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PREFACE 

Preface to the Second Edition 

This third version of the text is officially the Second Edition, because the second version 
was officially dubbed the Revised Edition. Now that the confusing explanation is out of 
the way, we can ask the important question: What is new? 

• I continue to chase down typographical errors, a process that reminds me of herding 
cats. I'd like to thank everyone who has sent me information on this, especially 
Prof. Mark Mills of Central College in Pella, Iowa. I have become resigned to the 
notion that a typo-free book is the result of a (slowly converging) limiting process, 
and therefore is unlikely to be actually achieved. But I do keep trying. 

• The text now assumes that the student is using MATLAB for computations, and 
many MATLAB routines are discussed and used in examples. I want to emphasize 
that this book is still a mathematics text, not a primer on how to use MATLAB. 

• Several biographies were updated as more complete information has become widely 
available on the Internet, and a few have been added. 

• Two sections, one on adaptive quadrature (§5.8.3) and one on adaptive methods for 
ODEs (§6.9) have been re-written to reflect the decision to rely more on MATLAB. 

• Chapter 9 (A Survey of Numerical Methods for Partial Differential Equations) has 
been extensively re-written, with more examples and graphics. 

XIII 

http://www.it-ebooks.info/
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• New material has been added: 

- Two sections on roots of polynomials. The first (§3.10) introduces the Durand-
Kerner algorithm; the second (§8.5) discusses using the companion matrix to 
find polynomial roots as matrix eigenvalues. 

- A section (§3.12) on very high-order root-finding methods. 

- A section (§4.10) on splines under tension, also known as "taut splines;" 

- Sections on the finite element method for ODEs (§6.10.3) and some PDEs 
(§9.2); 

- An entire chapter (Chapter 10) on spectral methods1. 

• Several sections have been modified somewhat to reflect advances in computing 
technology. 

• Later in this preface I devote some time to outlining possible chapter and section 
selections for different kinds of courses using this text. 

It might be appropriate for me to describe how I see the material in the book. Basically, 
I think it breaks down into three categories: 

• The fundamentals: All of Chapters 1 and 2, most of Chapters 3 (3.1, 3.2, 3.3, 3.5, 
3.8, 3.9), 4 (4.1, 4.2, 4.3, 4.6, 4.7, 4.8, 4.11), and 5 (5.1, 5.2, 5.3, 5.4, 5.7); this is 
the basic material in numerical methods and analysis and should be accessible to any 
well-prepared students who have completed a standard calculus sequence. 

• Second level: Most of Chapters 6, 7, and 8, plus much of the remaining sections 
from Chapters 3 (3.4, 3.6, 3.7, 3.10), 4 (4.4, 4.5), and 5 (5.5, 5.6), and some of 6 
(6.8) and 7 (7.7); this is the more advanced material and much of it (from Chap. 6) 
requires a course in ordinary differential equations or (Chaps. 7 and 8) a course in 
linear algebra. It is still part of the core of numerical methods and analysis, but it 
requires more background. 

• Advanced: Chapters 9 and 10, plus the few remaining sections from Chapters 3, 4, 
5, 6, 7, and 8. 

• It should go without saying that precisely what is considered "second level" or 
"advanced" is largely a matter of taste. 

As always, I would like to thank my employer, Mathematical Reviews, and especially 
the Executive Editor, Graeme Fairweather, for the study leave that gave me the time to 
prepare (for the most part) this new edition; my editor at John Wiley & Sons, Susanne 
Steitz-Filler, who does a good job of putting up with me; an anonymous copy-editor at 
Wiley who saved me from a large number of self-inflicted wounds; and—most of all—my 
family of spouse Georgia, daughter Elinor, son James, and Border Collie mutts Samantha 

'The material on spectral methods may well not meet with the approval of experts on the subject, as I presented 
the material in what appears to be a very non-standard way, and I left out a lot of important issues that make 
spectral methods, especially for time dependent problems, practical. I did it this way because I wanted to write an 
introduction to the material that would be accessible to students taking a first course in numerical analysis/methods, 
and also in order to avoid cluttering up the exposition with what I considered to be "side issues." I appreciate 
that these side issues have to be properly treated to make spectral methods practical, but since this tries to be an 
elementary text, I wanted to keep the exposition as clean as possible. 
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and Dylan. James was not yet born when I first began writing this text in 1997, and now 
he has finished his freshman year of high school; Elinor was in first grade at the beginning 
and graduated from college during the final editing process for this edition. I'm very proud 
of them both! And I can never repay the many debts that I owe to my dear spouse. 

Online Material 

There will almost surely be some online material to supplement this text. At a minimum, 
there will be 

• MATLAB files for computing and/or reading Gaussian quadrature (§5.6) weights 
and abscissas for N = 2 m , m = 0 ,1 ,2 , . . . , 10. 

• Similar material for computing and/or reading Clenshaw-Curtis (§10.3) weights and 
abscissas. 

• Color versions of some plots from Chapter 9. 

• It is possible that there will be an entire additional section for Chapter 3. 

To access the online material, go to 

www.wiley.com/go/epperson2edition 

The webpage should be self-explanatory. 

A Note About the Dedication 

The previous editions were dedicated to six teachers who had a major influence on the 
author's mathematics education: Frank Crosby and Ed Croteau of New London High 
School, New London, CT; Prof. Fred Gehring and Prof. Peter Duren of the University of 
Michigan Department of Mathematics; and Prof. Richard MacCamy and Prof. George J. 
Fix of the Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA. (Prof. 
Fix served as the author's doctoral advisor.) I still feel an unpayable debt of gratitude to 
these men, who were outstanding teachers, but I felt it appropriate to express my feelings 
about my parents for this edition, hence the new dedication to the memory of my mother 
and step-father. 

Course Outlines 

One can define several courses from this book, based on the level of preparation of the 
students and the number of terms the course runs, as well as the level of theoretical detail 
the instructor wishes to address. Here are some example outlines that might be used. 

• A single semester course that does not assume any background in linear algebra or 
differential equations, and which does not emphasize theoretical analysis of methods: 
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- Chapter 1 (all sections2); 

- Chapter 2 (all sections3); 

- Chapter 3 (Sections 3.1-3.3,3.8-3.10); 

- Chapter 4 (Sections 4.1-4.8); 

- Chapter 5 (Sections 5.1-5.7). 

• A two-semester course which assumes linear algebra and differential equations for 
the second semester: 

- Chapter 1 (all sections); 

- Chapter 2 (all sections); 

- Chapter 3 (Sections 3.1-3.3,3.8-3.10); 

- Chapter 4 (Sections 4.1^.8); 

- Chapter 5 (Sections 5.1-5.7). 

- Semester break should probably come here. 

- Chapter 6 (6.1-6.6; 6.10 if time/preparation permits) 

- Chapter 7 (7.1-7.6) 

- Chapter 8 (8.1-8.4) 

- Additional material at the instructor's discretion. 

• A two-semester course for well-prepared students: 

- Chapter 1 (all sections); 

- Chapter 2 (all sections); 

- Chapter 3 (Sections 3.1-3.10; 3.11 at the discretion of the instructor); 

- Chapter 4 (Sections 4.1-4.11, 4.12.1, 4.12.3; 4.12.2 at the discretion of the 
instructor); 

- Chapter 5 (Sections 5.1-5.7, 5.8.1; other sections at the discretion of the in-
structor). 

- Semester break should probably come here. 

- Chapter 6 (6.1-6.8; 6.10 if time/preparation permits; other sections at the 
discretion of the instructor) 

- Chapter 7 (7.1-7.8; other sections at the discretion of the instructor) 

- Chapter 8 (8.1-8.4) 

- Additional material at the instructor's taste and discretion. 

Some sections appear to be left out of all these outlines. Most textbooks are written to 
include extra material, to facilitate those instructors who would like to expose their students 
to different material, or as background for independent projects, etc. 

I want to encourage anyone—teachers, students, random readers—to contact me with 
questions, comments, suggestions, or remaining typos. My professional email is still 
jfeQams.org 

2§§1.5and 1.6 are included in order to expose students to the issue of approximation; if an instructor feels that 

the students in his or her class do not need this exposure, these sections can be skipped in favor of other material 
from later chapters. 
3The material on ODEs and tridiagonal systems can be taught to students who have not had a normal ODE or 

linear algebra course. 
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Computer Access 

Because the author no longer has a traditional academic position, his access to modern 
software is limited. Most of the examples were done using a very old and limited version 
of MATLAB from 1994. (Some were done on a Sun workstation, using FORTRAN code, 
in the late 1990s.) The more involved and newer examples were done using public access 
computers at the University of Michigan's Duderstadt Center, and the author would like to 
express his appreciation to this great institution for this. 

A Note to the Student 

(This is slightly updated from the version in the First Edition.) This book was written to 
be read. I am under no illusions that this book will compete with the latest popular novel 
for interest or thrilling narrative. But I have tried very hard to write a book on mathematics 
that can be read by students. So do not simply buy the book, work the exercises, and sell 
the book back to the bookstore at the end of the term. Read the text, think about what you 
have read, and ask your instructor questions about the things that you do not understand. 

Numerical methods and analysis is a very different area of mathematics, certainly differ-
ent from what you have seen in your previous courses. It is not harder, but the differentness 
of the material makes it seem harder. We worry about different issues than those in other 
mathematics classes. In a calculus course you are typically asked to compute the derivative 
or antiderivative of a given function, or to solve some equation for a particular unknown. 
The task is clearly defined, with a very concrete notion of "the right answer." Here, we 
are concerned with computing approximations, and this involves a slightly different kind 
of thinking. We have to understand what we are approximating well enough to construct 
a reasonable approximation, and we have to be able to think clearly and logically enough 
to analyze the accuracy and performance of that approximation. One former student has 
characterized this course material as "rigorously imprecise" or "approximately precise." 
Both are appropriate descriptions. Rote memorization of procedures is not of use here; it is 
vital in this course that the student learn the underlying concepts. Numerical mathematics 
is also experimental in nature. A lot can be learned simply by trying something out and 
seeing how the computation goes. 

Preface to the Revised Edition 

First, I would like to thank John Wiley for letting me do a Revised Edition of An Introduction 
to Numerical Methods and Analysis, and in particular I would like to thank Susanne Steitz 
and Laurie Rosatone for making it all possible. 

So, what's new about this edition? A number of things. For various reasons, a large 
number of typographical and similar errors managed to creep into the original edition. These 
have been aggressively weeded out and fixed in this version. I'd like to thank everyone 
who emailed me with news of this or that error. In particular, I'd like to acknowledge 
Marzia Rivi, who translated the first edition into Italian and who emailed me with many 
typos, Prof. Nicholas Higham of Manchester University, Great Britain, and Mark Mills of 
Central College in Pella, Iowa. I'm sure there's a place or two where I did something silly 
like reversing the order of subtraction. If anyone finds any error of any sort, please email 
me at j f eOams. org. 
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I considered adding sections on a couple of new topics, but in the end decided to leave 
the bulk of the text alone. I spent some time improving the exposition and presentation, 
but most of the text is the same as the first edition, except for fixing the typos. 

I would be remiss if I did not acknowledge the support of my employer, the American 
Mathematical Society, who granted me a study leave so I could finish this project. Executive 
Director John Ewing and the Executive Editor of Mathematical Reviews, Kevin Clancey, 
deserve special mention in this regard. Amy Hendrikson of TeXnology helped with some 
I4TEX issues, as did my colleague at Mathematical Reviews, Patrick Ion. Another colleague, 
Maryse Brouwers, an extraordinary grammarian, helped greatly with the final copyediting 
process. 

The original preface has the URL for the text website wrong; just go to www. wiley. com 
and use their links to find the book. The original preface also has my old professional 
email. The updated email is j feOams. org; anyone with comments on the text is welcome 
to contact me. 

But, as is always the case, it is the author's immediate family who deserve the most 
credit for support during the writing of a book. So, here goes a big thank you to my wife, 
Georgia, and my children, Elinor and Jay. Look at it this way, kids: The end result will pay 
for a few birthdays. 

Preface (To the First Edition) 

This book is intended for introductory and advanced courses in numerical methods and 
numerical analysis, for students majoring in mathematics, sciences, and engineering. The 
book is appropriate for both single-term survey courses or year-long sequences, where 
students have a basic understanding of at least single-variable calculus and a programming 
language. (The usual first courses in linear algebra and differential equations are required 
for the last four chapters.) 

To provide maximum teaching flexibility, each chapter and each section begins with the 
basic, elementary material and gradually builds up to the more advanced material. This 
same approach is followed with the underlying theory of the methods. Accordingly, one 
can use the text for a "methods" course that eschews mathematical analysis, simply by not 
covering the sections that focus on the theoretical material. Or, one can use the text for a 
survey course by only covering the basic sections, or the extra topics can be covered if you 
have the luxury of a full year course. 

The objective of the text is for students to learn where approximation methods come 
from, why they work, why they sometimes don't work, and when to use which of many 
techniques that are available, and to do all this in a style that emphasizes readability and 
usefulness to the beginning student. While these goals are shared by other texts, it is the 
development and delivery of the ideas in this text that I think makes it different. 

A course in numerical computation—whether it emphasizes the theory or the methods— 
requires that students think quite differently than in other mathematics courses, yet students 
are often not experienced in the kind of problem-solving skills and mathematical judgment 
that a numerical course requires. Many students react to mathematics problems by pigeon-
holing them by category, with little thought given to the meaning of the answer. Numerical 
mathematics demands much more judgment and evaluation in light of the underlying theory, 
and in the first several weeks of the course it is crucial for students to adapt their way of 
thinking about and working with these ideas, in order to succeed in the course. 
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To enable students to attain the appropriate level of mathematical sophistication, this 
text begins with a review of the important calculus results, and why and where these 
ideas play an important role in this course. Some of the concepts required for the study 
of computational mathematics are introduced, and simple approximations using Taylor's 
theorem are treated in some depth, in order to acquaint students with one of the most 
common and basic tools in the science of approximation. Computer arithmetic is treated in 
perhaps more detail than some might think necessary, but it is instructive for many students 
to see the actual basis for rounding error demonstrated in detail, at least once. 

One important element of this text that I have not seen in other texts is the emphasis 
that is placed on "cause and effect" in numerical mathematics. For example, if we apply 
the trapezoid rule to (approximately) integrate a function, then the error should go down 
by a factor of 4 as the mesh decreases by a factor of 2; if this is not what happens, then 
almost surely there is either an error in the code or the integrand is not sufficiently smooth. 
While this is obvious to experienced practitioners in the field, it is not obvious to beginning 
students who are not confident of their mathematical abilities. Many of the exercises and 
examples are designed to explore this kind of issue. 

Two common starting points to the course are root-finding or linear systems, but diving 
in to the treatment of these ideas often leaves the students confused and wondering what the 
point of the course is. Instead, this text provides a second chapter designed as a "toolbox" of 
elementary ideas from across several problem areas; it is one of the important innovations 
of the text. The goal of the toolbox is to acclimate the students to the culture of numerical 
methods and analysis, and to show them a variety of simple ideas before proceeding to 
cover any single topic in depth. It develops some elementary approximations and methods 
that the students can easily appreciate and understand, and introduces the students, in the 
context of very simple methods and problems, to the essence of the analytical and coding 
issues that dominate the course. At the same time, the early development of these tools 
allows them to be used later in the text in order to derive and explain some algorithms in 
more detail than is usually the case. 

The style of exposition is intended to be more lively and "student friendly" than the 
average mathematics text. This does not mean that there are no theorems stated and proved 
correctly, but it does mean that the text is not slavish about it. There is a reason for this: The 
book is meant to be read by the students. The instructor can render more formal anything in 
the text that he or she wishes, but if the students do not read the text because they are turned 
off by an overly dry regimen of definition, theorem, proof, corollary, then all of our effort 
is for naught. In places, the exposition may seem a bit wordier than necessary, and there 
is a significant amount of repetition. Both are deliberate. While brevity is indeed better 
mathematical style, it is not necessarily better pedagogy. Mathematical textbook exposition 
often suffers from an excess of brevity, with the result that the students cannot follow the 
arguments as presented in the text. Similarly, repetition aids learning, by reinforcement. 

Nonetheless I have tried to make the text mathematically complete. Those who wish 
to teach a lower-level survey course can skip proofs of many of the more technical results 
in order to concentrate on the approximations themselves. An effort has been made—not 
always successfully—to avoid making basic material in one section depend on advanced 
material from an earlier section. 

The topics selected for inclusion are fairly standard, but not encyclopedic. Emerging 
areas of numerical analysis, such as wavelets, are not (in the author's opinion) appropriate 
for a first course in the subject. The same reasoning dictated the exclusion of other, 
more mature areas, such as the finite element method, although that might change in 
future editions should there be sufficient demand for it. A more detailed treatment of 
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approximation theory, one of the author's favorite topics, was also felt to be poorly suited 
to a beginning text. It was felt that a better text would be had by doing a good job covering 
some of the basic ideas, rather than trying to cover everything in the subject. 

The text is not specific to any one computing language. Most illustrations of code are 
made in an informal pseudo-code, while more involved algorithms are shown in a "macro-
outline" form, and programming hints and suggestions are scattered throughout the text. 
The exercises assume that the students have easy access to and working knowledge of 
software for producing basic Cartesian graphs. 

A diskette of programs is not provided with the text, a practice that sets this book at odds 
with many others, but which reflects the author's opinion that students must learn how to 
write and debug programs that implement the algorithms in order to learn the underlying 
mathematics. However, since some faculty and some departments structure their courses 
differently, a collection of program segments in a variety of languages is available on the 
text web site so that instructors can easily download and then distribute the code to their 
students. Instructors and students should be aware that these are program segments; none 
of them are intended to be ready-to-run complete programs. Other features of the text web 
site are discussed below. (Note: This material may be removed from the Revised Edition 
website.) 

Exercises run the gamut from simple hand computations that might be characterized as 
"starter exercises" to challenging derivations and minor proofs to programming exercises 
designed to test whether or not the students have assimilated the important ideas of each 
chapter and section. Some of the exercises are taken from application situations, some are 
more traditionally focused on the mathematical issues for their own sake. Each chapter 
concludes with a brief section discussing existing software and other references for the 
topic at hand, and a discussion of material not covered in this text. 

Historical notes are scattered throughout the text, with most named mathematicians 
being accorded at least a paragraph or two of biography when they are first mentioned. 
This not only indulges my interest in the history of mathematics, but it also serves to engage 
the interest of the students. 

The web site for the text (http://www.wiley.com/epperson) will contain, in addition to the 
set of code segments mentioned above, a collection of additional exercises for the text, some 
application modules demonstrating some more involved and more realistic applications of 
some of the material in the text, and, of course, information about any updates that are going 
to be made in future editions. Colleagues who wish to submit exercises or make comments 
about the text are invited to do so by contacting the author at eppersonSmath. uah. edu. 

Notation 

Most notation is defined as it appears in the text, but here we include some commonplace 
items. 

K — The real number line; R = (-co, oo). 

M.n — The vector space of real vectors of n components. 

Rnx™ — The vector space of real nx n matrices. 

C([a, b]) — The set of functions / which are defined on the interval [a, b], continuous on 
all of (a, b), and continuous from the interior of [a, b] at the endpoints. 
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Ck ( [a, b] ) — The set of functions / such that / and its first k derivatives are all in C( [o, b] ). 

Cp,g (Q) — The set of all functions u that are defined on the two-dimensional domain Q = 
{(x, t) | a < x < b, 0 < t < T}, and that are p times continuously differentiable in 
x for all t, and q times continuously differentiable in t for all x. 

« — Approximately equal. When we say that A « B, we mean that A and B are 
approximations to each other. See §1.2.2. 

= — Equivalent. When we say that f(x) — g{x), we mean that the two functions agree 
at the single point x. When we say that f(x) = g{x), we mean that they agree at all 
points x. The same thing is said by using just the function names, i.e., f = g. 

O — On the order of ("big O of"). We say that A = B + 0(D(h)) whenever \A-B\< 
CD(h) for some constant C and for all h sufficiently small. See §1.2.3. 

u — Machine epsilon. The largest number such that, in computer arithmetic, 1 + u = 1. 
Architecture dependent, of course. See §1.3. 

sgn — Sign function. The value of sgn(x) is 1, —1, or 0, depending on whether or not x 
is positive, negative, or zero, respectively. 
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CHAPTER 1 

INTRODUCTORY CONCEPTS AND 
CALCULUS REVIEW 

It is best to start this book with a question: What do we mean by "Numerical Methods and 
Analysis"? What kind of mathematics is this book about? 

Generally and broadly speaking, this book covers the mathematics and methodologies 
that underlie the techniques of scientific computation. More prosaically, consider the button 
on your calculator that computes the sine of the number in the display. Exactly how does 
the calculator know that correct value? When we speak of using the computer to solve 
a complicated mathematics or engineering problem, exactly what is involved in making 
that happen? Are computers "born" with the knowledge of how to solve complicated 
mathematical and engineering problems? No, of course they are not. Mostly they are 
programmed to do it, and the programs implement algorithms that are based on the kinds 
of things we talk about in this book. 

Textbooks and courses in this area generally follow one of two main themes: Those titled 
"Numerical Methods" tend to emphasize the implementation of the algorithms, perhaps at 
the expense of the underlying mathematical theory that explains why the methods work; 
those titled "Numerical Analysis" tend to emphasize this underlying mathematical theory, 
perhaps at the expense of some of the implementation issues. The best approach, of course, 
is to properly mix the study of the algorithms and their implementation ("methods") with 
the study of the mathematical theory ("analysis") that supports them. This is our goal in 
this book. 

Whenever someone speaks of using a computer to design an airplane, predict the weather, 
or otherwise solve a complex science or engineering problem, that person is talking about 
using numerical methods and analysis. The problems and areas of endeavor that use these 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 1 
Copyright © 2013 John Wiley & Sons, Inc. 
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kinds of techniques are continually expanding. For example, computational mathematics— 
another name for the material that we consider here—is now commonly used in the study of 
financial markets and investment structures, an area of study that does not ordinarily come 
to mind when we think of "scientific" computation. Similarly, the increasingly frequent 
use of computer-generated animation in film production is based on a heavy dose of spline 
approximations, which we introduce in §4.8. And modern weather prediction is based on 
using numerical methods and analysis to solve the very complicated equations governing 
fluid flow and heat transfer between and within the atmosphere, oceans, and ground. 

There are a number of different ways to break the subject down into component parts. 
We will discuss the derivation and implementation of the algorithms, and we will also 
analyze the algorithms, mathematically, in order to learn how best to use them and how 
best to implement them. In our study of each technique, we will usually be concerned with 
two issues that often are in competition with each other: 

• Accuracy: Very few of our computations will yield the exact answer to a problem, 
so we will have to understand how much error is made, and how to control (or even 
diminish) that error. 

• Efficiency: Does the algorithm take an inordinate amount of computer time? This 
might seem to be an odd question to concern ourselves with—after all, computers 
are fast, right?—but there are slow ways to do things and fast ways to do things. All 
else being equal (it rarely is), we prefer the fast ways. 

We say that these two issues compete with each other because, generally speaking, the 
steps that can be taken to make an algorithm more accurate usually make it more costly, 
that is, less efficient. 

There is a third issue of importance, but it does not become as evident as the others 
(although it is still present) until Chapter 6: 

• Stability: Does the method produce similar results for similar data? If we change 
the data by a small amount, do we get vastly different results? If so, we say that the 
method is unstable, and unstable methods tend to produce unreliable results. It is 
entirely possible to have an accurate method that is efficiently implemented, yet is 
horribly unstable; see §6.4.4 for an example of this. 

1.1 BASIC TOOLS OF CALCULUS 

1.1.1 Taylor's Theorem 

Computational mathematics does not require a large amount of background, but it does 
require a good knowledge ofthat background. The most important single result in numerical 
computations, from all of the calculus, is Taylor's Theorem,1 which we now state: 

'Brook Taylor (1685-1731) was educated at St. John's College of Cambridge University, entering in 1701 and 
graduating in 1709. He published what we know as Taylor's Theorem in 1715, although it appears that he did 
not entirely appreciate its larger importance and he certainly did not bother with a formal proof. He was elected 
a member of the prestigious Royal Society of London in 1712. 

Taylor acknowledged that his work was based on that of Newton and Kepler and others, but he did not 
acknowledge that the same result had been discovered by Johann Bernoulli and published in 1694. (But then 
Taylor discovered integration by parts first, although Bernoulli claimed the credit.) 
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Theorem 1.1 (Taylor's Theorem with Remainder) Letf(x) haven+l continuous deriva-
tives on [a, b]for some n > 0, and let x, xo e [a, b]. Then, 

f{x) =pn{x)+Rn(x) 

for 

and 

Rn(x) = -. fix - t)nf(n+1\t)dt. (1.2) 
Moreover, there exists a point ξχ between x and XQ such that 

*"(X) = ( X (n+l ) ! + 1 / ( n + 1 ) ( 6 ) · (L3) 
The point x0 is usually chosen at the discretion of the user, and is often taken to be 0. 

Note that the two forms of the remainder are equivalent: the "pointwise" form (1.3) can be 
derived from the "integral" form (1.2); see Problem 23. 

Taylor's Theorem is important because it allows us to represent, exactly, fairly general 
functions in terms of polynomials with a known, specified, boundable error. This allows us 
to replace, in a computational setting, these same general functions with something that is 
much simpler—a polynomial—yet at the same time we are able to bound the error that is 
made. No other tool will be as important to us as Taylor's Theorem, so it is worth spending 
some time on it here at the outset. 

The usual calculus treatment of Taylor's Theorem should leave the student familiar with 
three particular expansions (for all three of these we have used XQ = 0, which means we 
really should call them Maclaunn2 series, but we won't): 

n 1 

fc=0 

2Colin Maclaunn (1698-1746) was bora and lived almost his entire life in Scotland. Educated at Glasgow 

University, he was professor of mathematics at Aberdeen from 1717 to 1725 and then went to Edinburgh. He 
worked in a number of areas of mathematics, and is credited with writing one of the first textbooks based on 
Newton's calculus, Treatise of fluxions (1742). The Maclaurin series appears in this book as a special case of 
Taylor's series. 
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(Strictly speaking, the indices on the last two remainders should be 2n + 1 and 2n, because 
those are the exponents in the last terms of the expansion, but it is commonplace to 
present them as we did here.) In fact, Taylor's Theorem provides us with our first and 
simplest example of an approximation and an error estimate. Consider the problem of 
approximating the exponential function on the interval [—1,1]. Taylor's Theorem tells us 
that we can represent ex using a polynomial with a (known) remainder: 

Pn{x), polynomial Rn(x), remainder 

where cx is an unknown point between x and 0. Since we want to consider the most general 
case, where x can be any point in [—1,1], we have to consider that cx can be any point in 
[—1,1], as well. For simplicity, let's denote the polynomial by pn{x), and the remainder 
by Rn(x), so that the equation above becomes 

ex =pn{x) + Rn(x)· 

Suppose that we want this approximation to be accurate to within 10- 6 in absolute error, 
i.e., we want 

| e x - p n ( x ) | < 1 0 - 6 

for all x in the interval [—1,1]. Note that if we can makel-R^x)! < l(r6foralIa: e [-1,1], 
then we will have 

\ex-pn(x)\ = \Rn{x)\<lO-6, 

so that the error in the approximation will be less than 10~6. The best way to proceed is 
to create a simple upper bound for |i2„(i)|, and then use that to determine the number of 
terms necessary to make this upper bound less than 10 - 6 . 

Thus we proceed as follows: 

\Rn(x)\ 
(n + 1)! 

|x |"+ 1eC l 

(n + 1)! 
ec* 

( n + 1 ) ! ' 
e 

(n + 1)!' 

because ez > 0 for all z, 

< - —, because \x\ < 1 for all x G [—1,1], 

g 
< -; - y , becauseeCl < e forall x 6 [— 1,1]. 

Thus, if we find n such that 

then we will have 

. * , e < lu"6 , 
( n + 1 ) ! -

\e* -Pn(x)\ = \Rn(x)\ < ( ^ I j j e ^ 1 0"6 

and we will know that the error is less than the desired tolerance, for all values of x of 
interest to us, i.e., all a; 6 [—1,1]. A little bit of exercise with a calculator shows us 
that we need to use n = 9 to get the desired accuracy. Figure 1.1 shows a plot of the 
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exponential function ex, the approximation p9 {x), as well as the less accurate p2 (#); since 
it is impossible to distinguish by eye between the plots for e1 and p${x), we have also 
provided Figure 1.2, which is a plot of the error ex — pg(x); note that we begin to lose 
accuracy as we get away from the interval [—1,1]. This is not surprising. Since the Taylor 
polynomial is constructed to match / and its first n derivatives at x = XQ, it ought to be the 
case that pn is a good approximation to / only when x is near xQ. 

Here we are in the first section of the text, and we have already constructed our first 
approximation and proved our first theoretical result. Theoretical result? Where? Why, the 
error estimate, of course. The material in the previous several lines is a proof of Proposition 
1.1. 

Proposition 1.1 Let ρ9(χ) be the Taylor polynomial of degree 9 for the exponential func-
tion. Then, for all x e [—1,1], the error in the approximation ofp9(x) to ex is less than 
l ( r 6 , i.e., 

| e x -p 9 (a ; ) | < 1(Γ6 

for all xe [-1,1]. 

Although this result is not of major significance to our work—the exponential function 
is approximated more efficiently by different means—it does illustrate one of the most 
important aspects of the subject. The result tells us, ahead of time, that we can approximate 
the exponential function to within 10 - 6 accuracy using a specific polynomial, and this 
accuracy holds for all a; in a specified interval. That is the kind of thing we will be 
doing throughout the text—constructing approximations to difficult computations that are 
accurate in some sense, and we know how accurate they are. 

Figure 1.1 Taylor approximation: e1 

(solid line), pg(x) « ex (circles), and 
P2(x) « e1 (dashed line). Note that ex 

and pg (x) are indistinguishable on this 
plot. 

Figure 1.2 Error in 
approximation: ex — pg(x). 

Taylor 
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EXAMPLE 1.1 

Let f(x) = y/x + 1; then the second-order Taylor polynomial (computed about 
xo = 0) is computed at follows: 

/(so) = /(0) = 1; 

/ ' (*) = | ( χ + ΐ ) - 1 / 2 = » / ' ( χ ο ) = 5; 

fix) = -\*\{x+ir3/2=>nxo) = -\\ 
P2{x) = f{xo) + (x-xo)f'(xo) + -x(x-xo)2f"{xo) = 1 + ^x - ο χ 2 · 

The error in using p2 to approximate y/x + 1 is given by R2 (x) = ^ (x—xo ) 3 / " ' (ξχ ). 
where ξχ is between a; and XQ. We can simplify the error as follows: 

\R2(x)\ = 
3! (X - Xoff"'(tX) 

= e l x l ' 
Ε χ Ι χ Ι ( ξ + 1 ) - 5 / 2 
2 2 2V ' 

= ^ w 3 i e , + irB / 2 . 

If we want to consider this for all x 6 [0,1], then, we observe that x G [0,1] and ξχ 

between x and 0 imply that ξχ G [0,1]; therefore 

|ζχ + ΐ Γ 5 / 2 < | ο + ΐ Γ 6 / 2 = ι, 

so that the upper bound on the error becomes |Ä3(a;)| < 1/16 = 0.0625, for all 
x G [0,1]. If we are only interested in x G [0, \), then the error is much smaller: 

\R2{x)\ = ^ Ν 3 1 ί χ + 1 | " 5 / 2 , 

< ^ d / 2 ) 3 , 

1 
128' 

= 0.0078125. 

EXAMPLE 1.2 

Consider the problem of finding a polynomial approximation to the function f(x) = 
8ΐηπχ that is accurate to within 10 - 4 for all x G [-5,5] , using x0 = 0. A direct 
computation with Taylor's Theorem gives us (note that the indexing here is a little 
different, because we want to take advantage of the fact that the Taylor polynomial 
here has only odd terms) 

Pn(x) = nx - I „ V + ^ « V + ■■■ + ( - l ) - ( â ^ T ï j ï π2η+1χ2„+1 
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and 

Rn{x) = ( " I ) n+1 1 
(2n + 3)! 

Thus, the error in the approximation is 

τ 2η+3 χ 2η+3 COs£x. 

( π χ ) 2 η + 3 
| / ( x ) - p „ ( x ) | = | An (a;) | = tn__ , oN, |cosga| , 

where ξχ is between x and 0; this can be bounded for all x e [- \ , \\ in the following 
fashion: 

\Rn(x)\ = 
7ΓΧ 2n+3 

|cos£x| < 

(2n + 3)! ' 

(π /2) 2 η + 3 

(2n + 3)!' "*Χ| " (2n + 3)! ' 

and some experimentation with a calculator shows that 

\R4(x)\ < 0.3599 x 1(T5, |Ä3(x)| < 0.1604 x 10 - 3 , 

from which we conclude that n = 4 will achieve the desired accuracy, thus we want 

Pi{x) = π χ - - π 3 χ 3 + — - π 5 χ 5 
0 12U 

1 

5040 
π 7 χ 7 + 

1 

362880 
9 9 

-7ΤΧ Μ 

as our approximation. Figure 1.3 shows the error between this polynomial and / (x) 
over the interval [—\, \\, note that the error is much better than the predicted error, 
especially in the middle of the interval. 

0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Figure 1.3 Error in Taylor approximation to / (x ) = sin πχ over [— | , \]. 

Although the usual approach is to construct Taylor expansions by directly computing 
the necessary derivatives of the function / , sometimes a more subtle approach can be 
used. Consider the problem of computing a Taylor series for the arctangent function, 
/ (x) = arctanx, about the point xo = 0. It won't take many terms before we get tired of 
trying to find a general expression for f(n\ What do we do? 

Recall, from calculus, that 

arctanx ■jfï 
dt 

+ ί 2 ' 
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so we can get the Taylor series for the arctangent from the Taylor series for (1 + t2) l by 
a simple integration. Now recall the summation formula for the geometric series: 

" 1 _ rn+1 

W = T . 

If we substitute r = - t 2 into this, and re-arrange terms a bit, we get 

i _ ^ \ „kM , ( - ί 2 ) η + 1 

1 =y>f-nfcfgfc + iz i 

Thus, 

arctan x 

t2 
fc=o - ■ τ 

dt 

Γ / ^ , ^ 2 * , ( - ί 2 ) η + 1 

■Λ 
( £<-'*» ^ 1 - I - ί"·ί ί 

fc=0 

ί2"+2 

£=ί J° 1+t 
dt. 

This is known as Gregory's series3 for the arctangent and was the basis for one of the early 
methods for computing π. (See Problems 14 - 16.) 

■ EXAMPLE 1.3 

Let's use the Gregory series to determine the error in a ninth-degree Taylor approx-
imation to the arctangent function. Since 2n + 1 = 9 implies that n = 4, we 
have 

px f\0 
>dt, *<-> = - / ^ + t2 

so that (assuming that x > 0) 

i10 
\R9(x)\ = Jo Y 

+ t2 

and we can bound the error as follows: 

dt, 

rrrx f\0 rx x -fio rx i 
»iodt = _i_a.ii 

11 

So, for all x e [—5, \] the remainder is bounded above by 

| Α 9 ( χ ) | < ^ - ( 1 / 2 ) η = 4 . 4 4 χ 1 ( Γ 5 . 

'James Gregory (1638-1675) was born just west of Aberdeen, Scotland, where he first went to university. He 
later (1664-1668) studied in Italy before returning to Britain. He published a work on optics and several works 
devoted to finding the areas under curves, including the circle. He knew about what we call Taylor series more 
than 40 years before Taylor published the theorem, and he might have developed the calculus before Newton did 
if he had been of a less geometric and more analytical frame of mind. 
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Finally, we close this section with an illustration of a special kind of Taylor expansion 
that we will use again and again. 

Consider the problem of expanding f(x + ft) in a Taylor series, about the point XQ = x. 
Here h is generally considered to be a small parameter. Direct application of Taylor's 
Theorem gives us the following: 

f(x + h) = f(x) + ([x + h]-x)f'(x) + ^([x + h}-x)2f"(x) 

+ --- + ^([x + h]-x)nfW{x) 

+ (^TÏ)!([x + / l ]"x)"+1/("+1)(0' 

= /(*) + hf'[x) + \h2f"(x) + ■■■ + ±hnf™(x) 

+ (n + l)! ; U J -

This kind of expansion will be useful time and again in our studies. 

1.1.2 Mean Value and Extreme Value Theorems 

We need to spend some time reviewing other results from calculus that have an impact on 
numerical methods and analysis. All of these theorems are included in most calculus texts 
but are usually not emphasized as much as we will need here, or perhaps not in the way 
that we will need them. 

Theorem 1.2 (Mean Value Theorem) Let f bea given function, continuous on [a, b] and 
differentiable on (a, b). Then there exists a point ξ e [a, b] such that 

no = ίψΜ. (1.4) 
b — a 

In the context of calculus, the importance of this result might seem obscure, at best. 
However, from the point of view of numerical methods and analysis, the Mean Value 
Theorem (MVT) is probably second in importance only to Taylor's Theorem. Why? Well, 
consider a slightly reworked form of (1.4): 

f(Xl)-f{x2) = f'{Ç){Xl-X2). 

Thus, the MVT allows us to replace differences of function values with differences of 
argument values, if we scale by the derivative of the function. For example, we can use the 
MVT to tell us that 

| cosxi — cosa^l < \x\ — x?], 

because the derivative of the cosine is the sine, which is bounded by 1 in absolute value. 
Note also that the MVT is simply a special case of Taylor's Theorem, for n = 0. 

Similar to the MVT is the Intermediate Value Theorem: 

Theorem 1.3 (Intermediate Value Theorem) Let f e C([a,b}) be given, and assume 
that W is a value between f{a) and f(b), that is, either / (a) < W < f(b), or f{b) < 
W < f(a). Then there exists a point c E [a, b] such that f(c) = W. 
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This seems to be a very abstract result; it says that a certain point exists, but doesn't 
give us much information about its numerical value. (We might ask, why do we care that c 
exists?) But it is this very theorem that is the basis for our first method for finding the roots 
of functions, an algorithm called the bisection method. (See §3.1.) Moreover, this is the 
theorem that tells us that a continuous function is one whose graph can be drawn without 
lifting the pen off the paper, because it says that between any two function values, we have 
a point on the curve for all possible argument values. Sometimes very abstract results have 
very concrete consequences. 

A related result is the Extreme Value Theorem, which is the basis for the max/min 
problems that are a staple of most beginning calculus courses. 

Theorem 1.4 (Extreme Value Theorem) Let f e C([a, b]) be given; then there exists a 
point m e [a, b] such that f(m) < f(x) for all x € [a, b], and a point M 6 [a, b] such that 
f{M) > f(x)for all x G [a, 6]. Moreover, f achieves its maximum and minimum values 
on [a, b] either at the endpoints a or b, or at a critical point. 

(The student should recall that a critical point is a point where the first derivative is 
either undefined or equal to zero. The theorem thus says that we have one of M = a, 
M = b, f'(M) doesn't exist, or f'(M) = 0, and similarly for m.) 

There are other "mean value theorems," and we need to look at two in particular, as they 
will come up in our early error analysis. 

Theorem 1.5 (Integral Mean Value Theorem) Let f and g both be in C([a, b\), and 
assume further that g does not change sign on [a, b}. Then there exists a point ξ 6 [a, b] 
such that 

[ g(t)f(t)dt = /(O f g(t)dt. (1.5) 
Ja Ja 

Proof: Since this result is not commonly covered in the calculus sequence, we will go 
ahead and prove it. 

We first assume, without any loss of generality, that g(t) > 0; the argument changes 
in an obvious way if g is negative (see Problem 26). Let JM be the maximum value of 
the function on the interval, / M = maxl6[0ii,] / (#) . so that g(t)f(t) < <?(Î)/M for all 
t g (a, b); then 

i>b rb rb 

I g(t)f(t)dt < / g(t)fMdt = fM g{t)dt. 
Ja Ja Ja 

Similarly, we have 

rb pb rb 

/ g(t)f(t)dt > / g{t)fmdt = fm 9{t)dt 
Ja Ja Ja 

where fm = minx6[a)i,] f(x) is the minimum value of / on the interval. Since g does not 
change sign on the interval of integration, the only way that we can have 

/ 
Ja 

b 

g{x)dx = 0 

is if g is identically zero on the interval, in which case the theorem is trivially true, since 
both sides of (1.5) would be zero. So we can assume that 

rb 
g{x)dx φ 0. 

/ 
Ja 

http://www.it-ebooks.info/


BASIC TOOLS OF CALCULUS 11 

Now define 

„ , Ia9(t)f(t)dt 

Ia9(t)dt ' 

so that we have 
fm < W < fM. 

By the Extreme Value Theorem, there is a point M e [a, b] such that f(M) = /M, and 
similarly there is a point m 6 [a, b] such that f(m) = fm- Therefore, 

f(m) <W< f{M) 

and we can apply the Intermediate Value Theorem to establish that there is a point ξ in the 
interval defined by m and M such that /(£) = W; but this implies (1.5) (why?) and we 
are done. · 

This result will be useful in Chapter 5 for simplifying some error estimates for numerical 
integration rules. A related result is the Discrete Average Value Theorem. 

Theorem 1.6 (Discrete Average Value Theorem) Let f e C([a, b]) and consider the sum 

n 

S = Y^akf{xk), 
fc=l 

where each point Xk 6 [a, b], and the coefficients satisfy 

n 

a.k>0, ^ a f c = l . 
fe=l 

Then there exists a point η e [a, b] such that /(η) = S, i.e., 

n 

f(v) = 5Zafc/(xfc). 
fc=l 

Proof: The proof is similar in spirit and technique to the preceding one. We quickly 
have that 

n n 
S = Σ afc/(xfe) < / M 5Z ait = / M 

fc=l fc=l 

and similarly S > / m , where /M and fm are defined as in the previous proof. Now define 
W = S and proceed as before to get that there is a point η e [a, b] such that /(η) = S. · 

All three of the mean value theorems are useful to us in that they allow us to sim-
plify certain expressions that will occur in the process of deriving error estimates for our 
approximate computations. 

Exercises: 

1. Show that the third-order Taylor polynomial for f(x) = (x+ l ) - 1 ,aboutxo = 0 , is 

P3(x) = 1 - x + x2 — x3. 

2. What is the third-order Taylor polynomial for f(x) = yjx + 1, about XQ = 0? 
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3. What is the sixth-order Taylor polynomial for/(x) = \Λ + a·'2, using xo = 0? 

4. Given that 
ITI6 

R(x) = J|-e« 

for x € [—1,1], where ξ is between x and 0, find an upper bound for |i?|, valid for 
all x G [-1,1], that is independent of x and ξ. 

5. Repeat the above, but this time require that the upper bound be valid only for all 
x S [— 2> 2i· 

6. Given that 

for x e [ -5 , 5], where ξ is between a; and 0, find an upper bound for \R\, valid for 
all x € [ -5, | ] , that is independent of x and £. 

7. Use a Taylor polynomial to find an approximate value for s/e that is accurate to 
within 1(T3. 

8. What is the fourth-order Taylor polynomial for f(x) = l / (x + 1), about XQ = 0? 

9. What is the fourth-order Taylor polynomial for f(x) = l/x, about xo = 1? 

10. Find the Taylor polynomial of third-order for sin x, using: 

(a) ζ0 — π/6; 

(b) xo = π/4; 

(c) x0 = 7I-/2. 

11. For each function below, construct the third-order Taylor polynomial approximation, 
using xo = 0, and then estimate the error by computing an upper bound on the 
remainder, over the given interval. 

(a) f(x)=e-x,xe[0,l}; 

(b) f{x)=1n(l+x),x£ [-1,1]; 

(c) f(x) — sinx, x € [0, π]; 

(d) / ( χ ) = 1 η ( 1 + . τ ) , x € [ - 1 / 2 , 1 / 2 ] ; 

(e) / (*) = l / ( a ; + l ) , are [-1/2,1/2]. 

12. Construct a Taylor polynomial approximation that is accurate to within 10~3, over 
the indicated interval, for each of the following functions, using x0 = 0. 

(a) f(x) = sinx, x e [Ο,π]; 

(b) f{x)=e-x,xe[0,l]; 

(c) / ( x ) = l n ( l + x ) , x e [0,3/4]; 

(d) / (x) = l / ( x + l ) , x e [0,1/2]; 

(e) / ( x ) = l n ( l + x ) , x e [0,1/2]. 

13. Repeat the above, this time with a desired accuracy of 10~6. 
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14. Since 
π 
— = arctan 1, 
4 

we can estimate π by estimating arctan 1. How many terms are needed in the 
Gregory series for the arctangent to approximate π to 100 decimal places? 1,000? 
Hint: Use the error term in the Gregory series to predict when the error becomes 
sufficiently small. 

15. Elementary trigonometry can be used to show that 

arctan(l/239) = 4arctan(l/5) — arctan(l). 

This formula was developed in 1706 by the English astronomer John Machin. Use 
this to develop a more efficient algorithm for computing π. How many terms are 
needed to get 100 digits of accuracy with this form? How many terms are needed 
to get 1,000 digits? Historical note: Until 1961 this was the basis for the most 
commonly used method for computing π to high accuracy. 

16. In 1896 a variation on Machin's formula was found: 

arctan(l/239) = arctan(l) — 6arctan(l/8) — 2arctan(l/57), 

and this began to be used in 1961 to compute π to high accuracy. How many terms 
are needed when using this expansion to get 100 digits of π? 1,000 digits? 

17. What is the Taylor polynomial of order 3 for f(x) = x4 + 1, using xo = 0? 

18. What is the Taylor polynomial of order 4 for f(x) = x4 + l, using x0 = 0? Simplify 
as much as possible. 

19. What is the Taylor polynomial of order 2 for / (x) = x3 + x, using xo = 1? 

20. What is the Taylor polynomial of order 3 for f(x) = x3 + x, using XQ = 1? Simplify 
as much as possible. 

21. Let p{x) be an arbitrary polynomial of degree less than or equal to n. What is its 
Taylor polynomial of degree n, about an arbitrary xo? 

22. The Fresnel integrals are defined as 

C(x) = [ cos(nt2/2)dt 
Jo 

and 

S{x) = I sin(7rf2 /2)dt. 
Jo 

Use Taylor expansions to find approximations to C(x) and S(x) that are 10 - 4 

accurate for all x with |x| < \. Hint: Substitute x = πί 2 /2 into the Taylor 
expansions for the cosine and sine. 

23. Use the Integral Mean Value Theorem to show that the "pointwise" form (1.3) of 
the Taylor remainder (usually called the Lagrange form) follows from the "integral" 
form (1.2) (usually called the Cauchy form). 
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24. For each function in Problem 11, use the Mean Value Theorem to find a value M 
such that 

\f{xi)-f(x2)\<M\x1-x2\ 

is valid for all xi, x2 in the interval used in Problem 11. 

25. A function is called monotone on an interval if its derivative is strictly positive or 
strictly negative on the interval. Suppose / is continuous and monotone on the 
interval [a, b], and /(a)/(6) < 0; prove that there is exactly one value a 6 [a,b] 
such that / ( a ) = 0. 

26. Finish the proof of the Integral Mean Value Theorem (Theorem 1.5) by writing up 
the argument in the case that g is negative. 

27. Prove Theorem 1.6, providing all details. 

28. Let Cfc > 0 be given, 1 < k < n, and let Xfc 6 [a, b], 1 < k < n. Then, use the 
Discrete Average Value Theorem to prove that, for any function / e C([a, b]), 

U±«JM = m 

for some ξ € [a,b], 

29. Discuss, in your own words, whether or not the following statement is true: "The 
Taylor polynomial of degree n is the best polynomial approximation of degree n to 
the given function near the point XQ." 

>·> 

1.2 ERROR, APPROXIMATE EQUALITY, AND ASYMPTOTIC ORDER 
NOTATION 

We have already talked about the "error" made in a simple Taylor series approximation. 
Perhaps it is time we got a little more precise. 

1.2.1 Error 

If A is a quantity we want to compute and Ah is an approximation to that quantity, then the 
error is the difference between the two: 

error = A — AH; 

the absolute error is simply the absolute value of the error: 

absolute error =\A — Ah\; (1.6) 

and the relative error normalizes by the absolute value of the exact value: 

relative error = -———, (1.7) 
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where we assume that A / 0. 
Why do we need two different measures of error? Consider the problem of approximat-

ing the number 
x = e - 1 6 = 0.1125351747 x 10~6. 

Because x is so small, the absolute error in y = 0 as an approximation to x is also small. 
In fact, \x - y\ < 1.2 x 10 - 7 , which is decent accuracy in many settings. However, this 
"approximation" is clearly not a good one. 

On the other hand, consider the problem of approximating 

z = e16 = 0.8886110521 x 107. 

Because z is so large, the absolute error in almost any approximation will be large, even 
though almost all of the digits are matched. For example, if we take w = 0.8886110517x 
107, then we have \z — w\ = 4 x 10~3, hardly very small, even though y matches z to nine 
decimal digits. 

The point is that relative error gives a measure of the number of correct digits in the 
approximation. Thus, 

x-y 
1, 

x 

which tells us that not many digits are matched in that example, whereas 

4 x 10~3 w 
0.8886110521 x 107 

= 0.4501 x 10 - 9 , 

which shows that about nine digits are correct. Generally speaking, using a relative error 
protects us from misjudging the accuracy of an approximation because of scale extremes 
(very large or very small numbers). As a practical matter, however, we sometimes are not 
able to obtain an error estimate in the relative sense. 

In the definitions (1.6) and (1.7), we have used the subscript h to suggest that, in 
general, the approximation depends (in part, at least) on a parameter. For the most part, 
our computations will indeed be constructed this way, usually with either a real parameter 
h which tends toward zero, or with an integer parameter n which tends toward infinity. So 
we might want to think in terms of one of the two cases 

lim Ah = A 
h->0 

or 
lim An = A. 

n—»oo 

In actual applied problems there are, of course, lots of sources of error: simple mistakes, 
measurement errors, modeling errors, etc. We are concerned here only with the compu-
tational errors caused by the need to construct computable approximations. The common 
terminology is truncation error or approximation error or mathematical error. 

1.2.2 Notation: Approximate Equality 

If two quantities are approximately equal to each other, we will use the notation " « " to 
denote this relationship, as in 

AssB. 
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This is an admittedly vague notion. Is 0.99 « 1? Probably so. Is 0.8 « 1? Maybe not. 
We will almost always use the « symbol in the sense of one of the two contexts outlined 
previously, of a parameterized set of approximations converging to a limit. Note that the 
definition of limit means that 

lim Ah = A => Ah ~ A 

for all h "sufficiently small" (and similarly for the case of An —> A as n -> oo, for n 
"sufficiently large"). For example, one way to write the definition of the derivative of a 
function y = f(x) is as follows: 

lim n*+h)-f{X) = 
/i->o h y ' 

We therefore conclude that, for h small enough, 

f(x + h)- f(x) „ , 
h ~ J [ '-

Moreover, approximate equality does satisfy the transitive, symmetric, and reflexive prop-
erties of what abstract algebra calls an "equivalence relation": 

AssB, B^C=^A^C, 
A^B=>B^A, 

A^A. 

Consequently, we can manipulate approximate equalities much like ordinary equalities 
(i.e., equations). We can solve them, integrate both sides, etc. 

Despite its vagueness, approximate equality is a very useful notion to have around in a 
course devoted to approximations. 

1.2.3 Notation: Asymptotic Order 

Another notation of use is the so-called "Big O" notation, more formally known as asymp-
totic order notation. Suppose that we have a value y and a family of values {y/i}, each of 
which approximates this value, 

y~yh 

for small values of h. If we can find a constant C > 0, independent of h, such that 

\y-yh\<Cß(h) (1.8) 

for all h sufficiently small, then we say that 

y = yh + 0(ß{h)), as h -> 0, 

meaning that y — yh is "on the order of" ß(h). Here ß(h) is a function of the parameter h, 
and we assume that 

lim ß(h) = 0. 

The utility of this notation is that it allows us to concentrate on the important issue in 
the approximation—the way that the error y — yh depends on the parameter h, which is 
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determined by ß(h)—while ignoring the unimportant details such as the precise size of the 
constant, C. The usage is similar if we have a sequence xn that approximates a given value 
x for large values of n. If 

\x - xn\ < Cß{n) (1.9) 

for all n sufficiently large, then we say that 

x — xn + (D(ß(n)), as n -» oo. 

The formal definitions are as follows. 

Definition 1.1 (Asymptotic Order Notation) For a given value y, let {yh} be a set of 
values parameterized by h, which we assume is small, such that y h « y for small h. If 
there exists a positive function ß(h), ß{h) —> 0 as h —> 0, and a constant C > 0, such that 
for all h sufficiently small, 

\y-Vh\<Cß{h), 

then we say that 
y = yn + 0(ß(h)). 

Similarly, if {yn} is a set of values parameterized by n, which we assume is large, such 
that yn » y for large n, and if there exists a positive function ß(n), ß(n) —» 0 as n —> oo, 
and a constant C > 0, such that for all n sufficiently large, 

then we say that 

M EXAMPLE 1.4 

Let 

|y - Vnl < Cß(n), 

y = yn + 0(β(η)). 

- / 
Jo 

A = / e~'xdx, 

An = I e 2xdx. 
Jo 

Simple calculus shows that A = \ and An = | — \e 2n, so that we have A = 
An + 0(e~2n). Here ß(n) = e~2n. 

EXAMPLE 1.5 

Another example—and many such, in fact—can be generated from Taylor's Theorem. 
We have that 

1 2 
cos x = 1 — -x cos £x 

where ξχ is between x and 0. Since cos ξχ is bounded by 1 in absolute value, we 
easily have that 

| cos /i — 11 < -h2 
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so we can write cos h = l + 0(h2). Similarly, we can write that eh = l + h + ö(h2). 
In both these cases we have ß(h) = h2. 

The following theorem shows how the asymptotic order relationship can be manipulated. 

Theorem 1.7 Let y = yh + ö(ß(h)) and z = zh + ö(-y(h)), with bß{h) > -y{h)forall 
h near zero. Then 

y + z = !//,+2/, + 0 ( W i ) + 7 ( ' i ) ) , 
V + z = Vh + Zh + 0(ß{h)), 

Ay = Ayh + 0(ß(h)). 

In the third equation, A is an arbitrary constant, independent ofh. 

Proof: We simply show that each relationship above satisfies (1.8) for some constant C. 
For example, 

\(y + z) - {yh + zh)\ < \y-yh\ + \z-zh\, 
< C^(h) + C2l(h), 

< C(ß{h)+>y(h)), 

where C = max(Ci,C2). Thus, y + z — yh + Zh + 0(ß(h) + "f(h)). Moreover, since 
bß(h) > 7(/ι), we also have that 

\(y + z) - (yh + zh)\ < C(ß(h) + ~t(h)), 

< C(ß(h) + bß(h)), 

< C{l + b)ß(h). 

Also, 

\Ay-Ayh\ = A\y - yh\, 

< CiAßih), 

= Cß(h), 

so that Ay = Ayh + 0(ß(h)). · 
A similar result holds for un ~ u with u = un + 0(β(η)), vn « v with v = 

vn + 0(7(71)), and so on. 

■ EXAMPLE 1.6 

We close this section with a simple example that illustrates the utility of the Ö 
notation. Consider the combination of function values 

D = -f(x + 2/i) + 4f(x + h) - 3/(z), 

where / is assumed to be continuous and smooth, and h is a (small) parameter. We 
can use Taylor's Theorem, together with the definition of the Ö notation, to write 

f(x + h) = f{x) + hf'(x) + \h2f"{x) + 0(h3) 
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and 
f{x + 2ft) = / (x) + 2hf'{x) + 2ft2/" (a:) + C(ft3). 

Therefore, 

D = - / ( x + 2ft) + 4/(x + ft) - 3/(x) 

= -(f{x) + 2hf'(x) + 2h2f"ix) + 0(ft3)) 

+4(/(x) + hf'ix) + \h2f"ix) + ö(ft3)) - 3f(x) 

= ( -1 + 4 - 3)/(x) + (-2ft + 4ft)/'(x) + (-2ft2 + 2ft2)/"(x) + 0(ft3) 

= 2ft/'(x) + 0(ft3). 

If we then solve this for / ' (x) we get 

fM ~ / ( ^ + 2f t )+4/ (x + ft)-3/(x) 2 

/ (x) = — — ^ + Oih ) , 

where we have used the fact that ö(ft3)/ft = Oih2) (see Problem 10); thus we 
can use the expression on the right as an approximation to the derivative, and the 
remainder will be bounded by a constant times ft2. See §§2.2 and 4.5 for more on 
approximations to the derivative. This particular approximation is derived again, by 
other means, in §4.5. 

Note that we have rather quickly obtained an approximation to the first derivative, along 
with some notion of the error—it behaves proportionally to ft2—by using the Ö notation. 

Exercises: 
1. Use Taylor's Theorem to show that ex — 1 + x 4- C(x2) for x sufficiently small. 

2. Use Taylor's Theorem to show that l~c°sx = \x + C(x3) for x sufficiently small. 

3. Use Taylor's Theorem to show that 

y/l+x= l + - x + ö(x 2 ) 

for x sufficiently small. 

4. Use Taylor's Theorem to show that 

( 1 + x ) " 1 = l - x + x2 + 0(x3) 

for x sufficiently small. 

5. Show that 
sinx = x + C(x3). 

6. Recall the summation formula 

n 

1 + r + r2 + r 3 H h r" = ^ rk = 
fc=o 

1 - r n + 1 

1 - r 

http://www.it-ebooks.info/


20 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW 

Use this to prove that 

fc=0 

Hint: What is the definition of the O notation? 

7. Use the above result to show that 10 terms (fc = 9) are all that is needed to compute 
oo 

* = Σ e"fc 

fc=0 

to within 10 - 4 absolute accuracy. 

8. Recall the summation formula 

fc=l 

Use this to show that 

JTk=ln2 + ö(n). 
fc=i 

9. State and prove the version of Theorem 1.7 that deals with relationships of the form 

x = x„ + 0{β(η)). 

10. Use the definition of O to show that if y = yh + 0{hv), then hy = hyh + 0(hp+1). 

11. Show that if an = 0(np) and bn = ö(nq), then anbn = 0(np+q). 
12. Suppose that y = yh + ö(ß(h)) and z — Zh + ö(ß(h)), for h sufficiently small. 

Does it follow that y — z = y^ — Zh (for h sufficiently small)? 

13. Show that 
f'M / (z + h)- 2/(a;) + f(x - h) 2 

for all h sufficiently small. Hint: Expand f(x ± h) out to the fourth-order terms. 

14. Explain, in your own words, why it is necessary that the constant C in (1.8) be 
independent of h. 

< · · · > 

1.3 A PRIMER ON COMPUTER ARITHMETIC 

We need to spend some time reviewing how the computer actually does arithmetic. The 
reason for this is simple: Computer arithmetic is generally inexact, and while the errors 
that are made are very small, they can accumulate under some circumstances and actually 
dominate the calculation. Thus, we need to understand computer arithmetic well enough 
to anticipate and deal with this phenomenon. 

Most computer languages use what is called floating-point arithmetic. Although the 
details differ from machine to machine, the basic idea is the same. Every number is 
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represented using a (fixed, finite) number of binary digits, usually called bits. A typical 
implementation would represent the number in the form 

x = σ x / x βι~ρ. 

Here σ is the sign of the number (±1), denoted by a single bit; / is the mantissa or fraction; β 
is the base of the internal number system, usually binary (/3 = 2) or hexadecimal (/3 = 16), 
although other systems have sometimes been used; t is the (shifted) exponent, i.e., the value 
that is actually stored; and p is the shift required to recover the actual exponent. (Shifting 
in the exponent is done to avoid the need for a sign bit in the exponent itself.) The number 
would be stored by storing only the values of σ, / , and t. The standard way to represent 
the computer word containing a floating-point number is as follows: 

σ t f 

To keep things simple, we will use a base 2 representation here for our floating point 
examples. 

The total number of bits devoted to the number would be fixed by the computer archi-
tecture, and the fraction and exponent would each be allowed a certain number of bits. For 
example, a common situation in older, "mainframe" architectures would allow 32 bits for 
the entire word,4 assigned as follows: 24 bits for the fraction, 7 bits for the exponent, and 
a single bit for the sign. 

Note that this imposes limits on the numbers that can be represented. For example, a 7 
bit exponent means that 

0 < t < 127. 

In order to allow for a nearly equal range of positive and negative exponents, a shift p is 
employed, and in this case should be taken to be p = 63, so that 

- 6 3 < t - p < 64. 

Attempts to create larger exponents result in what is called an overflow. Attempts to create 
smaller exponents result in an underflow5. The fraction is also limited in size by the number 
of bits available: 

24 

0 < / < ^ 2 - f c = l - 2 - 2 4 . 
fe=l 

In practice, most architectures assume that the fraction is normalized to be between /3 _ 1 

and 1 ; any leading zeroes would be dropped and the exponent adjusted accordingly.6 Thus, 

4 A word is the largest unit of computer storage. Usually a word consists of two or more bytes which themselves 

consist of a certain number of bits, typically 8. 
5 Most modern computers adhere to the so-called IEEE standard for arithmetic, which uses a type of extended-

floating-point number system. In addition to ordinary numbers, the IEEE standard allows for results Inf (infinity) 
and NaN (not a number), and includes rules for manipulating with ordinary floating-point numbers and these 
special values. For example, x/Inf yields 0 as a result, while x/0 yields plus or minus Inf, depending on the 
sign of x. Most manipulations with NaN return NaN as their result. In older arithmetic schemes, if an overflow or 
divide-by-zero occurred, program execution usually terminated. 
6Some architectures take advantage of this assumption to avoid actually storing that leading bit—all the basic 

arithmetic algorithms are written to assume an extra leading 1—and thus they are able to get 25 bits of information 
into 24 bits of storage space. 
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we actually have 

J</<f>- f c = l-2-24. 
Δ fc=i 

The errors in computer arithmetic come about because the floating-point numbers are 
allowed only a fixed number of bits, and not every number can be exactly represented 
in a fixed number of bits. The common name for the error that is caused by this finite 
representation is rounding error. 

Let's consider the simple addition of two numbers, 

x = 0.1, y = 0.00003 

assuming that they are represented in the scheme outlined above. The exact answer, of 
course, is 

z = x + y = 0.10003. 

We note first that neither of these numbers can be represented exactly in our scheme. The 
best that we can do is7 

x = 0.00011001 10011001 10011001 1002 

= 0.0999999940395... 

and 

y = 0.00000000 00000001 11110111 01010001 00000102 

= 0.0000299999992421.... 

Thus we have (admittedly, small) errors being made even before the addition occurs. 
In our floating-point scheme these two numbers would be stored as 

x = 0.11001100 11001100 ΙΙΟΟΠΟΟ2 x 2 6 0 - 6 3 , 

y = 0.11111011 10101000 100000102 x 2 4 8 - 6 3 . 

Because the two numbers are of somewhat different sizes, a normalization is required 
in order to get equal exponents. One way to do this—the precise details would depend on 
the particular computer architecture—would give us 

x = 1100 11001100 11001100 11000000 000000002 x 2~39, 

y = 0000 00000000 11111011 10101000 IOOOOOIO2 x 2~39, 

and we can now add the mantissas to get the sum, which is first written as 

w = 1100 11001101 11001000 01101000 IOOOOOIO2 x 2~39. 

Note that the fraction here is too long to be stored with only 24 bits. What is done with 
the extra bits? Depending on the machine, they are either thrown away, regardless of their 
size (chopping), or the result would be rounded up or down, depending on size (rounding). 
Rounding is more accurate, of course, but chopping is faster. If we round, then we have 

-27 z = 11001100 11011100 IOOOOIH2 x 2 

===   000...111111000000111111000000   111111000111111111000000   

= 0.100029997527599... 

ΙΟΟΟΟΙΠ2 x 26 0 - 6 3 

Note that we have used the subscript "2" to indicate that the number should be interpreted as a base 2 fraction. 
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and the error is 
\z-z\= 0.24724... x 10 - 8 . 

Let's next assume that our machine uses chopping, in which case we end up with 

z = 11001100 11011100 ΙΟΌΟΌΠΟ2 x 2~27 

= 0.11001100 11011100 IOOOOHO2 x 2 6 0 - 6 3 

= 0.1000299900770... 

and a final error of 
\z-z\ = 0.992298... x 10~8. 

Note that the chopping error is indeed larger than the error when we used rounding. Similar 
errors would, of course, occur with the other arithmetic operations. 

The difference here—whether we chop or round—is indeed very small, and we might 
be tempted to ignore it as being too small to worry about. In fact, this is usually the case. 
But it is possible for the effects of different rounding errors to combine in such a way as to 
dominate and ruin a calculation. We can illustrate this point with simple decimal arithmetic 
as long as we insist on using only a small number of digits. 

Consider an eight-digit approximation to a = e-^1/100) — 0.99990001 and a similar 
approximation to b = e-^1/1000) = 0.99999900. By construction, both of these numbers 
are accurate to eight decimal digits. What about their difference c = a-b = -0.00009899? 
How many accurate digits do we have here? The answer is: only four. Because we were 
subtracting two nearly equal numbers, we lost a great deal of accuracy. This phenomenon 
is called subtractive cancellation. If we had started with more accurate approximations, 
then the difference would contain more accurate digits; try this by looking at the 16-digit 
values 

a = 0.9999000049998333, 

b = 0.9999990000005000, 

c = -0.0000989950006667. 

The result c is now accurate to 12 digits. 
To see how subtractive cancellation can destroy almost all the accuracy in a calculation, 

consider the quantity 

D = (f(xi) - / (x2)) - (/(a*) - /(a*)) 

where/(x) = ε~χ2 and xi = 999/10,000, x2 = 1/10, ar3 = 1,001/10,000. Then the 
calculation, as organized above and done in eight-digit arithmetic, yields D = —0.1 x 10- 7 . 
But when we do it in 16-digit arithmetic, we get D = -0.194049768 x 10 - 7 . The eight-
digit calculation had no accurate digits. Subtractive cancellation is therefore something to 
avoid as much as possible, and to be aware of when it is unavoidable. 

Sometimes the problem with rounding error can be eliminated by increasing the precision 
of the computation. Traditionally, floating-point arithmetic systems used a single word for 
each number (single-precision) by default, and a second word could be used (double-
precision) by properly specifying the type of data format to be used. Most languages now 
use double-word arithmetic by default8. Sometimes the entire extra word is used to extend 

8MATLAB allows the user to declare variables to be single-precision via the s ing le command. Operations with 

single-precision variables are done in single-precision. 
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the length of the fraction; sometimes the length of the exponent is extended as well. / / 
changing the precision of a calculation dramatically changes the results, then it is almost 
certain that the computation is being seriously affected by rounding errors. 

Another example of subtractive cancellation occurs with the evaluation of the function 

ex - 1 

m - — 
for values of a; near zero. L'Hôpital's Rule9 can be easily used to show that 

l im/(x) = 1, 
x—>0 

and Taylor's Theorem can be used to show that 

f(x) = l + ±x + 0(x2) 

for small x, but the evaluation of / for x near 0 will exhibit subtractive cancellation 
that is amplified by the division by x (since x is small precisely when the subtractive 
cancellation is worst). Table 1.1 shows the results of computing / using single-precision 
and double-precision floating-point arithmetic. Note that the error in the single-precision 
results increases dramatically for x < 2 - 1 2 = 1/4096, which is not that small a number. 
A second threshold of inaccuracy is reached at around x = 2 - 2 4 . Note that the use of 
double-precision arithmetic defers the onset and lessens the severity of the error, but does not 
eliminate it entirely, as the last few rows show. (Even though the limiting value of / is 1, the 
error in the computed value for x = 2~30 is still non-zero; / ( 2 - 3 0 ) — 1 = 0.4657 x 10~9. 
Although this error would be acceptable in single-precision arithmetic, it is not acceptable 
for double-precision arithmetic.) How do we fix this? 

One approach would be to use Taylor's Theorem: 

(1 + x + j z 2 + è ^ + . - . ^ + ^ x ^ V * ) - 1 
/ (*) = , 

where cx is between x and 0; the value of n would depend on our required accuracy. We 
would thus define / , for computational purposes, as 

f(x\ = { l + \ x + \χ2 + ' · ' + ΤΓϊζ""1' \χ\ c l o s e t 0 °> 
^X' \ x~l(ex - 1), otherwise. 

If we wanted more accuracy, we would use more terms in the Taylor expansion. 
We close this section with a definition. In a floating-point computer system, there will 

exist many nonzero numbers a; such that 

1 + 3 = 1 

'Guillaume François Antoine, Marquis de L'Hôpital (1661-1704) was not trained in mathematics, but took it 
up after resigning from the military due to poor eyesight. He studied with Johann Bernoulli in the 1690s, and 
in 1692 published what is generally regarded to be the first calculus textbook, Analyse des infiniment petits pour 
l'intelligence des lignes courbes. What we know as "L'Hôpital's rule" first appears in this book, and is probably 
actually due to Bernoulli. 
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Table 1.1 Illustration of subtractive cancellation, using f(x) = ^-

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

x k = 2"fc 

0.50000000000000E+00 
0.25000000000000E+00 
0.12500000000000E+00 
0.62500000000000E-01 
0.31250000000000E-01 
0.15625000000000E-01 
0.78125000000000E-02 
0.39062500000000E-02 
0.19531250000000E-02 
0.97656250000000E-03 
0.48828125000000E-03 
0.24414062500000E-03 
0.12207031250000E-03 
0.61035156250000E-04 
0.30517578125000E-04 
0.15258789062500E-04 
0.76293945312500E-05 
0.38146972656250E-05 
0.19073486328125E-05 
0.95367431640625E-06 
0.47683715820312E-06 
0.23841857910156E-06 
0.11920928955078E-06 
0.59604644775391E-07 
0.29802322387695E-07 
0.14901161193848E-07 
0.74505805969238E-08 
0.37252902984619E-08 
0.18626451492310E-08 
0.93132257461548E-09 

single-precision 
0.12974424362183E+01 
0.11361017227173E+01 
0.10651874542236E+01 
0.10319118499756E+01 
0.10157890319824E+01 
0.10078506469727E+01 
0.10039215087891E+01 
0.10019531250000E+01 
0.10009765625000E+01 
0.10004882812500E+01 
0.10002441406250E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.10000000000000E+01 
0.00000000000000E+00 
0.00000000000000E+00 
0.00000000000000E+00 
0.00000000000000E+00 
0.00000000000000E+00 
0.00000000000000E+00 
0.00000000000000E+00 

double-precision 
0.12974425414003D+01 
0.11361016667510D+01 
0.10651876245346D+01 
0.10319113426858D+01 
0.10157890399713D+01 
0.10078533495479D+01 
0.10039164424253D+01 
0.10019556706170D+01 
0.10009771985934D+01 
0.10004884402344D+01 
0.10002441803663D+01 
0.10001220802469D+01 
0.10000610376392D+01 
0.10000305182002D+01 
0.10000152589419D+01 
0.10000076294382D+01 
0.10000038146973D+01 
0.10000019073486D+01 
0.10000009536743D+01 
0.10000004768372D+01 
0.10000002384186D+01 
0.10000001192093D+01 
0.10000000596046D+01 
0.10000000298023D+01 
0.10000000149012D+01 
0.10000000000000D+01 
0.10000000000000D+01 
0.10000000000000D+01 
0.10000000000000D+01 
0.10000000000000D+01 
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within computer precision. For instance, in the 32-bit implementation outlined at the 
beginning of the section, it is clear that this will hold for any x < 2~24, since 1 + 2 - 2 4 in 
binary will require 25 bits of storage, and we only have 24 to work with. We define the 
machine rounding unit, or machine epsilon, u, to be the largest such number: 

Definition 1.2 (Machine Epsilon) The machine epsilon (alternatively, the machine round-
ing unit), u, is the largest floating-point number x such that x + 1 cannot be distinguished 
from 1 on the computer: 

u = max{x | 1 + x = 1, in computer arithmetic}. 

It is possible to compute the machine epsilon based on knowledge of the floating-point 
number system on the computer in question. 

■ EXAMPLE 1.7 

Suppose that we want to compute the machine epsilon for a simple three-digit decimal 
computer which rounds (i.e., a machine that does decimal arithmetic, keeps only three 
digits, and rounds its results). Thus, we can write any number x that is stored on the 
computer as x = άιά2ά3 x 10', where t is the exponent and d\d2d3 represent the 
decimal digits of the fraction. Now, based on the definition of machine epsilon, we 
know that x\ = 1.00 x 10~2 is too large, because 

1 + xi = 1.00 + 0.01 = 1.01 φ 1.00. 

On the other hand, we know that X2 = 1.00 x 10 - 3 is certainly small enough (perhaps 
too small) because we have 

1 + x2 = 1.00 + 0.001 = 1.001 => 1.00 = 1.00. 

Thus, the computer cannot distinguish between 1 and 1 + x2. But u is the largest 
such number, so we have to look a bit further. It's not a matter of using the right 
formula; it is really a matter of experimentation and trial and error. We have 

1 + 0.002= 1.002 -► 1.00=1, 

so we know that £3 = 2.00 x 1 0 - 3 is small enough; the same argument would apply 
to x4 = 3.00 x 1 0 - 3 and x5 = 4.00 x 10 - 3 . But 

1 + 0.005 = 1.005 -> 1.01 ^ 1 

(because the machine rounds its computations), thus Xe = 5.00 x 1 0 - 3 is too large. 
But it is just barely too large, as any smaller number would have resulted in the 
sum being rounded down to 1.00. Thus we want the next smaller number within the 
floating-point number system, i.e., we want u = 4.99 x 10 - 3 . This gives us 

1.00 + 0.00499 = 1.00499 -> 1.00 = 1, 

and it is clear that any larger number that we can represent in our floating-point 
system would result in the sum being rounded up to 1.01 φ 1. The student ought to 
be able to show, that if the machine chops instead of rounds, then u = 9.99 x 10 - 3 . 
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There are a number of interesting consequences of the existence of the machine epsilon. 
For example, consider the numbers 

a = 1,6 = u, c = u. 

If we want to add up these numbers, we quickly learn that the way we organize the 
calculation matters. For example, 

(a + 6) + c = (1 + u) + u = 1 + u = 1, 

whereas 
a + (6 + c) = l + 2 u ^ 1. 

From a technical point of view, this means that the associative law of arithmetic (for 
addition) does not hold in floating-point arithmetic systems. In other words, 

the order in which we do operations sometimes matters. 

It is possible to estimate the machine epsilon by constructing a loop that adds increasingly 
small numbers to 1, and only terminates this when the result cannot be distinguished from 
1. 

The basic result on computer arithmetic is the following. 

Theorem 1.8 (Computer Arithmetic Error) Let * denote any of the basic binary opera-
tions (addition, subtraction, multiplication, or division), and let fl{x) denote the floating 
point value ofx. Then there exists a constant C > 0 such that, for all x and y, 

\x * y — fl(x * y)\ < Cu\x * y\. 

Thus, the computer value ofx * y is relatively accurate to within 0(u). 

The point of this section is that we should now be aware that computer arithmetic is not 
the 100% reliable thing we might have thought it was. However, the errors that crop up 
do tend to appear only when extremely large or small numbers are involved (exceptions 
do occur, so we have to be careful), and are themselves very small. Moreover, rounding 
errors tend to cancel themselves out over the long run. Rounding error and related effects 
are things we have to watch out for and be aware of, but they are usually dominated by the 
mathematical error that is made in constructing the approximations. Exceptions to this rule 
of thumb do exist, however, as we shall see in §2.2 and §4.12.1. 

Exercises: 
1. In each problem below, A is the exact value, and Ah is an approximation to A. Find 

the absolute error and the relative error. 

(a) A = 7Γ, Ah = 22/7; 

(b) A = e, Ah = 2.71828; 

(c) A = \,Ah = 0.1667; 

(d) A = | , Ah = 0.1666. 

2. Perform the indicated computations in each of three ways: (i) Exactly; (ii) Using 
three-digit decimal arithmetic, with chopping; (iii) Using three-digit decimal arith-
metic, with rounding. For both approximations, compute the absolute error and the 
relative error. 
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(a) έ + To'-

(b) έ x To' 

(d) (* + έ) + è· 

3. For each function below explain why a naive construction will be susceptible to 
significant rounding error (for x near certain values), and explain how to avoid this 
error. 

(a) f{x) = (VxT9-3)x-u, 

(b) f(x) = x_1(l — cosz); 

(c) f(x) = (1 — x)~1(\nx — Βΐηπχ); 

(d) f(x) = (cos^ + x) -cos7r)a;_1; 

(e) / (x) = ( e 1 + x - e 1 - I ) ( 2 x ) - 1 . 

4. For f(x) = (ex — l)/x, how many terms in a Taylor expansion are needed to get 
single-precision accuracy (seven-decimal digits) for all x e [0, ̂ ]? How many terms 
are needed for double-precision accuracy (14 decimal digits) over this same range? 

5. Using single-precision arithmetic only, carry out each of the following computations, 
using first the form on the left side of the equals sign, then using the form on the right 
side, and compare the two results. Comment on what you get in light of the material 
in §1.3. 

(a) (x + e)3 - 1 = x3 + 3x2e + 3xe2 + e3 - 1, x = 1.0, e = 0.000001; 

(b) -b + Vb2 - 2c = 2c(-b - y/b2 - 2c)"1, b = 1,000, c = π. 

6. Consider the sum 
m 

s = jry14'1--0·0"), 
fc=0 

where m = 2 x 105. Again using only single-precision arithmetic, compute this two 
ways: First, by summing in the order indicated in the formula; second, by summing 
backwards, that is, starting with the k = 200,000 term and ending with the k = 0 
term. Compare your results and comment on them. 

7. Using the computer of your choice, find three values a, b, and c, such that 

(a + b) + c^a + (b + c). 

Repeat using your pocket calculator. 

8. Assume that we are using three-digit decimal arithmetic. For e = 0.0001, a\ = 5, 
compute 

0-2 — O-O + ( - ) 0,1 

for ao equal to each of 1, 2, and 3. Comment. 
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9. Let e < u. Explain, in your own words, why the computation 

<i2 = ao + ( - j a\ 

is potentially rife with rounding error. (Assume that ao and a\ are of comparable 
size.) Hint: See Problem 8. 

10. Using the computer and language of your choice, write a program to estimate the 
machine epsilon. 

11. We can compute e~x using Taylor polynomials in two ways, either using 

e~x « 1 - x + -x2 - - x 3 + . . . 

or using 

e - « I 
1 + x + \x2 + £x3 + ... 

Discuss, in your own words, which approach is more accurate. In particular, which 
one is more (or less) susceptible to rounding error? 

12. What is the machine epsilon for a computer that uses binary arithmetic, 24 bits for 
the fraction, and rounds? What if it chops? 

13. What is the machine epsilon for a computer that uses octal (base 8) arithmetic, 
assuming that it retains eight octal digits in the fraction? 

1.4 A WORD ON COMPUTER LANGUAGES AND SOFTWARE 

In the early 1970s (when the author was an undergraduate student) the standard computer 
language for scientific computation was FORTRAN, with Algol being perhaps the second 
choice. BASIC, in many incarnations, was also a possibility. By the late 1980s, Pascal 
had entered the fray and FORTRAN was considered passé in some quarters, especially 
since various easy-to-use integrated environment packages for Pascal were being marketed 
to personal computer users. By the 1990s, Pascal was fading away, but we now had C, 
or C++, or even Java. And FORTRAN, despite the predictions of many and the desires 
of many more, was still with us. In addition, the increased power of personal computers 
meant that software packages such as MATLAB or MathCAD or Maple or Mathematica 
might be used to do scientific computation. (MATLAB, in particular, has had a tremendous 
influence on scientific computation.) 

In short, if you don't like the present state of affairs with regard to computing languages, 
wait around a little while—it will change. 

However, it is impossible to ignore the dominant place taken in recent years by MATLAB, 
which has been very successful in becoming the scientific programming language of choice 
for many applications. The ease with which it solves complicated problems and provides 
easy-to-use graphical tools is almost unsurpassed. Earlier editions of this book spoke of 
being "language neutral," but, starting with this Second Edition, the assumption will be 
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that the students are coding in MATLAB. References to specific MATLAB commands will 
be made in a computer-font typeface, thus: rand, which is the command for generating 
random numbers, vectors, or matrices. 

If the instructor or some students wish to program in a different language, this book is 
not so wedded to MATLAB as to make that impossible. The only significant consequence 
will be that some exercises may have to be skipped. 

Most examples are given in a generic pseudo-code which is heavily based on MATLAB, 
but occasionally, raw MATLAB code will be given. The author is still of the opinion that 
students should be comfortable in as many different languages as possible—even though 
most scientific programming today might be done in MATLAB, it is still the case that there 
is a lot of computer code (called legacy code) that is still being used and that was written 
in FORTRAN or Pascal or Algol or C. 

The more involved algorithms will be presented in more of an "outline" style, rather 
than in a line-by-line of code style. 

Finally, it needs to be said: This book is not intended as a text in how to use MATLAB, 
but as a text in the mathematics of numerical methods. 

There exist a number of sources for good mathematical software. Traditionally, two 
of the best sources were the IMSL and NAG libraries, collections of FORTRAN rou-
tines for a wide variety of computational tasks. More specialized packages have also 
been developed, notably QUADPACK (numerical integration), LINPACK (linear alge-
bra), EISPACK (eigenvalue methods), LAPACK (an updated package that combines 
and actually replaces LINPACK and EISPACK), and others. A repository of public-
domain mathematics software is maintained at NETLIB.10 MATLAB has created a number 
of specialized "toolboxes" for numerical computation, a list of which can be found at 
http://www.mathworks.com/products/. Many authors now put their own codes up 
on websites for public access. 

There are also some "freeware" versions of MATLAB-like software which can be 
installed on individual PCs. 

Despite the wide availability of general-purpose mathematical software, it is still im-
portant for students to learn how to write and (most important) debug their own codes. For 
this reason many of the exercises in this book involve computer programming. 

The text assumes that students are familiar with the use of elementary packages (such as 
MATLAB or Maple or Mathematica) for producing simple plots of functions. Whenever the 
exercises call for graphs or plots to be produced, it is assumed that such modern technology 
will be used. Students should also feel free (with their instructor's permission, of course) 
to use Maple or Mathematica to simplify some of the more involved manipulations in the 
exercises. 

1.5 SIMPLE APPROXIMATIONS 

We have already used Taylor series to construct a simple approximation to the exponential 
function. Here we present a similar but slightly more involved example to reinforce the 
basic ideas and also to illustrate the use of the asymptotic order notation introduced above. 

'On the World Wide Web at h t t p : //www. n e t l i b . org. 
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The error function occurs often in probability theory and other areas of applied mathe-
matics (the solution of heat conduction problems, for example). It is defined by an integral: 

2 fx .2 
erf(x) = —= / e dt. 

VT Jo 

It is not possible to evaluate this integral by means of the Fundamental Theorem of C alculus; 
there is no elementary anti-derivative for e _ t . In Chapter 5 we will derive techniques that 
can be applied to directly approximate the integral. Here we will use Taylor's Theorem to 
approximate the integrand as a polynomial, and exactly integrate that polynomial. 

This is a fundamental idea in numerical methods: When confronted with 
a computation that cannot be done exactly, we often replace the relevant 
function with something simpler which approximates it, and carry out the 
computation exactly on the simple approximation. 

We might be tempted to compute the Taylor approximation to e ~ ' by appealing directly 
to the formula (1.1), but this will lead to a lot of unnecessary work. We know that 

1 1 1 xk+l 

ex = l+x+ —x2 + —x3 + ... + —xk + 2! 3! fc! (Jfc+1)! 
= Pk(x)+Rk{x), 

where 

and 

Pk(x) = Σ 
xl 

Rk{x) = 

i=0 

fe+1 
X 

(Ä + 1)! ' 

Therefore, we can get the expansion and error for e _ t by a simple substitution: 

e-t2=pk(-t2) + Rk(-t2). 

Thus, we have 

erf(x) = ~ [ pk{-t2)dt + -^= [ Rk{-t2)dt 
νπ Jo V71" Jo 

For simplicity, define the polynomial that approximates the error function by qk: 

= * ix-lx3 + l x 5 - l , 7 + . . ,+ (-i)fc*2*+1 
0 F V 3 10 42 (2fc + l)fc! 

so that we have 
2 fx 

erf(x) - qk{x) = -= / Rk{-t2)dt. 
VK Jo 
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We want to simplify this error and produce an error bound, so we will also set 

Ek(x) = -?= / Rk{-t2)dt. 
V71" Jo 

Thus, 

erf(z) - qk{x) = Ek{x). (1.10) 

To simplify and bound the error, we note that 

Ek(x) = 4 = / Rk{-t2)dt, 

_ _2_ f H2) f c + 1 r C . . 
" V i A (fc + l)! ' 

2( 1) + 1 Γ 2k+2 Cd 

where c depends on i, and —t2 < c < 0. Now, since both functions in the integrand above 
are positive, we can apply the Integral Mean Value Theorem to get 

/ t2k+2ecdt = e« / t2k+2dt = e^^-— 
Jo Jo 2fc + 3 

for some ξ between 0 and —x2. Thus, 

OC_1 \fc+l™2fc+3 

£>W°(2 t + 3)(fc + l ) ! ^ e t · ( U " 

This error statement, although applicable only to a very elementary problem, nonetheless 
contains all of the common features that will appear in the error estimates for more realistic 
algorithms applied to more complicated problems. Thus, it is worthwhile discussing it 
before we proceed to simplify it further. 

Let us write the error in a more structured form: 

/ O \ / (_i\k+l 2k+3 \ ( 2 \ / (-l)fc+1;E2fc+3 

£<k\X) -

where 

9 (_-\\k+\„2k+3 

This divides the error into three distinct parts: 

1. A raw numerical constant, C; 

2. An expression depending on the computational parameters (fc, x) of the problem; 
this is 6k{x); 

3. A factor that depends on the function or its derivatives, evaluated at an indeterminate, 
unknown point; this is M. 
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We are most interested in the second part of the error. The raw numerical constant is usually 
of less interest, since we cannot do anything to make it smaller. The function-dependent 
part of the error is of some concern to us in more complicated approximations; here we 
simply note that we are not able to actually compute that value in most cases, so we resort 
to upper bounds. 

It is the parameter-dependent part of the error that determines convergence and accuracy 
and how fast we achieve either of them, and that is, at least partly, under our control. In 
fact, we might use the asymptotic order notation to write (1.10) as 

erf(x) = qk(x) + 0{Sk(x)). 

Alternatively, we could use the approximate equality notation to write 

erf(x) « qk(x), 

where it is understood (perhaps only implicitly) that this approximation is valid only for k 
large or for x small. We might want to simplify the error a little more by removing one of 
the variables from <Sfc(x). For example, if we were only interested in values of x between 
0 and 2, then we could easily establish that 

22fc+3 

MX)1 - (2fc + 3)(* + l)l 

for all x e [0,2]. Moreover, the 2fc + 3 factor in the denominator is not going to affect the 
error bound nearly as much as the factorial, so we can further simplify to get 

I* i M ^ 8 22fc 8 4* 
|5fc(x) |-5(feTT)! = 5(fcTT)! 

for all k > 1. Thus, we can write 

erf(x) = qk{x) + O (jj^\) 0 < x < 2. 

This extra simplification has indeed increased our estimate of the error, but only slightly, 
and not in a manner that ignores the most important factors in the convergence of the 
approximation—the factorial and the power. The benefit we get from this slightly increased 
error estimate is the ability to quickly and easily gauge the accuracy of an approximation 
using a specified number of terms. For example, we find that the error in a 20-term 
approximation is on the order of 2.2 x 10~8, whereas a 10-term approximation is accurate 
only to within about 0.026. 

Exercises: 
1. Consider the error ( 1.11 ) in approximating the error function. If we restrict ourselves 

to k < 3, then over what range of values of x is the approximation accurate to within 
10~3? 

2. If we are interested only in x 6 [0, | ] , then how many terms—equivalently, what 
degree of polynomial—do we need in the error function approximation to get an 
accuracy of 10~4? 

3. Repeat the above for x s [0,1]. 

http://www.it-ebooks.info/


3 4 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW 

4. Assume that x e [0,1] and write the error in the approximation to the error function 
using the asymptotic order notation. 

5. For 

f(x) = / t~1sintdt, x e [ -π/4,π/4] , 
Jo 

construct a Taylor approximation that is accurate to within 10~4 over the indicated 
interval. 

6. Repeat the above for 

fx 
f(x) = / e'^dt, x e 

Jo 

7. Construct a Taylor approximation for 

1 1 
2 ' 2 

j(x) = / t-pe-t2dt, 0 < p < 1, x E 
Jo 

1 

°'2 10 

that is accurate to within 10~3 for all values of p in the indicated range. 

8. Does it make a difference in Problem 7 if we restrict p to p S [0, £]? 

9. What is the error in the Taylor polynomial of degree 5 for f(x) = l/x, using 
x0 = 3/4, for x € [^,1]? 

10. How many terms must be taken in the above to get an error of less than 10~2? 10~4? 

11. What is the error in a Taylor polynomial ofdegree 4 for f(x) = %/x using XQ = 9/16, 
for all x e [1/4,1]? 

12. Consider the rational function 

l + \x 
r(x) 2" 

i -è«' 
carry out the indicated division to write this as 

r(x) = p(x) + R(x), 

wherep(a;) is a polynomial, and i?i(x) is a remainder term in the form i?i = x2R{x), 
where i î isa proper rational function, i.e., one with the degree of the numerator strictly 
less than the degree of the denominator. Can you relate p(x) to a Taylor expansion 
for the exponential function? Bound the error \ex — r(x)\, assuming that x < 0, if 
you can. 

13. Repeat the analysis in the previous problem for the rational function 

rW = Î 1 . 1 2 · 
2X """ 12"E 

Can you get a better error in this case? 
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14. Finally, consider the rational function11 

r(x) = — 1 + 5* 
! x + λχ2 ■ 
3 X ~ 6^ 

By dividing out the rational function into a polynomial p(x) plus a remainder, bound 
the error \ex — r(x) | for all x < 0. Try to get as high an accuracy as you can in terms 
of powers of x. 

1.6 APPLICATION: APPROXIMATING THE NATURAL LOGARITHM 

In this section we will put together many of the basic ideas from previous sections to 
construct a reasonable approximation to the natural logarithm function. The primary tool 
will be Taylor's Theorem, and our goal will be to produce an approximation to the logarithm 
that is accurate to within e = 10 - 1 6 . 

We first observe that if we can assume that r = In 2 is known to arbitrary precision, 
then we really only need to construct a logarithm approximation that is valid over a short 
interval. This follows because of the way that the computer stores numbers. Since any z is 
stored as z = f ■ 2^ for | < / < 1 and some β, we have 

lnz = l n / + /31n2. 

Since / € [|, 1], we will get the best results by choosing the center of the expansion to 
be xo = | . This is a little unusual, but not unprecedented. The Taylor expansion for the 
logarithm is then (you ought to verify this) 

Inx = lnx0 + ̂ ^-l(^^\... + (-ir-^-(^-y 
xo xo 

+ ( - l ) n / (x - i ) " « " " - 1 * . 
Jxa 

(1.12) 

Since the remainder here is a little more complicated than in the usual case, let's look at it 
carefully. We have 

so that 

Rn(x) = (-l)n f {x- t)nrn~ldt 

\Rn(x)\ = \[ (x-t)nr ^ - η - 1 ώ 

We now take upper bounds using the elementary fact that 

rb f 
Ja 

f(x)dx < \b-a\ max | / (x) | . 
x6[o,b] 

The functions in these exercises are all examples of what are known as Padé approximations. 
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Thus, 

|-Rn(a:)| < \x — XQ\ max (x-ty 
tn+l 

Now, we know that x0 = f, that x e [|, 1], and that t is between x and XQ. It follows, 
then, that 

, 1 
\x-Xo\ < T 

and that 
(x - tr 

tn+l 
x~-i 
t 

< 2 
x — t 

t 

At this point we have to proceed carefully. We want to bound the function 

g(t) 
x — t 

in absolute value. What do we know about i? Since t is between x and XQ, we have either 
x0 < t < x or x < t < XQ. We have g'(t) = —x/t2 so there are no critical points (since 
x φ 0). Therefore, the Extreme Value Theorem tells us that the maximum and minimum 
of g occurs at the endpoints, that is, for t = x and for t — XQ. Since g(x) = 0, we clearly 
have \g(t)\ < \g(xo)\. Thus, substituting into the previous inequality, we have 

(x - tr 
tn+l 

< 2 
X — XQ 

XQ 
< 2 

Therefore, 

!*»(*)! < \ ( | 

from which we conclude that n = 33 is sufficient to guarantee that |ün(^)| < 10 - 1 6 for 
allx 6 [\,\\. It thus requires a 33-degree polynomial to approximate the logarithm in this 
fashion, along with an accurate representation for In 2 and In | . 

Problem 5 asks you to implement this as a subprogram and check it against the intrinsic 
natural logarithm function on your computer. 

Can this be improved? Yes, it is possible to construct an equally accurate logarithm 
approximation that uses fewer computations. Problem 6 asks you to look into this by using 
a clever combination of logarithm expansions that results in faster convergence. 

Exercises: 
1. Write each of the following in the form x = f x 2" for some / 6 [|, 1]. 

(a) x = 13; 

(b) x = 25; 

(c) x 3 '

(d) X = 
io · 

2. For each value in the previous problem, compute the logarithm approximation using 
the degree 4 Taylor polynomial from (1.12). What is the error compared to the 
logarithm on your calculator? 

3. Repeat the above for the degree 6 Taylor approximation. 
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4. Repeat the above for the degree 10 Taylor approximation. 

5. Implement (as a computer program) the logarithm approximation constructed in this 
section. Compare it to the intrinsic logarithm function over the interval [|, 1]. What 
is the maximum observed error? 

6. Let's consider how we might improve on our logarithm approximation from this 
section. 

(a) Compute the Taylor expansions, with remainder, for ln(l + x) and ln(l — x) 
(use the integral form of the remainder). 

(b) Combine the two to get the Taylor expansion for 

m =*m 
What is the remainder in this expansion? 

(c) Given z € [|, 1] show how to compute x such that z = (1 — x)(l + a;)-1. 
What interval contains χΊ 

(d) Use the answer to part (c) to construct an approximation to In z that is accurate 
to within 10 - 1 6 . 

7. Use the logarithm expansion from the previous problem, but limited to the degree 4 
case, to compute approximations to the logarithm of each value in the first problem 
of this section. 

8. Repeat the above, using the degree 10 approximation. 

9. Implement (as a computer program) the logarithm approximation constructed in 
Problem 6. Compare it to the intrinsic logarithm function over the interval [\, 1]. 
What is the maximum observed error? 

10. Try to use the ideas from this section to construct an approximation to the reciprocal 
function, f(x) — a:-1, that is accurate to within 10 - 1 6 over the interval [|, 1]. 

1.7 A BRIEF HISTORY OF COMPUTING 

The development of numerical methods and analysis is closely tied to the development of 
modern computing equipment, so it makes sense to include this brief essay on the history 
of computing, drawn from a variety of sources, including the author's own experiences as 
a student and faculty member.12 A standard source—written by a numerical analyst—is 
The Computer: From Pascal to von Neumann [13]. 

The history of computing—by which we mean "the history of the development of 
machine computation"—is probably older than most students think. Devices like the 

Besides, it enables the author to indulge his avocational love of history. 
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abacus have been around for centuries. The first mechanical calculator, sometimes known 
as the Pascaline, was developed and constructed by the French mathematician Blaise Pascal 
(1623-1662) in 1645. The machine worked via a set of wheels and gears, and could do 
the basic arithmetic operations. Slide rules were also developed in the 1600s based on the 
emerging science of logarithms, and remained the most common personal computing device 
until the early 1970s. In the 1820s and 1830s, Charles Babbage designed a "Difference 
Engine" and a more complex "Analytical Engine," both of which were supposed to aid in 
numerical calculations. Neither was completed by Babbage, although modern examples 
have been built using Babbage's plans13. At this time, and for several decades further on, 
the word "computer" meant a person whose job it was to perform extensive calculations by 
hand. 

Babbage's Analytical Engine used punched cards for input, a technology first introduced 
in the early 19th Century for controlling the pattern being created by automatic looms, and 
then later refined by Hermann Hollerith (1860-1929) to process data for the 1890 U.S. 
Census. Eventually, in the period 1950-1975, the punched card became the mainstay input 
medium for computer operations. In the wake of his success with the 1890 Census, Hollerith 
founded a firm, Tabulating Machine Company, in 1896, which in 1924 was re-named the 
International Business Machines Corporation14. 

Meanwhile, developments on a different front were being made by physicists, first in 
Britain, and then in the United States. A planimeter is a device that can be used to compute 
the area of an irregular figure that it is used to trace. The first such device was probably 
built by the German engineer, J. H. Hermann, in 1814. The emminent physicist, James 
Clerk Maxwell, invented one in 1855. James Thomson, a Scottish engineer and brother to 
the physicist Sir William Thomson (later Lord Kelvin), produced one based on Maxwell's 
design in the early 1860s. Thomson did not do much with his device until 1876, when 
it was realized that this device could be used to compute some integrals (which, after all, 
are just areas defined by curves) needed for a project of Sir William's15. This was the 
beginning of the development of so-called analog computers, which work by mimicking 
the process under study16. Sir William wrote and published a paper17 describing how a 
mechanical planimeter-based device could be constructed to "solve" a general second order 
linear differential equation, but the technology did not (yet) exist to build such a machine. 

In 1897, the American physicists A.A. Michaelson (the first American to win a Nobel 
Prize in Physics) and S. W. Stratton built a "harmonic analyzer" for computing Fourier 
coefficients that was able to surmount many of the difficulties that Thomson's efforts had 
encountered. Their machine was able to handle Fourier series of as many as 20 terms 

,3Pehr Georg Scheutz of Sweden built an example of the Difference Engine, with Babbage's blessing and 

assistance, which earned Scheutz a knighthood from the King of Sweden. Babbage appears to have had personality 
issues that made it difficult for him to carry any of his ideas through to completion, as he would get a project 
partially done, conceive of a better way to do things, get that project partially done, and so on, in an almost 
unending sequence. See [13], p. 24. 
l4And, yes, the classic "IBM punch card" got its precise dimensions from the dollar bill of the 1890s—doing so 

allowed Hollerith to use the same machines to make his punch cards that the government used to print and cut 
currency. 
''Specifically, Sir William Thomson needed to compute some Fourier coefficients to determine the periodicity of 
the tides. 
If'ln his undergraduate days, the author took a course in electronic analog computing. Using plug boards, the 

students "programmed" the machine by constructing a circuit whose voltage would follow exactly the desired 
differential equation. When power was applied to the circuit, a graph of the solution—the output voltage—would 
be produced. It was a fun course. 
''"Mechanical Integration of the General Linear Differential Equation of any Order with Variable Coefficients," 
Proceedings of the Royal Society of London, 1876. Available online. 
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(Thomson was only able to treat two Fourier terms), on the basis of which they obtained 
funding to develop and build a second machine that could handle 80 Fourier terms. 

This led to the development, in the 1930s and 1940s, of several versions of an electrically 
driven mechanical machine (commonly known as a "differential analyzer") for solving 
differential equations. The primary effort in the United States was led by Vannevar Bush 
of MIT. For a brief time circa 1930 or so, these were the state-of-the-art in machine 
computation. At about the same time, a number of efforts based on telephone-relay 
technology were developed, notably under the direction of Howard Aiken at Harvard. 
Also, John Atanasoff developed an electronic computing machine at Iowa State during the 
1930s; this machine was dedicated to solving systems of linear equations and was not really 
a programmable device. 

In the United States, the direct impetus for the development of more-capable computing 
devices came largely from the U.S. Army's Ballistics Research Laboratory at Aberdeen 
Proving Ground, which needed better facilities in order to produce so-called "firing tables" 
for use with artillery; the effort was led by John Mauchly and J.P. Eckert of the Moore School 
of Engineering at the University of Pennsylvania. In Britain, a team led by Alan Turing 
(who contributed a great deal to the theory of machine computation) developed a computing 
machine known as the "bombe" for decoding intercepted German communications that had 
been encoded by the so-called ENIGMA device. A German effort, known as the Z3, was 
destroyed in a bombing raid on Berlin in December of 1943. 

The American effort, dubbed ENIAC (Electronic Numerical Integrator and Computer), 
is widely considered to be the first true programmable computing machine. By modern 
standards it was enormously difficult to use and very limited—it was "programmed" by 
essentially re-wiring it—but it was in service for about 10 years. The finished machine 
consisted of over 17,000 vacuum tubes, 70,000 resistors, 10,000 capacitors, 1,500 relays, 
and 6,000 switches. In size, it filled three walls of a large room, being 100 feet long, 10 
feet high, and 3 feet deep. It operated at a clock rate of about 100,000 cycles per second 
(100 kHz). It could multiply 10-digit numbers at a rate of about 357 per second. 

It is at roughly this point that John von Neumann enters the picture. Hungarian-born 
and incredibly brilliant, von Neumann was working on a number of scientific projects for 
the United States government in support of the war effort, most notably the Manhattan 
Project (the effort to build the atomic bomb), which needed to perform extensive shock 
wave computations in order to make the "implosion trigger" work. A chance meeting 
between Herman Goldstine (working on the development of ENIAC) and von Neumann 
in a Philadelphia train station led to von Neumann's involvement with the ENIAC, and 
eventually to his seminal unpublished paper on computer design, "First Draft of a Report 
on the EDVAC" [12]. (Although this document was not formally published until 1993, it 
was widely circulated and is considered as the basis of modern computer architecture18.) 

After the war, von Neumann led an effort at the Institute for Advanced Study (IAS) to 
develop an improved machine, largely for the purpose of doing the necessary computations 
for the development of the hydrogen bomb, although some of the earliest numerical weather 
prediction tests were run on this machine, which was in service from 1951 until mid-195 8. 
The story of this machine and its development is the subject of the book, Turing's Cathedral 
[10]. The IAS machine could perform about 1400 multiplications per second. (ENIAC's 
multiplication rate was about 357 per second.) 

18As is pointed out in the online version, a significant number of typos crept in to the preparation of the 1993 

publication; these are corrected in the online document. 
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The invention of the transistor in 1947 led to the development of a new generation of 
machines based on this new, faster, more reliable, technology. Companies such as Sperry 
Rand, Honeywell, and (eventually) IBM began marketing commercial computers in the 
1950s and 1960s. The development of the integrated-circuit microprocessor in the early 
1970s eventually led to today's personal computers and ubiquitous digital technology. 

Parallel with large computers is the development of electronic calculators. In the early 
1960s (and before, of course), calculators were large, bulky, electro-mechanical devices 
largely used for office accounting. (The author's father had one in his medical office, which 
the author liked to play with as a toddler.) The author first experienced more advanced 
technology at the end of his senior year in high school, when several electronic devices— 
crude by modern standards—were bought by the school. They could do the basic operations 
plus compute trig and exponential functions, but were not programmable. (They may have 
had some small memory.) During the early 1970s, Hewlett-Packard and Texas Instruments 
began selling hand-held calculators with heretofore unheard of capabilities. The author 
distinctly remembers the first time he saw one, which occurred in the fall of 1972, when 
a physics professor at the University of Michigan pulled one out to do a particularly ugly 
computation he had just derived as part of a lecture on electromagnetism. The students— 
who barely had time to get out their slide rules before he had the answer—were very 
impressed. Within a very few years, scientific calculators were ubiquitous among students. 
They have continued to evolve, and now routinely include graphics and some symbolic 
computation capabilities. 

When the author was an undergraduate student in the early 1970s, a typical university 
computer system consisted of a single large "mainframe" computer which students and 
faculty usually accessed through a central "computer center." Programs were written 
on punched cards, which were read in by specialized devices. Some access through 
teletypewriter terminals existed. By the time the author was in graduate school in the 
late 1970s, punched card access was becoming obsolete, and teletypewriters were being 
replaced by video terminals. In contrast, modern college and university libraries usually 
have scores of desktop computers connected to a network of servers. Each of those 
individual desktop units is faster and more powerful than the mainframes on which the 
author first learned to program in the early 1970s. 

As new devices such as tablets, E-readers and smart phones continue to be developed 
and introduced, it is safe to assume that the digital age will continue to evolve around us. 
No doubt some future student will happen upon an old copy of this book, and marvel at the 
archaic tools we were working with in the early 21st Century! 

1.8 LITERATURE REVIEW 

There are a lot of textbooks in numerical analysis and numerical methods. Some, like [8], 
[9], and [16], are considered classics. A list, by no means exhaustive, of numerical analysis 
or numerical methods texts is given in the References. 

All of these books give decent treatments of the basic topics. Some are more mathemat-
ical than the others; some are designed for less well-prepared students. The books [2,4,19] 
are intended for a graduate student audience; [3, 5, 6, 7, 11, 15, 17, 18] are intended for 
an undergraduate audience. The presentation in this text has been heavily influenced by 
[4] and the earlier editions of [6], as well as by the author's experiences teaching at the 
University of Georgia and the University of Alabama in Huntsville. 
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An interesting and light-hearted collection of projects for a numerical methods course 
can be found in [14]. 

There exist more specialized books that treat only specific topics, such as the root-finding 
problem, or numerical integration, and so on. These will be discussed in the appropriate 
chapters. 
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CHAPTER 2 

A SURVEY OF SIMPLE METHODS AND 
TOOLS 

In this chapter we want to offer a few very simple examples of approximations, algorithms, 
and error estimates, partly because they will be useful in developing or implementing some 
of the methods presented in later chapters, and partly to ease our way into the subject 
material. What we want to do is to acclimate the student into the broad area of numerical 
computations without restricting ourselves to one small corner of the subject. In addition, 
we show how some of the simplest approximation techniques (difference methods for 
derivative approximation, linear interpolation, solution of tridiagonal systems) can be used 
as the basis for computational schemes in more involved settings (Euler's method for the 
initial value problem, the trapezoid rule for numerical integration, the approximate solution 
of two-point boundary value problems). The goal here is to introduce the reader to the basic 
ideas of numerical method and analysis by looking at simple techniques across a broad 
spectrum of problem areas. 

2.1 HORNER'S RULE AND NESTED MULTIPLICATION 

In Chapter 1 we devoted some time to the construction of polynomial approximations 
to given functions. It might be good if we discussed the best way to evaluate those 
approximations efficiently; hence this section. 

The most efficient way to evaluate a polynomial is by nested multiplication. If we have 

pn(x) = ao + αχχ + Ü2X2 H h αηχη, 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 4 3 
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then we factor out each power of x as far as it will go, thus getting 

pn(x) = aa + x(ai + x(a2 H h x(an-i + anx) · · · ) ) · 

Computation with the second form of the polynomial will take n + 1 multiplications and 
n additions. Computation with the first form will take the same amount of work, plus the 
cost of forming the powers a;2, a;3,..., xn. 

For example, we could write 

q(x) = l+x + 3x2 -6x3 

as 
q(x) = 1 + ζ (1+a: (3-6a : ) ) . 

An algorithmic form of nested multiplication can be written very simply, as the following 
pseudo-code illustrates: 

Algorithm 2.1 Horner's Rule for Polynomial Evaluation (pseudo 

! Assumes t h a t the polynomial co 
! are 
! px 

px 
for 

s tored in the array 
= value of polynomial 

of the code. 

= a(n) 
k = n-1 downto 0 

px = a(k) + px*x 
endfor 

ü(J ) . J 
upon 

e f f i c i e n t s 
=0 . .n . 
completion 

-code). 

This is known as Horner's rule. It can be easily modified to give the first derivative as 
well. Returning to our earlier notation and examples, we have 

p'n{x) = αι + 2a2x + 3d3a;2 + · · · + nanxn \ 

so that 

p'n(x) = ai + x(2a2 + x(3a3 -\ l·- x((n - 1)α„_ι + nanx)...)). 

In the specific case of q, we have 

q'(x) = 1 + (3 x 2)x + ( -6 x 3)a·2, 

which we write as 
q'(x) = 1 + . τ ( 6 - 18a:). 

'William George Homer (1786-1837) was born in Bristol, England, and spent much of his life as a schoolmaster 
in Bristol or, after 1809, in Bath. His paper on solving algebraic equations, which supposedly contains the 
algorithm we know as Horner's rule, was published in 1819, but it has been alleged that Homer's rule is, in fact, 
not covered there. He eventually published it in a separate paper in 1830, although it is now known that the Italian 
Ruffini had previously published a very similar idea. 
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Pseudo-code for the derivative is a modest change to the original algorithm. 

Algorithm 2.2 Horner's Rule for Polynomial Derivative Evaluation (pseudo-code). 

Assumes t h a t the polynomial coe f f i c i en t s 
are s tored in the array a ( j ) , j = 0 . . n . 
dp = value of de r iva t i ve upon completion 

dp = n*a(n) 
for k=n-l down to 1 

dp = k*a(k) + dp*x 
endfor 

The student should check that both programs perform as is asserted here. 
If the intermediate values in the computation of p{x) are saved, then the subsequent 

computation of the derivative can be done more cheaply. Suppose that we define the values 
bk, k — 1,2,.. . , n, according to 

bk — xbk-i + an-k, b0 = an, 

so that bn = p{x). Now define the values Cfc according to 

Cfc = xck-i + bk, c0 = b0. 

Then (note that the bk and Ck are functions of x) 

b'o = °> b'k = bk-i+ xb'k-i, 

and, in particular, 

Therefore, 

b[ = b0. 

c\ = xco + bi = xbo + b\ = xb\ +h = b'2, 

c2 = xc\ + b2 = xb'2 + &2 = b'3, 

and so on. In general, as can be established by an inductive proof, Ck = b'k+1. Therefore, 
since bn = p{x), it follows that cn_i = p'(x). 

So a more efficient algorithm might be the following. 
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Algorithm 2.3 A More Efficient Implementation of Homer's Rule (pseudo-code). 

! Assumes t h a t the polynomial coe f f i c i en t s 
! are s tored in the array a ( j ) , j = 0 . . n . 
! b(n) = value of polynomial upon completion 
! of the code. 

b(0) = a(n) 
for k = 1 to n 

b(k) = x*b(k-l) + a(n-k) 
endfor 

! c(n-l) = value of derivative upon completion 

! of the code 

c(0) = b(0) 

for k = 1 to n-1 

c(k) = x*c(k-l) + b(k) 
endfor 

Programming Hint: Be careful when writing Homer's rule for a polynomial which has 
some coefficients that are negative. It is best to simply store the coefficients as negative 
numbers rather than try to (correctly) distribute the negative signs throughout the nested 
multiplication. Thus, we write 

p{x) = 1 - 2x - x2 + x3 

as 
p{x) = 1 + x((-2) + x ( ( - l ) + x)). 

To do otherwise is to invite a lot of headache and potential error. 

Exercises: 

1. Write each of the following polynomials in nested form: 

(a) x3 + 3x + 2; 

(b) x6 + 2x4 + 4x2 + 1; 

(c) 5x6 + x5 + 3x4 + 3x3 + x2 + 1; 

(d) x2 + 5x + 6. 

2. Write each of the following polynomials in nested form, but this time take advantage 
of the fact that they involve only even powers of x to minimize the computations. 

(a) 1 + x2 + \x* + ±x6; 

(b) 1 - \x2 + ±x\ 

3. Write each of the following polynomials in nested form: 
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(a) 1 - x + x2 - x3; 

(b) 1 - x2 + | x 4 - \x6\ 

(c) 1 - x + \x2 - \xz - \xh. 

4. Write a computer code that takes a polynomial, denned by its coefficients, and 
evaluates that polynomial and its first derivative using Homer's rule. Test this code 
by applying it to each of the polynomials in Problem 1. 

5. Repeat the above, using the polynomials in Problem 2 as the test set. 

6. Repeat the above, using the polynomials in Problem 3 as the test set. 

7. Consider the polynomial 

p(x) = l + (a; - l) + I ( z - l)(x - 2) + l-{x - l)(x - 2)(x - 4). 

This can be written in "nested" form by factoring out each binomial term as far as it 
will go, thus: 

p(x) = 1 + (x - 1) ( l + (x - 2) Q + i ( x - 4) 

Write each of the following polynomials in this kind of nested form: 

(a) p{x) = 1 + \x - ±x(x - 3); 

(b) p{x) = - 1 + §(x - 1/2) - £ ( x - l/2)(x - 4) + \{x - l/2)(x - 4)(x - 2); 

(c) p(x) = 3 + \{x - 8) - ±{x - 8)(x - 3). 

8. Write a computer code that computes polynomial values using the type of nested 
form used in the previous problem, and test it on each of the polynomials in that 
problem. 

9. Write a computer code to do Homer's rule on a polynomial defined by its coefficients. 
Test it out by using the polynomials in the previous problems. Verify that the same 
values are obtained when Homer's rule is used as for a naive evaluation. 

10. Write out the Taylor polynomial of degree 5 for approximating the exponential 
function, using xo = 0, and the Homer form. Repeat for the degree 5 Taylor 
approximation to the sine function. (Be sure to take advantage of the fact that the 
Taylor expansion to the sine uses only odd powers.) 

11. For each function in Problem 11 of §1.1, write the polynomial approximation in 
Homer form, and use this as the basis for a computer program that approximates the 
function. Compare the accuracy you actually achieve (based on the built-in intrinsic 
functions on your computer) to that which was theoretically established. Be sure to 
check that the required accuracy is achieved over the entire interval in question. 

12. Repeat the above, but this time compare the accuracy of the derivative approximation 
constructed by taking the derivative of the approximating polynomial. Be sure to use 
the derivative form of Homer's rule to evaluate the polynomial. 

< · · · > 

■ 
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2.2 DIFFERENCE APPROXIMATIONS TO THE DERIVATIVE 

One of the simplest uses of Taylor's Theorem as a means of constructing approximations 
involves the use of difference quotients to approximate the derivative of a known function 
/ . Intuitively, this is obvious from the definition of the derivative: 

fix) = Um ̂  + hl-W => f{x) « / ( ' + *)-/('). 
h-to h h 

The challenge for us is to make this vague statement more precise (just how accurate is this 
approximation, in terms of the parameter hi) and to see if anything better (more accurate) 
can be found. 

We determine the accuracy of the approximation by a very simple computation involving 
Taylor's Theorem: 

/ ( x ) _ / ( * + >.)-/(*) . r w _ V W ± ^ T f e i ) _ _ i W 6 A ) i 

so that we have 

/ ' (*) - / ( ζ + ^ " / ( 3 ; ) = -\hf"{^h) = 0{h). (2.1) 

Thus the error is roughly proportional to the parameter h. 
Can we do better? Yes, and the improvement does not take a lot of work. Consider the 

two Taylor expansions: 

f(x + h) = f{x) + hf'(x) + \h2f"{x) + ^ 3 / ' " ( 6 ) (2-2) 

and 

f{x -h) = f{x) - hf'{x) + \h2f"{x) - ^Λ 3 / " ' (6 ) . (2.3) 

Now subtract these to get 

f{x + h)- fix -h)= 2hf'ix) + jU3/'"(£i) + \ά3Πξ2). 

We can solve this for / ' (x) to get 

= fix+h)-fjx-h) _ iar(ft)+r(fa) 
J K ' 2h 6 2 

or, using the Discrete Average Value Theorem, 

f \x) = 2h 6 ^x<h>' (2·5^ 

where ξχ^ depends on both x and h. It is worthwhile to compare the two approximations 
and error estimates. We note first that the two approximations cost about the same to 
compute: Both require two function evaluations and only a handful of other arithmetic 
operations. Since the function is arbitrary, its cost of computation might be quite large, so 
we view that as the most significant part of the cost. However, the error estimates are quite 
different. The first approximation has an error that depends on / " and is proportional to h; 
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the second approximation depends on / " ' and is proportional to ft2. Clearly, we will want 
to use ft small to get the best accuracy, and thus the second estimate will tend to be better, 
since ft2 < ft will tend to be more important than the different sizes of / " and / ' " . 

(Note: The approximation f'(x) « f{x+h)~f\x) \s usually called the forward difference 

approximation, while f'{x) « ^ 2V ' s m e centra^ difference approximation. The 
reader is encouraged to think about why these names are appropriate.) 

■ EXAMPLE 2.1 

Consider, for example, the task of approximating the derivative of f(x) = ex at 
x = 1. The exact value, of course, is / ' (x) = ex =>■ / ' ( l ) = e. Using ft = 1/8 and 
the one-sided difference (2.1) we get 

pi .125 _ p 

/ , ( 1 ) * 0.125 = 2 - 8 9 5 4 8 0 1 6 4 ' 

while the same value of ft with the centered difference (2.5) yields 

pi .125 _ „0.875 

/ ' ( I ) « 0^5 = 2.72536622. 

The error in the first approximation is —0.177..., but the error in the second approxi-
mation is only -7.084... x 10 - 3 . 
To further illustrate these differences in accuracy, let's continue computing with the 

same example, but take more and smaller values of ft. Let 

f(l + h)-f(l) 
ß l ( « ) = 7l 

and 
f(l + h)-f(l-h) 

D2{k) = 2ft ' 

with the corresponding errors 

E1(h) = f'(l)-D1(h) 

and 
E2(h) = / ' ( l ) - D2{h). 

Then Table 2.1 gives the results of the computation using a sequence of decreasing values 
of ft. 

Several comments might be in order here. Note that the error E2 went down by about 
a factor of 4 each time we cut ft in half, whereas the error E\ only went down by a factor 
of 2. This, of course, follows directly from the error estimates for both methods. The 
importance here is that we learn that the error in the second approximation goes down at a 
faster rate than the error in the first one. 

However, if we continue the sequence of computations, something disturbing happens. 
Look at Table 2.2, in which we keep going with smaller and smaller values of ft for D2(h). 
The last column gives the ratio of errors; the error estimate asserts that this should be nearly 
4, yet in the last two entries it is clearly not even close to 4, and in fact the error actually 
begins to increase. What is going on here? 
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Table 2.1 Example of derivative approximation to f(x) = ex at x = 1. 

ft-1 

2 
4 
8 

16 
32 
64 

128 

A (ft) 
3.526814461 
3.088244438 
2.895481110 
2.805027008 
2.761199951 
2.739639282 
2.728942871 

E1{h) = f'(l)-D1(h) 
-0.8085327148e+00 
-0.3699626923e+00 
-0.1771993637e+00 
-0.8674526215e-01 
-0.4291820526e-01 
-0.2135753632e-01 
-0.1066112518e-01 

D2(h) 
2.832967758 
2.746685505 
2.725366592 
2.720052719 
2.718723297 
2.718391418 
2.718307495 

E2{h) = / ' ( l ) - D2(h) 
-0.1146860123e+ 00 
-0.2840375900e-01 
-0.7084846497e - 02 
-0.1770973206e-02 
-0.4415512085e-03 
-0.1096725464e-03 
-0.2574920654e - 04 

Table 2.2 Illustration of rounding error in derivative approximations, using f(x) = ex, 
x = 1. 

ft-1 

2 
4 
8 

16 
32 
64 

128 
256 
512 

D2[h) 
2.832967758 
2.746685505 
2.725366592 
2.720052719 
2.718723297 
2.718391418 
2.718307495 
2.718292236 
2.718261719 

E2(h)=f'(l)-D2(h) 
-0.1146860123e+00 
-0.2840375900e - 01 
-0.7084846497e - 02 
-0.1770973206e-02 
-0.4415512085e-03 
-0.1096725464e-03 
-0.2574920654e - 04 
-0.1049041748e-04 
0.2002716064e-04 

E2(h)/E2(h/2) 
N/A 

4.038 
4.009 
4.001 
4.011 
4.026 
4.259 
2.455 

-0.524 

(Note: The use of "N/A" in a table entry in anywhere in this book means that the 
particular data element does not exist and should simply be ignored.) 

Our error estimates, made above, completely ignored the issue of rounding error. This is 
not unusual; most of our error estimates will be made in this fashion, concentrating on the 
mathematical error instead of the rounding error. But we already know that the rounding 
error can intrude on a computation, and this is our first example of that. 

We can illustrate what is going on here by a little bit of abstraction. Let f(x) denote 
the function computation as actually done on the computer, that is, the one polluted with 
rounding error. Define e(x) = f(x) — f(x) as the error between the function as computed 
in infinite precision and as actually computed on the machine. This error will be small, but 
it won't be zero. The approximate derivative that we compute is constructed with / , not / , 
so we define 

- f(x + h)-f(x-h) 
°2{h) = 2ft 

and we now want to bound the error f'(x) — D2(h). Note that this is the error between the 
quantity we want to compute [/ '(l)] and the quantity we can actually compute [D2(h)]. 
We have 

f(,A h ih\ fi \ / ( · τ + ft) - f(x - ft) 
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which we write as 

f(x) - D2(h) , , / x _ f(x+h)-f(x-h) , f(x+h)-f{x-h) _ f(x+h)-f(x-h) 
J W 2h " r 2h 1h 

f(x+h)-f(x-h)-f(x+h)+f(x-h) 
2/i 

2/i 

-^Γ"(ξχΛ) 
1, 

v v ' 

error due to approximation 

+ 
+ 

e(x + h) — e(x — h) 
2h ' 

> v ' 

error due to rounding 

Generally, the numerator in the rounding-error fraction will not go to zero as h —» 0, since 
we will always have some (small) amount of rounding error present. (Bear in mind that 
the error due to rounding can be assumed to include the error in doing the subtraction 
f(x + h) — f(x — h), which, as we saw in §1.3, will be prone to large amounts of error as 
h gets smaller.) But since we are dividing the rounding error by 2h, we do expect that this 
term will begin to grow as h gets small, and this in fact is what is observed in Table 2.2. 

Figure 2.1 shows a plot of log10 |/ '(1) - £>2(/i)l versus \/h for h ranging from \ all 
the way to 1/2048. Note that for h much smaller than 0.01 (approximately), the plot 
ceases to show a decrease in the error; instead the error oscillates wildly about, creating a 
"cloud" rather than a smooth curve. Note also that this cloud is trending slightly upwards, 
meaning that the error is acually beginning to increase. Smaller values of h would only 
have continued to confirm this trend. 

Figure 2.1 Illustration of rounding error in approximating derivatives. 

To confirm that rounding error is the culprit, we can repeat the calculation at higher 
precision. The data for Tables 2.1 and 2.2 were produced using computer code in single 
precision (about six or seven decimal digits of accuracy). If we repeat the computations for 
Table 2.2 in double precision (about 15 decimal digits), we get the results shown in Table 
2.3. Note that we can go all the way down to h — 2~15 without rounding error seriously 
affecting the computation, although it appears from the last two entries that, even at this 
level of precision, the effects of rounding error are beginning to become apparent. Figure 
2.2 shows the same plot as in Figure 2.1, except this time we used the double-precision 
data. Note the absence of the cloud effect and the steady decrease of the error. 
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Figure 2.2 Double-precision version of Figure 2.1. 

Table 2.3 Illustration of rounding error in derivative approximations, using f(x) = ex, 
x = 1 (double-precision). 

h-1 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 

D2(h) 
2.832967800 
2.746685882 
2.725366220 
2.720051889 
2.718724279 
2.718392437 
2.718309480 
2.718288741 
2.718283557 
2.718282261 
2.718281936 
2.718281855 
2.718281835 
2.718281830 
2.718281829 

E2(h) = f'(l)-D2(h) 
-0.1146859712e+00 
-0.2840405324e-01 
-0.7084391345e-02 
-0.1770060412e-02 
-0.4424502865e - 03 
-0.1106085209e-03 
-0.2765187706e-04 
-0.6912953448e-05 
-0.1728237360e-05 
-0.4320591627e-06 
-0.1080143859e-06 
-0.2700387380e - 07 
-0.6751245785e-08 
-0.1688998275e-08 
-0.4193436709e - 09 

E2{h)/E2{h/2) 
N/A 

4.038 
4.009 
4.002 
4.001 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
3.997 
4.028 

More involved combinations of f(x±h) can be used to construct more accurate approxi-
mations to / ' and higher-order derivatives. Problem 12 asks you to derive an approximation 
to the second derivative that will be used in §2.7 to construct approximate solutions to certain 
differential equation problems. 

It might seem silly to use these methods to compute approximate derivative values for 
the exponential function—after all, we can compute that derivative rather easily by basic 
calculus—but we need to keep in mind that we won't always have a neat and tidy formula 
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for / that allows us to compute / ' directly. The function / might be the result of a lengthy 
computation for which a simple formula is not really available. In addition, we can use 
formulas such as those developed in this section to compute (approximate) derivative values 
for functions denned only as a table of values. Finally, we can use the formulas derived in 
this section to replace the derivative in other equations in order to produce approximation 
schemes for other problems. The next section on Euler's method is just one example of 
this. 

Exercises: 

1. Use the methods of this section to show that 

f{x) = m-{{x-h)+0(h). 
h 

2. Compute, by hand, approximations to / ' ( l ) for each of the following functions, 
using h — 1/16 and each of the derivative approximations contained in (2.1) and 
(2.5). 

(a) f(x) = \ / Ï T T ; 

(b) f{x) = arctanx; 

(c) f(x) = βΐηπα;; 

(d) f(x) = e~x; 

(e) f(x) = \nx. 

3. Write a computer program that uses the same derivative approximations as in the 
previous problem to approximate the first derivative at a; = 1 foreach of the following 
functions, using / i _ 1 = 4,8,16,32. Verify that the predicted theoretical accuracy is 
obtained—in other words, show that your results are consistent with the analysis in 
this section. 

(a) f(x) = V ^ T T ; 

(b) f(x) = arctanrr; 

(c) f(x) = βίηπζ. 

(d) f(x) = e-*; 

(e) f{x) = l n x . 

4. Use the approximations from this section to fill in approximations to the missing 
values in Table 2.4. 

5. Use the error estimate (2.5) for the centered difference approximation to the first 
derivative to prove that this approximation will be exact for any quadratic polynomial. 

6. Find coefficients A, B, and C so that 

(a) f'(x) = Af(x) + Bf(x + h)+ Cf(x + 2h) + 0(h2); 

(b) f'(x) = Af(x) + Bf(x -h)+ Cf(x - 2h) + 0(h2). 

Hint: Use Taylor's Theorem. 
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Table 2.4 Table for Problem 4. 
X 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

/(*) 
1.0000000000 
0.9513507699 
0.9181687424 
0.8974706963 
0.8872638175 
0.8862269255 
0.8935153493 
0.9086387329 
0.9313837710 
0.9617658319 
1.0000000000 

/'(*) 

7. Fill in the data from Problem 4 using methods that are ö(h2) at each point. Hint: 
See the previous problem. 

8. Use Taylor's Theorem to show that the approximation 

, , , . 8f(x + h) - 8/(x - h) - f(x + 2Λ) + f[x - 2Λ) 
Î{X)~ üh 

is 0(h4). 

9. Use the derivative approximation from Problem 8 to approximate / ' ( l ) for the same 
functions as in Problem 3. Verify that the expected rate of decrease is observed for 
the error. 

10. Use the derivative approximation from Problem 8 to fill in as much as possible of the 
table in Problem 4. 

11. Let f(x) = arctan x. Use the derivative approximation from Problem 8 to approxi-
mate / ' ( j7r) using h~l = 2,4,8, Try to take h small enough that the rounding 
error effect begins to dominate the mathematical error. For what value of h does this 
begin to occur? (You may have to restrict yourself to working in single precision.) 

12. Use Taylor expansions for f(x ± h) to derive an ö(h2) accurate approximation to 
/ " using f{x) and f(x ± h). Provide all the details of the error estimate. Hint: Go 
out as far as the fourth derivative term, and then add the two expansions. 

13. Let h > 0 and η > 0 be given, where η = Oh, for 0 < Θ < 1. Let / be some 
smooth function. Use Taylor expansions for f(x + h) and f(x — η) in terms of / 
and its derivatives at x in order to construct an approximation to f'{x) that depends 
on f(x + h), f{x), and f(x - 77), and which is 0(h2) accurate. Check your work 
by verifying that for Θ = 1 => η = h you get the same results as those in the text. 

14. Write a computer program to test the approximation to the second derivative from 
Problem 12 by applying it to estimate / " ( l ) for each of the following functions, 
using Λ- 1 =4,8 ,16,32. Verify that the predicted theoretical accuracy is obtained. 
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(a) / (x) = e"x; 

(b) f(x) = οοβπχ; 

(c) f(x) = VI + x; 

(d) f{x) = lnx. 

15. Define the following function: 

/ (x) = ln(e^x S + 1 3ίη(πχ) + ίΆηπχ). 

Compute values of / ' over the range [0, | ] using two methods: 

(a) Using the centered difference formula from (2.5); 

(b) Using ordinary calculus to find the formula for / ' . 

Comment. 

16. Let / (x) = ex, and consider the problem of approximating / ' ( l ) , as in the text. 
Let D\ (h) be the difference approximation in (2.1). Using the appropriate values in 
Table 2.1, compute the new approximations 

Δι(Λ) = 2£ι(Λ)-£>ι(2Λ); 

and compare these values to the exact derivative value. Are they more or less accurate 
than the corresponding values of D\l Try to deduce, from your calculations, how 
the error depends on h. 

17. Repeat the above idea for / (x) = arctan(x), x = 1 (but this time you will have to 
compute the original D\ (h) values). 

18. By keeping more terms in the Taylor expansion for f(x + h), show that the error in 
the derivative approximation (2.1) can be written as 

n x ) _ (/(* + *)-/(«)) = _i_hr{x) _ ^ r { x ) _.... ( 2 . 6 ) 

Use this to construct a derivative approximation involving / (x) , / ( x + h), and 
f(x + 2h) that is 0(h2) accurate. Hint: Use (2.6) to write down the error in the 
approximation 

_ / (x + 2/i) - / (x) 
; [ ' ~ 2/i 

and combine the two error expansions so that the terms that are ö{h) are eliminated. 

19. Apply the method derived above to the list of functions in Problem 3, and confirm 
that the method is as accurate in practice as is claimed. 

20. Let / (x) = ex, and consider the problem of approximating / ' ( l ) , as in the text. 
Let D2(h) be the difference approximation in (2.5). Using the appropriate values in 
Table 2.1, compute the new approximations 

Δ2(Λ) = (4D2(h) - D2(2h))/3; 
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and compare these values to the exact derivative value. Are they more or less accurate 
that the corresponding values of D-p. Try to deduce, from your calculations, how the 
error depends on h. 

21. Repeat the above idea for f(x) = arctan(.x), x = 1 (but this time you will have to 
compute the original D2O1) values). 

22. The same ideas as in Problem 18 can be applied to the centered difference approxi-
mation (2.5). Show that in this case the error satisfies 

_ f(X + h) f(X-h) = _\h2flll{) _ _}_ΗΑΓ,{) _ ( 2 7 ) 

J \ 1 2h 6 J \ ) 1 2 0 J \ ) 

Use this to construct a derivative approximation involving f(x ± h), and f(x ± 2/i) 
that is ö(h4) accurate. 

23. Apply the method derived above to the list of functions in Problem 3, and confirm 
that the method is as accurate in practice as is claimed. 

<i · · · t> 

2.3 APPLICATION: EULER'S METHOD FOR INITIAL VALUE PROBLEMS 

One immediate application of difference methods for approximating derivatives is the 
approximate solution of initial value problems for ordinary differential equations. The 
usual general form of such a problem is 

y' = f{t,y), y(t0) = yo, (2.8) 

where / is a known function of t and y, and io and yo are given values. The object in 
solving this problem is to find y as a function of i; in the usual sophomore-level course in 
ordinary differential equations, the student learns a number of techniques for analytically 
solving (2.8), based on assuming any one of a number of special forms for / . Here we will 
use one of our derivative approximations to construct a method for approximately solving 
(2.8). 

We use (2.1) to replace the derivative in (2.8): 

y(t + h) - y(t) „xx 1, «,. x 
jt = f(t,y(t)) + -hy (i/J, 

which can be simplified slightly to become 

y(t + h) = y(t) + hf(t, y(t)) + \h2y"{th). (2.9) 

This suggests the following numerical method: 

1. Define a sequence of t values (called a grid) according to tn = to + nh, where Ii is 
a set parameter (called the mesh spacing or grid size; we will encounter this kind of 
thing often in later topics). 
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2. Compute the values yn from 2/0 and the t grid values, according to 

yn+i=yn + hf(tn,yn). (2.10) 

Note that this follows from (2.9) by dropping the error term and adjusting the notation 
slightly. 

Equation (2.10) defines what is known as Euler's method2 for solving (approximately) 
initial value problems for ordinary differential equations. Figure 2.3 shows what is hap-
pening, geometrically. 

An example might be in order at this point. 

■ EXAMPLE 2.2 

Consider the very simple initial value problem 

y' = -y + smt, y(o) = i. 

This has exact solution y(t) = | e _ i + | ( s in i — cosi), found by using the kinds of 
methods taught in the usual ODE course. If we apply Euler's method to this, using 
h= j , we get the following results. 
Step 1: We have h = \, so ii = h = \ and 2/0 is given as 1. Then, 

1 3 
2/1 =yo + hf(t0,yo) = 1 + 4 ( _ 1 +sin0) = - . 

Thus, 2/(1/4) ~ 0.75, and the error in this approximation is e\ = y(l/4) — yi = 
0.8074469434-0.75 = 0.0574469434. 
Step 2: We have i2 = 2/i = \ and 2/1 = 0.75 from the Step 1. Then, 

2/2=2/1+ Λ/(ίι, 2/1 ) = 3/4 + ^ f - 3 / 4 + sin J J = 0.6243509898. 

Thus, 2/(1/2) « 0.6243509898, and the error in this approximation is e-i = 
2/(1/2) - 2/2 = 0.7107174779 - 0.6243509898 = 0.0863664881. 

2Leonhard Euler (1707-1783) was one of the two greatest mathematicians of the post-Newton age, the other 

being Carl Friedrich Gauss. Euler was born in Basel, Switzerland, and educated at the University of Basel, at first 
with an eye toward following in his father's career as a Lutheran minister. With the assistance of his tutor and 
mentor Johann Bernoulli, however, he was able to convince his father to let him pursue a career in mathematics. 
In 1727 Euler joined the St. Petersburg Academy of Sciences in Russia, where he remained until 1741, at which 
time he joined the Berlin Academy of Sciences at the invitation of the Prussian king, Frederick the Great. After 
some disputes with the monarch, Euler left Berlin in 1766 and returned to St. Petersburg. 

Euler's contributions to mathematics are almost unmatched in their breadth. He published an enormous amount 
of material, in a wide variety of areas, including infinite series, special functions (a field of study that he practically 
invented), number theory, complex variables, and hydrodynamics. His name is attached to countless results in 
mathematics, from Euler's formula relating the trigonometric functions to complex exponentials, to the Euler-
Cauchy differential equations, to Euler's formula relating the number of sides, edges, and vertices in a polyhedron. 
His influence on notation is still felt today, as it was Euler who introduced e, π, and i = y/^ï into the literature 
as standard symbols, in addition to the use of Σ for denoting summations, and cos and sin for the cosine and sine 
of an angle. Euler's collected works, published between 1911 and 1975, encompass 72 volumes! 

The method for numerically solving differential equations that bears his name was apparently first presented 
in the period 1768-1769, in the two-volume work known as Institutiones calculi integralis. The theoretical basis 
for the convergence of the method was laid down by Augustin Louis Cauchy in the mid-1800s and by Rudolf 
Lipschitz in the late 1800s. 
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Figure 2.3 Geometric derivation of Euler's method. 

If we instead use h = 1/8 and continue the computation out to t = 1, then we 
get Table 2.5. 

If we cut the mesh size in half, again, to h = 1/16, then we get the results in Table 2.6. 
Note that for h — 1/8, the maximum error is given by 4.425 x 10~2, whereas for h = 1/16 
it is given by 2.140 x 10~2. This suggests (but does not prove) that Euler's method is 0(h) 
accurate, something we will prove in Chapter 6, where we undertake a more wide-ranging 
study of numerical methods for ordinary differential equations. This is adequate but not 
outstanding accuracy; we would prefer a method that was 0(hp) accurate for p > 2. 

Figure 2.4 shows the exact solution (solid line), the approximate solution computed with 
h = 1/8 (denoted by the asterisks), and the approximate solution computed with h — 1/16 
(denoted by the plus signs). Note that the plus signs (those values computed with a smaller 
mesh3) do appear to be more accurate. 

Writing a computer code for Euler's method is not difficult. If we assume that h, the 
mesh size, is given, along with N, the number of steps to take, then the code will look 
something like the code given in Algorithm 2.4. 

3 In several sections of this book we will have reason to talk about "mesh spacing" or "grid sizes." Different folks 

have different terminological preferences here, but the fact is that numerical analysts use the terms mesh size and 
grid size almost interchangeably. 
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Table 2.5 Euler's method applied to y' + y = sin t,h = 1/8. 

tfc 
0.00000 
0.12500 
0.25000 
0.37500 
0.50000 
0.62500 
0.75000 
0.87500 
1.00000 

Vk 
0.1000000000e + 01 
0.8750000000e + 00 
0.7812093417e + 00 
0.7144836689e+00 
0.6709572764e + 00 
0.6470158092e + 00 
0.6392759921e+00 
0.6445713381e + 00 
0.6599428586e + 00 

Error =y{tk) -yk 
0.0000000000e+00 
0.1498388695e-01 
0.2623760171e-01 
0.3433270290e - 01 
0.3976020153e - 01 
0.4294341032e - 01 
0.4424878254e - 01 
0.4399501342e - 01 
0.4246064258e - 01 

Table 2.6 Euler's method applied to y' + y = sin t, h = 1/16. 

tfc 
0.00000 
0.06250 
0.12500 
0.18750 
0.25000 
0.31250 
0.37500 
0.43750 
0.50000 
0.56250 
0.62500 
0.68750 
0.75000 
0.81250 
0.87500 
0.93750 
1.00000 

Vk 
0.1000000000e+01 
0.9375000000e + 00 
0.8828099574e+00 
0.8354265059e+00 
0.7948625553e+00 
0.7606463930e + 00 
0.7323209006e+00 
0.7094428774e+00 
0.6915824637e + 00 
0.6783226558e + 00 
0.6692589069e + 00 
0.6639988048e+00 
0.6621618220e+00 
0.6633791306e + 00 
0.6672934759e+00 
0.6735591026e+00 
0.6818417279e+00 

Error = y(tk) - Vk 
0.0000000000e + 00 
0.3825497791e - 02 
0.7173929590e - 02 
0.1008216323e-01 
0.1258438808e - 01 
0.1471233364e-01 
0.1649547113e-01 
0.1796119911e-01 
0.1913501427e-01 
0.2004066841e - 01 
0.2070031255e-01 
0.2113462907e-01 
0.2136295267e-01 
0.2140338100e-01 
0.2127287562e-01 
0.2098735402e - 01 
0.2056177329e - 01 

Algorithm 2.4 Euler's Method 

input h, 
ex te rna l 
y = yo 
t = to 
for k=l 

yn 
y = 
t = 

endfor 

N, yO, tO 
f 

t o N do 
= y + h* f ( t , y ) 

yn 
t + h 

(pseudo-code). 
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Figure 2.4 Exact and approximate solutions to y + y = sin ί; asterisks denote the approximate 
solution for h = 1/8, and plus signs denote the approximate solution for h = 1/16. 

Programming Hints: (1) Note that the pseudo-code assumes that there is some externally 
written subprogram or function that computes the values of f(t, y). (2) When writing a 
code for the exercises, be very sure that you compare yn to the exact solution at t — tn. It 
is very easy to accidentally write the program so that you are comparing yn to y(tn+\). 

Exercises: 

1. Use Euler's method with h = 0.25 to compute approximate solution values for the 
initial value problem 

j / ' = sin(i + y), 1/(0) = 1. 

You should get 2/4 = 1.851566895 (be sure that your calculator is set in radians). 

2. Repeat the above with h = 0.20. What value do you now get for y5 « 2/(1)? 

3. Repeat the above with h = 0.125. What value do you now get for yg « 2/(1)? 

4. Use Euler's method with h = 0.25 to compute approximate solution values for 

y' = el-y, y(o) = - 1 . 

What approximate value do you get for y(l) = 0.7353256638? 

5. Repeat the above with h = 0.20. What value do you now get for y5 « 2/(1)? 

6. Repeat the above with h = 0.125. What value do you now get for y$ ~ 2/(1)? 

7. Use Euler's method with h = 0.0625 to compute approximate solution values over 
the interval 0 < t < 1 for the initial value problem 

y' = t-y, 2/(0) = 2, 
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which has exact solution y(t) = 3e l + t — 1. Plot your approximate solution as a 
function of t, and plot the error as a function of t. 

8. Repeat the above for the equation 

v' = é-y, »(o) = - i , 

which has exact solution y = ln(e* — 1 + e _ 1 ) . 

9. Repeat the above for the equation 

y' + y = sint, 2/(0) = —1, 

which has exact solution y = (cost + sini — e _ t ) /2 . 

10. Use Euler's method to compute approximate solutions to each of the initial value 
problems below, using h~l = 2,4,8,16. Compute the maximum error over the 
interval [0,1] for each value of h. Plot your approximate solutions for the h = 1/16 
case. Hint: Verify that your code works by using it to reproduce the results given for 
the examples in the text. 

(a) yf + 4y = 1, y(0) = 1; y(t) = \(3β~^ + 1); 

(b) y' = -ylny, j/(0) = 3; y(t) = e ( l n 3>e"\ 

(c) y' = t-y, 2/(0) = 2; y(i) = 3e"* + t - 1. 

11. Consider the approximate values in Tables 2.5 and 2.6. Let y | denote the approximate 
values for h = 1/8, and yl6 denote the approximate values for h = 1/16. Note that 

yl « y(k/8) 

and 
y\t « y(2fc/16) = y(k/8) « y8k; 

thus y\ and y ^ a r e D O m approximations to the same value. Compute the set of new 
approximations 

«fe = 2y2fc - vl 
and compare these to the corresponding exact solution values. Are they better or 
worse as an approximation? 

12. Apply the basic idea from the previous problem to the approximation of solutions to 

y' = ê - \ y(0) = - l , 

which has exact solution y — ln(e' — 1 + e_ 1) . 

13. Assume that the function / satisfies 

Ι/(ί , ι / )- / (Μ)Ι<ΑΊι/-*Ι 
for some constant K. Use this and (2.9)-(2.10) to show that the error |y(in+i) — yn+\ \ 
satisfies the recursion 

\y{tn+i) - yn+i\ < (1 + Kh)\y{tn) - yn\ + -h2Y2 

where 
Y2=max\y"{t)\. 

< · · · > 
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2.4 LINEAR INTERPOLATION 

Before hand calculators became a commonplace tool, high school algebra students were 
taught how to estimate intermediate values for tables of log and trig functions, etc., by a 
process known as interpolation. Even though this particular application is no longer as 
important as it once was, interpolation is still an important tool in computational mathe-
matics. For example, almost all graphs produced by computers are actually the result of 
something called piecewise linear interpolation in which the machine draws a very large 
number of very small straight lines to represent the curve. 

Given a set of data points Xk, typically called nodes, we say that the function p interpo-
lates the function / at these nodes if p(xk) = f(xk), for all k. Sometimes we only have 
one function, p, and a set of function values yk\ in this case we say that p interpolates the 
data if p(xk ) = Vk. for all k. In the most common kind of interpolation, the function p (the 
interpolant) is a polynomial. Usually, we are most interested in the extent to which p « / 
or the extent to which p represents the data. 

The interpolation problem gets a full treatment in Chapter 4; here we want to consider 
only the special case of linear interpolation, by which we mean using a straight line to 
approximate a given function. Since it only takes two points to determine a straight line, we 
assume that we are given two nodes xo and χχ, and a function, / . Since we want to find the 
equation of a straight line that passes through the two points (xo,f(xo)) and (x i , / (x i ) ) , 
it is not difficult to show that 

Plix) = ?l^Lf{xo) + ^ ^ f { x i ) (2.11) 
Xl — Xo Xi — Xo 

is what we are looking for. The student should confirm that the interpolatory conditions 
are satisfied, i.e., thatpi(xj) = / (x , ) , i = 0,1. 

Figure 2.5 shows an example of a linear interpolant to the exponential function using 
the two points xo = 0 and xi = 1. Clearly, the approximation is not extremely accurate, 
but if the nodes were closer together then it might be more accurate, at least between the 
nodes. 

Figure 2.5 Linear interpolation to the exponential function on [0,1]. 
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Just how accurate is linear interpolation? We can investigate this using not much more 
than Rolle's Theorem.4 Define 

w(x Ï 
E(x) = f{x)-pi{x), w(x) = {x-x0){x-x1), G{x) = E{x)-^-E(t), 

where t is some fixed value in (xo, XI) (i.e., x0 < t < xi). (The point t can actually be 
anywhere, but this restriction is usually the case.) Note that 

G(xo) = 0, G ( x i ) = 0 , G(i) = 0. 

Then Rolle's Theorem states that there exists a point 770 between xo and t, such that 
G'(i7o) = 0, and similarly, a point 771 between xi and t such that G'(r/i) = 0. But now we 
can apply Rolle's Theorem to G\ and assert that there exists a point ξ between 770 and 771, 
suchthatG"(O = 0. But 

G"(x)=f"(x)--^E(t), 

so that 

and we finally have 

G"(O = 0 = > / " ( O - ^ B ( i ) = 0; 

/ ( t ) - pi(t) = i ( i - x0)(i - χ ι ) / " (ξ) , (2.12) 

for any point t € [xo, xi]. The example plot given in Figure 2.5 shows clearly that the error 
in the approximation will grow rapidly outside the interval [xo, xi], so we will confine our 
efforts at getting an upper bound to the error on that interval. Taking absolute values, and 
assuming the worst case for the second derivative term (since we can't do anything else 
with it), 

| / ( x ) - P l ( x ) | < i | ( x - x 0 ) ( x - x i ) | max | /"( t ) | , 
Z XQ<t<Xi 

< J f max | ( ί - χ 0 ) ( ί - χ ι ) | ) ( max \f"(t)\) , 

so the upper bound on the error depends on our obtaining the maximum of the function 

g(x) = \(x - x0)(x - xi) | = (xi - x)(x - x0). 

