ 3:0;

lf ¼ 210 W=m K; af ¼ 22:3,10�6 1=�C

The apparent thermal conductivity of the cylinder wall can be found with the aid of Eqs. (7.10), (7.11),
and the continuum model of the lattice layer described in Section 4.8 as

Lx ¼ 1

h

��
le1 cos

2fe þ le2 sin
2fe

�
hes þ

2

ar
hrdrlr cos

2fr þ lixh
i
s þ lf hf

	

Calculation yields Lx ¼ 0:64 W=m K. The thermal resistance of a unit length of this structure is

rx ¼ 1

LxpDh
¼ 36:8

K

W m

7.1.2 Thermoelasticity

It is known that heating gives rise to thermal strains that, when restricted, induce thermal stresses.
Assume that the temperature distribution in a composite structure is known, and consider the problem
of thermoelasticity.

Consider first the thermoelastic behavior of a unidirectional composite ply studied in Section 3.3
and shown in Fig. 3.29. The generalized Hooke’s law, Eqs. (3.58), allowing for temperature effects, can
be written as

ε1T ¼ ε1 þ ε
T
1 ; ε2T ¼ ε2 þ ε

T
2 ; g12T ¼ g12 (7.12)

Here and subsequently, the subscript “T” shows the strains that correspond to the problem of ther-
moelasticity, whereas the superscript “T” indicates temperature terms. Elastic strains ε1; ε2, and g12 in
Eqs. (7.12) are related to stresses by Eqs. (3.58). Temperature strains, to a first approximation, can be
taken as linear functions of the temperature change, i.e.,

ε
T
1 ¼ a1DT; ε

T
2 ¼ a2DT ; (7.13)

where a1 and a2 are the coefficients of thermal expansion (CTE) along and across the fibers, and DT ¼
T � T0 is the difference between the current temperature T and some initial temperature T0 at which
thermal strains are zero. The inverse form of Eqs. (7.12) is

s1 ¼ E1

�
ε1T þ n12ε2T

�� E1

�
ε
T
1 þ n12ε

T
2

�
s2 ¼ E2

�
ε2T þ n21ε1T

�� E2

�
ε
T
2 þ n21ε

T
1

�
s12 ¼ G12g12T

(7.14)

where E1;2 ¼ E1;2=ð1� n12n21Þ.
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To describe the thermoelastic behavior of a ply, apply the first-order micromechanical model
shown in Fig. 3.34. Since the CTE (and elastic constants) of some fibers can be different in the
longitudinal and transverse directions, generalize the first two equations of Eqs. (3.63) as

ε
f ;m
1T ¼ 1

Ef 1;m

�
s

f ;m
1 � nf 2;ms

f ;m
2

�
þ af1;mDT

ε
f ;m
2T ¼ 1

Ef 2;m

�
s

f ;m
2 � nf 1;ms

f ;m
1

�
þ af2;mDT

(7.15)

Repeating the derivation of Eqs. (3.76)–(3.79), we arrive at

E1 ¼ Ef1vf þ Emvm; n21 ¼ nf2vf þ nmvm

1

E2
¼ ð1� nf 1nf2Þ

vf
Ef2

þ
�
1� n2m

�
vm
Em

þ n221
E1

a1 ¼ 1

E1
ðEf1af 1vf þ EmamvmÞ

a2 ¼
�
af 2 þ nf 2af1

�
vf þ

�
1þ vm

�
amvm � n21a1

(7.16)

These equations generalize Eqs. (3.76)–(3.79) for the case of anisotropic fibers and specify the
apparent CTE of a unidirectional ply.

As an example, consider the high-modulus carbon-epoxy composite tested by Rogers et al. (1977).
The microstructural parameters for this material are as follows

Ef1 ¼ 411 GPa; Ef2 ¼ 6:6 GPa; nf 1 ¼ 0:06

nf2 ¼ 0:35; af1 ¼ �1:2,10�6 1=�C; af2 ¼ 27:3,10�6 1=�C

Em ¼ 5:7 Gpa; nm ¼ 0:316; am ¼ 45,10�6 1=�C; vf ¼ vm ¼ 0:5

ðT ¼ 27�CÞ. For these properties, Eqs. (7.16) yield

E1 ¼ 208:3 GPa; E2 ¼ 6:5 GPa; n21 ¼ 0:33

a1 ¼ �0:57,10�6 1=�C; a2 ¼ 43:4,10�6 1=�C

whereas the experimental results were

E1 ¼ 208:6 GPa; E2 ¼ 6:3 GPa; n21 ¼ 0:33

a1 ¼ �0:5,10�6 1=�C; a2 ¼ 29:3,10�6 1=�C
Thus, it can be concluded that the first-order microstructural model provides good results for the
longitudinal material characteristics, but fails to predict a2 with the required accuracy. The discussion
and conclusions concerning this problem presented in Section 3.3 for elastic constants are valid for
thermal expansion coefficients as well. For practical applications, a1 and a2 are normally determined
by experimental methods. However, in contrast to the elasticity problem for which the knowledge of
experimental elastic constants and material strength excludes consideration of the micromechanical
models, for the thermoelasticity problems these models provide us with useful information even if we
know the experimental thermal expansion coefficients. Indeed, consider a unidirectional ply that is
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subjected to uniform heating that induces only thermal strains, i.e., ε1T ¼ ε
T
1 , ε2T ¼ ε

T
2 , and g12T ¼ 0.

Then, Eqs. (7.14) yield s1 ¼ 0, s2 ¼ 0, and s12 ¼ 0. For homogeneous materials, this means that no
stresses occur under uniform heating. However, this is not the case for a composite ply. Generalizing
Eqs. (3.74) that specify longitudinal stresses in the fibers and in the matrix, we obtain

s
f
1 ¼ Ef1ða1 � af1ÞDT ; sm1 ¼ Emða1 � amÞDT

where a1 and a2 are specified by Eqs. (7.16). Thus, because the thermal expansion coefficients of the
fibers and the matrix are different from those of the material, there exist microstructural thermal
stresses in the composite structural elements. These stresses are self-balanced.

Indeed,

s1 ¼ s
f
1vf þ sm1 vm ¼ 0

Consider an orthotropic layer referred to coordinate axes x, y making angle f with the principal
material coordinate axes (see Fig. 7.2). Using Eqs. (7.14) instead of Eqs. (4.56) and repeating the
derivation of Eqs. (4.71), we arrive at

sx ¼ A11εxT þ A12εyT þ A14gxyT � AT
11

sy ¼ A21εxT þ A22εyT þ A24gxyT � AT
22

sxy ¼ A41εxT þ A42εyT þ A44gxyT � AT
12

(7.17)

where Amn are specified by Eqs. (4.72) and the thermal terms are

AT
11 ¼ E1ε

T
12 cos

2f þ E2ε
T
21 sin

2f

AT
22 ¼ E1ε

T
12 sin

2f þ E2ε
T
21 cos

2f

AT
12 ¼

�
E1ε

T
12 � E2ε

T
21

�
sin f cos f

(7.18)

Here,

ε
T
12 ¼ ε

T
1 þ n12ε

T
2 ; ε

T
21 ¼ ε

T
2 þ n21ε

T
1

and ε
T
1 ; ε

T
2 are determined by Eqs. (7.13). The inverse form of Eqs. (7.17) is

εxT ¼ εx þ ε
T
x ; εyT ¼ εy þ ε

T
y ; gxyT ¼ gxy þ gTxy (7.19)

Here, εx; εy, and gxy are expressed in terms of stresses sx; sy, and sxy by Eqs. (4.75), whereas the
thermal strains are

ε
T
x ¼ ε

T
1 cos2f þ ε

T
2 sin2f

ε
T
y ¼ ε

T
1 sin2f þ ε

T
2 cos2f

gT
xy ¼

�
ε
T
1 � ε

T
2

�
sin 2f

Introducing thermal expansion coefficients in the xy coordinate frame with the following equations

ε
T
x ¼ axDT ; ε

T
y ¼ ayDT ; gTxy ¼ axyDT (7.20)
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and using Eqs. (7.13), we obtain

ax ¼ a1 cos
2f þ a2 sin

2f

ay ¼ a1 sin
2f þ a2 cos

2f

axy ¼
�
a1 � a2

�
sin 2f

(7.21)

It follows from Eqs. (7.19) that, in an anisotropic layer, uniform heating induces not only normal
strains, but also a shear thermal strain. As can be seen in Fig. 7.4, Eqs. (7.21) provide fair agreement
with the experimental results of Barnes et al. (1989) for composites with carbon fibers and thermo-
plastic matrix (dashed line and light circles).

Consider a symmetric �f angle-ply layer (see Section 4.5.1). This layer is orthotropic, and the
corresponding constitutive equations of thermoelasticity have the form of Eqs. (7.17) in which
A14 ¼ A41 ¼ 0, A24 ¼ A42 ¼ 0, and AT

12 ¼ 0. The inverse form of these equations is

εxT ¼ εx þ ε
T
x ; εyT ¼ εy þ ε

T
y ; gxyT ¼ gxy

where εx; εy, and gxy are expressed in terms of stresses by Eqs. (4.146), whereas the thermal strains are

ε
T
x ¼ AT

11A22 � AT
22A12

A11A22 � A2
12

; ε
T
y ¼ AT

22A11 � AT
11A12

A11A22 � A2
12

Using Eqs. (4.147), (7.13), (7.18), and (7.20), we arrive at the following expressions for apparent
thermal expansion coefficients

ax ¼ 1

Ex

�
aT11 � nyxa

T
22

�
; ay ¼ 1

Ey

�
aT22 � nxya

T
11

�
(7.22)

, 1/°C
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x106α

φ °

FIGURE 7.4

Calculated (dots) and experimental (circles) dependencies of thermal expansion coefficients on the

ply orientation angle for unidirectional thermoplastic carbon composite (– – –, B) and a �f angle-ply layer

(ddd, •).
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in which

aT11 ¼ E1

�
a1 þ n12a2

�
cos2f þ E2

�
a2 þ n21a1

�
sin2f

aT22 ¼ E1

�
a1 þ n12a2

�
sin2f þ E2

�
a2 þ n21a1

�
cos2f

Comparison of ax with the experimental results of Barnes et al. (1989) for a thermoplastic carbon
composite is presented in Fig. 7.4 (solid line and dots). As can be seen in this figure, there exists an interval
ð0�f� 40�Þwithinwhich the coefficientax of the angle-ply layer is negative. The same type of behavior
is demonstrated by aramid-epoxy angle-ply composites. A comparison of calculated values based on Eqs.
(7.22)with the experimental results of Strife and Prevo (1979) is presented in Fig. 7.5. Looking at Figs. 7.4
and 7.5, we can hypothesize that supplementing an angle-ply laminate with plies having small thermal
elongations in the x direction, we can synthesize composite materials with zero thermal expansion in this
direction. Such materials are important, for example, for space telescopes (Fig. 7.3), antennas, measuring
instruments, and other high-precision, thermally stable structures (Hamilton and Patterson, 1993).

Consider laminates with arbitrary structural parameters (see Chapter 5). Repeating the derivation
of Eqs. (5.5) and using the thermoelasticity constitutive equations, Eqs. (7.17), instead of Eqs. (4.71),
we arrive at

Nx ¼ B11ε
0
xT þ B12ε

0
yT þ B14g

0
xyT þ C11kxT þ C12kyT þ C14kxyT � NT

11

Ny ¼ B21ε
0
xT þ B22ε

0
yT þ B24g

0
xyT þ C21kxT þ C22kyT þ C24kxyT � NT

22

Nxy ¼ B41ε
0
xT þ B42ε

0
yT þ B44g

0
xyT þ C41kxT þ C42kyT þ C44kxyT � NT

12

Mx ¼ C11ε
0
xT þ C12ε

0
yT þ C14g

0
xyT þ D11kxT þ D12kyT þ D14kxyT �MT

11

My ¼ C21ε
0
xT þ C22ε

0
yT þ C24g

0
xyT þ D21kxT þ D22kyT þ D24kxyT �MT

22

Mxy ¼ C41ε
0
xT þ C42ε

0
yT þ C44g

0
xyT þ D41kxT þ D42kyT þ D44kxyT �MT

12

(7.23)

These equations should be supplemented with Eqs. (5.15) for transverse shear forces, i.e.,

V x ¼ S55gxT þ S56gyT ; V y ¼ S65gxT þ S66gyT (7.24)

The temperature terms entering Eqs. (7.23) have the following form

NT
mn ¼

Zs
�e

AT
mndz; MT

mn ¼
Zs
�e

AT
mnzdz

where AT
mn are specified by Eqs. (7.18). Performing the transformation that is used in Section 5.1 to

reduce Eqs. (5.6), (5.7), and (5.8) to Eqs. (5.28) and (5.29), we get

NT
mn ¼ Jð0Þmn ; MT

mn ¼ Jð1Þmn � eJð0Þmn (7.25)

Here (see Fig. 5.8),

JðrÞmn ¼
Zh
0

AT
mnt

rdt; (7.26)

where r ¼ 0; 1 and mn ¼ 11; 12; 22:
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For a laminate, the temperature governed by Eq. (7.6) is linearly distributed over the layers’
thicknesses (see Fig. 7.1). The same law can obviously be assumed for the temperature coefficients in
Eqs. (7.18), i.e., for the ith layer in Fig. 5.10

ATi
mn ¼

�
AT
mn

�
i�1

þ 1

hi

��
AT
mn

�
i
� �AT

mn

�
i�1

	
ðt � ti�1Þ

where ðAT
mnÞi�1 ¼ AT

mnðt ¼ ti�1Þ and ðAT
mnÞi ¼ AT

mnðt ¼ tiÞ. Then, Eq. (7.26) takes the form

J
ðrÞ
mn ¼ Pk

i¼1

1

hi


��
AT
mn

�
i�1

ti �
�
AT
mn

�
i
ti�1

	
trþ1
i � trþ1

i�1

r þ 1

þ
��
AT
mn

�
i
� �AT

mn

�
i�1

	
trþ2
i � trþ2

i�1

r þ 2

�

If the temperature variation over the thickness of the ith layer can be neglected, we can introduce
some average value �

A
T
mn

�
i
¼ 1

2

��
AT
mn

�
i�1

þ �AT
mn

�
i

	

and present Eq. (7.26) as

JðrÞmn ¼ 1

r þ 1

Xk
i¼1

�
A
T
mn

�
i

�
trþ1
i � trþ1

i�1

�
(7.27)
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Calculated (line) and experimental (circles) dependencies of thermal expansion coefficient on the ply orientation

angle for an aramid-epoxy �f angle-ply layer.
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Total (elastic and thermal) generalized strains εT ; gT , and kT entering Eqs. (7.23) and (7.24) can be
expressed in terms of the displacements and rotational angles of the laminate element with the aid
of Eqs. (5.3) and (5.14), i.e.,

ε
0
xT ¼ vu

vx
; ε

0
yT ¼ vv

vy
; g0xyT ¼ vu

vy
þ vv

vx
(7.28)

kxT ¼ vqx

vx
; kyT ¼ vqy

vy
; kxyT ¼ vqx

vy
þ vqy

vx
(7.29)

gxT ¼ qx þ vw

vx
; gyT ¼ qy þ vw

vy
(7.30)

It follows from Eqs. (7.23) that, in the general case, uniform heating of laminates induces, in contrast
to homogeneous materials, not only in-plane strains but also changes to the laminate curvatures and
twist. Indeed, assume that the laminate is free from edge and surface loads so that forces and moments
in the left-hand sides of Eqs. (7.23) are equal to zero. Since the CTE of the layers, in the general case,
are different, the thermal terms NT and MT in the right-hand sides of Eqs. (7.23) are not equal to zero
even for a uniform temperature field, and these equations enable us to find εT ; gT , and kT specifying
the laminate in-plane and out-of-plane deformation. Moreover, using the approach described in
Section 5.11, we can conclude that uniform heating of the laminate is accompanied, in the general
case, by stresses acting in the layers and between the layers.

As an example, consider the four-layered structure of the space telescope described in Section 7.1.1.
First, we calculate the stiffness coefficients of the layers, i.e.,

• for the internal layer of aluminum foil,

A
ð1Þ
11 ¼ A

ð1Þ
22 ¼ Ef ¼ 76:92 GPa; A

ð1Þ
12 ¼ nf Ef ¼ 23:08 GPa

• for the inner skin,

A
ð2Þ
11 ¼ A

ð2Þ
22 ¼ E

i
x ¼ 34:87 GPa; A

ð2Þ
12 ¼ nixyE

i
x ¼ 5:23 GPa

• for the lattice layer,

A
ð3Þ
11 ¼ 2Er

dr

ar
cos4fr ¼ 14:4 GPa

A
ð3Þ
22 ¼ 2Er

dr

ar
sin4fr ¼ 0:25 GPa

A
ð3Þ
12 ¼ 2Er

dr

ar
sin2f cos2f ¼ 1:91 GPa

• for the external skin,

A
ð4Þ
11 ¼ E

e
1 cos

4fe þ E
e
2 sin

4fe þ 2
�
E
e
1n

e
12 þ 2Ge

12

�
sin2fe cos

2fe ¼ 99:05 GPa

A
ð4Þ
22 ¼ E

e
1 sin

4fe þ E
e
2 cos

4fe þ 2
�
E
e
1n

e
12 þ 2Ge

12

�
sin2fe cos

2fe ¼ 13:39 GPa

A
ð4Þ
12 ¼ E

e
1n

e
12 þ

h
E
e
1 þ E

e
2 � 2

�
E
e
1n

e
12 þ 2Ge

12

�i
sin2fe cos

2fe ¼ 13:96 GPa
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Using Eqs. (7.18), we find the thermal coefficients of the layers (the temperature is uniformly
distributed over the laminate thickness)�

AT
11

�
1
¼ �AT

22

�
1
¼ EfafDT ¼ 1715,10�6DT GPa=�C�

AT
11

�
2
¼ �AT

22

�
2
¼ E

i
x

�
1þ nixy

�
aixDT ¼ 32:08,10�6DT GPa=�C

�
AT
11

�
3
¼ 2Er

dr

ar
ar cos

2frDT ¼ 4:46,10�6DT GPa=�C

�
AT
22

�
3
¼ 2Er

dr

ar
ar sin

2frDT ¼ 1:06,10�6DT GPa=�C

�
AT
11

�
4
¼
h
E
e
1

�
ae1 þ ne12a

e
2

�
cos2f þ E

e
2

�
ae2 þ ne21a

e
1

�
sin2f

i
DT

¼ 132:43,10�6DT GPa=�C�
AT
22

�
4
¼
h
E
e
1

�
ae1 þ ne12a

e
2

�
sin2f þ E

e
2

�
ae2 þ ne21a

e
1

�
cos2f

i
DT

¼ 317:61,10�6DT GPa=�C

Since the layers are orthotropic, AT
12 ¼ 0 for all of them. Specifying the coordinates of the layers (see

Fig. 5.10), i.e.,

t0 ¼ 0 mm; t1 ¼ 0:02 mm; t2 ¼ 1:02 mm; t3 ¼ 10:02 mm; t4 ¼ 13:52 mm

and applying Eq. (7.27), we calculate the parameters J
ðrÞ
mn for the laminate

J
ð0Þ
11 ¼ �AT

11

�
1
ðt1 � t0Þ þ

�
AT
11

�
2
ðt2 � t1Þ þ

�
AT
11

�
3
ðt3 � t2Þ

þ�AT
11

�
4
ðt4 � t3Þ ¼ 570,10�6DT GPa mm=�C

J
ð0Þ
22 ¼ 1190,10�6DT GPa mm=�C

J
ð1Þ
11 ¼ 1

2

��
AT
11

�
1

�
t21 � t20

�
þ �AT

11

�
2

�
t22 � t21

�

þ�AT
11

�
3

�
t23 � t22

�þ �AT
11

�
4

�
t24 � t23

�	 ¼ 5690,10�6DT GPa mm=�C

J
ð1Þ
22 ¼ 13150,10�6DT GPa mm=�C

To determine MT
mn, we need to specify the reference surface of the laminate. Assume that this surface

coincides with the middle surface, i.e., that e ¼ h=2 ¼ 6:76 mm. Then, Eqs. (7.25) yield

NT
11 ¼ J

ð0Þ
11 ¼ 570,10�6DT GPa mm=�C

NT
22 ¼ J

ð0Þ
22 ¼ 1190,10�6DT GPa mm=�C

MT
11 ¼ J

ð1Þ
11 � eJ

ð0Þ
11 ¼ 1840,10�6DT GPa mm=�C

MT
22 ¼ 5100,10�6DT GPa mm=�C
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Thus, the thermal terms entering the constitutive equations of thermoelasticity, Eqs. (7.23), are
specified. Using these results, we can determine the apparent coefficients of thermal expansion for
the space telescope section under study (see Fig. 7.3). We can assume that, under uniform heating, the
curvatures do not change in the middle part of the cylinder so that kxT ¼ 0 and kyT ¼ 0. Since there are
no external loads, the free body diagram enables us to conclude that Nx ¼ 0 and Ny ¼ 0. As a result,
the first two equations of Eqs. (7.23) for the structure under study become

B11ε
0
xT þ B12ε

0
yT ¼ NT

11

B21ε
0
xT þ B22ε

0
yT ¼ NT

22

Solving these equations for thermal strains and taking into account Eqs. (7.20), we get

ε
0
xT ¼ 1

B

�
B22N

T
11 � B12N

T
22

�
¼ axDT

ε
0
yT ¼ 1

B

�
B11N

T
22 � B12N

T
11

�
¼ ayDT

where B ¼ B11B22 � B2
12. For the laminate under study, calculation yields

ax ¼ �0:94,10�6 1=�C ; ay ¼ 14:7,10�6 1=�C

Return to Eqs. (7.13) and (7.20) based on the assumption that the coefficients of thermal expansion
do not depend on temperature. For moderate temperatures, this is a reasonable approximation.
This conclusion follows from Fig. 7.6, in which the experimental results of Sukhanov et al. (1990)
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Experimental dependencies of thermal strains on temperature (solid lines) for �f angle-ply carbon-epoxy

composite and the corresponding linear approximations (dashed lines).

366 CHAPTER 7 Environmental, special loading, and manufacturing effects

www.EngineeringEBooksPdf.com



(shown by solid lines) are compared with Eqs. (7.20), in which DT ¼ T � 20�C (dashed lines)
represents carbon-epoxy angle-ply laminates. However, for relatively high temperatures, some devi-
ation from linear behavior can be observed. In this case, Eqs. (7.13) and (7.20) for thermal strains can
be generalized as

ε
T ¼

ZT
T0

aðTÞdT

Temperature variations can also result in a change in material mechanical properties. As follows
from Fig. 7.7 in which the circles correspond to the experimental data of Ha and Springer (1987),
elevated temperatures result in either higher or lower reduction of material strength and stiffness
characteristics, depending on whether the corresponding material characteristic is controlled mainly
by the fibers or by the matrix. The curves presented in Fig. 7.7 correspond to a carbon-epoxy
composite, but they are typical for polymeric unidirectional composites. The longitudinal
modulus and tensile strength, being controlled by the fibers, are less sensitive to temperature than
longitudinal compressive strength, and transverse and shear characteristics. Analogous results for
a more temperature sensitive thermoplastic composite studied by Soutis and Turkmen (1993) are
presented in Fig. 7.8. Metal matrix composites demonstrate much higher thermal resistance, whereas
ceramic and carbon-carbon composites have been specifically developed to withstand high
temperatures. For example, carbon-carbon fabric composite under heating up to 2500�C demon-
strates only a 7% reduction in tensile strength and about 30% reduction in compressive strength
without significant change of stiffness.
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Experimental dependencies of normalized stiffness (solid lines) and strength (dashed lines) characteristics of

unidirectional carbon-epoxy composite on temperature.
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Analysis of thermoelastic deformation for materials whose stiffness characteristics depend on
temperature presents substantial difficulties because thermal strains are caused not only by
material thermal expansion, but also by external forces. Consider, for example, a structural
element under temperature T0 loaded with some external force P0 and assume that the temper-
ature is increased to a value T1. Then the temperature change will cause a thermal strain asso-
ciated with material expansion, and the force P0, being constant, also induces additional strain
because the material stiffness at temperature T1 is less than its stiffness at temperature T0. To
determine the final stress and strain state of the structure, we should describe the process of
loading and heating using, e.g., the method of successive loading (and heating) presented in
Section 4.1.2.

7.2 HYGROTHERMAL EFFECTS AND AGING
Effects that are similar to temperature variations, i.e., expansion and degradation of properties, can also
be caused by moisture. Moisture absorption is governed by Fick’s law, which is analogous to Fourier’s
law, Eq. (7.1), for thermal conductivity, i.e.,

qW ¼ �D
vW

vn
(7.31)

in which qW is the diffusion flow through a unit area of surface with normal n,D is the diffusivity of the
material whose moisture absorption is being considered, and W is the relative mass moisture
concentration in the material, i.e.,

W ¼ Dm

m
(7.32)
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where Dm is the increase in the mass of a unit volume material element due to moisture absorption and
m is the mass of the dry material element. Moisture distribution in the material is governed by the
following equation, similar to Eq. (7.2) for thermal conductivity

v

vn

�
D

vW

vn

�
¼ vW

vt
(7.33)

Consider a laminated composite material shown in Fig. 7.9 for which n coincides with the z-axis.
Despite the formal correspondence between Eq. (7.2) for thermal conductivity and Eq. (7.32) for
moisture diffusion, there is a difference in principle between these problems. This difference is
associated with the diffusivity coefficient D, which is much lower than the thermal conductivity l of
the same material. As is known, there are materials, e.g., metals, with relatively high l and practically
zero D coefficients. Low D-value means that moisture diffusion is a rather slow process. As shown by
Shen and Springer (1976), the temperature increase in time inside a surface-heated composite material
reaches a steady (equilibrium) state temperature about 106 times faster than the moisture content
approaching the corresponding stable state. This means that, in contrast to Section 7.1.1 in which the
steady (time-independent) temperature distribution is studied, we must consider the time-dependent
process of moisture diffusion. To simplify the problem, we can neglect the possible variation of the
mass diffusion coefficient D over the laminate thickness, taking D ¼ constant for polymeric
composites. Then, Eq. (7.33) reduces to

D
v2W

vz2
¼ vW

vt
(7.34)

Consider the laminate in Fig. 7.9a. Introduce the maximum moisture content Wm that can exist in the
material under the preassigned environmental conditions. Clearly, Wm depends on the material nature
and structure, temperature, and relative humidity (RH) of the gas (e.g., humid air), or on the nature of
the liquid (distilled water, salted water, fuel, lubricating oil, etc.) to the action of which the material is
exposed. Introduce also the normalized moisture concentration as

w ðz; tÞ ¼ Wðz; tÞ
Wm

(7.35)

z

Wm

Wm Wm

hh

xx

z
(a) (b)

FIGURE 7.9

Composite material exposed to moisture on (a) both surfaces z ¼ 0 and z ¼ h, and (b) on the surface z ¼ 0 only.
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Obviously, for t/N, we have w/1. Then, the function w(z, t) can be presented in the form

wðz; tÞ ¼ 1�
XN
n¼1

wn

�
z
�
e�knt (7.36)

Substitution into Eq. (7.34), with due regard to Eq. (7.35), yields the following ordinary differential
equation

w00
n þ r2nwn ¼ 0

in which r2n ¼ kn=D and ð.Þ0 ¼ dð Þ=dz. The general solution is

wn ¼ C1n sin rnzþ C2n cos rnz

The integration constants can be found from the boundary conditions on the surfaces z ¼ 0 and z ¼ h
(see Fig. 7.9a). Assume that on these surfacesW ¼ Wm or w ¼ 1. Then, in accordance with Eq. (7.36),
we get

wnð0; tÞ ¼ 0; wnðh; tÞ ¼ 0 (7.37)

The first of these conditions yields C2n ¼ 0, whereas from the second condition we have sin rnh ¼ 0,
which yields

rnh ¼ ð2n� 1Þp ðn ¼ 1; 2; 3;.Þ (7.38)

Thus, the solution in Eq. (7.36) takes the form

wðz; tÞ ¼ 1�
XN
n¼1

C1n sin

�
2n� 1

h
pz

�
exp

�
�
�
2n� 1

h

�2

p2Dt

	
(7.39)

To determine C1n, we must use the initial condition, according to which

wð0 < z < h; t ¼ 0Þ ¼ 0

Using the following Fourier series:

1 ¼ 4

p

XN
n¼1

sin ð2n� 1Þz
2n� 1

we get C1n ¼ 4=ð2n� 1Þp, and the solution in Eq. (7.39) can be written in its final form

wðz; tÞ ¼ 1� 4

p

XN
n¼1

sin ð2n� 1Þpz
2n� 1

exp

�
�
�
2n� 1

h

�2

p2Dt

	
(7.40)

where z ¼ z=h.
For the structure in Fig. 7.9b, the surface z ¼ h is not exposed to moisture, and hence

qWðz ¼ hÞ ¼ 0. So, in accordance with Eq. (7.31), the second boundary condition in Eqs. (7.37) must
be changed to w0ðh; tÞ ¼ 0. Then, instead of Eq. (7.38), we must use

rnh ¼ p

2
ð2n� 1Þ

Comparing this result with Eq. (7.38), we can conclude that for the laminate in Fig. 7.9b, wðz; tÞ is
specified by the solution in Eq. (7.40) in which we must change h to 2h.

370 CHAPTER 7 Environmental, special loading, and manufacturing effects

www.EngineeringEBooksPdf.com



The mass increase of the material with thickness h is

DM ¼ A

Zh
0

Dm dz

where A is the surface area. Using Eqs. (7.32) and (7.35), we get

DM ¼ AmWm

Zh
0

w dz

Switching to a dimensionless variable z ¼ z=h and taking the total moisture content as

C ¼ DM

Amh
(7.41)

we arrive at

C ¼ Wm

Z1
0

w dz

where w is specified by Eq. (7.40). Substitution of this equation and integration yields

C ¼ C

Wm
¼ 1� 8

p2

XN
n¼1

1

ð2n� 1Þ2 exp
�
�
�
2n� 1

h

�2

p2Dt

	
(7.42)

For numerical analysis, consider a carbon-epoxy laminate for which D ¼ 10�3 mm2=hour (Tsai,
1987) and h ¼ 1 mm. The distributions of the moisture concentration over the laminate thickness are
shown in Fig. 7.10 for t ¼ 1; 10; 50; 100; 200; and 500 hours. As can be seen, complete impreg-
nation of 1 mm thick material takes about 500 hours. The dependence of C on t found in accordance
with Eq. (7.42) is presented in Fig. 7.11.

An interesting interpretation of the curve in Fig. 7.11 can be noted if we change the variable t to
ffiffi
t

p
.

The resulting dependence is shown in Fig. 7.12. As can be seen, the initial part of the curve is close to
a straight line whose slope can be used to determine the diffusion coefficient of the material matching
the theoretical dependence C(t) with the experimental one. Note that experimental methods usually
result in rather approximate evaluation of the material diffusivity D with possible variations up to
100% (Tsai, 1987). The maximum value of the function C(t) which it tends to approach determines the
maximum moisture content Cm ¼ Wm.

Thus, the material behavior under the action of moisture is specified by two experimental
parameters – D and Cm – which can depend on the ambient media, its moisture content, and
temperature. The experimental dependencies of C in Eq. (7.41) on t for 0.6 mm thick carbon-epoxy
composite exposed to humid air with various relative humidity (RH) levels are shown in Fig. 7.13
(Survey, 1984). As can be seen, the moisture content is approximately proportional to the air
humidity. The gradients of the curves in Fig. 7.13 depend on the laminate thickness (Fig. 7.14,
Survey, 1984).
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Distribution of the normalized moisture concentration w over the thickness of 1 mm thick carbon-epoxy
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Dependence of the normalized moisture concentration C on time t.
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Among polymeric composites, the highest capacity for moisture absorption under room temper-
ature is demonstrated by aramid composites (7� 0:25% by weight) in which both the polymeric
matrix and fibers are susceptible to moisture. Glass and carbon polymeric composites are characterized
with moisture content 3:5� 0:2% and 2� 0:75%, respectively. In real aramid-epoxy and carbon-
epoxy composite structures, the moisture content is usually about 2% and 1%, respectively. The
lowest susceptibility to moisture is demonstrated by boron composites. Metal matrix, ceramic, and
carbon-carbon composites are not affected by moisture.
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Dependence of the moisture content on time for a carbon-epoxy composite exposed to air with 45% RH (1), 75%

RH (2), and 95% RH (3).
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The material diffusivity coefficient D depends on temperature in accordance with the Arrhenius
relationship

DðTaÞ ¼ D0

ek=Ta

(Tsai, 1987) in which D0 and k are some material constants and Ta is the absolute temperature.
Experimental dependencies of the moisture content on time in a 1.2 mm thick carbon-epoxy composite
exposed to humid air with 95% RH at various temperatures are presented in Fig. 7.15 (Survey, 1984).
The most pronounced effect of temperature is observed for aramid-epoxy composites. The corre-
sponding experimental results of Milyutin et al. (1989) are shown in Fig. 7.16.

When a material absorbs moisture it swells, demonstrating effects that are similar to thermal
effects, which can be modeled using the equations presented in Section 7.1.2, if we treat a1; a2 and
ax; ay as coefficients of moisture expansion and change DT for C. Similar to temperature, increase in
moisture reduces material strength and stiffness. For carbon-epoxy composites, this reduction is about
12%, for aramid-epoxy composites, about 25%, and for glass-epoxy materials, about 35%. After
drying out, the effect of moisture usually disappears.

The cyclic action of temperature, moisture, or sun radiation results in material aging, i.e., in
degradation of the material properties during the process of material or structure storage. For some
polymeric composites, exposure to elevated temperature, which can reach 70�C, and radiation, whose
intensity can be as high as 1 kW=m2, can cause more complete curing of the resin and some increase of
material strength in compression, shear, or bending. However, under long-term action of the afore-
mentioned factors, the material strength and stiffness decrease. To evaluate the effect of aging, testing
under transverse bending (see Fig. 4.102) is usually performed. The flexural strength obtained
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FIGURE 7.14

Dependencies of the moisture content on time for a carbon-epoxy composite with thickness 3.6 mm (1), 1.2 mm

(2), and 0.6 mm (3) exposed to humid air with 75% RH.
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allows for both fiber and matrix material degradation in the process of aging. Experimental results
showing the dependence of the normalized flexural strength on time for advanced composites are
presented in Fig. 7.17. The most dramatic is the effect of aging on the ultimate transverse tensile
deformation ε2 of unidirectional composites, the low value of which results in cracking of the matrix as
discussed in Sections 4.4.2 and 6.4. After accelerated aging, i.e., long-term moisture conditioning at
the temperature 70�C, a 0.75% moisture content in carbon-epoxy composites results in about a 20%
reduction of ε2, whereas a 1.15% moisture content causes about a 45% reduction.
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Dependencies of the moisture content on time for 1.2 mm thick carbon-epoxy composite exposed to humid air

with 95% RH under temperatures 25�C (1), 50�C (2), and 80�C (3).
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Moisture content as a function of time and temperature for aramid-epoxy composites.
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Environmental effects on composite materials are discussed in detail elsewhere (Tsai, 1987;
Springer, 1981, 1984, 1988).

7.3 TIME-DEPENDENT LOADING EFFECTS
Polymeric matrices are characterized with pronounced viscoelastic properties resulting in time-
dependent behavior of polymeric composites which is discussed below.

7.3.1 Viscoelasticity

Viscoelastic properties of composite materials manifest themselves in creep (see Section 1.1), stress
relaxation, and dependence of the stress-strain diagram on the rate of loading. It should be emphasized
that in composite materials, viscoelastic deformation of the polymeric matrix is restricted by the fibers
that are usually linear elastic and do not demonstrate time-dependent behavior. The one exception to
existing fibers is represented by aramid fibers that are actually polymeric themselves by their nature.
The properties of metal matrix, ceramic, and carbon-carbon composites under normal conditions do
not depend on time. Rheological (time-dependent) characteristics of structural materials are revealed
in creep tests allowing us to plot the dependence of strain on time under constant stress. Such diagrams
are shown in Fig. 7.18 for the aramid-epoxy composite described by Skudra et al. (1989). An important
characteristic of the material can be established if we plot the so-called isochrone stress-strain
diagrams shown in Fig. 7.19. Three curves in this figure are plotted for t ¼ 0, t ¼ 100, and
t ¼ 1000 days, and the points on these curves correspond to points 1, 2, and 3 in Fig. 7.18. As can be
seen, the initial parts of the isochrone diagrams are linear, which means that under moderate stress, the

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

fσ

yeart ,

1

2

4

3

FIGURE 7.17

Dependence of the normalized flexural strength on the time of aging for boron- (1), carbon- (2), aramid- (3), and

glass- (4) epoxy composites.
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material under study can be classified as a linear-viscoelastic material. To characterize such a material,
we need to have only one creep diagram, whereby the other curves can be plotted, increasing strains in
proportion to stress. For example, the creep curve corresponding to s1 ¼ 450 MPa in Fig. 7.18 can be
obtained if we multiply strains corresponding to s1 ¼ 300 MPa by 1.5.

Linear-viscoelastic material behavior is described with reasonable accuracy by the hereditary
theory, according to which the dependence of strain on time is expressed as

εðtÞ ¼ 1

E

"
sðtÞ þ

Z t
0

Cðt � sÞsðsÞds
#

(7.43)

Here, t is the current time, s is some moment of time in the past ð0 � s � tÞ at which stress sðsÞ acts,
and Cðt � sÞ is the creep compliance (or creep kernel) depending on time passing from the moment s
to the moment t. The constitutive equation of hereditary theory, Eq. (7.43), is illustrated in Fig. 7.20.
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Creep strain response of unidirectional aramid-epoxy composite under tension in longitudinal direction with three
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Isochrone stress-strain diagrams corresponding to creep curves in Fig 7.18.
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As can be seen, the total strain εðtÞ is composed of the elastic strain εe governed by the current stress
sðtÞ and the viscous strain εv depending on the loading process as if the material “remembers” this
process. Within the framework of this interpretation, the creep compliance is CðqÞ, where q ¼ t � s
can be treated as some “memory function” that should, obviously, be infinitely high at q ¼ 0 and tend
to zero for q/N as in Fig. 7.21.

The inverse form of Eq. (7.43) is

sðtÞ ¼ E

"
εðtÞ �

Z t
0

Rðt � sÞεðsÞds
#

(7.44)

Here, Rðt � sÞ is the relaxation modulus or the relaxation kernel that can be expressed, as shown later,
in terms of Cðt � sÞ.

The creep compliance is determined using experimental creep diagrams. Transforming to a new
variable q ¼ t � s, we can write Eq. (7.43) in the following form

εðtÞ ¼ 1

E

"
sðtÞ þ

Z t
0

CðqÞsðq� tÞdq
#

(7.45)

For a creep test, the stress is constant, so s ¼ s0, and Eq. (7.44) yields

εðtÞ ¼ ε
0

"
1þ

Z t
0

CðqÞdq
#

(7.46)
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FIGURE 7.20

Geometric interpretation of the hereditary constitutive theory.
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where ε
0 ¼ s0=E ¼ εðt ¼ 0Þ is the instantaneous elastic strain (see Fig. 7.18). Differentiating this

equation with respect to t, we get

CðtÞ ¼ 1

ε
0

dεðtÞ
dt

This expression allows us to determine the creep compliance by differentiating the given experimental
creep diagram or its analytical approximation. However, for practical analysis, CðqÞ is usually deter-
mined directly from Eq. (7.46), introducing some approximation for CðqÞ and matching the function
obtained for εðtÞ with the experimental creep diagram. For this purpose, Eq. (7.46) is written in the form

εðtÞ
ε
0

¼ 1þ
Z t
0

CðqÞdq (7.47)

Experimental creep diagrams for unidirectional glass-epoxy composite are presented in this form in
Fig. 7.22 (solid lines).

The simplest form is an exponential approximation of the type

CðqÞ ¼
XN
n¼1

Ane
�anq (7.48)

Substituting Eq. (7.48) into Eq. (7.47), we obtain

εðtÞ
ε
0

¼ 1þ
XN
n¼1

An

an
ð1� e�antÞ

For the curves presented in Fig. 7.22, calculation yields:

• Longitudinal tension: N ¼ 1; A1 ¼ 0
• Transverse tension: N ¼ 1; A1 ¼ 0:04; a1 ¼ 0:06 1=day
• In-plane shear: N ¼ 2; A1 ¼ 0:033; a1 ¼ 0:04 1=day; A2 ¼ 0:06; a2 ¼ 0:4 1=day

τθ –= t

)(θC

FIGURE 7.21

Typical form of the creep compliance function.
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The corresponding approximations are shown in Fig. 7.22 with dashed lines. The main shortcoming of
the exponential approximation in Eq. (7.48) is associated with the fact that, in contrast to Fig. 7.21,
CðqÞ has no singularity at q ¼ 0 which means that it cannot properly describe material behavior in the
vicinity of t ¼ 0.

It should be emphasized that the one-term exponential approximation corresponds to a simple
rheological mechanical model shown in Fig. 7.23. The model consists of two linear springs simulating
material elastic behavior in accordance with Hooke’s law

s1 ¼ E1ε1; s2 ¼ E2ε2 (7.49)

1

1.2

1.4

1.6

1.8

2

0 50 100 150

0
22 εε

0
1212 γγ

0
11 εε

0
12

12
0
2

2
0

1

1 ,,
γ
γ

ε
ε

ε
ε

, Days (24 hours)t

FIGURE 7.22

Creep strain diagrams for unidirectional glass-epoxy composite (solid lines) under tension in the longitudinal

direction ðε1=ε01Þ and the transverse direction ðε2=ε02Þ, and under in-plane shear ðg12=g
0
12Þ and the corre-

sponding exponential approximations (dashed lines).
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Three-element mechanical model.
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and one dashpot simulating material viscous behavior obeying the Newton flow law

sv ¼ h
dεv
dt

(7.50)

Equilibrium and compatibility conditions for the model in Fig. 7.23 are

s ¼ s2 þ sv; s1 ¼ s

εv ¼ ε2; ε1 þ ε2 ¼ ε

Using the first of these equations and Eqs. (7.49)–(7.50), we get

s ¼ E2ε2 þ h
dεv
dt

Taking into account that

ε2 ¼ εv ¼ ε� s

E

we finally arrive at the following constitutive equation relating the apparent stress s to the apparent
strain ε

s

�
1þ E2

E1

�
þ h

E1

ds

dt
¼ E2εþ h

dε

dt
(7.51)

This equation allows us to introduce some useful material characteristics. Indeed, consider a very
fast loading, i.e., such that stress s and strain ε can be neglected in comparison with their rates.
Then, integration yields s ¼ Eiε, where Ei ¼ E1 is the instantaneous modulus of the material. Now
assume that the loading is so slow that stress and strain rates can be neglected. Then, Eq. (7.51) yields
s ¼ Elε, where

El ¼ E1E2

E1 þ E2
(7.52)

is the long-time modulus.
We can now apply the model under study to describe material creep. Taking s ¼ s0 and integrating

Eq. (7.51) with initial condition ε0ð0Þ ¼ s0=E, we get

ε ¼ s0

E1

�
1þ E1

E2

�
1� e

E2
h
t
�	

The corresponding creep diagram is shown in Fig. 7.24. As follows from this figure, εðt/NÞ ¼ s0=El,
where El is specified by Eq. (7.52). This means that there exists some limit for the creep strain, and
materials that can be described with this model should possess the so-called limited creep.

Now assume that the model is loaded in such a way that the apparent strain is constant, i.e., that
ε ¼ ε0. Then, the solution of Eq. (7.51) which satisfies the condition sð0Þ ¼ E1ε0 is

s ¼ E1ε0

E1 þ E2

�
E2 þ E1e

�t=tr
�
; tr ¼ h

E1 þ E2
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The corresponding dependence is presented in Fig. 7.25 and illustrates the process of stress relax-
ation. The parameter tr is called the time of relaxation. During this time, the stress decreases by the
factor of e.

Consider again Eq. (7.51) and express E1; E2, and h in terms of Ei; El, and tr. The resulting
equation is as follows

sþ tr
ds

dt
¼ Elεþ Eitr

dε

dt
(7.53)

This first-order differential equation can be solved for ε in the general case. Omitting rather
cumbersome transformations, we arrive at the following solution

εðtÞ ¼ 1

Ei

2
4sðtÞ þ 1

tr

�
1� El

Ei

�Z t
0

e
� El

Eitr
ðt�sÞ

sðsÞds
3
5

ε

iE
0σ

t

lE
0σ

FIGURE 7.24

Creep diagram corresponding to the mechanical model in Fig. 7.23.
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Relaxation diagram corresponding to the mechanical model in Fig. 7.23.
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This result corresponds to Eq. (7.45) of the hereditary theory with one-term exponential approximation
of the creep compliance in Eq. (7.48), in which N ¼ 1. Taking more terms in Eq. (7.48), we get more
flexibility in the approximation of experimental results with exponential functions. However, the main
features of material behavior are, in principle, the same as that for the one-term approximation (see
Figs. 7.23 and 7.24). In particular, there exists the long-time modulus that follows from Eq. (7.46) if we
examine the limit for t/N, i.e.,

εðtÞ/s0

El
; El ¼ E

1þ
Z N

0
CðqÞdq

For the exponential approximation in Eq. (7.48),

I ¼
ZN
0

CðqÞdq ¼
XN
n¼1

An

an

Since the integral I has a finite value, the exponential approximation of the creep compliance
can be used only for materials with limited creep. There exist more complicated singular approxi-
mations, e.g.,

CðqÞ ¼ A

qa
; CðqÞ ¼ A

qa
e�bq

for which I/N and El ¼ 0. This means that for such materials, the creep strain can be infinitely
high.

A useful interpretation of the hereditary theory constitutive equations can be constructed with the
aid of the integral Laplace transformation, according to which a function f ðtÞ is associated with its
Laplace transform f �ðpÞ as

f �ðpÞ ¼
ZN
0

f
�
t
�
e�ptdt

For some functions that we need to use for the examples presented below, we have

f ðtÞ ¼ 1; f �ðpÞ ¼ 1

p

f ðtÞ ¼ e�at; f �ðpÞ ¼ 1

aþ p

(7.54)

The importance of the Laplace transformation for the hereditary theory is associated with the existence
of the so-called convolution theorem, according to which2

4Z t
0

f1ðqÞf2ðq� tÞdq
3
5
�

¼ f �1 ðpÞf �2 ðpÞ
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Using this theorem and applying Laplace transformation to Eq. (7.45), we get

ε
�ðpÞ ¼ 1

E

h
s�ðpÞ þ C�ðpÞs�ðpÞ

i
This result can be presented in a form similar to Hookes’s law, i.e.,

s�ðpÞ ¼ E�ðpÞε�ðpÞ (7.55)

where

E� ¼ E

1þ C�ðpÞ
Applying Laplace transformation to Eq. (7.44), we arrive at Eq. (7.55) in which

E� ¼ E½1� R�ðpÞ� (7.56)

Comparing Eqs. (7.55) and (7.56), we can relate Laplace transforms of the creep compliance to the
relaxation modulus, i.e.,

1

1þ C�ðpÞ ¼ 1� R�ðpÞ

With due regard to Eq. (7.55), we can formulate the elastic-viscoelastic analogy or the correspondence
principle, according to which the solution of the linear viscoelasticity problem can be obtained in terms
of the corresponding Laplace transforms from the solution of the linear elasticity problem if E is
replaced with E� and all the stresses, strains, displacements, and external loads are replaced with their
Laplace transforms.

For an orthotropic material in a plane stress state, e.g., for a unidirectional composite ply or layer
referred to the principal material axes, Eqs. (4.55) and (7.43) can be generalized as

ε1ðtÞ ¼ 1

E1

2
4s1ðtÞ þ

Z t
0

C11ðt � sÞs1ðsÞds
3
5

� n12

E2

"
s2ðtÞ þ

Z t
0

C12ðt � sÞs2ðsÞds
#

ε2ðtÞ ¼ 1

E2

"
s2ðtÞ þ

Z t
0

C22ðt � sÞs2ðsÞds
#

� n21

E1

"
s1ðtÞ þ

Z t
0

C21ðt � sÞs1ðsÞds
#

g12ðtÞ ¼
1

G12

"
s12ðtÞ þ

Z t
0

K12ðt � sÞs12ðsÞds
#
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Applying Laplace transformation to these equations, we can reduce them to a form similar to Hooke’s
law, Eqs. (4.55), i.e.,

ε
�
1ðpÞ ¼

s�1
�
p
�

E�
1

�
p
�� n�12

�
p
�

E�
2

�
p
� s�2ðpÞ

ε
�
2ðpÞ ¼

s�2
�
p
�

E�
2

�
p
�� n�21

�
p
�

E�
1

�
p
� s�1ðpÞ

g�12ðpÞ ¼
s�12
�
p
�

G�
12

�
p
�

(7.57)

where

E�
1ðpÞ ¼

E1

1þ C�
11

�
p
�; E�

2ðpÞ ¼
E2

1þ C�
22

�
p
�; G�

12ðpÞ ¼
G12

1þ K�
12

�
p
�

n�12ðpÞ ¼
1þ C�

12

�
p
�

1þ C�
22

�
p
� n12; n�21ðpÞ ¼

1þ C�
21

�
p
�

1þ C�
11

�
p
� n21

(7.58)

For the unidirectional composite ply whose typical creep diagrams are shown in Fig. 7.22, the fore-
going equations can be simplified by neglecting material creep in the longitudinal direction ðC11 ¼ 0Þ
and assuming that Poisson’s effect is linear elastic and symmetric, i.e., that

n�12
E�
2

¼ n12

E2
;

n�21
E�
1

¼ n21

E1

Then, Eqs. (7.57) take the form

ε
�
1ðpÞ ¼

s�1
�
p
�

E1
� n12

E2
s�2ðpÞ

ε
�
2ðpÞ ¼

s�2
�
p
�

E�
2

� n21

E1
s�1ðpÞ

g�12ðpÞ ¼
s�12
�
p
�

G�
12

�
p
�

(7.59)

Supplementing constitutive equations, Eqs. (7.57) or (7.59), with strain-displacement and equilibrium
equations written in terms of Laplace transforms of stresses, strains, displacements, and external loads
and solving the problem of elasticity, we can find Laplace transforms for all the variables. To represent
the solution obtained in this way in terms of time t, we need to take the inverse Laplace transformation,
and this is the most difficult stage of the problem solution. There exist exact and approximate
analytical and numerical methods for performing inverse Laplace transformation discussed, for
example, those by Schapery (1974). The most commonly used approach is based on approximation of
the solution written in terms of the transformation parameter p with some functions for which the
inverse Laplace transformation is known.
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As an example, consider the problem of torsion for an orthotropic cylindrical shell similar to that
shown in Fig. 6.20. The shear strain induced by torque T is specified by Eq. (5.171). Using the elastic-
viscoelastic analogy, we can write the corresponding equation for the creep problem as

g�
xyðpÞ ¼

T�ðpÞ
2pR2B�

44ðpÞ
(7.60)

Here, B�
44ðpÞ ¼ A�

44ðpÞh, where h is the shell thickness.
Let the shell be made of glass-epoxy composite whose mechanical properties are listed in Table 3.5

and creep diagrams are shown in Fig. 7.22. To simplify the analysis, we assume that for the unidi-
rectional composite under study E2=E1 ¼ 0:22, G12=E1 ¼ 0:06, n12 ¼ n21 ¼ 0 and introduce the
normalized shear strain

g ¼ gxy

�
T

R2hE1

��1

Consider a�45� angle-ply material discussed in Section 4.5 for which, with due regard to Eqs. (4.72),
and (7.58), we can write

A�
44ðpÞ ¼

1

4
ðE1 þ E�

2Þ ¼
1

4

�
E1 þ E2

1þ C�
22ðpÞ

	

Exponential approximation, Eq. (7.48), of the corresponding creep curve in Fig. 7.22 (the lower dashed
line) is

C22 ¼ A1e
�a1q

where A1 ¼ 0:04 and a1 ¼ 0:06 1=day. Using Eqs. (7.54), we arrive at the following Laplace trans-
forms of the creep compliance and the torque which is constant

C�
22ðpÞ ¼

A1

a1 þ p
; T�ðpÞ ¼ T

p

The final expression for the Laplace transform of the normalized shear strain is

g�ðpÞ ¼ 2Eða1 þ A1 þ pÞ
ppða1 þ A1E þ pÞ (7.61)

where E ¼ E1=ðE1 þ E2Þ.
To use Eqs. (7.54) for the inverse Laplace transformation, we should decompose the right-hand

part of Eq. (7.61) as

g�ðpÞ ¼ 2E

pða1 þ A1EÞ
�
a1 þ A1

p
� A1ð1� EÞ

a1 þ A1E þ p

	

Applying Eqs. (7.54), we get

gðtÞ ¼ 2E

pða1 þ A1EÞ
h
a1 þ A1 � A1ð1� EÞe�ða1þA1EÞt

i
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This result is demonstrated in Fig. 7.26. As can be seen, there is practically no creep because the
cylinder’s deformation is controlled mainly by the fibers.

Quite different behavior is demonstrated by the cylinder made of 0�=90�cross-ply composite
material discussed in Section 4.4. In accordance with Eqs. (4.114) and (7.58), we have

A�
44ðpÞ ¼ G�

12ð pÞ ¼
G12

1þ K�
12

�
p
�

Exponential approximation, Eq. (7.48), of the shear curve in Fig. 7.22 (the upper dashed line) results in
the following equation for the creep compliance

K12 ¼ A1e
�a1q þ A2e

�a2q

in which A1 ¼ 0:033, a1 ¼ 0:04 1=day, A2 ¼ 0:06, a2 ¼ 0:4 1=day. Omitting simple rearrangements,
we finally get

g ¼ E1

2pG12

�
1þ A1

a1
ð1� e�a1tÞ þ A2

a2

�
1� e�a2t

�	

The corresponding creep diagram is shown in Fig. 7.26.
Under relatively high stresses, polymeric composites demonstrate nonlinear viscoelastic behavior.

The simplest approach to study nonlinear creep problems is based on experimental isochrone
stress-strain diagrams of the type shown in Fig. 7.19. Using the curves corresponding to time moments
t1 < t2 < t3 etc., we can solve a sequence of nonlinear elasticity problems for these time moments and
thus determine the change of strains and stresses with time. This approach, sometimes referred to as
the aging theory, is approximate and can be used to study structures loaded with forces that do not
change with time, or that change very slowly.
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FIGURE 7.26

Dependencies of the normalized shear strain on time for 0�=90� cross-ply and �45� angle-ply glass-epoxy

composite cylinders under torsion.
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There exist also several variants of nonlinear hereditary theory, described, e.g., by Rabotnov
(1980). According to the most common versions, Eq. (7.43) is generalized as

εðtÞ ¼ 1

E

"
sðtÞ þ

Z t
0

C1ðt � sÞsðsÞdsþ
Z t
0

Z t
0

C2ðt � s1; t � s2Þsðs1Þsðs2Þds1ds2 þ /

#

or

εðtÞ ¼
X
k

Ak

"
sðtÞ þ

Z t
0

Cðt � sÞsðsÞds
#k

or

f ½εðtÞ� ¼ 1

E

"
sðtÞ þ

Z t
0

Cðt � sÞsðsÞds
#

or

εðtÞ ¼ f

sðtÞ�þ Z

t

0

Cðt � sÞjsðsÞ�ds
In conclusion, it should be noted that correctly designed composite structures (see Chapter 12) in
which the material behavior is controlled by fibers usually do not exhibit pronounced time-dependent
behavior. For example, consider the filament-wound glass-epoxy pressure vessel studied in Section 6.3
(see Fig. 6.22 and the second row in Table 6.1 for parameters of the vessel). The vessel consists of
�36� helical plies and circumferential plies, and has structural parameters that are close to optimal
(see Section 12.3.1). The experimental dependence of circumferential strain on time for step-wise
loading with internal pressure p presented in Fig. 7.27 does not indicate any significant creep defor-
mation. It should be noted that this conclusion is valid for composite materials reinforced with glass or
carbon fibers and working under normal conditions (room temperature) whose creep is mainly
associated with polymeric matrix.

Composite materials reinforced with aramid and other polymeric fibers can demonstrate significant
creep associated with the creep of fibers, and under relatively high stress the behavior of these
materials is not linear.

7.3.2 Durability

Composite materials, to be applied to structures with long service life, need to be guaranteed for the
corresponding period of time from failure, which is usually a result of an evolutionary process of
material degradation in the service environment. To provide adequate durability of the material we
need, in turn, to study its long-term behavior under load and its endurance limits. The most widely used
durability criteria establishing the dependence of material strength on the time of loading are based on
the concept of the accumulation of material damage induced by acting stresses and intensified by the
degrading influence of service conditions such as temperature and moisture. Particular criteria depend
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on the accepted models simulating the material damage accumulation. Although there exist micro-
structural approaches to the durability evaluation of composite materials (see, e.g., Skudra et al.
(1989)), for practical purposes, the experimental dependencies of the ultimate stresses on the time of
their action are usually evaluated. In particular, these experiments allow us to conclude that fibers,
which are the major load-carrying elements of composite materials, possess some residual strength
sN ¼ sðt/NÞ, which is about 50% to 70% of the corresponding static strength s0 ¼ sðt ¼ 0Þ,
depending on the fiber type. Typical dependencies of the long-term strength of composite materials on
time are presented in Fig. 7.28. As can be seen, the time of loading dramatically affects material
strength. However, being unloaded at any moment of time t, composite materials demonstrate prac-
tically the same static strength that they had before long-term loading.

Approximation of the curves shown in Fig. 7.28 can be performed using exponential functions as
follows:

sðtÞ ¼ sN þ
X
n

Ane
�lnt (7.62)

in which sN; An, and ln are coefficients providing the appropriate approximation. The initial static
strength is

sð0Þ ¼ s0 ¼ sN þ
X
n

An

The simplest is a one-term approximation

s
�
t
� ¼ sN þ �s0 � sN

�
e�lt (7.63)
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FIGURE 7.27

Dependence of the circumferential strain on time for a glass-epoxy cylindrical pressure vessel loaded in steps

with internal pressure p.
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To approximate the initial part of the curve, we can put sN ¼ 0 and arrive at the following
equation

s
�
t
� ¼ s0e

�lt (7.64)

Now assume that we can solve Eqs. (7.62), (7.63), or (7.64) for t and find the material durability tdðsÞ,
i.e., the time during which the material can withstand stress s. Consider the process of loading as
a system of k stages such that the duration of each stage is ti and the stress acting at this stage is
si ði ¼ 1; 2; 3; .; kÞ. Then, the whole period of time during which the material can withstand such
step-wise loading can be calculated with the aid of the following equation

Xk
i¼1

ti
tdðsiÞ ¼ 1

in which tdðsiÞ is material durability corresponding to stress si.
The strength criteria discussed in Chapter 6 can be generalized for the case of long-term loading if

we change the static ultimate stresses entering these criteria for the corresponding long-term strength
characteristics.

Experimental study of material durability requires long-term testing that takes considerable
time. This time can be substantially reduced by applying the Zhurkov equation (Zhurkov and
Narzullaev, 1953), which links the material lifetime t with the stress level s and absolute
temperature T as

t ¼ t0e
1
RT

ðU0�gsÞ (7.65)

in which, originally, t0 is the period of the atoms’ thermal oscillations, U0 is the energy activating
material fracture, g is the coefficient indicating the influence of stress on the fracture energy, and R is
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FIGURE 7.28

Normalized long-term longitudinal strength of aramid-epoxy (1) and glass-epoxy (2) unidirectional composites.
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Boltzmann’s constant. However, irrespective of the physical meaning of the forgoing constants,
we can treat them as some coefficients that can be found from direct experiments. For this purpose,
rewrite Eq. (7.65) as

t ¼ t0e
1
T
ða�bsÞ (7.66)

in which t is the time to failure (lifetime), T is the absolute temperature, s is the stress expressed as
a percentage of the static ultimate stress, and t0, a, and b are experimental constants. Thus, to determine
these constants (t0, a, and b), we need to perform three tests under different temperatures and loading
levels.

Suppose that we have the results of these tests, i.e.,

s ¼ sð1Þ; T ¼ T1; t ¼ t1
s ¼ sð2Þ; T ¼ T2; t ¼ t2
s ¼ sð3Þ; T ¼ T3; t ¼ t3

Taking the logarithm of Eq. (7.66) and writing the result for the three test cases, we get

ln ti ¼ ln t0 þ 1

Ti

�
a� bsðiÞ

�
(7.67)

where i ¼ 1; 2; 3. Solving Eqs. (7.67) for a, b, and t0, we find

a ¼ 1

T3 � T2

h
b
�
sð2ÞT3 � sð3ÞT2

�
� T2T3ðln t3 � ln t2Þ

i

b ¼ T1
ln t1 � ln t2

sð2Þ � sð1Þ

t0 ¼ t2e
� 1

T2
ða�bsð2ÞÞ

Application of Eq. (7.65) to an organic fiber Kevlar 49 unidirectional composite material under tension
along the fibers has been undertaken by Chiao et al. (1977). Composite materials with the static tensile
strength s1 ¼ 2280 MPa have been tested under various temperatures and the loading levels s.
The results are presented in Fig. 7.29, which demonstrates dramatic effects of the temperature and
stress on the lifetime t.

Using the test results shown in Fig. 7.29, Chiao et al. have arrived at the following form of
Eq. (7.66) (Chiao et al., 1977):

t ¼ 7:9,10�11 e
1
T
ð18246�123sÞ (7.68)

in which t is measured in hours and s in percentage. Comparison of the results calculated
using Eq. (7.68) and those obtained from the experiment is presented in Table 7.2 (Chiao
et al., 1977). As can be seen, the approach under consideration provides fair prediction of the
material lifetime.
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7.3.3 Cyclic loading

Consider the behavior of composite materials under the action of loads periodically changing
with time. For qualitative analysis, first consider a material that can be simulated with the
simple mechanical model shown in Fig. 7.23. Applying stress acting according to the following form

sðtÞ ¼ s0 sin ut (7.69)

KT ,

hourst ,

0

383 393

0.1

0.2

0.3

0.5

373

0.4

5.0

246.0
166.0

K,

hourst ,10 4–.

0

383 393

1

2

3

5

373

4

3.69

1.93

0.79

K,

hourst ,

0

383 393

1

2

3

5

373

4

894.1

055.4

267.1

(a)

(b) (c)

°

T °T °

FIGURE 7.29

Dependencies of the material lifetime on temperature for loading levels of 80.4% (a), 73.2% (b), and 67.2% (c).

Table 7.2 Predicted ðtpÞ and Experimental ðteÞ Lifetimes Under Room Temperature.

s, % 70 75 80 85 90

tp, hours 8725 1108 141 17.9 2.3

te, hours 8800 1150 150 7.6 0.8
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where s0 is the amplitude of stress and u is the frequency, we can solve Eq. (7.53) that describes the
model under study for strain εðtÞ. The result is

εðtÞ ¼ ε0 sin ðut þ qÞ (7.70)

where

ε0 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ru

2

E2
l þ E2

i t
2
ru

2

s

tan q ¼ � truðEi � ElÞ
El þ Eit2ru

2

(7.71)

It follows from these equations that a viscoelastic material is characterized with a phase shift of strain
with respect to stress. Eliminating the time variable from Eqs. (7.69) and (7.70), we arrive at the
following relationship between stress and strain:

�
s

s0

�2

þ
�

ε

ε0

�2

� 2 cos q
sε

s0ε0
¼ sin2q

This is the equation of an ellipse shown in Fig. 7.30a. The absolute value of the area A inside this
ellipse (its sign depends on the direction of integration along the contour) determines the energy
dissipation per single cycle of vibration, i.e.,

DW ¼ jAj ¼ ps0ε0jsin qj (7.72)

Following Zinoviev and Ermakov (1994), we can introduce the dissipation factor as the ratio of energy
loss in a loading cycle, DW , to the value of the elastic potential energy in a cycle, W, as

j ¼ DW

W

σ σ

ε ε

0ε0ε

0σ0σ

(a) (b)

FIGURE 7.30

Stress-strain diagrams for viscoelastic (a) and elastic (b) materials.
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where, in accordance with Fig. 7.30b, W ¼ ð1=2Þs0ε0. Transforming Eq. (7.72) with the aid of Eqs.
(7.71), we arrive at

j ¼ 2ptru

1þ t2ru
2

�
1� El

Ei

�

As follows from this equation, j depends on the number of oscillations accomplished during
the period of time equal to the material relaxation time, tr , and reaches a maximum value for
tru ¼ 1.

As shown by Zinoviev and Ermakov (1994), for anisotropic materials the dissipation factor
depends also on the direction of loading. Particularly, for a unidirectional composite ply, referred to
axes x and y and making angle fwith the principal material axes 1 and 2 as in Fig. 4.18, the dissipation
factors are

jx ¼ Ex

��
j1

E1
cos2f � j2

E2
sin2f

�
cos 2f þ j45m12 sin

2f cos2f

	

jy ¼ Ey

��
j2

E2
cos2f � j1

E1
sin2f

�
cos 2f þ j45m12 sin

2f cos2f

	

jxy ¼ Gxy

��
2j1

E1
þ 2j2

E2
� j45m12

�
sin2f cos2f þ j12

G12
cos22f

	

where

m12 ¼
1� n12

E1
þ 1� n21

E2
þ 1

G12

Ex; Ey and Gxy are specified by Eqs. (4.76) and j1; j2; j12; and j45 are the ply dissipation factors
corresponding to loading along the fibers, across the fibers, under in-plane shear and at 45� with
respect to principal material axes 1 and 2. As follows from Fig. 7.31, calculations based on the
foregoing equations provide fair agreement with experimental results of Ni and Adams (1984).

Energy dissipation in conjunction with the relatively low heat conductivity of composite materials
induces their self-heating during cyclic loading. The dependence of an aramid-epoxy composite
material’s temperature on the number of cycles under tensile and compressive loading with frequency
103 cycles per minute is shown in Fig. 7.32 (Tamuzh and Protasov, 1986).

Under cyclic loading, structural materials experience a fatigue fracture caused by material
damage accumulation. As already noted in Section 3.2.4, the heterogeneous structure of composite
materials provides relatively high resistance of these materials to crack propagation resulting in their
specific behavior under cyclic loading. It follows from Fig. 7.33 that stress concentration in
aluminum specimens, which has practically no effect on the material’s static strength due to plas-
ticity of aluminum, dramatically reduces its fatigue strength. Conversely, the static strength of
carbon-epoxy composites, which are brittle materials, is reduced by stress concentration that has
practically no effect on the slope of the fatigue curve. On average, the residual strength of carbon
composites after 106 loading cycles is 70–80% of the material’s static strength, in comparison to 30–
40% for aluminum alloys. Qualitatively, this comparative evaluation is true for all fibrous composites
that are widely used in structural elements subjected to intensive vibrations, for example helicopter
rotor blades, airplane propellers, drive shafts, automobile leaf springs.
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FIGURE 7.31

Calculated (dots) and experimental (circles) dependencies of dissipation factor on the ply orientation for

glass-epoxy (ddd •) and carbon-epoxy (– – – B) unidirectional composites.
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FIGURE 7.32

Temperature of an aramid-epoxy composite as a function of the number of cycles under tension (1) and

compression (2).
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The foregoing discussion concerns the fatigue strength of unidirectional composites loaded
along the fibers. However, composites are anisotropic materials having different strengths in
different directions and, naturally, different responses under cyclic loading. As shown in Fig. 7.34,
presenting the approximations of the experimental results given by Tsai (1987), the degradation of
material strength under tension across the fibers (line 2) is much higher than under tension along
the fibers (line 1). Recall that the stress s2 induces the cracks in the matrix discussed in Sections
4.4.2 and 6.4.

A typical composite materials fatigue diagram, constructed from the experimental results of Apinis
et al. (1991), is shown in Fig. 7.35. Standard fatigue diagrams usually determine the material strength
for 103 � N � 106 and are approximated as

sR ¼ a� b logN (7.73)

Here, N is the number of cycles to failure under stress sR and a and b are experimental constants
depending on frequency of cyclic loading, temperature, and other environmental factors, and on the
stress ratio R ¼ smin=smax, where smax and smin are the maximum and the minimum stresses. It should
be taken into account that the results for fatigue tests are characterized, as a rule, with high scatter.

Factor R specifies the cycle type. The most common bending fatigue test provides a symmetric
cycle for which smin ¼ �s, smax ¼ s, and R ¼ �1. A tensile load cycle ðsmin ¼ 0; smax ¼ sÞ has
R ¼ 0, whereas a compressive cycle ðsmin ¼ �s; smax ¼ 0Þ has R/�N. Cyclic tension with
smax > smin > 0 corresponds to 0 < R < 1, whereas cyclic compression with 0 > smax > smin

corresponds to 1 < R < N. Fatigue diagrams for unidirectional aramid-epoxy composite studied by
Limonov and Anderson (1991) corresponding to various R-values are presented in Fig. 7.36. Similar
results (Anderson et al., 1991) for carbon-epoxy composites are shown in Fig. 7.37.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

log N

0/σσ f

1

1

2

2

FIGURE 7.33

Typical fatigue diagrams for carbon-epoxy composite (solid lines) and aluminum alloy (dashed lines) specimens

without (1) and with (2) stress concentration (fatigue strength is normalized to static strength of specimens

without stress concentration).
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Since only s�1 is usually available from standard tests under cyclic bending, fatigue strengths for
other load cycles are approximated as

sR ¼ s�1 þ sm

�
1� s�1

st

�
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FIGURE 7.34

Normalized fatigue strength of carbon-epoxy composites loaded along (1) and across (2) the fibers.
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FIGURE 7.35

Normalized fatigue diagram for fabric carbon-carbon composite material (s-static strength), •ddd B

experimental part of the diagram loading frequency 6Hz ( ) and 330Hz ( ), extrapolation.
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where sm ¼ ðsmin þ smaxÞ=2 is the mean stress of the load cycle and st is the material long-term
strength (see Section 7.3.2) for the period of time equal to that of the cyclic loading.

Fabric composites are more susceptible to cyclic loading than materials reinforced with straight
fibers. This fact is illustrated in Fig. 7.38, showing the experimental results of Schulte et al. (1987).

The foregoing discussion deals with high-cycle fatigue. The initial interval 1 � N � 103 corre-
sponding to so-called low-cycle fatigue is usually studied separately, because the slope of the
approximation in Eq. (7.73) can be different for high stresses. A typical fatigue diagram for this case is
shown in Fig. 7.39 (Tamuzh and Protasov, 1986).
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FIGURE 7.36

Fatigue diagrams for unidirectional aramid-epoxy composite loaded along the fibers with various stress ratios.
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FIGURE 7.37

Fatigue diagrams for a unidirectional carbon-epoxy composite loaded along the fibers with various stress ratios.
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Fatigue has also some effect on the stiffness of composite materials. This can be seen in Fig. 7.40,
demonstrating a reduction in the elastic modulus for a glass-fabric-epoxy-phenolic composite under
low-cycle loading (Tamuzh and Protasov, 1986). This effect should be accounted for in the application
of composites to the design of structural members such as automobile leaf springs that, being subjected
to cyclic loading, are designed under stiffness constraints.
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FIGURE 7.38

Tensile fatigue diagrams for cross-ply (1) and fabric (2) carbon-epoxy composites.
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FIGURE 7.39

Low-cycle fatigue diagram for unidirectional aramid-epoxy composite loaded along the fibers with R ¼ 0.1.
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Stiffness degradation can be used as an indication of material damage to predict fatigue failure.
The most sensitive characteristic of the stiffness change is the tangent modulus Et specified by
the second equation in Eqs. (1.8). The dependence of Et on the number of cycles, N, normalized
to the number of cycles that cause material fatigue fracture under the preassigned stress, is pre-
sented in Fig. 7.41, corresponding to a �45� angle-ply carbon-epoxy laminate studied by
Murakami et al. (1991).
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FIGURE 7.40

Dependence of elastic modulus of glass-fabric-epoxy-phenolic composite on the number of cycles at stress s ¼
0:5s (s is the static ultimate stress).
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Dependence of the tangent modulus normalized to its initial value on the number of cycles related to the ultimate

number corresponding to fatigue failure under stress smax¼ 120MPa and R¼�1 for �45� angle-ply carbon-

epoxy laminate.
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7.3.4 Impact loading

Thin-walled composite laminates possessing high in-plane strength and stiffness are rather susceptible
to damage initiated by transverse impact loads that can cause fiber breakage, cracks in the matrix,
delamination, and even material penetration by the impactor. Depending on the impact energy
determined by the impactor mass and velocity and the properties of laminate, impact loading can result
in considerable reduction in material strength under tension, compression, and shear. One of the most
dangerous consequences of an impact loading is an internal delamination in laminates (so-called
barely visible impact damage (BVID)), which can sometimes be hardly noticed by visual examination.

Impact loading causing delamination of composite materials is critical for design of the laminated
skin for modern composite airframe structures with load-carrying skin supported by stringers and rings
as shown in Fig. 7.42. To study the impact loading, a special tool shown in Fig. 7.43 is recommended
by ASTM Standard D7136. To model the impact loading, a rectangular 100� 150 mm composite plate
is fixed on a metal plate with a rectangular 75� 125 mm cutout made in the center. The central part of
the composite panel situated above the cutout is impacted by the steel drop-weight cylinder having
a hemispherical nose of 8 mm in diameter. The mass of the cylinder is mW ¼ 5:45 kg. The cylinder
moves inside the pipe as shown in Fig. 7.43.

The intensity of impact is specified by the given kinetic energy E0, which is measured in joules
(1 J ¼ 1 N ,m) and is expressed in terms of the massm0 and velocity V 0 of the actual flying objects as

E0 ¼ 1

2
m0V

2
0 (7.74)

The velocity of the drop-weight falling from the height H and the corresponding kinetic energy are

VW ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
; EW ¼ 1

2
mWV 2

W (7.75)

FIGURE 7.42

Composite airframe structure with load carrying skin.
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FIGURE 7.43

The test rig simulating the impact loading of a composite panel.
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The real impact is simulated under condition EW ¼ E0. Then the velocity and the height of the drop-
weight following from Eqs. (7.74) and (7.75) are calculated as

VW ¼ V 0

ffiffiffiffiffiffiffiffi
m0

mW

r
; H ¼ V 2

W

2g

After the impact, compressive strength of the composite plate is found using the test fixture shown in
Fig. 7.44. The fixed metal parts, as well as the upper part that compresses the plate, have 5 mm deep
grooves whose width is equal to the plate thickness. The plate is inserted into the grooves which fix the
plate edges.

To perform the impact tests, quasi-isotropic (0�=90�=� 45�) symmetric 8 mm thick carbon-epoxy
plates have been fabricated by filament winding on the flat mandrel and tested as shown in Figs. 7.43
and 7.44. Relatively high impact energy causes complete delamination of the plate. Delamination area
(black) for the plate after impact with energy E ¼ 90 J is shown in Fig. 7.45a, whereas Fig. 7.45b
demonstrates the interlaminar cracks in this plate. Reduction of the impact energy decreases the
delamination area. This is illustrated in Fig. 7.46 where the contour of the delamination area is marked
by the white line. This delamination was induced by the impact with energy E ¼ 35 J and represents
the BVID. The depth of the crater on the plate surface is only 0.3 mm, and this crater can hardly be
detected by visual examination of the surface. Nevertheless, the diameter of the delamination area is
about 70 mm, and further testing using the test rig shown in Fig. 7.44 results in reduction in the
ultimate compressive force by a factor of four.

Dependence of the diameter of delamination area on the impact area plotted in accordance with
experimental results of Hwang et al. (2000) for 2.3 mm thick carbon-epoxy plates, is shown in
Fig. 7.47 (solid line). Extrapolation of the experimental curve to the axis d ¼ 0 gives the minimum
energy inducing material delamination: Em ¼ 3 J. This is a very low energy level, corresponding to a 1
kg mass falling from a 0.3 m height.

FIGURE 7.44

Composite plate in a clamping fixture for compression test.
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It follows from the foregoing results and discussion that laminated composite materials have rather
poor resistance to impact. This conclusion is supported by the experiments with relatively thin skin, the
results of which are presented in Fig. 7.48. The skin with thickness of 1.6 mm has been made of carbon
fabric by winding. As can be seen in Fig. 7.48, the skin is penetrated by the steel indenter with the
energy exceeding just 15 J.

Thus, the obvious conclusion that composite material cannot be used in load-carrying structures
subjected to impact suggests itself. However, this pessimistic conclusion relates more to the method of

(b)

(a)

FIGURE 7.45

Delamination area (black); (a) and interlaminar cracks; (b) in the plate after impact with energy E ¼ 90 J.

FIGURE 7.46

Delamination area of the plate after impact with energy E ¼ 35 J.
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impact test (see Fig. 7.43) than to the real ability of composite materials to resist impact loading.
Indeed, the experiments with ice hail accelerated in a gas gun show that the damage demonstrated in
Fig. 7.48 is caused by the hail ice with energy exceeding 400 J, which is by an order of magnitude
higher than the energy of the steel indenter. The same is true for the delamination under impact
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FIGURE 7.47

Dependence of diameter of delamination area on the impact energy for quasi-isotropic 2.3 mm-thick carbon-

epoxy plates: experiment ( ); extrapolation ( ).

FIGURE 7.48

Damage of a thin fabric skin caused by impact loading with energies 15 J and 35 J.
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loading. Dependence of the energy causing material delamination on the thickness of the quasi-
isotropic carbon-epoxy laminate plotted in accordance with experimental results of Kim and
Kedward (1999a, b) who have studied the hail ice impact is presented in Fig. 7.49.

The difference between the steel impactor and the hail ice is in different masses and velocities of
the impacting objects. The velocity of the steel impactor Vm can be found from Eqs. (7.75), whereas
the velocity of the hail ice is specified by the following equation (Davis and Sakata, 1981):

V h ¼ 17:1
ffiffiffiffi
D

p

in which V h is measured in m/sec and the hail ice pellet diameterD is substituted in mm. Parameters of
the hail ice with density 850 kg/m3 are listed in Table 7.3.

Compare now Fig. 7.47 and Fig. 7.49, both showing the energy of delamination under impact. For
a 2.3 mm thick plate (see Fig. 7.47), the energy of the steel impactor with mass mW ¼ 4:8 kg which
causes the plate delamination is EW ¼ 3 J. For the plate of the same thickness and the hail ice with
diameter D ¼ 42:7 mm and mh ¼ 0:035 kg, it follows from Fig. 7.49 that Eh ¼ 240 J, which is higher
than EW by a factor of 80. Thus, the higher the indenter mass, the lower the delamination energy.

JE ,

mm,h
0

2

100 

300

200

31

FIGURE 7.49

Dependencies of the delamination energy on the thickness of composite plates impacted by the hail ice with

diameter D ¼ 47.2 mm.

Table 7.3 Mass, Velocity, and Kinetic Energy of Hail Ice with Various Diameters.

Hail ice diameter
D, mm Mass mh, grams Velocity Vh, m/s

Kinetic energy
E, J

10 0.44 54.1 0.64

20 3.56 76.5 10.41

30 12.01 93.7 52.7

40 28.47 108.1 166.3

50 55.60 120.9 406.3
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To explain this effect, consider Fig. 7.50, which shows the impactor whose mass and initial velocity
are m and V 0, respectively. Assume that V 0 is much less than the velocity of the shock wave prop-
agation in the plate. Then, after the contact between the impactor and the plate, the contact velocity
reduces to V 1 < V 0, whereas the velocity of the plate points becomes V ¼ V 1f ðr; zÞ in which
f ðr ¼ 0; z ¼ hÞ ¼ 1 and f ðr/N; zÞ ¼ 0. The balance of momentum is

mV 0 ¼ V 1

0
@mþ 2pr

ZN
0

dr

Zh
0

f ðr; zÞrdr
1
A (7.76)

where r is the density of plate material and h is the plate thickness. The balance equation, Eq. (7.76),
allows us to determine V 1 as

V 1 ¼ V 0

1þ m1=m
; m1 ¼ 2pr

ZN
0

dr

Zh
0

f ðr; zÞrdr (7.77)

in which m1 is the reduced mass of the plate. Function f ðr; zÞ is not known; however, for qualitative
analysis, it is not necessary to know it. Let m1=m 	 1, which means that the impactor mass is much
higher than the reduced mass of the plate. In this case, which is typical for the test shown in Fig. 7.43,
V 1zV 0 and the plate practically does not reduce the kinetic energy of the impactor E0. If m1=m[1,
Eq. (7.77) gives V 1 	 V 0 and the actual kinetic energy of the impactor, E1, can be considerably lower
than E0. The energy dissipation DE ¼ E0 � E1 is absorbed by the impactor, which slows down and
experiences deformation and sometimes fracture (this is typical for hail ice).

Thus, the conventional impact test (Fig. 7.43) based on the condition EW ¼ E0 cannot provide
adequate evaluation of the material impact resistance if the drop-weight mass in the experiment is
considerably higher than the mass of the impactor in real conditions.
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FIGURE 7.50

Interaction between the impactor and the plate.
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The other comment concerns the conventional compression test (see Fig. 7.44). The results of this
test are usually presented in the form shown in Fig. 7.51 which demonstrates the dependencies of the
normalized ultimate compression stress on the impact energy referred to the plate thickness (Verpoest
et al., 1989). As can be seen, the ultimate compression stress dramatically reduces with the increase in
the impact energy. However, simple considerations allow us to conclude that the plate strength cannot
depend on delamination induced by impact. Indeed, consider two plates, the first of which is mono-
lithic and the second of which has interlaminar cracks parallel to the plate surfaces (see Fig. 7.45).
Under in-plane compression, the cross-sectional area of both plates is the same, as well as the material
strength. So, interlaminar cracks cannot reduce the plate compressive strength. The observed reduction
of the ultimate compressive force for the delaminated plate is associated with local buckling of the
plate surface layers (see Fig. 7.52). However, the buckling load, in contrast to strength, is not the
material characteristic. The critical force depends on the relative thickness of the delaminated part of
the plate, hd=h (see Fig. 7.52), delamination size, a, and the boundary conditions (type of the plate
support). Dependence of the load F (see Fig. 7.52) on the axial deformation ε calculated applying the
finite-element method by Liang and Yuan (1993) for the plate with hd=h ¼ 0:2 and a=l ¼ 0:5 is shown
in Fig. 7.53. The diagram consists of two parts corresponding to pre-buckling and post-buckling
deformation (as opposed to a compression diagram, which is usually linear up to failure). Thus, the
conventional dependencies of the effective ultimate compression stress on the impact energy, like that
shown in Fig. 7.51, are of a qualitative nature and cannot completely characterize material behavior
after impact.
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FIGURE 7.51

Dependence of compression strength after impact normalized to the initial compressive strength on the impact

energy related to the plate thickness for glass-fabric-epoxy (1), unidirectional glass-epoxy (2), and carbon-epoxy

composite plates (3).

408 CHAPTER 7 Environmental, special loading, and manufacturing effects

www.EngineeringEBooksPdf.com



Delamination discussed earlier is caused mainly by interlaminar shear stresses. Under high-
velocity impact, delamination can be also caused by normal stresses induced by superposition of
shock waves propagating through the thickness.

To study the mechanism of material delamination caused by transverse normal stresses, consider
the problem of wave propagation through the thickness of the laminate shown in Fig. 7.54. The motion
equation has the following well-known form

v

vz

�
Ez

vuz
vz

�
¼ r

v2uz
vt2

(7.78)

l

F F
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a

FIGURE 7.52

Local buckling of the surface layers under compression.
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Load vs. plate shortening under compression for the plate with a crack.
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Here, uz is the displacement in the z direction, Ez is material modulus in the same direction depending,
in the general case, on z, and r is the material density. For the laminate in Fig. 7.54, the solution of
Eq. (7.70) should satisfy the following boundary and initial conditions

szðz ¼ 0; tÞ ¼ �pðtÞ

szðz ¼ h; tÞ ¼ 0
(7.79)

uzðz; t ¼ 0Þ ¼ 0;
vuz
vt

ðz > 0; t ¼ 0Þ ¼ 0 (7.80)

in which

sz ¼ Ez
vuz
vz

(7.81)

is the interlaminar normal stress.
Consider first a homogeneous layer such that Ez and r do not depend on z. Then, Eq. (7.78) takes

the form

c2
v2uz
vz2

¼ v2uz
vt2

where c2 ¼ Ez=r. Transform this equation introducing new variables, i.e., x1 ¼ zþ ct and x2 ¼ z� ct.
Performing conventional transformation and rearrangement, we arrive at

v2uz
vx1vx2

¼ 0

The solution for this equation can be readily found and presented as

uz ¼ f1ðx1Þ þ f2ðx2Þ ¼ f1ðzþ ctÞ þ f2ðz� ctÞ

h

hi

zi

i1 k

z

zi–1

P(t)

FIGURE 7.54

Laminate under impact load.
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Here, f1 and f2 are some arbitrary functions. Using Eq. (7.81), we get

sz ¼ Ez

h
f1ðxþ ctÞ þ f2ðx� ctÞ

i
where

f1 ¼ vf1

vz
; f2 ¼ vf2

vz

Applying the boundary and initial conditions, Eqs. (7.79) and (7.80), we arrive at the following final
result

sz ¼ E
h
f ðxþ ctÞ � f ðx� ctÞ

i
(7.82)

in which the form of function f is governed by the shape of the applied pulse. As can be seen, the stress
wave is composed of two components having opposite signs and moving in opposite directions with
one and the same speed c, which is the speed of sound in the material. The first term in Eq. (7.82)
corresponds to the applied pulse that propagates to the free surface z ¼ h (see Fig. 7.55, demonstrating
the propagation of a rectangular pulse), whereas the second term corresponds to the pulse reflected
from the free surface z ¼ h. It is important that for a compressive direct pulse (which is usually the
case), the reflected pulse is tensile and can cause material delamination since the strength of laminated
composites under tension across the layers is very low.

Note that the speed of sound in a homogeneous material, i.e.,

c ¼
ffiffiffiffiffiffi
Ez

r

r
(7.83)

is the same for the tensile and compressive waves in Fig. 7.55. This means that the elastic modulus in
Eq. (7.83) must be the same for both tension and compression. For composite materials, tensile and
compressive tests sometimes produce modulus values that are slightly different. Usually, the reason
for such a difference is that the different specimens and experimental techniques are used for tensile
and compression tests. Testing of fiberglass fabric coupons (for which the difference in the exper-
imental values of tensile and compressive moduli is sometimes observed) involving continuous
loading from compression to tension through zero load does not show any “kink” in the stress-strain
diagram at zero stress. Naturally, for heterogeneous materials, the apparent (effective) stiffness can

σ

FIGURE 7.55

Propagation of direct and reflected pulses through the layer thickness.
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be different for tension and compression as, for example, in materials with cracks which propagate
under tension and close under compression. Sometimes stress-strain diagrams with a “kink” at the
origin are used to approximate nonlinear experimental diagrams that actually do not have a “kink” at
the zero stress level at all.

For laminates, such as that shown in Fig. 7.54, the boundary conditions, Eqs. (7.79), should

be supplemented with the interlaminar conditions u
ðiÞ
z ¼ u

ði�1Þ
z and s

ðiÞ
z ¼ s

ði�1Þ
z . Omitting the rather

cumbersome solution that can be found elsewhere (Vasiliev and Sibiryakov, 1985), we present some
numerical results.

Consider the two-layered structure: the first layer has thickness 15 mm and is made of aramid-
epoxy composite material with E

ð1Þ
z ¼ 4:2 GPa, r1 ¼ 1:4 g=cm3, and the second layer is made of

boron-epoxy composite material and has E
ð2Þ
z ¼ 4:55 GPa, r2 ¼ 2 g=cm3, and h2 ¼ 12 mm. The

duration of a rectangular pulse of external pressure p acting on the surface of the first layer is
t p ¼ 5� 10�6 s. The dependence of the interlaminar (z ¼ 15 mm) stress on time is shown in Fig. 7.56.
As can be seen, at tz3tp the tensile interface stress exceeds the intensity of the pulse of pressure by
a factor of 1.27. This stress is a result of interaction of the direct stress wave with the waves reflected
from the laminate’s inner, outer, and interface surfaces. Thus, in a laminate, each interface surface
generates elastic waves.

For laminates consisting of more than two layers, the wave interaction becomes more complicated
and, what is more important, can be controlled by the appropriate stacking sequence of layers. As an
example, consider a sandwich structure shown in Fig. 7.57a. The first (loaded) layer is made of
aluminum and has h1 ¼ 1 mm, E

ð1Þ
z ¼ 72 GPa, r1 ¼ 2:7 g=cm3; the second layer is a foam core with

-1.5

-1

-0.5
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FIGURE 7.56

Dependence of the interlaminar stress referred to the acting pressure on time.
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h2 ¼ 10 mm, E
ð2Þ
z ¼ 0:28 GPa, r2 ¼ 0:25 g=cm3; and the third (load-carrying) composite layer

has h3 ¼ 12 mm, E
ð3Þ
z ¼ 10 GPa, r3 ¼ 1:4 g=cm3. The duration of a rectangular pulse of external

pressure is 10�6 s. The maximum tensile stress occurs in the middle plane of the load-carrying layer
(plane a–a in Fig. 7.57). The normal stress induced in this plane is presented in Fig. 7.58a. As can be

a a a a

P PP

a a

h1

h2

h3

(a) (b) (c)

FIGURE 7.57

Structures of the original laminate (a) and the laminates with one (b) and two (c) additional aluminum layers in

the foam core.
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FIGURE 7.58

Normal stress related to external pressure acting in section a-a of the laminates in Fig. 7.57 (a)–(c), respectively.

7.3 Time-dependent loading effects 413

www.EngineeringEBooksPdf.com



seen, at the moment of time t equal to about 1:75� 10�5 s, this stress is tensile and can cause
delamination of the structure.

Now introduce an additional aluminum layer in the foam core as shown in Fig. 7.57b. As follows
from Fig. 7.58b, this layer suppresses the tensile stress in section a–a. Two intermediate aluminum
layers (Fig. 7.57c) working as generators of compressive stress waves eliminate the appearance of
tensile stress in this section. Naturally, the effect under discussion can be achieved for a limited period
of time. However, in reality, the impact-generated tensile stress is dangerous soon after the application
of the pulse. The damping capacity of real structural materials (which is not taken into account in the
foregoing analysis) dramatically reduces the stress amplitude in time.

A flying projectile with relatively high kinetic energy can penetrate through the laminate. As is
known, composite materials, particularly high-strength aramid fabrics, are widely used for protection

(a)

(b)

FIGURE 7.59

Plate No. 2 (see Table 7.2) after the impact test:

– (a) front view;

– (b) back view.
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against flying objects. To demonstrate the mechanism of this protection, consider a square composite
plate clamped in the steel frame shown in Fig. 7.59 and subjected to impact by a rectangular plane
projectile (see Fig. 7.59) simulating the blade of the turbojet engine compressor. The plate consists of
layers of thin aramid fabric impregnated with epoxy resin at a distance from the window in the frame
(see Fig. 7.59) and co-cured together as shown in Fig. 7.60. The front (loaded) surface of the plate has
a 1 mm thick cover sheet made of glass-fabric-epoxy composite. The results of ballistic tests are
presented in Table 7.4. Front and back views of plate No. 2 are shown in Fig. 7.59, and the back view of
plate No. 3 can be seen in Fig. 7.60. Since the mechanical properties of the aramid fabric used to make
the plates are different in the warp and fill directions, the plates consist of couples of mutually
orthogonal layers of fabric that are subsequently referred to as 0�=90� layers. All the plates listed in
Table 7.4 have n ¼ 32 of such couples.

To calculate the projectile velocity below which it fails to perforate the plate (the so-called ballistic
limit), we use the energy conservation law, according to which

1

2
mpðV 2

s � V 2
r Þ ¼ nðW þ TÞ (7.84)

FIGURE 7.60

Back view of plate No. 3 (see Table 7.2) after the impact test.

Table 7.4 Ballistic Test of Plates Made of Aramid Fabric.

Plate No. Projectile velocity (m/s) Test results

1 315 No penetration

2 320 The projectile is “caught”
by the containment

3 325 Penetration
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where V s is the projectile striking velocity, V r is its residual velocity, mp ¼ 0:25 kg is the projectile
mass, n ¼ 32 is the number of the 0�=90� layers,W is the fracture work for the 0�=90� layers, and T is
the kinetic energy of the layer. All other factors and the fiberglass cover of the plate are neglected.

The fracture work can be evaluated using the quasi-static test shown in Fig. 7.61. A couple of
mutually orthogonal fabric layers is fixed along the plate contour and loaded by the projectile. The area
under the force-deflection curve (solid line in Fig. 7.61) can be treated as the work of fracture which,
for the fabric under study, has been found to be W ¼ 120 Nm.

To calculate T, the deformed shape of the fabric membrane has been measured. Assuming that the
velocities of the membrane points are proportional to deflections f and that dfm=dt ¼ V s, the kinetic
energy of the fabric under study (the density of the layer unit surface is 0:2 kg=m2) turns out to be
Tc ¼ 0:0006 V 2

s .
To find the ballistic limit, we should take V r ¼ 0 in Eq. (7.84). Substituting the foregoing results in

this equation, we get V b ¼ 190:5 m=s, which is much lower than the experimental result
(V b ¼ 320 m=s) following from Table 7.4.

Let us change the model of the process and assume that the fabric layers fail one after another
rather than all at once, as is assumed in Eq. (7.84). The result is expected to be different because the
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FIGURE 7.61

Force-deflection diagrams for square aramid fabric membranes, couple of layers with orthogonal

orientations, superposition of the diagrams for individually tested layers.
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problem under study is not linear, and the principle of superposition is not applicable. Bearing this in
mind, we write Eq. (7.84) in the following incremental form

1

2
mpðV 2

k�1 � V 2
kÞ ¼ W þ Tk�1 (7.85)

Here, V k�1 and V k are the projectile velocities before and after the failure of the kth couple of fabric
layers, W is, as earlier, the fracture work consumed by the kth couple of layers, Tk�1 ¼ 0:0006 V 2

k�1,
and the last term in the right-hand side of Eq. (7.85) means that we account for the kinetic energy of
only those fabric layers that have been already penetrated by the projectile. Solving Eq. (7.85) for V k,
we arrive at

V k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� 0:0048ðk � 1Þ�V 2

k�1 �
2

mp
W

s
(7.86)

For k ¼ 1, we take V 0 ¼ 320 m=s, in accordance with the experimental ballistic limit, and have
V 1 ¼ 318:5 m=s from Eq. (7.86). Taking k ¼ 2, we repeat the calculation and find that, after the
failure of the second couple of fabric layers, V 2 ¼ 316:2 m=s. This process is repeated until
V k ¼ 0, and the number k thus determined gives an estimate of the minimum number of 0�=90�
layers that can stop a projectile with striking velocity V s ¼ 320 m=s. The result of the calculation is
presented in Fig. 7.62, from which it follows that k ¼ 32. This is exactly the same number of layers
that have been used to construct the experimental plates.

Thus, it can be concluded that the high impact resistance of aramid fabrics is determined by two
main factors. The first factor is the relatively high work of fracture, which is governed not only by high
strength, but also by the interaction of the fabric layers. The dashed line in Fig. 7.61 shows the fracture
process constructed as a result of the superposition of experimental diagrams for individual 0� and 90�
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FIGURE 7.62

Dependence of the residual velocity of the projectile on the number of penetrated layers.
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layers. The solid line corresponds, as noted, to 0� and 90� layers tested together (the ratio of the fabric
strength under tension in the warp and the fill direction is 1.3). As can be seen, the area under the solid
line is much larger that under the dashed one, which indicates the high contribution of the layers’
interaction to the work of fracture. If this conclusion is true, we can expect that for layers with higher
anisotropy and for laminates in which the principal material axes of the adjacent layers are not
orthogonal, the fracture work would be higher than for the orthotropic laminate under study. The
second factor increasing the impact resistance of aramid fabrics is associated with a specific process of
the failure, during which the fabric layers fail one after another, but not all at once. Plates of the same
number of layers, but consisting of resin-impregnated and co-cured layers that fail at once, demon-
strate much lower impact resistance.

7.4 MANUFACTURING EFFECTS
As has been already noted, composite materials are formed in the process of fabrication of a composite
structure, and their properties are strongly dependent on the type and parameters of the processing
technology. This means that material specimens that are used to determine mechanical properties
should be fabricated using the same manufacturing method that is expected to be applied to fabricate
the structure under study.

7.4.1 Circumferential winding and tape overlap effect

To demonstrate the direct correlation that can exist between processing and material properties,
consider the process of circumferential winding on a cylindrical surface as in Fig. 7.63. As a rule, the
tapes are wound with some overlap w0, shown in Fig. 7.64a. Introducing the dimensionless parameter

l ¼ w0

w
(7.87)

we can conclude that for the case of complete overlap (Fig. 7.64b) we have l ¼ 1. The initial position
of the tape placed with overlap w0 as in Fig. 7.64a is shown in this figure with a dashed line, whereas
the final position of the tapes is shown with solid lines. Assume that after the winding and curing are

FIGURE 7.63

Winding of a circumferential layer.

Courtesy of CRISM.
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over, the resulting structure is a unidirectionally reinforced ring that is removed from the mandrel
and loaded with internal pressure, so that the ring radius, being R before the loading, becomes R1.
Decompose the resultant force acting in the ring cross-section into two components, i.e.,

F ¼ F 0 þ F 00 (7.88)

and introduce the apparent stress acting along the fibers of the ring as

s1 ¼ F

A
(7.89)

where A ¼ 2wd is the cross-sectional area of the ring made from two tapes as shown in Fig. 7.64.
The force F0 corresponds to part BC of the ring (Fig. 7.64a) and can be found as

F 0 ¼ A 0E1
R1 � R

R

where A0 ¼ ðwþ w0Þd is the cross-sectional area of this part of the ring and E1 is the modulus of
elasticity of the cured unidirectional composite. To calculate the force F00 that corresponds to part CD
of the ring (Fig. 7.64a), we should take into account that the fibers start to take the load only when this
part of the tape reaches the position indicated with dashed lines, i.e.,

F 00 ¼ A 00E1
R1 � ðRþ dÞ

R

where A00 ¼ ðw� w0Þd. With due regard to Eqs. (7.87), and (7.88)/(7.89), we can write the result of the
foregoing analysis in the following form

s1 ¼ E1

�
ε1 � d

2R
ð1� lÞ

	
(7.90)

w

0w

ww

B C D

δ

δ

R

(a) (b)

FIGURE 7.64

Circumferential winding with (a) partial overlap w0 < w and (b) complete overlap w0 ¼ w .
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Here, ε1 ¼ ðR1 � RÞ=R is the apparent strain in the fiber direction. For complete overlap in Fig. 7.64b,
l ¼ 1 and s1 ¼ E1ε1. It should be noted that there exists also the so-called tape-to-tape winding for
which l ¼ 0. This case cannot be described by Eq. (7.90) because of assumptions introduced in the
derivation, and the resulting equation for this case is s1 ¼ E1ε1.

It follows from Eq. (7.89), which is valid for winding without tension, that overlap of the tape
results in reduction of material stiffness. Since the levels of loading for the fibers in the BC and CD
parts of the ring (Fig. 7.64a) are different, a reduction in material strength can also be expected.

Filament winding is usually performed with some initial tension of the tape. This tension
improves the material properties because it straightens the fibers and compacts the material.
However, high tension may result in fiber damage and reduction in material strength. For glass and
carbon fibers, the preliminary tension usually does not exceed 5% of the tape strength, whereas for
aramid fibers, which are less susceptible to damage, the level of initial tension can reach 20% of the
tape strength. Preliminary tension reduces the effect of the tape overlap discussed earlier and
described by Eq. (7.90). However, this effect can show itself in a reduction in material strength
because the initial stresses which are induced by preliminary tension in the fibers can be different and
some fibers can be overloaded or underloaded by the external forces acting on the structure in
operational conditions. Strength reduction of aramid-epoxy unidirectional composites with tape
overlap has been observed in the experiments of Rach and Ivanovskii (1986) for winding on
a 200mm diameter mandrel, as demonstrated in Fig. 7.65.

The absence of tape preliminary tension or low tension can cause ply waviness as shown in
Fig. 7.66, which can occur in filament wound laminates as a result of the pressure exerted by the
overwrapped plies on the underwrapped plies or in flat laminates due to material shrinkage in the
process of curing.
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FIGURE 7.65

Dependence of the normalized longitudinal strength of unidirectional aramid-epoxy composite on the tape

overlap.
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The simplest model for analysis is a regular waviness as presented in Fig. 7.66a. To determine the
apparent modulus in the x direction, we can use an expression similar to the one presented in Eqs.
(4.76), i.e.,

1

Ex
¼ cos4a

E1
þ sin4a

E3
þ
�

1

G13
� 2n31

E1

�
sin2a cos2a (7.91)

Then, since the structure is periodic,

1

E
ðrÞ
x

¼ 1

l

Z l
0

dx

Ex
(7.92)

h
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x

0
1l Wl
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(a)
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FIGURE 7.66

Regular (a), through-the-thickness (b), and local (c) ply waviness.
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Approximating the ply wave as

z ¼ a sin
px

l

where a is the amplitude, we get

tan a ¼ dz

dx
¼ f cos

px

l

where f ¼ pa=l. Substitution into Eqs. (7.91) and (7.92) and integration yields

1

E
ðrÞ
x

¼ 1

2l

�
2þ f 2

E1
þ 1

E3
ð2l� 2� 3f 2Þ þ

�
1

G13
� 2n31

E1

�
f 2
	

(Tarnopol’skii and Roze, 1969), where l ¼ ð1þ f 2Þ3=2. Simplifying this result using the assumption
that f 2 << 1, we arrive at

EðrÞ
x ¼ E1

1þ E1f
2

2G13

(7.93)

For glass-, carbon-, and aramid-epoxy composites with properties listed in Table 3.5, the dependencies
corresponding to Eq. (7.93) are presented in comparison to the experimental results of Tarnopol’skii
and Roze (1969) in Fig. 7.67.
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FIGURE 7.67

Reduction of the normalized modulus with the ply waviness parameter, f, for (1) glass-, (2) carbon-, and (3)

aramid-epoxy composites. Eqs. (7.93) B experiment for glass-epoxy composite.
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If the ply waviness varies over the laminate thickness, as in Fig. 7.66b, Eq. (7.93) can be gener-
alized as

EðtÞ
x ¼ E1

h

Zh
0

dz

1þ E1

2G13
f 2ðzÞ

(7.94)

Finally, for only local waviness (see Fig. 7.66c), we obtain

1

E
ðlÞ
x

¼ l
0
1

E1
þ lw

E
ðtÞ
x

þ l
0
2

E1

where

l
0
1;2 ¼

l01;2

l01 þ lw þ l02
; lw ¼ lw

l01 þ lw þ l02

and E
ðtÞ
x is specified by Eq. (7.94).

Even moderate ply waviness dramatically reduces material strength under compression along the
fibers, as can be seen in Fig. 7.68, which illustrates the experimental results for a unidirectional carbon-
epoxy composite. The other strength characteristics of unidirectional composites are only slightly
affected by the ply waviness.
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FIGURE 7.68

Experimental dependence of carbon-epoxy composite longitudinal compression strength related to the

corresponding strength of material without ply waviness on the ratio of the waviness amplitude to the ply

thickness.
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7.4.2 Warping and bending of laminates in fabrication process

There exist also some manufacturing operations that are specific for composites that cause stresses and
strains appearing in composite structural elements in the process of their fabrication.

As an example, consider the problem of bending and warping of asymmetric laminates during their
fabrication. Assume that a laminated polymeric composite panel is cured at temperature Tc and cooled
to room temperature T0. Under slow cooling, the temperature change, DT ¼ T0 � Tc, is the same for
all the layers. Since the thus-fabricated panel is free of loading (i.e., no loads are applied to its edges or
surfaces), the forces and moments in the left-hand sides of Eqs. (7.23) and (7.24) are zero, and these
equations form a linear algebraic system for generalized strains εT ; gT , and kT . Integration of the
strain-displacement equations, Eqs. (7.28), allows us to determine the shape of the fabricated panel.

Analysis of Eqs. (7.25) and (7.26), similar to that performed in Section 5.4, shows that for
symmetric laminates MT

mn ¼ 0. Since Cmn ¼ 0 for such laminates, the last three equations of
Eqs. (7.23) in which Mx ¼ My ¼ Mxy ¼ 0 form a set of homogeneous equations whose solution is
kxT ¼ kyT ¼ kxyT ¼ 0. This means that a flat symmetric panel does not acquire curvature in the
process of cooling. Naturally, the in-plane dimensions of the panel become different from those that
the panel had before cooling. The corresponding thermal strains ε0xT ; ε

0
yT , and g

0
xyT can be found from

the first three equations of Eqs. (7.23) in which Nx ¼ Ny ¼ Nxy ¼ 0, but NT
11; NT

22, and NT
12 are not

zero.
However, for asymmetric laminates, in general MT

mns0, and these laminates experience bending
and warping in the process of cooling. To demonstrate this, consider the two antisymmetric laminates
studied in Section 5.8.

The first one is a two-layered orthotropic cross-ply laminate shown in Fig. 5.28. Using the
stiffness coefficients calculated in Section 5.8, taking into account that for a cross-ply laminate
NT
12 ¼ MT

12 ¼ 0, and applying Eqs. (7.23) for Nxy and Mxy, we get g0xyT ¼ 0 and kxyT ¼ 0. Thus,
cooling of such a cross-ply laminated panel does not induce in-plane shear or twisting in it. The other
four parts of Eqs. (7.23) take the form

axxε
0
xT þ axyε

0
yT � cxxkxT ¼ nx

ayxε
0
xT þ ayyε

0
yT þ cyykyT ¼ ny

�cxxε
0
xT þ bxxkxT þ bxykyT ¼ mx

cyyε
0
yT þ bxykxT þ byykyT ¼ my

(7.95)

where

axx ¼ ayy ¼ hE ; axy ¼ ayx ¼ E1n12h

cxx ¼ cyy ¼ h2

8
ðE1 � E2Þ; bxx ¼ byy ¼ h3E

12

bxy ¼ byx ¼ h3

12
E1n12; E ¼ 1

2
ðE1 þ E2Þ

nx ¼ ny ¼ h

2

�
E1ða1 þ n12a2Þ þ E2ða2 þ n21a1Þ

	
DT

�mx ¼ my ¼ h2

8

�
E1ða1 þ n12a2Þ � E2ða2 þ n21a1Þ

	
DT
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The solutions to Eqs. (7.95) can be written as

ε
0
xT ¼ nx

axx þ axy
þ cxx

a2xx � a2xy
ðaxxkxT þ axykyT Þ

ε
0
yT ¼ nx

axx þ axy
� cxx

a2xx � a2xy
ðaxxkyT þ axykxT Þ

(7.96)

where

kxT ¼ �kyT ¼ mx

�
axx þ axy

�þ nxcxx�
axx þ axy

��
bxx � bxy

�� c2xx
(7.97)

As follows from Eqs. (7.96) and (7.97), ε and k do not depend on x and y.
To find the in-plane displacements, we should integrate Eqs. (7.28) which have the form

vu

vx
¼ ε

0
xT ;

vv
vy

¼ ε
0
yT ;

vu

vy
þ vv

vx
¼ 0

Referring the panel to coordinates x and y shown in Fig. 7.69 and assuming that uðx ¼ 0; y ¼ 0Þ ¼ 0
and vðx ¼ 0; y ¼ 0Þ ¼ 0, we get

u ¼ ε
0
xTx; v ¼ ε

0
yTy (7.98)

Now consider Eqs. (7.24) in which V x ¼ V y ¼ 0. Thus, gxT ¼ gyT ¼ 0, and Eqs. (7.30) yield
qx ¼ �vw=vx; qy ¼ �vw=vy. The plate deflection can be found from Eqs. (7.29), which reduce to

v2w

vx2
¼ �kxT ;

v2w

vy2
¼ �kyT ;

v2w

vxvy
¼ 0

Assuming that wðx ¼ 0; y ¼ 0Þ ¼ 0; qxðx ¼ 0; y ¼ 0Þ ¼ 0; qyðx ¼ 0; y ¼ 0Þ ¼ 0, we can write the
result of the integration as

w ¼ � 1

2
ðkxTx2 þ kyTy

2Þ (7.99)

x

y

FIGURE 7.69

Deformed shape of a cross-ply antisymmetric panel.
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To present this solution in an explicit form, consider, for the sake of brevity, material with zero
Poisson’s ratios ðn12 ¼ n21 ¼ 0Þ. Then, Eqs. (7.96)–(7.99) yield

u ¼ DTx

E1 þ E2

"
E1a1 þ E2a2 þ 6ðE1 � E2Þ E1E2ða2 � a1Þ

E2
1 þ 14E1E2 þ E2

2

#

v ¼ DTy

E1 þ E2

"
E1a1 þ E2a2 þ 6ðE1 � E2Þ E1E2ða2 � a1Þ

E2
1 þ 14E1E2 þ E2

2

#

w ¼ � 12DT

h
,

E1E2ða2 � a1Þ
E2
1 þ 14E1E2 þ E2

2

ðx2 � y2Þ

(7.100)

The deformed shape of the panel is shown in Fig. 7.69. Note that displacements u and v correspond to
the panel reference plane, which is the contact plane of the 00 and 90� layers (see Fig. 5.28).

