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Preface
This tex t is intended for undergraduates in mathematics, the  physical sciences, 
and engineering who are taking complex analysis for the first time. Two years of 
calculus, up through calculus of several variables and Green's theorem, are adequate 
preparation for the course. The tex t contains some references to  linear algebra and 
baric facts about e-6 analysis, but the extent to  which they are emphasized can be 
adjusted by the instructor depending on the background and needs of the class.

The book has a  generous number of examples, exercises, and applications. We 
have made a  special effort to  m otivate students by making the book readable for 
self-study and have provided plenty of m aterial to  help students gain an intu­
itive understanding of the subject. O ur arrangement enables application-oriented 
students to  slap the more technical parts w ithout sacrificing an understanding of 
the main theoretical points. Applications include electric potentials, heat conduc­
tion, hydrodynamics (studied w ith the aid of harmonic functions and conformal 
mappings), Laplace transform s, asym ptotic expansions, the Gamma, function, and 
Bessel functions.

The core of Chapters 1 to 6 can be taught in a  one-semester course for m ath­
ematics majors. In applied mathematics courses, if some of the technical parts of 
Chapter 2 and parts of Chapter 6 are om itted, then parts of Chapters 7 and 8 can 
be covered in one semester. I t  is healthy for mathematics m ajors to  see as many 
of the applications as possible, for tiiey are an integral part of the cultural and 
historical heritage of mathematics.

Sym bols The symbols used in this tex t are, for the most part, standard. The set 
of real numbers is denoted R, while C denotes the set of complex numbers. “117” 
stands for “if and only if” (except in definitions, where we write only “if” ). The 
end of a  proof is marked ■ , the end of the proof of a  lemma in the middle of a 
proof of a theorem is marked T and occasionally, the end of an example in the text 
is marked 4* The notation )a,b( represents the open interval consisting of all real 
numbers x  satisfying a < x  <b. This is to  avoid confusion with the ordered pair 
notation (a ,6). The notation /  : A  C C  -* C  means th a t the mapping /  maps the 
domain A, which is a  subset of C , into C, and we w rite z f(z )  for tire effect of /  
on the p rin t z  6  A. Occasionally, is used to  mean “implies”. The set theoretic 
difference of the sets A and B  is denoted by A \B , while their union and intersection 
are denoted by A U B  and A O 3 . The definitions, theorems, propositions, lemmas, 
and examples are numbered consecutively for easy cross reference; for example, 
Definition 6.2.3 refers to  the third item  in Section 6.2.

vii



viii Preface

C lassic te x ts  Despite the large numbers of texts w ritten in recent years, some of 
the older classics remain the best. A few that are worth looking a t arc A. Hurwitz 
and R. Courant, Voricsungen uber ollgcmcine PunktioncnUicarie taid ellijitischc 
Funktioncn (Berlin: Julias Springer, 1925); E. T. W hittaker and G. N- Watson, A 
Course of Modem Analysis, Fburth Edition (London: Cambridge University Press, 
1927); E. T. Titchm arch, The Theory of Functions, 2d ed. (NewYork: Oxford 
University Press. 1939, reprinted 1985); and K. Knopp, Theory of Functions (New 
York: Dover. 1947). The reader who wishes further information on various of the 
more advanced topics can profitably consult E. Hille, Analytic Function Theory, 
2 volumes, (Boston: Ginn, 1959); L. V. Ahlfors, Complex Analysis (New York: 
McGraw-Iiill, 1966); W. Rudin, Real and Complex Analysis (New York: McGraw- 
Hill, 1969); and P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(New York: McGraw-Hill, 1953). Some additional references are given throughout 
the text.

The modem treatm ent of complex analysis did not evolve rapidly or smoothly. 
The numerous creators of this area of m athematics traveled over many rough roads 
and encountered many blind alleys before the superior routes were found. An ap­
preciation of the history' of mathematics and its intim ate connection to  the physical 
sciences is im portant to  every’ student’s education. We recommend looking a t M. 
Klein’s Mathematical Thought from Ancient to Modem Times (London: Oxford 
University Press, 1972).

T h ird  e d itio n  The third edition features an Instructor’s Supplement as well as 
a Student Guide Answers to the odd numbered problems are in the back of the 
book and exercises with solutions in the Student Guide are marked with a  bullet
(a) in the text.

We have streamlined a  number of features in the text, such as the treatm ent of 
Cauchy’s Theorem. We have substantially rew ritten Chapter 4 on the evaluation 
of integrals, making the treatm ent less encyclopedic. An Internet Supplement is 
available free from http://www.wliirecm an.com / (look in the m athem atics section) 
or from http://cds.caltech.cdu/~m areden/ (look under "books"). I t contains ad­
ditional information for those who want to  delve into some topics in a  little  more 
depth.

A cknow ledgm ents Wc are grateful to the many readers who supplied correc­
tions and comments for this edition. There are too many to  be thanked individ­
ually, but we would tike especially to  mention (more or less chronologically) M. 
Buchner (who helped significantly with the First Edition), C. Risk, P. Roeder, W. 
Barker. G. Hill, J . Seitz, J . Bnidowski, H. 0 . Cordes, M. Choi, W. T. Stallings, E. 
Groeo. R. litis, N. S tarr, D. Fowler, L. L. Campbell, D. Goldschmidt, T . Kato, J . 
Mesrcrv. P. Kenshaft, K. L. Teo, G- Bergnmnn, J . Harrison and C. Daniels. Finally, 
9v thank Barbara Marsden for her accurate typsetting of this new edition.

http://www.wliirecman.com/
http://cds.caltech.cdu/~mareden/


Chapter 1

Analytic Functions

In tliis chapter the basic ideas about complex numbers and analytic functions arc 
introduced. The organization of the tex t is analogous to  th a t of an elementary 
calculus textbook, which begins by introducing R, the set of real numbers, and 
functions / ( z )  of a  real variable x. One then studies the theory and practice of 
differentiation and integration of functions of a  real variable. Similarly, in complex 
analysis we begin by introducing C, the set of complex numbers z. Wo then study 
functions f(z )  of & complex variable z, which arc differentiable in a  complex sense; 
these are called analytic functions.

The analogy between real and complex variables is, however, a  little  deceptive, 
because complex analysis is a surprisingly richer theory; a  lot more can be said 
about an analytic function than about a  differentiable function of a  real variable, 
as m il be fully developed in subsequent chapters.

In addition to  becoming familiar with the theory, the student should strive to  
gain facility with the standard (or “elementary*) functions such as polynomials, 
e~, log z, sin z—as In calculus. These functions arc studied in §1.3 and appear 
frequently throughout the text.

1.1 Introduction to Complex Numbers
The following discussion will assume some familiarity with the main properties of 
real numbers. The teal number system resulted from the search for a  system (an 
abstract set together with certain rules) that included the rationais hut th a t iilso 
provided solutions to  sudi polynomial equations * s *2 —2 = 0.

H isto rica l P e rsp ec tiv e  Historically, a  sim ilar consideration gave rise to  an ex­
tension of the real numbers. As early as the sixteenth century, Gcroniuio 
considered quadratic (and cubic) equations such us xa + 2x  -f 2 -  Q. winch is sa t­
isfied by no real number z . The quadratic formula (—6 ±  yjli1 -  4oc) /2 o  yields 
“formal”expressions for the two solutions of the equation oxa -{-bx+c =  0. But

1



2 Chapter 1 Analytic Functions

formula uiay involve square Foots of negative numbers; for example, —1 ±  %/—I  for 
the equation x 2 + 2x + 2 =  0. Cardano noticed th a t if these “complex numbers’* 
were treated as ordinary numbers with the added rule th a t %/-T • y/~ 1 =  —1, they 
did indeed solve the equations.

The im portant expression %/^T is now given tiic widely accepted designation 
i = \ f—l- (An alternative convention is followed by many electrical engineers, 
who prefer the symbol j  — y/—l  since they wish to  reserve the symbol t for electric 
current.) However, in the past it was felt th a t no meaning could actually be assigned 
to such expressions, which were therefore termed “imaginary.” Gradually, especially 
as a result of the work of Leonhard Euler in the eighteenth century, these imaginary 
quantities came to  play an im portant role. For example, Euler’s  formula e** =  
cos 9 + *  sin 0 revealed the existence of a  profound relationship between complex 
numbers and the trigonometric functions. The rule e’̂ ‘+ê  — ei0tea* was found 
to summarise the rules for expanding sine and cosine of a  sum of two angles in a  
neat way, and this result alone indicated th a t some meaning should be attached to  
these “imaginary” numbers.

However, it took nearly three hundred years until the work of Casper Wessel 
(ca. 1797), Jean Robert Argimd (1806), Karl Friedrich Gauss (1831), Sir William R. 
Hamilton (1837), and others, when “imaginary” numbers were recognized as legit­
im ate mathematical objects, and it was realized th a t tliere is nothing “imaginary" 
about them  a t all (although this term is still used).

The complex analysis th at is the subject of this book was developed in the 
nineteenth century, mainly by Augustin Cauchy (1789-1857). Later his theory 
was made more rigorous and extended by such mathematicians as Peter Dirichlet 
(1805-1859), Karl W eierstrass (1815-1897), and Gooig Friedrich Bernhard Ricmann 
(1826-1866).

The search for a method to  describe heat conduction influenced the development 
of the theory, which has found many uses outside mathematics. Subsequent chap­
ters will discuss some of these applications to  problems in physics and engineering, 
such as hydrodynamics and electrostatics. The theory also has m athem atical ap­
plications to  problems that a t first do not seem to  involve complex numbers. For 
example, tbc proof that

AA . 2
Sill X  ,  7T 
— =-<£* =  X.

or th a t

(where 0 < a < 1), or th a t

f  _  7T
Jo 1 + x  sin(rjrtr) ’

i :

d0 2jt
a  4-sin 0 y/a2 — 1 ’

may be difficult or, in some cases, impossible using elementary calculus, but these 
identities can be readily proved using the techniques of complex variables.



§1.1 Introduction, to Complex Numbers 3

T h e  C om plex  N u m b er S ystem  Complex analysis lias become an indispensable 
and standard tool of the working m athem atician, physicist, and engineer. Neglect 
of it can prove to  be a  severe handicap in most areas of research and application 
involving mathematical ideas and techniques. The first objective of this section will 
be to  define complex numbers and to  show th at the usual algebraic manipulations 
hold, l b  begin, recall th a t the xy  plane, denoted by R2, consists of all ordered 
pairs (x, y) of real numbers.

D efin ition  1.1.1 The system  o f complex numbers, denoted C , is the set R3 
together iirith the usual rules of vector addition and scalar m ultiplication by a 
real number a, namely,

(* i.|h )  +  (*2. 1te) =  ( x i+ x 2,p i-l-ife)
«(*,y) =  (ox, ay)

and vritk the operation of complex multiplication, defined by

(*i,yi)(*2,ite) = (xi*2 -  yiite,*ifte + 01*2).

We will need to  explain where this strange rule of multiplication comes from! 
Rather than using (x, y) to represent a  complex number, we will find it more conve­
nient to  return to more standard notation as follows. Let us identify retd numbers 
x  with points on the x axis; thus x  and (x ,0) stand for the same point (x ,0) in 
R2. The y axis will be called the im aginary axis, and the unit point (0,1) will 
be deuoted t. Thus, by definition, i =  (0,1). Then

(x ,y )= x  +  yi

because the right side of the equation stands for

(x,0) +  y (0 ,l) =  (x,0) +■ (O.y) =  (x .y).

Using y =  (y,0) and Definition 1.1.1 of complex multiplication, wc get

iy =  (0, l)(y , 0) =  (0 • y  -  1 • 0, y • 1 +  0 • 0) =  (0, y) =  y(0,1) *  yt,

so we can also write (x, y) = x  + iy. A single symbol such as z  — a +  ib is generally 
used to  indicate a complex number. The notation 2 6  C  means th a t z  belongs to 
the set of complex numbers.

Note th a t

i2 = i - i  =  (0, 1) .  (0, 1) *  (0 -0 - 1 - 1, ( 1 -0 +  0 - l ) ) «  ( - 1, 0) * - l ,  

so we do have the property wc want:

i2 =  - l .



4 Chapter 1 Analytic Functions

If we remember th is equation, then the rule for multiplication of complex numbers 
is also easy to  remember and motivate:

(a 4-i6)(c4-id) =  oc 4- iad 4* ibc +  i2bd 
— (oc— bd) + i(ad+bc).

For example, 2 +  3i is the complex number (2,3), and

(2 4* 3 i)(l -  4i) =  2 -  12i2 +  3i -  8i -  14 -  5i

is another way of saying that

(2,3)(1, —4) «  (2 • 1 — 3(—4),3 • 1 +  2( - 4)) = (14, - 5).

The reason for using the expression a  4- 6i is twofold. F irst, it  is conventional. 
Second, the rule i2 =  —1 is easier to  use th a n th e ru le (a ,6)(c,«Q =  (ac-bd,bc-\-ad), 
although both rules produce the same result.

Because multiplication of real numbers is associative, commutative, and dis­
tributive, it  is reasonable to  expect th a t multiplication of complex numbers is also: 
th a t is, for all complex numbero z, w, and a we have

(ztu)s =  z(to«), zw  *  vtz, and z(t» +  s) =  a »  +  M.

Let us verify the first of these properties; the others can be similarly verified.
Let z =  a  4* i6, in =  c 4-id , and s  = c + i f .  Then zw — (ac — bd) + i(bc+ad), so

(zw)s »  e(ac — bd) — / ( 6c +  ad) +  i[e(6c 4- ad) 4- f{ac — M)).

Siniilarly.

z(iws) — (a 4- 6i)((ce — df)+  i(cf +  <fe)|
=  o(ee — df) — b(cf 4- dc) 4- i(a (c / 4- dr) 4- h{ce — df)\.

Comparing these expressions and accepting the usual properties of real numbers, we 
conclude th a t (zv)s  =  z(ws). Thus we can write, without ambiguity, an expression 
like =  2 - . . .  - z (« limes).

Note th at fl +  i6 =  c  +  irf means a = <: and b — d (since this is what equality 
means in R2) and th a t 0 stands for 0 4-iO =  (0, 0). Thus a +ib =  0 means th a t both 
a  =  0 and 6 =  0.

I11 what sense are these complex numbers an extension of the reals? We have 
already said th a t if a is m il we also w rite a  to  stand for a  4- 0/ =■ (a ,0). In other 
words, the reals R arc identified with the x axis in C  =  R2; we are thus regarding 
the real numbers as those complex numbers o 4- 6i for which 6 =  0. If, in the 
expression a  4* 6i, the term  a =  0, we call 61 =  0 4- 6£ a pure im aginary number 
\u thr expression a  4- 6i we say th at a is the real part and 6 is the im ag in ary  
part This is sometimes w ritten Re 2 =  a, hn z =  6, where z — a + In. Note that 
Re 2 and bn : are always real numbers (see Figure 1.1.1).
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Figure 1.1.1: The geometry of complex numbers.

A lgebraic P ro p e rtie s  The complex numbers obey all the algebraic rules that 
ordinary real numbers do. For example, it will be shown in the following discussion 
that multiplicative inverses exist for nonzero elements. This means th a t if z £  0, 
then there is a (complex) number s ' such th a t zz' =  1, and wc write s ' =  z~l . Wc 
can write this expression unambiguously (in other words, s ' is uniquely determined), 
because if zz" — 1 as well, then s ' =  s ' • 1 =  /(z z " )  =  (z'z)z" =  1 • z" =  z". and 
so z" =  s '. To show th at s ' exists, suppose th a t s  «= a +  ib ^  0. Then a t least 
one of a  ^  0,6 0 holds, and so e2 +  62 0. To find / ,  wc set z ' =  of +  6'*.
The condition zz* =  1 imposes conditions th a t will enable us to  compute a ' and V. 
Computing the product gives z z ' =  (aa ' — W ) +  (all +  e '6)i. The linear equations 
oo ' -  66'  =  1 and etf -f a '6 =  0 can be solved for a* and V giving o ' s  a/[a2 +  6*) 
and V =  —6/(«* +  62), since o2 +  6* jpt 0. Thus f o r z = «  +  i6 y£Q, we may write

- i  _  a
* “  t f T W  ~

Having foimd this candidate for z-1 it is now a straiglitforward, albeit tedious, 
computatiou to check that it works.

If z  and to are complex numbers with w 0, then the symbol zfvi means 
zw-1 ; wc call s/ix> tlic q u o tien t of s  by w. Thus z " ’ =  1 fz . To compute z-1 , 
the following series of equations is common and is a useful way to  remember the 
preceding formula for z ~x:

1________ a — ib______ a  -  i t  __ a_________ 6
«  +  t6 ( a + i6) ( a - t 6) ttJ +  6* o* +  6*
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In short, all the usual algebraic rules Tor m anipulating real numbers, fractions, 
polynomials, and so on, hold for complex numbers.

Formally, the system of complex numbers is an example of a  field. The crucial 
rules for a  field, stated here for reference, are

A dd ition  ru les

(i) Z + V! = w + z

(ii) z +  (to +  s) =  (z -I- to) +  s

(iii) z  +  0 =  z

(iv) 2 + ( - z )  =  0 

M u ltip lica tio n  ru le s

(i) zw — wz

(ii) (zto)s =* z(tos)

(iii) 1 z - z

(iv) z (z - ')  =  1 for z  96 0 

D istrib u tiv e  law  z(to +  «) =  a »  +  zs

In summary, we have

T heo rem  1 -1.2  The complex numbers C  form a field.

The student is cautioned th a t we generally do not define inequalities like z <  w, 
for complex 2 and to. If one requires the usual ordering properties for reals to  hold, 
then such an ordering is impossible for complex numbers.1 Thus in this tex t the 
notation z <  to will be avoided unless z  and to happen to  be real.

R o o ts  o f Q u a d ra tic  E q u a tio n s As mentioned previously, one of the reasons 
for using complex numbers is to  enable us to  take square roots of negative real 
numbers. T hat this can, in fact, be done for all complex numbers is verified in the 
next proposition.

P ro p o sitio n  1 .1 .3  Let z  €  C . Then there exists a complex number to 6 C  such 
that to2 =  2. (Notice that —to also satisfies this equation.)

'Tbia statem ent can be proved as follows. Suppose that such an ordering exists. Than either 
t  >  0 or i  <  0. Suppose that t  >  0. Then i  • i  > 0, so — 1 >  0, which is absurd. Alternatively, 
suppose that i  <  0. Then —i  >  0, so (—t)(—*) >  0, that is, — 1 >  0, again absurd. If s  =  a +  ib 
mid to =  e +• id, we could say th a t * <  to iff a  <  c and b <<L This is an ordering of sorts, but it 
does not satisfy all the rules th a t might bo requited, such as those obeyed by teal numbera.



P ro o f (We shall give a  purely algebraic proof here; another proof, based on polar 
coordinates, is given in §1.2.) Let z -  e + hi. We want to  find w *= * + iy  such th a t 
z «  vr\ i.c., a+bi =  (x+iy)7 =  (x2 - p 2) +  (2*p)*, and so we m ust simultaneously 
solve x2 - y 2 ~  a and 2zp =  6. Tlic existence of such solutions is geometrically 
clear from examination of the graphs of the two equations. These graphs are shown 
hi Figure 1.1.2 for the case in which both a and b are positive. FVoin the graphs 
it is clear th at there should be two solutious which arc negatives of each other. In 
the following paragraph, these will be obtained algebraically.

jjl.J Introduction to  Complex Numbers 7

Figure 1.1.2: Graphs of the curves x2 — p2 — a and Ixy  — 6.

We know th a t (x2 -f y2)2 =  (x 2 — p2)2 -f 4x2y2 s= a2 +  ft2. Hone 
Va2 -f Ii*, so x2 =  (a +  \fa2 +  tft) /2 and p2 =  (—a +  y/a2 +  ft2) / 2. If

Hence x2 +  y2 =  
we let

+  Va2 +  b2
and

—o +  %/<i2 +  6*

where y  denotes the positive square root of positive real numbers, then, in the 
event th a t b is positive, we have cither x  =  <*,p =  ft or x  =  — o ,p  =  —ft', in the 
event th a t b is negative, wc have cither x  =  n ,y  — —0 o r x  =  —<x,p =  ft. We 
conclude th a t the  equation to2 =  z  has solutions ±{o +  pfti), where ft — 1 if b >  0 
and ft =  — 1 if b < 0. ■

The formula for square roots developed in this proof is worth summarizing 
explicitly. Namely, the turn (complex) square roots of a +  ib are given by

s/a +  ib =  ± (a  +  ftfti),

where a  and ft are given by the displayed formula preceding this one and where 
ft = 1 if b > 0 and ft =  — l  i/6  <  0. t>om the expressions for o  and ft we can 
conclude throe things:



Chapter 1 A nalytic Functions

1. The square roots of a complex number are real if and only if the complex 
number is nail and putative.

2. The square roots of a complex number are purely imaginary if and only if the 
complex number is real and negative.

3. The two square roots of a  number coincide if  and only if the complex number 
is zero.

(The student should chock these conclusions.)
We can easily check th a t the quadratic equation o r2 4* bz +  c =  0 for complex 

numbers o ,6 ,c  has solutions z — (—b ±  y/b2 — Aac) /2 a , where now the square root 
denotes the two square roots ju st constructed.

Worked Exam ples
E xam ple 1 .1 .4  Prove that l / t  =  - i  and that l / ( i  4*1) *  (1 — i)/2 .

S o lu tio n  First,
1 _  l  - i  
* i  — i

because i  • —i =  —(i2) =  —(—1) =  1. Also,
1

*4*1
since (1 4- »)(1 — t) =  14* 1 =  2.

1 1 - f  
« + I I - f

•i

1 —i 
2

E xam ple 1.1.9 Find the mat and imaginary parts o f {s 4* 2 ) /(2 — l)  where z — 
•s 4* iy.

S o lu tion  We s ta rt by w riting the fraction hi term s of the real and imaginary 
parts of z and “rationalizing the denominator” . Namely,

z  4- 2 _  (x 4- 2) 4* iy  _  (x 4- 2) 4- iy  (x  - 1 )  -  iy 
t — I (x — 1 )4*iy  ( x - l) 4 - * y  ( x - l ) - i y

_  (x  4* 2)(x - 1 )  4-y2 4* i\y(x  - 1 )  -  y(x  4- 2))
~  (x — l )2 4- y2

Hence,

„  z 4*2 x2 4*x —24*y*
* - l “  (x — I)2 4*y2

and
,  2 4-2 - %

z - I  “ ( * - ! ) * 4 - y2 '

Eixam ple 1.1.6 Softie the equation z* 4- f =  0 for z.
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S o lu tio n  Lei 7?  — v>. Then tbe equation becomes w* + 1 =  0. Now we use the 
formula y/a + 1‘6 =  ± (a + ^ J i)  wc developed for taking square roots. Letting a —0 
and b =  —1, we get

w — ±

Consider the equation z2 — (1 — i)/y/2. Using the same formula for square roots, 
hut now letting a — 1 fy/2  and 6 =  —l/y /2, wc obtain the two solutions

_ _  A ( ^ 2 + i/2 V 2 - ^ \
' _ ± ^ ~ ---------------2----- *J

FVoin the second possible value for ta wc obtain two further solutions:

In the next section, dc Moivre’s formula will be developed, wliidi will «»«m>Ui» us to 
find tbe n th  root of any complex number rather simply.

E xam ple 1.1.7 Prove that, for complex numbers z  and w,

R e (r+ tn ) =  R e r +  Rew

and

Im (z +  «») =  lm z +  burn.

S o lu tion  Let z  = x  + iy  and tu =  a +  ib. Then z +  w =  (* +  a) +  i(p  +  6), so 
Re(z +  tn) =  z  a  =  R ez -f Rcu>. Similarly, Im (z +  w) =  p +  6 =  b n z  +  bnai.

Exercises
1. Express tlie following complex numbers in the form a -f ib:

(a) (2 +  3i) +  (4 +  i)

(b)
2 +  3t 
4 +  i

(c)
1
-  + 1

3
1 + t

2. Express the  following complex numbers in the form a 4- W:

(a) (2 +  3£)(4 + 1.)
(b) (8 +  6i)2
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3. Find the solutions to  z2 =  3 -  4i.

4. Find the solutions to  the following equations:

(a) (* +  l)* =  3 +  4t
(b) z4 - 1 =  0

5. Find tbe real and imaginary parts of the following, where z — x  + iff.

w ?

(b) 3z +  2
6. Find the real and imaginary parts of tbe following, where z  *= x  +  iy:

t \ Z + 1
^  2z — 5
(b) z*

7. Is it true th a t Re(zw) =  (R ez)(Iteu/)?

8. If a  is real and z  is complex, prove th a t Re(az) =  a Re z and Im (as) =  a lm z. 
Generally, show th a t R e : C  —* R  is a  real linear map; th a t is, Re(az +  6w) =  
a  R ez +  b R ets for a, b real and z, »w complex.

9.* Show th a t Re(iz) =  — Im(z) and th a t Im (tz) — Re(z) for any complex 
number z.

10. (a) Fix a  complex number z — x  + iy  and consider the linear mapping <j>t  : 
R3 -* R3 (tha t is, of C  —♦ C) defined by (f>z(w) = z-w  (that is, m ultiplication 
by z). Prove th a t the m atrix of #e in the standard basis (1, 0), (0,1) of R3 is 
given by

(
x
V

- y
X ) •

(b) Show th a t -  4>ct o

11. Assuming th a t they work for real numbers, show th at the nine rules given for 
a  field also work for complex numbers.

12. Using only the axioms for a  field, give a formal proof (including all details) 
for the following: 1

1 1 1
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( b j I  +  i . i L + 2
*1 Zi *J«3

13. * Let (x -  iy)f{x  H* iy) =  a +  ib. Prove th a t a2 +■ 6* »  l.

14. Prove the binomial theorem for complex numbers; th a t is, letting z,*» 
complex numbers and n  be a  positive integer,

( * + « r  -  *n + ( ” )  + Q  2n~ w + . . . + ( * )

where

Use induction on n .

15. Show th a t z is real if and only if R ez =  z.

16. Prove th a t, for each integer k,

i *  *  i ,? k+' = i,t*k+2 = - M 4*+3 *  - i .
Show how this result gives a  formula for f 1 for all n  by writing n  =  4fe+ j,0 _
j <  3.

17. Simplify the following:

(a) (1 + i )4
(b) ( - i ) - 1

1$. Simplify the following:

(a)

C»T^
19. Simplify the following:

(a) y /l + y/i
(b) \ / l  + t

(c) * y/7 = i
20. Show th a t tlic following rules uniquely determine complex m ultiplication on 

C  — R2:

(a) (zj +  zz)to = Z\W ■+- zzw
(b) ZjZ2 =  ZzZi
(c) i  -1 = —I
(d) zi(z*z3)s(z iz fe )z 3
(c) If Z] and z% are real, zi • z3 is the usual product of real numbers.
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1.2 Properties of Complex Numbers
It is im portant to be able to visualize mathematical concepts and to develop geomet­
ric intuition—an ability especially valuable in complex analysis. In this section we 
define and give a  geometric interpretation Tor several concepts: the absolute value, 
argument, polar representation, and complex conjugate of a  complex number.

A d d itio n  o f C om plex N um bers In the preceding section a complex number 
was defined to be a  |>oint in the plane R2. Thus, a  complex number may be thought 
of geometrically as a (two-dimensional) vector and pictured as an arrow from the 
origin to tbe point iu R2 given by the complex number (sec Figure 1.2.1).

Figure 1.2.1: Vector representation of complex numbers.

Because the points (x, 0) €  R2 correspond to  real numbers, lire horizontal or x  
axis is called tbe real axis. Similarly, the vertical axis (the y  axis) is called the 
im aginary axis, because (joints on it have the form iy = (0. y) for y  real.

As we already saw in Figure 1.1.1, the addition of complex numbers can be 
pictured as addition of vectors (an explicit example is given in Figure 1.2.2).

P o la r R e p re se n ta tio n  o f  C om plex N um bers To understand the geometric 
meaning of multiplying two complex numbers, we will write them  in w hat is called 
polar coordinate form. Recall that, the length ol tlio vector (a, b) — a+ib is defined 
to  be y/d1 +  ft2. Suppose the vector makes an angle ff with the positive direction of 
the real axis, where 0 <  ff <  2ar (see Figure 1.2.3).

Thus, tariff — b/a. Since a = rcosff and b — rsinff, wc have

a*t*6f — rcosff-f (rsin ff)i =  r(cosff +  isinff).

This wav of writing the complex number is called the polar coordinate represen­
ta tion . The length o f the vector 2 =  (a, 6) =  a  +  ib is denoted |z | and is called the 
n o rm , or modulus, or absolute value of 2. The angle ff is called the argument 
of the complex number and is denoted 0 — argz.
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<3 + 2f)*.(l+3<)-4+s»

Figure 1.2.2: Addition of complex numbers.

Figure 1.2.3: Polar coordinate representation of complex numbers.

If we rest.net 0 to  the interval 0 <  0 <  2jr, then each nonzero complex number 
has an unambiguously defined argument. (We leant (Jus in trigonometry.) How­
ever, it is dear that we can add integnd multiples of 2sr to  0 and still obtain tbe 
same complex number. In fact, we shall find it convenient to  be flexible in our 
requirements for the values th a t 0 is to assume. For example, we could equally well 
allow the range of 0 to be —tt < 6 < n. Such an interval m ust always be specified 
or be dearly understood.

Once an interval of length 2ir is specified, then, for each r  ^ 0 ,  a  unique 6 is 
determined th a t lies within th a t specified interval. I t is clear th at any 0 €  R can 
be brought into our specified interval Iy  the addition of some (positive or negative) 
integral multiple of 2tc. For these reasons it is sometimes best to  think of argz as 
the set of possible values of tbe angle. If 0 is one possible value, then so is 0 +  2am 
for any integer n , and wc can sometimes think of argz  as {0+2im  | n  is an integer}. 
Specification of a  particular range for the angle is known as choosing a  b ran ch  o f 
the argument.
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M u ltip lica tio n  o f C om plex  N um bers Tbe polar representation of complex 
numbers helps us understand the geometric meaning of the product of two complex 
numbers. Let z\ = r t (cosdi +  ts in ^ i) and zs =  t*2(cos02 +  isinfh). Then

Z\S2 ~  r j r 2[(cosffj -CO502 — sin 0i -sin #2)] +  t((cos0i -s in f lj+ c o s ^  *sin^i)J 
=  r i r 2(cos(ff| +  62) +  i sin(0j +  0a)].

by the addition formula for tiic sine and cosine functions used in trigonometry. 
Thus, we have proven

P ro p o sitio n  1.2.1 For any complex numbers z\ and 23,

|ziZ2| — |z i| • I22I and aig(ziz2) =  a ig z j + argZ 2 (mod 2x j.

In other words, the product o f two complex numbers is the complex number 
th a t has a  length equal to  the product of the lengths of the two complex numbers 
and an argument equal to  the sum of the argum ents of those numbers. This is the 
basic geometric representation of complex multiplication (see Figure 1.2.4).

9

Figure 1.2.4: M ultiplication of complex numbers.

The second equality in Proposition 1.2.1 means th a t the sets of posable values 
for the left and right sides are the same, th a t is, th a t the two sides can be made to  
agree by the addition o f the appropriate multiple of 2jt to  one side. If a particular 
branch is desired and argzi +- a rg 23 lies outside the interval th a t we specify, we 
should adjust it by a  multiple of 2 s to bring it within th a t interval. For example, if 
our interval is [0, 2ir( and 21 =■ - 1  and 22 =  -* , then axgzj =  jt and argz2 =  3jt/2 
(see Figure 1.2.5), but zjz* =  f, soarg(z,Z2) =  ?r/2, and argzi + a rg z j =  jt+ 3 jt/ 2 =  
2ir 4* tt/ 2. We can obtain the correct answer by subtracting 2rr to  bring it within 
the interval [0, 2tt[.

M ultiplication of complex numbers can be analyzed in another useful way. Let 
2 €  C and define : C -* C by tj>A(vt) — wz; th at is, i}>~ is the map “multiplication
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9

Figure 1.2.5: M ultiplication of tbe complex numbers —I and —i.

by z” . By Proposition 1.2.1, tJie effect o f Ibis map is to rotate a complex number 
through an angle equal to a rg z  in the counterclockwise direction and to stretch its 
length by the factor |z |. For example, fa  (multiplication by t)  rotates complex 
numbers by n/2  in the counterclockwise direction (see Figure 1.2.6).

9

Figure 1.2.6: M ultiplication by i.

The m«p fa  is a  linear transform ation  on tbe plane, in the sense th a t 

r!>x(Xwi + p w ) -  A f c f a ) +  fnp,(w2)>
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where X,fi are real numbers and vi,W 2 are complex numbers. Any linear transfor­
m ation of the plane to  itself can be represented by a m atrix, as we learn in linear 
algebra. If z — a 4* ib =  (a, 6), then the m atrix of t/)~ is

O D
since

(a —b \ / x \ _ / a x  — h y \
b a )  \  y )  \  )

(see Exercise 10, §1.1).

D e M oivre’s  F orm ula Tbe formula we derived for multiplication, using the 
polar coordinate representation, provides more than geometric intuition. We can 
use it  to  obtain a  formula for tbe n th  power of a complex number. This formula 
can then be used to  find the n th  roots of any complex number.

P ro p o sitio n  1 .2 .2  (D e  M oivre’s  F orm ula) If z = r(cos0 +  tsin 0 ) and n  is a 
positive integer, then

2"  =  r"(co&it9 + i&nnO).

P ro o f By Proposition 1.2.1,

z2 — r 2|cus(0 4- 0) 4-tsin(0 4- 6)] =  r2 (cos 20 4* t sin 20).

M ultiplying again by z  gives

z3 — z  - z* — r  ♦ r*[cos(20 4- 0) + 1 sin(20 4* 0)J =  r-’ fcosSO 4* * sin 30).

This procedure may be continued by induction to  obtain tbe desired result for any 
integer n. ■

Let w lie a complex number; th a t Is, let t» €  C . Using de Moivre’s formula 
will help iis solve the equation 2"  =  w for z  when w is given. Suppose th a t 
w =  r(cos0 4- isiu 0 ) and 2 =  p(cosx}) +  fs in ^ ). Then do Moivre’s formula gives 
zn — pn (count}) 4- itmni}>). I t follows th a t pn = r =  |ta| by uniqueness of the polar 
representation and nij) =  0 4- k(2x), where k  is some integer. Thus

4- 4*fa n  ^  4* ~ 2,r^ j  •

Each value of & =  0 ,1,. . .  , n  — 1 gives a different value of 2. Any other value of k 
merely repeats one of the values of 2 corresponding to  k  =  0 ,1 ,2 ,... ,n  -  1. Thus 
there are exactly n  n th  roots o f a  (nonzero) complex number.
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An example will help illustrate how to  use this theory. Consider tbe problem of 
finding the three solutions to the equation z3 = 1 — l(cosO-HsinO). The preceding 
formula gives them as follows:

1e2jt . . k2z z  =  cos —— 4- tsm  ——,
3 3

where k = Q, 1,2. In other words, the solutions are

_  I iy/3 1 *n/5
2 2 +  2 ’  2 2 '

This procedure for finding roots is summarized as follows.

C o ro lla ry  1.2.3 Let m be a nonzero complex number with polar representation 
w = r(cosfl 4-isin fl). Then the nth roots of w arc given by then complex numbers

« = V F [ o » ( £  +  M ) + i * , ( £ + ^ ) ]  * = 0, I .......

As a  special case of this formula we note th a t the n  roots of 1 (th a t is, the n th  
roots of unity} are 1 and n — 1 other points equally spaced around the unit circle, 
as illustrated in Figure 1.2.7 for the  case n  =  8-

y

Figure 1.2.7: The eighth roots of unity.

C om plex  C o n ju g a tio n  Subsequent chapters will include many references to  the 
simple idea o f conjugation, which is defined as follows: If z  — a 4* ib, then z, the 
com plex conjugate of z, is defined by z  — a  — ib. Complex conjugation can be 
pictured geometrically as reflection in the real axis (see Figure 1.2.8).

The next proposition summarizes the main properties of complex conjugation.
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y

Figure 1.2.8: Complex conjugation.

P ro p o sitio n  1.2.4 The following properties hold for complex numbers:

(i) Z + 3? — z + P.

(ii) HP — zz?.

(iii) zfz? =* z f p  far P  ^  0.

(iv) zz = |z |2 ond hence i f  z =£0, we have z " 1 = z /|z |2.

(v) z  — z i f  and only i f  z  is redL

(vi) Re z — (z +  z ) /2 and Im z  =  (z — z)/2£.

(vii) 1 =  2.

P ro o f

(i) Let z =  a + ib and let P - a '  + ib'. Then z + p  =  a +  a ' +  ilb +  6'L  and so 
* +  ̂  =  (d +  a ' ) - i ( l + ^ ) = o - i l i + 4 ' - i l / a | | j ' ,

(ii) Let z  = a + ib and let z ' = a' + ii/. Then

z p  =  (on* -  W ) +  i(ab? + a '6) =  {aa‘ -  **') -  i(ah ' +  a'b).

On the other hand, z p  = (a — ib)(a‘ — il/) =  (aar — W ) — i(aP + a*b).

(iii) By (ii) we have P zjP  — P zjP  =  z. Hence, P fp  — z fp .

(iv) zz =  (o 4-ib)(a — ib) —a2 + lP — |z |2.

(v) rf « +  th =  a  — ib, then ib = —ib, and so 6 =  0.

(vi) This assertion is clear by the definition of z.
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(vii) This assertion is also clear by the definition of complex conjugation. ■

The absolute value of a complex number |z | =  |o  +  x6( =  y/a1 -fh2, which is 
the usual Buclidcan lengtli o f the vector representing the complex number, has 
already been defined. FVom Proposition 1.2.4(iv), note th a t |z | is also given by 
|r |3 =  zz. The absolute value of a  complex number is encountered throughout 
complex analysis; the following properties of the absolute value are quite basic.

P ro p o sitio n  1.2.5 (i) \zzf\ — |z | • |z '|.

(ii) / /* ' j* o, then |z /z #| =  |z |/ |z '|.

(iii) - |z | <  R cz <  |z | a n d — |z | <  lm z <  |z |; that is, |R e z | <  |z | an d |Im * | <  |z |.

(iv) | i |- |* l -

(v) |z  +  Z/| <  |z | +  |z/|.

(vi) | * -s #|>ll*M *'l|.

(vii) |zi«/, +  . . .  +  Znttf„| <  +  • • . +  M V M *  +  •• • +  |t»n|2-

Statem ent (iv) is dear geometrically from Figure 1.2.8, (v) is called the trian- 
gle inequality for vectors hi R2 (see Figure 1.2.9) and (vii) is referred to  as the 
Cauchy-Schwarz inequality. By repeated application of (v) we get the general 
statem ent |z i + . . .  +  z„| < lz i | +  . . .  +  j^ l|.

9

Figure 1.2.9: Triangle inequality.

P ro o f

(i) This equality was shown in Proposition 1.2.1.

(H) By (>). I* '|l*/z'l “  W • <^/*')l =  |* |. so |z /z / | =  |z |/ |z '|.
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(iii) If z =  a  -f ib, then —y/a1 +  IF < a <  y/a2 + l& since & >  0. The other 
inequality asserted in (iii) is similarly proved.

(iv) If z j= a +  ib, then £ — a — ib, and we dearly  have |z | =  y/a2 ±b2 as 
\/a 2 +  (-/.)2 =  \z\.

(v) By Proposition 1.2.4(iv),

\z +  s ' I* =  (z +  Z>)(z  +1 7)
=  (z +  z')(z-»-F)
=  zz  +  s '?  +  z'2  -f zz*.

B ut zz ' is the conjugate of s 's  (W liy?), so by Proposition 1.2.4(vi) and (iii) 
in th is proof,

|z|2 + | z f  +  2R es'j < |z|2 + |z'|2 +  2|z'z| - |s|2 + | z f  + 2|s||s'|.

But this equals ( |s | +  Iz^)3, so we get our result.

(vi) By applying (v) to  s ' and z  — s ' we got

|s | =  |s ' +  ( s - s ') |< |s ' |  +  | s - s ' | ,

so |s  — s '! > |z | -  |z '|. By interchanging the roles of s  and s ', we similarly get 
|z  — s'! >  \zf\ — |z | =  — ( |s | -  |z '|) , which is what we originally claimed.

(vii) This inequality is less evident and the proof of it requires a  slight m athematical 
trick (see Exercise 22 for a  different proof). Let us suppose th a t uot all tlic 
Wk — 0 (or else the result is dear). Let

w a w
v =  E N 2, * =  * =  £ * * « * -  and c  =  a ft.

h>l te=I

Non' consider the sum

5^ |3 fc-C t» l:|2
k=* I

wliich is >  0 and equals
n w

V  +  |c|2t  -  c Y  Zkm -  c Y  z*Wk 
Ibel te l

v +  |c |2t  — 2 Rees

Since t  is real and ss — |a |2 is real, v  +  ( |s |2/ t )  — 2 (|s|2/ t )  =  v -  |s |2/ t  > 0. 
Hence |s |2 <  vt, which is the desired result. ■
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Worked Exam ples
E xam ple 1 .2.6 Solve z8 =  1 for z.

S olu tion  Since 1 =  cos k2w 4- i  sin k2v when k  equals any integer, Corollary 1.2.3 
gives

k2n . . k in  , „ . „z =  cos—  -M an—  fc = 0,1,2....... 7

-  1 J - 4 . - L  i Z lu .  . - 1  i  . 1 *
_  ' V2 + V2' V2 ■ V2' ' V 2 ~ 7 2 ^ t' 7 2 ~ ^

These may be pictured as points evenly spaced on the circle in  the complex plane 
(sec Figure 1.2.10).

V

Figure 1.2.10: Tbe eight 8th  roots of unity.

E xam ple 1 .2 .7  Show that

(3 +  7t‘)21 (3 -  7i )2
(8 4- 6i) J “  (8 — Gi) '

S o lu tion  The point here Is th a t it  is not necessary first to work outJ3+7»)2/(8>t- 
6i) if wc am ply use the properties of complex conjugation, namely, ?  =  (z)2 and 
z /z7 =  z /z7- Thus we obtain

r(3 ^ 7«)21 _  (3 -t- 7t’)2 (3T 7i)2 (3 - 7t)a
l (8  + 6 i)J  = (8 + 6i) (8 + 6f) (8 -6 i)  '

E xam ple 1.2 .8  Show that the maximum absolute value of z* + 1 on the unit disk 
|z | <  1 is 2.
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S olu tion  By the triangle inequality, (z2 +  1| <  (s2! + 1  =  |z|2 +  1 <  l 2 +  1 =  2, 
since |z | <  1 thus \t? +  1| does not exceed 2 on the disk. Since the value 2 is 
adiicved a t z = l, the maximum is 2.

E xam ple 1.2.9 Express cos30 in terms of cos0 and s in 0 veins de Moivrc’a for­
mula.

S o lu tio n  De Moivre’s formula for r  — 1 and n  =  3 gives the identity 

(cos0 +  ts in 0 )3 =  cos 3 0 +  * sin 30.

The left side of tliis equation, when expanded (see Exercise 14 of $1-1), becomes 

cos3 0 +  t3cos20sin0  — 3cos0sin20 — tsin3 0.

By equating real and imaginary parts, we get

cos 30 — cos3 0 — 3cos 0sin2 0 

and the additional formula

sin 30 =  —sin30 +  3cos20sm 0.

E xam ple 1.2.10 Write the equation of a straight tine, o f a circle, and of an ellipse 
using complex notation.

S o lu tio n  The straight line is m ost conveniently expressed in param etric form: 
z s= a +  bt,a,b 6 C ,t 6 R , which represents a  line in the direction of b and passing 
through the point a.

The circle can be expressed as |z — e | =  r  (radius r , center a).
Tbe ellipse can be expressed as Jz — d| +  |z + d\ =  2a; the foci are located a t dtd 

and the semimajor axis equals a.
These equations, in which |-| is interpreted as length, coincide w ith the geometric 

definitions of these loci.

Exercises
1. Solve the following equations:

(a) z5 -  2 =  0
(b) z4 + 1 =  0

2. Solve the following equations:

(a) s6 + 8  =  0
(b) r3 -  4 =  0
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3. W hat Is the complex conjugate of (3 +  8i)4/ ( l  4- i)w?

4. W hat is the complex conjugate o f (8 — 2t)10/(4  +  Gt)s?

5. Express cos5x and sinSx in term s of cosx and s in s .

6. Express cos6x  and sin 6x in term s of cosx and sinx.

7. Find the absolute value of (i(2 4- 3i)(5 — 2£)J/(—2 — £).

8. Find the absolute value of (2 — 3i)2/(8  4- 6i)*-

9 . " Let w be an n th  root of unity, w 56 I. Show th a t 14*tu4-u/24- . . . 4-tt>n-1 = 0.

10. Show th at the roots of a polynomial with real coefficients occur in conjugate 
pairs.

11. If a , 6 e  C, prove the parallelogram identity. |a —6|24-|a46|2 =  2(|a |24-|6|2).

12. Interpret the identity in Exercise 11 geometrically.

13. When does equality hold in the triangle inequality |2t +  +  . . .  4- z»\ <
M  +  M + - -  +  l^nl? Interpret your result geometrically.

14. Assuming either [z| =  1 or |w | — 1 mid zw £  1, prove th a t

Iz  — w | _
1 — 2te |

IS. Does x2 =  |z |2? If so, prove this equality. If not, for w hat z  is it true?

16.a Letting z  *  x  4- ip , prove th a t |x | 4- |y | <  >/2|z|.

17.* Let z = a + ib and z ' = a '+ ii/. Prove th a t \zzf\ = |z ||z / | by evaluating each 
side.

18. Prove the following:

(a) a rg z  =  -a ig z (m o d  2x)
(b) arg( z/i») =  argz -  arg w(mod 2jt)
(c) \z\ =  0 if and only if z — 0

19. W hat is the equation of the circle with radius 3 and center 8 4- 5i in complex 
notation?

20. Using the formula z“ '  =  z /|z |2, show how to  construct z~l geometrically.

21. Describe the set of all z  such th a t Im (z 4  5) =  0.
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22." Prove Lagrange’s identity.

Deduce the Cauchy-Sekware inequality from your proof.

23. " Given a 6 C, find the maximum of |zn 4* a | for those z w ith \z\ <  X.

24. Compute the least upper bound (that is, supremum) of the set of all real 
numbers of the form Re (fz3 +  X) such that |z | <  2.

25. " Prove Lagrange’s trigonom etric identity.

Prove that. \zt — s\\ — |zs — z i| =  }z2 -  ss|. Hint: Argue geometrically, 
interpreting the meaning of cadi statem ent.

27. Give a necessary and sufilcient condition for

(a) z i,Z2,Z3 to  lie on a straight line.
(b) Z), z j, z3, Z4 to  lie ou a  straight line or a  circle.

28. Prove the identity

Hint: The given product out l>e written as 1/2"-1 tim es the product of the 
nonzero roots of the poiynomhd (1 -  z)n — X.

29. Let w  be an n th  root of unity, w ^  1. Evaluate 1 +  2u? +  3»«2 + . . .  +  nw”~l .

30. Show th a t the correspondence of the complex number z =  a +  In with the

m atrix ^  ^ ^  ^  s  noted in the text preceding Proposition 1.2.2 has

the following properties:

(a) i>tu -
(b ) rpz+u, =  V '* +

(Assume th a t sin(0/2) 0.)

26. Suppose th a t the complex numbers Z\ . 22, Z3 satisfy the equation

Z2 - Z 1 _  z i - z s
23 — Zj Za — 23
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<c)tf, =  ( J  J ) .

(d) Xtfu =  if A is rad .
(c) $s = (rji.y (the transposed m atrix).

(0 tfl/a  =  (& )“ *•
(g) z is real if and only if = (tk )1.
(It) |z | =  1 if and only if is an orthogonal m atrix.

1.3 Some Elementary Functions
We leant about the trigonometric functions sine and cosine, as well as the exponen­
tia l function and the logarithmic function in elementary calculus. Recall that the 
trigonometric functions may be defined in term s o f tlic ratios of rides of a  right- 
angled triangle. The definition of “angle" may be extended to  include any real 
value, and thus oosO ami a n f  become real-valued functions of the real variable 0. 
I t is a  baric fact th a t cosd and rinfi are differentiable, with derivatives given by 
d(casO)/dO — — siu0 and d(shi0)/d0 — cos0. Alternatively, cos0 and sin# can be 
defined by their power scries:

a-3 a-5
* ■ *  = * “ a + ! f - ~

X2 X*

COSX =

The proof of convergence of these series can be found in Chapter 3 and in many 
calculus tex ts.2 Alternatively, rin x  can be defined as the unique solution /(x )  to 
the differential equation f"{x) -f- f(x ) = 0 satisfying / ( 0) =  0, / '( 0) =  1; and oosx 
can Ik  defined as the unique solution to  f" (x)  +■ /(x )  =  0 ,/(0 ) =  l , / '( 0 )  =  0 
(again, see a  calculus text for proofs).

E x p o n en tia l F u n ctio n  The exponential function, denoted e*t may lie defined 
as the unique solution to the differential equation / '(x )  =  /(x ) , subject to  the 
initial condition th a t /(0 ) =  1; one has to  show th a t a  unique solution exists. The 
exponential function can also be defined by its power scries:

e* =
XT

+a;+2r+¥+"--
We accept from calculus the fact that c* is n positive, strictly increasing function 
of x. Therefore, for y > 0, logy can be defined as the inverse function of e*; that.

*Ad example is J. Marsden and A. Weinstein, Calculus, Second Edition (New York: Springer- 
Vortag, 1985), Chapter 12.
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is, <f°*y =  y. Another approach th a t is often used in calculus books is to  begin by 
defining

for y > 0 and then to  define e* as the inverse function of logy. (Many calculus 
books write In y for the logarithm to the base c. As in most advanced mathematics, 
throughout this book we will write logy for Iny.)

In this section these functions will be extended to  the complex plane. In other 
words, the functions su it,c o sz ,e r , and Iogz will be defined for complex z, and 
their restrictions to  the real line will be the usual sinar.cosXje*. and logs. The 
extension to  complex numbers should be natural in the sense th a t many of the 
familiar properties of sin, cos, exp, and log ate retained.

We first extend the exponential function. We know hem  calculus tlia t for real 
x, e* can be represented by its Moclauriu scries:

+  . . . .

Thus, it would be reasonable to  define eiy by

4- •

for y  €  R- O f course, this definition is not quite legitim ate, as convergence of series 
in C has not yet been discussed. Chapter 3 will show th a t this series does indeed 
represcut a  well-defined complex number for each y, bu t for the moment the series 
is used informally as the basis for the definition th a t follows, which will be precise. 
A slight rearrangement of the series (using Exercise 1C, §1.1) shows th a t

(' 31 r  5!

which wc recognize ns being cosy -i- isiu y . Thus wc define

a,u =  cos y 4- r sin y.

So far, we have defined e* for z along both the real and imaginary axes. How do 
we define ez =■ ex+iy? We desire our extension of the exponential to  retnin the 
familiar properties, and among these is the law of exponents: ea+6 =  ca • e6. This 
requirement forces as to  define ex‘Hv =  c* • e'v. This can be stated in a formal 
definition.

D efin ition  1-3.1 I f z — x  + iy, then e* is defined by c*(cosy 4- tsin  y).

Note th a t if z is real (tha t is, if y — 0), th is definition agrees with the usual 
exponential function er. The student is cautioned that we arc not, a t th is stage,
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fully justified in thinking of c* as “e raised to  the “powerB of 2," since we have not 
yet, for example, established laws of exponents for complex numbers.

There is another, again purely formal, reason for defining c,y — cosy + i  siny. 
If we write eiv -  f(y)  +  iy(y), we note th a t since we want e° =  1, we should 
have /(0 )  =  1, and y(0) =  0. If tbe exponential function is to  have the familiar 
differentiation properties, we will need

so when y =  0 we got / '(0 )  =  0, y'(0) — 1. Differentiating again gives us

Comparing this equation with eiy =  /(y )  +  ig(y), wc conclude th a t /" (y ) +  /(y ) =  
0, /(Q ) =  1, and / '(0 )  =  0. Therefore, /(y )  =  cosy by the definition of cosy in term s 
of differential equations. Similarly, we find th a t gf,(y)+g(y) =  0,y(Q) =  0, y'(0) =  1, 
and hence g(y) =  siny. Thus, we would obtain e<v =  cosy-M siuy as in Definition
1.3.1.

Some of the im portant properties of e‘ are summarized in the following propo­
sition. To sta te  it, we recall the definition of a  periodic function. A hmetion 
/  : C —► C is called p eriod ic  if there exists a  tu €  C (called a  period) such th a t 
f ( z  + w) — f(z)  for all z  €  C.

P ro p o sitio n  1.3.2

(i) e*+u’ =  e*ew for all z,w €  C.

(ii) e* is newer zero.

(iii) I f x i s  real, then e* > 1 when x > 0  and 0 <  c* <  1 when x  < 0.

(iv) |e*+iy| «  c*.

(v) e*^2 =  i, e "  =  - 1 ,^ / 2  =  _ ilC2vi =  1.

(vi) ez is periodic; each period for c* has the form 2md, for some integer n .

(vii) c* =  1 iff z  =  2niri for some integer n (positive, negative, or zero).

P ro o f

(i) Let z  =  x  +  iy, and let to =  s  +  it. By our definition of e*,
e«+«i» _  c(c+ff)-M(vM)

=  e*+ ,|cos(y - f t)  +  isin(y  + 1))
— c*c*I(oosycost — sin y sin t)  +  t(sin y co st +  cosysin t) |
=  |cx(cosy -fisiny ))[c* (cosi-h tsin i)j

uring the addition formulas for sine and cosine and the property ex+* =  e* - e* 
for real numbers x  and ». Thus c,+ *‘, — e* •e“  for all complex numbers z  and
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(ii) Fbr any z, wc have e* -e~* — e° =  1 since wc know th at the usual exponential 
satisfies c° =  1. Thus e* can never be zero, because if it were, then ez • e~* 
would be zero, which is not true.

(iii) Wc may accept tins from calculus. For example,3 obviously

X X3
e‘  =  1 +  i ! 4' ^  +  ¥ ‘h “ > 1  wheu * > °*

(iv) Using \ztf\ *= |z ||z '| (sec Proposition 1.2.5) and the facts that ex >  0 and 
cos2y +  sin8 2y  =  I, wc get

|eI -H«'| =  |e*e'“| =  |e*||ei«'|
=  e* | cos y-M  siny  | =  e*.

(v) By definition, cwî 2 =  cos(jr/2) +  tsin (x /2 ) =  i. The proofs of the other 
formulas are similar.

(vi) Suppose th a t c2+w =  c* for all z £  C. Setting z =  0, we get e "  =  1. If 
tu =  s + t i , then, using (iv), ew = 1 implies th a t e* =  l, so s = 0. Hence any 
period is of the fonn ti, for some t £  K. Suppose th a t eli =  1, that, is, tlia t 
cost +  is in t =  I. Then cost =  l,s in t =  0; thus, t  =  2rm for some integer n.

(vii) e° =  1, as wc have seen, and e2” " — 1 because c* is periodic, by (vi). 
Conversely. cz =  1 implies tlia t es+s< =  c** for all 2';  so ly  (vi). 2 =  2im t for 
some integer n . ■

How can wc picture e’"? Since e1* «  (cosy, siny), it moves along the unit circle 
in a  counterclockwise direction as y  goes from 0 to  2w. It readies i  a t y  =  tt/ 2 ,—1 
a t sr,—1 a t 3 r /2 , and 1 again a t 2ir. Thus, c*v is the point on the unit circle with 
argument y  (sec Figure 1.3.1).

Note th a t in exponential form, the polar representation of a  complex number 
becomes

2 =  |z |c i(nr*-'>

wliidi is sometimes abbreviated to  z =  rr.ie.

T rigonom etric  F unctions Next we wisli to  extend the definitions of cosine and 
sine to  the complex plane. The extension of th e  exponential to  tbe «m»plex plane 
suggests a  way to  extend tbe definitions of due and cosine. Wc have e** =  cosy +  
tsin y , and c~*v =  cosy — tsin y , whidi implies th at

e*» -  e_<* , civ 4- c~iu
= — 21—  and -  — 2— *

8 Another proof utilising Lhc definition of c1 in lo tu s or dtflenmtinl oqunlioiis is os follows.
Recall that <* is Uu: unique solution to  f ‘(x) =  /(* ) with e° = 1 (* real). Since e* is cotitiuuoiis
and is m w  sitro, it must be strictly positive. Hcncc (e*)' =  e* is always positive and consequently
c* is strictly increasing. Tims for * >  0,** > 1. Similarly, for z  <  0, we have e®- < 1.
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Im

Figure 1.3.1: Points on tbe unit circle.

B ut since e“  is now defined for any 2 €  C, we are led to  fonnulate the fallowing 
definition.

D efin ition  1.3.3 The complex sine and cosine functions are defined by

e " + e " i3sm 2 = -----—----- and cos 2 -------- ------2i 2
for any complex number 2.

Again, if 2 is real, these definitions agree w ith the usual definitions of sine and 
cosine learned in elementary calculus.

The next proposition lists some of the properties of the sine and cosine functions 
th a t have now boon defined Over the whole of C  and no t merely on R.

P ro p o sitio n  1.3.4

(i) sin2 2 4- cos2 2 =  1.

(ii) sin(2 -f tu) =  sin 2 ■ cos w -f- cos 2 - sin in and 
Cos(2 +  «/) =  cos 2 • costs — sin 2 - sin id.

Again the student is cautioned th a t these formulas, although plausible, must be 
proved, since a t this stage wc know their validity only when tv and z  are real.

P ro o f Using the definitions, we have

r><' _ „ —* \ 2. 5  ,  / V '- c - ^ Y  /V *  +  e~“ Y
an 22 +  cos22 «  2i — J  +  ( ^ 2 “ J

c2** -2-1- e“2il . e2*  + 2 + c-2**' ,
" — T  * ” “  A,-4 4
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which proves (i). Tb prove (ii), write

sin z  • oaei vr +• cos z • a n  w
cix -  <TJ* elw +  c~iw , cu  +  c~“  eiw -  e~iw 

2t 2 +  2 2i ’

which, using c*zc,v> = e«(*+“') ajyj noting cancellatious between the two terms, 
simplifies to

p iti+ w ) _  e -i(*+ i» ) _  p —i(s+to) gi(i+n») _  fl-»(x+to)

----------« ---------- + ----------- JT --------- - ----------- ? -------------

The student can similarly check the addition formula for cus(2 -1- w). ■

In addition to  cosz and sinz, wc can define tan z  — (sin z)/(oosz) when cosz ^  
0, and similarly obtain the other trigonometric functions.

L ogarithm  F u n ctio n  We now define the logarithm in a way th a t agrees with the 
usual definition of Iogx when x  is real and positive. In the real case we can view 
the logarithm as the inverse of the exponential (that is, logs; =  y is the solution of 
e* = x). When we allow z to range over C, we must be more careful, because the 
exponential is periodic and thus cannot have a unique inverse. Furthermore, the 
exponential is never zero, so we cannot expect to  be able to  define the logarithm a t 
zero. Thus, we m ust be careful in our choice of the domain in C  on which we can 
define the logarithm. The next proposition indicates how this may be done.

P ro p o sitio n  1-3.5 Let denote the set o f complex numbers x  + iy such that 
Vo S  y  < Vo + 2tt; symbolically,

Aye *= {* +  iy  | x  €  R  and ya <  y <  {to 4- 2s-}.

Then e* maps in a one-to-one manner onto the set C \{0}.

Recall th a t a map is one-to-one when the map takes every two distinct points 
to  two distinct points; iu other words, two distinct points never get mapped to  the 
same point. A map is o n to  a  set B  when every point of B  is the image of some 
point under tbe mapping. Tire notation C\{0} means the whole plane C  minus the 
point 0; tlia t is, the plane with the origin removed.

P ro o f If c*‘ =  e*», then c4*-4* =  1, so zj -  z2 =  2 rin  for sonic integer n, by 
Proposition 1.3.2. B ut because z( and z& both 5c in where the difference 
between the imaginary parts of any points is less than 2jt, we m ust have zt =  z2. 
This argument shows th a t «* is one-to-one. Let to £  C  with w £  0. We claim the 
equation a* = w  has a solution z in A ^ . The equation R*+iv = to is equivalent 
to the two equations c* =  |w | and e>v — w{\w\. (Why?) The solution of the first 
equation is *  =  log|u;|, where “log” is the ordinary logarithm (with base c) defined
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on the positive part of the real axis. The second equation has infinitely many 
solutions y, each differing by integral multiples of 2a . but exactly one of these is 
the interval [i/o, yo +  2?r(. This y  is merely argw, where the specified range for the 
mg function is \ya,Va 4- 2«|. Thus e* is onto C\{0}. ■

Tlie sets defined in this proposition are shown in Figure 1.3.2. Here ez maps the 
horizontal strip between y$i and [yo 4- 2ir)t one-to-one onto C\{0}- (The notation 
z *-* /(z ) is used to  iudicate that z is sent to f( z )  under the mapping / .)

Figure 1.3.2: e£ as a  one-to-one function onto C \{0}.

In the proof of Proposition 1.3.5 an explicit expression was derived for the 
inverse of c* restricted to the strip pa < Ini z <  p<> 4- 2w, and this expression is 
stated formally in the following definition.

D efinition 1.3.6 The. function log : C\{0} —* C , with range yo < Im logz < 
i/o 4- 2jr, i t  defined by

logz =  log |z | 4- targ  z,

where argz takes values in the interval jpo, Vo 4- 2tt[ and log |z | is the usual logarithm 
of the positive real number \z\.

This function is sometimes referred to as the “branch of tlie logarithm function 
lying in {x 4- iy | y0 < y  < y0 4- 2sr}." But we must remember that the fund,ion 
logz is wdl defined only when we specify an interval of length 2ir in which argz 
takes its values, that is, when a specific branch is chosen.

For example, suppose that the specified interval for the argument is (0, 2jt[. 
Then log(l 4- i) =  log\/2 4* in /4. However, if the specified interval is (rr, 3irj, then 
Iog(l 4-1) =  lo g \^ 4 - «9jt/ 4. Any particular hrandi of the logarithm defined in 
this way undergoes a  sudden jump as z moves across the ray arg z =  y0. To avoid 
this jumping, one can restrict the domain to yo < y  < pa 4- 2jt. This idea will be 
important in §1.G.
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P ro p o sitio n  1.3.7 TVie logarithm log z in the inverse of e* in the following sense: 
For any branch o f lags, we have e1"** =  z, and i f  we choose the brunch lying in 
Vo <  V < Vo + 2ir, then log(e*) =  z for z — x  + iy and y o < y < y o  + 2tr.

P ro o f Since log z =  log |2| + i aig z, we have

cio«* =  ci»sWc*»rB* _  |2|e’« « s =  s.

Conversely, suppose that z = x  + iy and j/o <  V <  9b + 2a-. By definition, Ioge' =  
log|«*| +  ta rg e '. But |e*| — c* and a rg e ' =  y by our choice of branch. Thus, 
logc* = lo g e * * rt0 =  * - f  iy — z. ■

Tlie logarithm defined on C\{0} behaves the same way with respect to  products 
as the logarithm restricted to  the positive part of tlie real axis.

P ro p o sitio n  1.3.8 If  Z|, z2 €  C\{0}, then log(ziZ2) =  logzi +  logsa (up to the 
addition of integral multiples of2ni).

P ro o f By definition, logzizj =  log|zjZ2| +  »arg(iiz2). where an interval [yo.Jto-f 
2tt[ has been diosen for the values of the arg function. We know thn t log |zi% | =  
tog |*i ||sa | =  log |zi | + log |zj>| and urg(ziz2) =  argzj -f arg zq (up to  integral multi­
ples of 2jt). Thus logZ |Z2 =  (Io g |z t|+ ta rg z j)  +  (log|z2| +  ia rg z 2) =  logzi -t-logza 
(up to integral multiples of 2xi). ■

To illustrate this proposition, let us find lo g ((-i -  t')(l — <)], where the range 
for the arg function is chosen as, for instance, (0, 2nj. Thus,

lo g [(-l -  0(1 -  0] = lo g (-2) = log2 4- rri.

On the other hand, lo g (- l -  i) =  log \/2 -f- i5sr/4 and log(l — ») — bogy/2 +  *7jr/4. 
Thus,

log(—1 -  0  -r Jog(l - 1) =  log 2 4  i3x  =  (log2 4- in) +  2jri,

so in this case, when z( =  — 1 — t and z2 — 1 — t.IogZ|Z2 differs from log Z\ -f Iogz2 
by 2jri.

Tlie baric property in Proposition 1.3.8 can help one remember the definition 
of logz by writing logz =  log(r«*®) =  log r-H ogc1® =  log |z| 4- ia rg z .

C om plex P ow ers We arc now in a  position to  define tbe expression o* where 
a, b 6 C and a  ^  0  (read “a  raised to  the power of b"). Of course, however we 
define ab. tlie definition should reduce to tlie usual one in which a and b are real 
numbers. Notice th a t a  can also be w ritten c1"6" by Proposition 1.3.7. Thus, if 6 
is an integer, we bnve o6 =  (e,0*°)* =  e*10**. This last equality holds sinoe if  n  
is an integer and z is any complex numlier, (e*)n =  c*. . .  e* =  e"s by Proposition 
1.3.2(i). Tiius we ait* led to  formulate tlie following definition.
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D efin ition  1.3.9 fa t a .6 6  C with a  0. Then. ab is defined to be c*1"*- ; it is 
understood that some interval \ya,Vo -4* 2jt{ (that is, some branch of logj has been 
chosen within which the arg function takes Us values.

I t is iniportiuil to understand precisely wlmt tills definition involves. Note es­
pecially th a t in general toga is "multiple-valued”; that, is, logz  can lie assigned 
many different values because different intervals [gft> +  2ir( can be chosen. Tills is 
not surprising, for if b =  1 /q, where q is an integer, then our previous work with dc 
Moivre’s formula would lead us to  expect th a t nb is one of the ^ th  roots or a and 
thus should have q distiucl values. Tlie following theorem elucidates this point.

P ro p o sitio n  1.3.10 Isd a,b €  C,a 0. Then of is single-valued (that is, the 
indue of ab does not depend on the choice o f branch for logj if  and only if b is an 
integer. I f  b is a real, rational number, and if  b — pfq is in  its lowest terms (in 
other words, i f  p and q have no common factor), then a* has exactly q distinct 
values, namely, the q roots of ap. I f b is real and irrational or if b has a nonzero 
imaginary part, then a* has infinitely many values. When ab has distinct values, 
these values differ by jactors oj the form (rxnbi.

P ro o f Choose some interval, for example, |0,2jr[, for the values of tlie arg func­
tion. Let log z be the corresponding branch of the logarithm. If we were to  cl loose 
any other branch of the log function, we would obtain logo -j-27mi rather Llian log 
a, for some integer n . Thus a1* =  =  eb,°s“ . ,.2<r«ŵ  where the value of
n  depends on the branch of logarithm (that is, 011 the interval chosen for the values 
of the arg fimetion). By Proposition 1.3.2. e2’r",'‘ remains the same for different 
values of n if and only if b is mi integer. Similarly, lias q distinct values if
p and q have no common factor. If b is irrational, and if e2""6' =  e2x"*,' \  it follows 
that =  1 and hence b(n — m.) is an integer; since b is irrational, this
implies th a t n  -  m — 0. Thus if b is irrational, einnb' has infinitely many distinct 
values. If b is of the form x  +  iy. y £  0. then t?1n‘bi =  e~*rnv • e2*7**1, which also 
lias infinitely many distinct, values. ■

Tb repeal: When we write cblos°, it is understood th a t some branch of log 
has been chosen, mid accordingly has a  single well-defined value. But as we 
change the branch of log, we get values for th a t differ by factors of eimnb.
This is what we mean when we say th a t ab — cfc,'’8° is “multiple-valued”.

An example should make this dear. Let a =  1 + i and let b be some real irrational 
number. Then the infinitely many different possible values of ab are given by

(]  -f. — e&ilog(l+i)+2*w«l _  c*<liig y/5+iv/*+2xrti) _  lug \/2+»t»r/4y,li2iro>

as n  takes on all integral values (corresponding to different choices of the branch). 
For instance, ir wc used tlie branch corresponding to  \—n, jt[ or (U. 2v\. we would 
s e ttt  — 0-

Somc general properties of of* are found in the exercises a t the end of ibis section, 
but wc arc now interested in tlie special case when b is of the form 1/n, because 
this gives tlie n th  root.
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T h e  n th  R o o t fu n c tio n  We know th a t yfz has ex ac ts  n  values for z £  0. 
l b  make it a  specific function we angle out a  branch of log as described in the 
preceding paragraphs.

D efin ition  1.3.11 The nth root function  is defined by

tfz  s  21/"  s= e0“S*)/»

for a specific choice of brunch of log z; with this dunce, tfz  — e ÎOR *)/m is called a 
branch of the nth mol function.

The next proposition verifies a  familiar property of root functions.

P ro p o sitio n  1.3.12 The function t/z  so defined is an nth root of z; that is, 
( yfz)n — z. It is obtained as follows. I f z — re*®, then

ifz  =  tfrei9/n,

where 0 is chosen so that it lies within a particular interval corresponding to the 
bmnch choice. As we add multiples of to 0, wc run through the n  nth roots of 
z. On the right-hand side, i f f  is the usual positive real nth root of the positive real 
number r.

P ro o f By definition, f z  =  c(los*^n. But logz =  log r •+• iQ, so

c(kg*)/» _  e(J«Br)/n . c<«/n _

The assertion is then clear. ■

The reader should now take the time to become convinced that this way of 
describing the n  n th  roots of z is tiic same as th a t described in Corollary 1.2.3.

G eom etry  o f  th e  E lem en ta ry  F unctions To further understand the functions 
z” , t/z .e* , and logz, we shall consider the geometric interpretation of each in the 
remainder of this section. Let us begin w ith the power fimetion z" and let n  =  2. 
Wc know th a t z2 has length |z |3 and argument 2argz. Thus the map z *-» z2 
squares lengths and doubles arguments (see Figure 1.3.3).

Ftom tliis doubling of angles it follows th a t the power fimetion z2 maps the first 
quadrant to  the whole upper half plane (see Figure 1.3.4). Similarly, the upper half 
plane is mapped to  tlie whole plane.

Now consider tlie square root fimetion yfz — yffc'9*2. Suppose th a t we choose 
a branch by using the interval 0 <  0 < 2x. Then 0 <  0/2 <  w, so yfz will always lie 
in the upper half plane, and the angles thus arc cut in h a lf The situation is sim itar 
to  th a t involving the exponential function in th a t z yfz is the inverse for z h z s 
when tiie latter is restricted to a  region on which it is one-to-ouc. In like manner, 
if wc choose the brandi —v < 0 < x , wc have — jt/2  <  0/2 <  sr/2, so yfz takes its 
values in the right half plane instead of the upper half plane. (Generally, any "half
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Imaginary u b v

Figure 1.3.3: Squaring fimetion.

Figure 1.3.4: Effect of tlie squaring function on the first quadrant.

plane" could be used—see Figure 1.3.5.) If wc choose a  specific branch of yfz, wc 
also choose which of the two possible square roots we shall obtain.

Various geometric statements can be made concerning the mop z *-* j?  t.lmt. 
also give information about the inverse, z  *-* yfz. For example, a  circle of radius 
r  described liy the set of points re<fl,0 <  0 < 2sr, is mapped to r2^ 30, a  circle of 
radius r 2; as re'6 moves once around the first circle, the image point moves twice 
around (see Figure 1.3.6). The inverse map does the opposite: as z  moves along 
the circle reie of radius r , yfz moves half as fast along the circle y/re?°/2 of radius
y /r .

Domains on which zt-*e* and z  i-» log z  are inverses have already been H?<̂ na«a»d 
(see Figure 1.3.2). Note that the lines y  — constant, described by the points xA-iy  
tut x  varies, are mapped by the function z  i~* e* to points c*c<v, which is a  ray with 
argument y. As x  ranges from —oo to  4-00, the image point on the ray goes from 
0 out to  infinity (see Figure 1.3.7).

Similarly, the vertical line x  =  constant is mapped to  a circle of radius e*. If 
we restrict y  to an interval of length 2jt, the image circle is described once, but if y  
is unrestricted, the image circle is described infinitely many times as y  ranges from
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Figure 1.3.5: Squaring function and its inverse, 

y o

Figure 1.3.6: Effect of tlie squaring function on a  circle of radius r.

—oo to +oo. The logarithm, being tlie inverse of c5, maps points in the opposite 
direction to as shown in Figure 1.3.7. Because of the special nature of the 
striplike regions in Figures 1.3.2 aud 1.3.7 (on them c* is one-to-one) and because 
of the periodicity of e*, these regions deserve a name. They are usually called 
period strip s  of c*.

Worked Exam ples

Exam ple 1.3.13 Find the real and imaginary parts o f exp(e*). (It is common to 
use expin as another way o f writing e'1’.)

Solution Let z — x  -f iy • then c* =  c* cosy +  ie* siny. Thus, 

expe* as c«*a*vjcos(er shiy) +  isin(cxsin y) J.
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</ = constant

_(y0 + 2 n)i

u

Figure 1.3.7: Geometry of e* mid logs.

Therefore,

Rp (exp c*) =  (c^^^Jcosfe*  ship) and Im(expcs) s= (ee’ *w,* )a n (^ :«ny). 

Exam ple 1.3.14 Find all the values o f t*.

Solution
t > — e iloS* — r,«('«K l-5-(«^/2)+<2>m)>t — ^e - 2 ’m J e - » / 2  _  c -2>s(n+l/-1)

All the values of iH arc given by tlie last expression as n takes integral values, 
n =  0,3:1, ± 2, ----

Exam ple 1.3.15 Solve cos s — § fo rz .

Solution We know that z„ — dt(x/3 +  2im), where v  is an integer, solves the
equation cos2 =  5 ; wc shall sltow that z,,,n  =  0,±1---- , are the only solutions;
that is, there arc no solutions off tlie real axis. We are given

tiis +  c~*~ 1
COS2 =  ----------------------

Therefore, tr iz — e’* +  1 = 0, and so by the quadratic formula. e,s =  5 ±  v/3i / 2. 
Hcuce iz  =  log(| ±  \/Z i/2) =  dk log(§ +  y/3i/2), since § +  \/3 t/2  and |  -  v/Si/2 rue 
cliccked to be reciprocals of one another. Wc thus obtain

z - ± i \o g  ^  -1- — ± f (k g l +  ^ i-f-2rm i) -  ±  + 2xn) .

Exam ple 1.3.16 Consider the mapping z *-» sin 2. Show that lines parallel to the 
real axis ore mapped to ellipses and that lines parallel to the imaginary axis are 
mapped to hyperbolas.
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S o lu tio n  Using Proposition 1.3.4 (also see Example 1.3.14), wc get 

sinz ~  sin(x 4- iy) =  sinxcos(iy) -1- sw (iy) cos a:

where

=  sin x  cosh y  +  tsin h y co sx

e? + g-» cv _  f>-v
coshy = ----------- and sinhy =

2 “ * 2 
Suppose th a t y  =  yo is constant; if we w rite sin z =  u  +  iv, then we have

u  ^  v* 
cosh* ye sinh2yo =  1

since sin2 x  4- cos2 x  =  1. This is an ellipse.
Similarly, if  x  *= xo is constant, from oosh2 y  — sinh2 y  =  1 we obtain

sin2xo COS2Xq
=  1,

which is a hyperbola.

Exercises
1. Eixpress in the form a + bi:

(a) e2+*
(b) sm (l-H )

2. Express in the form a-i-bi:

(a) e » -
(b) cos(2 4  3j)

3. Solve

(a) cosz =  |  j
(b) oosz =  4

4. Solve

(a) sinz  =  f  +  *
(b) sin z  =  4

5. Find all the values of

(a) lo g l
(b) leigi
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6. Find all the values of

(a) lo g (-i)
(b) log{l -f i)

7. Find all tlie values of

(*) (-»')*'
(b) (1+ < )'"*

8. Find all the values of

(a) ( -1 ) ‘
(b) 2 '

9. For what values of * is (cte) =  c**?

10. Let y f  denote the particular square root defined by

y/r(cos0 + tsin.fi) =  r 1 (cos{^7/2) +  isin(0/2)j,O  <9 < 2jr; 

the other square root is

r 1/2{co$[(0 +  2w)/2] +  tsin[(0 +  2jt)/2J}.

For w hat values of * docs tlie equation y f?  — z  hold?

11. * Along which rays through the origin (aray  is determined by a rg z  =  constant) 
does lims_«o |e r| exist?

12. Prove the identity

z  =  tan

13. Simplify e* , e“ , and c1/*, where z  =  *  +■ iy. For el^~ we specify th a t * o,

14. Examine the behavior of e*+*v as i  -*  ±oo and the behavior of e*-” * ^  
y —* ±oo.

15-* Prove th a t sin{-«) =  - s in s ;  co s(-z ) =* cos*; sin(7r/2 -  z) = o o sz.

16. Define sinh and cosh on all of C by sinh* »  (c* -  e~*)/2 and cosh*
(e* +  «“ *)/2. Prove th a t

(a) cosh2* -  sinh2* — 1

(b) sinh(*i +  * j) =  an il *! cosh *2 +  cosbzj sinh *2
(c) cosh(*i +  Z2) =  cosh *, cosh *2 +  sinh z, smli *2
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(d) siiih(x4-iy) =  sinhxcosy 4 -tcoshxsiny
(c) cosb(x +  iy) =  cosh x  cosy 4-tsin lix  ship

17. * Um; tlie equation sin 2 =  sin 2 cosh y 4>t sinh ycos 2 where 2 =  x+ty  to  prove 
th a t |s in h y | <  |s in z | <  |coshy |.

18. if  6 is real, prove th a t Jo6! =  |a |b.

19. Is it true that |ab| =  |a |lt,l for all a, b €  C?

20. (a) For complex numbers a, 6, e, prove that abae — ab+c, using a  fixed branch
of log.

(b) Show th a t (ab)e =  a l̂F if we choose brandies so th a t )og(aA) =  logo + 
logh (witli no extra 2imi).

21. * Using polar coordinates, show th at z >-* z 4* 1/z maps the circle |x | — 1 to
the interval (—2.2] on the x  axis.

22. (a) H ie  map z w z 5 maps the first quadrant onto what?
(b) Discuss the geometry of 2 *— ^2 as was done in Uie tex t for y fz .

23. * The map 2 h  1/2 takes tlie exterior of the unit circle to  the interior (ex­
cluding zero) and vice versa. To what are lines argz  =  constant mapped?

24. W hat are the images of vertical and horizontal lines under z t-* cos 2?

25. Under w hat conditions does logo* — 6 log a  for complex numbers a ,6? (Use 
tlie brand) of log w ith — tt <  6 < w.)

2G. (a) Show th a t under the m ap 2 m  z2, lines parallel to  the real axis are 
mapped to  parabolas.

(b) Show th a t under (a branch of) z *-♦ yfz, lines parallel to  the real axis are 
mapped to  hyperbolas.

27. Show th at the n n th  roots of unity are l,u>,tB*,ts3, . . .  where w =
e2«*/n>

28. Show th a t the trigonometric identities can I»o deduced i[e^x,+:ẑ  =  c1*' -c*** 
is assumed.

29. * Show that sinz =  0 iff 2 =  kn.k  =  Q ,± 1 ,± 2 ,....

30. Show' th at the sine and cosine are periodic with minimum period 2jt; th a t is, 
th at

(a) sin(z 4- 2jt) =  sin 2 for all 2.
(b) cos(z +  2w) =  cos 2 for all z.
(c) sin(z 4- u)  =  sin z for all 2 implies u  =  27m for some integer n .
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(d) oos(z + «;) =  cos 2 for nil z  implies u  — 2jtol for some integer n .

31. Find thp maximum of | cosz| on the square

0 <  R e2 <  2w.O <  Ini z <  2ir.

32. Show th a t log 2 «* 0 iff z  =  1, using the brancli with - i r  <  nrg2 <  n.

33. Compute tlie following quantities numerically to two significant figures:
(a) e3‘2+0,1' (b) log(1.2 -  3.0i) (c) sin (8 .li -  3.2)

34. * Show th a t the function sinz  maps the strip  —tf/ 2 <  R ez < w/2 onto these!
C \{z | Iin z  =  0 and |R e z | >  1}.

35. * Discuss the inverse functions sin" 1 2 and cos"12. For example, is sinz one-
to-one on the set defined by 0 <  R e : <  2?r?

1.4 Continuous Functions
In this section and the next, the fundamental notions of continuity and differen­
tiability for complex-valued functions of a complex variable will be analyzed. Tlie 
results are sim ilar to  those learned in the calculus of functions of real variables. 
These sections will be concerned mostly with the underlying theory, which is ap­
plied to  the elcmenlary functions in §1.6.

Since C is R2 with the extra structure or complex multiplication, many geometric 
concepts can be translated from R2 into complex notation. This lias already been 
done for the absolute value, (2), wliicli is tiic same as the norm, or length, of 2 
regarded as a vector in R2. Rirtberm ore, we will use calculus for functions of two 
variables in the study of functions of a  complex variable.

O pen  S e ts Wc will need the notion of an open set. A set A C C =  R2 is called 
open when, for eadi point 20 in A, there is a real numiicr 6 >  0 such th a t 2 € A 
whenever |z  -  zq| <  ( .  Sec Figure 1.4.1. The value of t  may depend on zq\ as 20 
gets close to  the “edge” of A ,t gets smaller. Intuitively, a  set is open if it does not 
contain any of its “boundary” or “edge” points.

For a number r >  0. the r  neighborhood or r disk around a point zq in C is 
defined to  be the set D(zo\r) «  {2 €  C | |z  -  zo| <  r}- For practice, the student 
should prove that for each wo €  C  and r >  0, the disk A =  {2 €  C | |z — t«o| <  r ) 
is itself open. A deleted r neighborhood is an r  neighborhood whose center point 
lias been removed. Thus a  deleted r-neighborhood lias the form 0(2o;r)\{2o}, 
which stands for the set D (so;r) minus the singleton set {zo}. See Figure 1.4.2.

A neighborhood of a  point 20 is, by definition, a  set containing some r  disk 
around 20. Notice th at a se t A is open iff for eoeh zq in A, there is an r neighborhood 
of 20 wholly ounUxincd in A.

The basic properties of ojien sets are collected in the next proposition.
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y

Figure 1.4.2: (a) r-Neigliborhood. (b) Deleted r-neighborhood.

P roposition  1.4.1 (i) C is open.

(ii) The empty set 0  is open.

(iii) The union o f any collection o f open subsets o fC  is open.

(iv) The intersection o f any finite collection o f open subsets o f C is open.

P ro o f The first two assertions hold almost by definition; the first because any e 
will work for any point z q ,  and the second because there arc no points for which 
we are required to  find such an e. The reader is asked to  supply proofs of the last 
two in Exercises 19 and 20 a t the end of this section. ■

M appings, L im its, and  C ontinu ity  Let A lie a  subset of C. Recall that a  
mapping /  : A -* C is an assignment of a  specific point /(z ) in C to each point 
z in A. The set A  is called the dom ain  of / ,  and wc say /  is defined on  A. 
When the domain and the range (the set of 'values /  assumes) are both subsets 
of C, as here, we speak of /  as a com plex fu n c tio n  o f a  com plex variable. 
Alternatively, wc can think of /  as a  map f  : A c  R2 -» R2; then /  is called
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a vector-valued function of two real variables. For /  : A C C —* C, we can let 
z =  x +  iy  =  (x, y) and define u (x ,y) =  Rcf(z)  and v(x,y) =  Im /(z ). Then « and 
v are the components of /  thought of as a  vector function. Hence wc may uniquely 
write f ( x  4* iy) = u(x, y) +  iv(x. y), where u  and » are real-valued functions defined 
on A.

Next we consider the idea of lim it in the setting of complex numbers.

D efin ition  1.4.2 Let f  be defined on a set containing same deleted r neighborhood 
of 2d* We say that f  has the lim it a  as z-*  z» and unite

lim f(z) = a.

when, for every c > 0, there is a 8 > 0 such that for all z €  D(zo\r) satisfying 
s r  «o nnd \z — c0| <8, we have \ f[z) -  a | <  c.

The expression in this definition lias the sam e intuitive meaning ns it has in 
calculus; namely, f(z)  is dose to  a whenever z is close to  zp- I t is not necessary 
to define /  on a  whole deleted neighborhood to have a  valid theory of lim its, but 
deleted neighborhoods arc used here for the sake of siinplidty and also because sudi 
usage will be appropriate later in the text.

Just as with real numbers and real-valued functions, a  function can have no 
more than one lim it a t a  point, and lim its behave well with respect to  algebraic 
operations. This is (lie content of the next two propositions.

P ro p o sitio n  1.4.3 Limits are imtytic if  they exist.

P ro o f Suppose th a t lim ,.^ , f(z)  — a  and lini*—,^ f(z)  — b with a b. Let 
2e =  |a  — 6|, so th a t e >  0. There is a  8 >  0 such th at 0 <  \z — zol <  S implies 
th a t | f(z)  — a | <  c and | f(z)  — 6| <  e. Choose such a  point z $  zo (because 
/  is defined in a  ddeted neighborhood of zo)- Then, by the triangle inequality, 
|a  — 6| <  |a  — f( z ) | +  j f(z)  -  6| <  2c, a  contradiction. Tims a — b. ■

P ro p o sitio n  1.4.4 If  lu iu—̂  f(z)  — a and Iim£_ Xoy(z) =  b, then

(i) lim ._ aBI/(z ) +  5(z)| =  o  +  6-

(ii) lin ij-^ I /tz ^ tz ) ]  =  ah.

(iii) lim j^ ^ l/J z J /^ z )]  =  a/b i f b £  0.

P ro o f Only assertion (ii) will be pravod here. The proof of assertion (i) is easy, 
and proof of assertion (iii) is slightly more challenging, but the reader can get the 
necessary dues from the corresponding real-variable case, lb  prove assertion (ii), 
we write

\f(z)g{z) -  ab\ <  |/( z )$ (z ) - /(z )6 | +  |/(z )6 -« * | (triangle inequality)
=  |/(* )lb (* ) ~ 6 | + 1/(*) ~  «l|6| (factoring).
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Tb estim ate each term , we choose j j  >  O so th a t 0 <  \z — sq\ <  £ | implies tlia t 
|f(z) -  a | <  1, and thus |/(z ) | <  |a | +  1, since |/(z )  -  a | >  |/( z ) | -  |a |. by 
Proposition 1.2.S(vi). Given e > 0, select positive numbers 6% and S3 so th a t 
0 <  |s  -  z„\ < 63 implies \f{z) -  a | <  t/2(\b\ +  1) and 0 <  |z — z<>| < S3 implies 
|g(z) -  h| <  e/2(|o | + 1 ). Let S be the smallest of tfj, 63, S3. If 0 <  \z -  z0\ < S, we 
have

\S(z)Q(z) -  *b\ < \f(z)\ |5(z) -  b\ +  |/(z )  -  o | |6|

<  2(!«| +  1) |/W ,+  2(|6| +  1) 161 
c . c

Thus liin * --, f{z)g(z) =  ob as claimed. ■

D efin ition  1.4.5 Lei A C C be cm ojutti set and let f  : A —* C be a function. We 
say f  is con tin u o u s a t 2̂  G A if and only if

lirn f{z) *= f(zo)
*-**o

and that f  is continuous on A i f f  is continuous at each point Zo in A.

This definition has the same intuitive meaning as it has in elementary calculus: If 
2 is close to  Za, then f(z)  is close to  f(zo). From Proposition 1.4.4 wc deduce th at 
if /  and g are continuous on A, then so are the sum /  +  g and the product fg,  and 
so is f / g  if g(zo) ^  0 for all points zo in A. I t is also true th a t a  composition or 
continuous functions is continuous.

P ro p o sitio n  1.4.6 (i) If lima_ 2a f(z)  =  a and h is a function darned on a
neighborhood of a and is continuous at a, then lim -—̂  h(f{z)) = h(a).

00 If f  is a continuous function on an open set A in  C and h is continuous on 
f{A), then tltc composite function (h o f)(z)  =  h(f(z)) is continuous on A.

P ro o f Given c > 0, there is a  > 0  such th a t |/t(ti>) -  h (a)| <  c. whenever 
|*» -  a | <  i |  and a  S >  0 such th a t |f(z)  — a | <  Si whenever 0 <  \z -  2o| <  S. 
Therefore we get \h(f(z)) — h (a)| <  «■ whenever 0 <  \z — zq| <  S, which establishes
(i)- A proof of (ii) follows foam (i) and is requested in Exercise 22 a t the end of 
th is section. I

Sequences The concept of convergent sequences of complex uumbers is analogous 
to  that for sequences of real numbers studied in calculus. A sequence z„.n =  
1 .2 .3—  of points of C converges  to  ^  if and only if for every < > 4  these e  
an integer .V such that n >  .V implies -  zr.< <  «. The- ! ia »  cf a  -^geeawe e  
expressed as
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Limits of sequences haw  tbe same properties, obtained by the same proofs, as 
lim its of functions. For example, the lim it is unique if it exists; and and
«r„ — viq. then

(i) z» +  zo 4- n>o.

(ii) ZnVin -* gQitiQ.

(iii) &n/w„ —» zq/ wq (if w0 and w„ are not 0).

Also. z„ —» 2o iff Re z„ Reso and Tmz,, —> In i2o- A proof of this for functions 
is requested in Exercise 2 a t the end of this section.

A sequence 2» is called u Cauchy sequence if for every c > 0 there is an integer 
.V such that \z„ -  Zm\ < <■ whenever both «  >  JV and m >  N. A basic property of 
nail numbers, which wc will accept without proof, is th a t every Cauchy sequence 
in R converges. More precisely, if {x„}{j|jLt is a Cauchy sequence of real numbers, 
then there is a  real number x0 such that lim „_IKi x„ =  Xn- This is equivalent to 
the completeness of the real number system.1* l*Vom the fact th a t z,, so iff 
Re 2,, —►Re so and Im z,, —»1m zo, we can conclude that every Cauchy sequence in 
C converges. This is a technical point, but is useful in convergence proofs, as we 
shall sec in Chapter 3.

It should be noted th a t a link exists between sequences and continuity; namely, 
/  : A C C —> C is continuous iff for every convergent sequence z„ -* so of points in 
.4 (that is, Zn €  A and so €  A), w c  haw  /(« ,,) —» f(zo)- The student is requested 
to prove this in Exercise 18 a t tho end of th is section.

C losed S e ts A subset F  of C is said to  be closed if its complement, C \F  =  
{z 6 C | z £  F}, is open. By taking complements and using Proposition 1.4.1, one 
discovers the following properties of closed sets.

P ro p o sitio n  1.4.7

(i) The empty set is closed.

(ii) C is dosed.

(iii) The intersection of any collection of dosed subsets o /C  is closed.

(iv) The union of any finite collection of dosed subsets o fC is  dosed.

Closed and open sets arc im portant for their relationships to continuous func­
tions and to sequences and for other constructions we will sec later.

P ro p o sitio n  1.4.8 A set F  c  C is dosed iff whenever 21, 23, 23, . . .  is a sequence 
of points in F such that v> = liinn_oc exists, then u> € F .

4See, Tor example, J . Maisden and M. Hoffman, fflnnumlary Classical Analysis, Second BdiLlon 
(New York: \V. H. Freeman mid Company, 1903).
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P ro o f Suppose F  is closed and in  is a  sequence of points in F . If  D{vr,r) is 
any disk around w, then by the definition of convergence, z,, is in D(w;r) for large 
enough n . Thus, D(w; r) cannot be contained in the complement of F. Since th a t 
complement is open, to m ust not be in the complement of F. Therefore, it  m ust be 
in F.

If F  is not dosed, then the complement is not open. In other words, there is a 
point to in C \F  such th a t no neighborhood of to is contained in C \F . In particular, 
we may pick points z,, in F n jD (tu ;l/n ); this yields a  convergent sequence of points 
of F  whose lim it is not in F . ■

P ro p o sitio n  1.4.9 I f f : C —* C , the following are equivalent:

(i) /  is continuous.

(ii) The inverse image of every dosed set is dosed.

(iii) The inverse image of every open set is open.

P ro o f To show th a t (i) implies (ii), suppose /  is continuous and F  is dosed. Let 
z i ,22, 23, . . .  be a  sequence of points in f ~ l(F) and suppose th a t z„ -*■ w.n Since 
/  is continuous, /(z „ ) —» /(to ). But the points f{Zn) w e in the dosed set F , and 
so /(to ) is also in F . T hat is, to is in / - , (F ). Proposition 1.4.8 shows th a t /~ * (F ) 
is dosed.

Ib  show th a t (ii) implies (iii), let U be open. Then F  =  C \U is dosed. If (ii) 
holds, then / - , (F ) is dosed. Therefore, C\ f ~ l(F) =  / - '( C \F )  =  f ~ l(U) is open.

Ib  show th a t (iii) implies (i), fix zo and let c >  0. Then zq is a  member of the 
open set f ~ l (D(f(zo);e)). Hence there is a  S > 0 with

D(zr,6) C / - 1'(D (/(zo );e)).

This says precisely th a t |f(z)  — /(zo )| <  c whenever |z — 2o| <  S. We Urns get 
exactly Uic inequality needed to  establish continuity. ■

I b  handle continuity on a  subset of C, it is convenient to  introduce the notiou of 
relatively open and closed sets. If A C C, a suliset 3  of A is called open relative 
t o A i f B  —A fU / fo r  some open set U. I t is said to be closed relative to A if 
B  =  A H F  for some dosed set F . This leads to the following proposition, whose 
proof is left to  the reader.

P ro p o sitio n  1.4.10 If f : A -*C, the following are equivalent:

(i) /  is continuous.

(ii) Hie inverse image of every dosed set is dosed relative to 

l’ia} The rooerse image of every  open set is open relative to A.
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C onnected S ets Tills subsection and the next study two important classes or 
sets which occupy to some extent the place in the theory of complex variables held 
by intervals and by closed bounded intervals in the theory of functions of a  real 
variable. These are the connected sets and the compact sets.

A connected set should be one that “consists of one piece”. This may be 
approached from a positive point of view—“Any point can be connected to  any 
other”—or from a  negative point of view'—“The set cannot be split into two parts”. 
This leads to two possible definitions.

D efinition 1.4.11 A set C  C C is path-connected i f  fo r every pair o f points a,b 
in C there is a continuous map 7 : |0 ,1] —* C with 7 (0) =  a and 7 (1) — b. We call 
7 a  path jo in in g  a and b.

One can often easily tell if n set is path-connected, as is shown in Figure 1.4.3. 
The negative point of view suggests a  slightly different definition.

Figure 1.4.3: Regions in (a) and (b) are connected while the region in (c) is not.

D efinition 1.4-12 A set C  c C  is n o t connected (see Figure 1.4-4) i f  there are 
open sets U and V  such that

(i) C C U U V

(ii) C f \ U  # 0  a n d C n V  $ 0

(iii) ( C n u ) n ( C r \ V ) - 0

I f  a set fails to be "not connected”, it is called connected.

The notions of relatively open and closed sets allow this to be rephrased in terms 
of subsets of C. Since the intersection of C  with U is the same as its intersection 
with the complement of V , the set C O f/ is both open and closed relative to C, as 
is C r)V . This proves the next result.

P roposition  1.4.13 A set C is connected i f  and only i f  the only subsets o f C  that 
are both open and closed relative to C  are the empty set and C  itself.
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y

v

Figure 1.4.4: The wit C  is not connected.

The next two propositions give the rclaJ.ion.ship between the two definitions. 
The two notions are not in general equivalent, but they are for open sets. The 
proof of this last assertion (given below in Proposition 1.4.15) illustrates a fairly 
typical way of using tire notion of connectivity. One shows that a  certain property 
holds everywhere in C  by showing that tin* * set of places where it holds is not empty 
and is both relatively open and relatively closed.

P roposition  1.4.14 A path-connected set is connected.

P ro o f Suppose C  is a  path-connected set and D  is a nonempty' subset of C  that 
is both open and closed relative to C. If C  £  D, there is a  point z, in D  and a 
point £a in C \D . Ix?t 7  : fa,b) —- C lie n continuous path joining z\ to z-i. Let 
B =  7->(Z?). Then J3 is a  subset of tin: interval (a, b], since 7  is continuous. (Sec 
Proposition 1.4.10.) Since a is hi B, B  is not empty, and [a, is not empty since 
it contains b.

This argument shows that it is sufficient to prove the theorem for the case of an 
interval (a,b). Wc tints need to establish that intervals on the real line are connected. 
A proof uses the least upper bound property (or some other characterization of the 
fact that the system of real numbers is complete). Let x =  sup B  (that is, the least 
upper bound of JB). We find that x is in B  since B  is dosed. Since B  is open there 
is a  neighborhood of x  contained in B  (note that x ^ b ,  since b is in (a, b)\B). Thus, 
for some t  >  Cl, the point x  + 1 is in B . Tims x  cannot be the least upper bound. 
Tills contradiction shows that such a  set B  cannot exist. ■

A connected set need not be path-connected,0 but if it is open it must be. In 
fact, more is true.

® A s tam ln n l example is rivcii by Idling  C  be the union o f the grap h  o f  y  =  a n  1 /* ,  where
*  >  0, and the lino segment - 1  <  v <  l , x = 0 .  This set is connected but not path-connected.
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P roposition  1.4.15 I f  C  is an open connected set and a and b arc in C , then 
them is a differentiable path 7  : |0 ,1] -* C  with 7(0) =  a and 7 (1) =  6.7

P ro o f Let a be in C. If 2q is in C, then since C  is open, there is an c > 0 such 
that the dish D{z^;t) is contained in C. By combining a  path from a to  za with 
one from za to 2 that stays in this disk, wc see that zn can be connected to  a by a 
differentiable path if and only if the same is true for every point z in D(zq;c). This 
shows that both the sets

A 5= {z € C | 2 can be connected to a  by a  differentiable path}

and

B  — {2 € C | 2 cannot be so connected to a}

arc open. Since C  is connected, either A  or B  must be empty'. Obviously it must 
be B.  See Figure 1.4.5. ■

y

Figure 1.4.5: An open connected set is path-connected.

Because of tlie importance of open connected sets, they are often designated by 
a special term. Although the usage is not completely standard in the literature, 
the words region  and dom ain  are often used. In this text these terms will be 
used synonymously to mean an open connected subset of C. The reader should be 
careful to check the meanings when these words are encountered in other texts.

The notion of connected sets will be of use to us several times. One observation 
is that a  continuous function cannot break apart a connected set.

P roposition  1.4.16 I f  f  is a continuous function defined on a connected set C, 
then the image set f (C)  is also connected.

7DiKerontinbility o f 7 mean* Hint cadi component of 7  “* different labia in Lbe usual sense of 
uni!>vnriahlc calculus.
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P ro o f If U and V  arc open sets th a t disconnect /(C ), then f ~ l (U) and / “ '(V ) 
are open sets disconnecting C . ■

Be careful. This proposition works in the opposite direction from the one about 
open and closed sets. Fbr continuous functions, the inverse images of open seta are 
open and the inverse images of dosed sets are dosed. B ut it is Hie direct images 
th a t are guaranteed to  be connected and not the inverse images of connected sets. 
(Can you think of an example?) Tiie same sort of thing will happen with the class 
of sets studied in the next subsection, the compact sets.

C om pact S e ts  The next special class of sets wc introduce is that of the compact 
sets. These will turn  out to  be those subsets K  of C  Unit are bounded in the sense 
th a t there is a  number M  sud i th at |z | <  M  for every z iu K  and th a t are dosed. 
One of the nice properties of such sets is th a t every sequence of points in the set 
m ust have a  subsequence which converges to  some point in the set. For example, the 
sequence 1, | ,  §, 5, | ,  3, | ,  | ,  f , . . .  of points in ]0,2{ has the subsequence 1, | , . . . ,
which converges to  the point 0, whidi is not in the open interval jo, 2( but is iD tire 
dosed interval [0,2]. Note th a t in the claimed property, the sequence itself is not 
asserted to  converge. All th a t is claimed is th a t some subsequence does; the example 
shows th a t this is necessary.

As often happens in mathematics, the study consists of three parts:

(i) An easily recognized characterization: dosed and bounded

(ii) A property we want: the existence of convergent subsequences

(iii) A technical definition useful in proofs and problems

In the case a t hand, the technical definition involves the rdatiousiiip between 
compactness and open seta. A collection of open seta Un for o  in some index set A  
is called a  cover (or an open cover) of a set K  if K  is contained in their union: 
K  c  U0€^I/0 . Fbr example, the collection of all open disks of radius 2 is an open 
cover of C:

Ut =D(z;  2) C C tW ? ( * ;2 ) .

Tt may be, as here, th a t the covering prooess has been wasteful, using more sets 
than needed. In th a t case we may use only some of tile sets and talk of a subcover, 
for example, C C U„tmGzD(n +  m#;2), where Z  denotes tlie set of integers.

D efin ition  1.4 .17 A set K  is compact if every open cover of K  has a finite 
subcover.

T hat is, if Ua is any collection of open sets whose union contains AT, then there 
is a  finite subcollcction Uai,U03,.-- ,Uak such that K  C  Ua, U U03 U . . .  U Unt,•

P ro p o sitio n  1.4.18 The fallowing conditions arc equivalent for a subset K  of C 
(or ofR):



§1.4 Continuous Functions 51

(i) K is dosed end bounded.

(ii) Every sequence of points m  K  has a subsequence which converges to some 
point in K .

(iii) K is comped.

This proposition requires a  deeper study of the completeness properties of the 
real numbers than it is necessary for us to go into here, so the proof is om itted. 
It may be found in most advanced calculus or analysis texts.8 I t is easy to  see 
why (i) is necessary for (ii) and (iii). If K  is not bounded we can select z\ in 
K  and then successively choose 22 w ith |zo| > |z i| +  1 and, in general, 2* with 
U„| > |zn -i | + 1 . This gives a sequence with no convergent subsequence. The open 
disks D(Q;»), n =  1 ,2 ,3 , - . -, would be an open cover with no finite subcover.

If K  is a set in C th a t is not dosed, then there is a  point w in C \K  and a  sequence 
?i, 32, • • • of (mints in K  th a t converges to  w. Since the sequence converges, to is 
the only possible lim it of a  subsequence, so no subsequence can converge to  a  point 
or K.  The sets {z such th a t \z — tv| > 1 /n ) for n  =  1 ,2 ,3 ,.- . form an open cover 
of K  with no finite subcover.

The utility  of the technical Definition 1.4.17 is illustrated in the following results.

P ro p o sitio n  1.4.19 If  K  is a compact set and f  is a continuous function defined 
on If, then the image set f (K )  is also compact.

P ro o f If Ua is an open cover of /(/if) , then the sets f ~ l (Ua) form an open cover 
of K.  Selection of a  finite subcover gives

t f c r , (ir«1) u . . . u / - , (t/0*)

so th a t f(K )  C Ua, U . . .  U Uak. ■

T heorem  1.4.20 (E x trem e  V alue T heorem ) If  K  is a comped sd  and f  :
K  -* ft is continuous, then f  attains finite maximum and minimum values.

P ro o f The image f (K )  is compact, hence dosed and hounded. Since it  is bounded, 
the numbers M  — sup{/(z) | z  €  K)  and m  =  in f{ /(z) | 2 €  A'} are finite. Since 
f(K )  is closed, m  and M  are included in f{K).  ■

Another illustration of the use of compactness is given by the following lemma, 
which asserts th a t the distance from a  compact set to  a  dosed set is positive. T hat 
is. there must be a  definite gap between the two sets.

L em m a 1.4.21 (D istan ce  Lem m a) Suppose K  is compact, C is dosed, and K f) 
C  =  0 . Then the distance d(K.C) from K  to C is greater than 0. That is, there 
is a number p >  0 such that \z — u»| >  p whenever 2 is in K  and w is in C.

“See, for example, J. Mansion and M. Hoffman, Elementary Classical Analysis, Second Edition 
(New York: W. H. Ftacman and Company, 1993).
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P ro o f The complement of C, namely the set U =  C \C , is an open set and K  C U, 
so that each point z in K  is the center of some disk D{z;p(z)) c  U. The collection 
of smaller disks D(z; p(z)/2) also covers K , and by compactness there is a finite 
number of disks, which we denote by Dk — D{zk;p(zk)/2)tk  — 1 ,2 ,3 ,... , N  that 
cover K.  (See Figure 1.4.6.) Let pk =  p(z*)/2 and p = min(/»i, /»2, . . .  ,pw). If 
z  is in K  and w  is in C, then z is in Dk for some k. and so (z -  zk| < pk. But 
|m -  zkI > p(z*) *  2/5*. Thus, |z -  »»| > P k> p .  ■

Figure 1.4.6: The distance between a  dosed set C  and a  compact set K  is greater 
than zero.

U niform  C ontinu ity  Remember that a function is said to be continuous on a 
set K  if it is continuous a t cadi point of K . This is called a local property since 
it is defined in terms of the liehavior of the function at or near each point and cun 
be determined for eadi point by looking only near the point and not a t the whole 
sot. at once. This is in contrast to global properties of a function, whidi depend 
on its behavior on the whole set.

An example of a global property is boundedness. Saying that a function /  is 
bounded by some number M  on a  set K  is an assertion that depends on the whole 
set a t once. If the function is continuous it is certainly bounded near each point, 
but that would not automatically say that it is bounded on the whole set. For 
example, the function f ( x )  — 1/x  is continuous on the open interval )0, L[ but is 
certainly not bounded there. We have seen that if a  function /  is continuous ou 
a  compact set K,  then it. is bounded on K  and in fact the bounds are attained. 
Thus, compactness of K  allowed ns to carry the local boundedness near eadi point 
given by continuity over to the whole set. Compactness often can be used to make 
such a shift from a local property to  a  global one. The following is a global version 
of the notion of continuity.

D efinition 1.4.22 A function f : A —* C (or R ) is un ifo rm ly continuous on A
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if for every choice of e >  0 there is a 6 >  0 such that |/( s )  — f(t.)\ < e whenever s 
and t are in A and |s  -  1| <  5.

Notice th a t the difference between this and the definition of ordinary continuity 
is tiia t now the choice of 6 can be made so th a t the same S will work everywhere in 
the set A. Obviously, uniformly continuous functions are continuous. On a  compact 
set the apposite is true as well.

P ro p o sitio n  1.4.23 A continuous function on a compact set is uniformly contin­
uous.

P ro o f Suppose /  is a  continuous function on a compact set K , and let c >  0. For 
each point /  in K, there is a  number 5(1) such th a t |/(« ) — / ( t ) | <  e/2 whenever 
s — t | <  5(1). The open sets D(t; 5(£)/2) cover K , so by compactness there are a  

finite number of points l i , l 2,- • • ,1/v such th a t the sets Dk s  jD(1*;5(1*)/2) cover 
K. Lct5* =  5 (f* )/2 an d se t5 eq u alto th ero jin n iim io f5 |,5 2, . . .  ,5iv. I f |» —1 |< 5 , 
then / is in Dk for some k, and so | l —1*| <  5*. Thus |/ ( t )  — /(1*)| <  f/2 . B ut also,

\s -  lfc| =  |s  -  £ + 1 - i*| <  |a - 1| + 1£ -  £*| <  5 +  5* < S(lk)

and so |/ ( s )  — /(1*)| <  e/2. Thus

i/oo- / mi =
< I/(«) -  /(«*)I + I/O*) -  f{t)\ < </2 +  e/2 =  e.

We have produced a single 5 that works everywhere in K,  and so /  is uniformly 
continuous. ■

P ath -C overing  L em m a The notion of uniform continuity is a  very powerful 
one that will be useful to us several tim es. We use it first in conjunction with the 
Distance Lemma and some of the properties or compact sets to  establish a  useful 
geometric lemma about curves ill open subsets of the complex plane. This lemma 
will be useful later in tbc text, particularly for studying integrals along such curves. 
It says th at the curve can be covered by a  finite number of disks centered along the 
curve in such a way th at each disk is contained in the open set and each contains 
i he centers of both the preceding and the succeeding disks along the curve. (See 
Figure 1.4.7.)

Lem m a 1.4.24 (P a th -C o v erin g  L em m a) Suppose 7  : [a, 6] —* G is a contin­
uous path from, the interval [a,6] into an open subset G o f C . Then there are a 
number p > 0 and a subdivision of the interval a  =  t o < l )  <  t j  <  . . .  <  1„ — 5 
surh that

(i) D M tk);p)CG  

(») 7(0 e 0(7(fo);p)
(iii) 7(f) e  D(7(l*):/>)

(iv) 7(1) 6 £>(7(M ;p)

for all k  
f o r t o < i < l i  
for Ijk-i <  t <  /*+1 

fort„-i < t < t„
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Figure 1.4.7: A  continuous path in an open set can be covered by a finite number 
of well-overlapping disks.

P ro o f Since 7 is continuous and the closed interval {0,6] is compact, the image 
curve K  = 7((a, 6}) is compact. By the Distance Lenuna 1.4.21 there is a number 
p such that eadi point on the curve is a distance at least p from the complement 
of C . Therefore, #(7(£);/») C G  for every £ in [a,b]. Also, since 7 is continuous on 
the compact set |u.6J, it is ttnifonnly continuous, and there is a number & > 0 such 
that |7(t) — 7{s)| < p whenever |s — £| < S. Thus ir the subdivision is chosen fine 
enough so that it- -  £*_! < S for all k — 1 ,2 .3, . . .  , N, tlien the conclusions of the 
theorem hold. ■

R iemann Sphere and Point a t Infinity For some purposes it is convenient to 
introduce a  point 00 in addition to the points 2 € C. One must be careful in doing 
so, since it cun lead to confusion and abuse of the symbol 00. But with care it cun 
be useful, and we certainly want to lie able to talk Intelligently about infinite limits 
and limits at infinity.

hi contrast to the real line, to wliidi -Foe and -00 can be added, we have only 
one 00 for C . The reason is that C lias no natural ordering as R does. Formally 
we add a symlxil 00 to C  to obtain tiie extended complex plane, C, and define 
operations with 00 by the rules

2 + 00
2-00 

oc + oc
oo-oc 

z
00

for r 6 C .  Notice that some things are not defined: 00/00,0  -00,00 — 00, and so 
forth are indeterm inate farm s for essentially the same reasons that they are hi 
the calculus of real numbers. We also define appropriate limit concepts:

00
00
00
00
0

provided z ?£ 0
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lini-_00 f ( z)  — zq means: For any e > 0, there is an R  > 0 such that \f(z) -  
* i| <  c whenever |2| > R.

f ( z )  — oo moans; For any R >  0, there is a b >  0 such that |/(z ) | > R  
whenever \z - 2q\<  6.
For sequences:

Ums_co ^  — oo means: For any R >  0, there is an N  > 0 such that |z„| > R  
whenever n > Ar.

Thus a  point 2 €  C is “close to  oo” when it lies outside a  large circle. This type 
of closeness can be pictured geometrically by means of the Riemann sphere shown 
in Figure 1.4.8. By the method of stenographic projection illustrated in this figure, 
a point z ' on the sphere is associated with each point z  in C. Exactly cue point on 
the .sphere S has been omitted—the "north” pole. Wc assign oo in C to the north 
pole of S. We see geometrically that z is close to oo if and only if the corresponding 
points arc close on the Riemann sphere in the usual sense of closeness in Rs. Proof 
of this is requested in Exercise 24.

Figure 1.4.8: Riemann sphere.

The Riemann sphere $  represents a  convenient geometric picture of the extended 
plane C =  CU {oo}. The sphere docs point up one fact about the extended plane 
that is sometimes useful in further theory. Since S is a  closed bounded subset of 
R3, it is compact. Therefore every sequence in it has a  convergent subsequence. 
Since stereograpliic projection makes convergence on S coincide with convergence 
of the sequence of corresponding points in C, the same is true there. That is, C 
is compact. Every sequence of points in C must have a  subsequence convergent in 
C. Caution: Since the convergence is in the extended plane, the limit might be 
oo, in that case wc would normally say that the limit does not exist. Basically we 
have thrown in the point a t infinity' as another available limit so that sequences 
that, did not formerly have a  limit now have one. The sphere can be used both to 
help visualize and to make precise some notions about the behavior of functions 
"at infinity” that we will meet in future chapters.
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Worked Exam ples
Exam ple 1.4.25 Where, is the function

m =
z3 + 2z +  1 

2* +  1

continuous?

Solution Since sums, products, and quotients of continuous functions urc contin­
uous except when; the denominator is 0, this function is continuous on the whole 
plane except n t the cube roots of -1 . In other words, this function is continuous 
on the set C \{c,r</3.e s~i/;<, - 1}.

Exam ple 1.4.26 Show that the set {z | Rez > 0} is open.

Solution A proof can be based on the following properties of complex numbers 
(see Exercise 1): tfw  €  C, then

(i) |Reu/| <  |u;|

(ii) | bn w»| < |ti;|

(iii) |w| < | Heu;| +  11m w|

Let U — {z | R ez > 0} and let zq be in U. We claim that the disk Z>(zo;Rez&) 
lies in U .  To see this, let z be in tliis disk. Then | Rez — Rfi2o I — I Rje(z — zq) |  <  
\z < Re*o, and so Rez > 0 mid z  is in U. Tlius, Z?(zo; Rezo) is a  neighborhood 
of zo thaL is contained in V . Since this can be done for any point zo which is in U, 
the set U is open. See Figure 1.4.9.

(/

P*K<*re 1.4.9: Open right half-plane.
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Exam ple 1-4.27 Pmve the following statement: Let A C C fie an open set and 
=o 6 A, and suppose that Dr — {z such that \z — Zq\ < r]  C A. Then there is a 
number p > r  such that D(zo;p) C A.

Solution We know from the Extreme Value Theorem 1.4.20 that a  continuous 
real-valued function on a  dosed bounded set In C attains its maximum and min* 
iumm a t sonic point of the set. For z  in Dr let /(z )  — inf{|z — iu| sudi that 
•c € C\A}. (Here *lnP means the greatest lower bound.) In other wordsr f{z)  is 
the distance from z to the complement of A. Since A is open, f ( z )  > 0 for each 
: in Dr. We can also verify that /  is continuous. Thus /  assumes its minimum 
at some point zj in Dr. Let p  = /(z ,)  +  r, and dieck tha t this p has the desired 
properties. See Figure 1.4.10.

y

Figure 1.4.10: A dosed disk in an open set may be enlaiged.

„  . 3z4 + 2 z * -z  +  lExample 1.4.28 Find lim.c_ ae>------ ——  --------.z* +1

Solution

limz—oa

using lim .—ooZ-1

3z4 + 2 z2 - z + 1 3 +  2z'“2 — z~s------- ———--------=  lim ---------- —---- r-Z’  +  l 9— 00 1 +  Z ~ a

= 0 and the bade properties of limits.

+ z-* = 3

Exercises
1. Show that if in € C. then
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(a) |R eii/| <  |w|
(li) | Im w | <  |w|
(c) |w | <  |K cw | +  |Im w |

2 . * (a) Show th a t

|R ez i -  Re«2l <  |*» - h \ <  IRezj — Rczal +  | Imaj  - I m z 2|

far any two complex numbers zi and z%.
(b) If f(z)  — u (x ,y) +  tv (x ,p), show that

lim f(z)  =  lim «(x,w) +  i lim «(x, y)
x-*xn '  X — Xo
V—»  V—*0

exists if both lim its on the right of the equation exist. Conversely, if the lim it 
on the left exists, show th at both lim its on the right exist as well and equality 
holds. Show th a t f(z)  is continuous iff »  and v  are.

3. Prove: If /  is continuous and f{zo) £  0, there is a  neighborhood of zo on 
which /  is 0.

4. If zo €  C , show th a t the se t {20} is closed.

5. Prove: The complement of a  finite numbin’ of points is an open set.

(1. Use the fact th a t a  function is continuous if and only if the inverse image of 
every open set is open to show th a t a composition of two continuous functions 
is continuous.

7. Show that f(z)  — Sis  continuous.

8. Show th a t f(z)  — |z | is continuous.

9. W hat is the largest set on which the function /(z )  =  1/(1 —0*) is continuous?

10. Prove or find a counterexample if false: If lim£_ *„ /(z )  =  a, h is defined a t the 
points f{z), and limn,—* ft(u>) =  c, then liin£_ Co h(f(z)) — c. [Hint: Could 
we have /i(a) £  cl]

11. For what z docs the sequence Zn = nzn converge?

12. * D efine/ : C -♦ C by se ttin g /(0 ) =  0 and by setting / ( r  [00s 0+i sin 0]) s a n d
if r  >  0. Show th a t /  Is discontinuous a t 0 but is continuous everywhere else.

13. Fbr each of the following sets, sta te  (i) whether or not it is open and (ii) 
whether or not it is closed.

(a) {z such that |z | <  1}
(b) {z | 0 <  |z | <  1}
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(c) {z 11 <  R es <  2}

14. For each of the following sets, sta te  (i) whether or not it is open and (ii) 
whether or not it is closed.

(a) {z | Iinz  >  2}
(b) { z | l < |z |< 2}
(c) fz  | - 1  <  R ez <  2}

15. For each of the following sets, sta te  (i) whether or not it  is cnnniyfred and (ii) 
whether or not it is compact.

00 {z 1 1 <  |z | <  2}
(b) {z such that |z | <  3 and | R ez| > 1)
(c) {z such th a t |R ez | <  1}
(d) {z such th a t |R c z | >  1}

16. For each of the following sets, state  (i) whether or not it is connected and (ii) 
whether or not it is compact.

(a) {z 11 <  R ez £  2)
(b) {z | 2 <  |z | <  3)
(c) {z such th a t |z | <  5 and |lm z | >  1}

17. If >4 c  C  and / :  C  —»C , show tlia t C \f~ l(A) =  f~ '(C \A ).

IS. Show th at /  : 4 c C - + C i s  continuous if  and only if z» —» zq in A implies 
th a t f{z„) -> /(zo ).

19. Show th a t the union of any collection of open subsets of C  is open.

20. Show th a t the  intersection of any finite collection of open subsets of C  is open.

21. Give an example to  show th a t the statem ent in Exercise 20 is false if the word 
“finite" is om itted.

22. Prove p a rt (ii) of Proposition 1.4.6 hy using part (i).

23. Show th a t if |z | >  1, then lim „_00(zn/u )  =  oo.

24. Introduce the chordal m etric  p  on C  by setting p(zi,Z2) =  d (r{ ,4 ) where 
Zf and z£ are the corresponding points on the Ricnuum sphere and d is the 
usual distance between points in R3.