Since g(xo) = <?(xi) = 0, the Extreme Value Theorem says that the maximum value of 
g on the interval [χο,Χι] will be found at a critical point. Thus we apply some ordinary 
calculus to get 

g'{x) = xi — x - x + xo = (xo + xi) - 2x, 

which implies that the critical point is 

Xc = - ( X o + X l ) , 

4The student should recall that Rolle's Theorem is a special case of the Mean Value Theorem in which f(a) = 

f(b), thus, there exists ξ such that / ' (£ ) = 0. Michel Rolle (1652-1719), born in France, was largely self-taught, 
and supported himself as an assistant to several attorneys, then as a scribe when he moved to Paris in 1675. Rolle's 
Theorem first appeared in 1692. 
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i.e., the midpoint of the interval. The maximum value of the function is then given by 

9(xc) = T ( Z I - x0)2, 

giving us, finally, that our error is bounded according to 

\/(χ)-Ρι(χ)\<\(χι-χ0)2( max \f"(x)\) . 

We can summarize this as a theorem. 

(2.13) 

Theorem 2.1 (Linear Interpolation Error) Let f e C2([a:o,zi]) and let p\{x) be the 
linear polynomial that interpolates f at x0 and x\. Then, for all x € [XQ, X{\, 

| / ( a ; ) - p i ( a ; ) | < - | ( a ; - a ; o ) ( x - X i ) | max \f"{x)\ < -(an - x0)2 max \f"{x)\. 
Z XQ<X<X\ O Xo<X<Xl 

Let's now use this to bound the error in an old-time application, estimating intermediate 
values from tables of data. 

■ EXAMPLE 2.3 

Recall the error function 

2 fx _ 2 
erf(x) = - = / e _ t dt. 

νπ Jo 

Table 2.7 gives values of the erf (a;) in increments of 0.1 over the interval [0,1]. 

Table 2.7 Table of erf (x) values. 
X 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

erf(x) 
0.00000000000000 
0.11246291601828 
0.22270258921048 
0.32862675945913 
0.42839235504667 
0.52049987781305 
0.60385609084793 
0.67780119383742 
0.74210096470766 
0.79690821242283 
0.84270079294971 

Suppose that we need to know erf(0.14); then we can interpolate using the values at 
xo — 0.1 and xi — 0.2. The polynomial becomes 

Pl(x) = -2 X (0.11246291601828)+ X Λ (0.22270258921048) 
0.1 0.1 

so that 

Pl(0.14) = ^(0.11246291601828)+^(0.22270258921048) 

= 0.15655878529516« erf(0.14). 
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We can bound the error in this approximation using Theorem 2.1. We have 

erf (i) = 4 = e " * 2 =► erf" (a;) = - ^ L e " * 2 ; 
ν/π -ν/π 

a crude upper bound on the interval [0.1,0.2] is 

|erf"(x)| < i i i £ ^ e - o i 2 = 0.4468606427, 
V71" 

thus the error is bounded above by 

|erf(0.14) -pi(0 .14) | < ^r(O.l)2 x 0.4468606427 = 5.585758034 x ΚΓ 4 . 
8 

Similarly, we get that 

erf(0.72) « 0.69066114801147 

with an error that is bounded by 1.38254972 x 10 - 3 . 
A common and related technique for approximating a curve is to use piecewise linear 

interpolation, in which we break up the interval of interest into subintervals and then use a 
different linear interpolant on each subinterval. The effect is to approximate the curve by 
a set of connected straight lines. 

■ EXAMPLE 2.4 

Consider the problem of constructing a piecewise linear approximation to / (x) = 
log2(a;) using the nodes | , | , 1. We construct the separate linear polynomials over 
each pair of adjacent nodes: 

«'M = (ffr) io62 (J) + ( p | ) ■* (Ï ) - «* - · 

«'Μ = (ÏTT) '»s* (\) + ( f r i ) 1O& W =2l - 2 · 
Thus, the piecewise polynomial function is defined as 

'<*>={ £ :*: \-<χΛ\\ 
Figure 2.6 shows a plot of log2(x) and the piecewise polynomial approximation. 

The error is estimated by looking at the error in each individual polynomial 
approximation. We have 

1 / 1 l ^ 2 
| log 2 (x)-Qi(a ; ) | < - I - - - 1 max | log 2 (e ) r 2 | = 0.1803368801... 

and this holds for all x e [\, | ] ; furthermore, 

I log2(a;) - Q2{x)\ < Ö ( 1 - ö I m a x I l o S2( e ) i _ 2 | = 0.1803368801... 8 V 2 / te[i,i] 
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and this holds for all x G [£, 1]. Thus, 

I log2(z) - q(x)\ < 0.1803368801... 

for all ι ί [|, 1]. (Usually, the error in each piece will not be the same. That is an 
artifact of the example. 
The more general case of piecewise polynomial interpolation with higher-degree poly-

nomials will be taken up in §4.7. 

o 
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Figure 2.6 Piecewise linear approximation to y = log2(x). 

In addition, linear interpolation is a powerful tool that we will return to again and again 
in order to construct approximations for more involved computations, and the accuracy 
of those approximations will depend heavily on the accuracy of the underlying linear 
interpolation. In fact, we will use the estimate proved in this section to establish the 
accuracy and convergence properties of the secant method for finding roots of equations 
(§3.11.3), the trapezoid rule for numerically approximating integrals (§2.5), and several 
other methods for more sophisticated problems. 

Exercises: 
1. Use linear interpolation to find approximations to the following values of the error 

function, using Table 2.7 in the text. For each case, give an upper bound on the error 
in the approximation. 

(a) erf(0.56); 

(b) erf(0.07); 

(c) erf(0.34); 

(d) erf(0.12); 

(e) erf(0.89). 

2. The gamma function, denoted by T(x), occurs in a number of applications, most 
notably probability theory and the solution of certain differential equations. It is 
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basically the generalization of the factorial function to non-integer values, in that 
T(n + 1) = n!. Table 2.8 gives values of Γ(χ) for x between 1 and 2. Use linear 
interpolation to approximate values of T(x) as given below. 

(a) Γ(1.930) = 0.9723969178 

(b) Γ(1.290) = 0.8990415863 

(c) Γ(1.005) = 0.9971385354 

(d) Γ(1.635) = 0.8979334930. 

Table 2.8 Table of Γ(χ) values. 

X 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

Γ(χ) 

1.0000000000 
0.9513507699 
0.9181687424 
0.8974706963 
0.8872638175 
0.8862269255 
0.8935153493 
0.9086387329 
0.9313837710 
0.9617658319 
1.0000000000 

3. Theorem 2.1 requires an upper bound on the second derivative of the function being 
interpolated, and this is not always available as a practical matter. However, if a table 
of values is available, we can use a difference approximation to the second derivative 
to estimate the upper bound on the derivative, and hence the error. Recall, from 
Problem 12 of §2.2, that 

/ " ( * ) 
f{x - h) - 2f{x) + f(x + h) 

Assume that the function values are given at the equally spaced grid points Xk = 
a + kh for some grid spacing, h. Using the estimate 

max |/"(x)| 
| / (x f c - i )-2/(x f c ) + /(xfc+1) f(xk)-2f(xk+1) + f(xk+2) 

h? 

to approximate the derivative upper bound, estimate the error made in using linear 
interpolation to approximate each of the following values of Γ(χ), based on Table 
2.8. 

(a) Γ(1.290) = 0.8990415863 

(b) Γ(1.579) = 0.8913230181 

(c) Γ(1.456) = 0.8856168100 

(d) Γ(1.314) = 0.8954464400 

(e) Γ(1.713) = 0.9111663772. 
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4. Construct a linear interpolating polynomial to the function f(x) = a:-1 using zo = \ 
and x\ = 1 as the nodes. What is the upper bound on the error over the interval 
[|, 1], according to the error estimate? 

5. Repeat the above for / (x) = y/x, using the interval [|, 1]. 

6. Repeat the above for f(x) = z1/3 , using the interval [g, 1]. 

7. If we want to apply linear interpolation to the sine function and obtain an accuracy of 
10~6, how close together do the entries in the table have to be? What if we change 
the error criterion to 10- 3? 

8. Repeat the above for f(x) = tan 2, for x £ [-π/4, π/4]. 

9. If we try to approximate the logarithm by using a table of logarithm entries, together 
with linear interpolation, to construct the approximation to ln( 1 + x) over the interval 
[—5,0], how many points are required to get an approximation that is accurate to 
within 1(T14? 

10. Construct a piecewise linear approximation to f(x) = y/x over the interval [ ,̂ 1] 
using the nodes \, jg, 1. What is the maximum error in this approximation? 

11. Repeat the above for f(x) = x1?3 over the interval [|, 1], using the nodes | , | | , 1. 

<j · · · > 

2.5 APPLICATION—THE TRAPEZOID RULE 

One of the most important applications of linear interpolation is the construction of the 
trapezoid rule for approximating definite integrals. Define the integration of interest as 
/ ( / ) , thus: 

IU) = [ f(x)dx. 
Ja 

Let pi (x) be the linear polynomial that interpolates / at x = a and x = b: 

0 — a b — a 

Then the basic trapezoid rule is defined by exactly integrating p\ (x): 

Ti(f) = /(pi) = f pi{x)dx = \{b - a)(f(b) + / (a) ) . (2.14) 

Note here that we are constructing an approximation by replacing the "exact function" 
(/) by a simpler function that approximates it (pi), and doing the desired calculation 
(integration) exactly on the simpler function. 

Figure 2.7 illustrates this approximation. The integrand is | + sin πχ over the interval 

http://www.it-ebooks.info/


APPLICATION—THE TRAPEZOID RULE 6 9 

0.3 0.4 0.5 0.6 0.7 08 0.9 

Figure 2.7 Illustration of the basic trapezoid rule. 

How accurate is this rule? Clearly the error is / ( / ) — ΤΊ (/), and the illustration suggests 
that this might be large. We can analyze the error because the construction of ΤΊ as the 
exact integral of pi allows us to use the interpolation error theory from §2.4: 

Hf)-Ti(f) Hf)-i(Pi), 
rb rb 

= / f(x)dx- / pi(x)dx, 
Ja Ja 

-ί 
Ja 

(f(x) -Pi(x))dx, 

\Jjx-a){x-b)f»& )dx, 

where ξχ e [a, b] depends on x. Since (x — a)(x — b) does not change sign on [a, 6], we 
can now apply the Integral Mean Value Theorem to get an error estimate: 

[ (x- a)(x - b)f"ttx)dx = /"(r?) f (x - a){x -
Ja Ja 

b)dx, 

so that we have 

Hf)-Ti(f) 
12 

:(6-a)Y'(»7), 

(b-arf"(v), (2.15) 

where η e [a, b\. Formally, then, we have proved the following theorem: 

Theorem 2.2 (Trapezoid Rule Error Estimate, Single Subinterval) Let f e C2([a, b}) 
and let pi interpolate f at a and b. Define 1\(/) = I(p\). Then there exists η £ [a, b] 
such that 

1(f) -Ti(f) ~ ( & - a ) 3 / " ( l ) . (2.16) 
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Although perfectly valid, this result does not appear to be especially useful, since the 
error will only be small if the length of the integration interval, b — a, is small; but it is only 
a first step. What we need to do now is use more points in the approximation. To this end 
we subdivide the interval [a, b] into n subintervals using meshpoints Xi, 0 < i < n: 

a = xo < x\ < xi ■ ■ ■ < Xn-i < Xn = b. (2.17) 

Over each subinterval [XJ_ i, xî\ we apply the basic trapezoid rule (2.14) to get the composite 
trapezoid rule, which is more commonly referred to as "the n-subinterval trapezoid rule" 
(or, just the trapezoid rule when there is no possibility of confusion): 

7(/) = Σ Γ f{x)dx' 
i = l J*i-i 

n 1 

= Tn(f). 

If we use a uniform grid, in which the meshpoints are equally spaced so that Xi — Xi-\ = h, 
for all i, then this simplifies a great deal: 

Tn{f) = ^ ( / ( ΐ ο ) + 2 / ( χ ι ) + 2 / ( ι 2 ) + . . . + 2 / ( χ η _ ι ) + / ( χ „ ) ) . (2.18) 

Figure 2.8 shows this applied to the same integral of f(x) = ^ + βίηπα; as was used in 
Figure 2.7. Note that even with very few additional points in the grid, the apparent error 
is substantially reduced from the previous case. What we have done here, essentially, is 
exactly integrate a piecewise linear interpolation of / . 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

Figure 2.8 Illustration of the trapezoid rule. 

The accuracy of the n-subinterval rule can be easily established from the previous result. 

Theorem 2.3 (Trapezoid Rule Error Estimate, Uniform Grid) Let f e C2([a, b]) and 
let Tn (/) be the n-subinterval trapezoid rule approximation to 1(f), using a uniform grid. 
Then there exists ξ^ ε [α, b], depending on h, such that 

Hf) - Tn{f) = -b-^h2f"(th). (2.19) 
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Proof: We simply apply the previous error result to each subinterval: 

è ( / ' / ( z ) d * - ^ + * i - i ) ( / (zO + / ( z i - i ) ) l · 

" 1 

i= l 

i = l 

i = l 

-V*'(str(ia)). 
We can now apply the Discrete Average Value Theorem to simplify the remaining sum: 
There exists £/, € [a, 6] such that 

^ £ / " & , * ) = / " & · ) , (2.20) 
i = l 

where we note that £/, 6 [a, 6] does depend on the value of h. This completes the proof of 
the theorem. · 

This theorem tells us quite a bit about the n-subinterval trapezoid rule. First, it tells us 
that the numerical approximation will converge to the exact value, as long as / € C2 ( [a, 6] ) : 

lim \I(f) - Tn(f)\ = lim ^ - V | / " ( 6 0 l < ( l i m b-^hA ( max | / " | ) = 0, 

so that 
lim Tn(f) = 1(f). 

n—*oo 

Second, it tells us how fast this convergence occurs, since the error goes like h2. Perhaps 
the best way to see this is to note that doubling the number of subintervals results in the 
error going down by roughly a factor of 4. We have to say "roughly" because the value of 
£h does depend on h and so will shift about a bit as we change the mesh size. 

It is worth emphasizing at this point that the value of the error estimate is not that we 
are able to a priori predict the error—although we sometimes can use the error theory to 
estimate the error—but rather that the error estimate tells us how rapidly the error will 
decrease as a function of the mesh size, h. This will be useful in Chapter 5 when we seek 
to improve the trapezoid rule. 

An example will illustrate. 

■ EXAMPLE 2.5 

Let f(x) = ex and [a, b] = [0,1] so that 1(f) = e - 1 = 1.71828... . Then the 
trapezoid rule using a single subinterval is given by 

Ti( / ) = i x 1 x (e° + e1) = (1 + e)/2 = 1.859140914, 

1(f)-Tn(f) 
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whereas the trapezoid rule using two subintervals is given by 

T2(/) = i x i x (e° + 2e1/2 + e1) = ^(1 + 2>/ë + e) = 1.753931093. 

We note that the second value is considerably more accurate, as expected. 
If we now continue the computation using a sequence of equally spaced grids with 

h'1 = 2,4,8,..., 2048, then we get the results shown in Table 2.9. Note that the last 
column, which gives the ratio of the previous error to the current error, does show 
that the error decreases by roughly a factor of 4 as we double the number of points. 

Table 2.9 Trapezoid example, f(x) = ex, [a, b] = [0,1]. 

n 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 

Tn(f) 
1.753931092 
1.727221905 
1.720518592 
1.718841129 
1.718421660 
1.718316787 
1.718290568 
1.718284013 
1.718282375 
1.718281965 
1.718281863 

1(f)-Tn(f) 
-0.356493£ - 01 
-0.894008£ - 02 
-0.223676£ - 02 
-0.559300£ - 03 
-0 .139832£-03 
-0.349584£ - 04 
-0.873962£ - 05 
-0 .218491£-05 
-0 .546227E-06 
-0 .136557£-06 
-0.341392£ - 07 

Error Ratio 
N/A 

3.9876 
3.9969 
3.9992 
3.9998 
4.0000 
4.0000 
4.0000 
4.0000 
4.0000 
4.0000 

Programming Hint: We should note that the device of doubling the number of subintervals 
and observing that the error goes down by roughly a factor of 4 is a useful device for 
debugging trapezoid rule programs: If your program does not produce errors that behave 
this way, then there are only three possible conclusions to draw: (1) Your test function is 
not C2 on the entire interval of integration; (2) Your code has an error; or, (3) Your example 
is one of a special class of functions (periodic functions, integrated over an integer multiple 
of the period) for which the trapezoid rule is "super-accurate," in which case the error 
starts out very small and does not always decrease in a regular fashion; see §5.8.1. You 
should not accept results that do not display the correct rate of error decrease unless you 
can demonstrate that either the first or third of these possibilities holds for your example. 

■ EXAMPLE 2.6 

The error theory can sometimes be used to predict how small the mesh must be to 
achieve a specified desired error. For example, consider the integral 

Jo 

How small does h have to be to guarantee that \I(f) - T„( / ) | < 10"3? 
This is a relatively simple exercise. We know that 

| / ( / ) - T„(/) | = - U 2 | / " ( O I < L·2 max | /"(x) | . 
ΙΔ LZ χ(Ξ|0,1] 
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Ordinary calculus shows us that 

/"(*) = e-*2 {Ax2 - 2) 

so that, for all x € [0,1], 

| / " (x) | = le"*2 (4x2 - 2) | < e° (4 + 2) = 6. 

Therefore, 

| / ( / ) - T n ( / ) | < lu" 3 <= ^ / i 2 (6 ) < 10-3, 

which implies that we need h < \/0.002 = 0.044721.... The difficult part of this 
computation is in getting an upper bound on the second derivative factor in the error 
estimate. 

The assumption of a uniform grid is useful but not required. If the mesh is not uniform, 
then the result of Theorem 2.3 is changed slightly: 

Theorem 2.4 (Trapezoid Rule Error Estimate, Non-uniform Grid) Let f e C2([a, b]) 
and let Tn(f) be the n-subinterval trapezoid rule approximation to 1(f), using the non-
uniform grid defined by 

a = Xo < X\ < X2 < ■ ■ ■ < Xn-\ < Xn = b, 

with hi = Xi — Xi-\ and h = maxj hi. Then 

\I(f)-Tn(f)\ < b-^h2mr\f"\. (2.21) 
LZ x£[a,b] 

The student should think about how to prove this result. 
We close this section with a piece of pseudo-code that shows how to implement the 

trapezoid rule. Note that this code explicitly makes use of the assumed uniformity of the 
mesh spacing. 

Algorithm 

input a, 
sum 
h = 
f o r 

2.5 

b , 
= 0 
(b 
i = l 

X 

Simple Trapezoid Rule 

n; ex te rna l f: 
.5*(f(a) + f (b ) ) 
- a ) / n 

to n-1 do 
= a + i*h 

sum = sum + f(x) 
endfor 
t rapeze 

end code 
id = h*sum 

(pseudo-code). 

Programming Hints: (1) When writing a program for any integration method, test it first 
on something for which you know the exact value of the integral, and verify that your 
approximations are converging to the exact value at the proper rate as h decreases. (This 
assumes that the integrand has enough continuous derivatives, of course.) (2) If your code 
works on one example but not on others, it is a good bet that the problem is with the coding 
of the other examples. Make sure that your "exact values" are indeed correct, for instance. 
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We close this section with a brief discussion of the stability of the trapezoid rule. 
Consider the integral 

/ ( / ) = / f(x)da 
Ja 

and its trapezoid rule approximation, Tn(f). What happens if we slightly perturb / to 
produce a new function, say, g(x) = f(x) + e(x) where e{x) is always "small." How 
much change do we produce in the trapezoid rule values? In other words, can we bound 
the difference |Tn(/) - Tn{g)\ in terms of \f(x) - g{x)\ = |e(x)|? We have 

n n 

Tn(f) = Λ Σ ' 7 ( * 0 , Tn(9) = hJ2"g(xi), 
i=0 i=0 

where the double prime on the summation symbols means that the first and last terms are 
multiplied by \. Thus, 

n n 

TnU) -Tn(g) = hY^" (f(Xi) - g{Xi)) = hJ2"<*), 
i=0 i=0 

so that 

\Tn(f) - Tn(g)\ < ( max \e(x)\) Λ ^ ' Ί = (6 - a) max | φ ) | . 
\ϊ€[α,6] / ^ x£[a,b] 

Therefore,ifmaxxe[a7(,] |e(x)|is"small,"sois|Tn(/)— rn(g)|,andinfactifmaxie[aij,] |e(x)| —> 
0, then Tn{g) —> Tn(f); thus, we conclude that the trapezoid rule is a stable numerical 
method. Almost all methods for numerically approximating integrals are stable, in fact. 
Note that this is in marked contrast to the situation for numerical differentiation. 

Modern versions of MATLAB have a function, t rapz , which performs the trapezoid 
rule. Students should not use this to do any of the exercises without their instructor's 
knowledge and permission. 

Chapter 5 contains more material on the approximation of definite integrals. 

Exercises: 

1. Use the trapezoid rule with h = \ to approximate the integral 

Jo 

3 , 1 
x ax = -. 

4 

You should find that T4 = 17/64. How small does h have to be for the error to be 
less than 1(T3? 1(Τ6? 

2. Use the trapezoid rule and h = π/4 to approximate the integral 

ΓΤ/2 

/ " 
Jo 

sinxdx = 1. 

How small does h have to be for the error to be less than 10 3? 10 6? 

3. Repeat the above with h = π/6. 
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4. Apply the trapezoid rule with h = | , to approximate the integral 

.92703733865069. 1= [ . 1 dx = 0.i 
Jo Vl + x4 

How small does h have to be for the error to be less than 10 3? 10 6? 

5. Apply the trapezoid rule with h = A, to approximate the integral 

Jo 
x(l — x2)dx = -. 

Feel free to use a computer program or a calculator, as you wish. How small does h 
have to be to get that the error is less than 10- 3? 10- 6? 

6. Apply the trapezoid rule with h = g to approximate the integral 

1=1 ln(l + x)dx = 2 1 n 2 - l . 
Jo 

How small does h have to be for the error to be less than 10- 3? 10- 6? 

7. Apply the trapezoid rule with h = | to approximate the integral 

J0 1 + x·3 3 9 /o 

How small does h have to be for the error to be less than 10- 3? 10- 6? 

8. Apply the trapezoid rule with h = | to approximate the integral 

r-2 

e~x2dx = 0.1352572580. 

How small does h have to be for the error to be less than 10 3? 10 6? 

9. Let Ig denote the value you obtained in the previous problem. Repeat the computa-
tion, this time using h = \, and call this approximate value 74. Then compute 

IR = (4J8 - J4)/3 

and compare this to the exact value of the integral. 

10. Repeat the above for the integral 

f — 
Jo 1 + : 

-dx= - 1 η 2 + -λ/ϋπ. 
o y 

11. For each integral below, write a program to do the trapezoid rule using the sequence 
of mesh sizes h = \{b - a), \(b - a), | (6 - a ) , . . . , y|g (b - a), where b - a is the 
length of the given interval. Verify that the expected rate of decrease of the error is 
obtained. 
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(a) f(x) = x2e~x, [0,2], / ( / ) = 2 - 10e~2 = 0.646647168; 

(b) f{x) = 1/(1 + 25z2), [0,1], / ( / ) = i arctan(5); 

(c) f{x) = y/ϊ^χϊ, [-1,1], / ( / ) = π/2; 

(d) f{x) = lnx, [1,3], J ( / ) = 3 1 n 3 - 2 = 1.295836867; 

(e) fix) = x5'2, [0,1], / ( / ) = 2/7; 

(0 f{x) = e" 1 sin 4a:, [Ο,ττ],/(/) = £ ( 1 - e~n) = 0.2251261368. 

12. For each integral in Problem 11, how small does h have to be, according to our error 
theory, to achieve an accuracy of at least 10- 3? 10~6? 

13. Apply the trapezoid rule to the integral 

/ / y/xdx=-

using a sequence of uniform grids with h = \,\, Do we get the expected rate 
of convergence? Explain. 

14. The length of a curve y = gix), for x between a and b, is given by the integral 

Lig) = ! y/l + [g'ixfdx. 
Ja 

Use the trapezoid rule with h = π/4 and h = π/16 to find the length of one "arch" 
of the sine curve. 

15. Use the trapezoid rule to find the length of the logarithm curve between a = 1 and 
b = e, using n = 4 and n = 16. 

16. What should h be to guarantee an accuracy of 10~8 when using the trapezoid rule 
for each of the following integrals. 

(a) 

(b) 
c3 

(C) 
<·5 

(d) 

Hf) = [ e-x2dx; 
Jo 

,3 

/ ( / ) = / Inxdx; 

/ ( / ) = / cosinx/2)dx. 
Jo 

17. Since the natural logarithm is defined as an integral, 

Ina; = / -dt, 
Ji t 

(2.22) 
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it is possible to use the trapezoid rule (or any other numerical integration rule) to 
construct approximations to In x. 

(a) Show that using the trapezoid rule on the integral (2.22) results in the series 
approximation (for a; e [1,2]) 

2 1 n—1 .. 
X — 1 v ^ X — 1 

lnx ~ h > 
2nx ^ n + k(x - 1) ' 

fc=l x ' 

Hint: What are a and b in the integral that defines the logarithm? 

(b) How many terms are needed in this approximation to get an error of less than 
10~8 for all x € [1,2]? How many terms are needed for an error of less than 
10 - 1 5 over the same interval? 

(c) Implement this series for a predicted accuracy of 10 - 8 and compare it to the 
intrinsic natural logarithm function on your computer, over the interval [1,2]. 
Is the expected accuracy achieved? 

(d) If we were only interested in the interval [1,3/2], how many terms would be 
needed for the accuracy specified in part (b)? 

(e) Is it possible to reduce the computation of In x for all x > 0 to the computation 
of In z for z € [1,3/2]? Explain. 

18. How small must h be to compute the error function, 

rf(z) = 4 = / e~t2dt, 
V*" Jo 

using the trapezoid rule, to within 10~8 accuracy for all x € [0,1]? 

19. Use the data in Table 2.8 to compute 

err 

= / T{x)dx 

using h = 0.2 and h = 0.1. 

20. Use the data in Table 2.7 to compute 

/ erf( 
JJJooo   

x)dx 

using h = 0.2 and h = 0.1. 

21. Show that the trapezoid rule is exact for all linear polynomials. 

22. Prove Theorem 2.4. 

23. Extend the discussion on stability to include changes in the interval of integration 
instead of changes in the function. State and prove a theorem that bounds the change 
in the trapezoid rule approximation to 

Hf) = [ f{x)dx 
Ja 
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when the upper limit of integration changes from b to b + e, but / remains the same. 

24. Consider a function f(x) that is the floating-point representation of f{x); thus, / - / 
is the rounding error in computing / . If we assume that \f(x) — f(x)\ < e for all x, 
show that 

| Γ „ ( / ) - Γ „ ( / ) | < 6 ( 6 - α ) . 

What does this say about the effects of rounding error on the trapezoid rule? 

< · · · > 

2.6 SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS 

The solution of linear systems of equations is one of the most important areas of compu-
tational mathematics. A complete treatment is often given in a separate course, and there 
exist a number of texts that are devoted entirely to the subject of numerical linear algebra. 
We present some of that material in Chapter 7; in this section we discuss one particular 
problem of special interest—the solution of tridiagonal systems of linear equations. 

Recall that a system of linear equations can be written in the form 

diiXi + CL12X2 + ■ ■ ■ + O-lnXn = / l 

021X1 + Û22Z2 H H &2nXn = h 

an\X\ + an2X2 + ■ ■ ■ + O-nnXn fn 

where the α^ and fi are knowns, and the Xi are the unknowns we wish to find. This can be 
put into matrix-vector form as 

Ax = f, (2.23) 

where A is the n x n matrix having a,ij as its entries, and x and / are real-valued vectors 
with components Xj and / , , respectively. 

A common special case of a linear system occurs when A is tridiagonal, that is, there 
are only three "diagonals" in A that contain non-zero elements: the main diagonal, the first 
diagonal above the main diagonal (the super-diagonal), and the first diagonal below the 
main diagonal (the sub-diagonal). Thus A has the special form 

0 an 

Û21 

0 

«12 

a-22 

Û32 

0 

Ö23 

ß33 

For example, 

O-n— l , n 

0 αη,η-1 Ο,ηη 

4 2 0 0 0 
1 5 6 0 0 
0 3 9 5 0 
0 0 0 1 2 
0 0 0 2 4 
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is tridiagonal. This makes the solution of the system, under certain assumptions, quite 
easy. Before proceeding with the algorithm, let's make a notational simplification. Instead 
of writing the system in the traditional matrix notation and indexing style, we will use It, 
di, and itj to denote the lower-diagonal, diagonal, and upper-diagonal elements: 

H — ûi,i—1 Î 

Ui = ΰ ί , ι+1 , 

2 < i < n, 
1 < i < n, 

\<i<n- 1, 

where we adopt the convention that l\ = 0 and un 

matrix corresponding to the system is 

[A\f\ = 

0. Under this notation, the augmented 

di 

h 
0 

0 

U l 

d2 

k 

0 · 

U2 

ds ' 

0 I 

0 

0 

0 

• U n - l 

n « i l 

h 
h 

fn-1 

/» 

(2.24) 

and we can store the entire problem using just the four vectors for I, d, u, and / , instead 
of the entire n x n matrix, which is mostly zeroes anyway. (A common and convenient 
shorthand notation is to write 

A = tndia.g(li,di,Ui) 

for the tridiagonal matrix A) 
Recall from linear algebra that the standard means of solving a linear system (called 

Gaussian elimination) is to eliminate all the components of A below the main diagonal, in 
other words, we reduce A to triangular form. In our case, this is easy because we only 
have to eliminate a single term each time, since there is only a single element below the 
main diagonal in each column. Thus, we would multiply the first equation by h/di and 
subtract this from the second equation, to get 

[A\f] 

and then continue on with each successive row. Note that carrying out this step requires 
that d\ φ 0, and continuing to the next step is going to require that d2 — uifa/di) φ 0. 
Assuming the corresponding statement to be the case on each remaining row, we can reduce 
(2.24) to the equivalent system 

dx 

0 

0 

0 

d2-

U l 

-ui(l2/di) 

h 

0 

u2 

d3 

0 n̂ 

0 

0 

0 

Un-1 

dn 

h 
h 

- / i ( f e /d i ) 

fn-l 
fn 

[T\g} = 

i i 

0 

0 

0 

Wl 

δ2 

0 

0 

u2 

δ3 

0 0 

0 

0 

0 

Un-l 

an 

91 

92 

9n-\ 
9n 
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where 
δι =di, δ2=ά2- ui(l2/5i), ô3 = d3- η2(13/δ2), 

and, generally, 
Sk = dk- uk-i(lk/Sk-i), 2<k<n. 

Similarly, 
9i = fi, 92 = Î2 - 9i(h/Si), 93 = Î3- 52(^3/^2), 

so that the general form is 

9k = fk - 9k-i{lk/6k-i), 2<k<n. 

The matrix [T | g] is row equivalent to the original augmented matrix [A | / ] , meaning 
that we can progress from one to the other using elementary row operations; thus, the two 
augmented matrices represent systems with exactly the same solution sets. Moreover, the 
solution is now easy to obtain, since we can solve the last equation, δηχη = gn, to get 
Xn = 9η/δη, and then use this value in the previous equation to get xn-\, and so on, to get 
each solution component. Again, carrying out this stage of the computation requires the 
assumption that each ok φ 0,1 < k < n. 

The first stage of the computation (reducing the tridiagonal matrix A to the triangular 
matrix Γ) is generally called the elimination step, and the second stage is generally called 
the backward solution (or backsolve) step. A pseudo-code algorithm for this process is 
given below. Note that we do not store the entire matrix, but only the three vectors needed to 
define the elements in the non-zero diagonals; in addition, we did not use different variable 
names for the di, δί, and so on, but rather, overwrote the original variable with the new 
values. This saves storage when working with large problems. 

Algorithm 2.6 Pseudo-code for the Solution 

! 
! Elimination s tage 

for i=2 to n 
d ( i ) = d ( i ) -
f ( i ) = f ( i ) -

endfor 

! Backsolve s tage (bottom 

x(n) = f (n ) /d (n ) 
for i=n- l downto 1 

x ( i ) = ( f ( i ) ■ 
endfor 

u( i -
f ( i -

row 

- u(: 

-1) 
-1) 

i s 

of Tridiagonal Systems 

* l ( i ) / d ( i - l ) 
* l ( i ) / d ( i - l ) 

a spec ia l case) 

L ) * x ( i + l ) ) / d ( i ) 

Programming Hints: Always test your codes on simple examples for which you know the 
solution, and for which you can easily do the computation manually. In the case of the 
tridiagonal system, start with a small (3 x 3,4 x 4) system; if your computed solution is not 
almost exactly the same as the true solution, then your code has an error in it someplace. 
Do the algorithm by hand and then print out what the computer has for the final values 
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of d, u, etc., so that you can see where your code deviates from the correct computation. 
When you don't know the exact solution, compute the residual, defined by r = b — Ax. 
If the computed solution is correct, the residual should be almost exactly zero in each of 
the components. (Note: If the example matrix is "nearly singular"—a concept that will 
be more precisely defined in Chapter 7—then it is possible that the rounding error will be 
quite large, even for small 3 x 3 examples. To avoid this potential problem, make sure that 
your examples have diagonal elements that are large compared to the absolute sum of the 
off-diagonal elements.) 

At this point, we look at several examples. 

■ EXAMPLE 2.7 

Consider the system 

4 1 0 0 
1 4 1 0 
0 1 4 1 
0 0 1 4 

Xl 

X2 

X3 

X4 

6 
12 
18 
19 

(2.25) 

If we do the elimination stage of the algorithm, we get the new system (written now 
as a single augmented matrix): 

[T\g] = 

4 
0 
0 
0 

1 

4 

0 
0 

0 
1 
56 
15 
0 

0 
0 
1 

209 
56 

6 
21 

à 
2§9 
14 . 

from which we get the solution 

Xi = 1, X2 = 2, X3 = 3 , X4 

On the other hand, if we look at the system 

1 4 0 0 
1 4 1 0 
0 1 4 1 
0 0 1 4 

X l 

X2 

Z3 

X4 

9 
12 
18 
19 

(2.26) 

then the elimination stage produces the following augmented matrix after a single pass 
through the first loop: 

[T\g] 

Clearly, we cannot continue the process, for we would have to divide by zero in the next 
step. We should point out, however, that this does not mean that the system in question 
does not have a solution; it simply means that the algorithm fails to work on this example. 
The reader should check that 

1 
0 
0 
0 

4 
0 
1 
0 

0 
1 
4 
1 

0 
0 
1 
4 

9 " 
3 

18 
19 

Xl 1, X2 = 2 , x 3 = 3 , X4 = 4 
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is indeed the solution to the above system. 
A complete discussion of this problem and similar issues in numerical linear algebra is 

deferred until Chapter 7; for now we content ourselves with stating and proving a common 
condition that is sufficient to guarantee that the tridiagonal solution algorithm presented 
here will work. We require a definition, first. 

Definition 2.1 (Diagonal Dominance for Tridiagonal Matrices) A tridiagonal matrix is 
called diagonally dominant if 

di > \k\ + \ui\ > 0, l < z < n . (2.27) 

For example, the matrix 
Γ 6 1 0 0 " 

2 6 3 0 
1 ~ 0 6 9 0 

_ 0 0 3 4 _ 

is diagonally dominant, but 
Γ 6 1 0 0 " 

A 2 5 3 0 
2 ~ 0 6 9 0 

0 0 3 4 _ 

is not. (The inequality does not hold in the second row.) 
If the matrix is diagonally dominant, then we can easily show that we do not need to 

worry about the diagonal elements becoming zero during the elimination process. 

Theorem 2.5 If the tridiagonal matrix A is diagonally dominant, then Algorithm 2.6 will 
succeed in producing the correct solution to the original linear system, within the limitations 
of rounding error. 

Proof: The diagonal dominance condition directly shows that d\ = δ\ Φ 0, so all that 
remains is to show that each 5k = dk — Uk-\lk/^k-\ Φ 0, for 2 < k < n. Assume 
momentarily that 1% φ 0. We have 

δ2 = d2 — U\l2/d\, 

> d2-\uil2/di\, 

> |«2| + | i2 | - | i2 |0l , 
> ( H + I/2IX1-0!), 

for θ\ = \ui \/\d\ | < 1. Therefore, £2 > 0 since l2 φ 0. If, on the other hand, l2 = 0, then 
we have δ2 = d2 — 0 = d2 > 0. We can repeat the same argument for each index, and that 
completes the proof. · 

Note that in our example (2.25) the matrix was indeed diagonally dominant, whereas in 
the next one (2.26), it was not; condition (2.27) fails in the first row. 

Note also that we did not discuss any error issues in this section. The reason is actually 
very simple—there is no approximation being made, so there is no mathematical error to 
worry about. In the absence of rounding error, this algorithm will produce the exact solution 
of the tridiagonal linear system, if it is able to run to completion, i.e., without divisions by 
zero. 
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MATLAB of course has many simple commands to solve linear systems problems. We 
will work with many of these in Chapter 7, and will do a little bit in one of the exercises 
here. 

Exercises: 
1. Use Algorithm 2.6 to compute the solution to the following system of equations: 

π /9 
V3/2 
y/3/2 
- π / 9 _ 

2. Write a computer code to solve the previous problem. 

3. Use the Algorithm 2.6 to solve the following system of equations: 

4 
1 
0 
0 

2 
4 
1 
0 

0 
1 
4 
2 

0 
0 
1 
4 

Xl 

X2 

Z3 

X4 

6 
2 
0 
0 

1 
4 
1 
0 

0 
1 
4 
1 

0 
0 
2 
6 

Xl 

X2 

Z3 
X4 

8 
13 
22 
27 

You should get the solution x = (1,2,3,4)T. 

Write a computer code to solve the previous problem. 

The diagonal dominance condition is an example of a sufficient but not necessary 
condition. That is, Algorithm 2.6 will often work for systems that are not diagonally 
dominant. Show that the following system is not diagonally dominant, but then use 
Algorithm 2.6 to compute the solution to it: 

0 
0 
1 

! 
7 J 

Xl 

x2 
X3 

X4 

2 
23/12 
53/30 
15/14 

You should get the solution x = (1,2,3,4)T. 

Use Algorithm 2.6 to compute the solution to the following system of equations: 

0 ' 
0 
1 

1 
7 . 

Xl 

X2 

Z3 
X4 

2 
2 

53/30 
15/14 

Note that this is a very small change from the previous problem, since the only 
difference is that / 2 has changed by only 1/12. How much has the answer changed? 

7. Write a computer code to do the previous two problems. 

8. Verify that the following system is diagonally dominant, and use Algorithm 2.6 to 
find the solution. 

10 

I 
5 

0 

0 
1 
If3 

T 
Î 6 

0 
0 
1 

5 . 

Xl 

X2 

X3 

X4 

61/42 
179/156 
563/420 
13/10 
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9. Use Algorithm 2.6 to find the solution to this system: 

Γ I io 0 0 

i 1 \3 1 
6 5 

5 
0 0 

Xl 
Xl 

XZ 

X4 

61/42 
180/156 
563/420 
13/10 

Note that the right side here is different from that in the previous problem by only a 
small amount in the /2 component. Comment on your results here as compared to 
those in the previous problem. 

10. Write a computer code to do the previous two problems. 

11. Write a code that carries out Algorithm 2.6, and test it on the following system of 
equations: 

Tx = 6, 

where T is 10 x 10 with 

= 1; 

otherwise. 

and bi = 1 for all i. Check your results by computing the residual r = b — Tx. What 
is the largest component (in absolute value) of r? (You could also check your results 
by using MATLAB's backslash operator to solve the system.) 

12. Extend Algorithm 2.6 to a pentadiagonal matrix, that is, one with five non-zero 
diagonals. Write a program to carry out this solution algorithm, and apply it to the 
system 

4 2 1 0 
1 4 1 1 
1 1 4 1 
0 1 2 4 

X l 

x-i 
x-i 
X4 

1 
1 
1 
1 

Check your results by again computing the residual vector, or by using MATLAB's 
backslash operation. 

13. Consider the family of tridiagonal problems defined by the matrix Kn eRnxn, with 

X n = t r idiag(-1,2 , -1) 

and a randomly defined right-hand-side vector. (Use rand to generate the random 
vectors.) Solve the system over the range 4 < n < 100; use the f lops command 
to estimate the number of operations required for each case, and plot the result as a 
function of n. 

< · · · > 
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2.7 APPLICATION: SIMPLE TWO-POINT BOUNDARY VALUE PROBLEMS 

Consider the problem of finding a function u{x) such that 

-u" + u = f(x), i e [ 0 , l ] , (2.28) 

u ( 0 ) = « ( l ) = 0. (2.29) 

Here, / is a known function and we seek u that satisfies the differential equation and the 
conditions at x = 0 and x = 1. This is an example of a two-point boundary value problem, 
something we treat in more detail in §6.10, but we have enough tools now to compute 
solutions, although we cannot analyze the error completely. Problems of this sort occur 
in many areas of applied mathematics and engineering, most notably perhaps in structural 
mechanics. 

Divide the interval [0,1] into n equal subintervals [xk-i, Xk], according to 

0 = XQ < xi < xi < · · · < xn-i < Xn = 1, 

with Xfc — Xk-i = h (therefore Xk = kh), and let Uhix) denote the approximation to u(x). 
We can use Taylor expansions similar to (2.2) and (2.3) (just take more terms) to derive an 
approximation to the second derivative, by adding them (instead of subracting them). After 
a little manipulation (see Problem 12 in §2.2) we find that 

u „ { x ) _ u(x-h)-2u(x)+u(x + h) = l_h2uW{rk)t ( 2 J 0 ) 

for some ηχ € [x — h, x + h). Therefore, the differential equation — u" + u = f(x) implies 
that 

—u(x — h) + 2u(x) — u(x + h) , . ., . 1 ,9 MW % 
— ^ '- φ ί * '- + u(x) = f(x) + -h2uW(Vx). 

To define our approximation, we drop the remainder term and replace u with Uh, which 
yields 

-Uh(x -h)+ 2Uh(x) - Uh{x + h) 
j ^ 1- uh{x) = jyx)- (2.31) 

This holds for all x 6 [0,1]. To get a practical computational problem, we impose (2.31) 
only on our grid points, i.e., we seek the n — 1 values [/fe = i//,(xfc), 1 < k < n — 1, which 
satisfy (recall that the boundary conditions will force UQ = Un = 0) 

-Uk-i + (2 + h2)Uk - Uk+i = h2f(xk), 1 < k < n - 1. 

This is a tridiagonal system of linear equations. Written out in matrix-vector form, we 
have 

" 2 + h2 - 1 0 0 

- 1 2 + h2 - 1 0 ■■■ 0 

0 - 1 2 + h2 - 1 0 I 

: ' · ■ ' ■ · ' ■ · 0 

: ' · . ' · · - 1 
0 0 - 1 2 + h2 

Moreover, it is diagonally dominant, so we can apply Algorithm 2.6 to produce solutions. 

tfi 
u2 

Un-2 
Un-l 

= 

h2f(xi) 
h2f(x2) 

h2f{xn-2) 
h2f(xn-i) 
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EXAMPLE 2.8 

If we take the specific case of h = \ and f(x) = 1, then we have a 3 x 3 system to 
solve, that is, 

2.0625 
-1 
0 

-1 
2.0625 
-1 

0 
-1 

2.0625 

C/i 
U2 

u3 

= 
0.0625 
0.0625 
0.0625 

The solution is easily found, using Algorithm 2.6, to be 

Ui = 0.08492201039861, U2 = 0.11265164644714, U3 = 0.08492201039861. 

Thus we have u(l /4) « 0.08492201039861, u(l /2) « 0.11265164644714, and 
u(3/4) « 0.08492201039861. 

Table 2.10 shows the errors we get between u(xk) and Uk as h decreases from 
1/4 to 1/1024, for this same choice of f(x). The exact solution is given by 

i{x) = 1 
e 2 - l 

Note that the error is decreasing by roughly a factor of 4 each time we double the 
number of points in the grid. Based on what we saw with the difference approxima-
tions to the derivatives, as well as the trapezoid rule, we suspect this means that the 
method is 0(h2) accurate, something we will be able to prove in §6.10.1, assuming 
that the solution is smooth enough. Figure 2.9 shows a plot of the approximate 
solution and exact solution for the h = | case. Note that the approximate solution 

■ Exact solution 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1 

Figure 2.9 Approximate solution to two-point BVP — u" + u = 1, for h = 1/8. 

is virtually exact, even for this coarse mesh. (This of course will not always be the 
case.) 
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-point boundary value problem results. 

h-1 

4 
8 

16 
32 
64 

128 
256 
512 

1024 

max\u(xk) - Uk\ 
0.529469582786e-03 
0.133142281084e-03 
0.333344381367e - 04 
0.833667068484e - 05 
0.208435910093e-05 
0.521101741688e-06 
0.130276180538e-06 
0.325690907577e - 07 
0.814227994750e-08 

Programming Hint: Although our grid on [0,1] has n subintervals, note that the matrix 
system is (n — 1) x (n — 1), not n x n. This is because the values at both x = 0 and x = 1 
are known and so are not part of the system. 

Exercises: 

1. Solve, by hand, the two-point BVP (2.28)-(2.29) when f{x) = x, using h = \. 
Write out the linear system explicitly prior to solution. You should get the following 
3 x 3 system: 

2.0625 
- 1 
0 

- 1 
2.0625 

- 1 

0 
- 1 

2.0625 

i/i 

u2 
U3 

= 
0.015625 

0.03125 
0.046875 

2. Repeat the above, this time using h = | . What is the system now? 

3. Repeat it again, this time using h = | . What is the system now? (For this problem, 
you probably will want to use a computer code to actually solve the system.) 

4. Write a program that solves the two-point BVP (2.28)-(2.29), where / is as given 
below. 

(a) f(x) = 4e~x - 4xe~x, u(x) = x(l - x)e~x\ 

(b) f(x) = (π2 + l)sin7ra;, u(x) = βϊηπχ; 

(c) f(x) = π(π8Ϊτιπχ+ 2cosnx)e~x, u{x) = e~xβϊηπχ; 

(d) f(x) = 3 - j - (x2 - x - 2) log x, u(x) = x(l - a;) log a;. 

The exact solutions are as given. Using h~l = 4 ,8 ,16 , . . . , do we get the same kind 
of accuracy as in Table 2.10? Explain why or why not. 

5. Try to apply the ideas of this section to approximating the solution of the two-point 
BVP 

- i t " + u' + u = 1, x 6 [0,1] 

u(0) = 0,u(l) = 0. 
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Can we get a tridiagonal system to which Algorithm 2.6 can be applied? Hint: 
Consider some of the approximations from §2.2; use the most accurate ones that can 
be easily used. 

6. Solve the two-point BVP problem 

-u" + 64u' + u = 1, x G [0,1] 

u(0) = 0,u(l) = 0, 

using a range of mesh sizes, starting with h = 1/4,1/8, and going as far as h = 
1/256. Comment on your results. 

7. Generalize the solution of the two-point BVP to the case where u(0) = go Φ 0 and 
u(l) = <7ι φ 0. Apply this to the solution of the problem 

-u" + u = 0, are [0,1], 

u(0) = 2,«(l) = 1, 

which has the exact solution 

■W-(^)-GÉT).-· 
Solve this for a range of values of the mesh. Do we get the expected 0(h?) accuracy? 

8. Consider the problem of determining the deflection of a thin beam, supported at both 
ends, due to a uniform load being placed along the beam. In one simple model, the 
deflection u(x) as a function of position x along the beam satisfies the BVP 

—u" +pu = qx(L — x), 0 < x < L\ 

u(0) = u(L) = 0. 

Here p is a constant that depends on the material properties of the beam, L is the 
length of the beam, and q depends on the material properties of the beam, as well as 
on the size of the load placed on the beam. For a 6-foot-long beam, withp = 7x 10 - 6 

and <7 = 4 x l 0 - 7 , what is the maximum deflection of the beam? Use a fine enough 
grid that you can be confident of the accuracy of your results. Note that this problem 
is slightly more general than our example (2.28)-(2.29); you will have to adapt our 
method to this more general case. 

9. Repeat the above problem, but this time use a 3-foot-long beam. How much does 
the maximum deflection change, and is it larger or smaller? 

10. Repeat the beam problem again, but this time use a 12-foot-long beam. 

11. Try to apply the ideas of this section to the solution of the nonlinear BVP defined by 

-u" + u2 = l, 0 < x < 1; 

u(0) = it(l) = 0. 

Write out the systems of equations for the specific case of h = \. What goes wrong? 
Why can't we proceed with the approximate solution? 

<· · · > 
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CHAPTER 3 

ROOT-FINDING 

A problem that most students should be familiar with from ordinary algebra is that of 
finding the root of an equation f(x) = 0, i.e., the value of the argument that makes / zero. 
More precisely, if the function is defined as y = f(x), we seek the value a such that 

/ ( a ) = 0. 

The precise terminology is that a is a zero of the function / , or a root of the equation 
f(x) = 0.1 Note that we have not yet specified what kind of function / is. The obvious 
case is when / is an ordinary real-valued function of a single real variable x, but we can 
also consider the problem when / is a vector-valued function of a vector-valued variable, 
in which case the expression above is a system of equations; this more complicated case is 
discussed in Chapter 7. 

In this chapter we consider only the simple case where / is a scalar real-valued function 
of a single real-valued variable. We will discuss three basic methods for finding the point 
a: the bisection method, Newton's method, and the secant method. We then consider a 
broad class of ideas coming under the heading of fixed-point theory, which will enable 
us to broaden and extend our understanding of iterations in general, whether applied to 
root-finding problems or not. Finally, we will discuss some variants of Newton's method 
and other advanced topics. 

'The distinction is often muddled in practice, however. For example, it is commonplace to speak of the "roots of 
a polynomial," when one should in fact speak only of the "zeroes of a polynomial." In this book, we have used 
the terms interchangeably, as denoting where a function is equal to zero. 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 89 
Copyright © 2013 John Wiley & Sons, Inc. 
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3.1 THE BISECTION METHOD 

Bisection is a marvelously simple idea that is based on little more than the continuity of 
the function / . Suppose we know that f(a)f(b) < 0. This means that / is negative at one 
point and positive at the other. If we assume that / is continuous, then it follows (by the 
Intermediate Value Theorem) that there must be some value between a and b at which / is 
zero. In other words, we know that there is a root a between a and b. (Note: There may be 
more than one root in the interval.) 

Now let's try to use these ideas to find a. Let c be the midpoint of the interval [a, b], i.e., 

c=\(a + b) 

and consider the product / (a) / (c) . There are three possibilities: 

1. f(a)f(c) < 0; this means that a root (there might be more than one) is between a 
and c, i.e., a G [a,c\. 

2. f(a)f(c) = 0; if we assume that we already know /(α) φ 0, this means that 
/(c) = 0, thus a = c and we have found a root. 

3. f{a)f(c) > 0; this means that a root must lie in the other half of the interval, i.e., 
a e [c,b\. 

At first glance, this is helpful only if we get the second case and land right on top of a 
root, and this does not seem very likely. However, a second look reveals that if (1) or (3) 
hold, we now have a root localized to an interval ([a, c] or [c, b]) that is half the length of 
the original interval [a, b]. If we now repeat the process, the interval of uncertainty is again 
decreased in half, and so on, until we have the root localized to within any tolerance we 
desire. 

■ EXAMPLE 3.1 

If f(x) = 2 - ex, and we take the original interval to be [a, b] = [0,1], then the first 
several steps of the computation are as follows: 

/ (a ) = 1,/(ft) = -0 .7183 = » c = [ 0 + l]/2 = 1/2;/(c) = 0.3513 > 0 

=► [a,6]<-[1/2,1]; 
/ (a ) = 0.3513,/(&) =-0 .7183 = > c = [1 /2+ l ] / 2 = 3/4;/(c) = -0 .1170 < 0 

=> [a,6]<-[1/2,3/4]; 
/ ( a ) = 0.3513, /(&) = -0.1170 =► c = [1/2 + 3/4]/2 = 5/8; /(c) = 0.1318 > 0 

=> [a,6]<-[5/8,3/4]. 

Thus, we have reduced the "interval of uncertainty" from [0,1], which has length 1, 
to [5/8,3/4], which has length g = 0.125. If we were to continue the process we 
would eventually have the root localized to within an interval of length as small as 
we want, since each step cuts the interval of uncertainty in half. Figure 3.1 shows a 
graphical view of this example, with the marks on the horizontal axis showing how 
the interval around the root changes with each iteration. 
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0.2 0.4 0.6 0.8 1 

Figure3.1 Bisection applied toy = 2 — ex. 

A formal statement is given in Algorithm 3.1. 

Algorithm 3.1 Bisection Method (Outline Form). 

1. 

2. 

3. 

4. 

5. 

Given an initial interval [a0, bo 

Compute ck+\ = ak + \(bk-

Iff(ck+i)f(ak) < 0, set ak+i 

Iff(ck+i)f(bk)<0,setbk+1 

Update k and go to Step 2. 

= [a 

ak); 

= ak 

= bk, 

,b],set k = 0 

bk+\ = 

ßfc+l = 

= Cfc+i, 

Cfc+l," 

and proceed isfollows: 

Each step is decreasing an upper bound on the (absolute) error by a factor of 2, a fact 
that we can establish rigorously. 

Theorem 3.1 (Bisection Convergence and Error) Let [ao, bo] = [a, b] be the initial in-
terval, with f(a)f(b) < 0. Define the approximate root as xn = cn = (6n-i + α η - ι ) /2 . 
Then there exists a root a G [a, b] such that 

\ct — xn\ < 

Moreover, to achieve an accuracy of 

l \ n 

-2) ( 6 - ) . (3.1) 

\a-xn\ < e, 
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it suffices to take 

. log(6 
n > 

log 2 

Proof: We first observe, trivially, that 

n ^ l o g ( 6 - q ) - l 0 g £ _ {32) 

which implies that 

Therefore, 

implies that 

bn — o-n — y{bn-i — o,n-\), 

bn - an = [ - ) (b0 - a0). 

\a - x„\ < ^(bn-i - α„_ι) 

\a-xn\ < -(bn-i - an-i), 

-m n - l 

(όο - a0), 

2 ) ibo - a0) , 

and we have proved the estimate. To establish the bound on the number of iterations, n, 
we simply observe that 

\) (b-a)<e, (3.3) 

together with (3.1), implies 

\a — xn\ < e 

and we solve (3.3) for n to get (3.2). · 
The observant reader will have noticed that Algorithm 3.1 is written without any stopping 

criterion. This is because we don't really need one, because Theorem 3.1 tells us precisely 
how many steps we need to take to achieve a desired accuracy. 

The bisection process can be easily reduced to a pseudocode, as follows: 
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Algorithm 3.2 Bisection Method (Pseudo-code). 

input a .b .eps 
ex te rna l f 
fa = f (a) 
fb = f(b) 
i f f ( a )* f (b ) > 0 then stop 
n = f i x ( ( l o g ( b - a ) - l o g ( e p s ) ) / l o g ( 2 ) ) + 1 
for i= l t o n do 

c = a + 0.5*(b - a) 
fc = f (c) 
i f fa*fc < 0 then 

b = c 
fb = fc 

e l s e 
if fa*fc > 0 then 

a = c 
fa = fc 

e l s e 
alpha = c 
r e tu rn 

endif 
endif 

endfor 

Programming Hints: Note that we have used the formula 

c = a + 0.5(6 - a) (3.4) 

to compute c, rather than the more obvious choice, 

c=(a + b)/2. (3.5) 

The reason is that for very large values of a and b, (3.5) can lead to a computational overflow, 
whereas (3.4) will not. Note also that we were very careful in the algorithm to re-use the 
function values from iteration to iteration. A careless implementation of bisection will 
have two function calls each time through the loop, but it is possible to get by with only 
one function call. This is important because the function evaluation is outside our control 
and might be the most expensive part of the computation. An example of a function that 
could be quite expensive to compute is given in the discussion of "shooting methods" for 
nonlinear boundary value problems, in §6.10.2. Finally, although we will not usually bother 
to show output statements in any of the algorithms, it is a good idea to have the code print 
out the entire sequence of iterates, along with the corresponding function values, rather 
than just the final answer. This provides useful information for debugging and validating 
the code. 

Table 3.1 shows the result of running this algorithm on the function f(x) = 2 — ex, for 
which a = log 2 = 0.6931471806. 

Bisection is an example of what is known as a global method, that is, it always converges, 
no matter how far you start from the actual root (assuming, of course, that you have the 

http://www.it-ebooks.info/


94 ROOT-FINDING 

Table 3.1 Bisection method applied to f(x) = 2 — ex. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Χγχ 

0.500000000000 
0.750000000000 
0.625000000000 
0.687500000000 
0.718750000000 
0.703125000000 
0.695312500000 
0.691406250000 
0.693359375000 
0.692382812500 
0.692871093750 
0.693115234375 
0.693237304688 
0.693176269531 
0.693145751953 
0.693161010742 
0.693153381348 
0.693149566650 
0.693147659302 
0.693146705627 

6n_i— αη_ι 
1.000000000000 
0.500000000000 
0.250000000000 
0.125000000000 
0.062500000000 
0.031250000000 
0.015625000000 
0.007812500000 
0.003906250000 
0.001953125000 
0.000976562500 
0.000488281250 
0.000244140625 
0.000122070312 
0.000061035156 
0.000030517578 
0.000015258789 
0.000007629395 
0.000003814697 
0.000001907349 

an 

0.500000000000 
0.500000000000 
0.625000000000 
0.687500000000 
0.687500000000 
0.687500000000 
0.687500000000 
0.691406250000 
0.691406250000 
0.692382812500 
0.692871093750 
0.693115234375 
0.693115234375 
0.693115234375 
0.693145751953 
0.693145751953 
0.693145751953 
0.693145751953 
0.693145751953 
0.693146705627 

bn 
1.000000000000 
0.750000000000 
0.750000000000 
0.750000000000 
0.718750000000 
0.703125000000 
0.695312500000 
0.695312500000 
0.693359375000 
0.693359375000 
0.693359375000 
0.693359375000 
0.693237304688 
0.693176269531 
0.693176269531 
0.693161010742 
0.693153381348 
0.693149566650 
0.693147659302 
0.693147659302 

root "bracketed," i.e., f(a)f(b) < 0). Most of the other methods that we will study are 
only locally convergent, meaning that we must start the iteration with a "good enough" 
approximation to the root. One disadvantage of bisection is that it cannot be used to find 
roots when the function is tangent to the axis and does not pass through the axis—think 
about using bisection to find the root of f(x) = x2, for example. Another disadvantage is 
that it converges slowly compared to other methods—note that Theorem 3.1 implies that a 
decrease in the initial error by a factor of 210 « 1,000 requires 10 iterations—however, it 
can be used in conjunction with a more rapidly converging local method to make a rather 
effective root-finding algorithm. (See §3.11.5.) 

Exercises: 

1. Do three iterations (by hand) of the bisection method, applied to f(x) = x3 — 2, 
using a = 0 and b = 2. 

2. For each of the functions listed below, do a calculation by hand (i.e., with a calculator) 
to find the root to an accuracy of 0.1. This process will take at most five iterations 
for all of these, and fewer for several of them. 

(a) f(x)=x-e-x\[a,b] = [0,l); 

(b) f(x) = ]nx + x,[a,b] = [±,l]; 

(c) / ( x ) = x 3 - 3 , [ a , 6 ] = [0,3]; 

(d) f(x)=x6-x-l,[atb] = [0,2]; 
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(e) f{x)=3-2x,[a,b] = [0,2]. 

3. Write a program that uses the bisection method to find the root of a given function on 
a given interval, and apply this program to find the roots of the functions below on 
the indicated intervals. Use the relationship (3.2) to determine a priori the number 
of steps necessary for the root to be accurate to within 10~6. 

(a) f(x) = 

(b) / (x) = 

(c) f(x) --

(d) f(x) = 

(e) f(x) --

(f) / (*) = 

(g) f(x) = 

(h) f(x) = 

= x3 

= ex 

= x -

= x6 

= x3 

= 1 -

= 5 -

= x2 

-2,[< 

-2,[< 

e~x, 

— x — 

-2x 

2xe~ 

χ - \ 

l,b} = 

i,6] = 

[a,b] 

■l,[a 

- 5 , [ , 
-x/2)[ 

[a,b] 

— sinx, [a, 

= [0,2]; 

= [o,i]; 

= [o,i]; 

,6] = [0,2]; 

B,&] = [0 ,3] ; 

a,b} = [0,2]; 

= [0.1,0.25]; 

6] = [0,π]. 

4. Use Algorithm 3.2 to solve the nonlinear equation x = cosx. Choose your own 
initial interval by some judicious experimentation with a calculator. 

5. Use Algorithm 3.2 to solve the nonlinear equation x = e~x. Again, choose your 
own initial interval by some judicious experimentation with a calculator. 

6. If you borrow L dollars at an annual interest rate of r (in decimal form, so 5% is 
written as 0.05), for a period of m years, then the size of the monthly payment, M, 
is given by the annuity equation 

L = — [ l - ( l + r / 1 2 ) - 1 2 m ] . 

The author needs to borrow $150,000 to buy the new house that he wants, and he can 
only afford to pay $600 per month. Assuming a 30-year mortgage, use the bisection 
method to determine what interest rate he can afford to pay. (Should the author 
perhaps find some rich relatives to help him out here?) 

7. What is the interest rate that the author can afford if he only has to borrow $ 100,000? 

8. Consider the problem of modeling the position of the liquid-solid boundary in a 
substance that is melting due to the application of heat at one end. In a simplified 
model,2 if the initial position of the interface is taken to be x — 0, then the interface 
moves according to 

x = 2ßVt 

where ß satisfies the nonlinear equation 

iTM-^ke-f/k = ßen(ß/Vk). 

2See L.I. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971. 
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Here TM is the melting temperature (absolute scale), To < TM is the applied 
temperature, k and λ are parameters dependent on the material properties of the 
substance involved, and erf (z) is the error function, defined by 

erf(z) = - i /" e-edt. 
νπ Jo 

MATLAB has an intrinsic error function, erf. If you are not using MATLAB, the 
error function can be accurately approximated by 

E(z) = 1 - (αιξ + a2e + α3ξ3)ε-2 2, 

where ξ = 1/(1 + pz) and 

p = 0.47047, ai = 0.3480242, a2 = -0.0958798, a3 = 0.747856. 

(a) Show that finding β is equivalent to finding the root a of the one-parameter 
family of functions defined by 

f{z) = ee-z2 -zeri(z). (3.6) 

What is 0? How is a related to /?? 

(b) Find the value of a corresponding to Θ = 0.001,0.1,10,1000. Use the bisection 
method, and either MATLAB or E(z) to approximate the error function. 

9. A variation on the bisection method is known as regula-falsi, or, the method of false 
position. Given an interval [a, b], with f(a)f(b) < 0, the new point c is defined by 
finding where the straight line connecting (a,f(a)) and (b,f(b)) crosses the axis. 
Show that this yields 

c = b-f(b)(b-a)/(f(b)-f(a)). 

10. Do three iterations (by hand) of regula-falsi (see Problem 9), applied to f(x) = x3—2, 
using a = 0 and 6 = 2. Compare to your results for Problem 1. 

11. Modify Algorithm 3.2 to perform regula-falsi (see Problem 9), and use the new 
method to find the same roots as in Problem 3. Stop the program when the difference 
between consecutive iterates is less than 10~6, i.e., when \xk+i — Xk\ < 10 - 6 . 

12. Repeat Problem 8(b), using your regula-falsi program. 

13. The bisection method will always cut the interval of uncertainty in half, but regula-
falsi might cut the interval by less, or might cut it by more. Do both bisection and 
regula-falsi on the function f(x) — e~4x — ~, using the initial interval [0,5]. Which 
one gets to the root the fastest? 

14. Apply both bisection and regula-falsi to the following functions on the indicated 
intervals. Comment on your results in the light of how the methods are supposed to 
behave. 

(a) / (x) = l / (x2 + l),[a,6] = [0,5]; 

(b) f(x) = l/{x-l), [a, 6] = [0,3]. 

< · · · > 
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3.2 NEWTON'S METHOD: DERIVATION AND EXAMPLES 

Newton's method3 is the classic algorithm for finding roots of functions. It is often 
introduced in the calculus sequence as an application of the derivative of a function. 
Historically, it appears to have been first used by Newton in 1669, although the ideas 
were known to others beforehand.4 In fact, the ancient Babylonians had a method for 
approximating square roots that is essentially Newton's method.5 

There are two good derivations of Newton's method, one that is geometric and one that 
is analytic. We will discuss both, beginning with the geometric. 

1 — f(«) - K 9 - m I 
| — Newton tangent Unes | 

^ ι * ^ ' 

■-—*~ , ' K0) 

' , . 

> w 

/ 
' >,,<» 

/ , 
A-»B> 

/ J 

/ ' ■ ' 

' 

1 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Figure 3.2 Newton's method for y = i 2 — 1/2. 

Consider Figure 3.2. We wish to find a root, a, of y = f{x), given an "initial guess" of 
XQ. HOW do we improve upon this initial guess to get a better and better approximation? 
The fundamental idea in Newton's method is to use the tangent line approximation to the 
function / at the point (xrj > / (^o ) ) · The point-slope formula for the equation of the straight 
line gives us 

y-yo 
X — XQ 

= / '(so); 

3Isaac Newton (1642-1727) is generally regarded as one of the greatest mathematicians of all time. He entered 

Trinity College, Cambridge, in 1661 and graduated with a B.A. degree in 1665. In 1668, he received a master's 
degree, and was appointed Lucasian Professor of Mathematics, one of the most prestigious positions in English 
academia at the time. In his later years, Newton served in Parliament and was Warden of the Mint. In 1703, he 
was elected president of the Royal Society of London, of which he had been a member since 1672. Two years 
later he was knighted by Queen Anne. 

Newton is given co-credit, along with the German Wilhelm Gottfried von Leibniz, for the discovery and 
development of the calculus, work that Newton did in the period 1664-1666, but did not publish until years later, 
thus laying the groundwork for an ugly argument with Leibniz over who should get credit for the discovery. In 
1687, at the urging of the astronomer Edmund Halley, Newton published his ground-breaking compilation of 
mathematics and science, Principia Mathematica, which is apparently the first place that the root-finding method 
that bears his name appears, although he probably had used it as early as 1669. 
4See the book, A History of Numerical Analysis from the 16th Through the 19th Century (pp. 64ff), by Herman 

Goldstine, Springer-Verlag, New York, 1977, for a discussion of this and other historical aspects of numerical 
methods. The method is sometimes called Newton-Raphson, in honor of Joseph Raphson, who published the 
idea before Newton did. 
5Carl Boyer, A History of Mathematics, John Wiley & Sons, Inc., New York, (1 s t edition), 1968, p. 449. 
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thus, we have a straight line with equation 

y = e0(x) = f(xo) + f'(xo)(x - xo)· 

To find where this crosses the axis, we set y = 0 and solve for x: 

/(so) 
X = XQ — 

/W 
Call this new approximate value x\, and note that (at least in the case of Figure 3.2) it is 
much closer to the root a. Now continue the process with another straight line to get 

X2 — Xl 
f'(xiY 

or, generally, 

Xn+l=Xn'7Wr (3-7) 
This is Newton's method. It is based on a very simple idea, one that is fundamental and 
repeated time and again in the derivation of numerical methods (in fact, we have already 
seen it in the derivation of the trapezoid rule in §2.5): 

Replace a general function by a simpler function, and do the 
required computation exactly on the simpler function. 

Thus, in this instance, we replaced the general function / with the simple function (a 
straight line) ÎQ and found the exact root of £Q. 

The second derivation of Newton's method depends on our analytical workhorse, Tay-
lor's Theorem. Given a value xn « a, we expand / in a Taylor series about xn: 

f(x) = / (*„) + (X- *„)/ ' (*„) + \(X- Xnff'tin), 

where ξη is between x and xn. To get a useful algorithm out of this, we set f(x) = 0 and 
solve for x in terms of f(xn), f'{xn), and the remainder: 

x - x - / W . i f a - , ) « (38) 
71 f(xn) 2{ n) f(xny (3 ,8) 

and now define xn+\ to be the quantity that results from (3.8) when we drop the remainder 
term; thus, 

_ f{xn) 
Xn+l-Xn f l { x n ) 

which defines the next point. This, of course, is Newton's method, again. This derivation 
makes use of another fundamental and oft-repeated idea in numerical methods and analysis: 

Given an expression in terms of something simple plus a re-
mainder, generate a numerical approximation by dropping the 
remainder term (and adjusting the notation, perhaps). 

Thus, in (3.8) we dropped the remainder term to define xn+\. 
The geometric derivation suggests that Newton's method ought to work very well, 

although the formula (3.7) does hint that there might be problems if f'(xn) ~ 0 were ever 
true. Before proceeding with any analysis, let's look at an example. 
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EXAMPLE 3.2 

Consider applying Newton's method to the function f(x) = 2 - ex, which is the 
same as we used for bisection in §3.1. We choose XQ = 0 and then compute as 
follows: 

2-eXo 
xi — xo 

X2 = Xl 

X3 = Xl 

2 

2 

_exo 

- e X l 

_exi 

_ e X 2 

- e X 2 

1 

= 1 -

- 1 
2 - e 

—e 

= i; 

= 0.7357588823; 

„0.7357588823 

= 0.7357588823 - _ e 0 .7357588823 
= 0.6940422999. 

Table 3.2 gives the results of continuing the computation for several more steps. Note 
that the convergence here was much more rapid than for bisection—in six iterations 
bisection had achieved only about a digit and a half of accuracy, while Newton has 
over thirteen accurate digits. 
Note, by the way, that the number of correct digits in the Newton calculation is doubling, 

roughly, every iteration. If this were typical behavior, it would indeed suggest that Newton's 
method is very fast. Note also the use of the quantity log10(&„ — xn); this is an upper 
bound on the base-10 logarithm of the error, and thus it gives an estimate of the number 
of correct digits in the approximation, which is a useful measure of the accuracy of the 
approximation. (This estimate is only valid if the error is less than 1.) 

Table 3.2 Newton's method for /(x) = 2 - ex. 

n 
0 
1 
2 
3 
4 
5 

Xn 

0.000000000000 
1.000000000000 
0.735758882343 
0.694042299919 
0.693147581060 
0.693147180560 

a - xn 

0.693147180560 
0.306852819440 
0.042611701783 
0.000895119359 
0.000000400500 
0.000000000000 

log10(a-a;n) 
-0.1592 
-0.5131 
-1.3705 
-3.0481 
-6.3974 
-13.0961 

Newton's method is not a global method, however. There are examples for which 
convergence will be poor or even for which convergence doesn't occur. Usually, this can 
be cured by obtaining a better initial guess, but sometimes we have to take xo very close to 
a in order to obtain convergence. 

Consider Figure 3.3; this is the graph of f(x) = | e 2 ~ ï ( l + x~l logx). Note that 
there is a single root in the vicinity of x = 0.5. But notice that the shape of the graph 
of / will cause problems for Newton's method unless the initial point is carefully chosen. 
If xo e [0.8,1.2] (approximately), then the tangent line generated by Newton's method 
will predict that x\ < 0, which is outside the domain of definition of / . If XQ > 1.2 
(approximately), then Newton's method will generate a sequence of values xn+\ > xn, 
growing without bound as n —> oo. (Note that, in a sense, Newton's method is working in 
this latter case, as limx_yoo f(x) = 0, i.e., there is a root at infinity. But this is not the root 
we want to find.) 
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Figure 3.3 A function for which Newton's method will not work well, unless xo is carefully 
chosen. 

A simpler example can be found by considering the function 

20a : -1 
/(*) = 19a: 

which has a single root at Q = 0.05. The graph of/ is given in Figure 3.4, and from this we 
can see that convergence will not occur except for a narrow range of values near the root, 
since Newton's method will predict χχ < 0 for xQ much larger than a. Table 3.3 shows 
the value of x\ produced for each of a sequence of values of XQ. Note that we do not get 
x\ > 0 until #0 = Tg> which is very close to the actual root. 

Table 3.3 Newton's method (first step, only) applied to f(x) = 2°g~'. 

xo 
1.00000000 
0.50000000 
0.25000000 
0.12500000 
0.06250000 

Xl 

-18.00000000 
-4.00000000 
-0.75000000 
-0.06250000 
0.04687500 

It is even possible to construct a function / such that, for some initial guesses, Newton's 
method will cycle indefinitely. Consider f(x) = arctan(a;). This has a single root at 
x = 0, of course. However, for x0 = 1.39174520027..., it is not hard to show that 
xi = -1.39174520027... and x2 = 1.39174520027... = x0. In other words, Newton's 
method will just hop back and forth between these two values. (The student might want to 
consider how to compute this special value of x. See Problem 9.) 

So, where are we with the convergence of Newton's method? The one example that 
we did above showed rapid convergence, but then we quickly followed that up with two 
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2 
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1 
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-1 
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x 

Figure 3.4 A second function for which Newton's method will not work well, unless xo is very 
close to Q. 

examples of what would clearly be less than marvelous performance. Under what conditions 
can we expect Newton's method to converge? Is there any sort of theory that we can rely 
on to give us confidence in this method? Note that in the absence of any such theory, we 
cannot use Newton's method with any expectation or confidence that the results it reports 
will have any meaning. 

The answer is actually very simple. We will defer a detailed discussion of it until §3.6, 
but the conclusion can be stated fairly succinctly: 

If / . / ' . and / " are all continuous near the root, and if / ' does not equal zero at the root, 
then Newton's method will converge whenever the initial guess is sufficiently close to 
the root. Moreover, this convergence will be very rapid, with the number of correct 
digits roughly doubling each iteration. 

In this context, "sufficiently close" implies that if we keep taking XQ closer and closer to 
the root, we will eventually find an x0 such that the iteration converges. 

Exercises: 
1. Write down the iteration for Newton's method as applied to the function f(x) = 

x2 — 2. Simplify the computation as much as possible. What has been accomplished 
if we find the root of this function? 

2. Write down the iteration for Newton's method as applied to the function f(x) = 
x3 — 2. Simplify the computation as much as possible. What has been accomplished 
if we find the root of this function? 

3. Generalize the preceeding two exercises by writing down the iteration for Newton's 
method as applied to f(x) — xn — a. 

4. Write down the iteration for Newton's method as applied to the function f(x) = 
a — x_1. Simplify the resulting computation as much as possible. What has been 
accomplished if we find the root of this function? 
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5. Do three iterations of Newton's method (by hand) for each of the following functions: 

(a) /(x) --

(b) f{x) --

(c) f{x) --

(d) fix) = 
(e) fix) --

(0 fix) = 
(g) fix) --
(h) fix) --

(i) fix) --

Ci) fix) --

= x6 — x — i, zo = i; 

= x + tan x, XQ — 3; 

= 1-

= 5 -

= x2 

= x3 

= ex 

= x3 

— x -

= 2 -

• 2a;e-:c/2, x0 = 0; 

3; , XQ 2 » 

- sinx, x0 = 21; 

— 2x — 5, xo = 2; 

- 2, x0 = 1; 

-2,a;o = l; 

- e~x, xo = 1; 

■ x_1 lnx, XQ = |. 

6. Do three iterations of Newton's method for / (x) = 3 — ex, using xo = 1. Repeat, 
using xo == 2,4,8,16. Comment on your results. 

7. Draw the graph of a single function / that satisfies all of the following: 

(a) / is defined and differentiable for all x; 

(b) There is a unique root a > 0; 

(c) Newton's method will converge for any x0 > a; 

(d) Newton's method will diverge for all xo < 0. 

Note that the requirement here is to find a single function that satisfies all of these 
conditions. 

8. Draw the graph of a single function / that satisfies all of the following: 

(a) / is defined and differentiable for all x; 

(b) There is a single root a G [a, b], for some interval [a, b]; 

(c) There is a second root, ß < a; 

(d) Newton's method will converge to a for all xo € [a, b]; 

(e) Newton's method will converge to ß for all x0 < ß. 

Note that the requirement here, again, is to find a single function that satisfies all of 
these conditions. 

9. Write down the iteration for Newton's method for finding the root of the arctangent 
function. From this formulate an equation that must be satisfied by the value x = ß, 
in order to have the Newton iteration cycle back and forth between ß and —ß. Hint: 
If xn = ß, and Newton's method is supposed to give us xn+i = —ß, what is an 
equation satisfied by /?? 

10. Compute the value of ß from the previous problem. Hint: Use bisection to solve the 
equation for ß. 

11. Use Newton's method on the computer of your choice to compute the root a = 0 of 
the arctangent function. Use the value of ß from the previous problem as your XQ 

http://www.it-ebooks.info/


HOW TO STOP NEWTON'S METHOD 103 

and comment on your results. Repeat using xo = ß/2 and XQ = ß — e, where e is 
O(u). 

3.3 HOW TO STOP NEWTON'S METHOD 

In the bisection method we were able to compute, ahead of time, the number of iterations 
needed to achieve a given desired accuracy. Although we have not completed our study of 
Newton's method, it is the case that we will not be able to do this for Newton's method. 
(More correctly, the computation that might be used is too difficult to be practical; see 
§3.6.) So the question arises: How do we stop the iteration? 

Ideally, we would want to stop when the error, a — xn is sufficiently small. Of course, 
we cannot use this since we don't know the value of a! However, as long as / ' is not zero 
near the root, we can relate this error to a computable quantity. The Mean Value Theorem 
tells us that 

f(a) - f(xn) = f'(cn)(a - xn), 

where c„ is some value between a and xn. Therefore, we can solve for a — xn and write 

a — xn = 
/(<*) - f{xn) 

f'iCn) ' 

/ ( S n ) 
f'(CnV 

= (Zn+1 - Xn) 
f'(Cn) ' 

Note that in the last step we used the Newton iteration to replace —f(xn) with (xn+i -
xn)f'{xn)· We have, then, that 

a~Xn- = Cn (3.9) 
Xn+l 

for C„ = rif^l ■ Thus, the error a — xn is a simple multiple of the computable6 quantity 
xn+\ — xn- Morever, if we assume that convergence is occurring, and that f'{a) φ 0, then 
the constant of proportionality satisfies 

lim \Cn\ = 1. (3.10) 
n—»oo 

(The student should consider why this is true.) It follows, then, that 

,· Ια -ΖηΙ Λ 

hm — = 1. 
n->oo | χ η + 1 -Xn\ 

As a consequence, we can use the computable quantity | xn+j — xn \ to measure convergence. 
Usually, one stops the iteration when a modest multiple of this is small; for example, 

5|xn+i -xn\ < e 

"This is another important rule in numerical methods and analysis: Use computable estimates of quantities that 
cannot be easily computed. 
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where e > 0 is a user-defined tolerance.7 

A word of warning is in order, however. The results in this section are based on some 
very casual analysis, and although it can all be made precise and rigorous, the fact remains 
that it is possible to have |a;n+i - xn\ small and yet have xn+\ not very close to a. This 
can happen, for example, if f'(xn) is very large compared to f(xn)- For this reason, it is 
commonplace to add a term to the error check to make sure that the function value itself is 
small; that is, we stop when 

| / (x„) | + \xn -xn-i\ < e/5. 

Exercises: 
1. Under the assumption that f'(a) ψ 0 and xn —> a, prove (3.10); be sure to provide 

all the details. Hint: Expand / and / ' in Taylor series about x = a. 

2. We could also stop the iteration when | / (x„) | was sufficiently small. Use the Mean 
Value Theorem plus the fact that / ( a ) = 0 to show that, if / ' is continuous and 
non-zero near a, then there are constants c\ and c-i such that 

ci|/(a;„)| < |a - xn\ < c2|/(a;„)|. 

Comment on this result. 

3. Write a computer program that uses Newton's method to find the root of a given 
function, and apply this program to find the root of the following functions, using xo 
as given. Stop the iteration when the error as estimated by \xn+i — xn\ is less than 
10~6. Compare to your results for bisection. 

(a) f{x) 

(b) f{x) 

(c) fix) 

(d) fix) 

(e) fix) 

(0 fix) 

(g) fix) =x2 - sinx, x0 = \; 

(h) fix) =x3-2,x0 = 1; 

(i) fix) = x + tanx, XQ = 3; 

(j) fix) =2- x~l lna:, x0 = ~. 

4. Figure 3.5 shows the geometry of a planetary orbit8 around the sun. The position of 
the sun is given by S, the position of the planet is given by P. Let x denote the angle 
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71 would like to acknowledge some personal comments from Prof. Nick Higham of the School of Mathematics 

at the University of Manchester in the United Kingdom, who pointed out a minor error in the first edition of this 
section, and also suggested how to repair my analysis. In this connection (as well as many others), I would like 
to recommend Professor Higham's book, Accuracy and Stability of Numerical Algorithms, SIAM Publishing, 
Philadelphia, 2 n d Edition, 2002 
8For the background material for this and the next problem, the author is indebted to the interesting calculus text 

by Alexander J. Hahn, Basic Calculus: From Archimedes to Newton to its Role in Science, published in 1998 by 
Springer-Verlag, New York. 
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defined by PQOA, measured in radians. The dotted line is a circle concentric to the 
ellipse and having a radius equal to the major axis of the ellipse. Let T be the total 
period of the planet, and let t be the time required for the planet to go from A to P. 
Then Kepler's equation from orbital mechanics, relating x and t, is 

x — esina; = -=-· 

Here e is the eccentricity of the elliptical orbit (the extent to which it deviates from 
a circle). For an orbit of eccentricity e = 0.01 (roughly equivalent to that of the 
Earth), what is the value of x corresponding to t = Γ/4? What is the value of x 
corresponding to t = T/8? Use Newton's method to solve the required equation. 

Figure 3.5 Orbital geometry for Problems 4 and 5 

5. Consider now a highly eccentric orbit, such as that of a comet, for which e = 0.9 
might be appropriate. What is the value of x corresponding to t = T/4? What is the 
value of x corresponding to t — T/8? 

6. Consider the problem of putting water pipes far enough underground to avoid frozen 
pipes should the external temperature suddenly drop. Let T0 be the initial temperature 
of the ground, and assume that the external air temperature suddenly drops to a new 
value T <TQ. Then a simple model of how the underground temperature responds 
to the change in external temperature tells us that 

ï T i ¥- r t ( ï77) · 
1Q — 1 \2Vat J 

Here u(x, t) is the temperature at a depth of x feet t seconds after the tem-
perature change, and a is the thermal conductivity of the soil. Suppose that 
a = 1.25 x 10~6ft2/sec. How deep must the pipe be buried to guarantee that 
the temperature does not reach 0° C for 30 days after a temperature shift of 40° 
C? If your computing environment does not have an intrinsic error function, use the 
approximation presented in Problem 8 of §3.1. 
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7. In the previous problem, produce a plot of temperature u at depths of 6 and 12 feet, as 
a function of time (days), in response to a temperature shift of 40° C for the following 
initial temperatures: 

(a) To = 40° C; 

(b) T0 = 50° C; 

(c) lb = 60° C. 

8. Use Newton's method to solve Problem 6 from §3.1. 

9. Repeat the above, assuming that the mortgage is only 15 years in length. 

<d · · · > 

3.4 APPLICATION: DIVISION USING NEWTON'S METHOD 

In this section we will investigate an old algorithm that was actually used in the early days 
of computing to approximate the division operation.9 The purpose is to illustrate the use 
of Newton's method and the analysis of the resulting iteration, in particular to demonstrate 
how we can predict the performance of the iteration for a wide range of parameter values. 

Consider the function 

f{x) = a - - . 
x 

Clearly, / ( a ) = 0 =Φ a = a - 1 , so we can "divide" by a by finding the root of / and then 
multiplying. If we use Newton's method to find the root, we get the iteration 

2*71+1 = Xn l ΙΓ2 I ~ *En(,^ Q,Xn). 

\ Xn J 
Thus, we can approximate the reciprocal of a without having to do division. 

The questions of most interest to us are: When does this iteration converge, and how 
fast? What initial guesses XQ will work for us? 

We begin by using the information about the way the computer stores numbers. We 
have 

a = b x 2 i _ p 

for b e [|, 1], so it suffices to be able to compute the reciprocal for numbers between \ 
and 1. We assume, then, without loss of generality, that a G [|, 1]. 

To analyze the behavior of the iteration, we use the residual, defined by 

Tn — 1 dXn · 

We then have that the error satisfies a — xn = e„ = rn/a = \/a — xn and, moreover, 

rn+i = l-axn+i = 1-α[χ„(2-αζη)] = l-a[xn{l+rn)] = l - ( l - r „ ) ( l + r n ) = r£, 

from which it follows that 
2" 

rn = r0 . 
9Much of this presentation is taken from Kendall Atkinson's textbook, An Introduction to Numerical Analysis, 

John Wiley & Sons, Inc. New York, 1989 (2nd edition). 
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If \r0\ < 1, then we will get r„ -> 0, and very rapidly. In fact, we have that the absolute 
error satisfies 

|e„+i| = |ae£| = ae2 

and the relative error satisfies (recall that a = 1/a) 

En+l I _ f f ü V 
a l v a / 

so that we have 

a \ \a 
Since the error en goes to zero if and only if the residual r n does, we have convergence so 
long as |ro| < 1, which is equivalent to saying that 

(ff-M". 

0 < x0 < - = 2a. 
a 

How do we get an xo t n a t satisifes this? 
Recall linear interpolation from Chapter 2. We can construct the linear interpolate to the 

function y = x _ 1 and use this to estimate a - 1 , and then use this value as xo. The linear 
interpolate using the endpoints of [|, 1] as the nodes is easily found to be 

Pi(x) = 3 - 2x, 

so that 
xo = pi(a) = 3 — 2a. 

The linear interpolation error formula (2.13) shows us that 

1 
■Pi (a) 4 (3.11) 

hence, \XQ — a\ < | , which is equivalent to saying that |τ~ο| = o|eo| = a/2 < \. Thus, we 
will get convergence using this for our initial value. In terms of the relative error, we have 

< < 
a 

A mere six iterations (about 21 total operations) yield relative accuracy on the order of 
io-20. 

The estimate (3.11) is actually very conservative, because of the way that the bound 
on the second derivative of l / x was treated. Because of the simplicity of the functions 
involved, we can actually apply some ordinary calculus to determine that the initial error is 
much smaller than predicted above. 

Define the error in the initial guess as 

g{x) = - - (3 - 2x); 

we want to find the maximum of this (in absolute value) over the interval [|, 1]. Taking the 
derivative gives us 
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which implies that critical points exist at x = ±^\/2. The critical point at x = —\\PÎ is 
outside our interval of interest, so we ignore it and compute 

g{V2/2) = -^= - 3 + \/2 = 2\/2 - 3 = -0.1716.... 
v2 

In addition, we have that ff(l/2) = g(l) — 0. Therefore, the smallest value of g(x) over 
[|, 1] is (to four digits) -0.1716. But it therefore follows that the largest value of |<7(a:)| 
over the same interval is 0.1716 < 0.172. Using this as the upper bound on eo shows that 
we need only five iterations to get relative accuracy on the order of 10~20. 

■ EXAMPLE 3.3 

Let's try this out on a = 0.8, so that we are trying to approximate (0.8)_1 = 1.25. 
The initial guess is found from the linear interpolate as 

xQ = 3 - 2 x 0.8 = 1.4. 

Newton's method then gives us 

xi = i0(2-(0.8)ar0) = (1·4)(2-(0.8)(1.4)) = 1.232; 

Χ2 = .7a(2-(0.8)xi) = (1.232)(2-(0.8)(1.232)) = 1.2497408; 

x3 = £2(2 - (0.8)0:2) = (1.2497408)(2 - (0.8)(1.2497408)) = 1.249999946; 

x4 = 3:3(2 - (0.8)2:3) = (1.249999946)(2 - (0.8)(1.249999946)) = 1.25. 

Thus, we converge in only four iterations (a total of about 14 operations). 

■ EXAMPLE 3.4 

Suppose that we have a quadratic approximation to 1/i that we use to generate XQ-
For example, consider the quadratic 

P2(i) = I (8ΐ2 - 18ΐ + 13). 

Note that ^2(5) = 2, p2(3/4) = 4/3, and £2(1) = 1; therefore we see that p2 

interpolates to 1/i for t — \, t = | , and t = 1. (We will see in Chapter 4 how to 
construct p2·) Since we don't have an error theory (yet) for this type of interpolation, 
how can we estimate the error between P2{a.) and 1/a? 

Again, we can use ordinary calculus. Define the error as 

E(t) = r1-P2{t), 

so that 

E'{t) = -r2-\{\6t-18). 
o 

Then E'(t) = 0 if and only if 

0 = - ί - 2 - ^ (lGi — 18) 

or 
16i3 - 18t2 + 3 = 0. 
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This doesn't factor, but we can use a computer algebra package to plot it and see that 
it has roots near t = 1, t = 1/2, and t = —\. We can then use Newton's method or 
bisection to find those roots, getting (to three places) 

h = 0.886, i2 = 0.595, i3 = -0.356 

as our three critical points. Since i3 is not in the interval [1/2,1], we are not 
interested in it anymore. We then evaluate E(t) at the remaining critical points plus 
the endpoints, getting 

E(h) = 0.018012294, E(t2) = -0.026728214, £(1/2) = 0, E(l) = 0. 

Therefore (note the use of the Extreme Value Theorem here), 

\E{t)\ < 0.026728214 

is the upper bound on the error for t G. [1/2,1]. Hence, 

e0 = | 1 / α - ρ 2 ( α ) | < 0.026728214. 

This is substantially smaller than we got with the linear polynomial. We get around 
10 - 2 5 accuracy in only four iterations, and the total number of operations is now 16. 

The analysis we have done here shows us how to reliably choose x0 to ensure convergence 
for all values of a that are of interest, for this particular application. However, for most 
cases we will need more powerful tools, which we will derive in the next section. 

Exercises: 

1. Test the method derived in this section by using it to approximate 1/0.75 = 1.333..., 
with xo a s suggested in the text. Don't write a computer program, just use a hand 
calculator. 

2. Repeat the above for a = 2/3. 

3. Repeat the above for a = 0.6. 

4. Based on the material in this section, write each of the following numbers in the form 

a = bx 2fc, 

where b € [|, 1], and then use Newton's method to find the reciprocal of b, and hence 
of a. 

(a) a = 7; 

(b) a = π; 

(c) a = 6; 

(d) a = 5; 

(e) a = 3. 

Be sure to use the initial value as generated in this section and only do as many 
iterations as are necessary for 10- 1 6 accuracy. Compare your values to the intrinsic 
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reciprocal function on your computer or calculator. This can be done on a computer 
or on a hand calculator. 

5. Test the method derived in this section by writing a computer program to implement 
it. Test the program by having it compute 1/0.75 = 1.333..., with a;o as suggested 
in the text, as well as 1/(2/3) = 1.5. 

6. How close an initial guess is needed for the method to converge to within a relative 
error of 10~14 in only three iterations? 

7. Consider the quadratic polynomial 

q2{x) = 4.328427157 - 6.058874583a; + 2.745166048a;2. 

What is the error when we use this to generate the initial guess? How many steps are 
required to get 10~20 accuracy? How many operations? 

8. Repeat Problem 7, this time with the polynomial 

q3{x) = 5.742640783 - 12.11948252a; + 11.14228488x2 - 3.767968453a;3. 

9. Modify your program from Problem 5 to use each of p2, 92» and Ç3 to compute 
1/a for a = 0.75 and a = 0.6. Compare what you get to the values produced by 
ordinary division on your computer. (Remember to use Homer's rule to evaluate the 
polynomials!) 

10. Modify the numerical method to directly compute the ratio b/a, rather than just 
the reciprocal of a. Is the error analysis affected? (Note: Your algorithm should 
approximate the ratio b/a without using any divisions at all.) 

11. Test your modification by using it to compute the value of the ratio 4/5 = 0.8. 

< · · · > 

3.5 THE NEWTON ERROR FORMULA 

The derivation of Newton's method from Taylor's Theorem strongly suggested, but did not 
prove, that the error at each step of the iteration is related to the square of the previous 
error. We can, in fact, make that a precise statement, and it becomes a key tool in deriving 
a precise theory of convergence for Newton's method. 

Theorem 3.2 (Newton Error Formula) Let f e C2(I) be given, for some interval I C R, 
with f(a) = Ofor some a £ I. For a given xn E I, define 

f{Xn) 
f'(Xn) 

Then there exists a point ξη between a and xn such that 

(a - xn+l) = - i ( a - * n ) 2 ^ j . (3.12) 

http://www.it-ebooks.info/


THE NEWTON ERROR FORMULA 111 

Proof: We begin by expanding / in a Taylor series about x = xn: 

f(x) = / (*„) + (X - Xn)f'{Xn) + \{X - Χη)2/"(ξη); 

here ξη is between x and a. Now set x = a to get 

0 = / (*„) + (a - Xn)f'(Xn) + \{a - Χη)2ί"(ξη). 

Divide both sides by f'(xn) and re-arrange, which yields 

(x - * ) - ^ = i ( a - z ) 2 ^ ^ 

The left side simplifies to 

from which (3.12) follows by a simple substitution, and we are done. · 
Note that this result shows that the error at one step goes like the square of the error at 

the previous step. Thus, once the error becomes small enough, it begins to decrease rapidly. 
In fact, if we assume that convergence is occurring (with f'(a) φ 0), so that 

lim xn — a, 
71—VOO 

then we can say that / ' (x„) ~ / ' ( a ) and /"(£n) ~ / " (« ) , so that 

(a-xn+i) « C ( a - x „ ) 2 , (3.13) 

where 
ΐ Γ ( α ) 
2 f'(a) ■ 

The approximate equality (3.13) suggests, to some extent, how close XQ has to be to a for 
convergence to occur. We will address this more precisely in §3.6. 

In addition, if convergence is occurring, then we can easily show that 

Q - X „ + I f"(a) 
h m 7 ^2 = ~ o m v ( 3 · 1 4 ) 

n-><x> [a — xny 2 / ' (a) 
This follows from the squeeze principle of calculus (together with the continuity of / ' and 
/ " ) , which shows that the convergence of the iteration (x„ —> a) forces ξη -> a. 

Next, we will explain why it is often said that a converging Newton iteration will double 
the number of accurate decimal digits at each step. 

■ EXAMPLE 3.5 

Let xn be a sequence of values generated by applying Newton's method to a smooth 
function / , and assume that the sequence is converging to the root a. Then it follows 
from (3.12) that 

1 " + l 1 2{a Xn) | / ' ( x n ) | ' 
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so that, taking common logarithms of both sides, we have 

Ι/"(ζη)| 
l o g 1 0 | a - x „ + i | = 2 1 o g 1 0 | a - a ; n | + l o g 1 

' 1 0 \ 2 | / ' ( * n ) | . 
= 2\og10\a-xn\ + bn. (3.15) 

As discussed previously, the quantity 

àn = log10 \a-xn\ 

can be interpreted as the number of correct decimal digits in the approximation (as 
long as the error is less than 1), and (3.15) shows that (ignoring the additive bn term) 
this doubles each iteration. 

We close this section with a definition that allows us to characterize how rapidly a 
sequence of values is converging to a limit. Bear in mind that, although we are indeed 
applying this to the root-finding problem, the definition can be used for any sequence of 
numbers that are approaching a limit. 

Definition 3.1 (Order of Convergence for Sequences) Let xn be a sequence of values 
converging to a, such that 

lim " ~ ^ * 1 = C (3.16) 
n-»oo [a — Xn)P 

for some non-zero (finite) constant C, and some p. Then p is called the order of convergence 
for the sequence. 

The requirement that C be non-zero and finite actually forces p to be a single, unique 
value. If p is too large, then the denominator shrinks too fast and the ratio grows without 
bound to ±oo; if p is too small, then the numerator vanishes too quickly and the ratio 
shrinks to zero as n —> oo. One special case that is of interest to us is when p = 2, as 
in Newton's method; this we call quadratic convergence. The case p = 1 is called linear 
convergence, and requires that \C\ < 1 (see Problem 10). 

Another interesting special case is when the sequence satisfies 

l i m a - x»+i = o (3.17) 
n->oc a — Xn 

but 

lim ? ~ Xn\\ = ±oo; (3.18) 
n->oo [a — Xny 

i.e., the sequence does not converge quadratically. In this case, the sequence is called 
superlinearly convergent, because (3.17) suggests that it converges faster than linear, but 
(3.18) means that it is not quadratic. 

Generally speaking, having p larger means that convergence is more rapid, since (3.16) 
implies 

a - xn+1 « C{a - xn)p. (3.19) 

The Newton error estimate (3.12) strongly suggests that Newton's method is quadrati-
cally convergent, something we will prove to be the case in §3.6. We can illustrate its use 
in analyzing a particular example here; a more thorough discussion (for another example) 
may be found in §3.7. 
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" " ' ae-ax' 

EXAMPLE 3.6 

Consider the problem of finding the root of f(x) = e~ax - x. We want to be able 
to compute this root for a in the range 0 < a < 1, and right now our only tools are 
bisection or Newton's method. If we apply the Newton error formula to this problem, 
we get 

1, , , α2ε-α ξ" 1 . , 2 α2ε"αξ" 
a — xn+i = —x(o; — xn) 7 = ^(c* — χη) τ, 

+ 2 V ; - a e - ° x - - 1 2V ' ae~ax" + l 

where ξη is between xn and a. Note that this implies (since the right side is positive) 
that a — xn+i > 0; thus, for n > 1, we have xn < ξη < a. Moreover, for any 
xo > 0, the Newton iteration itself always stays positive: xn > 0. This enables us to 
write 

a2e_ a Ç" 

ae~aXn + 1 
<a 

Thus, 

ae~aXn + 1 

1 

<a< 1. 

| α - χ η + ι | < -{a-xn) . 

If the initial error is less than 1, then we can quickly show (just by going through the 
recursion) that we have 

\a-x5\ < 5 x 1CT10. 

Hence, five iterations are enough to compute our root, no matter what the value of 
a (as long as a e (0,1]). How do we find an initial guess such that |Q — xo| < 1? 
We note that /(0) = 1 and /(2) < 0 for any a > 0; hence, the root must lie in the 
interval [0,2]. Therefore, XQ = 1 will always satisfy \a — xo\ < 1. 

Note that we have performed this analysis without doing any numerical computations, 
and that it applies for all a € (0,1]. Even though we don't know the value of the root, nor 
the value of the one parameter in the problem, we are able to determine an initial guess such 
that the iteration will converge in five steps. We won't always be able to do this complete 
an analysis of a problem, but this example does illustrate the issues that are involved, and 
some of the tools that are required. 

Exercises: 

1. If / is such that |/"(a;)| < 3 for all x and | / ' (x) | > 1 for all x, and if the initial error 
in Newton's method is less than \, what is an upper bound on the error at each of the 
first three steps? Hint: Use the Newton error formula from this section. 

2. If / is now such that | / " (x) | < 4 for all x but | / ' ( i ) | > 2 for all x, and if the initial 
error in Newton's method is less than \, what is an upper bound on the error at each 
of the first three steps? 

3. Consider the left-hand column of data in Table 3.4. Supposedly, this comes from 
applying Newton's method to a smooth function whose derivative does not vanish 
at the root. Use the limit result (3.14) to determine whether or not the program is 
working. Hint: Use a ~ xy. 

4. Repeat the previous exercise, using the right-hand column of data in Table 3.4. 
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Table 3.4 Data for Problems 3 and 4. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

xn (Prob. 3) 
10.0 
5.25 
3.1011904761905 
2.3567372726442 
2.2391572227372 
2.2360701085329 
2.2360679775008 
2.2360679774998 
N/A 
N/A 
N/A 

a;n (Prob. 4) 
0.000000000000 
0.626665778573 
0.889216318667 
0.970768039664 
0.992585155212 
0.998139415613 
0.999534421170 
0.999883578197 
0.999970892852 
0.999992723105 
0.999998180783 

5. Apply Newton's method to find the root of f(x) — 2 -
solution is a — In 2. Perform the following experiments: 

ex, for which the exact 

(a) Compute the ratio 

Rn 
a -xn+i 
{a - xn)2 

and observe whether or not it converges to the correct value as n —> oo. (Hint: 
See (3.14).) 

(b) Compute the modified ratio 

Rn(p) a 1-71+1 

(a - xn)P 

for various p -φ 2, but near 2. What happens? Comment, in light of the 
definition of order of convergence. 

6. Consider applying Newton's method to find the root of the function f(x) = 4x — 
cos a;. Assume that we want accuracy to within 10~8. Use the Newton error 
estimate (3.12) to show that the iteration will converge for all XQ e [—2,2]. How 
many iterations will be needed for the iteration to converge? Compare with the 
corresponding results for bisection, using an initial interval of [—2,2]. 

7. Verify by actual computation that your results in the previous problem were correct; 
i.e., apply Newton's method to f(x) —Ax — cos x. Do you converge to the specified 
accuracy in the correct number of iterations, and does this convergence appear to be 
occurring for all choices of XQ! 

8. Consider now the function f(x) = 7x — ΰθδ(2πχ). Show that a root exists on the 
interval [0,1], and then use the Newton error estimate to determine how close xo has 
to be to the root to guarantee convergence. 

9. Investigate your results in the previous problem by applying Newton's method to 
f(x) = 7x — cos(27nr), using several choices of XQ within the interval [0,1]. Com-
ment on your results in light of the theory of the method. Note: This can be done by 
a very modest modification of your existing Newton program. 
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10. Show that if xn is a sequence converging linearly to a value a, then the constant C 
in (3.16) must satisfy \C\ < 1. Hint: Assume that \C\ > 1 and prove a contradiction 
to the convergence assumption. 

11. Explain, in your own words, why the assumptions f'(xn) ~ / ' (« ) and f"(£n) « 
/ " ( a ) are valid if we have xn -> a. 

< · · · > 

3.6 NEWTON'S METHOD: THEORY AND CONVERGENCE 

The Newton error estimate (3.12) gives usa very precise idea of how the error changes from 
iteration to iteration, but it is not specific enough by itself to imply convergence or establish 
any kind of accuracy in practice, save for specific examples like those in the exercises for 
§3.5. To get a general theory that is widely applicable to more general problems, we need 
to do a little more work, and that is the purpose of this section. 

First we prove a theorem that makes very stringent assumptions on the behavior of the 
function / . We then show that those assumptions are not entirely necessary in order to 
prove local convergence, that is, convergence under the assumption of a sufficiently close 
initial guess. 

Theorem 3.3 Assume that f is defined and twice continuously differentiablefor all x, with 
/ ( a ) = Ofor some a. Define the ratio10 

m a x , 6 . | r ( * ) | ( 3 . 2 0 ) 

2min i e R | / ' (a : ) | 

and assume that M < oo. Then, for any xo such that 

Μ | α - ι 0 | < 1 , (3.21) 

the Newton iteration converges. Moreover, 

\a-xn\ < M'1 {M\a - x0\fn . 

Proof: The proof is based almost completely on the Newton error formula (3.12). We 
have 

|α-*»+ι| = 2( α-^ΐΓ(^)ΐ' 
< (α - χη)2Μ. 

To simplify the notation, let en = |Q - xn\. Then we have 

en+i < e2nM, 

so that 

ei < e\M 

e2 < e\M <(elM)2M = e%M3 = M-1(Me0)4 

e3 < e\M <{e\M)2M = elM7 = M-\MeQf 

'"Recall that R = ( -oo , oo) 
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and an inductive argument easily shows that 

en < M " 1 (Me0)2" . (3.22) 

It is clear that the right side goes to zero as n —> oo if and only if Meo = M\a — XQ\ < 1, 
which completes the proof. · 

A couple of observations might be in order here. First, note that the convergence, when 
it occurs, is very rapid, since the exponent in (3.22) grows exponentially. For example, if 
Meo = 0.5, we have 

e5 < M- 1(0.5)3 2 = M " 1 x 2.328... x 10_1°. 

Second, it is not very practical to use the condition (3.21) to predict a priori what value of 
XQ to use. The point of the theorem is not to help us choose xo, but to explain to us how it is 
that the iteration converges, to show us what issues are important in obtaining convergence, 
and to assure us that if we can find a value of XQ that is close enough to the root, then we 
will get convergence (and rapid convergence). 

But recall that this theorem assumed that the function / was defined and twice continu-
ously differentiable everywhere, in addition to the assumption of the bound (3.20). These 
are very restrictive assumptions and we would like to remove them, if possible. The key 
issue is to understand that assuming continuity of / and its first two derivatives near the root 
is actually enough to achieve essentially the same result as in Theorem 3.3. Establishing 
this, precisely, is a somewhat involved task, however. 

Theorem 3.4 Let f 6 C2(I), where a £ I C R is a root and I is an open interval. 
Assume that f'(a) φ 0, and let the values xn be defined by applying Newton's method to 
f. Then, for XQ sufficiently close to a, we have that 

lim xn = a (3.23) 
n—KX> 

and 
a - xn+i f"(a) 

hm rx = - . (3.24) 
n-»oo (a - xny 2/ ' (a) 

Proof: Since / ' (α) φ 0 and / ' is continuous, we can find a closed interval around 
a (perhaps a very small interval) such that / ' (x) Φ 0 throughout this interval. Call 
this interval J, and note that we can assume, without loss of generality, that J C I and 
J = {x \ a — e < x < a + e}, where e > 0 is small enough for J to be contained in J and 
to satisfy / ' (x) φ 0 in J . 

Now, since J is closed, and in addition / ' does not vanish on J and / " is continuous on 
J, the ratio 

M = maxx€J\f"(x)\ 
2mmxEj\f'{x)\ 

is bounded. (This follows from the Extreme Value Theorem.) Take XQ e J and use 
Newton's method to define x\\ 

/(so) 
£i = xo — f'(xoY 

http://www.it-ebooks.info/


NEWTON'S METHOD: THEORY AND CONVERGENCE 1 1 7 

We need to take x0 sufficiently close to a that xi € J . The Newton error formula (3.12) 
tells us that 

where ξο is between a and xo, and therefore ξο € J. Thus, 

K*-Zi = ο ( α _ χ θ ) 7777—M ^ ( α - χ ο ) x—: , , , , Ή = (α - x0) M. 
2 l/(a:o)| 2 m i n x e j | / ' ( x ) | 

If we choose xo so that M\a - XQ\ < 1, then we have 

|a - x i | < (a - xo)2M = |o — xo| {\a - XQ\M) <\a — xo|, 

which forces x\ € J (since it is closer to a than x0 is). The same argument can now be 
used to show that xi (defined from x\ by Newton's method) is also in J and, recursively, 
the entire sequence of Newton iterates is in J. We can now essentially follow the same 
argument as used in Theorem 3.3.u We have 

| α - χ η + 1 | = - ( α - * η ) 1 7 ^ - 5 ΐ 

< (a-xn)2M 

where the fact that all the iterates are in J is crucial because it allows us to bound the 
derivative ratio on the right side. From this we quickly get that, for e„ = \a — xn\, again, 

en < M " 1 (Me0)2" . 

so that for Me0 — M\a - XQ\ < 1 (which defines "sufficiently close to a") convergence 
occurs and (3.23) is proven. To get (3.24), we have 

a-xn+1 = —2{a-xn) JÇJ 

from which we get 

a - Xn+l = 1 f"(ξη) 
( α - χ η ) 2 2 / ' ( χ „ ) · 

Now take the limit as n -* oo of both sides. Since xn -> a and ξη is between a and xn, 
it follows (from the "squeeze theorem" of calculus) that ξη —> a as well. Continuity then 
shows that 

l l m 7 T2 = ~ l l m Ö t,t \> 

n->oo ( a — ΧηΥ rn-oo 2 f'{Xn) 

2/'(lim 
n—)·οο 

2 / ' ( a ) ' 

1 ' Note that all of the hard work with the technical issues of continuity and intervals was so that we could get to 

this point and use an already verified argument, i.e., the argument from Theorem 3.3. 
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which completes the proof. · 

Exercises: 

1. Consider a function / that satisfies the properties: 

(a) There exists a unique root a G [0,1]; 

(b) For all real x we have f'(x) > 2 and 0 < f"{x) < 3. 

Show that for XQ = ^, Newton's method will converge to within 10~6 of the actual 
root in four iterations. How long would bisection take to achieve this accuracy? 

2. Consider a function / that satisfies the properties: 

(a) There exists a unique root a e [2,3]; 

(b) For all real x we have f'(x) > 3 and 0 < f"(x) < 5. 

Using .TO = 5/2, will Newton's method converge, and if so, how many iterations are 
required to get 10 - 4 accuracy? 

3. Repeat the above, this time aiming for 10~20 accuracy. 

4. Consider a function / that satisfies the following properties: 

(a) There exists a unique root a e [—1,3]; 

(b) For all real x we have f'{x) > 4 and - 6 < f"(x) < 3. 

Using .To = 1, will Newton's method converge, and if so, how many iterations are 
required to get 10~4 accuracy? 

5. Repeat the above, this time aiming for 10~20 accuracy. 

6. Consider a function that satisfies the following properties: 

(a) / is defined and twice continuously differentiable for all x; 

(b) / has a unique root a e [—1,1]; 

(c) \f'(x)\ > 2 for alia;; 

(d) |/"(:r)| < 5 for all x. 

Can we conclude that Newton's method will converge for all XQ € [—1,1]? If so, 
how many iterations are required to get 10~6 accuracy? If not, how many bisection 
steps must we complete to get the initial interval small enough so that Newton's 
method will converge? (For any choice of xo.) How many total function evaluations 
(bisection plus Newton) are required to get 10~6 accuracy? 

7. Repeat the above for a function satisfying the following properties: 

(a) / is defined and twice continuously differentiable for all x; 

(b) / has a unique root a € [-1,2]; 

(c) f{x) < - 3 for all a;; 

(d) | /"(x) | < 4 for all x. 
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8. Consider the function f(x) = x — a sin x — b, where a and b are positive parameters, 
with a < 1. Will the initial guess XQ = b always lead to convergence? If not, what 
additional condition on a or the initial guess needs to be made? 

2 

9. Write a program using Newton's method to find the root of f(x) = 1 — e~x ; the 
exact value is a — 0. Compute the ratio 

a - Xn+l 

(a - xn)2 

as the iteration progresses and comment (carefully!) on your results, in light of the 
material in this section. 

10. A monotone function is one whose derivative never changes sign; the function is 
either always increasing or always decreasing. Show that a monotone function can 
have at most one root. 

11. If / is a smooth monotone function with a root x = a, will Newton's method always 
converge to this root, for any choice of #o? (Provide either a counter-example or a 
valid proof.) 

< · · · > 

3.7 APPLICATION: COMPUTATION OF THE SQUARE ROOT 

(Much of this presentation is based on an exercise in Kendall Atkinson's text, An Introduc-
tion to Numerical Analysis, published by John Wiley & Sons, Inc.) 

An interesting application of Newton's method is to the computation of y/a. Consider 
now the function f(x) = x2 — a. Clearly, the roots of this function are a = ±y/a, so if we 
can find the (positive) root of / , we have computed \/a. 

Recall that the floating-point representation of a (assuming a binary base) is 

a = b x 2 ' - p , 

where b 6 [5,1] is the fraction, and t — pis the binary exponent. If t — p is odd, we shift 
one factor of 2 from the fraction to the exponent; this allows us to write 

a = b x 22fc, 

where 6 G [ | , 1]. Thus, 

V^ = y/b x 2fc 

and all we have to do is compute the square root of a number in the interval [£, 1]. Can we 
find an initial guess such that Newton's method will always converge for b on this interval? 
If so, how rapidly will it converge? 

The Newton error formula (3.12) applied to f(x) = x2 — b tells us that 

Vb- xn+l = -(Vb - xn)2 f J - Λ = -(v/6 - x„)2 (-^A , (3.25) 
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so that the relative error satisfies 

Vb-xn+i 'Vb-
Vb 

Now, Newton's method applied to / is 

2-n-fl — ***n 

Vb 
Vb 

ΔΧγχ 
(3.26) 

= \\xn 

so that if XQ > 0, then xn > 0 for all n. But then (3.25) implies that 

Vb- xn+i < 0 

for all n > 0. Thus, a = Vb < xn for all n > 1. (We could choose x0 less than \/ö, but 
all subsequent iterates would be greater than Vb·) It therefore follows, from (3.26), that 
since \Vb/xn\ < 1, 

Vb-Xn+l 

Vb 

We can solve the recursion quickly to get 

Vb — x 

< 
1 (Vb-

Vb 
< 2 

'Vb 

Vb 

xo 
2Vb 

(3.27) 

We now turn our attention to finding an initial guess. The fact that we are going to be 
applying the Newton iteration to finding Vb means that we need only look at the interval 
[|, 1]. We could just take XQ = §, which is the midpoint of the interval and implies that 
\oc - xo\ < 3/8, but we can do better by using linear interpolation to the square root 
function. We take our nodes to be | and 1 and apply the linear interpolation formula (2.11) 
to g (x) = V%- We then have that 

. . (x-l/A\ R (\-x\ rrn 2z + l 
Mx) = bvf j ̂ + {-w) ^4=—· 

and we take x0 = pi{b); therefore, xo = \{2b + 1). Moreover, we can use the error 
estimate (2.13) to show that 

\Vb-x0\ < l(l-\ 1 -3/2 

_9_ 

64' 

so that the relative error in Vb (which equals the relative error in VÖ-) becomes 

Vb — xn 

Vb 
< 2 

128Vb 
< 2 | A 
- '.64 

Since Jj < 0.15, this will decrease very rapidly. In fact, we have that for ?i = 4, the 
relative error is less than 4.7 x 10~14. Thus, four steps of Newton's method—about 15 

http://www.it-ebooks.info/


APPLICATION: COMPUTATION OF THE SQUARE ROOT 121 

total operations, counting the cost of forming x0—suffice to compute the square root of a 
number to a very high (relative) accuracy. 

Exercises: 

1. Based on the material in this section, write each of the following numbers in the form 

a = bx2k, 

where b € [\, 1] and k is even, and then use Newton's method to find the square root 
of b and hence of a. 

(a) 

(b) 

(c) 

(d) 

(e) 

a 

a 

a 

a 

a 

= π 

= 5; 

= 7; 

= 3, 

= 6 

Be sure to use the initial value as generated in this section and only do as many 
iterations as are necessary for 10 - 1 6 accuracy. Compare your values to the intrinsic 
square root function on your computer or calculator. 

2. In the example discussed in this section, how many iterations are required for the 
absolute error to be less than 2 - 4 8 ? 

3. How accurate is the result in only three iterations, based on the initial guess used 
here? 

4. What does the initial error have to be for the relative error to be less than 10 - 1 4 after 
only two iterations? Hint: See 3.27. 

5. Extend the derivation and analysis of this section to the problem of computing cube 
roots by solving for the roots of f(x) = x3 — a. Be sure to cover all the major points 
that were covered in the text. Is using linear interpolation to get XQ accurate enough 
to guarantee convergence of the iteration? 

6. Consider using the polynomial 

9 22 32 2 
ΏοίΧ) = 1 X X P2y ' 35 21 105 

to generate the initial guess. What is the maximum error in \y/x — P2(x)\ over the 
interval [|, 1]? How many iterations (and hence, how many operations) are needed 
to get (relative) accuracy of 10- 1 6? (Feel free to compute the maximum value 
experimentally, but you must justify the accuracy of your value in this case with 
some kind of argument.) 

7. Repeat the above using 

q2{x) = 0.2645796916+ 1.0302824818z- 0.2983646911a;2. 
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8. Repeat again, using 

9i (x) = 0.647941993z + 0.3667102689. 

9. Rewrite your program using p2, <?2> and q\ to generate the initial guess, applying it 
to each of the values in Problem 1. Compare your results to the square root function 
on your system. 

10. If we use a piecewise linear interpolation to construct XQ, using the nodes \, jg, and 
1, what is the initial error, and how many iterations are now needed to get 10~16 

accuracy? How many operations are involved in this computation? 

< · · · > 

3.8 THE SECANT METHOD: DERIVATION AND EXAMPLES 

An obvious drawback of Newton's method is that it requires us to have a formula for the 
derivative of / . For classroom examples this is not an issue, but in the "real world" it 
can be. Suppose, for example, that / is not defined by a simple and tidy formula such as 
/ (x) = 2 - ex, but is instead "defined" by a separate subprogram that uses about 2,000 
lines of involved computer code. Even if we could theoretically write a formula for / from 
which / ' could be constructed, is this a practical task to set for ourselves? 

One obvious way to deal with this problem is to use an approximation to the derivative 
in the Newton formula. For example, in §2.2 we saw that 

so we could use this in (3.7) to get the new iteration 

h 
^ η + Ι — %η Jv^n) 

f{xn + h)- /(x„) 

We will, in fact, analyze the convergence of this method in §3.11.2. In this section, we 
want to pursue a similar, but slightly different idea. 

Newton's method is derived, geometrically, by drawing a tangent line from the current 
approximate root down to the axis. The derivative is required because we use the tangent 
line. If, instead, we used a secant line (i.e., one passing through two points on the curve 
instead of just one), then no derivative would be required. 

Let xo and xi be given—thus we have two initial guesses—and consider Figure 3.6. 
Construct the line that passes through (xo, /(xo)) and (xi, / (x i )) and use its root to define 
the next iterate, x-i. The line is defined by the formula 

y - / ( s i ) = / ( X I ) - / ( X Q ) 

X — X i X i — Xo 

so that the next iterate is given by (setting y = 0, and solving for x = X2 in the equation 
above): 

X l - X0 
Xi =X\ - f{?\) 

/ ( x i ) - / ( x 0 ) . 
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10 

8 

6 

=- 4 

2 

0 

0 0.5 1 1.5 2 2.5 3 3.5 4 
X 

Figure 3.6 Illustration of secant method. 

More generally, then, we have 

Xn+l — Xn - f(Xn) 

This is the secant method. Note that it is consistent with Newton's method, where we use 
the approximation 

,/ , v _ f(Xn) - f{Xn-l) 
J {Xn) « — — ■ 

Xn Xn—1 

The error in this derivative approximation is proportional to xn — xn_ 1. Thus, if we assume 
that the iteration is converging (so that x„ - xn-\ -> 0), then the secant method becomes 
more and more like Newton's method. Hence, we expect rapid convergence for XQ near a. 

The secant method has a number of advantages over Newton's method. Not only does it 
not require the derivative, but it can be coded in such a way (see below) as to require only 
a single function evaluation per iteration. Newton requires two: one for the function and 
one for the derivative. Thus the secant method is about half as costly per step as Newton's 
method. 

But the important question is: How well does it perform? 

■ EXAMPLE 3.7 

If we apply the secant method to the same example that we have used heretofore, 
f(x) = 2 — ex, using x0 = 0 and x\ = 1, we get the following results for the first 

l { x ) - x 2 - 1 / 2 
— Secant lines 

jf 
Af 

'/' '/' '/ ' </' 
/ / ' // / / ' 

yi»i>' 
yf / 

j f * / 
*x3,yr ^y^ ' t 

*̂"*̂  ' ' 
/ J / * 

' / / / ' / 
\ f 1 f 1 1 

Ù / 

/v**f 

// 
M 

1 t 1 

-

Xn Xn—1 

f(Xn)~ f(Xn-l). 
(3.28) 

http://www.it-ebooks.info/


124 ROOT-FINDING 

few iterations: 

x-i = xi - f(xi){xi -x0)/(f(xi) - f(xo)) 
= 1 - (2 - e)(l - 0)/(l - e) = 0.5819767068 

X3 = X2 - f{X2){x2 -Xl)/(I(X2) - f(Xl)) 

= 0.5819767068 - (2 - e0-5819767068)(0.5819767068 - l ) / (e - e0·5819767068) 

= 0.6766927037. 

As we continue the iteration, we get the results shown in Table 3.5. Note that we 
converged to almost the same root as for Newton's method, but this time in six 
iterations as opposed to five for Newton. However, recall that Newton is more costly 
per iteration: Newton achieved its accuracy with a total of 10 calls to the function 
/ and the derivative / ' ; secant did it with only six calls, all to / . Secant (for this 
example) was actually more efficient in terms of the number of total function calls. 

Table 3.5 The secant method applied to /(x) = 2 — ex. 

n 
0 
1 
2 
3 
4 
5 
6 
7 

Xn 

0.000000000000 
1.000000000000 
0.581976706869 
0.676692703760 
0.694081399681 
0.693139474645 
0.693147176961 
0.693147180560 

a - xn 

0.693147180560 
0.306852819440 
0.111170473691 
0.016454476800 
0.000934219121 
0.000007705915 
0.000000003599 
0.000000000000 

The secant method and Newton's method suffers from many of the same ills, however, 
since the underlying geometric idea is pretty much the same. The fundamental convergence 
theory is almost exactly the same, in essence: If the initial guesses are both sufficiently close 
to the root, then the method will converge. A fairly complete discussion of the convergence 
of the secant method in given in §3.11.3. At this point we simply note, without proof, that 
an error formula for the secant method can be derived, which says that 

a - xn+i = --{a - xn){a - xn_i) " , (3.29) 
2 / (in) 

where min{a,a;n,a;n_i} < ξ,η,ηη < m a x { a , i n , i n _ i } . Note that this error formula is 
very much akin to the one for Newton's method. Note also that it shows that 

\a-xn+x\ « C | a - a ; n | | a - a ; „ _ i | 

for xn Ri a, xn+\ « a, and xn-\ « a. Thus, the error goes like the product of the 
two previous errors, and it follows easily that the secant method is superlinear when it 
converges. 

In addition, we can easily establish that a relationship similar to (3.9) holds for the 
secant iterates as well as the Newton iterates (the definition of the constant Cn is slightly 
different); thus, we can use the difference of consecutive approximations as a stopping 
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criterion. 

Algorithm 3.3 Secant Method 

i n p u t xO, x l 
e x t e r n a l f 

fO = 
f l = 
f o r 

endf 

, t o i , 

f(xO) 

f ( x l ) 
i = l t o 

x = 
fx 
xO 
x l 
fO 
f l 
i f 

n 

n do 
= x l - f l 

= f ( x ) 
= x l 
= X 

= f l 
= fx 
a b s ( x l -

r o o t = 
s t o p 

e n d i f 
or 

* (x l 

xO) 
x l 

- x O ) / ( f l -

< t o i t h e n 

fO) 

We close this section with an informal statement of the convergence result for the secant 
method. 

If / , / ' , and / " are all continuous near the root, and if / ' does not equal zero at the 
root, then the secant method will converge whenever the initial guess is sufficiently 
close to the root. Moreover, this convergence will be superlinear, in the sense that 

lim ?LZ*!±L = 0. 

n-toa a — Xn 

Note that, fundamentally, this is almost the same as for Newton's method. 

Exercises: 
1. Do three steps of the secant method for f(x) = x3 — 2, using x0 = 0 and x\ = 1. 

2. Repeat the above using x0 = lix1 = 0. Comment. 

3. Apply the secant method to the same functions as in Problem 3 of §3.1, using xo, %i 
equal to the endpoints of the given interval. Stop the iteration when the error as 
estimated by |xn - xn-\ | is less than 10 - 6 . Compare to your results for Newton and 
bisection in the earlier exercises. 

4. For the secant method, prove that 

& ~ %n+l = Cn(xn+i — Xn), 

where Cn -* 1 as n -> oo, so long as the iteration converges. Hint: Follow what we 
did in §3.3 for Newton's method. 

5. Assume (3.29) and prove that if the secant method converges, then it is superlinear. 
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6. Assume (3.29) and consider a function / such that: 

(a) There is a unique root on the interval [0,4]; 

(b) |/"(a;)| < 2 for all a; e [0,4]; 

(c) f'(x) > 5 for all s e [0,4]. 

Can we prove that the secant iteration will converge for any ζο,^ι € [0,4]? If so, 
how many iterations are required to get an error that is less than 10~8? If convergence 
is not guaranteed for all x G [0,4], how many steps of bisection are needed before 
convergence will be guaranteed for secant? 

7. Repeat the above problem under the following assumptions: 

(a) There is a unique root on the interval [0,9]; 

(b) | / " (x) | < 6 for all x e [0,9]; 

(c) f'(x) > 2 for all x e 0,9]. 

Can we prove that the secant iteration will converge for any xç>, x\ S [0,9]? If so, 
how many iterations are required to get an error that is less than 10- 8? If convergence 
is not guaranteed for all x G [0,9], how many steps of bisection are needed before 
convergence will be guaranteed for secant? 

8. Repeat Problem 8 of §3.1, but this time find a for the set of Θ values defined by 

ek = iof c /4 , 

for k ranging from —24 all the way to 24. Construct a plot of a versus log10 Θ. 

9. Comment, in your own words, on the differences between the secant method and 
regula-falsi (see Problem 9 of §3.1). 

< · · · t> 

3.9 FIXED-POINT ITERATION 

So far, we have looked at three methods for approximating the roots of a given function 
f(x): Bisection, Newton's method, and the secant method. The first two can be considered 
as instances of simple iteration, in which we recursively substitute values into a function or 
process to obtain the next value. (The secant method can be put into the framework as well, 
but only imperfectly, since each secant value is determined by the two previous values.) 

In this section, we will study simple iteration for its own sake, generally divorced from 
any considerations or connections to root-finding problems. Our goal, however, is to use 
the added understanding of simple iteration to enhance our understanding of and ability to 
solve root-finding problems. 

Consider Newton's method as applied to f(x) = x2 — a: 

Xn+l = X [χη + ) ■ (3-30) 
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As n —> oo, we know that xn —> a = v^- (1° mis case, convergence occurs for any 
xo > 0.) We can write (3.30) more abstractly as 

Zn+i = g(xn) (3.31) 

forg(x) = \{x + a x - 1 ) . Note that 

/ ( a ) = 0 <̂ => a = g(a). 

The fact that a = 5(a) is interesting. This defines a, which we already know as the 
root of / (the point where the graph of y = f(x) crosses the x-axis), to be a point where 
the graph of the new function y = g(x) crosses the line y = x. Because a = g(a) shows 
that g(a) "stays" at a, this kind of point is called a fixed point of the function g, and an 
iteration of the form (3.31) is called a fixed-point iteration for g. 

We have already seen that we can establish a connection between a root-finding problem 
and a fixed-point problem using Newton's method. But this is clearly not the only way 
to do so. For example, each of the following iterations can be derived from the equation 
x2 — a = 0; thus, for each one, a = g(a) ·*=> f(a) = 0 ·*=> a = y/â. To verify, simply 
let xn = xn+i — x, and solve for x. 

1. x„+i = xn + \{xn - a); g(x) =x + \{x2 - a); 

2. x„+i = a/xn; g{x) = a/x; 

3. xn+i = a + xn - xn; g{x) = a + x - x2. 

So, for a given function g, a number of questions can be raised: 

1. Under what conditions does a fixed point exist? 

2. Under what conditions does the iteration (3.31) converge? 

3. If the iteration converges, how fast does it converge? 

In the remainder of this section, we will outline the theory and practice of fixed-point 
iteration, mostly from the perspective of applying it to the root-finding problem. Our 
objective is to use the fixed-point theory to inform us about certain aspects of root-finding 
problems. 

Students should be advised not to confuse the notion of a root of a function with that 
of a fixed point for the same function. Generally, for a given function / , the roots and 
fixed points (if any exist) are not the same. Figure 3.7 might be instructive in this regard; 
it shows the graph of y = f(x) = x2 — \ and y = x. The roots of / are a = ±yJ\/2, 
but the fixed point of / is where it intersects the graph of y = x, and this occurs at 
x = | ( 1 + λ/3) ~ 1.366. When we use a fixed-point iteration to find a root of a function 
/ , the root is a fixed point of a different function, g, not / . The fixed point of / , if one even 
exists, is usually not related at all to the roots of / . Further clarification in this regard might 
come from comparing Figures 3.8 and 3.9. Figure 3.8 shows two iterations of Newton's 
method, graphically, as done on f(x) = | x 2 — \. The dashed lines are the tangent lines 
being used to find the next iterate. Figure 3.9 shows fixed-point iteration being performed 
on g(x) = \e~x. Here the dashed lines show how xo is mapped onto y = x, and then 
projected onto the curve y = g(x) to get the next iterate. Geometrically, we are looking 
for different points on the curve. 
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-ta.^-yit 

Figure 3.7 Fixed point versus root; 
the root is where the curve crosses the 
x-axis, the fixed point is where the curve 
crosses the line y = x. 

Figure 3.8 Newton's method. 

0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3.9 Fixed-point iteration. 

Before proceeding with the formal development of the important results, let's do some 
informal investigation of a fixed-point iteration. We have 

and 

so that 

a = g(a) 

χη+ι = g{xn), 

a - xn+i = g(a) - g(xn) = θ'{ξη)(α - xn), 

(3.32) 

(3.33) 

where, in order to use the Mean Value Theorem, we have of course assumed that g was 
differentiable. If \g'(x)\ < 1 near the fixed point, then we ought to be able to show that 

|Q — xn\ < cn\a — XQ\ 

for some positive value c < 1, which would of course imply convergence. Once we have 
convergence established, a limit result quickly follows from (3.33), which establishes that 
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the iteration converges linearly, since (3.33) implies that 

a - Xn+i 
a — Xn 

= 9'(ξη)^9'(α). 

We can investigate the iteration (3.32) and the results we have rather casually derived by 
experimenting with a function g whose derivative is less than 1. 

■ EXAMPLE 3.8 

Let's take g(x) = \e~x as our example. Will the iteration 

Xn+\ = 2 e 

converge? 
Let's take XQ = 0; this is a somewhat arbitrary choice, but let's see where it leads 

us. We have 

xi = 9{xo) = 2e° = 2' 

X2 = g(Xl) = ^ e " 1 / 2 = 0.3032653299, 

X3 = g(X2) = Ie-0.3032653299 = Q.369201575, 

X4 = 5 (x3) = i e - ° · 3 6 9 2 0 1 5 7 5 = 0.3456430253. 

If we continue, we get the values in Table 3.6, along with the results for two other 
values of XQ. The computation was stopped at n = 15; clearly, all three iterations 
are converging to the fixed point a « 0.3517, but it is worth noting that none of the 
sequences is converging to its limit as fast as either Newton's method or the secant 
method. Figure 3.10 shows the graph of y = g(x) and y = x to illustrate where the 
fixed point is located. 

- - y.x 
o Fixed poiw of goo 

0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.B 

Figure 3.10 Fixed point illustration. 
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Table 3.6 Fixed-point iteration example, g(x) = \e 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

xn, when zo = 0 
0. 

0.50000000000000 
0.30326532985632 
0.36920157498737 
0.34564302521408 
0.35388254815500 
0.35097870435331 
0.35199937290228 
0.35164028150092 
0.35176657517651 
0.35172215208802 
0.35173777701935 
0.35173228118368 
0.35173421425181 
0.35173353432626 
0.35173377347896 

xn, whenxo = 5 
5.0000000000000 

3.3689734995427e-03 
0.49831834756204 
0.30377574578843 
0.36901317670616 
0.34570814990043 
0.35385950241548 
0.35098679301031 
0.35199652571160 
0.35164128268928 
0.35176622299208 
0.35172227595910 
0.35173773344922 
0.35173229650870 
0.35173420886147 
0.35173353622223 

xn, when xo = — 5 
-5.0000000000000 
74.206579551288 

2.9611607506452e-33 
0.50000000000000 
0.30326532985632 
0.36920157498737 
0.34564302521408 
0.35388254815500 
0.35097870435331 
0.35199937290228 
0.35164028150092 
0.35176657517651 
0.35172215208802 
0.35173777701935 
0.35173228118368 
0.35173421425181 

The important results in this section can be covered in three theorems, which we will 
now state and prove. Although this makes for a lengthy and perhaps abstract theoretical 
interlude, it is necessary to understand the theory underlying fixed-point iterations in order 
to understand (and appreciate) what fixed-point iteration gives us in terms of practical 
algorithms for root-finding. 

The first theorem summarizes the conditions under which a given function g will have a 
fixed point, the conditions under which a fixed-point iteration will converge for any XQ on 
a given interval, and also provides us with error estimates for this convergence. 

Theorem 3.5 (Fixed-point Existence and Iteration Convergence Theory) Let g G C([a, b]) 

with a < g{x) < bfor all x G [a, b]; then: 

1. g has at least one fixed point a G [a, 6]," 

2. If there exists a value 7 < 1 such that 

\g(x)-g(y)\<l\x-y\ (3.34) 

for all x and y in [a, b], then: 

(a) a is unique; 
(b) The iteration xn+\ = g(xn) converges to a for any initial guess xo G [a, b]; 
(c) We have the error estimate 

ln 

\a-xn\<z I z i - z o l - (3.35) 

1 - 7 

3. If g is continuously differentiate on [a, b] with 

max \g'{x)\ = 7 < 1 (3.36) 
xe[a,6] 
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then 

(a) a is unique; 

(b) The iteration xn+i — g(xn) converges to afar any initial guess x0 € [a, b]; 

(c) We have the error estimate 

\a - xn\ < 1 _ J ^ i - xo\; 

(d) The limit 

holds. 

Proof: Define h(x) = g(x) — x. Then, 

h(b) = g(b) -b<0 

and 
h(a) = g(a) — a > 0. 

Therefore, the Intermediate Value Theorem implies that h has a root a on the interval [a, b}; 
thus, h(a) = 0, which implies that a = g(a). This proves (1). 

Suppose now that (3.34) holds, and that a second fixed point, ß, exists on [a, b]. Then 
we have 

a = g(a) (3.37) 

and 

ß = g(ß), 

so that (from (3.34)) 

\a-ß\ = \g{a)-g{ß)\<l\<*-ßl 

which implies that 
| Q - / 3 | ( 1 - 7 ) < 0 . 

Since 0 < 7 < 1, the only way that this can be true is for \a — ß\ < 0, and the only way for 
this to be true is for a = ß, which implies that the fixed point a is unique. (Why?) This 
proves (2a). 

Consider now the iteration (3.31) and the definition of fixed point (3.37). If we subtract 
and take absolute values, we get 

\ot-xn+i\ = \g(a) -g(xn)\ <if\a-xn\. 

Now write en = \a — xn\ so that the above becomes en+\ < ηεη. The recursion can be 
solved readily to get e„ < 7neo, from which it follows that en —> 0 as n —> 00; hence, the 
iteration converges. This proves (2b). 

Finally, we note that 

| a - x 0 | = \a-g(xo) + xi -xo\ < \g(a) -g(xo)\ + \x\ -xo\ < i\a-x0\ + \xi -x0\, 

lim 
n—*oo a - xn 

=f l ' ( t t ) 
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from which it follows that 

\a-xo\ < \xi -xo\, 
1 - 7 

so that 
7 n 

en < 7"e0 < | i i - xo|, 
I - 7 

which proves (2c). 
We now note that (3.36) implies (3.34), so that (3a)-(3c) follow just as (2a)-(2c) did. It 

remains only to prove (3d). 
We have, from (3.37) and (3.31), that 

Οί - Xn+l = 9 ( a ) - g{Xn) = g'(£n)(a - Xn), 

so that 
OL — Xn+1 I 1 & ·. ff % 
— — — = 9 (ξη) -> g (a) a — χη 

since ξη —> a is forced by the convergence of xn to a. · 

Note: It is important to keep in mind here the condition a < g(x) < b, which is one 
of our hypotheses. This assumption guarantees that the iterates computed according to 
xn+i — g(xn) stay within the interval [a, b], which is the only place where we know that 
(3.34) or (3.36) holds. 

We can illustrate this theorem by using it to analyze the example we looked at previously. 

■ EXAMPLE 3.9 

Consider the iteration 
Xn+i = g(xn), 

for g(x) = \e~x. Since 0 < g(x) < \ for all x > 0, we have that g(x) € [0, | ] for 
all x G [0, 5]. Thus, we can take our interval [a, b] as [0, | ] . Since g is continuous 
on this interval, we know that a fixed point must exist there. Further, since g is 
continuously differentiable on [0, | ] and 

W(x)\ < \ < 1 

for all x 6 [0, | ] , we have that this fixed point is unique. Moreover, the iteration 
converges linearly and the error estimate (3.35) applies, with 7 = 5 . 

The second theorem is a local convergence result; that is, if we only know information 
about g near the fixed point, we can still deduce that convergence occurs for a sufficiently 
close initial guess. 

Theorem 3.6 (Local Convergence for Fixed-Point Iterations) Let g be continuously dif-
ferentiable in an open interval ofa fixed point awith |<?'(ο:)| < \; thenjor all XQ sufficiently 
close to a, the iteration xn+\ = g{xn) converges, and 

α-χη+ι , 
hm — = g'{a), 

n-yoo a — Xn 
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and 
Ίη 

\a-xn\ < - \x\ -xo\, 
1 - 7 

for some 7 < 1. 

Proof: Since g is continuously differentiable in an open interval of the fixed point, with 
|s '(a) | < 1, we can (as we did in the proof of the Newton convergence theorem) find a 
closed interval J, centered on the fixed point a, such that |</(x)| < 7 < 1 for all x e J. It 
follows from the definition of the iteration that 

\a-xi\ = \g(a) - g(xo)\ < η/\α - x0\. 

Therefore, x\ is closer to the fixed point than xo is, and so are all the remaining iterates. 
Thus, g(x) € J for all x e J, and we can now apply Theorem 3.5 to complete the proof. · 

Finally, the third theorem provides us with a local criterion under which a fixed-point 
iteration will have a higher than linear order of convergence. 

Theorem 3.7 Consider the fixed-point iteration 

Xn+i = 9{xn), (3.38) 

where g is p times continuously differentiable, and a = g(a). If 

g'(a)=g"(a) = ---=g(p-V(a)=0 

but 
5 ( P ) ( « ) ^ 0 , 

then the iteration (3.38) converges with order p for xo sufficiently close to a. 

Proof: The fact that g' (a) = 0 < 1 means that the iteration will converge for xo 
sufficiently close to a; this follows from Theorem 3.6. All we have to do is establish the 
higher convergence rate. We have, by Taylor's Theorem, 

9(xn) = 9(a) + (xn - a)g'(a) + ■■■ + &LJLS^g<r-i){a) + <*" ~ a)"9^(ξη), 

where ξη is between xn and a. Now, all the derivative terms except that in the remainder 
vanish, so we quickly have that 

g(xn)-g(a) = (Xn~Q)Vp)(€n), P-

so that the iteration then implies that 

(xn-a)p-p\9 *n) 

from which the convergence with order p follows. · 
To illustrate the use of this theorem, we consider Newton's method, 

_ / ( S n ) 
X n + 1 — Xn t l i ■> i 

/ (Xn) 
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which can be viewed as a fixed-point iteration with 

fix) g(x) = x -

Note that 

so 

g\x) = 1 
[/'(x)]2-/(x)/"(x) 

g'{a) = 1 -

Lf'(z)]2 

[ / ' ( " ) ] 2 - / ( α ) / " ( α ) 

[/'(a)]2 
1 - 1 = 0, 

from which we conclude that Newton's method has (local) order of convergence of at least 
2. This assumes, of course, that / ' (α ) φ 0. See §3.11.4 for what happens when this 
assumption fails to hold. 

With the theory that underlies fixed-point iteration behind us, we can now apply this 
theory to obtain a greater understanding of how certain root-finding methods work, and 
how to improve them. Much of §3.11 is devoted to this. 

Exercises: 

1. Do three steps of each of the following fixed-point iterations, using the indicated XQ. 

(a) xn+\ — cosx„, XQ = 0 (be sure to set your calculator in radians); 

(b) xn+i = e~x",x0 = 0; 

(c) xn+i = ln(l -f xn), x0 = 1/2; 

(d) xn+\ = \{xn + 3/x„), x0 = 3. 

2. Let Y = 1/2 be fixed, and take h — ~. Do three steps of the following fixed-point 
iteration 

Vn+i = Y + -h(-Y\nY - yn\nyn) 

using T/O = Y-

3. Let Yb = 1/2 and Yi = 0.54332169878500be fixed, and take h = | . Do three steps 
of the fixed-point iteration 

4 1 
2/n+i = 2^i - Ö^O - 2hyn\nyn 

using yo = Yi· 

4. Consider the fixed-point iteration xn+\ = 1 + e~Xn. Show that this iteration con-
verges for any xo £ [1,2]. How many iterations does the theory predict that it will 
take to achieve 10 - 5 accuracy? 

5. For each function listed below, find an interval [a,b] such that g([a,b]) C [a,b]. 
Draw a graph of y = g(x) and y = x over this interval, and confirm that a fixed point 
exists there. Estimate (by eye) the value of the fixed point, and use this as a starting 
value for a fixed-point iteration. Does the iteration converge? Explain. 

(a) 5(x) = i ( x + f ) ; 
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(b) g{x) = x + e~x - \; 

(c) g{x) = cos a;; 

(d) g{x) = 1 + e-*\ 

(e) g{x) = \{x2 + l). 

6. Let h(x) = 1 — x2/4. Show that this function has a root at x = a = 2. Now, 
using x0 = 1/2, do the iteration x„ + 1 = h(xn) to approximate the fixed point of h. 
Comment on your results. 

7. Let h(x) = 3 — e~x. Using xo = 2, perform as many iterations of Newton's method 
as are needed to accurately approximate the root of h. Then, using the same initial 
point, do the iteration xn+i = h(xn) to approximate the fixed point of h. Comment 
on your results. 

8. Use fixed-point iteration to find a value of x e [1,2] such that 2 sin πχ + x = 0. 

9. For a > 0, consider the iteration defined by 

x\ + x\ - xna + a 
Xn+\ = 2~T~9 1 " 

(a) For xo = 3/2 experiment with this iteration for a = 4 and a = 2. Based on 
these results, speculate as to what this iteration does. Try to prove this, and use 
the theorems of this section to establish a convergence rate. 

(b) Now experiment with this iteration using xo = 2 and a = 5. Compare your 
results to Newton's method. 

10. Consider the iteration 
_ (N - l)xN+1 + ax 

Xn+1 - NxN 

Assume that this converges for integer TV and any a > 0. What does it converge to? 
Use the theorems of this section to determine a convergence rate. Experiment with 
this iteration when N = 3 and a = 8, using xo = 3/2. 

11. Consider the iteration defined by 

i-n+l / ( I n ) 
f{Xn + f(Xn)) - f(Xn) 

This is also sometimes known as Steffenson's method. Show that it is (locally) 
quadratically convergent. 

12. Apply Steffenson's method to find the root of/(x) — 2 —e1, usingxo = 0. Compare 
your convergence results to those in the text for the Newton and secant methods. 

13. Apply Steffenson's method to / (x) — x2 — a for the computation of Λ/Ε. For the 
following values of a, how does the performance compare to Newton's method? 

(a) a = 3; 

(b) a = 2; 

(c) a = 7Γ. 

< · · · > 
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3.10 ROOTS OF POLYNOMIALS, PART 1 

An important calculation in the analysis or design of certain electronic and/or mechanical 
devices involves finding all the roots of a polynomial: 

H(s) = ansn + a n _ i s n _ 1 H h a\s + arj. 

In a typical application we want to know if the real parts of all the roots are positive (or 
negative) or the size of the imaginary parts (which can represent frequencies of vibration).12 

One can use any of the methods discussed in this chapter to find the roots of a polynomial, 
and many of the exercises concern polynomial functions. But there are several aspects to 
the polynomial root-finding problem that make it rather challenging: 

1. Polynomial roots can be very sensitive to slight errors in the coefficients; 

2. Polynomials with real coefficients can have complex-valued roots; 

3. The usual polynomial root-finding problem is to find all the roots of the polynomial 
in question. 

In this section we outline a simple, easy-to-program method that can be used to find 
all the roots of a given polynomial with real coeficients. We can assume, without loss of 
generality, that the polynomial in question is monic, i.e., the coefficient of the highest-order 
term is 1 : 

p(x) = xn + an-ixn~l + h a2x2 + axx + a0. (3.39) 

It will be convenient to gather a number of basic facts about polynomials into a single 
theorem, which we will not formally prove. 

Theorem 3.8 Consider a polynomial of degree n, p(x), in the form (3.39), with all coeffi-
cients a,k S R. Then the following hold: 

1. There are exactly n values ζj 6 C such that p(Cj) = 0; 

2. Any complex-valued roots occur in complex-conjugate pairs—i.e., ifζ = x + iy is a 
root, so is ζ = x — iy; 

3. All roots are contained within the region of the complex plane defined by 

n 

■ttroots = \ ) -Tij ) 

J = l 

where the sets on the right are defined by 

Ro = {z e C | \z\ < \a0\} 

Rj = { z e C | |z| < (l + |aj_i |)}, 2 < j < n - 1 

Rn = {zeC | |z + a n _ i | < 1}. 

We will see in Chapter 8 where the localization result comes from. 
Some readers may be wondering why we need to develop anything new to solve this 

problem. Why not simply graph the polynomial to get "eyeball approximations" to the 

2The material in this section requires some understanding of complex arithmetic. 
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roots, then use Newton's method (or any other method from this chapter) followed by 
long division (deflation) to get all the roots? This is indeed possible, but it is not always 
effective. For one thing, it only gets you the real roots. If the "leftover" polynomial is 
of sufficiently high degree, then finding the complex roots might not be easy. Also, the 
deflation step (dividing the polynomial by each approximate root found) introduces errors 
into the coefficients, which can lead to larger errors in the approximate roots. However, 
for sufficiently low-degree (and well-behaved) examples, this approach is practical, and we 
will give an example of its use. 