Compare the obtained results with experimental data of Papadopoulos and Bowles (1990).
Experimental 00=90� cross-ply rectangular plate with sides a ¼ 204 mm and b ¼ 76:5 mm and
thickness h ¼ 0:762 mm is made of polyimide PMR-15 resin reinforced with Celion 6000
fibers. Characteristics of the unidirectional composite are E1 ¼ 132 GPa, E2 ¼ 9:6 GPa,
a1 ¼ �1:03,10�6 1=�C, and a2 ¼ 27:9,10�6 1=�C. The glass transition temperature is 330�C, and
the room temperature is taken as 23�C, so that DT ¼ 307�C. The maximum deflections in the x ¼
0 and y ¼ 0 plane calculated in accordance with Eq. (7.100) are

Wx ¼ wðx ¼ 0; y ¼ 0Þ � w
�
x ¼ a

2
; y ¼ 0

�
¼ 52:25 mm

Wy ¼ wðx ¼ 0; y ¼ 0Þ � w

�
x ¼ 0; y ¼ b

2

�
¼ 7:37 mm

The corresponding experimental results (Papadopoulos and Bowles, 1990) are

Wx ¼ 38:1 mm; Wy ¼ 4:5 mm

The higher theoretical values can be explained by the high value of the transverse modulus E2, which
corresponds to the room temperature and is considerably lower under the elevated temperature
(heating up to 300�C can reduce the stiffness of PMR-15 resin by 40%). To calculate the deflection W
appearing under cooling, the process can be divided into a system of steps with different parameters,
and the following equation can be used:

W ¼
X
i

Wi

�
DTi; E

ðiÞ
1 ; E

ðiÞ
2 ; a

ðiÞ
1 ; a

ðiÞ
2

�
(7.101)

in which “i” is the number of the cooling step, DTi ¼ Tiþ1 � Ti, and EðiÞ and aðiÞ are the material
characteristics corresponding to the temperature Ti. Assume that the function E2ðTÞ looks like that
shown in Fig. 7.70, which is similar to the function shown in Fig. 1.12 for the resin, whereas the other
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parameters correspond to the room temperature. The process of cooling from temperature 325�C to
25�C is divided into 7 steps, for which

E
ð1Þ
2 ¼ 3; E

ð2Þ
2 ¼ 5:5; E

ð3Þ
2 ¼ 6:6; E

ð4Þ
2 ¼ 7:6; E

ð5Þ
2 ¼ 8:6; E

ð6Þ
2 ¼ 9:2; E

ð7Þ
2 ¼ 9:5 ðGPaÞ;

DT1 ¼ DT2 ¼ DT3 ¼ 25�C ; DT4 ¼ DT5 ¼ DT6 ¼ 50�C ; DT7 ¼ 75�C

Calculations using Eq. (7.101) yield

Wx ¼ 40:1 mm ; Wy ¼ 5:6 mm

As can be seen, these results are fairly close to the experimental data.
Another typical antisymmetric structure is the two-layered angle-ply laminate shown in Fig. 5.29.

Using the stiffness coefficients for this laminate calculated in Section 5.8 and Eqs. (7.25) and (7.27),
we can write Eqs. (7.23) in the following form

A11ε
0
xT þ A12ε

0
yT � h

4
A14kxyT ¼ AT

11

A12ε
0
xT þ A22ε

0
yT � h

4
A24kxyT ¼ AT

22

A44g
0
xyT � h

4
ðA14kxT þ A24kyT Þ ¼ 0

�A14g
0
xyT þ h

3
ðA11kxT þ A12kyT Þ ¼ 0

T

, GPazE

0

100 200  300 400

2

4

6

8

0

10

1T

4T

5T6T7T8T

3T

2T

°C

FIGURE 7.70

Dependence of the transverse modulus Ez on temperature.
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�A24g
0
xyT þ h

3
ðA12kxT þ A22kyT Þ ¼ 0

A14ε
0
xT þ A24ε

0
yT � h

3
A44kxyT ¼ AT

12

where

AT
11 ¼


E1

�
a1 þ n12a2

�
cos 2f þ E2

�
a2 þ n21a1

�
sin 2f

�
DT

AT
22 ¼


E1

�
a1 þ n12a2

�
sin 2f þ E2

�
a2 þ n21a1

�
cos 2f

�
DT

AT
12 ¼


E1

�
a1 þ n12a2

�� E2

�
a2 þ n21a1

�
DT sin f cos f

The solution is

ε
0
xT ¼ 1

A

�
AT
11A22 � AT

22A12 þ h

4
ðA14A22 � A24A12ÞkxyT

	

ε
0
yT ¼ 1

A

�
AT
22A11 � AT

11A12 þ h

4
ðA24A11 � A14A22ÞkxyT

	

g0
xyT ¼ 0; kxT ¼ 0; kyT ¼ 0

kxyT ¼ A14

�
AT
11A22 � AT

22 A12

�þ A24

�
AT
22 A11 � AT

11 A12

�� AT
12

h

�
A

3
A44 þ 1

4
ð2A14 A24 A12 � A2

14 A22 � A2
24 A11Þ

	

where A ¼ A11A22 � A2
12.

Thus, the panel under study experiences only in-plane deformation and twisting. Displace-
ments u and v can be determined by Eqs. (7.28), whereas the following equations should be used
to find w

v2w

vx2
¼ 0;

v2w

vy2
¼ 0;

v2w

vxvy
¼ �kxyT

The result is

w ¼ �kxyTxy

The deformed shape of the panel is shown in Fig. 7.71.
Depending on the laminates’ structures and dimensions, there exists a whole class of stable and

unstable laminate configurations as studied by Hyer (1989).

7.4.3 Shrinkage effects and residual strains

Deformation and warping of laminates appearing after the manufacturing process is completed can
occur not only due to cooling of the cured composite but also as a result of material shrinkage due to
release of tension in the fibers after the composite part is removed from the mandrel or to chemical
setting of the polymeric matrix.

428 CHAPTER 7 Environmental, special loading, and manufacturing effects

www.EngineeringEBooksPdf.com



To demonstrate these effects, consider a thin unidirectional layer formed from circumferential plies
wound on a metallic cylindrical mandrel (see Fig. 7.72) under tension. Since the stiffness of the
mandrel is much higher than that of the layer, we can assume that, on cooling from the curing
temperature Tc to room temperature T0, the strains in the principal material coordinates of the layer are
governed by the mandrel with which the cured layer is bonded, i.e.,

ε
T
1 ¼ ε

T
2 ¼ a0 DT (7.102)

where a0 is the CTE of the mandrel material and D T ¼ T0 � Tc. On the other hand, if the layer is
cooled after being removed from the mandrel, its strains can be calculated as

ε1 ¼ a1 DT þ ε
0
1; ε2 ¼ a2 DT þ ε

0
2 (7.103)

The first terms in the right-hand sides of these equations are the free temperature strains along and
across the fibers (see Fig. 7.72), whereas ε01 and ε

0
2 correspond to the possible layer shrinkage in these

directions.
Using Eqs. (7.102) and (7.103), we can determine the strains that appear in the layer when it is

removed from the mandrel, i.e.,

ε1 ¼ ε1 � ε
T
1 ¼ ε

0
1 þ ða1 � a0ÞDT

ε2 ¼ ε2 � ε
T
2 ¼ ε

0
2 þ ða2 � a0ÞDT

(7.104)

x

y

FIGURE 7.71

Deformed shape of an angle-ply antisymmetric panel.

1,y

2,x

FIGURE 7.72

A unidirectional circumferential layer on a cylindrical mandrel.
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These strains can be readily found if we measure the layer diameter and length before and after it is
removed from the mandrel. Then, the shrinkage strains can be determined as

ε
0
1 ¼ ε1 � ða1 � a0ÞDT
ε
0
2 ¼ ε2 � ða2 � a0ÞDT

For a glass-epoxy composite with the following thermo-mechanical properties:

E1 ¼ 37:24 GPa; E2 ¼ 2:37 GPa; G12 ¼ 1:2 GPa

n12 ¼ 0:26; a1 ¼ 3:1� 10�6 1=�C; a2 ¼ 25� 10�6 1=�C

the measurements of Morozov and Popkova (1987) gave ε
0
1 ¼ �93:6� 10�5, ε02 ¼ �64� 10�5.

Further experiments performed for different winding tensions and mandrel materials have shown that,
although the strain ε

0
1 strongly depends on these parameters, the strain ε

0
2 practically has no variation.

This supports the assumption that the strain ε
0
2 is caused by chemical shrinkage of the resin and

depends only on the resin’s characteristics and properties.
For a cylinder in which the fibers make angle f with the x-axis in Fig. 7.72, the strains induced by

removal of the mandrel can be found from Eqs. (4.70), i.e.,

εx ¼ ε1 cos
2f þ ε2 sin

2f

εy ¼ ε1 sin
2f þ ε2 cos

2f

gxy ¼ ðε1 � ε2Þ sin 2f

(7.105)
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FIGURE 7.73

Dependence of residual strains in a glass-epoxy filament-wound cylinder on the winding angle,

calculation, B experiment.
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where ε1 and ε2 are specified by Eqs. (7.104). The dependencies of εx, εy, and gxy on f, plotted with the
aid of Eqs. (7.105), are shown in Fig. 7.73 together with the experimental data of Morozov and
Popkova (1987). As can be seen, the composite cylinder experiences, in the general case, not only
a change in its length ðεxÞ and diameter ðεyÞ, but also twist ðgxyÞ.

To study the� f angle-ply layer, we should utilize the thermoelasticity constitutive equations, Eqs.
(7.23). Neglecting the bending and coupling stiffness coefficients, we can write for the case under
study

Nx ¼ B11εx þ B12εy � N1T

Ny ¼ B21εx þ B22εy � N2T

(7.106)

Applying these equations to an angle-ply composite cylinder removed from its mandrel, we should
put Nx ¼ 0 and Ny ¼ 0 because the cylinder is free of loads, and take ε

T
1 ¼ ε1 and ε

T
2 ¼ ε2 in

Eqs. (7.18) and (7.25)/(7.26) that specify N1T and N2T . Then, Eqs. (7.106) yield the following
expressions for the strains that appear in the angle-ply cylinder after it is removed from the mandrel

εx ¼ 1

B
ðN1TB22 � N2TB12Þ

εy ¼ 1

B
ðN2TB11 � N1TB12Þ

where B ¼ B11B22 � B2
12;

N1T ¼ h

E1ðε1 þ n12ε2Þ cos2f þ E2ðε2 þ n21ε1Þ sin2f

�
N2T ¼ h


E1ðε1 þ n12ε2Þ sin2f þ E2ðε2 þ n21ε1Þ cos2f

�
:
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FIGURE 7.74

Residual strains in the �f angle-ply filament wound glass-epoxy cylinder, calculation, B experiment.
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Here, ε1 and ε2 are given by Eqs. (7.104), Bmn ¼ Amnh, where Amn are specified by Eqs. (4.72), and h is
the thickness of cylinder. The results of calculations for the experimental cylinder studied by Morozov
and Popkova (1987) are presented in Fig. 7.74.

As follows from Figs. 7.60 and 7.61, the approach described earlier, based on constitutive equations
for laminates, Eqs. (7.23), with the shrinkage characteristics of a unidirectional ply or an elementary
layer determined experimentally, provides fair agreement between the predicted results and the
experimental data.
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Laminated composite beams and
columns 8
High modulus carbon fiber reinforced composites are successfully used to fabricate laminated
composite beams loaded with axial and transverse forces and to reinforce traditional metal and
concrete beam elements to increase their stiffness. Various approaches to the analysis and design of
composite beams have been discussed by Vasiliev (1993), Gay et al. (2003), Kollar and Springer
(2003), Dekker (2004), and Vinson and Sierakowski (2004). This chapter is concerned with the
analysis of static, stability, and dynamic problems using elastic beam theory, allowing for transverse
shear deformation.

8.1 BASIC EQUATIONS
Consider a beam as shown in Fig. 8.1 and loaded with a transverse distributed load (p, q) and/or-
concentrated forces (R, F), and end forces and moment (V l, Nl, Ml). The analysis of such a beam is
based on a specific feature of the structure, namely, the height h is much smaller than its length l.
This feature allows us to introduce some assumptions concerning the distribution of beam
displacements through the beam height which, in turn, enables us to reduce the problem of the
analysis of beams to a solution of ordinary differential equations. We also assume that the beam is
loaded only in the xz-plane (see Fig. 8.1), so that the structure is in a state of plane stress.
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A beam loaded with surface and end forces and moment.
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Stress state of a beam element.

Single out the shaded element of the beam as shown in Fig. 8.2 and assume that the stresses acting
on this element are uniformly distributed over the element width b. The equilibrium equations for this
element have the following form:

b
vsx

vx
þ v

vz
ðbsxzÞ ¼ 0;

v

vz
ðbszÞ þ b

vsxz
vx

¼ 0 (8.1)

in which bðzÞ is the width of the beam cross-section (see Fig. 8.1). The stresses sz and sxz must satisfy
the boundary conditions on the beam surfaces. Note that in accordance with Fig. 5.1 we measure the
z-coordinate from some reference plane which is located at the distances e and s from the beam bottom
and top surfaces (see Fig. 8.1). Then, the boundary conditions can be presented as

szðx; z ¼ �eÞ ¼ �p; sxzðx; z ¼ �eÞ ¼ 0
szðx; z ¼ sÞ ¼ �q; sxzðx; z ¼ sÞ ¼ 0

(8.2)

Since the beam height h is relatively small, we assume that the beam deflection, uz, does not depend on
coordinate z (see Fig. 8.1), whereas the axial displacement, ux, is a linear function of z. These
assumptions are the same as those introduced in Section 5.1 for thin laminates. Thus, in accordance
with Eqs. (5.1) and (5.2), we have

uz ¼ wðxÞ; ux ¼ uðxÞ þ zqðxÞ (8.3)

Here, w is the beam deflection, whereas u and q are the axial displacement and the angle of rotation of
the beam cross section, respectively. The axial strain is specified by the first equation of Eqs. (5.3), i.e.,

εx ¼ u0ðxÞ þ zq0

in which ð.Þ0 ¼ dð.Þ=dx. Using Hooke’s law, we get

sx ¼ Eεx ¼ Eðu0 þ zq0Þ (8.4)

for the axial stress, where E is the axial modulus of the beam material. It follows from this equation
that sx depends on two functions, u0ðxÞ and q0ðxÞ, that can be replaced with the corresponding stress
resultants, i.e., with the internal axial force N acting in the reference plane and directed along the beam
axis, and the internal bending momentM exerted on the reference plane and acting in the xz-plane, i.e.,

N ¼
Zs
�e

sxbdz; M ¼
Zs
�e

sxbzdz (8.5)
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(see Fig. 8.1). Substitution of Eq. (8.4) for sx into Eqs. (8.5) yields

N ¼ B11u
0 þ C11q

0; M ¼ C11u
0 þ D11q

0 (8.6)

where coefficients

B11 ¼
Zs
�e

Ebdz; C11 ¼
Zs
�e

Ebzdz; D11 ¼
Zs
�e

Ebz2dz (8.7)

are similar to the stiffness coefficients specified by Eqs. (5.6)–(5.8).
The constitutive equations, Eqs. (8.6), can be simplified by a suitable choice of reference plane.

Introduce a new coordinate of the shaded beam element

t ¼ zþ e (8.8)

(see Fig. 8.1) which changes from t ¼ 0 (z ¼ �eÞ to t ¼ h (z ¼ sÞ. Then, the stiffness coefficients in
Eqs. (8.7) become

B11 ¼ I0; C11 ¼ I1 � eI0; D11 ¼ I2 � 2eI1 þ e2I0 (8.9)

in which

In ¼
Zh
0

Ebtndt; n ¼ 0; 1; 2 (8.10)

Now assume that the coordinate of the reference plane e (see Fig. 8.1) determines the location of the
beam neutral axis, so that the internal axial force N acting along this axis induces only an axial
displacement u, whereas the bending moment M causes only a rotation of the cross section. Then, it
follows from Eqs. (8.6) that C11 ¼ 0, and the second equation of Eqs. (8.9) yields

e ¼ I1
I0

(8.11)

Under this condition, Eqs. (8.6) reduce to

N ¼ Bu0; M ¼ Dq0 (8.12)

where

B ¼ I0; D ¼ I2 � I21
I0

(8.13)

are the axial and bending stiffnesses of the beam. Substituting Eqs. (8.12) into Eq. (8.4) and using
Eq. (8.8), we arrive at the following final expression for the axial stress:

sx ¼ E

�
N

B
þ ðt � eÞM

D

�
(8.14)

Consider now the shear stress sxz. According to the first assumption in Eqs. (8.3), the beam height does
not change with deformation of the beam. So, the distribution of the shear stress over the beam height
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does not affect the beam behavior which is governed by the resultant transverse shear force Vonly. In
accordance with Eqs. (5.12),

V ¼
Zs
�e

sxzbdz ¼
Zh
0

sxzbdt (8.15)

The second part of this equation is written with the aid of Eq. (8.8). The transverse shear force V (see
Fig. 8.1) is linked with the average shear strain g (see Eq. 5.14) by the constitutive equation

V ¼ Sg (8.16)

in which
g ¼ qþ w0 (8.17)

The shear stiffness coefficient S is defined and discussed in Section 5.5. To determine this coefficient,
we average the shear strain gxz as

g ¼ 1

h

Zh
0

gxzdt ¼
1

h

Zh
0

sxz
G

dt (8.18)

where G ¼ Gxz is the shear modulus of the beam material in the xz-plane. Since the actual distribution
of shear stress over the beam height, as mentioned earlier, does not affect the beam deformation, we
can introduce the averaged shear stress sa ¼ V=bh which has the same resultant force V as the actual
stress sxz. Taking sxz ¼ sa in Eq. (8.18), we arrive at Eq. (8.16) in which

S ¼ h2Rh
0

dt

bG

(8.19)

For a homogeneous rectangular cross section with b ¼ constant and G ¼ constant, we get

S ¼ Gbh (8.20)

The internal axial force N, bending moment M, and transverse shear force V must satisfy the equi-
librium equations following from Eqs. (8.1) and boundary conditions in Eqs. (8.2). To derive these
equations, consider the first equation of Eqs. (8.1) and using the transformation defined by Eq. (8.8)
present it in the form

v

vt
ðbsxzÞ ¼ �b

vsx

vx

Integrating with respect to t from t ¼ 0 and taking into account the boundary conditions, Eqs. (8.2),
according to which sxzðt ¼ 0Þ ¼ 0, we get

sxz ¼ �1

b

Z t
0

vsx

vx
bdt
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Substituting the axial stress specified by Eq. (8.14) into this equation, we have

sxz ¼ �1

b

2
4N 0

B

Z t
0

Ebdt þM0

D

Z t
0

Eðt � eÞbdt
3
5 (8.21)

Now, take t ¼ h and again use the boundary conditions, Eq. (8.2) (according to which sxzðt ¼ hÞ ¼ 0),
to get

N 0

B
I0 þM0

D
ðI1 � eI0Þ ¼ 0

where the integrals Inðn ¼ 0; 1; 2Þ are specified by Eq. (8.10). Applying Eq. (8.11), we can prove that
the second term is zero, so that

N 0 ¼ 0 (8.22)

This is the first equilibrium equation for the beam under study showing that if the beam is not loaded
with any distributed axial forces, which is the case, the internal axial force does not change along the
beam axis. Thus, Eq. (8.21) reduces to

sxz ¼ �M0

bD

Z t
0

Eðt � eÞbdt (8.23)

Substitute this result into Eq. (8.15) for the transverse shear force to get

V ¼ �M0

D

Zh
0

dt

Z t
0

Eðt � eÞbdt (8.24)

Calculating the integral by parts and using Eqs. (8.10), (8.11), and (8.23), we get in several steps

Zh
0

dt

Z t
0

Eðt � eÞbdt ¼ h

Zh
0

Ebtdt �
Zh
0

Ebt2dt � e

0
@h

Zh
0

Ebdt �
Zh
0

Ebtdt

1
A

¼ hI1 � I2 � eðhI0 � I1Þ ¼ �I2 þ eI1 þ hðI1 � eI0Þ ¼ �D

(8.25)

Thus, Eq. (8.22) yields

V ¼ M0 (8.26)

This is the moment equilibrium equation for the beam element. Using Eq. (8.26), we can present the
following final form of Eq. (8.23) for the shear stress:

sxz ¼ � V
bD

Z t
0

Eðt � eÞbdt (8.27)

in which e is specified by Eq. (8.11).
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Consider the so-called shear correction factor discussed, e.g., by Birman and Bert (2002). In its
application to homogeneous beams with rectangular cross sections, Eq. (8.20) for the beam shear
stiffness is modified as

S ¼ kGbh (8.28)

in which k is the shear correction factor which takes into account the actual distribution of shear stress
over the beam height. The concept of the shear correction factor (k ¼ 2/3 and k ¼ 0.889) was intro-
duced by Timoshenko (1921, 1922). Reissner (1945) actually used k ¼ 5/6 as proposed by Goens
(1931), whereas Mindlin (1951) proposed k ¼ p2=12.

Recall that Eq. (8.19) for S is derived under the condition that the shear stress sxz is averaged
through the beam height. Now we have Eq. (8.27), which specifies the actual distribution for the shear
stress. Substituting Eq. (8.27) into the second part of Eq. (8.18), we arrive at Eq. (8.16) in which

S ¼ � DhZh
0

dt

bG

Z t
0

Eðt � eÞbdt
(8.29)

For a rectangular homogeneous beam, D ¼ Ebh3=12, e ¼ h/2, and Eq. (8.29) yields S ¼ Gbh.
Thus, k ¼ 1 in Eq. (8.28). This result looks natural because, as follows from the corresponding

theorem of statics, the force distribution over an absolutely rigid body does not affect the body motion.
The difference between Eq. (8.19) and Eq. (8.29) is most pronounced for sandwich beams with

a lightweight core. Consider the cross section shown in Fig. 8.3 for which b ¼ h0 ¼ 25 mm and
d ¼ 2:5 mm. The relevant parameters for aluminum facings are E ¼ 70 GPa, v ¼ 0:3, and G ¼ 26.9
GPa, whereas for the core we take E0 ¼ 140 MPa, v0 ¼ 0, and G0 ¼ 70 MPa. Thus, E=E0 ¼ 500,
G=G0 ¼ 384, and h0=d ¼ 10. For the beam shown in Fig. 8.3, Eq. (8.19) gives S ¼ 63 kN, whereas
Eq. (8.29) yields S ¼ 58:2 kN, i.e., the difference is 8.2%. However, Eq. (8.19) is much simpler than
Eq. (8.29) and for this reason it is recommended for practical analysis.

Return to the equilibrium equations and consider the second equation of Eqs. (8.1) which can be
presented as

v

vt
ðbszÞ ¼ �b

vsxz
vx

b

δ

0h

δ

FIGURE 8.3

Cross section of a sandwich beam.
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Substituting sxz from Eq. (8.24), integrating with respect to t from t ¼ 0, and taking into account the
boundary conditions in Eqs. (8.2) according to which szðt ¼ 0Þ ¼ �p, we arrive at

sz ¼ 1

b

2
4V 0

D

Z t
0

dt

Z t
0

Eðt � eÞbdt � pb1

3
5 (8.30)

in which b1 ¼ bðt ¼ 0Þ (see Fig. 8.1). Taking t ¼ h and using the boundary conditions in Eqs. (8.2)
according to which szðt ¼ hÞ ¼ �q, we get

V 0

b

Zh
0

dt

Z t
0

Eðt � eÞbdt ¼ pb1 � qbk

where bk ¼ bðt ¼ hÞ (see Fig. 8.1). Using Eq. (8.25) for the integral in the left-hand side of this
equation, we arrive at the last equilibrium equation for the beam element, i.e.,

V 0 þ p ¼ 0; p ¼ pb1 � qbk (8.31)

Now, Eq. (8.30) allows us to determine the transverse normal stress as

sz ¼ �1

b

2
4p
D

Z t
0

dt

Z t
0

Eðt � eÞbdt þ pb1

3
5 (8.32)

Thus, we have constructed the theory of composite beams which includes the equilibrium equations,
Eqs. (8.22), (8.26) and (8.31), that allow us to determine the stress resultants N, V, and M, and the
constitutive equations, Eqs. (8.12) and (8.16), (8.17) that can be used to find the displacements u, w
and the angle of rotation q. These equations can be divided into two independent groups.

The first group describes the axial loading and includes Eqs. (8.22) and (8.12), i.e.,

N0 ¼ 0; N ¼ Bu0 (8.33)

This set of equations is of the second order and requires two boundary conditions (one for each end).
At the fixed end u ¼ 0, whereas at the free end N ¼ 0. For the end x ¼ l loaded with an axial force Nl,
N ¼ Nl. Note that the force must be applied to the neutral axis of the beam. Otherwise, the force must
be moved to the neutral axis and the additional bending moment must be applied in the end cross
section.

The second group of equations, Eqs. (8.26) and (8.31) and Eqs. (8.12), (8.16), and (8.17), i.e.,

M0 ¼ V ; V 0 þ p ¼ 0
M ¼ Dq0; V ¼ Sðqþ w0Þ (8.34)

describes the beam bending. This set is of the fourth order and requires four boundary conditions (two
for each end of the beam). At the clamped end w ¼ 0 and q ¼ 0, at the hinged end w ¼ 0 and M ¼ 0,
whereas for the free end V ¼ 0 and M ¼ 0. For the end x ¼ l loaded with the transverse force V l and
the bending moment Ml, we have V ¼ V l and M ¼ Ml.
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8.2 STIFFNESS COEFFICIENTS
The stiffness coefficients B, D, and S depend on the beam structure. For homogeneous or quasi-
homogeneous (consisting of identical layers) beams with rectangular cross-sections (see Fig. 8.4),
E ¼ constant, G ¼ constant, b ¼ constant and Eqs. (8.10), (8.11), and (8.20) yield

I0 ¼ Ebh; I1 ¼ 1

2
Ebh2; I2 ¼ 1

3
Ebh3

e ¼ h

2
; B ¼ Ebh; D ¼ 1

12
Ebh3; S ¼ Gbh

Axial and shear stresses specified by Eqs. (8.14) and (8.27) are

sx ¼ 1

bh

�
N þ 12M

h2

�
t � h

2

��
; sxz ¼ 6V

bh3
tðh� tÞ

For laminated beams (see Fig. 8.5), it follows from Eqs. (5.42) and (5.46) that

I0 ¼
Xk
i¼1

Eibihi; I1 ¼ 1

2

Xk
i¼1

Eibihiðti�1 þ tiÞ

I2 ¼ 1

3

Xk
i¼1

Eibihi
�
t2i�1 þ ti�1ti þ t2i

�

e ¼ I1
I0
; B ¼ I0; D ¼ I2 � I21

I0
; S ¼ h2Pk

i¼1

hi
Gibi

(8.35)

b

t

h

FIGURE 8.4

Rectangular cross section.
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where hi ¼ ti � ti�1 is the thickness of the i-th layer. The axial stress in the i-th ply is

sðiÞx ¼ Ei

�
N

B
þM

D
ðzi � eÞ

�
(8.36)

where ti�1 � e � zi � ti � e.
The shear stress acting between the i-th and the (iþ1)-th layers is

sði;iþ1Þ
xz ¼ � V

2Dbi;iþ1

Xi
j¼1

Ejbjhj
�
tj�1 þ tj � 2e

�
(8.37)

where bi;iþ1 is the lower value of bi and biþ1.
Composite tows can be used to reinforce metal profiles as shown in Fig. 8.6. In this case, Eq. (8.10)

for coefficients In is generalized as

In ¼
Zh
0

Ebtndt þ
Xm
j¼1

EjAjt
n
j ðn ¼ 0; 1; 2Þ

Here m is the number of composite tows, Ej and Aj are the modulus and the cross-sectional area of the
j-th tow, and tj is the tow coordinate (see Fig. 8.6). The axial stress in the composite tow is

sðjÞx ¼ Ej

�
N

B
þM

D

�
tj � e

��

Finally, consider a laminated beam whose layers are parallel to the plane of bending as shown in
Fig. 8.7. The structure is symmetric with respect to the plane of bending (xz-plane). For such a beam,

e ¼ h

2
; B ¼ h

Xk
i¼1

Eibi; D ¼ h3

12

Xk
i¼1

Eibi; S ¼ h
Xk
i¼1

Gibi

The axial stress is

sðiÞx ¼ Ei

�
N

B
þM

D
z

�

Repeating the derivation of Eq. (8.27) for the shear stress, we arrive at

sðiÞxz ¼ Ei
V
2D

�
h2

4
� z2

�

1b

1−it

htk =

kb

2
1

i
k

it

1t

FIGURE 8.5

Laminated cross section.
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8.3 BENDING OF LAMINATED BEAMS
Consider the problem of bending described by Eqs. (8.34). Integration of these equations with respect
to x from x ¼ 0 yields

V ¼ V 0 � V p � VR

M ¼ M0 þ V 0x�Mp �MR

q ¼ q0 þM0

D
xþ V 0

2D
x2 � qp � qR

w ¼ w0 þ 1

S

�
V 0x�Mp �MR

�� q0x�M0

2D
x2 � V 0

6D
x3 þ wp þ wR

(8.38)

jt

FIGURE 8.6

Metal profiles reinforced with composite tows.

kb

z

h

2b1b ib

2/h

FIGURE 8.7

Laminated beam with layers parallel to the plane of bending.
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where V 0, M0, q0, and w0 are the initial values of V , M, q, and w corresponding to the cross section
x ¼ 0. These values can be found from the boundary conditions at the beam ends x ¼ 0 and x ¼ l (see
Fig. 8.1). The load terms with subscript “p” correspond to the distributed loads and have the following
form:

V p ¼
Zx
0

pdx; Mp ¼
Zx
0

V pdx; qp ¼ 1

D

Zx
0

Mpdx; wp ¼
Zx
0

qpdx (8.39)

For uniform pressure p ¼ p0,

V p ¼ p0x; Mp ¼ 1

2
p0x

2; qp ¼ 1

6D
p0x

3; wp ¼ 1

24D
p0x

4 (8.40)

The load terms with subscript “R” correspond to the concentrated forces Rm and Fm shown in Fig. 8.1.
These terms can be written with the aid of Eqs. (8.39) if we present them in the form p ¼ Rmdðx� xmÞ
where Rm ¼ Rm � Fm and d is the delta function. Using the rules of integration of this function, we get
from Eqs. (8.39)

V R ¼
Xn
m¼1

V ðmÞ
R ; MR ¼

Xn
m¼1

M
ðmÞ
R ; qR ¼

Xn
m¼1

q
ðmÞ
R ; wR ¼

Xn
m¼1

w
ðmÞ
R (8.41)

where n is the number of the beam cross sections in which the forces act and for xm < x

V ðmÞ
R ¼ 0; M

ðmÞ
R ¼ 0; q

ðmÞ
R ¼ 0; w

ðmÞ
R ¼ 0 (8.42)

and for x � xm

V ðmÞ
R ¼ Rm; M

ðmÞ
R ¼ Rmðx� xmÞ; q

ðmÞ
R ¼ Rm

2D
ðx� xmÞ2; w

ðmÞ
R ¼ Rm

6D
ðx� xmÞ3 (8.43)

The solution given by Eqs. (8.38) is universal and allows us to study both statically determinate and
redundant beams using one and the same procedure. This solution can be applied also to multi-
supported beams. Introducing forces Fm as the support reactions at the support cross sections
x ¼ xm, we can find Fm using the conditions wðx ¼ xmÞ ¼ 0.

The second term with S in Eq. (8.38) for w accounts for the transverse shear deformation. As can be
seen, the allowance for this deformation practically does not hinder the analysis of the beam. If the
shear deformation is neglected, we must take S/N in Eq. (8.38) for w. As a result, we arrive at the
solution corresponding to classical beam theory.

To demonstrate the application of the general solution provided by Eqs. (8.38), consider the beam
similar to that supporting the passenger floor of an airplane fuselage shown in Fig. 8.8. Since the cross
section x ¼ 0 is clamped, we must take w0 ¼ 0 and q0 ¼ 0 in Eqs. (8.38). The beam consists of two
parts corresponding to 0� x < c and c� x� l (see Fig. 8.8). For the first part, p ¼ �qbk (see Fig. 8.1),
so we take p ¼ �Q, where Q ¼ qbk. Then, Eqs. (8.39) and (8.42) yield

V ð1Þ
p ¼ �Qx; M

ð1Þ
p ¼ �1

2
Qx2; qð1Þp ¼ � Q

6D
x3; wð1Þ

p ¼ � Q

24D
x4

VR ¼ 0; MR ¼ 0; qR ¼ 0; wR ¼ 0
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lx =cx =

0.5

Rq

V

R

x

0.05

0.001

M

w

(a)

(b)

(c)

(d)

FIGURE 8.8

Distributions of the normalized shear force V ¼ V =Ql (b), bending moment M ¼ M=Ql2 (c), and deflection

w ¼ Dw=Ql4 (d) along the x-axis.

and the solution in Eqs. (8.38) can be written as

V 1 ¼ V 0 þ Qx

M1 ¼ M0 þ V 0xþ 1

2
Qx2

q1 ¼ M0

D
xþ V 0

2D
x2 þ Q

6D
x3

w1 ¼ 1

S

�
V 0xþ 1

2
Qx2

�
�M0

2D
x2 � V 0

6D
x3 � Q

24D
x4

(8.44)

Consider the second part for which p ¼ 0. Then, the load terms in Eqs. (8.39) become

V ð2Þ
p ¼

Zx
0

pdx ¼ �
Zc
0

Qdx ¼ �Qc

M
ð2Þ
p ¼

Zx
0

V pdx ¼
Zc
0

V ð1Þ
p dxþ

Zx
c

V ð2Þ
p dx ¼ �1

2
Qcð2x� cÞ

qð2Þp ¼ 1

D

Zx
0

Mpdx ¼ 1

D

0
@Zc

0

Mð1Þ
p dxþ

Zx
0

Mð2Þ
p dx

1
A ¼ �Qc

6D

�
c2 þ 3x2 � 3cx

�

w
ð2Þ
p ¼

Zx
0

qpdx ¼
Zc
0

qð1Þp dxþ
Zx
c

qð2Þp dx ¼ � Qc

24D

�
4x3 � c3 þ 4xc2 � 6x2c

�
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The support reaction R (see Fig. 8.8) is treated as the unknown concentrated force. Then, Eqs. (8.43)
yield

VR ¼ R; MR ¼ Rðx� cÞ; qR ¼ R

2D
ðx� cÞ2; wR ¼ R

6D
ðx� cÞ3

Finally, we get for the second part of the beam

V 2 ¼ V 0 þ Qc� R

M2 ¼ M0 þ V 0xþ 1

2
Qcð2x� cÞ � Rðx� cÞ

q2 ¼ M0

D
xþ V 0

2D
x2 þ Qc

6D

�
c2 þ 3x2 � 3cx

�� R

2D
ðx� cÞ2

w2 ¼ 1

S

�
V 0xþ 1

2
Qcð2x� cÞ � Rðx� cÞ

�
�M0

2D
x2 � V 0

6D
x3

� Qc

24D

�
4x3 � c3 þ 4xc2 � 6x2c

�þ R

6D
ðx� cÞ3 (8.45)

The obtained solution, Eqs. (8.44) and (8.45), includes three unknown parameters: V 0, M0, and R,
which can be found from two symmetry conditions, i.e., V 2ðx ¼ lÞ ¼ 0 and q2ðx ¼ lÞ ¼ 0, and the
condition for the reaction force w1ðx ¼ cÞ ¼ w2ðx ¼ cÞ ¼ 0. The result is as follows

V 0 ¼ R� Qc; M0 ¼ 1

4
Qc2ð1� 4ksÞ � 1

3
Rcð1� 6ksÞ (8.46)

R ¼ 1

2
Qc

3lð1þ 4ksÞ � 2c

4lð1þ 3ks � 3cÞ
where ks ¼ D=Sc2.

For numerical analysis, neglect the shear deformation by taking ks ¼ 0. Then, the solution in Eqs.
(8.46) reduces to

V 0 ¼ �Qcð5l� 4cÞ
2ð4l� 3cÞ ; M0 ¼ Qc2ð6l� 5cÞ

12ð4l� 3cÞ ; R ¼ Qcð3l� 2cÞ
2ð4l� 3cÞ

The dependencies of the normalized shear force, the bending moment, and the beam deflection on the
axial coordinate are presented in Fig. 8.8.

Beam deflections are often used as approximation functions in the solutions of plate
bending problems (see Chapter 9). Solutions of typical beam problems are presented in
Table 8.1.

As an example, consider a simply supported I-beam loaded with uniform pressure q (see Fig. 8.9).
The beam is made of an aluminum alloy for which E ¼ 70 GPa and G ¼ 26:9 GPa. At the bottom,
where the maximum tensile stress acts, the beam is reinforced with a unidirectional carbon-epoxy
layer with modulus of elasticity Ec ¼ 140 GPa and shear modulus Gc ¼ 3:5 GPa. The beam
dimensions are

l ¼ 1250 mm; d ¼ 2:5 mm; h0 ¼ 100 mm; b ¼ 50 mm (8.47)
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TABLE 8.1 Solutions for the beams loaded with uniform pressure for typical boundary conditions.

Case Beam Type Solution

1

l

q

x

w
kb

V ¼ �qbkðl � xÞ

M ¼ 1

2
qbkðl � xÞ2

q ¼ qbk

6D
ð3l2 � 3lx þ x2Þx

w ¼ �qbk

24D

�
x3 � 4lx2 þ 6l2x þ 12

D

S
ð2l � xÞ

�
x

2

kb
w

l

q

x

V ¼ 1

2
qbkð2x � lÞ

M ¼ �1

2
qbkðl � xÞx

q ¼ qbk

24D
ðl3 � 6lx2 þ 4x3Þ

w ¼ �qbk

24D

�
l3 � 2lx2 þ x3 þ 12

D

S
ðl � xÞ

�
x

3
kb

w

l

q

x

V ¼ qbk

�
x � l

2

�

M ¼ 1

12
qbkð6x3 � 6lx þ l2Þx

q ¼ qbk

12D
ð2x2 � 3lx þ l2Þx

w ¼ �qbk

24D
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FIGURE 8.9

A simply supported I-beam.
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The layer coordinates are shown in Fig. 8.10. The beam is composed of four layers with the following
parameters:

b1 ¼ 50 mm; t0 ¼ 0; t1 ¼ 2:5 mm; h1 ¼ 2:5 mm; E1 ¼ 140 GPa; G1 ¼ 3:5 GPa ðlayer 1Þ
b2 ¼ 50 mm; t2 ¼ 5 mm; h2 ¼ 2:5 mm; E2 ¼ 70 GPa; G2 ¼ 26:9 GPa ðlayer 2Þ
b3 ¼ 2:5 mm; t3 ¼ 105 mm; h3 ¼ 100 mm; E3 ¼ 70 GPa; G3 ¼ 26:9 GPa ðlayer 3Þ
b4 ¼ 50 mm; t4 ¼ h ¼ 107:5 mm; h4 ¼ 2:5 mm; E4 ¼ 70 GPa; G4 ¼ 26:9 GPa ðlayer 4Þ

(8.48)

The beam strength is analyzed in accordance with the following procedure.

1. Determine the maximum shear force, bending moment, and deflection. The beam under study
corresponds to Case 2 in Table 8.1, from which it follows that

Vm ¼ V ðx ¼ 0Þ ¼ �1

2
qbl

Mm ¼ M

�
x ¼ l

2

�
¼ �1

8
qbl2

Wm ¼ w

�
x ¼ l

2

�
¼ �5qbl4

384D
ð1þ aÞ; a ¼ 48D

5Sl2

(8.49)

2. Determine the stiffness coefficients. First, calculate the I-coefficients specified by Eqs. (8.35), i.e.,

I0 ¼
X4
i¼1

Eibihi ¼ 5:25$104 GPa$mm2

I1 ¼ 1

2

X4
i¼1

Eibihiðti�1 þ tiÞ ¼ 1:95$106 GPa$mm3

I2 ¼ 1

3

X4
i¼1

Eibihi
�
t2i�1 þ ti�1ti þ t2i

� ¼ 1:66$108 GPa$mm4

δ=3b

1

ht =4

bbb == 21

e

00 =t

bb =4

1t
2t

3t

2

3

4

FIGURE 8.10

Coordinates of the layers.
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The coordinate of the neutral axis can be found from Eq. (8.11), which yields

e ¼ I1
I0

¼ 37:14 mm

The bending stiffness of the beam is calculated according to Eqs. (8.13) as

D ¼ I2 � I21
I0

¼ 0:936$108 GPa$mm4

For a beam without the composite layer D ¼ 0:573$108 GPa$mm4, i.e., the composite layer
increases the beam bending stiffness by 63%.
The transverse shear stiffness of the beam is specified by Eqs. (8.35), which give

S ¼ h2P4
i¼1

hi
Gibi

¼ 7:68$103 GPa$mm2

3. Calculate the axial stress using Eqs. (8.36) and (8.49), according to which

sðiÞx ¼ Ei
Mm

D
ðt � eÞ ¼ �Ei

qbl2h

8D
ðt � eÞ

where t ¼ t=h, e ¼ e=h and ti�1 � t � ti. For the beam with dimensions as per Eqs. (8.47) and
(8.48), the maximum tensile stress in the composite layer corresponds to t ¼ 0 and is equal to

s
ð1Þ
x ¼ 542q. The maximum tensile stress in the metal part is s

ð2Þ
x ðt ¼ t1Þ ¼ 253q. The maximum

compressive stress in the metal part is s
ð4Þ
x ðt ¼ hÞ ¼ �514q.

4. Calculate the shear stress. The most dangerous type is the shear stress which acts between
composite layer 1 and metal layer 2 and can cause delamination. This stress is specified by
Eq. (8.37), which yields

sð1;2Þxz ¼ �Vm

2Db
E1b1h1ðt1 � 2eÞ ¼ ql

4D
E1bh1ðh1 � 2eÞ

For the beam under study, sð1;2Þxz ¼ �4:2q.
5. Calculate the maximum deflection. The deflection is specified by the third equation of Eqs. (8.49)

in which a ¼ 0:075. Thus, the allowance for transverse shear deformation increases the maximum
deflection by 7.5%.

8.4 NONLINEAR BENDING
To demonstrate the concept of nonlinear bending, consider Fig. 8.11. A conventional simply
supported beam is shown in Fig. 8.11a. As can be seen, the beam deflection (dashed line) causes
the displacements of the beam supports towards each other. The deflection is small and the curve
slope is also so small that it can be neglected. In this case, the beam equations can be written
for the initial rectilinear shape of the beam resulting in Eqs. (8.33) and (8.34). For the beam in
Fig. 8.11b, in contrast to the beam in Fig. 8.11a, the ends do not move under bending. The
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deflection of this beam is also small (it is even smaller than the deflection of the beam shown in
Fig. 8.11a), however, the obvious difference between the length of the dashed curve and the
initial length of the beam allows us to conclude that the beam axis experiences tension under
bending. The slope of the beam axis shown in Fig. 8.11b is small, so that the first equation of
Eqs. (8.33) is still valid and shows that the internal axial force N which appears as a result of
the beam bending does not depend on the axial coordinate, so that N ¼ N0 ¼ constant. To
determine this force, consider a curved element of the beam axis shown in Fig. 8.12 from which
it follows that

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dw2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðw0Þ2

q
dx y

�
1þ 1

2
ðw0Þ2

�
dx

The last part of this equation can be obtained if we take into account that w0 ¼ dw=dx is much smaller
than unity. So, the elongation of the beam axis due to bending is

ε ¼ ds� dx

dx
¼ 1

2
ðw0Þ2

q

2

l
x −=

2

l
x =

z

q
x

(a)

(b)

FIGURE 8.11

Bending (a) and bending-stretching (b) of the beam.

dx

1α

2α

0N

0N

dw ds

FIGURE 8.12

A curved element of the beam axis.
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This elongation should be added to u0 in Eqs. (8.33), and the final expression for the axial force
becomes

N0 ¼ B

�
u0 þ 1

2
ðw0Þ2

�
(8.50)

Solving this equation for u0 and integrating the resulting equation with respect to x from x ¼ �l=2 (see
Fig. 8.11b), the following expression for uðxÞ is derived:

u ¼ 1

B
N0x� 1

2

Zx
�l=2

ðw0Þ2dxþ c

where c is the constant of integration. Since uðx ¼ �l=2Þ ¼ 0 (see Fig. 8.11b), c ¼ 0. However,
uðx ¼ l=2Þ is also zero, and we arrive at the following equation for N0:

N0 ¼ B

2

Zl=2
�l=2

ðw0Þ2dx (8.51)

As can be seen, the dependence of N0 on w is not linear. The axial force N0 also affects the equilibrium
equation, particularly the second equation of Eqs. (8.34) presenting the projection of the forces on the
axis normal to the beam axis. The effect of N0 can be simulated if we introduce some imaginary
pressure shown in Fig. 8.13. Static equivalence of the forces in Figs. 8.12 and 8.13 gives

Pndx ¼ �N0a1 þ N0a2

Here, a1 and a2 are small angles, such that a1zw0 and a2zw0 þ w00dx. Then, Pn ¼ N0w
00, and the

second equation of Eqs. (8.34) can be generalized as

V 0 þ N0w
00 þ p ¼ 0 (8.52)

where p is the acting transverse load. The rest of Eqs. (8.34) remain the same, i.e.,

M0 ¼ V ; M ¼ Dq0; V ¼ Sðqþ w0Þ (8.53)

Reduce the set of equations, Eqs. (8.52) and (8.53), to one equation for the beam deflection. For this
purpose, first, substitute V from the first equation of Eqs. (8.53) into Eq. (8.52) to get

M00 þ N0w
00 þ p ¼ 0 (8.54)

dx

np

FIGURE 8.13

Imaginary pressure simulating the action of forces N0.
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Second, eliminate q from the last two equations of Eqs. (8.53), i.e.,

M ¼ D

�
V 0

S
� w00

�

Third, substitute V 0 in this equation with its expression from Eq. (8.52) and determine

M ¼ �Dð1þ lÞw00 � D

S
p (8.55)

where l ¼ N0=S. Substituting Eq. (8.55) into Eq. (8.54), we finally arrive at

wIV � k2w00 ¼ 1

Dð1þ lÞ
�
p� D

S
p00
�
; k2 ¼ N0

Dð1þ lÞ (8.56)

Consider the solution of this equation for the beam shown in Fig. 8.11b for which, as earlier,
p ¼ �qbk ¼ �Q (see Fig. 8.1). The solution of Eq. (8.56) is symmetric with respect to x ¼ 0 and has
the following form:

w ¼ C1 þ C2 cosh kxþ Q

2N0
x2

The bending moment is specified by Eq. (8.55), which yields

M ¼ �D

�
k2C1ð1þ lÞ cosh kxþ Q

N0

�

The constants of integration C1 and C2 can be found from the boundary conditions wðx ¼ �l=2Þ ¼ 0
and Mðx ¼ �l=2Þ ¼ 0. The resulting solution is

w ¼ Q

N0

�
D

N0

�
1� cosh kx

cosh h

�
þ x2

2
� l2

8

�
; M ¼ QD

N0

�
cosh kx

cosh h
� 1

�
(8.57)

in which h ¼ kl=2. To find N0, apply Eq. (8.51). Substitution of the first equation of Eqs. (8.57) into Eq.
(8.51) gives the following transcendental equation:

N0l

2B
� Q2

2N2
0

"
l3

24
� 2D

N0 cosh h

�
l

2
cosh h� 1

k
sinh h

�
þ D2k2

2N2
0ðcosh hÞ2

�
1

k
sinh h cosh h� l

2

�#
¼ 0

(8.58)

Recall that in accordance with the foregoing derivation

h ¼ l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0

D

�
1þ N0

S

�
vuuut
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To simplify the solution, neglect the shear deformation taking S/N. Then, Eq. (8.58) can be
transformed into the following dimensionless form:

q2

N
3

"
1

24
� 1

N

�
1� 1

h
tanh h

�
þ 1

4Nðcosh hÞ2
�
1

h
sinh h cosh h� 1

�#
¼ 1

in which

q ¼ Ql4

D

ffiffiffiffi
B

D

r
; N ¼ N0l

2

D
; h ¼ 1

2

ffiffiffiffi
N

p
The function NðqÞ) is presented in graphical form by Reismann (1988).

For the beam shown in Fig. 8.11b and having a square ðb ¼ hÞ uniform cross section, the
dependencies of the normalized maximum deflection wm ¼ wðx ¼ 0Þ on the loading parameter q are
shown in Fig. 8.14. As can be seen, for relatively low loads (q � 60Þ the nonlinear solution (curve 2)
practically coincides with the linear one. The normalized maximum stress

sm ¼ sml
2

Eh2
; sm ¼ E

�
N0

B
�Mm

D

h

2

�

is presented in Fig. 8.15. As can be seen, the loading parameter q, for which the linear solution is valid,
is much smaller for the maximum compressive stress than for the maximum tensile stress. It should be
taken into account that the ultimate value of the loading parameter is limited by material strength. For
example, for the aluminum beam with l/h ¼10, the material yields at q ¼ 10 for which the linear
solution is valid. However, for composite beams, the situation can be different. For example, for
a unidirectional glass-epoxy composite that has relatively low modulus and high strength (see Table
3.5), the ultimate value of q can reach 250, which is far beyond the limit for the linear solution.

In conclusion, consider another nonlinear problem. Suppose that the laminated beam in Fig. 8.16 is
loadedwith two tensile forcesP applied at the beam ends c ¼ �l=2. If the forces are applied to the beam

2

1

hwm /

q
0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

FIGURE 8.14

Dependencies of the normalized maximum deflection on the loading parameter corresponding to the linear (1)

and nonlinear (2) solutions.
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neutral axis, i.e., at pointsAwith coordinate e, then no bending is observed.Anatural question arises as to
what happens if the forces are applied at some points with coordinate c which is not equal to e.

The problem of a beam subjected to eccentric tension (for a homogeneous rectangular beam
e ¼ h=2 and a force which does not induce any beam bending passes through the center of the cross
section) can be studied using Eqs. (8.56) in which p ¼ 0 and N0 ¼ P, i.e.

wIV � k2w00 ¼ 0; k2 ¼ P

Dð1þ lÞ; l ¼ P

S
(8.59)

The solution of this equation which satisfies the boundary conditions wðx ¼ �l=2Þ ¼ 0 is

w ¼ �Cðcosh h� cosh kxÞ (8.60)

where h ¼ kl=2. The rotation angle and the bending moment can be found with the aid of Eqs. (8.53)
and (8.55), i.e.,

q ¼ �kCð1þ lÞ sinh kx; M ¼ �Dk2Cð1þ lÞcosh kx (8.61)

Assume that the beam in Fig. 8.16 is clamped, so that qðx ¼ �l=2Þ ¼ 0. Then, the first equation of
Eqs. (6.61) yields C ¼ 0 and w ¼ 0. Thus, bending of a clamped beam does not occur irrespective of

2

1

1
2

mσ

q
2

4

6

-2

-4

0 200 400 600 800 1000

FIGURE 8.15

Dependencies of the normalized maximum stress on the loading parameter corresponding to the linear (1) and

nonlinear (2) solutions.
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FIGURE 8.16

Eccentric tension of a laminated beam.
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the location of the force. Now assume that the beam ends are hinged and can rotate around points A
(see Fig. 8.16) under a bending moment M0 ¼ Pðc� eÞ. Taking Mðx ¼ �l=2Þ ¼ M0 in the second
equation of Eqs. (8.61), we can present Eq. (8.60) as

w ¼ ðC � eÞ
�
1� cosh kx

cosh h

�
(8.62)

As an example, consider a two-layer beam composed of unidirectional glass-epoxy and carbon-epoxy
layers with the following parameters: h1 ¼ 1 mm, E1 ¼ 60 GPa, h2 ¼ 1 mm, and E2 ¼ 140 GPa. The
beam length and width are l ¼ 250 mm and b ¼ 25 mm. Calculate the I-coefficients in Eqs. (8.35), i.e.,

I0 ¼ 5$103 GPa$mm2; I1 ¼ 6$103 GPa$mm3; I2 ¼ 8:67$103 GPa$mm4

Then, the beam stiffness, Eq. (8.12), and the coordinate of the neutral axis, Eq. (8.11), become

B ¼ 5$103 GPa$mm2; D ¼ 4:5$103 GPa$mm4; e ¼ 1:6 mm

The axial strain of the beam under tension is specified by Eq. (8.12), i.e.,

ε ¼ u0 ¼ P

B
(8.63)

The maximum strains of the carbon-epoxy and glass-epoxy composites are (see Table 3.5) εc ¼ 1:43%
and εg ¼ 3%. To find the ultimate force P, we should substitute ε ¼ εc into Eq. (8.62) to get
P ¼ 71:5 kN. Introduce the ratio a ¼ P=P and dimensionless coordinate x ¼ x=l (see Fig. 8.16). Then,
h ¼ 15:71

ffiffiffi
a

p
and in accordance with Eq. (8.62)

w ¼ w

h
¼ ðc� eÞ

�
1� cosh 31:42

ffiffiffi
a

p
x

cosh 15:71

�

Let the force P be applied at the layers’ interface, so that c ¼ h1, c ¼ 0:5, and e ¼ e=h ¼ 0:8.
Functions wðxÞ are presented in Fig. 8.17 for various values of the loading parameter. As can be seen,
under a force equal to the ultimate value ða ¼ 1Þ, bending is concentrated in the vicinity of the
beam ends.
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01.0

FIGURE 8.17

Deflection of the beam under eccentric tension.
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8.5 BUCKLING OF COMPOSITE COLUMNS
Consider a column compressed by an axial force T as shown in Fig. 8.18. For a particular value of the
force T, which is called the critical value, the initial rectilinear shape becomes unstable, and the column
axis becomes curved as shown in Fig. 8.18 with dashed lines. According to the static buckling
criterion, the critical force Tc is the minimum force under which two equilibrium states of the column
are possible, i.e., the initial rectilinear shape and the slightly curved shape. To apply this criterion, we
need to induce some deflection (see the dashed lines in Fig. 8.18) and to determine whether this
deflection can be supported by the acting force T. Note that this small deflection is artificially induced
because the column is analyzed assuming that it is “perfect” (it is perfectly straight, no transverse
forces acting, etc.). In real structures, the tendency to bending always exists. For example, small
eccentricity of the load application (see Fig. 8.16) causes bending from the very beginning of the
loading process (see Fig. 8.17).

The equilibrium of a compressed column with some small deflection w can be described by Eq.
(8.59) in which P ¼ �T , i.e.,

wIV þ k2w00 ¼ 0; k2 ¼ T

Dð1� lÞ; l ¼ T

S
(8.64)

Note that this equation has a trivial solution w ¼ 0 which corresponds to the initial rectilinear shape of
the column. We need to find out whether the critical force Tc exists, for which Eq. (8.69) has a nonzero
solution. The general solution of Eq. (8.64) is

w ¼ C1xþ C2 þ C3 sin kxþ C4 cos kx (8.65)

l

w

x

T
T T

l

w

x

T
T T

(a) (b) (c)

FIGURE 8.18

Axial compression and buckling modes of a column with simply-supported ends (a), with clamped end and free

end (b), and with clamped ends (c).
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Applying Eqs. (8.53) and (8.55), we can also find

q ¼ �kð1� lÞðC3 cos kx� C4 sin kxÞ � C1

M ¼ Dk2ð1� lÞðC3 sin kxþ C4 cos kxÞ
V ¼ Dk3ð1� lÞðC3 cos kx� C4 sin kxÞ

(8.66)

Consider the simply-supported column shown in Fig. 8.18a for which

wðx ¼ 0Þ ¼ wðx ¼ lÞ ¼ 0; Mðx ¼ 0Þ ¼ Mðx ¼ lÞ ¼ 0 (8.67)

For these boundary conditions, Eqs. (8.65) and (8.68) give the following algebraic equations written in
terms of the constants of integration Ciði ¼ 1;.; 4Þ :

C2 þ C4 ¼ 0; C1lþ C2 þ C3 sin klþ C4 cos kl ¼ 0
C4 ¼ 0; C3 sin klþ C4 cos kl ¼ 0

The last two equations yield

C3 sin kl ¼ 0

Obviously, if C3 ¼ 0, then all the constants are zero and w ¼ 0, which corresponds to the initial shape
of the column. So, C3s0 and

sin kl ¼ 0 (8.68)

As can be readily seen, C3 is the only nonzero constant and Eq. (8.65) reduces to

w ¼ C3 sin kx (8.69)

Note that within the approach under discussion the constant C3 cannot be determined. Recall that
Eq. (8.64) is valid for small deflections only. So, for the unknown C3, we can formally assume that it is
small enough so that the deflection, Eq. (8.69), is also small. The nonzero deflection given by
Eq. (8.69) exists if the parameter k satisfies Eq. (8.68) from which kl ¼ npðn ¼ 1; 2; 3;.Þ. Using
the corresponding Eq. (8.64) for k, we get the values of forces

Tn ¼ p2n2D

l2
�
1þ p2n2D

Sl2

� ðn ¼ 1; 2; 3;.Þ (8.70)

for which the nonzero deflection of the column can take place. Only one of these values, i.e., the
smallest one, has a physical meaning and represents the critical force. If we neglect the shear
deformation taking S/N, the result is evident: the minimum value of Tn takes place when n ¼ 1, i.e.,

TE ¼ p2D

l2
(8.71)

This is a well known Euler formula for the critical load. In the general case, the situation looks more
complicated. However, it can be proved that n ¼ 1 for Eq. (8.70) as well. Indeed, using Eq. (8.71), the
equation, Eq. (8.70), can be transformed as follows

Tn ¼ n2TE

1þ n2
TE
S
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Consider the inequality Tn > T1 for n > 1. This inequality reduces to n > 1 which is true. So, in the
general case, n ¼ 1 and the critical force is determined by

Tc ¼ TE

1þ TE
S

(8.72)

For n ¼ 1, Eq. (8.69) specifies the mode of buckling

w ¼ C3 sin
px

l

shown in Fig. 8.18a with the dashed line.
In conclusion, consider the case l ¼ 1, or T ¼ S, which is sometimes associated with the so-called

shear mode of buckling. In this case, Eq. (8.64) reduces to w00 ¼ 0 whose solution is w ¼ C1xþ C2.
Applying the boundary conditions in Eq. (8.67), we get C1 ¼ C2 ¼ 0 and w ¼ 0. Thus, the case l ¼ 1
corresponds to the straight column and T ¼ S is not a critical load. Anyway, the force T ¼ S is always
higher thanTc given byEq. (8.72). Indeed, the inequalityT ¼ S > Tc is equivalent to the inequality S > 0.

The result obtained for the critical force, i.e., Eq. (8.72), can be used for the columns with various
boundary conditions substituting the corresponding expression for TE instead of that given by Eq.
(8.71). Particularly for the cantilever (see Fig. 8.18b) and clamped (see Fig. 8.18c) columns, we have,
respectively,

TE ¼ p2D

4l2
; TE ¼ 4p2D

l2

It should be noted that a buckling analysis must be accompanied by a study of stresses because
composite beams can fail before buckling if the stresses in the layers reach the material ultimate
compressive stresses. The stresses in the layers are specified by Eq. (8.36) in which N ¼ �T and
M ¼ 0, i.e.,

sðiÞx ¼ �Ei
T

B

Buckling can take place if these stresses calculated for T ¼ Tc are less than material strength.

8.6 FREE VIBRATIONS OF COMPOSITE BEAMS
Composite beams are good models allowing us to discuss some specific features of the dynamic
behavior of laminated composite structures. The equations of motion of the beam element shown in
Fig. 8.2 can be written adding the inertia terms to the equilibrium equations, Eqs. (8.1), i.e.,

b
vsx

vx
þ v

vz
ðbsxzÞ � rb

v2ux
vt2

¼ 0

b
vsxz
vx

þ v

vz
ðbszÞ � rb

v2uz
vt2

¼ 0

in which t is the time and r is the material density. Applying assumptions introduced in Section 8.1,
i.e., using Eqs. (8.3) for the displacements and Eqs. (8.5) and (8.15) for forces and moment, we can
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arrive at the following equations for composite beams (these equations are generalizations of the
equilibrium equations, Eqs. (8.22), (8.26), and (8.31))

vN

vx
� Br

v2u

vt2
� Cr

v2q

vt2
¼ 0

vM

vx
� V � Cr

v2u

vt2
� Dr

v2q

vt2
¼ 0

vV
vx

� Br
v2w

vt2
� pðx; tÞ ¼ 0

(8.73)

where

Br ¼ J0; Cr ¼ J0
�
er � e

�
; Dr ¼ J2 � 2eJ1 þ e2J0

Jn ¼
Zh
0

brtndt ðn ¼ 0; 1; 2Þ (8.74)

are the inertia coefficients which are analogous to the stiffness coefficients in Eqs. (8.9). For laminated
beams,

Jn ¼ 1

nþ 1

Xk
i¼1

biri
�
tnþ1
i � tnþ1

i�1

�
(8.75)

(see Fig. 8.5). The parameter er in Eqs. (8.74)

er ¼ J1
J0

(8.76)

is similar to the coordinate of the neutral axis e defined by Eq. (8.11). In the general case, er does not
coincide with e because the integrals In (see Eqs. (8.10)) depend on the stiffness distribution, whereas
Jn determined by Eq. (8.75) are governed by the density distribution through the height of the beam
cross section. For homogeneous beams (E ¼ constant and r ¼ constant) we have

er ¼ e ¼

Rh
0

btdt

Rh
0

bdt

; C ¼ 0

For beams with symmetric laminated structure,

er ¼ e ¼ h

2
; C ¼ 0 (8.77)

The forces and moments entering Eqs. (8.73) are linked with the corresponding deformations by the
constitutive equations, Eq. (8.12), (8.16), and (8.17), i.e.,

N ¼ Bu0; M ¼ Dq0; V ¼ Sðqþ w0Þ (8.78)
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Substituting Eqs. (8.78) into Eqs. (8.73), we can derive the motion equations in terms of displace-
ments. Taking p ¼ 0 for the case of free vibrations, we get

B
v2u

vx2
� Br

v2u

vt2
� Cr

v2q

vt2
¼ 0 (8.79)

D
v2q

vx2
� S

�
qþ vw

vx

�
� Cr

v2u

vt2
� Dr

v2q

vt2
¼ 0 (8.80)

S

�
vq

vx
þ v2w

vx2

�
� Br

v2w

vt2
¼ 0 (8.81)

In the general case, erse and Crs0, so that Eq. (8.79) which describes the axial vibrations includes
the rotation angle q and is coupled through this term with Eqs. (8.80) and (8.81) which describe the
flexural vibrations of the beam.

Specific features of longitudinal vibrations are discussed in Section 7.3.4. Consider here the
flexural vibrations. For this purpose, assume that the beam has a symmetric structure, so that
Eqs. (8.77) hold. Then, Eqs. (8.80) and (8.81) can be transformed to the following equation written in
terms of the beam deflection

D
v4w

vx4
�
�
Dr þ BrD

S

�
v4w

vx2vt2
þ BrDr

S

v4w

vt4
þ Br

v2w

vt2
¼ 0 (8.82)

In this equation, the terms including S allow us to take into account the shear deformation, whereas the
terms with coefficient Dr allow for the rotation inertia of the beam cross section. Following Uflyand
(1948), Eq. (8.82) can be presented in the form

v4w

vx4
�
 

1

C2
1

þ 1

C2
2

!
v4w

vx2vt2
þ 1

C2
1C

2
2

v4w

vt4
þ C2v

2w

vt2
¼ 0

or  
v2

vx2
� 1

C2
1

v2

vt2

! 
v2w

vx2
� 1

C2
2

v2w

vt2

!
þ C2v

2w

vt2
¼ 0

where

C1 ¼
ffiffiffiffiffiffi
D

Dr

s
; C2 ¼

ffiffiffiffiffi
S

Br

s
; C ¼

ffiffiffiffiffi
Br

B

r

To clarify the physical meaning of the coefficients C1 and C2, consider a beam with a rectangular cross
section (see Fig. 8.19) for which

D ¼ 1

12
Ebh3; S ¼ Gbh; Br ¼ bhr; Dr ¼ 1

12
rbh3 (8.83)
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Then,

C1 ¼
ffiffiffiffi
E

r

r
; C2 ¼

ffiffiffiffi
G

r

s

are the velocities of normal stress (C1) and shear stress (C2) wave propagation along the beam axis.
Neglecting rotatory inertia ðDr ¼ 0Þ or shear deformation ðS/NÞ in Eq. (8.82), we actually assume
that C1 or C2 becomes infinitely high.

For qualitative analysis, consider flexural vibrations of a simply supported beam shown in Fig. 8.19
and present the beam deflection as

wðx; tÞ ¼ Wm sin
pmx

l
sin umt (8.84)

where m is the number of the vibration mode (the mode corresponding to m ¼ 1 is shown in Fig. 8.19
with a dashed line), Wm is the amplitude, and um is the frequency of the m-th vibration mode. Recall
that the number of the beam vibrations per 1 second (Hz) can be found as

vm ¼ um

2p

Substituting the deflection, Eq. (8.84), into Eq. (8.82) results in the following equation for the
frequency:

BrDr

S
u4
m �

�
Br þ

	pm
l


2�
Dr þ DBr

S

��
u2
m þ D

	pm
l


2 ¼ 0 (8.85)

Neglecting both transverse deformation S/N and rotatory inertia ðDr ¼ 0Þ, we arrive at a result
corresponding to classical beam theory, i.e.,

u0
m ¼ pm

l

ffiffiffiffiffi
D

Br

s
(8.86)

If we neglect the rotatory inertia ðDr ¼ 0Þ and take into account the shear deformation, Eq. (8.85)
yields

um ¼ u0
mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ aS
p

l

x

w

h

b

FIGURE 8.19

Free vibrations of a simply supported beam.
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where u0
m is specified by Eq. (8.86) and

aS ¼ p2m2D

l2S

For a homogeneous beam with a rectangular cross section, using Eqs. (8.83), we get

aS ¼ p2m2Eh2

12Gl2

Thus, the shear correction factor reduces the frequency and is a function of the ratios E/G and h/l and
the mode number m.

Consider now the effect of rotatory inertia. Taking S/N in Eq. (8.85), we have

um ¼ u0
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ar
p

where

ar ¼ p2m2Dr

l2Br

Again, for a homogeneous beam with a rectangular cross section

ar ¼ p2m2h2

12l2

(see Fig. 8.19). As can be seen, the effect depends on the beam relative height and mode number.
Consider coupled longitudinal-transverse vibrations of the beams for which Crs0 described by

Eqs. (8.79)–(8.81). Taking, for the sake of brevity, Dr ¼ 0 and S/N, we can transform these
equations into the following form

BD
v6w

vx6
� BrD

v6w

vx4vt2
� C2

r

v6w

vx2vt4
þ BBr

v4w

vx2vt2
� B2

r

v4w

vt4
¼ 0

Substituting the deflection from Eq. (8.84), we arrive at the following equation for the frequency:

�
Bl2m � Bru

2
m

��
Dl4m � Bru

2
m

�� C2
rl

2
mu

4
m ¼ 0

in which lm ¼ pm=l. Taking into account Eq. (8.74) for Cr, we can present this equation in the form

u4
mB

2
r

h
1� l2m

�
er � e

�2i� Brl
2
mu

2
m

�
Dl2m þ B

�þ BDl6m ¼ 0

It follows from this equation that the effect of vibration coupling can be evaluated by comparing
parameter

ac ¼ p2m2

l2
�
e� er

�2
with unity. If ac � 1, the coupling effect can be ignored.
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Finally, consider flexural vibrations of beams loaded with axial compressive force T (see Fig. 8.18).
For this purpose, we need to modify Eq. (8.81), adding to it the term with the axial force as in
Eq. (8.52), i.e.,

S

�
vq

vx
þ v2w

vx2

�
� T

v2w

vx2
� Br

v2w

vt2
¼ 0 (8.87)

Taking, for the sake of brevity, Dr ¼ 0 and Cr ¼ 0 in Eq. (8.80), we get the second equation

D
v2q

vx2
� S

�
qþ vw

vx

�
¼ 0 (8.88)

These two equations, Eqs. (8.87) and (8.88), can be transformed as follows

D

�
1� T

S

�
v4w

vx4
� DBr

S

v4w

vx2vt2
þ T

v2w

vx2
þ Br

v2w

vt2
¼ 0

For a simply supported beam (see Fig. 8.18a), substituting the deflection in accordance with Eq. (8.84),
we finally get

um ¼ u0
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T

am

	
1þ am

S



1þ am

S

vuuuut (8.89)

where am ¼ p2m2D=l2. As can be seen, a compressive force reduces the frequency of flexural
vibrations. For the first mode (m ¼ 1), a1 ¼ TE where TE is the Euler critical force specified by Eq.
(8.71) and Eq. (8.89) becomes

u1 ¼ u0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T

TE

�
1þ TE

S

�

1þ TE
S

vuuuuut
For the critical force T ¼ Tc in Eq. (8.72), u1 ¼ 0, i.e., compressive loading up to the critical load
results in zero frequency of flexural vibrations. A tensile force, naturally, increases the frequency.

8.7 REFINED THEORIES OF BEAMS AND PLATES
The composite beam, being a simple but representative model, allows us to consider the so-called
“higher-order” theories of beams, plates, and shells intensively discussed in the literature. Note that
although the equations presented in the text following are valid only for beams, the main references are
made to plates, for which such theories originally have been constructed.

Consider two typical problems of beam theory, i.e., the cantilever beam shown in Fig. 8.20 and the
simply supported beam shown in Fig. 8.21. Both beams are homogeneous and have rectangular
cross sections.
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The theory described in the foregoing sections is based on the approximations given by Eqs. (8.3)
for the displacements which, for the case of bending, yield

ux ¼ zqðxÞ; uz ¼ wðxÞ (8.90)

The corresponding static variables are the internal bending moment and the transverse shear force
specified by Eqs. (8.5) and (8.15), i.e.,

M ¼
Zh2

�
h

2

sxbzdz; V ¼
Zh2

�
h

2

sxzbdz (8.91)

This approximation reduces the theory to Eqs. (8.34), i.e.,

M0 ¼ V ; V 0 þ p ¼ 0 (8.92)

M ¼ Dq0; V ¼ Sg; g ¼ ðqþ w0Þ (8.93)

For a beam with a rectangular cross section

D ¼ 1

12
Ebh3; S ¼ Gbh (8.94)

h

b

wz ,

ux ,

2/h

l

dx

F

2/h
V

M

FIGURE 8.20

A cantilever beam.

l

ux ,

wz ,
q

FIGURE 8.21

A simply supported beam.
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(see Fig. 8.20). The normal and shear stresses are specified by Eqs. (8.12) and (8.27) which, for the
stiffnesses in Eqs. (8.94), give

sx ¼ 12M

bh3
z; sxz ¼ 6V

bh3

�
h2

4
� z2

�
(8.95)

For the cantilever beam (see Fig. 8.20), the solution of Eqs. (8.92) and (8.93) is

F ¼ V ; M ¼ �Fðl� xÞ; q ¼ � 6F

Ebh3
ð2l� xÞx

w ¼ 2F

Ebh3

�
3lx� x2 þ Eh2

2G

�
x

(8.96)

For the simply supported beam (see Fig. 8.21), the solutions are given in Table 8.1 (Case 2) and have
the following form:

V ¼ �1

2
qbðl� 2xÞ; M ¼ �1

2
qbðl� xÞx

q ¼ q

2Eh3
�
l3 � 6lx2 þ 4x3

�
; w ¼ � q

2Eh3

�
l3 � 2lx2 þ x3 þ Eh2

G
ð1� xÞ

�
x

(8.97)

Consider the “higher-order” beam and plate theories that are widely discussed in the literature and are
based on the displacement approximations which generalize Eqs. (8.90) as

ux ¼ zu1ðxÞ þ z2u2ðxÞ þ z3u3ðxÞ þ.þ zkukðxÞ (8.98)

uz ¼ wðxÞ (8.99)

In accordance with Eq. (8.98), the theory based on Eqs. (8.90) is referred to as the “first-order” shear
deformation theory (Reddy and Wang, 2000). The main shortcoming of this theory is usually asso-
ciated with the shear stress distribution following from Eqs. (8.90). Indeed, the exact constitutive
equation for the shear stress is

sxz ¼ Ggxz ¼ G

�
vux
vz

þ vuz
vx

�
(8.100)

Substituting Eqs. (8.90), we get

sxz ¼ Gðqþ w0Þ (8.101)

which does not depend on z. Thus, the stress sxz in Eq. (8.101) does not satisfy the boundary conditions
(see Fig. 8.20), according to which

sxz

�
z ¼ � h

2

�
¼ 0 (8.102)

However, as discussed in Section 5.1, Eq. (8.101) is not correct. Displacements in Eqs. (8.90)
approximate the distribution of the actual displacements through the beam height. It is known that
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approximate functions must not be differentiated, as has been done to derive Eq. (8.101). The
second equation in Eqs. (8.90) states that uz does not depend on z, which means that the beam
element shaded in Fig. 8.20 is absolutely rigid in the z direction. As is known, the distribution of
forces over the surface of an absolutely rigid body does not affect the body motion. Only the forces
resultant, i.e., the transverse shear force V for the beam, affects the beam deflection. Integration in
the second equation of Eqs. (8.91) allows us to avoid differentiation of ux in Eq. (8.100) with
respect to z. Indeed, using Eqs. (8.90), (8.91), and (8.100), we get in several steps

V ¼
Zh2
�h

2

sxzbdz ¼ bG

Zh2
�h

2

�
vux
vz

þ vuz
vx

�
dz

¼ bG

�
ux

�
h

2

�
� ux

�
�h

2

�
þ hw0

�
¼ bGhðqþ w0Þ

Thus, in the theory under consideration, the constitutive equation exists for the shear force Vonly and
does not exist for the shear stress sxz. The shear stress following from the equilibrium equation is
specified by the second equation of Eqs. (8.95) and, naturally, satisfies the boundary conditions as per
Eq. (8.102). The same situation occurs in classical beam theory in which Eq. (8.100) simply does not
exist, so there is no temptation to use it and the shear stress is found from the equilibrium equation.

Now, return to Eqs. (8.98) and (8.99) and discuss the so-called “higher-order” theories. To derive
the equations of the “third-order” theory, take k ¼ 3 in Eq. (8.98), i.e.,

ux ¼ zu1ðxÞ þ z2u2ðxÞ þ z3u3ðxÞ; uz ¼ wðxÞ (8.103)

Following the traditional procedure, substitute Eqs. (8.103) into Eq. (8.100) to get

sxz ¼ G
�
u1 þ w0 þ 2u2zþ 3u3z

2
�

Apply the boundary conditions in Eq. (8.102) and determine the functions u2 and u3. The resulting
displacement field becomes

ux ¼ zu1 � 4z3

3h2
ðu1 þ w0Þ; uz ¼ wðxÞ (8.104)

The displacements in Eqs. (8.104) have been originally proposed by Vlasov (1957) and Ambart-
sumyan (1958) and are used in numerous papers and books to construct the refined plate and shell
theories (e.g., Reddy, 2004).

It seems, at first glance, that the displacements in Eqs. (8.103) are more accurate than the linear
approximation given by Eqs. (8.90). However, this is not actually the case. In general, introduction of
force constraints into the kinematic field is not the best way to improve it. To show this, apply the
constitutive equations and find the stresses corresponding to displacements presented by
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Eqs. (8.104), i.e.,

sx ¼ Eεx ¼ E
vux
vx

¼ E

�
zu01 �

4z3

3h2
ðu01 þ w00Þ

�
sxz ¼ Ggxz ¼ G

�
vux
vz

þ vuz
vx

�
¼ Gðu1 þ w0Þ

�
1� 4z2

h2

�
(8.105)

Following Ambartsumyan (1987), introduce the bending moment and the shear force in Eqs. (8.91).
Substituting the stresses in Eqs. (8.105), we get

M ¼ E
bh3

15

�
u01 �

1

4
w00
�
; V ¼ 2

3
Gbhðu1 þ w0Þ (8.106)

Consider first the cantilever beam (see Fig. 8.20) for which the equilibrium equations, Eqs. (8.92) for
p ¼ 0, have the solution given by Eqs. (8.96). Integration of Eqs. (8.106) yields

u1 ¼ 3F

10Ghb
� 12F

Eh3b

�
lx� x2

2

�
� C1

w ¼ 6Fx

5Ghb
þ 6F

Eh3b

�
lx2 � x3

3

�
þ C1xþ C2

(8.107)

where C1 and C2 are the constants of integration which should be determined from the boundary
conditions at x ¼ 0 (see Fig. 8.20). According to these conditions, we should put wðx ¼ 0Þ ¼ 0 and,
taking into account that u1 is actually the angle of the cross section rotation, put u1ðx ¼ 0Þ ¼ 0: Then,
Eqs. (8.107) reduce to

u1 ¼ � 6F

Eh3b
ð2l� xÞx; w ¼ 2F

Eh3b

�
3lx� x2 þ 3Eh2

4G

�
x (8.108)

Comparing this result with Eqs. (8.95), we can conclude that u1 coincides with q, whereas the
deflection has a different coefficient in the term corresponding to the shear deformation (0.75 instead
of 0.5). However, the main difference between the solutions is more significant. Indeed, for the
clamped edge of the beam, Eqs. (8.96) of the “first-order” theory give q ¼ 0 and w ¼ 0, and Eqs. (8.90)
for the displacements yield uxðx ¼ 0Þ ¼ 0 and uzðx ¼ 0Þ ¼ 0. Thus, the displacements are identically
zero at the clamped edge of the beam. But for the “third-order” theory, Eqs. (8.104) and (8.108) give

uxðx ¼ 0Þ ¼ �2Fz3

Gh3b
; uzðx ¼ 0Þ ¼ 0

Thus the boundary conditions for the clamped end ðux ¼ 0Þ cannot be satisfied within the framework
of the “third-order” theory.

A similar conclusion can be derived for a simply supported beam, shown in Fig. 8.21. Substitution
of the bending moment M and the shear force V (neither of which depends on the shear deformation)
from Eqs. (8.97) into Eqs. (8.106) and integration yield the following solution:
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u1 ¼ q

2Eh3

�
l3 � 6lx2 þ 4x3 � 3Eh2

10G
ðl� 2xÞ

�

w ¼ � q

2Eh3

�
l3 � 2lx2 þ x3 � 6Eh2

5G
ðl� xÞ

�
x

(8.109)

in which the constants of integration are found from the boundary conditions wðx ¼ 0Þ ¼ wðx ¼ lÞ ¼ 0
(see Fig. 8.21). Comparing this solutionwith the corresponding equation in Eqs. (8.97), we can conclude
that the results coincide within the accuracy of the terms including the shear modulus G. The bending
moment M specified by the first equation of Eqs. (8.106) and Eqs. (8.109) satisfies the
boundary conditions (see Fig. 8.21), according towhichMðx ¼ 0Þ ¼ Mðx ¼ lÞ ¼ 0. However, the axial
stress is not zero at the beam ends. Substituting Eqs. (8.109) in the first equation of Eqs. (8.105),
we arrive at

sx ¼ �6q

h3
ðl� xÞxzþ qE

Gh3

�
3h2

10
� 2z2

�
z (8.110)

At the beam ends (x ¼ 0 and x ¼ l), the first term vanishes, but the second term gives nonzero stress,
which cannot exist at the ends of a simply supported beam.

Usually, simply supported beams and plates are studied applying a trigonometric series, each term
of which satisfies the boundary conditions wð0Þ ¼ wðlÞ ¼ 0 and Mð0Þ ¼ MðlÞ ¼ 0 , i.e.,

u1 ¼
X
m

Um cos lmx; w ¼
X
m

Wm sin lmx (8.111)

in which lm ¼ pm=l (see Fig. 8.21). Substituting expansions (8.111) into Eqs. (8.106), we get

M ¼ E
bh3

15

X
m

�
1

4
lmWm � Um

�
sin lmx

V ¼ 2

3
Gbh

X
m

ðlmWm þ UmÞ cos lmx
(8.112)

Decomposing the load p ¼ �qb into a similar series

p ¼ �qb ¼ �b
X
m

qm sin lmx (8.113)

and substituting Eqs. (8.112) and (8.113) into the equilibrium equations, Eqs. (8.92), we arrive at the
following set of algebraic equations derived in terms of Wm and Um:

E
h2

5
l2m

�
1

4
lmWm � Um

�
¼ 2GðlmWm þ UmÞ

2

3
GhlmðlmWm þ UmÞ ¼ �qm
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Solving these equations for Wm and Um, we have

Wm ¼ � 12qm

Eh3l4m

�
1þ Eh2

10G
l2m

�
; Um ¼ 12qm

Eh3l3m

�
1� Eh2

40G
l2m

�
(8.114)

Substitution of Eqs. (8.111) and (8.114) into Eq. (8.105) yields the following equation for sx:

sx ¼ �12z

h3

X
m

qm

l2m
sin lmxþ Ez

Gh3

�
3h2

10
� 2z2

�X
m

qm sin lmx

Retaining a finite number of terms in the series of this equation, we can arrive at the conclusion that
sxðx ¼ 0Þ ¼ sxðx ¼ lÞ ¼ 0. However, for an infinite number of terms, the second series converges, and
in accordance with Eq. (8.113) becomes equal to the second term in Eq. (8.110), which means that sx is
not zero at the beam ends.

Thus, the “third-order” theory does not allow one to satisfy the boundary conditions which are
satisfied within the framework of the “first-order” theory. It is important that, following Ambartsumyan
(1987), we used the displacements in Eqs. (8.104) in conjunction with the equilibrium equations, Eqs.
(8.92), which follow from the free-body diagrams for the shaded element of the beam shown in Fig. 8.20.
In more recent versions of the “third-order” theory (e.g., Reddy, 2004), the governing equations are
derived with the aid of the variational principle. To discuss this approach, apply the minimum condition
for the total potential energy of the beam, i.e., Eq. (2.63), according to which

dT ¼ b

Z l
0

dx

Zh=2
�h=2

�
sxdεx þ sxzdgxz

�
dz� b

Z l
0

pdwdx ¼ 0 (8.115)

Consider the “first-order” theory. Using Hooke’s law and displacements as per Eqs. (8.90), we get the
following equation for the axial stress:

sx ¼ Eεx ¼ E
vux
vx

¼ Eq0z (8.116)

As has been noted earlier, the constitutive equation for the shear stress in the “first-order” theory exists
only in the integral form. Eq. (8.99). To apply this form, we need to use Eqs. (8.91) for V and replace
gxz with the average shear strain g ¼ qþ w0. Taking into account Eq. (8.116) and Eqs. (8.91) for the
bending moment, we can present Eq. (8.115) in the following form:

Z l
0

½Mdq0 þ V ðdqþ dw0Þ � pdw�dx ¼ 0

Integration by parts yields the following variational equations and natural boundary conditions

M0 � V ¼ 0; V 0 þ p ¼ 0 (8.117)

½Mdq�x¼l
x¼0 ¼ 0; ½Vdw�x¼l

x¼0 ¼ 0 (8.118)
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As can be seen, Eqs. (8.117) coincide with equilibrium equations, Eqs. (8.92), whereas the boundary
conditions, Eqs. (8.118) giveM ¼ 0 and V ¼ 0 which are equivalent to sx ¼ 0 and sxz ¼ 0 for the free
end (see Eqs. (8.95)), and for the clamped end give q ¼ 0 and w ¼ 0 which are equivalent to ux ¼ 0
and uz ¼ 0 (see Eqs. (8.90)). Thus, the variational formulation of the “first-order” theory is equivalent
to the direct formulation based on the equilibrium equations and the corresponding boundary
conditions.

The situation is totally different for the “third-order” theory for which we have constitutive
equations, Eqs. (8.105), for both normal and shear stresses. Substituting Eqs. (8.105) into Eq. (8.115),
and integrating with respect to z, we get

Z l
0

�
Mdu01 � H

�
du01 þ dw00�þ V ðdu1 þ dw0Þ � Qðdu1 þ dw0Þ � pdw

�
dx ¼ 0

where M and V are specified by Eqs. (8.91) and

H ¼ 4b

3h2

Zh=2
�h=2

sxz
3dz; Q ¼ 4b

h2

Zh=2
�h=2

sxzz
2dz (8.119)

The corresponding variational equations and the natural boundary conditions are

M0 � H0 � V þ Q ¼ 0; V 0 � Q0 þ H00 þ p ¼ 0 (8.120)

½ðM � HÞdu1�x¼l
x¼0 ¼ 0; ½Hdw0�x¼l

x¼0 ¼ 0; ½ðV � QÞdw�x¼l
x¼0 ¼ 0 (8.121)

in which, in accordance with Eqs. (8.91), (8.105), and (8.119),

M ¼ Ebh3

60

�
4u01 � w00�; H ¼ Ebh3

1260

�
16u01 � 5w00�

V ¼ 2

3
Gbhðu1 þ w0Þ; Q ¼ 2

15
Gbhðu1 þ wÞ

(8.122)

These results look energy consistent. Indeed, Eqs. (8.120) in conjunction with Eqs. (8.122) are of the
sixth-order which corresponds to three natural boundary conditions, Eqs. (8.121). For a cantilever
beam shown in Fig. 8.20, at the clamped end u1 ¼ 0, w0 ¼ 0, and w ¼ 0. Correspondingly, it follows
from Eqs. (8.104) that ux ¼ 0 and uz ¼ 0 at x ¼ 0. Thus, the boundary conditions at the clamped end
can be satisfied. However, it follows from Eq. (8.105) that, under these conditions, sxzðx ¼ 0Þ ¼ 0 and
the force F acting at x ¼ l (see Fig. 8.20) is not balanced. This result is expected because the variational
equations, Eqs. (8.120), do not coincide with equilibrium equations, Eqs. (8.92), and hence, the
equilibrium equations of a beam element as a solid are violated. The reason for this is associated with
the formulation of the displacement field. In contrast to Eqs. (8.90) of the “first-order” theory which
allow for two mutually independent degrees of freedom for the shaded beam element shown in
Fig. 8.20 (i.e., displacement w and rotation angle q), in Eqs. (8.104) of the “third-order” theory the
displacement and the rotation are not mutually independent, and the variational equations, Eqs.
(8.120), cannot provide the equilibrium of the beam element as a solid.
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Consistency conditions for the refined beam, plate, and shell theories have been proposed by
Vasiliev and Lurie (1990a, b and 1992). According to these conditions, equilibrium equations
following from the free-body diagram for the structure element must coincide with variational
equations providing the minimum of the structure’s total potential energy. Within the framework of
this requirement, the “first-order” theory is consistent and the “third-order” theory is not.

Irrespective of the consistency of Eqs. (8.120) and (8.122), the corresponding governing equations
have the specific structure which shows us a way to improve the “third-order” theory. Integrating Eqs.
(8.120), substituting Eqs. (8.122), and performing some obvious transformations, we arrive at the
following two equations with regard to u1 and w:

u001 � k2u1 ¼ �672
G

Eh2
�
30C1x

2 þ C2xþ C3

�� 1260C1

w0 ¼ 4u1 � 30C1x
2 � C2x� C3

(8.123)

in which k2 ¼ 840G=Eh2 and C1, C2, and C3 are the constants of integration. As can be seen, Eqs.
(8.123), in addition to the traditional polynomial solution, contain a solution which includes the
exponential function Expð�kxÞ which rapidly vanishes at a distance from the beam end and corre-
sponds to the so-called boundary-layer solution. Goldenveizer (1958) was the first who stated that the
nonlinear approximation of the displacement distribution through the plate thickness (as in
Eqs. (8.104)) must be supplemented with the boundary-layer solutions.

To do this, substitute Eqs. (8.108) for u1 and w corresponding to the cantilever beam shown in
Fig. 8.20 into Eqs. (8.104) for ux and uz to get the displacements

u0x ¼ � 6F

Eh3b

�
ð2b� xÞxzþ E

3G
z3
�

u0z ¼
2F

Eh3b

�
3lx� x2 þ 3Eh2

4G

�
x

(8.124)

which are treated now as the basic approximation. Following Vasiliev (2010) and Vasiliev and Lurie
(1972), approximate the total displacements ux and uz supplementing the displacements in Eqs. (8.124)
with a set of boundary-layer solutions which vanish at a distance from the clamped end of the beam
(see Fig. 8.20), i.e.,

ux ¼ u0x þ ux; uz ¼ u0z þ uzðxÞ (8.125)

where

ux ¼ C0f0ðzÞ þ
XN
k¼1

e�skxfkðzÞ (8.126)

Here, C0 is a constant coefficient, f0ðzÞ ¼ z, and fkðzÞ ðk ¼ 0; 1; 2.Þ is a complete system of
functions which should be found (note that without f0 the functions fk do not form a complete system).
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Substituting Eqs. (8.125) and (8.126) into Eqs. (8.105), find the stresses

sx ¼ E
vux
vx

¼ �12F

bh3
ðl� xÞz� E

X
k

ske
�skxfkðzÞ

sxz ¼ G

�
vux
vz

þ vuz
vx

�
¼ G

"
C0 þ 6F

Gbh3

�
h2

4
� z2

�
þ
X
k

e�skx
dfk
dz

þ duz
dx

# (8.127)

Apply the equilibrium equation, i.e., the first equation of Eqs. (8.1) in which b ¼ constant

vsx

vx
þ vsxz

vz
¼ 0 (8.128)

Substituting for the stresses their expressions, Eqs. (8.127), we arrive at the following equation for
fkðzÞ ðk ¼ 1; 2; 3;.Þ:

d2fk
dz2

þ a2kfk ¼ 0

The antisymmetric solution with respect to z of this equation is

fkðzÞ ¼ Ck sin akz; a2k ¼ s2k
E

G
(8.129)

Now, Eqs. (8.127) for sxz becomes

sxz ¼ G

"
C0 þ 6F

Gbh3

�
h2

4
� z2

�
þ
X
k

Ckake
�skx cos akzþ duz

dx

#
(8.130)

According to the boundary conditions, Eq. (8.102), sxzðz ¼ �h=2Þ ¼ 0. Thus

duz
dx

¼ �C0 �
X
k

Ckake
�skx cos lk; lk ¼ 1

2
akh (8.131)

Integrating this equation and taking into account that for the clamped end (see Fig. 8.20)
uzðx ¼ 0Þ ¼ 0, we get

uz ¼ �C0xþ
X
k

Ck
ak

sk

�
e�skx � 1

�
cos lk (8.132)

Substituting Eq. (8.131) into Eq. (8.130), we arrive at the following expression for the shear stress

sxz ¼ G

"
6F

Gbh3

�
h2

4
� z2

�
�
X
k

Ckake
�skx4kðzÞ

#
(8.133)

in which

4kðzÞ ¼ cos lk � cos akz (8.134)
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Apply the equilibrium equations, Eqs. (8.91) and (8.92), according to which

V ¼ b

Zh=2
�h=2

sxzdz ¼ F (8.135)

for the cantilever beam (see Fig. 8.20) under consideration. Substituting Eq. (8.133) into Eq. (8.135),
we derive the following equation for the parameter lk:

tan lk ¼ lk (8.136)

As can be readily checked, the functions 4kðzÞ in Eqs. (8.134) and (8.136) are orthogonal on the
interval ½�h=2; h=2�, i.e.,

Zh=2
�h=2

4k4ndz ¼
8<
:

h

2
sin2 lk; n ¼ k

0; nsk

;

Zh=2
�h=2

40
k4

0
ndz ¼

8<
:

2

h
l2k sin

2 lk; n ¼ k

0; nsk

(8.137)

Moreover, the following integral conditions are also valid:

Zh=2
�h=2

4kdz ¼ 0;

Zh=2
�h=2

40
kdz ¼ 0;

Zh=2
�h=2

z 40
kdz ¼ 0 (8.138)

It follows from Eqs. (8.138) that the system of functions fk ¼ ðCk=akÞ40
k is complete if it is supple-

mented with function fo ¼ z (see Eq. (8.126)) in which this property of functions fk is used.
To determine the constants C0 and Ck, apply the boundary condition for the clamped end of the

beam, i.e., uxðx ¼ 0Þ ¼ 0. Using Eqs. (8.124) and (8.125), and (8.129) and (8.134), we have

uxðx ¼ 0Þ ¼ � 2F

Gbh3
z3 þ C0zþ

X
k

Ck

ak
40
kðzÞ ¼ 0 (8.139)

Multiplying this equation by z, integrating from –h/2 to h/2, and using Eqs. (8.138), we get
C0 ¼ 3F=ð10GbhÞ. Multiplying by 40

kðzÞ, integrating, and using Eqs. (8.137), we find
Ck ¼ F=ðGbl2ksin lkÞ.

Thus, we have constructed the mathematically exact solution of the problem. To study the solution,
present the explicit expressions for the displacements and the stresses. The final expression for the
axial displacement follows from Eqs. (8.124) and (8.125), i.e.,

ux ¼ � 6F

Eh3b
ð2l� xÞxzþ F

Gb

 
3z

10h
� 2z3

h3
þ
X
k

sin akz

l2k sin lk
e�skx

!
(8.140)

This displacement satisfies exactly the boundary conditions. We have two ways to simplify it. First, we
can neglect the second term and arrive at the “first-order” theory, Eqs. (8.90) and (8.96). This approach
looks attractive because all the boundary conditions are satisfied. Secondly, we can neglect the
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boundary-layer part of the solution, i.e., omit the sum in Eq. (8.140). In this case, we arrive at the
displacement that does not satisfy the boundary condition as per Eq. (8.139) and does not coincide with
Eq. (8.124) for u0x which corresponds to the “third-order” theory. Thus, the “third-order” theory
displacement must be supplemented with the boundary-layer solution.

The beam deflection is specified by Eqs. (8.124), (8.125), and (8.132) which give

uz ¼ 2F

Eh3b

�
3lx� x2 þ 3Eh2

5G

�
x� F

Gb

ffiffiffiffi
E

G

r X
k

cos lk

l2ksin lk

�
1� e�skx

�
Direct calculation shows that the second term in this equation corresponding to the boundary-layer
solution is negligible. Returning to the shear correction factor in Eq. (8.28), we can conclude that
for the exact solution (without the boundary-layer part) k ¼ 5=6, for the “first-order” theory (see Eqs.
(8.96)), k ¼ 1, and for the “third-order” theory (see Eqs. (8.108)), k ¼ 2=3 .

The stresses corresponding to the foregoing exact solution can be found from Eqs. (8.127) and
(8.133) and presented in the following final form:

sx ¼ �12F

bh3
ðl� xÞz� 2F

bh

ffiffiffiffi
E

G

r X
k

sin akz

lk sin lk
e�skx (8.141)

sxz ¼ 6F

bh3

�
h2

4
� z2

�
� 2F

bh

X
k

cos lk � cos akz

lk sin lk
e�skx (8.142)

It follows from these equations that the solution contains a polynomial part, which is referred to as
a penetrating solution because it does not vanish at a distance from the beam clamped end, and
a boundary-layer part. It is important that as follows from Eqs. (8.138), the boundary-layer solution is
self-balanced, i.e., it does not contribute to the bending moment and the shear force. Introduce the
normalized normal stress and dimensionless coordinates as follows

s ¼ sx
bh2

6F
; x ¼ x

l
; z ¼ z

h

and present Eq. (8.141) as

s ¼ �2ð1� xÞz� h

3

ffiffiffiffi
E

G

r
$
X
k

sin 2lkz

lk sin lk
e�skx (8.143)

where

sk ¼ 2l

h

ffiffiffiffi
E

G

r
lk

and lk are the roots of Eq. (8.136) listed in Table 8.2. The higher roots corresponding to k[10 can be
approximately found as lkzð2k þ 1Þ=ð2pÞ. For a beam with parameters h=l ¼ 0:1 and E=G ¼ 10,
Eq. (8.143) yields the following stress distribution

s ¼ �
n
ð1� xÞsð0ÞðzÞ þ 0:1054

h
sð1ÞðzÞe�s1x þ sð2ÞðzÞe�s2x þ sð3ÞðzÞe�s3x þ.

io
(8.144)
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Functions sðiÞðzÞ for i ¼ 0; 1; 2; 3 and the corresponding values of parameter si are presented in
Fig. 8.22. As can be seen, the higher the gradient of the function sðiÞðzÞ, the higher the rate with
which the corresponding boundary-layer solution vanishes at a distance from the clamped end
x ¼ 0. For example, the contribution of the first boundary-layer solution sð1ÞðzÞ to the maximum
stress sðz ¼ 0:5Þ at a distance from the clamped end x ¼ 0:01 (which is 0.1 of the beam thickness)
does not exceed 0.2%. The distributions of the normalized normal stress over the height of the
beam clamped edge corresponding to the exact solution (solid line) and to penetrating solution

TABLE 8.2 Nonzero roots of the equation tan lk ¼ lk ðk ¼ 1; 2; 3.10Þ.
k 1 2 3 4 5

lk 4.4934 7.7253 10.9041 14.0661 17.2208

k 6 7 8 9 10

lk 20.3713 23.5194 26.6661 29.8116 32.9563

z

0  0.2   0.1 - 0.1 - 0.2

96.683 =s

)3(10 σ⋅

z

0  0.2   0.1 - 0.1 - 0.2

86.482 =s

)2(10 σ⋅

42.281 =s

)1(10 σ⋅

0  0.2   0.1  0.3 - 0.1 - 0.2

z

0.1
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    0.5

- 0.3

z

)0(σ
0.1
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0.5

0
- 0.2 - 0.4 - 0.6 - 0.8 - 1.0

FIGURE 8.22

Functions sðiÞðzÞði ¼ 0; 1; 2; 3Þ and the corresponding values of parameter si.
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(dashed line) are shown in Fig. 8.23. It should be noted that the improvement of the penetrating
solution provided by the boundary-layer solutions is more of a formal nature. Moreover, for
practical analysis, the penetrating solution looks more realistic than the derived exact solution.
Indeed, at the corner of the clamped edge (x ¼ 0; z ¼ h=2 in Fig. 8.20) the series in Eq. (8.144)
does not converge, giving rise to infinitely high normal stresses at these corners. Note that practical
analysis and design of cantilever beams is based on the penetrating solution which actually
corresponds to the beam theory discussed in the Strength of Materials courses. According to the
foregoing mathematically (but, naturally, not physically) exact solution, the cantilever beam cannot
work because the maximum stress is infinitely high irrespective of the applied load. Clearly, this
conclusion does not look realistic. The nature of the identified normal stress singularity is asso-
ciated with a specific behavior of the shear stress in Eq. (8.142) in the vicinity of the clamped end
of the beam (Vasiliev, 2010).

Consider the shear stress acting in the clamped cross section of the beam. Taking x ¼ 0 in
Eq. (8.142), we get

sxzðx ¼ 0Þ ¼ 6F

bh3

�
h2

4
� z2

�
� 2F

bh

X
k

4kðzÞ
lk sin lk

(8.145)

where 4kðzÞ is given by Eq. (8.134). Since 4kðz ¼ �h=2Þ ¼ 0, we have sxzðz ¼ �h=2Þ ¼ 0, so
the boundary conditions are satisfied on the beam top and bottom surfaces. Now, use the
orthogonality conditions in Eqs. (8.138) and decompose the quadratic function, entering the first
term in Eq. (8.145) into a series with respect to functions 4kðzÞ. Taking into account the fact
that in accordance with Eqs. (8.138) the system of functions 4kðzÞ is complete only in
conjunction with unity, we have

h2

4
� z2 ¼ C þ

X
k

Bk4kðzÞ

z

)0( =xσ0.1

0.2

0.3

0.4

0.5

0 - 0.4 - 0.8 - 1.2

FIGURE 8.23

Distributions of the normalized normal stress over the height of the beam clamped edge corresponding to the

exact solution (_______) and to the penetrating solution (_ _ _ _).
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where C and Bk are some constant coefficients. Multiplying this equation first by unity and second by
4nðzÞ, integrating from –h/2 to h/2, and using Eqs. (8.137) and (8.138), we can determine C and Bk and
finally arrive at

h2

4
� z2 ¼ h2

6

 
1þ 2

X
k

4kðzÞ
lk sin lk

!

Substituting this result into Eq. (8.145), we get

sxzðx ¼ 0Þ ¼ F

bh
(8.146)

As can be seen, the shear stress at the clamped end of the beam does not depend on z. This result is
expected, because it follows directly from the constitutive equation, Eq. (8.100), for the shear stress.
Indeed, at the clamped end of the beam (see Fig. 8.20) ux ¼ 0 and, hence, ðvuxÞ=vz ¼ 0, whereas uz
does not depend on z. So, at x ¼ 0 the shear stress does not change through the beam height and is
specified by Eq. (8.146). However, this equation is valid only for the open interval�h=2 < z < h=2. At
the interval ends z ¼ �h=2, the shear stress must be zero due to the symmetry of the stress tensor
(sxz ¼ 0 at z ¼ �h=2 according to the boundary conditions). Thus, the distribution of the shear stress
over the beam height for a clamped edge of the beam is not continuous, i.e., sxz is constant for�h=2 <
z < h=2 and zero for z ¼ �h=2. Naturally, the derivative vsxz=vz is infinitely high at the corner points
(x ¼ 0 and z ¼ �h=2), and as follows from the equilibrium equation, Eq. (8.128), the normal stress sx
is singular at the corner points.

The foregoing analysis allows us to formulate the following conclusions:

1. Boundary-layer solutions determine the stress state of the beam only in the close vicinity of the
beam ends and depend on the particular boundary conditions which are usually not known
exactly or can be hardly described mathematically for real beams.

2. Allowance for the boundary-layer solutions can cause mathematical problems which are physically
not consistent and formally cause effects that do not exist in reality.

3. Analysis and design of beams should be based on the penetrating solutions which correspond to the
“first-order” theory providing energy consistency of the boundary problem. The “third-order” and
the other “higher-order” theories corresponding to the displacements in Eqs. (8.98) and (8.99)
cannot be used for this purpose, because they require the boundary-layer solutions to satisfy the
boundary conditions.

Consider laminated beams. The first solution for a laminated cantilever beam was obtained by S.G.
Lekhnitskii in 1935 (Lekhnitskii, 1935) and reviewed by Carrera (2003). The bi-harmonic equation of
the elasticity theory for a laminated beam was solved with the aid of polynomial presentation of the
stress function for each layer. Thus, S.G. Lekhnitskii has constructed a penetrating solution ignoring
boundary-layer solutions. Equations describing the combination of penetrating and boundary-layer
solutions have been derived by Bolotin (1963). The laminate consists of a system of load-carrying
layers alternating with core layers which take only transverse stresses (see Fig. 8.24). The axial
displacements of the load-carrying layers correspond to the classical plate theory, according to which

uðiÞx ¼ ui � ziw
0
i; uðiþ1Þ

x ¼ uiþ1 � ziþ1w
0
iþ1 (8.147)
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(Bolotin and Novichkov, 1980), where ð.Þ0 ¼ dð.Þ=dx, zi is counted from the middle surface of the
i-th layer ð�hi=2� zi � hi=2Þ, and wi is the deflection of the i-th layer. The axial stress in the i-th layer is

sðiÞx ¼ A
ðiÞ
11ε

ðiÞ
x ¼ A

ðiÞ
11

�
u0i � ziw

00
i

�
For the core layers, the axial stress is zero and the shear strain does not depend on z, i.e.,

gði;iþ1Þ
xz ¼ 1

hi;iþ1

�
uiþ1 � ui þ 1

2

�
w0
ihi þ w0

iþ1hiþ1

��þ 1

2

�
w0
iþ1 þ w0

i

�
The transverse normal strain of the core layers is

ε
ði;iþ1Þ
z ¼ 1

hi;iþ1
ðwiþ1 � wiÞ

The governing equations for the functions ui and wi and the corresponding natural boundary conditions
are derived with the aid of the variational principle. The total order of these equations depends on the
number of layers. The solutions of numerous problems have been obtained by Bolotin and Novichkov
(1980). They include the penetrating solutions and the system of boundary-layer solutions which
describe local bending of load-carrying layers, as well as shear and normal strains of the core layers
rapidly vanishing from the beam edge.

A theory that is more realistic for composite laminates (that do not have core layers) has been
proposed by Grigolyuk and Chulkov (1964). In this theory, the axial stiffness of the core layers is not
ignored. A similar theory with membrane load-carrying layers has been developed by Elpatievskii and
Vasiliev (1965).

The main shortcoming of the theories under consideration is the high order of the governing
equations (which depends on the number of layers) in which the penetrating solution is mixed with
boundary-layer solutions. In modern versions of the theory (Reddy, 2004), the penetrating solution (the

1+iz

iz

1+ih

1, +iih

ih
iu

1+iu

FIGURE 8.24

Distribution of the axial displacement over the height of a laminated beam.
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corresponding displacement is shown in Fig. 8.24 with a dashed line) is singled out and the shear
deformation of the layers is taken into account. The resulting expressions for the displacements
become

ux ¼ uðxÞ þ zqðxÞ þP
i
uiðxÞ4iðzÞ

uz ¼ wþP
i
wijiðzÞ (8.148)

where z is the global normal coordinate of the laminate and 4iðzÞ and jiðzÞ are some functions that
provide the continuity of the displacements, the derivatives of which with respect to z are not
continuous at the layer interfaces. Different forms of such functions have been presented by Carrera
(2003). Since three functions for the whole laminate (u; q; and w) are introduced in Eqs. (8.148), the
number of functions ui and wi can be respectively reduced. For example, we can take for the first and
the last (k-th) layers u1 ¼ 0, w1 ¼ 0, and uk ¼ 0 (Reddy, 2004).

In the simplest version of the theory, the deflection is assumed to be the same for all the layers, i.e.,
uz ¼ wðxÞ, whereas the functions 4iðzÞ in Eqs. (8.148) are some linear functions providing the
continuity of the axial displacement ux with respect to z (Carrera, 2003). Applying the continuity
conditions for the shear stresses at the layer interface surfaces, we can express uiðxÞ in terms of two
functions qðxÞ and wðxÞ (Carrera, 2003). As a result, the order of the governing equations for this
theory does not depend on the number of layers. The theory constructed in such a way is similar to the
“third-order” theory for homogeneous beams discussed earlier.

Return to the general theory based on Eqs. (8.147) or (8.148). The most pronounced difference
between this theory and the theory based on the linear distribution of the axial displacement through
the beam height is manifested in sandwich beams with stiff load-carrying layers and shear deformable
lightweight cores.

Consider as an example the cantilever sandwich beam shown in Fig. 8.25. The axial displacements
of the first and the second layers (see Fig. 8.25) following from Eqs. (8.147) and (8.148) are

u1 ¼ uðxÞ �
�
H

2
� z1

�
qðxÞ � z1w

0ðxÞ

u2 ¼ uðxÞ �
�
H

2
� z2

�
qðxÞ � z2w

0ðxÞ
(8.149)

1

2

x

l

F
0h

h

h

b

2z

1z

FIGURE 8.25

A cantilever sandwich beam.
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Here, uðxÞ, qðxÞ, and wðxÞ are the axial displacement, rotational angle, and the deflection (the same for
both layers), H ¼ h0 þ h, �h=2 � zi � h=2, and ði ¼ 1; 2Þ. The shear strain in the core is

g ¼ 1

h0

�
u2

�
z2 ¼ �h

2

�
� u1

�
z1 ¼ h

2

��
þ w0 ¼ H

h0
ðqþ w0Þ

Then, the normal stresses in the layers and the shear stress in the core become

sð1Þ ¼ E

�
u0 �

�
H

2
� z1

�
q0 � z1w

00
�

sð2Þ ¼ E

�
u0 �

�
H

2
� z2

�
q0 � z2w

00
�

s ¼ G
H

h0
ðqþ w0Þ

(8.150)

where E is the modulus of the layer and G is the shear modulus of the core material. The forces and the
moments in the layers are

N1 ¼ b

Zh=2
�h=2

sð1Þdz1 ¼ Bl

�
u0 � H

2
q0
�

N2 ¼ b

Zh=2
�h=2

sð2Þdz2 ¼ Bl

�
u0 þ H

2
q0
�

M1 ¼ b

Zh=2
�h=2

sð1Þz1dz1 ¼ �Dlðq0 þ w00Þ

M2 ¼ b

Zh=2
�h=2

sð2Þz2dz2 ¼ Dlðq0 � w00Þ

(8.151)

where

Bl ¼ Ebh; Dl ¼ 1

12
Ebh3 (8.152)

are the membrane and bending stiffnesses of the layers. The equilibrium equations for the layers (see
Fig. 8.26a) can be written as

M0
1 � V 1 þ 1

2
sbh ¼ 0; M0

2 � V 2 þ 1

2
sbh ¼ 0 (8.153)

8.7 Refined theories of beams and plates 481

www.EngineeringEBooksPdf.com



dx

1M

2M

1N

2N

1V

2V

dxVV 11 ′+

dxVV 22 ′+

dxNN 11 ′+

dxNN 22 ′+

dxMM 11 ′+

dxMM 22 ′+

τ

τ

N

V

M

dx

dxNN ′+

dxVV ′+

dxMM ′+

(a)

(b)

FIGURE 8.26

Free-body diagrams for a sandwich beam: equilibrium of the layers (a), and equilibrium of the beam element (b).

From Eqs. (8.150) for s, (8.151) for M, and Eqs. (8.153) we can find the transverse forces in the
layers, i.e.,

V 1 ¼ M0
1 þ

1

2
sbh ¼ �Dlðq00 þ w000Þ þ 1

2
GbhHðqþ w0Þ

V 2 ¼ M0
2 þ

1

2
sbh ¼ Dlðq00 � w000Þ þ 1

2
GbhHðqþ w0Þ

Then, the total shear force

V ¼ V 1 þ V 2 þ bh0s

becomes

V ¼ �2Dlw
000 þ Sðw0 þ qÞ (8.154)

where

S ¼ GbH (8.155)

is the shear stiffness of the beam. Finally, the total axial force and bending moment can be presented as

N ¼ N1 þ N2 ¼ 2Blu
0; M ¼ M1 þM2 ¼ �2Dlw

00 þ 1

2
BlH

2q0 (8.156)
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The equilibrium equations of the beam element follow from Fig. 8.26b and have the form

N 0 ¼ 0; M0 ¼ V ; V 0 ¼ 0 (8.157)

The boundary conditions for the clamped end of the beam (see Fig. 8.25), i.e.,

uðx ¼ 0Þ ¼ 0; qðx ¼ 0Þ ¼ 0; w0ðx ¼ 0Þ ¼ 0 (8.158)

provide with regard to Eqs. (8.149) u1ðx ¼ 0Þ ¼ 0 and u2ðx ¼ 0Þ ¼ 0. For the end x ¼ l (see
Fig. 8.25), we have

N ¼ 0; V ¼ F; M ¼ 0 (8.159)

The first equations in Eqs. (8.156)–(8.159) yield N ¼ 0 and u ¼ 0. Eq. (8.157) for V and the corre-
sponding boundary condition in Eqs. (8.159) give V ¼ F. Applying Eq. (8.154), we get

�2Dlw
000 þ Sðw0 þ qÞ ¼ F (8.160)

Now, according to the second equilibrium equation in Eqs. (8.157), M0 ¼ F and M ¼ Fxþ C1. Since
M ðx ¼ lÞ ¼ 0, we arrive at M ¼ �Fðl� xÞ. Then, the second equation of Eqs. (8.156) yields

�2Dlw
00 þ 1

2
BlH

2q0 ¼ �Fðl� xÞ

Integration gives

2Dlw
0 þ 1

2
BlH

2q ¼ F

�
lx� x2

2

�
þ C2

Using the boundary conditions in Eqs. (8.158), we have C2 ¼ 0 and

2Dlw
0 þ 1

2
BlH

2q ¼ F

2

�
2lx� x2

�
(8.161)

Thus, the problem of a beam in bending is reduced to Eqs. (8.160) and (8.161). Eliminating q from
these equations and integrating the resulting equation, we arrive at

w00 � k2w ¼ � FS

2DlBlH2

�
lx2 � x3

3
þ BlH

2

S
x

�
þ C3 (8.162)

where C3 is the constant of integration and

k2 ¼ DtS

DlBlH2
; Dt ¼ 2Dl þ 1

2
BlH

2 (8.163)

Here, Dt is the total bending stiffness of the beam. The solution of Eq. (8.162) consists of two
parts. The first part is the polynomial (i.e., penetrating solution) and the second part is the
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boundary-layer solution. Retaining the boundary-layer solution in the vicinity of the clamped end
only, we get

w ¼ C4e
�kx þ FBlH

2

2DtS

�
1� 2Dl

Dt

�
xþ Fl

2Dt
x2 � F

6Dt
x3 þ FSl

2DlBlH2
� C3

DlBlH
2

DtS

The constants of integration C3 and C4 are found from the boundary conditions wð0Þ ¼ 0 and
q ¼ ð0Þ0. Then, the final expressions for w and q become

w ¼ FBlH
2

2DtS

�
1� 2Dl

Dt

��
H

ffiffiffiffiffiffiffiffiffi
BlDl

DtS

r �
e�kx � 1

�þ x

�
þ Fl

2Dt
x2 � F

6Dt
x3

q ¼ F

BlH2

�
1� 2Dl

Dt

��
2DlBlH

2

DtS

�
1� e�kx

�� 2lxþ x2
� (8.164)

These expressions include the parameter d ¼ Dl=Dt which is the ratio of the bending stiffness of the
layer to the total bending stiffness of the beam. Using Eqs. (8.152) and (8.163) for the stiffness
coefficients, we get

d ¼ h2

h2 þ 6H2
; H ¼ h0 þ h

For practical sandwich beams, this parameter is normally rather small. For example, for h0 ¼ 15 mm,
h ¼ 1 mm (see Fig. 8.25) and d ¼ 0:00065. Thus, we can simplify Eqs. (8.164) taking d ¼ 0. Then,

w ¼ F

6Dt

�
3lx� x2 þ 6Dt

S

�
x; q ¼ � F

2Dt
ð2l� xÞx

where Dt ¼ BlH
2=2. These equations coincide exactly with Eqs. (8.96) which correspond to a linear

distribution of the axial displacement through the beam height.
Taking into account the transverse normal strain of the core εz, we arrive at an additional boundary-

layer solution rapidly vanishing at a distance from the clamped end.
For simply supported sandwich beams (see Fig. 8.21) loaded with pressure q ¼ q0 sin ðpx=lÞ,

the comparison of the maximum deflection wm corresponding to various beam models with the
experimental results we

m obtained by Alexandrov et al. (1960) is presented in Table 8.3. In this

TABLE 8.3 Normalized maximum deflections of sandwich beams.

