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PREFACE

Statistics has its applications in diversified fields and it is rather impossible to see any
field where statistics does not creep in. Owing to the importance of statistics, this subject
has become a part of the general curriculum of many academic and professional courses.In
olden days, researchers spent months in completing a statistical task manually.With the
advent of computers, a few programs were made available to analyse statistical data.
SPSS,earlier termed as Statistical Package for the Social Sciences, is one of the oldest
statistical programs on the market, which was originally written for mainframe computers
and designed to be used in the social sciences, hence the name.Nowadays, this package is
used by researchers from every discipline as the software contains powerful tools for
automated analysis of data.

Our experience of more than two and a half decades of teaching SPSS from the earlier
version to the latest version, our practical experience in guiding researchers in their
statistical analyses and our experience in conducting courses in SPSS in various
institutions gave us the interest and confidence to write this self-study book on SPSS.

The scope of this book is to introduce the reader to the SPSS for Windows and to enable
them enter and format data, run the analysis, draw different kinds of diagrams and graphs
and interpret data.This book is prepared for use in the teaching of statistics in colleges and
for those who work independently in research, for analysis and interpretation of data.

This book is written in a simple systematic way. The subject matter is arranged in
chapters and sections, numbered by the conventional decimal numbering system. All
chapters have been written like a tutorial. Each chapter has instructions that guide the
learner through a series of exercises, as well as graphics showing how the screen should
look like at various steps in the process.

This book has nine chapters. Chapter 1 gives a brief account of statistical data, sample
and population and the basics of hypothesis testing.The rest of the chapters contain
chapter-specific materials with exercises.Chapter 4 exclusively deals with a versatile way
of producing graphs such as clustered bar chart with error bars with the aid of Chart
builder and Interactive graphs. Chapters on comparing averages, analysis of variance,
correlation, regression and chi-square are written in a very simple way with specific
examples, to enable the reader to understand the concept and carry out the analysis easily,
and interpret the results.

Throughout the book,we have used screen snapshots of SPSS Data Editor with Variable
view and Data view, Dialog boxes and Outputs to illustrate finer aspects of the
technique.The revision exercises are chapter-specific to enable the novice to have a
personal hands-on training. We have also included a glossary for easy reference.

We would like to thank the faculty and the research scholars who approached us to have
some clarification on the choice of the statistical test, running the analysis and interpreting



data.

We are grateful to the authors of various books on SPSS which we have referred towhile
writing this book, especially Andy Field who has authored Discovering Statistics using
SPSS, for the topics on ‘Matched-Pairs Signed Rank test and Mann–Whitney’s test”.

We are grateful to Prof. P. Shanmugavadivel, Department of Statististics, St. Josephs
College,Tiruchirapalli, India, for his spontaneous help and for his valuable comments.
Finally,we would like to thank Mr. C. Sajeesh Kumar, Managing Editor, MJP Publishers,
Chennai,for scrutinizing the manuscript with perfection, and for his valuable suggestions.

We hope that this book will be of great help to the readers in carrying out analysis with
SPSS. If you would like to make suggestions, correct errors, or give us feedback, you are
most welcome.Please send your suggestions and criticisms to c_rajathi@yahoo.com,to
enable us to improve the contents in the next editions.

A. Rajathi

P. Chandran



1
INTRODUCTION

A scientist, an engineer, an economist or a physician is interested in discovering about a
phenomenon that he assumes or believes to exist. Whatever phenomenon he desires to
explain, he tries to explain it by collecting data from the real world and then using these
data he draws conclusions. The available data are analysed by him with the help of
statistical tools by building statistical models of the phenomenon. This chapter gives a
brief overview of some important statistical concepts and tools that help us to analyze the
data to answer scientific questions.

POPULATION AND SAMPLE

Biologists might be interested in finding the effect of a certain drug on rat metabolism;
psychologist might want to discover processes that occur in all human beings, an
economist might want to build a model that apply to all salary groups and so on. In all
these situations, it is impossible to study the entire unit on which the researcher is
interested. Instead he studies only a handful of observations and based on this he draws
conclusion for the entire unit on which he was originally interested. In this connection two
terms are often used in statistical investigation, one is “population” and the other is
“sample”. The term population refers to all possible observations that can be made on a
specific characteristic. In the first example of the biologist, the term “population” could
mean all the rats now living and all rats yet to be born or it could mean all rats of a certain
species now living in a specific area. A biologist cannot collect data from every rat and the
psychologist cannot collect data from every human being. Therefore, he collects data from
a small subset of the population known as “sample” and use these data to infer on the
population as a whole.

If engineers want to build a dam, they cannot make a full-size model of the dam they
want to build; instead they build a small-scale model and tests this model under various
conditions. These engineers infer how the full-sized bridge will respond from the results
of the small-scale model. Therefore, in real life situations we never have access to the
entire population so we collect smaller samples and use the characteristics of the sample to
infer the characteristics of the population. The larger the sample, the more likely it is to
represent the whole population. It is essential that a sample should be representative of the
population from which it is drawn.



OBSERVATIONS AND VARIABLES

In statistics, we observe or measure characteristics called variables. The study subjects are
called observational units. For example, if the investigator is interested in studying
systolic and diastolic blood pressure among 100 college students, the systolic and diastolic
blood pressures are the variables, the blood pressure readings are the observations and the
students are the observational units. If the investigator records the student’s age, height
and weight in addition to systolic and diastolic blood pressure readings, then he has a data
set of 100 students with observations recorded on each of five variables (systolic pressure,
diastolic pressure, age, height and weight) for each student or observation unit.

VARIABLES AND SCALES

Quantitative or Measurement Variable on Interval Scale

There are numerous characteristics found in the world which can be measured in some
fashion. Some characteristics like height, weight, temperature, salary etc. are quantitative
variables. Since these variables are capable of exact measurements and assume, at least
theoretically, infinite number of values between any two fixed points. The data collected
on such measurements are called continuous data and we use interval scale for these data.
For example, height of individuals can be fixed on some interval like 2–3; 3–4; 4–5; 5–6
feet. On the other hand, number of children in a family can be counted as 0, 1, 2, 3, 4, 5,
… and the number of families having these many children can be counted and given. In
this example the number of children is 1, 2, 3,….. and not any intermediate value as 1.5 or
2.3. Such a variable is called discrete variable.

QUALITATIVE VARIABLE ON NOMINAL SCALE

Here the units are assigned to specific categories in accordance with certain attributes. For
example, gender is measured on a nominal scale, namely male and female. Qualitative
variable is an attribute and is descriptive in nature. For example, colour of a person like
fair, whitish and dark.

RANKED VARIABLE ON ORDINAL SCALE

Some characteristics can neither be measured nor counted, but can be either ordered or
ranked according to their magnitude. Such variables are called ranked variables. Here the
units are assigned an order or rank. For example, a child in a family is referred by its birth
order such as first, second, third or fourth child. Similarly, it may be possible to categorize
the income of people into three categories as low income, middle income and high



income. The only requirement is that the order is maintained throughout the study.

Thus based on these there are three different scales and there are three types of data
namely nominal (categorical), ordinal (ordered) and measurement (interval or ratio).

FREQUENCYDISTRIBUTION

Once the data collection is over, the raw data appear very huge and it is not possible to
infer any information. Therefore, it is important to reduce the data by formulating a
frequency distribution. It could be done either by classification and tabulation or by
plotting the values on a graph sheet. These procedures reduce a huge amount of data into a
mind capturing data. When the variables are arranged on an interval scale and the number
of items (frequency) against each class, then the resulting distribution of that particular
variable is called frequency distribution (Table 1.1.).

Table 1.1 Frequency distribution

PROPERTIES OF FREQUENCYDISTRIBUTION

Alternatively, when the variable is plotted in X-axis and the number of observations
against each class-interval in the Y-axis, then the resulting graph is known as histogram,
and when the mid-points of the class intervals are connected in the form of a smooth
curve, the resulting curve is a frequency curve (Figure 1.1). From this histogram and
frequency curve, we could study the nature of distribution. By looking at the tallest bar
one can say which mark is repeated the maximum number of times or occurs most
frequently in a data set. On either side of the class interval 50–60, the frequencies are
distributed equally. The curve is also bell-shaped and symmetrical. Such as symmetrical
curve is called a normal curve.

If we draw a vertical line through the centre, the distribution on either side of the
vertical line should look the same. This curve implies that the majority of the scores lie
around the centre of the distribution. As one moves away from the centre, the bars get
smaller, implying that the marks start to deviate from the centre or the frequency is
decreasing. As one moves still further away from the centre, the bars become very short.
In an ideal world our data would be symmetrically distributed around the centre of all



scores. But natural phenomena are not always ideal.

Figure 1.1 Histogram

Most frequently, in real life situations the frequency distributions deviate from an ideal
world. As a law of nature, ideal world does not exist. Everywhere we always see
deviations. There are two main ways in which a distribution can deviate from normal. In
statistics we call these as skewness where there is lack of symmetry, and kurtosis which is
the peakedness of the distribution.

Skewness Skewness implies asymmetry in a distribution. Skewed distributions are
not symmetrical and the most frequent values are clustered at one end of the scale. So, the
typical pattern is cluster of frequent values at one end of the scale and the frequency
tailing off towards the other end of the scale. There are two kinds of skewed distribution:

i. Positively skewed In Figure 1.2, the number of students obtaining low marks is
clustered at the lower end indicating that more number of students are getting low marks.
The tail points towards higher marks.

ii. Negatively skewed In Figure 1.3, more number of students is clustered at the
higher end indicating that there are more students getting high marks. In this graph the tail
points towards the low marks indicating that there are only a few students getting low
marks.

Figure 1.2 Positive skew (Elongated tail at the right, more
items in the left)



Figure 1.3 Negative skew (Elongated tail at the left, more items
in the right)

Kurtosis Two or more distributions may be symmetrical and yet different from each
other in the extent of concentration of items close to the peak. This characteristic is shown
by how flat or peaked a distribution is. This aspect of the study is called kurtosis. A
platykurtic distribution is the one that has many items in the tails and so the curve is quite
flat. In contrast, leptokurtic distributions have relatively a fewer items towards the tail and
have thin tails and so look quite pointed or peaked (Figure 1.4). To remember easily, “the
leptokurtic distribution leaps up in air and the platykurtic distribution is like a plateau”.
Ideally, an investigator wants his data to be normally distributed, that is, not too much
skewed or not too much flat or peaked.

Figure 1.4 Frequency Distribution Curve

In a normal distribution the values of skewness and kurtosis
are 0 and 3 respectively. If the distribution has values of skew or
kurtosis above or below 0 then this indicates a deviation from
normal. Thus skewness and kurtosis give an idea to the
investigator whether the distribution is close to or deviate from
the ideal condition.

Standard deviation and shape of the distribution In a distribution, if
the mean represents the data well then most of the scores will cluster close to the mean
and the resulting standard deviation will be small relative to the mean. When the mean is
not a good representative of the data, then the values or items cluster more widely around
the mean and the standard deviation is large. This distinction is a key point in inferential
statistics. Since, lesser the standard deviation the more consistent is your data and the
greater the standard deviation the less consistent is your data. When the standard deviation
gets larger the sample mean may not be a good representative of the population.

NORMALDISTRIBUTION

To understand and to make use of statistical tools to infer the salient features of data, it is



essential for anyone to think of frequency distribution in terms of probability. In the
previous example on marks obtained by the students, consider for example that someone
is interested to find how likely is it that a boy getting a mark of 70. Based on the
frequencies of different marks, the probability could be calculated. A probability value can
range from 0 to 1.

For any distribution it is possible to calculate the probabilities of obtaining that event,
but it is very tedious, statisticians have identified several common distributions after
studying a large number of actual distributions. For each one they have worked out
mathematical formulae that specify the idealized version of the distributions. These
idealized distributions are known as “Theoretical distributions” or “probability
distributions”. Like frequency distribution, the probability distributions could be either
continuous or discrete. The discrete distributions are binomial and Poisson. The
continuous distribution is the normal distribution. To understand the basic concept of
standard normal distribution it is important to learn the properties of normal curve and the
transformation of normal distribution into standard normal distribution.

PROPERTIES OF NORMALCURVE

i. The normal curve is unimodal, perfectly bell-shaped and symmetrical. The tails of the
curve are asymptotic, that is, the curve gets closer and closer to the X-axis but they never
touch it. The two tails of the distribution extend indefinitely and never touch the horizontal
axis.

ii. The mean (average) lies at the centre of the distribution and the distribution is
symmetrical around the mean (Figure 1.5).

Figure 1.5 Normal curve—symmetrical around mean

iii. Mean, median and mode coincide or mean = median = mode.

iv. The quartiles are equidistant from the mean.

v. Coefficient of skewness

vi. Coefficient of kurtosis

vii. The total area under the normal curve is equal to the total probability, that is 1.

viii. The ordinate drawn through the mean divides the total area under the curve into two
equal parts. The area under the curve is unity and therefore 0.5 to the right and 0.5 to the



left of the mean (Figure 1.6).

Figure 1.6 Normal curve—total area under curve is = 1

ix. About 68.27% of the items lie between the values of About 95.45% of
the items lie between the values of About 99.73% of the items lie between
the values of (Figure 1.7).

Figure 1.7 Normal curve—area under the curve in relation to m
and s

STANDARD NORMALDISTRIBUTION

The probability of the normal distribution as given above is difficult to work with. In
determining areas under the curve, for a given set of data. Therefore, each set of X values
(means and standard deviations) are translated to a new axis, a Z-axis. These values are
called as Z-score. Z-score is the value of an observation expressed in standard deviation
units. It is calculated by taking the observations and subtracting from it the mean and
dividing the result by the standard deviation. By converting a distribution into Z-score,
one can create a new distribution that has a mean of 0 and a standard deviation of 1.

It is called the standard normal variate. The resulting curve is called standard normal
curve.

The standard normal curve The standard normal curve is a member of the
family of normal curves with The value of 0.0 was selected because the
normal curve is symmetrical around and the number system is symmetrical around 0.0.
The value of 1.0 for is simply a unit value. The X-axis on a standard normal curve is
often relabelled and called Z-scores.

There are three areas on a standard normal curve that all introductory statistics



students should know. The first is that the total area below 0.0 is 0.50, as the standard
normal curve is symmetrical like all normal curves. This result generalizes to all normal
curves in that the total area below the value of is 0.50 on any member of the family of
normal curves (Figure 1.8).

Figure 1.8 Standard normal curve—the area below 0.0 is 0.5

The second area is between Z-scores of –1.00 and +1.00. It is 0.68 or 68% (Figure
1.9).

Figure 1.9 Standard normal curve—the area between +1 and –1
is 0.68

The total area between plus and minus one Z-score on any member of the family of
normal curves is also 0.68.

The third area is between Z-scores of –2.00 and +2.00 and is 0.95 or 95% (Figure
1.10).

Figure 1.10 Standard normal curve—the area between –2.00
and 2.00 is 0.95

The fourth area is between Z-scores of –3.00 and +3.00 and is 0.9973 or 99.73%.

STATISTICS AND PARAMETERS

Values of means and standard deviations obtained from the samples are called statistics. In
other words, sample attributes are called statistics. For example, if we say sample mean, it
is a sample statistic. On the other hand, the values of mean and standard deviation of the



population are called parameters. Thus in statistical inference, we draw samples from the
population, derive sample statistics and use these sample statistics as the basis for
estimating unknown population parameters. In other words, unknown population attributes
are derived from the characteristics of the samples drawn from that population.

Generally statisticians use Greek letters to designate population parameters and
Roman letters to designate statistics. Thus, is population mean, (sigma) is the
standard deviation and is the variance. The sample mean is given the symbol and the

sample variance and standard deviation are written as S2 and S respectively.

Since the population is too large or impossible to measure directly, we can assume that
we do not know but it is possible for us to estimate the same on the basis of our
samples statistics Then are the estimators of population parameters. Then the
sample mean , is called an unbiased estimate of population mean . This is so because,
if we draw an infinite number of samples of a certain number N from the populations, with
replacement, the mean of these sample means would be equal to . On the other hand, the

mean of all S2 of an infinite number of samples would not equal . Infact it would be

smaller than . For this reason, the sample variance S2 is called a biased estimate of .

It is important to understand biased nature of S. For example, if a sample of 50 males
were drawn randomly from the population, logically the degree of dispersion of different
items around would be greater than it would be from µ. In this case, the sample may not
have extreme values (like a man tall and another man tall). Therefore, we are not likely to
find the various extremes of the population adequately represented in the sample.

If we want to use S2 as an unbiased estimate of it is apparent to do something to
make S as an unbiased estimate of . The formula to calculate variance is

The value of S would be increased if 1 is taken away from N in the denominator.
Further, it is important to recall that sum of the deviations from the true mean of a
distribution will always be equal to “0”, but sum of the deviations from some number
other than the mean will not equal to “0”. If the sample size is smaller, then the
denominator should be N – 1. On the other hand, it is not that important for a large sample,
for example, if the denominator is 500, changing this from 500 to 499 will hardly make
any difference.

If we want to use statistics derived from a sample as estimates of population

parameters, S2 should be calculated as

The square root of S2 will yield which is more reliable.



SAMPLING DISTRIBUTION

Suppose we collect samples from a population and compute the mean of every sample
drawn. This would yield a distribution of sample means which would take the form of a
normal distribution of sample means. In this case, most of the sample means, would
tend to cluster around , the mean of the population from which the samples were drawn.
This is one of most basic and important principles in statistics. The distribution of sample
mean is called a sampling distribution and it is of critical importance to inferential
statistics. The sampling distribution is a purely hypothetical concept. The mean of the
sample means would be equal to . Therefore, the mean of a sampling distribution and
the mean of the population from which the samples were drawn are one and the same.
Thus, may refer to either mean of a population or its sampling distribution. The second
important characteristic of any distribution is the variance or standard deviation.

Let us suppose that a person is interested in finding out the average of how much of
money is spent by a student staying in a hostel in every month. Of course he cannot collect
information relating to expenditure from all students staying in the hostel throughout the
country; rather he could select a few hostels as samples. For each of these he can calculate
the average expenditure or sample mean. Let us consider that he has taken nine different
samples. There will be nine different means for nine different samples and a population
mean (obtained by adding all values and dividing by the total of all samples). In this case,
some of the samples have the same mean as the population but some have different means.
There are three samples that have a mean of 3000, two samples with means of 2000 and
4000 each and one sample each have means of 1000 and 5000. If we plot mean values of
all nine samples as a frequency distribution or histogram, it will result in a symmetrical
distribution known as sampling distribution. A sampling distribution is simply the
frequency distribution of sample means from the same population. For practicality and
simplification, nine samples are cited as examples. Theoretically we can have as large as
hundreds and thousands. The sampling distribution thus tells us about the behaviour of
samples from population. The average of the sample means is the same value as the
population mean.

SAMPLING DISTRIBUTION OFMEAN

To have clarity in understanding, recollect the relationship between mean and standard
deviation of a sample. The small standard deviation tells us that most of the data points are
close to the mean, a large standard deviation represents, a situation in which data points
are widely spread from the mean. Similarly, if we want to a calculate the standard
deviation between sample means then this would give us a measure of how much
variability occurs between the means of different samples. The standard deviation of
sample means is known as the standard error of the mean (SE). The standard error could



be calculated by taking the difference between each sample mean from overall mean
(population mean), squaring these differences, adding them and then dividing by the
number of samples.

Since, in reality we cannot collect hundreds and thousands of samples, we rely on
approximation of standard error done by statisticians. The standard error is calculated by
dividing the sample standard deviation by the square root of the sample size N.

SE—Standard error of sampling distribution of means

S—Standard deviation of means from population mean

N—Number of items in the sample

In this, standard error is simply a standard deviation of sample mean of a sampling
distribution instead of a distribution of individual measurements. The sampling
distribution concept is useful in understanding inferential statistics and decision making or
hypothesis testing.

To sum up, the standard error is the standard deviation of sample means. If the value
of standard error is large then there is a lot of variability between the means of different
samples and therefore the samples we have may not be the representative of the
population. If the value of standard error is small, then the sample means are similar to
population mean and the samples would be the true representative of the population.

The accuracy of sample mean as an estimate of the population means is assessed by
calculating boundaries within which the true value of the mean lies. Such boundaries are
called confidence intervals. The basic idea behind confidence interval is to construct a
range of values within which we think the population values fall. The confidence intervals
are limits constructed such that at a certain percentage of the time the true value of the
population mean will fall within these limits. In most of the statistical analysis we say at
95% confidence interval or 99%. When we say 95% confidence interval, the explanation
goes like this: if we had collected 100 samples, calculated the mean and then calculated a
confidence interval for that mean, then for 95 of these samples, the confidence intervals
would contain the true value of the mean in the population.