■ EXAMPLE 3.10 

Consider the polynomial 

p(x) — xA — x — 1. 

This is indeed a monic polynomial, and Fig. 3.11 gives a plot over the interval [—2,2]. 
A little work with the coefficients shows that the roots can all be found in the region 

Rr, {zeC\ \z\ < 2 } . 

0.5 1 1.5 

Figure 3.11 Plot of the polynomial p(x) = x4 — x — 1. 

It is evident from the graph that we have real roots near x = 1.25 and x = —0.75, 
so it is a simple task to apply Newton's method with those starting values. We get 
the results in Table 3.7. 

With these values in hand, we know that the remaining (complex) roots can be 
found by carrying out the division 

q(x) 
p(x) 

(x - d)(x - ζ2) 
= x2 + (0.49625212560524)x+ 1.13068544546204; 

http://www.it-ebooks.info/


138 ROOT-FINDING 

Table 3.7 Simple polynomial example, p(x) = x4 — x — 1; real roots. 

k 
1 
2 
3 
4 

Ci 
1.22190366972477 
1.22074599618017 
1.22074408461096 
1.22074408460576 

P(Ci) 
0.00729038680243 
0.00001199839276 
0.00000000003267 
0.00000000000000 

C2 
-O.72529069767442 
-0.72449275554021 
-0.72449195900131 
-0.72449195900052 

P(C2) 
0.00201571897758 
0.00000200816642 
0.00000000000200 
0.00000000000000 

since this is a quadratic, we can get the complex roots directly via the quadratic 
formula. We thus have the full set of roots: 

Ci = 1.22074408460576, 

ζ2 = -0.72449195900052, 

C3 = -0.24812606280262+1.03398206097597Î, 

ζ4 = -0.24812606280262-1.03398206097597z. 

These are very accurate values—they agree completely with those produced by 
MATLAB's roo t s function—but the process was cumbersome. It required human 
intervention to deduce the starting values for the Newton iterations, and it would not 
necessarily have worked for a higher-degree polynomial. For example, if we had 
considered 

q{x) = x6 — x — 1, 

we would again have found that there were two real roots, but now the remainder 
polynomial is quartic. How do we get the complex roots13? 

Perhaps the simplest method that might do the kind of job we want is the Durand-Kerner 
method. It is based on a very interesting construction from the definition of the polynomial 
in terms of its roots. 

We can use the roots ζj to write the original polynomial as 

p(x) = {X- ζη){χ - Cn-l) · · · (X - <2)(X - Cl)· 

We can use this to solve for each root in terms of the others as follows: 

p(x) 
Ci = x -

C2 x — 

{X - ζη)(χ - Cn-l) ■■■{X- ζ3)(Χ - C2) ' 

p{x) 

[X - Cn)(x - Cn-l) ' · ■ (X - C3)(X - Cl) ' 

Cn-l 

Cn 

X — 

X — 

p(x) 

{X - Cn)(x - Cn-2) · · · (X - C2)(X - Cl) ' 

ρ(χ) 
(x - Ç n - i ) ( ι - Cn-2) ■ ■ · (x - C2X2 - Ci) ' 

3There actually is a "quartic formula," but it is clumsy to use and not well known. 
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This suggests an iteration. Let G be the approximation to £j at the fc-th iteration; replace 

x in the right-hand side of the above with G ', and let this define the new approximations 

c j f c + 1 ) . * ^ 

(fe+i) _ 
Ci 

Ak+1) 
S>2 

= Ci' (fc) P(dfc)) 
,(fe)w,(fc) , (k ) (*) Ak)^,Ak) ,(kU 

Ak) 
S2 

(ciK; - Cn>)(cr - C M ■ · · (cr - c rxcr - C D 
p_(gh 

(k)> ( d f c ) - c^ ) (d f c ) c&)- (dfc) ■cn(cr-cr') 

^1 " ^1 " e \ - Λ ^ Λ - &) ■ ■ ■ e_\ - uk))i& - ci(fc)) ' 
P(dk)) Ak+l) = Ak) 

Sn Sn Λ Ό \/y(*o /-(fe) 
«χ' - cr\)(cr - C-;2) ■ · ■ (cr - c r w - cr) 

(fc) />(fc)\/AW ΛΌ<| 

Note that the iteration appears to be well-defined, except for the possibility of multiple 
roots. (Readers may want to think about why this is not as great a problem as it appears 
to be.) The computation looks more complicated than it is, because of the index-heavy 
notation. There is a variant in which ζ\ + ' is used in the equation for Q , and so on. 
For reasons that should become clear in §7.7, this is sometimes known as a "Gauss-Seidel" 
variant of the method. To get complex roots, you do have to start with a complex initial 
value. 

Let's look at same examples. 

EXAMPLE 3.11 

Again consider 
p(x) = x4 — x — 1. 

If we take our initial values as ζ{ (0) i, ά0) -i. Cf i, and Q (0) -i, and 
proceed with the iteration as defined above, we get the results shown in Table 3.8: 

Table 3.8 Durand-Kerner polynomial example, p(x) = x* — x — 1. 

k 
1 
2 
3 
4 
5 
6 

Cl 
1.25000000000000 
1.22055288461538 
1.22074413864366 
1.22074408460576 
1.22074408460576 
1.22074408460576 

C2 
-0.75000000000000 
-0.72343750000000 
-0.72449274739525 
-0.72449195900059 
-0.72449195900052 
-0.72449195900052 

C3.4 
-0.25000000000000± l.OOOOOOOOOOOOOOi 
-0.24855769230769 ± 1.03377403846154Ï 
-0.24812569562421 ± 1.0339819335444 li 
-0.24812606280258 ± 1.03398206097578i 
-0.24812606280262 ± 1.03398206097597Î 
-0.24812606280262 ± 1.03398206097597i 

These values are as accurate as in Example 3.10, and are obtained much more 
simply. 
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■ EXAMPLE 3.12 

Now let's consider p(x) = x6 — x — 1. According to Theorem 3.8, all the roots lie 
in the complex disk defined by 

flroots = {Z G C | \z\ < 2 } . 

We get the set of iterates shown in Table 3.9. 

Table 3.9 Durand-Kerner polynomial example, p(x) = x6 — x — 1. 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Cl 
1.08155487804878 
1.13901721798730 
1.13539113258632 
1.13500712616363 
1.13478664030116 
1.13472702883897 
1.13472414517347 
1.13472413840153 
1.13472413840152 
1.13472413840152 

C2 
-0.77836538461538 
-0.77822963271006 
-0.77814151833254 
-0.77811064084602 
-0.77809831808509 
-0.77809075367968 
-O.77808961428378 
-0.77808959868072 
-0.77808959867860 
-O.77808959867860 

C3,4 
-0.30769230769231 ± 1.70512820512820i 
-0.22198006215195 ± 0.99861639553984Î 
-1.24651809113936 ± 0.50899741840019i 
-0.85917576678224 ± 0.84016747596423Î 
-0.69025787751531 ± 0.77104060671459i 
-0.63470626697919 ± 0.73992433685472Î 
-0.62941083605888 ± 0.73580572524339Î 
-0.62937242972103 ± 0.73575595743980Î 
-0.62937242847031 ± 0.73575595299978Î 
-0.62937242847031 ± 0.73575595299978i 

C5,6 
0.15609756097561 ± 0.27154471544715i 
0.04158626951333 ± 1.2387506730785i 
1.06789328401247 ± 1.25381006341545Î 
0.68072752412344 ± 1.12629581387957i 
0.51191371640728 ± 1.02410317331166i 
0.45638812939955 ± 1.0027094840181 Oi 
0.45109357061403 ± 1.0023500035 8472i 
0.45105515986063 ± 1.00236456954711 i 
0.45105515860886 ± 1.00236457158716i 
0.45105515860886 ± 1.00236457158716Î 

Like all root-finding methods, Durand-Kerner will perform poorly for polynomials with 
multiple roots. To illustrate this, we consider another example. 

■ EXAMPLE 3.13 

Let 

p(x) = (x2 + x + l)(x + 2)2 = (x2 + x + l)(x2 + 4x + 4) = x4 + 5x3 + 9x2 + 8x + 4 

which has roots at ζ = ^ ( - 1 ± \/3i), - 2 , - 2 . Our localization isn't much help, 
because it suggests that we need to look in the very large region defined by |z| < 9. 
We take ±3 ± 3i as the initial values and get the sequence of iterates given in Table 
3.10. 

While we have converged to the complex roots in about 12 iterations, after 15 
iterations the real roots still have a non-trivial imaginary part. Changing the initial 
guesses will, of course, change the iterates, but not the slow convergence. 
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Table 3.10 Durand-Kerner multiple root example, p(x) = x4 + 5x3 + 9x2 + 8x + 4. 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Cl,2 
0.63425925925926 ± 2.74537037037037Î 
0.41780641520150 ± 1.87602995645876Î 
0.07346662069880 ±1.38332434612017i 
-0.20524029076841 ± 1.08373409475309i 
-0.39076218369095 ± 0.92341170976034Ï 
-0.47968786225950 ± 0.87006386827860Î 
-0.49912954857761 ± 0.86567889432403Î 
-0.49999821882186 ± 0.86601742223755Î 
-0.50000001267065 ± 0.86602539212555i 
-0.50000000000866 ± 0.86602540378715i 
-0.50000000000000 ± 0.86602540378444Ï 
-O.50000000000000 ± 0.86602540378444Î 
-0.50000000000000 ± 0.86602540378444Î 
-0.50000000000000 ± 0.86602540378444Î 
-0.50000000000000 ± 0.86602540378444Ï 

C3.4 
-3.13425925925926 ±2.52314814814815i 
-2.91780641520150 ± 1.7234409623131 li 
-2.57346662069880 ± 1.21571014561951Î 
-2.29475970923159 ± 0.84144913620496Î 
-2.10923781630905 ± 0.54298780244318i 
-2.02031213774050 ± 0.30996703413706Î 
-2.00087045142239 ± 0.15897779863809Î 
-2.00000178117814 ± 0.07954479815244Ï 
-1.99999998732935 ± 0.03977228743418i 
-1.99999999999134 ±0.01988614333141i 
-2.00000000000000 ± 0.0099430716656Ü 
-2.00000000000000 ± 0.00497153583280Î 
-2.00000000000000 ± 0.0024857679164H 
-2.00000000000000 ± 0.00124288395823Ï 
-2.00000000000000 ± 0.00062144197911 i 

■ EXAMPLE 3.14 

One problem with Durand-Kerner is that the user has to use a complex initial guess 
to find a complex root. If we make all real initial guesses for the polynomial in 
Example 3.11, we get the results in Table 3.11. Note that we haven't even converged 
to the real roots; rather, all the iterates seem to be bouncing around erratically—and 
taking more iterations doesn't help. This is because Durand-Kerner depends on the 
accuracy of all the iterates for convergence. (This might suggest that all your initial 
guesses should have some non-zero imaginary part.) 

Table 3.11 Durand-Kerner convergence failure, p(x) = x4 — x — 1. 

k 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Cl 
1.00000000000000 
0.83333333333333 
^.88888888888889 
-2.23215884066467 
-2.45596730911110 
5.70485505349840 
1.63698623298533 
2.94334173319389 
1.39771626940761 
0.92623290486333 
1.83566699890128 

C2 
-1.00000000000000 
-1.16666666666667 
-0.33587301587302 
-5.45557075319540 
-2.23199317241196 
-8.48469654009375 
-4.71870916709491 
-2.68401723049215 
-0.87276922359398 
-1.06128810798049 
-0.50150330337031 

C3 
2.00000000000000 
0.91666666666667 
5.56537037037037 
2.95040908151362 
3.87306538304134 
2.01002632527200 
2.28686243290975 
-1.25565402788743 
-1.45862978500119 
-0.21334231281918 
1.23207846240992 

C4 
-2.00000000000000 
-0.58333333333333 
-0.34060846560847 
4.73732051234645 
0.81489509848171 
0.76981516132335 
0.79486050119983 
0.99632952518569 
0.93368273918756 
0.34839751593633 
-2.56624215794089 
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As of the writing of this edition of this text, the "state of the art" method for polynomial 
root finding is based on a paper by Jenkins and Traub [8], and involves re-writing the 
polynomial root-finding problem as a matrix eigenvalue problem. We therefore will defer 
discussion of this until Chapter 8. 

Exercises: 

1. Use the Durand-Kerner algorithm to find all the roots of the polynomial 

p{x) = x4 - 10x3 + 35x2 - 50x + 24. 

You should get Ci,2,3,4 = (1,2,3,4). 

2. Use the Durand-Kerner algorithm to find all the roots of the following polynomials. 
(Feel free to use MATLAB'S roo t s command to check your results): 

(a) p(x) = x6 + x5 + x4 + x3 + x2 + x + 1; 

(b) p(x) = xe - x5 - 1; 

(c) p(x) = x9 - x8 - 1; 

(d) p(x) = x5 - 1. 

3. Use Durand-Kerner to find all the roots of the polynomial 

p(x) = x7 — x — 1. 

4. Use Durand-Kerner to find all the roots of the polynomial 

p{x) = x8 — x — 1. 

5. Now consider the polynomial 

p(x) = x6 — ax — 1, 

where a is a real parameter. We want to investigate how the roots depend on a. For 
various values of a € [—2,2], compute the roots of p and observe how they change 
as a changes. Can you plot the real roots as a function of a? Try to extend the range 
of values of a. Does anything interesting happen? 

6. Repeat the above for the polynomial 

p(x) — x6 — x — b, 

where now b e [-2,2] is a parameter. 

7. Use MATLAB's rand function to generate a random polynomial of degree 10. (Re-
member to make it monic!) Use Durand-Kerner to find the roots of this polynomial, 
and check your results by using MATLAB's roo t s function. 

< · · · > 
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3.11 SPECIAL TOPICS IN ROOT-FINDING METHODS 

3.11.1 Extrapolation and Acceleration 

One of the more important aspects of numerical analysis is that we can sometimes accelerate 
or improve the convergence of an algorithm with very little additional effort, simply by 
using the output of the algorithm to estimate some of the uncomputable quantities in the 
analysis of the algorithm. The best example of this will come in Chapter 5. Here we use 
this basic idea to speed up the convergence of a linearly convergent sequence, in a process 
known as Aitken extrapolation}* It can be used to accelerate a linear algorithm into a 
quadratic one, and thus it makes the fixed-point iteration ideas somewhat competitive with 
Newton's method. Moreover, we will use these ideas to recover the speed of convergence 
of Newton's method when the theory of §3.6 does not apply; this is done in §3.11.4. 

We begin as we almost always do with fixed-point iteration, by considering the error. If 
we assume that g is continuously differentiable, then the Mean Value Theorem says that 
there exists £„_i between a and xn-\ such that 

a-xn= g(a) - g(xn-i) — 9'{ξη-ι)(ο: - xn-i)· 

Now consider 

a - Xn = {a - Xn-l) + (Xn-l - Xn) = —f7Z r ( a ~ I n ) + ( l n - 1 ~ Xn) 
9 (.Sn-lJ 

so that solving for a implies that 

a = Xn+ , g , % X ) AXn-Xn-i)- (3.40) 
1 -9 ( ξη- ΐ ) 

This formula is the starting point for the construction of our extrapolation algorithm. Note 
that it gives an expression for a in terms of xn, xn-i, and g'^n^i). The problem is that 
the last quantity is not computable; but it can be estimated, and that is the key. 

Since we are assuming that xn -» a, we also know that <?'(£„) -» g'(a); thus, 

fl'(Çn_1)«fl'(a). 

14 Alexander Craig Aitken (1895-1967) was born at Dunedin, New Zealand, of Scottish parents, and educated 

at the University of Otago, located in Dunedin. In 1923 he obtained a scholarship for graduate study at the 
University of Edinburgh in Scotland, where he spent the rest of his life. The idea of accelerating the convergence 
of a linearly converging sequence, sometimes called the Aitken δ2 process, is presented in a 1926 paper, "On 
Bernoulli's numerical solution of algebraic equations," published in the Proceedings of the Royal Society of 
Edinburgh. During World War II he was part of the British effort to decode German ENIGMA messages. 
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On the other hand, consider the ratio 

Xn —1 Xj) 
In 

Xn — 2 Xn —1 

_ (a-Xn-i) - (a-xn) 

(a-xn-2) - ( Q - X „ _ I ) ' 

= (Q - xn-\) - g / ( ^ n - i ) ( a - x n _ i ) 

(a - Xn-i)I'g''(ξη-2) - ( Q - X „ _ I ) ' 

l -g ' fo - l ) 
1 / 5 ' ( ξ „ - 2 ) - ΐ ' 

,,, ,1-9'(ξη-ΐ) 
= 9 [ξη-2)- -777 r , 

1 - 9 (ζη-2) 
-> g'{a). 

Thus, 7η ~ ff'(°0 a s well- The difference (and it is an important one) is that 7„ is 
computable. We thus can use 

In ~ g'^n-l) 

in (3.40) in order to get a completely computable estimate of a: 

~ -L Ύ" / _ \ 
Q: ~ Xn -+- - ^Xn — Xn—1), 

1 ~ln 

which we use to define a new sequence of approximations: 

Xn=Xn + Z — ( x „ - £ „ - l ) . (3.41) 
l - 7 n 

There are a couple of ways to use Aitken extrapolation in an algorithm. Perhaps the 
most obvious is to use the ordinary fixed-point iteration to produce the xn sequence, with 
the x„ sequence being produced passively, as it were. 

■ EXAMPLE 3.15 

Let'e return to our example iteration for which g{x) = \e~x. Taking xo = 0, we 
compute the first several ordinary iterates as follows: 

x i = g(x0) = - e u = - ; 

x 2 = g(Xl) = ^ e " 1 / 2 = 0.3032653299; 

x3 = 5 ( x 2 ) = i e - ° · 3 0 3 2 6 5 3 2 9 9 = 0.369201575. 

Now, starting with x 2 , we can begin to compute the accelerated values x„ according 
to 

. Ύη / \ 
Xn — 3Cn i Z \^n Xn—llt 

1 - 7 n 

where 
Xn—1 ^n 

In 
Xn_2 ^n—1 
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Proceeding in this fashion we get 

« , = 0.3032653299+ ( j ^ g ^ l ) (0.3032653299-0.5) 

= 0.35265011013472, 
-0.35729286262005 \ 

kl + 0.35729286262005, 
= 0.35184456205221. 

X3 = 0.369201575+ ( , , n o e ^ n n o e o e o n n 5 j (0-3692015759- 0.3032653299) 

Pseudo-code for this might go as in Algorithm 3.4; further computation involving this 
example is given in Table 3.12. 

Algorithm 3.4 Aitken Extrapolation, Version 1. 

xl = g(x0) 
x2 = g(x l ) 
for k=l to n do 

i f (dabs(xl - xO) > l .d-20) then 
gamma = (x2 - x l ) / ( x l - xO) 

e l s e 
gamma = 0.OdO 

endif 
xbar = x2 + gamma*(x2 - x l ) / ( l - gamma) 
i f (abs (xbar - x2) < e r ro r ) then 

alpha = xbar 
s top 

endif 
x = g(x2) 
xO = x l 
xl = x2 
x2 = x 

enddo 

Programming Note: Since division by zero—or a very small number—is possible in the 
computation of gamma, we put in a conditional test: Only if the denominator is greater than 
10 - 2 0 do we carry through the division. 

Although Algorithm 3.4 does result in faster convergence, it does not take as much 
advantage of the acceleration as is possible. An alternate version actually feeds the extrap-
olated value back into the computation; this is sometimes known as Steffenson's iteration, 
and is given in Algorithm 3.5, although there is another root-finding method (see the 
exercises in §3.9 ) associated with this name, so confusion is possible. 

■ EXAMPLE 3.16 

By using the same function and initial value, we compute as follows: 

z'i = g(x0) =-e° =-; 

x'2 = g(x[) = \e~1/2 = 0.3032653299. 
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Now we do the acceleration using XQ, X \ , and x'2: 

xl x2 
7 = — j- = -0.3934693402; 

XQ - X\ 

thus, the next value of the iteration is 

xi = 0.3032653299+ ( ~ n „ Q » , r o „ , n J (0.3032653299-0.5) = 0.3588166496. 

We then compute (note that, in this notation, x'2 gets re-defined) 

X>2 = g(Xi) = Ie-0.3588166496 = 0.3492512051; 

x'3 = g(x>2) = Ie-0.3492512051 = Q.3526079771. 

Now use Aitken acceleration with x\, x'2, and x'3: 

x' - x' 
7 = — f = -0.3509269224. 

Thus, the next iterate is 

/ -0.3509269224 \ , 
X2 = 0.3526079771+ nnrnnnnnnnj (0.3526079771-0.3492512051) = 0.3517359968. 

\ 1 + 0.3509269224/ 
Pseudo-code for this algorithm is given in Algorithm 3.5. Note, again, that we checked 

for division by small numbers before computing gamma. 

Algorithm 3.5 Aitken Extrapolation 

f o r k= 

enddo 

1 t o n do 
x l = g(xO) 
x2 = g ( x l ) 
i f ( d a b s ( x l - xO) > 1 

gamma = (x2 -
e l s e 

Version 2. 

d-20) t h e n 
■ x l ) / ( x l 

gamma = 0.OdO 
e n d i f 
xO = x2 + gamma*(x2 - x l ) / ( l -
i f ( a b s ( x 0 - x2) < e r r o r ) t h e n 

a l p h a = xO 
s t o p 

end i f 

- xO) 

gamma) 

Table 3.12 shows more computations with the original fixed-point iteration xn+\ = 
| e _ x " , together with both Aitken extrapolation algorithms. As a further comparison, we 
have also included the data for using Newton's method to find the root of the function 
f(x) = x — ke~x, whose root is the same as the fixed point of g. 

http://www.it-ebooks.info/


SPECIAL TOPICS IN ROOT-FINDING METHODS 1 4 7 

Note that the first Aitken algorithm does converge somewhat more quickly than the 
unaccelerated fixed-point iteration, but the second Aitken algorithm is much faster than 
both. (The table is somewhat deceptive in this regard. The second Aitken algorithm uses 
two evaluations of g at each step, so it really is converging in eight iterations instead of 
four.) Note that Newton and the second Aitken algorithm both converged in four iterations. 

Table 3.12 Extrapolation example, g(x) = \έ 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Fixed-point 
0.0 

0.50000000000000 
0.30326532985632 
0.36920157498737 
0.34564302521408 
0.35388254815500 
0.35097870435331 
0.35199937290228 
0.35164028150092 
0.35176657517651 
0.35172215208802 
0.35173777701935 
0.35173228118368 
0.35173421425181 
0.35173353432626 
0.35173377347896 

Aitken, version 1 
N/A 
N/A 

0.50000000000000 
0.35881664959840 
0.35265011013472 
0.35184456205221 
0.35174752132793 
0.35173541541015 
0.35173392226949 
0.35173373734771 
0.35173371447837 
0.35173371164868 
0.35173371129862 
0.35173371125531 
0.35173371124995 
0.35173371124929 

Aitken, version 2 
0. 

0.35881664959840 
0.35173599679979 
0.35173371124943 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 

Newton 
0. 

0.33333333333333 
0.35168933155542 
0.35173371099294 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 
0.35173371124920 

It can be shown, under the correct hypotheses, that the second Aitken algorithm is 
quadratically convergent. In fact, this is one application of Theorem 3.7; see Problem 4. 

One problem that we have conveniently avoided discussing so far is that Aitken extrapo-
lation is very susceptible to subtractive cancellation, based on the formula for ηη as well as 
the difference xn_i — xn that appears in (3.41). For this reason the computations in Aitken 
extrapolation should be done in as high precision as possible. It is sometimes suggested 
that, after the extrapolated method has converged, a few ordinary iterations be carried out 
to remove any error caused by the subtractive cancellation. 

3.11.2 Variants of Newton's Method 

One application of the fixed-point theory developed in §3.9 is to the study of other, Newton-
like iterations that can be proposed. In this section, we will look at three such ideas. All 
three are locally convergent, although the first two are only linear and not quadratic; the 
third is an example of a cubic convergent method. 

The Chord Method Newton's method works by using the tangent line approximation 
to find the approximate root of the function, fix). This, of course, requires the derivative 
/ ' (x) , and uses two function evaluations in each step of the iteration. The chord method 
uses the original value of the derivative, / ' (XQ) , on each iteration, instead of just the first 
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one: 

/'(zo) 
By giving up the need to evaluate the derivative at each step of the iteration, we save some 
cost, but should also expect to lose some convergence and accuracy. The question is: How 
much do we lose? 

If we apply Theorem 3.6 to 

we get that 

g(x) =x- M ' 
HxoY 

9{x) = 1-7^)^9{a) = 1-7W) = 7W)ia-Xo)' 

so that Iff'(a) | < 1—which is what controls the existence of local convergence, according 
to Theorem 3.6—depends on how close XQ is to a. Moreover, we won't get quadratic 
convergence unless xo = a (we know this from Theorem 3.7), so we know we have lost 
the extra speed that Newton's method gives us; the chord method is only linear and only 
locally convergent. This might prompt the question: Why bother with it? After all, we can 
use the secant method, which is faster than a linear method, and does not use the derivative 
either. So what purpose does the chord method serve? 

A complete answer would require almost another entire course. The chord method is 
useful in solving nonlinear systems of equations, that is, problems involving 2 or 3 or 20 
(or more) equations in 2 or 3 or 20 (or more) unknowns. In this setting, which we briefly 
discuss in §7.8, the derivative of / is actually a matrix, so every evaluation of / ' is actually 
the evaluation of an n x n matrix. Having a method, even if it is only linearly convergent, 
that avoids having to re-evaluate (and invert—since the division by / ' in the scalar case 
becomes matrix inversion in the systems case) that matrix every step of the way is valuable. 

One interesting variant of the chord method updates the point at which the derivative is 
evaluated, but not every iteration. Thus, for the first, say, p iterations, we use 

2-n+l — %n 

but for the next p iterations we use 

f(Xn) 
/'(so)' 

/ (Xn) 

and so on, periodically updating the derivative evaluation point. Although this method 
will not converge as quickly as Newton's method, it will converge more quickly than the 
ordinary chord method, and is less costly than Newton's method. 
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Xl 

Z 3 

£ 4 

= 

= 

Xl 

X2 

X3 

EXAMPLE 3.17 

Let's use the chord method to find the root of f(x) = 2 - ex, the same example that 
we have used throughout this chapter. Taking x0 — 0, we have f'(xo) = - 1 , so 

/(so) n 2 - 1 
xi = xo- , , , x = 0 — = 1; 

4 ^ 4 = 1 — = 0.2817181715; 
/ '(xo) - 1 
fix-,) 2 - e0·2817181715 

4 V ^ T = 0.2817181715 = 0.9563130411; 
/ '(zo) - 1 
f(T <i 2 - p0.9563130411 
4r-^r = 0.9563130411 = 0.3542280558. 
f'{xo) - 1 

If we continue the iteration, we find that it does converge, but much more slowly than 
did Newton's method. For example, X12 = 0.465017583563, which is still off in the 
first decimal place, whereas Newton's method had converged in only five iterations. 

If we update the computation of / ' every, say, three iterations, then we get improved 
performance. The first three iterates are the same as in the pure chord method: 

-, f ^ i . Χι = x0- 777—r = 1 

x2 = X l - Ij^li = 0.2817181715; 
f'(xo) 

X3 = xi- 777N: = 0.9563130411. 
f'(xo) 

But now we compute /'(0.9563130411) = -2.602084985, so the next few iterates 
are 

z4 = x3- ^ 4 = 0.7249274450; 
/ '(a*) 

x5 = χ4- ^ 4 = 0.7001083868; 
/ '(a*) 

x6 = χ5- 4 ^ 4 = 0.6947392372, 
/ ( * 3 ) 

which is a much more accurate approximation (but still not as good as Newton's 
method). 

Other Approximations to the Derivative In §3.8 we briefly mentioned the method 

Xk+1=Xk-f{Xk)f(xk + h)-f{xky ( 3 · 4 2 ) 

which is based on using a finite difference approximation to the derivative in Newton's 
method. 

We can now use Theorem 3.7 to analyze the convergence of this method. Here we have 

g(x) =x- f{x) 
f(x + h)-f(x)' 
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so that 

h 
9'M = I - / - W ( / ( I + ^_/ M)-/M(-J{x + h)-l(x) 

Since / ( a ) = 0, we have 

But (2.1) implies that 

* ■ » > - ' - " ■ > ( / ( . + * ) - /<«) ) 

f(a + h)- f(a) 1 „ 
^ = /(<*) + 2 Λ / (ζαΛ). 

so that we have 

»>) = i - / V ) (, , ,„,+ ' 

^/"(fc,>) _ f i/"(i«,i.) 

which simplifies to 

9 [a) - /'(a) + \hf»{Uh) - \f'(a) + \hr'{Uh)) ' 

Thus, for this method, as long as f'(a) φ 0, g'(a) = ö{h) φ 0, and therefore we have 
only linear convergence, although the rate constant for the linear convergence will typically 
be small (since h is small). But the secant method will converge faster, in general, and 
requires only a single function evaluation per step; the method (3.42) requires two each 
iteration. Thus, this is not a reasonable method to use; it is just as costly as Newton's 
method, more costly than secant, and slower than both. 

Higher-Order Convergence: Halley's Method Could we perhaps get a method 
better than Newton's method if we were willing to use the second derivative of / ? The 
answer is yes, and the method is known as Halley's method.15 

Actually, there are two methods. The most obvious one is to use the quadratic term in a 
Taylor series expansion of / to define a more accurate xn+i from xn. This means that we 
define xn+\ as the root of the quadratic 

0 = f{Xn) + {X- Xn)f'(xn) + \{X - Xn?f"{Xn)-

This leads to the iteration 

x ,. = x 2f(xn) _ (3 43) 
n f'(xn) ± y/[f'(Xn)}2 -2f(xn)f"(xny 

l5Edmund Halley (1656-1742) was bom near London and educated at Oxford. He is most famous for analyzing 

the orbit of the comet of 1682 and predicting that it would return in 76 years, which it did. To this day the comet 
is known as Halley's Comet. 

Although an astronomer and not a mathematician, Halley had a great influence on the development of mathe-
matics because he encouraged Newton to finally write up and publish his work applying the calculus to problems 
of planetary and celestial motion, which led to the writing of Principia Malhematica, originally published in 1687 
with funds from Halley's own pocket. The methods for solving equations that bear his name date from a paper 
written for the Royal Society of London in 1684. The derivation used here is different from that used by Halley. 
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where we choose the sign in the denominator to make xn+\ closer to xn, i.e., to maximize 
the magnitude of the denominator. 

The second method is a bit more subtle. Define the rational function 

R{x) a — x 
bx + c 

and note that R(x) = 0 => x = a. Now, define a, b, and c so that 

R(xn) = f(xn), R'(xn) = f(xn), R"(xn) = f"(xn). 

Thus, we have defined R as the rational function that matches / and its first two derivatives 
at xn (essentially, R is a "rational Taylor approximation" to / ) ; we thus expect that R~f 
near xn, and we can use the (easily computable) root of R to approximate the root of / . 
We have a system of three equations in the three unknowns a, b, and c, which we can solve 
to get 

2f(x)f'(x) 
2 [ / ' ( s ) ] 2 - / ( * ) / " ( * ) ' 

This is the only one that matters; we thus have the iteration 

2f(xn)f'(xn) 
%n-\- 1 — Xn 

2[/'(*n)]2 - f(Xn)f"(XnY 
(3.44) 

Both of these methods converge with order p = 3, which can be proved by application 
of Theorem 3.7. (See Problem 9.) Table 3.13 shows the results of using each of these 
iterations to find the root of f(x) = 2 — ex. Although this convergence is indeed extremely 
fast, bear in mind that both versions of Halley's method require a second derivative function, 
and that each iteration involves three function evaluations, whereas Newton requires only 
two and the secant method only one. 

n 
0 
1 
2 
3 
4 

Table 3.13 Halley's method examples, f(x) = 2 — ex. 

xn, via (3.44) 
0.00000000 
0.66666667 
0.69314563 
0.69314718 
0.69314718 

Error 
0.693147180560e+00 
0.264805138933e-01 
0.154727507107e-05 
0.000000000000e-tO0 
0.000000000000e+00 

xn , via (3.43) 
0.00000000 
0.73205081 
0.69313707 
0.69314718 
0.69314718 

Error 
0.693147180560e+00 
0.389036270089e-01 
0.101121327991e-04 
0.222044604925e-15 
0.000000000000e+00 

3.11.3 The Secant Method: Theory and Convergence 

In this section we will establish the error theory for the secant method. The result here is 
similar to that for Newton's method, but somewhat more difficult to establish. 

Theorem 3.9 Let f be twice continuously differentiable in a neighborhood of a root a, 
and assume that f'{x) φ Ofor all x in this neighborhood. Then, for x0 and x\ sufficiently 
close to a, the secant iteration (3.28) converges to a, with 

lim a Xn+\ 
= 0 

"-►oo a — Χ„ 
(3.45) 
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and 
a-xn+1 A / » ^ - 1 

lim " " 7 = ^-τ^- (3.46) 
n->oo (α - z n ) " \2f'(a)J 

forp= (1 + χ /5) /2« 1.618... . 

Proof: We begin by establishing an error formula for the secant method similar to the 
one for Newton's method. 

Recall that the secant method is based on finding the exact root of a linear polynomial 
that interpolates the original function / . Let s be this interpolating polynomial, so that we 
have 

s(x) = / ( * „ ) + (x- Xn) ff(Xn)-f(Xn-l)\ t ( 3 4 7 ) 

\ Xn %n—l / 

where the next iterate is defined by solving 0 = s(xn+i). Then the linear interpolation 
error estimate (2.12) implies that 

f(x) - s(x) = -{x - Xn)(x - Χη-ΐ)Ι"(ξη) 

for all x; here ξη is in the interval defined by x„, xn-\, and a. Set x = a, so that we have 

/ ( a ) - s(a) = \(a - xn)(a - x n - i ) / " (£„ ) . 

But / ( a ) = 0, so we have 

~s(a) = 2^a ~ Χη)(θί - Χη-ΐ)/"(ξη). 

On the other hand, we know that s(xn+i) = 0, so we can substitute this in to get 

s(xn+i) - s{a) = -{a - xn)(a - χ„ - ι ) / " ( ζ η ) · 

The Mean Value Theorem then implies that there exists a value ηη between a and xn+\ 
such that s(xn+i) — s(a) = 3'(ηη)(χη+ι — a); therefore, 

s'(Vn){xn+i -a) = -(a - xn){a - x„_i)/"(£„) 

or 
1 f"(£n) 

Xn+\ -a= -{a - xn)(a - xn-i) " . (3.48) 
^ s [Jin) 

But we can go directly to (3.47) to show that (again appealing to the MVT) there is a θη 

between xn and xn-\ such that 
Jf„ \ J\xn) ~ J\xn-\) r/fn \ 
S (ηη) = = / (0„). 

%n Xn—1 
Thus, we have that 

xn+1-a=±{a-xn)(a-xn-1)Ç^. (3.49) 
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Note that with this relationship in hand, it quickly follows that if the secant iterates xn 

are converging to a, then 

a-xn+i 1 .. , N / " ( " ) n 
lim = - - hm (a - xn-i) ,., v = 0. 

n->oo a — Xn 2 n->oo J \&) 

Thus, we have (3.45). Finishing the proof then requires two steps: (1) Establishing that 
convergence occurs, if the initial points are close enough; and, (2) Showing that the limit 
(3.46) holds. 

Convergence: This part of the proof follows the Newton proof very closely. Let I be the 
neighborhood of a in which / is twice continuously differentiable, and so on. As in the 
Newton theorem, we can find a closed intervaU C /suchthat J = {x \ a — e < x < a+e} 
for some e > 0, and the ratio 

M _ maxxeJ\f"(x)\ 
2minx€J\f'(x)\ 

is bounded. Take XQ and x\ in J so that 

\a — Xi\ < δ < min{e, 1}, i = 0,1, 

and 
Μδ< 1. 

Note that this is possible simply by taking both initial points close enough to a. Therefore, 
from (3.49), 

jet - Z2I < M\a — xi\\a — XQ\ < \a — XQ\, 

so that X2 € J is assured. The same argument shows that each secant iterate xn £ J; thus, 
we have (efc = |Q — Xk\): 

e2 < eie0M < Μδ2, 

e3 < e2eiM < (eie0M)eiM = e\e0M2 < Μ2δ3, 

e4 < e3e2M < (e?e0M2)(eie0M)M = e?e^M4 < M4<55, 

and an inductive argument easily shows that 

en < M - 1 {Μδ)"η , (3.50) 

where qn is the sequence of Fibonnaci numbers,16 defined by 

Qn+l =9n + qn-l, 91 = ÇO — 1· 

,6Leonardo Pisano (1170-ca. 1250) is more widely known by his nickname, Fibonacci. He traveled widely in 

the Mediterranean region with his father, a diplomat in the service of Pisa. Fibonacci wrote a number of texts, the 
most famous of which is probably Liber abbaci, which appeared in 1202. This contains the famous problem that 
leads to the Fibonacci sequence: 

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many 
pairs of rabbits can be produced from that pair in a year if it is supposed that every month each 
pair begets a new pair which from the second month on becomes productive? 

Fibonacci also dabbled in geometry and number theory, but his most significant work may have been as simple as 
spreading the use of the Hindu-Arabic system of numeration. 
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Since Μδ < 1 and qn —» oo, it follows immediately that en —» 0 and therefore xn 

converges to a. 

Order of Convergence: The order of convergence is defined as the value p such that 

lim f-*"*1 =c (3.51) 
n-»oo (a — Xn)p 

for C φ 0 and finite. Shifting the limit variable yields the equivalent statement 

lim , a~Xn = C (3.52) 
n->oo (a - Xn-l)P 

or, taking powers of both sides, 

l i m (Q X^P = Cr. (3.53) 

Multiplying (3.51) and (3.53) then yields that p must satisfy 

lim Q - x " + ; = C 1 + P . (3.54) 
n->oo (a — X„_i)P 

At the same time, we note that the convergence of the iterates plus the error estimate 
(3.49) implies that 

lim ? v r = - „ w >, (3.55) 
n->oo ( a - a ; n ) ( a - a ; n _ i ) 2/ ' (a) 

which, when combined with (3.52), yields 

l i m 7 m - = -Cr—rr-T- (3.56) 
n - » » ( t t - i n - i ) 1 + ' ' 2 / ' ( a ) 

Since the order of convergence is unique,17 it follows from comparing (3.54) and (3.56) 
that 

and 

Solving these two yields 

and 

1 + p = p2 

C,+P = _c_n*) 2/'(«)' 

p = i ( l + v/5) 

2f'(a) 

i /p 

which completes the proof. · 

l7We really ought to prove this, but it is not within the intended scope of the book. 
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3.11.4 Multiple Roots 

So far our study of root-finding methods has assumed that the derivative of the function 
did not vanish at the root: f'(a) φ 0. The rapid convergence of Newton's method and 
the secant method both depend on this assumption. In this section we investigate what 
happens if the derivative does vanish at the root. We will see that both the Newton and 
secant methods will continue to converge, but not as rapidly as we expect. Furthermore, 
there are other problems with trying to find a root when the derivative vanishes. 

We start by pointing out some consequences of having / ' ( a ) = 0. Geometrically, this 
means that the graph of the function is tangent to the axis at the root. 

Lemma 3.1 / / / is k times continuously differentiable in a neighborhood of a, and 

/(a) = / '(a) = --- = / ( f c - 1 ) («)=0, 

that is, if the function and first k — \ derivatives vanish at a, but f^ (a) φ 0, then we can 
write 

f(x) = {x- a)kF(x), (3.57) 

where F(a) φ 0. Similarly, if we can write f in the form (3.57), where F(a) φ 0, then it 
follows that the first k — 1 derivatives vanish at a. 

Proof: See Problem 17. · 
If k = 2, so that both the function and the first derivative are zero at the root, then a 

is called a double root. If more derivatives are zero, then the root is generally called a 
multiple root. 

■ EXAMPLE 3.18 

Let f(x) — cos2x, which has a root at x = \π. Since f'{x) = - 2 sin x cos x, it 
follows that the derivative also vanishes at x = \π, so / has a double root. We can 
write / in the form called for in the lemma by the simple device of writing 

f(x) = cos2x = \x - - J F(x), 

where 

F{x) = - ^ L 
( * - ! ) 2 

As long as x φ ^, F(x) is well-defined. What happens at x = | ? We can use 
L'Hôpital's rule to determine that 

.. _ . . ,. — 2 sinx cosx ,. — 2 cos2 x + 2 sin2 x 
hm b (x) = hm ; r— = urn = 1. 
χ->ϊ x-»f 2 ( x - f ) χ-»ϊ 2 

Thus, we would define 

COS X 
7 

F(x) = l (χ- ϊ) 
, X f1 2 Ï 

We might want to continue our study by conducting some experiments. Consider the 
function / (x) = 1 - xel~x. Note that a = 1 is a root, and that / ' ( a ) = 0 as well. If we 
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Table 3.14 Double-root example; f(x) = 1 — xe1 x; computation stopped after 20 
iterations. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Newton 

XJI 

0.000000000000 
0.367879441171 
0.626665778573 
0.792118936917 
0.889216318667 
0.942618075030 
0.970768039664 
0.985242636648 
0.992585155212 
0.996283431246 
0.998139415613 
0.999069131113 
0.999534421170 
0.999767174462 
0.999883578197 
0.999941786839 
0.999970892852 
0.999985446281 
0.999992723105 
0.999996361541 
0.999998180783 

a-xn 

1.000000000000 
0.632120558829 
0.373334221427 
0.207881063083 
0.110783681333 
0.057381924970 
0.029231960336 
0.014757363352 
0.007414844788 
0.003716568754 
0.001860584387 
0.000930868887 
0.000465578830 
0.000232825538 
0.000116421803 
0.000058213161 
0.000029107148 
0.000014553719 
0.000007276895 
0.000003638459 
0.000001819217 

Secant 

XJI 

0.000000000000 
0.135335283237 
0.421192747824 
0.586457122517 
0.724548464295 
0.817997254576 
0.882864790983 
0.925476813313 
0.953105630395 
0.970673923815 
0.981742402042 
0.988663870449 
0.992973792390 
0.995649804081 
0.997308460142 
0.998335397262 
0.998970783260 
0.999363742391 
0.999606707485 
0.999756907516 
0.999849751283 

a — xn 

1.000000000000 
0.864664716763 
0.578807252176 
0.413542877483 
0.275451535705 
0.182002745424 
0.117135209017 
0.074523186687 
0.046894369605 
0.029326076185 
0.018257597958 
0.011336129551 
0.007026207610 
0.004350195919 
0.002691539858 
0.001664602738 
0.001029216740 
0.000636257609 
0.000393292515 
0.000243092484 
0.000150248717 

apply Newton's method and the secant method to this example, with XQ = 0 for Newton 
and secant, and a;_i = —1 for secant, we get the results shown in Table 3.14. 

The table suggests that both iterations are converging, but also that neither one is 
converging as rapidly as we might have expected, based on previous results. Can we 
explain this? 

Clearly, the fact that / ' ( a ) = 0 will have an effect on both Newton and secant. The 
error formulas (3.12) and (3.49) and limits (3.24) and (3.46) both require that f'(a) φ 0 in 
order to hold. Can we find anything more in the way of an explanation? 

Theorem 3.7 tells us when a fixed-point iteration exhibits quadratic convergence, and 
we applied it to Newton's method in §3.9. However, that exercise was done under the 
assumption that / ' (α) φ 0. Let us repeat that exercise, this time under the assumption that 
/ has a double root, and therefore 

f(x) = (x - a)2F(x). 

Then the iteration function for Newton's method is 

f(x) (x - a)2F{x) (x - a)F{x) 
f'{x) ~X 2(x- a)F(x) + (x - a)2F'{x) ~ X 2F(x) + {x - a)F'(x) 
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and we can compute (many details skipped; see Problem 21) 

g'(a) = 1 - 1 = 1 ^ 0 . (3.58) 

Note that we no longer have g' (a) = 0; therefore (according to Theorem 3.7), we no longer 
have quadratic convergence. The simple fact that the function is tangent to the axis at the 
root costs us our rapid convergence. (Note that we still have linear convergence, based on 
Theorem 3.6.) 

Note also that (3.58) gives us a clue as to how to recover the lost quadratic convergence. 
If we change the Newton iteration to be 

x ^ - x 2 f{Xn) n+1 " /'(*„)' 

then an application of Theorem 3.7 shows that we now have g'(a) = 0 and therefore we 
again have quadratic convergence for Newton's method. More generally, it is not difficult 
to show that, for a fc-fold root, we would use 

xn+1 = xn- k^N- (3.59) 

as the (modified) Newton iteration. 
The problem with this technique is that it requires that we know the degree of multiplicity 

of the root ahead of time, and this is generally not the case in practice. So an alternative is 
needed. Given / , with a multiple root of unknown order at x = a, define 

«(x) = M.. (3.60) 

It can be shown (see Problem 19) that u has only a single root at x = a. Thus, Newton's 
method applied to find a root of u will avoid any problems of multiple roots. The drawback 
of this method is that applying Newton's method to u will require that we have a formula 
for the second derivative of / . 

Since the secant method is not a single-point iteration, it does not fit into the theory 
of §3.9, so we have no way to analyze its behavior rigorously in the presence of multiple 
roots. Clearly, the results of Table 3.14 suggest that some degradation of performance does 
occur; this is not surprising, since the secant method is based on approximating Newton's 
method. However, it is worth noting that we can replace f(x) with u(x) = f(x)/f'(x) 
in the secant method as well as in Newton's method. This removes the multiple root, and 
with the secant method we only need the additional function for the first derivative. 

Finally, we might note that the linear convergence that Theorem 3.7 predicts for Newton's 
method in the presence of multiple roots can be dealt with by using Aitken extrapolation. 

To illustrate some of these ideas, we return to our example function f(x) = 1 - xel~x. 
In Table 3.15 we show the results of applying several different algorithms to this example: 

1. Newton's method as modified in (3.59); this is xn in the table. 

2. Newton's method based on the change of function (3.60); this is yn in the table. 

3. Newton's method with Aitken extrapolation; this is zn in the table. 

4. The secant method based on the change of function (3.60); this is sn in the table. 
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Table 3.15 Multiple-root computations for /(x) = 1 — xe1 x. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Modified Newton's method (3.59) 

X-n 

0.000000000000e+00 
0.735758882343e+00 
0.978185253678e+00 
0.999842233626e+00 
0.999999991704e+00 
0.999999991704e+00 
0.999999991704e+00 
0.999999991704e+00 
0.999999991704e+00 
0.999999991704e+00 
0.999999991704e+00 

logio(a - xn) 
0.000 
-0.578 
-1.661 
-3.802 
-8.081 
-8.081 
-8.081 
-8.081 
-8.081 
-8.081 
-8.081 

Newton's method with Aitken acceleration 

Zn 

0.000000000000e+00 
0.124054847245e+01 
0.100856591658e+01 
0.100001218112e+01 
0.10000000000le+01 
0.100000000001e+01 
0.100000000001e+01 
0.100000000001e+01 
0.100000000001e+01 
0.100000000001e+01 
0.100000000001e+01 

loglo(" - zn) 

0.000 
-0.619 
-2.067 
^.914 
-11.147 
-11.147 
-11.147 
-11.147 
-11.147 
-11.147 
-11.147 

Newton's method for u(x) = f(x)/f'(x) 
Vn 

0.000000000000e+00 
0.139221119118e+01 
0.104801490853e+01 
0.100076234718e+01 
0.100000019370e+01 
0.999999999938e+00 
0.999999999876e+00 
0.999999999752e+00 
0.999999999752e+00 
0.999999999752e+00 
0.999999999752e+00 

!θ§1θ(α - Vn) 
0.000 
-0.406 
-1.319 
-3.118 
-6.713 
-10.208 
-9.907 
-9.606 
-9.606 
-9.606 
-9.606 

Secant Method for u{x) = f(x)/f'(x) 
Sn 

0.000000000000e+00 
0.677393774677e+00 
0.111944928199e+01 
0.98695710309 le+00 
0.99948534258le+00 
0.100000224007e+01 
0.999999999674e+00 
0.100000052208e+01 
0.100000029546e+01 
0.999999999965e+00 
0.999999999965e+00 

logio(a - sn) 
0.000 
-0.491 
-0.923 
-1.885 
-3.288 
-5.650 
-9.487 
-6.282 
-6.530 
-10.456 
-10.456 

Some comments might be in order here. Note that all four modified methods converged 
to near the root a = 1 much faster than did the original Newton and secant iterations in 
Table 3.14. Note, however, that there appears to be a limit to how accurate any of these 
iterations can get, and this accuracy is not as good as in the past. What is going on? 

There is a problem inherent in the geometry of a multiple root that makes it difficult— 
if not outright impossible—to approximate the root to high accuracy. To illustrate the 
problem, let's look at a graph of the polynomial 

p(x) = x5- (5/2)z4 + (5/2)x3 - (5/4)z2 + (5/16)z - (1/32) = (* ~ | ) 

in a very narrow region around the root a = \. Figure 3.12 shows a plot of 8,000 points 
from this curve on the interval [0.45,0.55], computed in floating-point arithmetic. Note 
that we do not have a smooth curve but, rather, a "cloud" of values, distributed along the 
x-axis. Thus, there are many values of x near the exact root which yield very small values 
of p(x), and all of the iterations we are using will yield xn+\ — xn very small if f(xn) is 
very small. So, once the iteration lands on one of the points that produces a small function 
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value, it essentially stays there, even if it is not all that close to the exact root. Thus, we 
get "premature convergence" to a value that is not a good approximation to the root. This 
is not a flaw in the root-finding method, it is a difficulty inherent in the problem of finding 
a root when the derivative is also zero at the root, using finite-precision arithmetic. We 
should note that this effect does depend on the way that the polynomial is computed; see 
Problem 25. 

What this tells us is that we need to be very careful how we organize the computations 
when working near a multiple root, and we need to work in as high a level of precision as 
possible when doing so, or simply accept that our accuracy is going to be less than we are 
used to for simple roots. 
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Figure 3.12 Close look near the root of the polynomial p(x) = x5 — (5/2)x4 + (5/2)x3 

(5/4)x2 + (5/16)x — (1/32) = (x — | ) , computed in floating-point arithmetic. 

3.11.5 In Search of Fast Global Convergence: Hybrid Algorithms 

We began this chapter with the bisection method, which is perhaps like the tortoise in 
Aesop's fable: slow but steady and reliable. We then looked at Newton's method and the 
secant method, which are perhaps both like the rabbit: fast but potentially unreliable. Does 
there exist a fast and reliable method for finding roots of a function? 

There is no such "single algorithm;" however, we can create one by combining the 
features that make the bisection method reliable with the features that make Newton and 
secant fast. The basic ideas are incorporated, in a somewhat more sophisticated fashion 
than we present here, in an algorithm known as Brent's algorithm. 

Given a function / and an interval [a, b], with f(a)f(b) < 0, so we know that a root 
exists in the interval, we begin by doing the secant iteration, using the endpoints of the 
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interval as our initial guesses. As long as the secant iterates are within the bracketing 
interval, we continue with the secant iteration. At the same time, we use the result of each 
secant iteration to update the bracketing interval so that it shrinks as much as possible. 
Finally, if the secant iterate ever leaves the bracketing interval, then we ignore that result, 
and do bisection in order to get closer to the root before re-starting the secant iteration. 

Formally, we have the following sequence of steps: 

Algorithm 3.6 Hybrid Algorithm. 

Given an initial interval [a,b] = [ai,6i], with f(a\)f(bi) < 0, set k = 
x\ = b\, and proceed as follows: 

1. Setc = xk - f(xk){xk -Xk-i)/{f(xk) - / ( z f c - i ) ; 

2. Ifc < afc or c> bk then (do bisection): 

(a) Set c = ak + l(bk - ak); 

(b) Iff{ak)f(c) < 0 then 

i. [ak+i,h+i] = [a.k,c\; 

ii. SetXk+i = c,Xk = ak; 

(c) Iff(c)f(bk) < 0 then 

i- [flfc+i A-+i] = [c, bk}; 
ii. Setxk+i = c,xk = bk; 

3. else (update brackets for secant step): 

(a) Iff(ak)f(c) < Othen [afc+i,6fc+i] = [ak,c\; 

(b) lff(c)f(bk) < Othen [a f c + 1A+i] = [c,6fc]; 

(c) SetXk+i = c; 

4. Set k = k + 1 and go to Step 1. 

1, XQ = d\, 

Note that although this algorithm does maintain a set of brackets around the root, it is 
using the secant iterates Xk for the secant step, not the bracket values. This is what makes 
this method different from regula-falsi. 

■ EXAMPLE 3.19 

Algorithm 3.6 is sufficiently complicated that it is worth a close look, via an example. 
Let f(x) = 2xe~i5 — 2e~15x + 1; it is a simple matter to compute /(0) = —1 

and / ( l ) = 1, thus a root exists on the interval [0,1]. 
Step 1: The secant prediction is c = 0.5, which is indeed in the bracketing interval 
[0,1], so we accept the secant step and update as follows: 

/(c) = 0.99889... => [a, b] <- [0, c] = [0,0.5], 

x2 = 0.5, 

xi = 1.0. 
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Step 2: The secant prediction this time is 

C = X2- f(X2)(X2 - Xl)/{f{X2) - /(Xl)) = -0.4511 X 103, 

which is clearly outside the interval [0,0.5], so we do a step of bisection, and update 
as follows 

c = 0.25, 

/(c) = 0.95296... =► [a,b] <- [0,c] = [0,0.25], 

x3 = 0.25, 

x2 = 0.0. 

Note that in the bisection step, xi is redefined to be the other end of the interval from 
xz\ this ensures that we start the next iteration with the two most recent (hence, most · 
accurate) approximations that "bracket" the root. 

In the exercises we ask the student to continue this computation by hand. 
Consider another example function 

2 0 a - 1 

The root is at x = 0.05, of course, and we have to have xn « 0.07 before the secant 
method will begin to converge. Table 3.16 shows the result of applying our algorithm to 
this function, with [a, b] = [0.01,1] and XQ — a, x\ = b. The last column shows which 
algorithm was used to get the current approximate root (S = secant, B = bisection). This 
is not quite the same as Brent's algorithm, but it is in the same spirit without some of the 
details. 

Table 3.16 Hybrid algorithm applied to f(x) = 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Xn 

0.81000000 
0.41000000 
0.33800000 
0.17400000 
0.14920000 
0.07960000 
0.07368000 
0.03598144 
0.05663919 
0.05186144 
0.04975283 
0.05000920 
0.05000005 
0.05000000 

fi.Xn) 
0.98765432 
0.92426187 
0.89691685 
0.75015124 
0.69987301 
0.39143084 
0.33830505 

-0.41011085 
0.12338844 
0.03778160 

-0.00522940 
0.00019369 
0.00000096 
0.00000000 

a — xn 

-O.760000OE+00 
-0.3600000E+00 
-0.2880000E+00 
-0.1240000E+00 
-0.9920000E-01 
-0.2960000E-01 
-0.2368000E-01 
0.1401856E-01 

-0.6639190E-02 
-0.1861438E-02 
0.2471688E-03 

-0.9201785E-05 
-0.4548788E-07 
0.8371401E-11 

a 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.036 
0.036 
0.036 
0.050 
0.050 
0.050 
0.050 

b 
0.810 
0.410 
0.338 
0.174 
0.149 
0.080 
0.074 
0.074 
0.057 
0.052 
0.052 
0.050 
0.050 
0.050 

Method 
S 
B 
S 
B 
S 
B 
S 
S 
S 
S 
S 
S 
S 
s 
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Exercises: 
1. Consider the fixed-point iteration xn+i — 1 + e~x", with xo = 0. Do four steps 

(by hand) and apply both of the Aitken acceleration algorithms to speed up the 
convergence of the iteration. 

2. Repeat the above for the iteration xn+\ = \ ln(l + xn), using ,τ0 = 1/2. 

3. Consider the iteration xn+\ = c~x■ Show (by computational experiment) that it 
coverges for XQ = 1/2; then use both Aitken acceleration algorithms to speed up the 
convergence. What is the gain in terms of function calls to the iteration function? 

4. Write the second Aitken iteration in the form 

Xk+i = G(xk). 

Hint: Take 
3,-1 = g{x0), x-2. = g{xi) = g(g(xo)) 

and use this to write the updated value of xO in Algorithm 3.5 entirely in terms of 
xo,g(x0),smàg(g(x0)). 

5. Consider the iteration 

.Tfc+i = G(xk), 

where 

G(x) = g(g(x)) + 1 f f f i (g(g(x)) - g(x)) 

for 
H,s = g(fl(a-·)) - g (a-1) 

g{x) - x 

Assume that a = g(a) is a fixed point for g. 

(a) Use L'Hôpital's rule to show that 

H (a) = g'(a). 

(b) Use Theorem 3.7 to show that the fixed-point iteration for G is quadratic. 

6. Apply the chord method to each of the functions in Problem 3 of §3.1, using the 
midpoint of the interval as XO. Compare your results to what you got for bisection, 
Newton, and/or the secant method. 

7. Repeat the above, but this time apply both of the Aitken acceleration algorithms to 
improve the convergence of the iteration. Compute the values of the ratio 

_ a-xn+i 
H n - ( a - x n r 

where a is the best value for the root, as found by previous methods. Does the 
sequence of Rn values appear to be converging to a limit? What does this tell you? 

8. Repeat Problem 6, but this time update the value used to compute the derivative in 
the chord method every other iteration. Comment on your results. 
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9. Show that both Halley method iterations are of third order. Hint: Write them as 
fixed-point iterations 

and write the iteration function as g(x) = f{x)G{x). The fact that / ( a ) = 0 will 
make the derivative computations easier. 

10. Apply the Halley iteration (3.44) to f(x) = x2 - a, a > 0, to derive a cubic method 
for finding the square root. Test this by using it to find y/E. 

11. Repeat the above for f(x) = xN - a. Test this by finding the cubic, quartic, and 
quintic roots of 2, 3,4, and 5. 

12. Apply Halley's second method to f(x) = a — ex to show that 

„ / a e - x " - l \ 
Xn+l = Xn + 2 — —~ 

\ae Xn + 1 / 
is a cubic convergent iteration for a = log a. Analyze the convergence of this 
iteration, underthe assumption that a g [ | , 1]. Comment on this as a practical means 
of computing the logarithm of an arbitrary o. 

13. Use the secant method with xo = 0 and x\ = 1 to find the root of f{x) = 1 — ex, 
which has exact solution a = In 2. Compute the ratio 

a - xn+i 
.ft — -; :— 

(a - xn)P 

for p = (1 + VE)/2. Do we get convergence to the appropriate value? 

14. Repeat the experiment in the previous exercise, but use values of p just a bit above 
and below the correct value. What happens? 

15. Consider applying the secant method to find the root of the function f(x) = Ax — 
cos x. Assume that we want accuracy to within 10 - 8 . Use the secant error estimate 
(3.49) to show that the iteration will converge for all x0 £ [—2,2]. How many 
iterations will be needed for the iteration to converge? 

16. Verify by actual computation that your results in the previous exercise were correct; 
i.e., apply the secant method to f(x) = 4x — cos a;. Do your results converge to 
the specified accuracy in the correct number of iterations, and does this convergence 
appear to be occurring for all choices of xo? 

17. Prove Lemma 3.1. Hint: Expand / in a Taylor series about a. 

18. Let / (x) = 1 - xe 1 _ x . Write this function in the form (3.57). What is F{x)l Use 
Taylor's Theorem or L'Hôpital's Rule to determine the value of F(a). 

19. For u(x) as defined in (3.60), where / ha s a fc-fold root at x = a, show that u(a) = 0 
but that u' (a) φ 0. 

20. Use the modified Newton method (3.59) to find the root a = 1 for the function 
f(x) = 1 — xel~x. Is the quadratic convergence recovered? 
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21. Let / have a double root at x = a. Show that the Newton iteration function 

g(x) = x- / ( x ) / / ' ( x ) 

is such that g'{a) φ 0. Provide all details of the calculation. 

22. Using a hand calculator, carry out six iterations of the hybrid method for the function 

f(x) = 2xe~15 - 2e~15x + 1. 

You should be able to match the values generated for X2 and X3 in the text. In 
addition, x6 = 0.4541055 x 10_ 1. 

23. Write a computer code to implement the hybrid method described in §3.11.5. Apply 
it to each of the functions given below, using the given interval as the starting interval. 
On your output, be sure to indicate which iteration method was used at each step. 

(a) / ( a ; )=a ; 1 / 1 9 -19 1 / 1 9 , [ l , 100] ; 

(b) / (x) = 2xe~5 - 2e~5x + 1, [0,1]; 

(c) / ( x ) = x 2 - ( l - x ) 2 ° , [ 0 , l ] ; 

(d) S{x) = 2ze-2 0 - 2 e - 2 t e + 1, [0,1]. 

24. In Problem 9 of §3.1, we introduced the regula-falsi method. In this exercise, we 
demonstrate how the hybrid method (Algorithm 3.6) is different from regula-falsi. 
Let 

(a) Show that / has a root in the interval [0,5]. 

(b) Using this interval as the starting interval, compute five iterations of regula-
falsi; be sure to tabulate the new interval in addition to the new approximate 
root value predicted by the method at each step. A graph showing the location 
of each approximate root might be useful. 

(c) Using the same interval as the starting interval, compute five iterations of the 
hybrid method given in this section. Again, note the new interval as well as 
the new approximate root value at each step. A graphical illustration might be 
instructive. 

(d) Based on your results, comment on the difference between regula-falsi and the 
hybrid method. 

25. Write a computer program that evaluates the polynomial p(x) = (x — l ) 5 using the 
following three forms for the computation: 

p(x) = ( x - 1 ) 5 , 

p(x) = x5 - 5x4 + 10x3 - 10x2 + 5 a : - l , 

p(x) = - l + x(5 + x( -10 + x(10 + x ( - 5 + x)))). 

Use this to evaluate the polynomial at 400 equally spaced points on the interval 
[0.998,1.002]. Comment on the results. 

< · · · t> 
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3.12 VERY HIGH-ORDER METHODS AND THE EFFICIENCY INDEX 

A number of very high-order methods have been proposed in the recent literature, and an 
efficiency index exists as a measure of a root-finding method's overall value. In this section 
we will explore some of these ideas. 

In [11] the following simple computation was proposed as a measure of the efficiency 
of a root-finding method: 

I=p1/d, 
where I is the efficiency index, p is the theoretical order of the method, and d is the 
number of function or derivative evaluations needed per step of the method. Thus, for 
Newton's method, we have /Newton = 21/2 = 1.414..., while for Halley's method 
(3.44) we have that the order p = 3 and the number of evaluations is also 3 (we do not 
consider repeated use of the same function or derivative evaluation to be different); thus 
^Haiiey = 3 1 / 3 = 1.4422..., suggesting that Halley's method is (very slightly) more 
efficient than Newton. The idea is that the order of the method is shrunk somewhat by 
having a higher number of function/derivative evaluations. Consider now the method [4] 
defined as follows: 

(CN) 

W-n 

Xn+1 

— 2-Ti 

= W„ 

Z*i 

/(u>n) 

/'(Xn) 

/(*-) 
/'(*») 

1-

1-

/(Xn) 

f{Wn) 
/(Xn) 

-2 

/(Xn)J 

We will henceforth refer to this as the Chun-Neta method, after the authors of [4]. This 
can be proved to be sixth order [4], and it uses only four different function/derivative 
evaluations, thus its efficiency index is 

61 / 4 = 1.5651..., 

which is higher than for Newton or Halley. 
Is this more complicated method really better than Newton? Is Halley really (if only 

slightly) better than Newton? Let's look at an example. Consider the simple function 
f(x) = 2 — ex, for which the exact solution is x* = In 2. Since we know the exact 
solution, and all three methods converge, Table 3.17 shows the error at each iteration. 
Note that Chun-Neta does converge more quickly than the others (and Halley is faster than 
Newton). 

Table 3.17 Comparison of Newton and Halley with (CN). 

Iteration 
1 
2 
3 
4 
5 
6 

Newton 
0.30685281944005 
0.04261170178294 
0.00089511935897 
0.00000040049983 
0.00000000000008 

0 

Halley 
0.02648051389328 
0.00000154727507 

0 
0 
0 
0 

Chun-Neta 
0.02519826516177 
0.00000000002376 

0 
NaN 
NaN 
NaN 

Before we go running off to use procedures like Chun-Neta in all our root-finding 
computations, we need to note that the total number of function/derivative evaluations used 
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by Newton to get to the sixth iteration, is 12, while Chun-Neta used 12 function/derivative 
evaluations to reach the third iteration. In other words, it is not obvious from this example 
that Chun-Neta is really superior. It is worth pointing out that Chun-Neta used only eight 
evaluations to reach its second iterate, which is accurate to 10 digits; when Newton uses 
only 8 evaluations, it found an iterate that was accurate to only 6 digits. Thus it appears 
that Chun-Neta can reach more accurate results faster than Newton. 

Many of the high-order methods are rather complicated; one reason for using the Chun-
Neta method here is that it is not very complicated. A second high-order method is the 
so-called super Halley method [6], defined by 

f(Xn) 
f'{Xn)' 

(A list of high-order methods is given in [9].) This is a fourth-order method with three 
evaluations, so the efficiency index is 

-fsuperHalley = 4 ' = 1.5874 . . . , 

slightly better than the sixth-order Chun-Neta method. 
Let's look at some more examples. 

■ EXAMPLE 3.20 

Take f{x) = x6 - x - 1; this has two real roots, at x, = 1.13472413840152, and at 
£. = -0.77808959867860. If we try to find x* first, using x0 = 2, we get the results 
shown in Table 3.18. 

Table 3.18 Comparison for f(x) = x° -x-l,x.= 1.13472413840152. 

n 
1 
2 
3 
4 
5 

Newton 
1.68062827225131 
1.43073898823906 
1.25497095610944 
1.16153843277331 
1.13635327417051 

Halley 
1.46655372922485 
1.18554345302099 
1.13507468834525 
1.13472413853078 
1.13472413840152 

Super Halley 
1.03132927291221 
1.13907207890072 
1.13472390794046 
1.13472413840152 
1.13472413840152 

Chun-Neta 
1.33696037969668 
1.13694126708183 
1.13472413840156 
1.13472413840152 

NaN 

Notice that after four iterations (eight evaluations) the Newton iterate is still inexact 
(the precise error is |z , - a:^"*0"! = 0.02681429437179, which is not especially 
small), whereas Chun-Neta (16 evaluations) is exact. The super Halley method, 
for the same cost (three evaluations per iteration), is performing much better than 
"ordinary" Halley. In fact, super Halley is, in some sense, out-performing Chun-
Neta because it is almost as accurate and yet less costly. Both are exact at the fourth 
iterate, but super Halley got there with only 12 evaluations, whereas Chun-Neta used 
16. Given the values of the efficiency index for the two methods, this is not entirely 
surprising. 

If we then try to find the second (real) root, ξ, = -0.77808959867860, we get 
the results shown in Table 3.19. 

(SH) t-n+l ^ 
{ (/'(*u))2 ) 

( flXn)f"l*n)\ 
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Table 3.19 Comparison for f(x) = x6 — x — 1, ξ« -0.77808959867860. 

n 
1 
2 
3 
3 

Newton 
-1.66321243523316 
-1.38102084158243 
-1.14600652598945 
-0.95850422286092 

Halley 
-1.42052750704421 
-1.00786610328889 
-0.79590872245371 
-0.77809390958652 

Super Halley 
-0.79465796170651 
-0.77807368302110 
-0.77808959867862 
-0.77808959867860 

Chun-Neta 
-1.26108380706201 
-0.83587288749870 
-0.77809208194547 
-0.77808959867860 

OK, here we have that Chun-Neta is exact after four iterations (16 evaluations) 
but Newton is not even close. In fact, it took Newton nine iterations (18 evaluations) 
to find this root exactly, thus Chun-Neta was more efficient in this case. Super Halley 
was even better, finding the exact root in four iterations (12 evaluations). 

It frankly is difficult—almost impossible, in fact—to anticipate which root-finding 
method will converge most efficiently. The efficiency index is an imprecise measure, as 
we have seen. It provides some insight into which methods should perform better when 
considered over a large set of examples, but the variability of performance, especially the 
dependence on the initial condition, makes it difficult to draw broad conclusions. 

Exercises: 

1. Write a program to employ both Chun-Neta and super Halley to find the root of a 
given function. Test it on the following examples, using the given values of XQ. 

(a) f{x) = sinz - \x, xt = 1.895494267; x0 = 2,2.5,3; 

(b) f(x) = ex 2 + 7*-3 0 - 1, a . = 3, x0 = 4,5,6; 

(c) f(x) = ex sin a; + In (1 + x2), x» = 1, x0 — 0, - 1 , - 2 . 

2. In §3.7 we employed (and analyzed) Newton's method as an approximator for ^/a 
by using it to find the positive root of the function f(x) = x2 — a. In this and some 
of the following exercises we apply our high-order methods to this task. 

(a) Use Halley's method to find the root of f(x) = x2 — a. Construct an iteration 
function, as simplified as possible, so that the iteration is xn+i = Gn(xn). 
Verify that your construction works by testing it on a = 0.5, for which the 
exact value is y/ÖH = 0.70710678118655. Note the number of arithmetic 
operations required by your function during each iteration. 

(b) Repeat part (a) for super Halley, obtaining the iteration xn+\ = GSH(^TI) for 
as simple a GSH as possible. 

3. Recall that in §3.7 we were able to restrict our attention to values in the interval 
[\, l ] , and therefore construct an initial guess by linear interpolation. Modify your 
codes from the previous exercise to reflect this, and use them to approximate y/a for 
a = 0.3,0.6, and 0.9. In addition, write a code that uses Newton's method (or simply 
use your code from §3.7), and test it on the same values of a. Which method achieves 
full accuracy (as measured by MATLAB's sq r t function) in the fewest operations 
for each a? 
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4. Modify your codes to step from a = 0.25 to a = 1 in increments of 0.001, finding 
y/a for each a using each of the three methods. Thus, you will first find \/0.25, 
then \/0.251, and so on, all the way to a = 1.00. What is the average number of 
operations used by each method to obtain full accuracy, as measured by the f lops 
command? 

5. Repeat the above using some of the alternate initial value generators from Problems 
6, 7, and 8 of §3.7. 

6. This is more of an essay-type question: As part of your job, you are going to be given 
a series of difficult root-finding problems that require highly accurate solutions. Of 
all the methods we have studied in this chapter, including the new methods in this 
section, which one would you choose? Justify your answer. 

7. Think about combining one of these high-order methods with a global method as we 
did in §3.11.5. Can you design an algorithm that is better (faster, more efficient) than 
the one in that section? 

3 · · · > 

3.13 LITERATURE AND SOFTWARE DISCUSSION 

The problem of solving a single nonlinear equation numerically is an old one in numerical 
analysis, with a fairly rich and complete literature. In addition to the treatments in almost any 
decent numerical analysis text, the monographs by Ostrowski [10], Traub [11], Householder 
[7], and Wait [12] are worth mentioning for more in-depth discussions of many of the issues. 

The standard "state of the art" algorithm is known as Brent's algorithm. The original 
reference is [5] (which leads some to call it Dekker's method or the Brent-Dekker method) 
and there is a good discussion in Atkinson's text [2]. Brent also provided an algorithm in 
[3]. It has been suggested in at least one place [1] that Brent's method might be improved. 
An implementation of Brent's method may be found in the MATLAB function f zero. 
Brent's method algorithm is a hybrid method, combining bisection, the secant method, 
and inverse quadratic interpolation (see Chapter 4) to obtain a very fast and nearly global 
method. 

The development of very high-order methods has become more common in recent years. 
A sampling of the literature is included in the references. 
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CHAPTER 4 

INTERPOLATION AND APPROXIMATION 

One of the oldest problems in mathematics—and, at the same time, one of the most 
applied—is the problem of constructing an approximation to a given function / from 
among simpler functions, typically (but not always) polynomials. A slight variation of this 
problem is that of constructing a smooth function from a discrete set of data points. 

In this chapter we will study both of these problems and develop several methods for 
solving them. We start with a more general treatment of an idea we first saw in Chapter 2. 

4.1 LAGRANGE INTERPOLATION 

The basic interpolation problem can be posed in one of two ways: 

1. Given a set of nodes {xi, 0 < i < n} and corresponding data values {yi, 0 < 
i < n}, find the polynomial pn{x) of degree less than or equal to n, such that 

Pn{xi) = Vi, 0<i<n. 

2. Given a set of nodes {χχ, 0 < i < n} and a continuous function f(x), find the 
polynomial pn{x) of degree less than or equal to n, such that 

Pn{xi) = f{xi), 0 < i < n. 

Note that in the first case we are trying to fit a polynomial to the data, and in the second we 
are trying to approximate a given function with the interpolating polynomial. 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 171 
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172 INTERPOLATION AND APPROXIMATION 

While the two cases are in fact different, we can always consider the first one to be a 
special case of the second (by taking y; = f(xi), for each i), so we will present most of 
the material here in terms of the second version of the problem. 

It is actually very easy to prove that both versions of the problem have a unique solution. 
Moreover, the proof shows us how to construct the polynomial. 

Theorem 4.1 (Polynomial Interpolation Existence and Uniqueness) Let the nodes X{ € 
I, 0 < i < n be given. So long as each of the X{ is distinct, i.e., Xi = Xj if and only if 
i = j , then there exists a unique polynomial pn, of degree less than or equal to n, which 
satisfies either of 

Pn{xi)=yi, 0<i<n (4.1) 

for a given set of data values {y,}, or 

Pn{xi) = f(xi), 0<i<n (4.2) 

for a given function f G C(I). 

Proof: We begin by defining the family of functions1 

L?\x)= ft ^ ^ 
fc = o 
Ιζφί 

and note that they are polynomials of degree n and have the interesting property that 

LÎ-W=*« = {;; ; ;* (4.3) 

(The symbol <^ implicitly defined in the above is called the Kronecker2 delta.) Figure 4.1 
shows examples of these polynomials for five equally spaced nodes on [—1,1]. Based on 
(4.3), then, if we define the polynomial by 

- (n ) 
ykJ-

k=0 

it follows that 

" „ * - < η ) ' ~ Λ -
fc=0 

Pn{x) = Y^ykL{^\x), 
k=0 

n 

Pn(Xi) = ^VkL^iXi) = Vi. 

' The reader is reminded that the symbol Y[ is used for a product in the same way that 5Z is used for a sum. Thus 

n 

ΓΤ aj = oi x 02 X03 x ■■■ x a „ . 
fc=i 

2Leopold Kronecker (1823-1891) was bom in Liegnitz, Prussia, and educated in local schools and the University 

of Berlin, graduating with a doctorate in 1845. Most of Kronecker's mathematical research was in what would 
now be called modern algebra and the theory of equations. In 1845, he left academia briefly to enter the business 
world, but he remained mathematically active even during this interlude. The fortune that he made while working 
as a banker enabled him to continue as a mathematician despite not having a regular professorship until 1883. 

In his later years, Kronecker advocated a somewhat extreme philosophy of mathematics in which only finite 
numbers and finite operations were valid. The Kronecker delta notation came out of his work on determinants 
and matrices, done in 1869, under the title "Bemerkungen zur Determinanten-Theorie," published in the Journal 
für die reine und angewandte Mathematik. 
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-1 -0.5 

Figure 4.1 Lagrange polynomials for five equally spaced nodes on [—1,1]. 

Thus, the interpolatory conditions are satisfied, and it remains only to prove the uniqueness 
of the polynomial. To this end, assume that there exists a second interpolatory polynomial; 
call it q, and define 

r(x) =Pn(x) -<?(x). 

Since both pn and q are polynomials of degree less than or equal to n, so is their difference. 
However, we must note that 

r{xi) = Pn(xi) - q{xi) = yi-yi = o 

for each of the n + 1 nodes. Thus, we have a polynomial of degree less than or equal to n 
that has n + 1 roots. The only such polynomial is the zero polynomial; that is, 

r(x) Ξθ=>ρη(χ) =q(x), 

and thus pn is unique. · 

■ EXAMPLE 4.1 

To illustrate this construction let / (x) = ex and consider the problem of con-
structing an approximation to this function on the interval [—1,1], using the nodes 
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{ - 1 , - ^ , 0 , ^ , 1 } . We have 

_ ( χ + ± ) ( χ - 0 ) ( χ - | ) ( χ - 1 ) _, 
P4(a:j " (-1 + i ) ( - i - o)(-i - i ) ( - i - i ) e 

( x + l ) ( x - 0 ) ( x - ± ) ( x - l ) _ i 

( - i + i ) ( - i - o ) ( - i - i ) ( - i - i ) e 2 

(x + l)(x + ±)(x-±)(x-l) 0 

(o + i)(o + i ) ( o - i ) ( o - i ) e 

( x + l ) ( x + ± ) ( x - 0 ) ( x - l ) , 

( i + i ) ( i + i ) ( i - o ) ( i - i ) e 2 

(x + l)(x + | ) ( x - 0 ) ( x - ^ ) ! 
(i + i )( i + i ) ( i - o ) ( i - i ) e ' 

which simplifies top4 (a;) = 1.0+0.997853749x+0.499644939x2+0.177347443x3+ 
0.043435696x4. Figure 4.2A is a the plot of / and p4 (x). The approximation is suffi-
ciently accurate that it is impossible to discern that there are two curves present, so it 
is probably better to look at Figure 4.2B, which plots the error ex — PA{X)- Compare 
this to the error obtained by doing a fourth-degree Taylor polynomial, centered at the 
origin, which is given in Figure 4.2C. Note that while the Taylor polynomial is very 
accurate near the middle of the interval, and much less accurate near the ends, the 
interpolating polynomial has less variation in its error, and a much smaller worst-case 
error over the same interval. 
The construction presented in this section is called Lagrange3 interpolation. Other 

approaches to the interpolation problem are studied in other sections; this one is the most 
basic and fundamental. 

How good is interpolation at approximating a function? We will study this a little more 
carefully in §§4.3 and 4.12, but we can illustrate some of the issues by a few examples 
right now. We can already note that the fourth-degree approximation to the exponential 
function was very accurate, even when compared to the fourth-degree Taylor polynomial. 
What about some other functions? 

Consider now the function f(x) = ( l+25x 2 ) - 1 . If we use a fourth-degree interpolating 
polynomial to approximate this function, the results are as shown in Figure 4.3A. These 
are not nearly as good as for the exponential function. If we increase the number of points 
(and therefore the degree of the interpolating polynomial), things improve on part of the 
interval, but not all of it. Figure 4.3B shows the plots for n = 8, and Figure 4.3C shows 
the n = 16 results. In contrast, Figure 4.3D plots the error for the 8-degree polynomial 
interpolation to the exponential function.4) 

^Joseph-Louis Lagrange (1736-1813) was born in Turin, Italy, of French parents. At a very young age he was 
made a professor at the Royal Artillery School in Turin. In 1766, he succeeded his friend and mentor Euler as 
the Director of the Mathematics Section of the Berlin Academy. In 1787 he accepted a similar position at the 
Paris Academy of Sciences, where he was active in establishing two very influential French schools, the Ecole 
Polytechnique, and the École Normale. In his later years, he was granted a number of honors by the French 
emperor. Napoleon Bonaparte. 

His results on interpolation were a major part of his work while in Berlin, but the interpolation formula ascribed 
to him here was not published until 1795, after he had moved to France. Ironically, Lagrange claims to have 
gotten the idea from some of Newton's work. 
4The reader should note that all of these examples used equally spaced points to define the nodes. Other choices 

are possible, and there is a particular choice that is indeed better. (See §4.12.3. 

+ 

+ 

+ 
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-0.5 0 0.5 1 

β". ρ4(χ) 

_ _ β" - ρ,Μ 

Error in 401 degree Taylor polynomial 

Figure 4.2 Interpolation to f(x) = ex. 
A B 

Figure 4.3 Polynomial interpolation to /(x) = (1 + 2 5 T 2 ) ' 1 with n = 4 (A), n = 8 (B), n = 16 
(C), and the error in interpolation for n = 8 to f(x) = e*(D). 

Clearly, there are circumstances (/(x) = ex) in which polynomial interpolation as 
approximation will work very well, and circumstances (f(x) = (1 + 25x2) - 1) in which it 
will not. More study is therefore required. 

The attentive reader will have noted that we have not discussed an algorithm for comput-
ing Lagrange interpolating polynomials. The reason for this is quite simple, actually: The 
Lagrange form of the interpolating polynomial is not well-suited for actual computations, 
and there is an alternate construction that is far superior to it. So we will defer all discussion 
of algorithms until Section 4.2. 
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Exercises: 

1. Find the polynomial of degree 2 that interpolates at the data points XQ = 0, yo = 1. 
Xl = l , y i = 2, andx2 = 4 , y2 = 2. You should get p2(t) = -\t2 + \t + 1. 

2. Find the polynomial of degree 2 that interpolates to y = x3 at the nodes XQ = 0, 
xi = 1, and x2 = 2. Plot y = x3 and the interpolating polynomial over the interval 
[0,2]. 

3. Construct the quadratic polynomial that interpolates to y — l/x at the nodes x0 = 
1/2, xi = 3/4, and x2 = 1. Plot both the interpolate and the function over the 
interval [±, f ]. 

4. Construct the quadratic polynomial that interpolates to y = sfx at the nodes xo = 
1/4, xi = 9/16, and x2 = 1. Plot both the interpolate and the function over the 
interval [0,2]. 

5. For each function listed below, construct the Lagrange interpolating polynomial for 
the set of nodes specified. Plot the function, the interpolating polynomial, and the 
error, on the interval defined by the nodes. (You may want to plot the error separately, 
because of scale issues.) 

(a) f(x) =\nx,Xi = 1, | ,2; 

(b) f(x) = y/x,Xi = 0,1,4; 

(c) f(x) = log2 x, X, = 1,2,4; 

(d) f(x) = sin πχ, Xj = —1,0,1. 

6. Find the polynomial of degree 3 that interpolates y = x3 at the nodes XQ = 0, 
xi = 1, x2 = 2, and 23 = 3. (Simplify your interpolating polynomial as much as 
possible.) Hint: This is easy if you think about the implications of the uniqueness of 
the interpolating polynomial. 

7. Construct the Lagrange interpolating polynomial to the function f(x) = x2 + 2x, 
using the nodes xo = 0, xi = 1, x2 = —2. Repeat, using the nodes xo = 2, xi = 1, 
and X2 = — 1. (For both sets of nodes, simplify your interpolating polynomial as 
much as possible.) Comment on your results, especially in light of the uniqueness part 
of Theorem 4.1, and then write down the interpolating polynomial for interpolating 
to f(x) = x3 + 2x2 + 3x + 1 at the nodes xo = 0, xi = 1, x2 = 2, x3 = 3, 
Xi = 4, and X5 = 5. Hint: You should be able to do this last part without doing any 
computations. 

8. Let / be a polynomial of degree < n, and let pn be a polynomial interpolant to / , 
at the n + 1 distinct nodes xo, x i , . . . , xn- Prove that pn(x) = f{x) for all x, i.e., 
that interpolating to a polynomial will reproduce the polynomial, if you use enough 
nodes. Hint: Consider the uniqueness part of Theorem 4.1. 

9. Let p be a polynomial of degree < n. Use the uniqueness of the interpolating 
polynomial to show that we can write 

ρ(χ) = ^ ! " » ( ι Μ χ ; ) 
i=0 
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for any distinct set of nodes χο,χι,--· ,xn- Hint: See the previous exercise. 

10. Show that 

έ^η)(χ)=ι 
i=0 

for any set of distinct nodes Xk, 0 < k < n. Hint: This does not require any 
computation with the sum but, rather, a perceptive choice of polynomial p in the 
previous exercise. 

4.2 NEWTON INTERPOLATION AND DIVIDED DIFFERENCES 

The Lagrange form of the interpolating polynomial gives us a very tidy construction, but it 
does not lend itself well to actual computation. The reason is partly because whenever we 

(n) 
decide to add a point to the set of nodes, we have to completely recompute all of the L\ ' 
functions; we cannot (easily) write pn+i in terms of pn using the Lagrange construction. 

An alternate form of the polynomial, known as the Newton form, avoids this problem, 
and allows us to easily write pn+i in terms of pn. The basic result is contained in the 
following theorem. 
Theorem 4.2 (Newton Interpolation Construction) Let pn be the polynomial that inter-
polates f at the nodes Xi.i = 0 ,1 ,2 ,3 , . . . ,n . Let pn+i be the polynomial that interpolates 
f at the nodes xit i = 0 , 1 ,2 ,3 , . . . , n, n + 1. Then pn+i is given by 

Pn+i(x) = Pn(x) + an+1wn(x), (4.4) 

where 

Mz) = Π ( χ ~ Xi)> 
i=0 

f(Xn+l)-Pn(Xn+l) 
O-n+l = ; Γ , (4.5) 

Wn{Xn+l) 

and 
p0(x) =a0 = f(x0)-

Proof: Since we know that the interpolation polynomial is unique, all we have to do is 
show that Pn+i, as given in (4.4), satisfies the interpolation conditions. For k < n, we have 
wn{xk) = 0, so 

Pn+l(Xk) = Pn(xk) + a,n+lWn(Xk) — Pn(xk) = f(Xk)', 

hence, pn+i interpolates all but the last point. To check xn+i, we directly compute: 

Ρη+ΐθΕη+ΐ) = pn(xn+i) + an+iWn(xn+i) 

= Pn(Xn+l) + f{Xn+l) -Pn{Xn+l) 

= f(Xn+l)· 
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Thus, Pn+i interpolates at all the nodes; moreover, it clearly is a polynomial of degree less 
than or equal to n + 1, so we are done. · 

Corollary 4.1 For {a,k} and wn as defined in Theorem 4.2, we have 

pn(x) = ao + ai(x - x0) + a2(x - XQ)(X - X\) H h an{x - x0) ■ ■ ■ (x - xn-\) 
n 

= ^2akwk-i(x), 
fc=0 

where we have used W-\(x) = 1. 

Proof: This is a straight-forward inductive argument; see Problem 5. · 
We can use this Newton form of the interpolating polynomial to construct and evaluate 

interpolating polynomials in an efficient fashion that is reminiscent of Homer's rule for 
nested multiplication (§2.1). We have 

Pn{x) = a0 + ai(x - XQ) + a2{x - xo)(x - x\) H l· an(x - x0) ■ ■ ■ (x - xn-\), 

so that we can write 

Pn{x) =a0 + (x - xo)(ai + (x - xi)(a2 H h {x - χ„-ι)αη) · · · ) ) · 

■ EXAMPLE 4.2 

To consider an example, let us construct the quadratic polynomial that interpolates 
the sine function on the interval [0, π], using equally spaced nodes. We have f(x) = 
sin a;, Xi — 0, ^π ,π and y* = 0,1, 0. Then 

Po{x) = 0 

Pi{x) = -x; 
π 

p2{x) =-x «x [x - - π . 

The reader should check that each interpolating polynomial does interpolate at the 
appropriate points. 

The coefficients ak are called divided differences, and we can construct an algorithm 
for computing them, based on the formula (4.5). It is also possible to slightly modify this 
algorithm to allow the user to update an existing set of divided difference coefficients by 
adding new points to the set of nodes. See Problem 6. 

a0 

(Zi = 

Û2 

s'm^n -ρο(^π) 

( ^ - 0 ) 

βίηπ — ρι(π) 

( π - 0 ) ( π - \π) ~ 

= 0 

2 

π 

4 
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Algorithm 4.1 Newton Interpolation (Construction) via Divided Difference Coefficients 

input n ,x ,y 
a(0) = y(0) 
for k=l to n do 

w = 1 
p = 0 
for j=0 to k-1 do 

p = p + a(j)*w 
w = w*(x(k) - x ( j ) ) 

endfor 
a(k) = (y(k) - p)/w 

endfor 

Algorithm 4.2 Newton Interpolation (Evaluation) via Divided Difference Coefficients 

input n , x x , x , a 

n = degree of polynomial 
xx = point a t which the polynomial i s 

t o be evaluated 
x = array of nodes 
a = array of divided di f ference coe f f i c i en t s 

px = a(n) 

px = polynomial value at xx 

for k = n-1,0,-1 

xd = xx - x(k) 

px = a(k) + px*xd 
endfor 

Programming Hint: We know, from the exercises in §4.1, that polynomial interpolation of 
sufficiently high degree to a polynomial will reproduce the original polynomial. Thus, one 
way to check that an interpolation code is working is to see if it can reproduce a polynomial 
of degree n when asked to interpolate it at n + 1 nodes. 

An alternate way of arriving at the divided difference coefficients—and, historically, the 
original way it was done—is by means of a divided difference table. Since this is an easy 
means by which hand calculations can be performed, it is worth looking at here as well. 

We begin by defining some terminology and notation. Given a set of nodes and cor-
responding function values, the function values will be referred to as the zero-th divided 
differences and, in this context, we will write them as fo(xk)· The first divided differences 
are then formed from the zero-th ones according to 

r , X h(Xk+l) - fo{Xk) 
n\xk) = , 

Zfc+l - Xk 
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and then the second divided differences are given by 

/l(Xfc+l) - f\{Xk) 
Î2{Xk) = 

Xk+2 - Xk 

and so on. The general formula is 

fjixk) = fj-l(xk+l) - fj-i{Xk) 
Xk+j Xk 

Now using this terminology and notation,5 we can build a set of tables that can readily be 
used to construct the interpolating polynomials. 

■ EXAMPLE 4.3 

Take f(x) = log2x as the function to be interpolated, using the nodes XQ = 1, 
xi = 2, X2 = 4. We begin by arranging the nodes and corresponding functional data 
in two columns, as in Table 4.1. Note that we write the functional data using the 
divided difference notation. 

Table 4.1 Initial table for divided differences. 

k 
0 

1 

2 

Xk 

1 

2 

4 

fo(xk) 
0 

1 

2 

The third column of the table is formed by the first divided differences; thus, 

f(xi)-f(xo) 1 - 0 

and 

x\ — xo 2 — 1 

1 _ f(x2)-f{xi) = 2 - l 
4 - 2 

= fi(xo) 

2. x2 - x\ 
so we get Table 4.2. 

The fourth (and, in this case, final) column is formed by the second divided 
difference: 

- 6 = T3T = /2 (xo) ; 

see Table 4.3. 
(If we had more data, subsequent columns would be formed in a similar fashion.) 

How do we use this result to construct the interpolating polynomial? The top diagonal 

5We have broken with convention and tradition in our divided difference notation here. Most texts use f[xk] 

for the zero-th divided difference, and f[xk>xk+i] f°r 'he first divided difference formed by the nodes Xk and 
Xk+i, f[xkt xk+itxk+2] f°r 'he second divided difference formed by Xk,Xk+i> and Xk+2> a nd s o °n· Th's 

becomes unwieldy when talking about higher and higher differences, and while it is slightly more general, most 
texts (including this one) do very little to justify that extra generality. 
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Table 4.2 Table for divided differences after computation of first differences. 

k 
0 

1 

2 

Xk 
1 

2 

4 

/o(zfc) 
0 

1 

2 

/l(Zfc) 

1 

1/2 

Table 4.3 Table for divided differences after computation of second differences. 

k 
0 

1 

2 

Xk 
1 

2 

4 

/o(zfc) 
0 

1 

2 

/l(Zfc) 

1 

2 

Î2(Xk) 

1 
6 

row of table values gives us the divided difference coefficients based on the nodes as 
numbered in ascending order. Thus 

p2(x) = 0 + (l)(x - 1) - Ι ( χ - l)(x - 2) 
6 

( z - l ) ( x - 8 ) . 

(These are the same values that the pseudocode produces.) The bottom diagonal row 
gives the divided difference coefficients based on numbering the nodes in a reversed 
order. Thus we also have 

P2{x) = 2 + \{x - 4) - \{x - 4)(z - 2) = - i ( x - l)(x - 8). 

Finally, to add a node to the data set and construct the new polynomial is easy, based 
on these tables. Let's add the new node x% = \ to our current example. We have, 
initially, the arrangement in Table 4.4. (Note that the nodes do not have to be arranged 
in ascending order—or, in fact, in any particular order.) 

Table 4.4 Table for divided differences with new node added. 

k 
0 

1 

2 

3 

Xk 
1 

2 

4 

1 
■>. 

fo(xk) 
0 

1 

2 

-1 

fi(xk) 

1 

1 
2 

Î2{Xk) 

1 
6 
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Computing forward we get the (new) final result in Table 4.5, from which we 
conclude that the interpolating polynomial is 

p3(x) = 0 + (l)(x - 1) - l-{x - \){x - 2) + l ( i - l)(x - 2){x - 4). 

The reader should confirm that this does indeed interpolate correctly at the given 
points, and therefore is the correct polynomial. 

Table 4.5 Table for divided differences after computation of third differences. 

jfc 
0 

1 

2 

3 

Xk 
1 

2 

4 

1 
2 

fo{xk) 
0 

1 

2 

-1 

/l(Zfc) 

1 

1 
2 

6 
7 

hi?k) 

1 
6 

5 
21 

h(xk) 

1 
7 

Programming Hint: An interpolating polynomial, if it is correctly constructed, has to 
reproduce the values at the nodes exactly, so this is an easy test to use in evaluating 
and debugging your code. If the values at the nodes are computed correctly, then the 
polynomial has to be correct; if the values at the nodes are not computed correctly, then 
there is something wrong, either with the construction of the polynomial or with the code 
that is evaluating the polynomial. 

Exercises: 

1. Construct the polynomial of degree 3 that interpolates to the data XQ = 1, yo — 1. 
x\ = 2, yi = 1/2, X2 — 4, î/2 = 1/4. and X3 = 3, yz = 1/3. You should get 
p(t) = (50 - 35ί + ΙΟί2 - ί3)/24. 

2. For each function listed below, use divided difference tables to construct the New-
ton interpolating polynomial for the set of nodes specified. Plot the function, the 
interpolating polynomial, and also the error, on the interval defined by the nodes. 

(a) f(x) = y/ï,xi = 0,1,4; 

(b) f(x) =lnx,Xi = 1, | ,2; 

(c) f(x) = SlUTTX, Xi = 

(d) f(x) =log 2 x , Xi = 1,2,4; 

(e) f(x) — Βΐηπα;, x, = - 1 , 0 , 1 . 

3. Let f(x) = ex. Define pn(x) to be the Newton interpolating polynomial for f(x), 
using n + 1 equally spaced nodes on the interval [—1,1]. Thus we are taking higher 
and higher degree polynomial approximations to the exponential function. Write a 
program that computes pn{x) for n = 2,4,8,16,32, and which samples the error 

0 1 n 1· 
' 4 ' 2 ' 4 ' ' 
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f(x) - pn(x) at 501 equally spaced points on [-1,1]. Record the maximum error 
as found by the sampling, as a function of n, that is, define En as 

0<κ<500 

where tfc = — 1 + 2fc/500, and plot En versus n. 

4. In §3.7 we used linear interpolation to construct an initial guess for Newton's method 
as a means of approximating y/a. Construct the quadratic polynomial that interpolates 
the square root function at the nodes xo = \,xi = %,X2 = I- Plot the error between 
P2 and yfx over the interval [\, 1] and try to estimate the worst error. What impact 
will this have on the use of Newton's method for finding y/a? 

5. Prove Corollary 4.1. 

6. Write and test a computer code that takes a given set of nodes, function values, and 
corresponding divided difference coefficients, and computes new divided difference 
coefficients for new nodes and function values. Test it by recursively computing 
interpolating polynomials that approximate f(x) = ex on the interval [0,1]. 

7. In 1973 the horse Secretariat became the first (and, so far, only) winner of the 
Kentucky Derby to finish the race in less than 2 minutes, running the l^-mile 
distance in 1 minute, 59.4 seconds, a record that still stands as this edition goes to 
press in 2013. Remarkably, he ran each quarter mile faster than the previous one, as 
Table 4.6 shows. Here t is the elapsed time (in seconds) since the race began and x 

Table 4.6 Data for Problem 7. 
X 

t 
0.0 
0.0 

0.25 
25.0 

0.50 
49.4 

0.75 
73.0 

1.00 
96.4 

1.25 
119.4 

is the distance (in miles) that Secretariat has traveled. 

(a) Find the cubic polynomial that interpolates this data at x = 0,1/2,3/4,5/4. 

(b) Use this polynomial to estimate Secretariat's speed at the finish of the race, by 
finding p'3 (5/4). 

(c) Find the quintic polynomial that interpolates the entire data set. 

(d) Use the quintic polynomial to estimate Secretariat's speed at the finish line. 

8. The data in Table 4.7 gives the actual thermal conductivity data for the element 
mercury. Use Newton interpolation and the data for 300 K, 500 K, and 700 K to 
construct a quadratic interpolate for this data. How well does it predict the values at 
400 K and 600 K? 

Table 4.7 Data for Problem 8. 
Temperature (° K), u 
Conductivity (W/cm ° K), Jfc 

300 
0.084 

400 
0.098 

500 
0.109 

600 
0.12 

700 
0.127 
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9. The gamma function, denoted by Γ(χ), is an important special function in probability, 
combinatorics, and other areas of applied mathematics. Because it can be shown 
that Γ(η + 1) = n!, the gamma function is considered a generalization of the 
factorial function to non-integer arguments. Table 4.8 gives the values of T(x) on the 
interval [1,2]. Use these to construct the fifth-degree polynomial based on the nodes 
x = 1,1.2,1.4,1.6,1.8,2.0, and then use this polynomial to estimate the values 
at x = 1.1,1.3,1.5,1.7,1.9. Plot your polynomial and compare it to the intrinsic 
gamma function on your computing system or calculator. 

Table 4.8 Table of Γ (i) values. 

X 

1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

Γ(χ) 
1.0000000000 
0.9513507699 
0.9181687424 
0.8974706963 
0.8872638175 
0.8862269255 
0.8935153493 
0.9086387329 
0.9313837710 
0.9617658319 
1.0000000000 

10. The error function, which we saw briefly in Chapters 1 and 2, is another important 
special function in applied mathematics, with applications to probability theory and 
the solution of heat conduction problems. The formal definition of the error function 
is 

erf(i) = -?= [ e-edt. 
V* Jo 

Table 4.9 gives values of erf (x) in increments of 0.1, over the interval [0,1]. 

Table 4.9 Table of erf (x) values for Problem 10. 
X 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

erf(z) 
0.00000000000000 
0.11246291601828 
0.22270258921048 
0.32862675945913 
0.42839235504667 
0.52049987781305 
0.60385609084793 
0.67780119383742 
0.74210096470766 
0.79690821242283 
0.84270079294971 
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(a) Construct the quadratic interpolating polynomial to the error function using the 
data at the nodes XQ — 0, x\ = 0.5, and x2 = 1.0. Plot the polynomial and the 
data from Table 4.9 and comment on the observed accuracy. 

(b) Repeat part (a), but this time construct the cubic interpolating polynomial using 
the nodes xo = 0.0, x2 = 0.3, x2 = 0.7, and £3 = 1.0. 

11. As steam is heated up, the pressure it generates is increased. Over the temperature 
range [220,300] (degrees Fahrenheit) the pressure, in pounds per square inch, is as 
given in Table 4.10.6 

Table 4.10 Temperature-pressure values for steam; Problem 11 

T 
P 

220 
17.188 

230 
20.78 

240 
24.97 

250 
29.82 

260 
35.42 

270 
41.85 

280 
49.18 

290 
57.53 

300 
66.98 

(a) Construct the quadratic interpolating polynomial to this data at the nodes To = 
220, Ti = 260, and T2 = 300. Plot the polynomial and the data in the table 
and comment on the accuracy you obtain. 

(b) Repeat Part (a), but this time construct the quartic interpolating polynomial 
using the nodes T0 = 220, ΤΊ = 240, T2 = 260, T3 = 280, and T4 = 300. 

(c) Which of the two polynomials would you think it is best to use to get values 
for P(T) that are not in Table 4.10? 

12. Similar data for gaseous ammonia is given in Table 4.11. 

Table 4.11 Temperature-pressure values for gaseous ammonia; Problem 12 

T 
P 

0 
30.42 

5 
34.27 

10 
38.51 

15 
43.14 

20 
48.21 

25 
53.73 

30 
59.74 

35 
66.26 

40 
73.32 

(a) Construct the quadratic interpolating polynomial to this data at the nodes To = 
0, Ti = 20, and T2 = 40. Plot the polynomial and the data in the table and 
comment on the accuracy you observe. 

(b) Repeat part (a), but this time construct the quartic interpolating polynomial 
using the nodes T0 = 0, 7\ = 10, T2 = 20, T3 = 30, and T4 = 40. 

(c) Which of the two polynomials would you think is best to use to get values for 
P{T) that are not in Table 4.11? 

13. In Problems 8 of §3.1 and 8 of §3.8, we looked at the motion of a liquid-solid 
interface under a simplified model of the physics involved, in which the interface 
moved according to 

x = 2ßVt 

"Taken from tables in Introduction to Thermodynamics: Classical and Statistical, by R. E. Sonntag and G. J. Van 
Wylen, John Wiley & Sons, Inc., New York, 1971. 
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for ß = a/\/k. Here k is a material property and a is the root of f(z) = 9e~z — 
zerf(z), where Θ also depends on material properties. Figure 4.4 shows a plot of a 
versus log10 Θ, based on finding the root of f(z). Some of the data used to create 
this curve is given in Table 4.12. 

(a) Use the data at the nodes {—6, —4, —2,0,2,4,6} to construct an interpolating 
polynomial for this table. Plot the polynomial and compare to the actual 
graph in Figure 4.4. Use the polynomial to compute values at log10 Θ = 
—5, — 3 , . . . , 3,5. How do these compare to the actual values from Table 4.12? 

(b) Compute the higher-degree Newton polynomial based on the entire table of 
data. Plot this polynomial and compare it to the one generated using only part 
of the data. 

Table 4.12 Data for Problem 13. 

logio θ 

-6.0000 
-5.0000 
^.0000 
-3.0000 
-2.0000 
-1.0000 
0.0000 
1.0000 
2.0000 
3.0000 
4.0000 
5.0000 
6.0000 

a 
0.944138E-03 
0.298500E-O2 
0.941277E-02 
0.297451E-01 
0.938511E-01 
0.289450E+00 
0.767736E+00 
0.141492E+01 
0.198151E+01 
0.245183E+01 
0.285669E+01 
0.321632E+01 
0.354269E+01 

Figure 4.4 Figure for Problem 13. 

14. Write a computer program to construct the Newton interpolating polynomial to 
f(x) = y/x using equally spaced nodes on the interval [0,1]. Plot the error f{x) — 
pn{x) for n = 4,8,16 and comment on what you get. 

< · · · > 
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4.3 INTERPOLATION ERROR 

How good an approximation is the interpolating polynomial? We saw in §2.4 that an error 
estimate was fairly easily derived for linear interpolation, and here we will generalize that 
result to arbitrary polynomial interpolation. We expect, based on the examples f(x) = ex 

and f(x) = (1 + 25a;2)-1, that using more points could make the approximation more 
accurate and yet could also lead to problems. 

Theorem 4.3 (Polynomial Interpolation Error Theorem) Let f e Cn+1([a, b]) and let 
the nodes Xk € [a, b] for 0 < k < n. Then, for each x 6 [a, b], there is a ξχ € [a, b] such 
that 

/ ( x ) - P n ( x ) = ^ ^ I / ( " + 1 ) ( 6 ) , (4.6) 

where 
n 

ωη(ι) = JJ(x-Xfc). 
fc=0 

Proof: The proof is an involved argument using repeated applications of Rolle 's Theorem, 
and is deferred to Appendix A.l. · 

This result is too general to be easily interpreted at this point in our study, so we will 
deal directly with some specific cases. Before doing so, we introduce some notation. 

In measuring the error in certain approximations, it will be useful from now on to have 
some convenient means of measuring the size of a function. This is done via the concept of 
a norm. Briefly, a norm is any mapping from functions into the non-negative real numbers 
(usually denoted by a double-bar notation: | | / | | ) , which satisfies certain basic axioms. 

Definition 4.1 (Function norm) A function norm is any computation, denoted by the sym-
bol \\f\\,that satisfies the following conditions: 

1. 11/11 > Ofor any function f that is not identically zero; 

2. \\af\\ = \a\\\f\\ for any constant a. 

3- 11/ + ffll < 11/11 + II9II far any two functions f andg. 

Note that the use of the double vertical bar notation (||/||) is similar to the use of the 
single vertical bar notation for the absolute value; this is deliberate, since the notion of 
a norm plays much the same role for functions as the absolute value does for ordinary 
numbers: it helps us to measure size, or magnitude. 

Some examples of common norms include: 

• The infinity norm or pointwise norm; if / is continuous on the closed interval [a, b], 
then we define 

Il/Iloo,[e,6] = m a x J / W I · 

• The 2-norm; if / is such that its square can be integrated over the interval [a, b], then 
we define 

112,1 ' ,[a,6] = U [f{x)]2dx 
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Note the use of subscripts on the norm notation to distinguish between different norms; the 
subscript defining the interval will often be dropped or omitted when there is no danger of 
confusion. Note also that different norms will give different numerical values for the same 
function, and will convey different kinds of information. 

■ EXAMPLE 4.4 

If f(x) — e~x on the interval [—1,1], then 

H/lloo = e = 2.71828... 

and 
2 - 2 \ 1/2 

e — e \ 
= 1.90443... 

See Problems 14 and 15 for some further exploration of what different norms mean. 
We already know the interpolation error result for n = 1: in other words, linear 

interpolation. In §2.4, we saw that we could prove 

\f{x)-pi(x)\<\{xi-x0)2 max \f"(x)\, (4.7) 
O XQ<X<Xl 

which holds for all x G [xo, Xi]. We can write this in norm notation as 

| | / -p | | oo , / < \(xi -zo)2 | | /" | |oo, / , (4.8) 

where / = [χο,Χι] is the interval defined by the nodes used in the interpolation. What 
happens for larger values of n? 

If n — 2 (quadratic interpolation), we have, from (4.6), 

/ (x) - P2(x) = 1(χ - χ0)(χ - Χι)(χ - χ2)Γ(ξχ). (4.9) 

To get an upper bound like we did for linear interpolation, we assume that the nodes satisfy 

x\ — XQ — X2 — x\ = h 

for some h > 0. We thus can write 

(x - XQ)(X — x\)(x — x2) = ((z - x\) + h)(x — x\)({x — xi) — h) = t(t2 - h2) 

for t — x — x\. We now have 

\f(x) - p2(x)\ <U max \t(t2 - h2)\) max | /" ' ( i ) | , (4.10) 
0 \ — h<t<h J x0<t<X2 

which holds for all x £ [xo,^]· Following the same kind of argument used in §2.4, we 
can show that 

max \t(t2 - h2)\ = ^ h 3 
-h<t<h> 3^/3 

so that the upper bound on the error becomes 

| / ( Χ ) - Ρ 2 ( Χ ) | < - ^ = Λ 3 max | / ' "( i ) | . (4.11) 
9v3 xo<t<x2 
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This can be rendered into norm notation as 

ΙΙ/-ρ2||οο,/<^3ΙΙ/"ΊΙοο,/ (4.12) 

where I is again the interval defined by the smallest and largest nodes, and h is the spacing 
between nodes. 

■ EXAMPLE 4.5 

Let / (x) be the error function, i.e., 

f(x) = erf(x) = -j= I e~t2dt. 
νπ Jo 

Suppose that we want to construct interpolating polynomial approximations to this 
function on the interval [0,1] that are accurate to within 10~6. We have 

™-£(■-")'-^ί-2*·-*)· 
so that a crude upper bound on the second derivative is 

ll/"lloo,[o,i] < 2 x 1 x 2e-*7>/5F < 2 x 2 e 0 / A < 7.1. 

Therefore the error in linear interpolation is bounded by (/i2/8)(7.1) = /i2(0.8875); 
thus we need to have ft < 9.5 x 10~4 to get the error less than 10~6. This tells us 
that the table of error function values must have N = 1/h > 1,062 points for linear 
interpolation between points to achieve the desired accuracy. 

On the other hand, we have 

- X 2 

e x , f'"(x) = -4= (-2e-x*+4x2e-x2) = 4 = (2*2 - l) 
VÎT V / ν π 

for which we have (again, crudely) 

ΙΐΠΐοο,ΐο,ι] < 4 x (1) x e - * 7 A < 4 x e0/^ < 5. 

Hence, the error in quadratic interpolation is bounded by (/i3/9\/3)(5) < OAh3. To 
get the error less than the desired 10~6, we then want to have 

OAh3 < 1CT6 =>h< (0.4)_ 1 / 3 x 10"2 < 1.4 x 1(T2. 

So we now have to have N = 1/h > 72 points in the table to get the desired accuracy. 

A similar analysis to that used to get (4.12) shows that the error in cubic interpolation 
satisfies 

Ι Ι / -Ρ3 | |<^Λ 4 Ι Ι / ( 4 ) Ι Ιοο , / . (4.13) 

See Problem 4. 
We could of course keep going on with specific cases, but since we will eventually learn, 

in §4.12.1, that interpolation with high-degree polynomials is not always a good idea, we 
will stop at this point. 
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Exercises: 

1. What is the error in quadratic interpolation to f(x) = *Jx, using equally spaced 
nodes on the interval [\, 1]? 

2. Repeat the above for f(x) = x~l on [|, 1]. 

3. Repeat the previous two problems, using cubic interpolation. 

4. Show that the error in third-degree polynomial interpolation satisfies 

ll/-P3||oo<^4ll/(4)Hoc, 

if the nodes XQ,X\,X2,X3 are equally spaced, with Xi — Xi-\ = h. Hint: Use the 
change of variable t = x — x\ — | / i . 

5. Show that the error in polynomial interpolation using six equally spaced points 
(quintic interpolation) satisfies 

| | / -Ps | |oo<C7Äe| | /W| | 0 0 , 

where C « 0.0235. Hint: See previous problem. 

6. Generalize the derivation of the error bound (4.12) for quadratic interpolation to the 
case where the nodes are not equally spaced. Take x\ — x$ = h and x2 — x\ = 9h 
for some Θ > 0. 

7. Apply your result for the previous problem to the error in quadratic interpolation to 
f{x) = y/x using the nodes x0 = \, Xi = γ^, and x2 = 1. 

8. If we want to use a table of exponential values to interpolate the exponential function 
on the interval [—1,1], how many nodes are needed to guarantee 10 - 6 accuracy with 
linear interpolation? Quadratic interpolation? 

9. If we want to use a table of values to interpolate the error function on the interval 
[0,5], how many points are needed to get 10~6 accuracy using linear interpolation? 
Quadratic interpolation? Would it make sense to use one grid spacing on, say, [0,1], 
and another one on [1,5]? Explain. 

10. If we want to use a table of values to interpolate the sine function on the interval [0, π], 
how many points are needed for 10~6 accuracy with linear interpolation? Quadratic 
interpolation? Cubic interpolation? 

11. Let's return to the computation of the natural logarithm. Consider a computer that 
stores numbers in the form z = f ■ 2@, where | < / < 1. We want to consider 
using this, in conjunction with interpolation ideas, to compute the natural logarithm 
function. 

(a) Using piecewise linear interpolation over a grid of equally spaced points, how 
many table entries would be required to accurately approximate In z to within 
1 0 - 1 4 , 

(b) Repeat part (a), using piecewise quadratic interpolation. 

(c) Repeat part (a) again, using piecewise cubic interpolation. 
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Explain, in a brief essay, the importance of restricting the domain of z to the interval 

&!]■ 

12. Assume that for any real c, 
cn 

lim — = 0. 
n—>oo n\ 

Use this to prove that, if pn is the polynomial interpolate to f(x) — sinx on 
the interval [a,b], using any distribution of distinct nodes Xk, 0 < k < n, then 
11/ — Pn||oo -> 0 as n —» co. ///ni: Can we justify |iu„(x)| < c n + 1 for some c? 

13. Can you repeat the above for f(x) = ex? Why/why not? 

14. Define the norms 
11/11«,= m a x | / ( x ) | 

xe[o,i] 

and 

11/1,2=\L[m]2dx 

Compute ||/||oo and ||/||2 for the following list of functions: 

(a) e~ax, a > 0; 

(b) sin ηπχ, η integer; 

(c) y/Ee-ax\a>0; 

(d) 1/vTTx. 

In parts (b) and (c), o is a constant parameter. 

15. Define 
. , . ί 1 - nx, 0 < x < - ; 

Show that 

lim ||/„(x)||oo = 1, 
n—*oo 

but 

lim | | /n(x) | | 2 = 0. 
n—+oo 

Hint: Draw a graph of /„(x). 

16. Show that 

ll/lll,[a,6] = / \f(x)\dx 
Ja 

defines a function norm. 

< m · · > 
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4.4 APPLICATION: MULLER'S METHOD AND INVERSE 
QUADRATIC INTERPOLATION 

We can use the idea of interpolation to develop more sophisticated root-finding methods. 
The secant method can be viewed as finding the root of a linear interpolating polynomial. 

Our error results tell us that a quadratic (second-degree) polynomial should be a better 
approximation to the function; hence, its root ought to be a better approximation to the 
root of the original function. Can we take this outline of an idea and use it to construct a 
practical method for finding roots? 

The answer is yes, and the method is known as Müller's method. Given three points, xo, 
xi, and X2, we find the quadratic polynomialp(x) such thatp(xi) = f{xi),i = 0,1,2; and 
then define X3 as the root of p that is closest to X2. The actual implementation of Muller's 
method does present a few problems that need to be resolved, however. 

The best way to write the interpolating polynomial is in the Newton form, as7 

p(x) = / (x2) + A(x - x2) + B(x - x2){x - xi), (4.14) 

where A and B are the divided differences (see Problem 7) 

A = / ( X 2 ) - / ( X 1 ) (4.15) 

and 

B = l (IM^IM _ /(*ι)-/(*οΛ (4.16) 
1 2 - 1 0 \ £2 — Xl Xi — Xo / 

Note that these coefficients will have to be re-computed for each iteration. 
Finding the root of (4.14) via the quadratic formula requires that some care be taken. 

Since we want to find the root nearest X2, we rewrite p as a quadratic in x — X2: 

p(x) = /(X2) + A(x -X2) + B(x - x2){x -xi) 

= /(Z2) + A(x - x2) + B(x - x2)(x - x2) + B(x - x2)(x2 - xi) 

= f(x2) + {A + B(x2 - xi))(x - x2) + B{x - x2)(x - x2) 

= f{x2) + C{x-x2) + B{x-x2)2, 

where C = A + B{x2 — χλ). The quadratic formula then says that the root of p is defined 
by 

x-x2 = ^(-C± s/C* - 4 / ( x 2 ) ß ) , 

where we choose the sign to minimize the right side of the equation. To avoid the pitfalls 
of subtractive cancellation, we rationalize the numerator to get 

X — X2 — 

C± x /C 2 -4 / (x 2 )S ' 

where the sign is chosen to maximize the denominator. Thus, the next point in the iteration 
is given by 

2/(xa) 
X3 =x2 

C + s g n ( C V C 2 - 4 / ( x 2 ) B ' 

7Note that here we are treating X2 as the "first" node, instead of xo- This is possible because the order of the 

nodes is irrelevant in the computation, although this does affect the formulas somewhat. 
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where sgn is the "sign" function, defined by 

- 1 , x < 0; 
sgn(x) = ^ 1, x > 0; 

0, x = 0. 

Thus, the general case is given by 

Xn+l = Xn 

where 

2f(Xn) 

Bn 

+ sgn(CnV<^-4/(*„)£?„' 

1 ff{Xn) - f(Xn-l) / ( X n - l ) ~ f(xn-2) 

and 

Xn Xn—1 \ Xn Xn—1 

n _ IM - f(Xn-l) O n -

Xn—1 Xn—2 

+ -B„(xn - X n - i ) . 
Xn Xn—1 

Table 4.13 shows the result of applying Muller's method to the example we used thoughout 
Chapter 3, f(x) = 2 - ex, so that the exact root is a = In 2. Compare the number of 
iterations used here to that of the secant method (Table 3.5); note that we can code Muller's 
method to use only a single new function evaluation in each step. 

Table 4.13 Muller's method, f{x) = 2 - e1. 

n 
0 
1 
2 
3 
4 
5 
6 
7 

Xn 

0.000000000000 
0.500000000000 
1.000000000000 
0.687259367753 
0.693087847691 
0.693147161269 
0.693147180560 
0.693147180560 

f{Xn) 
0.100000e+01 
0.351279e+00 
-0.718282e+00 
0.117410e-01 
0.118662e-03 
0.385812e-07 
-0.222045e-14 
0.000000e+00 

a — xn 

0.693147e+00 
0.193147e+00 
0.306853e+00 
0.58878 le-02 
0.593329e-O4 
0.192906e-07 
0.122125e-14 
0.111022e-15 

togiota-Xn) 
-0.1592 
-0.7141 
-0.5131 
-2.2300 
^.2267 
-7.7147 
-14.9132 
-15.9546 

An alternative to Muller's method, which avoids the difficulties associated with the 
quadratic formula, is inverse quadratic interpolation. In this case, we find the quadratic 
polynomial q(y) such that 

Q(f(xi)) = Xi, i = 0,1,2. 

Direct computation with the Newton form shows that 

q(y) = X2 + a{y - y2) + b(y - y2)(y - yi), 

where yk = f{xk), 

and 

- — ( 

X2 — Xl 

2/2 - y \ 

X2 — Xl Xl — Xo 

V2 - 2/1 2/1 - 2/0 

(4.17) 

(4.18) 
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Thus, q is quadratic in y and still passes through the points (XJ, f(xi)); we have essentially 
reversed the notion of ordinate and abscissa in our coordinate system. The approximate 
root is the value of q(y) = x corresponding to y = 0; thus, it is obtained by the simple 
expedient of evaluating q at 0: 

%3 = <?(0) = X2 - ay2 + by2y\. 

In the general case, we have 

xn+i = xn - anf(xn) + bnf(xn)f(xn-i), 

where an and bn are computed from appropriately generalized versions of (4.17) and 
(4.18). Table 4.14 shows the result of applying inverse quadratic interpolation to the 
example f(x) = 2 — ex. 

Table 4.14 Inverse quadratic interpolation, f(x) = 2 — ex. 

n 
0 
1 
2 
3 
4 
5 
6 
7 

Xn 

0.000000000000 
0.500000000000 
1.000000000000 
0.708748678748 
0.692849949759 
0.693146743432 
0.693147180561 
0.693147180560 

f(Xn) 
0.100000e+01 
0.351279e+00 
-0.718282e+00 
-0.314477e-01 
0.594373e-03 
0.874255e-06 
-O.134603e-ll 
0.000000e+00 

a — xn 

0.693147e+00 
0.193147e+00 
0.306853e+00 
0.156015e-01 
0.29723 le-03 
0.437127e-06 
0.673128e-12 
0.111022e-15 

iogiota - Xn) 
-0.1592 
-0.7141 
-0.5131 
-1.8068 
-3.5269 
-6.3594 
-12.1719 
-15.9546 

Figure 4.5 Muller's method and inverse quadratic interpolation. 

Figure 4.5 shows a graph of f(x) = 2 — ex, along with the graphs of the parabola 
generated by Muller's method and the inverse parabola generated by inverse quadratic 
interpolation, using xo = 0, x\ = 1, and x2 — 1/2 as the initial values in each case. 
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The convergence theory for both Muller's method and inverse quadratic interpolation 
is beyond the intended scope of this text, so we will content ourselves with reporting that 
both methods are locally convergent and superlinear, with p ss 1.84. Note that this order 
of convergence is not much greater than that for the secant method. 

One great utility of Muller's method is that it is able to find complex roots of real-valued 
functions, because of the square root in the computation. (The same is true of Halley's 
method (3.43).) 

Inverse quadratic interpolation is used as part of the Brent-Dekker root-finding algo-
rithm, which is a commonly implemented automatic root-finding program. 

Exercises: 

1. Do three steps of Muller's method for f{x) — 2 — ex, using the initial points 0,1/2, 
and 1. Make sure that you reproduce the values in Table 4.13. 

2. Repeat the above for inverse quadratic interpolation. 

3. Let f(x) = x6 — x — 1; show that this has a root on the interval [0,2] and do three 
steps of Muller's method using the ends of the interval plus the midpoint as the initial 
values. 

4. Repeat the above using inverse quadratic interpolation. 

5. Let f(x) = ex and consider the nodes Xo — — 1. #1 = 0 , and X2 = 1. Let pi be the 
quadratic polynomial that interpolates / at these nodes, and let 92 be the quadratic 
polynomial (in y) that inverse-interpolates / at these nodes. Construct P2(x) and 
92(1/) and plot both, together with f(x). 

6. Repeat the above using f(x) = δΐηπζ and the nodes XQ = 0, x\ = \, and X2 = \. 

7. Show that the formulas (4.15) and (4.16) for the divided-difference coefficients in 
Muller's method (4.14) are correct. 

8. Show that the formulas (4.17) and (4.18) for the coefficients in inverse quadratic 
interpolation are correct. 

9. Apply Muller's method and inverse quadratic interpolation to the functions in Prob-
lem 3 of §3.1, and compare your results to those obtained with Newton's method 
and/or the secant method. 

10. Refer back to the discussion of the error estimate for the secant method in §3.11.3. 
Adapt this argument to derive an error estimate for Muller's method. 

4.5 APPLICATION: MORE APPROXIMATIONS TO THE DERIVATIVE 

We can use polynomial interpolation to derive more formulas for approximating the deriva-
tive. Essentially, since interpolation error theory shows that polynomials can approximate 
more complicated functions reasonably well, we infer that the derivative of a polynomial 
interpolate might approximate the derivative of the complicated function reasonably well. 
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The interpolation error theorem gives us that 

f(x)-Pn(x) = Γ4ηϊ™«(ζ)/(η+1)(^)> (n + 1J! 

and the fact that this is an equality is important, for we can now differentiate both sides to 
get 

1 d 
f'W-UW Wn(x)f{n+1)&) 

( n + 1)! da; 

We have to be careful evaluating the derivative of the bracketed term; recall that ξχ depends 
on x, so that 

dx 
^ ( ζ ) / ( η + 1 ) ( £ χ ) 1 = ν'η(χ)/(η+ι\ξχ) + wn(x) 

d 
dx 

(n+l) (&) (4.19) 

The problem in using this formula is that we do not know how ξχ depends on x; thus, we 
cannot estimate or predict the size of the derivative in the second term. However, if we 
evaluate the approximation at one of the nodes, Xj, then we will have wn{xi) = 0 and the 
second term on the right side of (4.19) will vanish, leaving us with 

f\xi)-jfniXi) 
1 

( n + l ) ! <(*i)/(n+1)te), (4.20) 

where we use & = ξΧί for simplicity of notation.8 

We can illustrate this by using a quadratic polynomial to approximate / , and thus derive 
three formulas for approximating the first derivative. Let the nodes be denoted by xo, xi , 
and X2, and assume that they are equally spaced, so we have X\—XQ = h and x2 — x\ = h, 
and so on. Then the interpolating polynomial in Lagrange form is 

P2(x) = f(x0)L™(x) + f(xi)L?\x) + f(x2)L22)(x). 

The approximate derivative is then 

f'(Xi) « p'2(xi) = / ( s o ) ( 4 2 ) ) ' f c ) + f(xi)(L^)'(xi) + î{x2){L22))'{xi), 

where i = 0,1,2. The error is given as in (4.20); thus, 

/'(*o-P2(zi) = ^(*i)/"'te) 

and we only need to evaluate (Lj )'(xi) and w'2(xi) for i,j = 0,1,2, to complete the 
construction of the approximations. We get 

(4 2 ) ) ' (x 0 ) = -3/2Λ, (M2))'(*o) = 2/Λ, (4 2 ) ) ' (x 0 ) = -1/2Λ, 

(4 2 ) ) ' (x i ) = -1/2Λ, (Li2))'(xi) = 0, (L22))'(Xl) = 1/2Λ, 

(4 2 ) ) ' (x 2 ) = 1/2Λ, ( i l2 ) ) ' (x2) = -2/Λ, (L22))'(x2) = 3/2Λ, 

and 

w'2(x0) = 2/i2, tu2(a:i) = -h2, w'2{x2) = 2h2 

Note that we have assumed here that ξχ is a differentiable function of x. This is indeed the case, but actually 
proving it is a nontrivial exercise that we omit for the sake of a brief and concise presentation. 
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so that the approximations are 

/ '(*o) « ^ ( - / ( Χ 2 ) + 4 / ( : η ) - 3 / ( χ ο ) ) , (4.21) 

/ ' (* i ) « ^ (/(*2) - / ( s o ) ) , (4-22) 

/ '(a*) « ^ ( 3 / ( Ϊ 2 ) - 4 / ( Χ Ι ) + / ( Χ Ο ) ) , (4.23) 

with errors 

/ ' ( Ι Ο ) - ^ ( - / ( Χ 2 ) + 4 / ( Χ Ι ) - 3 / ( Χ 0 ) ) = ^ 2 / ' " ( ξ ο ) , (4.24) 

/ ' ( * ι ) - ^ ( / ( * 2 ) - / ( * < > ) ) = - ^ Λ 2 / ' " « ι ) , (4.25) 

/ ' ( z 2 ) - ^ ( 3 / ( x 2 ) - 4 / ( x 1 ) + /(zo)) = ^ 2 / ' " ( ξ 2 ) . (4.26) 

We recognize the approximation (4.22) as the same central difference formula derived in 
§2.2; the other two formulas are new. All three are second-order accurate, in that the error 
is ö(h2), but (4.21) and (4.23) require three function evaluations, whereas (4.22) requires 
only two. In some sense, this makes (4.22) a "better" approximation to use, but we will see 
situations where (4.21) and (4.23) are more useful in §§5.2 and 6.6.2. 

Consider, for example, a function defined only on a grid of equally spaced points. Thus 
we have yk = f{xk) for only the nodes Xk- Suppose further that we need an accurate 
approximation to f'(xo) (the derivative at the left endpoint) or f'(xn) (the derivative at the 
right endpoint). We can't use the centered difference approximation (2.5) at the endpoints, 
but we can use (4.24) and (4.26) to get 

nx) = r-f(*+2h)+Mz+h)-mx)\ + 0{h2) 

and 
f(X) = (3/(,)-4/(,-^ + /( ,-2^ +0{h2) 

This will be useful when we need derivative approximations at the ends of intervals for 
constructing spline approximations (§4.8) or for improving the trapezoid rule (§5.2). 

Exercises: 

1. Apply the derivative approximations (4.21) and (4.23) to the approximation of f'(x) 
for f(x) = x3 + x2 + 1 for x = 1 and h= \. 

2. Apply the derivative approximations (4.21) and (4.23) to the same set of functions as 
in Problem 3 of §2.2, using a decreasing sequence of mesh values, h~x = 2 , 4 , 8 , 
Do we achieve the expected rate of accuracy as h decreases? 

3. Derive a version of (4.24) under the assumption that x\ — xo = h, but x2 - X\ — 
η = 9h for some real, positive, Θ. Be sure to include the error estimate as part of 
your work, and confirm that when 9 = 1 you get the same results as in the text. 

4. Repeat the above for (4.25). 
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5. Repeat the above for (4.26). 

6. Use the derivative approximations from this section to construct a table of values for 
the derivative of the gamma function, based on the data in Table 4.8. 

7. Try to extend the ideas of this section to construct an approximation to f"(xk). Is it 
possible? What happens? 

<· · · > 

4.6 HERMITE INTERPOLATION 

So far, we have studied interpolation that involved only knowledge of function values. 
What happens if we include information about the derivative as well? 

To be specific, we want to find a polynomial p(x) that interpolates f(x) in the sense 
that9 

p(xi) - f(xi), p'{xi) - f'(xi), \<i<n. 

This is known as the Hermite10 interpolation problem. Can we do this? The answer is yes, 
as seen in the following theorem. 

Theorem 4.4 (Hermite Interpolation Theorem) Given the n nodes Xi, 1 < i < n, and 
a differentiable function f(x), if the nodes are distinct, then there exists a unique polynomial 
Hn of degree less than or equal to In— 1, such that 

Hn(Xi) = f{xi), H'n{xi) = f'(xi), \<i<n. {Ml) 

Proof: This is basically the same as the proof of Theorem 4.1. We define the two families 
of polynomials 

hk(x) = [1 - 2[Lkn)]'(xk)(x - xk)}[Lkn\x)}2 

and 
hk(x) = (x-xk)[Lkn\x)}2; 

now observe that 
hk{xj) = Skj, h'k(xj) — 0, 

and 
hk{xj) = 0, h'k(xj) = 6kj. 

Therefore, the polynomial 

n 

Hn(x) = Σ (f(xk)hk(x) + f'(xk)hk{x)) 
fc=l 

'Note the change in indexing convention: We are now indexing from 1 to n, instead of from 0 to n. 
'"Charles Hermite (1822-1901) was bom in Dieuze, France, on Christmas Eve. A poor test-taker, Hermite was 
not able to pass the exams for his bachelor's degree until the age of nearly 26. He held professional positions at a 
number of French schools, most notably the École Polytechnique, the École Normale, and the Sorbonne. 

Perhaps his best-known mathematical result is the first proof that e is a transcendental number (published in 
1873). His name is attached to a number of mathematical ideas and concepts, including the Hermite differential 
equation, Hermite polynomials, and Hermitian matrices. The idea of interpolating to the derivative as well as 
to the function values was part of a paper he published in 1878, Sur la formule ά interpolation de Lagrange, 
which actually considers interpolation not only of the first derivative, but of higher derivatives as well. Hermite 
interpolation is sometimes called osculalory interpolation. 

http://www.it-ebooks.info/


HERMITE INTERPOLATION 1 9 9 

satisfies the interpolating conditions (4.27) and is clearly of degree less than or equal to 
In — 1. Uniqueness follows by the same argument as used before. · 

Like the Lagrange form in ordinary interpolation, this form of the Hermite polynomial 
is not conducive to efficient computation. A variation of the Newton approach, including 
the use of divided difference tables, can be constructed; however, since the most common 
use of Hermite interpolation is the cubic case (which involves only two nodes, x — a and 
x = b), we will forgo the more general development and show only the cubic construction. 

We begin by setting up a divided difference table (Table 4.15), much as we did in §4.2. 
Note, however, that we enter the functional data twice and use the derivative data for part 
of the first differences column. 

Table 4.15 Divided difference table for Hermite interpolation: initial setup. 

Xk fo{xk) fijxk) 
1 

1 

2 

2 

a 

a 

b 

b 

/ ( a ) 

/ (a ) 

f(b) 

f(b) 

f'(a) 

f'(b) 

We then complete the table just as we would an ordinary divided difference table, getting 
the results shown in Table 4.16. 

Table 4.16 Divided difference table for Hermite interpolation: final form. 

Jb 
1 

1 

2 

2 

Xk 

a 

a 

b 

b 

/o(zfc) 
f(a) 

/ («) 

m 
f(b) 

/l(Sfc) 

/ ' («) 

A 

f'(b) 

f2{Xk) 

B 

C 

h{xk) 

D 

The elements denoted by letters are defined as follows: 

f(b) - f(a) 
b-a ' 

B = 

0=ψ^, D 
b — a 

A-
b 

C-

/ ' (a) 
— a 

-B 

b — a 
The polynomial is then given by 

H2{x) = / (a ) + f'(a)(x - a) + B{x - a)2 + D(x - a)2(x - b). (4.28) 

It can easily be checked that this does interpolate to / and / ' at both o and b (see Problem 
1). 
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EXAMPLE 4.6 

As an illustration of Hermite interpolation, consider the problem of interpolating to 
the exponential function on the interval [—1,1] using data only at the endpoints. We 
have x\ = —1, x2 = 1, and the divided difference table is shown as Table 4.17, so 
that the polynomial is 

H2{x) = 2.718281828 + 2.718281828(z-1) 

+ 0.771540317(:r - l )2 + 0.1839397203(z - l)2(x + 1), 

or (after some simplification), 

H2{x) = 0.1839397206x3 + 0.5876005967a;2 + 0.9912614728a; + 0.9554800379. 

Figure 4.6 shows a graph of both the exponential and H2 (they are indistinguishable); 
Figure 4.7 shows the error ex — H2{x). 

Table 4.17 Divided difference table for cubic Hermite interpolation to f(x) = ex. 

k 
1 

1 

2 

2 

Xk 

1 

1 

-1 

-1 

fo(xk) 
2.718281828 

2.718281828 

0.3678794412 

0.3678794412 

fi(xk) 

2.718281828 

1.175201194 

0.3678794412 

h(xk) 

0.771540317 

0.4036608764 

h(xk) 

0.1839397203 

- t -0.Θ -0 6 -0.4 -0.2 0 0.2 0.4 0 6 Οβ -0.8 -0.6 - 0 4 -0.2 0 2 0.4 O.f 

Figure 4.6 Hermite ΐηΐεφοΐαΐΐοη to 
fix) = eX-

Figure 4.7 Error in Hermite 
interpolation to f(x) = ex. 

The accuracy of Hermite interpolation is based on a result very similar to Theorem 4.3. 
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Theorem 4.5 (Hermite Interpolation Error Theorem) Let f € C2n([a, b\) and let the 
nodes Xk e [a, b) for all k, 1 < k < n. Then, for each x e [a, b], there is a ξχ 6 [a, b] 
such that 

/ ( * ) - # „ ( * ) = ^ / ( 2 η ) ( Ε , ) , (4.29) 

where 
n 

ΦΤΙ(Χ) - Y[{x-Xk)2-
fc=l 

Proof: Follows essentially the same argument as Theorem 4.3; see Appendix A.l for 
details. · 

Exercises: 
1. Show that H<i, as denned in (4.28), is the cubic Hermite interpolate to / at the nodes 

x = a and x = b. 

2. Construct the cubic Hermite interpolate to f(x) = sin a; using the nodes a = 0 and 
b = 7Γ. Plot the error between the interpolate and the function. 

3. Construct the cubic Hermite interpolate to f(x) = \ / l + x using the nodes a = 0 
and 6 = 1 . Plot the error between the interpolate and the function. 

4. Show that the error in cubic Hermite interpolation at the nodes x = a and x = b is 
given by 

| | / - f fa | |=o<^^HI/ ( 4 ) | |<x, 

5. Construct the cubic Hermite interpolate to f(x) = \fx on the interval [\, 1]. What 
is the maximum error on this interval, as predicted by theory? What is the maximum 
error that actually occurs (as determined by observation; no need to do a complete 
calculus max/min problem)? 

6. Construct the cubic Hermite interpolate to f(x) — 1/x on the interval [|, 1]. What is 
the maximum error as predicted by theory? What is the actual (observed) maximum 
error? 

7. Construct the cubic Hermite interpolate to f(x) — x1/3 on the interval [|, 1]. Whatis 
the maximum error as predicted by theory? What is the actual (observed) maximum 
error? 

8. Construct the cubic Hermite interpolate to f(x) — In x on the interval [|, 1]. Whatis 
the maximum error as predicted by theory? What is the actual (observed) maximum 
error? 

9. Extend the divided difference table for cubic Hermite interpolation to quintic Hermite 
interpolation, using the three nodes x = a, x = 6, and x = c. 

10. Construct the quintic Hermite interpolate to f{x) = In a; on the interval [|, 1]; use 
x = 3/4 as the third node. 

11. What is the error in quintic Hermite interpolation? 
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12. Extend the ideas of §4.5 to allow us to compute second derivative approximations 
using Hermite interpolation. 

< · · · > 

4.7 PIECEWISE POLYNOMIAL INTERPOLATION 

The results of Figure 4.3 suggest that interpolation might be unsatisfactory as an approxi-
mation tool. This is true if we insist on letting the order of the polynomial get larger and 
larger (see §4.12). However, if we keep the order of the polynomial fixed, and use different 
polynomials over different intervals, with the length of the intervals getting smaller and 
smaller, then interpolation can be a very accurate and powerful approximation tool. These 
ideas reach their full potential in §4.8 on splines; here we confine ourselves to the mere 
basics. 

Consider the problem of constructing an approximation to a function f(x), defined only 
by 101 equally spaced points on the interval [—1,1]. If we use ordinary interpolation, we 
will have to construct a 100-degree polynomial, and we suspect that this might produce 
unsatisfactory results. However, we could use linear interpolation over each subinterval 
[xfc-i, Xfc] or quadratic interpolation over each subinterval [x2k-2, x2k]- That is, we define 
the approximating function as 

Qd(x) = PdAx)> xd(k-i) <x< Xdk, 

where each pd.fc is a polynomial of degree d. The accuracy of the approximation comes 
from the error estimates (4.7), (4.11), or (4.13), since the distance between nodes is small. 

We illustrate this by approximating f{x) = (1 + 25x 2 ) - 1 over [—1,1] using the seven 
equally spaced points xjt = — 1 + fc/3, k = 0 , 1 , . . . , 6. The results are shown in Figure 4.8 
for piecewise linear, quadratic, and cubic interpolation. For the piecewise quadratic case, 
we have (see Problem 3) 

( 0.0385 -I- 0.1323(x - x0) + 0.6211(x - x0)(x - xi), xQ < x < x2; 
0.2647 + 2.2059(x - x2) - 6.6176(x - x2)(x - ar3), x2 < x < x*\ 
0.2647 - 0.5464(2 - x4) + 0.6211(x - x4)(x - x5), xA < x < x6. 

(4.30) 
Note that all of these piecewise approximations are much more accurate than the 16-degree 
interpolating polynomial that was constructed in Figure 4.3C. This contrast is heightened 
even more when we take lots of points. Figures 4.9 and 4.10 show the results when we use 
33 equally spaced points and piecewise quadratic approximation; compare this to Figure 
4.3C. 

The use of different polynomials over different intervals complicates the entire process 
somewhat. We now have one set of points (the nodes, Xk, 0 < fc < n) that define the 
interpolation conditions, and a second set of points, called knots, that define the subintervals 
on which the separate polynomial pieces are defined. (In our presentation here we will 
assume that the knots are a subset of the nodes, but this doesn't have to be the case.) 
For a piecewise polynomial of degree d, the knots will be Xdj, 0 < j < m, where m is 
the number of polynomial pieces in the approximation. Thus, for the quadratic example 
defined in (4.30), the knots are XQ, X2, X4,and x§. 
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Original function Piecewise Linear 

-1 -0.5 

Piecewise Quadratic Piecewise Cubic 

Figure 4.8 Piecewise interpolation to f(x) = (1 + 25x ) . The nodes are denoted by circles, 

Figure 4.9 Piecewise quadratic interpolation to f(x) = (1 + 25x2) 1 using 33 nodes. 

EXAMPLE 4.7 

Consider the problem of constructing a piecewise quadratic approximation to f(x) = 
sin7nr, using the nodes Xk = k/6, k = 0 ,1 ,2 , . . . , 6. Thus there will be three 
separate polynomial approximations, and the knots will be zrj, X2, %4, and χβ· 

We set up three divided difference tables (Table 4.18), one for each polynomial 
piece: 
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-1 -0 8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Figure 4.10 Error in 33-node piecewise quadratic interpolation to f(x) = (1 + 25a;2)" 

Table 4.18 Divided difference tables for piecewise quadratic approximation 
/ ( x ) = β ί η π ι . 

to 

Xk 

0 

1 
6 

1 
3 

Xk 
1 
3 

1 
2 

2 
3 

Xk 

2 
3 

5 
6 

1 

fo(xk) 
0.0000000 

0.5000000 

0.8660254 

fo{xk) 
0.8660254 

1.0000000 

0.8660254 

fo(xk) 
0.8660254 

0.5000000 

0.0000000 

h(xk) 

3.0000000 

2.1961524 

fi(xk) 

0.80384758 

-0.080384758 

h(xk) 

-2.1961524 

-3.0000000 

h{xk) 

-2.4115427 

h(xk) 

^.8230855 

h{xk) 

-2.4115427 

Thus we know that the three polynomials are given by 

Γ 
P2,i(z) = 3.0000000z - 2.4115427z x 

6 r 
P2,2(x) = 0.8660254 + 0.8038476 ( x - - j - 4.8230855 (x - - J (x~^ 

P2t3(x) = 0.8660254 - 2.1961524 ( x - ^ J - 2.4115427 (x - - J [x~\ 
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Figure 4.11 Piecewise polynomial approximation to y — sin πχ over [0,1]; a circle ("o") denotes 
a node, a plus sign ("+") denotes a knot. 

so that the piecewise polynomial is given by 

<h(x) 

3.0000000a; - 2.4115427χ(χ 

0.8660254 + 0.803847576(x 

0.8660254-2.1961524(2-

- 4.8230855(x 

2.4115427(2-

0 <x < \\ 

± <x< 2 . 
3 ' 

1< < 1. 

Figure 4.11 shows a plot of this function, using a different line style for each 
polynomial piece. The nodes and knots are also marked on the graph. 

It might be argued that approximating the sine function over [0, π] is not much of a chal-
lenge, that even simple polynomial interpolation ought to do a decent job of approximating 
such a function; this is fair criticism, and the student should do the necessary computations 
to show that Newton interpolation will match the sine function over [0, π] very well. But 
recall that we were able to match the troublesome function / (x) = 1/(1 + 25x2) very well 
with piecewise polynomial approximation. This bodes well for its ultimate utility. 

Piecewise polynomial approximation is, in fact, extraordinarily useful as an approxima-
tion technique, because the use of different polynomials on different parts of the domain 
allows us to more closely mimic the range of function behavior that is possible. To ac-
curately model more complicated functions, we need to make sure that the various pieces 
are joined in a way that maintains as much smoothness as possible. This leads us, very 
naturally, to s discussion of splines. 

An algorithm for piecewise polynomial approximation will generally consist of two 
parts: One that constructs the approximation, usually in the form of an array of polyno-
mial coefficients or divided difference coefficients (which is what we did in Example 4.7 
above), and a second part that uses the output of the first part to evaluate the approximation. 
Pseudo-code for each of these is given in Algorithm 4.3. 
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Algorithm 4.3 Pseudo-code for Constructing Piecewise Polynomial Approximation 

input n, ( x ( i ) , y ( i ) , i = 0 , n ) , d 

kount = 0 
for k=0 to n by d do 

kount = kount + 1 

for i=0 to d do 

xc(i) = x(k+i) 
yc(i) = y(k+i) 

endfor 

! compute divided difference coefficients 
! for the xc and yc arrays 

ac(0) = yc(0) 
for i=l to d do 

w = 1 

p = 0 
for j=0 to i-1 do 

p = p + ac(j)*w 

w = w*(xc(i) - xc(j)) 

endfor 

ac(i) = (yc(i) - p)/w 
endfor 
for i=0 to d do 

a(kount,i) = ac(i) 
endfor 

! This code evaluates the pew poly at the point xx 

! First, find the subinterval containing the evaluation 
! point xx 

input n, d, kount, (x(i),i=0,n), (a(k,i),k=l,kount,i=0,d), xx 

j = search(χ,χχ) 

! Next, extract the correct nodes and DD coefficients 

for k=0 to d 

ac(k) = a(j,k) 

xc(k) = x(j+k) 
endfor 
yy = ac(j,d) 
for k = d-1 to 0 by -1 

xd = xx - xc(k) 

yy = ac(k) + yy*xd 
endfor 
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Programming Hints: Notetheline j = search(x.xx) in the evaluation part of Algorithm 
4.3. Evaluating a piecewise polynomial requires, first of all, that we find out which "piece" 
of the polynomial to use for each given x value for which we want to compute qd{x), and 
this pseudo-code assumes that this is done in the separate routine called search. If the 
mesh spacing is uniform, the computation 

X — XQ 

guarantees that Xj < x < Xj+\. Here |_-J is the floor function, defined as the greatest 
integer less than or equal to the argument. From this it is an easy task to figure out which 
polynomial piece to use to compute qd- If the mesh spacing is not uniform, then a more 
general search procedure has to be used to find the indices such that X(d-i)k < x < xdk-

MATLAB has a number of routines for constructing and evaluating piecewise polynomial 
approximations within a specialized data structure: 

• pchip—piecewise cubic Hermite polynomial; 

• spline—spline construction (see §4.8); 

• ppval—evaluates a piecewise polynomial; 

• mkpp—Construct a piecewise polynomial from the knots and the polynomial coeffi-
cients. 

For example, defining the polynomial coefficient vector pc = [ 1 - 2 1; - 1 0 0] and 
then executing pp = mkpp([0 1 2] ,pc) creates the piecewise quadratic shown in Figure 
4.12—the circles mark the knots. (The reader should be aware that MATLAB assumes 
some shifting in the definitions of the polynomial pieces—the right half of Fig. 4.12 is 
y = — {x — l) 2 , which ordinarily would be rendered in MATLAB as [-1 2 - 1 ] , but had 
to be rendered as [-1 0 0] to achieve the desired effect.) 

ο.β- \ 

0.6 ■ \ 

0.4 ■ \ . 

0.2 \ . 

0 - ^""~~- e — — - ^ ^ 

-0.2 · ^ v 

-0 4 \ ^ 

-0.6 - \ 

-0.6- \ -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 4.12 Very simple piecewise polynomial created in MATLAB. 

The underlying error theorem is easy to state and prove. 
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Theorem 4.6 (Piecewise Polynomial Interpolation Error Estimate) Let f be sufficiently 
dijferentiable on the closed interval [a, b], and let qd be the piecewise polynomial interpo-
late of degree dtofon [a, b], using n + 1 equally spaced nodes Xk, 0 < k < n, n = md. 
Then 

11/ - <ld\\oo < Cd/id+1||/(d+1>||oo, d = 1,2,3, 

where 
d = 1/8; C2 = l /9 \ /3 ; C3 = 1/24. 

