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Preface

This text is intended for undergraduates in mathematics, the physical sciences,
and engineering who are taking complex analysis for the first time. Two years of
calculus, up through calculus of several variables and Green'’s theorem, are adequate
preparation for the course. The text contains some references to linear algebra and
basic facts about ¢-§ analysis, but the extent to which they are emphasized can be
adjusted by the instructor depending on the background and nceds of the class.

The book has a generous number of examples, exercises, and applications. We
have made a special effort to mativate students by making the book readeble for
self-study and have pravided plenty of material to help students gain an intu-
itive understanding of the subject. Our arrangement enables application-oriented
students to skip the more technical parts without sacrificing an understanding of
the main theoretical points. Applications include electric potentials, heat conduc-
tion, hydrodynamics (studied with the aid of harmonic functions and conformal
mappings), Laplace transforms, asymptotic expansions, the Gamma function, and
Bessel functions.

The core of Chapters 1 to 6 can be taught in a one-semester course for math-
ematics majors. In applied mathematics courses, if some of the technical parts of
Chapter 2 and parts of Chapter 6 are omitted, then parts of Chapters 7 and 8 can
be covered in one semester. It is healthy for mathematics majors to see as many
of the applications as possible, for they are an integral part of the cultural and
historical heritage of mathematics.

Symbols The symbols used in this text are, for the most part, standard. The set
of real numbers is denoted R, while C denotes the set of complex numbers, “Iff”
stands for “if and only if” (except in definitions, where we write only “if”). The
end of a proof is marked W, the end of the proof of a lemma in the middle of a
proof of a theorem is marked ¥ and occasionally, the end of an example in the text
is marked 4. The notation )a, b{ represents the open interval consisting of all real
numbers z satisfying a < £ < b. This is to avoid confusion with the ordered pair
notation (a,b). The notation f : A € C — C means that the mapping f maps the
domain A, which is a subset of C, into C, and we write z — f(2) for the effect of f
on the point z € A. Occasionally, = is used to mean “implies”. The set theoretic
difference of the sets A and B is denoted by A\ B, while their union and intersection
are denoted by AUB and AN B. The definitions, theorems, propositions, lemmas,
and examples are numbered consecutively for easy cross reference; for example,
Definition 6.2.3 refers to the third item in Section 6.2.

vii



viii Prefacc

Classic texts Despite the large nunbers of texts written in recent years, some of
the older classics remain the best. A few that are worth looking at arc A. Hurwitz
and R. Courant, Vorlesungen tdber allgemeine Funktionentheorie und elliptische
Funktionen (Berlin: Julius Springer, 1925); E. T. Whittaker and G. N. Watson, A
Course of Modcrn Analysis, Fourth Edition (London: Cambridge University Press,
1927); E. T. Titchmarch, The Theory of Functions, 2d ed. (NewYoark: Oxford
University Press, 1939, reprinted 1985); and K. Knopp, Theary of Functions (New
York: Dover, 1947). The reader who wishes further information on various of the
more advanced topics can profitably consult E. Hille, Analytic Function Theory,
2 volumes, (Boston: Ginn, 1959); L. V. Ahlfors, Complez Analysis (New York:
McGraw-Hill, 1966); W. Rudin, Real and Complez Analysis (New York: McGraw-
Hill, 1969); and P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(New York: McGraw-Hill, 1953). Some additional references are given throughout
the text.

The modern treatinent of complex analysis did not evolve rapidly or smoothly.
The numerous creators of this area of mathematics traveled over many rough roads
and encountered many blind alleys before the superior routes were found. An ap-
preciation of the history of mathematics and its intimate connection to the physical
sciences is importam 10 every student’s education. We recommend looking at M.
Klein’s Mathematicul Thought from Ancient to Modern Times (London: Oxford
University Press, 1972).

Third edition The third edition fextures an Jnsirucior’s Supplement as well as
8 Student Guide. Answers to the odd numbered problems are in the back of the
book and excrcises with solutions in the Student Guide are marked with a bullet
(*) in the text.

We have streanlitied a number of features in the text, such as the treatment of
Cauchy's Theorem. We have substantially rewritten Chapter 4 on the evaluation
of integrals, making the treatment less encyclopedic. An Internet Supplement is
available free from http://www.whirceman.com/ (look in the mathematics section)
or from http://cds.caltech.edu/ mansden/ (look under “books™). It contains ad-
ditional information for those who want to delve into some topics in a little more
depth.

Acknowledgments We are grateful to the many readers who supplied correc-
tions and comments for this edition. There are to0 maay to be thanked individ-
ually, but we would like especially to mention (morc or less chronologically) M.
Buchner (who helped significantly with the First Edition), C. Risk, P. Roeder, W.
Barker. G. Hill, J. Seitz, J. Brudowski, H. O. Cordes, M. Choi, W. T. Stallings, E.
Green. R. litis, N. Starr, D. Fowler, L. L. Campbell, D. Goldschmidt, T. Kato, J.
Nasirov. P. Kenshaft, K. L. Teo, G. Bergmaun, J. Harrison and C. Daniels, Finally,
=+ taznk Barbara Marsden for her accurate typsetting of this new edition.


http://www.wliirecman.com/
http://cds.caltech.cdu/~mareden/

Chapter 1

Analytic Functions

In this chapter the basic ilcas about complex numbers and analytic functions are
introduced. The organization of the text is analogous to that of an clementary
calculus textbook, which begins by introducing R, the sct of real numbers, and
functions f(z) of a rcal variable z. One then studies the theory and practice of
differentistion and integration of functions of a real variable. Similarly, in complex
analysis we begin by introducing C, the set of complex numbers z. We then study
functions f(z) of a complex variable 2, which are differentinble in a complex scosc;
these are called analytic functions.

The analogy between real and complex variables is, however, a little deceptive,
because complex aualysis is a surprisingly richer theory; a lot more can be said
about an analytic function than about a differentiablc function of a rea) variable,
as will be fully developed in subsequent chapters.

In addition to becoming familinr with the theory, the student should strive to
gain facility with the standard (or “elementary”™) functions such as polynomials,
e, log 2, sin z—as in calculus. These functions arc studied in §1.3 and appear
frequently throughout the text.

1.1 Introduction to Complex Numbers

The following discussion will assume some familiarity with the main propertics of
real numbers. The real number system resulted from the search for a system (au
abstract set together with certain rules) that included the rationals but that also
provided solutious o such polynomial equations as z% — 2 = 0.

Historical Perspective Hislorically, a similar consideration gave risc 10 an ex-
tension of the real numbers. As early as the sixteenth century, Geronimmo Cardano
considered quadratic (and cubic) equations such us 22 + 27 4 2 = 0, which is sat-
isfied by no real number z. The quadratic formula (—b% V7~ 4ac) /2 yiclds
“formal” expressions for the two solntions of the equation ax? + bz 4+ ¢ = 0. But this

1



2 Chapter 1 Analytic Functions

formula may involve square roots of negative numbers; for example, -1 + /=1 for
the equation 2 + 2z + 2 = 0. Cardano noticed that if these “complex numbers”
were treated as ordinary numbers with the added rule that +/—1- /=1 = -1, they
did indeed solve the equations.

The important expression /-1 is now given the widely accepted designation
i = /=1. (An altemative convention is followed by many electrical engincors,
who prefer the symbol j = /=1 since they wish to reserve the symbol i for electric
current.) However, in the past it was felt that no meaning could actually be assigned
to such expressions, which were therefore termed “imaginary.” Gradually, especially
as a resuit of the work of Leonhard Euler in the eighteenth century, these imaginary
quantities came to play an important role. For example, Euler’s formula € =
cos @ + isin @ revealed the existence of a profound relationship between complex
numbers and the trigonometric functions. The rule e'(®+92) = £i® ¥ yps found
to summarize the rules for expanding sine and cosine of a sum of two angles in a
neat way, and this result alone indicated that some meaning should be attached to
these “imaginary” numbers.

However, it took nearly three hundred years until the work of Casper Wessel
(ca. 1797), Jean Robert Argand (1806), Karl Friedrich Gauss (1831), Sir Williamm R.
Hamilton (1837), and others, when “imaginary” numbers were recognized as legit-
imate mathematical objects, and it was reslized that there is nothing “imaginary”
about thom at all (although this term is still used).

The complex analysis that is the subject of this book was developed in the
nineteenth century, mainly by Auvgustin Cauchy (1789- 1857). Later his thcory
was made more rigorous and extended by such mathematicians as Peter Dirichlet
(1805-1859), Karl Weierstrass (1815-1897), and Georg Friedrich Bernhard Ricmann
(1826-1866).

The search for a method 10 describe heat conduction infivenced the development
of the theory, which has found many uses outside mathematics. Subsequent chap-
ters will discuss some of these applications to problems in physics and engineering,
such as hydrodynamics and electrostatics. The theory also has mathematical ap-
plications to problems that at first do not seem to involve complex numbers. For
example, the proof that

2

» sin? ¢ 4
[ 5e=3

or that

o ,a-1
/ x dr = — 4 ,
e l+=x sin(ow)
(where 0 < @ < 1), or that

/2" 0 2%
s a+sind JaZ-1

may be difficult or, in some cases, impossible using elementary caleulus, but these
identitics can be readily proved using the techniques of complex variables.




§1.1 Introduction to Compler Numbers 3

The Complex Number System Complex analysis has become an indispensable
and standard tool of the working mathematician, physicist, and engineer. Neglect
of it can prove to be a severe handicap in most areas of research and application
invalving mathematical ideas and techniques. The first objective of this section will
be to define complex numbers and to show that the usual algebraic manipulations
hold. To begin, recall that the zy plane, denoted by R?, consists of all ordered
pairs (z, y) of real numbers.

Definition 1.1.1 The system of complez numbers, denoted C, is the sel R?
together with the usual rules of vector addition and scalar multiplication by o
real number a, namely,

(Z1.) + (Z2,42) = (71 4 T2, 01 + 1)
a(z,y) = (ax,ay)

and with the operation of complex multiplication, defined by
(xr, 1 {@2,302) = (2122 — 2. Tay2 + N1 22).

We will need to explain where this strange rule of multiplication comes from!
Rather thau using (z, y) to represent a complex number, we will find it more conve-
nient to return to more standard notation as follows. Let us identify real numbers
z with points on the x axis; thus z and (z,0) stand for the same point (z,0) in
R2, The y axis will be called the imaginary azis, and the unit point (0, 1) will
be denoted i. Thus, by definition, ¢ = (0,1). Then

(Ty)==+yi
because the right side of the equation stands for
(2.0) +¥(0,1) = (2,0) + (0.) = (z.v)-
Using y = (y,0) and Definition 1.1.1 of complex multiplication, we get
iy =(0,1)(0)=(0-y~1-0,y-1+0-0) = (0.y) = ¥(0,1) = ¥,
s0 we can also write (z,y) = xz +fy. A single symbol such as z = ¢ + ib is generally
used to indicate a complex number. The notation z € € means that z belongs to

the set of complex numbers.
Note that

?=i-i=(0,1)-(0,1)=(0-0—-1-1,(1-040-1)) =(-1,0)= -1,

so we do have the property we want:
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If we remember this equation, then the rule for multiplication of complex numbers
is also easy to remember and motivate:

(e +ib){c+id) = ac+iad+ ibc+ 2bd
= (ac—bd) +i{ad +bo).

For example, 2 4 3 is the complex number (2, 3), and
(2+3i)() ~4i) =212+ 3i —8i =14 -5i
is another way of saying that
(2,3)(1,~4) = (2-1 - 3(—4),3- 1 +2(-4)) = (14, -5).

The renson for using the expression a + bi is twofold. First, it is conventional.
Second, the rule i2 = —1 is easicr to use than the rule (e, b)(c, d) = (ac—bd, bc+ad),
although both rules produce the same result.

Beeanse multiplication of real numbers is associative, commntative, and dis-
tributive, it is reasunable to expect that multiplication of complex numbers is also:
that is, for alt complex nmnbens 2, w, and & we have

(zw)s = z(ws), 2w=wz, and 2z(w+s)=zw+2s.

Let us verify the Brst of these properties; the others can be similarly verified.
Lot 2 = e+ ibw=c+1id, and s = e +if. Then 2w = (ac — bd) + i(bc + ad), 50

(zw)s = e(ac — bd) — f(bc + ad) + ile(bc + ad) + f(ac - bd)).
Similarly,

z(ws) = (a+bi)i(ce—df) +ilcf +de)}
= afce — df) - blcf + de) + ifa(cf + de) + bce — df)).

Comparing these expressions and accepting the usual properties of real numbers, we
conclude that (zu1)s = z(ws). Thus we can write, without ambiguity, an expression
like 2" =2-...-z (1 Limes).

Note that a + ib = ¢ + id means a = ¢ and b = d (since this is what equality
meuns in §2) and that 0 stands for § +#0 = (0,0). Thus a +ib = 0 means that both
a=0and b=0.

In what sense are these complex numbers an extension of the reals? We have
already said thay if @ is real we also write a to stand for a + 0i = (a,0). In other
words, the reals R arc identified with the z axis in € = R?; we are thus regarding
the real pumbers as those complex numbers a 4 bi for which b = 0. If, in the
expression a + bi, the term a = 0, we call bi = 0+ Ui a pure imeginery number.
11 tae expression a + bi we say that g is the real part and b is the imaginary
part. This is sometimes written Rez = g, Inz = b, where 2 = a ++ hi. Note that
Rez and I : are always real numbers (see Figure 1.1.1).
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y

2z = (22, 2h)

. /l.zq.wz(nox,bq;)
R=C

Figure 1.1.1: The geometry of complex numbers.

Algebraic Properties The complex nunbers obey all the algebraic rules that
ordinary real numhers do. For example, it will be shown in the following discussion
that multiplicative inverses exist for nonzero clements. This means that if z # 0,
then there is a (complex) number 2’ such that z2’ = 1, and we write 2/ = 2~1. We
can write this expression unambiguously (in other words, 2’ is uniquely delermined),
because if z2” = 1 as well, then 2/ = 2/ 1 = 2(22") = ('2)z" = 1-2" = 2", and
so 2" = 2/, To show that z’ exists, supposc that z = a + ib # 0. Then at least
oue of a 3 0,b 3 0 holds, aud so0 a2 + ¥* # 0. To find 2/, we set 2’ = a’ + Vi,
The condition 22’ = 1 imposes conditions that will enable us to compute a’ and ¥'.
Computing the product gives zz’ = (aa’ — W) + (al/ + a’b)i. The lincar equations
aa’ — b’ =1 and ab’ + a’d = 0 can be solved for o’ and ¥ giving o' = a/(a® + ?)
and ¥ = —b/(a? + b?), since a2 + b # 0. Thus for 2 = a + ib # 0, we may write

-l _a 1
T a2+ a2+

Having foumd this candidate for z~' it is now a straightforward, albeit tedious,
computation to check that it works.

If z and w are complex numbers with w $# 0, then the symbol z/w means
zw™'; we call z/w the quotient of 2 by w. Thus z~' = 1/z. To compute 272,
the following series of cquations is common and is a useful way to remember the
preceding formuls for z~*:

1 a-1ib _a—-ib o« _ bi
atidb (a+ib)a-ib) a2+ a*+b% o248
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In short, all the usual algebraic rules for manipulating real numbers, fractions,
polynomials, and so on, hold for complex numbers.

Formally, the system of complex numbers is an example of a field. The crucial
rules for a field, stated here for reference, ave

Addition rules
(i) z+w=w+z
(B) 2+ (w+s)=(z+w)+s
(iii) z+0=2
(iv) 24+ (-2)=0
Multiplication rules
(i) 2w =we
(ii) (zw)s = 2(ws)
(ii}) 1z ==z
(iv) 2(z"")=1forz #0

Distributive law 2(w + 8) = zw + zs

In summary, we have
Theorem 1.1.2 The complex numbers C form a field

The student is cautioned that we generally do not define inequalities fike 2 < w,
for complex z and w. If one requires the usual ordering properties for reals to hold,
then such an ordering is impossible for complex numbers.! Thus in this text the
notation z < w will be avoided unless z and w happen to be real.

Roots of Quadratic Equations As mentioned previously, one of the reasons
for using complex numbers is to enable us to take square roots of negative real
numbers. That this can, in fact, be done for all complex numbers is verified in the
next proposition.

Proposition 1.1.3 Let z € C. Then there exists a complez number w € C such
that w® = z. (Notice that —w also satisfies this equation.)

IThix statement can be proved as follows. Suppose that such an ordering exists, Thon aither
§200ri<0. Suppose that i 2> 8. Then i-1 > 0, so —1 2> 0, which is absurd, Alternatively,
suppose that i < 0. Then —i > 0, so (—i}(—i) > 0, that is, —1 > 0, agsin absurd. If = = e + i
and w = ¢ + id, we could say that 2 < w iff ¢ < c and b < d. This is an ordering of sorts, but it
dooes not uatisfy all the rules that might be required, such as those obeyed by renl numbers.
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Proof (We shall give a purely algebraic proof hére; another proof, based on polar
coordinates, is given in §1.2.) Lot z = a+bi. We want to find w = z + iy such that
z = w i.e., a+bi = (z+iy)? = (22 - 3?) + (2xy)i, and so we must simultaneously
solve 22 — 2 = a and 22y = b. The existence of such solutions is geometrically
clear from examination of the graphs of the two cquatious. These graphs are shown
in Figure 1.1.2 for the case iz which both ¢ and b are positive. From the graphs
it is clear that there should be two solutions which arc negatives of cach other. In
the following paragraph, these will be obtained algebraically.

Figure 1.1.2: Graphs of the curves z> —¢® = a and 2zy = b.

We know that (22 + 32)2 = (22 = )2 + 42%y” = o? + 1. Hence 22 +3* =
Va1, 022 = (a+ Va? 15) [2end 3* = (—a + Va? 1 77) /2. W we let

where /" denotes the positive square root of positive real numbers, then, in the
event that & js positive, we have either z = a,y = for £ = —a,y = —f; in the
cvent that b is negative, we have cither z = o,y = -Borz = —a,y = 5. We
conclude that the equation w? = z has solutions +(a + pBi), where u =1 if 6> 0
and u=-1ifb<c0. B

The formuls for square roots developed in this proof is worth summarizing
explicitly. Namely, the twe (complex) square rools of a + ib are given by
va + ib = £(a + ppt),

where a and B arc given by the displayed formula preceding this one and where
£=1b>20aendp=~1ib< 0. From the expressions for a and § we can
conclude threc things:
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1. The square roots of a complex nunber are real if and only if the complex
number is real and pasitive.

[S-d

. The square roots of a complex number are purely imaginary if and only if the
complex number is real and negative.

3. The two square roots of a number coincide if and only if the complex number
is zero.
{The student shionld check these conclusions.)

We can ensily check that the quadratic equation az? 4 bz + ¢ = 0 for complex
numbers a,b, ¢ has solutions 2 = (—b % Vb - dac) /2a, where now the square root
denotes the two squarc roots just constructed.

Worked Examples

Example 1.1.4 Prove that 1/i = —i and that 1/(i + 1) = (1 —{)/2.

Solution First,

1 1 -
- —= g
t 1T -t
Lecause § - —i = —(i%) = —(~1) = 1. Alsq,
1 1 1-i_1-i

41 i4+11-di 2
since (1 +i)(1—1) =141=2.
Example 1.1.5 Find the real and imaginary paris of (2 + 2)/(z — 1) where z =
x iy,

Solution We start by writing the fraction in terms of the real and imaginary
parts of : and “rationalizing the denowninator™. Namely,

z2+2 (z+2)+iy _ (=++iy (z-1)-iy
2—-1 (z=1)+iy  (z-1)+diy (z-1)—-iy
(x+2)(x = 1)+ 9 +ily(z - 1) - y(z + 2)]
(z=-1)2+92 )
Hence,

242 22 4+z-2+4+9°

Rez-l T o (z-1 42

z4+2 -3y
z-1 (z-12+3*

Example 1.1.6 Solve the cquation z¢ +i =0 for z.

m
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Solution Let z2 = w. Then the equation becomes w? + £ = 0. Now we use the
fonnnda va + i = E(a + pfi) we developed for taking square roots. Lettinga =0
and b= -1, we get

w=3 ( 1 1 i)
v2 V2
Consider the equation 22 = (1 — {)/v/2. Using the samc formula for squure roots,
hnt now letting a = 1/v/2 and b= —1/+/2, wo abtain the two solutions

2

From the second possible value for w we obtain two further solutions:

i].
In the next section, de Moivre’s formula will be doveloped, which will enabie us to
find the nth rool of any complex number rather siply.
Example 1.1.7 Prove that, for compler numbers 2 and w,
Re(z +w) =Rez + Rew
and

Im(z+w)=Imz+Imw.

Solution Letz=z+fyandw=a+ib Thenz4+w= (z +a)+i(y +b), so
Re(z + w) =z +a =Rez + Rew. Similarly, Im(z + w) =y +b=1mz + Imw.

Exercises
1. Express the lollowing complex numbers in the form a +- ib:

() (2430 + (d +3)

2+3i
e

2. Express the following complex numbers in the form a + bi:

() (2+ 394 +i)
(b) (8 +6i)?
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() (l + T_%-‘)z

. Find the solutions to 22 = 3 — 44.

. Find the solutions to the following equations:

(8) (z+1)>=3+4i
(b) #-i=0

. Find the real and imaginary parts of the following, where z = z 4 #y:

(o) =

(®) —

3242

. Find the resl and imaginary parts of the following, where z = x 4 fy:

z41
(b)

. Is it true that Re(zw) = (Re z)(Rew)?
. If a is real and z is complex, prove that Re{az) = a Rez and Im(az) = a Im 2.

Generally, show that Re : C — R is a real linear map; that is, Re(ez + bw) =
a Rez + b Rew for a,b real and z, w complex.

9.* Show that Re(iz) = —Im(z) and that Im(iz) = Re(z) for any complex

number z.

10. (2) Fix a complex number z = z + fy and consider the linear mapping ¢ :

11.

R? — R? (that is, of C — C) defined by ¢.(w) = z-w (that is, multiplication
by z). Prove that the matrix of @ in the standard basis (1,0), (0,1) of R? is

given by

z -y

v =/’
(b) Show that @212 = @z, O s,

Assuming that they work for real mumbers, show that the nine rules given for
a field also work for complex numbers,

. Using only the axioms for a ficld, give a formal proof (including all details)

for the following:
] 1 1
W 2=L2

2 22 s 2
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1

1 1 2+ 2
®) 2 2 an

13.* Lot (z — iy)/(z +iy) = a + ib. Prove that a® +-b? = 1.

14.

15.
16.

17.

18.

19.

Prove the binomial theorem for complex numbers; that is, letting 2, % be
complex numbers and n be a positive integer,

ror = () er () ()

where

n\ _ n!

v)]  rin-n)
Use induction on n.

Show that z is real if and only if Rez = 2.
Prave that, for each integer k,
$F = fHY = 2 o Y o

Show how this result gives a formula for i for all n by writing n = 4k+5;0 <
j<s.
Simplify the [ollowing:
(2) (1 +4)
(b) (-9)~?
Simplify the following:
(@) (1-9)!
1414
®) 7=
Simplify the following:
(8 V14 Vi
(b) VI+1¢
(0)° VV=i

. Show that the following rules uniquely determine complex multiplication on

C=R2
(8) (21 + 2)w = 2w+ 22w
(b) z122 = 222,
(¢) i-i=~
(d) z1(z273) = (2122)23
(e) I 2, and 2, are real, 2, - 23 is the usual product of real numbers.
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1.2 Properties of Complex Numbers

It is important 10 be able to visualize mathematical concepts and to develop geomet-
ric intuition—an ability especially valuable in complex analysis. In this scction we
define and give a geometric interpretation for several concepts: the absolute valuc,
argument, polar representation, and complex conjugate of a complex number,

Addition of Complex Numbers In the preceding section a complex number
was defined to be a point in the plane R2. Thus, a complex number may be thought
of geometrically as a (two-dimensional) vector and pictured as an arrow from the
origin to the point: in R? given by the complex number (see Figure 1.2.1).

Iinaginary axis « y-axis

z={ab)ea+id

Renl axis & x-axis

Figure 1.2.1: Vector representation of complex numbcers.

Because the points (z,0) € R2 correspond to real numbers, the horizontal or x
axis is called the real axis. Similarly, the vertical axis (the y axis) is called the
tmaginary azis, because points on it have the form iy = (0. y) for y real.

As we already saw in Figure 1.1.1, the addition of complex numbers can he
picturcxt as addition of vectors (an explicit exmuple is given in Figure 1.2.2).

Polar Representation of Complex Numbers To understand the gemmcetric
meaning of multiplying two complex numbers, we will write them in what is called
polur coordinate forin. Recall that, the length of the vector (e, b) = a +ib is defined
to be vaZ + 2. Suppose the vector makes an angle @ with the positive direction of
the real axis, where 0 < @ < 2% (see Figure 1.2.3).

Thus, tan8 = bfa. Since @ =7cos0 and b = rsiné, we have

a+bi = rcos@ + (rsin@)i = r(cos@ + isind).

This way of writing the complex munber is called the polar coordinate represen-
tation. The length of the vector 2 = (a,b) = a + ib is denoted |z| and is called the
norm, or modulus. or absolute value of z. The angle @ is called the argument
of the complex munber and is denoted 0 = arg 2.
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Figure 1.2.2: Addition of complex numbers.

+¥

a+ih
“
]
]
]
]
i
Y 1 b rsin 8
{
(
1
{
(] 1
1 x
S ———
ros @

Figure 1.2.3: Polar coordinate representation of complex nmmnbers,

If we restrict @ to the interval 0 € 8 < 2=, then cach nonzero complex number
bas an unambiguously defined argument. (We learn this in trigonometry.) How-
ever, it is clear that we can add integrad multiples of 27 to € and still obtain the
same complex number. Tn fact, we shall find it convenient to be fiexible in our
requirements for the values that @ is to assume. For examiplo, we could equally well
allow the range of @ to be —x < @ < #. Such an interval must always be spécified
or be clearly understood.