To calculate the confidence interval, we need to know the limits within which 95% of
means will fall. Therefore, the confidence interval can easily be calculated once the
standard deviation (S in the equations below) and mean ( in the equation) are known.
However, we use the standard error and not the standard deviation because we are
interested in the variability of sample means, not the variability in observations within the
sample as stated above.

The lower boundary of the confidence interval is, therefore, the mean minus 1.96
times the standard error, and the upper boundary is the mean plus 1.96 times the standard
error.



Lower boundary of confidence interval = – (1.96 × SE).

Upper boundary of confidence interval = + (1.96 × SE)

The mean is always in the centre of the confidence interval. Therefore, if the
confidence interval is small, the sample mean must be very close to the true mean.
Conversely, if the confidence interval is very wide then the sample mean could be very
different from the true mean, indicating that it is a bad representative of the population.

When the confidence limit is set as 68% ( covers 68% observations), then µ
would range between ±1 standard error. If – sample mean = 50, SE –Standard error of
mean = 0.50, then

i.e., the will lie between 49.50 and 50.50.

If the confidence limit is changed to 95%, the total area under the limits is 95% or
47.50% on each side of . An area of 47.50% is equivalent to a standard score of 1.96 time
SE. Therefore, at 95% confidence,

The will lie between 49.02 to 50.98. This new confidence interval is larger than
before.

Since SE is equal to S divided by square root N, it can be seen that as N increases, SE
decreases. A look at the estimation formula reveals that as SE decreases, the confidence
interval also decreases. Decrease in confidence limit increases precision.

It is therefore apparent that there are two ways to increase the precision of an estimate.
First, we can use a lower confidence limit, and second, we can increase the sample size.
Precision, therefore, depends only on the sample size and confidence limits used; accuracy
depends on proper sampling as well as the care and skill used in performing experiments
from which data are derived. The confidence limit can be lowered to 99% to have higher
precision and the interpretation is similar as explained above for 95% confidence limit.

HYPOTHESIS TESTING

The difference between the sample statistic and population parameter, should be a
statistically significant difference. What is meant by a statistical difference? Differences
may be due to “error” that occurs naturally. “Error” does not refer to “mistake”. No two
random samples from a population will be “identical”. Some differences are bound to
occur. For example, if we take 10 random samples from a population, the arithmetic
means of these samples will not be the same.

The differences among them are due to “random error”. Random error is also called as



“sampling error” contributed mainly by chance, due to the fact of studying a small sample
to represent a population. This is not due to error in the procedure or computation. This
random error is not accounted for “real differences”. Therefore, it is important to
distinguish differences due to “chance” and “real differences”. There are a number of real
life situations where we want to make statements regarding the real differences.

In biology, scientists are often required to make decisions or judgements. The
physiologists may be interested in finding out the effectiveness of some drug on blood
pressure or heart attack. The taxonomists may wish to know whether certain
morphological differences between populations are large enough to suggest speciation. In
all these situations the differences should be large enough to make decisions. Mostly, it is
necessary to make these judgements based on the samples drawn from the population.
When we draw samples from the population, the different measures like mean, standard
deviation etc. of the samples differ from each other and they also “differ” from such
measures of the population. Under such situations, an investigator proposes a hypothesis
and tests the hypothesis.

NULLAND ALTERNATE HYPOTHESIS

A hypothesis is a statement made by the investigator on the problem under investigation.
There are two kinds of hypothesis:

i. Null hypothesis and

ii. Alternative hypothesis.

Null hypothesis (H0) A null hypothesis is a statement of “no difference”. The H0
states that there is no significant difference between sample mean and population mean, or
between means of two populations, or between means of more than two populations, that
may be represented as follows.

Alternate hypothesis (HA) Any statement (hypothesis) which is
complementary to null hypothesis is called as an alternative hypothesis. This states that
the sample mean and population mean are not equal or in other words there is significant
difference between sample mean and population mean.

In other words the mean of three or more different populations are not equal, that is.



Though we could propose a hypothesis in either null form or in an alternative form, it
is always customary to propose in null form, since the null hypothesis could either be
accepted or rejected without much difficulty and ambiguity. After proposing a null
hypothesis, the confidence level with which an investigator accepts or rejects the same is
set up.

PERCENTILES AND CONFIDENCE INTERVAL

Any distribution could be described in terms of percentiles. 10th percentile is the value in
a distribution below which 10% of the values lie. 90th percentile is the value below which
90% of the values lie. So, 50th percentile is the median in a distribution. If we say 97.5th
percentile, then it is the value below which 97.5% of the values lie but it is also the value
above which 2.5% of value lies. 2.5th percentile is the value below which 2.5% of the
values lies. Therefore, if we want to find how, 5% of the values in a distribution are
distributed on either side of the tail then these values lie below 2.5th percentile and above
97.5 percentile. To make it clear 5% of the values lie on either side of the tail in a
distribution.

In any scientific study, a small fixed probability known as a significance level is decided
before the data is collected. Conventionally the significance level is set as 0.05 (or) 0.01.
If the significance level has been set at 0.05, the critical region will be above 97.5th
percentile; in the upper tail and, below the 2.5th percentile in the lower tail. If the value of
the test statistics falls within the critical (tail) region, the result is said to be significant,
then the null hypothesis is rejected and alternate hypothesis is accepted.

A statistical test is said to be significant if the p-value is less than the significance level.
This also means that the value of test statistics falls within the critical region. Therefore, p-
value of a test statistics is the probability of obtaining a value in the tail of the distribution
(as extreme values not covered under 95 %).

LEVELS OF SIGNIFICANCE

In the formal hypothesis testing procedure, an experimenter decides, prior to performing
the test, the maximum probability of a difference (between two groups taken) by chance
alone. The experimenter should preset the maximum probability that he will reject a null
hypothesis. The maximum probabilities, or level of significance, have been arbitrarily
established as 0.05 and 0.01. These two values are conventional levels of significance.
Therefore, when an experimenter says that the level of of significance is 0.05 or 5%, it
implies that in 5 out of 100 is likely to reject a true null hypothesis. In other words, he is
95% confident that his decision to reject a null hypothesis is correct.



TWO-TAILED TEST AND ONE-TAILED TEST

In any hypothesis testing, we have to answer the questions, “Is there a significant
difference between the observed statistic (e.g. ) and the population parameter ?” or Is
the observed statistics greater or lesser than population parameter? The first question does
not specify the direction of the test. We are not interested whether the statistic is greater or
lesser than the parameter; all that we want to know is whether the sample statistic is
different from the population parameter. In such instances the level of significance (0.05
or 0.01) is equally distributed in the two-tails of the sampling distribution as 0.025 and
0.025 for 0.05 level of significance and 0.005 and 0.005 for 0.01. In the second question,
when we say the observed statistic (e.g. ) is significantly lesser than the population
parameter , then the level of significance 0.05 is on one tail.

Two-tailed test A two-tailed test means that the level of significance 0.05, is equally
distributed on both the sides of the tail. 0 .025 is in each tail of the distribution of test
statistic. When using a two-tailed test, hypothesise is tested for the possibility of the
relationship in both directions. For example, we may wish to compare the mean of a
sample to a given value using a t-test. Our null hypothesis is that the sample mean is equal
to . A two-tailed test will test if the mean is significantly greater than and also if the
mean is significantly less than . The mean is considered significantly different from if
the test statistic is in the top 2.5% or bottom 2.5% of its probability distribution, resulting
in a p-value less than 0.05 (Figure 1.11).

Figure 1.11 Two-tailed test—0.05 level of significance is
distributed on both tails

One-tailed test If we are interested in finding out whether the observed statistic is
greater or lesser than the parameter, the test we apply is a one-tailed test, meaning that the
level of significance (0.05 or 0.01) is restricted to only one of the two tails of the sampling
distribution. If the question is about “greater than” the level of significance is in the tail on
the right side (Figure 1.12) of the sampling distribution and if it is about “lesser than” ,
then the level of significance is in the tail on the left side (Figure 1.13) of sampling
distribution. A one-tailed test will test either the mean is significantly greater than X or the
mean is significantly less than X, but not both. The one-tailed test provides more power to
detect an effect in one direction by not testing the effect in the other direction. So, when is
a one-tailed test appropriate? If one considers the consequences of missing an effect in the
untested direction and conclude that they are negligible, then one can proceed with a one-
tailed test.



Figure I.12 One-tailed test—level of significance in the right
tail

Figure I.13 One-tailed test—level of significance in the left tail

TYPE I AND TYPE II ERRORS

The logic of selecting 0.05 or 0.01 as the level of significance is to keep the probability of
rejecting a H0 reasonably at low level. If H0 is true it should not be rejected. Suppose we

made a decision to reject it. Then, we have committed an error called Type I error. The
probability of committing such an error is specified by the level of significance. If we set a
high level of significance such as 0.1 or 0.2, we might be rejecting many H0 that should

not have been rejected. That is the reason why fairly low levels of significance are
selected. Suppose we select a level of significance much lower than the conventional
levels, such as 0.005 or 0.001, then we will be failing to reject H0 many of which should

have been rejected because they were false.

Table 1.2 Type I and Type II errors

When we fail to reject a false null hypothesis and accept it when it should be rejected,
we have committed an error called Type II error. The area in the sampling distribution that
lies between the levels of significance in the tails represents the probability of Type II
error. Whenever we reduce the levels of significane, the probability of Type II error
increases. That is the reason why we should not set unreasonably very low level of
significance. A practical approach to decrease the probability of Type II error is to increase
the size of the sample so that the standard error of the sampling distribution would become



lower and consequently the area representing the probability of Type II error becomes
smaller while the Type I error probability area remains the same.

P-VALUES

When we compare the calculated probability (p) (area in the tail) with the level of
significance, if it is less than 0.05 (p < 0.05) or less than 0.01 (p < 0.01), we reject the H0.
Then there is significant difference between sample statistics and population parameter. If
the calculated p is equal to or greater than we fail to reject (accept)

theH0. Then there is no significant difference between the two. Thus we have only two
options regarding our decision about the null hypothesis, either reject it or fail to reject it.
A statistical test is said to be significant if the p-value is less than the significance level
(0.05 or 0.01).



2
SPSS DATAFILE

OPENING ADATAFILE IN SPSS

There are several ways of opening a data file in SPSS. One way is by clicking the SPSS
icon. An introductory window will appear with the title SPSS statistics 17.0 (Figure 2.1).
Read and click the radio button labelled Type in data and then click OK.

Now the Data Editor appears with the Variable View under display. At the foot of
the Data Editor, Data View appears along with Variable View. There is also a status bar
showing the line, SPSS Processor is ready. One should check this while working. Data is
typed directly in the SPSS data file created already in the Data Editor. Data can also be
imported from Excel and STATISTICA. In the SPSS data set, each row represents only
one case and each column represents a variable or a character of the case measured.
Before entering data in the Data Editor, it is essential to understand the terms used in data
editor.

Figure 2.1 Opening a data file in SPSS

SPSS DATAEDITOR

SPSS data editor has two spreadsheets like an array. One is the Data View, inwhich new
data is entered and the other is the Variable View that contains the names and details of
the variables of the data (Figure 2.2).



Figure 2.2 SPSS data editor

VARIABLE VIEW

To get the Variable View click Variable View at the left hand bottom of the window. Now
the data sheet appears with the title Variable View as in Figure 2.3.

Figure 2.3 Variable View

This Variable View data sheet has 10 columns namely:

1. Name It is a string character (normally, letters and spaces, and sometimes digits). It
appears at the head of a column in Data View but not in the output. It is a shortened view
that appears only within the data view. It should be a continuous sequence with no space.
Though 64 letters can be entered it is desirable to keep it short. It can be a mixture of
cases.

2. Type It accepts eight different types of variables. Two important ones are the numeric,
i.e., numeral with decimal point and string, names of participants, cites or any non-
numeric characters.

3.Width It is the width of the variable. The default setting for the width of the variable is
8. But it can be changed by choosing Edit, clicking options and then selecting Data.

4. Decimals It is the number of decimals that will be displayed in the Data View. The
default setting displays 2 decimals. If required it could be changed by clicking twice on
the upward/downward arrow.

5. Label Label is a meaningful phrase with spaces in between words. It describes the
variable and also appears in the output. It is important to assign meaningful labels for the



variables.

6. Values This column is meant for grouping variables. It gives the keys to the meanings
of code numbers. The value dialog box is opened by clicking the grey area. The value and
value labels are given in the value dialog box.

7.Missing value It specifies the missing values in a data set.

8. Columns It denotes the width of all variables that appear in the Data View.

9. Align This coloumn determines whether the data are left, right or centre aligned. The
default is right alignment.

10. Measure This tells about the type of measurement scale, whether the data are on the
ordinal or nominal scale.

DATAVIEW

Data View of the Data Editor when accessed gives the variable names at the head of the
columns which are labelled in the Variable View. The rest of the columns contain the
default name var, indicating that these columns have not yet been labelled with specific
variables (Figure 2.4).

Figure 2.4 Data View

ENTERING DATA INTO THE DATAEDITOR

Naming variables in Variable View For naming of the variables and their
properties, click Variable View. Naming of variables is left to the preference of the
individual. But you should remember to use exactly the same variable names to a data set.

Naming numeric variables in Variable View

Step 1 Enter the name of the variable under the Name in the Variable View. For
example, if you want to enter the height of the individuals in a class, type HEIGHT, under
Name (Figure 2.5). (It should be remembered that it is a continuous sequence with no



space in between characters. Whatever we type, it appears at the head of a column in Data
View but not in the output).

Figure 2.5 Naming numeric variable in Variable View

Step 2 Next go to Type, and right click anywhere in the cell of the Type column. A
Variable Type dialog box opens (Figure 2.6).

Step 3 Retain the Numeric format (default type). Decide and enter the Width and
Decimal Places. Since the variable is “height” we shall select only two decimals.

Figure 2.6 Selecting variable type and decimal places

Step 4 Under the Label column, describe the variable by a phrase or in a sentence. Take
care to type correctly since this appears in the output. For example, we can type as “The
height of the students in III B. Sc”.

Step 5 Since height is a numerical variable we need to give the unit of expression.

Step 6 Next we can open Data View by clicking the same at the bottom. The Data View
appears as given in Figure 2.7 with the variable label as “HEIGHT”. Now we can start
typing the data.

Figure 2.7 Entering data in Data View



Entering data for grouped or categorical variable and naming
grouped or categorical variable in Variable View If we are interested
in finding out, for example, the significance of difference in blood pressure among age
groups in a population, we can enter the variables as described in the following paragraph.

Measure the systolic pressure in mm mercury for different age groups and categorise the
age (variable) into young, adult and old, before entering the data. Now, click on Variable
View tab at the foot of the Data Editor. Enter the variable name as “age”, then go to Type
column, retain Numeric format (default type) and decide theWidth and Decimal Places.
Describe the variable under the Label column (as you want it to appear in the output. For
example, the age in years of persons in Chennai). Go to Values column, click on the grey
area, a pop up window opens (Figure 2.8).

Figure 2.8 Naming categorical or grouping variable in variable
view

You can give a code number in Value and a key to the code in Label. For example,
type “1” in the Value Box and “young (age1–18), in the Label box” similarly “label “2”
as adult (age19–50) and “3” “as “old (age 51 and above)” (Figure 2.9).

Figure 2.9 Naming categorical or grouping variable in Value
labels dialog box

Then type the second variable as “Blood Pressure” under Name and complete the rest.
Then click OK to return to Data View. Type the data under specific heads (Figure 2.10).



Figure 2.10 Variables named in Variable view with details for
two variables

Naming qualitative variables in Variable View If you want to type
blood group of students in a class, click on Variable View, type Bloodgp under Name
(Figure 2.11).

Figure 2.11 Naming Qualitative variable in Variable view

An attribute or a qualitative variable, is named in the Variable View. Go to Type,
right click anywhere in the cell under the column Type, a Variable dialog box appears.
Select String radio button and then click OK to return to variable view. Label the variable
(as in the previous example). No need to name the Values column as you have chosen
String variable (Figure 2.12).

Figure 2.12 Selecting String from Variable Type dialog box (To
type a qualitative variable in variable view)

Type the variables of any quality as in Figure 2.13.



Figure 2.13 Two qualitative variables named in Variable View

After specifying all the variables and their characteristics click Data View tab at the
foot of Variable view to open the data file. Enter your data case by case.

Entering data in Data View Once the specifications have been entered into
Variable View, click the Data View tab at the bottom of the Variable View. When the
Data View opens, the variable names will be seen at the column heads (Figure 2.14).

Figure 2.14 Data entered for two Qualitative variables in Data
View

(Note Check at the bottom of the data view window, where a horizontal bar appears
with the message: Spss Processor is ready. This horizontal band is known as the Status
Bar. It is named so because it reports on the stage that a procedure has reached in addition
to whether SPSS is ready to begin).

The contents of the cell you are typing are also displayed in a white area known as the
Cell Editor just above the column headings. The values in the cell can be changed by
clicking in the cell editor, then by selecting the present value and replacing it with new
value.

The new value will appear in the grid. It is either possible to highlight a cell or whole
block of cells or entire row or the column. This will help you to copy the values from one
column and paste them to another. Similarly entries can be removed by pressing delete
keys.

SAVING THE DATAFILE



Once the data entry is over and checked for accuracy, select File from the main menu, and
click Save as. Save as dialog box opens. Decide a suitable destination for this file (like
disc C or D). Always it is good to save the data in a folder created earlier with a name
such as SPSS 17.0 exercises. Type the file name in the File name box and click Save.
Close SPSS and any other open windows before logging off the computer. If you do not
do this you need to give the file name when you terminate or close the SPSS.

STATISTICALANALYSIS

Let as consider an example of computing mean for categorical variable given in Figure
2.10.

Step 1 From the main menu select Analyze. From the drop down menu, choose compute
means and thenMeans (Figure 2.15).

Figure 2.15 SelectingMeans from main menu in Data Editor

Step 2 This opens the Means dialog box. In the left hand panel the variable names are
seen (Figure 2.16).

Figure 2.16 Selecting and transferring variable to dependent
and independent list inMeans Dialog box

Step 3 Click on the variable, “Age group of person”, then on the arrow pointing to
Independent List text box to transfer the variable to the appropriate box. Similarly, click
on the variable, “Blood Pressure” then on the arrow pointing to Dependent list text box
to transfer the variable.

Step 4 Click Options to openMeans: Options dialog box (Figure 2.17).



Figure 2.17 Selecting and transferring descriptives (like
mean…) under Statistics to Cell Statistics

Step 5 Transfer Mean, Number of Cases and Standard deviation from left hand panel
(Statistics) to the right hand panel (Cell Statistics).

Step 6 Click Continue and then OK to run the analysis. The result will appear in a new
window called the Output Viewer (Figure 2.18).

Figure 2.18 SPSS output viewer showing the list of output items
in the left pane and the output tables in the right pane

EDITING AND MANIPULATING DATA

After entering the data, it could be edited or manipulated like inserting new variables,
rearranging the order of variables in Variable View or changing the type of variable.

INSERTING ANEWVARIABLE

An additional variable can be inserted in the Variable View by highlighting any row by
clicking the grey cell on the left and choosing Insert variable (Figure 2.19).



Figure 2.19 Inserting a new variable in Variable View

The new variable, with a default name “VAR00001” will appear above the row that
has been highlighted (Figure 2.20).

Figure 2.20 New variable inserted between the old ones

Now type the name of the variable in the Variable View.

REARRANGING THE ORDER OF VARIABLES IN
VARIABLE VIEW

As with inserting new variables, the sequence of the variables in the Data View can be
changed. For this click the Variable View then click the grey box to the left of the score
variable to highlight the whole row. By holding the left mouse button down, drag the
screen pointer upward. A red line will appear above the group row. On releasing the
mouse button, the variable score will appear immediately under case. In Data View, the
variable score will now appear to the left of variable groups.

DELETING AND REARRANGING ITEMS FROM THE
VIEWER

Items are removed from the viewer by selecting them and pressing Delete button. Items
can be rearranged easily by clicking and dragging them in the left hand pane, a red arrow
showing where the item will be relocated as you drag.



CREATING APAGE BREAK

A page break between items that belong to different categories can be given.

Step 1 Click the item above which you want to create a page break

Step 2 Choose Insert and then click Page Break

Step 3 Return to the viewer and click outside the selection rectangle to cancel the
selection. Check the pages in Print Preview.

CHANGING THE TYPE OF VARIABLE

By default, the type of variable in the Type column is assumed to be numeric. To create a
string variable you should proceed as follows

Step 1 After typing in the name of the variable, highlight the cell in the Type column.
(Refer Steps 1–3 given in page 28).

Step 2 Click grey area with 3 dots to the right of Numeric to open the Variable Type
dialog box.

Step 3 Click String radio button and theWidth and Decimal Places box will immediately
be replaced by a box labelled Characters.