E, GPa G, MPa l, mm h, mm h0, mm wð1Þ
m wð2Þ

m wð3Þ
m

70 55.7 280 0.7 3.7 0.990 0.992 1.027

70 915 480 0.7 4.8 0.969 0.983 1.020

70 915 280 0.7 5.1 0.856 0.986 1.033

70 38.5 280 1.0 17.0 0.329 0.923 0.985

70 38.5 280 2.4 18.8 0.171 0.921 1.053
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table, wm ¼ wm=w
e
m, w

ð1Þ
m corresponds to the classical beam theory for which S/N, and w

ð2Þ
m specifies

the results corresponding to the displacements given by Eqs. (8.149), whereas deflections w
ð3Þ
m show

the solution based on the linear approximation of the axial displacement. It follows from Table 8.3 that

w
ð2Þ
m and w

ð3Þ
m are characterized with a comparable accuracy for all the beams. Thus, the theory con-

structed in Section 8.1 allows us to describe the beam behavior with reasonable accuracy and is
generalized in Chapter 9 for composite plates.
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Laminated composite plates 9
Laminated composite plates possessing high strength and stiffness under in-plane loading and bending
are widely used nowadays in composite aircraft and marine structures and have been discussed by
many authors, particularly by Lekhnitskii (1957), Ambartsumian (1967, 1987), Ashton and Whitney
(1970), Whitney (1987), Jones (1975, 1999), Pikul (1977, 1985), Vinson and Sierakovski (1986, 2004),
Vasiliev (1993), Reddy (1997, 2004), Andreev and Nemirovskii (2001), Decolon (2002), Gay et al.
(2003), Ye Jianqiao (2003), Kollar and Springer (2003), Vinson (2005) and Dekker (2009). This
chapter is concerned with traditional and advanced specific problems and applications of the theory of
anisotropic plates.

9.1 EQUATIONS OF THE THEORY OF ANISOTROPIC LAMINATED PLATES
Consider an anisotropic laminated plate referred to coordinates x, y, z as shown in Fig. 9.1. The
reference plane z ¼ 0 is located at distances e and s from the bottom and top surfaces (see Chapter 5).
The displacement distributions over the plate thickness are specified by Eqs. (5.1) and (5.2), according
to which

ux ¼ uðx; yÞ þ zqxðx; yÞ; uy ¼ vðx; yÞ þ zqyðx; yÞ; uz ¼ wðx; yÞ (9.1)

Here u, v, and w are the displacements of the normal element cd (see Fig. 9.1) in the directions of the
coordinate axes x, y, and z, respectively, whereas qx and qy are the rotation angles of the element in the
xz and yz planes.

In plate theory, the displacements given by Eqs. (9.1) were originally introduced by Hencky
(1947) and Bolle (1947) and later used by Uflyand (1948) and Mindlin (1951). Brief historical
reviews of the problem have been presented by Reissner (1985), Vasiliev (1992, 1998, 2000), and
Jemielita (1993).

CHAPTER

b

a

y

z

x

h

d

c

p

q

s

e

FIGURE 9.1

A laminated plate.
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For the displacements presented by Eqs. (9.1), the in-plane stresses sx, sy, and sxy can be found
from Eqs. (5.4), i.e.,

sx ¼ A11ε
0
x þ A12ε

0
y þ A14g

0
xy þ z

�
A11kx þ A12ky þ A14kxy

�
sy ¼ A21ε

0
x þ A22ε

0
y þ A24g

0
xy þ z

�
A21kx þ A22ky þ A24kxy

�
sxy ¼ A41ε

0
x þ A42ε

0
y þ A44g

0
xy þ z

�
A41kx þ A42ky þ A44kxy

� (9.2)

where Amn ¼ Anm are the stiffness coefficients of the material, which, in general, depend on the
z-coordinate and

ε
0
x ¼

vu

vx
; ε

0
y ¼

vv
vy
; g0xy ¼

vu

vy
þ vv

vx

kx ¼ vqx

vx
; ky ¼ vqy

vy
; kxy ¼ vqx

vy
þ vqy

vx

(9.3)

are in-plane and bending deformations of the reference surface z ¼ 0. The stresses in Eqs. (9.2) are
reduced to stress resultants and couples as follows

Nx ¼
Zs
�e

sxdz; Ny ¼
Zs
�e

sydz; Nxy ¼
Zs
�e

sxydz

Mx ¼
Zs
�e

sxzdz; My ¼
Zs
�e

syzdz; Mxy ¼
Zs
�e

sxyzdz

(9.4)

which are applied to the reference surface as shown in Fig. 9.2. Substitution of Eqs. (9.2) into
Eqs. (9.4) yields the constitutive equations similar to Eqs. (5.5), i.e.,

Nx ¼ B11ε
0
x þ B12ε

0
y þ B14g

0
xy þ C11kx þ C12ky þ C14kxy

Ny ¼ B21ε
0
x þ B22ε

0
y þ B24g

0
xy þ C21kx þ C22ky þ C24kxy

Nxy ¼ B41ε
0
x þ B42ε

0
y þ B44g

0
xy þ C41kx þ C42ky þ C44kxy

Mx ¼ C11ε
0
x þ C12ε

0
y þ C14g

0
xy þ D11kx þ D12ky þ D14kxy

My ¼ C21ε
0
x þ C22ε

0
y þ C24g

0
xy þ D21kx þ D22ky þ D24kxy

Mxy ¼ C41ε
0
x þ C42ε

0
y þ C44g

0
xy þ D41kx þ D42ky þ D44kxy

(9.5)

xyN
xN

xM

xyM

xV

My

yN

xyM
yV

dx

dy 0z

FIGURE 9.2

Stress resultants and couples acting on the reference plane of a plate.
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in which

Bmn ¼
Zs
�e

Amndz; Cmn ¼
Zs
�e

Amnzdz; Dmn ¼
Zs
�e

Amnz
2dz (9.6)

are membrane, coupling, and bending stiffness coefficients, respectively.
As discussed in Sections 5.1 and 8.7, for the displacements given by Eqs. (9.1), the distribution of

the transverse shear stresses sxz and syz over the plate thickness does not affect the plate behavior which
is governed by the resultant shear forces

V x ¼
Zs
�e

sxzdz; V y ¼
Zs
�e

syzdz (9.7)

shown in Fig. 9.2. The constitutive equations for the shear forces, Eqs. (5.15), become

V x ¼ S55gx þ S56gy; V y ¼ S66gy þ S56gx (9.8)

in which, in accordance with Eqs. (5.14)

gx ¼ qx þ vw

vx
; gy ¼ qy þ vw

vy
(9.9)

are the shear strains averaged over the plate thickness. In accordance with Eq. (5.19), the stiffness
coefficients in Eqs. (9.8) are calculated as follows

Smn ¼
h2
Rs
�e

Amndz� Rs
�e

A55dz

�� Rs
�e

A66dz

�
�
� Rs

�e
A56dz

�2
(9.10)

where mn ¼ 55; 56; 66 and

Amn ¼ Amn

A55A66 � A2
56

(9.11)

in which Amn are the transverse shear stiffness coefficients specified by Eqs. (4.72). Since the stiffness
coefficients Amn in Eqs. (9.6) and (9.10) include the coordinates of the reference surface e and s as the
integrals limits, we can simplify the expressions for these coefficients introducing the new coordinate
t ¼ zþ e (see Fig. 5.8) which changes from t ¼ 0 to t ¼ h, where h is the plate thickness (see Fig. 9.1).
Then, Eqs. (9.6) reduce to the form specified by Eqs. (5.28) and (5.29). i.e.,

Bmn ¼ I0mn; Cmn ¼ Ið1Þmn � eIð0Þmn ; Dmn ¼ Ið2Þmn � eIð1Þmn þ e2Ið0Þmn (9.12)

where mn ¼ 11; 12; 22; 14; 24; 44 and

IðrÞmn ¼
Zh
0

Amnt
rdt; r ¼ 0; 1; 2 (9.13)
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Equation (9.10) takes the form

Smn ¼ h2Jmn

J55J66 � J256
(9.14)

where mn ¼ 55; 56; 66 and

Jmn ¼
Zh
0

Amndt (9.15)

in which Amn is given by Eq. (9.11). Typical composite material laminates are discussed in
Sections 5.2 to 5.9.

For orthotropic plate A14 ¼ A24 ¼ A56 ¼ 0 and Eqs. (9.5) and (9.8) are simplified as

Nx ¼ B11ε
0
x þ B12ε

0
y þ C11kx þ C12ky

Ny ¼ B21ε
0
x þ B22ε

0
y þ C21kx þ C22ky

Nxy ¼ B44g
0
xy þ C44kxy

Mx ¼ C11ε
0
x þ C12ε

0
y þ D11kx þ D12ky

My ¼ C21ε
0
x þ C22ε

0
y þ D21kx þ D22ky

Mxy ¼ C44g
0
xy þ D44kxy

V x ¼ Sxgx; V y ¼ Sygy

(9.16)

Here, Bmn, Cmn, and Dmn are specified by Eqs. (9.12), whereas

Sx ¼ h2Rh
0

dt

Gxz

; Sy ¼ h2Rh
0

dt

Gyz

(9.17)

and Gxz and Gyz are the material shear moduli which, in the general case, vary through the plate
thickness.

Consider the equilibrium equations, Eqs. (2.5), i.e.,

vsx

vx
þ vsxy

vy
þ vsxz

vz
¼ 0 ðx; yÞ (9.18)

vsz

vz
þ vsxz

vx
þ vsyz

vy
¼ 0 (9.19)

in which the notation (x, y) means that changing x to y and y to xwe can obtain one more equation from
the presented one. The boundary conditions on the plate surfaces are

szðz ¼ �eÞ ¼ �p; sxzðz ¼ �eÞ ¼ syzðz ¼ �eÞ ¼ 0

szðz ¼ sÞ ¼ �q; sxzðz ¼ sÞ ¼ syzðz ¼ sÞ ¼ 0
(9.20)
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(see Fig. 9.1). We can reduce Eqs. (9.18) and (9.19), which include three independent variables, x, y,
and z, to two-dimensional equations of plate theory. Integrating Eq. (9.18) from t ¼ 0 to t and applying
the boundary conditions, we get

sxz ¼ �
Zz
�e

�
vsx

vx
þ vsxy

vy

�
dz ðx; yÞ (9.21)

Putting z ¼ s, taking into account that sxzðz ¼ sÞ ¼ 0, and using Eqs. (9.4) for the stress resultants,
we have

vNx

vx
þ vNxy

vy
¼ 0 ðx; yÞ (9.22)

These two equations correspond to the projections of the forces acting on the plate element shown in
Fig. 9.2 on axes x and y, respectively. Integrating Eq. (9.19) and using the boundary conditions given by
Eqs. (9.20) for sz, we can obtain

sz ¼ �
Zz
�e

�
vsxz
vx

þ vsyz
vy

�
dz� p (9.23)

Taking z ¼ s and applying the boundary condition for sz given in Eqs. (9.20) in conjunction with
Eqs. (9.7) for the shear forces, we arrive at the third equilibrium equation which corresponds to the
projection of the forces acting on the plate element shown in Fig. 9.2 on the z-axis

vV x

vx
þ vV y

vy
¼ p ¼ 0; p ¼ p� q (9.24)

Finally, substitute Eq. (9.19) for the shear stresses into Eq. (9.7) for the shear force, i.e.,

V x ¼
Zs
�e

dz

Zz
�e

�
vsx

vx
þ vsxy

vy

�
dz ðx; yÞ (9.25)

Integration by parts, taking into account Eqs. (9.4), yields

Zs
�e

dz

Zz
�e

vsx

vx
dz ¼ s

Zs
�e

vsx

vx
dz�

Zs
�e

z
vsx

vx
dz ¼ s

vNx

vx
� vMx

vx

Zs
�e

dz

Zz
�e

vsxy
vy

dz ¼ s

Zs
�e

vsxy
vy

dz�
Zs
�e

z
vsxy
vy

dz ¼ s
vNxy

vy
� vMxy

vy

and Eq. (9.23) becomes

V x ¼ s

�
vNx

vx
þ vNxy

vy

�
� vMx

vx
� vMxy

vy
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Applying Eq. (9.22), we finally arrive at the following two moment equations for the plate element
shown in Fig. 9.2:

vMx

vx
þ vMxy

vy
� V x ¼ 0 ðx; yÞ (9.26)

Thus, the plate theory under consideration reduces to five equilibrium equations, Eqs. (9.22), (9.24),
and (9.26), eight constitutive equations, Eqs. (9.16), and eight strain-displacement equations,
Eqs. (9.3) and (9.9). This set consists of 21 equations in total which include the same number of
unknown functions, i.e., eight forces and moments, Nx, Ny, Nxy, V x, V y,Mx,My, andMxy, eight strains,
ε
0
x , ε

0
y , g

0
xy, kx, ky, kxy, gx, and gy, and five displacements and rotation angles, u, v, w, qx, and qy. The

equilibrium equations can be obtained as the variational equations using the minimum conditions for
the total potential energy functional (see Section 2.11.1) in the form

dT ¼
Za
0

Zb
0

�
Nxdε

0
x þ Nydε

0
y þ Nxydg

0
xy þMxdkx þMydky

þMxy dkxy þ V x dgx þ V y dgy � pdw
�
dxdy ¼ 0

(9.27)

The derived governing set of equations consists of two groups of equations describing the plane stress
state of the plate and plate bending. Assume that for some of the reasons discussed, e.g., in Section
5.10, the coupling stiffness coefficients Cmn in Eqs. (9.16) are zero. Then, these equations link the
in-plane forces with the corresponding strains, i.e., for an orthotropic plate,

Nx ¼ B11ε
0
x þ B12ε

0
y ; Ny ¼ B21ε

0
x þ B22ε

0
y ; Nxy ¼ B44g

0
xy (9.28)

The forces satisfy the equilibrium equations, Eqs. (9.22)

vNx

vx
þ vNxy

vy
¼ 0;

vNy

vy
þ vNxy

vx
¼ 0 (9.29)

and the strains are expressed in terms of the in-plane displacements by Eqs. (9.3), according to which

ε
0
x ¼

vu

vx
; ε

0
y ¼

vv
vy
; g0xy ¼

vu

vy
þ vv

vx
(9.30)

The obtained set of equations consisting of eight equations is of the overall fourth order and requires
two boundary conditions for the plate edge. For the edges x ¼ constant and y ¼ constant, respectively,
the natural boundary conditions following from the energy condition given by Eq. (9.27) are

Nxdu ¼ 0; Nxydv ¼ 0 for x ¼ constant

Nydv ¼ 0; Nxydu ¼ 0 for y ¼ constant
(9.31)

According to Eqs. (9.31), force, displacement, or mixed boundary conditions can be formulated at the
plate edges.

For the problem of plate bending, the constitutive equations follow from Eqs. (9.16), i.e.,

Mx ¼ D11kx þ D12ky; My ¼ D21kx þ D22ky; Mxy ¼ D44kxy

V x ¼ Sxgx; V y ¼ Sygy
(9.32)
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whereas the corresponding equilibrium equations are specified by Eqs. (9.24) and (9.26), i.e.,

vV x

vx
þ vV y

vy
þ p ¼ 0;

vMx

vx
þ vMxy

vy
� V x ¼ 0;

vMy

vy
þ vMxy

vx
� V y ¼ 0 (9.33)

The strain-displacement equations, Eqs. (9.3) and (9.9), become

kx ¼ vqx

vx
; ky ¼ vqy

vy
; kxy ¼ vqx

vy
þ vqy

vx
; gx ¼ qx þ vw

vx
; gy ¼ qy þ vw

vy
(9.34)

The obtained set of 13 equations is of the overall sixth order and requires the following three boundary
conditions for the plate edge:

Mxdqx ¼ 0; Mxydqy ¼ 0; V xdw ¼ 0 for x ¼ constant

Mydqy ¼ 0; Mxydqx ¼ 0; V ydw ¼ 0 for y ¼ constant
(9.35)

9.2 EQUATIONS FOR THE ORTHOTROPIC PLATES
WITH SYMMETRIC STRUCTURE
It follows from the constitutive equations, Eqs. (9.5), that, in the general case, composite plates
demonstrate a rather complicated behaviorwhich involves various types of coupling effects, i.e., shear is
coupled with tension and bending is coupled with torsion due tomaterial anisotropy, whereas bending is
coupled with in-plane deformation due to, in general, the nonsymmetrical laminated structure of the
plate. Fortunately, plates with such a general structure are used rarely as composite structural elements.

First of all, it should be noted that the majority of real composite plates are orthotropic. Anisotropic
composite plates are usually designed for special applications, e.g., for the so-called adaptive and/or
passive control composite structures whose bending must be accompanied by controlled torsion.
A unique example of such application is the composite panel of a forward swept airplane wing
(Weisshaar, 1980, 1981). The anisotropic properties of such panels allow us to provide the appropriate
aeroelastic tailoring of a wing’s structure. In the vast majority of applications, plates designed as load-
carrying structural elements are usually orthotropic.

Secondly, as shown in Section 5.4, the maximum bending stiffness of the plate composed of a given
number and given properties of layers is reached if the plate structure is symmetric with respect to the
plate middle plane. Note that the thickness of the elementary composite ply is normally rather small
(0.1–0.2 mm) and that actual composite plates are usually composed of a large number of plies. Thus,
it is practically always possible to arrange these plies symmetrically with respect to the plate middle
plane. Note that homogeneous plates whose properties do not vary across the thickness represent one
of the most widespread particular cases of plates with a balanced and symmetric structure. Typical
examples of real nonsymmetrically laminated plates include sandwich panels with different facing
layers and also stiffened panels.

Formally, the difference between symmetrically and nonsymmetrically laminated plates is asso-
ciated with coupling stiffness coefficients Cmn in Eqs. (9.5) which are zero for plates with a symmetric
structure. As shown in Section 5.10, the condition Cmn ¼ 0 can be approximately satisfied using the
reduced bending stiffness method. Thus, formally, even nonsymmetric plates can sometimes be
analyzed using the equations presented in this section.
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For the foregoing reasons, we consider further mainly balanced and symmetrically laminated ortho-
tropic plates.Plateswithmore complicated structures are discussed in the followingsectionsof this chapter.

Thus, assume that the coupling stiffness coefficients Cmn ¼ 0 and, hence, the problem of plate
bending can be separated from the in-plane problem and described by Eqs. (9.32)–(9.34) derived in the
previous section. Substitute the generalized strains, Eqs. (9.34), into the constitutive equations,
Eqs. (9.32), and the resulting expressions for the moments and forces substitute into the equilibrium
equations, Eqs. (9.33). As a result, we arrive at the following three equilibrium equations written in
terms of the deflection, w, and rotation angles, qx and qy:

L1xðqxÞ þ L1y
�
qy
�þ L1wðwÞ ¼ 0

L2xðqxÞ þ L2y
�
qy
�þ L2wðwÞ ¼ 0

L3xðqxÞ þ L3y
�
qy
�þ L3wðwÞ ¼ �p

(9.36)

in which the differential operators L are

L1xðqxÞ ¼ 1

Sx

�
D11

v2qx

vx2
þ D44

v2qx

vy2

�
� qx

L1y
�
qy
� ¼ D

Sx

v2qy

vxvy
; L1wðwÞ ¼ �vw

vx

L2xðqxÞ ¼ D

Sy

v2qx

vxvy

L2y
�
qy
� ¼ 1

Sy

�
D22

v2qy

vy2
þ D44

v2qy

vx2

�
� qy; L2wðwÞ ¼ �vw

vy

L3xðqxÞ ¼ Sx
vqx

vx
; L3y

�
qy
� ¼ Sy

vqy

vy

L3wðwÞ ¼ Sx
v2w

vx2
þ Sy

v2w

vy2

(9.37)

where D ¼ D12 þ D44.
We can reduce Eqs. (9.36) to one governing equation using the operational method (Vasiliev,

1992). According to this method, consider formally the determinant constructed of the operators given
by Eqs. (9.37) and decompose it using the minors corresponding to the third row. Then, the functions
qx, qy, and w can be expressed in terms of some resolving function Wðx; yÞ as

qx ¼
����� L1y L1w

L2y L2w

�����ðWÞ ¼ �L1yL2w � L1wL2y
�ðWÞ

qy ¼ �
���� L1x L1w

L2x L2w

����ðWÞ ¼ ðL1wL2x � L1xL2wÞðWÞ

w ¼
����� L1x L1y

L2x L2y

�����ðWÞ ¼ �L1xL2y � L1yL2x
�ðWÞ

(9.38)
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Here, we use the formal multiplication operation for the differential operators with constant coeffi-
cients, e.g.,

L1yL2wðWÞ ¼ L2wL1yðWÞ ¼ �D

Sx

v3W

vxvy2

As can be directly verified, substitution of Eqs. (9.38) into the first two equations of Eqs. (9.36)
satisfies identically these equations, whereas the third equation takes the following operational form:�

L3x
�
L1yL2w � L1wL2y

�� L3yðL1xL2w � L1wL2xÞ þ L3w
�
L1xL2y � L1yL2x

��ðWÞ ¼ �p (9.39)

The left-hand part of this equation is actually the determinant composed of the operators given by
Eqs. (9.37). The explicit form of Eq. (9.39) is

D11
v4W

vx4
þ 2ðD12 þ 2D44Þ v4W

vx2vy2
þ D22

v4W

vy4
� D11D44

Sy

v6W

vx6
� D22D44

Sx

v6W

vy6

�
	
D11D44

Sx
þ 1

Sy
½D11D22 � D12ðD12 þ 2D44Þ�



v6W

vx4vy2

�
	
D22D44

Sy
þ 1

Sx
½D11D22 � D12ðD12 þ 2D44Þ�



v6W

vx2vy4
¼ p

(9.40)

The rotation angles and the deflection are expressed in terms of the resolving function W as

qx ¼ v

vx

�
�W þ D44

Sy

v2W

vx2
þ
�
D22

Sy
� D

Sx

�
v2W

vy2

�

qy ¼ v

vy

�
�W þ D44

Sx

v2W

vy2
þ
�
D11

Sx
� D

Sy

�
v2W

vx2

� (9.41)

w ¼W �
�
D11

Sx
þ D44

Sy

�
v2W

vx2
�
�
D22

Sy
þ D44

Sx

�
v2W

vy2

þ 1

SxSy

	
D11D44

v4W

vx4
þ ½D11D22 � D12ðD12 þ 2D44Þ� v4W

vx2vy2
þ D22D44

v4W

vy4


 (9.42)

The equations obtained, Eqs. (9.41)–(9.42), have specific structures that are studied in the next section.

9.3 ANALYSIS OF THE EQUATIONS OF PLATE THEORY
FOR TRANSVERSELY ISOTROPIC PLATES
To analyze the structure of the governing equations of plate theory, Eqs. (9.41) and (9.42), consider
a transversely isotropic plate composed of identical isotropic layers. For such plates

D11 ¼ D22 ¼ D; D12 ¼ vD; D44 ¼ 1

2
ð1� vÞD; Sx ¼ Sy ¼ S (9.43)
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where D and S are the plate bending and transverse shear stiffnesses, and v is the in-plane Poisson’s
ratio. For the stiffnesses presented by Eqs. (9.43), Eqs. (9.40)–(9.42) are markedly simplified and take
the form

DDDLðWÞ ¼ p

qx ¼ � v

vx
LðWÞ; qy ¼ � v

vy
LðWÞ

w ¼ LðWÞ � D

S
DLðWÞ

(9.44)

in which

LðWÞ ¼ W � Dð1� vÞ
2S

DW ; Dð.Þ ¼ v2ð.Þ
vx2

þ v2ð.Þ
vy2

(9.45)

9.3.1 Classical plate theory

Consider first classical plate theory which ignores the transverse shear deformation. Taking S/N in
Eqs. (9.44) and (9.45), we get LðWÞ ¼ w and arrive at the following well-known equations in classical
plate theory:

DDDw ¼ p (9.46)

qx ¼ �vw

vx
; qy ¼ �vw

vy
(9.47)

in which w is the plate deflection. The bending moments are expressed in terms of the curvature
changes as

Mx ¼ D
�
kx þ vky

�
; My ¼ D

�
ky þ vkx

�
; Mxy ¼ D

2
ð1� vÞkxy (9.48)

where, in accordance with Eqs. (9.47),

kx ¼ �v2w

vx2
; ky ¼ �v2w

vy2
; kxy ¼ �2

v2w

vxvy
(9.49)

The shear forces follow from the last two equilibrium equations in Eqs. (9.33), i.e.

V x ¼ vMx

vx
þ vMxy

vy
; V y ¼ vMy

vy
þ vMxy

vx
(9.50)

Substitution of these forces into the first equilibrium equation of Eqs. (9.33) yields

v2Mx

vx2
þ 2

v2Mxy

vxvy
þ v2My

vy2
þ p ¼ 0 (9.51)
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If we express the moments in Eqs. (9.48) in terms of deflection with the aid of Eqs. (9.49) and
substitute the resulting equations into Eq. (9.51), we arrive at the biharmonic equation, Eq. (9.46) for
the plate deflection.

Specific features of classical plate theory follow from the variational formulation of the problem.
For the classical theory, Eq. (9.27) can be presented as

dT ¼
Za
0

Zb
0

�
Mxdkx þMydky þMxydkxy � pdw

�
dxdy ¼ 0

Substituting for kx, ky, and kxy their expressions from Eqs. (9.49), we get

Za
0

Zb
0

�
Mxd

�
v2w

vx2

�
þMyd

�
v2w

vy2

�
þ 2Mxyd

�
v2w

vxvy

�
þ pdw

�
dxdy ¼ 0 (9.52)

Integration by parts for the first and the second terms of Eq. (9.32) yields in several steps

Za
0

Zb
0

Mxd

�
v2w

vx2

�
dxdy ¼

24Zb
0

Mxd

�
vw

vx

�
dy

35
x

�
Za
0

Zb
0

vMx

vx
d

�
vw

vx

�
dxdy

¼
"Zb

0

Mxd

�
vw

vx

�
dy

35
x

�
"Zb

0

vMx

vx
dwdy

35
x

þ
Za
0

Zb
0

v2Mx

vx2
dwdxdy ðx; yÞ

The notations ½ �x and ½ �y mean that the term ½ � corresponds to either the plate edge x ¼ constant or
y ¼ constant. The third term in Eq. (9.52) can be transformed in two ways, i.e.,

Za
0

Zb
0

Mxyd

�
v2w

vxvy

�
dxdy ¼

24Zb
0

Mxyd

�
vw

vy

�
dy

35
x

�
Za
0

Zb
0

vMxy

vx
d

�
vw

vy

�
dxdy

¼
"Zb

0

Mxyd

�
vw

vy

�
dy

35
x

�
"Za

0

vMxy

vx
dwdy

35
y

þ
Za
0

Zb
0

v2Mxy

vxvy
dwdxdy

and

Za
0

Zb
0

Mxyd

�
v2w

vxvy

�
dxdy ¼

24Za
0

Mxyd

�
vw

vx

�
dx

35
y

�
Za
0

Zb
0

vMxy

vy
d

�
vw

vx

�
dxdy

¼
" Za

0

Mxyd

�
vw

vx

�
dx

35
y

�
"Zb

0

vMxy

vy
dwdy

35
x

þ
Za
0

Zb
0

v2Mxy

vxvy
dwdxdy
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Thus, using Eqs. (9.50) for the transverse forces, we can present the variational equation, Eq. (9.52), in
the following form:

Za
0

Zb
0

�
v2Mx

vx2
þ 2

v2Mxy

vxvy
þ v2My

vy2

�
dwdxdy

þ
" Zb

0

Mxd

�
vw

vy

�
dy

35
x

þ
"Za

0

Myd

�
vw

vy

�
dx

35
y

�
"Zb

0

V xdwdy

35
x

�
" Za

0

V ydwdx

35
y

þ
" Zb

0

Mxyd

�
vw

vy

�
dy

35
x

þ
"Za

0

Mxyd

�
vw

vx

�
dx

35
y

¼ 0

(9.53)

To demonstrate some special features of classical plate theory, consider a simply supported plate
loaded with a pressure

q ¼ q0 sin
px

a
sin

py

b
(9.54)

as shown in Fig. 9.3. The boundary conditions for this plate

½w�x ¼ ½w�y ¼ 0; ½Mx�x ¼ 0;
�
My

�
y
¼ 0 (9.55)

can be satisfied if the plate deflection has the form

w ¼ w0 sin
px

a
sin

py

b
(9.56)

Substituting Eqs. (9.54) and (9.56) into the governing equation, Eq. (9.46), we arrive at the exact
solution of the problem

w ¼ � q0a
4b4

p4Dða2 þ b2Þ2
sin

px

a
sin

py

b
(9.57)

x

y

a

b
q

FIGURE 9.3

A simply supported plate loaded with sine pressure.
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The transverse shear forces can be determined using Eqs. (9.48)–(9.50) and Eq. (9.57), to give

V x ¼ �D
v

vx
ðDwÞ ¼ � q0ab

2

pða2 þ b2Þ cos
px

a
sin

py

b

V y ¼ �D
v

vy
ðDwÞ ¼ � q0a

2b

pða2 þ b2Þ sin
px

a
cos

py

b

(9.58)

Remove the plate shown in Fig. 9.3 from its supports and find the resultant of the edge
reactions, i.e.,

R ¼
Zb
0

½V xðx ¼ aÞ � V xðx ¼ 0Þ�dyþ
Za
0

�
V yðy ¼ bÞ � V yðy ¼ 0Þ�dx (9.59)

Substitution of Eqs. (9.58) yields

R ¼ 4q0ab

p2
(9.60)

The applied load, Eq. (9.54), gives, as expected, the same resultant.
Now returning to the variational equation, Eq. (9.53), the first integral in this equation gives

Eq. (9.51). The next four integrals including bending moments and transverse forces are zero
according to the boundary conditions, Eqs. (9.55). Moreover, the derivatives of the deflection given by
Eq. (9.56) are zero along the plate edges and the last two integrals in Eq. (9.53) with the twisting
moment are also zero. Thus, the variational equation, Eq. (9.53), is satisfied and the equilibrium
equations are also satisfied along with the corresponding boundary conditions.

Note that actually the deflection determined by Eq. (9.57), being the solution of the fourth-order
differential equation, Eq. (9.46), satisfies three boundary conditions at the plate edges. For example,
for the edge x ¼ 0 we have

w ¼ 0; Mx ¼ 0; qy ¼ 0 (9.61)

The analysis for clamped plates is similar. Now, suppose that instead of qy we specify the twisting
momentMxy at the plate edge. Then, the last two integrals in Eq. (9.53) are not zero and the variational
equation is not satisfied. The reason for this is associated with Eqs. (9.47) for the rotational angles,
according to which the plate in-plane displacements are

ux ¼ zqx ¼ �z
vw

vx
; uy ¼ zqy ¼ �z

vw

vy
(9.62)

Torsion of the plate induces rotation of the plate element. The angle of in-plane rotation is specified by
Eq. (2.33), according to which

uz ¼ 1

2

�
vuy
vx

� vux
vy

�
(9.63)

Substitution of Eqs. (9.62) yields uz ¼ 0, so no rotation can take place. The problem of plate torsion is
considered in Section 5.5. The solution given by Eq. (5.93) depends on parameter l, Eq. (5.94), which
includes the transverse shear stiffness of the plate Sx. However, in classical plate theory Sx/N so this
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solution does not exist. Thus, classical plate theory cannot be applied to the problems that involve
plate torsion.

Nevertheless, some transformations traditionally have been introduced (Timoshenko and
Woinowsky-Krieger, 1959) into classical plate theory that formally allow us to generalize the theory.
Consider the last two integrals in Eq. (9.53) and apply integration by parts which gives24Zb

0

Mxyd

�
vw

vy

�
dy

35
x

¼ �Mxydw
�
x;y

�
24Zb

0

vMxy

vy
dwdy

35
x

ðx; yÞ (9.64)

The last term can be added to the integral including Qx in Eq. (9.53) resulting in the so-called
Kirchhoff’s shear force

Kx ¼ V x þ vMxy

vy
¼ �D

v

vx

�
v2w

vx2
þ ð2� vÞ v

2w

vy2

�
ðx; yÞ (9.65)

whereby the first term in the right-hand part of Eq. (9.63) is treated as the force applied at the plate
corner. Since the plate has four edges, the force R1 ¼ �2Mxy is formally acting at each corner in the
direction which is opposite to the direction of the forces Kx and Ky given by Eq. (9.65). As a result, the
reactive forces of the plate shown in Fig. 9.3 become as those shown in Fig. 9.4. For the plate shown in
Fig. 9.3, Eq. (9.65) yields

Kx ¼ V x

�
1þ ð1� vÞa2

a2 þ b2

�
; Ky ¼ V y

�
1þ ð1� vÞb2

a2 þ b2

�
The distributions of the normalized forces V x ¼ V x=Vm

x and Kx ¼ Kx=Vm
x (in which Vm

x is the
maximum shear force acting at the center) along the edge x ¼ 0 for a square ða ¼ bÞ plate with v = 0.3
are presented in Fig. 9.5. As can be seen, Kx (the dashed line) is about 35% higher than V x (Alfutov,
1992). The resultant force can be found from Eq. (9.59) if we replace V with K. The result

R2 ¼ 4q0ab

p2
þ 8ð1� vÞq0a3b3

p2ða2 þ b2Þ2

shows that R1 does not balance the applied pressure. The resulting force coincides with the actual force
given by Eq. (9.60) if we add four concentrated forces

R1 ¼ �2ð1� vÞq0a3b3
p2ða2 þ b2Þ2

xyM2

xyM2 xyM2

xyM2
xK

yK

FIGURE 9.4

Support reactions corresponding to the classical plate theory.
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applied at the corners. However, for the plate shown in Fig. 9.3 the exact solution of the theory
of elasticity equations is known (Galerkin, 1931). For an isotropic plate (see Fig. 9.1) whose surfaces
z ¼ �h=2 are free of shear stresses and for which the pressure is specified by Eq. (9.54), the shear, sxz
and syz, and normal, sz, transverse stresses are given by

sxz ¼ v

vx

�
ð1� vÞDF � v2F

vz2

�
; syz ¼ v

vy

�
ð1� vÞDF � v2F

vz2

�

sz ¼ v

vz

�
ð2� vÞDF � v2F

vz2

�
; Dð Þ ¼ v2ð Þ

vx2
þ v2ð Þ

vy2
þ v2ð Þ

vz2

Here, F is the stress function which has the following form:

F ¼ ðC1 sinh lzþ C2 cosh lzþ C3z cosh lzþ C4z sinh lzÞ sin px

a
sin

py

b
; l ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
þ 1

b2

r
Constants C1�C4 can be found from the boundary conditions for the stresses sz and sxz (or syz) at the
plate surfaces z ¼ �h=2. Omitting the determination of these constants, we can conclude anyway that
the foregoing equations for sxz and syz have no singularities at the plate corners and, hence, no corner
forces exist at the plate corners. So, it seems that the transformation in Eq. (9.64), and the result given
by Eq. (9.65) following from this transformation, are not correct for the plate under study.

Having derived the basic equations, consider the history of the problem. The boundary problem in
classical plate theory was originally formulated by S.D. Poisson (1829), who arrived at the governing
equation of the fourth order, Eq. (9.46), accompanied by three boundary conditions at the plate edge.
No comments were given concerning the contradiction between the equation order and the number of
boundary conditions, because Poisson considered the problems of bending of simply supported and
clamped plates, for which three boundary conditions automatically reduce to two, and the problem of
axisymmetric bending of circular plates, for which only two boundary conditions existed. The
inconsistency of Poisson’s theory was criticized by G. Kirchhoff (1850), who applied the variational

0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1.0

1.6

35.1

xV

xK

0.1

xx KV ,

b

y

FIGURE 9.5

Distribution of the normalized transverse shear forces over the plate width coordinate y for x ¼ a.
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approach and arrived at two natural boundary conditions at the plate edge. For the free edge
x ¼ constant, Kirchhoff found that

v2w

vx2
þ v

v2w

vy2
¼ 0;

v

vx

�
v2w

vx2
þ ð2� vÞ v

2w

vy2

�
¼ 0 (9.66)

It seems as though the first of these conditions corresponds to the bending moment Mx, whereas the
second, in accordance with Eq. (9.65), provides the absence of Kirchhoff shear forces at the plate
edges. However, Kirchhoff derived the conditions in Eqs. (9.66) from a variational equation similar
to Eq. (9.52) which corresponds to the plate vibration problem. The resulting equation and the
natural boundary conditions were not associated with any forces and moments. Kirchhoff forces,
Eq. (9.65), were introduced later by Thomson and Tait (1883), who reduced the twisting moment
acting at the plate edge to transverse shear forces (as per Eq. (9.65)), applying a static trans-
formation which is valid, in general, for an absolutely rigid body. For an elastic plate, a moment
cannot be reduced to forces (Zhilin, 1992, 1995). Thus, the transformation in Eq. (9.64) formally
allows us to construct an energy-consistent theory for the plate with free edges or with force
boundary conditions. However, this transformation cannot be used for the plates whose edges are
fixed with respect to the deflection.

To show this, return to the functional in Eq. (9.53) and to the plate shown in Fig. 9.3
considered as an example. As can be readily seen, the plate deflection w, being zero at the plate
edges, provides zero derivatives along the edges. This means that the last two integrals in Eq.
(9.53) are zero, and their transformation in Eq. (9.64) has no physical meaning. Consequently,
Kirchhoff and Thomson-Tait transformations are not valid for a simply supported plate for which
the transverse shear forces are specified by Eqs. (9.58) and no generalized and corner forces
following from these transformations can exist. The same is true for a clamped plate and for any
plate whose deflection is zero at the boundary. For the force boundary conditions, the situation is
different and the sixth-order plate theory discussed in the next section must be applied to study
such plates.

9.3.2 Theory of shear deformable plates

Any plate theory which allows us to study those plates with force boundary conditions and not
consistent with the Thomson-Tait transformation must result in governing equations of the sixth order.
Such a theory has been proposed by E. Reissner (1944), who used a rather cumbersome stress
formulation based on the through-the-thickness distribution of normal and shear stresses corre-
sponding to classical plate theory and the variational principle of minimum complementary energy. In
the displacement formulation based on Eq. (9.1), i.e.,

ux ¼ u
�
x; y
�þ zqx

�
x; y
�
; uy ¼ v

�
x; y
�þ zqy

�
x; y
�
; uz ¼ w

�
x; y
�

(9.67)

this theory reduces to Eqs. (9.44) which are studied in this section.
Assume that LðWÞs0 in which case

LðWÞ ¼ W � Dð1� vÞ
2S

DW ; DW ¼ v2W

vx2
þ v2W

vy2
(9.68)
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and introduce the new function 4ðx; yÞ such that LðWÞ ¼ 4. Then, Eqs. (9.44) are transformed into
the form

DDD4 ¼ p (9.69)

qx ¼ �v4

vx
; qy ¼ �v4

vy
; w ¼ 4� D

S
D4 (9.70)

It follows from these equations that 4ðx; yÞ is a potential function for the rotation angles, whereas
z4ðx; yÞ is a potential function for the in-plane displacements in Eqs. (9.62). As is known, the potential
displacement field cannot represent the continuum rotation. Indeed, substituting Eqs. (9.70) into
Eq. (9.63), we get

uz ¼ 1

2

�
vuy
vx

� vux
vy

�
¼ 0 (9.71)

The potential function determines the so-called penetrating solution (see Eqs. (8.141) and (8.142) for
those beams in which such solutions are introduced) that does not vanish at a distance from the plate
edges. Note that Eq. (9.69) for 4 and Eqs. (9.70) for qx and qy are similar to Eqs. (9.46) and (9.47) in
classical plate theory and coincide with them if 4 ¼ w. However, in the theory under discussion, w is
expressed by the last equation of Eqs. (9.70) in which the second term allows for the influence of the
transverse shear deformation on the plate deflection.

We can expect that the theory described by Eqs. (9.69) and (9.70) is not complete and these
equations must be supplemented with an additional equation for the following reasons:

1. The initial set of equations, Eqs. (9.44), is of the sixth order, whereas Eqs. (9.69) and (9.70) are only
of the fourth order.

2. The equations obtained, Eqs. (9.69) and (9.70), cannot describe the plate torsion.
3. The initial equations, Eqs. (9.44), are reduced to Eqs. (9.69) and (9.70) under the condition that

LðWÞs0. So, a natural question arises as to what happens if LðWÞ in Eq. (9.68) is zero.

To derive the desired equation, return to the initial equations, Eqs. (9.36), and write them for
a transversely isotropic plate. Note that because the pressure p is allowed for by the penetrating
potential 4 in accordance with Eq. (9.69), the equation under derivation must be homogeneous, i.e.,
correspond to p ¼ 0. So, taking p ¼ 0 and using Eqs. (9.43) for the stiffness coefficients, we can
transform Eqs. (9.36) into the following form:

D

S

�
v2qx

vx2
þ 1� v

2

v2qx

vy2

�
þ Dð1þ vÞ

2S

v2qy

vxvy
� qx � vw

vx
¼ 0 (9.72)

D

S

�
v2qy

vy2
þ 1� v

2

v2qx

vx2

�
þ Dð1þ vÞ

2S

v2qx

vxvy
� qy � vw

vy
¼ 0

vqx

vx
þ vqy

vy
þ Dw ¼ 0 (9.73)

As can be seen, Eq. (9.73) is satisfied if we take

qx ¼ vj

vy
; qy ¼ � vj

vx
; w ¼ 0 (9.74)
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Then, Eqs. (9.72) become
v

vy
LðjÞ ¼ 0;

v

vx
LðjÞ ¼ 0 (9.75)

in which operator L is specified by Eqs. (9.68). It follows from Eqs. (9.75) that LðjÞ ¼ c. The solution
of this equation is j ¼ j0 þ c where j0 is the solution for the corresponding homogeneous equation
LðjÞ ¼ 0 and c is a constant. Since qx and qy are the derivatives of j, this constant is not important and
we can take c ¼ 0. Thus, the final equation is

Dj� 2S

Dð1� vÞj ¼ 0 (9.76)

The function j can be referred to as the rotational potential. Indeed, substituting Eqs. (9.75) into
Eqs. (9.67) for ux and uy and then the resulting expressions into Eq. (9.71) for uz, we get

uz ¼ �z

2
Dj

For a homogeneous plate, S ¼ Gh ¼ Eh=2ð1þ vÞ and D ¼ Eh3=12ð1� v2Þ. Introducing the
normalized coordinates x ¼ x=a and y ¼ y=b, we can transform Eq. (9.76) into the form

v2j

vx2
þ a2

b2
v2j

vy2
� k2j ¼ 0; k2 ¼ 12a2

h2
(9.77)

For relatively thin plates, i.e., for high ratios of a/h, the value of the parameter k is also high and the
foregoing equation specifies the boundary-layer solution associated with plate torsion in the vicinity of
the edges. Assume, for example, that j ¼ jðxÞ. Then, Eq. (9.77) has the solution

jðxÞ ¼ ceð2
ffiffi
3

p
axÞ=h (9.78)

rapidly changing in the vicinity of the plate edge.
Historically, an equation analogous to Eqs. (9.76) and (9.77) was obtained by M. Lévy,

M.J.Boussinesq, andW.ThomsonandP.Tait at the end of the 19th century (Todhunter andPearson, 1960),
who formulated a theory of elasticity problem for a plate with particular boundary conditions. According
to these conditions, the plate is loadedwith edge forces that are statically equivalent to the transverse force
Vx and twisting moment Mxy such that the Kirchhoff shear force Kx in Eq. (9.65) is zero. As a result,
a second-order three-dimensional equation specifying the boundary-layer solution has beenobtained. The
two-dimensional version of this equation has been derived for plates by E. Reissner (1944).

Thus, the rotation angles of the plate element are composed of two functions specified by
Eqs. (9.70) and (9.74), i.e.,

qx ¼ �v4

vx
þ vj

vy
; qy ¼ �v4

vy
� vj

vx
(9.79)

in which 4 is the penetrating potential which satisfies the biharmonic equation

DDD4 ¼ p (9.80)

and j is the rotational potential that can be found as the boundary-layer solution from Eq. (9.76), i.e.,

Dj� s2j ¼ 0; s2 ¼ 2S

Dð1� vÞ (9.81)
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The plate deflection depends on the penetrating potential only, i.e.,

w ¼ 4� D

S
D4 (9.82)

The following equations for the bending and twisting moments are derived using Eqs. (9.48), (9.34),
and (9.79):

Mx ¼ �D

�
v24

vx2
þ v

v24

vy2
� ð1� vÞ v

2j

vxvy

�

My ¼ �D

�
v24

vy2
þ v

v24

vx2
� ð1� vÞ v

2j

vxvy

�

Mxy ¼ �Dð1� vÞ
�
v24

vxvy
þ 1

2

�
v2j

vx2
� v2j

vy2

��
(9.83)

Finally, the equations for the transverse shear forces follow from Eqs. (9.32), (9.34), and (9.82), i.e.,

V x ¼ S

�
qx þ vw

vx

�
¼ S

vj

vy
� D

v

vx
D4; V y ¼ S

�
qy þ vw

vy

�
¼ S

vj

vx
� D

v

vy
D4 (9.84)

The variational equationZa
0

Zb
0

�
Mxd

�
vqx

vx

�
þMyd

�
vqy

vy

�
þMxyd

�
vqx

vy
þ vqy

vx

�

þ V xd

�
qx þ vw

vx

�
þ V yd

�
qy þ vw

vy

�
� pdw

�
dxdy ¼ 0

(9.85)

provides the equilibrium equations, Eqs. (9.33), and the following natural boundary conditions:"Zb
0

�
Mxdqx þMxydqy þ V xdw

�
dy

35
x

¼ 0

"Za
0

�
Mydqy þMxydqx þ V ydw

�
dx

35
y

¼ 0

(9.86)

Consider typical boundary conditions for the plate edge x¼constant. First, consider the simply sup-
ported plates for which Eq. (9.86) provides two possible types of boundary conditions. The classical
version of the boundary conditions is

w ¼ 0; Mx ¼ 0 qy ¼ 0 (9.87)

The physical interpretation (see Fig. 9.6a) is that the plate is supported by the walls that are absolutely
rigid in the wall plane providing the conditions w ¼ 0 and qy ¼ 0, but have zero out-of-plane bending
stiffness, so that Mx ¼ 0. Substituting Eqs. (9.79), and (9.82), (9.83) in Eqs. (9.87), we get

4� D

S
D4 ¼ 0;

v24

vx2
þ v

v24

vy2
� ð1� vÞ v

2j

vxvy
¼ 0;

v4

vy
¼ �vj

vx
(9.88)
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Using the third of these equations to eliminate j from the second equation, we get D4 ¼ 0. Thus, it
follows from the first equation of Eqs. (9.88) that 4 ¼ 0, and the boundary conditions given by
Eqs. (9.88) reduce to

4 ¼ 0;
v24

vx2
¼ 0;

vj

vx
¼ 0 (9.89)

For the edge y ¼ constant, Eqs. (9.89) can be supplemented with

4 ¼ 0;
v24

vy2
¼ 0;

vj

vy
¼ 0 (9.90)

Consider the last of the boundary conditions in Eqs. (9.89) and (9.90). The rotational potential j
satisfies the homogeneous equation, Eq. (9.81), and the zero boundary conditions for the function
normal derivatives at the plate contour. In this case, Eq. (9.81) has only a trivial solution, so that j ¼ 0.
Then, the boundary conditions (9.89) and (9.90) become

at x ¼ constant 4 ¼ 0;
v24

vx2
¼ 0

at y ¼ constant 4 ¼ 0;
v24

vy2
¼ 0

(9.91)

Thus, for the conventional (classical) simply supported edge, the boundary layer solution does not
exist (Pelekh, 1970; Vasiliev, 1992, 2000), and the plate bending is governed by the penetrating
solution which is specified by the fourth-order equation, Eq. (9.80), with two boundary conditions,
Eqs. (9.91), at the plate edge. The second term in Eq. (9.82) for the plate deflection allows for the
transverse shear deformation. Clearly, no Kirchhoff or corner forces exist in this case.

It follows from the natural boundary condition given by Eqs. (9.86) that the other version of
a simple support can exist if we replace the condition qy ¼ 0 with Mxy ¼ 0, i.e.,

w ¼ 0; Mx ¼ 0; Mxy ¼ 0 (9.92)

The physical interpretation of these boundary conditions is presented in Fig. 9.6b. The plate is sup-
ported by absolutely rigid columns (w ¼ 0) and has zero bending stiffnesses in the edge plane and in

x

y

(a) (b)

x

y

FIGURE 9.6

Two versions of a simply-supported plate edge corresponding to Eqs. (9.87) (a) and (9.92) (b).
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the direction normal to the edge (Mxy ¼ 0 and Mx ¼ 0). Note that the boundary conditions in Eqs.
(9.92) cannot exist in the classical plate theory based on Eqs. (9.62). Indeed, if w ¼ 0 at the edge x ¼
constant, then qy ¼ 0 at this edge and Mxy cannot be zero. However, for the sixth-order theory, the
boundary conditions given by Eqs. (9.92) can formally exist. Using Eqs. (9.82) and (9.83), we get

4� D

S
D4 ¼ 0 (9.93)

v24

vx2
þ v

v24

vy2
� ð1� vÞ v

2j

vxvy
¼ 0 (9.94)

2
v24

vxvy
þ v2j

vx2
� v2j

vy2
¼ 0 (9.95)

These boundary conditions cannot be reduced to two equations and the set of the sixth-order
equations, Eqs. (9.80) and (9.81), must be solved with these conditions. The problems of plate
bending with boundary conditions in Eq. (9.92) have been solved by Schäfer (1952) for a rectangular
plate under sine pressure (see Fig. 9.3), by Kromm (1955) for a square plate loaded with uniform
pressure, and by Sheremetiev et al. (1968) for a square plate under the action of the central
concentrated force.

As an example, consider a square plate loaded with cosine pressure as shown in Fig. 9.7. Placing
the center of the coordinate frame at the plate center, we assume that

p ¼ �q ¼ q0 cos l1x cos l1y (9.96)

where l1 ¼ p=a. The boundary conditions in Eqs. (9.93)–(9.95) must be satisfied at x ¼ �a=2.
The penetrating potential 4 satisfies Eq. (9.80) and can be decomposed as

4 ¼ 4h þ 4q (9.97)

where

4q ¼ 40 cos l1x cos l1y; 40 ¼ � q0a
4

4p4D
(9.98)

is the particular solution, whereas 4h is the solution of the corresponding homogeneous equation

DD4h ¼ 0 (9.99)

x

y

2/a

2/a

2/a

2/a

p

FIGURE 9.7

A square plate loaded with cosine pressure.
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Taking into account the symmetry of the problem (see Fig. 9.7), the solution of this equation can be
represented as

4h ¼
X
m

½4mðyÞ cos lmxþ 4mðxÞ sin lmy� (9.100)

where lm ¼ ð2m� 1Þp=a and 4m is one and the same function of coordinates x or y. Substituting the
solution, Eq. (9. 100), into Eq. (9.99), we arrive at the following equation for, e.g., 4mðyÞ:

4IV
m � 2l2m4

00
m þ l4m4m ¼ 0

The symmetric solution of this equation is

4m ¼ Cm
1 cosh lmyþ Cm

2 y sinh lmy

Thus, the penetrating solution becomes

4 ¼ 40 cos l1x cos l1yþ
X
m

��
Cm
1 cosh lmyþ Cm

2 y sinh lmy
�
cos lmx

þ �Cm
1 cosh lmxþ Cm

2 x sinh lmx
�
cos lmy

� (9.101)

The rotational potential j can be found as the combination of antisymmetric functions, i.e.,

j ¼
X
m

½jmðyÞ sin lmx� jmðxÞ sin lmy�

Substituting this solution into Eq. (9.81), we get, e.g., for jmðyÞ,
j00
m þ �l2m þ s2

�
jm ¼ 0

Thus, jm ¼ Bm sinh kmy and the rotational potential becomes

j ¼
X
m

Bmðsinh kmy$sin lmx� sinh kmx$sin lmyÞ (9.102)

Here,

k2m ¼ l2m þ s2 ¼ l2m þ 2S

Dð1� vÞ (9.103)

To determine the constants Cm
1 , C

m
2 , and Bm in Eqs. (9.101) and (9.102), we must apply the boundary

conditions, Eqs. (9.93)–(9.95) for the edge x ¼ a=2. Substituting the solutions, Eqs. (9.101) and (9.102),
into the boundary conditions, Eqs. (9.93) and (9.94), we arrive at the following two algebraic equations:

lmC
m
1 þ

�
lm tanh lm þ 2l2m

D

S

�
Cm
2 ¼ 0

�
1� v

�
cosh lm$C

m
1 þ lm

�
2 cosh lm þ �1� v

�
lm sinh lm

�
Cm
2

þð1� vÞlmkm cosh km$Bm ¼ 0; lm ¼ 1

2
lma; km ¼ 1

2
kma

(9.104)
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which allow us to express the constants Cm
1 and Cm

2 in terms of Bm. The third boundary condition,
Eq. (9.95), yields the following equation:

2ð1� vÞ40l
2
1 sin l1y� 2ð1� vÞ

X
m

h
l2m
�
sin lm$sinh lmyþ sinh lm$sin lmy

�
Cm
1

þ lm
�
sin lm$sinh lmyþ lmy sin lm$cosh lmy

þ sinh lm$sin lmyþ lm cosh lm$sin lmy
�
Cm
2

i
�
X
m

�
l2m þ k2m

��
sin lm$sinh kmyþ sinh km$sin lmy

�
Bm ¼ 0

(9.105)

Multiplying this equation by sin lny, integrating with respect to y from -a/2 to a/2, and using the
following integrals:

Za=2
�a=2

sin2lndy ¼ a;

Za=2
�a=2

sinh lmy$sin lnydy ¼ 2

l2m þ l2n

�
lm cosh lm$sin ln � ln sinh lm$cos ln

�
;

Za=2
�a=2

y$cosh lmy$sin lnydy ¼ 2

l2m þ l2n

 
lm sinh lm$sin ln � l2m � l2n

l2m þ l2n
cosh lm$sin ln

!
;

we arrive at an infinite set of algebraic equations for constants Bm. Only the first of these equations
includes 40, whereas the rest of the equations are homogeneous. For a one-term approximation of
the acting pressure given by Eq. (9.96), we can retain in the foregoing series only the first term taking
m ¼ 1 and lm ¼ l1 ¼ p=a. Then, Eq. (9.105) yields

2C1l
2
1 cosh l1

�
1þ 2l1 tanh l1

�þ 2C2l1 cosh l1$
�
1þ 3l1 tanh l1 þ 2l

2
1 tanh

2 l1

�
þB1

�
l21 þ k21

��
cosh l1 þ 2l1 sinh k1

� ¼ 440l
2
1l1

(9.106)

in which l1 ¼ l1a=2 ¼ p=2, k1 ¼ k1a=2.

The equations obtained, Eqs. (9.104) and (9.106), allow us to determine the constants C1, C2, and
B1. The final result looks rather cumbersome; however, for relatively thin plates it can be significantly
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simplified. Neglecting the effect of shear deformation on the penetrating potential (i.e., taking 4 ¼ w)
and taking into account that k1[l1, we get

C1 ¼ ð1� vÞl1l1 tanh l1

k1 cosh l1
40; C2 ¼ �ð1� vÞl2140

k1 cosh l1

B1 ¼ 2l2140

k21 sinh k1

The final approximate expression for the transverse shear force at the edge x ¼ a=2 (see Fig. 9.7)
becomes

V
�
x ¼

V �
x

Vm
x

¼ cos l1y� ð1� vÞ
p

� ffiffiffi
3

p
a

h

cosh k1y

sinh k1
� p

2
cos l1y

�
(9.107)

where the notation (*) shows that V �
x corresponds to the theory of shear deformable plates and Vm

x is
the maximum shear force at the edge corresponding to classical plate theory. The function V

�
xðyÞ is

shown in Fig. 9.8. At the central part of the edge, the shear force specified by Eq. (9.107) coincides
with the generalized Kirchhoff shear force Kx in Eq. (9.65) as per classical plate theory (this force is
shown in Fig. 9.5). As discussed in Section 9.3.1, the force Kx is accompanied by a concentrated corner

85.3

b

y

-2

-1

0

1

-3

2

-4

0.1 0.2 0.3 0.4

*
xV

xK

xx KV ,*

35.1

FIGURE 9.8

Distribution of the normalized transverse shear forces over the edge x ¼ a/2.
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force which is also shown in Fig. 9.8. In the vicinity of the corner, the force V �
x changes its sign (see the

dashed line in Fig. 9.8). At the plate corner
�
y ¼ a

2

�
, Eq. (9.107) yields

V
�
x

� a
2

�
¼ �ð1� vÞ ffiffiffi

3
p

a

ph

If the relative thickness of the plate, h ¼ h=a, becomes infinitely small, V
�
xða=2Þ becomes infinitely

high and can be treated as a concentrated force. Thus, for the particular boundary conditions in
Eq. (9.92), the Kirchhoff shear force is close to the actual reaction of the plate support and the corner
force following from Kirchhoff and Thomson-Tait transformations corresponds to the asymptotic
value of this reaction for an infinitely thin plate.

Thus, for a plate with the boundary conditions given by Eqs. (9.92), the solution corre-
sponding to the theory of shear deformable plates demonstrates plate behavior which is
asymptotically close to the traditional solution corresponding to classical theory which is shown
in Fig. 9.4. However, it should be emphasized that this solution exists only for special boundary
conditions, Eqs. (9.92), and the existing recommendation (Timoshenko and Woinovsky-Krieger,
1959) to use it for simply supported plates with classical boundary conditions, Eqs. (9.87), is
not consistent.

Consider a clamped plate, for which

w ¼ 0; qx ¼ 0; qy ¼ 0

at the edge x ¼ constant. Applying Eqs. (9.79) and (9.82), we arrive at

4� D

S
D4 ¼ 0;

v4

vx
¼ vj

vy
;

v4

vy
¼ �vj

vx
(9.108)

In contrast to a simply supported plate with classical boundary conditions, Eqs. (9.87), these three
conditions cannot be exactly reduced to two. However, as demonstrated in the foregoing example, the
boundary-layer effect hinders the solution considerably, and an attempt can be made to solve this
problem using only the penetrating potential. So, take j ¼ 0 and reduce Eqs. (9.108) to

4� D

S
D4 ¼ 0;

v4

vx
¼ 0;

v4

vy
¼ 0 (9.109)

The third of these conditions can be integrated along the edge x ¼ constant which yields 4 ¼ C, where
C is some constant. The same result can be obtained for the clamped edge y ¼ constant. Thus, we can
replace 4with 4þ C. Since C is some arbitrary constant, it can be taken equal to zero. As a result, the
boundary conditions for the penetrating solution become

v4

vx
¼ 0; 4� D

S
D4 ¼ 0 (9.110)

and are consistent with the fourth order of the equation for the penetrating solution, Eq. (9.80).
Thus, for clamped plates, the theory of shear deformable plates can be approximately reduced to
the fourth-order equation, Eq. (9.80), for the penetrating potential and two boundary conditions at
the plate edge.
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To support the results obtained, consider the cylindrical bending of a plate. Taking 4 ¼ 4ðxÞ, we
arrive at the following equation and boundary conditions:

D4IV ¼ p; ½40�x ¼
�
4� D

S
400
�
x

¼ 0

where ð Þ0 ¼ dð Þ=dx. As can be seen, four constants are required for the solution for constant
pressure, i.e.,

4 ¼ px4

24
þ 1

3
C1x

3 þ 1

2
C2x

2 þ C3xþ C4

which can be found from the four boundary conditions at x ¼ 0 and x ¼ a. We can formally add the
constant C discussed earlier to 4, but it can be included into the unknown constant C4.

For the free edge, as well as for any edge on which the twisting moment Mxy is preassigned, three
boundary conditions cannot be reduced to two and the sixth-order equations of the theory of shear
deformable plates should be used to study the problem.

As an example, consider a semi-infinite plate with simply supported longitudinal edges (see
Fig. 9.9), for which the exact solutions can be found. Let the plate be loaded with pressure

p ¼ p ¼ p0 sin ly (9.111)

where l ¼ p=b. For the longitudinal edges y ¼ 0 and y ¼ b, the boundary conditions are

w ¼ 0; My ¼ 0; qx ¼ 0

or exactly

4� D

S
D4 ¼ 0;

v24

vy2
þ v

v24

vx2
� ð1� vÞ v

2j

vxvy
¼ 0;

v4

vx
¼ vj

vy

These boundary conditions can be satisfied if we take

4 ¼ FðxÞ sin ly; j ¼ JðxÞ cos ly (9.112)

Substitution of Eqs. (9.112) into the governing equations, Eqs. (9.80) and (9.81), yields

D
�
FIV � 2F00 þ F

� ¼ p0 (9.113)

J00 � s2J ¼ 0; s2 ¼ 2S

Dð1� vÞ (9.114)

b

y

x

FIGURE 9.9

A semi-infinite simply supported plate.

512 CHAPTER 9 Laminated composite plates

www.EngineeringEBooksPdf.com



The solutions of these equations in conjunction with Eqs. (9.112) for the plate shown in Fig.9.9 give

4 ¼
�
ðC1 þ C2xÞe�lx þ p0

Dl4

�
sin ly (9.115)

j ¼ Be�kx cos ly; k2 ¼ l2 þ s2 (9.116)

The following three cases are discussed.

1. Consider first a plate simply supported at the edge x ¼ 0. The classical boundary conditions

w ¼ 0; Mx ¼ 0; qy ¼ 0 (9.117)

can be represented as

4� D

S
D4 ¼ 0;

v24

vx2
þ v

v24

vy2
� ð1� vÞ v

2j

vxvy
¼ 0;

v4

vy
¼ �vj

vx

Substitution of Eqs. (9.115) and (9.116) yields

C1 ¼ � p0

Dl4
; C2 ¼ � p0

2Dl3
; B ¼ 0

Thus, j ¼ 0 and the solution is governed by the penetrating potential 4 only.
For an isotropic plate with parameters

h

b
¼ 0:05; v ¼ 0:3;

E

G
¼ 2:6; l ¼ p

b
; k ¼ 69:4

b (9.118)

the final solution specifies the following expressions for the plate deflection, moments, and
transverse force:

wð1Þ ¼ 1:0059
p0

Dl4

h
1� e�lx

�
1þ 1:56

x

b

�i
sin ly

M
ð1Þ
x ¼ 0:3

p0

l2

h
1� e�lx

�
1� 3:66

x

b

�i
sin ly

M
ð1Þ
xy ¼ �0:35

p0

l2
e�lx

�
1þ 3:14

x

b

�
cos ly

V ð1Þ
x ¼ p0

l
e�lx sin ly

(9.119)

Compare this solution with the results corresponding to classical plate theory which gives

wð1Þ
c ¼ p0

Dl4

h
1� e�lx

�
1þ 1:57

x

b

�i
sin ly

This deflection is close to that determined by the first equation in Eqs. (9.119), whereas the
moments and the force are exactly the same as those given by Eqs. (9.119).

2. Consider the second version of the simple support, according to which at the edge x ¼ 0 we have

w ¼ 0; Mx ¼ 0; Mxy ¼ 0 (9.120)
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or

4� D

S
D4 ¼ 0;

v24

vx2
þ v

v24

vy2
� ð1� vÞ v

2j

vxvy
¼ 0; 2

v24

vxvy
þ v2j

vx2
� v2j

vy2
¼ 0

The final solution is

wð2Þ ¼ 1:0057
p0

Dl4

�
1� e�lx

�
1þ 1:49

x

b

��
sin ly

M
ð2Þ
x ¼ 0:3

p0

l2

�
1� 0:89e�lx

�
1� 4:08

x

b

�
� 0:11e�kx

�
sin ly

M
ð2Þ
xy ¼ �0:36

p0

l2

�
e�lx

�
1þ 2:95

x

b

�
� e�kx

�
cos ly

V ð2Þ
x ¼ 0:96

p0
l

�
e�lx þ 0:38e�kx

�
sin ly

As can be seen, wð2Þ is rather close to wð1Þ. The results of these calculations are presented in

Figs. 9.10–9.12. The normalized bending momentsMx ¼ Mxl
2=p0 acting at y ¼ b=2 (see Fig. 9.9)

are shown in Fig. 9.10 as functions of x. It follows from the figure that the moment M
ð2Þ
x corre-

sponding to the boundary conditions given by Eqs. (9.120) is quite close to the moment M
ð1Þ
x

corresponding to the classical boundary conditions, Eqs. (9.117). The difference in the twisting

moments M
ð1Þ
xy and M

ð2Þ
xy is significant only in the vicinity of the plate edge, where M

ð2Þ
xy ¼ 0 in

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

0.4

b

x

)2()1( , xx MM

FIGURE 9.10

Distribution of the normalized bending momentsM
ð1Þ
x ðy ¼ b=2Þ ( ) andM

ð2Þ
x ðy ¼ b=2Þ ( ) along

the x-axis.
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accordance with Eqs. (9.120), whereas M
ð1Þ
xy is a reactive moment. The distributions of the shear

forces are presented in Fig. 9.12, where V
ð1Þ
x and V

ð2Þ
x correspond to the boundary conditions in

Eqs. (9.117) and (9.120), respectively. For comparison, the Kirchhoff shear force

Kð1Þ
x ¼ V ð1Þ

x þ vM
ð1Þ
xy

vy
¼ p0

l
e�lx

�
1:35þ 1:10

x

b

�
sin ly

corresponding to the classical boundary conditions, Eqs. (9.117), is presented in Fig. 9.12. As can
be seen, this force, being close to the force V ð2Þ

x following from the sixth-order theory at the plate
edge x ¼ 0, does not represent the actual force V ð2Þ

x at a distance from the plate edge, where V ð2Þ
x is

close to V ð1Þ
x . Thus, the force K

ð1Þ
x is a formal static variable allowing us to satisfy the boundary

conditions and not reflecting the actual shear at a distance from the edge.
3. Consider a plate with the clamped edge x ¼ 0. The boundary conditions

w ¼ 0; qx ¼ 0; qy ¼ 0

can be presented as

4� D

S
D4 ¼ 0;

v4

vx
¼ vj

vy
;

v4

vy
¼ �vj

vx

whereupon the solution becomes

wð3Þ ¼ 1:0059
p0

Dl4

h
1� e�lx

�
1þ 3:12

x

b

�i
sin ly

M
ð3Þ
x ¼ �0:3

p0

l2

h
1� 4:307e�lx

�
1� 1:69

x

b

�
þ 0:0135e�kx

i
sin ly

V ð3Þ
x ¼ 1:998

p0
l

�
e�lx � 0:0225e�kx

�
sin ly

(9.121)

0
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0 0.2 0.4 0.6 0.8 1.0
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b

x

)2()1( , xyxy MM

FIGURE 9.11

Distribution of the normalized twisting moments M
ð1Þ
xy ðy ¼ 0Þ ( ) and M

ð2Þ
xy ðy ¼ 0Þ ( ) along the

x-axis.
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If we neglect the boundary-layer solution and satisfy two boundary conditions in Eqs. (9.110), i.e.,

4� D

S
D4 ¼ 0;

v4

vx
¼ 0

the solution reduces to

wð4Þ ¼ p0

Dl4

h
1� e�lx

�
1þ 3:14

x

b

�i
sin ly

M
ð4Þ
x ¼ 0:3

p0

l2

h
1� 4:333e�lx

�
1� 1:69

x

b

�
þ 0:0135e�kx

i
sin ly

V ð4Þ
x ¼ 2

p0
l
e�lx sin ly

These equations closely coincide with the corresponding Eqs. (9.121). Thus, clamped plates
retaining the penetrating potential only can be studied.

b

x

)1()2()1( ,, xxx KVV

0 0.2 0.4 0.6 0.8 1.0

0

1.5

0.5

1.0

)2(
xV

)1(
xK

)1(
xV

FIGURE 9.12

Distribution of the normalized shear forces V
ð1Þ
x ðy ¼ b=2Þ ( ), V

ð2Þ
x ðy ¼ b=2Þ ( ), and

K
ð1Þ
x ðy ¼ b=2Þ ( ) along the x-axis.
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This conclusion is valid for relatively thin plates for which the parameter k characterizing the rate
of the boundary-layer solution is much higher than the corresponding parameter of the penetrating
solution l. Consider again the plate shown in Fig. 9.9 with the clamped edge x ¼ 0 and having the
following parameters:

h

b
¼ 1; v ¼ 0;

E

G
¼ 100; l ¼ p

b
; k ¼ 5:82

b
(9.122)

In contrast to Eqs. (9.118), the plate with parameters given by Eqs. (9.122) is relatively thick and the
ratio E/G is high. As a result, the parameter k is comparable with l. Compare the following three
solutions:

1. Exact solution
2. Penetrating solution
3. Solution corresponding to the classical plate theory.

The exact solutions for the plate deflection and the bending moment are

wðeÞ ¼ 1:823
p0

Dl4

h
1�

�
1þ 1:352

x

b

�
e�lx

i
sin ly

M
ðeÞ
x ¼ �1:057

p0

l2

h�
1� 2:375

x

b

�
e�lx � 0:451e�kx

i
sin ly

The dependencies of the normalized deflection and moment, i.e., wðeÞ ¼ Dl4wðeÞ=p0 and

M
ðeÞ
x ¼ l2M

ðeÞ
x =p0 corresponding to y ¼ b=2 (see Fig. 9.9) on the longitudinal coordinate, are repre-

sented in Fig. 9.13 by solid lines.
The penetrating solution gives

wðpÞ ¼ 1:823
p0

Dl4

h
1�

�
1þ 1:187

x

b

�
e�lx

i
sin ly

M
ðpÞ
x ¼ �0:689

p0

l2

�
1� 3:14

x

b

�
e�lx sin ly

As can be seen, the deflection corresponding to the penetration solution (shown with circles in Fig.
9.13a) practically coincides with the exact solution, whereas the bending moment (circles in
Fig. 9.13b) is different. The maximum bending moment for the penetrating solution is 1.43 times
higher than the exact moment.

The solution corresponding to classical plate theory

wðcÞ ¼ p0

Dl4

h
1�

�
1þ 3:14

x

b

�
e�lx

i
sin ly

M
ðcÞ
x ¼ �p0

l2

�
1� 3:14

x

b

�
e�lx sin ly

is shown by the dashed lines and is, as expected, rather far from the exact solution.
In conclusion, we can formulate some practical recommendations. Note that they follow from

experience and are not formally justified.
It follows from the foregoing discussion that the effect of transverse shear deformation provides

two basic contributions to plate theory.
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Consider the first contribution. For the plates fixed at the edges (note that for the majority of the real
boundary conditions, w ¼ 0 at the plate edges), the shear deformation, first, affects the penetrating
solution, i.e., the plate deflection specified by Eq. (9.82). This effect is the same as that discussed in
Chapter 8 for beams and, as for the beams, it does not increase the fourth order of the governing
equation, Eq. (9.80). Secondly, the allowance for transverse shear deformation gives rise to an

w

(a)

b

x

b

x

0 0.4 0.8  1.2  1.6  2.0

0

0.4

0.8

1.2

1.6

2.0

0.4 0.8  1.2  1.6  2.0

- 0.2

0.2

0

- 0.4

 - 0.6

- 0.8

- 1.0

xM

59.0

842.0

0.1

(b)

FIGURE 9.13

Dependencies of the normalized deflection (a) and bending moment (b) on the longitudinal coordinate: exact

solution ( ); penetrating solution ( ); classical plate theory ( ).
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additional second-order differential equation, Eq. (9.81), which does not exist in the beam theory and
describes the boundary layer solution corresponding to plate torsion.

The effect of the transverse shear deformation can be evaluated by comparing the parameter

r2 ¼ p2Dm2

Sl2
(9.123)

with unity. Here, m specifies the rate of the penetrating solution (e.g., the half-wave number) and l is
the minimum in-plane dimension of the plate. If r2 is of the order of unity, both shear effects must be
taken into account (this is the case for the last example, the results of which are shown in Fig. 9.13). If
the order of r2 is 0.1, then the boundary-layer solution can be neglected. Finally, if the order of r2 is
0.01, both shear effects can be neglected and classical plate theory can be used to study the plate.

The second basic contribution of the shear deformation is associated with the problems for which
the sixth-order plate theory must be used irrespective of the order of the parameter r2 given by Eq.
(9.123). Such problems involve, particularly, plates loaded with twisting moments applied at the plate
edges. Consider, for example, the plate shown in Fig. 5.20 loaded with momentsMxy distributed along
the edges x ¼ constant, whereas the edges y ¼ constant are free. The solution of this problem is given
in Section 5.5, according to which the plate deflection is

w ¼ �yqy; qy ¼ ax (9.124)

where a is the twisting angle per unit length. For p ¼ 0, the governing equation of the plate theory,
Eq. (9.80), only has the trivial solution 4 ¼ 0. Thus, the penetrating solution is zero and the problem is
reduced to Eq. (9.81), which takes the following form:

j00 � s2j ¼ 0

in which ð.Þ0 ¼ dð.Þ=dy. The solution of this equation is studied in Section 5.5.

9.4 BENDING OF ORTHOTROPIC SYMMETRIC PLATES
The general set of equations obtained in Section 9.1 describes the plate with arbitrary structure.
However, in the majority of applications, composite plates are orthotropic and the material structure is
symmetric with respect to the plate middle plane. Such plates are considered in this Section.

9.4.1 Exact solutions of classical plate theory

The problem of bending of orthotropic symmetric plates is described by Eqs. (9.40)–(9.42). As noted
towards the end of the previous section, thin plates with moderate ratio E/G can be studied using
classical plate theory. Note that for the majority of real composite laminated plates, classical plate
theory provides rather accurate results, assuming that the plate edges are fixed with respect to the plate
deflection. Naturally (see Section 9.3), no generalized transverse shear forces and corner forces should
be introduced into the analysis.

Neglecting transverse shear deformation, take Sx/N and Sy/N in Eqs. (9.40)–(9.42). Then,
W ¼ w and Eq. (9.40) reduces to the well-known equation for plate deflection, i.e.,

D1
v4w

vx4
þ 2D3

v4w

vx2vy2
þ D2

v4w

vy4
¼ p (9.125)
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where p ¼ p� q (see Fig. 9.1) and

D1 ¼ D11; D2 ¼ D22; D3 ¼ D12 þ 2D44 (9.126)

The moments and the shear forces are expressed in terms of w as

Mx ¼ �
�
D11

v2w

vx2
þ D12

v2w

vy2

�
; My ¼ �

�
D12

v2w

vx2
þ D22

v2w

vy2

�
; Mxy ¼ �2D44

v2w

vxvy

V x ¼ � v

vx

�
D11

v2w

vx2
þ D3

v2w

vy2

�
; V y ¼ � v

vy

�
D22

v2w

vy2
þ D3

v2w

vx2

� (9.127)

For simply supported edges

w ¼ 0;
v2w

vx2
¼ 0; for x ¼ constant

w ¼ 0;
v2w

vy2
¼ 0; for y ¼ constant

(9.128)

whereas for clamped edges

w ¼ 0;
vw

vx
¼ 0; for x ¼ constant

w ¼ 0;
vw

vy
¼ 0; for y ¼ constant

(9.129)

Consider the exact solutions obtained for plates with various boundary conditions.

9.4.1.1 Simply supported plates
Plates supported at the contour by the walls that are absolutely rigid in-plane and flexible out-of-plane
(see Fig. 9.14) are usually treated as simply supported plates with boundary conditions specified by
Eqs. (9.128). The method of exact solution for such plates proposed in 1823 by L.M. Navier is based on
the following trigonometric series for w:

wðx; yÞ ¼
X
m

X
n

wmn sin lmx sin lny (9.130)

x

b

a

z

y

FIGURE 9.14

A simply supported plate.
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in which wmn are constant coefficients, lm ¼ pm=a, ln ¼ pn=b; and a, b are the plate in-plane
dimensions (see Fig. 9.14). Each term of the series in Eq. (9.130) satisfies the boundary conditions
given by Eqs. (9.128). In addition, the pressure p in Eq. (9.125) is also decomposed into a similar
series, i.e.,

pðx; yÞ ¼
X
m

X
n

pmn sin lmx sin lny (9.131)

in which

pmn ¼ 4

ab

Za
o

Zb
o

pðx; yÞsin lmx sin lny

For uniform pressure p ¼ p0,

pmn ¼
8<:

16p0
p2mn

ðm; n ¼ 1; 3; 5.Þ
0 ðm; n ¼ 2; 4; 6.Þ

(9.132)

Substituting Eqs. (9.130) and (9.131) into Eq. (9.125), we can express wmn in terms of pmn and obtain
finally the following solution

wðx; yÞ ¼
X
m

X
n

pmn sin lmx sin lny

D1l
4
m þ 2D3l

2
ml

2
n þ D2l

4
n

(9.133)

The moments and forces acting in the plate can be found using Eqs. (9.127).
Convergence of the series in Eq. (9.133) depends on the plate in-plane aspect ratio a/b (see

Fig. 9.15). For square and close to square plates

1 � a

b
� 1:5 (9.134)

(a)

(b)

x

y

a

b

y

a

b

x

FIGURE 9.15

Close-to-square (a) and long (b) rectangular plates.
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(see Fig. 9.15a). Using only the first term in Eq. (9.133) provides reasonable accuracy for the
solution. Convergence of the corresponding series for the moment and the forces in Eqs. (9.127)
which require differentiation of Eq. (9.133) is much slower than the convergence of Eq. (9.133), and
to calculate the moments and the forces, we need to retain up to five terms in the series (Vasiliev,
1993).

For long plates (see Fig. 9.15b), with an aspect ratio

a

b
> 3:5

ffiffiffiffiffiffi
D1

D2

r
; (9.135)

the convergence of the series is getting rather slow. It follows from Fig.9.15b that in the middle part
of the plate the deflection is practically independent of x and is close to constant. To predict this
deflection, we must retain a large number of terms in Eq. (9.133). For the �45� composite plate
with D1 ¼ D2 ¼ D and D2 ¼ 1.4D, loaded with uniform pressure p0, the dependence of the
normalized maximum deflection wm ¼ wmD=p0b

4 on the plate aspect ratio a/b is shown in
Fig. 9.16. As can be seen, for those ratios a/b which satisfy the condition given by Eq. (9.135), the
plate can be considered as infinitely long. Taking a=b/N, we get from Eq. (9.133) in which pmn is
specified by Eq. (9.132)

w ¼ 16p0b
4

p6D2

X
m

1

m
sin lmx

X
n

1

n5
sin lny ¼ p0

24D2

�
y4 � 2by3 þ b3y

�
This result corresponds to the deflection of a beam of length b simply supported at its ends.

9.4.1.2 Plates simply supported at opposite edges
A more general method whose convergence does not depend on the aspect a/b ratio was proposed by
M. Levy in 1899. Consider a plate with simply supported edges y ¼ 0 and y ¼ b (see Fig. 9.17) and
assume that a � b, i.e., that the plate is simply supported along the long edges, whereas the boundary

0.5

1.0

1.5

b

a

.102
mw

0 2 4 6 8

3.1

34.0

FIGURE 9.16

Dependence of the normalized deflection on the aspect ratio a/b.
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conditions for the short edges x ¼ �a=2 can be arbitrary. The solution of Eq. (9.125) is presented in
the form

wðx; yÞ ¼
X
n

WnðxÞ sin lny (9.136)

where, as earlier, ln ¼ pn=b. The deflection given by Eq. (9.136) satisfies the boundary conditions,
Eqs. (9.128) for the edges y ¼ 0 and ¼ b . The pressure p in Eq. (9.125) is decomposed into a similar
series, i.e.,

pðx; yÞ ¼
X
n

pnðxÞ sin lny (9.137)

where

pnðxÞ ¼ 2

b

Zb
0

pðx; yÞ sin lnydy

For uniform pressure p ¼ p0,

pn ¼
8<:

4p0
bln

ðn ¼ 1; 3; 5.Þ

0 ð n ¼ 2; 4; 6.Þ
(9.138)

Substituting Eqs. (9.136) and (9.138) into Eq. (9.125), we arrive at the following ordinary differential
equation for the function Wn(x):

WIV
n � 2k21nW

00
n þ k42nWn ¼ kpn (9.139)

in which

k21n ¼
D3

D1
l2n; k42n ¼

D2

D1
l4n; kpn ¼ pn

D1
(9.140)

FIGURE 9.17

A rectangular plate with two simply supported opposite edges.
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The solution of Eq. (9.139) is

Wn ¼
X4
i¼1

CiFi

�
x
�þWpn (9.141)

where Ci are the constants of integration andWpn is the particular solution. For a uniform pressure with
pn specified by Eq. (9.138),

Wpn ¼ pn

D1k
4
2n

(9.142)

The functions FiðxÞ have a form which depends on the relationship between the coefficients in Eqs.
(9.140). Possible forms for these functions are presented in Table 9.1.

For orthotropic plates, it is usually the case that k22 > k21. In this case,

F1 ¼ cosh rx cos tx; F2 ¼ sinh rx sin tx

F3 ¼ cosh rx sin tx; F4 ¼ sinhrx cos tx
(9.143)

TABLE 9.1 Solutions of the Differential Equation WIV � 2k21W
00 þ k42W ¼ 0

Relations
Between
Coefficients

Roots of the
Characteristic
Equation F1 F2 F3 F4

k22 > k21 x1 ¼ �x2 ¼ r þ it
x3 ¼ �x4 ¼ r � it

cosh rx cos tx sinh rx sin tx cosh rx sin tx sinh rx sin tx

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðk22 þ k21Þ

r

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðk22 � k21Þ

r
e�rx cos tx e�rx sin tx erx cos tx erx sin tx

k22 ¼ k21 x1 ¼ x2 ¼ r
x3 ¼ x4 ¼ �r

cosh rx x sinh rx sinh rx x cosh rx

r ¼ k1 e�rx xe�rx erx xerx

k22 < k21 x1 ¼ �x2 ¼ r
x3 ¼ �x4 ¼ t

cosh rx cosh tx sinh rx sinh tx

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k41 � k42

qr
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k41 � k42

qr
e�rx e�tx erx etx
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The derivatives of these functions are expressed in terms of the initial functions as

F0
1 ¼ rF4 � tF3; F0

2 ¼ rF3 þ tF4; F0
3 ¼ rF2 þ tF1; F0

4 ¼ rF1 � tF2

F00
1 ¼ �r2 � t2

�
F1 � 2rtF2; F00

2 ¼ �r2 � t2
�
F2 þ 2rtF1

F00
3 ¼ �r2 � t2

�
F3 þ 2rtF4; F00

4 ¼ �r2 � t2
�
F4 � 2rtF3

F000
1 ¼ r

�
r2 � 3t2

�
F4 þ t

�
t2 � 3r2

�
F3; F000

2 ¼ r
�
r2 � 3t2

�
F3 þ t

�
t2 � 3r2

�
F4

F000
3 ¼ r

�
r2 � 3t2

�
F2 � t

�
t2 � 3r2

�
F1; F000

4 ¼ r
�
r2 � 3t2

�
F1 þ t

�
t2 � 3r2

�
F2

(9.144)

Consider the action of a uniform pressure p0 on the plates whose boundary conditions are symmetric
with respect to the x-coordinate (see Fig. 9.18). In this case, C3 ¼ C4 ¼ 0 and Eq. (9.141) becomes

Wn ¼ C1F1

�
x
�þ C2F2

�
x
�þWp (9.145)

in which Wp and F1, F2 are specified by Eqs. (9.142) and (9.143).
If the transverse edges x ¼ �a=2 are simply supported (see Fig. 9.18a) and the boundary condi-

tions correspond to Eq. (9.128), the solution is

Wn ¼ Wp

�
1� F1

�
x
��

(9.146)

where

F1ðxÞ ¼ F1ðxÞF00
2ða=2Þ � F2ðxÞF00

1ða=2Þ
F1ða=2ÞF00

2ða=2Þ � F2ða=2ÞF00
1ða=2Þ

and the derivatives of the functions F are specified by Eqs. (9.144). In contrast to the Navier solution
given by Eq. (9.133), the series following from Eqs. (9.136), and (9.145), (9.146) rapidly converge for
any aspect ratio b/a.

For a plate with clamped edges x ¼ �a=2 (see Fig. 9.18b), the boundary conditions correspond to
Eqs. (9.129) and

Wn

�
x
� ¼ Wp

�
1� F2

�
x
��

(9.147)

y

x

2/a2/a

b

(a) (b)

2/a

b

2/a

y

x

FIGURE 9.18

Plates with simply supported longitudinal edges and simply supported (a) and clamped (b) transverse edges.

9.4 Bending of orthotropic symmetric plates 525

www.EngineeringEBooksPdf.com



where

F2ðxÞ ¼ F1ðxÞF0
2ða=2Þ � F2ðxÞF0

1ða=2Þ
F1ða=2ÞF0

2ða=2Þ � F2ða=2ÞF0
1ða=2Þ

9.4.1.3 Clamped plates
The exact solution for a clamped plate has been found by S.A. Lurie (1982) with the aid of the method
of homogeneous solutions developed by P.A. Shiff (1883), J. Dougall (1904), J.N.A. Brahtz (1935), F.
Tolske (1938), I. Fadle (1941), and P.F. Papkovich (1941). The mathematical justification of the
method and the exact solutions of biharmonic problems in the theory of elasticity are presented by S.A.
Lurie and V.V. Vasiliev (1995).

Consider a plate clamped at its edges (see Fig. 9.19a) and introduce the normalized coordinates

x ¼ 2x

a
; y ¼ 2y

b
(9.148)

The initial rectangular plate (see Fig. 9.19a), being referred to the coordinates given in Eqs. (9.148),
reduces to a square plate (see Fig. 9.19b) for which �1 	 x 	 1 and �1 	 y 	 1. Then, the governing
equation, Eq. (9.125), is transformed as follows:

D1b
4v4w

D2a4vx
4
þ D3b

2

D2b2
v4w

vx2vy2
þ v4w

vy4
¼ pb4

16D2
(9.149)

The solution of Eq. (9.149) corresponding to a uniform pressure p ¼ p0 has the form

w ¼ w0 þ wp (9.150)

in which

wp ¼ p0b
4

384D2

�
1� y2

�2
(9.151)

satisfies the boundary condition, Eq. (9.129) for clamped edges, i.e., wpðy ¼ �1Þ ¼ w0
pðy ¼ �1Þ ¼ 0,

whereas w0 satisfies the homogeneous equation corresponding to Eq. (9.149). The function w0, which
is symmetric with respect to the x-coordinate, is given by

w0ðx; yÞ ¼
X
m

Cm cosh ðlmxÞFmðyÞ (9.152)

y

x

2/a

2/b

2/a
2/b

x

y

1 1
1

1

(a) (b)

FIGURE 9.19

Clamped plate referred to coordinates x, y (a) and x, y (b).
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Here, Cm and lm are constants and FmðyÞ are the so-called homogeneous solutions which can be found
if we substitute Eq. (9.152) into Eq. (9.149) where p ¼ 0. The resulting equation for FmðyÞ is

FIV
m þ 2a2F00

m þ b4Fm ¼ 0 (9.153)

where ð.Þ0 ¼ dð.Þ=d y and

a2 ¼ D3b
2

D2a2
; b4 ¼ D1b

4

D2a4

The solution of Eq. (9.153), symmetric with respect to the y coordinate, is

FmðyÞ ¼ C1m cos ðr1lmyÞ þ C2m cos ðr2lmyÞ (9.154)

where

r1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � b4

pq

¼ b

a
ffiffiffiffiffiffi
D2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
3 � D1D2

qr (9.155)

and r1, r2 are the roots of the characteristic equation.
Note that the solution given by Eq. (9.154) is valid ifD3 >

ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
. IfD3 <

ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
, then the roots

r1,2 are complex numbers, i.e.,

r1;2 ¼ b

a
ffiffiffi
2

p
0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1

D2

r
� D3

D2

s
H i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

D2

r
þ D3

D2

s 1A (9.156)

where i is the imaginary unit (i2 = �1). For this case

FmðyÞ ¼ C1m cosh ðr1lmyÞ cos ðr2lmyÞ þ C2m sinh ðr1lmyÞ sin ðr2lmyÞ
Further derivation is performed for the homogeneous solution, Eq. (9.154), because it is easier to
differentiate this equation, although the roots r1 and r2 can be either real, Eqs. (9.155), or complex, Eq.
(9.156), numbers.

To determine the parameter lm in Eq. (9.154), apply the boundary conditions, Eqs. (9.129), to the
edges y ¼ �1, i.e.,

Fmðy ¼ �1Þ ¼ 0; F0
mðy ¼ �1Þ ¼ 0 (9.157)

Substituting Eq. (9.154) into Eqs. (9.157), we arrive at the following two equations for the constants
C1m and C2m:

C1m cos ðr1lmÞ þ C2m cos ðr2lmÞ ¼ 0

C1mr1 sin ðr1lmÞ þ C2mr2 sin ðr2lmÞ ¼ 0
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The first of these equations yields

C2m ¼ �C1m
cos ðr1lmÞ
cos ðr2lmÞ (9.158)

whereas substitution of Eq. (9.158) into the second equation results in the following equation for the
parameter lm:

r1 tan ðr1lmÞ ¼ r2 tan ðr2lmÞ (9.159)

Using Eq. (9.158), we can write the homogeneous solutions given by Eq. (9.154) as

FmðyÞ ¼ C1m½cosðr2lmÞcosðr1lmyÞ � cosðr1lmÞcosðr2lmyÞ� (9.160)

Finally, substituting Eq. (9.160) into Eq. (9.152) and including the constant C1m into the constant Cm,
we arrive at

w0ðx; yÞ ¼
X
m

Cm cosh ðlmxÞFmðyÞ (9.161)

where

FmðyÞ ¼ cos ðr2lmÞ cos ðr1lmyÞ � cos ðr1lmÞ cos ðr2lmyÞ (9.162)

The constants Cm in Eq. (9.161) can be found from the boundary conditions given by Eqs. (9.129) for
the plate edges x ¼ �1, i.e.,

wðx ¼ �1Þ ¼P
m
Cm cosh lm$FmðyÞ þ wpðyÞ ¼ 0

vw

vx
ðx ¼ �1Þ ¼

X
m

Cmlm sinh lm$FmðyÞ ¼ 0

(9.163)

It follows from these equations that the two mutually independent functions (wp and 0) must be
decomposed into two series with respect to the homogeneous solutions with one and the same system
of constants C1m. If the functions FmðyÞ were orthogonal and complete, this problem could not be
solved. However, the functions FmðyÞ specified by Eq. (9.160) are of a more complicated nature, i.e.,
they are biorthogonal and bicomplete which, in principle, allows us to solve the problem (see Lurie and
Vasiliev, 1995).

To derive the biorthogonality condition, consider Eq. (9.153) written for functions Fm and Fn such
that msn. Multiplying the equation for Fm by Fn and the equation for Fn by Fm and integrating the
resulting equations from �1 to þ1, we get

Z1
�1

FIV
m Fnd yþ 2a2

Z1
�1

F00
mFnd yþ b4FmFn ¼ 0

Z1
�1

FIV
n Fmd yþ 2a2

Z1
�1

F00
nFmd yþ b4FnFm ¼ 0

(9.164)
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Integrating by parts, with allowance for the boundary conditions, Eqs. (9.157) yield for the first
equation Z1

�1

FIV
m Fndy ¼ �

Z1
�1

F000
mF

0
ndy ¼

Z1
�1

F00
mF

00
ndy

Z1
�1

F00
mFndy ¼

Z1
�1

F0
mF

0
ndy

Similar relations are valid for the second equation of Eqs. (9.164). Now, subtract the second equation
from the first one and take into account that lmsln. Then,

Z1
�1

�
F00
mF

00
n � b4l2ml

2
nFmFn

�
dy ¼ 0; lmsln (9.165)

The biorthogonality condition in Eq. (9.165) allows us to determine directly the constants in Eq. (9.161)
only for a simply supported plate. Indeed, the boundary conditions in Eqs. (9.128) for a simply sup-
ported plate take the form

wðx ¼ �1Þ ¼P
m
Cm cosh lm$FmðyÞ þ wpðyÞ ¼ 0

v2w

vx2
ðx ¼ �1Þ ¼

X
m

Cml
2
m sinh lm$FmðyÞ ¼ 0

(9.166)

Differentiate twice the first of these conditions, multiply it by F00
n, subtract the second condition

multiplied by b4l2nFn, and integrate the result from �1 to 1 to get

X
m

Cm cosh lm

0@ Z1
�1

�
F
00
mF

00
n � b4l2ml

2
nFmFn

�
dy

1A ¼ 0

Applying the biorthogonality condition as per Eq. (9.165) for functions Fm and Fn, we can find Cn as

Cn ¼ �
R 1
�1 w

00
pðyÞFndy

cosh ln
R 1
�1

h�
F
00
n

�2 � b4F
2
n

i
dy

Return now to the clamped plate. Application of the biorthogonality condition, Eq. (9.165), to the
boundary conditions given by Eqs. (9.163), requires some additional transformations. First, rewrite Eq.
(9.162) as

FmðyÞ ¼ umðyÞ þ vmðyÞ (9.167)
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where

umðyÞ ¼ C2m cos ðr1lmyÞ; vmðyÞ ¼ C1m cos ðr2lmyÞ (9.168)

in which

C1m ¼ �cos ðr1lmÞ; C2m ¼ cos ðr2lmÞ
Secondly, substitute Eqs. (9.167) and (9.168) into Eq. (9.165). Taking into account that

r21 þ r22 ¼ 2a2; r21 � r22 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � b4

p
; r21r

2
2 ¼ b4

where a2 and b4 are the coefficients of Eq. (9.153) and r1 and r2 are the roots of the corresponding
characteristic equation, we can write the biorthogonality condition, Eq. (9.165), in the following form:Z1

�1

�
r21umun � r22vmvn

�
dy ¼ 0 (9.169)

in which msn.
Finally, rewrite the boundary conditions in Eqs. (9.163) in terms of the functions um and

vm, i.e., X
m

Cm cosh lm$ðum þ vmÞ ¼ �wp;
X
m

Cmlm sinh lm$ðum þ vmÞ ¼ 0

Differentiate these equations twice, taking into account that in accordance with Eqs. (9.168)

u00m ¼ �r21l
2
mum; v00m ¼ �r22l

2
mvm

Thus, X
m

Cml
2
m cosh lm$

�
r21um þ r22vm

� ¼ w00
p (9.170)

X
m

Cml
3
m sinh lm$

�
r21um þ r22vm

� ¼ 0 (9.171)

Decompose Eq. (9.170) as X
m

Cml
2
mr

2
1 cosh lm$umðyÞ ¼ 41ðyÞ (9.172)

X
m

Cml
2
mr

2
2 cosh lm$vmðyÞ ¼ 42ðyÞ (9.173)

Here, 41ðyÞ and 42ðyÞ are some unknown functions such that

41ðyÞ þ 42ðyÞ ¼ w00
p (9.174)
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Note that if we knew the functions 41ðyÞ and 42ðyÞ, we could readily find the constants Cm. Indeed,
multiply Eqs. (9.172) and (9.173) by un and vn (nsm) respectively, subtract the second equation from
the first one, and integrate from �1 to 1 to get

X
m

Cml
2
m cosh lm

Z1
�1

�
r21umun � r22vmvn

�
dy ¼

Z1
�1

ð41un � 42vnÞdy

Applying Eq. (9.169), we arrive at

Cn ¼

Z 1

�1
ð41un � 42vnÞdy

l2n cosh ln

Z 1

�1

�
r21u

2
n � r22v

2
n

�
dy

(9.175)

However, we do not know the functions 41ðyÞ and 42ðyÞ in Eqs. (9.172) and (9.173). To determine
these functions, decompose Eq. (9.171) in a similar way, i.e.,X

m

Cml
3
mr

2
1 sinh lm$umðyÞ ¼ j1ðyÞ (9.176)

X
m

Cml
3
mr

2
2 sinh lm$vmðyÞ ¼ j2ðyÞ (9.177)

where

j1ðyÞ þ j2ðyÞ ¼ 0 (9.178)

Consider Eqs. (9.172) and (9.176). Decompose the symmetric functions cosh lm and lm sinh lm into
the following power series:

cosh lm ¼
XN
i¼1

ail
2i
m ; lm sinh lm ¼

XN
i¼1

bil
2m
i (9.179)

where ai and bi are some coefficients, the values of which are not important for the further derivation.
Then, Eqs. (9.172) and (9.176) can be presented as

41ðyÞ ¼
P
m
Cmr

2
1l

2
mumðyÞ

P
i
ail

2i
m ¼ r21

P
i
ai
P
m
Cml

2ðiþ1Þ
m umðyÞ

j1ðyÞ ¼
P
m
Cmr

2
1l

2
mumðyÞ

P
i
bil

2i
m ¼ r21

P
i
bi
P
m
Cml

2ðiþ1Þ
m umðyÞ

(9.180)

Summation with respect to m and i is interchanged in the second part of Eqs. (9.180). Now, differ-
entiate the functions um 2n times. Taking into account Eqs. (9.168) for um, we get

uð2nÞm ðyÞ ¼ ð�1Þnr2n1 l2nm umðyÞ
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Thus, Eqs. (9.180) after differentiation become

4
ð2nÞ
1 ðyÞ ¼ ð�1Þnr2ðnþ1Þ

1

P
i
ai
P
m
Cml

2ðiþnþ1Þ
m umðyÞ

j
ð2nÞ
1 ðyÞ ¼ ð�1Þnr2ðnþ1Þ

1

P
i
bi
P
m
Cml

2ðiþnþ1Þ
m umðyÞ

Multiply these equations by

ð�1Þn bn

r
2ðnþ1Þ
1

and ð�1Þn an

r
2ðnþ1Þ
1

respectively, and sum them up with respect to n, i.e.,P
n
ð�1Þn bn

r
2ðnþ1Þ
1

4
ð2nÞ
1 ðyÞ ¼

X
n

X
i

aibn
X
m

Cml
2ðiþnþ1Þ
m umðyÞ

P
n
ð�1Þn an

r
2ðnþ1Þ
1

j
ð2nÞ
1 ðyÞ ¼

X
n

X
i

anbi
X
m

Cml
2ðiþnþ1Þ
m umðyÞ

The right-hand parts of these equations are the same and, hence, so are the left-hand parts. Thus,X
n

ð�1Þn bn

r
2ðnþ1Þ
1

4
ð2nÞ
1 ðyÞ ¼

X
n

ð�1Þn an

r
2ðnþ1Þ
1

j
ð2nÞ
1 ðyÞ (9.181)

Repeating the foregoing procedure for the functions 42ðyÞ and j2ðyÞ in Eqs. (9.173) and (9.177), we
can write the following equation similar to Eq. (9.181):X

n

ð�1Þn bn

r
2ðnþ1Þ
2

4
ð2nÞ
2 ðyÞ ¼

X
n

ð�1Þn an

r
2ðnþ1Þ
2

j
ð2nÞ
2 ðyÞ (9.182)

Thus, we have four equations, Eqs. (9.174), (9.178), and (9.181), (9.182), for functions 41ðyÞ, 42ðyÞ,
j1ðyÞ, and j2ðyÞ. However, Eqs. (9.181) and (9.182) are differential equations of infinitely high order.
In principle, these equations can be solved using the method based on the algebra of pseudo-
differential operators (Lurie and Vasiliev, 1995). Since the description of these techniques is rather
cumbersome, we use an alternative approach allowing us to reduce the differential operators in
Eqs. (9.181) and (9.182) to polynomials. The particular solution wp specified by Eq. (9.151), being an
even function which is zero at y ¼ �1, can be decomposed in the following Fourier series:

wpðyÞ ¼
XN
j¼1

wj cos
�
ajy
�
; aj ¼ p

2
ð2j� 1Þ; wj ¼ p0b

4

24D2a
5
j

�
3� a2j

�
sin
�
ajy
�

(9.183)

In a similar way,

41;2ðyÞ ¼
X
j

41j;2j cos
�
ajy
�
; j1;2ðyÞ ¼

X
j

j1j;2j cos
�
ajy
�

(9.184)

where, in accordance with Eqs. (9.174) and (9.178),

41j þ 42j ¼ �a2j wj; j1j þ j2j ¼ 0 (9.185)
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Substituting Eqs. (9.184) into Eqs. (9.181) and (9.182), we arrive at

41j

P
n
bn

�
aj

r1

�2n

¼ j1j

P
n
an

�
aj

r1

�2n

42j

P
n
bn

�
aj

r1

�2n

¼ j2j

P
n
an

�
aj

r2

�2n

Applying the expressions for the power series in Eqs. (9.179), we get

41j
aj

r1
sinh

�
aj

r1

�
¼ j1j cosh

�
aj

r1

�
; 42j

aj

r2
sinh

�
aj

r2

�
¼ j2j cosh

�
aj

r2

�
Solving these equations in conjunction with Eqs. (9.185), we find

41j ¼ �wjbjr1 sinh

�
aj

r2

�
; 42j ¼ wjbjr2 sinh

�
aj

r1

�
(9.186)

where

bj ¼
a2j

r1 sinh

�
aj

r2

�
� r2 sinh

�
aj

r1

�
Using Eqs. (9.184) and (9.186) and applying Eq. (9.175), we arrive at the following expression for the
constants in Eq. (9.152):

Cn ¼ � 1

l2ncoshln

Z 1

�1

�
r21u

2
n � r22v

2
n

�
dy



XN
j¼1

wjbj

24r1 sinh�aj
r2

� Z1
�1

un cos
�
ajy
�
d yþ r2 sinh

�
aj

r1

� Z1
�1

vn cos
�
ajy
�
d y

35
in which ln are the roots of Eq. (9.159), whereas unðyÞ and vnðyÞ are specified by Eqs. (9.168).
Calculating the integrals, we finally get

C1n ¼

PN
j¼12wjajbj cos

�
r1ln

�
cos

�
r2ln

�
sin aj

264r1 sinh
�
aj

r2

�
r21l

2
n � a2j

�
r2 sinh

�
aj

r1

�
r22l

2
n � a2j

375
ln cosh lnfr1 cos2ðr2lnÞ½r1ln þ sinðr1lnÞ cosðr1lnÞ� � r2 cos2ðr1lnÞ½r2ln þ sinðr2lnÞ cosðr2lnÞ�g

(9.187)
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The foregoing solution corresponds to the case D3 >
ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
for which r1 and r2 are real numbers

specified by Eq. (9.155). For the case D3 <
ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
, r1 and r2 are complex numbers, given by

Eq. (9.156), according to which

r1;2 ¼ t1Hit2; t1;2 ¼ b

a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1

D2

r
H

D3

D2

s
In this case, the foregoing solution should be transformed using the following relations:

sin ðt1Hit2Þ ¼ sin t1$ cosh t2Hi cos t1$ sinh t2

cosðt1Hit2Þ ¼ cos t1$ cosh t2Hi sin t1$ sinh t2

sinhðt1Hit2Þ ¼ sinh t1$ cos t2Hi cosh t1$ sin t2

cosh ðt1Hit2Þ ¼ cosh t1$ cos t2Hisinh t1$ sin t2

For the case D3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
, i.e., for an isotropic plate, the characteristic equation corresponding to Eq.

(9.153) has double-reiterated roots r1;2 ¼ c, where c ¼ b=a. To study this case, we should put in the

foregoing equations r1 ¼ c and r2 ¼ cþ ε and go to the limit taking ε/0. For example, Eq. (9.159)
for an isotropic plate reduces to

sin 2clm þ 2clm ¼ 0 (9.188)

This equation has only complex roots

2cln ¼ �rn � itn (9.189)

The real, rn, and imaginary, tn, parts of the first five roots are presented in Table 9.2. Consider, for
example, a square (a ¼ b) isotropic plate loaded with uniform pressure p0. The normalized deflection
at the plate center w ¼ wðx ¼ 0; y ¼ 0ÞD2=16p0a

4 calculated with the aid of the foregoing equations is
w ¼ 0:00128 (Lurie and Vasiliev, 1995). The relatively accurate approximate solution presented by
Timoshenko and Woinowsky-Krieger (1959) is w ¼ 0:00126.

9.4.2 Approximate solutions for classical plate theory

The exact solutions presented in the previous section, particularly the solution for the clamped plate given
by Eqs. (9.152), (9.160), and (9.187), are rather cumbersome for practical applications. For this purpose,
efficient approximate solutions can be constructed using applied methods of analysis (Vasiliev, 1993).

Consider a plate for which a > b (see Fig. 9.17) and represent its deflection as

wðx; yÞ ¼ WðxÞ$f ðyÞ (9.190)

TABLE 9.2 Roots (Eq. 9.189) of Eq. (9.188)

n 1 2 3 4 5

rn
4.211 10.713 17.073 23.398 29.700

tn
2.250 3.103 3.550 3.859 4.093
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Here, f ðyÞ is some function that satisfies the boundary conditions at the plate long edges y ¼ 0 and y ¼ b
(see Fig. 9.17) and approximates the plate deflection in the transverse direction. The function f ðyÞ can
be taken as the deflection of the beam of unit width with the corresponding boundary conditions. Such
functions are presented in Table 8.1. Neglecting the shear deformation, i.e., taking S/N, and
changing x to y and l to b, we get

f ðyÞ ¼ y4 � 2by3 þ b3y (9.191)

for the beam with simply supported edges y ¼ 0 and y ¼ b (see Fig. 9.18) and

f ðyÞ ¼ y2ðb� yÞ2 (9.192)

for the plate with clamped edges y ¼ 0 and y ¼ b (see Fig. 9.20).
Since the functions in Eqs. (9.191) and (9.192) satisfy the boundary conditions, we can apply the

Bubnov-Galerkin method (Grigolyuk, 1996) to obtain the approximate solutions. Consider the gov-
erning equation, Eq. (9.125). Substitute the deflections, Eq. (9.190), into Eq. (9.125), multiply it by
f ðyÞ, and integrate with respect to y from 0 to b to get the following ordinary differential equation
for W(x):

D1W
IV
Zb
0

f 2dyþ 2D3W
00
Zb
0

f 00fdyþ D2W

Zb
0

f IV fdy ¼
Zb
0

pfdy (9.193)

Using the boundary conditions for the functions given by Eqs. (9.191) and (9.192) and integrating by
parts, we have Zb

0

f 00fdy ¼ �
Zb
0

ðf 0Þ2dy;
Zb
0

f IV fdy ¼
Zb
0

ðf 00Þ2dy

Thus, Eq. (9.193) reduces to

WIV � 2k21W
00 þ k42W ¼ kp (9.194)

y

x

b

2/a 2/a

(a) (b)

y

x2/a 2/a

b

FIGURE 9.20

Plates with clamped longitudinal edges and simply supported (a) and clamped (b) transverse edges.
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where

k21 ¼ D3c2
D1c1

; k42 ¼ D2c3
D1c1

; kp ¼ cp
D1c1

in which

c1 ¼
Zb
0

f 2dy; c2 ¼
Zb
0

ðf 0Þ2dy; c3 ¼
Zb
0

ðf 00Þ2dy; cp ¼
Zb
0

pfdy (9.195)

For plate loaded with uniform pressure p ¼ p0,

cp ¼ p0c; c ¼
Zb
0

fdy (9.196)

The solution of Eq. (9.194) is specified by Eq. (9.141), i.e.,

W ¼
X4
i¼1

ciFiðxÞ þWp

The functions Fi are given in Table 9.1. For uniform pressure p ¼ p0 and the same boundary
conditions at the plate transverse edges x ¼ � a=2 (see Figs. 9.18 and 9.20)

W ¼ c1F1ðxÞ þ c2F2ðxÞ þWp (9.197)

in which

Wp ¼ p0c

D1c1

The constants c1 and c2 can be found from the boundary conditions at x ¼ � a=2.
If the plate longitudinal edges ðy ¼ 0; y ¼ bÞ are simply supported (Fig. 9.18), the function f(y) is

specified by Eq. (9.191) and the coefficients given by Eqs. (9.195) and (9.196) are

c1 ¼ 0:04921b9; c2 ¼ 0:48571b7; c3 ¼ 4:8b5; c ¼ 0:2b5

If the plate transverse edges ðx ¼ � a=2Þ are also simply supported (see Fig. 9.18a), the solution in
Eqs. (9.190) and (9.197) can be written as

w
�
x; y
� ¼ Wp½1� F1ðxÞ�

�
y4 � 2by3 þ b3y

�
(9.198)

where F1(x) is specified by Eq. (9.146).
For a plate with simply supported longitudinal edges and clamped transverse edges

w
�
x; y
� ¼ Wp½1� F2ðxÞ�

�
y4 � 2by3 þ b3y

�
(9.199)

(Fig. 9.18b), where F2(x) is given by Eq. (9.147).
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For a plate with clamped longitudinal edges (see Fig. 9.20), the function f(y) corresponds to Eq.
(9.192), whereas the coefficients in Eqs. (9.195) and (9.196) become

c1 ¼ 0:001587b9; c2 ¼ 0:01905b7; c3 ¼ 0:8b5; c ¼ 0:03333b5

If the plate transverse edges are simply supported

w
�
x; y
� ¼ Wp½1� F1ðxÞ�y2

�
b2 � y2

�
(9.200)

(see Fig. 9.20a), where F1(x) is given by Eq. (9.146).
Finally, for a plate with clamped edges

w
�
x; y
� ¼ Wp½1� F2ðxÞ�y2

�
b2 � y2

�
(9.201)

(see Fig. 9.20b), in which F2(x) is specified by Eq. (9.147).
The simple approximate solutions obtained are typically fairly accurate. In particular, the deflec-

tion closely coincides with the corresponding exact solution, whereas the accuracy of the moment is
within about 5% (Vasiliev, 1993). Approximate solutions for orthotropic plates with various boundary
conditions have been presented by Whitney (1971), Dalaei and Kerr (1995), and Bhaskar and Kaushik
(2004).