(a) Show th a t z„ —► z in C  if and only if p(z„, z) —♦ 0.
(b) Show th a t z„ —* oc if and only if p(zn,oo) -» 0 .
(c) If /(z )  =  (az 4- b)/(cz  +■ d) and ad—bc£  0, show th a t /  is continuous 

a t co.
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1.5 Basic Properties of Analytic Functions
Although continuity is an im portant concept, its importance in complex analysis is 
overshadowed by th a t of the complex derivative. There are several approaches to 
the theory of complex differentiation. We shall begin by defining the derivative as 
the lim it of difference quotients in the same spirit as in calculus. Many properties 
of the derivative including useful compulation rules follow from the properties of 
lim its ju st as they do in calculus. However, there arc some surprising and beautiful 
results special to  the complex theory.

Several different words are used to describe functions tlia t an: differentiable in 
the complex sense, for example, “regular” , “holoinurphic". mid “analytic”. We 
will use the term “analytic” since it is used in calculus to  describe functions for 
which the Taylor series converges to  the value of Uie function. An elegant result of 
complex analysis justifies this choice of language. Indeed, we will see in Cliaptcr 
3 that, in sharp distinction from the case of a  single real variable, the assumption 
that a (miction is differentiable in the sense of complex variables guarantees the 
validity of the Taylor expansion of th a t fmiction.

D efin ition  1.5.1 Let f  : A — C where A c C  is an open se t The function f  is 
said to be differentiable (in  the complex sense) at zo 6  A if

lio, M -J J & L
*—•*<» Z — Zo

exists. This limit is denoted by f'(zo), or sometimes by (iff/dz)(zo). Thus, /'(z o ) 
is a complex number. The function f  is said to be analytic on A if f  is complex- 
differentiable at each Zo €  A. The word “holomorphic”, which is sometimes used, 
is synonymous with the word “analytic. * The phrase “analytic a t Sq” means f  is 
analytic on a neighborhood o f zy.

Note that the quotient

/ ( « ) - / ( * )
2 -2 0

is undefined a t z =  z0, and this is the primary reason why deleted neighborhoods 
were used in the definition or limit.

Although the definition of the derivative /'(zo ) is simiiar to  th a t of tire usual 
derivative of a fuuetiou of a real variable and they share many simiiar properties, 
the complex case is much richer. Note also that in the definition oF /'(zo)- we are 
dividing by the complex number z -  zo and the special nature of division by complex 
numbers is a  key consideration. The limit  as z —• zo is taken for an arbitrary z 
approaching 2o but not along any particular direction.

Tire existence of / '  implies a  great deal about / .  ft will be proven in §2.4 th a t 
if / '  exists, then all the derivatives of /  exist (that is, f" , the (complex) derivative 
of / ' ,  exists, and so on). This is in contrast to  the case of a function g(x) of the 
real variable x, in which g'{x) can exist without the existence of #"(*).
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The analysis of what are called the Cauchy-Rieniann equations in Theorem 1.5.8 
will show how the complex derivative of /  is related to  the usual partial derivatives 
of /  as a  function of the real variables (x ,y) and will supply a useful criterion 
for determining the existence of / '( zq). As in elementary calculus, continuity of /  
docs not imply differentiability; for example, f(s) — |z | is continuous but is not 
differentiable (see Exercise 10 a t the end of this section). However, as in one-variable 
calculus, a  differentiable function m ust be continuous.

P ro p o sitio n  1.5.2 I f  J'{zq) exists, then f  is continuous at zo.

P ro o f By tbe sum rule for lim its, we need only show th a t

h m [/(2) - /{ * ,)}  =  0.

But

- /(* » ))  =  > »  - a ) l ,

which, by the product rule for lim its, equals f ’{zq) *0 =  0. ■

Tbe usual rules of calculus -the product rule, the quotient rule, the chain rule, 
and the inverse function rule—can be used when differentiating analytic functions. 
We now explore these rules in detail.

P ro p o sitio n  1.5.3 Suppose that f  and g arc analytic on A, where 4  C  C is on 
open set. Then

(i) a f + bg is analytic on A and (a f  -f- ty/)'(z) =  a /'( z )  +  fag'(z) for any complex 
numbers a and b.

(ii) fg  is analytic on A and (fg)'{z) =  f'{z)g(z) +  / ( z)s '( jz)-

(iii) I f g(z) £  0 for off z €  A, then f /g  is analytic on A and

/ 7 Y , ^  f ‘(z)g{z) -
U J  w ------- BwP----- •

(iv) Any polynomial ao +  a»z +  . . .  +  anz" is analytic on all of C with derivative 
a t +2a2Z +  . . .+ n a „ z " -1 .

(v) Any rational function

oo ’}-aiz +  ...d -q wzn 
5o +  6iz +  . . .  +  4wz"*

is analytic on the open set consisting o f all z except those (at most, m ) points 
where the denominator is zero. (Sets Review Exercise 24 for Chapter I.)
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P ro o f The proofs of (i), (ii), and (iii) arc all sim ilar to  the proofs of the corre­
sponding results found in calculus. The procedure can be illustrated with a  proof 
of (ii). Applying the lim it theorems and the fact th a t l im ^ ^  f(z )  — /(zo ) (Propo­
sition 1.5.2), we get

Kin f(r)g{z) -  f(zp)g(2o)
Z — Zo

_  Um /(*)g(s) -  /(*)g(3>) t / ( z)g(*>) -  /(^o)g(gn) 
r —*o z  — an z — ZD

=  lim

]

=  /(zo)l'(3n) +  / ,(zto)g(*b)-
Tb prove (iv) we m ust first show th a t f  — 0 if /  is constant. This is immediate 

from the definition of derivative because /(z )  — /(zo ) — 0. I t is equally easy to  
prove that dz/dz =  1 . Then, using (ii), we can prove th a t

-v-z2 =  l> z  +  z - l  =  2z

and

-^-z3 =  -~ (z  • z2) =  1 • z2 +■ z  ■ 2z =  3z*. dz dz
In  general, we see by induction th a t dzn jdz — n z"-1 . Then (iv) follows from this 
and (i), and (v) follows from (iv) and (iii). ■

Fbr example,

£ ( z 2 +  8 z - 2 )  =  2z +  8 

and

± ( J L \ - __ i _ .
d z \ z  +  l /  (z-t-1)2

The student will also recall th a t one of the m ast im portant rules for differenti­
ation is the drain rule, or “function of a  function” rule. To illustrate,

[(z3 + 1)*°] =  10(z* +1)* - 3z2 =  30z2(z3 + l)9.
wZ

This procedure for differentiating should be familiar; it is justified by the next 
result.

T heo rem  1.5.4 (C h ain  R ule) Let f  : A —» C and g : B -* C be analytic (A, B  
an  open sets) and let f(A )  C B. Then go f : A —»C defined by (g°f)(z) — s ( /(z ))  
is analytic end

~ f o o /) ( z )  =  fl'( /( z ) ) . / '(* ) .
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Tttc basic idea of the proof of th is theorem is th a t if tw =  /(z )  and too — /(•*&), 
then

&(/(*))-g(/(gn)) _  fl(w) ~ g(wo) f ( z )  ~/(zq)
2 — Zn to — too Z -2 0

and if we let z -» zo, we also li&ve to —» to0. and the right ride o f the preceding 
equntiou thus becomes <;,(too)/, (zo)- The trouble is th a t even if z £  20, we could 
have to =  %  Because of this possibility, we give a  more careful proof. (Although 
the chain rule here can be deduced from tbe chain rule for the usual derivative for 
functions of several variables—see the proof of 1.5.8—a separate proof is instruc­
tive.)

P ro o f Let wo =  f(zo), and define, for w €  B,

to — wo

if to too nod h(vio) — 0. Since g'(uto) exists, h is continuous. Since the composite 
of continuous functions is continuous,

lim /»(/(*)) =  h(too) =  0.

FYom the definition of h and letting to =  /(z ) , we get ( go/ ) ( z) — =  (A(/(2))+  
</(™o))|/(2) — to0). Note th a t tliis still holds if f(z)  =  too-Por 2 ^  20, we get

Z — Zo 2 - 2 0

As 2 —♦ 20, the right ride of the equation converges to  (0 +  5' (too)] * [/'(zo)l» 80 t *ie 
theorem is proved. ■

An argument sim ilar to the one just given proves a  slightly different version 
of the chain rule. Namely, if 7  :]a, 6(—* C is differentiable, we can differentiate the 
curve o(t) — / ( 7 (f)) and obtain o-'(t) =  / '( 7 (t)) V (t). H ereT '(t) is the derivative of 
7 as a fiinction ]a, fi[—► R2; th a t is, If 7 (t) =  (ar(£), p (0 ), then 7 '( t)  =  (^'(O .g 'fO ) =* 
r '( t )  +  ip '(t).

We now use the chain rule to  prove a complex version of the following theorem 
from calculus: A function whose derivative is identically 0 m ust be constant. The 
result illustrates the importance of regions, or open connected sets, in which we 
may, by Proposition 1.4.15, connect any two points by a  differentiable path.

P ro p o sitio n  1.5.5 Let A C C be open and connected and let f  : A —* C be 
analytic. Jf f ( z )  = 0 on A, then f  is constant on A.
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P ro o f Let 21,23 €  A. Wc want to  show th a t / ( 21) =  f(z*). Let 7 (1) be a  path 
joining 21 to z2. By the duiin rule, df(ilt))/d t =  f  {y{t)) - Y (t) =  0, since / '  = 0. 
Thus if /  »  u+ iv, we have du{y(l))/dt =  0 and du(-y{t))/dt — 0. Brom calculus, we 
know this implies th a t 11(7 (1)) and t>(7(i)) are constant functions of t. Comparing 
the values a t t  =  a and 1 =  6 gives us f{ z \) =  /(% ). ■

Clearly, connectodness is needed because if A consisted of two disjoint pieces, 
we could k ! t / = l o n  one piece and /  =  0 on the other. Then f'(z )  would equal 0 
but /  would not be constant on A.

C onform al M aps The existence of th e  complex derivative f  places severe but 
very useful restrictions on / .  The first of these restrictions will be briefly discussed 
here. Another restriction will be mentioned when the Cauchy-Riemaim equations 
are analyzed in Theorem 1.5.8.

I t will be shown th a t “infinitesimally” near a  point 2u a t which f*(za) ^  0 , /  is 
a  rotation through the angle a rg /'fco ) and a  magnification by the factor |/ '( 2o)|. 
The term “infinitesimally” is defined more precisely below, but intuitively it nmms 
th a t locally /  Is approximately a  rotation together with a magnification (see Figure
1.5.1). If /'(z n ) =  0, the structure of /  is more complicated. (This point will be 
studied further in Chapter 6.)

V 9

Figure 1.5.1: Conformal a t zq.

D efin ition  1.5.6 A map f  : A —* C is called conform al a t zq if them exist 
a 9 €  (0,2jr[ end cm r  >  0 such tluit for m y curve 7 (/.) that is differentiable at 
l — 0, for which 7 (f) 6 A and 7 (0) =  zo, and that satisfies V (0) $£ 0, the curve 
cr(t) =  /(*y(t)) is differentiable a lt — 0 and, setting u  =  </(G) and v =  y (0 ), we 
have |u | =  r |u | an d a ig u  =  argw +-d(inod2jr). A map is called conform al when 
it is conformal at every point.

Thus a  conformal map merely rotates and stretches tangent vectors to  curves. 
Tliis is tlic precise meaning of “infinitesimal” as previously used. I t should be noted
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that a  conformal map preserves angles between intersecting curves. (By definition, 
the angle between two curves is the angle between their tangent vectors- see Figure
1.5.2).

Figure 1.5.2: Preservation of angles by a conformal map.

Theorem  1.5.7 (C onform al M apping T heorem ) I f f : A - * C i s  analytic and 
iff'(zo) £  0, then /  is conformal at Zq with 8 — arg /'(zo) andr=  |/'(zo)|- fulfilling 
Definition 1.5.6.

The proof of tills theorem is remarkably simple.

P roo f Using the preceding notation and the chain rule, we get u = cr'(O) =  /'(zo)* 
V(U) =  /'(zo ) * v. Thus argu =  arg f'(zo) +  argn(wod 2n) and |u | =  |/'(zo)l * M* 
as required. ■

The point of this proof is that the tangent vector v  to any curve is multiplied by 
a  fixed complex number, namely, / '{ zq), no m atter in which direction t; is pointing. 
This is because, hi the definition of / ,(zo),lhnc_ Zo is “taken through all possible 
directions” as z  —* Za.

C auchy-R iem ann E quations Recall that if /  : .A C C = R2 —» R2 and if 
/(x ,y ) =  («(x,y),v (x ,y)) *= tt(x,y) +  iu(x,y), then the Jacobian  m a trix  of f  is 
defined as the m atrix of partial derivatives given by

D f(x ,y )

f  d u  du  \  
d x  d y  I 
8v dv  I 

{ 8x 8y /

a t cadi point (x, y). We sliall relate these partial derivatives to the complex deriva­
tive. FVom the point of view of real variables, /  is called differentiable  with
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derivative the m atrix D f(x0, 1/0) a t (zuilto) iff for any e > 0, there is a 8 >  0 such 
th a t |(* ,y ) -  (xo,jfo)| <  6 implies

!/(* ,» ) -  /(® 0i Vo) ~ D f(x0ly0)[(x,y) -  (*0,W>))| <  «!(*,») -  (*0:lto)|

where D f(xo,»a) * ((*. y) -  (*o,lto)| means the m atrix Df(xo, ya) applied to  the 
(column) vector

/  x - x 0 \
\  V~Vo )

and |u>| stands for the length of a  vector w.
Here are some facts from the calculus of several variables th at we shall use.9 If /  

is differentiable, then the usual pnrtials du/dx,du/dy,dv/dx, and dv/dy  exist and 
D f(x0. ya) is given by the Jacobian m atrix. The expression Df{xa, |fo)I*»] represents 
the derivative of /  in the direction w. If the partials exist and are continuous, then 
/  is differentiable. Generally, then, differentiability is a  b it stronger than existence 
of the  individual partials. The main result connecting the partial derivatives and 
anatyticily is stated in the next theorem.

T heo rem  1.5.8 (C auchy-R iem ann T heorem ) Suppose A is on open set in C 
and f : A C C —* C i s a  given function. Then f'(za) exists if  and only i f  f  is 
differentiable in the sense of real variables and at (xo,ya) = zg, the /unctions u,v  
satisfy

Bu do , du do
r -  =  7 -  and —  — ——dx dy dy dx

(called the Cauchy-Riem ann equations).
Thus, if du/dx, &u/dy, dv/dx, and dvfdy exist, arc continuous on A, and sat­

isfy the Cauchy-Riemann equations, then f  is analytic on A.
I f  f(za ) does exist, then

, du .do _  d f  _  dv .du _  1 3 /
20 d x + tdx dx dy *dy i d y ‘

P ro o f Let us first show th a t if f'(za) exists, then tt and v  satisfy the Cauchy- 
Riemann equations. In the lim it

/ '( * ) ) =  Km /(* ) - /( * > )
Z — Zq

let us take the apodal case th a t r  =  x + iyo. Then

/ ( * )  ~  /(* > )  _  « (x ,  go) +  «»(x, yp) -  ti(xo , jfy) -  i v ( x 0l yp)
z ~ zo x  — xo

_  « (* .l to ) -« (® C ,l to )  . -» (* ,3W i)-« (xo» lto )— _ T“ 1"X —Xo X — Xq

®Proo6i of the following statements arc not included here but can be found in any advanced 
calculus text, such as J .  M anden and M. Hoffinan, Elementary Classical Analysis, Second Edition 
(New York: W. H. FVecraan and Company, 1993), Ch. 6.
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As x  —» xo, the left side of the equation converges to  the lim it /'(z o ). Thus both 
the real and imaginary parts of the right ride m ust converge to  a  lim it (sec Exercise 
2 of §1.4). FVom the definition of partial derivatives, th is lim it is (du/dx)(xo, yo) +  
i(do/dx)(xQ,yo). Thus /'(zo ) =  du/dx  +  tdv/dx  evaluated a t (*o, jfo).

Next let z — To + iy. Then we similarly have

/(* ) ~  /fo i)  _  v(xQ'V) + iv(xo,y) -  u(x0,yo) -  iv(xQ,m ) 
z -Z o  * (» -!» )

_  «(J o,y) -u (so .M i) « (*a,y )-» fa> .ito )
H tt-V o) V-Vo

As y - » ito, we get

1 du  ̂ dv _  dv .du 
i dy 8y"~ By l dy‘

Thus, since f'(zo) exists and has the same value regardless of how z  approaches zo, 
we get

/'(*d ) =
du
d i

dv .du 
dy *8y '

By comparing real and imaginary parts of these equations, we derive the Cauchy- 
Riemann equations as well as tbe two formulas for /'(z o ).

Another argument for tliis direction of the proof and one for the opposite im­
plication may be based on the m atrix representation for complex multiplication 
developed in Exercise 10 of §1.1.

L em m a 1.5.9 A matrix

OS)
represents, tender matrix multiplication, multiplication by a complex number iff a =  
d and b =  —c. The complex nttmbcr in question is a  +  ic  =  d  — *6.

P ro o f First, let us consider multiplication by the complex number e + ic . I t  sends 
x  +  iy to  (a -f-tc)(x -f iy) =  ax — cj; -f i(ay  + cx), which is the same as

Conversely, le t us suppose th a t

(c  d ) ( y ) S2*(*+i»> 
for a  complex number z =  a + ffl. Then we get

ax + by — ox  — (iy and cx +  dy =  ccy+ (3x

(a - c  
c a
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for all x,y . This implies (setting x  — l .y  *  0, then x  — 0,y  — 1) th a t a — o,b  »  
—0 ,c  = 0, and d = a, and so the proof is complete. ■

We can now complete the proof of Theorem 1.5.8.
FVom the definition of / ' ,  the statem ent th a t f'(zo) exists is equivalent to  the 

following statem ent: Par any c > 0, there is a  8 > 0 such th a t 0 <  \z — zq| <  8 
implies

I/(* ) -  /(so ) -  /'(*»){* -  *o)l <  c|* -  aul-

F irst let us suppose th a t f'(zo) exists. By definition, Df(xo,yo) is the unique 
m atrix with the pro]>erty th a t for any < >  0 there is a  8 >  0 such that, setting 
z = (x,y) and zo =  fon g o M  <  \z -  Zq\ < 8 implies

|/(* ) -  /(*o) -  £>f(zo)(* -  *»)l <  e|2 -  z»\.

Tf we compare this equation with the preceding one and recall that multiplication 
by a  complex number is a  linear map, we conclude th a t /  is differentiable in the 
sense of real variables and that the m atrix Df(z«) represents multiplication by the 
complex number f'(za). Thus, applying the lemma to  the m atrix

/  du du \
dx dy
d» do

\  Ox dy /

with a — du/dx, b = du/dy,c = dv/dx, d — do/dy, we have u = d,b = - c , which 
arc the Cauchy-Riemann equations.

Conversely, if the Cauchy-Riemann equations hold, D/{zq) represents multipli­
cation by a complex number (by the lemma) and then, as above, the definition 
of differentiability in the sense of real variables reduces to th a t for the complex 
derivative.

The formula for /'(zo ) follows from the last statem ent of the lemma. ■

We can also express the Cauchy-Riemann equations in term s of polar coordi­
nates, but_care must be exercised because the change of coordinates defined by 
r  =  \ /x 2 + y 2 and 9 = arg(x +  iy) is a  differentiable change only if 9 is restricted 
to  the open interval ]0 ,2 r| or any other open interval of length 2n and if the origin 
(r =  0) is om itted. W ithout such a restriction 8 is discontinuous, because it jum ps 
by 2jt on crossing the x  axis. Using dx/dr  =  cos 8,dy/dr =  sin 0, we see that the 
Cauchy-Riemann equations are equivalent to  saying that

du _  1 dv dv _  —1 du 
d r  ~  rO O  d r ~ ~ m

on a  region contained in a  region such as those shown in Figure 1.5.3. Here we arc 
employing standard abuse of notation Ijy writing u (r,0 ) =  u (rcosff,rsiu0 ). (For a 
more precise statem ent, see Exercise 12 a t the end of this section.)
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y v
t f

Figure 1.5.3: Two regions of validity of polar coordinates.

Inverse Functions A basic result of real analysis is the Inverse Function The­
orem: A continuously differentiable function is one-to-one and onto an open set 
and has a differentiable inverse in some neighborhood o f a point where the Jacobian 
determinant o f the derivative matrix is not 0. We will give proof hero of the com­
plex counterpart of this result, which assumes that the derivative f  is continuous 
and depends on the corresponding theorem for functions of real variables. After 
we have proved Cauchy's Theorem in Chapter 2, we will see that the continuity 
of f  is automatic, and in Chapter 6 we will prove the theorem in another way 
that does not depend on the real-variable theorem. The proof given here, however, 
illustrates the relationship between real and complex variables and the relevance of 
the Cauchy-Riemann equations.

Theorem  1.5.10 (Inverse Function Theorem ) Let f  : A  —» C fce analytic 
with f  continuous) and assume that /'(zo ) 0. Then there exists a neighborhood

f  o f 20 and a neighborhood V o f /(zo) such that f  : U —* V is a bijection (that 
;•>. is one-to-one and onto) and its inverse function f~ l is analytic with derivative 
given by

^ f  l{w )" W )  wlierc ,,,s = /(s ) -

The student is cautioned that application of the Inverse Function Theorem allows 
one only to conclude the existence of a  local inverse for / .  For example, let us 
consider /(z ) =  z* defined on .4 =  C \{0}. Then f '( z )  ~  2z 0 at. each point of 
.1. The Inverse Function Theorem says that /  has a unique local analytic inverse, 
which is, in fact, merely some branch of the square root function. But /  is not 
one-to-oue cm all of A, since, for example, / ( ! )  =  / ( - 1). Thus /  will be onc-fco-one 
only within sufficiently small neighborhoods surrounding each point.

1b  prove tins theorem, let us recall the statement for real variables in two 
dimensions.
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T heo rem  1.5.11 (R eal-V ariab le  In v erse  fu n c tio n  T heo rem ) I f f : A  C R2 -♦ 
R2 is continuously differentiable and Df{xo,yo) has a nonzero determinant, then 
there are neighborhoods U o f (xo,!A)) and V  of / ( xq, yo) such that f  :U  ~*V is a 
Injection, / “ '  xV -*U  is differentiable, and

A T '(/(* ,» )) =  [Df(x,y))-'

(this is the inverse of the matrix of partials).

Tlie proof of this theorem may be found in advanced calculus texts. See, for in­
stance, J . Marsden and M. Hoffman, Elementary Classical Analysis, Second Edition 
(New York: W. H. freem an and Company, 1993), Ch. 7.

Accepting this statem ent and assuming th a t f  in Theorem 1.5.10 is continuous, 
we can complete the proof.

P ro o f o f  T heo rem  1.5.10 For analytic functions such as /(z ) , we have seen 
th a t the m atrix of partial derivatives is

f dtt du > /  du -d v  >
dx dy dx dx
d» dv dv du

\  dx dy ; \ dx dx J

which has determ inant

\ m ?

since f \ z )  — du/dx *f i&v/dx. All these fiuictions are to  be evaluated a t the point 
(®o»lto) =  *o- Now /'(zo ) £  0, so Dct D f(x0,ya) — |/'(<*o)|2 ^  0. Thus the real- 
variable Inverse Function Theorem applies. By the Cauchy-Riemann Theorem 1 .5.8 
we need only verify th a t the entries of \Df(x,y){~1 satisfy' tb e  Cauchy-Riemann 
equations and give ( / -1 )' as stated.

As we have ju st seen,

D f =
(  —  

dx
dv

\  dx

du \  
By 
dv 
dy

and the inverse of this m atrix is

1
/  dv 

dy 
—dv 

V dx

-d u  \  

dy
du  J *  

dx }
Det D f
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Thus if wc w rite / -1 (x ,y) =  f.(x, y) +  is(x , y), then, comparing

D (T ')

a t di \  
dx dy 
ds Os 

< dx dy J
with the inverse m atrix for D f, we gel

di _  1 dv _  1 du
dx ~  Det D fd y  ~  Dot D f dx

and
ds 1 -d v  1 flu 
dx ~  Dot D f dx ~  Dot D f dy'

which are evaluated a t /(x^ .i/e ). Similarly,

dt 1 dv . ds 1 dv 
dy ~  D ctD fdx  a” d d y ~ D c lD fd y ‘

Thus tbe Cmichy-Riem ann equations hold for l  and s since they hold for tt and v. 
Tlicrcfore, / ” ’ is complex-dlfferentiablc. From the Cancliy-Kiemann Tlieorcm wc 
see th a t a t the point f(zo).

_____1 (d u  .d v \ I'(zg) 1
W } ~  dx +  dx ~  Det D f 'd x )  ~  |/'(2to)|2 /'(*>)■

The real and imaginary parts of an analytic function m ust satisfy the Cauchy- 
Riemann equations. M anipulation of these equations leads directly to  another 
very im portant property, which wo now isolate. A twice continuously differentiable 
function i t : A —* R defined on an open set A is called harmonic if

V2u  = 3x2 dy2 =  0.

The expression V2« is called the Lapladan  of u  and is one of the most basic 
operations in m athem atics and physics. Harmonic functions play a  fundamental 
role in the physical examples discussed later in Chapters 5 and 8. For the moment 
let us study th an  from tbe m athem atical point of view. For V2u  — 0 to  make sense, 
tlie function u  must be twice differentiable. In Chapter 3 an analytic function will be 
shown to  be infinitely differentiable. Thus its real and imaginary parts are infinitely 
differentiable. Let us accept (or assume) these properties here. In particular, the 
second partial derivatives are continuous, and so a  standard result of calculus says 
th a t the mixed partials are equal. The Cauchy-Riemann equations may then be 
used to  show th a t tlie functions are harmonic.

P ro p o sitio n  1.5.12 If f  is analytic on an open set. A and f  — u +  iv  (that is, if 
u =  R e / andv — Ini f ) ,  then u and v arc harmonic on A.
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P ro o f We use tlie Cauchy-Riemann equations, du/dx  =  dv/dy and dv/dy = 
-dv/dx. Differentiating tlie first equation with respect to x  and the second equa­
tion with respect to y, wo get

d2u _  d2v , dPu _  d2v
dx2 dxdy 811 dy2 dydx ’

As above, tlie second partials arc symmetric because they are continuous:

t f v  d2v 
dxdy dydx'

Therefore, adding the equations in the preceding display gives us

SPn d2u tFv d~v
dx2 dy3 dxdy dydx

Tlie equation for v is proved in Die same way. ■

If u and » are real-valued functions defined on an open subset A of C such th a t 
the complex-valued function J  =  w -f iv  is analytic on A, we sa t th a t u  and v arc 
harmonic conjugates on A. For example,

v(x, y) = x2 — y2 and v(x,y) = 2xy

arc harmonic conjugates of cadi other since they arc the real and imaginary parts 
of f(z ) — z2. These ftm dions are linked geometricaily as well as algebraically. The 
level curves of u and v passing through any nonzero (mint intersect a t right angles a t 
th a t point, which is illustrated in Figure 1.5.4. The next Proposition asserts th a t 
this occurs generally for the real and imaginary parts of an analytic function at 
points where its derivative is not 0. Tlie proof uses the Caudiy-Ricnuinn equations 
to allow th at the dot product of the tangent vectors (or the normal vectors) is 0.

P ro p o sitio n  1.5.13 Let u and v he harmonic conjugates on a region A. Suppose 
that the equations

u(x, y) =  constant =  ei and v(x, y) = constant =  02

define smooth curves. Then these curses intersect orthogonally (see Figure 1.5.4).

We shall accept from calculus the fact that u(x, y) =  ci defines a  smooth curve if 
the gradient grad u(x,y) =  (du/dx,du/dy) =  (du/dx) -f i(du/dy) is nonzero for x  
and y satisfying u(x. y) — Ci. (The student should lie aware of this feet even though 
it is a technical point th a t docs not play a m ajor role in concrete examples.) I t is 
also true th a t the vector grad u is perpendicular to  th a t curve (see Figure 1.5.5).

This perpendicularity property can be explained as follows. If (x(t), y(t)) is tlie 
curve, then u(x(t),y(t)) =  otl a constant, so

^[« (x (< ),y (0 )l =  0-
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y

Figure 1.5-4: Harmonic conjugates: u =  x2 — y2, w =  2xy, f(z )  =  z2.

Figure 1.5.5: Gradients are orthogonal to  level sets.

and thus by the chain rule,

du
dx • ar'W + •  y'iO  =  °-

T hat is,

P ro o f o f  P ro p o sitio n  1.5.13 By the above remarks, it  suffices to  show th at 
grad » and grad « arc perpendicular. Their inner product is

grad u  - gradu 8u dv du dv 
dx dx  ^  dy dy *

which is zero by the Cauchy-Rieiuann equations. ■



74 Chapter I A n alytic Functions

This orthogonality property of harmonic conjugates has an important physical 
interpretation, which will be used in Chapter 5. Another way to see why this prop­
erty should hold is to consider conformal maps and the Inverse Function Theorem. 
This is illustrated in Figure 1.5.6.

Figure 1.5*6: Since /  and f~ l arc analytic, they are conformal and so preserve 
orthogonality.

If /  =  u-f-tu is analytic and f'(zo) 0, then f ~ l is analytic on a  neighborhood V  
of w0 =  f(zo) and ( / - l )(m0) £  0 by tlie Inverse Function Theorem. If u^j =  cj +ic%, 
then the curves ti(x,y) ~  c, and v(x,y) =  c-j arc the images of the vertical and 
horizontal lines through mo under tlie mapping / “ *. They should cross at right 
angles since f ~ l is conformal by Theorem 1.5.7.

Proposition 1.5.12 says that the real part of an analytic function is harmonic. 
A natural question Is the opposite one: Is every harmonic function the real part 
of an analytic function? More precisely: Given a  harmonic function u on a  set 
A, need there be a harmonic conjugate v  such that /  =  u +  £w is analytic ou A’! 
The full answer is a little tricky and depends on the nature of the set A. However, 
the answer is simpler if wc confine ourselves to  small neighborhoods. Indeed, the 
property of being harmonic is wliat is called a local property. The function v is 
harmonic on a  set if V2u =  0 holds at each point of that set. Therefore, it makes 
sense to study this property in a neighborhood of any point.

P roposition  1.5.14 I f  u is a twice continuously differentiable harmonic function 
an an open set A  and zq€ A, then there is some neighborhood o f zq on which n is 
the real part o f an analytic function.

In other words, there exist an r  >  0 and a function v  defined ou the open disk 
D(zq\t) such that u and v  are harmouic conjugates on D (zo:r). In fact, D(zo\r) 
may be taken to  be the largest disk centered a t zq and contained iu A. A direct 
proof of this is outlined in Exercise 32. A different proof of a slightly stronger result 
will be given in Chapter 2. Since the Cauchy-Riemann equations must hold, v  is 
uniquely determined up to the addition of a constant. These equations may be 
used as a  method for finding v  when u is given.
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Worked Exam ples
E xam ple 1.5.15 Where is the function f(z ) — (z3 +  2s +  l) /(z 3 4-1) analytic? 
Compute the derivative.

S o lu tion  By Proposition 1 .5 .3 (iii)/is  analytic on the set A =  {2 €  C |r*+1 ^  0}; 
that is, /  is annlytic on tin: whole plane except tlie cube roots of —1 — c**, namely, 
the points and c5**/3. By the formula for differentiating a quotient, the
derivative is

w, , _  (z3 4- l)(3z2 +  2) -  (z* +  2z + l)(3z2) =  (2 -4 Z 3)
J[ Z) ~  (z3 +  l)2 (z3 +  l)2 '

E xam ple 1.5.16 Consider f(z ) — z3 + 1 . Study the infinitesimal behavior of f  at
Zq  ~  t .

S olu tion  We use the Conformal Mapping Theorem 1.5.7. In tliis case /'(z e ) =  
Si2 =  —3. Thus /  rotates locally by 7T =  arg(—3) and multiplies lengths by 3 =  
|/'(z « )|. More precisely, if c is any curve through zq = i, the image curve will, a t 
f(z 0), have its tangent vector rotated by n and stretched by a  factor 3.

E xam ple 1.5.17 Show that f(z )  = z is not analytic.

S olu tion  Let f(z )  — ti(x, y) +  it>(x, y) — x - i y  where z — (x, y) — x  4- iy. Thus, 
a(x,y) =  x, v(x, y) — —y. But du/dx  =  1 and do/dy — -1  and henoe du/dx £  
dv/dy, so tlie Candiy-Ricmium equations do uot hold. Tliercfore, /(z )  =  z  cannot 
he analytic, by die Cauchy-Riemann Theorem 1.5.8.

E xam ple 1.5 .18 We know by Proposition 1.5.8 that f(z )  — z3 + 1  is analytic. 
Verify the Cauchy- Ricmann equations for this function.

S olu tion  If f{z) = u fa y )  -I- i«(x,y) when z  *  fa y )  =  x  +■ iy, then in this 
ease u fa y )  =  X8 -  3xy* -f 1 and v(x,y) =  3x*y -  y3. Therefore, du/dx  =  Sx2 -  
Zyt ,du/dy — —6xy, dv/dx  =  6xy, and dv/dy — 3X2 -  3y2, from which wc see th a t 
du/dx — dv/dy  and du/dy — —dv/dx.

E xam ple 1.5.19 Let A be an open subset of C and A* =  {z  | i  € A}. Suppose 
f  is analytic on A, and define a function g on A* by g(z) =  f(z). Show that g is 
analytic on A*.

S o lu tion  If /(z )  =  u(x ,y) +  i» (x ,y ), then g{z) =  / ( I )  =  a (x ,-y )  -  w (x ,-y ). 
We clieck the Cauchy-Riemann equations for g as follows:

d . . d tt|

| . | - ^ X , - V) 1 =  3 . ( 1 „ , )

dv  I
^ L - v )
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and

d . . du\ dv I

Since the Cauchy-Riemann equations hold and g is differentiable in the sense of 
real variables (why?), it is analytic on A '  Ijy the Cauchy-Kicmann Theorem 1.5.8. 
(One could also solve this cxcrri.se by direct appeal to the definition of complex 
differentiability.)

E xam ple 1.5.20 Find the harmonic conjugates of the following Itarmomc func­
tions on C:
(a) u(x,y) =  X2 - y 2
(b) u(x,y) =  sinxcoshy

Tlie leader might recognize x2 — y2 and sin x  coshy as the real parts of z2 and 
sin z ,2 =  x+iy. FVoiu this d isc re tio n  it follows th at the conjugates, up to  addition 
of constants, are 2xy and siuhycosx. (Wc shnll see in the next section th at s in s  is 
analytic.) I t is instructive, however, to solve the problem directly using the Cauchy- 
Riemann equations, because the student might not always recognize an appropriate 
analytic }{z) by inspection.

S o lu tio n  To solve (a), suppose th a t a  is a  harmonic conjugate of u. By the 
Cauchy-Riemann equations,

9v
dx

du
a£  =  *  m d

dv
dy

Therefore, v = 2yx 4* y»(y) and v  =  2xy +  g*(x). Hence 9\{y) = gi(x) =  constant, 
and so v(x ,y) =  2yx4- constant. Tb find the harmonic conjugate v  for part (b), we 
use the Caudiy-Riemanu equations again and write

dv du . . , , dv du—  =  —T— «* -  sin x  sin hy  and —  =  —  rt cos x  cosh y.dx dy dy dx

The first equation implies th at v — cosxsinhy  4- gj (y) and tbe second equation 
implies th a t » =  cosxsinhy 4* g*(x). Hence gt(y) — gi(x) ~  constant. Tlicrefore 
u(x, y) = cosxsinhy 4- constant.

E xam ple 1-5.21 Suppose f  is an analytic function on a region (an open connected 
set) A and that |/( z ) | is constant on A. Slum that f  is constant on A.
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S o lu tio n  We use the Caucky-Rieniann equations to  show th a t f { z )  — 0 every* 
where in A. Let /  =  u  4- iv. Then | / | 2 =  ti2 + 1>2 =  c  is constant. If c =  0, then 
|/ ( z ) | =  0 and so f(z )  =  0 for all z in A. If c  ̂  0, we take derivatives o f u2-fv3 ~  c 
with respect to  z  and y  to  obtain

„  Ou dv _ . „ du dv2u—  + 2 u —  =  0 and 2u—  +  2e—  =  0. ox Ox dy dy

By the Cancliy-Riemnun equations tiiese become

du du . du dft and t’-r— +  u —-  =  0. dx ou

As a  system of equations for the two unknowns du/dx  and Qu/dy. the m atrix of 
coefficients has determ inant «2 4* v2 =  c, which is not 0. Thus tlie otdy solution is 
du/dx — du/dy =  0 a t all points of A. Therefore f'{z) — du/dx  4- i(dv/dx) =  0 
everywhere in A. Since A is connected, /  is constant (by Propositiou 1.5.5).

Exercises
1. Determine tlie sets on which the following functions are analytic, and compute 

their derivatives:

(a) ( * + 1)3

0 0  * +  i

w (rh)
(d)

10

(*3 - ] ) (* * + 2 )

2. Determine the sets on which the following functions are analytic, and compute 
their derivatives:

(a) 3z2 4-7z + 5
(b) (2z4-3)4 

3« - 1
( 0 Z - z

3. On w hat sets are the following functions analytic? Compute the derivative 
for each.

(a) z " ,n  being an  integer (positive or negative) 

^  (7 + 1 /z f
(c) z /(z n — 2 ),n  being a positive integer
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4. Fbr 7  :]a .b [—* C  differentiable and /  : A —» C  analytic with 7Qa,6[) C A, 
prove th a t o =  / 0 7  is differentiable with o 'ft)  =  /*(7 (f)) *7 ,(t) by im itating 
the proof of the chain rule (1.5.4).

5. Study the infinitesimal behavior of tlie following functions a t the indicated 
points:

(a) f(z)=* z + 3,zo — 3 + 4i
(b) f(z )  =  z*  +  3 z , zq =  0

1 \  r /  \  3 ? - r Z  +  l(c) /(z )  *  - ~Z\ — *  0

6. Study the infinitesimal behavior of the following functions a t the indicated 
points:

(a) f(s )  *  2z +  5,20 *  5 + 6*
(b) /(z )  =  z4 + 4z, Zq «= i
(c) /(z )  -  l /( z  -  l),zo  =  f

7. Provo th a t df~l/dw  =  ! // '(* )  where in =  /(z )  hy differentiating / _1( /(z ))  =  
z, using the chain rule. Assume th a t / “ * is defined and is analytic.

8.  * Use the Inverse Function Theorem to show th a t if / :  A —»C  is analytic and 
/ '( z )  ^  0 for all 2 €  A, then /  maps open sets in A to  open sets.

9. Verify the Cauchy-Riemann equations for the function f(z ) — z2 +  3z ■+ 2.

10. Prove th a t /(z )  «= |z | is not analytic.

11.  * Show, by changing variables, th a t the Cauchy-Riemann equations in term s 
of polar coordinates become

du _  1 dv dv 1 8u 
dr ~  rdd  d? =  ~ rd 6 '

12. Perform the computation in Exercise 11 by the following procedure. Let /  
be defined on the open set A C C (that is, / :  A C C  —♦ C) and suppose that 
f(z)  =  u(z) +  iv(z). Let T  :]0.2jt(xR+ —> R2, whom R+ ** {® € R | *  > 0}, 
be given by T(0,r) =  (ro o s0 ,rsin 0 ). Thus T  is onc-to-onc and onto the set 
Ra\{(*»0) I *  >  0}- Define

ii(0,r) =  u (rco s0, r 8in 0) and 0(8, r)  =  » (rcos8,r s in 0).

Show th a t

(a) T  is continuously differentiable and has a continuously differentiable in­
verse.
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(b) /  is analytic on A\{x+ iy \ y — 0,® >  0} if and only if («,{?): T~l (A) -» 
R2 is differentiable and we have

flu _  150 d ii___ 1 dii
9 r ~ r d 0  “ “  flr ~  rdB

on r-'(u4).

13. Define tlie symbol 8}/dz  by

i
d i  2 \f lx  i d y ) '

Show tlia t the Cauchy-Riemann equations are equivalent to  d f/d z  =  0. Note: 
It is sometimes said, because of th is result, tlia t analytic functions are not 
functions of z but of z alone. This statem ent can be made mote precise as 
follows. Given f ( x ty), w rite *  =  £(z +  z) and y  = (I/2 i)(z  -  z). Then /  
becomes a  function of z and z and the chain rule gives

= + = l ( d £ _ l d f \
d i dx dz dy dz 2 \f lx  t  d y )  *

14. Define the symbol d f/d z  by

f l /  =  i  f  f l /  . l? T \
dz 2 \ d x * i d y ) ’

(a) Show th a t if /  is analytic, then / '  *  d f/d z .
(b) If /(-*) =  *, show th at d f/d z  — 1 and d f/d z  — 0.
(c) If /(z )  =  z, show th at d f/d z  — 0 and d f/d z  — 1.
(d) Show th at the symbols fl/flz and fl/flz obey the sum, product, and scalar 

multiple rules for derivatives.
(e) Show that, the expression £ " t=0£ " =0anmz"z"» is an analytic function 

of z if and only if a,im =  0 whenever m ?£ 0.

15. Suppose that /  is an analytic function on the disk D ~  {z such |z | <  1}
and th a t Re /(z )  =  3 for all z in D. Show th at /  is 0n D.

16. * (a) Let /(z )  =  u (x ,y) +  »v{x, y) be an analytic function defined on a  con­
nected open set A. If au(x, y) +  bv(x,y) =  c in A  where a, b, c are real 
constants not all 0, prove th a t /(z )  is constant in A.

(b) Is the result obtained in (a) still valid if a, b, c are complex constants?

17. * S uppose/is analytic on the set A =  {z | Rez >  1} and tlia t flu/flx+flw /fly =  
0 on A. Show th a t there are a  real constant c and a  m m pW  constant d such 
th a t /(z )  a® —icz -{-dan A.
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18. Let /(* )  =  2*/\z\* if 2 ^  0 and /(0 ) *s 0.

(a) Show tliat J{z)fz does not have a  lim it as z 0.
(h) If m =  R e / and v = Tm/ ,  show tlia t u (x ,0) =  x ,e(0 ,y ) =  y,ti(0 ,y) = 

v(x,0) = 0.
(c) Conclude tliat the partials of u ,v  exist and th at the Cauchy-Riemann 

equations hold but th at / '( 0) docs not exist. Does this conclusion con­
tradict the Cauchy-Riemann Theorem?

(d) Repeat exercise (c), letting /  =  1 on the x  and y  axes and 0 elsewhere.
(e) Repeat exercise (c), letting f(z ) — y/\xy\.

19. Let f(z) — (z + 1  )/{z — 1).

(a) W here is J  analytic?
(b) Is /  conformal a t z  =  0?
(c) W hat are the images of the x  and y  axes under / ?
(d) At what angle do these images intersect?

20. Let /  be an analytic funetiou ou an opcu connected set A  and suppose that 
/(" + 1)(2) (the n  -U s t derivative) exists and is zero on A. Show th a t /  is a  
polynomial of degree <  n.

21. On what set is u(x, y) =  — 1)) harmonic?

22. * Verify directly th a t tlie real and imaginary parts of f(z )  =  z4 are harmonic.

23. On what sets are each of tlie following functions harmonic?

(a) =  Im(a2 +  3* +  l)

(b) ’*<*•»> ‘

24. Ou wliat sets arc each of the following functions lianuonic?

(a) u(x,y) =  Im(z +■ 1/z)

(b) «(*,») = V
(x -  l)a +  j/2

25. Let /  : A —► C be analytic and let w : B  —» R be harmonic with /(A ) c  B. 
Show tlia t wo f  : A —* R is harmonic.

26. If u is harmonic, show th a t, in term s of polar coordinates,

»02u Ou EPn 
r‘ o ? * * r f r  + W — 0

Hint: Use tlie Cauchy-Riemann equations in polar form (Exercise 11).
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27. (a) Show that tt(x, y) =  fi*cosy is harmonic on C.

(b) Find a  harmonic conjugate «(x,y) for tt ou C  such th a t w(0,0) =  0.

(c) Show th a t f(z )  =  e* is analytic on C.

28- Sliow th a t u(x, y) =  zP S x y 2 is harmonic on C  and find a  harmonic conjugate 
v such th a t v(0, 0) =  2.

29. If  u(z) is harmonic and v(z) is harmonic, then are the following harmonic?

(a) tt(v(z),0)

(b) 11(2) 0(2)

(c) tt(2) +  v(2)

30. Consider the function /(z )  =  l / s .  Draw the contours u =  lie  /  =  constant 
and v — Im f = constant. Ilow do they intersect? Is it always true th a t grad 
u is parallel to  the curve v =  constant?

31. Let U have continuous second partials on an open set A and let SPu/da? +  
iPu/dy2 =  0. Let /  =  du/dx — idu/dy . Show th a t /  is analytic.

32. Suppose « is a  twice continuously differentiable real-valued harmonic function 
on a  disk D(zo;r) cantered a t zo =  xo +  *»o- For (z i.y i)  €  D(zo;r), show 
tlia t the equation

v{* u V i)= c+ J*  /£ .(* u V )d y - j  ~ (x ,yo )dx

defines a  harmonic conjugate for u  on D(zo;r) with v(xo,yo) =  c.

1.6 Differentiation of the Elementary Functions
E x p o n en tia l F u n ctio n  an d  L ogarithm  This section discusses differentiability 
properties of the elementary functions introduced in §1.3 and we will begin with 
the exponential function and its inverse, tlie logarithm.

P ro p o sitio n  1.6.1 The map f : C —* C, 2 e*. is analytic on C and

P ro o f By definition, f(z )  = e*(coesy 4- tsin y ), so the real and imaginary parts 
are u (x ,y) =  e*cosy and v(x,y) — e*siny. These are C°° (infinitely often dif­
ferentiable) functions, so /  is differentiable in the sense of real variables, l b  show
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th a t /  is analytic, we m ust verily the Cauchy-Riemann equations, l b  do so, we 
first compute the partial derivatives

du ,

dv .  .

du .
S T  —  - T S l D J fdy
dv
a i  = ****■

Thus, du/dx  =  dv/dy  and du/djj — —dv/dx, so by the Cauchy-Riemann Theorem 
1.5.8, /  is analytic. Finally,

4T _  du .do 
dz dx %dx — c*(cosy +  tsin y ) <r. ■

A function th a t is defined and analytic ou tlie whole plane C  is called entire. 
Thus, f(z )  — e* is an entire function.

Using the differentiation rules (Proposition 1.5.3) as in elementary calculus, 
we can differentiate e* in combination w ith various oilier functions. JFbr instance, 
e* +  l  is entire because z v-> z* and to *-» ew are analytic, so by tbe chain rule, 
z  e** is analytic. By the chain rule and the sum rule, (d/dz)(c*3 + 1 ) =  2zcs .

We recall tlia t log 2 : C\{0} —» C  is an inverse for e* when e* is restricted 
to  a  period strip  {x +  iy  | y») <  y <  yo +  2ir}. However, for differentiability of 
logz we m ust restrict logz to  a  set th a t is sm aller than C \{0). The reason is 
sim ple logz =  log |z | +  ia rg z  for, say, 0 <  argz < 2jt. B ut the arg function 
is discoutinuous; it jum ps by 2jt as we cross tlie positive real axis. If we remove 
these points, then we arc excluding the usual positive reals on which wc want log z 
defined. Therefore, it is convenient to  use the branch — n < argz < w. Then an 
appropriate set on which logz is analytic is given as follows.

P ro p o sitio n  1.6.2 Let A be the open set that is C  minus the negative real axis 
including zero (that is, C \{x  +  iy | x < 0 and y =  0 } / Define a branch of log on 
A by

logz *  log |2| +  ia rg z  - j r < a i g z < « r ,

which is adled the principal b ranch  o f the logarithm. Then logz is analytic 
on A with

1
z*

Analogous statements hold for other brandies.

F irs t P ro o f (using  th e  Inverse  F unction  T heorem ) from  §1.3 we know 
th a t logz is the unique inverse of the function f(z)  =  c* restricted to  the set 
(z  | z =  x+iy, — n < y  < ir). Since dcz/dz  =  e* ^  0, the Inverse Function Theorem 
implies th a t locally, ez has an analytic inverse. Since tlie  inverse is unique, it must 
be logz. The derivative of / “ *(to) is l / / '( z ) .  In this case f'(z )  *  /(z )  *  to, and 
so df~l/dw  =  \/w  a t cad i point to €  A. ■
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Second P ro o f (using th e  C auchy-R iem ann equations In p o lar form ) In 
polar form, logz =  logr -f- i6t and so u(r,0) = Iqgr,»(r,8) =  0, which are C°° 
functions of r,6. Also, the Cauchy-Riemann equations nuiy be expressed in polar 
coordinates, as explained in §1.5 and Exercises 11 and 12 a t the end of that section. 
But

&u 1 1 dv I8 u  n dv
8r r  rdO 60 r 8 6 ~  dr

and so the Caucliy-Ricmann equations hold. Wc also have

d 8  . .86  1 8 r  , .89
s l0*s=& k«r+*&=ffe+,te-

It is obvious that on A ,8 r/8 x  =  x /r  and 86/8x  =  —y /r2, using, for example, 
f> = tan~i(y/x), so

d x  iy z 1
dz °gZ r3 r® |zp  z

The domain on which the principal branch of logz is analytic is given in Figure
1.6.1. Here is an example or another branch: logz — log |z |+ >argz,0  < argz < 2jt, 
b  analytic on C\{zr +  iy  | x  > 0,y  =  0}. We will use the principal branch unless 
otherwise stated.

'J

Figure 1.6.1 Domain of logz.

When using logz in compositions, we must be careful to stay in the domain of 
lug. For example, consider /(z )  — logz2 usiag the principal branch of log. Tins 
function is analytic on the set A = {z \ z -fiO and aig z ±?r/2} by the following 
reasoning. Proposition 1.5.3 shows that z2 is analytic on all of C. The image of A 
under the map z * z2 is precisely C\(ar +  iy  ( x  < 0, y  =  0} (Why?), which is the
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y  y y4

Figure 1.6.2: Composing the squaring and the log functions.

set on which the principal branch of log is defined and analytic. By the chain rule. 
z  H4 log z2 is then analytic on A (see Figure 1.6.2).

The function f( z )  — logz2 also illustrates that caution must be exercised in 
manipulating logarithms. Consider tlie two functions Iog22 and 2 logz. IT we 
consider all possible values of the logarithm, then the two collections are the same. 
If, however, we pick a particular branch, for example, the principal branch, and use 
it for both, then the two arc not ulways the same. For example, If z — — 1 + *, then 
argz =  3ir/4 and logz2 =  log2 -  iri/2, while 2 log2 =  log2 +  3jri/2. The function 
logz2 is analytic on the plane with the Imaginary axis deleted, while 2logz is 
analytic on the plane with the negative real axis deleted.

T he T rigonom etric Functions Now that we have established properties of c*, 
the differentiation of the sine and cosine functions follows readily.

P roposition  1.6.3 The sine and cosine functions sin z and cos z are. entire func­
tions toith derivatives given by

d d— sm z  =  cos 2 and — cosz =  -s in z . dz dz

P ro o f By definition, sin z =  (e** — e_**)/2t; using the sum rule and tbe chain rule 
and the fact tha t the exponential function is entire, wc conclude that sin z is entire 
and that d(siuz)/dz =  {ie** — (—*e—I~)} /2 t =  (c,e + « - ,I )/2 =  cos z. Similarly,

=  “  - a n * .  ■

We can also discuss sin-1 z and cos" 1 z  in somewhat the same way that we 
discussed logz (which is exp- 1 z with appropriate domains and ranges). Tinas* 
functions are analyzed in Exercise 6 a t the end of this section.
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T he Pow er F unction  Let a  and b be complex numbers. Recall th a t ab — cbloga, 
T. hich is, in general, multivalued according lo  the different branches for log that 
w  choose. We now consider the functions z -+ z* and z —* a*. Although these 
functions appear to  be similar, their properties of analytidty are quite different. 
The case in which 6 is an integer was covered in Proposition 1.5.3. Tbe situation 
for general b is slightly more complicated.

P ro p o sitio n  1 .6 .4  (i) For any dunce of branch for the log function, the func­
tion zt-*as is entire and has derivative z  (loga)a*.

Iii) Choose a branch of the bog function—far example, the principal branch. Then 
the function z *-* zb is analytic on the domain of the branch of kig chosen 
and the derivative is rt-*  bzb~1.

P ro o f

(i) a* — e*10**. By the chain rule this function is analytic on C  with derivative 
(loga)e*1080 =  (log«)« '(loga is merely a  constant).

iii) zb =  e61"**. This function is analytic on the domain of logz, since w »-* ct“' 
is entire. By the drain rule,

<IZ Z Z
(That this equals bzb~l follows from Exercise 20 a t the cud of §1.3.) ■

If b is a non-nogulive integer wc know tlia t z* is entire (with derivative bz*"1). 
In general, however, zh is analytic only ou the domain uf logz.

I«ct us emphasize what is stated in (ii). If we choose the principal brandi of 
logz, which has domain C \{x -I* iy  | y =  0 and x < 0} and range R x ) -  jt, a( 
•Wiry?), then z •-* za is analytic on C \{x -hiy | y =  0 ,x  <  0} (see Figure 1.6.3). 
Wc could also choose the branch of log th a t has domain C \{x  +  ix  | x  > 0} and 
riuigc C x ) -  7jr/4 , ir/4 (; then z *-* z° would be analytic on C \{x  +  ix  (x  > 0}.

T h e  n th  R o o t f r a c tio n  One of the n th roots of z is given by z1/" , for a choice 
of branch of log z. The other roots are given by tbe other dioices of branches, as in 
v 1.3. Tbe prindpal branch is the one th at is usually used. Thus, from Proposition 
i 0.4(11), we get the following as a  spedal case.

P ro p o sitio n  1.6.5 77te function z z1/"  =  tfz  is analytic on the domain of 
logz (for example, the prineijad branch) and has derivative

As with logz, we m ust exercise care with tire functions z w  zb,z  ►-* y/z when 
composing with other fimctions to  be son* wc stay in die domain of analytidty. 
Tire procedure is illustrated far the square root function in Worked Example 1.6.8.
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-v-  -r-r-i-- *

j .

v

Figure 1.6.3: Regions of analytidty for z  z®.

Worked Exam ples
Example 1.6.6 Differentiate the following functions, giving the appropriate region 
on which the functions are analytic:

(a) e"*

(b) sm(c*)

(c) e* /(j? +  3)

(d) \Ze*TT

(c) cosz 

(0 l/(c= -  1)

(S) lofi(e* + 1)

Solution

(a) The function ec is entire, so by the chain rule, z ►-* ec‘ is entire. Tbe diain 
rule also tells us that (lie derivative a t z is czcr‘ .

(b) Both z  e* and w *-* suite are entire, so by the chain rule z *-» sine* is 
entire and the derivative a t z is (costrje*.

(c) Tlie map z •-* c* is entire and the map z  »-> l/( z 2 + 3) is nnidytic on 
C \{±\/5t}- Bence z »-* c '/fz 2 +  3) is analytic on C\{±v/5i} and has deriva­
tive a t z ^  dtv/3i given by

e* e* -2z e*(z2 — 2z -f 3)
z= +  3 (z2 -1- 3)2 — (z2 +  3)2 ’
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(d) Choose the branch of the function w »-» •Jw tlia t is analytic on C \{x +  iy  \ 
y  = 0,x  < 0}. Then we must dioosc the region A  such that if z  €  A, then 
c* + 1  is not both real and < 0. Notice that <r is real iff y  — Im z — n r  for 
sonic integer n  (Why?). When n is even, cz is positive; when n is odd, e* is 
negative. Here |e*| =  «*, where x — R ez and e* > 1 iff x  > 0. Therefore if 
we define A — C \{x +  ip | x > 0,2/ «  (2n +  l)ir,«  an integer } (as in Figure 
1.6.4), thene* + l is real and < 0 iff z ft A . Since e* + l is entire, it is certainly 
analytic on A. By the chain rule, \ftr  4-1 is analytic on A with derivative at 
z given by (c* + l ) “ , /2(ee) /2.

y
t

3*4-

i

KU

Figure 1.6.4: Region of analytidty of y/c* -f 1.

i e) Since x = x  + iy, by Proposition 1.3.4, cos z =  cos(x — iy) =  cosx cos(—iy) — 
sinxsin(—iy) ~  cosxcashy +  isinxsiuhy, so u{x,y) = cosx cosh y  and 
v(x,y) =  sinxsinhj/. Tims du/dx = — sinx coshy ,dv /dy  = sinxcoshp. If 
cosz were analytic, du/dx  would equal dv/dy , which would occur iff sinx =  0 
(tliat is, if x  = 0, or if x — an , n =  ± 1, ± 2 ,...) . Thus, there is not an open 
(nonempty) set A on which z  cosz is analytic.

ff) By Proposition 1.5.3(iii) and the fact that z  *-» c* — 1 is entire, we condude 
that z l/(e* — 0  & analytic on the set on which <r - 1  ^  0; namely, the set 
A = C \{ z  =  27rn* | « =  0, ±1, ±2 , . . .} .  The derivative a t z is —e*/(c* — l)2.

Ig) Since (the principal branch of) the log is defined and is analytic on the same 
region as the square root, namdy, A — C \{x +  iy  | y — 0 .x  < 0}, we can use 
the results of (d). By the diain rule and the results of (d), z *-* log(c* + 1) is 
analytic on the region depicted in Figure 1.6.4.

Example 1.6.7 Verify directly that after mapping by the Junction c*, the angles 
ictweai lines parallel to the coordinate axes are preserved.
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Solution Tlie liue determined by y =  x/o is mapped to the ray {x+*xtanyo | x > 
0}, and the line determined by x  = Xo is mapped to the circle |z | =  cTu; see Figure 
1.3.7. The angle between any such ray and the tangent vector to the circle a t the 
point of contact of the ray and the circle is jt/ 2. Thus angles are preserved. This 
is consistent with the Conformal Mapping Theorem 1.5.7.

Exam ple 1 .6.8 Show that a branch o f the Junction w >-* y/w can Ik  defined in 
such a way that z *~+ yfz2 — 1 is analytic in the region shaded in Figure. 1.6.5, and 
using the notations o f that figure, show that yfa? -  1 =  ^/rjrae**0' +0a)/2t where 
0 < 0i <  2jt, —tt <  02 <  ir.

v

Figure 1.6.5: Domain of auulyttcily of yfz2 — 1.

Solution If yfz  — 1 is a  square root of z -  1 and yfz f  1 is a  square root of z + 1 , 
then yfz~-~l • yfz + 1 is a square root of z2 -  1 (Wliy?). For z *-* yfz- 1  wc nmy 
choose y  defined and analytic on C \{x+ iy | y -  0 imd x >  0 }; thus z •-» yfz — l is 
analytic on the region C \{ x + iy  | V — 0 ,x  > l} . For the map z •-» yfz +■1, we may 
dioose ^defined mid analytic on the region C \{x+ ty | y =  0 and x  < 0}; therefore, 
z *-» yfz + 1 is analytic on C\{x + iy \ y =  0,x < -1}. Thus z *-* yfz -  1 yfz -i-1 
is analytic on C \{x +  iy  \ y =■ 0, |x | >  I } with tlie appropriate brandies of yf as 
indicated. With these branches we have

y/z — 1 — yfr[e'0^ 7 and yfz + 1 =  yfritf09̂ .

so -Jz~—\y fz  -I- 1 =  y/r^c*^e,+eil/2. Since z *-♦ yfz — \y /z  -t- 1 is analytic on 
C \{x *f- iy  | y  =  0, |x | >  1}, it should correspond to some brandi of the square
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root function in the m ap z  *-* y/z2 — I. To see which one. note th a t z  €  C\{ * +iy \ 
y = 0, |a:| >  1} iff z2 — 1 €  C \{*  +  iy | y  =  0 ,a  >  0} (W hy?), so if wc take the 
square root defined and analytic on C \{ i- f  iy  | y  =  0,x > 0}, then z  »-> y/z2 -  1 is 
analytic ou C\{a; +  *y | y — 0, |x | >  1}.

The symbol yp has been used here to  mean different branches of the square root 
function, tbe particular branch being clear from the context. Thus, one normally 
thinks of yp together w ith a  choice of branch.

Exercises
1. Differentiate and give the appropriate region of analyticity for each o f the 

following:

(a) z2 -f z
(b) l /z
(c) sin z/aoaz

2. Differentiate and give the appropriate region of analytidty for each of the 
following:

(a ) * 3*
(b) log(r + 1)
(c) »

(d ) y/z
(«)• r *

3. Determine whether the following complex lim its exist and find their value if 
they do:

(a) limt _o

(b) Iim«_0

c* - 1  
2

sin \z\

4. Determine whether the following complex lim its exist and find their value if 
they do:

(a) U in .^j

(b) Iim»~i

logs
2 - 1
2 - 1
2 - 1

5. Is it true th a t |s in z | <  1 for all z G C?
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6 . * Solve s in 2 =  w  and show liow to choose a  domain and thus how to pick a 
particular branch of sin-1 z so th a t it is analytic on the domain. Give the 
derivative of th is branch of sin-1 z; see Exercise 35 a t tbe end of §1.3.

7. Let /(z )  — 1/(1 — z); is i t  continuous on th e  interior of the unit circle?

8. Let u(x, y) and t/(x, y) be real-valued functions on an open set A C R2 =  C 
and suppose th a t they satisfy the Cauchy-Riemann equations on A. Show 
that

=  («(*,»)}* - [» ( * ,»)12 and « ,(x ,y ) =  2u (x ,#M x.y )

satisfy tbe Cauchy-Riemann equations on A and th a t the functions

«s(x , y) =  eu{x’v) cos v(x, y) and y) =r e"***1̂  sin t;(x, y)

also satisfy the Cauchy-Riemann equations on A. Can you do this without 
performing any computations?

9. Find tbe region of analytidty and the derivative of each o f the following 
functions:

(b) e*+<,/*>

10. a Find tbe region of analytid ty  and tbe derivative of ead) of tlie following 
functions:

(a) y/sA — 1
(b) sin yfz

11. Find tbe minimum of |c**| for those z with |z | <  1.

12. Prove Proposition 1.6.5 using the method of Lhc first proof of Proposition
1.6.2.

13. * W here is z ►—12s* analytic? z m  z2*?

M. Define a  branch of \ / l  4- yfz and show th at it is analytic.
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Review  Exercises for Chapter X
1. Compute the following quantities: (a) e* (b) log(L + i)  (c) s in i (d) 3*

(e) e2^ - * )

2. For w kat values of z is logz2 — 2 logz if tbe principal branch of the logarithm 
is used on both sides of the equation?

3. Find the eighth roots of i.

4. Find all numbers z such th a t z2 =  1 4- f.

3. Solve cosz =  y/Z for z.

6. Solve sinz =  \/3  for z.

7. Describe geometrically the set of points z €  C satisfying

(a) |z +  f| =  | z - t |
(!>) |z - l |= 3 |z - 2 |

8. Describe geometrically the set of points z €  C  satisfying

(a) |z —l | =  |z +  1|
(b) | z - l | - 2|z |

9. Differentiate the following expressions on appropriate regions:

(a) z5 4-8

(c) exp(z* - 1)
(d) smQogz2)

10. On what set is \Zz* — 2 analytic? Compute the derivative.

11. Describe the sets on which tlie following functions arc analytic and compute 
their derivatives:

(a) c1'*

(c ) . -a  fo r °a2 4- z2

12. * Repeat Review Exercise 11 for the following functions:
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13. Can a  single-valued (analytic) brand) or logz be defined on the following sets?

(a) (z  1 1 <  |z | <  2}
(b) {z | Re z >  0}
(c) {r | Re z >  lm z}

14. a Show th a t the map z w  z +■ 1/z  maps the circle {z such th a t |z | =  c) onto
tlie dlipsc described by

{w =  a  +  iv | tt =  (c +  l/c)cas9,v — (c — l/c )s in 0 tO <9 < 2x}.

Can wc allow c =  1?

15. Let /  be analytic on A. Define g : A —* C  by g(z) =  f(z).  W h en isja tn ly tic?

1G. Find tlie  real and imaginary parts of /(z )  — z3 and verify directly th a t they 
satisfy the Cnndiy-Riemann equations.

17. Let / ( *  +  iy) =  (x2 +- 2y) +  i(x2 + y2). A t what points does /'(zo ) exist?

18. Let / :  A c  C  - » C  be analytic on an open set A. Let A" =  {5 | z €  A}.

(a) Describe A* geometrically.
(b) Define g : A* —r C b>' 9(z) — |/(z)]* . Show that g is analytic.

19. * Suppose th a t /  : A C C -» C is analytic on the open connected set A and
Lhat f(z)  is real for all z 6 A. Show that f  is constant.

20. Prove the Caitdiy-llicm ann equations as follows. Let /  : A C C  —* C  be 
differentiable a t Zo =  a:o +  %o- Let gt (*) =  * +  *yo and gt{t) =  z 0 +  it. Apply 
the chain rule to  /  o y , and /  o y* to  prove the result.

21. Let /(z )  be analytic in the disk |z - 1| <  1. Suppose th a t / '( z )  =  l / z , / ( l ) =
0. Prove that /(z )  =  logz.

22. * Use the Inverse Function Theorem to prove tlie following result. Let /  : 
A C C —* C be analytic (where A is open and connected) and suppose that 
/(A ) C {z such th a t \z\ — 3). Then /  is constant.

23. Prove th a t

lim
fc-0

(zo +  /Q " -z ff  
h =  nzff" i

for any so € C.

24. (a) If a polynomial p(z) =  ao + n i«  +  ---+ aii* n has a  root c, then show that 
we can w rite p(z) =  (z -  c)ft(z), where /t(z) is a  polynomial of degree 
n  -  t. (Use division of polynomials to  show th at z — c divides p(z).)
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(b) Use part (a) to show th at p  can have uo more than n  roots.
(c) When is c a  root of both p(z) and p*(z)?

25. * On w hat set is tlie function z -* Xs analytic? Compute its derivative.

26. Let g be analytic on the open set A. Let B — {z €  A | g(z) ft  0}. Show th at 
B  is open and th at I fg  is analytic on B.

27. Find and {dot all solutions of z* =  —8i.

28. Let / :  A  C C —► C be analytic on the open set A  and let / '( to )  ^  0 for every 
Zo €  A. Show th a t {R c/(z) | z  €  A) C R is open.

29. * Show th a t tt(x,y) -  x3 — 3xy2, v(x7y) — — y9 satisfy tlie Cauchy*
Ricmann equations. Comment on the result.

30. Prove th a t tlie following functions arc continuous a t z  =  0:

32. * Use dc Moivre’s theorem to find tlie sum sin * +  sin 2a: + . . .  + sin « x .

33. Fbr tlie function u (r,y ) =  y3 -

(a) Show th a t u  is harmonic (see Proposition 1.5.12).
(b) Determine a conjugate fimetion v(x, y) sucli th at it +  iv is analytic.

34. Consider the function w(z) — 1 fz. Draw the level curves u  =  Rc(tu(z)) =  
constant. Discuss.

35. Determine the four different values of z  th a t are mapped to  unity hy tlie 
function w(z) =  s4.

36. Suppose th a t f{z)  is analytic and satisfies the condition |/ ( z )2 -  1 | <  L in a 
region 12. Show th a t either R e /(z ) >  0 or Rcf(z) < 0 throughout 12.

37. " Suppose th a t / :  C  -» C  is continuous and th a t f(z)  = /(2 c ) for ail z  6  C. 
Show th a t J  is constant on C.

38. Suppose th a t / :  C  —►C is entire and th a t /(2 z ) =  2/(z )  for all z 6 C. Show 
tlm t there is a  constant c. such tlia t /(z )  =  ez for all z. (You might want to  
use Exercise 37.)

(b) f(z)  — \z\

31. At wliat points z arc the following functions differentiable?

( a )  /(z )  =  |z|*
(b) /(z )  = y - i x
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Chapter 2

Cauchy’s Theorem

An attractive feature of complex analysis is th a t it is based on a  few simple, yet 
powerful theorems from which most of the results or the subject follow. Fbremosl 
among these theorems is a  remarkable result called Cauchy's Theorem, which is 
me of the keys to  the development of tbe rest of the subject and its  applications.

2.1 Contour Integrals
D efin itions a n d  B asic P ro p e rtie s  To sta te  Cauchy’s Theorem, we first define 
'oatour integrals and study their basic properties.

ta t  h : [ f f ,4 ] c R —>C he a  complex-valued function of one real variable and let 
and v be its real and imaginary parts; th a t is, set h(t) =  u (t) +  iv(t). Suppose, 

&jr tlie sake of simplicity, th a t u  and v are continuous. Define the integral of h to 
!--e tlie complex number

J  h(t)dt — J b u(t)dt 4- i J  v(t)dt,

- here the integrals of u  and v have their usual meaning from single-variable calculus. 
We want to  extend this definition to  integrals of functions along curves in C.

To accomplish this, we will need a  few definitions. A continuous curve or 
contour in C  is, iiy definition, a  continuous m ap 7 : [a, 6] —»C. The curve is called 
piecewise C1 if we can divide up the interval (a, 6) into finitely many subintervals 
: = Oo <  Qi < .. .  < an = b such th a t the derivative Y(t)  exists on each open 
fsbinterval )aj,a,-+i[ and is continuous on [a,-,a*+il; continuity on [a,-, a,-*}] means 
that the lim its lhut_ a<+ V (t) and U nu-^,^, _ y ( f ) exist (sec, for example. Figure 
- .1.1). Unless otherwise specified, curves will always be assumed to be continuous 
and piecewise Cl.

D efin ition  2.1 .1  Suppose that f  is continuous and defined on an open set A c  C 
end that 7  : [a, 6] -» C  is a  piecewise smooth curve satisfying 7 ({a,kj) C A. The

95
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m

Figure 2.1.1: Curves in the complex plane C. (a) Smooth curve, (b) Piecewise Ci 
curve, (c) Discontinuous curve.

expression
/ / «  //(*)< ** =  £  P ~ , f h ( t ) h ,m t  

•*'* 1—0 •'«>

is called the in teg ra l o f f  along 7.

The definition is analogous to  tlie following definition of a  line integral from 
vector caladus: Let P(x, y) and Q(x, y) be real-valued functions of x  and y  and let 
7  be a curve. Define

J P(x , y)dx 4- Q(x, y)dy = £  J Jp(ar(t),i/(t))^ +  Q(x{t),

when: 7 (f) =  (a;(t),p(t)). The two definitions arc related as follows. 

P ro p o sitio n  2.1 .2  ///{ « )  =  «(ar,y) +  tu (x ,y), then

J f  ~  J|« ( i ,y)dx -  v(x,y)dy) +  i J [tt(x,y)dy + v(x,y)dx].

P ro o f According to the definition we must work out We do this as
follows:

/ ( ? W M O  =  + i « ( x ( t ) 3» ( t ) ) ]  • \A t)  +  V W I

=  { « ( » ( * ) ,  y { t ) ) x ' ( t )  -  u ( * ( t ) ,  y ( t ) V ( t ) )

+  t{w (x(t),y(t))x'(f) +  « (x (t),p (t)) /( !) ] .

Integrating both sides over |a il% i]  with respect to  t  and using definition 2.1.1 
then gives the desired result. ■
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The formula in this proposition can easily be remembered by formally writing

f(z)dz — (u+iv)(dx + idy) — udx — vdy + i(vdx + udy).

For a curve 7 : [0,6) —» C, we define the opposite  curve, —7 : |a,6) -* C, by 
•setting (—7)(t) =  7(0 +  6 — t) . The curve —7 is thus 7 traversed in the opposite 
sense (see Figure 2.1.2).

j2.1 Contour Integrals

Figure 2.1.2: Opposite curve.

We also want to define the jo in  or attm or u n io n  71 +  72 of two curves 71 and 
- t. Intuitively, we want to join them at their endpoints to make a single curve (see 
Figure 2.1.3). Precisely, suppose tliat 71 : [a, 6] —*■ C and that 74 : [6,cj —» C, with 
~i(6) =  72(h)- Define 71 + 7 a : [n,c] -♦ C by

(7i + 72)(*) = (7i(*)
7t(<)

if t € M )  
if * e(fr,c|.

Figure 2.1.3: Join of two curves.

Clearly, if 71 and 75 are piecewise smooth, then so is 71 +  74. If the intervals 
(a, 6) and (6,c) for 71 and 72 are not of this special form (tlie first interval ends where
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the second begins), then the formula is & little more complicated, but tlie special 
form will suffice for this text. The general sum 71 + . . .  -f 7„ is defined similarly.

Tbe next proposition gives some properties of tbe integral that follow from the 
definitions given in this section. Tlie student is asked to prove them in Exercise 6 
at the end of this section.

Proposition 2.1.3 For (continuous) functions f ,g , complex constants Ci,cg, and 
picecvrise C l curves 7,71,74, the following hold:

(a) / ( c i /  +  eai0 =  ci f  /  +  C2 /  g 
J‘r

(c) /  /  =  / /  +  / /
j  Ti-M* •'■»» ■'ll

Of course, more general statements (that follow from the preceding) could be 
made, namely.

/£ « '■ = £  (« //-)Ji  1=1 i=] \  Jy /
and

/  / = £ / / •
To compute specific examples it is sometimes convenient to use the formula in 

Proposition 2.1.2. However, it may be that we arc not given 7 as a map but are 
told only that it is, for example, “the straight-line joining 0 to i  + 1 ” or “the unit 
circle traversed counterclockwise”. To use the definition, we need to choose some 
explicit map 7(/.) that describes this geometrically given curve. Obviously, the same 
geometric curve can be described in different ways, so tbe question arises whether 
the integral J  /  is independent of tliat description.

lb  answer this question, we use the following definition.

Definition 2-1.4 L ct'y  : (a, 6] -*• C he a piecewise smooth curve. A piecewise 
smooth curve 7  : [a. 6] —> C ts called a reparam etriza tion  o f 7  ifih e rc  is a 
C l function a  : (a, 6) —» [a,6) with a '( l) > 0,a(a) — a, and 0(6) — h such that 
7(0  = 7(o(0 ) (sce Figure 2.1.4).

The conditions a '(0  > 0 (hence a  is increasing), a(a) =  a, and 0(6) =  b imply 
that 7 traverses the curve in the same sense as 7 does. This is the prerise meaning 
of the statement that 7 and 7 represent the same (oriented) geometric curve. Also, 
tlie prints in (a, b] at which ^  does not exist correspond under a  to the points of 
(o,b) at which 7* does not exist. (Tliis is because a  has a strictly increasing C 1 
inverse.)
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Figure 2.1.4: Reparametrization.

Proposition 2.1.5 If'y  is a repot ametrizaiion o f 7 , then

L t m k
fo r any continuous J  defined on an open set containing the image o f 7 =  image a f 
7-

Proof We can, by breaking up [a, 6] into subintervais, assume tliat 7 is C1. By 
definition

By the chain rule, V(t) =  d7 (t)/dt = dry(cr(t))/dt =  y (o (t))o /(<). Let s =  o(t) be 
a new variable, so that s — a  when t — a and s = b when t — b. Then

f'fmww  -  £ m(<*mna(t))̂ dt
-  ya f(i{a))y{s)ds.

Changing variables in a complex integral (here, from t  to s) is justified by applying 
tlie usual real-variables rule to its real and imaginary parts. ■

This proposition ^justifies” the use of any parametrization 7 that describes a 
given oriented geometric curve to evaluate an integral.1 As an example, let us 
evaluate /  x d z , where 7  is the straight-line from z = O t o z  =  l  +  * (see Figure 
2.1.5). 7

'S trictly speaking, this statem ent in not quite correct, since two maps with the same image 
need not be reparametrizalions of one another. However, they arc reparametrizaiious if wo ignore 
points where - /( t)  =  0. The proposition can be generalized to cover this situation as well, bu t the 
complications th a t result from generalising it to cover this case have been omitted to simplify the
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y

Figure 2.1.5: Curve from 0 to 1 -H .

We choose the curve 7 : [0, 1] -*• C, defined by 7(f) =  t -f it. Of course, when 
wc write x  in f^xdz ,  we mean the function that gives the real part of any 
number (that is, f(z)  =  m =  Rez). Thus,

j  xdz -  j f  |Re7{«))V(t)dt.

Hence,

J xdz — J 1(1 +i)dt. ~  ^  * •

An orientation is often described by saying that *7 goes from Z] to 22.” However, 
if 7 is a closed curve, with Z\ = 22. we need a different prescription. Wlicn solving 
examples, where the curves arc always easy to visualize, the student should assume 
that a closed curve 7 is traversed in tlie counterdackuri.se direction unless advised 
to the contrary.

ifrom calculus, recall that the arc length of a curve 7 : [a, b) —♦ C is defined by

i (7) =  j T  It 'W I*  =  j f

Arc length, too. Is independent of the pununctrizatioii, by a similar proof to tliat of 
Proposition 2.1.5. The render should lie familiar with the fret that the arc length 
of the unit circle is 2jt, the perimeter of the unit square is 4, so on.

The next result, gives an important way to estimate integrals.

Proposition 2.1.6 Let f  be continuous on an open set A and let ^  be a piecewise 
C l curve in A. I f  there is a constant M  >  0 such that |/(z ) | <  At for off points z
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on 7  (that is, fo r  a lls  o f the form  7(1) fo r  some t) , then

[ / 7 | < A / 1(7).

More generally, wc haws

\ S A - l m «

ti-herv. the. latter integral is defined by

l \ M * \ = £ \ f m ) h ' ( m .

Proof For a complex-valued function g(i) on [n,fc], wc have

Re Reg(t)dt

tinee g[t)dl = u(t)d i -H v(t)d t if ̂ (/) =  u (t)+ iv (t). Let us use this fact to 
prove that

• We learn in calculus how to prove tills for g that are real-valued, but here g is 
complex-valued.) For our proof, wc let £  g(t)dl — re*0 for fixed r and 0, where 
r > 0, so that r =  e ~ * fig ( t)d t =  J* e-*°g(t)dt. Thus,

r =  Rer =  He J* c ^ g ty d t  =  J Rc(r.~i0g(t))dt.

By Proposition 1.2-3(iii), Re(c-w ff(0 ) $  |c~ws(t)| =  |^(t)|, since \c~i0\ — 1. Thus,
^ R e (c - ’V 0 ) A < t l f f ( 0 l ^ s o

| J =  r <
Using this and |zz'| =  |z||z'|, wc get

/ m w  w a | <  j C  \ m i m m = £  i/(7 (t))iiy (o i^ -

Since |/(7(t))l ^ Af, the preceding expression is bounded by M  f*  W (t)W ‘ —
m i ) -  ■
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This proposition provides a basic tool that we shall use in subsequent proofs to 
estimate the size of integrals. Tlie student might try to prove this result directly 
in terms of the expression

J f  = J  (udx — vdy) + i  J  (udy + v<Ix)

to be convinced that the result is not altogether trivial.

Fundamental Theorem o f Calculus for Contour Integrals The Fundamen­
tal Theorem of Calculus is a basic fact in the calculus of real-valued functions. It 
says that the Integral of the derivative of a function is the difference of the values of 
the function at the endpoints of the interval of integration and that tlie indefinite 
integral of a function is an antiderivative for tlie function. Both of these assertions 
have important analogues for complex path integrals.

Theorem 2.1.7 (Fundamental Theorem o f Calculus—Contour Integrals) 
Suppose that 7 : |0, lj —* C is a piecewise smooth curve and that F  is a function 
defined and analytic on an open set G containing 7. Assume F* is continuous (later 
we will see that this is redundant). Then

f  F,(z)dz — F (7 (l))  — F (7 (0)).

In particular, if  7(0) — 7(1), then

0.

P roof The cl lain rule and the definition of the path integral will be used to reduce 
tlie problem to the standard Fundamental Theorem of Calculus for real-valued 
functions of a real variable. Let g,u, and v be defined by

^ ( 7 ^ )) =  9(t) =  «(*) +  »«(*)•

Break the parameter interval into pieces on which 7 is smooth, so, by the chain 
rule,
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tt> apply tlie Fundamental Theorem of Calculus on each subinterval and get a 
selesooping sum:

Using this result can save a lot of effort in working examples. For instance, 
insider f  z3dz where 7 is the portion of the ellipse x2 +• Ay1 — 1 that joins z =  1 
to z =  t /2. To evaluate the integral we note that z3 ~  j(d z* /d z). so

Notice that we did not even need to parametrize the curve! By applying the Fun­
damental Tlieorem of Calculus, we would have obtained tbe same answer for any 
curve joining these two points. We mil investigate the independence of tlie value 
of an integral from the particular path used in the next subsection.

Tlie Fundamental Theorem of Calculus lias many applications and ramifications, 
one of which is tlie following proof of a properly of open connected sets, which first 
appeared as Proposition 1.5.5. It is the analogue in the complex domain of tlie 
following principle so useful in calculus: A function whose derivative is identically 
0 is constant.

Corollary 2.1.8 I f  f  is a Junction dejined and analytic on on open connected set 
G  c C , and i f  f { z )  =  0 fo r every point z  tn G , then f  is constant on G.

P roof Fix a point zs in G  and suppose tliat z is any other point in G. By 
Proposition 1.4.15 there is a smooth path 7 from zp to z  in G. By Theorem 2.1.7, 
f(z) — f(zo) — / 7 /'(CMC — Therefore f (z )  =  /(zo). The value of /  at any point
of G  is thus the same as its value at zo- Tliat is, /  is constant on G. ■

Path Independence o f Integrals H ie idea that an indefinite integral is an 
antiderivative does not carry over directly to tlie complex domain. What should 
we mean by the integral between two points? There arc many possible paths. The 
connection comes up in tbe study of one of the central questions we will study in 
this chapter: Under what conditions is the value of an integral independent of which 
path is selected between the two points? Consider the following two examples.

M-l
-  u(ot)1 +*[«(o<+i ) -  »(*.)]

K oa) + M fl7i)) -  |n(«o) + *«(<*o)l 
F ( 7 ( l) ) - n 7 (0 ) ) -  ■



104 Chapter 2 Cauchy’s Theorem

Exam ple 1 Let z$ — 1 and Z| =  —1 and let f ( z )  =  3z2. Then F(z)  =  z3 
is an antiderivative for /  eveiywliere in the complex plane. Therefore, by the 
Fundamental Theorem of Galailus, no matter what path 7 we take from ^  tot ]  
we will have/it /(z)«k =  F (z i)-F (zi)) =  l3 — (—l)8 = 2. The value or the integral 
does not depend on the particular path selected, but only on the function and the 
two endpoints. ♦

Exam ple 2 Again let zo =* 1 end zt =  —1, but now take /(z ) =■ 1/z . Let 71 be 
tbe upper half of the unit circle from 1 to — 1. Then 71 is parametrized by 7 (t) — eH 
for 0 < * <  Jr. Thus.

Now let 72 l>e the lower half of tbe unit circle from 1 to —1. Then 72 is parametrized 
by 72(4) =  e- *1 for 0 < i  < w and

The values of the integral between z« and Z\ now are different for the two different 
paths. +

Tlie dependence ou the path in the second example is related to the problem 
of antiderivatives. "The” antiderivative of f ( z )  ought to be logz. As we saw in 
Chapter I, it is possible to define a branch of the logarithm function that is analytic 
along citlier one of the two curves, hut it is not possible to define consistently a 
single branch of the logarithm on an open set containing both these curves at once. 
This way of looking at the difficulty is made precise in the next theorem.

Theorem 2.1.9 (Path Independence Theorem) Suppose f  is a continuous Junc­
tion an an open connected s e t G c C .  Then the following am e q u iv a le n t

(i) Integrals are path-independent: I f  zq and z\ are any two points in  G  and 
and 71 are paths in  G  from, zq t o z \ ,  then

(ii) Integrals around dosed curves are 0; 1J T  is a closed curve (loop) lying m G, 
then f r f ( z )dz  =  0.

(iii) There is a (global) antiderivative fo r J  on G: Them is a function F  defined 
and analytic on all o f G  such that F'(z) =  f ( z )  for  all z  in G.

f  f (z )dz  =  [ ' f ^ m m -  
Ji t  Jo Jo
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P roo f The equivalence of (i) and (ii) is obtained in tbe direction (ii) => (i) by 
joining the curves 70 and —) j to form a closed curve T and in the direction (i) 
=> (ii) by picking two points 20 and £1 along a closed curve and thinking o f il as 
made up of two curves from one point to the oilier and then bade to tbe first. Tlie 
construction is illustrated in Figure 2.1.G, and tbe computation runs as follows:

[  f ( x ) d s -  f  f{z)dz  +  f f(z)dz  =  f f[z)dz  — f  f(z)dz.
J r  J f u J — 11 J-to J~n

Thus, the integral along tlie dosed loop F is 0 if and only if the integrals along the 
paths 70 and 71 arc equal.

y

The implication (iii) =*> (i) follows from the Fundamental Theorem. Tlie value 
of the integral is F (zj) — F (2o) regardless of which path is selected.

To show that (i) => (iii), we will attem pt to use an integral ending a t z  to define 
the value of the antiderivative a t z. Let zq  be any point fixed iu G, and let z be 
any other point in G. Since G  is open and connected, it is path-connected, and 
by Proposition 1.4.15 there is a t least one smooth path in G from zo to 2. Let 7 
be any such path imd set F (z) =  f{Qd£. This defines a  function F on G  in a 
nnnambiguous way since (i) says that the value F(z) depends only 011 z  and not 
on tlie particular jiath selected so long as it stays in G. (O f course, it also depends 
on zo, but tliat is fixed for die entire discussion.) We say that F  is well defined. 
Our remaining task is to check that F  is differentiable and that F ' =  / .  Tliis 
computation is illustrated in Figure 2.1.7.

Let e > 0. Since G  Is open and /  is continuous a t z, there is a  number 6 > 0 
such that the disk D{z',6) c  G  and |/(£) -  /(z ) | < c whenever —z\ < S. Suppose 
|«i — z| < 6. Connect z  to w by a  straight-line segment p. Then all of p lies in
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V

Figure 2.1.7: Defining an antiderivative by an integral.

D(z; 6) and

F(w) -  F (z) =  f  /« )dC  -  f  f(C)dC =  f
•'1+c Jy Jp

Thus,

|F (* i,)-F (z ) | _  \ F ( w ) - F ( z ) - ( w - z ) f { z ) \
|  w - z  n ) \ \ w - z \

lJp / ( C K - / ( ^ ) / <>idCl
\ w - z \

I J , t / ( Q - / ( « l
|w -  z\

< «• lengtli(p) e|w ~ z\
|*i/ — zj |*w — z|

Thus the limit of the difference quotient is /  (z), so F  is differentiable and F‘ =  / .  
as desired. ■

The reader who is familiar with conservative force fields from vector calculus 
may recognize the constructions in the last proof. The integral of a  force field along 
a  path defines the work done by it (or in moving against it) along that path. The 
field is called conservative if the uct work done along a  dosed path is always 0 or 
equivalently if the work done between two points is independent of the path taken 
between those points. If it is, then such an Integral defines a  quantity, called the 
poten tia l energy, whose gradient is the original force field.
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Worked Exam ples
E xam ple 2.1 .10 Evaluate each of the fallowing integrals:
a) xdz  (7 is the circumference of the tmil square)

b) /  c*dz (7 is the part of the unit circle joining 1 to t in  a counterclockwise

direction)
S olu tion  To solve (a), define 7  : (0,4) -♦ C as follows: 7 =  71+ 72  +  73 +  74 
where the four sides of die unit square nrc

72(0 -  1 +  (t -  l ) t ; l  < i<  2 7<(*) =  0 +  (4 -  i)i;3  <  t < 4 . 
We compute as follows:

To solve (b), note th a t es is the derivative of e3, and e* is analytic on all of C. 
Thus, whatever param etrisation we use for the p art of the unit circle joining 1 to  i  
m a counterclockwise direction, wc will have c*dz — e* — c* by the Fundamental 
Tlieonun. A second, less elegant solution is to  use the original definition to  evaluate 
the integral directly. Define 7 (1) =  cost +  ts in t,0  <  t  < w/2. Hence.

7 i(0  = t  +  0 i ;0 < *  < 1  7S(0 =  ( 3 - 0  +  * ; 2 < t < 3

Hence,

(—eCOMtcos(sint) • t in t -  e*“ t sin(sin t) • costjcft

+  * [-e ” * 4 sin (sin f.) • sin t  +  c®0** cos(sin t)  • 00s tjd t

ccw l-M ^ni | * / t __  J
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E xam ple 2.1.11 Let 7  be the upper half o f the unit circle described counterclock­
wise. Show that

dz\ < jrc.

S o lu tio n  We use Proposition 2.1.6. The arc length of 7  is

l{l) = f IVWM* = *■Jo

since wc can take 7 (f) =  ett,0  <  t <  jt, and 7*(t) = ieu and thus |y ( t) | =  1. Of 
comae, this is w liat we would expect. The absolute value of e*/z, with z  — elt =  
cost +  is in t, is estim ated 1%’

c*
z 1

<  e

since cost <  1. Tims e =  M  is a  bound for |e* /zi along 7 , and therefore,

<  A//(7) =  C7T.

E xam ple 2 .1 .12  Let 7  be the circle o f radius r  around a  €  C . Evaluate the integral

for all integers n  — 0, ± 1, ± 2, —

S o lu tion  F irst, let n  >  0. Then

i z - a ) ”
d 1

dzn  + 1
(z -  o)n+'1

is the derivative of an analytic function, so by the Fundamental Theorem 2.1.7,

• dz =  0.

Second, let n  <  —2. Then again

d 1 
d z n  +  1

wliidi is analytic ou the set A =  C \{ a ). (Nate th a t tills formula hub if n  =  — 1. J 
Since 7  lies in A, the Fundamental Theorem again allows th a t f^[z — a)ndz — 0.

Finally, l e t »  =  —1. Wc proceed directly and param etrize 7  by 7 (0) = re*0 +  
o ,0  <  0 < 2ir (see Figure 2.1.8).
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Figure 2.1.8: Param etrizetion of the circle of radius r  and center a. 

By the chain rule, ~/(0) =  ric**, so

r  1 /■*» i /2»
I  ------ dz =  /  ;—j=----r------ire^dO  =  /  i«fl? =  2s*.

j ^ z - u  J0 (re» +  o ) - o  y0

in summary,

inis is a useful formula and we shall haw  occasion to  use it later.

Exercises
1. Evaluate the following:

(a) /  ydz, where 7  is the union of th e  line segments joining 0 to  t and then 

to  <-}-2

(l>) /  sin 2z dz, where 7 is the line segment joining 7 4-1 to —t
Jy

(c) J  ze^dz, w hores is the unit circle

2. Evaluate the following:

(a) /  xdz , where 7 is tlie muon of the line segments joining 0 to  * and then
Jy
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(b) j  (z1 + 2z + Z)dzt where 7  is tbe  straight-line segment joining 1 to 2 + *

(c) f  ——rdz,  where 7 is the circle of radius 2 centered at 1 traveled 0110cJy z —l
counterclockwise

3. Evaluate J (1 fz)dz, where 7 is the circle of radius 1 centered a t 2 traveled 

once counterclockwise.

4. Evaluate f   ̂„ dz, where 7 is the curve in Exercise 3.JyZ2 - 2z

5. Does Re / d z j  =  J R c/d z?

6. Prove Proposition 2.1.3.

7. Evaluate tbe following integrals:

(a) /  Bdz, where 7  is tlie un it circle traversed once in a  counterclockwise 
Jy
direction

(b) / ( * * -  y2)dz, where 7  is tlie straight-line from 0 to  t

8.  * Evaluate J z7dz along two paths joining (0, 0) to  (1, 1) as follows:

(a) 7  is the straight-line joining (0, 0)  to  (1 , 1).
(b) 7  is the broken line joining (0,0) to  (1, 0), then joining (1, 0) to  (1, 1).

In view of your answers to  (a) and (b) and the Fundamental Theorem, could 
z2 be tbe derivative of any analytic function F (r)?

0. Find a number M  such th a t

1/
dz

2 +  za
< Af,

where 7  is the upper half of the unit circle.

10. ■ Let C  be the arc of the circle |z | =  2 th a t lies in the first quadran t Show 
th at

IX dz
c z * T l \ -  3<

11. Evaluate the following:
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( .)  [ * ; [ * ■ [  £ 1 . [  \ *
' Vi=i=i * 7i,i. ,  w 4 *  ■ yw=, u

(b) /  2*<fat where 7  is the curve given by 7 (1) =  e* sin3 t ,0 <  t < jt/ 2.

12. Let 7  be a  closed curve lying entirely in the se t C \{z | R ez <  0}. Show tlia t 
J ( l / z )d z  =  0.

13. Evaluate /  z a n z 2dz, where 7  is tlie unit tircle.
A

14. Give some conditions on a  dosed curve 7  th a t will guarantee tlia t /  (l/z)dz  =  0.
A

13. Let 7  be tlie unit circle. Prove th a t

I /"sinz . I ^  _
\ i  s

16." Show th a t the arc length l(y) of a  curve 7  is unchanged if 7  is reparametrized.

2.2 Cauchy’s Theorem—A First Look
One form of Caucliy’s Theorem states th a t i f  y  is a simple closed curve (the word 
“simple” meaning th a t 7  intersects itself only a t its endpoints) and if f  is analytic 
on and inside y, then

0.

This remarkable theorem lies a t the heart of complex analysis, and th is  section 
is devoted to its proof (see Figure 2.2.1).

If the function /  is not analytic on tlie whole region inside 7 , then the integral 
may or may not be 0. For example, let 7  be the unit d id o  and /( z )  =  1/z . Then 
/  is analytic a t all points except z =  0, and indeed the integral is not zero. In fact,

/  /  =  2* i
A

by Worked Example 2.1.12. On tbe other hand, if /(z )  =  1/z 2, then /  is still 
analytic a t all points except 2 = 0, bu t now thc integral is 0. This value of 0 results 
not from Caudiy’s  Tlieorem /  is not analytic everywhere inside 7 —but rather 
from the fact th a t /  has an  antiderivative on C \{0) naindy, /  is the derivative of 
- 1/z . More generally, the Path Independence Theorem 2.1.9, shows th a t Cauchy’s 
Tlieorem is valid if  there is an antiderivative of / .  This is made explidt in Theorem 
2.2.5.
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f  analytic 
^  here

Figure 2.2.1: Cauchy’s Tlieorem: f y f  — 0.

G reen’s  T heorem  Our proof of Cauchy’s Theorem uses Green’s Tlieorem from 
vector calculus, whicli states tliat, for continuously differentiable functions P(x,y)  
and Q(x,y),

Recall tliat if 7 : (a, 6] -» C ,7 (t) =  (x(t),y(l.)). then we define tlie line integrals by

hi Green’s Tlieorem, A represents the “inside” of 7 , 7  is traversed in a counter­
clockwise direction, and P  and Q are sufficiently sm ooth- class C 1 is sufficient, but 
we shall take a  closer look a t this later.

Green’s Theorem is a fundamental result from multivariable calculus that ev­
ery student should know. Recall tliat the basic idea of the proof is really quite 
simple: We use tlie technique of evaluation of multiple integrals by iterated inte­
gration (whicli in turn is related to equality of mixed partial derivatives) and the 
Fundamental Tlieorem of Calculus.2 3

Pari of tlie job of developing a  context for Green’s Theorem is to make precise 
notions like the inside of 7 . Intuitively, the meaning of “inside” should be clear. 
We shall come back to issues like this as wc proceed.

2See a  calculus tex t such ns J . Msradcn nnd A. W einstein, Calculus JII (New York: Springer-
Vcrlag, 1985), 908-911, o r J . Mnrsdnn nnrl A. TVomba, Vector Galetdtta, Fourth Edition (New 
York: W. H. f'Vaamui and Company, 1990), §8.1, for a  proof of Green’s  Theorem.

and
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P re lim in a ry  V ersion o f  C au ch y 's T heo rem  Tbe following statem ent is pre­
liminary in the sense th a t it assumes th a t a  satisfactory context for Green’s Theorem 
has been developed. We will come back to  this point and make things more precise 
in due course.

T heorem  2.2 .1  Suppose that /  t i  analytic, with the derivative / '  continuous on 
and inside a  simple closed curve 7 . Then

Both term s are zero by the Cauchy-Riemann equations. ■

A closer look a t the  proof of Cauchy’s Theorem given in §2.3 shows th a t otic 
need not assume th a t f  is continuous. Amazingly, the continuity of f  follows 
autom atically, bu t this is not obvious.

Wc also need to  do some additional chores, such as eliminating tlie assumption 
th a t the curve is am ple. In many cases, the assumption of simplicity of tlie curve 
can be avoided by viewing the path  as being made up of two or more simple pieces. 
Iu Figure 2.2.2, the “figure eight” can be treated as two simple loops. We will 
discuss th is in §2.3 as well.

Here is a  simple example of Cauchy's Tlieorem. Let 7  be tb e  unit square and 
/ (z )  = sin(e* ). T h e n / i s  analytic on and inside 7  (in f a c t , / i s  entire), so —

D eform ation  T heo rem  f t is im portant to  be able to  study functions tlia t arc 
not analytic on the entire inside of 7  and whose integral therefore might not be zero. 
For example, /(z )  =  1 /z fails to  be analytic a t z =  0, and — 2ni where 7  is the
unit circle. (The point z =  0 is called a  singularity of / . )  Tb study such functions 
it is im portant to  be able to  replace f y f  Iy  / - / ,  where 7  is a  less complicated 
curve (say, a  circle). The strategy is th a t f  m ight be easier to  evaluate. The 
procedure tlia t allows us to  pass from 7  to  7  is based on Cauchy’s Theorem and is 
as follows.

P ro o f Setting /  =  « -f- iv, we have

By applying Green’s Theorem to cadi integral, we get
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Figure 2.2.2: Treating a  nonsimple curve as made up of several simple loops.

T heorem  2.2.2 (P relim inary  V ersion o f th e  D eform ation T heorem ) Let f  
be analytic on a region A and let j  be a simple closed curve in A . Suppose that 
7  can fee continuously deformed to m other simple closed curve 7 without passing 
outside the region A. (W e say that 7 is hom otopic to 7 in A .) (The precise def­
inition o f “homatopic* is given in  §£.5, and the assumption the curves are simple 
will fee eliminated.) Then

/•

The Deformation Theorem is illustrated in Figure 2.2.3.

Figure 2.2.3: Deformation theorem.

Note tha t /  need not be analytic inside 7 , so Cauchy’s Theorem does not iinpiy 
that the integrals in the preceding equation are zero. It is implicit in the stateiuen:
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r'f the Deformation Tlieorem that both 7  and 7  arc traversed in a counterclockwise 
lirection. As with Cauchy's Theorem itself, wc will come bade to this theorem in 
*.he next section and have a closer, more careful look at the notion of “deformation" 
as well as a more careful look at tlie following proof.

P roof Consider Figure 2.2.4, in which a  curve 70 is drawn joining 7  to 7 ; we 
assume such a  curve can in (act be drawn (it can in all “practicuT examples). We 
set a new curve consisting of 7, then 70, then —7 , and then —70. in that order.

Tlie inside of tliis curve is the shaded region in Figure 2.2.4. Tlie function /  is, 
by assumption, analytic on this region, so Caudiy’s Theorem gives

Thus, f  =  f .  J  as required. Strictly speaking, this new curve is not a simple 
closed curve, but such an objection can be taken care of by drawing two parallel 
copies of 70 and taking the limit as these copies converge together. ■

Sim ply C onnected Regions A region A C C is called sim ply connected  if A 
is connected and every closed curve 7  in A can be deformed in A to some constant 
c u rren t) =  zq € A: we also say tha t 7  is hom otopic to  a  poin tor is contractible 
to  a p o in t Intuitively, a  region is simply connected when it has no holes; this is 
because a curve that loops around a bole cannot be shrunk down to a  point in A 
without leaving A (sec Figure 2.2.5). Therefore, the domain on which a  (unction 
like f ( z )  — 1/z , which has a singularity, is analytic is not simply connected.

Wc can rewrite Cauchy’s Theorem in terms of amply connected regions as 
follows.

Figure 2.2.4: Curve used to  prove the Deformation Tlieorem.
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Figure 2.2.3: (a) Simply connected region, (b). (c) Non-simply connected regions.

Theorem  2.2.3 (C auchy’s T heorem  for a  Sim ply C onnected Region) I f f  
is analytic an a simply connected region G and y  is a closed curve in G, then

Independence o f P a th  and  A ntiderivatives In the Path Independence Theo­
rem 2.1.9 wc saw how to relate the vanishing of integrals along dosed curves to path 
independence of integrals between points and to the existence of antiderivatives on 
regions. We can exploit these ideas in the present context.

P roposition  2.2.4 Suppose that f  is analytic on a simply connected region A. 
Then for any two curves 71 and 72 joining two points zq and z\ in A fas in Figun 
2.2.6), we have

/■

Figure 2.2.G: Independence of path.
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P ro o f 8 Consider the dosed curve 7  — 72 — 7x* By Cauchy’s Theorem,

0 - / / - / / - /  / ,
J l  J  fa *11

and therefore,

as required. ■

Ju st as in Theorem 2.1.9, \vc also get the existence of an antiderivative for /  on 
the region.

T heo rem  2.2 .5  (A n tid eriv a tiv e  T heorem ) Let f  be defined and analytic on a 
simply connected region A. Then there is an analytic function F  defined on A that 
is unique up to an additive constant, such that F'(z) =  /(z )  for all z  in A. We call 
F the antiderivative of f  on A.

P ro o f The existence of the antiderivative follows from the Path Independence 
Theorem 2.1.9. (Strictly speaking, we should get rid of tlie assumption of simple 
curves first.) The uniqueness assertion means that if is any other such function, 
then Fq(z) =  F(z) +  C  for some constant C. This follows because the region A is 
connected and

(Fa -  F)'(z) = K (z)  -  F '(z ) =  f(z)  -  f(z)  =  0 

for ail z  in A. Thus, F j - F i s  constant on A  by Corollary 2.1.8. ■

M ore on  th e  L ogarithm  If A is not simply connected, the conclusions of tire 
preceding proposition need not bold. For example, if A — C \{0) and f(z )  =  1/ 2, 
there is no F  defined on all of A with F1 = f  since the integral of /  around the 
unit circle is not zero (see Example 2.1.12). In some sense, F  ought to  be the 
logarithm, but wc cannot define this in a  consistent way on all of A. However, on 
any simply connected region not containing 0 we can find such an F  as the following 
proposition shows.

P ro p o sitio n  2 .2 .6  (E x isten ce  o f L ogarithm s) Let A be a simply connected re­
gion and assume that 0 $ A. Then there is an a n a ly tic  function F(z), unique up 
to the addition of multiples 0/ 2*7, such that ^  =  2.

aIn Lliis proof vie assume that 7 is a. simple closed curve. Wo will show in tlie w o t xuction that 
this is not meessray.
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P ro o f By the Antiderivative Tlieorem 2.2.5, there is an analytic function F  with 
F'(z) ss 1/z  on A. Fix a  point zq 6  A. Then zo lies in the domain of some branch 
of the log function defined in §1.G- If wc adjust F  by adding a  constant so that 
F(zq) — logzo, then a t *n,eF^  =  zo. We now want to  show that cFW  =  z is true 
on all of A. *Ib do this, wc let g(z) =  cF^ f z .  Tlicn, since 0 A,g  is analytic on 
A, and since Ft(z) = 1/z,

* . I .  _!.**<*>
g (z) =  ---- S-------- -- --------------  ss 0.

Thus g is constant on A. But g =  1 a t zo, so g is 1 on all of A. Therefore, eF^  =  z 
on all of A.

For uniqueness, let F  and G  be functions analytic on A  and suppose tha t =  
z and e<'<*) =  z. Then =  I, so a t a  fixed zo,F(zo) — G(Zo) — 2ir»* for
some integer n. But F '(z) =  1/z =  C '(z), so wc have d(F -  G)/dz — 0, from which 
wc conclude (from the fact that a  function with zero derivative on a  connected 
region is a constant) that F  — G = 2mii on all of A  ■

We write F(z) =  logz and call such a choice of F  a branch o f  the logarithm  
fu n c tio n  on A. Clearly, this procedure generalizes that in §1.6 and we get the 
usual log as defined in that section if A is C minus 0 and tlie negative real axis. 
Note that this A is simply connected. However, the A in this proposition can Ih> 
more complicated, as depicted in Figure 2.2.7.

y
A

Figure 2.2.7: A possible domain for thu log function.
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Worked Exam ples
E xam ple 2 .2 .7  Evaluate the following integrals:
< /  e‘dz, where 7  is the perimeter o f the unit square

r*l /  l/z*dz, where 7  is the unit circle

r ' /  1 fzdz ,  where 7  is the circle 3 +  e*®,0 < 0<  2jt

<i> I z2dz, when 7 is the segment joining 1 4- t  to 2
A

S olu tion  To solve (a), notice th a t ez 16 entire; thus, by Cauchy’s Theorem, 
/ ,  e 'dz = 0, since 7 is a  simple closed curve. Alternatively, c* is the derivative 
x  e; , and since 7  is dosed wc can apply tlie Path Independence Theorem 2.1.9.

To evaluate tbe integral in (b), note th a t 1/z 2 is defined and analytic on C\{0} 
*nd is the derivative of —1/z, whidi is defined and analytic on C\{0}. By the Path 
independence Tlieorem 2.1.9 and the fact th a t tlie unit circle lies in C \{0}, we have 

11 / z2)dz — 0. Alternatively, we can use Worked Example 2.1.12 for our solution.
Next, we solve (c). The circle 7  =  3 +  ci8,0 < 0 <  2jt, does not pass through 

1 or iudude 0 in its interior. Hence 1/z  is analytic on 7  and the interior of 7 , so 
by Caudiy’s Theorem, f^(l/z)dz  =  0. An alternative but less direct solution is the 
following. The region {x-M'jy | x  >  0} is simply connected and 1/z  is analytic on it. 
Therefore, by Proposition 2 .2 .6 ,1 /z is the derivative of some analytic function F(z) 
one of the brandies of logz) and thus, since 7  is dosed, the Path Independence 

Theorem gives f y(l/z)dz = 0.
Finally, to  evaluate the integral in (d), note th a t z2 is entire tun) is the derivative 

of z*/3, whidi is also entire. By Theorem 2.1.7,

E xam ple 2-2.8 Use the Deformation Theorem to argue informally that if  7  is a 
■ample dosed curve (not necessarily a circle) containing 0, then

S o lu tion  The inside of 7  contains 0, so we can find an r  >  0 such th a t the circle 
• of radius r  and centered a t 0  lies entirely inside 7 . O ur intuition toils us that 
«ve can deform 7  to  7  w ithout passing through 0 (th a t is, by staying in the region 
.4 =  C \{0} of analytidty of 1/z ; sec Figure 2.2.8). Therefore, the Deformation 
Theorem and tbe calculation in Worked Example 2.1.12 give the required answer:

f -d z  =  f -d z  *  2jti.
A  * A  z
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y

Figure 2.2.8: Deformation of 7 to the circle 7 .

Exam ple 2.2.9 Outline a proof o f the following extension o f the Deformation The­
orem: Suppose that 71, - .. , 7n ore nonoverlapping simple closed curves and that 
is a simple dosed curve with f  analytic on the region between 7  and 7 1 ,... ,7,, (set 
Figure 2-2-9). Then

f s - t f s -
fc=j Jv>

Figure 2.2.9: Generalized Deformation Theorem.
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Solution Draw curves 71, 72. . . .  , 7n joining 7  to 7 ) . . . .  , 7„, respectively, as shown 
-ii Figure 2.2.10(left). Let p denote tlie curve drawn in Figure 2.2.1Q(riglilj. The in­
side of p is a region of aiialyticity of / ,  so f  =  0. But p consists of 7 , —71, —ft , . . . ,  

and each 7t traversed twice in opposite directions, so the contributions from 
•hese last portions cancel. Thus,

0 = [ / + [  / + - - - + /  / = / / - £ / /
■'1 •'“ 71 J —in J t  |S | J l i

t- required.

Figure 2.2.10: Path used to  prove the Generalized Deformation Tlieorem.

Exam ple 2.2.10 Let f ( z )  be analytic on a simply connected region A, except pos­
sibly not analytic at za €  A. Suppose, however, that f  is bounded in absolute value 
near zo- Show that, for any simple closed curve 7  containing zq, /7 /  = 0.

Solution Le t« > 0 and small enough so that tbe circle 7,  of radius c and center 
zo lies inside 7 . By the Deformation Theorem,

/ •

By assumption there is a constant M  with |/( s ) | <  M near zq. Thus, if c is small 
enough to  make this estimate valid, then

< 2 ncM.

This holds for all small enough positive t . Letting c approach 0. we conclude that
/ , /= < > •
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Exercises
1. Evaluate the following integrals:

(a) /  (zs +  Z)Az, where 7  la the upper half of the unit circle 
Jy

(b) J  (z3 +  3}dz, where 7  is tlie un it circle

(c) j  el^dz ,  where 7  is a  circle of radius 3 centered a t 5t + 1
Jy

(d) /  cos[3 4- \/{z  — 3)}dz, where 7  is a unit square until corners a t 0 ,1 ,1-H,
J y .
and i

2. Let 7  he a  simple closed curve containing 0. Argue informally that

3. Let /  be entire. Evaluate

+ rcie)cki8d0

for k  an integer, k > 1.
4 . * Discuss the validity of the formula logz =  iogr +  iff for log on the region .4 

shown in Figure 2.2.7.

5. Fbr what simple closed curves 7  does the equation

f  J* „
Jy z* + z + l

hold?

6. Evaluate J  (z — (l/z))dz, where 7  is the straight-line path from 1 to  i.

7. Does Cauchy’s Theorem hold separately for the real and imaginaiy parts of 
/ ?  If so, prove th a t it  does; if not, give a  counterexample.

8.  * Let 71 be tlie circle of radius 1 and le t 72 be the circle of radius 2 (traversed
counterclockwise and centered a t tlie origin). Show that
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9. Evaluate j  y/zdz, where 7 is the upper half of the unit circle: first, directly,
A

and second, using the Fundamental Theorem 2.1.7.

10. * Evaluate j  \/z i  — 1 dz, where 7  is a circle of radius £ centered a t 0.
A

11. Evaluate

f  2a2 — 15s +  30 
i ,  r 1-  10z2 +■ 32* -  32***’

where 7  is tlie drclc |z | =  3. Hint: Use |iartial fractions; one root o f the 
denominator is 2 =  2.

2.3 A Closer Look at Cauchy’s Theorem
In this section we take another look a t sonic of the issues th a t were treated in­
formally in the previous suction. The strategy is to s ta rt by carefully examining 
Cauchy's Theorem for a  rectangle and then to  use the theorem in th is special case, 
together with subdivision arguments, to  build up to more general regions in a  sys­
tem atic way.

Recall th a t the basic theme of Cnudiy's Tlieorem is th a t i f  a function is analytic 
everywhere inside a closed contour, then its integral around that contour must be 
u. The principal goal o f this section is to  give a proof of a form of the theorem 
known as a  homotopy version o f Cauchy’s Theorem. This approach extends and 
sharpens the idea presented in tlie preceding section of the continuous deformation 
of a  curve. The prim ary objective will be the precise formulation and proof of 
deformation theorems whidi say, roughly, th a t if a  curve is continuously deformed 
through a  region in w hidi a  function is analytic, then tbe integral along the curve 
•Iocs not change. The reader will also notice th a t in this section references are made 
not to "simple dosed curves” bu t only to  “closed curves."

C auchy’s  T heo rem  fo r a  R ec tan g le  Wc begin with a  careful statem ent of 
Caudiy's Theorem in th is case.

T heorem  2.3 .1  (C auchy’s T heorem  fo r a  R ectan g le) Snpjmse H i ia  rectan­
gular path with sides parallel to the axes and that f  is a function defined and analytic 
on an open set G containing It and its interior. Then Jn f  — 0.

There are several methods to  prove Caudiy's Theorem for a  rectangle. One way, 
whidi fits the spirit of the previous section, is to  prove a  strong version of Green's 
Theorem for rectangles4 5. Another technique, the one th a t we follow, is a bisection 
technique due to  Edouard Gomrsat in 1884. I t was Goursat6 who first noticed th a t

•*F. Acknr, Tlie missing link. Mathematical Intelligencer. 18 (1996), 4 9.
5/Icte Mathematina, 4  (1884), 197 209 and Ihm M dlnu  o f the American Mathematical Soci­

ety, 1 (1900), 14-16.
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one does not need to  assume th at the derivative of /  is continuous. Surprisingly, 
this follows automatically, which is a  rather different situation than th at for real 
functions of several variables.

Besides these techniques, there have been many other proofs of Caudiy’s The­
orem. For example, Pringslicim6 uses triangles rather than rectangles, whidi has 
some advantages. Caudiy's original proof (for which the assumptions of coutinnity 
of the derivative were not made clear), bad the content of Green's Tlieorem im­
plicit in Uic argument—in facL Green did not formulate Green’s Theorem as such 
until about 1830, whereas Cauchy presented his theorem in 1825.7 There are also 
interesting proofs based on “homology" given by Aldforx.8

L ocal V ersion o f C a u d iy ’s  T heo rem  Before proving Cauchy’s Theorem for 
a  rectangle, we indicate how it can alrendy he used to prove a  limited bu t still 
im portant and more general case of C audiy's Theorem.

T heo rem  2.3 .2  (C auchy 's T heo rem  fo r a  D isk) Suppose that f  : D -» C  is
analytic on a  disk D = D(zq;p) C C. Then

(i) /  has an antiderivative on D: that is. then is a function F  : D —»C that is 
analytic on D and that satisfies F'(z) — f(z) for all z in D.

(ii) I f T i s  any dosed curve in D, then / r  /  =  0.

From the discussion in $2.1 oil the path independence of integrals (see Theorem 
2.1.9), we know th at (i) mid (ii) are equivalent in the sense th a t whichever we 
establish iirst, the other will follow readily from it. Our problem is how to obtain 
cither one of them. In tlie proof of the Path Independence Theorem 2.1.9, it  was 
shown th at (ii) follows easily from (i), and the construction of mi antiderivative 
to  get (i) was facilitated by the path independence of integrals. The strategy for 
proceeding is quite interesting.

1 . Prove (ii) directly for the very special case in which T is the boundaty of a
rectangle.

2. Show th a t tliis limited version of path independence is enough to  carry out
a construction of an antiderivative sim ilar to th a t in the proof of the Path 
Independence Theorem.

3. W ith (i) thus established, part (ii) in its full generality follows as hi the Path
Independence Theorem.

'7V im neliaiu o f the American Mathematical Society, 2 (1902)
7 In his Mduunm mtr lea integrates difinies pru.es enitv des iimites itnnginarres.
8L. AbHors, Complex Analysis. Second Edition (New York: McGraw-Hill, 1906).
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roof o f C auchy’s T lieorem  for a  R ectangle A subtle technical point worth 
•peating: Care must be taken because wc do not know in advance tha t the deriva- 
w  of /  is cont.inuous. In bud,, we will use Cmidiy’s Theorem itself to eventually 
rove that / '  is automatically continuous. Now lei’s gel down to the proof.

Let P be tlie perimeter of R  and A tlie length of its diagonal. Divide the 
rrtaugle R  into four congruent smaller rectangles and R.W. If
ich is oriented in the eountcrdodbrisc direction, then cancellation along common 
iges leaves

ince

aere must be a t least one of tlie rectangles for which | / |  >  $1 / B / |. Call this
abrectangle Jtt . Notice that the perimeter and diagonal of Rj arc half those of R 
Figure 2.3.1).

!/

Figure 2.3.1: Bisection procedure.

Now repeat this bisection process, obtaining a  sequence f?j, J?2, R3. . . .  of smaller 
nd smaller rectangles that have the following properties:

(ii) Perimeter (R„) =  — perimeter(R) -  —



126 Chapter 2 C auchy's Theorem

(iii) Diagonal(iZ„) =

Figure 2.3.2: Gounsat’s repeated bisection process for tbe proof of Cauchy’s Theo­
rem for a rectangle.

Since these rectangles are nested oue within another and have diagonals tending 
to 0, they must shrink down to a  single point vjq. To be precise, let z,t be the tipper 
left-hand comer of R^. If m > n, then \z,t — z„t\ < diagonal (fin) = A /2n, and 
thus {z,,} forms a  Cauchy sequence that must converge to sonic point w$. If z is 
any point on the rectangle fin , then since all z* with k > n  are within R ,,.z  can lie 
no farther from wo than the length of tlie diagonal or R,,. That is, |z — wo| <  A/2" 
for z in R,t.

Rom (i) wc see that | f R f \  < 4B| / R> / | .  To obtain a sufficiently good estimate 
on the right side of this inequality, we use the differentiability of /  a t the point ti*i.

For e > 0, there is a  number 6 > 0 such that

| / ( * ) - / ( wq) 
J z -  Wo <  c

whenever |z -  w/0| < 6. If we choose n  large enough that A /2 '1 is less than St then

|/(z ) -  /(w 0) -  (z -  wo)/'(w0)l < ejz -  wo| < e—
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for ail points z on tbe rectangle R„. Rirtherm ore, by the Path Independence 
Theorem 2.1.9,

i Ids =  0

rinoe z  is an antiderivative for 1, (z 
:he path fZ» is dosed. Thus,

and /  (* -  m0)dz = 0.
Jftn

— ttfo)2/2 au antiderivative for (z — «70), and

l/.'l s 4'l/«.'l
=  r \ l ’ 1dz -  /V o )  (z -  twojdzj

<  4" (f{z) -  /(«*,) -  (z -  tflto)/'(t»o)Ids|

< 4" f  |/(z ) -  / ( two) -  (* -  «*o)/Vo)l |dz|
Jn»

~  4" ( ^ )  ’ Pcrim eler ( ^ )
<  cAP.

fince this is true for every e >  0, we must have | f a f \  =  0 and so f a f  =  0, as 
iesired. ■

B ack to  C auchy’s T heo rem  on  a  D isk  For m ost of the rest o f this section, 
‘curve” means “piecewise Cl curve.” However, a t one point in the technical devel­
opment it will become im portant to drop this piecewise Cl restriction and consider 
'Continuous curves.®

Wc can now carry out the second step of the proof of Cauchy’s Theorem for a  
•disk (Tlieorem 2.3.2). Since the function /  is analytic on the disk D — D(za;p), 
the result for a rectangle ju st proved shows th a t tbe integral of /  is 0 around any 
rectangle in D. This is enough to  cany out a construction of an antiderivative for 
/  very much like th a t done in the proof of the Patii Independence Theorem 2.1.9 
and thus to  establish purt (i) of the theorem.