Step 4 Change the default value 8 in the character box to some larger number such as 20
to accommodate the longest name. Do this by moving the cursor into the number box
selecting 8 and then replacing it by typing 20.

Step 5 Click OK. Now the Width column will show 20. In the Variable View, the
variable type String will appear under Type column.

Step 6 ClickWidth column and copy the specification either by choosing copy.

Step 7 Click on Column and paste the new Width specification (20) by choosing Paste.
After this there will sufficient space in Data View to see the longest name in the data set.

MISSING VALUES

SPSS assumes that all data sets are complete. However, the user may not have entries for
every case on every variable in the data set. Such missing entries are marked by SPSS
with what is known as system-missing value, which is indicated in the Data Editor by a
full stop. SPSS will exclude system-missing value from its calculations of means, standard
deviations and other statistics.



In contrast to the above, sometimes the user might wish SPSS to treat certain responses
actually present in the data set as missing data. This is called
user-missing value. To define such user-missing values, perform the following steps:

Step 1 Go to Variable View, move the cursor to the Missing column and click on the
appropriate cell of the variable concerned.

Step 2 Click the grey area with the ellipsis to the right of None to open Missing Value
dialog box.

Step 3 There are three radio buttons. The No missing values radio button is marked
default. For a quantitative variable, click the range plus one discrete missing value button.
Enter the values 0 to 20 into the Low and High boxes respectively and 9 into Discrete
Value box.

Step 4 Click OK and the values will appear in theMissing column cell.

EDITING SPSS OUTPUT

The SPSS output viewer window is divided into two panes by a vertical grey bar (Refer
Figure 2.18). Left pane shows hierarchical organisation of the contents. The right pane
shows the results of statistical analysis. The contents of both sides can be edited, as it
offers editing facilities.

Step 1 Right click on the table, a hatched border appears on the table and in the menu
select Edit Contents and then select In a Separate Window (Figure 2.21), in which the
categorical variable appears in rows and descriptives in columns.

Figure 2.21 Selecting Edit Contents options in SPSS output

Step 2 SPSS Pivot Table Report appears on top. You can edit as you do inWord. If you
want descriptive statistics in rows, then click on Pivot and then select Transpose Rows
and Columns (Figure 2.22).



Figure 2.22 Selecting Transpose Rows and Columns in Pivot
Table Report

Step 3 Now the categorical variable is copied in column and the descriptives in rows
(Figure 2.23).

Figure 2.23 Changed row and column heads after editing in
SPSS output

COPYING SPSS OUTPUT

The optimal procedure for copying items in the viewer differs slightly for tables and
graphs.

Copying a Table

Step 1 If you intend to copy a table from the output viewer in SPSS, keep the cursor
anywhere within the table and click on, now the table is boxed.

Step 2 Click copy in the Edit menu.

Step 3 Go to the word processor, select Paste Special from Edit Menu and then select
Picture from the Pop up window,

or

if you wish to copy more than one table, then ensure that all the desired tables are boxed



by holding down the Ctrl key while clicking on each table in turn and then copy.

Select Paste special in the Edit menu, select Picture and select Paste Special from the
pop up window.

Copying a Graph

Step 1 Keep the cursor anywhere within the graph and click. Now the graph has a box
around it. If more than one graph are to be copied, hold Ctrl key and click on each graph.

Step 2 Click Copy in the Edit menu.

Step 3 Switch to the word processor and ensure that the cursor is located at the insertion
point.

Step 4 Click Edit and choose Paste special and select Picture (Enhanced Metafile). The
item can then be centred, enlarged or reduced by clicking it so that it acquires a box
around it with the usual tabs.

Changing from portrait to landscape

If your table is wide it will not fit in portrait orientation. For printing purpose landscape
orientation that can accommodate wide tables is used. In order to change from portrait to
landscape the following steps are followed.

Step 1 Click the Page setup button at the top of the Print preview dialog box. Look in
the Orientation panel, the radio button is set in Portrait default. Change to Landscape.

Step 2 Click OK to return to the viewer.

Step 3 Access the viewer’s Print dialog box by choosing File and then click Print. Note
the Print Range selection in the lower left area of the box. Choose the desired option
either All visible output or Selection and click OK. If you select the former, entire
content of the viewer will be printed indiscriminately. In the latter case, you will get only
the selected output.

PRINTING FROM SPSS

Both data and output can be printed in SPSS. There are differences between printing
output from the SPSS Viewer and printing data from the Data Editor.

Printing the Output from the Viewer



SPSS output is very extensive and indiscriminate printing results in printing of irrelevant
material also. Therefore, one should make full use of the viewer’s editing facility to
remove all irrelevant material. One can select the items and print. There are two ways of
selecting items, by clicking the items icon in the left pane of the viewer, or by clicking
the item itself in the right pane. Either way, a rectangle with a single continuous border
will appear around the item. Then choose Print Preview to see the SPSS viewer (selected
output) window, which will display only the items selected. Then return to print dialog
box, see that Selection radio button in the Print range pane is activated and then Click
OK. Only the selected item will be printed. To select more items, click the first and press
the Ctrl key and click the other items you wish to select. Now choose Print Preview to
see the selected items. Return to the Print dialog box and give the printing option.

Closing SPSS

SPSS is closed by choosing Exit from the File menu. If the data or output is not yet saved,
a default dialog box will appear with the question. Save contents of Data Editor to
Untitled? or Save contents or Output Viewer to Output1?
Click Yes, No or Cancel button. You are given a final opportunity to save your contents.
Select the output file needed and save. Otherwise they may be too large to be
accommodated.

Tutorials in SPSS

SPSS package has tutorials on various aspects of the system including the use of viewer
and the manipulation of pivot tables. Tutorial could be accessed by choosing Help and
selecting Tutorial and double-clicking to open the Tutorial menu. The button in the right
hand bottom corner of each page of the tutorial enables the user to see the list of items
(magnifier) and to navigate forward and backward through the tutorial (right and left
arrows).

Importing Data

It is possible to import data into SPSS from other platforms like Microsoft, Excel and
SPSS for Macintosh. It can also read fixed format files with variables recorded in the
same column locations for each case. It is also possible to export SPSS data and output
into other applications such as word processors and spread sheets.

IMPORTING EXCEL FILES



Following are the steps to import the Excel file stored in a folder:

Step 1 Click directory of files.

Step 2 Select the file type from the box named as Files of types: and highlight Excel
(*.xls).

Step 3 Click the appropriate file from the list of file names that appear in the panel in File
name: box.

Step 4 Click open to get the Opening File Options dialog box. Select Read Variable
Names box to transfer the excel variable names into the SPSS Data Editor.

Step 5 If an error message appears stating that SPSS cannot load an Excel worksheet, it
may be necessary to return to Excel and re-save the file in the format of a different version
of Excel, to copy and paste column of data directly into SPSS data view.

Step 6 Click OK to transfer the file into SPSS. Variable view will list the variable names
and their types and Data View will show the transferred data and variable names. The
SPSS Viewer will list the names, types and format of variable. The file can then be saved
as a SPSS data file.
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DESCRIPTIVE STATISTICS WITH SPSS

The data collected by an investigator can be presented in the form of a table, diagram or
graph. In addition, it is possible to describe the data based on numerical measures. When
the statistical data is described in numerical measures it is called descriptive statistics.
There are several measures to describe a data set. They are generally classified into two
types: (i) measures of central tendency (ii) measures of dispersion.

The measures of central tendency or, generally, averages, describe the central theme of
the data and summarise the characteristics of an entire mass of data. Since these values
locate a distribution at some value of the variable, they are sometimes, referred to as
measures of location. The most common and useful measure of central tendency is the
arithmetic mean. There are other measures, which have limited usage in different fields.
These are median, mode, geometric mean, harmonic mean and weighted mean.

The measures of dispersion describe the extent of scatter of the values around a
measure of central tendencymeasure of central tendency, i.e., how far or how near are the
values to the average. Standard deviation is the most important and common measure of
dispersion. The other measures of dispersion with limited usage are the range, quartile
deviation and mean deviation.

In addition, there are certain other measures useful in describing the aspects of data
which are not illustrated by the measures of central tendency and dispersion. These are
measures of skewness and kurtosis. Skewness describes the nature of symmetry of a
distribution and kurtosis describes the extent of concentration of values around the mean
of a distribution.

A simple way to describe any data is to find out the measures of central tendency,
dispersion, skewness and kurtosis. All these measures are collectively known as
descriptive statistics. When the reader starts to use SPSS, he is supposed to have a sound
knowledge on statistics. Anyhow a brief description on the theoretical aspects of mean,
median, mode, standard deviation, skewness and kurtosis are presented to enable the
reader to refresh before interpreting the results.

MEASURES OF CENTRALTENDENCY



Arithmetic Mean

Mean is defined as the sum of all the items of a variable divided by the total number of
items in the sample.

The definition of mean is expressed in algebraic equation as

where,

—arithmetic mean of the variable X

—sum of all the items of the variable X

n—total number of items in the sample

i—variates of X from 1 to n.

The above formula is used when individual values are given. But when the data is
classified, a different formula is used based on whether the series is discrete or continuous.

Discrete series

In the case of discrete series, where the frequencies are given, the arithmetic mean can be
calculated by applying the following formula

where,

f—frequency

x—variable

i—variate of x taking the value of 1 to n.

Continuous series

In the case of continuous series, where the frequencies are given against class interval, the
arithmetic mean can be calculated by applying the following formula



where,

f—frequency

m—mid point of the interval of the classes of the variable

MEDIAN

Median is defind as the middle value or item of a given data set arranged in ascending or
descending order of magnitude. It divides the series into two equal parts, one part
consisting of all the values greater than the median and the other part consisting of all the
values less than the median value. It is considered as the positional average.

Individual series

where,

N—total number of items

M—Median

Discrete series

where,

N—total frequency

Continuous series

where,

L— lower limit of the median class



H—magnitude of the median class

f— frequency of the median class

N— is the total frequency

C— cumulative frequency of the class preceding (before) the median class

Mode

Mode is the point of maximum concentration. It is the value in the data that is repeated
maximum number of times. It is defined as the value of the variable which occurs most
frequently in a sample.

Continuous series

where,

Z—mode

l—lower limit of the modal class

f—frequency of the modal class

f1—frequency of the class preceding (before) the modal class

f2—frequency of the class succeeding (after) the modal class

c—class interval

A frequency distribution can be unimodal. If only one number is repeated maximum
number of times, then the sample has a single mode. If a sample has two modes, it is
called bimodal. Multimodal or polymodal samples also occur.

MEASURES OF DISPERSION

The measures of central tendency one aspect of the data viz. its central position. However,
this measure alone is not enough to describe the data fully. The difference between the
value of an item from the mean (any measure of central tendency) is called deviation. An
average of the deviations of the values of various items from a measure of central
tendency is called a measure of dispersion.



STANDARD DEVIATION

Standard deviation is defined as the square root of the arithmetic mean of the squared
deviations of the various items from arithmetic mean. In short, it is called the root-mean-
square-deviation. The mean of square deviations is called the variance. Therefore, the
square root of variance is the standard deviation.

Standard Deviation,

where,

X—variable

—standard deviation

—mean of the variable

di—deviation =

—squared deviation =

Discrete series

where,

f—frequency

N—total

SKEWNESS

Measures of central tendency and dispersion like mean and standard deviation
respectively, describe two important aspects of the distribution of the data, the central
value and extent of scatter of the values around this central value. However, these do not
describe all the aspects of the distribution. For example, two distributions may have the
same mean and and still be different. One of the two distributions may be a symmetrical
distribution and the other may be asymmetrical. An asymmetrical distribution is said to be
a skewed distribution i.e., the distribution is skew. Skewness describes the extent of
asymmetry in a distribution.



Positively skewed distribution A positively skewed distribution has the following
properties:

i. More items on the right of the highest ordinate (a vertical line drawn from the X-axis to
the curve), i.e., the mode.

ii. Arithmetic mean > Median > Mode.

iii. The frequency curve has a steep rise and a slow fall with a long tail at the right.

Negatively skewed distribution A negatively skewed distribution has the following
properties:

i. More items on the left of the highest ordinate.

ii. Arithmetic mean < Median < Mode.

iii. The frequency curve has a slow rise and deep fall with a long tail at the left.

Values equidistant from mode do not have equal frequencies. A numerical measure is
developed to evaluate the skewness of a distribution. It is called the Karl Pearson’s
coefficient of skewness.

When the mode is not well defined or when the distribution has more than one mode,
then

If the value is negative, the distribution is negatively skew and the frequency curve is
negatively skewed with a long tail towards left. If positive, the distribution is positively
skew and the frequency curve is positively skewed with a long tail towards right. If the
value is 0, the distribution is symmetrical. Any value, + or –, between 0 and 1 or 0 and 3,
reflects the extent of skewness.

KURTOSIS

The flatness or peakedness of frequency curve is described by a measure called kurtosis. A
frequency distribution that is normal gives a bell-shaped curve. It is called mesokurtic. A
curve that is flat is called platykurtic. When the frequencies are more or less evenly
distributed i.e., the frequencies are less concentrated around the mean it gives a flat curve.



When items are concentrated more close to the mean values, i.e., the frequencies are
higher in the middle, it gives a peaked curve. A peaked curve is called leptokurtic.

The kurtosis of a random variable is the ratio of its fourth central moment to the fourth
power of its standard deviation .

Co-efficient of kurtosis

If the coefficient of Kurtosis is 3, then the frequency curve is mesokurtic; if >3, then it
is leptokurtic; if <3 then it is platykurtic.

DESCRIPTIVE STATISTICS WITH SPSS

Quantitative Data

Example 3.1

Weight of babies (kg) below 6 months taken from a hospital record is given below.
Calculate mean, median, mode, standard deviation and coefficient of skewness and
kurtosis.

Step 1 Open the SPSS Data Editor.

Step 2 Click Variable View and name the variable as “babywt”. Choose Type as
Numeric. Let the default column Width remain as such, select “3” under Decimals and
type “Weight of babies (kg) below six months” under Label. No need to give values under
Value column as the data is numeric (Figure 3.1).



Figure 3.1 Naming the variable (babyweight) in Variable View

Step 3 Now click Data View and type the values under the first column where the name
appears as given in Figure 3.2.

Figure 3.2 Entering data (weight) in Data Editor

Step 4 Choose Analyze from the main menu, click Descriptive Statistics, then select
Frequencies. The drop down menu appears as given in Figure 3.3.

Figure 3.3 Selecting descriptive statistics from main menu

The Frequencies dialog box appears as given in Figure 3.4. Transfer the variable
Weight of babies (kg) into the Variable(s): box. Check the displayWeight of baby (kg)
under the Variable(s): box

Step 5 Click OK to continue.

Figure 3.4 Frequencies dialog box with variable transferred



Step 6 Click Statistics to open Frequencies: Statistics dialog box and select mean,
median and Mode under Central Tendency. Std. deviation and variance under
Dispersion, Skewness and Kurtosis under Distribution (Figure 3.5).

Figure 3.5 The frequencies: Statistics dialog box with selected
descriptive statistics

Step 7 The statistical output appears in the screen as given below (Output 1).

Output 1

Output 1

Note You can use the same procedure both for descriptive as well as for charts. If you
want to draw a histogram for the above data, go to the main menu, select Descriptives and
then Frequencies to get the dialog box. Now click Charts… to open Frequencies:
Charts. In the Chart Type box, click Histogram radio button and mark the normal curve
by clicking it (Figure 3.6). Click Continue to return to the Frequencies dialog box. Click
OK to run the analysis. The output appears as shown in Output 2.



Figure 3.6 The Frequencies: Charts dialog box with
histogram with normal curve selected

Output 2

Histogram with normal curve

The procedure described above deals with raw data, sometimes there is a need to work
with classified data, in such cases we need to follow a different procedure.

Example 3.2

The following table gives the number of working hours and the number of persons to
complete a particular task. Calculate mean, median, mode, standard deviation, skewness
and kurtosis.

Step 1 Name the variables in Variable View and enter data in Data View.

Step 2 Click Data in the main menu, select Weight Cases (Figure 3.7) (This step is
important for classified data, as it gives weightage for the frequencies of the class).

Figure 3.7 SelectingWeight Cases from main menu

Step 3 SelectWeight cases by radio button underWeight cases.

Step 4 Transfer Number of persons (i.e., the frequency of the data) to Frequency



Variable, then click OK (Figure 3.8). Now the display disappears from the screen.

Figure 3.8 TheWeight cases dialog box with number of
persons transferred to Frequency Variable

Step 5 Choose Analyze from the main menu. Click Descriptive Statistics and select
Frequencies.

Step 6 The Frequencies dialog box appears. Transfer the variable Number of hours into
the Variable(s): box. Check the display Number of hours under the Variable(s): box
(Figure 3.9a).

Figure 3.9a Frequencies dialog box with Number of working
hours transferred to Variable (s): box

Step 7 Click Statistics to open Frequencies: Statistics dialog box and select mean,
median and mode under Central Tendency. Standard deviation and SE mean under
Dispersion. Skewness and kurtosis under Distribution (Figure 3.9b).

Figure 3.9b Frequencies: Statistics dialog box with
Descriptives selected under different heads

Step 8 Then click Continue and then click OK to run the analysis.



Step 9 The output appears with descriptive statistics like mean, median and mode,
standard deviation and SE mean, skewness and kurtosis as shown in the output.

Output

Descriptive statistics table

Note A similar procedure is adopted to workout problems in continuous series.

NOMINAL AND ORDINAL DATA OR QUALITATIVE
DATA

The frequencies of the nominal or categorical variable are represented in rows and
columns in the form of a table. This could be obtained by several ways. Tables of
frequencies (from Table menu) and Crosstabs (from Descriptive Statistics) provide a
two way contingency table. In addition Crosstabs from Descriptive Statistics also gives
the frequencies with row and column totals (this procedure also provides statistics such as
Chi-square and Correlation coefficient). Frequencies in Descriptive Statistics gives
frequency distributions for both nominal and ordinal variables. It also provides
percentages and cumulative frequencies. There are also options for selecting graphics like
bar charts, pie charts and histogram.

Nominal data: formulating frequency table

Example 3.3

Formulate a frequency table and draw a pie diagram for the following data on the blood
group of 45 students in a class.



Step 1 Name the variable as bloodgp and click on the cell named Type select String,
label under the column Label as Blood group of students in a class (Figure 3.10).

Figure 3.10 Naming the variable blood group under Variable
View

Step 2 Enter the blood group case by case in Data Editor as in Figure 3.11.

Figure 3.11 Data on blood group entered in Data View

The following steps offers both frequencies and charts.

Step 3 Choose Analyze from main menu, select Descriptive Statistics and then select
Frequencies to open Frequencies dialog box (Figure3.12a) and transfer blood group to
variable box. Click Charts to open Frequencies: Charts dialog box and select Pie chart
option and click continue (Figure3.12b).

Figure 3.12a Frequencies dialog box with variable transferred



Figure 3.12b Frequencies: charts dialog box with Pie charts
option selected

Step 4 Click Charts to obtain Frequencies: Charts dialog box and select Chart(s) radio
button. There are also Chart Values options. If you want to have display of values on the
chart, select Frequencies or Percentages under Chart Values.

Step 5 The output appears as shown below (Output 1).

Output 1

1

Frequency table showing blood group of students in a class

Output 2

Pie chart

Note If you select Bar Charts under Frequencies Chart then barchart appears in the
output as in Output 3.

Output 3

Simple bar chart

Categorical data: formulating frequency table



Example 3.4

Formulate a frequency table and draw a clustered and a stacked/subdivided bar diagram
for the following data on the blood group of 90 students in a class.

Step 1 Name the variable as bloodgp and click on the cell named Type, select String.
Type under the column Label as Blood group of students in a class.

Step 2 Type the second variable under Name as “Gender”, in the second column Type,
retain Numeric. Let theWidth remain as default, Decimal column could be 0. Type under
Label as “Gender of students in a class” as given in Figure 3.13.

Figure 3.13 Variable View with Value Labels dialog box with
values labelled

Step 3 Enter data in Data View.

Step 4 Choose Analyze then click Descriptive Statistics and then select Frequencies….
to open the Frequencies dialog box and then select Crosstabs (Figure 3.14).

Figure 3.14 Selecting Crosstabs option from main menu

Step 5 Transfer the variables in the Crosstabs to Row(s) and Column(s) (Figure 3.15)
and select Display clustered bar charts (Figure 3.16).



Figure 3.15 Crosstabs dialog box with variables displayed

Figure 3.16 Crosstabs dialog box with variables selected in
Row(s) and Column(s) and Display clustered bar charts

Step 6 Click OK, the Output appears as in Output 1. The row and column headings could
be edited (Refer Chapter 2).

Output 1

Output 2

Clustered bar chart showing blood group of students with
respect to gender in a class



REVIEW EXERCISES

1. Data on length of leaves (cm) for two groups of trees are given below. Calculate the
mean, median, mode, standard deviation, standard error, skewness and kurtosis. Interpret
your results.