Once an interval of length 27 is specified, then for each 2 # 0, a unique 6 is
determined that lies within thai specified interval. Tt is clear that any 8 € R can
be brought into our specified interval by the addition of some (positive or negntive)
integral multiple of 25. For these reasons it is sometimes best to think of arg 2 as
the set of possible values of the angle. If @ is one possible value, then 80 is 0 + 2an
for any integer n, and we can sometimes think of arg z as {04277 | n is an integer}.
Specification of a particular range for the angle is known as choosing a brench of
the argument.
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Multiplication of Complex Numbers The polar representation of complex
numbers helps us understand the geometric meaning of the product of two complex
numbers. Let 2, = ry(cos6; + isinf) and 22 = ra(cosd; + isin ). Then
2z = 7'17'2[(00591 <058 —sin6, - sinaz)] + t((eosal - 8in 8y +- cos b2 'Sinol)]
= Tlfz(m(0| 4 02) + isin(0, + 92)],
by the addition formuja for the sine and cosine functions used in trigonometry.
Thus, we have proven

Proposition 1.2.1 For any compler numbers z; and 2o,
|2122) = |2)| - |22] and arg(z127) = arg2, +argz; (mod 2x).

In other words, the product of two complex numbers is the complex number
that has a length equal to the product of the lengths of the two complex numbars
and an argument equal to the sum of the arguments of those numbers. This is the
basic geometric representation of complex multiplication (see Figure 1.2.4).

1

Figure 1.2.4: Multiplication of complex numbers.

The second equality in Proposition 1.2.1 means that the sets of possible values
for the left and right sides are the same, that is, that the two sides can be made to
agree by the addition of the apprapriate multiple of 2% to one side. If a particular
branch is desired and arg 2, + arg 22 lies outside the interval that we specify, we
should adjust it by a multiple of 27 (o bring it within that interval. For example, if
our interval is [0, 2#{ and 2; = —1 and 2, = —i, then arg 2; = % aud argzy = 37/2
(sce Figure 1.2.5), but 2y22 = £, s0 arg(2,25) = /2, and arg z) +arg 23 = 7 +3w/2 =
27 4 w/2. We can obtain the correct answer by subtracting 27 to bring it within
the interval [0, 27[.

Multiplication of complex numbers can be analyzed in another useful way. Let
2 € C and define 9, : C = C by ¥,(w) = w2; that is, 3, is the map “multiplication
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g
¥

AL

g (=5,

o7 NV
N

ezye~i

Figure 1.2.5: Multiplication of the complex numbers —1 and -i.

hy z". By Proposition 1.2.1, the effect of this map is lo rotate a complex number
through an angle equal to arg z in the counterclockwise direction and to stretch its
length by the factor |z} For example, ¥; (multiplication by i) rotates complex
numbers by 7 /2 in the counterclockwise direction (see Figure 1.2.6).

y

vw)

Figure 1.2.6: Multiplication by <.
The map ¢, is a linear transformation on the plane, in the sense that

¥ (dun + pwa) = A:(w) + p¥s(w2),
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where A, # are real numbers snd w, , w, are complex numbers. Any lincer transfor-
mation of the plane to itself can be represented by 8 matrix, as we learn in linear
algebra. If z = a + ib = (@, d), then the matrix of ¢ is

(¢ )
(¢ 2)()-(55)

(see Excreise 10, §1.1).

since

De Moivre’s Formula The formula we derived for multiplication, using the
palur coordinate representation, provides more than geomectric intuition. We can
use il to obtain a formula for the nth power of 2 complex number. This formula
can then be used to find the nth roots of auy complex numboer.

Proposition 1.2.2 (De Moivre’s Formula) Jf z = r(cos0 + isin8) and n is a
positive integer, then

2" = r"(cosnf + i sinnf).

Proof By Proposition 1.2.1,
2% = r2jcus(0 + 0) + isin(0 + 6)) = r3(cos 26 + isin20).

Multiplying agniu by = gives
22 = z-22 = r . r?cos(20 + 0) + isin(20 + 6)] = r*(cos 30 + isin 30).

This procedure may be continued by induction to obtaiu the desired result for any
imegern. W

Let w be a2 complex number; that is, let w € €. Using de Moivre’s formula
will belp us solve the cquation 2™ = w for 2 when w is given. Supposc that
w = r(cos@ + isinf) and 2 = p(cosy + isiny). Then de Moivre’s formula gives
2" = p"(cosny + isinny). It follows that o = r = || by nniquencss of the polar
representation and ny = @ 4 k(2x), where k is some integer. Thus

z= {‘/?[cos(g+527.') +isin (£+£2w)] .
n n n n
Each value of £ = 0, 1,... ,n — 1 gives a different value of 2. Any other valne of k

mcrely repeats one of the values of z corresponding to £ =0,1,2,... ,n - 1. Thus
there are exactly n nth roots of a (nonzero) complex number.
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An example will help illustrate how to use this theory. Consider the problem of
finding the three solutions to the equation z° = 1 = 1(cos 0 +$sin0). The preceding
formula gives them as follows:

3 3 !
where k = 0,1,2. In other words, the solutions are
-1 V3 l_i
-9 2 KN 2

This procedure for finding roots is summarized as follows.

Corollary 1.2.3 Let w be o nonzero compler number with polar representation
w = r(cosf + isinf). Then the nth roots of w are given by the n complex numbers

zk—c/'[cos(a 2"k)+isin(g+?:—k)] k=0,1,...,.n-1

As a special case of this formula we note that the n roots of 1 (that is, the nth
roots of unity) are 1 and n — 1 other points equally spaced around the unit circle,
as illustrated in Figure 1.2.7 for the case n = 8.

Y

Figure 1.2.7: The eighth roots of unity.

Complex Conjugation Subsequent chapters will include many references to the
simple idea of conjugation, which is defined as follows: If z = a + ib, then z, the
complex conjugate of z, is defined by £ = a ~ ib. Complex coujugation can be
pictured geometrically as reflection in the real axis (see Figure 1.2.8).

The next proposition summarizes the main properties of complex conjugation.
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zs=a+ib

E-a-w
Figure 1.2.8: Complex conjugation.

Proposition 1.2.4 The following properties hold for complex numbers:
() z+Z7=2+72.
(ii) z2’ = 7.
(iii) z/z' = 3/7 for 2 #0.
(iv) 22 = |2|* and hence if 2 # 0, we have 27! = /2.
(v) 2=z if and only if z is real.
(vi) Re z = (2 4 2)/2 and Im 2 = (z — 3)/2i.

(vii) 2=2.
Proof

(i) Let z=a+iband let 2 =a' +il’. Then 2+ =a4a +ilb+ V'), and 50
zt+Z=(a+d)-ib+¥V)=a—ib+a' -il =5 7

(i) Let z=a+ib and let 2’ = @’ + il/. Then

zZ = (ad’ = W) + i(e¥ +a'b) = (a0’ ~ by') - i(al + o'b).
On the other hand, 22’ = (a — ib)(¢’ — i¥/) = (ao’ ~ ) - i(at’ + a'b).
(ili) By (i) we bave 2’2/’ = 272/# = z. Hence, 2/2 = 3/7.
(iv) 22 = (a+ib)(a —ib) = a? + 12 = |22
(v) fa+4ib=a — b, then ib = —ib, and s0 b =0.
(vi) This assertion is clear by the definition of 2.
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(vii) This assertion is also clear by the definition of complex conjugution. B8

The absolute value of 2 complex number {z| = |a + ib| = vaZ + 12, which is
the usual Buclidean length of the vector represemting the complex number, has
already been dcfined. From Proposition 1.2.4(iv), note that |2| is also given by
|z} = 2z. The absolute value of a complex number is encountered throughout
complex analysis; the following propertics of the absolute value are quite basic.

Proposition 1.2.5 (i) |22'| = |2| - |Z|.
(ii) If ' #0, then |2/ = |2|/|2).
(i) ~|2) S Rez < 2| and —J2| < Imz < |2]; that is, |Re2| < |2] and |Im] < |z,
(iv) 12] = |2}
) e+ 7| 2| +12]-
(vi) |z-2| 2 liz| - |'Il.

(vii) 21wy ... + Zatn] € VIRE+ ... F ZaPV I + .. . + [Wale-

Statement (iv) is clear geometrically from Figure 1.2.8, (v) is called the trian-
gle ineguality for veclors in R? (see Figure 1.2.9) and (vii) is referved to as the

Cauchy-Schwarz inequality. By repeated application of (v) we get the general
statement |21 + ...+ 23| < |ar] + - .. + 24|
y

Fy+2dShl+ Pyl

Figure 1.2.9: Triangle inequality.

Proof
(i) This equality was shown in Proposition 1.2.1.
(i) By (i), [2')l2/#| = |2 - (z/2')| = |2], s0 |2/2'| = |z|/|2'|-
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(i) If 2 = a + b, then —/aT+ 8 < a < VaZ+12 since i? > 0. The other
inequality asserted in (jii) is similarly proved.

(iv) If 2 = a + ib, then £ = a — ib, and we clearly have |2| = VoZ +# =

VET P = I3l

(v) By Proposition 1.2.4(iv),

(z+ ')z +2%)
(z42')2+7)
= 25422 4+25 422

|z + 2'|?

But 22’ is the conjugate of 25 (Why?), so by Proposition 1.2.4(vi) and (jii
in this proof,

I2? + | + 2Re 22 < |22 4 21 + 2122] = |21 + | + 2|z|j2’).
But this equals (|z] + |2'])?, so we get our result.
(vi) By applying (v) to 2/ and z — 2’ we get
2] = | + (2= 2)| < ] +]2 - ],

s0 |2 = 2| 2 || - |’|- By interchanging the roles of z and 2/, we similarly get
|z = 2] 2 |Z] - |z] = —(|z| = |2]), which is what we originally claimed.

(vii) This inequality is less evident and the proof of it. requires a slight mathematical
trick (see Exercise 22 for a different proof). Let us supposc that not ali the
wy = 0 (or else tho result is clear). Let

= zn: Jaxl?, t= Z fnf?, s= Zz;,w;. and c=s/ft.
ke

Now consider the sum

Z J2i = cunf?

k=?
which is > 0 and equals
n n
v+ldt—c) nd-8) zwe = v+|d’t—2Ress
kx1 k=1

LS 8.
-3

Since ¢ is real and s5 = |sJ? is real, v + (|s|*/t) — 2(|s}’/t) =v-|s)2/t > 0.
Hence |s|? < vt, which is the desired result.

=v+
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Worked Examples
Example 1.2.68 Solve 2% =1 for 2.

Solution Since 1 = cosk2x +isin k2% when k equals any integer, Corollary 1.2.3
gives

- ST

S T U -1 & .1 i
= 11—+—"’°—°’+—1-’lv"—-—o""_'—_'
V2 V2 V2 V2 V2 V2 V2 V2
These may be pictured as points evenly spaced on the circle in the complex plane
(sec Figure 1.2.10).

3
4,4 L, 4
Vi V3 V2 V2
-1 1 <
=1 i) AL
VETVE S Vi Vi

Figure 1.2.10: The eight 8th roots of unity.

Example 1.2.7 Show that

(3+7)?] _ (3—7i)?
[(8+6i) T B-6i)

Solution The point here is that it is not necessary first to work ou _g +782/(8+
6i) if we simply use the properties of complex conjugation, namely, (2)? and
2]# = £{7'. Thus we obtain

[B+7)2] _ B+ e (3+ 7:') (3-7i)?

——— I e S5 eeee——

B+6) | (8+6) (8+6) (B-6i)

Example 1.2.8 Show thot the mazimum absolute value of 22 +1 on the wnit disk.
2| <1 ds2.
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Solution By the triangle incquality, [2 4+ 1| € 2%+ 1= |z +1 €12 +1 =2,
since |z] < 1 thus |22 + 1| does not exceed 2 on the disk. Since the value 2 is
achicved at z = 1, the maximum is 2.

Example 1.2.9 Ezpress cus38 in terms of cos@ and s5in @ using de Moivre’s for-
mula.
Solution De Moivre's formula for r =1 and n = 3 gives the identity
(c0s0 + isin8)® = cos 30 + ¢sin 30.
The left side of this equation, when expanded (see Excrcise 14 of §1.1), becomes
cor® @ + i3cos? @sin @ — 3cosfsin® 0 — isin® 0.
By equating real and imaginary parts, we get
0538 = cos® 0 — 3casfsin® @
and the additional formula
5in30 = —sin®@ + 3cos* Osin .
Example 1.2.10 Wrilc the equation of a straight line, of a circle, and of an ellipse

using complex nolation.

Solutfon The straight line is most conveniently expressed in parametric form:
z2=a+bt,a,b€C,teR, which represents a line in the direction of b and passing
through the point a.

The circle can be expressed as |z - a = r (radius r, center a).

The ellipse can be expressed as |z — d] 4 |2 + d| = 2a; the foci are located at *d
and the semimajor axis equals a.

These equations, in which |-| is interpreted as length, coincide with the geometric
definitions of these loci.

Exercises
1. Solve the following equations:
(&) 2°-2=0
(b) 24 +i=0
2. Solve the following equations:

(a) 22 +8=0
(b) 8-4=0
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3. What is the complex conjugate of (3 + 8i)*/(1 + i)*9?

4. What is the complex conjugate of (8 — 2i)'%/(4 + 6)5?

5. Express cos 5z and sin 5z in terms of cosz and sinx.

6. Express cos6z and sin 6z in terms of cos 2 and sin z.

7. Find the absolute value of [#(2 + 3i)(5 — 2i)]/(-2 - i).

8. Find the absolute value of (2 — 3i)2/(8 + 6i)2.

9.° Let w be an nth root of unity, w # 1. Show that 14w+ w?+4... 4+ ! =qQ.

10. Show that the roots of a polynomial with real cocfficients occur in conjugate
pairs,

11. Ifa,b € C, prove the parallelogram identity: |a—b>+|a+-bf2 = 2(|af2+|b]?)-
12. Interpret the identity in Exercise 11 geometrically.

13. When does equality hold in the triangle inequality |21 + 22 4 ... + za| £
Jz1] + |22| + ... + |2x|7 Interpret your resuit geometrically.

14. Assuming either [z| = 1 or jw] = 1 and Zw # 1, prove that

=].

z—-w

1-2w
15. Does 22 = |2[? If so, prove this equality. If not, for what z is it true?
16.° Letting z = = + iy, prove that |z| 4 |y| < v2|z|.

17.° Let z = a +ib and 2’ = a’ 4 ilf. Prove that |22] = |z||2’| by evaluating each
side.

18. Prove the following:
(a) argz = - arg 2(mod 2%)

(b) arg(z/ur) = arg 2 — arg w(mod 27)
(c) |zl=0ifand only if z =0

19. What is the equation of the circle with radius 3 and center 8 + ¢ in complex
notation?

20. Using the formula 2~ = 3/|z|*, show how to construet z~! geometrically.
2]. Describe the set of all z such that Im (z +5) = 0.
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22.* Prove Lagrange’'s identity:

23.
2.

2 /] n
= (Z l=k!’) > lﬂ?kl’) = D lzud; — 2yl
=1 k<j

k=)

n
s
k=]

Dedace the Cauchy-Schwarz inoquality from your proof.

* Given a € C, find the maximum of |2" + a| for those £ with |z} < 1.

Compute the least upper bound (that is, supremum) of the set of all rcal
numbers of the form Re (iz3 + 1) such that [2] < 2.

25.* Prove Lagrange’s irigonometric identity:

26.

27.

3 1
1 4+cos0+ 00820 + ... + cosnl = & +“"_(":"_:.3)_€.
2 2sin §
(Assume that sin(0/2) # 0.)
Suppase that the complex numbaers 2;, 22, 23 satisfy the equation

2= A —23
23—~ 2) 23— 23

Prove that |22 — 23| = |23 — 21| = |22 ~ 23] Hint: Argue geometrically,
interpreting the mweaning of enchi statement.

Give a necessary aud sufficient condition for

(3) 21, 22,23 to lic on a straight linc.
(b} 21. 22, 23, 24 to lic on & straight line or a circle.

. Prove the identity

(sin s-) (sin 2—:) (sin (r —nl)w) = 2;..

Hint: The given product can be written as 1/2" times the product of the
nonzero roots of the polynomial (1 - 2)® - 1.

. Let w be an nth root of unity, w # 1. Evaluate ) + 2w + 3u? +... + nu"-1,
30.

Show that the corvespondence of the complex number z = a + & with the
matrix ( : _: ) = 4. noted in the text preceding Proposition 1.2.2 has
the following properties:

(a) Yo = ¥uth.

(b) Veiw = ¥z + Yo
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{c) = ((l) ?)
(d) Mhs = s if A is real.

(e) ¥, = (¥.)* (the transposed matrix).

()] 'l’l/z = (11’3) .

(g) z is real if and only if . = (¥:)".

(h) |z| = 1 if and only if ¢, is an orthogonal matrix.

1.3 Some Elementary Functions

We learn about the trigonometric fimctions sine and cosine, as well as the exponen-
tial function and the logarithmic function in elementary calculus. Recall that the
trigonometric functions may he defined in terms of the ratios of sides of a right-
angled triangle. The definition of “angle” may be extended to include any real
value, and thus cos & and sin @ become real-valued functions of the real variable 8.
1t is a basic fact that cos@ and siné are differentiable, with derivatives given by
d(cos0)/d0 = — sin@ and d(sin 0)/d0 = cosf. Alternatively, cos8 and sin 8 can be
defined by their power series:

sinx -— z-ﬁ.‘.?’—s—
3 5!
P

cosz = l-g+g-

The proof of convergence of these series can be found in Chapter 3 and in many
calculus texts.? Alternutively, sinz can be defined as the unique solution f(z) to
the differential cquation f”(z) + f(z) = 0 satisfying f(0) =0, 1'(0) = 1; and cos .
can be defined as the unique solution to f”(z) + f(z) = 0,7(0) = 1 f’(O) =0
(ngain, sce a ealeulus text for proofs).

Exponential Function The exponential function, denoted €*, may he defined
as the unique solution to the differential equation f'(z) = f(z), subject to the
initial condition that f(0) = 1; one has to show that a unique solution exists. The
exponential lunction can also be defined by its power scries:
o2
e’-l+:r+ +za+. .-
3
We accept from calculus the fact that ¢* is a positive, strictly incressing function
of z. Tharcfore, for y > 0,logy can be defincd as the inverse function of ¢*; that

2An exsmple is J. Marsden and A. Weinstein, Caleulus, Sceond Edition (New York: Springer-
Vering, 1985), Chapter 12.
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is, €'°%¥ = y. Another approach that is often uscd in calculus books is to begin by

L |
logy= [ -dt
L
for y > 0 and then to dcfine &* as the inverse function of logy. (Many calculus
books write luy for the logarithm to the base e. As in most advanced mathematics,
throughout this book we will write logy for Iny.)

In this section those functions will be extended to the complex plane. In other
words, the functions sin z, cos z, e, and log z will be defined for complex 2z, and
their restrictions to the real line will be the usual sinz,cosz,e*. and logz. The
cxtension to complex numbers should be natural in the sensc that many of the
familiar properties of sin, cos,exp, and log are retained.

We first extend tlie exponential function. We know from calculus that for real
z,e* can be represented by its Maclaurin series:

z? :r"

(!’"'l-!-l'-r 3!

Thus, it would be reasonable to define ef¥ by

() , ()
EUEET
for y € R. Of course, this definition is not quite legitimate, as convergence of series
in € has not yet been discussed. Chapter 3 will show that this series does indeed
represent a well-defined complex number for each y, but for the moment the series
is used informally as the basis for the definition that follows, which will be precise.

A slight rearrangement of the series (using Exercise 16, §1.1) shows that

c*'v=( -%:--;-”‘ . .)+i(y—££-+£—---)-

14+ == +...

which we recoguize as being cosy + isiny. Thus we define
¢V = cosy + isiny.

So fur, we have defined e* for z along both the real and imaginary axcs. How do
we define e* = e*+¥? We desire our extension of the exponential to rotain the
familiar propertics, and ainong these js the law of exponents: e2+® = ¢¢ . b, This
requirement forees us to defne ¢®H¥ = % . ¢, This can be stated in a formal

definition.
Definition 1.3.1 If z = x ++ iy, then €* is defined by c*(cosy + isiny).

Note that if z is real (that is, if y = 0), this definition agrees with the usual
exponential function €. The student is cautioned that we arc not, at this stage,
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fully justified in thinking of ¢* as “e raised to the “power” of 2," since we have not
yet, for example, established laws of exponents for complex numbers.

There is another, again purely formal, reason for defining eV = cosy + isiny.
If we write 'V = f(y) + ig(y), we note that since we want ¢ = 1, we should
bhave f(0) = 1, and g(0) = 0. If the cxponential function is to have the familiar
differentiation properties, we will need

ie* = ['(y) +ig'(y),
so when y = 0 we got f/(0) = 0,¢'(0) = 1. Differentiating again gives us
—eV = ["(y) +ig"(v).

Comparing this equation with ¥ = f(y) + ig(y), we conclude that f"(y) + f(y) =
0, f(0) = 1, and f*(0) = 0. Therefore, f(y) = cosy by the definition of cosy in terms
of differential equations. Similarly, we find that ¢"(y)+g(y) = 0.4(0) = 0,0°(0) =1,
and hence g(y) = siny. Thus, we would obtain e® = cosy + isiny as in Definition
1.3.1.

Some of the important propertics of e* are summarized in the following propo-
sition. To state it, we recall the definition of a periodic function. A function
J : € = C is called periodic if there exists 8 w € C (called a period) such that
J(z+w)=f(z)forallzeC.

Proposition 1.3.2
(i) e*™ = e*e¥ for all z,m € C.
(ii) e* is never 2ero,
(iii) If z is veal, then e® > 1 whenz > 0 and 0 < e* < 1 when z < 0.
(iv) |e=tiv| = ¢=.
(v) e =g o™ = <],e3%1/2 = j o¥i =1,
(vi) € is periodic; each period for ¢* has the form 2zmi, for some integer n.

(vii) €* =1 iff 2 = 2n7i for some integer n (positive, negative, or zero).

Proof

(i) Let 2 = x 4 iy, and let w = s + it. By our definition of e*,
e3t o gletalriGrte)
= e***loos(y +t) + isin(y + t))
= e"e’[(cosy cost — sinysint) -+ i(siny cost + cosysint)]
= [¢*(cosy -+ isin y))[c*(cost + isint)]
using the addition formulas for sine and cosine and the property ¥+ = ¢ -¢*

for real numbers z and 5. Thus ¢*** = ¢*-e* for all complex numbers z and
w.



28 Chapter 1 Analytic Functions

(ii) For any 2, we have ¢*-e=* = €% = 1 since we know that the usual exponenhal
satisfies e = 1. Thus e* can never be zero, because if it were, then e* -
would be zera, which is not true.

(iii) We may accept this from calculus. For example,® obviously

z P
c=1+T+ T4 T4

(iv) Using |22’| = |2||Z’| (see Proposition 1.2.5) and the facts that ¢* > 0 and
cos?y +siny = 1, we get
|cz+iv| -— |e‘ei'| = ’e:r“eivl
= €*|cosy+isingy|=

.>1 when 2>0.

(v) By definition, ¢*/2 = cos(x/2) + isin(n/2) = i. The proofs of the other
formulas are similar.

(vi) Suppose that ¢**¥ = c* for all 2 € C. Sctting 2 =0, weget e = 1. If
w = g + ti, then, using (iv), e = 1 implies that ¢® = 1, 50 s = 0. Hence any
period is of the form Ui, for some t € R. Suppose that et = 1, that is, that
cos? +isint = 1. Then cost = 1,sint = 0; thus, ¢ = 2sn for some integer n.

(vii) ¢ = 1, as we have soen, and €™ = 1 because e is periodic, by (vi).
Conversely, ¢* = 1 implics that e*+%' = e*’ for all 2'; so by (vi). z = 2%ni for
some integern. W

How can we picture ¢#? Since € = (cosy.siny), it moves along the unit circle
in a counterclockwise direction as y goes from 0 to 2x. It reaches § at y = /2, -1
at 7, -1 at 3x/2, and 1 again at 2%. Thus, e is the point on the unit circle with
argument y (see Figure 1.3.1).

Note that in exponential form, the polar representation of a complex number
becomes

z = |z]eitmK2)
which is sometimes abbreviated to z = ref@,

Trigonometric Functions Next we wish to extend the definitions of cosine and
sine to the complex plane. The extension of the exponcatial to the complex plane
suggests a way to extend the definitions of sine and cosine. We have ¥ = cosy +
isiny, and ¢~ = cosy — isiny, which implies that

. civ — e~y g otV 4 o—iv
Py =Ty ae osyE

3 Another prouf utilizing the definition of € in terms of difforontind cquations is ms follows.
Recall that ¢* is tin: unique solution to f'(z) = f(x) with ¢” = 1 (z real). Since £* i3 continuous
and is never zare, it must be strictly positive. Hanee (¢°) = e* is always positive and consequently
€® is strictly increasing. Thus for x > 0,¢* > 1. Similarly, for z < 0, we have e™ < 1.
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Im

a0

1

Figure 1.3.1: Points on the unit circle.

But since €' is now defined for any z € C, we are led to formulate the following
definition.

Definition 1.3.3 The complex sine and cosine functions are defined by

. _dt_e® ¢F 4e~H
sinz = 5 and ©o0sz = —
Jor any complez number z.
Again, if z is real, these definitions agree with the usual definitions of sine and
cosine learned in clementary calculus.

The next proposition lists some of the properties of the sine and cosine functions
that bave now been defined over the whole of C and not merely on R.

Proposition 1.3.4
(i) sin®z 4+ cos?2z=1.
(i) sin(z 4+ w) =sinz-cosw +cosz - sinw and
c0s(z + w) = cos 2 - cosw — sin 2 - sinw.

Again the student is cautioned that these formulas, although plausible, must be
proved, since at this stage we know their validity only when w and z are real.

Proof Using the definitions, we have
e _ ,—iz\2 (14 —iz 2
sinz4c0s?z = [o—em +(& te )
28 2
ediz — 9 4 o=z g2 4 24
= =4 + 4
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which proves (i). To prove (ii), write

sinz-cosw+ 0052 -sinw
oft — p—it eiv + c-iw ei* + e—iz eV - e—iv
-T2 T 2 2~ 2

which, using e’ = ¢'(***} angd noting cancellations between Lhe two terms,
simplifies to

ct’(zw) - c-i(:-Mu) ei(z-'-w) — g~i(a+w) ei(:-!-w) - e-i(r-b-w)
: + > = :
4i 4i 2i
The student can similarly check the addition formula for cos{z +w). B

In addition to cos z and sin z, we can define tan z = (sin 2)/(cos z) when cos 2 #
0, and similarly obtain the other trigonometric functions.

= sin(z + w).

Logarithm Function We now define the logarithm in a way that agrees with the
usual definition of log x when z is real and positive. In the real case we can view
the logarithim as the inverse of the exponential (that is, logz = y is the solution of
e¥ = z). When we allow z (o range over C, we must be more careful, because the
exponential is periodic and thus cannot have a unique inverse. Furthermore, the
exponential is never zero, 50 we cannot expect to be able to define the logarithm at
zero. Thus, we must be careful in our choice of the domain in € on which we can
define the logarithm. The next propasition indicates how this may be done.