9.4.3 Shear deformable orthotropic symmetric plates

The behavior of shear deformable orthotropic symmetric plates under transverse bending is described
by Eqs. (9.40)–(9.42). The exact solution of these equations can be found for simply supported plates
(see Fig. 9.14) with the classical boundary conditions

w ¼ 0; Mx ¼ 0; qy ¼ 0 for the edges x ¼ constant

w ¼ 0; My ¼ 0; qx ¼ 0 for the edges y ¼ constant

For the simply supported plate shown in Fig. 9.14 with the foregoing boundary conditions, the function
W(x,y) in Eq. (9.40) can be taken in the form of the following series:

Wðx; yÞ ¼
X
m

X
n

Wmn sin lmx$sin lny (9.202)

where lm ¼ pm=a; ln ¼ pn=b. The pressure pðx; yÞ should be decomposed into a similar series
specified by Eq. (9.131). Then, substitution into Eq. (9.40) yields

Wmn ¼ pmn
Rmn

(9.203)

where

Rmn ¼ Dmnl
2
m þ Dnml

2
n þ 2Dl2ml

2
n þ

�
DmnDnm � Dl2ml

2
n

��l2n
Sx

þ l2m
Sy

�
in which

Dmn ¼ D11l
2
m þ D44l

2
n; Dnm ¼ D22l

2
n þ D44l

2
m; D ¼ D12 þ D44
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The rotation angles and the deflection can be found from Eqs. (9.41) and (9.42) as

qx ¼
P
m

P
n
qmnx cos lmx$ sin lny

qy ¼
P
m

P
n
qmny sin lmx$ cos lny

w ¼P
m

P
n
wmn sin lmx$ sin lny

(9.204)

where

qmnx ¼ �lmWmn

�
1þ Dnm

Sy
� D

Sx
l2n

�

qmny ¼ �lnWmn

�
1þ Dmn

Sx
� D

Sy
l2m

�
wmn ¼ cmnWmn (9.205)

in which

cmn ¼ 1þ Dmn

Sx
þ Dnm

Sy
þ 1

SxSy

�
DmnDnm � Dl2ml

2
n

�
The bending moments and transverse shear forces can be found with the aid of Eqs. (9.32) and (9.34).

For plates with other boundary conditions, approximate analytical solutions are usually derived.
Note that the governing equations of the theory of shear deformable plates have a special structure that
allows us to simplify the problem. To study this structure, consider a semi-infinite plate with simply
supported longitudinal edges as shown in Fig. 9.9. The pressure is specified by Eq. (9.111), according
to which

p ¼ p0 sin ly; l ¼ p

b
(9.206)

The solution of Eq. (9.40) can be presented in the form

Wðx; yÞ ¼ FðxÞ sin ly

Substitution into Eq. (9.40) results in the following ordinary differential equation:

�D1D44

Sy
FV I þ

	
D1 þ

�
D1D44

Sx
þ 1

Sy
ðD1D2 � D12D3Þ

�
l2


FIV

�
	
2D3l

2 þ
�
D1D44

Sy
þ 1

Sx
ðD1D2 � D12D3Þ

�
l4


F00 þ

�
D2 þ D44

Sx
l2
�
l4F ¼ p0

(9.207)

Here, D1, D2, and D3 are specified by Eqs. (9.126). Recall that for isotropic plates (see Section 9.3.2),
Eq. (9.207) degenerates into a set of two separate equations, Eqs. (9.113) and (9.114). For orthotropic
plates, we have a unique equation of the sixth order which cannot be reduced exactly to two inde-
pendent equations. However, applying the asymptotic method (Reissner, 1989, 1991), we can
approximately reduce the sixth-order equation to a set of a fourth-order and second-order equations.
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It follows from Section 9.3.2 that Eq. (9.207) has two solution types, i.e., a penetrating solution and
a boundary-layer solution. The penetrating (or internal) part of the general solution Fi relatively slowly

changes over the plate surface, which means that the derivatives of this solution F
ðnÞ
i are of the same

order of magnitude as the function Fi. However, Eq. (9.207) contains the terms D and S in D=S which

have the order of magnitude h
2
, where h ¼ h=b, h being the plate thickness and b the in-plane

dimensions. To determine the penetration solution for relatively thin ðh � 1Þ plates, these small
terms can be neglected and Eq. (9.207) can be reduced to

D1F
IV
i � 2D3l

2F00
i þ D2l

4Fi ¼ p0 (9.208)

This equation is similar to Eq. (9.113).
The boundary-layer (or edge) solution Fe is a rapidly changing function whose derivatives can be

evaluated as F
ðnÞ
e ¼ Fe=h

ðnÞ
. Taking into account that D=S is proportional to h

2
, we can conclude that

only two terms of Eq. (9.207) (namely, the first one and the second) have the order ð1=h4Þ. Neglecting
the rest of the terms, we arrive at the following equation for the boundary-layer solution:

�D1D44

Sy
FV I
e þ D1F

IV
e ¼ 0

Reducing the order of this equation, we finally transform it into the following form:

F00
e �

Sy
D44

Fe ¼ 0 (9.209)

which is similar to Eq. (9.114). Thus, the solution of Eq. (9.207) becomes

F ¼ Fi þ Fe (9.210)

where Fi and Fe are the solutions of Eqs. (9.208) and (9.209), respectively. The total solution given by
Eq. (9.210) allows us to satisfy three boundary conditions at the plate edge.

Returning to the general case, i.e., to Eq. (9.40), we can present its approximate solution in a form
analogous to Eq. (9.210), i.e.,

W ¼ Wi þWe (9.211)

where Wi can be found from the following equation:

D1
v4W

vx4
þ 2D3

v4W

vx2vy2
þ D2

v4W

vy4
¼ p (9.212)

In the vicinity of the edge x ¼ constant, the boundary-layer solution satisfies the following equation
similar to Eq. (9.209):

v2We

vx2
� s2yWe ¼ 0; s2y ¼

Sy
D44

(9.213)

whereas in the vicinity of the edge y ¼ constant

v2We

vy2
� s2xWe ¼ 0; s2x ¼

Sx
D44

(9.214)
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Thus, the solution should be constructed separately for the edges x ¼ constant and y ¼ constant.
It follows from Section 9.3.2 that for relatively thin plates whose edges are fixed with respect to

deflection, the boundary-layer solution can be neglected in comparison with the penetrating solution.
Naturally, in this case only two boundary conditions can be formulated at the plate edge. However, for
the plates under consideration, three boundary conditions can be reduced to two as shown in Section
9.3.2. The penetrating solution can be found from Eq. (9.212), whereas the expressions for the rotation
angles and deflection in Eqs. (9.41) and (9.42) are simplified to

qx ¼ � vWi

vx
; qy ¼ � vWi

vy
; w ¼ Wi � D1

Sx

v2Wi

vx2
� D2

Sy

v2Wi

vy2
(9.215)

The moments and the forces are

Mx ¼ �
�
D1

v2Wi

vx2
þ D12

v2Wi

vy2

�
; My ¼ �

�
D2

v2Wi

vy2
þ D12

v2Wi

vx2

�

Mxy ¼ �2D44
v2Wi

vxvy

V x ¼ � v

vx

�
D1

v2Wi

vx2
þ D3

v2Wi

vy2

�
; V y ¼ � v

vy

�
D2

v2Wi

vy2
þ D3

v2Wi

vx2

�
Note that the foregoing set of equations for the penetrating solution in the theory of shear deformable
plates has been obtained for isotropic plates by L. Donnell (1959, 1976) as a generalization of the
corresponding Timoshenko (1921) beam theory. In this theory, the first term in Eqs. (9.215) is the part
of the plate deflection caused by bending, whereas the last two terms take into account the part of the
deflection induced by shear deformation. To obtain the penetrating solution in the theory of shear
deformable plates the exact or approximate methods discussed in Sections 9.4.1 and 9.4.2 as applied in
classical plate theory can be used. It is only necessary to take into account that in accordance with
Donnell’s interpretation Wi in Eq. (9.215) is the deflection w corresponding to classical plate theory.
Thus, the approximate solutions of classical plate theory specified by Eqs. (9.198)–(9.201) are valid for
the shear deformable plate theory under consideration if we change w(x,y) to Wiðx; yÞ in the left-hand
parts of these equations and apply Eq. (9.215) to determine the plate deflection.

However, as shown in Section 9.3.2, the boundary-layer solution can be neglected if the parameters
sx and sy in Eqs. (9.213) and (9.214) are much larger than the parameter l for the penetrating solution
in Eq. (9.206). If these parameters are of the same order of magnitude, the boundary-layer solution
cannot be neglected in comparison with the penetrating solution. This situation usually occurs for thick
sandwich plates with a shear deformable core (see the conclusion of Section 9.3.2).

Consider two particular cases for which the problem can be readily solved, i.e., square and close-to-
square plates (see Fig. 9.15a) and long plates (see Fig. 9.15b).

To study square and close-to-square plates, apply the initial equilibrium equations, i.e., Eqs. (9.36)
for qx; qy, and w which describe both the penetrating and the boundary-layer states of the plate. For the
plates under consideration, introduce the following one-term approximations:

qx
�
x; y
� ¼ Cx$qxx

�
x
�
$qxy

�
y
�

qy
�
x; y
�¼ Cy$qyx

�
x
�
$qyy

�
y
�

w
�
x; y
� ¼ W$wx

�
x
�
$wy

�
y
� (9.216)
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in which Cx, Cy, and W are some constants and qxx; qxy; qyx; qyx; wx, and wy are preassigned coor-
dinate functions that satisfy the boundary conditions. Applying the Bubnov-Galerkin method, multiply
Eqs. (9.36) by qxxqxy, qyxqyy, and wxwy, respectively, and integrate the resulting equations over the plate
surface (see Fig. 9.1). As a result, Eqs. (9.36) reduce to the following algebraic equations for the
coefficients Cx and Cy, and

A11Cx þ A12Cy þ A13W ¼ 0

A21Cx þ A22Cy þ A23W ¼ 0

A31Cx þ A32Cy þ A33W þ Ap ¼ 0

(9.217)

where

A11 ¼ D11a1b1 þ D44a2b2 � Sxa2b1

A12 ¼ Da3b3; A13 ¼ �Sxa4b4; A21 ¼ Da5b5

A22 ¼ D22a6b6 þ D44a7b7 � Sya6b7

A23 ¼ �Sya8b8; A31 ¼ Sxa9b9; A32 ¼ Sya10b10

A33 ¼ Sxa11b11 þ Sya12b12; Ap ¼
Za
0

Zb
0

pwxwydxdy

in which

a1 ¼
Za
0

q00xxqxxdx; a2 ¼
Za
0

q2xxdx; a3 ¼
Za
0

q0yxqxxdx; a4 ¼
Za
0

w0
xqxxdx

a5 ¼
Za
0

q0xxqyxdx; a6 ¼
Za
0

q2yxdx; a7 ¼
Za
0

q00yxqyxdx; a8 ¼
Za
0

wxqyxdx

a9 ¼
Za
0

q0xxwxdx; a10 ¼
Za
0

qyxwxdx; a11 ¼
Za
0

w00
xwxdx; a12 ¼

Za
0

w2
xdx

and

b1 ¼
Zb
0

q2xydy; b2 ¼
Zb
0

q00xyqxydy; b3 ¼
Zb
0

q0yyqxydy; b4 ¼
Zb
0

wyqxydx

b5 ¼
Zb
0

q0yyqyydy; b6 ¼
Zb
0

q00yyqyydy; b7 ¼
Zb
0

q2yydy; b8 ¼
Zb
0

wyqyydx

b9 ¼
Zb
0

qxywydy; b10 ¼
Zb
0

q0yywydy; b11 ¼
Zb
0

w2
ydy; b12 ¼

Zb
0

w00
ywydx
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The solution of Eqs. (9.127) is

qx ¼ Ap

A
ðA12A23 � A22A23Þ

qy ¼ Ap

A
ðA21A13 � A11A23Þ

W ¼ Ap

A
ðA11A23 � A12A21Þ

(9.218)

where

A ¼ ½ðA32A23 � A22A33ÞA11 þ ðA22A31 � A32A21ÞA13 þ ðA21A33 � A31A23ÞA12�
We take the solutions of the theory of shear deformable beams (see Table 8.1) presented in Table 9.3 as
the coordinate functions in Eqs. (9.216).

Consider the second particular case, i.e., long plates as depicted in Fig. 9.15b. For such plates, we
can assume that in the middle part of the plate the stress-strain state does not depend on the

TABLE 9.3 Coordinate Functions for the Plates Loaded with Uniform Pressure

Boundary Conditions Coordinate functions

wxðxÞ ¼ qyxðxÞ ¼ x4 � 2ax3 � 12D1

Sx
x2 þ

�
a3 þ 12D1a

Sx

�
x

qxxðxÞ ¼ 4x3 � 6ax2 þ a3

wyðyÞ ¼ qxyðyÞ ¼ y4 � 2by3 � 12D2

Sy
y2 þ

�
b3 þ 12D2b

Sy

�
y

qyyðyÞ ¼ 4y3 � 6by2 þ b3

wxðxÞ ¼ qyxðxÞ ¼ �x4 þ 2ax3 þ
�
12D1

Sx
� a2

�
x � 12D1ax

Sx
qxxðxÞ ¼ 2x3 � 3ax2 þ a2x

wyðyÞ ¼ qxyðyÞ ¼ �y4 þ 2by3 þ
�
12D2

Sy
� b2

�
y � 12D2by

Sy
qyyðyÞ ¼ 2y3 � 3by2 þ b2y

wxðxÞ ¼ qyxðxÞ ¼ �x4 þ 2ax3 þ
�
12D1

Sx
� a2

�
x � 12D1ax

Sx
qxxðxÞ ¼ 2x3 � 3ax2 þ a2x

wyðyÞ ¼ qxyðyÞ ¼ y4 � 2by3 � 12D2

Sy
y2 þ

�
b3 þ 12D2b

Sy

�
y

qyyðyÞ ¼ 4y3 � 6by2 þ b3
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x-coordinate. Then, the problem reduces to the bending of a beam of unit width, the solution for which
is obtained in Chapter 8 (see Table 8.1). The basic equations for infinitely long plates are presented in
Table 9.4.

As an example, consider a simply supported rectangular plate with thickness h ¼ 15 mm, width
b ¼ 250 mm, and various aspect ratios a/b. The plate has a sandwich structure with carbon-epoxy
facing layers and an aluminum honeycomb core. The plate parameters are D1 ¼ D2 ¼ D,
D12=D ¼ D44=D ¼ 0:25, D=b2Sx ¼ 0:04, and D=b2Sy ¼ 0:08. The normalized maximum deflection
of the plate wm=b as a function of the aspect ratio a/b is shown in Fig. 9.21. The solid line corresponds
to the exact solution, Eq. (9.203), and the dashed line shows the solution given by Eqs. (9.218) cor-
responding to square and close-to-square plates, whereas the dotted line demonstrates the solution for
an infinitely long plate (see Table 9.4). As can be seen, for 1 	 a=b 	 1:75 the plate can be treated as
close to square and for a=b > 3 the solution for an infinitely long plate can be applied.

In the general case (or for 1:75 	 a=b 	 3), the problem cannot be considerably simplified and the
general equations, Eqs. (9.36), must be solved. Apply the approximate method described in Section
9.4.2 and represent the unknown functions in the following form:

qx
�
x; y
� ¼ Fx

�
x
�
:qxy
�
y
�
; qy

�
x; y
� ¼ Fy

�
x
�
:qyy
�
y
�
; w

�
x; y
� ¼ W

�
x
�
:wy

�
y
�

(9.219)

TABLE 9.4 Equations for Infinitely Long Orthotropic Plates Under Uniform Pressure p0

Boundary Conditions Equations

w ¼ p0
24D2

�
b3 � 2by2 þ y3 þ 12

D2

Sy
ðb � yÞ

�
y

qy ¼ � p0
24D2

�
b3 � 6by2 þ 4y3

�
My ¼ 1

2
p0
�
b � y

�
y

Vy ¼ 1

2
p0
�
b � 2y

�

w ¼ p0
24D2

�
y
�
b � y

�þ 12
D2

Sy

��
b � y

�
y

qy ¼ � p0
12D2

�
2y2 � 3by þ b2

�
y

My ¼ �p0
12

�
6y2 � 6by þ b2

�
Vy ¼ �p0

2

�
2y � b

�
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Here, Fx, Fy, and W are the unknown functions of the coordinate x, whereas the functions qxy,qyy, and
wy are presented in Table 9.3 for various boundary conditions. Multiply Eqs. (9.36) by qxy;
qyy; and wy, respectively, and integrate them with respect to y from y ¼ 0 to y ¼ b (see Figs. 9.18 and
9.20). As a result, we arrive at the following set of ordinary differential equations for the functions
FxðxÞ, FyðxÞ, and WðxÞ :

L1x
�
Fx

�þ L1y
�
Fy

�þ L1w
�
W
� ¼ 0

L2x
�
Fx

�þ L2y
�
Fy

�þ L2w
�
W
� ¼ 0

L3x
�
Fx

�þ L3y
�
Fy

�þ L3w
�
W
�þ Lp ¼ 0

(9.220)

where

L1x
�
Fx

� ¼ 1

Sx

�
D1a11F

00
x þ D33b11Fx

�� a11Fx

L1y
�
Fy

� ¼ 1

Sx
Da21F

0
y; L1w

�
W
� ¼ �a13W

0

L2y
�
Fy

� ¼ 1

Sy

�
D2a22Fy þ D33b22F

00
y

�� b22Fy

L2x
�
Fx

� ¼ 1

Sy
Da21F

0
x; L2w

�
W
� ¼ �a23W

L3x
�
Fx

� ¼ Sxa31F
0
x; L3y

�
Fy

� ¼ Sya32Fy

L3w
�
W
� ¼ Sxa33W

00 þ SyWb33; Lp ¼
Zb
0

pwydy

b

a

.103

b

wm

1 2 3 4 5

1

2

3

4

5

FIGURE 9.21

Dependence of the normalized maximum deflection of a simply supported rectangular plate on the aspect ratio

a/b: exact solution ( ), solution for a square plate ( ), solution for an infinitely long plate

( ), numerical solution ( ).

544 CHAPTER 9 Laminated composite plates

www.EngineeringEBooksPdf.com



in which

a11 ¼
Zb
0

q2xydy; b11 ¼
Zb
0

q00xyqxydy; a12 ¼
Zb
0

q0yyqxydy; a13 ¼
Zb
0

wyqxydy

a21 ¼
Zb
0

q0xyqyydy; a22 ¼
Zb
0

q00yyqyydy; b22 ¼
Zb
0

q2yydy; a23 ¼
Zb
0

w0
yqyydy

a31 ¼
Zb
0

qxywydy; a32 ¼
Zb
0

q0yywydy; a33 ¼
Zb
0

w2
ydy; b33 ¼

Zb
0

w00
ywydy

In principle, Eqs. (9.220) can be solved analytically. They can be reduced to sixth-order ordinary
differential equations and further to third-order algebraic characteristic equations, the roots of which
specify the form of the general solution. This solution includes six constants which can be found from
the boundary conditions for the plate edges x ¼ �a=2 (see Fig. 9.18 or 9.20). However, it is easier to
apply numerical integration of Eqs. (9.220). For the aspect ratio a/b ¼ 2, the result of such integration
is shown in Fig. 9.21 by a circle.

9.5 BUCKLING OF ORTHOTROPIC SYMMETRIC PLATES
As known, the plates subjected to in-plane compression and shear can buckle after the load reaches
some critical value. The problem of buckling is studied in this section.

9.5.1 Classical plate theory

Consider a rectangular plate simply supported at the edges and loaded with external in-plane line loads
Tx, Ty, and Txy (see Fig. 9.22). Under the action of in-plane compression or shear, the initial plane
shape of the plate can become unstable and the plate takes a curved shape shown, for example, in
Fig. 9.23. The corresponding forces that are referred to as critical loads can be found using the Euler
buckling criterion, according to which the critical load is the minimum load which provides, in
addition to the initial plane state of the plate, some curved shape of the plate close to this state which is
balanced by the applied in-plane forces. Thus, to determine the critical load, we must induce a small

xT

x

y xyT

yT

xT

yT

xyT
xyT

xyT

FIGURE 9.22

A plate loaded with in-plane loads.
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deflection of the plate (see the dashed lines in Fig. 9.23) and find the minimum in-plane load under
which the plate is in equilibrium with this load. The simplest way to derive the buckling equation
which allows us to determine the critical load is to apply the method described in Section 8.4 with
application to beams. Consider an element of the plate reference surface and induce small curvatures
kx and ky and twist kxy deforming the element as shown in Fig. 9.24, which is similar to Fig. 8.12 drawn
for the beam. It follows from Fig. 9.24 that the forces Tx; Ty; and Txy now acquire a nonzero projection
on the z-axis, which can be simulated by an imaginary pressure pn which is shown in Fig. 9.25;
compare Fig. 8.13 for the beam. This imaginary pressure can be found as

pn ¼ Txkx þ Tyky þ Txykxy (9.221)

in which kx, ky, and kxy are specified by Eqs. (9.49). Using these equations and taking p ¼ pn in the
equilibrium equation, Eq. (9.125) of classical plate theory, we arrive at the following buckling equation
for orthotropic plates:

D1
v4w

vx4
þ 2D3

v4w

vx2vy2
þ D2

v4w

vy4
þ Tx

v2w

vx2
þ Ty

v2w

vy2
þ 2Txy

v2w

vxvy
¼ 0 (9.222)

where, as earlier, D1 ¼ D11, D2 ¼ D22, and D3 ¼ D12 þ 2D44. For plates that are simply supported at
the edges x ¼ 0, x ¼ a and y ¼ 0, y ¼ b (see Fig. 9.22), the deflection can be presented in the form of

xTxT

x

y

b

a

FIGURE 9.23

Buckling mode of a plate under uniaxial compression.

z

xT

xT

yT

xyT

yT

xyT

xyT

xyT

FIGURE 9.24

A deformed element of the plate reference surface.
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double trigonometric series, i.e.,

w
�
x; y
� ¼X

m

X
n

wmn sin lmx$sin lny; lm ¼ pm

a
; ln ¼ pn

b
(9.223)

Each term of which satisfies the boundary conditions, Eqs. (9.128).
If the plate is subjected to uniaxial compression (see Fig. 9.23), Ty ¼ Txy ¼ 0 and Eq. (9.222)

reduces to

L
�
w
�þ Tx

v2w

vx2
¼ 0; L

�
w
� ¼ D1

v4w

vx4
þ 2D3

v4w

vx2vy2
þ D2

v4w

vy4
(9.224)

Substitution of Eq. (9.223) into Eq. (9.224) allows us to determine the force Tx which provides the
equilibrium of the plate with a nonzero deflection in Eq. (9.223), i.e.,

Tx ¼ p2

b2
Lmn (9.225)

where

Lmn ¼ D1lþ 2D3n
2 þ D2

n4

l
(9.226)

in which l ¼ ðmb=aÞ2. Thus, for each combination of the half-wave numbers m and n in Eq. (9.223)
for the deflection, there exists a force Tx specified by Eq. (9.225). For example, the curved shape of the
plate corresponding to m ¼ 2 and n ¼ 1 is shown in Fig. 9.23 with the dashed lines. The critical force
Tc
x corresponds to the minimum value of the coefficient Lmn with respect to m ¼ 1; 2; 3. and

n ¼ 1; 2; 3.. It follows from Eq. (9.226) that Lmn increases with an increase in n. Thus, the minimum
possible value n ¼ 1 must be taken in Eq. (9.226) and

Lmn ¼ Lm ¼ D1lþ 2D3 þ D2

l
(9.227)

The dependence of Lm=D1 on the plate aspect ratio a/b for various m-values is shown in Fig. 9.26 for
a carbon-epoxy angle-ply �45� rectangular plate. The solid parts of the lines correspond to the
minimum values of coefficient Lm. For example, for a=b < 1, we have the curve corresponding to
m ¼ 1. The points of intersection of the curves in Fig. 9.26 corresponding to (m – 1), m, and (m þ 1)
can be found from the following conditions: Lmðm� 1Þ ¼ LmðmÞ and LmðmÞ ¼ Lmðmþ 1Þ. These

np

FIGURE 9.25

Imaginary pressure simulating the action of forces Tx , Ty , and Txy .
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conditions allow us to determine m which provides the minimum value of Lm for a plate with given
stiffness and geometric parameters. The corresponding value of m satisfies the following inequality:

m
�
m� 1

�
<

a2

b2

ffiffiffiffiffiffi
D2

D1

r
< m

�
mþ 1

�
For example, let D2 ¼ D1 and a/b ¼ 1.75. Then, the foregoing condition, i.e.,

mðm� 1Þ < 3:06mðmþ 1Þ
is satisfied from m ¼ 2 which corresponds to the plate shown in Fig. 9.23.

For a=b � 2, i.e., for relatively long plates, the approximate minimum condition dLm=dl ¼ 0 can
be used for Lm in Eq. (9.227). As a result, we get

l2 ¼ D2

D1
; Lm ¼ 2

� ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p þ D3

�
(9.228)

For the example illustrated by Fig. 9.26, Lm=D1 ¼ 7:22. This result is depicted in Fig. 9.26 by the
dotted line. Substitution of Eq. (9.228) into Eq. (9.225) yields the following final expression for the
critical load:

Tc
x ¼ 2p2

b2
ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p �
1þ D3ffiffiffiffiffiffiffiffiffiffiffi

D1D2
p

�
(9.229)

For a homogeneous plate,

Tc
x ¼ p2h3

6b2

� ffiffiffiffiffiffiffiffiffiffi
ExEy

q
þ vxyEx þ 2Gxy

�
where

Ex;y ¼ Ex;y

1� vxyvyx
; Exvxy ¼ Eyvyx

1m

2m

4m

1/ DLm

b

a

0 1 2 3 4

8

12

16

3m

FIGURE 9.26

Dependence of Lm=D1 on the plate aspect ratio a/b.
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Consider biaxial loading with forces Tx and Ty (see Fig. 9.22). Taking Txy ¼ 0 in Eq. (9.222), we get

LðwÞ þ Tx
v2w

vx2
þ Ty

v2w

vy2
¼ 0

where LðwÞ is obtained from Eqs. (9.224). Substitution of the deflection into Eq. (9.223) yields

Txl
2
m þ Tyl

2
n ¼ D1l

4
m þ 2D3l

2
ml

2
n þ D2l

4
n

Introducing the loading parameter p ¼ Ty=Tx, we get Eq. (9.225) for Tx in which

Lmn ¼ n2l

lþ p

�
D1lþ 2D3 þ D2

l

�
; l ¼

�
mb

na

�2

(9.230)

For the given loading parameter p, the minimum value of Lmn can be found by sortingm, n ¼ 1; 2; 3..
Various combinations of loads Tx and Ty have been studied by Jones (2006).

For composite plates, a biaxial stress state can be induced by uniaxial loading with forces Tx only.
Consider the plane state of the plate loaded in the general case with forces Tx and Ty which cause the
in-plane strains ε0x and ε

0
y linked with the forces Tx and Ty by the constitutive equations, Eqs. (9.5), i.e.,

Tx ¼ B11ε
0
x þ B12ε

0
y ; Ty ¼ B21ε

0
x þ B22ε

0
y (9.231)

Assume that under compression in the x-direction with forces Tx the plate longitudinal edges y¼ 0 and
y ¼ b (see Fig. 9.23) can move in the y-direction. Then, Ty ¼ 0 and Eqs. (9.231) yield

ε
0
y ¼ �B21

B22
ε
0
x ; Tx ¼

�
B11 � B12B21

B22

�
ε
0
x

The critical force for such plates is specified by Eq. (9.229). Now assume that the plate longitudinal
edges are fixed, so that ε0y ¼ 0. Then, it follows from Eqs. (9.231) that a reactive force

Ty ¼ B21

B11
Tx ¼ vxyTx

appears in the plate due to Poisson’s effect. For composite plates, Poisson’s ratio vxy depends on the
material structure. For example, for 0�=90� cross-ply carbon-epoxy composite vxy ¼ 0:03, whereas for
angle-ply �45� composite vxy ¼ 0:75 and the effect of reactive biaxial loading can be significant. The
corresponding critical force Tc

x can be found from Eqs. (9.225) and (9.230) if we take p ¼ vxy, i.e.,

Tx ¼ p2n2l�
lþ vxy

�
b2

�
D1lþ 2D3 þ D2

l

�
(9.232)

and minimize Tx with respect to the parameter l. For an angle-ply �f carbon-epoxy square plate, the
dependence of the normalized critical load T ¼ Tc

x ðfÞ=Tc
x ðf ¼ 0Þ on the angle f is shown in Fig. 9.27.

Curve 1 corresponds to Eq. (9.229), whereas curve 2 is plotted in accordance with Eq. (9.232). As can
be seen, the reactive transverse force Ty can significantly reduce the critical load. Comparison of the
calculated and experimental critical loads for carbon-epoxy square plates with various vxy coefficients
is presented in Table 9.5. Plate No 1 consists of 7 plies with angles 0� and �45�. Plates No 2–4 are
composed of 11 plies with angles 0� and 90� (plate No 2), �45� (plate No 3), and 0�, 90�, and �45�
(plate No 4). Plate No 5 is a cross-ply (0�, 90�) laminate consisting of 15 plies and plate No 6 has
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9 plies with angles 0� and 90� and two aluminum face sheets with thickness 0.5 mm. For the plates
with vxy 	 0:3 (Nos 1, 2, and 4–6) the critical load is calculated using Eq. (9.229), whereas for plate No
3, Eq. (9.232) is applied because Eq. (9.229) gives the load which is about 80% higher than the
corresponding experimental result. It follows from Table 9.5 that Eqs. (9.229) or (9.232) predict the
critical load with reasonable accuracy.

Consider the action of compression and shear. TakingTy ¼ 0 (seeFig. 9.22), generalizeEqs. (9.224) as

L
�
w
�þ Tx

v2w

vx2
þ 2Txy

v2w

vxvy
¼ 0 (9.233)

TABLE 9.5 Calculated and Experimental Critical Loads for Square Composite Plates

Plate No h/a nxy

Critical Load, kN

Calculated Experimental

1 0.006 0.32 1.07 1.06

2 0.009 0.03 1.95 1.86

3 0.009 0.75 3.28 3.04

4 0.009 0.22 2.45 2.45

5 0.015 0.03 8.48 8.33

6 0.02 0.15 23.32 22.93

1

2

0

0.4

0.8

1.2

1.6

2.0

0 15 30 45 60 75 90

c
xT

FIGURE 9.27

Dependencies of the normalized critical load for angle-ply �f square carbon-epoxy plates on the ply angle f as

per Eq. (9.229) (curve 1) and Eq. (9.232) (curve 2).
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For a simply supported plate, apply Eq. (9.223) for the deflection and substitute it into Eq. (9.233).
Using the Bubnov-Galerkin method, multiply the resulting equation by sin lix$sin ljy and integrate it
over the plate surface. Taking into account that

Za
0

sin lmx$sin lix dx ¼

8><>:
a

2
for m ¼ i

0 for msi

Za
0

cos lmx$sin lix dx ¼

8>>>>><>>>>>:

0 for m ¼ i

2ai

pði2 � m2Þ for mþ i ¼ 2; 4; 6.

0 for mþ i ¼ 1; 3; 5.

and the similar integrals for the y-coordinate, we arrive at the following set of coupled algebraic
equations for the coefficients wmn:

wmn

�
p2

b2
ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p �
m4aþ 2m2n2bþ n4

a

�
� m2Tx

�
þ32Txy

amn

p2b

X
i

X
j

wijij

ðm2 � i2Þðn2 � j2Þ ¼ 0

(9.234)

where

a ¼ b2

a2

ffiffiffiffiffiffi
D1

D2

r
; b ¼ D3ffiffiffiffiffiffiffiffiffiffiffi

D1D2
p (9.235)

and m� i ¼ 1; 3; 5., and n� j ¼ 1; 3; 5.. Usually, the loads Tx and Txy are increased in proportion
to some loading parameter p. To find the critical value of this parameter, we must use the zero condition
for the determinant of Eq. (9.234) and minimize the root p of the resulting algebraic equation.

Consider the case of pure shear, taking Tx ¼ 0 in Eq. (9.234). The critical shear force can be
presented as

Tc
xy ¼ K

p2

ab

ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
(9.236)

(Azikov et al., 1990). The buckling coefficient calculated with the aid of Eq. (9.234) (22 terms in
Eq. (9.223) have been retained) is presented in Fig. 9.28 as the function of the parameters a and b in
Eqs. (9.235). As an example, consider the �45� angle-ply carbon-epoxy plate (see Fig. 9.29) with the
following parameters: a ¼ 196 mm, b ¼ 96 mm, D1 ¼ D2 ¼ 0:685N=m, and D3 ¼ 1:718N=m. For
this plate, Eqs. (9.235) yield a ¼ 0:24 and b ¼ 2:5 and interpolation of the curves in Fig. 9.28 gives
K ¼ 19.8. The corresponding experimental result is K ¼ 19.7.

Note that carbon-epoxy plates loaded with shear forces are used as composite shear webs in
modern aircraft structures. In the corresponding aluminum structures buckling of the shear webs is
usually allowed at the limit loads, because aluminum webs can buckle many times without failure.
However, this is not the case for composite webs made of relatively brittle carbon-epoxy materials.
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FIGURE 9.28

Dependence of the shear buckling coefficient on the parameters a and b.

FIGURE 9.29

Buckling and failure modes of �45� angle-ply carbon-epoxy shear web.
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After several cycles of loading, a crack which is parallel to the buckling lobe direction appears in the
composite plate (see Fig. 9.29).

Consider the case of combined loading with compressive forces Tx and shear forces Txy (see
Fig. 9.22). The critical combination of the forces can be found from the following condition:

Tx
Tc
x

þ
 
Txy
Tc
xy

!2

¼ 1 (9.237)

in which Tc
x and Tc

xy are specified by Eqs. (9.229) or (9.230) and Eq. (9.236). The dependencies of the
shear critical parameter K in Eq. (9.236) on the ratio Tx=T

c
x for carbon-epoxy composite plates with

various values of a and b parameters are shown in Fig. 9.30. The solid lines correspond to Eq. (9.237),
whereas the circles correspond to the exact solutions based on Eq. (9.234).

In conclusion, consider anisotropic plates which demonstrate specific behavior under shear. For
anisotropic plates, Eqs. (9.127) for the moments become

Mx ¼ �
�
D11

v2w

vx2
þ D12

v2w

vy2
þ 2D14

v2w

vxvy

�

My ¼ �
�
D21

v2w

vx2
þ D22

v2w

vy2
þ 2D24

v2w

vxvy

�

Mxy ¼ �
�
D41

v2w

vx2
þ D42

v2w

vy2
þ 2D44

v2w

vxvy

�
(9.238)
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FIGURE 9.30

Dependencies of the shear buckling coefficient K on the normalized axial compressive force Tx=T
c
x as per

Eq. (9.237) ( ) and according to the exact solution ( ); 1 (a ¼ 1, b ¼ 0:2); 2 (a ¼ 1, b ¼ 1);

3 (a ¼ 1, b ¼ 3)
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(see Eqs. (9.5)) and the buckling equation, Eq. (9.224), is generalized as

D1
v4w

vx4
þ 2D3

v4w

vx2vy2
þ D2

v4w

vy4
þ 4D14

v4w

vx3vy
þ 4D24

v4w

vxvy3
þ Tx

v2w

vx2
þ 2Txy

v2w

vxvy
þ Ty

v2w

vy2
¼ 0

For simply supported plates, the deflection in Eq. (9.223) provides the absence of the deflection at the
plate edges. However, it follows from Eqs. (9.223) and (9.238) that the bending moments are not zero
at x ¼ 0, x ¼ a and y ¼ 0, y ¼ b (see Fig. 9.23). Nevertheless, Eq. (9.223) can be used to approximate
the deflection within the framework of the Ritz method which allows us to violate the force boundary
conditions (Langhaar, 1962). To use this method, consider the total potential energy of an anisotropic
plate, i.e.,

T ¼ 1

2

Za
0

Zb
0

24Mx
v2w

vx2
þMy

v2w

vy2
þ 2Mxy

v2w

vxvy
� Tx

�
vw

vx

�2

� Ty

�
vw

vy

�2

� 2Txy
vw

vx

vw

vy

35dxdy (9.239)

(Whitney, 1987). Substituting the deflection, Eq. (9.223), into Eqs. (9.238) for the moments and the
expressions obtained for the moments into Eq. (9.239), we can express T in terms of wmn. Applying the
minimum conditions vT=vwmn ¼ 0, we arrive at the infinite set of coupled algebraic equations whose
determinant, being equal to zero, allows us, in principle, to determine the critical combination of forces
Tx, Ty , and Txy .

Consider three composite plates as shown in Fig. 9.31. The first plate (see Fig. 9.31a) has a �f

orthotropic angle-ply structure; the second and the third plates (see Figs. 9.31b and c) have unidi-
rectional structure and are reinforced at angles þf and �f to the x-axis, respectively. Under
compression, the second and the third plates demonstrate, as expected, similar behavior. However,
under shear, their behavior is different because in the þf plate the force Txy induces tension of the
fibers, whereas in the �f plate the fibers are compressed. Recall that the stiffness of unidirectional
composites in the fiber direction is much higher than the stiffness in the transverse direction. So, we
can expect that the critical shear force is different for the second and third plates, though the material
structure is similar.

The results of the buckling analysis are presented in Figs. 9.32 and 9.33. The critical load corre-
sponding to axial compression is considerably higher for the angle-ply plate (curve �f in Fig. 9.32),
whereas for the second and the third plates it is the same (curvesþf and �f in Fig. 9.32). The critical
force corresponding to shear is the highest for the third plate (curve �f in Fig. 9.33) for which the
fibers are compressed and lowest for the second plate (curveþf in Fig. 9.33) in which compression is
directed across the fibers.

x

y

φ+

φ−

xTxT
xyT

xyT

(a) (b) (c)

x

y

φ−

xT xT
xyT

xyT

x

y

φ+
xT xT
xyT

xyT

FIGURE 9.31

Angle-ply �f (a) and unidirectional þf (b) and �f (c) composite plates under compression and shear.
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FIGURE 9.32

Dependencies of the normalized critical compressive force on the angle f for �f angle-ply and þf or �f

unidirectionally reinforced plates.
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FIGURE 9.33

Dependencies of the normalized critical shear force on the angle f for �f angle-ply and þf or �f unidirec-

tionally reinforced plates.
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The foregoing buckling analysis has been undertaken for simply supported plates. For other
boundary conditions, approximate solutions can be obtained approximating the plate deflection with
some suitable functions which satisfy the boundary conditions. Krylov beam functions and Legendre
polynomials are used for this purpose by Khaziev and Boshers (2011). Various types of loading and
boundary conditions are considered by Veres and Kollar (2001), Shan and Qiao (2008), and Weaver
and Nemeth (2008).

9.5.2 Theory of shear deformable plates

The foregoing results (Section 9.5.1) correspond to the classical plate theory which ignores transverse
shear deformation. In practical problems, this deformation is generally negligible. However, there are
at least two cases in which it should be taken into account. The first case corresponds to relatively thick
plates such that the ratio of the plate thickness to the smallest in-plane dimension exceeds 0.02. Those
plates with relatively low transverse shear stiffness (e.g., sandwich plates with lightweight cores)
belong to the second case.

First, consider transversely isotropic plates as discussed in Section 9.3. For these plates

D11 ¼ D22 ¼ D; D12 ¼ vD; D44 ¼ 1� v
2

D; Sx ¼ Sy ¼ S

and the governing equation, Eq. (9.40) for orthotropic plates, reduces to

D

�
Dð1� vÞ

2S
D� 1

�
DDW þ p ¼ 0 (9.240)

For the case of bending considered in Section 9.3.2, Eq. (9.240) can be decomposed into two mutually
independent equations, Eq. (9.69) and Eq. (9.76). For the buckling problem, the pressure p should be
changed to the imaginary pressure pn specified by Eq. (9.221), according to which

pn ¼ �
�
Tx
v2w

vx2
þ Ty

v2w

vy2
þ 2Txy

v2w

vxvy

�
(9.241)

For the case of uniaxial compression with forces Tx (see Fig. 9.23), the buckling equation, following
from Eqs. (9.240) and (9.241), is

D

�
Dð1� vÞ

2S
D� 1

�
DDW � Tx

v2w

vx2
¼ 0 (9.242)

in which the deflection w is specified by Eq. (9.42), which for transversely isotropic plates takes the
form

w ¼ W � Dð3� vÞ
2S

DW þ D2ð1� vÞ
2S2

DDW (9.243)

For a simply supported plate, we can present the functions W as follows:

W ¼
X
m

X
n

Wmn sin lmx$sinlny (9.244)
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where lm ¼ pm=a and ln ¼ pn=b (see Fig. 9.23). Substituting the deflection w, Eq. (9.243), into
the buckling equation, Eq. (9.242), and using Eq. (9.244) for W, we arrive at the following expression
for Tx:

Tx ¼
D
�
l2m þ l2n

�2
l2m

�
1þ D

S

�
l2m þ l2n

�� (9.245)

Note that the same result can be obtained if we neglect the boundary-layer solution and consider Eqs.
(9.80) and (9.82) which specify only the penetrating solution. The buckling equation, following from
Eqs. (9.80), (9.82), and (9.241), can be represented by

DDD4� Tx
v2

vx2

�
4� D

S
D4

�
¼ 0

Decomposing 4 into a series similar to Eq. (9.244), we arrive at Eq. (9.245) for Tx.
Consider orthotropic plates. The solution of the buckling problem can be obtained using Eqs. (9.36)

in which the pressure p is changed to the imaginary pressure pn specified by Eq. (9.241). Then, the
buckling equations become

L1xðqxÞ þ L1y
�
qy
�þ L1wðwÞ ¼ 0

L2xðqxÞ þ L2y
�
qy
�þ L2wðwÞ ¼ 0

L3xðqxÞ þ L3y
�
qy
�þ L3wðwÞ ¼ Tx

v2w

vx2
þ Ty

v2w

vy2
þ 2Txy

v2w

vxvy

(9.246)

For simply supported plates, the angles qx and qy and the deflection w can be taken in the form of
double trigonometric series, Eqs. (9.204). Substitution of these series into Eqs. (9.246) yields three
homogeneous algebraic equations for the series coefficients qmnx , qmny , and wmn. The critical combi-
nation of loads Tx, Ty, and Txy is the first combination of loads (corresponding to the minimum loading
parameter according to which these loads increase) for which the determinant of the algebraic
equations is zero.

Particularly, for unidirectional compression with forces Tx (see Fig. 9.23), we get

Tx ¼
Dmnl

2
m þ Dnml

2
n þ 2Dl2ml

2
n þ

�
DmnDnm � D

2
l2ml

2
n

��l2n
Sx

þ l2m
Sy

�
l2m

�
1þ Dmn

Sx
þ Dmn

Sy
þ 1

SxSy

�
DmnDnm � D

2
l2ml

2
n

�� (9.247)

where, as earlier,

Dmn ¼ D11l
2
m þ D44l

2
n; Dnm ¼ D22l

2
n þ D44l

2
m; D ¼ D12 þ D44

lm ¼ pm

a
; ln ¼ pn

b
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Ignoring the transverse shear deformation, i.e., taking Sx/N and Sy/N, we arrive at Eq. (9.225)

corresponding to classical plate theory. The critical load Tc
x can be found if we minimize Tx in

Eq. (9.247) with respect to half-wave numbers, m, n¼ 1,2,3. . The allowance for transverse shear
deformation usually does not affect the critical values of half-wave numbers and they can be evaluated
using the equations derived in Section 9.5.1.

The solution obtained, Eq. (9.247), can be significantly simplified if we take into account the
results obtained previously for transversely isotropic plates and neglect the boundary-layer solution.
Thus, determine the critical load using Eqs. (9.212) and (9.215) which specify the penetrating solution.
Then, the buckling equation can be written as

D1
v4Wi

vx4
þ 2D3

v4Wi

vx2vy2
þ D2

v4Wi

vy4
þ Tx

v2w

vx2
þ 2Txy

v2w

vxvy
þ Ty

v2w

vy2
¼ 0

w ¼ Wi � D1

Sx

v2Wi

vx2
� D2

Sy

v2Wi

vy2

For simply supported plates, we can take Wi in accordance with Eq. (9.244) and for the case of
unidirectional compression (Ty¼0, Txy¼0) , derive the following expression for Tx which generalizes
Eq. (9.245)

Tx ¼ p2

b2

D1lþ 2D3n
2 þ D2

n4

l

1þ p2

b2

�
D1

Sx
lþ D2

Sy
n2
�; l ¼

�
mb

a

�2

(9.248)

It can be readily proved that vTx=vn
2 > 0, i.e., that function Tx(n

2) increases with increase in n2. Thus,
the minimum possible value n ¼ 1 must be taken, and Eq. (9.248) reduces to

Tx ¼ p2

b2

D1lþ 2D3 þ D2
1

l

1þ p2

b2

�
D1

Sx
lþ D2

Sy

� (9.249)

Using the minimum condition vTx=vl ¼ 0, we can arrive at a quadratic equation for l, but the cor-
responding solution looks rather cumbersome. For practical calculation, it is easier to apply a sorting
procedure to find parameter m ¼1,2,3. . Consider, for example, a square (a ¼ b) transversely
isotropic plate for which m ¼ 1, n ¼ 1, and Eqs. (9.247) or (9.248) yield

Tð1Þ
c ¼ 4p2D

a2ð1þ 2hÞ; h ¼ p2D

a2S

For classical plate theory, h ¼ 0 and

Tð2Þ
c ¼ 4p2D

a2
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The dependence of the normalized critical force Tc ¼ T
ð1Þ
c

T
ð2Þ
c

on the parameter h is presented in Fig. 9.34.

Note that for homogeneous and sandwich plates the parameter h is evaluated as

hh ¼
p2Eh2

12ð1� v2ÞGa2; hs ¼
p2Ef dh

2Gca2

in which Ef and d are the modulus and the thickness of the facing layers, and Gc and h are the shear

modulus and the thickness of the core of a sandwich plate. For composite plates, hh can reach 10h
2=a2

and for h=a 	 0:05 we have hh 	 0:025, so that the shear deformation is negligible. For sandwich

plates hs can reach 1000h2=a2 and even for thin plates ðh=a ¼ 0:01Þ, hs ¼ 0:1 and the shear defor-
mation must be taken into account.

9.6 POSTBUCKLING BEHAVIOR OF ORTHOTROPIC SYMMETRIC PLATES
UNDER AXIAL COMPRESSION
It is known that rectangular plates fixed at the edges with respect to deflection can take considerable
load after the onset of buckling. Consider a simply supported plate loaded with forces Tx uniformly
distributed over the plate transverse edges x¼ 0 and x¼ a (see Fig. 9.35). After buckling, the plate has
a curved shape characterized by some deflection w(x, y) and should be described by nonlinear

η

cT

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

FIGURE 9.34

Dependence of the normalized critical forces on parameter h for transversely isotropic square plates.
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equations (Vasiliev, 1993). We assume that the deflection is small so that the in-plane equilibrium
equation can be taken in accordance with Eqs. (9.29) corresponding to a flat plate, i.e.,

vNx

vx
þ vNxy

vy
¼ 0;

vNy

vy
þ vNxy

vx
¼ 0 (9.250)

where the stress resultants Nx, Ny , and Nxy are linked to the corresponding strains ε0x , ε
0
y , and g0xy by

constitutive equations, Eqs. (9.28), according to which

Nx ¼ B11ε
0
x þ B12ε

0
y ; Ny ¼ B21ε

0
x þ B22ε

0
y ; Nxy ¼ B44g

0
xy (9.251)

Here, in contrast to Eqs. (9.30), the strains allow for the plate deflection and can be written as

ε
0
x ¼

vu

vx
þ 1

2

�
vw

vx

�2

; ε
0
y ¼

vv
vy

þ 1

2

�
vw

vy

�2

; g0xy ¼
vu

vy
þ vv

vx
þ vw

vx

vw

vy
(9.252)

(Vasiliev, 1993). Substituting Eqs. (9.252) into Eqs. (9.251) and the expressions obtained for the stress
resultants into the equilibrium equations, Eqs. (9.250), we get

B11
v2u

vx2
þ B44

v2u

vy2
þ B

�
v2v
�

vxvy
¼ �

�
B11

vw

vx

v2w

vx2
þ B

vw

vy

v2w

vxvy
þ B44

vw

vx

v2w

vy2

�

B22
v2v
vy2

þ B44
v2v
vx2

þ B

�
v2u
�

vxvy
¼ �

�
B22

vw

vy

v2w

vy2
þ B

vw

vx

v2w

vxvy
þ B44

vw

vy

v2w

vx2

� (9.253)

where B ¼ B12 þ B44. Assume that the plate deflection corresponds to a mode of plate buckling with
some unknown coefficient wm and half-wave number m (see Fig. 9.23), i.e.,

w ¼ wm sin lmx sin l1y (9.254)

where lm ¼ pm=a and l1 ¼ p=b. Substituting the deflection, Eq. (9.254), into Eqs. (9.253), we can
obtain the following solution of these equations:

u ¼ �x

B

�
B22Tx � l2mw

2
m

�� w2
m

16lm

�
l2mð1� cos2l1yÞ � B12

B11
l21

�
sin2lmx

v ¼ y

B

�
B12Tx � l21w

2
m

�� w2
m

16l1

�
l21ð1� cos2lmxÞ � B12

B22
l2m

�
sin2l1y

(9.255)

x

xTxT

a

b

y

FIGURE 9.35

A simply supported plate after buckling.
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(Azikov and Vasiliev, 1986) where B ¼ B11B22 � B2
12. To determine wm , apply the principle of

minimum total potential energy of the plate

P ¼
Za
0

Zb
0

�
Nxε

0
x þ Nyε

0
y þ Nxyg

0
xy þMxkx þMyky þMxykxy þ Tx

vu

vx

�
dxdy (9.256)

Here, the moments M are expressed in terms of curvatures k as

Mx ¼ D11kx þ D12ky; My ¼ D12kx þ D22ky; Mxy ¼ D44kxy (9.257)

where within the framework of classical plate theory

kx ¼ �v2w

vx2
; ky ¼ �v2w

vy2
; kxy ¼ �2

v2w

vxvy
(9.258)

Using Eqs. (9.251), (9.252), and (9.257), (9.258), we can write the energy P, Eq. (9.256), in terms of
displacements u, v, and w. Substituting Eqs. (9.254) and (9.255) for the displacements and integrating,
we can further obtain P as the following function of Tx , wm, and lm. Applying the minimum condition
with respect to wm, i.e., taking vP=vwm ¼ 0, we obtain the equation for wm whose solution is

w2
m ¼ 16B11B22l

2
m

B
�
B11l

4
m þ B22l

4
1

� ðTx � TmÞ (9.259)

in which

Tm ¼ 1

l2m

�
D1l

4
m þ 2D3l

2
ml

2
1 þ D2l

4
1

�
(9.260)

It follows from Eq. (9.259) that the deflection exists if Tx> Tm , where Tm in Eq. (9.260) coincides with
Tx given by Eqs. (9.225) and (9.227). Minimization of Tm with respect to m gives the critical load Tc

x ¼
Tm1 and the corresponding half-wave number m1 specified by Eq. (9.228). Thus, if Tx 	 Tm, wm¼ 0
and the plate remains flat. If Tx > Tc

x , wm is determined by Eq. (9.259) in which m¼ m1. Under further
loading, the so-called mode jumping can occur and the half-wave numbermmight increase. To find the
half-wave number, substitute the displacements, Eqs. (9.255) and (9.259), into Eq. (9.256) for the total
potential energy. After integration, we get

P ¼ ab

2B
T2
x B22

"
1þ 2B11l

2
ml

2
1

B11l
4
m þ B22l

4
1

�
1� Tm

Tx

�2
#

(9.261)

The half-wave numberm corresponding to the acting force Tx is found from the minimum condition for
the total potential energy P. First, single out the second term in the brackets of Eq. (9.261) which
depends on m and present it as follows:

P1 ¼ 1

abl21

�
P� B22ab

2B
T2
x

�
¼ l2mðTx � TmÞ2

B11l
4
m þ B22l

4
1

(9.262)
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Here, Tx is the acting load and Tm is the eigenvalue specified by Eq. (9.260). To demonstrate the
procedure, consider an isotropic plate for which

D11 ¼ D22 ¼ D12 ¼ D44 ¼ D; B11 ¼ B22 ¼ Eh; E ¼ E=
�
1� v2

�
For this isotropic plate, Eqs. (9.262) and (9.260) become

P1 ¼ m2c2

m4 þ c4
ðTx � TmÞ2; Tm ¼ p2Dc2

b2m2

�
m2

c2
þ 1

�2

where c ¼ b/a. Introduce the dimensionless functions of m

bp1ðmÞ ¼ P1b
4

p4D2c4
¼ m2c2

m4 þ c4
�
Tx � Tm

�2
(9.263)

Tx ¼ Txb
2

p2Dc2
; Tm ¼ Tmb

2

p2Dc2
¼ 1

m2

�
m2

c2
þ 1

�2

(9.264)

For the plate considered as an example in Section 9.5.1, c ¼1.75 and m1¼ 2 . The corresponding

dimensionless critical force following from Eqs. (9.264) is T2 ¼ 1:33. The other eigenvalues are

T3 ¼ 1:723, T4 ¼ 2:421, and T5 ¼ 3:36. The eigenvalues Tm ðm ¼ 2; 3; 4; 5Þ are shown on the

horizontal axis in Fig. 9.36 with dots. The curves in Fig. 9.36 show the dependencies of bp1ðmÞ
specified by Eq. (9.263) on the dimensionless load Tx for various m-values. As can be seen, for T2 	
Tx 	 T23, we havem¼ 2. For T23 	 Tx 	 T3, the minimum values of bp1 correspond tom¼ 3, for Tx �
T34, m ¼ 3 changes to m ¼ 4, and for Tx � T45, we have m ¼ 5. The forces Tm;mþ1 at which mode

jumping takes place can be found as the Tx-coordinate of the point of intersection of the curves bp1ðmÞ
corresponding to m and mþ1 (see Fig. 9.36), i.e., from the condition PðmÞ ¼ Pðmþ 1Þ. Using
Eq. (9.261), we finally get �

Tx � Tm
Tx � Tmþ1

�2

¼ l2mþ1

�
B11l

4
m þ B22l

4
1

�
l2m
�
B11l

4
mþ1 þ B22l

4
1

� (9.265)
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FIGURE 9.36

Dimensionless loads Tx corresponding to the eigenvalues ( ) and to the mode jumping loads ( ).
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For the example under consideration, this equation yields T23 ¼ 1:51, T34 ¼ 2:03, T45 ¼ 2:84.
The half-wave number m found from Eq. (9.265) and the corresponding value of the acting load Tx

are substituted into Eq. (9.259) for wm and this value of wm is further substituted in Eqs. (9.254) and
(9.255) which specify the plate displacements. Then, using Eqs. (9.252), we can find the strains and,
following the procedure described in Section 5.11, determine the strains and the stresses in the ply
principal coordinates. Applying the strength criteria discussed in Chapter 6, we can evaluate the load-
carrying capacity of the plate after buckling. As an example, consider a carbon-epoxy �f angle-ply
square plate with a ¼ b ¼ 0.4 m and h ¼ 1 mm. The dependence of the ultimate force Tu

x (solid line)
along with the critical force Tc

x (dashed line) on the angle f is shown in Fig. 9.37. As can be seen, the
optimal angle which provides the maximum load-carrying capacity (close to 0) does not coincide with
the optimal angle for buckling (45�). In contrast to metal plates for which the ultimate load is much
higher than the critical load, the relation between these loads for composite plates depends on the
material structure.
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FIGURE 9.37

Dependencies of the ultimate load Tu
x and the critical load Tc

x on angle f.
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The foregoing approach provides reasonably accurate evaluation of the stresses and displacements
of composite plates after buckling. Experimental results for 2.5 mm thick composite plates have been
presented by Banks and Harvey (1979). The predicted

sx ¼ Nx

h
¼ �

�
Tx
h
þ Bl2m
8B22h

w2
m cos 2l1y

�
and experimental distributions of sx along the y-coordinate of the plate (see Fig. 9.35) after buckling is
shown in Fig. 9.38 for two values of the acting load. The dependence of the plate shortening
Du ¼ uðx ¼ aÞ � uðx ¼ 0Þ under the action of compressive forces Tx (see Fig. 9.35) is shown in
Fig. 9.39. The knee on the curve corresponds to the plate buckling.

Numerical analysis of post-buckling behavior of composite plates has been presented by Ovesy and
Assaee (2005).

1
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FIGURE 9.38

Theoretical ( ) and experimental ( ) distributions of the normal stress over the plate width after

buckling for Tx=T
c
x ¼ 2 (1) and Tx=T

c
x ¼ 2:53 (2).
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Theoretical ( ) and experimental ( ) dependencies of the plate shortening on the normalized

compression load.
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9.7 GENERALLY LAMINATED PLATES
The foregoing sections of this chapter are concerned with symmetrically laminated plates for which
bending-stretching coupling stiffness coefficients Cmn in the constitutive equations, Eqs. (9.5), are zero.
For generally laminated plates, these coefficients are not zero, and the plate analysis becomes muchmore
complicated.As shown in Section 5.4, a symmetric arrangement of the layers in laminated plates provides
the maximum bending stiffness for the plates with a given number of layers. It should be also taken into
account that the symmetric structure of the plate substantially simplifies the plate behavior, i.e., the plate
bending and in-plane loading are described by independent sets of equations and the plane remains flat
before buckling under in-plane loading. In unsymmetrically laminated plates in-plane stress-strain state
and bending are coupled and the plate behavior is described by a coupled set of equationswhich include all
three displacements u, v, and w. Thus, without special reasons it does not make much sense to design
unsymmetrically laminated plates. Note that the thickness of the composite ply is relatively small (0.1–0.2
mm) and tens of such plies with various orientations are usually placed to fabricate real composite plates.
Thus, the possibility to make a symmetrically laminated plate practically always exists.

However, there are special cases in which the plates cannot be designed as symmetric laminates.
The first class of such plates comprises plates stiffened with ribs which are usually located on one side
of the plate. Being smeared over the plate surface, the ribs can be simulated by continuous layers
resulting in an unsymmetrically laminated structure. For example, consider a stiffened plate shown in
Fig. 9.40. The ribs in Fig. 9.40a can be approximately reduced to the layer 1 shown in Fig. 9.40b whose
stiffness coefficients in the coordinates 1,2 are

A
ð1Þ
11 ¼ b

a
Er; A

ð1Þ
12 ¼ A

ð1Þ
22 ¼ 0

where Er is the modulus of the rib material. In conjunction with the skin (layer 2 in Fig. 9.40b), the
resulting structure is unsymmetric. The second group of unsymmetric structures corresponds to plates
consisting of two layers, one of which is a load-carrying layer, whereas the second one protects this
layer against, for example, temperature or impact loading.

9.7.1 Bending of unsymmetric plates

Consider a rectangular orthotropic plate loaded with transverse pressure as shown in Fig. 9.1. The plate
behavior is described with equilibrium equations, Eqs. (9.22), (9.24), and (9.26), constitutive

a
2

1

h

t

b

1

2

(a) (b)

FIGURE 9.40

Reduction of a stiffened plate (a) to a laminated plate (b).
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equations, Eqs. (9.16), and strain-displacement equations, Eqs. (9.3), in which the curvatures corre-
sponding to the classical plate theory are given by Eqs. (9.49). Within the framework of classical plate
theory, the constitutive equations become

Nx ¼ B11
vu

vx
þ B12

vv
vy

� C11
v2w

vx2
� C12

v2w

vy2

Ny ¼ B12
vu

vx
þ B22

vv
vy

� C12
v2w

vx2
� C22

v2w

vy2

Nxy ¼ B44

�
vu

vy
þ vv

vx

�
� 2C44

v2w

vxvy

Mx ¼ C11
vu

vx
þ C12

vv
vy

� D11
v2w

vx2
� D12

v2w

vy2

My ¼ C12
vu

vx
þ C22

vv
vy

� D12
v2w

vx2
� D22

v2w

vy2

Mxy ¼ C44

�
vu

vy
þ vv

vx

�
� 2D44

v2w

vxvy

(9.266)

In classical plate theory, the equilibrium equations reduce to two in-plane equations, Eqs. (9.22), and
Eq. (9.51) describing the plate bending. Substituting stress resultants and couples specified by Eqs.
(9.266) into these three equations, we arrive at the following set of equations for u, v, and w:

L1ðu; v;wÞ ¼ 0; L2ðu; v;wÞ ¼ 0; L3ðu; v;wÞ ¼ p (9.267)

in which

L1ðu; v;wÞ ¼ B11
v2u

vx2
þ B44

v2u

vy2
þ ðB12 þ B44Þ v2v

vxvy
� C11

v3w

vx3
� ðC12 þ 2C44Þ v3w

vxvy2

L2ðu; v;wÞ ¼ B22
v2v
vy2

þ B44
v2v
vx2

þ ðB12 þ B44Þ v2u

vxvy
� C22

v3w

vy3
� ðC12 þ 2C44Þ v3w

vx2vy

L3ðu; v;wÞ ¼ D1
v4w

vx4
þ 2D3

v4w

vx2vy2
þ D2

v4w

vy4
� C11

v3u

vx3
� ðC12 þ 2C44Þ

�
v3u

vxvy2
� v3v
vx2vy

�
� C22

v3v
dy3

(9.268)

where, as earlier, D1 ¼ D11 , D2 ¼ D22, and D3 ¼ D12 þ 2D44.
Consider a simply supported plate (see Fig. 9.3) and assume that the plate edges can move in the

directions normal to the edges, so that the corresponding forces are zero. Then, the boundary
conditions on the plate edges are, at x ¼ 0 and x ¼ a,

w ¼ 0; Mx ¼ 0; Nx ¼ 0; v ¼ 0 (9.269)
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and at y ¼ 0 and y ¼ b,

w ¼ 0; My ¼ 0; Ny ¼ 0; u ¼ 0

It can be proved with the aid of Eqs. (9.266) that these boundary conditions can be satisfied if we take
the displacements in the form

u ¼
X
m

X
n

umn cos lmx$sin lny

v ¼
X
m

X
n

vmn sin lmx$cos lny

w ¼
X
m

X
n

wmn sin lmx$sin lny

(9.270)

where lm ¼ pm=a and ln ¼ pn=b (see Fig. 9.1). Expanding the pressure p in a similar series specified
by Eq. (9.131) and substituting the displacements, Eqs. (9.270), into the equilibrium equations,
Eqs. (9.267), we arrive at the following three algebraic equations for the coefficients of Eqs. (9.270):

a11umn þ a12vmn þ a13wmn ¼ 0

a21umn þ a22vmn þ a23wmn ¼ 0

a31umn þ a32vmn þ a33wmn ¼ pmn

(9.271)

in which

a11 ¼ B11l
2
m þ B44l

2
n; a12 ¼ a21 ¼

�
B12 þ B44

�
lmln

a22 ¼ B44l
2
m þ B22l

2
m; a13 ¼ a31 ¼ C11l

3
m þ �C12 þ 2C44

�
lml

2
n

a23 ¼ a32 ¼ C22l
3
n þ

�
C12 þ 2C44

�
l2mln

a33 ¼ D1l
4
m þ 2D3l

2
ml

2
n þ D2l

4
n

(9.272)

The solution of Eqs. (9.271) is

umn ¼ wmn

A1

�
a13a22 � a12a23

�
; vmn ¼ wmn

A1

�
a11a23 � a12a13

�
wmn ¼ pmn

A1

A2
; A1 ¼ a11a22 � a212

A2 ¼ a33A1 � a11a
2
23 � a22a

2
13 þ 2a12a13a23

(9.273)

It is possible to demonstrate a remarkable property of the solution obtained. Recall that in reducing the
three-dimensional equations of the theory of elasticity to the two-dimensional equations of the plate
theory, we actually reduce the plate to its reference surface located at some distance e from the lower
surface of the plate. Hence, the forces Nx, Ny , and Nxy in plate theory are applied to the reference
surface and the moments Mx, My , and Mxy are calculated with respect to this surface. Only the
transverse forces Vx and Vy and the plate deflection w (see Fig. 9.41) correspond to any surface parallel
to the reference surface. Thus, when formulating the boundary conditions for in-plane forces
Nx; Ny; and Nxy or in-plane displacements u and v, we must apply the loads to the reference surface or

9.7 Generally laminated plates 567

www.EngineeringEBooksPdf.com



fix the reference surface on the plate edges. In some cases, the location of the reference surface can be
preassigned. For example, if the skin of the stiffened plate shown in Fig. 9.40 is fixed, the reference
surface should be located within the skin thickness. For sandwich plates with ramps (see Fig. 9.42), the
reference surface should pass through the fixed boundary contour. However, in the majority of cases
the boundary conditions do not help us to identify the location of the reference surface and the
coordinate e (see Fig. 9.41) can be chosen arbitrarily. Clearly, in such cases the feasible solutions for
real plates must not depend on e, and this is the case for the solution given by Eqs. (9.273). Indeed, the
stiffness coefficients, Eqs. (5.28) and (5.29), are

Bmn ¼ I
ð0Þ
mn ; Cmn ¼ I

ð1Þ
mn � eI

ð0Þ
mn

Dmn ¼ I
ð2Þ
mn � 2eI

ð1Þ
mn þ e2I

ð0Þ
mn ; I

ðrÞ
mn ¼

Zh
0

Amnt
rdt; ðr ¼ 0; 1; 2Þ (9.274)

where mn ¼ 11, 12, 22, and 44. Substituting Eqs. (9.274) into Eqs. (9.273) for A1 and A2 , we arrive at

A1 ¼
�
I
ð0Þ
11 l

2
m þ I

ð0Þ
44 l

2
n

��
I
ð0Þ
22 l

2
m þ I

ð0Þ
44 l

2
n

�
�
�
I
ð0Þ
12 þ I

ð0Þ
44

�2
l2ml

2
n

A2 ¼ A1

h
I
ð2Þ
11 l

4
m þ 2

�
I
ð2Þ
12 þ 2I

ð2Þ
44

�
l2ml

2
n þ I

ð2Þ
22 l

4
n

i
�
�
I
ð0Þ
11 l

2
m þ I

ð0Þ
44 l

2
n

�h
I
ð1Þ
22 l

3
n þ

�
I
ð1Þ
12 þ 2I

ð1Þ
44

�
l2mln

i
�
�
I
ð0Þ
44 l

2
m þ I

ð0Þ
22 l

2
n

�h
I
ð1Þ
11 l

3
m þ

�
I
ð1Þ
12 þ 2I

ð1Þ
44

�
lml

2
n

i
þ2
�
I
ð0Þ
12 þ I

ð0Þ
44

�h
I
ð1Þ
11 l

2
m þ

�
I
ð1Þ
12 þ 2I

ð1Þ
44

�
lml

2
n

i h
I
ð1Þ
22 l
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�
I
ð1Þ
12 þ 2I
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44

�
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FIGURE 9.41

Forces and moments applied to the plate reference surface and the corresponding displacements u, v, w and

rotation angles qx , qy .

FIGURE 9.42

Sandwich plate with ramps.
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As can be seen, the terms explicitly including e disappear, whereas the integrals I
ðrÞ
mn do not depend on

e. Thus, the deflection coefficient wmn in Eqs. (9.273) does not depend on e either. This result is
expected, since the boundary conditions given by Eqs. (9.269) actually correspond to the plate resting
on thin walls which have infinitely high in-plane stiffness and are absolutely flexible with respect to the
out-of-plane displacements. The conditions N¼ 0 andM¼ 0 provide zero stresses which are normal to
the plate edges, whereas the conditions imposed on the displacements provide zero displacements in
the plane of the edges. Obviously, the deflection of the plate with such boundary conditions must not
depend on the choice of the reference surface.

To demonstrate the opposite situation, change the first two series in Eqs. (9.270) to the following
ones:

u ¼
X
m

X
n

umn sin lmx$sin lny; v ¼
X
m

X
n

vmn sin lmx$sin lny (9.275)

In conjunction with Eqs. (9.270) for w, these expansions correspond to the following boundary
conditions. The boundary conditions on the plate edges are, at x ¼ 0 and x ¼ a,

w ¼ 0; Mx ¼ 0; u ¼ 0; v ¼ 0

and at y ¼ 0 and y ¼ b,

w ¼ 0; My ¼ 0; v ¼ 0; u ¼ 0

Thus, the in-plane displacements are zero at the plate edges. Substitution of the series for u, v, and w
into Eqs. (9.267) yieldsX

m

X
n

�
a11umn sin lmx$sin lny� a12vmn cos lmx$cos lny� a13wmn coslmx$sin lnyÞ ¼ 0X

m

X
n

�
a21umn cos lmx$cos lny� a22vmn sin lmx$sin lnyþ a23wmn sinlmx$cos lny

� ¼ 0X
m

X
n

�
a31umn cos lmx$sin lny ¼ a32vmn sin lmx$cos lnyþ ða33 � pmnÞwmn sin lmx$sin lny

� ¼ 0

(9.276)

Here, the coefficients aij are specified by Eqs. (9.272). These equations cannot be directly reduced to
algebraic equations similar to Eqs. (9.271). To arrive at an algebraic set of equations for umn, vmn, and
wmn, we can use the Bubnov-Galerkin method, i.e., multiply Eqs. (9.276) by sin lix$sin ljy and
integrate them over the plate surface area. As a result, we get an infinite set of algebraic equations for
umn, vmn, and wmn.

As an example, consider a square (a¼ b) cross-ply carbon-epoxy plate (see Fig. 9.43) composed of
0� and 90� layers. The plate dimensions are a ¼ 100 mm and h ¼ 2 mm. For uniform pressure p ¼ p0,
the maximum plate deflection corresponding to the solution given by Eqs. (9.273) is
w ¼ 5:24$106p0=E1 in which E1 is the longitudinal modulus of the unidirectional ply. As has been
noted, this deflection does not depend on the location of the reference surface. Now assume that the
reference surface coincides with the contact surface of the layers (e ¼ h/2). The solution of the
equation corresponding to Eqs. (9.276) in which 10 terms are retained is w ¼ 4:3$106p0=E1. This
deflection is about 20% lower than that calculated for the simply supported plate. However, this
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solution depends on the coordinate of the reference surface and can hardly be used for real plates for
which the location of the reference is not known.

We can expect that in addition to the solution given by Eqs. (9.273) for simply supported plates, the
deflection does not depend on the location of the reference surface if the plate edges are clamped and
the boundary conditions are, at x ¼ 0 and x ¼ a,

w ¼ 0; qx ¼ vw

vx
¼ 0; u ¼ 0; v ¼ 0 (9.277)

and at y ¼ 0 and y ¼ b,

w ¼ 0; qy ¼ vw

vy
¼ 0; u ¼ 0; v ¼ 0

These boundary conditions can be satisfied if in addition to Eqs. (9.275) for u, v, the plate deflection is
presented as

w ¼
X
m

X
n

wmnð1� cos 2lmxÞð1� cos 2lnyÞ (9.278)

where, as earlier, lm ¼ pm=a, ln ¼ pn=b (see Fig. 9.1). Substitution of the displacements, Eqs.
(9.275) and (9.278), into the equilibrium equations, Eqs. (9.267), results in equations similar to Eqs.
(9.276) which can be solved with the aid of Bubnov-Galerkin method.

9.7.2 In-plane loading

Consider unsymmetrically laminated plates loaded by compressive forces Tx as shown in Fig. 9.23. As
opposed to symmetric plates, unsymmetrically laminated plates can experience bending under
compression. To allow for the in-plane loading of the plate, change the pressure p to the imaginary
pressure pn specified by Eq. (9.221). Then, the equilibrium equations, Eqs. (9.267), become

L1ðu; v;wÞ ¼ 0; L2ðu; v;wÞ ¼ 0; L3ðu; v;wÞ þ Tx
v2w

vx2
¼ 0 (9.279)

where the operators L1, L2, and L3 are specified by Eqs. (9.268).

90

2/h

x

y

2/h

a

a

0

FIGURE 9.43

Two-layered cross-ply square plate.
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Consider first the conditions under which the plate remains flat under in-plane loading (Leissa,
1986). Assume that

w ¼ 0; Nx ¼ �Tx; Ny ¼ 0; Nxy ¼ 0 (9.280)

Then, the first three equations of Eqs. (9.266) yield

B11
vu

vx
þ B12

vv
vy

¼ �Tx; B12
vu

vx
þ B22

vv
vy

¼ 0;
vu

vy
þ vv

vx
¼ 0

The solution of these equations is:

u ¼ �TxB22

B
xþ C1yþ C2; v ¼ B12Tx

B
y� C1xþ C3 (9.281)

where C1, C2, and C3 are the constants corresponding to the plate in-plane displacements and rotation
as a solid. Substituting Eqs. (9.281) into the last three equations of Eqs. (9.266), we get

Mx ¼ Tx
B
ðB11C12 � B22C11Þ; My ¼ Tx

B
ðB12C22 � B22C12Þ; Mxy ¼ 0 (9.282)

Since Mx and My do not depend on x and y, the moment equilibrium equations, Eqs. (9.26), show that
Vx ¼ 0 and Vy ¼ 0. Thus, the plate is in a state of pure bending by moments specified by Eqs. (9.282)
and applied at the plate edges. These moments are of a reactive nature. The unsymmetrically laminated
plate, being loaded with in-plane forces Tx (see Fig. 9.23), tends to bend, but the edge moments, Eqs.
(9.282), prevent this bending. Such moments can appear if the plate edges are clamped with respect to
bending, i.e., if the first two boundary conditions in Eqs. (9.277) are valid at the plate edges.

Thus, unsymmetrically laminated plates clamped at the edges (clearly, this is a sliding clamp
allowing nonzero in-plane displacements of the plate) remain flat under in-plane loading by uniformly
distributed edge forces. Such plates can buckle and conventional methods to determine the critical
loads can be used (Qatu and Leissa, 1993; Majeed and Hyer, 2005).

Consider simply supported plates. First of all, note that the equilibrium equations, Eqs. (9.279), are
homogeneous and, in conjunction with the homogeneous boundary conditions, Eqs. (9.269), allow us
to formulate the boundary-value problem and to find the corresponding eigenvalues for the load Tx. For
symmetrically laminated plates, the lowest of these values is associated with the critical load which
causes plate buckling. Consider this problem for unsymmetrically laminated plates. Substituting the
displacements, Eqs. (9.270), into Eqs. (9.279), we arrive at the homogeneous set of algebraic equa-
tions, Eqs. (9.271), in which pmn ¼ Txl

2
mwmn. The determinant of this set must be zero, so that we

arrive at the following system of eigenvalues for the load Tx:

Tmn ¼ A2

l2mA1

(9.283)

in which A1 and A2 are specified by Eqs. (9.273). Recall that the load Tx must be applied to the
reference surface with coordinate e (see Fig. 9.41) which is not specified. However, it follows from the
foregoing analysis of the solution given by Eqs. (9.273) that the coefficients A1 and A2 do not depend
on e and hence, the eigenvalues Tmn do not depend on e either. For the symmetrically laminated plate
problem, the so-called bifurcation of the plate equilibrium takes place when Tx reaches the first
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eigenvalue T0
x . This means that for the load Tx ¼ Tc

x two equilibrium states of the plate are possible:
a flat shape (w ¼ 0) which is not stable for Tx > Tc

x and a curved shape to which the plate is trans-
formed as a result of buckling. However, an unsymmetrically laminated plate starts bending from the
very beginning of the loading process, i.e., ws 0 for Tx 	 Tc

x , which means that there is no bifurcation
and, hence, buckling cannot take place at the first eigenvalue specified by Eq. (9.283) (Azikov and
Vasiliev, 1992; Qatu and Leissa, 1993).

Consider the initial phase of the plate bending under compression assuming that the plate deflection
is small in comparison with the plate thickness. In accordance with Eqs. (9.270), the deflection of
a simply supported plate can be taken in the form

w ¼
X
m

X
n

wmn sin lmx$sin lny (9.284)

Substitute this expansion into the first two equilibrium equations, Eqs. (9.279), and determine u and v
from these equations. Taking into account Eqs. (9.281) in which we can eliminate the plate
displacements as a solid body putting C1 ¼ C2 ¼ C3 ¼ 0, we finally arrive at

u ¼ �TxB22

B
xþ

X
m

X
n

wmnlmrmn cos lmx$sin lny

v ¼ TxB12

B
yþ

X
m

X
n

wmnlmtmn sin lmx$cos lny

(9.285)

where

rmn ¼ 1

B1

" 
C11 þ C

l2n

l2m

! 
B22 þ B44

l2m

l2n

!
�
 
C22

l2n

l2m
þ C4

!
B

#

tmn ¼ 1

B1

" 
C22 þ C

l2m

l2n

! 
B11 þ B44

l2n

l2m

!
�
 
C11

l2m

l2n
þ C4

!
B

#
in which

B1 ¼ Bþ B44

 
B22

l2n

l2m
þ B11

l2m

l2n
� 2B12

!
; B ¼ B11B22 � B2

12

C ¼ C12 þ 2C44; B ¼ B12 þ B44

To determine the deflection coefficients wmn, apply the principle of minimum total potential energy of
the plate

P ¼ 1

2

Za
0

Zb
0

	
Nx

vu

vx
þ Ny

vv
vy

þ Nxy

�
vu

vy
þ vv

vx

�
�Mx

v2w

vx2
�My

v2w

vy2

� 2Mxy
v2w

vxvy
þ Tx

�
vu

vx
� 1

2

�
vw

vx

�2�

dxdy

(9.286)
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Note that in contrast to Eq. (9.256) which corresponds to the nonlinear problem, Eq. (9.286) corre-
spond to the linearized problem and we must additionally take into account the work performed by the
force Tx on the plate shortening caused by deflection. Substituting the stress resultants and couples
from Eqs. (9.266) into Eq. (9.286), using Eqs. (9.284) and (9.285) for displacements, and integrating,
we arrive at the total potential energy P as a function of wmn. Applying the minimum condition
vP=vwmn ¼ 0, we finally get

wmn ¼ Txkmn
Tx � Tmn

(9.287)

in which

kmn ¼ 1

B1

�
ðB12C12 � B22C11Þ lm

ln
þ ðB12C11 � B22C12Þ ln

lm

�
; m; n ¼ 1; 3; 5;.

and Tmn is specified by Eq. (9.283). Let the minimum value of Tmn (m, n) be Te. Then, it follows from
Eq. (9.287) that the plate deflection increases infinitely while Tx approaches Te. Consider, for example,
a carbon-epoxy three-layered plate with dimensions a¼ 0.4 m and b¼ 0.2 m composed of layers with
angles f1 ¼ 0�, f2 ¼ �45�, and f3 ¼ �20� and equal thicknesses h1 ¼ h2 ¼ h3 ¼ 0.26 mm. The
dependencies of the plate shortening Du ¼ uðx ¼ aÞ � uðx ¼ 0Þ on the normalized load Tx=Te is
shown in Fig. 9.44. Curve 1 corresponds to the foregoing linearized solution, Eq. (9.287). As can be
seen, Du becomes infinitely high at Tx=Te ¼ 1, i.e., when the acting load becomes equal to the
minimum eigenvalue. Clearly, this result is quite formal and does not have any physical meaning for
a load that is close to Te. Indeed, the solution, Eq. (9.287), is obtained under the condition that the
deflection is small in comparison to the plate thickness and is not valid for large (moreover, infinite)
deflection.

2

m,10 5−⋅Δu

ex TT /

0.8

1.6

2.4

3.2

0  1   2  3  4

1

1=n

1=n

1=m

2=m

FIGURE 9.44

Dependence of the plate shortening on the normalized in-plane load: linearized (1) and nonlinear (2) solutions.
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To describe large deflections, we must use the nonlinear equations presented in Section 9.6. For
unsymmetrically laminated plates, Eqs. (9.253) are generalized as follows:

L1ðu; v;wÞ þ B11
vw

vx

v2w

vx2
þ B

vw

vy

v2w

vxvy
þ B44

vw

vx

v2w

vy2
¼ 0

L2ðu; v;wÞ þ B22
vw

vy

v2w

vy2
þ B

vw

vx

v2w

vxvy
þ B44

vw

vy

v2w

vx2
¼ 0

(9.288)

where the operators L1 and L2 are specified by Eqs. (9.268).
For square or close-to-square plates ( a=b	 1:75), the initial deflection can be approximated by Eq.

(9.254), according to which

w ¼ wm sin lmx$sin l1y (9.289)

where, as earlier, lm ¼ pm=a and l1 ¼ p=b. For the initial loading (at least for Tx=Te < 1 in
Fig. 9.44), we take m ¼ 1. The problem we are going to consider is to identify the dependence
DuðTx=TeÞ which can be different from curve 1 shown in Fig. 9.49 and to study the stability of the
initial plate bending, i.e., the possibility of mode-jumping to the half-wave number m which is higher
than the initial value m ¼ 1 (Azikov and Vasiliev, 1992).

Substituting the deflection, Eq. (9.289), in Eqs. (9.288), we can derive the following expressions for
the in-plane displacements which generalize Eqs. (9.255) for unsymmetrically laminated plates:

u ¼ � x

B

�
B22Tx þ 1

8
w2
ml

2
m

�
þ wmlmrm cos lmx$cos l1y

�w2
m

16

�
1

lm

�
l2m � B12

B11
l21

�
� lm cos 2l1y

�
sin 2lmx

v ¼ � y

B

�
B12Tx � 1

8
w2
ml

2
1

�
þ wml1tm sin lmx$cos l1y

�w2
m

16

�
1

l1

�
l21 �

B12

B22
l2m

�
� l1 cos 2lmx

�
sin 2l1y

(9.290)

Here, rm¼ rmn (m, n¼ 1) and tm¼ tmn (m, n¼ 1) are given in notations to Eqs. (9.285). Substituting the
displacements, Eqs. (9.289) and (9.290), into Eq. (9.286) for the total potential energy, and integrating,
we arrive at

P ¼ ab

4
l2m

�
k1wm þ 1

2
k2w

2
m þ 1

3
k3w

3
m þ 1

4
k4w

4
m

�
� ab

2B
B22T

2
x (9.291)
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where

k1 ¼ 16Tx

l2mab
km; k2 ¼ Tm � Tx

k3 ¼ 1

ab

( 
1� B12l

2
1

B11l
2
m

!�
ðC11 � B11rmÞ lm

l1
þ ðC12 � B12tmÞ l1

lm

�

þ
 
l21

l2m
� B12

B11

!�
ðC22 � B22tmÞ l1

lm
þ ðC12 � B12rmÞ lm

l1

�

þ l1

lm

"
l2m

l21

�
C11 � C12

B12

B22

�
þ l21

l2m

�
C22 � C12

B12

B11

�
� C11

B12

B11
� C22

B12

B11
þ 2C12

#

� B

 
lmrm
B22l1

þ l31tm

B11l
3
m

!)

k4 ¼ Bl21
16

 
l2m

B22l
2
1

þ l21

B11l
2
m

!
Here, km ¼ kmnðm; n ¼ 1Þ is given in notation to Eq. (9.287). The minimum condition, vP=vwm ¼ 0,
yields the following equation for wm:

k4w
3
m þ k3w

2
m þ k2wm þ k1 ¼ 0

This equation has one real root which specifies the plate deflection.
The half-wave numberm depends on the acting load Tx and can be found by comparing the levels of

the total potential energy P in Eq. (9.291) as demonstrated in Section 9.6.
For the carbon-epoxy plate considered previously as an example, the nonlinear solution is shown in

Fig. 9.44 with line 2. As can be seen, the initial plate bending with m ¼ 1 is not affected by the
eigenvalue of the load Te, which, as noted, does not have any physical meaning. At the load Tx¼ 2.32Te
the bending mode corresponding to m ¼ 1 changes to the mode corresponding to m ¼ 2.

It should be taken into account that the behavior of in-plane loaded unsymmetrically laminated
plates depends on the coordinate of the reference surface e (see Fig. 9.41) to which the load Tx is
applied. Changing e, we actually move the load through the plate thickness and change the plate
bending conditions. Since the location of the reference surface is usually not known, it seems
reasonable to take it in accordance with the condition C11 ¼ 0, under which the bending-stretching
coupling disappears in the direction of plate loading. It follows from Eqs. (9.274) that the coordi-
nate of the reference surface can be calculated in this case as

e ¼ I
ð1Þ
11

I
ð0Þ
11
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The foregoing procedure allows us to determine the plate displacements. Then, applying Eqs. (9.252),
we can find the strains and, using the procedure described in Section 5.11, obtain the strains and the
stresses in the principal coordinates of the plies. Applying the strength criteria discussed in Chapter 6,
we can evaluate the load-carrying capacity of the plate.

As a numerical example, consider a square (a ¼ b ¼ 0.2 m) carbon-epoxy plate consisting of four
layers with the following parameters: f1 ¼ 0�, f2 ¼ �30�, f3 ¼ �60�, f4 ¼ 90�, and h1 ¼ h2 ¼
h3 ¼ h4 ¼ 0:26 mm. For this plate, the first eigenvalue of the load is Te ¼ 1:91 kN=m, the maximum
deflection is w¼�5.82 mm, and the ultimate load corresponding to the quadratic failure criterion, Eq.
(6.11), is Tu

x ¼ 75:9 kN=m. For a symmetrically laminated plate with the same structure and thickness,
the critical load is Tc

x ¼ 5:21 kN=m, the ultimate load is Tu
x ¼ 81:7 kN=m, and the deflection at the

ultimate load is w ¼ �5:66mm. Thus, there is no significant difference between the ultimate loads and
the maximum deflections of unsymmetrically and symmetrically laminated plates composed of the
same layers.

9.7.3 Shear deformable unsymmetrically laminated plates

Shear deformable unsymmetrically laminated plates are described by the most complicated equations
of linear plate theory which allow for both bending-stretching coupling and transverse shear defor-
mation. Such equations are required to analyze sandwich plates with different facing layers or
sandwich plates with edge ramps (see Fig. 9.42).

To derive the corresponding governing equations, we need to use the complete set of the equations
of plate theory presented in Section 9.1, i.e., equilibrium equations

vNx

vx
þ vNxy

vy
¼ 0;

vNy

vy
þ vNxy

vx
¼ 0 (9.292)

vMx

vx
þ vMxy

vy
� V x ¼ 0;

vMy

vy
þ vMxy

vx
� V y ¼ 0 (9.293)

vV x

vx
þ vV y

vy
þ p ¼ 0 (9.294)

constitutive equations for orthotropic plates

Nx ¼ B11ε
0
x þ B12ε

0
y þ C11kx þ C12ky

Ny ¼ B21ε
0
x þ B22ε

0
y þ C12kx þ C22ky

Nxy ¼ B44g
0
xy þ C44kxy

(9.295)

Mx ¼ C11ε
0
x þ C12ε

0
y þ D11kx þ D12ky

My ¼ C21ε
0
x þ C22ε

0
y þ D12kx þ D22ky

Mxy ¼ C44g
0
xy þ D44kxy

(9.296)

V x ¼ Sxgx; V y ¼ Sygy (9.297)
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and strain-displacements equations

ε
0
x ¼

vu

vx
; ε

0
y ¼

vv
vy
; g0xy ¼

vu

vy
þ vv

vx
(9.298)

kx ¼ vqx

vx
; ky ¼ vqy

vy
; kxy ¼ vqx

vy
þ vqy

vx
(9.299)

gx ¼ qx þ vw

vx
; gy ¼ qy þ vw

vy
(9.300)

To arrive at the minimum number of the governing equations, we apply the mixed formulation of the
problem. First, introduce the stress function F(x, y)

Nx ¼ v2F

vy2
; Ny ¼ v2F

vx2
; Nxy ¼ � v2F

vxvy
(9.301)

which allows us to satisfy identically the first two equilibrium equations, Eqs. (9.292). To find the
stress function, we need to use the compatibility equation which follows from Eqs. (9.298), i.e.,

v2ε0x
vy2

þ v2ε0y

vx2
� v2g0xy

vxvy
¼ 0 (9.302)

The strains that enter this equation are expressed using Eqs. (9.295). Using Eqs. (9.301) and (9.299),
we finally get

ε
0
x ¼ bx

v2F

vy2
� bxy

v2F

vx2
� Bx

vqx

vx
� Bxy

vqy

vy

ε
0
y ¼ by

v2F

vx2
� byx

v2F

vy2
� By

vqy

vy
� Byx

vqx

vx

g0xy ¼ �b
v2F

vxvy
� c

�
vqx

vy
þ vqy

vx

�
(9.303)

where

bx ¼ B22

B
; by ¼ B11

B
; bxy ¼ byx ¼ B12

B
; B ¼ B11B22 � B2

12

b ¼ 1

B44
; c ¼ C44

B44

Bx ¼ 1

B
ðB22C11 � B12C12Þ; By ¼ 1

B
ðB11C22 � B12C12Þ

Bxy ¼ 1

B
ðB22C12 � B12C22Þ; Byx ¼ 1

B
ðB11C12 � B12C11Þ
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Substituting the strains, Eqs. (9.303), into the compatibility equation, Eq. (9.302), we arrive at the first
governing equation

by
v4F

vx4
þ �b� 2bxy

� v4F

vx2vy2
þ bx

v4F

vy4
� Byx

v3qx

vx3

�ðBx � cÞ v3qx

vxvy2
� �By � c

� v3qy

vx2vy
� Bxy

v3qy

vy3
¼ 0 (9.304)

To proceed, substitute Eqs. (9.303) and (9.299) into the constitutive equations for the moments,
Eqs. (9.296), to get

Mx ¼ Dx
vqx

vx
þ Dxy

vqy

vy
þ cx

v2F

vy2
þ cxy

v2F

vx2

My ¼ Dy
vqy

vy
þ Dyx

vqx

vx
þ cy

v2F

vx2
þ cyx

v2F

vy2

Mxy ¼ �c
v2F

vxvy
þ D

�
vqx

vy
þ vqy

vx

�
(9.305)

where

Dx ¼ D11 � BxC11 � ByxC12; Dy ¼ D22 � ByC22 � BxyC12

Dxy ¼ D12 � BxyC11 � ByC12; Dyx ¼ D12 � ByxC22 � BxC12

D ¼ 1

B44

�
B44D44 � C2

44

�
cx ¼ bx

�
C11 � byx

bx
C12

�
; cy ¼ by

�
C22 � bxy

by
C12

�

cxy ¼ by

�
C12 � bxy

by
C11

�
; cyx ¼ bx

�
C12 � byx

bx
C22

�
The remaining three equations of the governing set follow from the three equilibrium equations, Eqs.
(9.293) and (9.294), if we substitute the moments from Eqs. (9.305) and the transverse shear forces
from Eqs. (9.297) and (9.300), i.e.,

Dx
v2qx

vx2
þ �Dþ Dxy

� v2qy
vxvy

þ D
v2qx

vy2
þ cxy

v3F

vx3
þ ðcx � cÞ v3F

vxvy2
� Sx

�
qx þ vw

vx

�
¼ 0 (9.306)

Dy
v2qx

vy2
þ �Dþ Dyx

� v2qx
vxvy

þ D
v2qy

vx2
þ cyx

v3F

vy3
þ �cy � c

� v3F

vx2vy
� Sy

�
qy þ vw

vy

�
¼ 0 (9.307)

Sx

�
vqx

vx
þ v2w

vx2

�
þ Sy

�
vqy

vy
þ v2w

vy2

�
þ p ¼ 0 (9.308)
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Thus the theory reduces to four equations, Eqs. (9.304) and (9.306)–(9.308), which include four
unknown functions: F, qx, qy, and w. These equations have a total tenth order with respect to x and y
variables.

For a simply supported plate with the boundary conditions at x ¼ 0 and x ¼ a,

w ¼ 0; Mx ¼ 0; Nx ¼ 0; v ¼ 0; qy ¼ 0

(see Fig. 9.1), and at y ¼ 0 and y ¼ b,

w ¼ 0; My ¼ 0; Ny ¼ 0; u ¼ 0; qx ¼ 0

the solution of the obtained equations can be presented in the form

F ¼
X
m

X
n

Fmn sin lmx$sin lny; w ¼
X
m

X
n

wmn sin lmx$sin lny

qx ¼
X
m

X
n

qmnx cos lmx$sin lny; qy ¼
X
m

X
n

qmny sin lmx$cos lny

(9.309)

where, as earlier, lm ¼ pm=a and ln ¼ pn=b. Expanding the pressure p in a similar series specified by
Eq. (9.131) and substituting Eqs. (9.309) into Eqs. (9.304) and (9.306)–(9.308), we arrive at the
following set of algebraic equations for the coefficients in Eqs. (9.309):

a11Fmn þ a12q
mn
x þ a13q

mn
y þ a14wmn ¼ 0

a21Fmn þ a22q
mn
x þ a23q

mn
y þ a24wmn ¼ 0

a31Fmn þ a32q
mn
x þ a33q

mn
y þ a34wmn ¼ 0

a41Fmn þ a42q
mn
x þ a43q

mn
y þ a44wmn þ pmn ¼ 0

(9.310)

where

a11 ¼ byl
4
m þ �b� 2bxy

�
l2ml

2
n þ bxl

4
n; a12 ¼ �Byxl

3
m � ðBx � cÞlml2n

a13 ¼ �Bxyl
3
n �

�
By � c

�
l2mln; a14 ¼ 0

a21 ¼ �cxyl
3
m � ðcx � cÞlml2n; a22 ¼ �Dxl

2
m � Dl2n � Sx

a23 ¼ ��Dþ Dxy

�
lmln; a24 ¼ a42 ¼ �Sxlm

a31 ¼ �cyxl
3
n �

�
cy � c

�
l2mln; a32 ¼ ��Dþ Dyx

�
lmln

a33 ¼ �Dyl
2
n � Dl2m � Sy; a34 ¼ a43 ¼ �Syln

a41 ¼ 0; a44 ¼ �Sxl
2
m � Syl

2
n

(9.311)
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The solution of Eqs. (9.310) is

Fmn ¼ pmn
A

ða12a23a34 � a12a33a24 þ a22a33a14 þ a22a13a34 þ a32a13a24 þ a32a23a14Þ

qmnx ¼ pmn
A

ð� a11a23a34 þ a11a33a24 þ a21a13a34 � a21a33a14 � a31a13a24 þ a31a23a14Þ

qmny ¼ �pmn
A

ða11a22a34� a11a32a24� a21a12a34 þ a21a32a14 þ a31a12a24� a31a22a14Þ

wmn ¼ pmn
A1

A2

(9.312)

where

A ¼ a11a22a33a44 � a11a22a34a43 þ a11a32a43a24 � a11a32a23a44 þ a11a42a23a34

�a11a42a33a24 � a21a12a33a44 þ a21a12a34a43 � a21a32a43a14

þa21a32a13a44 � a21a42a13a34 þ a21a42a33a14 þ a31a12a23a44

�a31a12a43a24 þ a31a22a43a14 � a31a22a13a44 þ a31a42a13a24

�a31a42a23a14 � a41a12a23a34 þ a41a12a33a24 � a41a22a33a14

þa41a22a13a34 � a41a32a13a24 þ a41a32a23a14

(9.313)

A1 ¼ �a11a22a33 þ a11a32a23 þ a21a12a33 � a21a32a13 � a31a12a23 þ a31a22a13

To study the in-plane loading under axial compression by forces Tx (see Fig. 9.23), we should change
the pressure p in Eq. (9.308) to the imaginary pressure

pn ¼ �Tx
v2w

vx2

and apply the method described in Section 9.7.2.
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Thin-walled composite beams 10
The thin-walled composite beam model is widely used to simulate the behavior of engineering structural
elements. The thin-walled beam is actually a cylindrical shell whose length is much greater than the
dimensions of the cross section which, in turn, are much greater than the thickness of the wall. These
specific features of thin-walledbeams allowus to introduce a systemof assumptionswhich, in turn, enables
us to develop a relatively simple and efficient applied theory and to reduce the two-dimensional equations
of shell theory to ordinary differential equations providing, as a rule, closed-form analytical solutions.

Modern composite materials are now commonly used to fabricate structural elements which can be
treated as thin-walled beams. Composite thin-walled beams are discussed in the books by Vasiliev
(1993), Kollar and Springer (2003), Dekker (2004), and Librescu and Song (2006).

The behavior and analysis of thin-walled beams are governed by the shape of the beam cross
section, which leads to such beams being classified as one of these:

• Beams with closed cross-sectional contours (see Fig. 10.1)
• Beams with multiple cell contours (see Fig. 10.2)
• Beams with open contour of the cross section (see Fig. 10.3)

Under bending and torsion, thin-walled beams demonstrate a specific type of deformation which is
referred to as cross-sectional warping, i.e., the beam cross sections do not remain in plane under loading

CHAPTER

(a) (b)

FIGURE 10.1

Composite thin-walled beams with circular (a) and polygonal (b) closed cross-sectional contours.
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and exhibit out-of-plane axial displacements. To demonstrate such warping, consider a beam with
a circular cross section and a longitudinal cut (see Fig. 10.4). Under torsion of a beamwith free end cross
sections, the beam cross sections, being flat before loading (dashed lines in Fig. 10.4a), do not remain in
plane after loading and experience warping. As can be seen (see Fig. 10.4a), the warping is the same for
all the beam cross sections. If the beam cross sections are built into absolutely rigid rings as shown in
Fig. 10.4b, no warping takes place, because the rings restrain the warping of the beam cross sections.
Thus, the problems of thin-walled beams’ bending and torsion can be classified as the free bending and
torsion problem (see Fig. 10.4a) and the restrained bending and torsion problem (see Fig. 10.4b).

FIGURE 10.2

Composite thin-walled beam with multi-cell cross-sectional contour.

(a) (b)

FIGURE 10.3

Composite thin-walled C-shaped beam (a) and the leading edge of an airplane wing (b) with open cross-sectional

contours.
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This chapter is concerned with the theories of composite thin-walled beams, covering free and
restrained bending and torsion of beams with various shapes of the cross-sectional contour.

10.1 GEOMETRY OF THE BEAM CROSS SECTION
Consider a beam whose cross-sectional dimensions do not change along the beam axis and use
a Cartesian coordinate frame x, y, z as shown in Fig. 10.5 to describe the beam. The geometry of the
cross section is specified by the wall thickness h and the shape of the contour line. Introduce, as earlier
(see Section 5.1), the beam reference surface located at a distance e and h–e from the inner and the
outer surfaces of the beam (see Fig. 10.5). The line of intersection of this surface with the plane
orthogonal to the beam axis is referred to as the cross-sectional contour. The contour coordinate s is
measured along the contour from some point S as shown in Fig. 10.5, whereas the normal coordinate h
is measured with the outside normal direction to the contour being positive (see Fig. 10.5).
The parametric equations of the contour

xe ¼ xeðsÞ; ye ¼ yeðsÞ (10.1)

satisfy the following equation:

_x2e þ _y2e ¼ 1 (10.2)

(a) (b)

FIGURE 10.4

Free (a) and restrained (b) torsion of a circular thin-walled beam.

x

z

y η

h S

s
e

eh −

FIGURE 10.5

Normal ðhÞ and contour ðsÞ coordinates of the beam cross section.
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where ð _.Þ ¼ vð.Þ
vs

. The contour curvature is specified as

1

Re
¼ _ye€xe � _xe€ye (10.3)

in which Re is the curvature radius. At a distance h from the contour, the arc elementary length is

dsh ¼ HðhÞds; HðhÞ ¼ 1þ h

Re
(10.4)

where HðhÞ is the Lamé coefficient. For thin-walled beams, h � Re and the term
h

Re
is usually

neglected in comparison with unity, so that

HðhÞz 1 (10.5)

Consider some arbitrary point of the contour S (see Fig. 10.6) and introduce the radius r ¼ OSmaking
angle a with the y-axis as shown in Fig. 10.6, the tangent vector t ¼ ST, and the vector r ¼ OTwhich
is orthogonal to the tangent vector and makes angle b with the y-axis (see Fig. 10.6). The coordinates
of point S are expressed in terms of r and a as

xe ¼ r sin a; ye ¼ r cos a (10.6)

and the lengths of vectors t and r are

t ¼ r sin ðb� aÞ ¼ ye sin b� xe cos b

r ¼ r cos ðb� aÞ ¼ ye cos bþ xe sin b
(10.7)

S
ey

ex

y

α

β
r

ρ

t

T

x

0

FIGURE 10.6

Radial ðr ; rÞ and tangent ðtÞ vectors of the contour.
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Consider the elementary arc of length ds shown in Fig. 10.7, from which it follows that

sin b ¼ � dye
ds

¼ � _ye; cos b ¼ dxe
ds

¼ _xe;
1

Re
¼ db

ds
¼ _b (10.8)

These equations yield the following relations:

d

ds
ðsin bÞ ¼ cos b

Re
;

d

ds
ðcos bÞ ¼ �sin b

Re
(10.9)

Differentiating Eqs. (10.7) with respect to s and using Eqs. (10.8) and (10.9), we get

dt

ds
¼ r

Re
� 1;

dr

ds
¼ � t

Re
(10.10)

10.2 THE EQUATIONS OF MEMBRANE SHELL THEORY
Traditionally the theory of thin-walled beams for which Eq. (10.5) is valid is based on the equations
of membrane shell theory.

The element of the beam reference surface loaded with membrane stress resultants is shown
in Fig. 10.8. The corresponding equilibrium, constitutive, and strain-displacement equations are
(Vasiliev, 1993):

vNz

vz
þ vNzs

vs
¼ 0;

vNz

vs
þ vNzs

vz
¼ 0;

Ns

Re
¼ 0 (10.11)

dye

Re

ds

β

βd

Re

dxe

β

x

y

FIGURE 10.7

Element of the contour arc.
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Nz ¼ B11εz þ B12εs; Ns ¼ B12εz þ B22εs; Nzs ¼ B44gzs (10.12)

εz ¼ vuz
vz

; εs ¼ vus
vs

þ uh
Re

; gzs ¼
vuz
vs

þ vus
vz

(10.13)

in which uz, us, and uh are the axial, contour, and normal displacements of a point on reference surface,
respectively.

10.3 ASSUMPTIONS OF COMPOSITE BEAM THEORY
In composite beam theory, the displacements of the contour points are referred to the coordinates of the
cross section x, y rather than to coordinates s, h as in Eqs. (10.13). Consider the displacement of point
S in Fig. 10.9 to position S1 which can be decomposed into the displacements referred to both

ds

sdz

z
Nz

Nzs
Nzs

Ns

FIGURE 10.8

Membrane stress resultants acting on the element of the reference surface.

S

us

α

β

y

x

ρ

u

ux

ηu

S1y

FIGURE 10.9

Displacements of the contour point S in ðs; hÞ and ðx ; yÞ coordinate frames.
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coordinate frames. It follows from Fig. 10.9 that

us ¼ ux cos b� uy sin b; uh ¼ ux sin bþ uy cos b (10.14)

These displacements are caused by two types of beam deformation. The first type of displacement
corresponds to displacements and rotations of the beam cross section as a solid disk, whereas the
second type of displacement is associated with the deformation (stretching and bending) of the
cross-sectional contours.

The first basic assumption of this beam theory states that the displacements of the second type are
negligible in comparison with the displacements of the first type. As a matter of fact, the displacements
of the second type are not zero; they are just small in comparison with the displacements of the first
type, which can be presented as

ux ¼ UxðzÞ þ Dux; uy ¼ UyðzÞ þ Duy (10.15)

Here, UxðzÞ and UyðzÞ are the displacements of the cross section as a solid in x- and y-directions,
whereas Dux and Duy are caused by cross section rotation. Consider the rotation of the cross
section in the xy-plane (see Fig. 10.10). If the rotation angle is Qz, then it follows from Fig. 10.10
that

Dux ¼ rQz cos a; Duy ¼ �rQz sin a

Taking into account Eqs. (10.6), we get

Dux ¼ yeQz; Duy ¼ �xeQz

and Eqs. (10.15) take the following final form:

ux ¼ UxðzÞ þ yeQzðzÞ; uy ¼ UyðzÞ � xeQzðzÞ (10.16)

zΘρ

0

1S

ρ xuΔ

α

x

y

α
zΘ

yuΔ−

S

FIGURE 10.10

Displacements caused by the rotation of the cross section.
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Substituting these equations into Eqs. (10.14) for us and uh and using Eqs. (10.7) for t and r,
we also get

us ¼ Ux

�
z
�
cos b� Uy

�
z
�
sin bþ rQz

�
z
�

uh ¼ Ux

�
z
�
sin bþ Uy

�
z
�
cos bþ tQz

�
z
� (10.17)

Thus, the in-plane displacements of the beam cross section are expressed in terms of three unknown
functions of z, i.e., UxðzÞ, UyðzÞ, and QzðzÞ.

Consider the axial displacement uz and present it in the following form:

uz ¼ UzðzÞ þ xeQyðzÞ þ yeQxðzÞ þJðz; sÞ (10.18)

Here, Uz is the axial displacement andQx andQy are the angles of rotation of the cross section around
axes x and y as a solid. The functionJðz; sÞ in Eq. (10.18) is referred to as the warping function which
specifies the deviation of the cross section out of the plane. In this beam theory, Eq. (10.18) is
simplified in two ways.

For the problems of free bending and torsion, we assume that the warping function is the same for
the whole cross section and does not depend on z (see Fig. 10.4a). Then

uz ¼ UzðzÞ þ xeQyðzÞ þ yeQxðzÞ þJðsÞ (10.19)

For problems of restrained bending and torsion, we take Eq. (10.18) in the form

uz ¼ UzðzÞ þ xeQyðzÞ þ yeQxðzÞ þ f ðzÞJðsÞ (10.20)

where f ðzÞ is the unknown function andJðsÞ is the warping function corresponding to free bending or
torsion of the beam.

Finally, simplify the equilibrium and the constitutive equations, i.e., Eqs. (10.11) and (10.12). It
follows from the third equation of Eqs. (10.11) that Ns ¼ 0 and the equilibrium equations reduce to

vNz

vz
þ vNzs

vs
¼ 0; Nzs ¼ NzsðsÞ (10.21)

Thus, the shear stress resultant does not depend on the axial coordinate z. Since Ns ¼ 0, we can use the
second equation of Eqs. (10.12) to find that

εs ¼ �B12

B22
εz (10.22)

and to reduce the constitutive equations to

Nx ¼ Bεz; Nzs ¼ B44gzs (10.23)

where

B ¼ B11 � B2
12

B22
(10.24)

is the axial stiffness of the beam wall. This equation, Eq. (10.24), actually allows for the axial stiffness
reduction due to Poisson’s effect in the contour direction and is valid for smooth composite beams such
as those shown in Fig. 10.1b and 10.3a. However, in real beams, the Poisson effect can be restricted by
transverse ribs as shown in Figs. 10.2 and 10.3b or by a core filling the inner space of the beam as
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shown in Fig. 10.1a. For such beams, it is generally assumed that the circumferential strain can be
neglected, i.e., εs ¼ 0 in Eqs. (10.12). In this case, the constitutive equations, Eqs. (10.12), reduce to
Eqs. (10.23), in the first of which

B ¼ B11 (10.25)

It should be noted that thin-walled beam theory is approximate and the decision whether to use
Eq. (10.24) or (10.25) for the axial stiffness depends on the actual structure of the beam.

Thus, introducing the foregoing assumptions, we can reduce the two-dimensional equations of
shell theory to ordinary differential equations of beam theory which include the displacements UxðzÞ,
UyðzÞ, and UzðzÞ and the rotation angles QxðzÞ, QyðzÞ, and QzðzÞ of the beam cross section for the
problem of free bending and torsion, and in addition, the function f ðzÞ for the problems of restrained
bending and torsion.

10.4 FREE BENDING AND TORSION OF THIN-WALLED BEAMS WITH
A CLOSED CROSS-SECTIONAL CONTOUR
Consider a beam with a closed cross-sectional contour loaded at the ends with forces and moments as
shown in Fig. 10.11 and assume that the beam is in a state of free bending and torsion (restrained
deformation is considered further in Section 10.4.11).

10.4.1 Axial strain and stress resultant

In the case of free bending and torsion usually studied for beams with closed cross sections, the axial
stress resultant Nz can be found with the aid of Eqs. (10.22), (10.13), and (10.19), i.e.,

Nz ¼ B
vuz
vz

¼ B
�
U0
z þ xeQ

0
y þ yeQ

0
x

�
(10.26)

As can be seen, the warping function, which does not depend on z, does not enter Eq. (10.26), which is
very important for the theory of free bending.