2. Calculate the mean, standard deviation, skewness and kurtosis for the following data on
the height (cm) of 40 students and describe the distribution.

3. Calculate mean, median, mode, standard deviation, standard error, skewness and
kurtosis for the following distribution.

4. Marital status of men in 2 different streets in a particular city is given below. Formulate
a frequency table.

5. The blood group of students in a class is given below formulate frequency table.



4

CHARTS AND GRAPHS

SPSS provides a wide range of options for graphs and charts. There is an option for
Graphs in the main menu, and there is also an option for the same in the analytical
procedure. For example there is Charts option in the Frequencies procedure and a Profile
plot option in ANOVA procedure. The graphs could be made to appear attractive by using
Chart Builder or Interactive from sub menu. By clicking on the Chart Builder item in
the Graph menu, the Gallery of Charts and Graphs is obtained. The Gallery is useful in
selecting a desirable graph or chart.

BAR CHARTS

Bar Charts are desirable for discrete variables, both qualitative and quantitative. There are
simple bar chartssimple bar charts, clustered bar charts and stacked bar charts. Bar charts
are one-dimensional diagrams in which the height of the bar is equal to the frequency or
the mean of the variable. One has the option to choose any one depending upon the
suitability of the data. For a quantitative variable, bar charts with error bars can be drawn,
whereas for the enumeration variables or qualitative variables only bar charts can be
drawn and not error bars.

SIMPLE BAR CHARTS

Simple bar charts are desirable to compare the mean of groups of observations (height of
students in a class) or the simple frequency of qualitative variable (blood group of students
in a class).

Simple bar charts for qualitative variables

Example 4.1

Formulate a frequency table and draw a bar diagram for the following data on the blood
group of 45 students in a class.



Step 1 Name the variable in Variable View and enter data in data editor.

Step 2 Choose Graphs from the main menu and click Bar (Figure 4.1) to open Bar
charts dialog box (Figure 4.2).

Figure 4.1 Selecting Bar chart option from main menu

Figure 4.2 Bar Charts dialog box to select Simple Bar

Step 3 Select Simple and click Define to open the Define Simple Bar: Summaries for
Groups of Cases dialog box (Figure 4.3).

Figure 4.3 Define Simple Bar: Summaries for Group of
Cases dialog box with blood group of students selected in

Category Axis



Step 4 Transfer the variable name to category Axis.

Step 5 Click Titles to open the dialog box and enter the title in the text box (Figure 4.4).
Click Continue to return to Bar charts dialog box and then click OK to get the chart.

Figure 4.4 Titles dialog box with title typed under Line 1 as
“Blood group of students in I B. Sc. Class”

Step 6 The chart appears in output.

Output

Simple Bar Chart for Blood group of students in I B.Sc. class

Simple bar chart with error bars for quantitative variables Bar
charts with error Bars are suitable for discrete quantitative variables where the height of
the bar represents the mean of a group of observations and a vertical line with horizontal
bar erected on top of the bar represents the standard error of the mean.

Therefore, in a bar chart with error bars both mean and standard error values are
represented.

Example 4.2

Four groups of children are fed on four different diets and their haemoglobin levels are
estimated. The data are given in the following table. Represent the data in the form of bar
diagram with standard error.



Step 1 Name the variable (as categorical) in Variable View and enter data in Data Editor.

Step 2 Choose Graphs from main menu then click Legacy Dialogs and then select Bar…
to open Bar charts dialog box (Figure 4.5).

Figure 4.5 Selecting Bar Chart option from main menu

Step 3 Select Simple and click Define to open the Define Simple Bar: Summaries for
Groups of Cases dialog box.

Step 4 Transfer the variable names as shown in Figure 4.6. “Haemoglobin” into Variable
and “Group of children fed on different diet” into Category Axis.

Step 5 Select the radio button Other statistic (e.g. mean) under Bars Represent. This
step is important to display mean, in the bar chart otherwise number of cases will be
represented in the bar chart.

Figure 4.6 Define Simple Bar: Summaries for Group of
Cases dialog box with “MEAN Heamoglobin in gm%” selected
under Variable and “Group of children fed on different diet” in

Category Axis

Step 6 Click Options to open the Options dialog box, select Display error bars box as
shown in Figure 4.7. Click Continue to return to Define



Simple Bar.

Figure 4.7 Options dialog box with Display error bars
selected

Step 7 Click Titles to open Titles dialog box (Figure 4.8) and enter the Title in the text
box.

Figure 4.8 Titles dialog box with title “Level of haemoglobin
(gm%) in children fed on different diet”

Step 8 Click Continue to return to Bar charts dialog box and then click OK to get the
chart. The output summarising the mean values with standard error on levels of
haemoglobin among children fed on different diets appears as given in the output.

Output

Simple bar diagram with error bars



CLUSTERED BAR CHARTS

This chart shows two or more categories of variables in the same graph. The clustered
chart could be plotted for the following data on blood group and gender. The second
variable defines the clusters.

Example 4.3

Draw a clustered and stacked bar diagram for the following data on the blood group of 90
students in a class.

Step 1 Name the variable in Variable View. Enter data in data editor.

Step 2 Choose Graphs from the main menu click Legacy Dialogs and then click Bar to
open Bar charts dialog box (Figure 4.9).

Figure 4.9 Selecting Bar chart option from main menu

Step 3 Select Clustered and click Define to open the Define Simple Bar: Summaries for
Groups of Cases dialog box (Figure 4.10).

Figure 4.10 Bar charts dialog box to select clustered bar chart

Step 4 Transfer the variable names namely “Gender” to Category Axis and “Blood
group” to Define Clusters by (Figure 4.11). For enumeration data of this kind select radio
button N of cases under Bars Represent.



Figure 4.11 Define Clustered Bar: Summaries for Group of
Cases dialog box to transfer bloodgp to Define Cluster by and

gender to Category Axis

Step 5 Click Options to open Options dialog box and click Titles to open the Titles
dialog box (Figure 4.12) and enter the title in line 1 in the text box.

Figure 4.12 Titles dialog box with title typed under Line 1 as
“Blood group of students in I B. Sc. Class”

Step 6 Click Continue to return to Bar charts dialog box and then click OK to get the
chart.

Step 7 The chart appears as in output (Output 1).

Output 1

Clustered bar chart

If you select stacked in bar charts dialog box (Figure 4.10) a stacked bar diagram
appears as an Output 2.

Output 2



Clustered bar chart with error bars Clustered or panneled bar chart is drawn for a data
set consisting of a variable measured for 2 or 3 factors with different levels each. In the
example 4.2 the level of haemoglobin in children fed on four different diets were given.
Four different diets are levels of the factor namely diet. If such data are collected from
three primary health centres (PHC) then primary health centre becomes a second variable
and the three PHCs become the levels. We can represent this kind of data with clustered or
panneled bar charts with error bars.

Example 4.4

Draw a paneled or custrered bar chart with error bars for a similar data given in Example
4.2, for children belonging to two primary health centres.

Step 1 Enter data as in example 4.2. Include the new variable Primary Health Centre
(PHC) in Variable View, Label the variable and give the Value by coding 1 as PHC1, 2
as PHC2 and 3 as PHC3 (Figure 4.13).

Figure 4.13 Data editor with 23 cases (a portion) entered for
three different variables

Step 2 Follow the steps as given for clustered bar chart and transfer the variables i.e.,
“Haemoglobin” into Variables, “Primary Health Centre into Category Axis and “Group
of children” into Define Clusters by (Figure 4.14).

Figure 4.14 Define Clustered Bar: Summaries for Group of



Cases dialog box with “MEAN Heamoglobin in gm%” selected
under Variable, “Primary heath Centers”in Category Axis and
“Group of children fed on different diet” in “Define Clusters

by” box.

Step 3 Click Options to open the Options dialog box, select Display error bars box as
shown in Figure 4.15. Click Continue to return to Define Simple Bar.

Figure 4.15 Options dialog box with Display error bars
selected

Step 4 Click Titles to open Titles dialog box and enter the Title in the text box (Figure
4.16).

Figure 4.16 Titles dialog box with title “Effect of four different
diet on haemoglobin (gm%) in children in 3 PHCs”

Step 5 Click Continue to return to Bar charts dialog box and then click OK to get the
chart. The output summarizing the mean values with standard error on levels of
haemoglobin among children fed on different diets appears in clusters for three different
PHCs as given in the output.

Output



T

Clustered bar charts with error bars

ERROR BAR CHARTS

Error bar chart is an alternative to bar chart, in which the mean of the sample is
represented by a single point and the spread of the variable, the standard error is
represented by a vertical line or like a letter T or whiskers passing through the point.

Example 4.5

Draw an Error bar chart for the data given in Example 4.4.

Step 1 Choose Graphs from the main menu click Legacy Dialogs and then select Error
Bar…to open the Error Bar dialog box (Figure 4.17).

Figure 4.17 Selecting error bar from main menu

Step 2 Select Clustered from Error Bar dialog box (Figure 4.18).

Figure 4.18 Error Bar dialog box with Clustered selected

Step 3 Click Define to open Define Clustered Error Bars: Summaries for groups of



cases and transfer variables as shown in a Figure 4.19.

Figure 4.19 Define Clustered Error Bars: Summaries for groups
of cases dialog box

Step 4 Click Title and type title as in Example 4.4.

Step 5 Click Continue and then click OK.

Step 6 The output summarising the mean values on levels of haemoglobin as points with
standard error as the letter T on either side for children fed on four different diets appears
in clusters for three different PHCs as in the output.

Output

PIE CHART

It is a circular diagram in which the frequency of different classes is equal to the angle of
different sectors of a circle. It is used to display the relative frequencies of the same set of
data. The frequency of qualitative variables is represented by Pie chart. It is an alternative
to bar chartbar chart. The data on blood group given in Example 4.1 could be represented
by a pie chart.

Example 4.6

Draw a Pie chart for the data given in Example 4.1.

Step 1 Choose Graphs from the main menu, click Legacy Dialogs to open Pie charts
dialog box (Figure 4.20).



Figure 4.20 Selecting Pie Chart option from main menu

Step 2 Click Define to open the Define Pie: Summaries for Groups of Cases dialog box
(Figure 4.21).

Figure 4.21 Pie Charts dialog box to select Summaries for
groups of cases

Step 3 Click the variable (blood group) and transfer it into the Define Slices by box. If
you want to represent %, select% of cases, otherwise N of cases (Figure 4.22).

Figure 4.22 Define Pie: Summaries for Group of Cases dialog
box with “Blood group of students” selected in Define Slice by

Step 4 Finally click Title to open the Title dialog box. Type the title, then click Continue
to return to the Define Pie box.

Step 5 Click OK to get the pie chart. The output summarising the blood groups in sectors
of the circle appears as given in Output 1.

Output 1



Pie chart showing Blood group of students in I B. Sc. Class

Step 6 From the output, any slice can be labelled within or can be exploded from the
circle, if needed to emphasise a particular category. It is done by highlighting the slice and
selecting Explode Slice. The output presenting the slice exploded for blood group AB
appears as in Output 2.

Output 2

Pie chart showing Blood group with slice exploded for blood
group AB

SCATTER PLOTS AND DOT PLOTS

Scatter Plots

The relationship between two quantitative variables can be represented in the form of
scatter plot. The scale of values of two variables such as age of the person and his systolic
blood pressure are set on horizontal (X-axis) and vertical axes (Y-axis) respectively, each
person is represented by a point and each point in turn represents his age and blood
pressure. The scatter plot should be always plotted and examined for the extent of scatter
before the calculation of correlation coefficient or analysis of regression.

Example 4.7

Draw a scatter plot for the following data on age (years) versus systolic blood pressure
(mm Hg.)



Step 1 Choose Graphs from the main menu to open the Scatter/Dot dialog box (Figure
4.23).

Figure 4.23 Selecting Scatter/Dot from main menu

Step 2 Click Define to open the Simple Scatter plot dialog box (Figure 4.24).

Figure 4.24 Scatter/Dot dialog box with Simple Scatter
selected

Step 3 Transfer the variable names as shown in Figure 4.25.

Figure 4.25 Simple Scatter Plot dialog box with variables
blood pressure and age selected in y and x axis respectively

Step 4 Click Titles to get Titles box and type the title as shown in Figure 4.26.

Figure 4.26 Titles box with title typed in Line 1



Step 5 Click Continue and then OK to get the scatter plot.

Step 6 The output appears with “Age of the patients in x-axis and Systolic pressure in
mm Hg in y-axis with a dot for each person as in the output.

Output

Scatter plots or Dot plots

LINE GRAPHS

Line graphs are drawn for two variables or more than two variables. Line graphs can be
drawn with just one line or more than one line in the graph. The above example on blood
pressure (mm Hg) of the individuals in relation to age can be represented in the form of a
line graph; the total range of blood pressure is divided into fixed intervals.

Example 4.8

Draw a line graph for age versus systolic blood pressure for the data given in Example 4.6.

Step 1 Enter data, choose Graphs from the main menu, select Legacy Dialog and click
Line to open Line Chart dialog box (Figure 4.27).

Figure 4.27 Selecting Line option from main menu

Step 2 Select Simple under Line Charts and then Define (Figure 4.28).



Figure 4.28 Selecting Simple from Line charts dialog box

Step 3 Transfer the variables, then click Titles and type the title (Figure 4.29).

Figure 4.29 Define Simple Line: Summaries for groups of
cases dialog box with variables to be selected

Step 4 Click Continue and then OK to get the output. The output appears with a title and
a line representing blood pressure (mm Hg) of the individuals in y-axis and age of the
person in x-axis.

Output

Simple Line Chart

HISTOGRAM

Histogram is a two-dimensional diagram to represent a measurement variable which is
continuous. There are a number of such variables like marks obtained by students, weight
and height of animals, length of leaves, etc. In this the variable is taken in the X-axis and
the frequency of the variable in Y-axis. A bar or a rectangle is erected on the class interval
and the height of the bar is equal to the frequency of that class interval and the width of
the bar is proportional to the class interval.



Example 4.9

Weights of 40 babies recorded from a hospital are entered in Data Editor as described in
Chapter 3 (Page 56). A histogram is drawn by adopting the following steps.

Step 1 Choose Graphs from the main menu, select Legacy Dialogs and click Histogram
to open Histogram dialog box (Figure 4.30).

Figure 4.30 Selecting Histogram from main menu

Step 2 Transfer weight of babies to Variables, click Title and type the title (Figure 4.31).

Figure 4.31 Histogram dialog box with variable transfered and
Title dialog box with title typed

Step 3 Click Continue, then click OK to get the output. The output appears with a title
and rectangular bars erected on class intervals in X-axis ranging from 2.00 to 8.00,
representing the weight (kg) of babies. The height of the bar is equal to the frequency in Y-
axis.

Output

Histogram



REVIEW EXERCISES

1. The calcium carbonate (mg/L) levels of four different ponds are given below; draw
bar charts with error bars.

2. Draw box plot for the data given in exercise 1.

3. Draw a histogram with frequency curve for the following data on height in cm.

4. Draw a scatter plot and a line graph for the following data on height (cm) and weight
(kg) of 10 individuals.

5. The expenditure of a family on different items is given below. Represent the data in the
form of a pie diagram.

6. The following data represent the expenditure of three families on different items, draw
subdivided bar diagram.

7. Marital status of men in two different streets in a particular city is given below.



Represent the data by bar chart (M-—Married, S—Single).
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COMPARING AVERAGES

PARAMETRIC TESTS AND NON-PARAMETRIC TESTS
TO COMPARE AVERAGES

This chapter deals with the statistical procedures for testing the significance of averages.
The objective of any statistical enquiry is to infer the characteristics of a population by
analysing the characteristics of a small sampling group. In carrying out these analyses we
come across different situations. In some studies, we assume that the sample/samples have
come from population which are normally distributed and have equal mean and variance,
for example, the height of individuals in a population. To test the significance of
difference, the hypothesis is proposed on population parameters. Such testing procedures
are called parametric tests. Many other common statistical procedures like regression and
analysis of variance have similar assumptions.

However, there are statistical methods/tests that comprise procedures not requiring
estimations of population mean or/and not stating hypotheses about parameter, for
example, increase in pulse rate in doing some adventurous activity. In this case we do not
have any existing population and so we do not assume mean and variance (population
parameters) in proposing a hypothesis.

The procedures that do not state hypotheses about parameter are called non-parametric
tests. The following explanations and examples deal with Student’s t-test and its non-
parametric equivalents like Mann–Whitney test and Wilcoxon test.

STUDENTS t-TEST

W.S. Gosset described a distribution called t-distribution and the test of significance based
on it is called t-test. The t-distribution is based on degrees of freedom. Degrees of freedom
is defined as the number of variates that can be entered in that distribution before the value
of the remainder of the variates are fixed to produce a certain value (df = n – 1). The t-test
enables us to test the significance of difference between two sample means or significance
of a single mean. These procedures are called two-sample test and one sample test
respectively.



TWO-SAMPLE TEST

Independent sample t-test A safe decision making depends on careful understanding of
data. There are different experimental and quasi-experimental researches where the
observations of the same variables are compared under different conditions. In such
situations two-sample test is the most appropriate test. When we go ahead with two-
sample test, we have to decide whether the two groups are independent or related. What
do we mean by independent samples? A sample of 100 individuals is drawn from the
population and randomly divided into two groups and one group is subjected to some
experimental conditions and the rest to control conditions. In this set up the individuals in
one group have no effect on the other group. The two groups are independent, i.e., the two
groups are independent samples of data, each consisting of 50 observations. The most
appropriate test for this situation is the independent sample t-test.

The independent samples t-test procedure compares means for two groups of cases.
Ideally, for this test, the subjects should be randomly assigned to two groups, so that any
difference in response is due to treatment (or lack of treatment) and not due to other
factors. This is not the case if you compare average income for males and females. A
person is not randomly assigned to be a male or female. If you want to apply independent
samples t-test, you should ensure that differences in other factors are not masking or
enhancing a significant difference in means. Differences in average income may be
influenced by factors such as education (and not by sex alone).

For example, patients with high blood pressure are randomly assigned to a placebo
group and a treatment group. The placebo subjects receive an inactive pill and the
treatment subjects receive a new drug that is expected to lower blood pressure. After the
subjects are treated for two months, the two-sample t-test is used to compare the average
blood pressures for the placebo group and the treatment group. Each patient belongs to
one group and is tested once.

There are many situations in which an investigator must decide whether an observed
difference between two sample means is attributed to chance or whether the two samples
have come from two populations with unequal means. For instance, he may want to know
whether there is a real difference in the performance of men and women in completing a
task with respect to time. One may be interested to know whether the average diet in one
country is more nutritious than that in another country. A biologist may be willing to know
whether the difference in the wing length of a particular variety of bird, at two different
geographical areas, is large enough to suggest speciation. A healthcare provider may be
interested in recommending a particular diet to increase haemoglobin level in children. In
all these situations, we have two sets of data from two different populations, either
hypothetical or existing. Here the null hypothesis is that there is no difference in the means
of two samples.

The formula for manual calculation is as follows:



where,

—mean of sample 1

—mean of sample 2

SE1—standard error of sample 1

SE2—standard error of sample 2

Standard error is calculated by applying the following formula, where SD is the standard
deviationstandard deviation and n1 and n2 are the size of sample 1 and 2.

Standard deviation is calculated as

where,

n1—size of sample 1

n2—size of sample 2

t value calculated follows n1 + n2 -– 2 degrees of freedom.

The null hypothesis is .

The t-values calculated may be positive or negative.

The significance level is set either as 0.05 or 0.01. It is up to the investigator to set
either of these levels. In the former case we reject the null hypothesis if t is either greater
than the 97.5th percentile or less than the 2.5th percentile of t-distribution with specified
degrees of freedom. When we say the significance level is 0.05, the confidence level is
95% and if the significance level is 0.01, the confidence level is 99%.

Independent sample t-test with SPSS

Example 5.1

Two groups of children were fed on two different diets namely, diet A and diet B. The
level of haemoglobin in blood were estimated and presented in the table below. Test the



superiority of diet B over diet A in increasing the haemoglobin level.

Null hypothesis The diet B is not superior to diet A in increasing the haemoglobin level.

Step 1 Open Data Editor, click Variable View, name the variable as “Diet” under Name,
select Numeric under Type, label as Diet under Label (Figure 5.1).

Figure 5.1 Variable View with name of the variable Diet typed
under Name

Step 2 Click on the grey area under Value. A popup window opens as in Figure 5.2, type 1
in the Value box and “Diet A” in Label box and click Add to transfer it to the box below.
Type “2” in the Value box and “Diet B” in Label box and click Add to transfer it to the
box below and click OK.