Proof: Follows directly from the separate error estimates (4.8), (4.12), and (4.13). We 
have 

||/-9d||oo = max\f(x)-qd{x)\, 
a<x<b 

= max ( max \f(x) — Qd{x)\ 
l<k<n \Xf;-i<x<Xh 

= max ( max \f(x) - pdjk(x)\ 
l<k<n \xk-i<x<Xk 

= max \\f -Pd,k\\oc,{xk.uxk], 
K.K<.n 

< max C d ^ + l / ^ I U ^ . . ^ . ] , 

= Cd/id+1||/('i+1î||00i[a,6,> 

= cdhd+l\\f(d+v\u 

and we are done. · 
While piecewise polynomial approximation is heavily used in a variety of applications 

(we used it, essentially, to construct the composite trapezoid rule in Chapter 2), it is most 
important, perhaps, as a precursor to the development of spline approximations, our next 
main topic. 

One interesting and useful form of piecewise polynomial approximation is the use of 
piecewise cubic Hermite interpolation. Here, we use cubic Hermite polynomials in an 
obvious way to define the polynomial approximation between each pair of nodes Xk-i and 
Xk- Because we are also interpolating to the derivative values, the resulting approximation 
is much smoother than ordinary piecewise interpolation and is less prone to having "kinks" 
in the graph. Some of the exercises ask the student to look at this type of approximation. 

Exercises: 

1. Use divided difference tables to construct the separate parts of the piecewise quadratic 
polynomial q2{x) that interpolates to f(x) = cos \ΈΧ at x = 0, \, \, f, 1. Plot the 
approximation and the error cos \τχ — qi{x). 

2. Repeat the above using f(x) = ^/x with the nodes x — g, | , | , | , 1. 

3. Confirm that (4.30) is the correct piecewise quadratic approximation to f(x) = 
1/(1 + 25a;2) using the nodes x0 = —1, xi = - 2 / 3 , x2 = - 1 / 3 , xz = 0, 
X4 = 1/3, x$ = 2/3, and XQ = 1. 

4. Using the data in Table 4.8, construct a piecewise cubic interpolating polynomial to 
the gamma function, using the nodes x = 1.0,1.2,1.3,1.5 for one piece, and the 
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nodes x = 1.5,1.7,1.8,2.0 for the other piece. Use this approximation to estimate 
T(x) for x — 1.1,1.4,1.6 and 1.9. How accurate is the approximation? 

5. Using the results of Problem 6 from §4.6, together with the data of function 
values from Problem 9 of §4.2, construct a piecewise cubic Hermite interpolat-
ing polynomial for the gamma function, using the nodes x = 1.0,1.3,1.7,2.0. 
Test the accuracy of the interpolation by using it to approximate Γ(χ) for x — 
1.1,1.2,1.4,1.5,1.6,1.8,1.9. 

6. Construct a piecewise cubic interpolating polynomial to f(x) = \nx on the interval 
[|, 1], using the nodes 

^ = 2 + Ϊ8' °^ f c ^ 9 · 
Compute the value of the error In x—p(x) at 500 equally spaced points on the interval 
[5,1], and plot the error. What is the maximum sampled error? 

7. Repeat the above, using piecewise cubic Hermite interpolation over the same grid. 

8. Construct piecewise polynomial approximations of degree d — 1,2,3 to the data 
in Table 4.12, using only the nodes loglo0fc = - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 . Plot the 
resulting curve and compare it to the ordinary interpolating polynomial found in 
Problem 13 of §4.2. Test how well this approximation matches the tabulated values 
a t l o g l o 0 = - 5 , - 3 , - l , l , 3 , 5 . 

9. Show that the error in piecewise cubic Hermite interpolation satisfies 

Ι Ι / - # 2 | |οο<^ 4 | | / (4)1 
384" "' l | 0° ' 

where we have assumed uniformly spaced nodes with Xk — Xk-i = h. 

10. Given a grid of points 

a = Xo < X\ < X2 < ■ · ■ < Xn = b, 

define the piecewise linear functions φ£, 1 < A; < n — 1, according to 

**(*) 
*—*-, Xh-Λ < X < Xh\ 

»» + + . -*»' Xk<x<Xk+i\ 

0, otherwise. 

Define the function space 

^0 = {/ e C{[a, b\), / (a ) = f(b) = 0, / is piecewise linear on the given grid}. 

Show that the φ\ are a basis for SQ , i.e., that every element of the space Sft can be 
written as a linear combination of the φ\ functions. 

11. Implement a routine for approximating the natural logarithm using piecewise poly-
nomial interpolation, i.e., a table look-up scheme. Assume that the table of (known) 
logarithm values is uniformly distributed on the interval [|, 1]. Choose enough points 
in the table to guarantee 10 - 1 0 accuracy for any x. Use: 
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(a) Piecewise linear interpolation; 

(b) Piecewise cubic Hermite interpolation. 

Test your routine against the intrinsic logarithm function on your computer by eval-
uating the error in your approximation at 5,000 equally spaced points on the interval 
[JQ, 10]. Use the way that the computer stores floating-point numbers to reduce the 
logarithm computation to the interval [ \, 1], as long as In 2 is known to high accuracy. 

4.8 AN INTRODUCTION TO SPLINES 

Piecewise polynomial approximation (§4.7) allows us to construct highly accurate approx-
imations, but it does not always produce approximations that are pleasing to the eye, and 
this is actually a problem in some applications. This occurs because the approximating 
function is not smooth at the junctions between separate pieces of the piecewise polynomial 
approximation. Although we have that qd is continuous, it is not continuously differentiable 
on the entire interval of approximation. The graph of the interpolate can have "kinks" in it, 
and some of these are apparent in Figure 4.8. 

Splines are an attempt to address this problem. The basic idea is to construct a piecewise 
polynomial approximation that not only interpolates given data or function values, but which 
also is "smooth," meaning continuously differentiable to some degree. 

A complete theory of splines is beyond the scope of this book. Interested readers are 
referred to the book by Carl de Boor, A Practical Guide to Splines [8]. Another good 
reference is Paddy Prenter's Splines and Variational Methods [14]. We will outline two 
different spline constructions here and state some of the more basic theoretical results.11 

4.8.1 Definition of the Problem 

We first have to properly define the problem before we can solve it. Suppose that we are 
given a set of nodes {xi, 0 < i < n} at which we wish to interpolate a given function 
f(x) with a spline of degree d. The problem is then to find a piecewise polynomial function, 
qd, which satisfies the following conditions: 

"The history of the development of splines—and even the origin of the word itself—might be of interest to 
readers. 

Many years ago, one of the author's students suggested that the word "splines" was constructed from "spliced 
lines;" while this is indeed an interesting observation, the truth of the matter is that the mathematical use of the 
word "spline" comes from the days when being an engineer often meant being an accomplished draftsman. One 
draftsman's tool was known as a "spline," a thin, very flexible piece of metal that was used to help draw a smooth 
curved line based on a few discrete points marked on a drawing. 

One of the historical uses of splines was in the automobile industry, where they were used to define the shape 
of sheet-metal pieces for car bodies. Much of the mathematical development work was done at General Motors 
in the early 1960s, and also at Renault and Citroen in France, at about the same time. Curiously, one of the 
original papers on splines [16] was written with applications to actuarial data in mind. Some of the impetus for 
the development of the theory also came from the British aircraft industry during World War II, as well as the 
ship-building industry. 

The work at GM is detailed nicely by Birkhoff [2] and in the retrospective by Young [19]. Paul Davis 
summarized some of this material in SI AM News in 1996; see [5]. Carl DeBoor maintains a spline bibliography 
on the Internet at h t tp: / /www.cs .wise .edu/"deboor/bib/bib.html . 
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1. Interpolation: 
qd(xk) = f(xk), 0<k<n. 

Here d is called the degree of approximation of the spline. 

2. Smoothness: 
lim_qdl\x) = lim qdl]{x) 

x—*xk x—>xJJ" 

for 0 < i < TV. We call TV the degree of smoothness of the spline. 

3. Interval of definition: qd is a polynomial of degree < d on each subinterval [xfc_ i, Xk] ■ 

We need to investigate the relationship (if any) between the degree of approximation, d, 
and the degree of smoothness, TV. The degree of the polynomials is related to the number 
of unknown coefficients, i.e., the degrees of freedom, in the problem; whereas TV is related 
to the number of constraints. We expect that the degrees of freedom and the number of 
constraints have to balance in order for the spline to be well-defined. 

Since there are n subintervals, each being the domain of definition for a separate 
polynomial of degree d, we have a total of Kf = n(d + 1) degrees of freedom. On the 
other hand, there are n + 1 interpolation conditions and n — 1 junction points (again called 
knots) between subintervals (note that in the spline construction, neither XQ nor xn are 
considered knots) with TV + 1 continuity conditions being imposed at each of them. Thus, 
there are Kc = n + 1 + (n — 1) (TV +1) constraints. If we consider the difference Kj — Kc, 
we get 

Kf-Kc = n(d+l)-[n+l + (n-l){N+l)} = nd-n-nN + N = n{d-l-N) + N. 

We can make the first term vanish by setting d — 1 — TV = 0. This establishes a relationship 
between the polynomial degree of the spline and the smoothness degree. For example, if we 
consider the common case of cubic splines, then d = 3 and TV = 2. However, we will not 
have the number of constraints equal the number of degrees of freedom: Kf — Kd = TV. 
Thus, we need to add TV additional constraints. Partly for this reason, odd polynomial 
order splines are preferred, because if d is odd then TV = ci — 1 is even and the additional 
constraints can be imposed equally at the two endpoints (which is the typical choice) of the 
interval. 

It is worth noting, briefly, that we can consider a continuous piecewise linear function 
to be a spline with degree of smoothness TV = 0. See Problem 18. 

4.8.2 Cubic B-Splines 

The construction we use here is based on the B-spline. This idea uses a single exemplar 
function from which a basis of splines is formed, and the approximation is then defined in 
terms of this basis. The notion of B-splines is much more general than is presented here, 
where we restrict ourselves to the (widely used) case of cubic B-splines, with coincident 
nodes and knots. For simplicity's sake, we assume at first a uniform grid 

a = XQ < Xi < X2 < ■ ■ ■ < Xn-l < Xn = b (4.31) 

with Xk — Xk-i = h for all k > 1. We will also need to define the extra grid points 

x-3 = a — 3h, x-2 —a — 2h, x-i = a — h, (4.32) 
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and 
xn+i = b+ h, x„+2 = 6 + 2/1, xn+s - b + 3h. (4.33) 

Then define the function 

B(x) 

0, 
(z + 2)3, 
1 + 3(x + 1) + 3(i + l ) 2 -
1 + 3(1 - x) + 3(1 - a;)2 · 
( 2 - x ) 3 , 
0, 

- 3 ( x + l ) 3 , 
- 3 ( l - x ) 3 , 

x< - 2 ; 
- 2 < x < - 1 
- 1 <x < 0 ; 
0 < x < 1; 
1 < x < 2; 
2 < x ; 

(4.34) 

and note that B is a cubic spline with nodes/knots at the points x — - 2 , —1,0,1,2. 
Wait a minute. How do we know that B{x) is a cubic spline function? Well, a spline 

function is a piecewise polynomial with a certain amount of derivative continuity between 
the pieces, the amount of derivative continuity being related to the polynomial degree by 
N = d — 1, as we showed above. Thus, to check that B(x) is a cubic spline, we simply 
note that it clearly is a piecewise cubic polynomial, and then we compute the one-sided 
derivatives at the knots: 

B'_(xk)= lim_B'(x), B'+(xk)= \im+B'(x), 

and similarly for the second derivative (and the function value). If the one-sided values are 
equal to each other, then the first and second derivatives are continuous, hence B is a cubic 
spline. If only the first derivative was continuous, it would fail to be a spline because cubic 
splines require second derivative continuity. 

Figure 4.13 shows a graph of B; note the bell shape of the curve. Note also that 

B(0) = 4, B(± l ) = 1, B{±2) = 0, (4.35) 

B'{0) = 0, B'(±l) = +3, B'{±2) = 0, (4.36) 

B"{0) = -12 , B"(±l) = 6, B"(±2) = 0. (4.37) 

Finally, note that B is only "locally defined," meaning that it is non-zero on only a small 
interval.12 This local definition property is important in the utility of B-splines as an 
approximation tool. 

We can use B to construct a spline approximation to an arbitrary function / using the 
grid defined in (4.31), (4.32), and (4.33). Define the sequence of functions 

Bi{x) = B((x-Xi)/h), -l<i<n+l. (4.38) 

Each Bi is similar in shape to B, but is centered at x* instead of at 0. Figure 4.14 shows 
plots of some of the Bi for a specific grid. Note that 

Bi(Xi) = B(0), Bi{xi±1) = B(±1), Bi(xi±2) = B{±2), (4.39) 

12The correct terminology is to say that B is a function of "compact support," but using the phrase "locally 

defined" conveys the meaning more clearly at this level. 
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Figure 4.13 Original B-spline. 

0 0.1 0.2 0.3 0.4 0 5 0 6 0.7 0.8 0.9 1 

Figure 4.14 B-splines on a grid. 

and similarly for the derivatives: 

B'i(xi)=0, B'i(xi±1) = T3/h, -BK^±2) = 0, (4.40) 

B'/ixi) = -U/h2, B'{{xi±l)=S/h2, B'l{xi±2) = 0. (4.41) 

To construct a spline interpolant to a given function / , we define the spline as a linear 
combination of the Bi functions, — 1 < i < n + 1: 

n+l 
<?3(z) = 5 3 CiBi(x) 

t = - l 

(4.42) 
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and seek the coefficients c*, — 1 < i < n + 1, such that 

n + l 

/(a*) = Σ Ci0*^*)' 0 < fc < n. (4.43) 

i = - l 

It is at this point that the local definition of B becomes so useful. If we look at (4.43) for 
k = 0, we see that we have 

f(x0) = c_iß_i(x0) + c0B0{xo) + ciBi(x0) 

since Bi(xo) = 0 for all i > 2. In general, then, we have that 

f(xk) = Cfc_ißfc_i(a;fc) + ckBk(xk) + ck+iBk+i(xk). 

Thus, each equation in the system defined by (4.43) has only three non-zero terms—it is a 
tridiagonal system, just the kind we learned how to solve back in §2.6. Moreover, we can 
use (4.35) to show that (4.43) simplifies to 

f(xk) =ck-i +4ck+ck+\. 

Written in matrix-vector form, the system is 

1 
1 

1 

C - l 

Co 

Cn+l 

/(so) 
/ ( * l ) 

(4.44) 

Of course, this is still a system of n + 1 equations in n + 3 unknowns; we need to come up 
with two additional constraints in order to eliminate two of the unknowns. Two common 
choices are: 

1. The Natural Spline. Here we impose q'^ixo) = q'{{xn) — 0. This leads to a very 
simple construction, but also leads to higher error near the endpoints. 

2. The Complete Spline. Here we impose 93(^0) = f'(xo) and q'3(xn) = f'(xn)· This 
leads to better approximation properties, and does not actually require that we know 
the derivative at the endpoints, since we can use the function values to approximate 
it via one of the formulas from §4.5. 

The Natural Spline We can directly compute, using (4.42) and (4.36), that we have 

q'J{x0) = / r 2 (6 (c_! + ci) - 12co), çfâ(xn) = / i _ 2(6(cn + 1 + c _ i ) - 12c) . 

We therefore achieve q'^ixo) = q'^Xn) = 0 simply by imposing 

c_i + c\ — 2co => c_i = 2co - c\ (4.45) 

and 
Cn+l + C„-l = 2c„ => C„+i = 2cn - C„_i. (4.46) 

If we substitute these into the system (4.44), we find that the first and last equations simplify 
to 

6c0 = / (so) , 6c„ = / ( x n ) , (4.47) 
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so that we have the new system 

4ci + c2 = /(xi) - y(xo), 
ci + 4c2 + c3 = /(X2), 

(4.48) 

Cn_2 + 4 c n _ i = f(Xn-l) ~ g / ^ n ) · 

Not only is this now square, in addition to being tridiagonal, but it is also diagonally 
dominant. Therefore, as discussed in §2.6, the matrix is nonsingular and the solution 
algorithm of §2.6 can be applied to compute the coefficients. 

The Complete Spline Here we impose derivative data at the endpoints. Direct calcu-
lation shows that 

93(^0) = - 3 / i - 1 (c_i - c i ) , 93(x„) = - 3 / i _ 1 (c„_i - c„+i), 

so that the conditions q3(xo) = / '(xo) and q'3(xn) = f'{xn) imply that 

C-l = Ci - -hf'(x0), Cn+i = Cn-i + -flf'(xn). (4.49) 

When substituted into the system (4.44) we again lose the dependence on c_i and c„+i 
and get the square system 

4co + 2ci . . . = / (x0) + | / i / ' (xo) , 

cfc_i + 4cfc + cfc+i = /(xfc), (4.50) 

2c„_i + 4cn = f(xn) - ^hf'(xn), 

which is (again) diagonally dominant, so the tridiagonal solution algorithm can be applied. 
Note that in the natural spline case, the system had n — 1 equations in the n — 1 unknowns 
Ci,l <i <n— 1, whereas here we have a system of n + 1 equations in the n +1 unknowns 
Cj,0 < i < n. 
Evaluation The natural or complete spline can be easily constructed, in the sense that 
the coefficients Cfe are defined, by solving (4.48) or (4.50). How do we use these values to 
evaluate the spline q$, defined by (4.42)? 

For any x € [xfc-i, Xfc], the fact that each Bi is only locally non-zero means that we 
have 

93(x) = ck-2Bk-2(x) +ck-\Bk-i{x) + ckBk(x) + ck+iBk+i(x), (4.51) 

so evaluation of <?3(x) requires only that we find the index k such that xk-\ < x < xk. 
For a uniform grid this is easily accomplished: 

X — XQ 
k + 1. 

h 

For a nonuniform grid a more general search routine would have to be employed. Fig. 4.15 
illustrates this by graphing B-splines centered at x — 1,2,3,4 and marking the image of 
x = 2.6 on each of the four curves. 
Programming Hint: Note that (4.51 ) implies that 

<73(xfc) = f{xk) = ck-iBk_i(xk) + ckBk(xk) + ck+iBk+i{xk) = ck-X + Ack + ck+i. 

This can be a useful check on the correctness of the spline coefficients. 
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5 2 2.5 3 3.5 4 4.5 5 

Figure 4.15 Demonstration of local definition of B-splines. 

EXAMPLE 4.8 

We start with a simple example that can be carried out by hand. Suppose that we 
want to compute a cubic spline approximation to f(x) = sin πχ on the interval [0, | ] , 
using the nodes xo = Ο,ζι = \, and x2 — \. Thus, n = 2 and the spline will be 
defined by 

3 

k=-\ 

For the natural spline, (4.47) implies that 

Co = - sin 0 = 0 
6 

and 
1 . π 1 

C 2 = 6 S m 2 = 6' 

and instead of a system of equations to solve, we have the single equation 

c 0 + 4 c i + c2 = f{x\) =Φ ci = - (f{xi) - - / (xo) - g/O2^)) , 

from which we get 

c\ 
1 / \ / 2 
4 \ 2 6 

Finally, then, (4.45) and (4.46) imply that 

1 A V2^ 

0.1351100286. 

c - i 
1 /Ö 1 

-0.1351100286, c3 = --^— + — = 0.1982233048, 
4 \ 6 2 

so the spline approximation is now given by 

q3(x) = c_iß_i(x) + cißi(x) + c2B2(x) + c3B3(x) 
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To compute values of the spline is fairly simple. Suppose that we want to find 
93(1/6) « sin7r/6 = 1/2. We first determine that x — 1/6 is between XQ = 0 and 
x\ = \\ this means that we want to compute 

93(1/6) = c_iB_!(l /6) + ciBi( l /6) + c2ß2( l /6) ; 

the B3 term vanishes because B3 is identically zero on the subinterval [xo, xi]. We 
then have that 

93(1/6) = c-1B-1(l/6) + c1B1(l/6) + c2B2(l/6) 

= =c_ 1 B(5 /3) + c i ß ( - l / 3 ) + c 2 B(-4/3) 

= (-0.1351100286)(0.0370370370) + (0.1351100286) (3.4444444444) 

+ (0.1666666667) (0.2962962967) 

= 0.5097576284, 

which is a decent approximation to the exact value. The entire spline is graphed in 
Figure 4.16. The error is given in Figure 4.17. 

Figure 4.16 Natural spline Figure 4.17 Error in natural spline 
approximation to part of the sine approximation to part of the sine 
function. function. 

Recall, however, that using a natural spline imposes the condition 93 (x0) = cß{xn) = 0, 
which might not be the correct value to use (and, in the case of our example, isn't even 
a good approximation to the correct value at x2 = b = ^). If we construct the complete 
spline approximation, then we are led, via (4.49) and (4.50), to the 3 x 3 linear system 

" 4 2 0 " 

1 4 1 

0 2 4 

CO 

Cl 

c2 

= |V2 
1 

which we can easily solve to get 

c0 = 0.00017369124366, a = 0.13055231141225, c2 = 0.18472384429387. 

Thus, the complete set of coefficients is 

c_i = -0.13124707638690, CQ = 0.00017369124366, a = 0.13055231141225, 
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c2 = 0.18472384429387, c3 = 0.13055231141225, 

and the spline is given by 

q3(x) = c-1B-i(x) + c0B0(x) + ciBi(x) + c2B2(x) + c3B3(x). 

The spline itself is graphed in Figure 4.18 and the error is in Figure 4.19. Note that the 
approximation is much more accurate than was the case for the natural spline. This is 
because the natural spline imposed the inaccurate condition q3'(x) = 0 at x = \, whereas 
the complete spline used the correct values of the first derivative at both endpoints. Just as 
a single point of comparison, this time we get 

93(1/6) = 0.4999381524, 

which is a much better approximation to the correct value of \ than we got for the natural 
spline. 

OK» | 1 1 . 1 1 1 1 1 1 

0 « 

00» ■ 

oos 

0O1S 

001 

0005 

Figure 4.18 Complete spline Figure 4.19 Error in complete spline 
approximation to part of the sine approximation to part of the sine 
function. function (same vertical scale as in 

Figure 4.17). 

■ EXAMPLE 4.9 

Consider now the function f(x) = (1 + 25x2) - 1 , which we have had trouble ap-
proximating with ordinary interpolation. We can construct both natural and complete 
spline approximations to this function, using equally spaced points on the interval 
[-1,1], with h~l =2 ,4 ,8 ,16 . Figures 4.20 and 4.21 show the plots of the natural 
spline and associated error, while Figures 4.22 and 4.23 do the same for the complete 
spline and its error. Compare these plots to the simple piecewise polynomial fits 
shown in Figures 4.8 to 4.10. 

Theoretical Results The error theory for spline approximations is somewhat more 
involved than that for ordinary piecewise polynomial interpolation, so we will here refer 
to the main result without proof and then comment on it. See Hall's article [10] for the 
details, or the article by de Boor [7]. 

Theorem 4.7 (Spline Approximation) / / / e C4 ([a, b]) and q is a cubic spline interpolant 
to f on a grid 

a — XQ < Xi < X2 < ■ ■ ■ < Xn-l < Xn =b 
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Figure 4.20 Natural Spline Interpolation to /(se) = (1 + 25x2) 1. The nodes are marked by plus 
signs. 

-1 -0.5 0 0.5 1 

- J L 

Figure 4.21 Error in Natural Spline Interpolation to f(x) = (1 + 25x2)" 

with max(xj - Xi-\) < h for all i, then 

ll/-9lloo<3^4ll/(4)lloo. 

Moreover, there exist constants Ck, 1 < k < 3, such that 

l l /C f c ) -g( f c ) l loo < Cfc^4-fc!l/ (4 ) l loo-

Note that the spline interpolant is no more accurate, in terms of the exponent on the 
mesh size, than ordinary piecewise polynomial approximation (note that the constant in the 
estimate is smaller). The advantage of spline interpolation lies in the smoothness of the 
approximation. 
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Figure 4.22 Complete Spline Interpolation to f(x) = (1 + 25x2) *. The nodes are marked by 
plus signs. 

-1 -0.5 

Figure 4.23 Error in Complete Spline Interpolation to f(x) = (1 + 25x2)~ 

Exercises: 

1. Given the set of nodes XQ = 0, x\ = 1/2, x^ = 1, 2:3 = 3/2, and x4 = 2, we 
construct the cubic spline function 

q3(x) = 0A5B_1(x) + OA7Bo{x) + 0A8Bl(x)+0.22B2(x)+Q.30B3(x) 

+ 0.3lB4{x)+0.32B5{x), 

where each Bk is computed from the exemplar B spline according to (4.38). Compute 
Ç3 and its first derivative at each node. 
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2. Is the function 
0, x < 0 
x2, 0 < x < 1 

p{x) = \ - 2 x 2 + 6x + 3, 1 < x < 2 
( z - 3 ) 2 , 2 < x < 3 
0, x > 3 

a spline function? Why or why not? 

3. For what value of k is the following a spline function? 

, . _ Γ kx2 + (3/2), 0 < x < 1; 
9 W _ \ x 2 + x + (l /2), l < x < 2 . 

4. For what value of k is the following a spline function? 

9( X ) - | _χ3 Λ-ίΙ, j_OW2 
- x 2 + fcx + l, 0 < x < l ; 

+ (Ä; + 2)x2 - fcx + 3 l , < x < 2 . 

5. For what value of k is the following a spline function? 

«ΟΌ = { !.,3 ^ i.̂ 2 
3 + 3 x 2 + l, - l < x < 0 ; 

x3 + fcx2 + 1, 0 < x < 1. 

6. Construct the natural cubic spline that interpolates to / (x) = 1/x at the nodes 
1/2,5/8,3/4,7/8,1. Do this as a hand calculation. Plot your spline function and / 
on the same set of axes, and also plot the error. 

7. Repeat the above using the complete spline. 

8. Construct a natural spline interpolate to the mercury thermal conductivity data (Table 
4.7), using the 300 K, 500 K, and 700 K values. How well does this predict the values 
at 400 K and 600 K? 

9. Confirm that the function B(x), defined in (4.34), is a cubic spline. 

10. Construct a natural cubic spline to the gamma function, using the data in Table 4.8, 
and the nodes x = 1.0,1.2,1.4,1.6,1.8, and 2.0. Use this approximation to estimate 
Γ(χ) at x = 1.1,1.3,1.5,1.7, and 1.9. 

11. Repeat the above using the complete spline approximation, and use the derivative 
approximations from §4.5 for the required derivative endpoint values. 

12. Repeat Problem 6 of §4.7, but this time construct the complete cubic spline interpolate 
to / (x) = lnx, using the same set of nodes. Plot the approximation and the error. 
What is the maximum sampled error in this case? 

13. Recall Problem 7 from §4.2, in which we constructed polynomial interpolates to 
timing data from the 1973 Kentucky Derby, won by the horse Secretariat. For 
simplicity, we repeat the data in Table 4.19. Here t is the elapsed time (in seconds) 
since the race began and x is the distance (in miles) that Secretariat has traveled. 

(a) Construct a natural cubic spline that interpolates this data. 
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X 

t 

Table 4.19 
0.0 
0.0 

0.25 
25.0 

Data for Problem 13. 
0.50 
49.4 

0.75 
73.0 

1.00 
96.4 

1.25 
119.4 

(b) What is Secretariat's speed at each quarter-mile increment of the race? (Use 
miles per hour as your units.) 

(c) What is Secretariat's "initial speed," according to this model? Does this make 
sense? 

Note: It is possible to do this exercise using a uniform grid. Construct the spline that 
interpolates t as a function of x, then use your knowledge of calculus to find x'(t) 
from t'(x). 

14. Show that the complete cubic spline problem can be solved (approximately) without 
having an explicit expression for / ' at the endpoints. Hint: Consider the material 
from §4.5. 

15. Construct the natural cubic spline that interpolates the data in Table 4.12 at the nodes 
defined by log10 Θ = - 6 , - 4 , . . . , 4,6. Test the accuracy of the approximation by 
computing <73(x) for x = log10 Θ = - 5 , - 3 , . . . , 3,5 and comparing the results to 
the actual data in the table. 

16. Construct the exemplar quadratic B-spline; that is, construct a piecewise quadratic 
function that is C1 over the nodes/knots x = -1 ,0 ,1 ,2 , and which vanishes for x 
outside the interval [—1,2]. 

17. Construct the exemplar quintic B-spline. 

18. For a linear spline function we have ci = 1, which forces TV = 0. Thus, a linear spline 
has no derivative continuity, only function continuity, and no additional conditions 
are required at the endpoints. Show that the exemplar B-spline of first degree is given 
by 

0, x < - l ; 
x + 1, - l < x < 0 ; 
l-x, 0 <x < 1; 
0, 1 < x. 

B(x) = < 

Describe, in your own words, how to construct and evaluate a linear spline interpolant 
using this function as the basic B-spline. 

19. Discuss, in your own words, the advantages or disadvantages of spline approximation 
compared to ordinary piecewise polynomial approximation. 

20. Write an essay that compares and contrasts piecewise cubic Hermite interpolation 
with cubic spline interpolation. 

21. The data in Table 4.20 gives the actual thermal conductivity data for the element 
nickel. Construct a natural spline interpolate to this data, using only the data at 200 
K, 400 K,..., 1400 K. How well does this spline predict the values at 300 K, 500 K, 
and so on? 
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Table 4.20 Data for Problem 21. 
Temperature (K), u 
Conductivity (watts/cm K), k 

Temperature (K), u 
Conductivity (watts/cm K), k 

200 
1.06 

300 
0.94 

700 
0.655 

400 
0.905 

800 
0.653 

500 
0.801 

900 
0.674 

600 
0.721 

1000 
0.696 

22. Construct a natural spline interpolate to the thermal conductivity data in Table 4.21, 
below. Plot the spline and the nodal data. 

Table 4.21 Data for Problem 22 
Temperature K), u 
Conductivity (watts/cm K), k 

200 
0.94 

300 
0.803 

400 
0.694 

500 
0.613 

600 
0.547 

700 
0.487 

< · · · > 

4.9 APPLICATION: SOLUTION OF BOUNDARY VALUE PROBLEMS 

The range of application of spline approximations is incredibly wide, including such 
diverse things as scalable computer printer fonts, which are typically stored as spline 
approximations; and modern computer special effects in movies, which are often done by 
using spline approximations to complicated surfaces which can then be easily manipulated 
and moved about on the screen by the digital special effects artist. But some of the 
oldest and most important applications of spline functions are to the accurate solution of 
differential equations. In §2.7 we briefly touched on the approximate solution of boundary 
value problems using finite difference approximations. In this section, we will build on 
that experience by using splines to construct our approximation. 

Consider the two-point boundary value problem 

-u" + a2u = f(x), 0 < z < l , 

"(0) = 9o, 

w(l) = gi, 

which is slightly more general than the one we looked at in §2.7. We construct the grid of 
points 

0 = X0 < Xi < X2 < ■ ■ ■ Xn-1 < Ϊ» = 1, 

where we assume (for simplicity, only) that the grid spacing is uniform; i.e., Xk — Xk-1 = h 
for all k, 1 < k < n. We now look for our approximation in the form of a cubic spline 
defined on this grid. That is, we consider the function 

71+1 

Uh(x) = 5Z ckBk{x), 
fc=-l 
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where the coefficients Ck are yet to be determined. The advantage of this approach over 
what we did in §2.7 is that here we get a continuous smooth function as our approximation, 
whereas in §2.7 all we got was a set of discrete points. We find the coefficients by requiring 
that UH satisfy the differential equation at each of the nodes Xk, 0 < k < n. (Note that the 
smoothness of the spline function is essential for this to even make sense. We have to have 
Uh e C2 to even talk about it satisfying the ODE.) Because we know the values of Bk and 
its derivatives at each of the nodes, we can easily reduce this to the system of equations 

T'c' = b', (4.52) 

where 

for 

and 

T' = 

a=-t 

a 

0 

0 

>/i"2 

ß 
a 

+ a2, 

a 

ß 

0 

ß 

0 

α 

0 
a 

... o 
: 0 

β a 

= Uh~2 + ' 

c' = 

C - 1 

CO 

Cn+l 

b' 

/(zo) 

/ ( I n ) . 

Since this is a system of only n + 1 equations in n + 3 unknowns, we can't construct 
a solution yet. We can eliminate the two extra unknowns by imposing the boundary 
conditions on the approximation: 

Uh(0) = 5o => c_i + 4c0 + ci = g0 => c_! = g0 - 4c0 - Ci (4.53) 

and 

Wfc(l) = 0i => c„_i + 4cn + c n + 1 = 5i => c + i = 5i - 4c„ - c„_i. (4.54) 

If we substitute these into the first and last equations of the rectangular system, then we get 

( - 6 / T 2 + a2)(5o - 4c0 - ci) + (12/T2 + 4a2)c0 + ( - 6 / T 2 + a2)C l = f(x0) 

and 

( - 6 / T 2 + a2)c„_i + (12/T2 + 4a2)cn + {-6h~2 + a2)(gi - 4 c - c n - i ) = /fan)· 

The ci and c„_i terms drop out here, so we can conclude that 

C0 = S ( / ( a : 0 ) + (Ä- a 2 ) f l 0 ) ' Cn = S ( / ( a : " ) + (Ä- a 2 ) 9 1 ) · (4"55) 

With these two values known, we can look at the (n — 1) x (n — 1) system created by 
using (4.55) to define CQ and c„, and dropping the first and last equations in the rectangular 
system. We are then left with the square system 

Tc = b 
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where 
T = tridiag(-6/T2 + a2,YlhT2 + 4a2, -6h~2 + a2), 

(which is diagonally dominant), 

c = (c i ,c2 , . . . , c n _ i ) , 

and 

b = 

/ f a ) + i ( l - èa2/i2)/(^o) + h~2(l - \h2a2)2g0 

/(*a) 

L /(xn-i) + è(i - è0^2)/^«) + Λ-2(Ι - è^2«2)2^ 
Programming Note: We have used a grid of n + 1 points, with h = 1/n, but the system 
we solve i s n - l x n - 1 . 

The diagonal dominance of T means that we can use the solution algorithm from §2.6. 
Once the system is solved, we can get the rest of the coefficients from (4.53), (4.54), and 
(4.55). 

■ EXAMPLE 4.10 

Consider the example problem 

-u" + π2η = 2TT2COS(-KX), 0 < x < 1, 

u(0) = 1, 

u(l) = - 1 , 

which has exact solution u(x) = cos πχ. The linear system for h = i is 

for 

and 

Tc = b 

T = tridiag(-384 + π2,768 + 4π2, -384 + π2) 

2π 2 ™ 8 ( ! )+64 ( ΐ - : έ ) ( ΐ + ^ ) 
27T2cos(2f^ 
27T 2 COS(^) 

2 7 T 2 C O S ( | M 

2π2αχ(ψ) 
_ 2 ^ c o s ( ^ ) + 6 4 ( l - ^ ) ( l + ^ ) 

' h ' 
b2 

h 
bi 

h 
be 

b7 

= 

This has the solution 

0.15763927907189 
0.12053536253339 
0.06520274709146 

c = 0.00000000000000 
-0.06520274709146 
-0.12053536253339 
-0.15763927907189 
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From this we get that 

c0 = 0.17095034913242, c_i = 0.15855932439844, 

c8 = -0.17095034913242, c9 = -0.15855932439844, 

and the spline approximation is therefore given by 

uh(x) = 0.15855932439844ß_i(a;) + 0.17095034913242B0(z) + 0.15763927907189ß1(a;) 

+ 0.12053536253339 B2(x) + 0.06520274709146-B3(z) + 0B4(x) 

- 0.06520274709146J55(a;) - 0.12053536253339ß6(a;) - 0.15763927907189ß7(a;) 

- 0.17095034913242ß8(x - 0.15855932439844ß9(a;) 

and the error cos(7nr) — Uh (x) is plotted in Figure 4.24. If we take a sequence of grids with 
ft-1 = 8 , 1 6 , 3 2 , . . . , 128 and compute the approximate solutions, we find that the norm of 
the error, as estimated by sampling at 200 discrete points on the interval, is as indicated in 
Table 4.22; note that the error goes down like a factor of 4 as h is cut in half, indicating 
(but not proving) that this scheme is 0(h2) accurate. Note that this means that the spline 
solution of the boundary value problem is less accurate than a direct spline approximation 
of the exact solution (which, according to the estimate given in §4.8, would be 0{hA) 
accurate). 

Figure 4.24 Error in spline approximation to boundary value problem for h = 1/8. 

Table 4.22 Estimated error for spline approximation to BVP solution. 
h-1 

8 
16 
32 
64 
128 
256 

Estimated error 
0.03881321103858 
0.01100251675792 
0.00295824984969 
0.00076798902568 
0.00019487261990 
0.00004945300189 

It can be shown that this approximation is indeed 0(h2) accurate, but the analysis is 
beyond our intended scope. 
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What we have done in this section is an example of what is called collocation, a 
broadly used technique for solving differential equations (approximately) using expansions 
in terms of basis functions, and then solving for the coefficients in the expansion. Another 
method that uses a basis function expansion (and which uses a more complicated means of 
constructing the system for the expansion coefficients) is the finite element method. The 
book by Prenter [14] has some discussion of collocation by splines. We will briefly discuss 
spectral collocation in Chapter 10, and the finite element method in §6.10.3 and Chapter 9. 

Exercises: 

1. Set up the linear system for solving the boundary value problem 

-u" + u = l, u(0) = l, u(l) = 0, 

using h=\. You should get 

196 
-95 
0 

-95 
196 
-95 

0 " 
-95 
196 

Cl 

C2 

. C3 . 

= 
101/6 
1 

671/576 

2. Solve the system in the previous problem and find the coefficients for the spline 
expansion of the approximate solution. The exact solution is 

u{x) 

plot your approximation and the error. 

;ex + : 2 - l 

3. Use the method from this section to approximate the solution to each of the following 
boundary value problems using / i _ 1 =8 ,16 ,32 . Estimate the maximum error in 
each case by sampling the difference between the exact and approximate solutions 
at 200 equally spaced points on the interval. 

(a) —u" + u = (π2 + l)sin7r:r, u(0) = u(l) = 0; u(x) = βΐηπχ; 

(b) —u"+u = n(TTsmwx+2cosirx)e~x, u(0) = u(l) = 0;u(x) = e~x smnx; 

(c) -u" + u = 3 - ^ - ( x 2 - x - 2 ) logs, ti(0) = u(l) = 0; u(x) = x{\ -
x) log x. 

(d) -u" + u = 4e~x - 4xe~x, u(0) = u(l) = 0; u(x) = x{l - x)e~x; 

(e) -u"+ n2u = 2n2sin(nx), it(0) = 1, u(l) = 0, u(x) = s in^x) 

(f) -u" + u= ' (ffffl1, u(0) = 1, u(l) = 1/2, u{x) = (1 + x)-\ 

4. Try to extend the method from this section to the more general two-point boundary 
value problem defined by 

-u" + bu' + u = f(x), 

u(Q) = u(l) = 0. 

Is the resulting linear system diagonally dominant for all values of 6? 
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5. Try to extend the method from this section to the more general two-point boundary 
value problem defined by 

—a(x)u" + u = f(x), 

u ( 0 ) = « ( l ) = 0. 

Is the resulting linear system diagonally dominant for all choices of α(χ)Ί 

< · · · > 

4.10 TENSION SPLINES 

Splines are a wonderful tool for approximation, but they can still exhibit some poor behavior. 
Consider the data set plotted in Fig. 4.25. Obviously, this represents a function with a 
severe jump near x — 0.5, but there is no sign of oscillatory behavior. However, a B-spline 
representation of this data (Fig. 4.26) shows small wiggles on either side of a sharp front. 
This is fundamentally an artifact of the steep gradient in the data, but in other contexts a 
spline fit can display behavior that does not match the "sense" of the data. One way to 
avoid the problem is the notion of a taut spline or tension spline, an idea that appears to 
have been first published by Schweikert [17], but which also owes a lot to the work of A. K. 
Cline [4]; we relied heavily on a short paper of Marusic and Rogina [12] in our presentation 
here. 

Figure 4.25 Data set for tensioned Figure 4.26 B-spline fit to data in Fig. 
spline illustration. 4.25. 

Imagine that the curve in Fig 4.26 is a piece of string that is constrained to pass through 
small loops at the data points. If we were to pull the string taut, we would smooth out the 
spurious oscillations in the curve. This amounts to studying the mechanical properties of a 
cable hanging between two supports. More prosaically, we construct our spline from the 
new basis set {1, a;, coshpx, sinhpa;}, where p > 0 is the tension parameter: p = 0 means 
no tension, and it can be shown that this corresponds to the pure spline approximation; 
p —» oo gives us a piecewise linear approximation. (We will not attempt to justify either of 
these statements other than by examples and exercises.) 
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The reader may well be wondering how practical this scheme might be. After all, we 
have traded a set of polynomial basis functions for a set of transcendental basis functions. 
Not only is this going to make execution of any program more expensive, but it leaves open 
the entire question of how to construct the approximation. The basic idea is the same as in 
§4.8: First, we construct a primary basis function, as in (4.34): 

sinhpx cosh 2p + coshpx sinh 2p — px — 2p, x G [—2, —1] 

— (sinhpx — px)ß — 2 coshpx sinhp + 7 x € [—1,0] 
(4.56) 

(sinhpx - px)ß - 2 coshpxsinhp + 7 x 6 [0,1] 
— sinhpx cosh 2p + coshpx sinh 2p + px — 2p, x € [1,2] 

where a = pcoshp — sinhp, ß = (1 + 2 coshp), and 7 = 2pcoshp. Confirmation of this 
formula is deferred to the exercises. A plot of r is given in Fig. 4.27, for p = 4; note that 
it does not look very different from Fig. 4.13. 

3.5 

25 

1.5 

0.5 

0 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Figure 4.27 Original taut B-spline, p = 4. 

Construction of a tension spline follows precisely the same recipe as in §4.8: Given data 
(xi> Di)i=\> w e look for an approximation in the form 

n+l 

S(x) = Σ CiTi(X)' 
i = - l 

where the c* values are coefficients to be determined, and 

Note that, as in §4.8, we have added additional grid points, which will again require the 
imposition of additional conditions. We will explicitly cover the natural spline case, leaving 
the complete spline case to the exercises. 

For each original grid point we have the equation 

n+l 
Σ CiTi{x) =yj. 

r(x) = 
a 
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Because of the local nature of the τ* functions, this becomes 

Cj-lTj-i(Xj) + CjTj{Xj) + Cj+iTj+1{Xj) = 2/j. 

We quickly have that 

and 

for 

fl(p) = 

r J ( a : J ) = r ^ ^ T ^ j = r ( 0 ) = 4 , 

Tj-i{xj) = Tj+i{xj) = r ( ± l ) = θ(ρ), 

2 [(sinhp — p)(l + 2 cosh p) — 2 cosh p sinhp + 2pcoshp] 

pcoshp — sinhp 

This certainly looks imposing, but it also looks like some simplification ought to be possible, 
and if we multiply out the numerator, we quickly get 

. 2[(sinhp — p)(l + 2 cosh p) — 2coshpsinhp + 2pcoshp] / sinhp —p \ 

pcoshp — sinhp 

This is plotted in Fig. 4.28, for p running from 0 to 10. 

pcoshp — s inhp/ 

Figure 4.28 9{p) = r (±l) as a 
function of p. 

Figure 4.29 52,i(p) = r"(±l) as a 
function of p. 

The important thing for our purposes is that 0 < θ(ρ) < 1. The system of linear 
equations for the taut spline is, initially, as follows: 

0(p) 4 θ(ρ) 
θ(ρ) 4 θ(ρ) 

θ(ρ) 4 Θ(Ρ) 

C-1 

CO 

Cn+1 

/ ( * θ ) 

ffrn) 

(4.57) 

This, of course, is a system of n +1 equations in n + 3 unknowns. Following the derivation 
for the natural spline in §4.8, we have the boundary conditions 

T"(x0) = 0 =► c-iTl ' i fc-i) + coTu'(a;o) + C I T Î ' ( H ) = 0, 
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and 
τ"(χ„) = 0 => Cn-iT^ixn) + c„T^'(a;n) + cn+iT„+1(xn) = 0. 

Continuing with x = XQ, we get that 

C _ I T " ( 1 ) + cor"(0) + C I T " ( - 1 ) = 0. (4.58) 

We still need to compute τ" at various points. It is an involved, but not arduous 
computation, to show that 

*»(n\ x (~s ~ 4 P 2 t a n h P T (0) = ô2,o [p) = :—r—, 
p — tanhp 

and 

" / J - I Ï x i \ 2P2 t a n h P τχ f \ 

τ(±ΐ) = δ2Λ(Ρ) = 7 ^ ^ - ρ = -2δ2Αρ) 

We have plotted <Î2,i(p) in Fig. 4.29. We therefore have, from (4.58), 

c_i = 2co - c\. 

Similarly, 
Cn+l = 2C„ - C n - 1 -

Note that this looks a lot like what we got in §4.8 for the ordinary natural B-spline; we can 
eliminate c_i, CQ, Cn, andc„+i, so the system (4.57) becomes (after a bit of work) 

Kc=F, 

where 

tf = tridiag(0(p),4,0(p)), (4.59) 

c = (c i ,c 2 , . . . , c 7 l _ i ) T , 

and 
F = (/(xi) - Ö(p)co, /(12), ■ - -, / ( s„ -2 ) , / ( x n - i ) - Ö(p)cn)T, 

with 

c_i = 2 c 0 - c i , 

= / ( I Q ) /(so) 
00 4 Q(p)fa;o(p) 4 + 20(p)' 

*2,l(p) 

= /(in) = /fa) 
71 4 _ 9(p)ft,o(p) 4 + 2θ(ρ) ' 

*2,l(p) 

and 

Note that the matrix is tridiagonal and diagonally dominant, so we know how to solve 
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EXAMPLE 4.11 

As an obvious illustration of this, let's fit a series of tension splines to the data set 
in Fig. 4.25. Once the coefficients c_i, Co,... , c„, Cn+i are computed, the spline 
is evaluated in the same way as for an ordinary B-spline. Fig. 4.30 shows the 
data and spline curve for p = 0.01; obviously, with such a small tension value we 
do not expect much difference, and Fig. 4.31, which plots the difference between 
the pure polynomial spline and the tension spline, confirms this (although the lower 
"overshoot" does appear to be significantly affected). If we take p = 1, we get Figs. 
4.32-4.33 which shows that the lower "overshoot" is indeed beginning to damp out, 
but the upper one is much the same. Finally, for p = 6, we get Figs. 4.34-4.35; this 
is perhaps the smallest value of p for which both overshoots are gone. 

«-̂ · 
-15 -1 -0.5 

Figure 4.30 Tension spline fit, p 
0.01. 

Figure 4.31 Difference between pure 
polynomial spline and tension spline, 
p = 0.01 

-0.5 0 0.5 

Figure 4.32 Tension spline fit, p = 1. Figure 4.33 Difference between pure 
polynomial spline and tension spline, 
p = l 
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-OS 0 0.5 

Figure 4.34 Tension spline fit, p = 6. Figure 4.35 Difference between pure 
polynomial spline and tension spline, 
p = 6. 

Exercises: 

1. Show that the piecewise function defined in (4.56) is, indeed, continuous and has 
continuous first and second derivatives. 

2. Fill in the details of the natural spline construction. In particular, confirm the 
expressions for Ö2,o{p) and £2,1 (P) (and that τ"(1) = r"(—1)) as well as the form 
of the final linear system (4.59). 

3. Derive the linear system for the construction of a complete taut spline, by following 
what was done in §4.8. 

4. Consider the dataset in Table 4.23: 

X 

y 

600 
0.64 

650 
0.65 

700 
0.66 

Table 4.23 Data for Problem 4 
750 
0.69 

800 
0.91 

850 
2.2 

900 
1.2 

950 
0.62 

1000 
0.6 

1050 
0.61 

1100 
0.61 

Plot the data, and construct a (natural) polynomial spline fit to it. Note the "wiggles" 
to the left of the peak, which appear to be contrary to the sense of the data, which is 
increasing monotonically towards the peak near x = 850. Find the smallest value of 
p in a taut natural spline fit to this data which yields a monotone curve to the left of 
the peak. 

5. Repeat the previous problem using complete splines. Use a simple finite difference 
approximation based on the data to get the necessary derivative values. 

< · · · > 
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4.11 LEAST SQUARES CONCEPTS IN APPROXIMATION 

4.11.1 An Introduction to Data Fitting 

An important area in approximation is the problem of fitting a curve to experimental data. 
Since the data is experimental, we must assume that it is polluted with some degree of error, 
most commonly measurement error ("noise"), so we do not necessarily want to construct 
a curve that goes through every data point. (In fact, the material in §4.12.1 suggests that 
this would be a disastrous way to proceed.) Rather, we want to construct a function that 
represents the "sense of the data" and which is, in some sense, a close approximation to the 
data. 

The most common approach is known as least squares data fitting. Consider Figure 
4.36; this shows an example set of data for which the general trend is clearly a straight line. 
But which straight line do we use to represent the data? 

Figure 4.36 Example plot of data. 

The least squares approach defines the "correct" straight line as the line that minimizes 
the sum of the squares of the distances between the data points and the line. Let the 
experimental data be defined as pairs (xfc, 2/fc), 1 < k < n for some n. Thus, we want to 
find the coefficients m and b in the equation y = τηχ + b such that 

n 

F(m,b) = J2(yk-(mxk+b))2 

k=l 

is minimized. This is a straight forward problem from multivariable calculus: We compute 
the partial derivatives Fm and Fb and find where they both vanish, and this will define a 
critical point. It can be shown that this critical point defines a global minimum for F. Thus, 
m and b are defined by the two equations 

dF "· 

-g— = - 2 5Z (W* ~ ^mXk + &))Xk = °' 
fc=l 

dF " 
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which can be simplified to a system of two equations in two unknowns 

n 

Y^{yk-{mxk + b))xk = 0, 
=1 

n 

Σ fa* ~ (mX*: + b)) = °> 

fc=l 

fc=l 

or, 

m Σ*2 +6 Σ** = Σ Zfc2/fc, 

< f e = l < f c = l fc=l 

771 

The solution here is then 

ΣΗ+ΜΣ1) - Σ»· 
fc=l *J fc=l V,fc=l 

m = " Σ"=ι xkVk - (ΣΓ=ι xfc) (Σ"=ι »it) 
»Σ^ ι^ - ίΣ?»!»*) 2 

ö = (ΣΓ=ι xfc) (ΣΓ=ι gfc) - (ΣΓ=ι xk) (ΣΓ=ι gfci/fc) 
" (ΣΖ=ι XD - (Σ?=ι s*)2 

which, for the data in Figure 4.36, produces the straight line graph shown in Figure 4.37. 

Figure 4.37 Straight line fit to data. 

The notion of a least squares data fit can be generalized beyond simply fitting a straight 
line to data. We can look at higher degree polynomials and we can also look at higher 
dimensional data sets. The exercises include some examples of more involved least squares 
data fit problems. 

■ EXAMPLE 4.12 

Consider the data in Table 4.24. If we plot this, we get what appears to be a straight 
line as the general trend of the data, so we look for the equation of the line y = mx+b 
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which best fits this data in the least squares sense. Forming the separate sums gives 
us 

6 6 6 6 

^ 2 ^ = 15, ^ ? / i = 367, ^ 2 ^ = 5 5 , y^^XiVi = 1303, 
i= l i= l i= l i= l 

from which it follows that 

m = 22.0286, b = 6.0952 

and the line is plotted, along with the data, in Figure 4.38. 

Table 4.24 Data for Example 4.12. 
X 

y 

0.0 
10.0 

1.0 
25.0 

2.00 
51.0 

3.00 
66.0 

4.00 
97.0 

5.00 
118 

Figure 4.38 Least squares fit to the data in Table 4.24. 

■ EXAMPLE 4.13 

We don't have to restrict ourselves to linear or quadratic models to make good use 
of the idea of least squares data fits. Consider the yk data in Table 4.25. When we 
plot this data, we get the curve shown in Figure 4.39. Generally, this looks like an 
exponential growth curve. Ordinarily this would require us to do a fit to a curve of 
the form yk = AerXk, which will lead to a nonlinear system for the parameters A and 
r. However, if the raw data is exponential, then the logarithm of the data is linear, 
since we have 

zk = lnj/fc = rxk + [In A), 

and we can fall back on our existing algorithm to do a fit to the log data. 
To verify this, we look at the logarithm of our example data; this data is plotted in 

Figure 4.40, and the general trend is indeed linear. So we do a least squares fit to the 
log data, getting the straight line 

z = 0.0209a; - 0.4842. 
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This is plotted, along with the raw (logarithm) data, in Figure 4.41. It follows, then, 
that our curve fit to the original data is 

, . _ -(0.0209x-0.4842) 

which is plotted in Figure 4.42, along with the original data. Note that, except for 
the last two points, this is a pretty good fit to the data set. 

Table 4.25 Data for Example 4.13. 

k 
1 
2 
3 
4 
5 
6 
7 

Zfc 
0 
10 
20 
30 
40 
50 
60 

Vk 
0.716 
0.893 
1.055 
1.134 
1.167 
1.281 
1.994 

logy*: 
-0.3341 
-0.1132 
0.0535 
0.1258 
0.1544 
0.2476 
0.6901 

k 
8 
9 
10 
11 
12 
13 

Xk 

70 
80 
90 
100 
110 
120 

Vk 
2.500 
3.151 
4.300 
5.308 
4.966 
10.919 

logy* 
0.9163 
1.1477 
1.4586 
1.6692 
1.6026 
2.3905 

Figure 4.39 Plot of raw data for 
Example 4.13. 

Figure 4.40 Plot of log data for 
Example 4.13. 

Figure 4.41 Log data plus fitted curve 
for Example 4.13. 

Figure 4.42 Raw data plus fitted 
curve for Example 4.13. 

4.11.2 Least Squares Approximation and Orthogonal Polynomials 

The notion of least squares approximation can be extended beyond the data-fitting problem. 
Consider the problem of finding an approximation to a given function / in terms of a set of 
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basis functions { 0 k , l < f c < n } . How do we find the coefficients in the expansion 

n 

f(x) « qn(x) = Y^ck<j>k(x)l 
fc=l 

One way to do this is to require that the coefficients ck produce an approximation that 
minimizes the error 

rn = f ~qn 

in the least squares sense, i.e., in the sense of the integral 2-norm. Thus we seek ck such 
that 

Än = l l / -9n | | 2 

is minimized. Before doing this it will be convenient to introduce the notion of an inner 
product. It is best to do this thoroughly, so we pause in our development of approximations, 
but only briefly. 

Inner Products of Functions The reader should be familiar with the notion of the dot 
product of two vectors in Rn: 

n 
x-y = ^Xiyi. 

i= l 

This is an example of a more general operation called an inner product, which can be 
defined on general vector spaces, including spaces of functions, rather than just Euclidean 
n-space. The formal definition is as follows. 

Definition 4.2 (Inner Product on Real Vector Spaces) Let f and g be elements of a real 
vector space V. Let (f,g) denote any operation on f and g that satisfies the following 
three properties: 

1- if, / ) > 0 for all nonzero f G V; 

2. (f,agi + ßgi) = a(f, gi) + ß(f, g2) for all f, g e V and all scalars a and ß ; 

3- {f,g) = {g,f)forallf,geV. 

Then, (/, g) is called an inner product. 

If we want to consider our overlying vector space to be C([a, b}), that is, continuous 
functions on a closed interval, then we can easily establish that the positively weighted 
integral of a product of two functions will be an inner product. 

Theorem 4.8 Let w be integrable on [a,b] and non-negative, i.e., / w(x)dx is defined 
and w{x) > Ofor all x 6 [a, b]. For given f and g in C([a, b}), define (/, g)w as 

{f,g)w= [ w(x)f(x)g(x)dx. (4.60) 
Ja 

Then, {-,-)w defines an inner product onC([a,b]). 

Proof: See Problem 6. · 
Note that it therefore follows that if (/, g)w is an inner product, then \\f\\w = (/, f)J 

defines a norm. In the common case when w(x) = 1, we will simply write (f,g)w = {f,g)', 

http://www.it-ebooks.info/


LEAST SQUARES CONCEPTS IN APPROXIMATION 2 3 9 

i.e., we will drop the subscript, and the norm is the ordinary 2-norm for functions that we 
defined earlier in this chapter. Problem 7 offers some practice with a norm defined by a 
weighted inner product. 

This definition of inner product will allow us to apply a number of ideas from linear 
algebra to the construction of approximations, as we will soon see. Of more immediate 
interest is the fact that we can use the inner product notation to write the residual, Rn, in a 
very convenient form: 

Rn = 2 Σ cfc(/, 0fc) + Σ Σ ο^φί,φ^). 
k=l i = l j=l 

Note that we can regard Rn as a function of the n variables Cfc, and thus apply ordinary 
calculus to the problem of minimizing Rn. After some manipulations (see Problem 8) we 
find that the Ck are defined by simultaneously solving the set of equations 

{φΐ,φχ)θι + {φι,φ2)θ2 + ■■■ (Φΐ,Φη)θη = (/,φι), 
(02,0l)ci + (02,02)C2 + " · (02,0n)Cn = (/, Φ2), 

(φη,Φΐ)θι + (φη,Φ2)θ2 + ■·■ (Φη,Φη)θη = ( / , 0η ) · 

This system can be organized along matrix-vector lines as 

(Φΐ,Φΐ) {Φί,Φτ) ■·· (Φΐ,Φη) 
{Φ2,Φΐ) (Φ2,Φ2) ■■■ {Φ2,Φη) 

(Φη,Φΐ) (Φη,Φ2) ■■■ (Φη,Φη) 

Cl 

C2 

(ί,Φΐ) 
(f,<h) 

(ί,Φη) 

(4.61) 

Solving a system of linear equations is a problem that we do not encounter in the general 
case until Chapter 7. We can avoid it altogether at this point if OUT basis functions satisfy 
the orthogonality condition 

(Φζ,Φί) = 0, f o r a l H ^ j . 

In this case, the matrix in (4.61) is a diagonal matrix and we very easily have 

(4.62) 

Ck 
(0fc>0fc) 

So, to summarize what we have done so far, we can construct an approximation to a given 
function / from a given basis set {φ\, <t>2, ■ ■ ■, φη}, and the construction is very easy, if'the 
basis satisfies the condition (4.62). So, the question becomes: When can we find a basis 
that satisfies (4.62), and how good is the resulting approximation? 

The answer is that we can always find such a basis if we consider polynomial functions 
for our basis elements, and the resulting approximations are usually quite good. The special 
basis functions that satisfy (4.62) are called orthogonal polynomials. To be more specific 
with this, we have to introduce some new concepts and notation, and recall a major theorem 
from linear algebra. But first, one more definition. 

Definition 4.3 (Vector Space of Polynomials of Degree < TV) For any N > 0 define VN 
as the vector space of polynomials of degree < N. Note that this space has a standard 
basis consisting of {l,x,x2,x3,... ,xN), and thus is an (N + l)-dimensional space. 
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And, now, the theorem: 

Theorem 4.9 Let w be a given non-negative weight function on an interval [a,b], and 
(·, ·)„, the associated inner product, defined as in (4.60). Then there exists a family of 
orthogonal polynomials {<j>k}, 4>k € Vk, 0 < k < N, such that 

(<Pi,<t>j)w = 0, ίφ], 

and 
{4>i,<i>i)w > 0, i > 0. 

In addition, the <$>k satisfy the following: 

1. The set {φο, φι,..., ΦΝ} is a basis for VN; 

2. Ifqk is an arbitrary element ofVk.for k < N, then (qk^N)w = 0/br all N > k 
(thus, orthogonal polynomials are orthogonal to all polynomials of strictly lower 
degree); 

3. For j > 1, the roots of each φ^ are all in [a, b] and are all distinct. 

Proof: The proof is somewhat lengthy, in part because of the length of the theorem, but 
it is not difficult. 

To establish that the family {</>jt} exists, we will construct it directly, using the Gram-
Schmidt process from linear algebra. Take φο(χ) = 1, and define £fc(x) = xk, for 
0 < k < N. Then the subsequent φι^. can be found according to 

k — \ 

ΦΗ{Χ) = tk(x) - Ë T M T ^ ( Z ) (4-63) 
p ; [Φί,Φί)™ 

and an inductive argument shows very quickly that the orthogonality holds. In Problem 9 
we ask the student to fill in the details of this part of the proof. 

Having now proved that the family of orthogonal polynomials exists, we turn our 
attention to proving each of (l)-(3). 

(1) The space VN is finite-dimensional with dimension N + 1. It therefore follows 
that any set of N + 1 independent elements of VN will be a basis. The orthogonality 
condition (4.62) forces the members of the family {φ^ to be independent (see Problem 
10); therefore, the set {0o, Φι, ■ ■ ■, ΦΝ} is a basis for VN-

(2) Let qk be an arbitrary polynomial of degree k < N. Then we can write 

k 

Qk = 22 αίΦί 
t=0 

because {φο, φ\,..., φκ} is a basis for Vk- Therefore, 

fc 

(qkAN) = 22ai^u^N^ = ° 
i=0 

since ΦΝ is orthogonal to each element of {φο, φ\,..., φ^}. In fact, we can write (Problem 
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(3) First, suppose that φ^, j > 1, has no roots in [a, b}. This means that <pj does not 
change sign on the interval, thus 

{Φο,Φί)= I ιν(χ)φ0{χ)φί(χ)άχ^Ο, 
Ja 

since the integrand does not change sign on [a, b]. But the orthogonality requires that 
(0o, φ]) = 0; hence, we have a contradiction, so there must be at least one root in [a, b]. 

Now, let x\ be any root of φ^ that lies in [a, b], and suppose that it is a multiple root. 
Then it follows that 

Φϊ(χ) = (x-xi)2q{x) 

for some polynomial q; thus, 

q(x) = (χ-χι)~2φι(χ) 

is a polynomial of degree j — 2, therefore, (q, φ$ ) = 0, by another part of this theorem. But 

fb (9>0j) = / w(x)(x — χι) 2{φί{χ))2άχ > 0, 
Ja 

so we have another contradiction. Thus, any roots that lie in [a, b] must be simple roots. 
Suppose now that only some of the roots lie in [a, b]. Call these roots Xi,l <i < j , and 

note that we can write φ^ as 

Φί{χ) = tyj(x){x — X\) · ■ · (x — Xj), 

where Φ_, (x) does not change sign in [a, b] and is a polynomial of degree j — i. Therefore, 

<£j(x)(x - X i ) · ■ · (x - Xj) = Φ_,(χ)(χ - X i ) 2 · ■ · (x - Xj)2 

is also a polynomial that does not change sign in [a, 6]. Hence, the integral 

fb 1=1 Φ^(χ)(χ — xi)2 ■ ■ ■ (x — Xi)2dx 
Ja 

cannot be zero. However, 

rb 

1=1 Φ^(χ)(χ — xi)2 ■ · ■ (x — Xi)2dx = (0j,g) 
Ja 

where q(x) = (x — xi) · ■ · (x — Xj), and g is a polynomial of degree i < j . Therefore, 
(<Aj> Q) = 0, and we have a contradiction. Thus, i > j , and since a polynomial of degree j 
cannot have more than j roots, we must have i= j . · 

Families of Orthogonal Polynomials At this point it might be useful to look at some 
examples of orthogonal polynomial families. Four of the most common ones are discussed 
below. 

Note that the orthogonality condition (4.62) means that an orthogonal polynomial can be 
multiplied by an arbitrary nonzero constant and still satisfy (4.62). To avoid the problems 
of nonuniqueness that this can lead to, it is common to impose a specific scaling on the 
elements of each family. 
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1. Legendre polynomials: The Legendre13 polynomials are the orthogonal polynomials 
on [—1,1] with no weight function (more correctly, the unit weight function); thus, 
we have 

r - l 

Pi{x)Pj{x)dx = 0, ιφό. L -1 

The usual scaling is to take Pn( l ) = 1· The first five Legendre polynomials are: 

P6(x) = 1, 
Pi (x) = x, 

P2(x) = i ( 3 x 2 - l ) , 

P3(x) = i(5z3-3z), 

P4(x) = i ( 3 5 z 4 - 3 0 z 2 + 3). 

2. Chebyshev polynomials: The common notation for the Chebyshev14 polynomials is 
Tn(x), and the interval and weight function are defined in the orthogonality relation 

/ . 

1 Ti{x)Tj(x)j . . . 

-ax = 0, ι Φ j . 

The common scaling is to set the leading coefficient equal to 2n l. The first five 
Chebyshev polynomials are: 

T0(x) 

Ti(x) 
T2(x) 

T3(x) 

T4(x) 

= 

= 

= 
= 

= 

1, 
X, 

2a;2-

4a;3-

8a:4-

- i , 
-3a:, 

-8a:2 + 1 

It can be shown that the Chebyshev polynomials are related in a very simple way to 
cosines; see Theorem 4.10. 

13Adricn-Marie Legendre (1752-1833) was born and educated in Paris. He contributed greatly to what we now 

call number theory as well as elliptic function theory. He was the first to publish, in 1805, a description of the 
method of least squares, although it appears that Gauss had previously worked out much of the same material. 

Legendre introduced the polynomials that bear his name in a 1785 paper on the gravitational attraction of 
spherical bodies. They arise in this context because they are the solutions to an ordinary differential equation that 
occurs as part of the solution process for the equations of motion in a spherical coordinate system. 
l4Pafnuty Lvovich Chebyshev (1821-1894) was born near Borovsk, Russia, southwest of Moscow, and educated 

at the University of Moscow, from which he was graduated in 1841. From 1847 until his death he lived in 
St. Petersburg. Many areas of mathematics, from number theory to the theory of equations, were touched by 
Chebyshev, but he is perhaps best known, at least in applied mathematics, for his work in approximation theory. 

Because of the many different ways that the Russian alphabet can be transliterated into the Roman alphabet, 
there are several different ways to spell Chebyshev's name. The most common alternative is "Tschebyscheff." 
A marvelously engaging discussion of the perils of transliterating between the Roman and the Russian (Cyrillic) 
alphabets, as well as a substantial treatment of Chebyshev's life, is contained in The Thread, by Philip J. Davis, a 
leading mathematician in the area of interpolation and approximation. 
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3. Hermite polynomials: The Hermite polynomials are orthogonal on the entire real 
line,15 using the weight function w(x) — e~x ; that is, 

F 
J—( 

e x Hi(x)Hj(x)dx = 0, i Φ j . 
-oo 

The common scaling is to set the leading coefficient equal to 2™. The first five 
Hermite polynomials are: 

H0(x) = 1, 

i?i(x) = 2x, 

H2(x) = 4 a ; 2 - 2 , 

H3(x) = 8x3 - 12z, 

H4(x) = 16x4 - 48x2 + 12. 

4. Laguerre Polynomials: The Laguerre16 polynomials are orthogonal on the positive 
real line, using the weight function w(x) = e~x, that is, 

(■OO 

/ e~xLi(x)Lj(x)dx = 0, i φ j . 
Jo 

The common scaling is to set the leading coefficient equal to ' / . The first five 
Laguerre polynomials are then: 

L0(x) = 1, 

L\{x) = -x+l, 

Li{x) = -(x2-4x + 2), 

L3(x) = - ( - x 3 + 9 x 2 - 1 8 x + 6), 
6 

L4 (x) = ^-(x4 - 16x3 + 72x2 - 96x + 24). 
24 

We can use any of these orthogonal polynomial families to construct approximations to 
functions defined on the appropriate interval. These approximations are "best possible" in 
the sense that they minimize the error in the appropriate weighted 2-norm; i.e., 

| | / - 9 n | L < | | / - Ρ η | | ω 

for all pn e Vn, Vn Φ 9η· 
Consider, as illustrations, the following set of examples. 

15Charles Hermite (1822-1901) was born in Dieuze, France, on Christmas Eve. A poor test-taker, Hermite was 

not able to pass the exams for his bachelor's degree until the age of nearly 26. He held professional positions at a 
number of French schools, most notably the École Polytechnique, the École Normale, and the Sorbonne. 

Perhaps his best-known mathematical result is the first proof that e is a transcendental number (published in 
1873). His name is attached to a number of mathematical ideas and concepts, including the Hermite differential 
equation, Hermite polynomials, and Hermitian matrices. The idea of interpolating to the derivative as well as 
to the function values was part of a paper he published in 1878, Sur la formule a"interpolation de Lagrange, 
which actually considers interpolation not only of the first derivative, but of higher derivatives as well. Hermite 
interpolation is sometimes called osculalory interpolation. 
16Edmond Nicolas Laguerre (1834 - 1886) was born and died in Bar-le-Duc, France. He was educated at the 

École Polytechnique but did not graduate with a high ranking. He served in the military as an artillery officer for 
10 years before returning to the École as a faculty member, where he remained for the rest of his life. Although 
best known for the orthogonal polynomials that bear his name, and their associated differential equation, Laguerre 
also published work in analysis, geometry, and abstract linear spaces. 
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EXAMPLE 4.14 

Let's construct the fourth-degree least squares approximation to the exponential 
function, f(x) — ex, over the interval [—1,1], using Legendre polynomials. The 
approximation is defined by 

4 

and 

Jo 

P 4 ( ) =£(^) ' 
where the Pk are the Legendre polynomials. We thus need to compute the integrals 

IQ = I exdx, h = I xexdx, J2 = / ~(3x2 - l)exdx, 

I3= I \(5x3-3x)exdx, h=[ l(35x4-30x2+ 3)exdx, 
J-i 2 J - i 8 

= / dx, J\ = / x2dx, Ji = / T (3X 2 — 1)2Î£E, 

J3= ί ^{5χ3-3χ)2άχ, J4 = f ^ ( 3 5 x 4 - 3 0 x 2 + 3)2ii2:. 

In practice, these integrals would be computed using some type of numerical inte-
gration routine, such as the trapezoid rule or the more accurate methods we discuss 
in Chapter 5. For this simple example, though, it is possible to use direct calculus 
methods or (much more attractive!) a computer algebra package such as Maple or 
Mathematica. However it is done, to eight digits the integrals are 

IQ = 2.3504024, h = 0.73575888, I2 = 0.14312574, 

h = 0.020130181, h = 0.0022144731, 

and 

J0 = 2.00000000, Ji = 0.66666667, J2 = 0.40000000, 

J3 = 0.28571429, J4 = 0.22222222, 

so the polynomial approximation is 

2.3504024 „ . , 0.73575888 „ . . 0.14312574 „ . . 
p4(x) = Pa(x)-\ P\(x)-\ P2(x) 
F4K ' 2.00000000 K ' 0.66666667 u ; 0.40000000 K ' 

0.020130181 0.0022144731 
+ 0.28571429 3 ^ + 0.22222222 4 ^ ' 

which simplifies to 
p4(x) = 1.0000309 + 0.99795487x + 0.49935229a;2 + 0.17613908a;3 + 0.043597439a;4. 

Figure 4.43 shows a plot of the error ex — ρ4{χ). Compare this to the error plots 
for fourth-degree Taylor approximation and fourth degree Lagrange or Newton inter-
polation from earlier in this chapter. Note, in particular, that the least squares error 
oscillates back and forth between its maximum and minimum values (or nearly so), 
several times. It can be shown that this is a necessary and sufficient condition for the 
approximating polynomial to be the "best" approximation to the function, and is one 
reason why least squares approximations are considered valuable: they are close to 
being the best possible approximations. 
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-0 8 -0 6 -0 4 .0.2 0 0 2 0 4 0 6 OS 

Figure 4.43 Error in fourth-degree least squares approximation to the exponential function. 

EXAMPLE 4.15 

Here we construct a Legendre polynomial approximation to the function f(x) — 
(1 + 25z2)_ 1 using n = 8,16, and 32 degree polynomials. Figures 4.44A-C show 
plots of both / and the least squares approximation; Figure 4.44D shows the error in 
the 32-degree approximation. 

-1 -0.5 0 0.5 

Figure 4.44 Legendre least squares approximation to f(x) = 1/(1 + 25x2) \ A: n = 8; B: 
n = 16; C: n = 32; D: error in the n = 32 case. In A and B, f(x) is denoted by the dotted curve. 

EXAMPLE 4.16 

This time, we use a Chebyshev polynomial approximation to the same / as in the 
previous example, again using n = 8,16, and 32 degree polynomials. Figures 4.45 A-
C show plots of both / and the least squares approximation; Figure 4.45D shows 
the error in the 32-degree approximation. The performance of the Chebyshev and 
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Legendre approximations are very similar, with the Chebyshev being very slightly 
better. 

-1 -0.5 0 0.5 1 

- I -0.5 0 0.5 0.5 0 0.5 

Figure 4.45 Chebyshev least squares approximation to f(x) = 1/(1 + 25x2) *. A: n = 8; B: 
n = 16; C: n = 32; D: error in the n = 32 case. In A and B, /(x) is denoted by the dotted curve. 

EXAMPLE 4.17 

Here we construct a Legendre polynomial approximation to ex on the interval [—1,1], 
in much the same way as was done for f(x) = (l + 25x2)_ 1 in Example 2. However, 
the accuracy here is so much greater that we plot the errors for the n = 2,4,8 cases 
in Figure 4.46. 

0.5 0 0.5 

Figure 4.46 Error in Legendre least squares approximation to f(x) = ex. A: error for n = 2; B: 
error for n = 4; C: error for n = 8. 
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■ EXAMPLE 4.18 

Chebyshev approximation to ex; This is the same as Example 4.17, except we use a 
Chebyshev expansion instead of a Legendre expansion. 

Figure 4.47 Error in Chebyshev least squares approximation to f(x) = ex. A: error for n = 2; 
B: error for n = 4; C: error for n = 8. 

Several comments might be in order here. We first note how much easier it was 
to obtain a high degree of accuracy for the exponential than it was for f(x) = (1 + 
25a;2)-1. Second, although it might be difficult to discern in the plots, the results for the 
Chebyshev approximations were, in each case, very slightly better than for the Legendre 
approximations. A full discussion of this requires more mathematical machinery than 
we want to deal with right now, but it is generally true that Chebyshev least squares 
approximations are superior to those done with any other choice of basis. 

Finally, note that to do a least squares approximation, we have to be able to compute the 
inner products, which are integrals. Thus, we need a tool like the trapezoid rule or, perhaps 
better, some of the more sophisticated methods to be developed in Chapter 5. 

Exercises: 

1. Modify the methods of §4.11.1 to compute the linear function of two variables that 
gives the best least squares fit to the data for this exercise in Table 4.27. 

2. The data in Table 4.26 gives the actual thermal conductivity data for the element 
iron. Construct a quadratic least squares fit to this data and plot both the curve and 
the raw data. How well does your curve represent the data? Is the fit improved any 
by using a cubic polynomial? 

3. Repeat Problem 2, this time using the data for nickel from Problem 21 in §4.8. 

4. Modify the methods of §4.11.1 to compute the quadratic polynomial that gives the 
best least squares fit to the data in Table 4.27. 

5. An astronomical tracking station records data on the position of a newly discovered 
asteroid orbiting the Sun. The data is reduced to measurements of the radial distance 
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Table 4.26 Data for Problem 2. 
Temperature (K), u 
Conductivity (W/cm K), k 

Temperature (K), u 
Conductivity (W/cm K), k 

100 
1.32 

600 
0.613 

200 
0.94 

700 
0.547 

300 
0.835 

800 
0.487 

400 
0.803 

900 
0.433 

500 
0.694 

1000 
0.38 

Table 4.27 Data for Problems 1 and 4. 

Problem 4 
Xn 

-1 
0 
1 
2 
3 

Vn 
0.9747 
0.0483 
1.0223 
4.0253 
9.0152 

Problem 1 
Xn 

0 
0 
1 
1 

0.5 

Vn 
0 
1 
0 
1 

0.5 

Zn 

0.9573 
2.0132 
2.0385 
1.9773 
1.9936 

from the Sun (measured in millions of kilometers) and angular position around the 
orbit (measured in radians), based on knowledge of Earth's position relative to the 
Sun. In theory, these values should fit into the polar coordinate equation of an ellipse, 
given by 

_ L 
V ~ 2(1+ ecost?)' 

where e is the eccentricity of the elliptical orbit and L is the width of the ellipse 
(sometimes known as the latus rectum of the ellipse) at the focus. (See Figure 4.48.) 
However, errors in the tracking process and approximations in the transformation to 
(r, Θ) values perturb the data. For the data in Table 4.28, find the eccentricity of the 
orbit by doing a least squares fit to the data. Hint: Write the polar equation of the 
ellipse as 

2r(l + ecos0) = L, 

which can then be written as 

2r = e(-2rcos0) + L, 

so yk = 2rk and xk = -2rfc cosöfc. 

6. Prove Theorem 4.8. 

7. Letu;(:r) = £ on the interval [0, l];compute H/Hu, for each of the following functions: 

(a) e"*; 

(b) l/VäT+T; 
(c) 1/v/ï. 

Compare to the values obtained using the unweighted 2-norm. 

8. Derive the linear system (4.61) as the solution to the least squares approximation 
problem. 
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Table 4.28 Data for Problem 5. 

θη 

-0.1289 
-0.1352 
-0.1088 
-0.0632 
-0.0587 
-0.0484 
-0.0280 
-0.0085 
0.0259 
0.0264 
0.1282 

rn 

42895 
42911 
42851 
42779 
42774 
42764 
42750 
42744 
42749 
42749 
42894 

Figure 4.48 Figure for Problem 5. The closed curve is the elliptical orbit, and the vertical line has 
length L. 

9. Provide the missing details to show that the family of polynomials defined in (4.63) 
is, indeed, orthogonal. 

10. Let {<̂ fc} be a family of orthogonal polynomials associated with a general weight 
function w and an interval [a,b]. Show that the {φ^ are independent in the sense 
that 

0 = Οιφι(χ) + 02φι{χ) Λ h Οηφη(χ) 

holds for all x e [a, b] if and only if Ck = 0 for all fc. 

11. Prove the expansion formula (4.64) for a polynomial. 

12. Construct the second-degree Legendre least squares approximation to f(x) = cos7rx 
over the interval [—1,1]. 

13. Construct the second-degree Laguerre least squares approximation to f(x) = ex on 
the interval [0, oo). 
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14. Construct the third-degree Legendre least squares approximation to fix) = sin ^πχ 
over the interval [—1,1]. 

< · · · t> 

4.12 ADVANCED TOPICS IN INTERPOLATION ERROR 

Based on the examples we have seen so far, the value of interpolation as an approximation 
tool seems unclear. When we applied it to the exponential function, we got excellent 
results, but when we applied it to the example f(x) = (1 + 25ar2)~1 (known as the Runge11 

example), we got substantially less accuracy for the same number of nodes. This is not 
simply a case of using insufficiently many points in a particular example. It can be shown 
that if we took more and more nodes and used higher-degree interpolating polynomials, the 
error in interpolating to the Runge example would continue to get larger and larger, when 
measured in the norm | | / — pn||oo. In fact, the trend that is suggested in Figures 4.3B and 
C continues: For values of x in the middle of the interval [—1,1], | /(x) — pn(x)\ actually 
goes to zero, but near the ends of the interval the polynomial interpolates oscillate wildly 
and do not converge. What is going on here? 

A complete answer, although mathematically very interesting, is beyond our scope here, 
and so we will skip the details and present only the broader ideas. We also look at a several 
ways in which the potential problems with interpolation at equally spaced nodes can affect 
a calculation, and derive a better set of interpolating nodes. 

4.12.1 Stability of Polynomial Interpolation 

One problem with polynomial interpolation using high-degree polynomials is that it really 
is a potentially unstable process, in the sense that small changes to the data can lead to large 
changes in the interpolating polynomial. To see this, consider the effects of rounding error 
on the interpolation problem. Let f(x) be the exact function that we wish to interpolate, and 
let f(x) be the function polluted by rounding error, and assume that f(x) — f(x) = e(x), 
where we assume that 

II / - / II00 = ||e||oo = eo 

for some small eo. 
The polynomial interpolate that we compute is based on the function that is polluted by 

rounding error, so we have the Lagrange form 

z=0 

''Carl Runge (1856-1927) was bom in Bremen and educated at the University of Munich. He originally intended 
to study literature but after less than two months switched to mathematics and physics. In 1877 he began attending 
the University of Berlin, where he received a doctorate in 1880, on differential geometry. He held academic 
positions at Hanover and Göttingen and retired in 1925. Much of his professional work was more in physics than 
in mathematics, but he did make contributions in the numerical solution of differential equations (Runge-Kutta 
methods) and polynomial interpolation theory. The paper in which he outlined the theory behind the so-called 
"Runge example" appeared in 1901, under the title Über empirische Funktionen und die Interpolation zwischen 
äquidistanten Ordinaten. 
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and we want to estimate the error f(x) — p{x). For convenience we define the "ideal" 
interpolate, based on the exact function, / , as 

ρ„(χ ) = ^ ^ η ) ( χ ) / ( χ , ) . 
i=0 

Theorem 4.3 gives us the error between / and p„ 

f(x)-Pn(x) = ^ - ^ y !f[(x - XiU /<η+1>(&). 

We can relate this to the error we want to bound as follows: 

f{x)-pn{x) = ( / ( x ) - p n ( x ) ) + ( p n ( x ) - P „ ( x ) ) · 
v v ' * v ' 

Error due to interpolation Error due to rounding 

We now turn our attention to analyzing the error due to rounding. We have 

\Ρη{θθ) -Pn(x)\ 

n 

= Σ ^ ( χ ) ( / ( χ ί ) - / ( χ 4 ) ) 
i=0 

< ΜΙοοΣΐΙ^. 

n 

i=0 

where the norms are both taken over the interval defined by the nodes, and Aj = | | I^n ||oo· 
Let's assume that the rounding error is bounded and small: a very reasonable assumption 
based on our work in Chapter 1. Thus, we take ||ε|[οο = eo = G(\i). 

We appear to be in good shape, having bounded the error due to rounding by something 
small times a sum depending on the norm of the Lagrange functions. The problem is 
that this sum can grow quite large as n increases. A general theorem (see Theorem 4.6 
of [15]) is not necessary, since we can get the essentials by being experimental. Assume 
that the nodes are equidistant on the interval [a, b], with XQ = a and x n = b, and with 
Xj+i — Xj = h being the uniform mesh spacing. Then we can write 

Xj = a + jh, 0 < j < n, 

for each node, and 
x = a + ηχΗ, 0 < ηχ < n, 

where ηχ = (x — a)/h takes on real values between 0 and n. Therefore, 

Li»>(x) = 

= 

T-r X -Xk 

A A Xi - Xk 

k = Q 
k ^ i 

TT Vx-k 
W i-k' 

k = 0 
k^i 
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Hence, the Lagrange functions (and, therefore, the Λ,) are not dependent on the choice of 
a, b, or h. They depend entirely on n, ηχ (which depends on x), and the distribution of the 
nodes. This means that we ought to be able to plot them rather easily and get some idea of 
how large that sum term can be. Figure 4.49 shows plots of 

L(x) = £|L<n)(x) 
i=0 

for various values of n (assuming equally spaced points on the interval [0,1]), and Figure 
4.50 shows a plot of 

n 

i=0 

as a function of n. Note the rapid growth of Mn. If we take larger values of n, the trend 
continues and the growth becomes clearly exponential, as Figure 4.51 shows. 

n=5 n=10 
3.5 

3 

2.5 

>. 
2 

1.5 

C 

600 

500 

400 

>.300 

200 

100 

0 

0.2 

« 

L-

0.4 0.6 
X 

n=15 

0.8 

1 

J 

30 

25 

20 

=»15 

10 

5 

0 

12000 

10000 

8000 

=» 6000 

4000 

2000 

0 

0 0.2 0.4 0.6 0.8 1 

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Figure 4.49 Plots of L{x) versus x for n = 5,10,15, 20. 

What does this mean for our original interpolation problem? Recall how the overall 
error was related to the error in interpolation and the error in rounding: 

f(x) - Pn(x) = ( / (a ; ) - Pn(x)) + {Pn(x) ~ Pn(x)) ! 

from which it follows that 

11/ - Pnlloo < | | / - Pnlloo + | | p n ~ Pn| |oo < | | / - Pnlloo + e 0 M „ . (4.65) 

Since we now know that Mn can become quite large, we know that the presence of the 
small eo multiplying the rounding-error term is not enough to guarantee that the overall 
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I« IB Ï 

Figure 4.50 
n < 10. 

Plot of Mn versus n, for Figure 4.51 
ra<20. 

Plot of Mn versus n, for 

computation will not be badly corrupted by rounding error. On the other hand, if we keep 
the degree of the polynomial interpolation less than, say, seven, then we have that Mn < 10 
(see Figure 4.50) and we know the overall error is not seriously corrupted by rounding 
error. 

Note that we are not claiming that polynomial interpolation of high degree has to be 
affected by large amounts of rounding error; the inequality in (4.65) goes the wrong way 
to support that conclusion. However, the estimate (4.65) does allow for large amounts 
of rounding error whenever n is large enough that Mn is very large, and we can avoid 
this potential problem by taking n so that Mn is small. Thus, we avoid using polynomial 
interpolates of degree much higher than 7 or so. 

4.12.2 The Runge Example 

(Note: This section of the text requires a bit more background than the others in this chapter, 
especially in complex arithmetic.) 

One is tempted to look at the function f(x) — (1 + 25a;2)-1 and say that it is a smooth, 
well-behaved functon for all x, and this is indeed the case, so long as x is real. But if we 
allow x to be imaginary, then problems can occur; consider the value of / ( i /5 ) , where 
i = \/—T. Why does this matter, if we are considering the problem of interpolating to / as 
a function of the real variable xl 

It turns out that it matters a great deal. It can be shown (see §3.4 of [11]) that for 
functions of the form f{x) = (1 + a2x2 ) ~l, the error in interpolation can be expressed as 

\ 1 + a2x2) \w„(ia l)) 

where rn = x if n is even, rn = ia~l if n is odd, and 

wn(x) = Y[(x-xk). 
fc=0 

Since 

1 + a2x2 
<C 
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for all x and n, the question of convergence then comes down to the size of the ratio 

wn(x) 

Now we can write 

for 

Rn(x) 

Rn{x) = 

Wniia-1) 

ση(χ) 

ση(ία χ) 

n + l 

ση(ζ)= ί IJ |z - :c f c | 
\fc=o / 

But we can take logarithms of both sides to get that 

1 n 
\ogan(z) = ——- V l o g | z - Z i | 

n + l ■'—' 
fc=0 

Now, if the nodes are equally spaced on the interval [—1,1], the sum can be interpreted as 
a Riemann sum for the integral 

,{s)'\L 
log \z — t\dt; 

therefore, we can write 
1 f1 

logan(z) ~ 2 / l oSl* _ *ld i ' 

and we define the right side of this as \oga(z), thus implicitly defining σ(ζ): 

1 f1 

- / \og\z-t\dt = \oga(z). 

The integral can be evaluated, but we have to be careful about doing it, since z = x + iy is 
complex. Thus, we have 

i J log \z - t\dt = i j log y/(x - t)2 + yHt =^J \og[{x - t)2 + y2]dt. 

Careful application of integration by parts yields 

i J l o g | z - i | d i = ^(l-x)\og((x-l)2+y2) + ^(l + x)log((x + l)2 + y2) 

x+1 1 x - 1 1 
— - y arctan 1—y arctan 

2y y 2y y 

Thus, 

α „ ( * ) « σ ( ζ ) = e - 1 ( ( « - l ) a + » a ) ( 1 - ) / 4 ( ( * + l ) a + w 2 ) ( 1 + x , / 4 

x e x p | - ? / i aaa 
x+1 x — 1 

rctan arctan 
y y 
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Now the error satisfies 

\f{x)-Pn{x)\ = \Rn{x)\*Cn^r) , 

so convergence depends, in the limit as n —> oo, on the ratio \σ(χ)/σ(ία~1)\. For real x 
we get that 

σ{χ)=β-\χ-ψ-χν2{χ+ψ+χν\ 

whereas for imaginary arguments we get 

a(iy) = e _ 1 \ / l + y 2 e x p < yarctan - > . 

To get convergence on the entire interval [—1,1], we need to have 

max |σ(χ)| = 2e"1 = 0.7357588824 < |σ(ΐα_1)| . 
se[- i , i ] 

An elementary computation shows that |σ(ί/5)| = 0.4937581336...; therefore, we will not 
get convergence on the entire interval [—1,1] with a = 5, because 

maxz e [_i i i ] |cr(ar)| _ 0.7357588824 

σ(ί/5) ~ 0.4937581336 > ' 

By decreasing a, we can finally get 0.7357588824 < |σ(ία- 1) | . For example, for a = 3/4 
wehavea(i/a) = 1.446.... 

What this shows is that the problem really is that the singularities of the function 
(i.e., the points ±i /5) are "too close" to the interval of interpolation. If we looked at 
g (χ) = ( 1 + a2 x2 ) ~ * for a smaller value of a, then we would get convergence on the entire 
interval from [—1,1]. An example of this is given in Figure 4.52, using g with a = 3/4, 
and n = 4,8,16 nodes; the last plot shows the error for the n = 16 case. See also Problem 
3. Note that the error still shows the development of "spikes" near the endpoints; the 
difference is that in this case, as n —> oo, the amplitude of the spikes will eventually decay 
to zero. 

It is also possible to work on a more arbitrary interval [—b, b], in which case we learn 
that the length of this interval also plays a role in the convergence of the interpolation. 
(See [9] for a discussion of this.) Essentially, convergence will occur if 1 > Cab, where 
C = 0.5255.... 

4.12.3 The Chebyshev Nodes 

In §4.12.1 and §4.12.2 we saw that high-degree polynomial interpolation at equidistant 
points can be a bad idea. Is there an alternate choice for the distribution of nodes that 
will produce better results? The answer is "yes," and the nodes in question are called the 
Chebyshev nodes. 

Define the family of functions Tn(x), n > 0, by the formula 

Tn(x) — cos(narccosx), x G [—1,1]. (4.66) 

Remarkably, these functions are polynomials (in fact, they are the Chebyshev polynomials 
introduced back in §4.11.2). 
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Figure 4.52 Successful interpolation to the Runge-like function, g(x) = 1/(1 + (9/16)x2) '. A: 
4 nodes; B: 8 nodes; C: Error in 16-node interpolation. 

Theorem 4.10 The functions Tn(x) satisfy the following: 

1. Each Tn is a polynomial of degree n; 

2. Forn > l,Tn+l{x) = 2xTn(x) - Tn_i(z); 

3. Tn(x) = 2n~lxn+ lower-order terms. 

Proof: We observe first that both (1) and (3) will follow quickly from (2), so we start by 
proving (2). Write x = cos Θ so that (4.66) becomes 

Ττιί^) = cos nö. 

Elementary trigonometry tells us that 

1 
cosnöcosö = - (cos(n + 1)0 + cos(n - 1)0). 

which can be solved to get 

cos(n + 1)6 = 2 cos Ö cos nô — cos(n — 1)0, 

from which (2) follows, using Tn(x) = cosnö, and so on. 
Now, to prove (1), we note that we trivially have 

cos(narccosa;) = 1 
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for n — 0, and 
cos(n arccos x) = x 

for n = 1. Now assume that cos(n arccos x) is a polynomial for all n < k, and an inductive 
argument based on the recursion in (2) quickly finishes the proof. 

The final part follows more or less directly from (2). We have that T0(x) = 1, and 
T\ (x) = x, so that the recursion yields 

T2{x) = 2xTi(x) - T0{x) = 2x(x) - 1 = 2x2 - 1, 

and we can use induction to formally prove it for all n (see Problem 5). · 
It should be noted that all orthogonal polynomial families satisfy a three-term recurrence 

relation similar to the one in Theorem 4.10, part 2. 
Assume now (for convenience) that we are only interested in constructing approxima-

tions on the interval [-1,1]. As a polynomial of degree n, each Tn will have exactly n 
roots; we can show (it actually follows from Theorem 4.9) that these roots will be distinct 
and all lie in the interval [-1,1]. Denote, then, the roots of the n-degree polynomial Tn as 

(n) 
zKk ', and note that (4.66) implies that 

4 » ) = C 0 S ( f c _ l M i<fc<n. (4.67) 

The Chebyshev nodes are simply the roots of the polynomials Tn. To construct an n-degree 
polynomial interpolate, use the n + 1 roots of Tn+i\ i.e., take the interpolation nodes to be 

Xk = •Zfc+t > 0 < fc < n, 

so that we have the following. 

Definition 4.4 (Chebyshev Nodes) 

a:fc = c o s ( ( y + | 1 ; . 7 r ) , 0 < f c < n . (4.68) 
V 2 ( n + l ) ) 

Below, we will show why this works, but first let's look at some examples. 

■ EXAMPLE 4.19 

Let f(x) = ex on the interval [—1,1]. The Chebyshev nodes for the case n = 1 
(linear interpolation) are given by 

and 

Xl = COS 

f2x0 + l)n\ π 1 / -
* 0 = = C ( H 2(1 + 1) J = c o s - = - ^ 

/ 2 x 1 + 1)π\ 3π 1 r-
{ 2(1 + 1) j = C 0 S T = - 2 ^ ' 

so the linear interpolate to the exponential is given by 

pi(x) = 1.260591837+ 1.085441641a;. 
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EXAMPLE 4.20 

Let's now look at higher-degree interpolation to the exponential; specifically, we will 
consider fourth-degree interpolation. The Chebyshev nodes now are 

/ ( 2 χ Ο + 1 ) τ Λ π 

*0 = C O S i 2(4 + 1) J = C O S T Ö 

χι cos 

X2 = COS 

X3 

£4 

COS 

cos 

( 2 x 1 + 1)π 
2 (4+1) 

(2 x 2 + 1)π 
2(4 + 1) 

(2 χ 3 + 1 ) π 
2(4+1) 

(2 x 4 + 1 ) π 

= cos 

= cos 

= cos 

= cos · 

3π 
ÎÔ 

5π 
ÏÔ 

7π 

ÏÔ 

9π 

ÏÔ' 2(4 + 1) 

Note that these values are somewhat less simple to work with than the integer or 
simple fraction nodes we have generally used. But the computer doesn't really care 
about that, and the Newton algorithm yields the polynomial 

p4{x) = 1 + 0.997317240a; + 0.4995561859a:2 + 0.177334621a:3 + 0.043434107a;4. 

Figure 4.53 shows the plot of the error in this interpolation, over the interval [—1,1]. 
Compare it to Figure 4.2B, which shows the plot of the same error for fourth degree 
interpolation using equally spaced points. It is difficult to tell because of the scales 
used, but the Chebyshev interpolation is slightly better in terms of the maximum 
error. 

-1 - 0 8 -0.6 -0.4 -0.2 0 0 2 0.4 0.6 0.8 1 

Figure 4.53 Error in fourth degree Chebyshev interpolation to the exponential. 
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EXAMPLE 4.21 

Consider again f(x) = (1 + 25a;2)-1, the Runge example. If we use the Chebyshev 
nodes to compute interpolating approximations of degree 8, 16, and 32, we get the 
plots shown in Figure 4.54. Note that the accuracy of the approximation is much better 
than was the case using equally spaced nodes, as in Figure 4.3. Figure 4.54C shows 
that, with only 32 nodes, we cannot distinguish by eye between the interpolate and 
the original function. Figure 4.54D shows the error in the 32-degree approximation. 

x10"3 D: Error with 32 nodes 

-1 -0.5 

Figure 4.54 Chebyshev interpolation to the Runge example. 

Why do these nodes work better? A complete answer would have to be phrased in the 
vague terms that we used in §4.12.2 to discuss the Runge example, or we would have to 
bring in a lot of additional mathematical machinery. 

A fairly decent answer, however, can be based on the basic interpolation error theorem. 

Theorem 4.11 Let f € Cn + 1([-1,1]) be given, and let pn be the n-degree polynomial 
interpolate to f, using the Chebyshev nodes (4.68). Then, 

l l / - P n l U < * „ J / ^ l l o o . 2n(n + l)! ' 

Proof: Recall that we have 

where 

(n + 1J! 

n 

wn{x) = Y[{x - Xi)-
t=0 

Since polynomials are uniquely defined by their roots (up to a constant multiple), and since 
wn and Tn+i have the same roots, it follows that 

wn — c n T n + i 
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for some constant c^. Now, wn is what is known as a monic polynomial, i.e., the coefficient 
of the highest-order term is 1 : 

wn(x) = xn+l + lower-order terms. 

Therefore, cn is the reciprocal of the leading coefficient for Tn+\. Therefore, from Theorem 
4.10, we have that 

Cn=2~n. 

But each Chebyshev polynomial is a cosine on the interval [—1,1]; this means that 

\Tn+i(x)\ < 1, - 1 < ζ < 1 . 

Therefore, 
K ( x ) | = | c „ T n + i ( z ) | < 2 - n 

for all x 6 [—1,1], and the proof is complete. · 
What the theorem (and its proof) shows is that the choice of the Chebyshev nodes allows 

us to bound the factor in the error theorem that depends on wn. It can be shown, in fact, that 
any other choice of nodes would lead to a larger ||ΐϋη||οο, so in this sense the Chebyshev 
nodes are optimal. They are not "perfect," however. One can find functions for which the 
Chebyshev nodes fail, but these examples are much more involved than the Runge example. 

Exercises: 

1. Use your computer's random number function to generate a set of random values 
Tk, 0 < k < 8, with |rjt| < 0.01. Construct the interpolating polynomial to 
f(x) = sinx on the interval [—1,1], using nine equally spaced nodes; call this 
Ps(x)- Then construct the polynomial that interpolates f{xk) + rk\ call this ps(x). 
How much difference is there between the divided difference coefficients for the 
two polynomials? Plot both p§ and ps and comment on your results. (Note: It is 
important here that you look at x values between the nodes. Do not produce your 
plots based simply on the values at the nodes.) 

2. Repeat the above, using f(x) = ex. 

3. Use the Newton interpolating algorithm to construct interpolating polynomials of 
degree 4, 8, 16, and 32 using equally spaced nodes on the interval [—1,1], to the 
function g(x) = (1 + 4x 2 ) - 1 . Is the sequence of interpolates converging to g 
throughout the interval? 

4. Use the Newton interpolating algorithm to construct interpolating polynomials of 
degree 4, 8, 16, and 32 using equally spaced nodes on the interval [—1,1], to the 
function g(x) = (1 + lOOa;2)-1. Is the sequence of interpolates converging to g 
throughout the interval? 

5. Write up a complete proof of Theorem 4.10, providing all the details omitted in the 
text. 

6. Construct interpolating polynomials of degree 4, 8,16, and 32 on the interval [—1,1] 
to f(x) = ex using equidistant and Chebyshev nodes. Sample the respective errors 
at 500 equally spaced points and compare your results. 
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7. The Chebyshev nodes are defined on the interval [-1,1]. Show that the change of 
variable 

tk = a+ -(b-a)(xk + l) 

will map the Chebyshev nodes to the interval [a, b]. 

8. Use the formula in Problem 7 to find the Chebyshev nodes for linear interpolation on 
the interval [\,i\. Use them to construct a linear interpolate to f(x) = y/x. Plot the 
error in this interpolation. How does it compare to the error estimate used in §3.7? 

9. Repeat the above for f(x) = x~Y on the interval [|, 1]. 

10. What is the error estimate for Chebyshev interpolation on a general interval [a, 6]? 
In other words, how does the change of variable affect the error estimate? 

< · · · > 

4.13 LITERATURE AND SOFTWARE DISCUSSION 

The subject of interpolation and approximation is a very broad one, with an extensive 
literature. In fact, approximation theory is a significant area of mathematical research, 
generally distinct from (although obviously related to) numerical analysis. The classic text 
on interpolation and approximation is Davis's book [6] ; more recent and equally good works 
are those by Cheney [3], Powell [13], and Rivlin [15]. The recent book by Trefethen [18] 
should also be considered. Generally, approximation theory is distinct from interpolation, 
which is one reason that Davis's book is so useful, since it covers both. Modern work 
in what might be called computational approximation tends to center on splines, which is 
why de Boor's book [8], although old, is a good reference. A rather large collection of 
FORTRAN codes is given there, which can be found at NETLIB under the library pppack; 
MATLAB has incorporated many of them into their Splines Toolbox. Another standard 
spline reference is [1]. 

Several interesting ideas were not discussed here (the subject of interpolation and ap-
proximation is rich enough that an entire course could be based on this one subject). In Padé 
approximation, we look for rational function (i.e., ratios of polynomials) approximations 
to given functions. This is only marginally more involved than polynomial approximation, 
but of course allows for more general functional behavior to be approximated accurately, 
since rational functions can exhibit asymptotic behavior, but polynomials cannot. A good 
introduction to Padé approximation is given by Cheney in Chapter 5 of [3]. 

Another missing topic is Fourier (i.e., trigonometric) approximation. Again, an entire 
course could be based on this subject, and this is done in many engineering departments. 
Wavelets, related to trigonometric approximation, is also probably not appropriate for a 
text at this level. Future editions may have to re-think these two omissions. 
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CHAPTER 5 

NUMERICAL INTEGRATION 

In this chapter we are concerned with a common problem from calculus: Find the value of 
the definite integral 

Hf) = [ f{x)dx. 
Ja 

We are interested in finding numerical methods that yield an accurate approximation to the 
exact value of / ( / ) . Typically, the approximation will be of the form 

n 

i=io 

where i0 = 0 or i0 = 1 is almost always the case. The weights Wi and nodes or abscissas 
Xi define the method. Schemes for approximating integrals are often called quadrature 
rules, and different schemes use different rules for defining the weights and abscissas. In 
Chapter 2 we saw perhaps the simplest example of a reasonable quadrature scheme, the 
trapezoid rule. Here we will look at other methods, some of which are substantially more 
accurate than the trapezoid rule. 

In addition to constructing various quadrature schemes and analyzing their accuracy, we 
will also look at ways to estimate and improve the accuracy of existing quadrature methods, 
as well as the idea of adaptive quadrature, by which we try to estimate the value of the 
integral to within a user-specified tolerance. 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 2 6 3 
Copyright © 2013 John Wiley & Sons, Inc. 
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Note that we seem to be suggesting that the integral can be viewed (approximately, 
at least) as a sum of function values. This is not surprising, considering the theoretical 
foundations of the integral, which we now review briefly. 

5.1 A REVIEW OF THE DEFINITE INTEGRAL 

To construct the definite integral of a function, we first define the mesh points (or grid 
points) x\ according to 

a = 4 n ) < x\n) < 4 n ) · · · < x(nn\ < x™ = b 

and the evaluation points r\i are then each taken from within the appropriate subinterval, 
i.e., r\i G [xi-i, Xi], 1 < i < n, arbitrarily. Now, if we assume that 

lim 
n—>oo 

f («) (") ^ 
max \x) — x)_\ 

Ki<n \ ) 

0 

(this simply means that the largest distance between adjacent points goes to zero as we take 
more and more points), then, under very mild conditions on / , it can be shown that the 
limit 

L= lim Σ,Πηί)(χ\η)-χ^\) 
i= l 

exists and that its value is independent of the choices made for the mesh points {x\n'} and 
evaluation points {ηί}. When this happens, we call this limit value the definite integral of 
/ , and we write 

L = Hf) = [ f(x)da 
Ja 

Note that this construction of the integral requires very little. We only need the fact that 
/ is continuous, that the sequence of meshes is such that the distance between adjacent 
points becomes arbitrarily small, and that the evaluation points are taken from anywhere in 
each subinterval. A summation of the form 

Rn(f) = Y,f(m)(x[n)-xt\) 

is called a Riemann sum, after the German mathematician Georg Bernhard Riemann,1 

whose name is associated with the first development of much of the rigorous theory of the 
definite integral. Unfortunately, Riemann sums typically converge very slowly—meaning 

'Georg Friedrich Bernhard Riemann (1826-1866) was a child of poor health, the son of a Lutheran minister. 
He started university studies at Göttingen in 1846, but soon transferred to the University of Berlin. In 1849 he 
returned to Göttingen to finish his studies under the direction of Gauss, completing his doctoral dissertation in 
1851. Albert Einstein would later use some of Riemann's ideas from this dissertation in the development of the 
theory of relativity. In 1862, Riemann's health began to decline, and he eventually came down with tuberculosis, 
which led to his death just four years later. 

Riemann's brief life was nonetheless one of great mathematical significance. He made substantial contributions 
to the foundations of geometry and analysis, and virtually invented what we now call analytic number theory. 
His development of the Riemann sum came in his 1854 "Habilitationschrift" (sort of a postdoctoral dissertation, 
required to get an academic position in nineteenth century Europe), titled Über die Darstellbarkeit einer Function 
durch eine trigonometrische Reihe. 
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that it requires a large value of n for the summation value to be a good approximation of 
the limit value—so we cannot use this as a practical means of approximating the value of 
the integral. Figure 5.1 shows a graph of the function y = f(x) = \ + Βΐηπχ and the 
rectangles generated by a Riemann sum approximation to the integral of this / over the 
interval [±, §]. 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Figure 5.1 Illustration of a Riemann sum, with the evaluation points (marked by circles) chosen 
randomly. 

We usually will dispense with the superscript notation for the abscissas from now on; 
(n) 

i.e., instead of writing x\ ', we will simply write ζ,. On a couple of occasions we will 
revert to it, most notably in §5.6, on Gaussian quadrature. 

Since the integral is essentially a limit of a sum of function values, it makes sense to 
think of approximating the integral by taking finite sums of function values. All of our 
quadrature rules will be based on this idea, as was the trapezoid rule, which we have already 
seen in Chapter 2. 

Exercises: 
1. Basic properties of the definite integral show that it is a linear operator, that is, it 

distributes across sums and multiplication by constants: 

I(af + ßg)=al(f)+ßl(g). 

Prove that if 
n 

7"(/) = X^i/(a; i) , 
i=0 

then In is also linear: 

In(af + ßg) = aln(f) + ßln(g). 

2. Assume that the quadrature rule /„ integrates all polynomials of degree less than or 
equal to N exactly: 

In(p) = HP) 
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for all p e VN- Use this to prove that, for any integrand / , the error I — Inis equal 
to the error in integrating the Taylor remainder: 

Hf) - IM) = HRN) - in(RN), 

where /(a;) — PN(X) + RN(X)· Does it really matter that we are using the Taylor 
polynomial and remainder? In other words, will this result hold for any polynomial 
approximation and its associated error? 

3. Use Problem 1 to prove the following: If a quadrature rule /„ is exact for all powers 
xh for k < d, then it is exact for all polynomials of degree less than or equal to d. 

<· · · > 

5.2 IMPROVING THE TRAPEZOID RULE 

In §2.5 we introduced the trapezoid rule for computing integrals. Recall that, for equally 
spaced points, the approximation takes the form 

TnU) = \ (f{X0) + 2/(*l) + · ■ · + 2 / (ζη_1) + /(*„)) 

and the error is given by 

/ ( / ) - Τ „ ( / ) = - ^ / ι 2 / " ( α ) , (5.1) 

where £/, is some value in the interval [a, b]. 
We can improve the trapezoid rule by some deft analysis of the second derivative term 

in the error. Let us return to the error estimate (5.1), which we can write in the form 

I(f)-Tn(f) = ~h3J2f"(^h). 

Now let's look at the summation term, carefully. We have 

h3J2f"&*) = h2flhf"&*) 
t = l i = l 

and the sum can be interpreted as a Riemann sum for the integral 

/ ( /") = / f'Wdx = f\b) - f(a). 
Ja 

Thus, we know that 
n 

71—>00 * — ' 
i= l 

so that 

i= l 
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Therefore, 

I(f)-Tn(f)K~h\f'(b)-f'(a)). 

This relationship can be interpreted and used in two equally important and useful ways: 

Error estimation: We can view the quantity En(f) = -j^h2{f'(b) - f'(a)) 
as a "computable estimate of the error" and use it to predict how many points 
are required to obtain a given accuracy. Bear in mind that this approach does 
not guarantee that we will achieve the desired accuracy. 

Improvement of the approximation: Define the new quadrature rule, 

TZ(f)=Tn(f)-^h2(f'(b)-f'(a)), 
which we will call the corrected trapezoid rule. This value will tend to be 
much more accurate than that obtained using the ordinary trapezoid rule and 
only marginally more expensive to compute. 

EXAMPLE 5.1 

To illustrate the first usage, consider the problem of trying to compute values of the 
integral 

Jo 
e x dx. 

/o 
How do we know when we have computed this to within a specified accuracy? 
Suppose we want 

| / ( / ) - / n ( / ) | < 1 0 - 6 ; 

then we could compute trapezoid rule values along with the values 

En(f) = ~(f'(b)-f'(a)) = £e. 
When \En(f)\ < 10~6 we would accept T n ( / ) as a sufficiently accurate approxima-
tion to / ( / ) ; this occurs in this case for n = 256, since 

h2 
\En{f)\ = — < 1(T6 <=h<y/6ex 1(T3 = 4.04 x 1(Γ3 

be 

and 1/256 < 4.04 x 10"3 but 1/128 > 4.04 x 10 - 3 . In practice, though, it would 
be better to use En(f) to estimate the error in Tn(f), but then to accept the more 
accurate value defined by T£(f). 

EXAMPLE 5.2 

As an example of the second usage, consider the Table 5.1 which shows the values 
generated by approximating the integral / ( / ) = JQ exdx using T%- Note that the 
error is dropping by about a factor of 16 as the number of points doubles, suggesting 
that the error in the corrected rule goes like hA. This is, in fact, the case, as we will 
see in §5.8.1. Note that we lose the expected factor of 16 decrease in the last two 
rows; this is not because there is a problem with the method or with the underlying 
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theory, but because of the effects of finite-precision arithmetic. There is so much 
subtractive cancellation in the computation of / ( / ) - T^(f) that the value of the 
error ratio is being affected. We are starting to reach the limits of the accuracy that 
can be measured by the machine arithmetic. 

Table 5.1 Corrected trapezoid rule applied to f(x) = ex, [a, b] = [0,1]. 

n 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

TZU) 
1.718133554 
1.718272520 
1.718281246 
1.718281792 
1.718281826 
1.718281828 
1.718281828 
1.718281828 
1.718281828 
1.718281828 
1.718281828 

Hf)- TZ(f) 
0.148274E-03 
0.930842E-05 
0.582426E-06 
0.364118E-07 
0.227589E-08 
0.142245E-09 
0.889111E-11 
0.556444E-12 
0.339728E-13 
0.288658E-14 
0.666134E-15 

Error ratio 
N/A 

15.9290 
15.9822 
15.9955 
15.9989 
15.9998 
15.9986 
15.9785 
16.3791 
11.7692 
4.3333 

Finally, we note that, to use this correction, it is not even necessary to have a formula 
for the derivative of / . Recall two of the derivative approximations from Chapter 4: 

f,M -3f(x)+4f(x + h)-f(x + 2h) h2 /(*) = ä- + y / (0, 

and 
f l ( , 3/(s) - 4/(x - h) + f(x - 2ft) h2 f{x) = 2h + Yf (°-

Thus, we can write 

fl,,s fl, s 3/(a;n) - 4 / (xn_i) + / (x n _ 2 ) h2 ,„ (5.2) 

and 
f>(„\ ff-, ^ -3 / (go) + 4/(a:i)-/(3:2) , h2 

f {a) = f (x0) = — + —f (ξα), 
so that we can write the corrected trapezoid rule as 

h 

(5.3) 

W ) = T n ( / ) - - ( 3 / ( x n ) - 4 / ( x n _ 1 ) + /(a;n_2)+3/(a :o)-4/(xi) + /(a;2)) 

+ ^(/'"(Ça)-r(6))· 

Now define 

Tn (/) = Tn(f) - ^ ( 3 / ( x „ ) - 4 / ( x n _ 0 + f{xn_2) + 3/(x0) - 4 / ( x 0 + f(x2)) 

and note that, if the corrected trapezoid rule is ö{h4) accurate, so is the new "approximate" 
trapezoid rule, since the additional error term due to the derivative approximations is 0{hA ) . 
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Table 5.2 "Approximate" corrected trapezoid rule applied to f(x) = ex, [a, b] = [0,1]. 

n 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

Tf(/) 
1.718861152 
1.718386631 
1.718290593 
1.718282447 
1.718281869 
1.718281831 
1.718281829 
1.718281828 
1.718281828 
1.718281828 
1.718281828 

i(f) -TZU) 
-0.579323E-03 
-0.104802E-03 
-0.876407E-05 
-0.618963E-06 
-0.409496E-07 
-0.263078E-08 
-0.166666E-09 
-0.104863E-10 
-0.658362E-12 
-0.406342E-13 
-0.199840E-14 

Error ratio 
N/A 

5.5278 
11.9582 
14.1593 
15.1152 
15.5656 
15.7847 
15.8938 
15.9278 
16.2022 
20.3333 

Table 5.2 shows the results of applying this approximation to the same example as before. 
Note that we do maintain the expected factor of 16 decrease in the error for h sufficiently 
small. 

Exercises: 

1. Apply the trapezoid rule and corrected trapezoid rule, with h = \, to approximate 
the integral 

Jo 
/ = / x(l-x2)dx = - . 

/o ' 4 

2. Apply the trapezoid rule and corrected trapezoid rule, with h = | , to approximate 
the integral 

Jo Λ / Π + £4 

-Tdx = 0.92703733865069. 

3. Apply the trapezoid rule and corrected trapezoid rule, with h = \,\.o approximate 
the integral 

Λη( 
Jo 

l+x)dx = 2 1 n 2 - 1. 

4. Apply the trapezoid rule and corrected trapezoid rule, with h = \, to approximate 
the integral 

(' — rdx ■ - 1 η 2 + - \ / 3 π . 

5. Apply the trapezoid rule and corrected trapezoid rule, with h = \, to approximate 
the integral 

e~x2dx = 0.1352572580. 

6. For each integral below, write a program to do the corrected trapezoid rule using the 
sequence of mesh sizes h = \{b - a), ±(b - a), | ( 6 - a ) , . . . , ^ΪΕ^ ~ a ) ' w h e r e 
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b — aïs the length of the given interval. Verify that the expected rate of decrease of 
the error is observed. 

(a) f(x) = x2e~x, [0,2], / ( / ) = 2 - 10e~2 = 0.646647168; 

(b) f(x) = 1/(1 + x2), [-5,5], / ( / ) = 2 arctan(5); 

(c) f(x) =\nx, [1,3], 1(f) = 31n3-2 = 1.295836867; 

(d) f(x) = e~x sin(4x), [Ο,π], 1(f) = ±(1 - ε~π) = 0.2251261368; 

(e) f(x) = VT^x^, [-1,1], /(/) = π/2. 

7. Apply the trapezoid rule and corrected trapezoid rule to the approximation of 

Jo 
x'e-^dx = 0.0808308960..., 

and compare your results in light of the expected error theory for both methods, and 
comment on what occurs. How does the error behave in each case, as a function of 
hi How should it have behaved? 

8. Repeat the above for 

I = sin xdx = —π. 
Jo /o 2 

9. The length of a curve y = g(x), for x between a and b, is given by the integral 

L(g) = [ ^ 1 + W(x)]2dx. 
Ja 

Use the corrected trapezoid rule to find the length of one "arch" of the sine curve. 

10. Use the corrected trapezoid rule to find the length of the exponential function from 
x = — 1 to a; = 1. How small does h have to be for the computation to converge to 
within 10~6? 

11. Repeat the above for the tangent function, from x = —π/4 to x = π/4. 

12. Define the function 

F(t) = [ f(x)dx 
Ja 

and note that 

F(b) = 1(f) = [ f(x)dx. 
Ja 

Use Taylor expansions of F and / about x = a to show that 

/ ( / ) - \ib - a)(f(b) + f(a)) - 1 ( 6 - a)2(f'(b) - f'(a)) = 0((b - a)5). 

Use this to show that the corrected trapezoid rule is ö(hA) when applied over a 
uniform grid of length h. 

13. Construct a version of the "quasi-corrected" trapezoid rule that uses the derivative 
approximations 

/ ' ( q ) ^ / ( a + ft)-/(a), f'(b)-m~f^b~h\ 
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Explain why we should expect this to be less accurate than the rule using the approx-
imations (5.2) and (5.3), and demonstrate that this is the case on the integral 

Jo 
x(l — x2)dx = - . 

I · > 

5.3 SIMPSON'S RULE AND DEGREE OF PRECISION 

Common sense, plus the results of Chapter 4 on interpolation error, lead us to think that we 
might be able to do better than the trapezoid rule by using a higher degree of polynomial. 
Simpson's rule is nothing more than this next logical step, relying on quadratic interpolation 
to generate the quadrature rule.2 

We follow the basic outline from our presentation for the trapezoid rule. Thus we 
start by approximating / ( / ) by a single quadratic approximation. Let p2 be the quadratic 
polynomial that interpolates / at the three points xo = a,x2 = b, and x\ = c= (a + b)/2, 
the midpoint. Define the basic Simpson's Rule, then, as 

S2(f) = I(p2) = [ (L0(x)f(a) + Ll(x)f(c)+L2(x)f(b))dx, 
Ja 

where the Lagrange functions are here defined as 

(x-c)(x-b) {x-a){x-b) {x - a)(x - c) 
Lo(x) = -, r-, ττ, Lx(x) = - —, L2[x) = 77 τττ τ · 

(a — c)(a — b) {c — a){c — b) (b-a)(b — c) 

Then the quadrature rule is given by 

S2(f) = Af(a) + Cf(c) + Bf(b), 

where 
rb pb pb 

A= Lo(x)dx, C= I L\(x)dx, B= L2(x)dx. 
Ja Ja Ja 

To compute these we define h = b — c — c~ a — (b - a)/2, so that we have 

/•α+2/ι pa+2h pa+2h 
A = / Lo(x)dx,C = / L\(x)dx,B = / L2(x)dx. 

Ja Ja Ja 

2Thomas Simpson (1710-1761) was born and died in Leicestershire, England. Little is known of his youth and 

education, and the legend persists to this day that he kept "low company" with whom he would "guzzle porter 
and gin." He published an early text on Newton's calculus {The Doctrine and Application of Fluxions) and also 
worked in probability theory. Most of his mathematics teaching was done privately. 

The quadrature rule that bears his name was originally derived by the Italian Bonaventura Cavalieri in 1639, and 
was known to James Gregory in the late seventeenth century and to Roger Cotes in the early eighteenth century. 
It was rediscovered by Simpson and published in 1743 in his paper Mathematical Dissertations on a Variety of 
physical and analytical subjects 

http://www.it-ebooks.info/


2 7 2 NUMERICAL INTEGRATION 

Then 
/■α+2/ι ra+zn 

A = I Lo{x)dx 
Ja 

1 pa+2h 
= WÜ2 {x - (a + h)){x - (a + 2h))dx 

? 
2h2 

1 fh 
^ 2 / " ( " - h)du, 

where we have used the change of variable u = x — a — h in the last step. The computation 
is now fairly straighforward: 

1 fh 

A = 2h? I U<<U~ ^ r f U ' 

1 fl 3 1 . 2 ' h 

= ά((^-Η-(4^3 

h 
3 ' 

Similar computations (the student should verify these) yield B = A and C = 4/i/3. Thus, 
Simpson's rule becomes 

W ) = £(/(*)+4/(c)+ /(&)), 
where h = (b — a)/2; thus, h is the distance between points in the discretization of the 
interval [a, b]. 

■ EXAMPLE 5.3 

To apply this crude version of Simpson's rule to the function f(x) = 5 + βΐηπα:, 
over the interval [ ,̂ | ] , we have 

« / « 1/2 / l . 1 / l . 3 \ 1 . 5 
& ( / ) = - 3 - ( - + 8 ΐ η - π + 4( - + 8 ΐ η - π 1 + - + s i n - π 

= i ( 3 + ^ V ^ + 2 \ ^ - i \ / 2 ] =0.9714045208. 

The exact value is / ( / ) = 0.9501581580, showing that our approximation is decently 
accurate even though we used only a single approximating parabola. Figure 5.2 shows 
the application of Simpson's rule to this example. 
The composite rule is easily constructed by adding up individual instances of Simpson's 

rule applied to pairs of subintervals. (Note that this means that Simpson's rule requires an 
even number of subintervals.) We get 

n/2 , 
Sn(f) = Σ ΐ [/(»»-a) + 4/(x2 i_i) + / ( * « ) ] , (5.4) 
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Figure 5.2 Illustration of Basic Simpson's Rule. 

where hi = (x2i — X2i-2)/2. If we assume a uniform spacing of the mesh points, i.e., 
hj = h for all i, then all this simplifies a great deal and we have 

Sn(f) = ^(f(xo)+4f(xi) + 2f(x2)+4f(x3) + ... + 2f(xn-2) 

+ 4/(zn_!) + / (xn)) . (5.5) 

■ EXAMPLE 5.4 

If we consider the same example that we used previously, but now use two approxi-
mating parabolas, then we get 

S*V) = ψ (/(1/4) + 4/(1/2) + 2/(3/4) + 4/(1) + /(5/4)) = 0.9511844634, 

which is much more accurate than the S2 value. Figure 5.3 shows Simpson's rule 
applied in this case, and the decrease in the error is evident. 
Simpson's Rule can be constructed for a nonuniform grid, but the formula corresponding 

to either of (5.4) or (5.5) is somewhat more involved. See Problem 12. 

■ EXAMPLE 5.5 

If we apply Simpson's rule to the example in which f(x) = ex over the interval 
[0,1], using a sequence of decreasing grids, we get the results shown in Table 5.3. 

Note that the error here is decreasing by a factor of roughly 16 as h is halved.3 

Drawing on our experience with the trapezoid rule, we therefore suspect that 

1(f) - Sn(f) = ö(ft4). 

3But again note that the last case is an exception. The reason is because the method is, at this point, too accurate 

for the finite precision arithmetic to properly resolve. 
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Figure 5.3 Illustration of Simpson's Rule. 

However, our work on the interpolation error for quadratic interpolation (4.11), 
together with the definition of Simpson's rule as the exact integral of a piecewise 
quadratic interpolate, suggest that 

f-P2 = 0(h3) => 1(f) - Sn(f) = 1(f) - I(P2) = ί (f(x) - P2(x))dx = <D(h3). 
Ja 

Thus Simpson's rule appears to be more accurate than the underlying theory (from 
interpolation) would suggest. What's going on here that causes this? 

Table 5.3 Simpson's rule applied to f(x) = ex, [a, b] = [0,1]. 

n 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

Sn(f) 
1.718861151877 
1.718318841922 
1.718284154700 
1.718281974052 
1.718281837562 
1.718281829028 
1.718281828495 
1.718281828461 
1.718281828459 
1.718281828459 
1.718281828459 

/(/) - sn(f) 
-0.579323E-03 
-0.370135E-04 
-0.232624E-05 
-0.145593E-06 
-0.910273E-08 
-0.568969E-09 
-0.355611E-10 
-0.222178E-11 
-0.137890E-12 
-0.910383E-14 
0.444089E-15 

Error Ratio 
N/A 

15.6517 
15.9113 
15.9777 
15.9944 
15.9986 
15.9998 
16.0057 
16.1127 
15.1463 
-20.5000 

It is possible to directly prove an error estimate for Simpson's rule, in a manner similar 
to that for the trapezoid rule. But a more illuminating explanation of why Simpson's rule is 
"more accurate than it ought to be" can be had by looking at the extent to which it integrates 
polynomials exactly. This leads us to the notion of degree of precision for a quadrature 
rule. 
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Definition 5.1 (Degree of Precision) Let In be a quadrature rule, and assume that it is 
exact for all polynomials of degree < p. Then we say that In has degree of precision p. 

We ought to expect that we get better accuracy from integration methods that have a 
higher degree of precision. 

As an example, we note that Problem 21 of §2.5 shows that the trapezoid rule has degree 
of precision p = 1, because it integrates all linear polynomials exactly. Simpson's rule, by 
construction, clearly ought to have degree of precision p = 2. We will show that it actually 
has degree of precision p = 3; i.e., Simpson's rule integrates cubic polynomials exactly, 
which is something of a bonus beyond what we ought to expect from the construction. 
We will then show that having degree of precision p = 3 leads to an error estimate that is 
0(h4). 

Let q3 be an arbitrary cubic polynomial, which we choose to write as 

q3(x) = Ax3 + q2(x), 

where q2 contains all the lower-order terms from q3. Then the error in using Simpson's 
rule to integrate 93 becomes 

/ (©) - S2(q3) = A(I(x3) - S2(x3)) + (I(q2) - S2(q2)). 

But Simpson's rule will clearly integrate the quadratic part of 93 exactly; thus, Simpson's 
rule will be exact for all cubic polynomials if and only if it is exact for x3. Direct 
computation gives us 

S2(x3) = {^^(a3+A((a + b)/2)3 + b3) 

= b-^(a3+1-(a + b)3 + b3) 

= b-^(2a3 + (a + b)3 + 2b3) 

4 

= \(*-a<) 

thus, Simpson's rule is exact for all cubic polynomials. More formally, we have proved 
the following lemma. 

Lemma 5.1 Let 93(2;) be an arbitrary polynomial of degree less than or equal to 3. Then 
Simpson's rule integrates q3 exactly; i.e., 

S2{q3) = / q3{x)dx 
Ja 

for any interval [a, b]. 

Now, how does this give Simpson's rule increased accuracy? Let q3 « / , where 93 now 
is some cubic polynomial approximation to / . Let the error in this approximation be given 
by R3. Then we have 

1(f) - S2(f) = 1(03 + R3) - S2(q3 + R3). 
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But both the integral and Simpson's rule are linear, in that their action distributes across 
sums (see the exercises in §5.1). Thus, we have I(q3 + R3) = 1(93) + I(R3) and similarly 
for 52- Therefore, 

Hf) - S2(f) = I(R3) - S2(R3). 

Thus, Simpson's rule is as accurate for / as it is for the error in any cubic polynomial 
approximation to / . Since we expect the best cubic approximation to be better than the best 
quadratic approximation, the fact that Simpson's rule integrates cubics exactly suggests a 
significant increase in accuracy. 

All this is very vague and intuitive. Can we make it more precise? The answer is "yes," 
as we see in the following theorem. 

Theorem 5.1 (Simpson's Rule Error Estimate) If f G C4([a,b]), then there exists a 
point ξ € [a, b] such that 

/(/)-S2(/) = -^(^)V>(0. (5-6) 

Proof: Let p3 interpolate / at the nodes XQ = a, x\ = c — e, x2 = c + e, X3 — b, where 
e > 0 is a small parameter. Then for all x G [a, b], we have 

f{x) ~p3(x) = -R3(x) = — ( χ - Χ 0 ) ( χ - Χ ι ) ( χ - Χ 2 ) ( χ - Χ 3 ) / ( 4 ) ( ξ χ ) 

for some ξχ € [a, b]. Since Simpson's rule integrates cubic polynomials exactly, we have 
that 

1(f) - S2(f) = /(Λ3) - 52(Ä3). 

Note that the remainder will vanish at x = a and x = b, so 

Si(R3) = 4 ( ^ ) ( 1 ) (c - x0)(c - Xl)(c - x2)(c - x3)/ (4 )(£c). 

Recall that both x\ and x2 depend on the parameter e, and that we have x\ —> c and x2 —* c 
as e —> 0. Thus, in the limit as e —> 0, R3(c) —> 0, and hence S2(R3) goes to zero. 

On the other hand, as e —> 0 we have 

I(R3) -> ±j J (x - a)(x - c)2(x - b)fWtix)dx. 

We therefore can say that 

1(f) - S2(f) = ̂ J(x- *)(x - c)2(x - b)fW(Çx)dx, 

and, since (x — a)(x — c)2(x — b) does not change sign for x e [a, b], the Integral Mean 
Value Theorem can be used to simplify the integral so that we have 

/ ( / ) - S2(f) = ^ / ( 4 ) ( 0 J (x - a)(x - c)2(x - b)dx. 

Direct evaluation of the integral completes the proof. · 
The error for the composite rule now follows just as it did for the trapezoid rule. 
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Corollary 5.1 If f e C4([a, b]) and the grid is uniform, with mesh spacing h, then 

/(/)-^(/H-ί^gf-/(4)(o. 

Proof: We have, for a uniform grid (χ,+i — x% = {b — a)/n = h), 

I{f)-Sn(f) = ^ [[2X f ^ ) d x - (X2i 'Q2''2 ) (/(«») + */(s«-i) + /fo 

- E ( - e ( f ) 5 / ( 4 ) ^ ) ) , [from (5.6)], 
Λ 4 " / 2 

90 . 
t = l 

, 4 " / 2 

- -sEvrt» 9 0 · ^ n 
ι=1 

( b _ a ) / l 4 " ^ 2 
4 n/2 

i= l 180 f-fn Σ;/<4>«<>, 
and the Discrete Average Value Theorem allows us to replace the sum with a single 

pointwise evaluation of the fourth derivative: 

Hf)-sn(f) = -^^fW(0, 

which completes the proof. · 

■ EXAMPLE 5.6 

Although we cannot always use the error estimate to predict how small to take h, this 
is sometimes a useful exercise. Consider now our usual example in which f{x) = ex 

and the interval is [0,1]. Suppose that we want the error to be less than 10 - 6 . How 
small should h be to guarantee that? 

The absolute value of the error is 

l^n(/)| = |/(/)-5n(/) | = ̂ 4 | / ( 4 ) ( 0 | . 

Therefore, to impose |25n(/)| < 10 - 6 , we impose 

-^-h4 max | / ( 4 ) (x) | < 10"6 
180 ze[o,i] ' W l ~ 

and solve for h. Thus, we have 

- | - / i 4 < 10 - 6 <= h < 0.09020788609. 
180 

So, taking h < 0.0902... will be sufficient for the desired accuracy. Note that for the 
trapezoid rule we would require that h < 0.002101083838, which is substantially 
smaller. 
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Programming Hint: One should always use the theory underlying a numerical method 
to help debug a program implementing that method. For example, since Simpson's rule 
is ö{hA) accurate, we should see the error go down by a factor of 16 as the mesh size is 
halved. While this might not hold exactly for larger values of h, it will begin to hold as you 
take h smaller and smaller. If it doesn't, then it generally means that either the integrand is 
not smooth enough or your program has an error in it. As was the case with the trapezoid 
rule, there exists a class of functions for which Simpson's rule is "super-accurate," and for 
these functions the error will not decrease as rapidly as we expect, because it starts out 
smaller than it should be. (See §5.8.1 for details.) Always use a few simple examples to 
predict the error and make sure that the code is performing as expected. 

The explanation so far for the extra accuracy of Simpson's rule might seem a bit less 
than satisfying. Yes, maybe we can show how all the mathematics fits together, but what is 
really happening here to cause the extra accuracy? The reason is hinted at in the proof of 
Theorem 5.1, and with a little work we can do a fairly complete exposition. 

Consider the cubic polynomial 

f ï ff N , /7(c) ~ / ( α Λ , x 
93 (z) = f{a)+[ ri l ( z - a ) 

/ f'(c) - /(°)-/(°) \ 
+ J W h h (x - a)(x -c) + A(x - a){x - c)2, 

where 

i = ^ ( M _ M _ 2 r ( c ) + /W_M) 

and 
h = c — a = b — c. 

Now this is an imposing formula, but it ought to be straightforward to show that 93 is the 
cubic that interpolates to / at a, b, and c, and that also interpolates to / ' at c: 

93(c) = / ' (c) . 

Figure 5.4 shows the graph of this function for our example function | + βΐηπα;. Note 
that the the requirement that the derivatives match at the midpoint results in a much closer 
approximation to the function than was the case for the quadratic p2~, thus, we expect to get 
much better approximation to the integral. 

Now for the payoff: If we use q$ as the approximating polynomial to generate a 
quadrature rule, what do we get? In other words, what is 

S2* (/) = /(*») 

in terms of / (a ) , /(£>), /(c) , and / '(c)? We will omit the details here (see Problem 16, 
however), but the bottom line is the following: Using q% as the approximating polynomial 
yields the same quadrature rule as when we use P2: ^(93) = ^(^2)· Or, to turn this around a 
bit, using the quadratic approximation p2 produces the same quadrature rule as the slightly 
more accurate cubic (73. This boost in accuracy is very much tied in to using the midpoint 
of the interval as the third point. Although we can construct a version of Simpson's rule 
based on using any point c between a and b, it will be only ö{h4) accurate when c is the 
midpoint. 
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Figure 5.4 Another look at Simpson's rule. 

We close this section with a brief code segment that implements Simpson's rule over a 
uniform grid. 

Algorithm 5.1 Simpson's Rule 

input a, b, n 
external f 

simp = f(a) + f(b) 
h = (b - a)/n 
sum4 =0.0 
for i=l to n-1 by 2 do 

x = a + i*h 
sum4 = sum4 + f(x) 

endfor 
sum2 =0.0 
for i=2 to n-2 by 2 do 

x = a + i*h 
sum2 = sum2 + f(x) 

endfor 
simp = (h/3.0)*(simp + 4*sum4 + 

end code 
2*sum2) 

The extra accuracy that we get with Simpson's rule is an artifact of using an even-degree 
polynomial interpolate to define the integration rule. If we construct a method based on 
cubic interpolation (see Problem 15) we still get a degree of precision equal to 3, and an 
error estimate that is 0(h4). 

SIMPSON'S RULE AND DEGREE OF PRECISION 2 7 9 
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Exercises: 
1. Apply Simpson's rule with h = | , to approximate the integral 

1 

/ * 
Jo 

x(l — x2)dx 
4 

2. Apply Simpson's rule with h = \, to approximate the integral 

r1 i 
/ = / - , dx = 0.92703733865069. 

Jo Vl+x4 

3. Apply Simpson's rule with h = \, to approximate the integral 

+ x)dx = 2 1 n 2 - l . / Ml 
Jo 

How small does the error theory say that h has to be to get that the error is less than 
10~3? 10~6? How small does h have to be for the trapezoid rule to achieve this 
accuracy? 

4. Apply Simpson's rule with h= \,lo approximate the integral 

5. Apply Simpson's rule with h = j , to approximate the integral 

- / 
e-^dx = 0.1352572580. 

6. For each function below, write a program to do Simpson's rule using the sequence 
of mesh sizes h = \{b — a), \(b — a), \{b — a),..., 2öl8(^ — a)> where 6 - a is the 
length of the given interval. Verify that the expected rate of decrease of the error is 
observed. Comment on any anomolies that are observed. 

(a) f{x) = lnz, [1,3], / ( / ) = 31n3 - 2 = 1.295836867; 

(b) f(x) = x2e~x, [0,2},I(f) = 2 - lOe"2 = 0.646647168; 

(c) f(x) = 1/(1 + x2), [-5,5], / ( / ) = 2 arctan(5); 

(d) f{x) = s/ï^x^, [-1,1], / ( / ) = π/2; 

(e) fix) = e~x sin(4z), [0, π], / ( / ) = ^ (1 - ε~π) = 0.2251261368. 

7. For each integral Problem 6, how small does h have to be to get an accuracy, according 
to the error theory, of at least 10- 3? 10- 6? Compare to the value of h required by 
the trapezoid rule for this accuracy. (Feel free to use a computer algebra system to 
help you with the computation of the derivatives.) 

8. Since the area of the unit circle is A = π, it follows that 

— = / v l — x2dx. 
2 J-i 
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Therefore, we can approximate π by approximating this integral. Use Simpson's 
rule to compute approximate values of π in this way and comment on your results. 

9. If we wanted to use Simpson's rule to approximate the natural logarithm function on 
the interval [|, 1] by approximating 

fx 1 
l n x = / -dt, 

how many points would be needed to obtain an error of less than 10~6? How many 
points for an error of less than 10- 1 6? What are the corresponding values for the 
trapezoid rule? 

10. Use Simpson's rule to produce a graph of E(x), defined to be the length of the 
exponential curve from 0 to x, for 0 < x < 3. See Problem 14 of §2.5. 

11. Let f(x) = \x\; use the trapezoid rule (with n = 1), corrected trapezoid rule (with 
n = 1), and Simpson's rule (with n — 2), to compute 

' ( / ) = / _ f(x)dx 

and compare your results to the exact value. Explain what happens in light of our 
error estimates for the trapezoid and Simpson's rules. 

12. Write out the expression for Simpson's rule when c is not the midpoint of the interval 
[a, b]. To simplify matters, take c — a = h,b — c = 9h. 

13. What is the degree of precision of the corrected trapezoid rule, 7\c? What about the 
n-subinterval version, T^l 

14. Prove that if we want to show that the quadrature rule In (/) has degree of precision 
p, it suffices to show that it will exactly integrate xk, 0 < k < p over the integral 
(0,1). 

15. Construct the analogue of Simpson's rule based on exactly integrating a cubic inter-
polate at equally spaced points on the interval [a,b]. 

16. Show that I{q3) = 5 2 ( / ) . 

17. Consider the quadrature rule defined by exactly integrating a cubic Hermite interpo-
late: 

h(f) = I(H2). 

Write down the quadrature formula for both the basic and composite settings, and 
state and prove an error estimate, using the error results for Hermite interpolation 
from Chapter 4. 

18. Consider a quadrature rule in the form 

n 
J"(/) = ^2akf{xk), 

fc=l 
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where the coefficients afc > 0 and the grid points Xk are all known. Assume that /„ 
integrates the trivial function w(x) = 1 exactly: 

" rb 

In(w) — 2_] ak = I(w) = dx = b — a, 
it=i ·*<>■ 

and that this holds for all intervals (a, b). Consider now the effects of rounding error 
on integrating an arbitrary function / . Let f(x) = f(x) + e(x) be / polluted by 
rounding error, with |e(x)| < Cu for some constant C > 0, for all x € [a, b]. Show 
that 

| / n ( / ) - / n ( / ) | < C u ( 6 - a ) . 

Comment on this in comparison to the corresponding result for numerical differen-
tiation, as given in §2.2. 

19. The normal probability distribution is defined as 

σ\/2π 

where μ is the mean, or average, and a is the variance. This is the famous bell-shaped 
curve that one hears so much about; the mean gives the center of the bell and the 
variance gives its width. If x is distributed in this fashion, then the probability that 
a < x < b is given by the integral 

P(a <x<b) = / p(x)dx. 
Ja 

(a) Use the change of variable z = (x — μ)/σ to show that 

Ρ(-τησ <x< ma) = -η= I e~z /2dz. 
ν 2 π J-m 

(b) Compute values of Ρ(—πισ < x < ma) for m = 1,2,3, using Simpson's 
rule. 

20. Use Simpson's rule to solve Problem 9 from §5.2. 

21. Use Simpson's rule to solve Problem 10 from §5.2. 

< · · · > 

5.4 THE MIDPOINT RULE 

An interesting and very simple quadrature rule is the midpoint rule, based on exactly 
integrating a linear Taylor approximation to the integrand. This results in a rule that is 
actually more accurate than the trapezoid rule. We proceed in much the same manner as 
with the trapezoid and Simpson rules, except that since this is the third time, we skip some 
of the details. 
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First consider the integral 

and the Taylor approximation 

/ ( / ) / f(x)dx 
Ja 

Pl(x)=f(c) + (x-c)f'(c), 

where c = (a + b)/2, the midpoint of the interval. We define the numerical method by 
exactly integrating p\ : 

Mi{f)= [ Pl(x)dx = (b-a)f(c). 
Ja 

The composite rule then becomes 

n 

Μ„( / ) = Λ Σ / ( Ο + ( < - 1 / 2 ) Λ ) . 
i = l 

Note that the term involving the derivative is not present in the quadrature rule. This is 
because we have 

/ 
Ja 

{x - c)f'(c)dx = 0 

when c is the midpoint of the interval. This rule is called the midpoint rule because 
it evaluates the integrand at the midpoint of each subinterval in order to construct the 
quadrature rule. Figure 5.5 shows a single-interval example, and Figure 5.6 shows a 
composite example. Both illustrations use f(x) — h + βΐηπα;, integrated over the interval 

U> 4'· 

Figure 5.5 Single interval midpoint rule. 

The error estimate comes rather easily from the construction of the approximation. We 
haveMi(/) = I(pi), so 

/ ( / ) - M: ( / ) = / ( / ) - J(pO = / ( / - Pl) = / (Ai) , 
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Figure 5.6 Midpoint rule. 

Table 5.4 Midpoint rule applied to f(x) = ex, [a, b] = [0,1]. 

n 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 

MnU) 
0.17005127166502D+01 
0.17138152797711D+01 
0.17171636649957D+01 
0.17180021920527D+01 
0.17182119133839D+01 
0.17182643493169D+01 
0.17182774586502D+01 
0.17182807360054D+01 
0.17182815553455D+01 
0.17182817601807D+01 
0.17182818113894D+01 

/(/) - MnU) 
0.1776911D-01 
0.4466549D-02 
0.1118163D-02 
0.2796364D-03 
0.6991508D-04 
0.1747914D-04 
0.4369809D-05 
0.1092454D-05 
0.2731135D-06 
0.6827838D-07 
0.1706960D-07 

Error ratio 
N/A 

3.9783 
3.9945 
3.9986 
3.9997 
3.9999 
4.0000 
4.0000 
4.0000 
4.0000 
4.0000 

where R\(x) = \{x — ο)2/"(ξ) is the Taylor remainder. We can then apply the Integral 
Mean Value Theorem to get 

/ ( / ) - M 1 ( / ) = - ( 6 - a ) 3 / " ( 0 , 

which is essentially half the error of the single-interval trapezoid rule. For the composite 
midpoint rule the error becomes 
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■ EXAMPLE 5.7 

Let's look at using the midpoint rule to approximate 

/ ( / ) = / e'dx 
Jo 

using h = | . Then we will have 

M 2 ( / ) = ^ x / ( 0 + ( l / 2 ) ( l / 2 ) ) + | x / ( l / 2 + ( l / 2 ) ( l / 2 ) ) = i x e ^ + i x e 3 / 4 = 1.700512717. 

If we continue with smaller and smaller values of h, then we get the results presented 
in Table 5.4. 

Exercises: 
1. Apply the midpoint rule with h = \, to approximate the integral 

/•i i 

1=1 x(l - x2)dx = -

How small does h have to be to get that the error is less than 10- 3? 10- 6? 

2. Apply the midpoint rule with h = j , to approximate the integral 

r1 i 
I = dx = 0 

Jo Vl+x4 

92703733865069. 

How small does h have to be to get that the error is less than 10 3? 10 6? 

3. Apply the midpoint rule with h = \, to approximate the integral 

/ = / ln(l+x)ofx = 2 1 n 2 - 1. 
Jo 

How small does h have to be to get that the error is less than 10 3? 10 6? 

4. Apply the midpoint rule with h — \, to approximate the integral 

I=f0Yhdx=\^2U^-
10 

How small does h have to be to get that the error is less than 10~3? 10- 6? 

5. Apply the midpoint rule with h = \, to approximate the integral 

r2 -i dx = 0.1352572580. 

How small does h have to be to get that the error is less than 10 3? 10 6? 

6. Show that the midpoint rule can be derived by integrating, exactly, a polynomial 
interpolate of degree zero. 

http://www.it-ebooks.info/


2 8 6 NUMERICAL INTEGRATION 

7. Apply the midpoint rule to each of the following functions, integrated over the 
indicated interval. Use a sequence of grids h = (6 — a), (b — a)/2, (b — a ) / 4 , . . . 
and confirm that the approximations are converging at the correct rate. Comment on 
any anomolies that you observe. 

(a) f(x) = lnx, [1,3], 1(f) = 3In3 - 2 = 1.295836867; 

(b) f(x) = x2e~x, [0,2],J(/) = 2 - 10e~2 = 0.646647168; 

(c) f(x) = Vï^xï, [-1,1], / ( / ) = π/2; 

(d) f{x) = 1/(1 + x 2 ) , [-5,5], 1(f) = 2arctan(5); 

(e) f{x) = e-xsin(4x), [Ο,π], 1(f) = ^ ( 1 - e"*) = 0.2251261368. 

8. For each integral in the previous problem, how small does h have to be to get 
accuracy, according to the error theory, of at least 10- 3? 10~6? 

9. State and prove a formal theorem concerning the error estimate for the midpoint 
rule over n subintervals. You may want to state and prove a formal theorem for the 
single-subinterval rule first, and then use this in the more general theorem. 

10. Let Ti be the trapezoid rule using a single subinterval, M\ be the midpoint rule using 
a single subinterval, and 52 be Simpson's rule using a single quadratic interpolant 
(hence, a single pair of subintervals). Show that for any continuous function / , and 
any interval [a, b], 

5 2 ( / ) = ^Γ1( / ) + | Μ 1 ( / ) . 

< · · · > 

5.5 APPLICATION: STIRLING'S FORMULA 

Stirling's formula4 is an interesting and useful way to approximate the factorial function, 
n\, for large values of n. Standard derivations require a substantial background in classical 
analysis, but in fact the rule can be derived in a fairly general form based on nothing more 
than the trapezoid rule and its error estimate. 

Theorem 5.2 (Stirling's Formula) For all n>2, there exists a value Cn, 2.37 < Cn < 
2.501, suchthat 

n\ = Cnyfil{n/e)n. 