Wc will again define the antiderivative F(z) as an integral from ztozo- However, 
we do not yet know th a t such an integral is path independent. Instead we will 
spodfy a  particular choice of path and use the new information am iab le— the 
analytidty of /  and the geometry of the situation together with tlie rectangular 
case of Cauchy’s Theorem —to show th a t wc gel an antiderivative. For the duration 
uf this proof we will use the notation ((a, 6)) to  denote tlie polygonal path proceeding 
from a point a to a point b in two segments, first paralld  to  the x  axis, then parallel 
to the y axis, as in Figure 2.3.3.

9Thu technical treatm ent of integration over continuous curves is given in tlie Internet Supple* 
tnent.
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Figure 2.3.3: H ie  path  ({a, 6)).

If the point b is in & disk i)(a ; J) centered a t a , then the path {{a, b)) is contained 
in that disk. Thus, for z  €  D, wc may define a  function F(z) by

* * ( * ) = /  / m -
•>{{*>’*))

We want to  show tlia t F '(z ) — f(z).  To do th is wc need to  show th a t

Bm = / ( , ) .IP—* t» - 2

Fixing z €  D and c. >  0, we use the fa d  th a t D is open and /  is continuous on D to  
choose S > 0 sm all enough th a t D(z;S) C D and |f{z)  — /(£ ) | <  c for £ €  D(z\ S). 
If in €  D(z;S), then the path  ({z, w)) is oontained in D{z;S) and hence in D. Tlie 
pat!is {{zo,z)) and {(z», tit)) arc also oontained in D, and these three paths fit together 
in a  nice way w ith a  rectangular path  R  also contained in D  and having one comer 
a t z; see Figure 2.3.4. We can w rite, for the two cases in Figure 2.3.4,

f /m± f / /m « f  nm-
By the Caudiy theorem for a  rectangle, /(£)d£ =  0, so the preceding equation

becomes

/ m  =  ■P’(tu).

Neither side of tlie right triangle defined by {(a, t»)) can be any longer than its-
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Figure 2.3.4: Two possible configurations for R , zq, z ,  and w.

hypotenuse, whidi has length |z — w|, so lcngth(((z,n;))) <  2|z  -  w |, and thus

F[w)-F(z )  
w — z - m |w — z| 

1
||»  -  z|

f  f(Q<% - /(*)(*' - 2)1 
f /m-/(*)/ i* 
/  m  - / w r ||ttf -  21 |

< /  l / ( 0 - / W I I ^ |

|W - 2| >>«'))) S |U > -2|
€ • 2|iw — z| =  2e.

Thus,

l i n j = £ M J1m
w—z W — Z =  /(* )

and therefore F '(z ) =  /(z ) , as desired. Tins establishes part (i) of the theorem. 
Since /  has an antiderivative defined everywhere on D and 7  is a dosed curve in 
D, we have f y f  = 0 ly  the Path Independence Theorem 2.1.9. This establishes 
part (ii) of the tlieorem and so the proof of Caudiy’s Theorem in a disk (Theorem
2.3.2) is now complete. ■

D eleted  N eighborhoods Fbr tcdinical reasons th a t will be apparent in $2.4, it 
will be useful to  have tlie following variant of Caudiy’s Theorem for a rectangle.

L em m a 2 .3 .3  Suppose that R is a rectangular path with sides parallel to the axes, 
that f  is a function defined on an open set C containing R and its interior, and
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lhat f  is analytic on G except at some fixed point z\ in G which is not on the path 
R. Suppose that at zj, the function f  satisfies lim .-.-,(z — z\) f(z)  — 0. Then
/ « / = » -

Notice that the limit condition in this lemma holds under any of the following 
three situations:

(i) If /  is bounded in a deleted neighborhood of zi

(ii) If /  is continuous on G

(iii) If f ( z )  exists

P ro o f If Z] is outside R, then the situation is really just that of the Cauchy 
theorem for a  rectangle (Theorem. 2.3.1), so wc may assume that is in the interior
of E  For r  > 0, there is a  number S > 0 such that |2 -* ill/(* )J  < c whenever 
i z - z , | <  S. Chouse S small enough to do this and so that the square S  of side 
length S centered a t zj lies entirely within R. Then everywhere along S  we have 
\f(z)\ < c/\z — z j|. Now divide R  into nine subrcctangles by extending the sides of 
S,  as shown iu Figure 2.3.5.

Figure 2.3.5: Construction of S  and subdivision of R  for the proof of Lemma 2.3.3.

By Caudiy’s Theorem for a  rectangle, the integrals of /  around all eight of tlie 
subrectangles other than S  are 0, so f s  f  =  fR / .  But along S  we have

l / t o l  < |z - z j |  S/ 2
2c
S

since |z — Zj| > S/2 along $.  Thus,

length ( 5 ) ^  =  46^- — 8e. a o
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Therefore, \ ! n l \  =  IJS /I  <  8e for every e >  0. Thus we must have | / n / |  =  0 and 
so f R J  =  0, as desired. ■

IT we strengthen the assumption ou /  and assume that it Is continuous a t zi, 
then we can drop the stipulation that z\ not be on the path 72.

Lem m a 2.3.4 Suppose that R  is a rectangular path with sides parallel to the axes, 
that f  is a function defined and continuous on an open set G containing R  and 
its interior, and that f  is analytic on G except at some fixed point z\ in  G. Then

The only real problem is to  make sure that the integral is well behaved if tlie 
rectangle 72 happens to pass through zj. In tha t case, the subdivision is a  little 
different, but the estimntes are simpler.

P ro o f Again let e > 0. Wc may choose S so that |f ( z)  — /(z i) | < e whenever 
-2 — zi\ < 6. Adding a constant to / ,  we may assume f ( z i )  — 0. If zj is not on 
R. then Lemma 2.3.3 applies. If it is on 72, let S  be half a square of side i ,  und 
subdivide 72 as shown in Figure 2.3.6.

By Caudiy's Theorem for rectangles, the integrals of /  around all five of the 
subrectangles other than 5  are 0, so f s  f  — f R f .  Along S  wc have |/(z ) | < t. 
Thus, if we also require 6 < 1/3, we get

| /  / j  < length (S)e =*3Se<e.

Therefore, l/» /l =  l/s / l<  € for every e > 0, so we must have \ f R f \  ~  0- Thus, 
f R f  ~  0, as desired. ■

y

Figure 2.3.6: W hat happens If zt lies on 72.
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S tren g th en ed  C auchy’s  T heorem  fo r a  D isk If wc use Lemma 2.3.4 instead 
of Caudiy’s Theorem for a  rectangle In the proof of Caudiy’s Theorem for a disk, 
we obtain the corresponding condusions.

T heorem  2 .3 .5  (S tre n g th e n e d  C a u d iy ’s  T heo rem  fo r a  D isk) The conclu­
sions o f Cauchy's Theorem for a disk (Theorem 2.3.2) hold if me assume only that 
the function f  is continuous on D and analytic on D \{ t|}  for some fixed Z\ in D.

Notice th a t continuity a t Z| is assumed. Again this is needed to apply Lemma
2.3.4 and to make sure th at the integral / ^ /  is defined even if 7  passes through zi. 
Notice also tlia t a more complicated but paralld version of the same argument will 
produce the same conclusion if the number of “badr points in G is finite instead of 
ju st one.

H om otopy a n d  S im ply  C o nnected  R egions To extend Caudiy’s  Theorem 
to more general regions than disks or rectangles and to  prove the deformation 
theorems, wc first darify tlie concept of deforming curves or homotopy tlia t was 
discussed informally in §2.2. There are two situations to  be treated: two different 
curves between the same two endpoints and two closed curves th a t might not cross 
a t all. For convenience we anil assume th at all curves arc parametrized by the inter­
val (0,1] unless specified otherwise. (This can always be done by reparainctriziug 
if necessary.)

D efin ition  2 .3 .6  Suppose 70 : [0. l] G  ami 71 : (0, lj —* G ore two continuous 
curves from zq to zj in a set G. IVc say that 70 is homotopic w ith fixed end­
points to  7j in  G if there is a cotitinuous function f f : [0, 1) x [0,1) —► G from Utt 
unit square |0, 1] x [0, 1) into G such that

(i) =  7&{t) for 0 < t <  1.

(u) = 7i(/) for 0 <  /. <  1.

(iii) ff(s.O ) =  so for 0 <  s  <  1.

(iv) H(s, 1) =  Zj for 0 < s <  1.

The idea behind this definition is simple. As s  ranges from 0 to  1, we have a 
family of curves th a t continuously change, or deform, from 70 to 71. as in Figure 
2.3.7. H ie reader should be aware th a t the picture need not be as simple in appear­
ance as this illustration. Tlie curves may twist and turn  and cross over themselves 
or eadi other. No assumption is made th a t the curves arc simple, bu t usually this 
does not m atter. A little more notation may make the m atter dearer. If we put 
7«(0 =  //( s ,i) , then eadi 7* is a  continuous curve from zq  to  zi in G. The initial 
curve is 70, and it corresponds to  the left edge of Lhe unit square. Tlie final curve 
is 71, and it corresponds to  the right edge of the square. The entire bottom  edge 
goes to  zo and the entire top edge to  Z]. The curves 7,  are a  continuously changing 
family of intermediate curves.
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X

Figure 2.3.7: Fixed-endpoint homotopy.

For example, the straiglit-linc segment from 0 to  1 +  *, whidi is param etrized 
b y  7o(0 — t  +  t i , is homotopic w ith fixed endpoints to  the parabolic path  from 0 
ro 1 4-1 parametrized by 71 (t) =  l 4- t2i; see Figure 2.3.$.

Figure 2.3.8: A straight-line path  and a  parabolic path  from 0 to 1 -f £.

One possible homotopy from one curve to  the other is

There is mom than one wny to  get a  homotopy between these curves. Another way 
makes H(s, t) follow the straight-line between 14* ti and 14- i2t:

H(s. t) =  s(t + t2i) 4- (1 — s)(l 4- ti) =  14- [at2 4- (1 -  s)t)i.

A slightly different definition is called for in the deformation of one dosed curve to  
another.

D efin ition  2 .3 .7  Suppose jo '• [0< 1) —* G and 71 : [0, Ij —► G are two continuous 
closed curves in a set G. We say that 70 and 71 are homotopic as closed cu rves
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in  G if  there is a continuous function H  : [0, 1) x (0, lj —» G from the unit square 
(0,1] X |0, l) into G such that

(i) H(Q,t) — 7o(t) for 0 < 1 < 1 .

(ii) H( l , t ) = 7 i( 0 for 0 < f  <  1.

(iii) /f(s,0 ) =  H(s, 1) for 0 < s < l .

Again, if we put 7*(t) =  then eadi 7,  is a  continuous curve in G. Tlie
third condition says th a t cadi of them is a  closed curve; see Figure 2.3.9.

Figure 2.3.9: Closed-curve homotopy.

For example, the unit circle can be parametrized by 7«(t) =  cost 4- isin f and 
the ellipse z2/4 4- y2 =  1 by 71(1) =  2cost 4* isin t. These curves are homotopic 
as closed curves in the annulus G — {z  | £ < |z| < 3}. One possibility for the 
homotopy is /7 (s ,t) =  (14- s) cost 4-is in t. (Sec Figure 2.3.10.)

If the hole were not in tlie middle of G in Figure 2.3.10 but we had instead 
the solid disk D = {z such that |z | < 3}, then cither of the two curves could he 
continuously deformed down to  a point. For example, H(s,t) =  (J — a)7o(t) it 
a  homotopy tliat shrinks the circle 70 down to a  constant curve a t the point 0. 
H ie intermediate curves 7* arc circles of radius (1 — s) centered a t 0. If 70 were 
any other curve in D, then the same definition on H  would give a. homotopy that 
continuously changes the scale of the curve until it shrinks down to a point. Thus 
any curve in D  is homotopic to a  point in D. If there were a hole in tbe set as then- 
is in the annulus in Figure 2.3.10, then this shrinidng procedure could not be done- 
if the curve surrounded tlie hole. This leads us to  a  more precise definition of the* 
notion of simply connected regions that was introduced informally in §2.2.
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V
t

Figure 2.3.10: A circle homotopic to nil ellipse.

Definition 2.3.8 A connected set C  ii called sim ply connected if  every closed 
curve y in G is homotopic (as a closed curve) to a point in G, that is, to some 
constant curve.

The second homotopy between tlie straight line and the parabola in Figure 2.3.8, 
whidi followed along straight-line segments, and the homotopy of a drdc down to 
a point in the disk are suggestive and lead to the definition of two important dasses 
of simply connected sets. Recall tliat if Zq and z\ are any two points and 0 < s < 1, 
then the point sz\ + (1 — s)zo lies ou the straight-line segment between the two.

Definition 2.3.9  A set A is called convex if  it contains the straight-line segment 
between every pair of its points. That is, if  zq and z\ art: in A, then so is sz\ + 
(1 -  s)za far every number s between 0 and 1 (Figure 2.3-11).

Proposition 2.3.10  I f A is a convex region, then any two closed curves in A are 
homotopic as closed curves in A, and any two curves with the same endjtoints are 
homotopic with fixed endpoints.

P roof Let 7o : |0, ! ] —♦ (? and 7$ : (0, 1) —* G  denote the two curves mentioned in 
the proposition and define H(s, t) by ff(s.l)  = «7,(t)4-(l -  s)70(i). Then /f(s,f) 
lies on tlie straight-line segment between 70(f) and 71(f) and so is in the set A. It 
is a continuous function, since To and 71 arc continuous. At s  =  0  we get 70(f).
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(b)

Figure 2.3.11: (a) Convex set. (h) and (c) Sets tha t are not convex.

and a t s  =  I we get 71 (t). If they arc closed curves, then

H (s.0) =  *7.(0) + (J -  s)7o(0) = S7i(l) + (1 -  *)7t»0 ) =  #(«, 1),

so it is a closed cu rv e  homotopy between the two. If they both go from zo to 
zlt then if (s ,0) *  «7,(0) +  (1 -  s)7o(0) «  sza +  (1 -  *)*> =  20 and H(s , !) *  
*7 ,(1) -}- (1 -  *)7o(l) =  S2, +  (1 -  a)z. =  z,. so H  is a fixed endpoint homotopy 
betwecu tlie two. ■

C o ro lla ry  2.3.11 A convex region is simply connected.

P ro o f Let zn be any point in the convex region A, and let 7 be any closed curve 
in A. The constant curve at zot7 i (<) =  so for «U t  is certainly dosed, and the two 
are homotopic by Proposition 2.3.10. ■

A slightly more general type of simply connected region called a  starlike (or 
star-shaped) region will be considered in the exercises. For more complicated re­
gions. we often rely on onr geometric intuition to  determine when two curves are 
homotopic. In other words, we tiy  to decide whether we can continuously deform 
one curve to  tlie other without leaving our region. One reason is that we rarely use 
the homotopics / /  explicitly in practice; they arc usually theoretical tools whose 
existence allows 11s to claim something else, such as the equality of two integrals. 
Also in many situations homotopics might be quite complicated to write down. 
However, wc must be prepared to justify our geometric intuition cither with an 
explicit H or a  proof of its existence in any particular situation.

T heorem  2.3.12 (D eform ation T heorem ) Suppose that f  is an analytic func­
tion on an open set C and that 70 and 7 , arc piecewise C 1 curves in G.
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fi) I f  To and 7j are paths from Zq to  Zt and are homotopic in G with fixed end- 
points, then

/•

i ii) I f 70 and 71 are closed curves which arc homotofric as closed curves in G. 
then

f f -

P roo f The homotopy assumption means that there is a continuous function H  : 
■ 1. 1] x [0, 1) —* G  from the unit square into G  whidi implements a  continuous de- 
Mnnatiou from 70 to 71 in G. For eadi value of s, the function 7a(/) = H(s, l) is im 
jiterniediatc c u n t taken 011 during the deformation. Similarly, for eadi fixed value 
<f /. the function At(s) =  H (s, t) traces out 11 curve crossing firom If  (0, t) =  70(f) 

io H(l, t)  = 71 (t). Thus a  grid or horizontal mid vertical lines in the square defines 
.»corresponding grid of curves in G  with tlie left edge of the square corresponding 
*0 70 and the right edge to 71. In the fixed-endpoint case, A«(s) is a  constant curve 
a; Co and Aj(s) is a constant cum : a t zj. In the closed-curve case, they arc the 
•amc curve, from 7o(0)(=  7o(l)) to  7j(0)(=  7 i(l))- See Figures 2.3.12 and 2-3.13- 
rhe reader is cautioned that the grid of curves in G need not look as nice as this 
.llustration, since it may twist and cross over itself, becoming somewhat entangled 
;ti appearance like a fishnet thrown on the beach. Fortunatdy, this does not m atter 
:or the proof.

V

X

Figure 2.3.12: Fixed-endpoint homotopy.

The idea of the proof is to use uniform continuity to restrict the problem to small 
disks, use Caudiy’s Theorem for a  disk, and then put tlie pieces back together to
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y

Figure 2.3.13: Closed-curve homotopy.

obtain tlie desired result. We wish to partition the square [0.1] x (0, l | into smaller 
squares by choosing intermediate points 0 =  so < #t < st < . . .  <  «n =  1 and 
0 =  fo < f i <  *2 < . . .  < tn =  1 dose enough together that each small square of 
the resulting grid is mapped into a disk that is wholly contained in C, as shown in 
Figure 2.3.14.

Figure 2.3.14: Subdivision for proof of the Deformation Theorem.

We will then be able to apply Cauchy’s Theorem for a  disk to the integral around 
each of these small paths. Making the subdivision is no problem. The function H 
is continuous on the compact set [0t 1] x (0, 1), so its image is a  compact subset of C 
by Proposition 1.4.19. By tbe Distance Lemma 1.4.21, it slays a  positive dislano 
p away bom the closed set C\(7. T liat is, |//( s ,t)  — z \<  p implies that z €  C. But 
we know (by Proposition 1.4.23) that H  is actually uniformly continuous on Lin
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;uare. Therefore there is & number S such that | < p whenever

dixtance((s, /.), (s ', t')) =  y/[s — s')3 +  (t — t')2 < 6.

w  dioose the intermedinte {joints equally spaced to  break [0, 1] x [0, 1] into small 
itiares with edge length 1 /« , tbe diagonal of each subsquarc will have length less 
jat S if n  > y/2/6. If Jljy is the rectangle with comers at

( s k —1 « 1  ) i  (* irr  l j —| )» (■%• l j  )» (a f t—11 t j  )»

m i the whole rectangle is mapped into the disk ZJjy — D(fi($k-i, t j - 1); p) that 
contained in G. Let Ckj  be the dosed curve described by //(/Zjy) oriented by 

>king Rkj to be oriented in the counterclockwise direction.TIie image of each edge 
f eadi of the subsquares RkJ enters as part of two of the dosed curves l'kj  and 
ith  opposite orientation, except those subsquares along tlie outer edge where t or 
is 0 or 1. Notice that these edges actually piece together to make up the curves 

.i t) and A|(s). If we sum tlie integrals around all the loops I^y, all the edges used 
vice will caned out and leave only

«e Figure 2.3.1S).

H(.vt

Igiire 2.3.15: Cancellation of edges of the subsquares in the proof of the deforma* 
ion theorems.

Since Tkj is a  dosed curve lying entirely within the disk Dkj  on winch the 
unction /  is analytic, Cauchy’s Tlieorem for a disk implies that each integral in 
he sum on the left is 0, so the right side is also 0. Thus,

0 =  /  f +  [  f -  [  f -  [  f .
J  Ao Jti  A X  i A-jn
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T hai is,

/ / ■ * - / /  =  / /  +  / / ■  
i •'*»« •'Ao ■'"n

Up lu this point the proofs for the fixed-endpoint case and tlie closed-curve case 
ii&ve lieeu the same. Now they diverge a bit.

For tlie fixed-endpoint case, Ao(s) = H (s. 0) = Zq for all », and A |(s) =  
H(s, 1) =  2i for all s. Both are constant curves, th a t is, single points, so f * , f  -
/» ./= « ■

For the closed-curve case, Ao and A| arc the same curve:

Ao(s) =  //(* ,0 ) =  f f ( s ,l)  =  A,(«)

for all », so / ^  /  =  / Ai / .  In either case, the equation / * , /  +  / „ , /  =  JAo /  +  / „  /  
becomes / ,  which is exactly what wc want.

The proof just given is actually not quite valid. The difficulty may appear to  be 
an uninteresting technical subtlety, but it is crucial nevertheless. H ie function H 
has been assumed to  be continuous, but no assumption was made about differen­
tiability. Thus the curves 7,(/.) and A<(*) arc continuous but need not lie piecewise 
C l . Unfortunately, all our theory about contour integrals is based ou piecewise 
C 1 curves. Thus, the integrals appearing previously do not necessarily make sense. 
They would, and everything would be all right, if all the curves in question were 
piecewise C '. Therefore we m ate one more provisional definition and assumption

D efin ition  2 .3 .13  A homotopy H : (0 ,1) x [0. l) -» G is called smooth i f  Utt. 
intermediate curves 7,( t)  one piecewise Cl functions of t for each s and the nos* 
curves At(ar) are piecewise Cl functions o f s for each t.

Assuming th a t the homotopies in the Deformation Theorem arc smooth, all the 
curves in the preceding proof are piecewise C 1, the integrals all make seusc: and 
the proof is valid. W ith th is additional assumption in place, we will refer to  tin- 
theorem as the Smooth Deformation Theorem. The technical discussion of lion* to 
relax the smoothness assumption is given in the Internet Supplement.

T heo rem  2.3 .14 (H om otopy  Form  o f C auchy’s  T lieo rem ) Let f  be analyte- 
on a region G. Let 7  Ac a  dosed curve in G whidi is homotopic to a point m G 
Then

P ro o f Tbe curve 7  is homotopic in G to  a  constant curve A(t) =  zo for all r. 
T herefore,/t /  =  / a /  =  0. ■

Wc can also prove Caudiy’s Tlieorem for a  am ply connected region in this 
context (see Theorem 2.2.3). Indeed, every closed curve 7  in  G  is homotopic to a 
point in G, so the result follows from the homotopy form of C audiy's Theorem.
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Old R esults in  th e  New S ettin g  In tlie Path Independence Theorem 2.1.9 
saw that the existence of antiderivatives is closely tied to patli independence of 

.zjegrals and to the vanishing of integrals around closed curves. Notice that tlie 
Antiderivative Theorem 2.2.5, and Theorem 2.2.6 on the existence of logarithms, 

valid with the sharper meaning of simply connected, as discussed in tins section. 
The Deformation Theorem, Caudiy's Tlieorem, and all these consequences were 

z r.nvd from the conclusions of Cauchy's Theorem for a rectangle. FVom Tbeonsn 
i  2.5. we see that all these conclusions remain valid if we assume merely that /  
.s- continuous on G and analytic ou for some fixed 2] in G. In §2.4 it
-rill be shown tliat this assumption implies that /  is analytic ou G  so that such a  
wakening of the hypotheses of the theorems is only apparent. But it is ncoessary 
p->r the logical development of tlie theory.

Worked Exam ples
E xam ple 2.3.15 Let A be the region bounded by the x  axis and the curve o{6) — 
?.e,fl.O < 8 < it, where I t > 0 is fixed. Lei f(z)  = e** f  {211 — z)7. Show that for 
-och closed curve 7  in A , = 0.

Solution First observe that /  fails to  be analytic only when z — 2R  and hence /  
* analytic on A, since 2R  lies outside A  (see Figure 2.3.1G).

Figure 2.3.16: Convex region.

Wc claim that A is simply connected. That any two points in A can be joined 
hv a straight-line lying in A (that is, tliat A  is convex) is obvious geometrically 
and also is a  simple m atter to check (which the student should do). Hence A is 
-imply connected, by Corollary 2.3.11. By Caudiy’s Tlieorem, /  /  =  0 for any 
closed curve in A.

E xam ple 2.3 .16 Let A — {z 6 C | 1 <  M < 4 } . First intuitively, then precisely, 
show that A is not simply connected. Also show precisely that the circles |2| =  2 
and |2| =  3 are homotopic in A.
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Solution Intuitively, the circle |z| =  2 cannot be contracted continuously to  a 
point without passing over the hole in A; tliat is, the set {z €  C such tliat |zj <  1}.

Precisely, tlie function 1/z is analytic on A , and if A were simply connected, 
then we would have f^ ( l / z)dz — 0 for any dosed curve in A. But if we let 7 (t) =  
2eit,0 <  t  < 2n, then we obtain

Bence A is not simply connected.
Let tiie circles \z\ =  2 and |z | — 3 be parametrized by 71(f) =  2e,t and 72(f) = 

3cu, for 0 <  t  < 2ir respectively. Then H(tfs) s= (2 +  s)eil defines a homotopy 
between 71 and 72 in A. The effect of if  is illustrated in Figure 2.3.17.

Exercises
1. Prove that C\{0} is not simply connected.

2. Show tha t every disk is convex.

3. A region A is called star-shaped with respect to 20 If it contains the line segment 
between each of its points and zq, that is, if 2 €  A  and 0 < s  < 1 imply tliac 
szo +  (1 — s)z C A. The region is called star-shaped if there is a t least 01*- 
sucb point in A. Show tha t a  star-shaped set is am ply connected.

4. Show tha t a  set A is convex if and only if it is star shaped with respect u  
each of its points (see Exercise 3).

Figure 2.3.17: Region that is not simply connected.
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5. Let G  lie tlie region built as a  union or two rectangular regions G — {z suck 
that |R ez | < 1 and |lm z | <  3} U {z such that |R ez | <  3 and |Im z | < 1}. 
(This set is illustrated in Figure 2-3.18.) Show that G is star shaped. (See 
Exercise 3.)

y
♦

G

Figure 2.3.18: A star-shaped ncmconvex region.

6. Complete tlie proof of Proposition 2.2.4.

7. Evaluate the following integrals without performing an explicit computation:

/ dz— , where *jf(t) =  cos t  +  2t'sin t ,0 <  t  < 2ir
%

f  dz(b) / —, where 7  is defined as in (a)
Jy z

(c) f  where 7 (t) =  2 +  e“ t0 <  t < 2ir
Jy z

(d) / z = - r wiiere 7  is a d rd c  of radius 1 centered a t 1

8. Evaluate j  dzfz ,  where 7 is the line segment joining 1 to  L
J y

9. (a) Let 7  be a  curve homotopic to the unit circle in C\{0}. Evaluate dzfz.  

(b) Evaluate /  dzfz ,  where 7  is the curve 7 (1) =  3cost+ t4sin tt0 <  t  < 2n.
j y
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10." Evaluate the following:

W JL, (i^ )5

<b> jL ,
(C> ( I ^

2.4 Cauchy’s Integral Formula
One of the attractions of the theory of functions of one complex variable is that 
many powerful results can be derived from theoretically attractive results such as 
Caudiy’s Theorem. We are now in a  position to  begin to  draw some of these 
im portant consequences.

Among these many consequences, wo shall see th a t a  differentiable function must 
be infinitely differentiable and, in fact, analytic in the sense th a t the Thylor series 
converges to  the function in  some disk. H ie  Fundamental Tlieorem of Algebra, 
th a t every polynomial lias a  complex root, will be a  side benefit.

A stepping stone to  these results is Caudiy’s Integral Formula, a  consequence of 
Caudiy’s Theorem. It says th a t the values of an analytic function are completely 
determined everywhere inside a dosed curve by its values along the curve and it 
gives an explid t formula for these values.

In d ex  o f a  C losed P a th  There is a useful formula tlia t expresses how many 
times a curve 7  winds around a given point za (see Figure 2.4.1). This number of 
times is called tlie index  of 7  with respect to zq. The term  “index” will be formally 
defined in Definition 2.4.1.

Figure 2.4.1: Index of a  curve around a  point.

The formula wn shall use to  compute the index is based on the computation 
done in Worked Example 2.1.12: If 7 is tlie unit tircle 7 (1.) =  e '4,fl <  t  <  2rr, then
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H - (/) = e'£,0 < t. <  2jrn, then 7 encircles the origin n times, and wc find in the 
tame way that

:2-4 Cauchy’s Integral Formula

t f d z
"  =  2wt 7,  z ’

Now let us suppose that another closed curve 7  can be d e fo rm e d  to 7 without 
passing through zero (that is, that 7 and 7 are homotopic in the region A = C\{0}). 
Then aguin,

_  J _  f d z  1 f d z  
n 2ni z 2xi z

the Deformation Theorem (see §2.2 or §2.3). Since 7 and 7 are homotopic 
c\{0), it Is reasonable that they wind around 0 the same number of times. 

Generally, for any point zq € C, the number of times a curve 7 winds around zq is 
<e«D to  lie

_  _1_  f  dx 
2jt* J ^ z  — Ze

ry  a similar argument. As a couscquence,

1 f  dz _ f dbl if zq is inside 7 1
2iriJy z - z < , ~  \  0 if zo is outside 7 J

br a simple closed curve 7. If one prefers, this establishes tlie definition of what we 
mean by the inside and outside of the curve. Classically, the notiou of "inside” of 
3 curve is often defined using the difficult Jordan curve theorem, whidi states, 
roughly speaking, that a ample closed curve divides the plane uniquely into two 
it>injected pieces, exactly one of whicli Ls bounded, the inside.

These ideas lead to tbe formulation in the following definition.

Definition 2 .4.1 I d  7 be a closed curve in C end zq € C be a point not on 7. 
Then the index of 7 with respect to zq (also called the winding num ber of 7 with 
nspect to zq)  is defined by

H r ,* )
1 f  dz 

2sri z  -  20 ’

H'fi say that 7 winds around Za, /(7; 20) times.

The discussion that preceded this definition proves the following proposition, 
whidi is illustrated in Figure 2.4.2.

Proposition 2.4.2 (i) The circle 7 (/.) = zo+rei(, where r > 0  is the radius and
the parameter range is 0 < l <  2wnt has index n with respect to Zo, while the 
circle —7(4) = Zo + re~u , where again 0 < t < 2im, has index —n.
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Index of circle

Figure 2.4.2: Index = the number of times that zq is encircled.

(ii) If zo does not lie on either 7 or 7 and if  7 and 7 are homotopic in C\{zo}- 
then

J(T *n) *  % ;*»)•

Since homotopies can sometimes be awkward to deal with directly, it is custom­
ary merely to give an intuitive geometric argument that I(y, 20) has a certain value, 
but again the student should be prepared to give a complete proof when called for 
(sec Worked Example 2.4.12 at tire end of this section).

The next result provides a check tliat the index I(t ,*o) is always an integer. 
Tins should be the case if Definition 2.4.1 actually represents the ideas illustrated 
in the figures.

Theorem 2.4.3 Let 7(0,6) —* C be a (piecewise C l) dosed curve and zo a point 
not on 7; then /(7:2b) «  on integer.

Proof Let

Y (0
7 (») -

ds.

At points where the integrand is continuous, the Fundamental Theorem of Calculus 
gives

9 (t) =
m

7 ( t ) - 2b*

The right-hand side is the “logarithmic derivative” of 7(f) — *b- Motivated by tilt 
observation and using the product rule for derivatives, we can write the preceding 
display as

| e - ^ [ 7 ( t ) - 2bl =  0
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at points where g*(t) exists. Thus, — zo] is piecewise constant on |a , 6]-
But — zo] is continuous and therefore must be constant on [a,b]. Tliis
'onstan t value is

no we get c “^ | 7(b) — zo] — e -e b O ^ a ) — zo]- But 7 (b) =  7 (0), so e~*^  =  c~9^ -  
On the other hand, g(u) =  0; hence c- ^  =  1. Thus g(b) =  2 m t for an integer n, 
and tlie theorem follows. ■

The index, / ( 7 ; z) — (l/2 jri) d£/(£ — z), is a  continuous function o f z as long 
a> z does not cross 7 . (Why?) But we have ju st seen th a t if 7  is a  closed curve, 
men its value m ust be an integer. Thus it m ust stay constant except when z crosses 
*be curve. Caution: This need not be true if 7  is not a  closed curve.

The tn sid e  of a  closed curve 7  is defined by {z | 7(7 ; z) £  0 ); th is definition 
agrees w ith the intuitive ideas illustrated in Figure 2.4.1.

D erivation  o f  C auchy’s  In te g ra l F o rm ula Cauchy’s  Theorem will now be 
iaod to  derive a  useful formula relating the value of an analytic function a t zo to  a  
certain integral.

T heorem  2.4 .4  (C auchy’s  In te g ra l F o rm ula) L e t  f  be analytic on a region 
.4. lei 7 be a dosed curve in A that is homotopic to a point, and let zg €  A be a 
point not on 7 . Then

The preceding formula is remarkable, for it  says th a t the values of /  on 7  completely 
determine the values of /  inside 7 . h i other words, the value of f  is determined by 
hs “boundary values.”

P ro o f Tbe proof makes a  clever use of tbe analytidty of /  and tbe techni­
cal strengthening of Cauchy’s Theorem for whidi we laid the groundwork in the 
strengthened Cauchy’s Tlieorem 2.3.5 for a  disk, in which the function was allowed

I0Cauchy’s Integral Formula can be strengthened liy requiring only that /  be continuous on 7 
am) analytic inside 7. Tliis change makes little difference in w iring mast examples. For tlie proof 
of Uic strengthened theorem, the methods given in the Internet Supplement for Chapter 2 and 
an approximation argument may be used. Sec also E. Hillc, Analytic Function Theory, Volume 1 
‘.Boston: Ginn and Company, 1959.)

C-#t*)(7{«) ~  «»1»

This formula is often applied when 7 is a simple closed curve and zq is inside 7 . 
Then 7(7; 20) =  1, so the formula becomes
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to !>c merely continuous and not necessarily analytic a t oue point. (See also Worked 
Example 2.2.10 and the remarks following Proposition 2.3.14.) Let

Then g is analytic except perhaps a t zo, and it is continuous a t zq since /  is 
differentiable there. Thus J  g =  0, so

and therefore tin; tlieorem follows. ■

Caudiy’s Integral Formula 2.4.4 is extremely useful for computations. For ex­
ample, if 7 is the unit circle, we can immediately calculate

In Cauchy’s Integral Formula, wc simply choose f(z)  =  e* and zy =  0.
Note th a t hi Caudiy’s Tntegral Formula, it  is /  and not Lite integrand f(z)f(z -  

so) that is analytic on A; tlie integrand is analytic only on so we cannot
use Caudiy’s Theorem to  condtide th a t the integral is zero—in fact, the integral i> 
usually nonzero.

In teg ra ls  o f C auchy T y p e  Cauchy's Integral Formula is a  special and powerful 
formula for the value of /  a t ry. We will now use it to  show th at all the higher 
derivatives of f  also exist. The central trick in the proof is an idea tlia t is often 
useful. Lf we sta rt assuming only that wc know' the values of a function along a 
curve, theu we can consider integrals along tlie curve as defining a new function 
called an integral o f Cauchy type.

T heo rem  2 .4 .5  (D iffe ren tiab ility  o f C auchy-T ype In teg ra ls) Suppose 7 is a 
curve in C and g is a continuous function defined along the image 7 ([a ,6)). Set

Then G is analytic on C \7 ( |a ,6]); in fact, G is infinitely differentiable, with the krh 
derivative given by

and

f  1̂ -dz m /fa) f —̂-~dz = 2jr»/(ao)/(7;*o). J ^ z - z o  J ^ z - z 0
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Tlie formula for the  derivative can be remembered by “differentiating with re- 
-pvet to  z under tlie integral sign":

± n (~ )  = - L ±  [ o W j r  1 f  3 ( s ( 0 \ rtr-  1 f  s ( 0  „  
dz * 2iri d z J y C - z  2m Jy d z \ £ -  z )  2m Jy «  — z)2

The formal proof justifies th is procedure and appears a t the cud o f this section.

E xistence o f  H ig h er D erivatives Using integrals of Cauchy type, we can show 
'..aat a dilTcrentiablc function of one complex variable is actually infinitely differen- 

and a t the same tim e give a formula for all the derivatives.

T heorem  2.4 .6  (C au d iy  In te g ra l F orm ula fo r D erivatives) Let f  be. analytic 
•n a region A. Then alt (he derivatives of f  exist on A. Furthermore, for so in A 
.rid -> any dosed curve homotopic to a point in A with zq not on y, we twain

• L(y; *b) “  5Hi j y (( -  at,)**1 ̂  * ~ 1’25̂ ’

rhftv. f ^  denotes the kth derivative of f .

P ro o f Since A is open and so is not on 7, wc can find a  small circle 70 centered 
at :o with interior in A and such th a t 7  does not cu t across 70- (See Figure 2.4.3.) 
F-ji : in A  and not on 7 , define

This is an integral of Caudiy type, so it is infinitely differentiable ou X \7 , and

we also integrals of Caudiy type, so they are infinitely differentiable near so. As 
mentioned earlier, the index is constant except when z  crosses tbe curve. In par* 
•fcular, it  is constant inside 70. Thus C J^fso) =  / w (so)/(7 ; so). Combining this 
with the preceding formula for G ^ (z )  gives the desired result. ■

C a u d iy 's  In eq u a litie s a n d  L iouville’s T heo rem  We continue developing the 
-onscquences of the Caudiy Theorem with an im portant set of inequalities for the 
lerivHtivcs of an analytic function and its consequences.
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Figure 2.4.3: Let -fa be a cirde centered a t xq and small enough tha t it does not 
meet 7 .

T heorem  2.4.7 (C auchy's Inequalities) Let f  be analytic on a  region A and 
let 7  be a circle with radius A and renter 20 that lies in A. Assume that the disk 
{z such that |z -  zo| <  A) also lies in A . Suppose that \f(z)\ < M  for al ls on *>. 
Then, for any k  =  0 ,1 ,2 ,...,

P ro o f Since f(y; So) — 1, from Cauchy’s Integral Formula 2.4.4 we obtain

and hence

î w - b Il

m

/ (C )
(C — 2o)fc+1

1 /(C )  I M
|(C~*o)*:+ l| -  A*+>’

since |C — zol =  A for { on 7, so

l /{fc,(^))l <  ~  • M
A *+» f(7)-

But 1(7 ) =  2irA, so we get our result. ■

This result states that although the fcth derivatives of /  can go to infinity «. 
k  -*  00, they cannot grow loo fast as k  —♦ 00; specifically, they can grow n : 
faster than a constant times k \f Rk. Wc can use Caudiy’s Inequalities to derive tea. 
following surprising result: The only bounded entire functions are constants.
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T heorem  2 .4 .8  (L iouville’s  T heo rem )11 I f  f  is entire and there is a constant 
M such that |/( z ) | <  M  for all z  €  C , then f  is constant.

P ro o f The Caudiy Inequalities 2.4.7 with k — 1 show tlia t for any zn C C, the 
e q u a lity  \f'{zn)\ <  M /R  holds. Holding zn fixed and letting R  —»oo, we conclude 
:aar |/'(z o )| =  0 therefore th a t /'(z n ) ~  0. This is true for every zn in C , so /  
> constant. ■

This is again a quite different property than any th a t could possibly bold for 
suctions of a real variable. Certainly, there are many nonconstant bounded smooth 
^setious of a real variable, such as f(x)  =  siux.

F undam en tal T heorem  o f A lgeb ra  Next we shall prove a  result th a t appears 
z,j he elementary and that the student has, in the past, probably taken for granted. 
Algebraically, the theorem is quite difficult.12 However, there is a  am ple proof th a t 
'x ’s Liouville’s theorem.

T heorem  2.4 .9  ( F undam en ta l T heo rem  o f A lgeb ra) Letao,at , . . .  ,a„ be a 
Election of n +  I complex numbers and suppose that n > 1 and £  0. Let 
? z) — ao + aiz +  . . .  +  77icr there exists a point zn € C  such that p(zo) —0.

P ro o f Suppose tlia t p(zn) ^  0 for all zn €  C. Then /( z )  =  l/p (z ) is entire. Now 
; :)  and hence /(z )  is not constant (because a„ £  0), so it suffices, by Liouville’s 
'heorein, to  show th a t /(z )  is bounded.

To do so. we first show th a t p(z) —♦ oo as z —* oo, or equivalently, th a t /(z )  —»0 
is- :  —* oo. In other words, wc prove th a t, given M  >  0, there is a  number K  >  0 
"arch tlia t |z | >  K  implies |p(z)| >  M . FVom p(z) =  an +  U|Z + . . .  +  a*zn we have 
;*=)l > l««IN ” ~ |o o |- |n j ||z |- . . . - (O n-i||z |"-1 . (W eseta„zM = rp ( z ) - z o -z iz -  

. — z ^ -iz "-1 and apply the triangle inequality.) L e ta  =  |a o |4 - |a i|- t- ... +  |an_ ||.  
If |z | >  1, then

W«)l > k r - ( M W - j ^ r - j ^ 5 —
S: W "-'(K I|i|-a).

Let K  — m ax{l, {M +  a)/|on |} ; then, if |z | >  K, we have |p(z)| >  M .
Thus if |z | >  K , wc have l/|p (z ) | <  1 /A f. B ut on tlie set of z for which |z | <  K, 

the function l/p (z ) is bounded in absolute value because it is continuous. If this

11 According to  E. T . W hittaker and  G. N. Wntgoo, A Course o j M o d ern  Analysis, Fourth 
Edition (London: Cambridge University Pm h , 1927), p. 105. Liouville’s theorem is inoorructly 
im ita ted  to  Liouvillc l»y Borckaidi (whom others copied), who heard it in Lionville’s lectures in 
l£47. It is dim to Cauchy, in Comptcs M u ,  19 (1844), 1377-1378, although it may have been 
known to  Gauss earlier (see tint mart footnote).

I2lt was first proved by Karl hVicdricli Gauss in bis doctom) thesis in 1799. The present proof 
appears to be eswaitiolly due to Gauss as wdl (Comm. A’oc. GotL, 3 (1816), 59-64).

;_1J Cauchy’s  Integral Formula



152 Chapter 2 Cauchy ’« Theorem

bound for l/p (z ) is denoted by L, then on C we have l/|p (z )| <  m ax(l/A f, £.), so 
\f(z)\ is bounded on C. ■

By Review Exercise 24 a t the end of Chapter I, the polynomial p can have no 
more than n  roots. I t follows by repeated factoring th a t p has exactly n roots if 
they are counted according to  their m ultiplicity.

Another argument for showing th a t f(z)  —► 0 as z -* oo th at is a little simpler 
but accepts the validity of various limit theorems is as follows:

/(* )
___________ 1___________
<lnZn -f- On-iZ**-1 +  . . .  +  Zo
______________ \Jj£_______________

+ a ,,_ i( l/z )  +  «,I_2( l/z :i) +  . . .  -t-n ,i(l/zn) '

Letting z -* oo, we get

lim f{z) =S—OO
0

ot|» +  0 + . . .  +  0
=  0

since a,, yt 0.

The existence of higher derivatives, when combined with th a t of antiderivative* 
(Theorem 2.2.5). has some im portant consequences. Two of these are a  partial 
converse to  Cauchy’s Theorem and an extension of the existence of logarithms.

M oreru ’s  T heo rem  Cauchy’s  Theorem says roughly th a t the integral of an an­
alytic function around a  dosed curve is 0. Morera’s Tlieorem says that if we kuow 
the function is continuous wc con get tlie converse implication.

T heo rem  2.4 .10 (M o rera ’s  T heo rem ) Ltd f  be continuous on a region A. ana 
suppose that f y f  =  0 for every dosed curve in A. Then f  is analytic an A , ana 
f  s* F* for some analytic junction F  on A.

P ro o f The existence of the antiderivative follows from tlie vanishing of in tegral 
around dosed curves and the Path Independence Theorem 2.1.9. The antiderivative. 
F  is certainly analytic (its derivative is / ) .  Therefore, by the Caudiy Integra; 
Formula fur Derivatives 2.4.6, it is iniiiiitdy differentiable. Lu particular, F" = f  
exists. ■

Lu applying Morera’s Theorem, one often wishes only to  show that /  is aualvnr 
ou a region. If the region is not am ply connected, /  might not have an antiderivative 
ou the whole region. But to  show differentiability near a point one may restrict 
attention to  a small neighborhood of tbe point and to  special curves if convenient 
This idea is illustrated in the following corollary and Worked Examples 2.4.16 anc 
2.4.17.

C oro llary  2.4.11 Let f  be continuous on a region A and analytic on >l\{zo} / fJ* 
a point Zq £ A. Tlten f  is analytic on A.
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P ro o f To show analytidty at, zu, we may restrict attention to  n small disk D{zq. t) C 
■4. If 7  is any closed curve in this disk, then f  f  = 0, by the strengthened Cauchy 
theorem for a disk (2.3.5). Thus M orcnrs Tlieorem 2.4.10 implies that /  is analytic 
on this disk. We already know it is analytic on the rest of A. ■

M ore on  L ogarithm s In Theorem 2.2.6, we used the existence of antiderivatives 
to obtain logarithms ou simply connected regions not containing the origin. W ith 
the existence of higher derivatives we can get a  more general version of th is result.

P ro p o sitio n  2 .4 .12  (L ogarithm s o f  F unctions) Let f{z) be a function that is 
analytic and never 0 on a  simply connected region A. Then there is a function g(z) 
analytic on A and unique up to the addition of a constant multiple of2ni such that 
rats) — y(2) for all s jn A.

P ro o f In effect, we are looking for a  logarithm for f(z).  If g{z) is to  lie such a 
function, we m ust have f ‘(z) = c®(iV (z) =  /(z)< /(z). Since f(z)  is never 0, tliis 
says th a t g'(z) — f '(z)/ f(z) .  Tims, g must be an antiderivative for f f f  on tlie 
connected open set A. The difference between two such antiderivatives would have 
derivative 0 and so be constant on A. Since the new function would still have to  lie 
a logarithm for /(a ) , th a t constant would be an integer multiple of 2xi. I t  remains 
to show tliat there is such a  function.

Since / "  exists, / '  is anafytic on A. Since f(z)  is never 0, the quotient f ‘(z)/f(z) 
Is annl3rtic on the simply connected region A. From the Autiderivative Theorem 
see Theorem 2.2.5), there is a function g : A  —* C sudi tlia t g^(z) — f '(z)/ f(z)  

for all z in A. Fix r0 in A. By adjusting our antiderivative by adding a  constant, 
we may assume th a t g(zo) is any convenient choice of a  value of log(/(so)). Let 
fctz) =  «ff<*>//(s). Then

, _  / ( 2)e ^ V (a )-d » tO /> (s ) _  f {z )c°Wf '( z ) / f (2)-csM r(z)  _
( m y  “  ( m y

Since /i'(z ) is identically 0 on the connected open set A, the function h must be 
constant on A. B ut ft(ao) =  /  f(zo) =  I. Therefore, <&s*/f(z) — h(z) —
h(2o) =  1 for all z in A. Tims, — f(z)  on A, as required. ■

If we apply this result to  the function f(z)  =  z on a  simply connected region 
not containing 0, wc recover our earlier results ou logarithms (sec Tlieorem 2.2.6).

T echnical P ro o f o f T heo rem  2.4 .5  We will prove Theorem 2.4.5 w ith a  some­
what weaker assumption on g than coutinuity. All wc assume is that, the function 
is bounded and integrablc along 7. We call sudi functions admissible. F irst we 
use several facts from advanced calculus tliat were developed in §1.4. The image 
curve 7 is a  compact set since it Ls a continuous image of a dosed bounded interval. 
If zo is not on 7 , then by the Distance Lemma 1.4.21, it lies a t a  positive distance
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Figure 2.4.4: A point not ou h curve 7  is a  positive distance from 7.

6 from it. If we let ij — $/2  and U be the i) disk around so, then z €  V  and < on 
implies that |z —Cl >»? since \z-Q\ > |C -«oI -  |zo - *| >  2 i / - ?/ (sec Figure 2.4.4). 

We begin with the case k  =  1. We want to show that

l i m
G (z)~ G (z0)

Z  — 2 0

g(0
K - * o )2

- 0.

The expression in brackets may be written

<?(z)-C (zo) J _  /■ g « ) -  =  (z~ zp) f  g(C) ^
z - z o  2OT y7 « - z o ) 2^  2sri (C -  zo)2(< -  s p ”

where we have used the identity

1 /  J_______1_ _ \  _  1 * -  zo
Z - Z 0 \ C - Z  C “  2 0 /  (C -  Zo)2 K  -  Zo)2 «  -  z ) '

Let the 17 neigliborhood U of z q  be constructed as previously described and let 
h i be the maximum of g on 7 . Then |( f  -  zo)2(C—2)l > ij2 *17 =  t}3, so we have l la- 
estimate |ff(0/|(C  — z q ) 2 (C  — z))| < Mt}~3 (a fixed constant independent of £ on * 
and z, zq €  U). Thus,

z - Z Q
2m

5> f ___
i J y « -

g(0
Zd)2(C -z )

del < |Z -  a o l ^ —1(7 )-

This expression approadies 0 as z -+ zo, so tlie limit is 0, as wc wanted.
To prove tlie general case, we proceed by induction on k. Suppose the tliuorcc. 

is known to hold for all admissible functions and all values of k  from 1 to n  — i 
We want to  prove that it works for k  t= n. We phrase the induction hypothesis this 
way since we will apply it not only to  9 , but also to  p(0 /(C ~  zo), which is abc
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bounded and intcgrable along 7. Wc know that C  can be differentiated n - 1  times 
on C\7 and tliat

U  2 *i l i t - : ) * * ”
Let 2u € C\7(|a, 6)). Using tlie identity 

1 1 Z —  Zq

(< -*)" K -* )" fc -z o ) ’
we obtain

G ^ - ^ z J - C ^ - ^ z e )

= (iLziiir/__m __« _ [ . & )  .̂ 1
, (n —1)!, , , f  2 (0

2 «  (Z ^ A  « - * ) " (

Wc can conclude from this equation that is continuous at as, for tbe
following reason. By applying the induction hypothesis to y(C)/(C — ^)t we sec 
that

f  »«>_____
7 ,  K  - * )

a* analytic as a function of z on tbe set C\7([<*,6J) and thus is continuous in s. 
Therefore,

f ______s ( 0 ______ f  —9 (0  ^
A  «  -  z)< -» «  -  z o p  A  (C -  *>)"

as z —* zo. If the distance from 20 to 7 is 2»j, if |2(z)l < AT on 7, and if |z —zo| < »J, 
wc liave

\ l
9 ( 0

where /(7) is the length of 7. Hence

M
r»»+l • % )♦

as z zo, and tlierefore Ĝ n *1 is continuous on C\7 ([e»fr))- 
Ftam the equation for G("_l>(z) -  G<B- l , (*o)» «* obtail1

C("~i)(z) -  Gfr-^zp) 
z — 20

(n - 1)! 1 f f  g(C )_ ----- rdC -  f  — — dfl
“  2jt* (z — zo) |.A  (C -  z)(— ,)«  "  A  (C -  *0)”  J

, ( n -iy - f  9 ( 0  
+ 2jt» A
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By applying the induction hypothesis to  9 (0 /(C — ze), we see tha t the first term 
on tbe right side of the preceding equation converges to

( w -  l)(n  —l)i f  g(Q
2*i A  ({ -* ,)"+ »  ̂

as z -* zq. We have already shown that is continuous on C \7 ([n, 6)), and
Utis fact applied to g(0/(C  — 2q), instead of to  <?(£)* implies that

/ « -
9 ( 0

z)"(C- zo)dC / _ i
Jy( C -

9 (0
*>)**+l

as z —’ Zo- Thus we have shown tliat as z —» zo,

a —ao

converges to

( n - 1 )
( n - l ) l  

2 s i
f - 1  A (  c -

g(C)
Zft)"+1

d< +

_  » 7 ___w
2 * i 7 ,  «  -  Zil

( t t - l ) t
2?ri

g(C)

Jy (C ~
g(C)

zo)w+1

20)"+‘

This concludes tlie induction and thus proves the theorem.

Worked Exam ples
E xam ple  2.4.13 Consider the curve 7  defined by 7 (t) =  (cosf,3sin i),0  <  < <  4c 

that 7(7 :0) — 2.

S o lu tion  Tbe strategy is to show that 7  is homotopic in C \{0) to a  circle 7 tliat 
is centered around tlie origin and tlia t is traversed twice in the counterclockwise 
direction (that is, 7 (1) =  ett.O <  t < 4*)- Once this is done, by Proposition 2.4.2. 
/(7 ;0 ) =  7 (r,0 ) =  2.

A suitable homotopy is 77(t, s) =  cos i+ i(3~ 2») sin t; noto tliat JJ is continuous. 
H(i,Q) *= 7 (4) and 77(7,1) =  7 (1), and H  is never zero (see Figure 2.4.5).

E xam ple  2.4.14 Evaluate

[ S E l *  *ul j ^ i z .

where 'll is the unit circle.
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Figure 2.4.5: Homotopy of i(t}  =  (cos t, 3 sin f.) to  7 (i) =  (cost,sin t).

Solu tion  H ie  circle 7  is contractible to  a  point in the region in which cos 2 is 
analytic, since in fact cosz is entire. Therefore, we can apply Caudiy's Integral 
Formula 2.4.4, observing th a t J(t ;U) =  1, to  obtain

so

, „  I f  cos z .1 / — rfz.

t  cosz , „ .I ----- dz =  2irt.
Jy *

By the Cauchy Integral Formula for Derivatives 2.4.6, wc have

sin'(O) =
1 f  sin 2 

2iri 7,  z2
dz,

that Is,

dz =  2in'cos 0 — 2wi.

E xam ple 2.4.15 This example, vddeh deals with analytic functions defined by in­
tegrals, generalizes Theorem 2.4.5. Let f(z ,w ) be a  continuous function of z,w  for
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z in a legion A and w on a curve 7. For each w on 7 assume that f  is analytic in 
z. Let

F(*) = J f(z,w)dw.

Show that F  is analytic and

**(*) ~ j
where O f fd z denotes the derivative of f  with respect to z  with w held fixed.

Solution Let zq € A. Let 70 be a circle in A around zq whose interior also Bes in
A. For 2 inside 70,

'<*■•»-K J (.IF T *
by Caudiy's Integral Formula 2.4.4. Thus

Next we claim that we may invert the order of integration, thus obtaining

This procedure is justifiable because the integrand is continuous and when writ­
ten but in terms of real integrals has the form

f ^ f  h(s,t)dsdt + i j * f  k(s,t)dsdt.
JaJa JuJd*

We know from advanced calculus that this order can be interchanged (Fubini’s 
theorem)13.

Thus,

" W -K iC fS *
and so by Theorem 2.4.5, F  is analytic inside 70 and

13Sce, for instance, J . Maraden and M. UofEuui, Elementary Clnxsicai Analytis, Second Ediths. 
(New York: W. H. Ftaemaa and Company, 1093), Chapter 9.
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As;ain by Caudiy’s Integral Formula. Since zq is arbitrary wc obtain tbe desired 
rss.uk. Remark Tbe function /  should be analytic in z but it needs to only be 
jitegrable in tbe w  variable, as is evident from the preceding proof; we merely need 
m adequate hypothesis to justify interchanging the order of integration.

Exam ple 2.4.16 Prove the following assertion: Suppose that f  is continuous on a 
'vST»on A and that for each z« in A there is a disk D — D(zq;p) such that J p f  — 0 
,v r every rectangular path R  in D with sides parallel to the axes. Show that f  is 
rnalytic on A  (sec Figure 2.4.6).

•J
t

Figure 2.4.6: Tf f n f  = 0, then /  is analytic.

Solution Let zq be in A. The vanishing of f R f  for rectangles in D  was the 
conclusion of Cauchy's Tlieorem 2-3.2 for a rectangle and the tool used iu the 
construction of the antiderivative for /  in Lhc proof of Cauchy’s Theorem for a 
disk. Thus the antiderivative exists on D (not necessarily on all of A a t once). 
Aualytidty ou D follows as the proof of Morera’s Theorem 2.4.10, so /  is analytic 
near zq. Since Zq was an arbitrary point in A, f  is analytic on A.

Exam ple 2.4.17 Prove the following: Suppose A is a region that intersects the 
real axis and that f  is a function continuous on A and analytic on 4 \R . Then f  
is analytic on A.

Solution Wc know f  is analytic everywhere in A except on the real axis, so 
suppose G R. Since A is open there is a disk D = D(zo;p) C A. Let f t be a  
rectangular path in this disk with sides parallel to the axes. If ft does not toudi 
or cross tire real axis, then f R f  *= 0 by Cauchy’s Theorem. If it does cross, as in 
Figure 2.4.7, then / «  /  =  / n ,  /  +  S r ,  / *  where R i  aud f?2 arc rectangles with one
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y

Figure 2.4.7: Construction used to  show f n f  =  0.

edge an the axis. (The edges on the axis are traversed in opposite directions and 
so cancel out.)

Thus it is enough to show that f n f  = Q when R  is a rectangle with one side on 
the real axis, as in Figure 2.4.8. Let a  and b be the ends of the edge on tbe axis 
and note that b —a < p.

Let c >  0. Since /  is continuous, it is uniformly continuous on the compact set 
composed of R  and its interior, so there is a  S > 0 such that | / ( z i ) — / (z j ) | <  t 
whenever |zt -  Z2I <  6 and zi and Z2 are in this set. We may also choose S to 
be less than t .  Let M  be tlie maximum of |/(z ) | on R  and its interior, and let S 
be another rectangle the same as R except tliat the edge on the axis is moved a 
distance 6 from the axis. Then with the notation of Figure 2.4.8,

Uj - I A  -
<

<

<

<

\ l f + L f + L f - I J

SM + 1/ 1/(* )  -  / ( *  +  <ft)]dz| +  SM

2SM +  /  !/(* ) ~  f(*  +  #)l«&

2SM +«(&~ “) <  f(2M  +  p).
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y

Figure 2.4.8: The rectangle pulled away slightly from die real axis.

Since this holds for every e >  0, we must have / « / - / s /  =  °- B u tX f /  =  0 lV 
Cauchy’s Theorem since S  does not cross tlie axis and lies entirely within a region 
in which F  is known to be analjiac. Thus f n f  — 0. Wc have shown tliat the 
conditions of the preceding Worked Example apply, so /  is analytic on A.

Exercises
1. Evaluate the following integrals:

W

W  / ,$ '

where 7 is a circle of radius 2, centered at 0

dz, where 7  is the unit circle

2. Evaluate the following integrals:

*2- lw / 22 +  1
dz, where 7 is a circle of radius 2, centered at 0

(b)
f  sine*
r

dz, where 7 is tbe unit circle

3. Let /  be entire and assume that |/ ( s ) | <  M\z\n for large |z|, for a constant 
M , for some integer n. Show that /  is a polynomial of degree <  n.

4 . " Let /  be analytic “inside and on” a  simple dosed curve 7 . Suppose that 
/  =  0 on 7 . Show th a t /  =  0 inside 7 .

5. Evaluate tlie following integrals:
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(a) / — , where 7 is the square with vertices — 1 — i, 1 — *, 1 4-1, — 1 + f 
Jm a

6. Let / be analytic on a region A  and let 7 be a dosed curve in A. For any 
20 € A not on 7, show tliat

Can you think of a way to generalize this result?

7. Suppose tliat f(z)  is analytic on tlie set |z| < 1 and that it satisfies tlie 
inequality |/(z)| < 1. What estimate can be made about |/'(0)|?

8. * Suppose that f  is entire and that limi _o0 f(z)/z  = 0. Prove that /  is 
constant.

9. Prove tliat if 7 is a circle, 7(t) = Zq 4-rc’S 0 < t <  2jt, then for every z  inside 
7 (that is, \z -  zn| < r),/(7; z) *  1.

10.” Use Worked Example 2.4.15 to show that

if z ^ zo and / ( 20)  = /•’'(zo) where zq is some point in A.

12. Prove that if the image of 7 lies in a amply connected region A and if zo £ .4. 
then /(7;2o) = 0.

13. Use Worked Example 2.1.12 (where appropriate) and Caudiy’s Integral For­
mula 2.4.4 to evaluate the following integrals; 7 is the drcle |z| = 2 in each 
case.

is analytic in z. What is F'(z)?

11. Show that if F  is analytic on A, then so is /  where
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(d) / z 2 +  2 z - 3

14. * Prove that e"*® cos (sin 6)dB =* n by considering f^(cc/z)dz, where 7  is
the unit circle.

15. Evaluate

f  JfJfl 
Jc  *2

dz,

where C is the circumference of the circle of radius 2 around the origin.

16. Consider the function /(z )  =  1/z2.

(a) It satisfies f(z)dz  =  0 for all closed contours 7  (not passing through 
the origin) but is not analytic a t z  =  0. Docs this statement contradict 
Morcra's Theorem?

(b) I t is bounded as z —♦ 00 but is not a  constant. Does this statement 
contradict Lionvilie’s theorem?

17. Let / (z )  be entire and let |/ (z ) | >  1 on the whole complex plane. Prove tha t 
/  is constant.

18. " Docs /  *^dz =  0? Does f  ^ ± d z  = Q?
J|a|=l z  22

19. Evaluate

(a)

(b) JM=* z2(z2 + 16)

20. Prove tha t for closed curves 71,74,

/{ -7 i;*e ) =  -/(7 i;2 o )

and

Hm  +  2o) =  /(7i?2o) +  /(72i*o).

Interpret these results geometrically.

21.* Let /  be analytic inside and on the circle 7 : |z — zo| =  JL Prove th a t 

/ ( 2 i ) - / ( z a )
2 1-2 3 /,(Z°) ~ 2z t / [ ( z - z , ) ( z -  zc) “  (2 - z o ) 2] f(Z)dZ

for zt,Z2 inside 7 .
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2.5 Maximum Modulus Theorem and Harmonic 
Functions

One of the most powerful consequences of the Cauchy Integra) Formula is the 
Maximum Modulus Tlieorem, also called the Maximum Modulus Principle. I t states 
that if /  is a nonconstant analytic function on a  region A, then | / |  cannot have a 
local maximum anywhere inside A—it can attain a  maximum only on the boundary 
of A. This tlieorem and the Caudiy Integral Fonnnla will be used to  develop some 
of the important properties of harmonic functions.

M axim um  M odu lus T h eo rem  The central idea of the Maximum Modulus' 
Principle con perhaps best be stated as follows: If an analytic function has a local 
maximum (of its absolute value) a t a  point, then it must be constant near tluu 
point. A preliminary version of tlie tlieorem follows.

T h eo rem  2.5.1 (M axim um  M odu lus P rin c ip le— Local V ersion)
Let f  be analytic on a region A and suppose that | / |  has a relative maximum at 
z q €  A. (That is, \f(z)\ < |/(ao)| for oil z  in some neighborhood o f z q . )  Then f  u- 
constant in some neighborhood of 2q.

The proof rests on a striking consequence of the Caudiy Integral Formula: Th- 
value of an analytic function at Ute center o f a circle is the average of its valuta 
around the circle. All this will be made precise shortly, but tbe local version of 
the principle follows essentially because the average of a function cannot be greater 
than or equal to the values of tlie function unless they are all equal. We devdof- 
this idea in preparation for proving the Maximum Modulus Theorem.

T heo rem  2.5.2 (M ean V alue P ro p e rty )  Let f  be analytic inside and on a a~- 
cle of radius r  and. center z» (that is. analytic on a region containing the circle ar.c 
its interior). Then

where *t{6) =* 2q +  rc ’̂ .O <0 <2it. However, Iy  definition of the integral.

(2.5.1

P ro o f  By Caudiy’s Integral Formula 2.4.4,
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h  y  worth noting tha t as long as we arc integrating all the way around the circle, 
jr 'docs not m atter through what range of 2jt the angle goes. A change of variable 
•Vuws that, for example, /„  * / ( zq -f rcie)dff — / ( zq rei6)dO.

The Mean Value Property will now be used to  establish the local version of tbe 
Maximum Modulus Principle. H ie  idea is th a t if f(zo) is a t least as great as all 
t~sir other values of /  near 20 and also equal to the average of those values around 
-stall circles centered a t Zq, then |/(z ) | must be constant near zq. Once we know 

| / |  is constant, it follows from the Cnuchy-Riemann equations that /  Ls itself 
r nstuut.

P ro o f  o f T heo rem  2.5.1 Suppose that /  is analytic and has a relative maximum 
;o so that |/ (z ) | <  |/(zo)| on some disk Do — D(zo‘, ro)- We want to  show that 

_■ r)| =  \f[zo)\ on Do, so suppose instead that there is a point zt in D0 where 
c jic t inequality holds: |/ (z j) | <  |/(2o)|- Let Z\ — Zo +• rc*° with r  <  ro. Since /  is 
—minuous, there are positive numbers c and 6 such that

l/(«o +  re,ff)| <  |/(zo)| -  S 

whenever |0 — a | <  e. Equivalently,

|/(zo  +  r e '^ > ) |< | / ( z o ) | - i f

whenever \4>\ < €. We now obtain a  contnidiction by using the Mean Value Property 
md considering separately that part of the integral over the circle where wc know 
rhe function is smaller (see Figure 2.5.1)

Figure 2.5.1: Construction for the proof of the Maximum Modulus Principle—local 
version. |^ | <  c gives a  part of tlie circle where | / |  is known to lie smaller.
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To carry this out, write

=  ^  f J ( z o  + r < ? ^ W

+  ^  j *  f(zo  +  r c '(a+<p)) ^ |

< -L y ‘̂ | / ( ao +  r Ĉ > ) | ^ + ^ £ | / ( ^  +  re '(-+ * )) |^

+ ̂ jT|/(*0 + «*-+*,>K
ln the first and third integrals the integrand is no greater than |/(zo)| and tlie 
interval length is rr — c. Thus eadi of these integrals is no more than |/(zo)|(w —<). 
In du* middle integral, the interval length is 2c and the integrand is less than 
|/(zo)| — 6. Hence this integral is no more than (|/(zo)| — £)2«. Putting these 
together gives

|/(*d)l <  ^ [ | / ( * 0)K<r - e )  + (|/(*o)l -  6)2e +  !/(*,)((* -  e)]

ie .,

!/(*>)!< l/(*>)l-f-
This impossibility shows tha t there can be no such point r  in Do with |/ (z ) | < 
|/(zo)|. Tlie only remaining possibility is tha t |/ (z ) | =  |/(zb)| for all z in Dq.

Tiius | / |  is constant on D0. Use of the Caudiy-Ricoiann equations as in Worked 
Example 1.5.21 shows tliat the function J  itself must be constant. This is exuctly 
what we wanted. ■

The local version of the Maximum Modulus Principle says that an analytic 
function cannot have a  local maximum point unless it is constant near that point 
We will sec in Chapter 6 tliat more is true. A function analytic on on open connected 
set cannot have a local maximum anywhere in that set unless it is constant on the 
whole scL.

We now turn our attention here to a  somewhat different global version of thi- 
prindple. Wc investigate absolute maxima, th a t is, the largest value |/(z ) | lakh  
anywhere in the set. Wc shall show that this can be found ouly on the edge or 
boundary of tbe set. In §1.4, we saw tliat a  real-valued function continuous on a 
dosed bounded set actually attains a finite maximum but tha t it  might not If the 
set fails to  be dosed or bounded.
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C losure  a n d  B o u n d ary  Tbe intuition in §1.4 was that a  set is closed if it con­
tains all its boundary points and open if it contains none of them. Thus if we start 
with a  set A and add to it any of its boundary points whidi happen to be missing we 
should obtain a closed set containing A. Tliis is true, bu t there are some technical 
problems. One is tliat wc really have no definition yet for "boundary.”

D efinition 2.5.3 The closure of a set A C C, denoted by A or by d(^4), consists 
of A together with the limit points of all convergent sequences o f points of A.

Tiiis produces the desired result, the smallest closed set containing A.

P ro p o sitio n  2.5.4 I f A d  C. then

(i) A c  d (4 ) .

(ii) A is closed if  and only i f  A — d (d ) .

(iii) I f A C C and C is closed, then d(.A) C C.

(iv) c!(j4) is closed.

P ro o f  The first assertion is immediate from the definition. The basic tool for the 
remainder is Proposition 1.4.8, which states tliat a set is closed if and only if it 
contains the limits of all convergent sequences of its points. If we let

Ihnit(X) =  {«; | there is a sequence of points in A convergent to to},

then A C 1imil(.4), since constant sequences certainly converge. The closure was 
defined by d(.A) =  A li Iimit(j4), so we actually have cl(-A) — limit(j4). But Propo­
sition 1.4.8 says exactly that A is dosed if and only if Iimit(^4) C A, so (ii) is 
established. I t also shows that if C is dosed and A c C ,  then limit(.4) C C, so we 
have (iii). The only remaining gap is to  show that d(j4) is actually closed. Tb do this 
wc need only show that cl(j4) =  c l(d ( /) )  that is, limit{.4) =  limit(liuiit(d)). Since 
limit(^4) C Umit(limit(j4)) automatically, it remains to show that liniit(liinit(A)} 
C limit(y4). Suppose z \ , 23, 23, . . .  is a  sequence of points in limit(i4) sudi that 
liitin_ee z,, — ur. We want to  show tliat w is in Iimit(j4). Eadi z,, is in limit(.4), 
so there are points w„ in A with |w„ — z,,| <  1/n. This forces =  u>, so
w €  lim it(d), as desired. ■

The boundary of a set A is the set of points on the "edge” of A. If w is in the 
boundary, wc should be able to approadi it through A and tlirough the complement 
of A. This leads to the following definition.

D efinition  2.5.5 The boundary of a set A C C  is defined by

bd(>l) =  d(/4)ncI(CV 4).

It is not bard to  see that cl(v4) =  jiUbd(.A). (See Worked Example 2.5.16.)
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G lobal M axim um  M odu lus P rin c ip le  Now we arc ready for tbe promised 
global version of the Maximum Modulus Principle.

T h eo rem  2.S.G (M axim um  M odulus P rincip le) Lei A be an open, connected, 
bounded set. in C  and suppose f  : cl(v4) —♦ €  is analytic on A and continuous an 
d(A ). Then | / |  has a finite maximum value on d(;4) which is attained at some 
point on the boundary of A. I f it is also attained in the interior of A, then f  must 
be constant on cl(>4).

Tliis theorem stales that tbe maximum of /  occurs on tbe boundary of A and 
tliat if that maximum is attained ou A itself, then /  must be constant. This is a 
very striking result and is certainly a  very special property of analytic functions. 
Tire values of | / |  inside a  region A must be smaller than tbe largest value of | / |  
on tlie boundary of A. One must exercise some care. For example, the Maximum 
Modulus Principle in this form need not be true if A is not bounded. In such a  case 
the function need not be bounded on A even if it is on bd(yl). (See Exercise 3.) In 
applications of this theorem, A will ofteu be the inside of a  simple closed curve *>. 
so cl(d) will be A U7  and bd(-A) will be 7 .

It is reasonably clear tha t if A is bounded, so is its closure. If |s | <  13 for all ;  
in A and 21, 22, 23, . . .  is a sequence in A converging to w. then |z,,| converges to 
|w|. so |w| <  B. Titus d ( /i)  =  limit (j4) is also bounded by B.

From the Extreme Value Theorem 1.4.20, wc know tliat a  continuous real-valued 
function on a closed bounded set attains a maximum on that set. I t  follows tliat if 
M ' =  snp{ |/(s)| such tliat z €  c 1 ( j4 ) } ,  then M *  =  |/ (a ) | for some a €  cI(j4).

P ro o f  o f  th e  M axim um  M odu lus P rin c ip le  Since lim real-valued function 
| / |  is continuous on the closed bounded set d(.A), the Extreme Value Theorem 
says Unit. it. attains a finite maximum value M  a t some point in cl(j4). If it is not 
attained in the interior, then it must be attained somewhere on the boundary' since 
it is attained somewhere. Wc next show that if it is attained in the interior, then 
/  must lie constant on A. Dy continuity /  will be constant 011 all of cl(d), so M  is 
attained 011 the boundary as well in tliis case also.

Suppose there is a  point a  in A  a t which |/ (a ) | =  M . Define subsets of A by

A% =  {2 €  A | / ( 2) =  /(a )}  and A2 =  A \ d (d ,) .

If 2 is in A bu t not in A2. then it must be in d (i4 |) . Choose a  sequence in .4: 
converging to z. Since /  is continuous on d(j4) and has value f(a ) a t  each point in 
tlie sequence, we also buve f{z) =  a and 2 €  At. Tims A C At U A2. Since Ay c  
d ( i4 |), we certainly have A%(\A2 — 0 . The set A2 is the intersection of the open 
sets A and C \  cl(Ai), so it is open. Finally, if to €  A ,, then |/(zo)| =  |/(o ) | =  M 
Thus, l /l  has a  local maximum a t sq and must be constantly equal to  / ( a )  on a 
disk centered at za. Since A is open, we can lain: the radius small enough so that 
this disk is contained in A tmd hence in Ay. This shows tliat A\ is open. If tlie set.* 
Ai and A2 were both nonempty, they would disconnect tlie connected set A. Since 
« 6 Atl we must have A2 — & and A — A\. Thus f(z )  = f(a ) for all 2 in A and 
hence also in cl(i4) as churned. ■
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Schwarz Lem m a The next theorem is an example of an application of tlui Max­
imum Modulus Theorem. This result is not one of the most basic results of the 
:ceory, but it further indicates the type of severe restrictions tliat analyticily im­
poses. This result will be quite useful in Chapter 5.

Lem ma 2.5.7 (Schw arz Lem m a) Let f  be analytic on the open unit disk A ~  
i : -  C | |z | < 1} with /(0 ) =  0 and |/(z)J < 1 far each z in A. Then |/'(0 ) | < 1 
■and \f(z)\ <  |z | for each z in  A . I f  |/'(0 ) | = 1 or i f  there I s  a point z q  other than 
v m A with\f(zo)\ — |*ol» Oicn there is a constant c with |cj =  1 and f( z )  =  cz for
ill z in A.

P roof Let g(z) =  f ( z ) fz  if z 0 and g{0) =  /'(O ). The function g is analytic
m  .4 1 xxiause it is continuous ou A and analytic on A\{0} (sec Corollary 2.4.11 to 
Morera’s Theorem). Let

Ar ~  {2 such that |z | < r}

for 0 < r  <  1 (see Figure 2.5.2). Then g is analytic on Ar, and ou \z\ = rt |p(z)| =  
f{z)/z \ < 1 fr .  By the Maximum Modulus Prindple 2.5.6. jff(z)| < 1/ r  on nil of 

that is, \f(z)\ < |z |/ r  on Ar. Holding z 6 A fixed, we can let r  -* 1 to  obtain 
h -)I <  14 Clearly, |ff(0)| < 1; that is, |/'(0 ) | < 1.

Figure 2.5-2: Schwarz Lemma

If |/(zo)l — |zo|, 20 /  0, then |g(zo)| =  1 is maximized in Ar, where |zol <  r  <  1, 
aO g is constant ou Ar. Tlie constant is independent of t .  (Why?) Similarly, if 
:/'(0 )| ~  1, then |^ | has a local maximum a t 0, so g is constant on A. ■

Tlie Schwarz Lemma is a  tool for many uscTul geometric results of complex 
analysis. A generalization that is useful for obtaining accurate estimate!? of bounds 
for functions is known as tlie L indelo f P rinciple, which is as follows: Suppose 
that f  and g are analytic on |z | < 1, that g mops \z\ < 1 otic to one onto a set G, 
that / ( 0) = 5(0), and that the range o f f  is contained in G. Then |/'(0 ) | <  Jff,(0)|
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and the image of |z| <  r ,  for r  < 1, under f  is contained in Us image under g. 
This principle is often used with g a  linear fractional transformation. Le., g(z) =  
(az + b)/(cz + d). As will be proved in Chapter 5, they take circles into circles, so 
the g image of the disk |z| <  r  is usually easy to  find (see Exercise 4 for further 
details).14

H arm onic  Functions a n d  H arm onic  C on juga tes  If /  is analytic on A and 
/  =  u +  iv, we know that it and v arc infinitely differentiable and arc harmonic (by 
Theorem 2.4.6 and Proposition 1.5.12). Let us now show that the converse is also 
true.

P ro p o sitio n  2-5,8 Let A be a region in C and let u be a bonce continuously dif­
ferentiable harmonic function on A. Then u is C°°, and in a neighborhood o f each 
point zo 6 A, u is the real part of some analytic Junction. I f  A is amply connected, 
there is an analytic function f  on A such that u — R e f.

Thus, a  harmonic function is always tlie real part of an analytic function /  (or 
the imaginary port of the analytic function if) ,  a t least locally, and on all of the 
domain of that function if the domain is simply connected.

P ro o f  We prove the last statement of tlie theorem first. Consider the function 
g — (du/dx) — i(du/dy). Wc claim that g is analytic. Setting g =  V  4- iV  where 
U — du/dx  and V — —du/dy, wc must check tliat U and V  have continuous first 
partials and tha t they satisfy the Cauchy-Riemann equations. Indeed, tlie functions 
dU/dx — d^u/dx2 and dV/dy — —SPu/dy* are continuous by assumption and art- 
equal since V2u  s  0. Also, by the equality of mixed partials,

dU =  &*u _  d2u  _  d v
dy dydx dxdy d x ‘

Thus, wc conclude that g is analytic. Fhrtlicrmore, if A is simply connected there L< 
an analytic function /  on A such that f  *  g (by the Antiderivative Theorem 2.2.5'. 
Let /  =  £•(• iv. Then f  *s (du/dx) — i(du/dy), and thus du/dx = du/dx  auc 
du/dy — du/dy. Thus u  differs from u  by a  constant. Adjusting /  by subtracting 
this constant, we get u  =  Re f .

Now we prove the first statement. If D  is il disk around zq in A , it is simply 
connected. Therefore, as a  result of what we have just proven, we can write ti =  R e / 
for some analytic /  on D. Thus since /  is C°°,n is also C°° ou a  neighborhood of 
eadi point in A, so is C°° on A. ■

Recall that when there is an analytic function /  such tha t u and v are related 
by /  — u  +  iv, we say that u and v are harmonic conjugates. Since i f  
analytic, — v and u  are also harmonic conjugates. Be carefii!! Tlie order matters

MFor a useful survey of some of the more geometric results and a bibliography, soe T H. 
MacGregor, Geomotric Problems in Complex Analysis, Am. Math. Monthly, May (1972). 447
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i  ; is a harmonic conjugate of n, then u is probably not a harmonic conjugate of 
- Instead, — u is! The prccediug proposition says that on any simply connected 
"Snon A. any harmonic Junction has a harmonic conjugate v = h n f .  Since the 
Tauchy-Rieniann equations {du/dx =  dv/dy  and du/dy — —dv/dx) must hold, v is 
auquely determined up to the addition of a  constant. These equations may be used 
cs a practical method of finding » when u  is given (sue Worked Example 1.5.20). 
Another way of obtaining the harmonic conjugate of u  on a disk, by defining it 
directly in terms of an integral, was indicated in Exercise 32 of $1.5.

M ean V alue P ro p e r ty  One reason why Proposition 2.5.8 is important is th a t It 
rubles us to deduce properties of harmonic functions from corresponding properties 
•c analytic functions. This is done in the next theorem.

T heorem  2,5.9 (M ean  V alue P ro p e r ty  fo r H arm onic  Functions) Let u be 
tirmonic on a region containing a circle of radius r  around zg =  Xq +■ iya and its 
rjerior. Then

«(*ii-llb) =  g -  J  m(2o +  rew)d0. (2.5.2)

P ro o f  By Proposition 2.5.8, there is an analytic {unction /  defined on a  region 
containing this circle and its interior such that u — R e / .  Tliis containing region 
may be chosen to be a slightly larger disk. The existence of a slightly larger circle 

.4 is intuitively dear; the precise proof is given in Worked Example 1.4.27. By 
the Mean Value Property for / ,

= f{zo + re")M.

Taking tlie real part of both sides of this equation gives the desired result. ■

M axim um  P rin c ip le  for H arm onic  F unctions FVorn the Mean Value Prop­
erty we can deduce, in a waj* similar to the way we deduced Tlieorem 2.5.1, the 
following fact.

T heorem  2.5,10 (Local M axim um  P rin c ip le  for H arm onic  F unctions)
Let u be harmonic on a region A. Suppose that u has a relative maximum atzo€ A 
that is, u(z) <  u(zo) for x near 2o). Then u  is constant in a  neighborhood of Xo-

In this theorem “maximum" can be replaced by “minimum7’ (see Exercise 6). 
Instead of actually going through a  proof Tor u(x) similar to  the proof of Tlieorem

2.5.1, we can use that result to  give a  quick proof.
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P ro o f  On a  disk around zn, w =  R e /  for some analytic / .  Then is analytic 
and |eS<*)| =  Thus, since ef  is staidly increasing in a; for all real x, the
maxima of u are the same as those of |c^|. By Theorem 2.5.1, ef is constant in a 
neighborhood of Zn\ therefore, cu and hence u are also (again because i f  is strictly 
increasing for x  real). ■

From this result we deduce, exactly as the Maximum Modulus Principle was 
deduced from its local version, the following “global” version.

T heo rem  2.5.11 (G lobal M axim um  P rin c ip le  for H arm onic  F unctions) 
Suppose that A C C  is an open, connected, and bounded se t Let u : d(j4) —»R be 
continuous and harmonic on A and let M be the maximum o fu o n  bd(j4). Then

(i) u(x,y) < hi for alt (x, y) €  A.

(ii) If  n(x,y) — Af for some (x,y) €  A, then u is constant on A.

There is a  corresponding result for the minimum. Let m  denote the minimum 
of u  on bd(j4). Then

(I) u(x, y) > m  for (ar, y) €  A.

(ii) If n(x, y) — m  for some (x,y) €  A, then u is constant.

The Minimum Principle for Harmonic Functions may be deduced by applying 
the Maximum Principle to — u.

D irich let P ro b lem  for th e  D isk a n d  Poisson’s  Form ula There is a  very 
important problem common to mathematics, physics, and engineering called the 
D irichlet Problem. It is this: Lei A be an open bounded region and let no be a 
given continuous function on bd(i4). Find a real-valued function u on cl(yl) that i> 
continuous on cl(/l) mid harmonic on A and that equals no on bd(j4).

There arc (reasonably difficult) theorems slating tha t if tlie boundary bd(/i) is 
“sufficiently smooth." then there always is a solution u. However, wc can easily 
show tliat the solution is always unique.

T heo rem  2.5.12 (U niqueness fo r th e  D irich let P rob lem ) The solution to tk- 
Dirichlet Problem is unique (assuming that there is a solution).

P ro o f  Let u  and u be two solutions. Let 4> — u -  u. Then 0  is harmonic and 
0  =  0 on bd(j4). We must show that 0  =  0.

By the maximum principle for harmonic functions, <b{r, y) < 0 inside A. Simi­
larly, from the minimum principle, 0 (x ,y) >  0 on A. Thus 0  =  0. ■

We want to  find the solution to the Dirichlet Problem for tlie case where the- 
region is an open disk. Tb do so wc derive a  formula tha t explicitly expresses the 
values of the solution in terms of its values on tbe boundary of tlie disk.
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T heorem  2.5.13 (Poisson’s Form ula) Assume that u  is defined and continuous 
. r, the dosed disk {z such that |z| <  r} and is harmonic on the open disk D(0; r)  =  
: such tltat |z| <  r}. Then for p < r,. we have the real form  o f  Poisson’s 

Formula

K.hwh is equivalent to the complex fo rm  o f  P o isso n ’s  Formula

The technical parts of the following proof require an acquaintance with the idea 
>i uniform convergence. The student who has not studied uniform convergence 
n  advanced calculus may wish to  reread tliis proof after studying §3.1, where the 
relevant ideas are discussed. Notice tha t if we set z =  0 in the complex form of 
Poisson's Formula, we recover the Mean Value Property of hannonic functions.

P ro o f First note that since ti is hannonic on D(Q; r) and D(0;r) is simply con­
nected, there is an analytic function /  defined on jD(0, r )  such tliat u =  R e / .  Next, 
yt 0 <  s  <  r  imd let 7* be the circle |z| =  s. Then, by Caudiy's Integral Formula
2.4.4, we have

for all z  such that |z | <  s. Wc next manipulate this expression into a  form suitable 
for taking real parts. To do so, let z =  s 1/! ,  whidi is called the reflection  of z in 
the cirde |( | =  s. Reflection is pictured geometrically in Figure 2.5.3.

Thus if z  lies inside the rirdc, then z lies outside the circle, and therefore

tor jz| <  s. Subtracting the preceding integral from

we obtain

Observing tliat |C| — s, we can simplify as follows:
1 1  1 1 1 1 z
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y

Figure 2.5.3: Reflection of a  complex number in a  circle.

Hence, we have

that is,

i f  /K H K I’ - W V
/ ( 2 ) - W , - - c i c - * p  « •

rf .« , _  •  r  x*2 - / > * ) „

where p  <  a. Noting th a t lae* -  pe**|2 =  a2 +  p2 -  2«pcos(^ -  0) and taking the 
real parts on both tides of the equations, we obtain

=  —  [** -

2tt j 0 a2 +  p2 -  2spoos(<£ — 6) '

Keeping p  and <f> fixed, note th a t this formula is valid for any s  such that 
p  <  s < r. Since «  is continuous on the closure of D (0;r) and since the function 
a2 +  p* — 2spcos(^ — 0) is never zero whenever s  >  p, we conclude th a t for s  >  p.

[ufse’̂ f s 2 -  p2)]/fs2 +  P2 — 2apcos(0 -  0))

is a  continuous function of s  and 0 and hence (with p,<k fixed) is uniformly con­
tinuous on the compact set, 0 <  0 < 2n, (r +■ p)/2 <  a <  r . Consequently. a? 
s~*r,

u(scie)(s2 — p2) 
a2 +  p2 — 2spcos(^ — 0)

uniformly in 0, which implies that as s —► 

2?r y0 a2 + p*  — 2apcos($ — 0)

u(re<a)(r2 -  p2) 
r 2 + p*  — 2rpcos(^ — 0)

r,
J _  / 2,r «(re,'°)(r2 - p2) ..
2jt J o r* +  p2 - 2 r p c o s ( ^ - 0 )
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S olu tion  A C d(A ) and bd(A) C c1(j4 ) ,  s o  A U bd(A) c  d(A ). In tbe other 
direction, if z is in d(A ) and not in A. then

2 €  (lim(A)) n  (C\A) C d(A ) n  d (C \A ) =  bd(A).

Titus, d(A ) C A U lid(A).

E xam ple  2.5 .17 Suppose u : C  —» R is a bounded hannonic Junction. Show that 
u must be constant

S olu tion  Since u is hannonic on the am ply connected set C, Proposition 2.5.8 
says that there is a  hannonic function v  : C —» R sudt th a t /  *  n +  iw : C  —» C 
is analytic. Wc have |e ^ x)| =  =  cu(2). Since u(z) remains bounded, so
docs the entire function M . By Liouvilhrs theorem, eSte) must be a  constant, say. 
K.  For each z, / ( z )  must be a  choice of logarithm for K.  But, since /  is continuous, 
it  cannot switch bom one value of lo g /f to  another, so /  must be constant. Thu* 
v —Re f  is also constant.

E xam ple 2.5.18 Suppose f  and g are one to one analytic functions from the tour 
disk D onto D that satisfy f(Q) = p(0) andg'(0) =  /'(()) ^  0. Show that f(z)  = g(z I 
for all z in D.

S olu tion  The function h(z) = <7-> (/(z )) is analytic from D to  D and /t(0) = 
lT 1(/(0)) =  5-1 (<7(0)) =  0. Since ff(/i(z)) =  /(* ), we have s'(/i(0))./i'(0) =  / ' ( Ol. 
so h'(0) =  /'(0)/< /(0) =  1. The Sdiware Lemma shows tha t h(z) = cz for a 
constant c; since A'(0) =  l .c  =  1. Tlius f(z)  =  g(h(z)) — g(z). We will see in 
Cliapter 5 that the assumption that /  and g are one to  one forces tlie derivative to 
be nonzero, so the assumption of nonzero derivatives is reallj* superfluous.

Exercises
1. Find the maximum of |c*| on |z| <  1.

2. Find the maximum of |eosz| on [0,2ir] x (0,2ir).

3. Give an example to show that the interpretation of the Maximum Modulus- 
Principle that reads T h e  absolute value of an analytic function on a  regies 
is always smaller than its maximum on the boundary of the regionr  is false if 
tbe region is not bounded. The region in your example should be something 
other than all of C so tha t tbe boundary is not empty.

4** (a) Let the mapping T b e  defined by T(z) — R[z—zo)/(R2—zaz)- Show tha: 
for |zo| <  ft, T  takes the open disk of radius R  one to one onto tlie disk 
of radius 1 and takes zo to the origin. Hint: Use the Maximum Modulus- 
Theorem and verify that zq 0 and |z| =  R  implies that \Tz\ =  1.
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13. Let /  be analytic and let / '( z )  jE O o n a  region A. Let Zq €  A and assume 
that /(zo) £  0- Given c > 0, show that there exist a  z €  A and a £ €  A such 
that | z -  *o| < c, |C -  zol < and

l/(*)l > !/(*>)! 1/(01 < l/(*o)l-
Hint: Use the Maximum Modulus Theorem.

14. Prove H adam ard’e Three-circle Theorem: Let /  be analytic on a region 
containing the set R  in figure 2.5.4. Let R  =  {z | n  <  |z| <  r3} and assume 
0 < n  <  Ti < r3. Let Jlfj, M2, Af3 be tlie maxima of | / |  on the circle- 
|z| =  r1. r 2. r 3, respectively. Then we have the inequality

M t*gtm/r,) <  A f l o s t o / n i ^ f n / n )

Hint: Let A =  — ) / log(r3/ r j ) and consider g(z) — zxf(z ) .  Apjd>
the maximum principle to g; i>c careful about the domain of analytidty of g

y

Figure 2.5.4: Hadamard’s Thrce-drcic Theorem.

15. Let g be analytic on {2 such tluit \z\ <  1} and assume that |g{z)| — |z| for 
|z| <  1. Show that g(z) *  eiBz for some constant 0 €  {0,2jrJ. Hint: Use lie- 
Schwarz Lemma.

16* * Prove: If n  is continuous and satisfies the Mean Value Property, then -  «r- 
C°° and is harmonic. Hint: Use Poisson’s Formula.

17. Evaluate J   ̂ where 7 is the drcle |z| =  2.

18. The function f ( z )  is analytic over the whole complex plane and Im /  < *? 
Prove tha t /  is a  constant.
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8. * Let /  be entire and let |/(z ) | < M  for z on the circle |z| =  12; let R  be fixed. 
Prove that

|/W (re» ) | < k\M  
(H — r)fc k = 0, 1, 2, . . .

for all 0 <  r  <  R.

9. Find a  harmonic conjugate for u(x, y) = g2 -fry2 - x  
(x  -  l )2 +  y2 on a  suitable domain.

10. Let /  be analytic on A and let / ' ( 2o) 0. Show that if 7  is a sufficiently
small circle centered at zq. then

2jrf f  dz 
/'(*>)

Hint: Use the Inverse Function Theorem.

11. Evaluate f  c~**eei*d0.
Jo

12. * Let /  and g he analytic in a  region A and let g'(z) 0 for all z €  A; let g h*-
one to  one and let 7  be a closed curve in A. Then for z not on 7, prove tha:

/(* )/(7 ;* ) =
a'{z) f  /(C) fr
«  1 9 ( 0 - 9 ^

Hint: Apply the Cauchy Integral Formula to  h(Q  =  /(C)(C -  2)/(ff« ) - y ( -  
for z  ?£ £ and /t{£) =  f(Q/g'[Q- Apply this result to  the case in whici 
p(«) =  c*.

13. Simplify: eI°8‘;logt; Ipg(—r); *toR<—1).

14. Let A =  C minus the negative real axis and zero. Show th a t log* =  z 
where 7* is any curve in A joining 1 to  z. Is A simply connected?

15. Let /  be analytic on a  region A and let /  be nonzero. Let 7  be a  closed cur.v 
homotopic to a  point in A. Show that

L
m
/(* )

dz — 0.

16. * Let /  be analytic on and inside the unit circle. Suppose that the imag* ® 
the unit circle |z| =  1 lies in the disk D  =  {z such th a t |z — zol <  r ) . S h w  
that the image of the whole inside of tlie unit drcle lies in D. Illustrate
e*.

17. Is /  xdx  +  xdy  always zero if 7  is a  closed curve?
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Chapter 3

Series Representation of 
Analytic Functions

In Chapter 2 we defined an analytic function to  be one that has a  derivative in the 
sense of complex functions of a  complex variable. There is an important alternative 
way to view an analytic function. In some developments of complex function theory, 
a function /  is called analytic if, near each point 20 in its domain, it is locally 
representable as a  convergent power series centered a t zfc.1 As we shall see, this 
series must be the Taylor scries of /  centered a t Zn, namely

/(* )+ / '(* > > (*  -  * > + -  z o f + - . . = £
«i=0 **■

In other words, one could alternatively define an analytic function to  be one which 
is infinitely differentiable and whose Taylor series converges to  the function. We 
will reconcile this alternative approach with ours in this chapter.

With real variables, both the question of infinite differentiability as well as the 
convergence of the Thylor series of a  given function can present a  problem. For 
example, the function

et \ f  ** f o r x > 0  
/(X) =  \  - x 2 fora: <  0

is differentiable, but f ( x )  — 2|x|. Thus, the second derivative does not exist a t 
0. Even if all tire derivatives exist, the Tfetyior scries might not converge to  the 
function. The junction

for x  t̂ O 
for x  s=0

'S mi, fur example, H. Carton, Elementary Theory o f Analytic Functions o f One or Several 
Complex Variables (Reading, Mass.: Adtlisou-Wesley, 1963 and New York: Dover Publications, 
1995).
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is an example. Using induction one can chock that f (k^(0) exists for all k (in the 
real* variable sense) and / ,fc,(0) =  0. Here all coefficients of the Taylor series a t 0 
are 0, so the resulting series is aero, which does not equal / (x )  in any nontrivial 
interval around 0.

A nice thing about complex analysis is that neither of these difficulties arises. 
This reinforces the fact that assuming the existence of a complex derivative is much 
stronger than assuming the existence of a real derivative. We discovered in Chapter 
2 that as soon as the first derivative exists on a region, all the higher ones must 
also. We will find in this chapter that the second difficulty also disappears. If /  
is analytic on a  region A and zo is in A, then the Thy lor series of /  centered at zt 
automatically converges to /  on the largest open disk centered a t zo and contained

which is valid provided |£| <  1. We will show in tlie first section that tins work- 
just as well for complex as for real numbers. In §3.2 we will use it to expaivi 
the integrand in the Cauchy Integral Formula as an infinite series, integrate (hi? 
series term by term, and use the Cauchy Integral Formula for Derivatives 2.4.6 :» 
recognize the resulting coefficients as tlte correct ones for a  Thylor scries.

Buildiug on the preparation iu §3.1. in §3.3 we investigate the series represen­
tation of a  function analytic on a deleted neighborhood, that is. a function with hl 
Isolated singularity. The resulting series, called the Laurent series, yields vaiiiub* 
information about the behavior of fuuctions near singularities, and this behavior s  
tlic key to the subject of residues and its subsequent applications.

3.1 Convergent Series of Analytic Functions
We shall use the Cauchy Integral Formula 2.4.4 to  determine when the limit of «. 
convergent sequence or series or analytic functions is an analytic fimetion and whsx 
the derivative (or integral) of the limit is the limit of the derivative (or Integra* 
of the terms in the sequence or series. The basic type of convergence studied c  
this chapter is uniform convergence; the Weierstrass M  Test is a basic tool used re­
determine such convergence. In §3.2 we shall be especially interested in the sp<*r 
case of power series, bnt we should be aware that some important func(ion> 
convergent series that are not power scries, such as the Riemann zeta function a*? 
Worked Example 3.1.15).

The proofs of the first few results are slightly technical, and since thev ar» 
analogous to the case of real series, they appear a t the end of the section.

in A.
Tlie reader is probably familiar with tire geometric series

C onvergence o f  Sequences a n d  Series We begin with some basic d e fic its*  
and terminology.
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D efinition 3.1.1 A sequence z„,n =  1 ,2 ,3 ,... of complex numbers is said to 
converge to a complex number zq if, for each c > 0, there is an integer A’ such 
that

n>  N implies that \in — s»\< «.

Convergence of z* to re ts denoted by in -*  zq.
An infinite series 53*li ° f complex numbers is said to converge to S, and 

we write

^ ak = S
ArsI

if the sequence o f partial sums defined by s„ =  71". , a t  converges to $ .

The limit of a convergent sequence is unique; tlmt is, a  sequence can converge 
to only one point z». (This and other properties of limits were discussed in §1.4.) 
A sequence z* converges iff it is a  Cauchy sequence, in other words, if, for ead) 
* >  0, there is an N  such that n ,w  > N  implies tha t |z„ -  £m| <  c. (Equivalently, 
the definition of Cauchy sequence can read: For each e >  0 there is an AT such that
n > N  implies tha t |z* -  Zn+p| <  e for every integer p  =  0 ,1 .2 .---- ) This property
of C  =  R2 follows from the corresponding property of R, and we shall accept it 
from advanced calculus.

Corresponding statements for the scries JZ tli a* can be made if we consider 
the sequence of partial sums &„ =  ak. Since s„+p -  s„ =  7^t=n+i t*10
Cauchy criterion for sequences becomes the Cauchy criterion fo r  series:

YlT=i ak oonverges iff, for each e >  0, there is an Ar such that n > N  
implies that

*+p

E  «
fc=n+l

<  e for all p  =  1 ,2 ,3 ,.. .  .

As a  particular case of the Cauchy criterion, with p — 1 we sec tiiat

00

if  ^  njt converges, then a* —• 0.
*=i

Tlie couverse is not necessarily true, as the harmonic series JZtLi 1 fk  from calculus 
demonstrates.

As with real series, a  complex scries <** is said to converge absolutely 
if y y . ,  |ajt| converges. Using the Cauchy criterion for series, we get the following 
proposition.

P roposition  3.1.2 I f  £ jtL i °* converges absolutely, then it converges.
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The proof of this proposition is found a t  the end of the section. The example 
(—1 )kfk  from calculus shows that the converse need not be true; tha t is, this 

is an example of a  series that converges, but not absolutely.
This proposition is important because |ojt| is a  real series, and the usual 

tests for real series that we know from calculus can be applied. Some of those tests 
are included in tlie next proposition (again the proof appears a t the end of the 
section).

P ro p o sitio n  3.1.3 The following tests for the convergence of series hold.

(i) Geometric series: I f  |r | <  1, then r"  converges to 1/(1 -  r) and 
diverges (docs not converge) i / | r |  > 1.

(ii) Comparison test: I f bs converges and 0 < a* <  then £ £ 1 ,  o* 
converges: if'£%Ll cfc diverges and 0 <  c*. <  «fe, then £ £ 1 ,  d* diverges.

(iii) p-series test: n ~P converges if  p > 1 and diverges to oo (that is, the
partial sums increase without bound) if p < 1.

(iv) Ratio test: Suppose that iim On+l
On

exists and is strictly less than 1. Thcr.

On converges absolutely. I f  the limit is strictly greater than 1, the sene* 
diverges. I f  the limit equals 1, the. test is inconclusive.

(v) Root test: Suppose that Hmn_ o0(|an |) ,^w exists and is strictly less then 1 
Then a„ converges absolutely. I f  the limit is strictly greater than 1. the 
series diverges; if  the limit equals 1, the test is inconclusive.

There are a  few other tests that we shall occasionally call upon from calculus 
such as the alternating series test and tlie integral test. We assume tlie reader wffr 
review' them as the need arises.

U nifo rm  C onvergence Suppose that /„  : A - » C  is a  sequence of functions e l  
defined on the set A. Tlie sequence is said to converge poinlvrise iff, for 
z 6  A, the sequence /„(* ) converges. Tlie limit defines a  new function / (z )  on A 
A more important kind of convergence is called uniform convergence and is defies! 
as follows.

D efin ition  3.1.4 A sequence f n : A —» C  of Junctions defined on a set A a  sac.' 
to converge uniform ly to a function f  if, for each e >  0, there is an A* swa- 
that n >  N  implies that |/„ (z ) -  / ( z ) | <  c for all z €  A. This is written ‘f„ — f  
uniformly on A. ”

A series </*(z) is said to converge point-wise i f  the corresponding par­
tial sums s„(z) =  X2*=1ffjt(z) converge poinimise. A series Y^kLi 9k(z) is said sj- 
converge uniform ly iff sM(z) converges uniformly.



$3.1 Convergent Series o f Analytic Functions 187

Evidently, uniform convergence implies pointwise convergence. Tlie difference 
between uniform and pointwise convergence is as follows. For pointwise conver­
gence, given e > 0, the N  required is allowed to vary from point to  point, whereas 
for uniform convergence we must be able to find a  single N  that works for all z.

It is difficult to draw the graph of a  complex valued function of a  complex 
variable, since it would require four real dimensions, but the corresponding notions 
for real-valued functions are instructive to  illustrate. The geometric meaning of 
uniform convergence is shown in Figure 3-1.1.

Figure 3.1.1: Uniform convergence on an interval (a, 6).

If £ >  0, then for large enough n , the graph y — /„(* ) must stay inside the “r- 
tube” around the graph of /  (the tube’s width is measured ill the vertical directiou).

The concept of uniformity depends not only on the functions involved but also 
on the set on which we arc working. Convergence might be uniform on one set but 
not on a larger set. The following example illustrates this point. The sequence of 
functions / n(x) =  x" converges pointwise to the zero function f(x) — 0 for x  in the 
half-open interval [0,1 (, but the convergence is not uniform. The function value 
x" takes much longer to  get close to 0 for x  close to 1 than for x  close to 0; by 
taking x  close enough to 1, we need arbitrarily large values of n. The convergence 
is uniform on any closed subinterval (0,r] with r  <  1. Since the worst case is a t 
x  =  r ,  whatever n  works there also works for all smaller x. See Figure 3.1.2.

Theorem 3.1.5 (Cauchy Criterion)

(i) A sequence /„ (z ) converges uniformly on A iff, for each c > 0, there is an 
N  such that n >  N  implies that |/„  (z) — / n+p(2)| <  e far all z  & A and all 
p — 1 ,2 ,3 ,. . . .

(ii) A series ICjtLi ®t(2) converges uniformly on A iff, for each # > 0 ,  there is an
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Figure 3.1.2: Convergence of x" to  0 is not uniform on {x 10 <  x < 1}.

N  such that n > N  implies that
»+p

9k[z)
t=n+1

< c

for allz € A  and all p — 1,2, —

Tire next result states a  basic property of uniform convergence.

P ro p o sitio n  3 .1 .6  I f  the sequence f n consists o f continuous functions defined 
A and if fn~* f  uniformly, then f  is continuous on A. Similarly, i f  the functions 
9k(z) are continuous and g(z) =  fflfc(z) converges uniformly on A, that g ts 
continuous on A.

Propositions 3.1.5 and 3.1.6 are proved a t the end of tins section.
Thus, a  uniform limit of continuous functions is continuous. If tlie convergent 

is not uniform, then the limit might he discontinuous. For example, let

forx  <  —1 fn
for — 1 fn  < z<  1 fn
for 1 fn  < x

and

for — oo <  x  < 0
forx =  0
for 0 <  x  < oo,
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as illustrated iu Figure 3.1.3. The functions f„ converge pointwise to  /  on the whole 
line, but the convergence is not uniform on any interval th a t contains 0, since for 
very small nonzero values of z , n  may have to be quite large to bring / n(x) within 
a specified distance of /(x ) . Each of the functions f„ is continuous, but the limit 
function is not.

Figure 3.1.3: A nonnniform limit o f continuous functions need not be continuous.

W eierstrass  M  T es t The Weierstrass M  Test is one of the most useful theoretical 
and practical tools for showing th a t a  series converges uniformly. It does not always 
apply, but it is effective in many cases.

T heorem  3.1 .7  (W eierstrass  M  T est) Let g„ be a sequence o f functions defined 
on a set A C C. Suppose that there is a sequence of real constants Af„ >  0 such 
that both o f the following conditions hold.

(«) M * ) l  £  f*>r all z & A

(“ ) TZLi converges
Then 9n converges absolutely and uniformly on A.

P ro o f  Since J  converges, for any c >  0 there is an Ar such that n  > N  
implies Mk <  c for all p — 1 ,2 ,3 .. . . .  (Absolute value liars arc not needed
because Mn >  0.) Thus, n  >  Ar implies

» + p  » + p  « + p

5 2  9k(z) < 5 2  M £) i ^  5 2  Mk < e’
<r=n+l fc=n+| Ar=n+1

so by the Cauchy Criterion 3.1.5, we have convergence, both absolute and uniform, 
as desired. I
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E xam ple Consider the series g(z) = *“/*»• We claim that this series con­
verges uniformly on each o f the sets Ar — {a such that |z | < r} , where 0 <  r  < 1. 
(We cannot let r  =  1.) Here gn(~) — zn/n  and |<?„(z)| =  |z |”/n  <  r" /n  since
W ^  r -

To show this, we let M„ = rn/n . Since 0 <  M„ < rn, the series 52 M„ converges 
by comparison to the convergent geometric series 52^=or "- Therefore, our series 
converges uniformly on Ar by the Weierstrass M  Test. It converges pointwise on 
the set A — {z €  C | |a | <  1} since each z  in A  is in Ar for r  dose cnougit to 1. 
(See Figure 3.1.4).

y

Figure 3.1.4: Region of convergence of 52(z’‘/ n ): uniformly on Ar, pointwise ou A.

This series docs not, however, converge uniformly on A. Indeed, if it did, '£ x n/n  
would converge uniformly ou (0,1[. Suppose that this were true. Then for any e > l» 
there would be an N  such that n > N  would imply that

— +
xn+r -n+p

n  n + 1  n + p

for all x € (0, l |  and p  — 0 ,1,2, ----But the harmonic-type scries.

N  N  + \
diverges to Infinity (that is, the partial sums —+ oo). so we can choose p  sucli tha:

mr + • • •  +  ------ ---------- - >  2cAr N + p

Next, we choose z  so dose to 1 that x^+r* > j j2. Then

n  N + p  Vat n + p )  ^
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which is a  contradiction. However, uotc that g{z) is still continuous on A because 
it is continuous a t cadi z, since cadi z lies iu some Ar ou which we do have uniform 
convergence. ♦

Series o f A nalytic Functions The next result, formulated by Karl Weierstrass 
in approxitnatdy I860, is one of the main theorems concerning the convergence of 
analytic functions.

Theorem  3.1.8 (A nalytic Convergence Theorem ) (i) Ltd A  be an open set 
in C and let f„ be a sequence o f analytic functions defined on A. I f  /„  —* /  
uniformly on every closed disk contained m A, then f  is analytic. Further- 
moTc, f t  —* f  pointwise on A and uniformly on every closed disk in A (see 
Figure 3.1.5).

(ii) I f  Qk is a sequence o f analytic functions defined on an open set A  in C and 
s (2) =  E te l  9k{z) converges uniformly on every dosed disk in A , then g is 
analytic On A and g '(z) — X'JL, g£(z) pointwise on A and also uniformly on 
every closed disk contained in A.

Figure 3-1.5: Uniform convergence on dosed disks in the set A.

This theorem reveals yet smother remarkable property of analytic functions that 
is not shared by functions of a  real variable (compare §2.4). Uniform convergence 
usually is not sufficient to justify differentiation of a series term by term, but for 
analytic functions it is sufficient.

The proof of the Analytic Convergence Theorem 3.1.8 depends ou Morera’s 
Theorem and Cauchy's Integral Formula, wliidi were studied in §2.4. lb  prepare 
for this proof let us first analyze a  result concerning integration of sequences and 
series.

P roposition  3.1.9 Let 7  : [«, 5] —► A be a curve in  a region A and let /«  be a 
sequence o f continuous functions defined an 7 ([a,6]) which converges uniformly to
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f  on 7 ((ct,b]). Then

Similarly, 9n(z) converges uniformly on 7 , then we can interchange infinite,
stmts and integrals:

P ro o f Tlie function /  is continuous by Proposition 3.1.6 and $0 is iutcgmhle. 
Given e >  0, we can choose A such th a t n > N  implies th a t |f n(z) — f(z)\ < r. for 
all z  on 7 . Then, by Proposition 2.1.6,

from which the first assertion follows. The second assertion is obtained by applying 
the first to the partial sums. (The student should write out the details.) ■

P ro o f o f  th e  A n aly tic  C onvergence T heo rem  3 .1 .8  As usual, it suffices to 
prove (i). Let zo €  A  and let {z such th a t \z -  zo| <  r} be a  closed disk around s* 
entirely contained in A. (Why does such a  disk exist?) Consider D{zq: r )  — {z such 
th a t |z  — zo\ <  r} , which is a  simply connected region because it is convex. Since 
/„  —» /  uniformly on the set {z  sudi th a t \z — Zq\ < r ) ,  it is dear th at /„  — /  
uniformly on D (ze;r). We wish to  show th a t /  is analytic on Z?(zo;r). To do tin.- 
we use Morera:s Tlieorem 2.4.10. By Proportion 3.1 -G, f  is continuous on D(za: r 
Let 7  lie any dosed curve in D{zo;r). Since /„  is analytic, J  f n *= 0 by CauchyV 
Tlieorem and by tiic fact th a t D{zq;t) is simply connected. B ut by Proposition 
3.1.9, /7 f n —» / T/ ,  so / 7 /  =  0. Thus by Morera’s Theorem /  is analytic on 
&(3o-r)-

We must still show th a t / ' —►/' uniformly on closed disks. Tb do th is we uae 
Candiy’s Integra) Formula for Derivatives 2.4.6. Let B — {z such th a t |z —2j>| < r • 
be a  dosed disk in A. We can draw a  c iide  7  of radius p > r  centered u t £» thac 
contains B  entirely in its  interior (sec Worked Example 1.4.27 and Figure 3.1.6,.

For any s  €  B,

by tbc Cauchy Integral Formula. By hypothesis, /„  -* /  uniformly on the do& c 
disk {z such th a t |z -  «o| <  p}, which lies entirely in A. Then, given c >  0, we pk& 
AT such that n>  N  implies th a t \f„(z) -  f(z)  | <  e for all z in ib is disk (which *«•

\U z )- f{ z ) \\d z \< d (1)
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Figure 3-1.6: A closed disk in an open set can be sliglttly enlarged.

can do by iiypothcsis). Since 7  is the boundary of this disk, n  > N  implies that 
-,/«{C) -  /(O l <  t. ou 7 . Note that

i/ m - r w i < * : |

and observe tha t for (  and 7  and z  G B, |£ — z| > p — r. Hence n  > hT implies that

Since p and r  are fixed constants that arc independent of z € B , wo get the desired 
result. ■

Applying the Analytic Convergence Theorem 3-1.8 repeatedly we sec that the 
fcth derivatives converge to  /*** uniformly on dosed disks in A. Notice also 
that this theorem does not assume uniform convergence on all of A. For example, 
£ )» !, z" /n  <3U A ~ { z  such that |z | <  1} converges uniformly on the sets Ar — [z  
such that |z | < r} for 0 < r  < 1 (as we saw in the preceding example) and hence 
converges uniformly on all dosed disks in A. Thus we can condudc that £  z”/ n 
is analytic on A  and that the derivative is £ z n-1, which also converges on A. 
However, as that example demonstrated, we do have pointwise but not uniform 
convergence on A; convergence is uniform only on cadi dosed subdisk in A.

Technical P roofs Now we provide the missing proofs.

P ro o f o f P roposition  3.1.2 By the Caudiy Criterion 3.1.5, given t  > 0 there 
is an Ar sudi that n >  N  implies

n+p
I* — It 2» * - - -

fc=«+l
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Bui
n+p
£

fcsn+l
Ok

n+ p

<  £  M
Jr=n+1

<  €

by the triangle inequality (sec $1-2)- Thus by the Cauchy Criterion 3.1.5, ak 
converges. ■

P ro o f o f  P ro p o sitio n  3.1.3

(i) By basic algebra,

. s n 1 — rn+1l + r + r + . . .  +  r ^ s  —-------

if r  1. Since T’" * 1 -» 0  as n  - » oo if |r | <  1, snd since |r |" +* —»oo if |r | >  1. 
we have convergence if |r | <  1 and divergence if |r | >  1. Obviously, 
diverges if Jr| =s 1, since r n does not converge to  zero.

(ii) The partial sums of the series hk form a  Cauchy sequence and thus 
the partial sums of the scries ]C *si°*  &lso form a  Cauchy sequence, shier 
for any k  and p we have a* 4 -a^+1 4 . . .  4  Qk+P <  fc* 4  6jt+i 4 . . .  4-6*+,,. 
Hence t a* converges. A positive series can diverge only to  4oo, so given 
M  >  0, we can find &a sudi th a t k > ko implies ej 4  c2 4  . . .  4  c* >  ilf 
Therefore, for k > ko,di 4 dz 4 . . . 4<fe >  -M, so dk also diverges to  o t.

(iii) F irst suppose th a t p < 1; in th is case 1 jn p > l /n  for all n  =  1 ,2 ,___
Therefore, by (ii), \/n p will diverge if  £]n»i ! / n  diverges. We now
recall the proof o f th is from calculus:2 If $k =  1 /1 4 1 /2 4  ...+ l/ f c , tlien Sk is 
a  strictly increasing sequence of positive real numbers. W rite S& as follows:

sj* =  1 4

>  1 4

5 + ( l  + i )  + G + 5+? + 5)
(2*-' + i + "  + 2*)

I+G)+(0 +"+G)=i+5-
4 . ..4

Hence Sk can be made arbitrarily large if k is made sufficiently large; thus 
E SL i 1/** diverges.
Now suppose th a t p > 1. If we let

1 1 . 1
** ~  l»» +  2^ +  3«*

a\Ve can aim promt (iii) hy using the integral test for positive series (see any calculus teat 
Tlie demonstration given here also proves the Cauchy condensation te s t Let £ a n be a series of 
positive terms w ith o u t <  a„ . Then £  Qn converges iff £ J i |  2^«j, converses (see G. J . Porter 
An alternative to  the integral test for infinite a m ,  Am. Math. Monthly, 79 (1972), 634).
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then Sk is an increasing sequence of positive real numbers. On the other hand,

S2*-l —

2fe” '
w + ( h + 5=)+ ( i + 5 +£ +£ ) +-•

(  1 . 1 \  1 2 t 4 t
*  \ (2 fc- , )»» *  ” ‘ +  (2k - i y )  ~  I P *  2p + 4P +  (2k-Tjp 

1 . 1 1 . 1 ^ 1  
!»*-> +  2P"1 +  4p- ‘ + " * +  (2*-i)p-» l  -  1 /2P -*

(Why?) Thus the sequence {a*} is bounded from above by 1/(1 -  1/2P_1): 
hence j j l j  I /n p converges.

(iv) Suppose th a t 

be such that

i Iim I-n—oo I i
n ^ N  i

------ 1 =  r  <  1. Choose r' sudi th a t r  <  r ' <  1 and let N
On I 

implies

“n+l
On

< r'.

For k  >  N , we have

\ok\ < »> *_ , | < (r')2|afc- 2| < — <

Tiie scries l°fc| converges by comparison to the convergent geometric 
series with ratio iJ. If

Iimn—*oo
Ow-H
On

— r  >  1,

dioose t* sud i th a t 1 <  y> <  r  and let N  be sudi th a t »  >  N  implies that 

“ ■ > T>- How* (ow+pl >  (r,)p|a ^ |, and so lim „_0O |ajv| =  oo, whereas■ ttf| *
the lim it would have to  be zero If the sum converged (see Exercise 10). Thus, 

E te i  ak diverges. Tb see th a t the test Tails if Iim |^2±1 =  1, consider
n-»oe| ti„

the two scries 1 +  1 +  1 +  . . .  and l /n p for p > 1. In both cases 
Iim lOn+l
*—ool On — 1, but the first scries diverges and tlie second converges.

(v) Suppose th a t lo^p/n =  r  <  i Choose i* such th at r  <  r* < 1 and Ar
such th a t n >  N  implies that |o „ |, /n <  r 7, in other words, th a t |a „ | <  ( r ')n .
The series

M  +  M  + . . .  +  Io-at—i | +  ( r ')w +  ( / ) w+l + . . .

converges to
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so by (ii), J2T=i la*l converges. If Iim„_oo |o ,,|1̂ n =  r  >  1, choose 1 <  rf < r 
and Ar such th a t n > N  implies th a t jan l^" >  r ' or, in other words, th a t 
|On| >  (r,)B. Hence limn_ 00 |an| =  oo. Therefore, Ŷ .T=i ak diverges, 
l b  show th at tlie test fails when limn_oc |a „ |I/,n =  1, we use these lim its from 
calculus:

t a f i r . i  t o a y ' " = .
ii—oc \ n j  ii—oo \n'/

(take logarithms and use L’Hopital’s rule to  show tlia t (log i)/ar -» 0 as 
x  —»oc). But l / n  diverges and l /« 2 converges- ■

Proof o f 3.1.5 (Cauchy Criterion)
(i) F irst we prove tlie “if* part. Let. f(z)  =  limn_ 00/ n (z), which exists because 

for eacli z , /„ (z ) is a  Cauchy sequence. We wish to  show th a t /„  —» /  
uniformly on A. Given e >  0, choose N  sudi th a t |/„ (2) — f n+v(z)\ < ( /‘l  
for n  >  iV and all p > 1. The first step is to  show th a t for a ry  z  and 
any n >  N, \fn(z) -  f{z)\ < f . For z  €  A, choose p large enough so that 
|/„ +p(z) -  /(z )j <  c/2, which is possible by pointwise convergence. Then, by 
tlie triangle inequality,

(/■(*) -  /(* )l <  I/• (* )  -  M * ) \  +  |/n ^ (2 )  -  /(Z )| <  </2 +  c/2  =  t.

(Notice th a t although p depends on z, N  docs not.)
Conversely, if /„  -► /  uniformly, given c > 0 dioose N  such th a t n  >  .Y 
implies |/„ (z ) -  f ( z ) | <  e/2  for all 2. Since n  +  p >  Ar,

l/l»(z) “  fn+p(z )\ — l/»i(2) ~ f ( z )\ +  \ f ( 2) ~  /n+J>(~)| < r/2 + e/2 = c.