Figure 5.2 Value Labels box to enter code numbers for
grouping variable

Step 3 Go to the second row and type “Haemoglobin” under Name select Numeric under
Type, type as “Level of haemoglobin (gm%)” under Label (Figure 5.3).



Figure 5.3 Variable View with two variables named under
Name

Step 4 Click Data View and enter data in the column under Diet as “1” for 1 to 14 cases
and “2” from 15 to 28 cases (here diet is entered as categorical variable where 1 represents
diet A and 2 represents diet B). In the second column, enter the values for haemoglobin
under Haemoglobin as given in Figure 5.4.

Figure 5.4 Data View with data entered for two variables

Step 5 Choose Analyze, select Compare Means and then select Independent Samples
T-Test (Figure 5.5).

Figure 5.5 Selecting Independant-samples T-Test from main



menu

Step 6 Independent-Samples T-Test window opens, transfer Haemoglobin to Test
Variable(s): and Diet to Grouping Variable: (Figure 5.6).

Figure 5.6 Independent-Sample T-Test dialog box with the
variables transferred into Test Variable(s); and Grouping

Variable boxes

Step 7 Click on Define Groups, a pop up window with Define Groups opens. Type 1
under Group 1 and “2” under Group 2 (here we are giving the values as 1 and 2 since we
have specified these values for two groups to be compared, Diet A and Diet B
respectively), click Continue (Figure 5.7).

Figure 5.7 Define Groups dialog box with values specified

Step 8 Click Options. A popup window opens (Figure 5.8). Check the Confidence
interval box. It has the default value as 95%. Click Continue (If you want to increase the
confidence level to 99, type there as “99”).



Figure 5.8 Independent-samples T-Test: box with 95%
confidence Interval selected

Step 9 Click OK to run the analysis. The output appears as given in below (output 1 and
2).

Output 1

Output 2

Interpretation

Output 1 gives the mean haemoglobin level in the individuals fed with Diet A is 10.82
with a standard deviation of 1.136 (gm %) and for Diet B, the mean level is 11.357 with a
standard deviation of 1.15 (gm %).

Output 2 gives the t-value, degrees of freedom, significance level and 95% confidence
interval for the mean. The t-value of –1.239 for 26 (14+14 – 2 as each group has 14
values) degrees of freedom (df) is not significant as significance value (for two-tailed test)
is 0.226 which is >0.05. Therefore, we accept the null hypothesis, i.e., diet B is not
superior to diet A in increasing the haemoglobin level.

Paired sample t-test In independent samples t-test we have tested the significance of
difference between means of two independent samples. In that case the observation or
value of each item is completely independent. But in a situation where the observations
are not completely independent but dependent, they are given as pairs of observations
(each pair is from same subject). At times, we have a set of data, where the observations
or measurements are made on the same individual, for example, a physician wants to test
the efficiency of a particular drug for reducing blood pressure. In this case he may take a
group of 50 individuals who are hypertensive and measure the blood pressure and have it
as a set of data. These 50 individuals are given the particular drug and the blood pressure
is measured and the values are written against each case. Now we have a set of paired



data, i.e., blood pressure before and after giving the drug. In this case also we have two
sets of observations but a pair for each case (Though there are 100 observations in two
groups they are based on only 50 individuals). The most appropriate test is a two-sample
test but here it is a paired sample t-test and not independent samples t-test.

The paired-sample t-test procedure compares the means of two variables for a single
group. The procedure computes the differences between values of the two variables for
each case and tests whether the average differs from 0.

Formula for manual calculation is given by

where,

—mean differece

S—standard deviation

n—size of sample

where,

D—difference between pair of observations

Xi—Value before

Yi—Value after

Paired sample t-test with SPSS

Example 5.2

An investigator wants to evaluate the effect of a particular supplementary diet in
increasing the level of haemoglobin in man. He selected a group of 15 individuals, the
level of haemoglobin in these persons were estimated and then these individuals were fed
on the supplementary diet. After feeding for a sufficient period of time, the level of
haemoglobin in these persons were estimated. The data obtained in this study is given in
the form of a table. Evaluate the efficiency of the supplementary diet in increasing
haemoglobin (gm %) level.



Null hypothesis The supplementary diet is not effective in increasing haemoglobin level
in human.

Step 1 Open Data Editor, click Variable View, name the variable as “HBbefore” under
Name, select Numeric under Type, label as “Before- Haemoglobin level (gm%)” under
Label, then go to the second row and type under Name as “HBafter”, select Numeric
under Type, label as “After-Haemoglobin level (gm%)” under Label (Figure 5.9).

Step 2 Click Data View and enter data under Before and After.

Figure 5.9 Variable View with two variables entered

Step 3 Choose Analyze, then select Compare Means and then select Paired- Samples T
Test (Figure 5.10).

Figure 5.10 Selecting Paired-Samples T Test from main menu

Step 4 A pop up window appears as Paired-Sample T Test as in Figure 5.11.



Figure 5.11 Paired-Samples T Test dialog box

Step 5 Transfer the variable Before–Haemoglobin to Variable1 and After–Haemoglobin
to Variable 2 as in Figure 5.12.

Figure 5.12 Paired-Samples T Test dialog box with paired
variables transferred

Step 6 Click Options and check the Confidence Interval box (Figure 5.13). It has the
default value as 95% (If you want increase the confidence level to 99 type as “99”), click
Continue.

Figure 5.13 Paired-Samples T Test: Options with Confidence
Interval 95% selected

Step 7 Click OK to run the analysis. The outputs appear as shown here.

Output 1



Output 2

Interpretation

Output 1 gives the mean haemoglobin level in the individuals before feeding with
supplementary diet as 10.64 with a standard deviation of 0.81 (gm %) and 11.23 with a
standard deviation of 0.94 (gm %) after feeding with the supplementary diet.

Output 2 gives the t-value, degrees of freedom, significance level and 95% confidence
interval for the mean difference. The t-value of –5.815 for 14 degrees of freedom (df) is
highly significant as significant value for two-tailed test is 0.000 (Output 2). Therefore,
we reject the null hypothesis. Hence, supplementary diet is effective in increasing
haemoglobin level in human.

One-Sample t-Test

The one-sample t-test procedure tests whether the mean of a single variable differs from a
specified constant. This test assumes that the data are normally distributed. This procedure
tests the difference between a sample mean and a known or hypothesized value. Suppose
we are interested in testing

1. if the sample mean differs significantly from specified value of population mean

2. if the given population has a specified value of the population mean say, .

3. if the given random sample x1, x2……xn of size n has been drawn from a normal

population with a specified mean .

Basically, all these three situations call for the same procedure. In these conditions the null
hypothesis is set up as follows:

i. H0: There is no significant difference between the sample mean and population mean,

i.e., in other words

ii. H0: i.e., the population mean is .

iii. H0: The given random sample is drawn from the normal population with mean .



where,

S—standard deviation of the sample

n—sample size

where,

Xi—the value of the variable X, and

—mean

Applications of one-sample t-test Several variables like height, weight, leaf
length, respiratory output, pulse rate, blood pressure, blood sugar, haemoglobin level,
weight of grapes, fruits in a garden, etc. are variables which can be classified and given on
an interval scale. When these values are plotted on a graph the resulting graph is most
frequently bell shaped with a single mode and is called as a normal curve. The values of
different measures of central tendency like mean, median and mode tend to occur in the
centre of the distribution. The values of the variable on either side of the measure of
central tendency, namely mean are distributed equally. The sum of deviations of different
values from the mean on either side is equal to zero. This kind of distribution is called
normal distribution. One-sample t-test is applicable to any data on a continuous scale and
the researcher collects data on only one-sample and the sample size is large. This test is
not applicable for small samples. One sample t-test allows us to test whether a sample
mean (of a normally distributed interval variable) significantly differs from a hypothesized
value.

In all the above examples, based on the sample data, a single value is assigned to a
population parameter. The population parameter, thus assigned is accepted or rejected by
hypothesis testing and inferences are drawn on population mean and standard deviation.
The application of one-sample t-test is explained with the following examples.

One-sample t-test with SPSS

Example 5.3

The following data gives the haemoglobin level (gm%) in a group of 15 women students
studying in a college. Test whether the haemoglobin level in the young women is
significantly lower than the average level of 13 gm% expected for women population.
Infer whether the women in the age group are having the tendency towards anaemia.



Null hypothesis The haemoglobin level in women studying in a college do not differ
significantly from the haemoglobin level of 13 gm% of women population.

Step 1 Open Data Editor, click Variable View, name the variable as “Haemoglobin”,
select Numeric under Type, label as “Haemoglobin (gm%)” under Label, click Data
View and enter data in Data View under Haemoglobin as given in Figure 5.14.

Figure 5.14 Data View with values entered for haemoglobin

Step 2 Choose Analyze, select Compare Means and then select One-sample T Test
(Figure 5.15).

Figure 5.15 Selection of One-Sample T Test from main menu

Step 3 Transfer the variable under study “Haemoglobin (gm %)” to Test variable(s): box
(Figure 5.16). Type in the Test Value box as 13 (Here we are testing whether the mean
level of haemoglobin of this sample differs significantly from the normal level of 13 gm %
expected for women in the population).



Figure 5.16 One-sample T Test with variable transferred in
Test variable(s) box

Step 4 Click Options and check the Confidence Interval box (Figure 5.17). It has the
default value as 95%. Click Continue (If you want increase the confidence level to 99%
type as “99”).

Figure 5.17 One-Sample T Test: Options to type confidence
Interval

Step 5 Click OK to run the analysis. The outputs appear as given below.

Output 1

Output 2

Interpretation

Output 1 gives the mean haemoglobin level as 10.27 (gm %) and standard deviation of
1.22.



Output 2 gives the t-value, degrees of freedom, significance level and 95% confidence
interval for the mean. t-value of -8.657 for 14 degrees of freedom (df) is highly significant
as significant value is 0.000. Therefore, we reject the null hypothesis. Thus, haemoglobin
level in the young women is significantly lower than the average level of 13gm% expected
for women in the population. The women in that age group are having the tendency
towards anaemia.

Example 5.4

The following are the data on increase in pulse rate (beats/minute) recorded by a doctor on
32 persons while performing a given task. Find whether there is a significant increase in
pulse rate while performing this task.

Null hypothesis There is no increase in pulse rate while performing a given task.

Step 1 Open Data Editor, Click Variable View, name the variable as Pulse, select
Numeric under Type, label as “Pulse rate in beats/minute” under Label. Click Data View
and enter data in Data View under Pulse as given in Figure 5.18.

Figure 5.18 Data Editor with values entered

Step 2 Choose Analyze, Compare Means and then select One-Sample T Test (Figure
5.19).



Figure 5.19 Selecting One-Sample T Test from main menu

Step 3 Transfer the variable under study (Haemoglobin) to Test variable(s): box (Figure
5.20). In the Test Value box you will see 0 as default, do not alter it (Here we are not
having any of the expected increase in pulse rate. This is in contrast to the situation in the
previous example of haemoglobin level, where we had the expected level for women in
the population).

Figure 5.20 One-Sample T Test with variable transferred in
test variable(s): box

Step 4 Click Options in One-Sample T-Test: Options dialog box, Confidence Interval
has 95% as default (otherwise type 95 in that) and then click Continue (Figure 5.21).

Figure 5.21 Selecting confidence Interval from One-Sample T
Test: Options

Step 5 Click OK to run the analysis. The outputs appear as in Output 1 and 2.

Output 1

Output 2



Interpretation

Output 1 gives the average increase in pulse rate of 26.5 beats/minute and standard
deviation of 5.43.

Output 2 gives the t-value, degrees of freedom, significance level and 95% confidence
interval for the mean. t-value of 27.64 for 31 degrees of freedom (df) is highly significant
as significance values for two-tailed test is 0.000. Therefore, there is an increase in
pulse rate of persons performing the given task. The average increase in pulse rate
(namely population mean ) lies in the interval from 24.57 to 28.489 beats/minute. To make
it simple the average increase in pulse rate of the population in performing the given task
may lie between 24.57 and 28.049 beats/minute. In making such a statement we are 95%
confident.

OTHER TESTS FOR COMPARING AVERAGES

Non-parametric tests such as two-sample testing procedures are sometimes stated as
applicable to data on ordinal scale, but this is not so. It is applicable to data on either
interval or ratio scale.

Mann-Whitney’s Test for Independent Samples

Mann–Whitney test is a non-parametric analog to the independent samplest-test. It is
one of the best known non-parametric significance tests. It was proposed initially by Frank
Wilcoxon in 1945, for equal sample sizes, and extended to arbitrary sample sizes ways by
Mann and Whitney (1947). This, like many non-parametric tests, uses the ranks of data
rather than their raw values to calculate the statistic. When we workout the problem
manually, the ranks are assigned for the entire data, the ranks are summed up and Mann–
Whitney statistics (U) is calculated by applying the formula

where, n1 and n2 are the number of observations in samples 1 and 2 respectively, R1 is

the sum of the ranks of observations in sample 1 and 2.

In this test the calculated U is interpreted based on the table values as in other tests.
Since we use SPSS, the details are not furnished here. Mann–Whitney test is one of the



most powerful non-parametric tests, however, when either Mann-Whitney test or two-
sample t-test is applicable; the former is about 95% as powerful as the latter.

The Mann–Whitney U test requires four conditions:

1. The dependent variable must be on interval or ratio scale or at least on ordinal scale.

2. The independent variable has only two levels.

3. Design of study is between-subject.

4. The subjects are not matched across conditions.

Application of Mann–Whitney test Mann–Whitney test is used in different
fields, but it is used frequently in fields like Psychology, Medicine, Nursing and Business.
For example, in Psychology, Mann–Whitney test is used to compare attitude, behavior
etc. In medicine, it is used to know the effect of two medicines. It is also used to know
whether or not a particular medicine cures an ailment. In Business, it can be used to know
the preferences of different people.

Mann-Whitney with SPSS Independent samples on interval scale.

Example 5.5

The pulse rate (pulse/min) of two independent random samples, one from male population
and the other from female population sitting inside a fast moving coach are given below.
Find out whether there is a difference in the mean pulse rate of two (male and female)
populations.

Null hypothesis The pulse rate of both male and female sitting inside a fast moving coach
is equal.

Step 1 Open Data Editor, click Variable View, name the variable as “Gender”, select
Numeric under Type, label as “Gender” under Label (Figure 5.22). Click on the grey area
under Value and type “1” in the Value box and “male” in Label box and click Add to
transfer it to the box below, type “2” in the Value box and “female” in Label box, click
Add to transfer and click OK. Go to the second row and type as “Pulse” under Name,
select Numeric under Type, type as “Pulse rate (counts/minute)” under Label.



Figure 5.22 Variable View with variables entered

Step 2 Click on Data View and enter data as in Figure 5.23.

Figure 5.23 Data Editor with data

Step 3 Choose Analyze, click Non-parametric and then select 2 Independent Samples
(Figure 5.24).

Figure 5.24 Selecting 2 Independent Samples from main
menu

Step 4 In the Two-Independent-Samples Tests dialog box (Figure 5.23), transfer Pulse
rate in counts/min to Test Variable List box and Gender to Grouping Variable box (this
step is similar to Independent sample t-test). Now click on Define Groups and type “1”
(for male) in the Group 1 box and “2” (for female) in Group 2 box (Figure 5. 25) and
click Continue.



Figure 5.25 Selecting Mann–Whitney U from Two-
Independent Samples tests dialog box

Figure 5.26 Defining group 1 and 2 in Two-Independent
Samples dialog box

Step 5 The previous step will bring you back to Two-Independent-Samples Tests pop up
window, now selectMann-Whitney U under Test Type (Figure 5.27).

Figure 5.27 Two-Independent–Samples Tests dialog box with
Mann–Whitney U selected

Step 6 Click OK to run the analysis. The outputs appear as two heads Ranks and Test
Statistics.

Output 1



Output 2

Interpretation

In Mann–Whitney U test we need to report the test statistics and its significance. Since
Mann–Whitney’s U value is 65.00 and exact p-value for 2 tailed including one tailed is
0.336 which is > 0.05, the null hypothesis can be accepted at 0.05 level of significance.
There is enough evidence to conclude that there is no difference in the mean pulse rate of
male and female populations sitting inside a fast moving coach in the given study.

Mann-Whitney test for independent sample (ordinal scale) with SPSS Mann-Whitney
test can also be used for data on ordinal scale.

Example 5.6

Twenty five undergraduate students were guided by two different lab technicians
separately. On the basis of final grades, test the null hypothesis that the students perform
equally well in the course.

Null hypothesis The performance of the students is the same (equal) under two lab
technicians.

Step 1 Open Data Editor, click Variable View, name the variable as “Technician”, select
Numeric under Type, label as “Technician” under Label (Figure 5.28). Click on the grey
area under Value and type “1” in the Value box and “Technician A” in Label box and



click Add to transfer it to the box below and type “2” in the Value box and “Technician
B” in Label box and click Add to transfer it to the box and click OK. Go to the second
row and type as Grade under Name, “select Numeric” under Type, type as “Grade”
under Label. In the “Value column type 1 in the Value box and grade A in Label box
and click Add to transfer it to the box. Give the values in a similar way like 2, 3, 4, 5, 6, 7,
8, 9and 10 for A-, B+, B, B-, C+, C, C–, D and D– respectively by clicking Add each
time.

Figure 5.28 Variable View with 2 variables entered

Step 2 Click on data editor and enter data in Data Editor as in Figure 5.29.

Figure 5.29 Data View with data entered

Step 3 Choose Analyze, click Non-parametric and then select 2 Independent Samples
(Figure 5.30).

Figure 5.30 Selecting Two Independent Samples from main
menu



Step 4 In the Two-Independent-Sample Tests (Figure 5.31), transfer Grade to Test
variable List box and Technicians to Grouping Variable box (this step is similar to
Independent sample t-test). SelectMann–Whitney U under Test Type.

Figure 5.31 Mann–Whiney U Selected in Two Independent
Samples tests box

Step 5 Click on Define Groups and type 1 (Technicians A) in the Group 1 box and “2”
(Technicians B) in Group 2 box (Figure 5.32) and click Continue.

Figure 5.32 Defining groups in Two-Independent Samples
dialog box

Step 6 Click OK to run the analysis. The outputs appear as given below.

Output 1

Output 2



Interpretation

Output 1 gives the number of cases, mean rank and sum of ranks. Mann–Whitney U
statistics is 45.5 and p-value for two tailed including one tailed is 0.085 which is >0.05,
therefore the null hypothesis can be accepted at 0.05 level of significance. The
performance of the students guided by the two lab technicians is the same.

Wilcoxon Matched-Pairs Sample Test

The Wilcoxon Matched-Pairs Ranks test is a non-parametric test that is often regarded as
being similar to a matched pairs t-test, just as Mann–Whitney test is the analog to the
independent two-sample t-test. Wilcoxon signed-ranks test applies to two-sample designs
involving repeated measures, matched pairs, or “before” and “after” measures. It is
applicable to data on ratio scale and ordinal scale as well. The Wilcoxon test is used to
determine the magnitude of difference between matched groups.

The matched-pair (or paired-sample) version (observation pairs (x1, y1), (x2, y2), …) is

concerned with the differences (x1 – y1), (x2 – y2), …. With the assumption that these

differences are independent observations from a symmetric distribution, the null
hypothesis is that this distribution has median zero. The testing procedure involves the
calculation of the difference between each set of pairs. Then one ranks the absolute values
of difference from low to high and then gives the sign of each difference to the
corresponding rank. Then the rank with + sign and rank with – are summed up separately.
For a two-tailed test we reject the hypothesis if either T+ or T– is less than or equal to the
critical value (given in the table). The p-value answers this question: If the median
difference in the entire population is zero (the treatment is ineffective).

Wilcoxon matched-pairs signed-rank test with SPSS

Example 5.7



The table below shows the hours of relief provided by two analgesic drugs in 15 patients
suffering from arthritis. Is there any evidence that one drug provides longer relief than the
other?

Null hypothesis Drug A and Drug B provides similar relief.

Step 1 Open data Editor, click Variable View, name the variable as DrugA select
numeric under Type, label as Relief in hours after taking drug A under Label, then
come to the second row and type under Name as DrugB select numeric under Type, label
as Relief in hours after taking drug B under Label (Figure 5.33).

Figure 5.33 Variable View wtih two variables named

Step 2 Click Data View and enter data under Drug A and Drug B.

Step 3 Choose Analyze, click Non-parametric and select 2 Related Samples (Figure
5.34).

Figure 5.34 Selecting 2 Related Samples from main menu

Step 4 A pop up window appears as Two-Related samples Test as given in Figure 5.35.



Figure 5.35 Two-Related Samples Tests dialog box

Step 5 Transfer Drug A-Relief in hours … to the right hand side under Variable1 and
Drug B-Relief in hours … under Variable 2 (Figure 5.36).