Three functions of the z-coordinate, i.e., Uz, Qx, and Qy, can be expressed in terms of the integral
axial force Pz and the bending moments Hx and Hy applied to the beam cross section (see Fig. 10.11).
Using Fig. 10.12, we get

Pz ¼
Z
s

Nzds; Hx ¼
Z
s

Nzyeds; Hy ¼
Z
s

Nzxeds (10.27)

The index “s” under the integral shows that the integration is performed along the whole contour of the
beam cross section. Substituting Eq. (10.26) into Eqs. (10.27), we arrive at the following three
equations for U0

z, Q
0
x, and Q0

y:

SU0
z þ SxQ

0
x þ SyQ

0
y ¼ Pz

SxU
0
z þ DxQ

0
x þ DxyQ

0
y ¼ Hx

SyU
0
z þ DxyQ

0
x þ DyQ

0
y ¼ Hy

(10.28)
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FIGURE 10.11

Thin-walled beam with closed cross-sectional contour loaded at the ends.
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FIGURE 10.12

Reduction of stress resultants Nz and Nzs to the integral forces and moments.
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in which

S ¼ R
s
Bds; Sx ¼

R
s
Byeds; Sy ¼

R
s
Bxeds

Dx ¼
R
s
By2eds; Dy ¼

R
s
Bx2eds; Dxy ¼

R
s
Bxeyeds

(10.29)

Here, S is the axial stiffness of the beam and Sx and Sy and Dx, Dy, and Dxy are the coupling and the
bending stiffness coefficients referred to the given coordinate frame (x, y). The first equation of
Eqs. (10.28) yields

U0
z ¼

Pz

S
� ðx0Q0

y þ y0Q
0
xÞ (10.30)

where

x0 ¼ Sy
S
; y0 ¼ Sx

S
(10.31)

are the coordinates of the cross-sectional center. If the axial force Pz is applied at the center, it does not
cause beam bending. Substituting Eq. (10.30) into the second and third of Eqs. (10.28), we get

Q0
x ¼

k

D0
x

�
Hx � nyHy

�
; Q0

y ¼
k

D0
y

�
Hy � nxHx

�
(10.32)

Here,

k ¼ 1

1� nxny
; nx ¼

D0
xy

D0
x

; ny ¼
D0
xy

D0
y

D0
x ¼ Dx � y20S; D0

y ¼ Dy � x20S; D0
xy ¼ Dxy � x0y0S

Hx ¼ Hx � y0Pz; Hy ¼ Hy � x0Pz

(10.33)

where D0
x , D

0
y , and D0

xy are the bending stiffness coefficients referred to the central axes of the cross
section. The coefficient k depends on the symmetry of the cross section. If the cross section has one or
two axes of symmetry, D0

xy ¼ 0, nx ¼ ny ¼ 0, and k ¼ 1. Substituting Eqs. (10.30) and (10.32) into
Eq. (10.26), we arrive at the following final expression for the axial stress resultant:

Nz ¼ Bεz (10.34)

in which the axial strain is

εz ¼ Pz

S
þ k

 
Hx

D0
x

yþ Hy

D0
y

x

!
(10.35)

where

x ¼ xe � x0 � nxðye � y0Þ; y ¼ ye � y0 � nyðxe � x0Þ (10.36)
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This result, Eq. (10.35), is valid in the arbitrary coordinate frame x, y. If the cross section has one
symmetry axis, e.g., axis x in Fig. 10.13a, then

Sx ¼ 0; Dxy ¼ 0; y0 ¼ 0; D0
x ¼ Dx; nx ¼ ny ¼ 0; k ¼ 1

and

εz ¼ Pz

S
þ Hx

Dx
ye þ Hy

D0
y

ðxe � x0Þ (10.37)

For a cross section with two symmetry axes (see Fig. 10.13b),

Sy ¼ 0; x0 ¼ 0; D0
y ¼ Dy

and

εz ¼ Pz

S
þ Hx

Dx
yþ Hy

Dy
x (10.38)

The foregoing expressions for εz include the axial force, Pz, and the bending moments, Hx and Hy,
acting in the beam cross section which must satisfy the equilibrium equations for a beam loaded at its
ends (see Fig. 10.11). For the projections of the forces on axes x, y, and z, we have the following
equations:

dQx

dz
¼ 0;

dQy

dz
¼ 0;

dPz

dz
¼ 0 (10.39)

and for the moments, in a similar way

dHx

dz
� Qy ¼ 0;

dHy

dz
� Qx ¼ 0;

dTz
dz

¼ 0 (10.40)

Note that Qx, Qy, and Tz in Eqs. (10.39) and (10.40) are the integral transverse shear forces and
the torque applied to the beam cross section (see Fig. 10.12). Integrating Eqs. (10.39) and (10.40), we
arrive at

Qx ¼ Q0
x ; Qy ¼ Q0

y ; Pz ¼ P0
z

Hx ¼ H0
x þ Q0

yz; Hy ¼ H0
y þ Q0

xz; Tz ¼ T0
z

(10.41)

y

x
0x x

y

(a) (b)

FIGURE 10.13

Cross sections with one (a) and two (b) symmetry axes.
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Here, the forces and the moments with subscript “0” correspond to the initial cross section z ¼ 0 of
the beam (see Fig. 10.11).

Thus, the axial strain εz and the corresponding stress resultant Nz are specified by Eqs. (10.34) and
(10.35) in which the axial force Pz and the moments Hx and Hy are given by Eqs. (10.41).

10.4.2 Shear strain and stress resultant

To determine the shear stress resultant Nzs, substitute Nz from Eq. (10.34) into the equilibrium
equation, Eq. (10.21), to get

vNzs

vs
¼ � vNz

vz
¼ �B

�
1

S
P0
z þ

ky

D0
x

H
0
x þ

kx

D0
y

H
0
y

�
(10.42)

where ð.Þ0 ¼ dð.Þ=dz. Consider a closed contour shown in Fig. 10.14a and measure the contour
coordinate s from some point S. Integration of Eq. (10.42) yields

Nzs ¼ NQðsÞ þ N0 (10.43)

where

NQðsÞ ¼ �
"
1

S
P0
zSðsÞ þ

k

D0
x

H
0
xSxðsÞ þ

k

D0
y

H
0
ySyðsÞ

#
(10.44)

in which

SðsÞ ¼
Zs
0

Bds; Sx
�
s
� ¼ Z

s

0

Byds; Sy
�
s
� ¼ Z

s

0

Bxds (10.45)

and N0 is formally the integration constant. The decomposition of Nzs specified by Eq. (10.43) has the
physical meaning demonstrated in Fig. 10.14. Consider Eq. (10.44). It follows from Eqs. (10.45) that at
s ¼ 0 the functions SðsÞ are zero and NQ ¼ ðs ¼ 0Þ ¼ 0. Let s ¼ s1 where s1 is the final value of the
contour coordinate corresponding to point S in Figs. 10.14a and b. As can be readily checked,

Sðs ¼ s1Þ ¼ S; Sxðs ¼ s1Þ ¼ 0; Syðs ¼ s1Þ ¼ 0

= +
zsN

QN 0N

sS
1ss = 0=s

(a) (b) (c)

FIGURE 10.14

Decomposition of the total shear stress resultant (a) into NQ (b) and NO (c) components.
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and Eq. (10.44) yields

NQðs ¼ s1Þ ¼ �P0
z ¼ 0

because of the third equation of Eqs. (10.39). Thus, NQ ¼ 0 at point S of the cross section, and we can
imagine that to calculateNQwe need to introduce a longitudinal cut at point S and tomeasure the contour
coordinate s from this cut (see Fig. 10.14b). The cut is compensated by the constant shear stress resultant
N0 in Eq. (10.43) (see Fig. 10.14c). The final expression forNQ can be derived ifwe substituteP0

z,H
0
x, and

H0
y following from the equilibrium equations, Eqs. (10.40), into Eq. (10.44) to get

NQ ¼ �k

"
Qy

D0
x

SxðsÞ þ Qx

D0
y

SyðsÞ
#

(10.46)

Here, the forces Qx and Qy are given by Eqs. (10.41). The stress resultant NQ balances the transverse
shear forces Qx and Qy. Indeed, using Fig. 10.12, we can write the following static equations:Z

s

Nzs cos b ds ¼ Qx;

Z
s

Nzs sin b ds ¼ �Qy (10.47)

Substituting Nzs from Eq. (10.43) and taking into account that in accordance with Eqs. (10.8)

N0

Z
s

cos b ds ¼ N0

Z
s

_xeds ¼ 0; N0

Z
s

sin b ds ¼ �N0

Z
s

_yeds ¼ 0

we get Z
s

NQ cos b ds ¼ Qx;

Z
s

NQ sin b ds ¼ �Qy

Substituting Eq. (10.46) and using the following equations that can be obtained by integrating by partsZ
s

SxðsÞ cos bds ¼ �
Z
s

Bxeyds ¼ �D0
xy þ nyD

0
y ¼ 0

Z
s

SyðsÞ sin bds ¼ �
Z
s

Bxexds ¼ �D0
y

�
1� nxny

�

we can prove that the first equation of Eqs. (10.47) is satisfied identically. The same is true for the
second equation, and the shear stress resultant NQ balances the forces Qx and Qy acting in the beam
cross section.

Thus, to determine the stress resultant Nzs in Eq. (10.43), we need to find N0. For this purpose, we
use the remaining equilibrium equation for the torque Tz. It follows from Fig. 10.12 thatZ

s

Nzsrds ¼ Tz (10.48)

where r is specified byEqs. (10.7). SubstitutingNzs in accordancewith Eq. (10.43) intoEq. (10.48), wegetZ
s

NQrdsþ N0

Z
s

rds ¼ Tz (10.49)
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The function

du ¼
Z
s

rds (10.50)

is referred to as the elementary sectorial area and is equal to twice the area of the shaded triangular in
Fig. 10.15a. Thus, Z

s

rds ¼ 2A (10.51)

where A is the area bounded by the contour (see Fig. 10.15b). Thus, Eq. (10.49) yields

N0 ¼ 1

2A

�
Tz �

Z
s

NQrds

�
(10.52)

Finally, substituting NQ from Eq. (10.46) into Eq. (10.52), we arrive at the following expression for the
shear stress resultant:

Nzs ¼ QxFxðsÞ þ QyFyðsÞ þ Tz
2A

(10.53)

in which

FxðsÞ ¼ � k

D0
y

�
SyðsÞ � 1

2A

Z
s

SyðsÞrds
�

FyðsÞ ¼ � k

D0
x

�
SxðsÞ � 1

2A

Z
s

SxðsÞrds
� (10.54)

Note that, as follows from the equilibrium equations, Eqs. (10.39), Qx, Qy, and Tz do not depend on the
axial coordinate z, and neither does the shear stress resultant Nzs which corresponds to the second
equilibrium equation of Eqs. (10.21).

ds
x

y

r
x

y

A

(a) (b)

FIGURE 10.15

The elementary cross-sectional area (a) and the area bounded by the contour (b).
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The shear strain can be found from Eqs. (10.23) and (10.53) as

gzs ¼
1

B44

�
QxFxðsÞ þ QyFyðsÞ þ Tz

2A

�
(10.55)

In conclusion, consider pure torsion of a beam with a closed cross section. Taking Qx ¼ 0 and Qy ¼ 0
in Eq. (10.53), we get

Nzs ¼ Tz
2A

(10.56)

This result is known as the Bredt equation (Timoshenko and Goodier, 1970). It follows from the
foregoing derivation that the axial and the shear stress resultants Nz and Nzs specified by Eqs. (10.34),
(10.25), and (10.53) are found using the equilibrium equations only. Thus the problem of free bending
and torsion of a beam with a closed cross section is statically determinate with respect to Nz and Nzs.

10.4.3 Stresses in the plies of composite beams

In contrast to Nz and Nzs which can be found from the equilibrium equations, to determine the
stresses in the plies of composite beams we need to use the compatibility conditions to distribute the
stress resultants Nz and Nzs between the plies. Consider a laminated structure of the beam shown
in Fig. 10.16. The strains in the principal ply coordinates (1, 2) can be found with the aid of
Eqs. (5.130), i.e.,

ε
ðiÞ
1 ¼ εz cos

2 fi þ εs sin
2 fi þ gzs sin fi cos fi

ε
ðiÞ
2 ¼ εz sin

2 fi þ εs cos
2 fi � gzs sin fi cos fi

g
ðiÞ
12 ¼ 2ðεs � εzÞ sin fi cos fi þ gzs cos 2fi

(10.57)

Here, εz, εs, and gzs are the beam strains which are the same for all the plies. The axial and shear strains
εz and gzs are specified by Eqs. (10.35) and (10.55), whereas the contour strain εs depends on the beam
model. For a beam with an absolutely compliant contour for which the axial stiffness corresponds to
Eq. (10.24), εs is given by Eq. (10.22), and for the beam with absolutely rigid contour with the axial
stiffness in Eq. (10.25), εs ¼ 0.

The stresses in the plies are linked to the corresponding strains by Hooke’s law, Eqs. (5.131), i.e.,

s
ðiÞ
1 ¼ E

ðiÞ
1

�
ε
ðiÞ
1 þ v

ðiÞ
12ε

ðiÞ
2

	
; s

ðiÞ
2 ¼ E

ðiÞ
2

�
ε
ðiÞ
2 þ v

ðiÞ
21ε

ðiÞ
1

	
; sðiÞ21 ¼ G

ðiÞ
12g

ðiÞ
12 (10.58)

s

z

ih

iφ
1

2

FIGURE 10.16

Laminated structure of a beam.
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where, as earlier, E
ðiÞ
1;2 ¼ E

ðiÞ
1;2=ð1� v

ðiÞ
12v

ðiÞ
21Þ. The ultimate combination of stresses can be found using

the strength criterion discussed in Chapter 6.
As an example, consider a circular cross section fiberglass-epoxy beamwith radiusR¼ 100mmwhich

is composed of two symmetric helical plies with angles f ¼ �36� and total thickness hf ¼ 0:62mm and

a hoop ð90�Þ ply with thickness h90 ¼ 0:6mm. The elastic constants of unidirectional plies are
E1 ¼ 50:6 GPa;E2 ¼ 11 GPa;G12 ¼ 4 GPa; v12 ¼ 0:056, and v21 ¼ 0:26. The stiffness coefficients

of the plies specified by Eqs. (4.72) are A
ðfÞ
11 ¼ 28:31; A

ðfÞ
12 ¼ 12:11; A

ðfÞ
22 ¼ 16:08; A

ðfÞ
44 ¼ 13:2

and A
ð90Þ
11 ¼ 11:17; A

ð90Þ
12 ¼ 2:9; A

ð90Þ
22 ¼ 51:37, and A

ð90Þ
44 ¼ 4:0 (GPa). For a thin wall, the membrane

stiffness coefficients can be found with the aid of Eqs. (5.34) and (5.42), which yield

Bmn ¼ AðfÞ
mn hf þ Að90Þ

mn h90

The result of the calculation is B11 ¼ 24:25;B12 ¼ 9:25;B22 ¼ 40:79, and B44 ¼ 10:58ðGPa,mmÞ.
Consider the case of axial compression, for which Eq. (10.35) yields

εz ¼ �Pz

S

in which S ¼ 2pRB. For an absolutely rigid contour, Eq. (10.25) gives B ¼ B11. The corresponding
function εzðPzÞ is shown in Fig. 10.17 with the solid line. For an absolutely compliant contour, B is
specified by Eq. (10.24), and εs by Eq. (10.22). The results of this calculation are represented in
Fig. 10.17 by dashed lines. As can be seen, the model with absolutely compliant contour is in better
agreement with the experimental results (dots). Within the framework of this model, we have for
Pz ¼ 40 kN

εz ¼ �0:29%; εs ¼ 0:066%

, kNzP

, %sε, %zε

10

20

30

40

0  - 0.1 0.1  - 0.2  - 0.3  - 0.4

FIGURE 10.17

Dependencies of the axial (εz ) and contour (εs) strains on the axial force: analysis for absolutely rigid contour

(–––––––); analysis for absolutely compliant contour (– – – – – – –), and experiment (• • • •).

10.4 Free bending and torsion of thin-walled beams with a closed cross-sectional contour 601

www.EngineeringEBooksPdf.com



The strains in the plies following from Eqs. (10.57) are

ε
ðfÞ
1 ¼ �0:151%; ε

ðfÞ
2 ¼ �0:0051%; g

ðfÞ
12 ¼ H0:192%

ε
ð90Þ
1 ¼ 0:066%; ε

ð90Þ
2 ¼ �0:29%; g

ð90Þ
12 ¼ 0

Here, signs “þ” and “�” correspond to the plies with angle þf and �f, respectively. The stresses in
the plies follow from Eqs. (10.58), i.e.,

s
ðfÞ
1 ¼ �77:7 MPa; s

ðfÞ
2 ¼ 4:96 MPa; sðfÞ12 ¼ þ7:68 MPa

s
ð90Þ
1 ¼ 25:6 MPa; s

ð90Þ
2 ¼ �30:5 MPa; sð90Þ12 ¼ 0

Consider now beam torsion, for which, in accordance with Eq. (10.55),

gzs ¼
Tz

2AB44

where A ¼ pR2. For Tz ¼ 2:5 kNm, we get gzs ¼ 0:38%. The calculated (solid line) and experi-
mental (dots) values for gzsðTzÞ are shown in Fig. 10.18. The strains in the plies under such
a torque are

ε
ðfÞ
1 ¼ �0:18%; ε

ðfÞ
2 ¼ H0:18%; g

ðfÞ
12 ¼ 0:12%

ε
ð90Þ
1 ¼ 0; ε

ð90Þ
2 ¼ 0; g

ð90Þ
12 ¼ 0:38%

, %zsγ

, kNmzT

0.5

1.0 

1.5

2.0

2.5

0  0.2  0.4   0.6

FIGURE 10.18

Dependence of the shear strain on torque: analysis (–––––––) and experiment (• • • •).
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and the stresses become

s
ðfÞ
1 ¼ �87:3 MPa; s

ðfÞ
2 ¼ H14:9 MPa; sðfÞ12 ¼ 4:8 MPa

s
ð90Þ
1 ¼ 0; s

ð90Þ
2 ¼ 0; sð90Þ12 ¼ 15:2 MPa

10.4.4 Determination of displacements

Return to Eqs. (10.30) and (10.32) and integrate them with respect to z, i.e.,

Uz ¼ U0
z þ

Pz

S
z� x0Qy � y0Qx

Qx ¼ Q0
x þ

k

D0
x

Zz
0

�
Hx � nyHy

�
dz

Qy ¼ Q0
y þ

k

D0
y

Zz
0

�
Hy � nxHx

�
dz

(10.59)

Here, U0
x ;Q

0
x , and Q0

y are the axial displacement and rotation angles of the beam’s original cross
section at z ¼ 0.

To proceed, transform the constitutive equation in Eqs. (10.12) for the shear stress resultant Nzs.
Substituting gzs in accordance with the last equation of Eqs. (10.13) and using Eqs. (10.17) for us in
conjunction with Eq. (10.19) for uz and Eqs. (10.8) for _xe and _ye, we arrive at

Nzs ¼ B44



Gx cos b� Gy sin bþ rQ0

z þ _JðsÞ� (10.60)

where

Gx ¼ Qy þ U0
x; Gy ¼ Qx þ U0

y (10.61)

Here, the functions Gx and Gy are the average shear deformations of the beam in the xz and yz
planes (see Fig. 10.11). Indeed, if we neglect these deformations, using classical beam theory, and take
Gx ¼ 0 and Gy ¼ 0, Eqs. (10.61) yield

Qy ¼ �U0
x; Qx ¼ �U0

y (10.62)

Thus, the rotation angles of the beam cross section are equal to the slopes of the curved beam axis with
a minus sign. This is typical for the classical theory of beam bending based on the assumption that the
cross sections remain plane and orthogonal to the curved axis of a beam.

Integrating Eqs. (10.61), we get

Ux ¼ U0
x þ

Zz
0

�
Gx �Qy

�
dz; Uy ¼ U0

y þ
Zz
0

�
Gy �Qx

�
dz (10.63)

Here, as earlier, U0
x and U0

y are the displacements of the cross section in the x- and y-directions
corresponding to the original cross section at z ¼ 0.
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Thus, to determine the beam displacements, we need to find Gx;Gy, and the twist angle Qz

entering the foregoing equations. For this purpose, we apply Castigliano’s theorem (see Section
2.11.2), according to which the displacements and the rotation angle of a beam cross section are
equal to the derivatives of the beam strain energy with respect to the forces and the moment which
act in this cross section. Consider a cantilever beam of unit length loaded with force Qy as shown in
Fig. 10.19 and assume that the beam deformation is associated with shear only (i.e., that all the
stiffness coefficients of the beam wall Bmn ðmn ¼ 11; 12; 22Þ are infinitely high except the shear
stiffness B44). Then, under the action of a force Qy the loaded end of the beam experiences
a deflection dy which is caused by shear and is equal to the shear angle Gy. In accordance with
Castigliano’s theorem,

dy ¼ Gy ¼ vWs

vQy
(10.64)

in which

Ws ¼ 1

2

Z
s

N2
zs

B44
ds (10.65)

is the strain energy induced by the shear stress resultant, Nzs. In a similar way, applying a force Qx

and a torque Tz to the beam in Fig. 10.19, we can write two more equations analogous to
Eq. (10.64), i.e.,

Gx ¼ vWs

vQx
; Qz ¼ Q0

zl ¼
vWs

vTz
(10.66)

For l¼ 1 (see Fig. 10.19), the second of these equations actually specifiesQ0
z, i.e., the angle of rotation

referred to the length of the beam element equal to the derivative of Qz with respect to z. Substituting
the expression for Nzs, Eq. (10.53), into Eq. (10.65), we get

Ws ¼ 1

2

Z
s

1

B44

�
QxFxðsÞ þ QyFyðsÞ þ Tz

2A

�2
ds

1=l

yδ

yQ

yΓ

FIGURE 10.19

A cantilever beam loaded with transverse load.
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Finally, Eqs. (10.64) and (10.66) yield

Gx ¼ cxxQx þ cxyQy þ cxzTz

Gy ¼ cyxQx þ cyyQy þ cyzTz

Q0
z ¼ czxQx þ czyQy þ czzTz

(10.67)

where

cxx ¼
Z
s

F2
x ðsÞ
B44

ds; cxy ¼ cyx ¼
Z
s

FxðsÞFyðsÞ
B44

ds; cyy ¼
Z
s

F2
y ðsÞ
B44

ds

cxz ¼ czx ¼ 1

2A

Z
s

FxðsÞ
B44

ds; cyz ¼ czy ¼ 1

2A

Z
s

FyðsÞ
B44

ds; czz ¼ 1

4A2

Z
s

ds

B44

(10.68)

Thus, the displacementsUx,Uy, andUz and the rotation anglesQx; Qy, andQz of a beam cross section
as an absolutely rigid disk are specified by Eqs. (10.59), (10.63), and (10.67).

10.4.5 Warping function

Under free bending and torsion, the beam cross sections do not remain plane, and the axial
displacement of the cross-sectional contour is specified by Eq. (10.19) according to which

uz ¼ UzðzÞ þ xeQyðzÞ þ yeQxðzÞ þJðsÞ (10.69)

To determine the warping function JðsÞ, we match two expressions for the shear stress resultant Nzs

found from the equilibrium equations, Eq. (10.53), and from the constitutive equation, Eq. (10.60).
Equating the right-hand parts of these equations, we can express _JðsÞ as

_JðsÞ ¼ Qx

B44
FxðsÞ � Gx cos bþ Qy

B44
FyðsÞ þ Gy sin bþ Tz

2AB44
� rQ0

z

Integrating this equation, we get

JðsÞ ¼ JbðsÞ þJtðsÞ (10.70)

where

JbðsÞ ¼ Qx

Zs
0

FxðsÞ
B44

ds� Gx

Zs
0

cos bdsþ Qy

Zs
0

Fy

�
s
�

B44
dsþ Gy

Zs
0

sin bds (10.71)

JtðsÞ ¼ Tz
2A

Zs
0

ds

B44
�Q0

z

Zs
0

rds (10.72)

The constant of integration is omitted because it can be included in function Uz in Eq. (10.69).
According to Eq. (10.70), the warping function can be decomposed into JbðsÞ which corresponds to
bending and JtðsÞ which corresponds to torsion of the beam.
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Note that for the closed contour shown in Fig. 10.14 the warping function must be continuous, i.e.,

Jðs ¼ 0Þ ¼ Jðs ¼ s1Þ (10.73)

Taking into account thatZ
s

cos b ds ¼
Z
s

_xeds ¼ 0;

Z
s

sin b ds ¼ �
Z
s

_yeds ¼ 0;

Z
s

rds ¼ 2A

we can reduce Eq. (10.73) to the third equation of Eqs. (10.67).
The function JðsÞ in Eq. (10.70) depends on the location of point S from which the contour

coordinate s is measured and the selection of the coordinate frame x, y (see Fig. 10.12). To determine
the warping function, which is invariant with respect to its coordinates, we introduce the augmented
warping function as

WðsÞ ¼ JðsÞ þ C0 þ C1xe þ C2ye (10.74)

and impose the orthogonality conditionsZ
s

WðsÞBds ¼ 0;

Z
s

WðsÞBxeds ¼ 0;

Z
s

WðsÞByeds ¼ 0 (10.75)

in which B is, as earlier, the axial stiffness of the wall. Substituting W(s) from Eq. (10.74) into
Eqs. (10.75), we arrive at the following three equations for C0;C1, and C2:

SC0 þ SxC1 þ SyC2 ¼ �
Z
s

JðsÞBds

SxC0 þ DxC1 þ DxyC2 ¼ �
Z
s

JðsÞByeds

SyC0 þ DxyC1 þ DyC2 ¼ �
Z
s

JðsÞBxeds

Here, the coefficients S and D are specified by Eqs. (10.29). Determining the constants C0;C1, and C2

and substituting them into Eq. (10.74), we finally get

WðsÞ ¼ JðsÞ � 1

S

Z
s

JðsÞBds� k

�
ye � y0
D0
x

Z
s

JðsÞBydsþ xe � x0
D0
y

Z
s

JðsÞBxds
�

(10.76)

where x0; y0, k, and D, and x and y are given by Eqs. (10.31), (10.33), and (10.36). The warping
function in Eq. (10.76) depends only on the beam geometry and mechanical properties.

10.4.6 Beams with circular and rectangular cross sections

The most widely used composite thin-walled beams have circular and rectangular cross sections
(see Fig. 10.20).

Consider a beam with a circular cross section shown in Fig. 10.21. The contour coordinates s, xe,
and ye are expressed in terms of the radius R and the angle b as

s ¼ Rb; xe ¼ R sin b; ye ¼ R cos b
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The stiffness coefficients given by Eqs. (10.29) and (10.33) become

S ¼ B

Z2p
0

Rdb ¼ 2pRB; Sx ¼ BR2

Z2p
0

cos bdb ¼ 0; Sy ¼ BR2

Z2p
0

sin bdb ¼ 0

D0
x ¼ Dx ¼ BR3

Z2p
0

cos 2bdb ¼ pBR3; D0
y ¼ Dy ¼ BR3

Z2p
0

sin2 bdb ¼ pBR3

D0
xy ¼ Dxy ¼ BR3

Z2p
0

sin b cos b db ¼ 0

FIGURE 10.20

Composite beams with circular and rectangular cross-sections.
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The axial stress resultant and strain are specified by Eqs. (10.34) and (10.35), according to which (we
consider bending in the yz-plane only)

Nz ¼ Bεz ¼ Pz

2pR
þ Hx

pR2
cos b

For a circular cross section, r ¼ R and A ¼ pR2. Then, Eqs. (10.45) and (10.54) yield

SxðsÞ ¼ BR2

Zb
0

cos bdb ¼ BR2 sin b

FyðsÞ ¼ � 1

pBR3

�
BR2 sin b� BR2

2p

Z2p
0

sin bdb

�
¼ � sin b

pR

(we consider the loading with a force Qy only), and Eq. (10.53) for the shear stress resultant
becomes

Nzs ¼ 1

pR

�
Tz
2R

� Qy sin b

�

Consider the displacements. For bending in the yz-plane (see Fig. 10.21), we have from Eqs. (10.59)

Uz ¼ U0
z þ

Pzz

2pRB
; Qx ¼ Q0

x þ
1

pBR3

Zz
0

Hxdz

x

y

β

Q

s

R

h

FIGURE 10.21

A beam with a circular cross section.
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The compliance coefficients entering Eqs. (10.67) are

cxy ¼ 0; cxz ¼ 0; cyz ¼ 0

cyy ¼ 1

p2RB44

Z2p
0

sin2 bdb ¼ 1

pRB44
; czz ¼ 1

2p2R3B44

Z2p
0

db ¼ 1

2pR3B44

Then, Eqs. (10.67) yield

Gy ¼ Qy

pRB44
; Q0

z ¼
Tz

2pR3B44

and according to Eqs. (10.63), the beam deflection is

Uy ¼ U0
y �Q0

xzþ
Zz
0

1

pR

0
@Qy

B44
� 1

BR2

Zz
0

Hxdz

1
Adz (10.77)

As an example, consider the cantilever beam loaded with force Qy ¼ Q as shown in Fig. 10.21. For
such a beam, Eqs. (10.41) and the boundary conditions give

U0
y ¼ 0; Q0

x ¼ 0; Qy ¼ Q; Hx ¼ �Qðl� zÞ

The maximum deflection Um
y ¼ Uyðz ¼ lÞ following from Eq. (10.77) is

Um
y ¼ Ql3

3pBR3
ð1þ aÞ; a ¼ 3BR2

B44l2

The parameter a allows for shear deformation of the beam under bending. As can be seen, this
deformation can be ignored for relatively long beams with high ratio l/R. Finally, we determine the
warping functions. Using Eqs. (10.71) and (10.72), we get

JbðsÞ ¼ Qy

Zs
0

FyðsÞ
B44

dsþ Gy

Zs
0

sin bds ¼ � Qy

pB44

Zb
0

sin bdbþ Qy

pB44

Zb
0

sin bdb ¼ 0

JtðsÞ ¼ Tz
2A

Zs
0

ds

B44
�Q0

z

Zs
0

rds ¼ Tz
2pRB44

Zb
0

db� Tz
2pRB44

Zb
0

db ¼ 0

Thus, bending and torsion of a beam with a closed circular cross section do not cause cross-sectional
warping.
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Consider the beam with a rectangular cross section shown in Fig. 10.22. Decompose the beam
contour into five parts, i.e., 0 – 1, 1 – 2, 2 – 3, 3 – 4, and 4 – 0, and present the geometrical parameters
of the contour for each part as

0� 1: s ¼ 0; xe ¼ x; ye ¼ b

2
; r ¼ b

2
; b ¼ 0

1� 2: s ¼ a

2
þ
�
b

2
� y

�
; xe ¼ a

2
; ye ¼ y; r ¼ a

2
; b ¼ p

2

2� 3: s ¼ a

2
þ bþ

�a
2
� y
	
; xe ¼ x; ye ¼ �b

2
; r ¼ b

2
; b ¼ p

3� 4 : s ¼ 3a

2
þ bþ

�
b

2
þ y

�
; xe ¼ �a

2
; ye ¼ y; r ¼ a

2
; b ¼ 3p

2

4� 0: s ¼ 3a

2
þ 2bþ

�a
2
þ x
	
; xe ¼ x; ye ¼ b

2
; r ¼ b

2
; b ¼ 2p

The stiffness coefficients given by Eqs. (10.29) and (10.33) are

S ¼ 2Bðaþ bÞ; Sx ¼ 0; Sy ¼ 0; D0
xy ¼ 0

D0
x ¼ Dx ¼ 1

6
Bb2ð3aþ bÞ; D0

y ¼ Dy ¼ 1

6
Ba2ðaþ 3bÞ

Consider a cantilever beam loaded with force Qy ¼ Q, bending moment Hx ¼ M and torque Tz ¼ T .
Then, the axial stress resultant specified by Eq. (10.34) is

Nz ¼ 6½M � Qðl� zÞ�y
b2ð3aþ bÞ

y

x2/b

2/b

s0

2/a 2/a

h 1

23

4

FIGURE 10.22

A rectangular cross section of a beam.
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The function SxðsÞ in Eqs. (10.45) becomes, for the different parts of the beam,

S01x ðsÞ ¼ B
b

2

Z
dx ¼ 1

2
Bbx

S12x ðsÞ ¼ S01x

�
x ¼ a

2

	
þ B

Zy
b=2

yð�dyÞ ¼ B

2

�
ab

2
þ b2

4
� y2

�

S23x ðsÞ ¼ S12x

�
y ¼ � b

2

�
þ B

�
� b

2

� Zx
a=2

ð�dxÞ ¼ 1

2
Bbx

S34x ðsÞ ¼ S23x

�
x ¼ � a

2

	
þ B

Zy
�b=2

ydy ¼ �B

2

�
ab

2
þ b2

4
� y2

�

S40x ðsÞ ¼ S34x

�
y ¼ b

2

�
þ B

b

2

Zx
�a=2

dx ¼ 1

2
Bbx

The distribution of the function SxðsÞ over the contour is shown in Fig. 10.23. Positive values are
plotted outside the contour and negative ones inside the contour.

The function FyðsÞ in Eqs. (10.54) has the following form:

FyðsÞ ¼ � 1

D0
x

2
4SxðsÞ � 1

2ab

Z
s

SxðsÞrds
3
5 ¼ 6SxðsÞ

Bb2ð3aþ bÞ

Thus, we can find the components of the shear stress resultant as

NQ ¼ � 6QSxðsÞ
Bb2ð3aþ bÞ; N0 ¼ T

2ab

x

y Bab
4

1

⎟
⎠
⎞⎜

⎝
⎛ +

24

1 b
aBb

FIGURE 10.23

Distribution of function Sx ðsÞ over the cross-sectional contour.

10.4 Free bending and torsion of thin-walled beams with a closed cross-sectional contour 611

www.EngineeringEBooksPdf.com



The distributions of these components of the shear stress resultant over the cross-sectional contour are
shown in Fig. 10.24.

To determine the displacements, we need to find the compliance coefficients which enter
Eqs. (10.67), i.e.,

cxy ¼ 0; cxz ¼ 0; cyz ¼ 0

cyy ¼ 1

B44

Z
s

F2
y ðsÞds ¼

9

ð3aþ bÞ2b2B44

�
b3

15
þ ab2

3
þ a2b

2
þ a3

6

�

czz ¼ 1

4a2b2B44

Z
s

ds ¼ aþ b

2a2b2B44

For the cantilever beamunder consideration, the final expressions for the deflection and the twist angle are

Uy ¼ Qz

Cs
�
h
M � Q

�
l� z

3

	i z2

2D
; Qz ¼ Tz

Dt
(10.78)

where

Cs ¼ ð1þ 3lÞ2bB44

3
�
0:2þ lþ 1:5l2 þ 0:5l3

�; D ¼ 1

6
Bb3ð3lþ 1Þ; l ¼ a

b
(10.79)

x

y

Q
QN

x

y

0N
H

(a)

(b)

FIGURE 10.24

Distributions of NQ (a) and N0 (b) over the cross-sectional contour.
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are the shear and bending stiffnesses of the beam and

Dt ¼ 2l2

1þ l
b3B44 (10.80)

is the torsional stiffness.
As an example, consider the beam experimentally studied by Smith and Chopra (1990). The

cantilever beam (see Fig. 10.25) has the following dimensions: l¼ 762 mm, a¼ 52.3 mm, b¼ 26 mm,
and h ¼ 0.76 mm, and consists of three unidirectional axial ðf ¼ 0Þ carbon-epoxy plies with total
thickness h0 ¼ 0:38 mm and three orthogonally reinforced plies ðf ¼ 90�Þ with total thickness
h90 ¼ 0:38 mm. The mechanical properties of the unidirectional ply are E1 ¼ 142 GPa; E2 ¼
9:8 GPa; G12 ¼ 6 GPa; v12 ¼ 0:029, and v21 ¼ 0:42. The stiffness coefficients of the layer are

A
ð0Þ
11 ¼ E1; A

ð0Þ
12 ¼ v12E1; A

ð0Þ
22 ¼ E2; A

ð0Þ
44 ¼ G12

A
ð90Þ
11 ¼ E2; A

ð90Þ
12 ¼ v12E1; A

ð90Þ
22 ¼ E1; A

ð90Þ
44 ¼ G12

where, as earlier, E1;2 ¼ E1;2=ð1� v12v21Þ. The stiffness coefficients of the beam wall

Bmn ¼ h

2

�
Að0Þ
mn þ Að90Þ

mn

	
; B ¼ B11 � B2

12

B22

have the following values:

B11 ¼ B22 ¼ 58:4 MN=m; B12 ¼ 3:2 MN=m; B44 ¼ 4:56 MN=m; B ¼ 58:2 MN=m

The beam stiffnesses under shear, bending, and torsion specified by Eqs. (10.79) and (10.80) are

Cs ¼ 158 kN; D ¼ 1200 Nm2; Dt ¼ 215 Nm2

z

x

y

Q

a

b
lh

T

FIGURE 10.25

A cantilever beam with a rectangular cross section loaded by transverse force Q and torque T.
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The experimental beam is loaded by a transverse force Q ¼ 4.448 N and a torque T ¼ 0.113 Nm (see
Fig. 10.25). The deflection slope and twist angle following from Eqs. (10.78) are

U0
y ¼

�
0:028þ 2:15

�
z� z2

2

��
10�3; Q ¼ 0:0004,z

where z ¼ z=l. The calculated (lines) and the experimental (dots) results are presented in Fig. 10.26.
Finally, consider the warping function for a rectangular cross section. The warping function under

bending is specified by Eq. (10.71), according to which

JbðsÞ ¼ 3Q

b2ð3aþ bÞB44

2
42
B

Zs
0

SxðsÞdsþ 3

3aþ b

0
@b3

15
þ ab2

3
þ a2b

2
þ a3

6

Zs
0

sin b ds

1
A
3
5 (10.81)

Here, SxðsÞ is shown in Fig. 10.23. It follows from Eq. (10.81) that the function JbðsÞ is composed of
two integrals whose distribution over the beam contour is presented in Fig. 10.27. As can be seen, the
dependence ofJb on the x-coordinate is quadratic and on the y-coordinate is cubic. The invariant form

0  0.2  0.4   0.6   0.8 1.0

z

yU ′

0.0002

0.0004

0.0006

0.0008

0.0012

0.001

z

Θ

0  0.2  0.4   0.6   0.8 1.0

0.0001

0.0002

0.0003

0.0004

(a)

(b)

FIGURE 10.26

Dependencies of the deflection slope (a) and the twist angle (b) on the axial coordinate: analysis (–––––) and

experiment (••••) (Smith and Chopra, 1990).
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of the warping function is specified by Eq. (10.76), according to which

WbðsÞ ¼ JbðsÞ � 1

2ðaþ bÞ
Z
s

JbðsÞds� 6y

b2ð3aþ bÞ
Z
s

JbðsÞyds (10.82)

The warping function WbðsÞ for the rectangular cross section is shown in Fig. 10.28. It follows from
Eq. (10.81) that for Q ¼ 0 we have JbðsÞ ¼ 0, i.e., the warping of the cross section under beam
bending is induced by the transverse shear force only.

dssS
s

x∫
0

)(

1

23

4

ds
s

∫
0

sin β

FIGURE 10.27

Distributions of the integrals in Eq. (10.81).

y

Q
x

FIGURE 10.28

Warping function of a rectangular beam under transverse bending.
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Under torsion, the warping function is specified by Eq. (10.72) which yields

JtðsÞ ¼ T

2abB44

0
@Zs

0

ds� aþ b

ab

Zs
0

rds

1
A

For the contour shown in Fig. 10.22, we have

J01
t ðsÞ ¼ T

2abB44

0
@Zx

0

dx� aþ b

ab

Zx
0

dx

1
A ¼ Tða� bÞx

4ab2B44

J12
t ðsÞ ¼ T

2abB44

2
64 Z

y

b=2

ð�dyÞ � aþ b

ab

a

2

Zy
0

ð�dyÞ

3
75 ¼ Tða� bÞy

4ab2B44

The warping function of a rectangular beam under torsion is shown in Fig. 10.29. SinceZ
s

JtðsÞds ¼ 0;

Z
s

JtðsÞxeds ¼ 0;

Z
s

JtðsÞyeds ¼ 0;

the function JtðsÞ is invariant with respect to coordinate frame and JtðsÞ ¼ WtðsÞ where

WtðsÞ ¼ Tða� bÞ
2a2b2B44

xy (10.83)

For a square cross section (a¼ b) andWtðsÞ ¼ 0, so a square cross section does not experience warping
under torsion (but it does under transverse bending). This result holds for any contour which has the
shape of a regular polygon (see Fig. 10.30) for which

r ¼ rn ¼ R cos a; an ¼ 2R sin a; A ¼ n

2
anrn;

Z
s

ds ¼ nan

and JtðsÞ ¼ 0. A thin-walled composite beam with hexagonal cross section is shown in Fig. 10.31.

T

FIGURE 10.29

Warping function of a rectangular beam under torsion.
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The foregoing results are valid for thin-walled beams whose stiffness coefficients do not depend on
the contour coordinate s. Changing these coefficients accordingly, we can control the cross-sectional
warping. Consider, for example, the rectangular cross section shown in Fig. 10.22 and assume that
the shear stiffness of the horizontal walls 1 – 4 and 2 – 3 is Ba

44, whereas for the vertical walls 1 – 2 and
3 – 4 , it is different and is equal to Bb

44. Then, Eq. (10.83) can be generalized as

WtðsÞ ¼ Txy

2a2b2

 
a

Ba
44

� b

Bb
44

!

As can be seen, taking bBa
44 ¼ aBb

44, we have WtðsÞ ¼ 0.

10.4.7 Shear and twist center

In the general case, the forces Pz; Qx, and Qy applied at some arbitrary point 0 (see Fig. 10.12) induce
tension, bending, and torsion of the beam. It is shown in Section 10.4.1 that if an axial force is applied
at the cross-sectional center with coordinates x0 and y0 given by Eqs. (10.31), it does not cause any
beam bending. An analogous situation occurs with respect to bending and torsion. If the transverse

nα

na

nr
R

T

FIGURE 10.30

Cross-sectional contour in the form of a regular polygon.

FIGURE 10.31

Composite thin-walled beam with a hexagonal cross section.
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forces Qx and Qy are applied at the point called the shear center of the cross section, they do not induce
the beam torsion.

To determine the coordinates of the shear center, consider the contour of a beam cross section
shown in Fig. 10.32a and assume that the forces Qx and Qy and the torque Tz are applied at some
arbitrary point O. Then, the shear deformations Gx and Gy and the derivative of the twist angle Q0

z are
specified by Eqs. (10.67), i.e.,

Gx ¼ cxxQx þ cxyQy þ cxzTz

Gy ¼ cyxQx þ cyyQy þ cyzTz

Q0
z ¼ czxQx þ czyQy þ czzTz

(10.84)

in which the coefficients c are given by Eqs. (10.68). We now introduce the shear center S with
coordinates xs; ys and apply the transverse forces and torque to the shear center as in Fig. 10.32b.
Then, the conditions of the static equivalence of the forces and torque shown in Figs. 10.32a and b are

Qs
x ¼ Qx; Qs

y ¼ Qy; Ts
z ¼ Tz þ xsQy � ysQx (10.85)

Substitute Qx; Qy, and Tz from Eqs. (10.85) into the third equation of Eqs. (10.84) to get

Q0
z ¼ ðcxz þ ysczzÞQs

x þ
�
cyz � xsczz

�
Qs
y þ czzT

s
z (10.86)

Since the forces Qs
x and Qs

y are applied at the shear center, Q0
z must not depend on Qs

x and Qs
y, i.e.,

Q0
z ¼ czzT

s
z (10.87)

Then, Eq. (10.86) allows us to find the coordinates of the shear center as

xs ¼ cyz
czz

; ys ¼ �cxz
czz

(10.88)

x

y

O

yQ

xQzT

O

x

y

s
xQ

S

sxsy

sx

sy

s
yQ

s
zT

(a) (b)

FIGURE 10.32

Cross section with forces applied at an arbitrary point O (a) and at the shear center S (b).
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Substituting the coefficients c with their expressions, Eqs. (10.68), we finally arrive at

xs ¼ 2kA

D0
x

2
4 1

2A

Z
s

SxðsÞrds�
�Z

s

ds

B44

��1 Z
s

SxðsÞ
B44

ds

3
5

ys ¼ �2kA

D0
y

�
1

2A

Z
s

SyðsÞrds�
�Z

s

ds

B44

��1Z
s

SyðsÞ
B44

ds

� (10.89)

Now, transform the first two equations of Eqs. (10.84) and show that if the forcesQs
x andQ

s
y are applied

at the shear center, the corresponding shear deformations Gs
x and G

s
y do not depend on the torque T

s
z . In

the general case, Eqs. (10.61) yield

Gx ¼ Qy þ U0
x; Gy ¼ Qx þ U0

y (10.90)

in which Ux and Uy are the displacements of point O in Fig. 10.32a. The displacements of an arbitrary
point of the cross section are specified by equations analogous to Eqs. (10.16), i.e.,

ux ¼ Ux þ yQz; uy ¼ Uy � xQz

For the shear center, x ¼ xs and y ¼ ys and these equations yield

Us
x ¼ Ux þ ysQz; Us

y ¼ Uy � xsQz (10.91)

where Us
x andU

s
y are the displacements of the shear center S (see Fig. 10.32b). Solving Eqs. (10.91) for

Ux and Uy and substituting the resulting expressions into Eqs. (10.90), we get

Gx ¼
�
Us
x

�0 � ysQ
0
z þQy; Gy ¼

�
Us
y

	0 þ xsQ
0
z þQx (10.92)

Introduce the shear deformations Gs
x and Gs

y corresponding to the shear forces applied at the shear
center using the following equations analogous to Eqs. (10.90):

Gs
x ¼

�
Us
x

�0 þQy; Gs
y ¼

�
Us
y

	0 þQx (10.93)

Then, Eqs. (10.92) become

Gx ¼ Gs
x � ysQ

0
z; Gy ¼ Gs

y þ xsQ
0
z

Substitute these equations into the first two equations of Eqs. (10.84) and change Qx;Qy, and Tz to
Qs
x;Q

s
y, and Ts

z with the aid of Eqs. (10.85) to get

Gs
x ¼ ðcxx þ yscxzÞQs

x þ
�
cxy � xscxz

�
Qs
y þ cxzT

s
z þ ysQ

0
z

Gs
y ¼

�
cxy þ yscyz

�
Qs
x þ

�
cyy � xscyz

�
Qs
y þ cyzT

s
z � xsQ

0
z

Substituting Q0
z with its expression given by Eq. (10.87) and using Eqs. (10.88) for the coordinates of

the shear center, we finally arrive at

Gs
x ¼ csxxQ

s
x þ csxyQ

s
y; Gs

y ¼ csxyQ
s
x þ csyyQ

s
y (10.94)
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where

csxx ¼ cxx �
c2xz
czz

; csxy ¼ cxy � cxzcyz
czz

; csyy ¼ cyy �
c2yz
czz

Thus, if the transverse forces are applied at the shear center, the shear deformations are specified by
Eqs. (10.94) and depend only on the forces. The angle of twist is determined by Eq. (10.87).

We now introduce the twist center, i.e., the point around which the beam cross section rotates under
pure torsion. Since the angles Qx and Qy are zero under pure torsion, Eqs. (10.93) yield

Gs
x ¼

�
Us
x

�0
; Gs

y ¼
�
Us
y

	0
(10.95)

However, Qs
x and Qs

y are also zero in the case of pure torsion and it follows from Eqs. (10.94) that
Gs
x ¼ 0 and Gs

y ¼ 0. Thus, Eqs. (10.95) show that the displacements of the shear center are zero, i.e.,
that the twist center coincides with the shear center. As shown by Reissner and Tsai (1972a, b), this
result, in the general case, follows from the symmetry conditions for the compliance coefficients cij
in Eqs. (10.84).

The coordinates of the shear and twist center depend on the cross-sectional shape and the
mechanical properties of the beam material. For a cross section with one axis of symmetry, the shear
center is located on this axis. If the cross section has two axes of symmetry, the shear center lies at their
intersection.

As an example, consider the triangular contour shown in Fig. 10.33. Assume that the stiffness
coefficients B and B44 do not depend on s and that a/b ¼ 2.5. Since the x-axis is the axis of symmetry,
ys ¼ 0 and we need to find only the coordinate xs of the shear center. Measuring the contour coordinate
from point 1 in Fig. 10.33, we get

xe ¼ s cos a; ye ¼ s sin a; cos a ¼ 0:98; sin a ¼ 0:196; s2 ¼ 1:02a

s
x

y

h

SCα

sx

0x

a

2

b

2

b
1

2

3

FIGURE 10.33

Triangular cross section of a beam.
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The coordinate x0 of the cross-sectional center specified by Eqs. (10.31) is

x0 ¼ Sy
S
; Sy ¼

Z
s

Bxeds; S ¼
Z
s

Bds

in which (see Fig. 10.33)

S12y ¼
Zs2
0

Bs cos ads ¼ 0:51Ba2; S23y ¼
Z�b=2

b=2

Bads ¼ 0:4Ba2

Thus,
Sy ¼ 2S12y þ S23y ¼ 1:42Ba2; S ¼ Bð2s2 þ bÞ ¼ 2:44Ba

and x0 ¼ 0:58a (see point C in Fig. 10.33).
To determine xc, we apply the first equation of Eqs. (10.89) in which k ¼ 1, A ¼ ab/2 ¼ 0.2a2, and

D0
x ¼

Z
s

By2eds ¼ 2B

0
B@Z

s2

0

s2 sin2 adsþ
Zb=2
0

y2dy

1
CA ¼ Bb2a

6 cos a
ð1þ sin aÞ � 0:0325Ba3

The function

SxðsÞ ¼
Zs
0

Byeds

is calculated for parts 1 – 2 and 2 – 3 of the contour as

S
12
x ðsÞ ¼ B sin a

Zs
0

sds ¼ 1

2
Bs2 sin a

S
23
x ðsÞ ¼ S

12
x ðs2Þ þ

Zy
b=2

Byds ¼ 1

2
B

�
s22 sin aþ b4

4
� y2

�

(see Fig. 10.33), and is shown in Fig. 10.34. Then, taking into account that r ¼ 0 for parts 1 – 2 and
1 – 3 in Fig. 10.33 and r ¼ a for part 2 – 3, we haveZ

s

SxðsÞrds ¼ 2a

Zb=2
0

S
23
x dy ¼ 0:046Ba3

Z
s

SxðsÞds ¼ 2

2
64Z

s2

0

S
12
x ðsÞdsþ

Zb=2
0

S
23
x ðyÞdy

3
75 ¼ 0:115Ba3

Z
s

ds ¼ 2s2 þ b ¼ 2:44a
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Finally, the first equation of Eqs. (10.89) yields xs ¼ 0:839a (see the point S in Fig. 10.33).
The existence of the shear center allows us to decompose the problems of beam bending and

torsion. For this purpose, the forces Qx and Qy acting at a given point O of the cross section (see
Fig. 10.32a) are transferred to the shear center S (see Fig. 10.32b) and the torque Ts

z is calculated with
the aid of the last equation of Eqs. (10.85). Then, the bending of the beam is studied independently of
the torsion of the beam, and the principle of superposition is used to obtain the final solution.

The capability of being able to decompose the problem of beam bending and torsion is commonly
used in practical analysis since different assumptions can be used for the bending and torsion problems
to simplify the solution procedures. For example, for long beams the shear deformations induced by
forces Qx and Qy can be ignored, taking B44/N. However, for the problem of torsion, the shear
deformation must not be ignored, and the shear stiffness must be finite.

10.4.8 Anisotropic thin-walled beams

Anisotropic beams, in contrast to the orthotropic beams considered in the foregoing sections,
demonstrate various coupling effects, i.e., coupling between axial tension and torsion, or between
bending and torsion. These coupling effects can be used, for example, in composite aircraft structures
to control the aeroelastic characteristics of composite wings (Weisshaar, 1980, 1981; Weisshaar and
Foist, 1985).

In anisotropic materials, normal stresses cause both normal and shear strains and the constitutive
equations for orthotropic materials, Eqs. (10.12), are generalized as

Nz ¼ B11εz þ B11εs þ B14gzs

Ns ¼ B12εz þ B22εs þ B24gzs

Nzs ¼ B14εz þ B24εs þ B44gzs

(10.96)

As earlier, we assume that Ns ¼ 0. Under this condition, Eqs. (10.96) reduce to

Nz ¼ Bzεz þ Bzsgzs; Nzs ¼ Bzsεz þ Bsgzs (10.97)

2098.0 Bs

2102.0 Ba

2122.0 Ba
1

2

3

x

y

FIGURE 10.34

Distribution of the function Sx ðsÞ over the triangular contour.
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where

Bz ¼ B11 � B2
12

B22
; Bzs ¼ B14 � B12B24

B22
; Bs ¼ B44 � B2

24

B22
(10.98)

Note that Eqs. (10.98) correspond to those beams with absolutely compliant cross-sectional contour
for which the axial stiffness is specified by Eq. (10.24). For beams whose contour is absolutely rigid in
its plane, Eq. (10.25) is generalized as

Bz ¼ B11; Bzs ¼ B14; Bs ¼ B44 (10.99)

To determine the normal stress resultant Nz, we express the shear strain from the second equation of
Eqs. (10.97) as

gzs ¼
Nzs

Bs
� εz

Bzs

Bs
(10.100)

and substitute it into the first equation to get

Nz ¼ Bnεz þ bnNzs (10.101)

where

Bn ¼ Bz �
B2
zs

Bs
; bn ¼ Bzs

Bs
(10.102)

Substituting the axial strain

εz ¼ U0
z þ xeQ

0
y þ yeQ

0
x (10.103)

into Eq. (10.101), we arrive at

Nz ¼ Bn

�
U0
z þ xeQ

0
y þ yeQ

0
x

�þ bnNzs (10.104)

In contrast to Eq. (10.26) for the orthotropic beam, the normal stress resultant Nz depends on the shear
stress resultant Nzs. Using, as earlier, Eqs. (10.27) for the integral force and moments, we get the
following equations analogous to Eqs. (10.28):

SU0
z þ SxQ

0
x þ SyQ

0
y ¼ Pzn

SxU
0
z þ DxQ

0
x þ DxyQ

0
y ¼ Hxn

SyU
0
z þ DxyQ

0
x þ DyQ

0
y ¼ Hyn

(10.105)

in which

Pzn ¼ Pz �
Z
s

bnNzsds; Hxn ¼ Hx �
Z
s

bnNzsyeds; Hyn ¼ Hy �
Z
s

bnNzsxeds (10.106)
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The solution of Eqs. (10.105) is similar to Eqs. (10.30) and (10.32), i.e.,

Q0
x ¼ k

D0
x

�
Hxn � nyHyn

�

Q0
y ¼ k

D0
y

�
Hyn � nxHxn

�

U0
z ¼ Pzn

S
� �x0Q0

y þ y0Q
0
x

�
(10.107)

where

Hxn ¼ Hxn � y0Pzn; Hyn ¼ Hyn � x0Pzn;

where k, D, and n and x0 and y0 are specified by Eqs. (10.33) and (10.31) if we change B to Bn.
Substituting Eqs. (10.107) into Eq. (10.104), we have the following equation for the normal stress
resultant:

Nz ¼ Bn

"
Pzn

S
þ k

 
Hxn

D0
x

yþ Hyn

D0
y

x

!#
þ bnNzs (10.108)

Here x and y are specified by Eqs. (10.36). Note that Nz depends on Nzs which enters Eq. (10.108)
directly and also through Pzn;Hxn, and Hyn as per Eqs. (10.106). Thus, to determine Nz we need to find
Nzs. To determine the shear stress resultant Nzs, apply, as earlier, the equilibrium equation in Eqs.
(10.21). It follows from this equation that we need to differentiate Eq. (10.108) with respect to z.
However, the second equation of Eqs. (10.21) shows that Nzs does not depend on z. This means that
after differentiation with respect to z, all the terms with Nzs in Eq. (10.108) disappear and the result
following from Eqs. (10.21) is

vNzs

vs
¼ � vNz

vz
¼ �Bn

"
P0
z

S
þ k

 
H

0
x

D0
x

yþ H
0
y

D0
y

x

!#
(10.109)

where

Hx ¼ Hx � y0Pz; Hy ¼ Hy � x0Pz

Integration of Eq. (10.109) with respect to z results in Eq. (10.43) and the final expression for Nzs

coincides with Eq. (10.53) corresponding to the orthotropic beam, i.e.,

Nzs ¼ QxFxðsÞ þ QyFyðsÞ þ Tz
2A

(10.110)

in which FxðsÞ and FyðsÞ are specified by Eqs. (10.54). Now, having found Nzs, we can return to Eq.
(10.108) for the normal stress resultant and present the final expression as

Nz ¼ Bn

"
Pz

S
þ k

 
Hx

D0
x

yþ Hy

D0
y

x

!#
þ QxFx

�
s
�þ QyFy

�
s
�þ Tz

2A
F
�
s
�

(10.111)
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where

FxðsÞ ¼ bnFxðsÞ � Bn

S

Z
s

bnFxðsÞds� Bnky

D0
x

Z
s

bnFxðsÞðye � y0Þds� Bnkx

D0
y

Z
s

bnFxðsÞðxe � x0Þds

FyðsÞ ¼ bnFyðsÞ � Bn

S

Z
s

bnFyðsÞds� Bnky

D0
x

Z
s

bnFyðsÞðye � y0Þds� Bnkx

D0
y

Z
s

bnFyðsÞðxe � x0Þds

FðsÞ ¼ bn � Bn

S

Z
s

bnds� Bnky

D0
x

Z
s

bnðye � y0Þds� Bnkx

D0
y

Z
s

bnðxe � x0Þds

Thus, normal and shear stress resultants acting in anisotropic beams are specified by Eqs. (10.110) and
(10.111).

To determine the displacements of anisotropic thin-walled beams, we can apply the approach
described in Section 10.4.4. In-plane displacements of the beam cross section can be found, as earlier,
from Eqs. (10.63), i.e.,

Ux ¼ U0
x þ

Zz
0

�
Gx �Qy

�
dz; Uy ¼ U0

y þ
Zz
0

�
Gy �Qx

�
dz (10.112)

To proceed, apply, as earlier, Castigliano’s theorem. Consider a beam shown in Fig. 10.19 whose
length is l¼ dz. Assume that the beam is loaded at the free end with forces Pz;Qx, andQy and moments
Hx;Hy, and Tz as in Fig. 10.11. Then, in accordance with Castigliano’s theorem,

dQx ¼ v

vHx
ðdWsÞ; dQy ¼ v

vHy
ðdWsÞ; dUz ¼ v

vPz
ðdWsÞ

Gxdz ¼ v

vQx
ðdWsÞ; Gydz ¼ v

vQy
ðdWsÞ; dQz ¼ v

vTz
ðdWsÞ

(10.113)

Here, the strain energy of the beam element with length dz is

dWs ¼ dz

2

Z
s

�
Nzεz þ Nzsgzs

�
ds (10.114)

Express the normal and the shear strains in terms of the corresponding stress resultants using Eqs.
(10.100) and (10.101), i.e.,

εz ¼ 1

Bn
ðNz � bnNzsÞ; gzs ¼

1

Bn
ðanNzs � bnNzÞ (10.115)

Here, Bn and bn are specified by Eqs. (10.102) and

an ¼ Bz

Bs
(10.116)

Substituting the strains from Eqs. (10.115) into the expression for the strain energy, Eq. (10.114), we get

dWs ¼ dz

2

Z
s

1

Bn

�
N2
z � 2bnNzNzs þ anN

2
zs

�
ds
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In the right-hand part of this equation the stress resultants Nz and Nzs should be expressed in terms of
the forces Pz;Qx, andQy and momentsHx;Hy, and Tz with the aid of Eqs. (10.111) and (10.110). Then,
Eqs. (10.113) can be presented in the following explicit form (Johnson et al., 2001):2

6666666664

Q0
x

Q0
y

U0
z

Gx

Gy

Q0
z

3
7777777775
¼

2
6666666664

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

3
7777777775

2
6666666664

Hx

Hy

Pz

Qx

Qy

Tz

3
7777777775

(10.117)

where

c11 ¼ k

D0
x

; c12 ¼ c21 ¼ �k
ny
D0
x

¼ �k
nx
D0
y

; c13 ¼ c31 ¼ � k

D0
x

y0 þ knx
D0
y

x0 ¼ � k

D0
x

y0 þ kny
D0
x

x0

c14 ¼ c41 ¼ � k

D0
x

Z
s

bnFxðsÞyds; c15 ¼ c51 ¼ � k

D0
x

Z
s

bnFyðsÞyds; c16 ¼ c61 ¼ � k

2AD0
x

Z
s

bnyds

c22 ¼ k

D0
y

; c23 ¼ c32 ¼ � k

D0
y

x0 þ kny
D0
x

y0 ¼ � k

D0
y

x0 þ knx
D0
y

y0

c24 ¼ c42 ¼ � k

D0
y

Z
s

bnFxðsÞxds; c25 ¼ c52 ¼ � k

D0
y

Z
s

bnFyðsÞxds;

c26 ¼ c62 ¼ � k

2AD0
y

Z
s

bnxds; c33 ¼ 1

S
þ k

D0
x

�
y20 � nyx0y0

�þ k

D0
y

�
x20 � nxx0y0

�

c34 ¼ c43 ¼ �1

S

Z
s

bnFxðsÞdsþ ky0
D0
x

Z
s

bnFxðsÞydsþ kx0
D0
y

Z
s

bnFxðsÞxds

c35 ¼ c53 ¼ �1

S

Z
s

bnFyðsÞdsþ kx0
D0
y

Z
s

bnFyðsÞxdsþ ky0
D0
x

Z
s

bnFyðsÞyds

c36 ¼ c63 ¼ � 1

2AS

Z
s

bnds; c44 ¼
Z
s

1

Bn



F2
xðsÞ � 2bnFxðsÞFxðsÞ þ anF

2
x ðsÞ

�
ds

c45 ¼ c54 ¼
Z
s

1

Bn



FxðsÞFyðsÞ � bnFxðsÞFyðsÞ � bnFxðsÞFyðsÞ þ anFxðsÞFyðsÞ

�
ds

c46 ¼ c64 ¼ 1

2A

Z
s

1

Bn
½FðsÞFxðsÞ � bnFðsÞFxðsÞ � bnFxðsÞ þ anFxðsÞ�ds

c55 ¼
Z
s

1

Bn

h
F2
yðsÞ � 2bnFyðsÞFyðsÞ þ anF

2
y ðsÞ

i
ds

c56 ¼ c65 ¼ 1

2A

Z
s

1

Bn



FðsÞFyðsÞ � bnFðsÞFyðsÞ � bnFyðsÞ þ anFyðsÞ

�
ds

c66 ¼ 1

4A2

Z
s

1

Bn



F2ðsÞ � 2bnFþ an

�
ds

(10.118)
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The following equations, which can be checked by direct integration, have been used to derive Eqs.
(10.118): Z

s

Bnxds ¼ 0;

Z
s

Bnyds ¼ 0;

Z
s

Bnx
2ds ¼ 1

k
D0
y ;

Z
s

Bny
2ds ¼ 1

k
D0
xZ

s

Bnx yds ¼ �ny
k
D0
y ¼ �nx

k
D0
x ;

Z
s

FðsÞds ¼ 0Z
s

FðsÞxds ¼ 0;

Z
s

FðsÞyds ¼ 0;

Z
s

FxðsÞds ¼ 0;

Z
s

FxðsÞxds ¼ 0Z
s

FxðsÞyds ¼ 0;

Z
s

FyðsÞds ¼ 0;

Z
s

FyðsÞxds ¼ 0;

Z
s

FyðsÞyds ¼ 0

The matrix in the right-hand part of Eq. (10.117) is symmetric and contains 21 independent coeffi-
cients cmn, 15 of which are located on both sides of the main diagonal and correspond to various
coupling effects. Some of these effects can be eliminated by the relevant choice of coordinate frame
(x, y). For example, if the beam’s cross section is referred to the axes which are analogous to central
and principal axes, x0 ¼ y0 ¼ 0 and nx ¼ ny ¼ 0. As a result, c12 ¼ 0; c13 ¼ 0, and c23 ¼ 0 and the
coupling between axial loading and bending disappears. The other 12 coupling coefficients depend on
the beam material characteristics and correspond to the following coupling effects:

• Coupling between bending and shear (c14; c45; c24; c25)
• Coupling between bending and torsion (c12; c26)
• Coupling between axial loading and shear (c36)
• Coupling between torsion and transverse shear (c46; c56)
• Coupling between transverse shear deformations in the xz- and yz-planes (c45)

As the first example, consider the beam with a circular cross section shown in Fig. 10.21. In accor-
dance with Section 10.4.6, we have

xe ¼ R sin b; ye ¼ R cos b; s ¼ Rb; S ¼ 2pRBn; A ¼ pR2

D ¼ D0
x ¼ D0

y ¼ pBnR
3; FxðsÞ ¼ BnR

2

D
cos b; FyðsÞ ¼ �BnR

2

D
sin b

For a circular beam whose stiffness coefficients do not depend on the contour coordinate, Eqs. (10.117)
reduce to

Q0
x ¼ c11Hx þ c14Qx; Gx ¼ c41Hx þ c44Qx

Q0
y ¼ c22Hy þ c25Qy; Gy ¼ c52Hy þ c55Qy

U0
z ¼ c33Pz þ c36Tz; Q0

z ¼ c63Pz þ c66Tz

(10.119)

where
c11 ¼ c22 ¼ 1

pR3Bn
; c14 ¼ c41 ¼ �c25 ¼ �c52 ¼ � bn

pR2Bn

c33 ¼ 1

2pRBn
; c36 ¼ c63 ¼ � bn

2pR2Bn
; c44 ¼ c55 ¼ an

pRBn

c66 ¼ an
2pR2Bn
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Consider the carbon-epoxy circular beam experimentally studied by Nixon (1987). The beam has
radius R ¼ 20.83 mm and thickness h ¼ 1.016 mm and is composed of two unidirectional layers with
angles f1 ¼ 20� and f2 ¼ 70�. The thicknesses of both layers are the same and the properties of
material are E1 ¼ 147:1 GPa; E2 ¼ 11 GPa; G12 ¼ 6:4 GPa; v12 ¼ 0:028, and v21 ¼ 0:38. The
membrane stiffness coefficients of the beam wall are specified by Eqs. (4.72), (5.53), and (5.45),
according to which

B11 ¼ B22 ¼ 68:3 MN=m; B12 ¼ 17:6 MN=m; B44 ¼ 19:8 MN=m

B14 ¼ B24 ¼ �17:6 MN=m

Then, Eqs. (10.98), (10.102), and (10.116) yield

Bz ¼ 63:8 MN=m; Bzs ¼ �16:8 MN=m; Bs ¼ 12:4 MN=m

Bn ¼ 41:1 MN=m; bn ¼ �1:355; an ¼ 5:16

Let the beam be loaded by an axial force Pz ¼ P, transverse shear force Qy ¼ Q, and torque Tz ¼ T as
shown in Fig. 10.35.

First, consider the coupling between axial loading and torsion, taking Q ¼ 0. Then, the corre-
sponding equations of Eqs. (10.119) become

U0
z ¼ c33Pþ c36T ; Q0

z ¼ c63Pþ c66T (10.120)

φQ

l

z

x

y

P T

R

FIGURE 10.35

A cantilever circular anisotropic beam loaded with the axial force, the transverse force, and the torque.
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The coefficient c36 ¼ c63 allows for coupling between tension and torsion. For the beam under
consideration, the second equation of Eq. (10.120) takes the form

Q0
z ¼ ð0:121Pþ 2:21TÞ10�3 rad=m

The dependence of Q0
z on T for P ¼ 0 (pure torsion) is shown in Fig. 10.36 with line 1, whereas the

same function for P ¼ 4:45 kN (torsion with pre-tensioning) is shown with line 2. The dots correspond
to the experimental results (Nixon, 1987).

Consider the bending of a beam loaded with transverse force Q (see Fig. 10.35) which causes the
bending moment

H ¼ �Qðl� zÞ (10.121)

The corresponding equations of Eqs. (10.119) are

Q0
x ¼ c11H; Gy ¼ c55Q; Q0

y ¼ c25Q; Gx ¼ c41H (10.122)

It follows from these equations that the beam bending in plane yz (see Fig. 10.35) caused by force Q is
accompanied by bending in the orthogonal plane xz. Integrating Eqs. (10.122) with allowance for
Eq. (10.121) and substituting the results in Eq. (10.112), we get for the beam shown in Fig. 10.35

Uy ¼ anzþ l2

2R2

�
z2 � 1

3
z3
�
; Ux ¼ bnz

where

Uy ¼ pRBn

Ql
Uy; Ux ¼ pRBn

Ql
; z ¼ z

l

Nm,T

rad/m,Θz
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FIGURE 10.36

Dependencies of the angle of twist per unit length of the beam on torque for pure torsion (1) and for the torsion

combined with the axial loading by the force P ¼ 4.45 kN (2); (––––––––) analysis and (••••) experiment (Nixon,

1987).
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As can be seen, the deflection UxðzÞ is a linear function of z which means that this deflection is caused
by transverse shear. To explain this effect, note that under bending the upper part of the beam shown in
Fig. 10.35 is compressed, whereas its lower part experiences tension. However, the tension and
compression are coupled with the shear, and because both the loading and the material structure are
antisymmetric (at y¼ R the fibers cross the beammeridian going from the left to the right part, whereas
at y ¼ � R they cross the meridian from the right side to the left), the shear deformations at y > 0 and
y < 0 are of the same sign and induce bending of the beam.

Thus, it follows from the foregoing results that anisotropic thin-walled beams with mechanical
properties that do not change along the cross-sectional contour demonstrate coupling between axial
deformation and torsion and also coupling between bending in two orthogonal planes.

As the second example, consider a beam with a rectangular cross section (see Fig. 10.25) whose
stiffness coefficients do not depend on the contour coordinate. Such beams, similarly to the circular
beams discussed earlier, are described by Eqs. (10.119) in which

c11 ¼ 1

Dx
; c22 ¼ 1

Dy
; c33 ¼ 1

S
; c14 ¼ c41 ¼ � 1

Dx

Z
s

bnFxðsÞyds

c25 ¼ c52 ¼ � 1

Dy

Z
s

bnFy

�
s
�
xds; c44 ¼

Z
s

1

Bn



F2
x

�
s
�� 2bnFx

�
s
�
Fx

�
s
�þ anF

2
x

�
s
��
ds

c55 ¼
Z
s

1

Bn



F2
yðsÞ � 2bnFyðsÞFyðsÞ þ anF

2
y ðsÞ

�
ds

c36 ¼ c63 ¼ � 1

2AS

Z
s

bnds; c66 ¼ 1

4A2

Z
s

1

Bn



F2ðsÞ � 2bnFðsÞ þ an

�
ds

(10.123)

Beams with rectangular cross sections experimentally studied by Smith and Chopra (1990) and
Chandra et al. (1990) have the following dimensions (see Fig. 10.25):

a ¼ 24:2 mm; b ¼ 13:6 mm; h ¼ 0:76 mm; l ¼ 762 mm (10.124)

and are made of carbon-epoxy composite material with E1 ¼ 142 GPa, E2 ¼ 9:8 GPa, G12 ¼ 6 GPa,
v12 ¼ 0:029, and v21 ¼ 0:42.

Consider a beam whose flanges and webs are reinforced at one and the same angle, f ¼ 15�(see
Fig. 10.37a). To demonstrate the material structure, it is useful to plot the development of the beam
surface as shown in Fig. 10.37b. For f1 ¼ 15� and h1 ¼ h, the wall stiffness coefficients are

B11 ¼ 96:7 MN=m; B22 ¼ 8:6 MN=m B12 ¼ 8:95 MN=m; B14 ¼ 22:7 MN=m

B24 ¼ 2:74 MN=m; B44 ¼ 10:3 MN=m

Bz ¼ 87:2 MN=m; Bzs ¼ 19:8 MN=m; Bs ¼ 9:44 MN=m

Bn ¼ 45:6 MN=m; bn ¼ 2:1; an ¼ 9:24
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For a beam loaded with axial force Pz ¼ P and torque Tz ¼ T (see Fig. 10.37a), the last equation of
Eqs. (10.119) takes the following form:

Q0
z ¼ c63Pþ c66T (10.125)

where

c63 ¼ � bn
2abBn

; c66 ¼ ðaþ bÞan
2a2b2Bn

For the experimental beam under study,

Qz ¼ ð�0:0533Pþ 27:2TÞ10�3 z

where, as earlier, z ¼ z=l. The calculated (solid line) and experimental (dots) valuesQzðzÞ for P¼ 4.45
kN and T ¼ 0 are shown in Fig. 10.38.

φφ
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l

B D FH

A CG E G

Haa bb

φ
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(b)

FIGURE 10.37

A beam with a rectangular cross section reinforced at angle f (a) and the development of its surface (b).
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Consider the warping of the cross section of an anisotropic beam under tension and torsion. For
such beams, Eqs. (10.119) and (10.125) yield

Gx ¼ 0; Gy ¼ 0; Q0
z ¼

1

2abBn

�
an
bn

T � bnP

�

The shear strain following from the strain-displacement equations, Eqs. (10.13), (10.17), and (10.19)
for the beam under study, is

gzs ¼ rQ0
z þJ

, ðsÞ ¼ r

2abBn

�
an
bn

T � bnP

�
þJ

, ðsÞ (10.126)

The radius r for the rectangular cross section is presented in Section 10.4.6. On the other hand, the
second constitutive equation of Eqs. (10.115) yields

gzs ¼
1

Bn
ðanNzs � bnNzÞ (10.127)

where in accordance with Eqs. (10.110) and (10.111)

Nzs ¼ T

2ab
; Nz ¼ P

2ðaþ bÞ
Equating the right-hand parts of Eqs. (10.126) and (10.127) and integrating with respect to s, we get

JðsÞ ¼ 1

2Bn

�
anT

ab
� bnP

aþ b

��
s� aþ b

ab

Zs
0

rds

�

The function JðsÞ is similar to that shown in Fig. 10.29. Note that if

P ¼ anT

abBn
ðaþ bÞ; (10.128)
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FIGURE 10.38

Dependence of the angle of twist on the axial coordinate for the beam loaded with axial force P¼ 4.45 N: analysis

(–––––––) and experiment (••••) (Chandra et al., 1990).
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we have J ¼ 0, i.e., applying the axial force proportional to the torque in accordance with Eq.
(10.128), we can eliminate the warping of the rectangular cross section of an anisotropic beam.

Consider a more complicated composite structure, i.e., a beam whose upper and lower flanges are
reinforced at angles of 15� and �15�, respectively, whereas the webs are orthotropic and have a �f

angle-ply structure. Thus, for the upper flange ABDC (see Fig. 10.39a) we must take k ¼1 , f1 ¼ 15�,
and h1 ¼ h; for the lower flange GHFE k ¼ 1, f2 ¼ �15�, and h2 ¼ h; and for the webs ABHG and
CDFE k ¼ 2, f1 ¼ 15�, f2 ¼ �15�, and h1 ¼ h2 ¼ h=2. The development of the beam surface is
shown in Fig. 10.39b.

The stiffness coefficients of the beam walls are presented in Table 10.1.
For a beam loaded with forces Pz, Qx, and Qy and moments Hx, Hy, and Tz, Eqs. (10.117) reduce to

Q0
x ¼ c11Hx þ c16Tz; Gx ¼ c43Pz þ c44Qx

Q0
y ¼ c22Hy; Gy ¼ c55Qy

U0
z ¼ c33Pz þ c34Qx; Q0

z ¼ c61Hx þ c66Tz

(10.129)
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FIGURE 10.39

A beam with a rectangular cross section (a) and the development of its surface (b) showing thematerial structure.
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in which

C11 ¼ 1

Dx
; c22 ¼ 1

Dy
; c33 ¼ 1

S
; c34 ¼ c43 ¼ �1

S

Z
s

bnFxðsÞyds

c44 ¼
Z
s

1

Bn



F2
xðsÞ � 2bnFxðsÞFxðsÞ þ anF

2ðsÞ�ds

c55 ¼
Z
s

1

Bn



F2
yðsÞ � 2bnFyðsÞFyðsÞ þ anF

2ðsÞ�ds

c16 ¼ c61 ¼ 1

2ADx

Z
s

bnyds; c66 ¼ 1

4A2

Z
s

1

Bn



F2ðsÞ � 2bnFðsÞ þ an

�
ds

It follows from Eqs. (10.129) and Table 10.1 that the coefficient bn, which has different signs for the
upper and the lower flanges, gives rise to the stiffness coefficient c16 ¼ c61 which provides coupling
between bending and torsion of the beam.

Consider the beam bending with force Qy ¼ Q (see Fig. 10.39a) for which Eqs. (10.129) yield

Q0
x ¼ �c11Qðl� zÞ; Gy ¼ c55Q; Q0

z ¼ �c61Qðl� zÞ
For the beam with dimensions specified by Eqs. (10.124), the last of these equations allows us to find
the angle of twist as follows:

Qz ¼ 0:0044Q

�
z� z2

2

�

TABLE 10.1 Stiffness Coefficients of the Beam Walls (see Fig. 10.39)

Stiffness Coefficient
Upper Flange
ABDC

Lower Flange
GHFE

Webs
ABHG
CDFE

B11, MN/m 96.7 96.7 96.7

B12, MN/m 8.95 8.95 8.95

B22, MN/m 8.6 8.6 8.6

B44, MN/m 10.3 10.3 10.3

B14, MN/m 22.7 �22.7 0

B24, MN/m 2.74 �2.74 0

Bz, MN/m 87.2 87.2 87.2

Bzs, MN/m 19.8 �19.8 0

Bs, MN/m 9.44 9.44 10.3

Bn, MN/m 45.6 45.6 87.2

bn 2.1 �2.1 0

9.24 9.24 8.45
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where z ¼ z=l. The function QzðzÞ corresponding to this equation is shown in Fig. 10.40 by the solid
line along with the experimental results (dots).

The torsion of the beam by torque T (see Fig. 10.39a) is accompanied by bending. The corre-
sponding equations of Eqs. (10.129) describing this effect are

Q0
x ¼ c16T ; Q0

z ¼ c66T

Then, the slope of the beam deflection is

U0
y ¼ Gy �Qx ¼ 0:0058T z

For T¼ 0.113 Nm , the functionU0
yðzÞ is shown in Fig. 10.41 (line) along with the experimental results

(dots).

10.4.9 Beams stiffened with axial ribs

We now return to orthotropic beams and consider those beams which are stiffened with axial ribs as
shown in Fig. 10.42. Assume that the cross-sectional area of the rib with number “i” is ai, its modulus
is Ei, and coordinates of the rib center are xi, yi, and si (see Fig. 10.42). Introduce the reduction
coefficient as follows:

ri ¼ Ei

E0
(10.130)
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FIGURE 10.40

Dependence of the angle of twist on the axial coordinate for the beam loaded with transverse shear force

Q ¼ 4.45 N: analysis (–––––––) and experiment (••••) (Smith and Chopra, 1990).
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in which E0 is the axial modulus of the skin. Then the stiffness coefficients of the beam cross section
specified by Eqs. (10.29) are generalized as

Sr ¼ Sþ E0
P
i
riai; Sxr ¼ Sx þ E0

P
i
riaiyi

Syr ¼ Sy þ E0
P
i
riaixi; Dxr ¼ Dx þ E0

P
i
riaiy

2
i

Dyr ¼ Dy þ E0
P
i
riaix

2
i ; Dxyr ¼ Dxy þ E0

P
i
riaixiyi

(10.131)
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0=s

FIGURE 10.42

Thin-walled beam stiffened with axial ribs.
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FIGURE 10.41

Dependence of the deflection slope on the axial coordinate for the beam loaded with torque T ¼ 0.113 Nm:

(–––––––) analysis and (••••) experiment (Chandra et al., 1990).
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where

S ¼
Z
s

B0ds; Sx ¼
Z
s

B0yeds; Sy ¼
Z
s

B0xeds

Dx ¼
Z
s

B0y
2
eds; Dy ¼

Z
s

B0x
2
eds; Dxy ¼

Z
s

B0xeyeds

(10.132)

are the stiffness coefficients of the skin, whereas B0 is the axial stiffness of the skin. The skin modulus
in Eq. (10.130) is E0 ¼ B0=h0, where h0 is the skin thickness.

The axial stress resultant in the skin and the stresses in the ribs can be determined with the aid of
equations analogous to Eqs. (10.34) and (10.35), i.e.,

Ns
z ¼ B0

"
Pz

Sr
þ k

 
Hx

D0
xr

yþ Hy

D0
yr

x

!#
(10.133)

sðiÞr ¼ Ei

"
Pz

Sr
þ k

 
Hx

D0
xr

yi þ
Hy

D0
yr

xi

!#
(10.134)

Here, D0
r , x, and y are specified by equations which are similar to Eqs. (10.33) and (10.36). The shear

stress resultant in the skin is specified by Eq. (10.53) in which the functions SðsÞ in Eqs. (10.45) allow
for the skin’s and the ribs’ axial stiffnesses.

To demonstrate the procedure, consider the circular thin-walled beam with radius R ¼ 1000 mm
whose cross section is shown in Fig. 10.43a. The structure consists of a quasi-isotropic carbon-epoxy
skin with modulus E0 ¼ 70 GPa and thickness h0 ¼ 1 mm, a system of L-beam stringers with the
same modulus and cross-sectional area ai ¼ a ¼ 200 mm2 ði ¼ 1; 2; 3.6Þ, and a keel I-beam
longeron made of a high-modulus carbon fiber-reinforced composite with a modulus of elasticity of
210 GPa and a cross-sectional area of 1000 mm2. Because the cross section is symmetric with respect
to the y-axis, we can consider only one half of it. The stringers and longeron are shown with dots and
circles, respectively, in Fig. 10.43b. Due to the symmetry of the cross section, stringer 1 and longeron 7

y

xR

βQ

1 2

3

4

5

6
7

C

x

y
(a) (b)

FIGURE 10.43

Actual cross section (a) and the corresponding thin-walled beam model (b).
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are split into two equal parts since they are equally partitioned between both halves of the cross
section.

Applying Eqs. (10.132), we get

S ¼ 2pRB0; Sx ¼ 0; Dx ¼ pB0R
3

Introduce the normalized cross-sectional areas of the ribs as

ai ¼ ai
Rh0

Then, for the ribs shown in Fig. 10.43b, we have

a1 ¼ 0:1; a2 ¼ a3 ¼ a4 ¼ a5 ¼ a6 ¼ 0:2; a7 ¼ 0:5

Since the modulus of the skin and the stringers 1 to 6 is the same, Eq. (10.130) yields ri ¼ 1 for
i ¼ 1; 2; 3; 4; 5; 6, whereas for the longeron 7, r7 ¼ 3. Using Eqs. (10.131), we find

Sr ¼ 2pRB0 þ 2BsRð0:1þ 5,0:2þ 3,0:5Þ ¼ 11:48B0R

Sxr ¼ 2B0R
2½0:1þ 0:2ð0:866þ 0:5� 0:5� 0:866Þ � 3,0:5� ¼ �2:8B0R

2

Dxr ¼ pR3B0 þ 2BsR
3½0:1þ 0:2ð0:75þ 0:25þ 0:25þ 0:75Þ þ 3,0:5Þ� ¼ 7:14B0R

3

The coordinate of the cross-sectional center (point C in Fig. 10.43b) is

y0 ¼ Sxr
Sr

¼ �0:244R

The bending stiffness of the beam is

D0
xr ¼ Dxr � y20Sr ¼ 6:456B0R

3

The axial stress resultant in the skin and the axial stresses in the ribs induced by the bending moment
Hx acting in the beam cross section z ¼ constant are specified by Eqs. (10.133) and (10.134) which
reduce to

Ns
z ¼ B0

Hx

D0
xr

ðy� y0Þ; sðiÞr ¼ riE0
Hx

D0
xr

ðyi � y0Þ

For the beam under consideration,

ssz ¼
Ns
z

h0
¼ 0:155

Hx

h0R2
ðcos bþ 0:279Þ; sðiÞr ¼ 0:155ri

Hx

h0R2
ðcos bi þ 0:279Þ

The distribution of the normalized stresses s ¼ ðsh0R2Þ=Hx over the contour of the cross section
is shown in Fig. 10.44. Note that at point 7 we have two values of stresses: s ¼ �0:11 in the skin and
s ¼ �0:33 in the longeron whose modulus is three times higher. The dashed line in Fig. 10.44 shows
the location of the beam neutral axis.
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We now determine the shear stress resultant acting in the skin. Since the beam does not experience
torsion, Tz ¼ 0 in Eq. (10.53) which yields

Nzs ¼ �Q
SxrðsÞ
D0
xr

(10.135)

where

SxrðsÞ ¼ SxðsÞ þ DSx (10.136)

Here, SxðsÞ corresponds to the skin and is specified by Eqs. (10.45), according to which

SxðsÞ ¼ B

Zs
0

ðy� y0Þds ¼ B0R
2ðsin bþ 0:444bÞ

The second term in Eq. (10.136) corresponds to the stringers and has the following form:

DSx ¼ E0

X
i

riaiðyi � y0Þ ¼ B0R
2
X
i

riaiðcos bi þ 0:244Þ

For the cross section shown in Fig. 10.43b, we get the following results:
At point 1 ðs ¼ 0; b ¼ 0Þ before the stringer (one half of its cross-sectional area) we have

S
�
xrð0Þ ¼ 0 and after the stringer

S
þ
xrð0Þ ¼ B0R

2a1ð1þ 0:244Þ ¼ 0:1244B0R
2
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FIGURE 10.44

Distribution of the normalized axial stress s over the beam cross-sectional contour.
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For part 1 – 2 ð0 � s � s2; 0 � b � b2 ¼ p=6Þ
SxrðsÞ ¼ Sxrð0Þ þ B0R

2ðsin bþ 0:2bÞ
At point 2 before the stringer ðs ¼ s2; b ¼ b2Þ

S
�
xrðs2Þ ¼ B0R

2
�
0:1244þ 0:5þ 0:244

p

6

	
¼ 0:7521B0R

2

At point 2 after the stringer ðs ¼ s2; b ¼ b2Þ
S
þ
xrðs2Þ ¼ 0:9741B0R

2

For part 2 – 3 ðs2 � s � s3; p=6 � b � b3 ¼ p=3Þ

SxrðsÞ ¼ B0R
2½a1ð1þ 0:244Þ þ a2ðcos b2 þ 0:244Þ þ sin bþ 0:244b�

¼ B0R
2½0:3464þ sin bþ 0:244b�

At point 3 before the stringer ðs ¼ s3; b ¼ b3Þ

S
�
xrðs3Þ ¼ B0R

2
�
0:3464þ 0:866þ 0:244

p

3

	
¼ 1:468B0R

2

At point 3 after the stringer ðs ¼ s3; b ¼ b3Þ
S
þ
xrðs3Þ ¼ 1:617B0R

2

For part 3 – 4 ðs3 � s � s4; p=3 � b � b4 ¼ p=2Þ

SxrðsÞ ¼ B0R
2½a1ð1þ 0:244Þ þ a2ðcos b2 þ 0:244Þ þ a3ðcos b3 þ 0:244Þ þ sin bþ 0:244b�

¼ B0R
2½0:3464þ a3ðcos b3 þ 0:244Þ þ sin bþ 0:244b�

¼ B0R
2½0:4952þ sin bþ 0:244b�

At point 4 before the stringer ðs ¼ s4; b ¼ b4Þ

S
�
xrðs4Þ ¼ B0R

2
�
0:4952þ 1þ 0:244

p

2

	
¼ 1:878B0R

2

At point 4 after the stringer ðs ¼ s4; b ¼ b4Þ
S
þ
xrðs4Þ ¼ 1:927B0R

2

For part 4 – 5 ðs4 � s � s5; p=2 � b � b5 ¼ 2p=3Þ

SxrðsÞ ¼ B0R
2½0:4952þ a4ðcos b4 þ 0:244Þ þ sin bþ 0:244b�

¼ B0R
2½0:544þ sin bþ 0:244b�

640 CHAPTER 10 Thin-walled composite beams

www.EngineeringEBooksPdf.com



At point 5 before the stringer ðs ¼ s5; b ¼ b5Þ

S
�
xrðs5Þ ¼ B0R

2

�
0:544þ 0:866þ 0:244

2p

3

�
¼ 1:921B0R

2

At point 5 after the stringer ðs ¼ s5; b ¼ b5Þ
S
þ
xrðs5Þ ¼ 1:87B0R

2

For part 5 – 6 ðs5 � s � s6; 2p=3 � b � b6 ¼ 5p=6Þ

SxrðsÞ ¼ B0R
2½0:544þ a5ðcos b5 þ 0:244Þ þ sin bþ 0:244b�

¼ B0R
2½0:4928 þ sin bþ 0:244b�

At point 6 before the stringer ðs ¼ s6; b ¼ b6Þ

S
�
xrðs6Þ ¼ B0R

2

�
0:4928þ 0:5þ 0:244

5p

6

�
¼ 1:631B0R

2

At point 6 after the stringer ðs ¼ s6; b ¼ b6Þ
S
þ
xrðs6Þ ¼ 1:498B0R

2

For part 6 – 7 ðs6 � s � s7; 5p=6 � b � b7 ¼ pÞ

SxrðsÞ ¼ B0R
2½0:4928þ a6ðcos b6 þ 0:244Þ þ sin bþ 0:244b�

¼ B0R
2½0:3684þ sin bþ 0:244b�

At point 7 before the longeron ðs ¼ s7; b ¼ b7Þ
S
�
xrðs7Þ ¼ B0R

2ð0:3684þ 0:244pÞ ¼ 1:134B0R
2

and finally, at point 7 after the longeron (one half of its cross-sectional area)

S
þ
xrðs7Þ ¼ B0R

2½1:134þ r7a7ðcos b7 þ 0:244Þ� ¼ B0R
2½1:134þ 3,0:5ð�1þ 0:244Þ� ¼ 0

Eq. (10.135) gives the following values for the shear stress resultant:
At point 1

N�
zsð0Þ ¼ 0 ; Nþ

zsð0Þ ¼ �0:0193
Q

R

At point 2

N�
zsðs2Þ ¼ �0:116

Q

R
; Nþ

zsðs2Þ ¼ �0:151
Q

R

At point 3

N�
zsðs3Þ ¼ �0:227

Q

R
; Nþ

zsðs3Þ ¼ �0:25
Q

R
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At point 4

N�
zsðs4Þ ¼ �0:291

Q

R
; Nþ

zsðs4Þ ¼ �0:298
Q

R

At point 5

N�
zsðs5Þ ¼ �0:297

Q

R
; Nþ

zsðs5Þ ¼ �0:29
Q

R

At point 6

N�
zsðs6Þ ¼ �0:253

Q

R
; Nþ

zsðs6Þ ¼ �0:232
Q

R

At point 7

N�
zsðs7Þ ¼ �0:176

Q

R
; Nþ

zs ðs7Þ ¼ 0

The negative sign of the shear stress resultant means that on the right-hand part of the cross section Nzs

acts in the direction which is opposite to the direction of the contour coordinate. On the left-hand side
of the cross section, Nzs acts in the direction of the contour coordinate. The distribution of the
normalized shear stress resultant N ¼ NzsR=Q along the contour of the beam is shown in Fig. 10.45.

It can be seen that the shear stress resultant is discontinuous in the vicinity of the stiffener. This
discontinuity is illustrated in Fig. 10.46, from which it follows that the jump in the shear stress
resultant Nzs is associated with the gradient of the force Pr in the stiffener. Indeed, it follows from the
equilibrium condition for the stiffener that

Nþ
zs � N�

zs ¼
dPr

dz

For the problem of bending, the right-hand side of this equation is zero only for pure bending under
which the shear flow is also zero. For transverse bending induced by shear forces Qx or Qy the force in

1
2

3

4

5

6
7

N

FIGURE 10.45

Distribution of the normalized shear stress resultant N over the cross-sectional contour.
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the stiffener depends on coordinate z, and the shear flow is discontinuous in the vicinity of the stiffener.
The displacements of the beam can be found using relations presented in Section 10.4.4.

10.4.10 Beams loaded with body and surface forces

The theory described in the previous sections is strictly valid only for those beams loaded at the
ends. However, it can be approximately generalized for beams loaded with body and surface forces.
A typical example of such a beam is a helicopter blade loaded with centrifugal and aerodynamic
forces.

Consider a beam cross-sectional contour shown in Fig. 10.47 and assume that body and surface
forces acting on a beam are applied at some point S of the contour and are reduced to axial forces
Pz, contour forces Ps, and normal forces Pn. Within the framework of beam theory, we must reduce

dz

−
zsN

+
zsNrP

dz
dz

dP
P r

r +

FIGURE 10.46

Interaction of a rib and skin panels.

x

y

S
ex

ey

np

spzp

xf

zf

yf

xm

ym

zm

β

z

FIGURE 10.47

Reduction of body and surface forces to the beam axis.
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these forces to the beam axis by introducing the following integral forces and moments (see
Fig. 10.47):

fx ¼
Z
s

Pxds; fy ¼
Z
s

Pyds; fz ¼
Z
s

Pzds

mx ¼
Z
s

Pzyeds; my ¼
Z
s

Pzxeds; mz ¼
Z
s

�
Pxye � Pyxe

�
ds

(10.137)

where

Px ¼ Ps cos bþ Pn sin b; Py ¼ Pn cos b� Ps sin b

The forces and moments in Eqs. (10.137) must be included in the equilibrium equations of the beam
element, Eqs. (10.39) and (10.40), which are generalized as

dQx

dz
þ fx ¼ 0;

dQy

dz
þ fy ¼ 0;

dPz

dz
þ fz ¼ 0

dHx

dz
� Qy þ mx ¼ 0;

dHy

dz
� Qx þ my ¼ 0;

dTz
dz

þ mz ¼ 0

The general solution of these equations generalizes Eqs. (10.41), i.e.,

Qx ¼ Q0
x �

Zz
0

fxdz; Qy ¼ Q0
y �

Zz
0

fydz; Pz ¼ P0
z �

Zz
0

fzdz

Hx ¼ H0
x þ Q0

yz�
Zz
0

dz

Zz
0

fydz�
Zz
0

mxdz

Hy ¼ H0
y þ Q0

xz�
Zz
0

dz

Zz
0

fxdz�
Zz
0

mydz

Tz ¼ T0
z �

Zz
0

mzdz

(10.138)

For orthotropic beams, the axial stress resultant Nz is specified by Eqs. (10.34) and (10.35) in which Pz,
Hx, and Hy are specified by Eqs. (10.138). To determine the shear stress resultant Nzs, we apply, as
earlier, the equilibrium equation, Eq. (10.21), which for a beam loaded with distributed forces is
generalized as

vNz

vz
þ vNzs

vs
þ Pz ¼ 0

Repeating the derivation of Eq. (10.43), we finally get

Nzs ¼ NQ þ NP þ N0
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where NQ is given by Eq. (10.46) and

NP ¼ fz
B
SðsÞ �

Zs
0

Pzdsþ k

"
SxðsÞ
D0
x

�
mx � y0 fz

�þ SyðsÞ
D0
y

�
my � x0 fz

�#

N0 ¼ 1

2A

2
4Tz �

Z
s

�
NQ þ NP

�
rds

3
5

The displacements of beams loaded with distributed forces can be found using the approach described
in Section 10.4.4.

10.4.11 Restrained torsion and bending of beams with closed
cross-sectional contours

As shown in Section 10.4.5, bending and torsion of thin-walled beams, in general, is accompanied by
warping, i.e., the out-of-plane displacements of the cross-sectional points specified by Eq. (10.76) for
the invariant warping function, i.e.,

Wt;bðsÞ ¼ Jt;bðsÞ � 1

S

Z
s

Jt;bðsÞBds� k

2
4ye � yo

D0
x

Z
s

Jt;bðsÞBydsþ xe � xo
D0
y

Z
s

Jt;bðsÞBxds
3
5

(10.139)

Here, subscripts “t” and “b” correspond to torsion and bending of the beam. The warping function for
the problem of torsion follows from Eq. (10.72), according to which

JtðsÞ ¼ Tz
2A

Zs
0

ds

B44
�Q0

z

Zs
0

rds (10.140)

The warping function for the bending problem can be decomposed into two parts corresponding to
bending in the xz-plane and yz-plane, i.e.,

JbðsÞ ¼ Jx
bðsÞ þJy

bðsÞ (10.141)

in which, in accordance with Eq. (10.71),

Jx
bðsÞ ¼ Qx

Zs
0

FxðsÞ
B44

ds� Gx

Zs
0

cos bds; J
y
bðsÞ ¼ Qy

Zs
0

FyðsÞ
B44

dsþ Gy

Zs
0

sin bds (10.142)

In the previous section we considered the problems of free bending and torsion for which the warping
function does not depend on the axial coordinate and the axial displacements of the cross section
caused by warping are not restricted. Now, assume that one of the beam cross sections, e.g., the cross
section z ¼ 0 of the beam in Fig. 10.48, is fixed. Since this cross section remains plane, its warping is
constrained by the boundary conditions giving rise to additional axial and shear stresses appearing in

10.4 Free bending and torsion of thin-walled beams with a closed cross-sectional contour 645

www.EngineeringEBooksPdf.com



the vicinity of the restricted cross section. This section is concerned with the problems of restrained
torsion and bending of thin-walled beams with closed cross-sectional contours.

Note that in the considerations of free torsion and bending in the previous sections we did not
separate the problem of torsion and bending, though such opportunity exists. This follows from
Section 10.4.7, in which the shear center of a beam is discussed. However, for the problems of con-
strained torsion and bending, such separation becomes important, since the effect of restrained
warping is entirely different for torsion and bending. In the case of torsion, the restrained warping
results in normal stresses that do not appear under free torsion, whereas for bending problems the
restrained warping results only in a redistribution of the normal and shear stresses in the beam.

To separate the problems of torsion and bending, we apply Eqs. (10.87) and (10.94), according to
which

Q0
z ¼ czzT

s
z (10.143)

Gs
x ¼ csxxQ

s
x þ csxyQ

s
y; Gs

y ¼ csxyQ
s
x þ csyyQ

s
y (10.144)

Here, superscript “s” shows that the forces are applied at the shear center of the cross section.
Consider first the case of restrained torsion. SubstitutingQ0

z from Eq. (10.143) into Eq. (10.140) for
the warping function, using Eqs. (10.68) for coefficient czz, and taking Tz ¼ Ts

z , we get

JtðsÞ ¼
Ts
z

2A

0
@Zs

0

ds

B44
� 1

2A

Zs
0

rds

Z
s

ds

B44

1
A (10.145)

The invariant warping function Wt can be found if we substitute Eq. (10.145) into Eq. (10.139).
As has been noted, restrained warping in torsion results in a normal stress resultant Nz. Assume that

the dependence of Nz on the contour coordinate s corresponds to the warping function WðsÞ, i.e., that
Nz ¼ BNðzÞWðsÞ (10.146)

Q

a

b

x

y

l

T

z

FIGURE 10.48

Torsion and bending of a cantilever beam.
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Here, B is the axial stiffness of the beam wall, NðzÞ is an unknown function that needs to be determined,
andWðsÞ is the normalized warping function (where the subscript t is omitted). Since the function NðzÞ
is not known, WðsÞ is the invariant warping function in Eq. (10.139) divided by any constant coef-
ficient. For example, for a rectangular cross section, the warping function in Eq. (10.83) reduces to

WðsÞ ¼ xy (10.147)

By analogy with the bending moment, we introduce the so-called bimoment (Vlasov, 1940):

Hw ¼
Z
s

NzWðsÞds (10.148)

Substituting Nz from Eq. (10.146) into Eq. (10.148), we get

Hw ¼ DwNðzÞ (10.149)

where

Dw ¼
Z
s

BW
2ðsÞds (10.150)

Using Eq. (10.149), we can write Eq. (10.146) in the following final form:

Nz ¼ B
HwðzÞ
Dw

WðsÞ (10.151)

To determine the shear stress resultants, we use, as earlier, the equilibrium equation, Eq. (10.21), which
yields

vNzs

vs
¼ �vNz

vz
¼ �B

H0
wðzÞ
Dw

WðsÞ

Integrating with respect to s and determining the constant of integration from Eq. (10.48), we arrive at
the following expression analogous to Eq. (10.53):

Nzs ¼ H0
wðzÞFwðsÞ þ Tz

2A
(10.152)

where

FwðsÞ ¼ � 1

Dw

2
4SwðsÞ � 1

2A

Z
s

SwðsÞrds
3
5

in which

SwðsÞ ¼
Zs
0

BWðsÞds
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To determine the function HwðzÞ, we apply the principle of minimum strain energy (see Section
2.11.2). The strain energy of the beam is

Us ¼
Z l
0

dz

Z
s

�
N2
z

2B
þ N2

zs

2B44

�
ds (10.153)

Substituting the stress resultants from Eqs. (10.151) and (10.152), we get the following energy
functional:

Us ¼ 1

2

Z l
0

�
H2
w

Dw
þ �H0

w

�2
DF þ SF

A
H0
wTz þ

T2
z

4A2
Ss

�
dz (10.154)

where

DF ¼
Z
s

F2
w

�
s
�

B44
ds; SF ¼

Z
s

FwðsÞ
B44

ds; Ss ¼
Z
s

ds

B44

The minimum conditions for the strain energy in Eq. (10.154) provide the following variational
equation:

H00
w � l2Hw ¼ 0; l2 ¼ DwDF (10.155)

and the natural boundary conditions for the beam ends z ¼ 0 and z ¼ l:��
H0
wDF þ Tz

2A
SF

�
dHw

�z¼l

z¼0

¼ 0 (10.156)

(see Fig. 10.48). The general solution of Eq. (10.155) is

Hw ¼ C1 sinh lzþ C2 cosh lz (10.157)

At the end z ¼ l of the beam (see Fig. 10.48), Nz ¼ 0, and hence,

Hwðz ¼ lÞ ¼ 0 (10.158)

At the fixed end z ¼ 0, the boundary condition given by Eq. (10.156) is equivalent to uz ¼ 0 (Vasiliev,
1993). Determining the constants C1 and C2 in Eq. (10.157) from the boundary conditions, Eqs.
(10.156) and (10.158), we get

Hw ¼ TzSF
2AlDF

ðtanh ll cosh lz� sinh lzÞ

Substituting this expression into Eqs. (10.151) and (10.152) for the stress resultants, we arrive at

Nz ¼ Tz
2A

BSFlðtanh ll cosh lz� sinh lzÞWðsÞ

Nzs ¼ Tz
2A

�
1þ SF

DF
ðtanh ll sinh lz� cosh lzÞFwðsÞ

�
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As an example, consider the beam with a rectangular cross section shown in Fig. 10.48 for which
a/b¼ 2 and l/a¼ 5. The beam is composed of a�45� angle-ply carbon-epoxy layer with a thickness of
1 mm and a 90� layer with the same thickness. The warping function wðsÞ is specified by Eq. (10.147).
The normalized normal Nz ¼ Nza

2
=Tz

and shear Nzs ¼ Nzsa
2
=Tz

stress resultants acting in the fixed

cross section z ¼ 0 (see Fig. 10.48) are shown in Fig. 10.49. It follows from Eqs. (10.150), (10.153),
(10.155), for those beams whose wall stiffness does not depend on s,

l2 ¼ B

B44

Z
s

W
2
ds ,

Z
s

F2
wðsÞds

Thus, the rate at which the normal stress resultant reduces at a distance from the fixed cross section
depends on the ratio of the axial stiffness of the wall to the shear stiffness: the higher the ratio, the
higher the rate. For real beams whose axial stiffness is usually significantly higher than the shear
stiffness, the normal stress resultants are usually concentrated in the vicinity of the fixed cross section.
At a distance from this cross section exceeding the width of the cross section (a in Fig. 10.48), normal
stress resultant usually vanishes and the beam experiences free torsion. This effect is demonstrated in
Fig. 10.50 where the dependence of Nz on the axial coordinate is shown (the distance z /l ¼ 0.2
corresponds to the dimension a shown in Fig. 10.48).

Under free torsion, the shear stress resultant specified by Eq. (10.56) is uniformly distributed over
the cross-sectional contour (dashed line Nzs ¼ 1 in Fig. 10.49b). As can be seen, due to the effect of

zN

48.0

zsN 35.1

56.0
08.1

(a)

(b)

FIGURE 10.49

Distribution of the normalized normal (a) and shear (b) stress resultants over the cross-sectional contour of the

beam under restrained torsion.
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restrained warping, the maximum shear stress resultant acting in the fixed cross section z ¼ 0 (see
Fig. 10.49b) can be about 35% higher than in the case of free torsion.

Consider now restrained bending. For a beam loaded with transverse shear force Q (see Fig. 10.48)
which induces the bending moment

Hx ¼ �Qðl� zÞ (10.159)

the normal stress resultant corresponding to free bending is specified by Eqs. (10.34) and (10.35) in
which Pz ¼ 0 and Hy ¼ 0. Adding the normal stress resultant caused by the effect of restrained
warping, we arrive at

Nz ¼ B

�
k
Hx

D0
x

yþ NðzÞWðsÞ
�

where, as earlier, NðzÞ is the unknown function and WðsÞ is the function proportional to the invariant
warping function under free bending specified by Eqs. (10.139) and (10.142). For the beam shown in
Fig. 10.48, taking Qs

x ¼ 0 and Qs
y ¼ Q in Eqs. (10.144), we get

Gs
y ¼ csyyQ

Substituting this expression into the second equation of Eqs. (10.142), we can determine the warping
function JbðsÞ as

JbðsÞ ¼ Q

�
csyy þ

Zs
0

Fy

�
s
�

B44
ds

�

The invariant warping function WðsÞ can now be found from Eq. (10.139).
Introducing the bimoment in Eq. (10.148) and taking into account that the invariant warping

function is orthogonal to y (see Eqs. (10.75)), we arrive at

Nz ¼ B

�
k
Hx

D0
x

yþ HwðzÞ
Dw

WðsÞ
�

(10.160)

z/l

zN

0  0.04  0.08   0.12   0.16 0.2
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0.2
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0.5

FIGURE 10.50

Dependence of the normalized normal stress resultant on the axial coordinate.
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where Hx and Dw are specified by Eqs. (10.150) and (10.159). Repeating the derivation of Eq. (10.152)
for the shear stress resultant, we finally get

Nzs ¼ QyFy

�
s
�þ H0

wFw

�
s
�

(10.161)

where, in accordance with Eqs. (10.54) and (10.152),

FyðsÞ ¼ � k

D0
x

2
4SxðsÞ � 1

2A

Z
s

Sx
�
s
�
rds

3
5

FWðsÞ ¼ � 1

Dw

2
4SwðsÞ � 1

2A

Z
s

Sw
�
s
�
rds

3
5

Sx
�
s
� ¼ Z

s

0

Byds; SwðsÞ ¼
Zs
0

BWds

Further analysis is similar to the derivation performed for the torsion problem. The normal and shear
stress resultants, Eqs. (10.160) and (10.161), are substituted into Eq. (10.153) for the strain energy. The
minimum condition results in Eq. (10.155), whose solution is specified by Eq. (10.157). The natural
boundary condition becomes


�
H0

wDF þ QSF
�
dHw

� z ¼ l
z ¼ 0

¼ 0 (10.162)

where

DF ¼
Z
s

F2
w

�
s
�

B44
ds; SF ¼

Z
s

1

B44
FyðsÞFwðsÞds

For the cantilever beam shown in Fig. 10.48, at the free end z ¼ l we have Hw ¼ 0, whereas for the
fixed end z ¼ 0, Eq. (10.162) is equivalent to the absence of axial displacements (uz ¼ 0). Satisfying
the boundary conditions, we get

Hw ¼ QSF
lDF

ðtanh ll cosh lz� sinh lzÞ

Then, the stress resultants, Eqs. (10.160) and (10.161), take the following form:

Nz ¼ B

�
k
Hx

D0
x

yþ QlSFðtanh ll cosh lz� sinh lzÞWðsÞ
�

NZS ¼ Q

�
FyðsÞ þ SF

DF
ðtanh ll sinh lz� cosh lzÞFwðsÞ

�

The qualitative distribution of the normal stress resultant Nz over the contour for the beam fixed cross
section z ¼ 0 is shown in Fig. 10.51. As can be seen, the effect of restrained bending results in some
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redistribution of the stress resultant in comparison to the case of free bending (dashed line in
Fig. 10.51).

10.5 BEAMS WITH MULTI-CELL CROSS-SECTIONAL CONTOURS
The theory described in Section 10.4 can be readily generalized for beams with multi-cell cross-
sectional contours similar to that presented in Fig. 10.2. For confirmation, consider a wing-type
rectangular beam consisting of three sections as shown in Fig. 10.52.

Since the method presented in Section 10.4.1 which allows us to determine the axial stress resultant
does not depend on the shape of a beam cross section, the obtained results are valid for the beams with
multi-cell cross sections as well. Thus, the axial stress resultant Nx is specified by Eqs. (10.34) and
(10.35) which, for the beam shown in Fig. 10.52, yield

Nz ¼ B
HxðzÞ
D0
x

y (10.163)

where HxðzÞ is the bending moment acting in the beam cross section z ¼ constant.
The beam shown in Fig. 10.52 can be assembled from three composite box beams made by winding

and having f ¼ �45� angle-ply structure. The assembled beams can be jointed together with the aid of
transverse ðf ¼ 90�Þ plies and, finally, the flanges 1 – 4 and 5 – 8 (see Fig. 10.52) can be reinforced by

z

b

l

b b

1 2 3 4

5678
H zT

yQ

x

y

FIGURE 10.52

A beam with a multi-cell cross-sectional contour.

zN

FIGURE 10.51

Distribution of the normal stress resultant over the cross-sectional contour of the beam under restrained bending.
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axial ðf ¼ 0�Þ plies. Assume that the beam is made of carbon-epoxy composite with ply thickness of
0.3 mm. Then, the thickness of the internal shear webs 2 – 7 and 3 – 6 composed of eight 45� plies is
equal to 2.4 mm, and the thickness of outer shear webs 1 – 8 and 4 – 5 which have four 45� plies and
two 90� plies is 1.8 mm, whereas the thickness of the flanges 1 – 4 and 5 – 8 which have four 45�, two
90�, and eight 0� plies is 4.2 mm. The membrane stiffness characteristics of the beam elements are

B1�4
11 ¼ B5�8

11 ¼ 500 MN=m; B1�4
44 ¼ B5�8

44 ¼ 71 MN=m; B1�8
11 ¼ B4�5

11 ¼ 66 MN=m

B1�8
44 ¼ B4�5

44 ¼ 60 MN=m; B2�7
11 ¼ B3�6

11 ¼ 124 MN=m; B2�7
44 ¼ B3�6

44 ¼ 112 MN=m

(see Fig. 10.52). For b ¼ 2H (see Fig. 10.52), the distribution of the normalized axial stress resultant

Nz ¼ NzH
2

Hx
over the contour of the cross section at z ¼ 0 is shown in Fig. 10.53.

The specific features of a multi-cell cross section show themselves if we determine the shear stress
resultant Nzs. As opposed to single-cell beams considered in the previous sections of this chapter,
which Nzs is specified by Eq. (10.53) following from the equilibrium equations only, a beam with
a multi-cell cross section is statically indeterminate. For a single-cell beam, we associate the point S,
from which the contour coordinate is measured, with an imaginary cut of the contour as shown in
Fig. 10.14. For the multi-cell contour, we must make several such cuts, the number of which is equal to
the number of cells. This procedure is demonstrated in Fig. 10.54. Clearly, these cuts must be
compensated with the corresponding number of unknown and, independent of s, additional stress

resultants N
ðiÞ
0 ; i ¼ 1; 2; 3.n, where n is the number of cells. To express the shear stress resultants in

this multi-cell beam, we introduce the auxiliary functions ui (see Fig. 10.55) which are equal to unity

)1(
0N )2(

0N )3(
0NS

FIGURE 10.54

Reduction of a multi-cell contour to an open contour.