(ii) By Applying (i) to  the partial sums, we deduce (ii). ■

P ro o f o f P ro p o sitio n  3 .1 .6  It suffices to prove the assertion for sequence? 
(Why?). We wish to show that, for zq €  A, given e > 0, there is a  S >  0 such tli*: 
|z -Z o | <  S implies that |/ ( z ) —/ ( 2o)| < c. Choose N  such that |/a ’(2) - / ( z ) | < f j  
for all z £  A. Since /,v  is continuous, there is a S > 0 such that |/jy (s) — //v(z0)! < 
r/3  if |z  — 20| < S. TIius,

! / ( * ) - /(*o)| <  l/{2) - /iv { a ) | +  |/N ( z ) - M z » ) H |/A.(2to) - / ( 20)|
<  r/3  +  e/3 +  c/3  = e. ■

Note tiiat in the last step we need mi Ar that is independent of 2 to  conclude 
that. Ixith | / A (z) -  f( z ) | <  r /3  and |//v(z„) -  f{zo)\ <  */3.

Worked Exam ples
E xam ple 3.1 .10 Show that the sequence of Junctions /„ (* ) =  sin(x /n) comirrpi* 
unifomdy to the constant function f(x)  =  0 for x  in the interval (0. wj.
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S olu tion  From calculus, sind is increasing and sin5 <  8 for 0 <  9 <  r /2 . Tlius, 
if *  €  (0,ir) and n > 2, then |/„ (x ) -  /(x ) | *  |s in (x /n )| <  sin (^ /n ) <  jr/n . (Sec 
Figure 3.1.7.) Therefore |/„ (x ) -  f(x)\ < e provided n >  max(2, jt/ c). The same n  
works for all x  in tlie interval, and so the convergence is uniform on [0, rr).

E xam ple 3.1.11 Shaw that the sequence, of Junctions /„ (z ) =  arctim (nx) am 
verges for x  in the interval (—5,5] to tire function

but that the convergence is not uniform. (See Figure 3.1.8.)

S o lu tio n  If x  > 0, then |/ n (z) — /(x ) | =  |arctan(nx) — jt/ 2 |. We knonr th a t 
arctan(j/) is an increasing function of y  with lim it s /2  as y  —♦ oo. Therefore 
arctnn(nz) — jt/ 2| <  e if and only if nx  >  tan (x /2  -  r). For any particular 

value of x , large enough values of n  will work, but by taking x  dose to 0 we can 
force the required n to  be quite large. Tlius we have convergence but not uniform 
convergence. (Similar discussions apply for z  <  0.) One can see indirectly th a t 
the convergence must not be uniform. If it were, then the lim it function would be 
continuous, by Proposition 3.1.6. But it is not.

The next three examples develop the im portant special case of tlie geometric 
series and show how the tools of th is section can be applied to  it to  obtain some 
interesting results. The behavior of these examples is typical of the more general 
power series studied in tlie next section.

E xam ple 3 .1 .12  Show that the series converges on the open unit disk
D =  0 (0 ; 1) to the analytic function f(z)  =  1/(1 — z). Prone that the convergence 
is uniform and absolute on every closed disk Dr =  {z such that |z | <  r} with r  < 1.

r

Figure 3.1.7: y = sin(x/n) for n =  1 through 7.
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V

-!

Figure 3.1.8: y — arctan(nx) for ?i =  1 through 5.

S o lu tio n  If 2 6  D, then 2 6  Dr  whenever |z | <  r  <  1. Hence convergence 
a t 2 follows from tlie second assertion. Tb prove this, suppose z  is in Dr. Then 
|2n| <  r" . Since ] £ r n converges (Proposition 3.1-3 (i)), the W eierstrass M  Test 
applies with hf„ =  r " , and our scries converges uniformly and absolutely on Dr. 
We have run into one of the shortcomings of a tool like the W eierstrass M  Test. 
We have shown th a t the series converges but have not identified the lim it. To do 
this notice th a t

Since r  <  1, this goes to  0 as »  —* oo and we have our result.

E xam ple 3 .1 .13  Show that the series J ^ . ,  nzn_I — +  1)*" converge*
on the open unit disk D to y(z) =  1/(1 -  z)2. The convergence is uniform, one 
absolute on every dosed disk contained in D.

S olu tion  If B  is any closed disk contained in D, then B  c  Dr for some closed disk 
Dr, which is proved as in the lust example. H ie series 2n converges uniformly and 
absolutely to f(z)  =  1/(1 — z) on Dr and so on B. By the Analytic Convergence 
Tlieorem 3.1.8 (ii), the series of derivatives converges uniformly on every closfM 
disk in D to  / '(* ) . T hat is, nzn~* = f '(z) — 1/(1 — z)2, as desired. Thr 
convergence is absolute by comparison. If |z | <  r  <  1, (lieu |nz”“ 11 <  n r’*-1 , but 

converges by tlie argum ent ju st given.

1 -  z"+1 =  (1 -  z ) ( l +  2 + 22 + . . .  -1- 2"),

so
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E xam ple 3.1.14 Show that the series (—l )"- 1 z”(n  converges uniformly and
absolutely to log(l +- z) on the open unit disk, where log(pei0) =  log/) 4- i6 with 
- v  < 0 < it.

S o lu tion  We know th a t d ie given formula for log defines a  branch of logaritlim 
on the disk D( 1; 1). In fact, it is the same as th a t described by the construction 
iogtu =  /,(l/C)rfC» where 7  is a  straight-line path  from 1 to  to. By the path  inde­
pendence guaranteed by Cauchy’s Tlieorem we can integrate first along a circular 
arc (constant r  =  1) and then along a  ray from the origin (constant 0) to get from 
1 to  w — pci& (see Figure 3.1.9).

S

x

Figure 3.1.9: Path for computing iogw ou D (l; 1).

This construction shows th a t

the path  ft being a  straight line from 1 to z  s= w- 1 in the open unit disk D ~  D(0; 1). 
By Worked Example 3.1.12, die integrand may be expanded in an infinite series 
£^L o(~ ^)n« whfch converges uniformly on ft. The Analytic Convergence Theorem
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allows us to  integrate term  fay term  to obtain 

logtn =

v2* (—l)”(tn — l)n+1 y '  (— — l)n 
n +  I ~  ^  nn = 0  n = l

This works for every w in D( 1; 1). Setting z — w — l  gives

n = l

for all 2 in D(0; I). Again, the convergence is uniform and absolute on any Dr with 
r  <  1. Indeed, since |z | <  r  implies

(—l)" 2 " l r " < r „
n I “  n

and £ r "  converges, tlie W derstrnss Kf Test applies with Mn =  r" .

E xam ple 3 .1 .15  Show that the R iem ann  (  function , defined by

c(*) = £ n"s
is analytic on the region A = {2 \ R62 >  1}. Write a convergent scries for ( '(z ) 
on that set

S o lu tio n  We use tlie Analytic Convergence Tlieorem 3.1.8. We must be careful 
to  try  to prove uniform convergence only on closed disks in A and not on all of 
A. In this example we do not in fact have uniform convergence on all of A (see 
Exercise 8).

Lei B  be a dosed disk in A and let S be its distance from the line Re 2 =  1 
(see Figure 3.1.10). We shall show th at n - * converges uniformly on B. Here 
n~* — e” *1"*", where logn means the usual log of real numbers. Now

|» r= | =  | e - fc* n | =  e "* 1"*" =  n " 1.

B ut x > l * M i f 2 € B ,  and so |n “ *| <  n -(l+4> for all 2 €  B. Let us, therefore 
choose Mn — n “ i ,+4>.

By Proposition 3.1.3(iii), M„ converges. Thus, fay tlie W eierstrass M 
Test, our series converges uniformly ou B. Hence C is analytic on A.
Also by the Analytic Convergence Tlieorem 3.1.8, wc can differentiate term  by term 
to  give

<*(*) =  ~  5 3 (lo g n )n -5 ,

w hidi wc know m ust also converge on A (and uniformly on closed disks in A).
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Figure 3.1.10: Domain of analyticity of the Riemann zeta function.

E x e rc ise s

1. Do the following sequences converge, and if so, what is their limit? 

i
(a) Zn »  (-1)”  +

n  +  1

(b > * - £ "

2. Let c be a complex constant. Let Zo — 0 and 2] =  c, and define a sequence 
by putting z „ + l  =  2~ -he.

(a) Show that if |c| > 2, then ]imri_ 00 z„ — oc. Hint: Let r  = |c| — 1 and 
uso induction to show that \Zn\ > |cjr"_1 for all n.

(b) Show that if |c) <  2 and there is a  value of k  witli \zk\ > 2, then 
lmi„_oo tn = oo. Hint: Let r =  |z*| — 1, and show that |z*+p| > |z*:|rp 
for all p >  0.3

3. What is the limit of the sequence /„(*) =  (1 +x)*/" defined for *  > 0? Does 
it converge uniformly?

4. (a) Show that the series converges on the set C \{« =  m  | n
is an integer }.

(b) Show that the convergence is uniform and absolute on each closed dish 
contained in this region.

’ Those values of c for which tho soquenco Xm defined in th is problem stays bounded form a  
very interesting se t wit!) many pretty  patterns called the Mandelbrot s e t See A. K. Dewdney, 
Com puter Recreations, Scientific American, August 1985.
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5. (a) Show th at tlie sequence of functions /„ (z ) *= zn converges uniformly
to the zero function /(z )  =  0 on every dosed disk Dr — {z sudi th a t 
1*1 S  r} with r  <  1.

(b) Is the convergence uniform on the open unit disk jD(0; 1)?

6. (a) Show th a t the sequence of functions f n(x) ~  cos(x/n) converges uni­
formly to  the constant function f{x) s i  for x  €  (0, Jr).

(b) Show th a t it converges pointwise to  1 ou all of R.
(c) Is the convergence uniform on all of R?

7. Tbst tiie  following scries for absolute convergence and convergence:

00 l
8.* Prove th a t £(z) *= 52 “7  does uot converge uniformly on A — {z | R ez >  1}.

n = i n

H TTr-i Is  a  uniformly convergent series of continuous functions and if 
z„ —» z, show th a t

OO 06
J55, £**(*•) “ £»*(*)•t s l  te l

10. If SfcLi ak converges, prove th a t at —* 0. If SfcLi 9fc(z) converges uniformly,
show th a t —► 0 uniformly.

00 I
11. Show th a t 5 2  *8 uuulylic on A »  {z such th a t |z | > 1} .

»  j
12. * Show th a t 5"* —r"7 ^  analytic on C\{0}. Compute its integral around the~  n!znn = l

unit circle.

13. Show th a t ]C nLic_" sin nz is analytic in the region A =  {z | — 1 <  Im z <  I }

“  zn
14. Prove th a t the series 5 2  \  converges in both tlie interior and exterior

n sllis t
of the unit circle and represents an analytic function in each r^ io n .

15. Show th a t 5 ^ ,( lo g n ) fc» -s  is analytic on {z | R ez >  1}. Hint: Use ti*- 
result of Worked Example 3.1.15.
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16.* Let /  be an analytic function on the disk 17(0; 2) such th a t |/( z ) | <  7 for 
all z €  15(0;2). Prove th a t there exists a 6 > 0 such th a t if zi,Z2 €  15(0; 1), 
and if |zi -  z-s>\ < 6, then |/(z i)  — /(z^ )| < 1/10. Find a  numerical value of 
S independent of /  th a t has this properly. Hint: Use the Cauchy Integral 
Formula.

17. T f/„(z) —♦ f(z)  uniformly on a region A, and if /„  is analytic on A, is it true 
that fn(s) —* / '( z )  uniformly on A?

18. Prove th a t /„  —» /  uniformly on every closed disk in a region A iff /„  
uniformly on every compact (closed and bounded) subset of A.

19. Find a  suitable region in
OO

which ^
n = l

( 2 z - l ) "
n

is analytic.

/

20.* Let /»  be analytic on a  bounded region A and continuous on cl(A ),n =  
1,2,3, —  Suppose th a t the functions /„  converge uniformly on bd(A). Prove 
th a t the functions /„  converge uniformly to  an analytic function on A. Hint: 
Use tlie Maximum Modulus Theorem.

3.2 Power Series and Taylor’s Theorem
This section will consider special kinds of series called power series, which have the 
form £ £ * « .( *  — zo)"- We shall examine their convergence properties and show 
that a function is analytic 1JT it is locally representable as a convergent power scries. 
To obtain this representation, we first need to establish Taylor’s Theorem, which 
asserts th a t if /  is analytic on an open disk centered a t zq, then the Taylor series
o f / ,

OO

£ n! (z -* o )n,

converges on the disk and equals /(z )  everywhere on th a t disk.
In proving the rcsidts of this section we shall use tlie techniques developed in 

§3.1 and Cauchy's Integral Formula 2.4.4.

C onvergence o f  Pow er S eries A power series is a  series of tlie form

5 > , (* -*»> ",
naO

where Oj, and zq are fixed complex numbers. Bach term  an(z -  zo)" is  entire, so 
in proving th a t the sum is analytic on a region, wc can use tlie Analytic Conver­
gence Theorem 3.1.8. The basic fact to remember about power scries is th a t tlie 
appropriate domain of analytic: ty  is the interior of a  circle centered a t zq. This is 
established in the following theorem.
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Theorem 3.2.1 (Power Series Convergence) L et YlT=oa ”(z ~ zo )n he a  pow er 
series. There is  a  unique num ber R >  0, possibly +oo, called the radius o f  c o n ­
v e rg e n c e , such that i f \ z  — zo\ < R , the series converges, and i f  \z  — za\ >  f t . 
the series diverges. Furtherm ore, the convergence is  uniform  and absolute on every  
closed disk  in  A  =  {z € C such that \z — z q \ < R ). No general sta tem en t about 
convergence can be m ade i f  \z  — zoj =  R . (See Figure 3 .2 .1 .)

y

Figure 3.2.1: Convergence o f power scries. Series converges within circle; series 
diverges outside circle.

Tlius, the series converges o n  the region A =  {z €  C sudi that |z  — z q \ <  R ) .  

and it diverges a t * if \z — zu| > R. The d rd e |z — z0| =  R  is called the circle o f 
convergence of the given power scries. Practical methods of calculating R  use tin 
ratio and root tests and will lie given shortly.

The overall strategy is to let. R  = sup{r > 0 | ^ ^ L 0la«lr " converges }, when 
sup means the least upper bound of that set or real numbers, and then to  show 
that R  has the desired properties. The following lemma will be useful.
Lem m a 3.2.2 (A bel-W eierstrass Lem m a) Suppose that r0 >  0 and that th- 
inequality |a„|ro < M  holds for all integers n  > 0, where M is some constant 
Then for r  < ro, the series a„(z — Zo)" converges uniformly and absohitdt 
on the closed disk Ar —  {z  such Oral \z -  zo | <  r} .

P ro o f Far z €  Ar we have

M *  -  zo)"| <  |o„ |r" =  K K  ( ^ )  " < M  ( £ )  •

Let
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Since r/ro  <  1, the series £  M„ converges. Tlius, by the W eierstrass M  Test 3.1.7, 
the series £ ^ o e"(z ~ *6)" converges uniformly and absolutely on Ar. ■

P ro o f o f  T heo rem  3.2.1 Let ro <  R- By the deGnition of R there is an r i , ro <  
ri <  R  sudi th a t £  |o>ilr " converges. Therefore, ]CSlol«nlro converges by the 
comparison test. The term s |an |r o 876 hounded (in fact —* 0), and so by the Abel- 
W cierstrass Lemma, the series converges uniformly and absolutely on Ar for any 
r <  ro- Since any z with \z -  2q| <  R lies in some Ar and since wc can always 
choose m  such th a t r  <  ro <  12, we have convergence a t z.

Now suppose th at |zj -z o | > R  and £ a „ t e i -zo)n converges. We shall derive a  
contradiction. The term s a„(z, -  «&)" arc bounded in absolute value because they 
approach zero. Tlius, liy the Abel-Weierstrass Lemma. if R < r  < |zi — zo|, then 
H o n lsi ~ 2o)" converges absolutely if -j £  Ar. Tlicrefore, ]CI°nlr “ converges. 
But this would mean, by definition of R. th a t R < R .

We have proved th a t the convergence is uniform and absolute on every strictly 
smaller closed disk Ar and hence ou any dosed disk in A. ■

Combining tlie Analytic Convergence and Power Series Convergence Theorems, 
we may doduee the following theorem.

T heorem  3.2 .3  (A n a ly tic ity  o f P ow er S eries) A power series ]£^=oa«(2 -  
z,t)" is an analytic function on the inside of its circle of convergence.

We also know th at wc can differentiate convergent scries of analytic functions 
term by term . This leads to another interesting theorem.

T heorem  3 .2 .4  (D iffe ren tia tio n  o f Pow er S eries) Let

/(* ) =  £  a,,(2 “ *°)n
i*=0

he the. analytic function defined on the inside of the circle of convergence of the. 
given power series. Then f '(z) — non(z — zq) ” ~ 1, and this series has the 
same circle o f convergence as £ o „ (2  — *o)n. Furthermore, the coefficients On arc 
given by o„ =  / <n̂ (zo)/n!-

P ro o f We know from the Analytic Convergence Theorem 3.1.8 th a t the derivative 
f '(z) — no,i(z -  zn)”-1 converges on A — jD(zo; R) — (z  €  C  such th a t 
|r  — zo| <  IT). To sliow th at the derived series has the same circle of convergence 
as tlie original series, we need only show th a t it diverges for |z — zq |  > R. If it 
did converge a t some point zt with |«i -  Zo| =  rn >  /?, then na„r£~' would be 
hounded. Thus a , ,f o  =  (ru i„rj "1 )(r0/n )  would also be bounded, so £ On(z — Zo)n  
would converge for R < \z -  sq| < r0 by the Abel-Weierstrass Lemma. But this 
coutradicts the maximal property of R  from the Power Series Convergence Tlieorem
3.2.1. This establishes the assertion about the radius of convergence.
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To identify the coefficients, set z =  Zo in the formula defining f(z)  to  (ind 
/ ( zq) =  oq. Proceeding inductively, we find

/< " )(z )» n l« n +  £  k ( k - l ) ( k - 2 ) . . . ( k - n  + l ) ( z - z 0)l‘-« ,
fc<=n+i

and setting z — zo, we get /M (zo ) — n!a„. ■

I t is imjKjrtaul to notioe ju st w hat has been done in the last assertion o f this 
theorem. The coefficients of a  power series around a  particular center arc completely 
determined by tlie function th a t series represents. Thus if two apparently different 
series have been obtained for the same function about the same center, they must 
in fact be the same.

T h eo rem  3 .2 .5  (U n iqueness o f  P ow er S eries) Power series expansions around 
the same center are unique. I f

£  ««(* -  Ztt)" =  f(z)  =  £  b„(z -  Zo)"
t*=0 n=0

for all z in  some nontrivial disk D (ze;r) with r  >  0, then a„ =  6„ for n = 
0 ,1 ,2 ,3 ,....

P ro o f Tbe last assertion of the differentiation of power series theorem says a„ = 
/<”>(*,)/«! = 6 » . ■

Uniqueness of power series may be used in a number of ways. In particular, it 
says th a t whatever tricks we can use to  find a  convergent power series representing 
a  function, it m ust be tbe Taylor series. It can also help us use power series in ih** 
solution of differential equations and other problems. Several of these tricks and 
ideas for the m anipulation and application of power series are demonstrated in lit*1 
worked examples.

Wc will now obtain some practical methods of computing the radius of conver­
gence R. (The method of defining R given in tlie proof of Theorem 3.2.1 is not 
terribly useful for computing R  in specific examples.)

P ro p o sitio n  3 .2 .6  Consider a power scries £ n ^ o ° " (2 — zo)"- 

(i) Ratio test: If

Iim
fl—'OO

M
K + i|

exists, then it equals R, the radius of convergence of the series.

(Ii) Root test: I f p — iimw_.O0 ^ |a „ | exists, then R = 1/p is the radiu* 4  
convergence. (Set R. =  00 */ p =  0 .)
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P ro o f lb  prove both cases wc show th a t

R  = sap | r > 0 t: w |rn < o o }■
(i) By the ratio  test (Proposition 3.1.3) we know th a t £ “ 0 l^ l r "  converges or 

diverges if

Iim  ̂ <  1 or > 1 ,
«-oo |Ot,rn | ’

th a t is, according to  whether

iim >  r  or iim r  . <  r.t»-oo |o,,+ ij n- ° °  K + j |

Thus, by the characterization of R  in the Power Series Convergence Theorem
3.2.1, the lim it equals R.

(ii) By the root test (Proposition 3.1.3) we know th a t l«n |r" converges or 
diverges if Iimn_ O0(|on|r ,,) ,/n <  1 or >  1, th at is, according to  whether

r  <  1 / Iim or r  >  1 / Iim |on | , / ".n—oo w i oo

The result follows as in (i). ■

For example:

•  The series *n l̂as radius of convergence 1 since On =  1, and thus we 
have lining*, (a„/a„+1| -  1.

•  The series 5*!̂ %  z"/n ! has radius of convergence R  = +oo (tha t is, the Junc­
tion is entire), since On =  1/n!, and so |an/o n + i| *  «  + 1  -*  oo.

•  The series has radius of convergence R  =  0 because lon/on^il =
l /( n  +  1) —» 0. (This function thus does not have a  nontrivial region of 
analytidty.)

By refining the root test, it is passible to  show th a t R  = 1 fp  where p =  
lirasup,1—00 VK ii» whicli always exists, fn this statem ent, the “limsup" means, 
by definition,

1“ u su Pr.-.ooCn -  lira  (supfc* ,,C n+I, - })-n* <00

This is known as Hadamard’s form ula  for the radius of convergence. There is 
no analogous refinement for the ratio  test (known to us).
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T hylor’s  T heorem  It is obvious from the preceding computations tha t if /  : 
A —*C equals, in a  small disk around each zq€ A, n. convergent power serins, then 
/  is analytic. The converse is also true: If /  is analytic it equals, on every disk in its 
domain, a  convergent power series. This is made explicit in tlie followiug theorem.

T heorem  3.2.7 (Tbylor’s  Theorem ) Let f  be analytic on an open set A  in C. 
Let Zq €  A and le tA r **{z such that |z — zo\ < r )  be contained in A (usually the 
largest open disk possible is used: i f r ^ o o ,A r = A = C) (see Figure 9-2,2). Then 
for every z € Ar, the series

converge.-) on Ar (that is, has a radius o f convergence > r), and we have

(W e use the convention 01 =  1.) The series o f this equation is called the Taylor 
series o f f  around the point zq-

Before proving this result let us study an example tha t illustrates its usefulness 
Consider f ( z )  — ez. Here /  is analytic, and f ^ ( z )  =  e1 for all n, so =  I
and thus

which is valid for all z  €  C, since cr is entire.
Table 3.2.1 lists the Taylor series o f some common elementary functions. The 

Thylor series around the point zq =  0 is sometimes called the M aclaurin series.

Figure 3.2.2: Taylor’s Theorem.
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*fable 3.2.1 Som e Com m on Expansions

FVioction Taylor series around 0 Where vaiid

1
1 - 2

OO
5 3  z" (geometric Berios)
ftsO

W < 1

c* t -n=S "•
all z

sin 2
«3 J- . .2n— 1

a llz" 3! 5! (2» —1)1

one>2
.2 ,« .6  00 _2s

1 ”  T  + 4? "  «  + ‘ ■=
all 2

log(l +  2) 
(principal brands) *

|S |< 1

(1 + *)“
(principal branch) 5 3  t"  (binomial serim) 

«™0 '  '

|z | <  1 but 
ail 2 if nr is a 

positive integer

In tlie binomial aeries, a  €  C is fixed,

f a \  a(a  - 1) . . .  (a  -  n  + 1)
W  “  «!

and we let be zero if  a  is an integer <  n  and let =  1.

All tbe series in Thble 3.2.1 are im portant and useful. They may be established 
by taking successive derivatives and using Taylor’s Theorem. The binomial series 
for a  a  positive integer should be familiar from algebra. The Taylor scries for many 
functions can be found by other means, using the special properties of power series 
th a t allow their m anipulation. Some of these properties are presented in  the worked 
examples. We have already found the geometric series for 1/(1 — z) and the series 
for log(l +  z) in Worked Examples 3.1.12 and 3.1.14. This result for geometric 
series will be used in the following proof.

P ro o f o f  T hylor’s  T heo rem  Let 0 <  a  < r  and let 7  be the circle 7(1) =  
Co 0 <  t < 2tt, of radius o  centered a t zo- It z  is any point inside 7 , Cauchy’s
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Integral Formula 2.4.4 gives

/(* ) = / « )
C -  2

<■

The plan is to use the geometric scries to expand tlie integrand as a power series 
in z  — zo and then use Proposition 3.1.9 to integrate term by term. Finally the 
coefficients of tlie resulting integrated series are recognized to be those of the Taylor 
series by the Cauchy Integral Formula for Derivatives 2.4.6.

Since z  is inside the circle 7  and £ is on its boundary, wc have the inequality 
|(2 — 2o)/« — zo)l < 1- The geometric series of Worked Example 3.1.12 allows the 
following expansion:

1 1 1 1 J 2 v / 2 - Z o\ "
c - *  ’c-*>

2o)n+1 <K-

Fbrthermorc, since the curve 7  stays away from the boundary of tbe disk of con­
vergence, Worked Example 3-1.12 also shows that the convergence of the series

OO /  v |

£ (S)
is uniform in £ as £ goes around the circle 7  with z fixed. Also, /(()/(( -  20) is a 
continuous function of (  around the circle 7 , so it is bounded there. It follows that 
tlie series

E
neO

7 (0 (2 -2 0 )"
(C -  ati)n+l

converges uniformly on 7  to /(£)/({ ~ *)• (The first series satisfies the Caudiy 
Criterion uniformly in 0  so  it still satisfies it after being multiplied by something 
that remains bounded. Hie student is asked to supply the details in Exercise 21. 
By Proposition 3.1.9, we have

/(* ) V_L c)(*-*»)V 
( c - h»)tt+1 *

nf (nH*0) 
n!

as desired. Hie last equality is the Cauchy Integral Formula for Derivatives 2.4.6. 
Since the radius of the circle 7  was arbitrary, so long as it fit inside the region of
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analytic!ty, this representation of /(z )  is valid in the largest open disk centered a t 
:o which is contained in the region A. ■

Tile following consequence of this theorem was mentioned informally a t tlie 
beginning of this section.

C oro llary  3 .2 .8  Let A be a region in  C  and let f  be a complex-valued Junction 
defined an A. Then f  is analytic on A i f  and only i f  for each zq in A there is a 
number r  >  0 such that the disk D (zq\ t ) C A and f  equals a  convergent power 
series on D (zq\ r).

P ro o f Taylor’s Theorem shows th a t every analytic function is equal to a  power 
series, in fact to  its Taylor series, on every disk in A. On the other hand, if /(z )  is 
equal to  a convergent power series on D{zo; r), then D(zq; r) m ust be in the interior 
of the circle of convergence of the series and so /  must be analytic on D(zo; r). Since 
there is such a  disk and convergent power series for each zo in A, it follows from 
the analylicity of power scries (3.2.3) tlia t /  is analytic on A. ■

The condition in tliis corollary may thus be taken as an alternative definition 
of '‘analytic” . We hare shown th a t the notions of differentiability on a region and 
analytitily on a  region coincide for functions of a  complex variable. (Keep in mind 
that they do not coincide for real variables.) Cauchy's Theorem, Cauchy's Integral 
Formulas, and Tbylor's Theorem are among tlie m ost fundamental theorems of 
complex analysis.

In specific examples, the higher order derivatives of /  may be complicated ex­
pressions, and finding the Taylor scries may be made easier by searching directly 
for a  convergent scries th a t represents /  rather than computing the derivatives. By 
Corollary 3.2.5, if /(z )  — £^Lo<in(z ~  *0)" and the series converges, then it m ust 
he the Taylor series. In la d  we can sometimes then use Thylor’s Theorem to  tell us 
formulas for the derivatives, having found the series by other means. Some of these 
tricks for m anipulating series and applications are found in tlie worked examples.

Z eros o f  A n a ly tic  F u n ctio n s Suppose th a t /  : SI —» C  is analytic on an open 
set SI in C  and th a t c  €  il. Wc know th a t the Thyior series for f(z)  centered 
a t e converges to  /(z )  a t least in the largest open disk D{c, r)  centered a t c  and 
contained in SI. Therefore, we have

/ ( * > « f ] n 5 r < * - c>* for i * - e i < * -
*=o

If /<*>(c) =  0 for all k, then /(z )  is identically 0 in D(e;r). If not, then there is a 
smallest nonnegative integer n  with / ^ ( c )  /  0- If n  =  0, then /(c )  0. If  n  >  0,
then f(c) — / '( c )  =  f"(c) =  • • • =  /Sw -,)(c) — 0 bu t /*n)(c) £  0. In th is case wc 
say th a t /  has a  zero o f order n  a t c. From algebra wc know th a t a  polynomial 
has a  zero a t c if and only' If z — c is a  factor of th a t polynomial. The zero has
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order or m ultiplicity n  if tlie factor z — c occurs exactly n  tunes. Cousideralioi 
of tlie Taylor series shows th at an analytic function has a zero a t c if and only i 
z  — c is a  factor of that function and then the multiplicity is defined in the saim 
way. Fbr z  in D(c;r) we have

/(z )  = a„(z-c )n + 0-n+i (z -  c)"+1 +  a„+2(z -  c)’1*2 + . . .
=  ( z - c ) "  [a„ +  Oti+i(z — c) +  an+i(z — c)2 + . . . ]

where a t — /***(c)A 'b The power series in square brackets converges in D(c. r 
to  an analytic function ^ (z) with <p(c) = a„ — /l^ (c ) /» !  f t 0. Tlius /  has < 
zero of order n  a t c if and only if /(z )  can be factored in a  neighborhood of r  »  
f(z)  =  (z -  c)'V (z) where ip is analytic in a  neighborhood of c and <p(c) ft  0.

Iso la tio n  o f  Z eros A closer examination of the factorization in the last paragraph 
gives another valuable conclusion. Tlie factor <p(z) is analytic and so is conlLunou- 
on D{c, r ) . Since ̂ (c) ft 0, there is a  radius p with 0 < p < r  such th a t <p(z) is m w  
0 for |z  — c| <  p. Since /(z )  =  (z — c)’V (z) for all z in D(<r,p), we conclude tin.; 
/  has no zeros other than c in th a t disk. In this sense the zeros of /  are isolated 
Tliis analysis is summarized in the following proposition and corollary.

P ro p o sitio n  3 .2 .9  Suppose f : Q - » C is analytic on an open set il in C and the: 
c €  SI. Let D(tr,r) be an open disk centered at. c and contained in SI and suppos- 
/(c ) =  0. Then exactly one of two things mast occur.

0) /(* ) =  0 f ° r every z in D(c; r).

(ii) There is an integer n such that

f(c) =  f ( c )  =  /" (c ) =  “ (c) =  0 and /<">(c)* 0 .

fn the latter case there is a function <p(z) analytic in D(c; r) with tp(c) ft 0 or-, 
/(z )  =  (z — c)"v>(z) for all z in D (c r) and a radius p>Q sudi that f(z)  is 0 onl-. 
a te  in the disk D(c;p).

C o ro lla ry  3 .2 .10  (L ocal Iso la tio n  o f Z eros) Suppose f : SI —»C is analytic ur 
an open set SI in C and lhat c € SI. I f  there is a sequence z%, z$, . . .  o f distin<^
points in H sudi that z* c as k  —* oo and f{zk) — 0 for each k, then f(z) — i 
for each, z  in  the largest open did: centered at c and contained in SI.

Worked Exam ples
E xam ple 3 .2 .11  Use the series expansion given in Table 3.2. J to confirm the ider. - 
tity eix =  cosz +  is in z  for all z.
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S o lu tio n  Using the series for cos 2 and sin z from the table gives

co sz -H sin z

f -  (is)*" l A  (-» » ■ » » —•2n_2h—I

3.- desired.

E xam ple 3 .2 .12  Con a power series £ a „ ( z  -  2)" converge at z — 0 but diverge

S olu tion  No. if  It converges a t z =* 0 tills implies, by Uie Power Series Conver­
sance Theorem 3.2.1, th a t the radius of convergence R  satisfies f t >  2. B ut z  =  3 
lies inside th a t circle, so the series would converge there (see Figure 3.2.3).

Figure 3.2.3: The circle of convergence for the power series in Worked Example 
3.2.12 m ust be a t least this big.

E xam ple 3.2.13 Find the Taylor series around z q — 0 for  /(z )  =  1/(4 -f- z2) and 
calculate the radius of convergence.

S o lu tion  W rite

x

/ ( * ) «
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We know th a t so long as |ur| <  1, then 1/(1 — tn) =  ]T^L0 u,n. Replacing w  by 
- 3*14 gives

/<«> = J E  ( — )"  = E(-l)"4-«"+'>^,

as long as |(—z3/4 )| <  1; th a t is, as long as \z\ <  2. Therefore the radius of 
convergence is 2. Notice th a t this is the largest disk around Zo — 0 on which /  is 
analytic, since analyticity fails a t z =  ±2 i.

E xam ple 3.2.14 Find the Taylor scries o f log(l +  a) around z — 0 and give its 
radius of convergence (see Table 3.2.1).

F irs t S o lu tio n  We have already done this problem as Worked Example 3.1.14 
using the geometric series and tcrm-by-term integration.

Second S o lu tio n  We use the principal branch of log so that the function f(z)  =  
Iog(l+z) is defined a t z  *  0. Since /  is analytic on the region A =  C \{ x + iy  | y  =  
0, x  ^  —1} sliown in Figure 3.2.4, tlie radius of convergence of the Taylor series will 
be > 1 by Thylor’s Tlieorem (3.2.7). T hat it is exactly 1 can be shown as follows. 
We know th at

/(0 ) =  log 1 — 0,

/ ( * )  = 4 t - 80 /'CO) =  1,2 + 1

rw« - 7— t s > no)=-i,
( 2  +  1 ) 2

and

rw = (z + 1):
r, so n o )  =  2.

Inductively, we see that

J W  (z +  l ) n ’(z +  l ) n

so /<n>(0) =  (n — 1)!(—l)™-1 . Thus tlie Ihylor series is

/ (,,)(0 ).n  _  (~ 1)n~1
/ - f  n! nn= 0  n = l

(in agreement with Thblc 3.2.1). Wlien z =  —1, it is the harmonic series which 
diverges, so the radios of convergence is <  1 and thus is exactly 1. (A general p ro  
cedure to  follow for determining tlie exact radius of convergence w ithout computing 
the series is found in Exercise 19.)
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y

t

Figure 3.2.4: Tkylor series of log(l +  z).

E xam ple 3.2 .15 Suppose that JP g»2”  and £  bnzn have radii o f convergence >  r©. 
Define c„ =  £)£_0akb„-k- Prove that ^ c „ 2"  has radius o f convergence >  ro and 
that inside this circle o f radius to we have

nsaO

.OnZ'j(IH
Solution This way of multiplying out two power scries is a  generalization of tbe 
manner in which polynomials are multiplied. A direct proof can be given but would 
be somewhat lengthy. If we use Taylor’s Theorem, the proof is burly simple. Let 
/{*) =  YZ?Loanzntg(z) =  and let A =  { z such that |z | <  r0}. Then /
and g are analytic on A, so fg  is also analytic on A. By Thylor’s Theorem we can 
write

V ( /  g)(">(0) „
A - 2

for all z in A. I t is simple exercise (as in calculus) to  show by induction tha t the 
nth derivative of the product f(z)g(z) is given by

( /  • 17)(b)W  =  i t ,  (fc) f ik}(^)9(n~k)(z), where Q
n!

fc!(n-fc)!‘

k=« '  fa=0

Hence,
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Thus, Cpz" converges on A (and therefore, by Taylor’s Theorem, the radius
of convergence is > ro) and on A

=  (/* s )(z )  =  f e 6" 2"
n « d  \n = 0  /  \n = 0

E xam ple 3.2 .16 Compute the Taylor series around z =  0 and give Vie radii of 
convergence for

(a) z/{z - 1)

(b) c * /(l — z) (Compute the first few terms only.)

Solution

(a) The geometric series (1 -  z) ~1 =  l + z + z 2* . . .  is valid for |z | <  1. Therefore, 
for such z,

■Z =  —2(1 + Z + 2? + . . . )  = —Z — 2?~ Z3 — Z * ~ ___
2 —1

By the uniqueness of representation by power series, th is is tlie Taylor series 
of 2/(2 — 1) around 0. By observing th a t 2/(2 — 1) is analytic on the open 
disk |z | <  1, we know by the Taylor theorem th a t the Taylor series must 
have a  radius of convergence >  1. Of course, a close analysis of the scries 
—2 — z2 — 23 — z4 —. . . ,  using the ratio test or the root test, shows th a t the 
radius of convergence is exactly 1.

(b) 1/(1 — 2) =  1 +  z +  2* + . . .  for |z| <  1 and e* -  l  + z + 22/ 2 + . . .  for all z. 
Tlius by Worked Example 3.2.15 we get the series for tlie product by formally 
multiplying the two series out as if they were polynomials; the result must 
still converge for |z | <  1. We get

c*
1 —z ( 22 2s ^

1 +  Z +  '2 + 3 ! + " - j

l  + (z + z) + ( ^  +  2J +  22^  +  + +  +  . . .

Sz2 82?
=  1 +  22 +  —  +  ^  +  . . . .

In the last series the general term  has no simple form. Note th a t th is method 
is foster than  computing f W ( 0) for moderately large k.

E xam ple 3 .2 .17  This example deals with the application o f series to differentia 
equations. Find a function /(* )  such that /(0 ) — 0 and f' (x)  =  3 /(* ) +  2 for ci.
x.
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S o lu tion  Suppose th a t there Is a  solution /  th a t is the restriction to  tlie real axis 
•t a function th a t is analytic iu C. Therefore, it will have a  power series expansion 

:) -  Since f ' (z)  =  , «an2n~ \  we m ust have

f > „ * '
n= 1

+  2,

th a t is.

Thus.

5 3 (n  +  l)e ,l+is w
nsO

00
( 2  4 -  3 a o )  +  ^  3 o n * n .

nsl

00
0 =  (2 +  3do -  « i) +  y^[3Qr, — (n 4* l)nn+i)^n-

»Ve know th at Oo =  /(Q ) =  0. Therefore <Z| =  2. For n  >  1, 00+1 =  3a„/(fi 4*1), so 

o2 =  3 o i / 2 ,  a3 =  32a ,/(3 )(2 ), «< - 33a ,/(4 ) (3 ) (2 ) ,..., 

sad in general,

a f t= 3 " - 1a I/ n ! = 3 B( | ) /n ! .

Notice th a t tliis formula also gives O] =  2.) Tims if there is a  power series th a t 
represents a  solution it must be

Taking derivatives term  by term confirms th a t this is a  solution. In this case we 
■ran even recognize the function tlie series represents:

The reader should check th a t tliis docs solve the original problem.4

E xam ple 3 .2 .18  (G en e ra tin g  F unction  fo r th e  H erm ite  P o lynom ials) The 
function f(z)  = c2tx-*1 is analytic everywhere and so has a  power series expansion 
:n powers o f z  whose coefficients depend on l. I f  we pul f(z)  — 7".^% H„(t)zn /n\, 
rhen the functions H„(t) are called the H erm ite polynomials. (One needs to 
rheck that they are in fact polynomials m  i.) The function f  is called a generating 
function . Compute and

4i‘br additional applications of poww scries to  diffonaitial equations, sue, for example, J . Mats* 
den and A. Weinstein, Calcttiux U (New York: Sprmger-Verlag, 1985), §12.C, or virtually auy text 
on differential equations.
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S o lu tio n  Ftom f { z )  — ]C !̂Lo the following hold:

*«(*) = /(0 )  =  1

H i( t )  =  m  =  (2< - 2z)<P*-‘*\ = 2 t
IzssQ

H 2(t) =  /"(0) =  [—2c2,*~4* +  (2£ -  2z)2c2u_i2] *  4t* -  2

Proceeding inductively, we see th a t f ^ ( z )  is a  polynomial in l and z multiplied by 
e2**- **, and so evaluation a t 2 =  0 will always produce a  polynomial in t.

E xam ple 3 .2 .19  D iscuss Hut zero o f f ( z ) =  1 — cosz a t 0.

S o lu tio n  If /(r) =  I —cos z, then f ( z )  =  sin z and f " { z )  =  cos z. Thus, /((l) =  0 
and / '(0 )  — 0, bu t /" (0 ) =  1 ^ 0 .  Thus /  has a  zero of order 2 a t 0. The Taylor 
series for /  centered a t 0 is

/(* ) * +  +  =  [1 1 ^ + 1  4 _  +  . 1 .
2! 4! 6! [2 24 720 J

Thus, /(z )  =  2̂ vKz) where ^ (z ) =  (1/2) — (1/24)2* +  (l/720)z4 - + . . . .  In 
particular, ^(0) 3= 1/2 /  0. Since ip(z) =  (1 — cosz)/z*, tlie only zeros of ip are at 
the points where cosz =  1. The closest of these to  0 are ±2x.

Exercises
1. Find the radius of convergence of cadi of the following power series:

w £> "
n a t 
00 _

P * ) E ;nsO

91—1
~  xn

n=l

2. Find the radius of convergence of each of the following power series:

M  £ « ’ *”
n=0 
«  Z*“

WE-jr9»b0
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00
(c) £ ) t»!zw

3. Compute the Thylor series of the following functions around tlie indicated 
points and determine the set on which tho series converges:

(a) c*,«ii =  1
(b) 1/2, zn =  1

4. Establish the Taylor series for sinz,cosz, and (1 -t- z )° in Table 3.2.1.

5. Compute tlie T iylor series of the following. (Give only the first few term s 
where appropriate.)

(a) (sin z)/z, zq = 1
(b) z2c*;zb =  0
(c) e* sin z, 2n =  0

6. Compute the first four term s of the Thylor scries of 1/(1 +e*) around so ~  0. 
W liat is the radius of convergence?

7. Compute the T iylor series of the following around the indicated points:

(a) e**,zu =  0
(b) l / ( * - l ) ( z - 2 ) t sb =  0

8. * Compute the T iylor series of the following aroiuid the indicated point:

(a) sinz2, 2o =  0

(b) c " ,z e  — 0

9. Compute the first few term s in the T iylor expansion of Vz2 — 1 around 0.

10. Suppose /(z )  st Onz" and g(z) =  converge for |« | <  R. Bor
|z | <  R2, define F (z) by selecting r  with \z\fR < r < R  and setting

where 7 is the circle of radius r  centered a t tlie origin.

(a) Show th a t the value of F (z) docs not depend on r  so long as \z\/R <
r < R.

(b) Show th a t F (z) =  Hint'. Use Worked Example 2.4.15.
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11. Establish the following:

® a2"-1
siiih S =  )  7T------“tt and

(2« -  i)!
»  *2"

12. W hat is tbe flaw in the following reasoning? Since cr — zn/n \, we get
fit*  -  l/(« !2n). Since this converges (because c* is entire) and since
the Tfcylor expansion is unique, the Taylor expansion of f( z )  — t?f* around

13. Differentiate tlie scries for 1/(1 — z) to  obtain expansions for

(1 - 2)2 ( l - z ) » *
Give the radius o f convergence.

14. * Let /(z )  =  J^Onz" have radius of convergence R  and let A *={z such tliat
|2| < f l } .  Let % 6  A and R  be tlie radius of convergence of the Taylor series 
of /  around 20. Prove th a t R  -  |zo| < R  < R  4- |ab1-

15. Tf has radius of convergence R, sliow tlia t £ ^ L 0(RettT,)2n has
radius of convergence >  R.

16. Let f ( z )  — £  OnZn be & power scries w ith radius of convergence R  >  0. Straw 
tlia t f  f  — fl for eacli closed cun'c 7  in the disk A = {z such th a t |z | <  R} 
by either of the following two methods.

(a) using Cauchy’s Theorem
(b) justifying tenn-by-term  integration

17. In what region does
OO ♦E sronz 

On
n e t

represent an analytic function? W hat about
oe

ESID9U9

n si

18. Find the first few term s of the Thylor expansion of ta n z  =  (sm z)/(cos;: 
around z =  0. Hint: We know th a t such an expansion exists. W rite

sin 2 «------ = B q +  Oj2 +  022 + . . .  .
COS 2

M ultiply by

cosz =  1 —

and use Worked Example 3.2.16 to solve for 00, 01, 02.
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19. * Let f  be analytic on the region A, let zo €  A, and let D be the largest open 
disk centered a t zo and contained in A.

(a) If /  is unbounded or D, show th at the radius of D equals the radius of 
convergence of the 'Ibylor series for /  a t zq.

(b) If there exists _no analytic extension of /  (th a t is, if there are no /  and 
A' sudi that /  is analytic on A‘, A! D A, A' A. and f  = f  \ A), show' 
by an example th a t the radius of convergence of tlie 'Thylur series of /  
a t zq can still be greater than the radius of D. Hint: Use the principal 
branch of Iog(l +  z) with zo =  — -  +  t.

20. Prove: A power series converges absolutely everywhere or nowhere on its 
a id e  of convergence. Give an example to  show th at each case can occur.

21. * converges uniformly on a  set B  C C  and ft(z) is a  bounded function 
on B, prove th at £[fc(z)<7„(z)j converges uniformly on B  to  fi(z)l53fl„(z)].

Tlie second equation is referred to  as Parseval’s theorem, and we say that 
/(* )  =  T T -e ******  expresses the Taylor scries as a  Fourier series. Hint: 
Use the Cauchy Integral Formula 2.4.6 for a„ and expand / /  in a series, and 
then integrate term by term .

23. Let Hn{x) be the Hermite polynomials introduced in Worked Example 3-2.18. 
Show th at Hi (x) =  2xHo{x) and th a t for n > l,H„^i(x) = 2xH„(x) — 
2tiHn-i(x).

24. " Compute the T tylor expansion of £(*) =  X ^ = i n_* around z — 2 (see 
Worked Example 3.1.15).

25. Find a  function such th a t /(0 )  =  1 and / '(x )  =  x  4- 2 /(x ) for all x  (sec 
Worked Example 3.2.17).

22. Let f(z)  =  n„z" converge for |z | <  R. If 0 < r < It, show th a t 
f(z)  =  y jjlg  Onrne,ne, where z -  reie and

>00
rnssQ

Also show

26. Find a  function /  such th a t /(0 )  ® 1 and / '(x )  s  x /(x )  for all x .
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3.3 Laurent Series and Classification of 
Singularities

The Taylor series enables us to  find a  convergent power series expansion of a  func­
tion f(z)  around a point zq when /  is analytic in a  whole disk around Zo- Thus, 
the T iylor expansion docs not apply to  functions like /(z )  =  1 /z or e‘/z2 around 
zo =  0 because they fail to be analytic a t z =  0. For sudi functions there is another 
expansiou, called the Laurent expansion (formulated in approximately 1840), 
that uses inverse powers of z as well as powers of z . Tliis expansion is particularly 
im portant in the study of singular points of functions and leads to  another funda­
mental result of complex analysis, the residue tlieorem, winch is studied in Chapter
4.

T heo rem  3.3.1 (L au ren t E xpansion  T heorem ) Let 0 <  r» <  r2, and zo €  C, 
and consider the region A — {z €  C  | r j <  |z -  zo| <  r*} (see Figure 3.3.1). IVe 
allow r j  =  0 o r r2 =  oo (or both). Let f  be analytic on the region A. Then we can 
write

where both series on the right side o f the equation converge absolutely on A and 
uniformly in sets of the form — {* | Pi < |z  -  zo| < P2}, where n  < fit <
P2 < r2. This series far f  is called the Laurent series or Laurent expansion 
around Zq in the annulus A.

f f ' y  is a circle around zq with radius r ,  where r j  <  r  <  ro . then the coefficients 
are given by

(If we set bn — a_„, then the first formula covers both cases.,) Any pointwis* 
convergent expansion o f f  o f this form equals the Laurent expansion; in other word*, 
the Laurent expansion is unique.

The equations for tbe coefficients a ,  and bn in (lie Laurent series are not vcr> 
practical for computing the Laurent series of a  given function / .  Notice tluit «» 
cannot set a^ — /*"*(zo)/n! as we did w ith tlie Taylor expansion. Indeed, 
is not even defined, since zo £  A.

There arc a  few tricks th a t can be used to  obtain expansions of the desired form 
and the uniqueness of the expansion guarantees it m ust be tlie desired one. A fra  
sudi techniques are given in tlie following tex t and in the worked examples.

n =  0 ,1 .2 , . . .

and

•t • • * •
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y

Figure 3.3.1: Laurent series, with sj, =  0.

lu the following proof we shall see that the power series part of / ,  namely the 
series

Y  «•»(* -
neO

converges and so is analytic inside the circle |z — z q \ =  r j ,  whereas the singular 
part.

E
6n

converges outside \z — zo \~  f j .  The sum therefore converges ietween these circles.

Exam ple In this example we show that uniqueness is dependent on the choice of 
.4. Let A  = {z sudi that \z\ > 1} and f ( z )  =  1 f\z{z  -1 )] . In this situation, /  has 
the Lament expansion

/ ( 2) “ z ( z - l ) ~ I  [ z ( l - I ) ]  " a2 ( 1 + z ‘h z2 + ”  )
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(valid if |z| > l) t whereas on the choice A — {z such that 0 < |z | <  1}, it has the 
different expansion

(valid for 0 < |z| <  1). By uniqueness these are the Laurent expansions for tlie 
appropriate regions.

P ro o f o f th e  L auren t Expansion T heorem  As with the proof of Thylor’s 
Theorem, we begin with Cauchy's Integral Formula. We will first show uniform 
convergence of the stated scries on BpltPS, where (ij, and bn are defined in the 
theorem. Since all the circles 7  of radius r  are homotopic to each other hi A as 
long ns r j < r < n  (Why?), tlie numbers an and bn arc independent of r , so

where 71 is a circle of radius pi and 74 is a  circle of radius p2 and where r% < px < 
pi < p2 < fc  < r-2 (sec Figure 3.3.2).

and

Figure 3-3.2: Construction of the curves 71 and 72-
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For z  €  we have

r.v Cauchy’s Integral Formula (see Exercise 5).
As in Taylor’s Theorem, for { on 73 (and z fixed inside 73), we write the series

1 _  X . z - a p  . ( z - z o ) 2  .

(C -^)2 + (C-*o)3 + " ' ’ 
which converges uniformly iu (  on 73.

Substituting the scries in the preceding equation for / .  wc may integrate term 
by term  (by Proposition 3.1.9 and the fact tlia t / ( ( )  is bounded- see Exercise 21, 
.3.2) and thus obtain

Since tliis power series converges for 2 inside 73, it converges uniformly on strictly 
smaller disks (in particular, on Bpl4t7). Similarly tlie aeries

_ zl___________ 1 _ 1 C-*> , « - * » ) 2 .
Q -S  (2 — Zq) ( l  -  2 "*>  ( 2 - 2 »)2 i z - 2o)3

•onverges uniformly until respect to  C on 71. Tims,

~ l  ̂  - E H [/.™ ■ «-->-'«] = f  (—
Tliis series converges for z  outride 71, so the convergence is uniform outside any 
-’nelly largo’ circle. This fiict can bo proved in the same way as tbe analogous 
tact for power series by using the Abel-W eierstrass Lemma 3.2.2. Tlie student is 
asked to  do this in Exercise 15. (Another method is to  make tlie transformation 
o’ =s 1/(2 — Zo) and apply the power scries result to  &■,*»” .)

We have now proved the existence of the Laurent expansion. To show’ unique­
ness, let us suppose th a t we have an expansion for / :

NsO n = l '  '

If this converges in A it will, by the preceding remarks, do so uuifonnly ou the 
circle 7 , so we can form

/(* )
(2 — Zo)k+l

=  5 Z o n( r - 2o)" k 1
n-M>

+ V 1 n
(* -  •=o)B+fc+1 ’
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which also converges uniformly. We then integrate term  by term . By Worked 
Example 2.1.12, we have

Thus, if k >  0, each term  of the second series and all those of the first except that 
w ith n = k  integrate to  0 around <y. Hence,

Similarly, if k < —X, all term s integrate to  0 except th a t in the second series with 
n  =  —k, so

Thus, the coefficients Qn, b„ are uniquely determined fay /  and the proof is complete.

Iso la ted  S in g u larities: C lassification  o f  S in g u lar P o in ts  We want to  look 
in more detail a t the special case of tbe Laurent Expansion Tlieorem 3.3.1 when 
ri =  0. In this case, /  is analytic on {z | 0 <  \z — zq\ < r 2}, which is tlie deleted r2 
neighborhood of 20 (sec Figure 3.3.3), and we say th a t 20 is an isolated singularity 
of / .  Tlius we can expand /  in a  Laurent series as follows:

for n  >  1.

(valid for 0 < \z — 2q\ < r 2).

A

Figure 3-3-3: Isolated angularity.
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D efin ition  3 .3 .2  I f f  is analytic on a region A that contains some deleted e neigh- 
>.Htood of so, then 20 is called an isolated singularity. (Thus, the preceding 
Laurent expansion is valid in such a deleted c neighborhood.)

1. I f zo is an isolated singularity o f f  and i f  all but a finite number of the b„ 
are zero, then so is called a po le of f .  If k is the highest integer such that 
fo £  O.20 is called a pole o f order k. (To emphasize that fc oo, tve 
sometimes say "a pole o f finite order k .n)  I f zq is a first-order pole, toe also 
say it is a sim ple pole.

2. If an infinite number ofbk's are nonzero, 20 & called an essential singular­
ity. (Sometimes this zo is called a pole o f infinite order.) "Pole” shall almays 
mean a  pole o f finite order.

3. We call bi the residue of f  at so-

4. I f  all the bo's are zero, we say that zq is a removable singularity.

5. A function that is analytic in  a  region A, except for petes in A, is called 
meromorphic in  A. The phrase uf  is a menmtorphic function” means that 
f  is meromorphic in C.

Tims, /  lias a  pole or order k  a t so if and only if its Laurent expansion in  a  
deleted neighborhood about so has the form

often called the principal part of /  a t zq, tells “how singular” /  is a t zo- 
If /  has a removable singularity, then

is a convergent power series; in tliis case, if we set /(so ) =  oo. /  will be analytic at 
:o. In other words, /  has a removable singularity at so iff /  can be defined atzoin  
such a way tliat f  becomes analytic at zq.

As we shall see in Chapter 4, finding the Laurent expansion is not as im portant 
as being able to  compute the residue 61, and this computation can often be done 
without computing the Laurent scries. Techniques for doing so will be studied in 
§4.1. H ie im portant property of hi not shared by other coefficients is stated in the 
following result.

The part

(2 -  zo)k +  +  z  -  so
bk , . ^
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P ro p o sitio n  3.3-3 L e if  be analytic on a region A and have an isolated singularity 
at zo with residue 6i at zq. I f  7  is any circle around 20 in A whose interior, except 
for the point zq, lies in A, then

I f(z)dz — 61 • 2srt.
A

This conclusion follows from tlie formula for 61 in tlie Laurcut Expansion Theo­
rem 3.3.1. The point is th at we can compute bi by methods other than the preceding 
integral mid therefore we can use Proposition 3.3.3 to  compute f  f .  For example, 
if z jt 0, then

e1/* =  x 4. 1 4. 
z

1
2!za

(W liy?), so e1/* has an essential singularity a t z = 0 and bi =  1. Thus elf~dz =  
2s i  for any circle 7  around 0.

H ie following proposition characterizes the various types of singularities.

P ro p o sitio n  3 .3 .4  Let f  be analytic on a region A and have an isolated singularity 
at zo-

1. Zo is a removable singularity iff any one o f the following conditions holds:

(a) /  is bounded in a deleted neighborhood of zq.
(b) liuii _ X(, f(z)  exists.
(c) Iim,-»«0(z -  zo)/(z) =  0.

2. zo is a simple pole i f f l i m .^ ^ z  — zo)f(z) exists and is unequal to zero. Thu- 
limit equals the residue of f  at 2q.

3. zo is a  pole of order < k (or possibly a removable singularity) iff any one of 
the following conditions holds:

(a) Them are a  constant M  > 0 and an integer k > I such that

\ m  <
M

\ z - zo \k
in a deleted neighborhood of Zq.

(b) 1iins_ Xu (2 -  zo)M f(z) = 0.
(c) lim ,_en(z -  Zo)kf(z)  exists.

4. zq is a pole of order k > 1 iff there is an analytic function $  defined on « 
neighborhood U of z q  such that i/\{zp} C A , $ { z q )  ^  0, anrf

/(* ) =
djz)

(z -  *o)fc

for a l t z e  U,z zy.
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Proof

1. If zq is a removable singularity, then in a deleted neighborhood of zo we have 
f [ z )  = a „ ( z - s o ) n- Since this series represents an analytic function in 
an undeleted neighborhood of 20, obviously conditions (a), (b) and (c) hold. 
Conditions (a) and (b) each obviously imply condition (c), so it remains to be 
shown that condition (c) implies that 20 is a removable singularity for /. We 
must prove that each 6* in the Laurent expansion of /  around Zo is 0. Now

—  S i l ' K K - ' t - ' e .

where 7r is a ciicle in A  whose interior (except for so) lies in A. Let c > 0 lie 
given. By condition (c) we can choose r with 0 < r < 1 sudi that on yr wc 
have the estimate |/(C)| < </|C — z»| = c/r. Then

m  <  ^  m c m - z o f - ' w a s — r * - '£  m

=  J - - r fc- '2 3 r r  =  erk~l < c.
2jrr “

Thus, |bfc| < t. Since e was arbitrary, 6* = 0.

Wc shall use part 3 to prove part 2, so we prove part 3 next.

2. IT 2e is a simple pole, then in a deleted neighborhood of z q ,

/(* ) =  T “ " +  Y l  “ ••(* ~  *»)“ “  ~ T  +  /l(2)»“  Z  — Z q^  n»0

where h  is analytic at Zq and where hi ^ 0 by tlie Laurent expansion. Hence

Iim (2 -  z o ) f ( z )  — Iim [h} {2 — z<j)/i(2)] = hi.
*—*0 «-*n

On tbe other hand, suppose that lim.—^ (2 — 2o)/(z) exists and is uuequnl to 
zero. Thus, lims_^(2  -  zo)2f ( z ) = 0. By the result obtained in part 3, this 
shows that

for some constant hi and analytic hmetion h where hi may or may not be 
zero. But then (2 — zo)/(2> = 61 + (2 — z0)h(z), so limr_ Sn(2 — z o ) f { z )  s* hi. 
Thus, in fact, 61 ?£ 0, and therefore /  lias a simple pole at zq.

3. This statement follows by applying part, 1 to the function (2-2&)*/(*)< which 
is analytic on A.  (Tlie student should write out the details.)
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4. By definition, zo is a  pole of order k  > 1 iff

m

=  (z -Zo)* + (z - fc2o)*-‘ +  ■ ■■ ■• +  +  T . “-<* -  *> "Z  — Zq nsd

=  ^  +  (* -  *b) +  • • • +  M * -  *d)fc_I +  $ 3 °»(* “  2to)"+fcj

(where ^  0). This expansion is valid in a deleted neighborhood of zq. Let

<f>(z) =bk + bit-1 (* -  so) + - - • +  M* “  *o)*"* + X ) °»(2 “  zo)"+*
neO

Then <£(z) is analytic in the corresponding undeleted neighborhood (since it 
is a  convergent power series) and 4>{zq)  =  6* ^  0- Conversely, given sud i a  6 , 
we can retrace tlicse steps to show th at zq is a  pole o f order k  >  I. ■

Z eros an d  P o les Near a zero of order n , an analytic function acts much like 
z" near 0. Near a  pole of order n , it acts much like 1/z " . This suggests th a t a 
reciprocal of a  function with a zero should have a  pole and conversely. This is, in 
feet, correct. Suppose A is an open set in C and zo € A. Wc know th a t a  function 
with a zero of order n  a t zo can be factored as (z — zo)nip(z) where <p(z) is analytic 
and nonzero in a  neighborhood of z q . A function has a pole of order m  if and only 
if it factors as (z — zo)_ro#(z) where il> is analytic and nonzero in a  neighborhood 
of zo. W ith — llip, we see th at the reciprocal of a  function with a  zero of order n 
has a  pole of order n  a t th a t point. The redprocal of a  function with a  pole of ordcr 
n  has a removable singularity a t th a t point, and when the singularity is removed, 
it becomes a  zero of order n . If the num erator and denominator of a fraction both 
have zeros, we can factor mid caned.

P ro p o sitio n  3.3 .5  Suppose f  andg are analytic in a neighborhood of sq with zeros 
there of order n and k respectively. (Take the order to be 0 if the function is not 0 
at zo). Let h (z) =  f(z)/g(z). Then

if k>  n, then h has a pole of order k — natzo .

2 . if k  =  n , then h has a removable singularity with nonzero limit at s q .

3. i f  k < n, then h has a removable singularity at Zq ,  and setting h(zo) = 0 
produces an analytic function with a zero o f order n — k at z q .

P ro o f Wc know that there is neighborhood D *= (z  €  C | |z  — zo| <  r} on which 
/  and g factor as /(z )  =  (z -  zo)n<p(z) and y(z) =  (z -  zo)kil>(z) where ip and i 
arc analytic and neither is ever 0 on D. The function H(z) ~  <p(z)/ifi(z) is analytic
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and never equal to  0 on D. Tlius, for z  in the deleted neighborhood V  =  D \  {zo}, 
w t have

h(z) = }*— Sffi} *  (* -* ■ )" -* # (* ).p(z) (z -  zo)k1>(z)
Our conclusions now follow from Propositions 3.2.9 and 3.3.4. ■

E ssen tial S in g u la ritie s in  many examples, the singularities are poles. I t is not 
nard to show th at if f(z)  has a  pole (of finite order k) a t zo, then |/(z ) | —♦ oo as 
: —'> so (see Exercise 7). However, in case of an essential singularity, | / |  will not, 
in general, approach oo as z  —»zo. The following result, proved by C. E. Picard in 
!S79, answers tins question.

T heorem  3 .3 .6  (P ic a rd  T heorem ) Let f  have an essential singularity at zq and 
let U be any (arbitrarily small) deluded neighborhood of zq. Then for all to €  C, 
'icapt perhaps one value, the equation f(z) = w has infinitely many solutions z in
V.

This theorem actually belongs in & more advanced course.5 However, we can 
easily prove a  am pler version, which in any case is the jumping-off point for Picard’s 
Theorem.

T heorem  3 .3 .7  (C aso ra ti-W eie rstrass T heorem ) Let f  have an (isolated) es­
sential singularity at zq and let w €  C. Then there is a sequence z \, zq, zq, . . .  in 
Z such that z,, —* zo and f(tn) -* w.

P ro o f If there were no such sequence, then there would be an c > 0 and a  S >  0 
sudi th a t |f(z)  — u>| >  e for all z in the deleted neighborhood U =» (z  €  C  | 
0 <  |z — 2o| <  if}. In particular, f{z) is never equal to  w in U, so the function 
y(r) =  l /( /( z )  — vt) is analytic on U and |p(z)| <  1/8 there. Thus, any singularity 
of g a t zo is removable. The values of g cannot be constantly 0 near zo since /  
is not constantly infinite. (Tlie singularity is isolated.) FVom Corollary 3-2.8, any 
rent of g a t zq is isolated and lias a  finite order k. Therefore, /(z )  =  to +  1 /g(z) 
would either be analytic (if k — 0) or have a  pole of order k  a t zo by Proposition 
3.3.5. This would contradict tbe hypothesis th a t /  lias an essential singularity a t 
^o- ■

See Exercise 20 for another interpretation of this result.

Worked Exam ples
E xam ple 3 .3 .8  Find the Laurent expansions of the following functions (with zo, r j , ro 
as indicated):

(a) (z +  l ) / z ; z o  =  0 ,n  =  0,ra =  oo

(b) z /(z2 -t-1); zo =  i , r j  =  0, r 2 =  2
6Sec B. C. Titciiinnrali, The Theory o f Function*, Second Editinn (New York: Oxford Univcr- 

■nty Press, 1939), p. 283, corroded reprinting 1908.
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Solution Write 
z + 1 I

(a) ------=  -  + 1 . This equation is in tlie form of the Laurent expansion, so, byZ _
uniqueness, it equals it; that is, 6* = 0 for k > 1,6| = l,co  =  1, 0* = 0 for 
* > 1 .

(b) A partial-fraction expansion gives

z 2 +  1 — ( z  +  t)(z — i )  2 z  — i + 2 z  + i '

Because l/(z + t) Ls analytic near z =  i, it can be expanded as a power series 
in z — i  by using the geometric series (see Figure 3-3.4):

1 _  1 1 1 
z-t*£ ** 2* +  (z -  i) *” 2t 1 -  )

-  b  E  ( - ^ ) "  -  '< * -  v -
n=0 '  ‘  n *0

Thus, the Laurent expansion is

- q r r = f  < » - « r ‘1+ E  -  i)“ .

yii

Figure 3.3.4: Region of convergence for the expansion of I / ( z + *)■
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E xam ple 3 .3 .9  Determine ike order of the pole of each of the following functions 
■r the indicated singularity:

a) (cosz)/zl,z0 = 0

•b) (c* -  J )/z 2,« || =  0

c) (2 +  l ) / ( z - l ) t«o» 0

S olu tion

• a) Tlie function a3 has a  m o  of order 2 and cosO =  1, so (coszj/z2 has a  pole 
of order 2 by Proposition 3.3.5. Alternatively,

cos z _  J /  j?  \  1 1 2̂
a2 2f 4f ~ / ~ ? ~ 2 !  + 4T“  '**

so again the pole is of order 2.

i h) The num erator has a aero of order 1 a t 0 (why?) and the denominator a  
zero of order 2. The quotient thus has a  simple pole by Proposition 3.3.5. 
Alternatively,

c ’ - l  1 1 7 ,  a 2 \  I  1 1 a  a 2

“l ^ “ ? K 1 + Z + 2! + " j " 1j = I ' ,‘ 2i +  3! +  4r +

so the pole is simple.

(c) There is no pole since tlie function is analytic a t 0.

E xam ple 3.3 .10 Determine which o f the following functions have removable sin­
gularities at zo — 0:

(a) (sin a )/z

(b) c*A

(c) (e* -  l)a/z*

(d) a/(e* - 1)

S o lu tion

(a) lim i_oz - (sin z)fz = lim -_osinz =  0, so the singularity is removable (by 
Proposition 3.3.4.). Alternatively,

s i n z
1 - a2 a4

3 i +  a

(b) lim ._ 0 2 • c*/z =  1, so tlie pole is simple (the singularity is not removable).
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(c) (e‘ — 1 )fz  has a  removable angularity, since limi _ o z  • (c* -  l ) /z  =  0, so 
|(e* — l) /z ]2 also has a  removable angularity.

(d) liin ,_*z/(e*  — 1) =  1, because (e* -  1 )/z  =  1 +  z /2  -|- z2/3! +  . . . - +  1 as 
z  —» 0. Thus, z/(e* — 1) has a  removable singularity.

E xam ple 3-3.11 Show that the junction

/(* )  =
1-008(2*) 

sulfa3)

has a  nm sittU e singularity a t zo =  0 and that when the singularity is “removed", 
the resulting function has a zero of order 7.

S o lu tio n  The Thylor series expansion for num erator and denominator are

and

l - « +

e f o f z V ** -  j * *  +  —  -

_  z ‘ 0
» » »  —  At

1 | 4
r  +  -

The num erator has a  zero of order 10 and the denominator has a  zero of order 3 a t 
zq =  0. By Proposition 3.3.5, the quotient lias a  removable singularity there and 
extending the function to  have value 0 a t an results in a  zero of order 10 — 3 =  7. 
In  fact, for 0 <  |z | <  y/v, we have

2. *11 r 1 ,12 _
s r + « 2

This function equals a7 multiplied by an analytic function w ith value 1/2 a t zq =  0.

Exercises
1. Find the Laurent series expansions of the fallowing functions around zq =  0 

in tlie regions indicated:

(a)* 8in (l/a ),0 <  |a | <  oo 
(!>)• l/a (a  +  l ) ,0 < |a |< l
(c) z /(z  +  l ),0 <  |z | <  1
(d) e*/a*,0 <  |a | <  oo

2. Find the Laurent series expansion of l/z (z  +  1) around zo =  0 valid in tbe 
region 1 <  |z | <  oo.
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3. Find the Laurent series expansion of z/(z -4- 1) around zo = 0 valid in tbe 
region 1 < |z| < oo.

4. Expand X
z ( z - l ) ( z - 2)

in a Laurent series in the following regions:

(a) 0 <  |z | <  1
(b) 1 < |z | <  2

5.* L et7i and 72 be two concentric circles around zo of radii Ri sndRztRt <  R*. 
If z lies between tlie circles and /  is analytic on a region containing 71, 7*21 
and tlie region between them, show that

/ ( * ) «
/(C)
C - 2

t e ­ r n .dC

6. Suppose the Laurent scries or /(z) = clf*/(l -  2) valid for 0 < (2) < 1 is 
Ti^L-oc0” 2”- Compute c_2,c_,,co,Ci, and cs-

7. Let /  have a pole at zo of order k > I. Prove that f(z) -*  00 as 2 —► 20- 
liint.: Use part 4 of Proposition 3.3.4.

$. Prove, using the Thylor scries, the following complex version of I’H&pilaVs 
rule'. Let f{z) and g{z) be analytic, both liaving zeros of order k  at zo- Then 
f(z)/g(z) has a removable singularity and

i(z)  f<kn*>) 
s(*) ~

9. Which of the following functions have removable angularities at the indicated 
points?

(a)
cos(z — 1)

i 2 ’*® 0

(b) 2/ ( 2 -  l),Zo =  1

(c) /(z)/(z -  zo)* if /  has a zero at zo of order k

10. If /  is analytic on a region containing a circle 7 and its interior and has a 
zero of order 1 only st zo intide or on 7, show that

zo = * /'(* )
/(* )

dz.

Hint: Let /(z) = {z -  zv)$(z) and apply the Cauchy Integnil Formula.
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11. Find the first few term s in the Laurent expansion of l/(c*  — 1) around z  =  0. 
Bint: Show th at since l /( c s — 1) has a  am ple pole, we can write

Then cross multiply (using Worked Example 3.2.15) and solve for b i,ao ,0|.

12. * For /  as in tlie Laurent Expansion Theorem 3.3.1, sh o w  th a t if n  <  r  < r j . 
then

13. Use the method of Exercise 11 to  find the first few term s in the Laurent 
expansion of col 2 =  (cos2)/(s in 2) around 2 =  0.

14. Define a  branch of y/z* — 1 tlia t is analytic except for the segment [—1, 1| on 
the real axis. Determine the first few term s in tlie Laurent expansion th a t is 
valid for |2| >  1.

15. If the scries

converges for |2 -  2q| >  A, prove tlia t it necessarily converges uniformly on 
the set Fr =  {z sudi th a t \z -  zo| > r )  for r  >  I t  Bint: A dapt the Abel- 
W eierstrass Lemma and the W eierstrass M  Tfest to this case.

16. * Let /  have a  zero a t 2q of multiplicity k. Show th at the residue of / ' / /  at
2q is k.

17. Discuss tbe singularities of l/co s( I / 2).

18. Evaluate J zne*̂ !tdz, where 7 is the circle of radius 1 centered a t 0 and 

traveled oucc in the counterclockwise direction.

19. Find the residues of the following functions a t the indicated points:

20. (a) Let 20 be an esseutial singularity of /  and let U be any deleted neigb- 
borliood of zq. Prove th a t the closure of /( ( /)  is C.

(h) Assuming tlie Picard Theorem 3.3-6. derive the “Little Picard Theorem* 
The image of an entire nonconstant function misses at most one poin:

(a) l/(22 - l ) , 2  =  l 
(h) z/(z2 - l ) , Z  =  l
(e) (c* - I ) / z2, 2 = 0
(d) (c2 - l ) / z , s  =  0

ofC.
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Review Exercises for Chapter 3
1. Find the Thylor expansion of tog z  (tlie principal branch of the logarithm) 

around 2 =  1.

2.  * W here axe the poles of 1/c o s r  and what arc their orders?

3. Find tlie Laurent expansion of l / ( s 2 +  z3) around 2 =  0.

4. The 68th  derivative of f(z)  =  e*a a t z — 0 is given by (G8)i/(34)1. Prove tliis 
w ithout actually computing the 68th derivative.

5. Expand 22siuz2 in a Taylor series around 2 =  0.

6. Let

X2( l -  Z2)
sill(x2)

(a) Identify all singularities of /  in C and classify each as removable, a  pole 
(of what order), or essential.

(1>) (i) How do you know that /(* )  has a  series expansion M m-z* 
valid for z near 0?

(ii) W hat can you say about for k  <  0?
(iii) Find cq, c i, and «*.

(c) For what se t of values of z is the series expansion in part (b) valid? (You 
need not determine whether tlie scries converges on tlie boundary, bu t 
give the interior o f the region.)

(d) Let the function g be defined to be / ( z )  for z  yt —1,0,1 , let g(0) =  I and 
let g(z) =  2 if 2 =  d tl. Discuss the relationship between tlie function g 
and your answers to  parts (a), (b), and (c).

7. Verify the Picard Theorem for the function cl/s.

8. Let exp|t(z — l/z )/2 ] =  5 3 ^ -os «Ai(02" he the Laurent expansion for each 
fixed t €  R. The function J„(t) Ls called the Bessel function  of order n . 
Show tliat

1 t*(a) J„(t) =  — I cos(<sin0 — v 8)dB

(1>) ./-„(«) =  ( - l ) “./n(t)

9. Find the radii of convergence of
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10. Let y*”  0e-(z — so)n be a power series with radius of convergence R  > 0. 
If 0 <  r  <  R, show th a t there is a constant M  sud i th a t |o„ | <  Mr~n,n  =  
0, 1, 2, . . . .

11. Let /  be analytic on C\{0}. Show th a t the Laurent expansions of /  valid in 
the regions {z such th at |z | > 0} and {z sudi th a t |z | >  1} are the same.

12. a Suppose th a t /  is analytic on the open unit disk |z | <  1 and th at there is a 
constant M  such th a t | / l fc)(0)| <  M k for all k. Show tlia t /  can be extended 
to  an entire function.

13. Suppose th a t /  is analytic in a  region containing the closed unit disk |z | <  1. 
th a t /(0 )  =  0, and th a t |/( z ) | <  1 if |z | =  1. Show th at there are no z ^  0 
w ith |z | <  1 and /(z )  — z. Hint: Use tlie Schwarz Lemma.

14. W hat is the radius of convergence of the Taylor expansion of

n  \ c*
/(Z ) *  ( z - l ) ( z - M ) ( z - 2 ) ( z - 3 )  

when expanded around z *» *?

15. * Evaluate

L

z2 +  c* 
z(z  — 3)

dz

where 7  is the unit tird e .

16. Suppose th at the complex series converges but th a t ]C^,0 |o„| di­
verges. Show th a t the power series a^z” has a  radius of convergence 
equal to  1. Answer the same question but assume tlia t the series a- 
converges and th a t y ^ % n |a ,tf diverges.

17. Find the Laurent expansion of

=  z(z2 +  l)

th a t is valid for

(a) 0 <  |z | <  1
(b) 1 <  |z |

18. Find the Laurent series expansion of /(z )  =  1/(1 +  z2) 4-1 /(3  — z) valid is 
each o f tbe following regions:

(a) {z sud i th a t |z | <  1}
(b) {z such th a t 1 <  |z | <  3}
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(c) (z  such tliu t \z\ >  3}

19. Let /  be entire and let g(z) = J2nLo <*7**w have radius of convergence R. Can 
you find another power series £  ̂ n-2" with radius of convergence > R such 
that

20. • Let /  be entire and suppose th a t f (z )  —* oo as z  —» oo. Prove th a t /  is a 
polynomial. Hint: Show th a t f ( l / z )  lias a  pole of finite order a t z — 0.

21. Let /  have an isolated singularity a t zq. Show th a t if f(z)  is bounded in a  
deleted neighborhood of zo, then lim ,_ s#/ ( 2) exists.

22. Let f  be analytic on \z\ <  1. Show th a t the inequality |/i*)(Q )| >  cannot 
hold for all k.

24. * Let f(x)  be entire and satisfy these two conditions:

(0 / '(* )  =  /(* )
( i i ) / ( 0) =  l

Show th at f(z)  — c*. If  you replace (i) by f{z t +z2) -  / ( z i) /( z 2), show th a t 
/(z )  =  e“r for some constant a.

25. Determine the order of tlie poles of the following functions a t their singulari­
ties:

26. Identify the singularities of /(z )  =  z/(e* -  l)(e* — 2) and classify each as 
removable, essential, or a  pole of specified order.

(b) (e* - 1)/*
(c) (e* -  2)/z
(d) ( c o s z ) /( l- z )

27. Evaluate /  (e*/z2) dz where 7  is the unit circle.
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28.* (a) Show by example th a t the mean value theorem for analytic {unctions 
is not true. In  other words, let /  be defined on the region A  and lei 
Zi,s& €  A be sud i th a t the straight line joining *i to  z2 lies in A. Show 
th a t there need not b e a c o n  this straight line sudi th a t

A *o) = Z l - * 2

(b) If, however, |/'(z o )| < M  on this line, prove th a t |/(z i)  -  f(&2)\ < 
M\zi -  Zi| and generally th a t if \f{zo)\ < M  on a  curve 7  joining *1 lo 
32, then |/(z i)  -  f(z2)| <  M I(7 ).

29. Let f(z)  =  (z* -  l)/[cos(irz) +  I] have the series expansion YlT-o an<2’* uear 
z =  0.

(a) Compute ao ,a i, and 02.
(b) Identify the singularities of /  and dassify each as essential or a  pole of 

specified order.
(c) W liat is the radius of convergence of the series?

30. If /(z )  =  / ( - z )  and /(* )  =  a„z" is convergent on a  disk \z\ < R, R  >  0. 
show th a t On =  0 for n  =  1 ,3 ,5 ,7 ,___

31. If /  is entire and is bounded on the teal axis, then /  is constant. Prove or 
give a  counterexample.

32. Let /  be analytic on a  region A  containing the disk {2 e  C  | |z  — zq\ < /?}. 
so th a t

00

m = E
nsO

/ (w)(sa)
n! (3 - z o )n-

Let Rn(z) equal /(z )  minus the n th  purtial sum. (R„ is thus the remainder . 
Let p < R  and let M  be the maximum of /  on {z such th a t |z -  zol =  R-- 
Show th a t \z — zq| <  p implies that

1
l - p / i r

33.* The Bernoulli numbers B„ are defined to  be tbe coeffidents of the pnavr 
series of z/(e* — 1):

2
~ \

(a) Determine the radius of convergence of th is series.
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(b) Using the C a u c h y  Integral Fbrmulas and the contour |z | =  1, find an 
integral expression for Bn of tbe form

Bn = r 9n(B)dB, 
Jo

for suitable functions gn(8). where 0 <  8 < 2>r.

34. The Legendre polynomials P „(a) are defined to be the coefficients of zn 
in tlie Thyior development

( l - 2 a z  +  z2)- ' /2 =  f ; P „ (a )z".
n s O

Prove th a t P„(a) is a  polynomial of degree n  and find P lt P j, P3, P4.

35. Find the radius of convergence of the power series 5*ljjL02wzw*.

36. * Provo:

, , / z * \ 2 1 f z ' e t ' d t  . . A  .(a) — =  r—: /  ■-: ■■■ —, whore 7 is the unit circle
'  \  n! J 2jtz n!tB t

,h) i f
37. Find a  power senes which solves the functional equation /(z )  =  z +  /( z 2) 

and show that there is only one power series which selves the equation with 
/(0) = 0.

3$. W hat is wrong with the following argument? Consider

/(z )  =  . . . +  *7  +  - s  +  “  +  1 +  Z +  2* +  
z3 z2 z

Note tlia t

z  +  z* +
z

1 - z

whereas

, . 1 . 1  1 “ *1 +  -  +  - ;  +  . . . =  -----77“  — ----- •z z2 1 — 1 j z  1 -  z

Hence /(z )  = 0 . Is /  in fact the zero function?

39. Suppose /  is an enlire function and tliat |/W (0) | <  1 for all k  >  0. Show 
that |/(z ) | <  el*l for all z £  C



242 Chapter 3 Series Representation o f A nalytic Functions

40. Let

/(* )
(z -  l)2(z +  3) 
1 — sin(7rz/2)

(a) Find all Uie singularities of /  and identify each as a removable singularity, 
a  pole (give tbe order), o r an essential singularity.

(b) I f / ( z )  stQo+aiz + ati? + . . .  is the Taylor expansion of /  centered at 
0, find oo.oi, and a3.

(c) W hat is the radius of convergence of the series in (b)?



Chapter 4

Calculus of Residues

This chapter focuses on the Residue Tlieorem, which states th a t the integral of an 
analytic function /  around a  dosed contour equals 2ari tim es the sum of the residues 
of /  inside the contour. We shall use this theorem in our first main application of 
complex analysis, the evaluation of definite integrals. The chapter begins w ith some 
techniques for computing residues of functions a t isolated angularities.

4.1 Calculation of Residues
Wc recall from §3.3 th a t if f  has an isolated singularity a t as, then /  adm its a  
Lam ent expansion th a t is valid in a  deleted neighborhood of Zq:

/(2) = •*+ ( 7 ^  + +ao+a,(2_2to) + "’
where fri is called tbe residue of /  a t sq. This is w ritten

bi =  R cs(/; zo)-

We want to  develop tediniques for computing the residue w ithout having to  find 
the whole Laurent expansion. O f course, if the Laurent expansion is known, there 
is no problem. For example, since

=  1 +  I + £ 5  +  - + n!z” +  • • • ,

the coeflident of 1/z  is 1, so f(z)  — e1̂  has residue 1 a t zo — 0.
If we are given /  defined on a  region A w ith an isolated singularity a t zo, then 

we proceed in the following way to  find the residue. F u st we dedde whether we can 
easily find the first few term s in die Laurent expansion about zq. If so, tbe residue 
of /  a t zo will be the coeffident of l / ( z —zo) in th at expansion. If not, then we guess 
the order of singularity, verify it according to the rules th a t will be developed in

243
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this section (some rules were already developed in Proposition 3.3.4). aud calculate 
the residue according to  these rules. (The rules are summarized in Tabic 4.1.1 given 
later in this section). If we have any doubt as to  what order to  guess, wc should 
work system atically by first guessing removable singularity', then simple pole, and 
so on, checking against Table 4.1.1 until we obtain a  verified answer.

R em ovable S in g u la ritie s Let /  be analytic in a  deleted neighborhood of Cu. 
Recall from §3.3 th a t /  has a removable singularity a t 20 iff lim ._ ^ (z -zo )f(z )  *= 0. 
The following theorem covers many im portant cases and is sometimes the easiest 
to  use.

P ro p o sitio n  4.1 .1  Ifg(z) and h(z) are analytic and hone zeros at zq of thr. sanu 
order, then f{z ) =  g(z)/h(z) has a removable singularity at zq.

P ro o f By Proposition 3.3.4, we can write g(z) — (z — zo)kg(z), where p(zg) r  *' 
and k(z) =  (z — zc)fcfc(z)._ where h(zo) *r 0 ^ d  g and It arc analytic and nonzeiv 
a t zo- Thus, /(z )  =  g(z)/h(z) is analytic a t zq. ■

Likewise, if g has a zero a t so of order greater than h, then g/h  has a removals, 
singularity a t zo-

Exam ples

(i) c*/(z — 1) has no singularity a t zo =  0.

(ii) (e* — l) /z  has a  removable angularity a t 0 because er — 1 and z have zero* 
of order 1. (They vanish a t z =  0 but their derivatives do not.)

(iii) z2/  sin2 z has a removable singularity a t zo — 0 because both the numerator
and tlie denominator have zeros of order 2. ■

The preceding discussion is summarized in linen 1 and 2 of Table 4.1.1.

S im ple P o les By Proposition 3.3.4, if Iim._»Su(z — za)f(z) exists and is wmukTw 
then /  has a  simple pole a t zo and this lim it equals tlie residue. Let. us apply 
result to  obtain a  uschil method for computing residues.

P ro p o sitio n  4 .1 .2  Letg andh be analytic at zo and assume that g(zo) #  0 JHz, = 
0, and h’(*o) £  0. Then /(z )  »  g(z)/h(z) has a simple pole at zq and

R es(/;zo) =
h’izoY
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P ro o f Since /t(zo) =  0, the definition of the derivative gives

Iim ft(g) Mjg )  =  Km =  ft'(zo) £  0,
» — * 0  Z — Zo Z — Zo

sad therefore

Thus,

z - z d  _  1
h(z) -  fc'(zb)*

rxists and therefore equals the residue. ■

A lte rn a tiv e  P ro o f Since ft(zo) =  O and /i'(zo) ^  0, we can find a  function h 
*Lat is analytic a t zo such that. h(z) —Jt(z)[z — zo). Note th a t h(zo) — A'(zo) £  0. 
Tims, we can write g{z)/h(z) — g(z)/[h(z)(z — zq)] and g(z)/h(z) is analytic a t zq. 
Hence we can write a Taylor series

g ( z )

h(z) =  5 Z a"(^  _ z °)" ’
n=0

where ao =  g(zo)/h(zo). Therefore,

9i»)
h{z)(z-zo)

^ a n( z - z o )n_1
nsO

^  the Laurent expansion of g/h  and thus ao =  g(zo)/lt{zo) =  g(za)/h'(za) is the  
residue a t Zq. ■

As we have seen, if g(z) has a  zero of order k  and h(z) has has a  zero of order 
at zo, with l > k, then g(z)/h(z) has a pole of order l — k  a t zo. If 1 =  fe + 1 , we 

nave a  simple pole and can obtain the residue from the next proposition.

P ro p o sitio n  4 .1 .3  Suppose that g(z) has a zero of order k at zo and that h(z) has 
a zero of order k  +  1. Then g(z)/h(z) has a simple pole with residue given by

R « ( |; z o ) = ( f c + 1) g(<0(*o)
/i<fc+ i)(za)‘



P ro o f By Taylor’s theorem and the fact tlia t p(z0) =  0, . . .  ,5**"l>(*,) =  0, we 
can write

Chapter 4 Calculus o f Residues

ff(*) jp * -g {k)(zo) +  (* -  2o)*+15(z), 

where g is analytic. Similarly,

,1(Z) "  +  (* -  *>***(*)■

Thus,

[gW (^)/fc!)-K a-Z o)g (2)
*W  |M*+»>(Zo)/(*  +  j)!] +  (s -  zo)h(z)' 

As z —* 2o, tliis converges (by the quotient tlieorem for lim its) to

which proves our assertion.

( * + l ) g<fc)(te)

Another proof th a t

(* -  «B)ffcr =  (* + 1)*-*o 'h(z) ' fe<fc+1>(za)

is obtained by using l’Hdpital’s rule (see Exercise 8, §3.3) and observing tlia t both 
(z — za)g(z) and /i(z) are analytic a t zq with zq a  zero of order (Ar 4-1).

E xam ples

(i) cs/z  a t z — (|. In th is case 0 is not a  zero of c* but is a first-order zero of z. 
so the residue a t 0 is 1 • « ° /l =  1. Clearly, Proposition 4.1.2 also applies.

(ii) e* /sin z  a t 0. Here, c* is not zero a t the point z =  0. and, since sin'O = 
cosO =  1,0 is a  first-order zero of sin z. Thus the residue is c°/costi =  1.

(iii) 2/ ( 2* 4- 1) a t 2 =  i. Here g(z) =  z, h(z) =  z2 4-1. Therefore, g{i) — * r  0 "nd 
/i(i) ts 0, /i'(t') =  2i 0. Thus the residue a t i is g(i)/h'(i) — 1/ 2.

(iv) z/(z* - 1) a t z =  1. Here ff(z) =  z , and h.(z) =  z4 - 1 .  Thus 5(1) =  1 *  t' 
and h (l)  =  0, /t'( l)  =  4 ^ 0 ,  and so the residue is 1/4.

(v) z /( l  -  cosz) a t 2 *  0. Hero $(0) *  0 and cf{z) =  1 0, so 0 is a  am ple zenc
of g. Also h(0) =  0 ,h '(0) =  sinO *  0, and h"(0) =  cosO *  1 ^  0, so 0 fc « 
double zero of h. Thus, by Proposition 4.1.3 (see also line 5 of “Bible 4.1.11 
the residue at 0 is

$ '(0) 1



i-f.J Calculation, o f Residues 247

D ouble P oles The formulas for residues a t double poles become more compli­
cated and tbe residues a little more laborious to  obtain. Probably the m ost useful 
formula for finding the residue in this case is tlie following result.

P ro p o sitio n  4 .1 .4  Let g and h be analytic at Zo and let g(za) $  0,h(zo) — 
/i'(2o) — 0, and h"(zo) £  0. Then g(z)/h(z) has a second-order pole at zg and 

‘J>e residue is

Res n 9'{*o) 2 9{*o)h'"(ze)
h"(zo) 3 [h"(2b)J2 ’

P ro o f Since g has no zero and h  has a  second-order zero, we know th a t the pole 
e  of second order (see the remade preceding Proposition 4.1.3). Thus we may write 
the Laurent series in the form

iW  "  (T rfe j*  +  +'“• + “><* - ■»>+«*<*~ *■■■

sad we want to  compute bi. We can write

and

Therefore,

ff(z) =  fl(zo) +  ff'foH 2 -  «d) 4- ^ y ^ { *  -  re)2 +  -. -

, ,  , h"(z»), ,2 h'”(zo), ,3 .
/»(*) =  -  *>) +  — 6 (z  -  * » ) + - - • •

gi:) = fc(z)[(7^)5+7=^;+ao+a,(2"ab)+-]
_  +  + • [b2 + bi(z —z&) +<i<i(8 -ao)2 +  •••].

We can multiply out these two convergent power series as if they were polyno­
mials (see Worked Example 3.2.15). The result is

^ . M ^ + r M ^  +  W O S l]

Since these two power scries are equal we can conclude th a t the coefficients are 
equal. Therefore,

Solving for bi yields the theorem.

Observe th a t for a  second-order pole of tbe form g(z)/(z—zo)i  w hereg{zo) 0, 
ihe formula in Proposition 4.1.4 simplifies to  gt[zo), as it should (Why?).

Tlie following result may be proved in an analogous manner.
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P ro p o sitio n  4 .1 .5  Lei g and h be analytic at zq and let g(za) — 0,</(zo) 
0,/i(2o) =  0,h '(zo) =  0,/i" (2o) =  0, and hM{zo) ?  0- Thcn g /h  has a second- 
order pole at zo with residue

3g“(zo) 3 g,(2Q)h^Hz0)
km(zo) 2 [A"'(zu)l2

The proof is left for Exercise 4.

E xam ples

(i) e*/(2—l )2 has a  second-order pole a t zo =  1; here wc choose g(z) =  c*, h(z) =
(z -  l )2 and note th a t p (l) =  e £  0, fe(zo) — 0,/t'(zo) =  2(zb — X) =  0. 
and h"(zfj) =  2 0. Therefore, by Proposition 4.1.4, the residue a t 1 i>
[(2 - e )/2) -  (2/3) ■ ((e • 0) /22J =  e.

(ii) (e* -  l) /s in 3 z witJi ze =  0. Here we choose g(z) = er — l,ft(z ) — aiu3 ;
and then note th a t g(0) =  0,^ ( 0) £  0, /i(0) =  0,/t'(z ) =  3(shjt 2)(cos;  i. 
so hf(0) =  0,h "(z ) =  6sinz • cos2z  — 3sins z (which is equal to  zero a t 0>. 
and finally h'"(z) =  Geos3 z — 12sina z • cosz — 9 sin2 z - cosz (which is 6 at 
z — 0). Wo also compute h<'”)(0) =  0. Tims liy Proposition 4.14>, the residue 
is 3 - ( 1/ 6) =  1/ 2. ♦

H ig h er-O rd er P oles For poles of order greater than 2 we could develop formula? 
in the same manner in which we developed the preceding ones, but they would be 
more complicated. Instead, two general methods can be used. The first is describt-d 
in the next proposition.

P ro p o sitio n  4.1 .6  Let J  have an isolated singularity at zo and let k be the sntallt.< 
integer > 0 such that l im .^ ^ z  — zo)kf{z) exists. Then f(z)  has a pole of order r 
at zo and, if  vte let <t>(z) =  (z — zo)*/(z), then <f> can be defined uniquely at zo 
that $  is analytic at zq and

Ttes(f;zo) = » (t- t)(3e) 
(1 - 1)1 •

P ro o f Since l im ^ ^ z  -  zo)kf(z)  exists, ^ (z) = { z -  za)kf{z) lias a  rem o v a l 
singularity a t zq, by Proposition 3.3.4. Tlius in a  neighborhood of zo,

0(z) =  (z — Zo)kf(z)  =  h* +  bk-i(z — *u) + d*6j(z  — zo)fc_‘ +  ao(z — zo)*’ +

so

/(* )  =
hfc bk-i

(z -  zo)k (z  -  Zo)fc~* • ♦ + 6,
+  ao +  fti(z -  Zb) +  ••• ■
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If 6* =  0, then lim -_I0(z — z©)*- , /(z )  cxiste, which contradicts tlie  hypothesis 
ito u t k. Thus. 2© is a  pole of order k. Finally, consider tlie expansion for <k(z), 
acd differentiate it A: — I tim es a t 2© to  obtain <t>(k~l*(zo) = [(fe -  I)!]6t . ■

fn this theorem it is the residue formula th a t is im portant rather than the test 
for the order. I t  may be easier to  test tlie order by writing (if possible) /  ~  y/h  
Mid showing th a t h has a  zero of order k  greater than th a t of g. Then we have a  
-o le of order k  (as was explained in the tex t preceding Proposition 4.1.3).

I^et us now suppose th a t the form of /  makes application of Proposition 4.1.6 
inconvenient. (For example, consider c r/s in 4 z with z© =  0. Here k = 4, since 
ih r num erator has no zero and the denominator has a zero of order 4.) There 
* an alternative method th a t generalizes Proposition 4.1.4. Suppose tlia t f(z)  =  
: :)//i(z ) and th a t A(z) has a  zero of order k  more than g a t 2©; therefore, /  lias a  
pole of order k. We write

g(*) _  h  
h(z) (z -  zo)* - + bi

(* -* » ) +  g(*)>

^here p is analytic. Also, suppose th a t 2© is a zero of order m for g(z) and a  zero 
jf order m +  k  for h(z). Then

, ( , ) = £ £ ! !* ! (* -« ■ > "

Tlius, we can write

y '  g(n)(z©)(z -  2©)"
^  n!tism

Wo can then multiply out the right side of the equation as if tlie factors were 
polynomials (because of Worked Example 3.2.IS) and compare the coefficients of 
= — z©)m,(z  -  2©)m+I, . . .  ,( s  — zo)m+* -‘ to obtain k  equations in 61, 62, . . .  , 6a- 

Finally, we can solve these equations for 6|.  This method is sometimes more prac­
tical than that of Proposition 4.1.6. When m =  0 (that is, when p(z©) ^  0), the 
explicit formula contained in the following proposition can be used. (The student- 
should prove this result by using the procedure just described.)

«nd A (r)«  £
n=m +k

l±  '■

r h
l(z -z o )*

hSn)(zo)(z -  ao)"
n!

bi
(a — ao)

+  p(z)

P ro p o sitio n  4 .1 .7  Let g and h be analytic at zq, with g(z©} yt 0, and assume 
6(zo) =  0 =  . . .  =  /!(*- , ) (z©) and ftM(z©) /  0. Then y /h  has a pate of order k and
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the residue dt ***'
H cs(ff//i;2o) is given by

0 0 0 g(z<>)

ft< * W 0 0 fl0>(2o)
ft!

h ^ 'H za ) fcW (»i 0 ff(2)(20)

( k + 1)! ft! 2!

A<2* -’2>(zo) ft(2t-3)(2o) A(t+1)( * ) p<fe-1)(20)

(2f t- 2)! (2* - 3 ) ! (ft+ 1)1 ( f t - 1)!
(2ft - l)!

w hen: th e  vertica l bars denote the d e term inan t o f  th e  enclosed  ft x  ft m atrix.

T ^ I -  4.1 .1  Techniques for Finding Residue*

In this table O »»d it ore analytic a t so and /  has an isolated singularity. The most 
useful and common tests arc indicated ly  an asterisk.

-------  '  Type of
Function H at ________________ Singularity________Residue a t an

removable 0l. /<*) Iim (a -  ao)/W  = 0r—so
*2. ffW y and h have zeros

AW of same order 
Iim (a -  ao)/W  -  0*3. /W *—*0

exists and is /  0
'4 . lK*) s(=o) 0,A(ao) — 0.

*W A '(ao)/0

$■ j(*) f  has zero of order k.
AW h has zero of order t  +  I

9(*o) ^  0
*8.

AW A(ao) = 0 = A'(ao) 
A"(ao)74 0
flW) *  o*7. fl(-)

(s — So)*

*8.
9(*n) = O.y(ao) & 0,

A(*> it(ao) =0 = ii'(=u)
=  A"(ao). Aw'(so) 9* 0 
1 is the smallest integer such

9. m that Iim d fo) exists witerc
« ( a ) r f - a o ) fc/W

*10. g has zero of order i.
AW It lias zero of order k + t

11. g(z) g(sa) ^  0,l»(ao) =
AW ... =Ak“1W )

= 0,ft*(»o)^0

removable 0

simple pole -* o )/U t

simple pole 

simple pole

4fa>)
A'(*o)

second-order pole -9 'W )  2yW  r » |f c £  
A«W) 3 7 ^ S § S

second-order |wlc ff'W)

second-order pole ,9"(*o) 
A'"(ao) 2

pole of order k Um*-*0 (fc -  !)•

pole of order k
Urn*-*» (fc -  i •

where *(*) =

pole of order k see Proposiiwc
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E xam ples

I i) Find the residue of a t 20 =  1.
(* -  1)3(2 +  1)

The pole is of order 3. Wc use Proposition 4.1.0. In this case,

< « - r r r
so

t f ( z )
. „ (2 + 1 ).2 2 -2*  Z* + 2g ,2) *=  ----——7TS-----  =  •;  =  I —

and

(2 +  1)* (2 +  1)* (2 +  1)*

2 . . 1
* "(sr) =  ( I + ? F  80 Ul8t * "(1) =  4-

Since Jfc =  3, the residue is ( l/2 )( l/4 )  — 1/8.

(ii) Find the residue of erf sin3 2 a t 2 =  0.
Here fc =  3 and wc shall use Proposition 4.1.7, with <7(2) =  e* and h (s) =  
sin3 2. We need to  compute fcw(0),ft^u*(0), and hivl(0). These are, by 
straightforward computation, hfu(0) =  6,J r<u)(0) =  0, and fe ^ (0) =  —60; 
thus, h"73! =  l,h^">/4! =  0, and /*<“>/5! =  -1 /2 . Also fl»(0)/H  =  1/fl, so 
tbe residue is

(I)3
1 0 1 0 0 1
O i l = - 1  1 1

_ 1  0 1 2 u 2 - 1  0 1
=  1.

(Tlie last column is subtracted from the Gist.) ♦

E ssen tia l S in g u larities In the case of an essential singularity there are no simple 
formulas like the preceding ones, so we must rely on our ability to  find the Laurent 
expansion. For example, consider

/ 6s) * e* -elf* s= ^ l +  2 +  — +  . . . j  ^ l  +  i  +  ;~ y  .

Gathering term s involving 1/ 2, wc get

I ( ,  +  I  +  _ L  +  JL+ \
z  V  2! 213! 3!41 + * * V '

i We multiply out as in the procedure of Worked Example 3.2.15. a  method tlia t is 
justified by a  more general result th a t is outlined in Exercise 12.) The residue is 
thus

R«s(/; 0) “ 1 + 2 ! + 2i3!*3i4!+ " "
Wc do not attem pt to  sum the series explicitly.
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Worked Exam ples

E xam ple 4 .1 .8  Compute the residue of at z =  0.
sin z

S o lu tio n  Since both num erator and denominator have a  zero of order 2, the 
singularity is removable, and so tlie residue is zero.

E xam ple 4 .1 .9  Find the residues at all singularities of

A siu ztan z —------.
cosz

S o lu tion  1 Tlie singularities of tan z  occur when cosz =  0. The zeros of nos: 
are

z - ± : , ± £2 2

and tliese are tlie only zeros of cosz. We conclude tlia t the angularities of ta n ; 
occur a t the points z» — (2n-t-l)w /2, where n  is an  integer. We choose g(z) =  sin ; 
and h(z) =  cosz. A t any Zn./t'tzn) =  ±1 5̂  0, so cadi z„ is a  simple pole of ta n : 
Tims wc may use formula 4 of Table 4.1.1 to  obtain

S o lu tion  2  We know tlia t

sin z = (-l)" s ix i(z  — im ) =  ( - l ) n+l cos ^z — im  — ^

=  ( - i r + 'e o s ( z - z „ )  =  ( - l ) - r t f ; ^ ( z - z „ ) 2fc

and

cosz =  ( -1 ) " cos(z — 7m ) =  (—l}n+1 sin — irn -

As before, the poles lire simple, so the series for tan z is of the form 

tan  z *  — ak(z -  z,,)kt
z ~ Z n  fc=o
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sin* =  tan  z cosz becomes

fct=0

Cancelling (—l)n from eacli side, Uiis becomes

- [ l _ l — ^ L  +  . . . j  =  | ^ —L - - | - o o + a i ( z - z „ ) 4 - . . . j

x  [< * -* .)

=  6i + a o ( * - 2tt) +  (ai - g ) ( z - z „)2 + -----

Comparing tlie first term s, we gut &i =  —1.

E xam ple 4 .1 .10  Evaluate the residue of 2*~  1 
(z2 +  l )2

at z — i.

S olu tion  1 (z2 + 1)2 Las a  zero of order 2 a t * and i2 - 1 0, so (r2 -  l) /(z 3+ 1 )2
^as a pole of order 2; thus, to find residue we use formula 6 of Ifeblc 4.1.1. We 
dmnse #(z) =  z2 — 1, which satisfies fl(f) =  —2 and g '(t) =  2i, Wc also take 
*>' r) =  (a2 +  l )2 and note th a t h'(z) =  4 z(^  +  1), so h(i) =  h'(i) =  0. Also, 
;." (z )  =  4(z2 +  1) +  8s2 =  I2z2 +  4, so A"(i) =  —8 and hm(z) =  24z; therefore, 
b"'(t) =  24i. Tlius, th e  residue is

2 • 2i 2 (-2 )  * 24£

S o lu tion  2 Wc know from algebra (or integration techniques from calculus) th a t 
— l ) / ( ^  +  l )2 ln>s a  partial-fraction expansion o f tlie form

zr — 1 _  Az  +  B  a Cz +  D b 
(z2 +  l )2 ( z - * ) 2 +  (2 -* )  *  (* +  *)2 (* +  *)'

Solving for the coefficients gives tbe identify

z * - l  1 1  . 1 1
(z2 + 1  )2 2 (z — t)2 +  2 ( z + 1)2 '

The second term  is analytic a t z =  t, so the Laurent series is of the form

z2 - 1  1 1
(za +  l )2 2 (z — i)2 +  £  « « ( * - * ) " •  

nsM)

The residue is the coefficient of (z — i ) ~ whicli, since this term  is missing, is 0.
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Exercises
X. Find the residues of tlie following functions s i  the indicated points:

2. Find the residues of the following functions a t the indicated points:

3. If f(z)  lias residue 6| a t z  — zo, show by example th a t |/ ( z )]2 need not have 
residue 6f  a t js =  zo-

4. Deduce Proposition 4.L5 from Proposition 4.1.4.

5 . * Explain what is wrong w ith the following reasoning. Let

Since f(z)  has a  pole a t z =  0, the residue a t th a t point is the coefficien: m 
\ / z t namely 1. Compute tlie residua correctly.

6. Complete the proof of Proposition 4.1.7.

7. Find all angular points of the following three functions and compute sfes; 
residues a t those points:
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(c) z3 - 3

8. * Find all angular points of the following functions and compute tlie residues 
a t those points:

« e* — l

(b) sin -  z
9. Find the residue of l/(^*  sin z) a t z =  0.

10. If f \  and f t  have residues r i  and r 2 a t z q ,  show th a t the residue of f i  -l* /a  a t 
So is r i  4- r2-

11. * If /]  and f t  have simple poles a t zq, show th a t f i f t  has a  second-order pole
a t z q . Derive a formula for tbe residue.

12. Let

h
(Z -  Zti)k + .+ 5.

Z — ZQ + ao  +  f l i ( r_ Jd) +  . ”

and
J J

g(z) =  . . .+• + . . .  4 - +  A> 4-c»(r — «a) +  • • •

be Laurent expansions for /  and g valid for 0 <  \z — zo| <  r . Shaw th a t the 
Laurent expansion for f g  is obtained by formally multiplying these series. Do 
this by proving the following result: I f  and ]C ^ o  absolutely
convergent, then

n = 0  /  \ n = 0  /  n sO

wliere c„ =  ££=0 moreover, tbe series is absolutely conver­
gent. Hint: Show th at

E M < E X > * . - y i s  ( E m ) ( E m )
i = Q  Jr= O k=0  y = 0  /  \fc=0 /

and use this to  deduce th a t £ c »  converges absolutely. Estim ate the error 
between

t=o \j=i> j  \fc=o /  \ i - o  /  u —o /
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13. Compute tlie residue of tbe following functions a t their singularities:

14. Find the residues or (z2 — 1)/(cos(jtz) 4* Ij a t each of its singularities. (See 
Review' Exercise 29 of Chapter 3.)

4.2 Residue Theorem
Tbe Residue Theorem, which is proved in th is section, indudes Cauchy’s  Theorem 
and Caudiy’s Integral Formula as special cases. I t is one of the main results of 
complex analysis and leads quickly to Interesting applications, some of which are 
consideied in §4.3. The main tools needed to prove the theorem are Cauchy's 
Theorem (2.2.1 and 2.3.14) and the Laurent Expansion Theorem 3.3.1.

The precise proof of tlie Residue Theorem is preceded by two intuitive prooL 
tlia t only use the m aterial in §2.2 mid the following property of the residue a t zq:

where 7  is a  small circle around zu (see Proposition 3.3.3). For must practica. 
cxmuples tlie intuitive proofs are perfectly adequate, but, as was evident in §2.2. it 
is difficult to  formulate a general theorem to whidi the arguineul rigorously applies

S ta te m e n t o f tlie  R esidue  T lieo rem  We begin with a  statem ent of the Rcsidut- 
Thcorem followed by two intuiLive proofs and then a precise proof.

T heorem  4.2.1 (R esidue  T heorem ) Let A be a region and let z j........ z„ € A
be n distinct points in A. Let f  be analytic on r i\{ z i, . . . ,  z«}; that is. let f  bi
analytic on A except for isolated singularities at Z |, . . . .  z„. Let-y be a dosed cu r*  
in A homotopic to a point in A. Assume that no z,- ties on 7 . 77icn

2iriR es(/;zo) =  /  f{z)dz

(4 .2 .1

inhere Rcu(/; z,) is the residue o f f  at z,- and 7(7 ; 2,) is Uic index (winding numb-  
of 7  with respect to Zi (sen %S-4)-
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Figure 4.2.1: Residue theorem: f y f  — 2m '[Rcs(/; 21) H- Iles(/; z2) 4- R es(/; za)!-

In most practical examples, 7 will be a simple closed curve traversed counter* 
clockwise, and thus i ( 7 ;z,-) will be 1 or 0 according to  whether Zj lies inside 7 or 
outside 7 . This is illustrated in Figure 4.2.1.

The same policy regarding computation of the index 7(7 ; z) used in §2.4 will be 
followed in this section. An intuitive proof is acceptable as long ns sudi statem ents 
can be substantiated with homotopy arguments when asked for. For example. 
/ ( 7; zo) — *H provided 7  can be shown to be homotopic in C \{zq} to  a  circle 
■v(i) = zq +  re*®,0 < 0 < 2jt.

A general formulation of the Residue Theorem for simple dosed curves may lie 
stated as follows:

I f  7  is a simple closed curve in the region A whose inside lies in A 
and i f  f  is analytic on A \{ z i,.- . : z,,}, then f ^ f  is 2ttt times the sum 
of the residues o f f  inside 7  when 7  is traversed in the caunterdochmsc 
direction.

This is tbe dassical way of stating tbe Residue Tlieorem. but our original statem ent 
(Tlieorem 4.2.1) is preferred by some because it docs not restrict us to  simple closed 
curves and does not rd y  011 the difficult Jordan curve tlieorem (see Definition 2.4.1).

Two short intuitive proofs of the Residue Tlieorem are now given for simple 
closed curves. They will be illustrated by au example showing th a t, in practical 
cases, sudi proofs can be made quite precise.

F irs t In tu itiv e  P ro o f o f  th e  R esid u e  T heorem  fo r S im ple C losed C urves 
Since 7  is contractible in A to  a point in A, the inside of 7  lies in A. Suppose tliat 
each z, lies in the inside of 7 . Around eadi zj draw a  circle 7  ̂ small enough to 
be inside 7  and surround none of the other zj.. Apply Worked Example 2.2.9 (the 
Generalized Deformation Tlieorem) to  obtain f y f  — ]C"«=i / 7, /1 since /  is analytic 
in 7 , 71, - . .  , 7,1 and the region between them (Figure 4.2.2).

Suppose th a t 7 , 71, . . .  , 7„ are all traversed in the counterclockwise direction. 
As shown in Proposition 3.3.3, /  =  2sri R es(/: z#), so /  =  2jri £J*ml R es(/; z,),
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Figure 4.2.2: F irst intuitive proof of the Residue Tlieorem.

which is the statem ent of the Residue Theorem since I(j; z) =  1 for z  inside 7  and 
I{Ti z ) ** 0 for * outside 7 . ■

Second In tu itiv e  P ro o f o f  th e  R esid u e  T heo rem  fo r S im ple C losed C urves 
This proof proceeds in tlie same manner as the preceding one except th a t a  differen: 
justification is given th a t — $̂ ”=1 /.», / -  The circles are connected as shown in 
Figure 4.2.3, to  obtain a  new curve 7 .

Figure 4.2.3: Second intuitive proof of tbe Residue Theorem.

Thus, 7  and 7  arehoinotopic in  A{zt , . . .  ,z«}, and so, by the Deformation Thr- 
orem, J  f  — / .  B ut f ^ f  — J  f ,  since the portions along the connecta?
curves caned out. ■

W hy do these proofs fail to  be precise? F irst, we assumed th a t 7  is simpfc. 
Second, we use the Jordan curve theorem (which we did not prove) to  be a ttr
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u» discuss th e  inside and outside of 7  and the fact th a t / f o e )  =  1 for 2 inside 
’• and / ( t > r)  s  0 for 2 outside 7 . Finally, in the first intuitive proof, we used 
Worked Example 2.2.9, which was established only informally, to  justify th a t Jy f  —
^ = , 4 / .

Example Evaluate
L

dz
* * - r

where 7  is a circle w ith center 0  and radius 2.

Tlie function 1 /(z 2 — 1) has simple poles a t —1,1. Wc evaluate the integral 
using tbe Residue Theorem:

-  !w[R“ (?3T'-1) +,ta’(^ T i1)]
-  “ jjp ij+ r i]" 0-

In this example it is dear what we mean by the inside and outside of 7, and we 
know that - 1  and 1 have an index -hi with respect to 7.

The figure in this example corresponding to  Figure 4.2.2 in tlie general discussion 
is obtained by drawing two circles 71 and 7^ of radius 1/4, say, around —L and 1, 
respectively, as in Figure 4.2.4.

y

Figure 4.2.4: Justifying th a t / , /  =  / „ /  +  / „ / •

Tbe only statem ent in the preceding proofs of the Residue Theorem th a t was 
not precise was

/•
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In this example, this may be justified by considering the curve in Figure 4.2.5(i) 
and showing th a t it is homotopic in C\{1, -1 )  to a  point. This is geometrically 
clear; a hoinotopy is indicated in Figure 4.2.5(H) and (iii). ♦

Figure 4.2.5: A curve that is homotopic to a  point.

P recise P ro o f o f th e  R esidue T heorem  Since z,- is un Isolated singularity of 
/ ,  we can write a  convergent Laurent series expansion

/(z )  =  $ > „ ( * - * ) "
n=0

S T -----——
~  (z-Z * )"m=l '  '

in some deleted neigliborhood of z, of the form {z | r  > \z—z,j >  0} for some r  > 0. 
By Proposition 3.3.2 and Exercise 15 of §3.3, the singular part of the Laurent series 
expansion

S M  =  Y  T - b,n ,

converges on C \{zj), uniTormly outside any circle |z — z,| =  c > 0. Hence Si(z) i« 
analytic on C\{z,} (see Theorem 3.1.8).

Consider Die function

0(2} =  / ( 2) - X X z ) .
(=1

Since /  is analytic on A\{zi,...Zn} and since each St(z) is analytic on C\{z,}.// i- 
analyticon A \ {zi,... ,2„}.

All the «i’s are removable singularities of g because on a deleted neighborhood 
(z | r  > |z -  z,j > 0}, which does not contain any of the singularities, we have

f{z) = j r i a „ ( z - z i) " + S i{2), 
n e t
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so

s(*) — $ 2  M * -  s*)n “  5 Z  ̂ 7'(2) -  ^  Sj{z).
»=s0 j= i i=H+i

Since tlie functions S j , j  ^  i, are analytic on C\{zj}, wo know that lim ^z< 5(2) 
ocisus and equals Oo — DJ=i9fsj Sjfa). Consequently, 2* is a removable singularity 
of g.

Because g can lie defined at the points Zj in sudi a way that g is analytic on all 
of A. we can apply the Caudiy Theorem 2.3-14 to obtain Bence

Next consider tbe integral Jy St. The function $(2) is of the form

£ fc,
(2 -  2. )”* ’

vliicb. as we have noted, converges uniformly outside a small disk centered at 2,-- 
Tlius tlie convergence is uniform on 7. (Since C\{7(|fl,hJ)} is an open set, each 2j 
has a small disk around it not meeting 7-) By Proposition 3.1.9,

(2 - 2,)«
dz.

But for m > 1 and zj^zt,

1 d [ f r - g ) 1— I 
(2 — 2j}m dz [ 1 — m J *

so by Proposition 2.1.7 and the fact, that 7 is a closed curve, all terms are aero 
except the term in which m = 1. Thus,

f  Si — [  —^ — dz =  fci [
JT J ^ z - z t  J ^ Z - Z i

By definition of the index, this is equal to bi • 2xi - /(7;z») 2jri[Rcs(/; ri))/(7> zt )• 
Tlius,

[ / = £  [ 5i = X )25r7[Res(/;21)J/(T,s.) 
i=i ,=1

and the theorem is proved. ■
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R esidues a n d  B ehav io r a t  In fin ity  If a  function /  is analytic for all largo 
enough z  (that is, outside some large circle), then it is aualytic in a  deleted neigh­
borhood of oc in the sense of the Rieiuauu sphere and the point a t oo as defined 
in §1.4. We can think of oo as an isolated singularity of / ,  perhaps removable. Let 
F(2) = f[ l /z ) .  If z =  0, we set l / z  = oo. (Equivalently, l / z  —> oo as z  —» 0). 
Thus, it makes sense to  discuss tbe behavior of /  a t oo in term s of the behavior of 
F  a t 0.

D efin ition  4 .2 .2  Let F (z) =  f ( l / z ) .  Then we say that
(i) /  has a pole o f order k at oo if  F  has a pole of order k at 0 ;

(ii) /  has a zero o f order k at oo if F  has a zero o f order k at 0.

(in) We define R es(/;oo) =  -R e s (( l/z 2)F (z);0 ).

Notice in particular th a t a  polynomial of degree k  has a  pole of order k  a t oc. 
This agrees with what we saw in the proof of the Fundamental Theorem of Algebra 
in §2.4. As z  —► oo, a  polynomial of degree k behaves much like 2*. Sec also Worked 
Example 4.2.7. The definition of residue a t oo may seem a  b it strange, but it i» 
designed to  make the next two propositions work out correctly.

P ro p o sitio n  4 .2 .3  Suppose there is an Ro > 0 such that f  is analytic on the set 
{z €  C such that \z\ > Re). I f  R  > Ro, and T denotes the circle o f radius R 
centered at 0 traversed once, counterclockwise, then f r f  — —2sri R cs(/; oo).

P ro o f Let r  =  1/72, and let 7  be the circle of radius r  centered a t Q, and traversed 
counterclockwise. If 2 is inside 7 , then 1/2 is outside T, so the function 5(2) = 
/ ( l / 2) /23 is analytic everywhere inside 7  except a t 0. Thus,

- W < i i2jri Rcs(y; 0) =  J \ f { l / z ) / z 2]dz = f(r~ le il)r~2>

=  P  f{Re~“)n e-"d t=  /(R e^R e^d s
Jo J - 2*

=  f* f(R e*)Rcuds=  f  f .
Jo J r

The ncxt-to-last equality comes from the 2? periodicity of eu . ■

The choice of the minus sign comes from the fact th a t as we proceed alone <. 
simple closed curve in C  in the counterclockwise direction, the region wc normaU- 
tiiink of as tlie inside lies to  the led. (Look a t any of the figures in this section. 
Tlie point a t 00 lies to  the led  if we proceed in the opposite direction along tin- 
curve. Hence the minus sign. For the curves in tbe last proof, if 2 proceeds in th* 
counterclockwise direction along T, then I/2 proceeds in the clockwise direct ioc 
along 7 . Since /  is analytic outside T except possibly a t oo, Proposition 4.2.3 mzn 
be interpreted as saying th at (1 / 2iri) f r f  is the negative of the residue of /  om sd* 
r . Tliis is correct more general!}'.
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P ro p o sitio n  4 .2 .4  Lct'y be a simple dosed curve m C  traversed once oountcrdock- 
true. Let J  be analytic along 7  and have only finitely many singularities outside 7 .
Then

Id ea  o f  tb e  P ro o f Apply tlie Residue Tlieorem to  a  composite curve sudi as 
rbat in Figure 4.2.6. Choose r  to  be a  drcle large enough to  contain 7  and all the 
£nite singularities of /  in its  interior. The reader is asked to  supply the remaining 
details of an informal proof in Exercise 14. ■

Figure 4.2.6: Curve used in tbe proof of the Residue Theorem for th e  exterior of a  
curve.

Worked Exam ples
E xam ple 4 .2 .5  Evaluate the integral

where 7  consists of the portion o f the x  axis from - 2  to +2 and the semicircle tit 
the upper half plane from 2 to —2 centered at 0.

S o lu tio n  The singular points of the integrand occur a t the fourth roots of —1, 
namely,

C**/4 , c (*+2*)>/4 _  e ( * + 4 tr ) i/ *  _  e Siri/4 ^  e (ir+ 6 » )i/4  _  e7 * ./4

(see Figure 4.2.7).
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Figure 4.2.7: The curve 7  in Example 4.2.5.