Proof: We start with the observation that 
n 

In n\ = 2_\m k, 
fc=l 
n - l 1 j 

= ^2-{\nk + \n(k + l)) + - I n n , 
fc=l 

4James Stirling (1692-1770), a Scotsman, began his studies at Oxford in 1710, but was expelled for political 

reasons before finishing his degree. Nonetheless, by 1717 he had already published his first paper, an extension 
of some of Newton's work on plane curves. For the next few years he was in Italy, trying to obtain a position, and 
in 1722 he returned to Britain. In 1726, while living in London, he published a monograph on infinite series and 
other topics called Methodus Differenlialis, which contains what we call Stirling's formula as one of its examples. 
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and the summation is exactly the trapezoid rule for 

/(In) = / \nxdx = nlnn — n+1 

using Ti—1 subintervals of length 1. The error estimate for the trapezoid rule then gives 

/ 1 \ 1 n _ 1 

Inn! = i n + - ) l n n - 7 i + l - — Σ ^ 
^ ' fc=i 

n - l 
2 

fc 

for some set of £fc e [fc, fc +1] . Now exponentiate both sides and let ση be the summation, 
to get 

n! = V7T(n/e)"e1-ACT" = y/ïï{n/e)nCn 

and it remains only to establish the bounds on Cn. To this end, note that we can bound the 
sum as follows: 

n—1 n—1 oo 2 

fc=l fc=l fc=l 

Thus, we have 

2.37 < exp U - ± ~ \ < ε1+σ" < exp f \ - ^ \ < 2.501. 

• 
This estimate on Cn is not as sharp as others, but it is sufficient for most purposes. The 

sharpest well-known result ([6], p. 467) states that there is a value c„ e [0,1] such that 

n! = ^ r ^ ( - ) n e c " / 1 2 n . 

Exercises: 
1. Use Stirling's formula to show that 

n->oo \ n \ J 

for all x. 

2. For x = 10 and e = 10 - 3 , how large does n have to be for 

n\ 
<e 

to hold? Repeat for e = 10 6. Use Stirling's formula here—don't just plug numbers 
into a calculator. 

3. Use Stirling's formula to determine the value of 

lim W-
n-+oo (pn)\ ' 
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where p > 2 is an integer. 

Use Stirling's formula to get an upper bound on the ratio 

_ 1 · 3 · 5 · · · ( 2 η - 1 ) 
n _ 2 ^ î ^ ! 

as a function of n. 

< · · · > 

5.6 GAUSSIAN QUADRATURE 

Gaussian5 quadrature is a very powerful tool for approximating integrals. It is derived in a 
very different way than the trapezoid, Simpson, and midpoint rules (although the midpoint 
rule can be considered a special case of Gaussian quadrature), and a complete discussion of 
Gaussian quadrature usually requires a substantial background in approximation theory.6 

Before getting into the details of the derivation of the method, it might be a good idea 
to give some idea of how accurate Gaussian quadrature can be. The quadrature rules are 
all based on special values of weights and abscissas (evaluation points, commonly called 
"Gauss points") that are pre-computed and stored. They are available in most standard 
mathematics tables, and can also be computed by standard, available computer codes. 
Table 5.5 gives some of the values for a few cases, and the text website at www .wiley. com 
has links to several files containing the weights and abscissas for a range of values of n7. 

The quadrature rule is written in the form 

GM) = Σ>ίη)/(*ίη)) * f fwdx> ( 5 · 7 ) 

where the weights w\n' and Gauss points x\ will be determined later. For now, we will 
simply assume that they are available, as is, in fact, the case.8 

5Carl Friedrich Gauss (1777-1855) is widely regarded as one of the greatest mathematicians of all time, in 

a class with Archimedes, Newton, and Eulcr. A child prodigy who taught himself to read and do arithmetic 
before beginning elementary school, Gauss attended the Collegium Carolinum Brunswick and the University of 
Göttingen, graduating in 1800. His doctoral dissertation was accepted in 1801. Briefly supported by his patron, 
the Duke of Brunswick, Gauss accepted an appointment at Göttingen as director of the observatory in 1804 and 
as professor of astronomy in 1807. 

Like Euler, there are few areas of mathematics that are untouched by Gauss's mind and Gauss's name. Unlike 
Euler, who published a lot, Gauss published sparingly, often not at all, leaving some of his most significant results 
in his personal diary. Nonetheless, Gauss has to his credit results in physics, astronomy (including the calculation 
of the orbit of the planetoid Ceres), number theory, and non-Euclidean geometry. His collected works come to 12 
volumes. Gaussian quadrature bears his name because of a paper he presented to the Göttingen Society in 1814, 
titled Methodus nova itegralium valores per approximalionem inveniendi. 
6The treatment we use here—which avoids a lot of the need for approximation theory—is based on an idea due 

to Roy Mathias, published in Int. J. Math. Educ. Sei. Tech., vol. 28, pp. 134-137 (1997). 
7The website may be found at www.wiley.com/go/epperson2edition. 

"integrals on general intervals [a, 6] can be treated by a change of variable in the integrand, as we will see later 
in this section. 

288 

4. 
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Table 5.5 Gaussian quadrature nodes and weights. 

n 
1 
2 
4 

8 

16 

*t] 
0.0000000000000000E+00 
± 0.5773502691896257E+00 
± 0.3399810435848563E+00 
± 0.8611363115940526E+00 
± 0.1834346424956498E+00 
± 0.5255324099163290E+00 
± 0.7966664774136268E+00 
± 0.9602898564975362E+00 
± 0.9501250983763744E-01 
± 0.2816035507792589E+00 
± 0.4580167776572274E+00 
± 0.6178762444026438E+00 
± 0.7554044083550030E+00 
± 0.8656312023878318E+00 
± 0.9445750230732326E+00 
± 0.9894009349916499E+00 

(n) 

0.2000000000000000E+01 
1.0000000000000000E+00 
0.6521451548625464E+00 
0.3478548451374476E+00 
0.3626837833783620E+00 
0.3137066458778874E+00 
0.2223810344533745E+00 
0.1012285362903697E+00 
0.1894506104550685E+00 
0.1826034150449236E+00 
0.1691565193950024E+00 
0.1495959888165733E+00 
0.1246289712555339E+00 
0.9515851168249290E-01 
0.6225352393864778E-01 
0.2715245941175185E-01 

.3504023872876029138... 

EXAMPLE 5.8 

Consider the example integral 

/(/) = f exdx = ex- e-1 = 2. 

Using n = 2, we get the approximation 

G2(f) = (l)e-0.5773502691896257 + (1)e0.5773502691896257 = 2.342696087910 

which is very easily computed, and very accurate as well, for the amount of effort 
put into the computation. Table 5.6 shows the approximate values given by using 
Gaussian quadrature at 4, 8, and 16 points, in addition to this n = 2 case. For 
comparison's sake, the table also gives the approximate values (and associated errors) 
given by Simpson's rule. Note the extraordinary accuracy of Gaussian quadrature 
compared to Simpson's rule. How do we get such high accuracy? 

Table 5.6 Gaussian quadrature applied to integrating f(x) = ex, over the interval 
M l = [- i , i ] . 

n 
2 
4 
8 
16 

Gn(f) 
2.342696087910 
2.350402092156 
2.350402387288 
2.350402387288 

Hf) - Gn(f) 
0.77062993778738D-02 
0.29513124299996D-06 
0.19539925233403D-13 
0.15543122344752D-13 

Sn(f) 
2.362053756543 
2.351194831880 
2.350453017242 
2.350405569305 

Hf) - Sn(f) 
-0.11651369255893D-01 
-0.79244459265215D-03 
-O.50629954676307D-O4 
-0.31820170360852D-O5 
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/ : 

The trapezoid and Simpson rules—and midpoint, as well—were derived by exactly 
integrating a polynomial approximation to the integrand. In Gaussian quadrature, we 
construct an approximate integral that is "best possible" in the sense that it has the highest 
possible degree of precision. Thus we pose the following question: 

What are the coefficients {w\ } and Gauss points {x\ } such that the quadra-
ture rule 

%(χ)ώ«5><η)/(*1η)) 

is exact for as large a degree of polynomial as possible? 

To put it another way (see Problem 3), we want to find {w\n } and {x]n } such that 

f xkdx = f^w(?](x\n))k (5.8) 

for k — 0,1,2,..., TV, for TV as large as possible. 
The high accuracy of Gaussian quadrature then comes from the fact that it integrates 

very high degree polynomials exactly. In the trapezoid method, Simpson's rule, and the 
midpoint method, we use a fixed, predetermined set of grid points, and only the weights 
are defined by the method. A fixed degree of polynomial approximation is used over each 
subinterval, so a fixed degree of polynomial is integrated exactly, no matter how many 
points are used. In Gaussian quadrature, both the grid points (i.e., the abscissas or Gauss 
points) and the weights are chosen to maximize the degree of precision, in other words, the 
degree of polynomial that is integrated exactly. The degree of polynomial that is exactly 
integrated goes to infinity as the number of points used in the quadrature rule goes to 
infinity. 

Since (5.8) is a system of (nonlinear) equations, we could just rely on that as a basis 
for computation, but this approach is unsatisfactory for a number of reasons, the most 
important one being that it is next to impossible to gain any broad understanding of the 
numerical method. 

Note that we have to find, not only the weights and abscissas, but also the value of TV. 
Intuitively, we suspect that TV = 2n — 1. This is because a polynomial of degree 2n — 1 
has 2n coefficients, and thus the number of unknowns (n weights plus n abscissas) equals 
the number of equations (one for each power in the polynomial). We will show that taking 
TV = 2n yields a contradiction, and then we will construct a solution for TV = 2n — 1. 

Lemma 5.2 If N = 2n, then there are no weights and Gauss points such that (5.8) is 
satisfied for all k = 0 ,1 ,2 , . . . , TV. 

Proof: Let {u;|n)} and {x\n)} satisfy (5.8), and assume that (5.8) holds for all k = 
0 ,1 ,2 , . . . , TV; i.e., the quadrature rule is exact for all polynomials of degree less than or 
equal to TV = 2n. Define 

L(x) = f[{x-x™)*. 
J ' = l 

Thus, L(x) > 0 and 

/ 

1 

L(x)dx > 0. 
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However, 

e»i">L(*i»>) = 0. 
i= l 

Therefore, we have a contradiction, since the quadrature rule (5.7) is supposed to be exact 
for all polynomials of degree 2n, and it is clearly not exact for the particular polynomial of 
degree 2n given by L(x). Hence, our assumption that a solution exists must be false, and 
the lemma is proved. · 

Now we turn to the N = 2n — 1 case. We will derive necessary conditions for the 
weights and abscissas, and then show that these necessary conditions do imply that the rule 
is exact for all polynomials of degree < 2n - 1. Since the weights are the easier of the 
two, we will start there. 

Lemma 5.3 Let {w\n' } be a set of weights and {x\n'} a set of Gauss points, such that 
(5.8) is satisfied for k = 0 ,1 ,2 , . . . , JV = 2n — 1. Then the weights must satisfy 

/

i 

L\n\x)dx, (5.9) 

/ : 

where 

4">(*>= Π j * r ^ -
fc = l * k 

Proof: Note that the L\' are of degree n — 1 < 2n — 1, and recall that L\n'(xj) = Sij. 
Thus, the fact that the quadrature rule is supposed to be exact for all polynomials of degree 
< In — 1 forces 

r l L[n\x)dx = Y^wfL{C\xf)) = w<T\ 

and this completes the proof. · 
Now that we understand how the weights are related to the Gauss points, we can 

concentrate on finding the Gauss points. To this end, define 

n 

Pn(x) = ]J(x - x\n)), (5.10) 

1 = 1 

(n) 

where the x] ' are the Gauss points, which we assume to be distinct, and note that Pn 

is a polynomial of degree n, since it has n roots. Let Q(x) be any polynomial of degree 
< n - 1, so that the product PnQ has degree < 2n - 1. This means that the quadrature 
rule must integrate the product exactly, i.e., 

f Pn{x)Q{x)dx = ^ w | n ) P n ( x j n ) ) Q ( x | n ) ) . 

But the construction of Pn implies that Pn{x\') = 0; thus, we have that 
r - l 

/_ 
Pn(x)Q(x)dx = 0 

1 
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for all polynomials Q of degree < n — 1. Since the quadrature rule has to be exact when 
applied to the product PnQ, this means that the polynomial Pn is one member of a family 
oforthogonal polynomials (§4.11.2), and the Gauss points are the roots of Pn. At this point 
it might be appropriate to recall some results from Chapter 4 on orthogonal polynomials: 

Theorem 5.3 For any k > 1 there exists a family of polynomials φί 6 Vi, 0 < i < k, such 
that 

1. For alii φ j , 

2. For all q &Vj,j < i, 

Ù 
1 

4>i{x)<f>j{x)dx = 0; 

/ <pi(x)q(x)a \x = 0; 

3. All of the roots of each of the <j>i are distinct and lie in the interval [-1,1] 

With these results in hand, we can state and prove our main result. 

Theorem 5.4 (Construction of Gaussian Quadrature) For N = 2n — I, there exists a 
ssseeettt   ooofff   GGGaaauuussssss   pppoooiiinnntttsss   xxx\\\nnn'''   aaannnddd   wwweeevt 

holds for allk = 0,l,2,...,N. 
ights w\n ', with the weights given by (5.9), such that (5.8) 

(n) 

Proof: We begin by defining the Gauss points x\ as the roots of the Legendre family 
of orthogonal polynomials.9 

Let P(x) be an arbitrary polynomial of degree < 2n — 1. Note that we can write 

P{x) = Pn(x)Q(x) + R(x), 

where both Q and R are polynomials of degree < n — 1 and Pn is defined in (5.10). (This 
follows from ordinary polynomial division considerations.) It therefore follows (Problem 
9 of §4.1), that 

i=\ 

In addition, note that Ρ„(χ ·"') = 0 implies that P(x\n)) = -R(^n))- Then we have 

I P(x)dx = I (Pn{x)Q(x) + R(x))dx, 

= / Pn(x)Q(x)dx + / R(x)dx. 

9 If §4.11.2 (Least Squares Approximation and Orthogonal Polynomials) was not covered prior to this, it would be 

wise at this point to review Theorem 4.9 for background material on orthogonal polynomials, and the subsequent 
discussion for material on the Legendre family. 
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/

l n 

The orthogonality property of P„ then implies that the first integral is zero. Hence, 

f P{x)dx = f 

n 

Y^R{x\n))Li(x)dx, 
i=\ 

= J2R(x\n)) [ Li(x)dx, 

= £>(*<"> K(n), 

and we have proved that the quadrature rule (5.7) is exact for an arbitrary polynomial of 
degree < 2n — 1. This completes the proof. · 

We indicated before that the accuracy of Gaussian quadrature comes from its ability to 
integrate, exactly, polynomials of high degree. Let's give some indication of why this is 
so. What we know is that Gn will integrate any polynomial of degree < 2n — 1 exactly. 
So, given the problem of integrating / , let P2n-i be any polynomial of degree < 2n - 1. 
Then, 

/ ( / ) - Gn(f) = / ( P 2 n - l ) + / ( / - P 2 n - l ) - Gn(p2n-l) - G „ ( / - P 2 „ - l ) , (5.11) 

where all we have done is added and subtracted P2n-i and used the linearity of the integral 
and the quadrature rule. But since the quadrature rule is exact when applied to P2n-i» we 
have that 

HP2n-l) - Gn(P2n-l) = 0, 

so that (5.11) becomes 

Hf) - G„(/) = / ( / - P2n-l) - Gn(f - P2n-l). 

Thus, the error in Gaussian quadrature is equal to the error in integrating the polynomial 
approximation error. Note that this will hold for any polynomial approximation of degree 
< 2n- 1. 

The question then becomes: Can we find a specific polynomial approximation that 
yields a concise error formula? The answer is, yes, we can. 

Letp2n-i = Hn, the Hermite interpolate to / , which uses the Gauss points as the nodes. 
Then, from Theorem 4.5 we have that 

/ ( * ) - P 2 n - l ( x ) = fix) - Hn{x) = -Λ-^φη(Χ)^)(ξχ), 

where 
n 

Φη(χ) = 11(χ-χ\η))2. (5.12) 
i= l 

Therefore, 

Gn(f -P2n-i) = Gn(f - Hn) = Σ ^ ^ ( 4 η ) ) / Μ ( & ) ; 
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but (5.12) implies that ^(x^1') = 0; hence, we have that Gn(f — Hn) = 0, so 

1(f) - Gn(f) = Hf -H") = J1 ^Ψη(χ)ί{2η)(ξχ)άχ. 

Since rj)n[x) > 0 for all x, we can apply the Integral Mean Value Theorem to get that there 
exists a value ηη G [—1,1] such that 

/(/) - <?„(/) = J^y ( ^ ψη(χ)ώή f^iVn). 

(n) 
Recall now that the Gauss points or nodes x\ are the roots of the n-degree Legendre 
polynomial, Pn. Thus, ψη(χ) = (rnPn(x))2> where rn is the reciprocal of the leading 
coefficient of Pn. We then have 

/(/) - Gn(f) = ^y (Kj\ Pfa)<k) f{2n)(Vn) = ^\\Ρη\\Ιίί2η)(ηη). 

The values of rn and ||ί*η||2 can be determined with a little effort (see Problem 14) and 
from this we get the final error statement 

ο2η+1/·„η4 

^-^W-P.+DUW^''*»· (5'13) 
It is not immediately obvious how rapidly this decays, because of the competing effects 
of the factorials in the numerator and denominator. Thus, we appeal to Stirling's formula 
(§5.5) to gain some insight. We have that 

n! = Cny/n(n/e)n 

and 
(2n)! = C2nV2n(2n/eyn, 

so that 

22 n + 1(n!)4 _ 2 2 " + 1 C > 2 ( n / e ) 4 " _ ^/n / e \ 2 " 
(2n+ l)[(2n)!]3 ~ (2n+ l)C23n(2n)3/2(2n/e)6" ~ " n + \ \16n) ' 

where Kn = 2 3 / 2^3 lies between 0.7 and 1.04. Note that this estimate says that the error 
goes down exponentially with n, as long as the integrand is smooth enough. Just as an 
example, we note that for n = 16 we have 

(o M £ Λ Μ 3 = * " - Τ Τ ( Ϊ | - ) = ^ X 1.653181645 x l O - 6 4 , (2n+l)[(2n)!J-j n + ^ \ 1 6 n / 

which goes a long way toward explaining the rapid convergence we saw in Table 5.6. 

Other intervals, other rules What if the integral is not posed over the interval [-1,1]? 
This is not an obstacle to the application of Gaussian quadrature, since we can apply a simple 
change of variable to rewrite any integral over [a, b] as an integral over [—1,1]. We have 

/ g(x)dx =-(b - a) g(a + -(b - a)(z + l))dz = f(z)dz, 
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where 

f(z) = \{b-a)g{a+^(b-a)(z + l)). 

(See Problem 15.) This affects the error estimate because of the factors of | ( 6 - a) in the 
change of variable. Instead of (5.13), we get 

un cm (fr-a>2n+>!>Vvn) 
Hf) M / ) - ( 2 n + 1 ) [ ( 2 n ) ! ] 3 / W»>-

See Problem 16 for the reduction of this via Stirling's formula to a more manageable 
expression. 

■ EXAMPLE 5.9 

Suppose that we want to compute 

r2 
1(f) = I x\rixdx = 0.6362943610. 

The change of variable gives us 

x = l + ^(z + l), 

so the integral now is 

^( / ) = 5 / ^ ( 1 + ^ + ! ) ) In ( ΐ + ^ + Ι ) ) ^ . 

For simplicity's sake we define the new integrand as 

ρ(ζ) = \(ΐ + 1(ζ + ΐή\η(ΐ + \(ζ+ΐή. 

The n = 2 Gaussian quadrature approximation is then computed quite simply: 

G2{F) = wiF{xi) + w2F(x2) = 0.6361494997. 

There are also other Gaussian quadrature rules. In fact, any family of orthogonal 
polynomials will generate a Gaussian quadrature rule according to the following "template." 
The rules we have developed here are usually called Gauss-Legendre quadrature, because 
they are based on the Legendre family of orthogonal polynomials. 

Theorem 5.5 (General Gaussian Quadrature Rule) Let w(x) > 0 be a weight function 
on the interval [a, b], and let {(f>k(x)} be the family of orthogonal polynomials with respect 
to this weight function and this interval. Define the quadrature rule 

G„(/) = î>in)/(*in)) 
i = l 
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for x]1' the roots ο/φη, and with w\n' given by 

fb 

■w\n = w(x 

n _ (n) 

Π Χ Xk 

r ( " ) _ _(n) 
jfc = l Xi k 

dx. 

Then Gn(p) is exact for all polynomials p £ V2n-\, and there exists ξη € [a, b] such that 

J w(x)f(x)dx - G„(/) = ( ^ j | ( / Mx)dx\ ί{2η)(ξη), 

for all f eC2n([a,b\), where 

fc=l 

Proof: See Problem 17. · 

■ EXAMPLE 5.10 

We can apply this theorem to construct a Gaussian quadrature rule for integrals of 
the form 

W = f 
Jo 

e xf(x)dx. 

Here the weight function is w{x) = e~x, so the orthogonal polynomial family that 
we need to use is the Laguerre family. To keep the task tractable, we will construct 
only the n = 2 rule. The second-order Laguerre polynomial is (see §4.11.2) 

L2(x) = ~(x2 -4x + 2), 

so the Gauss points are 

xi = 2 - v/2 = 0.5857864376, x2 = 2 + %/2 = 3.414213562, 

and the weights are 

loi = / e~x ( X ~ X2 ) dx = -(2 + V2) = 0.8535533903, 
Jo \%i - Z 2 / 4 

w2 = [ e~x ( X ~ - τ ι ) dx = i ( 2 - v ^ ) = 0.1464466092. 
JO \X2-XlJ ^ 

We can check that these are the correct values by confirming that they can be used to 
integrate, exactly, any polynomial of degree < 3 i n / ( / ) . It suffices to use f(x) — x3, 
so we look at 

/»OO 

/ e~xx3dx = 6. 
Jo 

and 
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Our Gauss-Laguerre approximation is 

G2(f) = W1f{x1)+W2f{X2) 

= 0.8535533903 x (0.5857864376)3 + 0.1464466092 x (3.414213562)3 

= 5.99999999 

Considering the fixed precision of the computations for the Gauss points and weights, 
we ought to consider this adequate confirmation of our work. Note, by the way, that 
there is no explicit computation with the weight function in the evaluation of Gi\ 
w(x) does not appear in the formula, only f(x). 

Exercises: 
1. Apply Gaussian quadrature with n = 4 to approximate each of the following inte-

grals. 

(a) 

(b) 

(c) 

(d) 

(e) 

\x = 21η2 + π - 4 ; 

sin2 πχάχ = 1; 

: / ln(l+z2)<2: 

I=j (x8 + \)dx = 20/9; 

i - i 1 + 

e~x dx = 1.493648266; 

—rdx = 1.733945974; 
x4 

2. Apply Gaussian quadrature with n = 4 to approximate each of the following inte-
grals. Remember that you have to do a change of variable to [—1,1] first. 

(a) 

(b) 

(c) 

(d) 

1=1 ln(l+x)da; = 2 1 n 2 - l ; 
Jo 

Jo VÏ+ 
-rdx = 0.92703733865069; 

1= x{\ — x2)dx =-\ 
Jo 4 

/"* 1 1 1 
/ -, ndx = -1η2 + -λ/3π; 

Jo 1 + : 
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(e) 

e~x2dx = 0.1352572580. 

3. Show that (5.8) is both necessary and sufficient to make the quadrature exact for all 
polynomials of degree less than or equal to 2N — 1. 

4. Write a program that does Gaussian quadrature, using the weights and Gauss points 
given in the text. Apply this to each of the integrals below, and compare your results 
to those for the other quadrature methods in the exercises. Remember that you will 
have to do a change of variable if the interval is not [-1,1]. Be sure to run your 
program for more than one value of n. 

(a) f{x) = y/T=x*, [-1,1], / ( / ) = π/2; 

(b) f(x) = x2e-x, [0,2] J{f) = 2 - 10e~2 = 0.646647168; 

(c) f{x) = lnx, [ l ,3] ,J( /) = 3 1 n 3 - 2 = 1.295836867; 

(d) fix) = 1/(1 + x2), [ -5 ,5] , / ( / ) = 2arctan(5); 

(e) f{x) =e- x s in4a; , [0,π], /( /) = ^ ( 1 - e_7r) = 0.2251261368. 

5. Let P(x) = 6x3 + 5x2 + x, and let P2(x) = 3x2 - 1 (this is the quadratic Leg-
endre polynomial). Find linear polynomials Q(x) and i?(x) such that P(x) = 
P2(x)Q(x) + R(x). Verify that l\p) = I(R). 

6. Let P(x) = x3 + x2 + x - 1, and repeat Problem 5. 

7. Let P(x) = 3x3 + x2 - 6, and repeat Problem 5. 

8. Verify that the weights for the n = 2 Gaussian quadrature rule satisfy the formula 
(5.9). 

9. Repeat the above for the n = 4 rule. 

10. Show, by direct computation, that the n = 2 and n = 4 Gaussian quadrature rules 
are exact for the correct degree of polynomials. 

11. The quadratic Legendre polynomial is P2ix) = (3x2 — l ) /2 . Show that it is 
orthogonal (over [—1,1]) to all linear polynomials. 

12. The cubic Legendre polynomial is P3(x) = (5x3 —3x)/2. Show that it is orthogonal 
(over [—1,1]) to all polynomials of degree less than or equal to 2. 

13. The quartic Legendre polynomial is P^ix) = (35x4 — 30x2 + 3)/8. Show that it is 
orthogonal (over [—1,1]) to all polynomials of degree less than or equal to 3. 

14. The first two Legendre polynomials are 

Poix) = I, P i ( x ) = x , 

and it can be shown that the others satisfy the recurrence relation 

( n + l ) P „ + 1 ( x ) = ( 2 n + l ) P n ( x ) - n P n _ 1 ( x ) . 
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Use this to show (by induction) that the leading coefficient for the Legendre polyno-
mials satisfies 

k {2n)-
n 2"(n!)2 

and the 2-norm of the Legendre polynomials satisfies 

. . n . .2 2 
11 n | l 2 ~ 2 n + l " 

15. Let 

1(f) = / f(x)dx. 
Ja 

Show that the change of variable x = a + \(b — a)(z + 1) gives that 

1(f) = J F(z)dz 

for F(z) = \{b- a)f(a + \(b - a){z + 1)). 

16. Show that the error for Gaussian quadrature applied to 

Ja 

b 

" N \X 

is 0{[{b - a)(e/8n)]2n). 

17. Prove Theorem 5.5. Hint: Simply generalize what was done in the text for the special 
case of 

Hf) = / f(x)dx. 

18. Once again, we want to consider the approximation of the natural logarithm function, 
this time using numerical quadrature. Recall that we have 

fx 1 
lnx = / —dt. 

Ji * 

Recall also that it suffices to consider x 6 [\, 1]. 

(a) How many grid points are required for 10 16 accuracy using the trapezoid rule? 
Simpson's rule? 

(b) How many grid points are required if Gauss-Legendre quadrature is used? 

19. Write a computer program that uses Gaussian quadrature for a specified number 
of points to compute the natural logarithm over the interval [\, 1], to within 10 - 1 6 

accuracy. Compare the accuracy of your routine to the intrinsic logarithm function 
on your system. 

20. Write a brief essay, in your own words, of course, which explains the importance 
of the linearity of the integral and quadrature rule in the development of Gaussian 
quadrature. 

< · · · > 
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5.7 EXTRAPOLATION METHODS 

One of the most important ideas in computational mathematics is that we can take the 
information from a few approximations and use that to both estimate the error in the 
approximation and to generate a significantly improved approximation. We have already 
seen examples of this with Aitken extrapolation for converging sequences (§3.11.1) and the 
corrected trapezoid rule (§5.2). In this section, we will embark on a more detailed study of 
some of these ideas. 

Given an integral / ( / ) , consider a generic quadrature rule that we will denote by In (/) . 
Assume an error relationship of the form 

/ ( / ) - / n ( / ) * C n - * . (5.14) 

We note in passing that this is true for all three of the trapezoid (p = 2), midpoint (p — 2), 
and Simpson's (p = 4) rules, but not for Gaussian quadrature. We want to use this 
approximate equality to do three different things: 

1. Estimate the value of p. 

2. Construct a computable estimate of the error / ( / ) — In(f). 

3. Construct an improved approximation of 1(f). 

We can, in fact, do all three without a lot of work, and it leads us to a very efficient scheme 
for approximate integration. 

Estimating p We begin by applying (5.14) for three cases: n, 2n, and An points: 

Hf)-In(f) « On-", 

Hf)-hn(f) « C(2n)- ' , 

1(f) -hn(f) « C(4n)-". 

Now, consider the ratio 

_ In — hn 
1'4n — j T , 

Lin — 'An 

where we have dropped the explicit argument / from the integration rule for notational 
simplicity. We have 

( I „ - / ) + ( / - 7 2 n ) _ -Cn~p + C(2n)'P 
Γ4" (hn - / ) + ( / - hn) ~ -C(2n)~P + C(4n)~P' 

(2TI)-P - n~P _ 2"? - 1 

~ ( 4 n ) - P - (2n)-P _ 4 - P - 2 - P ' 

= 2p. 

Thus, the computable ratio r4n is approximately equal to 2P. Therefore we can estimate 
the value of p by solving to get 

logr4n 
Ρ*Ί^2-

The importance of this ability to estimate p is that we can use it to verify that a computer 
program is working, or to estimate convergence rates when the integrand is not smooth 
enough to apply our error theory. Let's look at some examples that illustrate each of these 
ideas. 
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■ EXAMPLE5.il 

Consider the problem of evaluating the integral 

1=1 e~x2dx. 
Jo 

This integral cannot be evaluated in closed form (there is no simple antiderivative for 
e~x )so we cannot compare our estimates to an exact solution. But we can observe 
that the integrand is infinitely smooth, so the error theory for Simpson's rule applies, 
thus, approximations using Simpson's rule ought to yield that p is nearly 4. Table 5.7 
shows the result of doing this computation, and we see that 

_ 0.746824133300 - 0.746824132843 
Γ256 ~ 0.746824132843-0.746824132814 ~~ ' '" ' 

which implies that p « 4, as expected. If this had not been the case, we would have 
for the most part had only two possible conclusions to draw: (1) The integrand is not 
as smooth as we thought it was; or, (2) The program is not working properly. There 
is a third possibility, that the function is periodic, in which case Simpson's rule will 
be "super-accurate" and thus the error may not decrease very rapidly at all, because 
it starts out very small. (See §5.8.1 and Problems 8 and 9 in this section.) Table 
5.7 shows the complete set of computations for n ranging from 4 to 2048. (Note 
that we begin to lose accuracy at the end of the computation: The estimated value 
of p begins to wander away from 4. This occurs because Sn(f) is so accurate as an 
approximation to / ( / ) that the computations in estimating p are badly corrupted by 
rounding error for large n. The student ought to think about how this happens.) 

Table 5.7 Estimation of p. 
n 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

SM) 
0.746855379791E+00 
0.746826120527E+00 
0.746824257436E+00 
0.746824140607E+00 
0.746824133300E+00 
0.746824132843E+00 
0.746824132814E+00 
0.746824132813E+00 
0.746824132812E+00 
0.746824132812E+00 

P 
N/A 
N/A 

3.973123 
3.995232 
3.998911 
3.999734 
3.999953 
3.999232 
4.002964 
4.063215 

■ EXAMPLE 5.12 

Next, consider the integral 
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Since the integrand does not have a bounded second derivative on the interval of 
integration, we cannot expect the trapezoid rule or Simpson's rule to be as accurate as 
theory predicts, something that is borne out by computational experiment (see Table 
5.8). But this only begs the question: How accurate are these methods when applied 
to this problem? In other words, what sort of mesh exponent do we get? 

Using the computation outlined above, we can estimate the exponent p for this 
example, based on the data in Table 5.8. For both the trapezoid rule and Simpson's 
rule, we get that p » 1.50 (for this example only; in general, of course, we expect 
p — 4 for Simpson's rule and p = 2 for the trapezoid rule). See Table 5.9. 

Table 5.8 Trapezoid and Simpson's rules applied to f(x) = y/x. 

n 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 
4096 

TnU) 
0.6035533906E+00 
0.6432830462E+00 
0.6581302216E+00 
0.6635811969E+00 
0.6655589363E+00 
0.6662708114E+00 
0.6665256573E+00 
0.6666165490E+00 
0.6666488815E+00 
0.6666603622E+00 
0.6666644336E+00 
0.6666658761E+00 

SnU) 
0.6380711875E+00 
0.6565262648E+00 
0.6630792801E+00 
0.6653981886E+00 
0.6662181827E+00 
0.6665081031E+00 
0.6666106059E+00 
0.6666468462E+00 
0.6666596591E+00 
0.6666641891E+00 
0.6666657907E+00 
0.6666663570E+00 

Table 5.9 Estimation of p from data in Table 5.8. 
n 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 
4096 

p (Trapezoid rule) 
0.1420027799E+01 
0.1445602214E+01 
0.1462662030E+01 
0.1474156297E+01 
0.1481998892E+01 
0.1487405107E+01 
0.1491159895E+01 
0.1493781623E+01 
0.1495619062E+01 
0.1496910216E+01 

p (Simpson's rule) 
0.1420027799E+01 
0.1445602214E+01 
0.1462662030E+01 
0.1474156297E+01 
0.1481998892E+01 
0.1487405107E+01 
0.1491159895E+01 
0.1493781623E+01 
0.1495619062E+01 
0.1496910216E+01 

Error estimation and an improved approximation To directly estimate the error, 
we note that our assumptions imply that 

I-hn~ C{2n)~p = 2" p (Cn~p) « 2"p(7 - /„) 
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and we can then solve the approximate equality to get 

T>I2n - In 
~ 2P - 1 ' 

We then define 

R2n = m£:ln, (5.15) 

which we call Richardson's10 extrapolated value; and 

E2n = R2n - hn = \ ~ {" (5.16) 

which is our computable estimate of the error in I2n as an approximation to / = / ( / ) . The 
idea is to take the extrapolated value R2n as the exact value. Of course, having computed 
R2n, it would make sense to use it as the approximate value of / ( / ) . 

■ EXAMPLE 5.13 

Refer back to the data in Table 5.7. From this we have 

S8(f) = 0.746826120527, S16(f) = 0.746824257436, 

so that 
Rie(f) = 0.7468241335 

and 
£ ie ( / ) = 0.12421 x 10~6. 

■ EXAMPLE 5.14 

We now return once again to our example involving / 0 exdx, using the trapezoid rule 
as the basic integration scheme. Table 5.10 shows the extrapolated approximation 
and the estimated error, based on (5.15) and (5.16), along with the actual error. We 
note that the estimated error En tracks very well with the actual trapezoid error, 
/ ( / ) — T„(/) . Note that the error / ( / ) — Rn(f) decreases by a factor of 16 as the 
mesh size is halved, suggesting that the ö{h2) trapezoid rule has been improved to 
ö(h4) by the extrapolation, something that can in fact be made rigorous; see §5.8.1. 

We can also use the extrapolation error E2n as a computable estimate of the error 
in a computation, and therefore use this to decide when an approximation is sufficiently 
accurate. 

10Lewis Fry Richardson (1881-1953) was born in Newcastle upon Tyne in Great Britain, and attended several 

different schools before finishing his education at King's College, Cambridge, in 1903. His professional career 
spanned a number of different posts in industry, academia, and government science laboratories. He was the 
first person to suggest using mathematical techniques to predict the weather, by solving the fluid equations that 
would govern temperature, air pressure, etc. He first did this during World War I, while serving as an ambulance 
driver in France, long before the development of modem high-speed computers, and it was because of this that 
he developed the notion of extrapolation methods for the accurate numerical approximation of solutions based on 
cruder approximations. 

http://www.it-ebooks.info/


3 0 4 NUMERICAL INTEGRATION 

Table 5.10 Richardson extrapolation applied to f(x) = ex, [a, b] = [0,1]. 

n 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 

Rn(f) 
1.718272532150 
1.718281246223 
1.718281792050 
1.718281826183 
1.718281828317 
1.718281828450 
1.718281828458 
1.718281828459 
1.718281828459 

\I(f)-Rn(f)\ 
0.929631E-05 
0.582236E-06 
0.364088E-07 
0.227585E-O8 
0.142247E-09 
0.889089E-11 
0.553779E-12 
0.364153E-13 
0.266454E-14 

| /(/)-T„(/)| 
0.223676E-02 
0.559300E-03 
0.139832E-03 
0.349584E-04 
0.873962E-05 
0.218491E-05 
0.546227E-06 
0.136557E-06 
0.341392E-07 

\En\ 
0.224606E-02 
0.559882E-O3 
0.139868E-03 
0.349607E-O4 
0.873977E-05 
0.218492E-05 
0.546228E-06 
0.136557E-06 
0.341392E-07 

■ EXAMPLE 5.15 

Consider the integral 

1(f) = I e-*3dx. 
Jo 

There is no closed-form antiderivative for the integrand, so there is no way to compare 
our approximation with an exact solution. However, if we compute Simpson's rule 
values for this integral, we get 

heif) = 0.807512351889, I32{f) = 0.807511254956, 

for which the estimated error is 

E32 = 0.731 x 10"7. 

We thus can say, with some confidence, that | / ( / ) - /32(/)| < 10~7, because the 
estimated error is that small. We expect, of course, that the extrapolated value R32 = 
0.807511182 would be even more accurate, so we use £271» which is a computable 
estimate of the error / ( / ) - hnif), to tell us when to accept the extrapolated value 
R2n{f) as the approximate value of the integral. 

Exercises: 

1. Apply Simpson's rule with h = \ and h = \ to approximate the integral 

J = / dx = 0.92703733865069, 
Jo ν / Γ Τ ^ 1 

and use Richardson extrapolation to obtain the improved value of the approximation. 
What is the estimated value of the error in S4, compared to the actual error? 

2. Repeat Problem 1, for 

1= f x{l-x2)dx= j . 
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3. Repeat Problem 1, for 

1= ί 1η(1+ι)ώΕ = 2 1 η 2 - 1 . 
Jo 

4. Repeat Problem 1, for 

1 = / —^dx=l\n2+lV3TT. 
J0 1+x3 3 9 

5. Repeat Problem 1, for 

e~x2dx = 0.1352572580. 

6. Write a trapezoid rule program to compute the value of the integral 

1 = e~x'dx. 
Jo 

Take h small enough to justify a claim of accuracy to within 10 - 6 , and explain how 
the claim is justified. (There are several ways of doing this.) 

7. Define 

/ ( / ) = / exdx 
Jo 

and consider the approximation of this integral using Simpson's rule together with 
extrapolation. By computing a sequence of approximate values S2, S4, Ss, and so 
on, and analyzing the ratios of the errors, determine experimentally the accuracy of 
the extrapolated rule 

R2n = ( I652 n - S„)/15. 

8. Consider the integral 
Γ* 1 

1(f) = / sin2 x dx = - π . 
Jo 2 

Write a trapezoid rule or Simpson's rule program to approximate this integral, using 
Richardson extrapolation to improve the approximations, and comment on your 
results. In particular, comment upon the rate at which the error decreases as h 
decreases, and on the amount of improvement obtained by extrapolation. 

9. Repeat the above, this time for the integral 

Jo 

3 π / 4 . 2 _, 1 3 
sin xdx = - + -7Γ. 

4 8 

10. The data in Table 5.11 supposedly comes from applying the midpoint rule to a 
smooth, non-periodic function. Can we use this data to determine whether or not the 
program is working properly? Explain. 
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Table 5.11 Data for Problem 10. 
n 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

M„(/) 
-0.91595145 
-0.95732875 
-0.97850187 
-0.98921026 
-0.99459496 
-0.99729494 
-0.99864683 
-0.99932326 
-0.99966159 

11. The error function, denned as 

erf(.x) = -= / e~l dt, 
\Ar JO 

is an important function in probability theory and heat conduction. Use Simpson's 
rule with extrapolation to produce values of the error function that are accurate to 
within 10~8 for a; ranging from 0 to 5 in increments of 1/4. Check your values against 
the intrinsic error function on your computer or by looking at a set of mathematical 
tables such as Handbook of Mathematical Functions [1]. 

12. Bessel functions appear in the solution of heat conduction problems in a circular or 
cylindrical geometry, and can be denned as a definite integral, thus: 

1 Γ 
Jk(x) = — / cos(a;sini — kt)dt. 

π Jo 

Use Simpson's rule plus extrapolation to produce values of Jo and J\ that are accurate 
to within 10 - 8 over the interval [0,6] in increments of 1/4. Check your values by 
looking at a set of tables; for example, Handbook of Mathematical Functions [1]. 

13. Apply the trapezoid rule to approximate the integral 

-J 
JO 

in y/xdx = 2. sin 

Use Richardson extrapolation to estimate how rapidly your approximations are con-
verging, and comment on your results in light of the theory for the trapezoid rule. 

14. Show that for any function / , 

S2(/) = (4T2(/)-T1(/))/3. 

Comment on the significance of this result in light of this section. 

< · · · > 
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5.8 SPECIAL TOPICS IN NUMERICAL INTEGRATION 

5.8.1 Romberg Integration 

If we specialize now to the case of the trapezoid rule, we can make much of §5.7 more 
precise, and, at the same time, develop a very accurate recursive procedure for approximat-
ing integrals. A fundamental result is the Euler-Maclaurin formula,11 which we now state, 
without proof. 

Theorem 5.6 (Euler-Maclaurin Formula) / / / is sufficiently differentiable, then, for any 
N > 0 there exists a set of constants Cfe, 1 < k < N + 1, such that, for some ξ S [a, b], the 
error in the trapezoid rule satisfies 

1(f)-Tn(f) = ΊιΗ2+Ί2ϊι* + ..- + ΊΝ}ι2Ν 

+ cN+l(b-a)h2N+2^2N+2\i), (5.17) 

where lk = ck(f2k~l\b) - ^~ι\α)). 

The significance of the Euler-Maclaurin formula is that it allows us to write the error in 
the trapezoid rule as a series of powers of the mesh spacing h, and then use this series to 
derive new quadrature rules that are more and more accurate. Note that the series expansion 
of the error can be carried out as far as / is differentiable, but has to be terminated; in 
general, it cannot be taken as an infinite series. 

The first few constants are 

- _J_ - J_ - 1 
Cl~~Ï2' C 2 _ 7 2 Ô ' ° 3 _ ~30,240' 

There is a general formula relating these to the so-called Bernoulli numbers. 
One consequence of the Euler-Maclaurin formula is that the trapezoid rule is shown to 

be extraordinarily accurate when applied to periodic functions over full periods. In this 
case, the derivatives at the endpoints will be equal, and thus (5.17) becomes 

Hf)-Tn(f) = cN+1(b-a)h2N+2f(2N+2H0, (5.18) 

where N is arbitrary, restrained only by the smoothness of / . See Problem 10 for an 
illustration of this. 

Note that if we look at the N = 1 case, we have that 

Hf)-Tn(f) = -^(f'(b)-f(a))h2 + c2(b-a)h4fWtt), 

which shows that the corrected trapezoid rule is 0(h4), which we saw experimentally in 
§5.2. 

To construct an even more accurate quadrature rule from the error expansion, simply 
write down (5.17) for twice as many subintervals (replace h by h/2): 

I(f)-T2n(f) = ^ + L ^ + ... + lrjNh2N+ö{h2N+2) ( f U 9 ) 

"Maclaurin developed the Euler-Maclaurin formula independently of Euler, in about 1737, but did not publish 
it prior to including it in his book, Treatise of fluxions. 
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If we multiply (5.19) by 4, subtract it from (5.17), and then solve for / ( / ) , we get 

/ ( / ) _ 4 T 2"( / ) - Γ " ( / ) = b2h* + bzh? + ... + bNh2N + ö{h2N+2),{52V) 

where bk = - \ { l - ^~k) ck(f(2k-^(b) - / ^ " ^ ( a ) ) . 
Note what we have done here. The value \(AT2n(f) - T„(/)) is nothing more than 

Richardson's extrapolated value (5.15) for Tn(f), and the expression (5.20) shows that it 
is ö(/i4) accurate. But there is no reason to stop here. We rewrite (5.20) as 

I(f)-R2n(f) = b2h4 + b3h6 + --- + bNh2N + ö(h2N+2), (5.21) 

for which we also then have 

I(f)-R4n(f) = ^b2h4 + ^b3h6 + --- + ^bNh2N + 0(h2N+2U5.22) 

so that, multiplying (5.22) now by 16, subtracting from (5.21), and solving for / ( / ) now 
yields 

_ i o ^ n n2n = αφ6 + + akh2k + + aNh2N + 0{h2N+2) 

15 

16Ä4„ - R2n 6 2fc 
— = a^ti -\ - h 
lo 

where ak = — rg(l - 4?~k)bk. Thus, ^(16i?4„ - R2n) can be viewed as yet another 
extrapolated approximation for the integral, and this one is ö(h6) accurate. 

There is no reason not to keep going. Each step of the extrapolation process yields 
a new quadrature method that is more accurate than the preceding one. The process can 
be systematized to yield an algorithm known as Romberg integration.12 Continuing much 
farther requires that we define some notation. 

Let T„ ' (/) denote the trapezoid rule values; this is the first column of what will become 
a triangular array. We denote the second column by T„ (f). These values are computed 
from the trapezoid values according to the Richardson extrapolation formula: 

Note that the indexing means that the second column will be one entry shorter than the first. 
Generally, then, each column is computed from the preceding one according to the formula 

0 + 1 ) 4 ^ 1 Γ 2 ^ ) ( / ) - Γ ^ ( / ) 
12n U) - 4j+i _ λ ' ^ 5 · ^ 

l2Wemer Romberg (1909-2003) was bom in Berlin, and educated at Ludwig-Maximilian-Universität in Munich, 

where he got his doctorate in 1933. In 1938, he joined the faculty of the University of Oslo; he spent most of the 
rest of his working life in Norway. In 1949, he joined the Norwegian Institute of Technology in Trondheim as 
an associate professor of physics. His paper on what we call Romberg integration was published in 195S. It was 
not until the late 1960s that the method attracted a lot of attention. See the paper by Jacques Dutka, "Richardson 
extrapolation and Romberg integration," Hisl. Math., vol. 11 (1984), pp. 3-21, for some of the history of this 
method. 
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and the array looks like this: 

n°\f) 
T&Hf) T&\f) L2n \J ) *2n 

l4nKJ ) - t 4n T&\f) Tg{f) T™(f) 

τ$1υ) T£\U) T$i(f). 
If the integrand is smooth enough, then each step across a row of the array is eliminating 

another power of h2 from the error expansion; i.e., the first column has error that is 0(h2), 
the second column error is ö(h4), the third column error is ö(h6), and so on. Meanwhile, 
going down the array is decreasing h by a factor of 2 for each row: If we start with h= \, 
then in the sixth row we have h = 1/64. The upshot of all this is that the diagonal elements 
of the Romberg array are very accurate approximations to the integral. A formal statement 
is the following, which we present without proof (see p. 328 of [3]). 

Theorem 5.7 (Romberg Integration) Assume that f is sufficiently differentiable on [a, b], 

and let &k(f) be the kth diagonal element of the Romberg array: ©*(/) = T$n(f)- If 

the mesh size for the initial trapezoid rule T« was h, then 

1(f) - θ*( / ) = O (A~kh2k+2). 

In addition, at the same time that Romberg integration is producing accurate approxi-
mations, it can also be used to estimate the error, since for each entry in the Romberg array 
we can compute an estimate of the error using Richardson extrapolation: 

rrt\K) rp(K) 
Tlf\ /ri(fc) _ P(fc) _ 12n 1n 

1U)-12n - h2n ~ 4fc _ j ■ 

(This assumes, of course, that the integrand is sufficiently smooth.) This can be used to 
stop the Romberg process when the estimated error is sufficiently small. 

Note that the bulk of the computational work in Romberg integration is involved in 
computing the first column—the trapezoid rule values—since the computation of the sub-
sequent columns, done by (5.23), involves only a few simple operations. The ultimate 
efficiency therefore depends on our ability to rapidly compute the trapezoid rule values 
recursively, i.e., compute Τ^η (f) from T„ '(f) without wasted effort. Fortunately, this is 
very easy, as the next result shows. 

Theorem 5.8 Let Tn{f) denote the trapezoid rule applied to a given function f over a 
given interval [a, b], using n subintervals, with uniform mesh spacing h= (b — a)/n. Then 
we can compute T2n(f), the trapezoid rule using twice as many subintervals, according to 

T2n(f) = \Tn(f) + ( ^ ) Σ f(a + (2j - 1)(6 - a)/(2n)). (5.24) 

Proof: The key step is to recognize that we can write the trapezoid rule for n subintervals 
as 

Tn(/) = (^Τ) ί^/(α) + \î{b) + Σ /(fl + W - ")/")) · 
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Thus, the rule for 2n subintervals is 

T2„(/) 

Now manipulate: 

b-a\ 1 
In 

2 n - l 

/(«) + \ m +Σ/(α + i(b - o)/(2n)) 
i = l 

Î 2 n ( / ) = 
b-a\ 1 

2n 

2 n - l 

/(«) + 5/(6) + £ / ( " + W - a)/(2n)) ' 

\ ' \ -i — O yl ß 
2 V n 

t=2,4,6,. 

2 n - l 

2 V n 

+ Σ f(a + i(b-a)/(2n)) 

.. n—1 

i=l,3,5,.. 

1 fb-a\ (l 

J = l 

2 V n 

+ ^ / ( a + ( 2 j - l ) ( 6 - a ) / ( 2 n ) ) 
J = l 

1 A - a 

J'=l 

+ £ / ( a + (2 j - l ) (6 - û ) / (2n) ) , 
J'=l 

\TnU) + ( ^ ) ( Σ /(« + (2j - l)(ö - a)/(2n)) j 

and we are done. · 
The point of this result is that we can compute the entire first column of the Romberg 

array using the minimum number of function evaluations. A naive implementation, in 
which T2„ (/) was computed from scratch, would require that we recompute n values of 
/ that we had already computed in finding T„ (f). As a result of this theorem, we can 
compute T^' (f) using no more function evaluations than for the ordinary trapezoid rule, 
yet we achieve much more accuracy. 

Table 5.12 shows the application of Romberg integration to our standard example of 
integrating ex over the interval [0,1]. Note the extremely rapid decay of the error. 

We close this section with an algorithm (in outline form) for Romberg integration. 
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Table 5.12 Romberg integration of /(x) = ex, [a, b] = [0,1]. 

n = 2k 

1 
2 
4 
8 
16 
32 
64 

θ*(/) 
1.85914091422952 
1.71886115187659 
1.71828268792476 
1.71828182879453 
1.71828182845908 
1.71828182845905 
1.71828182845905 

/(/) - Qk(f) 
0.14085908577048e+00 
0.57932341754729e-03 
0.85946571215523e-06 
0.33548497313518e-09 
0.32640556923980e-13 
0.44408920985006e-15 
-0.44408920985006e-l 5 

Algorithm 5.2 Romberg Integration 

1. Compute T„ (/) = Tn(f); this is the initial trapezoid rule computation, using n 
subintervals. Often n = 1, but this is not required. 

2. For kfrom 1 to N do 

- τ<°> (a) Compute Τ2*„(/) = T^k (/) ; this is the first entry on a new row of the Romberg 
array. 

(b) Extrapolate across the row: for jfrom 0 to k — ldo 

i. Compute T^if) = (^T^(f)-T^_ln(f))/(A^ - 1). 

Programming Hint: Note that it is easy to encode this using only enough storage for two 
rows in the Romberg array; we don't need to store the entire array. In fact, if we are careful, 
we can get away with storing only a single row of the array and overwriting it with the new 
values as they are computed. 

EXAMPLE 5.16 

To illustrate the computation with a minimum of extraneous effort, let's refer to Table 
5.13, which gives trapezoid rule values (i.e., T„ '(f) values) for approximating 

/ ( Λ = Γ Ϊ dx 

+ x4 
= 0.8669729871. 

Table 5.13 Trapezoid rule integration of f(x) = (1 + x 4 ) - 1 , [a, b] = [0,1]. 

n = 2fc 
1 
2 
4 

Tk(f) 
0.7500000000 
0.8455882353 
0.8617323343 
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The first extrapolation produces the first Romberg value: 

Q^f) = T2(1)(/) = 2 U ; — 1 — ^ - = 0.8774509800. 
o 

It takes two extrapolations to produce the second Romberg value: 

4T^°V f) — T ' 0 ' ( f) 
T4(1)(/) = 4 UJ ^—^=0.8616289989, 

o 

Θ2(/) = T4(2)(/) = 16T4 W~Ti W = 0.8605742004. 

The Richardson error estimate for τ[ (/) and T2 (/) is given by 

T^( f) — T^'f f) 
E\l)(f) = 2 U! 4 U> = 0.00105479874; 

10 

thus, we are confident that the Romberg value Θ2 (/) is accurate to within about 10 - 3 

or so, even though it was produced with only five function evaluations. 

5.8.2 Quadrature with Non-smooth integrands 

(Much of this section is drawn from material in Kendall Atkinson's text, An Introduction 
to Numerical Analysis, 2nd Edition, Wiley, New York, 1989. See also de Doncker and 
Piessens [4].) 

So far we have assumed, in most of our developments, that the function being integrated 
(the integrand) was as smooth as we needed it to be. But this will not always be the case, 
and we need to understand the implications of this. 

We begin with an example. Let f(x) = y/x and consider 

/ ( / ) / y/xdx=~. 

Let's apply trapezoid, Simpson, and Gaussian quadrature to this integral; the results are 
summarized in Table 5.14. Note that none of the three methods is converging to the exact 
value as rapidly as we would expect, based on our previous examples. Why? 

Recall that all of our error estimates include a factor that is based on the evaluation of 
some derivative of the integrand at an unspecified point in the interval of integration. For the 
trapezoid rule, we require that / be twice continuously differentiable; for Simpson's rule 
we require that it be four times continuously differentiable; and for the n-point Gaussian 
rule we require that / be 2n times continuously differentiable. However, on the interval 
[0,1], f(x) = \fx does not even have a continuous first derivative. The practical effect 
of this is that the contribution to the error estimate from the derivative of / can become 
arbitrarily large as we take more and more points. This growth will not be large enough 
to prevent convergence to the correct answer, but it will be large enough to destroy the 
expected convergence rate. Note that this is not a violation of our carefully developed error 
theory; the integrand in this case does not satisfy the hypotheses of the error theorems, and 
so they do not apply. 

An integrand that exhibits the kind of behavior shown in our example is called singular, 
with x = 0 being the specific point of singularity. In this particular case, we can actually 
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n 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

Table 5.14 Integration of f(x) = x1/2, [a, b' 

TnU) 
0.643283046243e+00 
0.658130221624e+00 
0.663581196877e+00 
0.665558936279e+00 
0.666270811379e+00 
0.666525657297e+00 
0.666616548977e+00 
0.666648881550e+00 
0.666660362219e+00 
0.666664433593e+00 

Sn(f) 
0.656526264793e+00 
0.663079280085e+00 
0.665398188628e+00 
0.666218182746e+00 
0.666508103078e+00 
0.666610605936e+00 
0.666646846203e+00 
0.666659659074e+00 
0.666664189109e+00 
0.666665790718e+00 

= [0, 1]· 

G„(/) 
0.667827645375e+00 
0.666835580100e+00 
0.666689631499e+00 
0.666669667368e+00 
0.666667050398e+00 
0.666666715190e+00 
0.666666672768e+00 
0.66666666743le+00 
0.666666666762e+00 
0.666666666679e+00 

remove the problem by making the change of variable x = u2 in the integral. However, 
this sort of trick will not always work,13 so we must be prepared to deal with singular 
integrands in a more sophisticated manner. 

To be specific, we consider the integral 

Hf) / f{x)dx, 
Ja 

where / is assumed to be smooth on the open interval (a, b), but to have some kind of 
singular (non-smooth) behavior at one or both of the endpoints. Introduce the change of 
variable 

x = 4>(t), φ(ί)=α+ -Φ(ί) , Φ ( ί ) = / ip(u)du, (5.25) 
7 J-i 

where 

ip{t) = exp -
t2 

, 7 = *(1) 

and c > 0 is arbitrary. 
This probably looks rather imposing, so let's go over it a bit more carefully. The first 

point to make is that φ has been constructed to be extremely smooth near t = ±1 ; note 
that the argument to the exponential goes to - co as t -» ±1 ; thus, ψ and all its derivatives 
will vanish at the endpoints. This means that Φ and hence φ will be very smooth at 
the endpoints: smooth enough to compensate for almost any non-smooth behavior in / . 
Second, the change of variables from x to t will map the original interval [a, b] to [—1,1]. 
In fact, the new integral becomes (Problem 5) 

/(/) = / fWdx = J fWWifidt. 

Since all derivatives of φ vanish at the new endpoints, it follows from the Euler-Maclaurin 
formula that the trapezoid rule will be a very accurate quadrature rule to use here. The 

Although it is always a good idea to consider a clever change of variable as a way to avoid a singularity. 
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involved nature of the change of variable makes the application of the trapezoid rule appear 
difficult, but it really isn't. Let {tk} be a set of n + 1 equally spaced grid points on [—1,1], 

-1 = t0 < ti < t2 < ■ ■ ■ < tn = 1 

with tk = — 1 + 2/n, 0 < k < n. Then the trapezoid rule applied to the transformed 
integral becomes (remember that the integrand vanishes at the endpoints) 

where 

The evaluation of the weights is a straightforward calculation with the exponential function. 
The evaluation of the Xfc values requires the computation of <p(tk), which is itself an integral. 
However, the values of that integral can be computed once and saved, much as the weights 
and Gauss points from Gaussian quadrature, and thus this is only a momentary difficulty. 
Alternatively, we could use the approximation techniques from Chapter 4 to construct a 
highly accurate polynomial approximation to Φ, and simply evaluate that as needed. Table 
5.15 shows the values of Φ(ί)/Φ(1) for the n = 4,8, and 16 cases, computed using 
Romberg integration. 

■ EXAMPLE 5.17 

To illustrate the method, consider the following example: 

yft /(/) = I hog - J dx=^-= 0.8862269255. 

This has singularities at both endponts, since log 0 is undefined and the square root 
will have undefined derivatives at x = 1 since log 1 = 0 . The n = A version of this 
quadrature is written (using c = 4) quite simply as 

rxp(î^i)(l0Sa) 
1/2 

+ - e x P ( ï—72 ] ( 1 ο § Γ 

Now we have (from (5.25) and Table 5.15) 

xi = Φ(ίι)/Φ(1) = 0.3175495761647776 x 10_1, 

x2 = Φ(ί2)/Φ(ΐ) = 0.5000000000000000, 

X3 = Φ(ί3)/Φ(1) = 0.9682450390677892, 

and 

/ - ^ ( ϊ ^ 
1 dt = 1.4059716861223 x ÎO-2, 
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Table 5.15 Table of Φ(ί*)/Φ(1) for - 1 < tk < 1. 

n 
4 

8 

16 

k 
0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

tk 

-0.1000000000000000E+01 
-0.5000000000000000E+00 
0.0000000000000000E+00 
0.5000000000000000E+00 
0.1000000000000000E+01 

-0.1000000000000000E+01 
-0.7500000000000000E+00 
-0.5000000000000000E+00 
-O.2500000000000000E+00 
0.0000000000000000E+00 
0.2500000000000000E+00 
0.5000000000000000E+00 
0.7500000000000000E+00 
0.1000000000000000E+01 
-0.1000000000000000E+01 
-0.8750000000000000E+00 
-O.7500000000000000E+00 
-0.6250000000000000E+00 
-0.5000000000000000E+00 
-0.3750000000000000E+00 
-0.2500000000000000E+00 
-0.1250000000000000E+00 
O.00000000OOOOOO00E+00 
0.1250000000000000E+00 
0.2500000000000000E+00 
0.3750000000000000E+00 
0.5000000000000000E+00 
0.6250000000000000E+00 
0.7500000000000000E+00 
0.8750000000000000E+00 
0.1000000000000000E+01 

Φ(ί*)/Φ(1) 
0.0000000000000000E+00 
0.3175495761647776E-01 
0.5000000000000001E+00 
0.9682450390677892E+00 
0.1000000000000000E+01 
0.0000000000000000E+00 
0.1962922276951938E-03 
0.3175495761647776E-01 
0.2004317448343370E+00 
0.5000000000000001E+00 
0.7995682518334509E+00 
0.9682450390677892E+00 
0.9998037051191319E+00 
0.1000000000000000E+01 

0.0000000000000000E+00 
0.1930534427638750E-07 
0.1962922276951938E-03 
0.5462420695964468E-02 
0.3175495761647776E-01 
0.9512852921910396E-01 
0.2004317448343370E+00 
0.3405226277340978E+00 
0.5000000000000001E+00 
0.6594773707084767E+00 
0.7995682518334509E+00 
0.9048714673344923E+00 
0.9682450390677892E+00 
0.9945375763409888E+00 
0.9998037051191319E+00 
0.9999999792694836E+00 
0.1000000000000000E+01 

so the approximation becomes 

h{f) = ( 1.4059716861223 x 10-») X (0-00482794999383144 x 1.85733853145623 

+0.0183156388887342 x 0.8325546111576978 
+ 0.00482794999383144 x 0.179638760313930) 

0.5 x 0.0250831941163514 
1.4059716861223xl0-2 

= 0.892023444139597, 

for which the error is approximately 0.58 x 10 - 2 . Table 5.16 shows the result of 
applying the algorithm to this example (with c = 4) for larger values of n. Note that 
the high accuracy of the trapezoid rule for this kind of example is borne out. Note 
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also that the accuracy stagnates a bit for the finer meshes. This is probably due to 
inaccuracies in the computation of the Φ(ί|ί)/Φ(1) values; to avoid this problem we 
would need to compute these in very high precision. 

Table 5.16 Singular quadrature method applied to f{x) = (log i ) 2 , [a, b] = [ 0 ,1 ] . 

n 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

InU) 
0.892023444140 
0.885813277564 
0.886218502855 
0.886226915463 
0.886226924278 
0.886226924425 
0.886226924497 
0.886226924526 
0.886226924527 

Π/)-Uf) 
0.579652E-02 
0.413648E-O3 
0.842260E-05 
0.999072E-08 
0.117666E-08 
0.102882E-08 
0.957054E-09 
0.928343E-09 
0.925976E-09 

Although this method was designed to work on finite intervals with integrands having 
endpoint singularities, it can be easily modified to compute integrals on infinite intervals 
as well. Suppose that we want to compute 

/»oo 

1(f) = / f(x)dx. 
Ja 

The change of variable 

gives us the new integral 

x = a + 
\ - z 

f(x)dx = J F(z)dz, 

where F(z) — 2f(a + (1 + z)(l - z ) _ 1 ) ( l - z)2. This new integral now has the type of 
endpoint singularity (at z = 1), that the previous development was designed to attack, so 
we can apply the same ideas to get the quadrature rule 

n - l 

J( /)*W) = ^£wf c F(z f c ) (5.26) 
fe=l 

with 

Zfc = 0(ifc), Wfc = — e x P 
717 i - s r 

(5.27) 

where φ(ί) is now given by 

4>{t) -1 + -Φ( ί ) . 
7 
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■ EXAMPLE 5.18 

Consider now the following example. 

Γ°° 2 1 

Kf) = j e-*dx = -yfr. 
Table 5.17 shows the approximations as computed by (5.26)-(5.27). Note that the 
error again stagnates. 

2 

Table 5.17 Singular quadrature method applied to f(x) = e~x , [a, b] = [0, oo). 
n 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

InU) 
1.141419627988 
0.939027865252 
0.884525323277 
0.886229670193 
0.886226922961 
0.886226922944 
0.886226922943 
0.886226922942 
0.886226922941 

/(/)-/„(/) 
0.255193E+00 
0.528009E-01 
0.170160E-02 
0.274474E-05 
0.249179E-08 
0.250830E-O8 
0.250951E-08 
0.251117E-08 
0.251128E-08 

5.8.3 Adaptive Integration 

It is possible—rather easy, in fact—to write a general-purpose quadrature routine based 
on any of the methods discussed so far in this chapter. However, we often want to have 
firm knowledge that the error is "small enough" for the needs of the application. We could 
write a code that simply takes more and more points until some computable estimate of the 
error (such as we get from Richardson extrapolation) is < τ, where τ is a user-supplied 
tolerance. Romberg integration is perhaps the best choice for this, incidentally. 

However, such a process is often needlessly inefficient, for the simple reason that we 
do not want to take too many points in those regions of the interval where the integrand is 
smooth and therefore high accuracy is easily achieved. Consider the graph in Figure 5.7; to 
accurately integrate this function over the interval (say) [—5,5], we will need to use many 
points near the origin, but fewer away from it. Using something like Romberg integration 
will put a lot of points uniformly throughout the interval, thus wasting effort. 

For this reason, most automatic quadrature routines are adaptive; that is, they do not 
work with a uniform mesh, but adjust the mesh points to achieve a given overall accuracy. 
There are many ways to accomplish this task; what we outline here is one of the simpler 
techniques. 

At the core of adaptive methods (whether applied to numerical integration or other areas 
of computation) is the use of two (or more, but usually two) approximations to produce 
a computable estimate of the error in order to gauge the accuracy of the computation. 
Roughly speaking, if this computable estimate of the error is small enough, then we cease 
the calculation and move on. In the development presented here, we will use the Richardson 
extrapolation results from §5.7 to estimate the error. 
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Figure 5.7 Function with rapid change near the origin. 

An illustration might be useful at this point. Suppose we wish to compute 

rb 

= / f(x)dx 
Ja 

to an accuracy of τ; that is, we want to find an approximate value Q ~ I such that 
\I — Q\ < T- We will use Simpson's rule as the quadrature rule at the core of our 
method—many other choices are possible. 

We start by computing two different approximations to the integral, one based on apply-
ing Simpson's rule over the entire interval, one based on applying it over two subintervals. 
Thus, we have 

( 6 - a ) / 2 

and 

S i 

(b - a)/4 

(f(a)+4f((a + b)/2) + f(b)) 

(f(a) + 4f((a + b)/4) + f((a + b)/2)) 

+ {b 3 a ) / 4 (f((a + b)/2) + 4/(3(a + 6)/4) + f(b)). 

We can apply Richardson extrapolation to estimate the absolute error in S2: 

Eh = \S2 - S!\/15. 

If E2 < T then we use the Richardson extrapolated value R2 — (I6S2 — S\)/15 as 
our approximation to / , and we are confident that this approximation is to the specified 
accuracy.14 

However, we do not really expect to compute our integral to any realistic accuracy with 
only two approximations; we are going to have to continue the process. Basically, we next 

14Note that we are only "confident," not "certain." Since we are using a computable estimate of the error, we do 

not know that the error is less than τ . 
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try to compute, accurately, half of the integral, 

V = [ f(x)da 
J(aaa+++bbb)/222 

, lx
l( )/  

using the same ideas, then half of this integral, and so on. Describing this in any sort 
of precise, formal manner, that is ammenable to being put into an algorithm, is going to 
require some notation. Define 

J(a,ß)= / f(x)dx; 
Ja 

thus, the value we want to compute is / = J(a, b). We apply a similar notation to the 
Simpson's rule approximations: 

S(a, β) = ( / 3 ~ 3 α ) / 2 [/(α) + 4/((α + β)/2) + /(/?)]. 

It will also be useful to define 6k = 2~h+1(b — a), so θι = (6 - a), θ2 = {b — a)/2, and 
so on. Thus, our first step involved the computation of 

ST. =S(a,b) = S{b-eub) 

and 

S2 = S{a,{a + b)/2) + S{{a + b)/2,b) 

= S{b-e1,b-92) + S(b-92,b). 

The complete algorithm continues this process, recursively, until we have computed part 
of the integral to the specified accuracy. It is simplest to organize the algorithm so that the 
values of the integral accumulate from right to left; i.e., we next try to approximate 

J(b - 0a, b) = J{{a + b)/2, b) = [ f{x)dx 
J(a+b)/2 

using the two approximate values 

S1=S(b-e2tb) = S((a + b)/2,b) 

and 
S2 = S(b-62,b-e3) + S(b-e3,b). 

Once again we compute the Richardson extrapolation values E = |5Ί — 5*21/15 and 
R = (I6S2 — 5i)/15. The step is evaluated in the following way: 

If E < \T, then we accept R as the approximate value of J((a + b)/2, b). 

We use \T because the integral in question involves only half the full interval of integration. 
We continue this process, at the kth step trying to approximate J(b — 9k,b) to an estimated 
accuracy of 2_fc+1r. 

Eventually, we will find a subinterval small enough that the desired fractional error 
tolerance is satisfied. When this happens we accumulate the approximate value of the 
integral and move on to try to compute the next portion of the integral. 
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A key element in making this an efficient process is the re-use of function values that 
were previously computed. As the computation proceeds, the program maintains a list 
of grid points and the associated function values that have already been computed. Since 
new points are introduced as the algorithm proceeds, the grid is getting redefined and re-
indexed at each step. What makes this a difficult algorithm to encode (and explain!) is the 
recursion and the need for careful management of the data to ensure that we do not use any 
unnecessary function evaluations. This algorithm has been implemented in a number of 
places, including in the old FORTRAN package QUADPACK and in the MATLAB routine 
quad. In languages that support recursion it is much easier to encode, but much more 
difficult to follow. 

■ EXAMPLE 5.19 

Let's continue the illustration with a specific example, rather than a generic one. We 
will try to approximate the value of the integral 

f1 1 
I = J ( - 5 , 1 ) = / γ-dx = 1.0045374814641640301, 

J-5 1 + e 

which is the function graphed in Figure 5.7, using a tolerance of τ = 10~2. Thus, 
f(x) = t , e1_4x, a = —5, b = 1, and r = 0.01. (Since we are using such a crude 
error for this illustration, we will display our answers using only five digits, although 
the computations are being done using 10 digits.) 

Older versions of MATLAB (circa 1994) included a pair of adaptive quadrature 
routines, quad and quad8. Modern (2012) versions of MATLAB include several 
more sophisticated adaptive routines. 

The author's code produced the plot in Fig 5.8, and used a total of 29 function 
calls. The (very old) MATLAB code quad produced the plot in Fig 5.9, and used 
109 function calls. This does not suggest that the author's programming skills are 
superior to those of the MATLAB staff but, rather, that adaptive routines, written to 
be general, can be led into wasting a lot of effort. The (old) routine quad8 produced 
the plot in Fig. 5.10, but used only 33 function evaluations. 
If we repeat the same computation, but this time specify that τ = 10 - 4 , we find that 

the (old) quad used 445 evaluations and that quad8 used 97.15 (See Fig. 5.11.) Table 
5.18 summarizes the results (the number of function evaluations needed to obtain a given 
accuracy) of running a variety of adaptive routines on this example.16 

Table 5.18 Adaptive Quadrature 

T 

0.01 
0.0001 
l.e-6 
l.e-8 

quad (old) 
109 
445 
1825 
2049 

quad8 (old) 
33 
97 
145 
289 

quad (2012) 
13 
29 
57 
121 

quadl (2012) 
18 
48 
108 
168 

15The author's program was lost when the author changed jobs in 2001, and so is not, alas, available for further 

testing. There seems little point in rewriting it, given the easy-to-use routines in MATLAB. 
"Theold version of quad reached a recursion limit and generated a couple of screens' worth of warning messages, 
before reporting an accurate value of the integral and the function evaluation count of 2049. 
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t [ « ) - l / ( l . . « « - 4 « ) | 
o Pointi used by quadrature ruta | 

Figure 5.8 Adaptive quadrature 
(author's routine). 

Figure 5.9 Adaptive quadrature using 
MATLAB's quad routine (very old 
version). 

Figure 5.10 Adaptive quadrature 
using MATLAB's quad8 routine (very 
old version). 

Figure 5.11 Adaptive Quadrature 
using MATLAB's quad8 routine but 
with r = 0.0001. 

Now, it is fair to ask: What are these new routines, and what do they do? The new version 
of quad is probably self-explanatory: It is an updated version of the method outlined at the 
beginning of this section. The routine quadl uses what is known as Lobatto quadrature, 
which can best be summarized quickly as an attempt to make Gaussian quadrature more 
amenable to adaptive ideas. There is also quadgk, which uses Gauss-Kronrod quadrature, 
another idea for making Gaussian quadrature efficiently adaptive. The implementation of 
this routine does not have the facility to return the function count, so it was left out of this 
comparison. The MATLAB documentation has appropriate references, some of which are 
given at the end of the chapter. The first thing to notice is that the newer version of quad 
is much more efficient than either of the older routines, as well as the one written by the 
author. It appears to be consistently superior to quadl, but such a conclusion cannot be 
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substantiated by a single example. Which adaptive routine works best on a given example 
will depend on the specifics of the example. (It should be noted that all of the routines 
integrated our example to the expected accuracy.) 

5.8.4 Peano Estimates for the Trapezoid Rule 

Recall that the trapezoid rule is constructed by exactly integrating a linear polynomial 
approximation to the integrand. We can use this to derive an interesting error formula, 
known as a Peano11 estimate. 

Consider 

/ ( / ) = / f{x)dx 
Ja 

and 
Ti(f) = \(b-a)(f(b)+f(a)), 

the basic trapezoid rule. Since T\ is derived from exactly integrating a linear approximation, 
it is exact when applied to any and all linear functions: 

Ά(Ρ) = Ι(Ρ) 

for all functions p of the form p(x) = Ax + B. (See Problem 14.) In addition, we can 
view both / and T\ as linear operators, meaning that 

I(af + ßg) = al(f)+ßl(g) 

for constants a and ß, and similarly for T\{af + ßg). (See Problem 15.) Now, for any 
given integrand / , use Taylor's Theorem to write 

f{x)=Pi(x) + Ri{x), 

where pi is the linear Taylor polynomial and R\ is the integral form of the remainder. Since 
T\ is exact for linear polynomials, we know that 

I{pi)=Ti(pi). 

Therefore, 

Hf)-Ti(f) = /(ρι + Α ι ) - ϊ ι ( ρ ι + Α ι ) , 
= / (ÄO-T^Äi ) , 

= f Γ(χ - t)f"(t)dtdx - 1(6 -a)f{b- t)f"(t)dt. 

We can interchange the order of integration in the double integral to get 

pb px pb pb pb I pb \ 

/ / (x-t)f"(t)dtdx = (x-t)f"(t)dxdt= / / (x - t)dx ) f"(t)dt 
Ja Ja Ja Jt Ja \Jt J 

I 
Ja 

b\(b-tff"(t)dt, 

17Giuseppe Peano (1858-1932) entered the University of Turin, in Italy, in 1876 and graduated with a doctorate in 

mathematics in 1880. Known primarily for his work in mathematical logic and the foundations of mathematics, 
he published the development of the Peano kernel in two papers that appeared in Italian journals in 1913-1914. 
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so that we can finally get 

Hf)-Ti(f) = j"\(b-t)2f"(t)dt-\(b-a)j\b-t)f"(t)dt 

= lj\b-mb-t)-(b-a)](f"(t)dt 

= l-j\a-t){b-t)f"{t)dt. 

This is known as the Peano estimate for the error, and the function K (t) = | (a — t) (b — t) is 
known as the Peano kernel for the (basic) trapezoid rule. When extended to the composite 
case (Problem 17), we have 

Hf)-Tn(f)= [ K(t)f'(t)dt, 
Ja 

where 
K(t) = -(Xi-i-t)(Xi-t), Χ , _ ι < ί < Χ ; . (5.28) 

There are a couple of reasons for looking at the Peano form of the error estimate. One is 
that it allows us to bound the error when the integrand is not smooth in the pointwise sense. 
Note that we can write 

\I(f)-Tn(f)\ = I K(t)f" 
Ja 

(t)dt 

< max 
o<t<6 

< 

\K(t)\ [ \f"(t)\dt, 
Ja 

h2£\f>(t)\dt, 

where we have assumed a uniform mesh spacing of h. (See Problem 19.) Thus, even if 
/ is not pointwise twice continuously differentiable, we can still get an error estimate if 
/ " is integrable in the absolute sense. For example, consider the problem of integrating 
f(x) = xzl2 over the interval [0,1]. We know that /"(x) will be proportional to x - 1 / 2 , 
and therefore the pointwise estimates of §2.5 will not hold. However, x - 1 / 2 is absolutely 
integrable, so the Peano form of the error tells us that we can expect second-order accuracy 
when using the trapezoid rule. Table 5.19 confirms this conclusion. 

A second reason to use the Peano form is that it allows us to obtain lower-order estimates. 
If / has only a single derivative (whether in the pointwise or absolutely integrable sense), 
we can use integration by parts to obtain the estimate 

where c= (a + b)/2. This suggests that the composite kernel in this case is 

K(t)= \t-^(xi+Xi-i) Xi—i _ ^ ^ •*'T ) 
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Table 5.19 Trapezoid rule applied to f(x) = xi/2, [a, b] = [0,1] 

n = h~i 

2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

TnU) 
0.4267766953E+00 
0.4070181109E+00 
0.4018124648E+00 
0.4004634013E+00 
0.4001176712E+00 
0.4000297399E+00 
0.4000074919E+00 
0.4000018830E+00 
0.4000004725E+00 
0.4000001184E+00 
0.4000000297E+00 

Hf)-Tn(f) 
-O.2677669530E-O1 
-0.7018110858E-02 
-0.1812464800E-02 
-0.4634013020E-03 
-0.1176712098E-03 
-0.2973986253E-O4 
-0.7491908991E-05 
-0.1883044172E-05 
-0.4725406820E-06 
-0.1184497712E-06 
-0.2966805679E-07 

from which an estimate that is 0[h) follows quickly. (See Problem 18.) 
In fact, this explains to us the order of convergence that we observe when using the 

trapezoid rule to integrate f(x) = ^Jx\ although the second derivative is not integrable, the 
first derivative f'(x) = \χ~λΙ'1 is, so we see that the error is 0(h), as can be confirmed 
from the data in Table 5.14. (See Problem 16.) 

Peano estimates can be constructed for any of the other quadrature rules, but they are 
sometimes a bit more complex. See Problem 20. 

Exercises: 

1. Use the Euler-Maclaurin formula to state and prove a formal theorem that the 
corrected trapezoid rule, T%', is 0(h4) accurate. 

2. Using a hand calculator, compute T$0)(f), T2(0)(/), T4(0)(/). a n d T8°\f) for each 
of the following functions, then use Romberg integration to compute 03( / ) . Note: 
Be sure to use Theorem 5.8 to minimize the work in computing the first column of 
the Romberg array. 

(a) 

(b) 

(c) 

(d) 

Jo v /TTz 3 
-Ax = 0.92703733865069; 

/ ln(l 
Jo 

x)dx = 21n2 - 1; 

Jo 

Jo 1 + : 
-dx 

x2)dx = 

1 

1 

3 1 η 2 + 1 ν 3 π ; 
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(e) 
r2 

'dx = 0.1352572580. 

3. Write a program to do Romberg integration. Be sure to use Theorem 5.8 to minimize 
the number of function evaluations. Test your program by applying it to the following 
example problems. 

(a) f(x) = lax, [1,3], 1(f) = 31n3 - 2 = 1.295836867; 

(b) f{x) = x2e~x, [0,2], / ( / ) = 2 - 10e~2 = 0.646647168; 

(c) f(x) = V T = i * [-1,1], / ( / ) = π/2; 

(d) f(x) = 1/(1 + x2), [-5,5], / ( / ) = 2arctan(5); 

(e) f(x) = e-xsin(4a;), [Ο,π], / ( / ) = £ ( 1 - e -*) = 0.2251261368. 

For each example, compute 

number of function evaluations 
Nf = - log10 |error| 

This measures the number of function evaluations needed to produce each correct 
decimal digit in the approximation. 

4. Write a computer program that uses Romberg integration for a specified number 
of points to compute the natural logarithm over the interval [|, 1], to within 10 - 1 6 

accuracy. Compare the accuracy of your routine to the intrinsic logarithm function 
on your system. 

5. Show that the change of variable x = φ(ί), where φ is as given in §5.8.2, transforms 
the integral 

1(f) = [ f{x)dx 
Ja 

into the integral 

i(f) = I fm)W(t)dt. 

6. Apply the singular integral technique of §5.8.2, with n = 4, to estimate the value of 
each of the following integrals. Do this with a hand calculator, using the values in 
Table 5.15. 

(a) 

(b) 

(c) 

/(/) = i'i In a; 7T2 

— ö d x = —£-; 
- x* 8 

X 7Γ2 

-dx = ——; 
x 6 

/ ( / ) = / x l n ( l - x ) d x = ~ ; 
Jo 4 
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(d) 

/ ( / ) = / ( l n ^ ) dx=sft. 

7. Repeat the previous problem, but this time use a computer program together with the 
values in Table 5.15 to compute the n = 16 approximations. 

8. We have looked at the gamma function in a number of exercises in previous chapters. 
The formal definition of Γ(χ) is the following: 

Γ(χ) = Γ 
Jo 

e-ltx-ldt. 

Use the infinite interval algorithm from §5.8.2 to construct a table of values for the 
gamma function over the interval [1,2]. Compare your results to the values you get 
forr(a;) on your computer or from a standard book of tables, such as [1] 

9. Modify your Romberg integration program to compute values of Φ(^)/Φ(1) for 
tk € [—1,1], and use this to extend the values in Table 5.15 to the n = 64 case. 

10. Apply the trapezoid rule to each of the following functions, integrated over the 
indicated intervals, and interpret the results in terms of the Euler-Maclaurin formula. 

(a) f(x) = 1 + sinTrz, [a, b] = [0,2]; 

(b) f(x) = sin2 a;, [a, b] = [Ο,π]. 

11. Using a hand calculator and r as indicated, perform the adaptive quadrature scheme 
outlined in §5.8.3 on each of the following integrals. Be sure to present your results 
in an orderly fashion so that the progress of the calculation can be followed. 

(a) r = 5 x 10" 

(b) T = 10" 

Λη(1 
Jo 

+ x)dx = 2 In 2 - 1; 

f0Yhdx=\in2+y^ 
(c) T = 10 

(d) T = 10 

-5. 

-4 . 

/ 

2 

e'^dx = 0.1352572580; 

Jo Λ / Π + x« 
-.dx = 0.92703733865069. 

12. Apply the MATLAB routines quad, quadl, and quadgk to each of the following 
integrations, with a tolerance τ = l.e — 8 in each case. Then repeat the computations 
over the left half of the interval, only. 

(a) 

-dt = 0.56679020695363; - j f i + 1023e"1Gt 

http://www.it-ebooks.info/


(b) 

(c) 

(d) 

(e) 

SPECIAL TOPICS IN NUMERICAL INTEGRATION 3 2 7 

2π 

esin4"xdx = 8.11767960946423; -L 

-l· sin(e*x)dx = 0.20499307668744; 

/"_L 
Jo VT+ 

?dx = 0.92703733865069. 
+ x4 

13. This is an experimental or research problem. Try to find a specific quadrature problem 

rb 

= / f(x)da 
Ja 

such that quad outperforms quadl consistently as the tolerance r decreases. Then 
try to find a different one such that quadl outperforms quad. 

14. Show that the trapezoid rule T\(f) is exact for all functions of the form f{x) = 
Ax + B. 

15. Show that 
I(af + ßg) = al(f) + ßl(g) 

for constants a and ß, and similarly for Tn(af + ßg). 

16. Show that the data in Table 5.14 confirms that the trapezoid and Simpson's rules 
applied to f{x) = y/x are both 0(h) accurate. 

17. Confirm that (5.28) is the correct Peano kernel for the composite trapezoid rule. 

18. Show that if / ' is integrable over [a, b], but / " is not, then the trapezoid rule is 0(h) 
accurate. 

19. Show that the Peano Theorem implies an error estimate for the trapezoid rule of the 
form 

W)-Tn(f)\ < \h? J\f'(t)\dt. 

Be sure to provide all details missing from the development in the text. 

20. Derive the Peano kernel for Simpson's rule. 
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5.9 LITERATURE AND SOFTWARE DISCUSSION 

The quadrature problem has a long history and a fairly mature literature. The standard 
monograph is perhaps Davis and Rabinowitz [3], and decent treatments can be found in 
any good numerical analysis text. 

The trapezoid, Simpson, and midpoint rules are special cases of a broad class of methods 
known as Newton-Cotes formulas, for which a unified error theory is available. See 
Atkinson [2] for a standard treatment of this. 

The main deficiency of Gaussian quadrature has been the need to recompute / at all grid 
points whenever the grid is refined. A variation of Gaussian quadrature, known as Gauss-
Kronrad quadrature, addresses this issue and has become popular in recent years. Extensive 
work on a similar idea was done by Patterson and some of these ideas are incorporated in 
the QUADPACK package. See Piessens [7] or Davis and Rabinowitz [3]. The article by 
Gander and Gautschi [5] outlines many of the adaptive routines used in MATLAB. 

Multiple integrals are usually treated by obvious extensions of the ideas presented here, 
although the fact that higher-dimensional geometry is potentially much more involved than 
the simple intervals in K does complicate matters. Multiple integrals are sometimes treated 
by probabilistic methods known generally as Monte Carlo methods. 
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CHAPTER 6 

NUMERICAL METHODS FOR ORDINARY 
DIFFERENTIAL EQUATIONS 

We are concerned here with the problem of solving differential equations, numerically. At 
first we concentrate on the so-called initial value problem (IVP): Find a function y(t) such 
that 

f = f(t,y(t)), y(t0)=yo, 

where / is a known function of two variables, and t0 and y0 are known values. This is called 
the initial value problem because (as the notation suggests) we can view the independent 
variable t as time, and the equation as modeling a process that moves forward from some 
initial time i0 with initial state y0- (Very often, to = 0.) The dependent variable y, the 
unknown function, may be a scalar function or, possibly, a vector function defined as 

y(t) = (yi(t),y2(t),...,yN(t)f. 

In §2.3 we developed Euler's method for approximating solutions to initial value problems; 
in this chapter we will not only review Euler's method, but we will also look at more 
sophisticated (and therefore, we hope, more accurate) methods for solving this type of 
problem. Later we will tackle the boundary value problem (BVP), which can be written as 

d2U 

dx2 

u(a) 

u(b) 

= F(X>U't)-
= 9o, 

= 5ι· 

, a < x < b; (6.1) 

(6.2) 

(6.3) 

An Introduction to Numerical Methods and Analysis, Second Edition. By James R Epperson 329 
Copyright © 2013 John Wiley & Sons, Inc. 
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Here the unknown function is u with independent variable a;, F is a known function of three 
variables, and go and <7i are known data values. Very often the interval (a, b) = (0,1). 

In both cases we want to find an unknown function. We will do this by approximating 
individual points on the graph of the function, as we did in §2.7 with Euler's method for 
initial value problems. Thus, we will seek (in the case of the IVP) a set of values yk such 
that yk « y(tk) for some set of (known) grid points tk, or (in the case of the BVP) a 
set of values Uk such that Uk ~ u[xk) for some (known) grid points Xk- Note that this 
means that our approximation is only defined on the grid points, although we could use 
the approximation methods of Chapter 4 to construct continuous approximate solutions to 
differential equations—this, in fact, is something that is often done, and we showed one 
example of it in §4.9, where we used splines to solve two-point boundary value problems. 
In §6.10.3 we will introduce the finite element method for BVPs, which also uses the notion 
of expanding the approximation as a linear combination of simple functions. In Chapter 
9 we revisit this idea (and extend it to some partial differential equations—PDEs), and 
in Chapter 10 we will introduce spectral methods for BVPs and some PDEs. But in this 
chapter we will concentrate on the basics. 

It should be noted that the numerical solution of ordinary differential equations—whether 
IVP's or BVP's—is a very active on-going area of research. What we present here is a 
selection of the basic algorithms and underlying theory. The reader is referred to the list of 
references at the end of this chapter for more in-depth treatments of this material. 

6.1 THE INITIAL VALUE PROBLEM: BACKGROUND 

Consider the ordinary differential equation 

j j ! =/(«,»(«)), y(to) = yo, (6.4) 

where / is a function from E^"1"1 into RN for some N > 0 (if N = 1, then we have a 
scalar equation; otherwise, a vector equation); fo is a given scalar value, often taken to be 
io = 0, and known as the initial point; and i/o is a known vector in RN, known as the initial 
value. We want to find the unknown function y(t), which solves (6.4) in the sense that 

y'(t)-f(t,y(t)) = o 

for all t > to, and y{to) — yo-
Some examples will be useful at this point. 

■ EXAMPLE 6.1 

Consider the simple problem 

y' = -2ty, y(0) = 1. 

Here f(t,y) = -2ty,to = 0,y0 = 1, and we can apply methods from a standard 
ordinary differential equations (ODE) course to show that y{t) = e _ t is the solution. 
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■ EXAMPLE 6.2 

Consider now the simple system of equations 

y[ = -4yi+2/2, 2/i(0) = l; 

3/2 = 2/1-42/2, y2(0) = 0. 

In this case, y(t) = (yi(t),2/2(i))T is a vector of two components, and f{t,y) is 
defined by 

/(<>!/) = (h(t,yi,y2), f2{t,y1,y2))T, 

where 

/ i ( i , 2/1,2/2) = -4yi+2/2, 

./M*, 2/1,2/2) = 2/1-4y2; 

the initial point is still io = 0, but the initial value is now the vector yo = (1, 0)T. 
The solution, again obtained from a standard ODE course, is 

■ EXAMPLE 6.3 

What about the second-order equation 

y" + Zy' + y = 0, y(0) = l,y'(0) = 0? (6.5) 

It does not appear to fit the standard form for our initial value problems, yet we can 
put it into this form without a lot of work. Define the vector w(t) = (wi(t),W2(t))T, 
where wi(t) = y(t),W2(t) — y'(t). Then w[ = 11)2 and (6.5) becomes w'2 = 
—3w2 — w\. Thus we have the first-order system 

w'x =w2, IÜ!(0) = 1; 

W2 = —W\ — ZW2, ÎU2(0) = 0. 

■ EXAMPLE 6.4 

More generally, we can take any scalar equation of order N: 

y(n)=g{t,y,y',y",...,y{n-l)), 

and write it as a first-order system of N equations in N unknowns, according to 

wi - y, W2 

where 

w[ = w2, u>i(0) 

w'2 = W3, W2(0) 

U)'3 = W4, W3(0) 

w'n - g(t,wi,w2, 

y', ...,wn = y^-l\ 

2/0 ; 

2/0; 
2/0'; 

. , iu„_i , ton ) , wn(Q)=y\ - „("-1) 
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Thus, we have the single vector equation 

w'= f(t,w), w(Q)=w0, 

where 

/ www2 \ ( Vo \ 
y'o 

f(t,v>) = 

2 

w3 

u>4 , wo 

\ g(t,Wi,W2,W3,...,Wn) J (n-1) 
\ Vo / 

To keep the presentation simple, we will state our results in language and notation 
appropriate for scalar equations, but the reader should be aware that corresponding results 
hold for vector equations, and we will spend some time discussing vector equations later 
in the chapter, in §6.8. 

The nature of the solution of the differential equation—indeed, the very question of 
whether or not a solution exists—as well as our ability to approximate the solution ac-
curately, is very much connected with the nature of the function / . Basically, if / is 
"smooth enough," then a solution will exist and be unique, and we will therefore be able 
to approximate it accurately with a wide variety of methods. However, there are different 
ways of expressing what we mean by "smooth enough." We will use two of them: (a) 
Lipschitz continuity; and, (b) smooth and uniformly monotone decreasing. The former is 
the condition generally used to construct solutions of initial value problems; it is, generally, 
the weakest condition that we can get away with. The monotone decreasing condition 
describes a wide class of physically significant problems; the "monotone decreasing" part 
of the condition corresponds to dissipation or decay in the physical system being modeled. 

Definition 6.1 (Lipschitz Continuity) Let g be a given function from R to R. We say that 
g is Lipschitz1 continuous on an interval I if there exists a constant K such that 

Isfci) -5(^2)1 < K\xi -x2\ 

forallxi,X2 S / . 

Definition 6.2 (Smooth and Uniformly Monotone Decreasing) Let g be a given function 
from RtoR. We say that g is smooth and uniformly monotone decreasing if g is differentiable 
and the derivative satisfies 

-M < g'(x) <-m<0 

for all x, where M and m are given positive constants. 

We have actually already seen the idea of Lipschitz continuity; this is the same condition 
that was required in §3.9 for uniqueness and convergence of fixed-point iterations. 

1 Rudolf Otto Sigismund Lipschitz ( 1832-1903) was born in Königsberg, Germany. He entered the University of 

Königsberg at the age of 15, and completed his studies at the University of Berlin, from which he was awarded 
a doctorate in 1853. By 1864, he was a full professor at the University of Bonn, where he remained the rest of 
his professional life. The Lipschitz condition first appeared in a paper on the existence of solutions to differential 
equations, which was published in book form as part of an 1877 treatise on analysis. 

http://www.it-ebooks.info/


THE INITIAL VALUE PROBLEM: BACKGROUND 3 3 3 

■ EXAMPLE 6.5 

Just to illustrate, consider the two initial value problems 

tf=Ay-e-\ 2/(0) = 1, (6.6) 

and 

y' = -(l+t2)y + smt, y(0) = l. (6.7) 

For (6.6), we have f(t, y) = Ay — e _ t , so that 

f{t,yi) - /(t,!ft) = (42/1 - e- ') - (4y2 - e"4) = A(yi - y2); 

hence, 
l / ( t ,y i ) - / (« , i /a ) l <4 | i / i - ! / a | . 

Hence, in this case / is Lipschitz continuous in y with constant K = A. However, / 
is not smooth and uniformly monotone decreasing, because fy (t, y) = 4 > 0 for all 
t and y. On the other hand, for (6.7), we have f(t, y) — — (1 + t2)y + sin t, so 

/(*. l/i) - /(*. 2/2) = ( - ( i 2 + l)i/i +sini) - ( - ( i 2 +1)2/2 + sini) = -{t2 + l)(yx -y2); 

thus, for 0 < t < 1, 

|/(i,2/i) - f(t,2/2)| < (i2 + l)|2/i - 2/2I < 2|2/i - 2/2I. 

Therefore, this / is Lipschitz continuous with constant K = 2. In addition, we have 
(again, for 0 < t < 1), 

fy{t,y) = -(t2 + 1) => - 2 < fy(t,y) < - 1 < 0, 

showing that this / is also smooth and uniformly monotone decreasing. 
The significance of these definitions lies in how they affect what we know about the 

solution of the differential equation. The standard result for ordinary differential equations 
is the following. 

Theorem 6.1 (Existence-Uniqueness of Solutions for IVPs, Version I) Letf(t, y) be con-
tinuous for all (t,y) in an open rectangle R = {{t,y) : a < t < b,c < y < d}, and 
Lipschitz continuous in y, with constant K. Then for all [to, 2/0) G R there exists a unique 
solution to the initial value problem 

y' = f(t,y), 2/(ίο) = 2/ο· 

Moreover, ifz(t) is the solution to the same problem with initial data z(to) = ZQ, then 

\y{t)-z{t)\<eK^-^\yo-z0\. (6.8) 

Proof: This result is proved in some texts on ordinary differential equations (see, for 
example, [6]). Interestingly, the original proof was done by constructing a discrete solution 
and showing that it converged, in the limit as h —► 0, to a differentiable function that solved 
the IVP. See Goldstine's book [10] for more details on the history behind this result. · 

If we impose only slightly more on the function / , then we get quite a different bound 
on the change in solutions due to a change in the initial data. 
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Theorem 6.2 (Existence-Uniqueness of Solutions for IVPs, Version II) Let f(t, y) be con-
tinuous for all (t, y) in a rectangle R, and smooth and uniformly monotone decreasing in 
y. Then, for all (to, yo) € R there exists a unique solution to the initial value problem 

y' = f(t,y), y(t0) = y0. 

Moreover, ifz(t) is the solution to the same problem with initial data Z(ÎQ) = ZQ, then 

\y(t)-z(t)\<e-m^-^\y0-z0\. (6.9) 

Here m is the negative of the upper monotonicity constant from Definition 6.2. 

Proof: Since / is smooth and uniformly monotone decreasing in y, we can apply the 
Mean Value Theorem to easily prove that it is Lipschitz in y, as well: 

\f(t,yi)-f(t,y2)\ = \fy(t,V)(y1-y2)\<M\y1-y2\. 

Thus, we can apply Theorem 6.1 to get the existence and uniqueness of the solution. The 
inequality (6.9) takes a bit more work, and its proof is deferred to the Appendix. · 

The inequalities (6.8) and (6.9) are known as stability results because they measure how 
stable the solutions to the initial value problem are, i.e., the extent to which small changes 
in the problem will lead to small changes in the solution. In the first case, if all we know is 
that / is Lipschitz, then small changes in the initial data can lead to very large changes in 
the solutions, if we consider t large enough. Note, however, that it still is the case that the 
differences in the two solutions can be bounded for all t <T, where T is a fixed value, and 
that z(t) —> y(t) on this interval, uniformly, as ZQ —» yo· In the second instance, because 
we know that / is smooth and monotone decreasing, we know that the perturbation in the 
solution due to the initial error in the solution will actually decay to zero as t -> oo. This 
will have similar implications for the error associated with numerical methods applied to 
the solution of the differential equation. 

Exercises: 
1. For each initial value problem below, verify (by direct substitution) that the given 

function y solves the problem. 

(a) y' + Ay = 0, y(0) = 3; y(t) = 3e~4t; 

(b) y' = t2/y, y(0) = 1; y(t) = y/l + | i 3 ; 

(c) ty'-y = t2,7/(1) = 4; y{t) =3t + t2. 

2. For each initial value problem in Problem 1, write down the definition of / . 

3. For each scalar equation below, write out explicitly the corresponding first-order 
system. What is the definition of / ? 

(a) y" + 9y = e"«; 

(b) y"" + y = l; 

(c) y" + sin y = 0. 

4. For each initial value problem below, verify (by direct substitution) that the given 
function y solves the problem. 
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(a) y" + Ay' + 4y = 0, y(0) = 0, y'(0) = 1; y(t) = te~2t; 

(b) t2y" + 6ty' + 6y = 0, y(l) = 1, y'(l) = - 3 ; y{t) = r 3 ; 

(c) y" + 5y' + 6y = 0, y(0) = l,y'(0) = - 2 ; y(t) = e~2t. 

5. For each initial value problem below, determine the Lipschitz constant, K, for the 
given rectangle. 

(a) y' = y(l - y), y(0) = \,R = (-1,1) x (0,2); 

(b) y' = 1 - 3», y(0) = 1, R = (-1,1) x (0,2); 

(c) y' = y2,y(0) = 1, R = (-1,1) x (0,2). 

6. Are any of the initial value problems in the previous exercise smooth and uniformly 
monotone decreasing over the given rectangle? If so, determine the values of M and 
m. 

< · · ·> 

6.2 EULER'S METHOD 

Euler's method is the natural starting point for any discussion of numerical methods for 
IVPs. Although it is not the most accurate of the methods we study, it is by far the simplest, 
and much of what we learn from analyzing Euler's method in detail carries over to other 
methods without a lot of difficulty. Even though we treated Euler's method in Chapter 2, 
we are going to cover it again here, but this time more fully. 

There are two main derivations; one is geometric, the other is analytic, and a third 
derivation (the one we used in Chapter 2) is given in §6.4. We start with the geometric 
derivation. 

Consider Figure 6.1. This shows the graph of the solution y(t) to the initial value 
problem 

y' = f(t,y), y(t0) = yo, 

near the initial point io- All we know about y is that it passes through the point (io, i/o) = 
(0,0), and that it has slope /(io, 2/o) (why?) at that point. We therefore can approximate 
y(t + h) for some small h by using the tangent line approximation: 

»(to + ft) « y(tQ) + hf(t0,y(to)). (6.10) 

For small values of ft this will be a decent approximation, and if we define the next point 
in our grid by t\ — to + ft, then it is very natural to extend (6.10) to get 

tf(ii + ft)«l/(ti) + ft/(ti,y(ti)), (6.11) 

or, more generally, 
y(tn + ft) « y(tn) + hf(tn,y(tn)). (6.12) 

The numerical method is then defined from (6.12) according to 

2M+i =yn + hf(tn,yn), 

with y0 given and yn « y(tn). 
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Figure 6.1 Geometric derivation of Euler's method. 

This is a reasonable and easy-to-follow derivation, but it does not admit of much error 
analysis, and it also opens up a lot of questions. Perhaps the most important such question 
concerns the validity of extending the tangent line approximation from the first computed 
point, (ti,j/i), to the next one. From the graph in Figure 6.1, it is clear that there is 
substantial error between y\ and y{t\). How valid, then, is (6.11) in defining the next 
approximate point? 

The analytic derivation is based, to no surprise, on Taylor's Theorem. We have that 

y{t + h)=y{t) + hy'(t)+l-h2y"{e), 

for some Θ between t and t + h. But the differential equation implies that y'(t) = f(t,y(t)), 
so we have 

y(t + h) = y(t) + hf(t, y(t)) + \h2y"{e). (6.13) 

Now set t = to, define tn+\ = tn + h, set yn to be the approximate value, and drop the 
remainder to get the same expression that we had before: 

Vn+i =yn + hf(tn,yn). (6.14) 

The advantage of this derivation is that we have (6.13), which relates the exact solution 
to the numerical method with a very precise remainder. It is the key to getting an error 
estimate for Euler's method. To anticipate some more general terminology, the quantity 

R(t,h) = -h2y"{e) 
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is called the residual for Euler's method; the quantity 

r(t,h) = TR(t,h) 
h 

is called the truncation error. 
Before getting into the analysis (see §6.3) some examples might be in order. 

■ EXAMPLE 6.6 

Consider the two differential equations 

y' + y = l, y(0) = 0, (6.15) 

and 
y' = y, y(0) = i- (6.16) 

The exact solutions can be found by typical ODE methods to be 

y(t) = i-e-t 

for (6.15), and 
y(t) = el 

for (6.16). Table 6.1 shows the error made by Euler's method in solving each of these, 
using a sequence of decreasing meshes. The entries in the table give the maximum 
error over the interval [0,1]; that is, 

En = max\y(tk) -yk\-
k<n 

Table 6.1 Euler's method applied to (6.15) and (6.16). 

n = h~L 

16 
32 
64 

128 
256 
512 

1024 

Error in approximating (6.15) 
0.118053E-01 
0.582415E-O2 
0.289292E-02 
0.144173E-02 
0.719686E-O3 
0.359550E-03 
0.179702E-03 

Error in approximating (6.16) 
0.803533E-01 
0.412917E-01 
0.209369E-01 
0.105428E-01 
0.529020E-02 
0.264983E-02 
0.132610E-02 

The table shows that the errors in both cases are going down by about a factor of 
2, from which we infer that Euler's method is 0(h) accurate, only. Figures 6.2 and 
6.3 show plots of the absolute error as a function of t for the n = 1024 cases; note 
that for (6.15) the worst error occurs near the beginning of the computation and that 
afterward the error actually decreases, whereas for (6.16) the worst error is always 
the most recent error. In fact, the error for (6.16) appears to be growing exponentially. 
We will touch on this issue in the next section, and try to explain it. 
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Figure 6.2 Error as a function of time Figure 6.3 Error as a function of time 
forEq'n. (6.15), using h = 1/1024. forEq'n. (6.16), using h = 1/1024. 

Exercises: 

1. Use Euler's method with h = \ to compute approximate values of y{\) for each of 
the following initial value problems. Don't write a computer program, use a hand 
calculator to produce an orderly table of (tk, 2/fc) pairs. 

(a) z / = 2/(1-y) , 2/(0) = ±; 

(b) tj/' = y(sini),I/(0) = 2; 

(c) y' = j/(l + e2t),i/(0) = l; 

(d) y' + 2y = 1,2/(0) = 2. 

2. For each initial value problem above, use the differential equation to produce ap-
proximate values of y' at each of the grid points, tk, k = 0,1,2,3,4. 

3. Write a computer program that solves each of the initial value problems in Problem 
1, using Euler's method and h = 1/16. 

4. For each initial value problem below, approximate the solution using Euler's method 
using a sequence of decreasing grids / i _ 1 = 2 ,4 ,8 , . . . . For those problems where 
an exact solution is given, compare the accuracy achieved over the interval [0,1] with 
the theoretical accuracy. 

(a) y' + Ay = 1, y(0) = 1; y(t) = Ι (3ε"4 ί + 1); 

(b) y1 = -y In y, y(0) = 3; y{t) = e('"3)e_1; 

(c) y' + y = sin47rt, y(0) = \\ 

(d) 2/' + sin2/ = 0,2/(0) = l. 

< · · · > 
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6.3 ANALYSIS OF EULER'S METHOD 

In this section we will prove two results that establish the convergence and error estimate for 
Euler's method. We provide a fair amount of detail in this section, in order to avoid going 
into so much detail with more sophisticated methods that we will derive later. Throughout 
the section we are concerned with the approximate solution, via Euler's method, of the 
initial value problem 

y'= f{t,y), y(t0) = y0. 

The first theorem shows that Euler's method is, indeed, first-order accurate. 

Theorem 6.3 (Error Estimate for Euler's Method, version I) Let f be Lipschitz contin-
uous, with constant K, and assume that the solution y G C2([to,T}) for some T > to-
Then 

max \y(tk) - yk\ < C0\y(t0) - y0\ + C7i||2/"Hoo,[t0,r]> 
tk<r 

where 
C0 = e* <r-*>> 

and 
/ f (T- to) _ i 

Proof: The key element in the proof of this result is the fact that the exact solution 
satisfies the same relationship as does the approximate solution, except for the addition of 
a remainder term. Thus we have (from (6.13) and (6.14)), 

y(tn+l) = y(tn) + hf(tn,y(tn)) + \h2y"{0n), 

2/n+i = yn + hf{tn,yn), 

which we subtract to get 

2/(in+i) - 2/n+i = y{tn) ~ 2/n + hf(tn, y(tn)) - hf(tn, yn) + -h2y"{en). 

Take absolute values and apply the Lipschitz continuity of / to get 

\y(tn+i) - yn+x\ < \y{tn) - yn\ + Kh\y(tn) - yn\ + -h2\y"{en)\, 

which we write as 
en+i < jen + Rn, 

where en = \y(tn) - yn\, 7 = 1 + Kh, and Rn = \h2\y"(Θη)\, for notational simplicity. 
This is a simple recursive inequality, which we can "solve" as follows. We have 

ei < 7^0 + Ro, 

e2 < 7^i + Ri < 72εο + 7-Αο + Λι, 
e3 < 7^2+ #2 < 73eo + 72-Ro + 7-Ri + R2, 

and so on. An inductive argument can be applied to get the general result 

n - l 

en < 7"e0 + 2>>2 Σ ^ " ^ - 1 - * ) ! · 
fc=0 
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It remains only to simplify the summation term. We have 

\y"(t)\ < ||i/"||oo,[to.n 

for all t e [to, T], so we then have 

e„ < 7"e0 + Qfc2| |y"IU[to,r]) ί Σ > Ί " 

We can explicitly add up the sum now, to get 

1 7" — 1 
e» < 7neo + 2h2W\\°°.lto,T\—y > 

but 7 = 1 + Kh so that 7 — 1 = Kh, thus we have 

7" - 1 
en < 7"eo + 2K fclls/loojto.r]· 

Finally, we note that it follows from Taylor's Theorem (see Problem 1) that 

( l + z ) n < e n x , z > - l ; 

so that 
7 n = (1 + Kh)n < enKh = eKW> = eK^-to) < eK(-T-to\ 

and we are done. · 
This estimate shows that Euler's method is first order (i.e., the error is 0(h)), but it also 

shows that the constants multiplying the terms in the error estimate can become quite large. 
If we now assume that / is smooth and uniformly monotone decreasing, then we get an 
estimate that, while still first order, involves much smaller constants. 

Theorem 6.4 (Error Estimate for Euler's Method, version II) Let f be smooth and uni-
formly monotone decreasing in y, and assume that the solution y e C2([to, T}) for some 
T > to. Then, for h sufficiently small, 

max \y{tk) - yk\ < C0|y(i0) - 2/o| + C7i||y"H°o,[t0,T], 
tk<T 

where Co < 1, Co -> 0 as k —> 00, and 

2m 

Proof: The proof here is much akin to that in Theorem 6.3, at least in the beginning. We 
have 

y{tn+i) - Vn+i = y{tn) - Vn + hf{tn,y(tn)) - hf(tn,yn) + -h2y"(en). (6.18) 

Now, instead of taking absolute values and inequalities, we use the Mean Value Theorem 
to write 

f(tn,y(tn)) - f(tn,yn) = ^-(tn,Vn){y{tn) - yn), 
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where ηη is a value between y(tn) and yn. For simplicity we write this as 

-K-(tn,Vn){y{tn)-yn) = kn(y{tn) - yn), 
dy 

where we note that the smooth and uniformly monotone decreasing hypothesis implies that 
- M < kn < - m < 0. Then (6.18) becomes 

y(t„+i) - yn+i = ln{y{tn) - yn) + -^h2y"{en), 

where ηη — 1 — knh. Now take absolute values and use the triangle inequality to get 

en+i < \ln\en + Rn 

where en and Rn are as in the proof of Theorem 6.3. Assume now that h is small enough 
that 1 - Mh > 0; i.e., assume that h < M - 1 . Then 7 > 0 for all n, so that 

l7n| — In = 1 - knh < 7 = 1 — mh < 1. 

This is the crucial difference between the two theorems and their proofs. By making a 
stronger assumption about the way / behaves, we are able to show that the rate constant in 
the error recursion is less than 1. We can then write 

en+i < jen + Rn., 

from which 

en < 7"e0 + Itf I I , , ' ' | | ^ ^ 2 1 = 1 (6.19) 

now follows as before. We now observe that 

0 < 7" - 1 = 1 - 7" < 1 - 7 " ^ 1 - 7" < 1 
— 7 — 1 1 — 7 — 1 — (1 — mh) mh ~ mh' 

so that (6.19) becomes 

e„ < 7 n e o + ^/i||y"||oo,[to,T], 

and we are done. · 
Both error theorems show that Euler's method is only first-order accurate; that is, the 

error is O(h). The difference between the theorems lies in the way that the estimates 
depend on the function / : If / is only Lipschitz continuous, then the constants multiplying 
the initial error and the mesh parameter can be quite large and rapidly growing; however, 
if / is smooth and uniformly monotone decreasing in y—which means that the differential 
equation is modeling a decay process, essentially—then the constants in the error estimate 
are bounded for all n. Note, in particular, how the initial error is affected by this. If / is 
monotone decreasing in y, then the initial error is multiplied by 7™, where 0 < 7 < 1; thus, 
the effect of any initial error decreases rapidly as the computation progresses. However, 
if / is only Lipschitz continuous, then (6.17) suggests that any initial error that is made 
could be amplified to something exponentially large. While the initial error is typically 
quite small—usually, it is C(u)—if the term multiplying it grows exponentially, then the 
effects of this small initial error could dominate the calculation at a later point in time. 

Now let's look back at Example 6.6 from §6.2. For one equation (y' = y), the error 
grew almost exponentially with time, and if we look at the definition of / for this case, we 
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see that it is only Lipschitz continuous. For the second equation (y1 — 1 — y), however, we 
have that / is smooth and uniformly monotone decreasing in y, thus the error growth with 
time is much more benign, as predicted by the theory and confirmed by the computation. 

Exercises: 

1. Use Taylor's Theorem to prove that 

(1 + x)n < enx 

for all x > — 1. Hint: Expand ex in a Taylor series, throw away the unnecessary 
terms, and then take powers of both sides. 

2. For each initial value problem below, use the error theorems of this section to estimate 
the value of 

E{h) = ||»"IU,,o.i] 

using h = 1/16, assuming that Euler's method was used to approximate the solution. 

(a) y' = sin y, y(0) = \κ\ 

(b) y' + 4y = 1,2/(0) = 1; 

(c) 2/' = 2/(1 - V), 2/(0) = 1/2. 

3. Consider the initial value problem 

2/' = e~l - 162/, 1/(0) = 1. 

(a) Confirm that this is smooth and uniformly monotone decreasing in y. What is 
M? What is m? 

(b) Approximate the solution using Euler's method and h = | . Do we get the 
expected behavior from the approximation? Explain. 

< · · · > 

6.4 VARIANTS OF EULER'S METHOD 

Euler's method, of course, is not the only nor even the best scheme for approximating 
solutions to initial value problems, and what we need to do now is look at other methods 
that we might employ. Several ideas can be considered based on some simple extensions 
of one derivation of Euler's method. 

Our third derivation of Euler's method, which also gives us a remainder term, is based 
on our difference methods for derivative approximation (from §2.2). We start with the 
differential equation 

y'(t) = f(t,y(t)) 

and replace the derivative with the simple difference quotient derived in (2.1). This yields 

y[t + h)- y(t) 1 „ 
7i = f(t,y{t)) + -hy (0tifc), 
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where the subscripts on Θ remind us that the value depends on both t and h. Euler's method 
is then obtained simply by dropping the remainder, and replacing t with tn and y(t) with 
yn, and so on. This is the derivation we used in Chapter 2. 

This begs an obvious question: What happens if we use other approximations to the 
derivative? For example, if we use 

y'it) = "(*>-»(«-*) - \hy»{e), 

then we get the backward Euler method: 

yn+1 = Vn + hf (tn+1, yn+1 ) ; (6.20) 

and if we use 

y(t) = Yh Qhy {6t>h) 

we get what is commonly referred to as the midpoint method: 

2/n+i = 2/n-i + 2/i/(f„, yn). (6.21) 

Or, we could use the derivative approximations based on interpolation (§4.5): 

y'(t) « ^(-y(t + 2h)+4y(t + h)-3y(t)), 

y'(t + 2h) « - ^ (3y(i + 2Λ) - 4y(t + h) + y(t)), 

to get the two numerical methods 

yn+\ = 4yn - 3y„_i - 2/ι/(ί„_ι, y n - i ) , (6.22) 

and 
4 1 2 

2/n+l = ö2/n ~ Q^"- 1 + ö ^ / f t n + l . 2/n+l)· (6.23) 

Finally, we note that yet another set of methods can be derived by integrating the 
differential equation. We have that the exact solution satisfies 

/

t+h 
f(s,y(s))ds. (6.24) 

We can therefore apply the trapezoid rule to (6.24) to get 

y(t + h) = y(t) + ±h [f(t + h, y(t + h)) + f{t, y(t))] - ^h3y'"(et,h), (6.25) 

where 6t,h 6 [t,t + h] and we remind the reader that 

f(t,y(t)) = y'(t)^^f(t,y(t)) = y'"(t). 

Dropping the remainder from (6.25) leads to the numerical method (commonly called the 
trapezoid method, for obvious reasons) 

2/n+i = Vn + ^h{f{tn+i,yn+i) + f(tn,yn)). (6.26) 
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Alternatively, we can use a midpoint rule approximation to integrating (6.24). This leads 
to 

y(t + h) = y{t) + hf (t + \h,y(t + \h^ - ±h3y"'(et,h), 

which suggests the numerical method 

2/n+l = ?/n + hf{tn+i/2, î/n+l/2), (6.27) 

where in + i /2 = tn + | / i and yn+\/2 ~ y(tn + \h). This is similar to (6.21). 
What about these methods? Are any of them any good? 
Several observations can be made immediately. The methods (6.21), (6.22), and (6.23) 

are all based on derivative approximations that are ö(h2), whereas Euler's method was 
based on a derivative approximation that is only O(h) (as is the backward Euler method 
(6.20)). This suggests to us (but does not, of course, prove) that (6.21), (6.22), and (6.23) 
should be more accurate than Euler (and backward Euler). Similarly, the methods (6.26) 
and (6.27) are based on integral approximations that are more accurate. 

A second observation involves the midpoint method (6.21) and the two methods (6.22) 
and (6.23). Note that here we have formulas fory„+1 in terms of yn andyn-\. These are 
not single-step methods, they are multistep methods; that is, they depend on information 
from more than one previous approximate value of the unknown function. How do we 
actually implement these methods? The differential equation only gives us a single initial 
value, yo; we need more to even start the recursion here. 

A third observation concerns backward Euler and the methods (6.26) and (6.23). Note 
that all of these formulas involve f{tn+\,yn+\)', we cannot explicitly solve for the new 
approximate value yn+\, which is why these methods (and others like them) are called 
implicit, whereas methods like Euler, midpoint, and (6.22) are called explicit, because they 
define yn+i explicitly in terms of information from previous steps. 

We would like to address the issue of accuracy, at least experimentally, but we can't 
even implement several of the methods until we address the other problems. However, it 
will be useful, at this point, to introduce some terminology associated with the accuracy of 
the various methods. 

6.4.1 The Residual and Truncation Error 

We are, of course, interested in the accuracy of the methods we develop here. All of the 
numerical methods for IVPs that we will study can be written in the general format 

p 

J/n+i = X]afc2/n-fc + hF(yn+i,yn,... ,yn-p; fn+u fn,..., f n - p ) , (6.28) 
fc=0 

where we have used fk = f{tk, yu) for simplicity.2 Thus, for example, in Euler's method 
we have 

2/n+l =Vn + hf(tn,Vn), 

so that 

a0 = 1, 

ak = 0, all k > 1; 

2We will return to this notational convention in §6.4.3. 
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and 
F{yn+l,yn, ■ ■ ■ ,Un-p',fn+l,fn,- ■ ■ , fn-p) = fn = /( ίη,2/η)· 

For the trapezoid rule method (6.26) we have 

ao = 1, 

ak = 0, all k > 1; 

but 

F(yn+l,yn, ■ ■ ■ ,yn-P; fn+l, fn, ■ ■ ■ , fn-p) = ^{fn+fn+l) = £ (/(*"> 2/η)+/(ίη+1» 2/n+l))· 

Crucial to the accuracy of these methods is the extent to which the exact solution y(t) 
satisfies the numerical method (6.28). To this end we define the residual, the truncation 
error (sometimes called the local truncation error), and the concept of consistency. 

Definition 6.3 (Residual, Truncation Error, and Consistency) For a numerical method 
written as in (6.28), define the residual, Rn, as given by 

v 
Rn = y(tn+i) -^2aky{tn-k) - hF(y{tn+i),y(tn), ■ ■ ■ ,y{tn-p); f(tn+i,y{tn+i)), 

fc=0 

f(tn, y(tn)), ■■■, f{tn-p, y{tn-p)))-

The truncation error is defined as 
Tn 

and the method is said to be consistent if 

lim max \τη\ = 0 
h-tO tn<T 

for sufficiently smooth solutions y. 

For any "reasonable" method, the error maxtfc<r \y(tk) — yk\ is proportional to the 
truncation error, if the solution is smooth enough. Note that the residual and truncation 
error are both defined in terms of substituting the exact solution into the numerical method.3 

For most methods that we develop, the residual and truncation error naturally come out 
of the construction process. This is the case, for example, with Euler's method and the 
several variants discussed above. 

For example, consider some of the methods we have looked at so far. 

■ EXAMPLE 6.7 

Using either of the two analytic derivations for Euler's method, we can write 

y(tn+i) = »(in) + hf(tn,y{tn)) + -h2y"{9n); 

3There is a disturbing lack of consistency in the literature on the terminology used here. For example, Burden and 

Faires [5], Isaacson and Keller [12], and Allen and Isaacson [1], all define truncation error as we have here. Other 
books simply replace the word truncation with discretization. However, Atkinson [2] and Lambert [15], among 
others, use truncation error or local truncation error for what we have called the residual. So, when consulting 
references, be sure to check and see which definition is being used. 

-Rn, 
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therefore, the residual is \h2y"{9n), and the truncation error is \hy"(9n). The 
method is consistent as long as the solution is C2, because in this case we have 

l i m m a x ^ V W I = (**\#) ( m j ^ W l ) = (**\#) ( * ) = 0, 

where Yi is the maximum absolute value of y" for t <T. 

M EXAMPLE 6.8 

Using what we know of the trapezoid rule for approximating integrals, we can write 
(see §2.5) 

y(tn+1) = y(tn) + \h{f{tn,y(tn)) + f{tn+l,y{tn+l))) - ^h3y'"(9n); 

therefore, the residual is — ̂ / i 3y '"(ön) , and the truncation error is — j^h2y'"(9n). 
This time, the method is consistent if y is C3. 
Generally, the residual and truncation error are derived by expanding y{tn+\ ) in a Taylor 

series about tn and matching terms so they vanish, or by applying some approximate 
integration or differentiation method. 

■ EXAMPLE 6.9 

Consider the method defined by 

2/n+i =yn + ^h(3f(tn,yn) - / ( t n - i , 2 / n - i ) ) , 

which we encounter in §6.6 as one of the Adams-Bashforth methods. What are its 
residual and truncation error, and is it a consistent method? 

We have 

Rn = y{tn+i) - y(tn) - - / i (3/( in ,y(tn)) - / ( t„_i ,y( t„_i))) . 

We write y[tn+\) in a Taylor series as 

y(tn+1) = y(tn) + hy'(tn) + \h2y"{tn) + h3y'"(e), 

and use the fact that y'(t) = f(t, y(t)) to write the residual as 

Rn = hy'(tn) + h2y"(tn) + lh3y'"(e)-h(3y'(tn)-y'(tn-1)) 
Z 0 l 

= \h [hy"{tn) - (y'(tn) - ι /(ίη_ι))] + \h3y'"{9). 

Taylor's Theorem can again be applied, this time to y', to get 

*/(*„_!) = y'(tn) - hy"(tn) + \h2y'"{V), 

so that we now have 

Rn = \h hy"(tn) - hy"(tn) + l-h2y'"tn) + 1-h*y>"{9) = h3(\y>"(V)+1-y>"(9)y 
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Therefore, the residual is ö(h3) and the truncation error is 0(h2). Moreover, the 
method is consistent whenever the exact solution is C3. 

We close this section with a definition. 

Definition 6.4 (Order of Accuracy) If the truncation error for a numerical scheme for 
the solution of initial value problems is ö(hk), then we say that the method has order of 
accuracy k. 

Thus, the trapezoid rule method has order of accuracy p = 2, and Euler's method has 
order of accuracy p = 1. It is commonplace to say that the trapezoid rule is second-order 
accurate, and Euler's method is first-order accurate. 

There is a potential for confusion here. Note that the definition of order of accuracy is 
based on what we defined as the truncation error, not the residual. 

6.4.2 Implicit Methods and Predictor-Corrector Schemes 

The methods (6.26), (6.27), and (6.23) are all examples of implicit methods, because in 
each instance it is not possible to solve for yn+\ in terms of yn and other known values. 
Nonetheless it is possible to make use of these methods; the trapezoid method, (6.26), is in 
fact very useful. 

One way to implement methods of this type is to view the equations (6.26), (6.27), or 
(6.23) as an instance of a single nonlinear equation in the single unknown yn+\. That is, 
we solve for the unknown value of yn+i using Newton's method or the secant method or a 
fixed-point iteration. 

■ EXAMPLE 6.10 

Consider the IVP 
y' = -y\ny, y(0)=yo. (6.29) 

Applying the trapezoid method (6.26) to this yields the computation 

yn+i =Vn- 2 % n + i \nyn+i + yn lnyn], (6.30) 

where we now view yn+i as the (unknown) root of the function 

F{y) = y~yn + -h\y\ny + yn\nyn}. 

Alternatively, we can view (6.30) as defining yn+\ as the fixed point of the function 

9(y) =Vn- ^h[y\ny + ynlnyn}. 

Regardless of which view we take, we can apply the methods of Chapter 3 to solve 
for yn+\. Denote the individual iterates as 2/n+i,fc. where k is the iteration counter.4 

4 At this point it is worthwhile to point out that some confusion can occur. We have two indices on y. One of them 

(n + 1) refers to the time step in the numerical solution of the differential equation. The other one (fc) refers to 
the iteration count for the solution—within each time step—of the nonlinear equation for the next approximate 
value of y. 
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Then Newton's method applied to F(y) yields the iteration 

'Vn+\,k -Vn - ïh[f{tn+l,yn+l,k) +f(tn,yn)] 
2/n+l,fc+l — 2/n+l,fc I Λ i , , ,, > 

V J- _ 2h,Jy\tn+l^yn+l,k) 

where 

fy(t,y) = -βΖ&ν)'' 

the secant method yields the iteration 

2/n+l,fc+l = 2/n+l,fc - ij/n+l.fc ~ 2/n - - / l [ / ( i „ + l , ?/n+l,fc) + / ( * n , 2/n)] ] 

2/n+l,fc - 2/n+l,fc-l 

,2/n+l,fc ~ 2 ' 1 / ( ί " + 1 ' 2 / " + 1 ^ · ) _ 2 / n + l , f c - l + ïhf(tn+l, y„+l , fc - l ) / 

and a simple fixed-point iteration yields the iteration 

2/n+l,fc+l = 3/n - 2' l[3/"+l,fcl n2/n+l,fc +2/η1ηΤ/„] . (6.31) 

(Note that the fixed-point iteration is much the simplest of these three, although it will 
usually be the slowest to converge.) We know that all three of these will converge 
if h is sufficiently small and if we take the initial guess close enough to the actual 
value (for the fixed-point iteration this is a straightforward application of Theorem 
3.6; see Problem 17); it is very reasonable to take yn+i,o = 2/n» >·β·» to take the 
value from the previous step of the iteration as the initial guess for the next step. An 
alternate (and usually better) means of initializing the iteration is to use some explicit 
method—Euler's method, for example—to generate yn+i,o· 
Although there are circumstances in which it is necessary to carry out this type of 

iteration, for most problems it is, in fact, possible to use a much cruder means of estimating 
yn+i- This leads us to the very important predictor-corrector idea. 

Consider the trapezoid method, defined by (6.26); instead of actually solving for the 
exact value of yn+1 that satisfies this equation, we apply a simpler method to estimate yn+\, 
and then use this estimated value on the right side of (6.26). For the trapezoid method, it is 
common to use Euler's method as the estimator, or predictor. 

Vn+i = Vn + hf(tn, yn); (6.32) 

and then the corrector step is accomplished by 

î /n+l =yn + ^ll[f(tn+l,yn+l) + f(tn,yn)]- (6.33) 

This combination is generally referred to as the trapezoid rule predictor-corrector method. 
Note that it is the same as using Euler's method to initialize a fixed-point iteration that we 
arbitrarily stop after one step. 
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■ EXAMPLE6.il 

Consider the IVP 

y' = -y\ny, y(0) = - . 

We will use the trapezoid rule predictor-corrector to approximate the solution at 
t = 1 using the rather crude value h = 0.25. We have the following sequence of 
computations: 

V = yo + hf{t0, yo) = 0.5 - 0 . 2 5 x 0 . 5 In0.5 = 0.5866433976; 

2/1 = 2/0 + \h[f{t0,yo) + f(tl,y)]= 0.58243161136465. 

y = yi + hf(tuyi) = 0.66113901764113; 

2/2 = Vi + | Ä [ / ( * I , 1 / I ) + /(*2,î/)] = 0.65598199856663. 

y = 2/2 + hf(t2,2/2) = 0.72512609790319; 

2/3 = 2/2 + \h[f(t2,2/2) + f{t3,y)] = 0.71968686944048. 

V = 2/3 + hf(t3,y3) = 0.77887015094459; 

2/4 = 2/3 + \h[f(t3,2/3) + /(i4,27)] = 0.77360953103925. 

The exact value is 2/(1) = 0.77492068450995, so we are not far off, using this 
crude timestep. 

■ EXAMPLE 6.12 

To illustrate the difference between actually solving the nonlinear equation and using 
a predictor-corrector method, we continue with the same IVP (6.29) as used in 
Example 6.11. The exact solution here is y = e^~ln2^e . Table 6.2 shows the 
results of approximating the solution to this equation using the predictor-corrector 
method (6.32)-(6.33) (second column) and actually solving the equation (6.30) (using 
a fixed-point iteration) for the exact value of yn+\ (fourth column). Clearly, the two 
methods are not producing wildly different approximations. Note, also, that the 
calculation based on exactly solving the recursion is more accurate; in fact, the error 
in the iterated approximation (fifth column) starts out at about 61% of the error for 
the predictor-corrector approximation, and ends up at around 9%. 

Generally speaking, unless the differential equation is very sensitive to changes in the 
data, a simple predictor-corrector method will be just as good as the more time-consuming 
process of solving for the exact value of yn+i, which satisfies the implicit recursion. 
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Table 6.2 Implicit method applied to y' = —y In y. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Predictor-corrector 
Vn 

0.521438685E+00 
0.542415401E+00 
0.562889543E+00 
0.582826911E+00 
0.602199375E+00 
0.620984504E+00 
0.639165163E+00 
0.656729097E+00 
0.673668505E+00 
0.689979615E+00 
0.705662271E+00 
0.720719531E+00 
0.735157278E+00 
0.748983859E+00 
0.762209745E+00 
0.774847210E+00 

Error 
0.629350068E-05 
0.124265310E-04 
0.183888337E-04 
0.241665678E-04 
0.297435050E-04 
0.351021428E-04 
0.402246989E-04 
0.450939634E-04 
0.496939995E-04 
0.540106915E-04 
0.580321478E-04 
0.617489703E-04 
0.651544045E-04 
0.682443879E-04 
0.710175127E-04 
0.734749197E-04 

Fixed-point solution 
Vn 

0.521441082E+00 
0.542420677E+00 
0.562898148E+00 
0.582839249E+00 
0.602215794E+00 
0.621005290E+00 
0.639190535E+00 
0.656759208E+00 
0.673703441E+00 
0.690019401E+00 
0.705706870E+00 
0.720768874E+00 
0.735211228E+00 
0.749042237E+00 
0.762272333E+00 
0.774913760E+00 

Error 
0.389659700E-05 
0.715031332E-05 
0.978351030E-05 
0.118283433E-04 
0.133243757E-O4 
0.143164168E-04 
0.148526117E-04 
0.149827925E-04 
0.147570906E-04 
0.142247986E-04 
0.134334649E-04 
0.124059468E-04 
0.112040544E-04 
0.986672690E-05 
0.842946303E-05 
0.692422919E-05 

Algorithm 6.1 Trapezoid predictor-corrector Pseudocode 

input tO, yO, h, n 
ex te rna l f 
for k = 1 to n do 

! F i r s t , p r e d i c t : 

fO = f ( t 0 ,y0 ) 
ybar = yO + h*f0 

! Next, cor rec t : 

y = yO + 0.5*h*(f0 + f ( t0+h,ybar ) ) 

! Update for next pass through the loop 

yO = y 
tO = t 

endfor 

Programming Hint: Note how this code saves the function evaluation f (tO ,y0) in order 
to re-use it in a later statement. 
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If the differential equation is linear, however, then we can entirely avoid the problem of 
implicitness, as we now illustrate. Write the general linear ODE 

y' = a(t)y + b(i), y(t0) = y0, 

where a and b are known functions of t, only. If we apply the trapezoid method to this 
equation we initially have the implicit recursion 

2/n+l = Vn + 2h [α(*η)νη + K^n) + a(tn+i)yn+i + b(tn+l)] · 

However, we can make this explicit, by using the linearity of the equation to solve for yn+i-

( i + m g y i fb(tn) + b(tn+1) 
2/n+l = Π—77 Γ )Vn + ^h I " TT-T. Γ I · (6·34) Kl - \ha{tn+{) ) n 2 \ l - \ha{tn+{) ) 

The significance of this will become apparent later, when we discuss stability and stiffness 
issues in more detail. For now, we content ourselves with an example. 

■ EXAMPLE 6.13 

Consider the IVP 
y' = y, y(0) = i, 

which we considered previously, using only Euler's method. This is a linear equation, 
so we can use the ideas of (6.34) to approximate this using the trapezoid rule. The 

Table 6.3 Trapezoid rule applied to y = y. 

n^h-1 

4 
8 

16 
32 
64 

128 
256 
512 

1024 

E{h) 
0.1432958E-01 
0.3550064E-02 
0.8855204E-03 
0.2212558E-03 
0.5530617E-04 
0.1382606E-04 
0.3456484E-05 
0.8641191E-06 
0.2160295E-06 

recursion becomes 
1 + Λ 

2/n+i = 1 _ ,yn, i/o = l; 

thus, for h = 2 we very quickly get that 

5/4 5 
2/1 = jj^yo = 1.6667; y2 = -yi = 2.7778; 

2/3 - 3^2 = 4.630; y4 = ^y3 = 7.7160. 
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If we continue with smaller and smaller values of h, then the error 

E(h) =max|y(tfc) - yk\ 
tk<l 

is as given in Table 6.3. Note that the error is going down by a factor of 4, as we 
expect from a second-order method. 

The predictor-corrector idea can also be used to make (6.27) a practical method. If we 
use Euler's method as the predictor, then we have 

y = yn + -xhf(tn,yn) (6.35) 

>2/n+i = yn + hf(tn + -h,y). (6.36) 

Note that we used the Euler predictor to take a "half step," and used this value in the 
corrector to approximate y(tn + h/2). 

■ EXAMPLE 6.14 

Let's compute approximate solutions to the IVP: 

y> = _e-('+»), 2/(0) = 1, 

which has exact solution y = ln(e - 1 + e_ t ) . Using h= \, we compute as follows: 

y = y0 + hi f-e-^o+vA = 1 - i e _ 1 = 0.9540150699, 

so that then 

y1=yo + h (-e-to+Va+S)) = 1 - ie-è-°-9540i50699 = 0.957508729. 

The second value is computed similarly: 

y = yi + \h (-e~(ti+yiA = 0.920141092, 

V2 =Vi+h i-e-{il+h/2+^ = 0.8890439235. 

It can be shown (see the exercises) that this is also a second-order method. 

6.4.3 Starting Values and Multistep Methods 

Because they depend on more than just a single previous value, multistep methods such 
as (6.21), (6.22), and (6.23) require starting values. In essence, we must use some other 
method to compute approximations yi, 2/2, · ■ ■, %> before we can use the multistep method. 
For the methods presented so far, we need only a single additional value, y\. For some 
of the methods presented in §6.6, we will need several such starting values. One reason 
for the development of the predictor-corrector methods in §6.4.2 is precisely to give us 
single-step methods that we can use to produce accurate starting values for the multistep 
methods, such as (6.21), (6.22), and (6.23). 

Let's look at an example. 
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■ EXAMPLE 6.15 

We take as our initial value problem the same one we looked at in the beginning of 
§6.4.2, 

!/' = - l / lny , y(0) = - . (6.37) 

We want to apply, say, the midpoint method 

2/n+l = 2/n-l + 2/l/(i„, yn) 

with h = \ to this problem. We will first use Euler's method to provide the estimate 
of y(t\ ) that is necessary to proceed with the computation. We get 

2/i = 2/0 + hf(t0,yo) = \ + \ (-\ In M = 0.5866433976. 

We can now compute using the midpoint method: 

2/2 = W) + 2/i/(ii,i/i) = \ + 2 x \ (-0.5866433976ln0.5866433976) = 0.6564396503, 

2/3=2/1+ 2hf{t2,y2) = 0.7247991686, 

and so on. 

Table 6.4 Midpoint method applied to y' = —y\ny, h = 1/16. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

2/1 computed by predictor-corrector 
Vn 

0.521438685E+00 
0.542442735E+00 
0.562913366E+00 
0.582876067E+00 
0.602241522E+00 
0.621050404E+00 
0.639220651E+00 
0.656807255E+00 
0.673732972E+00 
0.690066203E+00 
0.705732009E+00 
0.720811392E+00 
0.735229212E+00 
0.749078472E+00 
0.762281388E+00 
0.774942633E+00 

Error 
0.629350068E-05 

-0.149082970E-04 
-0.543392852E-05 
-0.249892345E-04 
-0.124030017E-04 
-0.307978504E-04 
-0.152631109E-04 
-0.330637366E-04 
-0.147732929E-04 
-0.325779206E-04 
-O.117057153E-04 
-0.301122659E-04 
-O.678027590E-O5 
-0.263680981E-04 
-0.625682149E-06 
-0.219485394E-04 

2/1 computed by Euler's method 
Vn 

0.521660849E+00 
0.542433042E+00 
0.563136000E+00 
0.582854530E+00 
0.602465395E+00 
0.621015069E+00 
0.639446837E+00 
0.656756294E+00 
0.673962850E+00 
0.689997851E+00 
0.705967262E+00 
0.720723877E+00 
0.735471822E+00 
0.748969952E+00 
0.762533643E+00 
0.774811136E+00 

Error 
-0.215870648E-03 
-0.521501377E-05 
-0.228068587E-03 
-0.345267290E-05 
-0.236276553E-03 
0.453741300E-05 

-0.241449481E-03 
0.178973669E-04 
-0.244651773E-03 
0.357749024E-04 

-0.246958289E-03 
0.574032598E-04 

-0.249390296E-03 
0.821511474E-04 

-0.252880568E-03 
0.109548790E-03 

Suppose now that we want to use the trapezoid rule predictor-corrector method 
(6.32) and (6.33) to provide the estimate of y{t\). Again, using h = \ we compute 

y = 2/0 + hf(t0,yo)= 0 . 5 - 0.25 x0.51n0.5 = 0.5866433976; 

2/1 = 2/0 + 2 TOo,2/o) + / ( i i , 27)] =0.5824316114. 
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so that 

2/2 =yo + 2hf{ti,yi) = ]r +2 x i (-0.5824316114ln0.5824316114) = 0.6574148126, 

2/3 = 2/1 + 2Λ/(ί2ι 2/2) = 0.7203046741, 

and so on. Regardless of which method is used to produce y\, we can now compute 
yk values using only the midpoint method. 

Now, by taking h = 1/16, and computing out to t = 1, we get the results shown 
in Table 6.4. Compare this to Table 6.2. Note that, as expected, we are getting better 
accuracy when we use the more accurate starting value, although it should be noted 
that the discrepancy is not large. 

This example begs an interesting question. Note that we used Euler's method, which 
is only 0(h), to generate the starting values for the midpoint method, which is ö(h2). Is 
the use of a lower-order method for the starting values going to affect the accuracy of the 
overall computation? 

A complete explanation is beyond the scope of this book, but it can be shown that a 
(p — l)-order method can be used to generate the starting values for a p-order method, 
usually without affecting the overall order of convergence. It would of course be more 
accurate to use a p-order method than to use a (p — 1)-order method for the starting values, 
but the net order of accuracy of the method should not be affected. 

6.4.4 The Midpoint Method and Weak Stability 

Let's consider the midpoint method (6.21 ) as applied to the very simple differential equation 

y' = -y, 2/(0) = i, (6.38) 

which has exact solution y(t) = e~l. To minimize the effects of any error in the starting 
values, let's use 

2 / i = 2 / ( i i ) = e - ' \ (6.39) 

where h is the mesh spacing; note that this is the exact value of y{t\); thus, there is no 
error in using this starting value. Figure 6.4 shows the results of applying (6.21) to (6.38), 
using (6.39) as the starting value, for a sequence of mesh values h~l = 4 ,8 ,16 , . . . , 128. 
We have plotted the exact solution curve and each approximate curve, as generated by the 
numerical method. 

We expect to get decent results, since the midpoint method is second-order; instead, we 
get terrible results for larger values of i. Taking a smaller value of h does appear to defer 
the onset of this problem, but it does not appear to eliminate it. As Figure 6.5 shows, even 
for h~l = 128 we eventually get poor results. 

What is going on here? 
It is tempting to blame this problem—which is known as weak stability—on rounding 

error, but in fact the problem is inherent in the numerical method (6.21), and would occur 
in exact arithmetic. Because a good understanding of weak stability is necessary for the 
full discussion of stability for multistep methods (see §6.7.1), we will go into some detail 
here. 

We first slightly generalize our model problem to 

y' = \y, 2/(0) = 1, 

http://www.it-ebooks.info/


VARIANTS OF EULER'S METHOD 3 5 5 

l.Sr 
— Exact solution 
O Midpoint method approximate values 

>- 0.5 

Figure 6.4 Illustration of Weak Stability, h = 4 " \ 8 ~ \ 16_ 1 . 

' I 
— Exact solution 
O Midpoint method approximate values 

10 12 14 16 

Figure 6.5 Illustration of Weak Stability, h = 128" 
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which has exact solution y = ext for any constant λ. The midpoint method applied to this 
problem then becomes 

yn+i =yn + 2/iAyn, yo = l,2/i = ehX. 

Note that the mesh spacing h and the parameter λ show up only when multiplying each 
other; so, to simplify the notation, we will write hX = ξ hereafter. Thus, we have 

IM+i =3/η-ι +2&Μ, y0 = l ,yi =εζ. (6.40) 

This is an example of what is called a three-term recurrence relation, and we can actually 
produce a formula to solve it, much as we would solve a second-order constant coefficient 
differential equation. We first look for solutions in the form 

Vn = rn (6.41) 

for some value r. We actually find two such values, r\ and r2, and the linearity of the 
recurrence then implies that 

yn = C1r? + C2rZ 

is a solution for any constants C\ and C2. The values of the constants are determined by the 
need to satisfy yo = 1 and y\ = βξ, and that will complete the construction of the solution. 

So much for the outline and preview. If we substitute (6.41) into (6.40), we get 

rn+i = r « - i + 2 £ r " . 

Thus, dividing by r " _ 1 yields the quadratic equation 

r2 - 2^r - 1 = 0, 

which defines ri and Γ2, according to the quadratic formula: 

rι=(ξ+^/ëTÎ), r2 = (ξ - y/e + 1)· (6.42) 

The constants C\ and C2 are then found by solving the system 

1 = C i + C 2 

e« = d n + C2r2 

to get 
c = r2 - et = (-ξ + y/ξ2 + 1) + eg 

r2 - n 2^/ξ2 + 1 

and 

c2 = Τι~£ξ = Ü + v ^ 7 1 ) - e i 
n-r2 2V/|2TT 

Hence, we have the solution 
Vn = Cir? + C2r% (6.43) 

which the student can verify by direct substitution (see Problem 12) is the exact solution to 
the recurrence (6.40). We should repeat, for emphasis, that this solution formula is exact: 
This is what the computation will produce in the complete absence of rounding error. 
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Some modest work allows us to estimate the size of C\ and C2; thus (see Problem 14): 

d = l + 0(£3) , C2 = 0(£3) . (6.44) 

Consider, now, the behavior of the approximate solution as n grows, under the assump-
tion that λ < 0. This assumption means that ξ < 0, and it also means that the exact solution 
will be a decaying exponential. However, the approximate solution satisfies 

l/n = C7ir? + CarJ, 

where we have 0 < r\ < 1 and 1*2 < - 1 (see Problem 13). Hence, as n —> 00, r™ -* 0, 
but |r2|n -» oo, thus destroying the accuracy of the computation. Since C2 φ 0, this term 
will be present in the calculation, although the fact that C2 = 0(h3) does mean that it will 
take more and more steps for the growing term to be noticed, for smaller and smaller values 
of/i. 

The fundamental issue here is that the exact solution to the recursion that defines the 
approximate solution contains solution components that do not correspond in any way to 
the exact solution of the ODE. The Cir™ term, it can be shown, will converge to the exact 
solution and will be an 0{h2) approximation to it. But the other term, usually called a 
parasite or parasitic solution, will eventually dominate and corrupt the approximation. 

Parasitic solutions are an inherent feature of multistcp methods, and the stability theory 
for multistep methods is designed to minimize their ability to corrupt the solution. (See 
§6.7 for more details.) 

Exercises: 
1. Using the approximation 

y(tn+\) -y(tn-i) 
y'(tn) 

2ft 

derive the numerical method (6.21) for solving initial value problems. What is the 
residual? What is the truncation error? Is it a consistent method? 

2. Using the approximation 

y '( t„- i) 
-y(tn+i) + Ay{tn) - 3y(tn-i) 

2ft 

derive the numerical method (6.22) for solving initial value problems. What is the 
residual? What is the truncation error? Is it a consistent method? 

3. Using the approximation 

//, x _ 3y(tn +i) - 4y(tn) + y{tn-{] 
y (ίη+ι) « Yh , 

derive the numerical method (6.23) for solving initial value problems. What is the 
residual? What is the truncation error? Is it a consistent method? 

4. Use the trapezoid rule predictor-corrector with ft = ^ to compute approximate 
values of y(l) for each of the following initial value problems. Don't write a 
computer program; use a hand calculator to produce an orderly table of (tk,yk) 
pairs. 
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(a) i/' = y(l + e2t),i/(0) = l; 

(b) î/' + 2 y = l,i/(0) = 2; 

(c) 2/' = 2/(l-2/),y(0) = i ; 

(d) ty' = y(sint),y(0) = 2. 

5. Repeat Problem 4, using the method (6.23) as a predictor-corrector, with Euler's 
method as the predictor. Also use Euler's method to produce the starting value, y\. 

6. Write a computer program that solves each of the initial value problems in Problem 
4, using the trapezoid rule predictor-corrector and h — 1/16. 

7. For each initial value problem below, approximate the solution using the trapezoid 
rule predictor-corrector with a sequence of decreasing grids h"1 = 2,4,8, For 
those problems where an exact solution is given, compare the accuracy achieved over 
the interval [0,1] with the theoretical accuracy. 

(a) y' + y = 8Ϊη4πέ, y(0) = \; 

(b) y/ + sini/ = 0,j/(0) = l; 

(c) y' + Ay = 1, y(0) = 1; y(t) = i (3e" 4 t + 1); 

(d) y' = -ylny, y(0) = 3; y{t) = e<ln3>e"\ 

8. Here, we will consider a tumor growth model based on some work of H. P. Greenspan 
in./. Theor. Biol., vol. 56, pp. 229-242,1976. The differential equation is 

R'{t) = -\siR+— 2 Λ σ , R(0)=a. 

Here R(t) is the radius of the tumor (assumed spherical); λ and μ are scale parameters, 
both 0(1); Si measures the rate at which cells at the core of the tumor die; and σ 
is a nutrient level. Take λ = μ = 1, α = 0.25, Si = 0.8, and σ — 0.25. Use the 
trapezoid rule predictor-corrector to solve the differential equation, using h = 1/16, 
and show that the tumor radius approaches a limiting value as t —> oo. 