1

−

+

zN
8 7 6 5

432

FIGURE 10.53

Distribution of the normalized axial stress resultant over the beam cross-sectional contour.
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for the i-th contour and are zero for the rest of the contours. Then, Eq. (10.43) for a single-cell contour
is generalized as

Nzs ¼ NQ þ
Xn
i¼1

N
ðiÞ
0 ui (10.164)

Here, NQ is specified by Eq. (10.46) which for the beam shown in Fig. 10.52 reduces to

NQ ¼ �Qy

D0
x

SxðsÞ (10.165)

Since the multi-cell cross section is reduced to the corresponding open cross section (see Fig. 10.54),
the function SxðsÞ is plotted using the procedure described in Section 10.4.6 for a single-cell beam. For
the beam under consideration (see Fig. 10.52), the function SxðsÞ is presented in Fig. 10.56. As shown

1

1

1ω

1

1

2ω

1

1

3ω

FIGURE 10.55

Auxiliary functions ui .

)(sS x

FIGURE 10.56

Function Sx ðsÞ.
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in Section 10.4.2, the shear stress resultant NQ, Eq. (10.165), balances the transverse shear force Qy. To
balance the torque Tz, we need to apply a moment equation similar to Eq. (10.49), i.e.,

Z
s

NQrdsþ 2
Xn
i¼1

N
ðiÞ
0 Ai ¼ Tz (10.166)

where, as earlier, Ai is the area bounded by the i-th cross-sectional contour. Thus, we have one
equilibrium equation, Eq. (10.166), which includes n unknown shear stress resultants N

ðiÞ
0 . This means

that the problem is statically indeterminate ðn� 1Þ times, and we need to derive ðn� 1Þ compatibility
equations to solve it. These equations can be obtained with the aid of the mixed variational principle
discussed in Section 2.11.3. The energy of shear deformation for a unit beam length is

Ws ¼
Z
s

N2
zs

2B44
ds ¼ 1

2

Z
s

 
N2
Q þ 2NQ

Xn
i¼1

N
ðiÞ
0 ui þ

Xn
i¼1

Xn
j¼1

N
ðiÞ
0 N

ðjÞ
0 uiuj

!
ds

B44

We should minimize the energyWs under the condition according to which the moment equation, Eq.
(10.164), is satisfied. Expanding this equation with the aid of Lagrange’s multiplier Q0

z (which is
actually the angle of twist per unit length of the beam), we arrive at the following augmented func-
tional

WL ¼ Ws þQ0
z

 
Tz �

Z
s

NQrds� 2
Xn
i¼1

N
ðiÞ
0 Ai

!

Minimization of this functional with respect to N
ðiÞ
0 yields the following n equations:

1

2Ai

 Z
s

NQ

B44
uidsþ

Xn
j¼1

N
ð jÞ
0

Z
s

uiuj

B44
ds

!
¼ Q0

z (10.167)

where i ¼ 1; 2; 3. n. The equations obtained, Eqs. (10.167), are actually the compatibility conditions
stating that the angle of twist of the i-th (i ¼ 1; 2; 3.n) contour is equal to the twist angle Qz of the
beam cross sections. These conditions seem reasonable since the beam cross section rotates in its plane

as a rigid disk. Solving Eq. (10.167) for N
ðiÞ
0 , we formally get

N
ðiÞ
0 ¼ QxR

ðiÞ
x þ QyR

ðiÞ
y þQ0

zR
ðiÞ
Q (10.168)

where R are coefficients dependent on the beam stiffness and geometric parameters. For the beam
considered as an example (see Fig. 10.52), these equations are

N
ð1Þ
0 ¼ 0:017

Qy

H
þ 54:8$106HQ0

z; N
ð2Þ
0 ¼ 0:5

Qy

H
þ 67:4$106HQ0

z

N
ð3Þ
0 ¼ 0:5

Qy

H
þ 58$106HQ0

z
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These equations can now be substituted into the moment equation, Eq. (10.166), i.e.,

�6:05QyH þ 4H2
�
N
ð1Þ
0 þ N

ð2Þ
0 þ N

ð3Þ
0

	
¼ Tz

which allows us to find Q0
z. For the torque Tz ¼ Qyb=2 (see Fig. 10.52), we get

Q0
z ¼ 0:14$10�9Qy=H

2; N
ð1Þ
0 ¼ 0:25 Qy=H; N

ð2Þ
0 ¼ 0:59 Qy=H, and N

ð3Þ
0 ¼ 0:92 Qy=H. Note that

these results provide the values of N
ðiÞ
0 , whereas their directions are governed by the functions ui

shown in Fig. 10.55. The final distribution of the normalized shear stress resultant Nzs ¼ NzsH=Qy over

the cross-sectional contour is shown in Fig. 10.57. The displacements and warping functions of beams
with multi-cell cross sections can be determined using the approaches described in Sections 10.4.4 and
10.4.5.

To find the shear center of the beam with a multi-cell cross section, we must apply, in accordance
with Section 10.4.7, the forces Qx and Qy at the shear center S. Consider, for example, a double-cell
contour, shown in Fig. 10.58 and find the ys coordinate of the shear center. Apply a force Qs

x at the
shear center. Then, taking Qy ¼ 0 and Qx ¼ Qs

x in Eqn. (10.168), we get

N
ðiÞ
0s ¼ Qs

xR
ðiÞ
x

s
xQ

y

x

S
sy

FIGURE 10.58

Shear center of a double-cell cross-sectional contour.

zsN

FIGURE 10.57

Distribution of the shear stress resultant over the beam cross-sectional contour.
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where N
ðiÞ
0s are the stress resultants N

ðiÞ
0 corresponding to the force Qx applied at the shear center. Now,

use the moment equation, Eq. (10.166), in which Tz ¼ �Qs
xys and N

ðiÞ
0 ¼ N

ðiÞ
0s , i.e.,Z

s

NQrdsþ 2Qs
x

Xn
i¼1

RðiÞ
x Ai ¼ �Qs

xys

where, in accordance with Eq. (10.46),

NQ ¼ �k
Qs
x

D0
y

SyðsÞ

Solving the equation for ys, we get

ys ¼ k

D0
y

Z
s

Sy
�
s
�
rds� 2

Xn
i¼1

RðiÞ
x Ai

Since the cross section shown in Fig. 10.58 is symmetric, xs ¼ 0. In the general case, the coordinate xs
can be found using the earlier approach to determine the ys coordinate of the shear center.

10.6 BEAMS WITH OPEN CROSS-SECTIONAL CONTOURS
Consider now beams with open cross-sectional contours as shown in Fig. 10.3. As opposed to beams
with closed cross-sectional contours, such beams have two free axial edges, s ¼ 0 and s ¼ s1 (see
Fig. 10.59), which determine specific features of the beam behavior and analysis.

10.6.1 Transverse bending

Since the method applied to determine the axial stress resultant Nz and described in Section 10.4
does not depend on the shape of the beam cross section, the results obtained in that section, i.e.,
Eqs. (10.34) and (10.35), hold for beams with open cross-sectional contour. The index “s” in the
integrals in Eqs. (10.29) means that the integration is performed from s ¼ 0 up to s ¼ s1 (see
Fig. 10.59).

Consider the shear stress resultant Nzs specified, in the general case, by Eq. (10.43), i.e.,

Nzs ¼ NQ

�
s
�þ N0

in which N0 ¼ Nzsðs ¼ 0Þ. However, for beams with open cross sections, the edge s ¼ 0 is free of shear
stresses (see Fig. 10.59) and N0 ¼ 0. Thus, in accordance with Eq. (10.46),

Nzs ¼ NQðsÞ ¼ �k

"
Qy

D0
x

SxðsÞ þ Qx

D0
y

SyðsÞ
#

(10.169)
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Recall that in Section 10.4.2 the component of the shear stress resultant N0 is found from the moment
equilibrium equation, Eq. (10.49). Taking N0 ¼ 0 in that equation, we getZ

s

NQrds ¼ Tz (10.170)

However, no external torque is applied to the beam shown in Fig. 10.59. Thus, to satisfy Eq. (10.170), we
need to assume that the forcesQx andQy are applied at some point S, which is called the shear center of
the beam with an open contour. These forces create a torque with respect to point 0 (see Fig. 10.59)

Tz ¼ Qs
xys � Qs

yxs (10.171)

Substituting Eqs. (10.169) and (10.171) into Eq. (10.170), we have

k

"
Qs
y

D0
x

Z
s

Sx
�
s
�
rdsþ Qs

x

D0
y

Z
s

Sy
�
s
�
rds

#
¼ Qs

yxs � Qs
xys

This equation must be valid if Qs
x ¼ 0; Qs

ys0, and Qs
y ¼ 0; Qs

xs0. It follows from these conditions
that the coordinates of the shear center are

xs ¼ k

D0
x

Z
s

Sx
�
s
�
rds; ys ¼ � k

D0
y

Z
s

Sy
�
s
�
rds (10.172)

As the first example, consider a C-shaped beam shown in Fig. 10.60a and find the coordinate xs. Since
the contour is symmetric with respect to the x-axis, ys ¼ 0 and we can consider only one half of the

z
0

s
xQ

S

sy

sx

s
yQ

1ss =

0=s

y

x

y

x

FIGURE 10.59

A thin-walled beam with an open cross-sectional contour.
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contour consisting of parts 1 – 2 and 2 – 3. For a symmetrical contour, k ¼ 1 and Eqs. (10.29) and
(10.33) yield

D0
x ¼

Z
s

By2ds ¼ 2B

� Zb
0

a2dx þ
Z0
a

y2
�� dy

�� ¼ 2a2B

�
bþ a

3

�

The function SxðsÞ in Eqs. (10.45) is

S
12
x ðsÞ ¼

Zs
0

Byds ¼ Bax

S
23
x ðsÞ ¼ B

�
abþ

Zy
a

yð� dyÞ
�
¼ B

�
abþ 1

2

�
a2 � y2

��

sx
0

s
yQ

1ss =

0=s

S

y

x
a

b

zsN

21

3

zsN

s
yQ

S

y

x

S

zsN

x

y

s
yQ

(a) (b)

(c)

FIGURE 10.60

Shear centers of C-shaped (a), triangular-shaped (b), and Z-shaped (c) beams.

10.6 Beams with open cross-sectional contours 659

www.EngineeringEBooksPdf.com



The distribution of the shear stress resultant, Eq. (10.169), over the cross-sectional contour is shown in
Fig. 10.60a. For the part 1 – 2 of the contour, we have r ¼ a, whereas for the part 2 – 3, r ¼ b. Then, the
first equation of Eqs. (10.172) yields

xs ¼ 2B

D0
x

� Zb
0

a2xdxþ
Z0
a

b

�
abþ a2 � y2

2

�
ð� dyÞ

�
¼ 9b2 þ 2ab

2ðaþ 3bÞ

For a ¼ b , we have xs ¼ 1:375b, i.e., the shear center is located outside the contour.
In a similar way, we can find the shear stress resultants for the triangular-shaped (see Fig. 10.60b)

and z-shaped (see Fig. 10.60c) cross sections. Applying the first equation of Eqs. (10.172), we can
prove that for both sections, xs ¼ 0.

Deformations of the model beams with cross sections shown in Fig. 10.60 are presented in
Fig. 10.61 (Cheremukhin, 1969). In Fig. 10.61a, the force is applied at the point which is located to the
left of the shear center; in Fig. 10.61b, the force acts at the shear center; and in Fig. 10.61c, the force is
applied at the point which is located to the right of the shear center. As can be seen, if the force is
applied at the shear center, the beam does not experience bending.

To demonstrate the application of the second equation of Eqs. (10.172), consider a circular cross
section with a cut shown in Fig. 10.62. For a circular cross section,

k ¼ 1; r ¼ R; D0
y ¼ pBR3

Sy

�
s
	
¼
Zs
0

Bxds ¼ BR2

Zb
0

sin bdb ¼ BR2ð1� cos bÞ

and the second equation of Eqs. (10.172) yields ys ¼ 2R (see Fig. 10.62).
It should be noted that Eqs. (10.172) for the coordinates of the shear center are derived assuming

that the beam’s wall thickness is infinitely small. Actual coordinates of real beams with a finite wall
thickness may be different from the values obtained using Eqs. (10.172).

Assuming that the forces Qs
x and Qs

y are applied at the shear center and, hence, the beam does not
experience torsion, we can determine the displacements of the beam. The displacements of the beam
cross section Ux; Uy, and Uz and the rotation angles Qx and Qy can be found with the aid of Eqs.
(10.59) and (10.63) which include the shear deformations Gx and Gy. Applying the approach described
in Section 10.4.4, we can obtain the following expressions similar to Eqs. (10.67):

Gx ¼ cxxQ
s
x þ cxyQ

s
y; Gy ¼ cyxQ

s
x þ cyyQ

s
y

where

cxx ¼ k2�
D0
y

	2
Z
s

S
2
y

�
s
� ds

B44
; cyy ¼ k2�

D0
x

�2
Z
s

S
2
x

�
s
� ds

B44

cxy ¼ cyx ¼ k2

D0
xD

0
y

Z
s

SxðsÞSyðsÞ ds

B44

Now, a natural question arises as towhat happens if the forcesQx andQy are not applied at the shear center
and thebeamexperiences torsion.This problemcannot be solvedwithin the frameworkof thebeammodel
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(a) (b)

(c)

FIGURE 10.61

Models demonstrating the deformations of C-shaped, triangular-shaped, andZ-shapedbeamsunder bendingwith

the force applied to the left of the shear center (a), to the shear center (b), and to the right of the shear center (c).
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used in the foregoing sections. It should be emphasized that this shortcoming should be attributed to the
beammodel and not to the physical beam itself. It follows fromFig. 10.61a and c that a beamwith an open
cross section can resist torsion (although its torsional stiffness is relatively low); however, the study of the
problem of torsion would require the development of a more complicated beam model.

10.6.2 Free torsion of beams with open cross-sectional contours

The main shortcoming of the beam model considered in the previous sections is associated with using
the equations of membrane shell theory (Section 10.2) to describe the beam behavior. To demonstrate
this drawback, consider a homogeneous beam whose stiffness characteristics do not change through
the wall thickness. Within the framework of membrane shell theory, the shear stress szs is uniformly
distributed through the thickness as shown in Fig. 10.63a, giving rise to the shear stress resultant
Nzs ¼ szsh, which is referred to as the shear flow in application to metal beams. This model is quite
adequate for thin-walled beams with closed cross-sectional contours (see Fig. 10.63a) and has been
widely used in the foregoing sections of this chapter.

However, for beams whose cross-sectional contours are open (see Fig. 10.63b), the shear flow does
not exist. The shear stress szs is linearly distributed through the beam wall thickness giving rise to
a twistingmomentMzs.Moreover, in the vicinity of the beam’s free longitudinal edges, the shear stress is
orthogonal to the cross-sectional contour, which results in a transverse shear force Vz (see Fig. 10.63b).

Thus, to describe torsion of thin-walled beams with open contours, we need to apply the equations
of shell theory which allows for moments and transverse shear forces as shown in Fig. 10.64. The
corresponding equilibrium equations for the problem of torsion become

vNsz

vs
¼ 0;

vMsz

vs
� Vz ¼ 0 (10.173)

s
xQ

S

sy

1ss = 0=s

y

x

s

β

0

R

FIGURE 10.62

Shear center of a circular cross section with a cut.
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(Vasiliev, 1993). However, there is one more effect that should be taken into account. To demonstrate
this effect, consider a beam with an open cross-sectional contour EF as shown in Fig. 10.65 and
simulate it with a single-cell sandwich cross section ABCD. For a beam with a closed contour ABCD,
Bredt’s formula given by Eq. (10.56) is valid, so that

Tz ¼ 2ANzs ¼ pRhNzs (10.174)

Now assume that the wall thickness h is small. Then, the effect of the shear stress resultant Nzs can be
reflected by couples m ¼ Nzsh uniformly distributed along the contour EF (see Fig. 10.65) and

Tz ¼ 1

2
pRhNzs

The right-hand part of this equation is one half of the corresponding part of Eq. (10.174) and, hence, it
is not correct, because, in deriving it, we neglect the difference in the lengths of arcs AD and BC

zsτ

zsM

h
h

zV

zsτ

zsN

hh

(a) (b)

FIGURE 10.63

Distribution of shear stresses through the wall thickness for beams with closed (a) and open (b) cross-sectional

contours.

szM

szN

zsN

zV

zsM

FIGURE 10.64

Forces and moments acting on the element of the reference surface of a beam with open contour.
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assuming that the radius of both arcs is R. However, it is ðR� h=2Þ for AD and ðRþ h=2Þ for BC. With
this in mind, we get

Tz ¼ p

2

��
Rþ h

2

�2

�
�
R� h

2

�2�
Nzs ¼ pRhNzs

which is consistent with Eq. (10.174). Thus, in addition to Eqs. (10.173), we should take into account
that the Lamé coefficient H cannot be taken equal to unity in accordance with Eq. (10.5), and should be
specified by Eqs. (10.4), which yield

H ¼ 1þ h

Re
¼ 1þ t � e

Re
(10.175)

where t is counted from zero to h (see Fig. 5.8) and e is the coordinate of the reference surface showing
the location of the contour arc with the radius Re.

The constitutive equations allowing for these effects can be written as

Nzs ¼ B11
44εzs þ B12

44εsz þ C11
44kzs þ C12

44ksz

Nsz ¼ B21
44εzs þ B22

44εsz þ C21
44kzs þ C22

44ksz

Mzs ¼ C11
44εzs þ C12

44εsz þ D11
44kzs þ D12

44ksz

Msz ¼ C21
44εzs þ C22

44εsz þ D21
44kzs þ D22

44ksz

Vz ¼ Szgz

(10.176)
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FIGURE 10.65

A model of a thin-walled beam with an open cross section.
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(Vasiliev, 1993). The strain-displacement equations are

εzs ¼ vus
vz

; εsz ¼ vuz
vs

; kzs ¼ vqs

vz
; ksz ¼ vqz

vs

qz ¼ gz �
vuh
vz

; qs ¼ us
Re

� vuh
vs

(10.177)

Here, uz, us, and uh are the displacements of the point lying at the contour line in z, s and
h -directions (see Fig. 10.5), qz and qs are the angles of rotation of the line normal to the reference
surface in hz – and hs – planes, and gz is the transverse shear deformation of the beam wall. The
stiffness coefficients of the wall in Eqs. (10.176) are specified by the following equations similar to
Eqs. (5.28)

B11
44 ¼ I0; C11

44 ¼ I1 � eI0; D11
44 ¼ I2 � 2eI1 þ e2I0

B22
44 ¼ J0; C22

44 ¼ J1 � eJ0; D22
44 ¼ J2 � 2eJ1 þ e2J0

B12
44 ¼ B21

44 ¼ K0; C12
44 ¼ C21

44 ¼ K1 � eK0; D12
44 ¼ D21

44 ¼ K2 � 2eK1 þ e2K0

(10.178)

where

Ir ¼
Zh
0

A44Ht
rdt; Jr ¼

Zh
0

tr

H
A44dt; Kr ¼

Zh
0

A44dt ðr ¼ 0; 1; 2Þ (10.179)

and H is specified by Eq. (10.175). The transverse shear stiffness of the beam wall in the last equation
of Eqs. (10.176) is similar to Eq. (5.22), i.e.,

Sx ¼ h2Z t
0

dt

Gzh

(10.180)

In Eqs. (10.179), A44 ¼ Gzs, i.e., the stiffness coefficient is equal to the shear modulus of the beam
material, whereas Gzh in Eq. (10.180) is the transverse shear modulus of the beam wall in the hz-plane
(see Fig. 10.5). For laminated beams (see Fig. 5.10), in accordance with Section 5.3, we get

Ir ¼ 1

r þ 1

Xk
i¼1

HiG
ðiÞ
zs

�
trþ1
i � trþ1

i�1

�

Jr ¼ 1

r þ 1

Xk
i¼1

1

Hi
GðiÞ
zs

�
trþ1
i � trþ1

i�1

�

Kr ¼ 1

r þ 1

Xk
i¼1

GðiÞ
zs

�
trþ1
i � trþ1

i�1

�
; r ¼ 0; 1; 2

Sx ¼ h2

 Xk
i¼1

ti � ti�1

HiG
ðiÞ
zh

!�1

; Hi ¼ 1þ 1

2Re
ðti�1 þ ti � 2eÞ

(10.181)
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Recall that in accordance with Section 5.10, the coordinate of the reference surface e (see Figs. 5.8 and
5.10) can be preassigned in such a way that one of the coupling coefficients Cmn in Eqs. (10.178)
becomes zero. Let this coefficient be C12

44 ¼ C21
44. Then

e ¼ K1

K0
¼
R h
0 GzstdtR h
0 Gzsdt

(10.182)

If this equation is valid, we can use Eq. (10.175) and transform the equation for B11
44 in Eqs. (10.178) as

B11
44 ¼

Zh
0

�
1þ t � e

Re

�
Gzsdt ¼

Zh
0

Gzsdt þ 1

Re
ðK1 � eK0Þ ¼

Zh
0

Gzsdt ¼ B12
44

Thus, if e satisfies Eq. (10.182), we have

B11
44 ¼ B12

44 ¼ B21
44 ¼ B44; C12

44 ¼ C21
44 ¼ 0 (10.183)

Consider the strain-displacement equations, Eqs. (10.177). The displacements of the cross-sectional
contour points us and uh are specified by Eqs. (10.17) in which, for the case of free torsion, Ux ¼ 0
and Uy ¼ 0, so that

us ¼ rQzðzÞ; uh ¼ tQzðzÞ (10.184)

where r and t are specified by Eqs. (10.7). Substituting Eqs. (10.184) in Eqs. (10.177) and taking into
account Eqs. (10.10), we get

εzs ¼ rQ0
z; εsz ¼ _uz; qz ¼ gz � tQ0

z

qs ¼
�

r

Re
� _t

�
Qz ¼ Qz; kzs ¼ Q0

z; ksz ¼ _gz � _tQ0
z

(10.185)

where ð.Þ0 ¼ dð.Þ=dz and ð_Þ ¼ dð Þ=ds. Using Eqs. (10.183) and (10.185), we can present the
constitutive equations, Eqs. (10.176), in the following form:

Nzs ¼
�
rB44 þ C11

44

�
Q0

z þ B44 _uz

Nsz ¼
�
rB44 � _tC22

44

�
Q0

z þ B22
44 _uz þ C22

44 _gz

Mzs ¼
�
rC11

44 þ D11
44 � _tD12

44

�
Q0

z þ D12
44 _gz

Msz ¼
�
D12
44 � _tD22

44

�
Q0

z þ C22
44 _uz þ D22

44 _gz

Vz ¼ Szgz

(10.186)

Consider now the first equilibrium equation in Eqs. (10.173), according to which the shear stress
resultant Nsz acting in the longitudinal planes s ¼ constant of the beam (see Fig. 10.64) does not
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depend on s. However, on the beam’s free edges s ¼ 0 and s ¼ s1 (see Fig. 10.59), Nsz ¼ 0. Thus,
Nzs ¼ 0 and the second equation of Eqs. (10.186) allows us to determine _uz as

_uz ¼ � 1

B22
44


�
rB44 � _tC22

44

�
Q0

z þ C22
44 _gz

�
(10.187)

Substituting Eq. (10.187) into the first and the fourth equations of Eqs. (10.186), we get

Nzs ¼
�
rBr þ C11

44

�
Q0

z þ B44

B22
44

C22
44

�
_tQ0

z � _gz
�
; Msz ¼ ðDr � _tDÞQ0

z þ D _gz (10.188)

where

Br ¼ B44

 
1� B44

B22
44

!
; Dr ¼ D12

44 �
rB44

B22
44

C22
44; D ¼ D22

44 �
1

B22
44

�
C22
44

�2
It follows from Eqs. (10.186) and (10.188) that the stress resultants and couples Nzs; Nsz andMzs; Msz

depend on Q0
z, which is actually a constant, and on gz, which is a function of s for the case of free

torsion. To determine the function gzðsÞ, apply the second equilibrium equation of Eqs. (10.173).
Substituting Msz and Vz from Eqs. (10.188) and (10.186), we arrive at the following equation:

D€gz þ _D _gz � Szgz ¼
�
€tDþ _t _D� _Dr

�
Q0

z (10.189)

whose solution specifies the function gzðsÞ. The solution of Eq. (10.189) includes two constants of
integration that can be found from the boundary conditions at the longitudinal edges of beam s ¼ 0 and
s ¼ s1 (see Fig. 10.59). For the free edges, Mszðs ¼ 0Þ ¼ 0, and Mszðs ¼ s1Þ ¼ 0 where Msz is spec-
ified by the second equation of Eqs. (10.188).

The constant angle of twist per unit length Q0
z can be now found from the moment equation that

follows from Fig. 10.66, i.e.,

Tz ¼
Zs1
0

ðrNzs þ tVz þMzsÞds (10.190)

in which Nzs;Vz, and Mzs are specified by Eqs. (10.186) and (10.188).
Finally, we need to determine the warping function. The axial displacement of the point A (see

Fig. 10.67) located at a distance h from the contour line can be written in accordance with Eqs. (5.2) as

wzðsÞ ¼ uzðsÞ þ hqzðsÞ (10.191)

where uzðsÞ is the axial displacement of the contourwhich can be found by integration ofEq. (10.187), i.e.,

uz ¼ u0z �
Zs
0

1

B22
44


�
rB44 � _tC22

44

�
Q0

z þ C22
44 _gz

�
ds (10.192)

in which u0z ¼ uzðs ¼ 0Þ and qz is the angle of rotation of the normal to the contour line in the plane zh
specified by Eqs. (10.185), i.e.,

qz ¼ gz � tQ0
z (10.193)
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It follows from Eq. (10.191) that when subjected to pure torsion the open cross section of the beam
experiences two warping effects. The first one is the warping of the contour line (h ¼ 0) specified by
Eq. (10.192). The second effect is the warping of the cross section with respect to the contour line
which is determined by Eq. (10.193).

In the general case, Eq. (10.189) can only be solved numerically. However, there exist two
important particular cases for which an analytical solution can be found: beams whose cross-sectional

x

y

zsM zV

0

t

zT

1ss =
r

0=s

zsN

FIGURE 10.66

Forces and moment acting in the beam cross section under free torsion.

A

s

zw η

x

y

z

zu

FIGURE 10.67

Axial displacement of the cross-sectional point.
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contour is a straight line and beams having a circular contour line. Keeping in mind that the majority of
the actual contour lines can be approximated by segments of straight lines and circles, we now consider
these particular cases.

A beam with a solid rectangular cross section referred to arbitrary coordinate frame x , y, z is shown
in Fig. 10.68. The contour line is straight. Counting the s-coordinate from the center of the cross
section O1 and using Figs. 10.66 and 10.68, we get

r ¼ constant; b ¼ constant; t ¼ �s

Then, Eqs. (10.178) yield

B11
44 ¼ B12

44 ¼ B21
44 ¼ B22

44 ¼ B44 ¼ K0

C11
44 ¼ C12

44 ¼ C21
44 ¼ C22

44 ¼ 0

D11
44 ¼ D12

44 ¼ D21
44 ¼ D22

44 ¼ D44 ¼ K2 � 2eK1 þ e2K0

where Krðr ¼ 0; 1; 2Þ and e are specified by Eqs. (10.179) and (10.182).
Note that a similar problem is discussed in Section 5.5 and some of the results obtained are repeated

here for the sake of completeness. For the beam under study, Eq. (10.189) becomes

€gz � k2gz ¼ 0; k2 ¼ Sz
D

(10.194)

Where D ¼ D44. The solution of Eq. (10.194) is

gz ¼ C1 sinh ksþ C2 cosh ks (10.195)

x

y

z 0

2

b
s =

β

t

2

b
s −=

s
10

r

η

FIGURE 10.68

Axial displacement of the cross-sectional point.
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and Eqs. (10.186) and (10.188) give the following expressions for the stress resultants and couples:

Nzs ¼ Nsz ¼ 0

Mzs ¼ Msz ¼ D44

�
2Q0

z þ _gz

�
Vz ¼ Szgz

(10.196)

Consider a beam with free edges s ¼ �b=2 (see Fig. 10.68). Moving point O1 to point O, we arrive at
the cross section shown in Fig. 10.69 for which r¼ 0. Determining C1 and C2 in Eq. (10.195) from the
boundary conditions Mszðs ¼ �b=2Þ ¼ 0, we find from Eqs. (10.196)

Mzs ¼ 2D44Q
0
z

�
1� cosh ks

cosh l

�
; Vz ¼ �2Sz sinh ks

k cosh l
Q0

z (10.197)

where

l ¼ 1

2
kb ¼ b

2

ffiffiffiffiffiffiffiffi
Sz
D44

r
(10.198)

To determine Q0
z, apply the moment equation, Eq. (10.190), which takes the form

Tz ¼
Zb=2

�b=2

ðMzs � sVzÞds

Substituting for Mzs and Vz their expressions, Eqs. (10.197), we arrive at

Tz ¼ DtQ
0
z (10.199)

in which

Dt ¼ 4D44b

�
1� tanh l

l

�
(10.200)

is the torsional stiffness of the beam.

zsM

zV

0
zT

2/b

h

s

s

η

FIGURE 10.69

Forces and moments acting in the beam cross section.
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The warping of the beam cross section is specified by Eq. (10.191). It follows from Eq. (10.192)
that uz ¼ u0z and if the point O in Fig. 10.69 is fixed, uz ¼ 0. Thus, there is no warping of the cross-
sectional contour line h ¼ 0 (see Fig. 10.69) which remains straight under torsion. Substituting gz and
Q0

z into Eqs. (10.193) and (10.191), we get

wz ¼ Q0
z

�
2 sinh ks

k cosh l
þ s

�
h

The distribution of wz over the cross section as well as the dependencies of Mzs and Vz, given by Eqs.
(10.197), on s, are shown in Fig. 10.70.

For a homogeneous beam with height h,

D44 ¼ 1

12
Gzsh

3; Sz ¼ Gzhh

(see Fig. 10.69) and Eq. (10.200) yields

Dt ¼ 1

3
Gzsbh

3

�
1� tanh l

l

�
; l ¼ b

h

ffiffiffiffiffiffiffiffiffiffi
3Gzh

Gzs

s
(10.201)

For an isotropic beam, Gzh ¼ Gzs; l ¼ b
ffiffiffi
3

p

h
and

Dt ¼ Gbh3Dt; Dt ¼ 1

3

�
1� tanh l

l

�

zsM

zV

zw

s

(a)

(b)

(c)

η

FIGURE 10.70

Warping function (a), twisting moment (b), and transverse shear force (c) for a solid rectangular beam.
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The function Dt of the ratio b/h along with the exact solution of Arutyunyan and Abramyan
(1963) is presented in Table 10.2. As can be seen, Eq. (10.201) has reasonable accuracy (the error
is 8.5%) even for beams with square cross sections (h ¼ b), whereas for b � 5h the error is less
than 1%.

For thin-walled beams with a high ratio of b/h, Eq. (10.200) for the torsional stiffness can be
simplified and presented in the following approximate form:

Dt ¼ 4D44b (10.202)

To apply this equation, consider a sandwich beam consisting of isotropic layers. The thickness of each
layer is h (see Fig. 10.71) such that b[h. The shear moduli of the outer and inner layers are G1 and
G2, respectively. Taking t1 ¼ h; t2 ¼ 2h, and t3 ¼ 3h in Eqs. (10.181), we get

K0 ¼ hð2G1 þ G2Þ; K1 ¼ 3h2

2
ð2G1 þ G2Þ; K2 ¼ h3

3
ð20G1 þ 7G2Þ

TABLE 10.2 Exact ðDe
t Þ and Approximate ðDtÞ Values of the Torsional Stiffness Coefficient

b=h 1.0 1.2 1.4 1.6 1.8 2.0

De
t 0.1406 0.1661 0.1869 0.2037 0.2174 0.2287

Dt 0.1525 0.1779 0.1980 0.2140 0.2268 0.2373

b=h 2.5 3.0 3.5 4.0 4.5 5.0

De
t 0.2494 0.2633 0.2735 0.2810 0.2868 0.2914

Dt 0.2564 0.2692 0.2783 0.2852 0.2906 0.2948

b=h 5.5 6.0 7.0 8.0 10.0 N

De
t 0.2952 0.2984 0.3035 0.3071 0.3124 0.3333

Dt 0.2983 0.3013 0.3058 0.3093 0.3141 0.3333

h

b

h

h

FIGURE 10.71

Cross section of a sandwich beam.
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Then the corresponding equation of Eqs. (10.178) yields

D44 ¼ h3

12
ð26G1 þ G2Þ

and, in accordance with Eq. (10.202),

Dt ¼ h3

3
ð26G1 þ G2Þ

This result coincides with the exact solution obtained by Lekhnitskii (1971).
For practical analysis, Eq. (10.202) is usually generalized for beams with arbitrary open cross-

sectional contour as

Dt ¼ 4

Z l
0

D44ds (10.203)

in which l is the length of the contour line.
Consider beams with circular cross-sectional contour (see Fig. 10.72) for which

r ¼ R; t ¼ 0; Re ¼ R; H ¼ 1þ t � e

R

and Eqs. (10.186), (10.188) become

Nzs ¼
�
RBr þ C11

44

�
Q0

z � B44

B22
44

C22
44 _gz

Mzs ¼
�
RC11

44 þ D11
44

�
Q0

z þ D12
44 _gz

Msz ¼ DrQ
0
z þ D _gz

Vz ¼ Szgz

(10.204)

h

1ss =
s

1R

x

y

1ss −=

R

2R

e

FIGURE 10.72

Circular cross section of a beam.
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As for the beam with a rectangular cross section considered previously, Eq. (10.189) reduces to
Eq. (10.194), whose solution satisfying the symmetry condition for the cross section shown in
Fig. 10.72 is

gz ¼ C3 sinh ks; k2 ¼ Sz
D

(10.205)

in which the constant C3 is determined from the boundary condition Msz ðs ¼ s1Þ ¼ 0. Finally,
we get

gz ¼ � DrQ
0
z

kD cosh l
sinh ks; l ¼ s1

ffiffiffiffiffi
Sz
D

r
(10.206)

The moment equation, Eq. (10.190), becomes

Tz ¼ 2

Zs1
0

ðRNzs þMzsÞds

and can be reduced to Eq. (10.199), in which

Dt ¼ 2s1
�
2C11

44Rþ D11
44 þ BrR

2
�� 2D2

r

Dk
tanh l (10.207)

As an example, consider a homogeneous cylindrical beam with a cut whose cross section is shown in
Fig. 10.73. To use the solution given by Eq. (10.206), we must count the contour coordinate s from
point O. For the beam under study,

s1 ¼ pR; Gzs ¼ G; Gzh ¼ G1; e ¼ h

2

−s

x

R

+s0

1ss =

y

FIGURE 10.73

Circular cross-sectional contour with a cut.
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in which h is the beam thickness and

B44 ¼ Gh; B22
44 ¼ GRp; C11

44 ¼ Gh3

12R
; C22

44 ¼ GR2
�
h� p

�
D11
44 ¼ D12

44 ¼
Gh3

12
; D22

44 ¼ GR3
�
p� h

�
; Sz ¼ h2G1

Rp

(10.208)

where

p ¼ ln
1þ h=2

1� h=2
; h ¼ h

R

For an isotropic beam (G1 ¼ G), the exact solution of this problem is given by A. Föppl and L. Föppl
(1928) and has the form

Dt ¼ cGR4
1

in which the coefficient c depends on the ratio R1=R2 (see Fig. 10.72). The exact values of this
coefficient, ce, along with approximate values for c1 following from Eq. (10.207), are presented in
Table 10.3 for various ratios R1=R2. The coefficient c2 corresponds to Eq. (10.203), according to which

Dt ¼ 8pRD44 ¼ 2p

3
GRh3 (10.209)

As can be seen, c1 values practically coincide with ce for all the beams, whereas Eq. (10.203) provides
reasonably accurate results for beams with h=R < 0:5.

Consider the warping functions. To simplify the analysis, assume that h=R � 1. Then, the stiffness
coefficients in Eq. (10.208) become

B44 ¼ B22
44 ¼ Gh; C11

44 ¼ �C22
44 ¼ Gh3

12R
; D11

44 ¼ D12
44 ¼ D22

44 ¼
Gh3

12
; Sz ¼ Gh

so that

D ¼ Gh3

12
; Dr ¼ Gh3

6
; k2 ¼ 12

h2

Taking uzðs ¼ 0Þ ¼ 0 (see Fig. 10.73), we have from Eq. (10.192)

uz ¼ �pRQ0
zs (10.210)

TABLE 10.3 Exact and Approximate Coefficients of the Torsional Stiffness for a Cylindrical Beam

with a Cut

R1=R2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h=R 1.636 1.333 1.077 0.857 0.667 0.5 0.363 0.222 0.105

ce 0.725 0.570 0.420 0.291 0.183 0.101 0.045 0.014 0.0019

c1 0.728 0.574 0.426 0.294 0.183 0.102 0.046 0.014 0.0019

c2 0.84 0.643 0.467 0.317 0.196 0.107 0.048 0.015 0.0019
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Note that the small term proportional to ðh=RÞ3 is neglected in this equation. The equation obtained,
Eq. (10.210), specifies the warping of the cross-sectional contour line. This type of warping is shown in
Fig. 10.4a. The second type of warping, i.e., the warping of the beam wall with respect to the contour
line, follows from Eqs. (10.191), (10.193), and

wz ¼ hgz ¼ �Q0
zh sinh ksffiffiffi
3

p
cosh l

h

where l ¼ pRk and �h=2 � h � h=2. This type of warping is similar to that shown in Fig. 10.70a.
Finally, using the foregoing example, evaluate the torsional stiffness. For a circular beam with an

open cross-sectional contour (see Fig. 10.73) the torsional stiffness is approximately specified by Eq.
(10.209). For a circular beam with a closed contour (without the cut shown in Fig. 10.73) considered in
Section 10.4.6,

Dt ¼ 1

Czz
¼ 2pGR3h

which is 3R2=h2 higher than that following from Eq. (10.209).
Thus, beams with open cross sections, in principle, can be used under torsion; however, their

torsional stiffness is rather low.
Consider those beams whose contour line can be approximated by a combination of straight lines

and circles using the angle-shaped beam shown in Fig. 10.74 as an example. For the circular part of the
beam, i.e., for s1 changing from 0 to s1 ¼ pR=4, Eqs. (10.204) and (10.205) yield

Nc
zs ¼

�
RBr þ C11

44

�
Q0

z � B12
44

B22
44

C22
44C3kc cosh kcs1

Mc
zs ¼

�
RC11

44 þ D11
44

�
Q0

z þ D12
44C3kc cosh kcs1

Mc
sz ¼ DrQ

0
z þ DC3kc cosh kcs1

Vc
z ¼ SzC3 sinh kcs1

1s

2/b

R

y

x

e

2s

2R

1R

2/b

FIGURE 10.74

Angle-shaped thin-walled beam.
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We also need the equations for the axial displacement uz and angle of rotation qz that follow from Eqs.
(10.192) and (10.193), i.e.,

ucz ¼ �
Zs1
0

 
B44

B22
44

RQ0
z þ C22

44C3kc cosh kcs1

!
ds1

qcz ¼ C3 sinh kcs1

We take uczðs1 ¼ 0Þ ¼ 0, fixing the beam with respect to its axial displacement as a solid.
For the rectangular part of the cross section (see Fig. 10.74), the contour coordinate s2 changes

from �b=2 to b=2, r ¼ Rþ e, and t ¼ �s2, and Eqs. (10.195), (10.196), (10.192/10.193) yield

Nr
zs ¼ 0; Mr

zs ¼ Mr
sz ¼ D44½2Q0

z þ krðC1 cosh krs2 þ C2 sinh krs2Þ�
Vr
z ¼ SzðC1 sinh krs2 þ C2 cosh krs2Þ

urz ¼ u0z � ðRþ eÞQ0
zs2

qrz ¼ C1 sinh krs2 þ C2 cosh krs2 þQ0
zs2

The solution obtained includes four constants: C1; C2; C3, and u0z which can be found from the
following boundary conditions:

Mc
szðs1 ¼ pR=4Þ ¼ Mr

szðs2 ¼ �b=2Þ; Mr
szðs2 ¼ b=2Þ ¼ 0

uczðs1 ¼ pR=4Þ ¼ urzðs2 ¼ �b=2Þ; qczðs1 ¼ pR=4Þ ¼ qrzðs2 ¼ �b=2Þ
The coordinate of the reference surface e specified by Eq. (10.182) is the same for the circular and
rectangular parts of the cross section.

Finally, to determine the angle of rotation per unit length Q0
z, we need to apply the moment

equation, Eq. (10.190), which takes the form

Tz ¼ 2

ZpR=4
0

�
RNc

zs þMc
zs

�
ds1 þ 2

Zb=2
�b=2

�
Mr

zs � s2V
r
z

�
ds2

The expression for the torsional stiffness is rather cumbersome and is not presented here. The
dependence of the normalized torsional stiffness of the isotropic beam

Dt ¼ Dt

Gh3l
;

where l is the length of the contour line on the ratio b=h is shown in Fig. 10.75 (line) along with the
exact theory of elasticity solution (dots) presented by Arutyunyan and Abramyan (1963).

10.6.3 Restrained torsion of beams with open cross-sectional contours

Consider those beams whose cross-sectional warping is restrained by their supports. In such beams,
similar to the beams with closed cross sections discussed in Section 10.4.4, restrained warping results

10.6 Beams with open cross-sectional contours 677

www.EngineeringEBooksPdf.com



in axial normal stress resultants Nz and additional shear stress resultants Nzs (see Fig. 10.76) which
appear in the vicinity of the fixed cross section. The simplest theory of restrained torsion is based, as
discussed in Section 10.4.4, on membrane shell theory equivalent to that presented in Section 10.2.
Thus, we neglect the bending stiffness of the beam wall, taking bending ðDmnÞ and coupling ðCmnÞ
stiffness coefficients equal to zero and allowing for membrane stiffness coefficients ðBmnÞ only. First,
determine the warping function for the beam with an open cross section. Taking C44 ¼ 0 in Eq.
(10.192), we get

uz ¼ u0z �Q0
zuðsÞ (10.211)

h

b

tD

0
   2   3    4    5

1

2

3

4

1

FIGURE 10.75

Dependence of the normalized torsional stiffness of an angle-shaped isotropic beam (––––––) and exact solution

of the theory of elasticity (•••).

zsNzN

s

y

x

0=s

1ss =
zT

0

FIGURE 10.76

Normal and shear stress resultant acting in the beam cross section under restrained torsion.
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where

uðsÞ ¼
Zs
0

rds (10.212)

is the so-called sectorial characteristic of the cross section in which r is specified by Eqs. (10.7). Now,
we need to introduce the normalized warping function which is discussed in Section 10.4.5 and does
not depend on the particular coordinate frame to which the beam cross section is referred (see
Fig. 10.76). For this purpose, we use Eq. (10.20) for us and generalize Eq. (10.211) as

uz ¼ UzðzÞ þ xeQyðzÞ þ yeQxðzÞ � uðsÞQ0
zðzÞ (10.213)

Then, the axial strain can be expressed as

εz ¼ vuz
vz

¼ U0
z þ xeQ

0
y þ yeQ

0
x � uðsÞQ00

z ðzÞ (10.214)

and the axial normal stress resultant is

Nz ¼ Bεz (10.215)

where, as earlier, B is the axial stiffness coefficient of the beam wall. Since the beam experiences only
torsion, the axial force Pz and the bending moments Hx andHy are zero and Eqs. (10.27) which specify
these force and moments yieldZ

s

Nzds ¼ 0;

Z
s

Nzyeds ¼ 0;

Z
s

Nzxeds ¼ 0

Substituting Nz in accordance with Eqs. (10.214) and (10.215), we arrive at the following equations
similar to Eqs. (10.30) and (10.32):

U0
z ¼ Su

S
Q00

z �
�
y0Q

0
x þ x0Q

0
y

�

Q0
x ¼ k

D0
x

�
S0ux � nyS

0
uy

	
Q00

z

Q0
y ¼ k

D0
y

�
S0uy � nxS

0
ux

	
Q00

z

(10.216)

in which x0; y0; S; D
0
x ; D

0
y ; nx; ny, and k are specified by Eqs. (10.29), (10.31), (10.33), and

Su ¼
Z
s

Buds; Sux ¼
Z
s

Buyeds; Suy ¼
Z
s

Buxeds

S0ux ¼ Sux � y0Su; S0uy ¼ Suy � x0Su
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Substitution of Eq. (10.216) into Eqs. (10.214) and then into Eq. (10.215) yields

Nz ¼ B

"
Su
S

þ k

 
S0ux
D0
x

yþ S0uy
D0
y

x

!
� uðsÞ

#
Q00

z (10.217)

where x and y are given by Eqs. (10.36). Integration of Eqs. (10.216) with respect to z and substitution
into Eq. (10.213) results in the following expression for the axial displacement of the beam contour
line:

uz ¼ u0z þ ðx� x0ÞQ0
y þ ðy� y0ÞQ0

x

þ k

"
x� x0
D0
y

�
S 0
uy � nxS

0
ux

	
þ y� y0

D0
x

�
S 0
ux � nyS

0
uy

	#
Q0

z þ
�
Su
S

� uðsÞ
�
Q0

z

(10.218)

Here, u0z ; Q
0
x , andQ

0
y are the axial displacement and the angles of rotation of the beam as a solid. The

shear stress resultant Nzs can be found, as earlier, from the equilibrium equation in Eqs. (10.21).
Substituting Nz from Eq. (10.217) and integrating with respect to s, we arrive at

Nzs ¼ �FuðsÞQ000
z (10.219)

where

FuðsÞ ¼ Su
S

SðsÞ � SuðsÞ þ k

"
S 0
ux

D0
x

SxðsÞ þ
S 0
uy

D0
y

SyðsÞ
#

in which

SuðsÞ ¼
Zs
o

BuðsÞds

and the functions SðsÞ; SxðsÞ, and SyðsÞ are specified by Eqs. (10.45). Since Fuðs ¼ 0Þ ¼ 0; Nzs is zero

at the edge s ¼ 0 of the beam (see Fig. 10.76). For the edge s ¼ s1 (see Fig. 10.76),

Sðs ¼ s1Þ ¼ S; Sxðs ¼ s1Þ ¼ 0; Syðs ¼ s1Þ ¼ 0, and Eq. (10.219) yields Nzsðs ¼ s1Þ ¼ 0, hence

satisfying the boundary condition for the free edge s ¼ s1. Applying Eqs. (10.47) for Qx and Qy, we

can prove that Qx ¼ Qy ¼ 0, which is as expected since we consider a beam under pure torsion.

The shear stress resultant, Eq. (10.219), is statically equivalent to the following torque:

Tu ¼
Z
s

Nzsrds ¼ �DuQ000
z (10.220)

where

Du ¼
Z
s

FuðsÞrds (10.221)

The total torque Tz (see Fig. 10.76) consists of Tu and Tf , i.e.,

Tz ¼ Tu þ Tf (10.222)
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in which

Tf ¼ DtQ
0
z (10.223)

where Dt is the beam torsional stiffness under free torsion determined in Section 10.6.2. Substituting
Eqs. (10.220) and (10.223) into Eq. (10.222), we arrive at the following final equation for the angle of
twist:

Q000
z � k2uQ

0
z ¼ � Tz

Du
; k2u ¼ Dt

Du
(10.224)

For Tz ¼ constant, the solution of this equation is

Qz ¼ Tzz

Dt
þ C1 sinh kuzþ C2 cosh kuzþ C3 (10.225)

The constants of integration C1; C2, and C3 are found from the boundary conditions.
As an example, consider a cantilever beam with a circular contour line and a cut as shown in

Fig. 10.77. At the beam fixed end z ¼ 0, we have uz ¼ 0, and Eq. (10.218) yields

u0z ¼ 0; Q0
x ¼ 0; Q0

y ¼ 0, andQ0
zðz ¼ 0Þ ¼ 0. The angle of twist of the fixed cross section z ¼ 0 must

also be zero, so thatQzðz ¼ 0Þ ¼ 0. At the beam end z ¼ l (see Fig. 10.77), Nz ¼ 0, and, in accordance

with Eq. (10.217), Q00
z ðz ¼ lÞ ¼ 0. Thus, the constants entering Eq. (10.225) can be found from the

boundary conditions Qzðz ¼ 0Þ ¼ 0; Q0
zðz ¼ 0Þ ¼ 0, and Q00

z ðz ¼ lÞ ¼ 0. Finally, the solution given

by Eq. (10.225) takes the form

Qz ¼ Tz
kuDt

½kuz� sinh kuzþ ðcosh kuz� 1Þtanh kul� (10.226)

x

y

β

1ss = s

R

l

z
zT

FIGURE 10.77

Cantilever circular beam under torsion.
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For the circular cross section shown in Fig. 10.77, we have

x0 ¼ 0; y0 ¼ 0; x ¼ x; y ¼ y; k ¼ 1

uðsÞ ¼ R2b; S ¼ 2pBR; Su ¼ 2p2BR3; S0ux ¼ 0; S0uy ¼ �2pBR4

D0
x ¼ D0

y ¼ pBR3

SðsÞ ¼ BRb; SuðsÞ ¼ 1

2
BR3b2; SxðsÞ ¼ BR2 sin b; SyðsÞ ¼ BR2ð1� cos bÞ

The torsional stiffnesses specified by Eqs. (10.203) and (10.221) are

Dt ¼ 8D44pR; Du ¼ 2

3

�
p2 � 6

�
pBR5

where, for a homogeneous wall, D44 ¼ B44h
2=12 and B ¼ B11. Then, Eqs. (10.217) and (10.219)

yield, for normal and shear stress resultants,

Nz ¼ BR2ðp� 2 sin b� bÞQ00
z

Nzs ¼ �BR3

�
pb� 1

2
b2 � 2þ 2 cos b

�
Q00

z

where QzðzÞ is specified by Eq. (10.226). The distributions of the normalized axial and shear stress
resultants are shown in Fig. 10.78.

To evaluate the torsional stiffness of the beam, consider a carbon-epoxy beam, shown in Fig. 10.77.
The beam is composed of�45

�
plies with the total thickness of 1.2 mm and of axial plies with the same

zsN

zN

(a) (b)

FIGURE 10.78

Distribution of the normalized axial (a) and shear (b) stress resultants over the cross-sectional circular contour

with a cut.
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total thickness. The beam radius and length are R ¼ 100mm and l ¼ 20R. The angle of rotation of the
beam end z ¼ l can be presented as

Ql
z ¼

Tz
D

where D is the torsional stiffness of the beam with length l. For a beam without a cut,

D ¼ D1 ¼ 2p

l
B44R

3

which in the present example gives D1 ¼ 195 kNm. For a beam with a cut under free rotation,

D ¼ D2 ¼ 2p

3l
B44Rh

2

which gives D2 ¼ 0:04 kNm. For a beam with restrained torsion,

D ¼ D3 ¼ 2pB44Rh
2

3l

�
1� 1

l
tanh l

�; l ¼ kul

which yields D3 ¼ 5:6 kNm. Thus, restrained torsion allows us to increase the beam stiffness by
a factor of 140 in comparison with free torsion, though this stiffness is about 35 times lower than the
stiffness of a beam with a closed cross section.
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Circular cylindrical shells 11
Composite materials are widely used to fabricate cylindrical shells which can be the structural
elements in pipes (see Fig. 11.1), storage tanks (see Fig. 11.2), cisterns for transportation (see
Fig. 11.3), pressure vessels (see Fig. 11.4), rocket components (see Fig. 11.5), etc. The theory of
cylindrical shells and its application to the analysis of cylindrical structures is described in numerous
publications, among which are the books by Ambartsumyan (1961), Korolev (1965), Vasiliev et al.
(1993, 2009), Elpatievskii and Vasiliev (1972), Paliy and Spiro (1977), Alfutov et al. (1984), Pikul
(1985, 2009), Khoma (1986), Rasskazov et al. (1986), Khoroshun et al. (1988), Kollar and Springer
(2003), Ye (2003), and Reddy (2004). This chapter is concerned with those problems which are
specific for composite cylindrical shells.

CHAPTER

FIGURE 11.1

Elements of composite pipes.
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11.1 GOVERNING EQUATIONS AND APPLIED SHELL THEORIES
Consider a cylindrical shell with radius R, length l, and thickness h loaded as shown in Fig. 11.6 in
which p is the internal pressure, q is the external pressure, and N are the axial forces uniformly
distributed over the end cross section. The shell reference surface is referred to surface coordinates x
and y. The shell is described by the following set of governing equations (Vasiliev, 1993).

FIGURE 11.2

A large composite storage tank.

FIGURE 11.3

Composite cistern.
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FIGURE 11.5

Cylindrical composite sections of the USSR Pioneer (left) and US Pershing (right) rockets in the National Air and

Space Museum in Washington, DC.

FIGURE 11.4

Cylindrical composite pressure vessel.
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The equilibrium equations are

vNx

vx
þ vNxy

vy
þ px ¼ 0 (11.1)

vNy

vy
þ vNxy

vx
þ V y

R
þ py ¼ 0 (11.2)

vMx

vx
þ vMxy

vy
� V x ¼ 0;

vMy

vy
þ vMxy

vx
� V y ¼ 0 (11.3)

vV x

vx
þ vV y

vy
� Ny

R
þ p ¼ 0; p ¼ p� q (11.4)

These equations include the stress resultants and couples acting on the element of the reference surface
shown in Fig. 11.7, and surface forces p and q. For an orthotropic material, the stress resultants and

x

y

h
q

p

N N

R

l

FIGURE 11.6

Loading of the cylindrical shell.

dx

dy

p
xp

yp

xyN

xN

xM

xyM

xV

yM

yN

xyM
yV

xyN

FIGURE 11.7

Stress resultants and couples acting on the element of the reference surface.
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couples are linked with the generalized strains (strains and curvature changes) by the constitutive
equations which have the form

Nx ¼ B11εx þ B12εy þ C11kx þ C12ky

Ny ¼ B12εx þ B22εy þ C12kx þ C22ky

Nxy ¼ B44gxy þ C44kxy

Mx ¼ C11εx þ C12εy þ D11kx þ D12ky

My ¼ C12εx þ C22εy þ D12kx þ D22ky

Mxy ¼ C44gxy þ D44kxy

V x ¼ Sxgx; V y ¼ Sygy

(11.5)

whereas the generalized strains (strains ε; g and curvature changes k) are expressed in terms of
displacements as

εx ¼ vu

vx
; εy ¼ vv

vy
þ w

R
; gxy ¼

vu

vy
þ vv

vx
(11.6)

kx ¼ vqx

vx
; ky ¼ vqy

vy
; kxy ¼ vqx

vy
þ vqy

vx
(11.7)

qx ¼ gx þ ux; qy ¼ gy þ uy; ux ¼ �vw

vx
; uy ¼ v

R
� vw

vy
(11.8)

Here, u, v, and w are the axial, circumferential, and radial displacements of the reference surface,
qx; qy; and ux;uy are the angles of rotation of the normal and the tangent to the reference surface in the
axial and circumferential sections of the shell, and gx and gy are the transverse shear deformations.

The most widely used simplified version of this theory is the engineering theory of cylindrical shells
(the so-called Mushtary-Donnell-Vlasov theory) in which some small terms are ignored in the equi-
librium and strain-displacement equations. In particular, the term V y=R is omitted in Eq. (11.2) and the
corresponding term v=R in Eqs. (11.8) for uy is ignored. As a result, these equations are simplified to

vNy

vy
þ vNxy

vx
þ py ¼ 0; uy ¼ �vw

vy
(11.9)

This engineering theory is widely used to solve nonlinear and linearized buckling problems for
cylindrical shells. For nonlinear problems, Eq. (11.4) for p is generalized as

p ¼ p� q� Nx
vux

vx
� Nxy

�
vux

vy
þ vuy

vx

�
� Ny

vuy

vy
(11.10)

whereas Eqs. (11.6) for εx; εy; and gxy have the form

εx ¼ vu

vx
þ 1

2
u2
x ; εy ¼ vv

vy
þ w

R
þ 1

2
u2
y ; gxy ¼

vu

vy
þ vv

vx
þ uxuy (11.11)

It follows from Eqs. (11.10) and (11.11) that the equations of nonlinear theory take into account the
rotation of the shell element shown in Fig. 11.7. Application of Eq. (11.10) in conjunction with the
linear equations for εx; εy; and gxy, i.e., Eqs. (11.6), results in a nonlinear theory which takes into
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account only the curvature changes of the shell element, whereas the strains and the angles of rotation
are assumed to be small in comparison with unity (Vasiliev, 1993).

The simplest version of the theory is the membrane theory in which the bending and coupling
stiffness coefficients of the shell wall D and C are ignored in comparison to the membrane stiffness
coefficients B. Taking Cmn ¼ 0 and Dmn ¼ 0 in Eqs. (11.5), we get

Nx ¼ B11εx þ B12εy; Ny ¼ B12εx þ B22εy; Nxy ¼ B44gxy (11.12)

where εx; εy; and gxy are specified by Eqs. (11.6). Since the momentsM and the transverse shear forces
V are zero in this membrane shell theory, the equilibrium equations, Eqs. (11.1)–(11.4), reduce to the
following form:

vNx

vx
þ vNxy

vy
þ px ¼ 0;

vNy

vy
þ vNxy

vx
þ py ¼ 0; Ny ¼ pR (11.13)

The application of the membrane theory is limited by the fourth order of the governing equations,
Eqs. (11.6), and (11.12), (11.13), with respect to coordinates x and y. The solution of these equations
can satisfy only four boundary conditions at the shell edges x ¼ 0 and x ¼ l (see Fig. 11.6) that should
be imposed on membrane stress resultants Nx and Ny or displacements u and v. The boundary
conditions restricting the shell normal deflection w cannot be satisfied within the framework of the
membrane theory.

There are two ways to improve the membrane shell theory and to allow for the boundary conditions
with respect to w, both involving the possibility to increase the order of the governing differential
equations at least by two.

The first of these ways is to apply the nonlinear membrane theory using Eq. (11.10) for p in
Eqs. (11.13). It follows from Eqs. (11.8) that Eq. (11.10) for p includes the second derivatives of the
deflection, thus allowing us to derive a sixth-order set of equations.

The second way is associated with the so-called semi-membrane theory proposed by V.Z. Vlasov
(1949). This semi-membrane theory of cylindrical shells is based on a number of assumptions that
significantly simplify the equations of the general theory. In particular, it is assumed that the
circumferential strain εy ¼ 0 and the axial bending and twisting momentsMx and Mxy are neglected in
comparison to the circumferential moment My. Actually, the semi-membrane theory models the shell
as a system of rings joined with bars as shown in Fig. 11.8. To derive the equations of semi-membrane

FIGURE 11.8

A physical model corresponding to the semi-membrane theory of cylindrical shells.
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theory, consider the constitutive equations, Eqs. (11.5), and introduce some assumptions concerning
the stiffness coefficients of the shell wall. First of all, neglect the coupling coefficients taking
C11 ¼ C12 ¼ C44 ¼ 0 and determine the coordinate of the reference surface e from the condition
C22 ¼ 0 (see Section 5.10). Using Eqs. (5.28), we have

e ¼ I
ð1Þ
22

I
ð0Þ
22

(11.14)

(see Fig. 5.8), where

I
ð1Þ
22 ¼

Zh
0

A22tdt; I
ð0Þ
22 ¼

Zh
0

A22dt

Furthermore, assume that the circular cross-sectional contour is inextensible, i.e., that the circum-
ferential membrane stiffness coefficient B22 is infinitely high. Then, the second equation of Eqs. (11.5)
yields εy ¼ 0 and in accordance with the second equation of Eqs. (11.6)

vv
vy

þ w

R
¼ 0 (11.15)

Neglect also the axial, bending, and twisting stiffnesses of the shell wall taking D11 ¼ D12 ¼ D44 ¼ 0.
Then, the corresponding equations of Eqs. (11.5) give Mx ¼ 0;Mxy ¼ 0 and the first equation of
Eqs. (11.3) yields V x ¼ 0. The remaining equations form the following set of equations of the semi-
membrane theory of cylindrical shells:

vNx

vx
þ vNxy

vy
þ px ¼ 0;

vNy

vy
þ vNxy

vx
þ V y

R
þ py ¼ 0

vMy

vy
� V y ¼ 0;

vV y

vy
� Ny

R
þ p ¼ 0

(11.16)

Nx ¼ B11εx; Nxy ¼ B44gxy; My ¼ D22ky; V y ¼ Sygy (11.17)

εx ¼ vu

vx
; gxy ¼

vu

vy
þ vv

vx
; ky ¼ vqy

vy
; qy ¼ gy þ uy; uy ¼ v

R
� vw

vy
(11.18)

As opposed to the equations of the general theory, Eqs. (11.1)–(11.8), that have the tenth order
with respect to coordinates x and y, the order of equations of the semi-membrane theory,
Eqs. (11.15)–(11.18), is four for the x-variable and eight for the y-variable. Decomposing the solution
into trigonometric series with respect to the y-variable, we arrive at a fourth-order ordinary differential
equation with respect to the x-variable that can be solved analytically. Numerous applications have
demonstrated the high efficiency of the semi-membrane theory for the solution of static and buckling
problems in the theory of cylindrical shells.
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11.2 CYLINDRICAL SHELLS WHOSE STRESS-STRAIN STATE
DOES NOT DEPEND ON THE AXIAL COORDINATE
Consider one-dimensional problems described by ordinary differential equations with respect to the y-
variable. Such problems arise for infinitely long cylindrical shells or circular rings that are studied in
the subsequent sections.

11.2.1 Circular rings

Composite rings (see Fig. 11.9) are widely used to reinforce cylindrical shells (see Fig. 11.2). Under
the action of forces applied to the ring, we can neglect the load-carrying capacity of the shell and
consider a separate ring loaded with radial (p) and tangential ðpyÞ forces as shown in Fig. 11.10. For
this ring, the governing equations, Eqs. (11.1)–(11.8), become

N 0
y þ

V y

R
þ py ¼ 0; M0

y � V y ¼ 0; V 0
y �

Ny

R
þ p ¼ 0 (11.19)

Ny ¼ B22εy; My ¼ D22ky; V y ¼ Sygy (11.20)

εy ¼ vv
vy

þ w

R
; ky ¼ q0y; qy ¼ gy þ uy; uy ¼ v

R
� vw

vy
(11.21)

Here, ð.Þ0 ¼ dð.Þ=dy. The coordinate of the reference surface e (see Fig. 11.10) is specified by Eq.
(11.14) and the stiffness coefficients are

B22 ¼ I
ð0Þ
22 ; D22 ¼ I

ð2Þ
22 �

�
I
ð1Þ
22

�2
I
ð0Þ
22

; Sy ¼ h2

 Zh
0

dt

bGyz

!�1

(11.22)

FIGURE 11.9

Composite rings.
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where

I
ðrÞ
22 ¼

Zh
0

bA22t
rdt ðr ¼ 0; 1; 2Þ (11.23)

Note that Eq. (11.23) takes into account that the ring width b may, in general, depend on the z-
coordinate (see Fig. 11.10).

Consider the three equilibrium equations, Eqs. (11.19), that include three unknown functions, i.e.,
the axial and transverse forces Ny and V y, and the bending moment My shown in Fig. 11.10. The first
equation yields

V y ¼ �RðN 0
y þ pyÞ (11.24)

Substituting this result into the third equation of Eqs. (11.19), we get

N 00
y þ k2Ny ¼ kp� p0y; k ¼ 1

R

The solution of this equation is

Ny ¼ C1 sin kyþ C2 cos kyþ sin ky

Zy
0

ðp� Rp0yÞ cos kydy� cos ky

Zy
0

ðp� Rp0yÞ sin kydy (11.25)

Eliminating V y from the first two equations of Eqs. (11.19), we get

M0
y þ RN 0

y þ py ¼ 0

z

0

y
w

v

e

p

yp
R

β

0
yV

0
yN

0
yM

yM
yN

yV

FIGURE 11.10

Element of a circular ring.
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Integration yields

My ¼ C3 � RNy � R

Zy
0

pydy (11.26)

Thus, the forces V y and Ny and the moment My are specified by Eqs. (11.24)–(11.26). Express the
constants of integration C1;C2; and C3 in terms of the initial values of the forces and the moment
N0
y ¼ Nyðy ¼ 0Þ; V 0

y ¼ V yðy ¼ 0Þ; and M0
y ¼ Myðy ¼ 0Þ (see Fig. 11.10). Then, the final expressions

for Ny, V y, and My become

Ny ¼ NðyÞ cos ky� V ðyÞ sin ky

V y ¼ V ðyÞ cos kyþ NðyÞ sin ky

My ¼ M0
y þ RN0

y þ RV ðyÞ sin ky� RNðyÞ cos ky� R

Zy
0

pydy

(11.27)

where

NðyÞ ¼ N0
y �

Zy
0

ðp sin kyþ py cos kyÞdy

V ðyÞ ¼ V 0
y �

Zy
0

ðp cos ky� py sin kyÞdy

For a closed ring, the solution must be periodic, so that

Nyðy ¼ 2pRÞ ¼ N0
y ; V yðy ¼ 2pRÞ ¼ V 0

y ; Myðy ¼ 2pRÞ ¼ M0
y

Then, Eqs. (11.27) provide the following conditions for the applied loads:

Z2pR
0

ðp sin kyþ py cos kyÞdy ¼ 0;

Z2pR
0

ðp cos ky� py sin kyÞdy ¼ 0;

Z2pR
0

pydy ¼ 0

which ensure the equilibrium of the ring as a solid.
To determine the displacements v, w, and the angle of rotation qy, apply Eqs. (11.20) and (11.21)

that yield

vv
vy

þ w

R
¼ Ny

B22
; q0y ¼

My

D22
; qy � v

R
þ w0 ¼ V y

Sy
(11.28)

The first and the third of these equations give

w ¼ RNy

B22
� R

vv
vy

;

qy ¼ V y

Sy
þ v
R
� w0

(11.29)

694 CHAPTER 11 Circular cylindrical shells

www.EngineeringEBooksPdf.com



Substituting w into the second equation and the expression obtained for qy into the second equation of
Eqs. (11.28), we arrive at

v000 þ k2v0 ¼ My

RD22
� V 0

y

RSy
þ N 00

y

B22

Using Eqs. (11.27) for Ny, V y, and My to eliminate the derivatives from the right-hand part of this
equation, we get

v000 þ k2v0 ¼ k2FðyÞ (11.30)

in which

FðyÞ ¼ f ðyÞ � p0yR2

B22
; f ðyÞ ¼ RMy

D22
�
�

1

B22
þ 1

Sy

��
Ny � pR

�
where My and Ny are specified by Eqs. (11.27). The general solution of Eq. (11.30) is

v ¼ C4 þ C5 sin ky C6 cos kyþ
Zy
0

FðyÞdy

� sin ky

Zy
0

FðyÞ sin ky dy� cos ky

Zy
0

FðyÞ cos ky dy

The constants of integration C4; C5; and C6 can be expressed in terms of the initial displacements and
angle of rotation of the beam cross section v0 ¼ vðy ¼ 0Þ;w0 ¼ wðy ¼ 0Þ; and q0 ¼ qyðy ¼ 0Þ. Using
Eqs. (11.29) to determine w and qy, we finally get

v ¼ UðyÞ cos ky�WðyÞ sin kyþ RQðyÞ

w ¼ RNy

B22
þWðyÞ cos kyþ UðyÞ sin ky

qy ¼ QðyÞ þ V y

�
1

B22
þ 1

Sy

�
þ Rpy

B22

(11.31)

where

UðyÞ ¼ v0 � RC0 �
Zy
0

f ðyÞ cos kydyþ R2py
B22

cos kyþ R

B22

Zy
0

py sin kydy

WðyÞ ¼ w0 �
RN0

y

By
þ
Zy
0

f ðyÞ sin kydy� R2py
B22

sin kyþ R

B22

Zy
0

py cos kydy

QðyÞ ¼ C0 þ 1

R

Zy
0

f ðyÞdy� Rpy
B22

; C0 ¼ q0 � V 0
y

�
1

B22
þ 1

Sy

�
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For closed rings, the following continuity conditions must be satisfied:

vðy ¼ 2pRÞ ¼ v0; wðy ¼ 2pRÞ ¼ w0; qyðy ¼ 2pRÞ ¼ q0

Substituting Eqs. (11.31), we get

Z2pR
0

f ðyÞ sin kydy ¼ 0;

Z2pR
0

f ðyÞ cos kydy ¼ 0;

Z2pR
0

f ðyÞdy ¼ 0

These conditions should be used to determine the initial forces and moment N0
y ;V

0
y ; and M0

y in
a closed ring, whereas the initial displacements v0, w0, and the initial angle of rotation q0 of the ring
cross section can be found if we fix an arbitrary cross section of the ring. If the cross section y ¼ 0 is
fixed, then v0 ¼ w0 ¼ q0 ¼ 0.

As an example, consider the ring loaded with two forces P applied as shown in Fig. 11.11. In
accordance with the symmetry conditions, we must take

N0
y ¼ 0; V 0

y ¼
P

2
; v0 ¼ 0; q0 ¼ 0; v

�
y ¼ pR

2

�
¼ 0; qy

�
y ¼ pR

2

�
¼ 0

Then, Eqs. (11.27) and (11.31) give

Ny ¼ P

2
sin ky; V y ¼ �P

2
cos ky; My ¼ PR

2p
ð2� p sin kyÞ

w0 ¼ 0:0745
PR3

D22

�
1þ 5:3

D

R2

�
1

B22
þ 1

Sy

�	 (11.32)

0

P

P

R

y

FIGURE 11.11

A ring loaded with two self-balanced forces.
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For the homogeneous beam with a rectangular cross section as shown in Fig. 11.12a,

B22 ¼ Ebh; D22 ¼ 1

12
Ebh3; Sy ¼ Gbh

and the radial displacement of point 0 in Fig. 11.11 specified by Eq. (11.32) becomes

w0 ¼ 0:0745
12PR3

Ebh3

�
1þ 0:44

h2

R2

�
1þ E

G

�	
(11.33)

The first term in the parenthesis multiplied by ðh=RÞ2 takes into account the deformation of the beam
axial line and is negligible for thin rings. Ignoring this deformation, i.e., taking B22/N, we can
simplify the solution and reduce Eqs. (11.31) to the form

v ¼ UðyÞ cos ky�WðyÞ sin kyþ RQðyÞ
w ¼ WðyÞ cos kyþ UðyÞ sin ky

qy ¼ QðyÞ þ V y

Sy

(11.34)

where

UðyÞ ¼ v0 þ Rq0 þ
RV 0

y

Sy
�
Zy
0

f ðyÞ cos kydy

WðyÞ ¼ w0 þ
Zy
0

f ðyÞ sin kydy

QðyÞ ¼ q0 �
V 0

y

Sy
þ 1

R

Zy
0

f ðyÞdy; f ðyÞ ¼ RMy

D22
� 1

Sy

�
Ny � pR

�

h

b

(a) (c)(b)

FIGURE 11.12

Rectangular cross section of fiberglass fabric-epoxy ring (a) reinforced with carbon-epoxy layers (b, c).
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The term including E=G in Eq. (11.33) allows for the transverse shear deformation. Taking Sy/N, we
can neglect this deformation. Then, Eqs. (11.34) are further simplified as follows

v ¼ v0 cos kyþ Rq0ð1� cos kyÞ � w0 sin kyþ R

Zy
0

My

D22
dy

� R cos ky

Zy
0

My

D22
cos kydy� R sin ky

Zy
0

My

D22
sin ky dy

w ¼ w0 cos kyþ ðv0 � Rq0Þ sin kyþ R cos ky

Zy
0

My

D22
sin kydy� R sin ky

Zy
0

My

D22
cos ky dy

qy ¼ q0 þ
Zy
0

My

D22
dy

These equations, in contrast to the foregoing Eqs. (11.31) and (11.34), are valid for the rings whose
bending stiffness D22 depends on y.

Experimental verification of this solution has been undertaken for the rings with parameters
h=R ¼ 0:105 and b=h ¼ 1:5. The rings were made of fiberglass fabric (see Fig. 11.12a) and were
reinforced by carbon fibers (dark layers in Fig. 11.12b and c). The calculated dependencies of the ring
deflections at point 0 (see Fig. 11.11) on the applied load P corresponding to Eqs. (11.32) are presented
in Fig 11.13 by solid lines along with the experimental results (circles).

11.2.2 Infinitely long cylindrical panel

Consider an infinitely long cylindrical composite panel (see Fig. 11.14) loaded with internal pressure
simulating, e.g., a skin panel of an airplane fuselage. To describe the behavior of the panel, we apply
the engineering theory of cylindrical shells, i.e., simplify the governing equations in accordance with
Eqs. (11.9). As a consequence of the high strength of modern composite materials, the ratio h=R for
such panels is generally small so that the transverse shear deformation can be neglected and we can
take Sy/N. However, for the same reason, the bending stiffness of the panel wall is also small and we
should allow for the local curvature of the panel caused by bending. To take this effect into account, we
need to apply Eq. (11.10) which yields, in conjunction with the second equation of Eqs. (11.9), the
following expression for p for the panel shown in Fig. 11.14:

p ¼ p� Ny
v2w

vy2

Finally, we assume that the coordinate of the reference surface e corresponds to Eq. (11.14), so that
C22 ¼ 0. As a result, the governing equations describing the behavior of the panel shown in Fig. 11.14
can be written as

N 0
y ¼ 0; M0

y � V y ¼ 0; V 0
y � Ny

�
1

R
� w00

�
þ p ¼ 0 (11.35)
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FIGURE 11.14

Infinitely long cylindrical panel under internal pressure.
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FIGURE 11.13

Dependencies of the ring deflection on the applied force corresponding to the cross sections shown in

Fig. 11.12a–c: ( ________ ) analysis and (���) experiment.
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Ny ¼ B22

�
v0 þ w

R

�
; My ¼ �D22w

00 (11.36)

The first equation of Eqs. (11.35) yields Ny ¼ N ¼ constant and the third equation, being transformed
with the aid of the second equation, becomes

M00
y � N

�
1

R
� w00

�
þ p ¼ 0 (11.37)

The term in parenthesis is actually the curvature of the panel in the deformed state. Substituting My in
accordance with Eqs. (11.36), we arrive at the following equation:

wIV � k2w00 ¼ p

D22
ð1� lÞ; k2 ¼ N

D22
; l ¼ N

pR
(11.38)

The general solution of this equation is

w ¼ C1 þ C2yþ C3 sinh kyþ C4 cosh ky� y2ð1� lÞ
2Rl

Due to the symmetry conditions (see Fig. 11.14), C2 ¼ C3 ¼ 0, so that

w ¼ C1 þ C4 cosh ky� y2ð1� lÞ
2Rl

(11.39)

The integration constants C1 and C4 in Eq. (11.39) can be found from the boundary conditions at the
panel edges y ¼ �b (see Fig. 11.14).

For simply supported edges, w ¼ w00 ¼ 0 at y ¼ �b and the solution in its final form is

w ¼ 1� l

Rl

�
1

2

�
b2 � y2

�� cosh kb� cosh ky

k2 cosh kb

	
(11.40)

For clamped edges, w ¼ w0 ¼ 0 at y ¼ �b and

w ¼ 1� l

Rl

�
1

2

�
b2 � y2

�� b

k sinh kb
ðcosh kb� cosh kyÞ

	
(11.41)

The circumferential displacement v can be found by integration of the first equation of Eqs. (11.36).
Taking into account that Ny ¼ N and vðy ¼ 0Þ ¼ 0, we get

v ¼ Ny

B22
� 1

R

Zy
0

wdy (11.42)

At the fixed edges y ¼ �b=2 (see Fig. 11.14), we have v ¼ 0 and Eq. (11.42) yields the following
equation for N:

Nb

B22
¼ 1

R

Zb
0

wdy (11.43)
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in which w is substituted in accordance with Eqs. (11.40) or (11.41). Thus, for simply supported edges,
we have

lN

B22ð1� lÞ �
b2

3R2
¼ 1

k2R2

�
1

kb
tanh kb� 1

�

and for clamped edges

lN

B22ð1� lÞ �
b2

3R2
¼ b

kR2

�
1

kb
� cotanh kb

�
(11.44)

As an example, consider a fuselage panel. Since the panel shown in Fig. 11.14 is jointed along the
stringers with the adjacent panel, the isolated panel behaves as if it is clamped at the edges y ¼ �b and
is described by Eqs. (11.41) and (11.44). The carbon-epoxy panel has a cross-ply 0=90� structure with
thicknesses h0 ¼ 0:8 mm and h90 ¼ 1:6 mm, and ratios h=R ¼ 0:0012; b=R ¼ 0:075. The calculated
dependence of the normalized deflection w ¼ w=w0, in which w0 ¼ pR2=B22 is the deflection cor-
responding to the linear membrane shell theory, on the y-coordinate is shown in Fig. 11.15 by curve 1.

We can compare the solution obtained previously with the linear solution based on the equations
that ignore the curvature change under loading. The corresponding governing equation can be obtained
from Eq. (11.37) if we neglect w00 in comparison with 1=R. Then, Eq. (11.38) takes the form

wIV ¼ p

D22
ð1� lÞ

and its solution satisfying the boundary conditions wðy ¼ �bÞ ¼ w0ðy ¼ �bÞ ¼ 0 is

w ¼ ð1� lÞp
24D22

�
b2 � y2

�2
(11.45)

1

2

3

b

y

w

0.2  0.4  0.6 0.8
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0 1.0

FIGURE 11.15

Dependencies of the normalized deflection on the y-coordinate corresponding to the nonlinear solution, Eq.

(11.41) (curve 1), linear solution, Eq. (11.45) (curve 2), nonlinear membrane solution, Eq. (11.46) (curve 3), and

complete nonlinear solution (���).
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The equation for the stress resultant N, Eq. (11.43), yields

N ¼ pR

1þ 45D22R
2

B22b4

The linear solution given by Eq. (11.45) is shown in Fig. 11.15 by curve 2. As can be seen, the
difference to the nonlinear solution (curve 1) is significant.

Since the bending stiffness of the panel wall D22 is relatively small, we can apply the nonlinear
membrane theory based on Eqs. (11.10), and (11.12), (11.13). The corresponding governing equation
follows from Eq. (11.37) if we take My ¼ 0. Then, Eq. (11.38) reduces to

w00 ¼ �1� l

Rl

The solution of this equation satisfying the boundary conditions wðy ¼ �bÞ ¼ 0 is

w ¼ 1� l

2lR

�
b2 � y2

�
(11.46)

The equation for N, i.e., Eq. (11.43), reduces to the following quadratic equation:

l2 ¼ hð1� lÞ; h ¼ B22b
2

3pR3

whose solution is

l ¼ N

pR
¼ 1

2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðhþ 4Þ

p
� h
i

The membrane solution, i.e., Eq. (11.46), is shown in Fig. 11.15 by curve 3. As can be seen, this
solution predicts the maximum deflection with fair accuracy, though it cannot, naturally, satisfy the
boundary condition w0ðy ¼ �bÞ for the clamped edge.

Finally, we can apply the complete nonlinear equations to the problem under study. As has been
noted, Eq. (11.37) takes into account only the first-order nonlinear effect associated with the change of
the panel curvature under loading. If in addition to this the deflection is not small in comparison with
the panel width 2b (see Fig. 11.14), we must use Eq. (11.11) for εy and change the first equation of
Eqs. (11.30) to the following one:

Ny ¼ B22

�
v0 þ w

R
þ 1

2
ðw0Þ2

	

Then, the solution is specified, as earlier, by Eq. (11.39), but Eq. (11.43) for N is generalized as

Nb

B22
¼ 1

R

Zb
0

wdy þ 1

2

Zb
0

ðw0Þ2dy

The corresponding solution is shown in Fig. 11.15 with circles. As can be seen, its deviation from the
solution given by Eq. (11.41) (curve 1) is negligible.
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In conclusion note that a problem similar to that considered earlier has been studied by Boitnott
et al. (1985).

11.3 AXISYMMETRIC DEFORMATION OF CYLINDRICAL SHELLS
Consider one more one-dimensional problem: deformation of cylindrical shells whose stress-strain
state does not depend on the circumferential coordinate y. Such shells are typical structural
elements of composite pipes and pressure vessels (see Figs. 11.1 and 11.4).

Let the shell be loaded with internal, p, and external, q, pressure and axial forces N that do not
depend on y as shown in Fig. 11.16. If the shell displacements, forces, and moment depend on the x-
coordinate only, the governing equations, Eqs. (11.1)–(11.8), reduce to

N 0
x ¼ 0; M0

x � V x ¼ 0; V 0
x �

Ny

R
þ p ¼ 0 (11.47)

Nx ¼ B11εx þ B12εy þ C11kx; Ny ¼ B12εx þ B22εy þ C12kx

Mx ¼ C11εx þ C12εy þ D11kx; V x ¼ Sxgx
(11.48)

εx ¼ u0; εy ¼ w

R
; kx ¼ q0x; qx ¼ gx þ ux; ux ¼ �w0 (11.49)

Here ð.Þ0 ¼ dð.Þ=dx. The stiffness coefficients in Eqs. (11.48) are

Bmn ¼ I
ð0Þ
mn ; Cmn ¼ I

ð1Þ
mn � eI

ð0Þ
mn ; D11 ¼ I

ð2Þ
11 � 2eI

ð1Þ
11 þ e2I

ð0Þ
11

Sx ¼ h2

 Zh
0

dt

Gxz

1
A

�1

; I
ðrÞ
mn ¼

Zh
0

Amnt
rdt

(11.50)

where mn ¼ 11; 12; 22 and r ¼ 0; 1; 2, whereas e is an arbitrary coordinate of the reference surface.
Allow for the first-order nonlinear effect by applying Eq. (11.10) in the following form:

p ¼ p� qþ Nxw
00 (11.51)

q
z

y

x

N N

R

l

u(x)

w(x)

p

FIGURE 11.16

Axisymmetrically loaded cylindrical shell.
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The last term of this equation allows us to take into account the meridian curvature which takes place
under load.

We now reduce the set of equations, Eqs. (11.47)–(11.49), to one governing equation for the shell
deflection w. The first equilibrium equation of Eqs. (11.47) in conjunction with Fig. 11.16 yields
Nx ¼ N, where N is the applied axial force. Then, the first constitutive equation in Eqs. (11.48) and
Eqs. (11.49) allow us to determine

u0 ¼ 1

B11

�
N � B12

w

R
� C11q

0
x

�
(11.52)

Substitute this result into Eqs. (11.48) for Ny and Mx. Using Eqs. (11.49), we get

Ny ¼ B12

B11
N þ B

w

R
þ Cq0x; Mx ¼ C11

B11
N þ C

w

R
þ Dq0x (11.53)

where

B ¼ B22 � B2
12

B11
; C ¼ C12 � B12C11

B11
; D ¼ D11 � C2

11

B11
(11.54)

From the third equilibrium equation in Eqs. (11.47) where p is specified by Eq. (11.51) in which
Nx ¼ N we find

V 0
x ¼

Ny

R
� Nw00 � pþ q

Substitute Ny from Eqs. (11.53), i.e.,

V 0
x ¼

1

R

�
B12

B11
N þ B

w

R
þ Cq0x

�
� Nw00 � pþ q (11.55)

The constitutive equation in Eqs. (11.48) for V x in conjunction with Eq. (11.49) for qx yields

qx ¼ V x

Sx
� w0 (11.56)

Differentiation and substitution of Eq. (11.55) results in the equation which allows us to express q0x as

q0x ¼
1

1� c

�
1

Sx

�
B12N

RB11
þ B

w

R2
� pþ q

�
�
�
1þ N

Sx

�
w00
	

where c ¼ C=RSx. Using this equation, we can eliminate q0x from Eqs. (11.53) for Mx and Eq. (11.55)
for V 0

x and present them as

Mx ¼ D

1� c

��
C11

D
ð1� cÞ þ B12

RSx

	
N

B11
þ
�
C

D
ð1� cÞ þ B

RSx

	
w

R
�
�
1þ N

Sx

�
w00 � 1

Sx
ðp� qÞ

�

V 0
x ¼

1

1� c

�
B12N

RB11
þ B

w

R2
� pþ q�

�
C

R

�
1þ N

Sx

�
þ N

	
w00
�

(11.57)
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Finally, differentiating the second equilibrium equation of Eqs. (11.47) and substituting Eqs. (11.57),
we arrive at the following governing equation:

wIV � 2k21w
00 þ k42w ¼ kp (11.58)

where

k21 ¼ 1

2Ds

�
BD

R2Sx
þ Nð1þ cÞ þ C

R
ð2� cÞ

	
; k42 ¼ B

R2Ds

kp ¼ 1

Ds

�
p� q� B12N

RB11
� Ds

Sx
ðp00 � q00Þ

	
; Ds ¼ D

�
1þ N

Sx

� (11.59)

The general solution of Eq. (11.58) is

w ¼
X4
i¼1

CiFiðxÞ þ wp (11.60)

in which Ci are the constants of integration and wp is the particular solution which for constant internal
pressure p ¼ p0 has the following form:

wp ¼ R

D

�
p0R� B12N

B11

�
(11.61)

Having found the deflection, Eq. (11.60), we can further determine the bending moment Mx using
Eqs. (11.57); then the transverse shear force V x can be found from the second equilibrium equation of
Eqs. (11.47) and the angle of rotation qx can be determined from Eq. (11.56). The axial displacement u
can be obtained by integrating Eq. (11.52).

Return to Eqs. (11.50) which specify the stiffness coefficients and include the unknown coordinate of
the reference surface e. Though the stiffness coefficients Cmn and Dmn depend on e, the generalized
stiffness coefficients B, C, and D in Eqs. (11.54) which enter the formulas for the coefficients given by
Eqs. (11.59) do not depend on e. Indeed, substitutingEqs. (11.50) into Eqs. (11.54), weget the expressions

B ¼ 1

I
ð0Þ
11

h
I
ð0Þ
11 I

ð0Þ
22 �

�
I
ð0Þ
12

�2i
; C ¼ 1

I
ð0Þ
11

h
I
ð0Þ
11 I

ð1Þ
12 � I

ð0Þ
12 I

ð1Þ
11

i

D ¼ 1

I
ð0Þ
11

h
I
ð0Þ
11 I

ð2Þ
11 �

�
I
ð1Þ
11

�2i (11.62)

which do not include e. Thus, the obtained deflection does not depend on the location of the reference
surface. This location affects only the axial displacement u in Eq. (11.52) since u is the displacement of
the points on the reference surface to which the axial forces N are applied.

The possible solutions FiðxÞ in Eq. (11.60) are presented in Table 9.1. For relatively short shells
and k2 > k1, the functionsFiðxÞ are specified by Eqs. (9.143). For relatively long shells, the other form
of these solutions can be used, i.e., for k2 > k1

F1ðxÞ ¼ e�rx cos tx; F2ðxÞ ¼ e�rx sin tx

F3ðxÞ ¼ erx cos tx; F4ðxÞ ¼ erx sin tx
(11.63)
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where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
k22 þ k21

�r
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
k22 � k21

�r

The derivatives of the functions in Eqs. (11.63) can be expressed in terms of these functions as follows

F0
1 ¼ �ðtF2 þ rF1Þ; F0

2 ¼ tF1 � rF2

F00
1 ¼ aF1 þ bF2; F00

2 ¼ aF2 � bF1

F000
1 ¼ �rgF1 þ thF2; F000

2 ¼ �rgF2 � thF1

where

a ¼ r2 � t2; b ¼ 2rt; g ¼ r2 � 3t2; h ¼ t2 � 3r2

The constants C1 � C4 in Eq. (11.60) can be found from the following natural boundary conditions at
the shell edges x ¼ 0 and x ¼ l:

Ndu ¼ 0; Mxdqx ¼ 0; ðV x þ Nw0Þdw ¼ 0 (11.64)

(see Fig. 11.16). These equations are equivalent to two static boundary conditions imposed on the
bending momentMx and generalized transverse force ðV x þ Nw0Þwhich includes the projection of the
axial force N on the shell radius, or to three kinematic boundary conditions for axial displacement u,
the angle of rotation qx, and the deflection w.

The governing equation, Eq. (11.58), allows for two specific effects: geometric nonlinearity which
shows itself through the terms including N in the expression for k1 and transverse shear deformation
which is associated with the stiffness coefficient Sx. Consider some particular cases.

11.3.1 Linear theory of shear deformable shells

For relatively thick composite shells, the transverse shear deformation can be important, whereas the
nonlinear terms can be neglected. Then, Eqs. (11.59) become

k21 ¼ 1

2DR

�
BD

Sx
þ Cð2� cÞ

	
; k42 ¼ B

R2D
; c ¼ C

RSx

kp ¼ 1

D

�
p� q� B12N

RB11
� D

Sx
ðp00 � q00Þ

	 (11.65)

and the terms including the product Nw00 should be omitted in Eqs. (11.57). The third boundary
condition in Eqs. (11.64) reduces to V xdw ¼ 0.

11.3.2 Linear classical shell theory

In classical shell theory, Sx/N and Eqs. (11.65) are further simplified as

k21 ¼ C

DR
; k42 ¼ B

DR2
; kp ¼ 1

D

�
p� q� B12N

RB11

�
(11.66)
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11.3.3 Nonlinear classical theory

In the equations of this theory, the coefficient k1 includes, in addition to the corresponding expression
in Eqs. (11.66), a term incorporating the axial force N, i.e.,

k21 ¼ 1

2D

�
2C

R
þ N

�
; k42 ¼ B

DR2
; kp ¼ 1

D

�
p� q� B12N

RB11

�
(11.67)

and the natural boundary conditions are specified by Eqs. (11.64).

11.3.4 Nonlinear membrane theory

Taking D ¼ 0, Sx/N, and C ¼ 0, we arrive at the following equation

w00 � k2w ¼ kN (11.68)

where

k2 ¼ BR2

N
; kN ¼ B12N

RB11
� pþ q

For the case of internal pressure, i.e., p ¼ p0, q ¼ 0, the solution of Eq. (11.68) is

w ¼ C1e
�kx þ C2e

kx ¼ N

BR2

�
p0 � B12N

RB11

�
(11.69)

The constants of integration C1 and C2 can be found from the third boundary condition in
Eqs. (11.64), i.e.,

VNdw ¼ 0 (11.70)

according to which we should specify at the shell edges either w or the projection of the axial force
VN ¼ Nw0 on the shell radius.

11.3.5 Examples

As the first example, consider a cylindrical shell made of fiberglass fabric with the following
properties:

E1 ¼ 18:1 GPa; E2 ¼ 23 GPa; Gxz ¼ 2:3 GPa; v12 ¼ 0:16; v21 ¼ 0:21

The shell normalized thickness is h ¼ h=R ¼ 0:03. The shell is loaded with uniform internal
pressure p0 ¼ 2 MPa. The end x ¼ 0 (see Fig. 11.16) is clamped, whereas the end x ¼ l is closed
with a dome, so that N ¼ p0R=2. As has been noted, the solution does not depend on the coordinate
of the reference surface e; however, the initial equations do depend on this coordinate. For the
homogeneous shell under consideration, the equations take the simplest form if we take e ¼ h=2,
i.e., if the reference surface coincides with the middle surface. Then the stiffness coefficients of the
shell wall become

B11 ¼ E1h; B12 ¼ v12E1h; B22 ¼ E2h; D11 ¼ 1

12
E1h

3; Sx ¼ Gxzh
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where E1;2 ¼ E1;2=ð1� v12v21Þ. Then, Eqs. (11.54) and (11.59) yield

B ¼ E2h; C ¼ 0; D ¼ 1

12
E1h

3; Ds ¼ Dð1þ lÞ; l ¼ p0R

2Gxzh

The coefficients given by Eqs. (11.59) for the shell under study are

k21 ¼ 3

1þ l

�
E2

6GxzR2
þ p0R

E1h3

�
; k42 ¼ 12E2

E1R2h2ð1þ lÞ; kp ¼ 12p0

Eh3ð1þ lÞ
�
1� v12

2

�

For a long shell, the deflection is specified by Eqs. (11.60), (11.61), and (11.63) and can be presented as

w ¼ e�rxðC1 cos txþ C2 sin txÞ þ wp (11.71)
where

wp ¼ p0R
2

2E2h
ð2� v12Þ

for the clamped end x ¼ 0, Eqs. (11.64) yield the following boundary conditions: w ð0Þ ¼ 0 and
qxð0Þ ¼ 0. To apply these boundary conditions, we need to make use of the equation for qx which
follows from Eqs. (11.47) and (11.56), i.e.,

qx ¼ V x

Sx
� w0 ¼ M0

x

Sx
� w0 (11.72)

where Mx and w are specified by Eqs. (11.57) and (11.71). Finally, the constants of integration in
Eqs. (11.71) are

C1 ¼ �wp; C2 ¼ �mwp; m ¼
r

�
1� hE2

Gxz

�
þ hð1þ lÞr�r2 � 3t2

�
t

�
1� hE2

Gxz

�
� hð1þ lÞt�t2 � 3r2

� ; h ¼ E1h
2

12R2Gxz
(11.73)

and the solution given by Eq. (11.71) becomes

w ¼ wp


1� e�rxðcos txþ m sin txÞ� (11.74)

If we neglect the transverse shear deformation taking Gxz/N, then l ¼ 0 and h ¼ 0, and Eqs. (11.73)
and (11.74) yield the solution corresponding to nonlinear classical theory, i.e.,

w ¼ wp

h
1� e�rx

�
cos txþ r

t
sin tx

�i
(11.75)

Furthermore, if we neglect the nonlinear term we arrive at the classical solution

w ¼ wp


1� e�rxðcos rxþ sin rxÞ�; r2 ¼ 1

h

ffiffiffiffiffiffiffiffi
3E2

E1

s
(11.76)
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The dependencies of the normalized deflection w ¼ w=wp on the axial coordinate x ¼ x=R corre-
sponding to the solutions given by Eqs. (11.74)–(11.76) along with experimental data are shown in
Fig. 11.17. As can be seen, all three solutions are in fair agreement with the experimental results. Thus,
the simplest, i.e., the classical theory can be used to study the shell under consideration. It should be
noted that this shell is relatively thick (h=R ¼ 0:03), its bending stiffness D11 ¼ 138 GPa$mm3 is
rather high, and the ratio E1=Gxz ¼ 7:86 is moderate.

The situation can be different for composite pressure vessels made by filament winding. Due to the
high strength of modern composite materials, the thickness and, hence, the bending stiffness of
the shell wall can be rather small. As a result, transverse shear deformation can be neglected, whereas
the nonlinear effect should be taken into account.

As the second example, consider the cylindrical section of the fiberglass pressure vessel with a steel
ring shown in Figs. 11.18 and 11.19. The shell is composed of an inner �36� angle-ply layer with
thickness hf ¼ 1:2 mm and an outer 90� circumferential layer with thickness h90 ¼ 0:86 mm. The
stiffness coefficients of the layers, specified by Eqs. (4.72), are

Af
11 ¼ 22:41 GPa; Af

12 ¼ 7:72 GPa; Af
22 ¼ 10:2 GPa

A90
11 ¼ 6:9 GPa; A90

12 ¼ 1:45 GPa; A90
22 ¼ 57:9 GPa

The integrals I
ðrÞ
mn in Eqs. (11.50) for the layered wall, i.e.,

IðrÞmn ¼ 1

r þ 1

n
Af
mnh

r
f þ A90

mn

h�
hf þ h90

�r � hrf

io
; ðr ¼ 0; 1; 2Þ

1

2

3

x
0

0.2  0.4  0.6 0.8

0.4

0.8

1.2

0 1.0

w

FIGURE 11.17

Dependence of the normalized deflection on x for the clamped cylindrical shell:

1 ( ) nonlinear solution with transverse shear deformation, Eq. (11.74);

2 ( ) nonlinear solution without transverse shear deformation, Eq. (11.75);

3 ( ) classical solution, Eq. (11.76);

(•) experimental data.
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have the following values:

I
ð0Þ
11 ¼ 32:83 GPa,mm; I

ð0Þ
12 ¼ 10:5 GPa,mm; I

ð0Þ
22 ¼ 61:45 GPa,mm

I
ð1Þ
11 ¼ 25:81 GPa,mm2; I

ð2Þ
11 ¼ 34:5 GPa,mm3

To simplify the equations, we determine the coordinate of the reference surface from the following
condition:

C11 ¼ I
ð1Þ
11 � eI

ð0Þ
11 ¼ 0

1x

x R
0p

rh

ra

FIGURE 11.19

Cylindrical shell with a ring.

FIGURE 11.18

Composite pressure vessel with a steel ring.
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which yields e ¼ 0:8 mm. Then, according to Eqs. (11.50), the stiffness coefficients become

B11 ¼ 32:83 GPa,mm; B12 ¼ 10:5 GPa,mm; B12 ¼ 61:45 GPa,mm

C11 ¼ 0; C12 ¼ �0:7 GPa,mm2; D11 ¼ 14:21 GPa,mm3

The shell radius is R ¼ 100 mm and the ratio h=R ¼ 0:0206. Since this ratio is relatively small, we
neglect the transverse shear deformation, i.e., take Sx/N. Then, the generalized stiffness coefficients
in Eqs. (11.54) become

B ¼ 58:1 GPa,mm; C ¼ �0:7 GPa,mm2; D ¼ 14:21 GPa,mm3

The shell deflection in the vicinity of the ring is specified by the following equation analogous to
Eq. (11.71):

w ¼ e�11:9x1ðC1 cos 7:75x1 þ C2 sin 7:75x1Þ þ wp (11.77)

in which, in accordance with Eq. (11.61),

wp ¼ p0R

2B

�
2� B12

B11

�
(11.78)

For p0 ¼ 4:8 MPa, wp ¼ 0:7 mm. The normalized axial coordinate x1 ¼ x1=R in Eq. (11.77) is
counted from the edge of the ring as shown in Fig. 11.19.

The constants C1 and C2 in Eq. (11.77) can be determined from the boundary conditions

wðx1 ¼ 0Þ ¼ wr; qxðx1 ¼ 0Þ ¼ 0 (11.79)

Here, qx ¼ �w0 and wr is the deflection of the ring (see Fig. 11.19) which can be determined as

wr ¼ R2
r

Br

�
p0 þ 2

ar
V nðx1 ¼ 0Þ

	
(11.80)

Here, Rr ¼ 104 mm is the ring radius, Br ¼ A22hþ Erhr is the ring stiffness in which Er ¼ 206 GPa
and hr ¼ 4 mm, ar ¼ 18:8 mm, and in accordance with the third equation of Eqs. (11.64),

V n ¼ V x þ p0R

2
w0 (11.81)

The final expression for the shell deflection is

w ¼ w

wp
¼ 10�2

h
1� e�11:9x1ð0:843 cos 7:75x1 þ 1:286 sin 7:75x1Þ

i
(11.82)

This solution is shown in Fig. 11.20 by solid line 1.
If we neglect the nonlinear effect, we arrive at the solution corresponding to classical shell theory

which has the form

w ¼ 10�2
h
1� e�9:84x1ð0:843 cos 10:25x1 þ 0:814 sin 10:25x1Þ

i
(11.83)

This solution is demonstrated in Fig. 11.20 by the dashed/dotted curve 2.
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Finally, apply the nonlinear membrane theory discussed in Section 11.3.4. For the shell under
study, the solution given by Eq. (11.69) has the following form:

w ¼ C1e
�kx1 þ wp

where k2 ¼ BR=2p0 and wp is specified by Eq. (11.78). The constant of integration C1 can be found
from the first boundary condition in Eqs. (11.79) in which wr is given by Eq. (11.80) and V x ¼ 0 in
Eq. (11.81). For the shell under consideration, the deflection

w ¼ 10�2
�
1� 0:886e�15:56x1

�
(11.84)

is shown in Fig. 11.20 by dotted line 3. It follows from Fig. 11.20 that the best agreement with
experimental results (dots) is demonstrated by the nonlinear membrane solution, Eq. (11.84). The
reason for this is discussed in Section 4.4.2. Under the action of internal pressure, cracks appear in the
matrix of unidirectional plies (see Fig. 4.36). As a result, the bending stiffness of the shell wall
becomes rather low and the shell behaves as a system of flexible fibers.

1

2

3

x

w

0.2  0.4  0.6 0.80

0

0.2

0.4

0.6

0.8

 1.0

1.2

FIGURE 11.20

Dependence of the shell normalized deflection on the axial coordinate:

1 ( ) nonlinear solution, Eq. (11.82);

2 ( ) classical solution, Eq. (11.83);

3 ( ) membrane nonlinear solution, Eq. (11.84);

(•••) experimental data.
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11.3.6 Anisotropic shells

Consider axisymmetric deformation of anisotropic cylindrical shells. Under the action of axial tension
or internal pressure such a shell experiences torsion, i.e., demonstrates the coupling effects that can be
used to design flexible structural elements in robots and manipulators. For anisotropic shells,
Eqs. (11.47)–(11.49) are generalized as

N 0
x ¼ 0; N 0

xy þ
V y

R
¼ 0; M0

x � V x ¼ 0

M0
xy � V y ¼ 0; V 0

x �
Ny

R
þ p ¼ 0

(11.85)

Nx ¼ B11εx þ B12εy þ B14gxy þ C11kx þ C14kxy

Ny ¼ B12εx þ B22εy þ B24gxy þ C12kx þ C24kxy

Nxy ¼ B14εx þ B24εy þ B44gxy þ C14kx þ C44kxy

Mx ¼ C11εx þ C12εy þ C14gxy þ D11kx þ D14kxy

Mxy ¼ C14εx þ C24εy þ C44gxy þ D14kx þ D44kxy

(11.86)

εx ¼ u0; εy ¼ w

R
; gxy ¼ v0; kx ¼ �w00; kxy ¼ v0

R
(11.87)

Note that the foregoing equations, Eqs. (11.85)–(11.87), correspond to classical shell theory.
The first equilibrium equation of Eqs. (11.85), as earlier, yields Nx ¼ N, where N are the axial

forces applied to the end cross section (see Fig. 11.16). Eliminating V y from the second and fourth
equilibrium equations of Eqs. (11.85) and integrating the resulting equations, we get

Nxy þMxy

R
¼ C1 (11.88)

in which C1 is the constant of integration. Assume that in addition to the axial forces N the shell ends
are loaded with shear forces S. Then, at the shell ends x ¼ 0 and x ¼ l we have Nxy ¼ S and Mxy ¼ 0.
Thus, C1 ¼ S in Eq. (11.88) and

Nx ¼ N; NxyRþMxy ¼ SR

Substituting Nx, Nxy and Mxy from Eqs. (11.86) and using Eqs. (11.87), we arrive at

B11u
0 þ B14v0 þ B12

w

R
� C11w

00 ¼ N

B14u
0 þ ~B44v0 þ B24

w

R
� C14w

00 ¼ S

(11.89)

where

Bmn ¼ Bmn þ Cmn

R
; Cmn ¼ Cmn þ Dmn

R
; ~B44 ¼ B44 þ C44

R

11.3 Axisymmetric deformation of cylindrical shells 713

www.EngineeringEBooksPdf.com



Solving Eqs. (11.89) for u0 and v0 and substituting the resulting expressions into Eqs. (11.86) for Ny

and Mx, we have

Ny ¼ By
w

R
� Cxyw

00 þ N; Mx ¼ Cxy
w

R
� Dxw

00 þM (11.90)

where

By ¼ B22 � 1

Bx

�
B11B

2
24 þ B2

12
~B44 � 2B12B13B24

�
; Bx ¼ B11 ~B44 � B

2
14

Cxy ¼ C12 � 1

Bx

�
B11B24C14 þ B12C11 ~B44 � B14B24C11 � B12B14C14

�
Dx ¼ D11 � 1

Bx

�
~B44C

2
11 þ B11C

2
14 � 2B14C11C14

�

N ¼ 1

Bx

�
B12 ~B44 � B14B24

�
N þ �B11B24 � B12B14

�
S
�

M ¼ 1

Bx

�
~B44C11 � B14C14

�
N þ �B11C14 � B14C11

�
S
�

Now, using the third and the last equilibrium equations of Eqs. (11.85), we get

M00
x �

Ny

R
þ p ¼ 0

Substituting Eqs. (11.90), we arrive at the following governing equation:

Dxw
IV � 2

R
Cxyw

00 þ By

R2
w ¼ p� N

R

The solution of this equation is similar to the solution of Eq. (11.58) for an orthotropic shell. It follows
from the foregoing results that the deflection w and the axial displacement u of anisotropic cylindrical
shells are accompanied by circumferential displacement v.

11.4 GENERAL LOADING CASE
Consider a cylindrical shell shown in Fig. 11.6 and assume that the acting loads depend on both x and y
coordinates. The applied methods of analysis for such shells are discussed below.

11.4.1 Classical shell theory

The majority of applied problems are studied within the framework of classical shell theory which
ignores transverse shear deformations (Sx/N and Sy/N in Eqs. (11.5)). Thus, the constitutive
equations for transverse shear forces vanish and these forces are found from the equilibrium equations,
Eqs. (11.3), as

V x ¼ vMx

vx
þ vMxy

vy
; V y ¼ vMy

vy
þ vMxy

vx
(11.91)
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Substituting Eqs. (11.8) into the rest of equilibrium equations, Eqs. (11.2) and (11.4), we arrive at the
following three equations:

vNx

vx
þ vNxy

vy
þ px ¼ 0;

vNy

vy
þ vNxy

vx
þ 1

R

�
vMy

vy
þ vMxy

vx

�
þ py ¼ 0

Ny

R
� v2Mx

vx2
� 2

v2Mxy

vxvy
� v2My

vy2
¼ p

(11.92)

Since the transverse shear strains gx ¼ gy ¼ 0, Eqs. (11.8) yield the following expressions for the
angles of rotation:

qx ¼ �vw

vx
; qy ¼ v

R
� vw

vy
(11.93)

Now, substituting the strain-displacement equations, Eqs. (11.6), (11.7) and (11.93), into the consti-
tutive equations, Eqs. (11.5), and the resulting expressions for the stress resultants and couples into the
equilibrium equations, Eqs. (11.92), we derive the following three equations in terms of displacements
u, v, and w:

Ls1ðu; v;wÞ þ px ¼ 0; Ls2ðu; v;wÞ þ py ¼ 0; Ls3ðu; v;wÞ ¼ p (11.94)

Here

Lsi ðu; v;wÞ ¼ Liðu; v;wÞ þ LRi ðu; v;wÞ ði ¼ 1; 2; 3Þ
are the differential operators which are composed of the corresponding operators for plates Li given by
Eqs. (9.268) and additional operators

LR1 ðu; v;wÞ ¼
1

R

�
ðC12 þ C44Þ v2v

vxvy
þ B12

vw

vx

	

LR2 ðu; v;wÞ ¼
1

R

�
ðC12 þ C44Þ v2u

vxvy
þ
�
2C44 þ D44

R

�
v2v
vx2

þ
�
2C22 þ D22

R

�
v2v
vy2

þ
�
B22 þ C22

R

�
vw

vy
� ðD12 þ 2D44Þ v3w

vx2vy
� D22

v3w

vy3

	

LR3 ðu; v;wÞ ¼
1

R

�
B12

vu

vx
þ
�
B22 þ C22

R

�
vv
vy

� ðD12 þ 2D44Þ v3v
vx2vy

� D22
v3v
vy3

þ B22
w

R
� 2

�
C12

v2w

vx2
þ C22

v2w

vy2

�	

(11.95)

The derived equations, Eqs. (11.94), can be readily solved for closed shells with simply supported ends
x ¼ 0 and x ¼ l (see Fig. 11.6). To be specific, assume that the meridional section y ¼ 0 (see Fig. 11.6)
is the plane of shell symmetry (if this is not the case, the shell can be rotated around the axis). Then,
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since the solution must be periodic with respect to coordinate y, it can be presented in the form of
a trigonometric series, i.e.,

u ¼
XN
n¼0

unðxÞ cos lny; v ¼
XN
n¼1

vnðxÞ sin lny

w ¼
XN
n¼0

wnðxÞ cos lny; ln ¼ n=R

(11.96)

For simply supported shells, the following boundary conditions must be satisfied at the shell ends
x ¼ 0 and x ¼ l:

w ¼ 0; v ¼ 0; Nx ¼ 0; Mx ¼ 0 (11.97)

To satisfy these boundary conditions, we can take in Eqs. (11.96)

unðxÞ ¼
XN
m¼1

umn cos lmx; vnðxÞ ¼
XN
m¼1

vmn sin lmx

wnðxÞ ¼
XN
m¼1

wmn sin lmx; lm ¼ pm

l

(11.98)

Assume that px ¼ py ¼ 0 and decompose p into similar trigonometric series with coefficients pmn.
Substitution of the foregoing series in Eqs. (11.94) results in three algebraic equations for the
amplitudes umn, vmn, and wmn that can be determined as

umn ¼ pmn
C

ðc13c22 � c12c23Þ; vmn ¼ pmn
C

ðc12c13 � c11c23Þ

wmn ¼ pmn
C

�
c11c22 � c212

� (11.99)

where cij ¼ aij þ bij are the coefficients which are composed of coefficients for plates aij in
Eqs. (9.272) and additional coefficients

b11 ¼ 0; b12 ¼ 1

R
ðc12 þ c44Þlmln; b13 ¼ 1

R
B12lm

b22 ¼ 1

R

��
2C44 þ D44

R

�
l2m þ

�
2C22 þ D22

R

�
l2n

	

b23 ¼ 1

R

��
B22 þ C22

R

�
ln þ ðD12 þ 2D44Þl2mln þ D22l

3
n

	

b33 ¼ 1

R

�
B22

R
þ 2
�
C12l

2
m þ C22l

2
n

�	
(11.100)

and

C ¼ c33
�
c11c22 � c212

�� c11c
2
23 � c22c

2
13 þ 2c12c13c23
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If the shell ends are not simply supported, i.e., the boundary conditions differ from those given by
Eqs. (11.97), substitution of Eqs. (11.96) into Eqs. (11.94) results in three ordinary differential
equations for functions unðxÞ, vnðxÞ, and wnðxÞ. The overall order of these equations is eight and
a solution cannot be found in the general case. Note that application of numerical integration also
encounters some problems. It follows from Fig. 11.17 that a boundary-layer solution which vanishes
rapidly with distance from the fixed edge of a shell can be found for a shell with fixed ends. For
relatively long shells, the stresses acting in the vicinity of the ends x ¼ 0 and x ¼ l practically do not
interact and the fundamental solutions of the corresponding equation become linearly dependent. This
results in a weakly posed computational process. To overcome this computational problem the so-
called sweep methods have been developed (Godunov, 1961; Abramov, 1961) and applied to shell
structures (Valishvili, 1976; Biderman, 1977).