Proposition 1.3.6 Let A,, denote the set of complez numbers x + iy such that
o S ¥ < Yo + 27; symbolically,

Ap={z+iy|z€R and y Sy<p+27}
Then ¢* maps A,, in a one-lo-onc manner onto the set C\{0}.

Recall that » map is one-to-one when the map takes every two distinct points
to two distinct points; in other words, two distinct points never get mapped to the
same point. A map is onto a sct B when every point of B is the image of some
point under the mapping. The notation C\{0} means the whole plane € minus the
point 0; that is, the plane with the origin removed.

Proof If ¢® = e, then ¢~ = 1, 50 2) — 22 = 2win for some integer n, by
Proposition 1.3.2. But because 2; and 2 both Lic in 4,,, where the difference
between the imaginary parts of any points is less than 27, we must have z, = z,.
This argument shows that ¢* is one-to-one. Let w € € with w 3 0. We claim the
equation ¢* = w has a solution z in Ay,. The equation ™+ = w is equivalent
to the two cquations ¢* = |w| and ¥ = w/lw]. (Why?) The solution of the first
equation is z = log Jw|, where “log” is the ordinary logasithin (with base ¢) defined
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on the positive part of the real axis. The second equation has infinitely many
solutions y, each differing by integral multiples of 2a. but exactly one of these is
the interval [ifo,yo + 2?r(. Thisy is merely argw, where the specified range for the
mg function is \ya,Va 4- 2«|. Thus e* isonto C\{0}. m

Tlie sets defined in this proposition are shown in Figure 1.3.2. Here ez maps the
horizontal strip between y$i and [yo 4- 2ir)t one-to-one onto C\{0}- (The notation
z **/(z) is used to iudicate that z issent to f(z) under the mapping/.)

Figure 1.3.2: ef£as a one-to-one function onto C\{0}.

In the proof of Proposition 1.3.5 an explicit expression was derived for the
inverse of c* restricted to the strip pa < Iniz < p>4- 2w, and this expression is
stated formally in the following definition.

Definition 1.3.6 The. function log : C{0} —* C, with range yo < Imlogz <
i/0 4-2jr, it defined by

logz = log |z| 4-targ z,

where argz takes values in the interval jpo, Vo4-24] and log |z| is the usual logarithm
of the positive real number \z\.

This function is sometimes referred to as the “branch oftlie logarithm function
lying in {X4-iy |y0 <y < y04 2sr}." But we must remember that the fund,ion
logz is wdl defined only when we specify an interval of length 2ir in which argz
takes its values, that is, when a specific branch is chosen.

For example, suppose that the specified interval for the argument is (0, 2jt.
Then log(l 4-1) = logV/2 4in/4. However, if the specified interval is (rr, 3irj, then
log(l 4-1) = log\"4- Qi 4. Any particular hrandi of the logarithm defined in
this way undergoes a sudden jump as z moves across the ray argz = y0. To avoid
this jumping, one can restrict the domain to yo <y < pa4-2jt This idea will be
important in 81.G.
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Proposition 1.3.7 The logarithmn log z is the inverse of ¢* in the following sense:
For any branch of log z, we have €V8° = z, and if we choose the branch lying in
Yo Sy<yo+2n, thenlog(e®) =z for z =z + iy and yo <y < yo + 2%.

Proof Since log z = log |z + i arg 2, we have

8% = IR 1=lgione s - o) ferkE = o
Couversely, suppose that z = z + iy and y < ¥ < yo + 2. By definition, loge* =
log|et| + farge®. But |¢*] = ¢* and arge® = y by our choice of branch. Thus,

loge* =loge* +iy=x+iy=z. @A

The logarithm dcfined on C\{0} behaves the same way with respect to praducts
as the logarithm restricted to the positive part of the real axis.

Proposition 1.3.8 If z;,2;3 € C\{0}, then log(2122) = log 2y + log 2y (up to the
addition of inlegral multiples of 2wi).

Proof By definition, log z)zs = log|2122| + f arg(2122), where an interval [y, yo +
27| has been chosen for the values of the arg function. We know that log|zy2,) =
log |z1]|22] = log |z1| + log |22| and arg(2123) = arg 2; + arg 22 (up to intcgral multi-
ples of 27). Thus log 2,22 = (log|21| +iarg2;) + (log|zz] +iarg ) = log 2, +log 2o
(up to integral multiples of 2xi). 1B

To illustrate this proposition, let us find log{(—1 - £)(1 — i)}, where the runge
for the arg function is chosen as, for instance, [0, 27|. Thus,

log|(—1 — i)(1 — i)] = logg(—2) = log2 + 7i.

On the other hand, log(-1 - §) = log V2 + i5%/4 and log(1 — i) = log V2 + i7x /4.
Thas,

log(~1 - i} + Jog(1 — i) = log 2 + 3% = (log 2 + =i} + 271,

so in this case, when 2y = —1 —¢ and 2 = 1 —i.log 2,22 differs from log 2; -+ log 25
by 2ni.

The basic property in Proposition 1.3.8 can holp one remember the definition
of loz 2 by writing Jog z = log(re™®) = logr + logc®? = log|z| + iarg .

Complex Powers We arc now in 2 position to define the expression a¥ where
e,b € C and a # 0 (read “a taised to the power of ™). Of course, however we
define a’. the dcfinition should reduce Lo the usual one in which a and b are real
numbers. Notice that a can also be written ¢'8¢ hy Proposition 1.3.7. Thus, if b
is an integer, we have a® = (¢W%2)b = 198 This last equality holds since if n
is an integer and 2 is any complex number, (¢*)" = ¢*...e* = e"* hy Proposition
1.3.2(i). Thus we are led to formoulate the following definition.
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Definition 1.3.9 Let 0,0 € C with a # 0. Then a® is defined to be eP¥8e; it is
understood that some interval {yo, yo + 27| (that is, some branch of log) has been
chosen within which the arg function takes its values.

It is important to understand precisely what this definition involves. Note os-
pecially that in general log: is “multiple-valued™; that is, Jogz can be assigned
many different values because different intervals [yo + 2% can be chosen. This is
not surprising, for if b = 1/q, wherc ¢ is an integer, then our previous work with de
Moivre’s formula would lead us to expect that a® is onc of the qth roots of a and
thus should have ¢ distinct values. The following theoremn elucidates this point.

Proposition 1.3.10 Let a.b € C.a # 0. Then a” is single-valued (that is, the
value of a® does not depend on the choice of branch for log) if and only if b is an
integer. If b is a real, rutional number, and if b = p/q is in its lowest terms (in
ather words, if p and ¢ have no common fuclor), then a* has exectly q distinct
values, namely, the g roots of a®. If b is real and irrational or if b has a nonzern
imaginary part, then a® has infinitely many valucs. When o® has distinct values,
these values differ by factors of the form ¢?=",

Proof Choose sone interval, for example, [0,2%], for the values of the arg func-
tion. Let log 2 be the corresponding branch of the logarithm. If we were to choose
any other hranch of the log function, we would obtain log e + 2ni rather than log
a, for some integer n. Thus a¥ = ¢Mlogatdmmbi - bloga , 2eubi yw)ere the value of
n depends on the branch of logarithm (that is, on the interval chosen for the values
of the arg function). By Proposition 1.3.2. ¢ remnius the smme for different
valucs of n if and only if b is an integer. Similurly, ¢2*/9 has ¢ distinct values if
p and ¢ have no vommon factor. If b ix irrational, and if €2""% = ¢2*™%i it follows
that c(2*6)(-m) = 1 and hence b(n — m) is an integer; since b is irrational, this
implics that n — m = 0. Thus if b is irrational, ¢**"* has infinitely many distinct
values. If b is of the form x + iy.y # 0. then 2™ = =270 . 27iz which also
has infinitely many distinet values. &

To repeat: When we write ¢¥!98¢_ it is understood that sume branch of log
has boen chosen, aud accordingly €98 has a single well-defined value. But as we
change the branch of log, we get values for 289 that differ by factors of ¢?=n®,
This is what we mean when we say that @ = ?'8¢ iy “inultiple-valucd”.

An exawmnple should inake this clear. Let a = 144 anxt let b be some real irrational
number. Then the infinitely mauy different possible values of a® are given by

(+ i)b = eMlog(1+i)+2mmi] _ Ming VE+ix/es2mmi) _ (cu.»g \/be:ld)nhZimi

as n takes on all intcgral values (corresponding to different choices of the branch).
For instance, il we nsed the branch corresponding to [~#,#| or [U. 25| we would
seln=0.

Some general properties of a’ are found in the exercises at the end of this section,
but we arc sow interested in the special case when b is of the form 1/n, because
this gives the nth root.
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The nth Root Function We know that {/z has exactly n values for z # 0.
To make it a specific funclion we single out a branch of log as described in the

preceding paragraphs.
Definition 1.3.11 The nth root function is defined by
Uz = 2tn = elonln

for a specific choice of branch of log z; with this choice, Yz = 182}/ i3 called o
branch of the nth rvot function.

The next proposition verifies a familiar property of root functions.

Proposition 1.8.12 The function {/z so defined is an nth root of z; that is,
(/)" = z. It is obtained as follows. If z = re®, then

Vz = e/,

where 0 is choscn so that il lies within a particulay interval corresponding to the
branch choice. As we add mulliples of 27 tn 0, we run through the n nih rools of
z. On the right-hand side, {7 is the usual positive real nth root of the positive real
number r.

Proof By definition, {/z = ¢f'°s2}/n, But logz = logr + 8, so
c(log:)/n = e(lngr)/n . c:'o/n - v":cw/u.

The assertion is then clear. @

The reader should now take the time to become convinced that this way of
describing the n nth roots of z is the same as that described in Corollary 1.2.3.

Geometry of the Elementary Functions To further understand the functions
2", /z.€*, and log z, we shall consider the geometric interpretation of each in the
remainder of this section. Let us begin with the power function z" and let n = 2.
We know that 22 has length |2]2 and argument 2argz. Thus the map z +— 22
squares lengths and doubles aryuments (see Figure 1.3.3).

From this doubling of angies it follows that the power function z? maps the first
quadrant to the whole upper half planc (see Figure 1.3.4). Similarly, the upper half
plane is mapped to the whole plane,

Now consider the square root function /z = /7¢*%/2. Suppose that we choose
a branch by using the interval 0 € 8 < 2x. Then 0 < 8/2 < %, s0 /z will always lie
in the upper half plane, and the angles thus are cut in half. The situation is similar
to that involving the exponential function in that z — /Z is the inverse for z v 22
when the Iatter is restricted to a region on which it is one-to-one. In like manner,
if we choose the branch —n < # < #, we have —#/2 < 8/2 < /2. 50 /z takes its
values in the right half plane instead of the upper half plane. (Generally, any “half
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Imaginaryu b v

Figure 1.3.3: Squaring fimetion.

Figure 1.3.4: Effect of tlie squaring function on the first quadrant.

plane” could be used—see Figure 1.3.5.) If wc choose a specific branch of yfz, wc
also choose which of the two possible square roots we shall obtain.

Various geometric statements can be made concerning the mop z **j? timt.
also give information about the inverse, z ** yfz. For example, a circle of radius
r described liy the set of points re<f,0 < 0 < 2sr, is mapped to r2* 30, a circle of
radius r2; as re'6 moves once around the first circle, the image point moves twice
around (see Figure 1.3.6). The inverse map does the opposite: as z moves along
the circle reie of radius r, yfz moves halfas fast along the circle y/re?°/2 of radius
yir.

Domainson which zt-*e* and z i-» logz are inverseshave already been H<eaxd
(see Figure 1.3.2). Note that the lines y —constant, described by the points xA-iy
tutx varies, are mapped by the function z i=*e* to points c*c<v, which is a ray with
argumenty. As x ranges from —eo to 4-00, the image point on the ray goes from
Oout to infinity (see Figure 1.3.7).

Similarly, the vertical line x = constant is mapped to a circle of radius e*. If
we restrict y to an interval of length 2jt, the image circle is described once, but ify
is unrestricted, the image circle is described infinitely many times as y ranges from
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Figure 1.3.5: Squaring function and its inverse,

y 0

Figure 1.3.6: Effect of tlie squaring function on a circle of radius r.

—o0 to +00. The logarithm, being tlie inverse of ¢5, maps points in the opposite
direction to as shown in Figure 1.3.7. Because of the special nature of the
striplike regions in Figures 1.3.2 aud 1.3.7 (on them c* is one-to-one) and because
of the periodicity of e*, these regions deserve a name. They are usually called
period strips ofc*.

Worked Examples

Example 1.3.13 Find the real and imaginary parts ofexp(e*). (It is common to
use expin as another way of writing e'1.)

Solution Letz —x -fiyethen ¢c* = c*cosy + ie*siny. Thus,

expe* as c«*a*vjcos(er shiy) + isin(cxsiny)J.
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_(y0+2n)i

Figure 1.3.7: Geometry of e* mid logs.

Therefore,
Rp(expc*) = (cA~Jcosfe*ship) and Im(expcs) s=(ee’ *w*)an (M :«ny).

Example 1.3.14 Find all the values oft*.

Solution
t>—eiloS* — r«(«KI-5-(«2)+<2>m)>t — "e-2'mle-»/2 _ c-2>s(n+l/-1)

All the values of iHarc given by tlie last expression as n takes integral values,
n=0,3:1,+2 -

Example 1.3.15 Solve coss —§ forz.

Solution We know that z,, —dt(x/3 + 2im), where v is an integer, solves the

equation cos2 = 5; wc shall sltow that z,,,n = 0,x1-—-, are the only solutions;
that is, there arc no solutions off tlie real axis. We are given

tiis + c~*~ 1

Therefore, triz—e’*+ 1 = 0, and so by the quadratic formula. e,s = 5+ Vv/3i/2.
Hcuceiz = log(] £ \/Zi/2) = dklog(8§ + y/3i/2), since § + \/3t/2 and | - V/Si/2rue
cliccked to be reciprocals of one another. Wc thus obtain

z-+ilog N &+ —+f (kgl + ~i-f-2rmi) - £ + 2xn) .

Example 1.3.16 Consider the mapping z *»sin2. Show that lines parallel to the
real axis ore mapped to ellipses and that lines parallel to the imaginary axis are
mapped to hyperbolas.
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Solution Using Proposition 1.3.4 (also see Example 1.3.14), we got

sinz = sin(x+ fy) = sinzcos(iy) + sin(iy) cosz

= sinzcoshy+ ¢sinhycosx
wlhicre
coshy = e"-;e"' and sinhy = ¢ ._2,,.-1.
Suppose that y = yp is constant; if we write sin z = u + fv, then we have

o2 2

v
—t —— =
cosh®yo  sinh*y, 1

since sin® z + cos? z = 1. This is an ellipse.
Similarly, if z = xp is constant, from cosh?y — sinh? y = 1 we obtain

: g2
u -

sin’xzy cos?xy

which is a hyperbola

Exercises
1. Express in the form a + bi:

(a) e**
(b) sin(l + %)

2. Express in the form a -+ ¥i:

(a) &
(b) cos(2 + 37)

3. Solve

(a) oosz:%-l-%
(b) cosz =4

4. Solve
(a) sinz=3+5
(b) sinz=4

§. Find all the values of

(a) Jog1
() Jogi
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6. Find all the values of
(a) log(-i)
(b) log(1 + )

7. Find all the values of
(a) (i)
(b) (149

8. Find all the values of

(a) (-2)
(b) ¥

9. For what values of z is (¢7) = ¢'#?
10. Let /- denote the particular square voot defined by
Vr(cos@ + isinf) = r1/2[cos(/2) + isin(0/2)},0 < 6 < 2;
the otlier square root is
r1/2{cos|(8 + 2#)/2) + isin[(0 + 27)/2}}.
For what values of z does the equation V22 = z hold?

11.* Along which rays through the origin (a ray is determined by arg z = constant)
does lim,;._.q [¢°] exist?

12. Prove the identity

14+iz\'/?
1-iz :

z2=tan [} log (
13. Simplify ¢**, ¢, and /%, where z = x 4 iy. For ¢!/* we specify that z % 0,

14. Examine the behavior of ¢+ a5 ¢ — 400 and the behavior of e=+iy as
y — 00,

15.° Prove that sin(—-z) = —sin 2; ms(-z) = 008.2; Si!l(ﬂ’/? - z) = cos 2.

16. Define sinh and cosh on all of C by sinhz = (¢* — e*)/2 and coshz =
(e* +¢~%)/2. Prove that

(2) cosh®z —sinh?z =1
(b) sinb(zy + 2,) = sinh 2; cosh 2, + cosh 2; sinh 2,
(c) cosh(z; + 22) = cosh 2, cosh z; + sinh 2, sinh z,
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(d) sinl(x + iy) =sinhzcosy + icoshzsiny
(c) cosh(x + éy) = coshxcosy + isinhxsiny
17.° Us thie equation sin 2 = sin z cosh y + isinh y cosx where 2 = x4+ iy to prove
that |sinhy] < |sinz| < |coshyl.
18. If b is rcal, prove that |e®| = |a*.
19. Is it true that [a®| = Ja|¥ for all a,b € C?
20. (a) For complex numbers a, b, ¢, prove that a®a® = a*+<, using a fixed branch
of log.
(b) Show that (ab) = a"b® il we chivose branches so that Jog{ab) = loga +
log b (with no extra 2xnt).

21.* Using polar coordinates, show that z +— 2 + 1/z maps the circle |z| = 1 to
the interval {—2.2] on the x axis.
22. (a) The wap z + 23 maps the first quadrant onto what?
(b) Discuss the geometry of z+— J/Z as was done in the text for /z.

23.° The map z + 1/z takes the exterior of the unit circle to the interior (ex-
cluding zero) and vice verss. To what are lines arg 2 = constant mapped?

24. What are the images of vertical and horizontal lines under 2 +— cos2?

25, Under what conditions duess loga® = bloga for complex numbers a,6? (Use
the branch of log with —x < 8 < #.)

26. (a) Show that under the map z ++ 22, lines paralle]l to the real axis are
mapped to parabolas.
(b) Show thnt under (a branch of) z + /z, lines parailal to the real axis are
mupped to hyperbolas.

27. Show that the n nth roots of unity are 1, w,w?,w?,... ,w""!, wherc w =
2ui/n
e?ri/m,

28. Show that the trigononietric identitics can be deduced if 61473} = of=1 . o2
is assuined.
20.° Show that sinz =0 if z =k%. k=0,%1,£2,....

30. Show that the sine and cosine are periodie with minimum period 27; that is,
that
(a) sin(z + 27) =sin z for all 2.
(b) cos(z + 2%) = cosz for all z.
(¢) sin(z + w) = sin z for all z implies w = 2mn for some integer n.
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{d) cos(z +w) = cosz for all z implies w = 27n for somc integer n.
3). Find the maximum of | cos z| on the square

0<Rez<2%.0< Imz < 2x.

32. Show that logz = 0 ifl z = 1, using the branch with -7 < argz < #.

33. Compute the following quantitics numerically to two siguificant figures:
(n) e*2+6-1¢ (b)) log(1.2 - 3.0/} (c) sin(8.1 — 3.2)

34.° Show that the function sin z maps the strip —7/2 < Rez < #/2 onto the set
C\{z|lmz=0and |Rez| >1}.

35.° Discuss the inverse functions sin~! z and cos™? z. For example, is sin 2 one-
to-oue on the sel defined by 0 < Rez < 277

1.4 Continuous Functions

In this section and the next, the fandamental notions of countinuvity and differen-
tiability for complex-valued functions of a complex variable will be analyzed. The
results are similar Lo those learned in the enlculus of functions of real variables.
These sections will be concerned mostly with the underlying theory, which is ap-
plied to the elementary functions in §1.6.

Since € is R2 with the extra structure of complex multiplication, many geometric
concepts can be translated from R? into complex notation. This has already been
done for the absolute value, |z{, which is the same as the norin, or length, of 2
regarded as a vector in R2. Furthermore, we will use calculus for functions of two
variables in the study of functious of a complex varinble.

Open Sets  We will need the notion of an open set. A sot A C € = R? is called
apen when, for each point 25 in A, there is a renl nomber € > O such that 2 € 4
whienever |2 — 29| < ¢. See Figurc 1.4.1. The value of ¢ may depend on zg; as 29
gots close to the “edge” of A, ¢ gets smaller. Intuitively, a set is open if it does not
contain any of its “boundury” or “edge™ poiuts,

For a sumber r > 0. the r neighborhood or r disk around a point 2z in C is
defined to be the set D(zg;7) = {2 € C| |z - 2| < r}. For practice. the student
should prove that for each wo € Cand r > 0, the disk A = {2 € C | |z - | < 7}
is itself open. A deleted r neighborhood is an r neighborhood whose center point
has heen removod. Thus a deleted r-neighborhood has the form D(z0;7)\{20}:
which stands for the set D(2q;r) minns the singleton set {zp}. See Figure 1.4.2.

A neighborhood of a point z; is, by definition, a set containing some r disk
around zy. Notice that a set A is open iff for each 2o in A, there is an r neighborhood
of zq whotly cunlained in A.

The basic properties of upen scts are collected in the next propusition.
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Figure 1.4.2: (a) r-Neigliborhood. (b) Deleted r-neighborhood.

Proposition 1.4.1 (i) C is open.
(if) The empty set 0 is open.
(iii) The union ofany collection of open subsets ofC is open.

(iv) The intersection of any finite collection ofopen subsets ofC is open.

Proof The first two assertions hold almost by definition; the first because any e
will work for any point zq, and the second because there arc no points for which
we are required to find such an e. The reader is asked to supply proofs of the last
two in Exercises 19 and 20 at the end of this section. m

Mappings, Limits, and Continuity Let A lie a subset of C. Recall that a
mapping / : A -* C is an assignment of a specific point /(z) in C to each point
zin A. The set A is called the domain of /, and wc say / is defined on A.
When the domain and the range (the set of 'values / assumes) are both subsets
of C, as here, we speak of / as a complex function of a complex variable.
Alternatively, wc can think of / asamap f : A ¢ R2 -» R2; then / s called
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a vector-valued function of two real variables, For f: A € € — C, we can let
z =z +iy = (z,y) and define u(z, y) = Re f(2) and v(z,y) = Im f(z). Then u and
v are the components of f thought of as a vector function. Hence we may uniquely
write f(x +iy) = u(z, y) + fv(z. y), wherc u and v are real-valued functions defined
on A.

Next we consider the idea of limit in the sctting of complex numbers.

Definition 1.4.2 Let f be defined on a sci containing sume deleted r neighborhood
of zy. We say thal [ has the limit a as z — z) and urile

lim f(z) =a.

Be=2g
when, for every ¢ > 0, there is a § > 0 such that for all z € D(zo;7) satisfying
2# 29 and |2 — 5| < 8, we have |f(z) —a| <e.

The expression in this definition has the same intuitive meaning as it bas in
calculus; namely, f(z) is close to @ whencever 2 is close to zp. It is not necessary
to define f on a whole deleted neighiborhood to have a valid theory of limits, but
deleted neighborlioods are used here for the sake of simplicity and also because such
usage will be appropriate later in the text.

Just as with real numbers and real-valued functions, a function can have no
more than one limit at a point, and limits behave well with respect to algebraic
operations. This is the content of the next two propositions.

Proposition 1.4.3 Limits are unigue if they exist.

Proof Suppose that lim,_., f(z) = a and lim._,, f(2) = b with a # b. Let
2¢ = |a — b], so that ¢ > 0. There is a § > 0 such that 0 < |z — 2| < § implies
that |f(z) — a] < ¢ and |f(z) — ] < e. Choose such a point z # 2y (because
f is defined in a deleted neigliborhood of 29). Then, by the triaugle inequality,
la—b) < lae- f(z2) + |/(z) ~ b] < 2, a contradiction. Thusa=6. @

Propasition 1.4.4 Iflim._., f(z) = ¢ and lim._.,, 9(z) = b, then
(i) lim.—  lf(2) + 9(z)] = e +b.
(i) tim;..,[f(z)9(2)] = ab.
(i) lim, s, 1/(2)/9(2)] = a/b b 0.
Proof Only assertion (ii) will be proved here. The proof of assertion (i) is easy,

and proof of assertion (iii) is slightly more challenging, but the reader can get the
necessary clues from the corresponding real-variable case. To prove assertion (ii),

we write
1f(2)g(z) —abl < [|f(2)9(z} - f(2)b] + |f(2)b - ab] (triungle inequality)
= |f(z2)Mlg(z) = ¥ + 1f(2) — allb] (factoring).
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To estimate each term. we choose §, > 0 so that 0 < |2 — 29| < & implies that
/(2) —a] < 1, and thus |f(z)] < la] + 1, since [f(z) — o] 2 |f(2)l - lal. by
Proposition 1.2.5(vi). Given € > 0, select positive numbers d, and §3 so that
0 < |z = z,) < &2 implies |f(z) — @] < ¢/2(|b] + 1) and 0 < |z — 2,| < &3 implies
lo(z) - b) < €/2(la) + 1). Let § be the smallest of &, 82, 83. If 0 < |2 — 2,] < §, we
have

1£(2)g(z) — ab) < |£(2)] |g(=) - bl + |f(2) — al |b]
-t e if
<sqrn VN sy !

€ ¢
< 5 + 3 =¢
Thus lim.—.,_ f(2)g(z) = ab as claimed. 8

Definition 1.4.5 Let A C C be an open sel and let [ : A — C be a function. We
say [ is conlinuous at 2o € A if and anly if

Jim £(2) = f(z0)
and that f is continuous on A if f is conlinuous al each point zp in A,

This definition has the sanc intuitive meaning as it has in elementary calculus: 1f
z is close to zq, then f(z) is close to f(zp). From Proposition 1.4.4 we deduce that
if f and g are continuous on A, then 5o are the sun f + g and the product fg, and
so is f/g if g(zp) # O for all points zp in A. It is also true that a composition of
continuous functions is continuous.

Proposition 1.4.6 (i) If lim,_., f(2) = a and h is a function defined on a
ncighborhood of a and is continuous at a, then im. .., h{(f(2)) = h{a).

(ii) If f is a continuous function on an open set A in € and h is continuous on
J(A), then the composite function (ho f)(z) = h(f(z)) is continuous on A.