By the Residue Tlieorem, the required integral equals

2m  | rcs i ,c<ri/4)  1 ( />’fiW4)  +  H*8 1 { t ' cZwi/*)

+Res I  (7 ,«8e,y<) + / (7 ,cr” /4) J .

It is intuitively dear that

7(t ;c**/4) = 1 and I(-y;e3"^4) =  1,

whereas the other two indexes are zero. This can he more carefully justified as 
follows: 7  is homotopic to a circle 7  around c**̂ 4 traversed counterclockwise. To 
see this, reparametrize 7  so Uiat it is defined on the interval [0, 2s j. A suitable 
houiotopy is then f f ( s , t )  =■ (1 —1)7{*) + *7 (5), which is illustrated in Figure 4.2.8.

We know that — 1 by Worked Example 2.1.12, and that J(7 ;e*^4) =
/(Tie**/4) by the Deformation Tlieorem. Thus 7(7 !e” /4) = 1, and, similarly. 
7(7 ; = 1. Furthermore, 7  can be contracted to the origin along the radii of
the semicircle, so by Cauchy's Theorem, /(7 ; e8**/4) = 0 and 1 (7 ; c7**/4) = 0.

To calculate

observe that c**/4 is a simple pole of the function l / { z *  + 1), so we can use formula 
4 of Tkblc 4.1.1 to obtain
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Sf

Figure 4.2.8: Homolopy between 7  and 7 .

Similarly,

t o  = 1 =
^  +  1 ’ )  4 (e " ’ /‘ )3 4

Tlicrcforc,

/■ dz 2 irf. ^ /4. . jt «V 2
<c —  -

We do not actually have to  use sudi a. detailed m ethod to  calculate the indexes 
(winding numbers). We simply use our intuition to  calculate the number of times 
the curve in question winds around the given point in the counterclockwise direc­
tion. Keep in mind th a t the justification for tliis intuition consists of an argument 
like tlie preceding one.

E xam ple 4 .2 .6  Evaluate.

f  \1+ZJ ,  1 -  cosz

where 7  is the circle of radius 7 around zero.

S o lu tion  The singularities of (1 -f z ) /( l — cosz) occur where 1 -  cosz =  0. B ut 
(e** +  e~,s)/2 =  1 implies th a t (c**)8 — 2(c“ ) + 1 = 0, tlia t is, th a t (e“  — l )2 =  
0. and hence eu  =  1. Therefore, the singularities occur a t z — 23m for n  — 
. . .  ,- 2 ,-1 ,0 ,1 ,2 ,3 ,—  The only singularities of ( l+ z ) / ( l - c o s z )  th a t lie inside 
the circle of radius 7 nre 2|  =  0,Z2 =  2ir, and S3 =  — 2ir (see Figure 4.2.9). Also, 
d(1 — cosz)/dz =  sin z, which is zero a t 0, - 2jt, 2jt; and d*( 1 — cosz)/dz2 =  cosz, 
wliich is nonzero a t 0, — 2jt, and 2*-, so these singularities are poles of order 2.
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y

Figure 4.2.9: Tbe curve 7  contains three singularities.

The residue a t one t>f these poles 2̂  is, by formula 6 of Table 4.4.1,

^ ^(zo) 2 g fo )/twfo )  
h"(zo) 3 |h"(*,)]2 '

In this case, g(z) =  1 +  z so th a t s '(z ) =  1; also, h{z) — 1 -  cosz so th a t h‘(z) =  
sinz,fc"(z) =  cosz, and h'"(z) =  -  sin z. Thus, hw{z) =  0 for z  =  zi,za,z&, so tlie 
formula for the residue becomes 2g>(zo)/h"(zo). Hence,

Thus, by the Residue Theorem,

f  1 +  8 -d z — 2zi[R es(/;zi) +  R es(/; zj) +  R es(/; 23)) — 12ai.
Jy  1 —  COS 2

Notice th a t wc have implicitly used the fact tlia t 1(7; z) =  0 for z  outside 7  and 
/ ( 7 ; z) — 1 for z inside 7 .

E xam ple 4 .2 .7  Shots that if  p{z) is a polynomial of degree at least 2, then the sun 
o f the residues ofJ/p(z) at all the zeros o fp  must be 0.

S o lu tio n  1 Suppose the degree of p  is  n  so th a t we can write

n
p(z) =  5 "! with o„ ^ 0, where n .>  2.
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We know p can have a t roost n  different zeros, so if 7  is a  circle of large enough 
radius R  centered a t 0, it  surrounds all the finite singularities of l/p[z)~ Thus,

/ ® * =2* £ ( ' esid',“ or; ) ’
and tliis holds for all targe enough R. B ut for large R,

K - l |  |fln-a| . , M  ^  la nl
R  +  R2 *  " + R" 2 '

\p(z)\ = * " £ > * * - *  > Rn ( K | -  +  ^  +  +
I H )  I

and so

1/ [p£)H - RnK\/2 =
Tlius,

|S ( rcsid“0,or?)|s 5 ^ -
Letting R  —+ 00, we obtain | £  (residues of l/p ) | <  0. Therefore, the sum is 0.

S o lu tio n  2 (Tills solution makes use of residues a t infinity.) W ith 7  as before, 
there are no finite singularities of l/p  outside 7 , so

But

1 2 . _________ l_______  1 zw 1
Ji(l/z ) 2* «o +  ^  +  --- +  f» 2* OoZ" +  - . .  +  On 2*

Since the singularity a t z — 0 is removable, so th e  residue is 0 and hence
the integral is 0. B ut tbe integral Is equal to  the sum of the residues of l/p  a t tlie 
zeros of j>.
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Exercises
f  dz

1- Evaluate /  ----- - r j ,  where (a) 7  is a  circle of radius 2. center 0, and (b) 7

J y  (? + 1)3
is a  square with vertices 0, 1,1  +  i, i.

2.* Deduce Cauchy’s Integral Formula from the Residue Theorem. 

z3. Evaluate
l

•dz, where 7  is the unit circle.
22 +  2z 4- 5

4. Evaluate f  — —-dz, where 7 is the circle of radius 9 and center 0.
A  e8 - 1

5. Evaluate /  tan 2 dz, where 7  is tlie circle of radius 8 centered a t 0.
A

/ 5s -  2— jy d r =  lOiri, where 7  is any circle of radius greater than

1 and center 6.

7. Evaluate the contour integral f  ——dz, where (a) 7  is the  square with tin*
A  2

four vertices — 1 — i, 1 — i, 1 4- * and —1 4* i  and (b) 7  is the ellipse 7 (1) =  
ucosl + ibfaat, where a,b >  0, and 0 <  l  < 2n.

8. Let /  be analytic on C  except fur poles a t 1 and —1. Assume tlia t R es(/; 1) -  
- R e s ( / ; - l ) .  Let A = {z \ z £ |—1,1]}. Show th a t there is an analytic 
function A on A sudi th a t h'(z) =  f(z).

9. Evaluate the following integrals:

w Zm »

10.* Evaluate the following integrals:

f  dz
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LI. Let / :  A -* B  be analytic, ono-to-one, and onto, and let f'(z) jl 0 for 2 € A. 
Let 7 be a curve in A mid let 7 = /  o 7. Also let g be continuous ou 7. Show 
that

What does this result become in tlie case where f(z )  = l/z?

12. Show that if Iiin._^o|—2/(2)] exists, it equals the residue of f  at 00.

13. (a) Find tbe residue of (2 — l)3/z(z + 2)3 at 2 = oo.
(b) Give two methods of evaluating

where 7 is the circle with center 0 and radius 3.

11. Show informally that if 7 is a simple closed curve traveled counterclockwise.

15. Choose u branch of y/z2 — 1 that is analytic on C except for the segment 
[ - 1, 1] ou (Jie real axis. Evaluate

where 7 is the circle of radius 2 centered at 0.

4.3 Evaluation of Definite Integrals
The Residue Theorem says that an integral around a closed curve can often be 
evaluated hy computations involving the integrand at a few points inside the curve. 
Tlie Deformation Tlieorem then says that the resulting value does not change as the 
curve is shifted so long as no singularities of the integrand are crossed in the process. 
These two results make the calculus of residues a powerful tool for the evaluation of 
certaiu definite integrals, some of which may have no obvious connection to complex 
analysis.

For example, the change of variable z — e>0 might convert an integral over the 
real interval — tt < 0 <  n into 011c around the unit circle iu the complex plaue. Tn 
this section we will apply residue calculus to tliis type of integral and to improper 
integrals of the forms / a°° f{x)dx  or f(x ) dx. Some examples and devices 
for evaluating integrals involving “multiple-valued" fiuictions such as roots mid

theu

T
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logarithms are also given. The techniques developed throughout th is section are 
summarized in Table 4.3.1 toward the end of tbe section. This table should not be 
used too literally in all cases. Indeed, it is valuable to  understand the techniques and 
estim ates used to establish the formulas since the same ideas can often be used when 
the formulas obtained here do not directly apply. Miscellaneous examples working 
out im portant special cases and illustrating how tlie methods may be modified to  
handle nonstandard problems arc given in tlie Student Guide and tlie Instructors 
Supplement.

R a tio n a l F unctions o f  S ine an d  C osine Perhaps the most straightforward 
type of real definite integral to  which we may apply the residue methods are those 
for which a  simple change of variable converts the integral to one over a  closed 
curve. Tbe interval of integration becomes a param eter interval for the curve. This 
m ethod applies particularly well to integrands involving sine and cosine over a 
period interval such as (— or (0,2ir). The ciiaugc of variable z  =  cie converts 
each of these to  an integral over the unit circle, while sin# and cos5 become the 
fractions

sin0 =
- c -«•« * ~ ( l /z )

2t and cos 9 = +  e-ifl

2i  2t 2
We now give an example to  show how this procedure works.

_ £ ± 0 A )
2

E xam ple 4.3 .1  Let a be a positive real constant not equal to 1 and evaluate

dO
1 +  a2 — 2a  cos 0

S o lu tion  Let z =  c'e for 0 <  0 <  2jt, and let 7  be the unit circle centered a t the 
origin. Then dz — ic^dB =  izdO. The change o f variables suggested above gives

I ______ 1______ dz = 1 r  dz
1 +a2 - ^ ( z  + \ )iz  i J y z + a2z - a z 2 - a
____idz_____ f  idz
(2  - o ) ( o z  - ! ) ” / »  a(z —a)(z -  ( 1 /a))'

The integrand has simple poles a t 2 =  a  and a t 2 =  1 /a. The residues a t thest- 
poiuls are

lies (■\a (z  -  a){z -  (1/a ))

^  ( 0(2 -  a)(z -  (1/a ))  ’ a )  “

J a z - l a2 — 1

a(z — a) r= l/o 1 — a2‘

If 0 <  a <  1, then a is inside 7  and 1/a  is outside. Thus,

J  =  2ir* 2jt
1 -  a2*
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I: a >  1, tlien a  is outside 7  and 1 /a  is inside. So

/  =  2ai 2a
a2 - ! * ♦

Note th a t there axe no values of 0 for which the denominator in this example 
vanishes. In these situations, we can always do sudi a  change o f variable- The 
e rth o d  may be formulated in general term s as follows.

P ro p o sitio n  4 .3 .2  Ltd R(x, p) 6e a  rational function o f x  and y  whose denomi­
nator docs not vanish on the unit circle. Then.

J2(cosd,sin0)d& =  2» t ^  [residues of /(z )  inside the unit eneb [,

-here

P ro o f Since R  is a  rational function, so is / .  Therefore, there arc a  finite number 
of poles and no other singularities. The hypothesis on R  ensures th a t none of them  
are on the unit circle, and tlie same change of variable as in the example shows th a t

J  R(cos6,sinO)dB — J  f(z)dz,

where 7  is the unit circle centered a t the origin traveled once counterclockwise. The 
proposition follows from the Residue Theorem. ■

If one forgets the formula for /  in this proposition, one can always proceed as 
in the example writing a n d  and cosO in term s of eie and then making the change 
of variable.

Im p ro p er In te g ra ls  Improper integrals or the types mentioned in the introduc­
tion to  §1.1 are defined in calculus; we now recall these definitions. F irst of all, 
those along half lines are defined as limits:

Iimfl—to and dx — l»m
A-+co

Integrals over tbe whole line are defined by splitting the line into two rays and 
requiring th a t both portions of the integral exist as finite numbers.

£ f(x )  dx =  f  f[x)dx + f  f(x)dx
> J —act JO

= litn /  f(x )dx+  iim f  f(x)dx. 
00 J - A  O—c o J 0
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An im portant p a n t is th a t both lim its are assumed to  racist independently.
The existence of sudi integrals (i.e., the existence of these lim its as finite num­

bers) may often be established by comparison to  simpler integrals. This is also a 
calculus (or real analysis) theorem.

P ro p o sitio n  4 .3 .3  Suppose |/ ( z ) | <  ff(z) for all x >  a and that g(x)dx con­
verges to a  finite number G. Then the integral f(x)dx also converges and 
MiT* /(® )d*I ^  G. Similar oonclvsiotis hold for integrals along a left half line or 
over the whole real line.

Id ea  o f th e  P ro o f Tlie integral J *3 |/(x )|d !x  converges to a number no larger
f*

than G since the numlmrs f a \f{x)\dx are increasing as B  increases and remain 
bounded above by G. Having thus established tbe result for positive functions, 
the convergence of f(x) dx then follows in much tho same way th a t alisolute 
convergence of a series implies its convergence. Tlie idea is th a t if /  is real valued, 
then | / |  and \f\ — f  are both positive fimetions dominated by 2g, and f  f  — f \ f \ -  
f  ( |/ | — /)•  If /  is complex vuluod, wc can work with its real and imaginary parts 
since |R e (/) | <  | / |  <  g and | Im (/)| <  | / |  <  g. Tlie final inequality follows since

I f Bf(x )dx \<  J  |/ ( i ) |d z  <  J  g{x)dx = G

for each B. ■

Once we know th a t the lim its for the half line integrals most independently, then 
wc can use any convenient special form of the lim it to  evaluate it.

/ ,f (x )dx=  lira f(x )dx  +  Iim f  f(x)dx
oo A-ao J - A  a - o o j0

f °-  . Kn* /  f(x)dxA-*oq.B '0 0 y . ^

=  Iim f  f(x )dx

Tlie symmetric lim it in the last line is a  very convenient form, as we shall soon see 
I t is im portant to  remember th a t the existence of this special symmetric form 
the lim it does not imply th a t o f the more general one—a lot of cancellation mighs 
occur. However, if the general one exists, then this spedal one m ust as well and te  
equal to  it. The interm ediate form J^A f(x) dx is more subtle. At first glance r. 
looks the same as the general defining form, but it is not quite. I t is a  nontrivial 
observation th a t they are equivalent. We prove the following lenuna in the Interne 
Supplement.

L em m a 4.3 .4  If  lim/t_ 00-fl-.oc f f A f(x) dx exists, then f ^ a f(x)dx  exists anc -• 
equal to this limit.
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As wc shall see in the following subscctious, these olwervations about improper 
zxegruls allow us to  evaluate them by building the appropriate interval, [—72,72] or 
- .4 .0 ], into a  closed curve and then letting the ends tend to  infinity.

In teg ra ls  on  th e  W hole R eal L ine Now we consider integrals o f the form 
/ xx  f (x )d xm  which the integrand is well enough behaved to allow tlie  application 
if  residue methods. For the integral to  converge, the integrand m ust approach 0 
.is- x approaches infinity in both directions along the real axis. W ith restraints on 
Tar growth of /  in other directions, we can make progress. We will illustrate this 
by examples that will m otivate some general methods.

E xam ple 4 .3 .5  Evaluate TC2
l -t-x4

dx.

S olu tion  F irst of all, observe th a t the improper integral f ^ J x 2̂  I -f x4)J dx con­
verges. One way to see this is to  note first th a t the integrand is even and continuous. 
So it suffices to show th a t f ^ [ x 7/{ I +  x4)]dx converges. This integral converges 
oy comparison with f^°[\/ar\dx — lim n_3o(—(1/2J) 4-1) =  1. Since our integral 
converges we can use a symmetric lim it to  evaluate it; let tlie desired integral be 
denoted 7 and write

7 =  r °  —— dx =  lira f R r ^ - id x .
J-co 1 1 4-x4

The interval of integration, (—77,72), may be considered as a  patb 7r along th a t 
part of the real axis in C from —72 to  72. I t may be extended to  a  am ple dosed 
curve r #  =  7d 4-/»flhy returning front 72 to  -72 along the semicircle p *  =  {z € 
C | lm (z) >  0 and |z | =  72} in the upper half plane as sketched in Figure 4.3.1.

Figure 4.3.1: Curve* for two solutions to  Example 4.3-5

Along 7n, the integrand is the same us the function /(z )  =  z2/ ( l  +  z4) which 
is analytic everywhere except for simple poles a t the fourth roots of —1

2 l = e *;/4. Z2 = nS*i/4. 83 =  eS»«/< . 84 =  e7jfi/A
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Of these, z\ and z>i are in the upper half plane and 23 and 24 are in the lower. If 
R  > 1, then z\ and 23 are inside Ta while 23 and 24 are outside. The residues at 
these points may be evaluated from

Res(/;2fc) = i L  =  _ L
4zjj 42*

Tlie Residue Theorem says that

}{z) dz = 2jrr (Res(/; z\) + Res(/; 22)) = (c_w</4 +

=  (a*/* +  e " ^ 4)  =  3p(_ i)2cos(7r/4) =

This is true for every R  >  1. For the two pieces of the path we have

//w<b
wliile along pn we have |z| = A > 1 so that

w a — £ « < ■l i+ z 4! -  R4 - r

Thus,

This last quantity tends to 0 as R  -*  00, so limA—oo f{r)dz — 0. Putting the 
pieces together we find that

^  -  a  j£„ = / w* + JL m d z

/ R a? r°° X2—— — dx =  I -— — dx.

,/l 1 + t ^  J -00 1 +  x*
We conclude that

z 2

-08 1 + * *
dx —

7 ?

The path 7A could also be extended to a simple closed curve Ag = 7/1 + v* fc*> 
returning from A to —R  through the lower half plane along the semicircle vg = 
{2 6 C | Im (z) < 0 and |z| = A}. If A > 1 we now have 23 and 24 inside th» 
contour An and zi and 22 outside. Notice however that the curve goes around 
these points in a clockwise (negative) orientation.



Evaluation o f D efinite Integrate 275

The Residue Theorem 4.2.1 gives

jT  /(* ) dz =  - 2tti (R es(/; z3) +  R es(/; z*)) =  (e* * " '4 -b e -™ '4)

=  - ? p (r 3Ki' 2 (e*’/4 +

■  - ^ ( i)2 c o s ( ;r /4 )  =  -Jg .

The same estim ates apply to  \f(z)\ along vr as along (ir  and the length of this 
semicircle is also kA . The same argument shows th a t the integral along this arc 
tends to  0 as R  —»oo. Therefore, we have

• 4  = lhn f  f(z)dz = lim f  f(z)dz + lim f  f(z)dz

=  0 +  iim J n—oaj

Wc conclude th a t

just as before. 6

Some simple checks, sudi as determining th a t in this example the integral m ust 
be real and positive since the integrand is nonnegativc and real on the real axis, 
can often detect computational errors. This example could also have been done by 
the method of partial fractions decomposition of tlie integrand, bu t many of the 
integrals we will m eet later cannot be done by sudi techniques.

The key elements needed to  make tliis evaluation work were

1. An estim ate to  establish convergence of the improper integral so th at a sym­
m etric lim it could be used for its evaluation

2. Finitely many singularities in the upper (or lower) half plane with none an 
tiie real axis SO th at all could be enclosed in T a  (or An) for large enough R  
and the residues evaluated

3. An estim ate showing th a t the integral along the upper (or lower) semicircle 
tends to  0 as A tends to  oo

The same argument can be carried through provided wc have these dem ents.

P ro p o sitio n  4 .3 .6  (i) Suppose f  is analytic an an open set containing the closed
upper half plane H  =  {2 € C | Im(z) >  0} except for a finite number o f iso­
lated singularities none of which lie on the real axis, and that there arc positive
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real constants M , p, end Be with p > 1 and |/( z ) | <  M/\z\p whenever z 
and \z\ > fib- Then

[  f(x)dx  — 2ni ̂ 2  {nsUuaa of f  in W).
J —OO

(ii) If the conditions o f (i) hold with H replaced by the closed lower half plane 
C =  {z 6 C | Im (z) <  0}, then

/ »> _
f(x)<lx — - 2« y ]  {residues o f f  in £ ) .

•ftO
(iii) Both of those formulas hold if f  = P/Q wheat P  and Q are polynomials, the 

degree ofQ  is at least 2 greater titan that of P, and Q has no retd seats.

P ro o f Tbe arguments for (i) and (ii) go exactly as in the example. In (i). work 
with tbe curve r «  =  7« +  p r  for R  >  Ro- In (ii) use A r  =  'fn  +• vr. There 
is no trouble between —Ro and /2b. nnd tbe improper integrals from -o c  to  —Jln 
and bom Ro to oo converge by comparison to  the convergent improper integral 
^ { \ / x r)dx. For R >  Ro wo have

I - d IL m * \ * * 4 -

E adi of these tends to  0 as R  —» oo since p > 1. The rest of tlie arguments go 
exactly as in the example.

Finally suppose th a t /  =  P/Q  as in (iii). We dial] complete the proof b\ 
establishing an inequality |/( z ) | <  A //|z|2 for |z | large. If P  is of degree n  and Q 
is of degree n  -f p w ith p  >  2, then we know th at there is an Mi > 0  sudi iliai 
|P (z )| <  M i|z |n for |z | >  1 and an M2 >  0 and fib > 1 sud i th a t |Q (z)| >  Mz\z\n~l 
for |z | >  fig. (See the proof or the Fundamental Theorem of Algebra (2.4.9).) Tim?

|£ < i> |< 5 f*  _ L < M l _ L
|Q (z )| -  m 2 ' |z|p -  m 2 ' W

whenever |z | >  fio >  1 since p >  2. The proof is completed using tbe d io io  
M  =  Mi /M2. ■

Rational functions sudi as th a t of Example 4.3.5 are probably the most readii> 
recognized integrands to  which Proposition 4.3.6 o r related methods apply, bur 
there arc others. Consider the following example.

E xam ple 4 .3 .7  Let a be a nonzero real constant and evaluate

cosier ,
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At first glance it may be “obvious” th a t everything should work. The numerator 
f tlie integrand is bounded by 1 along the real axis, so the improper integral 

.-onverges by comparison to  the arctangent integral +  z2)) dx — x. Tliis
cu rb  is correct. However, if we attem pt to  extend into the complex plane using 
cusaz)/(1 4- z2) as the integrand, we do not have the needed growth conditions 

x  either half plane. The function cos az — (e*“* 4- e _<ae)/2  grows exponentially as 
re  proceed outward along cither tbe positive or negative imaginary axes, costay =  
, -•» 4. eav)/2. If a  >  0, the first term  shrinks expoucntially along the positive 

^aginary  axis while the second grows and the opposite occurs along the negative 
-^aginary axis. If a <  0, the situation is reversed. This gives the clue as to how to  
p jcocd . Convert the problem to  one involving complex exponentials first.

00s ax 
14 -x2

dx = lim I *  R e (  ~ V )  
* -« aJ -n  \1 4 -* 2/

dx — Re
I 4* x*

Fnis is an integral to  which wc can apply Proposition 4.3.6. The integrand, g(z) =  
4- z2) is auidytic on the whole plane except for simple poles a t zj =  i  and 

= - t .  Of these, i is in the upper half plane and —i in the lower. Tlie residues 
nr 1 hose points may be evaluated from

eiaXk
I te (S i« ', =  ‘2 5 "

Therefore.
giai

Ucs(5;i)  =  — £ _
2t

mid Res(a; - j) =
e~iai ca 
—2i —2t*

W ith y = Im (z), we have

c- “v c~°v 2c~a*
W ) \  -  (1 +  ,2| -  R 2 _  j -  R 2

provided |z | >  R  >  y/2. The num erator is bounded by 2 if tlie exponent is negative. 
Thus we have the conditions o f Proposition 4-3.6 in  the upper half plane If a > 0 
and in tlie lower half plane if a <  0.

For a >  0 we conclude

£  ix  -  * *  ( C  TT? * ) “ *" I2*"®**'')) = Re (2- ^ )
_  *
~ C°'

For a <  0 we conclude

Tt S *  = Ito ( /1 I T ?  ‘fe) = -■)) = «•
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We could also handle the case a < 0 by using the fact th a t cosine is an even function 
and appealing to  the case for positive constants

COS 03?
T + x*

cos (-o x )
1 +  X2

as before. In either case, our final result is

/ °° cos ax  JT
. . 1 +X* cM ‘ ♦

F b u rie r Ib an sfo rm s Tlie Fourier transform  of & function / :  R —»C is a  new 
function defined for a number ui, either real or complex, by tlie improper integral

/V )  :=  r a ( n > )  :=  T  f ( x )e ~ ^ d x .
V2ir J -  &

The Fburier transform is im portant in differential equations (see Exercise 24), the­
oretical physics, quantum mechanics, and many other areas of m athem atics and 
science, and there is an enormous body of literature concerning it. (There are 
variations in its definition. Tlie factor of l/\Z §ir may be misting and the exponent 
might be -2m ux.) Thus, integrals of the form f{x)c~iu’z dx are of definite 
interest. If w is real and f(x)  is real for real x, then the real and imaginary parts 
form the Fourier cosine and sine transform s of / :

/oo
f(x)can(ux)dx = Re ^/(ii/)^ 

f  f(x)sin(ux)dx  =  - Im  .

Example 4.3.7 showed how residue methods can be used to  evaluate integrals of 
this type. The key to the argument there was th a t with a real tlie exponential factor 
eia* remained bounded in either tire upper or lower half plane. However, somewhat 
more is true. The absolute value of this factor is c~"w, which shriuks exponential!;, 
as we move away from the real axis into the upper half plane if a > 0 and the 
lower half plane if a < 0. If we take advantage or tliis wc can evaluate the integral 
with much more mild conditions on / .  l b  do so wc will use a  rectangular contour 
instead of a semicircle. Lemma 4.3.4 will be used to  establish the convergence < <: 
the integral and to  evaluate it as the lim it of as A and B  tend independent].' 
to  infinity.

E xam ple 4-3.8 Let u  be a nonzero rad constant and evaluate

dx.
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S o lu tion  This is an integral o f the Fourier transform type with f(z)  =  1/ ( 1 + is). 
The integrand is g(z) = f(z)e~iua. Along the real axis we have

This decreases too slowly to  apply Proposition 4.3.6, and, in fact, the integral 
/ . ^  |ff(x)| dx diverges. Therefore, a simple comparison test will not suffice to  
establish convergence of our integral. Instead we will appeal to Lemma 4.3.4 and 
obtain our result as

Since |/ ( s ) | =  1/ 11 +  tz | <  l /( |x | — 1) for jz| > 1, th is factor does shrink toward 0. 
For each e >  0, there is an Ji(c) such th a t \f(z)\ <  e whenever |z | >  R(e). As in 
Example 4.3.7, the exponential factor will beliave well on a  half plane. W hich half 
plane depends on the sign of w. If z  =  x + iy  with s  and y  real, then |c- ’w*| =  
c-iMs+«>y| _  Therefore,

w <  0 implies |e -fw :| =  e“1' <  1 in the upper half plane 7f 
w > 0  implies |c“ "*'s | =  e6’1' <  I in the lower half plane C.

The integrand is analytic except for a  simple pole a t t  where the residue is

If A and B  arc both larger that ft(c) and larger th a t 1, we can consider the reel- 
angular paths indicated in Figure 4.3.2.

In each case the portion 7  is the segment of tbe real axis from —A to  B. This 
is closed as a rectangle T =  7  +  /*i +  P2 +  A*3 counterclockwise through the upper 
half plane and as a  rectangle A =  7  +  i/i +-i^-{-î j clockwise through the lower half 
plane. In each case the distance C  from the real axis will be selected larger than 
/?(e) and depending appropriately on A and B. So long as it is larger than 1 we 
will have

|fl(x)| =  |e - * " | / 11 + ix\ =  1/ x/ T h ? .

Let

Sw =  the sum of the residues in H =  —t
S c  — the sum of the residues in L  = 0.

and

L  TT5 ̂ =/, s = ̂  - (/„ s * L a + L 9)

Thus,
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9 »

Cl , Ms - i1 r  b

Ms Mi v, V|

Y . V,
-V! B - a

Figure 4.3.2: Paths for Example 4.3.8.

Ouce A, B, and C  are large enough so th a t further increases enclose no more 
singularities, then E «  and Ec no longer change. The existence of the lim it can 
be established and the integral evaluated by showing that, one or the other of the 
quantities in parentheses tends to 0.

F irst suppose lj < 0. in  th at case we have good behavior in the upper half 
plane, so wc use F. Wc estim ate the contribution along each of the pieces. Along 
p i, z =  B + iyt so

f(B  +

Similarly,

1/  *1=IjC f i ~ A -  f „ ee“vd y  -

Thus, these two contributions are small if A  and B  are larger than R (f). Having set 
A and B , wc now adjust C  to  make the horizontal contribution small also. Alone 
p2 we have z = x  + iC. Requiring C > R{c), we have

H ' l - l f  1 f ( x  + iC )e~“*'(x+,c} dxj <  J B ceG"  dx < c{A + B) <̂ c .

Recalling th a t or <  0, we can sdect C  larger than 1, larger than R(e) and la m  
enough so th a t (A -f-S je"*7 <  1. Wc find th a t for A and B  larger than 1 and larger 
than R(f),

| L  sŵ -2H il/.sH/J+II sls(i=i+0 "
Thus, the lim it exists and for u  <  0 and we have

/»  . - < U I  f B  0 — tbJX

-— — dx =  lim /    — dx =  2trtT « =  2x<t*.
M 1 f t z  A~'oo,B—ooj_a 1 -f-tx
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Tlie com putation is quite sim ilar for m >  0 except tlia t now wc use the rectangle 
A in the lower half plane.

1/ 9\= |L  ^ f c cc“°dv = ^ 1 -< r0ul) <

Siiuihiriy,

| /  J [ . \ r  f { —A +  ty)c~,w(-'4'H^ td y | <  j °  cd^dy  <

and

1 /  s | «  | j f  A f{x  -  *C)c-<w(x- <C) dx < te~Cu dx < e(A +  B) c " 1̂ .

Recalling tlia t u  > 0, we can select C  larger than 1, larger than /2(c). and large 
enough so that (A +  B) e~uC < 1. Wc find tlia t for A and B larger than 1 and 
larger than ft(c),

|/>)*H s l/_ sl+l/,sl+IIs!s (r+0
Tlius, the lim it exists and for w >  0 we have

rB

-to » T « *  n-- i«i.»--***Ĵ .A

Thus, our Onal result is

/ *  . - i u l  fB  „-iu)x
f — <2* =  lim /  i — — dx =  -hriSlc  =  0.

oo 1 + t«  A—ao.B—oa J  1 -f- tX

J ^ J + i x  ^0, i f u > 0 *

Notice th a t the transform integral we have ju st computed depeuds discontinu- 
ously on u  with a jum p discontinuity a t m — 0. Some insight may he gained by 
considering the real and imaginary parts of tlie integrand a t th a t point:

[ *  r^ U -d * * *  - l ^ d x - i
J - a  1 + t x  J „ A 1 -M 2 J . A 1 + ®2

For the first integral we have

J  dx =  arctan(B ) -  arc tan (->4) |  -  ( - | )  =  jr

as A —» oo and B  —► oc. In the second integral, the portions over the left half 
line and the right half line both diverge, the first to  — oo and the second to  +oo.
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Thus, the improper integral / ^ . ( z / ( I  4- x2) )dx does not converge. However, the
integrand is an odd function of x, so the symmetric lim it lim jt_M / ^ ( t t / ( l  4 a 1)) dx 
does exist and is 0. In this sense wc get a  principal value for our divergent integral. 
T liat value is n, which is exactly the  midpoint of tlie jum p discontinuity. We will 
see further variations on the principal value idea in the next subsection where we 
examine w hat to  do with singularities on the path of integration.

The method of tlie last example can be employed whenever one has integrals of 
the type f  {x)e~u*x dx with fairly mild restrictions on / .  The key ingredients
of the argum ent were

1. f(z)  is analytic on an open set containing the upper half plane if to <  0 and 
the lower half plane if to >  0 except for finitely many isolated singularities, 
none of which are on the real axis.

2. f(z)  —* 0 as z  —► 0 in th at half piano in the sense th a t for each e >  0 there is 
an /2(c) such th a t |/( e ) | <  c whenever |2| >  R(t) and 2 is in th a t half plane.

O ther than these properties, we used nothing special about /  to  show th at tlie 
value of the integral was 2wi times the sum of the residues of the integrand in the 
appropriate half plane. In our example, the conditions held in both half planes. 
The argum ent carries through with no change to  give the general result.

P ro p o sitio n  4 .3 .9  Under either o f the situations (i) ar (ii) described below, the 
improper integral f(x)e~iux dx converges to the value given by the correspond­
ing formula. I f f(x) is rad for rad x, then the integrals f ^ gf(x)cos(tox)dx and 

f ( x) sin(aKr) dx are equal respectively to its rad part and the negative of its 
imaginary part

(i) to < 0* Suppose that f  is analytic on an open set containing the dosed itpptr 
half plane H — {2 €  C | Im (z) >  0} except for a finite number of isolated 
singularities none o f which are on the rad axis. Suppose also that f(z)  — 0 
as z  —► oc tn that half plane in the sense that for each e >  0 there is an R(* 
sudi that |/ ( 2) | <  e whenever \z\ > R{c) and 2 €  W. Then

L / ( x ) e - dx =  2xz£ {residues of f{z)c~t“2 in H)

(ii) to >  0 : If  die conditions o f (i) hold until H replaced by the closed lower half 
plane C — (z  €  C | Im(2) <  0}, then

r  /(*)«■j -00
itdir dx — — 2aiZ  {residues o f f(z)e~'u,z in £}

(Hi) Both (i) and (ii) are valid if  f  =  P/Q where P  and Q are polynomials. »  
degree ofQ  is grader than that o f P , and Q has no zeros on the rad an-.
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The constructions, estim ates, and argum ents for (i) and (ii) are exactly like those 
in the example. T hat example is an illustration or (iii), and tlie general argument 
for (iii) uses tlie same idea as th a t for part (iii) of Proposition 4.3.6 except th a t 
now the degree of Q need only be a t least 1 more thou th a t of P. Wc can therefore 
omit tlie details of the general argument.

A caution in tlie use of these theorems is needed. Note that f(x) cos(utx) dx
is not the sum of residues of f(z)ca&{ioz) in an appropriate half plane. This formula 
is false. As was pointed out in the discussion of Example 4.3.7, the hypotheses of 
the theorems need not apply, even if |/(z ) | <  M f  |z2].

Semicircular paths could also be used for establishing the result about Fburier 
integrals if one first establishes & lemma about them.

Jo rd a n ’s L em m a Suppose f(z) —* 0 os |z | —»oo uniformly in a rg z  for 0 <  arga  <  
« and that there is a positive constant c such that f(z) is analytic for \z\ > c and 
0 < arga <  jr . I f to < 0, then f  e~***f(z) dz —► 0 as p —» oo where 7P is the 
semicircle 7p(0) = pei0 for 0 < 0 < v.

See, for example, E. T . W hittaker and G. N. Watson, A Course of Modem 
Analysis, Fourth Edition (Loudou: Cambridge University Press, 1927), p. 115, for 
a proof

C auchy P rin c ip a l V alue So far we have required th a t our integrands be analytic 
on tbe path of integration. There are two situations in which wc might want to  relax 
this. In tlie first there are singularities on the path, and in the second, branch cuts 
arc involved. As an example of the first kind, suppose we slightly alter Example
4.3.5 and ask for the value of

Now the integrand has simple poles at tlie cube roots of —1, one of which is on tbe 
real axis. Arguments very much like those for Propositions 4.3.6 and 4.3.9 will still 
work, but the paths must be altered to accommodate singularities ou the real axis, 
and they will contribute to  tbe value of the integral.

If /(* )  is continuous on the real line except a t xq, the integral f(x) dx need
not be defined. Consider

In the usual definition from calculus for the improper integral, both or these im­
proper integrals m ust exist, and then the limits must exist separately as e -»0  and 
7} —i 0. In th a t case we say the improper integral is convergent. Some care is in 
order. For example.

f(x )dx+  f(x )dx  with c >  0 and q >  0.
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while

1 . 1 3
26j + 2(2£)2 =  Se2

as e - t  0.

Thus, the value of the integral can depend on how we let t  and r) approach 0. In tliis 
example tlie separate integrals J ^ ( l  fa?)dx and / ? co( l / i 3)( ir  are not convergent.

In  cases sudi as these it is sometimes useful to define a  principal value for the 
integral by using the symmetric way of letting e and rj approach 0. We keep c =  ij 
as in tlie first evaluation above. By doing so we can apply the Residue Theorem 
to the evaluation of sudi integrals. We allow for a  finite number of discontinuities 
on the real axis by requiring /  to  be continuous on R except for a finite number of 
points Xt < t? < x-4 <■•■ < x„. If /(* )  dr. and /(* )  dx each converge 
for every c > 0, and if

exists and is finite, then wc shall call this limit the Cauchy principal value and 
denote it by P . V. f{x) dx. Observe tlia t if the integral is convergent a t all these
points, wc recover tlie usual value for tlie improper integral J^  f(x)dx.  However, 
as we have seen, the Cauchy principal value can exist even when the integrals are 
not convergent in the usual sense.

Tb apply residue methods to such integrals, we require th a t /(z )  be analytic on 
an appropriate half plane except for a finite number of isolated singularities some 
of which may lie on the real axis, say a t xi <  < x$ < • • • <  xn. Wc modify the
curves used earlier as shown in Figure 4.3.3.

Figure 4.3.3: Modification of paths to  allow for singularities on the axis.

'J

(a) The crave I*a (b) The curve A,

The radius 72 of the large semicircle is diosen sufficiently huge and the rad in  
r of die small sem idrdes sufficiently small so that the sem icirdes do not overly
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and all singularities off the  axis in the  appropriate half plane are enclosed so tlia t 
further shrinking r  or increasing R  leaves the integral around the whole path equal 
to  ±27ii tim es the sum of the residues in th a t half plane off tbe axis. Conditions 
on /  sudi as those in Proposition 4.3-6 will then guarantee th a t the integral along 
the large semicircle will tend to  0 as R  —» oo. The rectangular paths used for 
integrals of Fourier type arc modified in a  sim ilar way, and conditions such as those 
in Proposition 4.3.9 will guarantee th a t the integral along the three sides of the 
rectangle in the half plane tend to  0 as those sides are pushed out toward infinity 
in tlie same way th a t they were there. If wc can ensure th a t the lim its of the 
integrals along the small semicirdcs exist and are finite as r  tends to  0, then the 
principal value will exist and we can calculate its value. In many cases these lim its 
are handled hy the following lemma.

Lem m a 4.3 .10 Lei f(z) be analytic with a simple pole at zq and yr  be an am of 
a circle of radius r and angle a  centered at za- (See Figure 4-3.4.) Then

P ro o f For z  near zq we have f (z )  =  5 |/(z  — ro) +  h(z) where h is analytic and 
6| =  R es(/;2io). Therefore,

Since h is analytic, it is certainly bounded near ro. We write tliis as |/i.(a)| <  M  
for |r  -  rol <  Provided r  <  R, wc have

Tins leaves the first integral on the right in which we may put z = zo + rei0 for 
ao <  0 <  a* +  a  along 7r  to  find

Figure 4.3.4: Integrate part way around a  simple pole.

h(z)dz\ < M length(7r ) =  Mar  —»0 as r  —* 0.
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independent of r  for small r. Thus limr—o /^ . /  =  a t R es(/; z*i), ns claimed. ■

W ith this lemma in hand wc have all tbe pieces we need for the required mod­
ifications to  Propositions 4.3.6 and 4.3.9. W ith appropriate growth conditions in 
the upper half plane we have the following.

P ro p o sitio n  4.3.11 Let Tin be the open upper half plane {z €  C  | lm (r) >  0}, and 
let f  be analytic on on open set containing its closure H =  {z €  C  | Im (z) >  0} 
except for finitely many isolated singularities. Suppose that of these x %,. . .  ,x„  am 
on the real axis and are simple poles. Then i f  cither

(i) /  satisfies the conditions o f part (i) of Proposition 4-3.6 (except for the poles 
on the axis) or

(ii) f(z)  =  c~iu>Ig(z) untit at < 0 and g satisfying part (i) o f Proposition 4-3.9, 

then the principal value integral exists end

P ro o f For part (i), let F r =  pa + p i  4------t-fi„ -f 7/1 be the  dosed curve indicated
in the left sketch in the figure. Here hr is the large semicircle of radius R  from R 
to —A through the upper half plane, /ij for 1 <  j  < n are the small semicircles of 
radius r  around tbe poles on the axis, and J r consists of the straight line portion? 
along tbe real axis. The radius A is selected large enough and r  small enough 
so th a t the sem idrdcs do not overlap and surrounds all of tbe singularities 
in the open upper half plane. Notice th a t Fn surrounds these singularities in the 
counterclockwise sense but th a t the singularities on the axis are outride the curve- 
and tlie small semicircles are oriented clockwise with respect to  the poles a t their 
centers. As a  result the lemma gives iimr_ 0 / (tJ /  =  — niRes(f;xj). The improper
integrals along each end of the axis, /* ^ " r  /(x )  dx and f ^ +r f(x )  dx, cadi converse 
for every r  >  0 by comparison because of tlie estim ate |/ ( r ) | <  M l\z\v for large : 
Tlie same estim ate shows th a t f )ln /  —♦ 0 as A —► oo ju st as in Proposition 4.3.6 
From the Residue Theorem we have

2in T  {residues of /  in Hg) =  f f - f  f + [  f +  J 2  [  f-
J r„ Jan J in  j Z l h ,

Thus,

n
-♦ 2» r i £  {residues of /  in Wo} — 0 -M ri^ R e sf/;® * )



*}4.3 Evaluation o f D efinite Integrals 287

as It —»oo and r  —* 0. Thus, the principal value lim it exists with tlie value claimed.
The argum ent for (ii) is analogous except th a t the rectangular paths o f Propo­

sition 4.3.9, modified by appropriate small semicircles, are used. The convergence 
of tlie integral along each of the infinite segments along tbe axis follows as it did iu 
Proposition 4.3.9 by a  slight modification of Lemma 4.3.4. ■

Tlie result for the lower half plane is sim ilar except for some minus signs.

P ro p o sitio n  4 .3 .12  Let Co be the open lower half plane {z €  C | Ini(2) <  0}, and 
let f  be analytic on an open set containing its closure C = [z  €  C | Ini(2) <  0} 
except for finitely many isolated singularities. Suppose that of these xy, . . . ,  x„ are 
on the real axis and arc simple pedes. Then if either

(i) /  satisfies the conditions of part (u) o f Proposition 4-3-6 (except for the poles 
an the axis) or

(ii) f(z)  = e~iutg(z) with w > 0 and g satisfying part (U) of Proposition 4-3.9, 

then the principal value integral exists and

r°° *
P .V . I f{z)dz  =  —2 i r i ^  {residues of f  in Co) — lc s ( /;* ,)

J -0 0  >=1

The proof of this is basically the same as th a t for Proposition 4.3.11 except th a t 
tlie curve through tlie lower half plane is used as indicated in the right sketch in tlie 
figure. Notice th a t now the curve as a whole Is negatively oriented (clockwise) with 
respect to the singularities in its interior, bu t tbe small semicircles around tlie poles 
on the axis proceed counterclockwise with respect to  their centers. The portion 7n 
along tlie axis is the same as before and still proceeds from left to right. Thus,

which converges to

—2irf {residues of /  in A)} —0 —r i ^ R c s ^ ; * / )
j = i

as R —»00 and r  —* 0. Tlius, tbe principal value lim it exists with the value claimed. 
The argum ent for (ii) is modified in the same way. ■

The challenge problem with which we began tliis subsection illustrates both of 
these propositions.

E xam ple 4.3 .13 Discuss and find the principal value for the improper integral

x dx.
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S o lu tio n  Tlie integrand /(z )  =  z/(«* +  i)  behaves like 1/x 2 for large x , so then* 
is no trouble with Uie integral for large x . However, there are simple poles a t the 
cube roots of —I. one of which, - 1, lies on the axis. Near th a t pond; the function 
behaves like — l/(3 (x  + 1)}. So the improper integral as such diverges. H ie  change 
of sigu across —1 suggests cancellation, which migiit make the principal value limit, 
exist. The last two propositions say it docs. Tlie poles are at. Z| =  —1, ro =  e " /3, 
and 23 =  They are simple, and the residues are given hy

Therefore,

Res (/;* * ) =

R e s ( /;- l)  =  - i  ; R cs(/;e*1̂ 3) =  i e " ^ 3 ; ResCfre"” ' 3) *  ic * ,/3 .
3 3 3

Tlie integrand is a  rational function with the degree o f the  denominator 2 larger than 
tlia t of the num erator, so we have tlie growth condition required by Proposition
4.3.6 in both half planes. Using Proposition 4.3.11 in tlie upper half plane, tlie 
principal value is

1 -*»/a _  z iP .V . /  - f —  dx = 2niR cs(/;e*^3) +  jriH es(/; —1) =  2 s i^ c
J—Oo X* +  1 3

- f ( * ( s - £ ) ) - T - 3 r
Using Proposition 4.3.12 in the lower half plane, we get the same result.

/ OO t
dx =  -27Tt R cs(/; c.-” ' 3) -  Jri Res( /;  -1 )  =  - 2 jtt̂  cT,/3 -I- ^  

06 “I* 1 o 3

jrf / -  (1  >/3 A \  Jri 7T .
= - T ( 2 ( j + T ’) J  + 3 - v i -  ♦

Tlie next, example shows an interesting application of these ideas.

E xam ple 4.3.14 Show that the following improper integral converges and find tr* 
value.

Ju *

S o lu tio n  Let. h(r) be defined by /i(x) =  (sin x )/x  for x  ^  0 and /t(0) =  I. Thee 
h is continuous eveiywhere and in particubir a t 0. Since the integrand is eres. 
we will have J^ |(s iiix )/x ]d x  =  ( l / 2) / ^ c /i(x)dx  provided we can show that ii*  
la tte r integral converges. Except a t 0, the integrand is tlie imaginary part o fe“  r  
According to  Proposition 4.3.11, tlie principal value integral of tliis exists, and
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Since th is lim it exists, so docs tlia t of its imaginary purl

p  v  f°° ^ . d x ^ P . V .  p  h{x)dx — it. 
J -oo x  J  -oo

Tlie proof of the existence of tliis principal value integral included the fact th a t 
the improper integrals /^ ((sin a r)/x ]d x  and / 7^[(sinx)/z)<£r converge for cadi 
positive r . There is no problem with tlie integral a t infinity. Since h is continuous 
a t 0, we conclude th a t tlie improper integral on the whole line converges and m ust 
be equal to  the principal value. Thus,

f 00 tan x  , 1 r*  ir

In teg ra ls Involv ing  B ranch  G u ts H ie values of the integrals wc have stud­
ied so far in th is chapter resulted from the residues of the integrand. Integrands 
involving noninteger powers or logarithms may also bring in the diange in value 
from one side of a  branch cut to  the oilier. The next two examples illustrate this 
phenomenon.

The integral xa~lf(x)dx  is referred to as a M el tin transform . One uses 
the phrase “transform of f ” since it can be considered as duuiging the function /  
to a  uew function of the variable a on tbe range of a  for which the improper integral 
converges. For example, with a  =  4 /3  and /(x )  =  1/(1 -f x2), the integral becomes

I -f-x2
dx

This can be evaluated by residue calculus and the solution illustrates tbe general 
method.

Example 4 .3.15 Evaluate the
1 + x 3

dx.

S o lu tion  The integral is along the positive real axis. The idea is to  make this a  
branch cut for the cube root and take advantage of the differing values on opposite 
sides of the cut. For integrand we lake g(z) — $ z / ( l  +  zl ) with the root defined 
by — p ,/3c‘tf/3 for 0 <  0 < 2jt. This is analytic off the positive teal axis with 
simple poles a t dti. The residues are

M k i ) » £

21.

c *f/6

2i
and Resfo; -* ) = V = l

-2 i ~ ¥ ~ '
Letting S  denote the stun of the residues, we get

? iri/S
E =  i  (e” '« -  e2*/*) = (e™/0 -  tT1"76) = - c r,73sin(jr/G) = - e ^ / 2 .

For 0 <  r  <  1 and R >  1 we can form a curve T =  71 + 7 # + 72*t7r enclosing these 
jjoles as indicated in Figure 4.3.5. Tlie left figure shows a  preliminnry version and 
the right a refinement.
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9 9

X

Figure 4.3.5: Contoure for the Mellin transform integral.

•  71 (preliminary) proceeds from r  to  R  along the “top side o P  tbe positive 
real axis. T hat is, z = x, r < x < R .

•  7a (preliminary) proceeds from R  around to  R  counterclockwise along tlie 
circle of radius R  centered a t 0.

•  72 (preliminary) proceeds from R  back to  r  along tbe “bottom  side oP  the 
positive real axis. T liat is, z =  xc2” .

•  7r  (preliminary) proceeds from r  around to  r  clockwise along the circle of 
radius r  centered a t 0.

Tlie paths 7 i and 72 incorporate the integral along the positive real axis, which wt 
want. They do uot cancel out since the argument of z  is taken to  be 0 along the firs: 
and 2jt on the other. Diking cube roots creates different values. The computation 
is much easier to  understand with the curves in this position but is open to  tbe 
objection th a t the curve lies on the boundary of the region of analytidty and m r 
within it. This objection will be overcome by switching to  the refined curve in whici 
71 and 72 proceed along tbe rays xeni and se(2”~*d* for a  small angle t? instead <i 
exactly along the axis. The arcs 7 « and 7^ are as before except for om itting a  sbar; 
arc across the real axis. We will then take a limit, as i\ —» 0.

Begin by looking a t the intuitive, unrefined, computation. Along the componesx 
curves we compute as follows. On tj , z  =  *  aud
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On 7n , |*| =  /l, and

291

R ^ 32nR
R2 ~ l 0 as R  -» oo.

Thus,

Ob =  i e **1 and

/  ff~+ 0 as R OO.

L - r j
*»/V««73

+  aPc***t c ^ 'd x .

This converges to  - c 2,ri/3 y— j  dx as r  -♦  0 and / l  - » oo. On 7 r, |z | =  r , and

I f  I .
as r —»0.

Therefore, -* 0 a s r —»0. A s r —*0 and iZ —» oo, wo thus find th a t the 
integral jj, g converges to

0 4-0-4- (1 -  c2* ' 3) r  -4 ^ 2  dx  =  e*/3(e-*</3 _ c-ri/3) «fe
Jo 1 +  ® Jo 1 +  *

But we know th a t / r p =  27riS for 0 <  r  <  1 and /? >  1. Thus,

, _  ye~v»/3
1 +  x2 sin(jr/3)

E.

This is almost the formulation th a t will be taken by the more general result. To 
bring it into a  form using tbe param eter a (here 4 /3 ), it is convenient to  introduce 
minus signs in num erator and denominator and present i t  as

r ffS ire-**/*
1 +X2 ’ sin(4jr/3)

E.

Fbr our current example we find

Jo l + a ^ ^ V  y/%p)\ 2 ) \/5 ‘
To handle the objection th a t 71 and 72 lie on the boundary, consider the modified 
curves involving tbe small angle q. There we argue as follows.
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evidx 4*73 f R _
Jr 1 +  xae2 *̂

dx.

On 7j , -2 =  #e^* and

f  f a a ^ /V 1' 8
J j - J r 1 + * V *

On 72, 2 =  xe{2x_,,)< and
[  r  aJ/3 fi(2»-,w/3 -n  s /-
/  g — I ------ —— — — _  _ e4(Zs- ,»),V3 f  fa

J-r, Jh e Jr 1 + x 2e_2^i
Fhr eadi 0 <  r  <  I, f l >  1, and 0 <  »/ <  jt/ 2, we know

2jtiE =  f 9+ f 9+ f 9+ [ S 
Jin Jyn Jta Jtr

Let c >  0. Tlie estim ates on the integrals along y/i and yr are still valid and art- 
independent or if since the only changes have been to  shorten the curves somewhat 
Also, we know th at the improper integral we are studying converges absolntcly 
(Usc tlie comparison test with the convergent integral f j  tfxdx  +  ff*  x ~6^3 dx > 
Tlius, we can select r  and R so that

l/> I/.H- |Aft-fiS.* <  e

with the first two estim ates valid for every r; between 0 and jt/ 2 .  On the resnltim: 
interval (r, 12), the integrands ou 7 t and 71 converge uniformly as i f  —* 0. Tliercfor* 
we can select if small enough so that

dx <  c and < r.

We are left with 

2iriE

:5 > * )  '  ( " " " f  l S * ) | s -
Since this can be done for every c >  0. wc conclude th a t **

* *  =  ( ‘ -  S ? Jx = j f  i ^ i * -

as before. 4

In the example ju st completed, wc were working w ith a =  4 /3  mid f i r  
1/(1 +  x2). The general result is as follows.
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P ro p o sitio n  4 .3 .16  Let f  be analytic on C  except for a finite number o f isolated 
singularities none of which lie on the strictly positive real oris (that is, all lie in the 
complement of the set {x +  iy  \ y =  0 and x  >0}). Let a > 0 with the restriction 
that it is not an integer, and suppose both of the following conditions hold:

(i) There are constants Mi > 0, Hi > 0. and b> a such that |/( z ) | < M j/|z |b 
for |x | >  Jl%.

(ii) Thtue are constants M2 >  0, /?j >  0. and d with 0 < d < a such that 
!/(-)! <  Mt/\z\d for 9 <  |x | >  He.

Then the integral j£° xa~l f(x )dx  costs in the sense of being absolutely convergent 
and

rOC wai
J  *"“ 7 0 0  dx =  -  i resid'tes of 2°~7(*)}-

The sum is over the singularities o f f  excluding the residue at 0 and zn_1 =  
e(« -0 log* wing the branch with 0 <  argz <  2jt.

The proof follows the solution of the example and is a  typical approach for dealing 
witli branch points. The estim ates |/(z ) | <  M i/|z |6 for large |z | and |/(z ) | < 
Mzf\z\J for small |z | serve to  make the improper integral absolutely convergent 
and to  establish the necessary estim ates along and 7,.. The following corollary, 
which the reader should verify, discusses the case in which /  is a  rational function 
as it was in the example.

C o ro llary  4 .3 .17  The hypotheses o f Proposition 4-3-16 hold if  f (s )  — P(z)/Q(z) 
for polynomials P  of degree p and Q of degree q satisfying both of the following 
conditions:

(i) 0 < a < g  — p.

(ii) I f  «o  is the order of the zero o f Q at 0 (with the convention that uq = 0  if 
Q(0) 0), and if  nj» is the order of the zero of P at 0, then vq —n p < a .  
(This condition holds, for instance, if riQ = 0.)

L ogarithm s The curve used above worked well for roots since the values on 
opposite sides of the a i t  differed by a  multiplicative constant. For logarithms it 
may not work as well since tiic values on opposite sides of the cut differ by an 
additive constant of 2?ri. H ie term s involving log |z | are likely to  be the same and 
cancel. Variations on tbe idea may work.

E xam ple 4.3 .18 Show that forp  >  0 and q >  0 we have

logQjj) d x -  — log(pg).
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S o lu tio n  We can try  working w ith the integrand g{z) — log(pz)/(q* +  a2) . Log­
arithm  can be defined by Iog(pe’°) =  ln(p) -f- iO with the argument 0 taken in any 
convenient interval of length 2sr. If we select 0 <  8 <  2jt, then g Ls analytic off tlie 
jiositive real axis, whidi is a brandi cut. If we tty  the curves used above, the term s 
involving the logarithm along the positive real axis cancel and we are left without 
a  solution. If we use half cirdcs instead as indicated in the figure, we do better. 
The integrand has a simple pole a t iq in the upper half plane and the residue there 
is

R e s f p - io )  =  lo g ( i p g ) =  * ° g (P g )  +  ( W 2 ) =  lo g (P 9 )  +
2iq 2iq 2qi 4 q'

W ith 0 <  r  <  q < R, build a  simple dosed curve 7  =  I  -f- n  +  III +  IV as in Figure
4.3.6 endosing only this pole using the following segments:

•  I proceeds from r  to  R  aloug the “top side oP  the positive real axis. T liat is. 
z  =  x . r  <  x  <  R.

•  II proceeds from R  around to  - R  counterclockwise along the setnidrde of 
radius R  centered a t 0.

•  III proceeds from —12 back to  — r  along the negative real axis. T hat is. 
z  = tcri.

•  TV proceeds from —r  around to  r  dockwise along the semicircle of radius r  
centered a t 0.

V

Figure 4.3.6: Contour used for Example 4.3.18.

Rom  the Residue Tlieorem
t  v  w2I  9  = is-i Res($; iq) =  -  log(ptf) +  —

Jy 9 29

Along the segments I and III we have



which tends to
log(px)

Jo +*2  *** as »* -» 0  and R  oo,
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and

[  g m r  _  /■'■to g W  +  r t
Jui J - i t f l  +** / r <72 +  (—x)2 '  Jr 7* + ®2

which tends to
poo

as r - f 0 and R —*co.

Along Uie arcs we have

1 f  J  _  I r  kg(Jfc*) _J 1 r  InR  + W »  J   ̂ toJl + sr „
l / n l - U  92 +  ^ ifl i  "  |/o  W T W ^ tRe H "

whidi tends to  m o  as / l  —»oo, and

l/v’l = Jf “ ir
^  h irl +  rr

which also tends to  zero as r  -* 0. Wc actually used LU opital’s rule to  evaluate 
the lim its. Putting the preceding pieces together we find that.

= n * r t + £ i - j ( » = / » + Z » + / „ . 9 + / „ *
wliich tends to

r ° ! s ^ * + o +  r _ L _ < fr+ 0
y . «, + * a y . ? + *  j 0 ^ h- i 2 * * * 0

as r  —► 0 and i?  —* oo. Tims,

Comparing real and imaginary parts we find tliat 

and
poo J

rJo
<ir =  — . ♦

j*  +  a* 2}

H ie teclmiqncs we have developed so Tar are summarized in Tabic 4.3.1.
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Thble 4.3.1 E valuation o f D efinite In teg rals

1. Form ula I  J {x )d x  = 2jjt {residues of /  io upper half plane}
C ondition No poles of /(* ) on real axis; finite number of poles ia C; 

l/(*)l <  A f/|s|3 for Urge |=|

2. Form ula f  d i  =  2iri 22 {residues of P/Q  in upper half plane}
C ondition P.Q  polynomials; degQ >  2 + d eg P ; no real zeros of Q.

3a. Form ula
[OC

j  c ~ tu* f (x )d r  =  /  =  2ni22 {residues of e~*"*/(s) in upper half plane]
C ondition w < 0 ; (/(*)( <  A //|r| for |s | large and uo poles of /  on real axis;

or /(= ) =  P (z)/Q {t) where degQ(s) >  1 +  deg P{*) and Q  lias no real zero
tfu> > 0, use — ̂ {residues in lower lutlf plane}

Ii. Form ula
/-oo

/  co & (u xr)f{x )d x«  Ro / ;  /  sin (^z)/(x )d r =  — Im f
■'-<*> J-4C
If uf > 0, use lower half plane as «bovt.

C ondition /  real on real axis.

4. Fbrm ula J 2 /t(cos 0, sin 0)rf0 =  2rr» 22 {residues of /  inside unit circle}

C ondition A rational mid A(cas0,sin 0) continuous in 0. (No poles on unit a id e .)

3. Fbrm ula H  a— 1 /(* )dz «  ~*c~%ai y '  f  rtsidues or *— »/(*) a t 1 
Jo 1 sin(jra) poles of /  excluding 0 J  
using the brunch 0 < n rg r < 2ir.

C ondition a > 0 and /  has finite nuuitier of polos, none ou positive real axis;
l/(*)l i  Af/|e|t,.b  > c . for |z| large; and |/(* )| < A f/|s|d,d  <  a, for |=| — ■
o r
I  — P/Q) and Q  lias no zeros un jiusit ivu real axis.
0 < a < deg Q — deg P  and uq -  np  < a, where ny =  order of the zero u  * 
a t 0 and np  = order of the zero of P  a t 0.

C. Form ula y^ /(x)d z^ forf23{ S f dp|ane “PPCr } +  * « ' on * ax*.
C ondition Same as entry 1 except that simple poles are allowed on X axis.

7. Fbrm ula
C ondition Same as enity 2 except Lbnt simple poles are allowed on x  axis.

3a. Form uln (i) <o < 0 : j ° °  e*“*’x/(x)«£r- I  =

C ondition

}+ « * 5 2 f rcsidu“ <,r,:" " , / ’:1 in upper half plane J 1 on x  axis 
(U) w > 0 : /  =

-2 ^ 5 2 1  l - ’riW  " * id u c s « r ,- -  r s. 
^  [ i i i  hxwisr Imlf piano J  ̂ on w axis 

Same as entry 3 except Hint simple poles are allowed on x  axis.

b. Fbrm ula f  cos(w*)/(x)dx =  R ei f  ain(u/x)/(x)<ir =  - I tn f  
J - 90 J-OC 
If u> > 0, use lower half plane os in entry Sn.

C ondition /  real ou real axis; simple poles allowed on real axis in entry 8a.



^4.3 Evaluation o f D efinite Integrals 297

Them are many improper integrals which converge but which do uot fit the 
standnni patterns we ham  developed in this section. We will see in the worked 
examples a few ways of modifying these techniques to meet special cases.

One very im portant special example is the nonnid probability function

This function behaves very well along tlie real line, shrinking faster for large x  than 
any rational fimetion. But e~: docs not have good limiting behavior for large s 
in either half plane. Along the 45° lines, its absolute value is constantly 1, while 
it grows faster than any polynomial in both directions along the imaginary axis. 
Nevertheless, wc can evaluate the integral.

P ro p o sitio n  4.3 .19 (G aussian  In teg ra l) Wc have

f ° °  c ~ x t f 2 d x  =  v/5jr.
J  -oo

Tiiis formula is im portant in probability and statistics and in other areas of m ath­
ematics and applications. We will meet it again in Chapter 7 where we will see a  
method of evaluating it using tlie gammn function. The most elementary method 
for establishing the preceding formula uses a  double integral and polar coordinates. 
See Exercise 21 of this section or Chapter 9 of J . Marsdcii and M. Hoffman, Elemen­
tary Classical Analysis, Second Edition (New York: W. H. Ffocman and Company, 
1993). A method using residues is outlined in Exercise 2S.1 In the worked exam­
ples wc will use this result and the methods of this section to  see tlia t the normal 
probability function is equal to  its own Fourier transform .

Worked Exam ples
Some of the following integrals cannot be directly evaluated by any of the formulas 
tliat we have so far developed. The basic tediniques used in the solution of this 
problem, however, arc similar to those we have already applied.

E xam ple 4.3.20 Evaluate 

where n > 1 is a positive integer.

S o lu tion  Tliis integral could be evaluated using Proposition 4.3.6, bu t we would 
have to  consider all the poles in the upper half plane. If we use instead the contour 
indicated in Figure 4.3.7, we need consider only ouc pole.

1 Another residue method evaluates it by relating it to tlie FVesnrJ integrals, sinfx2) dx 
and cw(**)ifa. Tliis method and several others, together with historical comments, ore 
discussed in the Internet Supplement and also in D. Mitriuovic and J. Keddc, The Cauchy Method 
n j Residues (Dortrecht, The Netherlands: I). Reidol Publishing Company, 1984), pp. 158-164.
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V

Figure 4.3.7: Contour for Worked Example 4.3.20.

The only singularity o l f(z ) ~  1/(1 +  a2") inside this contour is a  simple pole 
a t where the residue is - e vif2n / 2n~ Tlius,

-  / / + / / + / /  n  h  Jn Jin

I  i 1,  i  + f R i + r 2 .c 2 " r *' **

The second integral is no larger in absolute value than (ir/n)R/(R7n — 1), which 
goes to  0 as R  —* oo. Letting R  —»oo, we obtain

1 =  in  e” ^ "
1 +  x2" — n  1 — e*"*/"

E xam ple 4.3 .21 Use residues to prove that

IT 7T 
— CSC— .2n 2n

dx
xs/x1 - 1

7T
2*

S o lu tio n  Recall th a t a  suitable domain of \/z z - 1  consists of C minus the hah* 
lines *  >  1 and x <  —1. Consider the curve 7  in Figure 4.3.8, consisting of tbe 
incomplete circles of radius r  around 0 and radius (  around 1 and —1 and horizontal 
lines a  distance S from th e  real axis.

The function l / ( z / z z — 1) is defined and analytic in the  region C  minus t he hag 
lines x  >  1 and z  <  — 1 except for a  simple pole a t 0. Tb see this, consider 1/ z 2 -  j 
w ritten as the product yjz — l / z  + 1  in  winch the first factor uses a  branch of tb* 
square root defined w ith a  branch cu t from +1 to  —00 by

f(z)  =  y/7= \ = V F r iIe<,“ *<'~ 1),/2



§4.3 E valuation o f D efinite Integrals 299

Figure 4.3.8: The curve 7  used for Worked Example 4.3.21.

for —Jr <  -arg(z — 1) <  it and the secoud factor uses a  branch of square root defined 
with a  branch a i t  from —1 to  +00 by

</(*) = y/T+T = VTiTiielf"s<=+,>̂2
for 0 <  arg(z + 1 ) <  x (see Figure 4.3.9).

Tlie product f(z)g(z) gives a  square root for z2 — 1 th a t appears to  be analytic 
only on the plane with the whole real axis deleted. Crossing the branch cu t for 
o th e r factor changes d ie sign of th a t factor. Thus, the product changes sign if we 
cross the axis a t a  point x  with |x | >  1. However, crossing in the region — 1 <  *  <  1 
changes both factors, so the product does not change bu t is ooutinuous across this 
segment. Thus, it is analytic across th is segment by the corollary to  Morera’a  
theorem established in Worked Example 2.4.17. We may use this function to  define 
our integrand in a  way th a t is analytic on the set C \{z | Iro z =  0 and | R eal >  1) . 
By tbe Residue Tlieorem,

f  — ss 27riHes ( — ; 0 ] =  2x.

The student should verify th a t (a) the integral over tlie incomplete circle of 
radius r  approaches zero as r  —» oc (the integrand is less than or equal to  A f/|z|2
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- l -1
il/UrtM .  -  X

(0 (ii)

Figure 4.3.9: Branch cuts needed for y/z2 — i: (i) for s/z -  1; (ii) for y/z -f 1.

for |s | large), (b) tbe integral over the incomplete circles of radius e approaches zero 
as e —»0 (the integral is bounded by a  constant tim es e/y/c =  yfc on those circles), 
and (c) for fixed e and r  tlie  integral over tlie horizontal fines approaches

4
dx

Xy/sP— 1

Those throe (acts, together with the previously established fact

show that
L dz

zy/z2 -  1
=  2tt,

jT
dx

i x ^ x 2 — 1
=  7f/2. ♦

Our final worked example Ls an im portant Fourier transform which docs not 
follow directly frpm the methods wc have developed, but does from a  very similar 
construction.

E xam ple 4 .3 .22  Shots that the normal probability function,

f(x \  s- ■ 1 . e-* ’/2
y f e  ’

is equal to its  awn Fourier transform. That is, /(to ) =  f(ut) for all real w.

S o lu tio n  Wc can m anipulate the integral giving the Fburier transform of /  
competing tbe square in the exponent:

f(u>) =  r  -^= e~ ^ /2e -iu,T dx m e- ^ l -  e ~ ^ ^ ' ^ 2dx
v 2jt J - ob v 2jt 2jt J.oo

1
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wlicro i  (w) =  e l* ^ )* /*  dx. We know from the Gaussian integral th a t 1(0) =  
\/5jr, so our conclusion null follow if we can show th a t / ( u) = 1(0) for every 
real w. To see tliis, consider the integral of 5(2) =  e "**^2 around & rectangle 
I* t s i + l l  +  m +  W  such as th a t shown in Figure 4.3.10.

y

~R *toi
■

ttf

TV

m

. II

-R I A

Figure 4.3.10; Contour for the Fburier transform of the normal probability function.

Wc know th at 0 =  f r g =  / T <7+ /„  <7+ / m  9 + f,v  g since g is an entire function. 
Along the horizontal sides where z = x  and z — x  4- iu,  we have g —► 7(0) 
and /,,, g -* —/(w ) as ll -* 00. Our conclusion will follow as soon as we show tlia t 
fu g and f iv g tend to  0 as R  —* 00. Wc do tlia t for the right side, II, and for is > 0. 
The other cases arc similar.

| J  «f| =  \ f  c - (  dj/| =  \ f
<  f  e~/?,/ seu'a/2 dy =  a*/2^»*/2 —► 0 as 71 —> 00.

This establishes our assertion, f

Exercises

1. Evaluate
dx

-00 ~  2x +  4 *

2. Prow  that ,
/o *=

Proposition 4.3.11.

/ “ sin2* .  S' rj. , r> ^  1 - c 2**,j  ^  dx =  —. Hint: Consider J  — ^ — dx and apply

3. Evaluate

4 . * Evaluate

r _Jo ( « + l6cos0)2 

r 3 dx
Jo l  +  x0 '

for 0 <  b < a.
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5. Evaluate / . ay*
f  COST!

Jo l  +  J

C r+*>'6. Evaluate /  — — for 0 <  a  <  3.

p Q Q  •

f  * ■
7o i  +

7. Evaluate /  r r - ^ d ic .
•i-®2

8.* (a) Prove tlm t

r  0061 ^  *
j —oo e* +  c -*  c*/2 +  e- */2

by integrating the function e**/(e* -f e~s) around tlie rectangle with 
vertices —r , r , r  +  iri,— r  +  * i; let r  —+ oo.

r°° c-x  j
(b) Use the same technique to  show th a t /  --------=—dx =  — —r .

J-oo 1 +  e-2** 2 sin j

9. Evaluate P . V. f  --- ----- -r where Im a >  0.
7-oa ( x - a ) 2( ® - l )

10. Show th a t r  sma,* 0 d 5 = ^ ^ .
7o (2Rn!)2

11. Show th a t for a  >  0,6 >  0, jT °  =  ~ ( 1  +  ob)c~ab.

12. * Show th a t for 0 <  6 <  1, 1 . . da; =  . ?r- r .
V o **(* +  !) sin(6jr)

13. Find P dx
oo * ( a r * - l ) ‘

14. Prove th a t /  —^
J o  (*2 +

X , IT
1}

15. Find /  .... —. , by (a) changing variables to  y =  l/(a r4- — 1) and ih
Jo v®* — 1

considering the curve in Figure 4J.11 and finding tbe residue of a  branch of 
1 /y/z2 — 1 a t oo.

16. * Let P{z) and Q(®) be polynomials w ith degQ (z) >  2 +degP(z). Show th »
the sum of th e  residues of P(z)/Q(z) is aero.

QQM
Z* . -d x  for a >  0 ,6 >  0.

>ao* * + « 2
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y

x

rl dx
Figure 4.3.11: Contour for evaluating J  -^= y= = .

18. Let f(z)  be as in formula 5 of Table 4.3.1 except allow /  to have a  finite 
number of simple poles on the (strictly) positive axis. Show th at

P V  r * ~ > f ( x ) d *  =  V  {residues of * ~ lJ(z) a t poles
y0 '  sin(?ra) of /  off the nonnegative real axis}

1 xe~ga*cos7ra (residues of (-2 )°-1/(z ) at poles 
sinira ^  of /  on tlie positive real axis}

r x“_1-------dx = 7rcot(jra) for 0 <  a  <  1.
1 “ I

20.” Establish the following formulas:

, ,  r  M  _  »
W  Jo 1 +  sin2® -  V5

/. \ *2<̂ r  7T ,  .
(b) J0 (x* +  o2)2 “ 4a f o r a > 0
. . f 00 a^ sin *  . ir
“> L w T W d c ~ i ‘

, /V 5 1
V 1 Vo *< +  l  2 >/2

21. Prove Proposition 4.3.19 by evaluating a  double integral over the whole plane 
in polar coordinates.

22. In Worked Example 4.3.20, can the exponent 2n. be replaced by any other 
power p ^  2?

f2* j
23. Evaluate /  — ---- - cos(40)d0 by considering the real p art of the integral

J q  2 t C 05w

i :

■2m

0 2 +  cosd eii6d$ and then converting to  an integral around the unit circle.
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24. Recall th a t the Fourier transform  of a  function g(x) is defined as

9{u) -  -^== r °  g(x)e~iux dx.
i/2 jt J -oo

Show th a t if /  is differentiable and the Integrals for /  and (/')" converge, then

(r ) V ) =  ^ / M

Hint: f(x )  m ust go to  0 in both directions along the x  axis. TYy integrating 
by parts.

25. (a) Evaluate

r
lim /  ■ — ------ dz

e2''* ’1 - 1

where y/m = and 7* is as shown in Figure 4.3.12.

-JU 3 S2 2

Figure 4.3.12: The contour used for f 0̂  e~**dx.

(b) Show th a t the integrals along the horizontal (>arts partially cancel 
give a multiple of e~**dx. Use tliis to show e~*>dx =  y/v.

4.4 Evaluation of Infinite Series and 
Partial-Fraction Expansions

In 54.3 we saw how to  use sums of residues to  evaluate integrals. In th is section 
©ve a  brief discussion of some applications in the other direction: using in tegral 
to  evaluate sums. For instance, wc shall see that by applying these theorems s* 
can prove th a t
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This (s a  famous formula of Leonhard Euler, who discovered it in tlie eighteenth 
century by using other techniques.

In fin ite  S eries We shall develop a general method for evaluating series of the 
form m i'L-oo /(n ) , where /  is a given function. We assume /  is a  meromorphic 
function with a  finite number of poles, none of which are integers. Suppose th a t 
G(z) is a  meromorphic function whose only poles? are simple poles a t tlie integers, 
where the residues are all 1. Thus a t the integers, the residues of/(z)<?(z) a re /(n ) . 
Then if 7  is a  closed curve enclosing —N .—N  +  1 ,.. .  ,0 ,1 ,... .N ,  the Residue 
Theorem gives

J G(z)f(z)dz = 2wi |  / (n ) j +  ^ { re s id u e s  of G(z)f(z) a t poles of ,

If G(z)f{z)dz has a  controllable lim iting behavior as 7  becomes large, we will
have information about the lim iting behavior of ]T ^_N f(n) as N  —♦ oc in term s
of tlie residues oT G(z)f(z) a t the poles of / .  A suitable G(z) is w cotirz.

Of course, we always have

J G(z)f(z)dz = 2ttj 53{all residues of G(z)f{z) inside 7 }

so th a t if some of the poles of /  happen to  be a t integers, we need only move term s 
around

L
G(z)f(z)dz

( "
2ni < ^  { /(« ) | « is not a  singularity of /}  

U = -tv

4- {residues of G(z)f(z) a t singularities of /}

Those considerations lead to  the following.

T heo rem  4.4 .1  (S um m ation  T heorem ) Let f  be analytic in C except for finitely 
many isolated singularities. Let Cn be a square with vertices at (N  +  | )  x (dbl db 
i),N  =  1 ,2 ,3 ,... (Figure 4.4.1). Suppose that fCK(noovxz)f{z)dz —» 0 as N  —* 
oc. Then vie have the sum m ation form ula

N
Jim  £ { /< » )  | n  is uot a  angularity of /}

=  — ̂ { re s id u es  of (irentnz) f(z)  a t the singularities o f /} -
-A*

If none of the singularities of f  are at integers, then lira/v_<*>5 ^ L _ Ar /(f t)  exists, 
is finite, and

ft
Iim /(n )  =  -  ^ { re sid u es  of rrcot itzf(z)  a t singularities of /} .

iV-00,1=-A’
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9

W
C„

-K H
-W -i

-fltf >
W(N*1)

Figure 4.4.1: Contour for evaluating /(n ) .

P ro o f In this argument we assume none of the angularities of /  are a t in tq p s . 
(Fbr the  more general case am ply insert the qualifying phrase in the first sum and 
move appropriate term s—there can be only finitely many of them .) By the Residue 
Theorem,

/  iJCs
(jrcotirz) f(z)dz  =  2m'£{

+  2jri

residues of (wcotrr2) /( z )  a t the 
integers - N , - N  + 1 , . . .  ,0 ,1 , . . .

. J  residues of (jrcot ?rz) /(z )  1 
^  \  a t tlie angularities of /  J

,N }

for N  sufficiently large so th a t C# encloses all of the singularities of / .  Since 
ootrrz =  (cosirz)/(sinirz) and (sinrrz)' ^  0 a t z =  n, we see tlia t n  is a simple 
pole of ootrrz and th a t Res(cot 7rz; n) =  (cosrm )/(ircosrm ) =  1/rr (use formula 4 
of Thble 4.1.1). Therefore, Res((7r cotirz) /(z ) ;n )  =  7r/(n) Res(cot rrz: n) =  / (n  j 
Thus, ^{residues of (rrcot ire )/(z ) a t tbe integers —N ,—N + 1 ,.. .  ,0 ,1 ,.. .  ,1V) =  

/(» )• <Ihhmg lim its on both sides of the preceding displayed equation for 
the integral JCff (ir ootrrz) f(z)dz  and using tiie fact th a t JCk (it cot rrz) f(z)dz  — 0 
as N  -* oo, we obtain

if
limif■

y  f(n) — — ̂ { re s id u e s  of (rrco t*rz)/(z) a t the angularities of /} .
n=—N

I t  is im portant to notice tlia t what we have obtained is a  formula for tbe limit of 
the symmetric partial sums of /(« )• This is not the same as the doubly infinite
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scries itself, which demands th a t tlie upper and lower lim its converge independently:

£ / ( " ) = » . f i ! L X / ( ’, , = » f e .  ^  « * > + ,& ,  £ /< « > •—oo —Af nsO

If tlie doubly infinite series is known to  converge, then our lim it m ust give the same 
answer, but lim v_00 /(n )  may exist when the more general lim it docs not. 
The situation is somewhat analogous to tlie computation of an improper integral 
by a Cauchy principal value. We may check independently th a t the double lim it 
exists, or as in our first example, wc may be interested in a  singly infinite series. 
Note th a t if  /  is an even function, then /(n )  — /(0 )  +  253nL, /(« )•

The cotangent function is not tbe only candidate for a  useful function for G. 
Others are 2in/(clvis — 1) and — 2ni/(c~2” = — 1). We indicate in the exercises a 
way of using iresewz th a t is particularly useful for alternating scries.2

Next we establish a  criterion by which /  can be judged to  satisfy the hypotheses 
of the summation theorem (4.4.1).

P ro p o sitio n  4 .4 .2  Suppose f  is analytic on C except for isolated singularities. I f 
there are constants R  and M  > 0 such that |z /(z ) | < M  whenever |z | >  R, then 
the hypotheses o f the summation theorem (4.4.1) are satisfied.

P ro o f Since \zf{z)\ is bounded outride R, all angularities of /  are in the region 
\z\ < R. Since they are isolated, there m ust be a  finite number of them  (Why?). 
Furthermore, |/ ( l /z ) /z | is bounded by M  in the region \z\ < l /R ,  and so 0 is 
a removable singularity of / ( l / z )  - l / z  and we can therefore write / ( l / z )  * l / z  — 
Oq 4  a\z  4- 02Z2 4 . .  - for |z | <  l/R;  hence

/ ( * ) - 25 +  £ l +  S  +

for |z | >  R. By the Residue Theorem,

j o residue of
jrco tjrz

a t z s o j

4 2 r t W  ^ u c s o f ^ a t  1 
^  [ n  =  ± l , ± 2 , . . .  ,± N  J

Since the pole a t 0 is of order 2, we can write

irco tuz  6-2 i_ i . , . , , 2^—  =  4  4 bo4 h j z 41^2 4 . . .

aA more complete expedition and extensive references may be found in D. S. Milrinovic and J. 
D. Kedkid, The Cauchy Method o f Residues (Dordrecht, The Netherlands: D. Reidel Publishing 
Com|»uiy, 1984).
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The function (ncotirz)/z is even, th a t is, [ireotjr(—*))/(—z) — (irco txz)/z,  so 
uniqueness of the Laurent expansion shows th a t coefficients of odd powers of z are 
zero; in particular, i . j  =  0. But 6_j =  R cs[(ircotirz)/z;0]. (Instead of this trick 
we could have used formula 9 of Table 4.1.1.) Also, Res((ircotw z)/z;n) =  1 /n  for 
n = ± l , ± 2 , . . .  .dbAT (Wliy?), so

^ { re s id u e s  of (jt cot ?rz)/z a t n  — ±1, ± 2 , . . . .  ±N ) = 0.

Consequently,

Thus, we can write

w colirz , .
---------- dz = 0.z

J (woolvz)f(z)dz = J r ( c o t« )  |/ ( z )  -  y j  d r.

To estim ate this integral, we observe tliat

for |z | >  R. Since a j +  o&o +  aatu2 +  . . .  represents an analytic function for 
|tii| <  1 /|A |, it is bounded, say, by M 1 ou the closed disk |w) <  l /W ,  where 
R' > R, Tliis implies th a t

ML
|*|*

for |z | >  R'. Suppose th a t N  is sufficiently large tlia t all p a n ts  on C.\ satisfy 
1*1 >  Then

(Ar +  §)2
COt IT2

It is readily verified th a t

c2ir(A’+l/2) + J
6up{| cotTtzj sudi th a t z Iks ou Cn} = fi2y(w+i/2) _  ^

(note th a t on the vertical sides, | cot ttz\ < 1; on the horizontal sides, tbe maxi­
mum occurs a t z  »  0). Hence for all N  sufficiently large we obtain the inequality 
sup, oa Cft | cot jtz | <  2. The previous inequality then shows tlia t

f  7r(cot nz) f /(z) -  y ]  dz 
JCn 1
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approaches zero as N  —► oo, which in tu rn  shows tlia t

I  (xcot«z) f(z)dz —> 0 as N -* oo. ■
JCn

One learns in calculus th a t the p .scries converges if p >  1 and
diverges if p < 1, but usually with no indication of ju st what tlia t sum might he. 
We encountered tliis sum in Chapter 3 as C(p) where C is the Riemann seta  function, 
an im portant ingredient in number theory. The case p  =  2 is interesting and there 
arc many ways to  evaluate ((2 ), which is a  series first summed by Bulcr.

P ro p o sitio n  4 .4 .3  The following summation formula, holds:

n2 ~  6 ‘IMtl

P ro o f We apply tlie summation theorem (or its  corollary) with f{z) = l /z 2. 
Since tan  z has a  simple zero a t z =  0 ,co tz  lias a simple pole there. If the Laurent 
expansion isc o tz  =  6 i/z  +  ao +  0)2 -»*..., then

(1 -

Multiplying, collecting term s, and comparing coefficients, we find bi = l,Oo =  0, 
and a, =  — A. Thus,

rrcotJTZ s ( l / i r z - m /3  +  . . . )  1 s4 1 ,
z2 =  z2 T ' 3 +  "  ’

Since tlie only singularity o f /  is a t z  =  0, the summation formula becomes

and, since I / (—n)2 =  1/n2, we obtain

=  lim Y ±  = N—oo «*n d

-J2
6 *
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P artia l-IV actio u  E xpansions If f{z) = p(z)/q(z) is a  rational function, wc 
know a  trick from algebra th a t is often useful in calculus: The function /  can 
be expanded in “partial fractions” in term s of tbe zeros of tlie denominator. A 
meromorphic function can sometimes be thought of as somewhat like a  rational 
function w ith possibly infinitely many zeros in the denominator, and one might 
wonder if a  sim ilar expansion is posable. Although one should not take th is analogy 
too seriously, something along these lines can be done. First wc give a  specific 
example th a t shows how the summation theorem can be used and tlia t will be used 
in Chapter 7. Then we will give a  somewhat more general result.

P ro p o sitio n  4 .4 .4  Let z  be any complex number not equal to an integer; then both

are absolutely convergent series and

1
1 f COt JTZ =  -  

Z
1

z  + n

This equation can also be written

„<**«=!+ E ' ( r b +; ) ’n=-oo '  '

where the prime indicates that the term corresponding to n  — 0 is omitted. 

P ro o f Fbr n  sufficiently large, \z — n | >  w/2. Therefore,

< 2 11 1 z
z  — n  ’ n (z — n)n ■= n3

By comparison with the convergent series

2IZI (n *  *  (n  +  l)8 +  ‘ ‘ ’

we see that

n = l  v '

is absolutely convergent. Similarly,
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is Absolutely convergent. Fix 2 and consider the function /(w ) — l /( ta — z). This 
function is meromorphic; its only pole is a t z, which is not an integer, and it is easy 
to see that |ttf/(ur)| is bounded for w  sufficiently huge (as in Proposition 4.3.6)- 
By Proposition 4.4.2, we see th a t the hypotheses of the summation tliyiram  are 
satisfied, so

lim Y  —-— =  -  f  redi
/v -oo  n - z  In——N x

.. JTCOtjTU/residue o f -----------a t vtw — z irc o tr r .

We note that

SO

1 + y ( - J -  + l ) + y t ( - l ------=  jrcot7rz. ■
2 « )  V2 +  n  n )

Wc could also have obtained tbe expansion for cotangent from the following 
theorem.

T heorem  4 .4 .5  (Partial-F V action  T heorem ) Suppose tliat f  is meromorpAic 
with simple poles at a i,02,03, . . .  with 0 <  |a i| <  |a2| < . . .  end residues at a*. 
(We are assuming f  is analytic at 0.) Suppose there is a sequence R j, Rqt Rs, • . .  
with the properly Iimn_00 R„ = 00 and there a n  simple dosed curves Cn  satisfying

(i) J2| >  Rn for alt z on Cn .

(ii) There is a  constant S  with length (Cn ) < SRn  for all N.

(iii) There is a constant M  with |/( z ) | <  M  for all z  on Cn  and for all N . (The 
same M  should work for all N .)

Then

/(* )  =  / ( ° ) + E ( t z t : +
n=l ' Z

P ro o f If zq £  0 is not a  pole of / ,  let F (z) =  f(z)/(z  — Zo)- Then F  has simple 
poles a t zq and a t 01, 02, 03, —  Clearly

R*s(F;zo) =  hm^(z -  zo)F(z) =  / ( zq)

and

H cs(F;a„) = lim ( z - a „ ) /(* )
Z  -  Zq  ~

bn
an Sq
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By tlie Residue Theorem,

_ L  f  J Q d z  = f t Sa) + J ' ( - ~ —  | «» » inside C * }
2wi Jc,- z — so ^  20 *

and, in particular,

J L  f  ^ ^ <fe = /(0) + y ' ( ^ L l«n fa inside C * } .
2iri JcK z ^  J

Subtracting these last two equations,

f  dz =  r(zo) -  /(0 ) 4- y  I  — ~ ------ —  I a„ is inside CN1 .
2*iJCtl z(z-zo) H  M J *" J

Along CN,\z\ > Rn  and \z -  zo\ > |Rn  -  Nil* 80 ^  intcSni1 fa the ,asl
equality is bounded above by

N  M  „  ^  M ^  \zq\MS
y ^ n ^ N i 1 ‘ensth (cw )i s  2>ik -» -  N r

This goes to  0 us N  - » oo, and each of the On b  eventually inside CN. Therefore.

i m  =  m  -  „>;» ( £  { — -  £  i

=  m - f ' f — — — ) - / ( ° ) + £ ( — V
“ I “ *> ®*7 ^  \ z o - “ » « - /

Since tliis formula holds a t all so for whidl /  is analytic, we have established tbt 
theorem. ■

Contours commonly used for tlie Cn are circles of radius Rn or large square* 
sudi as those in Figure 4.4.1. Tlie expansion given in the partial-fraction theorem & 
a  special case of a  m ore general result known ns tlie Mittag-Lefflcr tlieorem3 nam^t 
after the famous Swedish mathematician Gostn Mittag-Lcfficr (1846-1927).

Exercises
oo .  _4

1.* Show th at V  —r  =  — .
z - ' n 4 90n^l
oo

2. Show that. 5 ^  . (You nmy uso the

below).

answer to  Exercise a

3It may be found in P. Heariri, Applied and Computational Compter Anatyaio, Vol. 1
York: Wiley-lnlcrsdence, 1974), pp. 655-fl<50, anil (New York: Springer-Vcrlng, 19S6).
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3. Show th a t

4. Show that

90 j

5 3 ^ T t f =* s “ " ,,ra+n=0

^  ^  1
sin2** n ^ i z - n ) 2'

IT COt K Z .

I
2a2

ffint:

Tor a >  0.

S tart with the expansion for

5. Develop a  method for evaluating series of the form E « L .x ( - *)n/ ( n ) where 
/  is a  meromorphic function in C with u finite number of poles none of which 
lie a t the integers. In other words, develop theorems analogous to the sum­
mation theorem (4.4.1) and Proposition 4.4.2. Hint: rr/su n ra  bus poles a t 
the integers with Res(sr/siu7rz;n) =  (—1)". Discuss how you would handle 
the summation If some of the poles of /  did lie a t the integers; see Proposition
4.4.4.

C. Show th a t if 22 — 1 is not an integer, then

1 4 y ,  r 2 2 - 1  4 1
coss-2 *  jr [(2z — l)2 -  4n2 *** 1 — 4n2J '

Hint: cos(x 4- iy) =  cos x  coshy 4- isin z sin h y . Use the square witli comers 
± N ± N i  for Cff given in the partial-fraction tlieorem (4.4.5). Finally, combine 
the ti and —n  terms.

7.* Use the partial-fraction llieoreni to  show that

c o t  2 =
z ^  \2  -  nsr n s )  z z2 — n2^3 ''  n = l

where means the sum is over nil n  jt 0.

8. Prove th a t I -  1/ 22 4-1/3* -  1/42 + . . .  =  tP/IZ.

9 . * T iy to  evaluate th e  sum £ ^ i ( V n’3)* (This problem is a b it open ended; 
don’t  be discouraged if you arc not successful.)

R eview  Exercises for Chapter 4
f 2* dB

1 . * Evaluate /   ---- — .J0 2 - s w 0

2. Evaluate f  ----- r i ----- r dz where
A  (* -* )(*  ~  2)

(a) 7 is the circle with ceuter 0 and radius 1 /2 traveled once counterclock­
wise.

(b) Same as (a) but radius 3/2.
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(c) Same as (a) but radius 5/2.

3. Evaluate
-oc

1
X* 4-1

dx.

4, Evaluate /  znelf‘dz if C  Is tbe unit circle centered a t 0 and n  is a  positive
J c

integer.

/ °° sinx

*(* +  !)(** +  *)

6. Evaluate
7 -0 0  +  1

r dB
-------— - .
2cos0 +  3

8.* Let /  be analytic on a  region containing tbe closed upper half plauc {z | 
Iinz >  0}. Suppose th a t for some constant a > 0 ,|/(z ) | < M/\z\a for |r | 
large. Show th a t for 1m z >  0,

/(* )

9. Evaluate exp(e*°)d$.

0 sin k t
i. Show that — /  -------dt is 1 if k  >  0, is zero if k — 0, and is — 1 if k  < 0.

*Ja  *

f  s - J p * .

r ± _______________
J0 14-®" nsmfmjr/w)*

10.

11. Evaluate

12.* Show th a t /  — — —dx —

13. Find tlie Laurent expansions of f(z)  =

r, where 0 <  m  <  n . 

1
( z - l ) ( z - 2 )  

0 <  |z | <  1 and (b) |z | >  2. Choose zo =  0.

th a t are valid for (a '

14. * Show th a t j  sech xdx  =  —. Hint: Consider the rectangle with co rner 

a t (±A , dbR +  a t).

15. W hat is Uie radius ofconvurgence of the Thylor series of l/co szaro u n d  2 =  CT

16. Explain w hat is wrong with tlie following reasoning. We know th at a: = 
so d(a*)fdz — (loga)a=. On the other hand, d{a:)/dz = zar~l . Tfeas.
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17. Find the residues of the following a t each angularity: 
z

(a )

(b)

1 - e s* 
sin(z2)
(sin z)2

(c) s in ^ 1/*)
OO

18. * W liere is £  zne~isn analytic?
naO

19. Let f(z)  have a  zero of order k  a t zq. Show th a t R es(/,/ /;z o )  =  k. Find
R es(/7 /';so ) and acs(/7 /;*>).

20. Let /  be entire and suppose th a t Re /  is a  polynomial in x.y.  Prove th a t /  
is a  polynomial.

21. Explain what is wrong with die following argument, then compute the residue 
correctly. The expansion

1 _  1 1 , 1 1 . 1
z ( z - l) 2 ( z - 1 ) 2 ‘ 1 + ( 2 - 1) " ’ * ( z -  1)S { * - ! ) «  r (2 - i ) 3

is the Laurent expansion; since there is no term  in  l /( z  — 1), the residue a t 
z  =  1 is zero.

22. Verify the maximum principle for harmonic functions and the minimum prin­
ciple for harmonic functions for the harmonic function u(x, y) = x2 — y2 on 
(0, 1] x (0, 1).

23. Evaluate the integral /  —— 

with radius 3/2.

1
l ) ( * - 2)

dz, where 7  is the circle centered a t 0

24. Repeat Exercise 23 but until radius 1/ 2.

25. Determine the radius of convergence of the following series:

lQS("w) „

(b) zn

26.* Establish the following:

r s in h a r , l a---------dx — -  tan  -
sinh jtx 2 2

for -  jt <  a < n .

Hint: Integrate caz/sinh(Trz) over a  “square” with sides y =  Q,y 
—R ,x  =  +R, and circumvent the singularities a t 0 ,t.

1.*  =
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27. Expand the following in Laurent series as indicated: f(z)  =  ^

(a) fo r  \z\ <  l;z&  =  0
(b )  fo r  |2 |  >  1; zq =  0

(c )  fo r  |z +  1 | <  2 ; zo  =  —1

(d) for 0 <  \z — 1| <  oo; zq =  1

28. Show th at

r ' ~  d0  i r (2 a + l )  ,
(a +  sin2 ~ 4 ( a 2 +c)V 2 for a > 0

29. Establish the following formulas:

t°° a* , irb0- 1
(b) /  -=— pfdx = ; ---- for — 1 < a <  1Jo x2 +fP 2cos(na/2)

30. Prove th a t

r”  * * i * + b ’ -

Hint: S tart with the identity for cot z  in Proposition 4.4.4 and use tan  z =. 
cot 2 — 2cot2z.

31. Prove th a t

£  (a n)2 =  * * « (» •)« * (* ■ )•

“  1
32. Evaluate > -rr.

n s |
33. Explain w hat is wrong witii th e  following reasoning:

r ^ # = i r s H £ * , = i  a™ r  —
Jq x 2 j_ 0o x  2 n—ooj^n z

where yn  is the x  axis from —R  to  R  plus the circumference { r  =  Rc<(f 10 
0 <  w}. But (sinz)/z  is analytic everywhere, including zero, so by Cauchy r 
Theorem,

f  2HL£<fc =  0 and so f ” — dx = 0.
Jim z Jo x

vi.;1
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34.* Let f(z )  be analytic inside and. on a simple closed contour 7 . For zo on 7 , 
and 7  differentiable near 3j, show that

f(zo) = ~ P . V . f
7TI. J~Q — ZO

33. Use Exercise 34 to  find sufficient conditions under which

f(x,0) = ± P . V . r

for /(* , y) =  / (z )  analytic. Deduce th a t 

u(ar,0) -  -  P .V . and v(*,0) =  - - P . V .  /° °  ^ ^ d < .
Jr J —00 ( “ *  *• J -00 S ~ *

The functions u and t; ore called Hilbert transform s of one another.

3G. Show tliat

( - 1)*
J _  .  i  +  5 3 ' ( - 1)" ( —  + J - )  -  i  + 2* E  3 ^
s i n z  z ' V z - imt n i r /  z> '  n = l

where means the sum is taken over all n  ^  0.

n2*3

_  , y0* sin o/x ,
37. Evaluate /  ■. . . dz.Sinn to

38. When a  nonlinear oscillator is forced with a  frequency w, a  measure of tlie 

oscillator’s “chaotic response" is given by* M — J*°  sechM coswfdt. Show 

th a t Jlf =  (w/26) sech (c*>sr/26).

4See J . Gudcenheimer and P. Holmes, Nonbnmr OsiilUUians, Dynamical Systems end Bifur­
cations o f Vector Fields (Now York: Spriugor-Verlng, 1983), $4.6.
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Chapter 5

Conformal Mappings

Chapter 1 included a  brief investigation of some geometric aspects of analytic func­
tions. Now we return to  this topic to  develop some further techniques and ap­
plications. In the first section of the chapter, we seek to  map a  given region of 
the complex plane to  another given region by a  one-to-one, onto, analytic func­
tion. T hat such mappings always exist (under suitable hypotheses on the regions 
in question), a t least in theory, is the statem ent of the famous Riemann Mapping 
Tlieorem, which is discussed in this section; the proof is available in the Internet 
Supplements. Using th is theory, §5.2 discusses several concrete cases for which sudi 
mappings can be w ritten explidtly.

Tlie theory of conformal mappings has several im portant applications to  tlie 
Dirichlct problem and to harmonic functions. These applications arc used in prob­
lems of beat conduction, electrostatics, and hydrodynamics, which will be discussed 
in §5.3. Tiie basic idea of sudi applications is tliat a conformal mapping can lie 
used to  map a given region to  a  simpler region on which the problem can be solved 
by inspection. By transforming bock to  tlie original region, tlie desired answer is 
obtained.

5.1 Basic Theory of Conformal Mappings
C onform al tra n s fo rm a tio n s  The following definition was presented in §1.5: A 
mapping /  : A -* B  is called conformal if, for eadi Zq €  Atf  rotates tangent 
vectors to  curves through zo by a  definite angle 0 and stretches Uietn by a  definite 
factor r . Let us also recall the following theorem proved in §1.5.

T heo rem  5.1 .1  (C onform al M app ing  T heo rem ) Let f  : A —» B he analytic 
and let /'(«o ) ^  0 for each zq €  A. Then f  is conformal.

Actually, if /  merely preserves angles and if certain conditions of regularity hold, 
then /  must be analytic and /'(so ) & 0 (sec Exercise 8). Therefore, we can say 
th a t “conformal'’ means analytic vrith a nonzero derivative.
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As au example, let A =  [z | Rez > 0 and In iz > 0} and B  =  {z | In iz > 0}. 
ITie map /  : A -* B  defined by z  zr is conformal, since it is analytic and 
has the nonzero derivative f ’(zu) =  2zo on A. Figure 5.1.1 illustrates tlie theorem 
by Stowing preservation of angles in this case. If f'(zo ) = 0, angles need not be 
preserved. For instance, for the map z z*, the x  and y axes intersect a t an angle 
rr/2 but the images intersect a t an angle k. Such a  point where / ‘{zq) = 0 for 
an analytic function /  is called a singular p o in t Singular points are studied in 
greater detail in Chapter 6.

» x

Figure 5.1.1; A coufonual wop.

P ro p o sitio n  5.1 .2

(i) I f  f  : A B is conformal and Injective (one-to-one and onto), then f~ l : 
B —* A is also conformal.

(ii) I f f  : A —► B and g : B  ~*C are conformal and bijeetive, then g o  f  - A —* C  
is conformal and bijeetive.

P ro o f

(i) Since /  is hijective, the mapping / “’ exists. By tlie Inverse Function Theorem 
(1.5.10), is analytic with df~y{vi)/dui =  \/[df(z)fdz\ where v> =  f(z). 
Tlius df~ l(w)/die £  0. so / -1 is conformal.

(ii) Certainly go f  is bijeetive and analytic, since /  and g are. (The inverse of go /
is f ~1 o(/_ l.) The derivative o fp  o /  a t z  is tf( f(z))  • / '(z )  0. Therefore.
go f  is conformal by definition. ■

Because or the two properties in Proposition 5.1.2 (and tlie obvious fact that 
the identity map z z  Is conformal), we refer to the set of bijeetive conformal 
maps of a fixed region to itself as a group.

Property (i) can be used to solve various problems (sudi as the Diridilct prob­
lem) associated with a given region A. The method will be to find u bijeetive
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conformal map /  : A —* B  when; & is a simpler region on whidi the problem can 
be solved, l b  obtain the answer on A wc then transform  our answer bom B  to 
.4 by / - l . Tlie O iridilel problem involves tuirwouic functions, so we should diode 
tbnt harmonic functions remain harmonic when we compose them  with a  conformal 
map. To do so, wc prove tlie following result.

P ro p o sitio n  5 .1 .3  Let u be. harmonic on a region B  and let f : A —• B  be analytic. 
Then u o f  is harmonic on A.

P ro o f Let z €  A and w = f(z).  Let U be an open disk in B around m and 
let V  =  f ~ l (£7). I t suffices to  show tlia t u  o /  is harmonic on V  (Why?). By 
Proposition 2.5.8, there is an analytic function g on U such that- ti — Re#. Then 
uo f  — Re(<7 o / )  (Why?), and we know Uiat go f  is analytic by the d iaiu  rule. 
Tlius Re(ff o / )  is liannonic. ■

Riem axm  M app ing  T heo rem  There is a  basic but more sophisticated theorem 
that guarantees die existence of confonnnl mappings between two given regions A 
and B. The validity of tliis theorem in several special case; is verified in §5.2. The 
general theorem is not always or immediate practical value, because it does not teil 
us explidUy how to  find conformal maps. Nevertheless, it is mi im portant tlieorem 
that we should be aware of. We shall prove uniqueness hist: but leave existence to 
the Internet Supplement.1

T heorem  5.1 .4  (R iem ann  M apping  T heorem ) Let A be. a connected and sim­
ply connected region other than the whole complex plane.. Then there exists a Injec­
tive conformal map f  : A —* D where D = {z such that \z\ < 1}. Furthermore, for 
any fixed zq €  A, toe can find an f  such that f{zo) — 0 and J \ zq) > 0. With such 
a specification, f  is unique.

From this result we see that if A and B  are any two simply connected regions 
with A ft C, B jt C, then there is a bijeetive conformal map g : A — B. Indeed, if 
/  : A —► D and h: B —» D are conformal, we can set. y =  h'~t o /  (sec Figure 5.1.2). 
Two regions A and B an; calhxi conformally equivalent if there is a bijeetive 
conformal map from A to  B. Thus, the Riemann Mapping Tlieorem implies that 
two simply connected regions (unequal to C) arc conformally equivalent.

P ro o f o f  U niqueness in  T heorem  5.1.4 Suppose /  and g are bijeetive con­
formal maps of A  onto D  with /( to )  =  g(zo) — 0, f ' (zQ) > 0, and jr'(zo) >  0. 
We want to show th a t f(z)  = 4(2) for all z in A. Tb do this, define h on D hy 
/t(ru) =  ff( /- , (w)) for w € D. Then h : D —* D uud /i(0) =  g(f~ ‘(0)) =  g(z&) =  0. 
By tlie Sdiwarz Lemma 2.5.7, |A(w)| 5  lwl for all tu e  D. Exactly the same argu­
ment applies to  A-1 =  f a g ~ l, so that |/i-1 « ) l S  Id for all < <E £>. W ith C =  h(w),

’See also E. Hillo, Analytic Function Theory, Vol. II (RukIoii: Gina and Gompaiiy. HISS) p. 
322, or U Ahirois, Complex Analyinx (New York: Mt<jniw.UiIlt 19GG), p. 222.
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Figure 6.1.2: To transform A to B  wc compose h~l with / .

this gives |te| < |/i(w)|. Combining these inequalities, wc get |/i(tn)| =  |u;| for all 
w € D. The Schwarz Lemma now tells us that /t(w) = ctu for a constant c with 
|c| — 1. Thus, cw — g ( /- , (ui)). With z — / - , (w) we obtain cf(z) = 5(2) for all 
2 € A. In particular, c/'(zo) =  g'[zo)- Since both /'(zo) and g'(zo) arc positive 
real numbers, so is a  Thus, c =  1 and so f(z)  =  <7(2), as desired. ■

Tlie condition /'(zo) > 0 is equivalent to saying that f'(zo) lies on tlie positive 
real axis; that is, arg /'(zo ) =  0. Using the preceding argument, one can modify 
tlie uniqueness assertion so that /(zo) and arg /'(zo ) are specified. The studeut is 
asked to prove this in Exercise 7.

Here is another useful fact about conformal maps. Let A and B  be two (con­
nected) regions with boundaries bd(4) and bd(2J). Suppose that /  : A —* f(A)  i> 
conformal.

If f(A) has boundary bd(B) and if, for some zq € A, we Imve /(zq) €
B , then f(A)  =  B . In other words, to determine the image of a can- 
formal map, we merely need to check the boundaries and a single joint 
inside.

To prove this wc argue as follows. Since B  is open, J5Dbd(i?) =  0 . The closure of B 
is B Ubd(/J), so we can decompose the plane as a disjoint union C =  BUbd(ZJ) . 
ext B , when: cxtJ3 is open. Since f ‘ never vanishes on A, the Inverse Function 
Theorem shows that f(A)  is open. Thus, f(A)  P bd(/(>4)) =  0 . But bd(/(i4)) = 
bd(jB), so f(A)  is contained iu the union of the disjoint open sets B  and ext B  
Since /  is continuous on the connected set A, the set f(A)  is connected. Therefor* 
from the definition of connectedness (see Definition 1.4.12), either f(A)  c  B -a 
f(A)  C ext B. Because f(zo) € ZJ. we must have f(A)  C B. Since f(A)  is open, r
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is open relative to  B. Finally,

f(A) = f(A)  ( 1 5 =  If  {A) n  B] U (bd(B) fl B\
=  | f(A)  n B ] u  (bd(/(yl)) n  B)
=  1f(A)  U bd(/(>i)] (1 5  =  d (/(i4 )) fl £

so th a t f(A)  is dosed relative to  5 . Since 5  is connected, f{A) — B  (see Proposi­
tion 1.4.13).

Simple connectivity is an essential hypothesis in tlie Riemann Mapping Theo­
rem. I t  is easy to  show (see Worked Bxamplc 5.1.7) th a t only a  simply connected 
region can be mapped bijectivcly by an analytic map onto D. On the other hand, 
the annuli 0 <  |« | <  1 and 1 <  |z | <  2 are not conformally equivalent-, see Worked 
Example 6.1.14.

B ehav ior o n  th e  B oun d ary  The Riemann Mapping Theorem and m ost of our 
other remarks about conformal maps have discussed behavior on regions th a t are 
open, connected sets. In particular the Riemann Mapping Theorem does not say 
what happens on the boundary of A or of D. Many of the applications, however, 
involve determining behavior inside a  region from information on the boundary.

In §5.2 wc will look a t many concrete examples involving such regions as disks, 
half planes, quarter planes, and so on, and tlie maps will usually be well behaved 
on the boundary. Tliis is no accident, as tlie next theorem shows, but it is not 
autom atic.

The connected and simply connected open sets to  which the Riemann Map­
ping Theorem applies can be rather complicated. For example, consider tbe set A 
obtained by deleting from the square

5 = { r |0 < R e 2 < 2  and 0 < I m z < 2 )

tbe vertical segments

§5.1 Basic Theory o f Conformal M appings

J* =  {* =  1/n  +  y i 10 <  y < 1},

n =  1 ,2 ,3. . . .  (sec Figure 5.1.3). Tlie Riemann Mappiqg Theorem guarantees th a t 
there is a  conformal map of A onto D, but attem pting to  extend it continuously to  
the boundary of A, particularly to  0, creates problems.2 For well-behaved regions 
there is a  nice result, which we sta te  without proof.

T heorem  5.1 .5  (O sgood -C ara theodo ry  T heorem ) I f At and A2 a n  bounded 
simply connected regions whose boundaries 71 and 72 ore simple continuous dosed 
curves, then arty conformal map of A\ one-to-one onto A? can be extended to a 
continuous map of A t U 71 one-to-one onto A2 U jz-

3A detailed description of tlie boundary behavior of conformal maps may be found in A. I. 
Mnrkushevidt, Theory o f Functions o f a Complex Variable, Volume 3 (New York: Chelsea Pub­
lishing Company, 1977), Chapter 2.
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Figure 5.1,3: Even though .4 lias a  wild boundary, it can be mapped conformally 
to  D.

Once the boundaries are known to  be mapped continuously, we can get infor­
mation about, the regions themselves. The next theorem outlines sudi a  procedure. 
Tlie conditions arc restrictive enough that we do not need to  check a  point zq €  A.

T heo rem  5 .1 .6  Let A be a bounded region with f  : A —♦ C a  bijeetive conformal 
map onto its image f(A). Suppose that f  extends to Ik  continuous on d (A ) and 
that f  maps the boundary of A onto a circle o f radius R. Then f(A) equals tltc 
inside of that circle. More generally, if B is a bounded region that, together with 
Us boundary, can be mapped conformally onto the unit disk and Us boundary and tf 
f  maps bd(A) onto bd(B ), then f(A) = B.

P ro o f By composing /  w ith the conformal map h  th a t takes B to  the unit disk 
it is sufficient to  consider the special ease in which B  equals D = {z sudi tliat 
|z | <  1}. On bd(j4),\f{z)\ =  1, so by the Maximum Modulus Tlieorem, |/ ( z ) | <  I 
on A. Since /  cannot lie constant, f(A)  C D. In other words, a t do 2 €  4  is the 
maximum |/(z ) | =  1 readied. Wc have assumed th a t /(bd(A )) =  bd(£>), bu t this 
is also equal to  bd(/(A )). To see this, use compactness o f d(A ), continuity of / .  
and jD nbd(D ) =  /(4 )n W (/(A ))  =  0 . Thus our earlier argum ent applies to  show 
tlm t f(A)  =  D. M

Worked Exam ples
E xam ple 5 .1 .7  Find a bijeetive conformal map that takes a bounded region to cr. 
unbounded region Can you find one that takes a simply connected region to a  regn*r. 
that is not simply connected?

S o lu tio n  Consider /(z )  =  l / z  on A = {z | 0 <  |z | <  1}. Clearly, A is bounded. 
Also, B — f(A)  =  {z such tlia t |z | >  1 } ;/ is conformal from A to  B  and bus m  
inverse £ ->(w) =  1/w. But B is unbounded.
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Tlie answer to  tbe second part of the question is no. If A is simply connected 
and /  : A —* B  is a  bijeetive conformal m ap, then B  m ust be am ply connected. 
To show this, let 7  be a  closed curve in B  and let 7 =  f ~ l 0 7 . Then if is a 
homotopy shrinking 7  to  a  point, /  o ff(t,s)  is a  hoinotopy shrinking 7  to  a  point.

E xam ple 5.1 .8  Consider the harmonic function u(x.y) — x -\~y on the region 
>i =  { z |0 < l in z <  2 jr). What is the corresponding harmonic Junction in B  = 
C\(positive real axis) when A is transformed by 2 •-» e* f

S o lu tion  Let f(z) — cE. Wc know from Cliaptcr 1 th a t /  is one-to-one, onto 
B, and th a t f '(z) — e* jtO. Thus /  is conformal from A to  B, and therefore, by 
Proposition 5.1.3, the corresponding function on B  is harmonic. Tliis function is

where tan ~l(y/x) — a rg (i +  iy) lies in ]0, 2xj. Note tlia t to  check directly th a t <p 
is hannonic would be slightly tedious, but wc know it must be so by Proposition
0.1.3.

E xam ple 5.1 .9  What is the image of the region

under the transformation z *-* z2?

S o lu tio n  On the right half plane {z | R es >  0}, wc know th at /(z )  =  z2 is 
conformal (W hy?). Tb find the image of A we first find tlie image of the curve 
xy = 1. Let w ~  z2 ~  u+ iv. Then u = x2 — y2, v  =  2xy. Thus the iinageof xy  =  I 
is the cur\>e v  =  2. We must check the location of the image of a  point in A, say, 
z = 2 +  2i. Here z2 — 8», and therefore the image is the shaded region B in Figure
5.1.4.

Exercises
1. W lial is the image of the first quadrant under the mapping s >-* z3?

2. Consider /  =  « -f tw where 11(1 , y) = 2a*2 +■ y2 and v  =  if*/x. SIiow th at the 
cur\<cs u ~  constant and v =  constant intersect orthogonally but th a t /  is 
not analytic.

3 . * Near what points are the following maps conforrwd?

ip(x,y) =  u ( / - 1(x,J/)) =  u(log(x +  iy))

=  lo g y 's2 +  y* -M an-1 - ,
X

A =■ {z | (Re z)(Im  z) >  1 and R c2 > 0,lm z  >  0}

(a) f(z)  =  23 +  22
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Figure 5.1.4: Image of the set A under the conformal map z  *-♦ z2.

(b) f[z )  =  z /( l +  5z)

4. Near what points are the following maps conformal?

(a) f ( z )  = z
(b) f ( z ) ~  (s*inz)/(cosz)

5. Consider the harmonic function u(x,y) =  1 — y  -f- x /(x2 4* y~) on the upper 
half plane y > 0. What is tbe corresponding harmonic fimetion on the first 
quadrant x > Q,y > 0, under the transformation z  *-» z2?

6. Let A and B  be regions whose boundaries are smooth arcs. L e t/h e  conformal 
on a  region including j4Ubd(<4) and map A  onto B  and bd(j4) onto bd{£). Let 
u be harmonic on B  and u — h(z) for z on the boundary of B . Let « =  u o /  
so that tf equals h o  f  on the boundary of A. Prove that dv/Qn — 0 a t Zq iff 
&a/8 n =  0 a t /(zo) where zo 6 bd(j4) and 8 /d n  denotes the derivative in the 
normal direction to the boundary.

7." Let A and B  be regions as in the Riemann Mapping Theorem. Given zg 6 
A,v>a € B, and an angle 0q , and by assuming tliat theorem, show that there 
exists a  conformal map f  -.A~* B  with f(zg) = w0 and a rg /'(2o) =  %  also 
show that sudi an /  is unique.

8. Let f  i A  -* B  he a  function such that dff& x  and 3 / /By exist and are 
continuous. Suppose that /  is one-to-one and onto and preserves angles. 
Prove that /  is analytic and conformal. Can the map in Exercise 2 preserve 
all angles? Hint. Let c{t) be a curve with c(0) =  zg and let d(t) =  /(c(f )- 
Prove

and examine the statement that, d'(0)/</(0) has constant argument in order 
to establish the Candiy-Hicnxami equations for / .



9. If /  : A —* B  is bijeetive and analytic with an analytic inverse, prove th a t /  
is conformal.

10. Let a  and b be two fixed complex numbers and let /  : C —* C. z  h* az +  b. 
Show th at /  can be written ab a  rotation followed by a magnification followed 
by a  translation.

11. The Riemann Mapping Theorem explicitly excludes tlie case A =  C from 
consideration.

(a) Is there a  conformal map of C one-to-one onto the unit disk D1
(b) Is there a  conformal map of D one-to-one onto C?

12. Show th at every bijeetive conformal transform ation of C onto C is of the type 
described in Exercise 10.

13. * Suppose th a t /  is a conformal map from a bounded region A onto an un­
bounded region B. Show th a t /  cannot be extended in sucli a  way as to  be 
continuous on A U bd(A). Note-. The full force of conformality is not needed 
in this problem.

5.2 Fractional Linear and
Schwarz-Christoffel Transformations

This section investigates some ways of obtaining specific conformal maps between 
two given regions. No general prescription can be given for obtaining these maps; 
however, after a  little  practice the student will be able to  combine fractional linear 
transform ations (studied in th is section) with other familiar transform ations (like 
z2,c*, or sinz) and thus be able to  handle many useful situations. To aid in tins 
effort, some common transform ations are illustrated in Figures 5-2.10 and 5.2.11 a t 
the end of this section. In addition, the Schwarz-Christoffel Formula will be studied 
briefly, even though it yields answers th a t usually can be given only in term s of 
integrals.

f ra c tio n a l L in ear T tansfo rznations The am plest and one of the most useful 
conformal mappings will be discussed first. A fractional linear transform ation  
(also called a  bilinear transform ation or Mobius transform ation) is a  mapping of 
the form
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T(z) —
az + b 
cz + d

where e , b,c,d are fixed complex numbers. We shall assume th a t ad—be 0 because 
otherwise T  would be a  constant (Why?) and we want to  om it th a t case. Some 
properties of these transform ations will be developed in the next four propositions.
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P ro p o sitio n  5.2.1 The map T  defined in tlie preceding display is bijeetive and 
conformal fivm  the set

A = {2 that is, 2 # —d/c) onto B  — {w \wjla /c}-
The inverse o fT  is also a fractional linear transformation given by

... . .  . —dw +  b

P ro o f Gertninly T  is analytic on A and S(w) = {—dw +  b)/{cw — a) is analytic 
on B. H ie  map T  will be bijeetive if we can show tlia t T o S  and S o T  are the 
identities since this means that T  lias S  as its inverse. Indeed, this is aecn in this 
computation:

T{S(n;)) =

—adw -m h ban — ab 
—odw +■ be +  dew — da
{be —ad) w 

be —ad — w.

We can cancel because cw—a 0 and be—ad 0- Similarly, S{T{z)) =  z. Finally. 
T‘{z)-f=H because

1= i {2]= i w n * ™ =^px*)) • n*>.
so r (2) 540. ■

I t is sometimes convenient to  adopt the convention th a t T(—d/c) = 00 (although 
we m ust, as always, be careful to  avoid the erroneous answers tlia t we would ob­
tain if we cancelled 00/00 or 0 /0). In  fact, wc can show th at all fractional linear 
transform ations arc conformal maps of the extended plane C to  itself. Some special 
cases should be noted. For example, if a  =  l ,c  =  0, and d — 1, we get T{z) =  2+ b. 
which is a  translation or "shift” th a t merely translates by tlie  vector 6 (see Figure 
5.2.1). In case b = c = 0.d =  1 .7’ becomes T(z) =  az.

This m ap, multiplication by o, is a  rotation by arg a  and magnification liy |o |. 
H ie  student should review the geometric meaning in this case. Finally, T{z) =  l/z  
is an inversion. I t is pictured in Figure 5.2.2.

P ro p o sitio n  5 .2 .2  Any conformal map of D — {z such that |z | <  1) onto itself is 
a fractional linear transformation of the form

1 -2 0 2
for some fixed Zq €  D and 9 6  [0,2»-[; moreover, any T  of this form is a conformal 
map o f D onto D.
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Figure 5.2.1: Hanskition. 

9

Figure 5.2.2: Inversion.