9. Repeat Problem 8, but this time with Si = 0.90, σ = 0.05, and a = 0.50. What 
happens now? 

10. Now solve the differential equation using a variety of Si, σ, and a values (your 
choices). What happens? 

11. Now let's model some treatment for our mathematical tumor. In Problems 8-10, we 
assumed that the nutrient level was constant. Suppose that we are able to decrease 
the nutrient level according to the model 

σ(ί) = CTOO + (σ0 - a00)e'qt. 

Here σο is the initial nutrient level, σ,χ is the asymptotic nutrient level, and q measures 
the rate at which the nutrient level drops. Investigate the effect of various choices of 
these parameters on the growth of the tumor, based on your observations from the 
earlier problems. Again, use the trapezoid rule predictor-corrector with h = 1/16 
to solve the differential equation. 
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12. Verify by direct substitution that (6.43) satisfies the recursion (6.40) for all n > 2. 

13. For the midpoint method (6.21), show that if λ < 0, then 0 < n < 1 and r2 < - 1 . 

14. Show that (6.44) is valid. Hint: First, show that Ci = 1 - C2. Next, use Taylor 
expansions to write 

Ç - e € - 1 - ^ 2 + ο(ξ3) 

y/^+ï i + ±e + ο(ξ4) · 

15. Use the midpoint rule predictor-corrector method (6.35) and (6.36) to solve each of 
the IVPs given in Problem 4. 

16. Show that the residual for the midpoint rule predictor-corrector is given by 

R = y(t + h)- y(t) - hf(t + h/2,y(t) + (h/2)f(t,y(t))). 

Then use Taylor's theorem to show that R = 0(h3), and hence that the midpoint 
rule predictor-corrector is a second-order method. 

17. Assume that / is differentiable in y and that this derivative is bounded in absolute 
value for all t and y: 

\fy(t,y)\<F. 

Show that using fixed-point iteration to solve for yn+\ in the trapezoid rule method 
will converge so long as h is sufficiently small. Hint: Recall Theorem 3.6. 

18. Derive the numerical method based on using Simpson's rule to approximate the 
integral in 

rt+h 
y{t + h) = y(t-h)+ / ( s , y(s))ds. 

Jt-h 
What is the order of accuracy of this method? What is the truncation error? Is it 
implicit or explicit? Is it a single-step or a multistep method? 

< · · · > 

6.5 SINGLE-STEP METHODS: RUNGE-KUTTA 

The Runge-Kutta5 family of methods is one of the most popular families of accurate 
solvers for initial value problems. The general derivation can become very involved; to 
avoid drowning in a sea of detail and notation, we will outline the basic ideas using the 
second-order case. 

Recall the usual predictor-corrector formulation of the trapezoid method: 

yn+i = yn + hf{tn,yn), 

2/n+i = yn + -^h[f(tn+i,yn+i) +f(tn,yn)}. 

5Martin Wilhelm Kutta (1867-1944) studied at Breslau and Munich, in addition to a year spent in Britain at 

Cambridge. Most of his professional career was spent in Stuttgart. Building on Runge's original idea (first 
presented in an 1894 article), Kutta published his version of the Runge-Kutta methods in 1901. 
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We can directly substitute the predictor into the corrector to write this as a single recursion: 

2/n+i = Vn + 2 / l [/(*n+i,î/n + hf{tn,yn)) + f(tn,yn)] · (6.45) 

Since the differential equation implies that / gives values of y', it follows that we can view 
(6.45) as defining yn+i from yn by advancing along a straight line defined by the simple 
average of the two slopes f(tn,yn) and / ( i„+i ,y) , where y — yn + hf(tn,yn). This 
raises the question, of course, of whether or not a different average of two slopes might 
yield a more accurate method. To this end, we consider the more general method 

2/n+i = Vn + cihf(tn, yn) + c2hf(tn + ah, yn + ßhf(tn, yn)), (6.46) 

where c\, c2, α, β are parameters as yet undetermined. We want to choose these so that the 
approximate solution defined by (6.46) is as accurate as possible; hence, we want to make 
the truncation error as small as possible, in terms of powers of ft. Thus, we look at the 
(admittedly rather imposing) expression 

R = y(t + ft) - y{t) - Clhf{t, y(t)) - c2hf(t + ah, y(t) + ßhf(t, y{t))). 

To reduce this so that we can infer the correct values of c\, c2, a, and ß that will yield the 
smallest residual R, we will need to use Taylor's Theorem in two variables, which we state 
here without proof: 

F{x + h, y + η) = F(x,y) + hFx(x,y) + ηΡν(χ^) +-(h2Fxx(x,y) 

+hVFxy(x, y) + rfFyy{x, y)) + ö(h3 + η3). 

We can thus expand the last term in R as 

f(t + ah, y(t) + ßhf(t, y(t))) = f(t, y(t)) + ahft(t, y(t)) + ßhf(t, y(t))fy(t, y(t)) 

+ l(a2h2ftt{t, y(t)) + aßh2f(t, y(t))fty(t, y(t)) 

+ß2h2[f(t,y(t))]2fyy(t,y(t))) + 0(h3). 

We can also expand y(t + h) in terms of y(t) as follows: 

y(t + ft) = y(t) + hy'(t) + \h2y"{t) + 0(h3). 

But the differential equation implies that y' = f(t, y(t)) and, therefore, in addition, 

y"(t) = jtf(t,y(t)) =ft(t, y(t)) + fy(t,y(t))y'(t) = ft(t, y{t)) + fy(t,y(t))f(t,y(t)). 

Now let us substitute both of these expansions into our expression for R, where we get 

R = (y + hf+ \h2{ft + fyf) + ö( / i 3 ) ) - y - Clhf 

-c2h (f + ah ft + ßhffv + \{a2h2ftt + aßh2ffty + ß2h2f2fyy) + 0(h3) 

The reader should note that we have written this without explicit arguments to any of the / 
terms, including the partial derivatives, since all of the arguments are (i, y(t)). Remember 
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that our goal here is to find the values of C\, c2, a, and ß that make R as small (in terms of 
h) as possible. So, we rewrite our ponderous expression for R in terms of powers of h. We 
get 

R = h(f-c1f-c2f) + h2fyft + fyf)-c2aft-c2ßffy^+ö(h3) 

= h(f-Clf-c2f) + h2 G -C2û ft + ( a - °*P ) ffv + 0(h3), 

from which we can extract the equations 

1 - ci - c2 = 0, - - c2a = 0, - - c2ß = 0. 

If these three equations are satisfied, then the residual satisfies R = 0(h3); thus, the 
truncation error is ö(h2). Since this is a set of three equations in four unknowns, there is 
more than one solution. Typically, c\ is regarded as arbitrary, and then we have 

c2 1 - c i , 

a = ß = 
2c2 ' 

(6.47) 

(6.48) 

Thus, some possible solutions include: 

c i = c 2 = - , a = / 3 = l ; 

this yields the trapezoid rule predictor-corrector method: 

3/n+i -yn + ^h[f(tn+i,yn + hf(tn,yn)) + f(tn,yn)}; 

or, 

ci = 0, c2 = 1, a = / 3 = - ; 

this yields the midpoint rule predictor-corrector (6.35) and (6.36): 

Vn+i =Vn + hf(tn + -h,yn + -hf(tn,yn))· (6.49) 

We could also try 

ci = -, c2 
3 R 2 

which yields a method sometimes called the method ofHeun:6 

2/n+l = y-n. + jh 
2 2 

/( in, 3/n) + 3/(i„ + -h,yn + -hf(tn, yn)) (6.50) 

6This is perhaps a good time to point out that there is a lot of inconsistency in naming many of these methods. 

What we call the "trapezoid method" is called "improved Euler" or "modified Euler" by other authors, just as an 
example. We call the method in (6.50) Heun's method because Goldstine [10] says that Kutta used that attribution 
in his 1901 paper that introduced what we call Runge-Kutta method. 
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All three of these have second-order truncation errors, and it can be shown that all of them 
are second-order accurate in the sense that, for any T > 0, 

max|y(ifc) - yk\ < CTh2, 
tk<T 

where CT will depend on T, but not on h. 
The most commonly used Runge-Kutta method is the fourth-order method, derived in 

a manner very similar to what we did here, but using four slope values instead of only two. 
The required manipulations are necessarily much more involved, so we skip them. The 
method is usually written as follows: 

* 1 

k2 

kz 

k.4 

2/n+l 

= 

= 

= 

= 

= 

hf(tn,yn), 

hf (tn + -h,yn + -fcij , 

hf Un + -h,yn + -k2) , 

hf{tn + h,yn + k3), 

yn + ^(k1+2k2 + 2k3 + k4). 
0 

pseudocode for implementing this is given at the end of the section. 

EXAMPLE 6.16 

Let's consider our usual example IVP: 

y' = -y\ny, y(0) = - , 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

which we will first solve using a very coarse grid, using both the second-order method 
(6.50) and the fourth-order method (6.51)—(6.55). We then show the results of solving 
the same equation using the same methods, but with finer grids. 

Let h = 1/2; to compute out to t = 1 requires two steps with each method. For 
the method of Heun, we compute as follows: 
Step I: 

f = f{to, yo) = / (0,1/2) = - (1 /2) ln(l/2) = 0.3465735903; 

y = yo + (2/3)/i/ = 0.5 + (1 /3) / = 0.6155245301; 

y\ = 2/0 + ^j- [f + 3/(io + (2/3)/i, y)] = 0.5 + 0.125 [0.3465735903 + 3(0.2987020395)] 

= 0.6553349636. 

Step 2: 

f = /(<i, 3/1 ) = /(0.5,0.6553349636) = 0.276950309; 
y = yi + (2/3)/i/ = 0.6553349636 + (l/3)(0.276950309) = 0.7476517333; 

2/2 = !/i + ̂ [ / + / ( « i + (2/3)M)] 

= 0.6553349636 + 0.125 [0.276950309 + 3(0.2174305868)] 

= 0.7714902223. 
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For the fourth-order Runge-Kutta, the computation is longer, of course: 
Step I: 

fci = hf{t0,y0) = 0.17328679513999; 

z\ = 2/0 + (l/2)fci = 0.58664339756999; 

k2 = hf(t0 + (l/2)ft, zi) = 0.15643965031862; 

Z2 = i/o + (l/2)fc2 = 0.57821982515931; 

k3 = /ι / ( ίο + (l/2)ft , 22) = 0.15837474613445; 

23 = yo + k3 = 0.65837474613445; 

kA = hf(t0 + ft, z3) = 0.13759406302779; 

Vi = Vo + (1/6) {h + 2fc2 + 2fc3 + fc4) = 0.65675160851232. 

Step 2: 

*i = hf{ti,yi) = 0.13806541027436; 

zi = 2/1 + (l/2)fci = 0.72578431364950; 

ki = hf(h + (l/2)/i, zi) = 0.11630780609087; 

22 = 2/1 + (l/2)fc2 = 0.71490551155775; 

fc3 = Λ/ ( i i + (l/2)ft , z2) = 0.11996289517416; 

23 = 2/1 + ^3 = 0.77671450368648; 

ki = ft/(ii + ft, z3) = 9.8131054204024D - 02; 

2/2 = 2/1 + (1/6) (A* + 2ifc2 + 2fc3 + k4) = 0.77487458634706. 

The exact value of the solution at t = 1 is y ( l ) = 0.7749206846, so we can see 
that the fourth-order method did very well even with this coarse grid, whereas the 
second-order method did less well. 

Table 6.5 Runge-Kutta examples, y' = — y In y. 

n = ft"1 

4 
8 
16 
32 
64 
128 
256 
512 

RK2 Error 
0.767315E-03 
0.180964E-03 
0.439226E-04 
0.108187E-04 
0.268460E-05 
0.668655E-06 
0.166852E-06 
0.416742E-07 

RK4 Error 
0.269490E-05 
0.162549E-06 
0.997759E-08 
0.617969E-09 
0.384481E-10 
0.239708E-11 
0.149658E-12 
0.976996E-14 

If we apply the same two methods to the same problem, but with much finer grids, 
we of course will get better accuracy. Table 6.5 shows the maximum errors over the 
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interval [0,1] for a sequence of values of the mesh parameter. Note that the errors do 
decrease at the expected rate, in both cases. 

Figure 6.6 shows the exact solution along with the second-order approximation 
for h — \ (denoted by the small circles). Note that the approximate values are right 
on top of the exact solution curve, even for this coarse value of h. For smaller h, or 
with the higher-order method, the accuracy would only improve, of course. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 6.6 Solution of y' 
approximate values for h = \. 

-y\ny, y(0) = ±, along with second-order Runge-Kutta 

One major drawback of the Runge-Kutta methods is that they require more evaluations 
of the function / than do other methods. For simple scalar equations like our example, this 
is not a big deal, but for larger systems it is an issue. To get methods that are as accurate as 
the Runge-Kutta methods, but less expensive, we have to turn to the multistep methods. 

Finally, we include here a pseudocode implementation of the fourth-order Runge-Kutta 
method, simply as an illustration. Note that four evaluations of / are required at each step. 

Algorithm 6.2 Pseudocode for Fourth-Order Runge-Kutta 

input t 0 , y0, h, n 
ex te rna l f 
for k = 1 to n do 

t = t0+k*h 

endl 

t 2 
v l 
v2 
v3 
v4 
y = 
yO 

to 
o r 

= tO + 0.5*h 
= f ( t0 ,y0 ) 
= f (t2,y0+0.5*h*vl) 
= f(t2,y0+0.5*h*v2) 
= f(t ,y0+h*v3) 

(h /6 .0 )*(v l + 2.0*(v2 + 
= y 
= t 

v3) + v4) 
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Exercises: 

1. Use the method of Heun with h = \ to compute approximate values of y ( 1 ) for each 
of the following initial value problems. Don't write a computer program, use a hand 
calculator to produce an orderly table of (tk,yk) pairs. 

(a) y' = y(l - y), y(0) = \; 

(b) y' = y{\ + e2t), y(0) = 1; 

(c) y' + 2 y = l , y ( 0 ) = 2; 

(d) ty' = y{smt),y(0) = 2. 

2. Repeat Problem 1, using the fourth-order Runge-Kutta. 

3. Write a computer program that solves each of the initial value problems in Problem 
1, using the method of Heun, and h = 1/16. 

4. Write a computer program that solves each of the initial value problems in Problem 
1, using fourth-order Runge-Kutta, and h = 1/16. 

5. For each initial value problem below, approximate the solution using the method of 
Heun with a sequence of decreasing grids h~l = 2 ,4 ,8 , . . . . For those problems 
where an exact solution is given, compare the accuracy achieved over the interval 
[0,1] with the theoretical accuracy. 

(a) y' + siny = 0,y(0) = l; 

(b) y' + 4T/ = 1, y(0) = 1; y(t) = | ( 3 e - 4 t + 1); 

(c) y' + y = sin47Ti, y(0) = \\ 

(d) y' = -ylny, y(0) = 3; y(t) = e(in3)e-'. 

6. Repeat Problem 5, using fourth-order Runge-Kutta as the numerical method. 

7. Repeat Problem 8 of §6.4, except this time use fourth-order Runge-Kutta to solve 
the differential equation, with h = 1/8. 

8. Repeat Problem 9 of §6.4, except this time use fourth-order Runge-Kutta to solve 
the differential equation, with h = 1/8. 

9. Repeat Problem 11 of §6.4, except this time use fourth-order Runge-Kutta to solve 
the differential equation, with h = 1/8. 

10. Repeat Problem 10 of §6.4, except this time use fourth-order Runge-Kutta to solve 
the differential equation, with h = 1/8. 

< · · · > 
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6.6 MULTISTEP METHODS 

6.6.1 The Adams Families 

Two of the most popular families of multistep methods are the so-called Adams families, 
which are based on the exact integration of properly defined interpolating polynomials. One 
family (Adams-Bashforth) leads to explicit methods; the other (Adams-Moulton) leads to 
implicit methods.7 

Recall the differential equation 

y'(t) = f(t,y(t)), y{t0)=yo. 

Starting at any value tn > to, we can solve this, formally, by simple integration to get the 
value at the next step: 

ftn + l 
y(tn+l) = y(tn) + / f(s,y(s))ds. 

Suppose now that we have values y(tn-k),k = 0 ,1 ,2 , . . . ,p, of the exact solution. We can 
construct a polynomial of degree p that interpolates to F(s) = f(s, y{s)) at these points: 

p 

<?p(S) = X] - i ' f c ( s ) / ( in - fc ,2 / (<n- fc ) ) , 
fc=0 

where the Lk are essentially the Lagrange functions from §4.1 (although the notation and 
indexing are slightly different): 

Lk(s)= Π *-^-' . (6.56) 
i = 0 

7 John Couch Adams ( 1819-1892) was born in Cornwall, England, and educated at St. John's College, Cambridge. 

Something of a child prodigy in mathematics, at Cambridge he compiled an extraordinary record and was awarded 
several prizes. While still an undergraduate he decided to study the irregularities in the orbit of the planet Uranus, 
to see if they could be explained by the gravitational attraction of an as-yet unknown eighth planet. Adams 
predicted the new planet's position, but, probably because of his youth, the Cambridge Observatory took no action 
so the credit for the discovery of Neptune went to Urbain Le Verrier, although the question of priority here is still 
controversial. Adams briefly held a position as professor of mathematics at St. Andrews College before being 
named Professor of Astronomy and director of the Cambridge Observatory. 

Francis Bashforth (1819-1912) was born in Thumscoe, England, the son of a farmer, and attended St. John's 
College of Cambridge at the same time as Adams. Although he had been ordained as an Anglican priest in 1851, 
upon graduation Bashforth worked first as a civil engineer and surveyor for a railroad company, and then (in 1864) 
obtained a position as professor of applied mathematics at what evolved into the Royal Artillery College. Although 
Bashforth made numerous important contributions to the study of ballistics, in 1872 an army reorganization left 
him with such a reduced position that he resigned and became a parish rector. The Adams-Bashforth method 
comes from a joint study of capillary action that the two men wrote in 1883. 

Forest Ray Moulton (1872-1952), the youngest of eight children, was born on the family farm between Grand 
Rapids and Traverse City, Michigan. (The land had been given to his father as part of his bounty for serving in 
the Union army during the Civil War.) Forest—so named because he was bom in a log cabin in the forest—was 
educated at Albion College in Michigan, and received a Ph.D. in astronomy from the University of Chicago, 
in 1899. He is credited, along with his colleague Thomas C. Chamberlain, with formulating the planetesimal 
hypothesis for the formation of the solar system. During World War I, Moulton did ballistics research for the U.S. 
Army at Aberdeen Proving Ground, Maryland, and it was during this period that he refined the original work of 
Adams and Bashforth into what we now know as the Adams-Moulton method for solving initial value problems. 
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We then have that 

/•tn+l P 

y(t„+i) = y{tn) + Σ Lk(s)f(tn-k,y{tn-k))ds + Rp{tn+1), (6.57) 

where (recall that f(t, y(t)) = y'(t)) 

Äp(in+i) = f "+ 1 T ^ Ï J J Î * - *»)(' - *"-i) ■ · ■ ( ' - tn-P)y{p+2)(eh,t)dt. 

Since the polynomial part of the integrand does not change sign on [tn, in+i]> there exists 
a value ξη such that 

Äp(i„+i) = y ( p + 2 ) ( ^ ) y " + 1 ' 7 — ^ ( t - * » ) ( * - * n - i ) · · · ( « - * « - * ) * 

= PP2/(P+2)(£n), 

for 
/■'"+1 1 

Pp= 7 — r - r r ; ( t - t n ) ( t - t n - i ) - - - ( t - t n - p ) d t . 
Jtn KP + ! ) ! 

The expression (6.57) then simplifies to 

p 

y(tn+1) = y(tn) + ^2\kf(tn-k,y(tn-k)) + /W P + 2 ) (£n) ; 

where 
/ ■ ' n + l 

/ Lk(s)ds 

By dropping the residual and setting y(tk) to the approximate value yk, we get the numerical 
method, known as the Adams-Bashforth method of order p + 1: 

p 

2/n+l = 2M + ] > J ^kf(tn-k, 2/n-fc)· 
fc=0 

For simplicity's sake, we will hereafter write /„_& = f(tn-k,yn-k)-
If we assume a uniform grid with mesh spacing h, then the formulas for the Xk and pp 

simplify substantially, and they are routinely tabulated; Table 6.6 shows what they are for 
the common range of p < 3. Note that they are explicit methods, with order of accuracy 
p + 1, using p + 1 steps. For example, the third-order method would be written as 

2/n+i = yn + τ^ (23/„ - 16/„_i + 5/„_2) , 

where we again use the common notation 

fk = f(tk,yk)-
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Table 6.6 Adams-Bashforth coefficients and residual terms 

Steps 
1 

2 

3 

4 

P 
0 

1 

2 

3 

λο 
h 

lh 
1 2 " 

2 4 " 

λι 

- k h 

24 a 

λ2 

Ή* 

24 n 

λ3 

"Ä* 

Rp 

^ V ' ( Î n ) 

&>»V"(Î™) 

§W"(£n) 
gnW""tën) 

EXAMPLE 6.17 

To illustrate their use, we return to our example problem, 

y' = -y\ny, y(0) =-, 

the solution to which we will approximate using the second-order Adams-Bashforth 
scheme, commonly denoted "AB2," with h = | . We choose to use Euler's method 
to generate the starting value,8 thus, our first computation is 

0.5433216988. 
1 1 / 1 , 1 

2/1 =yo + hf(t0,yo) = - + - I - - x l n -

Now we can do the first AB2 step, for 2/2: 

2/2 = 2/1 + ^h(3f(ti,yi) - f(tQ,yo)) 
= 0.5433216988 + \ x \ ((-3(0.5433216988) ln(0.5433216988) + ^ In ̂  

2 8 \ 2 2 

= 0.583808738, 

followed by the second AB2 step, for 2/3: 

2/3 = 2/2 + ^(3/(ί2,2/2)-/(ίι ,2/ι)) 

= 0.583808738 + £ x £ (-3(0.583808738) ln(0.583808738) 
2 8 

+ 0.5433216988 ln(0.5433216988)) 

= 0.622004388. 

Thus, 2/(<3) = 2/(0.375) « 0.622004388. The exact solution is y = e _ ( l n 2 ) e _ \ thus 
2/(0.375) = 0.6210196063, so our accuracy is not bad. We would have done better 
using a more accurate method for the starting value, of course. 
The Adams-Bashforth methods are based on an interpolating polynomial that is defined 

using the nodes tn, i „ _ i , . . . , tn-p. If we use the same number of nodes, but include 
t = tn+i, then (6.57) becomes 

,.t„+1 p-i 
y(tn+l) = tf(in) + / Σ Lk{s)f{tn-k,y(tn-k))ds + Äp(t„+i), (6.58) 

7 ί " fc=-l 

8RecaIl from the discussion in §6.4.3, that we can use an order p — 1 method to generate the starting values for a 

method of order p without a significant loss of accuracy, 

http://www.it-ebooks.info/


MULTISTEP METHODS 3 6 9 

where the Lagrange functions are now 

p - 1 

Lk(s) = Π 
* = - l 

S î>n—i 

tn—k tn—i 
(6.59) 

so the numerical method—known as the Adams-Moulton method of order p + 1—is 

p - i 

yn+l=yn+ Σ 7fc/(*n-fci2/n-fc), 

where the constants are given by 

7fc 

fe=-l 

/•tn + l 

/ Lk{s)ds. 

Table 6.7 summarizes these for the common range p < 3. Note that the Adams-Moulton 
methods are implicit, and that the p + 1 step method has order of accuracy p + 1. To be 
specific, the third-order method would be written in practice as 

Vn+l =2/1 + 3^ (5/n+l + 8/„ - / „ - l ) . 

Table 6.7 Adams-Moulton coefficients and residual terms 
steps 7 - 1 7o 7 i 72 

-àftVfén) 
17Γ TF 

2 ' - t/ i s n ; 

-iW"Kn) 
-_j|W'(Î») 

24 f t 24 " M -^V""tën) 
- T U 

IS* . 

Note that three methods that we have already studied (Euler, backward Euler, and 
trapezoid rule) are included in these two tables. Whereas the Adams-Bashforth methods can 
be used by themselves (once starting values are generated), the Adams-Moulton methods 
require either the solution of a nonlinear equation or a predictor-corrector scheme. A 
very popular predictor-corrector scheme is to use the fourth-order Adams-Bashforth as the 
predictor and the fourth-order Adams-Moulton as the corrector. 

EXAMPLE 6.18 

Consider the example, 
y' = -ylny, y{0) = y0, (6.60) 

which has exact solution y = ê  l n 2 ' e when y0 = \. We solve this in two ways: 

1. Via the second-order Adams-Bashforth method, with the trapezoid rule predictor-
corrector used to generate the starting value; 
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Table 6.8 Adams family example for y' = — y In y. 

n = h~L 

8 
16 
32 
64 

128 
256 
512 

1024 

Second-order AB 
maxk<n\y{tk) ~Vk\ 

0.28474335730512E-02 
0.67170745938105E-03 
0.16212367000479E-03 
0.39755173993794E-04 
0.98386454340238E-05 
0.24469431793017E-05 
0.61013351659867E-06 
0.15233231198675E-06 

Fourth-order ABM PC 
maxK„ \y{tk) -yk\ 

0.19742002576040E-05 
0.12099205870530E-06 
0.72652883709168E-08 
0.44197434601045E-09 
0.27204238861600E-10 
0.16866508190105E-11 
0.10536016503693E-12 
0.76605388699136E-14 

2. Via the fourth-order Adams-Bashforth-Moulton predictor-corrector, using the fourth-
order Runge-Kutta method to generate the starting values. 

The error results are summarized in Table 6.8. 

Since they are such high-order methods, we need accurate techniques for getting the 
starting values for the Adams methods. Generally, the Runge-Kutta methods (§6.5) are 
used for this purpose. 

6.6.2 The BDF Family 

The Adams families are relatively old as numerical methods, with the original work going 
back to 1883. More recently, because of an interest in stiff differential equations, another 
family of methods has become popular. Known formally as the Backward differentiation 
formula family (or BDF family), they are derived from a different use of interpolating 
polynomials. See Table 6.9 for a summary of the coefficient values for these methods. 

Again, we let the differential equation be 

y'(t) = f(t,y(t)), 

and this time we construct an interpolating polynomial to y(t) (instead of/(<, y(t)) = y'(t)) 
at the nodes <n_p +i, tn-p+2, ■ ■ ■, £„+ι· Thus, we have 

p - l 

q(t) = Σ Lk(t)y(tn-k), 
fc=-l 

where the Lk are defined as in the case of Adams-Moulton. Now we use this polynomial 
to approximate y'{tn+\), using the scheme outlined in §4.5. (This choice of argument to 
y' means that the BDF methods are all implicit.) Thus, we have 

y'(tn+1) = q'(tn+l) + ^ Α — ™ ; ^ ) ^ 1 ^ ) , 

where 
P - l 

M O = Π (* -**)■ 
fc=-l 
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Table 6.9 Backward difference family coefficients and residual terms. 

Step 
1 

2 

3 

4 

P 
1 

2 

3 

4 

V 

1 

\h 

n* 
25 n 

μο 
1 
4 
3 
IS 
11 
48 
25 

μι 

1 
3 
9 
11 
36 
2 5 

μ2 

'Σ 
11 
16 
25 

M3 

3 
25 

Rp 

-è^VKn) 
- | Λ Υ ( ί η ) 

-èW"(£n) 
" i ^ V " " « ™ ) 

We substitute this into the differential equation to get 

p - l 

J2 4(*»+lM*»-fe) = /(ί„+1.!/(ίη+ΐ)) - ^ ^ ω ; ( ί η + 1 ) ΐ / ( ρ + 1 ) ( ξ Ρ ) , 

which we can solve for τ/(ίη+ι) to get 

p - l 

2/(*n+l) = 5 Z Vky(tn-k) + 1 / / ( ί „ + ι , ΐ / ( ί „ + ι ) ) - . W p ( t n + i ) ? / ( p + 1 ) ( ξ ρ ) , 

where the constants are defined as 

_ £fc(f"+l) 
■^»■-i-lCin+l) ■i'n+l^n+l) 

Table 6.9 summarizes these values for p < 4, under the assumption that the grid spacing is 
uniform. Note that these methods have order of accuracy p. To illustrate, the third-order 
method is given by 

2M+i = YJ (18y„ - 9yn-i + 2yn-2) + —fn+i-

A complete explanation of why the BDF family is particularly useful requires a little 
more discussion of the stability problem and the notion of stiffness for a differential equation, 
which we defer to §6.8.2. In general, they have better stability properties than those of the 
Adams methods. For now it is worth noting that these methods can be used either as the 
corrector in a predictor-corrector scheme, in conjunction with a nonlinear equation solver 
at each step, or to explicitly solve linear equations as was done in §6.4.2. 

Exercises: 

1. Use second-order Adams-Bashforth with h = \ to compute approximate values 
of y(l) for each of the following initial value problems. Don't write a computer 
program, use a hand calculator to produce an orderly table of (tk,yk) pairs. Use 
Euler's method to generate the needed starting value. 

(a) y' + 2y = 1, y(0) = 2; 

(b) y' = y(l + e2t), y(0) = 1; 

(c) V = tf(sint).I/(0) = 2; 

(d) 2/' = 2 / ( i -y) ,y(0) = i 2-
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2. Verify that the λ^ values and pp are correct for second-order Adams-Bashforth. 

3. Write a computer program that solves each of the initial value problems in Problem 
1, using second-order Adams-Bashforth and h = 1/16. Use Euler's method to 
generate the starting value. 

4. Write a computer program that solves each of the initial value problems in Problem 
1, using fourth-order Adams-Bashforth, with fourth-order Runge-Kutta to generate 
the starting values. 

5. For each initial value problem below, approximate the solution using the fourth-order 
Adams-Bashforth-Moulton predictor-corrector, with fourth-order Runge-Kutta to 
generate the starting values. Use a sequence of decreasing grids h~l = 2 ,4 ,8 , . . . . 
For those problems where an exact solution is given, compare the accuracy achieved 
over the interval [0,1] with the theoretical accuracy. 

(a) y' + siny = 0,y(0) = l; 

(b) y' + Ay = 1, i/(0) = 1; y{t) = i (3e" 4 t + 1); 

(c) y' + y = sin Ant, y(0) = \; 

(d) y' = - y Iny, y(0) = 3; y{t) = e ( l n 3 ) e " \ 

6. Derive the second-order Adams-Bashforth method under the assumption that the 
grid is not uniform. Assume that tn+\ —tn = h, and tn — fn_i = η, with η = 9h. 
What is the truncation error in this instance? 

7. Repeat Problem 8 from §6.4, this time using second-order Adams-Bashforth with 
h = 1/16. Use simple Euler to generate the starting value y\. If you did the earlier 
problems of this type, compare your results now to what you got before. 

8. Repeat Problem 9 from §6.4, this time using second-order Adams-Bashforth with 
h = 1/16. Use simple Euler to generate the starting value y\. If you did the earlier 
problems of this type, compare your results now to what you got before. 

9. Repeat Problem 11 from §6.4, this time using second-order Adams-Bashforth with 
h = 1/16. Use simple Euler to generate the starting value y\. If you did the earlier 
problems of this type, compare your results now to what you got before. 

10. Repeat Problem 10 from §6.4, this time using second-order Adams-Bashforth with 
h = 1/16. Use simple Euler to generate the starting value y\. If you did the earlier 
problems of this type, compare your results now to what you got before. 

< · · · > 

6.7 STABILITY ISSUES 

6.7.1 Stability Theory for Multistep Methods 

We have already seen an example of stability problems in the solution of IVPs, in §6.4.4 
on the weak stability of the midpoint method. In this section, we will outline the issues 
involved in a more general study of stability. 
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It is important to understand, at the outset, the distinction between the stability of the 
solution to the differential equation, and the stability of the numerical method used to 
approximate that solution. To illustrate, consider the example initial value problem 

j / = 10Oy + e-t,y{0) = - ^ . 

The exact solution here is y = — Tjrfe_i> which is a bounded, continuous, very well-
behaved function. Yet, as a practical matter, almost any numerical method applied to this 
problem will result in a solution that grows rapidly and eventually blows up. The reason is 
that the general solution to the differential equation is 

'■a"-î̂ · 
Note the presence of the e100t term; this is missing from the exact solution to the IVP 
because the initial value is carefully chosen to make the constant C in the general solution 
0. However, the computed value y\ will not be the exact value y{t\)\ thus, considering the 
new initial value problem 

the exact solution here is 

Y(t) 

Y' = 10OY + e-t,Y(h) = y1, 

= - — e " * + β100<*-Λ> (yi + —e-h) 
101 V 101 / 

thus, the e100t term is multiplied by the error in the initial value j/i. Since this error will 
not be zero, any approximate solution will almost surely depend on the e100t term; thus, 
the approximate values for t > h will be affected by this term, and will generate a huge 
growth of the approximate solution. Although this is indeed a kind of instability—large 
growth of the solution due to a small change in the problem—it is an instability that is 
inherent in the differential equation itself, not in the numerical methods that we apply to 
compute solutions. We are interested in stability problems that come out of the numerical 
algorithms. 

To motivate the larger discussion of stability, consider applying the p = 1 case of the 
BDF family to our standard initial value problem, 

y' = f(t,y), 2/(0) = 2/0· 

Thus, we have that the exact solution satisfies 

y(tn+i) = -y(tn) - -y( i„_i) + -hf(tn+1,y(tn+1)) - -/ι32/"'(ξ„), 

and the approximate solution satisfies 

4 1 2L·r. 
2/n+l = 7j2/n - o î /n-1 + -hf{tn+i, 2/n+lJ-

Subtracting these two, we get that the error satisfies 

4 1 2 2 2 
en+i = ^en - - e n _ i + -hf(tn+i,y(tn+i)) - - / i / ( t n+i , î /n+i) - gh3y'"^n). 
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The error, of course, depends on the mesh spacing h, as well as the index n, so we can 
write the error as en(/i) to make this clear. Note, however, that if we consider the limiting 
case h = 0, then we find that 

e„+i(0) = - e n ( 0 ) - ^ e „ _ i ( 0 ) . (6.61) 

Now, the fundamental issue—which we will not prove in any sort of formal sense—is the 
following: 

If the error blows up as n —> oo when h = 0, then elementary considerations 
of continuity imply that it will still blow up for h small but nonzero. On the 
other hand, if the error for h = 0 does not blow up as n -> oo, then the same 
continuity considerations imply that it will be bounded for at least some range 
of nonzero values of h, as n —> oo. 

We thus look at the recursion (6.61) and solve it using the same ideas as in §6.4.4: We look 
for solutions in the form 

e„(0) = rn. 

This leads to a second-degree polynomial in r, 

2 4 1 

which has roots r\ = 1 and r2 = \. Hence, the h = 0 part of the error satisfies 

en(0) = C1rr + C2rJ, 

where the coefficients depend on the values e0(0) and βχ(0). From this we conclude that 
this particular BDF method is stable, because as n -> oo the h = 0 error does not blow up; 
quite to the contrary, one term goes to zero and the other is bounded. For this method, the 
parasitic solutions do not dominate the approximation for n large. 

On the other hand, consider the method 

Vn+\ = 4y„ - 3y„_i - 2 / ι / ( ί η_ ι ,yn_i) , (6.62) 

which we derived in §6.4. This has a truncation error that is second-order in the mesh, 
comparable to the trapezoid method and the second-order Runge-Kutta methods, so we 
can call it an accurate method (it is consistent). However, the polynomial is, in this case, 

a(r) = r2 - 4r + 3, 

which has roots r\ = 1 and r2 = 3. Now, as n —> oo we see that one component of the 
exact solution to the approximate problem will blow up. Thus, we say that this method 
is unstable, and we expect that it will not perform well, as can be seen in some of the 
exercises. 

The stability of a multistep method,9 then, is determined by the roots of the polynomial 
corresponding to a. A formal statement is based on the following definitions. 

'Stability in this sense is not as much of an issue for single-step methods since they do not have parasitic solutions, 
although it is an issue when considering systems of equations. 
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Definition 6.5 (Stability Polynomial) Consider a multistep method in the form 

v v 
2/n+i = ^2o,kyn-k+ 22 hf(tn-k,yn-k)· 

fc=0 fc=-l 

Then the stability polynomial for this method is given by 

p 

a(r) =rp+1 ~Σ akrp~k ■ (6.63) 
fe=0 

Definition 6.6 (Root Conditions) Consider a multistep method with stability polynomial 
σ. Denote the roots ofa byro,ri,...,rp. Define the following conditions. 

Root Condition: / / 
JT-fel < 1, 0 < f c < p 

and all roots that satisfy \rj\ = 1 are simple roots, then we say that the stability 
polynomial satisfies the root condition. 

Strong Root Condition: / / 
TQ = l,|j"fe| < 1, 1 < k <p 

then we say that the stability polynomial satisfies the strong root condition. 

We have the following: 

1. If the stability polynomial satisfies the root condition, then the method is stable, in 
the sense that for h sufficiently small it will deliver accurate results over a closed 
interval [0,T]. 

2. If the stability polynomial satisfies the strong root condition, then the method is rela-
tively stable, meaning that, for h sufficiently small, the parasitic solution components 
will go to zero as n —► oo. 

3. A method that is stable, but not relatively stable, is called weakly stable, and will 
exhibit the type of behavior seen in §6.4.4. 

■ EXAMPLE 6.19 

Consider the p + 1-step Adams-Bashforth method: 

p 

2/n+l =yn + 2_j ^kf{tn-k,yn-k)-
k=0 

The stability polynomial, based on the formal definition (6.63), will be 

σ(Γ) = r p + 1 - rp, 

thus, the roots are r = 1 and r = 0 (multiplicity p). This satisfies the strong root 
condition, so we know that the Adams-Bashforth methods are relatively stable. The 
same analysis holds for the Adams-Moulton methods, so we know that they are 
relatively stable as well. 
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6.7.2 Stability Regions 

The definition of stability that we developed above was based on the behavior of the method 
in the limit, as h —► 0. Although perfectly valid, it is not immediately clear what it means 
for the practical implementation of methods, since we have to actually compute with h > 0. 
All we know, based on the material in §6.7.1, is that the Adams-Bashforth methods (for 
example) will be stable "for h sufficiently small." 

To address this need for specific information about when a multistep method will work 
well, we have the notion of "stability regions." Consider the model problem 

y' = \y, y(0) = 1, (6.64) 

where we assume that λ is complex. If we apply, say, the second-order Adams-Bashforth 
method to this problem, then we have the recursion 

2/n+i = ( 1 + 2 λ / ι ) Vn - 2λ/ ι2Μ-ι· 

If we look for the exact solution of this recursion as we have before, we are led to the 
polynomial 

p(r) = r2-(l + ^)r+^ 

for ξ = Xh. The stability region is then defined as follows: 

The stability region for a multistep method is that part of the complex plane 
where the method, when applied to the model problem (6.64), is absolutely 
stable; i.e., all components of the approximate solution decay to zero as n —» 
oo. 

If we denote the roots of the polynomial as 

r o ( 0 , r i ( 0 , . . - , r p ( 0 , 

then the stability region is that part of the complex plane10 where |rk(£)| < 1, for all k. 
Figures 6.7 to 6.9 show the stability regions for three families of methods: 

1. the Adams-Bashforth family (Fig. 6.7); 

2. the Adams-Moulton family (Fig. 6.8); 

3. the Adams-Bashforth-Moulton predictor-corrector family (Fig. 6.9; in this family 
we use the AB method as a predictor, and the AM method of the same accuracy as 
the corrector). 

Note that, in general, as the accuracy of the method increases, the size of the stability 
region decreases. Note also that the implicit Adams-Moulton methods have larger stability 
regions than those of the Adams-Bashforth-Moulton predictor-corrector methods, which 
have larger stability regions than the Adams-Bashforth methods do. The reason that only 
two of the Adams-Moulton methods (orders 3 and 4) have their stability regions plotted 
is that for the order 1 (backward Euler) and order 2 (trapezoid rule) schemes, the stability 

10The reason that we have to consider the complex plane is that when we consider systems of differential equations, 

the quantities corresponding to the λ in the differential equation are eigenvalues of a real matrix, and these can of 
course be complex. 
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Figure 6.7 Regions of absolute 
stability for the Adams-Bashforth 
methods of orders 1 to 4. 

Figure 6.8 Regions of absolute 
stability for the Adams-Moulton 
methods of orders 3 and 4. 

Figure 6.9 Regions of absolute stability for the Adams-Bashforth-Moulton predictor-corrector 
methods of orders 1 to 4. 

region is the entire left half-plane (see Problem 4). Finally, note that the regions are 
symmetric about the horizontal axis, but only the top half is shown. 

Exercises: 
1. Determine the residual and the truncation error for the method defined by yn+i = 

tyn - 3y„_i — 2hf(tn-i,yn-i). Try to use it to approximate solutions of the IVP 
y' = —y\ny, y(0) = 2. Comment on your results. 

2. Show that the method defined by y„+i = 4y n -3y„_i -2 / i / ( i r i _ i ,y n _ 1 ) i s unstable. 

3. Consider the method defined by 

Vn+1 = 2 / n - l + 7:h [ / ( * " - ! . 2 /n - l ) + 4 / ( t n , Jfr,) + / ( t n + l , 2/n+l)] , 
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which is known as Milne's method. Is this method stable or strongly stable? 

4. Show for the backward Euler and trapezoid rule methods, that the stability region is 
the entire left half-plane. 

5. Show that all four members of the BDF family are stable. 

6. Show that the stability region for the fourth-order BDF method contains the entire 
negative real axis. 

< · · · > 

6.8 APPLICATION TO SYSTEMS OF EQUATIONS 

So far in this chapter all of our examples of implementing methods have been for ordinary 
scalar equations. In this section we will look a bit at applying some of our methods to 
systems of equations. 

6.8.1 Implementation Issues and Examples 

Consider the system 

2/i = 2/1-2/12/2, 2/i(0)=2/io, (6.65) 

2/2 = 2/12/2-2/2, 2/2(0) =2/20· (6.66) 

This is generally known as the Lotka-Volterra population model, since it was first used 
in the 1920s to model the population dynamics of two species, one of which feeds off the 
other. To apply any of the methods that we have studied so far to this problem, it helps to 
formally write it out in terms of components and functions / , , as follows: 

2/Ί = /i(*,2/i,2/2), 2/i(0) = 2/10, (6.67) 

2/2 = .M*, 2/1,2/2), 2/2(0) = y2o, (6.68) 

where 

/i(*, 3/1.2/2) = 2/1 — 2/12/2, (6.69) 

M i , 2/1,2/2) = 2/12/2-2/2· (6.70) 

Then, for example, an Euler's method approximation would require that we compute using 
the recursions (note the plural)11 

2/l,n+l = 2/l,n + hfi (ίη,2/ΐ,η,2/2,η), 

2/2,n+1 = 2/2,n + Λ/2(ίη,2/ ΐ ,π ,2/2,η) , 

"Note also the use of double subscripts. The first one counts the element in the solution vector yn, and the 
second one indicates the time step number. 
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whereas the second-order Runge-Kutta method (6.49) would require that we compute using 
the recursions 

2/l,n+l = Vl,n + ^hfi{tn,yiin,y2,n), 

2/2,n+l = 2/2,n + -hf2{tn,yi,n,y2,n), 

2/i,n+i = 2/i,n + hfi [tn + ^ ί / ι , η + ι , ^ , η + ι j , 

2/2,71+1 = 2/2,71 + hf2 ί ίη + X^i 2/l,n+l, 2/2,71+1 j , 

and the second-order Adams-Bashforth method would use 

2/l,n+l = 2/l,n + X Λ ( 3 / l (*n, 2/l,n, 2/2,n) ~ / l (*n, 2/l,n, 2/2,n)) , 

2/2,n+l = 2/2,7» + 2 Ί ( 3 / 2 ( ί η , 2/l,n, 2/2,7i) - / 2 ( ί η , 2/l,n,2/2,7i)) · 

■ E X A M P L E 6.20 

To illustrate, let's do several example computations with the system 

2/Ί = 2/1 - 2/12/2 + sinnt, yi(0) = 2, 

2/2 = yi2/2~2/2, 2/2(0) = l. 

This is an instance of the Lotka-Volterra model in which the population of one of the 
species is driven by an external sinusoid. We have, in this case, 

/i(*,2/i,2/2) = 2/1-2/12/2 + sin πί, 

.M*. 2/1,2/2) = 2/12/2-2/2· 

A single step of Euler's method, using h = \, would have us do the following 
computations: 

2/11 = 2/io + ft/i(0,2/io,2/2o) = 2 + - x ( 2 - ( 2 ) ( l ) ) + s i n 0 ) = 2, 

1 5 
2/21 = 2/20 + ft/2(0,2/io,2/2o) = l + T x ((2)(1) - 1) = - . 

Now we can continue the computation using second-order Adams-Bashforth, using 
these Euler's method values as the starting values. In this case we get 

2/12 = 2/11 + 2^(3/i(ii,2/11,y2,i) -/i(*o,2/10,2/20)) 

= 2 + i x 1(3(2 - (5/4)2 + sin ^π) - (2 - (2)(1) + sinO)) 

= 2.078, 

2/22 = 2/21 + xft(3/2(£i,2/11,2/21) -/2(*o,2/10,2/20)), 

= \ + \ X i ( 3 ( (2)(5 /4) - (5/4)) - ((2)(1) - 1)), 

= 1.625. 
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Generalizations to more accurate and more involved schemes simply involve a little 
more care and work. 

An important special case, as with scalar equations, occurs when the system is a linear 
system. In this case we can write it in a matrix-vector form as 

y' = Ay + g, y(0) = y0, 

where now A is an N x TV matrix, and y, g, and yo are vectors of TV components. It now 
becomes possible to (once again) employ implicit methods by the device of solving the 
linear equations explicitly. The difference between this case and what we had in §6.4.2 is 
that now we have a linear system to solve. For example, a direct solution of our general 
example via the trapezoid rule method involves the solution of the linear system 

I--liAjyn+l = (l+-hA)yn + -h(g{tn)+g(tn+i)) 

at each step of the computation. 

■ EXAMPLE 6.21 

Consider the system 

2/Ί = 
2/2 

-4yi + 2/2 + sin πί, ϊ/ι (0) = 1, 

2/1 - 4?/2, 2/2(0) = 2, 

which we can write in matrix-vector form as 

y' = Ay + g, y(0) = y0. 

Here 

A = y 
2/1 

2/2 
3 = 

sin πί 
0 

2/0 = 
2/10 

2/20 

If we now do two steps of the trapezoid rule method for this system, using h 
we get the following: 

2/1 

0.6258 
0.8021 

- 1 

,+^)K + lh(,J±A (g(t0) + g(U)) 

V2 = [I-^AJ (i+±A}yi + \h(l-±A\ (g(h) + g(t2)) 

0.7690 
0.8141 

We will end this section by giving an algorithm in pseudocode form for approximating 
solutions of the system 

y' = f(t,y), 2/(0) = 2/0 
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using the trapezoid rule predictor-corrector method. The code assumes that the individual 
vector functions fj(t, y) can be called using an index passed into a single function name, 
thus: f ( j , t , y) . The number of unknowns in the code is taken to be m. 

Algorithm 6.3 Trapezoid Rule Predictor-Corrector for Systems. 

input h,n,m,yO,tO 
ex te rna l f 
! 
t = tO 
for j = 1 to m do 

y ( j ) = yo(j) 
endfor 

for k = 1 to n do 

! Euler p r e d i c t o r 

for j= l t o m do 
yb(j) = y ( j ) + h * f ( j , t , y ) 

endfor 
! Trapezoid r u l e co r rec to r 

for j= l t o m do 
yc( j ) = y ( j ) + ( h / 2 ) * ( f ( j , t , y ) + f ( j , t + h , y b ) ) 

endfor 

! Update 

for j= l t o m do 
y ( j ) = yc( j ) 

endfor 
t = k*h 

endfor 

6.8.2 Stiff Equations 

In some applications, we must deal with a large system of coupled differential equations, 
modeling processes that are occurring at substantially different rates. This is the essence of 
the notion of stiffness of a differential equation. Stiff systems can be very difficult to solve 
numerically. 

To illustrate the phenomenon, consider the linear system 

I/i = 198yi + 1992/2, 2/1 (0) = 1, (6.71) 

t/2 = -3982/1-3992/2, w(0) = - 1 , (6.72) 

which we write in matrix-vector form as 

y' = Ay, 2/(0) = 2/0, 
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where 

A = 
198 199 

-398 -399 y 
2/1 

2/2 
2/0 

_ ( 2/i(0) λ 
win) ; · 

The exact solution is 
yi(t)=e~\ V2(t) = -e~\ 

and we will compute approximations using second order Adams-Bashforth, with Euler's 
method to compute the starting value. The results are given in Table 6.10; note that we get 
decent accuracy at the outset, but then horrible accuracy until we have h < 1/128. Why is 
this? 

Table 6.10 Example of stiff approximation (Adams-Bashforth) 

n = h-1 

4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 

Error in y\ 
0.313335E-02 
0.653059E-03 
0.142067E-03 
0.634997E+07 
0.976963E+19 
0.778921E+15 
0.473265E-06 
0.117631E-06 
0.293221E-07 
0.731982E-08 

Error in y2 

0.313335E-02 
0.653059E-03 
0.142069E-03 
0.126999E+08 
0.195393E+20 
0.155784E+16 
0.473265E-06 
0.117631E-06 
0.293221E-07 
0.731982E-08 

The answer lies in the eigenvalues of the matrix A, which are λι = — 1, X2 = -200. 
This means that the general solution of the system will involve components of the form 
e-200t) m 3^£}ί£ίοη t0 e - t χ η ε initial condition was cleverly chosen to make the e_ 2 0 0 t 

components vanish. However, even though the e_ 2 0 0 t term is not present in the solution, 
we still have to use a value of h that is small enough to accurately resolve it. (To be precise, 
we have to take h small enough so that — 200/i is in the stability region for second-order 
Adams-Bashforth; note that this is consistent with the results in Table 6.10.) A complete 
development of how this comes about is deferred to Appendix A. For our part, we will 
call a linear system of differential equations stiff if the eigenvalues of the coefficient matrix 
A all have negative real parts, and if the ratio of the largest eigenvalue to the smallest, in 
absolute value, is "large." 

One of the best ways to deal with a stiff system is to use an implicit method to compute 
the approximation. If the system is linear, the implicitness can be dealt with by solving a 
linear system; if the system is nonlinear, then some kind of root-finding scheme has to be 
used to solve the nonlinear equations, or a predictor-corrector method has to be used. 

If we apply the trapezoid rule method to the solution of this example, we get the results 
shown in Table 6.11 (next page). Note that the error is much smaller, and does not show 
the erratic and undesirable behavior that we saw with the Adams-Bashforth method. The 
material in Appendix A gives some explanation for this. 

6.8.3 A-Stability 

Because of the phenomenon of stiffness, we are interested in numerical methods for ODEs 
that will always produce decaying approximate solutions whenever applied to a differential 
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Table 6.11 Example of stiff approximation (trapezoid method) 
n = h~i 

4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 

Error in y\ 
0.192913E-02 
0.479822E-03 
0.119803E-O3 
0.299413E-04 
0.748472E-05 
0.187114E-05 
0.467784E-06 
0.116946E-06 
0.292364E-07 
0.730911E-08 

Error in ?/2 
0.192913E-02 
0.479822E-03 
0.119803E-03 
0.299413E-04 
0.748472E-05 
0.187114E-05 
0.467784E-06 
0.116946E-06 
0.292364E-07 
0.730911E-08 

equation that has decaying solutions, regardless of the mesh size being used. This is the 
concept of A-stability. (The "A" stands for "asymptotic") The formal definition is as 
follows: 

Definition 6.7 (A-Stability) Let y^ be the approximate solution to 

y' = Xy, y(0) = 1 

for X complex, as computed by some numerical method. If 

lim yn = 0 
n—>oo 

for all h and all X such that 3R(A) < 0, then we say that the numerical method is A-stable. 

The trapezoid method and the backward Euler method are examples of A-stable methods. 
(See Problem 3.) The advantage of an A-stable method is that the parasitic solutions will 
always decay, regardless of the mesh size; hence, they can be used to solve stiff systems. 
Unfortunately, there are no A-stable multistep methods of greater than 0{h2) accuracy. 

Exercises: 

1. Using a hand calculator and h = \, compute approximate solutions to the initial 
value problem 

y[ = -42/1+2Λ2, yi(0) = 1; 

2/2 = yi- 4j/2, 2/2(0) = - 1 . 

Compute out to t = 1, using the following methods: 

(a) Euler's method; 

(b) RK4; 

(c) AB2 with Euler's method for the starting values; 

(d) Trapezoid rule predictor-corrector. 

Organize your computations and results neatly to minimize mistakes. 
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2. Consider the second-order equation 

y" + smy = 0, y(0) = ^,y'(0) = 0; 

write this as a first-order system and compute approximate solutions using a sequence 
of grids and the following methods: 

(a) Second-order Adams-Bashforth; 

(b) Fourth-order Runge-Kutta; 

(c) The method of Heun. 

The solution will be periodic; try to determine, experimentally, the period of the 
motion. 

3. Show that backward Euler and the trapezoid rule methods are both A-stable. 

4. Show that the second-order BDF method is A-stable. 

5. Apply the third-order BDF method, using the trapezoid method to obtain the starting 
values, to the stiff example in the text. Compare your results to the exact solution 
and those obtained in the text. 

6. Consider the following system of differential equations: 

y[(t) = ay1(t)-by2(t)y1(t),y1(0) = yi0 

y'2{t) = -cy2(t) + dy1(t)y2(t),y2{0) = y20 

Solve this system for a sequence of mesh sizes, using the data a = A, b — 1, c = 
2, d = 1, with initial values yio = 3/2 and y2Q = 4. Use (a) second-order Adams-
Bashforth, with Euler's method providing the starting value; and, (b) fourth-order 
Runge-Kutta. Plot the solutions in two ways: as a single plot showing yi and y2 

versus t; and as a phase plot showing y\ versus y2. The solutions should be periodic. 
Try to determine, experimentally, the period. (Note: This problem is an example of 
a predator-prey model, in which y\ represents the population of a prey species and 
y2 represents the population of a predator that uses the prey as its only food source. 
See Braun [4] for an excellent discussion of the dynamics of such systems, as well 
as the history behind the problem.) 

7. Consider now a situation in which two species, denoted x\ and x2, compete for a 
common food supply. A standard model for this is 

x\(t) = axi(t) - {bxi(t) + cx2{t))xi{t) 

x'2{t) = Ax2(t) - (Szi(i) + Cx2(t))x2(t) 

with initial conditions £i(0) = x°, x2(0) = x®. Using any of the methods in this 
chapter, solve this system for x° = x^ = 10,000, using a = 4, b = 0.0003, c = 
0.004, A = 2, B = 0.0002, and C = 0.0001. Vary the parameters of the problem 
slightly and observe what happens to the solution. 

8. An interesting and somewhat unusual application of systems of differential equations 
is to combat modeling. Here, we denote the force levels of the two sides at war by 
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x\ and X2, and make various hypotheses about how one side's force level affects 
the losses suffered by the other side. For example, if we hypothesize that losses are 
proportional to the size of the opposing force, then (in the absence of reinforcements) 
we get the model 

x'l = —ax2, 

x2 = — bx\. 

If we hypothesize that losses are proportional to the square of the opposing force, 
we get the model 

/ 2 
Χγ — — OtX2, 

x2 = ~Pxl· 

The constants a, β, a, and b represent the military efficiency of one side's forces. 

Using any of the methods of this section, consider both models with 

a=l,a= l ,xi(0) = 40,x2(0) = 120 

and observe how changing b and β affects the long-term trend of the solutions. In 
particular, can you find values of b and ß such that the smaller force annihilates the 
larger one? Combat models such as this are known as Lanchester models after the 
British mathematician F. W. Lanchester, who introduced them. 

9. Consider the following system of ODEs: 

x' = a(y-x), 

y' = x{p -z)-y, 

z' = xy — βζ. 

Use two different second-order methods (your choice) to approximate solutions to 
this system, for σ = 10, β = 8/3, and p = 28. Take x(0) = y(0) = z(0) = 1 and 
compute out to t = 65. Plot each component. 

10. Consider the second-order equation 

x" - μ(1 - x2)x' + x = 0, a:(0) = 0.5, x'(0) = 0. 

First, write this as a system. Then, as in Problem 9, choose two different second-
order methods and use each to solve the system for μ = 0.1 and μ = 10. Compute 
out to t = 20. 

11. One simple, but important, application of systems of differential equations is to the 
spread of epidemics. Perhaps the simplest model is the so-called SIR model, which 
models an infectious disease (such as measles) that imparts immunity to those who 
have had it and recovered. We divide the population into three categories: 

• S(t): These are the people who are susceptible; that is, they are well at time t 
but might get sick at some future time; 

• I(t): These are the people who are infected, i.e., sick; 

http://www.it-ebooks.info/


3 8 6 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 

• R(t): These are the people who have recovered and are therefore protected 
from getting the disease by being immune. 

Under a number of simplifying assumptions, '2 the SIR model involves the following 
system, sometimes known as the continuous Kermack-McKendrick model. 

d£[ 
~dt 
dl 
~dt 
dR 
~dt 

-rSI, 

rSI - al: 

ai. 

The parameters r and a measure the rate at which susceptible people become sick 
upon contact with infectives, and the rate at which infected people are cured. 

(a) For the case 70 = 1, S0 = 762, R0 = 0, a = 0.44, and r = 2.18 x 10"3, solve 
the system using the numerical method and step size of your choice, and plot 
the solutions. These data are taken from a study of an influenza epidemic at an 
English boys' school; the time scale here is in days. 

(b) Now consider the case where S0 = 106, R0 = 0, a = 1.74, r = 0.3 x 10"5. 
Solve the system (again, using the method of your choice) for a range of values 
of IQ > 0. Is there a critical value of IQ beyond which the disease spreads to 
almost all of the population? These data are taken, roughly, from a study of a 
plague epidemic in Bombay; the time scale is weeks. 

(c) In part (b), take Zo = 104 and vary the value of r. Try to find the critical value 
of r such that, for r < r c r j t , the number of infected drops monotonically, and 
for r > rcrit, the number of infected rises to a peak before falling off. 

< · · · > 

6.9 ADAPTIVE SOLVERS 

Just as we did with numerical quadrature, we can devise methods for initial value problems 
that implement some kind of variable step size and at the same time some automatic 
error control to minimize the work while obtaining a user-defined accuracy. The basic 
principles are the same as those that we used in §5.8.3 for numerical integration: We do 
two computations of the same value, and from these derive a computable estimate of the 
error. If this computable estimate of the error is small enough, we accept the computed 
value and go on to the next point. If the error estimate is not small enough, then we go to a 
smaller mesh size and try again. 

The "professional" codes use various schemes. One of the first such codes, DIFSUB [9], 
used a variable-order Adams-Bashforth-Moulton scheme. Others (the MATLAB routine 
ode45) use a pair of Runge-Kutta methods, an idea first published by Erwin Fehlberg in 
1969, so these schemes are often called Runge-Kutta-Fehlberg methods. What we will 

2See J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989, pp. 61 Iff. 
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describe here is a simpler but less accurate scheme that nonetheless contains the essential 
elements of the others, followed by some experiments with several schemes from MATLAB, 
which contains several ODE solvers, most based on the article by Shampine [17]. 

Consider the initial value problem 

y' = f(t,y), 2/(0) = 2/0, 

and assume that we have computed accurate approximate solutions out as far as some tn. 
Thus, we have yn « y(tn). We have a user-defined error criterion τ. We define un(t) as 
the exact solution of the IVP 

y' = f{t,y), y{tn) = yn\ 

thus, un (ί) defines the solution of the ODE that passes through our most recent approximate 
value. We will design our algorithm to control the local error, i.e., the error between yn+\ 
and un(tn+i). The global error y(tn+i) — yn+i can then be estimated from the local error 
and the differential equation. 

Our algorithm, which we will develop and justify in more detail, is based on using 
two approximate values generated from the trapezoid rule method, which of course is 
one instance of second-order Runge-Kutta. We require one preliminary lemma before 
proceeding with the design of the algorithm. 

Lemma 6.1 If the solution y is sufficiently smooth, then the truncation error for the second-
order Runge-Kutta scheme 

1. 
2/n+i =yn + -xhifitn^yn) + f(tn+i,yn + hf{tn,yn))) 

satisfies 

r(t, h) 

Proof: We have 

^y'"{t)-\y"{t)fy{t,y{t)) + 0{h3). (6.73) 

r{t,h) =h~l y(t + h)- y(t) - -h (/(*, y(t)) + f(t, y(t) + hf(t, y(t)))) 

We proceed essentially as we did in deriving the Runge-Kutta methods, by expanding 
y(t + h) and f(t, y(t) + hf(t, y(t))) using Taylor's Theorem: 

y(t + h) = y(t) + hy'{t) + \h2y"{t) + \h3y'"{t) + 0{hA) 

and 

f(t,y(t) + hf(t,y(t)) 

Putting this all together gives us 

f(t, y(t)) + hft(t, y(t)) + hf(t, y(t))fy(t, y(t)) 

+\ (h2ftt(t,y(t)) + 2h2f(t,y(t))fty(t,y(t)) 

+ h2f2(t,y(t))fyy(t,y(t)))+0(h3). 

r(t, h) = ( iy"'(i) - I (ftt(t, y(t)) + 2f(t,y(t))fty(t,y(t)) + f2(t, y(t))fyy(t, y(t))) ) h2 

+0(h% 
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and the conclusion follows by computing y'"(t) in terms of / and its derivatives. · 
This lemma is the key to constructing our adaptive algorithm. Note that (6.73) implies 

that—if the solution is smooth enough—we can use Taylor's Theorem to show that, for any 
real scalar a, 

T{tn + ah,h) = r(tn,h) + 0{h3). (6.74) 

Our algorithm is then the following. 

Algorithm 6.4 Simple Adaptive Solver for Initial Value Problems. 
Given tn,yn, a desired error tolerance, e, the current value of the mesh, h, and a value 
Vn « y(tn), do the following: 

1. Compute 

Yi=yn + ^h{f(tn,yn) + f(tn+i,yn + hf(tn,yn))); 

note that this is a single-step 0(h2) approximation to y(tn+i). 

2. Compute 

Y2 = W+\h(f (tn + l-h, w)+f (tn+1,W + i / i / (tn + i / i , W 

where 

W = yn + -h (f(tn,yn) + f (tn + -h,yn + -hf(tn,yn) 

note that Y2 is a two-step ö{h2) approximation to y(tn+i). 

3. Compute Y3 = (412 _ 1Ί )/3,' note that this is the Richardson extrapolated value for 
Y1andY2. 

4. Compute E = (Y2 — 1Ί)/3,· note that this is the Richardson estimated error. 

5. If\he < \E\ < he, then we set yn+i = I3 and start all over with the next point. 

6. If\E\ > he, then the step size is too large, so we cut h in half(h <— h/2) and repeat 
the computation. 

7. If\E\ < \ht, then the step size is too small, so we set yn+\ = Y3 but we double the 
step size (h «— 2h)for the next step. 

The reason for the last step is that we don't want the step size to become too small, 
because that would result in our doing too much work by taking many tiny steps where 
fewer, larger, steps would be acceptably accurate. 

The last two steps are a very simple way to control the step size; more sophisticated 
methods actually use the information from one step to predict what the next value of h 
ought to be. These same ideas can be used to predict an initial value of h, as well. 
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Because we do not accept an approximate value yn+i unless the estimated truncation 
error is less than he, we are confident that the local error satisfies 

\un{tn+i) -yn+i\ < he. 

This can be made precise in the following theorem. 

(6.75) 

Theorem 6.5 For Y\, Y2, Y3, and E as defined above, we have (assuming that f is contin-
uously differentiable in y) 

«η(ίη+ΐ) -Y3 = 0{hA) 

and 
un(tn+1)-Y2 = E + 0(h3). 

Proof: We prove this by simply going through the details of the error analysis, using the 
results of the lemma proved above. We have (since un(tn) = yn) 

un{tn+\) =yn + -^h (/(i„, yn) + f(tn+i,yn + hf(tn,yn))) + h.T(tn,h) 

and 

so that 

Y\ =yn + xh(f{tn,yn) + f(tn+1,yn + hf(tn,y„))). 

Un(.tn+i) - Y\ = hr(tn,h). 

Similarly, we can show that the error in the half-step is given by (tn+i =tn + \h) 

un(tn+i) -W =~hr (tn, -hj . 

We then can get un(tn+i) — Yz by looking at the next half-step: 

Un{tn+l) = " η ( ί „ + ι ) + ^ Ί ( / ( * „ + ! , U n ( i n + l ) + / ( Î n + l , U n ( Î „ + l ) 

+ \hf{tn+h,un{tn+h))Yj + ^hr (i„+i, 1/iJ 

y2 = w + \h[f{tn+h,W) + f{tn+uW+l-hf{tn,]A 

Subtract these two and use the Mean Value Theorem to write 

/ ( Î n + I , U n ( i n + l ) ) - f(tn+i,W) = / y ( Î„ + i , u ) ( t i „ ( t n + à ) - W) 

where υ is a value between W and un(tn+1 ). This yields 

"n(*n+i) -Yi = ^hr(tn, -h) 1 + M + -h* ft + -=hT[tn+i,-h) , 
5 ' 2 

where fy = fy{tn+1, v). Using (6.74), we can now simplify this to 

un{tn+l) -Y2 = hT[ tn, -h ) + 0(h4). 
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Therefore, 

Un(tn+l)-Y3 = Un{tn+l) - ^{AY2 - Yl) 

4 1 
= ^(Un{tn+l) - Y2) - j j (u„ (*„ + l ) - Yl) 

= I [hr (in, ±h) + 0(ά4ή - l-hr{tn, h) 

and 

E = \(Y2-Yi) 

= -ζ (Y2 - un(tn+i + un{tn+i) - Yi) 

= I (-hr (tn, ±h\ + 0{hA) + hr(tn,h) 

= -±hT(tn,^h\+0(h3) 

= un{tn+1)-Y2 + 0{h3), 

and we are done. · 
Thus, we can use E as a computable estimate to the local error in Vj; if this estimate is 

small enough, we use the (more accurate) value Y3 as the approximation; this is known as 
local extrapolation. 

The use of \he as the lower bound for the error in a single step is somewhat arbitrary. 
Also, it is typical to have an absolute minimum step size; if the computation attempts to 
take a step size smaller than hmin, then the computation terminates. Similarly, it is a good 
idea to have an absolute maximum step size, so that the code does not take too large a step. 

This particular algorithm has a number of drawbacks compared to others, but it is simple 
enough to illustrate the ideas behind adaptive methods. The most glaring flaw—beyond 
the fact that it is a relatively low order method—in this algorithm is that it requires a total 
of five different function evaluations in each step. 

■ EXAMPLE 6.22 

We can show how the algorithm works by using it to approximate, with a crude 
specified error, the solution to the initial value problem 

y' = 16i/(l - y), y(0) = 1/1024, 

whose exact solution is y(t) = 1/(1 + 1023e-16t). We take e = 0.001 and use 
h = 0.125 as the initial step size. We get 

so the estimated error is 

Yl 

W 

Y2 

E 

= 0.0048714, 

= 0.0024385, 

= 0.0060786, 

= 0.00040239, 
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which is larger than the desired tolerance of O.OOl/i = 1.25 x 10 4. Thus, we cut h 
in half to h = 0.0625 and repeat the computation. This time we get 

Yi = 0.0024385, 

W = 0.0015860, 

Y2 = 0.0025749, 

and the estimated error is now E = 0.000045460 < eh = 6.25 x 10 - 5 . Therefore, 
we accepted the extrapolated value 

Y3 = {AY2 - Fi) /3 = 0.0026204 

as the value of y\ « y(h); since the error is not less than \eh, we do not change h 
before continuing the computation. 

We will show one more step. To compute y2, we go through essentially the same 
computations as for y\\ we get 

Yi = 0.0065304, 

W = 0.0042517, 

Y2 = 0.0068921, 

E = 1.2056 x 10 - 4 . 

This estimated error is again too large, so we again cut h in half to h = 0.03125 and 
again repeat the computation. This time we get 

Yi = 0.0042517, 

W = 0.0033550, 

Y2 = 0.0042946, 

E = 1.4296 x 10 - 5 . 

This time the estimated error is less than eh = 3.125 x 10 - 5 , so we accept the 
extrapolated value Y3 = 0.0043089 as the value for y2 ~ y(2/i). Again, the 
estimated error is not too small, so we leave h alone and go on to the next step. 

■ EXAMPLE 6.23 

We will now attack this problem with several different routines: 

• ode j e, an implementation of Algorithm 6.4 written by the author; 

• ode 113, a variable-order Adams-Bashforth-Moulton method; 

• ode23, a low-order Runge-Kutta method, based on [3]; 

• ode45, a medium-order Runge-Kutta method, based on [7]; 

• BV78, a Runge-Kutta method based on a seventh- and eighth-order pair; details may 
be found in [18]; 

• odevr7, a Runge-Kutta method based on a different seventh- and eighth-order pair; 
details may be found in [19]. 
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The routines odel 13, ode23, and ode45 are part of the usual MATLAB distribution; 
BV78 and odevr7 are more recent developments, so are not yet part of MATLABl3 but 
may be downloaded from h t t p : / / f a c u l t y . smu. edu/shampine/current. html. 

We will perform two tests with each routine on the same problem as that in 
Example 6.22: one with the local error tolerance r = 10- 3 , and one with τ = 10~G. 
We expect all six routines to produce acceptably accurate solutions; the evaluation 
of performance will be based on two measures: (1) the length of the output arrays, 
N, which indicates how many steps the method took—obviously, a method that 
takes more steps is doing more work and therefore is being less efficient; and (2) the 
maximum absolute error over the points used, Emax. 

The results for the six routines are summarized in Tables 6.12 and 6.13. 

Table 6.12 Comparison of adaptive ODE methods for Example 6.23. 

T 

1er3 
1(Γϋ 

ode j e 
TV 
82 

2470 

^ m a x 

8.4604e^ 
1.0409e-7 

ode23 
N 
32 

133 

■^max 

0.0039 
1.9882e-4 

ode45 
TV 
53 

121 

■^max 

3.2667e-4 
1.5205e-4 

Table 6.13 Comparison of adaptive ODE methods for Example 6.23. 

T 

10-3 

ιο-ϋ 

odell3 
N 
29 
62 

-E'max 

0.0011 
9.506 le-5 

odevr7 
N 
71 

134 

^ m a x 

1.5349e^ 
5.8655e-6 

BV78 
N 
61 
91 

-^max 

2.6109e-5 
1.3374e-5 

The first observation is that there is no "clear winner" among the six routines. The 
author's routine produced the smallest error, but used by far the most points; ode 113 
used the fewest points and gave tolerable error when r = 10~6, but very poor error 
for r = 10 - 3 . The point is that adaptive routines are very sensitive to the specifics of 
a problem. One tries to write a robust routine that will perform well across a broad 
spectrum of problems. It is worth noting that the "new" routines (BV78, odevr7) 
produced less error than the others did. 

Figure 6.10 shows the exact solution, with the points used by ode 113 (for r = 
10~6) marked with circles. 

One thing about our results that might be worrisome: In several instances, the actual 
error was greater than the imposed tolerance. Does this mean that something is going 
wrong? No, it does not. First, remember that the adaptivity is based on using computable 
estimates of the error, and it should not surprise us that some of the estimates are inexact. 
Also, recall that we are controlling the local error, i.e., the error in each step. The global 
error is something else, and while it can be bounded in terms of the local error, it quite 
likely will be bigger. The precise theorems are the following. 

Theorem 6.6 (Global Error for Adaptive Methods, Version I) / / / is Lipschitz contin-
uous in y, if the local error at each step satisfies (6.75), and ifhmax/hmi„ < c, then, for 

3 As of early 2013; they may well be part of later MATLAB releases. 
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0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9 1 

Figure 6.10 Plot of exact solution for adaptive algorithm example. 

hmax sufficiently small, the global error is bounded by 

\y(tn) - Vn\ < Co\y(t0) - y0\ + Cie, 

where 

C0 = ecKt», Ci 

and K is the Lipschitz constant for f. 

„cKtn 1 
K 

Proof: We start with the triangle inequality, which gives us 

\y(tn+i) -yn+i\ < \y{tn+i) - un(tn+i)\ + \un(tn+i) - yn+x\ (6.76) 

Note that the last term is bounded by the local error hypothesis (6.75). From the original 
IVP and the definition of un we can get 

y(t)=y(tn)+ ! f(s,y(s))ds, 

Un{t) -yn+ f(s,Un(s))ds. 

Jtn 

Subtraction then yields 

y{t) - un{t) = y(tn) -yn+ (f(s, y(s)) - f(s, un(s))) ds. 

Take absolute values, upper bounds, and use the Lipschitz condition to get 

(6.77) 

\y(t) - un{t)\ < \y{tn) - yn\ + K{t - tn) max \y(s) - un(s)\. (6.78) 
tn<s<t 

Since this is true for all t 6 [tn, i„+i], it follows that 

max \y(s)-un(s)\ < \y(tn)-yn\ + K(tn+l-tn) max \y(s)-un(s)\, (6.79) 
InSsStn + l t „<S< t„ + l 
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so that (assuming that 1 — K{tn+\ — tn) > 0), 

max \y(s) - un(s)\ < - ^ - rr\y(tn) - yn\. (6.80) 
t n < s < t „ + i 1 — Λ^Ιη-|_ι — tn) 

Therefore, 

\y(tn+1) - un(tn+l)\ < max \y(s) - un(s)\ < — —dy( in ) - 2/n|· 
tn<s<tn+i L — J\(tn+i — tn) 

(6.81) 
Hence, if ft„+i = tn+\ — tn satisfies hn+\ < 1/K, then 

\y(tn+l) - î / n+ l | < Ï 777 lî/(*n) ~ î/n| + | ω η ( ί η + ΐ ) ~ ΐ /η+ ΐ | · ( 6 · 8 2 ) 
1 — Λ / 1 „ + ι 

The local error hypothesis allows us to write this as 

\y(tn+i) - yn+i\ < 77T \y(tn) - yn\ + hn+xe. (6.83) 
i — κηη+ι 

If we assume that h is small enough at each step (this amounts to making sure that / i m a x is 
small enough, that is, / i m a x < 1/K) and the the local error hypothesis is valid at each step, 
then we can solve this recursion to get 

n - l 

\y(tn) - yn\ < 7 n | y ( i o ) - îft>| + e £ ln~khk, 

where 

Thus, 

fc=0 

7 = T — 7 7 7 < 1 + Khm&yi < e> 
1 IS. ΛΙηηαχ 

n - l 

\y(tn)-yn\ < 7 n | y ( i o ) - y o | + e / i m a x ^ 7 " " 
fc=0 

l - 7 n 

= ln\y(to) - yo\ + eh., 
1 - 7 
l_ 

7 " - l 
K 

1 - 7 " 
= ln\y(to) -Vol +e/ lmax-777 (1 ~ Khmax) 

-ft "max 

< 7 n |2 / ( io ) -yo |+e 

eKnhmax _ j 
< e ^ f c — l ^ t o j - i t o l + e . 

Now, since we assume that hmax_/hm\n < c, then it follows that nhmax < ctn; therefore, 

ecKtn _ γ 
\y{tn)-yn\<ecKt"\y{t0)-y0\ + e 

K 

and we are done. · 
If we assume that / is smooth and uniformly monotone decreasing in y, we can get a 

better result, and we actually get it more easily. 
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Theorem 6.7 (Global Error for Adaptive Methods, Version II) / / / is smooth and uni-
formly monotone decreasing in y, and if the local error at each step satisfies (6.75), then 

\y(tn) - yn\ < \y(t0) - 2/01 + ttn. 

Proof: We begin as we did for Theorem 6.6, writing the global error in terms of the local 
error, using the triangle inequality: 

\y(tn+l) - yn+l\ < \y{tn+l) - Un(in+l)l + K ( * n + l ) ~ J/n+l|· (6.84) 

The local error hypothesis tells us that 

\un(tn+l) - 2/n+l| < hn+i6, 

where hn+\ = tn+\ — tn is the step used in the most recent computation, so we need only 
worry about the first term on the right. Recall now the definition of un as the solution of 
the ODE with initial value un(tn) — yn. In other words, un satisfies 

u'n = f(t,un), un(tn)=yn. 

But we also have, of course, that y satisfies 

y' = f(t,y), y(tn) = y(tn). 

We can therefore use the stability estimate for smooth and uniformly monotone equations 
(6.9) to get that 

| j / ( i )-«n(i) l<(e-m ( t - t n ) ) l2/( in)-yn|; 

therefore, 

l!/(tn+i)-«»(t»+i)l < (e-"*»* 1 - '») ) \y(tn)-yn\ = e-mh^\y(tn)-yn\ = -y\y(tn)-yn\, 

where 7 < 1. We therefore have that 

\y(tn+l) - 2/n+ll < l\y{tn) ~ J/n| + hn+i€, (6.85) 

which is a recursive inequality in e^ = \y(tk) —yk\'· 

en+i < jen + hn+i€. 

We can solve this recursion to get 

en = \y(tn) - yn\ < Cn\y{tn) - yn\ + e ί ^ 7 f c _ 1 / i n I , 

where 
Cn = 7 n < 1 

and 

and we are done. · 
Note that this result is much better than the more general one that used only Lipschitz 

continuity of / . In either case, we see that the global error is thus controlled when the local 
error is controlled, but not in the same way or to the same degree. 

We will conclude this section by looking, in the same way as we did in Example 6.23, 
at how our several routines perform on two other examples. 
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■ EXAMPLE 6.24 

Consider now the IVP 
y' = ycost, 2/(0) = 1. 

The exact solution is y = esin l. We will look at how our various routines solve this 
problem forO < t < 6.25. Tables 6.14 and 6.15 give the results. Fig. 6.11 shows 
the solution produced by ode45 using r = 10~6. 

Table 6.14 Comparison of adaptive ODE methods for Example 6.24. 

τ 
10"3 

10"0 

ode j e 
TV 
50 

1450 

^ m a x 

7.6422e^l 
3.7617e-7 

ode23 
TV 
23 

188 

^ m a x 

0.0021 
3.5508e-6 

ode45 
TV 
45 
97 

■^rnax 

1.9687e-4 
3.3921e-6 

Table 6.15 Comparison of adaptive ODE methods for Example 6.24. 

T 

10"3 

10"ϋ 

odel l3 
TV 
28 
56 

^ m a x 

0.0012 
3.4993e-6 

odevr7 
TV 
71 
78 

^ m a x 

1.2346e-6 
5.2362e-7 

BV78 
TV 
67 
67 

^ m a x 

1.0923e-7 
1.2023e-7 

3 

2.5 

2 

1.5 

1< 

0 . 5 

" 0 1 2 3 4 5 6 7 

Figure 6.11 Solution to Example 6.24 using ode45; computed points are marked with circles. 

Note that BV78 and odevr7 are again the most accurate, especially for the lower 
value of τ, but ode 113 continues to be, in some sense, the most efficient of the 
solvers, delivering very good accuracy while using a modest number of points. 
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EXAMPLE 6.25 

This time we look at the IVP 

y' = - y ( l - Î / /20) , y(0) = l. 

The exact solution is 

y 
20 

1 + 19e"«/4 ' 

We will look at how our various routines solve this problem for 0 < t < 25. Tables 
6.16 and 6.17 give the results. Fig. 6.12 shows the solution produced by odel l3 , 
with the approximation points marked by plus signs. 

Table 6.16 Comparison of adaptive ODE methods for Example 6.25. 

T 

io-3 
lO - 0 

ode j e 
N 
34 

1020 

^ m a x 

8.0988e-4 
2.9652e-8 

ode23 
N 
15 

110 

■C'max 

0.0102 
2.4368e-5 

ode45 
N 
45 
77 

R 
1.446e-4 

2.2664e-5 

Table 6.17 Comparison of adaptive ODE methods for Example 6.25. 

T 

10~3 

IO"0 

ode l l3 
N 
19 
41 

■^max 

0.0062 
8.4995e-6 

odevr7 
N 
71 
78 

■C'max 

9.467e-7 
7.7524e-7 

BV78 
TV 
67 
67 

■^max 

3.5139e-8 
4.7566e-8 

Figure 6.12 Solution for Example 6.25 using odel 13. 
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Both of these examples looked at computing over longer time intervals, to see how 
efficiently the various routines would handle this. One issue that is present is that all of 
the routines (except the author's) define a maximum At as MaxStep = (tf - t 0 ) /10 , 
in other words, the maximum step is one-tenth of the total computational interval. The 
MATLAB routines allow this to be reset, and it might be interesting to see how the MATLAB 
routines performed with a smaller maximum step. (Note that in Fig. 6.12 it is evident 
that several of the time steps are rather large, clearly > > 1, yet we still achieve acceptable 
accuracy. 

Exercises: 

1. Use Algorithm 6.4 to solve the following IVP using the local error tolerance of 
e = 0.001: 

y' = y2, i/(0) = 1. 

Do this as a hand calculation. Compute four or five steps. Compare the computed 
solution to the exact solution y = (1 - f ) - 1 . 

2. Apply one of the MATLAB routines to each of the following ODEs: 

(a) y' + 4y = l,y(0) = l; 

(b) y' + sin y = 0, y(0) = 1; 

(c) y' + y = sin47ri, 2/(0) = \; 

(d) »' = {£ , 1/(0) =4. 

Use both T = l.e - 3 and τ = l.e - 6, and compute out to ί = 10. Plot your 
solutions. You may need to adjust MaxStep. 

3. The MATLAB ODE routines can be applied to systems. Use each of ode23, ode45, 
and odel l3 to solve the system in Problem 9 of §6.8, using τ = l.e — 3 and also 
T = l.e — 6. 

4. Apply ode45 to the system in Problem 10 of §6.8, using μ — 10. Compute out to 
t — 60, and plot both solution components. Comment. 

5. The three routines we used in this section are not designed for stiff ODEs, but that 
does not mean that we can't try it! Apply ode23 to the system 

I/i = 198yi + 1997/2, î/i(0) = 1, 

2/2 = -3982/1-3992/2, lft(0) = - 1 , 

using τ = 10~6. Plot the solution components over the interval (0,5). 

< · · · > 
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6.10 BOUNDARY VALUE PROBLEMS 

We have already briefly encountered boundary value problems, in §§2.7 and 4.9. In this 
section we will take a more in-depth look at the problem of approximating B VPs. We will 
confine ourselves to two broad classes of problems: 

1. Linear BVPs in the form 

-u" + p(x)u' + q{x)u = f(x), 0 < x < 1, 

u(0) = g0, 

u{l) = 0i, 

where p, q, and / are known functions; 

2. Nonlinear BVPs that can be written in the form 

-u" 

u(0) 

u(l) 

= F(x,u,u'), 

= 9o, 

= 9ι· 

0<x < 1, (6.86) 

(6.87) 

(6.88) 

The first class of problems can be attacked by a modest extension of the ideas from §2.7 or 
§4.9. The second class we attack by adapting our IVP methods to apply to the boundary 
value problem. In both cases we assume that a unique solution to the original BVP exists, 
and that this solution is smooth. Precisely how smooth will be apparent from the hypotheses 
to each result that we obtain. 

6.10.1 Simple Difference Methods 

The basic ideas are the same as in §2.7: We first define a grid 

ΰ = XQ < X\ < X2 < ■ ■ ■ < Xn-l < Xn — ^ 

with Xk — Xk-i — h (therefore Xk = kh), and then use the derivative approximations 
derived from 

Αχ)_η(χ + Η)-φ-Η) = 1 Λ ν , ( ω ι 

u,l{x)_u(x-h)-2u(x)+u(x + h) = j_h2uW{T1xh)i 

to write the BVP as the difference equation 

1 + -p(x)h) u(x-h) + (2 + q(x)h2) u(x) - (l --p(x)hj u(x + h) 

= h2f{x) + R(x,h), 

where the remainder term is given by 

R(x,h) = lh4u^(rix,h) + \p{x)h4u'"^x,h). (6.89) 
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Note that R = 0(h4). Denote the approximate function as Uh(x) ~ u{x), and use 
Ui = Uh(xi) for the approximation at the grid points. Then the vector of Ui values is 
defined by the system of (tridiagonal) linear equations 

(6.90) 

(6.91) 

(2 + qih2) Ui-(l- \pih) U2=(l + \pih\ g0 + h2fu 

-(l + \pih\ Ui-i + (2 + Qih2) Ui-(l- ψ Α Ui+i = h2fi, 

-(l + ̂ Pn-ih)un-2 + (2+qn-ih2) Un-i = M - i p n _ i / i J 9l+h2/n_i, (6.92) 

where we have used pi = p(xi) and similarly for qi and fi, and, in the middle equation, we 
have 2 < i < n — 2. 

At this point it might be useful to summarize all this as an algorithm in outline form. 

Algorithm 6.5 Finite Difference Method for Linear Boundary Value Problems. 

1. Given h = (b — a)In, form the (n — 1) x (n — 1) tridiagonal matrix T, where 

tu = (2 + qih2) , tM +i = - ί 1 - -pih j , titi-i = - ( 1 + -pih J ; 

2. Form the vector F e I " " 1 given by 

( {l + \pih)go + h2fu i=\ 
Fi = I h2fi, 2<i<n-2, 

[ (1 - \pn-ih)gi + / i 2 / n - i , i = n-l; 

3. Solve the system TU = F; 

4. Then the approximate values are Ui « u(xi), 1 < i < n — 1. 

EXAMPLE 6.26 

Consider the BVP 

—u" + u' + u = sin πχ, 0 < x < 1, 

u(0) = 1, 

u(l) = 0. 

Therefore p(x) = 1, q(x) = 1, and f(x) = Βΐηπχ. If we take h — \, then n = 4 
and the linear system is therefore 3 x 3. We have 

T = 
2.0625 -0.875 0 
-1.125 2.0625 -0.875 

0 -1.125 2.0625 

1.1692 
0.0625 

0.04419 
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and the solution to the linear system is 

U = 
0.8423 
0.6489 
0.3754 

thus giving us our approximate solution, 

u(l /4) » 0.8423, u(l /2) « 0.6489, u(3/4) « 0.3754. 

The following theorem guarantees that the tridiagonal linear system can be solved using 
Algorithm 2.6 from §2.6. 

Theorem 6.8 Let p and q both be continuous on [0,1], with \p{x)\ < PM and 0 < Qm < 
q(x)for all x € [0,1]. Then, for h such that 

h < 2 /P M , (6.93) 

the discrete system (6.90)-(6.92) has a unique solution that can be computed by Algorithm 
2.6. 

Proof: The condition on h implies that 

1 - 7ipMh > 0; 

therefore, 1 ± \pih > 0 regardless of the sign of pi. Hence, we have 

|i + ^MI + | i - ^MI < 2 
< 2 + h2Qm 

< 2 + h2qi 

for all i (the argument for the first and last equations is a little different); thus, the matrix 
is diagonally dominant and we can invoke Algorithm 2.6. · 

Now that we know that the approximate solution can always be computed, we can ask 
how accurate it is. 

Theorem 6.9 Under the same hypotheses as in Theorem 6.8, there exists a constant C > 0, 
independent ofh, such that 

max \u{xi) - Ui\ < Ch2 f||u(4)||oo + ΙΙ^'ΊΙοο) . 
l<i<n—1 V / 

Proof: Define ej = U(XJ) — Ui, with e0 = e„ = 0. Subtracting (6.89) and (6.91) shows 
that the a satisfy the system of equations 

(2 + 9 i / i 2 ) e i - M --pih)e2 = Ru 

- (l + ^pih\ei-i + (2 + qih2)ei- M - -Pihj ei+1 = Jfc, 2 < i < n - 2, 

~ ( 1 + 2Pn~lh) en~2 + (2 + 9n-i / i 2 )e„- i = Rn-i, 

http://www.it-ebooks.info/


4 0 2 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 

where we have used R^ = R(xkJi) for the remainder as given in (6.89). Let J be the 
index for which ej is largest in absolute value: \ej\ > |ej| for all i; assume for simplicity 
that J φ 1 and J φ n — 1. We then have 

{2 + qjh2)\ej\ < 

< 

i + ψΛ 

( 
2| 

| 

i + ψΛ 

ej\ + \Rj\ 

S j -

+ 

l| + H 
l-\pjh 

P J / I 

) , , 

|ej+i| + |Äj | 

e j | + |Äj | 

Now subtract 2\ej | from both sides of the equation to get 

max \R(x,h)\. qjh2\ej\ < \Rj\ => \ej\ < 
h2Qm xe[o,i] 

But, 

max \R(x,h)\ < \hA (\\ 
xe[o,i] 6 \ 

so we are done, with C = (6Q7n)_1 

, (4) | 
■ )■ 

since \ej\ = maxi<i<;v-i \u(xi) — Ui\ is the error 
we are trying to bound. · 

This result is an excellent example of what mathematicians would call a "not sharp" 
result. It seems to suggest that the accuracy of the approximation would depend adversely 
on Qm, when in fact we will retain second-order accuracy even if q{x) = 0, i.e., Qm = 0. 
This requires a different and more subtle mode of proof, though, which we choose to omit. 
It should be noted that the effect of PM that is implied in the two theorems is very real; 
unless h is small compared to p(x), we will not get the expected accuracy. Some of the 
exercises are designed to demonstrate this. 

■ EXAMPLE 6.27 

To illustrate, consider the example 

-u" + 25u' + 26u = 1, 

u(0) = 0,u(l) = 1, 

for which the the exact solution is 

(6.94) 

(6.95) 

Φ) = γ6[ι 
02G 

p26 

+ 25 25+ 6"1 26x 
e + -^ re 

o - l o2G 

We solve this with the above ideas, using a sequence of grids with mesh size h = 2~h, 
2 < k < 10. Table 6.18 shows the maximum error over the entire interval for each 
value of h. Note that we do not begin to get the appropriate rate of convergence 
until h < 1/16, as we should expect. Figure 6.13 shows the exact solution, with the 
approximate solution for h = 1/16 marked by the circles. 

EXAMPLE 6.28 

A second example, 

-u" + v! = 2, 

u(0) = 0,u(l) = 1, 

(6.96) 

(6.97) 
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Table 6.18 Finite Difference Approximation to Examples 6.27 and 6.28. 

n = h~l 

4 
8 

16 
32 
64 

128 
256 
512 

1024 

Error in Ex. 6.27 
0.410152632559E+00 
0.226940305241E+00 
0.795659554206E-01 
0.185637947707E-01 
0.437975179182E-02 
0.110156098833E-02 
0.274526544131E-03 
0.685779319546E-04 
0.171423695873E-04 

Error in Ex. 6.28 
0.617591875069D-03 
0.156383538506D-03 
0.392871138047D-04 
0.982751528289D-05 
0.245793638298D-05 
0.614467541404D-06 
0.153625683064D-06 
0.384063436609D-07 
0.960190649213D-08 
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Figure 6.13 Solution for Example 6.27, together with the approximate solution for h = 1/16. 

shows that the condition q > 0 is not required for second-order accuracy. Here the 
exact solution is 

u{x) =2x+ — j (1 - e 1 ) , 

and the problem was solved using the same sequence of grids as in Example 6.27. 
Table 6.18 summarizes the results. 

6.10.2 Shooting Methods 

The finite difference methods of §6.10.1 can be applied to nonlinear problems such as 
(6.86M6.88), but the result is a nonlinear system of equations, rather than a linear one, and 
we are not yet prepared to approximate the solutions to such a problem. (But see §7.9.) 
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What we do here is reformulate the problem so that we can apply our initial value problem 
methods. 

Recall the problem of interest: 

-u" = F(x,u,u'), 0 < I < 1 , 

ω(0) = 5o, 

u(l) = gi. 

Consider now the new problem 

-y" = F(x,y,y'), 0 < x < 1, (6.98) 

2/(0) = go, (6.99) 

I/'(0) = p, (6.100) 

and note that this is an initial value problem, although we are using x instead of t to denote 
the independent variable. We will view y as depending on the choice of initial value for y', 
and write y{x\p) to denote this dependence. 

The question then is: Can we find a value of p such that y{l,p) = ffi = u(l)1 If we 
can, then the fact that both the boundary and initial value problems have unique solutions 
implies that we have found the solution of the BVP (6.86)-(6.88). Essentially, if we can 
find the value of p that makes the function 

f(p) = y(i;p)-9i (6.101) 

equal to zero, we will have found the correct value of p, and therefore have solved the 
BVP. But (6.101) is nothing more than a root-finding problem, just like those we solved in 
Chapter 3! 

The shooting method is based on making an initial guess for p, and then applying a 
root-finding method to an approximation to / . Note that (6.98)-(6.100) is a second-order 
differential equation, so we will have to recast it as a first-order system in order to proceed. 

A naive approach to the problem might be as follows: 
Shooting Method for Nonlinear Boundary Value Problem. 

1. Define y h (p) to be the (approximate) value of y{ 1 ) that is found using a mesh spacing 
of h and an initial value of p for y', together with a reasonable initial value problem 
method applied to (6.98)-(6.100). 

2. Use, for example, the secant method to update values of p: 

Pk -Pfc-i 
Pk+i =Pk -yh(pk) 

Vh{Pk) - Vh(Pk-i) 

Note that each time we iterate on this, we have to solve the initial value problem for 
a new value of p = Pk\ this is an example of a function whose root we are seeking, 
and which might take a substantial amount of time to compute. 

3. Once the iteration converges, the approximate solution of the initial value problem 
is also an approximate solution of the boundary value problem. 

Because of the high cost that is potentially involved in solving the IVP several times, 
it is usually more economical to initially iterate for p using a very coarse mesh, and then 
refine the value of p obtained in this way using the desired, finer, mesh. 
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EXAMPLE 6.29 

To illustrate, consider the nonlinear BVP defined by 

-u" = {u')\ 

it(0) = 0 , i i ( l ) = 1, 

(6.102) 

(6.103) 

which has exact solution u = ln((e — l)x +1) . We used the trapezoid rule predictor-
corrector method to solve the initial value problems, and used the secant method 
with po = 1 and p\ = 0.75 to solve (iteratively) the root-finding problem. For the 
first several iterations we used the very crude mesh size h = \, but on subsequent 
iterations we used the much smaller value h = 1/128. Table 6.19 shows the progress 
of the iteration forp, and Figure 6.14 shows a plot of the final approximate solution. 

Let's look at the first iteration in more detail. The first-order system for this 
second-order equation is w' = f{t, w), u>(0) = WQ, where 

w(t) twi(i) 
w2(t) 

u(t) 
u'(t) 

f(t,w) = 
w2(t) 

-w22(t) , WQ = 

and we take the initial value of p to be 1. Then the first solution over the interval 
[0,1], using h = 1/4 and the trapezoid rule predictor-corrector, goes like this: 

w = w0 + hf(0, w0) = 

Wl = w0+{h/2){f{h,w)+f(0,w0)) = 

w = wo + hf(0,wo) = 

w0ii + hw0,2 
wo,2 - hwlfi 

wo,i + {h/2)(v 
w0,2 - (h/2){H 

= 

h + 
-4 + 

' 0.25 
0.75 

W 0 ,2) 

^ 0 , 2 ) . 

) 

= 
0.21875 
0.8046875 

tui.i + hw\,2 
wi,2 - hwf2 

0.419921875 
0.64280700683594 

^ 2 = 1 0 ! + (h/2)(f(2h, w) + f{h,Wl)) = 

w = W2 + hf(h,wi) = 

ΐϋι,ι + (h/2)(w2+wi,2) 
wh2 - (h/2)(w^ + wU) 

W2,l + hw2,2 
11)2,2 - hw2 2 

0.56771110020782 
0.55916850352302 

0.39968681335449 
0.67209714741330 

1U3 = 1U2 + (h/2)(f{3h, w) + f{2h, w2)) 
W2,l + {h/2){w2 + W2,2) 
W2,2 - ( V 2 ) ( ^ 2 + w 2 , 2 ) 

w = w3 + hf(3h,w3) = ^3,1 + hw3t2 
^ 3 , 2 hwi2 

0.69773230685944 
0.49344691837773 

0.55359501972153 
0.57654914855164 

w4=w3 + (h/2)(f(4h, w) + f{3h, w3)) = 
w3,i + {h/2)(w2 + w3<2) 
w3,2 - (h/2)(wl + wl2) 

0.68734452808770 
0.50456180080763 

Now, if we had used the correct value of p = u' (0) to start the computation, we would 
have W4t\ « u(l) = 1. But clearly, p = 1 was not a good enough approximation, 
so we want to do a secant iteration on the function F(p) = 104,1 — 1; this requires 
that we take a second initial guess and compute 104,1 based on that guess. We take 
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p = 0.75 as our second guess and repeat the computation outlined above, getting 
—0.4434700177 as our new value of w^i — 1. The secant step is then 

cv N Pi - Po 
P2 = Pl-F{Pl)F(Pl)-F(Pu) 

= 0.75 - (-0.4434700177) (_0 , 4 4 3 4 7 0 0 ι 7 7 7 5_~(^ο0 3 1 2 6554719)) 

= 1.597516641, 

and we would continue the computation using pi as the initial value for the first 
derivative; i.e., we would set iyo,2 = Pi-

Table 6.19 summarizes the results we get by continuing this computation. Note 
that we use the crude mesh spacing h = 1/4 until we get a converged value for p, 
then switch to the smaller h = 1/128 mesh size. This is a more economical approach 
than doing the entire computation with the finer grid. 

Table 6.19 Shooting approximation to (6.102) and (6.103). 

k 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

n = h"1 

4 
4 
4 
4 
4 
4 
4 

128 
128 
128 
128 

Pk 
0.1000000000E+01 
0.7500000000E+00 
0.1597516641E+01 
0.1734300664E+01 
0.1773343754E+01 
0.1775002976E+01 
0.1775019020E+01 
0.1717716619E+01 
0.1718310128E+01 
0.1718304022E+01 
0.1718304021E+01 

Ufc(l) - 1 
-0.3126554719E+00 
-0.4434700177E+00 
-0.6162711822E-01 
-0.1368453961E-01 
-0.5578476751E-03 
-0.5342620750E-05 
-0.2114179276E-08 
-0.2161118864E-03 
0.2246518221E-05 
0.2427305024E-09 
-0.5551115123E-15 

Figure 6.14 Approximate solution via shooting method for Example 6.29, using h = 1/128. 
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6.10.3 Finite Element Methods for BVPs 

There are much more sophisticated methods for attacking boundary value problems, and 
in this subsection we discuss one of them, the finite element method. 

The term finite element method is only one of a number of names used for the body of 
ideas we will introduce here. Others include the Galerkin method, and the Ritz-Galerkin 
method14. 

To begin the discussion, we treat the following BVP: 

-u" + q{x)u = f{x), 0 < z < l , 

u(0) = 0, 

«(1) = 0, 

and we assume a uniform grid of points Χχ = ih, although one of the advantages of the 
finite element approach is that it can easily handle a nonuniform grid. 

The basic idea in the finite element method is to find an approximate solution UH, in the 
form 

n - l 
uh{x) = Y^u^hi{x), (6.104) 

where the Ui values are coefficients to be found, and the φ^ functions are an especially 
simple set of basis functions, defined formally by 

(x-Xi-i)/h, x e (xi-i,Xi), 
Φί(χ) = S {Xi-x)/h, x € (xi,xi+i), 

^ 0, otherwise. 

Graphs of one of these functions (using h = 0.1) and its derivative are shown in Figs. 
6.15 and 6.16, from which we see why these functions are sometimes known as "tent 
functions." Higher-order approximations, such as the B-spline basis used in §4.9, are of 
course possible. The central idea is to have a set of simple, locally defined basis functions. 

We would like to proceed as we did in §4.9, and substitute our expansion (6.104) into 
the BVP and manipulate to get some kind of (hopefully, tridiagonal) linear system satisfied 
by the coefficients uu but we can't do that, because the tent functions, being only piecewise 
linear, are not twice differentiable. 

14Walther Ritz (1878-1909) was a Swiss theoretical physicist who studied in Zurich and Göttingen. In 1908 he 

wrote a paper ("Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathemtischen Physik," 
J. Reine Angew. Math., 1908) which introduced his method for problems involving elastic plates, based on a 
minimization principle. Tragically, Ritz received little credit for his insight before he died at a young age, probably 
of tuberculosis, although some sources say it was pleurisy. 

Boris Grigorievich Galerkin ( 1871-1945) came from a poor family in the Belarus region of Imperial Russia. He 
attended secondary school in Minsk, then began studying at the St. Petersburg Technological Institute in 1893. He 
graduated in 1899 and began working as an engineer. Politically active, he was arrested by the Czarist government 
in 1905, but released after 18 months. In 1909 his academic career began when he took a teaching position at the 
St. Petersburg Institute, and continued until his death shortly after the end of World War II. Galerkin may have 
met Ritz during a tour of Western Europe which Galerkin made in 1909. Galerkin's method was published in 
Russian in 1915, and was basically what Ritz had proposed earlier, although Galerkin was able to show, following 
I. G. Bubnov, that a minimization principle was not necessary. Galerkin called it the "Ritz method" in his own 
work. 

A very thorough treatment of the history of this method may be found in a recent article by Martin Gander 
and Gerhard Wanner, "From Euler, Ritz, and Galerkin to Modem Computing," SIAMRev., vol. 54, pp. 627-666, 
2012. 
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Figure 6.15 Plot of a "tent function." Figure 6.16 Plot of the derivative of 
a "tent function." 

If we multiply the differential equation by an arbitrary smooth function v (which also 
vanishes at the boundary points), we get 

—vu" + q(x)vu = vf(x). 

Now integrate this over the interval of interest to get 

/ {— vu" + q{x)vu) dx = / vf(x)dx. 
Jo Jo 

This doesn't look like we have accomplished much, but now comes the key step. Consider 
the first integral on the left side, and apply ordinary integration by parts to it: 

/ {-vu")dx= [ (v'u')dx + (v(l)u'(l) - v(0)u'(0)). 
Jo Jo 

The boundary terms from the integration by parts vanish because of the assumption we 
made about v at the boundary, so we therefore have the new equation 

/ {v'u' + q{x)vu) dx = vf(x)dx. 
Jo Jo 

(6.105) 

This is known as the weak form of the original differential equation. (It is called "weak" 
because we assume less differentiability of the solution and because the equation is posed 
in an integral form, rather than in the usual pointwise form.) We can substitute our 
approximation (6.104) into this form of the problem, because the tent functions (and 
therefore Uh) are indeed first-order differentiable. To construct our approximation, we 
require that (6.105) hold for u replaced by Uh, and for v replaced by each of the basis 
functions^: 

' n-l n - 1 

l l (ΦΪΥ Ê ui$(*)) + vWtf Σ «ί$(*)) Idx =1 ${x)f{x)dx, 

(6.106) 
for all i = 1,2,..., n — 1. This is sometimes known as the discrete weak form of the 
problem; it looks imposing, but a little manipulation shows that it reduces to the system of 
equations 

Kuh = fh, 
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where K e R( n - 1 ) x ( n l) is a matrix whose elements are defined by 

kij = [ {(έ^(α;)) ( έ ^ ( χ ) ) + fatâwtiw} dx-> 

uh € R(n _ 1) is the vector of (unknown) coeficientsuj, and/ ' 1 € R(n _ 1) is the right-hand-
side vector defined by 

ft = H' f{x)<ft{x)dx. 
Jxi-l 

At this point the local nature of the tent functions becomes important. Because φ^(χ) = 0 
for x 0 (z i - i , Xi+i), most of the matrix elements vanish. In fact, it is not difficult to show 
that K is, indeed, tridiagonal, and is given by 

K 

! + K i - è + r i 0 h ^ " Ί h 

-ji+ri f + K 2 - £ + r 2 

0 i + r - 2 | + « 3 - i + r 3 

- S + r « - 2 
- K + r „ - a î + K n - i 

where Kj is defined by 

and rj by 

«t = / <?(z) (<#(x)) dx 

/•Zt + 1 

ri = / ç(x)^(x)(?!£+1(x)dx. 

Using this method seems very involved, and it can be, which begs the question: Why 
bother? The answer is that what makes this method involved also makes it applicable to a 
wide variety of problems that are more general than simple BVPs. 

■ EXAMPLE 6.30 

Let's look, first, at an example we used in Chapter 2; i.e., q{x) = f(x) — 1: 

-u" + u = 1, 0 < x < l , 

u(0) = 0, 

u(l) = 0. 

In this case the integrals defining qi, ri and ff1 are easy to do exactly, and we get 

* - £' wH)2 * - £_ (^)" *+£"' (*^)' *=§». 
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fi = Γ'+1<ft(x)dx = h, 
JXi-l 

so the matrix in the tridiagonal system becomes 

τ + fr -i + hh 0 

-*+** i 

0 

ï + ïh 

0 

0 

This is very slightly different from the system in §2.7, reflecting the very different 
ideas underlying the method. How does it perform? Table 6.20 gives the error for 
the same sequence of uniform mesh sizes as in §2.7. The errors are very similar to 
those in Table 2.10, and it appears that they are decreasing by a factor of 4, which 
suggests that the error is ö(h2). 

Table 6.20 Finite element example: — u" + u = 1 

h-1 

4 
8 
16 
32 
64 
128 
256 
512 
1024 

max|u(xfc) — Uk\ 
5.378273070081180e-4 
1.336649851621518e^ 
3.336711303851547e-5 
8.338712962463468e-6 
2.084486755454806e-6 
5.211097669488574e-7 
1.302768320582404e-7 
3.256977841592512e-8 
8.145399799097674e-9 

We haven't invested a lot of discussion in the theoretical basis of this method, and there 
is a reason for that: A complete analysis requires a heavy dose of some very sophisticated 
mathematical tools and machinery. We will mainly content ourselves with a few more 
examples that illustrate the method, but we will say that the ö(/i2) tendency illustrated in this 
first example can be made theoretically sound. In fact, using higher-degree approximating 
functions will often result in a higher order of accuracy. (It also needs to be said that 
pointwise norms are not the "natural" ones for use in the finite element method, but we 
defer to their simplicity for our examples here.) 
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EXAMPLE 6.31 

What about a problem with nonconstant q(x) or /(x)? How do we compute the 
matrix elements? To illustrate, consider the problem 

~U"+\TTxJU = f^' °-x-1> 
tt(0) = 0, 

u(l) = 0. 

For f(x) = 13x2 - x3 — 2, the exact solution is u(x) = x2(l — x2) (the reader 
should verify this). How do we implement the method here? 

The only real issue is the fact that the coefficient q{x) and forcing function / (x) 
are not constant; thus, we need to do some integration to get the values «», T-J, and f£. 
We could perhaps do the integrations exactly, but it is simpler to use a quadrature, 
although this does introduce some additional error. We will use the midpoint rule 
over the intervals (χ , - ι , x,) and (XJ, Xj+i). This gives us (XJ±I/2 = x% ± \h): 

fXi+1 ■ 9 fXi+1 , 9 / 1 \ 
K, = / {4,?(x))q(x)dx = j ^ {Φί(χ)Ϋ ( ^ — J dx 

- i f i - J -
4 Vl + ^ i - i / 

«+1/2 

ft 

= Γ+\{χ)φΪ^)φΪ+ι{χ)άχ*-Ιι(—!-
Jxi 4 \ 1 -t- XiH 

= / +1 /{χ)Φί(χ)άχ = [ ,+1 ( l l x 3 + x2 - 2)φΊ(χ)άχ 
JXi-l • ' X i - 1 

~ 2^ \[}^Xi-l/2 ~ Xi-l/2 ~ 2J + ^13xi+1/2 - Xi+1/2 ~ 2J J 

Table 6.21 shows the errors, and they continue to look like the error is ö(h2). 
If we were using higher-order basis functions, we would need to use higher-order 
quadrature to maintain this accuracy. 

Table 6.21 Errors in Example 6.31. 

/ i - 1 

4 
8 
16 
32 
64 
128 
256 
512 
1024 

max|u(xfc) -uh(xk)\ 
0.00811313662254 
0.00201198958946 

5.038365178675064e-4 
1.261547324883650e^ 
3.153473944955687e-5 
7.885241891991690e-6 
1.971295138653018e-6 
4.928228100331555e-7 
1.232058168265660e-7 

How do we treat more general boundary conditions? If the problem imposes nonzero 
function value boundary conditions, it is a simple modification to handle them. 
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EXAMPLE 6.32 

Consider the problem given below. 

The exact solution is 

-u" + u = 1, 0 < z < l , 

«(0) = 1, 

u(l) = 0, 

u(x) — i „ c i „ e 
ê  — 1 ez - 1 

(the reader should verify this). We use the same expansion as before, but we add to 
it a function that satisfies the boundary conditions: 

n - l 

uh{x) = (1-χ) + Σ Ui(f>Î(x). 
i = l 

where 

and 

We substitute this into the discrete weak form (6.106) and proceed as before. The 
1 — x term enters into the approximation via the right-hand side of the linear algebra 
problem. We have almost the same linear algebra problem as in Example 6.30: 

Kuh = fh, 

tf = tndiag ^ + - Λ , J- + -Ä, - h + -hj 

ft= [X'+1xtf{x)dx+ Γ+\φΪ{χ))'άχ. 
Jxi-i J x i - i 

(In one of the exercises we ask the student to fill in the details here.) We use a 
midpoint rule quadrature on the first term in //* (the derivative term integrates to 
zero) to get 

ft = hxi + ö(h3). 
Table 6.22 shows the errors in our approximation as h decreases, and Fig. 6.17 shows 
the solution plot for h = 1/32. Given that the exact solution is nearly a straight line, 
the accuracy is perhaps not surprising. 
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Figure 6.17 Solution for Example 6.32 for h = 1/32. 

Table 6.22 Error in Example 6.32. 

Λ-1 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

max|u(a;fc) - uh(xk)\ 
2.689136535040104e-004 
6.884707685311797e-005 
1.722228151940230e-005 
4.318665783487052e-006 
1.079566930628495e-006 
2.698855354199558e-007 
6.747435599141482e-008 
1.686886730301040e-008 
4.218667526423303e-009 

There is much more to the finite element method than has been discussed in this brief 
treatment. We will do a little more with these ideas in Chapter 9. 

Exercises: 

1. Use a mesh size of h = \ (n = 4) to solve the boundary value problem (via finite 
differences) 

—u" + u = sinx,0 < x < 1; 

u(0) =u(l) = 0 . 

Don't bother to write a computer program; do this as a hand calculation. 

2. Repeat the above for the BVP 

-u" + (2 - x)u = x, 0 < x < 1; 

u(0) = u(l) = 0. 
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Don't bother to write a computer program; do this as a hand calculation. 

3. Repeat the above for the BVP 

-u" + u = e~x,0 < x < 1; 

u(0) = u ( l ) = 0 . 

4. Consider the linear boundary value problem 

- u " + (10cos2x)u= 1, 

u(0) = u(n) = 0. 

Solve this using finite difference methods and a decreasing sequence of grids, starting 
with h = π/16, π/32, Do the approximate solutions appear to be converging to 
a solution? 

5. Consider the nonlinear boundary value problem 

-u" + eu = 1, 

u(0) = u ( l ) = 0. 

Use shooting methods combined with the trapezoid rule predictor-corrector to con-
struct solutions to this equation, then use a fourth-order Runge-Kutta scheme and 
compare the two approximate solutions. Are they nearly the same? 

6. Write a program to use the finite element method to solve the BVP 

-u" + u = e~x,0 < x < 1; 

u(0) = u(l) = 0, 

using a sequence of grids, h~~l — 4 ,8 ,16, . . . , 1024. 

7. Repeat Problem 6, using the different boundary conditions u(0) = 0, u(l) = 1. 

8. No exact solution was provided for either of Problems 6 or 7 (although anyone having 
completed a sophomore ODE course—or with access to a symbolic algebra program 
such as Maple or Mathematica—ought to be able to produce a solution). Write an 
essay addressing the following question: On what basis are you confident that your 
codes are producing the correct solution? 

< · · · > 

6.11 LITERATURE AND SOFTWARE DISCUSSION 

The numerical solution of initial value problems for ordinary differential equations is one 
of the most important areas of scientific computation. Good overviews of the development 
of the subject in the last 40 years or so may be found in the monographs [11], [9], [15], 
and [16]; more recent treatments are in [8] and [13]. A selection of easily available 
automatic software—as well as a rich summary of recent results—is given by Shampine 
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[17]. Additional, more recent, codes are discussed in [18] and [19]. Other codes can be 
found by searching the Netlib repository at h t t p : //www. n e t l i b . org. 

Less is available about two-point boundary value problems. Much of what we did here is 
based on Chapter 8 (Sec. 7) of the book by Isaacson and Keller [12]; a more comprehensive 
survey is in [14]. One reason less is written about BVPs for ordinary differential equations 
is that they can in almost all respects be considered as special cases of the Poisson partial 
differential equation, which we treat in §9.3. However, the ordinary differential equation 
case is so much simpler that it really deserves its own exposition, which can serve as an 
introduction to the PDE case. 
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CHAPTER 7 

NUMERICAL METHODS FOR THE 
SOLUTION OF SYSTEMS OF EQUATIONS 

Here we will look at numerical methods for solving two important problems from linear 
algebra: 

1. The linear systems problem: Given a matrix A and a vector b, both known, find the 
vector x such that 

Ax = b. 

2. The nonlinear systems problem: Given a vector-valued function F, find the vector x 
such that 

F(x) = 0. 

A third important problem—the algebraic eigenvalue problem—is deferred to Chapter 
8. These two chapters—7 and 8—are most heavily affected by the use of MATLAB, which 
in many ways was originally designed to be an easy-to-use interface for the FORTRAN 
packages UNPACK (linear systems) and EISPACK (eigenvalue problems). It is fair to ask 
why we are going to spend time describing in detail algorithms that can be executed with 
a single line of MATLAB code. Part of the answer lies in a bit of philosophy: The author 
believes very strongly that students need some exposure to the details of an algorithm in 
order to understand the material, but we will not go into deep detail on some of the more 
complicated algorithms, relying on the appropriate MATLAB constructs. 

We begin with a review of the linear algebra concepts and notation that are especially 
necessary for this chapter. 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 4 1 7 
Copyright © 2013 John Wiley & Sons, Inc. 
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7.1 LINEAR ALGEBRA REVIEW 

A vector x G Rn is denned to be an ordered n-tuple of real numbers: 

X - (xi,X2,...,Xn)T, 

where the superscript (denoting transpose) indicates that the vector is considered to be a 
column vector. A matrix A G M m x n is a rectangular array of m rows and n columns: 

A = 

We will assume that the student is familiar with the basic operations of addition and 
multiplication of matrices. 

We will use no diacritical marks to distinguish vectors from scalars. In general, matrices 
will be denoted by upper case Roman letters, and vectors by lower case Roman letters. The 
notational correspondence between the vector or matrix and its components will almost 
always be as in the above examples. 

Our assumption that vectors are column vectors means that we can regard them as 
matrices in R n x l , and this allows us to write the ordinary vector dot product as 

a n 
d2\ 

031 

a i 2 

Û22 

ß32 

f7.™o 

Û13 · 

a23 · 
Û33 · 

din 

&2n 

Û3n 

(x,y) = x ■ y = xTy = ^ ijj/j. 
i=\ 

z i 3/1 
Z2Î/1 

X„11i 

X\V2 

Z22/2 

XZV2 

X~ 111 

x\yz ■ 
Z2Z/3 · 

Z32/3 · 

■ X\Vn 

■ X2Vn 

■ X3Vn 

X-1U 

Note that reversing the order of multiplication results in a matrix, not a scalar: 

xy 

Note also that this notation allows us to write 

(x,Ay) = xTAy = {ATx)Ty = (ATx,y), 

which is one of the important properties of the transpose of a matrix. 
Given a square matrix A e R" x n , if there exists a second square matrix B e R" x n 

such that AB = BA = I, then we say that B is the inverse of A and we write B = A~l. 
Not all square matrices have an inverse! If a matrix A e R n x n has an inverse, we say that 
A is nonsingular; otherwise, we say that A is singular. 

The following theorem summarizes the conditions under which a matrix is nonsingular, 
and also connects them to the solvability of the linear systems problem. 
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Theorem 7.1 Given a matrix A e R n x n , the following statements are equivalent: 

1. Aisnonsingular; 

2. The columns of A form an independent set of vectors; 

3. The rows of A form an independent set of vectors; 

4. The linear system Ax = b has a unique solution for all vectors b e Rn; 

5. The homogeneous system Ax = 0 has only the trivial solution x = 0; 

6. The determinant is nonzero: det A φ 0. 

An important corollary to this theorem is the following. 

Corollary 7.1 If A € R n x n is singular, then there exist infinitely many vectors x € Kn, 
x φ 0, such that Ax = 0. 

There are a number of special classes of matrices. In §2.6 we looked at tridiagonal 
matrices, and later in this chapter we will look at symmetric, positive definite matrices. One 
class of special matrix that the student ought to be familiar with is the triangular matrix: 
A square matrix is lower (upper) triangular if all the elements above (below) the main 
diagonal are zero. Thus, 

is upper triangular, and 

U = 

L = 

1 2 3 
0 4 5 
0 0 6 

1 0 0 
2 3 0 
4 5 6 

is lower triangular. 
The student who is not familiar with the concepts of independence/dependence, span-

ning, basis, vector space/subspace, dimension, and orthogonal!orthonormal should review 
the appropriate sections of a linear algebra text. Students should also be familiar with the 
basic properties of determinants, although we do not use determinants as much as might 
be expected. (They are used somewhat in the exercises in some of the early sections, 
especially in §7.2.) While we defer our treatment of the computation of eigenvalues and 
eigenvectors to Chapter 8, the student should still be familiar with the basic properties and 
definition of these quantities, as they are mentioned in several places in this chapter. 

Exercises: 
1. Assume Theorem 7.1 and use it to prove Corollary 7.1. 

2. Use Theorem 7.1 to prove that a triangular matrix is nonsingular if and only if the 
diagonal elements are all nonzero. 

3. Suppose that we can write A e R n x n as the product of two triangular matrices 
L e R n x n and U 6 R n x n where the diagonal elements of L and U are all nonzero. 
Prove that A is nonsingular. 

< · · · > 
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7.2 LINEAR SYSTEMS AND GAUSSIAN ELIMINATION 

In §2.6 we constructed an algorithm that solved tridiagonal linear systems by first reducing 
them to triangular form, and then solving the triangular system. In this section, we will 
construct a general version of that algorithm. We begin by writing the linear system as a 
single augmented matrix: 

A ' = [A\ b], 

where the vertical bar is supposed to separate the coefficient matrix from the right-side 
vector. The solution algorithm is then applied to A'. 

The algorithm is the same one that is taught in a standard linear algebra course, and 
which we first saw in §2.6: Gaussian elimination. It works by systematically eliminating 
nonzero elements below the main diagonal of the coefficient matrix. This is accomplished 
by using only those operations that preserve the solution set of the system, known as 
elementary row operations: 

1. Multiply a row by a nonzero scalar, c; 

2. Interchange two rows; 

3. Multiply a row by a nonzero scalar, c, and add the result to another row. 

If we can manipulate from one matrix to another using only elementary row operations, 
then the two matrices are said to be row equivalent. 

The important theorem that connects the elementary row operations to the solution of 
linear systems is the following. 

Theorem 7.2 Let A' be the augmented matrix corresponding to the linear system Ax = b, 
and suppose that A' is row equivalent to A" = [T c]. Then the two linear systems have 
precisely the same solution sets. 

Our goal, then, is to use elementary row operations to reduce the augmented matrix A' 
to the new augmented matrix A" = [U | c], where U is upper triangular. This will mean 
that the new system Ux = c will be easy to solve. 

■ EXAMPLE 7.1 

To illustrate the process, let's look at a concrete example that we will work through 
in detail. Consider the system of equations 

4xi + 2x2 - X3 = 

Xl + 4X2 +X3 = 

2xi -x2+ 4x3 — 

which can be written in matrix-vector form as 
4 
1 
2 

We write this as an augmented matrix: 

5 

12 

12 

2 
4 
1 

- 1 
1 
4 

Xl 

Z2 

Z3 

= 
5 

12 
12 

A' = 
4 2 
1 4 
2 - 1 

1 
1 
4 

5 " 
12 
12 
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Then the elimination algorithm proceeds as follows: 

A' 

4 

1 

2 

2 

4 

- 1 

- 1 

1 

4 

5 

12 

12 

rsj 

4 

0 

2 

2 
7 
2 

1 

- 1 
5 
4 

4 

5 " 
43 
4 

12 

CN^ 

4 

0 

0 

7 
2 

- 2 

1 
5 
4 
9 
2 

5 " 
43 
4 
19 
2 . 

The first step was accomplished by multiplying the first row by \ and subtracting 
the result from the second row; the second step was accomplished by multiplying the 
first row by | and subtracting the result from the third row. To finish the job, we have 
(by multiplying the second row by - 1 and subtracting from the third row) 

A' 

2 
7 
2 

2 

- 1 
5 
4 
9 
2 

5 " 
43 
4 
19 
2 . 

r>*j 

" 4 

0 

_ 0 

2 
7 
2 

0 

- 1 
5 
4 

73 
14 

5 " 
43 
4 

219 
14 . 

¥ = A". 

This augmented matrix represents a triangular system—meaning that the coefficient 
matrix is triangular—as follows: 

A" = [U\c}^>Ux = c, 

that is, 
4 

0 

0 

7 
2 

0 ^ 

-1 " 
5 
4 

73 
14 J 

X l 

Z2 

Z3 

5 " 
43 
4 

219 

L 14 J 
and we can now solve by interpreting each row as follows: 

Third Row: ffx3 = τ τ =*· χ 3 = 3; 

Second Row: | x 2 + | x3 = j => 12 = 2; 

First Row: 4χχ + 2x2 — X3 = 5 =>· Xi = 1. 

To render this example process into a general algorithm, we note the essential features: 

Work down each column, eliminating (i.e., converting to a zero) each com-
ponent below the main diagonal, and modifying the rest of the corresponding 
row appropriately. 

We start by presenting what we call "naive" Gaussian elimination, a version of the 
algorithm that is easy to understand yet, is not completely general. We then move quickly 
to a more robust and complete version. 

Algorithm 

for i= l 1 
for 

7.1 Naive Gaussian Elimination Algorithm for 

to n-1 
j= i+ l t o n 
m = a ( j , i ) / a 
for k=i+l to 

a ( j . k ) = 
endfor 
b ( j ) = b ( j ) -

endfor 
endfor 

Ci . i ) 
n 

= a ( j , k ) ■ 

- m*b(i) 

- m*a(i,k) 

Ax = ■■ b (Pseudocode) 
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Programming Notes: Let's talk about what this algorithm does and how it implements 
what was done in the example. 

The outermost loop (the i loop) ranges over the columns of the matrix; the last column 
is skipped because we do not need to perform any eliminations there, since there are no 
elements below the diagonal element. (If we were doing elimination on a nonsquare matrix 
with more rows than columns, then we would have to include the last column in this loop.) 

The middle loop (the j loop) ranges down the ith column, below the diagonal (hence j 
ranges only from i + 1 to n). We first compute the multiplier, m, for each row. This is the 
constant that we use to multiply the ith row by in order to eliminate the α,ί element. Note 
that we overwrite the previous values with the new ones, and we do not actually carry out 
the computation that makes α^ zero. Note also that this loop is where the right-hand-side 
vector is modified to reflect the elimination step. 

The innermost loop (the k loop) ranges across the j t h row, starting after the ith column, 
modifying each element appropriately to reflect the elimination of a^j. 

Finally, we must be aware that the algorithm does not actually create the zeros in the 
lower triangular half of A; this would be wasteful of computer time since we don't need to 
have these zeros in place for the algorithm to work. If we were to apply our algorithm to 
Example 7.1, then the computer storage for A would look like this when the process was 
done: 

B 
4 2 - 1 
1 T- h-2 
2 - 2 73 

14 

The process works because we only work with the upper triangular part of the matrix from 
this point forward, so the lower triangular elements need never be referenced. This will 
change somewhat in §7.4. 

To finish the solution process, we apply what is known as the backward solution or 
backsolve algorithm to the augmented matrix that results from the elimination step. It's 
called the backward solution step because we proceed backwards up the diagonal from the 
bottom to the top. 

Algorithm 7.2 Backward Solution Algorithm for Ax = b (Pseudocode) 

x(n) = b (n ) / a (n ,n ) 
for i=n- l t o 1 

sum = 0 
for j= i+ l to n 

sum = sum + a ( i , j ) * x ( j ) 
endfor 
x ( i ) = (b( i ) - s u m ) / a ( i , i ) 

endfor 

Programming Notes: This algorithm simply marches backwards up the diagonal, comput-
ing each Xi in turn. Formally, we are computing 

Vi — i Oi y ^ dijXj i , 
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which is what is necessary to solve a triangular system. The j loop is simply accumulating 
the summation term in this formula. 

To summarize, then, the algorithm is nothing more than a systematic application of the 
ordinary Gaussian elimination algorithm from basic linear algebra. There is one problem, 
however. In the computation of the multiplier, we divide by the current (note that the values 
of the matrix elements change throughout the elimination process) value of the diagonal 
element. Clearly, if this value is zero, then we cannot proceed further and the algorithm 
breaks down. Note that this does not mean that the matrix is singular, since 

A-\° l' [l 0 

is an example of a nonsingular matrix for which the algorithm cannot even get started. 
What do we do to fix this? 

Recall that one of our allowed elementary row operations is the interchange of two rows. 
In the example above, if we switch the two rows, we get the new matrix 

A ' - I 1 ° ' 

and from this point the elimination algorithm can obviously proceed to completion. (In 
fact, it is already finished!) 

The pivotal issue in this discussion is whether or not the diagonal elements become zero 
at any point in the process. Because they are so important in this regard, the diagonals are 
called pivots or pivot elements, and the process of swapping rows to avoid a zero element 
on the diagonal is called pivoting. There are actually several kinds of pivoting. Partial 
pivoting, in which only entries in the same column below the current diagonal are examined, 
is the commonest and is all that we will discuss here in any depth. Complete pivoting, 
which searches not only on the current column, but also on all subsequent columns, is 
known to be more stable, but is also much more expensive to implement. Finally, it is 
sometimes necessary to scale the rows before pivoting, and this is called scaled pivoting. 

The partial pivoting algorithm is relatively easy to describe: 

Algorithm 7.3 Partial Pivoting (Outline). 

1. Suppose that we are about to work on the ith column of the matrix. Then we search 
that portion of the ith column below and including the diagonal, and find the element 
that has the largest absolute value. Let p denote the index of the row that contains 
this element. 

2. Interchange rows i and p. 

3. Proceed with the elimination. 

Note, by the way, that this algorithm does not merely search for the first nonzero element 
in the column to make that the pivot, but searches for the largest element in the column to 
use as the pivot. We will address this issue momentarily. It is not difficult to update our 
algorithm to include pivoting. 

Although the actual problem with naive Gaussian elimination is the potential division 
by a zero pivot, the entire algorithm will be less susceptible to rounding error if we choose 
to use the largest possible pivot element. 
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EXAMPLE 7.2 

To gain some insight into why this is so, consider the following example system: 

" e l " 
1 1 

Xl 

. X2 
= 

' 1 " 
2 

For any e φ 1, the matrix is nonsingular and so a unique solution exists. The exact 
solution, expressed in terms of e (see Problem 7), is 

xi 
1 

l + 0(e), x2 = i - ^ = 1 + O(e), (7.1) 

but what happens when we solve this system—under the assumption that e is very 
small—using the naive versus the pivoting algorithms? 

If we don't pivot, then the computation goes like this: 

e 1 
1 1 

e 1 
0 1 - i 

1 
2 - i 

Suppose now that e is so small that, within the machine arithmetic, 1 — i 
and 2 — i = - e _ 1 . Then we have 

e 1 
0 1 - i 

1 

2 - i . 
e 
0 

1 
_1 

c 

1 " 
_ 1 

e _ 
X2 1, a ; i « 0 . 

Although the value of x<i is accurate, the value of xi is not. This error is caused by 
the rounding error associated with the large number 1/e. On the other hand, if we 
first pivot by switching the rows, then the computation becomes 

e 
1 

1 
1 

1 ' 
2 

l*NJ 
" 1 

e 
1 
1 

2 ' 
1 

rsj 
1 1 
0 1 - e 

2 
l - 2 e 

" 1 1 
0 1 

2 " 
1 X2 1, xi « 1. 

This example illustrates (but, of course, does not prove) the utility of partial pivoting 
even if we do not have a zero pivot. This is especially important when we consider that we 
cannot predict what the sizes of the pivot elements will be. 

The appropriate MATLAB routine to solve a system is the backslash command: x = 
A\b. Some of the exercises ask you to write you own code, some ask you to use the 
MATLAB commands and even compare the results. 

We end this section with a pseudocode for a Gaussian elimination routine that does 
partial pivoting. It might be appropriate, at this time, to remind students that it is important 
to understand the methods and algorithms well enough to write your own working code. 
A degree of facility with MATLAB is a good thing, but true understanding will only come 
from writing your own codes. 
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Algorithm 7.4 Gaussian Elimination with Partial Pivoting (Pseudocode) 

for i= l t o n-1 
am = a b s ( a ( i , i ) ) 
p = i 
for j= i+ l t o n 

i f a b s ( a ( j , i )) > am then 
am = a b s ( a ( j , i ) ) 

P = j 
endif 

endfor 
if p > i then 

for k = i to 
hold = 
a ( i , k ) 
a(p ,k) 

endfor 
hold = b ( i ) 
b ( i ) = b(p) 
b(p) = hold 

endif 
for j= i+ l t o n 

m = a ( j , i ) / a 
for k=i+l t o 

a ( j , k ) = 
endfor 
b ( j ) = b ( j ) 

endfor 
endfor 

n 
a ( i , k ) 
= a(p ,k) 
= hold 

( i , i ) 
n 

= a ( j , k ) - m*a(i 

- m*b(i) 

,k) 

Exercises: 
For the sake of simplicity here, we will define at the outset several families of matri-

ces, parameterized by their dimension. These are referred to in several of the exercises 
throughout the chapter. 

tin = \lHj\t n-ij — ■ , · _ i ■ 

2, i - j ; 

0, otherwise. 

4, i = j ; 

0, otherwise. 

4, i-j = l; 
- 4 , i-j = -l; 

0, otherwise. 

■A-n — [aij\> ai,j — * 
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Even if we do not know the solution to a linear system, we can check the accuracy of a 
computed solution xc by means of the residual r = b — Axc. If xc is the exact solution, 
then each component of r will be zero; in floating-point arithmetic, there might be a small 
amount of rounding error, unless the matrix is "nearly singular," a concept that we will 
discuss in detail in §7.5. 

1. Write a naive Gaussian elimination code and use it to solve the system of equations 
Ax = b, where 

14 14 - 9 3 - 5 
14 52 - 1 5 2 -32 

- 9 - 1 5 36 - 5 16 
3 2 - 5 47 49 

- 5 -32 16 49 79 

andi>= [-15.-100,106,329,463]r. The correct answer is x = [0,1,2,3,4]T. 

2. Write a naive Gaussian elimination code and use it to solve the system of equations 

T5x = b, 

where b = [1,6,12,18,19]T. The correct answer is x = [0,1,2,3,4]T. 

3. Write a naive Gaussian elimination code and use it to solve the system of equations 

H5x = b, 

where 6 = [5.0,3.550,2.81428571428571,2.34642857142857,2.01746031746032]T. 
The correct answer is x = [1,2,3,4,5]T. 

4. Repeat Problem 3, except now use b\ = 5.0001; how much does the answer change? 

5. Write your own naive Gaussian elimination code, based on the material in this 
chapter, and test it on the indicated families, over the range of 4 < n < 20. Take b 
to be the vector of appropriate size, each of whose entries is 1. 

(a) Hn; 

(b) Tn; 

(c) Kn. 

For each value of n, compute the value of maxi<i<„ \rt\, where r = b — Ax. 

6. Modify the Gaussian elimination algorithm to handle more than a single right-hand 
side. Test it on a 5 x 5 example of your own design, using at least three right-hand-side 
vectors. 

7. Use the naive Gaussian elimination algorithm to solve (by hand) the following system. 
You should get the same results as in (7.1). 

' e l ' 
1 1 

Xl 

X2 
= 

' 1 " 
2 
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8. Write a Gaussian elimination code that does partial pivoting, and use it to solve the 
system of equations Ax = b, where 

A = 

9 3 2 0 7 
7 6 9 6 4 
2 7 7 8 2 
0 9 7 2 2 
7 3 6 4 3 

and b = [35,58,53,37,39]T. The correct answer is x = [0,1,2,3,4]T. 

9. Write a naive Gaussian elimination code and use it to solve the system of equations 
Ax = b, where 

1 1/2 1/3 " 
A= 1/2 1/3 1/4 

1/3 1/4 1/5 

and b = [7/6,5/6,13/20]T. The correct answer is x = [0,1,2]T. 

10. Use the naive Gaussian elimination algorithm to solve (by hand) the following system, 
using only three-digit decimal arithmetic. Repeat, using Gaussian elimination with 
partial pivoting. Comment on your results. 

0.0001 
1 

Xl 

X2 

11. Write a code to do Gaussian elimination with partial pivoting, and apply it to 
the system A^x = 6, where b = [—4, —7, - 6 , - 5 ,16 ] T and the solution is x = 
[0,1,2,3,47. 

12. Use MATLAB's rand function to generate A, a random 10 x 10 matrix, and a random 
vector b 6 K10; solve the system Ax = 6(1) Using your own code; and (2) Using 
MATLAB's backslash command: x = A\b. Obviously, you should get the same 
results both times. 

13. Repeat Problem 12, this time using a 20 x 20 random matrix and appropriate random 
right-hand side. 

< · · · > 

7.3 OPERATION COUNTS 

Since many practical problems in numerical linear algebra involve very large matrices, an 
important issue is the number of operations that a specific algorithm requires in order to 
operate on a matrix of a given size. In this section we will go through the details of deriving 
the operation counts for Gaussian elimination and the backsolve step; in subsequent sections 
we will give the operation count without going into the details. 

We first have to decide what constitutes an "operation." The historical convention is to 
count only the multiplications and divisions, since most multiplications (and divisions) are 
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associated with a subsequent addition (or subtraction).1 This is how we will count things, 
but the reader should be aware that other texts will occasionally count all operations, which 
will lead to different results (generally by a factor of 2) than what we get here. MATLAB 
has a very useful command, f lops, which can be used to estimate the number of operations 
in a computation (Be aware that f lops counts all operations.) Several of the exercises in 
this section involve comparisons of our estimates with what f lops produces. 

There is little subtlety and no grace at all in the way we count the operations. For the 
naive Gaussian elimination algorithm, we simply write out the loop structure as a series of 
summations; inside each summation we put the number of operations that occur inside that 
loop. We thus have 

n — \ n / n \ 

t= l j=i+l \ fc=i+l / 

We now proceed to add all this up. An exact answer will be more than a little bit ugly; 
fortunately, we are more interested in the gross size of the operation count than its exact 
value. What we really want to know is how the largest term in the count depends on the 
size of the matrix. We thus write 

Σ (2 + Σ ^ Σ ( ^ + Σ 1 ^ Ê ( n - i + 2) = (n-i)(n-i + 2), 

hence,2 

n —1 n —1 .. .. 

C = Y]{n-i){n-i+2) = V(m 2 +2m) = -n (n- l ) (2n- l )+n(n- l ) = -n 3+0(n2) . 
0 ό 

1=1 m—I 

So we get an operation count for (naive) Gaussian elimination of 

C=\n3 + Ö(n2). 
o 

If we do the same steps (Problem 10) for the backward solution algorithm we get 

C=^n2 + ö(n) 

so that the total cost of solving a linear system can be estimated by 

CT = \n3 + \n2 + 0(n2) + \n2 + 0{n) 
·> v ' v v ' 

Total operations Cost of elimination Cost of backward solve 

= i n 3 + n2 + 0(n) 
| n 3 + 0 ( n 2 ) . 

'Traditionally, it was also true that multiplications and divisions were more costly than additions and subtractions, 
and thus it was more important to keep track of the more expensive operations. Divisions are still more costly 
than the other operations, but it is no longer the case that multiplications are substantially more expensive than 
additions and subtractions. 
2The student should be aware that we have used the formulas 

f > = i n ( n + 1) f > 2 = i n ( n + l)(2n + l) 
fc=l Z fc=l ° 

here. Sometimes these are part of the calculus discussion of Riemann sums. 
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The significant thing here is that the solution step is a full power of n cheaper than the 
elimination step. 

Exercises: 

1. Determine the operation count for the tndiagonal solution algorithm of §2.6. 

2. What is the operation count for computing the dot product x ■ y of two vectors? 

3. Create a pair of random vectors in R10 and compute their dot product using the 
MATLAB command dot. What is the estimated operations count, according to 
flops? Repeat for a pair of vectors in K20 and a pair in K100. Comment on your 
results, compared to your answer in the previous problem. 

4. What is the operation count for computing the matrix-vector product ΑχΊ 

5. Repeat Problem 4, assuming that A is tridiagonal. 

6. What is the operation count for a matrix-matrix product, ΑΒΊ 

7. Repeat Problem 6, assuming that A is tridiagonal. 

8. Repeat Problem 6, assuming now that both A and B are tridiagonal. 

9. What is the operation count for the outer product xyT1 

10. Determine the operation count for the backward solution algorithm. 

11. Repeat Problem 10 for the Gaussian elimination code you wrote in §7.2. 

12. Repeat Problem 10 for the tridiagonal solver you wrote back in §2.6. 

13. Use the rand command to create a sequence of linear system problems of increasing 
size, say 4 < n < 100. Use the backslash operator to solve each problem, and 
estimate the operations count using f lops. Plot the estimated cost as a function of 
n. 

14. Use the diag command to form a sequence of tridiagonal systems, similar to what 
you did in Problem 13, and solve these using the backslash operator. What is the 
estimated cost of solving these systems, according to flops? 

15. Assume that you are working on a computer that does one operation every 10~9 

seconds. How long, roughly, would it take such a computer to solve a linear system 
for n = 100,000, using the cost estimates derived in this section for Gaussian 
elimination? What is the time estimate if the computer only does one operation 
every 1 0 - 6 seconds? 

< · · · > 
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7.4 THE LU FACTORIZATION 

The Gaussian elimination algorithm developed in §7.2 is deficient in one respect: There is 
no way to "save" the work done in reducing A to upper triangular form. If we want to solve 
several linear systems having the same coefficient matrix, we can only do it (see Problem 
6 of §7.2) if all the right-side vectors are known ahead of time. However, we saw in §6.8.2 
that it is possible to have a sequence of linear systems problems in which the right-side 
vector for one problem depends on the solution to the preceding problem. Thus, unless we 
can somehow "save" the elimination step, we will have to repeat all that work, which is, in 
fact, the bulk of the work involved in the solution of the problem. 

Our goal in this section is to develop a matrix factorization that allows us to save the 
work from the elimination step. Before proceeding with that effort, though, perhaps we 
should explain why an obvious way to proceed is not the best way to proceed. Why don't 
we just compute A_11 

The answer is that it is not cost-effective to do so. The standard (and, with a little care, 
the best) way to compute the inverse is to solve the matrix-matrix system 

AX = I, (7.2) 

where I is the identity matrix. The solution X is the desired inverse: X = A-1. Let's 
compute the cost of finding the inverse and of using it to solve linear systems. 

The matrix equation (7.2) is a collection of n simple linear systems problems. We can 
easily modify the Gaussian elimination algorithm to find X by adding a single extra loop 
to account for having more than one right-side vector. The elimination computation now 
takes | n 3 + 0(n2) operations, and the triangular backsolves take \ηΆ + 0(n2); thus, the 
total cost is | n 3 + ö(n2). (In Problem 7 we ask you to provide the details for all this.) A 
few operations can be saved by taking into account the fact that I is all 1 's and 0's. When 
this is done the total cost of producing the inverse is n3 + ö(n2). Compare this with the 
cost of Gaussian elimination, alone, which is | n 3 4- 0(n2). If we can find some way 
to "save" the Gaussian elimination work, we will have a more efficient means of solving 
linear systems than computing and using the inverse would give us. 

What we will do is show that we can factor the matrix A into the product of a lower 
triangular and an upper triangular matrix: 

A = LU. 

This allows us to solve linear systems by, instead, solving two triangular systems: 

Ax = b => Ux = y, where Ly = b. 

Thus, we first solve Ly = b and then Ux = yto get the solution: 

Ux = y, Ly = b=>Ux = L~lb Φ> LUx — b <=> Ax = b. 

This shows that we can solve linear systems by (a) computing the LU factorization of A; 
(b) then solving appropriate lower and upper triangular systems. An example might be 
useful at this point. 
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EXAMPLE 7.3 

Consider the matrices 

and 

L = 

U 

1 0 0 
1 
2 
0 2 L 

4 2 0 
0 2 1 
0 0 2 

4 2 0 
2 3 1 
0 1 I j 

These are lower and upper triangular, respectively, and their product is 

LU = A 

Consider now the linear systems problem 

Ax — b, 

where b = (2,5,6)T. Since we have an LU factorization of A, we can go ahead and 
use it to compute the solution. We first solve 

Ly = b 

using a forward solution algorithm, which is perfectly analogous to the backward 
solution algorithm except that it works by going forward down the diagonal. We have 

1 
1 
?, 
0 

0 0 
1 0 
0 1 

Î/1 

y2 

V3 

= 
2 
5 
6 

and we get y = (2,4,4)T. Now solve 

Ux = y 

using our backward solution algorithm; we have 

U = 
4 2 0 
0 2 1 
0 0 2 

X l 

X2 

X3 

= 
2 
4 
4 

and we get x — (0,1,2)T, which is exactly the solution to the original linear system. 

Since it turns out (see below) that the LU factorization is nothing more than a properly 
organized Gaussian elimination, the total cost of this process is 

C = -n3 + 0(n2) + 1 n2 + ö{n) + \n2 + 0(n) 1 n3 + ö{n2). 

Cost of elimination Cost of backsolve Cost of forward solve Total cost 

If we already have done the factorization, then the cost of the two solution steps is simply 

C = ]-n2 + G(n) + ]-n2 + 0(n) = n2 + <D(n). 
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Constructing the LU factorization is surprisingly easy. In fact, we have already done it; 
we just don't know it! 

We start by considering the matrix 

Ei 

0 
m2i 

m 3 i 

rn.ni 

0 . 
0 ■· 

0 ■ 

0 ·· 
0 ·· 

. 0 
■ 0 

■ 0 

• 0 
• 0 

where mn = an/an. It is not difficult to show that 

EiA = 

an 

0 

a12 a\n 

where A' is an n— 1 x n— 1 matrix. Thus, we see that multiplication by E\ accomplishes the 
same thing as the first pass through the i loop in the naive Gaussian elimination algorithm. 
Then define E2 as 

" 0 0 0 
0 0 0 
0 m32 0 
0 77142 0 Eo = I 

0 

0 
0 
0 
0 

0 mn2 0 

where the ma values are defined from the elements of A' so that 

E2EXA = 

The general trend ought to be clear, but a little notation helps. Let's write A^ — A, 
A^ = EiA(°K A^) = E2A^ = Ε2ΕχΑ, and so on, with a similar superscript being 

(k) 

placed on the individual matrix components: a\ · . Then we can define the £* matrices 
rather easily as 

Ek=I- Rk, 

an 

0 
0 

0 

0.12 

a 1 2 

0 

0 

a i 3 

0'l3 

A" 

a\n 

I n 

where Rk is almost entirely zeros: 

,(fc) /„(fc) r<fc) = j aji /aa ' k = iandj > i; 
lJ \ 0, otherwise. 

Note that the nonzero elements here are precisely the multipliers for the Gaussian elimina-
tion step. It follows, then, that the matrix 

U — En-\En-2 · · · E2E\A 
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will be upper triangular. In fact, it will be the same upper triangular matrix that is produced 
by naive Gaussian elimination. Moreover, each of the Ei matrices is lower triangular and 
nonsingular; therefore, their inverses all exist and are lower triangular. We can therefore 
write 

A = (£„_i£„_2 · ■■E2E,y1U = LU, 

where L is defined by 

L = (En-iEn-2 ■ · ·Ε2Ει)~ = 25f E2 ■■■En_1. 

But the simplicity of the Ek matrices allows us to write their inverses explicitly (Problem 
8): 

E^1=I + Rk; (7.3) 

moreover, it is easy to show that the sequential products of these matrices are very simple 
(Problem 8): 

E^Eïl^I + Rk + Rk-i. (7.4) 

Thus, when all is said and done, we have (again, Problem 8) 

L = I + Ri + R2 + ■ ■ ■ + Rn-i-

But, since the nonzero elements of each Rk are nothing more than the multipliers, the 
lower triangular matrix is nothing more than the matrix of multipliers! Thus, the LU 
factorization is nothing more than a very slight re-organization of the same Gaussian 
elimination algorithm that we studied earlier in this chapter. 

This allows for a very simple and compact algorithm for computing the LU decompo-
sition, which we have split into two parts. 

Algorithm 7.5 LU decomposition algorithm 

Part A (Factorization) 

! Compute decomposition 

for i= l t o n-1 
for j= i+ l t o n 

a ( j , i ) = a ( j , 
for k=i+l t o 

a ( j , k ) = 
endfor 
b ( j ) = b ( j ) -

endfor 
endfor 

i ) / a ( i , i ) 
n 

(no pivoting) 

= a ( j , k ) - m*a(i,k) 

- m*b(i) 
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Algorithm 7.6 LU decomposition algorithm (no pivoting) 

Part B (Solution) 

Solve Ly = b 

x ( l ) = b ( l ) 
for i=2 to n 

sum = 0 . 0 
for j= l t o i -1 

sum = sum + a ( i , j ) * x ( j ) 
endfor 
x ( i ) = b ( i ) - sum 

endfor 

Solve Ux = y 

x(n) = x (n ) / a (n ,n ) 
for i=n- l t o 1 

sum = 0.0 
for j= i+ l t o n 

sum = sum + a ( i , j ) * x ( j ) 
endfor 
x ( i ) = (x ( i ) - s u m ) / a ( i , i ) 

endfor 

Note that the first half of the solution algorithm (the forward solve) made explicit use of 
the fact that L was unit lower triangular; thus, the diagonal elements are all 1 's. 