Proof Given ¢ > 0, there is a 6, > 0 such that |i(w) - h(e)] < ¢ whenever
v - a] < 8, and a § > 0 such that {f(z) — a} < &) whenever 0 < |z - 20] < 6.
Thercfore we get |h(f(2)) — k(a)] < ¢ whenever 0 < |z — 2| < §, which establishes
(i)- A praof of (ii) follows from (i) and is requested in Exercise 22 at the end of
this section. @

Sequences The concept of convergent scquences of complex numbers is analogous
to that for sequences of real numbers studied in calenlus. A sequence > n =
1.2.3.... of points of C converges to = if and only if for every ¢ > 9. therve &=
an integes N such that n > N implies i3, — =i < ¢, The oo of = agmeser i
oxressed &3
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Limits of sequences have the same properties, ohtained by the same proofs, as
limits of functions. For example, the limit is unique if it exists; and if z, — 29 and
n — Wy, then

(G} za 4wy — 20+ wp.
(il) snwn — 20twp.
(iii) 2, /wy, — 20/wo (if wo and w, are not 0).

Also. 2, — zp if Re 2z, ~+ Rezg and Tmz, — Imz5. A proof of this for functions
is requested in Exercise 2 at the end of this section.

A sequence 2, is called u Cauchy sequence if for every ¢ > 0 there is an toteger
-V such that |z, — 2| < ¢ whenever both 7 2> N and m > N. A hasic property of
real numbers, which we will accept without proof, is that every Cauchy sequence
in R converges. More precisely, if {x,}32, is a Cauchy scquence of real numbers,
then there is o real nnmber xp such that lim, 0z, = 2. This is equivalent to
the completeness of the real munber system.! From the fact that z, — = iff
Re z, — Rezp and Im z,, — I 25, we can conclude that every Cauchy sequence in
T converges. This is a technical point, but is nsefu] in convergence proofs, as we
shall see in Chapter 3.

it should be noted that a link exists between sequences and continuity; namely,
J: AC T - Cis contimous ifl for every convergent sequence z, — 2o of points in
A (Lhat is, z, € A and z5 € A), we have f{z,) — f(20). The student js requested
to prove this in Exercise 18 at tho end of this section.

Closed Sets A subsct F of C is said to be closed if its complement, C\F =
{: € C| 2 ¢ F}, is open. By taking complements and using Proposition 1.4.1, one
discovers the following properties of closed sets.

Proposition 1.4.7
(i) The empty set is closed.
(ii} C is closed.
(iif) The inlersection of any collection of closed subsets of C is clnsed.
(iv) The union of any finite collection of closed subsets of € is closed.

Closed and open sets are important for their relationships to continuous func-
tions and to sequences and for other constructions we will see Jater,

Proposition 1.4.8 A set F C C is closed iff whencver 2,,22,23,... 15 a sequence
of points in F such that w = Iy, _o 2, exists, then w € F.

4See, for example, J. Marsden and M. Hoffman, Blanentary Classical Analysis, Second Edition
{New York: W, H. Freemsn and Company, 1993).
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Proof Suppose F is closed and 2z, is a sequence of points in F. If D(w;r) is
any disk around w, then by the definition of convergence, z,, is in D(w;r) for large
enough n. Thus, D(w;r) cannot be contained in the complement of F. Since that
complement is open, v must not be in the complement of F. Therefore, it must be
in F.

If F is not closed, then the complement is not open. In other words, there is 2
point w in C\F such that no neighborhood of w is contained in C\F. In particular,
we may pick points z,, in FND(w;1/n); this yields a convergent sequence of points
of F whose limitisnotin F. B

Proposition 1.4.9 If f: C — C, the following are equivalent:
(i) f is continuous.
(ii) The inverse image of every closed set is closed.
(iii) The inverse image of every open sct is apen.

Proof To show that (i) implies (ii), suppose f is continuous and F is closed. Let
2),22,3,... be a sequence of points in f~!(F) and suppose that z, — .5 Since
J is continuous, f(z,) — f(w). But the points f(z,) are in the closed set F, and
so f(w) is also in . That is, w is in f~'(F). Proposition 1.4.8 shows that f~!(F)
is closed.

To show that (ii) implies (jii), let U be open. Then F = C\U is closed. If (i)
holds, then f=?(F) is closed. Therefore, C\f~}(F) = f~(C\F) = f~'(U) is open.

To show that (iii) implics (i), fix 2o and let ¢ > 0. Then zq is 2 member of the
open set f=1(D(f(20); ¢)). Hence there is a § > 0 with

D(z;6) € £~1(D(f(z0); €))-

This says precisely that |f(2) — f(z0)] < € whenever |2 — 29 < §. We thus get
exactly the inequality necded to establish contimuty. B

To handle continuity on a subset of C, it is convenient to intraduce the notiou of
relatively open and closed sets, If A C C, a subset B of A is called open relative
to Aif B = ANU for some opea set U. 1t is said to be closed relative to A if
B = AN F for some closed set F. This leads to the following propaosition, whose
proof is left to the reader.

Proposition 1.4.10 If f: A — C, the following are equivalent:
(i) f is continuous.
(ii) The inverse image of every closed set is closed relative o A.

(&) TRe innzrse sage of every open set 15 apen relatree to A
- - T e B € e e e 7w T ISR YO
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Connected Sets Tills subsection and the next study two important classes or
sets which occupy to some extent the place in the theory of complex variables held
by intervals and by closed bounded intervals in the theory of functions of a real
variable. These are the connected sets and the compact sets.

A connected set should be one that “consists of one piece”. This may be
approached from a positive point of view—"“Any point can be connected to any
other”—or from a negative point of view—"“The set cannot be split into two parts”.
This leads to two possible definitions.

Definition 1.4.11 A setC C C ispath-connected iffor every pair ofpoints a,b
in C there is a continuous map 7 : [0,1] —*C with 7(0) = a and 7 (1) —b. We call
7 a path joining a andb.

One can often easily tell if n set is path-connected, as is shown in Figure 1.4.3.
The negative point of view suggests a slightly different definition.

Figure 1.4.3: Regions in (a) and (b) are connected while the region in (c) is not.

Definition 1.4-12 A setC cC isnot connected (see Figure 1.4-4) if there are
open sets U and V such that

(i) cCCuuyv
(i) CF\U #0 andCnV $0
(iii) (Cnu)n(Cr\V)-o
If a setfails to be "not connected”, it is called connected.

The notions of relatively open and closed sets allow this to be rephrased in terms
ofsubsets of C. Since the intersection of C with U is the same as its intersection
with the complement of V, the set C O f/ is both open and closed relative to C, as
is Cr)V. This proves the next result.

Proposition 1.4.13 A set C is connected if and only if the only subsets ofC that
are both open and closed relative to C are the empty set and C itself.
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Figure 1.4.4: The wit C is not connected.

The next two propositions give the rclal.ion.ship between the two definitions.
The two notions are not in general equivalent, but they are for open sets. The
proof of this last assertion (given below in Proposition 1.4.15) illustrates a fairly
typical way of using tire notion of connectivity. One showsthat a certain property
holds everywhere in C by showing that tin*set of places where it holds is not empty
and is both relatively open and relatively closed.

Proposition 1.4.14 A path-connected set is connected.

Proof Suppose C is a path-connected set and D is a nonempty' subset of C that
is both open and closed relative to C. IfC £ D, there is a point z, in D and a
point £a in C\D. Ix?t 7 : fab) — C lie n continuous path joining z\ to z-i. Let
B = 7->(Z?). Then J3is a subset of tin: interval (a, b], since 7 is continuous. (Sec
Proposition 1.4.10.) Sincea is hi B, B is notempty, and [a, is not empty since
it contains b.

This argument shows that it is sufficient to prove the theorem for the case ofan
interval (a,b). Wctints need to establish that intervals on the real line are connected.
A proofuses the least upper bound property (or some other characterization of the
fact that the system of real numbers is complete). Letx = supB (thatis, the least
upper bound of JB). We find that x is in B since B is dosed. Since B is open there
isa neighborhood ofx contained in B (note thatx” b, sincebisin (a,b)\B). Thus,
forsomet > d, the pointx + 1 is in B. Tims x cannot be the least upper bound.
Tills contradiction shows that such a set B cannotexist. =

A connected set need not be path-connected,0 but if it is open it must be. In
fact, more is true.

®A stamInnl example is rivcii by Idling C be the union of the graph of y = an 1/*, where
* >0, and the linosegment -1 < v < |,x=0. Thisset is connected but not path-connected.
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Proposition 1.4.15 If C is an open connected set and a and b arc in C, then
them is a differentiable path 7 : |0,1] -* C with7(0) = a and 7(1) = 6.7

Proof LetabeinC. If2qisin C, then since C is open, there isan ¢ > 0 such
that the dish D{z";t) is contained in C. By combining a path from a to za with
one from za to 2 that stays in this disk, wc see that zn can be connected to a by a
differentiable path ifand only if the same is true for every point z in D(zq;c). This
shows that both the sets

A 5 {z € C | 2can be connected to a by a differentiable path}
and
B —{2 € C | 2cannot be so connected to a}

arc open. Since C is connected, either A or B must be empty'. Obviously it must
be B. See Figure 1.45. =

y

Figure 1.4.5: An open connected set is path-connected.

Because of tlie importance ofopen connected sets, they are often designated by
a special term. Although the usage is not completely standard in the literature,
the words region and domain are often used. In this text these terms will be
used synonymously to mean an open connected subset of C. The reader should be
careful to check the meanings when these words are encountered in other texts.

The notion of connected sets will be of use to us several times. One observation
is that a continuous function cannot break apart a connected set.

Proposition 1.4.16 Iff is a continuousfunction defined on a connected set C,
then the image set f(C) is also connected.

7DiKerontinbility of 7 mean* Hint cadi component of 7 “*differentlabia in Lbe usual sense of
uni!>vnriahlc calculus.
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Proof If U and V arc apen sets that disconnect f(C), then f~*(U) and f~'(V)
are open sets disconnecting C. #

Be careful. This proposition works in the opposite direction from the one about
open and closed sets. For continuous functions, the inverse images of open sets are
open and the inverse images of closed sets are closed. But it is the direct images
that are guaranteed to be connected and not the inverse images of connecled sets.
(Can you think of an example?) The same sort of thing will happen with the class
of sets studied in the next subsection, the compact sets.

Compact Sets The next special class of sets we introduce is that of the compact
sets. These will turn out to be those subsets K of C that are bounded in the sense
that there is 2 number Af such that |2| < M for every z in / and that are closed.
One of the nice properties of such scts is that every sequence of points in the sot
must have a subsequence which converges to some point in the set. For exnmp!c the
sequence 1, 4,3, 1,3, 5. 5+ 2+ 3+ - - of points in |0, 2| has the subsequence 1, §, s' .
which converges to the point 0, which is not in the open interval }0, 2] but is in the
closed interval [0,2]. Note that in the claimed property, the sequence itself is not
asserted to converge. All that is claimed is that some subsequence does; the example
shows that this is necessary.
As often happens in mathcmatics, the study consists of three parts:

(i) An easily rccognized characterization: closed and bounded
(ii) A property we want: the existence of convergent subsequences
(iii) A technical definition useful in proofs and problems

In the case at hand, the technical definition involves the relationship between
compactness and open sets, A collection of open sets I/, for a in some index sot A
is called a cover (or an open cover) of a sct K il K is contained in their union:
K C Uyeal,. For example, the collection of all apen disks of radius 2 is an open
cover of C:

U, =D(2;2) CCUzechD(z;2).

It may be, as here, that the covering process has been wasteful, using more sets
than needed. In that case we may use only some of the sets and talk of a subcover,
for example, € C U, mezD(n + mi;2), where Z denotes the set of integers.

Definition 1.4.17 A set K is compact if every open cover of K has a finile
subcover.

That is, if U, is auy collection of open sets whose union contains X, then there
is a finite subcollection U,,,Usy, ... ,Un, such that XK Cc Uy, UUL, V... UU,,.

Proposition 1.4.18 The following conditions are equivalent for a subsct K of C
{or of R):
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(i) K is closed and bounded.

(ii) Every sequence of points in K has a subseguener which converges to some
point in K.
(iii) K is compact.

This proposition requires a deeper study of the completeness properties of the
real numbers than it is necessary for us to go into here, so the proof is omitted.
It may he found in most advanced calculus or analysis textsS It is easy to see
why (i) is nccessary for (ii) and (jii). If X is not bounded we can select z; in
K and then successively choose z2 with |22 > |2:] + 1 and, in general, z,, with
12n| > |2n-1] + 1. This gives a scquence with no convergent subscquence. The apen
disks D(0;n),n = 1,2,3, ..., would be an apen cover with no finite subcover.

If K is a set in C that is not closed, thien there is a point w in C\ K and a sequence
21, 22,... of points in K that converges to w. Since the sequence converges, w is
the only possible limnit of a subsequence, so no subscquence can converge to a point
of K. The scts {2 such that |z — w| > 1/n} for n = 1,2,3,... form an open cover
of K with no finite suhcover.

The utility of the technical Definition 1.4.17 is illustrated in the following results.

Proposition 1.4.19 Jf K is a compact sct and f is a continuous function defined
on K, then the image set f(K) is also compact.

Proof If U, is an open cover of f(K), then the scts f~1(U,) form an open cover
of K. Selection of a finite subcover gives

KCf'(Uay)V...0 [ (Us,)
sothat f(K)CUa,U...UU,,- B

Theorem 1.4.20 (Extreme Value Theorem) If K is a compact sct and f :
K — R is continvous, then f attains finite mazimum and minimum valucs.

Proof Theimage f(K) is compact, hence closed and bounded. Since it is bounded,
the numbers A = sup{f(z) | z € K} and m = inf{f(z) | z € K} are finite. Since
f(K) is closed, m and M are included in f(K). W

Another illustration of the use of compactness is given hy the following lemma,
which asserts that the distance from a2 compact sel to a closed set is positive. That
is. there must be a definite gap between the two sets.

Lemma 1.4.21 (Distance Lemma) Suppose K is compact, C is closed, and KN
C = 2. Then the distance d(¥,C) from K lo C is greater than 0. That is, there
1s @ number p > 0 such that |z — w| > p whenever z is tn K and w is in C.

8Sne, for example, J. Mursden and M. Hoffman, Elementary Classical Analysis, Second Edition
{New York: W. H. Freamnan and Compnany, 1993).
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Proof ThecomplementofC, namelythesetU = C\C, isanopensetand K C U,
so that each point z in K is the center ofsome disk D{z;p(z)) ¢ U. The collection
of smaller disks D(z; p(z)/2) also covers K, and by compactness there is a finite
number of disks, which we denote by Dk —D{zk;p(zk)/2)tk —1,2,3,... ,N that
cover K. (See Figure 1.4.6.) Let pk = p(z*)/2 and p = min(/»i,52 ... ,pw). If
z isin K and w is in C, then z is in Dk for some k. and so (z- zk| < pk. But
[m- zkl> p(z*) * 2/5. Thus, |z- »| >Pk>p. =

Figure 1.4.6: The distance between a dosed set C and a compact set K is greater
than zero.

Uniform Continuity Remember that a function is said to be continuous on a
set K ifit is continuous at cadi point of K. This is called a local property since
it is defined in terms of the liehavior of the function at or near each point and cun
be determined for eadi point by looking only near the point and not at the whole
sot. at once. This is in contrast to global properties of a function, whidi depend
on its behavior on the whole set.

An example of a global property is boundedness. Saying that a function / is
bounded by some number M on a set K is an assertion that depends on the whole
set at once. If the function is continuous it is certainly bounded near each point,
but that would not automatically say that it is bounded on the whole set. For
example, the function f(x) —1/x is continuous on the open interval )O, L] but is
certainly not bounded there. We have seen that if a function / is continuous ou
a compact set K, then it. is bounded on K and in fact the bounds are attained.
Thus, compactness of K allowed ns to carry the local boundedness near eadi point
given by continuity over to the whole set. Compactness often can be used to make
such a shift from a local property to a global one. The following is a global version
of the notion of continuity.

Definition 1.4.22 Afunctionf : A —=C (orR) isuniformly continuous on A
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if for cvery choice of ¢ > 0 there is a & > 0 such that |f(s) — f(1)| < € whenever s
andt arcin A and |s - t| < 6.

Notice that the difference between this and the definition of ordinary continuity
1= that now the choice of § can be made so that the same § will work everywhere in
the set A. Obviously, uniformly continuous functions are continuous. On a compact
se1 the opposite is true as well,

Proposition 1.4.28 A conlinuous function on a compact set is uniformly contin-
uyous.

Proof Suppose f is a continuous function on a compact set i, and let ¢ > 0. For
cach point { in K, there is a number &(L) such that |f(s) — f(t)| < /2 whenever
s — ] < 8(t). The open sets D(t;4(t)/2) cover K, so by compactness there are a
finite number of points ¢),¢5,... ,#y such that the sets Dy = D(l: 6(tx)/2) cover
K. Let & = &(1x)/2 and set & equal to the minimum of 8,8, ... ,8x. Ifjs=¢| < 4.
then ¢ is in Dy for sume k, and 5o |t -t} < &. Thus |f(t) - f(4)| < ¢/2. But also,

Is—t|=ls—t+t—-tx| <|s =+t —tx) <848 < ()
and so |£(s) - f(tx)] < /2. Thus

[£(s) = £ = 1f(s) - f(te) + S (&) — F(0)]
< sy = St + () = SOl < e/2+ /2=

We have produced a single § that works everywhere in K, and so f is uniformly
continnous. @

Path-Covering Lemma The notion of uniform continuity is a very powerful
one that will be uscful to us several times. We use ib first in conjunction with the
Distance Lemma and some of the properties of compact sets to establish a useful
geometric lemma about curves in open subsets of the complex plane. This lenma
will be useful later in the text, particulurly for stndying integrals along such curves.
It says that the curve can be covered by a finite numnber of disks centered along the
curve in such a way that each disk is contained in the open set and each contains
the centers of both the preceding and the succeeding disks along the curve. (See
Figure 1.4.7.)

Lemma 1.4.24 (Path-Covering Lemma) Suppose 7 : [a,8] — G is a contin-
nous path from the interval [a,b] into an open subset G of C. Then there are a
number p > 0 and a subdivision of the intervale = tg < L <ty < ... <ty =
such that

() D)) CG  fordlk

(i) 4(t) € D(v(ta);p) Jorto <t<iyy
(iii) ¥(t) € D(v(te):p) Jorlux—y <t Sl
(iv) v(t) € D(¥(tn)ip) Jorta-1 SL< Uy,
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Figure 14.7: A continuous path in an open set can be covered by a finite number
of well-overlapping disks.

Proof Since 7 is continuous and the closed interval {0,6] is compact, the image
curve K = 7((a, 6}) is compact. By the Distance Lenuna 1.4.21 there is a number
p such that eadi point on the curve is a distance at least p from the complement
of C. Therefore, #(7(£);/») C G for every £in [a,b]. Also, since 7 is continuous on
the compact set |u.6J, it is ttnifonnly continuous, and there is a number &> 0 such
that |7(t) —7{s)| < p whenever |s—£f] < S. Thus ir the subdivision is chosen fine
enough so that it- - £ | <Sforall k —1,2.3,... ,N, tlien the conclusions of the
theorem hold. 1

Riemann Sphere and Point at Infinity For some purposes it is convenient to
introduce a point 00 in addition to the points 2€ C. One must be careful in doing
so, since it cun lead to confusion and abuse of the symbol 00. But with care it cun
be useful, and we certainly want to lie able to talk Intelligently about infinite limits
and limits at infinity.

hi contrast to the real line, to wliidi -Foe and -00 can be added, we have only
one 00 for C. The reason is that C lias no natural ordering as R does. Formally
we add a symlixil 00 to C to obtain tiie extended complex plane, C, and define
operations with 00 by the rules

2+ 00
2-00
oc + oc

provided z 20

00-0C
z

00

© 8888

for r6 C . Notice that some things are not defined: 00/00,0 -00,00 —00, and so
forth are indeterminate farms for essentially the same reasons that they are hi
the calculus of real numbers. We also define appropriate limit concepts:
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lini-_@f(z) —zq means: For any e > 0, there is an R > 0 such that \f(z) -
*i| < ¢ whenever |2| > R.

f(z) —oo moans; Forany R> 0, there isab > 0 such that |/(z)| > R
whenever \z - 2q\< 6.
For sequences:

Ums co™ —oo means: Forany R> 0, thereis an N >0 such that |z,,| > R
whenevern > Ar.

Thus a point 2 € C is “close to 00” when it lies outside a large circle. This type
of closeness can be pictured geometrically by means of the Riemann sphere shown
in Figure 1.4.8. By the method of stenographic projection illustrated in this figure,
a point z' on the sphere is associated with each point z in C. Exactly cue point on
the .sphere S has been omitted—the "north” pole. Wc assign oo in C to the north
pole of S. We see geometrically that z is close to oo ifand only if the corresponding
points arc close on the Riemann sphere in the usual sense of closeness in Rs. Proof
of this is requested in Exercise 24.

Figure 1.4.8: Riemann sphere.

The Riemann sphere $ represents a convenient geometric picture of the extended
plane C = CU {oo}. The sphere docs point up one fact about the extended plane
that is sometimes useful in further theory. Since S is a closed bounded subset of
R3, it is compact. Therefore every sequence in it has a convergent subsequence.
Since stereograpliic projection makes convergence on S coincide with convergence
of the sequence of corresponding points in C, the same is true there. Thatis, C
is compact. Every sequence of points in C must have a subsequence convergent in
C. Caution: Since the convergence is in the extended plane, the limit might be
00, in that case wc would normally say that the limit does not exist. Basically we
have thrown in the point at infinity' as another available limit so that sequences
that, did not formerly have a limit now have one. The sphere can be used both to
help visualize and to make precise some notions about the behavior of functions
"at infinity” that we will meet in future chapters.



5G Chapter 1 Analytic Functions

Worked Examples
Example 1.4.25 Where, is the function

_ z23+2z+1

m 2%+ 1

continuous?

Solution Since sums, products, and quotients of continuous functions urc contin-
uous except when; the denominator is O, this function is continuous on the whole
plane except nt the cube roots of -1. In other words, this function is continuous
on the set C\{c</3.es~/5- 1}.

Example 1.4.26 Show that the set {z | Rez > 0} is open.
Solution A proofcan be based on the following properties of complex numbers
(see Exercise 1): tfw € C, then
() Reu/| < |uj|
(ii) [bnwy < |ti;]
(iii) |w| < |Heu;| + 1Imw]|

Let U —{z | Rez > 0} and let zq be in U. We claim that the disk Z>(zo;Rez&)
liesin u. Tosee this, let z be in tliis disk. Then |[Rez —Rfi201 — IRje(z —=zq)| <
\z < Re*0,andsoRez > Omid z isin U. Tlius, Z?(zo;Rezo) is a neighborhood
of zo thal is contained in V. Since this can be done for any point zo which is in U,
the set U is open. See Figure 1.4.9.

(

P*K<*re 1.4.9: Open right half-plane.
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Example 1-4.27 Pmve the following statement: Let A C C fie an open set and
=0 6 A, and suppose that Dr —{z such that \z —zq\ <r] C A. Then there is a
number p > r such that D(zo;p) C A.

Solution We know from the Extreme Value Theorem 1.4.20 that a continuous
real-valued function on a dosed bounded set In C attains its maximum and min*
iumm at sonic point of the set. For z in Dr let /(z) — inf{|z —iu| sudi that
«c € C\A}. (Here *InP means the greatest lower bound.) In other wordsr f{z) is
the distance from z to the complement of A. Since A is open, f(z) > 0 for each
. in Dr. We can also verify that / is continuous. Thus / assumes its minimum
at some point zj in Dr. Letp = /(z,) + r, and dieck that this p has the desired
properties. See Figure 1.4.10.

y

Figure 1.4.10: A dosed disk in an open set may be enlaiged.

*_
Example 1.4.28 Find limc_ aeﬁ_z_ff_erZ_z —?——i—!.

Solution
. 3z24+222- z+ 1 . 3+ 272 —7~5 + 7-*
li = lim S22 r =3
z z + | 9—00 1+ z-a

using lim.—e0Z-1 =0 and the bade properties of limits.

E xercises
1. Show that ifin € C. then
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(2) IRew] < fw|
(h) [Imw| < juf
(¢) lw] < [Rew| +|Imw]

2.* (a) Show that

11.

{Re2; — Rezz| € |21 = 25} < |Re2) —Rezz| +|Im 2y —Imz;|

for any two complex nuwbers z; and z;.
(b) i f(2) = u(z,y) + iv(z,y), show that

sl:.n::o J(z)= zl_i‘n;nu(z, y)+ i:l_i:;nc v(z,y)
t y—W
exists il both limits on the right of the equation exist. Conversely, if the limit

on the left exists, show that both limits on the right exist as well and equality
holds. Show that f(z) is continuous iff » and v are.

. Prove: If f is continuous and f(z) # 0, there is a neighborhood of z on

which fis #0.

. If 29 € C, show that the sct {2} is closed.
. Prove: The complement of a finite number of points is an open set.

. Use the fact that a function is continuous if and ouly if the inverse image of

every open set is open to show that a composition of two continuous functions
is continuous.

. Show that f(z) = £ is continuous.

Show that f(z) = |2| is continuous.

. What is the largest set on which the function f(2) = 1/(1 —e®) is continnous?

. Prove or find a counterexample if false: If lim,_.., f(z) = a, & is defined at the

points f(z), and Lim,—, i(w) = ¢, then lim._.., h(f(2)) = ¢. [Hint: Could
we have h(a) # c?)

For what z does the sequence 2, = nz" converge?

12.° Define f : C — C by setting f(0) = 0 and by setving f(r[cos 0+isin0]) = sin0

13.

ifr > 0. Show that f is discontinuous at 0 but is continuous everywhere clsc.

For each of the following sets, state (i) whether or not it is open and (ii)
whether or uot it is closed.

(8) {z such that |z| < 1}
M) {zlo<|ef <1}
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14.

16.

17.
18.

19.
. Show that. the intersection of any finite collection of open subsets of C is open.
. Give an example to show that the statement in Exercise 20 is false if the word

(¢) {211 <Rez <2}

For each of the following sets, state (i) whether or not it is open aud (ii)
whether or not it is closed.

(a) {z|Imz> 2}

(b) {z|1 <2l <2}

(c) {z] -1 <Rez< 2}

. For each of the following sets, state (i) whether or not it is connected and (if)

whether or not it is conpact.
@) {211 <121 <2}
(b) {z such that |2| < 3 and |Rez| > 1}
(c) {z such that |Rez| <1}
(d) {zsuch that |Rez} > 1}

Far each of the following sets, state (i) whether or not it is connected and (ii)
whether or not it is compact.