11.4.2 Engineering shell theory

As stated in Section 11.1, reasonable accuracy of the solution can be achieved by applying the
equations of simplified engineering theory, Eq. (11.9), instead of the corresponding general equations
(11.2) and (11.8). Within the framework of engineering theory, the differential operators given by
Eqs. (11.95) are simplified as

LR1 ðu; v;wÞ ¼
B12

R

vw

vx
; LR2 ðu; v;wÞ ¼

B22

R

vw

vy

LR3 ðu; v;wÞ ¼
1

R

�
B12

vu

vx
þ B22

�
vv
vy

þ w

R

�
� 2

�
C12

v2w

vx2
þ C22

v2w

vy2

�	

For simply supported shells, the coefficients presented by Eqs. (11.100) become

b11 ¼ 0; b12 ¼ 0; b22 ¼ 0; b13 ¼ 1

R
B12lm; b23 ¼ 1

R
B22ln

b33 ¼ 1

R

�
B22

R
þ 2
�
C12l

2
m þ C22l

2
n

�	

The equations of the engineering theory have simpler coefficients compared to the equations of the
general theory; however, the order of these equations is the same. Hence, the computation problems
are the same as those typical for the general theory.

11.4.3 Semi-membrane shell theory

The solution can be significantly simplified using the semi-membrane theory of cylindrical shells
described by Eqs. (11.15)–(11.18). To avoid duplication in the derivations, we consider here shear
deformable shells (such shells are discussed further in Section 11.4.4) and then arrive at the classical
version of the theory by taking S/N in the resultant equations.
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For closed shells, decompose the unknown functions entering the equations of the semi-membrane
theory into the following trigonometric series:8><
>:

u; w

Nx; Ny; My

εx; ky

9>=
>; ¼

XN
n¼1

8><
>:

unðxÞ; wnðxÞ
NnðxÞ; TnðxÞ; MnðxÞ

εnðxÞ; knðxÞ

9>=
>;cos lny

8><
>:

v

Nxy; V y

gxy; gy

9>=
>; ¼

XN
n¼1

8>><
>>:

vnðxÞ
SnðxÞ; V nðxÞ
g
ðnÞ
xy ðxÞ; gnðxÞ

9>>=
>>; sin lny

(11.101)

where, as earlier, ln ¼ n=R. Assuming that the shell is loaded with surface forces py and p ðpx ¼ 0Þ,
decompose these forces in a similar way, i.e.,

py ¼
XN
n¼1

qnðxÞ sinlny; p ¼
XN
n¼1

pnðxÞ coslny (11.102)

Note that the terms with n ¼ 0 are omitted in Eqs. (11.101) and (11.102). Such terms correspond to the
axisymmetric problem which cannot be studied within the framework of semi-membrane theory and
should be solved separately using the equations presented in Section 11.3. Substituting the series given
by Eqs. (11.101) and (11.102) into Eqs. (11.15)–(11.18) for the semi-membrane theory, we arrive at
the following set of ordinary differential equations:

lnvn þ wn

R
¼ 0 (11.103)

N 0
n þ lnSn ¼ 0; S0n � lnTn þ 1

R
V n þ qn ¼ 0 (11.104)

lnMn þ V n ¼ 0; lnV n � 1

R
Tn þ pn ¼ 0 (11.105)

Nn ¼ B11u
0
n; Sn ¼ B44

�
v0n � lnun

�
(11.106)

Mn ¼ D22ln

�
gn þ

1

R
vn þ lnwn

�
; V n ¼ Sygn (11.107)

in which ð.Þ0 ¼ dð.Þ=dx. We now reduce the resultant set of equations, Eqs. (11.103)–(11.107), to
one governing equation for wn.

First, Eq. (11.103) allows us to express vn in terms of wn as

vn ¼ � wn

Rln
(11.108)

Substituting vn and gn from Eq. (11.108) and the second equation of Eqs. (11.107) into the first
equation, we have

Mn ¼ D22ln

�
V n

Sy
þ �n2 � 1

�wn

R2

	
(11.109)
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The first equation of Eqs. (11.105) yields V n ¼ �lnMn. Substitute this result into Eq. (11.109)
to get

Mn ¼ Dnwn; Dn ¼
D22

�
n2 � 1

�
R2

�
1þ l2n

D22

Sy

� (11.110)

Then,

V n ¼ �lnMn ¼ �Dnlnwn (11.111)
and

gn ¼
V n

Sy
¼ �ln

Dn

Sy
wn (11.112)

Expressing Tn from the second equation of Eqs. (11.105) and substituting Vn from Eq. (11.111),
we find

Tn ¼ R
�
pn � l2nDnwn

�
(11.113)

Using the second equation of Eqs. (11.104), we can determine S0n. Transforming the resulting equation
with the aid of Eqs. (11.111) and (11.113), we arrive at

S0n ¼ lnR

�
pn �

n2 � 1

R2
Dnwn

�
; pn ¼ pn � qn

lnR
(11.114)

Differentiate the second constitutive equation of Eqs. (11.106), substitute Eqs. (11.108) and (11.114)
for vn and S0n, and express u0n as

u0n ¼
R

B44

�
n2 � 1

R2
Dnwn � pn

�
� 1

Rl2n
w00
n (11.115)

Then, the first constitutive equation of Eqs. (11.106) yields

Nn ¼ RB11

B44

�
n2 � 1

R2
Dnwn � pn

�
� B11

Rl2n
w00
n (11.116)

Finally, differentiating the first equilibrium equation of Eqs. (11.104) and substituting S0n and Nn from
Eqs. (11.114) and (11.116), we arrive at the following governing equation:

wIV
n � 2k21w

00
n þ k42wn ¼ kp (11.117)

in which

k21 ¼ l2n
�
n2 � 1

�
Dn

2B44
; k42 ¼ Dn

B11
l4n
�
n2 � 1

�
; kp ¼ n4

R2B11
pn �

n2

B44
p00n
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In contrast to the equations of the general and engineering theories discussed in Sections 11.4.1 and
11.4.2, Eq. (11.117) can be solved analytically. It is analogous to Eq. (11.58) whose solution is
considered in Section 11.3. The general solution of Eq. (11.117) includes four constants of integration
which can be found from the boundary conditions that are imposed on the shell axial and circum-
ferential displacements u and v or on the axial and shear stress resultants Nx and Nxy. Note that if the
shell edge is fixed with respect to the circumferential displacement, i.e., if v ¼ 0 at the edge, then, in
accordance with Eq. (11.108), w ¼ 0. Thus, the semi-membrane theory allows us to fix the shell edge
with respect to both displacements v and w. To formulate the boundary conditions for Nx and u or for
Nxy and v, we can use Eq. (11.116) or (11.108), which specifies Nn and vn in terms of wn. However, we
cannot use Eqs. (11.114) and (11.115) because they specify the derivatives of Sn and un. The expression
for Sn can be derived from the first equilibrium equation of Eqs. (11.104) if we substitute Nn from
Eq. (11.116), i.e.,

Sn ¼ 1

ln
N 0
n ¼

B11

Rl3n
w000
n � RB11

lnB44

�
n2 � 1

R2
Dnw

0
n � p0n

�
(11.118)

The axial displacement can be found from the second constitutive equation of Eqs. (11.106) if we use
Eq. (11.118) for Sn and Eq. (11.108) for vn. The result is

un ¼ B11R

l2nB
2
44

�
n2 � 1

R2
Dnw

0
n � p0n

�
� B11w

000
n

Rl4nB44

� w0
n

Rl2n
(11.119)

The derived equations correspond, as has been noted, to the theory of shear deformable shells. For the
semi-membrane theory corresponding to classical shell theory, we must take Sy/N. As can be seen,
in this case only the expression for Dn in Eqs. (11.110) is changed as follows:

D0
n ¼

D22

R2

�
n2 � 1

�
For the first terms in Eqs. (11.101), i.e., for n ¼ 1 Eq. (11.117) reduces to

wIV
1 ¼ p1

R2B11
� p001
B44

(11.120)

This equation has the polynomial solution which describes the shell bending as a beam with absolutely
rigid cross-sectional contour. Such a problem is discussed in Chapter 10 in application to thin-walled
beams.

For n � 2 , the solution of Eq. (11.117) is given by Eq. (11.60), i.e.,

wn ¼
X4
i¼1

AiFiðxÞ þ wp (11.121)

The solution in Eq. (11.121) in conjunction with the solution in Eq. (11.60) for the axisymmetric
problem and the solution of Eq. (11.120) for the beam-type bending problem allows us to consider
a wide class of practical problems of analysis for cylindrical shells. As an example, formulate the
problem of analysis for a shell fixed at x ¼ 0 and loaded with axial force P at point x ¼ l , y ¼ 0 as
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shown in Fig. 11.21. Decompose the axial force acting in the cross section x ¼ l of the shell into the
following trigonometric series:

qx ¼ q0 þ q1 cos l1yþ
XN
n¼2

qn cos lny (11.122)

where

q0 ¼ P

2pR
; q1 ¼ qn ¼ P

pR

The load component q0 is uniformly distributed over the shell cross section. The corresponding
component of the shell stress-strain state can be found using Eq. (11.58) for the axisymmetric problem
in which N ¼ q0. The integration constants Ci in Eq. (11.60) can be determined from the following
boundary conditions:

wð0Þ ¼ 0; qxð0Þ ¼ 0; MxðlÞ ¼ 0; V xðlÞ ¼ 0

(see Fig. 11.21). One more constant which appears after the integration of Eq. (11.52) for u0 can be
found from the boundary condition u(0) ¼ 0.

The solution component corresponding to q1 in Eq. (11.122) is the result of integration of
Eq. (11.120). To find the four constants of integration, we should use the following boundary
conditions:

uð0Þ ¼ 0; vð0Þ ¼ wð0Þ ¼ 0; N1ðlÞ ¼ q1; S1ðlÞ ¼ 0

l

x

R

y
P

FIGURE 11.21

Cantilever cylindrical shell loaded with concentrated axial force.
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Finally, the solutions corresponding to qn (n � 2) in Eq. (11.122) follow from Eq. (11.117) of semi-
membrane theory. The four constants Ai in Eq. (11.121) can be obtained from the four boundary
conditions, which are

unð0Þ ¼ 0; vnð0Þ ¼ wnð0Þ ¼ 0; NnðlÞ ¼ qn; SnðlÞ ¼ 0

Thus the problem is approximately reduced to three ordinary differential equations of the fourth order,
i.e., Eqs. (11.58), (11.117), and (11.120) which can be solved analytically.

For relatively long shells, only the polynomial solution of Eq. (11.120) which describes the beam-
type bending of a shell penetrates from the loaded cross section x ¼ l to the fixed cross section
x¼ 0 (see Fig. 11.21), whereas the solutions of Eqs. (11.58) and (11.117) are localized in the vicinity of
the shell ends x¼ 0 and x¼ l. This is expected, since the self-balanced stresses corresponding to the load
components qn in Eq. (11.122) must vanish at a distance from the loaded end. This demonstrates the
principal difference between membrane and semi-membrane shell theories. Membrane shells have zero
bending stiffnesses. Taking Dn ¼ 0 in the coefficients of Eq. (11.117), we arrive at Eq. (11.120) for wn.
This equation has only polynomial solutions which do not vanish at a distance from the loaded end. Thus,
the membrane theory of cylindrical shells, in general, cannot be used to study relatively long shells.

11.4.4 Membrane shell theory

The membrane theory of cylindrical shells can be used for long and infinitely long shells whose stress-
strain state does not depend on coordinates. Consider the shell loaded with uniform pressures p and q and
axial forces N as shown in Fig. 11.16. For such shells, the equilibrium equations, Eqs. (11.13), yield

Nx ¼ N; Ny ¼ pR; Nxy ¼ 0 (11.123)

Substituting these equations into the constitutive equations, Eqs. (11.12), and solving the resulting
equations for the strains, we have

εx ¼ 1

B11B
ðB22N � B12pRÞ; εy ¼ 1

B11B
ðB11pR� B12NÞ (11.124)

Note that the shell deflection w ¼ εyR coincides with the particular solution, Eq. (11.61), of the
governing equation for the axisymmetric problem, Eq. (11.58).

For the cylindrical parts of pressure vessels with end domes, p ¼ p, N¼pR/2, and Eqs. (11.123) and
(11.124) reduce to

Nx ¼ pR

2
; Ny ¼ pR (11.125)

εx ¼ pR

2B11B
ðB22 � 2B12Þ; εy ¼ pR

2B11B
ð2B11 � B12Þ (11.126)

11.4.5 Shear deformable shell theory

The main applications of the theory of shear deformable cylindrical shells are associated with the
analysis of sandwich shells with lightweight core and composite facing layers which can have different
thicknesses and stiffnesses. To simplify the problem, we consider such shells within the framework of
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the engineering shell theory discussed in Section 11.1. It is important to note that the equations of the
general shell theory simplified in accordance with Eqs. (11.9) practically coincide with Eqs. (9.292)–
(9.300) presented in Section 9.7.3 in application to unsymmetrically laminated plates. The only
differences show themselves in the equilibriumequation, Eq. (11.4),which includes the termNy/R and in
the strain-displacement equation in Eqs. (11.6) for εy which contains the term w/R. For plates, R/N
and both terms vanish.

Following the derivation presented in Section 9.7.3, we introduce the stress function F(x, y) as in
Eqs. (9.301), i.e.,

Nx ¼ v2F

vy2
; Ny ¼ v2F

vx2
; Nxy ¼ � v2F

vxvy

The stress function is found from the compatibility equation, Eq. (9.302), which is generalized as

v2εx

vy2
þ v2εy

vx2
� v2gxy

vxvy
¼ 1

R

v2w

vx2

Finally, the set of the governing equations analogous to Eqs. (9.304), (9.306)–(9.308), becomes

by
v4F

vx4
þ �b� 2bxy

� v4F

vx2vy2
þ bx

v4F

vy4
� 1

R

v2w

vx2
� Byx

v3qx

vx3
� ðBx � cÞ v3qx

vxvy2

��By � c
� v3qy

vx2vy
� Bxy

v3qy

vy3
¼ 0

Dx
v2qx

vx2
þ �Dþ Dxy

� v2qy
vxvy

þ D
v2qx

vy2
þ cxy

v3F

vx3
þ ðcx � cÞ v3F

vxvy2
� Sx

�
qx þ vw

vx

�
¼ 0

Dy
v2qy

vy2
þ �Dþ Dyx

� v2qx
vxvy

þ D
v2qy

vx2
þ cyx

v3F

vy3
þ �cy � c

� v3F

vx2vy
� Sy

�
qy þ vw

vy

�
¼ 0

Sx

�
vqx

vx
þ v2w

vx2

�
þ Sy

�
vqy

vy
þ v2w

vy2

�
� 1

R

v2F

vx2
þ p ¼ 0

(11.127)

The stiffness and compliance coefficients in these equations are given in Section 9.7.3. The four
equations obtained, Eqs. (11.127), include four unknown functions, i.e., F, qx, qy, and w.

For cylindrical shells with simply supported ends x¼ 0 and x¼ l (see Fig. 11.6), the solution can be
presented in the form of trigonometric series similar to those given by Eqs. (11.96) and (11.98), i.e.,

F ¼
XN
m¼1

XN
n¼0

Fmn sin lmx cos lny; qx ¼
XN
m¼1

XN
n¼0

qmnx cos lmx cos lny

qy ¼
XN
m¼1

XN
n¼0

qmny sin lmx sin lny; w ¼
XN
m¼1

XN
n¼0

wmn sin lmx cos lny

(11.128)

in which, as earlier, lm ¼ pm=l and ln ¼ n=R. Substitution of Eqs. (11.128) into Eqs. (11.127) results
in four algebraic equations, Eqs. (9.310), for Fmn; qmnx ; qmny , and wmn. However, in contrast to
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Eqs. (9.309) for plates, Eqs. (11.128) contain different combinations of trigonometric functions and
some of the coefficients aij in Eqs. (9.310) are also different and have the following form:

a13 ¼ Bxyl
3
n þ

�
By � c

�
l2mln; a14 ¼ a41 ¼ 1

R
l2m

a23 ¼
�
Dþ Dxy

�
lmln; a31 ¼ cyxl

3
n þ

�
cy � c

�
l2mln

a32 ¼
�
Dþ Dyx

�
lmln; a34 ¼ a43 ¼ Syln

(11.129)

The rest of the coefficients are the same as those given by Eqs. (9.310). The solution of these equations
is presented in Section 9.7.3.

For shells with a symmetric structure, the coupling coefficients Cmn in the constitutive equations
are zero and we should take

Bx ¼ 0; By ¼ 0; Bxy ¼ Byx ¼ 0; Dx ¼ D11; Dy ¼ D22; Dxy ¼ Dyx ¼ D12

D ¼ D44; cx ¼ 0; cy ¼ 0; cxy ¼ cyx ¼ 0

in Eqs. (11.127). As an example, consider a cylindrical shell made of fiberglass fabric and having the
following parameters: R ¼ 112 mm, l ¼ 265 mm, h ¼ 3:53 mm; and material properties are
Ex ¼ 19:6 GPa, Ey ¼ 30:5 GPa,Gxy ¼ 4:75 GPa, Gxz ¼ Gyz ¼ 2:06 GPa, vxy ¼ 0:14, and vyx ¼ 0:09.
The shell is simply supported and loaded with a concentrated load P at the point x ¼ l=2, y ¼ 0 as
shown in Fig. 11.22. Decomposing the load into the double trigonometric series, we have

p ¼
XN
m¼1

XN
n¼0

pmn sin lmx cos lny

where

pm0 ¼ ð�1Þ12 ðmþ3Þ P

pRl
ðm ¼ 1; 3; 5.Þ

pmn ¼ ð�1Þ12 ðmþ3Þ 2P
pRl

ðm ¼ 1; 3; 5.; n ¼ 1; 2; 3.Þ

x

y2/l

PP

2/l

R

FIGURE 11.22

Simply supported cylindrical shell under the action of a concentrated radial force.
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and the rest of coefficients pmn are zero. The calculated dependencies of the shell maximum deflection
wm ¼ wðx ¼ l=2; y ¼ 0Þ on the axial coordinate are shown in Fig. 11.23 along with the experimental
results (circles). Curves 1 and 2 correspond to the shear deformable shell theory and the classical shell
theory, respectively. As can be seen, there is not too much of a difference between the results obtained
based on the two theories. The relative shell thickness h=R ¼ 0:0316, whereas the ratios
E1=Gxz ¼ 9:51 and E2=Gxz ¼ 14:8 are rather low, and the transverse shear deformation is not
significant for the shell under study. As has been noted, the most pronounced effect of the transverse
shear deformation is observed in sandwich shells with lightweight cores.

Cylindrical shells whose ends are not simply supported can be efficiently studied with the aid of
semi-membrane shell theory as discussed in Section 11.4.3.

11.5 BUCKLING OF CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION
Cylindrical shells compressed in the axial direction can experience buckling. Consider the possible
buckling modes.

11.5.1 Column-type buckling

Long shells can experience a column-type buckling as shown in Fig. 8.18. The critical value of the total
axial force P ¼ 2pRT can be found using the approach described in Section 8.5 of Chapter 8 as

Pcr ¼ PE

1þ PE=S

1

2

R

x

mm,mw

0.2 0.4   0.6  0.80

0

0.1

0.2

0.3

0.4

0.5

0.6

 1.0  1.2  1.4

FIGURE 11.23

Dependence of the shell maximum deflection on the axial coordinate: shear deformable shell theory (1), classical

shell theory (2), experiment (���).
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where

PE ¼ k
p2D

l2

is the Euler critical force for a compressed column. The coefficient k depends on the boundary
conditions at the shell ends x ¼ 0 and x ¼ l (see Fig. 8.18). If the end cross section can rotate (see
Fig. 8.18a), then k ¼ 1. For a cantilever shell whose end x ¼ 0 is fixed, and the force P acts on the
free end (see Fig. 8.18b), we have k ¼ 1=4. For clamped shells whose end cross sections cannot rotate
(see Fig. 8.18c), we get k ¼ 4. The bending stiffness of the shellD and the transverse shear stiffness S are
determined as discussed in Section 10.4.6 of Chapter 10 and have the following forms: D ¼ pBR3 and
S ¼ pRB44 in which B and B44 are the membrane axial and shear stiffness coefficients of the shell wall.

11.5.2 Axisymmetric buckling mode

Assume that the buckling mode of a shell fixed at the ends x ¼ 0 and x ¼ l is axisymmetric, i.e., that
the shell deflection w caused by buckling does not depend on the coordinate y (see Fig. 11.24). Then,
the buckling equation follows from Eq. (11.58) if we take N ¼ �Ts and kp ¼ 0, i.e.,

D

�
1� Ts

Sx

�
wIV þ

�
Tsð1þ cÞ � C

R
ð2� cÞ � BD

R2Sx

	
w00 þ B

R2
w ¼ 0; c ¼ C

RSx
(11.130)

where the stiffness coefficients B,C, andD are specified by Eqs. (11.54). If the shell is simply supported
at the ends x ¼ 0 and x ¼ l (see Fig. 11.24), the deflection can be presented in the following form:

w ¼
XN
m¼1

wm sin lmx (11.131)

where lm ¼ pm=l. Substituting the deflection, Eq. (11.131), into the buckling equation, Eq. (11.130),
we can express Ts as

Ts ¼
Dl4m þ l2m

R

�
Cð2� cÞ þ BD

RSx

	
þ B

R2

l2m

�
1� cþ D

Sx
l2m

� (11.132)

ml
y

x

T T

R

l

w

FIGURE 11.24

Cylindrical shell loaded with axial compressive forces T.

726 CHAPTER 11 Circular cylindrical shells

www.EngineeringEBooksPdf.com



Applying the minimum condition, i.e., vT=vl2m ¼ 0, we get

l2m ¼

1

Sx
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞR

BD

"
ð1� cÞR� Cð2� cÞ

Sx

#
þ c

S2x

vuut
R2

B
ð1� cÞ þ CR

BSx
ð2� cÞ � D

S2x

(11.133)

The critical load is specified by Eq. (11.132) in which l2m should be substituted from Eq. (11.133). Note
that Eqs. (11.132) and (11.133) include the stiffness coefficients B, C, andDwhich, in accordance with
Eqs. (11.62), do not depend on the coordinate of the reference surface e. However, the axial forces Ts
(see Fig. 11.24) are applied to the reference surface of the shell. Thus, we can conclude that the critical
load does not depend on the location of the surface to which the forces Ts are applied.

Neglecting the transverse shear deformation, i.e., taking Sx/N, we can reduce Eqs. (11.132) and
(11.133) to

Ts ¼ Dl2m þ C

R
þ B

R2l2m
; l2m ¼ 1

R

ffiffiffiffi
B

D

r
(11.134)

and find

Tcr
s ¼ 1

R

�
2
ffiffiffiffiffiffiffi
BD

p
þ C

�
(11.135)

For symmetrically laminated shells, C ¼ 0 and

Tcr
s ¼ 2

R

ffiffiffiffiffiffiffi
BD

p
; l2m ¼ 1

R

ffiffiffiffi
B

D

r
(11.136)

For homogeneous shells,

B ¼ Eyh; C ¼ 0; D ¼ Ex
h3

12
; Ex ¼ Ex

1� vxyvyx

and Eqs. (11.134) and (11.135) yield

Tcr
s ¼ h2

R
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
ExEy

q
; l2m ¼ 2

ffiffiffi
3

p

Rh

ffiffiffiffiffi
Ey

Ex

s
(11.137)

For an isotropic shell, Ex ¼ Ey ¼ E; vxy ¼ vyx ¼ v, and Eqs. (11.136) reduce to the classical results

Tcr
s ¼ Eh2

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p ; l2m ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p
Rh

(11.138)

Note that the foregoing equations for the critical load are valid for relatively long shells whose length is
greater than the length of the half-wave

lm ¼ p=lm (11.139)

(see Fig. 11.24).
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It has been shown that the foregoing results obtained for simply supported shells are also valid for
clamped shells whose length is larger than lm given by Eqs. (11.139) (Vasiliev, 2011). Indeed, consider
for the sake of brevity symmetrically laminated shells and assume that Sx/N. Taking N ¼ �Ts and
p ¼ 0 in Eq. (11.58), we arrive at the following equation:

wIV þ 2k21w
00 þ k42w ¼ kp (11.140)

where

k21 ¼ Ts
2D

; k42 ¼ B

R2D
; kp ¼ B12Ts

RB11D
(11.141)

This equation describes the nonlinear deformation of a shell under axial compression. Introduce the
loading parameter

Ts ¼ Ts
Tcr
s

(11.142)

where Tcr
s is specified by Eqs. (11.136). Then the coefficients in Eqs. (11.141) become

k21 ¼ Tsl; k22 ¼ l; kp ¼ 2B12

B11
Tsl; l ¼ 1

R

ffiffiffiffi
B

D

r
(11.143)

The form of the solution of Eq. (11.140) which is discussed in Sections 9.4.1 and 11.3 depends on the
relationship between the coefficients k1 and k2 given by Eqs. (11.143).

If Ts < 1, i.e., the load is less than the critical value, k1 < k2 and the solution of Eq. (11.140) is

w ¼ e�rxðC1 cos txþ C2 sin txÞ þ erxðC3 cos txþ C4 sin txÞ þ wp (11.144)

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

�
1� Ts

�r
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

�
1þ Ts

�
;

r
wp ¼ 2B12Ts

B11l

If the load is equal to the critical value, i.e., Ts ¼ 1, we have k21 ¼ k22 ¼ l and the solution to Eq.
(11.140) becomes

w ¼ ðC1 þ C2xÞ cos
ffiffiffi
l

p
xþ ðC3 þ C4xÞ sin

ffiffiffi
l

p
xþ wp (11.145)

And finally, for Ts > 1, i.e., for k1 > k2, we have

w ¼ C1 cos a1xþ C2 cos a2xþ C3 sin a1xþ C4 sin a2xþ wp (11.146)

where

a1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ts �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
2
s � 1

q �
l

s

As an example, consider an isotropic shell with the following parameters:

R=h ¼ 50; l=R ¼ 2; v ¼ 0:3 (11.147)
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For a simply supported shell, the constants of integrationC1eC4 are found from the boundary conditions
w ¼ w00 ¼ 0 at x ¼ 0 and x ¼ l (see Fig. 11.24). The solution specified by Eq. (11.144) for Ts ¼ 0:5 is
shown in Fig. 11.25a by curve 1 (note that the deflection has been scaled by a factor of ten; the actual
maximum deflection is wm ¼ 0:0023R). For Ts ¼ 1 the solution given by Eq. (11.145) corresponds to
curve 2. The maximum deflection is wm ¼ 0:025R, i.e., ten times greater than for Ts ¼ 0:5. If we
increase the load by 1%, i.e., take Ts ¼ 1:01, the solution presented by Eq. (11.146) corresponds to curve
3 and the maximum deflection becomes wm ¼ 0:04R. Under further loading, the deflection rapidly
increases, e.g., for Ts ¼ 1:05 we have wm ¼ 0:74R, which definitely is not correct because the theory
resulting in Eq. (11.140) cannot describe a shell deflection which is comparable with the shell radius.

For clamped shells, the constants of integration C1eC4 are found from the boundary conditions
w ¼ w0 ¼ 0 at x ¼ 0 and x ¼ l (see Fig. 11.24). The results of the calculation are presented in
Fig. 11.25b. For Ts ¼ 0:5 (curve 1), the maximum deflection is wm ¼ 0:00018R, for Ts ¼ 1 (curve 2),
wm ¼ 0:0072R, for Ts ¼ 1:01 (curve 3), wm ¼ 0:009R, and for Ts ¼ 1:05;wm ¼ 0:013R.

It follows from the foregoing analysis (which is not in fact the buckling analysis, since there is no
bifurcation of the shell equilibrium state) that for a load Ts that is less than the critical value T found from
the conventional buckling analysis, the shell experiences radial deformation due to Poisson’s effect (wp)
and local bending in the vicinity of the ends. When the load Ts is higher than Tcr

s , the shell deflection
becomes a periodic function whose amplitude rapidly increases with an increase in Ts. Thus, we can
consider that Tcr

s is the critical load. It is important that we do not need to solve Eq. (11.140) in order to
find Tcr

x . The solution of this equation becomes periodic if the roots r of the characteristic equation

r4 þ 2k21r
2 þ k42 ¼ 0 (11.148)

FIGURE 11.25

Dependencies of the normalized deflection on the axial coordinate for simply supported (a) and clamped

(b) shells:

1 – solution of Eq. (11.144) (10w, T ¼ 0:50)

2 – solution of Eq. (11.145) (w, T ¼ 1:0)

3 – solution of Eq. (11.146) (w, T ¼ 1:01)
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are imaginary numbers. The minimum value of load, or the minimum value of coefficient k1 in Eqs.
(11.141) for which it occurs, can be found from the condition k1 ¼ k2 ¼ k. In this case, Eq. (11.148)
reduces to the following equation: �

r2 þ k2
�2 ¼ 0

which has only imaginary roots. Using Eqs. (11.141) and applying the condition k1 ¼ k2, we have

Ts ¼ 2

R

ffiffiffiffiffiffiffi
BD

p
(11.149)

which coincides with Eq. (11.136) for the critical load. It is important that the result obtained,
Eq. (11.149), does not depend on the boundary conditions.

However, there are two particular cases for which Eq. (11.149) is not valid. The first case corre-
sponds to short shells for which l < lm, where lm is specified by Eq. (11.139). If lm is given by the
second equation of Eqs. (11.138), we have

lm ¼ p
ffiffiffiffiffiffi
Rh

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� v2Þ4

p
For the shell with parameters given by Eqs. (11.147) considered as an example, lm ¼ 0:244R, i.e., the
shell length is much less than the radius. For a short shell with length l ¼ 0:2Rwhich is less than lm, the
dependencies of the normalized deflection on the axial coordinate corresponding to Ts ¼ 1 are shown
in Fig. 11.26 for a simply supported shell (line 1) and for a clamped shell (the deflection corresponding

1

2

Rx /

Rw /

0

0.04  0.08  0.12 0.160   0.2

0.004

0.008

0.012

0.016

0.02

FIGURE 11.26

Dependencies of the normalized deflection on the axial coordinate for simply supported (curve 1, w) and

clamped (curve 2, 10w) shells corresponding to T s ¼ 1.
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to curve 2 is multiplied by 10). As can be seen, the curves are not periodic. The maximum normalized
deflections of the simply supported (line 1) and clamped (line 2) shells as functions of the loading
parameter Ts are plotted in Fig. 11.27. Note that for a short (l < lm) simply supported cylindrical shell,
the critical load is specified by Eq. (11.132) in which we should take m ¼ 1. For a symmetrically
laminated shell, the first equation of Eqs. (11.136) must be changed to

Tcr
ss ¼ p2D

l2
þ Bl2

p2R2
(11.150)

For the isotropic shell with parameters given by Eqs. (11.147), the loading parameter specified by
Eq. (11.142) becomes Ts ¼ 1:081 and is shown on the Ts-axis in Fig. 11.27 with a circle. As can
be seen, the shell deflection (curve 1 in Fig. 11.27) becomes rather high in the vicinity of this
circle. To derive the equation analogous to Eq. (11.150) for a clamped shell, consider the
buckling equation following from Eq. (11.140) for symmetrically laminated shells if we take
kp ¼ 0, i.e.,

DwIV þ Tsw
00 þ B

R2
w ¼ 0 (11.151)

and approximate the shell deflection with the following function

w ¼ w0

�
1� cos

2px

l

�
(11.152)

which satisfies the boundary conditions for clamped shells. Substituting Eq. (11.152) into
Eq. (11.151) and using the Bubnov-Galerkin method, i.e., multiplying Eq. (11.151) by the coordinate
function given by Eq. (11.152) and integrating from x ¼ 0 to x ¼ l, we can finally find

1 2

sT

Rwm /

0.5 1.0 1.5 2.00  2.5

0

0.004

0.008

0.012

0.016

0.02

  3.0   3.5

FIGURE 11.27

Dependencies of the normalized maximum deflection on the loading parameter for simply supported (1) and

clamped (2) shells.
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Tcr
sc ¼ 4

p2D

l2
þ 3Bl2

4p2R2
(11.153)

For the isotropic shell considered as an example, we get from Eq. (11.142) that Ts ¼ 3:239. This
result is shown on the Ts-axis in Fig. 11.27 with a dot. As can be seen, the maximum shell
deflection for the clamped shell (curve 2 in Fig. 11.27) becomes rather high in the vicinity of the
dot. Thus, we can conclude that Eqs. (11.150) and (11.153) specify the critical loads for simply
supported and clamped shells whose length is less than lm in Eq. (11.139). Naturally, for such short
shells the critical load depends on the boundary conditions.

The second particular case for which Eq. (11.149) cannot be used to determine the critical
load corresponds to those shells whose edges x ¼ 0 and x ¼ l are not fixed with respect to the
shell deflection, i.e., the load T is applied to the free end edges of the shell. For such shells,
buckling occurs in the vicinity of the free edge and the shell deflection is not periodic (Kil-
chevsky, 1942).

11.5.3 Nonsymmetric buckling mode

We can apply the method discussed earlier to study nonsymmetric buckling of a cylindrical shell which
has a symmetric structure and is described by the equations of the classical theory, Eqs. (11.94).
To derive the buckling equation for a shell compressed by axial forces Tn, we must change the pressure
p in accordance with Eq. (11.10) and take

p ¼ �Tn
v2w

vx2
(11.154)

Using Eq. (11.154), taking Cmn ¼ 0, and applying the engineering shell theory discussed in Section
11.4.2, we can write Eqs. (11.94) in the following form:

B11
v2u

vx2
þ B44

v2u

vy2
þ ðB12 þ B44Þ v2v

vxvy
þ B12

R

vw

vx
¼ 0

B22
v2v
vy2

þ B44
v2v
vx2

þ ðB12 þ B44Þ v2u

vxvy
þ B22

R

vw

vy
¼ 0

D1
v4w

vx4
þ 2D3

v4w

vx2vy2
þ D2

v4w

vy4
þ 1

R

"
B12

vu

vx
þ B22

�
vv
vy

þ w

R

�#
þ Tn

v2w

vx2
¼ 0

(11.155)

where, as earlier,D1 ¼ D11,D2 ¼ D22, andD3 ¼ D12 þ 2D44. Irrespective of the boundary conditions
at the shell ends, present the solution of Eqs. (11.155) in the following form:

u ¼ u0e
rx cos ly; v ¼ v0e

rx sin ly; w ¼ w0e
rx cos ly (11.156)
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where l ¼ n=R. Substitution of Eq. (11.156) into Eqs. (11.155) results in three algebraic equations for
u0, v0, and w0, i.e.,

�
B11r

2 � B44l
2
�
u0 þ ðB12 þ B44Þrlv0 þ B12

R
rw0 ¼ 0

�ðB12 þ B44Þrlu0 þ
�
B44r

2 � B22l
2
�
v0 � B22

R
lw0 ¼ 0

1

R
ðB12ru0 þ B22lv0Þ þ

�
D1r

4 � 2D3r
2l2 þ D2l

4 þ B22

R
þ Tnr

2

�
w0 ¼ 0

(11.157)

Solving the first two equations of Eqs. (11.157) for u0 and v0, we get

u0 ¼ rB44

RB1

�
B12r

2 þ B22l
2
�
w0

v0 ¼ l

RB1

h
B22

�
B11r

2 � B44l
2
�� B12ðB12 þ B44Þr2

i
w0

(11.158)

where

B1 ¼
�
B11r

4 � B2r
2l2 þ B22l

4
�
; B2 ¼ B11B

B44
� 2B12; B ¼ B22 � B2

12

B11

Substituting Eqs. (11.158) into the third equation of Eqs. (11.157), we arrive at the following equation
for the force Tn:

B1

�
D1r

4 � 2D3r
2l2 þ D2l

4 þ Tnr
2
�þ B

R2
B11r

4 ¼ 0 (11.159)

The other form of this equation is

a1r
8 þ a2r

6 � a3r
4 þ a4r

2 þ a5 ¼ 0 (11.160)

where
a1 ¼ B11D1; a2 ¼ B11Tn � ðB1D1 þ 2B11D3Þl2
a3 ¼ B1l

2Tn � ðB11D2 þ 2B1D3 þ B22D1Þl4
a4 ¼ B22l

4Tn � ðB1D2 þ 2B22D3Þl6; a5 ¼ B22D2l
8

(11.161)

As discussed in Section 11.5.3, shell buckling occurs if the solutions given by Eqs. (11.156) become
periodic functions of x, which means that Eq. (11.160) must have imaginary roots. Take r2 ¼ s and
reduce Eq. (11.160) to

a1s
4 þ a2s

3 � a3s
2 þ a4sþ a5 ¼ 0 (11.162)

If r is an imaginary number, then Eq. (11.162) must have a negative real root s. Now take s ¼ �t and
write Eq. (11.162) as

a1t
4 � a2t

3 � a3t
2 � a4t þ a5 ¼ 0 (11.163)
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Thus, if Eq. (11.160) has imaginary roots r, then Eq. (11.163) must have positive real roots t. Assume
that Tn in Eqs. (11.161) is relatively small so that coefficients a2, a3, and a4 are negative. Then, all the
coefficients of Eq. (11.163) are positive; hence, it cannot have positive roots and the shell buckling
does not occur. If Tn in Eqs. (11.161) is relatively high, the coefficients a2, a3, and a4 can be positive.
Then, Eq. (11.163) has two changes of signs, and according to the Cartesian Rule (Korn and Korn,
1961) it can have two positive roots, which shows that the shell can buckle. The corresponding load
can be found from Eq. (11.159) which yields

Tn ¼ D1t þ 2D3l
2 þ D2

l4

t
þ BB11t

R2
�
B11t2 þ B1tlþ B22l

4
� (11.164)

Here t and l are real and positive numbers. The critical force can be determined by minimization of the
load Tn given by Eq. (11.164) with respect to the parameters t and l.

Analytical minimization in Eq. (11.164) is possible for homogeneous shells for which

Bmn ¼ Amnh; Dmn ¼ 1

12
Amnh

3 (11.165)

and Eq. (11.164) reduces to

Tn ¼ h2

12

�
B11t þ 2ðB12 þ 2B44Þl2 þ B22

l4

t

	
þ BB11t

R2

�
B11t2 þ

�
BB11

B44
� 2B12

�
tlþ B22l

4

	 (11.166)

The minimum condition vTn=vl
2 ¼ 0 yields

l2 ¼
ffiffiffiffiffiffiffi
B11

B22

r
� t (11.167)

whereas the minimum condition vTn=vt ¼ 0 gives

t2 ¼ 1

R2h2
$

3B44

B11

�
B12 þ 2B44 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22

p �� 1

2B44
þ 1

B12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22

p
� (11.168)

To derive this equation we have used the following decomposition:

B11B22 � B2
12 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22

p þ B12

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22

p � B12

�
Finally, substituting l and t from Eqs. (11.167) and (11.168) into Eq. (11.166), we have

Tcr
n ¼

ffiffiffi
2

p
hffiffiffi

3
p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B44

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22

p þ B12

�q
(11.169)

For a homogeneous shell

B11 ¼ Exh; B12 ¼ vxyExh; B22 ¼ Eyh; B44 ¼ Gxyh
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and Eq. (11.169) reduces to

Tcr
n ¼ h2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gxy

� ffiffiffiffiffiffiffiffiffiffi
ExEy

p þ vxyEx

�
3
�
1� vxyvyx

�
s

(11.170)

Compare this result with Eq. (11.137) which specifies the critical load Tcr
s for axisymmetric buckling.

Substituting Eqs. (11.137) and (11.170) into the inequality Tcr
n � Tcr

s , we have

Gxy � ExEy

2
� ffiffiffiffiffiffiffiffiffiffi

ExEy
p þ vxyEx

� ¼
ffiffiffiffiffiffiffiffiffiffi
ExEy

p
2
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

vxyvyx
p � (11.171)

The second part of Eq. (11.171) can be obtained if we use the symmetry condition of elastic constants
ðvxyEx ¼ vyxEyÞ and the following relation:

vxyEx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vxyvyxExEy

p
Thus, the critical force Tcr

n corresponding to nonsymmetric buckling is less than the force Tcr
s causing

symmetric buckling if the shear modulus of the material satisfies the condition in Eq. (11.171). For
isotropic shells, G ¼ E=2ð1þ vÞ and the critical load is the same for both buckling modes, i.e.,

Tcr
s ¼ Tcr

n ¼ Tcr ¼ Eh2

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ

p (11.172)

As in the case of axisymmetric buckling, the calculated critical load does not depend on the boundary
conditions at the shell ends x ¼ 0 and x ¼ l (see Fig. 11.24). The limitations are the same as those in
the axisymmetric problem. First, the foregoing results are not valid for short shells whose length l is
less than the length of the half-wave

ffiffi
t

p
, where t is specified by Eq. (11.168). Secondly, the results are

not valid for the shells that buckle in the vicinity of the end edges. Such buckling can occur if the shell
edge is not fixed with respect to the deflection w (Karmishin et al., 1975).

To support the results obtained, consider an isotropic shell whose critical force Tcr is specified by
Eq. (11.172) and let the critical load for shells with arbitrary boundary conditions be

Ta
cr ¼ kTcr (11.173)

The dependence of the coefficient k on the length parameter

al ¼ lffiffiffiffiffiffi
Rh

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� v2Þ4

q
(11.174)

is presented in Fig. 11.28 (adapted from Volmir, 1967). Curve 1 corresponds to simply supported shells
and curves 2 and 3 correspond to clamped shells with different membrane boundary conditions. In
particular, for curve 2, the shear stress resultant Nxy is zero at the end edges, whereas for curve 3, the
circumferential displacement v is zero. As can be seen, for long shells k ¼ 1 and the critical load does
not depend on the boundary conditions.

The foregoing results correspond to shells with symmetric structures for the wall. Consider the
problem of buckling for laminated cylindrical shells with an arbitrary structure for the shell wall and
apply the engineering version of classical shell theory as discussed in Section 11.4.2. For simply
supported shells, the displacements can be presented in the form of trigonometric series given by
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Eqs. (11.96) and (11.98). For the problem of buckling under axial compression, the pressure p is
specified by Eq. (11.154). Taking into account the decomposition of the shell deflection in Eqs. (11.96)
and (11.98), we get for nonsymmetric buckling

w ¼
XN
m¼1

XN
n¼1

wmn sin lmx cos lny; lm ¼ pm

l
; ln ¼ n

R
(11.175)

Then, Eq. (11.154) yields

p ¼
X
m

X
n

pmn sin lmx cos lny

1

2

3

l

k

0

1

2

3

4 8 12 160 20

α

FIGURE 11.28

Dependence of parameter k in Eq. (11.173) on the length factor al in Eq. (11.174) for the shells with various

boundary conditions:

simply supported shell (curve 1, w ¼ w 00 ¼ v ¼ Nx ¼ 0);

clamped shell (curve 2, w ¼ w 0 ¼ u ¼ Nxy ¼ 0);

clamped shell (curve 3, w ¼ w 0 ¼ v ¼ Nx ¼ 0).

736 CHAPTER 11 Circular cylindrical shells

www.EngineeringEBooksPdf.com



where

pmn ¼ Tnl
2
mwmn (11.176)

Substituting this result into the solution for wmn in Eqs. (11.99), we finally get

Tn ¼ 1

l2m

"
c33 � c11c

2
23 þ c22c

2
13 � 2c12c13c23

c11c22 � c212

#
(11.177)

where

c11 ¼ B11l
2
m þ B44l

2
n; c12 ¼

�
B12 þ B44 þ C12 þ C44

R

�
lmln

c13 ¼ C11l
3
m þ ðC12 þ 2C44Þlml2n þ

1

R
B12lm

c22 ¼ B44l
2
m þ B22l

2
n þ

1

R

"�
2C44 þ D44

R

�
l2m þ

�
2C22 þ D22

R

�
l2n

#

c23 ¼ C22l
3
n þ ðC12 þ 2C44Þl2mln þ

1

R

"�
B22 þ C22

R

�
ln þ ðD12 þ 2D44Þl2mln þ D22l

3
n

#

c33 ¼ D1l
4
m þ 2D3l

2
ml

2
n þ D2l

4
n þ

1

R

�
B22

R
þ 2
�
C12l

2
m þ C22l

2
n

�	

The critical load can be determined by minimization of Tn in Eq. (11.177) with respect to lm and ln.
Note that the result does not depend on the coordinate of the reference surface e.

Finally, consider the general case, i.e., nonsymmetrically laminated and shear deformable shells
discussed in Section 11.4.5. The critical load can be found if we substitute pmn from Eq. (11.176) into
the solution, Eqs. (9.312), for wmn, i.e.,

Tn ¼ 1

l2m

A

A1
(11.178)

Here, A and A1 are specified by Eqs. (9.313), whereas the coefficients amn in these equations are given
by Eqs. (11.129) and (9.311). The critical load can be determined by minimization of the right-hand
part of Eq. (11.178) with respect to the numbers of half-waves m and n.

In conclusion, recall that for isotropic shells the calculated axial critical force is usually three to
four times higher than the corresponding experimental values. This discrepancy is normally asso-
ciated with shape imperfections in the metal shells. In this respect, composite cylindrical shells are
in a more favorable situation. Composite materials are elastic and composite shells do not exhibit
the residual shape imperfections that can occur as a result of occasional actions in the process of
assembling, testing, and transporting the structures. Nevertheless, there is a difference between the
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calculated and experimental critical loads for composite shells as well. To cover this difference, the
so-called knock-down factors are introduced in the shell design. For composite cylindrical shells,
the theoretical critical axial force is usually reduced by the factor 0.6 to match the experimental
results.

11.6 BUCKLING OF CYLINDRICAL SHELLS UNDER EXTERNAL PRESSURE
Consider a cylindrical shell loaded with an external pressure as shown in Fig. 11.29. When the pressure
q reaches the critical value qcr, the shell buckles with one half-wave of the deflection in the axial
direction and several half-waves in the circumferential direction. Thus, the shell experiences mainly
circumferential bending and we can apply the semi-membrane shell theory described in Sections 11.1
and 11.4.3 which ignores bending of the wall in the axial direction.

The buckling equation follows from Eq. (11.117) if we take in accordance with Eqs. (11.8) and
(11.10)

p ¼ �Ny
vuy

vy
¼ �Ny

 
1

R

vv
vy

� v2w

vy2

!

For a shell loaded with an external pressure q, Eqs. (11.125) of the membrane shell theory yield
Ny ¼ �qR. Decomposing the shell displacements v and w in accordance with Eqs. (11.101), we arrive
at the following coefficients from Eqs. (11.102) for the pressure p:

pn ¼ qRln

�
vn
R

þ lnwn

�

Finally, expressing vn in terms of wn with the aid of Eq. (11.103), we have

pn ¼ q

R

�
n2 � 1

�
wn (11.179)

q

R

y

x

l

q

FIGURE 11.29

Cylindrical shell loaded with external pressure q.
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Substituting pn into Eq. (11.117) for wn, we arrive at the following buckling equation:

wIV
n þ 2k21w

00
n � k42wn ¼ 0 (11.180)

where

k21 ¼ n2 � 1

2B44
l2nðqR� DnÞ; k42 ¼ l4n

B11

�
n2 � 1

�ðqR� DnÞ

and, as before, ln ¼ n=R.
The solution of Eq. (11.180) is

wn ¼ C1 cosh rxþ C2 sinh rxþ C3 cos txþ C4 sin tx

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k41 þ k42

q
� k21

r
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k41 þ k42

q
þ k21

r

The boundary conditions at the shell ends x ¼ 0 and x ¼ l allow us to arrive at a set of four algebraic
equations for the constants of integration C1eC4. For the buckling problem, these equations are
homogeneous and thus, to have a nonzero solution, we must equate the determinant of this set of
equations to zero. This condition provides the equation for qwhich is in the coefficients of Eq. (11.180)
and, hence, the parameters r and t. The critical pressure can be found by minimizing q with respect to
the number of half-waves n.

11.6.1 Simply supported shells

For shells with simply supported edges x ¼ 0 and x ¼ l (see Fig. 11.29), we must take wn ¼ 0 (which
is equivalent to vn ¼ 0 in accordance with Eq. (11.103)) and Nx ¼ 0, where Nx is given by
Eq. (11.116). Using Eqs. (11.116) and (11.179), we get the following boundary conditions for a simply
supported shell: wn ¼ w00

n ¼ 0. These boundary conditions can be satisfied if we take

wn ¼ w0
n sin

px

l
(11.181)

Substituting Eq. (11.181) into Eq. (11.180), expressing q, and using Eqs. (11.110) for Dn, we get

q ¼ D22

�
n2 � 1

�
R3

�
1þ l2nD22

Sy

�þ p4R

n2l4ðn2 � 1Þ
�
l2n
B11

þ p2

l2B44

� (11.182)

The critical pressure can be found by minimization of the right-hand part of Eq. (11.182) with respect
to n (ln ¼ n=R).

The calculated pressure, Eq. (11.182), allows for transverse shear deformation which is important
only for sandwich shells with lightweight cores. If this is not the case, we can take Sy/N and reduce
Eq. (11.182) to
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q ¼ D22

R3

�
n2 � 1

�þ p4R

n2l4ðn2 � 1Þ
�
l2n
B11

þ p2

l2B44

� (11.183)

This result can be further simplified. It follows from direct calculations that the critical load corre-
sponding to the buckling mode shown in Fig. 11.29 is practically not affected by in-plane shear
deformation. Neglecting this deformation, i.e., taking B44/N in Eq. (11.183), we have

q ¼ D22

R3

�
n2 � 1

�þ p4B11R
3

l4n4ðn2 � 1Þ (11.184)

To obtain the analytical result, it is usually assumed that n2[1 in Eq. (11.184). Then, neglecting unity
in comparison with n2, we find

q ¼ D22n
2

R3
þ p4B11R

3

l4n6

Applying the minimum condition, i.e., taking vq=vn2 ¼ 0, we finally arrive at

n2 ¼ pR

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B11R

2

D22

4

s
; qcr ¼ 4p

lR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11D

3
22

27R2

4

s
(11.185)

11.6.2 Infinitely long shells

The critical pressure for an infinitely long cylindrical shell follows from Eq. (11.182) if we take
l/N, i.e.,

q ¼ D22

�
n2 � 1

�
R3

�
1þ l2nD22

Sy

�

The minimum q-value corresponds to the minimum n-value which is equal to 2. Then,

qcr ¼ 3D22

R3

�
1þ 4D22

R2Sy

�

Neglecting transverse shear deformation, i.e., taking Sy/N, we arrive at the classical result

qcr ¼ 3D22

R3

For homogeneous shells,

D22 ¼ Eyh
3

12
�
1� vxyvyx

�
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and

qcr ¼ Eyh
3

4R3
�
1� vxyvyx

� (11.186)

The buckling mode is shown in Fig. 11.30.

11.6.3 Hydrostatic pressure

In the case of hydrostatic external pressure q, the shell is loaded with membrane axial and circum-
ferential forces which follow from Eqs. (11.125), i.e.,

Nx ¼ �1

2
qR ; Ny ¼ �qR (11.187)

To evaluate the critical loads, consider an infinitely long homogeneous shell, for which Eqs. (11.137)
and (11.186) yield the following critical stresses:

scrx ¼ Tcr
s

h
¼ h

R
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEy

1� vxyvyx

s
; scry ¼ qcrR

h
¼ Eyh

2

4R2
�
1� vxyvyx

�
As can be seen, the ratio scry =s

cr
x is proportional to h2=R2, which means that scry is much less than scrx .

This difference explains the effect of shell shape imperfections on the critical load in axial
compression. Indeed, if the shell has some initial deflection directed inwardly in the shell, the axial
forces T (see Fig. 11.24) are statically equivalent, in accordance with Eq. (11.154), to the external
pressure under which the critical stress is very low, and significantly reduces the axial critical stress.
This analysis allows us to conclude that any shape imperfections in the shell geometry affect the
critical value of the external pressure much less than the critical axial load. This conclusion is
confirmed by experimental critical pressures, which agree with the theoretical results much better than
those for the axial critical forces.

crq

FIGURE 11.30

The buckling mode of an infinitely long shell under the action of external pressure.
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Thus, we can assume that under hydrostatic loading the buckling mode is the same as for the case of
lateral pressure (see Fig. 11.29). For the prebuckling stress resultants given by Eqs. (11.187),
Eq. (11.10) yields

p ¼ �qR

 
1

2

v2w

vx2
þ 1

R

vv
vy

� v2w

vy2

!

and the buckling equation, Eq. (11.180), is generalized as 
1� qRn2

2B44

!
wIV
n þ

"
qRn4

2R2B11
þ n2 � 1

B44
l2nðqR� DnÞ

#
w00
n �

l4n
B11

�
n2 � 1

�ðqR� DnÞwn ¼ 0

For a simply supported shell, the hydrostatic pressure can be found from the following equation:

qR

�
p2R2

2l2
þ n2 � 1

�
¼ D22

�
n2 � 1

�2
R2

�
1þ l2n

D22

Sy

�þ p4R2

n2l4
�
l2n
B11

þ p2

B44l2

�

The critical pressure can be determined by minimizing q with respect to n ¼ 2; 3; 4.. Neglecting the
shear deformation, i.e., taking Sy/N and B44/N, we get the following result generalizing
Eq. (11.184):

q ¼ 1

p2R2

2l2
þ n2 � 1

"
D22

R3

�
n2 � 1

�2 þ p4R3B11

n4l4

#
(11.188)

As previously, neglect unity in comparison with n2 and substitute n2 from Eqs. (11.185) assuming that
the axial force does not change n, and it can be taken from the solution for the lateral pressure case.
Then, Eq. (11.188) yields the following approximate equation for the critical hydrostatic pressure:

qhcr ¼
qcr

1þ pR

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22

3B11R2

4

r

Here, qcr is specified by Eqs. (11.185). As can be seen, an additional axial force reduces the critical
pressure.
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Optimal composite structures 12
Advanced composite materials are characterized by their high specific strength and stiffness and, in
combination with automatic manufacturing processes, make it possible to fabricate composite
structures with high levels of weight and cost efficiency. The replacement of metal alloys by composite
materials, in general, reduces a structure’s mass by 20–30%. However, in some special cases, the
number of which progressively increases, the combination of material directional properties with
design concepts utilizing these properties, being supported by the advantages of modern composite
technology, provides a major improvement in structural performance. Such efficiency is demonstrated
by composite structures of uniform strength in which the load is taken by uniformly stressed fibers.

12.1 OPTIMAL FIBROUS STRUCTURES
To introduce composite structures of uniform strength, consider a laminated panel shown in Fig. 12.1
and loaded with in-plane forces Nx;Ny, and Nxy uniformly distributed along the panel edges. Let the
laminate consist of k unidirectional composite layers characterized with thicknesses hi and fiber
orientation angles fi ði ¼ 1; 2; 3; .; kÞ. For a plane stress state, the stacking sequence of the
layers is not important.

To derive the optimality criterion specifying the best structure for the panel in Fig. 12.1, we first use
the simplest monotropic model of a unidirectional composite (see Section 3.3) assuming that the forces
Nx; Ny, and Nxy are taken by the fibers only. For a design analysis, this is a reasonable approach

because the transverse and shear strengths of a unidirectional composite ply (stresses s2 and s12) are
much lower than the ply strength in the longitudinal direction (stress s1). Using Eqs. (4.68) in which
we put s2 ¼ 0 and s12 ¼ 0, we can write the following equilibrium equations relating the applied

forces to the stresses s
ðiÞ
1 in the direction of the fibers of the ith layer:

Nx ¼
Xk
i¼1

sðiÞx hi ¼
Xk
i¼1

s
ðiÞ
1 hi cos

2 fi;

Ny ¼
Xk
i¼1

sðiÞy hi ¼
Xk
i¼1

s
ðiÞ
1 hi sin

2 fi; (12.1)

Nxy ¼
Xk
i¼1

sðiÞxy hi ¼
Xk
i¼1

s
ðiÞ
1 hi sin fi cos fi
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The strain ε
ðiÞ
1 in the fiber direction in the ith layer can be expressed in terms of strains in coordinates

x, y with the aid of the first equation of Eqs. (4.69). Using the constitutive equations for the monotropic
model of a ply, Eqs. (3.61), we arrive at

s
ðiÞ
1 ¼ E1ε

ðiÞ
1 ¼ E1ðεx cos2 fi þ εy sin

2 fi þ gxy sin fi cos fiÞ (12.2)

where it is assumed that the layers are made of one and the same material.
Consider the design problem and stipulate, for example, that the best structure for the laminate is

that which provides the minimum total thickness

h ¼
Xk
i¼1

hi (12.3)

for the given combination of loads. Thus, we should minimize the laminate thickness in Eq. (12.3)
subject to the constraints imposed by Eqs. (12.1) and (12.2). To solve this problem, we can use the
method of Lagrange multipliers, according to which we should introduce multipliers l and minimize
the following augmented function:

L ¼ Pk
i¼1

hi þ lx

�
Nx �

Pk
i¼1

s
ðiÞ
1 hi cos

2 fi

�
þ ly

�
Ny �

Pk
i¼1

s
ðiÞ
1 hi sin

2 fi

�

þ lxy

�
Nxy �

Pk
i¼1

s
ðiÞ
1 hi sin fi cos fi

�

þPk
i¼1

li

h
s
ðiÞ
1 � E1

�
εx cos

2 fi þ εy sin
2 fi þ gxy sin fi cos fi

�i
with respect to the design variables hi;fi and multipliers l, i.e.,

vL

vhi
¼ 0;

vL

vfi
¼ 0;

vL

vlx
¼ vL

vly
¼ vL

vlxy
¼ vL

vli
¼ 0 (12.4)

Minimization with respect to l gives, obviously, the constraints in Eqs. (12.1) and (12.2), whereas the
first two of Eqs. (12.4) yield

s
ðiÞ
1 ðlx cos2fi þ ly sin

2fi þ lxy sin fi cos fiÞ ¼ 1 (12.5)
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his
ðiÞ
1

h
ðly � lxÞ sin 2fi þ lxy cos 2fi

i
¼ E1li

h
ðεy � εxÞ sin 2fi þ εxy cos 2fi

i
(12.6)

The solution of Eq. (12.6) is

lx ¼ E1εx
li

his
ðiÞ
1

; ly ¼ E1εy
li

his
ðiÞ
1

; lxy ¼ E1gxy
li

his
ðiÞ
1

These equations allow us to conclude that

li

his
ðiÞ
1

¼ lx

E1εx
¼ ly

E1εy
¼ lxy

E1gxy
¼ 1

c2

where c is a constant. Substituting lx; ly, and lxy from these equations into Eq. (12.5) and taking into
account Eq. (12.2), we have �

s
ðiÞ
1

�2 ¼ c2 (12.7)

This equation has two solutions: s
ðiÞ
1 ¼ �c.

Consider the first case, i.e., s
ðiÞ
1 ¼ c. Adding the first two equations of Eqs. (12.1) and taking into

account Eq. (12.9), we have

h ¼ 1

c
ðNx þ NyÞ

Obviously, the minimum value of h corresponds to c ¼ s1, where s1 is the ultimate stress. Thus, the
total thickness of the optimal plate is

h ¼ 1

s1
ðNx þ NyÞ (12.8)

Taking now s
ðiÞ
1 ¼ s1 in Eqs. (12.1) and eliminating s1 with the aid of Eq. (12.8), we arrive at the

following two optimality conditions in terms of the design variables and acting forces:Xk
i¼1

hi
�
Nx sin

2fi � Ny cos
2fi

� ¼ 0 (12.9)

Xk
i¼1

hi
��
Nx þ Ny

�
sin fi cos fi � Nxy

	 ¼ 0 (12.10)

Thus, 2k design variables, i.e., k values of hi and k values of fi, should satisfy these three
equations, Eqs. (12.8)–(12.10). All possible optimal laminates have the same total thickness in
Eq. (12.8). As follows from Eq. (12.2), the condition s

ðiÞ
1 ¼ s1 is valid, in the general case, if εx ¼

εy ¼ ε and gxy ¼ 0. Applying Eqs. (4.69) to determine the strains in the principal material coor-
dinates of the layers, we arrive at the following result: ε1 ¼ ε2 ¼ ε and g12 ¼ 0. This means that
the optimal laminate is the structure of uniform stress and strain in which the fibers in each layer
coincide with the directions of principal strains. An important feature of the optimal laminate
follows from the last equation of Eqs. (4.168) which yields f0

i ¼ fi. Thus, the optimal angles do
not change under loading.
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Introducing the new variables

hi ¼ hi
h
; ny ¼ Ny

Nx
; nxy ¼ Nxy

Nx
; l ¼ 1

1þ ny

and taking into account that

Xk
i¼1

hi ¼ 1 (12.11)

we can transform Eqs. (12.8)–(12.10) that specify the structural parameters of the optimal laminate to
the following final form

h ¼ Nx

ls1
(12.12)

Xk
i¼1

hi cos
2fi ¼ l;

Xk
i¼1

hi sin
2fi ¼ lny (12.13)

Xk
i¼1

hi sin fi cos fi ¼ lnxy (12.14)

For uniaxial tension in the x-direction, we have ny ¼ nxy ¼ 0; l ¼ 1. Then, Eqs. (12.13) yield fi ¼ 0
(i ¼ 1, 2, 3,., k) and Eq. (12.12) gives the obvious result h ¼ Nx=s.

To describe tension in two orthogonal directions x and y, we should put nxy ¼ 0. It
follows from Eq. (12.14) that the laminate structure in this case should be in-plane symmetric,
i.e., each ply with angle þfi should be accompanied by a ply of the same thickness but with
angle �fi.

Consider, for example, uniform biaxial tension such that Nx ¼ Ny ¼ N , Nxy ¼ 0, ny ¼ 1, nxy ¼ 0,
and l ¼ 0:5. For this case, Eqs. (12.12) and (12.13) yield

h ¼ 2N

s1
;
Xk
i¼1

hi cos2fi ¼ 0 (12.15)

The natural structure for this case corresponds to the cross-ply laminate for which k ¼ 2, f1 ¼ 0�, and
f2 ¼ 90� (Fig. 12.2a). Then, the second equation of Eqs. (12.15) gives the evident result h1 ¼ h2.

Consider the first equation, from which it follows that the total thickness of the optimal laminate is
twice the thickness of a metal plate of the same strength under the same loading conditions. This result
is expected because, in contrast to isotropic materials, the monotropic layer can work in only one
direction, i.e., along the fibers. So, we need to have the 0� layer to take Nx ¼ N and the same, but 90�,
layer to take Ny ¼ N. From this we can conclude that the directional character of a composite ply’s
stiffness and strength is actually a material shortcoming rather than an advantage. The real advantages
of composite materials are associated with their high specific strength provided by thin fibers (see
Section 3.2.1), and if we had isotropic materials with such high specific strength, no composites would
be developed and implemented.

Return now to the second equation of Eqs. (12.15) which shows that, in addition to a cross-ply
laminate, there exists an infinite number of optimal structures. For example, this equation is
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satisfied for a symmetric �45� angle-ply laminate (Fig. 12.2b). Moreover, all the quasi-isotropic
laminates discussed in Section 5.7 and listed in Table 5.3 satisfy the optimality conditions for
uniform tension.

A loading case, which is important for actual applications, corresponds to a cylindrical pressure
vessel, as considered in Section 6.3. The winding of such a vessel is shown in Fig. 7.63. For this type of
loading,

Nx ¼ 1

2
pR; Ny ¼ pR; Nxy ¼ 0

where Nx and Ny are the axial and circumferential stress resultants, respectively, p is the internal
pressure, and R is the cylinder radius. Thus, we have ny ¼ 2 and l ¼ 1=3. Since Nxy ¼ 0, the structure
of the laminate is symmetric with respect to the cylinder meridian, and Eqs. (12.12)–(12.14) can be
reduced to

h ¼ 3pR

2s1
(12.16)

Xk
i¼1

hi
�
3 cos2fi � 1

� ¼ 0 (12.17)

Comparing Eq. (12.16) with the corresponding expression for the thickness of a metal pressure vessel,
which is hm ¼ pR=s, we can see that the thickness of an optimal composite vessel is 1.5 times greater
than hm. Nevertheless, because of their higher strength and lower density, composite pressure vessels are
significantly lighter than metal ones. To show this, consider pressure vessels with radius R ¼ 100 mm
made of different materials and designed for a burst pressure p ¼ 20 MPa. The results are listed in
Table 12.1. As can be seen, the thickness of a glass-epoxy vessel is the same as that for a steel vessel,
because the factor 1.5 in Eq. (12.16) is compensated by the composite’s strength which is 1.5 times
higher than the strength of steel. However, the density of a glass-epoxy composite is much lower than
the density of steel, and as a result, the mass of unit surface area of the composite vessel is only 27% of
the corresponding value for a steel vessel. The most promising materials for pressure vessels are aramid
and carbon composites, which have the highest specific tensile strength (see Table 12.1).

(a) (b)

FIGURE 12.2

Cross-ply (a) and �45� angle-ply (b) optimal structures for uniform tension.

12.1 Optimal fibrous structures 749

www.EngineeringEBooksPdf.com



Consider Eq. (12.17) which shows that there can exist an infinite number of optimal laminates with
one and the same thickness specified by Eq. (12.16).

The simplest is a cross-ply laminate having k ¼ 2, f1 ¼ 0�, h1 ¼ h0, f2 ¼ 90�, and h2 ¼ h90. For
this structure, Eq. (12.17) yields h90 ¼ 2h0. This result seems obvious because Ny=Nx ¼ 2. For
symmetric �f angle-ply laminate, we should take k ¼ 2, h1 ¼ h2 ¼ hf=2, f1 ¼ þf, and f2 ¼ �f.
Then,

cos2f ¼ 1

3
; f ¼ f0 ¼ 54:44�

As a rule, helical plies are combined with circumferential plies as in Fig. 7.63. For this case, k ¼ 3,
h1 ¼ h2 ¼ hf=2, f1 ¼ �f2 ¼ f, h3 ¼ h90, f3 ¼ 90�, and Eq. (12.17) gives

h90
hf

¼ 3 cos2f� 1 (12.18)

Since the thickness cannot be negative, this equation is valid for 0 � f � f0. For f0 � f � 90�, the
helical layers should be combined with an axial one, i.e., we should put k ¼ 3, h1 ¼ h2 ¼ hf=2,
f1 ¼ �f2 ¼ f, h3 ¼ h0, and f3 ¼ 0�. Then,

h0
hf

¼ 1

2
ð1� 3 cos2fÞ (12.19)

The dependencies corresponding to Eqs. (12.18) and (12.19) are presented in Fig. 12.3. As an example,
consider a filament-wound pressure vessel whose parameters are listed in Table 6.1. The cylindrical
part of the vessel shown in Figs. 4.14 and 6.22 consists of a �36� angle-ply helical layer and
a circumferential layer whose thicknesses h1 ¼ hf and h2 ¼ h90 are presented in Table 6.1. The ratio
h90=hf for two experimental vessels is 0.97 and 1.01, whereas Eq. (12.18) gives for this case h90=hf ¼
0:96 which shows that both vessels are close to optimal structures.

TABLE 12.1 Parameters of Metal and Composite Pressure Vessels.

Parameter

Material

Steel Aluminum Titanium
Glass-
Epoxy

Carbon-
Epoxy

Aramid-
Epoxy

Strength,
s; s1 (MPa)

1200 500 900 1800 2000 2500

Density,
r (g/cm3)

7.85 2.7 4.5 2.1 1.55 1.32

Thickness of the
vessel,
hm; h (mm)

1.67 4.0 2.22 1.67 1.5 1.2

Mass of the unit
surface area,
rh ( kg/m2)

13.11 10.8 10.0 3.51 2.32 1.58
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Laminates reinforced with uniformly stressed fibers can exist provided some restrictions are
imposed on the acting forces Nx; Ny, and Nxy. Such restrictions follow from Eqs. (12.13) and (12.14)
under the conditions that hi � 0, 0 � sin2fi, and cos2fi � 1 and have the form

0 � l � 1; �1

2
� lnxy � 1

2

In particular, Eqs. (12.13) and (12.14) do not describe the case of pure shear for which only the shear
stress resultant, Nxy, is not zero. This is quite reasonable because the strength condition s

ðiÞ
1 ¼ s1 under

which Eqs. (12.12)–(12.14) are derived is not valid for shear inducing tension and compression in
angle-ply layers.

To study in-plane shear of the laminate, we should use both solutions of Eq. (12.7) and assume that
for some layers, e.g., with i ¼ 1, 2, 3, ., n – 1, s

ðiÞ
1 ¼ s1 whereas for the other layers (i ¼ n, n þ 1,

n þ 2, ., k), s
ðiÞ
1 ¼ �s1. Then, Eqs. (12.1) can be reduced to the following form:

Nx þ Ny ¼ s1
�
hþ � h�

�
(12.20)

Nx � Ny ¼ s1

 Xn�1

i¼1

hþi cos2fi �
Xk
i¼n

h�i cos2fi

!
(12.21)

Nxy ¼ 1

2
s1

 Xn�1

i¼1

hþi sin 2fi �
Xk
i¼n

h�i sin 2fi

!
(12.22)

0
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FIGURE 12.3

Optimal thickness ratios for a cylindrical pressure vessel consisting of �f helical plies combined with circum-

ferential ð90�Þ or axialð0�Þ plies.
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where

hþ ¼
Xn�1

i¼1

hþi ; h� ¼
Xk
i¼n

h�i

are the total thicknesses of the plies with tensile and compressive stresses in the fibers, respectively.
For the case of pure shear ðNx ¼ Ny ¼ 0Þ, Eqs. (12.20) and (12.21) yield hþ ¼ h� and fi ¼ �45�.

Then, assuming that fi ¼ þ45� for the layers with hi ¼ hþi , whereas fi ¼ �45� for the layers with
hi ¼ h�i , we get from Eq. (12.22)

h ¼ hþ þ h� ¼ 2Nxy

s1

The optimal laminate, as follows from the foregoing derivation, corresponds to a �45� angle-ply
structure as shown in Fig. 12.2b.

12.2 COMPOSITE LAMINATES OF UNIFORM STRENGTH
Consider again the panel in Fig. 12.1 and assume that the unidirectional plies or fabric layers that form
the panel are orthotropic, i.e., in contrast to the previous section, we do not now neglect stresses s2 and
s12 in comparison with s1 (see Fig. 3.29). Then, the constitutive equations for the panel in a plane
stress state are specified by the first three equations in Eqs. (5.35), i.e.,

Nx ¼ B11εx þ B12εy þ B14gxy

Ny ¼ B21εx þ B22εy þ B24gxy (12.23)

Nxy ¼ B41εx þ B42εy þ B44gxy

where, in accordance with Eqs. (4.72), (5.28), and (5.42),

B11 ¼
Xk
i¼1

hi

�
E
ðiÞ
1 cos4fi þ E

ðiÞ
2 sin4fi þ 2E

ðiÞ
12 sin2fi cos

2fi

�

B12 ¼ B21 ¼
Xk
i¼1

hi

h
E
ðiÞ
1 n

ðiÞ
12 þ

�
E
ðiÞ
1 þ E

ðiÞ
2 � 2E

ðiÞ
12

�
sin2fi cos

2fi

i

B22 ¼
Xk
i¼1

hi

�
E
ðiÞ
1 sin4fi þ E

ðiÞ
2 cos4fi þ 2E

ðiÞ
12 sin2fi cos

2fi

�
(12.24)

B14 ¼ B41 ¼
Xk
i¼1

hi

�
E
ðiÞ
1 cos2fi � E

ðiÞ
2 sin2fi � E

ðiÞ
12 cos2fi

�
sin fi cos fi

B24 ¼ B42 ¼
Xk
i¼1

hi

�
E
ðiÞ
1 sin2fi � E

ðiÞ
2 cos2fi þ E

ðiÞ
12 cos2fi

�
sin fi cos fi
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B44 ¼
Xk
i¼1

hi

h�
E
ðiÞ
1 þ E

ðiÞ
2 � 2E

ðiÞ
1 n

ðiÞ
12

�
sin2fi cos

2fi þ G
ðiÞ
12 cos

22fi

i

and E
ðiÞ
1;2 ¼

E
ðiÞ
1;2

1� n
ðiÞ
12n

ðiÞ
21

; E
ðiÞ
12 ¼ E

ðiÞ
1 n

ðiÞ
12 þ 2G

ðiÞ
12.

In the general case, the panel can consist of layers made from different composite materials.
Using the optimality criterion developed in the previous section for fibrous structures, we consider
that the fibers in each layer are directed along the lines of principal strains, or principal stresses,

because sðiÞ12 ¼ G12g
ðiÞ
12 for an orthotropic layer and the condition g

ðiÞ
12 ¼ 0 is equivalent to the

condition sðiÞ12 ¼ 0 (see Section 2.4). Using the third equation in Eqs. (4.69), we can write these

conditions as

2
�
εy � εx

�
sin fi cos fi þ gxy cos2fi ¼ 0 (12.25)

This equation can be satisfied for all the layers if we take

εx ¼ εy ¼ ε; gxy ¼ 0 (12.26)

Then, Eqs. (12.23) yield

Nx ¼
�
B11 þ B12

�
ε; Ny ¼

�
B21 þ B22

�
ε; Nxy ¼

�
B41 þ B42

�
ε

These equations allow us to find the strain, i.e.,

ε ¼ Nx þ Ny

B11 þ 2B12 þ B22
(12.27)

and to write two relationships specifying the optimal structural parameters of the laminate:�
B11 þ B12

�
Ny �

�
B21 þ B22

�
Nx ¼ 0�

B41 þ B42

��
Nx þ Ny

�� �B11 þ 2B12 þ B22

�
Nxy ¼ 0

Substitution of Bmn from Eqs. (12.24) results in the following explicit form of these conditions:

Pk
i¼1

hi

h
E
ðiÞ
1

�
1þ n

ðiÞ
12

��
Nx sin

2fi � Ny cos
2fi

�
þ E

ðiÞ
2

�
1þ n

ðiÞ
21

��
Nx cos

2fi � Ny sin
2fi

�i
¼ 0

(12.28)

Pk
i¼1

hi

n�
Nx þ Ny

��
E
ðiÞ
1 � E

ðiÞ
2

�
sin fi cos fi � Nxy

h
E
ðiÞ
1

�
1þ n

ðiÞ
12

�
þ E

ðiÞ
2

�
1þ n

ðiÞ
21

�io
¼ 0

To determine the stresses that act in the optimal laminate, we use Eqs. (4.69) and (12.26) that specify
the strains in the principal material coordinates of the layers as ε1 ¼ ε2 ¼ ε; g12 ¼ 0. Applying the
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constitutive equations, Eqs. (4.56), substituting ε from Eq. (12.27), and writing the result in explicit
form with the aid of Eqs. (12.24), we arrive at

s
ðiÞ
1 ¼ E

ðiÞ
1

Si

�
1þ n

ðiÞ
12

��
Nx þ Ny

�

s
ðiÞ
2 ¼ E

ðiÞ
2

Si

�
1þ n

ðiÞ
21

��
Nx þ Ny

�

sðiÞ12 ¼ 0 (12.29)

where

Si ¼
Xk
i¼1

hi

h
E
ðiÞ
1

�
1þ n

ðiÞ
12

�
þ E

ðiÞ
2

�
1þ n

ðiÞ
21

�i

is the laminate stiffness coefficient.
If all the layers are made from the same material, Eqs. (12.28) and (12.29) are simplified as

Xk
i¼1

hi
�
Nx sin

2fi � Ny cos
2fi þ n

�
Nx cos

2fi � Ny sin
2fi

�	 ¼ 0

Xk
i¼1

hi
�
m
�
Nx þ Ny

�
sin fi cos fi �

�
1þ n

�
Nxy

	 ¼ 0

(12.30)

s
ðiÞ
1 ¼ s1 ¼ Nx þ Ny

hð1þ nÞ; s
ðiÞ
2 ¼ s2 ¼

n
�
Nx þ Ny

�
hð1þ nÞ ; sðiÞ12 ¼ 0 (12.31)

in which

n ¼ E2ð1þ n21Þ
E1ð1þ n12Þ; m ¼ E1 � E2

E1ð1þ n12Þ; h ¼
Xk
i¼1

hi

Laminates of uniform strength exist under the following restrictions:

n

1þ n
� Nx

Nx þ Ny
� 1

1þ n
;





 Nxy

Nx þ Ny





 � 1� n

2ð1þ nÞ
For the monotropic model of a unidirectional ply considered in the previous section, n ¼ 0,m ¼ 1, and
Eqs. (12.30) reduce to Eqs. (12.9) and (12.10).

To determine the thickness of the optimal laminate, we should use Eqs. (12.31) in conjunction
with one of the strength criteria discussed in Chapter 6. For the simplest case, using the maximum
stress criterion in Eqs. (6.2), the thickness of the laminate can be found from the following conditions:
s1 ¼ s1 or s2 ¼ s2, so that

h1 ¼ Nx þ Ny

ð1þ nÞs1; h2 ¼
n
�
Nx þ Ny

�
ð1þ nÞs2 (12.32)
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Obviously, for the optimal structure, we would like to have h1 ¼ h2. However, this can happen only if
material characteristics meet the following condition:

s2

s1
¼ n ¼ E2ð1þ n21Þ

E1ð1þ n12Þ (12.33)

The results of calculations for typical materials whose properties are listed in Tables 3.5 and 4.6 are
presented in Table 12.2. As can be seen, Eq. (12.33) is approximately valid for fabric composites
whose stiffness and strength in the warp and fill directions (see Section 4.7) are controlled by fibers
of the same type. However, for unidirectional polymeric and metal matrix composites, whose
longitudinal stiffness and strength are governed by the fibers and whose transverse characteristics
are determined by the matrix properties, s2=s1 << n. In accordance with Eqs. (12.32), this means
that h1 << h2, and the ratio h2=h1 varies from 12.7 for glass-epoxy to 2.04 for boron-epoxy
composites. Now, return to the discussion presented in Section 4.4.2 from which it follows that
in laminated composites transverse stresses s2 reaching their ultimate value, s2, cause cracks in the
matrix, which do not result in failure of the laminate whose strength is controlled by the fibers. To
describe such a laminate with cracks in the matrix (provided the cracks are allowable for the
structure under design), we can use the monotropic model of the ply and, hence, the results of the
optimization presented in Section 12.1.

Consider again the optimality condition Eq. (12.25). As can be seen, this equation can be satisfied
not only by strains in Eqs. (12.26), but also if we take

tan 2fi ¼
gxy

εx � εy
(12.34)

Since the left-hand side of this equation is a periodic function with period p, Eq. (12.34) determines
two angles, i.e.,

f1 ¼ f ¼ 1

2
tan�1 gxy

εx � εy
; f2 ¼

p

2
þ f (12.35)

Thus, the optimal laminate consists of two layers, and the fibers in both layers are directed along the
lines of principal stresses. Suppose that the layers are made of the same composite material and have
the same thickness, i.e., h1 ¼ h2 ¼ h=2, where h is the thickness of the laminate. Then, using
Eqs. (12.24) and (12.35) and, we can show that B11 ¼ B22 and B24 ¼ �B14 for this laminate. After
some transformation involving elimination of g0

xy from the first two equations of Eqs. (12.23) with the
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TABLE 12.2 Parameters of Typical Advanced Composites.

Parameter

Fabric-Epoxy Composites Unidirectional-Epoxy Composites

Boron-AlGlass Carbon Aramid Glass Carbon Aramid Boron

s2=s1 0.99 0.99 0.83 0.022 0.025 0.012 0.054 0.108

n 0.85 1.0 1.0 0.28 0.1 0.072 0.11 0.7
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aid of Eq. (12.34) and similar transformation of the third equation from which ε0x and ε
0
y are eliminated,

using again Eq. (12.34), we get

Nx ¼ ðB11 þ B14 tan 2fÞε0x þ ðB12 � B14 tan 2fÞε0y
Ny ¼ ðB12 � B14 tan 2fÞε0x þ ðB11 þ B14 tan 2fÞε0y
Nxy ¼

�
B44 þ B14cot2f

�
g0xy

Upon substitution of coefficients Bmn from Eqs. (12.24) we arrive at

Nx ¼ h

2

�
ðE1 þ E2Þε0x þ ðE1n12 þ E2n21Þε0y

�

Ny ¼ h

2

�
ðE1n12 þ E2n21Þε0x þ ðE1 þ E2Þε0y

�

Nxy ¼ h

4

�
E1ð1� n12Þ þ E2ð1� n21Þ

�
g0xy

Introducing average stresses sx ¼ Nx=h, sy ¼ Ny=h, and sxy ¼ Nxy=h and solving these equations for
strains, we have

ε
0
x ¼

1

E
ðsx � nsyÞ; ε

0
y ¼

1

E
ðsy � nsxÞ; g0xy ¼

sxy
G

(12.36)

where

E ¼ 1

2ðE1 þ E2Þ
�
2E1E2 þ

E2
1

�
1� n212

�þ E2
2

�
1� n221

�
1� n12n21

�
(12.37)

n ¼ E1n12 þ E2n21

E1 þ E2
; G ¼ E

2ð1þ nÞ
Changing strains for stresses in Eqs. (12.35), we can write the expression for the optimal orientation
angle as

f ¼ 1

2
tan�1 2 sxy

sx � sy
(12.38)

It follows from Eqs. (12.36) that a laminate consisting of two layers reinforced along the directions of
principal stresses behaves like an isotropic layer, and Eqs. (12.37) specify the elastic constants of
the corresponding isotropic material. For typical advanced composites, these constants are listed in
Table 12.3 (the properties of unidirectional plies are taken from Table 3.5). Comparing the elastic
moduli of the optimal laminates with those for quasi-isotropic materials (see Table 5.4), we can see
that for polymeric composites the characteristics of the first group of materials are about 40% higher
than those for the second group. However, it should be emphasized that whereas the properties of
quasi-isotropic laminates are universal material constants, the optimal laminates demonstrate char-
acteristics shown in Table 12.3 only if the orientation angles of the fibers are found from Eqs. (12.35)
or (12.38) and correspond to a particular distribution of stresses sx; sy; and sxy.

It can be noted from Table 12.3 that the modulus of a carbon-epoxy laminate is close to the
modulus of aluminum, whereas the density of the composite material is lower by a factor of 1.7. This is
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the theoretical weight saving factor that can be expected if we change from aluminum to carbon-epoxy
composite in a thin-walled structure. Since the stiffness of both materials is approximately the same, to
find the optimal orientation angles of the fibers, we can substitute in Eq. (12.38) the stresses acting in
the aluminum prototype structure. A composite structure designed in this way will have approximately
the same stiffness as the prototype structure and, as a rule, higher strength because carbon composites
are stronger than aluminum alloys.

To evaluate the strength of the optimal laminate, we should substitute strains from Eqs. (12.36) into
Eqs. (4.69) and thence, these strains in the principal material coordinates of the layers, into constitutive
equations, Eqs. (4.56), that specify the stresses s1 and s2ðs12 ¼ 0Þ acting in the layers. Applying the
appropriate failure criterion (see Chapter 6), we can evaluate the laminate strength.

Comparing Tables 1.1 and 12.3, we can see that boron-epoxy optimal laminates have approxi-
mately the same stiffness as titanium (but are lighter by a factor of about 2). Boron-aluminum can be
used to replace steel with a weight saving factor of about 3.

For preliminary evaluation, we can use a monotropic model of unidirectional plies neglecting the
stiffness and load-carrying capacity of the matrix. Then, Eqs. (12.37) take the following simple form:

E ¼ E1

2
; n ¼ 0; G ¼ E1

4
(12.39)

As an example, consider an aluminum shear web with thickness h ¼ 2 mm, elastic constants Ea ¼ 72
GPa and na ¼ 0:3, and density ra ¼ 2:7 g/cm3. This panel is loaded with shear stress s. Its shear
stiffness is Ba

44 ¼ 57:6 GPa,mm and the mass of a unit surface is ma ¼ 5:4 kg/m2 . For the composite
panel, taking sx ¼ sy ¼ 0 in Eq. (12.38) we have f ¼ 45�. Thus, the composite panel consists ofþ45�
and �45� unidirectional layers of the same thickness. The total thickness of the laminate is h¼ 2 mm,
i.e., the same as for an aluminum panel. Substituting E1 ¼ 140 GPa and taking into account that
r ¼ 1:55 g/cm3 for a carbon-epoxy composite, which is chosen to substitute for aluminum, we get
Bc
44 ¼ 70 GPa,mm and mc ¼ 3:1 kg/m3. The stresses acting in the fiber directions of the composite

plies are sc1 ¼ �2s. Thus, the composite panel has a 21.5% higher stiffness and its mass is only 57.4%
of the mass of a metal panel. The composite panel also has higher strength because the longitudinal
strength of unidirectional carbon-epoxy composite under tension and compression is more than twice
the shear strength of aluminum.

The potential performance of the composite structure under discussion can be enhanced if we use
different materials in the layers with angles f1 and f2 specified by Eqs. (12.35). According to the
derivation of Obraztsov and Vasiliev (1989), the ratio of the layers’ thicknesses is

h2
h1

¼
�E
ð1Þ
1 � �E

ð1Þ
2

�E
ð2Þ
1 � �E

ð2Þ
2

TABLE 12.3 Effective Elastic Constants of an Optimal Laminate.

Property
Glass-
Epoxy

Carbon-
Epoxy

Aramid-
Epoxy

Boron-
Epoxy

Boron-
Al

Carbon-
Carbon Al2O2-Al

Elastic modulus,
E (GPa)

36.9 75.9 50.3 114.8 201.1 95.2 205.4

Poisson’s ratio, v 0.053 0.039 0.035 0.035 0.21 0.06 0.176
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and the elastic constants in Eqs. (12.37) are generalized as

E ¼ E

1� n2
¼

�E
ð1Þ
1

�E
ð2Þ
1 � �E

ð1Þ
2

�E
ð2Þ
2

�E
ð1Þ
1 þ �E

ð2Þ
1 � �E

ð1Þ
2 � �E

ð2Þ
2

n ¼
�E
ð1Þ
1

�E
ð2Þ
1

�
n
ð1Þ
12 þ n

ð2Þ
12

�
� �E

ð1Þ
2

�E
ð2Þ
2

�
n
ð1Þ
21 þ n

ð2Þ
21

�
�E
ð1Þ
1 E

ð2Þ
1 � E

ð1Þ
2 E

ð2Þ
2

Superscripts 1 and 2 correspond to layers with orientation angles f1 and f2, respectively.

12.3 OPTIMAL DESIGN OF LAMINATES
The foregoing sections of this chapter are concerned with composite laminates of uniform
strength which can exist under special loading conditions only. In the general case, the optimal
structure can be found using numerical methods. Optimization of composite materials and
structures using analytical and numerical methods are discussed by Obraztsov et al. (1977),
Obraztsov and Vasiliev (1989), Teters et al. (1978), Tsai (1987), Banichuk et al. (1988),
Narusberg and Teters (1988), Kanibolotsky and Urzhumtsev (1989), Vasiliev and Gurdal (1999),
and Gurdal et al. (1999).

In their application to laminated composite structures, the numerical methods of optimization,
which have been widely developed and used, encounter serious problems. To demonstrate the
nature of these problems, consider the laminate in the general plane stress state shown in Fig. 12.1.
The laminate consists of k layers with unknown thicknesses hi and orientation angles fi

(i ¼ 1; 2; 3 . k). Thus, we have 2k unknown structural parameters and, moreover, the number of
layers k is not known either. As follows from Section 12.1, the optimal structure of a laminated
composite is not unique. For example, two equations, Eqs. (12.9) and (12.10), link 2k unknown
structural parameters hi and fi and, being satisfied, provide an infinite number of optimal laminates
with one and the same total thickness h. Applying a numerical method of optimization, we use an
iterative procedure starting from an initial approximation of the design item and improving it by
the process of optimization. For the composite laminate with multiple optimal solutions, this
process will converge to an occasional optimal design dependent on the initial approximation. The
complete set of optimal solutions can be found by direct sorting of initial approximations;
however, sorting of the design variables, i.e., thicknesses hi and angles fi, does not require any
specific optimization procedure, because the optimal parameters can be found by direct matching
of the laminate thickness h corresponding to the particular values of hi and fi. Such an optimi-
zation process, proposed by Vasiliev and Khaziev (2009), is applied further to optimize composite
laminates.

For orthotropic laminates with symmetric structures, the constitutive equations, Eqs. (12.23), can
be presented in the following form:

Nx ¼ h
�
B11εx þ B12εy

�
; Ny ¼ h

�
B12εx þ B22εy

�
; Nxy ¼ hB44gxy (12.40)
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Here,

Bmn ¼
Xk
i¼1

hiA
ðiÞ
mn; hi ¼ hi

h

A
ðiÞ
11 ¼ E2 þ R11ci þ R12c

2
i ; A

ðiÞ
22 ¼ E1 � R21ci þ R12c

2
i

A
ðiÞ
12 ¼ E1n12 þ R12cið1� ciÞ; A

ðiÞ
44 ¼ G12 þ R12cið1� ciÞ; ci ¼ cos2fi

R11 ¼ 2
�
E1n12 � E2 þ 2G12

�
; R12 ¼

�
1� 2n12

�
E1 þ E2 � 4G12

R21 ¼ 2
��
1� n12

�
E1 � 2G12

	
Solving Eqs. (12.40) for strains, we have

εx ¼ 1

Bh
ðB22Nx � B12NyÞ; εy ¼ 1

Bh
ðB11Ny � B12NxÞ; gxy ¼

Nxy

B44
(12.41)

B ¼ B11B22 � B
2
12

The strains in the principal coordinates of the ply 1, 2 (see Fig. 4.18) for those plies with angles �fi

with respect to axis x (see Fig. 12.1) are specified by Eqs. (4.69) which yield

ε
�
1i ¼ εxci þ εyð1� ciÞ � gxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p
ε
�
2i ¼ εxð1� ciÞ þ εyciHgxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p
(12.42)

g�12i ¼ gxyð2ci � 1Þ � 2ðεy � εxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p
The stresses in the plies with angles �fi follow from Hooke’s law, i.e.,

s�1i ¼ E1

�
ε
�
1i þ n12ε

�
2i

�
; s�2i ¼ E2

�
ε
�
2i þ n21ε

�
1i

�
; s�12i ¼ G12g

�
12i (12.43)

Substituting the strains from Eqs. (12.42) into Eqs. (12.43), we arrive at the following expressions for
the stresses:

s�1i ¼
E1

Bh

�
ðn12B22 � B12ÞNx þ ðB11 � n12B12ÞNy

þ
�
ðB22 þ B12ÞNx � ðB11 þ B12ÞNy

�
ð1� n12Þci � Nxy

B

B44
ð1� n12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ci

p
Þ
�

s�2i ¼
E2

Bh

�
ðB22 � n21B12ÞNx þ ðn21B11 � B12ÞNy

�
�
ðB22 þ B12ÞNx � ðB11 þ B12ÞNy

�
ð1� n21ÞciHNxy

B

B44
ð1� n21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ci

p
Þ
�

s�12i ¼
G12

Bh

�
Nxy

B

B44
ð2ci � 1ÞH2

��
B22 þ B12

�
Nx �

�
B11 þ B12

�
Ny

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p �
(12.44)
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Thus, the strains of the laminate loaded in accordance with Fig. 12.1 and the stresses in the plies are
specified, in the general case, by Eqs. (12.42) and (12.44).

Further, we consider the optimization of symmetric laminates consisting of one, three, and
five symmetrically arranged layers. Since the structure is symmetric, we have, respectively,
k ¼ 1, k ¼ 2, and k ¼ 3 (see Fig. 12.4). Each layer has an angle-ply �fi structure and is
orthotropic.

12.3.1 Optimization under strength constraints

Since the signs of the stresses are not known, the ply strength is evaluated with the aid of the poly-
nomial strength criterion valid both for tension and compression and given by Eq. (6.15), i.e.,

si1

 
1

sþ1
� 1

s�1

!
þ si2

 
1

sþ2
� 1

s�2

!
þ
�
si1
�2

sþ1 s
�
1

þ
�
si2
�2

sþ2 s
�
2

þ
�
si12
s12

�2

� 1 (12.45)

Substituting the stresses from Eqs. (12.44) into Eq. (12.45), we arrive at the following strength
constraints:

ri
h2

þ si
h
� 1 ði ¼ 1; 2; 3 . kÞ (12.46)

where

ri ¼ 1

sþ1 s
�
1

�
E1

B

�2
��

n12B22 � B12

�
Nx þ

�
B11 � n12B12

�
Ny

þ��B22 þ B12

�
Nx �

�
B11 þ B12

�
Ny

	ð1� n12Þci � Nxy
B

B44
ð1� n12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p g2
þ 1

sþ2 s
�
2

�
E2

B

�2
��

B22 � n21B12

�
Nx þ

�
n21B11 � B12

�
Ny

���B22 þ B12

�
Nx �

�
B11 þ B12

�
Ny

	ð1� n21ÞciHNxy
B

B44
ð1� n21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p g2
þ
�
G12

s12B

�2�
Nxy

B

B44
ð2ci � 1ÞH2

��
B22 þ B12

�
Nx �

�
B11 þ B12

�
Ny

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p �2

(12.47)

1h

1=k

1h

2/2h

2/2h

2=k

2/3h

1h

2/3h
2/2h

2/2h

3=k

FIGURE 12.4

Laminates composed of one ðk ¼ 1Þ, three ðk ¼ 2Þ, and five ðk ¼ 3Þ layers.
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si ¼ E1

B

 
1

sþ1
� 1

s�1

!��
n12B22 � B12

�
Nx þ ðB11 � n12B12ÞNy

þ��B22 þ B12

�
Nx �

�
B11 þ B12

�
Ny

	ð1� n12Þci � Nxy
B

B44
ð1� n12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p �

þ E2

B

 
1

sþ2
� 1

s�2

!��
B22 � n21B12

�
Nx þ ðn21B11 � B12ÞNy

���B22 þ B12

�
Nx �

�
B11 þ B12

�
Ny

	ð1� n21ÞciHNxy
B

B44
ð1� n21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið1� ciÞ

p �

Thus, we need to determine hi, fi, and the minimum value of the laminate thickness satisfying the
strength constraints given by Eq. (12.46) for all the layers. Note that the normalized layer thickness
must satisfy the following condition:

Xk
i¼1

hi ¼ 1 (12.48)

To be specific, consider a carbon-epoxy composite material with the following properties:
E1 ¼ 143 GPa, E2 ¼ 10 GPa, G12 ¼ 6 GPa, n21 ¼ 0:3 , sþ1 ¼ 2172 MPa, s�1 ¼ 1558 MPa,
sþ2 ¼ 54 MPa, s�2 ¼ 186 MPa, and s12 ¼ 87 MPa. To describe various loading cases, normalize the
acting loads as

Nx ¼ N,Nx; Ny ¼ N,Ny; Nxy ¼ N,Nxy

where 

Nx



þ 

Ny



þ 

Nxy



 ¼ 1

and N is an arbitrary factor which is preassigned here as the load causing failure of a 1 mm thick
unidirectional composite layer under tension, i.e., N ¼ 2:172,106 N=m. The results of the calculations
are presented in Table 12.4.

Consider first the laminate consisting of one layer (k ¼ 1 in Fig. 12.4). In accordance with
Eq. (12.48), h1 ¼ 1 and we have only one design variable f1. The strength constraint for i ¼ 1
becomes an equality from which it follows that the thickness that should be minimized with respect
to f1 is

hð1Þ ¼ h ¼ 1

2

�
s1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 4r1

q �
(12.49)

Consider the case of uniaxial tension (Case 1 in Table 12.4). In contrast to the obvious solution
(f1 ¼ 0 and h ¼ 1 mm) following from the maximum stress criterion (s1 � s1), we have f1 ¼
6:49� and h ¼ 0:97 mm. The difference in results is attributed to the form of the strength
criterion in Eq. (12.45) which allows for the stress interaction. Indeed, if we plot the function
hðf1Þ shown in Fig. 12.5 for small angles f1, we can conclude that the optimal angle is
not zero.
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TABLE 12.4 Optimal Structure of Carbon-Epoxy Composite Panels Consisting of One ðk ¼ 1Þ, Three ðk ¼ 2Þ, and Five ðk ¼ 3Þ Layers
Under Various Loading Conditions.

Loading Case
Nx; Ny; Nxy

Optimal Structural Parameters

k[ 1 k[2 k[3

f� h, mm hi; f
�
i h, mm hi; f

�
i h, mm

1

1 , 0 , 0 

6.49 0.97 e 0.97 e 0.97

2

  -1 , 0 , 0 
0 1.39 h1 ¼ 0:95; h2 ¼ 0:05

f1 ¼ 0; f2 ¼ 90
1.36 e 1.36

3

   0 , 0 , 1 

45 5.25 e 5.25 e 5.25

4

    0.5 , 0.5 , 0 

45 3.29 h1 ¼ 0:85; h2 ¼ 0:15

f1 ¼ 40; f2 ¼ 85

f1 ¼ 50; f2 ¼ 5

3.29 e 3.29

h1 ¼ h2 ¼ 0:5

f1 ¼ f; f2 ¼ 90� f

3.29

5

 -0.5 , -0.5 , 0 

45 1.31 h1 ¼ 0:85; h2 ¼ 0:15

f1 ¼ 40; f2 ¼ 85

f1 ¼ 50; f2 ¼ 0

1.31 e 1.31

h1 ¼ 0:65; h2 ¼ 0:35

f1 ¼ 30; f2 ¼ 80

f1 ¼ 35; f2 ¼ 65

f1 ¼ 55; f2 ¼ 25

f1 ¼ 60; f2 ¼ 10

1.31

h1 ¼ 0:55; h2 ¼ 0:45

f1 ¼ 20; f2 ¼ 80

f1 ¼ 70; f2 ¼ 10

1.31

h1 ¼ h2 ¼ 0:5
f1 ¼ f; f2 ¼ 90� f

1.31
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6

0.33 , 0.33 , 0.33

45 3.48 e 3.48 e 3.48

7

-0.33, -0.33, 0.33 

45 1.48 e 1.48 e 1.48

8

 -0.5 , 0.5 , 0 

90 5.81 h1 ¼ 0:64; h2 ¼ 0:36
f1 ¼ 90; f2 ¼ 0

2.4 e 2.4

9

  0.5 , 0 , 0.5 

26.76 4.01 e 4.01 e 4.01

10

 -0.5 , 0 , 0.5 

24.53 5.43 h1 ¼ 0:71; h2 ¼ 0:29
f1 ¼ 53:2; f2 ¼ 0

3.82 h1 ¼ 0:28; h2 ¼ 0:03
h3 ¼ 0:69
f1 ¼ 0; f2 ¼ 63:3
f3 ¼ 52:6

3.82

11

-0.33, 0.33, 0.33 

71.26 5.48 h1 ¼ 0:76; h2 ¼ 0:24
f1 ¼ 64:1; f2 ¼ 0

3.88 h1 ¼ 0:4; h2 ¼ 0:2
h3 ¼ 0:4
f1 ¼ 76:8; f2 ¼ 0
f3 ¼ 50:1

3.88
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Consider the case k ¼ 2, i.e., the sandwich laminate shown in Fig. 12.4. Taking into account that in
accordance with Eqs. (12.48), h2 ¼ 1� h1, and applying Eqs. (12.46) for i ¼ 1 and i ¼ 2 as equalities,
we can find two values of the laminate thickness, i.e.,

hð1Þ ¼ 1

2

�
s1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 4r1

q �
; hð2Þ ¼ 1

2

�
s2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ 4r2

q �
(12.50)

in which siðh1; c1; c2Þ and riðh1; c1; c2Þ are specified by Eqs. (12.47). Of the two thickness values
hð1Þ and hð2Þ we must select the largest and minimize it with respect to h1; c1; and c2. The results are
presented in Table 12.4 (k ¼ 2). It follows from this table that for the loading cases 1, 3, 6, 7, and 9,
calculation gives h1 ¼ 1 and h2 ¼ 0 and the sandwich laminate reduces to the single-layered structure.
For the cases 4 and 5 for which an analytical solution can be found (see Section 12.2), a number of
optimal solutions can exist for k ¼ 2 and the laminate thickness is the same as that for k ¼ 1. There are
only four loading cases (2, 8, 10, and 11) for which the solution corresponding to k ¼ 2 delivers
a smaller thickness than that given by the solution for k ¼ 1.

For higher values of k, the solution by direct sorting of the structural parameters encounters
considerable computational problems. However, calculations show that by increasing the number
of layers we do not improve the structure. It follows from Table 12.4 that only two loading cases
(10 and 11) for which the solutions for k ¼ 3 do not degenerate to the solutions corresponding to
k ¼ 2 have been found. In both cases, the optimal thickness of laminate is the same for k ¼ 2 and
k ¼ 3.

Thus, for the majority of applications, the optimal laminate structure can be found within the class
of symmetric sandwich laminates.

mm,h

°
1φ

0.95

0.96

0.97

0.98

0.99

1.0

0  2 4 6 8 10

FIGURE 12.5

Dependence of the thickness on the layer angle.
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12.3.2 Optimization under strength and buckling constraints

Consider a laminate subjected to uniaxial compression with force Nx ¼ �Tx (Ny ¼ Nxy ¼ 0) as in
Figs. 9.22 and 12.1. Applying the strength constraint only, we arrive at the result presented in Table
12.4 (Case 1), i.e., to a single-layered structure with angle f1 ¼ 6:49�. However, the plate can buckle
under the critical load specified by Eq. (9.229) which can be written as

Tc
x ¼ Kc

h3

b2
(12.51)

where the coefficient Kc is

Kc ¼ 2p2
ffiffiffiffiffiffiffiffiffiffiffi
D1D2

p  
1þ D3ffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
!

for relatively long plates (a=b� 2) and depends on the ratio a=b in accordance with Fig. 9.26 for
relatively short plates. As previously, D1 ¼ D11, D2 ¼ D22, D3 ¼ D12 þ 2D44, and the normalized
bending stiffness coefficients for symmetric laminates in Fig. 12.4 (see Section 5.4) are

k ¼ 1 D
ð1Þ
mn ¼ 1

12
Amn

k ¼ 2 D
ð2Þ
mn ¼ D

ð1Þ
mn þ

1

12
Að2Þ
mnh2

�
3h

2
1 þ 3h1h2 þ h

2
2

�

k ¼ 3 D
ð3Þ
mn ¼ D

ð2Þ
mn þ

1

12
Að3Þ
mnh3

�
3
�
h1 þ h2

�2 þ 3
�
h1 þ h2

�
h3 þ h

2
3Þ
�

If we apply only the buckling constraint for a single-layered plate, we get, in accordance with Fig. 9.27,
(curve 1) f1 ¼ 45�.

To apply both the strength and the buckling constraints we need to supplement the strength
constraints given by Eqs. (12.49) and (12.50) with the buckling constraints following from
Eq. (12.51), i.e.,

hðcÞ ¼
ffiffiffiffiffiffiffiffiffi
b2Tx
Kc

3

s
;

select the maximum value of the laminate thickness (of hðiÞ and hðcÞ) and minimize it with respect to the
structural parameters. As previously, minimization is performed by direct sorting of hi and fi. For the
carbon-epoxy composite laminates considered in Section 12.3.1 and a plate with width b ¼ 0:15 m and
various aspect ratios a=b, the results of the optimization are presented in Table 12.5. As can be seen,
allowance for both constraints increases the angle of the single-layered (k ¼ 1) structure in comparison
with the design under strength constraints only, and reduces this angle compared to the case where only
the buckling constraint is imposed. In sandwich laminates ðk ¼ 2Þ, both constraints can be met by two
layers and the laminate thickness can be reduced. If we further increase the number of layers ðk ¼ 3Þ, the
laminate thickness is practically the same. Thus, the results obtained allow us to conclude that the
optimal laminate designed for compression is close to the sandwich symmetric structure in which the
middle layer provides the strength and its reinforcement angle is close to 0, whereas the outer layers
ensure buckling resistance and have an angle for the reinforcement orientation close to 45�.
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12.4 APPLICATION TO OPTIMAL COMPOSITE STRUCTURES
As stated in the introduction to this chapter, there exist special composite structures for which
the combination of the specific properties ofmodern composites with the appropriate design concepts and
potential of composite technology provide amajor improvement to these structures in comparisonwith the
corresponding metal prototypes. Three such special structures, i.e., geodesic filament-wound pressure
vessels, composite flywheels, and an anisogrid lattice structure, are described in this section.

12.4.1 Composite pressure vessels

As the first example of the application of the foregoing results, consider filament-wound membrane
shells of revolution that are widely used as pressure vessels (Vasiliev, 2009), solid propellant rocket
motor cases, tanks for gases and liquids, etc. (See Figs. 4.14 and 7.63.) The shell is loaded by a uniform
internal pressure p and axial forces T uniformly distributed along the contour of the shell cross-section
r ¼ r0 as in Fig. 12.6. The equations for meridional, Na, and circumferential, Nb, stress resultants acting
in the shell follow from the corresponding free body diagrams of the shell element and can be written as

Na ¼ �Q

h
1þ ðz0Þ2

i1=2
rz0

(12.52)

Nb ¼ �1

z0
h
1þ ðz0Þ2

i1=2(
pr � Qz00

z0
h
1þ ðz0Þ2

i
)
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TABLE 12.5 Optimal Structural Parameters of the Laminated Plates Subjected to Axial Compression

Under Strength and Buckling Constraints.

Structural
Parameters

a=b

1.0 1.25 1.5 1.75 2.0

k ¼ 1 f�
1 24.2 24.8 24.9 22.9 24.8

h, mm 6.2 6.4 6.5 6.4 6.4

k ¼ 2 f�
1 3.6 12.7 12.5 3.4 3.6

f�
2 45.7 50.0 44.4 40.9 45.7

h1 0.24 0.27 0.32 0.27 0.24

h2 0.76 0.73 0.68 0.73 0.76

h, mm 5.8 5.7 5.7 5.8 5.8

k ¼ 3 f�
1 1.3 2.4 2.5 0.9 1.4

f�
2 10.3 52.5 79.3 10.8 10.3

f�
3 45.3 48.8 45.0 44.5 45.5

h1 0.08 0.21 0.14 0.08 0.08

h2 0.18 0.43 0.13 0.18 0.18

h3 0.74 0.36 0.73 0.74 0.74

h, mm 5.8 5.7 5.7 5.8 5.8
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(see, e.g., Vasiliev, 1993), where zðrÞ specifies the form of the shell meridian, z0 ¼ dz=dr, and

Q ¼ Tr0 þ p

2

�
r2 � r20

�
(12.53)

Let the shell be made by winding an orthotropic tape at angles þf and �f with respect to
the shell meridian as in Fig. 12.6. Then, Na and Nb can be expressed in terms of the stresses
s1; s2, and s12, referred to the principal material coordinates of the tape with the aid of Eqs.
(4.68), i.e.,

Na ¼ h
�
s1 cos

2fþ s2 sin
2f� s12 sin 2f

�
(12.54)

Nb ¼ h
�
s1 sin

2fþ s2 cos
2fþ s12 sin 2f

�
in which h is the shell thickness. The stresses s1; s2, and s12 are related to the corresponding strains
by Hooke’s law, Eqs. (4.55), as

ε1 ¼ 1

E1
ðs1 � n21s2Þ; ε2 ¼ 1

E2
ðs2 � n12s1Þ; g12 ¼

s12
G12

(12.55)

whereas strains ε1; ε2, and g12 can be expressed in terms of the meridional, εa, and circumferential,
εb, strains of the shell using Eqs. (4.69), i.e.,

ε1 ¼ εa cos2fþ εb sin
2f

ε2 ¼ εa sin2fþ εb cos
2f (12.56)

g12 ¼
�
εb � εa

�
sin 2f

r

z

T

0r

φ−
φ+

r

α

p

β

R

FIGURE 12.6

Axisymmetrically loaded membrane shell of revolution.
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Since the right-hand parts of these three equations include only two strains, εa and εb, there exists
a compatibility equation linking ε1; ε2, and g12. This equation is

ðε1 � ε2Þ sin 2fþ g12 cos2f ¼ 0

Writing this equation in terms of stresses with the aid of Eqs. (12.55), we have

�
s1

E1
ð1þ n21Þ � s2

E2
ð1þ n12Þ

�
sin 2fþ s12

G12
cos2f ¼ 0

In conjunction with Eqs. (12.54), this equation allows us to determine the stresses as

s1 ¼ 1

2hC

�
ðNa þ NbÞ

�
1þ 2G12

E2
ð1þ n12Þ tan22f

�
þ Na � Nb

cos 2f

�

s2 ¼ 1

2hC

�
ðNa þ NbÞ

�
1þ 2G12

E1
ð1þ n21Þ tan22f

�
� Na � Nb

cos 2f

�
(12.57)

s12 ¼ G12 tan 2f

hC cos 2f

�
Nb

�
1þ n21

E1
sin2fþ 1þ n12

E2
cos2f

�

�Na

�
1þ n21

E1
cos2fþ 1þ n12

E2
sin2f

��

where

C ¼ 1þ G12

�
1þ n21

E1
þ 1þ n12

E2

�
tan22f

Now assume, in accordance with the results presented in the previous section, that the optimal shell is
reinforced along the lines of principal stresses, i.e., in such a way that s12 ¼ 0. In accordance with the
last equation of Eqs. (12.55), for such a shell g12 ¼ 0 and, as follows from Eqs. (12.56),
εa ¼ εb ¼ ε1 ¼ ε2.