It is important to understand how these algorithms manipulate the actual computer 
storage. Note that we use the lower triangular part of A to store L, and the upper triangular 
part to store U; separate arrays are not needed (and would be wasteful). Let's see how this 
would work in a particular case. 

■ EXAMPLE 7.4 

Take 

A = 
4 1 0 
1 4 1 
0 1 4 

then the LU decomposition algorithm produces the following steps: 

4 1 0 
1 4 1 
0 1 4 

rs^ 

4 1 0 
(1/4) 15/4 1 

(0) 1 4 
~ 

4 1 0 
(1/4) 15/4 1 

(0) (4/15) 56/15 
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where we have indicated the multipliers by putting parentheses around them. Thus, 
we have 

1 
1/4 
0 

0 
1 

4/15 
U = 

4 
0 
0 

1 
15/4 

0 

0 
1 

56/15 

Solving the system 

therefore requires that we solve the two triangular systems 

4 1 0 
1 4 1 
0 1 4 

Xl 

X2 

X3 

= 
6 

12 
14 

1 
1/4 
0 

0 
1 

4/14 

' 2/1 " 

2/2 
. 2/3 . 

= 
6 " 

12 
14 

and 
4 1 0 
0 15/4 1 
0 0 56/15 

The reader should check that we get the solution xi = 1, X2 

Χχ 

2 2 

. ^ 3 . 

— 
2/1 
2/2 

. 2/3 . 

2, x3 = 3. 

Pivoting end the LU Decomposition The previous discussion and resulting algo-
rithm both assumed that no pivoting was done. However, we have seen that pivoting is 
sometimes necessary and often desirable. Can we use pivoting in the LU decomposition 
without destroying the algorithm? If so, how? 

The answer is easier to explain than it is to prove. Because of the triangular structure of 
the LU factors, we can implement pivoting almost exactly as we did before. The difference 
is that we must keep track of how the rows are interchanged in order to properly apply the 
forward and backward solution steps. 

The best way to see this is to look at an example. 

EXAMPLE 7.5 

Consider the 4 x 4 matrix 

4 0 1 1 
3 1 3 1 
0 1 2 0 
3 2 4 1 

We will apply the LU decomposition to this, showing the values as stored in the 
computer. As in Example 7.4, to distinguish the multipliers that are stored in the 
lower triangular positions, we enclose them in parentheses, e.g., (3/4). Eliminating 
in the first column is very routine: 

4 0 1 1 
3 1 3 1 
0 1 2 0 
3 2 4 1 

4 0 1 1 
(3/4) 1 9/4 1/4 
(0) 1 2 0 

(3/4) 2 13/4 1/4 
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To carry out the next step of elimination, we see that we need to pivot. Let's go ahead 
and swap the rows, just as we did before, and see what happens. 

4 
(3/4) 
(0) 

(3/4) 

1 
9/4 

2 
13/4 

1 
1/4 
0 

1/4 

4 
(3/4) 
(0) 

(3/4) 

0 
2 

(1/2) 
(1/2) 

1 
13/4 
3/8 
5/8 

1 
1/4 

- 1 / 8 
1/8 

We have to pivot again (since 3/8 < 5/8), so we end up with 

4 0 1 1 
(3/4) 2 13/4 1/4 
(3/4) (1/2) 5/8 1/8 

(0) (1/2) 3/8 - 1 / 8 

This suggests, then, that the L and U matrices are 

L = 

1 0 0 0 
3/4 1 0 0 
3/4 1/2 1 0 
0 1/2 3/5 1 

If we multiply these out, we get 

1 0 0 0 
3/4 1 0 0 
3/4 1/2 1 0 
0 1/2 3/5 1 

4 0 1 
0 2 13/4 
0 0 5/8 
0 0 0 

4 
(3/4) 
(3/4) 

(0) 

5 are 

= 

" 4 
0 
0 
0 

1 " 
1 
1 

- 1 

/4 
/8 
/5 

0 
2 

(1/2 
(1/2 

0 
2 
0 
0 

= 

1 1 
13/4 1/4 

) 5/8 1/8 
) (3/5) - 1 / 5 

1 1 " 
13/4 1/4 
5/8 1/8 ' 
0 - 1 / 5 _ 

" 4 0 1 1 " 
3 2 4 1 
3 1 3 1 
0 1 2 0 

/ A 

However, we do note that the product LU is the same as A, once we have imposed the 
same row interchanges on A as we did in the pivoting process. Thus, if we keep track 
of how the rows were swapped, we can then impose this reordering on the right-side 
vector and carry on with the solution process. 

So, how do we keep track of the row interchanges? One way is to use an index 
array, which is simply an integer-valued vector. It is initialized to the natural row 
ordering, 

" 1 

J = 

2 
3 

n 

and then every time two rows in the matrix are swapped, the corresponding two 
elements of the index array J are swapped. Thus, in our example, the final version 
of J is 

" 1 

J 
4 
2 
3 

The student should check that this is correct, of course. We interpret this as follows: 
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• The first row of A is the first row of the product matrix LU. 

• The fourth row of A is the second row of the product matrix LU. 

• The second row of A is the third row of the product matrix LU. 

• The third row of A is the fourth row of the product matrix LU. 

• In general, if we denote the product matrix LU by A', then 

a'i,j = aJi,i-

How do we use this information in the solution process? Since the product matrix 
A' = LU does not equal A, we have to reorder the b vector accordingly. This is 
accomplished by the simple expedient of copying b into 6', where 

% = **-

The factorization and solution algorithm (again, in two parts) now becomes: 

Algorithm 7.7 LU Decomposition with Partial Pivoting (Pseudocode) 

Part A (Factorization with Pivoting) 

for i=l to n-1 

! This begins the pivoting code 

am = abs(a(i,i)) 

p = i 

for j=i+l to n 

if abs(a(j,i)) > am then 

am = abs(a(j,i)) 

P = j 

endif 

endfor 

if p > i then 

for k = 1 to n 

hold = a(i,k); a(i,k) = a(p,k); a(p,k) = hold 

endfor 

ihold = indx(i); indx(i) = indx(p); indx(p) = ihold 

endif 

! This ends the pivoting code 

! Now do the elimination step 

for j=i+l to n 

a(j,i) = a(j,i)/a(i,i) 

for k=i+l to n 

a(j,k) = a(j,k) - a(j ,i)*a(i,k) 

endfor 

endfor 

endfor 
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and the forward-backward solve algorithm becomes: 

Algorithm 7.8 Forward-Backward Solution, Using LU Decomposition (Pseudocode). 

Part B (Solution Steps with Re-ordering) 

F i r s t , re -order the b vector 

for k=l to n 
x(k) = b(indx(k)) 

endfor 
for k=l t o n 

b(k) = x(k) 
endfor 

Solve Ly = b 

y ( l ) = b ( l ) 
for i=2 to n 

sum = 0 . 0 
for j= l t o i -1 

sum = sum + a ( i , j ) * y ( j ) 
endfor 
y ( i ) = b ( i ) - sum 

endfor 

Next, solve Ux = y 

x(n) = y (n) /a (n ,n ) 
for i=n- l t o 1 

sum = 0 . 0 
for j= i+l t o n 

sum = sum + a ( i , j ) * x ( j ) 
endfor 
x ( i ) = (y( i ) - sum) /a ( i , i ) 

endfor 

Programming Notes: Some comments on these algorithms might be in order at this point. 
First, note that we used indx as the variable name for the index vector J. Second, note 
that the loop where the rows are interchanged now runs across the entire matrix (in other 
words, the loop starts at k = 1 instead of k = i) . This is because the LU decomposition 
requires that we interchange the elements of L (the multipliers), as well as the elements of 
U. Finally, note that we used three separate vectors (y, b, and x) in the solution step. This 
really is not necessary but does make it easier to follow the algorithm. 

The MATLAB command for doing an LU decomposition is, of course, lu: 

[L, U, P] = lu(A) 

This produces a unit lower triangular L, upper triangular U, and a permutation matrix3 such 
that PA = LU. There is also the command l inso lve , which uses an LU decomposition 

3A permutation matrix is a re-ordering of the identity that accomplishes the re-ordering of the rows of A. 
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to solve the system Ax = b (lu just produces the factorization). If you want to produce 
the inverse of a matrix, use inv(A). 

Exercises: 

1. Do, by hand, an LU factorization of the matrix 

A-- 2 1 
1 2 

and use it to solve the system Ax = b, where b = (1,2)T. The exact solution is 
x = (0,1)T. Verify that LU = A. 

2. Repeat Problem 1 for 
4 1 
1 5 

and b = (2,10)T; here the exact solution is x = (0,2)T. 

3. Write an LU factorization code and use it to solve the system of equations Ax = b, 
where 

14 14 - 9 3 - 5 
14 52 - 1 5 2 -32 

A= - 9 - 1 5 36 - 5 16 
3 2 - 5 47 49 

- 5 - 3 2 16 49 79 

and b = [-15, -100,106,329,463]T. The correct answer is x = [0,1,2,3,4]T. 

4. Write an LU factorization code and use it to solve the system of equations 

T5x = b, 

where b = [1,6,12,18,19]T. The correct answer is x = [0,1,2,3,4]T. 

5. Write an LU factorization code and use it to solve the system of equations 

H5x = b, 

where 6 = [5.0,3.550,2.81428571428571,2.34642857142857,2.01746031746032p 
The correct answer is x = [1,2,3,4,5]T. 

6. Write up your own LU factorization code, based on the material in this chapter, and 
test it on the following examples. In each case, have your code multiply out the L 
and U factors to check that the routine is working. 

(a) K5x = b, b = [-1,0,0,0,5]T; the solution is x = [0,1,2,3,4]T; 

(b) A5x = b,b= [-4, - 7 , - 6 , -5 ,16] T ; the solution is x = [0,1,2,3,4]T. 

7. Determine the operation count for computing the inverse of a matrix, as outlined in 
this section. 

http://www.it-ebooks.info/


4 4 0 NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS 

8. Show that 

(a) 

E^=I + Rk (7.5) 

for all k; 

(b) 
EklEk-i = I + R>< + Ä * - i (7 ·6) 

for all fc; 
(c) L = I + Rl+R2 + --- + Rn-i. 

9. Modify the tridiagonal solution algorithm from Chapter 2 to produce an LU de-
composition. Be sure to maintain the simple storage of the matrix that was used in 
Chapter 2, and assume that no pivoting is required. 

10. Write an LU factorization code with partial pivoting, and apply it to the system 
A5x — b, where b = [-4, - 7 , - 6 , -5 ,16 ] T and the solution is x = [0,1,2,3,4]T. 

11. Write an LU factorization code that does partial pivoting and use it to solve the 
system of equations Ax = b, where 

9 3 2 0 7 
7 6 9 6 4 
2 7 7 8 2 
0 9 7 2 2 
7 3 6 4 3 

and b = [35,58,53,37,39]T. The correct answer is x = [0,1,2,3,4]T. 

12. Compare your LU factorization-and-solution code to MATLAB'S l i n so lve com-
mand by creating a random 10 x 10 system and solving with both routines. (They 
should produce exactly the same solution.) Use f lops to estimate the operation 
count for each. 

13. Again, generate a random 10 x 10 linear system (matrix and right-hand-side vector). 
Then solve this system four ways: 

(a) Using your LU factorization-and-solution code; 

(b) Using MATLAB's l i n so lve command; 

(c) Using the MATLAB backslash operation; 

(d) Using MATLAB's inv command to compute the inverse of the matrix, and 
then multiplying this by the right-hand-side vector. 

Use f lops to estimate the cost of each solution technique, and rank the methods for 
their efficiency in this regard. 

14. Repeat Problem 13 for the matrix K2o defined at the end of §7.2, using a random 
right-hand-side vector, and get the f lops estimate. Then apply the tridiagonal solver 
from Chapter 2 to this problem, and again get the flops estimate. Comment on your 
results. 

< · · · > 
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7.5 PERTURBATION, CONDITIONING, AND STABILITY 

In this section we will study how the matrix solution process as outlined §7.4 is affected 
by changes to the problem. The main reason for doing this is to attain an understanding 
of why some linear system problems are difficult to solve. Usually, this has to do with a 
concept known as conditioning. 

To motivate our discussion, let's consider a simple example. 

■ EXAMPLE 7.6 

Let A be given by 
. _ Γ 1.002 1 

[ 1 0.998 

and let b be given by 
Γ 2.002 " 

~~ [ 1.998 ' 

Then a direct computation shows that the solution to Ax = b is given by x = (1,1)T. 
Suppose now that we perturb the right-side vector a little bit, and define 

_ Γ 2.0021 " 
c ~~ [ 1.998 ' 

Note that this is a change of less than one-half of a percent in one component of the 
vector b. Now a direct computation shows that the solution to Ax = bc is 

_ Γ -23.95 " 
Xc ~ [ 26.00 ' 

Most of us would probably agree that this is a large change in the solution for 
such a small change in the problem. (And, we should emphasize, this is an exact 
computation.) Why did this happen? 

This is a serious issue in mathematics and computation; we like to know that small 
changes in the problem will produce correspondingly small changes in the solution, and we 
like to understand why the exceptions occur. And we especially want to know if the large 
change due to a small perturbation is an artifact of the problem or of the computational 
scheme. 

Before we can directly tackle the issues of this section, we need to introduce some 
notation and terminology that will allow us to measure the size of vectors and matrices. 
For the most part, this is an extension of the function norm ideas introduced in §4.3, as well 
as a natural continuation of the idea of length of a vector that is part of an ordinary linear 
algebra course. 

7.5.1 Vector and Matrix Norms 

Because we will be concerned with measuring errors in vectors and matrices, it is necessary 
to introduce the concepts of a vector norm and a matrix norm. To be informal, these norms 
are simply a generalization of the function norm concept that we introduced in §4.3. They 
are means of measuring the size of a vector or matrix. The formal definition of a vector 
norm is as follows. 
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Definition 7.1 (Vector Norm) A vector norm on W1 is any mapping || ■ ||, defined on R" 
with values in [0, oo), which satisfies the three conditions: 

1. \\x\\ > 0 for any vector x φ 0; 

2. ||αχ|| = \a\\\x\\ for any scalar a. 

3. \\x + y\\ < \\x\\ + |\y11 for any two vectors x and y. 

The most common examples of vector norms are the infinity norm and the Euclidian 
2-norm, defined as 

||ι||οο = max \xi\, 
l<i<n 

and 

\\xh= [Σχί 

We could use the same norm definition for matrix norms, but this would not give us a 
couple of important properties that we want to have. So we use a special type of matrix 
norm, known as an operator norm. 

Definition 7.2 (Matrix Norm) Let \\ · \\ be a given vector norm defined on Rn. Define the 
corresponding matrix norm, for matrices A e Rnxn,by 

| | A | | = m a x ^ . (7.7) 

One important consequence of this definition of matrix norm is that the norm of a product 
is always less than or equal to the product of the norms: 

μβ||<ΐμΐιι|ΰ|| (7.8) 

and 
||Ac|| < | |A|||H|. (7.9) 

See Problem 15. 
As we have defined it here, matrix norms are always associated with a particular vector 

norm. Strictly speaking, this is not necessary; one can define a norm on a matrix that 
does not require any particular vector norm. However, such norms will not usually satisfy 
(7.8) and (7.9), and these conditions are necessary for what we want to do throughout this 
section. 

The matrix infinity norm, ||̂ 4||oo» c a n De shown to be equivalent to the following 
computation: 

n 

PII«, = max 53|ay | . 
Ki<n *—' 

- - } = l 

Thus, 11A | |oo is defined as the maximum row sum. The matrix 2-norm is more subtle. It 
can be shown that we have 

\\Ah = y/HATA), 

where A.(B) is the largest (in absolute value) eigenvalue of the matrix B. Since this makes 
it much more difficult to compute with the matrix 2-norm, we will almost always use the 
infinity norm. 
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EXAMPLE 7.7 

Let A be the simple matrix given by 

A = 
4 - 6 2 
0 4 1 
1 2 3 

Then PU«, = max{12,5,6} = 12. Furthermore, 

ATA = 
17 -22 11 

-22 56 - 2 
11 - 2 14 

which has eigenvalues λ = 66.6816,19.8065,0.5118, so that ||A||2 = N/66 .6816 = 
8.1659. 

7.5.2 The Condition Number and Perturbations 

Suppose that we want to look at the linear system 

Ax = b, 

and suppose further that we are most interested in understanding how the solution x changes 
as the right-side vector b changes. Thus we might look at the two specific systems 

Axi = &i 

and 
Ax2 = b2. 

We have (assuming that A is nonsingular) 

xi-x2 = A~x(bi -b2), 

so that the relative error in x2 as an approximation to x\ is given by 

l|si -S2II < n^-1,1 l l & i - M 

ll*i I F i 

We would like to bound the change in solution by something that did not depend on the 
solution; thus, we want to get rid of the xi in the denominator on the right. To do this, we 
note that | | J4 | | | | I I | | > ||6i||, so that 

1 <PH. 

hence, we have 
! F i - Z 2 | ! 

si II ΙΙΜΓ 

< 
ll^ill INI 

The multiplying coefficient ||^4||||^4_1|| is interesting. It depends entirely on the matrix 
in the problem, not the right-side vector, yet it shows up as an amplifier to the relative 
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change in the right-hand-side vector. We will see this quantity often enough in the rest of 
this section that it is worth giving it a name and special notation. We call it the condition 
number. 

Definition 7.3 (Condition Number) For a given matrix A G IRnxn and a given matrix 
norm || ■ ||, the condition number with respect to the given norm is defined by 

K(A) = \\A\\\\A-1\\. (7.10) 

If A is singular, then we take κ(Α) = oo. 

The justification for taking κ{Α) = ce if A is singular is the following theorem. 

Theorem 7.3 Let A G R n x n be given, nonsingular. Then, for any singular matrix B G 
Rnxn,wehave 

1 < ΙΙΛ--ΒΙ1 
K(A) - \\A\\ ■ 

Proof: We have 

1 

< 

< 

where y G Rn is arbitrary. Now let y be any nonzero vector such that By = 0; since B is 
singular, we know that such things exist. Then we can write 

1 \\(A-B)y\\ | | (Λ-α) | | | | ι / | | = ||(Λ-Β)|| 
κ(Α) - \\A\\\\y\\ - \\A\\\\y\\ \\A\\ ' 

and we are done. · 
The importance of this result is that it tells us that if A is close to a singular matrix, then 

the reciprocal of the condition number will be near zero; i.e., κ(Α) itself will be "large." 
Thus, the condition number measures how close the matrix is to being singular; if κ(Α) is 
"large," then we know that A is close to being singular. One of the points of this section is 
that we will learn that solving systems that are nearly singular can produce large errors. 

Suppose that we want to solve the system 

Ax = b, 

where A G Rnxn and d e l " are given. However, we know that the solution process will 
be affected by rounding error. Although each instance of rounding error will no doubt be 
small, if n is large, then there will be an enormous number of individual rounding errors to 
add up. Is it possible that these will combine to dominate the computation and render the 

\\A\\\\A-i\\ 

1 |   

Mil \ 

i ( 
\\A\\ \ 

Ml 

' 1 

. maxx^o ' 

' ' ) \\Α~ΐχ\\ 

V llxll / 
'\\Ay\\\ 

, 112/11 J ' 

\A-'x\\ 
11=11 
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results meaningless? For example, if n = 200, which is not considered a large system, then 
ordinary Gaussian elimination will do about 2.7 x 106 operations to produce the solution. 
If each operation has error that is C(10- 7 ) , and if they all accumulate, then the net error 
will be about 0.27, hardly small. 

There are several main results in this section, which tell us how the solution of a linear 
system is affected by errors in the matrix or the right-hand-side vector. Since some of the 
proofs can be rather involved, some of them are deferred to the Appendix or are omitted 
entirely. 

Theorem 7.4 (Effects of Perturbation in 6) Let A G R n x " (nonsingular) and b G R" 
be given, and define x G Rn as the solution of the linear system Ax — b. Let Sb G R™ 
be a small perturbation of b, and define x + δχ G R™ as the solution of the system 
A{x + δχ) = b + Ob. Then, 

\\δχ\\ \\ôb\\ 

W - ( } W 
Proof: This is a straightforward computation. We have Ax = b and A(x + δχ) = b + öb, 
so that Αδχ = ob. Thus, 

8x = A~xSb=> \\δχ\\ < WA-1 

so we have 
\\δ^<\\Α\\\\Α-1 

IFII ΙΙΑΙΙΙΜΙ 
But ||J4|| | |X|| > ||6|| and the definition of condition number imply that 

Ιμΐΐμ-Ίΐρ>11 <,,Λδο\\ 
\\A\\\\x\\ -K{A)\\b\\' 

and we are done. · 
The importance of this theorem is to show us that perturbations in the problem affect 

the final solution in a form that is amplified by the condition number of the matrix. Thus, 
if the matrix is ill-conditioned—meaning that the condition number, κ(Α), is large—then 
a small change in the data could lead to a large change in the solution. A similar result 
involves the residual of a solution: Let xc be a "computed" solution to Ax = b; then the 
residual is the vector r = b — Axc; i.e., r is the amount by which xc fails to solve the 
system. If r = 0, then xc is exact; one might think, then, that if r is small, then xc is close 
to the exact solution. This isn't always so, as the following theorem shows. 

Theorem 7.5 (Effects of Residual on Accuracy) Let A G R n x n (nonsingular) and b G 
R™ be given, and define xc G Rn as a computed solution of the linear system Ax = b. Let 
r G Rn be the residual r = b — Axc. Then, 

IF-Sel l 
x 

< * ( Λ ) ^ Τ · 

Proof: This is a small change from the preceding proof, and so is left to the student. See 
Problem 18. · 

The gist of these two results is that, in some sense, we cannot trust the solution to 
a problem involving an ill-conditioned matrix unless we have taken special care in the 
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solution. A similar but more involved result applies if we consider perturbations in the 
matrix itself. 

Theorem 7.6 (Effects of Perturbation in A) Let A £ Rnxn be given, nonsingular, and 
let E £ R n x " be a perturbation of A. Let x £ Rn be the unique solution of Ax = b. If 
K(A) \\E\\ < \\A\\, then the perturbed system (A + E)xc = b has a unique solution and 

II* - * d l < θ 
INI -ι-θ' 

where 

Proof: See the Appendix. · 
The importance of these perturbation results is that we can establish that any computed 

(i.e., approximate) solution to the linear system problem is the exact solution to some 
"nearby" problem. The next result gives a sense of what is meant by this. 

Theorem 7.7 Let A £ R n x n (nonsingular) and b £ Rn be given, and define x £ R" 
as the exact solution of the linear system Ax = b and xc £ R" as a computed (that is, 
approximate) solution. Then there exists 5b £ R" such that xc is the exact solution of the 
perturbed system 

Axc = b + 6b, 

where 6b = Axc — b= —r is the (negative) residual for xc. 

Proof: This is a straightforward computation: 

Axc = A(x + (xc - x)) = b + A[xc - x) = b + 6b. 

On the other hand, we have 

6b = A(xc — x) = Axc — b = —r, 

and we are done. · 
Thus, we can consider any computed solution to a linear system as the exact solution to 

a problem using slightly perturbed data. The idea of using this approach to estimating the 
error between two quantities—by establishing that they are both exact solutions to "nearby" 
problems—is called backward error analysis and is due to the British mathematician James 
H. Wilkinson,4 widely regarded as the founder of modern numerical analysis. 

A similar result shows that we can regard the computed solution as the exact solution to 
a problem involving the same right-side vector, but a perturbed matrix. Considering how 
much more complicated the proof of Theorem 7.6 is compared to that of Theorem 7.4, it 
is surprising how easy this argument is. Note, however, that this result is restricted to the 
2-norm, whereas our previous results have been independent of the choice of norm. 

4 James Hardy Wilkinson (1919-1986) was bom in Kent, England, and at the age of 16 won a scholarship to 

Trinity College, Cambridge, where he was widely regarded as one of the top students of his time. During World 
War II he did ballistics work, and soon after the end of the war he began work at Great Britain's National Physical 
Laboratory, on early computer designs. Out of this work came his studies of numerical algorithms, most notably 
the effects of rounding errors on Gaussian elimination and methods for the algebraic eigenvalue problem, works 
that remain classics to this day. In 1969 he was elected to the Royal Society of London. 
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Theorem 7.8 Let A e R n x n and b e Kn be given, with A nonsingular; define x e Rn 

as the solution of Ax = b. Let xc be an approximate solution to this system with residual 
r = b — Axc and define 

E = rxl/\\xc\\l. (7.11) 

Then, xc is the exact solution to {A + E)xc = b and 

\\E\\i \\r\\i 11 l|2 < " "2 n 121 
II A II — Il A M II II " V ' ' ' \\A\\2 \\A 2\\Xc 2 

Proof: We have 

1 / , M \ T . . i , . s Ι Ι Λ ο | | 2 
(A + E)xc - Axc + j—Ü2 (b - Axjxl xc = Axc + (b - Axc)-—^ = b. 

Thus, xc is the exact solution of the perturbed system. Next, for any y € Rn, 

1 jr. 

where 

Note that we have 

Therefore, 

from which 

Ey = ¥Mrx<y = ayr' 

T 

dl!' 

llzclWMk Wvh 
K^y — Il il O — M i t · 

libella llxcl|2 

\\Eyh = KIIIHI2 ^ ||r|| 
llylb II2/II2 _ \\xch' 

M2 < 
I c 2 

follows, and we are done. · 
This last result allows us to estimate, via an upper bound, the size of the perturbation in 

A that our computed solution corresponds to, using the easily computable residual. 
To use these perturbation results, we need to have one final set of results which estimates 

the effects of machine arithmetic—rounding error—on the Gaussian elimination process. 
In this connection we need one more definition. 

Definition 7.4 (Gaussian Elimination Growth Factor) Let A^ be the matrix after k 
columns have been eliminated—thus, A^ = A and A^n~1^ = U—and let aS ) denote the 
individual elements ofA^. Then the growth factor/or Gaussian elimination applied to A 
is defined by 

1 (fc)i 

pn = max-

To illustrate this, let's go back to one of our computational examples from earlier in this 
chapter. 
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EXAMPLE 7.8 

Consider the matrix from Example 7.5: 

4 0 1 1 
3 1 3 1 
0 1 2 0 
3 2 4 1 

After eliminating in the first column, we get A^: 

A™ = 

Proceeding further, we get 

Am 

and 

4 0 
0 1 
0 1 
0 2 

4 0 
0 2 
0 0 
0 0 

4 0 
0 2 
0 0 
0 0 

1 
9/4 
2 

13/4 

1 
13/4 
3/8 
5/8 

1 
13/4 
3/8 
0 

1 
1/4 
0 
1/4 

1 
1/4 

-1/8 
1/8 

1 
1/4 

-1/8 
-1/5 

A& = 

Now, it is easy to compute ||>l||oo = 10. Then, to compute the growth factor, we 
simply look throughout all the values in these four matrices to find the one that is 
largest in absolute value. In this case, we pick out a[ x = 4, so, for this matrix, the 
growth factor is 

PA = 4/10. 

The final piece of the puzzle, then, is the following theorem, taken from the classic study 
by Forsythe and Moler [3]. 

Theorem 7.9 (Rounding Error Effects) Let Lc and Uc be the lower and upper triangular 
factors of A as computed on a machine with rounding unit u, using Gaussian elimination 
with either partial or complete pivoting. 

1. Then there is a matrix E\ such that LCUC = A + E\ and 

H-Eilloo <π 2 Ρηΐ ιΡ | |οο . 

2. Ifxc is the solution to the system Ax = b, computed using Lc and Uc, then there is 
a matrix Ei such that {A + E2)xc = b and 

12 oo < 1.01η2(η + 3)ρηιι |μ| | 
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Thus, we see that Gaussian elimination produces the exact solution to a "nearby" 
problem, and we can combine Theorem 7.9 with Theorem 7.6 to get a bound on the error 
between the computed solution xc and the exact solution, x: 

l lz-iclloo ^ 1.01n2(n + 3)p„u/ioo(J4) 
||ι||οο 1 - 1.01n2(n + 3)pnu/îoo(>l)' 

Or can we? Just how big is pn going to be? Note that we don't get the bound (7.13) unless 
1.01n2(n + 3)/9„UK0 O(J4) is "sufficiently small," and we don't (yet) know how large pn is 
going to be. 

The bounds on pn depend on what type of pivoting we do. If we do complete pivoting— 
which is rather costly in terms of computer time—then it can be shown that 

Pn < 1.8(n°-251nn), 

which grows rather slowly: For n = 100, pn = 0(400). However, if we only do partial 
pivoting, then it can be shown that there are matrices for which 

_ o n - l . 
Pn — ^ ! 

in other words, pn grows exponentially. For comparison, we now have pioo — C(1030). 

So it is fair to ask: Is Gaussian elimination with partial pivoting a stable process? 

Strictly speaking, (7.13) says that it is: For a sufficiently accurate computer (i.e., u small 
enough) and a sufficiently small problem (n small enough), then Gaussian elimination with 
partial pivoting will produce solutions that are stable and accurate. The problem is that we 
don't want to have to limit ourselves to computer architectures that use unrealistic word 
lengths to achieve extraordinary accuracy, nor do we want to restrict ourselves to very 
small problems in order to keep pn small. So, as a practical matter, it appears that Gaussian 
elimination with partial pivoting is perhaps not stable—except that the kinds of matrices 
that lead to large values of pn do not appear to occur in practice. It can be shown that pn is 
directly related to the growth of the elements in the upper triangular factor, Uc (this should 
be evident from the example we did above), and this growth is not observed in problems 
of interest. To quote from page 166 of Numerical Linear Algebra, by Trefethen and Bau 
[10]: "In fifty years of computing, no matrix problems that excite an explosive instability 
are known to have arisen under natural circumstances." This book also gives an interesting 
probabilistic argument to explain why this might be the case. Moreover, we should point 
out that pn is relatively easy to compute as part of the elimination process, so if in any 
particular case we are worried about the size of p„, we can compute it. 

So, in the end, we conclude that, as a practical matter—meaning, for problems of interest 
that actually occur—Gaussian elimination with partial pivoting is a stable process. 

It is possible to combine some of the other results to get a more meaningful a posteriori 
(after the fact) result. Note, again, that this result is specific to the 2-norm, because it uses 
Theorem 7.8. 

Theorem 7.10 Let xc be a computed solution to the linear system Ax = b, and let 
r = b — Axc be the corresponding residual. If K2(A)\\r\\2 is sufficiently small, then, we 
have 

\\X-Xch . «2(A) J ^ -c| |2 < " * V " V | | 6 - r | | 2 

Il IU 1 K 2 ^ | | t _ r | | 2 
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Proof: This follows by cleverly combining several of the earlier results in this section, 
and is left as an exercise. (See Problem 16.) · 

For practical purposes, the following "rule of thumb" is very useful. 

Rule of Thumb: Let E and Ob be the perturbations such that the computed solution 
exactly solves (A + E)xc = b + 6b. If we can assume the following: 

1. u < Ci x lCT5; 

2. \\E\\ < C2u\\A\\; 

3. \\Sb\\ < C3u\\A\\; 

4. K(A) < C4 x 10'; 

then, for t - s sufficiently negative, there is a constant C > 0 such that 

l|ar.r ,fel1 < c x 10t~5· 

What this says is that, in practice, we observe that the error in a linear system computation 
goes like the condition number times the machine rounding unit. 

7.5.3 Estimating the Condition Number 

As the terminology implies, singular matrices, are perhaps something of a rarity. This 
does not mean that we don't have to worry about them, however. It can be shown, in 
a very mathematically precise sense, that all singular matrices are arbitrarily close to a 
nonsingular matrix. Once we begin doing numerical computations, then, the odds are very 
high that the inherent rounding error will perturb the matrix away from being singular. The 
resulting nonsingular matrix, however, will be very ill-conditioned. This is why we have 
to be careful when doing matrix computations. The algorithms will fail (in the sense of 
having a zero pivot) if the matrix is singular, but this is only reliable in infinite-precision 
arithmetic. In floating-point arithmetic, we have to recognize that small pivots might mean 
that the matrix is nearly singular, or ill-conditioned. Generally speaking, 

// the solution to a linear system changes a great deal when the problem 
changes only very slightly, then we suspect that the matrix is ill-conditioned. 

Since the condition number is such an important indicator of how well we can compute 
with the matrix, it would be useful if it could be easily computed. Alas, this is asking too 
much, but we can estimate Κοο(Α) without too much more effort than is needed to solve 
the system Ax = b. A condition number estimator is a fairly standard feature of modern 
linear systems software. 

Recall the definition: 

κ=\\Α\\0ΰ\\Α~1\\00. 

Computing ||J4||OO is not difficult; computing H-A-1!!,*, is.5 However, the norm definition 
tells us that 

p-1l|00 = maxll^,a:|100, 
* ^ ° Halloo 

5In any case, if A is ill-conditioned, any computation of A~l will be unreliable. 
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so that, for any fixed w € Kn, w φ 0, we have 

\A-Xw\\ 
lA-Hoot 

Halloo 

Now set y = A~1w and substitute into the condition number definition to get 

Κοο(Λ) > Ι Ι Λ Ι Ι Ο Ο Μ ^ - , (7.14) 

Ml«, 
and this holds for any y 6 Rn, y φ 0, w = Ay. The trick, now, is to find the choice of y or 
w that maximizes the right-hand side of (7.14). Since the inequality holds for any y £ Rn, 
w = Ay, the larger the right-hand side is, the more accurate the estimate of Koo(A). 

Recall that a singular matrix has at least one eigenvalue equal to zero. It therefore 
follows that a matrix that is "close to singular" will have at least one eigenvalue "close to 
zero." If we choose y to be the eigenvector of A corresponding to the smallest (in absolute 
value) eigenvalue of A, then 

IMIoo = IMIOQ = IMIOQ = | λ , - ι 
M l » ll^lloo ΙΙλι/lloo ' ' ' 

and this will tend to maximize the estimate of the condition number. In §8.3 we will see 
that the recursion 

y(*+i)=A-V 0 / l l» ( 0 l loo , t = l , 2 , . . . 

will produce a sequence of vectors that tend to be in the direction of the eigenvector 
corresponding to the smallest eigenvalue. Note that we would not compute this sequence 
by actually inverting A; rather, we would solve the sequence of linear system problems 

V i + 1 ) = y(i)/lb(i)| oo 

using an existing LU decomposition. Note also that if we are estimating the condition 
number as part of an LU decomposition routine, that the factorization will already have 
been done, and all that has to be done are the relatively inexpensive triangular solves. The 
number of steps to take in the recursion is an issue; taking more steps is more costly but 
will lead to a more accurate estimate. The public domain package LAPACK uses five 
iterations in the corresponding section of its condition number estimator, and that seems to 
be a reasonable choice. 

In any event, with the recursion computed, we have 

Koo(A) > P I l o o T ^ f î T = — . (7-15) 

where 
a=\\A\U υ=|Ιΐ/(5)ΙΙοο, w = | | V 5 ) l l o o · 

We could thus use the estimate 
, av 

K = — 
ω 

for the condition number. However, the way we have set things up, we have 

llV5)llc 
yW 

| y ( 4 ) l l=o 
= i. 

oo 
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So, we actually have 
K(A) « K* = at). 

A complete algorithm then is the following. 

Algorithm 7.9 Condition Number Estimation 

Given an LU factorization of A, compute as follows: 

1. Compute a = \\A\\oo; 

2. Take a random initial guess y^ ; 

3. Compute y^ in the sequence defined by 

y^^A-'yV/Wy^lU < = 0,1 4 

by solving the systems using the extant factorization of A, and set υ 

4. Set K* = av. 

(7.16) 

ΙΐΛοο; 

A more sophisticated process for choosing y is slightly better, but justifying it requires 
more linear algebra background than we have here, and this will work reasonably well. 
MATLAB has a couple of commands that are relevant here: 

• cond(A) computes the exact condition number in the 2-norm, κ2; 

• rcond computes an estimate of the reciprocal of the condition number in the 1 -norm, 
K l . 

EXAMPLE 7.9 

To illustrate, consider the matrix 

1 
1 
2 
1 
3 

\ 

3" 

\ 

! 

\ 

\ 

Since this is only 3 x 3 we can compute the exact condition number without too much 
effort, and we get κ^Α) = 748. Applying the estimation algorithm here goes as 
follows. First, we compute an LU decomposition for A, getting 

1.0000 0 0 
0.5000 1.0000 1.0000 
0.3333 1.0000 0 

,U 
1.0000 0.5000 0.3333 

0 0.0833 0.0889 
0 0 -0.0056 

Choose a random vector for j / 0 ' ; for example, 

,(o) 
0.2190 
0.0470 
0.6789 
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Computing in the recursion (7.16), we get 

66.5558 
„(5) -372.1152 

359.0420 

Then, a = \\Α\\οο = 1.833 and v = ||y(5)||<x> = 372.1, so κ* = 682.2, which is not a 
bad estimate. For comparison's sake, we note that cond applied to this matrix shows 
that κ2{Α) = 524.0568, and rcond produces the estimate Ki(A) « 680.8093. 

7.5.4 Iterative Refinement 

Since Gaussian elimination can be adversely affected by rounding error, especially if the 
matrix is ill-conditioned, it is sometimes worthwhile to improve the accuracy of a computed 
solution. This leads to the algorithm known as iterative refinement or iterative improvement. 

We first observe that if xc is a computed solution to Ax = b, then the error satisfies a 
very similar problem. 

Theorem 7.11 Let A e R n x n be given, nonsingular, and let xc G Kn be a computed 
solution to the linear system Ax = b. Then the error e = x — xc satisfies Ae = r, where 
r = b — Axc is the residual for xc. 

Proof: This is a simple, direct computation: 

Ae = A(x — xc) = Ax — Axc = b — Axc = r. 

Thus, given a computed solution xc « x and the LU factorization from which it was 
computed, we can then quickly solve the new problem 

Ae = r 

and set x = xc + e. 
If all the computations were carried out in exact arithmetic, then the "improved" value x 

computed above would be the exact solution. However, since the computations are almost 
surely not done exactly, the improved value will quite likely not be the exact solution. So 
it is worthwhile to continue the process iteratively. Describing this requires some better 
notation, though. 

Let χ(°) be the initial computed solution, and let r^ = b — Ax^ be the corresponding 
residual. Then we compute the sequence of improved values x^ according to the following 
algorithm. 

Iterative refinement. For k from 0 until sufficient accuracy is achieved, do: 

1. Computer^ =b — Ax^; 

2. Solve Ae = r^ using the existing LU factorization of A; 

3. Define χ^+^ = χΜ + e. 

Programming Hints: (1) Be sure to compute the residual using the original matrix A and 
not the product LU. (2) Because of the potential for subtractive cancellation, refinement 
works best when the residuals are computed in a higher precision than the rest of the 
calculation, if that is possible. (3) If K(A)U is too large, then refinement may not work. 

Note that the only additional work in the refinement algorithm is the computation of 
the residual and the two solution steps needed to complete the solution of the systems 
Ae — r^\ the factorization has already been done. 
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EXAMPLE 7.10 

Let's consider the simple linear system 

Γ i l l 1 
: Î î 
1 ? !" 

. 3 4 5 . 

Xl 

. X3 . 

= 
3 

23/12 
43/30 

which has exact solution x = (1,2,3)T. The correct LU factorization of the coeffi-
cient matrix is 

L = 
1 0 0 
i 1 0 u = 

1 I I I 

o i I 
u 12 12 

0 0 jig 
but let's introduce some error by using only six digits to represent these: 

1 0 0 
0.5 1 0 

0.333333 1 1 
Uc 

1 0.5 0.333333 
0 0.0833333 0.0833333 
0 0 0.555556 x 10"2 

Thus, the solution we compute from the forward-backward solution steps will be 
inexact, however slightly. In fact, we get 

,(0) 
1.00002960003512 
1.99982440014289 
3.00017759985791 

Now apply the refinement algorithm. Our initial residual is 

,(0) 10" 
-0.10000591998960 
-0.06666963332513 
-0.14866856774542 

We solve the system 

to get 

LMre = r (0) 

10"3 x 

so the first improved solution is 

x(D=x(o)+e = 

-0.02960008024619 
0.17559977427749 

-0.17759977587713 

0.99999999995487 
1.99999999991716 
3.00000000008204 

which is a substantial improvement over the original computed solution. Another 
step of refinement would continue to improve the solution, of course. 
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Exercises: 
1. Let 

Compute \\A\\C 

2. Let 

Compute ||J4|| 

3. Let 

Compute ||J4|| 

4. Show that 

1 
4 
2 

2 
- 8 

1 

- 7 
0 
0 

A = 

A = 
0 

12 
2 

||Λ||* = max|aij | 

does not define a matrix norm, according to our defintion. Hint: Show that one of 
the conditions fails to hold by finding a specific case where it fails. 

5. Let 

A = 
1 i 0 
I I I 

4 5 0 

Compute, directly from the definition, Κοο(Α). You should get Koo(A) = 18. 

6. Repeat Problem 5 for 

A = 
4 1 0 
1 4 1 
0 1 4 

for which κ^Α) = 2.5714. 

7. Consider the linear system 

1.002 
1 

1 
0.998 

Xl 

X2 

0.002 
0.002 

which has exact solution x = (1, — 1)T (verify this). What is the residual b — Axc 

for the "approximate" solution xc = (0.29360067817338, -0.29218646673249)T? 
Explain. 

8. Consider the linear system problem 

Ax — b, 
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where 

A = 
4 2 0 
1 4 1 
0 2 4 

, b = 
8 

12 
16 

for which the exact solution is x = (1,2,3)T. (Check this.) Let xc = x + 
(0.002,0.01,0.001)T be a computed (i.e., approximate) solution to this system. Use 
Theorem 7.8 to find the perturbation matrix E such that xc is the exact solution to 
Axc = b. 

9. Compute the growth factor for Gaussian elimination for the matrix in Problem 8. 

10. Let 

A = 
2 1 0 
1 2 1 
0 1 2 

This has exact condition number κ,οο(Α) = 8. Use the condition number estimator 
in this section to approximate the condition number. 

11. Repeat Problem 10 for 

for which K^ (A) = 18. 

1 \ 0 
I I I 

o I I 

12. Use the condition number estimator to produce a plot of κ* versus n for each of the 
following matrix families (you may want to consider a semilog or log-log scale for 
some of the plots): 

(a) Tn, 4 < n < 20; 

(b) Kn, 4 < n < 20; 

(c) Hn, 4 < n < 20; 

(d) An, 4 < n < 20. 

Compare your estimates with the exact values from cond and the estimates from 
rcond. 

13. Produce a plot of the growth factor for Gaussian elimination for each matrix family 
in Problem 12, as a function of n. 

14. Given a matrix A S R n x n , show that 

μ(Α) = 
maxI5eo \\Ax\\ 

minx?Éo \\Ax\\ 

is equivalent to the condition number as defined in (7.10). 

15. Prove that (7.8) and (7.9) follow from the definition of matrix norm. 

16. Prove Theorem 7.10. 
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17. Give an argument to support the validity of the "rule of thumb" following Theorem 
7.10. 

18. Prove Theorem 7.5. 

19. Consider the linear system problem Ax = b for 

[î il 
. 2 3 . 

, b = 
2 

7/6 

Note that the exact solution is x = (1,2)T. 

(a) Represent the exact factorization of A using only four decimal digits, and solve 
the system. 

(b) Do two steps of iterative refinement to improve your solution. 

20. Do two more steps of refinement for the problem in Example 7.10. 

< · · · > 

7.6 SPD MATRICES AND THE CHOLESKY DECOMPOSITION 

There exist a number of classes of special matrices whose properties make the solution 
of linear systems easier. One important such class consists of symmetric positive definite 
matrices. 

Definition 7.5 (SPD Matrices) Let A e Rn><n be given. If A satisfies 

A = AT 

and 
xTAx > 0, all x^O, 

then we say that A is symmetric positive definite, abbreviated by writing A 6 SPD. 

Like diagonally dominant matrices, SPD matrices appear often in applications involving 
approximation of functions and the solution of differential equations. What makes them 
important is that a special factorization and solution algorithm exists for them, which is 
about half as costly as ordinary Gaussian elimination. The result is due to the French 
mapmaker Cholesky.6 

Theorem 7.12 (Cholesky Theorem) Let A € Rnxn be given, with A G SPD. Then: 

1. Aisnonsingular; 

6André-Louis Cholesky (1875-1918), a French military officer who was killed in the final year of World War 

I, was born in Montguyon, educated at École Polytechnique, and served as a mapmaker for the French military, 
earning some distinction for his efforts in mapping Crete and some of the French colonies in North Africa. His 
method for the solution of positive definite systems of equations, which he developed for the solution of the 
so-called "normal equations" that arise in least squares problems, was published posthumously by a fellow officer, 
in 1924, with due credit being given to Cholesky. 
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2. There exists a lower triangular matrix G € R n x n , withgu > Q,suchthatGGT = A. 

Proof: The nonsingularity is a straightforward consequence of the condition xTAx > 0; 
if A is singular, there is a nonzero vector x, such that Ax = 0, hence xT Ax = 0, therefore 
a singular matrix cannot be SPD. 

For the construction of G, we use an argument that is based on induction on the size of 
the matrix. Let n = 2; then 

r a n û2i 

0-21 0,22 

and the condition x1Ax > 0 implies that both diagonals an must be positive (Problem 1). 
Then it can easily be verified (by direct computation) that 

G \/αιι 
a2i/y/än 

0 
^/a22 - a i l / 0 ! ! 

is such that A — GGT. We know that both of the square roots are defined because A G SPD 
implies (Problems 1 and 2) that the diagonals must be positive and that 022 — α ^ / α π > 0. 
Therefore, G exists, at least for the special case of n = 2. 

Assume now that G exists for n = k — 1; we will use this to show that it must exist for 
n = k, and this will complete the induction. We write A (which is k x k) in the partitioned 
form 

Au a 
aT akk 

where An is (k — I) x (k - 1) and a is a vector in Rfc_1. The fact that A G SPD forces 
(Problem 3) Au € SPD. Therefore, by the inductive hypothesis, there exists G n , lower 
triangular, such that An — GnG^. Construct 

Gn 
„ r 

0 
9kk 

where g s p f c - l and gick € R are yet to be determined. Note that if we can determine 
these two quantities, we will have finished the proof because we will have found the lower 
triangular matrix for the k x k case and the induction will be complete. 

To see what g and gkk have to be, we multiply out GGT and set this equal to A: 

GGT = 
GnGn 

9TGji 
Gng 

9kk + 9T9 
An 

akk 

Note that the upper-left element is correct: GuG^ does indeed equal -4n by the inductive 
hypothesis. To finish the job we have to have 

Gng = a (7.17) 

and 
9kk+9T9 = akk-

Since the diagonal elements of Gn (which is upper triangular) are all positive, it is 
necessarily nonsingular; thus, a unique solution exists to the system (7.17), and g is 
defined. With g defined, we simply set 

9kk ck — Vakk -9T9-
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The argument to the square root has to be positive; otherwise, there will be an x such that 
xTAx < 0, which violates the positive definite condition (Problem 4). The induction is 
complete, hence the theorem is proved. · 

There are a number of different ways of actually constructing the Cholesky decomposi-
tion, one of which can be deduced from the proof we gave above. The MATLAB command 
is G = chol (A). It can be shown that the Cholesky factorization is unique, so all of these 
different constructions are just different ways or organizing the computation. One common 
scheme uses the following formulas: 

9ij J_ 
9jj 

j ' - i 

■ij - z2 9ik9jk 
fc=i 

1/2 

an - Σ 9ik 

, i < j < i; 

fc=l 

Cholesky is a very efficient algorithm; the operation count (Problem 5) is ^n3 + 0(n2). 
Round-off error for a nearly singular SPD matrix can sometimes cause the algorithm to try 
and take a negative square root. A variant exists that computes a factorization of the form 
A = LDLT, where L is unit lower triangular and D is diagonal; this can be computed 
without using any square roots. 

We will defer a detailed discussion of the Cholesky method to §9.3.2, where it is used 
to solve the large systems that arise in the discretization of partial differential equations. 

Banded Systems In many important applications (see Chapter 9 for examples) the 
coefficient matrix is very sparse (meaning most of the elements are zero), with the nonzero 
elements concentrated in a relatively narrow band around the main diagonal of the matrix. 
This is the case, for example, for the matrices that arise in the discretization of partial 
differential equations. Note, also, that the tridiagonal matrices that were studied in Chapter 
2 are a particularly simple example of banded matrices. 

Banded systems can be factored "within the band;" that is, we do not need to store nor do 
we need to compute with the large number of zeros that are located away from the diagonal 
("outside the band"). For large problems this can result in a considerable savings in storage 
and execution time. Since the precise algorithm to use is almost always very specific to the 
problem being solved, we will defer a detailed discussion to Chapter 9, where we discuss 
the simple discretization of some PDEs. 

Exercises: 
1. Show that a matrix with one or more non-positive diagonal elements cannot be SPD. 

Hint: Try to find a vector x such that xTAx = an. 

2. For a 2 x 2 SPD matrix, show that 022 — α | ι / α ι ι > 0· Hint: Consider the positive 
definite condition with x = (021, — o n ) T . 

3. Let A 6 be partitioned as 

A An 
A21 

A21 
A22 

where An and .A22 are square matrices. Show that both An and A22 must be SPD 
i f A e S P D . 
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4. In the proof of the Cholesky theorem, show that a,kk — QT 9 > 0 must hold, or else 
there is a vector x such that x1Ax < 0. Hint: Use Problem 2 as a starting point. 

5. Derive the operation count given in the text for the Cholesky decomposition. 

6. Prove the following: If A 6 SPD, then there exists a unit lower triangular matrix L, 
and a diagonal matrix D with positive elements, such that A — LDLT. 

7. Derive an algorithm for the LDLT factorization that does not require square roots. 
Hint: Look at the 3 x 3 case, explicitly. Multiply out LDLT and set the result equal 
to A, and from this deduce the relationships that are necessary. In other words, if 

1 
hi 
hi 

0 
1 

«32 

0 
0 
1 

dn 

0 
0 

0 
GÎ22 

0 

0 
0 

0*33 

1 
0 
0 

«21 

1 
0 

«31 

«32 

1 
= 

O i l 

«21 

Û31 

d i 2 

Ö22 

Û32 

«13 

Û23 

Û33 

what is the relationship between the components of L, D, and ΑΊ Then generalize 
to a problem of arbitrary size. Don't forget that A is symmetric! 

8. The Tn and Kn families of matrices are both positive definite. Use the chol 
command to produce the triangular factor, then write a routine cholsol which takes 
the triangular factor and applies appropriate forward and backward solution steps to 
solve linear systems Tnx = b and Knx = b, over the range 4 < n < 20, using 
random right-hand sides. Confirm the accuracy of you solutions by computing the 
norm of the residual. 

9. If A is tridiagonal and SPD, then the Cholesky factorization can be modified to work 
only with the two distinct nonzero diagonals in the matrix. Construct this version of 
the algorithm and test it on the Tn and Kn families, as above. 

10. The Hn family of matrices is also SPD, but ill-conditioned. Try to apply chol over 
the range 4 < n < 20. What happens? Can you explain this? 

< · · · > 

7.7 ITERATIVE METHODS FOR LINEAR SYSTEMS: A BRIEF SURVEY 

If the coefficient matrix is very large and sparse—meaning that the number of nonzero 
elements is a small fraction of the total number of elements in the matrix—then Gaussian 
elimination may not be the best way to solve the linear system problem. In these cir-
cumstances, elimination techniques will be drastically slowed by the memory management 
issues associated with handling the very large matrix,7 and they will also destroy the spar-
sity of the original matrix—even though A = LU is sparse, the individual factors L and U 
may not be as sparse as A was. 

We can illustrate this last point with a simple example. 

7This is because most modem architectures use virtual memory concepts to enable a large amount of disk storage 

to substitute for a large amount of RAM storage. However, there is a time cost associated with writing the current 
RAM contents to disk and bringing new material into the RAM, and this time cost can be more than the cost of 
doing the actual computation. 
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■ EXAMPLE7.il 
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This is a "small" example of the kind of sparse matrix we are talking about here; 
it has a total of 256 elements but only 64 are nonzero. If we factor this using the 
LU factorization, then there will be a lot of "fill-in:" Many of the elements that are 
zero in A would be nonzero in L or U. We can see this—without drowning in a 
sea of numbers—by creating a sparsity plot of the matrix and its LU factorization, 
using MATLAB's spy command; spy (A) produces a plot that puts a single mark 
at the location of every nonzero element, and leaves a blank at the zero elements. 
Figure 7.1 shows the sparsity plots for A, the individual L and U factors, and the 
matrix A' which denotes the sparsity pattern of A = LU as it would actually appear 
in the computer storage after the elimination process had run to completion. Note 
that the total number of nonzero elements has nearly doubled due to fill-in during the 
elimination step. (The captions give the number of nonzero elements in the matrix.) 

Now, it was possible to store the original matrix using only five vectors (to represent 
the diagonals), each of length < 16, and fewer if we took advantage of the symmetry 
of the matrix. On the other hand, storing the L and U factors will require much 
more storage. Moreover, we can easily write a code that will carry out matrix-vector 
multiplications of the form z = Au by storing only the five diagonal vectors plus the 
u and z vectors. 

It is because of these issues that Gaussian elimination and factorization methods are 
sometimes not the best choice of solution technique. Instead, we are driven to consider 
iterative methods for solving the linear system. This might seem counterintuitive at first, 
since we are giving up a method (Gaussian elimination) that is exact in the absence of 
rounding error for a method that is, by definition, mathematically inexact. Nonetheless, 
the iterative methods are cost-effective for large, sparse, problems, especially when A is 
symmetric and exhibits a strong structure to the placement of its zero and nonzero elements. 
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Figure 7.1 Sparsity plot for matrix A and its LU factors. 

Unfortunately, a complete understanding of the mathematics underlying most iterative 
methods is beyond the intended level of this book. In addition, the most common realm of 
application for iterative methods is to solve the large, sparse, structured systems that come 
out of discretizing partial differential equations (PDEs). For this reason, we defer much of 
our discussion of iterative methods to Chapter 9; in this section we will outline some of 
the simpler ideas and show how they work on a simple 4 x 4 example. The most powerful 
technique for iteratively solving symmetric systems, the method of conjugate gradients, 
will be presented in §9.3.3. Still, we will be able to outline some significant ideas in this 
section. 

An important class of matrix iterative methods come under the heading of what are 
called splitting methods, because they are based on the notion of splitting the coefficient 
matrix into two parts. 

Suppose that we want to solve the linear system 

Ax = b, 

where A G Rnxn is assumed to be nonsingular. We split A into a difference M — N: 

A = M -N, 

where M is such that systems of the form Mz = f are "easy" to solve. Then we have 

Ax = b => (M - JV)x = b => Mx = Nx + b. 

Since Mz = f is assumed to be "easy" to solve, it follows that M - 1 / is easy to compute8 

for any / . Thus, we can write 

x = M~1Nx + M-1b. 

Note that this does not mean that we actually compute the inverse. 
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This suggests the following iteration: Given an initial guess,9 χ(°\ compute the sequence 
of vectors according to 

x(fc+i) = M~1NXW + Af_16, (7.18) 

until the sequence converges. 
A very rich literature exists for this general scheme of iterations, showing that the 

iteration converges if and only if the iteration matrix T = M~XN is less than 1 in some 
sense. Note, incidentally, that we can write the iteration matrix as 

T = M~XN = M~l(M -A) = I - M~lA, 

showing, more clearly perhaps, that the method will work best when M _ 1 « A~l or 
M « A 

The formal result, which we shall not prove, is the following. 

Theorem 7.13 Let A € K n x " be given. Define T = M^N, where A = M - N. Then 
the iteration (7.18) converges for all initial guesses x^ if and only if there exists a norm 
|| · || such that \\T\\ < 1. 

A second, very important result, relates the existence of such a norm to a fairly quanti-
tative condition on the eigenvalues of the matrix T. First, a definition. 

Definition 7.6 (Spectral Radius of a Matrix) Let A e R n x n be given. Then the spectral 
radius of A, denoted p(A), is the largest (in magnitude) of all the eigenvalues of A. 
Formally, 

p(A) — max|A|, 

where the maximum is taken over all the eigenvalues of A. 

■ EXAMPLE 7.12 

If A is the matrix 

then A has eigenvalues 2.5000 + 1.9365i and 2.5000 - 1.9365z; thus, the spectral 
radius of A is 

p(A) = 3.1623 = 12.5000 ± 1.9365i|. 

Then the theorem connecting the spectral radius to the convergence of iterative methods 
is the following. 

Theorem 7.14 Let A € Rnxn be given. Then there exists a norm, \\ ■ \\,such that \\A\\ < 1 
if and only if the spectral radius satisfies p(A) < 1. 

From this we conclude that 

The iteration (7.18) converges for all initial guesses x^ if and only if 
p(T) < 1. 

9We will, as a matter of convention, use parenthesized superscripts as iteration counters for vector quantities. This 

will also be an issue in §7.8, where we study nonlinear systems, and in Chapter 8 when we study eigenvalue-
eigenvector approximations. 
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Having outlined the basic theory, let's now look at some specific methods. The 
simplest—and therefore, the slowest to converge—is known as the Jacobi iteration}0 

It might be more descriptive to call it "diagonal inversion," since it involves inversion of 
the diagonal part of A, only, at each step of the iteration. We use the splitting 

A = D-(D-A), 

where D is the diagonal part of A. Then the iteration is 

X(k+V = ( j _ D-1A)x^) + D~lb. 

The most efficient implementation of the method—and this is the case for all the splitting 
methods—depends greatly on the structure of the coefficient matrix, so it is difficult to 
discuss in general. If we have a specialized routine for forming matrix-vector products 
involving A (using the structure of A to maximize efficiency), then we can write the iteration 
to take advantage of that, thus: 

x(k+\) = x(k) _ /j-i^fc)) + D-ibm (7.19) 

In Chapter 9 we will show how it would be done for the kinds of systems that arise from 
discretizing partial differential equations. Right now, let's look at a simple example. 

■ EXAMPLE 7.13 

Suppose that we want to solve the system Ax = b, where 

" 4 1 0 0 " 

A - ! 5 ! ° 
0 1 6 1 
1 0 1 4 

and b = (1,7,16,14)T, which means that the exact solution is x = (0,1,2,3)T. 
Take a;(°' = (0,0,0,0)T; then the first three iterations of the Jacobi iteration for this 
example go as follows: 

xW=xW-D-1AxW+D-1b, 

where D = diag(4,5,6,4), meaning the diagonal matrix having elements (in order 
down the diagonal) 4,5,6,4. This yields 

" 0.2500 " 
(i) = 1.4000 

X ~ 2.6667 ' 

_ 3.5000 

xW=xW-D-1AxW+D-ïb, 

'"Karl Gustav Jacob Jacobi (1804—1851) was born in Potsdam, Prussia (now part of Germany) and was educated 
at the University of Berlin. He earned his doctorate in 1825 and had a position at the University of Königsberg 
from 1826 until 1844, after which he returned to Berlin where he remained until his death. Jacobi founded what 
we know as elliptic function theory and studied the determinant of functions known as the Jacobian. His iterative 
method for solving linear systems was first published in an astronomical journal in 1845. 
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so that 

rW 

-0.1000 
0.8167 
1.8500 
2.7708 

and 

with 

C ( 3 ) = a ; P ) _ £ ) - l A c ( 2 ) + £ ) - l 6 ) 

,(3) 

0.0458 
1.0500 
2.0688 
3.0625 

Even after only three iterations, it is becoming evident that the iteration is converging, 
and in fact we do converge, in the sense that ||x(fc) - z ^ - 1 ^ « , < 10~6, in 19 
iterations. 
The student should bear in mind that this example is to illustrate the barest workings of 

the method. There is very little reason to use an iterative method for solving a 4 x 4 linear 
system. For work with more realistic examples, see §9.3. 

An obvious extension of the Jacobi iteration is to invert the entire lower triangular part 
of A, not just the diagonal. This is what is known as the Gauss-Seidel11 iteration. We split 
A into12 

A = L-{L-A), 

so that the iteration becomes 

X(k+V = {I-L-1A)xW+L~1b, 

or 

x(k+i) = xm _ L-i(AxW) + L-ibm (7.20) 
Again, we will defer most of the implementation details until Chapter 9, when we can 

work with realistic examples. A simple example will illustrate and allow some comparison 
to the Jacobi method. 

■ EXAMPLE 7.14 

We use the same matrix A and the same initial vector as in Example 7.13. Then 

XM = XM - L-\AxW) + L^b, 

where 
4 0 0 0 
1 5 0 0 
0 1 6 0 
1 0 1 4 

"Ludwig Philipp von Seidel (1821-1896) was born in Zweibrücken, Bavaria, and studied at the University of 
Berlin, beginning in 1840. Later he moved to Königsberg, where he studied under Jacobi. He received his 
doctorate from yet a third university, Munich, where he would eventually serve as a professor for many years. The 
bulk of his work was in optics and mathematical analysis. What we know as the Gauss-Seidel method was the 
result of a collaboration with Jacobi; Seidel published a memoir on the subject in 1874, but Gauss had described 
a similar method to a friend, who had published it in 1845. 
12Note that L here is not the lower-triangular matrix from the LU decomposition of A, but is simply the lower 

triangular part of A. 
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Of course, we do not actually compute the inverse; rather, we solve the system 

Lz = Ax^ 

for each index k. Since this is a lower triangular system, it is quite easy to solve. For 
this example, we get 

" 0.2500 " 
1.3500 
2.4417 
2.8271 

; x™ = 

" -0.0875 ' 
0.9292 
2.0406 
3.0117 

; x^ = 

" 0.0177 " 
0.9883 
2.0000 
2.9956 

Once again, the example displays evidence of convergence, and in fact the conver-
gence appears to be faster than for the Jacobi iteration. If we carry on the computation, 
we converge (in the same sense as in Example 7.13) in 11 iterations.13 

The two examples seem to indicate that Gauss-Seidel is converging faster, and this is 
consistent with our intuition, since Gauss-Seidel is based on inverting "more" of the matrix 
at each step. The formal theoretical results are the following. 

Theorem 7.15 (Jacobi and Gauss-Seidel Convergence Theorem) 

1. If A is diagonally dominant, then both Jacobi and Gauss-Seidel converge, and 
Gauss-Seidel converges faster in the sense that p{Tcs) < p(Tj), where Tj is the 
iteration matrix for the Jacobi iteration, and Tes is the iteration matrix for Gauss-
Seidel. 

2. If A e SPD, then both Jacobi and Gauss-Seidel will converge. 

While Gauss-Seidel is convergent for SPD matrices, it is still somewhat slow to converge. 
In the 1930s and 1940s, a number of schemes were proposed and developed to improve the 
convergence of Gauss-Seidel, usually by changing very slightly (or relaxing) the condition 
that defines the iteration. In the late 1940s and early 1950s this effort culminated with the 
development of the SOR (successive over-relaxation) iteration, which can be a substantial 
improvement over Gauss-Seidel. The problem is that this improved performance depends 
on the proper choice of a relaxation parameter.™ 

The splitting for SOR is somewhat complicated, and it is simpler to derive SOR as 
an extension of Gauss-Seidel. Let xl be the value of the i t h component as produced by 
Gauss-Seidel. Then the next SOR value is produced from the Gauss-Seidel value by 
averaging with the previous iterate: 

xf+l) = ωχΐ + (I - u))xf\ (7.21) 

where ω is a real-valued parameter whose effect on the iteration needs to be studied. Putting 
this simple calculation in the form of a matrix splitting looks to be a bit of a challenge, but 
it can be done.15 

13We could easily "cheat" and compute the exact solution in any one of a number of easy ways, but in a real 

application we wouldn't be able to do that, and would therefore have to use something like the difference in 
successive iterates—or the size of the residual—as our measure of convergence. 
14A considerable amount of the history behind the SOR iteration can be found in David Young's doctoral 

dissertation, which is available online (a link will be on the text website). 
15Writing SOR as a matrix splitting is absolutely necessary for any analysis that is going to be done, but for the 

purposes of calculation, (7.21) is the way to go. 
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Let D be the diagonal of A, and let L and U be the strictly lower and upper triangular 
parts of A; that is, L and U have zeros on the diagonal. Then, given ω, we split A as 
follows: 

A=[-D + L)-((--I)D-U), 
ω ω 

leading to the iteration 

where 

c ( k + i ) = x { k ) _ Q - i A x ( k ) + Q - i b > (7.22) 

Qu = (±-D -L\= ω~\ϋ - u/L), 

which is lower triangular. What is interesting is that the best performance occurs when we 
take ω 6 [1,2], which means that it is not a "true" average. 

Let's look at an example, using the arbitrary value of ω — 1.05. 

EXAMPLE 7.15 

The iteration, in general, is 

x(k+i) = x(k) _ Q-^AxW + QZ\ 

where 

Qu 

3.8095 0 0 0 
1.0000 4.7619 0 0 

0 1.0000 5.7143 0 
1.0000 0 1.0000 3.8095 

For the individual iterates we get 

,(D 

" 0.2625 " 
1.4149 
2.5524 
2.9361 

rP) = 

-0.1220 
0.8889 
2.0030 
3.0344 

; s<3) = 

0.0353 
0.9975 
1.9943 
2.9905 

Again, it is apparent that the iteration is converging, and it is also apparent that 
it is converging faster than for Jacobi or Gauss-Seidel. If we run the iteration to 
completion, we get convergence (in the sense used in the two preceding examples) 
in nine iterations, slightly faster than for Gauss-Seidel. 
As might be imagined, the convergence theory for SOR depends heavily on the choice 

of the parameter ω—for example, taking ω = 1.75 results in much slower convergence 
than for Gauss-Seidel. There exists a substantial theory for choosing the "best" value of ω, 
and this theory applies in a surprisingly wide range of important cases. Still, it and most of 
the theory for SOR are beyond the intended level of this book, and so the reader is referred 
to the appropriate references at the end of the chapter. The most general theorem that can 
be succinctly stated is the following. 

n x n , SPD be given. Then, for 

(0,2) the SOR iteration will 
Theorem 7.16 (SOR Convergence Theorem) Let A e 
any b € E n , any initial guess x^ G Kn, and any value ω € 
converge to the exact solution of the linear system Ax = b. Ifco < 0 or ω > 2, then the 
iteration will not converge. 
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It is worth noting that the methods outlined in this section have been, to a great extent, 
supplanted by more powerful iterative techniques, which we will outline in §9.3.3. But 
the ideas contained in these iterations are still an important part of numerical methods and 
analysis. 

Since the important applications of these methods are to the solution of the types of linear 
systems that occur when partial differential equations are solved approximately, we defer 
any detailed treatment of them to the appropriate sections of Chapter 9. In the exercises we 
look at some very simple examples. 

Exercises: 

1. Let 

A = 

and 6 = (-4,2,4,10)T. 

(a) Verify that the solution to Ax = b is x = (0,1,2,3)T. 

(b) Do three iterations (by hand) of the Jacobi iteration for this matrix, using 
χ(°) = (0,0,0,0)τ . 

(c) Do three iterations (by hand) of the Gauss-Seidel iteration for this problem, 
using the same initial guess. 

2. Do three iterations of SOR for Problem 1, using ω = 1.05. 

3. Solve the same system using SOR for a wide set of values of ω € (0,2). Foreachw, 
compute τ{ω) = \\b - Ax^ W^. Graph r(w) for k = 1,3,5,10. 

4. Write a computer code that does Jacobi for Problem 1, for a specified number of 
iterations. How many iterations does it take to get convergence, in the sense that the 
consecutive iterates differ by less than 10 - 6? 

5. Repeat Problem 4 for Gauss-Seidel. 

6. Repeat Problem 4 for SOR. Make sure that your code can accept different values of 
ω as an input parameter. 

7. Let A be the 16 x 16 matrix given at the beginning of this section. Take 

b = (5,11,18,21,29,40,48,48,57,72,80,76,69,87,94,85)T. 

Write a computer code to do Jacobi, Gauss-Seidel, and SOR on this system of 
equations. Write the code to only store the nonzero diagonals of A, and make the 
code as efficient as possible. 

8. Prove that the spectral radius of A, p(A), is bounded above by \\A\\ for any norm 
suchthat IIAril < ||.A||||a:||. 

< · · · > 
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7.8 NONLINEAR SYSTEMS: NEWTON'S METHOD AND RELATED IDEAS 

In Chapter 3 we spent considerable time and effort developing algorithms for the solution 
of a single nonlinear equation. In this section we extend some of these ideas to tackle 
systems of nonlinear equations. Because we are talking about systems, we will use a lot of 
linear algebra to give structure and simplicity to the discussion. 

Let / be a given function from a domain in Rfc to a range also in Rfc, i.e., / : Rfc ->■ Rfc. 
We want to find the vector(s) x G Rfe such that f(x) = 0, where 0 here is understood to be 
the zero vector in R*\ 

For example, we might have 

2xi - X2 + \e~Xl = 1, (7.23) 

-xi + 2x2 + \e~x* = 0. (7.24) 
y 

This implicitly defines / = {f\{x\,X2), f2{x\,x2))T vi& 

/ i(xi ,*2) = 2x1 -X2 + ^ e - X l - 1, (7.25) 

/ 2 ( ζ ι , ζ 2 ) = - x i + 2x2 + i e - X 2 . (7.26) 

How can we approximate the solution to this system? 
This is a very active area of research, and many of the best ideas are relatively new. We 

will discuss how to derive and apply Newton's method for this kind of problem, and then 
show how certain variants might actually be superior to Newton. 

One issue that is new here, compared to the work we did in Chapter 3, is the cost of 
certain operations. This is entirely due to the "curse of dimensionality:" the simple fact 
that we are now working in Rfc makes the size of the problem a lot bigger, and drives the 
cost up. 

Because we are again doing iterations with a vector variable, we once again will use a 
parenthesized superscript for the iteration counter, to avoid confusion with the subscript 
denoting the element of the vector. Thus, x^ will refer to the vector at iteration k, and 
x j will refer to the j t h component of that vector. 

7.8.1 Newton's Method 

To derive Newton's method for systems, take x^ = (x[ ,x2 ) as an initial approximation 
to the solution and expand both component functions in a Taylor's series about that point: 

/l(*l,«2) = /l(*[0),40)) + (*l-*i0,)^(«i0),40)) 

+ (Χ2-Χ2 0 )) |£(Χ10 ),Χ2 0 )) + ΛΙ, (7.27) 

+ (* 2 -4 0 ) )g (4 0 \4 0 ) ) + Ä2. (7.28) 
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Now, set /i(x 1,2:2) — f2(x\,X2) = 0, and drop the remainders; this yields 

0 = fitâ^ + izi-zP^yPA») 

+ (x2-x20))^(xf\x20)), (7-29) 

0 = Λ(*ί0),*?)) + (*ι-*ί0))^(χί0),*?)) 

+ (*a-*?))g(*i0),xS,)). (7.30) 

We want to solve this for the new values of x\ and xi, so we re-organize this as a matrix-
vector equation, thus: 

0 = / ( Ι ( Ο ' ) + ^ ( Ι ( Ο » ) ( Ι - Ι ( Ο ' ) , 

where 

χ(°> = (x?\x™)T,x = (Xl,x2f, Af(zW) a&fAu) _(o)x β£,_(ο) (o)x 
9 ιΛ^1 ! χ 2 J 9x2^ ! ' 2 ' 

We can solve for x by multiplying by A,* (assuming it exists): 

x = xW-A]1(xM)f(xM). 

Generalizing the notation, then, we have 

a.(n+l) = χ(η) _ j 4 j l ( ; E (n ) ) / ( a ; (« ) ) ! 

where now ζ ^ = (x^1 , x2 ) T is t n e n ' h approximate (vector) value. This, of course, 
is almost exactly the classical Newton's method from §3.2, especially when we notice that 
the matrix Aj is the Jacobian matrix of first partial derivatives; essentially, this plays the 
role that the ordinary derivative did in the single-variable case. For this reason, we will 
introduce the notation of the derivative for this matrix. 

Definition 7.7 (Gradient of a Function) / / / is a differentiable function from M.k to Rk, 
then we will denote by f the k x k matrix of first partial derivatives, also known as the 
gradient of f : 

An alternate notation for the gradient is V / . Sometimes grad/ is also used. 
We will not go into detail on the theory of Newton's method for systems; suffice it to 

say that the basic ideas of Chapter 3 carry over: If the initial guess x^ is close enough 
to the actual solution, then convergence will occur and the convergence will be quadratic. 
However, because the implementation of Newton's method for systems is more problematic, 
we will spend some time on those issues. 

For example, while in Chapter 3 we had to worry about the possibility of dividing by a 
zero derivative in Newton's method, here we have to worry about a matrix being singular; 
moreover, we have to factor that matrix every step of the iteration. For the simple 2 x 2 
example we gave above, this is not going to be important, but for a larger system it is 
an issue. The scalar version of Newton's method cost two function evaluations in each 
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step; the fc-dimensional version of Newton's method costs k + k2 function evaluations, 
in addition to the roughly |fc3 cost of factoring and solving the linear system. Even for 
quadratic convergence, this can be a steep price to pay. 

Table 7.1 shows the result of applying Newton's method to our example system, with the 
initial guess a ^ = (1, l).16 Note the rapid convergence, which we expect with Newton's 
method when the initial guess is close to the actual solution. (The fact that this example is 
nearly linear helps.) 

Table 7.1 Two dimensional Newton's method example 

n 
0 
1 
2 
3 
4 

T(«) 

1.000000000000 
0.605042638147 
0.597220155135 
0.597216751762 
0.597216751761 

(n) 
x2 

1.000000000000 
0.267104846820 
0.255587267973 
0.255582530497 
0.255582530496 

Estimated error 
N/A 

0.732895E+00 
0.115176E-01 
0.473748E-O5 
0.821260E-12 

For comparison's sake, consider the chord method, which we introduced in §3.11.2. 
Here we compute according to 

n(«+l) > ) / ' ( i ( 0 ) ) / ( * ( n ) ) , (7.31) 

which means that we do not need to re-evaluate nor re-factor the gradient matrix at each 
step. Thus, each step of the chord iteration is substantially cheaper than Newton's method. 
As indicated in §3.11.2, we could periodically update the point on which the gradient is 
based, thus doing something like 

χ(η+1) = χ(„) _ [/'(χ*)]"1 /(X(")), (7.32) 

with x* being updated every, say, p iterations. This reduces the cost compared to Newton's 
method, but does speed up the convergence some compared to the chord method. Tables 
7.2 and 7.3 give the results of applying two chord iterations to our example problem. Table 
7.2 uses the pure chord method (7.31); Table 7.3 uses (7.32), with p = 3. Compare the 
total cost to convergence with that for Newton's method, as given in Table 7.1; even though 
Newton's method took fewer iterations than either version of the chord method, the overall 
cost was cheaper for the chord methods. For Newton's method, the cost per iteration will 
be k + k2 function evaluations plus |fc3 + k2 operations in solving the linear system. This 
works out to a total of about 24 function evaluations plus roughly 46 operations in solving 
the linear system. For (7.31 ), the pure chord method, the cost per iteration is only k function 
evaluations plus fc2 operations in solving the linear system; there is also an overhead cost 
of k2 function evaluations and about |fc3 operations in factoring the linear system once. 
This works out to a total of about 22 function evaluations plus about 39 operations with 
the linear system. Finally, for the updated chord method (7.32) the cost per iteration is the 
same as for the pure chord method, with an additional k2 function evaluations plus |fc3 

In this and all the other nonlinear system examples, the "Estimated error" refers to the difference between 
consecutive iterates: 

En = max \x) 
i = l , 2 ' * 

(n) . ,{-« I. 
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operations for factoring the new gradient each time it is formed. This works out to about 
18 function evaluations and 26 operations with the linear system. These differences are 
not gigantic, but they do show how the chord method can be cost-effective compared to 
Newton's method even though it is slower in terms of iterations to convergence. 

Table 7.2 Illustration of two-dimensional chord method (7.31 ). 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

(n) 

1.000000000000 
0.605042638147 
0.597506380968 
0.597227336747 
0.597217136546 
0.597216765729 
0.597216752268 
0.597216751779 
0.597216751762 
0.597216751761 

x2 
1.000000000000 
0.267104846820 
0.255993159449 
0.255597398559 
0.255583069746 
0.255582550060 
0.255582531206 
0.255582530522 
0.255582530497 
0.255582530496 

Estimated error 
N/A 

0.732895E+00 
0.111117E-01 
0.395761E-03 
0.143288E-04 
0.519685E-06 
0.188547E-07 
0.684125E-09 
0.248232E-10 
0.900727E-12 

Table 7.3 Illustration of modified two-dimensional chord method (7.32), using p = 3. 

n 
0 
1 
2 
3 
4 
5 

1.000000000000 
0.605042638147 
0.597506380968 
0.597216756247 
0.597216751761 
0.597216751761 

•L2 

1.000000000000 
0.267104846820 
0.255993159449 
0.255582536629 
0.255582530496 
0.255582530496 

Estimated error 
N/A 

0.732895E+00 
0.111117E-01 
0.410623E-03 
0.613292E-08 
0.184247E-12 

7.8.2 Fixed-Point Methods 

The problem with many of the Newton-like methods is that they require that a linear system 
be solved at each iteration. Sometimes, this requirement is more of a computational burden 
than the need to evaluate the functions. Thus, a method that took more iterations (and 
therefore more function evaluations) but was significantly cheaper in cost for each iteration 
might well be more efficient. This brings us back to the notion of fixed-point iterations, 
which we first saw in §3.9. 

Given the vector function / , mapping from Kfc to Rfc, let us assume that we have 
associated with / a second vector function, say g, such that 

a = g{a) <* / ( a ) = 0. 

In other words, a is a root of / if and only if a is a fixed point of g. We can then think 
about employing the fixed-point iteration 

x ( n + 1 ) = g{x(n)) (7.33) 
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as a means of approximating a. We have a substantial theory for fixed-point methods in one 
dimension, developed in Chapter 3, and most of this carries over to the multidimensional 
case. 

Theorem 7.17 (Multidimensional Fixed-Point Theorem) Let g be a vector function de-
fined on a domain D C Rk, continuous, with the property that g(x) € D for all x 6 D. 
Assume that there exists 7 G [0,1) such that 

\\g{x) - g(y)\\ <-y\\x-y\\ 

for all x,y G D. Then there exists a unique fixed point a 6 D and the iteration χ(η+1^ = 
g(x^) will converge to a for any initial value x^ e D; furthermore, we have the error 
estimate 

| |«-a:<n) | | < - ^ - H x i 1 ) -χ ί° ΐ | | . 
1 - 7 

Proof: This is essentially Theorem 3.5 from §3.9, and the proof follows almost exactly 
as was done there. · 

What this tells us is that if we can construct a function g from / such that the hypotheses 
of the theorem hold, then the iteration (7.33) can be used to compute approximate values of 
the solution to f(x) = 0. Although there is no "general theory" for deriving g from /—it 
is something that is usually best done on a case-by-case basis—there are some general 
guidelines for broad classes of problems. We might note, for example, that one way to 
construct g is to use 

g(x) =x- Af(x), 

where A is a A; x k matrix. To mimic the Newton scheme, we want A « [/'(a;)]-1. One 
such choice, very simplistic, would be to invert only the diagonal part of /'—thus doing a 
kind of Jacobi iteration for a nonlinear problem; this requires no matrix factorizations, and 
only k additional function evaluations. If we apply this idea to our example system, we 
find that it takes 43 iterations to reach convergence. This is slow, in terms of the number 
of iterations, compared to all our other methods. More sophisticated choices, however, 
work very well, as we shall see in the next section. The student might want to consider, for 
example, how to apply the Gauss-Seidel ideas to this setting. 

Exercises: 

1. Consider the nonlinear system 

2zi - Χ2 + jU"*1 = - 1 , (7.34) 

-11 + 2z2 + jU-*2 = 1. (7.35) 

Take x^ = (1,1)T and do two iterations of Newton's method; you should get 

x(2) = (-0.48309783661427,0.21361449746996)T. 

2. Write a computer code to solve the system in Problem 1, using 

(a) Newton's method; 

(b) The chord method; 
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(c) The chord method, updating every three iterations. 

3. Rewrite the system in Problem 1 as 

Kx + φ(χ) = b, 

where K is the 2 x 2 matrix 

K 
2 - 1 

-1 2 

φ{χ) is defined by 

*w=( p ) ■ 
and&= ( -1 ,1 ) T . 

(a) Do two iterations (by hand) of the fixed-point iteration 

ι(*+ΐ) = 1(6 - φ(χΜ - ΚχΜ + 2xW) 

for this system, using x^ = (1,1)T. 

(b) Do two iterations (by hand) of the fixed-point iteration 

for this system, using x^ = (1,1)T. 

(c) Which one do you think is going to converge faster? 

4. Write a computer code to implement the fixed-point iterations outlined in Problem 
3. Compare the total "cost to convergence" with your results for Newton's method 
and the chord iterations. 

< · · · > 

7.9 APPLICATION: NUMERICAL SOLUTION OF NONLINEAR BOUNDARY 
VALUE PROBLEMS 

When we studied the approximate solution of boundary value problems in §6.10, we were 
unable to apply the difference techniques of §6.10.1 to a nonlinear differential equation 
because we did not know how to solve the resulting system of (nonlinear) equations. Now 
we do, based on the material in §7.8. 

Consider the problem 

-u" = {u')2, (7.36) 

u(0) = 0,u(l) = l, (7.37) 
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which we first looked at in Chapter 6. The exact solution is u = log((e — l)x + 1). 
In Chapter 6 we had to use shooting methods to solve this problem, because the finite 
difference techniques would lead to a system of nonlinear equations, thus: 

1 2 

2ui — u<i — -u2 — 0, 

-Uj-i +2UJ -Uj+i - -(uj+i -Uj-i)2 = 0, 2<j<N-2, 

-uN-2 + 2UTV-I - ! - - ( ! - uN-2)2 0. 

(7.38) 

(7.39) 

(7.40) 

The student should verify (Problem 1) that this is the correct system, assuming a grid using 
h = l/N. 

We can solve this nonlinear system using any one of the methods discussed in §7.8. 
Rather than go through all of those in detail, we elect to illustrate the choice of a fixed-point 
iteration, and leave the others to the exercises. (See Problems 2 - 4.) 

Recall that a common fixed-point iteration to solve the nonlinear equation f(u) = 0 
would be 

u(n+l) = u(n) _ Af(U(n)), 

where, ideally, the matrix A would be chosen to approximate the gradient of / . We can 
write our nonlinear system in the form 

Ku + φ{η) = b, 

where K is the tridiagonal matrix with components given by 

£·■■ — 

φ is the nonlinear function given by 

Φ(η) = -

2, i = j \ 
-1 , | i - j | = l; 
0, otherwise; 

\{UZ-Ux)2 

\(uN -uN-2)2 

and b is the constant vector 
&=(0 ,0 , . . . , 0 ,1 ) Τ · 

Since f(u) = Ku + φ{υ) — b, it is not hard to show (Problem 5) that the gradient is given 
by f'(u) = Κ + φ'{υ), where 

*'(«) = -

/ 

V 

J"2 
i ( u i - U 3 ) 0 i ( u 3 - U l ) 

\ 

| ( " N - 2 - « N ) 
| ( U J V - 1) 

(up/ — UN-2) 
0 

(7.41) 

/ 
is the gradient of φ. Thus, a very efficient choice of A would be A = K; not only is K an 
important part of the gradient of / , but it is also independent of the iteration. Thus, we can 

http://www.it-ebooks.info/


4 7 6 NUMERICAL METHODS FOR THE SOLUTION OF SYSTEMS OF EQUATIONS 

factor it once and then need only do the forward and backward solution steps each iteration. 
Table 7.4 shows the results that we get when we do this computation, using a sequence of 
meshes h = \, | , . . . , -^Α', for each mesh we printed out the number of iterations needed 
for convergence, and the error between the computed solution and the exact solution, as 
measured in the vector infinity norm. For the first case (h = j), we took as our initial guess 
the straight line connecting the boundary values. For subsequent cases, we took as our 
initial guess a vector based on the final solution from the previous case; thus, by starting 
off very close to the solution, we took fewer iterations to find it. For comparison's sake, if 
we had started out to do the h = 1/1024 case with the straight-line initial guess, it would 
have taken 15 iterations to converge. 

Table 7.4 Number of iterations and maximum error for approximate solutions to the 
nonlinear BVP (7.36-7.37). 

n 
4 
8 

16 
32 
64 

128 
256 
512 

1024 

Iterations 
13 
12 
12 
10 
9 
8 
7 
6 
5 

Error 
0.154547E-02 
0.383951E-03 
0.958279E-04 
0.239854E-04 
0.600085E-05 
0.149813E-05 
0.374157E-06 
0.947443E-07 
0.242657E-07 

Exercises: 
1. Set up the nonlinear system for the example (7.36-7.37), and verify that the result 

given in (7.38)-(7.40) is correct. 

2. Apply Newton's method and the chord method to the approximate solution of the 
nonlinear BVP (7.36-7.37). Compare the number of iterations to converge and the 
overall cost of convergence. Use the sequence of grids h~l = 4 , 8 , . . . , 1024. 

3. Consider the nonlinear BVP 

-u" +e~u 1, 

u ( 0 ) = u ( l ) = 1. 

Use finite difference techniques to reduce this (approximately) to a system of nonlin-
ear algebraic equations, and solve this system using several of the methods discussed 
in this chapter. Test the program on the sequence of grids / i - 1 = 4 , 8 , . . . , 1024 
(and further, if practical on your system). Compare the cost of convergence for each 
method in terms of the number of iterations and in terms of the number of operations. 

4. Now consider the nonlinear BVP 

u(0) = 0, 
u + V 

u(l) = l. 
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Repeat the kind of study required in Problem 3. 

5. Verify that (7.41) gives the correct gradient for (7.38M7.40). 

< · · · > 

7.10 LITERATURE AND SOFTWARE DISCUSSION 

The subject of numerical linear algebra has seen, in the last 25 years, an explosion of 
references and monographs. The standard references are the books by Stewart [9], Golub 
and van Loan [4], Watkins [11], Datta [1], and the more recent works by Trefethen and Bau 
[10] and Demmel [2]. Another classic, although dated, work is that of Householder [5]. 
For nonlinear systems the classic reference is still Ortega and Rheinboldt [7]; recent books 
by Kelley [6] and Saad [8] offer some more modern insight. The standard references on 
rounding-error issues are those of Forsythe and Moler [3] and, of course, Wilkinson [12]. 

In terms of software, the most important development has undoubtedly been the widespread 
use of MATLAB, which has made it very easy for beginning students to use very sophisti-
cated computational linear algebra techniques. 
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CHAPTER 8 

APPROXIMATE SOLUTION OF THE 
ALGEBRAIC EIGENVALUE PROBLEM 

In this chapter we will discuss, in some detail, some iterative methods for finding single 
eigenvalue-eigenvector pairs (eigenpairs is a common term) of a given real matrix A; we 
will also give an overview of more powerful and general methods that are commonly used 
to find all the eigenpairs of a given real A. As in Chapter 7, our discussion here will depend 
a fair amount on MATLAB, although we will look at some algorithms in detail. 

8.1 EIGENVALUE REVIEW 

The algebraic eigenvalue problem is as follows: Given a matrix A € R n x n , find a nonzero 
vector x 6 Rn and the scalar λ such that 

Ax = Xx. 

Note that this says that the vector Ax is parallel to x, with λ being an amplification factor, 
or gain. Note also that the above implies that 

{A - XI)x = 0, 

showing (by Theorem 7.1) that A - XI is a singular matrix. Hence, det(A - XI) = 0; 
it is easy to show that this determinant is a polynomial (of degree n) in λ, known as the 
characteristic polynomial of A, p(X), so that the eigenvalues are the roots of a polynomial. 
Although this is not a good way to compute the eigenvalues, it does give us some insight 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 479 
Copyright © 2013 John Wiley & Sons, Inc. 
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into their properties. Thus, we know that an π x n matrix has n eigenvalues, that the 
eigenvalues can be repeated, and that a real matrix can have complex eigenvalues, but these 
must occur in conjugate pairs. We summarize these and a number of other basic eigenvalue 
properties in the following theorem, presented without proof. 

Theorem 8.1 (Basic Eigenvalue Properties) Let A e R n x n be given. Then we have the 
following: 

1. There are exactly n eigenvalues, counting multiplicities; complex eigenvalues will 
occur in conjugate pairs. 

2. Eigenvectors corresponding to distinct eigenvalues are independent. 

3. If an nxn matrix A has n independent eigenvectors, then there exists a nonsingular 
matrix P such that P~1AP = D is diagonal and A is called diagonalizable. 
Moreover, the columns of P are the eigenvectors of A and the elements da = Aj are 
the eigenvalues of A. 

4. If A is symmetric (A = AT), then the eigenvalues are real and we can choose the 
eigenvectors to be real and orthogonal. 

5. If A is symmetric, then there is an orthogonal matrix1 Q such that QTAQ — D is 
diagonal, where the elements da — A, are the eigenvalues of A. 

6. If A is triangular, then the eigenvalues are the diagonal elements, A* = an. 

EXAMPLE 8.1 

Let 

A = 
4 1 0 
1 4 1 
0 1 4 

The characteristic polynomial for this matrix is 

ρ(λ) = λ3 - 12A2 + 46λ - 56, 

and the eigenvalues are 

Ai = 5.4142..., A2 = 4.000, A3 = 2.5858.... 

Since the matrix is symmetric, we can find a set of orthonormal eigenvectors: 

Χχ = 

Since these vectors are orthonormal, when we arrange them as the columns of a 
matrix, we get an orthogonal matrix: 

0.5000 " 
0.7071 
0.5000 

,X2 = 

' -0.7071 
0.0000 
0.7071 

,Z3 = 

-0.5000 
0.7071 

-0.5000 

Q= [iila^ta] = 
0.5000 -0.7071 -0.5000 
0.7071 0.0000 0.7071 
0.5000 0.7071 -0.5000 

1 Recall that an orthogonal matrix is one such that QT = Q ' . 
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Moreover, we havvveee   QQQ 

(QTA)Q 

i ~lAQ = QTAQ = D, diagonal: 

2.7071 3.8284 2.7071 " 
-2.8284 0.0000 2.8284 
-1.2929 1.8284 -1.2929 

X 

" 0.5000 
0.7071 
0.5000 

-0.7071 
0.0000 
0.7071 

-0.5000 
0.7071 

-0.5000 

5.4142 0.0000 0.0000 
0.0000 4.0000 0.0000 
0.0000 0.0000 2.5858 

EXAMPLE 8.2 

This time, let 
5 4 3 

- 1 0 - 3 
1 - 2 1 

The characteristic polynomial is now 

ρ(λ) = λ3 - 6λ2 + 32, 

and the eigenvalues are 
λι = 4 , λ 2 = 4 , λ 3 = - 2 . 

Since λχ = λ2 we are not guaranteed that the corresponding eigenvectors are 
independent, and in this case they are not. A n n x n matrix with k < n independent 
eigenvectors is called defective. Note that having repeated eigenvalues is a necessary 
condition for a matrix being defective, but it is not sufficient; there exist many 
nondefective matrices with repeated eigenvalues, the most obvious example being 
the identity matrix. In Problem 4 we explore a little bit more about defective 
matrices. 

A certain amount of new terminology and notation will be useful. The collection of all 
eigenvalues of a matrix is typically called the spectrum of the matrix, which we denote by 
σ(Α): 

σ'Α) = {λ G C, Ax = λχ,χφΌ). 

The vector space spanned by all the eigenvectors corresponding to a single eigenvalue λ is 
called the eigenspace and is denoted by E\(A): 

Ex(A) = {xeCn,Ax = \x}. 

Note that the eigenspaces, in order to be vector spaces, must include the zero vector, which 
is not an eigenvector. If there exists a nonsingular matrix P such that A = PBP-1, then A 
and B are said to be similar, which we will denote A ~ B. Similar matrices have the same 
eigenvalues and related eigenvectors (Problem 2). Finally, we note that a commonplace 
term used to refer to the combination of an eigenvalue λ and a corresponding eigenvector 
is eigenpair. 

An important tool in eigenvalue approximation is the ability to localize the eigenvalues, 
and the most important tool in eigenvalue localization is Gerschgorin's2 Theorem. 

2Semyon Aranovich Gerschgorin (1901-1933) was born in the Belarus region of Tsarist Russia. He studied 

mechanics at the Petrograd Technological Institute. He became a professor at the Institute of Mechanical 
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Theorem 8.2 (Gerschgorin's Theorem) Let A 6 R n x n be given, and define the quanti-
ties 

n 

Ti= Σ \Oij\, 
3 = 1 

Di = {zeC\ Iz-Oii l^T-i} . 

Then every eigenvalue of A lies in the union of the disks Di, that is, 

Afc e U Di 

for all k = 1,2,..., n. Moreover, if any collection ofp disks is disjoint from the other 
n — p disks, then we know that exactly p eigenvalues are contained in the union of the set 
ofp disks, and exactly n — p eigenvalues are contained in the set ofn — p disks. 

To illustrate the theorem, consider the following examples. 

■ EXAMPLE 8.3 

If we have 

A = 
2 1 0 
1 2 1 
0 1 2 

then the disks are defined by the centers a* 
concentric, and the radii are 

2, 1 < i < 3, so the disks are 

n 1, ra = 2, r3 = l. 

Figure 8.1 shows the circles in the complex plane along with the exact eigenvalues 
(shown as small circles) λι = 3.1414, λ2 = 2.000, and λ3 = 0.5859. Since the 
matrix is symmetric, we expect all the eigenvalues to be real, thus they lie on the 
rr-axis. 

EXAMPLE 8.4 

On the other hand, if 

2 
2 
0 
2 
2 

- 1 
2 

- 2 
- 2 
- 1 

- 2 
1 

- 1 
- 2 
- 2 

1 
0 
2 
0 
0 

2 
0 

- 1 
1 
2 

Engineering in Leningrad in 1930, then at the Leningrad Mechanical Engineering Institute, as well as doing some 
teaching at Leningrad State University. His result bounding the eigenvalues of a matrix, "Über die Abgrenzung 
der Eigenwerte einer Matrix," appeared in 1931. Like many results in mathematics, it was first discovered by 
someone else: The French mathematician Lucien Levy obtained an equivalent result (but only for real matrices) 
in 1881. 
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then we can no longer assume that the eigenvalues are real. The disks are defined by 
the centers 

a n = 2, <Z22 = 2, a33 = -1) a44 = 0, a55 = 2, 

and the radii 
r\ = 6, r2 = 3, r3 = 5, r4 = 7, r5 = 5. 

Figure 8.1 Illustration of 
Gerschgorin's Theorem (Example 
8.3). 

Figure 8.2 Illustration of 
Gerschgorin's Theorem (Example 
8.4). 

This situation is pictured in Figure 8.2. Note that all the eigenvalues are actually 
clustered within the smallest disk—they are all within all the disks. 

Exercises: 

1. For each matrix below, find the characteristic polynomial and the eigenvalues by a 
hand calculation. For some of the exercises, the correct eigenvalues are given, to four 
decimal places, so you can check your work. Feel free to use a root-finding method 
from Chapter 3 to do the computations. 

(a) 
4 1 0 
1 4 1 
0 1 4 

for which σ(Α) = {5.4142,4.0000,2.5858}; 

(b) 

A = 
1 2 0 
0 4 5 
0 5 7 

for which σ(Α) = {1.0000,0.2798,10.7202}; 

(c) 
6 - 2 0 
2 6 - 2 
0 2 4 
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for which σ{Α) = {5.5698 ± 2.6143Î, 4.8603}; 

(d) 

A = 
4 2 
1 4 
0 1 

for which σ{Α) = {2,4,6}; 

(e) 

(0 

A = 

- 1 
6 
2 

0 2 
2 7 
0 1 

3 
0 
0 

tivvveee, 

- 1 
- 2 
- 4 

2 
2 

- 2 

- 1 
2 
7 

bbbuuuttt   ttthhhaaattt   

- 1 
0 

- 2 

2 
2 
5 

2. Prove that similar matrices have identical eigenvalues and related eigenvectors. 

3. Apply Gerschgorin's Theorem to the matrices in Problem 1 and determine the inter-
vals or disks in which the eigenvalues must lie. 

4. Show that the matrix 

has repeated eigenvalues and is defecti , the matrix 

A = 

which also has repeated eigenvalues, is not defective. 

5. Let A and B be similar matrices of size n x n, with 

where λ € R, a 6 

B 

\and.A22 6 

λ ατ 

0 A22 

p n - l x n - l 

(a) Prove that λ e σ(Α). Hint: What is the product Bei, where ei is the first 
standard basis vector? 

(b) Prove that each eigenvalue of A22 is also an eigenvalue of A. 

6. Generalize the above; let A and B be similar matrices of size n x n, with 

B = 
D aT 

0 A22 

where D 6 Wxp is diagonal, a e R n _ p , and A22 € Μ " - Ρ Χ " - Ρ . Prove that each 
diagonal element of D is an eigenvalue of A: du e σ(Α), 1 < i < p, and that each 
eigenvalue of A22 is also an eigenvalue of A. 
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7. Let A be given by 

A = \ 2 A ■ 

a A22 

Prove that 2 e σ(Α). 

8. Let Ai = BC and Α-χ = CB for given B, C. Show that any nonzero eigenvalue of 
A\ is also an eigenvalue of A2, and vice-versa. 

< · · · > 

8.2 REDUCTION TO HESSENBERG FORM 

Since the computation of eigenvalues is equivalent to finding the roots of a polynomial, it 
follows that for n > 5 there will be no general algorithm that works in a finite number of 
steps.3 Accordingly, we expect an eigenvalue solver to be an inherently iterative process, 
that is, one that recursively computes better and better approximations. For this reason, it 
is usually more efficient to pre-process the matrix by making as much of a reduction as 
possible in a finite number of steps. This leads us to the notion of the Hessenberg form of 
a matrix. 

Definition 8.1 (Hessenberg Form) A matrix A e R n x n is in Hessenberg form ifaij = 0 
for all i, j such that i — j > 1. 

Thus, the matrix 
" 1 2 3 4 " 

. 5 6 7 8 
0 9 8 7 
0 0 6 5 

is in Hessenberg form. Note that one way to characterize Hessenberg form is that it is 
"almost" triangular. This is important, since the eigenvalues of a triangular matrix are the 
diagonal elements. Note, also, that a symmetric Hessenberg matrix is tridiagonal. 

The important result, then, is the following. 

Theorem 8.3 Let A e Rnxn be given. Then there exists AH e E.nxn, Hessenberg, which 
can be computed from A in a finite number of steps and that has the same eigenvalues as 
A. 

Proof: The proof is constructive, but somewhat involved, and depends heavily on a 
preliminary result. 
Claim: For any vector x € ffin, there exists an orthogonal matrix Q such that Qx= ||x||2ei, 
where ei is the first standard basis vector. 

We will prove this claim after the main proof of the theorem. What we will do to prove 
the theorem is use the claim to construct a matrix P such that B = PAP-1 is in Hessenberg 
form. This means that A and B have the same eigenvalues (by virtue of similarity) and we 
will be done. 

3The reason is because there can be no algorithm for finding the roots of a polynomial of degree n > 5 in a finite 

number of steps. This follows from the work of Niels Henrik Abel( 1802-1829) and Evariste Galois (1811-1832). 
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We start by writing A in a partitioned form: 

a n bT 

122 

where a e R n _ 1 , 6 e R"~\and/ l22 6 R " _ l x n _ 1 . Now, let Qi be an orthogonal matrix 
such that Q\a — ||a||2ei and use this to construct the matrix 

Pi = 

1 0 

Q i 

(Note that Qi is in R ( " - I ) X ( ™ - I ) . ) Then Pj is also orthogonal (thus, P^1 = PXT) and 

Ä! = PiAP? 

an 

α bei 

6TQi 

Q i ^ 2 2 Q i 

Note that the first column of A\ satisfies the criterion for being in Hessenberg form. 
We can now continue the process in what is probably an obvious way. We write Ai in 

the partitioned form 

A, 

and define Qo. to be the matrix such that Qia\ = \\a\ l^ei; define Po. as 

a n 

\H\i 

0 

n" " 1 2 

" 2 2 

a i 

tf ' 
bl 

A' 
Λ 2 2 

' 1 0 
0 1 

0 0 

... o · · · ' 

. . . o ■·■ 

Q2 

so that A3 — Ρ2ΑιΡ2Γ = PiP\AP{Pj is in Hessenberg form. The process stops after 
n — 2 such steps. 

It remains only to prove the claim, which we state as a separate lemma. · 

Lemma 8.1 (Claim) For any vector x G Rn, there exists an orthogonal matrix Q such 
that Qx = ||a;||2ei, where e\ is the first standard basis vector. 

Proof: The proof is constructive, using what are known as Householder transformations.4 

Define Q as 
Q = I — jwur , 

4Alston Householder (1904-1993) was bom in Rockford, Illinois but raised in Alabama. He earned his Ph.D. in 

mathematics from the University of Chicago, in 1937, and spent the first part of his career working in mathematical 
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where we regard wasa vector to be determined, and 7 = 2/||to||2. It is easily verified that 
Q is orthogonal since we have 

QTQ = (I- 1WWT ) ( J - -ywwT ), 
T1 On 119 7 1 

= I — 2'jww + 7 ||w||2ww , 

wwT \\w\\%wwT 
11 119 * ^ M M O ' 

IIHI2 IMI2 I. 

Then 5 

Qx = x — j(wTx)w. 

Since we want Qx to be a constant times e\, we are going to want most of these components 
to vanish, so let's look for w in the form w — x + cei, where c is to be determined later. 
This gives us 

Qx = x - 7(x + cei)Tx(x + cei), 

= x —rCll^lli + cxi){x + cei), 

= (1 - 7(||z||2 + cx\))x - ηο(\\χ\\\ + cx{)ei. 

We want the coefficient of x to vanish, and the coefficient of e\ to be ||x||2· Since 
w = x + cei. we know that 

7 : \\x\\l + 2cxl+c2' 

so we have (after a bit of manipulation) that c = — ||a;||2. This completes the proof. · 
Note: If we choose c = ||χ||2, then we get that Qx — —||x||2ei. (See Problem 1.) This 

is just as good a result for our purposes, and can sometimes be more stable, numerically. 
To minimize subtractive cancellation errors, it is best to use c = ||x||2 when x\ > 0, and 
c — -\\x\\2 whenxi < 0. 

The special form of the Householder matrices allows us to accomplish the reduction 
to Hessenberg form very easily, with an algorithm that is very closely akin to Gaussian 
elimination. If we are not interested in computing the eigenvectors of the original matrix, 
then very little additional storage is needed. On the other hand, if we do want to compute 
the eigenvectors, we will need to save the w vectors that are computed along the way so 
that we can reverse the transformation. 

The operation count for the Hessenberg reduction is | n 3 + 0(n2) for the general case, 
but only | n 3 + C(n2) if A is symmetric. In either case, this is inexpensive enough 
compared to the cost of operating with the full matrix that it is a worthwhile preliminary 
step for eigenvalue computations. For the sake of simplicity, we will consider only the 
symmetric case. 

Assume that we have performed the necessary reductions on the first i — 1 columns of 
A. Then the partially reduced matrix can be partitioned as follows: 

AHM BT 
Pi-iAPi-! = 

B A22 

biology. In 1946, he joined the Division of Mathematics at Oak Ridge National Laboratory, where he stayed until 
his retirement in 1969. It was at Oak Ridge that Householder took up numerical analysis as his area of study, 
in which he made a number of important contributions. What we know as "Householder transformations" were 
first known as "elementary hermitian matrices" and are used in a variety of places in numerical linear algebra. 
Householder's early text [4] remains a classic in the field of numerical linear algebra. 
5Note how easy it is to operate with these matrices. Matrix-vector multiplication is accomplished with a single 

dot product and a subtraction. 
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where AH,U £ R î X t is in Hessenberg (therefore, tridiagonal) form, all columns of B are 
zero except for the last one, and A22 is the remaining lower quadrant of the matrix. Let a 
be the nonzero column in B, and let w be the vector such that 

Q = I — jww 

is the Householder matrix for which Qa = ±||a||2ei. Then 

Pi = 

so that the next stage of the reduction is 

PiPi-\APi-\Pi -

I 0 
0 Q 

AHM 
U 

UT 

QA22Q 

where all columns of U are zero except for the last one, which is ±||α||2βι. Thus, we see 
that the work in each step of the reduction breaks down into three relatively simple steps: 

1. Identify the vector a on which the Householder transformation is to operate. 

2. Compute the vector w that defines the Householder transformation. 

3. Update the lower quadrant of the matrix accordingly. 

The first two steps are straightforward. The third step is equally so, using the equation 

QA22Q = {I - ~fwwT)A22{I - "fWWT) — A22 - j(wpT + pwT) + i2awwT, 

where 
P — A22W, a = wTp = wTA22W. 

The assumed symmetry of A and .A22 is used in simplifying some of these expressions. If 
A is not symmetric, then there will be some changes. 

EXAMPLE 8.5 

Consider the matrix 
6 2 1 1 
2 6 2 1 
1 2 6 2 
1 1 2 6 

Since this is just 4 x 4, we only have to do two steps to accomplish the reduction. In 
the first step, the vector a is defined by 

" 2 
1 
1 

so that 

w = 

4.4495 
1 
1 
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and 7 = 0.0918. Thus, 

Qi =■ I — iww 
-0.8165 
-0.4082 
-0.4082 

-0.4082 -0.4082 
0.9082 -0.0918 

-0.0918 0.9082 

and 

Pi = 

1 0 
0 -0.8165 
0 -0.4082 
0 -0.4082 

0 
-0.4082 

0.9082 
-0.0918 

0 
-0.4082 
-0.0918 
0.9082 

Therefore, 

A2 = PiAPi 

6.0000 -2.4495 -0.0000 -0.0000 
-2.4495 8.6667 -1.5749 -0.7584 
-0.0000 -1.5749 4.2584 0.6667 
-0.0000 -0.7584 0.6667 5.0749 

Now, for the second (and final) step of the reduction, we have that the vector o is 
given by 

" -1.5749 
-0.7584 

so that 

w = 
-3.3229 
-0.7584 

and 7 = 0.1722. Thus, 

Q2 — I — ■ywwT = -0.9010 -0.4339 
-0.4339 0.9010 

and 

P2 = 

1 0 
0 1 
0 0 
0 0 

0 
0 

-0.9010 
-0.4339 

0 
0 

-0.4339 
0.9010 

Therefore, 

AH = P2A2P2 = 

6.0000 
-2.4495 
0.0000 

-0.0000 

-2.4495 
8.6667 
1.7480 

-0.0000 

0.0000 
1.7480 
4.9333 

-0.7348 

-0.0000 
0 

-0.7348 
4.4000 

We leave it as an exercise (Problem 3) to finish the calculation to find P such that 
A = PAHPT. 

Early editions of this book gave a lengthy pseudocode for performing a reduction to 
Hessenberg form; starting with the present edition, we rely entirely upon MATLAB's hess 
command. Many of the examples were done with the author's own code, which normalizes 
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things differently than hess does, so the results are slightly different.6 For example, hess 
applied to Example 8.5 produces 

and 

H 

P = 

4.4000 
-0.7348 

0 
0 

0.8581 
-0.4767 
-0.1907 

0 

-0.7348 
4.9333 
1.7480 

0 

-0.3114 
-0.7785 

0.5449 
0 

0 
1.7480 
8.6667 

-2.4495 

-0.4082 
-0.4082 
-0.8165 

0 

0 
0 

-2.4495 
6.0000 

0 
0 
0 

1.0000 

The reader should check that A = PHPT. 

Exercises: 

1. Show that in the Householder construction, if we use c = — ||x||2, then we get 
Qx = -||α;||2βι, and that this will work just as well to construct the Hessenberg 
matrix. 

2. Compute (by hand) the Hessenberg form of the matrix 

You should get 

AH = 

A = 

" 6.0000 
1.7321 

0 -
0 

6 1 1 1 
1 6 1 1 
1 1 6 1 
1 1 1 6 

1.7321 0 
8.0000 -0.0000 

-0.0000 5.0000 
0 0 

0 " 
0 
0 

5.0000 

3. Complete the computation in Example 8.5 by finding the matrix P such that A = 
PAHPT. 

4. Use the hess command to compute the Hessenberg form for each of H4, H8, and 
HIQ. Verify that the original matrix can be recovered from AH-

< · · · > 

8.3 POWER METHODS 

The simplest methods for approximating eigenvalues are based on the observation that the 
eigenvectors represent the directions along which the matrix operates, and the eigenvalues 

6Note that this implies that the Hessenberg reduction is not unique: For a given matrix, A, we can have two pairs 

of matrices (P, H\) and (Q, H2) such that both H\ = P~lAP and H2 = Q~XAQ are in Hessenberg form. 

http://www.it-ebooks.info/


POWER METHODS 491 

represent the gain along those directions. Thus, the quantity ANx should eventually begin 
to "line up" in the direction of the eigenvector associated with the largest (in absolute value) 
eigenvalue. Although this is not an efficient approach for finding all the eigenvalues and 
eigenvectors of a matrix, it is useful for finding some of them, and much of the theory of 
more general methods is based on the essential ideas of the power methods. 

We start with a formal theorem, from which we develop the first algorithm. 

Theorem 8.4 Let A eM.nxn be given, and assume that 

1. A has n linearly independent eigenvectors, Xk,l < k <n. 

2. The eigenvalues \k satisfy 

| λ ι | > | λ 2 | > | λ 3 | > . . . > | λ η | . 

3. The vector z € Rn is such that 

n 
ζ = Σ £fcXfc 

fe=l 

αηάξι φθ. 

Then 
ANz 

Jim —T7- = cxi (8.1) 

for some c φ 0, and 
(z ANz) 

lim / ' / = A i . (8.2) 

Proof: The key issue is that we can expand the vector z in terms of the eigenvectors, 
since the independence of the eigenvectors means they are a basis for Rn. Thus, we have 

Z = ξΐΖΐ + 6^2 + - · · + ξηΧη = Σ &Xk, 

where ξι φ 0. Then 

fe=l 

so that 

where 

fc=l 

λ 1 fe=2 

1**1 = 
Ai 

< 1 

for k > 2. Thus, as ,/V -> oo, the θ£ vanish and we are left with (8.1). 
The proof of (8.2) is very similar. We can write 

(z,ANz) _ χΝηι+λΝη2 + ... + χΝηη 

(z, A»-iz) Af " S i + ^-'m + ■■■ + λ ^ - ^ η ' 
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where ηk = (z, Xk)- Now factor out the λι terms in both numerator and denominator to 
get 

(z,ANz) ηι+θ"η2 + ... + θΝηη 

(ζ,Α^ζ) ^ + ^ - ^ + .-. + ^ - ν 

As TV —> oo the fraction goes to 1 since each of the Ok terms goes to zero, and we are done. 
• 

We can use the results of this theorem to construct an algorithm to find the dominant 
eigenvalue (i.e., the one that is largest in absolute value) and the corresponding eigenvector. 
We can't use the precise computations from this theorem, since in (8.1) we scaled the matrix 
powers by the exact eigenvalue, which, of course, we do not know. We also do not want 
to explicitly form the powers Ak. However, we can avoid forming Ak by using recursion, 
and it turns out (Problem 3) that the particular form of the scaling is not all that important. 

Consider the following algorithm: 

Algorithm 8.1 Basic Power Method. 
For kfrom 1 until convergence, do 

1. Compute yM = Α ζ ^ - 1 ) ; 

2. μk = Vik\ where ||y(fc)||oo = \ν^\ 

3. SetzW =î/(fc)//ife. 

Concerning this, we can prove the following. 

Theorem 8.5 (Basic Power Method) Let A e Rnxn be given, and assume the following 
three conditions: 

1. A has n linearly independent eigenvectors, x/t, 1 < k < n. 

2. The eigenvalues Xk satisfy 

|λι| > | λ 2 | > | λ 3 | > · - · > | λ η | . 

3. The vector z(0) € Rn is such that 

z(0) Σ^001* 
k=l 

and ξι φ 0. 

Then the basic power method converges in the sense that 

\impk = Xi, |λι - ßk\ = O I ( -r^ 

and there exists c φ 0 such that 

lim ζ^ = cxi, \\cxi - zw\ 
k—>oo 
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Proof: An inductive argument (see Problem 2) can be used to show that z^ = CkAkz^°\ 
where Ck depends on all the scaling factors ßk. We then expand in terms of the eigenvector 
basis, as we did before, to get 

*(fc) = cfeAÎ 6 z i + X > ^ X i I· 
i=2 

where 0, — λ, /λι and \6i\ < 1 for all i > 2. Since each z^ has infinity norm equal to 1, 
it follows that 

lim Ck^i = r M_ M— < oo, 
k—>oo 

so that 

ξ ΐ | | ^ ΐ | | ο ο 

lim z(fe) = -—-—χχ. 
k—>oo χ 1 

Moreover, we clearly have that 

\\z{k) -a f czi | |oo = Ck\kf2^ixi 
i=2 

< cek2, 

which establishes the error estimate for the eigenvector. 
As for the eigenvalue, we have that 

ßk 
z(k)=y(k)=Az(k-i)j 

so that, taking dot products of both sides with z^ we get 

ßk 
{zV^Az^-V) (ΧΙ,ΑΧΪ) 

{zW,zW) ( χ ι , χ ι ) 
λι. 

The error estimate comes by manipulating with the ratio as was done in the proof of 
Theorem 8.4. See Problem 4. · 

The power method requires several hypotheses for the theory to apply, and it is worth 
asking if all of them are necessary. What happens if some of them are violated? 

Recall that if A does not have n linearly independent eigenvectors, then it is said to be 
defective; eigenvalue computations with defective matrices are unavoidably more difficult. 
However, just as all singular matrices are close to a nonsingular matrix, it is the case that all 
defective matrices are arbitrarily close to a nondefective matrix. Thus, applying the power 
method to a defective matrix usually results in, at worst, slow convergence (possibly very 
slow, if the dependent eigenvectors correspond to the two largest eigenvalues, λι and λ2). 

If the two largest (in absolute value) eigenvalues are not separated, i.e., if |Αχ | = |A2|, 
then the iteration will cycle in to a family of vectors in the subspace spanned by x\ and x-i. 

The last hypothesis is actually the least important. Except in very simple situations 
(involving integer components), the rounding error associated with the computations will 
introduce some component in the direction of x\ into the initial guess, and the iteration 
will then begin to converge. Making an initial guess that has absolutely no component in 
the direction of x\ could result in convergence to the wrong eigenpair, however. For this 
reason, random noninteger initial guesses are best. 

Let's look at some examples. 
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EXAMPLE 8.6 

Consider 

3 
4 
6 

0 
6 

- 1 5 

0 
2 

- 5 

which has exact eigenvalues Aj = 3,1,0, i = 1,2,3, and corresponding eigenvectors 

Xl 

Note that the eigenvalues are all distinct; therefore, the eigenvectors are independent. 
We take the initial guess as (from a random number generator) 

1 
0 
2 

, Χ2 = 

0 
2 

- 5 
, £3 = 

0 
1 

- 3 

,(0) 
0.21895918632809 
0.04704461621449 
0.67886471686832 

Then, the first two iterations go as follows: 

y ( l ) = Az(0) = 

, ( 1 ) »( 1 , /μι 

0.65687755898427 
0.76416038571122 
0.59664584630951 

0.85960692449779 
1.00000000000000 

-0.78078615100441 

, μι = 0.76416038571122, 

y 
(2) = Azii) = 

,(2) = υ{2)/μ 2 — 

2.57882077349338 
1.00000000000000 
2.65764154698677 

0.97034183425423 
0.37627346740338 
1.00000000000000 

μ2 = 2.65764154698677, 

If we continue the computation (letting a computer do the work), then we get con-
vergence (using the difference in consecutive eigenvector approximations as our 
convergence criterion, with a tolerance of 10~6) to λι = 3 in 14 iterations. The 
approximate eigenvector is found to be 

Xl 

0.50000045604132 
0.00000036483306 
1.00000000000000 

It should be noted that we did not bother to put A in Hessenberg form for this 
example. 
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EXAMPLE 8.7 

We take as our second example the matrix 

A--
4 1 0 
1 4 1 
0 1 4 

whose eigenvalues are λί = 5.414214,4.0,2.585786, which are much closer together 
than was the case in Example 8.6, thus we expect slower convergence. With the initial 
guess 

" 0.67929640583661 
' ( 0 ) = 0.93469289594083 

0.38350207748986 

(again, randomly generated), the first two iterations are 

3.65187851928727 
(!) = ÂA°) = 4.80157006708979 

2.46870120590027 

0.76055924796713 
r(i) = , ,(i)/„, = 1.00000000000000 

0.51414457592130 

y 

vw/n 

, μ1 = 4.80157006708979, 

(,(2) AzM 

s(2) = 2/(2 ) /μ2 = 

4.04223699186850 
5.27470382388842 
3.05657830368519 

0.76634387954860 
1.00000000000000 
0.57947865998511 

, μ2 = 5.27470382388842, 

If we continue the calculation we converge—using the same criterion as before—to 
λι = 5.414214 in 37 iterations. 

EXAMPLE 8.8 

We now want to consider two defective matrices, 

A = 

which has eigenvalues λί = 2,1,1; and 

B = 

which has eigenvalues λ* = 4,4, —2. When we apply the power method to A, we 
find convergence occurs in about 23 iterations, using the initial guess 

- 2 
- 3 
- 1 

nd 

5 
- 1 

1 

4 
5 
1 

4 
0 

- 2 

- 1 
- 1 

1 

3 
- 3 

1 

,(0) 
0.51941637206795 
0.83096534611237 
0.03457211052746 
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However, if we apply the power method to B, then we find that after 80 iterations 
the approximate eigenvalue is μ& = 4.04888750871386, which is not a good ap-
proximation to λι = 4. The reason for the difference in performance is that for 
this matrix, it is the eigenvalue we are trying to find that is repeated, whereas for 
A the dominant eigenvalue λι = 2 was not repeated. Note also that the iteration 
for the largest eigenvalue of B was converging, just very slowly. (The error in the 
eigenvector was going down by about 0.00001 each iteration.) 

EXAMPLE 8.9 

Finally, consider trying to find the largest eigenvalue of 

A = 

which has eigenvalues λ = 3,1,0, using the initial guess 

0 

3 
- 4 
16 

0 
6 

-15 

0 
2 

- 5 

z<°) = -0.375 
1 

The exact eigenvectors are 

Γ 1 1 
0 
2 

,X2 = 

0 ' 
- 2 

5 
,Xl = 

0 " 
- 1 

3 
Xl = 

and z^ has been chosen to have no component in the direction of the dominant 
eigenvector, xi = (1,0,2)T. If we use the power method, we converge to a multiple 
of the eigenvector X2 in six iterations. By making a random choice of the initial 
vector, say 

Γ 0.6789 
z<°> = 0.6793 

_ 0.9347 

we minimize the chance of having absolutely no component in the x\ direction. For 
this choice of initial vector, the power method converges to the correct eigenvector 
in 15 iterations. 

There are many variants to the basic power method. We first observe that if we use the 
power method on A~x, then we get an algorithm that converges to the smallest eigenvalue 
of A 

Algorithm 8.2 Inverse Power Method. 
For kfrom 1 until convergence, do 

1. Solve AyW = z^-V; 

2. ßk=y?\™here\\yW\\00 = \y\k)\ 

3. SetzW =yW/ßk-
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The theorem is now the following. 

Theorem 8.6 (Inverse Power Method) Let A 6 R n x n be given, nonsingular, and assume 
the following three conditions: 

1. A has n linearly independent eigenvectors, Xk, 1 < k < n. 

2. The eigenvalues \k satisfy 

| λ ι | > | λ 2 | > | λ 3 | > . . . > | λ η _ ι | > | λ η | . 

3. The vector z^ e W1 is such that 
Π 

,(o) Σ&^ 
fc=l 

and ξη φ 0. 

Then the inverse power method converges in the sense that 

Ä»-A.-. Κ'-«Ι = ο((^)') 
and there exists c^O such that 

lim ζ^ = cxn, \\cxn - z^\ 
fe—>oo 

o xm 
Proof: This is equivalent to applying Theorem 8.5 to Α~λ, so everything follows, with 
the largest (in absolute value) eigenvalue of A-1 being λ"1. · 

Of course, we do not implement the inverse power method by constructing A~ * ; rather, 
we compute the LU factorization of A and use it to solve the linear system defined in Step 
1 of the algorithm. 

A single example at this point ought to illustrate. 

■ EXAMPLE 8.10 

Consider 

A = 
4 1 0 
1 4 1 
0 1 4 

one of our previous example matrices. We factor this to obtain 

A = LU = 
1 

-0.25 
0 

0 0 
1 0 

-0.26666... 1 

4 1 0 
0 3.75 1 
0 0 3.7333.. 

and then use this factorization to solve the systems in Step 1 of Algorithm 8.2. Using 
the initial guess 

" 0.05346163504453 
0.52970019333516 
0.67114938407724 

z<°> = 
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the first two iterations now look like this: 

( i ) = A-izQ) = 

-0.01153083684992 
0.09958498244420 
0.14289110040826 

Aii = 0.14289110040826, 

(i) =„(!)/„, = = y^lß 
-0.08069667611890 
0.69692921504333 
1.00000000000000 

y(2) = A-lz(l) = 

-0.05353869646351 
0.13345810973516 
0.21663547256621 

μ2 = 0.21663547256621, 

,(2) = 2/ (2 ) /μ2 = 
-0.24713725702125 
0.61604920078067 
1.00000000000000 

If we continue, we get convergence to within 10 6 of £3 in 39 iterations. The 
approximate eigenvalue is X3 = 2.58578643767867, correct to 11 places. 

It is worth repeating that the inverse power method is not implemented by actually 
multiplying by the inverse matrix. Rather, the system Ay(k+l^ = z^ is solved at each 
step, using, typically, an LU decomposition. 

It is the inverse power method that opens up the possibility of efficient computation of 
more eigenvalues, because by introducing shifts we can converge to almost any eigenvalue 
we want. Moreover, we can increase the rate at which the method converges. 

Algorithm 8.3 Shifted Inverse Power Method. 
Let λ» be given, with λ* not an eigenvalue of A; define A* = A — λ» J. For kfrom 1 

until convergence, do 

1. Solve A.yW = ζ^~^; 

2. ßk = y\k\ where ||?/fc)| 

3. SetzW =yW/ßk. 

= ι Λ 

The theorem now becomes the following. 

Theorem 8.7 (Shifted Inverse Power Method) Let A 6 R n x n and a scalar A* be given, 
with X, not an eigenvalue of A. Define A* = A — X*I, and assume the following three 
conditions: 

1. A has n linearly independent eigenvectors, xk, 1 < fc < n. 

2. There exists an index J such that Xj is the eigenvalue of A that is strictly closest to 
λ, : 

| λ . / - λ , | < | λ * - λ , | 

for k^J. 
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3. The vector z(0) 6 W1 is such that 

,(0) Σ ̂ kXk 
fc=l 

αηά&φΰ. 

Then the shifted inverse power method converges in the sense that 

lim μk = {Xj - λ . ) ~ \ \{Xj - X*)-1 - μ*| = O 
fc—>oo 

w/jere K is the index of the eigenvalue that is second closest to A*,- and, there exists c^O 
such that 

fclim ZW = cxj, \\cxj - *<*)m = O ( ( ^ χ ) Ί · 

Proof: This is Problem 5 · 
The point of using shifts is that it allows us to control which eigenvector we converge 

to, as well as how fast we converge. Recall that the inverse power iteration converges to 
the eigenvector corresponding to the smallest eigenvalue. Using a shift λ, means that, for 
some index J, Xj — λ» is the smallest eigenvalue; thus, we converge to the eigenvector 
corresponding to the eigenvalue closest to the shift. Furthermore, the convergence rate is 
affected by how close to an actual eigenvalue the shift is—taking λ* « Xj will generally 
result in much faster convergence than otherwise. 

■ EXAMPLE8.il 

To illustrate the utility of shifts, we again look at 

A = 
4 1 0 
1 4 1 
0 1 4 

We now apply the shifted inverse power method, using the same initial guess 
as before, this time with a shift of λ» = 2.5, chosen because we know (from 
Gerschgorin's Theorem) that the smallest eigenvalue is at least as large as 2. From 
Example 8.10 we have that the approximate eigenvalue, after two iterations, was 
-jj = 4.61604920078069, which is not a very good approximation to the correct 
value of 2.58578643762691. This time the first two iterations (using the same initial 
vector as for the unshifted iteration) are 

„W (A - 2.57) - ^ W = 
1.45298541901634 

-1.64486177807920 
1.54400744143763 

μι = -1.64486177807920, 

,(i) _ „(i) = υ^/μι = 
-0.88334803469813 

1.00000000000000 
-0.93868522085829 

/2> = {A - 2.5J)-V1> = 
-9.44765403794921 
13.28813302222568 

-9.48454549538931 
μ2 = 13.28813302222568, 
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ζΜ=υΜ/μ2 = 

The approximate eigenvalue is now 

-0.71098430623377 
1.00000000000000 

-0.71376057716502 

λ « A, + — = 2.57525511660121, 

which is substantially better than we achieved in two iterations with the unshifted 
method. 
The performance of the power methods can be improved somewhat when A is symmetric 

by the use of the Rayleigh quotient as the approximate eigenvalue. 

Definition 8.2 (Rayleigh Quotient) Given A e K n x n and x eRn,x ^0, the Rayleigh 
quotient of A and x is defined by 

R{AtX)=<EiM. 
( χ , χ ) 

Note that if x is an eigenvector of A, then the Rayleigh quotient is the corresponding 
eigenvalue. If we define the approximate eigenvalue in the power methods via the Rayleigh 
quotient, in other words, 

μπ = Ä(Ay(fe )), 

then the iteration converges to the correct eigenvalue/ai/er than before if A is symmetric. 
The reason for this is contained in the following theorem. 

Theorem 8.8 Let A be an eigenvalue for the symmetric matrix A, with x the corresponding 
eigenvector. If z ~ x, μ = R{A, z), and \\x\\2 = \\z\\i = 1 > t n e n 

\λ-μ\<0Α\\χ-ζ\\1 

Proof: We start by defining the error e = x — z, and we note that 

x- e = z=> \\x- e\\l — 1 =>■ 1 - 2(x, e) + \\e\\l = 1, 

so that 2(x, e) = ||e||2· Then we have 

μ = R(A, z) = {x-e, A(x-e)) = (x, Ax)-(x, Ae)-(e, Ax)+(e, Ae) = A-2(e, Ax)+(e, Ae), 

where we used the symmetry of A to write (x, Ae) = (ATx, e) = (Ax, e). Thus, we have 

μ = A - 2A(e, x) + (e, Ae) = A - A(e, e) + (e, Ae) = A + (e, (A - XI)e), 

so that 

\μ-λ\ = |(e, (A - XI)e)\ < \\A - A/||2| |e| | | = CA\\e\\22. 

Thus, if we write a power iteration for a symmetric matrix that uses the Rayleigh quotient 
to compute the approximate eigenvalue (and which scales the iteration so that | |z^ | |2 = 1). 
then the eigenvalue error will be the square of the eigenvector error. 
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EXAMPLE 8.12 

In Example 8.7 we considered the matrix 

A = 
4 1 0 
1 4 1 
0 1 4 

which has eigenvalues \ = 5.414214,4.0,2.585786. With the initial guess 

z<°> = 
0.67929640583661 
0.93469289594083 
0.38350207748986 

we got that the second approximate eigenvalue was μι — 5.27470382388842. If we 
use the same initial guess, but this time compute the approximate eigenvalue using 
the Rayleigh quotient while scaling the eigenvectors so that ||z(fc) H2 = 1, we get 

y W = AzW = 
3.65187851928727 
4.80157006708979 
2.46870120590027 

so that the approximate eigenvalue is 

(ζ^,Αζ^) _ (*<°\tf<°>) 
n (ζΜ, ίΡ)) (z<°>,z<°>) 

The scaled approximate eigenvector is 

5.34045535705311. 

, ( i ) y (1) 

t l y ( 1 ) l l 2 

so for the second step we get 

AzM = y 
(2) 

0.56026634732951 
0.73665049610143 
0.37874485692028 

2.97771588541948 
3.88561318865551 
2.25162992378256 

T2 = 7 ' *> = (^(1),2/(2)) = 5.38344613891082, 

and 

(zW.zW) 

(2) 
,(2) y" 

U2)h 

0.55261820977325 
0.72110996710610 
0.41786783744055 

Note that the approximate eigenvalue, r2, is substantially more accurate than the 
second approximate eigenvalue obtained by the ordinary power iteration. 

The Rayleigh quotient can be combined with the shifted inverse power iteration to pro-
duce a useful, if somewhat erratic iteration, called the Rayleigh quotient iteration. The 
basic idea is to update the shift at each step using the most recently computed approximate 
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eigenvalue. 

Algorithm 8.4 Rayleigh Quotient Iteration. 
Given A £ Rnxn and an initial guess z^ G Rn, compute as follows: For k = 0 to 

convergence, do 

1. Define ßk = R(A,zW); 

2. Solve (A - ßkI)y^k+l) = *<*>; 

3. Set *(fc+1) :y(*+l)/||y(fc+l)||2. 

Because we are updating the shift at each iteration, we have to do a new factorization of 
A, and this can be expensive. However, if A is symmetric, the Hessenberg reduction means 
we can assume that A is tridiagonal, and thus this is not a serious additional cost. Moreover, 
the rapid convergence that occurs because the shift keeps getting closer and closer to the 
correct eigenvalue makes the iteration very fast. The problem with the Rayleigh quotient 
iteration is that its performance is much akin to Newton's method; sometimes we have to 
start the iteration very close to the correct eigenvalue in order to converge to it. Note also 
that Step 2 involves solving a linear system for a matrix that is getting closer and closer to 
singular. (Why is this?) This requires that some care be taken in doing the factorization; 
typically, the shift is no longer updated once it is a sufficiently accurate approximation to 
the eigenvalue. 

■ EXAMPLE 8.13 

Let's continue with the simple 3 x 3 example matrix that we have so far been using, 

A = 
4 1 0 
1 4 1 
0 1 4 

which we note is symmetric. Using the same initial guess as in Examples 8.10 and 
8.11, the first two iterations of Rayleigh quotient iteration are 

μο = R(A, zW) = 5.04601728854858, y(1) = (A- μ0Ι)~ι ζ(0) = 
1.29838130282511 
1.41159092492783 
0.70786740234284 

*(1) = 0(1)/lli/(1)ll2 = 
0.63510013864028 
0.69047635711817 
0.34625166304280 

μι = R(A, z(1)) = 5.35520043415499, y(2) = (A- μι/) _ 1 ζ(1) 

,(2)=y(2)/| | y(2)|| 2 = 

8.18704621259896 
11.73018872040136 
8.40018699112711 

0.49352861955263 
0.70711508106093 
0.50637709645942 
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and the next approximate eigenvalue—the next Rayleigh quotient—is 

μ2 = -R(Az(2)) = 5.41409682286229, 

which is very close to the exact largest eigenvalue X\ = 5.41421356237310, in only 
two iterations. 

Deflation Once we have found a single eigenvalue, how do we keep from "recomputing" 
it when we try to find other eigenvalues? The answer, in general, is a process called deflation, 
in which we create a new matrix from the old matrix by "deleting" (in some sense) the 
eigenvalue and eigenvector that we have already found. 

Let λ and x be an eigenvalue and corresponding eigenvector for A, and let Q be an 
orthogonal matrix such that Qx = e\. (Here we have assumed that ||a;||2 = 1.) Then it is 
not difficult to show (Problem 10) that 

B=QAQT= 
X aT 

0 A2 

where A2 S R ( n _ 1 ) x ( n _ 1 ) . Similarity implies that B and A have the same eigenvalues; 
thus, A2 has all the eigenvalues of A except for λ. 

We can use this to compute eigenvalues in the obvious way. Once we have converged 
to λ and x, we define the vector w such that 

Q = I — jwwT 

satisfies Qx = e\. This we already know how to do, from §8.2. Then compute B and pull 
out the lower submatrix to continue the computation. Although problems can develop due 
to the propagation of errors (since, in practice, neither λ nor x will be exact), this can be 
made an accurate procedure for eigenvalue computation. Note, however, that the deflation 
will usually destroy the Hessenberg form of the matrix, so that process will have to be 
repeated. 

We close this discussion of the power methods by showing the details of a worked-out 
example. 

■ EXAMPLE 8.14 

Consider the matrix 

A = 

which has the spectrum 

σ{Α) = {0.4000,2.8156,7.0186,14.1179,20.6479}. 

We will use the power methods to find all the eigenvalues of this matrix. We will do 
it two ways: First, using the ordinary power method with deflation; Second, using 
Rayleigh quotient iteration with deflation. The point of the exercise is to show that 
the power methods can be used to find all the eigenvalues (and eigenvectors, which 

10 
-2 

3 
2 
0 

- 2 
10 

- 3 
4 
5 

3 
- 3 

6 
3 
3 

2 
4 
3 
6 
6 

0 
5 
3 
6 

13 

http://www.it-ebooks.info/


5 0 4 APPROXIMATE SOLUTION OF THE ALGEBRAIC EIGENVALUE PROBLEM 

10.0000 
-4.1231 

0 
0 
0 

-4.1231 
9.2941 
3.0920 

0 
0 

0 
3.0920 
6.4587 

-5.3189 
0 

0 
0 

-5.3189 
17.9989 
3.1371 

0 
0 
0 

3.1371 
1.2483 

we choose not to do here), and also to provide a basis for understanding that the 
power methods are not the most efficient way to do so. 

The first step is to reduce A to Hessenberg form, using tha algorithm discussed 
earlier, or MATLAB'S hess command. We get 

AH,o = 

We now use the power method to find a single eigenpair. This takes 76 iterations, 
using the random initial guess 

0.7703 
1.0000 

>(0) = 0.8373 
0.2883 
0.0521 

We get the pair 

(λ ι , ζ ι ) = (20.6479, (0.0494,-0.1276,-0.4027,1.0000,0.1617)T), 

and now deflate to get the smaller matrix 

Ay = 

which we have to convert to Hessenberg form: 

8.2460 
1.2308 
4.6223 
0.7475 

1.2308 
5.1488 

-2.0659 
0.5260 

4.6223 
-2.0659 
9.9202 
1.8307 

0.7475 
0.5260 
1.8307 
1.0370 

1//.1 

8.2460 4.8414 
4.8414 8.9781 

0 -3.0113 
0 0 

0 0 
-3.0113 0 
5.9943 1.7071 
1.7071 1.1336 

We do another power iteration, this time lasting 43 iterations, using the random initial 
vector 

0.9731 
0.4339 
0.8364 
1.0000 

z<°> = 

and resulting in the eigenpair 

(Aa,x2) = (14.1179, (0.8245,1.0000, -0.3812, -0.0501)T). 

Note that this vector is in R4, not M5. This is because it is an eigenvector for the 
4 x 4 matrix ΑΗ,Ι , not our original A. Some additional work will have to be done to 
recover the correct eigenvector for the original matrix. 
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In any event, we deflate again to get 

A2 = 

which has the Hessenberg form 

3.2896 -1.6907 0.1736 
1.6907 5.8141 1.6834 
0.1736 1.6834 1.1305 

AH,2 = 
3.2896 -1.6996 0 

-1.6996 5.4231 -2.1243 
0 -2.1243 1.5215 

Using the initial vector 

,(0) 
1.0000 
0.3686 
0.2493 

we use the power method for 34 iterations, getting the eigenpair 

(λ3,χ3) = (7.0186, (-0.4558,1.0000, -0.3864)T). 

Deflation yields the 2 x 2 matrix 

1.9061 -1.1704 
-1.1704 1.3095 

whose eigenvalues are found directly from the quadratic formula. 
Now let's look at the Rayleigh quotient iteration. To make a fair comparison, we 

will use the same initial vector, 

z<°> = 

0.7703 
1.0000 
0.8373 
0.2883 
0.0521 

The Hessenberg form is, of course, also the same. We now converge in only three 
iterations, to the eigenpair 

(λ3,χ3) = (7.0186, (-0.6578, -0.4756, -0.5271, -0.2210, -0.1201)T). 

We can deflate to get the new matrix 

Ai 

3.5922 3.1235 
3.1235 13.5312 
0.0132 -2.3536 
0.0072 1.6121 

0.0132 0.0072 
-2.3536 1.6121 
19.2422 3.8130 
3.8130 1.6158 

which has to be reduced to Hessenberg form: 

itf.l 

3.5922 3.1235 0 0 
3.1235 13.5188 2.8192 0 

0 2.8192 10.0064 -9.6050 
0 0 -9.6050 10.8640 
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Then, with the initial vector 

2<°> = 

" 0.3835 " 
0.5194 
0.8310 
0.0346 

we again take only three iterations to converge to the eigenpair 

(λ2 ,ζ2) = (14.1179, (-0.2687,-0.9056,0.1053,-0.3109)T). 

We again deflate and reconstruct the Hessenberg form, getting 

A2 = 

and 

AH,2 = 

Choose a random initial vec 

5.1137 
4.2466 

-4.2133 

" 5.1137 
5.9821 

0 

tor 

4.2466 
9.7881 

-8.9606 

5.9821 
18.3385 

-0.3427 

-4.2133 
-8.9606 

8.9617 

0 
-0.3427 

0.4113 

,(0) 
0.0535 
0.5297 
0.6711 

and iterate, in this case five times, to get the eigenpair 

(λ4,χ4) = (2.8156, (-0.9323,0.3581,-0.0511)T). 

We then deflate one last time to get 

A3 = 
19.3308 

-4.9934 
-4.9934 
1.7171 

whose eigenvalues we can find from the quadratic formula. 
The cost here is substantially less than for the ordinary power method, largely 

because the Rayleigh quotient iterations converged so much more quickly than the 
ordinary power iterations did. 

The power methods are very useful for finding selected eigenvalues and corresponding 
eigenvectors, but to find all the eigenvalues and eigenvectors of a general matrix, it is more 
efficient to make use of methods that work on all of the eigenvalues at once. In the next 
section, we give a survey of the most commonly used such method, the QR iteration. 

Exercises: 
1. Explain, in your own words, why it is necessary to scale the power iterations. Hint: 

What happens if we don't scale the iteration? 

2. Use an inductive argument to show that in the basic power method (Theorem 8.5) 
we have 

zW=ckAkzW. 
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What is et? 

3. Consider the iteration denned by 

y(fc+l) =ylz(fc)) 

where σ&+ι is some scaling parameter. Assume that the iteration converges in the 
sense that z^ -> z; prove that σ^ must also converge, and that therefore (σ, ζ), 
where σ is the limit of the σ^, must be an eigenpair of A. 

4. Fill in the details of the eigenvalue error estimate in Theorem 8.5. In particular, show 
that there is a constant C such that 

| λ ι - μ * | < σ 
( * ) ' 

5. Prove Theorem 8.7. 

6. Write a program that does the basic power method. Use it to produce a plot of the 
largest eigenvalue of the Tn family of matrices, as a function of n, over the range 
2 < n < 20. Test your results against what MATLAB's e ig command produces. 

7. Write a program that does the inverse power method. Use it to produce a plot of the 
smallest eigenvalue of the Hn family of matrices, as a function of n, over the range 
2 < n < 20. 

8. Write a program that does inverse power iteration on a symmetric matrix. Assume 
that the matrix is tridiagonal, and store only the necessary nonzero elements of the 
matrix. Test it on the Tn and Kn families, and on your results from finding the 
Hessenberg forms for the Hn matrices. Produce a plot of the smallest eigenvalues of 
each of these matrices, as a function of n. 

9. Add shifts to your inverse power iteration program. Test it on the same examples, 
using a selection of shifts. 

10. Let λ and x be an eigenvalue and corresponding eigenvector for A € K"x n , and let 
Q be an orthogonal matrix such that Qx = e\. Assume that ||x||2 = 1. Show that 

B = QAQ1 
λ ατ 

0 A2 

Hint: Consider each of the inner products (e^ße^), using the fact that Qx — e\ and 
that Q is symmetric. 

11. An alternate deflation for symmetric matrices is based on the relationship 

A' = A - ΧχΧχχΊ. 

If A € Knx™ is symmetric, λι e σ(Α) with corresponding eigenvector x\, and if 
ll^i H2 = 1, show that A' has the same eigenvalues as A, except that λχ has been 
replaced by zero. In other words, if 

σ(Α) = { λ ι , λ 2 , . . . , λ η } , 
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then 

σ(Λ') = { 0 , λ 2 ) . . . , λ η } . 

12. Show how to implement the deflation from Problem 11 (known as Hotelling's defla-
tion) without forming the product x\xj. Hint: What is A'z for any vector z? Can 
we write this in terms of the dot product χ\ζ") (According to Wilkinson [10], this 
deflation is prone to excessive rounding error and so is not of practical value.) 

13. What is the operation count for one iteration of the basic power method applied to 
a symmetric matrix? Compute two values, one for the matrix in Hessenberg form, 
one for the full matrix. 

14. What is the cost of the basic power method for a symmetric matrix if it runs for N 
iterations. Again, compute two values depending on whether or not a Hessenberg 
reduction is done. Is it always the case that a reduction to Hessenberg form is 
cost-effective? 

15. Repeat Problems 13 and 14 for the inverse power method. 

16. Consider the family of matrices T defined by 

'a, i-j = l, 

' « " 1 c, i-j = -l, 
0, otherwise, 

Thus, T is tridiagonal, with constant diagonal elements a, b, and c. It is commonplace 
to abbreviate such a matrix definition by saying that 

T = tridiag(a, b, c). 

Write a computer program that uses the power method and inverse power method to 
find the largest and smallest (in absolute value) eigenvalues of such a matrix, for any 
user-specified values of a, b, and c. Test the program on the following examples; 
note that the exact values are given (to four places). 

(a) a = c = 4, i» = 1, n = 6, Ai = -6.2708, A6 = -0.7802; 

(b) a = 6 = c = 6, n = 7, Ai = 17.0866, A6 = 1.4078; 

(c) a = 2, b = 3, c = 4, n = 5, Aj = 7.8990, A6 = 0.1716; 

(d) a = c = 1, 6 = 10, n = 9, Ai = 11.9021, A6 = 8.0979; 

(e) a = c = 1, 6 = 4, n = 8, Ai = 5.8794, A6 = 2.1206. 

17. Modify the program from the Problem 16 to do the inverse power method with shifts. 
Test it on the same examples by finding the eigenvalue closest to μ = 1. 

< · · · > 

http://www.it-ebooks.info/


AN OVERVIEW OF THE QR ITERATION 5 0 9 

8.4 AN OVERVIEW OF THE QR ITERATION 

The power methods are very useful and efficient for finding single eigenvalues and eigen-
vectors; for finding many—or all—of the eigenvalues and vectors of a matrix, they are 
simply too costly. Since it was first published in the early 1960s, the standard algorithm 
for computing all the eigenvalues and eigenvectors of a general matrix has been the QR 
iteration, so-named because it is heavily based on the QR factorization of a matrix. 

It is an unfortunate fact—and no less true for being unfortunate—that motivating and 
explaining the QR iteration for computing eigenvalues is very difficult, especially in com-
parison to the simplicity of the algorithm. To give a complete explanation of why the 
method works or how and why it might have evolved from earlier methods would require 
more background and more time than we want to devote to the subject. We will, however, 
make an attempt to provide some explanation. 

One of the primary drawbacks to the power methods is that they work on a single vector 
at a time; if we want all the eigenpairs of a matrix, then we spend a lot of computation 
time in deflation and re-reducing the new matrices to Hessenberg form. Why not do the 
power method on several vectors at once? Let ZQ be an initial guess matrix, and do the 
computation 

Yk+i = AZk, Zk+i = Yk+iDk+i, (8.3) 

where Dk+i is some properly chosen diagonal scaling matrix. The problem is that this 
won't work—the repeated multplications by A will simply cause all the columns of Yk+i 
to line up in the direction of the dominant eigenvalue, so we will converge to n copies of 
the dominant eigenpair—hardly an improvement on the power methods. 

This algorithm does have something to recommend it, though. If the Zk matrices were 
all orthogonal matrices, then we get something that might work, because the orthogonality 
of the columns of Z^ would prevent the columns of the Yk+i from all lining up in the same 
direction. But how can we guarantee this? 

An important tool in computational linear algebra, used in solving a number of important 
applied problems, is the QR factorization, in which we factor an arbitrary square matrix7 

A into the product of an orthogonal matrix Q and an uppper triangular matrix R. 

Theorem 8.9 Given a matrix A G Mn x", there exists an orthogonal matrix Q and an 
upper triangular matrix R such that A — QR. 