() {z]11 <Rez512}
(b) {z12< 2| £3}
(c) {2 such that |2| < 5 and |n 2| > 1)

If ACCand f:C — C, show that C\f~!(A) = f-}(C\A).

Show that f : A C C — C is continuous if and only if 2, — 2 in A implies
that f(zn) — f(20)-

Show that thc union of any collection of open subsets of € is open.

“finite” is omitted.

. Prove part (ii) of Proposition 1.4.6 by using part (i).
. Show that if |z] > 1, then limy—q (2" /n) = co.
. Introduce the chordal metric p on € by setting p(z;,22) = d(2}, 23) where

2} and 23 are the corresponding points on the Riemann sphere and d is the
usual distance between points in R3.
(a) Show that z, — z in C if and only if p(2,,2) — 0.
(b) Show that z,, — oc if and only if p(2n,00) — 0.
(c) If £(2) = (az + b)/(cz + d) and ad ~ bc # 0, show that f is continuous
at oo.
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1.5 Basic Properties of Analytic Functions

Although continuity is an important concept, its importance in complex analysis is
overshadowed by that of the complex derivative. There are several approaches to
the theory of complex differentiation. We shall begin by defining the derivative as
the limit of diflerence quotients in the same spirit as in caleulus. Many properties
of the derivative including nseful computation rules follow from the properties of
limits just as they do in calculus. However, there are some surprising and heantiful
results special to the complex theory.

Several differeut words are used to describe fimctions that are differentiable in
the complex sense, for example. “regular”, “holomorphic”. and “snalytic®. We
will use the term “analytic™ since it is used in calenlus to deseribe functions for
which the Taylor serics couverges o the value of the function. An elegant result of
complex analysis justifies this choice of lnnguage. ludeed, we will see in Chapter
3 that. in sharp distinction from the cse of a single real varigble, the assumption
that a function is differentiable in the scnse of complex variables guarantees the
validity of the Taylor expansion of that hunction.

Definition 1.5.1 Let f: A — C where A € € is an open set. The function f is
said lo be differentiable (in the complex sense) at 20 € A if

o 1020~ fa0)

=z 2=2

exists. This limit is denoted by f'(29), or sometimes by (df /dz)(ze). Thus, '(20)
is a complez number. The function f is said lo be analytic on A if f is complez-
differentiable at cach zg € A. The word “holomorphic”, which is sometimes used,
is synonymous with Uic word “analytic.” The phrase “analytic at zy" means [ is
analytic on ¢ neighborhood of z.

Note that the quotient

J(z) - f(z0)
z2-129

is undefined at z = 29, and this is the primary reason why deleted neighborhoods
were used in the definition of limit.

Although the definition of the derivative f(zg) is similar to that of the usual
derivative of a function of a real variable and they share many similar properties,
the complex case is much richer. Note also that in the definition of f'(z). we are
dividing by the complez number z - zg and thie special nature of division by complex
numbers is a key consideration. The limit as 2 — zg is taken for an arbitrary =
approaching zp but not along any particular direction.

The existence of f/ implies a great deal about f. Tt will be proven in §2.4 that
if J! exists, then all the derivatives of f exist (that is, f”, the (complex) derivative
of f', exists, and so on). This is in contrast 1o the case of a function g(x) of the
real variable x, in which ¢’(z) can exist without the existence of g”(z).
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The analysis of what are called the Cauchy-Riemann equations in Theorem 1.5.8
will show how the complex derivative of f is related to the usual partial derivatives
of f as & function of the real variables (x,y) and will supply a useful criterion
for determining the existence of f/(2g). As in elementary calculus, continuity of f
does not imply differentiability; for example, f(z) = |2| is continuons but is not
differentiable (see Excrcise 10 at the end of this section). However, as in one-variable
calculus, 2 differentiable function must be continuous.

Proposition 1.5.2 If f'(z) exists, then f is continunus al z,.

Proof By the sum rulc for limits, we need only show that
Jim [£(2) = Flza)] =0.
But

112 - f(eo) = o [LEL= L), ],

s=—z0
which, by the product rule for limits, equals f/(2)-0=0. W

The usual rules of calculus-—the product rule, the quoticnt rule, the chain rule,
and the inverse function rule—can be used when differentiating analytic functions.
We now explore these rules in detail.

Proposition 1.5.3 Suppuse that f and g arc analytic on A, where A ¢ C is an
open set. Then

(i) af +bg is analylic on A and (af + bg)(z) = af'(2) + bg’(2) for any complex
numbers a and b.

(ii) g is analytic on A and (f9)'(2) = ['(2)g(z) + f(2)¢'(2).
(iii) If g(z) # 0 for all z € A, then f/g is analytic on A and
1Y (o _ f'(2)9(2) = g'(2)S (2)
(£) 0= LR,

(iv) Any polynomial ag + ayz + ...+ 6,z" is analytic on all of C with derivative
ay +2a22 4 ... +na,z" L.

(v) Any rational function

g+ 012+ ...+ 0n2"
h}"'b]z”‘..."'b‘”zm

is analytic on the open sci consisting of all z except those (at most, m) points
where the denominator is zevo. (Sew Reviem Exercise 24 for Chapter 1.)
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Proof The proofs of (i), (ii), and (iii) are all similar to the proofs of the corre-
sponding results found in calculus. The procedure can be illustrated with a proof
of (ii). Applying the limit theorems and the fact that lim..., f(2) = f(20) (Propo-

sition 1.5.2), we get
i 1(2)0(2) — £(20)9(20)

£~z zZ—-2
= fim [12)8(2) = F(2)a(z0) |, f(2)g(20) — f(20)g(20)
2=zo z—2q 2—2
= tim [ 1z )y( z) - 9(20)] tim [f(zz):ﬁzo) g(zo)]

= f(20)9'(20) + I’ (20)9(20)-

To prove (iv) we must first show that f' = 0 if f is constant. This is immcdiate
from the definition of derivative because f(z) — f(z0) = 0. It is equally ensy to
prove that dz/dz = 1. Then, using (ii), we can prove that

%z’:l-z+z-1=2z

and
_d.z‘=_¢.i.(z-zz)=lvzz +2z-22 =32,
dz dz

In general, we see by induction that dz”/dz = n2""'. Then (iv) follows from this
and (i), and (v) follows from (iv) and (iii). @&

For example,
d 2 -
d—z(z +82-2)=2z48

and

df1\___1
dz\z+1)  (z+1)*
The student will also recall thint one of the most important rules for differenti-
ation is the chain rule, or “function of a function” rule. To illustrate,

‘% [(z® + 1)'9] =10(3 +1)° - 322 = 302%(2* + 1)°.

This procedure for differentiating should be familiar; it is justified by the next
result.

Theorem 1.5.4 (Chain Rule) Let f: A -+ C and g : B — C be analytic (A, B
arc open sets) and lot f(A) C B. Thengof : A — C defined by (go f)(2) = g(/(2))
ts analytic and

2 (g0 1)) = 4 (=) ['(2).
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The basic idea of the proof of this theorem is that if w = f(z) and wg = f(20),
then

gU(2)) - o(J(z)) _ glw) - glwo) [(z) - f(z)
z—2zp w - wg zZ—2

and if we let 2 — 2z, we also have w — wg. and the right side of the preceding
equation thus becomes ¢'(wp)f'(20). The trouble is that even if z # 2o, we could
bave w = wy. Because of this possibility, we give a more careful proof. (Although
tbe chain rule here can be deduced from the chain rule for the usual derivative for
functions of several variables—see the proof of 1.5.8—a separate proof is instruc-
tive.)

Proof Let wy = f(2g), and define, for w € B,

9(wr) — g(wo)

f
w—wy ¢ (o)

h(w) =

if w 5 wp and h(wp) = 0. Since g'(wy) exists, & is continuous. Since the composite
of continuous functions is continuous,

Jim 1(f(2)) = h(two) = 0.

From the definition of / and letting w = f(2), we get (gof)(z) —g(un) = [R(F(2))+
¢ (ni0)}[f(2) — wy]. Note that this still holds if f(2) = wp.For z # 29, we get

(ao ) = o 1) _ g 4 L2102

As 2 — zg, the right side of the equntion converges to [0 + g'(up)] - [f'(20)), so the
theorem is proved. @

An argument similar to the one just given proves a slightly different version
of the chain rule. Namely, if 7 :Ja,b{— C is differcntiable, we can differentinte the
curve o(t) = f(4(t)) and obtain o’ (t) = f'(7(1))-7(t). Here /() is the derivative of
v as a function ]a, 5[— R2; that is, if ¥(¢) = (z(2), y(2)), then 4/ (t) = (2/(t). ¥ (1)) =
() + iy (2).

We now use the chain rule to prove 2 complex vension of the following theorem
from caleulus: A function whose derivative is identically 0 must be constant. The
result illustrates the importance of regions, or open connected sets, in which we
may, by Proposition 1.4.15, connect any two points by a differentiable path.

Proposition 1.5.5 Let A C C be open and connected and let f : A — C be
analytic. If f'(z) =0 on A, then f is constant on A.
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Proof Let z),2; € A. We want to show that f(z;) = f(22). Let 4(t) be a path
joining z) to 2;. By the chuin rule, df(+(t))/dt = f'(2(t)) - ¥/ (t) = 0, since [' = 0.
Thus if f = u+44v, we have du(y(L))/dt = 0 and dv(y(t))/dt = 0. From calculus, we
kmow this implies that u(y(t)) and v(~(t)) are constant functions of t. Comparing
thevaluesat t=aandt =bgivesus f(z;)=f(z2). B

Clearly, connectedness is needed because if A consisted of two disjoint pieces,
we could let f = I on onc piece and f = 0 on the other. Then f(z) would equal 0
but f would not be constant on A.

Conformal Maps The existence of the complex derivative f/ places severe but
very useful restrictions on f. The first of these restrictions will be bricfly discussed
here. Another restriction will be mentioned when the Cauchy-Riemann equations
arc analyzed in Theorem 1.5.8.

It will be shown that “infinitesimally” vear a point 2y at which f'(z) # 0, f is
a rotation through the angle arg f'(20) and a magnification by the factor |f*(20)|.
The term “infinitesimally” is defined more preciscly below, but intuitively it means
that locally f is approximately a rotation together with a magnification (see Figure
1.5.1). If f'(za) = 0, the structure of f is wore complicated. (This point will be
studied further in Chapter 6.)

¥ y

Y o

Figure 1.5.1: Conformal at 2.

Definition 1.5.6 A map f : A — C is called conformal at 2z, if there erist
a 8 € [0,2x] and an r > O such that for any curve «(l) that is differentiable at
t = 0, for which y(t) € A and 4(0) = zy, and that satisfies ¥(0) # 0, the curve
o(t) = f(v(t)) is differentiable at t = 0 and, setting v = ¢’(0) and v = (0), we
have Ju| = r{v| and argu = argv + O(wod 2%). A map is called conformal when
it is conformal at cvery point.

Thus a conforinal map merely rotates and stretches tangent vectors to curves.
This is the precise meaning of “infinitesimal” as previously used. It should be noted
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that a conformal map preserves angles between intersecting curves. (By definition,
the angle between two curves is the angle between their tangent vectors- see Figure
15.2).

Figure 1.5.2: Preservation of angles by a conformal map.

Theorem 1.5.7 (Conformal Mapping Theorem) Iff:A-*C is analytic and
iff'(zo) £ O, then/ is conformal at Zg with8 —arg/'(zo) andr= |/'(zo)|- fulfilling
Definition 1.5.6.

The proofoftills theorem is remarkably simple.

Proof Usingthe preceding notation and the chain rule, wegetu = cr'(O) = /(zo)*
V(U) = /'(zo) *v. Thus argu = argf'(zo) + argn(wod 2n) and [u| = |/'(z0)]l *M*
as required. m

The point of this proofis that the tangent vector v to any curve is multiplied by
a fixed complex number, namely, /'{zq), no matter in which direction t; is pointing.
This is because, hi the definition of / ,(zo),lhnc_ 2o is “taken through all possible
directions” as z —*Za.

Cauchy-Riemann Equations Recall that if/ : AC C = R2 —» R2 and if
1(X,y) = («(X,y),v(X,y)) *=tt(x,y) + iu(x,y), then the Jacobian matrix of f is
defined as the matrix of partial derivatives given by

fdu du\

d d |

DIOY) gy gy |
{8x 8y /

at cadi point (x,y). Wesliall relate these partial derivatives to the complex deriva-
tive. FVom the point of view of real variables, / is called differentiable with
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derivative the matrix Df(xo,¥o0) at (To,30) iff for any ¢ > 0, there is 2 § > 0 such
that |(z,y) - (20, #0)| < § implies

|£(z,y) — £(Zo,10) — Df(z0,40)[(z:¥) — (30, vo)}| < €l(z.¥) — (0. W0)|
where Df(zo,30) - [(z.y) — (%o, %0)] means the matrix Df(xo,yo) applied to the

(column) vector
(5%)

and |w| stands for the length of a vector w.

Here are some facts from the calculus of several variables that we shall use.? If f
is differcutiable, then the usual partials du/dz, du/dy, Bv/8z, and dv/3y exist and
D f(zo. ) is given by the Jacobian matrix. The expression D f(ze, %o )[w] represents
the derivative of f in the direction w. If the partials exist and are continuous, then
J is differentiable. Generally, then, differentiability is & bit stronger than existence
of the individual partials. The main result connecting the partial derivatives and
analyticily is stated in the next theorem.

Theorem 1.5.8 (Cauchy-Riemann Theorem) Suppose A is an open sct in C
and f : A C C — C is a given function. Then f'(z9) exists if and only if f is
differentiable in the sense of real variables and at (zg,Yo) = 2o, the functions u,v
salisfy

bu_o0 . 0u_ 0o
ox ~ By 8y Or

{called the Cauchy-Riemnann ).
Thus, if du/dz,8u/dy,dv/0x, and 8u/0y erist, are continuous on A, and sal-
isfy the Cauchy-Riemann equations, then f is analytic on A.
If f'(z0) does ezist, then
oy P B0 O _Bv_ 0u_ 10
!(zo)_bz:+t8.z_ 8y ay-iay'

Proof Let us Girst show that if f(z0) exists, then u and v salisfy the Cauchy-
Riemann cquations. In the limit
— e J(2) = S(20)
f(2) = Fim =—— o
let us take the special case that z = x + iyy. Then

I(2) -~ J(z0) _ u(z.m0) +iv(z. ) - u(zo, o) — iv{ze, w0)
z2~2 T -4
u(xl M)) — "(Ilh ”0) + i”(’:t yo) - U(ﬂ.’o, yl)).
Tr—2x x—1x
%Proofs of the following statements are not included liere but can be found in any advanced

calculus text, such ax J. Marsden and M. Hoffman, Elrmentary Classical Analysis, Second Edition
(New York: W. H. Freeman and Comnpany, 1993), Ch. 6.
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As x — x4, the left side of the equation converges to tha limit f'(zp). Thus both
the real and imaginary parts of the right side must converge to a limit (see Exercise
2 of §1.4). From the definition of partial derivatives, this limit is (8u/dz)(ze, yo) +
i(8v/0z)(x0, yo). Thus f'(29) = Bu/dz + iBv/8x evaluated at (o, 10)-

Next let 2 = zg + ty. Then we similarly have

[(z) = f(z) _ ulzo.y) +iv(zo,y) — ulzo, ) - iv(xo, )
z—2 iy - %)
¥(Zo, ¥) — w(zo, 20) + v(zo,y) — ¥(Zo, 1)

i(y — w) ¥-%
As y — g9, we get

Thus, since f/(zp) exists and bas the same value regardless of how z approaches 2q,
we get
oy Ou, 80 8y . Gu
f(z0) = pom .“8:: =5 '8y'
By comparing real and imaginary parts of these equations, we derive the Cauchy-
Riemann equations as well as the two formulas for f/(zo).

Another argument for this direction of the proof and oue for the opposite im-
plication may be hased on the matrix representation for complex multiplication
develaped in Exercise 10 of §1.1.

a b
c d

Lemma 1.5.9 A mairiz
represents, under matriz multiplication, multiplication by a complex number iff a =
d and b = —c. The complex number in question is a + ic = d — ib.

Proof Firsi, let us consider multiplication by the complex number a++ic. It sends
z +iy to (a +ic)(z +iy) = ax — cy + i(ay + cx), which is the same as

(e 2)0)=(2:2
¢ a y cx4ay }°
Conversely, let us suppose that

(2 )(3)rivm

for 8 complex number z = & + if. Then we got
ax +by=ax-fy and x4+ dy=ay+Pr
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for all x,y. This implies (settingx = 1,y =0, thenz =0,y = 1) thate = a,b =
-B,¢= 8, and d = a, and so the proof is complete. @

We can now complete the proof of Theorem 1.5.8.

From the definition of f, the statement that f’(29) exists is equivalent to the
following statement: For any ¢ > 0, thereisa §d > Osuch that 0 < |z — 29| < §
implics

1£(z) = f(20) = J'(20)(z — 20)| < €]z — |-

First Jet us suppose that f‘(zo) exists. By definition, Df(zo,yp) is the unique
matrix with the property that for any ¢ > 0 there is a § > 0 such that, setting
z = (z,y) and 2o = (zq, %0}, 0 < |2 — 2} < & implies

1/(2) — f(20} = DJ(z0}(2 = z0)| < €]z — 2.

If we compare this equation with the preceding one and recall that multiplication
by a complex number is a lincar map, we conclude that f is differentiable in the
sense of real variables and that the matrix D f(2¢) represents multiplication by the
complex number f’(29). Thus. applying the lemma to the matrix

2 0

0.
Ditm=| 22 %

oz oy

with a = Gu/dz,b = du/dy,c = Bv/3z,d = Bv[8y, we have a = d,b = —c, which
are the Cauchy-Riemann equations.

Conversely, if the Cauchy-Riemann equations hold, D f(zo) represents mmltipli-
cation by a complex number (by the lemma) and then, as above, the deBnition
of differentiability in the sense of real variables reduces to that for the complex
derivative.

The formula for f'(z) foliows from the last statement of the lemma. ®

We can also express the Cauchy-Riemann equations in terms of polar coordi-
nates, but care must be exercised because the change of coordinates defiued by
r = /22 4 y? and 8 = arg(z + iy) is a differentinble change only if 8 is restrictod
to the open interval J0, 2%| or any other open interval of length 27 and if the origin
(r = 0) is omitted. Without such a restriction 8 is discontinuous, because it juwwmps
by 27 on crossing the x axis. Using 3x/8r = cos@,dy/8r = sind, we see that the
Cauchy-Riemann equations are equivalent to suying that

Bu_10v v _ 10w
o rd90 3 r 00
ou a region contained in a region such as those shown in Figure 1.5.3. Here wo are

cmploying standard abuse of notation by writing u(r,0) = u(rcos8,rsiné). (Fora
more precise statewment, see Exercise 12 at the end of this section.)
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—+<
—h

Figure 1.5.3: Two regions of validity of polar coordinates.

Inverse Functions A basic result of real analysis is the Inverse Function The-
orem: A continuously differentiable function is one-to-one and onto an open set
and has a differentiable inverse in some neighborhood o fa point where the Jacobian
determinant of the derivative matrix is not 0. We will give proof hero of the com-
plex counterpart of this result, which assumes that the derivative f is continuous
and depends on the corresponding theorem for functions of real variables. After
we have proved Cauchy's Theorem in Chapter 2, we will see that the continuity
of f is automatic, and in Chapter 6 we will prove the theorem in another way
that does not depend on the real-variable theorem. The proofgiven here, however,
illustrates the relationship between real and complex variables and the relevance of
the Cauchy-Riemann equations.

Theorem 1.5.10 (Inverse Function Theorem) Let f : A —» C fee analytic
with f continuous) and assume that/'(zo) 0. Then there exists a neighborhood
f of20 and a neighborhood V of/(zo) such thatf : U —*V is a bijection (that
> is one-to-one and onto) and its inverse function f~ | is analytic with derivative

given by

~f {w)"W ) wlierc ,,,s=/(s)-

The student is cautioned that application of the Inverse Function Theorem allows
one only to conclude the existence of a local inverse for /. For example, let us
consider /(z) = z* defined on .4 = C\{0}. Then f'(z) ~ 2z  Oat. each point of
.1. The Inverse Function Theorem says that / has a unique local analytic inverse,
which is, in fact, merely some branch of the square root function. But/ is not
one-to-oue cmall of A, since, for example, /(!) = /(- 1). Thus/ will be onc-fco-one
only within sufficiently small neighborhoods surrounding each point.

1b prove tins theorem, let us recall the statement for real variables in two
dimensions.
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Theorem 1.5.11 (Real-Variable Inverse Function Theorem) Iff: ACR? —
R? is continuously differentiable and Df(zy,yo) has a nonzero determinant, then
there are neighborhoods U of (29,1) and V of f(zg,y0) such that f : U -V isa
bijection, ! : V — U is differentiable, and

Df N (f(=,w)) = (DS (=)
{this is the inverse of the matriz of pertials).

The proof of this theorem may be found in advanced calculus texts. See, for in-
stance, J. Marsden and M. Hoffman, Elementary Classical Analysis, Second Edition
(New York: W. H. Freeman and Compauy, 1983), Ch. 7.

Accepting this statement and assuming that f’ in Theorem 1.5.10 is continuous,
we can complete the proof.

Proof of Theorem 1.5.10 For analytic functions such as f(z), we have seen
that the matrix of partial derivatives is

g_g Ou Su -6v
| 8z 3 | _| 8z oz
el W (VY
8z Oy 8z dz
which has determinant

au\? | (ov\? 2
(%) +(%) =wren
since f(z) = Bu/dz + i8u/8x. All thex: functions are to be cvaluated at the point
(x0,300) = zo. Now f'(z4) # 0, so Det Df(zo,v0) = |f'(20)]? # 0. Thus the real-
variable Inverse Function Theoren applics. By the Cauchy-Ricmann Theorem 1.5.8

we need only verify that the entries of [Df(z,y)]™! satisfy the Cauchy-Riemann
equations and give (f=') as stated.

As we have just seen,
u du
dz dy
1=l o0 &
az 8y
and the inverse of this matrix is
2 —bu
1 oy Oy

Det Df ;3_'3 8u
ar Oz
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Thus if we write f~*(z,y) = t(z,y) + is(z, y), then, comparing
a a
- or oy
T
by = Os s

9z Ay
with the inverse matrix for Df, we get

& __1 G 1 O
8z DetDf8y DelDfdx

8 1 -8y _ 1 8u
3 DctDf 0z  DetDf 8y’

which are evaluated at f(zo,yp). Similarly,

S 1 s 9 1o

dy DetDfax 3y DetDfady
Thns the Cauchy-Riemann equations hold for £ and s since they hold for v and v.
Thercfore, £-' is complex-differentiable. From the Cauchy-Riemann Theorem: we
see that at the point f(2g),

8 _ 1 (.8_!1_'.?3) _ TG _ 1

8z  DetDf \8x '8z |z  f'(20)

The real and imaginary parts of an analytic function must satisfy the Cauchy-
Riemann equations. Manipulation of these equations leads directly to another

very important property, which we now isolate. A twice continuously differentiable
function v : A — R defined on an open set A is called harmonic if

]
f l)"a.-:”"i

&8y  Pu
V’u=5$—2-+b—y.;=0.

The expression V2u is called the Laplacian of u and is one of the most basic
operations in mathematics and physics. Harmonic functions play a fundamental
role in the physical examples discussed later in Chapters 5 and 8. For the moment
let us study them from the mathematical point 6f view. For V2u = 0 to make sense,
the function u must be twice differentinble. In Chapter 3 an analytic function will be
shown to be infinitely differentinble. Thus its real and imaginary parts are infinitely
differentiable. Let us accept (or assume) these properties here. In particular, the
sccond partial derivatives are continuous, and so a standard result of calculus says
that the mixed partials are equal. The Cauchy-Riemann cquations may then be
uwsed to show that the functions are harmonic.

Proposition 1.5.12 [f f is analylic on an open set A and [ = u + iv (thet is, if
u=Ref andv=1m f), then u and v arc harmonic on A.
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Proof We use the Cauchy-Riemann equations, du/8x = 8v/dy and du/dy =
—8u/0z. Differentiating the first equation with respect to z and the second equa-
tion with respect to g, we got

Po_ v P S
dx2 ~ Jzdy ay? ~  Bydx’
As above, the second partinls arc symmetric because they are continuous:
v _ B
dxdy ~ ydx’

Thercfore, adding the equations in the preceding display gives us
Fu, Pu_ v Fo
dr2 " 3y*  azdy dydr

The equation for v is proved in the same way, ©H

0.

If v and » aro real-valued functions defined on an open subset A of C such that
the complex-valued function f = u 4 iv is analytic on A, we sat that u and v arc
harmonic conjugates on A. For example,

uz,y) =2~y and viz,y)=2xy

arc harmonic conjugutes of cach other since they are the real and imaginary parts
of f(z) = z2. These functions are linked geometrically as well as algebraically. The
level curves of v and v passing through any nonzero point intersect at right angles at
that. point, which is illustrated in Figure 1.5.4. The next Proposition asserts that
this occurs generally for the real and imaginary purts of an anulytic function at
points where its derivative is not 0. The proof uses the Cauchy-Ricmann equations
to show that the dot product of thie tangent vectors (or the normal vectors) is 0.

Proposition 1.5.13 Let u and v be harmonic conjugales on a region A. Suppose
that the equations

u(z,y) = constaut =¢; and v(z,y) = constant = ¢
define smooth curves. Then these curves intersect orthogonally (see Figure 1.5.4).

We shall aceept from calculus the fact that u{z, y) = ¢) defines a smooth curve if
the gradient grad u(=x, y} = (8u/8z, 8u/dy) = (Iu/0x) + i(Bu/dy) is nonzero for
and y satislying #(x. y) = ¢,. (The student should be aware of this fact even though
it is a technical puint that does not play a major role in concrete examples.) It is
also true that the vector grad u is perpendicular ta that curve (sce Figure 1.5.5).

This perpendicularity property can be explained as follows. If (z(t), y(t)) is the
curve. then u(z(t), ¥(t)) = e, a constant, so

£ (e (1) 90 =0,
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v = constant

A

Figure 1.5.4: Harmonic conjugates: u = z2 — ¥iv =22y, J(z) =22
(). 0)

grad g

1 X7)

ulx. ¥) = constunt

Figure 1.5.5: Gradicnts are orthogonal to level sets.

and thus by the chain rule,
Su Su ., .
= 7O+ 5 VO =0
Thay is,
(5 5) - @ovm=o

Proof of Proposition 1.5.13 By the abovc remarks, it suffices to show that
grad u and grad v are perpendicular. Their inner product is

8u80 8uav
gradu-grady = oz 8:: 8y 8;;

which is zero by the Cauchy-Ricmann equations. 0
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This orthogonality property of harmonic conjugates has an important physical
interpretation, which will be used in Chapter 5. Another way to see why this prop-
erty should hold is to consider conformal maps and the Inverse Function Theorem.
This is illustrated in Figure 1.5.6.