Figure 5.36 Variables transferred and Wilcoxon selected under
Test Type in Two-Related Samples Tests dialog box

Step 6 Select Wilcoxon under Test Type and click Options. Two-Related-Samples:
Options dialog box opens (Figure 5.39), select Descriptive under Statistics and click
Continue. Click OK to run the analysis.

Figure 5.37 Descriptives selected in Two-Related-Samples:
Options



Output 1

Output 2

Output 3

Interpretation

Output 1 gives the average hours of relief after taking the drug A and B with standard
deviation.

Output 2 gives mean ranks. The test statistics is given in output 3. Since the Asymp. Sig.
(2-tailed) p-value is 0.155 which is >0.05, the null hypothesis, Drug A and Drug B
provides similar relief can be accepted at 0.05 level of significance. Therefore, there is no
evidence that one drug provides longer relief than the other.

REVIEW EXERCISES

1. Following data show the nitrate content of water (mg/l) from two lakes. Analyze the
data and infer whether the two lakes differ significantly in their nitrate content.



2. Two athletes were tested according to the time (seconds) to run a particular track and
the results are given below Test whether the two athletes have the same running capacity?

3. Following are the FOOD consumed in gram by two groups of rats. Calculate the mean
and standard deviation of two samples given below. Find the significance of difference
between two samples and infer the preference of one diet over the other. Draw bar
diagram with error bars.

4. The breath of leaves (cm) for two groups of trees is given below. Calculate the mean
and standard deviation of two groups and find the significance of difference between two
groups. Based on the difference is it possible to infer whether they are from two different
species of trees? Draw bar diagram with error bars.

5. The cholesterol levels (mg/100 of serum) in a group of 10 individuals after taking a
drug are 231, 245, 208, 258, 245,199, 252, 195,208, and 205. Find whether the drug is
effective in reducing the cholesterol level in man.
The normal cholesterol level in human is 190mg/100 of serum.

6. An anti-depressive drug was administered to 8 patients and the blood pressure (mm Hg)
before and after the administration of the drug is given below. Find the effect of the drug
in reducing the blood pressure.

7. A Pharmaceutical company developed a drug, which it claims to increase hemoglobin
content in aged people. The hemoglobin content (g/100 ml) of ten subjects is measured
before and after the administration of drug. Determine whether the company’s claim is
valid after observing the following data.
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ANALYSIS OF VARIANCE (ANOVA)

In Chapter 5, the measurements of variables were obtained for two samples and one
sample. t-test or non-parametric equivalents of t-test were used in hypothesis testing and
deriving inferences. Often researchers obtain measurement of a variable on three or more
samples from three or more populations. If we apply two-sample test and state the null
hypothesis as , it not will be appropriate. Employing such a series of
two-sample tests for hypothesis testing is invalid for the following reason. When we
perform each two-sample test at 5% (confidence) level of significance, there is 95%
probability that we shall accept H0 when the two population means are equal. For a set of

three hypothesis proposed above, the probability of accepting all of them is only 0.953 =
0.86. The probability of incorrectly rejecting at least one of the null hypothesis is 1 – 0.86
= 0.14. The level of significance becomes 0.14 instead of 0.05. For this reason, we do not
prefer t-test in hypothesis testing for more than two means; instead we select a procedure
that tests the equivalence of mean. The appropriate procedure is single factor analysis of
variance, often abbreviated as ANOVA, namely the F-test. Here, the appropriate null
hypothesis is . If there is significant difference, there is provision to go
for post hoc-multiple comparison tests. Post hoc-multiple comparison tests enable us to
find the range in response and test the significance of difference between means in pair as
well.

ANALYSIS OF VARIANCE—ONE FACTOR BETWEEN
SUBJECTS (ANOVA)

Analysis of Variance, abbreviated as ANOVA, was developed by R.A. Fisher; in fact the
F-test was named in his honour. R.A. Fisher emphasized the importance of randomness,
that is, identical sample size is not required for single-factor ANOVA, but the sample sizes
should be as nearly equal as possible. The single factor ANOVA is said to represent a
completely randomized experimental design. In ANOVA we assume that
and we estimate population variance and compartmentalize the variance as total variance,
between variance and within variance. Thus, ANOVA is based on portioning the
variation in the dependent variable. It compares the variance between groups with the
variance within groups. If there is more difference between groups than there is within
group, then it is the groups that make the difference and the result is statistically



significant.

MSbetween—mean sum of square between samples,

MSwithin—mean sum of square within sample.

The larger the value of F-ratio, the larger is the variance between groups.

ONE-WAYANOVA

If the effect is tested only for one factor (one independent variable) on the variable
(dependent) in question, then it is called univariate analysis.

Note Identical sample size is not required for single factor ANOVA, but the sample size
could be as nearly equal as possible. There are no firm rules for the number of
observations required. This is decided by the researcher in the field.

Basics and meaning One-way ANOVA is performed for only one independent variable
and samples belong to different groups of same population. If an investigator wishes to
test whether four different feeds result in different body weights in poultry, “feed” is the
factor and “body weight” is the variable. The different types of feed are said to be levels of
the factor. When the investigator designs his experiment, the experimental animal is
assigned at random to receive one of the four feeds with approximately equal number of
pigs receiving each feed. The data given below with manual calculation of F-value clearly
explains the basics of one way ANOVA.

Null hypothesis There is no significant difference between different groups.

Grand mean = 6

Mean of A = 3 Mean of B = 7 Mean of C = 8

Step 1 Compute total sum of squares Let us recall that the “sum of squares” refers to the
sum of squared deviations of all members of a distribution from the mean of that
distribution .

= (2 – 6)2 + (3 – 6)2 + (1 – 6)2 +…..+ (8–6)2



= 100

Step 2 Compute SS between groups The term “between groups” is traditionally used. This
process involves summing the squared deviations between each group mean and the grand
mean making sure that we multiply each squared deviation by the number (K) in each
group.

Thus,

Step 3 Compute within-group (error) SS First sumup the squared deviations between each
measurement in a specific group and then sum the within squares of all three groups.

Thus,

SSwithin = 10 + 10 + 10 = 30

We have now partitioned the total variability of the data into a “between-group”
component and a “within-group,” or error component. The next step is to compute the two
variances involved and compare them, for which an ANOVA table is formulated.

Step 4 Formulate ANOVA table

The degrees of freedom is N – 1. Since there is a total of 15 variates, the degrees of
freedom for total is 15 – 1 = 14 for total. The number of between-group degrees of
freedom is found by subtracting 1 from the total number of groups; since there are 3
groups, the number of degrees of freedom for between-group is 3 – 1 = 2. Within group
degrees of freedom = 15 – 3 = 12. There are three groups, each with 5 variates; therefore
(5–1) + (5–1) + (5–1) = 12.

Step 5 Find mean sum of square (MS)

MSbetween = 70/2 = 35.00

MSwithin = 30/12 = 2 .50



Step 6 Find the F-ratio

The final step in the analysis of variance involves a comparison of between-group
variance with within-group variance in order to determine whether between-group
variance is significantly larger. In other words, we want to know if the treatment effects
are significant or if differences between groups can be explained simply on the basis of
random variation.

Interpretation

We read the F-value for 2 and 12 df from F-table (we go down the second column to the
twelfth row). 2 degrees of freedom are associated with the numerator and 12 degrees of
freedom with the denominator. Where the column and row intersect, we locate 3.88 as the
critical F-value for the 0.05 level and 6.93 as the critical value for the 0.01 level. Since the
calculated F-value is 14.00, which is greater than table F-value at 0.01 level of
significance. We reject the null hypothesis. We may therefore, conclude that the treatment
effect has produced statistically significant differences among the groups. In a single
factor analysis, when there is significant difference in variance between samples the null
hypothesis is rejected and a multiple comparison test is carried out to determine between
which of sample means the difference occurs. In a single factor analysis, if F-value is
insignificant, there is no need to go for post hoc-multiple comparison tests.

Post hoc multiple comparisons In doing a single-factor analysis of variance, we test the
null hypothesis and so on. However, when we reject the null hypothesis, it
does not mean that all population means ( , etc.) are different from one another.
Further, we do not know how many means are different from one another and where the
differences are located among the given number of population means. This problem is
tackled by multiple comparison tests. Multiple comparison tests are desired for one-factor
analysis (Model I ANOVA and not for Model II ANOVA). In general multiple comparison
tests for means have the same underlying assumptions like analysis of variance namely
population is/are normally distributed and variance is homogenous. In all multiple
comparisons testing, equal sample sizes are desirable, but sometime it is performed with
unequal samples also.

There are as many as 18 post hoc–multiple comparison tests. Most of the tests are
designed to examine the pair-wise differences. They give additional information on the
same variable. Choice of comparison depends on the exact situation one has.

The conclusions on multiple comparison testing depend upon the order in which the
pair-wise comparisons are considered. The proper procedure is to first compare the largest
mean against the smallest, then the largest against next smaller and so on, until the largest



can be compared with the second largest. Then one compares the second largest with
smallest, the second largest with the next smallest and so on.

There are a number of multiple comparison tests, yet there is no agreement as to the best
procedure to routinely employ. The most widely and commonly used tests are the Tukey
test, Newman–Keuls test and Duncan’s test, often referred as “Duncan Multiple Range
Test”.

Sometimes multiple comparison tests will yield ambiguous conclusions in the form of
overlapping sets of similarities. In some cases, for example, sample 1 and 2 form a single
subset indicating that both the samples have come from population 1 and sample 2, 3 and
4 form a single subset indicating that these three samples have come from population 2. In
this case, sample 2 is assigned to population 1 and population 2 which is impossible).

Thus we can only state that but we cannot conclude how is related to
and . In this situation raising the sample size (larger number of data) would give
appropriate conclusion.

If the sample size is larger, then results of multiple comparison tests would locate
differences among means. One limitation of multiple comparison tests is its inability to
determine the position of some means accurately.

Tukey test multiple comparison test This test is a much-used multiple comparison test. It
consists of a null hypothesis versus alternate hypothesis . For
example, if there are 4 groups (1, 2, 3 and 4). Tukey’s test compares 1 and 2, 1 and 3, 1
and 4 and then 2 and 1, 2 and 3 and 2 and 4 and so on.

Tukey’s test, also known as the Tukey range test, Tukey method, Tukey’s honest
significance test, Tukey’s HSD (Honestly Significant Difference) test, or the Tukey–
Kramer method, is a single-step multiple comparison procedure and statistical test
generally used in conjunction with an ANOVA to find which means are significantly
different from one another. Named after John Tukey, it compares all possible pairs of
means and is based on a studentized range distribution (this distribution is similar to t-
distribution. The test compares the means of every treatment to the means of every other
treatment; that is, it applies simultaneously to the set of all pair-wise comparisons and
identifies where the difference between two means is greater.

Duncan multiple range test Duncan’s new multiple range test (MRT) is a multiple
comparison procedure developed by David B. Duncan in 1955. Duncan’s MRT belongs to
the general class of multiple comparison procedures that use the studentized range statistic
to compare sets of means. This test is a variant of the Student–Newman–Keuls method
that uses increasing alpha levels to calculate the critical values in each step. It is especially
protective against false negative (Type II) error at the expense of having a greater risk of
making false positive (Type I) errors. It is commonly used in agronomy and other
agricultural research. Duncan’s test has been criticized as being too liberal by many
statisticians including Henry Scheffé and John W. Tukey. Duncan argued that a more
liberal procedure was appropriate because in real world practice the global null hypothesis



H0 = “All means are equal” is often false and thus traditional statisticians overprotect a

probably false null hypothesis against type I errors. If a researcher wants to find the range
in response of different treatment groups to a particular treatment or homogenous response
in different treatment groups then Duncan’s multiple range test is the most appropriate
one.

Example 6.1

The following data on blood sugar level (mg/100 ml) are obtained from a clinical lab.
Analyse the variance between groups and find the effectiveness of the herbs on blood
sugar level.

Null hypothesis The group means are equal to one another.

One-way ANOVAwith SPSS

Step 1 Open Data Editor, click Variable View, (before beginning to enter the data,
assign “factor” and “levels” and the variable to be tested, in this case the four groups are
levels of same factor, namely treatment (experiment) and Sugar level is the variable. Name
the variable as “Sugarlevel” under Name, select Numeric under Type, label as “Blood
Sugar level in mg/100 ml” (Figure 6.1).

Figure 6.1 Appearance of Variable View with the details of 2
variables

Step 2 Go to the second row name the variable as “Experiment” under Name, select



Numeric under Type, label as “Experimental conditions” under Label. Click Values
column and double click on the grey area under Values. A popup window opens as in
Figure 6.2, type “1” in the Value box and Normal in Label box and click Add to transfer it
to the box down. Type “2” in the Value box and “Diabetic” in Label box and click Add to
transfer it to the box down, proceed in a similar way for the rest of the data as “3” for
“Herb “1” and “4” for “Herb “2”” by adding each time and click OK.

Figure 6.2 Value Labels dialog box with coded categorical
variable

Step 3 Type data in Data View under each head. Choose Analyze from the Pull down
menu select Compare Means and then click One-way ANOVA (Figure 6.3).

Figure 6.3 Selecting One-way ANOVA from main menu

Step 4 One-way ANOVA dialog box opens (Figure 6.4). Transfer (Blood sugar level in
mg/100 ml) to Dependent List and Experimental conditions to Factor by clicking the
arrow.

Figure 6.4 One-way ANOVA dialog box with variable and
Factor transferred

Step 5 Click Options. A popup window opens with the head as One-Way ANOVA:
Options (Figure 6.5), select Descriptive and click Continue and click OK to run the



analysis.

Figure 6.5 One-way ANOVA: Options to select Descriptive

The outputs appear as in Output 1 and Output 2.

Output 1

Output 2

Interpretation

The mean, standard deviation and standard errors of four samples are given in Output 1
under the head Descriptives. The results of ANOVA are given in Output 2. The
significance of variance, i.e., p-value, given under the head Sig. is 0.000. Since, the
significance value 0.000 is less than 0.05 (p < 0.05), the variance between different
experimental conditions is significant. Therefore, we conclude that the four sample means
differ from each other significantly.

If we stop the interpretation with this we may not understand whether the difference
between sample variance is equal or any two sample variances are equal. In addition, we
may not discover the source of significant differences among the group means. Most of
the post hoc tests are designed to examine the pair-wise differences. Choice of comparison
depends on the exact situation you have. Unplanned multiple comparison among the factor
levels can be done by clicking any of the options in post-hoc multiple comparisons, but
the researcher should have an idea on his data and knowledge on the post-hoc tests as



well, only then he will be able to mine exciting facts about his data. In this case since the
sample sizes are equal we can be confident of having similar population variance. Since
we need pair-wise comparison and range as well, we go for post-hoc multiple comparison
and choose Tukey.

Step 6 Click Post Hoc a popup window opens (Figure 6.6), and select Tukey and click
Continue and click OK.

Figure 6.6 Tukey test selected in One-way ANOVA: Post Hoc
Multiple Comparisons dialog box

Step 7 Now the One-Way ANOVA: Post-Hoc Multiple comparisons dialog box opens.
Select Tukey and then click Continue. Finally click OK to run the analysis. The output
for appears on the screen.

Step 8 Save the outputs (Output 3 and 4) and interpret the results.

Output 3

Interpretation

In Output 3, in the first row, Normal is compared pair-wise with other three groups. From
this we can infer that blood sugar in Normal differ significantly from Diabetic and Herb 1
but Normal do not differ significantly from Herb 2 (p-value = 0.065). The scientific
inference is that the patients treated with Herb 2 have the blood sugar level similar to
normal person, therefore Herb 2 may be used as antidiabetic agent (p > 0.05). The results
given in second row compare the blood sugar level of diabetic with other three groups.
Since all the values under Sig. column is 0.000, the blood sugar level of diabetic differs
significantly the from the other three groups (p < 0.01). The third row compares Herb 1
with other three groups pair-wise. Here also there are significant differences. The fourth



row infers the same an stated in the previous three rows in pairwise comparison.

Output 4

Homogenous subsets

Interpretation

The Output 4 gives the Homogenous subsets. In this Subset 1 is formed by Normal and
Herb 2, Subset 2 is represented by Herb 1 and Subset 3 by diabetic. From this we can
conclude that blood sugar level in normal group is towards the lower end of range in blood
sugar, which is followed by Herb 1 and the Diabetic is towards the higher end. Since,
Normal and Herb 1 form a single subset, treatment with Herb 2 would bring down the
blood sugar level and not Herb 1.

If the researcher is not interested in pair-wise comparison and if he needs to find only
a range in response then he can run Duncan’s post-hoc test.

Step 9 In One-Way ANOVA: Post-hoc multiple comparisons, select Duncan and click
Continue and then click OK. The output appears as in Output 5.

Figure 6.7 One-way ANOVA: Post Hoc Multiple
Comparisons dialog box with Duncan selected

Output 5



Interpretation

Output 5 gives the results of Duncan’s multiple comparison test. Here the results get
categorized into four subsets indicating that none of the four groups are similar to each
other. The blood sugar level of Herb 2 group is closer to normal, whereas the diabetic
group is far away from the normal. Therefore, this test is useful in categorizing the
different group means from lower to higher value and finding the closeness of the groups.

TWO-WAY ANOVA—TWO TREATMENT FACTOR
EXPERIMENT AND ANALYSIS

This is a procedure to analyse the difference in mean of three or more groups of means of
a dependent variable affected by more than one independent factor. The study design
consists of finding the effect of two independent variables on a single dependent variable
at the same time, that is, simultaneous effect of both independent variables on the
dependent variable. It shows overall effect of two independent variables and also whether
there is interaction between them.

Two-way ANOVAwith SPSS

Example 6.2

Perform two-way ANOVA to find the interactive influence of herb and sex on blood sugar
level (mg/100 ml).

Step 1 Open Data Editor, click Variable View (before starting to enter data, assign
factor and levels and the variable to be tested. In this case, the four groups are levels of
two factors namely Experiment and Gender. (Blood Sugar level is the variable), in the
first column, type as “Experiment”, select Numeric under Type, label as “Experimental
conditions” under Label (Figure 6.8). In the Values column type as “Experimental group”,
and click on the grey area, a popup window opens (the details can be entered as in the
previous example), type “1” in the Value box and “Normal” in the Label box and click
Add to transfer it to the box down. Type “2” in the Value box and “Diabetic” in the Label



box and click Add to transfer it to the box down and proceed in a similar way for the rest
of data as “3” for Herb 1 and “4” for Herb 2 by adding each time and click OK.

Step 2 In the second row, type “Gender” under Name, select “Numeric” under Type,
label as “Gender” under Label (Figure 6.7). In the Values column, type as “Gender”, and
click on the grey area, in the popup window type “1” in the Value box and Male in Label
box and click Add to transfer it to the box down. Type “2” in the Value box as “Female”
in Label box, click Add and click OK.

Step 3 In the third row type “Bloodsugar” under Name, select Numeric under Type, label
as “Blood sugar level mg 100 ml under Label.

Figure 6.8 Variable View with details of three variables

Step 4 Type data in Data View under each head (Figure 6.8). Take care to enter data in
such a way that four categories in the first column and in the second column 1 (male) and
2 (female) against each experimental group and enter the sugar level in the third column in
accordance with experiment and gender.

Step 5 Choose Analyze from pull down menu, select General Linear Model and then
click Univariate.

Figure 6.9 Selecting Univariate from main menu

Step 6 Univariate popup window opens as in Figure 6.9. Transfer Blood sugar level in
mg/100 ml to Dependent Variable box, and Experimental groups and Gender to Fixed
Factor(s).



Figure 6.10 Univariate dialog box to transfer variables

Step 7 Click Options to get Univariate: Options box and transfer Experiment, Gender
and Experiment* Gender to Display Means for: box (Figure 6.10). Select Descriptive
statistics under Display and click Continue.

Figure 6.11 Univariate:Options dialog box with Display
Means for and Descriptive statistics selected

Step 8 Click Post-Hoc, a popup window (Univariate: Post-Hoc Multiple Comparison
for Observed Means) opens (Figure 6.12). Transfer Experiment and Gender to the
Post-Hoc Tests for: box. Select Duncan under Equal Variances Assumed and click
Continue and click OK to run the analysis.

Figure 6.12 Univariate: Post Hoc Comparisons for Observed
Means dialog box with variables for Post Hoc test for and



Duncan selected

The output appears in different heads; you may not need all outputs. Select Descriptive
Statistics (Output 1), Tests of between Subject Effects (Output 2), Experimental
groups*Gender (Output 3) and Duncan’s multiple range test with Blood sugar level in
mg/100 ml (Output 4). In this example since gender has only two categories, post-hoc
test cannot be performed (to perform multiple range test we need at least three categories).