Proof: Let ai be the first column of A, and let Q\ be the orthogonal matrix such that 
Qa\ = ||αι||2βι. Then 

ilailla bT 

0 A 2 2 
A2 = QiA = 

Now, let a2 be the first column of A22, and define Q22 as the orthogonal matrix such that 
Q22CL2 = !|θ2||2βι. Define 

" 1 0 
Q2 = 

0 Q22 

Then 

A3 = Q2A2 = QiQxA 

7In fact, A does not even have to be square, and in many important applications it isn't. We choose to look at 

only the square case for simplicity. 
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and we continue in this vein. After n — 1 steps, we have 

An-l = Qn-lQn-2 ■ ■ ■ Q2Q1A 

and An-i is upper triangular. Thus, 

R = Qn-lQn-2 ■ ■ ■ Q2Q1A ^A = QR 

for 
Tr\T Q = Q\Ql2 Ql-

Note: If A is nonsingular and we insist on the diagonal elements of R being positive, 
then the decomposition is unique. The QR factorization has a number of applications in 
other areas of computational mathematics, most notably in the solution of least squares 
problems and least-squares and ill-posed problems. 

■ EXAMPLE 8.15 

Let 
" 4 1 0 

1 4 1 
^ 0 1 4 

Then a\ = (4,1,0)T and we use what we know about Householder matrices (§8.2) 
to find that 

" -0.9701 -0.2425 0 
Qi = -0.2425 0.9701 0 

[ 0 0 1.0000 

so that 

Ai = QiA = 
' -4.1231 

0 
0 

-1.9403 
3.6380 
1.0000 

-0.2425 
0.9701 
4.0000 

To continue on, we note that a2 = (3.6380,1.0000)T from which we get that 

Q2-
1.0000 0 0 

0 -0.9642 -0.2650 
0 -0.2650 0.9642 

Thus, 

R = A2 = Q2Ai = Q2Q1A 
' -4.1231 

0 
0 

-1.9403 
-3.7730 

0 

-0.2425 
-1.9956 

3.5998 

and 

T/nT Q = QlQi 
-0.9701 0.2339 0.0643 
-0.2425 -0.9354 -0.2571 

0 -0.2650 0.9642 

We use the QR decomposition to modify (8.3) in a slight but important fashion. 
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Algorithm 8.5 Orthogonal Iteration. 

Given an initial orthogonal matrix, Qo.for kfrom 1 until convergence, do 

1. SetYk+1=AQk; 

2. DefineQk+i and Rk+\ as the QR decomposition of Yk+i: Qk+\Rk+i = Yk+\. 

One consequence of this algorithm is that we can write 

Rk+i = Ql+1AQk, (8.4) 

and it can be shown, under the proper conditions, that the diagonal elements of the triangular 
matrix i?fc+i converge to the eigenvalues of A. Let's assume that the iteration does converge, 
and call the limiting upper triangular matrix Rm and the limiting orthogonal matrix Qt». 

Let's look now at the slightly different iteration based on the computation 

Ak = QTkAQk, (8.5) 

where Qk is exactly the same as in orthogonal iteration. Note that the Ak matrices are 
similar to A, thus they have the same eigenvalues. Moreover, if the orthogonal iteration 
converges then so does this modified iteration (see Problem 3), and it is not difficult to 
show that Ak -> Roo. In addition, this is not much different from orthogonal iteration 
since it comes from merely shifting the index by one in the iteration (8.4). So the question 
arises: Would it be possible to use the new iteration (8.5) instead of the one from orthogonal 
iteration (8.4)? If so, how could we efficiently organize the computation? 

Note the following: 

Ak = QTkAQk = (QlAQ^) QTk_xQk = Rk (QLiQfc), 

Afc-i = QLi^Qfc- i = Qï-i {AQk-i) = (QLiQk) Rk-

Thus, since products of orthogonal matrices are themselves orthogonal (Problem 1), we 
have that there exists an orthogonal matrix Q'k = Q'k_1Qk and an upper triangular matrix 
Rk such that 

Ak-! = Q'kRk, Ak = RkQ'k. 

Thus, given Ak-i, we can get the next member of the sequence simply by doing a QR 
decomposition and then reverse-multiplying the two matrices. Now, suppose that we start 
the iteration with the special orthogonal matrix Q0 = I; then we have 

A0 = A, Λι = RiQ', 

where Q'R\ = A is the QR decomposition of A. This is the final piece of the puzzle. We 
can do essentially the same computations as orthogonal iteration—which is an attempt to 
do the power methods on more than one vector at a time—simply by doing a QR decom-
position on A and then reverse-multiplying the two factors. To be specific, we have the 
following algorithm. 
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Algorithm 
Given A s 

8.6 Basic QR i 
Rnxn,setA0 = 

1. Define Qk 

2. Define Ak 

and Rk as 

= RkQk-

teration. 
A and compute as follows: for 

the QR decomposition of Ak-

kfrom 1 until convergence, 

i: QkRk = Ak-i; 

do 

The important theorem is the one that tells us that this is a sequence of similar matrices, 
thus, they all have the same eigenvalues. 

Theorem 8.10 Given A € R n x n , set Ao = A and compute the following sequence of 
matrices: 

Ak+l = RkQk, 

where Ak = QkRk is the QR factorization ofAk- Then the Ak matrices are all similar. 

Proof: We have 
Ak+l — RkQk, 

so that 
QkAk+i = QkRkQk = AkQk => Ak+i = Qk'AkQk-

We know that the inverse exists since Qt is orthogonal and hence Q^1 = Q%. · 
At this point it might be worth looking at an example. 

■ EXAMPLE 8.16 

Let 
10 
-2 

3 
2 
0 

- 2 
10 

- 3 
4 
5 

3 
- 3 

6 
3 
3 

2 
4 
3 
6 
6 

0 
5 
3 
6 

13 

A = 

which is the same matrix that we looked at, extensively, at the end of §8.3. We will 
perform what might be called "naive" QR on this matrix.8 The Hessenberg form is 

0.0000 
4.1231 

0 
0 
0 

-4.1231 
9.2941 
3.0920 

0 
0 

0 
3.0920 
6.4587 

-5.3189 
0 

0 
0 

-5.3189 
17.9989 
3.1371 

0 
0 
0 

3.1371 
1.2483 

AH,o = A0 

Since our discussion of the QR iteration is not going to get into implementation de-
tails, we will simply illustrate how the computation proceeds. The QR decomposition 
of AQ gives us 

Q = 

-0.9245 
0.3812 

0 
0 
0 

-0.3488 
-0.8461 
-0.4031 

0 
0 

0.1024 
0.2485 

-0.6102 
0.7453 

0 

0.1072 
0.2601 

-0.6387 
-0.6244 
-0.3508 

0.0402 
0.0974 

-0.2393 
-0.2339 

0.9364 

"Actual QR codes do not explicitly form either factor—the process is organized in an almost elimination-like 
format, progressing down the diagonal. 
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Λ = 

' -10.8167 7.3546 1.1786 0 0 " 
0 -7.6715 -5.2193 2.1438 0 
0 0 -7.1370 16.6596 2.3380 
0 0 0 -8.9417 -2.3967 
0 0 0 0 0.4351 

) 

iat the next matrix in the sequence is 

Al=RQ = 

12.8034 -2.9242 -0.0000 -0.0000 -0.0000 " 
-2.9242 8.5943 2.8766 -0.0000 -0.0000 

0 2.8766 16.7709 -6.6639 0 
0 0 -6.6639 6.4239 -0.1526 
0 0 0 -0.1526 0.4074 

Several things are worth noting at this point. 

1. Ai is tridiagonal—that is, the QR step and reverse multiplication preserve the 
Hessenberg form. 

2. The (5,4) element of Ai is substantially smaller than it was in AQ. This is significant, 
because when this element reaches zero, it means that the (5,5) element is an 
eigenvalue. (See Problem 2.) 

We now continue the computation, without showing all the details. After six 
iterations we have 

16.0164 
-2.9678 

0 
0 
0 

-2.9678 
18.7347 
0.3964 

0 
0 

-0.0000 
0.3964 
7.0332 

-0.0167 
0 

-0.0000 
-0.0000 
-0.0167 

2.8157 
0.0000 

-0.0000 
0.0000 

-0.0000 
0.0000 
0.4000 

We again make several observations: 

1. Since the (5,4) element is zero (to four digits) we can take λβ « 0.4000 as our first 
approximate eigenvalue. 

2. Note that the iteration found the smallest eigenvalue first. 

3. Note that the other off-diagonal elements are generally smaller than in Ao- This is 
significant; one reason that the QR iteration is superior to the power methods is that 
each step contributes something toward finding all the eigenvalues, not just a single 
one. 

4. We can deflate by simply extracting the upper left 4 x 4 submatrix; there is no need 
to do any special computation, and the Hessenberg form is preserved. This is one 
of the key cost-saving features of the QR algorithm over the power methods and 
orthogonal iteration. 

Although this example perhaps suggests that the QR iteration would outperform the 
power methods, the method can still be improved. Just as shifts accelerated the conver-
gence of the inverse power methods, they can also be used to improve the performance of 
the QR iteration. The algorithm becomes the following: 
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Algorithm 8.7 Shifted QR Iteration. 
Given A &M.nxn, set AQ = A and compute as follows: for kfrom 1 until convergence, 

do 

1. Define Qk and Rk as the QR decomposition ofAk-i — ßk-il·' QkRk = Ak-\ — 
ßk-\i; 

2. Define Ak = RkQk + ßk-\I-

It can be shown (Problem 4) that the Ak matrices are all similar, and it is possible to 
arrange the computation so that the shifted matrices are never explicitly formed (this is 
known in the literature as implicit QR). 

What do we use as shifts? The general philosophy is the same as for the power methods: 
Choose shifts that are close to the eigenvalue you are trying to compute. Two common 
shift strategies are then the following: 

Rayleigh Shift: Set ßk = the lower right diagonal element of Ak-

Wilkinson Shift: Let 
a n £*12 

" 2 1 £*22 

denote the lower right 2 x 2 submatrix in Ak- Then the Wilkinson shift is to set ßk 
the eigenvalue of S that is closest to <*22· 

EXAMPLE 8.17 

To illustrate the value of shifts in the QR iteration, we return to the same example 
matrix as we have used all along. The Hessenberg form is 

10.0000 
-4.1231 

0 
0 
0 

-4.1231 
9.2941 
3.0920 

0 
0 

0 
3.0920 
6.4587 

-5.3189 
0 

0 
0 

-5.3189 
17.9989 
3.1371 

0 
0 
0 

3.1371 
1.2483 

AH,o = A0 = 

If we use the Rayleigh shift, then μο = 1.2483 and the initial QR factorization gives 
us 

Q = 

and 

R = 

' -0.9046 
0.4262 

0 
0 
0 

" -9.6743 
0 
0 
0 
0 

-0.3719 
-0.7893 
-0.4886 

0 
0 

7.1590 
-6.3281 

0 
0 
0 

0.1068 
0.2268 

-0.4477 
0.8583 

0 

1.3178 
-4.9864 
-6.1967 

0 
0 

0.1478 
0.3137 

-0.6192 
-0.4242 
-0.5625 

0 
2.5989 
16.7589 
-5.5769 

0 

0.1005 * 
0.2134 

-0.4213 
-0.2886 
0.8268 _ 

0 " 
0 

2.6927 
-1.3307 
-0.9054 
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so that 

Ai=RQ + μ0Ι = 

13.0511 -2.6970 0.0000 0.0000 0 
-2.6970 8.6795 3.0278 0.0000 0.0000 

0 3.0278 18.4072 -4.7869 -0.0000 
0 0 -4.7869 4.3626 0.5093 
0 0 0 0.5093 0.4997 

The next shift is then μι = 0.4997. If we continue the iteration, we find that 

A3 = 

14.3388 
-1.5148 

0 
0 
0 

-1.5148 
17.5527 
5.4211 

0 
0 

-0.0000 
5.4211 
9.8879 

-0.1601 
0 

-0.0000 
0.0000 

-0.1601 
2.8207 
0.0000 

-0.0000 
0.0000 

-0.0000 
0.0000 
0.4000 

Thus, we have found the first eigenvalue in only three iterations, whereas the unshifted 
method took six. We can now deflate, by defining 

A' 

14.3388 -1.5148 -0.0000 -0.0000 
-1.5148 17.5527 5.4211 0.0000 

0 5.4211 9.8879 -0.1601 
0 0 -0.1601 2.8207 

and continue the iteration. Thus, μ$ = 2.8207 and A4 is defined by 

A4 = 

4.7851 
2.0073 

0 
0 

-2.0073 
19.7542 
1.6637 

0 

-0.0000 
1.6637 
7.2452 

-0.0002 

0.0000 
-0.0000 
-0.0002 
2.8156 

and 

A* = 

15.5758 -2.7220 -0.0000 -0.0000 
-2.7220 19.1737 0.4287 -0.0000 

0 0.4287 7.0349 -0.0000 
0 0 -0.0000 2.8156 

showing that we have found another eigenvalue. Hence, in fewer steps than it took 
to find a single eigenvalue in the unshifted algorithm, we have found two eigenvalues 
by using the very simple Rayleigh shift.9 Using the Wilkinson shift on this example 
yields very similar results. 
Which shift do we use? We might expect that the simpler Rayleigh shift is less reliable 

than the more involved Wilkinson shift, and we would be right. While the Rayleigh shift 
can produce rapid convergence of the off-diagonal elements to zero, there exist examples 
for which it will not converge at all. On the other hand, it can be shown that QR using the 
Wilkinson shift will always converge [6]. Problem 5 illustrates some of this, drawing on 
an example from Trefethan and Bau [6]. 

Why does QR work? A complete discussion is beyond the intended level of this text. 
Good explanations are in the works of Watkins ([7] and [8]) and Trefethen and Bau [6]; a 

9To within four decimals, that is. For greater accuracy we would need to take more iterations before deflating, 

and perhaps some more after deflating. 
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brief answer is that the QR iteration is equivalent to a properly scaled and shifted inverse 
power iteration being done on an orthonormal set of vectors. Thus, we are working on all 
the eigenvectors at the same time. Some of this is suggested by the motivation for the QR 
iteration that we did at the beginning of this section, using orthogonal iteration. 

Since the underlying theory for the QR iteration is similar to that of the power methods, 
it should have the same weak points, and this in fact is the case. Defective matrices, or 
matrices that are nearly defective (meaning that two or more eigenvectors are nearly parallel) 
will slow down the convergence of the iteration; fundamentally, this occurs because the 
eigenvalue problem is a polynomial root-finding problem, and defective matrices are caused 
by multiple roots for the polynomial (recall §3.11.4). But software such as the codes in 
LAPACK or the e ig command in MATLAB is robust and reliable, and can be counted on 
to deliver accurate results for almost all problems. 

Exercises: 

1. Show that the product of two orthogonal matrices, Q\ and Q2, is also orthogonal. 

2. Let A e Rn*n have the partioned form 

An a 
0 λ 

where An € R("-i)x(n-i) and λ 6 R. Show that λ must be an eigenvalue of A. 
How are the eigenvalues of A and An related? 

3. Assume that the iteration in Algorithm 8.5 converges, in the sense that Rk —* Roo, 
which is upper triangular, and Qk -» <5oo. which is orthogonal. 

(a) Prove that the matrices Ak, defined in (8.5), must also converge to R^. 

(b) Prove then that the eigenvalues of A can be recovered from the diagonal ele-
ments of Ak, in the limit as k —> 00. 

4. Show that the matrices in the shifted QR iteration all have the same eigenvalues. 

5. Consider the matrix 

A-\° l 
A- [ 1 0 

(a) Find the exact eigenvalues of A. 

(b) Show that 

Q= : ; , Λ 
1 0 
0 1 

is a valid QR decomposition of A. 

(c) Use this to show that the shifted QR iteration for A, using the Rayleigh shift, 
will not converge. 

6. The QR factorization is usually carried out for the QR iteration by means of Givens 
transformations, defined in part (a), below. In this exercise we will introduce the 
basic ideas of this kind of matrix operation. 
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(a) Show that the matrix 

G{ß) = cosö
sinö 

-sinö 
cosô 

is an orthogonal matrix for any choice of Θ. 

(b) Show that we can always choose Θ so that 

G{0)A = 
COSÖ 

sinö 
— sinô 

COSÖ 

a n 
α2ι 

αΐ2 

Û22 

m 
0 

r i 2 

r 2 2 
= R. 

(c) Use a Givens transformation to perform one step of the basic QR iteration for 
the matrix 

" 4 1 
1 4 

(a) If G(9) is a Givens transformation, show that 

0(0) = 1 0 
0 G(fl) 

is orthogonal. 

(b) Show how to use a sequence of two Givens transformations to do a single QR 
step for the matrix 

4 1 0 
1 4 1 
0 1 4 

8. Write a MATLAB code that automates the kind of computation we did in Examples 
8.16 and 8.17: Take an input matrix (square), and perform "naive" QR by executing 
the commands 

[q,r]=qr(A); 

A = r * q; 

Stop when A is triangular. Use no shifts. Test your code by forming a random 
symmetric matrix10 and using your routine to find its eigenvalues. Remember to 
reduce the matrix to Hessenberg form! Use the f lops command to measure the cost 
of your routine, and compare this to what MATLAB's e ig command costs. 

9. Repeat Problem 8, this time using the Rayleigh shift. You should save the random 
matrix from Problem 8 so that a f lops comparison is meaningful. 

10. Repeat Problem 8, this time using the Wilkinson shift. Again, use the same matrix 
and do a f lops cost comparison. 

'"Recall that S = A + AT is always symmetric. 
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8.5 APPLICATION: ROOTS OF POLYNOMIALS, PART II 

We know that the eigenvalues of a matrix are the roots of a polynomial, the characteristic 
polynomial of the matrix. This raises an obvious question: Can we solve the polynomial 
root-finding problem by finding the eigenvalues of a properly defined matrix? The answer 
is "yes," as we outline, next. 

Definition 8.3 (Companion Matrix) Given a (monic) polynomial 

p(x) = xn + an-ixn~l + h a2x2 + a\x + αο, 

the companion matrix is defined as 

0 
1 

0 

0 

0 
0 

1 

0 

0 · 
0 ■ 

0 · 

1 · 

·· 0 
■· 0 

·· 0 

·■ 0 

-ao 
- O l 

-a2 

-a3 

0 0 0 1 -α„_ι 

(Some authors use CT, instead.) 
It is a simple exercise to use a cofactor expansion to show that the characteristic poly-

nomial of C is, indeed, ρ(λ). 
Because of the special (sparse) structure of C, it is possible to develop specialized 

iterations for this purpose, and several have been outlined in the literature, most notably 
based on the several papers of Jenkins and Traub. MATLAB simply forms the companion 
matrix and applies the e ig command to it. 

One advantage of using the eigenvalue approach to polynomial root-finding is that we 
can use shifting strategies to accelerate convergence. This is central to the work of Jenkins 
and Traub. 

If we apply Gerschgorin's Theorem to the companion matrix, we find that all the 
eigenvalues (hence, all the roots) are in the union of the regions 

R0 = {z e C | \z\ < \a0\}, 

Rj = {zeC\ \z\ < ( 1 + |α,-_ι|)}, 2 < j < n - 1, 

Rn = {zeC | |ζ + αη_ι| < 1}. 

In other words, 
Zk £ -Rroots = Uj=lRj 

for all fc, 1 < fc < n. 
This is where the bounds in Theorem 3.8 come from. Other localizations can be derived 

by manipulating the matrix. 

Exercises: 

1. For the polynomial p(x) = x3 — 2x2 + 5x + 1, construct the companion matrix, 
then use a cofactor expansion to confirm that the characteristic polynomial is, indeed, 
p(X). 
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2. For each polynomial in Problem 2 of §3.10, construct the companion matrix and 
use MATLAB's e ig to find the roots. Use f lops to compare the costs with the 
Durand-Kerner method from §3.10. 

3. Consider the polynomial p(x) = a;4-10x3+35x2-50x+24andformitscompanion 
matrix. Using MATLAB's qr command, do several iterations of the unshifted QR 
iteration. Are the roots being isolated? Is the structure of the companion matrix 
being maintained? Comment. 

< · · · > 

8.6 LITERATURE AND SOFTWARE DISCUSSION 

Most of the works cited at the end of Chapter 7 contain good discussions of the numerical 
solution of the algebraic eigenvalue problem. The classic work is by James Wilkinson 
[10]. An outstanding explanation of the QR algorithm is in the SIAM Review article by 
Watkins [8] (the texts by Watkins [7] and Trefethen and Bau [6] contain some of the same 
material). Parlett's book [5] is a good discussion of the symmetric eigenvalue problem, 
which is substantially easier than the general case, as we have seen. Two excellant articles 
on the history of the QR algorithm are by Golub and Frank [3] and Watkins [9]. Watkins 
is of the opinion [7] that we should be calling the "QR algorithm" the "Francis algorithm;" 
not only does this recognize the author of the original algorithm, but the methodology of 
modern computer codes is much closer to what Francis wrote about in [1] and [2]. 

There exist other eigenvalue approximation ideas beyond what was discussed here, and 
Watkins [7] has a brief discussion of many of these, some of which are of mostly historic 
interest. Of particular interest is the "divide and conquer" algorithm due to Cuppen. The 
rise of parallel computing has meant that some of these older methods, such as the Jacobi 
method, are of more interest because they can be programmed in a manner that takes greater 
advantage of the parallel computing architecture. 
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CHAPTER 9 

A SURVEY OF NUMERICAL METHODS 
FOR PARTIAL DIFFERENTIAL 
EQUATIONS 

Partial differential equations (PDEs) are differential equations involving functions of more 
than one independent variable, such as the temperature at each point (x, y, z) in an iron 
bar. They are necessarily more complicated in some respects than ordinary differential 
equations, and it is beyond our intended scope here to provide an in-depth treatment of all 
the methods used for their approximate solution. Indeed, this is such an active research 
topic that it is best, in an introductory text, to confine ourselves to a brief survey of major 
ideas. 

9.1 DIFFERENCE METHODS FOR THE DIFFUSION EQUATION 

9.1.1 The Basic Problem 

Perhaps the simplest PDE is the diffusion equation, so-called because it can be used to 
model a number of processes that are driven by diffusion, such as heat transfer and some 
types of slow mass transfer. 

We seek the unknown function u(x, t) such that 

ut = auxx + f{x,t), t>0,0<x<l; (9.1) 

u(0,t) = so(i); (9.2) 

u( l , t ) = gi(t); (9.3) 

u(x,0) = u0(x). (9.4) 

An Introduction to Numerical Methods and Analysis, Second Edition. By James F. Epperson 521 
Copyright © 2013 John Wiley & Sons, Inc. 

http://www.it-ebooks.info/


5 2 2 A SURVEY OF NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 

Here go and g\ are the (known) boundary data, f is a known source term, and UQ is 
the (known) initial data. More general and involved boundary conditions are possible, 
and we can generalize the equation somewhat, but this is the usual standard form. For 
simplicity we assume homogeneous boundary data , meaning that go = g\ = 0 for all 
time t. In the most commonplace examples, the unknown u gives the temperature at each 
point x along a thin rod, for each time t. The boundary conditions (9.3) and (9.4) give the 
temperature at which each end of the rod is maintained, and the initial condition (9.4) gives 
the temperature distribution at the start of the process. See a text, such as Humi and Miller 
[8], for background material on the diffusion equation. 

The parameter a, which must be positive, is the thermal diffusivity of the material being 
studied. If a is large, it means that diffusion is rapid; if a is small, then diffusion is slow. 

We will study two basic methods for the diffusion equation in this section: the explicit 
method, and the Crank-Nicolson method. In the next section we discuss the finite element 
method for problems of this type. 

Before proceeding with the derivations and analysis, we need to deal with some nota-
tional issues. Our approximations will be constructed, as was the case for ODE problems 
in Chapter 6, only at discrete points on a grid defined over space and time. There will be 
times when we will want to consider the approximation as a discretely defined function, 
and there will be times when we want to consider it as a vector in a standard Euclidean 
space. At times we will also want or need to consider the collection of exact solution 
values defined at the same grid points. To accomplish all this with a minimum of excessive 
notation, we will use the following conventions. 

If the dependent variable in a problem is u, then Uh,M will denote the approximation, 
defined on a grid using h as the spatial step and At as the time step. Specific values can 
be denoted using the standard functional notation, Uh,At(xi,tn), which we occasionally 
abbreviate as uf. If we wish to consider the Euclidean vector of Uh,At values at a specific 
point in time, tn, then we will write u£ Δ ί . The similar notation un (note the lack of 
subscript) will be used for the vector of exact solution values at time tn, using the same 
grid points. Some of this notation is abusive of standard conventions, but it enables us to 
work with a minimum of confusing new symbols. The need for most of this will not occur 
until §9.1.3, where we begin to discuss implicit methods and the Crank-Nicolson method. 

9.1.2 The Explicit Method and Stability 

The explicit method is constructed by using the most straight-forward difference approx-
imations for the derivatives in the PDE. We start by defining a grid in the spatial variable 
x: 

0 — XQ < x\ < X2 < ■ ■ ■ < XN-i < XJV = 1; 

and we assume, for simplicity, that the mesh spacing is uniform: Xk — x/t-i = h for all k. 
Define a time step At > 0, and a time grid by tn = nAt for n > 0. Then, at each point in 
our space-time grid we can define difference approximations to the derivatives, thus: 

du, s _ u(x,t + At)-u(x,t) l.d2u 
d t ( ' } ~~ At 2 dt*[ ' >' 

d2u u(x — h,t) — 2u(x,t) +u(x + h,t) 1 , 2 9 4 u . 
Μ{ΧΛ) = h* + Ï2/la^(7?'Î)' 
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where t < Θ < t + At and χ — Η<η<χ + 1ι. We use these in the PDE to replace ut {x, t) 
and uxx(x, t) and get 

u(x, t + At) — u(x, t) _ (u(x — h,t)— 2u(x,t)+u(x +h,t) 

At V h2 

+ f(x,t) + TE(x,t), (9.5) 

where the truncation error TE{X, t) is given by 

TE{x,t) = ±h2^(V,t) + ΙΔ*|^(Μ). (9-6) 

We now define our approximate solution Uh,At{x, t) at the grid points by dropping the 
truncation error from (9.5) and replacing u(xi,tn) with uf = Uh,At{xi,tn)· We get 

u ? + 1 - un 
- = o l Tg J + f{Xi,tn), (9·/) 

At 

which can be simplified to get 

< + 1 = < + ̂ r K- i - 2«? + «?+i) + Atf(Xi,tn). (9.8) 

This is called the explicit method because it yields the value of the approximation at time 
tn+i explicitly in terms of the approximate solution at time tn. 

Coding this is very easy, so it is worth going directly to some examples. 

■ EXAMPLE 9.1 

Consider the problem (9.1)-(9.4) with a = π~2, UQ(X) — βΐηπχ + 8ΐη2πχ and 
9o = 9i = 0, for which the exact solution is u{x, t) = e^smitx + e~4t sin2-πχ. 
(As always, the student should check this.) Figure 9.1 shows the solution profile for 
the approximate solution computed using h = 1/16, Δί = 1/64, and Figure 9.2 
shows the error profile, both at time t = 1. The approximation appears to be doing a 
decent job. However, if we next look at the case defined by h = 1/32, Δί = 1/128, 
then Table 9.1 shows how the values in the middle of the interval evolve for the first 
45 time steps. Note that the approximate solution appears to be evolving normally 
for the first 40 or so steps, then suddenly begins to "blow up." If we continue the 
computation, the solution values eventually get as large as 1029. In fact, they will 
grow without bound. 

What is going on here? 

The problem, in a nutshell, is that the time step is too large for the speed of diffusion 
and the spatial step. The explicit method requires that the time step be sufficiently small in 
order that the computation be stable and accurate. A formal result is the following. 

Theorem 9.1 Let u e C*<2(Q)for Q = {(x, ί ) | 0 < χ < 1 , 0 < ί < T} for some T > 0. 
If h and At are such that 

h2 
At<—, (9.9) 

2a 
then there exists a constant C > 0, independent of h and At, such that 

max \u(xi,tn) - Uh,At(xi,tn)\ < max \u0{xi) - UhAt(xi,0)\ + Ch2M, (9.10) 
( i i , t„)€Q 0<i<N 
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Figure 9.1 Solution profile at t = 1 
for Example 9.1; explicit method, h = 
1/16, Δί = 1/64. 

Figure 9.2 Error profile at t = 1 
for Example 9.1; explicit method, h = 
1/16, Δί = 1/64. 

where 

M = max {\uxxxx{x,t)\,\utt(x,t)\} . 
(x,t)eQ 

Proof: To construct an error estimate, we subtract (9.5) and (9.7); letting 

e" = u(a:i,tn) - < , 

we then have 

e r + 1 = βΓ + λ (eU ~ 2e? + e?+1) + (±h*At^(Vi,tn) + 1 Δ ί 2 | ^ , 0 η ) ) , 

where Xj_i < η% < Xi+i and tn < θη < tn+\, and we have used λ = s£r. Taking 
absolute values and using the definition of M, plus some simplification, gives us 

Κ + 1 | < |1 -2A| |e? | + A(|e?_1| + |e?+1|) + ^ A t + ^At^ M, l<i<N-l. 

Now, let 

so that we have 

En — max \e?\ 
Ki<N-l 

|e?+ 1 | < (|1 - 2λ| + 2λ) Εη + (ßh2At + ±AtA M. 

Note that if 1 - 2λ > 0, then we can remove the absolute value symbol and write 

| 1 - 2 λ | + 2λ = 1 - 2 λ + 2λ = 1. 

Therefore (if 1 - 2λ > 0), 

$+1\<En+(±h2M+±AtAM, 
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Table 9.1 Illustration of instability for Example 9.1; h = 1/32, Δί = 1/128, o = 1/π2 

Jfe 
1 

5 

10 

15 

20 

25 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

k 
«14 

0.134389E+01 

0.126978E+01 

0.118573E+01 

0.111007E+01 

0.104172E+01 

0.979764E+00 

0.923295E+00 
0.91301 lE+00 
0.901453E+00 
0.894185E+00 
0.875812E+00 
0.888149E+00 
0.819241E+00 
0.964831E+00 
0.552823E+00 
0.157751E+01 

-O.106303E+01 
0.556995E+01 

-0.110780E+02 
0.303114E+02 

-O.720490E+02 
0.179537E+03 

« 1 5 
0.117643E+01 

0.112348E+01 

0.106234E+01 

0.100618E+01 

0.954414E+00 

0.906558E+00 

0.862416E+00 
0.853028E+00 
0.847107E+00 
0..832261E+00 
0.841599E+00 
0.787860E+00 
0.898150E+00 
0.587900E+00 
0.134683E+01 

-0.587537E+00 
0.421043E+01 

-0.769844E+01 
0.215827E+02 

-0.500811E+02 
0.124290E+03 

-0.297988E+03 

« 1 6 
0.992194E+00 

0.961573E+00 

0.924624E+00 

0.889094E+00 

0.854929E+00 

0.822080E+00 

0.789955E+00 
0.785740E+00 
0.774446E+00 
0.781858E+00 
0.741088E+00 
0.823636E+00 
0.594303E+00 
0.114726E+01 

-0.245593E+00 
0.316667E+01 

-0.520808E+01 
0.151573E+02 

-0.341683E+02 
0.846480E+02 

-0.200336E+03 
0.480310E+03 

« 1 7 
0.798403E+00 

0.790403E+00 

0.778003E+00 

0.763449E+00 

0.747210E+00 

0.729670E+00 

0.712294E+00 
0.704519E+00 
0.710929E+00 
0.681157E+00 
0.742416E+00 
0.576484E+00 
0.972637E+00 

-0.117450E-01 
0.237169E+01 

-0.341106E+01 
0.104982E+02 

-0.228400E+02 
0.566645E+02 

-0.132208E+03 
0.314752E+03 

-O.739356E+03 

« 1 8 
0.602366E+00 

0.616417E+00 

0.627984E+00 

0.633948E+00 

0.635278E+00 

0.632816E+00 

0.625040E+00 
0.631205E+00 
0.610682E+00 
0.656032E+00 
0.539034E+00 
0.818067E+00 
0.136538E+00 
0.176970E+01 

-O.214521E+01 
0.717104E+01 

-0.149249E+02 
0.372474E+02 

-0.855143E+02 
0.202351E+03 

-0.470614E+03 
0.109814E+04 

and this holds for all i; hence, 

En+i <En+ (^h2At + ̂ Δί2 j M. (9.11) 

This is a simple recursive inequality, very much akin to those we dealt with in Chapter 6, 
and applying the solution procedures from those sections gives us 

En < E0 + n(^h2At+^AtAM = E0+(^h2 + ^At\(Mtn) 

- Eo+(è^2 + lAt)(ΜΤ) 
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from which the conclusion (9.10) follows. The condition 1 — 2λ > 0 is equivalent to (9.9), 
and thus we are done. · 

If (9.9) does not hold, then (9.11) becomes 

En+i < cEn + (^h2At + ̂ AtA M, (9.12) 

for c = 4λ - 1 > 1. We then have 

En < cnE0 + (^h2At + ±AtA M Σ ck. 
^ ' k=0 

This is important for a number of reasons. First, it shows that if the stability condition 
(9.9) does not hold, then any perturbation in the initial condition (which amounts to having 
£Ό Φ 0) might be amplified by a factor of cn, making the error eventually very large. 
In addition, the presence of the ck factors in the summation means that, even in the 
total absence of rounding error, the mathematical error is also amplified by exponentially 
growing factors. 

The attentive reader might be concerned that (9.12), being an inequality, does not lead 
to the conclusion that En must grow as cn does; it simply allows for such growth to occur. 
However, it is possible to establish a strict inequality which shows that En will grow if the 
stability condition is not satisfied, and this growth is observed in practice, as our simple 
example showed. 

The condition (9.9) is called a stability condition because it is both necessary and 
sufficient to ensure that the approximate solutions do not "blow up" during the course of 
the computation. It can be shown that if a numerical method for the approximate solution 
of the diffusion equation is stable and has a truncation error that goes to zero as the mesh 
parameters do, then the approximate solutions will converge to the exact solution. Note 
that (9.9) requires us to use a time step size that goes like the square of the spatial step; thus, 
we will often be forced to use very tiny time steps. This is usually considered too much 
of a restriction for practical use, although the simplicity of the explicit method makes it 
attractive for nonlinear problems and problems involving more than one space dimension. 

■ EXAMPLE 9.2 

To demonstrate that the explicit method works fine when condition (9.9) is satisfied, 
we return to the same example, taking At to be 90% of the maximum possible time 
step (for h = 1/32), and computing all the way out to t — 1. Fig. 9.3 shows a plot of 
the maximum absolute error as a function of t. The rapid decay is due to the nature 
of the diffusion equation, so it might be better to look at Fig. 9.4, which is almost 
the same plot, except that we have scaled the error by the maximum absolute value 
of the exact solution. Finally, note that it took 231 time steps to reach t = 1. 
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Figure 9.3 Maximum absolute error 
(unsealed) for 0 < t < 1 for the explicit 
method (Example 9.2), h = 1/32. 

Figure 9.4 Maximum absolute error 
(scaled) for 0 < t < 1 for the explicit 
method (Example 9.2), h = 1/32. 

9.1.3 Implicit Methods and the Crank-Nicolson Method 

The time-step restriction in the explicit method can be removed by using a very slightly 
different set of difference approximations in constructing the numerical method. If we use 

du, . . u(x,t + At) — u(x,t) 1 . d2u, .. 

d2u, . . u(x -h,t + At)- 2u(x,t + At) + u(x + h,t + At) 
h~2 

+ ^2irj(v,t + At) 
1 h2dlu 
ühM( 

where t < Θ < t + At and Xi-\ <η< Xi+\, then the numerical method becomes 

,n+l aAt 
- -Γ5- « Λ 1 - 2 < + 1 + « ? # ) = < + f(xi, tn+i). 

h? 
(9.13) 

This is atridiagonal system of ΛΓ—1 equations in the JV—1 unknowns u"+1,U2+1i · · · i '"■Tf'-v 
and we can solve it using Algorithm 2.6. Moreover, the method is unconditionally stable; 
i.e., it is stable for any value of Δί. The problem is that it is only first-order accurate in the 
time step. 

Theorem 9.2 For the implicit method (9.13) there exists a constant C > 0, independent of 
h or At, such that 

max \u(xi,tn)-uh,At(xi,tn)\ < max \u0{xi) - uh,At{xi,0)\ 
(xi,tn)€Q 0<i<N 

+ C{h2 + At)M (9.14) 

where 

M= max {|itXXxx(a:,t)|,|titt(a:,t)|}· 
(x,t)€Q 

Proof: Using the same argument as for the explicit method, it is easy to show that the 
pointwise error e™ = u(xi, tn) —u" satisfies 

e? + 1 - A ( e ^ 1 - 2e?+ 1 + e ^ 1 ) = e? + AtTE(Xi,tn+i), (9.15) 
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where λ = aAth 2 and TE{X%, tn+\) is the truncation error: 

1 d2u 1 d4u 
TE(xi,tn+i) = - - Δ ί — ( x i , ö n + 1 ) + — h2-g-^(^,tn+1). 

Now, let J be the index such that 

| e " + 1 | = max |e" + 1 | . 
l < i < n —1 

Then (9.15) implies that 

(1 + λ ) | β ^ Ί < λ (\enjt\\ + \e%\\) + \enj\ + Atr, (9.16) 

where r is the maximum (in absolute value) truncation error: 

1 . 1 
2At+T2h2 

M. 

Since |e"+11 > |e"+11 for any j , we can write 

(1 + 2λ)|ε^+1| < 2A|e^+1| + |e^| + Atr, (9.17) 

from which 

En+i = max |e" + 1 | = leT^I < \en,\ + Atr < max le?I + Atr = En + Atr 
l<i<n-l l ' I J I - I J i - i<i<n_i * % ' 

(9.18) 
follows. Therefore, as in the proof of Theorem 9.1, we solve the recursion i?n+i ^ 
En + Atr to get 

En < E0 + tnr, 

from which the conclusion follows. · 
This method is called unconditionally stable because there is no condition on the step 

size for the (approximate) solution to be bounded and accurate. The problem with this 
method, however, is that it is only ö(At + h2) accurate; the explicit method was 0(h2) 
accurate, since Δί = 0{h2) was required for stability. Forcomparison's sake, consider the 
same example that we looked at for the explicit method. If we use the same grid sizes (h = 
1/16, At = 1/64), then we get the error plot shown in Figure 9.5; moreover, we can take 
much larger time steps and the solution remains stable. If we use h = 1/32, Δί = 1/128, 
then we get the error profile shown in Figure 9.6; recall that the explicit approximation 
blew up for this case. 

To regain 0(h2) accuracy, we use an idea developed in the late 1940s by the British 
mathematicians Crank and Nicolson.1 

'John Crank (1916-2006) was born in Lancashire, England and received all of his education at Manchester 
University. From 1957 until his retirement in 1981, he was professor of mathematics at Brunei University in 
Acton. 

Phyllis (Lockett) Nicolson (1917-1968) was born in Macclesfield, England and received her early education 
(bachelor's and master's degrees) at Manchester University. In the immediate postwar period she was a research 
fellow at Girton College, Cambridge. In 1952 she was appointed lecturer in physics at the University of Leeds. 

The Crank-Nicolson method resulted from a collaboration that took place in the immediate postwar period and 
was first presented in a 1947 paper in the Proceedings of the Cambridge Philosophical Society, titled "A practical 
method for numerical evaluation of solutions to partial differential equations of the heat-conduction type." 
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Figure 9.5 Error profile at t = 1 for 
the heat equation; implicit method, h = 
1/16, Δί = 1/64. 

Figure 9.6 Error profile at t = 1 for 
the heat equation; implicit method, h = 
1/32, Δί = 1/128. 

There are a number of ways to derive the Crank-Nicolson scheme. Perhaps the best 
way is to first "solve" the PDE by integrating in time on both sides of the equation: 

/

t+At 
(auxx(x, s) + f(x, s)) ds 

and then use the trapezoid rule to evaluate the integral on the right side: 

u(x, t + At) - u(x, t) — -Ata(uxx(x,t)+uxx(x,t +At)) 

+ ^At{f{x,t) + f{x,t + At)) 

12 
At3uxxtt(x,0t) 

- Y^At3ftt(x,Vt). 

Then, replacing the spatial derivatives with difference quotients, we get the lengthy expres-
sion 

u(x,t +At)— u(x,t) — -Ata 
u(x + h,t + At) - 2u(x,t + At) + u(x -h,t + At) 

+ -Ata 

h2 

u{x + h,t + At) - 2u(x,t + At) + u(x -h,t + At) 

+ -At(f{x,t + At) + f{x,t)) 

+ — h2Ata (^(m,t + At) + Q^(m,t)) - —At3uxxtt(x,et) 

-—At3ftt(x,m), 
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where r?t G [t,t + h],6t G [t, t + h], ηι £ [x — h, x + h], and 770 S [x — h, x + h\. Finally, 
we drop the remainders to define the numerical method: 

+ -Δ ί ( / ( χ , - , ί η + ι ) +/(χ,-,ί„)ί9.19) 

where u" = Uh,At{U,tn) « u(xj,tn) is the approximate solution and μ — \aAth~2. 
This is again a system ofN—\ equations in N — 1 unknowns, but it is slightly more involved 
than is the system for the implicit method (9.13). However, it is still unconditionally stable 
and it retains second-order accuracy in both space and time, as we shall soon see. 

We can write the system (9.19) in matrix-vector form as 

(/ + μΚ)ηΙ% = (I - μΚ)ηΙΑι + ±AtFn, 

where 

Fn = ( / ( i i , i n + i ) + /(xi , i„) , . . . , / (a; jv-i , in-i- i) + f(xN-i,tn))T 

is the vector of source function values, and 

K = 

Theorem 9.3 Crank-Nicolson is unconditionally stable and second-order accurate in 
space and time, in the sense that 

2 
- 1 

0 
0 

- 1 
2 

0 

0 
- 1 

0 
0 

0 

- 1 

0 

2 
- 1 

0 
0 

- 1 
2 

m-i /N-l 

Σ {u(Xi, tn) - UhAt(Xi, tn))2 1 < Co ( 5Z (U(X*> °) ~ uh,At{Xi, 0))2 

+ d{h2 + At2)M, 
, i = l 

where Co and C\ are positive and independent of h and At, Co < 1, and M depends on 
the derivatives uxxxx, uxxU, and ftt-

Proof: The proof involves a linear algebra argument that leans heavily on the fact that 
K is a symmetric, positive definite matrix. This means that the eigenvalues of K are real 
and positive, and that there is an orthogonal matrix Q which diagonalizes K (see Theorem 
8.1). 

We note that the vector of errors 

e'h,At = (u(xi,tn) -U",...,U(XN-I,tn) -U%_l)T 

satisfies the equation 

(/ + ßK)enh% = (I- μΚ)βΙΑι + AtTn, (9.20) 
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where Tn is the truncation error vector at time f„, given by 

T? = ^h2a ί ^(»?i . i .*n+i) + Q^(Vo,i,tn)}-^At2uxxtt(xi,9t)-—At2ftt(xi,m). 

Since K is symmetric, there exists an orthogonal matrix Q such that 

K = QDQT, 

where D is the diagonal matrix of the eigenvalues of K. If we substitute this into (9.20) 
and multiply by QT = Q~l, we get 

(/ + ßD)QTenh% = (J - μϋ)0ίΓβΙΑι + AtQTTn 

so that 

QTelAt = (! + ̂ D)-\I - ßD){QTelAt) + Δ ί ( / + ßD)~lQTT" 

or, 
QT*HAt = Di(QTenhAt) + AtD2QTTn 

for the diagonal matrices 
Dl = {I + ßD)-\l-ßD) 

and 
D2 = {I + ßD)-\ 

This recursion is easily solved to get 

QTelAt = DUQTe°hAt) + Δ ί £ D f ö 2 Q T T " - 1 - f c , 
fc=0 

so that 
n - l 

enHAt = QDUQTe°hAt) + Δί £ QD^D2QTTn-1-k. 

Now take the 2-norm of both sides to get 

He^tll2<||Q||2||oîl||2||Qr||2||e0h,Atll2 + Ai||Q||2£||oÎD2QrT"-1-fc||2. 
fe=0 

But || Q||2 = 1 for any orthogonal matrix Q (Problem 7) and it is easily shown (Problem 6) 
that 

I lö l l2= max |dfcfc| 
l<fc<m 

for any m x m diagonal matrix. Thus, we have 

HeJUtlla < WD^hWel^h + tnl^Ihhm^ \\T%, 
0<fc<n 

from which the conclusion follows. · 
To illustrate the additional accuracy, consider the same simple example that we used to 

test the explicit and implicit methods. If we use Crank-Nicolson we get a better error for 
both the h = 1/16, Δί = 1/64 case as well as the h = 1/32, Δί = 1/128 case, as Figures 
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Figure 9.7 Error profile at ί = 1 for 
heat equation; Crank-Nicolson method, 
ft = 1/16, At = 1/64. 

Figure 9.8 Error profile at t = 1 for 
heat equation; Crank-Nicolson method, 
ft = 1/32, At = 1/128. 

Figure 9.9 Maximum absolute error 
(unsealed) for 0 < t < 1 for Crank-
Nicolson, ft = 1/32. 

Figure 9.10 Maximum absolute error 
(scaled) for 0 < t < 1 for Crank-
Nicolson, ft = 1/32. 

9.7 and 9.8 show. Of more importance is the fact that we can get the same accuracy that 
the explicit method had with a lot fewer time steps, as Figure 9.9 shows. The peak error 
for Crank-Nicolson is about 9 x 10- 4 , whereas for the explicit method it was 2.25 x 10- 3 , 
and Crank-Nicolson required only 32 time steps to achieve this. 

Because the values of the vector u% At are supposed to represent function values, it is 
often preferable to scale the 2-norm by the mesh size h. We will call this the discrete 
integral 2-norm, because it can be considered a trapezoid rule approximation to the integral 
of (the square of) Uh,At{-, tn) at the grid points. We will write ||u£ Δί||2,Λ for this norm, 
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which is formally denned as 

N-l 1/2 

\\Uh,At(-,tn)h,h = I h 2_, UhAt(Xi,tn) (9.21) 
i = l 

and we note that in this notation the Crank-Nicolson error estimate can be written as 

\K - «JUtlkh < Cy||«o - u°hiAth,h + d{h2 + Δί2)||Μο||2Λ, 

where MD is a grid function dependent on the derivatives of the exact solution. 
Note, however, that while the results for both the explicit method and the implicit method 

were in the infinity norm, the results for Crank-Nicolson are in the 2-norm. What does this 
mean, and what difference does it make? 

Potentially, it can make quite a difference. The infinity norm gives us "pointwise" results, 
but the 2-norm does not; it gives average values. This allows the error in Crank-Nicolson 
to exhibit more "wiggles" than for the other methods; it also allows Crank-Nicolson to 
generate a negative approximation to a positive value, which will not happen with the other 
methods. 

■ EXAMPLE 9.3 

To illustrate what the difference between the two norms gives us, consider the new 
example defined by the initial data 

UQ(X) 

0, 0 < x < | ; 

1, 
0, 

< x < § ; 
<x< 1. 

This function is piecewise constant, discontinuous at x = ^ and x = | , but it can be 
shown that the exact solution will be very smooth for any t > 0. 

0.1 0J 03 0.1 02 . 0.3 o · 0.7 oa 

Figure 9.11 Solution profile at i = \ 
for discontinuous initial data; implicit 
method. 

Figure 9.12 Solution profile at t = \ 
for discontinuous initial data; Crank-
Nicolson method. 

We approximated the solution to the heat equation using this initial condition, with 
a = 7T~2, h = 1/64, and Δί = 1/32, and computed out to t — 1/4 (thus using eight 
time steps) with both the implicit and Crank-Nicolson methods. As Figures 9.11 
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Figure 9.13 Solution profile at t = | for discontinuous initial data; Crank-Nicolson method with 
implicit first step. 

and 9.12 show, the implicit method handles the discontinuity in the initial data much 
better than Crank-Nicolson does. To remove the oscillations, we have to do one of 
two things—either take Δί very small in Crank-Nicolson—small enough to make 
the explicit method stable—or we can take the first step using the implicit method, 
and then proceed with Crank-Nicolson (this smooths out the discontinuity enough 
to avoid the oscillations we see in Crank-Nicolson, without introducing too much 
error). Figures 9.11 to 9.13 illustrate this. 

Exercises: 

1. Write a program to use the explicit method to solve the diffusion equation 

Ut = uxx, t > 0,0 < x < 1; 

u(0,t) = 0; 

«(1,0 = 0; 
u(x,0) — βΐηπα:. 

which has exact solution 

u(x,t) = e-7r 'sinua;. 

(The student should check that this is indeed the exact solution.) Use h~l = 
4 , 8 , . . . , JÜ24, and take Δί as large as possible to maintain stability. Confirm that 
the approximate solution is as accurate as the theory predicts. Compute out to t = 1. 

2. Repeat Problem 1, but this time take Δί 10% too large to satisfy the stability condition, 
and attempt to compute solutions out to t = 1. Comment on what happens. 

3. Apply Crank-Nicolson to the same PDE as in Problem 1. For each value of h, adjust 
the choice of Δί to obtain comparable accuracy in the pointwise norm to what was 
achieved above. Comment on your results. Try to estimate the number of operations 
needed for each computation. 
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4. Write a program to use the explicit method to solve the diffusion equation 

v-t = uxx, t > 0,0 < x < 1; 

u(0,t) = 0; 

u(l,t) = e-*H>\ 

u(a;,0) = 8ΐηπα;/2. 

which has the exact solution 

u(x,t) = e-**t/4 smnx/2. 

(The student should check that this is indeed the exact solution.) Use h~l = 
4 , 8 , . . . , y^jj, and take At as large as possible to maintain stability. Confirm that 
the approximate solution is as accurate as the theory predicts. Compute out to t = 1. 

5. Modify the three algorithms for the diffusion equation to handle nonhomogeneous 
boundary conditions, i.e., to handle problems of the form 

ut = uxx + f(x,t), ί > 0 , 0 < ζ < 1 ; 

u{0,t) = g0{t); 

u(l , i ) - 5i (0; 
u(x,0) = u0(x); 

where go(t) and g\ (t) are not identically zero. Test your work by applying it to the 
problem defined by 

f(x,t) = -2ex-t; g0(t) = e-t; g^^e1-'; u0(x) = ex, 

for which the exact solution is u(x, t) = ex~l. 

6. Recall the definition of the matrix 2-norm: 

ii ϋΐι WAuh 
\\Ah = max , 

u /0 | |u| |2 

where || · ||2 is the usual vector 2-norm. If D is an n x n diagonal matrix, use this 
definition to show that 

IIUIU = max Idyl, 
" " l<fc<n 

where da are the diagonal elements of D. 

7. Let Q be an arbitrary n x n orthogonal matrix; show that IIQH2 = 1. 

8. Compute the number of operations needed to compute out tot — T using the explicit 
method, as a function of n, the number of points in the spatial grid. Assume that the 
time step is chosen to be as large as possible to satisfy the stability condition. 

9. Compute the number of operations needed to compute out to ί = Γ using Crank-
Nicolson, taking Δί = ch for some constant c > 0, again as a function of n, the 
number of points in the spatial grid. 
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10. Consider the nonlinear equation 

ut = Î Î „ + Vuux. 

Take uo(x) = βϊηπχ and homogeneous boundary data, and solve this using the 
explicit method, taking Δί to be 90% of the maximum value allowed for stability. 
Compute out to t = 1, and plot your solution, for V = 1,5,10. 

11. Write down the nonlinear system that results from applying the implicit method to 
Problem 10, using h = | . How might you try to solve this system? 

12. One way to attack this kind of nonlinear system would be to treat the uxx term as usual 
in the implicit method, but treat the nonlinear term explicitly, i.e., use [uux){xi, tn) 
in the discretization. Write a program to do this approximation and compare your 
results to the fully explicit method in Problem 10 

9.2 FINITE ELEMENT METHODS FOR THE DIFFUSION EQUATION 

In §6.10.3 we outlined the finite element method for two-point boundary value problems. 
Can we do something like that for the diffusion equation? Of course we can. Consider the 
following simple example: 

ut = auxx + f{x,t) 0 < x < 1, t > 0, (9.22) 

u(0,i) = 0, (9.23) 

«(1,0 = 0, (9.24) 

u(x,0) = u0{x). (9.25) 

It is relatively straight-forward to apply a finite element discretization to this problem. We 
assume a grid on [0,1] so that 

0 = xo < x\ < · ■ ■ < XN-I < XN = 1 

and then look for an approximate solution in the form 

N-l 

Uh{x,t) = Ύ^ν,{ί)φΗά{χ), 
3 = 1 

where the φ^ are the tent functions from §6.10.3. Note that the coefficients {VJ} are now 
taken to be functions of time, instead of constants. We proceed generally as we do in 
§6.10.3: First, multiply the PDE (9.22) by a smooth function v which also satisfies the 
boundary conditions, and integrate by parts over the interval. We get 

/ ut(x,t)v(x)dx + a ux(x,t)vx(x)dx — / f(x,t)v(x)dx. 
Jo Jo Jo 

This is analogous to (6.105). We now replace u with Uh and v with φ^ to get 

j H ( # ( * ) ) ( 5 > ; ( t ) # ( * ) ) + α ( 0 ? ( ζ ) ) , ί $ > * ( * ) ( $ ( * ) ) ' ) \dx=Jjt(x)f(x)dx 
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As in (6.106), this looks very imposing, but it can quickly be reduced to the following 
system of ordinary differential equations for the coefficients Vj (t): 

Mv'h(t) + Kvh(t) = Fh, (9.26) 

where 

m 

and 

kij=a [ ( ^ ( x ) ) ' ( ^ ( x ) ) ' d x , 
Jo 

■a = ί ΦΪ{χ)<ή{χ)άχ, 
Jo 

Ff(t)= ί /(χ,ί)φ^χ)άχ. 
Jo 

The matrix K is very similar to the coefficient matrix from §6.10.3, and is usually called 
the stiffness matrix, a terminology that comes out of the field of structural dynamics; M is 
similarly often called the mass matrix. Because of the local nature of the tent functions, 
both are tridiagonal. If the grid is uniform, with 

for all i, then we have 

and 

iZ/^-|-]_ Jui — fl 

K = - t r i d i a g ( - l , 2 , - l ) 
h 

M = - / i tridiag(l,4,1). 
6 

If the grid is not uniform, then the matrices are of course not this simple. 
We can apply this to the same example that we used in §9.1, but first we have to figure 

out how to solve the ODE system (9.26). 
We can use almost any of the methods from Chapter 6, but we choose the trapezoid 

rule method, which is essentially the basis for Crank-Nicolson. This leads to the implicit 
time-stepping 

M + \αΔΛκλ vn+1 =(M- ^aAtK^ vn + ±At(F?(tn+1) + F${tn)). 

Let's look at an example. 

■ EXAMPLE 9.4 

We take as our problem the same example we have been looking at in this section: 

ut = —^uxx, ί > 0 , 0 < χ < 1 ; 

u{0,t) = 0; 

u( l , i ) = 0; 

u(x, 0) = βϊηπχ+ 8ΐη2πχ. 

Since Crank-Nicolson time-stepping is unconditionally stable, we take Δί = h and 
compute out to t = 1. Our plots of the maximum absolute error, akin to the several 

http://www.it-ebooks.info/


5 3 8 A SURVEY OF NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 

0 0.1 0 2 0.3 0.4 0.5 0.6 07 0 8 0.0 I 

Figure 9.14 Error (unsealed) in finite 
element approximation of diffusion 
equation, h = At = 1/32. 

Figure 9.15 Error (scaled) in finite 
element approximation of diffusion 
equation, h = At = 1/32. 

Figure 9.16 Error (unsealed) in finite 
element approximation of diffusion 
equation, h = At = 1/32, Tmax = 3. 

Figure 9.17 Error (scaled) in finite 
element approximation of diffusion 
equation, h = At = 1/32, Tmax = 3. 

plots produced earlier in the chapter, are given in Fig. 9.14 to Fig. 9.17. Note that 
the error here is less than for Crank-Nicolson differencing. 

Note that the scaled error is beginning to rise. Is this the result of some instability 
in the computation? No, it is not. The fact that it is a smooth rise suggests that it 
is not. In addition, this is the scaled error; the unsealed error is not rising. This is 
simply a reflection of the fact that the error is declining more slowly with time than 
is the solution. 

Exercises: 

1. Use a finite element approach to solve the problem 

ut = auxx, 0 < x < 1, t > 0, 

u(0,t) = 0, 

tt(l,t) = 0, 

u(x, 0) = uo(x) = βϊηπχ + 8ΐη4πχ. 

(9.27) 

(9.28) 

(9.29) 

(9.30) 
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For a = l /π 2 , this has the exact solution u(x,t) = e 'βϊηπχ + e 16tsin47r:r 
(Confirm this.2) 

2. Use a finite element approach to solve the problem 

ut = auxx + 1, 0 < x < l , f > 0 (9.31) 

u{0,t) = 0 (9.32) 

u( l , i ) = 0 (9.33) 

u(a:,0) = u0(x) = <j>hM{x), (9.34) 

where φ1^ (x) is the "hat function" centered nearest the middle of the interval. Solve 
the problem for a range of (positive) values of o, and compute out to t = 1. How 
does the value of a affect the results? 

3. Discuss how you know that your code is working in Problem 2, given that we have 
no exact solution. 

4. Use a finite element approach to solve the problem 

ut = auxx, 0 < x < 1, t > 0 (9.35) 

u(0,t) = 1 (9.36) 

u(l,t) = 0 (9.37) 

u(x, 0) = UQ(X) = sinnx (9.38) 

For various values of h, solve this using the finite element method, for a — 1. Plot 
your solutions for several values of t. 

5. Repeat Problem 4, this time using different (positive) values of a, the diffusion 
coefficient. How does varying a affect the solution? 

< · · · > 

9.3 DIFFERENCE METHODS FOR POISSON EQUATIONS 

9.3.1 Discretization 

In this section we discuss methods for the approximate solution of PDEs of the form 

- Δ « = / , {x,y)eD;u = g, (x,y)eT = dD, 

where Δ is the Laplace operator, 

_d2u d2u 
~ dx* + dy2 ' 

2The author is chagrined to admit that several exercises in the Revised Edition had very "inexact exact solutions." 

He would like to try to claim that it was all done deliberately, to catch unwary students who failed to check these 
things, but that would be a claim of dubious honesty. So, be advised! 
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D is an open, connected subset of M2 ; and Γ is the boundary of D. The unknown function u 
therefore depends on two independent variables x and y. Equations of this type are known 
as Poisson equations, after the French mathematician Siméon-Denis Poisson.3 

For simplicity's sake we will assume that D is the unit square (0,1) x (0,1), although 
much more general domains and, of course, much more general equations can be considered. 
It is also possible to consider problems posed in three dimensions. 

In terms of the general theory, problems of this form have much in common with the 
boundary value problems studied in §6.10.1. The approximation is constructed by replacing 
the derivatives in the PDE with difference quotients, resulting in a system of linear equations. 
While we can apply Gaussian elimination and similar ideas to the solution of these systems, 
the size of the problem often mandates that we look at different methods. 

Since the difference methods are fairly straightforward to apply, we will spend most of 
our time discussing efficient means for solving the large systems of linear equations that 
result from discretizing such problems. Thus, although the chapter is about approximating 
PDEs, this section has more to do with linear algebra than anything else. 

We first define grids in both the x and y directions, in the usual way: 

0 = XQ < X\ < X2 < · ' · < XN-1 < %N — 1 

and 

0 = yo < 2/1 < 2/2 < · · · < VM-I < 2/M = 1· 

For simplicity's sake, we assume that TV = M, which implies an equivalent grid, with the 
same spacing h in each direction. We denote the approximate solution as the array of values 
Uij « u(xi, yj), where Χχ and yj are points on a grid over D. Second, we use these in the 
usual difference approximation to the second derivative to write the approximate form of 
the PDE as 

Ui+ij — 2uij + U i - i j 

h2 h2 
= f(xi,yj) (9.39) 

which can be simplified somewhat to yield 

-Ui+ij - Ui-u + 4uitj - Uij+i - tii,j-i = h2fij, 1 < i, j < N - 1, 

where we have written fij = f(xi,yj). This is a system of (TV — l ) 2 equations in 
(N - l ) 2 unknowns. To write it in a matrix-vector format, we define the vector Uh as a 
one-dimensional arrangement of the Uij values: 

Uh = (U1,1,«1,2,U1,3,· · · )Ul ,JV-l , 1*2,1,. · · , U j V - l , W - l ) T · 

We could just as easily have ordered the mtj in another way (by columns, instead of rows, 
for example). The ordering of the unknowns can make a difference, especially in more 
complicated settings. 

3Siméon-Denis Poisson (1781-1840) was bom in Pithiviers, France, about 50 miles south of Paris. He was sent 

by his father to become a doctor, but the young Poisson had little interest in medicine, and lacked the manual 
coordination necessary to be a surgeon. He was then enrolled in the École Centrale, where his mathematical talent 
was first recognized. He was encouraged to apply to the École Polytechnique, which he entered in 1798. (Two of 
his teachers were Laplace and Lagrange.) He published over 300 articles in a wide range of areas. His name is 
attached to this differential equation because of his study of potential theory, published in the journal Bulletin de 
la Société Philomatique in 1813. 
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The resulting linear system can be quite large but has a very interesting structure. For 
TV = 4, we have the following 9 x 9 system: 

4 
- 1 

0 
- 1 

0 
0 
0 
0 
0 

- 1 
4 

- 1 
0 

- 1 
0 
0 
0 
0 

0 
- 1 

4 
0 
0 

- 1 
0 
0 
0 

- 1 
0 
0 
4 

- 1 
0 

- 1 
0 
0 

0 
- 1 

0 
- 1 

4 
- 1 

0 
- 1 

0 

0 
0 

- 1 
0 

- 1 
4 
0 
0 

- 1 

0 
0 
0 

- 1 
0 
0 
4 

- 1 
0 

0 
0 
0 
0 

- 1 
0 

- 1 
4 

- 1 

0 " 
0 
0 
0 
0 

- 1 
0 

- 1 
4 

"1,1 " 

"1 ,2 

" 1 , 3 

"2,1 

"2 ,2 

"2 ,3 

"3 ,1 

"3 ,2 

. U 3 , 3 . 

= \ίλ 

Γ /l,l 1 
/ l , 2 

/ l , 3 

Λ.ι 
/2,2 

/2,3 

/3,1 

h,2 
/3,3 

(9.40) 

We can take advantage of the structure in this system by defining some notation. Let 

K = 

and denote by Ui the column subvector of elements Uij,l < j < N — 1 (and similarly for 
fi). Then we can write the large system more compactly as 

4 
1 
0 

- 1 
4 

- 1 

0 
- 1 

4 

K 
-I 

0 

-I 
K 

-I 

0 
-I 
K 

" 1 

" 2 

" 3 

= Κλ 

h 
h 
h 

There are a number of things that can be observed about this system of equations. The 
most important one, for our purposes, is that it contains a lot of zeros. In fact, the coefficient 
matrix is "mostly" zeros. Of 0(N4) elements in the matrix, only 0(5N2) will be nonzero. 
Some of the other properties—the symmetry, the very nice and tidy block structure, the 
simplicity of the numbers—will be drastically affected by changes in the original PDE or 
the computational parameters or the shape of the domain D. But the sparseness of the 
matrix will remain. 

We could solve this system by applying the standard techniques from Chapter 7, and for 
moderate-sized problems, this is perhaps the best choice. The coefficient matrix is SPD, 
so the Cholesky algorithm is the natural first choice. However, for very large problems, 
so-called direct solution algorithms are not the best choice. They take too much computer 
time, and use too much computer storage. 

An alternative approach is to use an iterative technique like those studied in §7.7 to solve 
the system. This seems counter-intuitive, perhaps, since we have available direct methods 
for solving linear systems exactly. Why would we use an iterative method that is only going 
to approximate the solution? The answer lies in the size of the problem. For large values 
of N—in other words, for small values of the mesh parameters—performing Gaussian 
elimination on a system such as (9.40), but for larger N, will involve an enormous amount 
of computer storage, and the overhead in managing that storage can make the computation 
excessively expensive (even on modern computers). On the other hand, the iterative 
techniques that are used in practice converge very quickly, and the individual iterations are 
so cheap that the overall algorithms are cost-competitive with Gaussian elimination. 
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9.3.2 Banded Cholesky Solvers 

Note that the coefficient matrix in our example above is entirely zero outside of three sub-
or super-diagonals of the main diagonal. This is the essential feature of a banded matrix, 
that all the elements are zero if we are far enough away from the diagonal. Formally, we 
say a that matrix A is banded, with half-bandwidth p, if 

ai,j = 0 

for all i,j suchthat \i — j \ > p. Thus, our example is banded with half-bandwidth p = 3. 
The important feature of banded systems is that the elimination algorithm can be carried 

out "within the band." That is, we don't need to access, loop through, or even store those 
elements outside the band. This allows us to write elimination and solution routines that 
not only run faster but use much less storage. 

To illustrate, consider a Cholesky factorization routine applied to systems such as (9.40). 
A naive approach, ignoring the band structure, would waste a lot of time looping through 
indices of elements that are always zero, in addition to the storage costs of saving all those 
zeros. To save storage, we have to decide upon a scheme by which we put the band of 
the original matrix A into a smaller array, and then we have to modify the indexing of our 
factorization algorithm accordingly. 

Perhaps the simplest storage scheme is to store each column below (and including) the 
main diagonal as a column in a rectangular array. Thus we store the band of our example 
,4 as 

4 
- 1 

0 
- 1 

4 
- 1 

0 
- 1 

4 
0 
0 

- 1 

4 
- 1 

0 
- 1 

4 
- 1 

0 
- 1 

4 
0 
0 
0 

4 
- 1 

0 
0 

4 
- 1 

0 
0 

4 
0 
0 
0 

Instead of being a full 9 x 9 , this is only 4 x 9. In terms of the discretization parameters, 
instead of storing a matrix of size (TV — l ) 2 x (N — l ) 2 , we can get by with one that is 
N x (N — l ) 2 . In large problems, this can be a substantial savings. 

To finish the banded algorithm, we need an index map that takes us from the indices 
for the original matrix A and returns the appropriate indices for the band-only array BA-
One advantage of the band storage system that we have chosen to use is that all of the 
second (i.e., column) indices remain the same. Thus, all we need to do is determine the 
single-variable map that takes us from aitj to &£- > .. A little experimentation with the 
indices ought to convince the reader that the map we want is 

HhJ) =»-.7 + 1, 

so that we get our band algorithm by replacing every occurence of aitj in our Cholesky 
factorization with 6£(i .. .. This gives us Algorithm 9.1. 

The scheme we have used here to handle the banded matrix is somewhat crude, but easy 
to understand. It is possible to construct much more sophisticated procedures that allow 
us to efficiently handle matrices that have "variable bandwidths" as we move down the 
diagonal. Some discussion of this is in the text by Watkins [16]; a complete treatment is in 
Duff et al. [5]. 

This is the type of algorithm that is used in the next section in the comparison tests 
with the conjugate gradient and other iterative methods. Although this is a very reasonable 
approach to take, for problems where a fine grid is required to obtain the accuracy needed 
in the PDE approximation, the storage requirements will still be excessive on any but the 
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largest computers; note, also, that even with the band storage system, as n gets larger we 
have to store a lot of elements that begin as zeros, but which are overwritten with nonzeros 
during the elimination process. (This is known as "fill-in.") This is why we are led to the 
use of iterative methods. 

Algorithm 9.1 Band-limited Cholesky Algorithm (with Band Storage). 

Here the matrix is stored in the variable ba with only that part within the band being stored. 
The matrix thus has n rows and n2 columns. The function kk is the index map and is defined 
by 

kk(i,j) = i - j + 1. 

ba(kk(l,l),l) = sqrt(ba(kk(l,l),1)) 
for i=2,n do 

ba(kk(i,l),l) = ba(kk(i,l),l)/ba(kk(l,l),1) 
end 
for j=2,n2-l do 

sum = O.OdO 
kmin = max(l,j-n+1) 
for k=kmin,j-l do 

sum = sum + ba(kk(j,k),k)*ba(kk(j,k),k) 
end 
ba(kk(j,j),j) = sqrt(ba(kk(j,j),j) - sum) 
imax = min(n2,j+n-1) 
for i=j+l,imax do 

sum = O.OdO 
kmin = max(l,j-n+1) 
for k=kmin,j-l do 

sum = sum + ba(kk(i,k),k)*ba(kk(j,k),k) 
end 
ba(kk(i,j),j) = (ba(kk(i,j),j) - sum)/ba(kk(j,j) ,j) 

end 
end 
sum = O.OdO 
for k=n2-n+l,n2-l do 

sum = sum + ba(kk(n2,k),k)*ba(kk(n2,k),k) 
end 
ba(kk(n2,n2),n2) = sqrt(ba(kk(n2,n2),n2) - sum) 

9.3.3 Iteration and the Method of Conjugate Gradients 

In §7.7 we looked at some very simple iterative methods for solving large sparse linear 
systems. In this section we will show how to implement them when applied to the type 
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of systems generated by discretizing Poisson equations. We will also introduce a very 
powerful iterative technique, the method of conjugate gradients. 

Recall the equation for the approximate value at (xi,yj): 

-Ui+ij - Ui-ij + 4uij - uitj+i - uitj-i — h2fitj. (9.41) 

We can solve this for Uij as follows: 

ui,i = 7 (u'+i.i + U « - I , J + u»,j+i + ui,j-i + h2fi,j) ■ (9.42) 

Suppose now that we take u\ ■ to be an initial guess, for 1 < i < N — 1 and similarly for 
j , and convert (9.42) into an iteration: 

This is the same as the Jacobi iteration applied to the original system defined by (9.41), 
as can be seen by a modest manipulation (Problem 1). Thus, the Jacobi iteration can be 
implemented by a very simple set of loops. 

The Gauss-Seidel iteration is not much more complicated than Jacobi. We have 
(Problem 2) 

«i?1} = \ («ffij+«&Ϊ+«SVi+«ί£ϊ+^) · 9̂-44) 
Note that some of the u values on the right side are at iteration k, and some are at iteration 

k + l. This is how Gauss-Seidel differs from Jacobi: We are using the most current value 
of the approximate solution for those elements for which it has been computed. This leads 
to an algorithm that is actually more compact than for Jacobi. 

The most complicated of the three splitting methods is SOR. The best way to organize 
the SOR iteration is to first take a Gauss-Seidel step: 

and then average this value with the previous iterate value, using the relaxation parameter: 

u £ + 1 ) = urn + (1 - uj)u\kj. (9.45) 

Problem 3 asks the student to show that this is equivalent to the matrix formulation in 
Chapter 7. Note that if ω = 1, then Gauss-Seidel and SOR are equivalent. 

Of course, the convergence behavior of the SOR iteration will be heavily dependent 
on the choice of ω. A very complete theory for the choice of the "best" value of ω is 
available [17] for the types of SPD systems that come from discretizing Poisson equations. 
The precise details are more than we want to get into in this text, but a summary of the 
important results is the following. 

Theorem 9.4 If the system of equations Au = fcomesfrom discretizing a Poisson equation 
of the form 

— CL\UXX — (l2Uyy + Ü3U = f, 

where a\ > 0, a-i > 0, and 03 > 0, and the unknowns are ordered within the vector u 
either row-wise or column-wise, then: 
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1. The spectral radius of the Jacobi iteration matrix, pj, and the spectral radius of the 
Gauss-Seidel iteration matrix, pas, are related according to 

PGS = P2j\ 

2. The "best" value of ω for the SOR iteration ("best" in the sense that it leads to the 
smallest spectral radius for the SOR iteration matrix) is given by 

2 
ω* = / * · 

l + y/T^fi 
Note that to use the optimal value of ω we apparently have to solve an eigenvalue problem 

first. In practice, an SOR iteration is usually begun with ω = 1, which is Gauss-Seidel, 
and from the way that the iterates change it is possible to estimate pas and therefore pj, 
thus allowing us to use an estimate of the optimal ω (see Problem 6). However, there is no 
denying that the need to come up with a value for ω makes effective use of SOR difficult, 
and is one reason that it is no longer as widely used as it once was. 

The most important modem technique for the solution of large, sparse symmetric linear 
systems is known as the method of conjugate gradients, or "CG." The basic ideas go back 
to the mid-1950s, but the utility of the method was not completely recognized until the late 
1980s. A full treatment of the theory underlying the method requires more background 
than we have assumed here, so we will simply present the algorithm and outline some of 
the major ideas. Several more omplete treatments are in the references [4, 9,12]. 

Theorem 9.5 Let A e R n x n be given, SPD. For any f € Kn, the vector u e R " satisfies 
u = .A-1 / if and only if 

(«, Au) - 2{u, f) < (v, Av) - 2(v, f) 

forallveW-.u^v. 

The point of the theorem is that we can find the solution of Ax = b by finding the vector 
that minimizes 

4>{u) = {u,Au)-2(u,f). 

Many techniques exist for the solution of minimization problems, and many have the form 

where a* is a scalar (called the step length) and p^ is a vector (called the search direction). 
Thus, we go from the current approximate minimizer to the next approximate minimizer 
by determining a direction in which to move, and a distance to go along that direction. 
Often, ctk is chosen to minimize φ along the search direction. Obviously, a lot will depend 
on how the search direction is chosen. 

The CG method works by choosing the search direction so that the residual vectors 
r(fc) = b — Ax^ are all mutually orthogonal: 

(r(*>,rU)) = 0, k^j. 

It therefore follows that if A is m x m, then r ^ = 0, because otherwise we would have 
m + 1 mutually orthogonal vectors in an m-dimensional space. (See Problem 5) Thus, CG 
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is not really an iterative method, since it finds the theoretically exact solution in a finite 
number of steps. However, as a practical matter, CG converges much faster than this would 
suggest, as some of the exercises demonstrate. 

The complete algorithm is as follows: 

Algorithm 9.2 Conjugate Gradient Iteration. 

Assume A e SPD and compute as follows. 

1. Given u^°\ the initial guess, compute r^ — f -
the convergence tolerance. 

2. For k = 1 to convergence do 

(a) w = Ap^k~1^; 

(b) a = (r<*-1>>r(fc_1))/(P(fc~1).«>).· 
(c) uW = u^ - 1 ) + ap{k-l); 

(d) r^ = r ^ - 1 ' - aw; 

(e) //||r-W||2 < e then stop; 

(f) 0 = (r<fc>,r<fe>)/(r<fe-1>,r(fe-1)); 

(g) p<*> =rW+ßp(k-l\ 

-AuW andpM = = r(0). Let e be 

Note that we can execute this algorithm using only the storage for the matrix plus four 
additional vectors (u, w, r, and p), since we can over-write the values from one iteration 
onto the next. In addition, we do not really need to store the entire matrix A; all we have 
to do is have a routine that can compute the product w = Ap. For a matrix as structured 
for the discretization of Poisson equations, this can be done very efficiently and with a 
minimum of storage. 

■ EXAMPLE 9.5 

To compare the performance of all four of these methods, we will try them each out 
on the linear system that we get from the PDE 

-Au = f(x, y), (x,y) = (0,1) x (0,1) e R; (9.46) 

u = 0, (x,y)edR, (9.47) 

for f{x,y) = (2 + π2τ/(1 — y))sinnx + (2 + π2χ(1 — x))sinny, which has the 
exact solution 

u(x, y) — y(l — y)smwx + x(l — x)sinny. 

The discretization we are using is second-order accurate, so taking h = 1/100 gives 
us an expected error on the order of 10 - 4 ; it also means that TV = 992 = 9801. 
Doing a direct solution, even taking advantage of the symmetry and band structure 
of the matrix, would require working with a 99 x 9801 rectangular matrix, thus, 
we would have to store 970,299 elements. Table 9.2 shows the results for each of 
the four iterations for a sequence of values of h"1 = 4 ,8 ,16 , . . . , 128; we show 
the number of iterations to convergence, an estimate of the number of "flops," or 
floating-point operations (additions, subtractions, multiplications, divisions, square 
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roots) performed in doing the computation, and the error between the exact solution 
and the converged iteration, measured in the infinity norm. For SOR the optimal ω 
was precomputed and used, which is entirely unrealistic but allows us to see the best 
possible performance for SOR. 

Table 9.2 Iterative solutions of (9.46)-(9.47). 
Jacobi Iteration 

ft"1 

4 
8 

16 
32 
64 

128 

Iterations 
15 
82 

406 
1917 
8827 

39921 

Error 
1.1E-02 
2.5E-03 
6.3E-04 
1.6E-04 
3.9E-05 
9.8E-06 

Flops 
1908 

56,350 
1,279,350 

25,793,240 
490,489,020 

9,014,433,584 

Gauss-Seidel Iteration 
ft"1 

4 
8 

16 
32 
64 

128 

Iterations 
9 

42 
204 
960 

4415 
19962 

Error 
1.2E-02 
2.6E-03 
6.3Ε-Ό4 
1.6E-04 
3.9E-05 
9.8E-06 

Flops 
1152 

28,910 
643,050 

12,917,762 
245,331,828 

4,507,571,630 

SOR Iteration with optimal ω 
h'" 

4 
8 

16 
32 
64 

128 
256 

Iterations 
6 

15 
33 
72 

158 
354 
831 

Error 
1.3E-02 
3.3E-03 
8.0E-04 
2.0E-04 
4.9E-05 
1.3E-05 
3.2E-06 

Flops 
990 

13,328 
134,100 

1,247,378 
11,295,774 

102,806,246 
972,774,000 

Conjugate Gradient Iteration 
/ i - 1 

4 
8 

16 
32 
64 

128 
256 

Iterations 
3 
5 
9 

17 
39 
86 

178 

Error 
6.8E-03 
1.7E-03 
4.2E-04 
1.0E-O4 
2.6E-05 
6.5E-06 
1.6E-06 

Flops 
291 

3,045 
27,465 

232,593 
2,270,331 

20,596,860 
172,771,680 

The iterations were all stopped when the residual f — Au was smaller than /i4; 
Jacobi, Gauss-Seidel, and SOR measured this in the infinity norm, but the 2-norm 
is much more natural for CG. This makes the comparison something of an "apples 
and oranges" comparison, but it allows us to use the most natural norms for each 
method. Making the convergence tolerance dependent on h was done to ensure 
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that the iteration error was much less than the ö(h2) mathematical error in the 
approximation technique. For comparison's sake, the solution of the same system on 
the same computer, using a Cholesky factorization that took advantage of the band 
structure of the matrix, is summarized in Table 9.3. Note that'CG was just as accurate 
as the Cholesky decomposition, but much cheaper in terms of the operation count. CG 
was also faster than the three splitting methods. Moreover, CG does not depend on a 
parameter like SOR does. Note that SOR and CG were the only methods for which 
we could run the n = 256 case. This last point deserves emphasizing, since one of 
the drawbacks to a direct solution technique such as the Cholesky decomposition is 
the memory requirement for storing even a band-limited form of the matrix. Figs. 
9.18 and 9.19 show the solution and error surfaces, respectively.4 

Table 9.3 Cholesky solution of (9.46). 
/ i - 1 

4 
8 
16 
32 
64 
128 

Error 
6.8298357260145E-03 
1.6705855964484E-03 
4.1526959889103E-04 
1.0366786255403E-04 
2.5907605235998E-05 
6.4763166429495E-06 

Flops 
322 

6,974 
122,230 

2,029,286 
33,021,382 

532,642,694 

Figure 9.18 Surface plot of Figure 9.19 Plot of the error in Fig. 
approximate solution to (9.46)-(9.47), 9.18. 
using h = 1/16. 

The method of conjugate gradients requires that the matrix A e SPD, thus it will not 
work if the Poisson equation has a term such as b(x, y)ux in it (see Problem 8). CG can be 
applied to asymmetric problems by multiplying by AT; i.e., if we want to solve the linear 
system 

Au = f 

4Color versions of these plots should be on the text website. See the preface for details on how to access the 

online material. 
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for A φ AT, we apply CG to the new system 

ATAu = ATf. 

If A is nonsingular, then ATA is SPD, and this can be implemented with only modest 
additional work in the algorithm (see Problem 9). However, it can be shown that the 
condition number of AT A is the square of the condition number of A, and this can have 
drastic effects on the convergence of the CG algorithm. The development of an efficient 
version of CG that can be applied to asymmetric problems is a very active area of numerical 
analysis research. 

The fundamental error and convergence theorem for CG can be stated once we define 
two notations, the first of which we used in Chapter 8. 

Definition 9.1 (Spectrum of a Matrix) If A is a square matrix, the set σ(Α) is the set of 
all eigenvalues of A. 

Definition 9.2 For any k, the set Qk will denote all polynomials p of degree k with the 
additional property that p(0) = 1. 

Then the basic theorem is as follows. 

Theorem 9.6 Let the CG algorithm be applied to the solution of the linear system Au = / , 
with A e SPD. Let u^ denote the kth iterate. Then the error satisfies 

< y/K2{A) I max min |ρ(λ)| ||it — zt1 J||2-
\λε<τ(Λ) peQfc / 

Stating the error in terms of a minimum over a set of polynomials allows us to use some 
advanced properties of Chebyschev polynomials to obtain the following very conservative 
result. 

Theorem 9.7 The error in CG satisfies the conservative upper bound 

\y/K2{A) + lJ 

From this we see why the condition number of A is so important. For a poorly 
conditioned matrix, the method can converge very slowly, and this leads to the idea of 
preconditioning. If we want to solve the system 

Au = f, (9.48) 

this is equivalent (assuming that S is nonsingular) to solving 

SASTS-Tu= Sf 

or, 
SASTv = Sf (9.49) 

for u = STv. Note that the product SAST is always symmetric; moreover, if (STS)~1 — 
M « A, then it can be shown that 

K2(SAST) « 1; 
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thus, the CG iteration for solving (9.49) will converge more quickly than the CG iteration 
for solving the original system, and we recover u from v via u = STv. We can organize 
the CG iteration applied to the preconditioned system in such a way that we only need to 
do a few extra computations. 

Algorithm 9.3 Preconditioned Conjugate Gradient Algorithm. 

1. Given u^, the initial guess, compute r^ 
Let e be the convergence tolerance. 

2. For k = 1 to convergence do 

(a) w = Ap(k~1'>; 

(b) a=(z(*-1>,r ( f e - 1 ) ) / (P ( f c~1 ) . 
(c) uW = vSk-x) +ap(k-1'>; 

(d) r<*> = r(fc_1) - aw; 

(e) //||r(fc)||2 <e then stop; 

(f) «(*) =M-Mf c>,· 

(g) ß = (zW,rW)/{zlk-1\rVe-

(h) p(fc> = zW+ßp&-1\ 

w); 

l)); 

= / --Au^andpW = z<°> = M'1^. 

Note that we do not actually compute the inverse of M; rather, we solve the system 
MZW — r{k)_ This means that the preconditioner must be a matrix for which the linear 
systems problem is easier to solve than it is for A. 

The choice of preconditioners is an active area of research. Common choices amount to 
some kind of partial factorization of the original matrix A, or some direct approximation 
to A'1. 

One choice is the so-called incomplete Cholesky factorization; in this method, we 
compute only those elements of the Cholesky factorization of A that correspond to nonzero 
elements of A. (This avoids the massive fill-in that slows down the Cholesky factorization.) 
If L is the incomplete Cholesky factor, then the preconditioner is M = LLT. The solution 
of the preconditioning equation is simple because M is already factored, so the solution 
for z^ is accomplished by a couple of triangular solution steps. 

Table 9.4 shows the results of using a simple incomplete Cholesky preconditioner to 
solve our model problem; note that the number of iterations to convergence decreased 
markedly, but the operation counts are initially actually greater, and it is only for the 
larger problems that the preconditioning pays off. This is because the preconditioning step 
involves a nontrivial number of additional operations. 

See Chapter 10 of Saad [ 12] for a good introduction to preconditioning ideas. MATLAB 
contains software to implement some preconditioners. 

Time-Dependent Problems and Finite Elements Two questions appear to be unan-
swered here: 

1. Can we treat higher-dimensional problems for the diffusion equation, such as prob-
lems governed by the PDE ut = a(uxx + uyy)l 

2. Could we apply the finite element method to the Poisson equation? 
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Table 9.4 Incomplete Cholesky preconditioned conjugate gradient solution of (9.46). 
/ i - 1 

4 
8 

16 
32 
64 

128 
256 

Iterations 
2 
3 
5 
9 

16 
30 
59 

Error 
6.8E-03 
1.7E-03 
4.6E-04 
1.6E-04 
5.9E-05 
1.7E-05 
4.7E-06 

Flops 
799 

6,027 
42,667 

309,387 
2,195,175 

16,373,343 
128,241,523 

The answer to both equations is an emphatic yes, and it was simply an editorial judgment 
on the author's part to skip these issues. We have probably already stretched the boundaries 
of what should be in an introductory text! 

Exercises: 

1. Show that the Jacobi iteration (9.43) is equivalent to the matrix iteration (7.19) from 
Chapter 7. 

2. Show that the Gauss-Seidel iteration (9.44) is equivalent to the matrix iteration (7.20) 
from Chapter 7. 

3. Show that the SOR iteration (9.45) is equivalent to the matrix iteration (7.22) from 
Chapter 7. 

4. What is the truncation error in the approximation defined by (9.39)? 

5. Letxi,X2>· · ι^η- ι ,^η be orthogonal vectors in a vector space V of dimension n. 
Show that if z e V is orthogonal to each one of the Xk, then z = 0. 

6. For an iteration of the form 

show that 

«(*+!) = TV,™ + c, 

| | u (*+l) _« (*) !■ 
< ΙΙΓΙΙ ||u(fe)_u(fc-l)| 

Can we use this to estimate pj and therefore ω»? Hint: Recall Problem 8 from §7.7. 

7. Write programs to do 

(a) Banded Cholesky; 

(b) CG; 

Test your program on the example problem defined by 

—Au — 7r2sintfxsin7n/, (x, y) e (0,1) x (0,1), 

with u — 0 on the boundary, using h = | . 
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8. Discretize the Poisson equation 

-uxx - uyy + bux = / ; (x, y) G (0,1) x (0,1); 

u(x, 0) = u(x, 1) = 0; x G (0,1); 

u ( 0 , i / ) = « ( l > y ) = 0 ; y e ( 0 > l ) ; 

in the case h= | , b φ 0. Is the resulting system symmetric? 

9. Consider the linear system problem 

Au = f, 

where A is not symmetric. Modify the CG algorithm to solve the symmetrized 
system 

ATAu= ATf 

without explicitly forming the matrix ATA. 

10. Write a code to implement the algorithm you wrote in Problem 9. Test it on the 
system obtained by discretizing the PDE 

—uxx — Uyy + ux = πcosπχcos7Γy + 2π2 sinπχsinπ?/; (x, y) G (0,1) x (0,1); 

u(x,0) =u(x, 1) = 0 ;xG(0, l); 

u(0,y) = u(l,y) = 0 ;yG(0 , l ) ; 

for h = \ and h = | . The exact solution is u(x, y) = βίηπχβΐηπ?/; use this to 
ensure your algorithm is working properly. 

11. How does the discretization change when the boundary data is nonhomogeneous 
(i.e., nonzero)? Demonstrate by writing down the discrete system for the PDE 

—uxx - uyy = -2ex~y; (x, y) G (0,1) x (0,1); 

it(x,0) = eI ; u(x, 1) = e x _ 1 ; x G (0,1); 

u(0,y) = e-y;_ u(l,y) = el-y; y G (0,1); 

for h — | . Hint: It will help to write the values of the approximate solution at the 
grid points in two vectors, one for the interior grid points where the approximation 
is unknown, and one at the boundary grid points where the solution is known. 

12. Apply the following solution techniques to the system in Problem 11, this time using 
h = | . Use the exact solution of u(x, y) = ex~y to verify that the code is working 
properly. 

(a) Jacobi iteration; 

(b) Gauss-Seidel iteration; 

(c) SOR iteration using ω = 1.4465; 

(d) Conjugate gradient iteration. 

< · · · D> 
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9.4 LITERATURE AND SOFTWARE DISCUSSION 

The numerical solution of partial differential equations is one of the most active areas of 
numerical analysis research, and is usually not treated extensively in undergraduate texts. 
Good sources for the basic difference methods that we outlined here are the books by Ames 
[1], Smith [13], Morton and Mayers [11], and Strikwerda [15]. A classic, though by now 
somewhat dated source is the book by Forsythe and Wasow [6]. The question of numerical 
methods for the resulting linear systems gets extensive treatment. The best references for 
the CG method are Datta [4], Kelley [9], and Saad [12]. More classical iterative methods 
appear in the books by Young [17], Hageman and Young [7], and Birkhoff and Lynch [2]. 

One class of equations not treated here are those first-order equations often styled as 
"conservation laws." The general form of the equation in one space dimension is 

ut + (f(x,u))x = 0. 

These are important equations in areas such as fluid flow and gas dynamics; a good reference 
is the book by LeVeque [10]. 

Perhaps the most important technique for approximating solutions to PDEs is the finite 
element method, which is sufficiently complicated that it deserves its own course. The 
classic reference is the book by Strang and Fix [14]; a more modern treatment is the book 
by Brenner and Scott [3]. 

Easy-to-use software for approximating the solution of PDEs is difficult to write and 
therefore difficult to find. The generality of the problem, the need to specify solution 
techniques, data functions, problem geometries, boundary conditions, etc., all make it a 
challenging project. MATLAB contains a number of tools to assist in this. 
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CHAPTER 10 

AN INTRODUCTION TO SPECTRAL 
METHODS 

In Chapters 6 and 9 we discussed using finite difference and finite element methods to get 
approximate solutions to ordinary and partial differential equations. Both approaches can 
produce very accurate approximations, and a lot of important computations are being done 
these days using both of these techniques. 

But in §4.9 we did something different—we defined our approximation as a linear 
combination of smooth functions, and imposed the differential equation at a discrete set 
of points, which we called collocation points. Also in Chapter 4, we observed that the 
Chebyshev polynomials can produce very accurate approximations to functions. So we have 
an obvious question to ask and explore: Can we use the Chebyshev polynomials to produce 
approximate solutions to differential equations that are as accurate as the approximations 
in §4.11.2 might suggest? The answer is "yes" (we wouldn't have posed the question 
if it couldn't be done), and the resulting body of work is generally known, collectively, 
as spectral methods, although a variety of terms are used.1 The presentation here relies 
heavily on the work of Boyd [2] and Trefethen [9].2 

It should be said that the methods as presented here are in some ways suboptimal. "True" 
spectral methods rely on some techniques not covered in this text, in order to achieve 
their full efficiency, but it was thought worthwhile to expose students (and perhaps some 
instructors) to these techniques in a way that was not cluttered with lengthy digressions into 

'Some authors call what we do here the pseudospectral method, while others call it spectral collocation. 
2The author would like to express his appreciation to both Prof. Boyd and Prof. Trefethen for their valuable 

assistance in learning this material well enough to write this chapter. Any errors are of course the author's 
responsibility 
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other material. The presentation in this chapter is also long on illustration and exposition 
(by example) and very short on theory. This is deliberate. The mathematical foundations 
of spectral methods are quite deep, and getting lost in those details simply for the sake of 
theoretical completeness would, in the author's opinion, get in the way of demonstrating the 
power of these methods, which is the main point. Finally, I should mention the chebf un 
project3, which enables MATLAB users to explore these types of approximations with a 
very easy-to-use interface. 

To outline the basic ideas, we will begin with an introduction to spectral methods for 
ODEs. 

10.1 SPECTRAL METHODS FOR TWO-POINT BOUNDARY VALUE 
PROBLEMS 

We begin by summarizing a number of results about Chebyshev polynomials from Chapter 
4: 

Definition: 
Tn(x) = cos(narccosx). (10.1) 

Orthogonality relation: 
rl Ti{x)Tj(x) 

Explicit form of the first five polynomials: 

T0(x) = 1, 

Ti(x) = x, 

T2(x) = 2x2 - 1, 

T3(x) = 4z3 - 3x, 

T4(x) = 8z4 - 8x2 + 1. 

Three-term recurrence relation: 

Tn+1{x) = 2xTn{x) - Tn_i(x). (10.2) 

We consider almost the same type of problem that we studied in §§2.7 and 6.10.3, 
namely, 

-u" + u = f{x), - 1 < χ < 1 , (10.3) 

« ( -1) = 0, (10.4) 

u(l) = 0. (10.5) 

The change from the interval (0,1) to (—1,1) is to accommodate the special properties of 
the Chebyshev polynomials, which are defined on (—1,1). 

We look for an approximate solution in the form 

N 

uN(x) = J2viTi-1{x). (10.6) 
i = l 

'http://www2.maths.ox.ac.uk/chebfun/. 
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(The shift in the index for the Chebyshev polynomial is to ensure that we include TQ(X) = 1 
in our basis.) The simplest way to proceed is to impose that u^ satisfies the differential 
equation (10.3) at N - 2 collocation points {0}, and at the same time force UN (X) to satisy 
the boundary conditions 

N 

UN (-l) = X)t;iT4_1(-l) 

and 

t = l 

TV 

M l ) = I>«Ti-i(l) = 0. 
<=i 

This will lead to a system of N equations in N unknowns. 
Let's illustrate this by working through two specific cases in some detail. 

■ EXAMPLE 10.1 

First we will take perhaps the smallest possible case, N — 3. We therefore are 
looking for an approximation in the form 

u3(x) = «ιΓο(ι) + v2T1{x) + v3T2(x). 

Imposing the boundary conditions gives us two equations: 

v1T0{-l) + v2T1{-l) + v3T2(-l) = 0, 

νχΤ0(1)+υ2Τ1(1)+ν3Τ2(1) = 0. 

We get a third equation by imposing the differential equation at an interior point. The 
obvious choice seems to be x = 0, because that is the middle of the interval. We thus 
have 

Vi 
d?T0 

' dx2 
+ T0) (0) + v2 ( - * £ + Γ ι) (0) + ,3 ( - ^ + T2) (0) = 1. 

Because of the simplicity of the Chebyshev polynomials, it is easy to work out this 
system to get the following 3 x 3 matrix problem: 

1 
1 
1 

- 1 
0 
1 

1 
- 5 

1 

«1 

v2 

V3 

= 
0 
1 
0 

Note that we have organized this with the left endpoint (x = —1) as the first row, the 
right endpoint (x = 1) as the bottom row, and the interior point (x = 0) as the middle 
row. This system can be easily solved to get 

1 „ 1 
v\ = - , v2 = 0, v3 = - - . 

The exact solution is 

u(x) = 1 - ßex - ße~x, ß = 
e2 + l 
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t 
I -01 -Οβ -0« - 0 ! 

•01 -OS -44 -02 0 01 04 0 · 01 

Figure 10.1 Spectral solution for 
N = 3. 

Figure 10.2 Spectral error for N = 3. 

(This is slightly different from what we had in §§2.7 and 6.10.3, again because the 
interval is different.) Figs. 10.1 and 10.2 plot the approximation, the exact solution, 
and the error, which seems to compare favorably to what we got for finite differences 
in §2.7 and finite elements in §6.10.3. 

Even though we only used three functions to compute our approximation, we still got 
decent accuracy compared to the finite difference and finite element cases. What happens 
if we take more terms in our approximation? 

■ EXAMPLE 10.2 

Now let's consider the same problem, but this time we will take N = 5 terms in our 
approximation. We are therefore looking for the coefficients in the expansion 

u5(x) = viT0(x) + v2Ti(x) + v3T2(x) + +v4T3(x) + v5T4(x). 

Our general process is exactly as before. Imposing the boundary conditions leads to 
the two equations 

v1T0(-l) + V2T1{-l)+V3T2(-l)+v4T3(-l)+v5T4(-l) = 0, 

υιΓο(1) + ν2Γ1(1) + «3Γ2(1)+ν4Γ3(1)+«ΒΤ4(1) = 0, 

which become 

Vi — V2 + V3 - V4 + V5 = 0, 

V\ + V2 + V3 + V4 + V5 = 0. 

We now need to impose our approximation at three interior collocation points. How 
are these defined? It might seem obvious to take the middle three from the equidistant 
set of points 

<Ρ-{-ι.-|.ψ}. 
but it is in fact better to use the so-called Gauss-Lobatto Chebyshev points defined 
by4 

,(5) Tfc 
cos N-l 

(10.7) 

4Note that these are not the same as the Chebyshev nodes defined in §4.12.3. 
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We will work this example with both sets of collocation points. Regardless of our 
choice of points, we need to construct and solve the 5 x 5 system 

1 - 1 
1 022 

1 032 

1 a42 

1 1 

1 
Û23 

Û33 

0-43 

1 

- 1 
a24 
Û34 

Û44 

1 

1 
Û25 

Û35 

Ο45 

1 

Î 

Vi 

V2 

V3 

V4 

V5 

(10.8) 

where the "interior" coeficients are defined by 

d2T, 
a-kj (-^+i-)«f- (10.9) 

forfc = 1,2,3,4. 
-(5) Case 1: Equidistant points. Here ζ£ = { — 1, — \, 0, | , l } , and a little work with 

(10.8) and (10.9) shows that the matrix is 

1 - 1 1 
1 -0 .5 -4 .5 
1 0 - 5 
1 0.5 -4 .5 
1 1 1 

- 1 
13 
0 

- 1 3 
1 

1 
-8 .5 

17 
-8 .5 

1 

The resulting solution and error are plotted in Figs. 10.3 and 10.4. Note that the 
approximate and exact solutions are indistinguishable on the graph. The maximum 
absolute error is 3.0949 x 10 - 4 . 

-0.6 -0.6 -0.4 - 0 2 0 02 0.4 0.6 0.6 

Figure 10.3 Spectral solution for a 
uniform grid, N = 5. 

Figure 10.4 Spectral error for a 
uniform grid, N = 5. 

Case 2: Chebyshev points. We have 

d5) = {-1,-0.7071,0,0.7071,1}, 

and, again, a little work with (10.8) and (10.9) shows that the matrix now is 

1 - 1 
1 -0.7071 
1 0 
1 0.7071 
1 1 

1 
- 4 
- 5 
- 4 

1 

- 1 
17.6777 

0 
-17.6777 

1 

1 
-33.0000 

17.0000 
-33.0000 

1 
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The solution coefficients are 

v = (0.1796, 0.0000, -0.1761, 0.0000, -0.0035)T. 

The resulting solution and error are plotted in Figs. 10.5 and 10.6, and the approximate 
and exact solutions are again indistinguishable on the graph. The maximum absolute 
error is 1.6849 x 10~4, slightly better than the uniform grid. (Note that the coefficients 
of the odd Chebyshev polynomials are zero; we will revisit this issue later.) 

Figure 10.5 Spectral solution for Figure 10.6 Spectral error for 
Chebyshev points, N = 5. Chebyshev points, N = 5. 

So, what do we take away from this pair of examples? The following list shows a 
comparison of the error in our two spectral approximations for N = 5 with the finite 
difference (FD) and finite element (FEM) approximations for h = 0.125 (which implies 
taking seven points in the approximation). 

• Finite Difference method (§2.7): 1.3314 x 10"4; 

• Finite Element method (§6.10.3): 1.3366 x 10~3; 

• Spectral method using uniform grid: 3.0949 x 10 - 4 ; 

• Spectral method using Chebyshev grid: 1.6849 x 10 - 4 . 

There's a sense in which this is an apples-and-oranges comparison, because the problems 
are posed on different intervals and are using different discretization parameters, but the 
point we want to emphasize is that we got comparable accuracy (actually, slightly better) 
with fewer computational elements. Taking more terms in the spectral approximations 
would show almost exponentially fast convergence (as we shall eventually demonstrate). 
However, there are some issues to be addressed. Note that the matrices for the spectral 
methods are full, whereas we should recall that the matrices for the FD and FEM methods 
were tridiagonal. In fact, looking at the two 5 x 5 matrices in Example 10.2, it is difficult to 
discern much structure at all. In addition, our construction of the matrices was, to be frank, 
rather "clunky." Nonetheless, there is quite a bit of structure to these matrices (although 
we won't use much of it in our discussion), and we will soon develop a more robust and 
orderly means of constructing them. The fact that they are full matrices is compensated for 
by the fact that,to get high accuracy, we do not need to take nearly as large a matrix as we 
did for the FD or FEM approximations. 
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To develop a more coherent construction of the matrices, let's now consider the more 
general BVP 

Lu — / (x) , — 1 < x < 1| 

u{—1) = a, 

«(1) = b, 

where L is the differential operator denned by 

Lv = —p(x)v" + q(x)v' + r(x)v. 

(Note the minus sign on the second derivative term.) If we wish to write this operator 
applied to a function w and then evaluated at a specific point x, we will write (Lw)(x). So, 
constructing our interior matrix elements amounts to evaluating 

ajy = (LTjXCjW) l<j<N-l, (10.10) 

where k ranges over the "interior" points of our grid. The challenge now is to develop an 
efficient means of computing these values. 

The most efficient means involves the concept of differentiation matrices. The idea is 
to develop a matrix D such that, for a set of points arranged in a vector v, Dv returns the 
derivative at each point on the collocation grid. We will use the approach favored by Boyd 
[2], which relies on the properties of the Chebyshev polynomials, especially their definition 
in terms of cosines: 

Tn(x) = cos(n arccos x). 

An obvious consequence of this is that if x = cost, then Tn(x) = cosnt. We need to 
develop corresponding formulas for derivatives of T„. 

Theorem 10.1 Ifx = cost, then 

d^ nshuü 
ax sin t 

and 
d2Tn fn2cosnt\ / n s i n (nt) cosί 

dx2 V sin2i J V sin3i M (*) = - -Τ- ΙΓΓ- + W:— ■ do·12) 

Proof: This is a simple, if lengthy, exercise in the chain rule plus some trigonometry. 
From (10.1) we have 

dTn d . , . 
—-—(x) = — nsin(narccosx)— arccosx = — n sin (n arccos xj . 
dx cLx \ v 1 

_ n sin nt 
sint 

To get the second derivative result, we compute from the above: 

d 2 T n / , d ( . . , 1 

-x2) 

(x) = — I n sin (n arccos x) 
dx2 dx \ y/l-x2 

2 / ' ^ f -1 \ 1 ■ f ^ ( ~2x 

= n cos (n arccos x) [ ^ ) — - n sin (n arccosx) I — 

_ 2 ^cosnA /n s in (n i ) ccc 

~ U V s i n 2 i / V sin3i 

2 v ' V ( l - a ; 2 ) 3 / 2 

t) os t 
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and we are done.· 
(We can, of course, compute higher-order derivatives in a similar fashion. See Problem 

4.) 
So how do we use these to implement our spectral methods? Given a set of nodes Q ', 

find the values t\. ' such that Q — cosijj. , i.e., ί̂ . = arccosQ. '. For the Chebyshev 
nodes this is especially simple, since the nodes are defined as cosines. For the uniform 
grid—which our brief experiments suggest is suboptimal—we will have to do a modest 

(N) 
amount of computation. Then use the tk values to compute the matrix values as defined 
in (10.10). 

To illustrate this approach, we return to our simple example, this time running a sequence 
of tests for5 < TV < 12. Table 10.1 shows the maximum error for each case, for both grid 
choices. Note that both node sets achieved comparable accuracy, but the main point is that 
we got 10 - 9 accuracy using only nine terms in the expansion (solving a 9 x 9 full matrix 
problem). The finite difference method, using h = 1/1024, got only 10 - 8 accuracy, but it 
was solving a 1024 x 1024 tridiagonal matrix problem. 

Table 10.1 Errors in spectral example: — u" + u = 1 

N 
5 
6 
7 
8 
9 
10 
11 
12 

Uniform grid 
3.094864761792604e^ 
1.854730677157135e-4 
2.905885602449976e-6 
1.837634214518768e-6 
1.735935828417467e-8 
1.133209905079813e-8 

7.135687873915942e-ll 
4.752973015165196e-ll 

Chebyshev grid 
1.684850110583724e^l· 
7.071177963646758e-5 
6.223496339663459e-7 
3.265847972055980e-7 
1.287307857533726e-9 

8.136106788292351e-10 
1.900909984975385e-12 
1.564748330906696e-12 

An imperfect estimate of the operations counts would have the finite difference method 
costing about 3,000 flops (for h — 1/1024), and the spectral method about 243 flops 
(for the N = 9 case). This does ignore the cost of forming the spectral matrix, which 
involves significant computations with sines and cosines. (MATLAB's f lops command 
says that the author's code used 2111 flops for N = 9, but the author makes no claims 
about the ultimate efficiency of his programming.) But there is no question that the spectral 
collocation method delivers high accuracy for modest effort. 

Even though we are not going to present a lot of analysis underlying these methods, we 
can learn a lot by looking at some data. Consider Fig. 10.7, which shows a semilog plot 
of the (absolute value of) the spectral coefficients for an N = 24 expansion for this same 
example. There are two things to note about this plot: (1) The oscillations in the size of 
the coefficients; and, (2) The "flattening" of the graph toward the high end. Both of these 
are easily explainable: 

• The oscillations are due to the example. Note that the exact solution is symmetric 
about the line x = 0. Another way to say this is that u is an even function. This 
means a polynomial expansion—including a Chebyshev expansion—has only even 
coefficients; thus, the odd terms of our approximation have coefficients that are 
essentially zero, which is where the oscillations come from. Recall that this was 
noted in Example 10.2. 
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• The flattening for the high-index coefficients is because the computation is becoming 
so accurate that we have hit the rounding-error limit in the computation. 

Fig. 10.8 looks very similar to Fig. 10.7, but it is a different plot which reveals different 
information. Here we have done a semilog plot of the last coefficient in the approximation; 
the oscillations and plateau are caused by the same phenomena as in Fig. 10.7. However, 
it can be shown that a useful "rule of thumb" for spectral approximations is 

\\u-uN\\~ö(\vN\), 

where \VN | is the absolute value of the last coefficient used in the approximation. We have 
to be careful when using this kind of informal result—recall that the odd coefficients are 
going to be essentially zero since the solution is an even function. Fig. 10.9 shows the last 
(even) coefficient and the actual error for 5 < iV < 32, from which we see that this is a 
very approximate estimation, but still a useful one. 

(Could we take advantage of the known symmetry to compute an approximation using 
only even-order polynomials? Certainly—see Problem 2.) 

20 25 

Figure 10.7 Semilog plot of 
coefficients for N = 24 spectral 
expansion of (10.3H10.5). 

Figure 10.8 Semilog plot of the 
last coefficient for (10.3)-{10.5) as a 
function of ΛΓ. 

0 5 10 15 

Figure 10.9 Plot of actual error (solid) and last even coefficient (dashed). 

http://www.it-ebooks.info/


5 6 4 AN INTRODUCTION TO SPECTRAL METHODS 

So why use anything else? Spectral methods are very accurate for problems with smooth 
solutions, such as our initial example. There are many applications in which the solution 
is not very smooth. Spectral methods applied to those examples will not work as well. 
Perhaps the simplest example is the problem 

-u" + Vu' + u = f(x), - 1 < X < 1 , (10.13) 

u ( - l ) = 0, u(l) = 1, (10.14) 

for V large and positive. Now this is simply a challenging problem—the finite difference 
and finite element methods would also have trouble with it—but it serves to illustrate a 
situation for which spectral methods do not work so well. The exact solution is graphed in 
Fig. 10.10 for V — 50. The difficulty is the sharp gradient in the solution near the right 
endpoint. Fig. 10.11 shows a spectral solution on the Chebyshev grid, using N = 8 terms 
(and V = 50), and it is evident that the approximation is not doing well. Taking more 
terms does address the issue, as Fig. 10.12 (JV = 20) indicates, although we still have not 
converged, as the approximation is still slightly oscillating. 

Figure 10.10 Exact solution for (10.13H10.14), V = 50. 

Figure 10.11 Approximation to Figure 10.12 Approximation to 
(10.13M10.14), V = 50, on a (10.13H10.14), V = 50, on a 
Chebyshev grid, using eight terms. Chebyshev grid, using 20 terms. 

We close this section by discussing an alternative means of handling the boundary 
conditions. What we have done so far is called "boundary bordering" in the literature, 

.OB -OB -0.4 -0 2 
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and for most ODE problems it works well. But there are circumstances—the treatment 
of time-dependent PDEs (next section) is one example—in which a different approach is 
better. Suppose that we wish to solve the BVP: 

-u" + u = 1, - 1 < χ < 1 , 

« ( -1) = 1, 

«(1) = 0, 

Instead of imposing the boundary conditions directly, we can modify our basis of Cheby shev 
polynomials so that each basis function satisfies homogeneous boundary conditions, thus: 

C2n(x) = T2n(x)-T0(x) (10.15) 

C2 n +i(x) = Tan+iiaO-Tifr) (10.16) 

This is called "basis recombination"5. If the problem in question has inhomogeneous 
boundary conditions, then we modify our approximation by adding a simple function that 
satisfies those conditions. Let's illustrate all this with one more example. 

■ EXAMPLE 10.3 

Consider the BVP (with inhomogneous boundary conditions): 

-u" + u = 1, - 1 < χ < 1 , 

« ( -1) = 1, 

«(1) = 0, 

We will look for a solution in the form 

TV 

UN{X) = -(I - x) + ^2ckCk+i{x), 
fc=l 

where the Cfc are defined as above. The exact solution is (the reader should confirm 
this) u(x) = 1 + Ae~x + Bex, for A = ^ γ , Β = ^ γ . We need to compute 

ajk = (LCj+1)UlN)) l<j,k<N. 

and 
f, = 1 - (L<h\(f{N)\. ώ(τλ = Ϊί = 1-{Ι4){ζ^\ φ(χ) = 1(1-χ), l<j<N, 

where L is the differential operator 

and then solve the matrix problem Av = f to get the approximation 

W-2 

UN = 22 VjCj+l' 
3 = 1 

the index offset for C is because our shifted basis has no Co or C\. Table 10.2 shows 

5Both terms are from Boyd [2]. 
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Table 10.2 Errors in Example 10.3. 

N 
5 
6 
7 
8 
9 
10 
11 
12 

Error on Chebyshev grid 
6.823559855666517e-4 
4.209627083873180e-5 
3.047557035618098e-6 
1.632923987138213e-7 
1.098231416918338e-8 

4.28958646381261le-10 
2.306366209126054e-ll 
7.824851877558103e-13 

the maximum absolute error for 5 < TV < 12, and Fig. 10.13 shows the error for 
N = 10, both using the Chebyshev nodes.6 Note the oscillatory nature of the error 
over the interval. This is typical of spectral methods, and is indicative of a very 
accurate approximation. 

Figure 10.13 Error in Example 10.3, Figure 10.14 Error vs. memory use, 
N = 10. finite difference (dashed) and spectral 

(solid). 

Basis recombination does require some careful adjustment of the computation, however. 
By subtracting out two of our basis elements, we are essentially removing them from 
our approximation set, so a five-term approximation (using TQ,TI,T2,T^,T^) becomes 
a three-term approximation (using C2,C3,Ci). We use the same collocation points as 
before, but ignore the boundary points since the (homogeneous) boundary conditions are 
satisfied automatically; thus, we still have a square system, but it is 3 x 3 instead of 5 x 5. 

It should be evident from our examples that spectral methods can be very accurate. But 
we have done essentially no analysis of the method—we haven't even explained where the 
particular collocation points (10.7) came from. So, did we simply choose "nice" examples? 
No! Spectral methods, for problems with smooth solutions, deliver very high accuracy for 
the resources used. They tend to be memory minimizing, in the sense that they use a small 

6From now on we will use only the Chebyshev nodes. 
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amount of memory compared to finite difference or finite element methods. This might 
seem counterintuitive, since the matrices produced for spectral methods are full, and those 
for difference or element methods are tridiagonal. But let's look at some numbers; Fig. 
10.14 plots the errors for Examples 2.8 and 10.3 against the memory requirements for the 
associated linear algebra problems (again, using a semilog scale). Note that the spectral 
method yields a lot more accuracy for a lot less memory use than did the finite difference 
method. 

This is an imperfect comparison, because the problems are posed on different domains 
([—1,1] vs. [0,1]), but it still shows that spectral methods deliver much more accuracy for 
the memory required than do finite difference methods. A comparison with a finite element 
approximation would have given a very similar graph. 

One problem with spectral approximations is that the matrices can be very poorly 
conditioned as iV increases. Since we do not usually need to take large values of N, this is 
not often an issue, but it can become one. In Fig 10.15 we plot the condition number as a 
function of N (again, using a semilog plot) for the matrices generated in Example 10.3. 

1 0 S 10 IS 20 25 30 35 
N 

Figure 10.15 Condition number of spectral matrix as a function of N. 

Exercises: 
1. Write a program to solve the BVP 

-u" + 5u' + u = 1, - 1 < χ < 1 

u ( - l ) = 0 

«(1) = 1 

using the spectral method, with either "boundary bordering" or "basis recombina-
tion." The exact solution is 

u(x) = Aerix + Ber2X + 1 

for n = 5.19258, r2 = -0.19258, and 

A = 0.003781 B = -0.824844 

(confirm this); plot the solution and the error, and produce a table of maximum 
absolute errors, for 4 < JV < 32. 
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2. Solve the BVP in Example 10.2, for 4 < N < 32, but take advantage of the fact 
that the solution is even by looking for an approximation that uses only the even 
Chebyshev polynomials. 

3. It has been suggested that a better way to do "basis recombination" would be as 
follows: 

C2N{X) = C2N{X) - C2N-2(x) 

C2N-l{x) = C2N-l{x) - C2N-3{x) 

Repeat Problem 1 using this basis. In addition to the same plots as requested in 
Problem 1, plot the condition number of the matrix A as a function of N for both 
methods. 

4. Extend the work in Theorem 10.1 to include third and fourth derivatives. 

5. Use the formulas from Problem 4 to approximate the solution to 

u"" = 1, 

u ( - l ) = u ( l ) = 0 , 

u ' ( - l ) = u ' ( l ) = 0 . 

Compute a spectral approximation for 4 < N < 32. Plot your solution for N = 16. 

6. Compute the condition number of the matrices in Problem 5, as a function of TV. 

7. As an alternative to the trigonometric formulas from Theorem 10.1, we could use the 
three-term recursion (10.2) as a basis for constructing the spectral coefficient matrix. 
Show that 

rn+l(x) = 2Tn(x) + 2 x 7 » - T ,U(z) , r0{x) = 0, T[(x) = 1, 

and similarly for the second derivative. Write a program to solve Problem 1 in this 
way. UseMATLAB's f lops command to compare the costs of forming the spectral 
coefficient matrix this way, compared to the procedure outlined in the text. 

10.2 SPECTRAL METHODS FOR TIME-DEPENDENT PROBLEMS 

The standard way to apply spectral methods to time-dependent problems is to use a spectral 
approximation for the spatial variables, which reduces the original problem to an ODE 
system. This "method of lines" approach allows us to then apply any ODE method 
to obtain the final approximation. We retain spectral accuracy in the spatial variables, 
but only the accuracy of the ODE method for the variation in time. This is considered 
acceptable because it is generally less costly to take a smaller time step than to refine the 
spatial approximation. 

We will make all this more specific by considering the following example problem: 

ut = uxx, - 1 < x < 1 (10.17) 

u ( - l , t ) = u ( l , i ) = 0 , f > 0 , (10.18) 

u(x, 0) = COS7TX/2 — βΐηπχ, (10.19) 
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which has the exact solution (verify this) u(x,t) = e - ^ / 2 ) tcos,Kx/2 — e_7r 'βΐηπχ. 
(This is essentially the same example we looked at in §§9.1 and 9.2, adjusted for the 
interval (—1,1).) We look for an approximation in the form 

J V - l 

uN(x,t) = ^ vk(t)Ck+i(x), 
fc=l 

where the d are defined as in (10.15H10.16). If we substitute this into the PDE (10.17) 
and evaluate at the collocation points {ζ] Κ = ^ - 2 , we quickly get the equation 

N-l (N-l 

Ε" ί (* )^ ι ( (Γ )= E^W^'+iKJ ) > i <*<*- ! . i<i<JV-2 
fe=l , f c = l 

The boundary conditions are automatically satisfied, and thus we have the following ODE 
system for the coefficients Vk(t): 

Mv'{t) = Kv{t), v(0) = «o, 

where the matrices M and K are defined by 

c 2 ( c D c3(Clw) 

(10.20) 

M = cN+1{aN)) 

and 

K 

C*{$}2) 

αΐ(άΝ)) cs'(dw)) 

· · · CN+I{CN_2) 

··· Cft+1(cT) 
: C'N+I(Ç2 ) 

ηιΐ(ΛΝ) χ r „ (AN) s 
^2\S,N-2) ^Ν+1\^Ν-2) 

The vector v(t) is the vector of coefficients in our spectral expansion: 

v{t) = {v1(t),v2{t),...,vN-2{t)f, 

and the initial condition VQ is defined by a collocation approximation to the initial function, 
UQ(X); i.e., we solve the linear system 

Mw = (η0(ζ[Ν)),η0(ζ^),... ,η0(ζ{Ν%)τ 

and set 
N 

v0 = ^WkCk+iix)-
fc=l 

(Note that in all of this we have adjusted the indices on the basis functions and collocation 
points to reflect the shift of basis, as discussed at the end of § 10.1.) 

To finish the approximation, we need only decide on a method to solve the ODE system 
(10.20). Almost any of the methods from Chapter 6 would work—although there can be 
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stability issues, as we will see—and we will initially use the trapezoid rule method from 
§6.4, which is essentially the Crank-Nicolson idea from §9.1. We therefore have 

1 
Mvn+i = Mvn + -At(Kvn + Kvn+1), 

or, 

(M - \άΐκ\ vn+1 = ( M + -AtK ) vn, 1,2,... . 

Fig. 10.16 is a plot of the maximum absolute value of the error (as a function of time) for 
N = 4,8,16,32, using Δί = \/N and computing out to Tmax = 2.5. In order to see things 
better, we have plotted the N = 8,16,32 cases separately in Fig. 10.17. Table 10.3 shows 
the maximum error over the spatial interval (—1,1) and the time interval 0 < t < 2.5, for 
the indicated cases. 

Figure 10.16 Maximum error as a 
function of time for trapezoidal time-
stepping, N = 4,8,16,32, Δί = l/N. 

Figure 10.17 Maximum error as a 
function of time for trapezoidal time-
stepping, N = 8,16,32, Δί = 1/ΛΓ. 

Table 10.3 Spectral method applied to heat equation, trapezoid rule time-stepping. 

N 
4 
8 

16 
32 

Maximum error 
0.06823696502527 
0.00294684103558 

7.288544676949393e^l 
1.823820974664048e^l· 

Ratio 
N/A 

23.1560 
4.0431 
3.9963 

There are several points to take away from the plots and the table: 

• The exact solution decays to zero exponentially, so the decay in the error is expected. 

• For N = 4 we are using a very crude approximation (even for spectral methods) as 
well as a crude time step (At = 0.25), so the coarseness of the error is not unexpected 
for that case. 

On the other hand, for the next case, ./V 
smaller and decays smoothly to zero. 

8 =>· Δί = 0.125, the error is much 
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• Based on the last two entries (which is admittedly not a lot of data on which to base 
a conclusion) the total error appears to be going down by a factor of 4, suggesting 
(no surprise) that the ο (Δ ί 2 ) error for the trapezoid time-stepping method is what 
is dominating the computation. 

To get better error performance in time, we need to use a smaller time step or a more 
accurate ODE method. Let's look at some of our possible choices for the second option, 
based on material in Chapter 6: 

• Fourth-order Runge-Kutta (§6.5); 

• Higher-order Adams-Bashforth methods (§6.6.1); 

• Higher-order Adams-Moulton methods (§6.6.1 ); 

• Higher-order BDF methods (§6.6.2). 

All of these choices are potentially effective, with different advantages and disadvantages. 
However, because of the issues with the stability of the explicit finite difference method for 
the heat equation (§9.1), we are leery of the first two options, because they are also explicit 
methods. So we will look at the last two options, which are both implicit and therefore 
(more) stable than the explicit methods. 

■ EXAMPLE 10.4 Adams-Moulton 

Since we already have a second-order method—trapezoid rule/Crank-Nicolson, 
which is also second-order Adams-Moulton—we will look at the third-order Adams-
Moulton method, usually written as 

2/n+l = Vn + γ^ (5/„+l + 8/„ - fn-l) , 

where y' = f(t,y) is the differential equation. Our differential equation is given by 
(10.20), and is a system of equations in which f(t, y) <-»· M~1Kv. So, AM3 applied 
to this equation initially looks like this: 

«n+i = vn + — {SM-lKvn+1 + %M~lKvn - M_ 1Ät>„_i) . 

We can simplify this to get 

5Δί \ / 8Δί \ 
M - — K\ vn+1 = ί M + —K\ vn - Kvn-i. (10.21) 

We need a single starting value, v\, which we can get from using our trapezoid 
rule method for a single step; then it is a straightforward recursion to produce new 
solution values from (10.21). If we apply this to our example problem, using N = 8, 
Δί = 1/N, Tm a x = 2.5, we get the plot in Fig. 10.18. Note that the maximum error 
over time begins to increase for t > 1 (roughly). This does not seem to be a good 
thing. Why is it happening? 

Recall that multistep methods—of which Adams-Moulton is an example—have 
stability issues. We must take our step size small enough so that the "computation 
remains within the stability region" given in Fig. 6.8. What does this mean? It means 
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Figure 10.18 Spectral solution to 
(10.17) using third-order Adams-
Moulton time-stepping. 

Figure 10.19 Plot (log-log) of largest 
stable Δί vs. N. 

we must choose At so that AtXk is within the stability region for all eigenvalues λ*; of 
the matrix G = M~lK. For our particular case here, we have that all the eigenvalues 
are real, with maxfe \\k \ = 131 and Δί = | , so the product Δίλ^ = 16.375 is clearly 
not inside the stability region in Fig. 6.8. We need to have At < 6/Àmax; thus, 
Δί = 0.458 = c/N for c = 0.3664 and now N = 8 will suffice. If we now 
try Δί — 0.3664/./V for the N = 12 case, we find that the computation blows 
up catastrophically. The maximum eigenvalue for M~lK is now over 700—the 
eigenvalues are growing too fast for our choice of time steps. Fig 10.19 shows a 
log-log plot of the largest possible At as a function of N, and a least squares analysis 
(see §4.11) suggests that a relationship of the form 

Δί = CN-* 

is present. Obviously this means that the best (largest) time step we can use is going 
to be rapidly decreasing. What can we do? 

Frankly, we have two choices: We can live with very small time steps, or we can consider 
a more stable time-stepping method, such as the BDF family. 

■ EXAMPLE 10.5 BDF 

The BDF methods are stable along the entire negative real axis, so they appear to be 
the appropriate methods to use. The third-order BDF formula is 

6h 18 
2/n+l - -7Tj{tn+l,yn+l) = TTVn 

9 2 
yy2M-i + γγ2/η-2 

and the fourth-order formula is 

12h 
2/n+l 

48 
^ " / ( i n + l i Z / n + l ) = — Vn 

36 16 3 
25ΙΛ.-Ι + l^Vn-1 - 2gl/n-3. 

Applied to our particular problem (recall / <-» M 1K)we have 

9 
Mvn+i - — Kvn+i Ml 1 8 

M[ —v„ 11 
Un-l + Yiv-2) ' 
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or 

lb 
M 

/48 36 16 
2 5 1 * - 1 + 25°" 

_3_ 
25 Vn-3j 

The problem is that we need accurate starting values. 
We will start with the third-order BDF method, using our second-order Crank-

Nicolson code to generate the two necessary starting values. (Recall from §6.4.3 that 
we can often get away with using a one-order-lower method to generate the starting 
values without incurring any significant extra error.) Figs. 10.20 and 10.21 show 
the evolution of the maximum absolute error over time, for N = 4,8,16,32 points, 
and N = 8,16,32 points, respectively; and Table 10.4 shows the maximum absolute 
error over time. Two things are of concern or interest here: (1) The error does not 
appear to be going down by the expected factor of 8 that we should expect from an 
ö(At3) method (in fact, a least squares fit to the logarithms of the data suggests that 
the order is around 2); (2) In all four cases, the maximum absolute error occurred at 
the second or third step, i.e., at one of the starting values. Perhaps using an ö(At2) 
method to generate the starting values is not such a good idea in this case. So what 
do we do? 

Figure 10.20 Figure 10.21 

Table 10.4 Maximum error for BDF3 time-stepping using Crank-Nicolson starting values. 

N 
4 
8 
16 
32 

maxt<2.5 |u-tijv| 
0.12205771461309 
0.05536342126983 
0.01216091356321 
0.00271680076022 

If we had a convenient implicit third-order single-step method to use, we would do 
that. There exist implicit Runge-Kutta methods, but they are very difficult to derive 
and costly to use. Instead, we will continue using the Crank-Nicolson method for 
the starting values, but with shorter time steps. 

The trick is to take a series of short time steps of length Δί, with the property that 
Δ Τ (the step we want to take with the high-order method) is an integer multiple of 
Δί; i.e., Δ Τ = M At for some M. Then our first starting value is the (approximate) 
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solution at M At, and the second one is the (approximate) solution at 2MAt. We 
implemented this for the BDF3 scheme, using AT = 0.25/JV and Δί = AT/32. 
We computed out to t = 2.5 and tracked two different errors 

-Emax = max ||u(-,i) - uN(-,ί)!!«, 
0<t<2.5 

(this is the maximum pointwise error in the entire computation), and 

£ΐ = ||«(·,1)-«ΛΓ(·,1)||οο 

(this is simply the pointwise error at the arbitrary value t = 1). We got the results in 
Table 10.5. (Note that we are no longer computing the N = 4 case; the results are 
simply too crude.) 

Table 10.5 Errors for BDF3 
N 
8 
12 
16 
20 
24 
28 
32 

"max 

0.00196351553612 
0.00062352684952 
0.00027970078950 
0.00014831615102 
0.00008808570623 
0.00005651598554 
0.00003836696856 

Ei 
0.00002593734915 
0.00000761067383 
0.00000318853246 
0.00000162602736 
0.00000093852185 
0.00000058995674 
0.00000039469439 

If we do the same kind of thing using the BDF4 formula, we get the results in 
Table 10.6 

Table 10.6 Errors for BDF4 
N 
8 
12 
16 
20 
24 
28 
32 

■^max 

0.00065906557204 
0.00009256524086 
0.00003163313807 
0.00001375731857 
0.00000691388232 
0.00000383871479 
0.00000230094409 

Εχ 
0.00000351957149 
0.00000047008815 
0.00000014416519 
0.00000005804163 
0.00000002770166 
0.00000001485340 
0.00000000866881 

We did a least squares fit on the logarithm of all this data, and produced the two 
plots in Fig. 10.22 and 10.23. The lines with circles are the errors Ema.x, and the 
lines with asterisks are E\. The unmarked line is a reference line at the slope - 3 
(for BDF3) and —4 (for BDF4). It is apparent that both errors are decreasing at the 
expected rate. 
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Figure 10.22 
for BDF3. 

Log-log plot of errors Figure 10.23 
for BDF4. 

Log-log plot of errors 

The Costs of Time-Stepping It must be confessed that we have overlooked a number 
of important issues in our discussion of time-stepping. Let's consider a cost comparison of 
a spectral method and a finite difference method, both using Crank-Nicolson time-stepping, 
for an ΛΓ-point approximation applied to a simple heat equation such as the one we treated 
here. In either case we will get a computation in the following form: 

Givn+i = G2vn + F 

for matrices G\ and G2- What are the costs associated with these different methods? 
Finite difference method: A finite difference method would require roughly 3N flops to 
form the right-hand side Gj.vn + F, and a similar amount to do the solution steps of the 
matrix factorization, as well as the initial factorization of the matrix. So, to compute m 
steps would cost (very roughly) 

C F D = QNm + 3JV 

flops. 
Spectral method: Because the spectral method uses full matrices, the costs are higher. 
Forming the right-hand side now costs N2 flops (because it is a full matrix-vector mul-
tiplication), and the solution steps cost another N2, plus we have the |ΛΓ3 cost of the 
factorization. Our total is now 

CSpectral = 2 i V 2 m + -N3 

flops. Even though we get much more accuracy out of a given value of N for the spectral 
method, 2N2 will grow much faster than 6N. Eventually, the cost of solving the problem 
over lengthy time intervals will become an issue. 

Additionally, we have to consider that this is a very simple, one-dimensional linear 
example. If the problem is nonlinear, then there will be additional costs associated with 
forming the coefficient matrix on the left, and the matrix factorization will have to be 
repeated at each time step, perhaps multiple times, as a nonlinear system solver of some 
kind is employed. If the problem is in higher dimensions, the costs grow even more. All 
these manipulations will continue to involve full matrices for the spectral method, and only 
tridiagonal matrices (or banded matrices in higher dimensions) for the finite difference 
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method. The cost of the spectral method will escalate, rapidly. At some point the user will 
be thinking, "Spectral accuracy is a good thing, but so is a timely solution!" 

For this reason, a number of transformations are typically employed to reduce the cost 
of spectral methods. We do not discuss these here, because the intent of this chapter was 
to introduce spectral methods to the reader in a style that avoided some of the messy— 
but not unimportant—details. Students with access to recent editions of MATLAB are 
encouraged to inquire about adding the chebfun system7 to their installation; chebf un is 
a very powerful graphical user interface that automates almost all of the messy details in 
spectral collocation. 

Exercises: 

1. Use spectral collocation with Crank-Nicolson time-stepping to solve the following 
PDE: 

t i ( - l , t ) = 0, 

u( l , i ) = 0, 

u(x, 0) = COS-KX/2 — sin47ra;. 

The exact solution is u(x, t) — e_7r */4 ϋ08πα:/2 — ε_ 1 6 π ' βίηΊπχ. Compute out 
to t = 1; use a sequence of values of TV; plot your approximation and the error for 
one of them at t = 1. 

2. Use your spectral code to solve the problem 

ut = auxx, 

u ( - l , i ) = 1, 

u( l , i ) = 1, 

u(x,0) = ( z 2 - l ) 8 . 

Assume that a = 1 and compute out to t = 1 using a sequence of values of N. 
Plot the solution profile as the computation advances. Now vary a (you must keep it 
positive, of course) and investigate how this affects the solution. 

3. Now change the initial condition to u(x, 0) — (z4 — l ) 8 and repeat Problem 2. 

4. Consider how to implement spectral collocation with variable coefficients. Construct 
the general linear system that would result from solving the problem 

ut = a(x)uxx, 

u(-l,t) = 0, 

u( l , t ) = 0, 

u(x,0) = UQ(X). 

http://www2.maths.ox.ac.uk/chebfun/. 
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5. Apply your results from Problem 4 to approximate solutions to 

ut = a{x)uxx, 

u(-l,t) = 0, 

ti(l,t) = 0, 

u(x, 0) = COS-KX/2, 

for the following choices of a: 

(a) a{x) = (1 + x2); 

(b) a(x) = e~x ; 

(c) a(x) = (1 — x2). (Because a vanishes at the boundary, this problem is known 
as degenerate, but you should be able to compute solutions.) 

6. Consider the nonlinear problem 

+ Vuux Ut 

u ( - l , t ) 

u( l , t ) 

u0(x) 

= uxx + ' 
= o, 
= o, 
= βΐηπχ. 

Use spectral collocation to attack this problem, as suggested in Problem 12 of §9.1, 
by treating the nonlinearity explicitly (at time t = tn) and the differential equation 
implicitly (at time t — in+i)· Compare your spectral solution to the explicit solution 
computed in Problem 10 of §9.1. Comment on your results. 

< · · · > 

10.3 CLENSHAW-CURTIS QUADRATURE 

A skeptical reader might wonder why a section on quadrature appears at the end of a chapter 
on spectral methods for ODEs and PDEs. The answer is very simple: Our spectral methods 
for differential equations are based on using Chebyshev expansions, and that is also the 
basis for Clenshaw-Curtis quadrature [4]. 

Consider the integration problem 

Hf) = / f(x)dx. 

In Gaussian quadrature (§5.6) we found N weights u>i and N abscissas &, so that the 
quadrature 

pi N 

f(x)dxfa'^2wif(xi) 
i=l 

is exact for all polynomials of degree < 2AT — 1. This produced some remarkably accurate 
quadrature rules, but the weights and abscissas are not easily computed.8 The Clenshaw-
Curtis idea, which leads to simpler weights and abscissas, is simply to expand / in a series 

/_' 

8It is possible to compute Gaussian quadrature weights and abscissas by solving a tridiagonal eigenvalue problem; 

see the article by Golub and Welch [7]. Trefethen gives a very tidy MATLAB code for doing this in [10]. 
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of Chebyshev polynomials, and integrate this exactly. We have 

f f(x)dx~J2wiN)MN\ 
J~1 fc=l 

which is very similar in form to Gaussian quadrature. The abscissas are the same as our 
collocation points, 

ξΐ = cos 
N+l 

The weights can be computed very easily—much more easily than for Gaussian quadrature. 
Following Boyd [1], we have 

w 
(N) 

9 ein f ^ π I N 
Δί>ιη\Ν+ι) γ ^ . / jk-π \ fl-cosjn 

N+l £-G&)(; 
for 1 < k < N. 

For comparison purposes, we tested Clenshaw-Curtis quadrature against Gaussian 
quadrature on a variety of integrals over the range N = 4,8,16,32,..., 512. Fig. 10.24 
shows log-log plots of the error vs. the number of quadrature points. The plots show that 
Clenshaw-Curtis (marked with an "x") is almost always slightly less accurate than Gaussian 
quadrature (marked with an "o"), for a given value of TV. However, it is a lot easier to 
construct the quadrature for a given value of N, and it is similarly much easier to create an 
adaptive version, although we will not do that here. 

sin(exp(n x)) expf-x2) 1/(1.5 -cos(5x)) 

Figure 10.24 Comparison of Clenshaw-Curtis quadrature (x) with Gaussian quadrature (o). 
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Exercises: 
1. Use the appropriate change of variable to show how to apply Clenshaw-Curtis quadra-

ture to an integral over an arbitrary interval [a, b\. 

2. Write a program to do Clenshaw-Curtis quadrature on each of the integrals in Problem 
4 of §5.6. Compare your results to those obtained with Gaussian quadrature. Produce 
a log-log plot of the error as a function of N for each integral. 

3. Looking at the plots in Fig. 10.24, we see that most of them show a very rapid 
decrease of the error, and that a "rounding error plateau" is reached for most of the 
examples. The exception is the last one, where the integrand is given by f(x) = 
\ / l - x2. Explain why this example is the one that displays this kind of suboptimal 
performance. 

4. Let CN = Σ"=ι wïN)f(uN)) ~ / - i f{x)dx be the Clenshaw-Curtis quadrature 
operator. Show that C2N uses some of the same function values as CN- Why is this 
important? 

< · · · > 

10.4 LITERATURE AND SOFTWARE DISCUSSION 

The classic reference for the spectral method is the book by Gottlieb and Orszag [8]. 
Trefethen's book [9], the small volume by Gheorghiu [6], and Fornberg's book [5] were 
all useful in preparing this chapter. There is also the book by Canuto et al. [3]. Boyd's 
book [2] has an unbelievably extensive bibliography, and a very unacademic style (that 
comment is intended as a compliment—the book is a pleasure to read). The author has to 
repeat, however, that there is much to the presentation here that can be criticized in terms 
of omissions. My goal was to present an introduction to spectral methods that could be 
understood and appreciated by students in their first numerical analysis course. 
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APPENDIX A 

PROOFS OF SELECTED THEOREMS, 

AND ADDITIONAL MATERIAL 

A.1 PROOFS OF THE INTERPOLATION ERROR THEOREMS 

The interpolation error theorems all depend on applying a generalization of Rolle's Theorem 
to a very carefully constructed function. First, we will state and prove the general version 
of Rolle's Theorem. 

Theorem A.l (Generalized Rolle's Theorem) Let f G Cn([a, b]) be given, and assume 
that there are n points, ZkA < k < n in [a, b] such that f{zk) = 0. Then there exists at 
least one point ξ G [a, b] such that / ( n _ 1 ) ( 0 = 0. 

Proof: By Rolle's Theorem, there exists at least one point ηι^ between each Zk and Zk+i 
such that /'(ïjfc) = 0. Thus there are n — 1 points where g\{x) — f'{x) is zero. By the 
same argument, then, there are n — 2 points where 52(2) = f"(x) is zero. Continuing 
onward, then, we end up with a single point where gn-i(x) = f^n~^(x) is zero. · 

This result allows us to prove, rather easily, both of Theorems 4.3 and 4.5. 

Theorem A.2 (Lagrange Interpolation Error Theorem) Let f G Cn+1([a, b]) and let 
the nodes Xk G [a, b] for 0 < k < n. Then, for each x G [a, b], there is a ξχ G [a, b] such 
that 
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Proof: For any t G [a, 6], t ψ Xk, define the function 

G(x) = E(x)-^E(t), 

where E(x) = f(x) — pn{x) and 

n 
w(x) = Y\_(x-Xk)· 

fc=0 

Then G(xfc) = 0, for 0 < k < n and G(t) = 0; thus, there are n + 2 points where G is 
zero. Therefore, by the Generalized Rolle's Theorem, there is a point ξ G [a, b] such that 
G n + 1 ( £ ) = 0 · But 

G(»+D(a.) = E^n+1\x)-w{n^{x)E(t), 

Therefore, Gn+1(£) = 0 implies that 

/ ( " + 1 ) ( 0 - {j^E(t) = 0 => f(x) - pn(x) = ^ ^ / ( n + D f e ) , 

and we are done. · 

Theorem A.3 (Hermite Interpolation Error Theorem) Let f G C2n([a, b]) and let the 
nodes Xk G [a, b] for all k, 1 < k < n. Then, for each x G [a, b], there is a ξχ G [a, 6] 
such that 

ηχ)-Ηη(χ) = ^ ^ ( ξ χ ) , (A.1) 

n 

V>n(z) = J J ( x - X f e ) 2 . 

fc=l 

Proof: Essentially the same as for the Lagrange theorem. This time we define the 
auxiliary function as 

where E(x) = f(x) - Hn(x). Then the Generalized Rolle's Theorem gives us a point 
ξ G [a, b] such that 

0 = G(2">(O = / ( 2 " ) - -^U(*) , 
1pn{t) 

from which the result follows. · 
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A.2 PROOF OF THE STABILITY RESULT FOR ODES 

The theorem as stated in the text (Theorem 6.2) is the following. 

Theorem A.4 Let f{t,y) be continuous for all (t,y) in a rectangle R, and smooth and 
uniformly monotone decreasing in y. Then for all (io,2/o) € R there exists a unique 
solution to the initial value problem 

y' = f(t,y), y{t0) = yo. 

Moreover, ifz(t) is the solution to the same problem with initial data z(to) — ZQ, then 

\y{t) - z(t)| < e - ^ ' - ^ l y o - z0\. (A.2) 

Proof: The existence and uniqueness follows from Theorem 6.1 and was demonstrated 
in §6.1; all we need to do here is demonstrate the stability result (A.2). We have 

y'= f{t,y), y{to) = y0, 

and 
z' = f(t,z), z(t0) = z0. 

Subtract and use the Mean Value Theorem on / to get 

(y - *)' = fy(t, v){y - z), y(t0) - z(t0) = y0~ z0. 

Here η will be a function of y, z, and t, with value between y(t) and z(t). To simplify 
things, let's introduce some notation: 

p{t) = fy(t, η), φ(ί) = y(t) - z[t), <f>o=yo- z0. 

We therefore have 
φ' - P(t)<t>{t) = 0, φ{ί0) = Φο, 

which is a simple first-order linear differential equation. We can solve it by introducing the 
function 

P(t) = - f p(s)ds 
Jto 

and the integrating factor ep^\ We then have 

( e p W * ( t ) ) ' = 0 , 

so we integrate both sides (from io to t) to get 

ep('V(i) - φ0. 

Hence, 
φ(ί) = φ0β-ρν, 

so we have 
y(t)-z(t) = (y0-z0)e-Xop{s)d3, 
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and therefore, 
|y(t) - *WI < lift) - *ol max e"pW. 

to<S<t 

Maximizing the exponential on the right means that we must maximize the exponent. But 

-P(t) = / p(s)ds < -m(t - t0), 
Jto 

using the smooth and uniformly monotone decreasing condition to bound p (which is fy, 
remember). · 

A.3 STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS AND EIGENVALUES 

In this part of the appendix, we provide some more details on the relationship between the 
stiffness of a linear system of differential equations and the eigenvalues of the coefficient 
matrix. As in the text, we take as our example the IVP 

y[ = 198yi + 199j/2, yi(0) = 1; (Α.3) 

y'2 = -3987/1-3992/2, 2/2(0) = - 1 ; (A.4) 

(A.5) 

which we write in matrix-vector form as 

y' = Ay, Î/(0) = 2/0, 

and we approximate its solution using the second-order Adams-Bashforth scheme. Thus, 
we look at the recursion 

2/n+l = 2/n + ~ Λ ( 3AVn ~ ^ V n - l ) = ( I + j ^ j Vn ~ -^AVn-\- (A.6) 

If A were a scalar instead of a matrix, it would be a simple matter to attack this recursion 
by looking for the solution in the form yn = rn for some r, which we could determine by 
factoring a polynomial. But since A is a matrix, this approach appears fruitless. 

If A were a diagonal matrix, we could use the old approach. In that case, each row of 
(A.6) would represent a scalar recursion for that component of the vector yn+1. In general, 
A will not be a diagonal matrix, but it almost always is diagonalizable, and that is what we 
need to do. 

Recall from linear algebra (see Theorem 8.1) that a matrix is diagonalizable if there 
exists an invertible matrix P such that P~XAP = D, where D is diagonal. Recall further, 
that if the eigenvectors of A are independent, then A is diagonalizable, with P being 
the matrix of eigenvectors, and D the matrix of eigenvalues. We therefore have (if A is 
diagonalizable) 

l/n+i = (l+~hP-lDP) yn - ^hP-'DPy^y, 

from which we get 

Pyn+i =(l+ \hü\ Pyn - lhDPyn. 1, 
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or, setting zn = Pyn, 

Zn+i = [1+ 2hD) Zn ~ 2hDZn~1-

Since D is diagonal, we can now break this apart into each separate scalar recursion, thus: 

Zn+l,i = ( 1 + izhdi J Znti - -tldiZn-l,i, 

where di are the diagonal elements of D (and, therefore, the eigenvalues of A). For 
simplicity, let hdi = 7ft, and solve this using our usual procedure. We get that 

Zn,i — Cl , i r l , i + ^1,iT1,i 

where the τ^,ι values are the roots of the polynomial 

q(r) = r2 - ( 1 + -Jft J r + -7ft. 

If we compute the roots of this polynomial as a function of the parameter 7ft (for ift real 
and negative), we find that the absolute value of both roots is not less than 1 until we 
have |Tft| < 1. Recall that 7ft = hdi, where di are the eigenvalues (—1 and —200) of 
the coefficient matrix A for the ODE. Thus, in order to be within the stability region for 
second-order Adams-Bashforth, we need to have/i < 1/200. Note that this is the case even 
when the e_ 2 0 0 t component of the solution is not present, and even though this component 
would be negligibly small after the first time step. 

In the text we saw that the stiffness of this system could be "defeated" by using an 
implicit method to compute the numerical solution. Let's see why that worked. 

If we apply the trapezoid rule method to our example, we get the recursion 

2/n+l = Vn + 2h(AVn + AVn+l) = ί I + j ^ J Vn + j ^ ï n + 1 , 

which we can solve to get 

I - -hAj yn+i = (i + -hAj yn, 

or, 
- 1 

2 

When we diagonalize the recursion, we get 

yn+1 = ( I - \hA J (l+-hA)yn. 

zn+i = (i - \hDj [I + i/iD J zn, 

so the scalar recursion of interest is 

(l + ^ ) „ 
Zn+1'i-{i-ifh)Zn·*· 

It can be shown that the fraction is always less than 1 in absolute value, as long as the real 
part of 7ft is negative. Thus, we do not require that h be sufficiently small to avoid the 
solution growing without bound as n increases. 
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A.4 THE MATRIX PERTURBATION THEOREM 

Our concern here is the proof of the following theorem from Chapter 7. 

Theorem A.5 Let A e R" x " be given, nonsingular, and let E e R" x n be a perturbation 
of A. Letx e R™ be the unique solution ofAx = b. IfK,(A)\\E\\ < \\A\\, then the perturbed 
system (A + E)xc = b has a unique solution and 

\\x — xc\\ K\A) 

Proof: We start by assuming that the perturbed matrix A + E is nonsingular, and 
therefore that the perturbed system has a unique solution; we will then prove this as a 
lemma. 

We have, then, the two systems 
Ax = b 

and 
{A + E)xc = b. 

We can subtract and rearrange to get 

so that 

II»-»dl „ μ-ΜΙΡΙΙΙΜ 
11*11 

< \\A-l\\\\E\\ \x\\ + \\X — Xc 

\X\i 

= ^)Sfi+l|x~Xc 
X 

therefore, 

\\x-Xc\\ < <A) JIM 

i-^)g 
The positivity of the denominator—which is required to preserve the direction of the 
inequality—is guaranteed by the assumptions of the theorem. · 

Lemma A.l If A e R n x " is nonsingular and κ{Α)\\Ε\\ < \\A\\, then A + E is also 
nonsingular. 

Proof: Note that A + E = A(I + A~1E), so that A + E is nonsingular if and only if 
/ + A~lE is nonsingular. Note also that our hypothesis implies that \\Α~λ || ||i?|| < 1. For 
simplicity, we write 

F = -A~lE. 

Assume, then, that / + A~XE = I — F is singular. Then there exists z Φ 0 such that 
(/ - F)z = 0; thus, z — Fz. Taking norms, then, we have that ||z|| = ||Fz|| < ||F||||z|| 
so that 1 < | |F| | , which is a contradiction. Thus, I — F is nonsingular; therefore, A + E 
is nonsingular. · 
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