Figure 15*6: Since / and f~1 arc analytic, they are conformal and so preserve
orthogonality.

If/ = u-f-tuisanalyticand f'(zo) 0, then f~ | isanalytic on a neighborhood V
ofw0 = f(zo) and (/-1)(m0) £ 0 by tlie Inverse Function Theorem. Ifu®j = cj +ic%,
then the curves ti(x,y) ~ ¢, and v(x,y) = c4 arc the images of the vertical and
horizontal lines through mo under tlie mapping / “*. They should cross at right
angles since f~ | is conformal by Theorem 1.5.7.

Proposition 1.5.12 says that the real part of an analytic function is harmonic.
A natural question Is the opposite one: Is every harmonic function the real part
of an analytic function? More precisely: Given a harmonic function u on a set
A, need there be a harmonic conjugate v such that/ = u + fwis analytic ou A
The full answer is a little tricky and depends on the nature ofthe set A. However,
the answer is simpler if wc confine ourselves to small neighborhoods. Indeed, the
property of being harmonic is wliat is called a local property. The function v is
harmonic on a set if V2u = 0 holds at each point of that set. Therefore, it makes
sense to study this property in a neighborhood ofany point.

Proposition 1.5.14 Ifu is a twice continuously differentiable harmonic function
an an open set A and zq€ A, then there is some neighborhood of zq on which n is
the real part of an analytic function.

In other words, there existan r > 0 and a function v defined ou the open disk
D(zq\t) such that u and v are harmouic conjugates on D (zo:r). In fact, D(zo\r)
may be taken to be the largest disk centered at zq and contained iu A. A direct
proofofthis is outlined in Exercise 32. A differentproofofa slightly stronger result
will be given in Chapter 2. Since the Cauchy-Riemann equations must hold, v is
uniquely determined up to the addition of a constant. These equations may be
used as a method for finding v when u is given.
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Worked Examples

Example 1.5.15 Where is the funclion f(z) = (25 + 2z + 1)/(z% + 1) analytic?
Compute the derivative.

Solution By Proposition 1.5.3(iii) f is analyticon theset A = {z € C|z*+1 # 0}
that is, f is analytic on the whole plane except the cube roots of —1 = ™, namely,
the points e*¥/3, ¢*i, and ¢¥*/3, By the formula for differentiating a quotient, the
derivative is
f(a) = (2% + 1)(32% +2) = (2° + 2: 4 1)(32%) _ (2 - 45°)
(3 +1)? (23 +1)°

Example 1.5.16 Consider f(z) = z* + 1. Study the infinitesimal behavior of f ot

=i

Solution We use the Conformal Mapping Thoeorem 1.5.7. Tn this case f'(2) =
3i2 = =3. Thus f rotates locally by # = arg(—3) and multiplics lengths by 3 =
|f'(20)|. More precisely, if e is any curve through 2o = i, the image curve will, at
f(z0), have its tangent vector rotated by # and stretched by a factor 3.

Example 1.5.17 Show that f(z) = Z is not analytic.

Solution Let f(z) = u(z,y) + iv(z.y) = z - iy where 2 = (z,y) = 2 + iy. Thus,
u(z,y) = z,9(z,y) = ~y. But du/dz = 1 and §v/3y = -1 and hence Su/dz #
8v/8y, so the Canchy-Ricmaun equntions do not hold. Therefore, f(z) = # cannot
be analytic, by the Cauchy-Riemaun Theorem 1.5.8.

Example 1.5.18 We know by Proposition 1.5.3 that f(z) = 23 + 1 is analytic.
Verify the Cauchy-Ricmann equations for this function.

Solution If f(z2) = u(z,y) + iv(z,y) when z = (z,y) = x + iy, then in this
case u(z,y) = 23 — 3zy° + 1 and v(z,y) = 322y - ¢°. Therefore, 6u/dz = 322 ~
31°,8u/8y = —6zy, 8u/3x = 6zy, and 3u/dy = 322 — 3y?, from which we see that
Ouf8z = 8v/8y and 8u/dy = -Bu/dz.

Example 1.5.19 Let A be an open subsel of C and A* = {z | 5 € A}. Suppose
f iy analytic on A, and define a function g on A* by g(2) = f(2). Show that g is
analytic on A®.

Solution If f(2) = u(z,y) + iv(z,¥), then g(z) = f(Z) = u(z, —y) - iv(z, ~y).
We check the Cauchy-Riemann equations for g as follows:

2 2

P _ N v
a(ﬁeg) = gu(z. ¥)= po

{(=~v) - 5‘;
= gt = fmg)

(x.~w)
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and
8 2 du v
—{R = e . = —— = —
7 (Reg) 9 u—9) ay (z.~p) Oz {x.—y)

-2 vtz 1)) = - (lmg).

Since the Cauchy-Ricmnun cquations hold and g is diffcrentiable in the sense of
real variables (why?), it is analytic on A” by the Cauchy-Ricinann Theorem 1.5.8.
(One could also solve this exercise by direct appeal to the definition of complex
differentiability.)

Example 1.5.20 Find the harmonic conjugates of the following harmonic func-
tions on C:

(a) u(z,y) =22 - ?

(b) u(z,y) =sinzcoshy

The reader might recugnize 22 — y? and sin zcoshy us the real parts of 22 and
sin z, 2 = z+4y. From this observation it follows that the conjugates, up to addition
of constants, are 2zy and sinh ycosz. (We shall sce in the next section Lhat sin z is
analytic.) It is instructive, however, to solve the problem directly using the Cauchy-
Ricmann equations, because the student might not always recognize an appropriate
analytic f(z) by inspection.

Solution To solve (a). suppose that ¢ is a hanmonic conjugate of u. By the
Cauchy-Riainann equations,

i) du dv Bu
i L R A

Therefore, v = 2yz 4+ g1 (¥) and v = 2zy + g2(z). Hence gi(y) = g2(x) = constant,
and so v(z,y) = 2yz-+ constant. To find Lthe hanmonic conjugate v for part (b), we
use the Cauchy-Ricmannu cquations again and write

v Bu . Jv _ Ou .
ot ™ = ~sinzsinhy and F o= = cosxcoshy.

The first oquation implies that v = cosxsinhy + gy (v) and the second cquation
implics that » = coszsinhy + go(z). Hence g;(y) = ¢a(x) = constant. Therefore
v(x.y) = coszsink y+ constant.

Example 1.5.21 Suppose f is an analytic function on a region (an open connected
set) A and that |{(z)] is conslant on A. Show that f is consiant on A.
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Solution We use the Canchy-Riemann equations to show that f'(z) = 0 every-
where in A. Let f = u+iv. Then |f]2 = u? + v* = cis constant. If ¢ = 0, then
If(z)l =0and so f(z) =0 forall zin A. U c#0, wehkedmvamvmofu’-;-o?..c
with respect to x and y to obtain

Su v 3u dv
2u8—» ha—o and 2u5—-!‘2:.5—y =0.

By the Cauchy-Riemaun equations these become

Ou Ou Bu 8u
115;-—::%=0 and va +u5;—0

As 8 system of equations for the two unknowns du/8z and Ju/dy. the matrix of
coeflicients has determinant w2 4- v2 = ¢, which is not 0. Thus the only solution i ls
Ou/8x = Ju/8y = 0 at all points of A. Therefore f'(z) = u/8zx + i(Gv/dz) =
everywhere in A. Since A is connected, f is constant. (by Propositiou 1.5.5).

Exercises
1. Detenmine the sets on which the following functions are analytic, and compute
their derivatives:
(a) (z4+1)
(®) 2+

© (%)

1
@) T+

2. Determine the sets on which the following functious are analytic, and compute
their derivatives:

() 322+ 7245
(b) (22 +3)*
(c) 3z-1

3. On what sets are the following functions analytic? Compute the derivative
for each.

(a) z",n being an integer (positive or negative)

1
®) e

(¢} z/(z" — 2),n being a positive integer
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4. For v ]a.b|— C differentiable and f : A — C analytic with 1(Ja,d[) C A,
prove that o = f oy is differentiable with ¢’(t) = f'(7(1)) - 7 (t) by imitating

the proof of the chain rule (1.5.4).
5. Study the infinitesimal behavior of the following functions at the indicated
points:

(&) f(z)=2+43,20=3+4i
(b) f(2)=2°+32,2 =0
© Sy =222 Lm0
6. Study the infinitesimal behavior of the following functions at the indicated
points:
(®) f(z) =22 +5,2p =546
(b) f(2)=2+4z,2g =1
) [(2)=1/(z-1)vz0 =i
7. Prove that df ! /dw = 1/ f’(2) where w = f(z) by differentiating f-1(f(2)) =
z, using the chain rule. Assume that f~! is defined aud is analytic.

8.° Use the Inverse Function Theorem to show that if f : A — C is analytic and
J'(z) # 0 for all z € 4, then f maps open scts in A to open sels.

9. Verify the Cauchy-Riemann equations for the function f(z) = 22+ 32+ 2.
10. Prove that f(z) = |z| is not analytic.

11.°* Show, by changing variables, that the Cauchy-Riemann equations in terms
of polar coordinates become

B _1ov 8 __10u
 rd8 Or r 88’

12. Performi the computation in Exercise 11 by the following procedure. Let f
be defined on the open set A C C (that is, f: A C C — C) and suppose that
J(2) = u(z) + iv(2). Let T :J0.27[xRt — R?, whore R* = {z € R |z > 0},
be given by 7(0,r) = (rcos@,rsin8). Thus T is onc-to-one and onto the set
R?\{{(z,0) | z > 0}. Define

i(0,r) = u(rcosf,rsinf) and u(8,r) = v(rcosd,rsinéd).
Show that

(a) T is continuously differentiable and has 2 continuously differentiable in-
verse.
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(b) S is analytic on A\{z+iy | y = 0,z > 0} if and only if (4, 9):T1(A) —
R2 is differentiable and we have

s _100 . % _ 103
o 108 " &~ roe

on T-(A).
13. Define the symbol 81 /92 by

oy _1(af _ Eﬂ)
a2 (5; idy/’

Show that the Cauchy-Riemann equations are equivalent to 8f/3z = 0. Note:
It is sometimes said, because of this result, that analytic functions are not
functions of £ but of z alonc. This statement can be made moare precise as
follows. Given f(z,y), write z = }(z + Z) and y = (1/2i)(z — 2). Thea f
becomes a function of z and 2 and the chain rule gives

8f 873z  oféy_1(df xaf)

55 " 3z8z Toydz 2\oz idy
14. Define the symbol 3f/3z by
of _1(0f 19f
8z 2\8z " idy)’
(a) Show that if f is analytic, then f’ = 8f/0z.
(b) ¥ f(z) = z, show that 8f/8z = 1 and 8f/8z = 0.
(¢) Xf f(2) = £, show that 8f/8z =0 and 8/9% = 1.

(d) Show that the symbols 8/82 and 8/8z obey the sum, product, and scalar
multiple rules for derivatives.

(e) Show that the expression z,':',:o Zﬁ.’:o Qnm2™Z™ is an analytic function
of z if and only if a,m = 0 whenever m 3 0.

15. Supposc that f is an analytic function on the disk D = {2 such that |2| < 1}
and that Re f(2) = 3 for all z iu D. Show that f is constant on D.

16.° (a) Let f(2) = u(z,y) + iv{z,y) be an analytic function defincd on a con-
nected open set A. If au(z,y) + bu(z,y) = ¢ in A, where a, b, ¢ are real
constants not all 0, prove that f(z) is constant in A.

(b) Ts the result obtained in {a) still valid if @, b, ¢ are complex constants?
17.° Suppose f is analyticon theset A = {z | Rez > 1)} and that du/dz-+9v/dy =

0 on A. Show that there are a real constant ¢ and a compiex constant d such
that f(z) = —icz +d on A.
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18. Let f(z) = 2%/|2|* il 2 £ 0 and f(0) = 0.
(3) Show that f(z)/z does not have a limit as z — 0.

(b) If u = Re f and v = Im f, show that u(z,0) = =,v(0,y) = v,u(0,y) =
v(z,0) = 0.

(¢) Conclude that the partials of u,v exist and that the Cauchy-Riemann
equations hold but that f/(0) does not exist. Does this conclusion con-
tradict the Cauchy-Riemann Theorem?

(d) Repeat exercise (¢), letting £ = 1 on the £ and y axcs and § elsewhere.
(e) Repeat exercise (c), letting f(z) = /Jzy]-
19. Let f(2) = (z+1)/(z-1).
(a) Where is f analytic?
(b) Is f conformal at z = 0?
(c) What are the images of the = and y axes under f?
(d) At what angle do these images intersect?

20. Let f be an analytic function ou an open connected set A and suppose that
41 (2) (the n + 1st derivative) exists and is 2ero on A. Show that [ isa
polynomial of degree < n.

21. On what set is u(z,y) = Re(z/(z3 - 1)) harmonic?
22.° Verify directly that the real and imaginary parts of f(z) = 24 are harmonic.
23. On what sets are each of the following functions harmonic?
(a) u(z,y) =Im(z2+32+1)
(b) w(=9) = =5 ;;-—1221' i
24. On what sots are each of the following functions harmonic?
(n) u(m,y) =Im(z + 1/z)

(b) u(z,y) = G-_&'W

25. Let f: A — C be analytic and let w : B — R be harmonic with f(A)c B.
Show that wo f : A — R ix harmonic.

26. If u is barmonic, show that, in terms of polar coordinates,

20%u Ou &u
"ot toE -0

Hint: Use the Cauchy-Riemann equations in polar form (Exercise 11),
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27. (a) Show that u(z,y) = ¢* cosy is harmonic on C.
(b) Find a harmonic conjugate u(z,y) for v on € such that ¥(0,0) = 0.
(c) Show that f(z) = €* is analytic on C.

28. Show that u(z, y) = z°—3xy? is harmonic on C and find a harmonic conjugute
v such that v(0,0) = 2.

29. If u(2) is harmonic and v(z) is harmonic, then are the following harmonic?

(a) v(v(2),0)
(b) u(2) - v(z)
(c) u(2) +v(2)
30. Consider the function f(z) = 1/z. Draw the contours u = Re f = constant

and v = Im [ = constant. How do they intersect? ls it always true that grad
u is parallel to the curve v = constant?

31. Let u have contimious second partials on an open set A and let §%u/9z2 +
u/dy? = 0. Let f = du/Bzx — iBu/8y. Show that [ is analytic.

32. Suppose 1 is a twice continuously differentiable real-valued harmonic function
on a disk D(zo;r) contered at 2o = xo + iye. For (z1,41) € D(29;7), show
that the equation

vienm)=c+ [ Getanady= [ (e, olie
w 0

defines a harmonic conjugate for u on D(zg;r) with v(xo,g0) =

1.6 Differentiation of the Elementary Functions

Exponential Function and Logarithm This section discusses diffcrentiability
propertics of the clanentary functions introduced in §1.3 and we will begin with
the exponential fitnction and its inverse, the logaritlun,

Proposition 1.6.1 The map f: C — C, 2~ ¢t, is analytic on C and
dc"' t

— =",

dz

Proof By definition, f(2) = e*(cosy + isiny), 50 the real and imaginary parts
are u(z.y) = e*cosy and v(z,y) = ¢*siny. These are C* (infinitely often dif-
ferentiable) functions, so f is differentiable in the sonse of real variables. To show
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that f is analytic, we must verify the Cauchy-Riemann equations. To do so, we
first compute the partial derivatives

a du

8: e  cosy oy =—c*siny
v . v
a—x—c‘smy ay = ¢* cos

Thus, 8u/8z = dv/6y and du/dy = —Bu/dz, so by the Cauchy-Riemann Theorem
1.5.8, [ is analytic. Finally,

fz gu-!’za =c*(cosy +isiny) =¢°. W

A function that is defined and analytic on the whole plane C is called entire.
Thus, f(2) = €* is an entire function.

Using the differentiation rules (Proposition 1.5.3) as in clemcntary enleunlus,
we can differentiate e* in combination with various other functions. For instance,
e‘ +llbenttrebecausezo—>z"'andwn—n-"’amanalyt:c,sobytbecbmn rule,

++ e is analytic. By the chain rule and the sum rule, (d/dz)(e* + 1) = 22¢~

Werecallt.lmlogz C\{0} — C is an inverse for ¢* when e* mresmcmd
to a period strip {z + iy | o € ¥ < yo + 27}. However, for differentiability of
logz we must restrict logz to a set that is smaller than C\{0}. The reasou is
simple: logz = log|z| + fargz for, say, 0 < argz < 2%, Bui the arg function
is discontinuous; it jumps by 2x as we cross the positive real axis. I we remove
these points, then we are excluding the usual positive reals on which we waut log z
defined. Therefore, it is convenient to use the branch —n < argz < #. Then an
appropriate set on which log 2 is analytic is given as follows.

Proposition 1.6.2 Lel A be the open sct that is C minus the negative real axis
including zero (that is, C\{z + iy | < 0 and y = 0}). Define a branch of log on
Aby

logz =log|z2| + iargz —w<argz<m,

which is called the principal branch of the logarithm. Then logz is analytic
on A with

N -

4 logz=

dz
Analogous statements hold for other branches.

First Proof (using the Inverse Function Theorem) From §1.3 we lnow
that log z is the unique inverse of the function f(z2) = ¢® restricted to the set
{z ]| 2 = z+iy,—7 < y < w}. Since de*/dz = &* 7 0, the Inverse Function Theorein
implies that locally, ¢* has an analytic inverse. Since the inverse is unique, it must
be logz. The derivative of £~} (w) is 1/f'(z). In this case f'(z) = f(z) = w, and
sodf~'fdw=3/wateachpointwec A. W
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Second Proof (using the Cauchy-Riemann equations In polar form) In
polar form, logz = logr fi6t and so u(r,0) = Iqgr,»(r,8) = 0, which are C°°
functions of r,6. Also, the Cauchy-Riemann equations nuiy be expressed in polar
coordinates, as explained in §1.5 and Exercises 11 and 12 at the end ofthat section.
But

& 1 1dv I8u n dv
8r r rdO 60 rg8 6~ dr

and so the Caucliy-Ricmann equations hold. Wc also have

.86 18r , .89

s [0*s= &k<r+*&—ffe+t&

It is obvious that on A,8r/8x = x/r and 86/8x = —y/r2, using, for example,
B= tan~i(y/x), so

d X iy z 1
dz °gZ r3 m® |zp z

The domain on which the principal branch of logz is analytic is given in Figure
1.6.1. Here is an example oranother branch: logz —og |z|+>argz,0 < argz < 2jt,
b analytic on C\{zr+ iy | x > 0,y = 0}. We will use the principal branch unless

otherwise stated.

Figure 1.6.1 Domain oflogz.

When using logz in compositions, we must be careful to stay in the domain of
lug. For example, consider /(z) — logz2 usiag the principal branch of log. Tins
function is analytic on the set A = {z\z fi0 and aigz £?r/2} by the following
reasoning. Proposition 1.5.3 shows that z2 is analytic on all of C. The image of A
under the map z *z2is precisely C\(ar + iy (x <0,y = 0} (Why?), which is the
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Figure 1.6.2: Composing the squaring and the log functions.

set on which the principal branch of log is defined and analytic. By the chain rule.
z H4log z2 is then analytic on A (see Figure 1.6.2).

The function f(z) — logz2 also illustrates that caution must be exercised in
manipulating logarithms. Consider tlie two functions log22 and 2logz. IT we
consider all possible values of the logarithm, then the two collections are the same.
If, however, we pick a particular branch, forexample, the principal branch, and use
it for both, then the two arc not ulways the same. Forexample, Ifz ——1 + * then
argz = 3ir/4 and logz2 = log2 - iri/2, while 2log2 = log2 + 3jri/2. The function
logz2 is analytic on the plane with the Imaginary axis deleted, while 2logz is
analytic on the plane with the negative real axis deleted.

The Trigonometric Functions Now that we have established properties of c*,
the differentiation of the sine and cosine functions follows readily.

Proposition 1.6.3 The sine and cosine functionssinz and cosz are. entire func-
tions toith derivatives given by

d d .
—smz =cos2 and -—cosz= -sinz.
dz dz

Proof Bydefinition, sinz = (*—e_**)/2t; using the sum rule and tbe chain rule
and the fact that the exponential function is entire, wc conclude that sin z is entire
and thatd(siuz)/dz = {ie** —(—e4~)}/2t = (c,e +«-,1)/2 = cosz. Similarly,

= “-an*., =

We can also discuss sin-1 z and cos" 1z in somewhat the same way that we
discussed logz (which is exp- 1z with appropriate domains and ranges). Tinas*
functions are analyzed in Exercise 6 at the end of this section.
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The Power Function Let a and b be complex numbers. Recall that a® = ¢b'o82,
whieh is, in general, multivalued according to the different branches for log that
=p choose. We now consider the functions z = zb and z = a*. Although these
functions appear to be similar, their properties of analyticity are quite different.
The case in which b is an integer was covered in Propesition 1.5.3. The sitnation
for genoral & is slightly more complicated.

Proposition 1.6.4 (i) For any choice of branch for the log function, the func-
tion z — a® is entire and has derivalive z v (loga)a®.

tii) Choose a branch of the log function—for example, the principel branch. Then
the function z ~— z® is analytic on the domain of the branch of log chosen
and the derivative is z — bz*~1,

Proof

(i) a* = e£W8e, By the chain rule this function is analytic on C with derivative
(loga)e='°5¢ = (loga)a*(loga is merely a constant).

1ii) zb = 4%+, This function is analytic on the domain of log z, since w +— &
is entire. By the chain rule,

d, b b
- =__Ing:=_b.
dc”"' o z

(That this equals bz~ follows from Excrcise 20 at, thcend of §1.3.) @

If b is a non-negative integer we kmow that z® is eatire (with derivative bzb~?).
In general, however, zb is analytic only on the domain of log =.

Let us emphasize what is stated in (ii). If we choose the principal branch of
log 2, which has domain C\{z + iy | y = 0 and z < 0} and range Rx ] — =, 7
‘Why?), then z — 2@ is analytic on C\{z + iy | y = 0,z < 0} (see Figure 1.6.3).
We could also choose the branch of log that has domain C\{z + iz | z > 0} and
range Cx | — 7w /4, 7/4(; then z — 2° would be analytic on C\{x + iz | 2 > 0}.

The nth Root Function Ope of the nth roots of z is given by 21/®, for a choice
of branch of log z. The other roots are given by the other chioices of branches, as in
»1.3. The principal branch is the one that is usually used. Thus, [rom Proposition
1.6.4(ii), we get the following as a special case.

Proposition 1.6.5 The function z ++ 2'/" = [/z is analytic on the domain of
log = (for example, the principel branch) and has derivative

(i) z(l/n)—l.
n

As with Jog 2z, we must cxercise care with the functions z ~+ 2%,z ¥z when
composing with other functions té be sure we stay in the domain of analyticity.
The procedure is illustrated for the square root function in Worked Example 1.6.8.
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Vv

- e

Figure 1.6.3: Regions of analytidty forz  z®.

Worked Examples

Example 1.6.6 Differentiate the followingfunctions, giving the appropriate region
on which the functions are analytic:

(@) e

(b) sm(c*)

(c) e*/(j? + 3)
(d) \Ze*TT
(c) cosz

(0 l(c=-1)
(S) lofi(e* + 1)

Solution

(a) The function ec is entire, so by the chain rule, z »*ec* is entire. The diain
rule also tells us that (lie derivative at z is czcre.

(b) Both z e* and w **suite are entire, so by the chain rule z *» sine* is
entire and the derivative at z is (costrje*.

(c) Tlie map z «* c* is entire and the map z »> 1/(z2 + 3) is nnidytic on
C\{£\/5t}- Bence z »*c'/fz2+ 3) is analytic on C\{xv/5i} and has deriva-
tive at z ~ dtv/3i given by

e* e* -2z e*(z2—2z-f3)
z=+3 (22432 — (22+3)2
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(d) Choose the branch of the function w »» «Jw tliat is analytic on C\{x + iy \
y = 0,x < 0}. Then we must dioosc the region A such that ifz € A, then
c* +1 is not both real and < 0. Notice that <r is real iffy —Imz —nr for
sonic integer n (Why?). When n is even, cz is positive; when n is odd, e* is
negative. Here |e*| = «*, where x —Rez and e* > 1 iffx > 0. Therefore if
we define A —C\{x + ip | x > 0,2 « (2n + l)ir,« an integer } (as in Figure
1.6.4), thene* + | isreal and < 0 iffz ft A. Sincee*+ | isentire, it is certainly
analytic on A. By the chain rule, \ftr 4-1 is analytic on A with derivative at
z given by (c* + 1)“,/2(ee)/2.

<<

3*4-

Figure 1.6.4: Region of analytidty of y/c* -f 1.

ie) Since x= x + iy, by Proposition 1.3.4, cosz = cos(x —iy) = c0osx cos(—y) —
sinxsin(—#y) ~ cosxcashy + isinxsiuhy, so u{x,y) = cosxcoshy and
v(X,y) = sinxsinhj/. Tims du/dx = —sinx coshy,dv/dy = sinxcoshp. If
cosz were analytic, du/dx would equal dv/dy, which would occur iffsinx = 0O
(thiatis, ifx =0, orifx —an,n = +1,£2,...). Thus, there is not an open
(nonempty) set A on which z  cosz is analytic.

ff) By Proposition 1.5.3(iii) and the fact that z *»c* —1 is entire, we condude
thatz 1/(e* —O &analytic on the set on which<r-1 ~ 0; namely, the set
A=C\{z=2im*|«=0,+1,+2,...}. The derivative at z is —e*/(c* —I)2.

Ig) Since (the principal branch of) the log is defined and is analytic on the same
region as the square root, namdy, A —C\{x + iy |y —0.x < 0}, we can use
the results of (d). By the diain rule and the results of (d), z **log(c* + 1) is
analytic on the region depicted in Figure 1.6.4.

Example 1.6.7 Verify directly that after mapping by the Junction c*, the angles
ictweai lines parallel to the coordinate axes are preserved.
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Solution Tlie liue determined by y = Xo is mapped to the ray {x+*xtanyo |x >
0}, and the line determined by x = Xo is mapped to the circle |z| = cTu; see Figure
1.3.7. The angle between any such ray and the tangent vector to the circle at the
point of contact of the ray and the circle is j# 2. Thus angles are preserved. This
is consistent with the Conformal Mapping Theorem 1.5.7.