Putting s12 ¼ 0 in the last equation of Eqs. (12.57), we can conclude that for the optimal shell

Nb

Na
¼ 1� �1� n

�
cos2f

nþ ð1� nÞ cos2f (12.58)

where as previously

n ¼ E2ð1þ n21Þ
E1ð1þ n12Þ (12.59)
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Substituting Na and Nb from Eqs. (12.52) into Eq. (12.58), we arrive at the following equation for the
meridian of the optimal shell:

rz00

z0
h
1þ ðz0Þ2

i ¼ pr2

Q
� 1� �1� n

�
cos2f

nþ ð1� nÞ cos2f (12.60)

The first two equations of Eqs. (12.57) yield the following expressions for stresses acting in the tape of
the optimal shell:

s1 ¼ s2

n
¼ Na

h½nþ ð1� nÞ cos2f�; s12 ¼ 0 (12.61)

Taking into account that in accordance with Eqs. (12.57)

s1 þ s2 ¼ 1

h
ðNa þ NbÞ;

we arrive at the following relationships:

s1 ¼ Na þ Nb

hð1þ nÞ; s2 ¼
n
�
Na þ Nb

�
hð1þ nÞ ; s12 ¼ 0

which coincide with Eqs. (12.31).
Substituting Na from the first equation of Eqs. (12.52) into Eqs. (12.61), we have

s1h ¼ �
Q
h
1þ ðz0Þ2

i1=2
rz0½nþ ð1� nÞ cos2f� (12.62)

Assume that the optimal shell is a structure of uniform stress. Differentiating Eqs. (12.62) with respect
to r and taking into account that according to the foregoing assumption s1 ¼ constant, we arrive at the
following equation in which z00 is eliminated with the aid of Eq. (12.60):

d

dr

�
rh

�
nþ ð1� nÞ cos2f

��
� h

�
1� ð1� nÞ cos2f

�
¼ 0 (12.63)

This equation specifies either the thickness or the orientation angle of the optimal shell.
Consider two particular cases. First, consider a fabric tape of variable width wðrÞ being laid up on

the surface of the mandrel along the meridians of the shell of revolution to be fabricated. Then, f ¼ 0,
and Eq. (12.63) takes the form

d

dr
ðrhÞ � nh ¼ 0

The solution of this equation is

h ¼ hR

�r
R

�n�1
(12.64)
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where hR ¼ hðr ¼ RÞ is the shell thickness at the equator r ¼ R (see Fig. 12.6). Assuming that there is
no polar opening in the shell ðr0 ¼ 0Þ or that it is closed ðT ¼ pr0=2Þ, we have from Eq. (12.53)
Q ¼ pr2=2. Substituting this result into Eqs. (12.60) and (12.62), we obtain

rz00

z0
h
1þ ðz0Þ2

i ¼ 2� n (12.65)

s1 ¼ � pr

2z0h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz0Þ2

q
(12.66)

Integrating Eq. (12.65) with the condition 1=z0 ¼ 0 for r ¼ R, which means that the tangent line to the
shell meridian is parallel to the axis z at r ¼ R (see Fig. 12.6), we arrive at

z0 ¼ � r2�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð2�nÞ � r2ð2�nÞp (12.67)

Further integration results in the following parametric equation for the shell meridian:

r

R
¼ ð1� tÞl

z

R
¼ l

Z t
0

t�
1
2ð1� tÞ�ldt ¼ lBx

�
1

2
; 1� l

�

l ¼ 1

2ð2� nÞ
Here, Bx is the b-function (or the Euler integral of the first type). The constant of integration is found
from the condition zðr ¼ RÞ ¼ 0. Meridians corresponding to various n numbers are presented in
Fig. 12.7. For n¼ 1 the optimal shell is a sphere, whereas for n¼ 2 it is a cylinder. As follows from Eq.
(12.64), the thickness of the spherical (n ¼ 1) and cylindrical (n ¼ 2 and r ¼ R) shells is constant.
Substituting Eqs. (12.64) and (12.67) into Eq. (12.66) and taking into account Eqs. (12.61), we have

s1 ¼ s2

n
¼ pR

2hR

This equation allows us to determine the shell thickness at the equator ðr ¼ RÞ, hR, by matching s1 or
s2 with material strength characteristics.

As has been noted already, the shells under study can be made by laying up fabric tapes of variable
width, wðrÞ, along the shell meridians. The tape width can be related to the shell thickness, hðrÞ, as

kwðrÞd ¼ 2prhðrÞ (12.68)

where k is the number of tapes in the shell cross section (evidently, k is the same for all the cross
sections) and d is the tape thickness. Substituting hðrÞ from Eq. (12.64), we get

wðrÞ ¼ 2p hRr
n

kd Rn�1
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FIGURE 12.7

Meridians of optimal composite shells.

www.EngineeringEBooksPdf.com



Consider the second special case: a shell made by winding unidirectional composite tapes
at angles �f with respect to the shell meridian (see Fig. 12.6). The tape width, w0, does not
depend on r, and its thickness is d. Then, the relevant equation similar to Eq. (12.68) can be
written as

kw0d

cos f ðrÞ ¼ 2prhðrÞ

where k is the number of tapes with angles þf and �f. Thus, the shell thickness is

hðrÞ ¼ kw0d

2p r cos f ðrÞ (12.69)

This can be expressed in terms of the thickness value at the shell equator hR ¼ hðr ¼ RÞ as

hðrÞ ¼ hR
R cos fR

r cos f ðrÞ (12.70)

where fR ¼ f ðr ¼ RÞ. It should be noted that this equation is not valid for the part of the shell in
which the tapes are completely overlapped close to the polar opening.

Substituting hðrÞ from Eq. (12.70) into Eq. (12.63), we arrive at the following equation for the tape
orientation angle:

r
df

dr
,

sin f
�
n� �1� n

�
cos2f

	
cos f ½1� ð1� nÞ cos2 f� ¼ 1

The solution of this equation that satisfies the boundary condition f ðr ¼ RÞ ¼ fR is as follows:

r
�
1� �1� n

�
cos2 f

�
r
�	1�n

2 cosn f
�
r
�
¼ R

�
1� �1� n

�
cos2 fR

	1�n
2 cosn fR (12.71)

Consider monotropic filament-wound shells. As noted in the previous section, the simplest and
sufficiently adequate model of unidirectional fibrous composites for design problems is the monotropic
model, which ignores the stiffness of the matrix. For this model, we should take n ¼ 0 in the foregoing
equations. Particularly, Eq. (12.71) yields in this case

r sin f ðrÞ ¼ R sin fR (12.72)

This is the equation of a geodesic line on the surface of revolution. Thus, in optimal filament-wound
shells the fibers are directed along the geodesic trajectories. This substantially simplifies the winding
process because the tape placed on the surface under tension automatically takes the form of the
geodesic line, provided there is no friction between the tape and the surface. As follows from
Eq. (12.72), for f ¼ 90�, the tape touches the shell parallel circle with radius

r0 ¼ R sin fR (12.73)

and a polar opening of this radius is formed in the shell (see Fig. 12.6).
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Transforming Eq. (12.60) with the aid of Eqs. (12.72) and (12.73) and taking n ¼ 0, we arrive at the
following equation which specifies the meridian of the optimal filament wound shell:

z00

z0
h
1þ ðz0Þ2

i ¼ 2r

r2 � h2
� r20
r
�
r2 � r20

� (12.74)

where

h2 ¼ r20 �
2T

p
r0

Integrating Eq. (12.74) with due regard to the condition 1=z0ðRÞ ¼ 0 which, as earlier, requires that for
r ¼ R the tangent to the meridian be parallel to z-axis, we have

z0 ¼ �
rðr2 � h2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r20

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðr2 � r20ÞðR2 � h2Þ2 � r2ðR2 � r20Þðr2 � h2Þ2

q (12.75)

Using this equation to transform Eq. (12.62) in which we take n ¼ 0 and substituting h from Eq.
(12.70), we obtain the following equation for the longitudinal stress in the tape:

s1 ¼
p
�
R2 � r20

�þ 2r0T

2RhR cos2 fR
(12.76)

As can be seen, s1 does not depend on r, and the optimal shell is a structure reinforced by uniformly
stressed fibers.

Such fibrous structures are referred to as isotensoids. To study the types of isotensoids corre-
sponding to the loading shown in Fig. 12.6, factor the expression in the denominator of Eq. (12.75).
The result can be presented as

z0 ¼ � r
�
r2 � h2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2 � r2

��
r2 � r21

��
r2 þ r22

�q (12.77)

where

r21;2 ¼
�
R2

2
� h2

�( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

R2 � r20

"
1þ

�
3R2 � 4h2

�
r20

ðR2 � 2h2Þ2
#vuut � 1

)
(12.78)

It follows from Eq. (12.77) that the parameters R and r1 are the maximum and minimum distances
from the meridian to the rotation axis. Meridians of isotensoids corresponding to various loading
conditions are shown in Fig. 12.8. For p ¼ 0, i.e., under axial tension, a hyperbolic shell is obtained
with the meridian determined as

r2 � z2 tan2 fR ¼ R2
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This meridian corresponds to line 1 in Fig. 12.8. For fR ¼ 0, the hyperbolic shell degenerates into
a cylinder (line 2). Curve 3 corresponds to T ¼ pr0=2, i.e., to a shell for which the polar opening of
radius r0 is closed. For the special angle fR ¼ f0 ¼ 54�440, the shell degenerates into a circular
cylindrical shell (line 2) as discussed in Section 12.1. For T ¼ 0, i.e., in the case of an open polar hole,
the meridian has the form corresponding to curve 4. The change in the direction of axial forces Tyields
a toroidal shell (line 5). Performing integration of Eq. (12.77) and introducing dimensionless
parameters

r ¼ r

R
; z ¼ z

R
; r0 ¼ r0

R
; h ¼ h

R
;

we finally arrive at

z ¼ k2 � h2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p Fðk; qÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Eðk; qÞ (12.79)

where

Fðk; qÞ ¼
Zq
0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2q

p ; Eðk; qÞ ¼
Zq
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 q

p
dq

are the first-kind and the second-kind elliptic integrals and

k1;2 ¼
�
1

2
� h2

�(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� r20

"
1þ 3� 4h2�

1� 2h2
�2
#vuut � 1

)
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Isotensoids corresponding to various loading conditions.
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k2 ¼ 1� k1
1� k2

; sin q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1� k1

s

As an application of the foregoing equations, consider the optimal structure for the end closure
of the pressure vessel shown in Fig. 4.14. The cylindrical part of the vessel consists of a �fR

angle-ply layer with thickness hR that can be found from Eq. (12.76) in which we should
take T ¼ pr0=2, and a circumferential ðf ¼ 90�Þ layer whose thickness is specified by
Eq. (12.18), i.e.,

h90 ¼ hR
�
3 cos2 fR � 1

�
The polar opening of the dome (see Fig. 4.14) is closed. So T ¼ pr0=2, h ¼ 0, and the dome meridian
corresponds to curve 3 in Fig. 12.8. As has already been noted, upon winding an opening of radius r0
is formed at the shell apex. However, the analysis of Eq. (12.77) for r1 that determines the minimum
distance from the meridian to the z-axis (see Fig. 12.9) shows that r1 is equal to r0 only if a shell has
an open polar hole (curve 4 in Fig. 12.8). For a pressure vessel whose polar hole is closed, r1 � r0 and
the equality takes place only for f ¼ 0, i.e., for r1 ¼ r0 ¼ 0. In real vessels, polar holes are closed
with rigid polar bosses as shown in Fig. 12.10. The meridian of the shell under consideration can be
divided into two segments. For R� r � b, the meridian corresponds to curve 3 in Fig. 12.8 for which
T ¼ pr0=2 and h ¼ 0. In Fig. 12.9, this segment of the meridian is shown by a solid line. The
meridian segment b � r � r0, where the shell touches the polar boss, corresponds to curve 4 in
Fig. 12.8 for which T ¼ 0. In Fig. 12.9, this segment of the meridian is indicated by the dashed line.
The radius b in Figs 12.9 and 12.10 can be set as the coordinate of an inflection point of this curve
determined by the condition z00ðr ¼ bÞ ¼ 0. Differentiating Eq. (12.77) and taking h ¼ 0 for the
closed polar opening, we get

b ¼
ffiffiffi
3

2

r
,r0 ¼ 1:225r0

0r

b

R

1r

FIGURE 12.9

Combined meridian of the pressure vessel dome.
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Since the segment ðb� r0Þ is relatively small, we can assume that the contact pressure p1 between the
shell and the boss is uniform. Then, from the condition of boss equilibrium (the hole in the boss is
closed), we have

p1 ¼ pb2

b2 � r20
(12.80)

Constructing the combined meridian, we should take into account that functions z(r) and z0ðrÞmust be
continuous for r ¼ b. Finally, using Eqs. (12.77) and (12.79), we obtain, for R � r �
b ðT ¼ pr0=2; h ¼ 0Þ,

z0 ¼ �
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r20

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R6
�
r2 � r20

�� r6
�
R2 � r20

�q (12.81)

and

z ¼ k2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p Fðk; q1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Eðk; q1Þ

where

k1;2 ¼ 1

2

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3r20
1� r20

s
� 1

!
; sin q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1� k1

s
; k2 ¼ 1� k1

1� k2

and for b � r � r0 ðT ¼ 0; h ¼ r0Þ,

z0 ¼ �
rb2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2 � r20

��
R2 � r20

�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R6
�
b2 � r20

�2 � r2b4ðr2 � r20ÞðR2 � r20Þ
q (12.82)
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FIGURE 12.10

Isotensoid dome with a polar boss.
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and

z ¼ � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þ m2

p
�
Fðm; q2Þ � Fðm; q�2Þ

�
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 þ m2
p �

Eðm; q2
�� Eðm; q�2Þ

�

þ k2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p Fðk; q�1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Eðk; q�1Þ

where

m1;2 ¼ r20
2

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðb2 � r20Þ2

b
4
r40
�
1� r20

�
vuut � 1

3
5; m2 ¼ m2

m1 þ m2

cosq2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20
m2

s
; sin q�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

2

1� k1

s

cosq�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2 � r20
m2

s
; b ¼ b

R

Meridians plotted in accordance with equations Eqs. (12.81) and (12.82) and corresponding to
various values of the parameter r0 specifying the radius of the polar opening (which is closed) are
presented in Fig. 12.11. The curve r0 ¼ 0 corresponds to a shell reinforced along the meridians and
is the same as the curve for n ¼ 0 in Fig. 12.7. This isotensoid shape can be readily obtained
experimentally if we load a balloon reinforced along the meridians with internal pressure as shown
in Fig. 12.12.

Stresses acting along the fibers of the shells whose meridians are presented in Fig. 12.11 are
determined by Eq. (12.62) in which we should take n ¼ 0. Substituting h from Eq. (12.70) and f from
Eqs. (12.72) and (12.73), we should consider two segments of the meridian. For the first segment, we
take T ¼ pr0=2 and z

0 in accordance with Eq. (12.81), whereas for the second one we substitute z0 from
Eq. (12.82) and put T ¼ 0; p ¼ p1, where p1 is specified by Eq. (12.80). For both segments, we arrive
at the same result, i.e.,

s1 ¼ pR

2hR cos2 fR

The shell mass and internal volume can be found as

M ¼ 2prhR cos fR

ZR
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz0Þ2

q
dr

cos f

V ¼ p

ZR
r0

z0r2dr
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FIGURE 12.12

A model isotensoid reinforced along the meridians.
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FIGURE 12.11

Meridians of isotensoids corresponding to various normalized radii of the polar openings r0 ¼ r0=R.
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where r is the density of the material. The mass of a composite pressure vessel is often evaluated by
using the parameter m in the equation

M ¼ m
puV
s1=r

Here, pu is the ultimate pressure, and s1=r is the specific strength of the material. The variation of the
parameter m and the normalized internal volume V ¼ V=R3 as a function of the radius of the polar
opening are shown in Fig. 12.13.

The weight efficiency of composite pressure vessels is usually evaluated by the following
parameter:

kw ¼ pV
M

(12.83)

in which p is the burst pressure. If we use the old metric units, i.e., measure p in kg=mm2, V in liters,
and M in kg, the parameter kw in Eq. (12.83) is measured in km and is analogous to the material
specific strength ks given by Eq. (1.2). For the pressure vessel shown in Fig. 12.14 which consists of
a thin aluminum liner and an aramid-epoxy composite layer, kw is close to 35 km. Filament-wound
composite pressure vessels are discussed in more detail by Vasiliev (2009).

12.4.2 Spinning composite disks

As the second example of an optimal composite structure, consider a disk rotating around its axis with
an angular velocity u. Let the disk be reinforced with fibers making angles þf and �f with the radius
as in Fig. 12.15 and find the optimal trajectories of the fibers (Kyser, 1965; Obraztsov and Vasiliev,
1989). The radial, Nr , and circumferential, Nb, stress resultants are related to the stresses s1 acting in
the composite material along the fibers by Eqs. (12.54). Using the monotropic material model and
putting s2 ¼ 0 and s12 ¼ 0 in these equations, we get

Nr ¼ hs1 cos
2 f; Nb ¼ hs1 sin

2 f (12.84)
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Mass efficiency parameter m and the normalized internal volume V ¼ V =R3 of the isotensoid pressure vessel as

functions of the polar opening radius.
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Consider a disk element shown in Fig. 12.16. The equilibrium condition yields

ðrNrÞ0 � Nb þ Fr ¼ 0 (12.85)

where ð.Þ0 ¼ dð.Þ=dr and Fr ¼ rhu2r2 with r being the material density. The disk thickness is
specified by Eq. (12.69), i.e.,

hðrÞ ¼ kw0d

2pr cos f
(12.86)

FIGURE 12.14

Filament-wound composite pressure vessel.
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r

FIGURE 12.15

Fibers’ trajectories in the spinning disk.
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where k is the number of fibrous tapes passing through the circumference r ¼ constant, and w0 and d

are the tape width and thickness.
For a disk of uniform strength, we take s1 ¼ s1 in which s1 is the ultimate stress for the unidi-

rectional composite under tension along the fibers. Correspondingly, we take u ¼ u, where u is the
ultimate angular velocity of the disk. Then, substituting Eq. (12.86) into Eqs. (12.84) and the calcu-
lated stress resultants Nr and Nb into Eq. (12.85), we arrive at the following equation for the fiber
angle:

rf0 sin f cos fþ sin2f ¼ 1

s1
ru2r2 (12.87)

The solution of this equation must satisfy the boundary conditions. For a disk with radius R and with
a central opening of radius r0 as in Fig. 12.15, we must have Nr ¼ 0 at r ¼ r0 and r ¼ R. Taking into
account the first expression in Eqs. (12.84), we arrive at the following boundary conditions for
Eq. (12.87):

f ðr ¼ r0Þ ¼ p

2
; f ðr ¼ RÞ ¼ p

2
(12.88)

Since Eq. (12.87) is of the first order, its solution can, in general, satisfy only one of these conditions.
Using the second condition in Eqs. (12.88), we get

sin f ¼ R

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l

2

�
1� r4

R4

�s
(12.89)

where

l ¼ ru2R2

s1
(12.90)
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Forces acting on the disk element.
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Applying the first condition in Eqs. (12.88), we arrive at the following equation specifying the
parameter l:

l ¼ 2

1þ
�r0
R

�2 (12.91)

In conjunction with Eq. (12.90), this result enables us to determine the maximum value of the disk
angular velocity, i.e.,

u2 ¼ 2s1

rR2
�
1þ r20

� (12.92)

where r0 ¼ r0=R. It follows from Eq. (12.92) that the maximum value for the ultimate angular
velocity corresponds to r0 ¼ 0, i.e., to a disk without a central opening, for which Eq. (12.92)
reduces to

u2
m ¼ 2s1

rR2
(12.93)

Note that relatively small central openings have practically no effect on the ultimate angular velocity.
For example, for r0 ¼ 0:1, Eq. (12.92) gives u which is only 0.005% less than the maximum value um

following from Eq. (12.93).
For further analysis, we take r0 ¼ 0 and consider disks without a central opening. Then, Eq. (12.91)

yields l ¼ 2, and Eq. (12.89) for the fiber angle becomes

sin f ¼ r

R
(12.94)

To find the fiber trajectory, consider Fig. 12.17 showing the tape element in Cartesian x, y and polar r, b
coordinate frames. As follows from the figure,

x ¼ r sin b; y ¼ r cos b; tan f ¼ rdb

dr
(12.95)

Applying the last equation of Eqs. (12.95) and using Eq. (12.94) for f, we arrive at the following
differential equation:

db

dr
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

whose general solution is

sin ðb� b0Þ ¼
r

R
(12.96)

in which b0 is the constant of integration. Changing b and r to x and y with the aid of Eqs. (12.95), we
can write Eq. (12.96) in Cartesian coordinates as�

x� R

2
cos b0

�2

þ
�
y� R

2
sin b0

�2

¼ R2

4
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For each value of b0, this equation specifies a circle with radius R=2 with its center located on the
circumference r ¼ R=2. Changing b0, we get the system of circles shown in Fig. 12.18.

Composite disks can be efficiently used as inertial accumulators of mechanical energy: flywheels,
such as that shown in Fig. 12.19. Note that the disk in Fig. 12.19 can be made using the technology
described in Section 4.5.2. The disk composite structure is made by winding onto an inflated elastic
mandrel similar to that shown in Fig. 12.12. After the shell, with the appropriate winding patterns, is
fabricated, the pressure is continuously reduced and the shell is compressed in the axial direction
between two plates. Once the shell is transformed into a disk, the resin in the composite material is
cured.

x

y

FIGURE 12.18

Fiber patterns in the spinning optimal composite disk.
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A tape element in Cartesian and polar coordinate frames.
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The maximum kinetic energy that can be stored and the mass of the disk are

KE ¼ pu2r

ZR
0

hr3dr; M ¼ 2pr

ZR
0

hrdr

Substituting h in accordance with Eq. (12.86) and using Eq. (12.94) for the winding patterns,
we get

KE ¼ p

8
R3ru2kw0d; M ¼ p

2
Rr kw0d (12.97)

where k, w0, and d are specified in notations to Eq. (12.86). Transforming Eqs. (12.97) for KE with the
aid of the corresponding equation for M, we have

KE ¼ 1

4
MR2u2

Substituting u from Eq. (12.93), we finally arrive at

KE ¼ Ms1

2r

Introducing the linear circumferential velocity at the outer circumference r ¼ R of the disk as vR ¼ uR
and using Eq. (12.93) for u, we obtain the following result

vR ¼
ffiffiffiffiffiffiffiffi
2s1
r

s
(12.98)

FIGURE 12.19

Carbon-epoxy flywheel.
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which means that vR depends only on the material’s longitudinal specific strength ðs 1=rÞ. The results
of calculations for the composites whose properties are listed in Table 3.5 are presented in Table 12.6.
Note that in order to use Eq. (12.98) for vR we must substitute s1 in N=m2, r in kg=m3, and take into
account that 1 N ¼ 1 kg,m =s2.

12.4.3 Anisogrid composite lattice structures

Anisogrid (anisotropic grid) composite lattice structures (Vasiliev et al., 2001, 2012;
Vasiliev and Razin, 2001, 2006) are usually made in the form of a cylindrical or conical shell
consisting of helical and circumferential (hoop) unidirectional composite ribs formed by
continuous winding. The manufacturing process includes the following main steps illustrated in
Fig 12.20:

• The mandrel is covered with an elastic coating formed of silicon rubber and having the grooves for
the ribs (see Fig. 12.20a)

• Unidirectional carbon tows impregnated with resin are wound into the grooves forming a system of
helical, hoop, and, in some cases, axial ribs which are covered with thin composite skin, also made
by winding (see Fig. 12.20b)

• After curing, the mandrel is removed and the elastic coating is pulled out as shown in Fig. 12.20c,
resulting in an integral composite structure (see Fig. 12.20d)

Anisogrid structures are widely used as interstage (see Fig. 12.21) and spacecraft (see Fig. 12.22)
structures (Bakhvalov et al., 2005).

Cylindrical anisogrid lattice structures with given diameter D and length L are characterized by six
design variables (Fig. 12.23), i.e.:

• The shell thickness (the height of the rib cross-section), h
• The angle of helical ribs with respect to the shell meridian, f
• The widths of the helical and the circumferential (hoop) ribs cross sections, dh and dc (for the

structure in Fig. 12.23, dc is the total width of the adjacent hoop ribs)
• The spacings of the helical and the hoop ribs, ah and ac, taken along the normal elements to the

axes

The ribs are the principal load-bearing elements of the structure, whereas the skin, the presence of
which can be justified by design requirements, is not considered as a load-bearing element in the
design of lattice structures. Moreover, the skin thickness, being treated as a design variable, degen-
erates in the process of optimization because the skin contribution to the mass of the structure is higher
than that to the structural strength and stiffness. Thus, the optimal lattice structure design does not
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TABLE 12.6 Maximum Values of the Circumferential Velocities for Fibrous Composite

Disks of Uniform Strength.

Composite Material Glass-Epoxy Carbon-Epoxy Aramid-Epoxy

vR ; ðm=sÞ 1309 1606 1946
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(a) (b)

(d)(c)

FIGURE 12.20

Fabrication of a composite lattice structure: (a) winding of the ribs, (b) winding of the skin, (c) removal of elastic

coating, and (d) fabricated structure.

FIGURE 12.21

Four meter diameter interstage composite lattice structures.
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FIGURE 12.23

Lattice structure.
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FIGURE 12.22

Composite lattice spacecraft structures.
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require a skin. If the actual structure needs a skin, its thickness and composition are preassigned to
meet the operational and manufacturing requirements.

High performance and weight efficiency in composite lattice structures are provided by unidi-
rectionally reinforced ribs that have a high strength and stiffness. In comparison with the known isogrid
structures (Rehfield et al., 1980), consisting of helical and circumferential ribs forming equilateral
triangles and having the same cross-sectional dimensions, the anisogrid structures under consideration
provide additional mass savings because the thicknesses of the helical and circumferential ribs are
different and are found, as well as the angle of the helical ribs, in the process of optimal design.

Anisogrid carbon-epoxy lattice structures are normally designed for axial compression as the main
loading case.

Consider the design of a cylindrical lattice shell with given diameter, D, and length, L. The shell is
loaded by an axial compressive force, P ¼ 2pRT (see Fig. 11.24). For the shell referred to axial
coordinate x and circumferential coordinate y, the constitutive equations, Eqs. (5.5), can be presented as

Nx ¼ B11ε
0
x þ B12ε

0
y ; Ny ¼ B21ε

0
x þ B22ε

0
y ; Nxy ¼ B44g

0
xy

Mx ¼ D11kx þ D12ky; My ¼ D21kx þ D22ky; Mxy ¼ D44kxy
(12.99)

in which, in accordance with Eqs. (4.194), and (5.36) for the stiffness coefficients,

B11 ¼ 2Ehhdhc
4; B12 ¼ B21 ¼ B44 ¼ 2Ehhdhc

2s2; B22 ¼ 2Ehhdhs
4 þ Echdc

Dmn ¼ Bmnh
2=12

(12.100)

Here, subscripts “h” and “c” correspond to the helical and circumferential ribs and

dh ¼ dh

ah
; dc ¼ dc

ac
; c ¼ cos f; s ¼ sin f (12.101)

The mass of the structure consists of the mass of helical and circumferential ribs, i.e.,

M ¼ Mh þMc; Mh ¼ nhLhhdhrh; Mc ¼ ncLchdcrc

Here,

nh ¼ 2p

ah
Dc; nc ¼ L

ac
(12.102)

(see Fig. 12.23) are the numbers of helical and circumferential ribs in the shell with diameter D and
length L, and

Lh ¼ L

c
; Lc ¼ pD

are the lengths of the ribs. Finally, we get

M ¼ pDLhrh
�
2dh þ rdc

�
(12.103)

where r ¼ rc=rh and rc and rh are the densities of the circumferential and helical ribs.
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To design the lattice structure, we must find the structural parameters, i.e., h, f, dh, dc, ah, and ac,
delivering the minimum value of the mass of the structure in Eq. (12.103) and satisfying the set of
constraints providing:

• Sufficient strength in the helical ribs under compression
• Local stability of the segments of helical ribs between the points of intersection (nodal points)
• Global stability of the lattice shell under axial compression

Consider the foregoing constraints. The stresses sh acting in helical ribs which take an axial
compressive force P can be found using the free-body diagram, i.e.,

P ¼ nhshhdh cos f

Using Eqs. (12.102) for nh and notations in Eqs. (12.101), we get

sh ¼ P

2pDhdhc2
(12.104)

Thus, the strength constraint sh � s, in which s is the strength of the helical rib under compression,
can be written as

P � 2pDhdcc
2s (12.105)

Helical ribs can experience local buckling under compression which shows itself as a local bending of
the rib segments between the nodal points. For two typical lattice structures in the first of which
circumferential ribs divide the spacing between the nodal points of helical ribs in two equal parts,
whereas in the second one circumferential ribs are located on both sides of the nodal points, local
buckling of helical ribs is presented in Fig. 12.24. The critical stress causing local buckling is
determined by the Euler formula given by Eq. (8.71), i.e.,

scr ¼ TE
Ah

¼ k
p2EhIh

l2hAh
(12.106)
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FIGURE 12.24

Local buckling of helical ribs in the lattice structure with circumferential ribs located between the nodal points (a)

and in the vicinity of nodal points (b).
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The thickness of the lattice structures h is usually greater than the width of the helical ribs dc, and local
buckling occurs in the plane of the lattice structure. In this case, the moment of inertia and the area of
the rib cross section are

Ih ¼ h

12
d3h; Ah ¼ hdh (12.107)

The length of the rib segment lh shown in Figs. 12.23 and 12.24 can be expressed in terms of the design
variables as

lh ¼ ah
sin 2f

(12.108)

and the parameter k in Eq. (12.106) is a coefficient depending on the boundary conditions. In
general, k depends on the mutual location and bending stiffnesses of the helical and circum-
ferential ribs. For the structures shown in Figs. 12.24a and 12.24b, k ¼ 1:55 and 1.15,
respectively.

The local buckling constraint has the form sh � scr in which sh is the stress in the helical ribs
specified by Eq. (12.104). Using Eqs. (12.107) and (12.108), we finally obtain

P � 2

3
p3kEhDhd

3
hs

2c4 (12.109)

Consider the global (shell-type) buckling constraint. Under axial compression, lattice cylindrical
shells experience two modes of buckling: axisymmetric, shown in Fig. 11.24, and nonsymmetric,
demonstrated in Fig. 12.25. The critical loads corresponding to axisymmetric and nonsymmetric
buckling are specified by Eqs. (11.136) and (11.169). Taking into account that the bending
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FIGURE 12.25

Nonsymmetric buckling of a lattice interstage structure.
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stiffness for lattice structures Dmn can be expressed in terms of the membrane stiffnesses Bmn with
the aid of the last expression in Eqs. (12.100), we can arrive at the following equations for the
critical axial forces corresponding to the axisymmetric, Pa

cr, and nonsymmetric, Pn
cr, modes of

buckling:

Pa
cr ¼

2pffiffiffi
3

p h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22 � B2

12

q
; Pn

cr ¼
2p

ffiffiffi
2

pffiffiffi
3

p h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B44

�
B12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B11B22Þ

pr

Substituting stiffnesses Bmn in accordance with Eqs. (12.100), we get

Pa
cr ¼

2p
ffiffiffi
2

pffiffiffi
3

p h2c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EhEcdhdc

q
(12.110)

Pn
cr ¼

4p
ffiffiffi
2

pffiffiffi
3

p Ehh
2dhc

2s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ecdc

2Ehdhs4

svuut
(12.111)

Clearly, the lowest value of Pcr specified by Eqs. (12.110) and (12.111) should be selected for the
design. Using Eqs. (12.110) and (12.111), we arrive at the following condition:

Pa
cr � Pn

cr if s � 1

2

ffiffiffiffiffiffiffiffiffiffi
Ecdc

Ehdh

4

s
(12.112)

As shown below, buckling of typical lattice structures corresponds to the axisymmetric mode because
Pa
cr is usually less than Pn

cr . So, the global buckling constraint P � Pcr can be taken in the form

P � 2p
ffiffiffi
2

pffiffiffi
3

p h2c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EhEcdhdc

q
(12.113)

Thus, we should minimize the mass of the structure M in Eq. (12.103) subject to the constraints given
by Eqs. (12.105), (12.109), and (12.113). As can be seen, the structure under consideration is specified
by four design variables: h, f, dh, and dc. The main problem we face is associated with the fact that the
constraints in Eqs. (12.105), (12.109), and (12.113) are written in the form of inequalities. To convert
them to equalities, let us introduce safety factors n � 1 for all the modes of failure, i.e., for fracture of
the helical ribs under compression, ns, global buckling, nb, and local buckling, nl. As a result, the
constraints can be re-written in the following form:

2p

Pns
Ds hdhc

2 ¼ 1 (12.114)

2p
ffiffiffi
2

pffiffiffi
3

p
Pnb

h2c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EhEcdhdc

q
¼ 1 (12.115)

2p3k

3Pnl
EhDhd

3
hc

4s2 ¼ 1 (12.116)
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We should also take into account that

c2 þ s2 ¼ 1 (12.117)

The idea of the method of minimization of safety factors (Vasiliev and Razin, 2001) is imple-
mented as follows. We apply Eqs. (12.114)–(12.117) to express the design variables in terms of the
safety factors and minimize the mass of the structure with respect to both sets of unknown vari-
ables: the design parameters and the safety factors. If one of the parameters n is equal to unity, the
corresponding constraint is active. If n ¼ n0 > 1, the constraint is satisfied with some additional
safety factor n0. For active constraints, the function MðnÞ has positive gradients, so to optimize the
structure, we should take n ¼ 1, and no further optimization is required. So, following this
procedure, we should express h, f, dh, and dc in terms of the safety factors ns, nb, and nl. Using
Eq. (12.114), we get

c2 ¼ Pns

2pDs hdh
(12.118)

Substitution of this result into Eqs. (12.115) and (12.116) yields

dc

dh
¼ 3D2n2bs

2

2n2s EhEch2
(12.119)

s2 ¼ 6nlDs
2h

pkPn2s Ehdh
(12.120)

Substituting further Eqs. (12.118) and (12.120) into Eq. (12.117), we obtain

dh ¼ 6nls
2Dh

pkPn2sEh
þ Pns
2pDsh

(12.121)

Now, Eqs. (12.119) and (12.121) enable us to express the mass of the structure, Eq. (12.103), in terms
of only one design variable, i.e., the shell thickness h:

M ¼ Lrc

 
12D2nls

2h2

Pn2s kEh
þ 3Pn2bD

2s r

4nsEhEch2
þ 9D4s4nlnbr

Pn4s kE
2
hEc

þ Pns
s

!
(12.122)

Applying the condition vM=vh ¼ 0, we have

h4 ¼ P2n2bnsr

16nlEcs
(12.123)

Substituting this result into Eq. (12.122), we arrive at

M ¼ Lrc

�
9D4s4nln

2
br

Pn4s kEh
þ 6D2s nb

nsEh

ffiffiffiffiffiffiffiffiffiffiffi
nls r

knsEc

r
þ Pns

s

�
(12.124)
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It follows from this equation that the mass of the structureM increases with an increase in the buckling
safety factors nb and nl, and to minimize the mass, we must take the minimum allowable values of
these factors, i.e., nb ¼ 1 and nl ¼ 1: This means that the buckling constraints in Eqs. (12.115) and
(12.116) are active. To find the strength safety factor ns, we need to put vM=vns ¼ 0, where M is
defined by Eq. (12.124). As a result, we have

ns ¼ s

 
144D4r

P2kE2
hEc

!1=5

(12.125)

Take into account that ns � 1. Then, equation Eq. (12.125) yields

P � Ps ¼ 12D2s2

Eh

ffiffiffiffiffiffiffi
s r

kEc

r
(12.126)

So, we have two design cases. For P < Ps, we have ns > 1, and the strength constraint, Eq. (12.114), is
not active. There exists some safety factor for this mode of failure specified by Eq. (12.125). For
P > Ps, we have ns ¼ 1, and the strength constraint becomes active, so all three constraints are active
in this case.

To study these two cases, introduce the following mass and force parameters:

m ¼ 4M

pD2L
; p ¼ 4P

pD2
(12.127)

Then, Eq. (12.126) gives

ps ¼ 4Ps

pD2
¼ 48s2

pEh

ffiffiffiffiffiffiffi
s r

kEc

r
(12.128)

Consider the case p � ps. Substituting ns specified by Eq. (12.125) into Eqs. (12.118; and
12.123/12.124) and using Eq. (12.127), we arrive at the following equations for the parameters of the
optimal structure:

h ¼ h

D
¼ 1

4

�
48p4k2r3

EhE3
c

p4
�1=10

tan f ¼ 1

2
; f ¼ 26:565� (12.129)

dh ¼ 5

4p

 
108p2Ec

k4E3
hr

p2

!1=10

dc ¼ dc

2r

m ¼ 25rh
8

 
72r p3

p2kE2
hEc

!1=5
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Consider the case p � ps, repeating the derivation of Eqs. (12.129) and taking ns ¼ 1, so that we have

h ¼ h

D
¼
�
p2kr

Ecs
p2
�1=4

tan2 f ¼ ps
4p

dh ¼ 2

p sin 2f

ffiffiffiffiffiffiffiffi
3s

kEh

r
(12.130)

dc ¼ psdh
2r p

m ¼ prh
s

�
1þ ps

4p

�2

For p ¼ ps Eqs. (12.129) and (12.130) yield the same results. Note that these equations are universal
ones, i.e., they do not include the structural dimensions.

Eqs. (12.129) and (12.130) are valid subject to the conditions in Eqs. (12.112). Substituting the
parameters following from Eqs. (12.130) in the second of these conditions, we can conclude that the
axisymmetric mode of shell buckling exists if

p � p0 ¼ ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

� ffiffiffiffiffiffiffiffiffiffi
2Ehr

Ec

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ehr

Ec
� 1

r �s
(12.131)

Analysis of this result confirms that the calculated value of p0 corresponds to an axial force that is
usually higher than the typical loads for existing aerospace structures.

As an example, consider an interstage section of a space launcher with D ¼ 4 m designed to
withstand an axial force P ¼ 15 MN. The ribs are made from carbon-epoxy composite with the
following properties: Eh ¼ Ec ¼ 90 GPa, s ¼ 450 MPa, and rh ¼ rc ¼ 1450 kg=m3. Calculating p,
ps, and p0 using Eqs. (12.127/12.128); and (12.131), we get p ¼ 1:2 MPa, ps ¼ 1:45 MPa, and
p0 ¼ 1:6 MPa. As can be seen, p < ps and the optimal parameters of the structure are specified by
Eqs. (12.129) which give the following results:

h ¼ 0:009; f ¼ 26:565�; dh ¼ 0:05

dc ¼ 0:025; m ¼ 6:52 kg=m3

Consider a design in which there are 120 helical ribs in the shell cross section and the lattice structure
corresponds to that shown in Fig. 12.24b. In this case, the calculation yields ah ¼ 188 mm and
ac ¼ 210 mm. For a structure with D ¼ 4 m, we have h ¼ 36 mm, dh ¼ 9:4 mm, and dc ¼ 2:35 mm.
The mass of the unit surface is 6:52 kg=m2. To confirm the high weight efficiency of this lattice
structure, note that the composite section with this mass corresponds to a smooth or stringer-stiffened
aluminum shell with the effective thickness h ¼ 2:4 mm. The axial stress induced in this shell by an
axial force P ¼ 15 MN is about 500 MPa, which is higher than the yield stress of typical aluminum
alloys.
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In conclusion, omitting the derivation, we can present the optimal parameters of lattice cylindrical
shells for which the loading parameter p in Eqs. (12.127) is higher than p0 specified by Eq. (12.131).
Buckling of such structures is nonsymmetric and the critical force is determined by Eq. (12.111). For
p � p0, the optimal structural parameters are

h ¼ pp

16s

ffiffiffiffiffiffiffiffiffiffiffi
kEcps
3sp0

s
; tan2 f ¼ ps

4p0

dc ¼ 2

p sin 2f

ffiffiffiffiffiffiffi
3s

kEc

r
; dh ¼ psp0dc

rhp
2

�
p20
p2

� 1

2

�

and the normalized mass of the optimal structure is

m ¼ prc
s

�
1þ ps

4p

�2�
1þ p0ps

2p2

�
p20
p2

� 1

��

The foregoing results are obtained with the aid of the method of minimization of safety factors
proposed by Vasiliev and Razin (2001). Optimization of lattice cylindrical shells by means of
a geometric programming method has been undertaken by Bunakov (1999), whereas numerical
methods have been applied by Totaro (2011).

Optimization is based on the continuum model of lattice structures within the framework of which
the ribs are smeared over the shell surface and which is valid for relatively dense and regular systems
of ribs. The study of composite lattice structures simulated by a discrete model according to which the
structure is treated as a system of beam-type finite elements has been undertaken by Morozov et al.
(2011a, b). The correspondence between continuum and discrete models of composite lattice struc-
tures has been discussed by Azarov (2012).
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widespread metal matrices, 18

processing
carbon-carbon conical shell, 27
catamaran yacht Ivan-30 made, 24f
fabricated by braiding, 23–25
fabrication processes, 27
filament winding, 23
4D spatial structure, 26f
heating and stages, 26
heterogeneous media, 21
hybrid materials, 21–22
lay-up and fiber placement technology, 23
linear structure, 22–23
machine making prepreg, 22f
made by pultrusion and braiding, 23f
material macrostructure, 22
pipe manufacturing by circumferential

winding, 24f
plane laminated structure, 23
pressure vessel geodesic winding, 25f
RTM, 26
small plane made by filament winding, 25f
spatial macrostructure, 25–26
VARTM, 26
wet, dry or prepreg processes, 21

reinforced materials, 9
see also Structural materials

Composite ply, 53–55
Composite pressure vessels

axisymmetrically loaded membrane
revolution shell, 767f

combined meridian, 776–777
filament-wound composite pressure vessel,

780f
first-kind and second-kind elliptic integrals,

774–775
geodesic line, 772
hyperbolic shell, 774
isotensoids, 773
monotropic model, 772
optimal composite shells meridians, 771f
optimal filament wound shell, 773
optimal shell, 768

meridian, 769
stresses expressions, 769

polar opening, 772
pressure vessel dome, 775, 775f
shell element, 766
shell mass and internal volume, 777–779
shell meridian, 767

parametric equation, 770
tangent line, 770

shell thickness, 770, 772
stresses, 768
tape material coordinates, 767
tape orientation angle, 772

Composite rings, 692, 692f
Composite structure, 243
Composite thin-walled C-shaped beam, 586f
Composite tows, 443, 444f
Composites with high fiber fraction (CHFF),

121

Consistent tangent stiffness matrix, 341
Constitutive equations, 2
Continuous glass fibers, 9–10
Continuum damage mechanics (CDM), 332
Convolution theorem. See Laplace

transformation
Cooling process, 426–427
Cross-ply laminate, 748–749
Cross-ply layer, 171f

with crack in transverse ply, 176f
nonlinear phenomenological model,

182–183
in plane stress state, 183f
stress-strain diagram, 181–182
transverse shear, 173f

Cross-sectional contour, 587–588
Cross-sectional warping, 585–586
CTE. See Coefficients of thermal expansion
Cyclic loading

anisotropic materials, 396
aramid-epoxy composite material’s, 395f
carbon-epoxy composites fatigue strength,

397f
cyclic bending, 397–398
cyclic tension, 396
dissipation factor, 394, 395f
energy dissipation in conjunction, 394
fabric composites, 398, 399f
glass-fabric-epoxy-phenolic composite

elastic modulus,
399, 400f

low-cycle fatigue, 398, 399f
material strength, 396
stiffness degradation, 400
stress acting, 392–394
stress concentration, 394, 396f
viscoelastic and elasticmaterials, 393f

Cylindrical drive shaft, 323f
Cylindrical shells buckling

under axial compression
axisymmetric buckling mode, 726
column-type buckling, 725–726

under external pressure, 738
buckling equation, 738
cylindrical shell loaded with external

pressure, 738f
hydrostatic pressure, 741
infinitely long shells, 740
simply supported shells, 739

D
Damage initiation criterion, 337
Damage model

damage evolution
damage energy, 338–339
damage surface, 338
loading/unloading stress strain curves,

339, 339f
damage initiation criteria, 337
propagation criteria, 337

Deformation theory of plasticity, 133–134

constitutive equations, 137–138, 141,
143–144
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Deformation theory of plasticity (Continued )
increments of plastic strains, 142–143
plastic potential, 134–135
plastic strains, 133–134
successive loading method, 141
uniaxial tension, 135–137
uses, 144

Delamination, 409
Displacement-controlled loading, 343

E
Elastic energy. See Potential energy
Elastic material, 42
Elastic model, 3–4, 3f
Elastic solution method, 138, 139f
Elastic-plastic material model, 6, 7f
Elastic-viscoelastic analogy, 386
Elementary composite layer

axial circumferential strains, 326f
cylindrical drive shaft, 322–323, 323f
dependencies of strains, 327
failure criteria

approximation strength criteria, 301,
309–313

interlaminar strength, 320
maximum stress and strain criteria,

301–309
microphenomenological approach, 300
plane stress state, 301
structural failure criteria, 301
tensor strength criteria, 313–320

filament-wound fiberglass pressure vessels,
327t

using maximum stress criterion, 323
polynomial criterion, 324
practical strength evaluation, 321

comparing, 321
composite drive shafts with test fixtures,

322f
failure criteria, 321–322
laminate strength, 321

two-layered cylindrical shell, 324
Elementary composite layer

maximum strain failure criterion, 307–309
maximum stress criterion, 301–302

carbon-carbon unidirectional composite,
306f

carbon-epoxy test tubular specimens, 303f
fabric composites, 306–307
failure envelope, 304f, 305f
failure surface corresponding, 303f
glass-fabric-epoxy test tubular specimens,

302f
glass-phenolic fabric composite, 305f
stress dependence, 307f
structural elements, 302–304
unidirectional glass-epoxy composite, 308f
unidirectional ply, 308–309
warp and filling yarns, 302–304

Energy conservation law, 415–416
Engineering shell theory

reasonable accuracy, 717
shells coefficients, 717

Engineering theory. See Mushtary-Donnell-
Vlasov theory

Environmental, special loading, and
manufacturing effects, 353

Equilibrium equations, 688
Euler formula, 457–459

F
Fabric composites, 398
Fabric layers

apparent modulus of elasticity, 223–225
braided fabric structure, 228–229, 228f
carbon fabric tape, 223f
composite hull of boat, 224f
composite leading edge of aeroplane, 224f
diamond fabric structure, 228–229, 228f
fabric composites

properties, 226t
stiffness and strength, 225

fabric structure unit cell, 225f
fabrics shaping, 227–228
shear modulus, 229
stiffness and strength characteristics, 229
stress-strain curves

for fiberglass fabric composite, 227f
for fiberglass knitted composites, 228f

textile performing role, 223
typical knitted structures, 227f
weave patterns, 225, 226f
see also Lattice layer

Failure surface, 299

in stress space, 300f
thin-walled tubular specimens, 301

Fatigue diagrams

carbon-carbon composite material, 397f
unidirectional

aramid-epoxy composite, 398f
carbon-epoxy composite, 398f

FGM. See Functionally graded material
Fiber ineffective length, 74
Fiber metal laminates (FML), 275

carbon-epoxy laminate, 275f
GLARE aircraft skin of variable thickness,

276f
metal-composite laminate, 276–277,

277f
metals and composites, 275
shortcomings, 276

Fiber-matrix interaction

fiber strength statistical aspects
bundle of fibers, 63
bundles strength, 63–64, 64t
carbon bundles, 64f
fiber bundle tension, 63f
strength deviation, 62–63
strength distribution for boron fibers, 63f
strength variation, 64–65, 65t
theoretical strength, 61–62

fracture toughness, 78
brittle, ductile and metal alloys, 78f
crack stopping mechanism, 80f
fiber-matrix interfaces, 78
fracture toughness and strength, 79f

static strength dependence, 79f
structural materials, 79–80

stress diffusion in fiber interaction
analytical solution, 73–74
carbon-epoxy ply with parameters, 74
composite bundles, 65
constitutive equations, 68
dry bundles and composite bundles, 65t
equilibrium equations, 66
geometric interpretation, 70f
matrix stiffness, 66
normal stress distribution, 74f, 75f, 76f
perturbation, 68
qualitative results, 76–78
shear and normal stresses, 71–72
shear strain in matrix layer, 68f
shear stress distribution, 76f, 77f
using single-fiber fragmentation test, 75
stresses acting in fibers and matrix layers,

67f
unidirectional glass-epoxy composites, 75
unidirectional ply with broken fiber, 66f
variation coefficient, 66t

theoretical and actual strength
Atoms’ interaction curve, 59, 59f
boron fibers strength on fiber length, 62f
composite materials, 57
fiber with crack, 60–61, 60f
glass fibers, 61
high-carbon steel wire strength, 58f
material microstructure or macrocracks,

61
material model, 58f
Physics of Solids, 58–59

Fibers mechanical properties, 5t
Fibrous technology, 21–22
Fick’s law, 368–370
Filament winding, 23, 420
Filament-wound composite pressure vessel,

145f, 780f
Filled materials, 9
First-order ply model, 355
First-order shear deformation theory,

465–467
FML. See Fiber metal laminates
Four-layered quasi-isotropic carbon-epoxy

laminate, 328f, 330
Fourier series, 368–370
Fourier’s law, 353–354
Fracture toughness, 78

brittle, ductile and metal alloys, 78f
crack stopping mechanism, 80f
fiber-matrix interfaces, 78
fracture toughness and strength, 79f
static strength dependence, 79f
structural materials, 79–80

Free torsion of beams, 662

analytical solution, 668–669
angle of rotation, 667, 677
angle-shaped thin-walled beam, 676, 676f
arbitrary coordinate frame, 669
arbitrary open cross-sectional contour, 673
axial displacement, 668f, 669f
beam cross section warping, 671
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beam displacements, 665
beam thickness, 674–675
beam torsional stiffness, 670
beams with circular cross-sectional contour,

673–674, 674f
boundary conditions, 677
circular cross section of beam, 673f
constant angle of twist, 667
constitutive equations, 664–665
equation

for axial displacement, 677
for homogeneous beam, 671
for isotropic beam, 671

equilibrium equation, 666–667
expression

for stress resultants, 669–670
for torsional stiffness, 677

forces and moments, 663f, 668f, 670f
homogeneous cylindrical beam, 674–675
for isotropic beam, 675
Lamé coefficient, 663–664
for laminated beams, 665
moment equation, 670, 674
sandwich beam cross section, 672f
shear stress, 662

distribution, 663f
resultant, 663

single-cell sandwich cross section ABCD,
663

strain-displacement equations, 666
stress resultants, 667
thin-walled beam model, 664f
thin-walled beam torsion, 662
torsional stiffness

coefficient values, 672, 672t, 675t
evaluation, 676

transverse shear stiffness, 665
twisting moment, 662
warping function, 671f, 675–676
see also Open cross-sectional contours

Free-edge effects, 211–212

in angle-ply specimen, 212
angle-ply specimen dependency, 216
axial strain, 214–215
constitutive equations, 212–214
governing equation for problem, 214–215
interlaminar shear stiffness, 215
model simulating plies’ interactions, 213f
strength dependency, 217f
stresses distribution, 215–216, 216f
symmetric plies deformation, 212f
transverse shear

deformation, 212–214
stress, 212–214

Frequency histogram, 62–63
Functionally graded material (FGM), 243–244

G
Generally laminated plates, 565

boundary conditions, 569–570
constitutive equations, 565–566
cross-ply carbon-epoxy plate, 569–570, 570f
forces and moments, 568f

in-plane displacements, 569
in-plane loading, 570

for carbon-epoxy plate, 575
deflection coefficients, 572–573
expressions for in-plane displacements,

574–575
large deflections, 574
plate shortening dependency, 573f
reference surface coordinate, 575–576
simply supported plates, 571–573
square carbon-epoxy plate, 576
square or close-to-square plates, 574
unsymmetrically laminated plates, 571

reference surface, 566–569
sandwich plate with ramps, 568f
shear deformable unsymmetrically laminated

plates, 576
constitutive equations, 576–579
equilibrium equations, 576–579
for simply supported plate, 579–580
strain-displacements equations,

576–579
simply supported plate, 566–569
stiffened plate reduction to, 565, 565f
unsymmetric plate bending, 565–566

Glass fibers, 9–10
Glass transition temperature (Tg), 17–18
Glass-epoxy composite material, 122
Glass-fabric-epoxy test tubular specimens,

302f

H
Helical ribs, 789

local buckling, 789f
Hereditary constitutive theory, 377–378, 378f
High performance fibers, 12
High-modulus carbon fiber (HM carbon

fiber), 12
High-modulus carbon-epoxy composite,

359–360
High-strength carbon fiber (HS carbon fiber),

12
Higher-order theories, 467
HM carbon fiber. See High-modulus carbon

fiber
Homogeneous layer

stiffness coefficients, 254–255, 254f
see also Nonhomogeneous anisotropic layer

Hooke’s law, 125–126, 358, 380–381, 436–
437, 759

HS carbon fiber. See High-strength carbon
fiber

Hybrid composites, 116

composites with high fiber fraction
aramid-epoxy CHFF, 121
aramid-epoxy composite, 120f, 121t
composites with high fiber fraction, 121
tensile longitudinal strength, 119–121,

120f
experimental dependencies, 117f
first-order microstructural model, 116f
hybrid carbon-glass epoxy unidirectional

composite, 119f

inverse linear dependence, 117–118
longitudinal modulus vs. ultimate tensile

strain, 118f
micromechanics, 116–117
stress-strain diagrams, 118f
threshold value, 119

Hybrid materials, 21–22
Hydrostatic pressure

axial and circumferential forces, 741
critical loads, 741
critical pressure, 742
prebuckling stress resultants, 742
shell shape imperfections, 741

Hygrothermal effects

aramid-epoxy composites, 375f
Arrhenius relationship, 374
laminated composite material, 369f
material aging, 374–375
material behavior, 371
material mass increase, 371
moisture

absorption, 368–370
concentration distribution, 372f, 373f
content dependence, 373f, 374f, 375f

polymeric composites, 373
second boundary condition, 370
slope, 371
thermal effects, 374
see also Temperature effects

I
Impact loading

aluminum layers, 414
aramid fabrics, 417–418
ballistic limit, 415t, 416
carbon-epoxy plates, 405f
clamping fixture for compression test, 403f
composite airframe structure, 401, 401f
composite panel, 402f
compression strength dependence, 408, 408f
delamination, 409

area, 403, 404f
energy dependencies, 406f

drop-weight mass, 407
energy dissipation, 407
extrapolation, 403
fabric membrane, 416
flying projectile, 414–415
force-deflection diagrams, 416f
homogeneous layer, 410–411
impact test, 414f, 415f
impactor and plate interaction, 407f
interlaminar conditions, 412
interlaminar stress dependence, 412, 412f
kinetic energy, 401–403
laminate under impact load, 410f
laminates structure, 413f
load vs. plate shortening under compression,

409f
load-carrying structures, 404–406
material delamination, 409–410
normal stress, 413f
projectile velocity, 415–416
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Impact loading (Continued )
quasi-static test, 416
residual velocity dependence, 416–417, 417f
steel impactor

energy, 406
and hail ice, 406, 406t

stress-strain diagrams, 411–412
surface layers local buckling, 409f
tensile and compressive waves, 411f
thin fabric skin damage, 405f
thin-walled composite laminates, 401
wave interaction, 412–414
see also Barely visible impact damage

(BVID)
In-plane displacements, 425–426
In-plane loading, 570

for carbon-epoxy plate, 575
deflection coefficients, 572–573
expressions for in-plane displacements,

574–575
large deflections, 574
plate shortening dependency, 573f
reference surface coordinate, 575–576
simply supported plates, 571–573
square carbon-epoxy plate, 576
square or close-to-square plates, 574
unsymmetrically laminated plates, 571

In-plane shear, 104–107

parameter dependence, 104f
pure shear simulation in square frame, 106f
test fixture

for transverse tension and compression,
105f

for unidirectional tubular specimens, 106f
tubular specimen for shear test, 107f

Infinitely long cylindrical panel

circumferential displacement, 700
clamped edges, 700
deformed state, 700
first-order nonlinear effect, 702
fuselage panel, 701
integration constants, 700
internal pressure, 699f
linear solution, 701
membrane solution, 702
nonlinear membrane theory, 702
normalized deflection dependencies, 701f,

702
panel behavior, 698
quadratic equation, 702
reference surface coordinate, 698–700
symmetry conditions, 700

Infinitely long shells, 741f

critical pressure, 740
homogeneous shells, 740–741

Inhomogeneous orthotropic layers

coupling coefficients, 274
elementary cross-ply couples, 273
membrane stiffnesses, 273

Integration algorithm, 340

closest point return mapping algorithm, 340
damage variable, 340
nonlinear system, 340
stress-strain relationship, 340

Interlaminar strength, 320, 321f
Interstage composite lattice structure, 231f
Invariant strength criteria, 315
Isochrone stress-strain diagrams, 376–377,

377f
Isotensoids, 773, 778f

boss equilibrium, 776
with internal pressure, 776–777
loading conditions, 774f
meridians, 773, 777
with polar boss, 776f
polar openings, 778f, 779, 779f

Isotropic layer, 125, 129f

composite drive shaft, 127f
composite pressure vessel

aluminum liner for, 127f
thermoplastic liners for, 128f

linear elastic model
Hooke’s law, 125–126
three-dimensional stress state, 126–129

see also Lattice layer

L
Lagrange multipliers, 50–51

method, 746
Lamina. See Ply
Laminated beam bending

airplane fuselage, 445–447
beam deflections, 447
beam dimensions, 447–450
beam problem solutions, 448t
dependencies, 447
I-beam, 448f
layer coordinates, 449f
load terms, 444–445
shear force distributions, 446f
transverse shear deformation, 445

Laminated composite beams and columns,
435

axial loading, 441
beam bending, 441
beam element stress state, 436–437, 436f
beam loaded with surface end forces and

moment, 435, 435f
equilibrium equations, 440–441
force distribution, 440
reference plane, 437–439
sandwich beam cross section, 440, 440f
shear correction factor, 440
shear stress, 440
stiffness coefficients

composite tows, 443
homogeneous or quasihomogeneous

beams, 442–443
laminated beam with layers, 444f
laminated cross section, 443f
rectangular cross-sections, 442f
shear stress, 443

Laminated composite plates, 487

anisotropic laminated plate theory equations,
487–493

generally laminated plates, 565–580
orthotropic plate equations, 493–495

orthotropic symmetric plate
bending, 519–545
buckling, 545–559
postbuckling behavior, 559–564

plate theory equation analysis, 495–519
Laminates, allowable stresses for

biaxial loading with stresses, 330–331
composite pressure vessel failure mode,

328f
failure envelops

for biaxial loading, 331f
for uniaxial tension and compression,

332f
failure of matrix, 329
four-layered quasi-isotropic carbon-epoxy

laminate, 330
laminate loaded with normal and shear

stresses, 328f
modern fibrous composites, 331
operational loading parameter calculation,

329–330
progressive failure

CDM, 332
constitutive equations, 333–335
damage development process, 333
damage model, 337–339
nonlinearity and irreversible deformations,

333
nonlinearity or plasticity, 332
numerical analyses, 343–350
numerical implementation, 340–343
plastic damage model, 333
plastic model, 335–336
postfailure behavior, 333

using strength criterion, 327
uniaxial tension with stresses, 331
unidirectional fibrous composite ply,

327–328
Laminates mechanics

antisymmetric laminates, 284
angle-ply structures, 285, 285f, 288
carbon-phenolic cylindrical shells, 288
in composite technology, 286
constitutive equations, 287
coupling stiffness coefficients, 287
cross-ply layer, 284–285, 285f
filament-wound cylinders, 286f
using finite-element models, 288
solid modelling and finite-element

analysis, 287–288
T-segment, 286

orthotropic laminates engineering stiffness
coefficients, 260–272

quasi-homogeneous laminates, 272
angle-ply layers, 274–275
fiber metal laminates, 275–277
identical homogeneous layers, 272–273
inhomogeneous orthotropic layers,

273–274
quasi-isotropic laminates, 277–284
reference plane coordinate, 292

homogeneous and symmetric structures,
292–294

layer coordinates, 293f
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practical analysis, 294–295
pre-assigned stacking-sequences, 294

sandwich structures, 288–291
axial and circumferential strains, 290f
composite sandwich panel with

honeycomb core, 290f
composite sandwich rings with foam core,

291f
filament-wound structures, 289t
finite-element models and deformed

shapes, 289f
sandwich laminate with two laminated

facings, 291f
stiffness coefficients

arbitrary ith layer, 255–256
coefficients, 256
homogeneous layer, 254–255
laminate structure, 256f
nonhomogeneous anisotropic layer,

243–254
transverse shear forces, 257
transverse shear stiffnesses, 256–257

stresses in laminates
compatible deformation, 296
constitutive equations, 295
material axes, 295
unidirectional plies, 295–296

symmetric laminates, 257–259
layer coordinates, 258f
maximum bending stiffness, 260
middle plane coordinates, 259f
symmetric and antisymmetric

components, 259–260
Laminates optimal design

buckling constraints
bending stiffness, 765
critical load, 765
laminated plates optimal structural

parameters, 766t
single-layered plate, 765
strength constraints, 765

Hooke’s law, 759
numerical methods, 758
optimization, 758

carbon-epoxy composite material, 761,
762t

layer thickness normalization, 761
ply strength, 760
sandwich laminate, 764
strength constraints, 760–761
structural parameters sorting, 764
thickness dependence, 764f
uniaxial tension, 761

orthotropic laminates, 758
strains, 759–760
stresses, 759
symmetric laminates optimization layers,

760, 760f
Laplace transformation, 383–384
Lattice layer, 230

carbon-epoxy lattice spacecraft, 231f
composite lattice shear web structure, 232f
geometric parameters, 232f
interstage composite lattice structure, 231f

structure formation, 230–231
winding of, 230f
see also Orthogonally reinforced orthotropic

layer
Lattice structure, 787f
Lay-up processes, 23
Linear classical shell theory, 706
Linear elastic model, 42–43

angle-ply orthotropic layer, 196–197
angle-ply layer shear modulus, 199
constitutive equations, 196–197
deformation and stresses, 199f
dependencies of carbon-epoxy layer

moduli, 198–199, 198f
in-plane shear modulus, 199–200

isotropic layer
Hooke’s law, 125–126
three-dimensional stress state, 126–129

linear elastic material, 4
stress-strain diagram, 4f

material model, 132–133
orthogonally reinforced orthotropic layer,

170–172
stiffness coefficients, 172–173
total shear strains, 172–173
total thickness of layer, 170–172

unidirectional anisotropic layer
apparent modulus, 168
carbon-epoxy strip deflection, 168, 168f
compliance coefficients, 156–158
composite dependencies, 164f
constitutive equations, 152–156
coupling stiffness dependencies of, 159f
elastic constants of anisotropic materials

relationship, 164
forces and moments effect, 167f
for free tension, 166
in-plane shear modulus, 158–160, 163
invariant stiffness characteristics, 156–158
normalized apparent modulus

dependence, 168
normalized strain dependencies, 161f
off-axis tension, 165f
off-axis test, 160f, 165
shear-extension coupling coefficient, 162
stiffness coefficients, 152–156, 158
tensile and shear stiffness dependencies,

159f
transformation for strains, 152–156
unidirectional composites, 163–164
unidirectional layer deformation, 160f,

161
unidirectional orthotropic layer

constitutive equations, 144–147
filament-wound composite pressure

vessel, 145f
transverse normal stress, 144–147
transverse shear modulus, 147f, 147t
for unidirectional composites, 147

Linear-viscoelastic material behavior,
377–378

Linearization methods, 138
Load-carrying layers, 479
Longitudinal compression

compatible fiber-matrix deformation, 113f
deformation of fiber, 111f
epoxy composite characteristics, 108t
fiber local buckling in unidirectional ply,

110f
fracture modes, 114–115
microstructural models, 107
shear failure under compression, 108f
shear stress calculation, 107–108
strain concentration factor, 109f
strength of composites under, 115
transverse extension and fiber local buckling,

109f
transverse extension failure mode, 108f
typical ply element, 110f
unidirectional carbon-epoxy composite

under, 115f
unidirectional composite strength, 114
see also Transverse compression

Longitudinal tension

characteristics for, 99
strength and stiffness under, 97–98
unidirectional

aramid-epoxy composite material, 99f
carbon-epoxy composite material, 98f
composites, 95–97
glass-epoxy composite material, 97f

see also Transverse tension
Low-cycle fatigue, 398

M
Man-made metal alloys, 14
Manufacturing effects, composite materials,

418

circumferential winding, 418f, 419f
aramid-epoxy unidirectional composites,

420f
carbon-epoxy composite dependence, 423,

423f
direct correlation, 418–420
filament winding, 420
material stiffness reduction, 420
normalized modulus reduction, 422f
ply waviness, 423
regular waviness, 421–422
tape preliminary tension, 420, 421f

shrinkage effects
angle-ply layer, 431–432, 431f
characteristics, 432
glass-epoxy composite, 429–430
material shrinkage, 428
residual strains dependence, 430f
strains, 429
unidirectional circumferential layer, 429f

warping and laminates bending
angle-ply antisymmetric panel, 429f
antisymmetric structure, 427–428
asymmetric laminates, 424
cooling process, 426–427
cross-ply antisymmetric panel, 425f
displacements, 428
in fabrication process, 424
in-plane displacements, 425–426
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Manufacturing effects, composite materials
(Continued )
orthotropic cross-ply laminate, 424–425
polymeric composite panel, 424
symmetric laminates, 424
transverse modulus dependence, 427f

Material aging, 374–375
Materials, 1
Matrix materials, 15, 79–80

boron-aluminum unidirectional composite
material, 18–20

carbon tows strength, 16t
carbon-carbon composites, 20–21
ceramic composites, 20
cured epoxy resins with Tg, 18f
matrices, 17
matrix properties, 16–17
normalized longitudinal moduli, 19f
in polymeric composites, 20
polymeric matrices, 17
stiffness of matrix, 15–16
stress-strain curves for aluminum, 19f
tensile strength temperature dependence, 20f
testing of straight tow, 16f
thermo-mechanical curves, 17–18
thermoplastic matrices, 17
typical cured epoxy matrix, 17f
widespread metal matrices, 18

Membrane shell theory

equations, 589
beam reference surface element, 589–590
membrane stress resultants, 590f

long and infinitely long shells, 722
pressure vessels cylindrical parts, 722
shell deflection, 722
strains equations, 722
see also Semi-membrane shell theory

Membrane theory, 690

application, 690
differential equations, 690
see also Semi-membrane theory

Metal fibers, 14
Metal matrix composites, 365–367
Metal-composite laminates, 277f
Micromechanical analysis

actual and admissible states, 93–94
actual stress-strain state, 94–95
applications, 95
comparison, 87
constitutive equation, 86–87
elastic constants, 81
first-order models, 83–85, 84f
higher-order microstructural models, 91
under in-plane loading, 80f
isotropic matrix, 91
longitudinal and transverse strains, 85–86
matrix material specimens, 81f
matrix specimen testing, 82f
mechanical characteristics, 81–82
microcomposite

material, 82–83
specimen gripped at ends, 84f
specimen overwrapped over discs, 83f

normalized in-plane shear modulus, 88f

normalized longitudinal modulus, 87f
normalized transverse modulus on fiber

volume fraction, 88f
qualitative analysis, 91–92
second-order models, 89–91, 89f
simplest or zero-order model, 83
structural element, 90f
transverse tension, 92–93
unidirectional composite ply, 80–81

Micromechanics

ply
actual and admissible states, 93–94
actual stress-strain state, 94–95
applications, 95
comparison, 87
constitutive equation, 86–87
elastic constants, 81
first-order models, 83–85, 84f
higher-order microstructural models, 91
under in-plane loading, 80f
isotropic matrix, 91
longitudinal and transverse strains, 85–86
matrix material specimens, 81f
matrix specimen testing, 82f
mechanical characteristics, 81–82
microcomposite material, 82–83
microcomposite specimen gripped at ends,

84f
microcomposite specimen overwrapped

over discs, 83f
normalized in-plane shear modulus, 88f
normalized longitudinal modulus, 87f
normalized transverse modulus on fiber

volume fraction, 88f
qualitative analysis, 91–92
second-order models, 89–91, 89f
simplest or zero-order model, 83
structural element, 90f
transverse tension, 92–93
unidirectional composite ply, 80–81

unidirectional composite ply, 80–81
actual and admissible states, 93–94
actual stress-strain state, 94–95
applications, 95
comparison, 87
constitutive equation, 86–87
elastic constants, 81
first-order models, 83–85, 84f
higher-order microstructural models, 91
under in-plane loading, 80f
isotropic matrix, 91
longitudinal and transverse strains, 85–86
matrix material specimens, 81f
matrix specimen testing, 82f
mechanical characteristics, 81–82
microcomposite material, 82–83
microcomposite specimen gripped at ends,

84f
microcomposite specimen overwrapped

over discs, 83f
normalized in-plane shear modulus, 88f
normalized longitudinal modulus, 87f
normalized transverse modulus on fiber

volume fraction, 88f

qualitative analysis, 91–92
second-order models, 89–91, 89f
simplest or zero-order model, 83
structural element, 90f
transverse tension, 92–93

Microphenomenological approach, 300
Modern composite materials, 585
Modern high-modulus carbon fibers, 11
Moisture absorption, 368–370
Moisture diffusion, 368–370
Monotropic model, 772
Multi-cell cross-sectional contour

augmented functional minimization, 655
auxiliary functions, 653–654, 654f
beams with, 652–653, 652f
coordinate of beam, 657
features of, 653–654
function, 654f
Lagrange’s multiplier, 655
membrane stiffness characteristics,

652–653
moment equation, 656–657
normalized axial stress resultant distribution,

653f
reduction of, 653f, 654–655
shear center of beam, 656–657, 656f
shear stress resultant distribution, 656f
see alsoOpen cross-sectional contours; Thin-

walled composite beams
Mushtary-Donnell-Vlasov theory, 689

N
Natural fibers, 14

mechanical properties, 14t
Newton flow law, 380–381
Newton’s method, 139f, 140
Nonhomogeneous anisotropic layer, 243–244

stiffness coefficients
actual and approximate distributions, 248f
arbitrary point coordinates, 253f
basic deformations, 245f
coefficients with subscripts, 247
conjunction with Hooke’s law, 247–248
constitutive equations, 246, 250–251
displacement decomposition, 244f
element, 243f
using energy method, 251–252
using equations, 253–254
in-plane displacements, 244
in-plane strains, 244–245
minimum strain energy, 252–253
normal deflection, 244
stress resultants and couples, 246–247,

246f
for transverse shear, 248–251
transverse shear of strip with unit width,

251f
transverse shear stresses to stress

resultants, 249f
see also Homogeneous layer

Nonlinear bending

beam axis curved element, 451f
beam deflection, 450–454
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beam deflection under eccentric tension,
456f

bending and bending-stretching beam, 451f
imaginary pressure, 452f
laminated beam eccentric tension, 454–455,

455f
maximum deflection dependencies, 454f
maximum stress

dependencies, 455f
normalization, 454

rotation angle and bending moment, 455–456
Nonlinear classical theory, 707
Nonlinear elastic models, 129, 147–148

aluminum alloy
plastic Poisson’s ratio dependency, 137f
secant modulus dependency, 137f
stress-strain diagram for, 136f
tangent modulus dependency, 137f

angle-ply orthotropic layer, 200
algebraic equations, 203–205
angle after deformation, 203–205
angle-ply layer stress-strain diagrams,

206f, 207f
angle-ply specimen failure mode, 210f
angle-ply two-matrix composite stress-

strain diagrams, 201f
carbon-epoxy layer stress-strain diagrams,

209f, 210f, 211f
curved angle-ply pipe, 207f
dependencies of normalized stresses, 209f
equilibrium equations, 205
global coordinate frame, 203–205
linear element, 202f
longitudinal strain simplification,

205–206
manufacturing process, 206–207
material nonlinearity, 200–202
matrix cracking effect, 207–208
stress and ply orientation angle

dependencies, 212f
stress-strain diagrams for transverse

tension, 208f
transverse normal stress, 209–211
two-matrix glass-epoxy composite, 200
uniaxial tension problem, 205–206

Cartesian coordinate frame, 143–144
Castigliano’s formulae, 129–132
complementary elastic potential, 129–132,

131f
deformation theory of plasticity, 133–134

constitutive equations of, 137–138, 141,
143–144

increments of plastic strains, 142–143
plastic potential, 134–135
plastic strains, 133–134
successive loading method, 141
uniaxial tension, 135–137
uses, 144

elastic potential, 131f, 133–134
elastic solution method, 138, 139f
linear elastic material model, 132–133
linearization methods, 138
loading path in stress space, 143f
material model, 4

Newton’s method, 139f, 140
nonlinear stress-strain diagram, 132–133
orthogonally reinforced orthotropic layer,

173
boundary and interface conditions,

176–178
carbon-epoxy cylindrical pressure vessel,

184–185
circumferential strain dependence,

186–187, 187f
composite pressure vessel element, 185f
crack system in transverse ply, 179, 179f
cracks in circumferential layer, 176f
cross-ply laminate tension, 174, 174f
elastic constants, 185–186
expressions for stresses, 176–178, 180
failure in transverse, 175
glass-epoxy sandwich layer, 176–178,

182f
minimum strain energy, 176–178
normalized normal stress variation, 179f
normalized shear distribution, 181f
normalized stress distribution, 180f
stiffness coefficients, 185–186
strain calculation, 186
strain determination procedure, 183–184
strains and stresses in plies, 185–186
stress decomposition, 175–176
total stresses, 186
transverse normal stress distribution, 181f
transverse ply stress-strain diagram, 182f
ultimate stresses, 175t
unidirectional ply stress-strain diagrams,

183–184, 183f
polymeric materials, 129
proportional loading, 143–144
strain intensity, 133–134, 141–142
stress-strain curve

approximation, 131f
for polymeric film, 130f

successive loading method, 139f, 140–141
Taylor series, 132
uniaxial tension, 142–143
unidirectional anisotropic layer, 169

stress-strain diagram, 170f, 171f
two-matrix fiberglass composite, 169

unidirectional orthotropic layer
boron-aluminum unidirectional

composite, 151, 152f
independent uniaxial loading, 151
material behavior under elementary

loading, 148
nonlinear behavior in composite materials,

150
notations for stresses and strains, 151
pronounced nonlinear elastic behavior,

148–149
sixth-order approximation, 148–149
strain decomposition, 150–151
two-matrix unidirectional composite, 150f
for unidirectional composites, 148–149

variable elasticity parameter method,
139–140, 139f

see also Isotropic layer

Nonlinear membrane theory, 690, 707
Nonlinear theory, 689–690
Nonsymmetric buckling mode

arbitrary boundary conditions, 735
Cartesian rule, 734
coefficient dependence on length factor, 735,

736f
critical load, 737
decomposition, 734
displacements, 735–736
elastic constants symmetry condition, 735
engineering shell theory, 732–733
homogeneous shell, 734–735
real and positive numbers, 734
shear modulus, 735
shell buckling equation, 732–733
see also Axisymmetric buckling mode

Numerical integration algorithms, 340

closest point return mapping algorithm,
340

computational procedure
damage corrector, 343
elastic predictor, 342
initial conditions, 342
plastic corrector, 342–343
user subroutine UMAT, 344f
user-defined materials, 342–343

consistent tangent stiffness matrix, 341
damage variable, 340
nonlinear system, 340
stress-strain relationship, 340
viscous regularization scheme, 341

O
Open cross-sectional contours

beams with, 657
restrained torsion of beams, 677–679

axial displacement, 680
axial normal stress resultant, 679
axial strain, 679
bending stiffness, 677–679
cantilever circular beam, 681, 681f
circular cross section, 682
equation for angle of twist, 681
expression for axial displacement, 680
normal and shear stress resultant, 678f
normalized axial stress resultants, 682f
normalized shear stress resultants, 682f
normalized torsional stiffness dependence,

678f
sectorial characteristics, 679
shear stress resultant, 680
torsional stiffnesses, 682–683
total torque, 680–681

thin-walled beam with, 658f
transverse bending, 657

beam displacements, 660
with C-shaped beam, 658–659, 659f
model beam deformations, 660, 661f
shear center of beam, 658
shear center of circular cross section,

660–662, 662f
shear stress resultant, 657, 660
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Optimal composite structures, 745

application, 766
composite materials, 745
laminates optimal design, 758
optimal fibrous structures, 745
uniform strength composite laminates,

752–753
Optimal fibrous structures

cross-ply and angle-ply laminate, 748–749,
749f

cylindrical pressure vessel, 749
helical plies, 750
high specific strength, 748
Lagrange multipliers method, 746
laminate in-plane shear, 751–752
laminated plate, 746f
metal pressure vessel thickness, 749, 750t
optimal laminate, 747
optimal plate total thickness, 747
optimal thickness ratios, 751f
optimality conditions, 747
strain, 746
structural parameters, 748
tension in orthogonal directions, 748
uniaxial tension, 748
unidirectional composite monotropic model,

745
uniform biaxial tension, 748

Optimal shell, 768

meridian, 769
stresses expressions, 769

Organic fibers, 12
Orthogonally reinforced orthotropic layer,

169–170

composites with controlled cracks, 191–193
carbon-epoxy composite, 193–196
dependencies of coefficients, 194f
expression for stress in transverse ply,

193–196
function dependencies, 195f
relative transverse ply thickness function,

195f
cross-ply layer, 171f

with crack in transverse ply, 176f
nonlinear phenomenological model,

182–183
in plane stress state, 183f
stress-strain diagram of, 181–182
transverse shear of, 173f

linear elastic model, 170–172
stiffness coefficients, 172–173
total shear strains, 172–173
total thickness of layer, 170–172

nonlinear elastic models, 173
boundary and interface conditions,

176–178
carbon-epoxy cylindrical pressure vessel,

184–185
circumferential strain dependence,

186–187, 187f
composite pressure vessel element, 185f
crack system in transverse ply, 179, 179f
cracks in circumferential layer, 176f
cross-ply laminate tension, 174, 174f

elastic constants, 185–186
expressions for stresses, 176–178, 180
failure in transverse, 175
glass-epoxy sandwich layer, 176–178,

182f
minimum strain energy, 176–178
normalized normal stress variation, 179f
normalized shear distribution, 181f
normalized stress distribution, 180f
stiffness coefficients, 185–186
strain calculation, 186
strain determination procedure, 183–184
strains and stresses in plies, 185–186
stress decomposition, 175–176
total stresses, 186
transverse normal stress distribution,

181f
transverse ply stress-strain diagram, 182f
ultimate stresses, 175t
unidirectional ply stress-strain diagrams,

183–184, 183f
two-matrix composites, 187

acoustic emission intensity, 192f
composite fiber properties, 188
composite fibers of, 191
conventional cross-ply glass-epoxy layer,

191, 192f
glass-epoxy unidirectional composite

properties, 191t
longitudinal strength dependency, 189f
mechanical characteristics, 190–191
microstructure of, 190f
solutions to analysis problem, 187–188
stress-strain curves for epoxy matrices,

188f
stress-strain curves for transverse tension,

189f
stress-strain diagram of deformable epoxy

matrix, 190f
synthesizing composite materials, 188
two-matrix cross-ply glass-epoxy layer,

191, 192f
see also Spatially reinforced layers

Orthotropic cross-ply laminate, 424–425
Orthotropic laminates

stiffness coefficients, 260
bending-stretching coupling effects,

262–263
constitutive equations, 269–272
cross-section, 262f
element under torsion deformation, 265f
using equation, 261
forces and moments, 261–262
forces and moments acting, 271f
laminate membrane and bending, 272
laminated element under tension, 261f
laminated strip torsion, 269f
reference plane, 264
sandwich structures, 266–267, 266f,

267t
shear and torsion, 263–264, 263f
shear stiffness coefficient, 267–269
strip cross-section, 270f
tension and bending, 260f

transverse shear deformation effects,
267–269, 269t

transverse shear forces, 265–266, 265f
see also Quasi-homogeneous laminates

Orthotropic layers, 299, 360–361

composite laminates, 300
failure surface, 300f
in plane stressed state, 299f

Orthotropic plate equations, 493

coupling stiffness coefficients, 494
maximum bending stiffness, 493
nonsymmetric plates, 493
using operational method, 494–495
symmetric plates, 493

Orthotropic symmetric plate bending

classical plate theory
approximate solutions for, 534–537
clamped plates, 526–534
exact solutions of, 519
neglecting transverse shear deformation,

519–520
simply supported plates, 520–526

shear deformable orthotropic symmetric
plates, 537–538

algebraic equations for coefficients,
540–542

approximate analytical solutions,
538–540

approximate method, 543–545
boundary-layer solution, 539–540
coordinate functions for plates, 542t
equations for infinitely long orthotropic

plates, 543t
using long plates, 542–543
normalized maximum deflection

dependency, 544f
ordinary differential equation, 538
penetrating solution, 539–540
rotation angles and deflection, 537–538
simply supported rectangular plate, 543
square and close-to-square plates,

540–542
Orthotropic symmetric plate buckling

classical plate theory
algebraic equations for coefficients,

550–551
anisotropic plates, 553–554
approximate minimum condition,

548–549
approximate solutions, 556
biaxial stress state, 549–550
buckling analysis results, 554
buckling and failure modes, 552f
buckling equation for orthotropic plates,

545–547
buckling mode of plate, 546f
carbon-epoxy plates, 551–553
composite plates, 554, 554f
compression and shear action, 550–551
critical loads, 545–547, 550t
critical shear force, 551
deformed element of plate reference

surface, 546f
imaginary pressure, 547f
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minimum value of coefficient, 547–548,
548f

normalized compressive force
dependencies, 555f

normalized critical load dependencies,
549–550, 550f

normalized shear force dependencies, 555f
plate loaded with in-plane loads, 545f
shear buckling coefficient dependencies,

552f, 553f
uniaxial compression, 547–548

shear deformable plate theory, 556
buckling equation, 556–559
normalized critical force dependency,

557–558, 559f
orthotropic plates, 557
transversely isotropic plates, 556–558
for unidirectional compression, 557–558

see also Transversely isotropic plates
Orthotropic symmetric plate postbuckling

behavior, 559–563

critical load dependency, 563f
dimensionless functions, 559–563
dimensionless loads, 562f
half-wave number, 563
mode jumping, 559–563
normal stress distributions, 564f
numerical analysis of post-buckling

behavior, 564
plate shortening dependencies, 564f
simply supported plate after buckling, 560f
stresses and displacements evaluation, 564
ultimate load dependency, 563f

P
PAN. See Polyacrylonitrile
PAN-based fibers, 11–12
Phenomenological homogeneous model

actual material behavior prediction, 122
biaxial compression, 122f
first-order micromechanical model, 122
ply, 122
stresses acting in fibers and matrix, 123

Phenomenological theory, 30
Pitch-based carbon fibers, 11–12
Plane laminated structure, 22–23
Plastic damage model, 333
Plastic model

equivalent stress, 335–336
internal forces, 335
isotropic hardening law, 336
one-parameter plastic potential, 335
plastic strain rate, 336
plastic yield function, 335

Plate theory

anisotropic laminated plates, 487
classical plate theory, 496–502
equations analysis, 494–495
shear deformable plate theory, 502–519

Ply, 53

architecture
actual fiber distribution, 54f
carbon-epoxy composite material, 56

composite ply, 53–55
fibers and matrix, 56
hexagonal fiber distribution, 55f
layer-wise fiber distribution, 55f
square fiber distribution, 54f
strength and stiffness, 56
tape, 53
ultimate fiber arrays, 56–57, 57f
unidirectional ply, 53f

composite, 53–55
mechanical properties, 95

in-plane shear, 104–107
longitudinal compression, 107–115
longitudinal tension, 95–99
transverse compression, 115
transverse tension, 99–103

micromechanics
actual and admissible states, 93–94
actual stress-strain state, 94–95
applications, 95
comparison, 87
constitutive equation, 86–87
elastic constants, 81
first-order models, 83–85, 84f
higher-order microstructural models, 91
under in-plane loading, 80f
isotropic matrix, 91
longitudinal and transverse strains, 85–86
matrix material specimens, 81f
matrix specimen testing, 82f
mechanical characteristics, 81–82
microcomposite material, 82–83
microcomposite specimen gripped at ends,

84f
microcomposite specimen overwrapped

over discs, 83f
normalized in-plane shear modulus, 88f
normalized longitudinal modulus, 87f
normalized transverse modulus on fiber

volume fraction, 88f
qualitative analysis, 91–92
second-order models, 89–91, 89f
simplest or zero-order model, 83
structural element, 90f
transverse tension, 92–93
unidirectional composite ply, 80–81

tape, 53
unidirectional, 53f

Poisson’s effect, 384–385
Polyacrylonitrile (PAN), 11–12
Polyethylene fibers, 12
Polymeric composites, 353
Polymeric matrices, 17, 376–377
Potential energy, 3–4
Prepreg process, 21
Principal damage model, 346–348
Principal material axes, 299
Progressive failure modeling and analysis

CDM, 332
constitutive equations

compression and tension effects, 334–335
damaged and undamaged composite

materials, 334
elastic and plastic strain parts, 334

fiber-reinforced composite materials,
333–334

irreversible deformations, 335
shear stiffness reduction, 335

damage development process, 333
damage model

damage evolution, 338–339
damage initiation criteria, 337
propagation criteria, 337

nonlinearity and irreversible deformations,
333

nonlinearity or plasticity, 332
numerical analyses, 343

AS4/PEEK (�45�)2s composite laminates,
349–350, 350f

composite laminates with through holes,
343–348

geometry and boundary conditions, 345f
numerical implementation, 340

computational procedure, 342–343
consistent tangent stiffness matrix, 341
integration algorithm, 340
viscous regularization, 341–342

plastic damage model, 333
plastic model

equivalent stress, 335–336
internal forces, 335
isotropic hardening law, 336
one-parameter plastic potential, 335
plastic strain rate, 336
plastic yield function, 335

postfailure behavior, 333
Projectile velocity, 415–416
Pyrolysis, 11–12

Q
Quartz fibers, 10
Quasi-homogeneous laminates, 272

angle-ply layers, 274–275
fiber metal laminates, 275

carbon-epoxy laminate, 275f
GLARE aircraft skin of variable thickness,

276f
metal-composite laminate, 276–277, 277f
metals and composites, 275
shortcomings, 276

identical homogeneous layers, 272–273
inhomogeneous orthotropic layers

coupling coefficients, 274
elementary cross-ply couples, 273
membrane stiffnesses, 273

Quasi-isotropic laminates, 277–278

angles properties, 279t
carbon and boron fibers, 280
under compression, 283–284
elasticity and Poisson’s ratio modulus, 280t
experimental stress-strain diagram, 280–282,

281f
modern composite airplanes, 284
in plane stress state, 278–279
principal ply directions, 280–282
stiffness coefficients and elastic constants,

283
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Quasi-isotropic laminates (Continued )
stiffness coefficients calculations, 278–279
theoretical stress-strain diagram, 282
unidirectional plies, 280

R
Rectangular cross section, beam with, 606,

607f, 610f,
630, 631f

angle of twist dependencies, 634–635, 635f
axial stress resultant, 610
beam displacements, 612
beam stiffnesses, 613
composite thin-walled beam, 617f
cross-sectional contour in regular polygon,

617f
decomposing beam contour, 610
deflection slope dependency, 614f
distribution of function, 611, 611f, 612f
distributions of integrals, 615f
expressions for deflection, 612–613
function for, 630, 632–633
loaded by transverse force and torque,

613f
material structure, 630, 633f
shear stress resultant components, 611
square cross section, 616
stiffness coefficients, 610, 617, 633–634,

634t
surface development, 633f
torsional stiffness, 613
twist angle dependency, 614f
warping function, 614–616

Reference plane, 243–244

coordinate, 292
homogeneous and symmetric structures,

292–294
layer coordinates, 293f
practical analysis, 294–295
pre-assigned stacking-sequences, 294

Reinforced materials, 9
Relative humidity (RH), 368–370
Resin infusion process (RI process), 26
Resin transfer molding (RTM), 26
Restrained bending, 645, 650

bimoment, 650–651
normal shear resultants, 651
normal stress resultants, 651, 652f

Restrained torsion, 645

axial displacement, 680
axial normal stress resultant, 679
axial strain, 679
of beams, 677–679
bending stiffness, 677–679
bimoment, 647
of cantilever beam, 646f
cantilever circular beam, 681, 681f
circular cross section, 682
constant of integration, 647
equation for angle of twist, 681
expression for axial displacement, 680
normal and shear stress resultant, 678f
normalized axial stress resultants, 682f

normalized normal stress resultants, 649,
649f, 650f

normalized shear stress resultants, 649, 649f,
682f

normalized torsional stiffness dependence,
678f

normalized warping function, 647
restrained warping, 646
sectorial characteristics, 679
shear center of beam, 646
shear stress resultants, 647, 680
strain energy of beam, 648
stress resultants, 648
torsional stiffnesses, 682–683
total torque, 680–681
warping function, 645–646

RH. See Relative humidity
RI process. See Resin infusion process
Rotations. See Angles of rotations
Roving. See Unidirectional tow
RTM. See Resin transfer molding

S
Sandwich beam

free-body diagrams, 482f
maximum deflections, 484–485, 484t

Sandwich structures, 266–267, 288–291

axial and circumferential strains, 290f
composite sandwich

panel with honeycomb core, 290f
rings with foam core, 291f

filament-wound structures, 289t
finite-element models and deformed shapes,

289f
parameters, 267t
sandwich laminate with two laminated

facings, 291f
three-layered and two-layered laminates,

266f
Secant, 4
Second-order models, 89–91, 89f
Second-order tensor criterion, 315
Semi-membrane shell theory

axial displacement, 720
cantilever cylindrical shell, 720–721, 721f
closed shells, 718
constants of integration, 720
first equilibrium equation, 719
ordinary differential equations, 718, 722
shear deformable shells, 717, 720
shell beam-type bending, 722
shell bending, 720
shell stress-strain state, 721
see also Membrane shell theory

Semi-membrane theory, 690–691

applications, 691
cross-sectional contour, 691
equations, 691
physical model, 690f
see also Membrane theory

Shear center, 617–618

coordinates of, 618–620
cross section, 618f

displacements, 619
forces, 618
shear deformations, 620

Shear deformable orthotropic symmetric
plates, 537–538

algebraic equations for coefficients,
540–542

approximate analytical solutions, 538–540
approximate method, 543–545
boundary-layer solution, 539–540
coordinate functions for plates, 542t
equations for infinitely long orthotropic

plates, 543t
using long plates, 542–543
normalized maximum deflection

dependency, 544f
ordinary differential equation, 538
penetrating solution, 539–540
rotation angles and deflection, 537–538
simply supported rectangular plate, 543
square and close-to-square plates, 540–542

Shear deformable plate theory, 502, 556

bending moment
dependency, 518f
distribution, 514f

boundary conditions, 505–507
buckling equation, 556–559
clamped plate, 511
concentrated corner force, 509–511
cylindrical bending of plate, 512
equations, 503–504

for relatively thin plates, 509–511
for transverse shear force, 504–505

normalized critical force dependency,
557–558, 559f

normalized deflection dependency, 518f
orthotropic plates, 557
penetrating solution, 502–503, 507–509
physical interpretation, 505–506
plate behavior, 511
plate deflection

exact solutions for, 517
penetrating solution, 517
solution to classical plate theory, 517

plate supported at edge, 513–515
plate with clamped edge, 515–517
rotation angles of plate element, 504–505
rotational potential, 503–505
semi-infinite plate, 512, 512f
shear deformation, 518–519
shear forces distribution, 513–515, 516f
sixth-order plate theory, 519
square plate with cosine pressure, 507–509,

507f
transverse shear deformation effect, 519
transverse shear force

distribution of, 510f
expression for, 509–511

transversely isotropic plates, 556–558
twisting moments distribution, 515f
for unidirectional compression, 557–558

Shear deformable shell theory

coupling coefficients, 724–725
linear theory, 706
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radial force concentration, 724f
sandwich shells analysis, 722–723
shell maximum deflection dependence, 725f
stiffness and compliance coefficients, 723
stress function, 723
trigonometric series form, 723–724

Shear deformable unsymmetrically laminated
plates, 576

constitutive equations for orthotropic plates,
576–579

equilibrium equations, 576–579
for simply supported plate, 579–580
strain-displacements equations,

576–579
Shear strain resultant, 597–598, 600

Bredt equation, 600
Shear stress resultant, 597–598

area bounded by contour, 599, 599f
contour coordinate value, 597–598
decomposition, 597f
elementary cross-sectional area, 599, 599f
equilibrium equation, 598–599
expression for, 599
static equations, 598

Shell meridian, 767

parametric equation, 770
tangent line, 770

Shell theories, 686

cylindrical shell loading, 688f
equilibrium equations, 688
membrane theory, 690
nonlinear theory, 689–690
reference surface, 689
semi-membrane theory, 690–691
stress resultants and couples, 688–689,

688f
see also Classical shell theory

Shrinkage effects

angle-ply layer, 431–432, 431f
characteristics, 432
glass-epoxy composite, 429–430
material shrinkage, 428
residual strains dependence, 430f
strains, 429
unidirectional circumferential layer, 429f

Silicon carbide (SiC), 13

fibers, 13
Simply supported beam, 465f
Simply supported plates, 520–521, 520f

close-to-square rectangular plate, 521f
convergence of series, 521–522
long rectangular plate, 521f, 522
at opposite edges, 522–524

boundary conditions, 525–526
with clamped transverse edges, 525f
with longitudinal edges, 525f
normalized deflection dependency, 522f
orthotropic plates, 524–525
rectangular plate with, 523f
solutions of differential equation, 524t,

525
Simply supported shells

boundary conditions, 739
critical load, 740

critical pressure, 739
transverse shear deformation, 739–740

Solid mechanics, 29, 40

Cartesian coordinate frame, 38
compatibility equations, 39–40

strain-displacement equations, 39
constitutive equations

additional displacements, 40–41
additional strains, 40
compliance matrix, 44–45
elastic material, 42
finite expression, 44
internal variables, 41–42
linear elastic model, 42–43
orthotropic material, 45–46
simplest material model, 45–46
specific strain energy, 45–46

displacements and strains
coordinate component displacements, 35
displacement of infinitesimal linear

element, 35–38, 36f
linear strain-displacement equations,

35–38
equilibrium equations

differential equilibrium equations, 31–32
forces on elementary tetrahedron, 31–32,

31f
integral equation, 32
integral equilibrium equations, 31–32
in tetrahedron, 31

kinematic field, 40
principal stresses, 34–35

linear algebraic equations, 34
under shear, 35, 35f
stress transformations, 34

problem formulations, 46–47
small strain transformation, 38
static field, 40
stress transformation

rotation of coordinate frame, 32–33, 33f
shear stress, 33

stresses
Cartesian coordinates, 29–30, 29f
phenomenological theory, 30
on planes, 30, 30f

variational principles
kinematically admissible field, 47–48
minimum strain energy principle, 49–50
minimum total potential energy principle,

48–49
mixed variational principles, 50–51
statically admissible stress field, 47–48

Space telescope, 357–358, 357f, 364

angle-ply carbon-epoxy external skin, 357
carbon-epoxy lattice layer, 357
internal skin

aluminum foil, 358
aramid fabric, 358

Spatial structure, 22, 25–26

4D spatial structure, 26f
Spatially reinforced layers, 232

coefficients for compliance matrix,
235–240

elastic constant dependencies, 240f

formation by bulk materials, 233
formation by unidirectional composite

material, 235–240
global structural coordinate frame, 236f
multi-dimensional

composite structure properties, 235
reinforced materials, 233f

orientation angles in spatial composite
structure, 239f

for planar structures, 240
spatially reinforced structure

4D, 234f
5D, 235f
3D, 234f

stiffness matrix, 235–240
three-point bending test, 236f
triaxial reinforcement, 233
see also Unidirectional anisotropic layer

Spatially reinforced structure

4D, 26f, 234f
5D, 235f
3D, 234f

Spinning composite disks, 780f

angular velocity, 782
boundary conditions, 781
carbon-epoxy flywheel, 783, 784f
differential equation, 782
disk element, 780–781, 781f
fiber angle, 781–782
fiber patterns, 783, 783f
fibers optimal trajectories, 779
linear circumferential velocity, 784–785,

785t
maximum kinetic energy, 784
small central openings, 782
tape element in Cartesian and polar

coordinate frames,
782, 783f

winding patterns, 784
Stiffness degradation, 400, 400f
Strain energy. See Potential energy
Strength analysis, 299–300
Stress diffusion in fibers interaction

analytical solution, 73–74
carbon-epoxy ply with parameters, 74
composite bundles, 65

strength, 65t
constitutive equations, 68
dry bundle strength, 65t
equilibrium equations, 66
geometric interpretation, 70f
matrix stiffness, 66
normal stresses distribution, 74f, 75f, 76f
perturbation, 68
qualitative results, 76–78
shear and normal stresses, 71–72
shear strain in matrix layer, 68f
shear stress distribution, 76f, 77f
using single-fiber fragmentation test, 75
stresses acting in fibers and matrix layers, 67f
transform equilibrium equations, 68–71
unidirectional glass-epoxy composites, 75
unidirectional ply with broken fiber, 66f
variation coefficient, 66t
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Stress relaxation, 381–382, 382f
Stress-strain curves, 3f

of deformable epoxy matrix, 190f
elastic material, 3–4
for elastic-plastic material, 7f
for epoxy matrices, 188f
for fiberglass fabric composite, 227f
for fiberglass knitted composites, 228f
linear elastic material, 4, 4f
for transverse tension, 189f

Structural materials, 1

aramid-epoxy composite material, 8
bar under tension, 2, 2f
constitutive equation, 7–8
dependence of force, 8–9, 8f
elastic-plastic material model, 6
high stiffness, 1
Hooke’s law, 4
lack of material strength, 1
material stiffness and strength, 1–2
mechanical characteristics, 4
mechanical properties, 5t
nonlinear elastic material model, 4
secant and tangent moduli, 7f
specific modulus, 4
specific strength, 2
stress and strain interrelation, 2
stress-strain curve, 3f

elastic material, 3–4
for elastic-plastic material, 7f
linear elastic material, 4, 4f

structure’s design, 1
time-sensitive material, 7
see also Composite materials

Successive loading method, 139f, 140–141
Symmetric laminates, 257–259

layer coordinates, 258f
maximum bending stiffness, 260
middle plane coordinates, 259f
symmetric and antisymmetric components,

259–260
see also Antisymmetric laminates;

Orthotropic laminates

T
Taylor series, 132
Temperature effects, 353

polymeric composites, 353
thermal conductivity

composite materials coefficients, 356t
heat flow, 353–354, 356f
heat transfer, 355
orthotropic ply, 355–357
space telescope, 357–358
temperature distribution in laminate, 354f
unidirectional composite ply, 355

thermoelasticity
constitutive equations, 362
high-modulus carbon-epoxy composite,

359–360
layers stiffness coefficients, 364
layers thermal coefficients, 365–367
orthotropic layer, 360–361

temperature distribution, 358
temperature strains, 358
temperature variation, 363–364
thermal expansion coefficients, 361–362,

361f, 363f
thermal strains dependencies, 366f
thermoelastic behavior, 359

see also Hygrothermal effects
Tensor strength criteria, 313–315

invariant strength criteria, 315
orthotropic material, 313f
pure shear in coordinates, 315–317, 316f
second and fourth rank strength tensors,

319–320
second-order tensor criterion, 315
tensor-polynomial strength criteria, 320
transformation matrix form, 317–319

Tensor-polynomial strength criteria, 320
Tg. See Glass transition temperature
Thermal conductivity

composite materials coefficients, 356t
heat flow, 353–354, 356f
heat transfer, 355
orthotropic ply, 355–357
space telescope, 357–358
temperature distribution in laminate, 354f
unidirectional composite ply, 355

Thermoelasticity

constitutive equations, 362
high-modulus carbon-epoxy composite,

359–360
layer stiffness coefficients, 364
layer thermal coefficients, 365–367
orthotropic layer, 360–361
stiffness and strength dependencies

unidirectional carbon-epoxy composites,
367f

unidirectional glass-polypropylene
composites, 368f

temperature distribution, 358
temperature strains, 358
temperature variation, 363–364
thermal expansion coefficients, 361–362,

361f, 363f
thermal strain dependencies, 366f
thermoelastic behavior, 359

Thermoplastic matrices, 17–18
Thermoset

epoxy matrices, 17–18
polymers, 17

Thermostable structures, 116
Thin nonhomogeneous layer, 243–244
Thin-walled composite beams, 585

beam cross section geometry, 587–588
arbitrary point of contour, 588
contour arc element, 589f
contour curvature, 588
cross-sectional contour, 587–588
elementary arc, 589
normal and contour coordinates, 587f
radial and tangent of contour, 588f

behavior and analysis classification, 585
with circular closed cross-sectional contours,

585f

composite beam theory assumptions
axial stiffness reduction, 592–593
contour point displacements, 590–591,

590f
displacements by cross section rotation,

591f
equilibrium and constitutive equation

simplification, 592
reducing shell theory 2D equations, 593

composite thin-walled C-shaped beam, 586f
cross-sectional warping, 585–586
free and restrained torsion, 587f
with hexagonal cross section, 617f
membrane shell theory equations, 589

beam reference surface element,
589–590

membrane stress resultants, 590f
with multi-cell cross-sectional contour, 586f
with polygonal closed cross-sectional

contours, 585f
Third-order theory, 467–468, 470–471
Three-point bending test, 236f
TIGR. See Titanium and graphite fibers
Time-dependent loading effects

cyclic loading
anisotropic materials, 396
aramid-epoxy composite temperature,

395f
carbon-epoxy composites fatigue strength,

397f
cyclic bending, 397–398
cyclic tension, 396
dissipation factor, 394, 395f
energy dissipation in conjunction, 394
fabric composites, 398, 399f
glass-fabric-epoxy-phenolic composite

elastic modulus, 399, 400f
low-cycle fatigue, 398, 399f
material strength, 396
stiffness degradation, 400
stress acting, 392–394
stress concentration, 394, 396f
viscoelastic and elastic materials, 393f

durability
curves approximation, 389–390, 390f
long-term strength, 390
material damage accumulation, 388–389
material lifetime dependencies,

391, 392f
predicted and experimental lifetimes, 392t
tensile strength, 391

impact loading
aluminum layers, 414
aramid fabrics, 417–418
ballistic limit, 415t, 416
carbon-epoxy plates, 405f
clamping fixture for compression test,

403f
composite airframe structure, 401, 401f
composite panel, 402f
compression strength dependence, 408,

408f
delamination, 409
delamination area, 403, 404f
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delamination energy dependencies, 406f
drop-weight mass, 407
energy dissipation, 407
extrapolation, 403
fabric membrane, 416
flying projectile, 414–415
force-deflection diagrams, 416f
homogeneous layer, 410–411
impact test, 414f, 415f
impactor and plate interaction, 407f
interlaminar conditions, 412
interlaminar stress dependence,

412, 412f
kinetic energy, 401–403
laminate under impact load, 410f
laminates structure, 413f
load vs. plate shortening under

compression, 409f
load-carrying structures, 404–406
material delamination, 409–410
normal stress, 413f
projectile velocity, 415–416
quasi-static test, 416
residual velocity dependence, 416–417,

417f
steel impactor and hail ice, 406, 406t
steel impactor energy, 406
stress-strain diagrams, 411–412
surface layers local buckling, 409f
tensile and compressive waves, 411f
thin fabric skin damage, 405f
thin-walled composite laminates, 401
wave interaction, 412–414

viscoelasticity
aging theory, 387
aramid-epoxy composite, 377f
circumferential strain dependence on time,

389f
creep compliance, 378–379, 379f, 387
elastic viscoelastic analogy, 386
exponential approximation, 379–380
Laplace transformation, 383–384,

386–387
linear-viscoelastic material behavior,

377–378
material axes, 384–385
material creep, 381, 382f
nonlinear hereditary theory, 388
normalized shear strain, 386, 387f
one-term exponential approximation,

382–383
polymeric fibers, 388
polymeric matrices, 376–377
relaxation modulus, 378
stress relaxation, 381–382
three-element mechanical model,

380–381, 380f
unidirectional glass-epoxy composite,

380f
Titanium and graphite fibers (TIGR), 275
Transcendental equation, 450–454
Transverse bending, 657

beam displacements, 660
with C-shaped beam, 658–659, 659f

model beam deformations, 660, 661f
shear center

of beam, 658
of circular cross section, 660–662, 662f

shear stress resultant, 657, 660
Transverse compression

failure under, 115f
strength, 115
see also Longitudinal compression

Transverse tension

composite ring on eight-sector test fixture,
102f

failure modes, 103f
mandrel for test rings, 101f
material failure under, 99–100
material strength on fiber volume fraction,

104f
normalized longitudinal strength on fiber

volume fraction, 101f
polymeric and metal matrices, 102–103
qualitative analysis, 100–102
strength and stiffness under, 103
two-, four-, and eight-sector test fixtures,

102f
unidirectional boron-epoxy composite

material, 100f
see also Longitudinal tension

Transversely isotropic plates

orthotropic symmetric plate bending,
519–545, 520f

plate theory
classical plate theory, 496–502
equations analysis, 494–495
shear deformable plate theory,

502–519
Twist center, 617–618, 620

beam triangular cross section, 620f
bending and torsion problems, 622
coordinates of, 620–621
distribution of function, 622f
existence of, 622
stiffness coefficients, 620

Two-dimensional braiding (2D braiding),
22–23

Two-matrix composites, 187

acoustic emission intensity, 192f
composite fiber properties, 188
composite fibers of, 191
conventional cross-ply glass-epoxy layer,

191, 192f
glass-epoxy unidirectional composite

properties, 191t
longitudinal strength dependency, 189f
mechanical characteristics, 190–191
microstructure of, 190f
solutions to analysis problem, 187–188
stress-strain curves

for epoxy matrices, 188f
for transverse tension, 189f

stress-strain diagram of deformable epoxy
matrix, 190f

synthesizing composite materials, 188
two-matrix cross-ply glass-epoxy layer, 191,

192f

U
Ultimate fiber arrays, 56–57, 57f
Unidirectional anisotropic layer, 152

composite layer, 153f
of composite pressure vessel, 153f
linear elastic model

apparent modulus, 168
carbon-epoxy strip deflection, 168, 168f
compliance coefficients, 156–158
composite dependencies, 164f
constitutive equations, 152–156
coupling stiffness dependencies, 159f
elastic constants of anisotropic materials

relationship, 164
forces and moments effect, 167f
for free tension, 166
in-plane shear modulus, 158–160, 163
invariant stiffness characteristics, 156–158
normalized apparent modulus

dependence, 168
normalized strain dependencies, 161f
off-axis tension, 165f
off-axis test, 160f, 165
shear-extension coupling coefficient, 162
stiffness coefficients, 152–156, 158
tensile and shear stiffness dependencies,

159f
transformation for strains, 152–156
unidirectional composites, 163–164
unidirectional layer deformation, 160f,

161
nonlinear models, 169

stress-strain diagram, 170f, 171f
two-matrix fiberglass composite, 169

Unidirectional composite properties, 96t
Unidirectional orthotropic layer, 144, 145f

linear elastic model
constitutive equations, 144–147
filament-wound composite pressure

vessel, 145f
transverse normal stress, 144–147
transverse shear modulus, 147f, 147t
for unidirectional composites, 147

nonlinear models, 147–148
boron-aluminum unidirectional

composite, 151, 152f
independent uniaxial loading, 151
material behavior under elementary

loading, 148
nonlinear behavior in composite materials,

150
notations for stresses and strains, 151
pronounced nonlinear elastic behavior,

148–149
sixth-order approximation, 148–149
strain decomposition, 150–151
two-matrix unidirectional composite, 150f
for unidirectional composites, 148–149

Unidirectional ply, 53f

fiber-matrix interaction
fiber strength statistical aspects, 61–65
fracture toughness, 78–80
stress diffusion in fibers interaction, 65–78
theoretical and actual strength, 57–61
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Unidirectional ply (Continued )
hybrid unidirectional ply, 116

composites with high fiber fraction,
119–121

experimental dependencies, 117f
first-order microstructural model, 116f
hybrid carbon-glass epoxy unidirectional

composite, 119f
inverse linear dependence, 117–118
longitudinal modulus vs. ultimate tensile

strain, 118f
micromechanics, 116–117
threshold value, 119
typical stress-strain diagrams for, 118f

mechanical properties, 95
in-plane shear, 104–107
longitudinal compression, 107–115
longitudinal tension, 95–99
transverse compression, 115
transverse tension, 99–103
unidirectional composites, 96t

micromechanics
actual and admissible states, 93–94
actual stress-strain state, 94–95
applications, 95
comparison, 87
constitutive equation, 86–87
elastic constants, 81
first-order models, 83–85, 84f
higher-order microstructural models, 91
under in-plane loading, 80f
isotropic matrix, 91
longitudinal and transverse strains,

85–86
matrix material specimens, 81f
matrix specimen testing, 82f
mechanical characteristics, 81–82
microcomposite material, 82–83
microcomposite specimen gripped at ends,

84f
microcomposite specimen overwrapped

over discs, 83f
normalized in-plane shear modulus,

88f
normalized longitudinal modulus, 87f
normalized transverse moduluson fiber

volume fraction, 88f
qualitative analysis, 91–92
second-order models, 89–91, 89f

simplest or zero-order model, 83
structural element, 90f
transverse tension, 92–93
unidirectional composite ply,

80–81
phenomenological homogeneous model

actual material behavior prediction,
122

biaxial compression, 122f
first-order micromechanical model, 122
ply, 122
stresses acting in fibers and matrix, 123

ply architecture
actual fiber distribution, 54f
carbon-epoxy composite material, 56
composite ply, 53–55
fibers and matrix, 56
hexagonal fiber distribution, 55f
layer-wise fiber distribution, 55f
square fiber distribution, 54f
strength and stiffness, 56
tape, 53
ultimate fiber arrays, 56–57, 57f

Unidirectional tow, 15
Uniform strength composite laminates

advanced composites parameters,
755, 755t

boron-epoxy optimal laminates, 757
carbon-epoxy laminate,

756–757
coefficients, 756
composite materials, 753
composite panel, 757
laminate optimal structural parameters,

753
laminate thickness, 754
optimal laminate elastic constants,

756, 757t
optimal orientation angle, 756
optimal structure, 755
optimality condition, 755
periodic function, 755
plane stress state, 752–753
ratio layers’ thicknesses,

757–758
restrictions, 754
strains, 756
stresses, 753–756
unidirectional plies, 757

V
Vacuum-assisted RTM (VARTM), 26
Variable elasticity parameter method,

139–140, 139f
VARTM. See Vacuum-assisted RTM
Vibration coupling, 463
Viscoelasticity

aging theory, 387
aramid-epoxy composite, 377f
creep compliance, 378–379, 379f, 387
elastic-viscoelastic analogy, 386
exponential approximation, 379–380
Laplace transformation, 383–384,

386–387
linear-viscoelastic material behavior,

377–378
material axes, 384–385
material creep, 381, 382f
nonlinear hereditary theory, 388
normalized shear strain, 386, 387f
one-term exponential approximation,

382–383
polymeric fibers, 388
polymeric matrices, 376–377
relaxation modulus, 378
stress relaxation, 381–382
three-element mechanical model, 380–381,

380f
unidirectional glass-epoxy composite, 380f

Viscous regularization scheme, 341

W
Warping function, 605

constant of integration, 605–606
continuous function, 606
rectangular beam under torsion, 616f
rectangular beam under transverse bending,

615f
Wet process, 21
Widespread metal matrices, 18

Y
Yarn, 15

Z
Zhurkov equation, 390–391
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