Proof First we check that for T  of this form, |z| = 1 implies that |T(2)| = 1. 
Indeed,

w * ) i= 12 —Zq I
1 — ZqZ j

!*-*> !
W k -1 - * ! *

But \z\ as l and so 2~l = z. Hence wc get

since |tt;| s  |ur|. The only singularity of T  is at z  = whicli lies outride tbe unit 
circle. Thus by the Maximum Modulus Theorem 2.5.6, T  maps D to D. But by 
Proposition 5.2.1,

r - V ) o ' "
\  W - { - e ie2q) ]
[ l  -  (—e“<ffio)ti>J *

wliich, since it has the same form as T, is also a map from D to D. Tlius, T  is 
conformal from D onto D.
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Let R : D  —» D  be any conformal map. Let zq = fl-1(0) and let 0 — arg JV(zq) .  
Tbe map T  defined in Proposition 5.2.2 also has T ( zq) = 0 and 0 = argr'fo); 
indeed,

a real constant times e*. Thus, by uniqueness of conformal maps (see the Riemann 
Mapping Theorem 5.1.4 and Exercise 7, §5.1), R  =  T . ■

Hie result of this is that the only way to map a disk onto itself conformally 
is tv  means of a fractional linear transformation. These transformations have two 
additional properties, as will be shown in the two results that follow.

Proposition 5 .2.3  Let T  be a fractional linear transformation. I f  L  C C is a 
straight line and S  C C  is a circle, then T(L) is either a straight line ar a circle 
and T(S) is either a straight line or a circle.

A line can map either to a circle or to a line. If we regard lines as cirdcs of 
infinite radius, then this result can be summarized by saying that circles transform 
into circles.

Proof We can write T  = Ta oTg o Ta oTj, where

T i(z) = z -f d/c,T2(z) = l/z, 7s(z) = (6c- ad)z/t? and 7i(z) = z + afc.

If c = 0, we merely write T(z) = (a/d)z + b/d. That we can write T  this wav 
is easily verified (sec Exercise 11). It is obvious that T\, T$, and Ta map lines to 
fines and circles to circles. Thus if wc can verify the conclusion for T(z) ~ l/z. 
the proof wifi be complete. We know from analytic geometry that a line or cirelp 
is determined fay the equation

for constants A ,B ,C ,D , with not all A ,B ,C  zoo. Let z =  x  +  iy, suppose that 
0, and let l/z = « + iv  so that it = z/fz2 + y2) and v — —y/ix2 4- y2). Tine 

the preceding equation is equivalent to

which is also a line or a circle. ■

Another property of fractional linear transformations is described in tlie next 
result.

which, at z = Zq, equals

Ax-hBy+Cfa^ + y2) = D

Au — Bv — D(tr2 + «2) ss —C,
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P ro p o sitio n  5 .2 .4  (C ross R a tio s) Given two sets of distinct points *1, 22.23 and 
uii.w s.ttra (that is, Z| *2,21 23,22 /  23 and t0t 102, 11*2 103, «»i #< 03, but we
could have zi = <02, and so on), there is a unique fractional linear transformation 
T  taking s,- w  to,-,? = 1,2,3. In fact, ifT (z) =  w, then

w — vti <03 — <03 _ 2 ~*i 23 — z2
W - « U  «|J-W | 2 - 2 2  *3 — 2|

Instead of trying to remember the equation in this proposit ion, it is often easier 
to proceed directly (sec Worked Example 5.2.12).

Proof The slated equation defines a fractional linear transformation w =  T{z) 
(Wiiy?). By direct substitution we sec that it has the desired properties T(zi) = 
Wi,i — 1, 2.3. (See Exercise 20.) Let us show that it is unique. Define

5 (2) = 2 —  2| 

2 —22
23 -2 2
23 — *1

Then 5  is a fractional Unear transformation taking zi to 0, 23 to 1, and 22 to 00. 
(22 is the singularity of S.) Let R be any other fractional Unoar transformation 
R(z) -  (02 -f b)/(c2 + d) with iZ(zi) = 0,5(23) as 1, and R(zz) — 00 (that is, 
c22+d = 0). Then azi +6 = 0,cz2 + d  -  0, and (a23+6)/(c23+d) as 1. Thus we get 
a — —b/zi and n =  —dfzz, so the Iasi condition gives 6(21 — zg)/zi — d(zz — zs)/zz. 
Substituting in R  we see. after simplification (tliat tlie student should do), that 
R = S.

We use this result to prove that T  is unique as follows. Let T  be any fractional 
linear transformation taking z< to wi,i = 1,2. 3. The fractional linear transforma­
tion ST~l takes t»i — Tz, to 0,1/73 = T23 to 1, and 102 — Tzz to 00. Therefore 
ST~' is uniquely determined by the preceding computation. Hence T  is uniquely 
determined since T  =  (ST~])~*S. ■

It follows that we can use a fractional linear transformation to map any three 
points to any other three. Three points lie on a unique circle or Unc, so by Proposi­
tion 5.2.3, the transformation takes the circle (or Une) through Zi, 23,23 to tlie circle 
(or line) through <01,102,103. For example, we could have the situation depicted in 
Figure 5.2.3.

The inside or the disk mops to 011c of the two half planes. To determine which, 
one can check to sec where the center of the circle goes (or any other point, especially 
if the center happens to go to 00). Another way to do this is by checking orientation. 
As we proceed from Z\ through 23 to  23, located as in the figure, we go clockwise 
around the circle with the disk to the right. The image must proceed from ttf| 
through 103 to <03 along the line with the image of the disk to the right as shown. 
The half plane tliat is the image can be switched by intcrdianging z< and 23. 
Suppose Z|,Z2,23 and w i,<02,103 determine circles C< and C2 bounding disks Hi 
and Z?2. If the fractional linear transformation taking 21.22, and 23 to <01,102, and 
<03 is analytic ou Di then it must, map JD, onto Dz and the exterior of Ct onto
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Figure 5.2.3: Effect of a fractional linear transformation.

the exterior of C%. If the zero of tlie denominator is in Dt then it maps D\ to 
the exterior of Ci together with the point, at infinity. Again the situation may be 
determined by examining the orientation of the points along the circles and may be 
reversed by changing the orientation of one of the triples of points. Many of these 
ideas and techniques are illustrated in Worked Example 5.2.15.

As mentioned earlier, fractional linear transformations can be combined with 
other tnuisformatious to obtain a fairly large class of conformal maps. This is also 
illustrated in the worked examples.

R eflection in  a  C ircle Tlie idea of reflection in a circle, which was used in 
the proof of the Poisson formula in §2.5, can readily be generalized to circles with 
centers other than 0. It can be discussed purely geometrically and works well with 
fractional linear transformations. In tbe spirit of this section, straight lines can be­
thought of as circles of infinite radius. In tliis ease the new notion of reflection 
becomes the usual reflection. In particular, reflection in the real axis is complex 
conjugation. The key proposition is u nice illustration of tlie use of complex analysis 
in an apparently completely geometric setting.

P roposition  6.2.5 Let C be a circle (or straight line) and z  a point not on C 
Then all the circles (or lines) through z which cross C at right angles intersect cacr. 
other of a single point z. ( I f z  happens to be the center o f C , then z is the point a; 
infinity.)

P ro o f While reading this proof, please refer to Figure 5.2.4.
Let /  be any fractional linear transformation that takes C  to  the real line and 

the interior of C  to  the upper half plane. The family of circles passing through : 
and crossing C  a t right angles must map to the family of circles that pass Ihroupt 
w — f [ z ) and cross the real axis a t right angles, since /  maps circles to circles arc
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y

Figure 5.2.4: Tlie circles emanating from z cross C  a t right angles and all pass 
through the point 2.

preserves angles. But the latter family clearly nil intersect at *5. Thus the first 
family must all cross cadi other at the single point x =  f ~1 («»). ■

D efinition 5.2.6 Ltd C  be a circle or straight line and z a point not on C . The 
unique point z  obtained in Proposition 5.S.5 is called the reflection o f z  in C . I f  
z is on C , pul z  = 2.

Since fractional linear transformations take circles to circles and preserve angles, 
the next assertion should not be surprising.

P roposition  5.2.7 I f  g is u fractional linear transformation and C is a circle (or 
line), then g lakes the reflection o f z in C  ta the reflection of g{z) in g(C).

This assertion may he paraphrased in the following somewhat imprecise but 
easily remembered form: A fractional linear transformation preserves reflection in 
circles; that is

${*) = $(*)-

P ro o f Tlie family of circles tlirough z orthogonal to C  is carried over to the 
family of circles through <9(2) orthogonal to g(C) since g lakes circles to tirdcs and 
preserves angles. Thus tlie intersection of the first family, wind) is z, must map to 
the intersection of the second family, which is g(z). ■

In fact, reflection is ‘‘almost” a fractional linear transformation itself.

P roposition  5.2.8 I f  C  is a circle (or line), then the map z >-* z o f reflection in 
C is a composition o f fractional linear transformations and complex conjugation.
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I fC  is the circle with center zq and radius R, then

(
Zq Z  +  R ?  -  \zo \2

z - s a }

P ro o f As in the proof of Proposition 5.2.5, we transfer the problem to  the upper 
half plane H. The Idea Is to  make use or the foot that for u; 6  7i, inversion across 
the real axis is the same as complex conjugation; th a t is, ti> =  w. The fractional 
linear transform ation

w =  /< *)= * '
.R  + Z - Z g

R - z  + zo
takes the circle C  to  the real line and its interior to  H. This map may be found 
by composing the map r n  (z -  zg)/R of C  to the unit circle with the m ap f *-» 
—t(£ + l)/(£ —1) of the unit disk to  7i (sec Figure 5.2.10(vi)). Using Proposition 5.2.7
and the observation th a t u; =  in, wc find th a t f(z)  = f(z).  Tlius, 2 =  f ~ l ( / ( 2))-
Since f ~ l is also a fractional linear transform ation, tliis gives the general assertion. 
To obtain the expiid t formula, we solve

l R - z  + zo /(* ) =  /(* )
.R  + z — zj1
1R  — S +  zjj

for 2 and get tbe result stated. ■

Ftora the formula of Proposition 5.2.8 we can readily calculate another geometric 
description o f 2.

P ro p o sitio n  5 .2 .0  I fC  is a circle with center Z g  and radius R  and if  Zq ,  then 
z is the point on the same ray from zg as z and is such that the product of the 
distances from zo is R2, that is,

\z -  zo| • |z -  20I = R*-

P ro o f  Use tbe fact th a t \z — zo| =  |r  — zo| and compute |z  — zo| • |z  — z0| using 
the formula of Proposition 5.2.8. (See Exercise 23 and Figure 5.2.5) ■

Fhom the preceding characterizations, most of the following proposition should 
now bo dear.

P ro p o sitio n  5.2.10
(i) 2 = 2.

(ii) The map r w  z is not conformal, but angles are presented in magnitude and 
reversed in direction (just as in  complex conjugation).

(iii) IfC  is a straight line, 5 is the point on the line perpendicular to C through : 
and at an equal distance on the opposite side o f C.

(iv) The map z *-* 2 takes circles to circles (straight Ones count as circles of 
infinite radius).
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Figure 5.2.5: Refection of z in C.

S chw arz-C hristoffel F o rm ula The Schwarz-Christoffel Formula gives an inte­
gral expression for mapping the upper half plane or unit circle to  the interior of a  
given polygon. The case of the upper half plane will be discussed here; the case or 
a circle is left as an exercise.

P ro p o sitio n  5.2.11 (Schw arz-C hristoffel Form ula) Suppose that P  is a poly­
gon in the w plane with vertices at Wi.ttfe, . .■ ,w„ and with exterior angles ira 
where —1 <  o,- <  1 (see Figure 5.2.6).

Figure 5.2.6: Schwarz-Christoffel Fbrmula.

Then conformal maps from A = {z | Im z > 0} onto B , the interior o fP , 
the form

m = « ( £ <  c  -  * .)■ "• -  <c -  +  &

where a and b are constants and the integration is along any path in A joining zq g  A
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to z; the principal branch is m at for the powers in the integrand. Furthermore, each 
of the following hold.

(i) Two o f the points x I?. . .  , i n_ ( may be chosen arbitrarily.

(ii) a and b determine the size and position of P.

(iii) f ( i i )  = Wi,i = i , . . .  ,n  -  1.

(iv) /  takes the point at infinity to w„.

The geometric meaning of the constants a and b here is explained in more detail 
in tbe following proof. I t  can be shown tlia t tbe function f  «m  be extended to  be 
continuous on the x  axis and t in t  it maps the x  axis to  tlie polygon P. However, tlie 
function /  is not analytic on tbe x  axis, because it docs not preserve angles a t x ,. 
B ut /  will be analytic on A itself. Only the main ideas of the proof of the Schwarz- 
Christoffel Fbrmula will tie given Imre, because to  make the proof absolutely precise 
would be rather tedious.

S ketch  o f  P ro o f o f  Schw arz-C liristoffel F orm ula The first step is to  show 
tlia t if x i , . . .  ,x „_ i have already been chosen, then /  maps the real axis to  a 
polygon having the correct angles. Let

g(z) = a(z -  x , )_ a i . . .  (a -  x*_, )-*■»-' 

so th a t on A, f'(z)  =  g(z). Then

arg f '(z )  =  argg(z) =  argo  -  o t arg(z -  x ,)  - . . .  -  ar„_i arg(z -  x „ -i) .

A t a  point where f ( z ) exists, a rg /'(z )  represents the amount /  rotates tangent 
vectors. Thus, as z  moves along the ra d  axis, f{z)  moves along a  straight line 
fen- z cm each of the segments J - o o ,x i[ , . . .  ,)x * ,x ,+ j( ,..., ]z„_i,oo[. As z  crosses 
x * ,a ig /(z ) jum ps by an amount o,-ir. (If z  -  x,- <  0,nrg(z — x,-) =  it; if z  -  
X{ > Q,arg(z — Xi) =  0.) Tlius the real axis is mapped to  a  polygon with the 
correct angles. The last angle of the polygon is determined, since we m ust have 
X X  l or,ir «  2ir.

Next, wc adjust tliis polygou to obtain P . Equality of angles forces «inilarit> 
of polygons only for triangles. (For example, not all rectangles are squares.) Tin* 
is the basic reason why two of the points x,- may be chosen arbitrarily (three if 
we count tbe point a t infinity). The positions of the other points relative to the?* 
points control the ratios of the lengtlis of tlie sides of the image polygou. B-- 
choosing the Xj correctly wc thus obtain a  polygon sim ilar to  P . Another way t.- 
understand this problem is to  consider mapping the upper half plane to a  disk. We 
know th a t th is can be accomplished by o fractional linear transform ation and t k :  
this transform ation is completely determined by its value a t three of the boundary 
points. (Two of the finite points and the value a t infinity are specified.) Choosmc 
a  and b properly means performing a  scaling, a rotation, and a  translation to  briix 
this polygou to  P . ■
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W orked Exam ples
Exam ple 5.2.12 Find a conformal map taking the sol

A — {z 10 <  argz  < ir/2 ,0  <  |2| <  1}

to the set

D s s { z  such that \z\ < 1}.

Solution The answer is not given by z *-» zA, because this map does not map A 
onto D; Its image omits the positive real axis.

First consider z  *-* z~. This maps A to  B  where B  is the intersection of D  and 
the upper half plane (Figure 5.2.7). Consulting Figure 5.2.10(iv), we next map B 
to the first quadrant Ijry z  *-» (1 +  z )/(l -  z) and square to  get the upper half plane, 
then map z ►-* (z — i)/(z  + 1) to give the unit circle.

Figure 5-2.7: Successive transformations taking the quarter circle to u full circle. 

Thus wc obtain our transformation by successive substitution:
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Therefore,

F(±S 0  + z 2)2 - t ( l - r y
71 ; “ ( l  +  22)2 +  t ( l - Z 2)2

is the required transformation.

Example 5.2.13 Verify Figure 5 .2 .10 (vi).

Solution Wc seek a fractional linear transformation T (z )  — (a z+ b )/(c z + d )  sudi 
tliat T ( - l)  = i,T (Q ) =  —1,T(1) =  -£. Thus, { -o  4- b ) / ( - c  4- d) =  i,b =  - d ,  and 
(a4-fc)/(c4-d) = —i. Solving gives —a — d =  i(—e +d),b— —d ,a —d =  —t(c + d). 
Addiqg the first and last equations, we get —2d =  t(—2c) or d — ic, and subtracting 
gives us a  = —id. We can set, say, 6 = 1 (because numerator and denominator can 
be multiplied by a constant) so that d =  —l ,a  =  *, c =  i, and thus

r w = t ± |  '  *2 — 1
z  — i  
z  +  t

Wfe must check that T(i) lies inside the unit circle. This is true because T (i)  = 0. 
(If it lay outside, we would interchange A  — —1 and B  — 0.)

Example 5.2.14 Find a conform al m ap that takes the half plane shown in  Figvrr. 
5 .2 .8  onto the un it disk.

Figure 5.2.8: Mapping a rotated half plane to tbe disk.

Solution Consider S (z )  = e~ iaz . This maps the region A  to the upper half plans 
(Why?). Then, using Figure 5.2.10(vi), wc get

T (z )  =
e~*°2 — « 
e—° z  +  i

as the required transformation.

Example 5.2.15 Study the action  o f the functions f ( z ) — (z  — l)/(z -  3) and  
g(z )  — (r +  l)/(3z 4* 1) on the u n it circle, the un it disk, and the real axis.
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Solution First we compute the images of a  few likely points:

0 ) / 0 )  =  0 5(1) =  | (H)/(*) =  !  ~ £ i  9<*) =  | - | t
( in ) / ( - l )  =  l  g ( - 1 ) = 0  (iv) / ( 0) =  i  5(0) =  1

(v) /(3 ) =  oo 5( -g )  =  oo

Thus, /  takes the unit circle through l , i , —1 to the circle through 0,(2/5) -  
(i/5), 1/ 2. Tlie map g takes the unit circle to the same circle but with the orientation 
reversed. /  takes the unit disk to the interior of the image circle while g takes it to 
the exterior. This can be determined by examining the images of 0 or by noticing 
that g(—1/3) =  oo.

It may not be obvious what the image circle is, but it is easier after noticing 
that both /  and g take the real axis onto tlie real axis. (Tlie line through —1,0,1 
goes to  the line through 1/2,1/3,0 in the case of /  and through 0 ,1 ,1 /2  in the case 
of g. Think about where the various pieces of tlie line go.) The unit circle crosses 
the real axis a t right angles a t ± 1, so the image circle must cross the axis a t right 
angles a t 0 and 1/2. Tims, it is the circle of radius 1/4 centered a t 1/4; check tliat 
this goes through (2/5) — (l/5 )t. The effects of these maps are indicated in Figure 
5.2.9.

y

Figure 5.2.9: The maps for Worked Example 5.2.15.

Figures 5.2.10 and 5.2.11 summarize some of the common transformations for 
reference purposes.
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Figure 5.2.10: Some common transformations.
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Figure 5.2.11: More common transformations.
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Exercises
1. Let f(z)  = (z — l ) /( z  +  1). W hat is tlie image under /  of

(a) the real line?
(b) tbe circle with center 0 and radius 2?
(c) the circle with center 0 and radius 1?
(d) the imaginary axis?

2. Let f(z)  =  (z — i ) f ( z+«)- W h a t  is the image under /  of

(a) tlie real line?
(b) the circle with center 0 and radius 2?
(c) the circle with center 0 and radius 1?
(d) the imaginary axis?

3. Find fractional linear transform ations /  satisfying f(zi) =  tuj for t  =  1,2 ,3  if

(a) z\ =  - 1,22 — 1, 23 = 2;u;, =  0, u*2 =  — l,m » =  —3.
( b )  Z | =  - 1 , 2 2  =  1,23  =  2 ; i» i  =  —3,1^2 =  —1,*«3 * 0 .

4. Find fractional linear transform ations /  satisfying /(z .)  =  for t  =  1 .2 ,3  if

(a) zi =  i,z2 =  0,23 =  — l;t» i =  O.W2 =  —f, ts3 =  00.
(b) £1 =  t , 22 =  0,23 =  =  —i,u>2 — 0,tt>3 =  00.

5. Find a fractional linear transform ation that takes the unit disk to  the upper 
half plane with / ( 0) = 2  +  2t.

6. Find a fractional linear transform ation that takes the unit disk to  tlie right 
half plane with / ( 0) =  3.

7. Find a conformal m ap of the unit disk onto itself Lhat takes 5 to  5.

8. Find a conformal map o f tbe unit disk onto itself th a t takes £ to  —5.

9. Find a conformal m ap of the set .<4 =  {2 | |s  — I | <  v^2 and |z  + 1| <  \Z2’f 
one-to-one onto the open first quadrant.

10. Map the region in Exercise 9 to the upper half plane.

11. Prove: Any fractional linear transform ation with cj&O can be written T = 
T4 o 7a o J\  o Tj, where

r,(z)=2 + -, r2(*) = -, T3(z) = ^ z ,  and T t ( z ) ^ z + -C Z  Cr c

Interpret this result geometrically.
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12. * Prove th a t if both T  and It are fractional linear transform ations, then so is 
T o  I t

13. Find a conformal map of the unit disk onto itself tlia t maps 1/2 to 0.

14. Show th at K(z) — 2/(1 — z)z takes the open unit disk one-to-one onto the 
set C \{z | Tmz =  0 and Hex < -  j} .

15. Find all conformal maps th a t take the disk of radius li  and center 0 onto the 
unit disk.

16. Establish parts (iii), (iv), and (v) of Figure 5.2.10.

17. Prove: Tbe most general conformal transform ation th a t takes the upper half 
plane onto the unit disk is

where Ixn A >  0.

18. * Suppose that a,b,c,d  are real and th a t ad > be; show th a t T{z) =  (az +  
6)/(cz  + d ) leaves the upper half plane invariant. Show th a t every conformal 
map of the upper half plane onto itself is of tins form.

19. Find a  conformal map th a t takes {2 10 <  arg z < x /8} onto the unit disk.

20. * The cross ratio  of four distinct points 21, 22, 23,24 is defined by

(2 |  , 2 2 , 2 3 , 2 4 ]
24—21 23 — 22
2< — 22 23 — 2j

Show th a t every fractional linear transform ation has the property th a t

[r(2 ,),r(2 2 ),r(* 3 ),n * * )] =

Hint: Use Exercise 11.

21. Let 71 and 72 be two circles th a t intersect orthogonally. Let T  be a  fractional 
linear transform ation. W hat can be said about T(71) and 7 (ts)?

22. * Show th a t the cross ratio  [21, 22, 23, 24] defined in Exercise 20 is real iff
Zi >%^<24 lie on a  line or circle. Use th is to  give another proof of Proposition 
5 .2 J.

23. Complete the calculation in the proof of Proposition 5.2.9.

24. Show th a t a  fractional linear transform ation T  th a t is not the identity map 
has a t m ast two fixed points (tlia t is, points 2 for which T{z) =  2) . Give an 
example to show that T  need not have any fixed points. Find the fixed points 
o f r ( 2) =  2/(z  +  l).
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25. Conformally m ap the region A =  {z | R c2 <  0 ,0  <  I1112 <  it} onto the first 
quadrant.

26. Conformally map A = {z such that |z  -  1| <  1} onto B =  {z | R e2 >  1}.

27. Conformally map the region C\{nonpositive real axis} onto the region A =  
(z | — JT < Im2 < it).

28. * Argue th a t the conformal maps th at take |2| <  1 to  the interior of a  polygon
with vertices t ill,.. - ,tu„ and points Z i,... ,z„ on the unit circle \z\ =  1 to  
the points ,wn arc given by

/(* ) =  a  [ f ( C  -  r i ( C  -  * ,) - “ " # ]  -f b,

where tlie o<’s arc as in tbe Schwnns-ChristolTcl Formula.

29. Show th a t

f i2 )=  r  «
Jo V C (C -1)(C  - c )

(where c is a  positive real constant) maps the upper half plane to a  rectan­
gle. (The integrand is called an elliptic integral and generally ennnot be 
computed explicitly.)

30. Verify p art (ix) of Figure 5.2.11.

31. Is it posable to  m ap the upper half plane conformally to  a  triangle using frac­
tional linear transform ations? Devise a  formula th a t is based on tlie Schwarz- 
Christoffel Formula.

32. * Verify from the Schwarz-Cbristoffcl Formula 5.2.11 th a t a  conformal ump
from tlie upper half plane to  {z | Iinz  >  0 and —ir/2  <  R ez <  jt/ 2} i> 
z *-* sin- 1 2.

33. Show th a t /(z )  =  4 /z  maps the region A = {z such th a t |z  — 1| >  1 and 
\z — 2\<  2} one-to-one onto tbe strip  B = (z  11 <  R ez <  2}.

34. Suppose C i and C j are two tangent circles until Cg in the interior of C; 
Show th a t an infinite number of circles can be placed in the region between 
Cj and Ci, each tangent to Ci and Ca and each tangent to  the next as shown 
in Figure 5.2.12. Show that the points of tangency of these circles cadi w ill 
the next lie on a circle. Hint: Consider Exercise 33.

35. Consider a fractional linear transform ation of the form

Show that
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Figure 5.2.12: A fractional linear transform ation can lie used to  pack tbe disk with 
circles.

(a) Circles through the points 6 and d are mapped to  lines through the 
origin.

(b) The circles of Apollonius with equation f(r — b)/(z — rf)| =  r / |a | are 
mapped to  circles with center 0, radius r .

(c) The circles in (a) and (b), when located in the z  plane, are called Steiner 
circles. Sketch them and verify th a t both these circles >uid then' images 
meet in right angles.

5.3 Applications of Conformal Mappings to 
Laplace’s Equation, Heat Conduction, 
Electrostatics, and Hydrodynamics

Wc arc now in a  position to apply the theory of conformal maps to  some physical 
problems. In doing so wc will solve the Dirichlct problem3 and related problems 
for several types of two-dimensional regions. Wc trill then apply these results to 
the three classes of physical problems mentioned in the title  or this section. Only a 
meager knowledge of elementary physics is needed to  understand these examples. 
The student is cautioned th a t the variety of problems th a t can explicitly be solved 
in this way is somewhat limited and th a t the methods discussed apply only to 
two-dimensional problems.

3The problem of finding a Immtoiiir function on a region A whom value! rue specified on the 
liouudary of it is called a  D iricldel problem. This problem was discussed in §2.5.
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D iriehlet and  N eum ann P roblem s Recall tbut a function ti(x,y) is said to 
satisfy Laplace’s equation  (or be harm onic) on a region A when

V2«  =  —  -b —  =  0dx* +

In addition to this condition, some boundary behavior determined by the physical 
problem to  be solved is generally specified. These boundary conditions usually de­
termine u  uniquely. For example, the uniqueness theorem for the Diriehlet problem 
(2.5.12) showed that a harmonic function u(x,y) whose value on the boundary of 
A is specified, is uniquely determined. We shall also have occasion to consider the 
boundary condition in which du/dn = grade • n, the derivative in the direction 
normal to  bd(i4), is specified on the boundary. For du/dn  to be well defined, tlie 
boundary of A should be a t least piecewise smooth, so that it has a  well defined 
normal direction. We accept as clear what is meant by the outward unit normal, n 
(see Figure 5.3-1).

Figure 5.3.1: The Neumann problem.

The problem of fiuding a  harmonic function u  with du/dn  specified on the 
boundary Is called the N eum ann problem . We canuot specify <f> = du/dn  arbi­
trarily because if such a u exists, then we claim that

=  0

where 7  is the boundary of A. To prove this, wc apply Green’s theorem (see §2.2 >. 
wliicli can be written in the divergence form (often called Gauss’ Theorem)

J x - n t L s ^  J  div X d x d y

where X  is a  given vector function with components (Ar |,X 2) and where tlie di­
vergence of X  is defined by
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Applying this formula to  X  =  grad u gives

/ g d s  = J  (grad ti) • n  d.s =  J  divgrad udxdy = j  Vzudxdy  =  0

because d ivgradu =  V*u =  0. This proves our claim.
If we are given a  boundary condition ^  on 7  with /  0 =  0, then it can be 

shown th a t the Neumann problem indeed has a  solution. Wc a  in prove uniqueness: 
The solution of the Neumann problem on a bounded simply connected region is 
unique np to the addition of a constant. Let tit and Ut be two solutions with 
dtii/dn = duzfdn on 7 = bd(A). Let S| and «2 be harmonic conjugates of U| 
and tt2 and set u = u j -  u-j.u = t>i — m- Now du/dn = 0, and so, by Proposition
1.5.13, v  is constant along 7. Thus by uniqueness of the solution to  the D iridiiet 
problem, v is constant on A. Therefore, since —it is tire harmonic conjugate of v ,u  
is constant on A as well. This proves our claim.

If the boundary values specified in the Diriehlet and Neumann problems are not 
continuous, the uniqueness results arc still valid, in a  sense, but arc more difficult to  
obtain. However, tlie student is cautioned th a t on an unbounded region wc do not 
have uniqueness. For example, let A be the upper Italf plane. Then U |(z,jr) =  x  
and U2 =  x  +• y haw  the some boundary values (at y = 0) and are harmonic hut 
arc not equal. To recover uniqueness for unbounded regions, a  “condition a t oo” 
must also be specified: “w bounded ou all of A" is such a  condition. Some or these 
conditions will be illustrated in the examples that arc integrated into tliis section.

The Diriehlet and Neumann problems can also be combined; for example, u  can 
be specified on one part of the boundary and du/dn  can be specified on another.

M eth o d  o f  S o lu tion  Tlie basic method for solving tho Diriehlet and Neumann 
problems in a  given region A is as follows. Take the given region A and transform 
it by a  conformal map to  a “simpler’' region B  on which the problem cau be solved. 
This procedure is justified by tbe fact th a t under a  conformal map / ,  harmonic 
functions are transformed again into harmonic functions (see Proposition 5.1.3). 
When we have solved the problem on B, we cau transform the answer back to  A.

For the Diriehlet problem, wc are given the boundary values on hd(A), which 
get mapped to the corresponding boundary values on B. (We assume th a t the 
conformal map /  is defined on the boundary.) The specification of du/dn is a  b it 
more complicated. However, the special case du/dn =  0 is easy to understand. Let 
u 0 /  =  uo be the solution we seek; that is, uq(x , y )  =  ti( /(x ,2/)) (see Figure 5.3.2). 
Then wc claim th a t duq/dn =  0 iff du/dn =  0 on corresponding portions. This 
follows because du^/dti — 0 and du/dn — 0 mean that the conjugates are constant 
on those portions, und if v is the conjugate of u, then v o f  = w0 is tbe conjugate 
of Wo, which proves the claim. T luse arc the only types of boundary conditions for 
du/dn th at will be dealt with in tills text.

To use this method we need to he able to solve the problem in some simple 
region B. Wc already saw in §2.5 tlia t the unit disk is suitable for this purpose 
because in tlia t case wc have tbe Poisson formula for the solution of tlie Diriehlet
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Figure 5.3.2: TYansfomiation of harmonic functions.

problem. However, we cau sometimes- get more explicit solutions than those yielded 
by tha t formula.

The following situation is used to illustrate the method and will be used in 
subsequent examples. Wc consider the upper half plane H  and the problem of 
finding a harmonic function tliat takes the constant boundary values Cu on tlie 
interval J — oc,xi(, the value cj on ]x j,x2[,. . . ,  and Cn on ]x„,ooj where x i <  x2 < 
. . .  < x,, are points ou the real axis. We claim that a  solution is given by tin* 
standard upper half-plane solution;

« (*> » ) — Oil +  —[{On-l — On)0» +  -*- +  (OD— cl)0 l]sr

where 8i , . .  , 0„ arc as indicated in Figure 5.3.3; 0 < 04 < ir.

y

Figure 5.3.3: Solving this Diriehlet problem in tlie upper half plane. 

To see this, note tha t u is the real part of tlie analytic function

<t> +  ~:[(Cn-l ~  C n ) \ o g { z  -  X „ )  +  . . .  4- (co -  Ci) ldg(2 -  Xl)]-
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Also, on }z;,Xj+i(.ti reduces to  a.  (Tlie student should check tliis.) As mentioned 
previously, tlie Diriehlet problem does not have a  unique solution, so the question 
arises: Why was th is  solution chosen? Another solution could have been obtained 
by adding u(x. y )  =  y  to  die previous solution. The answer is th a t the «  th a t is 
given by die standard upper hair plane solution is bounded (Why?) and this answer 
is physically reasonable in inauy examples.

Tlius if a problem can be transformed to  tlie one described by Figure 5-3 .3, we 
can use die standard solution. This will be done in the examples in this section.

H e a t C onduction  Physical laws tell us tlia t if a two-dimensional region is main­
tained a t a  stead)' tem perature T  (that is, a  tem perature nut changing iu time, 
accomplished by fixing die tem perature a t the walls, or by insulating diem ), then 
T  should be harmonic.4

Tlie negative of d ie  gradient of T  represents die direction in which heat flows. 
Thus, by using Proposition 1.5.13, we can interpret Ihc level surfaces o f the har­
monic conjugate <j> o f T  as the Hues along which, heat flows and the temperature is 
decreasing. Lines of constant T  are called isotherms^ fines on which die conjugate 
4> arc constant arc called flu x  linos (Figure 5.3.4).

fpAT

Figure 5.3.4: Heat conduction.

4This is a consequence of omixervnUou of energy nini Gauss' Theorem. The heat flows iu the 
direction of the vector fidd =  kV T (k — conductivity) and the energy density is cpT{c =  spcciGc 
heat, p  ~ density). Then the law of conservntiun of energy states that the rate of change of energy 
in atry planar region V equals the rati? at which energy enters l ';  that is,

^  f  cpTdrdg =  -  f  - kS/T  • tub.
« J V  /ImI(I')

Qy Gauss* Theorem, this condition is equivalent to

~j(cpT) = kV2T.

If CtP.T arc independent of t, we onneiude Mint T  is harmonic: V * T r# .



350 Chapter 5  C onform al M appings

Tlius, to say tliat T  Is prescribed on a  portion of the boundary means that 
tlie portion is maintained a l a preassigned temperature (for example, by a heating 
device). The condition &T/dn — 0 means that the flux line (or -  grad T) is parallel 
to  the boundaiy; in other words, tlie boundary is insulated. (No heat flows across 
the boundary.)

Exam ple 5.3.1 Let A be the first quadrant; the x  axis is maintained at T  =  0 
while the y  axis is maintained a tT =  100, Find the temperature distribution in A. 
(Physically, the region may be approximated by a thin metal sheet)

Solution Wc map the first quadrant to the upper half plane by z*-* z2 (Figure 
5.3.5).

r

Figure 5.3.5: Map the region A to  the upper half plane.

It is physically reasonable tliu t the temperature should be a  bounded function: 
otherwise wc would obtaiu arbitrarily high (or low) temperatures. Therefore, we 
use tlie standard solution in the upper half plane:

u(*,y) as -(100 arg2) *= • ^ t a n -1 .
v  ir \ x /

Thus, the solution wc seek is

«o (* ,» ) =  « (/(* ,» ))
where/( * ,y) = z2 =  x2 - j /2 +  2ixy = (x7 — y2, 2xp). Hcncc

/ , 100 , uo[z,y) — ---- tan
5T

is the desired answer. I t Is understood that tan 1 is taken in the interval (0. r  
Another form of the answer may be obtained as follows:

,  .  .  * .  100 .  200 200 _ j / y \«o(*,») =  «(«*) = — • arg(22) =  —  arg 2 =  - — tan { - 1  ■
7T vr 7T

The isotherms and flux lines are indicated in Figure &.3.G. ♦

Exam ple 5.3.2 Let A be the upper half o f the vast disk \z\ < 1. Find the temper­
ature inside i f  the circular portion is insulated; T  = 0 for x  > 0 and T  = 10 fa? 
x  < 0 on the real axis.
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Figure 5.3.6: Isotherms and flux lines for Example 5.3.1.

Solution For this type of problem where there is a  portion of tbe boundary where 
dT /d n  — 0 (insulated), it is convenient to  tnap tbe region to a  half strip. This can 
be done for A by means of logx (using the principal branch); see Figure 5.3.7 (and 
Figure 5-2.11(viii)).

y

Figure 5.3.7: Mapping the semicircular region A to  the half strip 0  in Example 
5.3.2.

For the strip 0  wc obtain, by inspection, the solution

(Note th a t along the y  axis dTo/dn =  dTo/dx — 0.) Tlius, our answer is 

T (x,y) =  r 0(k>g(x 4- iy)) =  — tan-1 ( - )  . ♦

E lectric  P o ten tia l In physics wc learn that if on electric potential <f> is deter­
mined by static electric charges, 4> must satisfy Laplace’s equation (that is, be 
harmonic). The conjugate functiou 4* of <j> is interpreted as follows: Lines along 
which 4> is constant arc lines along which forces act on test charges and are called
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fla x  lines. Tangent vectors to  sudi lines are — g rad^  =  E , called tbe electric 
field  (see Figure 5.3.8). Thus the flux lines and the equipotenlial lines (lines of 
constant 4>) intersect orthogonally.

Figure 5.3.8: Electrical potential.

The Diriehlet problem arises in electrostatics when the boundary is maintained 
a t a  given potential (for example, by means of a  battery or fay grounding).

E xam ple 5 .3 .3  Consider the unit circle. The electric potential is maintained at 
4 = 0 on the lower semicircle and at 4 ^  I on the upper semicircle, fin d  4  inside.

S o lu tio n  We can apply our general procedure for the Diriehlet problem by majj- 
ping the unit disk to  the upper half plane. Tliis may be done, for example, by the 
fractional linear transform ation given in Figure 5.2.11(vi). See Figure 5.3.9.

W ith
1 z  + 1  1 (z + 1 )  +  iyu  +  iv = f( x  +  iy) =  f(z )  = - -
I Z “ 1

we have
u  = -2 y

( z -  l)2 +  y*
and v =

i ( z -  l)  +  t» ’

1 - z 2 — y* 
( z -  l)2 +  »2 ’

As with tem perature, it is physically reasonable th a t the potential be bounded. We 
can use tlie standard solution on the upper half plane:

do(u,v) =  04- — (1 — 0 )tan _1 } =  — tan 1 —.7T \ t t /  7r it

Tlie solution ou the unit disk is then

*>(*,») =  M /fo f f ) )  =  =  ~  **n“ * — " j  •
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y

Figure 5.3.9: The conformal mapping used to solve a  Diriehlet problem ou the disk.

The values o f the arctangent must be taken lictween 0 and w. The equipotcutial 
lines and flux lines are shown in Figure 5.3.10.

Tliis example could also be solved by using Poisson’s formula. Tlie two answers 
would be equal, although this would not he obvious from their form. 4

Figure 5-3.10: Equipotcutial and flux lines for the potential.

E xam ple 5.3.4 The harmonic function 4>{z) =  (Q/2ir) log |z — 2«| +• K  for a con­
stant K , which is the mat part o/(<3/2jr)log(2—2ft)+/v', represents hie potential o f a 
charge Q located at Zq. (This is because ibis a radial field such that i /E  =  — grad 4  
is the electric force field, then the integral o /E  -n around a curve surrounding z0 is 
Q by Gauss ’ Theorem)? The constant K  may be adjusted to make any convenient

“This is the potential for a  charge in the plane. In space il  corresponds to the potential 
produced by a  charged line.
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place such as infinity or some grounded object have potential 0. (This is reasonable 
since only the force E  is observed, and it is not affected by dumping K .) Sketch 
the equipotential tines for two charges o f tike or apposite signs.

S o lu tio n  The potential of two chaises is obtained by adding the respective poten­
tials. Thus two chai-ges Q >  0 located a t zj and z2 have the electrostatic potential 
(Q f 2n) iog(|z — zj ||z  -  22I); a  charge Q >  0 a t z\ and a  charge -Q  a t z2 have po­
tential (Q/2n) log(|z — z\ |/ |z  — Za|). The equipotential lines are sketched in Figure 
5.3.11. The curves <f> = constant in the drawing on the left arc called lcmniscatcs; in 
the drawing on the right they arc called circles of Apollonius. T lie lines of force arc 
the family of circles orthogonal to  them  th a t pass through the two points. Together 
they form the Steiner circles <tim>wiwl in Exercise 35 of §5.2. 4

Figure 5.3.11: The field of like charges (left) and the field of opposite charges (right).

E xam ple 5.3.5 Suppose a point charge of -f 1 is located at. z» = |  and the unit 
circle is a grounded conductor maintained at potential 0. Find the potential at every 
point z  j i  zo inside the unit circle.

S olu tion  1. The function f(z) = (2z — l)/(2  — z) maps the unit disk D to 
itself taking zq = ^ to  0. Tlie function u(z) =  (l/27r) log |z| is a  solution on the 
image disk (point charge of +1 a t 0 and 0 potential around the unit circle). Tlius 
0(z) =  u (/(z )) =  (l/2w ) log |(22 -  l)/(2  — z)| solves the original problem. (See 
Figure 5.3.12.)

S o lu tion  2. We give a second solution th a t illustrates the method of reflcctiou in 
a  circle from §5.2 and an interesting idea from electrostatics called image charges. 
We need a  field ^  inside the unit disk D th a t has the unit circle C  as au equipotential 
curve. The electric force lines must be a  family of curves ending a t zq th at cross C
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y y

Figure 5.3.12: The conformal map /  shifts tlie point charge from zq = ~ ta Q.

a t right angles. This can be accomplished by placing an artificial “image charge” 
of —1 a t the reflection Sq of in C. As in the last example, the electric force lines 
for such a  pair of charges are the family of circles through zq and Zo- We know 
from $5.2 th a t these cross C  a t right angles as desired. Sen Figure 5.3.13.

y

Figure 5.3.13: Reflection and image charge. 

W ith dharges of +1 a t zq =  g and -1  a t zq =  2, we have 

4(z) =  log \2 -  i |  -  log|* -  21 +  K

=  2 ^ ,0g 

= i ]oe

z — 2 1 
2z —1
2 -  z - s lo sS+ K -

Setting the constant K  to  (l/2 ir)Iog2  makes the potential 0 around C  and gives
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the same answer as the first solution. ♦

H ydrodynam ics If we have a  (steady-state) incompressible, nonviecous fluid, 
wc are interested in finding its velocity field, V (x.y). Ftom vector analysis we 
know that, “incompressible” means that the divergence div V  = 0. (We say V  is 
divergence free.) Wc shall assume that V  is also a poten tia l flo w  and hence 
is circulation free; that is V  =  grad <j> for some 0  called the velocity potential. 
Thus, 0  Ls harmonic because V24  =  divgrad^ =  div V  =  0. Tlius when we solve 
for 0  we can obtain V  by taking V  — grad 0.

Tbe conjugate 0  of the harmonic function 0  (which will exist on any simply 
connected region) is called the stream  fu n c tio n , and the analytic fiwetion F  =  
0  + i0  is called the c o m p le x  p o te n tia l. Lines of constant 0  have V  as their 
tangents (Why?), so lines o f constan t 0  m ay be in terpreted a s the lines along which 
particles o f flu id  m ove; hence the name stream function (see Figure 5.3.14).

Figure 5.3.14: Fluid How.

The natural boundary condition is Unit V  should be parallel to  the boundary. 
(The fluid flows parallel to the walls.) Tills means that d0fdn  =  0, so wc are led 
to the Neumann problem for 0.

Let us again consider the upiier half plane. A physically acceptable motion is 
obtained by sotting V (x,y) *= a  as (a.O) or 0(x,y) =  a x  =  Re(cr2). when* o is 
real. Tlie flow corresponding to V is parallel to the x  axis, with velocity a. Notio- 
that now 0  Ls not hounded: thus the behavior at oo for fluids, for temperature, and 
for electric jjotentinl is different because of tlie different physical circumstnnoes (mv 
Figurc 5.3.15).

Thus, to find the flow in a region we should map the region to the upper half 
plane and use the solution 0{x, y) =  ox. We can specify a  as the velocity a t infinity 
It should lie clear that if /  is the conformal map from tlie given region to the upp^c 
half plane, the required complex potential is given by F[z) — a f{z).
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Figure 5.3.15: Flow in the upper half plane.

Exam ple 5.3.6 Find the flow around the upper half o f the unit circle i f  the velocity 
is parallel to the x  axis and is a  at infinity.

S olution We shall map the exterior of tlie given region to the upper half plane. 
Sudi a  conformal map is z *-+ z  +  l / z  (Figure 5.3.1G). Tlius, Fo(z) =  az  is tlie 
complex potential in the upper half plane, and so the required complex potential is

F{z) = a ( z + ± y

Figure 5.3.16: Effect of z *-> 2 +  l/z .

It is convenient to use polar coordinates r and 0 to  express 0  and if). Then we 
get

t f ( r , 0 )  =  o cosO and =  a sinfl.

A few streamlines are shown in Figure 5.3.17.
Note: By slightly modifying the transformation z •-* z  +  l /z  by the addi­

tion of appropriately chosen liigher-urder terms, the half circle can be replaced by 
something more closely resembling an airplane whig; these are called Joukotoski 
transform ations. ♦
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v
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i x i
\  '  /  i Velocity\ \ ______/  j

*■ x

Figure 5.3.17: Streamlines for flow around a  cylinder.

E x e rc ise s

1. Find a  formula for determining the temperature in the region with the Indi­
cated boundary values shown in Figure 5.3.18 (left).

Figure 5.3-18: Find the temperature for these regions (Exercises 1 and 2).

2 . a Find a  formula for determining the temperature in the region illustrated in 
Figure 5.3.18 (right). H in k  Consider the map z  *-♦ sin z.

3. Find the electric potential in the region illustrated in Figure 5.3.19 (left). 
Sketch a  lew equipotential curves.

4. Find the electric potential in the region illustrated in Figure 5.3.19 (right).

5. Find the flow around a  circular disk if the flow is a t an angle 0 to tlie x  axis 
with velocity o a t infinity, as in Figure 5.3.20 (left).

6. Suppose a  point with charge +1 is located a t zo =  (1 + i)/\/2 and the positive 
real and imaginary axes (boundaries of the first quadrant A  =  {z | Rez > y

9 y
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Figure 5.3.19: Find the electric potential for these regions (Exercises 3 and 4).

v

Figure 5.3.20: Flow around a  disk (Exercise 5) and in a  wedge (Exercise 7).

and Im 2 >  0}) are a  grounded conductor maintained at i>oLentia] 0. Find 
the potential a t every point z £  zq inside the region A.

7. Obtain a formula for determining the flow of a  fluid in the region illustrated 
in Figure 5.3.20 (right). (The velocity a t oo is a .)
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R eview  Exercises for Chapter 5
1. Consider the map z w z 3. On what sets A  C C is this map conformal (onto 

its image)?

2. Verify directly that the map z w  z" preserves the orthogonality between raj's 
from 0 and circles around 0.

3. Find a conformal map that takes the unit disk onto itself and maps t/2  to 0.

4. Find a conformal map of the unit disk onto itself with f ( \ )  = —| and /'(£) >
0.

5. Find a conformal map that takes tbe region

defines a circle and 2i,zj are inverse points in tliat circle (that Ls, they are 
collincar with tlie center zq and (21 — 201 • |*2 ~ *o| = P2 where p is the radius 
of the circle).

7. Examine the image of the set {2 € C | Ini2 > 0,0 < Re2 < ir/2} under 
the map z *-» an 2 by considering it to be the composition of the maps 2»-» 
«•*, 2 »-* 2 -  1/2,2 h-* z/2i.

8. Let / : A  —»B  be a conformal map, let 7 be a curve in A, and let 7 = /  o 7. 
Show that

If /  preserves the lengths of all curves, argue that /(z) = niez  + a for some 
a € C and for 0 € (0,2rr[.

9. Find a conformal map that takes the set

A — {z  such that \z —1| > 1 and \z — 2| < 2} 

onto J ) =  { 2 | 0 < R e 2 <  1 ) .

6." Let 2i, 2j € C and o c R ,  where a > 0. Show that

Z  —  Z i

2 — 22
= a

A — {z sudi that |2 —t| < 1}

onto B  as {z  such that \z —1| < 1).

10. Show Unit Uie function /(s) = (2 -  l)/(2 + l) maps the region

A = {z sudi that |r| > 1 and \z — 1| < 2}

one-to-one onto the set B  = {z 10 < Rez < j}.
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11. The region A in Exercise 10 is hounded by two circles, as is the region {z | 
1 <  |* | <  2}. Can a  conformal m ap from this region to  B  be accomplished 
by a fractional linear transform ation? If so, display tlie function. If not, why 
not?

12. Let T(z) =  (az 4- 6)/(cz 4- d). Show th at T(T(z)) =  z (tha t is, T  o T  =  
identity) if and only if a  =  —A or T (z) =  z  for all z.

13. Is it posable to  find a  conformal map of the interior of the unit circle onto its 
exterior? Is f(z)  =  l / z  sudi a  map?

14. Find a  conformal m ap of the quarter plane 4̂ =  {2 | R ez >  0 and Im z > 0} 
one-to-one onto the unit disk wiiich takes 1 +  i  to  0 with positive derivative 
a t 1 +  i.

15- Let Fi and F2 be conformal maps of tlie unit disk onto itself and let F | (zq) = 

F2(zo) =  0 for some fixed 2q, |zo| <  1. Show th a t there is a $ 6 (0, 2w\ such 
th a t F j(z) =  ei0F2(z).

16. Suppose /  is a conformal map of the upper half plane one-to-one onto itself 
with / ( - 1 )  =  0 ,/(0 ) =  2, and / ( l )  =  8. Find F (i).

17. Give a  complete list of all conformal maps of the first quadrant A — {z | 
Rc z >  0 and Im z >  0} onto itself. (Suggestion: See Exercise 18 in §5.2.)

18. Describe the region A = {2 sud i th a t |(z  4- 3)/(z  -  1)| <  3}. Bint: f{z)  =  
(2 4 -3 )/(z  — 1) takes w hat points to  the d rd e  |te | =  3?

19. Find a conformal map th a t takes the region in Figure 5.R.1 to  tire upper half 
plane. Use this map to find tbe electric potential 4  with the stated boundary 
conditions. Hint: Consider a branch of 2 *-* s/z1 — 1 after rotating the figure 
through 90°.

9

i

f  * 1

#•0 #.0 x

Figure 5.R.1: Boundary data  for Exercise 19.

20." Find the flow of a  fluid in the region shown in Figure 5.R.2 (left).
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y

Figure 5.R.2: Regions for Exercise 20 (left) and Exercise 21 (right).

21. Use Exercise 19 to find the fluid flow over the obstacle in Figure 5-R.2 (right) 
and plot a few streamlines.

22. Let B  be the open first quadrant, that is, B  — {z | Rez >  0 and Im z >  0), 
and let S  =  {z (0  < Im z <  «•}.

(a) Find an analytic function that maps B  one-to-one onto S.
(b) Find a  function u harmonic on B  and continuous on tlie closure of B  

except a t (0, 0) tha t satisfies u(x) — 0 and tx(ty) =  tt for y  > 0.

23. Find the electric potential in the region shown in Figure 5.R.3.

y

-a
. It © . L

t  0 0 1

Figure 5.R.3: Boundary data for Exercise 23.

24. Suppose a  point charge of +1 is placed a t zo =  » in the upper half plane 
and the real axis is a  grounded conductor maintained a t constant potential 
0. Find the potential a t eveiy point z  ?£ i in tbe upper half plane.

25. Use the Sell ware-Cliristaffel Formula 5.2.11 to find a conformal map between 
the two regions shown in Figure 5.R.4 (A =  -1,2? =  1,2?' =  0.)
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Figure 5.R.4: Regions for Exercises 25 and 26.

26. Use Exercise 25 to  find the flow lines over the step in the bed of the deep 
channel shown ou the right in Figure 5.11.4.

27. Find the temperature on the region illustrated in Figure 5-11.5 Hint: Use 
z *-* sin' " ' z.

y

7*-= I - a  Insu ated rj T  - 0

Figure 5.R.5: Boundary data for Exercise 27.

28. Let g„ be a sequence of analytic functions defined ou a  region A. Suppose that 
I } * !  l0nfe)l converges uniformly on A. Prove that £ £ 1 , ISn(z)l converges 
uniformly on closed disks in A.

29. Evaluate by residues:
cos a: 

a-2 +  3
dx.

30. " Lei /  be analytic on tlie set C\{0}. Suppose that f( z )  —> oo as z  —♦ 0 and 
f( z )  —* oo as z  —► oo. Prove tliat /  can be written in the form

/(* ) = ~r — +  cjj +  dia + . . .  +  dtz*
r  2

for constants c,- and dj.

31. If anz n has radius of convergence p, what is the radius of convergence of
Of

32. Find the Laurent expansion of f( z )  — z4/( l  -  2s) tliat is valid on tlie annulus 
1 < \z\ < oo.
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Chapter 6

Further Development of the 
Theory

This chapter continues the development of the theory of analytic functions tlia t 
was begun in Chapters 3 and 4. Tbe main tools wc will use in th is development 
are Tkylor series and the residue theorem.

The first topic in this chapter is analytic continuation, th a t is. the attem pt to 
make the domain of an analytic function as large as possible. Farther investigation 
in the theory of analytic continuation leads naturally to  tbe concept of a  Riemann 
surface, which is briefly discussed iu §6.1. Additional properties of analytic func­
tions are developed in subsequent sections. Some of these properties deal with sudi 
topics as counting zeros of an analytic function; others are generalizations of tlie 
Inverse Function Theorem 1.5.10.

6.1 Analytic Continuation and Elementary 
Riemann Surfaces

The first theorem in this section is called the Prindplc of Analytic Continuation, 
also referred to  as the Identity Tlieorem. This theorem and its proof lead to  a 
discussion of Riemann surfaces, whidi facilitates a  more satisfactory treatm ent of 
w hat were previously referred to  as “multiple-valued functions,” sudi as logz and 
sft.

A n aly tic  C o n tin u a tio n  Tlie basic idea is th a t if two analytic (unctions agree 
on a small portion of a  (connected) region, then they agree on the whole region ou 
whidi they are both analytic. Tliis is slated precisely in tlie following theorem.

T heo rem  6.1.1 (P rin c ip le  o f  A n aly tic  C o n tin u a tio n —Id e n tity  T heorem ) 
b e t f  and g be analytic in a region A. Suppose that there is a sequence 2|,« 2, % . . .  
of distinct points of A converging to zn €  A, such that /(£» ) =  </(z,i) far all

365
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n  =  1 ,2 ,3 ,___Then f  = g on all o f A (see Figure 6.1.1). The conclusion is valid.,
in particular, if  f  = g an some neighborhood of some point in A.

Figure 6.1.1: Identity Theorem: If /  =  g a t all tbe points 21, 22, . - . ,  then f(z) = 
g(z) for all 2 € A.

P ro o f  Let h(z) = f(z) — g(z). Then h is analytic on A and h(zn) =  0 for each n. 
Wc want to  show th a t h(z) =  0 for all z  in A. Corollary 3.2.10 on local isolation 
of zeros of a  nonconstant function tells us th a t h(z) = 0 on some open disk aroimd 
zq. Tlie connectedness of A will enable us to  extend this conclusion to  all of A. To 
th is end, let I? =  {2 €  .4 | /i is 0 on a  neighborhood of z}. Then B  is a  nonempty 
subset of A  since zq €  B. If w  €  B, then It =  0 on an open disk around w 
contained in A and hence on a  neighborhood of each point of tlia t disk. Thus, that 
disk is contained in B. Therefore, B  Ls an open subset of A. On tbe other hand, 
suppose ti>i, ttife, tt’3, . . .  are distinct points in B  converging to  a  point z  in A. Then 
h(wk) — 0 for each k  and, since A is open, z is interior to  A. Corollary 3.2.10 
applies again to  show th a t h is 0 on a  neighborhood of z. Thus 2 €  B. This shows 
tlia t B  is closed relative to  A.

We have thus shown th at the subset B  is both open and dosed relative to  A and 
is not empty. Since A is connected, we m ust have B  =  A (sec Proposition 1.4.13). 
Thus, h(z) =  0 for all z in A as required. ■

For example, this shows th a t there is exactly one analytic function ou C that 
agrees with e* on the x  axis, namely, er, because the x  axis contains a convergent 
sequence of distinct points (for example, 1 fn).

Notice th a t it is vital th a t A be connected. If A consisted of two disjoint disks, 
the fiinction whidi were 0 on one of them  and 1 on the other would agree with the 
zero function on one part of A bu t not on the other. Recall th a t for us, a region 
means an open connected subset of C. Corollary 3.2.10 on the local Isolation of 
zeros now extends to  a  global form on connected sets. Wc formulate this in the 
following corollary.
C o ro lla ry  6 .1 .2  The zeros (or, more generally, points where a  specified valve u\: 
is assumed) of a nonconstant analytic function are isolated tn  the fallowing sen** 
I f f  is analytic and not constant in a region A and /(zo ) =  v>q for a point zq m 
A, then there is a number e > 0 such that f(z) is not equal to wq for any z in thi 
deleted neighborhood {z 10 <  |z  -  z q \ <  e}.
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P ro o f If there were d o  sudi e, then /  would agree with the constant function 
defined by h(z) — via at least on a  sequence of paints converging to zq. But then 
it would agree with h everywhere on A by the Identity Theorem 6.1.1 and so be 
constant. ■

There can be a  limit point of zeros on the boundary of tlie region of analyticity. 
(This is illustrated in Worked Example 6.1.11 with the function sin(l/z).} The 
Identity Theorem says that a  nonconstant function cannot have a limit point of 
zeros in the interior of the region of analyticity.

C orollary 6.1.3 Let f  : A —»C and g : B  —» C be analytic on regions A and B . 
Suppose that A f \B  0  and f  = g on A n B .  Define

Then h is analytic on A  U B  and is the only analytic function on A U 13 equaling f  
on A (or g on B ). We say that h is an analytic continuation o f f  (or g) (see 
Figure 6.1.2).

P ro o f That h is analytic is obvious because /  and g are. Uniqueness of h results 
from the identity Theorem and from the facts tliat A u B  is a  region and that A n B  
is open. ■

Analytic continuation provides a method for increasing the domain of an an­
alytic function. However, the following phenomenon can occur. Let /  on A be 
continued to a  region A\ and let A2 be as pictured in Figure 6.1.3.

If we continue /  to be analytic on A t , then continue this new function from A\ to 
A2, the result ueed not agree with tlie original function /  on A. A specific example 
should clarify this point. Consider log*, the principal branch (—rr < argz < ir) 
on the region A consisting of the right half plane union the lower half plane. The 
fog function may be continued uniquely to include A\ =  the upper half plane in

\r B

Figure 6.1.2: Analytic continuation.
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Figure 6.1.3: Continuation oF a  function from A  to A t and from Ai to A?.

its domain. Similarly, wc can continue the log again from the upper half plane 
so as to include A% — the left half plane in its domain by choosing tlie branch 
0 < arg 2 <  2jt. But these branches do not agree on the third quadrant; they differ 
by 2jtx (see Figure 6.1.4). Therefore, in continuing a function we must be sure 
that the function on the extending region B  agrees with tlie original on the whole 
intersection A n  B  and not merely on part of it.

'j

X

Figure 6.1.4: Continuing the log.

It is not always possible to extend an analytic function to  a  huger domain. Tlie 
reader is asked in Exercise 5 to confirm tliat the power series zni converges 
to an analytic function /(z )  on the open unit disk but that this function cannot 
be analytically continued to any larger open set. The unit circle is called a natures 
boundary for this function. In tlie next two subsections we will examine techniques 
by which analytic continuation may sometimes be accomplished.

Schw arz R eflection P rincip le  There is a  special case of analytic continualior. 
tha t can be dealt with directly as follows.
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T heo rem  6 .1 .4  (Schw arz R eflection  P rin c ip le ) Let A be a region in the upper 
half plane whose boundary bd(A) intersects the real axis m an interval [a, 6] (or 
finite union of disjoint intervals). Let f  be analytic on A and continuous on the set 
A u]a,6(. Let A" =  {z | z €  A), the reflection of A (see Figure 6.J.5), and define 
g on A* by g(z) = f(z). Assume that f  is real on ]a,6 |. Then g is analytic and is 
the unique analytic continuation of f  to /4u)a,6(U/l*.

Figure 6.1.5: A* is the reflection of A.

P ro o f Uniqueness is implied by the Identity Theorem since j4u)a,6{U  A” is con­
nected and any such extension m ust agree with /  on the segment which
certainly contains a  convergent sequence of points together w ith their limit. Note  
th a t /  as g on tliis segment since I  =  z = x  there, and f(x )  is real, so f(x )  =  f(x) = 
f(x )  = g(x). The analyticity of g on A* follows from the Cauchy-Riemann equa­
tions, as established in Worked Example 1.5.19- If h is defined on A U]a,6{LM* by 
k(z) =  f(z)  on A U Ja, 6( and h(z) — g(z) on A*, then h  is analytic on A  U A* and 
continuous across the  mutual boundary ]a, 6| since /  =  g on tbe real axis. Analyt­
icity on the whole set follows from M orera’s Theorem 2.4.10, as was established in 
Worked Example 2.4.17. ■

This result is remarkable in tlia t we required only th a t /  be continuous and real 
on )a, 6j. Tt followed automatically th a t /  is analytic on ]a,b{ when continued across 
tire real axis. To help see tlia t g (and thus h) is analytic on A*t consider the map 
in three steps:

z  •-* f(z)\ f(z)  »-* / ( S).

The middle map is conformal; the first and last are anticouformal in the sense th a t 
they reverse angles. Since angles are reversed twice, tlie net result is to  preserve 
angles. The whole map is tints conformal.
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A related reflection principle can be formulated using circles in place of tbe real 
axis and replacing complex conjugation by reflection in the circle. The Schwarz 
Reflection Principle 6.1.4 is a special case if lines are treated as circles of infinite 
radius, as in Chapter 5-

Theorem  6.1.5 (Schw arz R eflection P rincip le fo r a  C ircle) Let A be a re­
gion in  the interior or exterior o f a circle Ci (or on one aide of a line) with part o f 
its boundary an arc 7  o f C \. Suppose f  is analytic on A and continuous on A U7 
and / ( 7 ) is an a n  T" o f another circle (or line) Ca. Let A =  (z  | i  €  A) be the 
reflection o f A in  Ci and define g on A by

g(z) = /(£ )

(the last '  denotes reflection in Ca-) Then g is analytic and is tlie unique analytic 
continuation o f f  to A  U 7U  A.

P ro o f We assume A  is interior to C% and f(A )  is interior to Ca• The other cases 
arc similar. Let 7J,* = 1, 2, be fractional linear transformations taking C, to tlie 
real axis and their interiors to the upper half plane. For w  in T\{A), the function 
h(w) =  T a (f(T f1(w))) is analytic and by the Schwarz Reflection Principle 6.1.4, 
h(w) gives an analytic continuation to Tj (A)‘ . Using the Tacts that fractional linear 
transformations preserve reflection in circles (Proposition 5.2.7) and that complex 
conjugation is reflection in the real axis, we find that

[ /(£ ) [= r 2- ‘( M ^ M ) .

so is an analytic continuation of / .  (See Figure 6.1.6.) ■

Figure 6.1.6: Analytic continuation by reflection.



§6.J Analytic Continuation and R iem ann Surfaces 371

An argument sim ilar to  th a t used to  establish Worked Example 2.4.17 and 
the Schwarz Reflection Principle from Morera’s Theorem is used to  establish tlie 
following.

T lieo rem  6.1.6  (A n a ly tic  C o n tin u a tio n  b y  C o n tin u ity ) Let A end B  be dis­
joint simply connected regions whose boundaries intersect in a simple smooth curve
7 . Let C  =  A U (interior 7) U B  (where interior 7  means the image of 7  without 
its endpoints) and suppose that

(1) Each point in interior 7  has a neighborhood in C.

(ii) /  is analytic in A and continuous on A U 7 .

(iii) g is analytic in B  and continuous on B  U 7 .

(iv) For £ €  7 , wc have lim f( z ) =  lint g(z).*—i.r€A

Then there is a function h analytic on C that agrees with f  on A and g on B.

A n aly tic  C o n tin u a tio n  b y  P ow er S eries a lo n g  C urves Suppose th a t /  is 
analytic in a  neighborhood 17 of zo and th a t 7  is a  curve joining zq to another point 
z‘ (as in Figure 6.1.7).

If we want to  continue /  to  z? we can proceed as follows. For z\ on 7  in U, 
consider the Thylor series of /  expanded around zi:

This power series may have a  radius of convergence such th a t tlie power series is 
analytic farther along 7  than the portion of 7 in U. The power scries so obtained 
then defines an analytic continuation of / .  We can continue this way along 7  in 
hopes of reaching z?t which will be possible if the successive radii of convergence 
do not shrink to  0 licfore we reach zf. IT we succeed, we say f  am  be analytically

Figure 6.1.7: Continuation by power series.
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Figure 6.1.8: Continuation can lead to  self-iutersections.

continued along 7 . However, we must be careful because tlie analytic continuation 
of f  so defined might not bp single-valued if 7  intersects itself (us in Figure 6.1.8).

The coefficients of the power series around tbe new center z\ c>m be computed in 
term s of those for the Thy lor series of /  around tbe original center zq- (See Worked 
Example 6.1.13). If 2* can be readied a t all by tliis process, then it can be readied 
in a  finite number of steps. This is essentially because of the Path-Covering Lemma 
1.4.24 (sec Exercise 7). Thus, tbe continuation a t z' can be computed hi term s of 
tlie original fimetion.1

Tbe example £  ~n! mentioned earlier show's tliat it can happen th a t there is 
no direction in whidi a power series can be continued. Fortunately tliis is 1101 
usually tlie case. However, there m ust always be a t least one direction in whidi 
continuation is not possible.

P ro p o sitio n  6 .1 .7  Suppose that f(z)  = X Sdi® n(2 ~  2#)" has radius of conver­
gence R < 00. Then then must be at least one point zj with |zo — 2j | =  R such 
that f  aamot be analytically continued to any open set containing Z\.

P ro o f Let B  = {z sudi th a t \z — zo\ < R) and lei C  be its boundary circlt- 
{2 sud i (hat |z  -  zo| =  A}. Wc will show tliat if the assertion were false then /  
could lie analytically continued to  an open set A containing the dosed disk B u C  
IT this were done, Worked Example 1.4.27 would show th a t A  contains a  larger disk 
B( — {z sudi th a t |z  —zo| <  f l+ i) . (See Figure 6.1.9.) We would have continued /  
to  a  larger disk with tbe same cento'. Tliis is not possible, since it implies a radium 
of convergence largo- than R. (See Worked Example 6.1.12.)

To obtain A we proceed as follows. For each tu on C  there would be a  neighbor­
hood Bw of to and an analytic continuation /*, of /  to  A* =  B  U Bw. (See Figure 
6.1.10.)

1A discnsMOD of how one carries out this computation, including its DumcricHl aspects. niA\ 1* 
found in P. Hen rid . Applied end Computational Complex Analysis (New York: WUcy-Interscieucv
1974), Chapter 3.
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Figure 6.1.9: If A is an open sel containing B  and its boundary, then A  contains a 
slightly huger disk.

Figure 6.1.10: Tlie set Aw — B U S » .

Then A — (union of all the Aw) would be an open set containing B U <7. We tiy  
to  deline a continuation of /  to  A by setting g(z) — f w(z) for z in Au- If this makes 
unambiguous sense it will certainly be analytic on A since f w is analytic on Aw. For 
g to make sense wc need to  know that if 2 is in AWt fl A ^ ,  then /«,, (2) =  /.^ (z ). 
But tliis is true. The two functions are both analytic ou tbe region Av„ H A ^  and 
they are both equal to  /  on the open set B C A„,, n  Aû . Therefore they must 
agree on the whole region, by the Identity Theorem. Thus the definition of g makes 
sense. It docs not depend ou whidi Aw wc happen to  select, containing 2. ■

Consequently, the radius of convergence of an analytic continuation is largely 
independent of the method used to  obtain it. Tliis agrees with what we saw in 
Chapter 3, namely that the radius of convergence is the distance to  the nearest 
unavoidable singularity.

P roposition  6.1.8  Suppose f  is analytic on a neighborhood 0/  a point zq o f a 
region A and that f  can be analytically continued along every curve joining zq to 
every other point zi o f A . Then the radius o f convergence o f the Taylor scries at zj 
for each such continuation to z t is the same and is at least as great as the distance 
from z% to the complement o f A.
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P ro o f Suppose not. Then by extending the curve radially from zi to any point 
on tbe circle of convergence, the continuation could be analytically continued still 
further in every direction from z lt contrary to Proposition 6.1.7. ■

This proposition does not claim that the continuations arc all the same. They 
might not be, as the example of the logarithm shows. Wc may merely obtain local 
functions defined on disks but they need not agree on overlaps. This construction is 
one baric way in whidi multiple-valued functions arise. A point is called a branch 
po in t if analytic continuation around a  closed curve surrounding it can produce 
a  different value upon return to the starting point. The following result says that 
multiple-valued functions do uot arise from coutinuatiou along curves in simply 
connected regions.

P roposition  6.1.9 (M onodrom y P rincip le) Let A be simply connected and lei 
so 6 A. Let f  be analytic in  a neighborhood o f z q . Suppose that f  can be analytically 
continued along any arc joining zq to another point z €  A. Then this continuation 
defines a (single-valued) analytic continuation o f f  on A.

P ro o f We need to show that if z\ is another point of A, then the process of 
continuation along a  curve 7  from zq to Zj through A will always produce tlie same 
value a t zi regardless of wliat curve is used. To this end, let 70 and 71 be two curves 
from Zq to zj in A. Since A  is simply connected, they are homotopic with fixed 
endpoints in A. That is, there is a continuous function H  : [0, 1] x [0, 1J —* A from 
the unit square into A sudi tha t 17(0,1) =  % (!), J?(l,l!) =  7i(f), J7(s,0) =  zq, and 
H(s, 1) =  z\ for all s  and t  between 0 and 1, inclusive. Tlie functions 7,(1) =  H(s, t ) 
are a  family of curves from zg to z\ in A  deforming continuously from 70 to 71. See 
Figure C.1.11.

There is an analytic continuation / ,  of /  from zo to z\ along each curve 
We will show tha t /,(z i)  cannot change as « is shifted continuously from 0 to 1 
and therefore tha t /o(zi) =  /i(z i) . This is exactly wliat. we need to establish the 
theorem.

l

Figure 6.1.11: Homolopy between *jn and 71.
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The image of the square is a  dosed bounded subset of A. Thus by the Distance 
Lemma 1.4.21, it  lies a t a  positive distance p from the complement of >4. By Propo­
sition 6.1.8, tlie radius of convergence always remains a t least p as we analytically 
continue /  along any of the curves 7, .  By the Path-Covering Lemma 1.4.24 the 
continuation along any 7* may be completed to  21 in a  finite number of steps using 
disks of radius p. For each s th is procedure produces an analytic continuation of /  
to  a function / ,  analytic on a  “tube” A , around 7, ,  as in Figure 6-1-12.

Figure 6.1.12: Each 7«*+l is contained in Amh.

W ith a  b it of care we can select a finite number of points 0 =  * o < S i < r j <  
. . .  <  Sft =  1 and the values of t defining tbe centers of tbe disks making up the 
tubes A„ dose enough together th a t 7, t  is contained in the preceding tube A,k_t 
and in the succeeding tube A,ĥ l . This is done using tlie  uniform continuity of 
Ii, as in the proof of the Deformation Theorem 2J3A2; see, iu particular, Figure
2.3.14. The functions / „  are eadi analytic on the region >1,,, f l4 ,H1 and agree 
on tlie open set D(zq; p) C Atk n  A&k+, , so they agree on the whole region by 
the Identity Theorem. In particular, /.* (> i) /*m-i (21), so fo(Zl) =  / .,(* l)  =
/ - < * > = • • •  — f«n(z t) =  / i ( z0 - The continuation of /  along 79 to  21 agrees with 
tlia t along 71 to  21 a t the point z\. This is what we needed to  show. ■

For nonsimply connected regions, wc can get different values for the continuation 
of /  when we traverse two different paths. This fact was already mentioned a t the 
b a n n in g  of th is section in connection with log 2. For example, in Figure 6-1.13, 
starting with log defined near 1 and continuing along 71, we get log(—1) =  r i ,  
whereas along 72, wc get log(—1) =  —r i .  This is because the region C\{0} is not 
am ply connected.

R iem ann  S urfaces o f  th e  Log a n d  S q u are  R o o t F unctions The phenomenon 
ju st described leads one to  ask if there is a  definition of log th a t does not introduce 
any artificial branch lines (whidi, after all, can be chosen arbitrarily). H ie answer 
is given by a  brilliant idea of Georg Riemann in his doctoral thesis in 1851 th a t is 
briefly described here.
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Figure 6.1.13; Continuation o f logs along two different arcs from 1 to — 1 .

For the logarithm, if log 2 is to tic single-valued, we should merely regard 71 
and 72 In Figure 6.1.13 as ending up iu different places. This can he pictured as in 
Figure 6.1.14.

Figure 6.1.14: Riemann surface for logs.

Only & core of the spiral staircase M , with axis over the origin, is shown —it 
should have infinite extent laterally. If we cut from 0 outward a t any level and 
tlie one directly below it, we get a  part or the surface called a  sheet, the shaded 
portion in Figure 6.1.14. This shaded portion can be identified with the domain 
for a branch of log. Thus we have stacked up infinitely tunny copies of (he complor 
plane C joined through 0 and glued together as shown in Figure 6.1.14. The arc? 
7 j and 72 now go to different points so we can assign different values of log z to 
each without ambiguity.

The main property of this surface tha t enables us to define log z =  log \z\ -}-i arg r 
as a  single-valued function is that on this surface arg 2 is well defined, and tbe
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different sheets correspond to  different intervals of length 2ir in whidi arg 2 takes 
its values. Tlius, we can take care of multiple-valued functions by introducing an 
enlarged domain on which the function becomes single-valued.

Let us briefly consider another example, tbe square root function: z  y/z = 
y/rci0/2. Here the situation is slightly different from tliat for the log function. If 
we go around the origin once, y/z takes on a different value, but if we go around 
Lwice (increase 0 by 4w). we arrive back at the same value, so wc want to be at the 
same point on the Riemann surface. The surface Ls illustrated in Figure 6.1.15.

2

Figure fi.1.15: Riemann surface for y/z.

Though the sheets in this figure appear to intersect, they are not supposed to. 
At fault is our attem pt a t visualization in R3. Oue can consider the Riemann 
surface to be in R4 or C2. Figure 6.1.15 is a  picture of its ‘•shadow* in R3. Here Ls 
another way to think about bow Lhe surface is related to analytic continuation. Let 
7  be tlie unit cirde traveled twice countcrdodcwise by letting t change smoothly 
from 0 to 4ir in 7 (f) =  e'*. Then /(f) = c}lf 2 gives a  smoothly changing square root 
for 7 (f). At the start, 7(0) — 1 and /(0 ) = 1 =  uy/l.~

As wc make the first transit around tlie cirde, 7(f) successively hits points 13, C, 
and D, namely the points t, -1  and - i .  and the function /( f )  hits the corresponding 
points on the image cirde. At t = 2ir, the curve 7(f) has returned to 1, but /( t)  
has readied the other “square root,* —1.

In the second transit around Llic circle, 7 (f) revisits the points it liit on the first 
circuit, while /( t)  goes through tlie other possible square roots in the lower half 
plane. At tlie end of tlie second circuit 7(4jt) =  1, and /(4a-) =  1 Las returned to 
the original value. (See Figure 6.1.16.)

R iem ann Surfaces o f th e  Inverse Cosine Function For more complicated 
functions like cos- 1(2) tbe Riemann surface can be constructed ns follows. On 
certain regions of C, cosr is one-to-one and we define cos“ *(2) to be tlie inverse 
function. Tlie period strips defined in §1.3 are examples of such regions for c* and 
log 2. Sudi a region for cos 2 is shown in Figure 6.1.17.
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Figure 6.1.1G: Tbicking y/z as oue traverses the unit circle.

Figure 6.1.17: A region ou whidi cosz is one-to-one.

The interior of each such strip is mapped conformally onto C minus the portions 
] — oo, - 1) and (l,oo| of the real sods with half planes corresponding to half strips, 
as shown in Figure 6.1.18. Each of the  deleted portions is the image of two different 
portions of the boundary of each strip. Each sheet of the Riemann surface is a  copy 
of C slit along these portions of the real axis. The surface is then constructed by 
“gluing” the sheets together along these slits in sudi a  way that half planes are 
joined in the same way as the corresponding preimage half strips.

A cross section of the surface over the circle C  — {z sudi that |z | =  2} might be 
diagrammed somewhat as in Figure 6.1.19. The black dote in the diagram a t the 
right indicate the places on the surface over 2 and —2 when* the circle C  crosses the 
slits along which the sheets arc glued. To construct, the model, one would roll the 
diagram a t the right into a cylinder joining the top and bottom edges so that tbe 
labels on the sheets match. Then one would stand the cylinder over the circle C  s j  
that the rows of blade dote are over 2 and —2. If wc follow a  suitably chosen cun* 
winding around 1 and —1 passing sometimes between them and sometimes over 
the branch cute, we may pass Grom any sheet to  any other and obtain all possibk 
values of cos-1 z.
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Figure 6.1.18: Coasfcruction of the Riemann surface for cos-1 z.

Figure 6.1.19: Cross section of Riemann surface for cos“ * z  over the circle |2| =  2.

W orked Exam ples
Exam ple 6.1.10 Let f  bean entire function equaling a polynomial on [0,1) on the 
m i/ axis. Slum that f  is a polynomial.

Solution Let f[x)  =■ ao +  «iar + . . .  +  a,,xn on [0,1). Then f ( 2) and no +■ « i2 +  
. . .  + o ,,rn agree for z € (0, lj. and both are analytic on C (that is, both arc entire). 
By the Identity Theorem 6.1.1, they arc equal on all of C, since |0 ,1] contains a  
convergent sequence of distinct points (for example, z„ — l/n ) . Tliis proves the 
assertion.

E xam ple 6.1 .11  Letf{z) = an(z ~ zo)n hoae a radius o f convergence R >  0.

(a) Is then always a sequence z„ vrith \z,t — z q | <  / ?  for n  =  1 ,2 ,3 .... and 
t a  — *ol —* R  such that f(z„) -* oo?

(b) Can /  be continued analytically to a  disk \2 — zq\ < R  + e for some e> 0 ?
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Solution

(a) Such a  sequence does not necessarily exist. Consider the series 2n/n 2. 
By tbe ratio test, the radius of convergeuce is

limn-*oo
a«

®n+l
=  limn—oo

(n +  l)2
n2

1.

B ut for |r | <  1 wo have

“  »*' “  U|n 1
= E - - r ^ £ ^ < 0 °-

Thus |/ ( r ) | is hoimdcd by 1/n2 on {2 such that, |2| <  1}, so / ( z ^  -» oc 
is impossible.

(h) No. Suppose tlia t there is an analytic function g on \z -  zq\ < R + c with 
g(z) = f(z)  for \z — zq\ < R. Since /  and g are analytic and agree on 
|s —2o| <  72, tlie Taylor scries of g, £ 2 °  a„(2-C u)", is valid for \z—zq\ < R+t. 
Hence the radius of convergence of the given series is greater than R, whidi 
is impossible (since it equals R).

E xam ple 6.1 .12

(a) Suppose f  is given by the power series f(z)  = 7 ^ % a .,(z  -  zo)n valid for 
[z —Zq\ < R~ Show that i f  |zi — zo| <  R, then the Taylor series for f  centered 
e l z i i s

5 1 M* ~ «*ere hfc = 5Z f-"ft.T^a**”,fri “  ̂
**=o rn=oL m

(b) Work out the first few terms, starting with the principal branch of logs at 
Zg as 1 and z\ — (1 +»)/2.

S o lu tio n

(a) By taking tlie Ath derivative of the scries expansion for f  about zq, w c  find 
for \z -  20I <  R  th at

f {k)(z) =  £ >  +  m)(fc +  m  -  1 ) . . .  (m 4- l)au+m{z -  2̂ )"
tvt=9

ooE (k +  m)! ,
m? a fc + m (g -2 a r .

msO

Tlius tJiu Thyior series of /  around zj is

± ± } « H » * - n r - ±
k=0 K' km0km0 Lm=0

(fc -f- m)l 
fcbn! aji+ n . (21 — so )" (2 - 21)1'
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This converges to  f(z)  when \z -  z\ | <  R — |2i -  zol but may actually have a 
larger radius of convergence. If it does, then it gives an analytic continuation 
of /  by power series.

(b) The principal branch of Iog(] -f-«/) for |w | <  1 has the expansion

"  f _ 1 t n - l
log(l +«•’) =  „ — *"•

nsl

Setting ta =  £ - ]  gives log £ =  l)"i valid for |2- 1 | <  1.
Thus «o =  0 and On = (—l)”~l/n  for n >  0. Since zx -  ao =  (i -  l)/2, we get

bi

and

( - 1);TO—J

m=l m (̂ r-ilog2-f — 
4

»i! m+1 V 2 J

1 - ( 1 - 0 / 2  *

bz
(m  4- 2)1 ( - l ) " 1* 1 

2!m! m +  2
i  i

5 i i  - ( ¥ ) ) ’

E xam ple 6.1.13 (C onform al M aps o f A n n u li)2 3 * * * If 0 <  r  <  1, and we define 
the annulus Ar = {z | r  <  |z | <  1}, lei Cr — {z such th a t |z | =  r ) ,  and let 
Cy =  {« such tlia t |a | =  1}, so that the closure of Ar is dfAr) =s Cr U Ar UCi. 
Prove the following: Suppose 0 <  r  <  1 and 0 <  R  <  1 and that f  is a one-to-one 
analytic map of Ar onto Ar that extends to a one-to-one continuous map of cl(Ar ) 
onto c l(/l/,). Then r — R and f  must be one of two types: either (i) a  rotation, 
where them is a real constant 6 sudi that f(z) = ei0z far oil z in Ar, or (ii) a 
rotation and inversion, where them is a  real constant 0 such that f(z)  =  rei0/z  far 
aU z in Ar.

S o lu tion  The function /  must cither map Ci to Ci and Cr t o  C r  o r  interchange 
the inner and outer circles. If  the latter holds, tlieu f(r /z)  is another map of Ar 
onto Ar th a t docs not interchange them. Thus, wc may assume that /  ta la s  C\

2There is a rich literature about conformal maps of regions that are not simply connected. The
subject is complicated because there hi no theorem as broad in scope as tlio Riemann Mapping
Theorem. In some sense tlie presence of more tliun one boundary component restricts the possible
maps. This example shows iiow to use the Sdiwnrz Reflection Principle 6.1.4 to study tlie situation
for an annulus.
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to C\ and CT to  Cn continuously. The extended Schwarz Reflection Principle 6-1-5 
shows how to continue /  analytically to a  map from the larger annulus Ari  onto 
A n* so that the continuation is again continuous on the boundary and takes Ch  
to  Cfp. This process may be repeated indefinitely to extend /  to an increasing 
sequence of annuli

A f  d  A f9  C  AfA CI *»•

mapping respectively onto

A n  C  An> C  An*  C  - - - -

(See Figure 6.1.20.) Each extension maps to Cn*" and the annuli between 
them correspondingly.

*

Figure 6.1.20: Conformal maps of annuli.

Since R7n —f 0 as n -* oo. we get lim._ 0 f ( z) =  0. Thus z  «= 0 is a removable 
singularity and setting / ( 0) =  0 serves to complete the extension of /  to  an analytic 
function of the disk D = {z such that |z| <  1} to  itself with /(0 ) =  0. The extended 
function satisfies the conditions of the Schwarz Lemma 2.5.7, so \f(z)\ < |z | for all 
z. Since Cr goes to Cn, this forces R < r .  The process could just as well have been 
applied to / -1 , which takes An to Ar. This would give r  <  R, so r  =  R. Finally, 
this shows |/(z )| =  |z | on each of the circles C^n, so f  must be a rotation by tbe 
Schwarz Lemma. ■

E xercises
1. (a) Let f(z )  = c1/* — 1. If z„ = l/2jrm , then z,, —» 0 and f(z„) =  0, yet /  

is uot identically zero. Docs tins contradict the Identity Theorem 6.1.1 
Why or why nut?

(b) Is the Identity Tlieorem true for harmonic functions?
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2. * Let h(x) be a  function of a  real variable x  € R. Suppose Hurt h(x) =
which converges for x  in some interval ] — fl,V [ around 0, where 

tj > 0. Prove that h is tlie restriction of some analytic function defined in a 
neighborhood of 0.

3. Let /  be analytic in a region A and let- z t , e  A. Let. F (z i)  ^  0. Show that 
/  is not constant on a  neighborhood of zi-

4. Let /  be analytic and not identically zero on A. Slww that if f( z o) =  0, there 
is an integer k  such that f(zo ) =  0 =  . . .  =  F k~l*(zo) “ ‘d / ^ ( z d) f 1 0.

5. “ Prove the following result of Karl Weierstrass. Let f( z )  = zni. Then 
/  cannot be analytically continued to any open set properly containing A — 
{2 sudi that \z\ < l}. Hint: First consider 2 =  re2” p̂  where p  and q are 
integers.

6. Formulate a Schwarz Reflection Principle for harmonic functions.

7. " Suppose that /  can be continued analytically along a  curve 7  in the manner 
shown in Figure 6.1.21. Show that /  can be continued by power scries (in a 
finite number of steps).

Figure 6.1.21: Analytic continuation of /  along a curve from z0 to  o'.

8. Discuss tbe Riemann surface for y/z2 — 1.

9. Discuss the Riemann surface for \fz .

10. Discuss the relationship between Proposition 2.2.6 and the Monodromy Prin­
ciple 6.1.9.

11. Consider the power series ]£o°(—l)" 2n defined in |r | < 1. To what domain 
in C can yon analytically continue this function?

12. SIiow that if /  is an analytic map of {2 | r j <  \z\ < JRj} one-to-one onto 
{2 | r*i <  |z | < fi?}, whidi extends to a  continuous map of {2 | ri < \z\ < JZj}
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one-to-one onto {2 | r2 < |z| < /I2}, then R i/n  = Ra/m. Give a description 
of all sndi functions.

13. Let A be a region, let / :  A —»C, and let 7  :]a, 6(—»A be a smooth non-seif- 
intersecting curve with Y(t) £  0. Assume / is continuous cm A and analytic 
on A\7-

(a) Show that /  is analytic.
(b) Use (a) to provu the Schwarz Reflection Principle.

6.2 Rouche’s Theorem and Principle of the 
Argument

In this section wc develop some properties of analytic functions that are used to 
locate roots of equations within curves. The main tool will be the residue theorem.

Root and Pole Counting Fbrmula Tbe main results of this section will be 
those mentioned in the title. It is convenient to begin with a formula that counts 
the routs of an equation within a closed curve. A more intuitive version will lie 
given as a corollary of the following precise version.

Theorem 6.2.1 (R oot-Pole Counting Theorem) Let f  be analytic on a  re­
gion A except fo r  poles a t b i........bm and zeros a t aj , . . .  ,a„, counted w ith their
m u ltip licities (th a t is, i f  bi is  a  pole o f order k , Hum hi is  to  be repealed k  tim es 
hi the lis t, and sim ilarly fo r  the zeros Oj). Let 7 be a  closed curve hom otopic to  a 
point, in  A and passing through none o f the poin ts Oj o r bi. Then

1=1

This root-pole counting form ula  applies in particular to meromorphic Junc­
tions, that is, functions defined on C except for poles (sec §3.3). There can be only 
a finite number of poles in any bounded region, since poles are isolated.

Proof First, it is dear that f '{z)/f{z) — g(z) is analytic except at the points 
,en,6 |,... ,6m. If /  has a zero of order k  at O j , f  has a zero of order k  -  !. 

so f / f  = g  has a simple pole at aj imd tlie residue there is k. Tliis is because 
we can write f(z)  =  (2  -  u.j)fc0(z), as was shown in §3.2, where 4> is analytic anc 
<f>(aj) 0; therefore,

, . _  fr(z -  aj  )fc~V(2) (2  -  O j ) V ( 2 )  _ k  <tt(z)
( z  -  <ij)k<j>(z) + ( 2  -  a j ) k4 ( z )  -z -  a, <j>(z) '

L
r(»)
m

dz =  2*i
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Thus, the residue at aj is dearly k. Similarly, if bt is a pole of order k, we can 
write, near bi,

m  = m
( z -b t ) * '

where $  Ls analytic and d>(bt) 0 (see Proposition 3.3.4(iv)). Proceeding as we did 
with the points aj, we see tliat near 6|,

) z - b t + <f>(z) ’

so the residue is —fc. By the residue theorem,

J g(z)dz = 2m  |Res(2;«i)K(7;fli) + to) J ,

where means the sum over the distinct points. Since the residue equals the 
number of times aj occurs and minus that number for the b/, this expression becomes

2jri
j= l 1b 1

As its name implies, the root-pole counting formula may be used for counting 
zeros and poles.

Corollary 6 .2.2 Let 7 be a simple closed curve;

(i) I f f  it analytic on an open set containing 7 and its interior except for finitely 
many zeros and poles none of which lie on 7, then

where Z j is the number of zeros of f  inside 7 and P f the number of poles of 
f  inside 7 each counted with their multiplicities (orders).

(ii) Root Counting Fbrm ula I f f  is analytic on an open set containing 7 and 
Us interior end f(z) is never equal to w on 7, then

f  - j f ^ - d z  =  2mNv
A  /(* )  ~  w

where N .̂ is the number of roots of the equation f(z)  = 10 inside 7 counted 
with their multiplscUies as zeros of f(z) -  vi.
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Proof Since 7  is simple tbe index of 7  wit!) respect to Oj is 1 if is inside 7  and 
0 if it is outside. Tlieorem 6.2.1 thus gives part (i). Part (ii) follows by applying 
part (i) to g(z )  — f { z )  - w .  ■

Principle of the Argument We now consider & useful consequence of the root- 
pole counting theorem. For a closed curve 7  and Zq not on 7 , the change in argument 
of z  -  Zo * traverses 7  is 2tt - 7(7 ; zq). This is tlie intuitive basis on whidi the 
index was developed; it is written A , arg(z -  z q )  — 2ir- f ( 7 ; zq) (sec Figure 6.2.1).

Figure 6.2.1: Change in the argument of z — Zq when the two curves are traversed.

Next we want to define Ay arg/, that is, the diange in aig/(z) as 2 goes once 
around 7 . Intuitively, and for practical computations, the meaning is dear; we 
merely compute arg/(7 (t)) and let t  run from a to b if 7  : (a, 6) -♦  C, then look at 
the difference arg/(7 (h)) — arg/(7 (a)). We choose a branch of the argument such 
that aig/(7 (t}) varies continuously with t . Equivalently, by changing variables, we 
cau let 7  = /  o 7  and compute A^ argz. This leads to tlie following definition.

Definition 6.2.3 L et f  be analytic on a region A  and le t 7  be a  d o sed  curve in  .4 
hom otopic to  a  poin t and passing through no zero o f  /. W e define

A , arg /  = 2jt • /(/»7;0)-

( The index m akes sense because 0 docs n o t tie  on f  o 7 .)

In examples, we can make use of our previous intuition about the index to 
compute Ay arg /. The argument principle is as follows.

Theorem 6.2.4 (Principle of the Argument) L et f  be analytic on a  region A  
except fo r  poles a t &],... ,6m and zeros a t ai,...a„ counted according to  their 
m ultip licity. L et 7  be a  closed curve hom otopic to  a  po in t and passing through m- 
a3 o r b t . Then

£ * ( • » ; « * ) *
j nl  1=1

A1rarg/ = 2x
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Proof By tbe Root-Pole Counting Tlieorem 6.2.1, it suffices to show that

d z

since /  has no zeros or poles on 7 . Indeed,

iA7 atg/ =  2ffi- * { f  ©t ;0) ‘ ff* i
d z
z

by the formula for the index (see §2.4). Letting 7 : (ft, fi) —► C, wc have

i i m )
/ r n )

d t r m )
/ r n )

V(t)d£,

by tbe definition of tbe integral and the chain rule. The latter integral is equal to 
f ^ [ f ' ( z ) / f ( z ) \d z  by definition. (If 7  is only piecewise C 1, tliis holds only on eadi 
interval where 7 ' exists, and we get tlie result fay addition.) ■

Hie Principle of the Argument 6.2.4 is usually applied in tlie case where 7  is a 
sim ple closed curve. Thai wc may conclude tliat the change in  aig/(z) as w e go  
once around 7  (in  a counterclockwise d irection) is  2ir[Z/  — P f ) where Z j  (o r  P f )  
is  the num ber o f zeros (o r  pales) inside 7  counted w ith th e ir m ultip licities. It is 
somewhat Surprising, a priori, that Z j — P f and the argument change or /  are even 
related.

Tliis may sound familiar to the alert reader who remembers a trick from calculus 
called logarithm ic differentiation. If 7  is a small segment of curve short enough so 
that 7 (7 ) is a curve segment that tics in a half plane as in Figure 6.2.2, we can 
define a branch of logarithm with tlie branch cut leading away from that half plane 
by an appropriate choice of the reference angle for defining aigz. Then along 7  wc 
have

-^(log/(z)j = / '(* )
/ ( * ) ’

so

/  A 1°g/(*) = A,<«l/(*)l+ *A «^ /(2)-

Fbr a closed curve 7  we can do this along successive short parts of tlie curve using an 
appropriate choice of logarithm for each. When we return to the starting point, the 
contributions for A !og|/(z)| will all have canceled out, but not those for A  arg/(z), 
since wc have kept changing determinations of argument.

Rouchd’s Theorem The argument priucipic can be used to prove a very useful 
theorem that has many applications, some of whidi will be given throughout the 
remainder of this chapter.
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Figure 6.2.2: Logarithmic differentiation and the principle of the argument.

Theorem 6.2.5 (Rouche’s Theorem) Let f  end g be analytic on a region A 
except for a finite number of zeros and poles in A. Let 7  be a closed curve in A 
homotopic to a point and passing through no zero or pole of f  or g. Suppose that 
on 7 ,

l/(a) -  < |/(*)|.

Then (i) A ,a r g /  = A^argg and (ii) Z j — P j  = Z g — P g where Z f  is given by 
Z / =  the Qj being Out zeros of f  counted with multiplicities, and
with P f ,  Z g , P 8 being defined similarly.

Proof Since /  and g have no zeros on 7 , we can write our assumption as

15(f) 
1/ ( 2)

<  1 ou 7 .

Thus, g(z)/f(z) = h(z) maps 7  into the unit disk centered at 1 (see Figure 6.2.3). 
We must have /(h o 7 ; 0) = 0, since h  o 7  is homotopic to the point 1 in that disk 
(which does not contain 0). Tims,

r m
U  *(*)

=  i A , arg /i =  2n i  /(/1 o 7; 0) =  0.

We compute tluit
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it

Figure 6.2.3: The image of 7  under It.

Hence tbe result follows bom the Root-Pole Counting Theorem 6.2.1 and tlie 
principle of tbe argument. |

An important special case of Rondos Theorem is tbe following. L et 7  be a  
sim ple closed curve en d  le t f  and g  be analytic inside and on  7  w ith  7  passing 
through no zeros o f  f  o r  g ; suppose that \ f ( z )  -  $(z)| < |/(z)| on 7 . Then f  and g  
have the sam e num ber o f zeros inside 7 . Note that if \ f ( z )  — 5(2)! < |/(z)| on 7 , 
then 7  automatically can pass through do  zeros of /  or g  (Why?).

Rouchd’s Theorem can be used to locate the zeros of a polynomial. An illus­
tration is given in Worked Example G.2.12. Roudie’s Theorem can also be used 
to give a simple proof of the Fundamental Tlieorem of Algebra, induding the fact 
that an nth-degree polynomial has exactly n  roots (see Exerdsc 9).

Hurwitz’ Theorem One of the theoretical applications of Rouchd’s Theorem
6.2.5 is the following result of Hurwitz.

Theorem 6.2.6 (Hurwitz’ Theorem) Let f n be a  sequence o f analytic functions 
on a  region A converging uniform ly on every closed disk in  A to  f .  Assum e that 
f  is n ot iden tically zero, and le t zo € A . Then f ( z g )  = 0 iff  there is  a  sequence 
zu —» zg and Hume is an in teger N  such th at f n(Zn) — 0 whenever n > N (that, is, 
a zero o f f  is  a lim it o f  zeros o f the functions f„ ) .

The theorem will follow from the next proposition.

Proposition 6.2.7 L et f„  be a sequence o f ju n ction s analytic on  a region A  that 
converge uniform ly on every closed disk  in A  to  f .  Assum e J  is  n ot iden tically  0 
and that 7  is  a sim ple closed ettrve that together w ith its  in terior is  contained in  
A  and that passes through no zeros o f f .  Then there is  an  in teger N(y) such that 
each f n w ith  n  >  W(7 ) has the sam e num ber o f zeros in side  7  as does f  (counted  
according to  m u ltip licity).
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Proof Since |/| is continuous and never 0 on the compact set 7 , it has a nonzero 
minimum m  on 7 ; let us say |/(z)| > m > 0 for all z ou 7 . The curve is covered 
by a finite number of dosed disks, so the convergence of /„ to /  is uniform on 7 . 
Accordingly, there is an integer #(7 ) sudi that |/„(z) — f ( z )| < m < /(z) for all z 
on 7  whenever n > #(7 ). Rouch£’s Theorem 6.2.5 applies, and wc conclude that /„ 
and /  have the same number of zeros inside 7 , as denied. (Note that /  is analytic 
on A by the Analytic Convergence Theorem 3.1.8.) ■

Proof of Theorem 6.2.6 Again, /  is analytic ou A by tlie Analytic Convergence 
Theorem 3.1.8. Suppose /(zo) = 0. Since /  is not identically 0, the zeros are 
isolated by the Identity Tlieorem 6.1.1. There is a number 6  > 0 such that /(z) 
is never 0 in the deleted neighborhood {z | 0 < |z — zq| < 4}. For each positive 
integer k , let 7* be the circle {z sudi that |z — zo| = i/t). Pick JV* as Ar(7jt) by 
Proposition 6.2.7. Then n>JV* implies that /„ has at least one zero z„  inside 7*. 
That is /n(zn) = 0. For » > Af* we have \zn — zo\ <  S /k .  This proves the theorem 
with N  =  N i  (choose the Zn inside 7* for n > A7*). ■

Wc must assume, that /  is not identically zero. Consider, for example, the 
function /„(z) =  es/n, whidi approaches zero uniformly on dosed disks (Why?) 
but for whidi /„ lias no zeros.

Corollary 6.2.8 Let f n be a sequence o f functions analytic on a  region A  that 
converge uniform ly on closed disks in  A  to  f .  I f  each /„ is  one-to-one on A  an d f  
is  n ot constant, then f  is  one-to-one on A .

Proof Suppose a  and b are in A  and /(a) = /(b). We want to show that a = b. 
Consider g„(z)  = f „ (z )  -  f„ (a )  and (̂z) -  f ( z )  -  /(a). Then g „ -> g  uniformly on 
dosed disks in A  and g(b) = 0. Sint* g  is not identically 0, Hurwitz' Theorem 6.2.6 
says there is a sequence z„ - * b  with gn(zn) = 0. That is, /„(Zn) = fn{o).  But /„ 
is one-to-one, so z„ = a. Since z„ —* b, we must have a  = b, as desired. ■

It is possible for one-to-one functions to converge uniformly on dosed disks to a 
constant function. For example, the functions f„( z )  — z f n  converge uniformly on 
the unit disk to the constant function f ( z )  = 0.

5 One-to-Ono Functions Analytic functions that are one-to-one find many use­
ful applications. The term sc h lic h t (simple) function is often used. We now relate 
one-to-oue functions with the Inverse Mapping Theorem. Again Rouche's Theorem 
is the appropriate tool.

Proposition 6.2.9 I f f  : A  —* C i s  analytic and locally one-to-one, then f ' ( zo)  £  0 
fo r  a ll zo € A.  It follow s from  the Inverse Function Theorem that f { A )  is  open 
and, i f  f  is  globally one-to-one, that /**' is  analytic from  f { A )  to A.
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Proof Suppose that, on the contrary, for some point zq wc have f'(zo) =  0. Then 
/(z )  — /(zo) has a  zero of order k  >  2 a t zq. Now /  is not constant and thus the 
zeros of / '  are isolated. Thus, there are a  6 >  0 and an m  >  0 such th a t on the 
circle |z — zq\ =  S, |/(z )  -  /(zg )| >  m >  0 and f ( z )  #  0 for 0 <  |z — zq\ < 6. 
For 0 <  17 <  m, we conclude th a t f(z)  — /(zo) -  V  has k  zeros inside \z — zo| =  6 , 
by Rotichg's Tlieorem 6.2.5. A zero cannot be a  double zero, since f '(z)  0 for
\z — Zo\ < S. z ^  zq. Thus /(z )  =  f(za) +  7} for two distinct points 2 and therefore 
is not one-to-one. This contradiction means tlia t f'(zn) £  0, as was to  be shown.

Another basic property of one-to-one functions is the following.

Theorem 6.2.10 (One-to-One Theorem) L et f  be analytic on a  region A  and  
le t 7  be a  d o sed  curve hom otopic to  a  poin t in  A . Suppose that / ( 7 ;z) =  0 o r i. 
D efine t h e s c t B  =  { z € A  \ I ( y ,  z )  ^ 0} (the “in side"  o f 7 ) . I f f  is  such th at each 
poin t o f f ( B )  has index  1 w ith  respect to  the curve 7  = /  ° 7 , then f  is  one-to-one 
on B .

Proof Consider, for zq e B  and tug = /(zo),

By Corollary 6.2.2, N  equals the number of times that f ( z )  = wo on B .  We 
therefore must show that it equals 1. Letting 7  = /  o 7 , wc conclude, as in the 
principle of the argument, that

which is the index of wo with respect to 7 . Thus, JV =  1 and therefore f ( z )  = wo 
has exactly one solution, z  =  zq. This means that /  is one-to-one. ■

Tlie one-to-one theorem becomes more intuitive if we use the Jordan curve 
theorem. Let 7  be a simple closed curve and let B  be its interior. Suppose that 
the set /(B) is bouudexi by the curve 7  = /  o 7 . The hypothesis of the one-to-one 
theorem will be fulfilled if 7  is a simple closed curve (since this means that /  should 
be one-to-one on 7 ). Therefore, tlie result may be rephrased as follows: 7*o see i f  
an analytic function  is  one-to-one on a  region, i t  is  sufficient to  check that i t  is  
one-to-one on the boundary.

Worked Exam ples
Example 6.2.11 Let n  be a positive in teger and le t a  be a real num ber satisfying  
a >  c . Show tluit the equation e* =  a z n has n  solu tions inside the un it circle.
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S o lu tion  Lei f(z) — e* -  az” and id  g(z) = —azn. Notice th a t g has a  zero or 
order n  a t the origin, so g has exactly «  roots inside the unit d id o  |2| =  1. We 
will be done if wc show th a t /  and g have the same number of roots inside tbe unit 
circle. Tb do so we shall show th a t

! / ( * ) - tf(z)i <  l$ (*)l

for |z | =  1. However,

\ f ( z ) - g ( 2 ) \  =  \cc \ =  e *  < c

since |x | <  1. Also, |<p(z)| =  |az” | = a  > it, so the result follows by Roucli6’s 
Tlieorem 6.2.3.

E xam ple 6.2.12 Use Rouch6’s Theorem to determine the quadrants in which the 
zeros of z4 + iz2 + 2 lie and the. number of zeros that He inside codes of varying 
radii.

S o lu tio n  Let g { z )  =  z*,f(z) =  z4 4- iz2 +  2, and note th a t 

l / ( s ) - ! r t * > l  =  l « z + 2 | < M 2 + 2  

and th a t |ff(z)| =  |z |4. Hence if r  =  |z | > \/2, we have

l/(2 ) -0 (* ) |< to (* ) |.

Since g does not vanish on any circle of imsitive radius, tlie preceding inequality 
shows Uiat /  does not vanish on circles with radius >  y/2. Rouch6’s Theorem then 
shows th a t all four roots of /  He inside these circles, thaL is, inside the dosed disk 
|z | <  V3.

Next, let h{z) =  z4 +  2iz2 =  z2(zz -f 2i). Clearly, h has a  double root a t 0 and 
two additional roots on the circle |a( =  y/2. Furthermore,

| / ( 2 )  -  * ( 2 ) |  =  | - * z2 +  2 | =  |22 +  2#| =

For any clioice of r  w ith 1 <  r  <  y/2, h and hence /  do not vanish on the cirde 
\z\ = r and \f(z) — b(z)| <  |/i(r)|. RoucW s Tlieorem shows th a t /  has precisdv 
two zeros in |z | <  r  for any of these values of r . Letting r  approadi 1 and \f%, we 
see that f  lias two roots in the dosed disk |2 | >  I and two on tlie circle |z | =  -<J2. 

Finally, let *(2) =  2. Then

l/(z )  -  k(z)\ =  |z4 4- izsl < |z |4 +  |z |2 <  2 =  \k(z)\

whenever |z | <  1. Arguing as before, for any r  with 0 <  r  <  l,fc and hence /  do 
not vanish in (2) <  r . Combining these tliree results wc find th a t /  has two zeros 
on |z | =  1 and two ou |z| =  \f2.
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Now we tu rn  to  an analysis of the quadrants in which the roots lie. Fbr z either 
real or purely imaginary, f(z)  =  a4 -f- iz2 +• 2 has a  nonzero imaginary part unless 
2 =  0. Thus /  has no roots on the axes. Consider a  large quarter circle as shewn 
in Figure 6.2.4. Wc shall compute A.r arg(z4 +  iz2 +  2) and use the Principle of the 
Argument 6.2.4. Along the x  axis z  is real and /(z )  lies in the first quadrant. Also 
/(0 )  =  2, and as f t —* o o ,a rg /(ft) —> 0 since

* t m =■ »* «• (i + jjj + = »■ « (i + 55 + |r)

tends to  0 as f t  —» oo. Since /  takes its values in the first quadrant, we conclude 
th a t the change in the argument is zero as z  moves from 0 to  oo. Along the curved 
portion of 7 , z* clearly changes argument by 2ir(= 4 x jt/ 2). As  f t  —► oo,2 jt is the 
lim iting change in argument for /(z )  as well, as wc see by writing

/(* )  =  z * (*  +  &  +  *

y

Figure 6.2.4: The curve 7  used to locate the quadrants in whidi the zeros of the 
polynomial z4 +  iz2 + 2 lie.

Similarly, coming down tbe imaginary axis there is, in the lim it of huge ft, no 
clmuge in the argument of / .  (If /(0 ) were not real, th is device would still give the 
limiting behavior of the argument a t infinity and the value a t zero, so the change 
in the argument, a t least up to  multiples of 2ir, can be inferred.) We condude th a t 
the change in argument as we traverse 7  is 2?. FYnni tlie Principle of (he Argument
6.2.4, there is exactly one zero in the first quadrant. By inspection, /(z )  =  / ( —z), 
so —2 is a root when z  is. Thus there m ust be a  root in cadi quadrant. Therefore, 
we m ust have one of the two possibilities shown in Figure 6.2.5. The methods used 
here do not enable us to  tell whidi of these possibilities actually occurs without more 
detailed analysis. We can check this example by finding the roots directly using
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tbe quadratic formula twice; however, in other examples a  direct com putation may 
be impossible or im practical whereas the methods described here can nevertheless 
be used.

Figure 6.2.5: Locating the roots of the polynomial z* + iz2 -f- 2.

E xam ple 6 .2 .13  Let /(z )  — ICnLo0” 2"- Assume that Oo =  0 and at — L. Prove 
that f  is one-to-one on the unit disk {z sudi th a t |z | <  1} < 1.

S o lu tio n  The series for /  converges for |z | <  1 since, as a  consequence of tlie 
assumed inequality Y l^ ? Hail <  1, we get |an | <  1, and thus |oRzn| <  |z |" ; we 
know th a t £  |2|n converges for \z\ < 1. Thus /  is analytic on {z sudi th a t |z | <  1).

Let |zg| <  1. We want to  show th a t /(z )  =  /(zo ) has exactly one solution, zo. 
Let g(z) = z - z o ,  which has exactly one zero. If we set h(z) ~  f(z)  -  /(zo ), then

h(z ) -g (z)  =  “  £ “»*«"•
<is2 n= 2

To estim ate wc use the following trid r. Let ^ (z) =  a^z". Tiien

|^(*) -  tf(*o)| <  |«nax |^ '(0 I) * I* “  ao|

where the maximum is over those (  on the line joining zo to  z  (W hy?). However.

W(0\ =  l E TtOn<r-l\ <  E « l « n |  <  1,
n=2 n=2

since |C| <  1. Hence

|h(z) -  g(z)\ =  |^ (z) -  <Mzo)\ <  |a -  aol =  W*)|*

Thus, by Rouchd’s Theorem, /i(z) =  /(z )  — /(zo ) has exactly one solution, namely, 
z =  Zq; th is proves the assertion.
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E xam ple 6.2 .14 Find the largest disk centered at zq =  1 on which die Junction 
/(z )  =  z4 is one-to-one.

S o lu tio n  This problem is intended ta provide a  warning against a  common error. 
The derivative / '( z )  =  4z* is 0 only a t z  =  0. In particular, f'{z} is never 0 on the 
disk 0 (1 ; 1). However, we cannot conclude tlia t /  is one-to-one on th is disk. In fact 
it is not. / ( ( I  +*)/%/§) =  / ( ( l  — i)/\/§ )  =  —1. If /  is to  be one-to-one near & point, 
the derivative m ust not be 0 a t th a t point, and / '( z )  0 is enough to  guarantee
that /  is one-to-one in some neighborhood of z. B ut f  bang  never 0 on a  large 
region is not enough to  force /  to  be globally one-to-one on the whole region. In the 
present example /(re* /4) =  / ( r e “*/4) for any r- Therefore the function will cease 
to be one-to-one as soon as the disk hits these 45° lines. This occurs for 0 (1 ; A) 
when R — \f\/2.  See Figure G.2.6.

»

Figure 6.2.6: H ie function /(z )  =  z4 is one-to-one on this disk.

M ethods based on the one-to-one tlieorem (6.2.10) tlia t involve looking a t the 
boundary are usually more usefiil than examining the derivative. If zj =  ric**’ 
and zz =  r^ei03 are on the circle of radius R  around 1 with 0 <  R  < \/2, then 
—jt/ 4 <  0i,02 <  tf/4- z j =  forces r j  =  r z and ei4e‘ = eu$a, so 4(0j — 02) =  2jto. 
This cannot happen with 0y and 02 both between — jr/4  and * /4  unless 0] =  02. 
B ut then zt =  2*. (Wc have actually shown th at /  is one-to-one on the open quarter 
plane {z | - ir /4  <  argz <  w/4}.)

Exercises
1. How many zeros does z9 - 4 z 6-t-z2 — l have in the disk {z sudi th a t |z | <  1)?

2. How many zeros docs z4 — 5z 4-1 have in the annulus (z  11 <  |z | <  2}?

3. Show th a t there is exactly one point z in the right half plane {z  | R ez >  0}, 
a t which z 4- e~x — 2. Hint: Consider contours such as the one in Figure 
6.2.7.
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y

Figure 6.2.7: Contour for Exercise 3.

A. Show th a t if p(x) =  zn 4- 4* • •• 4- a\z 4* ao, then there must, be a t
least one point 2 with |z | =  1 ami |p(2)| >  1. Hint: If |p(2)| <  1 everywhere 
on {|2| =  1}, how many zeros has 0, , - i r "-1 4 - ... A-a jz 4- ao?

5 . * Let /  be analytic inside and on the unit circle |z | =  1. Suppose that 0 <
|/( z ) | <  1 if |r | =  1. Show th a t /  has exactly one fixed point (defined to  be 
a  point 20 such th a t f{zo) =  20) inside the unit circle.

6. Show th at e* =  Sr3 — 1 has three solutions in the disk {z such th a t \z\ < 1}. 
Hint: Think about Worked Example 6.2.11.

7. Show th a t the conclusion of Exercise 5 still holds if  tbe assumption 0 <  
|/ ( z ) | <  1 is replaced by 0 <  |/( z ) | <  1, allowing for the exception th a t the 
fixed point might be on the unit circle.

8. Let g„ = £X=o zk/kl. Let JD(U; R) be tlie disk or radius R  >  0. Show that 
for n  huge enough, gn has no zeros in 17(0; R).

9 . * (Fundamental Theorem of Algebra) Use Rouchg’s Theorem 6.2.5 to prove 
tliat if f(z)  =  do 4- a ir  + . . .  4-a„ z " ,ri >  1, and an ^  0, then /  has exactly n 
roots counting multiplicity.

10. Supply the details of the following proof of Rouchg’s Tlieorem: Under the 
hypotheses of Tlieorem 6.2.5, the {unction //(« , t) = sg(n(t)) 4- (1 -  « )/(7 (1)) 
is a dosed curve homotopy between the curves /  o 7  and g o 7  in C\{0}. Jt 
follows th a t / ( /  o y ;0 ) =  J(g o y ;0). The conclusion of Roudi6’s Tlieorem 
follows from this and Die argument prindplc.

11. " Extend tlie Root-Pole Counting Theorem 6.2.1 to  indude tlie following result. 
If  /  is analytic on A except for zeros a t ,a„ and poles a t 61, . . .  ,bm
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(each repealed according to  its  m ultiplicity), if h is analytic on A, and if 
7  is a  closed curve homotopic to  a  point in A, passing through none of 

i :*• • then

J  ^ ) h^ dz = 2l!i “•') ~ S  W M H r* &*)

12. Supply the details of the following proof (due to  Caratheodory) of Rouch6’s 
Theorem: The function

JF*(A) = _ L  f V M  +  O - W ,..
2K i J ,  g ( z )  +  (1 -  A)/(z)

is a  continuous function of A for 0 <  A <  1. B ut its value is always an integer, 
so

z f - r f  = F(o) = F(i) = z s - r g.

13. If f(z)  is a pnljoioinial, use Exercise 11 to  prove that

j _  r m
2ri Jy f(z)

zdz

is the sum of the zeros of /  if tbe circle 7  is large enough.

14. (a) Let /  : A —► B be analytic, oue-lo-one, and onto. Let w £ B  and let 7 
be a small circle centered a t zo in A. Use Exercise 11 to  prove that

r*(w) J _  f  A « )»  J r
1-iri Jy f(z)  -  w

for w sufficiently close to / ( zq). 

(b) Explain the meaning of

JL f  1
* * / » / ( * ) - «

15. Let f{z) be a polynomial of degree n. n  >  1. Show th a t /  maps C  onto C.

16. Suppose gn{z) =  YJL=o and let c > Q. Fbr huge enough n , are all
the zeros of g„ in the disk D{0; c)?

17. If /(z )  is analytic and has n  zeros inside the simple dosed curve 7 , m ust It 
follow that f '(z)  has ri — 1 zeros inside 7?

18. a Locate the zeros (as was done in Worked Example 6:2.12) fbr d ie  polynomial 
z* - z  +  5 =  0.
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19. Find an r  >  0 sud i th a t tbe polynomial z* —4z2+ z —4 has exactly two roots 
inside the circle (2) =  r .

20. Let /  be analytic inside and on |z | =  R  and let /(0 )  0. Let M  =  max |/ ( 2)|
on |z | R, Show th a t the number of zeros of f  inside |2| =  RfZ does not 
exceed

Hint. Let h(z) = f(z)/[(z — 21) * (z — z„)] where Zi are the zeros o f /  inside 
|z | =  R/Z and apply tlie Maximum Modulus Theorem 2.5.6 to  h.

21. * Show tlia t 2 *-» z2 +  3z is one-to-one on the se t {z sudi tlia t |z | <  1}.

22. W hat is the largest disk around zo =  0 ou w hidi the function in Exercise 21 
is one-to-one?

23. * Prove th a t the following statem ent is false: For every function /  analytic on 
the annulus 5 <  |z | <  there is a  polynomial p  sud i th a t |/{ z) — p(z)| <  |  
for |2| =  1.

24. Let /  be analytic on C  and let |/( z ) | <  5^/jzj for all |z | >  1. Prove th a t /  is

6.3 Mapping Properties of Analytic Functions
Further local properties of analytic functions (that is, properties th a t depend only 
on tbe values of f(z)  fbr z  in a ncighborliood of a given point 20) will be proved in 
tills section. Alternative proofs will be given here of tlie Inverse Function Theorem 
1.5.10, the Maximum Modulus Theorem 2.5.6, and the Open Mapping Theorem 
(stated formally for the first tim e in this section, but previously mentioned in Exer­
cise 8, §1.5). We can prove these theorems and also obtain information concerning 
the behavior of a  function near a  point by using the root counting formula (see 
Corollary 6.2.2):

where the roots are counted with multiplicity.

L ocal B ehav io r o f  A n a ly tic  F unctions If /(zo) =  wo with multiplicity k in 
the sense tlia t /(z )  — wq has a  zero of order k  a t zo, then we shall show that /  
is locally A:-to-one near zq. F irst consider the special example f(z)  — zk. This 
function has a zero of order k  a t 20 =  0 (here too =  0). For all ta near 0, zk =  u 
has exactly k  solutions near 0.

1 , M
lo g 2 'I°S |/(0)r

constant.

1
2vi
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To see tha t this behavior is inherited by a  more general function /  for which 
J(zq) =  u;o with multiplicity k, consider the power series expansion of /  around zq-.

OO
/(* ) -  w0 = 5 3  M 2 “  *>)"■

For |z — zo| tha t are small enough, wc might guess (conrcctly) that the behavior of 
tlie Iowest-dcgree nonvanishing term. a*(z — zo)fc, will dominate.

T heorem  6.3.1 (M apping Theorem : Inform al V ersion) Suppose f  lakes on 
the value v>o at zq with multiplicity k. Then for all to sufficiently near too, Hie 
function f  takes on the value to exactly k  times near zq (counting multiplicities). 
For all to still nearer wo, the k  roots o f f ( z )  =  w near zq are distinct

The more precise statement is tbe following.

Theorem  6.3.2 (M apping Theorem ) Let f  be analytic and not constant on a 
region A and let so € A. Suppose that f ( z ) — tt'o has a zero o f order k  > 1 at zo- 
Then there is an ij >  0 such that for any c £ there is a 6 > 0 such that if  
|w — mo| <  S, then f( z )  -  to has exactly k  roots (counted with their multiplicities) 
in the disk \z — Z a \ < e  (see Figure 6.3.1).