Output 1

Interpretation

From Output 1 we can write the mean and standard deviation to describe the blood sugar
level in different groups. Output 2 gives the results of two-way ANOVA univariate
analysis (here the variable tested is blood sugar level). To interpret our results, we need to
understand the results given in Output 2. The column heads gives the source of variance,
sum of squares, degrees of freedom, mean sum of squares, F(F-ratio) and significance.
From this, we can state the effects of treatment. We take the F-value and Significance
given against Experiments, the F-value is 169.784 and significance (p-value) is 0.000.
Since the p-value is less than 0.01, there is significant difference between treatment
groups.

Next, we can state whether there is significant difference between male and female for
which we take the values given against Gender, here, the F-value is 0.175 and
significance is 0.678. Since the p-value is greater than 0.01, the difference in blood sugar
level between male and female is considered insignificant.

Then the interactive influence of experimental conditions and gender on blood sugar
level is interpreted from the values given against Experiment *Gender, where the F-
ratio is 0.350 and significance is 0.790. Here the p-value is greater than 0.01; therefore,
the interactive influence of Experiment and Gender is insignificant. Therefore, male and
female could be treated alike to reduce blood sugar level.

Output 2



Output 3

Interpretation

Output 3 gives the mean blood sugar levels in different experimental groups with respect
to different sex.

Output 4 gives the range in blood sugar level in different experimental groups
irrespective of sex.

Output 4

MULTIPLE ANALYSIS OF VARIANCE (MANOVA)

MANOVA is a technique which determines the effects of independent categorical
variables on multiple dependent variables. It is usually used to compare several groups
with respect to multiple continuous or categorical variables. The main distinction between
MANOVA and ANOVA is that several dependent variables are considered in MANOVA,
while ANOVA tests for inter-group differences between the mean values of one dependent
variable. MANOVA uses one or more categorical independents as predictors, like
ANOVA, but unlike ANOVA, there is more than one dependent variable.



MULTIPLE ANALYSIS OF VARIANCE (MANOVA)
WITH SPSS

Multivariate analysis of variance (MANOVA) in SPSS is similar to ANOVA, instead of
one metric dependent variable, we have two or more dependent variables. MANOVA in
SPSS is concerned with examining the differences between groups and the group
differences across multiple dependent variables simultaneously.

Suppose that four groups, each consisting of 100 randomly selected individuals, are
exposed to four different commercial advertisements about some detergents. After
watching the commercial, adds each individual provide ratings on his preference for the
products, for the manufacturing companies and for the commercial advertisements. Since
these three variables are correlated, MANOVA in SPSS should be conducted to determine
the commercial that received the highest preference across the three preference variables
(product, company and commercial advertisement). Let us understand the basics of doing
MANOVA in SPSS, before proceeding with the actual process of doing the same.

BASICS OF DOING MANOVA IN SPSS

MANOVA in SPSS is done by selecting Analyze, General Linear Model and
Multivariate from the main menu. As in ANOVA, the first step is to identify the
dependent and independent variables. MANOVA in SPSS involves two or more metric
dependent variables. Metric variables are those which are measured using an interval or
ratio scale. The dependent variable is generally denoted by Y and the independent variable
is denoted by X.

Here, the null hypothesis is the means of multiple dependent variables are equal across
groups.

As in ANOVA, MANOVA in SPSS also involves the decomposition of the total
variation observed in all the dependent variables simultaneously. The total variation in Y is
denoted by SSY, which can be broken down into two components:

SSY = SSbetween + SSwithin

Here the subscripts ‘between’ and ‘within’ refer to the categories of X. SSbetween is

the portion of the sum of squares in Y which is related to the independent variables or
factors X. Thus, it is generally referred to as the sum of squares of X. SSwithin is the

variation in Y which is related to the variation within each categories of X. It is generally
referred to as the sum of squares for errors in MANOVA. Thus in MANOVA, for all the
dependent variables, say, Y1, Y2 (and so on), the decomposition of the total variation is



done simultaneously.

The next task in MANOVA in SPSS is to measure the effects of X on Y1, Y2 (and so

on). This is generally done by the sum of squares of X. The relative magnitude of the sum
of squares of X in MANOVA increases as the difference among the means of Y1, Y2 (and

so on) in categories of X increases. The relative magnitude of the sum of squares of X in
MANOVA decreases as the variation in Y1, Y2 (and so on) within the categories of X

decreases.

The final step in MANOVA in SPSS is to calculate the mean square which is obtained
by dividing the sum of squares by the corresponding degrees of freedom. The null
hypothesis of equal of mean is tested by an F statistic, which is the ratio of the mean
square related to the independent variable (MSbetween) to the mean square related to error

(MSwithin).

Example 6.3

Perform a multivariate analysis of variance (MANOVA) on the following data for plasma
concentration of calcium (in mg/100 ml) and for the rate of evaporative water loss (in
mg/min).

Step 1 Open Data Editor, click Variable View and follow Steps 1–4 to name the
variables (Figure 5.12). In the first column, type as “Treatment”, select Numeric under
Type, label as “Hormone treatment” under Label. In the Values column click on the grey
area, a popup window opens (the details can be entered as in the previous example), type
“1” in the Value box and “No hormone treatment” in Label box and click Add to transfer
it to the box down. Type “2” in the Value box and “Hormone treatment” in Label box and
click Add to transfer it to the box down and click OK.

Step 2 In the second row, type “Gender” under Name, select Numeric under Type, label
as “Gender” under Label. In the Values column, click on the grey area, in the popup
window type 1 in the Value box and “Female” in Label box and click Add to transfer it to
the box down. Type “2” in the Value box and “Male” in Label box, click Add and click
OK.

Step 3 In the third row type “Calcium” under Name, select Numeric under Type, label as
“Plasma calcium (mg/100 ml)” under Label.



Step 4 In the fourth row, type “Water” under Name, select Numeric under Type, label as
“Water loss (mg/min) under Label.

Figure 6.13 Variable View with details entered for four
variables

Step 5 Click Data View and type data in Data View under each head (Figure 6.14). Take
care to enter data in such a way that the two categories “1” is entered for no hormone
treatment and “2” is entered for hormone treatment in the first column. In the second
column enter “1” for female and “2” for male against each treatment correctly. In the third
column enter calcium level in accordance with hormone treatment and gender. In the
fourth column enter water loss in accordance with hormone treatment and gender.

Figure 6.14 Data View with data entered

Step 6 From the main menu select Analyze, click General Linear Model and then select
Multivariate (Figure 6.15).

Figure 6.15 Selecting Multivariate from drop down menu

Step 7 A popup window with the headMultivariate opens as in Figure 6.16.



Figure 6.16 Multivariate dialog box to transfer variables

Step 8 Transfer the variables “Plasma Calcium in mg/100 ml” and “Water loss in mg/min”
to Dependent Variables: box and Treatment and Gender to Fixed Factor(s): box (Figure
5.17). Since, we have only two categories under Treatment and Gender, we cannot
perform post-hoc tests for this set of data.

Figure 6.17 Multivariate: dialog box with dependent variables
and fixed factors transferred

Step 9 Click Options to open the Multivariate: Options dialog box. Transfer
(OVERALL) from Factor(s) and Factor Interactions: to Display Means for: box. Select
Descriptive Statistics checkbox under Display (Figure 6.18). Click Continue to return to
Multivariate box.

Figure 6.18 Multivariate: Options box to select Descriptive
Statistics



Step 10 Click OK to run the analysis to get the output.

The outputs appears under different heads as Between Subject Factors, Descriptive
Statistics, Multivariate Tests and Tests of Between- Subjects Effects. However, we use
Descriptive Statistics (Output 1) and Tests of Between-Subject Effects (Output 2) for
this example.

Interpretation

From Output 1, Descriptive Statistics we can describe the level of blood calcium and
water loss in different experimental groups of both male and female.
We can infer that blood calcium level in female who does not receive hormone is 14.88 ±
2.49 mg/100ml and that of male is12.12 ± 2.11 mg/100ml. The blood calcium level in
female who receives hormone is 28.86 ± 5.52 mg/100 ml and that of male is 28.38 ± 4.39
mg/100ml. Similarly, the water loss in females who do not receive hormone is 69.20 ±
4.65 mg/min and in male is 74.40 ± 4.28 mg/min. Water loss in females who receive
hormone is 64.6 ± 5.59 mg/min and in female is 62.8 ± 5. 93 mg/min.

Output 2

From output 2, Tests of Between-Subjects Effects, we can infer the influence of
hormone treatment, gender and the interactive influence of both (hormone and gender)
on blood calcium and water loss. There are 7 columns and 8 rows in the output. The first
column gives the source of variance. From that column we can formulate ANOVA table
by taking the values against Treatment, Gender and Treatment * Gender, Error and
Total. We can take the results given against Treatment, Gender and Treatment *
Gender to answer our problem.
The F-value for treatment for plasma calcium is 75.48 and the significance is 0.000 (p <
0.01). The F-value for and for water loss is 12.32 and the significance is 0.003 (p < 0.05).



Therefore, hormone treatment has a significant effect on both plasma calcium level and
water loss.

The F-value for gender for plasma calcium is 0.867 and the significance is 0.336 (p >
0.05). The F-value for water loss is 0.543 and the significance is 0.472 (p > 0.05).
Therefore, plasma calcium level and water loss do not differ significantly in male and
female or gender does not have any influence on calcium level and water loss.

The F-value for interactive influence of treatment and gender on plasma calcium is
0.429 and the significance is 0.522 (p > 0.05). The F-value for water loss is 2.3 and the
significance is 0.149 (p > 0.05). Hence, the interactive influence of both hormone and
gender is insignificant. The results can be concluded by saying that male and female do
not differ significantly in their plasma calcium level and water loss and hormone treatment
only has significant influence on both. Therefore, male and females can be treated alike
with hormones to control plasma calcium and water loss.

REVIEW EXERCISES

1. Two samples are drawn from two normal populations and the following data are
obtained. Test whether the two samples have the same variance at 5% level of
significance.

2. The Chloride content (mg/lit) of a river at a particular site collected from four different
seasons are given below. Find the mean and standard deviation. Analyze the significance
of variance. Infer the variance in oxygen content for four different seasons. Find the range
in chloride content for different seasons.

3. In a river where the sewages are allowed to mix, the BOD (oxygen in mg/L) values are
calculated at different sites and given below. Calculate the mean and standard deviation.
Analyze the significance of variance between different sites.



4. The haemoglobin levels of four groups of children fed on four different diets are given
below. Calculate the mean and standard deviation. Analyze the significance of variance
and range in response of diet on haemoglobin.

5. In an experiment conducted on fortification of mulberry leaves with different nutrient
supplementation, the following data are obtained on the cocoon weight (gm) of mulberry
silkworm Bombyx mori. Calculate the mean and standard deviation. Analyze the
significance of variance between different groups. Infer the range in response.

6. The following data gives the production of wheat in tons/hectare of three different
varieties A, B and C. Is there a significant variance in the production of three varieties?



7

CORRELATION

STATISTICALASSOCIATION BETWEEN VARIABLES

In real life situations, a kind of relationship or association exits between characters or
variables. For example, if we measure the heights and weights of a group of individuals
we obtain a series in which each individual of the series has 2 values, one relating to
height and the other relating to weight. Such a distribution in which each individual (unit)
has two values is called bivariate distribution. If we measure more than two variables on
each unit of a distribution it is called multivariate distribution. In both of these, change
in one variable is found or apparently found to be associated with the change in the other
variable. This relationship may be casual or causal. The statistical tools used in such
relationships are correlation and regression respectively. There are many kinds of data in
life sciences and social sciences where the relationship between two variables is not one of
dependence. In such cases, the magnitude of one of the variables changes as the
magnitude of the second variable changes, but it is not reasonable to consider them as
independent or dependent variable. In such situations, correlation analyses are called for.

An example of data suitable for correlation analysis would be measurements of human
arm and leg lengths. It might be found that an individual with long arms will in general
possess long legs, so a relationship may be desirable; but there is no justification in stating
that the length of one limb is dependent upon the length of the other. But for variables like
age and blood pressure of persons, age influences blood pressure. Regression analysis is
the most suitable one for these kinds of variables, though we can apply correlation
analysis to find the degree of association. The degree to which the two or more variables
co-vary in some linear fashion is given by correlation analysis.

“When the relationship is of a quantitative nature, the appropriate statistical tool for
discovering and measuring the relationship and expressing it in a brief formula is known
as correlation.”

Croxton and Cowden

“Correlation is an analysis of covariation between two or more variables”.

A.M. Tuffle

Thus two variables are said to correlate if the change in one variable results in a
corresponding change in the other variable. Therefore, correlation is a statistical tool
which studies the relationship between 2 variables.



CORRELATION—SIMPLE AND MULTIPLE
CORRELATION

Two variables, for example, age and blood pressure are found to vary in some linear
fashion. The apt way to express the degree of linear relationship between these two
variables is by the calculation of correlation coefficient. Hence, when one studies the
relationship between two variables it is called simple correlation analysis and if more than
two variables are involved it is multivariate analysis.

Types of Correlation

Positive and negative correlation If the value of the two variables move in the same
direction, i.e., if the increase in the values of one variable results in a corresponding
increase in the values of the other variable or if the decrease in the values of one variable
result in a corresponding decrease in the values of the other variable, there exists a
positive correlation.

On the other hand, if the variables deviate in the opposite direction, i.e., if the increase
in the values of one variable results in a corresponding decrease in the values of other
variable there exists a negative correlation.

Linear and non-linear correlation If a unit change in one variable corresponds to a
constant change in the other variable over the entire range of data, then the correlation
between the two variables is said to be linear. For example, the following data shows a
linear correlation between two variable X and Y.

Thus for a unit change in the value of X, there is a constant change i.e., 2 in the
corresponding values of Y. When these data are plotted on graph sheet, these give a
straight line. But such an ideal condition never exists in nature. In most situations in social
and biological sciences the relationship between 2 variables is not linear one and may
fluctuate.

The relationship between two variable is said to be non-linear or curvilinear, if a unit
change in one variable does not correspond to the change in the other variable at a
constant rate but at a fluctuating rate. Such kinds of data, when plotted on a graph sheet
we do not get a straight line. Mathematically, the correlation is said to be non-linear if the
slope of the plotted curve is not constant.

The technique for its analysis and measurement of non-linear relationship are quite



tedious and complicated when compared to methods of studying and measuring linear
relationship.

METHODS OF STUDYING CORRELATION

There are different methods of studying the degree of correlation depending on the type of
variable and the number of variables involved. If only two variables are studied in any
investigation, it is bivariate analysis. The degree of relationship between two measurement
variables can be done both graphically and mathematically.

GRAPHICALMETHOD: SCATTER DIAGRAM

The simplest way to ascertain the correlation between two variables is by scatter diagram.
In this method, if n pairs of value (X1Y1, X2Y2, …..XnYn,) of two variables X and Y are

given, then one is represented along the abscissa (X-axis) and the other along the ordinate
(Y-axis) on a graph sheet. In the example of the two variables (Refer Chapter 4) namely
age of the person and blood pressure, for each case or each person a single point is plotted
for his age and blood pressure (Age is taken in X-axis and blood pressure in Y-axis).
When all “n” pairs are plotted for the entire set of data, the diagram of dots obtained is
called Scatter diagram. The scatter diagram for the same data is given below. From the
scatter diagram we can form a fairly good but rough idea on the relationship between the
two variables.

Figure 7.1 Scatter diagram of systolic pressure (mm Hg) and
age (years)

In a scatter diagram if the points start from the lower left hand corner and extend to
the upper right hand corner as shown in Figure 7.2, there is positive correlation between
these two variables. On the other hand, when the points move from the lower right hand
corner to the upper left hand corner as shown in Figure 7.3, there is negative correlation
between these two variables. If the points are scattered throughout as in Figure 7.4, then
there is no correlation.



Figure 7.2 Scatter diagram showing positive correlation
between variables

Figure 7.3 Scatter diagram showing negative correlation
between two variables

Figure 7.4 Scatter diagram—no correlation between two
variables

MATHEMATICAL METHOD: PEARSON’S
CORRELATION COEFFICIENT

The relationship between two measurement variables is studied by a method introduced by
Karl Pearson and is called Pearson’s correlation coefficient. The following formula is used
to find the relationship between two variables.

where,

r—correlation coefficient

xi—value of ith item of variable x



—mean of variable x

yi—value of ith item of variable y

—mean of variable y and

—sum

The value of Pearson’s correlation coefficient falls between +1 and –1. If the variables
are negatively correlated the value of r lies between 0 and –1, if they are positively
correlated the value is between 0 and +1. If there is no correlation the value is 0. But the
values from 0 to 1 is interpreted based on the test of significance.

BIVARIATE ANALYSIS WITH SPSS

Calculation of correlation coefficient with mathematical formula becomes tedious when
one likes to calculate greater number of variables from a very large sample. SPSS allows
us to do the analysis for a large number of variables at a time. Let us work out correlation
coefficient for a pair of variables first with the familiar example.

Example 7.1

Find out correlation coefficient for the variables, age (years) and systolic blood pressure
(mmHg) in man.

Before going into SPSS, it is important to propose a null hypothesis and alternate
hypothesis.

Null hypothesis (H0) There is no correlation between age and systolic blood pressure.

Alternate hypothesis (HA) There is correlation between age and systolic blood pressure.

Step 1 Open the Data Editor and click Variable View and then enter the name of
variables and details of the variables (Figure 7.5).



Figure 7.5 Variable View with two variables entered

Step 2 Click Data View and enter data under appropriate variable (Figure 7.6).

Figure 7.6 Data View with data for two variables

Step 3 Select Analyse from the main menu and select Correlate from the drop down
menu and then select Bivariate as shown in Figure 7.7.

Figure 7.7 Selecting Bivariate option from main menu

Step 4 Bivariate Correlations dialog box opens as in Figure 7.8.

Figure 7.8 Bivariate Correlations dialog box to select

Step 5 Transfer variables into Variables box , select Pearson under Correlation
Coefficients and select Two-tailed under Test of Significance and Flag Significant
Correlations (Figure 7.9).



Figure 7.9 Bivariate Correlations dialog box with options
selected for Pearson correlation coefficient

Step 6 Click Options to open Bivariate Correlations: Options, select Mean and
Standard Deviation under Statistics, so that you can get some descriptive statistics in the
output, although these options are not needed to run the actual Pearson’s correlation
coefficient (Figure 7.10).

Figure 7.10 Bivariate Correlations: Options dialog box with
to select mean and standard deviation

Step 7 Click Continue and click OK to run the analysis. Two outputs, one for descriptive
statistics (Output 1) and the other for Correlations (Output 2) appear as shown below.

Output 1

Output 2

Interpretation

Output 1 gives the mean age and blood pressure with standard deviation.

Output 2 gives the main matrix of the Pearson’s correlation coefficient. Variables have
been arranged in a matrix such that their columns/rows intersect. In the cells there are
numbers that tell about the statistical interaction between the variables. Three types of
information are provided in each cell, i.e., Pearson correlation, significance and number of
cases. The values on either side of the diagonal are mirror images of each other, i.e., the



values are the same. Hence, one can ignore the information above the diagonal or below
the diagonal as one wishes.

The value against Pearson correlation, i.e., 0.661 is the r-value. Since, the r-value is
positive and significance (2-tailed) value of 0.002 (the p-value) is below 0.01, we reject
the H0 and accept alternate hypothesis and infer that an increase in age really increases the
systolic blood pressure or patients age and blood pressure are positively related.

Example 7.2

The following are the data related to test scores obtained by the students with their
studying time and their absence in the class. Perform bivariate analysis for the following
data.

In this exercise there are three variables, we can find the correlation between test
scores and study time and test scores and absence in the class as well. SPSS allows us to
carry out bivariate analysis as many variables as we would like to find the relation. In such
situations we can propose null hypothesis for any two variables separately. Here, we
propose the hypothesis only for two variables at a time, like test scores and study time.
Similarly we can propose for test scores and absence in the class and study time and
absence in the class. Null and alternate hypothesis is proposed individually for each pair.

Step 1 Open Data Editor, and Click Variable View. Enter the name of three variables
and details for each of the variables.

Step 2 Click Data View and enter data under appropriate variables (Figure 7.11).



Figure 7.11 Data View with data for three variables

Step 3 Select Analyze from the main menu and select Correlate from drop down menu
and Bivariate. Bivariate Correlations dialog box appears.

Step 4 Now move the variables from the left pan to the Variables box on the right by
clicking on the arrow.

Step 5 Select Pearson under Correlation Coefficients and select Two-tailed under test of
significance.

Step 6 Click Options and selectMeans and Standard Deviations box under Statistics.

Step 7 Click Continue and click OK to run the analysis.

Step 8 Output 1 and 2 appears as given below.