Example 1.6.8 Show that a branch of the Junction w >* y/w can Ik defined in
such a way that z *+yfz2—1 is analytic in the region shaded in Figure. 1.6.5, and
using the notations of that figure, show that yfa? - 1 = “/rjrae**0'+0a)/2t where
0 < 0i < 2jt,—t< 02< ir.

Figure 1.6.5: Domain of auulyttcily of yfz2 —1.

Solution Ifyz —lisa square rootofz- land yfz f 1isa square rootofz+1,
then yfz—~1 eyfz + 1 is a square root of z2 - 1 (WIliy?). For z ** yfz-1 wc nmy
choose y defined and analytic on C\{x+iy |y - 0imdx > 0}; thus z » yfz—1 is
analytic on the region C\{x+iy | V—0,x > I}. For the map z *» yfz +ml, we may
dioose *defined mid analytic on the region C\{x+ty | y = 0and x < 0}; therefore,
Z *» yfz+ 1is analytic on C\{x + iy\y = 0,x < -1}. Thus z ** yfz - 1yfz-i-1
is analytic on C\{x + iy \'y =m0, |x| > 1} with tlie appropriate brandies of yf as
indicated. With these branches we have

ylz —1—yfr[e'0*7 and yfz + 1= yfritf0o".

so -Jz~—\yfz -1 = y/r*c*"e,+eil/2. Since z *4 yfz —\y/z + 1 is analytic on
C\{x*iy | y = 0,|x| > 1}, it should correspond to some brandi of the square
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root function in the map 2+ /22 = I. To see which one, note that z € C\{z +1y |
y=0,z) 21} if 22 -1 e C\{z +iy | y = 0,z > 0} (Why?), so if we take the
square root defined and analytic on C\{z + iy | y = 0,z > 0}, then z = V2% - L is
avalytic ou C\{z + iy |y = 0, || > 1}.

The symbol /- has been used here to mncan different branches of the square root
function, the particular branch being clear from the context. Thus, one normally
thinks of +/* togetber with a choice of branch.

Exercises

1.

“

Differentiate and give the appropriate region of analyticity for esch of the
following:

(n) 2242

(b) 1/z

(c) sinz/cosz
z’-l-l)

(d) exp ('ﬁ

. Differentiate and give the appropriate region of analyticity for each of the

following:
(8) . 3:
(b) log(z +1)
(c). z(l-l-i)
) vz
()° ¥z

. Determine whiether the following complex limits exist and find their value if

they do:
-1

() limgmp g

sin |2}
z

(b) lim, o

. Determine whether the following complex limits exist and find their value if

they do:

" logz
(2) lim,, ;o_%_l_

-1

(b) lim,_| ;—-TI-

. Is it true that |sinz| < 1 for all z€ C?
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6.* Solve sin z = w and show how to clioose a domain and thus how to pick a
particular branch of sin~! z so that il is analytic on the domain. Give the
derivative of this branch of sin™" z; see Excrcise 35 ot the end of §1.3.

7. Let f(2) = 1/(1 - 2); is it coutinuous on the interior of the unit circle?

8. Let u(z,y) and v(z,y) be real-valued functions on an openset AC RZ2=C
and suppose that they satisfy the Cauchy-Riemann equations on A. Show
that

ui(z,9) = [u(z,¥) - (2. ) and o(z.3) = 2u(z,y)v(z.y)
satisfy the Cauchy-Riemann equations on 4 and that the functions
(2, y) = =¥ cos v(z, y) and w(z,y) = eV ginu(z,y)

also satisfy the Cauchy-Riemann equations on A. Can you do this without
performing any computations?

9. Find the region of analyticity and the derivative of each of the following
functions:

2
(8) zz - 1
(b) e+ (1/2)

10.° Find the region of analyticity and the derivative of each of the following
functions:

(2) V=2 -1
(b) sinyz
11. Find the minimum of |e**| for those z with Izl <.

12. Prove Proposition 1.6.5 using the method of the first proof of Proposition
1.6.2.

13.* Where is 2 +~ 2" analytic? z v 2227
14. Define a branch of /1 4 /z and show that it is analytic.
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Review Exercises for Chapter 1

o - (2] i~

|

10.
11.

12,

Compute the following quantities: (a) ¢!  (b) log(L +%) (c) sini (d) 3¢
(e) 32105(‘1)

. For what values of z is log 22 = 2log z if the principal branch of the logarithm

is used on both sides of the equation?

. Find the eighth roots of 1.

. Find all pumbers z such that 22 =1 + .

. Solve cus z = /3 for z.

. Solve sinz = /3 for z.

. Describe geometrically the set of points z € C satisfying

(a) Iz +i] =z -14l
(b) |z-1]=3|z-2]

. Describe geometrically the set of points z € C satisfying

(@) lz=1=|z+1
(®) Iz-1]=2)2]

. Differentiate the following expressions on appropriate regions:

(a) 2°+8
1
®) =51
(c) exp(z* - 1)
(d) sin(log2?)
On what set is v/zZ — 2 analytic? Compute the derivative.

Describe the sets on which the following functions are analytic and compute
their derivatives:

* Repeat Review Exercise 11 for the following functions:

(2) exp ('i-l_a.z') foraeC
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sinz
(b) —
13. Can a single-valued (analytic) branch of log z be defined on the following sets?
(@) {z11< <2}

(b) {z|Re z> 0}
(c) {£|Rez>1m 2}

14.¢ Show that the map z ++ z + 1/z maps the circle {2 such that |2} = ¢} onto
the cllipsc described by

{w=u+iv|u=(c+1/c)cosb,v=(c—1/c)sinf,0 < 8 < 2x}.
Can we allow c =17
15. Lot £ be analytic on A. Define g : A — C by g(z) = J(2). When is g analytic?
16. Find the real and imaginary parts of f(z) = z® and verify dircctly that they
satisfy the Canchy-Riemann equations.
17. Let f(z + iy) = (z* + 2y) + i(z? + y?). At what points docs f'(zp) exist?
18. Let [ : A C € — C be analytic on an open sct A. Lot A = {2 |z € A).
(8) Describe A* geometrically.
(b) Define g : A° — C by g(2) = [f(Z)P- Show that g is analytic.

19.° Suppose that f : A C € — C is analytic on the open connected set 4 and
that f(z) is real for all z € A. Show that f is coustant.

20. Prove the Canchy-Riemann equations as follows. Let f: A C € - C he
differentiablc at 29 = xp +iyo. et g1 (?) = ¢ +dyp and ga(t) = xo +it. Apply
the chain rule 1o f o g; and f 0 g2 to prove the result.

21. Let f(z) be analytic in the disk |2~ 1] < 1. Suppose that f'(2) = 1/z, f(1) =
0. Prove that f(z) = logz.
22.° Usc the Inverse Function Theorem to prove the following result. Let f :

A € € — C be anslytic (where 4 is open and connected) and suppose that
f(A) € {2 such that |z| = 3}. Then [ is constant.

23. Prove that
. (z°+")n "zg Y T |
= h =n2
for any z9 € C.

24. (a) If a polynomial p(z) = ag+m2+...+8a,z" Lias a root ¢, Lthen show that
we can write p(z) = (z - cJh(z), where i(z) is a polynomnial of degree
n — I. (Use division of polynomials to show that 2 — ¢ divides p(z).)
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(b) Use part (a) to show that p can have no more than n roots.
(c) When is ¢ a root of both p(z) and p'(z)?

25.° On what set is the function z = z* analytic? Compute its derivative.

26. Let g be analytic on the open set A. Let B = {2 € A | g(2) # 0}. Show that
B is open and that 1/g is analytic on B.

27. Find and plot all solutions of 2¥ = ~8i.

28. Lot f : A € € — € be analytic on the open set A and let f(20) # 0 for cvery
20 € A. Show that {Re f(2) | z € A} C R is open.

20.° Show that u(z,y) = =3 - 322, v(z,y) = 37°y — ¢ satisfy the Cauchy-
Ricmann equations. Comment on the result.

30. Prove that the following functions arc continuous at 2 = 0:

241,42 -
@ s = { @ P 220
(b) f(z) =2l
31. At what points z are the following functions differentiablc?
(2) J(z) = |2I?

(b) f(z) =y -iz
32.° Use de Moivre's theorem to find the sum sin z + 5in 2z + .. . + sinnz.
33. For the function u{z,y) = y* - 3=y,

(a) Show that u is barmonic (see Proposition 1.5.12).

(b) Determine a conjugate function y(x, y) such that u + iv is analytic.

34. Consider the function w(2) = 1/z. Draw the level curves u = Re(w(2)) =
constant. Discuss.

35. Determine the four different values of Z that are mapped to unity by the
function w(z) = z*.

36. Suppose that f(z) is analytic and satisfies the condition |f(z)2 - 1| <lina
region Q. Show that cither Re f(z) > 0 or Re f(2) < 0 throughout Q.

37.° Suppose that f : C — C is continuous and that f(z) = f(2z) for all z € C.
Show that f is constant on C.

38. Suppose that f : € — C is entire and that f(22) = 2f(2) for all z € C. Show
tlnt there is a constant ¢ such that f(z) = ¢z for all z. (Yon might want to
use Exercise 37.)
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Chapter 2

Cauchy’s Theorem

An attractive feature of complex analysis is that it is based on a few simple, yet
rwaverful theorems fromn which most of the results of the subject follow. Foremost
among these theorems is a remarkable result called Cauchy’s Theorem, which is
:ae of the keys to the development of the rest of the subject and its applications.

2.1 Contour Integrals

Definitions and Basic Properties To state Cauchy’s Theorem, we first define
“mtour integrals and study their basic propertics.

Let i : [m,4) C R — C be a complex-valued function of one real variable and let
- and © be its real and imaginary parts; that is, set h(t) = u(t) + iv(t). Suppose,
tr the sake of simplicity, that u and v are continnous. Define the integral of h to
*< the complex number

/.. ’ iyt = /: ()t +i / ’ (),

~here the integrals of v and v have Lheir usual meaning from single-variable calenlus.
We want to extend this definition Lo integrals of functions along curves in C.

To accomplish this, we will need a few definitions. A continuous curve or
contourin C is, by definition, a continuous map 4 : [, b} — €. The curve is called
piecewise C! if we can divide up the interval (e, b] into finitely many subintervals
i=ag < ay <...<ap =bsuch that the derivative 4/() exists on each open
sabinterval Ja;,a;41[ and is continuous on [a;, @;4.1]; continnity on [a;, a;41) means
that the limits lintg.q,+ 7'(t) and limg—,,, - 7(t) cxist (sec, for example. Figure
2.1.1). Unless otherwise specified, curves will always be assumed to be continuous
and piecewise C!.

Definition 2.1.1 Supposc that f is continuous and defined on an open set AC C
and that v : [a,b] — C is a piecewise smooth curve sotisfying v([a,b]) C A. The

95
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rib)
70) ) /
/"\ y /y_f)
vais
3 G e B3
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rla)
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Figure 2.1.1: Curves in the complex plane C. (a) Smooth curve. (h) Piecewise C?
curve. (c) Discontinuons curve.

expression
/:, /= [, f(2)dz =:§ ]: . T (0t

is called the integral of [ along 4.

The definition is analogous to the following definition of a line integral from
vector calenlus: Let P(x,y) and Q(z, y) be real-valued functions of z and y and let
7 be a curve. Define

N dx dy
[P+ =3 [ [Peto.srg + e ¥ a

where () = ((t), ¥(t)). The two definitions are rulated as follows.

Proposition 2.1.2 If f{z) = u(z,y) + tv(x,y), then

/ f= / [z, y)dz — vz, y)dy) + i / fu{z,y)dy + v(z, y)dx].
7 " 7

Proof According to the definition we must work out f{7(t))7'(t). We do this as
follows:

JAWOW ) = [ulz(t),y(t)) + fu(=(t). ()] - [='(£) + i’ ()]
= [u(z(t), y(t))='(t) — v(=(t). ¥ W)}y (t)]
+ ifu(z(e), y(E)7 (1) + w(z(2), y())y (B))-

Integrating both sides over fa;,a;41] with respect to ¢ and using definition 2.1.1
then gives the desired result. @&
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The formula in this proposition can easily be rcmembered by formally writing
f(z)dz = (v + iv)(dx + idy) = udz — vdy + i(vdz + udy).
For a curve v : [a,8) — C, we dcfine the opposite curve, —7 : |a,b] — C, by

setting (—7)() = v(a + b — t). The curve —7 is thus 9 traversed in the oppaosite
sense (see Figure 2.1.2).

a4

Figure 2.1.2: Opposite curve.

We also want to define the join or sum or union 5 + 72 of two curves 7 and
«2. Intuitively, we want to join them at their endpoints to make a single curve (see
Figure 2.1.3). Precisely, suppose that v, : [a,b] — C and that 4, : [b,¢] =+ C, with
~1(b) = ya(b). Define 1 +72: [e,¢] —» C by

T (t) if te [d,b]

(m +m)(t) = { 1(t) i tefbd.

Figure 2.1.3: Join of two curves.

Clearly, if 71 and 7 are picoewise smooth, then so is 7y + 72. If the intervals
{a, 8} and [b, ] for 1 and 7, arc not of this special form (the first interval ends where
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the scoond begins), then the formula is a little more complicated, but the special

form will suffice for this text. The general sumn 1y + ... + 7, is defined similarly.
The next proposition gives some properties of the integral that follow from the

definitions given in this section. The student is asked to prove them in Exercise 6

at the end of this section.

Proposition 2.1.8 For (continuous) functions f,g, complez constants c,,c3, and
picccuiise C curves 4,1, 72, the following hold:

(2) [’(Cn!+¢ay)=c|[’f+oz/79
® [ r=-[r

@[ 1= “f+/”f

nn
Of course, more general statements (that follow rom the preceding) conld be

made, namely,
[: ic.-f- = Zn: (q L !-)

fuvwon? =2

=)

and

To compute specific examples it is sometimes convenient to use the formula in
Proposition 2.1.2. However, it may be that we are not given ¥ as a2 map but are
told only that it is, for example, “the straight-line joining 0 to i 4- 1" or “the unit
circle traversed counterclockwise”. To use the definition, we need to choose some
explicit map ~(t) that describes this geometrically given curve. Obviously, the same
geometric curve can be described in different ways, so the question arises whether
the integral f, f is independent of that description.

To answer t;lus question, we use the following definition.

Definition 2.1.4 Let v : [a,b] —+ C be a piecewise smooth curve. A piccewise
smooth curwe ¥ : [n.b] ~ C is called a reparametrization of v if there is a
C! function o : [a.b] — [3,8] with a’(t) > 0,a(e) = &, and a(b) = b such that
7(t) = F(a(t)) (sce Figure 2.1.4).

The conditions ¢’(t) > 0 (hence a is increasing), a(a) = &, and a(b) = b imply
that 7 traverses the curve in the same sense as « does. This is Lhe precise meaning
of the statement, that v and ¥ represent the same (oriented) geometric curve. Also.
the points in [&,b] at which ¥ does not exist correspond under a to the points of
[a. 8] at which o/ does not exist. (This is because o has a strictly increasing C*
inverse.)
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*
o«

el

L1}
~

Figure 2.1.4: Reparametrization.

Proposition 2.1.5 If ¥ is a reparumetrization of vy, then

L=l

for any continuous f defined on an apen sct containing the image of y = image of
3.

Proaof We can, by breaking up [a, }] into subintervals, assume that « is C'. By

definition
[1- /' Fr)y (e

By the chain rule, ¥(t) = dy(t)/dt = d¥(a(t))/dt = ¥ (a(t))o/(t). Let s = a(t) be
2 new variable, so that s =@ when ¢ =@ and s = b when £t =b. Then

b b
[ 1o = [ ra@onvien)aas
'
= [ ey epas.

Changing variables in & complex integral (here, from ¢ to &) is justified by applying
the usual real-variables rule 1o its real and imaginary parts. B

This proposition “justifies” the use of any parametrization 7 that describes a
given oricnted geometric curve to evaluate an integral.! As an example, let us
evaluate fvzdz, where 7 is the straight-line from 2z = 0 to z = 1 + i (see Figure
2.1.5).

Strictly speaking, this statement is not quite correct, since two maps with the same image
need not be reparametrizations of one another. However, they are reparametrizatious if we ignore
points where /(t) = 0. The proposition cu be genoralized to cover this situstion as well, but the
complications that result fromn generalizing it (o cover this case have been omitted to gimplify the
exposition.
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1+¢

Figure 2.1.5: Curve from @ to 1 +i.

We choose the curve 4 : [0,1] — C, defined by v(t) = t + it. OFf course, when
we write 2 in f,' xdz, we mean the function that gives the real part of any complex
number (that is, f(z) =z = Rez2). Thus,

[=e== ] 'Rev(O (t)et

Hence,
1 .
/m::/ (1 + it = 13E
ki o 2

An orientation is often described by saying that “y goes from 2; 10 2;.” However.
if 4 is a closed curve, wilh 2, = 25, we need a different prescription. When solving
examples, where Lhe curves are always easy to visualize, the student should assuine
that 8 closed curve = is traversed in the comnterclockunise direction unless advised
to the contrary.

From caleulus, recall that the arc length of a curve 4 : [a,4) — C is defined by

i) = _/: Iy ()t = f VZ'(t)? + v (t)dt.

Are length, too, is independent of the purmnetrization, by a similar proof to that of
Proposition 2.1.5. The reader should be familiar with the fact that the arc length
of the unit circle is 27, the perimeter of the unit square is 4, so on.

The next result gives an important way Lo estimate integrals.

Proposition 2.1.6 Let f be continuous on an open set A and let 4y be a piecewise
C! curve in A. If there is a constant M 2 0 such that |{(z)| < M for ail points -
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on 7y (that is, for all z of the form «(t) for some t), then

| [1]smen.

L4S£MWI

uhere the latler integral is defined by

More generclly, we have

b
[zt = [ irtaenii .
- a
Proof For a complex-valued function ¢(t) on fa, b}, we have
b
Re / glt)dt = f Reg(t)dt

since f: g(t)dt = f: u(t)dt + i j: v(t)de if g(t) = u(t) +iv(t). Let us use this fact to

prove that
b
/ﬂ o(ydt| < f la(Olde.

*\We learn in calculus how to prove this for g that are real-valued, but here g is
complez-valued.) For. ou: proof, weblet f: g(t)dt = re® for fixed r and 8, where
r >0, so that r = e [ g(t)dt = f, e~*g{t)dt. Thus,

r=Rer=Re f e Og(t)dt = / ’ Re(e~10g(t))d!.

By Proposition 1.2.3(iii), Re(e~g(1)) < |e~¥g(2)| = lg(t)|, since [e~*| = 1. Thus,
J; Re(e=g(t))dt < [ |lo()\dz, so

/; ' g(t)at

Using this and |z2'| = |2||z'|, we get
[1 < [ oo = [ aeir o
R e a

Since |f(7(1))] £ M, the preceding expression is bounded by M f: K (t)dt =

arg f lg(E)l

- | f T OV @t
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This proposition provides a basic tool that we shall use in subsequent proofs to
estimate the size of integrals. The student might try to prove this result directly
in terms of the expression

L-f=['(udx-vdg)+i[,(udy+vdz)

to be convinced that the result is not altogether trivial.

Fundamental Theorem of Calculus for Contour Integrals The Fundamen-
tal Theorem of Calculus is a basic fact in the calculus of real-valued functions. It
says that the integral of the derivative of & function is the difference of the values of
the function at the cndpoints of the interval of integration and that the indefinite
integral of a function is an antiderivative for the function. Both of these assertions

have important analogues for complex path integrals.

Theorem 2.1.7 (Fundamental Theorem of Calculus—Contour Integrals)
Supposc that v : [0,1] — € is a piecewise smooth curve and that F is a function
defined and enalytic on an open set G containing 7y. Assume F' is continuous (later
we will sce that this is redundant). Then

[ Ftaxtz = P - Fiaton.
|
In particular, if ¥(0) = 7(1), then

/ F'(2)dz =0.
b ]

Proof The chain rule and the definition of the path integral will be used to reduce
the problem to the standard Fundamental Theorem of Caleunlus for real-valued
functions of a real variable. Let g,u, and v be defined by

Fq(t)) = g(t) = u(t) + iv(?).

Break the parameter interval into pieces on which 4 is smooth, so, by the chain
rule,

Fi(v(t)7 (t) = g'(t) = /() + i/ (2).



:2.1 Contour Integrals 103

We apply the Pundamental Thearem of Caleulus on each subinterval and get a
selescoping sum:

[Fens = Zj " Faon o
,

= [/m-l u'(t)dt -+ '/am v'(t)dt]

n—1

= Z[u(aﬁ.,) u(a;)] + ife(aiv) — v(as))
3=0

= [u(an) + fv(an)] — [u(eo) + iv(ao)]
= F(y(1)) - F(~0)). &

Using this result can save a lot of effort in working examples. For instunce,
consider {. z%dz where v is the portion of the ellipse 22 4457 =1 that joins 2 =1

wz= 1/2 To evaluate the integral we note that 23 = {(dz*/dz). so

[re=2l Q) 6) - @or--a

Notice that we did not even need to parametrize the curve! By applying the Pun-
damental Theorem of Calculus, we would have obtained the smne answer for any
curve joining these two points. We will investigate the independence of the value
of an integral from the particular path used in the next subscction.

The Fundamental Theorem of Calculus has many applications and ramifications,
one of which is the following proof of a property of open connceted sets, which first
appeared as Proposition 1.5.5. It is the analogue in the complex domain of the
following principle so useful in calculus: A function whose derivative is identically
() is constant.

Corollary 2.1.8 If f is a function defined and analytic on an open connected set
G CC, and if f'(z) =0 for cvery point z in G, then [ is constant on G.

Proof Fix a point 25 in G and suppose that z is any other point in &. By
Proposition 1.4.15 there is a smooth path 4 from 2z, to 2 in G. By Theorem 2.1.7,
1(z)— £(20) = [, £/(€)d¢ = 0. Therefore f(2) = f(za). The value of f at any point
oanstlmsthcsameasn.svalucal.zo That is, f isconstanton &. @

Path Independence of Integrals The idea that an indofinite integral is an
antiderivative does not carry over directly to the camplex domain. What should
we mean by the integral between two points? There arc many possible paths. The
connection comes up in the study of one of the central questions we will study in
this chapter: Under what conditions is the value of an integral independent of which
path is selecled hetween the two points? Consider the following two examples.
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Example 1 Let z5 = 1 and 2z = -1 aud Jet f(z) = 322. Then F(z) =

is an autiderivative for f everywhere in the complex plane. Therefore, by the
Fundamental Theorem of Calculus, no matter what path  we take from 24 to 25
we will have [ f(z)dz = F(z,) - F(20) = 13— (~1)® = 2. The value of the integral
does not depend on the particular path selected, but only on the funclion and the
two endpoints. ¢

Example 2 Again let zp = 1 and 2, = —1, but now take f(z) =1/z. Let 13 he
the upper half of the unit circle from 1 to —1. Then 7, is parametrized hy (L) = e
for 0 <t < 7. Thus,

[ rieyae = /o T I OW e = /o " ettt = i,

Now let 2 be tha lower half of the unit circle from 1 to ~1. Then s is parametrized
by ya(t) =e # for0 <t <wand

[t [ " senhioat = [ (et = i

The vwalues of the integral between 2y and 2, now are different for the two different
paths. @

The dependence on the path in the second example is related to the problem
of antiderivatives. “The" antiderivative of f(z) ought to be log2. As we saw in
Chapter 1, it is possible to definc a branch of the logarithm function that is analytic
along cither one of the two curves, but it is not possible to define consistently a
single branch of the logarithm on an apen set containing both these curves at once.
This way of looking at the difficulty is made precise in the next theorem.

Theorem 2.1.9 (Path Independence Theorem) Suppose [ is a continuous func-
tion on an open connected set G C C. Then the following are equivalent:

(i) Integrals are path-independent: If zo and z, arc any two points in G and
and 1, are paths in G from 2 Lo 2, then

[tz = [ seapa.

™ kil

(ii) Inlegrals around closed curves arc 0: If T is a closed curve (loop) lying in G.
then {. f(z)dz =0.

(iii) There is a (global) antiderivative for f on G: There is a function F defined
and analytic on all of G such that F'(z) = f(2) for all z in G.
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Proof The equivalence of (i) and (ii) is obtained in tbe direction (ii) = (i) by
joining the curves 70 and —)j to form a closed curve T and in the direction (i)
=> (i) by picking two points 20 and £1 along a closed curve and thinking o fil as
made up of two curves from one point to the oilier and then bade to tbe first. Tlie
construction is illustrated in Figure 2.1.G, and tbe computation runs as follows:

[f(x)ds— f f{z)dz + f f(z)dz = f f[z)dz —f f(z)dz.
J Jfu ~n

J—u J-to J

Thus, the integral along tlie dosed loop F is 0 ifand only if the integrals along the
paths 70 and 71 arc equal.

y

The implication (iii) => (i) follows from the Fundamental Theorem. Tlie value
of the integral is F(zj) —F (20) regardless of which path is selected.

To show that (i) => (iii), we will attempt to use an integral ending at z to define
the value of the antiderivative at z. Let .q be any point fixed iu G, and let z be
any other point in G. Since G is open and connected, it is path-connected, and
by Proposition 1.4.15 there is at least one smooth path in G from zoto 2. Let7
be any such path imdset F(z) = f{Qd£. This defines a function F on G ina
nnnambiguous way since (i) says that the value F(z) depends only OlL z and not
on tlie particular jiath selected so long as it stays in G. (Ofcourse, it also depends
on zo, but tliat is fixed for die entire discussion.) We say that F is well defined.
Our remaining task is to check that F is differentiable and that F' = /. Tliis
computation is illustrated in Figure 2.1.7.

Lete > 0. Since G Isopen and / is continuous at z, there isa number 6 > 0
such that the disk D{z',6) ¢ G and |/(£) - /(z)| < c whenever —z\ < S. Suppose
|«i—z| < 6. Connect z to w by a straight-line segment p. Then all of p lies in
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Figure 2.1.7: Defining an antiderivative by an integral.