Figure G.3-1: This function is two-t*w>ne near Zo-

In fact, there is a A > 0 (probably smaller than rj) sudi that for any e €)0, A), 
then: is a 6 > 0 such that i f  0 < |u/ — tuo| <  6, then f ( z )  — w has exactly k  distinct 
roots in the disk 0 <  |z — Zo| < <•

P ro o f Since /  is not constant, the zeros of f{z)  — t»o are isolated. Thus there is 
an tj >  0 sudi that for |z — zo| < ij ,/ ( 2) — too has no zeros other than zo- On the 
compact set {z such that |z — ze| — c) (the circle 7  in Figure 6.3.1), f ( z )  — too is
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continuous and never zero. Hence there is a  S >  0 sudi th a t |/(z )  — wy>| >  S > 0 
for |z — 2&| =  c. Thus if w satisfies |w  — w0| <  S, then for |z  — zo| =  e, tbe following 
hold:

(i) / ( 2 ) - a * # < l

(ii) f(z)  -  in 0 (since f(z)  =  w would mean th a t |w -  wo| >  j )

(iii) {(/(*) - w )  -  (f(z) -  wo)| =  |w - 1£/„| < 6 < |f{z) -  t«o|

By Rouchc’s Theorem 6.2.5, f(z) — ui has the same number of zeros, counting 
multiplicities, as f(z)  — w<j inside tlie circle \z — 2o| =  <• Thus we have proved 
the first part of the theorem. Tb prove the second part, notice tlia t / '  is not 
identically zero on A (because /  is assumed to  not be constant). Tlie zeros of / '  
arc thus isolated. Therefore, for some A < r/t neither f(z)  — vm nor f { z )  is zero in 
\z — 2o| <  A except a t z q . Observe th at f(z)  — w still has the same number of roots 
as f(z) — wo for any w near enough to wo, but now tbe roots m ust be first-order, 
hence distinct, since / '  is nonzero. ■

O pen  M apping  an d  In v erse  F unction  T heorem s Tbe Mapping Tlieorem 
tells us th a t on some disk centered a t 20, /  is exactly k-to-one. Tbe theorem may not 
be directly helpful in finding the size of this disk (sec the examples and exercises a t 
the end of this section), bu t often knowledge of its existence can lead to  interesting 
results.

A function /  : A —» C  is called open iff, for every open set U C A,f (l f)  is 
open. By the definition of an open set, th is statem ent is equivalent to: For even' 
c >  0 sufficiently small, there is a  S >  0 such that |m — t«o| <  & implies th a t there 
is a  z , |z  — zq\ < c with w — f(z).  In Other words, if /  h its wq, it hits every «■ 
sufficiently near w®. Careful reading o f the definition of open set and examination 
of Figure 6.3.1 show th a t tlie Mapping Theorem implies the next theorem:

T heo rem  6.3 .3  (O pen  M app ing  T lieorem ) Let A C  C be open and f : A —> C 
be nonamstant and analytic. Then f  is an open mapping; that is, the image of any 
open set under /  is open

Using the Mapping Theorem 6.3.2, we can also get an alternative proof of the 
Inverse Function Theorem 1.5.10.

T heo rem  6 .3 .4  (In v erse  F unction  T heorem ) Let f  : A —» C  be analytic, h i 
20 €  A, and suppose that f'(zo) ^  0. Then there is a neighborhood U of zq and a 
neighborhood V of wo =  f(z o) such that f  : U —* V is one-to-one and onto and 
f~ l :V  —* U is analytic.

P ro o f The function f(z)  — wq lias a  simple zero a t zq since f( zo) j* 0. Wc can 
use Theorem 6.3.2 to  find e >  0 and S >  0 sudi th a t eadi w with |w — wq| <  S ha> 
exactly one preimage x  with \z — zp\ < e. Let V =  (to such th a t |w — wq| <  <} 
and let U be the inverse image of V under the map /  restricted to  {z such that
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|z  -  z0| <  e) (the shaded region of Figure 6.3.1). By the Mapping Theorem, /  mails 
IJ one-to-one onto V. Since /  is continuous, U is a  neighborhood of zq- By the 
Open Mapping Theorem, /  =  ( / _1)_1 is an open map, so / “ ' is continuous from 
V to  U. To show th a t it is analytic, use

(see Excrdsc 14 a t the end of §6.2). Tliis is analytic in ui from Worked Example
2.4.15. ■

These ideas can he used as the basis for another proof of tbe Maximum Modulus 
Theorem (see §2.5), as follows.

T heo rem  6.3 .5  (M axim um  M odulus T heorem ) Let f  he analytic on a region 
(open connected set) A. I f  | / |  has a  local maximum at zq e  A, then f  is constant

P ro o f Suppose th a t /  is not constant and th a t 20 €  A. Since /  is an open map, 
for |t» — /(zo )| sufficiently small there is a 2 near zq with w =  /(z ) . Choose to with 
M  >  |/(so )|. Specifically, choose ta =  (1 +  S/2)f(zo) if /(zo ) ^  0 and w  =  6/2  if 
/ ( 20) *  0 for 6 small. Then it is clear th a t /  does not have a relative maximum a t 
«o- ■

A sim ilar proof shows th a t if /(zo ) ^  0, then /  has no minimum a t zo unless /  
is constant. The Maximum Modulus Principle 2.5.6 follows, as in §2.5.

Worked Exam ples

E xam ple 6 .3 .6  Prove the following: I f f  is analytic near zo €  A and i f  / ( z ) —/(zo) 
has a zero of order k at zq, where 1 < k < 00, then there is an analytic function 
h(z) such that f(z)  =  /(zo ) 4* (fr(z)]* for z near 20, and h is locally one-to-one.

S o lu tio n  Siuce k  <  00, /  is not constant. Since /(z )  — /(zo) has & zero of order 
k  a t zo> we can write f(s)  -  /(zo ) =  (z — zo)*£(z), where ^ (20) 0 and 4  is
analytic. Por z near zq, ̂ (2) lies in a  small disk around 0(zo) not containing 0, by 
continuity. On such a disk we can define y/$(2) ai>d let h(z) =  (z — zo) >/?(*)* 
Then /i'(zo) ^  0, so by the Inverse Function Theorem, h  is locally one-to-one. See 
Figure 6.3.2.

E xam ple 6 .3 .7  Determine the largest disk around zo =  0 on which the function 
f(z)  =  1 +  z +  z2 is one-to-one.
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X

Figure 6.3.2: Worked Example 6.3.6 with k = 3.

Solution Since /'(0 ) =  1 ,/(z )  — 1 has a  am ple zero a t 0, and the Mapping 
Theorem (6-3-2) shows that /  is one-to-one on some disk around za — 0. Because 
f ( z )  — 1 =  2 -f z2 =  z (l +  z), which has roots a t 0 and - 1, we know that f ( z )  -  1 
has only one root in the disk {z such that |2| <  1}. This disk is the disk in the 
first part of the Mapping Theorem, but tha t does not guarantee that /  is one-to- 
one on the disk; in fact, it is not. Tire Mapping Theorem shows only that f  is 
one-to-one on the subregion of the disk shaded in Figure 6.3.1, the preimage of 
(u> such that \w — mol < 5}- We can find out what causes this phenomenon by 
plotting the image of the unit circle. In this case f ( z)  ■» 1 +  2 -f z2,20 =  0, and

' ( a r a M ' + a H 1* * ) '

1 +7 ? ) =(' - ■ 0~ 1

u}q =  I. Thus,

m = 1

/ ( 0 = 3  

/(* )= »  

/ ( - d = i  

/ ( - £ )  =  -*

/(e 2" / 3) =  0 

/(e 4«/3) =  0

Plotting these points, we find that the image of the unit circle is as shown in Figure 
6.3.3.
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Figure 6.3.3: linage of the unit circle under f(z) =  1 + z +  3?.

The index of the image curve with respect to the small shaded region is 2. 
Therefore, each point here is hit twice by points in the unit disk; for example, 
/ '(—|)  =  0 and / (-§ )  *= §. The Mapping Theorem shows that /  is two-to-one on 
small neighborhoods of — 5 . Thus /  will not be one-to-one on any disk containing 
a neighborhood of — | .

Consider the disk JD(0;r) =  {2 such that |z| < r}. The boundary curve is the 
circle 7 r — {z sucli that |zr| =  r}. As r  gets smaller, the -troublemaking loop in 
the image curve shrinks. For some critical ro it disappears. For r  > ro, /  is not 
one-to-one on tv- For r  <  ro, /  is one-to-one on yr. By the One-to-one Theorem 
(65.10), /  is thus one-to-one on Z)(0;r), and the desired disk is D(0;r0). Ib  find 
r0, suppose that rtf0 and re’*  lie on yr and that f(rei0) — /{re’*). Tlien

l + re* +  r V ”  =  1 + re’* + f*c« *

Hence e*° + re,2fl = e‘*  -H re*2*, so

re«(e+V')(e«‘(e-V'> _ c«(̂ -a>j _ cr(0-M»/*(e«'(*~e)/2 _ ene-i>yiy

Thus,

r e ^ +^ 2ain(6 - tf) =  -s in  .

In other words,

( ^ )  =  (£=*) .

One of two things must happen: either sin|(6—^ )/2 ] =  0, in which *•».«»» 0—tp =  2?m  
for some integer n, and thus rci0 = re’*, or cos{(0 — tfr)/2) =  —(1/2rjc- *^*^^2-
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If r  >  the latter can happen for t& =  - 0; for example, a t r  =  1, it occurs 
a t the points e2"^3 and e4**/3. If r  <  this same condition cannot hold, since 
|cosl(0-t& )/2)| <  1. If r  =  | ,  it can happen only fo rd  *  \!r =  n. The critical radius 
is therefore ro — Hence /  is one-to-one on the disk P (0; | )  =  {2 such th a t |z | <  
§} bu t not on any larger open disk. (X>(0; 5) is the largest disk around 20 =  0 on 
which f ( z )  is never zero. I t is not generally true th a t th is will also be the disk on 
which /  is one-to-one (see Exercise 3)).

Exercises
1. Let f(z)  = z + z2. For each 20 specified, find the largest disk centered a t Zq 

on wiiich /  is one-to-one:

(a) 2o -  0 (b) 2o =  1

2. * W hat Ls the largest disk around 20 — 1 on which f(z)  =  e* is one-to-one?

3. Let /  be analytic on D =  {2 such th a t |z  -  z<j| <  r ) . Let /(zo ) =  wo and 
suppose th a t /(z )  — too has no roots in D other than zo and th a t / '( z )  is 
never zero in D. Show th at it is not necessarily true th a t /  is one-to-one on 
D. Hint: Consider z3.

4. W hat is the largest disk centered a t 20 — 1 on which f(z)  =  23 is one-to-one? 
Hint: See Exorcise 3.

5 . " If /  is analytic on 4 .0  6 A, and / '(0 )  0, then prove that near 0 we can
write f ( z tt) =  / ( 0) -t- (/t(z)]n for some analytic function h th at is one-to-one 
near 0. Hint: Use Worked Example 6.3.6.

6. Let u : A -* R be harmonic and nonconstant on a region A. Prove th a t « is 
an open mapping.

7. Use Exercise 6 to  prove the maximum and minimum principles for harmonic 
functions (see §2.5).

8. Let /  be entire and have the property that if B C C is any bounded set.
then is bounded (or perhaps empty). Show th at for any w e  C, there
exists z  €  C such th a t f(z) — w. Hint: Show that /(C ) is both open and 
closed and deduce th a t /(C ) =  C. Apply this result to polynomials to  deduce 
yet another proof of the Fundamental Theorem of Algebra.

9. Show th a t the equation z =  r “ * ,a  >  I, has exactly one solution inride the 
unit circle. 10

10. Consider Worked Example 6.3.6 and take the case where k  =  4. Visualize the 
local mapping in three steps as follows:

Z>~* t — ( z -  zo)y/<t>{z): =  a w =  s ■+■ f(zo).

Sketch th is mapping.
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11. Suppose /  is analytic in a region A containing the closed unit disk D =
{z such th a t |z | <  1} and th a t |/(z ) | >  2 whenever |z | =  1. If /(0 ) =  1, show 
tlia t /  has a  zero in D.

12. Let /(z )  =  °an*n have a  radius of convergence R. Suppose tlia t |a j | >
n |a„ |rn-1 for some 0 <  r  <  R. Show th at /  is one-to-one on {z sudh th a t |z | <  

r} unless /  is constant. Compare your method with th a t used to  solve Worked 
Example 6.2.13.

R eview  Exercises for Chapter 6
1. Let /  be analytic on {z such th a t |z | <  1} and let / ( l /n )  =  O.n =  1,2......

W hat can bo stud about / ?

2. Suppose th a t /  and g arc analytic on the disk A =  {z such tlia t |z | <  2} and 
tlia t neither /(z )  nor g(z) is ever 0 for z  €  A. If

f ( l / n )  gf( l /n)
/ ( l /n )  5(1/n )

for n 1 ,2 .3 ,4 ...,

show there is a  constant c such th a t f(z)  — cg{z) for all z €  A. Hint: Consider
( //ff ) '0 /n )-

3. Suppose th a t /  is an outirc function and thnt there is a bounded sequence of 
distinct real numbers 01, 02, 03, . . .  such tlia t /(a* ) is real for each k.

(a) Show th a t /(x )  is real for all real x.
(b) Suppose Oi >  os > 03 >  . . .  >  0 and lim ^oo® * =  0. Show th a t if 

/(®2n"ri) =  /(o jn ) for all n , then /  must be constant.

4. If /  is analytic on the set {2 such th a t |z | <  1} and / ( I  — l/n )  =  0 ,n  =  
1, 2,3 , . . . ,  docs it follow that /  =  0?

5 . * Let /  lie analytic and bounded on {z | Im 2 <  1} and suppose th a t f  is reni 
on the real axis. Show that /  is constant.

6. Let /  be analytic and bounded on |z  +  i| >  A and real on ) - 1 , 1(. Show that 
/  is constant, hint: Use the Schwarz Reflection Principle 6.1.4 from §6.1.

7. Let /  be entire and suppose th a t for z =  x  real, f( x  -f-1) =  /(a :). Show tlia t 
/ ( z  +  1) =  /(z )  for all z €  C.

8.  a Show th a t for n  >  2, all the roots of zn — (2* 4- 2 +  l) /4  =  0 lie inside the 
unit circle.

9. Suppose that /  is analytic in C except for poles a t n ±  i, n  =  0, ± 1, ± 2,__
W hat is the length of the longest interval jxn — i?, xo +  R | in R on which 
/(®o) +  /'(® ti)(* -  ®o) +  f u{x o)(® -  ®o)2/2 + . . .  +  / (fc)(®o)(* -  x0)k/k\ + ... 
converges?
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10. Let f : A —* B he analytic and onto; assume th a t z i, 6  A, zj f^zs, implies
th a t f(zi) jL /(«a). Prove th a t f ~ l is analytic.

11. Let /  be a  polynomial. Show th at the integral of / ' / /  around every sufficiently 
large circle centered a t the origin is 2?ri tim es the degree of / .

12. " (a) Prove Vitali’s Convergence Theorem. Lei f„ be analytic on a domain A
such that

i. For each closed disk B in A there is a constant Mg such that
|/n (z )| <  Mb f o r a l l z C B  andn — 1 ,2 ,3 ,___

ii. There is a sequence of distinct points Zh of A converging to zq €  A 
such that lun„_oo f n{zk) exists for k  =  1 ,2 ,....

Then /„  converges uniformly on every closed disk in A; the limit is an 
analytic function. Bint: F irst take the case of a  disk B  with radius R  
and Zk —* zq — the center of B. Use the Schwarz Lemma to  show th a t 
|/„ (z ) — fn(zo)\ <  2A#|z — zo\/R. Then show th a t

!/„(*>) -  fn+P{zo)\ < ^ |2fl~ 2°l +  |/„(2 ) -  /*+ ,(*)!

and deduce th a t f n(zo) converges. Let

9n(z) =  / n ( f ) -/„ (* > )
Z  —  Sq

and conclude th a t gn(zo) converges. Show th a t in general, if 

fn(z) -  5 ^ a „ .it(2 - 2o)fc,
fesO

then a„'k -* a* as n  -»  oo. Deduce th a t /„ (z ) converges uniformly 
in \z -  Zq| <  B. — e. Then use connectedness o f A to  deduce uniform 
convergence on any closed disk.

(b) Show th at if condition (i) is om itted, the conclusion is false. (Let /„ (z ) =  
z \ )

13. Let /  be analytic on a  region A and let 7  be a  closed curve in A homotopic 
to  a  point. Show th at

* ( L  t ) = o-

14. Let f(z)  be analytic on {z | 0 <  |z | <  2} and suppose th a t for n  =  0 ,1 ,2 ,...

f  znf(z)dz  =  0.
Jl*l=i

Show th a t /  has a  removable angularity a t z  =  0.



§6-/1 Review  Exercises fo r  C hapter 6 407

15. Let /  be analytic and bounded on A = [z such that |z | <  l} . Show th at if /  
is one-to-one on {z 10 <  |z | <  1}, then /  is one-to-one on A.

16. * Let |/( z ) | <  1 when |2| =  1 and let /(0 )  =  |  w ith /  analytic. Prove th a t
l/(* )l £  §(3|zl +  1) for |z | <  A and |/(z ) | <  1 for A <  |2| <  l.

17. Let /  and g be continuous for \z\ <  1 and analytic for |z | <  1. Suppose th a t 
/  =  g on the unit circle. Prove th a t /  =  y.

18. If f(z)  is analytic for |2| <  1 and if |/(z ) | <  1/(1 — |z |), show th at the 
coefficients of the expansion f(z) = Y^L{tanzn arc subject to  the inequality

19. Which of the following statem ents is/are true?

(a) The radius of convergence of 2"z2n is 1/V5.
(b) An entire function th a t is constant on tiie unit circle is a  constant.
(c) H ie residue of l /( z ,0(z -  2)) a t the origin is —(2)~10.
(d) If /„  is a  sequence of entire functions converging to  a  function /  and if 

the convergence is uniform on the unit circle, then /  is analytic in the 
open unit disk.

. f*  dO 2jt

(<SJ h  a  +  cos0 a * - r
(f) For sufficiently large r,s in z  maps the exterior of the disk of radius 

r({z such th at |z | >  r}) into any preassigned neighborhood of oo.
(g) Let /  : C -+ C be analytic in the open unit disk and let /  have a  

nonremovable singularity a t i. Then the radius of convergence of the 
Taylor series of /  a t 0 is 1.

(h) Let /  : C - t  C be analytic and nonconstant and let D be a domain in
C. Then /  maps the boundary of D into the boundary of f(D).

(i) Let /  be analytic on {z | 0 <  \z\ <  1} and suppose th a t \f{z)\ < 
lo g (l/|z |). Then /  has a  removable singularity a t 0.

(j) Suppose th a t / :  C —♦ C is entire and Uiat /  has exactly k  zeros in the 
open unit disk but none on the unit circle. Then there exists an e >  0 
such th a t any entire function g th a t satisfies \f(z) — g(z)| <  e for |z | =  1 
must also have exactly k  zeros in the open unit disk.

20. Prove the Pkragm dn-Lindelof Theorem:

(a) Suppose that f  is analytic in a domain that includes Vie strip

I f  liuit _oo,i6C /(* ) =  0 an^ if  |/(*0 I -  * and  1/(1 +  *A)| 5  1 for all real 
t, then |/( z ) | <  1 for a l lzZG.

(? =  {z € C 10 <  R ez <  1}.
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(b) If  g is analytic in a domain containing G, if  lim------. gg j(g ) =  0, and
if  |ff(&)| ~ M  and |$(1 +  it) | <  N  for all real t, then

Bint: Apply the result of (a) to  /(z )  =  g(z)/Ml~*N*.

21. Is it correct to  say th a t 1/y/z has a  pole a t z  =  0?

22. * Prove th a t for the principal value of the logarithm , I log z I <  r / ( l  — r )  if
|1 - * |  < r < l .

23. (a) Let /  : C -» C  be continuous on C and analytic on C \R . Is /  actually
entire?

(b) Let /  =  C  —► C  be analytic on C \R . Is /  entire?

24. Let P(z) be a  polynomial. Prove th a t

f  P{z)dz =  —2jt.P'(0).
J l=M

25. Find the radius o f convergence of the series 2"*n.

26. Show tlia t /(z )  =  (z2 +  l j/f z 2 — 1) is one-to-one on {z | Im z >  0}. Is it 
one-to-one on any larger set?



Chapter 7

Asymptotic Methods

Tliis chapter gives an introduction to  the theory of asymptotic methods, th a t is, 
to  various approximation todiniqucs for lim its. The chapter begins with infinite 
products and the gauiiua function. These topics arc of interest in their own right, 
and they provide motivation for the general study of asymptotic expulsions, which 
is begun in §7.2. One of the main techniques used in this analysis, the method of 
steepest descent, and its variant, the method of stationary phase, are also considered 
and are applied to  Stirling’s formula and to  Bessel functions in §7.3.

7.1 Infinite Products and the Gamma Function
l b  study the gamma function and subsequent topics, we first develop some baric 
properties of infinite products, which are somewhat analogous to  the infinite sums 
considered in §3.1. For motivation, note th a t any polynomial p(s) can be w ritten 
in the form

p(z) =  oB(z — « i ) . . .  (z — o „) = o „  J J ( z -  oi )

where O i,... ,a „  are the roots of p(z) =  a^z” + . . .  - fa iz + q o  and J ]  stands for 
“lake the product o P  in the same way as £  stands for “take the stun of.” I t is 
natural to  attem pt to  generalize this expression to  entire functions, in which case 
tiie product becomes infinite.

In fin ite  P ro d u c ts  Let 2j , z j , . . .  be a  sequence of complex numbers. We consider 
00

n o  +*n)  — (1 + 2l)(l4-Zfc)... •
n**l

We write 1 +z„ because if the product is to  converge, it is plausible th a t the general 
term  should approach 1, th a t is, —» 0. Roughly speaking, tins is because if we

409
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take the logarithms of both sides, then for convergence of the resulting sum, the 
n th  term , log(l +  Zj,) should go to  zero (by the n th  term  test for series) and this 
means th a t z„ should go to  zero.

Some technicalities arc involved when Zn =  — 1 because the corresponding log­
arithm s become infinite. We want to  show the product to be zero yet be aide to  
impose some convergence condition. The following definition fits our needs.

D efin ition  7.1.1 The product I"JJJLi(l +  Zr) ** ^  b  converge i f  only a finite 
number of Zn equal —1 and i f  the quantity

n
|| (1 +  c) = (1 + ... (1 + 2n)
kmm

(where zie qt —1 for k  >  m ), converges a s n —* oo, to a nonzero number. We set

U ( l + t tt) = U m of l ( l + z k).
n=l tel

(This product will be zero if some Zk — - 1  and nonzero otherwise.)

For example, consider

1 2 3
2 3 4 '

The nth  partial product is

1 2 n ~ 1 _  1 “  * ™ "  
2 3 n  n

Thus, the product does not converge, because we have demanded convergence to  a 
nonzero number. In these circumstances, we would say th a t the product diverges 
to zero. If we started a t n =  1, the product would still diverge. One reason for 
this terminology and convention is th a t the sequence o f logarithms of the partial 
products diverges to — oo.

By starting a  given product beyond the point where some 2* =  —1, we can 
assume tlia t zn £  — 1 for all n. Such an assumption imposes no real restrictions in 
the tests for convergence.

T heorem  7 .1 .2  (C onvergence T heo rem  fo r P ro d u c ts)

0) J /rK L iU  +J®") converges, then z„ -* 0.

(ii) Suppose that |zR| <  1 forall n =  1 ,2 ,... so that 1. 7 te n p ” i n + :«
converges if  and only ifY^fLi log(l -fz„) converges. Here, log is the principa 
branch; |z„ | <  1 implies that iog(l +  a*) is defined.
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(ill) n~,(l + |z n |) converges [2«| converges. We say that I"KHiO +  *«)
converges absolutely in this case.

(iv) / /r E L if 1 +  l*nl) converges, then rE °_ ,(l +  **) converges.

C riteria (iii) and (iv) are particularly im portant and art* easy to  apply. H ie 
proof of this theorem appears a t the end of this section, hut the plausibility of 
the theorem is discussed now. Criterion (i) was explained a t the beginning of this 
section. To explain (ii), note th a t if we let Sn = £ ?  l0g(l+2fc) and Pn =  II?(l+2fc), 
then Pn = eSm. T hat (ii) is plausible follows from this equation. Indeed, if S„ —* S, 
it is clear th a t P„ —» c^. Once (ii) is shown, (iii) and (iv) follow. The following 
corollary is implicit in the preceding discussion.

C oro llary  7 .1 .3  If  |2*| <  1 and J  log(l +  Zn) converges to S , then {JO +  *»») 
converges to cs .

This corollary is sometimes useful, bu t when it is applied to  concrete problems, 
the sum of logarithms can be difficult to  handle.

Let fn(z) be a  sequence of functions defined cm a  set B  C C. How wc should 
define the concept of the uniform convergence of f j ^ l  + / r) should be fairly clear. 
Wc do th is next.

D efin ition  7 .1 .4  77ic product

f l | l  +  /n(2))
n s !

is said to converge uniform ly on B  iff, for some m , fn(z) /  -1  far n >  m and 
all z € B, if the sequence Pn(z) = n £ _ m[l +  /*(2)1 converges uniformly on B  to 
some P(z), and i f  P(z) 0 for all z € B  (see §3.1 for the definition of uniform 
convergence of a sequence of functions).

The next result follows from the Analytic Convergence Theorem 3.1.8.

T heo rem  7.1 .5  (A n a ly tic ity  o f In fin ite  P ro d u c ts) Suppose that f n(z) is a se­
quence of analytic functions on an open set A and that n jJ L jl  +  /»(*)] converges 
uniformly to f(z) on every closed disk in A. Then f(z) is analytic on A. Such 
uniform convergence holds if  |/« (r ) | <  1 for n  > m and i f  either

5 3  !og((l +  /„(*)) or 5 3 l/„ (2 ) |
n s m  n s l

converges uniformly (on closed disks in each case).

Tb chock the validity of this statem ent, one roust check th a t the proof of the 
convergence theorem for products works for uniform convergence; this is left as an 
exercise.
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C anonical P ro d u c ts  The following theorem is a special case of a  result by Weier- 
strass that constructs the most general entire function with a given set of zeros. 
The special case described here is applicable to  many examples, yet it illustrates the 
main ideas of the general case. (For a  statem ent of the general case, see Exercises 
10 and 14 a t the end of this section.)

T heorem  7.1 .6  (T heorem  on  C anonical P ro d u c ts) Let a ,,a 2, . . .  6c a given 
sequence (possibly finite) of nonzero complex numbers such that

< 00.

I f  g(z) is any entire function, then the function

f(z)  =  [ f l  ( l  -  e - / - j  (7.1.1)

is entire. The product converges uniformly on closed disks, has zeros at 01, 02, . . . .  
and has a zero of order k at z  = 0, but it has no other zeros. Furthermore, if f  is 
any entire function having these properties, it can be written in the same form. In 
particular, /  is entire with no zeros if  and only if  f  has the form f(z)  = e***) for 
some entire function g. The product

c*/°»

is called a canonical p ro d u ct.

The proof appears a t the end of this section. The result is plausible if wc note 
th a t the product vanishes exactly when z  is equal to  some a,, and th a t zk has a 
zero of order k  a t 0. The finiteness condition on the a„ guarantees convergence of 
the product, as is shown in the proof (see Exercise 10 for more general conditions). 
Also, «**«) vanishes nowhere, since e”  0 for all w €  C. Wc note th a t the points 
01, 03, . . .  need not be distinct; each may be rejieated finitely many times. If On is 
repeated / times, /  will have a  zero of order / a t a„.

The Theorem on Canonical Products 7.1.6 will be applied several tim es in the 
remainder o f this section. Fen* example, Worked Example 7.1.10 proves th a t

sin nz — rrz J J  ( l  -  —̂  e1^1
n= -  oc.nyEO

(7.1.2

G am m a F u n ctio n  The gamma function is a  useful soiutiou to  an interpolation 
problem tlia t has been studied since the 1700s. Here is the problem: Find a contin­
uous function o f a real or complex variable that agrees with the factorial function at 
the integers. The gamma function, r (z )  is one solution. It is analytic on C except
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for simple poles a t 0, —1, - 2 , . . . ,  and P (n +  1) =  n! for n  =  0 ,1 ,2 ,—  The impor­
tance of tltifi function was realized by Euler and Gauss as early as the eighteenth 
century.

Two equivalent definitions of the gamma function will be given: the first will 
be in term s of infinite products, the second in term s of an integral formula. These 
two formulas are due to  Euler, with significant contributions made by Gauss and 
Legendre. The main facts tlia t are included in the following discussion and in the 
end-of-section exercises axe summarized in Table 7.1.1 a t the end of this section.

For the first definition, wo begin with an associated function th a t is defined fay 
the canonical product

W  =  n ( l  +  f j e - l/n . (7.1.3)
R&l

By the Theorem on Canonical Products 7.1.6, this function is entire, w ith simple 
zeros a t the negative integers -1 , -2 , - 3 , . . . .  This function satisfies the ideutity

zG{z)G{-z) =  (7.1.4)v

because of equation (7.1.2). Consider the function

H(z) = G(z - 1 ) ,  (7.1.5)

which has zeros a t 0, -1 , —2 , . . . .  By the Theorem on Canonical Products, we can 
write

OO
H(z) =  ( l  +  0  e -2/"  =  z ^ G { s )  (7.1.6)

for an entire function g{z).
It will now be shown th a t g(z) is constant. Using the convergence theorem for 

products, we get

oo
log B{z) = logs +  g(z) -f [log ( L +  ~ )  “  ~ ] •

n=l

Since tbe convergence is uniform on closed disks, we can differentiate term  by term:

^ io g  //(* ) =  !+ < /(* )  + (7.1.7)
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Similarly, by (7.10)),

^ lq g G ( z - l )  =
OO

£
n s l

(  1 l )\ z  — 1 +  n  n j =  I - I + E f  1z ^ - ; \ r  +  nn c l
1 )

n + l )

= 1I X i + f ; (  !
,  \ * + »  n=l '

= 1
-  +
2 ~  \ z + n  i t ) • (7.1.8)

Comparing (7.1.7) and (7.1 .8) and using (7.1 .5), we see th a t g'(z) = 0, so g(z)
is constant. (Part (ii) of the convergence theorem for products is valid only for 
|z | <  1, but this region of validity suffices since two entire functions tlia t agree on 
|z | <  1 are equal by Thylor’s theorem or the identity theorem.)

The constant value g{z) — 7  is called f i l le r 's  constant We can determine an 
expression for it  as follows. By (7.1.3), (7.1.5), and (7.1.6), we get

G{z -  1) =  2c7£?(z), (7.1.9)

and therefore if we let z  =  1, then <?(0) =  1 =  e^G fl). Thus, by (7.1.3),

,-l/w

Noting th a t

l . l . i .  n + 1 c-*-t/2-*/3 
1 2  3 n

(n •+• i)e - , - , lz_- “ 1/n
n£_ i_ ,/2-..._ ,/n + c - i - i /2 -

i/«

l / n

we get e~~* =  lim ,,.^  Taking logs, we find th a t

7  =  lim ( l - l * ^ +  . . .  + - — i o g n | . (7.1.10.1
n —00 \  2  «  /

Our arguments show th a t th is lim it exists and is finite. Numerically, one finds from 
(7.1.10) th a t 7  «  0 .57716....

The gamma function  is defined by

T(z) = \ze^G{z)\~l =
fiel

-1
(7.1.11)

Since G is entire, with simple zeros a t —1, —2 , . . . ,  we conclude th a t T(z) is mero-
morphic, w ith simple poles a t 0 ,- 1 ,—2 ,___FVom (7.1.9), G(z — 1) =  zc 'G fz).
so

r ( z + l )  =  zT(z) for z j k 0 , - l , - 2 , . . . t (7.1.12.



§7.J In fin ite  Products and the Gamma Function 415

which is called the functional equation fo r  the gamma function  (see Exercise 
7). Also, r ( l)  =  1, since T(x) =  [2c**(?(2))-1 and G (t) =  e~y by our construction 
of 7 . Thus, from (7.1.12) we see th a t T(2) =  I • l,r(3 ) =  2 • l,r(4 ) =  3 • 2 • 1, and 
generally th a t, as earlier advertised,

r ( » + l )  =  n». (7.1.13)

This formula leads to  interesting approximations of n!, which are derived in §7.3 
(Figure 7.1.1 shows a  graph of T(x) for x  real.)

Figure 7.1.1: The graph of T(x) for x  real.

from  the equation zG(z)G(—z) — (sin nz)/n, wc get

r ( a ) r ( l  - * )  = £ - .  (7.1.14)sinirz
We claim th a t T(2) ^  0 for all z ,z  ^  0, —I , —2, ___Indeed, if T(z) =  0. we would
have the contradiction is =  r ( z ) r ( l  — z)sin irz =  0 as long as 2 ^  0,± 1,± 2, . . .. 
(These are the points a t which sin kz vanishes, so cross multiplication is invalid a t 
those points.) We also know th a t T(z) 0 if 2 =  1, 2,3 . . . ,  since F (n + 1) =  n !,n  =  
0 ,1 ,2 , —  This proves the claim.

If we let 2 =  1/2 in (7.1.14), we get (T (l/2))2 =  is. But T (l/2 ) >  0. To sec this, 
note th a t T(2) is real for real positive z\ wc have shown that I* has no zeros and 
th a t T(n + 1) — n! >  0. Therefore, since F(x) is continuous for x  €  ] 0,00 [ (because 
F  is analytic), it follows from the intermediate value theorem  th at L'(x) >  0 for 
all x  €}0,oc[ (as in Figure 7.1.1). Thus, T ( l/2) =  y/x (ratlier than the other 
possibility, —\/n ).

E u le r’s  F orm ula E uler’a form ula  for the gamma function is 
oe n 'n

«-* 00 z(z +  1) . . .  (z +  n) ’ (7.1.15)
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■>-*/*

Tliis formula is proven as follows. By definition,

^  =  2 ( Hill c(i+i/2+-.+«/»-&*«)=') [ linj TT A +  £ )
"(z) \«-*oo /  Jn— \  k /

= z j i t ^  c<H J/2+-+ l/n-lo*n). ^  +  c~r/k
fc*=l

= % «-[»-n('+f)]
since n~s — c -losn  *. Tims, wc get

W ) - * * E M )  s (i+̂ ]
-  i »,s . { ( 1+s)’ |n ( i ^ ) ( i 4 ) ‘’]}'

The first equality in (7.1.15) now follows. The student is asked to  prove the second 
in Exercise 11.

Gauss* F orm ula Another im portant property of the gamma fi»oet»nn is given in 
the Gauss formula: For any fixed positive integer n  >  2,

r (* ) r  +  i ) . . .  r  (2  +  =  ( 2 » > < - -> i/v w -~ r ( « ) . {7.1.16)

To prove this formula we first note th a t we can w rite Euler’s formula as
( m - l) in r m  .. (m  -  l)!m*P /* \  — | jm  . > • _ | ._

W  ~ m~oo2(2 + 1 ) . ..(2  + m - l ) ( 2 +m) ~ m ^ 2(2 + l) ...(r  + m - l )

=  Jim (»m  — l)i(m n)*
m-rOO z(z +  1 ) ... (2 +  rw  — 1) *

(The first line follows since m /(js 4- m) tends to  1 as m  —» oo. Wc f(z )  as 
follows:

J ' '  ~  n r (n i)
_ tu -l r r n—1 l:.« (m-IHm**Vn

_  , m K”  -  l)*pm < '-‘> /V " ’- l ( nz)(n 2 + 1) . . . ( n z - 1 )  
m“*°° (mn - 1 ) !  IX U  l(*w +  fc)(nz +  fc +  n ) . . .  (nz + k + mn — n)) 

({m -  l)!]’*m<n- ,>/2n«»'*-i
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Thus, /  is constant. Setting 2 =  l /n  gives

'«-rG)r(I)-r(;T1)>0'
so

rn—J
I/(*))2 =  . y . 2; ------. (n-lW

8111 n 8111 « * * *SU1 n

using (7.1.14). Ftora the fact that

. *  . 2n . (n -  1)tt n  ,  _ „s in — sin — . . .  sin --------— =  for n  =  2 ,3 ,. - -
n  n n  2B_1

(sec Exercise 28, §1.2), we get

Since /(* )  >  0,

/(* )  =
(2jr)<"“ 1>/2 

^  *

The Gauss formula therefore follows.
If wc take the special case of (7.1.16), in which n  =  2, we obtain the Legendre 

duplication formula:

22*"Ir ( 2) r  ( z +  $ )  “  V ^ rf2*)- (7.1.17)

R esid u es o f  th e  G am m a F u n ctio n  We claim th a t the residue 
—m , m  =  0, 1, 2, . . .  is (-1  )m/m l. Indeed, note th a t o fV U) tic * *

(z +  m )F(z) =  (^+ m )-r ^ ~ h -

More generally, we find that

(2 +  m )r(z) =
r ( r  +  tn  +  l)

2(2 +  1) . . . ( s  +  m - l ) *

Letting 2 -» -m , wc got

r ( i )  _  H r
-m (—m +  l ) . . . ( - l )  ml

as required.
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Integral Formula for tbe Gamma Function There is an important expression 
for F(z) as an integral. For Re 2 > 0, we shall establish the following formula known 
as Skitier's integral for T(z):

F _1e *dt. (7.1.18)

One might suspect that this expression can be evaluated by the methods of Chapter 
4. Unfortunately, those methods are not applicable (the reader should contemplate 
why tins is the case), so another method is needed to prove (7.1.18). Tb do this, 
we start lay defining

We claim that

Fni*)
nin*

s(2 + l) ...(z  + n)’ (7.1.19)

By Euler's formula, we will then have proved that F„(2) —» T(2) as n —* 00. 1b 
prove (7.1. 19), we note that, by changing variables and letting t =  ns,

F„(z) = n * /  (1 — s)ns*‘ lds.
Jo

Now integrate this expression successively by parts, the first step being 

Fn(2) = n* [ is 2(l -  s)n j \  1 -  s)"" V d sJ = ns£ j \ \  - s)n~lszd8.

Repeating this procedure, we integrate by parts n times and get

F  (Z\  _  ,  n - ( n -  l ) - . . l  t l . nin*
2(2 + 1) .  ..(2 + n - l )  J0 * aS 2(2 + 1) . ..(2 + n) '

whicli establishes (7.1.19).
A theorem learned in calculus (usually in sections on exponential growth or 

compound interest) states that

^1 - 0  —> e-f as n-»oo. (7.1.20)

If we let n -»00 fa (7.1.19), the validity of (7.1.18) seems assured. However, such 
a conclusion is not so easily justified, lb  do this, wc proceed as follows. Rom 
(7.1.15) and (7.1.19) we know that
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Let f(z )  = j£° e~Hz~1dt. This integral converges, since 11 <  (■ ‘t 8*1-1 and
Re 2 >  0 (use tlie comparison test and compare this integral with J^6 e~Hpdl and
fa tpdl, where p >  —1). We shall need to  know “how fast" [1 — (£/n)]B —* c~l. The 
following inequalities hold:

( A "  tV**
1 - ^ J  <  for 0 <  £ < n . (7.1.22)

(This follows from a  calculus lemma whose proof is asked for in Exercise 15.)
Ftom (7.1.21) and the definition of /  we have

f (z)  -  r(z) =  [ f  [c-‘ -  • (7-J-23)

To show th a t tins lim it is aero, note th a t c~itc~idt. —* 0 as n  -+ oo. Indeed if 
t  >  1, then | |  <  e~Hm where m  is an integer and m  >  R ez >  0. B ut from 
calculus (or directly using integration by parts), we know tlia t e~Hmdt < oo, 
so c~Hmdt —»0 as «  —»oo. I t remains to  be shown th at

t _ ( l ~ n )  ] i**1̂  ® 88 n °°-

By inequality (7.1.22),

i t  [ • " - ( -  s i  ‘- * i  « i f
witidi approaches zero as n  —» oo because the integral converges. This completes 
the proof of (7.1.18); th a t is, for Re 2 >  0,

c- ‘f - 'd t .

In fact, if we examine th a t proof, we see th a t provided 0 <  e <  R ,c <  |z | <  R, and 
(—tt/ 2) +S <  arg z <  (ir/2) -  S, S > 0, the convergence is uniform in s  (see Exercise 
18).

Proof of Theorem 7.1.2: Convergence Theorem for Products

(i) We can assume th at i ^ ^ - l  for all n . Let P„ =  (1 ^ ,(1  -|- 2*); therefore, by 
assumption, Pn —* P  for some P  ?£ 0. Thus, Pn/P n-i —» 1 by the quotient 
theorem for limits. B ut PnjPn- \  = l  +  *«. Therefore, Zn —» 0.

(ii) Let S„ = l0g (l +  2k) and let P„ =  IK = i(l +  z*), so that P„ -  es - . It 
is dear tlia t if Sn couverges, tlien P„ also converges because e* is continuous.
Conversely, suppose tlia t Pn -* P £  0. Tb show th a t Sn converges, it suffices 
to  show th a t for n  sufficiently large, all S„ lie in a  period strip  (on which c2 
has a continuous inverse).
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We cannot, write logP„ =  £ £ _ ,la g ( l +  2k), because P„ could be on the 
negative real axis. Instead, for purposes of this proof, let us choose the branch 
of log such tlia t P  lies in its domain A. Now P„ —* Pt so P« € A if n  is large 
and therefore we can write Sn — log Pn+kn-2iri for au integer k„. Subtracting 
tliis equation for n  + 1  from th a t for n  gives

(*«+! -  fc„) • 2jri =  !og(l 4- 2n+l) -  (log /n+ l -  log Pn)-

Since the left tide o f the equation is purely imaginary,

(fcn+l - k n ) - 2in = i|a ig (l 4- z„+i) ~  “ gA t+ i 4-a*g PnJ-

By (i), zB+j -* 0. an so arg(l 4- Zn+i) -» 0. Also, argP„ -»  n ig P , and 
therefore k,,+t — k„ -»  0 as n  -» 00. Since the fc„’s are integers, tin y  must 
equal a  fixed integer k  for n  large. Thus Sn =  log Pn 4* k  - 2jri, so, ns n  —• 
00, Sn —»5  =  kgP4-fc*2*ri.

(iii) By (ii), it suffices to  show th a t for Xn > 0 , £ i ,  converges iff £ ld g ( l 4 * « ) 
converges. To prepare for tlie proof, note th a t for |z | <  1,

log(I 4- 2) =  2
z2 z3 
2 +  3 “ so

log(l 4* z) . 2 . 22
z  ~ ' ~ 2 + T

whicli has a  removable singularity a t z — 0 and thus l i i n ,_ 4 ( io g ( 1 4 - 2))/z  =  1. 
Suppose tlia t J^Xn converges. Since x„ —> 0, given e >  0, wc have

0 <  log(l 4- xn) <  (1 4- t)xn

few sullicietitly large n. By the comparison test, £ lo g ( l 4- x„) converges. If 
we use (1 — c)xn <  iog(l 4  ®„). we obtain the converse.

(iv) Suppose th a t JX(1 4- |2n |) converges. Then by (ii), £  log( 1 4- |z„ |) converges. 
(We begin with term s such that the conditions in (ii) hold.) Tn fact, the 
argum ent in (iii) shows that £ lo g ( l 4- r B) converges absolutely and henco 
converges. Thus by (ii), f [ ( l  +  *») converges. ■

P ro o f o f T heo rem  7.1.6: C anonical P ro d u c ts  First we show th at the func­
tion 17(1 -  2/n„)e*/o" is entire. For each R  >  0, let jDr =  {2 such that |2| <  /?}. 
the closed disk of radius R. Since oB —» 00, only a  finite number of On's lie in Dn. 
say, a t , . . .  1. Tlierefore, for z  6 Dn, only a  finite number of term s (1 — z /o n)
vanish. We will use the following lemma.

Lem m a 7 .1 .7  I f l  + w =  (1 -  o)e“ and |a | < 1, then |tu| <  |a |2/ ( l  -  |o|)-

P ro o f W riting c° as a  series, we get

(1 -  «)e“ — 1 — Y
a"

(n —1)1 -----
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Thus, since |a | <  1,

<  H 3 + |a |>  +  . . .  =  r t ! ^ .  V 

The next step in the proof is to  show th a t the series

n=l n=] L '

converges unifonniy rind absolutely on Dr/?- This will show tlia t

er,an

is entire (by Theorem 7.1.5).
Indeed, for n  >  2V, |z /a „ | <  1 if |z | <  22/2. and so horn the preceding lemma,

K ( z ) | < J f (A /2)2 1
i - i  M 2

since |z | <  22/2 and |o ,,| >  22 for n  >  N . Thus,

K (z)| =

By assumption, £  M , converges, and so by the W cicretrass M test, Y lv,n(z) con­
verges uniformly and absolutd}'. Thus, d ie function / t , defined by

n=J

is entire. From the definition of the product it is dear tlia t /]  has exactly the 
required items. Tims, so does e®/i- If /  has the given zeros, then / / / ,  will be 
entire and have no zeros (by Proposition 4.1.1). Therefore, we need only prove the 
following lemma.

Lem m a 7.1.8 Let h(z) be entire with no zeros. Then there is an entire function 
$(z) such that h =  eP.

P ro o f This follows from Proposition 2.4.12 since the entire complex plane C  is 
simply connected. ■
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T able 7.1.1 

D efin ition

where

The Gamma, FHmction

r ( 2)
___________ i___________

»*■ H E *  ( i + £ ) « - * - ] ’

7 =  lim 
n—oo (l  +  2 «  0.577.

P ro p e rtie s

1. T is raeromorphic with simple poles a t  0, —1, - 2, ___

2. r ( z + l )  =  2r(* )f2 ?fe0, - l , - 2t . . . .

3. r(i»  +  l )  =  n !,n  =  0 ,l ,2 ,—

4. r (* ) r ( l  —z) = n /sin irz.

5. r ( 2)  ^  0 for all s.

e .r ( i ) =v -,r („ 4 ) = L M - > v i .

7' rW- j f l [(I + n)*(1 +n) ']'
n!n*8. r ( r )  =  lim -7n-.oo z(z 4- 1 ) .. .  {z +  n)

9. r ( 2) r +  +  =  (2ir)(,,- 1,/2» (1/2,- nT(Tiz).

10 22e- > r ( r ) r  (*  +  5)  =  \/*T (2z).

11. The residue of V a t —m  equals (—l)m/tn l.

12. (Euler's integral) T(z) =  J ° ° lz~1c~ldt (or R c r >  0. The convergence is

uniform and absolute few — jt/2 + 5  <  argz < jt/ 2 —6,6 > 0, and for c <  \z\ <  
R, where 0 < t < J l

dl.
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y

-l X

Figure 7.1.2: Contour for Haukel’s formula.

14. (Hankers formula) r (z )  =  ~ 2^  ~2 J j i - i y ^ e ^ d t .  (C  as in Figure 7.1.2.)

15. ^  (-t)"* ® * ^*  (C  as in Figure 7.1.2.)

16. T(z + 1 ) « for |z | large, R e2 >  0. (This is Stirling’s formula, 
to  be proved in §7.3.)

W orked Exam ples
E xam ple 7.1 .9  For what z  docs ( l+ z lF I^ L if1 -h*2") converge absolutely? Show 
that the product equals 1/(1 — z).

S o lu tio n  By Theorem 7.1.2(iii), wc have absolute convergence iff z2" con­
verges absolutely. This is the  case for |z | <  1, since the radius of convergence of 
the series is 1. Thus, th e  product converges absolutely for |z | <  1.

Our product is ( l  +  z )(l + z* )(l + * 4)(1 +Z8) ---- Notice th a t (1 +  2)(1 +  22) =
1 +  z  +  z2 +  z3, and

(1 +  z )(l +  z2) ^  + t 4) =  l  +  z +  z2 +  z3 +  . . .  +  z7.

Generally,

( l  +  z ) l i ( l  +  ̂ )  =  l + Z  +  Z2 +
k* 1

Tliis series converges to 1/(1 — z) as n  —* 00 since it is the power series around 
z =  0 for 1/(1 — z).
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E xam ple 7.1.10 Prove that

sin z
n=I '  '

S o lu tio n  The zeros of sinz  occur a t 0 and dbrwr; let us define «i =  w ,a2 =  
—x.oa =  2jt,04 =  —2 ir ,.... All the zeros are simple, and £ l / | a ,,|2 converges. 
Therefore, by the Theorem on Canonical Products 7.1.6, we can write

sinz =  c*Wz JJ ^1 — e*/“"

- ((’_ I)*1'*] [(’+;) e'*/’]
x [0 - s) [(J - •- •"■n.O-sSO

(gathering th e  term s in pairs). I t remains to  be shown th a t cP^  =  l ,  which requires 
an unusual technique.

Let

Pn(*j A »
t= i '  '

so tlia t pn{z) -> sin z  (uniformly on disks), and hence f* (z ) —* cosz. Thus,

K M
P»(?)

co tz  for z ^  0,dr7T,±2jr,___

But

=  £  lo g P .M  =  5;  +  l o g * + |> g  ( l  -

=  sr’W  +  j + g C j r ^ ; ) .

However, from §4.4,

1 , v ' '  2zco tz  =  -  +  >  -=----- = -rz  z2 -  n 27T2 n=l
for z ±  mr. Thus, gf{z) — 0, and so g{z) is a  constant, say c. Therefore,

n=l '  '
Letting z —»0, the left side approaches 1, while the right side approaches ec (Why?). 
Thus e* =  l  and we get the desired formula.
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Exercises

I. Show th at 1
2 '

2. Show th a t TT f l -----> ~ ^  =  i
* 4  \  «<*»+*)/ 3

3 . " Show th a t n ^ r j ( l  +  2«) converges absolutely if  lo g (l+ ^n ) converges 
absolutely.

4 . * Complete the  proof o f the analyticity of infinite products (7.1.5).

5. Use Worked Example 7.1.10 to establish Wallis* form ula,

*  2 2 4 4 6 6
2 ~ T  3 3 5 5 7 ’

6. Show th a t — "In3 + 1J
2
3

7. m Prove formula 2 of Table 7.1.1.

8. Show that (* +  £») converges (assiuuing th a t z„ - 1) iff, for any c >  0, 
there is an N  such th a t n > N  implies th a t

|( l  +  2 m )...(l+ 2 n + p ) -  1| <  e for Jill p =  0 ,1 ,2 ,-----

Hint: Use the Cauchy Criterion 3.1.5 for sequences.

9 . * Prove formula 4 of Tbble 7.1.1.

10. Let a j, n2, . . .  be nonzero complex numbers and assume V l°n |,+A con­
verges, where h > 0 is a  fixed integer. Show th a t the most general entire 
function having zeros a t a j ,o j , . . .  and a  zero of order k a t 0 is

f ( z )  —  e^e)r* JJ |^1 -  —  ̂c(»/«-4<s/««)’/*+™+(»/««)h/i.lj ^

where each of the points o,- may be repeated finitely often. Hint: Prove 
the following lemma: I f l  +  tt/ =  ( l -  a )<so+**/*+-+«,>/ ,« for iq i <  j .̂|lCU
H  < l«|'*+,/ 0  -  W).

11. Prove formula 8 of Table 7.1.1.

12." Using Euler’s formula (formula 7 ofThblc 7.1.1), prove that =  2F(z).
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13. Show th at in the neighborhood |z  -f m | <  l for m  a  fixed positive integer,

r (z )  —
V '  m!(z +m)

is analytic (tha t is, has a  removable singularity a t  z  =  -m ).

14. (a) (W exerstrass fac to riza tio n  th eo rem ) Let

E{z,h) =  (1 -  2)6*+**/*+ •■•+«*/*.

Show th a t the most general entire {unction having zeros a t d i, a2, . . . ,  
each repeated according to its multiplicity, where c» -* oo and having a 
zero of order k a t 0, is

/(z )  =  «*<*>** f j £  ( - I n ) .
iw l \®*» )

(b) Conclude th a t every meromorphic function is the quotient of two entire 
functions.

15. * Prove that, for 0 <  t < n,

0 < e ~ l t2e~*
n

16. Prove th a t, for R ez >  0,

H £ )
r(z )

Hint: If R ez >  0, then l /( z  +  n ) =  JJj*e~^a+n>dt. Use 7  =  lim«—oo(l +  5 +  
. . .  +  l /n  — logn) and Table 7.1.1, line 13.

17. Let 7  be a  circle of radius 5 around 20 =  0. Show tlia t f y T(z)dz = 2ni.

18. Establish the uniform convergence in formula 12 of Table 7.1.1.

19. * Prove HovkeVs form ula  (formula 14 of Table 7.1.1):

For what 2 is th is formula valid? Using F (z )r(l — 2) =  ir/sin jrz , conclude 
th a t
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20. Suppose one started by defining r(z) = t*~le~ldt for R ez >  0.

(a) Show th a t r ( 2) is analytic on R e2 >  0 by showing that 
converges uniformly on dosed disks as n  —> oo.

(1») Show th a t r(2 -M) =  zr(z),R ez >  0.
(c) Use (b) and analytic continuation to  prove tlia t T(z) can be extended

to  a  mcromorphic function having simple poles a t 0, —1, —2 ,___Hint:
The procedure used is analogous to th a t used in proving die Schwarz 
Reflection Principle; see §6.1.

21. " Show th a t

by using the gamma function. Hint: Relate these equations using integration 
by parts and P ( l/2) =  y/v.

7 . 2  Asymptotic Expansions and the 
Method of Steepest Descent

Asymptotic expansions provide a method of using the partial sums of a  series to  
approximate the values of a  fiinclion /(z )  for large 2. A striking aspect is th a t the 
series itself might not converge to the function and might actually diverge. If wc 
use only one term  we say th a t we have an asym ptotic approximation or asym ptotic 
formula for / .  Stirling's formula for the gamma function is such a  formula. This 
result, proved in §7.3, states that

The expression on the right side may be easier to  handle than the T function 
itself and has im portant applications in fields such as probability and statistical 
mechanics. Another famous example is the prime number theorem, winch asserts 
th a t if ir(x) is the number of primes less than or equal to  the real number z , then

Exactly what such a formula means and in what sense it is an approximation will be 
developed in this section. The tiieory of asym ptotic expansions considered in this 
section will be applied in the next, where Stirling’s  formula is proved and Bessel 
functions are studied.

There arc methods for studying the asymptotic behavior o f functions f(z)  other 
than those wc shall develop. For example, if /  satisfies a  differential equation, then 
tills equation frequently can lie used to  obtain an asym ptotic formula. The reader 
who wishes to  delve mote deeply into these topics should consult the references 
listed in the Preface.

r(x) ~  e '‘*z*“ , 2̂\ /2x for large x.
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“B ig  O h* an d  “L ittle  oh* N o ta tio n  Some notation is useful for keeping track 
of relationships in behavior between two functions. Suppose f(z)  and g{z) arc 
defined for z in  some set A. We sqy f(z)  is 0(g(z)) (pronounced “/(z )  is ‘big oh’ of 
g(z)") for 2 in A if there is a  constant C  such th a t |/( z ) | <  C |p(z)| for all z €  A. We 
usually write f(z)  =  0 (g(z)), although this is somewhat an abuse of notation since 
the object on the right is a statem ent of relationship and not a  specific quantity 
to  which /(z )  is equal. Fbr example, sinx  =  0 (x) for x in R, since elementary 
calculus shows th at |s in x | <  |x | for all x . Note th a t f(z)  =  0 (1 ) ju st means that 
/(z )  is bouitded.

More useful notation for us will be ‘little  oh." wliidi requires some sort of 
lim iting behavior for its definition. Roughly speaking, the notation 7 (2) =  0(9(2)) 
means th a t f(z)/g(z) tends to  0 ns z 20 or z — 00, etc. (Wc say “roughly" only 
because 9(2) could vanish.) For example.

1 — coax =  o(x) as x  —* 00
Iogx =  o(x) as r - i o o

e~x =  o as *  —► 00 for any n.

Wc will be concerned primarily w ith z —► 00 in a sector a  <  arg(z) <  0. For 
the retnaiuder of this section, unless specified otherwise, the symbols will thus lie 
defined as follows:

•  f{z)  =  0 (9(2)) means There are constants R  and A# such tlia t whenever 
|z | >  R  and a  <  nigfz) <  0, |/( z ) | < A /|y(z)|.

•  f ( z) =  0(9(2)) means For each c >  0. there is an J? such th a t whenever 
|z | >  R  and a  < aig(z) <  0, |/( z ) | <  c|9(z)|.

In some cases we will be interested only in behavior along the positive ra il axis and 
will then take a = 0  =  0. Notice th a t if f(z)  is 0 ( l / 2n+1), then it is 0(1/ 2” ), but 
(lie converse is not generally true.

A sym pto tic  E xpansions Chapter 3 was concerned with representing a  func­
tion fay an infinite scries th a t converges to  the value of the function and it carefully 
avoided divergent series. Nonetheless, divergent series can sometimes be useful, 
though one must be very careful in their interpretation. Wc will see th a t it is pos­
sible to  associate with a  function an infinite series wliidi may or may no t converge, 
but whose partial sums can be made to  yield good approximations to  the value of 
the fraction.

Consider a series of the form

S = « o  +  y +

and let
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Thus, S„ is well defined for z 0 but we do not demand tliat S  converge. The 
correct way to say that S  is asymptotic to a  given fiincUon /  is as follows.

D efinition 7.2.1 Wc say that / ~ S ,  o r that f  is asym ptotic to  S , or that S  is 
an asym ptotic expansion o f f ,  if

Although S  may he divergent, the partial sums may result in accurate approxi­
mations of / ,  the error being approximately 1/z". This will be illustrated with an 
example in the following paragraphs.

If we allowed the full range (—ar, w] for a rg 2, we might expect Oq + a \ f z  + 
ctz/z3 +  . . .  to converge if /(z ) were analytic outside a  large cardie, because /  has 
a convergent Laurent series of tha t form. However, f  usually has poles Zn -* oo 
(such as r(z ), wliich has poles a t 0 .— 1 ,— 2 ,...) , and therefore in many examples, 
we do not have a  Laurent series that is valid on the exterior of any d rde. If /  has 
poles z„ -» oo in the sector argz € \o ,0\ and /  ~  5 , then S  cannot converge at 
any zq. If it did, then S  would converge uniformly for all |z | >  |zo| + I. (See §3-3.) 
Definition 7.2.1 and the uniform convergence of Sn to S  would say that for huge 
enough |z| in that sector, we have |/(z ) — S(z)| < 1. But this cannot hold near the 
poles of / .

The following example should help to darify the concept of asymptotic expan­
sion

E xam ple 7.2.2 Show that for x  real and positive,

fa r  m gz lying in a specified range [a,0\ (see Figure 7.2.1).

k n[f{z) -  S„(zj\\ —> 0

► X

Figure 7.2.1: Asymptotic expansion.
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S o lu tion  Define

/ ( * )  =  f  r ' f - ' d L

(This is no t the  gamma function!) Integration by parts gives

J _ ,  2! _  . ( - l ) " - r(n -1 )1
x 2 + :b* * x “

Wc chum th a t

/(x) ~ S(x)
i __ 1
x

Note th a t the series diverges. Here the sector is a  =  0  =  0; th a t is, we arc restricting 
z  to  the positive real axis.

Indeed, if

> - 1)1
-----------»

we have

which approaches zero as x  —> oo. Thus /(x )  -  S„(x) is o (l/x n), so /  ~  S  as 
required. Even though n! grows quickly, we still have an accurate approximation 
because

and if x  is, say greater than n , then n !/x n+1 is very small. ♦

The next proposition gives some basic properties o f asym ptotic expansions. 

P ro p o sitio n  7 .2 .3  (i) I f

then

/ ( s ) ~ S ( r )  =  oo +  2l  
z ♦

and conversely.

/ w - * . w - o ( J L )
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oo n

and

a% 0.2 ,J ~  So +  “  +  ”« +  • • •
2 X>

,  -  , , fl2 if  ~aa + — + ^-\~  ■

(ftat «i ** a*. ^ tym p io lte  eqianiiinK  arc unique.)

(«i) If

and

/ ~ a o  +  — + ^ §  +  - * z 2Z

0 ~fflD +  — +  ^ J +  -*•

M  feeing valid in the same range o f a rgz, iften m  that range

. , . \ 0»i +&») . (<*a+te) .f+ 9 '» (a o  + ba) + -—  -----+  — — +  ***

and
n

fg~co + —+ %+■■■ where c» =
2 2T fĉ O

(Asymptotic series may be added and multiplied.)

(iv) 1W  different Junctions can have the same asymptotic eapanston.

(v) Let <f> : [o,oo(—» R  be continuous end suppose that tfx )  =  o ( l/s * ) ,n  >  2. 
Then

r  «*>*— ( £ (  ) •

P ro o f

(i) Since /  ~  S, we have, by definition, /  -  S„+i -  o ( l/z B+1). Therefore, we get 

/ “ & » = / “  +  S»+l ~ S„ = O  +  2n+l *  ® ‘
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(ii) We «li»n show th a t On =  fin by induction on « . F irst, by tbe definition of 
/  ~  S , f ( z )—oo —»0 as z —* oo, so no =  lints—o e /(2). Thusao — no- Suppose 
we have proven th a t (to — % . . .  ,a«  =  5«. We shall show th at «t»+j — *»+>• 
Given e >  0, there is an A such th a t if |z | >  A, we have

|**+1 [/W “ (“■ + y  + — + pfff)]| < ‘
and

* "* ' [/(* ) -  ( «  +  7  + . . .  +  t t t ) ]  | <  <•

Therefore, by the triangle inequality,

|on+i — «ti+l|
_ i. n4.i i |n»+i ^nr-i I
-  I2 l |2«+ i|

=  k " i | [ / w - ( « o + - + 5 w ) ]  -  [ « * > -  ( * . + - . + i ^ ) ] |

< €  +  € =  2c.

Thus |Gn-ti -  On+il <  2c for any e >  0. Hence a„+1 =  5*+,.

(iii) Let S„(z) =  «o + . +  a* /z" and SR(z) =  feo + bn/z n. We m ust show 
th a t /  +  g — (S„ +  Sn) =  o (l/z n). To do this, w rite

/  + 9 -  (Sn +  Sn) -  ( /  -  S„) + (5 -  Sn) =  o(l/z") +  o(l/z") =  o(l/z»).

1 b establish tbe formula for the product, note th a t

<b +  c j/z  + . . .  +  cnfzn =  S«S -f o ( l/z “),

since S„Sn =  <b +  C\/z + . . .  +  Cnfzn plus higher-order term s. Thus,

f g  -  (<b +  ci + . . .  + Gnfzn) - f g -  S„S„ +  o (l/s " ) .

Now w rite f g  — S„Sn =  ( /  — Sn)g+ Sn(g — Sn) end note th a t both term s are 
o (l/z ”), since g and Sn are bounded as z  —* oo.

(iv) On R , the function e~x is o(l/xn) ns x  —» oo for any n. Thus if /  ~  flo +  
a i/x  +  a2f x 2 + . . . ,  then /(x )  +  e- * ~ oq 4 -o j/x 4 -o e /x 2 +  . . .  as well.

(v) Since <j>(t) -  o ( l/t" ) , lim n-oo *"^(0  =  0. Given e >  0, there is an x0 >  0 
such th a t t  > xq implies |fn^(£)| <  e. Thus for x  >  x0,

roe | roo

so for x  > x0.
mn—l j <i>(*)dt<€.

Therefore, lim *—oo® "*1 <j>{t)dt =  0 , so  <p(t)di — o ( l / x " - 1 ).
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A sym pto tic  F orm ulas a n d  A sy m p to tic  E quivalence If a  function has an 
asym ptotic series as ju st described, then the partial sums of th a t series can be used 
to  obtain approximations to  the function for large z. However, the applicability of 
this method is a bit restricted. If /  has the asym ptotic series

/ ( s ) ~ 5 ( s ) = e o  +  ^ -  +  ^ + - . . ,

then f(z)  -  no =  o (l); tlia t is, limI.„ oc f(x)  = oq, so f  has a  finite lim it a t infinity 
in the specified sector. This is too restrictive, since we are commonly interested 
in functions th a t grow as x  grows, such as the two examples mentioned a t the 
beginning of this suction, T(z) and jt(z). Tb remedy this, we write

f(z)  ~ g(z) (®o +  ~  +  ^1 +  - • •)

to  mean th a t

/(* )  “  ff(2) joe +  “  + — + p ? + •  Q ^ ) ]  •

In other words, if g(z) jt 0, then

m
ff(*)

the hope being th a t g(z) is an easier function to  handle for large z  than is / .  
Incorporating the factor oq into g, we have

/ ( * ) ~ f f ( * ) ( i  +  7  +  p r +  - ) .

The first term  gives a  function g(2) with f(z)  = $(z)(l -f- 0 ( l/z )) , or, slightly more 
generally, f(z)  = g(z)[l +-o(l)). In Uiis case we say th a t /  and g are asymptotically 
equivalent.

D efin ition  7 .2 .4  Two functions f(z)  and g[z) are asym ptotically equivalent if 
f(z)  —  g(z)[l +  o (l)l. In this case we write f(z)  /V g(z).

Notice th a t if g(z) £  0, tins says f(z)/g(z)—l  =  o (l) so th a t limt _oo[/(z)/g (2)) =  
1 in the specified sector. The expression g(z) is thought of as giving an asymptotic 
formula for /(z ) . I t is in this sense th a t Stirling's formula and the prime number 
theorem are to  be interpreted.

The goal is to  use g(z) to  approximate /(z )  for large z. However, the approx­
imation need not be improving as z —» oo in the sense we have been using so for. 
T hat is, the absolute value of tbe error A/  =  g(z) — f(z)  need not be shrinking. 
Instead it is the relative error or percen tage e rro r, the error expressed as a  
fraction of the true value, wliidi has to  be shrinking. Tbe relative error is
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and th is goes to  0 as 2 goes to  infinity in the specified sector once it  is o (l).
The following simple example should clarify the points m ade in the preceding 

paragraph. Let f(z)  =  ze*/(l +  2). Then f(z)  ~  $(2) =  e*. Tbe asym ptotic error 
incurred by using g(z) to  approximate f(z)  is A /  =  e* — /(z )  =  e* /(l +  z). This 
error goes to  infinity as z grows along the positive real axis. However, the relative 
error, the absolute error expressed as a  fraction of the true value, is

A/  _  er 1 4-2 _  1 
/  1 + z  ze: 2’

which docs go to  0 as s grows.
As we have noted, one function might have two different-looking asymptotic 

formulas even though the ratio of the two will tend to  1 as z grows in the specified 
sector.

Many of the functions one wishes to  study either arise as or can be converted 
to  integrals of the form

/(*) = f
J-1

The T function is of this form:

r(z) =  j f °  e -^ d l  =  f

Wc will pursue this idea in $7.3 to  obtain Stirling’s  formula from a  result a t the 
end of th is section. The plan is to  find a  point £o on the curve such th a t the factor 
esh(ty is fairly large there bu t becomes small away from Co along the curve for large 
z. Then most of the contribution to  the integral will come from the p art of the 
curve near 4b end we may be able to  estim ate it in term s of the behavior of A and 
g near Co- F irst we turn our attention to  some cases in which h is simple enough 
th a t we can obtain all term s of the series.

L ap lace T ransfo rm s The Laplooc transform  is a  construction very much like the 
Fburier transform  wc m et earlier. Provided the integral makes sense, the Laplace 
transform of a function g defined on the positive real axis is

5C*)“ jT c-^gitydt.

We will devote considerable attention to  this construction and some of its applica­
tions in Chapter 8. Here we will see how asymptotic series might shed some light 
on the behavior of p(z) for large z.

P ro p o sitio n  7.2 .5  Suppose g is analytic in a region containing the positive real 
axis and is bounded on the positive real axis. Let the Taylor series for g centered 
at 0 be ttn^  b* &(z) = Io°e~stg(t)dt. Then

> «o at 2o2 nlaj,p ( z ) ~ -  +  ?  +  -

as z -*  oo.argz =  0.
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P ro o f  Let h(z) — (g(z) -  (ao +  o jz  +  ...+ -  a n -iz " -1 )]/*". T h a i k  is bounded 
on tile positive real axis because h ist, g is bounded, second, the polynomial term 
in the num erator lias degree less than n , and third, th e  lim it as z  tends to  0 is a„. 
Thus there is a  constant M  such th a t

which is what we wanted. ■

The assumption of analyticity for the function g fits nicely into the theme of this 
tex t and makes the simple proof ju st given posable. I t is worth noting, and impor­
tan t for many applications, th a t the same result holds with different assumptions 
on g. Analyticity is not so essential as th a t g be infinitely differentiable.

P ro p o sitio n  7 .2 .6  Suppose g is infinitely differentiable an the positive real axis 
and that g and each of its derivatives are of exponential order. That is, there 
are constants A* and Bn such that |p<">(i)| <  Anefl- ‘ for t  > 0. Let g{z) -  
S ?  e -^ g ^ d t. Then

as z —»oo, arg z — 0.

P ro o f Fix n  >  0 and suppose z >  max(J3o, B u . . . ,  /?„). Then repeated integra­
tion by parts gives

!o I
Thus,

Letting x  = zt, we get
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since |e“ *V*>(T')| <  Aisc^Bk~^>T, and th is last teem goes to  0 as T  grows. There­
fore,

-  s„(*)| <  jT |« -rV n)Wl<« <  J™  Ane ^ - ^ d t  =

and this goes to  0 as z  grows, as wc need. ■

The second result (7.2.6) applies to  infinitely differentiable functions th a t are 
not analytic, as well as to  functions such as polynomials, which are not bounded. 
The first (7.2.5) includes fiinctions such as g{t) = sine* whose derivative is not of 
exponential order.

W atso n 's T heorem  Tbe argument used for Proposition 7.2.5 will also establish 
an expansion with a  slightly more complicated function for h.

T heorem  7 .2 .7  (W atson’s T heorem ) Let g(z) be analytic and bounded on a 
domain containing the retd axis. Set

/(* ) =  P  e-^t~g{y)dy
J —OP

for z real Then

!  (x) ~ («„ + 2  + 5 1 ^ 2  + + j
as 2 —* oo,argz =  0, where g(z) = Y^Lo near zero- 

P ro o f We first observe th a t the function

h{z)•2j  _ g(s) -  (aa + a-iz + . . .  + a2n- l 2r2n~1)

is bounded on the real axis since g is bounded and since h(z) -» Oi„ as z  -* 0. 
Therefore, we obtain

10e~*v,n\g ( |f )  -  (<*o +  e , p  + . . .  +  au-itt2”"')\dy
>

Now we use tiic fact that for z  >  0,

< M  r  e - ^ t ^ d y .  
J— OO

and

e- V / 2y2t +Jrfy =  0
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(see Exercise 7) to obtain

£ / vj ( oov'EF , a2v/3s: , a4-\/5w:-l-3  ,
« J + . / l  + -

asn_2 • V^ir ' 1*3. . .  (2n —
' gii—1+1/2

from which tlic theorem follows.

— ^  | <  A/v/Sir—
3 ...(2 n  — 1) 

20+1/2 ’

M eth o d  o f S te ep e s t D escen t Finally wc turn  to  situations in which h may 
be more complicatod and in wliich more sophisticated tedm iques arc needed. One 
of these is called the method of steepest descent or the saddle-point method. I t 
was discovered by P. Debye around 1909 in connection witli some high frequency 
approximations in optics.

Wc seek an expansion of the form

/ ( 2) ~ 0(* ) ( l +  7 + ^ § + . . . )

for a  particularly simple fiinctiou g(z), and wc shall be mainly interested in ob­
taining the first term . The method described here works well if /  lias the special 
form f(z)  =  /7 csh^dfi.  We shall use contours 7 (t) defined for all £ €  R. We can 
integrate over such infinite contours in tiie same maimer as we would integrate over 
ordinary ones, as long as we check convergence of the integrals.

T heo rem  7.2 .8  (S te e p e st D escen t T heorem ) Let 7  :) — oo,oo(—» C  be a C l 
curve. (7 mag also be defined only on a finite intcroaL) Lei {b =  7 (fo) be a  point 
on 7  and let fc(() be a function continuous along 7 and analytic at Make the 
fallowing hypotheses: Fbr |z | >  R  and a rgz  fixed,

(i) f(z)  ~  f y e*,,(^dC converges absolutely.

(ii) /i,(Co) =  0 ;/i"(C o)^0 .

(iii) Im[zh(C)] is constant forQ on 7  in some neighborhood of (b.

(iv) Re(zA(£)] has a strict maximum aL (b along the entire curve 7 .

Then

/ ( z ) ~

as z —* oc, arg z fixed. The sign of the square root is chosen such that

%^VC AJ7(CO-7i(M > 0 -

The proof of this theorem is given in the Internet Supplement for this chapter.
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Remarks

(i) To achieve conditions (i) to (iv) it may be necessary to deform 7  by applying 
Cauchy's Theorem. A  path 7  verifying these conditions is called a  path o f 
steepest descent

(it) The asymptotic expansion in the conclusion o f the theorem depends only on 
A(£o) and h"(£b), not on the behavior of h elsewhere on 7  (except, of course, 
that h must satisfy' the iiypotlieses of the theorem). Higher-order derivatives 
would be used if further terms in the expansion were needed.

(iii) The origin or the term “steepest descent” can be traced to conditions (iii) and
(iv) in the following way. Recall that Im[z/i(C)] ~  p (C) mid Rcjzh(£)j =  «(£) 
are harmonic conjugates, and recall the fact that v is constant on 7  means 
that u  is clianging fastest in the direction o f 7 . Since Q, is a  maximum, 
w(C) =  Re(z/»(0 ] is decreasing fastest when moving away from £0 in the 
direction of 7 . Hence the curve 7  is the path of steepest descent. The term 
“saddle-point method” originated as follows. The function «(£) =  Re[z/t(£)J 
has a maximum on 7  at £0. But ft"(Co) r  0 implies that n Ls not constant, 
so Co must be a saddle point of u  since harmonic functions never have local 
maxima or minima (see Figure 7.2.2).

H

Figure 7.2.2: Saddle-point method.

(iv) Often tiic correct sign for the square root may be determined by examining 
the sign o f the integral defining /(z).

To obtain the higher-order terms in the expansion

/(* )
e *MC«) >/§ir

y f-h ‘% 0)
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one m ust be able to  compute more term s in the series £ =  Co +  0|« H -02®* +  . . .  
in tbe preceding proof. In am ple cases, these higher-order term s can be evaluated 
explicitly, as in Watson’s Theorem 7.2.7. The details of the method of obtaining 
higher-order term s will not be given here, because such term s arc needed only in 
refined calculations. The leading term  given in d ie steepest descent theorem is the 
im portant one.

The applications of this theorem given in §7.3 deal prim arily with the case in 
which 2 is real and positive. Clearly, in th a t case conditions (iii) and (iv) of tbe 
theorem can be w ritten equivalently with or w ithout the 2.

A proof sim ilar to  the proof of the Steepest Descent Theorem shows the following 
(see Exercises 8 and 10).

T heo rem  7.2.9 (G eneralized  S te ep e st D escen t T heorem ) Let the conditions 
of the steepest descent theorem (7.2.8) hold but let f  ham the form

f ( z )=  f c'W giQ dC

where g(<£) is a bounded continuous function on 7  with y({o) 0. Then

M eth o d  o f  S ta tio n a ry  P h ase  If the exponent in the integrand of Theorem 
7.2.8 is purely imaginary, we can obtain a  related result known as tbe method o f  
stationary phase. This method was developed in part by Lord Kelvin in 1887 
and will be applied to  the study of Bessel functions in §7.3.

T heorem  7.2.10 (S ta tio n a ry  P h ase  T heo rem  ) Let [a, 6] be a bounded inter­
val on the real axis. Let h(t) be analytic in a neighborhood o f fa,A) and be real 
for real t. Let p(t) be a real- or complex-valued function on fa, 6) with continuous 
derivative. Suppose

I f W If) =  0 a i  exactly one point to in ]a ,6{ and /i"(fo) £  0, then as 2 —»00 on the 
positive real axis, we have

f{2) ~  ^ y / ± i ^ ) e£*',t9{tn)'

The phis signs are used if h"[fo) >  0, and the minus signs are used i f  h"(fo) < 0.

The asym ptotic formula for /  can also be w ritten as

lim* —too <*•> f  eubMg(t)dt =
yfitec**f*g(to) 

y/±hT(to)
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We uote th a t lry breaking g into its real and imaginary parts, it is sufiicient to  prove 
the theorem for g real-valued. Also uote th a t we did not require gfo) 0.

Tire name “stationary phase” comes from the interpretation tliat the integrand 
is a  complex quantify with amplitude (magnitude) p(f) and phase angle zh(t). The 
intuition behind the formula is th at the main contribution to the integral should 
come from the neighborhood of to, where the phase angle is varying as slowly as 
possible. To see why, think of the integral in term s of its real and imaginary parts:

If a is very large, then zh(t) is changing rapidly in regions where is not zero. 
Thus, cos(z/j(t)) and sin(2/t(t)) are oscillating rapidly. Figure 7.2.3 illustrates this 
with h(l) =  i2 by the graphs of cos(10t2) and cos(20t2). If g is a t all reasonable, 
the resulting oscillations of the integral should tend to  cancel out except near the 
points where h‘(t) =  0.

Figure 7.2.3: Graphs of (a) y  =  cos(10f2) and (b) y  =  cos(20t2).

T iie endpoints of the interval or integration might also be expected to contribute, 
bu t it turns out th a t th is contribution is a t worst proportional to  \ /z  and so will 
not interfere with the result we hope to  prove: H ie  integral behaves about like

We should be able to  estim ate the integral for large z  by using only a  portion 
of the path near to- In this short interval we approximate g(t) by the constant 
g(to) and h(t) by its second-order Thylor approximation h(to) +  (/i"(to)/2](£ — /o)2

1/y/z.
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to  obtain

f(z)*eishMg(to) J
where the integral is over some short interval centered a t to- Changing variables 
produces

/(* > *
C,aft< *»)g (to )v5

y/Zy/PTt«)
J êdx.

The integral is taken over an interval of the form \—Ay/z, Ay/z\. Tile real and 
imaginary parts of the integral

* dr, ** J c o a i^d x  + i J sin (j?)dx

are called Fresnel integrals. Residue methods may be used to show th at each 
integral taken over the whole real line converges to y/tr/2. The details are given in 
the Internet Supplement for Chapter 4. Therefore, as z  goes to  infinity, the integral 
for /  converges to  \/V /2 (l +  i) = This leaves us w ith exactly the result
we wish, with obvious modifications for the case in which A"(<o) <  0.

We will see something of the applicability of tin s formula in §7.3 when we study 
the Bessel functions. Kelvin used it in 1891 to  study the pattern of bow and stem  
waves from a  moving ship. In any particular application the am plitude $ (t) is 
usually well behaved. But turning (he intuitive derivation ju st given into a  proof 
is a  b it tricky. The first step requires that the  function g be smooth enough so 
th a t when multiplied by the rapidly oscillating cos(zh(t)) and sin(z/t(t)), it gives 
something for which (lie integral effectively cancels away from to and for which any 
cancellation is uot so effective near to- This may not happen if g itself has a  lo t of 
oscillation a t very high frequencies. Continuity alone is not enough to  prevent this, 
ns can be seen from the following example.

E xam ple 7.2.11 Find a continuous function g for which the conclusion of the 
Stationary Phase Theorem 7.2.10 is false.

S o lu tion  Let <p(t) = £ £ 1 , ( I /* 2) con(ket). This series converges uniformly and 
absolutely for t €  R since the fctli term is dominated Ijy 1/fc2. Thus, tp is continuous. 
Define </((} on the interval /  =  [-\/5 jr, >/§*■) by g(t) =  2 l^(i2) when t > 0 and by 
g(t) =  0 when t <  0 and consider the integral
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This fits the pattern  of (7.2.10) with h(t) — - t 2,to  =  0, and /i"(0) < 0 . If n  is a 
positive integer, wc have

These integrals are all 0 except the first in tbe single case ka =  n , and th a t one is x . 
Thus, f(k°) = ir/k7. In other words, for positive integer z wc have f(z)  — 0 unless 
z  is a sixth power, in wliidi case / ( z )  =  a f^ /z .  Tlius, y/z f (z)  docs not remain 
bounded, so the conclusion o f Theorem 7.2.10 cannot bold. 4

The function g in this example is not smooth enough to  make Theorem 7.2.10 
work. I t has too niudi influence from its high-frequency components, and some 
condition is needed to  prevent this. The requirement o f a  continuous first derivative 
(in the sense of one real variable) specified in Theorem 7.2.10 is one sudi condition. 
I t implies & property, called bounded variation, which is phrased specifically in 
term s of the oscillations of g and which Is im portant in the theory of integration. 
A few of tbe ideas about this property and a  proof of Theorem 7.2.10 arc given in 
the Internet Supplement to  this chapter.

Worked Exam ples
E xam ple 7.2.12 Suppose that f(z)  = /(z) +  J(z ) ,  that I ( z ) / J { z )  — 0 ( l f z M) for 
every positive integer M , and that

J(z) ~  $(z) (lflo +  y f

Show that

S o lu tio n  Since I(z)/J(z)  =  0 (1/ 2**), we know th a t zAi I(z)/J(z)  stays bounded, 
and therefore zM~lI(z)/J(z)  —► 0. Thus I(z)/J(z)  =  o(l/zN) for every integer 
N  > 0 .  In other words, there is a  function B n ( z )  sudi th a t z*vJ(z) = B n ( z ) J ( z )
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and B n (z) —»0 as * —»oo. Now compute

<

zNI{z)
a{z)

Bn (z)

+

M
9 (z )

+H£H"<4
The first term  goes to  0, since Bfi{z) —* 0 and J(z)/g{z) —* oo- The second term 
goes to  0, since J[z) ~  <?(z)(ao +  a t f z  +  a^/z2 +  . . . ) .  This completes the proof.

E xam ple 7.2 .13 Let h(Q =  £2 and ^ s 0. Find a curve 7  satisfying the hy­
potheses of the steepest descent theorem. (In other words, find a path o f steepest 
descent) Takesrgz =  0;  that is, z  is real, z>  0.

S o lu tio n  Let k(Q — u + iv, so th a t if £ =  £ 4- *9, a  — £2 — q2 and v — 2£y. 
The discussion following the steepest descent theorem indicated th a t the path  of 
steepest descent is defined by v  =  constant (since in our case z  is real, z  > 0). Thus 
the line of steepest descent through £0 =  0 is cither £ =  U or 7  =  0. Since it must 
have a  maximum a t £b =  0, the curve 7  is defined by £ =  0. ♦

E xam ple 7.2.14 Prove that

c ***** cosy dy fV 1
222!z2

as z —> oo;arg z  = 0.

S o lu tion  Wc apply W atson’s Theorem 7.2.7. W rite cosy =  1 — ^  4* ^  — ___
Therefore, e<i =  1,02 =  ^ ,0 4  =  j j , ■ • •, and thus

J_  1^3 
2z + 4!z2

1
222!z2 • ♦

Exercises
1. Show th a t if /(z )  =  0 (/t(z )) and g(z) =  0(h{z)) and a  and b are constants, 

then af(z)  +  bg(z) =  0 (/t(z)).

2. Show th a t asym ptotic equivalence is an equivalence relation in  the sense th a t 
the following three properties bold:

(a) Reflexive: f  ~  f .
(b) Symmetric: If f  ~  g, then g ~  f-
(c) Transitive: If  /  ~  g and g ~  k, then f  ~ h .
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3 . " I f / ( i ) ~ B j /* z +  «3/a*  +  . . .  for x  6  [0,oo[, show th a t

4. Let f(x)  — e~*/tdt. Use integration by parts to show

5.* Show that

1 +  i2
dt 1

x
JM 4!
»» +  x» “  • ' '

6. Let g(z) be analytic a t so and let gl(zo) — 0 and g"{zo) r  ®« so th at near 
20,9(2) -  0(20) — (u>(2))2 for w analytic, w 'fa )  r  0- Prove th a t there are ex­
actly two perpendicular curves on which R ep (alternatively, Im g) are constant 
through 20. (Recall tlia t Proposition 1.5.12 shows th a t if f*(zo) /  0, R e / has 
exactly one level curve through 20-) Show also th a t fines of constant R ep and 
im p intersect a t 45°.

7. (a) (See Exercise 21, §7.1.) Show th at if 2 >  0, then for integers k  >  0,

£  « - * '* » * * = v s 1 3 5 - , ^ - ' 1

and

I  c“*l,#/2y2*‘+ ,di/ =  0.
J —oo

(b) Show th a t Tor integers m  >  0,

7-30 V 2m m!22m

and

f X e~v\ 2m+ldy =  0.
J —OO

8. Let . Tlie area under the graph oF A„(t) is and for any
e >  Q,An(t) -» 0 uniformly outside ) -  €, e(. Such a sequence is called an 
approximating S sequence. See Figure 7.2.4.
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y

Figure 7.2.4: Approximating S sequence.

(a) Show tlia t if g(t) is continuous and 0 <  N  < ,oo, tben

g(t)hj,(t)dl - » g(0)y/ir

as 7i —» oc.
(b) Sliow th a t if g(t) is continuous and bounded, then

as n  —i oc.

ff(t)/ln(t)dt - » g(0)y/n

9. H ie expansion

[°° -
Jx x

was discussed in Example 7.2.2. Compute £ i(I0 ) and S«(10) numerically and 
find an upper bound for the respective errors. Discuss how the errors change 
in S„(z) as n  and x  increase. For example, for a  given x,  are errors reduced 
if we take n  very large?

10. * Sketch the proof of the generalised steepest descent theorem (7.2.9) using 
Exercise 8 (you will need to  read tbe relevant internet supplement).

11. Find an asymptotic expansion for

/ ( z )  =  f  e~*vX/2s\ny2dy.

(Assume th a t z  —»oo,z >  0.)

12. Show th a t if f(z)  =  0 (^ (z )) and g(z) — o(k(z)), then f(z)g (z) — o(<p(z)h(z)).
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13. Find the path of steepest descent through to — 0 if h{t) =  cost. (TVikc z real, 
z  > 0.)

14. ■ Prove th a t f c  e~z*dz «= y/s, where C  is the 45° line with equation z — t + ft, 
where -o o  <  f <  oo, by showing that

f  e~s*dz — f°°  c~x*dx.
J C  J - o o

Hint’. Show th at f  e~t* d£ —* 0 as x  —* oo where <yx is the vertical hue 
joining x  to x + i®.

15. Repeat Exercise 13 but assume th a t z lies on the positive imaginary axis.

16. Show th at tbe first term  in W atson's Theorem may be obtained as a  special 
case of the generalized steepest descent theorem if g > 0 on the real axis.

17. Find the asym ptotic formula for /  when the path found in Exercise 13 is used 
in t.he steepest descent theorem.

18. Use the steepest descent theorem to  obtain the asym ptotic formula for /  using 
the path 7  described in Worked Example 7.2.13.

19. * Find the asymptotic formula for /  when the path 7  found in Exercise 15 is
used in the steepest descent theorem and h(t) ** t2,fo =  0 is chosen.

7.3 Stirling’s Formula and Bessel Functions
In this section the method of steepest descent will be used to prove Stirling’s formula 
for the gamma function T(2). Some properties of Bessel functions J n(z), which are 
defined forn  — . . .  , —1,0, 1, . . . ,  will also he developed and the method of stationary 
phase will be used to obtain an asymptotic formula for these functions.

S tirlin g ’s  F orm ula We begin with the im portant asymptotic expansion for Lire 
gamma function.

T heorem  7.3.1 (S tirlin g ’s Form ula)

r ( z  +  1) ~  \/2jrz*+I/2c “ *

os 2 —> 00 on the positive real axis.

An extension of the proof given below shows that this result also holds for 
- tt/2  •+• S < nrgz <  rr/2 -  S for any S > 0 (see Figure 7.3.1).
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----------- * - X

Figure 7.3-1: Region of validity for Stirling’s formula.

P ro o f Recall from formula 12 in Tabic 7.1.1 that for Raz >  0, we have Euler’s 
integral

We are concerned with the case in which 2 is real aud positive. We will first rewrite 
the integral so that the steepest descent theorem (7.2.8) applies. To do tills, we 
make the change of variables t = zr  to get

r (* + 1) =  j f ° e’ H’ dt = zs+t J 80 ez^ T~r)dr.

Thus, r (2 4- l)/2*+I has the form

where

MO = iogC-C
and 7  is the positive real axis, {0, oof. We must check hypotheses 0) to (iv) of the 
method of steepest descent (Theorem 7.2.8). Let Co = 1. Clearly,

M<o) =  -l,A'(Co)=0 and /("(Co)^O.
Therefore, hypotheses (i) and (ii) of the method hold. Also, h « ) is real on 7 , so 
(iii) is valid. Tb prove (iv). we know that Re(zh(t)] = xk(t) has a maximum iff h(l) 
does. But k(t) has a maximum of —1 at £0 = 1 on 7  (see Figure 7.3.2).
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Figure 7.3.2: Graph of h(t) =  logf - 1.

Thus (iv) holds. Therefore,

g*+i
Czh«o) —  e-* —

~ p —p======= - v̂ 2*r = * V̂ jr.
y/zy/-h"[Ce) V*

Heucc T(2 +  I) ~  2s+ ,/ac“4i/5ir, as required. I

If z  =  re *9 were not rod , the x  axis would no longer be tire path  of steepest 
descent and the path  of integration would have to  be deformed into such a  path 
using Cauchy’s Theorem.

If one examines this method more carefully, one finds th a t tbe first few term s 
in the expansion are

rt*+» ~ (> + iS  + s b +- ) ;
mure precisely,

r (,  + 1,  =  J G W  [■ +  5 S ?  ( ? ) ] '

W hoi solving particular problems, tire first tenn  usually is the most im portant one. 
Since r (z  +  1) =  r r ( i ) ,  we obtain T(*) ~  c~xxx~1/2(2n)1̂ 2, mentioned earlier.

B essel F unctions H ie  remainder of this section discusses some bask properties 
of Bessel functions and how the method of stationary phase can be applied to 
obtain an asym ptotic formula. Bessel functions (the main properties of which arc 
listed in Table 7.3.1 a t the end of th is section) arise naturally in solutions to  certain 
partial differential equations, such as Laplace’s equation, when these equations arc 
expressed in term s of cylindrical coordinates. Bessel functions can be defined in 
several different ways. Wc will find the following definition convenient.
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D efin ition  7.3.2 Let z € C he fixed and consider the function

/ (

Expand /(£ ) in  a  Laurent series around 0. The coefficient of where n is positive 
or negative is denoted <7R(z) and is called the Bessel function  of order n . We call 

the generating function.

The definition may be w ritten as follows:

e-cc-i/oya =  g  j„(z)C".
I)£*00

FVom the formula for tlie coelfidents of a Laurent expansion (see Theorem 3.3.1). 
we see that

where 7  is any circle around 0. If we use the unit circle £ =  c*® and write ou t the 
integral explicitly, we get

Jn(z) =  f 2W e~ln^ ' eeix>in0eietiO 2k J q

=  ± - [*«*****-"*& + J -  r  e^isan0J{nadB
2ir Jo 2jt J q

=  — /c o s ( n 0 —z sin 0)d0,
*  Jo

which we call the cosine representation  for J„ . Although J n(z) m il be defined 
for noninteger values of it later, this equation is valid ouly if n  Is an integer and 
it shows th a t |J R(z)| < 1  for z reaL Tbe graphs of Jo (2) and J\ (x) are shown iu 
Figure 7.3.3.

W

Figure 7.3.3: Bessel functions J q(x ) , J i (x ).
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Next it will be shown th a t Jn(z) is entire, and a method will be described for 
finding its power series. I b  carry out these tasks, it is convenient to  change variables 
by C 2£/z  and obtain, for each fixed 2, the exponential representation:

J"w = 5S (f)" /  c""‘ “p (c - £) *'
W riting the exponential as a  power series gives

Ib is  series converges uniformly in (  on 7  (W hy?), so we can integrate term  by term  
(see Theorem 3.1.9) and obtain

( - 1)*
k\

e£
£n+fc+ldC.

If n  >  0, the residue of e</C"+<!+1 a t C =  0 is l /( n  +  Jfc)! (W hy?), so

Jn(z) V  ( - l ) k(z)n+2k 
Z ^ 2 n+2kk'.{n + k)\

_ fL  [ i _  -  38 +  **
2"nl l 2* . 1(» +  1) 2« - l - 2(n +  l)(n  +  2)

which is the  power series representation  for J„. Thus, J„(2) is entire for n  >  0 
and iias a zero of order n  a t 2 =  0.

Similarly, for n < 0, one finds that

r ( - i ) k- nz~n+u
2 s  0-n-f2fc/fc _  .fa=0 2-"+ 2fc(fc-n)!fc! 

(see Exercise 11). I t follows th a t for n  <  0,

^ W  =  ( - 1)V _ B(2).

H ie relalionsltip of Bessel functions to  differential equations is as follows: Jn(z) 
is a solution of B essel’s  equation:

, 1 d jn
dz2 dz + =  0.

This equation is obtained by differentiating the«06ine or exponential representation 
for J„(z) and inserting the result into Bessel's equation (see Exercise 1). Note tlia t 
both Jn and satisfy Bessel’s equation.
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If n  £  0 but n  is not an integer, we can still make sense of J n(2) in tbe power 
series representation by setting

j  m  y  ( - i ) fê +2fc
^ j 2»+»& ir(n +  fc +  l ) ’

Some basic identities can be obtained from the following relations for z £  0:

£ ( 2-"J„(* )] =  - * - " J n+,(2).

This can be proven directly by differentiating tlie power series. The student is 
requested to establish such a  proof in Exercise 4.

If we differentiate z“ "J„(z) in this identity, we obtain

± U * )  = * \ U z ) ) - J n+i(z).

W riting —»  for n , wc get

^ l z ”J-n(Z)) = - z " J - n+l(z). 

But J - n(«) =  ( - l)" J „ (z ) , SO

th a t is,

Combining these equations, wc get

=  “  J»+l(z))«

These are called the recurrence relations for Bessel functions. For example, if 
we know Jn and J„ -i»  this relation determines Jn+i- 

We conclude witli tlie asymptotic fonnula for J R(z).

T heo rem  7.3 .3  (A sy m p to tic  F orm ula fo r B essel R u c tio n s )  The following for 
mula holds far any integer n:

as z  oo,z real and greater than zero. (This relation is also valid /o r  Jaigzj <  n.)



452 Chapter 7 A sym ptotic M ethods

P ro o f Wc use tlie Stationary Phase Theorem 7.2.10 and the cosine representation 

Jn(z) = ci‘*iu9- ni0d$ + .

F irst, consider the function

j f a  « iii 6—nM fig

In Hie notation of the Stationary Phase Theorem, let k(t) = Hint and g(t) — 
e~int. Clearly h is analytic and real for real t, and g is C 1. T lie interval (a,5] 
is (0, 7r], and h'{t) = cost vanishes only at to =  rr/2. A t tliis point, ft"(lo) =  
—sin(jr/2) =  — 1 <  0. Thus, we use tlie minus sign in the asym ptotic formula for 
/ ,  giving

f(z )  ~  — V̂ ” ~Xt/< . c- ’*4'/ 2 =
y/Z V -2

Similarly, if we set g(z) =  f*  e“ '**to a-H nS^ we get

g(z) ~  /»—/«).

(A proof of this is requested in Exercise 9.) Adding the asymptotic expressions for 
f  and g, we obtain

which is the result claimed. ■

Thus, for large x ,Jn(x) behaves like y/2/vx\cos(x — 9)), where 6 is called the 
phase shift.

Table 7.3.1 Summary of Summary of Properties of Bessel Functions

i  r1. Jn(z) =  -  /  cos(n0 -  zsind)d0, where n is an integer.
Jr Jo

2. |J„ (z )| <  1 for z real.

~  r_ ii* 2«+2fc

3 Ja^  =  S  2"+5W*Kn + k)Vn  “  ° '

4. J„ is entire and has a zero of order n a t z =  0; Jb(0) =  1-

5- Jn{z) =  ( - 1)"J_ n (z).
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6- Bessel’s equation:

<Pjn 1 dJn
dz2 z  dz

9. i-M * )  =  J»+'(z \dz 2

10. J„ (z ) ~  ^ ~  cos (z  — ^  as z —> oo,2  real and positive.

Exercises
1. Prove tlia t J„(z) satisfies Bessel's equation (forroula 6 of Tabic 7.3.1.).

2. Show th a t

as z —> oo. (2 is real and greater than zero.)

3. Prove that Jb(z) — —Ji(2) using the cosine representation.

4. Prove that d\z~nJu(z)]/dz — -z ~ n Jn+1 (z) for all n.

5 . * Prove th a t -h(z) = JJ'(z) -  Jf)(z)/z.

6. Use the recurrence relations for Bessel functions and Rolto’s tlieorem from
calculus to  show th a t between two consecutive real positive zeros of •/„(&), 
there is exactly one zero of Show tliat J„(x) and J n+J (x) have no
common roots.

7. Prove th a t J\/z(z) =  ^ 2/ 7rr(sinz), using the definition of J„(z) for noninte- 
gral n.

8. Verily th a t the asymptotic expansion for J„(z) is consistent with Bessel’s 
equation.

and th at
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9.* Complete the proof th a t 

by showing th a t

J *  g-ixfA aO +niS^Q  „  e -t< t-r.» /2-» /4)

(H ie left side of the expression is called a  Hankel Junction.)

10. Verify th a t <p{x) =  Jn{kx) is a  solution of

+  * (* )= 0

with 0(0) =  0, 0(a) =  0, where ka Is any of the zeros of J„ for n  ^  0.

11. * Establish th e  power series representation of Jn for n  <  0.

Review  Exercises for Chapter 7
1. Establish the convergence of and evaluate the infinite product

n(1+̂ )
2. Establish the convergence of and evaluate the infinite product

n  /n *  -f 3n +  2^
i i  v  « 2 + 3 «  y

3. Use Worked Example 7.1.10 to  show tliat

-•OfflGHiKatS)-
4. Use Worked Example 7.1.10 to  show th at

(«)0) (® (S) (B)(5)-■
5. On what region is each of the following absolutely convergent?

( • t i r o - * - )  w nr
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6.  * Let / / m =  YZL i l / k m. Prove tlia t
«  /_ n »

iog r ( i +z) = -7z + Y1^  n
for |2| <  1, where 7  is Euler’s constant.

7. Let /(* )  =  f*  e‘*ai" t sin2(<ft. Use the method of stationary phase to  find an 
asymptotic formula for / ( s )  as z —* oo, 2 real and positive.

8. Prove th a t

where Q(2) is entire. In addition, show that

Q(*) = f  <

9. Express the integral j£ °  e~t3d t in  term s of tlie gamma function. Hint: Change 
to  the variable y  =

10. Show th at \dkJn(z)fd^e\ < l,fc  =  0, 1, 2, . . . ,  for any n , z real.

11. " Prove th a t r ( |+ t y )  —» 0 a s y —»oo.

12. Show th a t liniz_ eo J„(x ) =  0.

13. Obtain an asym ptotic expansion tac f^^e"***&casipdy (as a —»00,2 >  0).

14. Prove th a t xnJn(x) =  t” J„ _ i(t)d t,n  =  1 ,2 ,___

15. " Prove th at Jn(*v) ** incv/y/2ny (as y  -» 00, y >  0).

16. * In this exercise you are asked to  develop some properties of the Legendre 
functions  (see Review Exercise 34, Chapter 3). These functions are encoun­
tered in the study of differential equations (specifically Laplace’s equation in 
tluee dimensions, which describes a wide range of physical phenomena) when 
spherical coordinates are used.1

(a) For -1  <  x  < 1, set

where 7  is tbe contour as shown in tbe following figure. By differentiating 
under the integral sign, show th at P„{x) solves Legendre's equation:

(1 -  s 2)^" -  2xy’ +  n(n +  1)9 — 0.

'Consult, for example, G. P. D. Duff and D. Naylor, D ifferential Equations o f Applied Math­
em atics (New York: Wiley, 1005).
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(b) For an integer n, derive Rodrigues1 formula:

P « { * )  = 1 (x2 -  I)".
2Bn! dxn

This formula provides an analytic extension P„ {z) 
(c) Show tlia t

1 <f* 1
Pn(x) = ti! dtn (ts — 2tx  +  l )1/2 

and deduce from Thylor’s theorem that

(1 -  2te  +  **)»/* ~

(d) Develop recurrence relations for Hie coefficients of solutions of Legendre’s 
equation. Use these relations to  show th a t entire solutions m ust be of 
the form

oo oo
V>(g) =  for n  even, and p(x) =  for n  odd.

fc=0 tsO

Show th a t tliese series are actually polynomials, th a t is, th a t a*,- and 6* 
vanish for large k.

(c) Using (c), show th a t nPn(x) =  (2n — l) iP „ _ i(s )  -  (n  -  l)P „_2(a:).
(f) Prove th a t P0(r.) -  l,Pi(x) = x, and Pi(x) = (3x* -  l)/2 .
(g) Show that

f  Pn(x)Pm(x)dx = /  °
J - 1 L TS

2
TSTfi)

n j i m  
n = m

Hint: Use (b) to  prove the case where n  yt m ; use (c) to  prove the case 
where n  =  in.

17. Obtain the asym ptotic formula Pn(z) ~  ((2n)!2“(n!)a}*" as z —» oo, using 
purl (b) of Exercise 16.



Chapter 8

Laplace Transform and 
Applications

This (ins) chapter gives an introduction to  the Laplace transform and some o f its 
applications. §8.1 introduces two key properties th a t make the Laplace transform 
useful for differential equations: First, it behaves well with respect to  differentiation, 
and second, a  function can be recovered if its Laplace transform is known. Tbe 
closely related Fourier transform also enjoys these properties. I t  was discussed in 
§4.3; see also the Internet Supplement for tliis chapter. §8.2 develops techniques 
for inverting Laplace transforms, while §8 J  considers some applications of Laplace 
transforms to ordinary differential equations.

8.1 Basic Properties of Laplace Transforms
The Laplace transform provides a  powerful technique used in both pure and applied 
mathematics. For example, in control theory i t  has been an indispensable tool.1 
I t is im portant, therefore, to  have a  good grasp of both its basic theory and its 
usefulness. Consider a  (real* cm* complex-valued) function f( t)  defined cm [0, oo(. 
The Laplace transform  of /  is defined to  be tlie function /  of a  complex variable 
2 given I))'

The Laplace transform /  is defined for those 2 €  C  for which the integral converges. 
O ther common notations for /  are X (f)  or simply F.

For technical reasons, it will be convenient to  impose & mild restriction on the 
functions wc consider. We require th a t /  : [0, oo( —* C  (or R) be of exponential

’Sw, far raaunplc, J . C. Willems and J. W. Poldermnn, An Introduction to Mathematical 
System s Theory and Control: A Behavioral Approach (New York: Springer.VerUg, U stts in 
Applied Mathematic*, 1997).
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order. This means th a t there are constants A >  0, B  €  R, such that

m \ < A e tB

for all t >  0- In other words, /  should not grow too fast; for example, any poly­
nomial satisfies th is condition (W hy?). AU functions considered in the remainder 
of this dtapter will be assumed to be of exponential order. I t will also be assumed 
th a t on any finite interval |0 ,a j ,/  is bounded and integrable. (If, for example, we 
assume th a t /  is piecewise continuous, th is last condition will hold.)

A bscissa o f  C onvergence The first im portant result in this chapter concerns 
the nature of the set on which f (z )  is defined and is analytic.

T h eo rem  8.1 .1  (C onvergence T heo rem  fo r L ap lace T ransfo rm s) Assume the 
f : [0, oo( —»C  (orR) is of exponential order and let

/ ( * ) = j T  e -x‘f(l)dt.

There exists a unique number o, — oo <  o  < oo, sudi that this integral converges if 
R ea >  o and diverges i f  R ez <  a. Furthermore, f  is analytic on the set

A = {z | H er >  a}

and we have

for Ra z > a. The number a is called the abscissa o f convergence, and if  we 
define the number p by

p =  inf{B  € R | there exists an A > 0 such th a t |/ ( t ) | <  Ac81}, 

then o < p.

The set {z | R ez >  <r) is called the half-plane o f convergence. (If o =  —oo, 
tins set is all of C.) See Figure 8.1.1. In general, it is difficult to tell whether 
/(z )  will converge for z on the vertical line R ez =  o. If there is any danger of 
confusion we can write o(f)  for o or p(f) for p. A convenient way to  compute o(f) 
is described in Worked Examples 8.1.12 and 8.1.13.

Tlie proof of this theorem and more detailed convergence results are given a t 
tbe end o f this section. Tlie basic idea is th a t if R ez >  p, then A and B  may be 
selected w ith p < B  < R ez and |/ ( t ) | <  Aeot. H ie  improper integral for f(z)  
converges by comparison with dt.

H ie m ap f  f  is linear in the sense th a t {of +  bg) = a f  + bg, valid for 
R ez >  max(o‘(/),<7’(p)). I t is also true th a t the map is onc-to-onc; th a t is, /  =  g 
implies th a t /  =  <7; in other words, a  function ^(z) is the Laplace transform  of a t 
m ost one function.
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y
t

at i

Figure 8.1.1: Half plane of convergence of the Laplace transform.

Theorem  8 .1.2  (L aplace Transform s) Suppose that the functions f  and h ant 
continuous and that f[z) — h(z) for R es >  qt) for some 70- Then f(t) =  h(t) for 
edit € [0,oc| .

This theorem is not as simple as it seems. We do not have enough mathematical 
tools to give a  complete proof, but the main ideas are given at the end of the section. 
Using ideas from integration theory, wc could extend the result o f the uniqueness 
theorem to discontinuous functions as well, but wc would have to modify what wc 
rneau by “equality or Auctions.” For example, if f(t) is changed at a  single value 
of t, then /  is unchanged.

The uniqueness theorem enables us to give a meaningful answer to the problem 
“Given <7(2), find f(t) such that /  =  g," because it makes dear that there can be 
at most one such (continuous) / . Wc call /  the inverse Laplace transform o f 
g\ methods for finding /  when g is given arc considered in §8.2.

L aplace Transform s o f  D erivatives The main utility of Laplace transforms 
is that they enable us to transform differential problems into algebraic problems. 
When tbe latter arc solved, the answers to the original problems are obtained 
by using the inverse Laplace transform. The procedure is based on the following 
theorem.

P rop osition  8.1.3  Let /(£) be continuous on [0,oo| and piecewise C l, that is, 
piecewise continuously differentiable. Then for Rez > p (as defined in the conver­
gence theorem (8.1.1)),
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P ro o f By definition.

Integrating ljy parts, we get

By definition of p, \e~BU> • /(to )I £  A for some B  < Re 2. Thus, we get

|e -s<0 • /(fo )| =  |e“ <— -/(to)l  <  e - ^ ^ - ^ M ,

which approaches 0 as to °°* Therefore, we get —/(0 ) 4* 2/ ( 2), as asserted. ■

While (dffdt'j(z) exists for Re 2 >  p, its abscissa of convergence might be smaller 
than p.

If we apply the preceding proposition to  iPf/dfi, we obtain

H ie  formula for df/dz  in tlie convergence theorem (8.1.1) is related to  the formula

In  Exercise 19 the student is asked to  prove the next proposition, which contains a  
sim ilar formula for integrals.

P ro p o sitio n  8 .1 .4  Let g(t) =  JjJ f(r)dr. That for Ee 2 >  wax(0, /?(/)],

Shifting Theorems Thble8.1.1 a t the end of tliis section lists some formulas th a t 
are useful for computing f(z).  The proofs of these formulas are straightforward 
and are included in tbe exercises and examples. However, three of the formulas 
are sufficiently im portant to  be given separate explanation, which is done in the 
following three theorems.

T heo rem  8.1 .5  (F irs t S h iftin g  T heorem ) Fix a e  C  and let p(t) =  e~atf(i). 
Then for Hex >  n(f)  — R ea, toe have

g{z) = df(z)/dz, where $(t) =

y(*) = /(*+<*)-
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P ro o f By definition,

0(*) = j T  = e -^ > ‘/Wrft = /(r + «),

which is valid if Re(z +  e) >  a. ■

T heo rem  8.1 .6  (Second S h iftin g  T heorem ) Let H(t) =  0 i f t  <  0 and Jf(t) 
1 i f t>  0, which is called the Heaviside, or u n it step, function . Abo. lcta>  
and let g(t) =  f ( t  -  a)Ii(t -  a ); that is, g(t) = 0 i f t < a  addle g(t) =  f ( t  — a) 
t>  a. (See Figure 8.1.i.)  Then for tie  ? >  <r, wc have

$(*) =  * -“ /(* ).

Figure 8.1.2: Tlie function g in the second shifting theorem.

P ro o f By definition and bemuse g =  0 for 0 <  t < «,

g ( z ) = J  e~stg(t)dl = j ° °  e~z1f{t-a)dL.

Letting r  =  l — a, we get

Bom  the second shifting theorem, we can deduce th a t if a >  0 and g(t) = 
f[L )I i( t  -  a ), then j(z )  =  e~”:F(z) where F(l) =  / ( t+ o ) , l >  0 (see Figure 8-1.3).

C onvolu tions Tlie convolu tion  of Lwo fiinctions / ( t )  and p(t) is defined for 
t > 0 ly

(f*g)(t)  =  j T ° f { t - r ) ’ g(r)dr

where we set f( t )  =  0 if t < 0. Thus, the integration is really only from 0 to  t. Tlie 
convolution operation is related to Laplace transforms m the following way.

|| ©
 ^
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Figure 8.1.3: F  is obtained from f  by shifting and truncating.

T heorem  8 .1 .7  (C onvolu tion  T heorem ) The equalities f  *9 —g * f  and

(/* ff)'(* ) = /> ) • $ (* )
whenever Rez >  max [/»(/), p(y)].

In brief, this theorem states th a t the Laplace transform of a convolution of two 
functions is the product o f their Laplace transforms. I t  is precisely th is property 
th a t makes the convolution an operation of interest to  us.

P ro o f We have

( /  * £?){z) =

=  j T  [ j T  e-*r e - ‘<4- r > /(t -  r ) ff(r)d r] dt.

For R es >  m ax(/?(/),p(g)] the integrals for f(z)  and g{z) converge absolutely, so 
we can interchange the order of integration2 to  obtain

j T  c~ "  \ £ °  r-* (‘- T>/(£ -  r)d tj g(r)dT.

Letting s = t  — r  and remembering th a t /(* ) =  0 if s  <  0, we get

jT °  c~ZTf(z)g{T)dT =  f(z)  - g(z). ■

By changing variables, it is not difficult to  verify th a t /  * g =  g*  f ,  bu t sudi 
verification also follows from what wc have done if /  and g arc continuous- We 
have

(/* ff)‘ = /■ $  =  $ * / =  ($* /)*
Thus, ( /  * <? -  0 * / )  =  0, so by uniqueness theorem (8.1.2), f  * g - g *  f  — 0.

9This is a theorem concerning integration theory bom advanced calculus. See, for instance, 
3. Mamden and M. Hoflman, Elementary Classical Analysis, Second Edition (New York: W. H. 
Ftacman and Company, 1993), Chapter 9.
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Technical Proofs of Theorems To prove the convergence theorem (8.1.1), we 
shall use the following important result.

Lemma 8.1.8 Suppose that f ( z )  =  f£ °  c~ u f { t ) d t  converges fo r  z  =  zq. Assum e  
that 0 < 8  <  r/2  and define Hie se t

Sg = { z  such that | arg(z — zq ) \  <  8 }

(see Figure 8.1.4). Then f  converges uniformly on Sg.

y

Figure 8.1.4: Sector of uniform convergence.

Proof Let

M *)= r  e— 'm d t
Jo Jo

so tliat h 0 as X -» oo. Wc must show tliat for cveiy e > 0, there is a to such 
that t], ta > to implies that

<  e

for all z  6  Sg. It follows that f £  e~ztf ( t ) d t  converges uniformly on Sg as *  —* oo, 
by the Cauchy Criterion. We will make use of the functiou h {x) as follows. Write

j f *  e~rif ( t ) d t  =  j f *  c - M i J c ^ ) ^

Integrating by parts, we get

!*(*,) + ( z - z o )  f *  c - (l- ' o)‘/i(t)d t.
Jtl



Given e > 0, choose to such that IM0I < e/3 ®nd |h(t)| < t* -  t/(6secff) if 
t > to. Then for I2 > to*

^  <  J ,

since |c“ <*“ *°)ta| =  <  1 because R ez >  Re so- Similarly, for ti  >  to.
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We must still estimate the last term:

(z -  zo) j f ta c-(*-*»)‘ /i(t)<ft| <  Iz -  zolle'

where x = Rez and xo = Rezo- If z = zo, th® terrn ® zero. If z ^ zo, then x /  x0 
(sec the figure), and we get

^ !2 ~ z°I fc-(*-*o)i. < 2 t'sec0= -
x — xo \ * x  — xo 3

(see Figure 8.1.5). Note that the restriction 0 < 6  <  rr/2  is necessary for sec0 =  
1/cosfl to be finite.

Figure 8.1.5: Some geometry in the region Sg. 

Combining the preceding inequalities, wc get

if ti, *2 > <0 for all z  € Sg, thus completing the proof of the lemma. ▼
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P ro o f o f th e Convergence Theorem  8 .1.1 Let

= inf | x  e  R \ f  c~ rf(t)dt converges| ,

where inf stands for "greatest lower bound.*’ Note from Lemma 8.1.8 that if f(zo) 
converges, then, for Raz >  R ezo,/(0  converges because z lies in some Sg for 20 
(Why?).

Lei Re z > cr. By the definition of a, there is an xo < Re 2 such that the integral 
e~xnl f(t)dl converges. Hence /(z) converges by Lemma 8.1.8. Conversely, 

assume Rez < a  and Rez < x  < a. Tf f(z)  converges, then so does / (i), and 
therefore a < x  gives a contradiction. Thus /(z) does not converges if Rez < a.

We use Die Anatytic Convergence Theorem 3.1.8, to show that /  is analytic on 
the set {2 | Rez > o}. Let gn(z) — /J* c~Hf(t)dt. Then <?„(z) -* /(z). By Worked 
Example 2.4.15, g„ is analytic with g'n(z) = -  We must show that
gn —* f  uniformly on closed disks in {z | Rez > <r}. But each disk lies in some Sg 
relative to some zq with Rezo > o  (Figure 8.1.6).

Figure 8.1 .6: Each disk lies in Sg for some 0,0 < 6  <  jr/2.

Thus, by the Analytic Convergence Theorem 3.1.8, /  is analytic on the set 
{2 | Rez > 0} and

( /) '(* ) =  - f V * 7 ( 0 < f t -
Jo

It follows that this integral representation for tlie derivative of /  converges for 
R ez > <r, as do all the iterated derivatives.

It remains to be shown that o < p. To prove this we need to show that o  < B  
‘f  1/(01 ^ Aeat. This will hold, hy what wc have proven, if /(z) converges for 
Re 2 > B. Indeed, wc show absolute convergence. Note that

l«~*7(0l = |c-<I- B),e -e7(t)| < e -(IU,r B)‘A.
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Since the integral e~atdl — l /a  converges for or >  0, it follows th a t the integral 
/ 0°° e~ztf(t)dt converges absolutely. ■

lb  prove th a t f  — h implies th a t /  =  /» for continuous functions /  and ft, it 
suffices, by considering /  -  h, to  prove die following special case of Theorem 8.1.2.

P ro p o sitio n  8.1 .9  Suppose that f  is continuous and that for some real yo,f(z) — 
0 whenever R ez >  yo- Then f(t) — 0 for a l l t€  [0,oo[.

The crucial lemma wc use to  prove this is the following.

L em m a 8.1.10 Let f  be continuous on [0, l) and suppose that tnf(l)dt = 0 for 
alln = 0 ,1 ,2 ,—  Then /  =  0.

This assertion is reasonable since it follows th a t P(t)f(t)dt =  0 for any 
polynomial P.

P ro o f Tlie precise proof depends on the Wderstmss approximation theorem, 
which states th a t any continuous function is the uniform lim it of polynomials.3 
By this theorem we get JjJ g(t)f(t)dt — 0 for any continuous g. H ie result follows 
hy taking g(t) — f(t)  and applying the fact th a t if the integral of a  nonnegativc 
continuous function is zero, then die function is zero. T

P ro o f o f P ro p o sitio n  8.1 .9  Suppose d ia t

A 4 - j f  e“ lf m  = o

whenever R ez > o. Fix zo >  1A> real and let s = c " ‘. By changing variables to 
express the integrals in term s of s  and kitting z =  *a 4- n for n  =  0, 1, 2, . . . ,  we get

0 =  f  e ^ e - ^ f ^ d t  =  £  « "«** /(- log s) ds = j '  s”h(s)ds =  0,

where h(s) =  s*°“ 1/ ( - lo g s )  =  g-***+*/(£). By the Lemma, h m ust be identicaUy 
zero, and f  m ust be also since the exponential function is never zero. ■

I t is useful to  note th a t /(z )  —»0 as Rez —♦ oo. This follows from the argument 
used to prove Theorem 8.1.1 (see Review Exercise 10).

3See, for example, J . M andea and M. Hodman, Elementary Classical  Analyst*, Second Edition 
(New Yoric W. H. Freeman and Company, 1993), Chapter 5.
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Tkble 8.1.1 Some Common Laplace Transforms 

Definition

/(z)=jT e ~ U f m

Properties

1. 5(2) =  - ~ f ( z )  where g(t) =  tf{t).
dz

2. (,af + bg)'=af + bg.

3. [z) =s 2/ ( 2) -  / ( 0). (Assume th at /  is piecewise C 1.)

4. g(z) =  i / ( 2) where <?(t) =  j f  / M * 1-

5. 5(2) =  / ( s  +  o) where g(i) =  e~«‘/(£).

6. 5(2) =  e -a2f(z),  where a  >  0, and

g(l) =  f ( t  — a) for t  >  a  and 0 if t. <a.

7. p(a) =  c_<,,F («), wl|ere a > 0, F (t) =  /(£  +  o), and

and 0 if 0 < £ < a .

8- ( f*9 )(z ) — /(* )"  ff(2) ' where the convolu tion  is defined by

(/* $ )(* ) =  f  f{i-r)g(T)dr.
Jo

9. I f  f( t)  =  e"*4, then /(z )  =  and o ( /)  =  -  R ea.

10. For /(£ ) =  c o sa t,/(z ) =  and <r(/) =  |Im a |.

11. If / ( t )  -  sin a t,/ ( z )  =  ^  and tr( /)  =  |Im a |.

12. If f(t)  =  ta, a >  - 1 ,/W  =  Wld a (f)  =  °-

13. I f / ( t )  =  ! ,/(* )  *  “  and <r(/) =  0.
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Worked Exam ples
Exam ple 8 .1.11 Prove formula 9 in Table 8.1.1 and find a{f) m that case.