Output 1

Output 2

Interpretation

1. The output 1 gives mean, standard deviation and number of cases. With this we can
describe the data.

2. The output 2 is in the form of a matrix. The values on either side of the diagonal are the
mirror images of each other, i.e., the values are the same. We can refer and interpret the
values on one side of the diagonal. The r-value is positive for the “variables test scores”
and “studying time”, the p-value 0.003 is below 0.01, so we reject the H0, accept HA.
Hence, there is significant positive correlation between these two. Therefore, increase in
study time really increases the test scores.



3. The r-value is –0.637 for the variables test score and absence in the class and the p-
value (0.026) is below 0.01, so we reject the H0, therefore significant correlation exists
between the two, i.e., the absence in the class really correlate negatively with test scores.

4. The r-value 0.360 is negative, for the variables study time and absence in the class and
the p-value is 0.25, which is above 0.01 so we accept the H0, i.e., there is no correlation
between study time and absence in the class and therefore, study time really do not
correlate with absence in the class or
vice versa.

RANK CORRELATION

Occasionally, we come across statistical data in which the variables under study are not
capable of accurate quantitative measurements and may not fall in an interval scale also,
but can be arranged in serial order. Such variables are qualitative characteristics or
attributes like intelligence, beauty, morality, teaching method, honesty, etc., which cannot
be directly measured quantitatively but can be arranged serially. For such data Karl
Pearson’s correlation coefficient cannot be used as such. One method of analyzing such
a data is by ranking the variates and calculating a coefficient of rank correlation. Thus
rank correlation is the study of relationship between different rankings on the same set of
items. It deals with correspondence between two rankings and assign the significance of
this relationship. Data suited to ranking methods are those which can not be measured on
absolute scale, but only on an ordinal scale. There are different methods of ranking data
and calculating correlation co-efficient. We shall discuss on Spearman’s rank
correlation coefficient and Kendall’s correlation coefficient.

SPEARMAN’S RANK CORRELATION COEFFICIENT

Charles Edward Spearman, a British Psychologist developed formula to obtain
correlation coefficient between ranks of a group of individuals for a given pair of
attributes. To calculate Spearman correlation coefficient, ranks are assigned to a set of
variables X and Y individually. In ranking, first the variable X is ranked from low to high
(it can be from high to low also); then the variable Y is ranked in the same way. The
deviation between the ranks of pairs of variable is, squared and summed up. The values
are substituted in the following formula to get Pearson’s correlation coefficient. As the
deviation between ranks form the basis for calculation of Pearson’s correlation
coefficient, it is commonly called as Rank correlation.

where,



R—Rank correlation coefficient

d2—squared deviations

—sum

n—pair of items

Interpretation

R value lies between –1 and +1 and interpreted as in the case of Pearson’s correlation
coefficient.

SPEARMAN’S RANK CORRELATIONWITH SPSS

Example 7.3

Compute Spearman’s rank correlation coefficient for the data given below on academic
achievements and family income.

Step 1 Name the variables in Variable View and data in Data editor

Step 2 Click Analyse then select Correlate and click Bivariate. Bivariate Correlations
dialog box opens (Figure 7.12).

Figure 7.12 Bivariate Correlations dialog box with Spearman
correlation coefficient selected

Step 3 Transfer both the variables to Variables box and select Spearman under
Correlation Coefficients and Two-tailed under Test of Significance.

Step 4 Click OK to run the analysis.



Step 5 Output appears as shown below.

Output

Interpretation

In this output Spearman’s correlation coefficient is given at the point of intersection
between “grade points obtained” and “family income” which is
–0.396, and the significance value for two-tailed is 0.257. Since the significance value is
greater than 0.05 (p > 0.05), the correlation coefficient is insignificant and it is inferred
that the academic achievement is not related to family income in this data set.

KENDALL’S RANK CORRELATION COEFFICIENT

It is symbolised by (tau) and therefore commonly referred to as Kendall’s tau ( )
coefficient. A tau test is a non-parametric hypothesis test which uses the coefficient to test
for statistical dependence. It is named after Maurice Kendall, who proposed and
developed it. The Kendall rank correlation coefficient evaluates the degree of similarity
between two sets of ranks given to a same set of objects. This coefficient depends upon
the number of inversions of pairs of objects which are needed to transform one rank order
into the other.

Kendall’s coefficient is different from Spearman’s rank correlation coefficient.
Specifically, it is a measure of rank correlation, that is, the values are ranked by each of
the quantities, but concordance and discordance are considered instead of deviation of
rankings . If two random variables X and Y have a set of observations (x1, y1), (x2, y2),

…, (xn, yn), any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the

ranks for both values agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj;

otherwise they are said to be discordant.

The following formula is used to calculate the value of Kendall rank correlation:

where,

nc—number of concordant



nd—number of discordant

n—total number of possible pairing of observations

KENDALLRANK CORRELATIONWITH SPSS

Example 7.4

Compute Kendall rank correlation coefficient for the data on the IQ of 10 persons and the
number of hours of TV watching

The procedures for Kendall rank correlation will be the same as the Pearson correlation
in SPSS.

Step 1 Name the variables in Variable View and data in Data Editor.

Step 2 Click Analysis, then select Correlate and then select Bivariate, Bivariate
Correlations dialog box open (Figure 7.13).

Figure 7.13 Selecting Bivariate from main menu

Figure 7.14 Bivariate Correlatons dialog box with test
variables transferred and Kendall’s tau-b selected

Step 3 Transfer both the variables to Variables box and select Kendall’s tau-b under
correlation coefficient and Two-tailed under Test of Significance.



Step 4 Click OK to run the analysis, the output appears as given below

Output

Interpretation

In this output Kendall’s correlation co-efficient b is given at the point of intersect
between IQ of the person and the number of hours of watching TV, which is = –0.11, and
the significance for two tailed is 0.65. Since, the significance value is greater than 0.05
(p>0.05), the correlation coefficient is insignificant and is inferred that the IQ of the
person is not related to number of hours of watching TV in this data set.

MULTIPLE CORRELATION

In the preceding examples we have discussed the relationships between two variables. We
shall now expand these considerations to relationship among three or more variables using
the procedures of multiple correlation. Multiple correlation (sometimes called multiple
regression correlation or multiple linear correlation) is an extension of linear correlation. If
none of the variables is assumed to be functionally dependent on one another, then we can
apply multiple correlation. In all these cases, the assumption is that the variables are
normally distributed. In simple correlation, the sample is from a bivariate normal
population; whereas in multiple correlation, the sample (on which the observations or
measurements are collected for more than two variables) is from a multivariate normal
distribution. In multiple correlation, all variables y, x1, x2, x3,… etc. must be treated as y.

Advantages of multiple correlation over simple bivariate
correlation

1. Curvilinear effects can be tested

2. Interaction effects can be tested.

3. Researcher may learn how much variation in the dependent variable is explained by one
set of variables as opposed to another.

4. The relative importance of each variable can be identified.

The following formula is used to calculate multiple correlation involving three
variables.



where, R = multiple correlation coefficient, r = simple correlation coefficient of two
given variables, i.e., between y and x1, y and x2, and x1 and x2 and so on.

Interpretation

In contrast to simple correlation coefficient r, which tells about the strength and direction
of association between variables, multiple correlation coefficient R, tells only the strength
of the association. Since it is a measure of the strength of the linear relationship between
the variable y and a set of variables x1, x2, …xp…, the R value is never negative. R can

take any value from 0 and +1. If the value of R is 1, there is perfect linear association. If R
equals zero, then there is no linear association between the variables. For the values
ranging from 0 to 1, the significance of R is predicted with test of significance. SPSS
enables the researcher to do both simultaneously.

MULTIPLE CORRELATIONWITH SPSS

Since the working part of multiple correlation and multiple regression deals with the same
procedure, the example for multiple correlation is worked out under multiple regression
(Refer Chapter 8).

DOES CORRELATION COEFFICIENT REVEALS THE
RELATIONSHIP BETWEEN THE VARIABLE FULLY?

No discussion of correlation would be complete without a discussion of causation. In
correlation analysis, it is possible to say the relationship between two variables, but not to
say one variable as cause and another as effect. For example, suppose there is a high
correlation between the number of Pepsi bottles sold and the number of drowning deaths
in summer. Does that mean that one should not drink Pepsi before one swims? Not
necessarily. This is an example of correlation without causation.

On the other hand there is high degree of positive correlation between cigarette smoking
and incidences of cancer. The cigarette companies say that people who smoke are more
nervous and nervous people are more susceptible to cancer. While doctors say that
smoking indeed causes cancer. But the fact is those who smoke more cigarette get cancer
or cigarette smoking causes cancer. Here cigarette smoking is the cause and cancer is
effect and therefore do not smoke. This is an example of correlation with causation. In the
example if we do only correlation, we can only find the strength of association between
the variable and can not proceed further to prediction. We can go for prediction with



regression analysis. Chapter 8 deals with regression analysis.

REVIEW EXERCISES

1. Calculate Karl Pearson’s correlation between the age of husband and wives and draw a
scatter plot.

2. Draw a scatter diagram for the following data on the length and breadth of 10 fishes,
calculate correlation coefficient and interpret your results.

3. Find out Karl Pearson’s correlation coefficient for the following data on the arm width
and weight in starfish.

4. Two judges in a painting competition rank twelve students as follows. Find Rank
correlation coefficient and state the degree of agreement between the two judges.

5. Calculate Kendall’s coefficient of correlation for the following data on demand and
supply.
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REGRESSION

In the previous chapter, we discussed about simple linear correlation and multiple
correlation. Both these procedures enable the investigator to find the degree and direction
or only degree of relationship between two variables. But these procedures failed to find
the functional relationship (i.e., cause and effect relationship) between variables under
study. The cause and effect relationship between variables is studied with regression
analysis. The term “Regression” was first used by Sir Francis Galton, a British
biometrician. The term regression is defined as a mathematical measure of average
relationship between two or more variables in a data set.

In most of the cases, the relationship between two variables may be a functional
dependence of one on the other. The magnitude of one of the variables (dependent
variable) is assumed to be determined by the function of the magnitude of the second
variable (independent variable) whereas the reverse is not possible. For example, in the
relationship between blood pressure and age in human, blood pressure may be considered
as the dependent variable and age as the independent variable. It is reasonably assumed
that the magnitude of a person’s blood pressure might be a function of age. In this
example, age is not the only biological determinant of blood pressure, but it is considered
as one of the determining factors. For this reason, the independent variable is called the
predictor, or regressor variable and the dependent variable is called as the response, or
criterion variable.

SIMPLE LINEAR REGRESSION

The term simple linear regression refers to the fact that only two variables are being
considered. Data to which simple regression analysis is applicable consists of a dependent
variable and an independent variable. This relationship is studied both mathematically and
graphically.

SIMPLE LINEAR REGRESSION EQUATION

The simplest functional relationship of one variable to another in a population is the



simple linear regression. This kind of relationship is expressed in the form of an equation

where,

Yi—ith item of variable Y (dependent)

Xi—ith item of variable X (independent),

a—constant and is called Y intercept, i.e., value of Y on regression line when X = 0

b—parameter termed as regression coefficient or the slope (the change in y with a
change of one unit in X).

The value of b theoretically can range from including zero.

From the functional relationship of the equation Yi = a + b Xi, we can predict the most

probable value of Y for the given value of X. To do this we need to find the constant a and
the parameter b in the equation. The constants a and b are calculated from the following
formula.

where,

—mean of variable X,

—mean of variable Y and

—summation

When we formulate the regression equation we can predict the most probable value of Y
for the given value of X.

SCATTER PLOT AND THE LINE OF BEST FIT

As in the previous chapter, we can plot the variables Y and X on a graph sheet using the
ordinate (Y-axis) for the dependent variable (Y) and the abscissa (X-axis) for the
independent variable (X). One pair of X and Y data may be denoted as (X1, Y1), another as

(X2, Y2), another as (X3, Y3), etc. Thus the data appear as scatter points, each point

representing a pair of X and Y values. The resulting graphic representation is called scatter
plot. This gives the spread of the variables showing the nature of relationship. A line
drawn through these points in such a way that the deviations of scatter points from the line



are the least. Such a line is called the line of best fit.

Consider the data in Example 1 in Chapter 7 where there are two variables namely
age, the independent variable and blood pressure, the dependent variable. From the scatter
plot of these data, it appears that blood pressure measurements are linearly related to age.
When we draw an “eye fit” curve there is going to be a considerable variability of data
around any straight line we might draw through them. Therefore, we seek to draw what is
commonly termed the “best fit” line through the data. The line of best fit is called
“regression line”. The criterion for “best fit” that is generally employed utilises the
concept of least squares. Each value of X will have a corresponding value of Y lying on the
line that we might draw through the scatter of data points. This value of Y is represented as
to distinguish it from the Y value actually observed in the sample.

The criterion of least squares considers the vertical deviation of each point from the
line (i.e., the deviation described as ), and defines the best fit line that results in the
smallest value for the sum of squares of these deviations for all values of Yi and . That is,
is to be minimum, where n is the number of data points comprising the sample. The sum
of squares of these deviations is called the residual sum of squares (or, sometimes, the
error sum of squares). Thus there is a functional relationship between regression line and
regression equation. The latter is the mathematical expression of the former.

REGRESSION AND ONE-WAYANOVA

Simple linear regression equation is based on a and b whose calculations involve the
concept of least squares. For this reason one way analysis of variance is carried out along
with regression analysis. This procedure enables the investigator to find out how far the
variance in independent variable contributes to the change in the dependent variable.

SIMPLE REGRESSIONWITH SPSS

As with correlation analysis, SPSS allows us to do the analysis quickly. Let us calculate
the constant a and parameter b for the pair of variables, age (independent variable) and
systolic pressure (dependent variable)

Example 8.1

Formulate regression equation of Y (systolic pressure mm Hg) on X (age) in man. Predict
the most probable value of systolic pressure for ages 51 and 68.

Step 1 Open Data Editor and click Variable View. Enter the name of variables and



details of the variables.

Step 2 Click Data View and enter data under appropriate variable.

Step 3 Select Analyse from the main menu and select Regression and Linear from the
drop down menu as in Figure 8.1.

Figure 8.1 Selecting Linear Regression from main menu

Step 4 Linear Regression dialog box opens. Transfer Systolic pressure to Dependent
box and Age to Independent box (Figure 8.2).

Figure 8.2 Linear Regression dialog box to transfer variables

Step 5 Click Statisics to open Linear Regression: Statistics dialog box, select
Estimates, Descriptives andModel Fit, then click Continue (Figure 8.3).

Figure 8.3 Linear Regression: Statistics dialog box with
options for Estimates,Model Fit and Descriptives

Step 6 Click Plots to open Linear Regression: Plots and transfer *ZRESID (dependent
or criterion) to Y: box and * ZPRED (independent or predictor) to X: box (Figure 8.4) and
then click Continue.



Step 7 Click OK to run the analysis.

Figure 8.4 Linear Regression: Plots to transfer dependent and
Independent variables

Step 8 The outputs appear under different headings as given in Outputs 1, 2, 3, and 4.

Output 1

Output 2

Output 3

Output 4

Interpretation

Depending upon the need of the investigator, the values in the output can be taken for
interpretation.

1. The mean and standard deviation of the variables is given under Descriptive Statistics
(Output 1). The mean age of the persons in the sample is 53.15 with a standard deviation



of 12. 820 (in research paper it is written as 53.15 ± 12.820 years) and the average systolic
pressure is 137.70 with a standard deviation of 15.359 (137.70 ± 15.359 mm Hg).

2. The constant and parameter needed for the formulation of regression equation Yi = a +

bXi are given in output 2 under the heading coefficients. The value given under the

column B against Constant is the a-value (95.625) and against Age of the patients in
Years is the b-value (0.792).

Therefore, regression equation Yi = a + bXi is formulated as

Yi = 95.625 + 0.792Xi

To predict the most probable systolic pressure for the ages 51 and 68 years:

i. Systolic pressure for a person of age 51 years

Here the equation is formulated as

Yi = 95.625 + 0.792 × 51

Yi= 95.625 + 40.392

Yi = 136.017 mm Hg.

ii. Systolic pressure for a person of age 68 years

Here the equation is formulated as

Yi = 95.625 + 0.792 × 68

Yi = 95.625 + 53.856

Yi = 149.481 mm Hg.

3. Output 3 gives the results on analysis of variance. The F-ratio given under column F is
13.948, and p-value, 0.002 is given under Sig. column. Since p-value is less than 0.01, it
implies that the calculated regression coefficient is significant and the variance in
independent variable contributes to the change in dependent variable. Therefore, it is
inferred that the variance in age really contribute to change in systolic pressure.

Drawing regression line with SPSS

Example 8.2

Draw a regression line for the data given in Example 8.1.

Step 1 Choose Graph from main menu, click Legacy Dialog, then click Interactive and
then Scatter plot (Figure 8.5) to open Create Scatterplot.



Figure 8.5 Selecting Scatter Plot from main menu

Step 2 Click Assign Variable and drag the variable “Age of the Person” to X-axis and
“Systolic Pressure” to Y-axis (Figure 8.6) and click Fit.

Figure 8.6 Assigning variables to X and Y-axis in Create
Scatter Plot dialog box

Step 3 It opens another Create Scatterplot, click the down arrow under Methods and
select Regression (Figure 8.7).

Figure 8.7 Create Scatterplot dialog box with option Fit
selected

Step 4 When you select Regression, all squares in that dialog box gets highlighted, now
select Constant in Equation and Mean under Prediction lines and click OK (Figure
8.8).



Figure 8.8 Create Scatterplot dialog box with options selected
underMethod, Prediction line and Fit lines for

Step 5 The result appears in output as in Output 1. The central line is the regression line,
i.e., the line of “best fit” and the other two lines, one below and the other above the
regression line gives the confidence limit (95%). The scatter points are the plot for each
pair of variable for a single individual.

Output 1

Step 6 To denote the deviation of various points from the regression line or line of best fit
click Spike under Create Scatterplot and select Fit Line under Spike (Figure 8.9).

Figure 8.9 Create Scatterplot dialog box with “Fit Line”
selected under Spikes

Step 7 Click OK to get the output as shown in Output 2.

Output 2



In Output 2 the vertical line from the line of best fit to the scatter points show the
deviation.

MULTIPLE REGRESSION ANALYSIS

The general purpose of multiple regression is to learn more about the relationship between
several independent or predictor variables and a dependent or criterion variable. In the
social and natural sciences research multiple regression procedures are very widely used.
For example, educational researchers might want to learn the best predictors of success in
college. Biologists may want to determine the best predictor for the survival of the fish in
polluted water. Psychologists may want to determine which personality variable best
predicts social adjustment. Sociologists may want to find out which of the multiple social
indicators best predict whether or not a new immigrant group will adapt to the new
situation.

Simple linear regression for paired variables in a population is

Yi = a + bXi

In this relationship, Y and X represent the dependent and independent variables
respectively, b is the regression coefficient in the population, a (Y intercept) is the value of
Y when X is zero.

In many situations, however, Y may be considered dependent upon more than one
variable. Then,

Y j = a + bi Xij + b2 X2j

Here, one variable (Y) is linearly dependent upon a second variable (X1) and Y is also

linearly dependent upon a third variable (X2). In this particular multiple regression model

we have one dependent variable and two independent variables. The two population
parameters b1 and b2, are termed as partial regression partial regression coefficients; b1
expresses how much Y would change for a unit change in X1, if X2 was held constant. It is

sometimes said that b1 is a measure of the relationship of Y to X1 after removing the effect

of X2. Similarly, b2 describes the rate of change of Y as X2 changes, with X1 being held

constant. b1 and b2 are called partial regression coefficients, because each one expresses

only a part of the dependence relationship. The Y intercept, a (sometimes designated as
b0) is the value of Y when both X1 and X2 are zero.



If we sample a population containing the three variables (Y, X1 and X2) the multiple

regression equation may be expressed as

Yj = a + b1 X1j + b2 X2j

where Yj = dependent variable, a is a constant called Y intercept where the value of

independent variable X1 and X2 is 0, b1 slope of X1 with X2 being held constant, b2 =

slope of X2 with X1 being held constant.

Note The above descriptions and formulae are explained to make the reader to have a
better understanding on the principles of carrying out multiple regression and enable them
to interpret the results.

MULTIPLE REGRESSIONWITH SPSS

Example 8.3

A hospital record gives the data on forced expiratory air volume (litres), vital capacity
(litres) and total lung capacity (litres). The forced expiratory air volume of the lung
depends on vital capacity and total lung capacity. Calculate multiple regression coefficient
and formulate multiple regression equation.

In this example only three variables are given. Out of these three, forced expiratory air
volume is the dependent variable and vital capacity and total lung capacity are
independent variables.

Step 1 Enter the variable names in Variable view and data in Data editor.

Step 2 Select Analyze from main menu, then Regression and then select Linear to open
Linear Regression dialog box.

Step 3 Transfer forced expiratory air volume to Dependent box (Figure 8.10) and Vital
capacity and Total lung capacity to Independent box.