Solution By definition,

/(z) = r  c~la+t),dt. as
Jo Jo

100

a + 2 |p
1

z + n

Tlie evaluation at t — oc is justified by noting tliat iini(_00c- **+*)t = 0 provided 
Re(« + z) >  0, since |c-(“+s)'| =  e~ —» Q as t —► oc. Thus, the formula is
valid if Rez > —Reo.

Note that the formula for /  is valid only for Re2 > — Rea, although /  coincides 
there with a function that is analytic except at z =  -a . This situation is similar to 
that for tlie gamma function (sec formula 12 of Thble 7.1.1).

Finally, we show that for f ( t )  ~  e~at,o (f) — -  Ron. We have already shown 
that t r( f )  < — Rea. But the integral diverges at z  = n, so <r(/) > — Rea, and thus 
er(f) — -  Ren. If a «  0, this example specializes to formula 13 of Thblc 8.1.1.

Exam ple 8.1 .1 2  Suppose that wc have computed f(z)  and found it to converse for 
Rez > 7 . Suppose also that f  coincides with an analytic function that has a pole, 
on the line Re z = 7 . Show that o(f) — 7 .

Solution We know that o(f)  < 7  by the basic property of a  in the convergence 
theorem. Also, since /  is analytic for Re z > a , there can be no poles in the region 
{z | Rez > cr}. Tf tr(f) were < 7 , there would be a pole in this region. Hence 
o(f)  = 7  (see Figure 8.1.7).

y*
I
J .̂—Abscissa of convprcence

, - l 'o l r s o f / - ^
® II

Figure 8.1.7: Location of poles of f .

Exam ple 8 .1.13 Let f(t)  = cosh l. Compute f  and a{f).
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S o lu tio n  f( t)  =  cosh t =  (e* + e~l)/2. Thus, by formulas 2 and 9 of Ihb le  8.1.1,

Here o(f)  =  1 by Worked Example 8.1.12; =  1 and =  —1, so e(f)  <  1
but it cannot be <  1 since /  has a pole a t z  =  1.

Exercises
In Exercises 1 through 9, compute the Laplace transform of / ( i )  and find the 
abscissa of convergence.

5. f(t) =  ( t+ l )" ,n a  positive integer

6. / ( t )  =  sin t if 0 <  l  <  ita n d 0 i f t > w

7. f(t) — tsinat

8. /(£) — tsinli at

9. f(t) = t  cos a t

10. Use the shifting theorems to  show tbe following: 

(a) If  f(t) =  e-o teosM, then

1. /(t)  =  t* +  2

2. /(£) =  sinht

3. /(£) =  t +  c~' +> sint

(b) If f( t )  =  «“**£", then

W hat is o(f)  in each case?

11. Prove formula 10 of Thblc 8.1.1.

12. Prove formula 11 of Table 8.1.1.
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13. " Prove formula 12 ofThblc 8.1.1.

14. Prove formula 13 of Thble 8.1.1.

15. " Suppose tlia t /  is periodic with period p (tha t is. f ( t  + p )  =  / ( t)  for all 
t >  0). Prove tlia t

J 1 '  1 -  c-P=

is valid if Re 2 >  0. Hint: W rite out f(z)  as an infinite sum.

16. Use Exercise 15 to  prove th a t

/(z )
1 1 - e ~ g
z l  -  e~2‘

where f( t )  is the p u lse  function  illustrated in Figure 8.1.8.

/

Figure 8.1.8: Tlie unit pulse function.

17. Let g(t) =  e~*sinsds. Compute 3(2). Compute f(z )  if  f( t)  = tg(t).

18. Let f( t)  =  (s in a t)/t. Show th a t f (z )  — tan ~l(a/z).

19. " Prove Proposition 8.1.4. First establish th a t p{g) < m ax(0,p(/)J.

20. Give a  direct proof th a t f * g —g * f  (see the Convolution Theorem 8.1.7).

21. " Let f( t)  =  e“c‘,< >  0. Show th a t <r{f) =  - 00.

22. Referring to  the  Convergence Theorem 8-1.1, show th at, in general, o £  p- 
Hint: Consider f( t)  — e*sin c* and show th a t <7 =  0,p  =  1.
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8.2 Complex Inversion Formula
To be able to  recover a  function from its Laplace transform , it is im portant to  be 
able to compute /( f )  when f(z)  is known. One technique for sudi a  computation, 
using the complex inversion formula, will be established in this section. Using Hie 
formulas of Table 8.1.1 in reverse gives useful alternative techniques. (Sec Worked 
Examples 8.2.4 and 8.2.5.)

M ain  Inversion  Form ula The complex inversion formula, one of the key results 
for the Laplucc transform , draws on many of the main points developed in the first 
four chapters of th is book.

T heo rem  8.2.1 Suppose that F{z) is analytic on C except for a finite number of 
isolated singularities and that for some real number a, F  is analytic on the half plane 
{z | Rex >  o}. Siqiposc also that there arc positive constants M, R, and ft such that 
|F (z )| <  M /\z f  whenever \z\ > R (this is true, for example, if  F(z) = P(z)/Q(z) 
for polynomials P and Q with dcg(Q) > 14* deg(P)). For t > 0, let

f(t)  =  ^ { re sid u es  of estF(z) a t eadi of its Angularities in C}.

Then f(z)  =  F(z) for Rez > a. Wc call this the complex inversion form ula.

P ro o f Let a > a and consider a  large rectangle F  with sides along the lines 
R e2 =  - i j , R e z  — x2, linz =  y%, and lm z =  —yj selected large enough so tlia t all 
the singularities of F  arc inside F  and |2| >  R  everywhere on T. Split T into a  sum 
of two rectangular paths 7  and 7  by a  vertical line through R ez =  a. (See Figure 
8*2.1.)

Tlie proof of tbe complex invasion formula could ju st as well be carried out 
using a  large cirde instead of tlie rectangle T. In fact, in the last paragraph of the 
proof, r  is briefly deformed to  such a  cirde. However, the rectangular path will be 
useful in Corollary 8.2.2, in which it plays a  role like th a t of the rectangular path  
in the proof of Proposition 4.3.9 concerning the evaluation of Fourier transforms. 

Since all singularities o f F  are inside 7 , the definition of /  gives

f  cxiF(z)dz = 2m  ̂ { re s id u e s  of ertF (z)} =  2mf(t),
A

so

2iri/(z ) =  flm J r e~zt ]^ j cc,F (C K j dt = jtim_ J  ̂ e«-*>*F(C)<ftdC.

We may interchange the order of integration, because both integrals are over finite 
intervals. Therefore,

§8.2 Complex Inversion Formula
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Figure 8.2.1: The large contour Is the sum of the smaller two: F = 7 + 7.

With z  fixed in the half plane Res > or, the term approaches 0 and tbe
integrand converges uniformly to —i**(C)/(C ~ z) on 7. We obtain

2*r*/(z) ■ - i & -

=  2*iF{z)~ j  £Q < K

provided T is targe enough so that z is inside 7. Finally,
M

K l <
2irMp

which is obtained by choosing T large enough so that it lies outside the circle 
ICI =  P > R  with all the singularities of f**(C)/(C “  2) inside tltis circle, and then 
deforming T to this circle. This last expression goes to 0 as p —*■ 00. Thus, letting 
P expand outward toward oo, we obtain f(z) =  F(z). Since a  > cr is arbitrary, the 
complex inversion formula holds for any z in the half plane Rc 2 > <7. ■

C o ro lla ry  8 .2 .2  Let the conditions of Hut complex inversion formula holtL JfF(z) 
is analytic far R e2 >  a and has a singularity on the tine R ez =  <r, then (i) the 
abscissa of convergence of f  iso, and (ii)

m  =  2^  e*lF(z)dz =  ±  J ~  e<"+*>‘F (a  +  iy)dy

for any constant a  > 0 . The first integral is taken along the vertical line lie  z = q 
and converges as an improper Riemann integral; the second integral is used as 
alternative notation for the first.
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Proof

(i) The complex inversion formula shows tlia t o(f) < a  since /(z )  converges for 
R ez > <r. If o(f)  were <  o, then f(z)  would be analytic for R ez >  o ( f ) 
by the Convergence Theorem 8.1.1. But F  has a singularity a t a  point zq ou 
the line R ez =  a, so there is a  sequence of points z i; Z2,Z3, . . .  converging 
to Zo with F{zn) —* oo. Since f[z) — F(z) for R ez > o, and since both are 
analytic in a deleted neighborhood of zn, they would be equal in th a t deleted 
neighborhood by the principle of analytic continuation. This would mean that 
/(z ,,)  —* oo. But th a t is impossible, since /(z )  is analytic on R ez > a(f). 
Thus, tr(f) < a is not possible, so o(f) = a .

(ii) From the complex inversion formula, 2wif(t) — r.slF(z)dz. This integral
converges to the integral in the statem ent, exactly as in the proof of Propo­
sition 4.3.9, as z j ,y i ,  and y j —> oo. Since yi and y j go independently to  oo, 
th is establishes convergence of the improper integral. (The situation here is 
rotated by 90° from that of Proposition 4.3.9.) ■

In working examples, all conditions of the theorem m ust be checked. If they do 
not hold, these formulas for f(t)  may not be valid (sec Example 8.2.5). The complex 
inversion formula is sometimes more convenient than Table 8.1.1 for computing 
inverse Laplace transforms since it is system atic and requires no guesswork as to 
which formula is appropriate. However, the table may be useful in cases in which 
hypotheses of the theorem do not apply or are inconvenient to  check.

H eav iside E xpansion  T heo rem  Now we apply the complex inversion formula 
to  the case in which F (z) =  P(z)/Q(z) where P  and Q are polynomials. Wc give 
a  simple case here.

T heo rem  8 .2 .3  Let P(z) and Q{z) be polynomials with deg Q > d eg P  + 1 . Sup­
pose that the zeros of Q arc located at the points z i , . . .  ,Zm end are simple zeros. 
Then the inverse Laplace transform of F(z) — P(z)/Q(z) is given by the Heaviside 
expansion form ula:

/ ( * > = £ « * '
te l

P(Zi)
< n *Y

Furthermore, o (f)  = tnax{Rezi | i  =  1*2,... ,m }.

P ro o f Since dcgQ  >  degP  + 1, the conditions of the complex inversion formula 
(8.2.1) are m et (compare Proposition 4.3.9). Tims,

m residues of est£ ( f ) \
< ? (* ) / '
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But the poles are all simple and so, by formula 4 of Thble 4.1.1, we have

The formula for o[f) is & consequence of Corollary 8.2.2. ■

Worked Exam ples
E xam ple 8 .2 .4  I f  /(z )  =  1/(2 -  3), find /(* ).

S o lu tion  Refer to  formula 9 of Thble 8.1.1. Let a =  -3 ; then we get f( t)  = 
c3*. Alternatively, we could get tbe same result by using the Heaviside expansion 
formula. In  tills example, o(f)  =  3.

E xam ple 8 .2 .5  I f  f(z)  =  log(z2 4- z), uthat is f ( t ) f

S o lu tio n  If /  were such a  function and g(t) =  tf(t), then by formula 1 of Table
8.1.1, we would have

Although this argument seems satisfactory, it is deceptive because there is in fa d  
no f(t)  whose Laplace transform is togfz3 4- z). If there were, then th is procedure 
would show th a t f( t)  — —(1 4- e~l) /t  is the only possibility'. However, tlie integral

cannot converge for any real x  because e~xl is larger than 1/2 near 0 and |/ ( t ) | ~ 
1 ft .  B ut 1 f t  is not integrabie. Thus /  does not exist in any sense we have studied. 
The argument above docs not actually Gnd such an / .  I t assumes th a t there is one 
and shows th a t there is only one possibility. But th a t one does not work. See also 
the remark a t the end of §8.1.

E xam ple 8 .2 .6  Compute the inverse Laplace transform of

Tb find g(f) we could use partial fractious.
2*  4 . 1  l  1

Therefore g(t) =  —1 — e~l, and so

/ W — j O +«-*)•

Then compute c(f), the abscissa of convergence of f .
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S o lu tion  In this case tbe hypotheses of tlie complex inversion formula clearly 
bold. Thus

/( ( )  =  £  {residues of -  fr -  2) }  •

The poles are a t 2 =  —1, z =  - 5, and z — 2. The pole a t - 1  is double, whereas the 
Olliers are simple. By formula 7 of Tabic 4.1.1, the residue at —1 is p '( - l ) ,  where

Thus, we obtain

—te~f e~l
-12  + -12

<7( 2)  =
c**z

z2 +  3 2 - 1 0 ‘

[2 . (-1)4-31 
144 — e-1

The residue a t —5 is e~Rl • 5/16 • 7; the residue a t 2 is ea  • 2 /9 • 7. Thus, 

By Corollary 8.2.2, o{f) — 2.

Exercises
1. Compute tlie  inverse Laplace transform  of each of tbe following.

M ' W - S q r

(c) F{z) =

2. Check formulas 10 and 11 of Table 8.1.1 using Theorem 8.2.1.

3. Explain what is wrong with the following reasoning. Let g(t) =  0 on [0,1 [ 
and he 1 on (l,oo). Then, by formulas 6 and 13 of Table 8.1.1, <7(2) =  e“ */z. 
By the complex inversion formula, g(t) — R e s fe '^ ty z jO ) =  1. Therefore, 
1 = 0.

4 . " Prove a  Heaviside expansion formula for P/Q  when Q has double zeros.

5. Compute the inverse Laplace transform of cadi of th e  following:

W  (z -f  1)(2 +  2)
(b) sinhz
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Applying this again gives

( § ) ( * )  = L

Therefore, our equation becomes r*y(z) — 1 +  Azy(z) +  3tf(*) ®»90

^   ̂ s2 +  4z  +• 3 ( r  +  l)(z  +  3) ■

By the inversion formula, the inverse Laplace transform of ̂ *'s *"unc^ on ®

(Wc could also apply line 9 of Table 8.1.1 to  the partial fraction expansion.) This is 
the desired solution, as can be checked directly by substitution into the differential 
equation. ♦

E xam ple 8 .3 .2  Solve the equation i/(t) — y{t) — H{t — 1), t  >  0 .1/(0) =  0, where 
H is the Heaviside function.

S o lu tio n  Take the Laplace transforms of both sides of the equation. Wc get

Therefore, y(z) =  e~‘/z(z  — I). The inverse Laplace transform  of l/(«(ar — 1)) is 
1 — c~*, so th a t of e~x/[z(z — 1)J is, by formula 6 of Table 8.1.1,

Note th a t (he complex inversion formula does not apply as stated . This solution 
(sec Figure 8-3.1) is not differentiable and thus cannot be considered a  solution 
in the strict sense. However, it is a  solution in a  generalized sense, as previously 
explained. In Figure 8-3.1, tbe discontinuity in U {t— 1) causes the sudden Jump in 

We say t in t  y(t) receives an “impulse” a t t  =  1. ♦

residues of

Thus,

zy(z) -  y(0) -  y{z) = e~‘ /z .

E xam ple 8 .3 .3  Find a particular solution o f y"{t) 4- 2j/( t)  4- 2y(t) =  f(t).
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r1 1

Figure 8.3.1: At t — l ,y  receives an impulse.

S o lu tion  Let ns find the solution with p(0) =  0, y'(O) =  0. TUdng Laplace 
transforms,

2*p(2) +  2zy(z) +  2y{z) =  f(z),
so v(2) — / ( ^ / ( z 2 +  2z +  2). The inverse Laplace transform of 1/ ( 2* +  2z +  2) is

where 21,23 are the two roots of z2 +  22 +  2, namely, —1 ±  i. Simplifying, g(t) =  
«"* sin t  Thus, by formula 8 of Table 8.1.1,

This is the particular solution we sought. 4

Generally such particular solutions to  differential equations of the form

where a i , . . . , ^  are constants, may be expressed in the form of a  convolution. 1 b 
obtain 0 solution with the values n(0).]f'(0)l . . .  ,i^M“ O(0) prescribed, we can add 
a  particular solution yp satisfying

to a  solution yc of the homogeneous equation in which /  is set equal to  zero and 
w ith ye(0 ),|£ (0 ),... proscribed. The sum + J/C *s the solution sought.
(These statem ents are easily chocked.)

Tlie method of Laplace transforms is a  system atic method for handling constant 
coefficient differential equations. (O f course, these equations can be handled by 
other means as well.) If the coefficients are not constant, the method fails, because 
transform ation of a  product then involves a  convolution, and then solving for y{z) 
becomes difficult.

9(t) ~  2(21 +  1) +  2(23 +  1) ’
g*at

+  . . .+ O iy  =  / ,

M O) =  0, ^ ( 0) -  0, . . .  , i / j r ° ( 0) =  0
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Exercises
Solve the differential equations in Exercises 1 through 6 using L ap ina transforms. 

1- V" -* V  = 0,»(0) =  2,^ ( 0) =  I

2. y" +  6y - 7 =  0,y(0) «. l.y'(O) =  0

3. ’ y" +  9y =  H { t -  l)ty(o) = ̂ (0) = 0

4. » '+ y * » e <,a(0) =  0

5. y ' +  V +  J  y(r)dr -  / ( l )  where y(0) =  1 and where f(t)  =  0 for 0 <  £ <  1 
or t > 2 and /(<) =  1 if i <  t < 2.

6. y" +  9y =  (£), y(0) =  y'(O) =  0.

forms.
(a)

/  v'i + » 2 = o
\  l/a +  Pi = 0

(b)

/  tfi +16 + 1/1 = o
{% V y t* = VZ °  whc“ »«(°) =  0’ltt(0) s= 0-

8. Solve; y ' +  y =  cos t, y(0) =  L

9 . " Solve: J/"+  y =  f.sint,y(0) =  0 ,y '(0) =  1.

10. Study the solution or y" +  a/gy =  sinw£,y(0} =  y '(0) =  0, and examine the 
behavior of solutions for various u , especially those near w =  <•*). Interpret 
these solutions in term s of forced oscillations.

R eview  Exercises for Chapter 8
L  Compute the Laplace transform and the abscissa of convergence for /(/.) =  

H(t — l)sin (t — 1).

2. * Compute the Laplace tm nsfonu and the abscissa o f convergence for f( t)  =

3. Compute the Laplace transform and tlie abscissa of convergence for

0 <  t < 1 
i>  1
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4. Let f(t) be a bouuded function of t. Show that <r(/) < 0.

5. Compute the Laplace transform and tlie abscissa of convergence for

m =
Cl - 1

t

6. If f(t) = 0 for t < 0, then f(y) = (1 /y/2s)f(iy) is called the Fourier 
transform  of /. Using Corollary 8.2.2, show that, under suitable conditions,

(This result is called the Inversion Theorem  fo r  Fourier transforms.)

7 .  Compute the inverse Laplace transform and the a h s c i a a a  o f  convergence for

F(z)
e“ *

^ + T

8. * Compute tlie inverse Laplace transform and the abscissa of convergence for

F(*) = ( T + ir

9. Compute the invase Laplace transform and the abscissa of convergence for

F { z )  =  +  — .
(z  +  l )2 2

10. (a) Let /(z) be the Laplace transform of /(/). Show that /(z) -♦  0 as
R ez—* oo.

(b) Use (a) to show that, under suitable conditions, 2/(2) —* /(0) ns Rez —♦ 
oc.

(c) Can a nonzero polynomial Ire tbe Laplace transform of any /(£)?
(d) Can a nonzero entire function F  ix* the Laplace transform of a function

/(0?
11. Solve the following differential equations using Laplace transforms:

(a) y" + 8y +15 = 0,y(0) = l.y'(O) = 0
(b) |̂  + If = 3,y(0) = 0

12. * Suppose that/(f) > 0 and is infinitely differentiable. Prove that (—l)fc/^ (*) > 
0,k = 0 ,1,2 ,..., for z > 0. (The converse, called B ernstein's Theorem, is 
also true but is more difficult to prove.)

13. Solve the following differential equations using Laplace transforms:

(a) y" +  y =  H ( t - l),y(0) = O.y'(O) = 0
(b) y" +  2y' + y =  0.y(0) = l,y'(0) = 1



Answers to Odd-Numbered 
Exercises

l.X Introduction to  Com plex Num bers
i. (a) 6 +  41 ( h ) i l + *2'  '  17 17 w H 1 3 .« e i ( 2 - « )

5. Re [*1 x2 - y 2 2xy
,*2J " (*2 +  y2)2 (a? +  y*)a

He 1 I 3x +  2 Im f 1 ^  -3 y
.3*+ 2J (3 r +  2)a + ^y2 1 U * -r2j (3x +  2)2 4-9ya

7. No; let £ =  tu =  i. 9. If = =  x  + t'y, then R c(ii) ■= R e(ix—y) =  —y =  — and
Im(tc) =  lm (tz - ( )  =  * =  Rc(c).

11. The proof of thn associative law for multiplication was outlined In the text. Hon: is how to 
show that ndditioo is commutative: l f t  =  * + t ||M d « c « + w , whore and 11 are
real, th n  z  and tu correspond to  (x,y) and (u, e) respectively, and thus 

j  +  o  =  (*,y) +  (« ,» )=  ( t  +  # ,y + « )
= (u +  x ,o + y ) ~  («,») +  (*,») =  w +  *.

13. Show that a  =r (x3 -  y2)^*2 + J/3) nod b =  -T xy ftx1 +  p3) and then aa +4? — 1.
IS. A complex nnuiltcr t  can bo written as * =  *  +  iy  with x  and V real in only one way, 

corresponding to the vector (x,y). Tlie real numbers won: to corroipond to  vectors of Uie 
form (x,0), so y ss 0 and therefore * =  x =  Bex.

17. (a) -4  (b) i

. „ r.— 7. . ( + . V-l->/5+t/4 + 2 ^l { a )0 + > ^  = ± l  * ------ ^ 3 ----------- +  .-£-----------p 73------------ I

(b ) v r a = ± ( ^ S +, ^ i )

1/4 -  2v/§ . y /l -  y/5 +  y/4 -  2y^2

(c) See Worked Example 1.1.6.

)
1.2 Properties o f Com plex Num bers

1. (a) z = fco s~ ~  + 1sin 1 f c « 0 ,i,2,3,4

(b) 2 =  c o s +  rein +■ ^  j  , k  =  «, 1,2,8

481
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5. cos&c =  cos'*x — 10 cos3 r  ■ sin* X -j- 5 cos x-sin4x 
sinSx =  sin5 x -  10 cos* * • sin* x  + 5co t*x -sin *

7. y/SriJs  9. Uae tlio identity (i -  to)(l +  M+ tO* +  . . . +  «fB***) s i — to*.
11. \Ve use properties of tlie complex conjugal* as follows:

|o -  5|* + 1« + Ip  =  (o — 6)(a - 6} f ( a  + 1)(« t 1) 
s= (a — 6) (a -  6) + (a +  6)(d -r t)
=  W2 “  -  «  +  Wa +  M* +  +  t e +  |M*
=  2(|aJ* +  |6|*)

13. All tlie points must linvn tho some mgument and w  lie on tbesam o my frum the origin. 
IS. No; tako z ~ i .  In fact, ** =  |; |a if nnd only if z  is real.
17. Each aide is a  positive teal number whose square is o*(o')a +  « V P  +  ( s 'p lr  +  f^(V)7. 
19. | c - (6+  5> )|= 3  21. The teal axis. 23. 1 +  |a |
25. Using HoMoivrc’s  formula and 1 +  to + . . .  +  jo* =  (1 — lon+l) /( l  — n>),

y  cosk$ =  Re H P (cos0+ «sio  0)fcl
M  UsO J

^  1 -  (cosd-f <«ing)"'r> J ^ l -  cos(tt +  1)0 - 1 wii(ti + 1)9
1 -co sO -isin O  1 — co sd -tsitiO

_  1 -c o s0-co s(n  +  l)tf +  cos(Ti +  l)flcos0 +  8in (n + l)tf3in0 
2 —2cos9 "

1 . cos n0 -  ccu(r  + 1)9 
~ 2 + 2(1 -cosff)

1 2ain(0/ 2)siii(n+|)0 1 sin(n + 3 )0
** 2 +  2(1 - c o s 0) *  2 +  2sin(9/2) ‘

27. (a) (zj -  si)/(sg  -  s i)  is real. (b) f —— - ( —— —^ is teal.

29. Multiply by 1 — to and use Exercise 9 to  show that tlie sum is —n /(1 — at).

1.3 Some Elem entary Functions
1. (a) e*(cos 1 +  isin  1) (b) j ( s b l ) ^ + e j  + i j ( « s l ) ^ * -  | j

3. (ft) z =  + 2tm - j^ lo g 2̂
(b) a m ±|2sm -  i  log(4 +  \/l5 )), noting that log(4 -  \/l5 ) •= -  kg(4 +  y/15).

5. (ft) lug 1 =  2smt (b) Ingi =  x t/2  +  2uni 
7. (ft) e»/ae-3»n _  e-a » (n -l/4)

(bJeU/aitosa-aw— •/< Jco sQ lo g 2 +  ^  + .s iu Q lo g 2+

9. * =  « jr for any integer n
11. Since |e*| =  eR“ *,|e*| goes to  0 along rays pointing into the left half plane. I t b  1 along 

the imaginary axis, and it goes to  +00 along rays into the right half plane.
13. (ft) e***l |,(«o«2ty  +  isiB2q() (h) e~v(cosx +  tsinx)

3.
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15. Using the definition of the sine and cosine of a complex variable gives 

sin(s-/2 - t ) s

c_<* + e1*
21

= C05g.

2i

The otlier two assertions follow in a  simitar way.
17. FVom Example 1.3.17, sin z s  siuxcosli]/ +  icoszsinh y, go 

| sin ej2 e  sina xcosh* y  +  cus* xsinb3 y
— sin3(x )(l +  sinh3y)-i'C063xsiilh3v 
=  sin2 x  +  sinl)* y  >  siiih3 y,

ao |sin e | >  |sm hy|. The other inequality follows in a similar manner.
IS. No, not even for real a  and b. LcL a  =  2,6 =  —1. Tlien |nh| B |2_ ,| =  but |n ||4l =  2.

21. If |s | = 1, then z = c *  for some 0, so * + l/x  =  er t 4-«j-* =  2cos0. As 9 varies from 0 to 
2jr, this covets the interval (—2,2) twice.

23. Since |l / s | =  1 /|—|. the map interchanges the inside and outside of the unit circle. Circles 
of radius r  are mapped to  circles of radius 1 /r. If z =  re’*, then 1/x =  ( l/r je * * , ao the 
my ileBned by u g r  = 9  is mapped to  the ray with argument —9.

23. This holds iff 6 log a has its imaginary pnrl in [ - r ,  jr[. Otherwise, the formula rends logo* =  
b log a +  2n l '.

27. These ore the n th  roots of 1, since (ur*)” =  ((«,lri/* )k|"  =  e3"w s  J. Tltcy are all different, 
tduco W a n *  impliot <?*•{*-iHn =  t .  By Proposition l.S.2{vii), this forces { k ~ j} /n  to  
bean integer.

29. sins =  0 if and only if c1'  =  c - u  or «** =  1. By Proposition 1.3.2(vii), this happens 
exactly when 2i* = 2tm i, or s =  a s .

31. The maximum iscosh(2tr) a  26ft attained a l t s  2 r t ,s f 2 r i .  and 2 r4 -2 s i
33. (a) m 24-<4.5 (b) a  1.17 -  t(l.lfl) 4-2jroi (c) as 90.16 -  <1644.43
35. No, sins is not one-to-one on 0 < Acs < 2s. Par example, siu(0) =  «n(s) =  0. If 

sin s a: sin in, tlxai
.  . _ . x —n> s +  «c0 =  Sin t  -  sin W =  2sin ——— cos —-—

2 2
and by Exercise 29 and a similar result for cosine, either z - w  = 2far (fo rt =  0 ,± 1 ,± 2 ,...)  
or s + u» = » x  (for n =  i l , i 3 , ± 5 ,...) . Using Exercise 34 and this result, for each tg  €  C 
there is precisely one so with - s /2 <  lie u  <  %{2 such that sin to — s®, provided, for 
example, that the portion of the boundary of this strip lying below tbe reel axis is omitted. 
Taking this value of m defines a  famndi of sin-1 to- The others are given by the above 
formulas for x — in and s  + nr. The discuraion for cos-1 is analogous.

1.4 Continuous Functions
1. Since |ur(3 >= (Rou:)3 +  (lane)8, all three assertions follow from the obeorvalloo that if 

n > 0aml <r>0, tliena <  Vo3 +  ^ < «  +  k
3. Sirnsi /  is continuous, Uietv is a 6 > 0 such that |x — *o| < t  implies that |/( s )  — /(zo )| < 

|/(x o )|/2. Thus /(* ) ^  0, for if f ( t )  were equal to 0, then |/(*o)l would be less than 
l/(so )|/2. wliich is absurd.

5. Lot {<11,02. . . .  ,0n) be a finite set of points and let sq be in its complement. Let 6* ~  
|*u—ofc|an d le lii =  iu iu {3 |/2 .... Then no n* can lie in D(za, &), since S <  |x«—o t|.
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7. Lot € > 0 and 4 =  e. If |* -* o | <  4, then |/(* )-/(* » )l =  l*~=o| =  l(* -* o )l =  |* -A ii < t-  
Thus for any «o € C, /(* ) =  /(so).

9. G\{2imi | n  is an integer} 11. |s | <  1
13. (a) Open, not dosed (b) Neither open nor closed (c) Not open, dosed
IS. (a) Connected and compact (b) Compact, not connected

(c) Connected, not compact (d) Neither compact nor connected
17. a 6 C \ /“*(X) iff a £ / -  »(A) iff/(s ) i  A  iff /(a ) €  C \*  » * €  / _ ,(C\A)
19. If the Vo’s arc open seta and a € VaUa, then a 6 Uao tor some oo- Since W»0 is open, 

there is an c > 0 such that 0(*;e) C Uo0 C U ,l/0 - This shows the union is open, since 
this argument holds for any sudi a.

21. n£L|X)(<l; l/n )  =  (0), and this set is not open.
23. Let R  > 0. We need to show that there is an A' sudi that |*n/n | > A whenever n > 

A*. A little algebra shows this is equivalent U> (nA)‘/"  <  |s |. L’HfipiuU’a rule shows 
tlia t =  l. (Thke logarithms first and uso L'Hopital’s rule to  sliow that
Jog(nA)1/"  -» a )  Since |* | >  1, wo hnvu the inequality we need for large enough n.

1.5 B asic Properties o f A nalytic Functions
1. (a) Analytic on all of C. The derivative is 3(a +  l)2.

(b) Analytic on C \{0). The derivative s i - 1 / a 2.
(c) Analytic on C \( l) . Tbe derivative is —10l j/(3 — l)}1*.
(d) Analytic on C ^e2*^5, , 1, iy/5, —iv 2 ]. The derivative is

- ( l / t* 3 -  l f t a 2 + 2)2) • [(3s  - 1)2*+ 3 s2(32 +  2)).

3. (a) If n  > 0, it is analytic everywhere. If n  <  0, it is analytic everywhere except a t 0. Thu 
derivative is nx"-1 . (b) Analytic on C \{0,i — i), The derivative is

_2( * + W  0  “ ? )  ■
(c) Analytic except a t the n th  roots of 2, 05c*,u ,A . The derivative is

(1 -  n)z” -  2
(x" — 2)* ’

5. (a) Locally, /  rotates by 9 =  0 and multiplies lengths by 1.
(b) Locally, /  rotates by an angle 9 =  0 and stretches lengths by a factor 3.
(c) Locally, /  rotates by an angle r  and stretches lengths by n factor 2.

7. t r 1 O /) '(* ) =  ( / - ‘ )'(/(s))/'(= ). But ( /-*  o /)(s )  =  3, so (/->  o /) '(* ) =  1. Henoe
(/-')'(/(«))

9. f ( z )  -  +  3= +  2 =  (z2 -  y2 +  3* +  2) +  i(2*y + 3p), so Ou/dx =  2* +  3 =  Ov/Oy and
duf&y =  —2y =  —flu/fl*.

11. Since x  — rcosP and y  =  m ini), the dmin rule givn
flu .A i , , .flu—  =  0060—  +  sind—  
Or Ox Oy

Solving for Ou/dx and Ou/Oy gives

. 8# . .A i .fluand —  =  -rs in d —  +  r a » 9 — . 
09 Ox ay

Similarly,

flu
6x

=  e o s d £
sinDflu 

r  09
flu _ COS® flu 
T r + ~ T W

flu
Ox

einOOo 
r  09 and flu

Oy =  rin 9—  + 
Or +

cos 9 flu 
r  09 '
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h o  t h e  © u ic l iy - I l ie iT u m u  e q u a t i o n s  b e c o m e

and

_Ou sin9 Ou , .A t cosS Ovco eff------------- —  *= sin fl—  H---------—
Or r 00 Or r 09

, . f t i  , cos 0 Oil JOv sinOdu

Multiplying the Brat by canO and tbe second by Sint? and adding gives ^  Simi-
, Ov 1 Ou *  r 9 °
,arty’ 5? =  - ;5 0 *

13. The definitious give
Of _  1 ( O f  _ 1 Q f\  _  1 r«u .Ov _  1 (Ou  ,8 » \1
OS 2 \ &  i  O y) ~  2 [a*  i Vtfy l Oy) J

_  1 (Ou  3 v \ 1 /5 u  0u \
5 u *  "  2 Va* + f W '

Thus, the Cmicliy-Riiunnnn equations, Oaf Ox =  Ov/Oy nud OafOy e  —Ov/Ox, arc equiva­
lent to Haying tliat the complex quantity 0 f/0 £  is aero.

16. If /  =  « +  iv, than Ou/Ox s  O s  OafOy since u is constant. By the Cauchy-Riemnno 
equations, Ov/Oy =  Ou/Ox =  0 and Ov/Ox a  -OafOy =  0. Thus, / '( a )  =  Ou/Ox +  
HOv/Ox) =  0 everywhere on A. Since A is connected, /  is constant.

17. By the Cauehy-Riemanu equations. Oa/Ox = Ov/Oy. Hence 2Ov/Oy s  0, so Oa/Ox and 
Ov/Oy are identically Oou A. Tims, u depends only on y  and t> depends only on x . But then 
OafOy can depend only on y  and Ov/Ox only on z . Since Ou/Oy =  —Ov/Ox for all x  and 
y, du/Oy and —Ov/Ox equal the same real constant c. Tims u  =  cy+ di and v =  — c r + d j. 
Thmcfore, /  =-u + 1» =  —«e(z +  ty) +  (di + td j).

10. (a )C \{ l) (b) Yes (c) z  axin \{ 1}, unit circle \{1} (d) 90»
21. C\{ 1, e2**/*, e*"2*1/3}
23. (a) u  is the imaginary part of the analytic function f{ s )  =  z2 +  3x +  1, So « is harmonic 

on C.
(I>) Either dieck the aecoud derivatives directly in Laplace's equation or notice that «  is 
tbe real part of /(c )  =  l/(c  — 1) to 9eo tliat u  is harmonic on C \{l}.

25. Locally in B ,to = Reg. where g is analytic. Then w o / =  R e(go /). But g a f  is analytic, 
so w o / is harmonic.

O^a
27. (a) =  e*cosy — e* cosy =  0 for alt (z,y) (b) We need Ov/Oy =  Oa/Ox —

e*cosy; thus, n(z, y) =  c 's iu  y-fg(z). Then «I tin y 4 -/(c ) = Ov/Ox =  —Ou/Oy — c*siny. 
Thus / ( x )  s  0, so g Is constant. 7b  obtain v(0,0) =  0, take v(z,y) =  easing.
(c) e* =  e* cos y +  tc* siu y. By parts (a) and (b), thereat and imaginary parts satisfy tlie 
conditions of the Cauchy-Riettnuin Theorem 13.8, so /  is analytic.

29. (a) No. Counterexample: u(z,y) ss*2—j^ond  v(z,y) =  *  are harmonic, bulu(v(z,y),Q ) c  
z2 is not harmonic, (b) No. Counterexample: e ( r ) a « ( r ) s x .T lm i« ( t ) - v ( z ) a r  b  
not harmonic, (c) Yes

31. Write

U = Ou
Ox and V Oa

Oy'
so /  at V  +  tV. By assumption, U and V  have continuous partial derivatives. By the 
assumption of continuous second p»siiii» for u  and «, we get

0*u 0*u . , OU OV
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one of the Cauchy-Rleniann equations for f .  The other equation comes bom 
8U  _  82v  _  & u  = 8  /  8 u \  _  «9P 
d r  ftr2 ’= ~8]/2 ~  Oy \  9 u )  ~  8U'

f  is thus analytic by the Cauchy-Rieniann Theorem.

1.6 D ifferentiation o f the Elem entary R inctions
1. (a) Analytic for all r , tlie derivative is 2s -f 1.

(b) Analytic on C \(0); the derivative is — 1/ s 2.
(c) Analytic on C\{* =  (2 t +  l)x/21 A: =  0, ± J ,i2 ,± 3 ,...} ; the derivative b  l/c e s2s.
(d) Analytic on C\{1}. The derivative is

2s* -  3s2 — 1 
< s -l)»  C*P

3. (a) 1. (b) The limit does not exist. S. No. 7. Yes.
9. (a) Analytic on C \{±1). Tlie derivative is — (z2 +  l)/(z*  — l)2.

(b) Analytic on C\{0}. The derivative is (1 -
11. The minimum b  1/e, nl t  =  ±».

13. Tlie map t  *— 2: is a composition of entire functions and so b  entire. The function 
z2* — c2* a b  analytic on the region of anaJyticity of the logarithm choson.

R eview  Exercises for Chapter 1
1. (a) e1 =  cos(l) 4- iain(l); (6) Iog(l 4- i) =  ilo g 2 4 -^4 -2 > rr« ,n  an integer

Z 4
( c ) s in i- i£  ( e _  * )  ;(d)exp[21og (-l)] =  1

(=J -  £ )  -  £ )
5. e =  2xn d: i log(\/5 + v/5)
7. (n) The real axis (b) A circle, centered a t (-4^,0) of radius | .

9. (a) (z3 +  8) ' = 3*2 on all or C. (I.) ( on

(c) [uxp(*4 -  1))' n  dz3 cxp(i* — 1) on all of C- (d) |siu(logza)j' =  -  oos(iogza), on «H C 
except, tlie entire imaginary axis.

11. (a) Analytic on C \(0J;(c,/,e)' =  -«*/*/**•
(b) Analytic ou C \{s *  (r/2 ) +  2s« | n =  0,± l.db2,±3t . . . ) ;
(1/(1 — sine)2) ' =  2(cosz)/(l — sinz)3.
(c) C \{±oi}; (e“*/(«3 +  ̂ ) Y  =  ((«* 4- =*)««" -  2zC-*J/(«2 +  z2)2.

13. (a) No. (b) Yes. (c) Yes. 15. If and only if /  b  constant. 17. j  =  v  =  -1
19. Note that v(z,y) =  0 oo A. Therefore, 8o/0x = 8v/8g  s  0, and tlie Canchy-Rieinanii 

equations give 8u/8x  =  0u/8y  =  0. Thus, f 1 b  identically 0 oo the connected set A. Hence, 
by PruiiasiLiuti 1.5.5, /  b  constant on A.

21. By hyjioUicsix, (d /dz)(/(s) -  bigs) = 0 . Now usn Proposition 1.5.5.

23. Jin, =  /(z o )  where /(z ) =  r ” .n—*0 A
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25. Fix a. branch of lag, for example, tbe principal branch, which la analytic on C\{ nonpositive 
real axis}. Write r* =  a*1"**, which is analytic on the region of analytiaty of logarithm 
chosen. The derivative is s*(l +  logs).

27. z — 2c<*/^ ,2er*‘(,®,2e1,,̂ ,/®. 29. They arc the real and imaginary parts of r*.
31- (a) 0. (b) Differentiable a t all points a € C.

33. “ 6®‘aoe ?  + 0 ^ =0- (»>) »(*,») “ ^ -S x y 2.
35. S -  i, - l , - i , l .
37. /(z ) =  / ( 2s) — /(4 s) n . . .  =  / ( 2"x) for any r  and positive iutegcr n. Lotting w = 2 "s, 

we get /(«i»/2") =  /(is ) for all n. Letting n — oc and using the continuity of /  a t 0 gives 
/(0 ) =  /(ti»). Since this can be done for any to in C, /  is constant.

2.1 Contour Integrals
1. (a) 2 +  (</2) (b) £|cos(2 +  2t) -  oos(2i)l (c) 0
3. The principal brancli of the logarithm is a function tlia t is analytic on an open act containing 

7 and whose derivative is 1 /r. Since 7 is closed, the value of the integral is 0, by the 
Fundamental Theorem of Calculus for contour integrals, 2.1.7.

5. No; for example, let /(* ) = 0.7(1) a  it for 16 [0,1]. Then

j  f i e f  = =

However,

Ro J  J = He J  ttidt = Re 

7. (a) 2xi (b) -* /3  9. For |z | » 1  we have

|2 + e2r |2 +  S2| - 2- | c p ,B1,
since |s i + s s |>  |s i | -  |ssa|. Hence

13, 0 15. If 1 =  <!** is 00 7. then
I sins | . .  , ^ |c**| +  |e_<4| e-»!o« + c iJ»*
| - r |  =  l* » = l< -------5------- ------------ 2-------- < e .

Since 7 lias length 2ar, the estimate follows from Proposition 2.1.6.

2.2 Cauchy’s Theorem —A  F irst Look
1. (s) -6 (b) 0 (c)0  (d )0  0, by Cauchy's Theorem applied to z  =  m +  rc*e .
5. The integral •» *ero Hf 7 encircles neither or both ro o ts— (1/2) £ (v ^ /2 )i of s2+ s + l  =  0. 
7. No; let /(* ) =  2 .7 (0  ~  «“ .< € {0,2*?) (the unit circle). Then f y Ref(z)d* = xf, while 

/ 7 I m / ( * ) d l :  =  - j r .  fr. 11 . 4sri
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2.3 A  Closer Look a t Cauchy’s Theorem
t. If it wore, tltcn Lhc cirde |s| = 1 would be homotojiic to a point in C\(0) so that 

tf=/2 — 0- But /j#|_j dz/s s  2xi. This contradiction shows that C\{0) is not 
(Amply connected.

3. Let 7  : [a.6] — A lie a dosed curve in A. Define a honiotopy H : [a,t| x (0,1) — -A by 
H(t,s) — «y(t) + (1 — jf)to, wliidi is dearly continuous and maps into A since A is starlike 
at zd- Tlius 7  is homotopic by H  to the constant map at so.

5. Tbe set C  contains Uto segment between cadi of its points and 0. Sample of part of a proof: 
Consider a point c  for which 0 < Ret < 1 and 0 < Ime < 3. I f*  = sc+  (I — *)0 =  sc 
with 0 < a < 1 is on the segment between c and 0, then Res s  Re(sc) — sRcc and 
Imz =  slmc, so that 0 < Rea <  I and 0 < Imz < 3. Tims z € <7. Points in other parts 
of C  are handled similarly.

7. (a) 2in (b) 0 (c) 0 (d) n i 9. (a) 2xi (b) 2x*

2.4 Cauchy’s Integral Formula
1. (a) 2ri (b) 2xi

3. Hie Cauchy inequalities (2.4.7) show that / ^ (* )  is identically 0 fur k  > n. Tbe condusion 
follows from Exorcise 20 of $1.5.

5. (a) 0 (b) -xt/3

7. Using the Canrliy inaqualitics, |/'(0)| < 1/1! for every 12 < 1. Ilencc |/'(0)| < 1. This is 
the best possible bound, as is dear from the example /(*) = *.

9. Let 7  be the dido 7 (1) = *i + re'*,0  < t<  2»,|zo — zi| < r. The curve 7  is liomotopic to 7  
fay H(t.s) s«(z| +rett) +  ( i— s)(*o+rew). Since s* is not in the image of the Immotopy,

/  is also continuous at zo- By Corollary 2.4.11 to Morcra's Theorem, /  b analytic on A.
13. (a) 0 (It) 0 (c) 0 (d) *#/2 15. 4xi

17. l//bcntireimd|l//(z)| < I on C, sol //(and hence / ) b  constant by LiouviHe's theorem.

19. (a) x/2 + t(*/2) (b)0

21. Start with Cauchy’s Integral Formula 2.4.4 for /(zi),/(z») and /'(zo).

2.5 M aximum M odulus Theorem  and Harmonic Functions
1. c 3. Let A  =  C\{0),/(c) = e*.

5. Note that/ —g b continuous on d(A) and analytic on A. Abo,(/—g)(z) =  0 for z € bd( A), 
and so by tlie Maximum Modulus Theorem, (/ — g)(z) = 0 for all r 6  A. In other words, 
/(*) = ((*) for all a 6  A. Hence /  =  g on ail of d(A) =  AUbd(<4).

7. |ez3| Attains a maximum value of c a t ±1.

9. (ft) v(tr,y) =  -  cosh rcosy 00 C  (b) v  =  nrctan(y/x) or — arctan(*/y) onC minus the
negative roal axis (c) r(i, y) = e *  sin y on C 
(Note tliat an arbitrary constant may be added to each.)

II. By Proposition 1 .5J , /  b analytic on A\{zu}, so it b  continuous there. Since
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11. If z  — x  +  ty ,n * r‘ =  e* cosy and Imc* =  e*siny. The normal vector to the level curves 
of these functions Is given l«y tbe gradient vectors

(cr cosy, -c*siny) and (c* sin y,e* cosy).
Shioe these arc orthogonal, the eurvis are also orthogonal.

13. Since /  is analytic and mmconstant on A, so cannot t>o a relative. maximum. Thus, in every 
neighborhood of so, and, in particular, in the t  disk dulined by |* -  sol <  «, theru is a point 
z with |/(* )| >  |/(*o)|. If /(=o) /  0, tlicn by continuity, /(* ) ^  0 in some small disk D 
centered a t jg . Tims l / / ( s )  is analytic on D. By the last argument, them is a (  dose to 
so such that

I 1 I I 1 Il/(C)l > l/(*n)l
Therefore, |/ « ) | <  |/(so )|.

15. |p(0)| =  |0| =  0, and so g(0) =  0. Also, |y(*)| =  |s | <  1 for sell z  in Um disk defiued by 
|c| <  1. Thus, Sdiwant’s Lemma applies, and so g{z) — cz witli |c| =  I.

17. 0

R eview  Exercises for Chapter 2
I. (a) 0 (b)0 (c) 2xi (d) 2n*cos(l)
3. f ie r i  > r*  > 1, •», is homutopic in {xsttdi tlia t |s | >  1) to  f r , , so the integrals are equal.
5. -2 /3
7. If 2|  6 A, let tt be a  path hi A from zq to  * |. By the Distance Lemma. 1.4.21, there is a 

4 > 0 sudi that the sot B  =  {* | there is a  point w on 7 with \z — w\ < S} C A. Tlie 
Maximum Modulus Tlicorem shows that /  Is constant on this bounded subregion and in 
particular J(z  1 ) *= /(an). Since 21 was arbitrary, /  is constant ou A.

-V  t  e*0. e(x,y) «  ------ -  a on C\{1 J 11. Consider /  -adz  to obtain 2tt.
(x -  1) ' IT ■'(*1=1 -

13. f; log i =  i(x /‘2) 4- 2srin; log(-f) =  —i(*"/2) -f 2irm; 
jios(-i) =  wiicrc k  is any odd integer.

15. By the Candiy Integral formulas, / '  is analytic on A- Since /  is nonzero in A , f f f  h> 
analytic ou A  and the integral is 0 by the Cauchy Integral Theorem.

17. No; le t')  be the unit circle. Then f^ x d x  + xdg = ir.
19. (a) No (b) Yes (e) Y « 21. 2d'»/»,2o«*/» , and 2e'3*/2
23. By the Mean Valuo Property 23.9 for liarmonk: functions.

By Poisson’s formula (2.5.13),

U(Q ) “  T~ f *  nV & 'ldB .2% Jo

«(new) = n 7 - r *  r7*
2X rJo

u(ite* )
IP -  2Rr<x*i(4> -  «)+r=

Using these equalitim, «ve get
It3 - r *  f 7* xi(Rt?e)fJo2sr J(y +  2/ lr  + r 2

that is,
(R  + r ) ( R - r ) 1 f 7*

dO <  u(s) R 7  - r 2  f 7 "<  R7 - r 7 j *
-  ‘i*  Jou R7 — 2Rr f  r7

•2n

Therefore,
m m t  h  1:  «*->• <- ±  c  ^

if  •+■1*1
«(0) <  *(*) < n  4-1*1 

H - k l
« (0).
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3.1 Convergent Series o f A nalytic Functions
1. (a) Docs not converge (b) 0.

3. The limit is I and the convergence is not uniform.
3. If |z | <  r , then |sn -  0| <  r " , so |s" -  0| <  c whenever n > (logt)/(logr). These n  work 

for all c in Dr, so the convergence Is uniform. The convergence is not uniform on 0(0; 1). 
For example, if z =  r , the requirod minimum n is (logc)/(logr), wliidi bcoomus arbitrarily 
large as r  gets dose to  1.

7. Neither of these series converges absolutely. However, both the real and imaginary parts 
of eadi arc alternating series whose terms decrease in absolute value monotouically to  sera 
and thus are convergent  (by the alternating series test from calculus).

9. Tbe sequence of partial sums converges uniformly; thus it converges to  a continuous function 
and the amertioo follows.

11. Let D  be any d o n d  disk in A. Then there exists an r  >  I sudi that |z | >  r  for all z €  D. 
Hence |l / r " | <  ( l /r )n for all a €  O. But J ^ l i ( l / r ) "  converges, since 1 /r <  1. Thus 

1/z "  converge absolutely and uniformly on D. Since l/z n is analytic on A, the 
Analytic Convergence Theorem 3.1.8 shows that l /z ” is analytic on A-

13. bet D be a closed disk in A  and let 8 be its distance bom the boundary Im z =  ±1. For 
x =  x  +  iy  6 D, prove that |e~" sin(nz)| £  e~nS.

IS. By Worked Example 3.1.15, <(z) *  n “* converges uniformly on dosed disks in A  and
thus it is analytic on A with (*(z) =  2 2 ^ ,( -  togrijn- *, which also converges uniformly 
on dosed disks in A  and thus is analytic. By induction, ^ ( * )  s  £ J ^ ,( - la g « ) V *  
converges uniformly on dosed disks in A and thus is analytic. Therefore, (—l)*£*(z) =  
£ n e i( l° * n)kn~* is also analytic.

17. No; let /„ (z ) =  **/*“• 19. (z | |3z - 1| <  1) =  {z | |z -  g | <  | ) .

3.2 Power Series and Taylor’s Theorem
1. (a) 1 (b) c (c) e (d) 1.
3. (a) tr  = JDSL«(e/n!)(z -  1)’\  which converges everywhere.

(b) 1/z  as S S ^ o (-l)" (*  -  1)“ ; the series converges for |z - 1| <  1.

S. (a) Slai =  siu(l) +  (cos(l) -  sin (l)|(s -  1)
+  -  cos(l)] (z -  1)* +  IfcosO ) -  2 sin(l)] (z - 1)» + . . .

11. fo r sinhz, tlie odd derivatives are 1 and the even derivatives are 0 a t z =  0. Thus fay 
Thjrlor's theorem.

Tlie argument for cash z is similar.
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IS. If |s | <  A, then £ « n s*  cuimap s absolutely; tlinl Is, £  |ren||z |n converges. However, 
|(R ean)z"| <  |o „ ||2“ |, so

and hence converges. Since £ (R cflB)*n coimtrges for any |s | <  ft, lltc radius
of oonvagoicc must be > I t

17. The region for tlie first scries is A — {a such that | lru(z)| <  log2}. Tim second series is 
not analytic anywhere. (Use |e“ nv- e nv|/2 <  |sinn*| <  (e“ nv + c"v )/2, where y  — liuz).

19. (a) Stip|»se tliat tlie Taylor serius for f ,  ]C?Lo /*“*{»o)(® ~ 4>)n/rd, has radius of conver­
gence A and converges to a  function j( r )  on D(za\ ft). Lot fto be the radius of D. By 
Thylor's tbconun (3.2.7), the restriction ofy  to D is equal to /  and A Jt Ro. H ie function 
g  is analytic and so continuous ou £)(zq; R). If R  were >  flu, then g  would be continuous 
and hence bounded on the compact closed disk cl (D) = (z sudi tlia t |z — z<j| <  Ag). But 
g and /  arc tlie same on D, and /  is not Iwundcd on D, sn R is not greater Hum ftg and 
thus R  = An.
(b) Brand ies of log(l d- z) may Ito defined with the plane cut along any ray from —1 to  oo. 
Fhr the principal hntndi this is along the negative real axis. These determinations differ 
by an additive constant depending on tlie angle between the ray and the real axis. The 
series expansions around z# =  -1  +  i differ only in the constant terms mid so have the 
same radius of convergence, whidi we may call A. If wc choose the ray leading from —1 
directly away from zq, then 0(m ; \^ )  lies in Lhe region of annlytidly, so A > But 
D =  D(zoi 1) is tlie largest disk centered a t zo contained in die region of analytic!ty of the 
prindpal branch of Iog(i -fz ), and > 1.

21. Suppose |/i(z)| <  M  for z in B, and let * > 0. Ify(z) = then uniform convergence
given an N  such Hist |s(z) -  ft(z )| <  e/A# whenever w >  N  and m >  N. Thus,

£ |( n e n „ ) * " |s £ |a n||z» |.

M n
k*)ff(*> -  5 2  =  im - m »(*) -  5 2  <  «•

f s m f l

Therefore,

Hi(x) + 52 W“r = “ WhJ + I > *"»(*) “ 2nH„_|(*)]*"/„!.

liquating coefficients gives the desired results.

3.3 Laurent Series and Classification o f Singularities
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5. Lei 73 be a  radial segment from -73 to  71 not passing through *. Let 74 =  72+ T3 —ft -  73 
OS indicated in the Figure. Let u  lien  small cirde about z  lying between 71 and 73 and 
nut crossing 73- Then 74 is dearly homotopic to 75 in the region of analytidty of f ( t )  and 
Of /( t) /( t  -  *). Hence, by the Cauchy Integral Formula,

7. Use tlie fact that tliura is an analytic function 4> defined on a  neighborhood of so sudi that 
d(co) £  0 and /(* ) =  t fz ) /{ z  -  *o)*- 

9. (a) No (b) No (c) Y<*_J_ = i_i + ±s_-Ls> + .
e* - 1 s  2  I I  720

IS. o * * =  -  -  +  • • •3 40 945U ’ e* -  I  r  2 ' 12” 720” ' *
15. Since bn({* -  *o)B converges for |s  -  *o| =  ( « + r )/2 >  H, 

t>n/( r  -  so)" -  0 for |s  -  soi =  (*  + *)/*■
That is, 2n |bn |/(A + r)” -»  0 and so is iwmidcd. Therefore, by ibo A bel-WeieratrasK lemma, 

bats — sq)" converges uniformly and absolutely on
Ap =  {ssudi that |s  -  so| <  p) Up <  2 /(A + r).

Thkiug p - \ / r <  2/(A  +  r), b„(s - s o ) "  converges uniformly and absolutely on 
{s such that |s  -  *o| <  1 /rj. In particular, |6n |/r"  converges, if 2 €  Fr , then
|s  -  sol >  r ,s o

b* I |tol
(s -  so)* I r " ’

Thus, bn/(z -  so)" converges uniformly on Fr by the M test. 
17. cos(l/s) has a tsero of order 1 a t

I (2n +  l)n
s  2 : n  =  0,± 1,± 2, . . . ,

that is. a t
_____ 2

(2u + l)ir*
Tims. l/c o s (l/s )  has simple poles a t these points and s =  0 is  not 

1 . . .  1
ieolatod singularity.
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R eview  Exercises for Chapter 3

'•  S i - D — 'u - i r / *  »•
n sl * x

7. Suppose lhai w  6 Cfw £  0. Solve e1/* s» wi for z  as follows:

oo
I E (2n — ])!

-  =  loguf =  log |ur| +  i(nrgw +  2im); z =
* log|iu|-M (argti>-f2im)

Infinitely many of UmSc aolulions lie in any deleted neighborhood of Uie origin.

(b ) l
11. Tlie couHtrienut for either series are given by
8- <»> j

On = - L f m dr

where 7 is the cirde of radius 2 centered at the origin.
13. The Schwans Leniina applies to give |/(* )| <  |s | for all |: | <  1. Also, |/( s ) | =  |z | for any 

|z | <  1 implies tliat f( z )  »  cz for u constant e with jc) = 1.

15. —2#t/3 17. (a) *  ^ -  s + z3 -  z8 +  sT - . . .  (b) = p j -  ^  +  j?  -  ^  ^
19. Yes. You could base your argument on the Enel tliat a composition of analytic functions is 

analytic.
21. Since /  is bounded near zo, 20 is neitber a pole nor an essential singularity. 23. 2r  
25. (a) Poles of order 1 a t a *  1 and z =  5 (b) Removable singularity » t :  =  0

(c) Pole of order 1 a t z =  0 (d) Pole of order I r t s « l .
27. 2xL
29. (a) Oo =  - | , « j  =  0,03 -  (4 -  **)/S (b) The denominator has zeros or order 2 a t the

odd integrax. The numerator has zeros of order I n t ±1, so the (unction has simple poles 
a t dtl and poles of order 2 a t all the other odd Integers.
(c) The closest singularities to  0 arc at d tl. The radius of convergence is 1.

31. No: sn u . 33. (a) 2x (b) Bn =  ^  M  35.1

37. 00 +  * +  ** + *4 +  z* + z '°  + . . . ,  where <K) =  /(0 ). Show uniqueness by showing that tlie 
cocOicients are uniquely determined.

39. |/(= ) |=  limn—oo for all t . But

£ / ffc)(0) J
U | *.»o H 1-1

so the limit is no more than e*2l.

4.1 Calculation o f Residues
1. (a)0  (b ) l (c) -1  (d) £ (c) 0. 3. Let /(* ) =  l/=- 5. The correct residue is 2.
7- (a) R cs(/;0) =  i ,R e s ( /;- 4 )  *  (b) R e s{ /;-l) =  0

(c) Res(/; ^5) = 3~W , &»(/■, VSc***'*) = 3-*/Sc~Ar‘/3 Res(f- VSeM /a) = S"8/ ^ -3" /

9. 1/ 6. II. R es(/i/3;*o) =  a,R «K /a;*o) +  « R « ^ l}aD> whcrBOi tetl,eo0,U*“ ltC n"
tbe expansion of

13. (a) 0 (b) —e/2  (c)R es{/;0) =  1,R bs( / : 1) =  - 1 (d) R es(/;0) =  l,R cs(/; 1) =  -e /2 .
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4.2 Residue Theorem
1. (a) 0 (b) 0 3. 0 6. -12>ri 7. (a) 0 (b) 0 0. (a) 2iri (b) 2jt»

11. -  J = J o(v>)dw, where ■> is the curve 1/7.

13. . (a) —! (It) 2*ri 10. - * (

4.3  Evaluation o f D efinite Integrals

*• x  (a 2 -t» )s /a  5; 2 ^ e~ 'm |/' /5 + sin  g )

7. tre- , /2  9 . - n i / ( e - l )2
II. The function is even aud line 3 of Tbble 4 J J  applies. 13. 0
10. -iri/2  (or * i/2 if a different branch is used). Construct v i a - l  mudi as in Example 4.3.15, 

but make the branch cut for the factor / r  -  1 go from 1 to  -00 and that for i/* T T  from 
-1 to - 00. Crossing tlie real axis a t x with |z | >  1 coquina crossing either both cuts or 
neither, The product is analytic on C \{r | Im * =  0 and | R es| <  1}, as in Example 4.3.15.

17. r c '^ / a  19. Use Exercise 18; R«s((—a)**'1/ ( s ) ; l)  =  -(«**)«->.
21. After checking that all tlio integrals exist and tbe operations are justified, compute

=  jT *  J 2* c~**rdB6r =  2ff

r r ^ + ^ d x d y

— —jt(0 — 1) =  w,

>» f ^ o  e-**dz - y / i f .

23. 2x(97v/5 -  168J/3 25. (a) V*?

4.4 Infinite Series and Partial-Fraction Expansions
1. As in tlie proof of Proposition 4.4.2,

t  xcotxr ,
L — '*■

0 as N  —t oc.

Tlie residue a t n / O U  l/n 4. Compute the first few terms of the Laurent series co ts — 
1 / t - j f - ^ * 5 - . . .  to find tliat the residue a t 0 is - x 4/45, so

lilD

and thus e  x*/90.
3. Apply tlie summation Uteorcm 4.4.1 and Proposition 4.4.2,

"“ (S r?1*"*) - _s “*h~

:■ .f i. t o * " i ^

(check this), so
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Thus,

and
J r,"2+°2 -5? + £ coU”ro

i  +  i e o th  wo.

5. ^  ( - I)" /(n ) => -|sum  of residues of iratcira/(r) a t tlie poles of /] . Here /  should obey
n~—«c
mine conditions like. There exist an R  >  0 and an M  > 0 such that for |s | > R, |/(z ) | < 
W /|r|“ where o  > 1. If some of the poles of /  should lie at tlie integers, the tedmique 
could still be used. After verifying that

f  —• 0 as A' —* oo,Jojv siim
we would conclude that

-  £  ( - l) " /(« )
n « -w

(where the suiu is over integers n  which are net poles of f )  is the sum of tlie residues of 
rrescsz /(a ) a t the poles of / .

7. Consider /(« ) =  col t  -  1/z. Then lim ,—o / ( s) =  0 and /  is analytic a t 0. Chock that it 
has simple poles a t 2 =  nrr for n 0 witli rcsiduo 1 a t ondi. I.ct C s  be the square with 
corners nL (Af H-jc)ir(dbl i f ) .  Along C s  wc have cotc =  — cot(—=), and —s isou Cft when 
s is. Tlius it suffices to  check |co tz | for any y  =  Im* > 0. If 2 =  1  +  tj/,y  > 0, then

cfe + c - ‘« 
e‘l - c " ‘*

o!h*-a» + 11 ^  2
e2«—2* _  11 -  |e2ix -2v _  ] |

ou the upper borixootal of the square y  m (n +• | ) r  >  1, and so |c o ts | <  2/(1 — c~2) <  4. 
On the vertical sidos, x =  i(W  +  | ) r ,  and so =  -1 , and

i ~ 4 s M b r | < *

In any case, |/(z ) | <  4 + 2 /r  for 2 on C s ,  and so with H ~ ( N  + =4 +  2/w, and
5  =  8, the conditions of the partiaMracUon theorem (4.4 h )  a re  met and the data on poles 
and residues may be entered to  give the desired formula.

9. An exact answer to  this seemingly simple problem is not known. Tlie sum is ((3) whore 
{ is the Rreuann seta function, important in analysis and number theory and a  source of 
several famous open problems in mathematics. The method of tlie summation theorem 
(4.4.1) may be used for summing ((p) a  53J“( l/n p) for even p as in Proposition 4.4.3 and 
Exercise 1. One gats

<(2ro) s  (—l)m +,(2jr)*' Bam
2(2m)l

where the are the Bernoulli numbers involved in the expansion of the cotangent
function. (See also Review Exercise 33 of Chapter 3.) This method fails for odd p  basically 
because l / ( —n)* +  l/n** =  0, not 2/n*. An approximate value b  ((3) »  1.2020589, but 
until recently it was not even known if <(3) was irrational. This was shown in 1978 by 
R. Apery. (See Mathematical Intcttigenocr 1 (1979), 195-203.) Even irrationality is still 
unknown for <(p) for other odd values of p.
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Review  Exercises for Chapter 4

1. 2x/v/3 3. jt/V5 5. |  [2“ £ 7. jt/n/5 ». 2sr ll. 2*risin(l)

m . + + l *n+ — <b> i  + ^ p r S  + ***
2”  —  1

+ . . .2 4 8 2n+1 '  '  -2 1 x* s* ."+>
15. jt/2
17. (a.) R es(/;0) =  —1. The oilier residues are a t z  with a3 =  2jmi. « =  ± 1, ±2, . . . .  and are 

equal to  - 1/ 2. (b) R es(/;a r) =  2imco»»(n2x2) (c) cos(l)

19. * - ( £ - • )  “ * ‘ 1 « *  ^  k f t ° '

21. has been expanded incorrectly. The correct residue it  —1. 23. —r i
1 +  (- — 1)

25. (a) The radius of convergence is infinite.
(b) The radius of convergence is I (use tbe root test).
Note: To use the ratio test, tlie following facts axe wed:
(i) lim (l* f  —/ =  e*. (ii) In the power series £ « „ * " , if the coefficients a„ tend lo  n 
nonzero finite limit, tiicn tlie radius of convergence must be 1.

27. (a) l + 3 e + 6 s 2 +  10ss 4 - ... +  ^ 2 - t ^ ^ s " 4 - . . .
. . .  1 3 G(j,) (r» 4- l)(n  +  2) 1

2 -«+s

(c) g +  + 1) +  +  Da + - • • +  + 1)'32 id)
-1

29. (a) Uscsiu3*  =  (S sinx -siii3x )/4 . Use sn argument like that for Cnucfiy principle value, 
checking directly thnt

/
3e<« —e*u

-> -3 m  as p  — 9

with residue

where -j is n half circle in the upper half phute from —p  to  p.
(b) Use liuc 5 of Table 4.3.1.

31. Uuo Exercise S of §4.4. F (t) =  (xcsc*z)/(z + a)3 lias a  pole t i  :  =
-* *  csc(ira) eM (r«).

33. The last equality is wrong since the integral along tlie semicirclo is omitted. Wc cannot 
conclude th a t tlie integral along the semicircle goes to  0-as II  —* oo and thus must evaluate 
it more carnfnliy.

35. It will suffice for /  to  Ire analytic in a  region containing the real axis and the upper half plane 
and to  be sudi th a t the integral of /( :) /(x  — z) along the upper semicircle of |z | =  R  —> 0 
as II —• oo. These conditions will hold if |/(z ) | <  M /fi" for some M  >  0 and a  >  0 for 
largo enough It, and for z lying in tlie upper half pinna. Use Exercise 34 for the last part.

_jr . enr37. — twill ——.2b 2b

5-1 Basic Theory o f Conformal M appings
1. The first throe quadrants.
3. (a) Everywhere except z =  0 and z — —2/3. (b) Everywhere except t  ss -1 /6 .

*3-» 3
(*2 + l/2)2

5. »(x,v) =  I -  2ry +
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7. Let g  and h he tbe ftwctiow guaranteed l»y the Ricmnnn Mapping Tliconmi: 
g : A  — O with p(xo) — 0 and y'(su) > 0 
h i B  — D  with A(tno) — 0 and fc'(m ) >0

Set /(a ) =  h ~ , (e<®y(*)) for x 6 A  and d ie d  that /  lakes A  one-to-one onto B . tluit 
/(*») *s b“ , (c*®s(ao)) =  A- I (0) = no, and that /'(zo) =  e’#|9'(J*o)/*'(«io)l- 

9. Rom /- * ( /( * ) ) - : « e e e t  (/-1 )'(/< * ))(/'(*»  =  1 (Why is analyUc?) It follows 
that J*(s) ft  0, so /  is conformal by tlie Conformal Mapping Theorem 5.1.1.

11. No for both parts. A function for (a) is a bounded entire function. Liouville’s tlieorem says 
it would lie constant and so certainly cannot map onto O. Tlie inverse of a  function for 
(b) is a function for (a).

13. A  U bd (A) is ciosed. If A is bounded then A U bd (A) would also be bounded and so 
compact. If there wise a continuous extension of /  to this compact set itn imago would be 
compact and could not. contain the unbounded s e t  B.

5.2 Fractional Linear and Schwarz-Christoffel TVansformations
1. (a) R\{l}(/(oo> =  1 and / ( - l )  =  oo)

(b) Tlie circle cutting tlie real axis-at right angles a t 3 and |  (center j ,  radius | )
(c) (imaginary axis) U {oo} ( /( —l) =  oo) (d) {unit cirde}\{1} (/(oo) =  1)

3. (a) /(* ) =  (= + l) /(s  - 3 )  (b) /(c ) =  ;  - 2

5. According to Figure 5.2.10(vi), s i- * - i  takes the disk to thu upper half plane with
0 •—* £. Tin: map nr»-» 2(u> +  1) takes the upjrer half plane to  itself. TIhis,

7. *

does wluil we want.
z -  g _  2s - 11 • _ ■ takes D  to  D and 4 to 0. nr»
l - $ s  2- S  3 ■ — - takes O to  D  and |  to 0. 3 -  tfl *

Solving
3ur — 1 2s -  1
3 — ur 

9. /(z )  =  c~3r‘t*

2 — r for te gives nr *r -r-— so /(z ) =  ^ 1 Is the desired map. a  - 1  5 “ J

m
11. T  is the composition of a  translation, inversion in the m dt circle, reflection in the real axis, 

a  rotation, a  magnification, and another IrsnKlntion.
IX (2s —1)/(2 — s). (This may be multiplied by c*® for any real constant <?.)

IS. c1* ^  where }so| <  I.

17. Suppose that T  is sudi a  map. Define IV by

19.

W  maps tlio unit disk conformally onto itself. Now use Proposition 5.2.2.
s » - i
s* +•«

21. By Protiositioti 5.23, T t h  ) and T fa )  are circlus or straight Hues, and since T  is conformal, 
by Theorem 5.1.1, they intersect orthogonally.

23- l*‘ -* > ||z  - 2o| =  | l  - fo ||s -  *o| =  -  fo) (* - fo)|
=  |fos + H3 -  |so|* — foz + fos»| — 1/1*1 = /?*
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27. Use a branch or log defined on C\{nonpositive real axis) by loglre*) : 
- *  < 0 < *.

logr +  i®, where

20. By the Schwara-Christofful Formula 5.2.11, the image is a |>olygon with four sides, three of 
whose angles are 90®. Monoe the image is a rectangle.

31. No. Tlie map

/(*>= / * ( t - ir a,«-°*ift 
Jo

takes the upiwr half plane to a triangle wiLli exterior angles t o i.TO],sos.
33. Tlie boundary circles both go through 0 and /{(I) — oo. Since /  takes R to R, the circles 

go to lines through / ( 2) and /(4 ) tlia t are orthogonal to R. These are the lines Rez =  2 
and Rez =  1. Chock /(3 ) to make sure tlie region is right.

35. /(b ) =  0 and /(d ) =  oo. Thus a circle through 6 and d  must map to a circle through 0 and 
oo, that is, a line through the origin. Since

l/(*)l
t  - b  

'z  - d
z  -  b I 
Z - d | l°li

the statement |f r § | ~  p | holds ifT |/(z ) | ■  r. This establishes (a) and (h).
The easiest way to obtain the orthogonality is to  notice that the images under the map 
/  are trivially orthogonal. Since tlie inverse of a fractional linear transformation is of the 
same form, lienee conformal, tlie same must have been true of the preimage. (To confirm 
this directly a straightforward but lengthy calculation is required.)

5.3 A pplications to  Laplace’s  Equation, H eat Conduction, 
E lectrostatics, and H ydrodynam ics

1. u(z,y) =  -a rc lan  —— * =  — arctan -
*  s ' - S x V + j 4 x  *

_ ,. , , I . cosx -aiuhy 1 cosx-sinliu3. n c >V) *  1 -----arctan  ---------- -— —  +  — arctan ■»  sm * • cosliy — 1 x  stax-coshy 4-1

5. F(z) =  |o | #̂“*1  +  j .  In pofair coordinates,

tfr .O ) =  |or| [ ( r  4- i )  cos(e -  0)] ; tK*-,6 ) = |o | [ ( r  -  J )  sin(6 -  0)] .

7. in polar coordinates,
<̂ {r, 0) = or4 cou46 and tb(r,0) = or4 sin 40.

In rectangular cooriiinates,

d(*.y) =  (*4 “  Cz’ y2 4-y4)o and V»(z.y) -  (4z®y -  4xy3)o.

R eview  Exercises for Chapter 5
1. Any region not containing M n.
3. (2z — *)/(2 + **)• (This answer can lie multiplied by cw for any teal « e a « « i 0.)
5. /(z ) =  (2z — 4)/z is one such. 7. The first quadrant. 9. /(z )  =  r  +1 — i.

11. No. The region { ; | 1 <  |=| <  2) is not simply connected. The inverse would take tlie 
simply connected region B  to it, which is impassible by Worked Example 5.1.7.
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13. No 

17. F(

IS. Uae Proposition 5.2.2.

» = / § +  6
+ d

where a,b,c,d  are real and ad > be.

19. /(a ) s  > /? f T  where J  must be taken as the braneli defined on C\{positive real axis),
i  / v ^ r + T - A

which to ta l values in the upper half plane. Tlie desired potential is 0(z) s  — «tg I -7-^ —̂=— -  I >* \  v* +1 + 1 /
21. The desired complex potential must be F(z) — oi/s*  + 1 . The level airves tf>(x,y) = K , 

wiiicfi are tin; streamlines, are described by
K*

x* + K* + K*.

23. ^(x, y) = 1 — — arctan —̂ ^ — 
w e*cosy- 1

25. /(a ) = ^  [y /z2 - 1  cosh-1 z'j

29. xe~'/3
2yfi 31. Vp;i?.

The values of arctan are dtosen between 0 and ir. 

27. T(x,y) =  i  -  ~  Ho (araan | ) .

6.1 A nalytic Continuation and Elem entary Riem ann Surfaces
1. (a) No, it docs not. An Important condition of the identity theorem (6.1.1) is that the limit 

point 2g must lie in A.
(b) No. Let A bn the unit disk. Let u j(s) =  Im z and tia(r) =  Ime*. Doth U| and b j are 
haraMMiic in A nod are Mini along tbe real axis, but they are not identically zero, nor dn 
they agree with each other on A.

3. If /  were constant on a neighborhood of a}, it would be constant on all of A by the identity 
theorem. This would force / '(* ,)  to bo 0, which is not true.

5. If 2 =  then r"* =  r"1 whenever n  > 4. Any Open set containing A contains a
point c**^A =  so* If /  were analytically continued to include so it would have to  have a 
finite limit a t so, but limr_ i  /(re?***/*) =  oo. Check this using the first observation.

7. The union of the sets Uu is an open set A  containing 7. The Distance Lemma 1.4.21 gives 
a positive distance p  from 7 to thu complement of A. Since the continuation is analytic on 
each (/fc, the radius of convergence is a t least p  a t each point along 7. Tlie path covering 
lemma gives a finite chain of overlapping disks centered along 7, where eadi contains tlie 
center of the next so they can be used to implement the continuation by power series.

9. Tlie situation is something like that for \ f i ,  except that now there are throe sheets, each a 
eppy of the plane cut along, say, the negative real axis. They are Joined along these cuts 
m> that following a  path that winds once around zero carries one from tlie first sheet to 
the second. When the path winds once more around zero one is carried to the third aheei; 
when the path winds a  third lime around zero one is carried back to the find sheet.

11. f ( z )  =  1/(14* z) extends it to  C \{—1}.
13. Use Worked Example 2.4.16. (The implicit function theorem can be used to  ensure Unit 

must small rectangles mart 7 a t must twice.)

6.2 Rouchd’s Theorem  and Principle o f the Argum ent
1. Five. Consider j ( t )  =  s® — 4s* +  ** — 1 and /(* ) =  —4z* and use lionclitl's theorem.
3. For large enough A, the curve 7/1 shown would include any finite number of possible 

solutions in tlie right half plane. Let g(z) =  r  +  c“ * -  2 and /(» ) a  z - 2. Along 
7») !/(-) ■ 9(*)l — e“ *■* <  1 <  |/( r ) |, and /  has exactly one solution. Thus so docs 3-
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5. Let h(z) = f ( z )  -  z mid g(z) =  Ou the circle |z | =  1, |*{z)-g (z)| =  |/(z ) | <  1 =  |g (i)|, 
so Ranchi's theorem shows that h  lias one zero inside {2 such tlia t |s | =  I}. A zero of h  is 
a  fixed point of / .

7. Let rn = X — l/n  and / n(z) = / ( r nz). Use Exercise 5 hi get. Sn with /„(zn) =  *•»- (Use 
the Maximum Modulus Priudple to  obtain |/ ( r nz)| <  1 if |s | =  I.) The z,,'s are all in 
the dosed disk 0 = 1* sudi tlrnt |z | <  1}. so there is a subsequence converging to  a  point 
aoC D, say an* -* so. Check the following: •‘nkSi»* — so. so ftr«„Xnk) — /(» 0). hut 
/ ( r M|t2nk) =  z„k — so, so /(=») =  so-

9. Lot g(z) =  a „ rtt, estimate /(= )—p(s) along large circles as in the proof of the Fbndnmontnl 
Theorem of Algebra 2.4.9, and apply Ruudifi’s theorem.

11. Use the method of Tlieorem 6.2.1 to compute the ramlnc of f'(z)h {:)/ f{z), obtaining 
kh{aj) if /  has a aero of order k  a t o j and -fch(6j) if /  has a pole of order k  at fit-

13. Apply Exercise 11 with h(z) 2 2. (The zeros are repeated in the sum according to  their 
multiplicity.)

13. Apply the Fundamental Theorem of Algebra to the polynomial /(z )  — w.
17. No. Let /(z )  =  e* — 1. /  has three zeros inside a  circle of radius h r ,  center 0, Imt /*(») 

has no zeros.
19. Any r  such that 1 <  r  <  4 will give the desired result. Roudifi's theorem works with r  =  2 

and $ (t) =  —4z*.
21. Suppose c*  and e** are on the boundary circle. If «*♦ /  «•*, then an equation (e'®)2 + 

3(e'®) =  (c4®)2 +  3(c4®) would become (e4®)2 -  (e4®)2 =  3(e4* - e4®) or (c4® + c4® )^4® -  
c4®) =  3(e4® -  e4*), requiring e*® +  e‘* =  3. This is not possible, since e4* and e4® both 
have absolute value 1. The function is one-to-one on the bonndaiy circle, so on the whole 
region fiy the one-to-one theorem (6.2.10).

23. Consider /(s )  =  1/z and apply Rouchg's theorem; you will get —1 “equal to" a aouncgaiivc 
number.

6.3 M apping Properties o f A nalytic Functions
1. (a) {2 such tliat |z | <  | )  (b) {z sudi that |z -  1| <  | )

3. Let /(* ) = i 5,m  =  u  =  l , r s l .  Tlie roots of z3 -  1 lie a t l,* 2* '/3, and e4*1/5. Of 
these only one lies in D  =  {z sudi tlia t |z -  l | < 1). / '( z )  = 3:2 and is 0 only a t 0, wliidi 
does not lie in D- However, / ( rc*4̂ 3) =  /( r e - **/3) =  —r3, and for small enough r , tlicse 
points lie in O.

S. Use the chain ruin to show that g(z) =  /(z " )  — / ( 6) has a  zero of order 11 a( zo =  0 and 
apply Worked Example 6.3.G.

7. Let 11 lx- harmonic aud nouconstant on a region A.zo €  A, and let U be any open neigh- 
Imrhood of zo lying in A. By Exercise 6, ti is an open umppiiig. so u((/) is an open 
neighborhood of ti(ag) in R. Tiiis muiuLS that arbitrarily near zg. u lakes ou values that are 
both larger and smaller than tt(so).

fl. Let f ( z)  =  e*-a  — s and y(s) *  — Then, for z =  x  -h iy  on tiro noil circle, 

l/<2) -  9(z )l *  K ^ - “| = «*■-" < 1 = |y(z)|.
RouduVx tlienrem now applies.

II. 1/1 has a minimum somewhere hi D  since it is continuous. I t is not on the boundary, since 
/(0 ) = 1 < 2. The minimum is a t an interior point so of D. If J(z) were never 0, then I f f  
would be analytic with a local maximum a t sq. Thu Maximum Modulus Principle would 
say I f f  and so also /  were constant. Rm it is not, since / ( 0) =  I and |/ ( 1)| =  2.
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R eview  Exercises for Chapter 6
1. /  is identically zero on (z such that |z | <  1}.

3. (a) g(z) — /(s )  — / ( : )  in entire and y(c*) «  0 for all fc. Since tlie a^’ti arc bounded, 
there is a  subsequence convergent tn some oo- Thus g =  0 by thn identity theorem, and so 
/ ( 2) =  /(* ) for ali z. Hiking z rwd gives tlie result.
(b) By part (a), /(* ) is real for m il x. Use tlie mean value theorem from calculus to obtain 
bn with ue»+i < t>„ < On and J'(bn ) =  0. Check that bn — 0 and »o f  = 0 by tbe identity 
theorem. Conclude tliat /  in constant.

5. Use the Schwarz Reflection Principle to define /  on the upper half plane. The functions 
/  and its reflection agree on tlie strip {* | 0 < Imz <  1) and together define a  bounded 
entire function. Now nee Liouvilie's tlieorem.

7. Use Ute Identity theorem to altow that f ( t)  — f{ z  +  1) — f ( z )  is identically equal to  0.

f  f *  **9. v/5 IK Uttc Uio root couiiLmg formula. 13. Use I  /( y o j) .
Jt* '  j=>

IS. Let 0 <  r  <  l,ZJ(0;r )  =  | r  such that |z | <  r},yr  =  { ; such that |z | =  r ) . By assumption,
/  is ono-tiMine on 7r, ho  f ( l r )  is a simple dosed curve. Since /  is bounded on A, /  must
map O (0;r) to  the interior of yr . The omsUmmic tlieorem (6.2.10) now shows that /  is 
ono-U>onc on 0(0; r) . Because this holds for any r  <  1. /  is one-toonc mi yt.

17. Let /i(z) =  /(z ) — {(«) and use tlie maximum principic for harmonic functions.
19. (a) tVue (b) Thic (c) Thiu (d) Trim (e) False

(f) Fhlse (g) IVue (Ii) False (i) TVuc (j) True
21. No 23. (a) Yes (ti) No 25. £

7.1 Infinite Products and the Gamma Function
1. The partial products are

*  '  "  *~-lX»+l)HO-?) -
1 3 2 4 3 5 ( N - l )  (N +  1 ) _ 1 W  + 1

~  2 2 3 3 4 4  ' K  N  2 N '

which converge to 5 as N  -» 00.
3. Show that for small e and large n,

0 <  (1 -  c)|zn| <  | log(l +  *..)! <  (M* «)l=»l 

and use part (iii) of Die convergence thuonem for products (7.1.2).
5. Let z |  in ainxz =  w zfJJL jfl -  z3/ ” 2) *» obtain

2 ^ ,1  (2n)a J 2 U  (2n)a 2 2 2 4 4 0 6 8 8  ”

7. G(z) =  n r = .( l  +  z/n)c~t ^n has acres a t —1 .-2 ,—3 ,. . . ,  ao F(a) =  (-e’, :C(z)!~1 has 
poles a t (1, —l, —2 ,....  Wo know tlia t G(z — 1) =  zc'G (z). so

1 1 £
r ( * +  1 )=  (« +  l)ca*c'»C(z + 1) “  <T"C(z) “  zc i‘G{z) ~  *r ( ") 

as long as we stay away from the poles.
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9.

by Worked Example 7.1.10. Using Exercise 7,

r (* )r ( i -  *) =  -* r(* )r(-* )
i

z c ', C (s)(-= )e“'r-£ ? (-0  zG (z)G (-z) sin xc

II . S tart with tlie third lino of tho proof of Euler’s formula:

n—»©o nt . i . 2- 3. . .»  * - *  n!n*
z( r - f l ) . . . ( s - i -n)

n!n*

13. Use tiio Laurent expansion and Res(T; -m ) =  (—l) ra/m l.
IS. One way is to  procood as follows. First, show th a t 1 4 -j <  &  <  (1—11)“ * for 0 <  y  <  1 by 

using power series or calculus. Set y  — i/n  to  obtain 0 <  e“1 — (1 — t/n )*  and conclude 
tliat e“ ‘ -  (1 -  t/n )"  < e“ ‘ |l -  (1 -  t3/n 3)"l. Use the inequality (1 — Jfc)" > 1 — nfc for 
0 <  k  <  1 to get

19. Let the radios of the circular part of C  be r  <  I. Fbr n  > 1 consider the functions

(n) Use Worked Example 2.4.15 to show that / n(-) is entire.
(b) Estimate tlie part of the integral with |t | >  n  to  show th at the improper integral con* 
verges and th a t tbe convergence of /n  to that integral is uniform on dosed disks.
(c) Conclude that the Hankel integral is an entire function.
(d) Use Cauchy’s Theorem to show that tbe value is independent of r  and c.
(e) Use arg(—t) =  -^ir on tbe upper side of the real axis and * on the lower mile to  show 
that the straight-line portions combine to  give - 2i « a « / “ ls_ lc " ,ift.
(f) Tlii! part along the circle goes to  0 as r  goes to  0.
(g) Use Euler’s integral for P(z) to conclude that th e  formula holds for R es > 0.
(h) Use the identity theorem to  conclude that the formulas agree everywhere both sides 
make sense; tlia t is, a t s  0, 1,2, . . . .
(i) Uno r(= )r(l — s) =  jr/(sin n t)  to  get tlie last assertion.

Oo the first integral for positive y  with the giilistitution l = y3. Fbr tlie second, integrate 
by parts with « =  y and do — ye~v dy.

for 0 <  t  <  n.
17. T has simple poles at 0, -1 , —2 ,... and is analytic elsewhere. Therefore,

f  r(*)ds =  2s ille s (r ;0) =  2m' lim *r(c)
Jt

=  2m lim T(= + 1) =  2m T(l) =  2m.

/•»(*) — /c ,|l |5n(—t)*~le~tdL
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7.2 A sym ptotic Expansions and the  
M ethod o f Steepest D escent

1. There are constants Rt ,Bi, / ia,  and Bt sudi that |/(z)/A (z)| <  B\ whenever |s | > R% and 
a  5  erg z < 0, and |ff(;)//r(z)| <  whenever |s | >  f i j  and a < arg2 <  0. Therefore, if 
|s | >  J tsm ax (A |,A i) and at <  arg2 <  0, then

|[a /(s) +  6»(*)]/Ji(*)| < o |/(* )//i(* )| + 6|ff(*)/h(*)| <  « S , +  6B2.

Tims, af(z)  +  bs{z) =  0(h(*))-
3. If S,,(x) =  £ 3 (a* /x* ), Oien f —S„ =  no by Propotriliou 7.2.3(v), / - / j ”  Sn =

o{l/xn~ 1). T liat in,

r  / - tiMk -J* 2

or f£ °  J ~  ( a i/ t)  +  (s s /211) + . . . .  asdesirad.
5. Uhc the geometric aeries and apply Proposition 7.2.5.
7. For tlie even case of (a), integrate by parts repeatedly to  reduce to  the case k  =  0. Then 

change variables by sjf1/?  =  i* and use e~'*df =  tu part (b) either do tlie same 
thing or put z =  2 in part (a). For tlie -odd coses, tlie integrand is au odd function of y. 
Thus, if the integral converges, it must be to 0. Chock that it converges.

9. Fbr S4 (10) tlie error is <  0.00024, and for Ss(10) it is 0.00012. For fixed *, the error term 
decreases as n  increases until n becomes larger than x, a t which point it begins to  inercaso 
again. In fact, for fixed z , our bound on the error term goes to iufinity with n. Fbr fixed 
n , Iini*wee n ! =  0, so Uie error goes to aero as x  increases.

. .  t / S F / 1  1-3-5  1 . 1-3 0 7 .9  I
n .  ^ - - g r p r * ------ gj------

13. Tlie path of steepest dmecni is tlie real axis.

15. y  =  log 1 17- /(* ) 19‘ ^  ~ c^1

7.3 Stirling’s Formula and B essel R inctions
1. Differentiate any convenient formula for J„(z) twice and-substitute it in the equation. For 

example:

3. Ftom tlie text. Jb(e) =  (1/*)

J'a{z) =■ —(1/jt) f  sin (z nin 9) sin Odd.

But

J l ( * ) a s i /  cos(d-zsind)dd
X J  0

=  — /  [eosdcos(z sind) + sin dsiufz sir 
x  Jo

Use symmetry in x /2  to show that the first term vanishes.
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5. FVtJtn Kite 8 o f Thble 7.3.1,

Jo(*) =  ® Jo(a) -  J i(s )  =  - J i( s ) , 
n>

JS(*) = +  Ji(~) =  Ja(e) +

7. By dofinitioo mid Legendre's duplication formula,

j  . . .  _ ^  ( - i) » sn /a)^fc
1/3 £ j 2U/a)+2fcr ( i +fcH. 1)Jt!

_ (-1)*=” -' n r .
V * £ j i / s r ( t t + 2) » « “ ’*■

0. Use the Stationary Phase Theorem 7.2.10 with 7 =  |0, wj, h(0) =  —sin0,s(0) — e1"® ,^ — 
w/2, and /(* ) a  J f  Clearly h  is real on 7 with a strict minimum a t
w/2 a  An; It'(0o) =  O,h"(0o) =  1. All oondlUous of tho theoram are met,-so

#**<•») ,

/w— ^vPgsr,w

11. Let n < 0 and m =  —n > 0. The residueiu theexpansion now is l/(fc -i» )* i®

2" +2fc ’ (*-■ »)! *S*
Put j  = *  —m and * =  j  +  m to  get

J„(x) =  £ ----- 2»+3&+">--------------------------------------
iaO ( ; + m - w ) t  y  +  m)l

^3 ; 2»»+* Jl ( j + m ) l  1 ;  +

= = E ,(:. Tâ 3

R eview  Exercises for Chapter 7
I. 2
3. Use i  =  * /4  and a — w/2 in Woricod Example 7.1.10 to obtain

*  _  n?°(l -  1/lfin2) limM—oo n r ( t  ~ 1/U8»2)
nru  -  i/4«a> limiv—oonr<> -  i/**2)

7 1 )  ( ! ) © ( £ )  © (* ) ■ •• -
5. (a) j t  sudi that |s | <  1) (b) {a | H er > 1}
7. /(s)~ e '< * -* /« V 5 ?/V *  0. r ( |) /3
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11. P in t establish, for example from the product representation for l /V,  tliat r ( i )  =  r(S). 
With 2 =  £ 4 ty . this gives |P(i 4»y)|2 =  T(^ - i y )  =  P (f+ < y )-T O -1 +»»)**
r /t)n ( ir ( |)  +  iy) =  2jr/(e—**' +  e*») wliidi goes to 0 as y  — oo.

IS. Apply the generalized steepest descent tlworem (7.2.9) after writing

Jn(iv) = —  [jT2* c-«"'i"*(costd? +  I)d 0 -

-sir r  «-"*]
and using A(0) =  -s in  0,6b =  3jt/ 2, and 7 =  |0.2x|.

17. Prom part (b) of Exercise 16,

/n (x ) =  j i j  • (2n)(2n -  1 ) . . . (n + 1 ) -x”  4- (lower-order terms)

=  +  (lower-order terms).

8.1 Basic Properties o f Laplace Transforms
!• / ( : )  =  ^  ^ ff( /)  =  °  3. +  +  , ( / ) s 0

5. / ( * ) s ) + ' ' ' j [ + « ( » - l ) 5 | + . . .  +  » l ~  <̂ (/)=0

7‘ A*) -  (^7^3)2 “  I lu'°l 9- /<*> = (*a 7"a)a *  IM -H

n .  f ( z )  =  [ * " e - M « w a l d t  =  i  / * * « “ »<•■ ~iaidt 4  i  / * * e - * < * + '“ >dt
Vo 2 Jq 2 Vo

For R e(z- is) >  0. tlie Oral integral converges to  l/2 (z  -  fa). For Re(z4 ia) > 0 the second 
couvcrges to l/2 (z + i« ). (Sue Worked Example 8.1.11.) Titus, fbr Itcz  > |lm a |,/(e )  
converges to ^ | l / (z  -  fa) 4-1/(* 4- «*)1 =  * /(* * + “*)•

13. Fbr 2 reel and iiositivc. put 11 =  zt to obtain /(z )  =  JJj® e-u ti(<,+l>~1 /z “+ ,du. Since 
« > - 1. this converges to  I’(a 4 1) /ra+,1 so f ( s )  converges on Urn positive real aids. 
Lemma 8.1.8 gives convergence ou the open right half plane. The identity theorem shows 
that /(z )  ~  T(« +  l ) / i*+1 for Rez >  0 and Worked Example 8.1.12 shows that a[f)  = 0.

15. /<*) =  K ° e -* ‘n t)d t  =  T,ZL0 S<,;+' ypc - ‘tm d L  In the n tli integral put u  s  t  -  np. 
Then

/ ( * ) = £  r  r e -« /(u )d u ,
n=0Jf> \n »0 /  Vo

and since |e~*p| <  1, Uils is |jy e - , t /(t)d t)/(l -  e***’).

17. y ( z ) = i /<*) =  - ;
3Z2 4  4z 4- 2

z (*4 l)9 4.1 (*3+ 2s2 +  2z)2
19. Suppose /  is of exponential order p  and let j(T ) c  jJ* /(a)<fa. For e > 0, them is an A 

with |/(a ) | <  Atf***)* for every a £  0. Then

fccni < f T = A<c<'+‘>r  -  i)/o»+t).
Jo
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If p  >  0, then Ct*+<lr  >  l , *> |p(T)l <  and thus p(s) <  0. In any ease,
pig) < mjut(0,p(/)]. If /  is piecewise continuous, then g  is continuous and piecewise C 1. 
Fbr Rez > max[0,p (/) |, the above gives ilex  > pig) and Prapoiition 8.U  gives (j')'(z ) =  
*p(a) — p(0). But g '(t) =  f(t) , and y(0) =  0, so /(* ) =  tg(z) and thus giz) =r f{z)fz.

21. If B  >  0 and t  > 0, then —c1 <  —I and |/( i) | <  e-1 <  e * .
If B  <  0, let A =  max( 1 /e , eB~B *°st“ fl>), and let g(t) = c* + B t + log A. Tlien p(0) =  
1 -H«g A > 0. Also, g'it) =  0 only i l l s  Iok( - jB) and

p(IOg(-B)) =  - B  +  Blog(-JB) 4-log A  >  0,
so - c “ ‘ < B t + log A for t  >  0 and |/( t) | <  Ac®*. Thus p{f) = —oo, and therefore 
o(J) — —oo.

8.2 Com plex Inversion Formula
1. (a) cost (b) f ( t )  = ter* (c) f ( t )  =  (c* +  cos(v/St/2)J/3 
3. The conditions for the Complex Invention Formula 8.2.1, do not hold. Tliere are no con­

stants U  and R  for which |e“ * /z | <  A f/|z| whenever |s | > 72.
5. (a) f{ t )  — 2e- ** — e“ l.

(b) ainhz has no inverse Laplace taansfonn. If fi*)_— sinhz, let g(t) e  t/(I)  and hit) — 
tg{t). Thon giz) =  — cosh2 and h(z) =  sinhz =  /(a ). H us would force f ( t )  =  /i(t) s

so /(* ) =  sinhz s  0, which is not true.
(c ) /( t)  =  A r « /2.

7. y(0  =  jf*Jsin<t -  a))/(*)d» 9. /( I )  8  (6tc~3< -  c - »  4 1)/9

8.3 A pplication o f Laplace Transforms to  
Ordinary Differential Equations

= »«)•={ °4|1_ „ (31. s)) t i \ < l

5. l f (0=ff»(0+«*W +  y3<0 where p i ( t ) «  £1^2 ( a c o s ^ t - s in  and

»(*)

»(*>
r  o

=  S r -«- l ]
l

0 <  t  < 2
^ 22s i n ^ ( t - 2) t >2

0 < <  <1
■,,/a* 2 s in j5 ( t- l)  t ^ l

7. (a) pi (I) =  (e* 4  e~‘)/2 = cosli t; ia (t) =  -(c 1 _  e~*)/2 =  -  sinh t 
(b) y. (t) =  —3t, ps(t) =  3[(1 4 1)» -  l]/2  

9. y(t) =  |( t4 4 )s in t — ta oostJ/4

R eview  Exercises for Chapter 8

1.

s.

9.

fix) = e-*/(=“ 4  «,»(/> =  0 3. /(») =  i ^ ~ r

t o - * *  ( r h ) - ' " 1 t / ( , ) ‘ { L ( .- .)
—ic- * +  e~* 
- tc ~ l +  c"‘ 4-1

t < l  
t>  1

t < l  
t>  1

11. (a) y(i) =  (-15  423«w 2v'&)/8 (b) p(t) =  3(1 -  «“*)

13. (a) p(t) =  { °t > } <  1 (b) p(f) =  2UT* 4  c - ‘
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A
Abd-W eientrass 

lemma, 204

of convergence, 458 
absolute convergence 

for products, 411 
Acker, 123 
addition

of complex numbers. 12 
rules, G

admissible, IS)
Ahlfunt, 124 
algebra

fiiiidiunental thooreui of, 151, 306, 404 
algebraic properties, 5 
analytic

a t n point, GO 
continuation, 365. 367 
convergence tlieorem. 101 
functions, 1 

analytic continuation 
by continuity, 371 
by power series, 371 
by reflection, 370 
principle of, 365 

analytic function
local behavior of. 393 
mapping properties of, 308 
series, 101 
zeros, 211 

analytic! ty
of infinite products, 411 
of power scries, 205 

annuli
conformal maps of, 381 

antiderivative, 116 
theorem, 117 

Apollonius
archer of, 345,3S4 

approximating S sequence, 444 
arc length, 100 
Argand, 2 
argument

branch of, IS

principle of, 386 
asymptotic expansion, 428 

unique, 431
asymptotic formula, 433 

for Bessel (unction, 451 
asymptotically equivalent, 433

B
behavior

on Itoundary, 323 
Bernoulli numbers, 240 
Bernstein theorem, 480 
Bessel equation, 460 
Bowel function, 237,448,440 

asymptotic formula for, 451 
cosine representation for, 449 
exponential representation, 450 
power series representation, 450 
properties of, 452 
recurrence relation, 451 

bigOb
notation. 428 

binomial
series, 209 
theorem, 11 

bisection
procedure, 125 

boundary
behavior oo, 323 
insulated, 350 

bounded variation, 442 
branch

of logarithm function, 31,118 
point, 374 

branch cuts
integrals involving, 289

C
calculus of residues, 243 
canonical products, 412, 420 

theorem on, 412 
Cardano, I
Cssorati-Weieiutnus theorem, 231 
Cauchy, 2, 124,151

condensation test, 194

507
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inequalities, 150 
principal value, 283, 284 
sequence, 45, 185 

Cauchy criterion, 187,108 
for sequences, 185 
Tor series, 185

Cauchy integral formula, 144,147 
for durivntiviat, 140 

Cauchy theorem, 111 
for a dink, 124 
for a  rectangle, 123 
for u simply connected region, 110 
liomotopy form, 140 
local version of, 124 
preliminary version, 113 
strengthened for a disk, 132 

Cauchy type
Integral, 148 

Cauchy-iUciiuinn 
equation, 85 
Uieorum, 86

Cniidiy-Sdiwsrz inequality, 19 
chain rule, 61, G2 
ehiuitic response, 317 
cl larges

image, 354 
chordal metric, 59 
circle, 22,330

of Apollonius, 345 
of convergence, 204 
reflection, 173 
reflect km in, 332 
reflection principle for, 370 

circles
of Apollonius, 354 

classification
of singular points, 220 

dosed
relative to, 40 
set, 45 

closed curve
homotopic, 133 
inside, 147 

dosed path
index of. 144

common transformations, 340 
compact sat, 50 
comiMirlson test., 186 
completeness, 45 
coiuplox

conjugation, 17
different ialile, 60
form of Poisson’s formula, 173
function. 42
inversion formula. 471
multiplication, 3

numbers, 1 
potential, 350 
powers, 32 
variable, 42 

complex number, 3
absolute value of, 12 
addition of, 12 
argument of, 12 
conjugate of, 17 
length of, 12 
modulus of, 12 
multiplication o(̂  14 
polar representation of, 12 
properties of, 12 
tools of, 17 
system, 3
vector representation of, 12 

condensation test 
Cauchy, 194 

Conduction 
heat, 349 

couformal 
map, 64 
mappiog, 319 
■napping theorem. 65, 319 
maps of annuli, 381 
transformation, 319 

conjugates
harmonic, 72,170 

connected sets, 47 
constant

Euler, 414 
constant coefficient

differential equation, 478 
continuation

analytic, 365, 367 
of logs, 376 

continuity, 42
analytic continuation liy , 371 
uniform, 52

continuous function. 44 
contour, 95 
contour integral, 95

fundamental tlieorem of calculus, 102 
contractible to a  {mint, 115 
converge

pointwiae, 186 
product, 409 
sequence, IS5 
series, 185 

convergence
abscissa of. 458 
circle, 204 
half-plane of, 458 
power Series, 204 
radius, 204
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uniform. 186 
convergence theorem

fur Laplace tnutdim u, 458 
for products, 410, 419 

convergent
iiupro|>er integral, 283 
suqmmcc. 44 

convex region, 135 
convolution

function, 401 
tlieorem. 402 

cosine
rational functions, 270 
representation for Bessel function, 449 

counting formula, 384 
root-pole, 384 

cover, 50 
criterion

Cauchy, 187, 190
cross

ratio, 331,343 
curve, 95

opposite. 97 
curves

homoiopic. 114 
join, 97
niparametrization. 98 
sum, 97 
union, 97

D
de Moivre's formula. Iff 
definite integrals

evaluation of, 209 
deformation theorem, 113, 130 

preliminary version, 114 
deleted neighborhood, 41, 129 
derivatives

Cauchy integral formula, 149 
Laplace transforms of, 459 

differential nqiistiou, 478 
constant coefficient, 478 

differentiation
logarithmic, 387 
of domentary functions, 81 

Dirichtot, 2
Diridilct problem, 172. 321. 345.352 

uniqueness for, 172 
disk, 41

Cauchy’s theorem for, 124 
strengthened Cauchy's theorem for. 132 

distance lemma, 51 
distributive law. 8 
divergence free, 358 
diverges to  zero. 410 
domain, 42

double pole, 247 
duplication formula 

Legendre, 417

B
electric

field. 352 
potential, 351 

elementary functions, 25 
differentiation of, 81 
geometry of, 34 

ellipse, 22 
elliptic integral, 344 
equation

Bessel, 450 
Cxudiy-Rienuuin. 65 
differential, 478 
Laplace, 346 
Legeudrc, 455 
ordinary differential, 476 

equipotculiol lines, 352 
equivalent

asymptotically, 433
error

percentage, 433 
relative:, 433 

essential
singularities, 231.251 
singularity, 227 

Euler, 2, 305
constant, 414 
formula, 415 
integral, 418,422 

evaluation of definite integrals. 2 
existence

of higher derivatives, 149 
of Logarithms, 117 

expansion
asymptotic. 428 
formula Heaviside, 473 
fraction, 310 
Laurent, 222 

exponential
function, 25 
geometry of, 36 
order, 457

exponential representation 
Hcssd function, 450 

extreme value tlieorem. 51

F
field, 6

conservative, 106 
electric, 352 
velocity, 356 

finding residues
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techniques fbr, 250 
first shifting theorem, 4G0 
fixed point, 396 
flow

fluid, SS6 
potential, 356 

fluid flaw, 356 
flux lino, 349,352 
formula

asymptotic, 433 
Cauchy’s iutcgml, 147 
complex inversion, 471 
counting, 384 
de Moivre's, 16 
Euler, 415 
Tor square roots, 7 
Gauss, 416 
Hodsmard, 207 
Ranke!, 423, 426 
invursiou, 471 
PoiSBOD, 173 
Rodrigues, 456 
n o t counting, 385 
root-polo counting, 384 
Schwarz-Christoffel, 335 
Stirling, 423, 427,446 
summation, 305 
Wallis, 425 

Fburicr series, 221 
Fburior transform, 278,304,480 

coeino, 278
invnnfion theorem for, 480 
sine, 278 

fraction
expansions, 310 
theorem, 311 

fractional linear
transformations, 327 

Ftasnel
integral, 297 
integrals, 441 

function
analytic, 1,60 
Bessel. 237, 448,449 
complex, 42 
continuous, 44 
convolution, 461 
elementary, 25 
exponential, 25 
gemma, 412, 414 
generating, 449 
Henkel, 454 
harmonic, 71,170 
holomorphic, GO 
Legendre, 455 
limit of, 43

logarithm, 30 
logarithms of, 153 
normal probability, 300 
one-to-one, 30,390 
onto, 30 
open, 400 
periodic, 27 
power, 85 
pulse, 470 
rational, 61 
Ricmann ( , 200 
root, 33 
root of a, 85 
square root, 34 
aquaring, 34 
stream, 356 
trigonometric, 29, 84 
uniformly continuous, 52 

functional equation
for gamma function, 415 

fundamental theorem, 151 
of algebra, 151, 396, 404 
of calculus for contour integral, 102

G
gamma function, 412, 414

functional equation for, 415 
integral formula for, 4)8 
properties, 422 
residues of, 4 )7  

Gauss,  2 ,151
formula, 416 

Gaussian
integral, 297

generalized steepest descent theorem, 439 
generating function, 449

for Hermite polynomials, 217 
geometric series, 184, 186 
geometry of elementary functions, 34 
global maximum modulus principle, 168 
global mnxinium principle

for harmonic functions, 172 
global properties, 52 
G ounat, 123 
greatest lower bound, 57 
Green, 124

tbsorem, 112 
group, 320

H
Hadamard

formula, 207 
three-circle theorem, 178 

half-piano of convergence, 458 
Hamilton, 2 
Hanks!
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formula, 423,426 
function, 4S4 

harmonic
conjugates, 72 

harmonic cunjugatos, 170 
harmonic functions, 170

global maximum principle for , 172 
local maximum principle for, 171 
maximum principle, 171 
mean value property, 171 

Ham ark inequality, 181 
heat conduction, 340 
Heaviside expansion 

formula, 473 
theorem, 473 

Hermite polynomials
generating function for, 217 

higher derivatives 
existence of, 149 

higher-order pole, 248 
Hilbert transform, 317 
homogeneous equation, 478 
homology, 124 
homotnpic

as dosed curves, 133 
point, 116
with fixed endpoints, 132 

homotopy
and simply connected regions. 132 
form of Cnuchy theorem, 148 
smooth, 140 

ilurwitz’ tlieorem, 369 
hydrodynamics, 356

1
identity

Lagrange’s, 23 
Lagrange’s trigonometric, 24 
parallelogram, 23 
tlieorem, 365 

image
charges, 354
inverse, 46 

imaginary
number, 2

imaginary axis, 3,12 
imaginary number, 4 
hnaginaty part, 4 
improper

integral, 283 
integrals, 271 

improper Integral 
convergent, 283 

independence of path, 116 
index

Of a  dosed path, 144

inequality
Cauchy's, 150 
Cauchy-Schwara, 19 
Hamath, 181 
triangle, 19 

inf, 57
infinite products, 409 

annlyticity of, 411 
infinite fieri as, 305 
infinity

point at, 54 
residues a t, 262 

inside
closed curve, 147 

insulated
boundary, 350 

integral, 95
contour, 95 
elliptic, 344 
Euler, 418,422 
FVtwncl, 297,441 
Gaussian, 297 
improper, 283 
im proper, 271 
involving branch cuts, 289 
of Cauchy type, 148 
path Independence, 103 
real line, 273 

integral formula 
Cauchy’s, 144
for the gamma function, 418 

inverse
image, 46
Laplace transform, 459 

inverse cosine function
Riemann surfaces of, 377 

Inverse function, 69 
rale, 61
theorem, 69, 460 

inversion. 329 
formula, 471 

inversion theorem
for Fburier transform, 480 

isolated singularity, 226 
isolation of xcros, 212

J
Jacobian matrix, 65 
Jordan

curve theorem, 145, 257 
lemma, 283

Joukowski transformations, 357 

K
Kelvin, 441
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L
Lngrange’s

identity, 23 
Lagrange's identity 

trigonometric, 24 
Laplace

transform, 434, 4S7 
Laplace equation, 346 
Laplace transform

convergence theorem for, 458 
inverse, 459 
of derivatives, 459 
properties, 497 
uniqueness theorem for, 459 

Lapladan, 71 
Laurent

expansion, 222 
expansion theorem, 222 
series, 222 

Legendre
duplication formula, 417 
equation, 455 
(unction, 455 
polynomials, 241 

lemma
Abcl-Wcicrstrass, 204 
distance, 51 
Jordan, 283 
path-covering, 53 
Schwarz, 169 

length, 12 
limit

uniform, 188 
limits, 42

uniqueness of, 43 
Lindelof principle, 169 
lino

flux, 349, 352 
Liouville’s theorem, 151 
little oh

notation, 428 
little Picard theorem, 236 
local

behavior of analytic functions, 398 
inverse, 69
isolation of zeros, 212 
maximum modulus principle, 164 
property, 52, 74 
v ssiw  Cauchy theorem, 124 

local maximum 
point, 166
principle for harmonic functions, 171

logs
continuation of, 376 

fog function
Riemann surfaces of, 375

logarithm, 293
existence of. 117 
geometry of, 36 
of functions, 153 
principal branch of, 82 

logarithm function, 30 
branch of, 31,118 

logarithmic
derivative, 146 
differentiation, 387

M
Af-test

WetetsltAKH, 189 
Madaurin series, 26,208 
Mandelbrot sot, 201 
map

conformal, 64 
mapping, 42

conformal, 319
properties of analytic functions, 398 
theorem, 399 

matrix, 67
Jacobian, 65 

maximum modulus 
principle, 164 
principle local, 164 
theorem, 401

maximum principle for harmonic functions, 
171

mean value properly, 164
for harmonic functions, 171 

Mellin transform, 289 
meromorphic, 227 
method

of stationary phase, 439 
of steepest dascent, 437 
saddle-point, 438 

Miltag-Leflier theorem, 312 
monodromy principle, 374 
Morera's theorem, 152 
multiple-valued, 32 
multiplication

of complex numbers, 14 
rules, 6

multiplicity, 152, 212 

N
neighborhood, 41 

deleted, 129 
Neumann problem, 346 
nonlinear oscillator, 317 
normal probability function, 297,300 
not connected; 47 
notation

“big Oh”, 428
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“Utile oli", 428
number

Bernoulli, 240 
complex, I 
imaginary, 2 
winding, 145

O
one-to-one

functions, 390 
theorem, 391

open
function, 400 
relative, 46 
sets, 41 

open cover, 60 
open mapping theorem, 400 
open sets

properties of. 42 
opposite curve, 97 
order

exponential, 457 
of a pole. 227 
of a  aero. 211 
pole of, 262 
zero of, 262

ordinary differential equations, 476 
oscillator

nonlinear, 317
Osgood-CSnrallKOdory theorem, 323 

P
INwriis

trail, 186 
parallelogram 

identity. 23 
Parseval tlieorem, 221 
part

principal, 227 
partial product, 410 
particular solution, 477, 478 
path

of steepest descent, 438 
path independence 

integral, 103 
theorem, 104 

path-connected, 47 
path-covering lemma, 53 
percentage error, 433 
period, 27 

stripe, 36 
phase shill, 452
Pliragmfin-I-indcIBf theorem, 407 
Picard tlieorem, 231 

little, 236
polnl

at infinity, 54 
branch, 374 
contractible to, 115 
fixed, 386 
homotopic, 115 
singular, 320

pointwise convergence, 186 
Poisson’s formula, 173 

complex form, 173 
real form, 173 

polar coordinate, 68 
polar representation

of complex numbers, 12
pole

and seres, 230 
at infinity, 262 
counting theorem, 384 
double, 247 
higher-order, 248 
order of, 227, 262 
second-order, 247 
simple, 244 

polynomial, 61 
Legendre, 241 

potential
complex, 356 
electric, 351 
Bow, 356 
velocity, 356 

potential energy, 106 
power

complex, 32 
function, 85 
series, 203 

power series
analytic continuation by, 371 
analyticily, 205 
convergence, 204 
theorem, 204 
uniqueness, 206 

power series representation 
Bessel function, 450 

preliminary version
Cauchy's theorem, 113 
deformation theorem, !i4  

prime number tlieorem, 427 
principal

hranch of logarithm, 82 
part, 227

principal value, 284 
Cnuchy, 283. 284 

principle
global maximum modulus, 168 
Undelof, 169 
maximum modulus, 164 
mouodromy, 374
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of analytic continuation, 365 
of tbo argument, 366 
reflection, 309 

Pringshaim, 124 
probability function 

normal, 297 
problem

Diridilet, 172,32), 34S, 352 
Neumann, 346 

procedure
bisection, 125 

product
absolute convergence for, 41) 
canonical, 412,420 
converge, 409
convergence tlieorem lor, 410,419 
infinite, 409 
partial, 410 
role, 61
uniform convergence for, 411 

projection
steruogmphlc, 55 

properties
gemma function, 422 
Laplace transforms, 467 
of Bcaecl functions, 452 
of complex numbers, 12 

property
local, 74 
mean value, 164

pulse
function, 470

Q
quadratic equation, 1 ,6 ,8  
quadratic formula, 1 
quotient rule, 61

R
radius of convergence, 204 
ratio

cross, 331,343 
test, 186,200 

rational function, 61 
cosme, 270 
sine, 270 

real
axis, 12
form of Poisson's Formula, 173 
line integral, 273 
number, 3 
part, 4 

rectangle
Cauchy’s tli oo rum for, 123 

recurrence relation
Bessel function, 451

reflection
analytic continuation by, 370 
in a circle, 332 

reflection principle, 309 
fbr a  circle, 370 
Schwarz, 368 

region
conformally equivalent, 321 
convex, 135
of validity for Stirling's formula, 447 
simply connected, 115 

relative
dosed, 46 
error, 433 
open, 46

removable singularity, 227,244 
residue, 227,243 

a t infinity, 262 
calculus of, 243 
of gamma function, 417 
theorem, 256 

response
chaotic, 317 

Riemann, 2
(  function, 200 
mapping theorem, 321 
sphere, 54 

Riemann surface 
for V?, 377
of inverse cosine function, 377 
of square root function, 375 
of the log function, 375 

rigiit half-plane, 56 
Rodrigues formula, 456 
root, 152

counting formula, 385 
function, 33 
of a function, 85 
tost, 186,206

root-pole counting formula, 384
RoucM theorem, 387
rule

chain, 61,62 
inverse function, 61 
product, 61 
quotient, 61

S
saddle-point method, 438 
scalar multiplication, 3 
schlicht, 390 
Schwarz

lemma, 169,177 
reflection principle, 368 

Sdiwara-Christonel formula, 335 
second shifting theorem, 461
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second-order pole, 247
sector of uniform convergence, 463
sequence, 44

Cauchy, 45,185 
Cauchy criterion. 185 
converge, 185 
convergent, 44 

aeries
binominl, 200 
Cauchy criterion, 185 
converge, 185 
Fburier, 221 
goomctric, 184,186 
infinite, 305 
Laurent, 222 
Mndaurin, 26, 208 
of analytic functions, 191 
power, 203 
Ihylor, 183. 203. 208 

set
boundary of, 167 
dosed, 45 
closure uf, 167 
compact, SO 
convex, 135 
Mandelbrot, 201 
simply connected, 135 
star-shaped, 142

eels
connected. 47 
opeu. 41 

sheet, 376
shifting theorem, 460 
simple pole. 227. 244 
simply connected region, 115 

Cauchy's theorem, 116 
bomotopy, 132

sine
rational functions, 270 

singular point, 320
classification of, 226 

singularity, 113
essential, 227,231.251 
isolated, 226 
on the axis, 284 
removable, 227,244 

smooth homotopy, 140 
sphere

Riemann, 54 
square root function, 34

Riemann surface for, 377 
Ricinann surfaces of, 375 

squaring function, 34 
standard

upper half-plane solution, 348 
star-shaped, 130

set, 142
stur-almpcd set, 142 
stnrlike, 136 
stationary phase

method of, 439 
tlieorem, 439 

steepest descent 
path of, 438 
method of, 437 
theorem, 437

stenographic projection, 55 
Stirling formula, 423,427,446 

region of validity fbr, 447 
straight line, 22,330 
stream function, 356 
strips

period, 36 
summation

formula, 305 
theorem, 305

T
Tfcylor

serial, 183,203,208 
theorem, SIS 

techniques
fbr finding residues, 250

test
p-enries, 186 
comparison, 186 
ratio, 186,206 
root, 186, 206 

theorem
analytic convergence, 191 
antiderivative, 117 
Bernstein, 480 
binomial, 11
Casorati-WeierstraMS, 231 
Cauchy, 111 
Cauchy-Riemann, 66 
conformal mapping, 65, 319 
convolution, 462 
deformation, 113,136 
extreme value, 51 
first shifting, 460 
fraction, 311 
fundamental, 151 
generalized steepest descent, 439 
Green, 112
Had smart! *8 Uiroo-dide, 178 
Heaviside expansion, 473 
Hurwits, 389 
identity, 365 
inverse function, 69,400 
Jordan curve, 145,257 
Laurent expansion, 222
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Uouville. is i  
mapping, 399 
maximum modulus, 401 
Mittag-Lcftfcr, 312 
M ora*, 152
oo canonical products, 412
one-to-one, 391
open mapping, 400
Osgood-Carat heodoty, 323
Pnnatval, 221
IKitli indo] residence, 104
Pbrqgiufin-Uudclor, 407
Picard, 231
pole counting, 334
power series, 204
prime number, 427
residue, 250
Riemann mapping, 321
Roudri, 387
second shifting, 401
shifting, 460
Stationary phase, 439
steepest descent, 437
strengthened Cauchy's Tor a disk, 132
Kumntuliiui, 305
Thylor, 208
Vitali’s convergence, 400 
W suou, 430
Wcicrstrass factorisation, 420 

transform
Fouriur, 278, 304 
Fburiur cosine, 278 
Fburier sine, 278 
Hilbert, 317 
Laplace, 434, 457 
MelUu, 289 

transformations 
common, 340 
conformal, 319 
fractional linear, 327 
Joukowski, 357 

translation., 329 
triangle inequality, 19 
trigonometric function, 29,84

U
uniform

continuity, 52 
convergence, 186 
limit, 188

uniform convergence 
for products, 411 
sector of, 463 

uniqueoeB
for Didcblet problem, 172 
of asymptotic expansions, 431

of limits, 43 
of power series, 206 

■iniqnenRK theorem
for Laplace transform, 459 

upper half-plane solution 
standard , 348

V
value

principal, 284 
variable

complex, 42 
variation

bounded, 442 
vector addition, 3 
vector represuntatioo

of complex numbers, 12 
velocity

Odd, 356 
potential, 356 

Vital!
convergence theorem, 406

W
Wallis formula, 425 
Wntnon thoorem, 430 
Wderstram, 2 

M  test, 189
factorisation theorem, 426 

W ood, 2
winding number, 145 
winds around, 145

Z
aero

and poles, 230 
isolation of, 212 
local isolation of, 212 
of analytic funciious, 211 
order of, 211, 262
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