D(z; 6) and
Fw)- F(z) = f J/«)dC- f f(C)dC= f
*'l+c Jy Jp
Thus,
|F(*1,)-F(2) | _ \F(w)-F(z)-(w-2)f{z)\
| w-z n)\ \w -2\
Np/(C K -/(™)/<HdCl
\w -7\
1J,t/(Q -/(«l
w - 2\
< lengtli(p) ejw~2\
M —z] rd

Thus the limit of the difference quotient is/ (z), so F is differentiable and F* = /.
as desired. =

The reader who is familiar with conservative force fields from vector calculus
may recognize the constructions in the last proof. The integral ofa force field along
a path defines the work done by it (or in moving against it) along that path. The
field is called conservative if the uct work done along a dosed path is always O or
equivalently if the work done between two points is independent of the path taken
between those points. If it is, then such an Integral defines a quantity, called the
potential energy, whose gradient is the original force field.
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Worked Examples

Example 2.1.10 Evaluate each of the jollowing integrals:
a) /zdz (v is the circumference of the unil squarc)
9

b) / e*dz (v is the part of the unil circle joining 1 to i in a counterclockwise
dzract}on)
Solution To solve (a), define 7 : [0,4] — C as follows: y =1 + 12 + 73 + T4
where the four sides of the unit square are
T(t) =t+050<t <1 B)=@-1)+i2<t <3
T)=1+(t-1)31S1<2 () =0+(4-1)i;3<t<4.
We compute as follows:

/ zdz

e {]

/ zdz
”

3 3
L zds = [ IRetmoedt= [ -@-oa=-3

[,‘ zdz L Re(u (e = [ 0de =0,
Hence,

/zdz.—./ zdz+/ zdz+/ zdz-t-/ zdz=-l‘+i--l-+0=i.
v n 2 » vo 2 2

To solve (b), note that e is the derivative of ¢*, and ¢* is analytic on all of C.
Thus, whatever parametrization we use for the part of the umt circle joining 1 to ¥
1n a counterdlockwise direction, we will have [, ¢*dz = ¢ ~ ¢! by the Fundamental
Theorem. A second, less elegant solution is to use the original definition to evaluate
the integral dircetly. Define 9(2) = cost + isint,0 <2 < #/2. Heuce,

12 .
/ efdz = f eomtHtsnt(_gnt + icost)dt
- 0

1 t _ 1 1
/o Re(n (eI, (9t = /o =}
2 2
[ [Re(r()a(t)dt = / idi=i

/2
/ [~e°™* cos(sint) - sin¢ — == sin(sint) - cos t}dt
0

w/2
+1i ./o [~ sin(sint) - sin + ¢*™* cos(sint) - cast)dt

"
= "% cos(sint) |’/ 2 + 8™ siu(sin t)L

= rovttisint lr/2 =cl—el .
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Example 2.1.11 Let -y be the upper half of the unil circle described counterclock-

/_dz
> 4

Solution We use Proposition 2.1.6. The arc length of « is
v
)= [ e =
since we can take q(t) = €',0 < t < x, and (L) = ic™ and thus |[Y(t)] = 1. Of

course, this is what we would expect. The absolute value of ¢*/z, with z = ¢/t =
cosi + isint, is estimated by

< we.

2 t
o <.
z 1

since cast < 1. Thus e = M is a bound for |¢*/2{ along -, and therefore,

: ]
.'2

Example 2.1.12 Let -y be the circle of vadius r around a € C. Evaluate the integrul

[tz-ares
7
Jor all integersn=0,%1,42, ...

< Mi(y) = em.

Solution First, let 2 > 0. Then

is the derivative of an analytic function, so by the Fundamental Theorem 2.1.7,
/(z -a)"-dz=0.
"

Second, Jet n < —2. Then aguin

. d 1
(z—a)" = dzn+1
which is analytic on the set A = C\{a}. (Noto that this formula il if n = —1.)
Since « lies in A, the Fundamental Theoren again shows that [ (z — a)"dz = 0.
Finally, let n = —1. W proceed directly and parametrize ¢ by 4(0) = re® +
6,0 < 8 < 27 (see Figure 2.1.8).

(z-a)™¥,
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o

Figure 2.1.8: Paramctrization of the circle of radius r and center a.

By the chain rule, 7/(#) = ric'?, so

1 2% 1 @ 2%
A= 1 . - : df = i,
_[,z-a /o (re"-i-a)-c"e a0 o $df = 2ui
In summary,
/1(2-11) dz-{ o ne=—1 °
This is a useful formula and we shall have occasion to use it later.
Exercises
1. Bvaluate the following:
€] / ydz, where - is the union of the line segments joining 0 to 1 and then
u; i4+2
(b) / sin 22 dz, where « is the line segment joining 7 +1 to —i
1
(c) / ze® dz, where -y is the unit circle
¥
2. Evaluate the following:

(a) / z dz, where 4 is the union of the line segments joining 0 to i and then
v

toi+2
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(b) f (2 + 22 + 3)dz, where  is the straight-line segment, joining 1 to 2+
ke 4

z-1

1
(c)/ dz, where 4 is the circle of radius 2 centered at 1 traveled once
v
counterclockwise

. Evaluate /(I/z)dz. where « is the circle of radius 1 centered at 2 traveled
)

once counterclockwise.

1
22 =22

dz, where v is the curve in Exercise 3.

: DoesRe{.['fdz} =['Rcfdz?

. Prove Proposition 2.1.3.
. Evaluate the following integrals:

(a) / £dz, where v is the unit circle traversed once in & counterclockwise
d;'rection
(b) / (=2 - y’)dz, where 7 is the straight-line from 0 to ¢
v

8.° Evaluate / #2dz along two paths joining (0,0) to (1,1) as follows:
v

(8) 7 is the straight-line joining (0,0) to (1,1).
(b) - is the broken line joining (0,0) to (1,0), then joining (1,0) to (1,1).

In view of your answers to (a) and (b) and the Fundamental Theorem, could
Z be the derivative of any analytic function F(2)?

9. Find a number A such that

<M,

/ dz
y 24 2%

where « is the upper half of the unit circle.

10.® Let C be the arc of the circle |z] = 2 that lies in the first quadrant. Show

that

dz T
< -
_/(:-z"-i-l -3

11. Evaluate the following:
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(a) " %; /|; - i‘izi'; »/I=I=' Iﬁz'; ./|-=|=1

(b) / 22dz, where  is the curve given by 7(2) = ei*sin®4,0 < ¢ < /2.
b 4

dz

2

12. Let v be a closed curve lying entirely in the set C\{z | Rez < 0}. Show that
/(l/z)dz=0.
.

13. Evaluate / zsin22dz, where 7 is the unit circle.
v

14. Give some conditions on a closed curve y that will guarantee that [ (1/2)dz = 0.
v

15. Let ¢ be the unit circle. Prove that
sin 2z
[,

1G.* Show that the arc length I(7) of 2 curve 1y is unchanged if -y is reparametrized.

< 2%e.

2.2 Cauchy’s Theorem—A First Look

One form of Cauchy's Theorem states that if y is a simple closed curve (the word
~imple” meaning that + intersects itself only at its endpoints) and if f is analytic
on and inside v, then
/ [=0.
y

This remarkable theorem lies at the heart of complex analysis, and this section
is devoted to its proof (see Figure 2.2.1).

If the function f is not analytic on the whole region inside %, then the integral
may or may not be 0. For example, let -y be the unit circle and f(z) = 1/z. Then
[ is analytic at all points except 2z = 0, and indeed the integral is not zero. In fact,

-['f=21ri

by Worked Example 2.1.12. On the other hand, if f(z) = 1/22, then f is still
analytic at all points except z = 0, but now the integxal s 0. This value of 0 results
not from Cauchy's Theorem: f is not analytic everywhere inside y—but rather
from the fact that f has an antiderivative on C\{0} namely, f is the derivative of
—1/z. More generally, the Path Independcnce Theorem 2.1.9, shows that Cauchy’s
Theorem is valid if there is an antiderivative of f. This is made explicit in Theorem
225.
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f analytic
N here

Figure 2.2.1: Cauchy’s Tlieorem: fyf —O.

Green’s Theorem Our proofof Cauchy’s Theorem uses Green’s Tlieorem from
vector calculus, whicli states tliat, for continuously differentiable functions P(x,y)

and Q(x,y),

Recall tliat if 7 : (a,6] -» C,7(t) = (x(1),y(1.)). then we define tlie line integrals by

and

hi Green’s Tlieorem, A represents the “inside” of 7, 7 is traversed in a counter-
clockwise direction, and P and Q are sufficiently smooth- class C 1issufficient, but
we shall take a closer look at this later.

Green’s Theorem is a fundamental result from multivariable calculus that ev-
ery student should know. Recall tliat the basic idea of the proof is really quite
simple: We use tlie technique of evaluation of multiple integrals by iterated inte-
gration (whicli in turn is related to equality of mixed partial derivatives) and the
Fundamental Tlieorem of Calculus.3

Pari of tlie job of developing a context for Green’s Theorem is to make precise
notions like the inside of 7. Intuitively, the meaning of “inside” should be clear.
We shall come back to issues like this as wc proceed.

2See a calculus text such ns J. Msradcn nnd A. Weinstein, Calculus JII (New York: Springer-
Vcrlag, 1985), 908-911, or J. Mnrsdnn nnrl A. TVomba, Vector Galetdtta, Fourth Edition (New
York: W. H. fVaamui and Company, 1990), 88.1, for a proofof Green’s Theorem.



§2.2 Cauchy’s Theorern—A First Look 113

Preliminary Version of Cauchy’s Theorem The following statement is pre-
liminary in the sense that it assumes that a satisfactory context for Green’s Theorem
has been developed. We will come back to this point and make things more precise
in due course.

Theorem 2.2.1 Suppose thal [ is analytic, with the derivative [’ continuous on
and inside a simple closed curve v. Then

/1f=0.

Proof Sotting f = u + iv, we have
& tL'{'-— u+'v d‘l.'+d

= /(udz - vdy)-i-i/(ndy'*'"d”)-
L b

By applying Green's Theorem to each integral, we get

[= [ -5 -Bleea ][5 5] o

Both terms are zero by the Cauchy-Ricinann equations. B

A closer Jook at the proof of Cauchy’s Theoremn given in §2.3 shows that one
nved not assume that f/ is continuons. Amazingly, the continuity of f' follows
automatically, but this is not obvious.

We also need Lo do some additional chares, such as eliminating the assumption
that the curve is simple. In mauy cases, the assumption of simplicity of the curve
can be avoided hy vicwing the path as being made up of two or maore simple pieces.
Iu Figure 2.2.2, the “figure eight” can be treated as two simple Joaps. We will
discuss this in §2.3 as well.

Here is a simple oxample of Cauchy’s Theorem. Let 4 be the unit square and
f(2) = sin(e*’). Then £ is analytic on and inside + (in fact, f is entire), sof f=0.

Deformation Theorem [t is important to be able to study functions that are
not analytic on Lhe entire inside of ¢ and whose integral therefore might not be zero.
For example, f(2) = 1/z fails to be analytic at 2 = 0, and [, J = 2#i where 7 is the
unit circle. (The poiut z = 0 is called a singularity of f.) To study such functions
it is important to be able to replace f iy f J. where 7 is a less complicated
curve (say, a circle). The strategy is l.hat. LT mlght. he ecasier Lo cvaluate. The
procedure that allows us Lo pass from « to'yn.basedon Cauchy’s Theorem and is
as follows.
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Figure 2.2.2: Treating a nonsimple curve as made up of several simple loops.

Theorem 2.2.2 (Preliminary Version ofthe Deformation Theorem) Letf
be analytic on a region A and let j be a simple closed curve in A. Suppose that
7 can fee continuously deformed to mother simple closed curve 7 without passing
outside the region A. (We say that 7 is homotopic to 7 in A.) (The precise def-

inition of ‘“homatopic* is given in 8£.5, and the assumption the curves are simple
will feeeliminated.) Then

0

The Deformation Theorem is illustrated in Figure 2.2.3.

Figure 2.2.3: Deformation theorem.

Notethat/ need not be analytic inside 7, so Cauchy’s Theorem does not iinpiy
that the integrals in the preceding equation are zero. It is implicitin the stateiuen:
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r'fthe Deformation Tlieorem that both 7 and 7 arc traversed in a counterclockwise
lirection. As with Cauchy's Theorem itself, wc will come bade to this theorem in
*he next section and have a closer, more careful look at the notion of “deformation”
as well as a more careful look at tlie following proof.

Proof Consider Figure 2.2.4, in which a curve 70 is drawn joining 7 to 7; we
assume such a curve can in (act be drawn (it can in all “practicuT examples). We
set a new curve consisting of 7, then 70, then —7, and then —%0. in that order.

Figure 2.2.4: Curve used to prove the Deformation Tlieorem.

Tlie inside of tliis curve is the shaded region in Figure 2.2.4. Tlie function / is,
by assumption, analytic on this region, so Caudiy’s Theorem gives

Thus, f = f. J as required. Strictly speaking, this new curve is not a simple
closed curve, but such an objection can be taken care of by drawing two parallel
copies of 70 and taking the limit as these copies converge together. =

Simply Connected Regions Aregion A C C iscalled simply connected if A
is connected and every closed curve 7 in A can be deformed in A to some constant
current) = zg€ A: wealsosaythat7 ishomotopic to a pointoris contractible
to a point Intuitively, a region is simply connected when it has no holes; this is
because a curve that loops around a bole cannot be shrunk down to a point in A
without leaving A (sec Figure 2.2.5). Therefore, the domain on which a (unction
like f(z) —1/z, which has a singularity, is analytic is not simply connected.

Wec can rewrite Cauchy’s Theorem in terms of amply connected regions as
follows.
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Figure 2.2.3: (a) Simply connected region, (b). (c) Non-simply connected regions.

Theorem 2.2.3 (Cauchy’s Theorem for a Simply Connected Region) |ff
is analytic an a simply connected region G andy is a closed curve in G, then

Independence ofPath and Antiderivatives Inthe Path Independence Theo-
rem 2.1.9 wc saw how to relate the vanishing of integrals along dosed curves to path
independence of integrals between points and to the existence of antiderivatives on
regions. We can exploit these ideas in the present context.

Proposition 2.2.4 Suppose that f is analytic on a simply connected region A.
Then for any two curves 71 and 72 joining two points zg and z\ in A fas in Figun
2.2.6), we have

/m

Figure 2.2.G: Independence of path.
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Proof * Consider the closed curve 4 = 72 — ;. By Cauchy's Theorem,

0=L!=LI—LL
/;,I=[nf,

and therefore,

as roquired. @

Just as in Theorem 2.1.9, we also get the cxistence of an antiderivative for f on
the region.

Theorem 2.2.5 (Antiderivative Theorem) Let [ be defined and analytic on a
simply connccted region A. Then there s an analylic function F defined on A that
ts unique up to an addilive constant, such that £'(z) = f(z) for all z in A. We call
F the antiderivative of f on A.

Proof The existence of the antiderivative follows from the Path Indepandence
Theorem 2.1.9. (Strictly speaking. we should get rid of the assumption of simple
curves first.) The uniqueness assertion means that if Fg is any other such function,
then Fy(z) = F(2) + C for some constant C. This follows because the region A is
connected and

(Fo—FY(2) = Fy(2) - F'(z) = f(z) - f(z) =0

for all z in A. Thus, Fy — F is constant on A by Corollary 2.1.8. B

More on the Logarithm If A is nol simply connected, the conclusions of the
preceding proposition need not. bold. For example, if A = C\{0} and f(z) = 1/z,
there is no F defined on all of A with F* = f since the integral of f around the
unit circle is not zero (see Example 2.1.12). In some sense, F ought to be the
logarithm, but we cannot define this in a consistent way on all of A. However, on
any simply connected region not containing 0 we can find such an F as the following
proposition shows.

Proposition 2.2.6 (Existence of Logarithms) Let A be a simply connected re-
gion and assume that 0 ¢ A. Then there is an analytic function F(z), unique up
to the addition of multiples of 2xi, such that e¥'*) = 2,

3n this proof we assume that v is a simple closed curve. Wa will show in the noxt section that
this is not necessary.
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Proof By the Antiderivative Tlieorem 2.2.5, there is an analytic function F with
F'(z) ss1/z on A. Fix a point zq 6 A. Then zo lies in the domain of some branch
of the log function defined in §L.G- If wc adjust F by adding a constant so that
F(zq) —logzo, then at *n,eF* = zo. We now want to show that cFW = z istrue
on all of A. *Ibdo this, wc letg(z) = cF*fz. Tlicn, since 0 A,g is analytic on
A, and since Ft(z) = 1/z,

*. I . !.**<*>
g(z)= —S —= ssO.

Thus g isconstanton A. Butg = latzo,sogislonallofA. Therefore,e* =z
on all of A.

For uniqueness, let F and G be functions analyticon A and suppose that =
z and ex*) = z. Then = 1, s0 at a fixed zo,F(zo) —G(Zo) —2ir»* for
some integern. ButF'(z) = 1/z = C'(z), so wc have d(F - G)/dz —0, from which
wc conclude (from the fact that a function with zero derivative on a connected
region is a constant) that F —G = 2miion all of A m

We write F(z) = logz and call such a choice of F a branch o f the logarithm
function on A. Clearly, this procedure generalizes that in 81.6 and we get the
usual log as defined in that section if A is C minus 0 and tlie negative real axis.
Note that this A is simply connected. However, the A in this proposition can Ih>
more complicated, as depicted in Figure 2.2.7.

Y

Figure 2.2.7: A possible domain for thu log function.
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Worked Examples

Example 2.2.7 Evaluate the following integrals:
ra /e’dz, where  is the perimeter of the unil square

A
m/l/z’dz,mc-yisﬂwunitdmle
i
u/l/zdz, where 7 is the circle 3+ €9,0< 0 < 2%
o

dy /z’az, where  is the segment joining 1+ to 2
]

Solution To solve (a}, notice that e° is entire; thus, by Cauchy’s Theorem,
s e’dz = 0, since 7 is a simple closed curve. Alternatively, e® is the derivative
£ ¢*, and since v is closed we can apply the Path Independence Theorem 2.1.9.
To evaluate the integral in (b), note that 1/z? is defined and analytic on C\{0}
and is the derivative of —1/z, which is defined and analytic on C\{0}. By the Path
iadependence Theorem 2.1.9 and the fact that the unit circle lies in C\{0}, we have
1. 11/2%)dz = 0. Altcruatively, we can use Worked Example 2.1.12 for our solution.
Next, we solve (c). The circle ¢ = 3 + ¢*?,0 € @ < 2%, does not pass through
v or include 0 in its interior. Hence 1/2 is analytic on 4 and the interior of 7, so
by Cauchy’s Theorem, [ (1/z)dz = 0. An alternative but less dircct solntion is the
tllowing. The region {z+ iy | z > 0} is simply connected and 1/z is analytic on it.

Therefore, by Propasition 2.2.6, 1/z is the derivative of some analytic function F(2)

sne of the branches of log 2) and thus, since v is closed, the Path Independence
Finally, to cvalunte the integral in (d), note that 22 is entire and is the derivative

o 23/3, which is also entire. By Theorem 2.1.7,

Example 2.2.8 Use the Deformation Theorem to argue informally that if «y is e

simple closed curve (not necessarily a circle) containing 0, then

Solution The inside of iy contains 0, so we can find an r > 0 such that the circle

¢ of radius r and centered at 0 lies entirely inside 4. Qur intuition tells us that

A = C\{0} of analyticity of 1/2; see Figure 2.2.8). Therefore, the Deformation

Theorem and the calculation in Worked Example 2.1.12 give the required answer:

Theorem gives [ (1/2)dz =0.
14 @ e+ _10 2%
.[,zzdz- 32 W3 3 33
/1¢z=2m'.
vz
we cau deforin  to § without passing through 0 (that is, by staying in the region
/-l-dz=/ldz=2m'.
3 z 5 4
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Figure 2.2.8: Deformation of 7 to the circle 7.

Example 2.2.9 Outline aproofofthefollowing extension ofthe Deformation The-
orem: Suppose that 71,-.. ,7n ore nonoverlapping simple closed curves and that
is a simple dosed curve with f analytic on the region between7 and71,... ,7,, (set
Figure 2-2-9). Then

Figure 2.2.9: Generalized Deformation Theorem.
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Solution Drawcurves71,72.... ,7njoining7to7).... ,7,,, respectively, as shown
-ii Figure 2.2.10(left). Let p denote tlie curve drawn in Figure 2.2.1Q(riglilj. The in-
side of p isa region ofaiialyticity of/, so f = 0. Butp consistsof7,—71, —ft,...,

and each 7t traversed twice in opposite directions, so the contributions from
*hese last portions cancel. Thus,

O=[/+ [ _I+---4l 1= 11-E[]

J —in It EYRAR

t- required.

Figure 2.2.10: Path used to prove the Generalized Deformation Tlieorem.

Example 2.2.10 Letf(z) be analytic on a simply connected region A, except pos-
sibly not analytic at za € A. Suppose, however, that f is bounded in absolute value
near zo- Show that, for any simple closed curve 7 containing zq,/7/ = 0.

Solution Let«> 0 and small enough so that tbe circle 7, of radius ¢ and center
zo lies inside 7. By the Deformation Theorem,

[

By assumption there is a constant M with |/(s)| < M near zq. Thus, if ¢ is small
enough to make this estimate valid, then

< 2 oM.

This holds for all small enough positive t. Letting c approach 0. we conclude that

[ /=<>e
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Exercises
1. Evaluate the following integrals:

(=) / (23 + 3)dz, where 4 is the upper half of the unit circle
Y

(b) / (= 4 3)dz, where « is the unit circle
Y

() /e”'dz", where 7 is a circle of radius 3 centered at 5i 4 1
]

(d) / cosf3 + 1/(z — 3)]dz, where v is a unit square with comers at 0, 1, 1+,
e
and ¢

2. Let -y he a simple closed curve contsining 0. Argue informally that

1
»/:r ;dz =0.
3. Let f be entire. Evaluate
2 . A
J(20 + rc®)c*%do
0

for k an integer, k > 1.

4.° Discuss the validity of the formula log z = logr + 0 for log on the region A
shown in Figure 2.2.7.

5. For what simple closed curves y does the equation

/ dz =0
2zl

6. Bvaluate f (2 = (1/2))dz, where « is the straight-line path from 1 to i.
7

7. Does Cauchy’s Theorem hold separatcly for the real and imaginary parts of
J? If so, prove that it does; if not, give a counterexampie.

hald?

8.° Let 1 be the circle of radius 1 and let 4, be the circle of radius 2 (traversed
counterclockwisc and centered at the origin). Show that

dz _ dz
/;, 23(z2+10) [,, 23(22 +10)°
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9. Evaluate | /zdz, where 5 is the upper half of the unit circle: first, directly,
and smond’: using the Fundamental Theorom 2.1.7.

10.° Evaluate / V22 — 1 dz, where 7 is a circle of radius % centered at 0.
.

11. Evaluate

/ 222 - 15z + 30 s
y 22 = 1022432 -32 '

whare 4 is the circle |2| = 3. Hint: Use partial fractions; one root of the
denominator is z = 2.

2.3 A Closer Look at Cauchy’s Theorem

In this section we take another look at somic of the issues that were treated in-
forinally in the previous section. The sirategy is to start by carcfully examining
Cauchiy’s Theorem for a rectangle and then to use the theorem in this special case.
rogether with subdivision arguments, Lo build up Lo more general regions in a sys-
tematic way.

Recall that the basic theme of Cauchy’s Theorem is that #f a function is analylic
ereryuhere inside a closed conlour, then ils integral around that contour must be
. The principal goal of this section is to give a proof of a form of the thecrem
known s a homotopy verston of Cauchy’s Theorem. This approach extends and
sharpens the iden presented in the preceding section of the continuous deformation
of & curve. The primary objective will be the precise formnlation and proof of
deformation theorems which say, roughly, that if a curve is continuously deformed
through a region in which a function is analytic, then the integral along the curve
.locs not change. The reader will also notice that in this section references are made
not to “simple closed curves” but only to “closed curves.”

Cauchy’s Theorem for a Rectangle We begin with a careful statemont of
Canchy's Theorem in this case.

Theorem 2.3.1 (Cauchy’s Theorem for a Rectangle} Suppose R is a reclan-
gular path with sides parallel Lo the azes and that [ is a function defined and analytic
on an open set G containing R and its interior. Then [, f =0.

There are several methods Lo prove Cauchy'’s Theorem for a rectangle. One way,
which fits the spirit of the previous section, is to prove a strong version of Green'’s
Theorem fur rectangles®. Another technique, the one that we follow, is a bisection
technique due to Edouard Gonrsat in 1884. It was Goursat® who (irst noticod that

4F. Ackor, The missing link, Mathematienl Intefligencer, 18 (1996), 4 9.
5 Acta Mathematica, 4 (1854), 197 200 and Transactions of the American Mathematical Soci-
ety, 1 (1900), 14-16.




124 Chapter 2 Cauchy’s Theorem

ane does not ueed to assume that the derivative of f is continuous. Surprisingly,
this follows auiomaticaily, which is a rather different situation than that for real
functions of several varinbles.

Besides these techniques, there have been many other proofs of Cauchy's The-
oremn. For example, Pringshcim® nses triangles rather than rectangles, which has
some advantages. Cauchy's original proof (for which the assumptions of continnity
of the derivative were not made clear), bad the content of Green's Theorem im-
plicit in the argument—in (act Green did not formulate Green's Theoran as such
until about 1830, whereas Cauchy presented his theorem in 1825.7 There are also
interesting proofs based on “homology” given by Alifors.®

Local Version of Cauchy’s Theorem Before proving Cauchy’s Theorem for
a rectangle, we indicate how il can alrendy be used Lo prove a limited but still
important and more general case of Cauchy’s Theorem,

Theorem 2.3.2 (Cauchy’s Theorem for a Disk) Supposc that f : D — C is
analytic on a disk D = D(zq;p) C C. Then

(i) [ has an antiderivative on D: that is, there is a funclion F : D — C thel is
analytic on D and thal salisfies F'(z) = f(z) for all z in D.

(i) IfT is any closed curve in D, then f. f =0.

From the discussion in §2.1 on the path independence of integrals (see Theorem
2.1.9), we know that (i) and (ii) are equivalent in the sense that whichever we
establish first, the other will follow readily from it. Qur problem is how Lo obtain
cither one of them. In the proof of the Path Independence Theorem 2.1.9, it was
shown that (ii) follows easily from (i), and the construction of an antiderivative
to get (i) was [acilitated by the path independence of integrals. The strategy for
proceeding is quite interesting.

1. Prove (ii) directly for the very special case in which T is the boundary of a
rectangle.

2. Show that this limited version of path independence is enough to carry out
a construction of an antiderivative similar to that in the proof of the Path
Independence Theorem.

3. With (i) thus established, part (i} in its full generality follows as in the Path
Independence Theorem.

8 Tvansactions of the American Mathematical Society, 2 (1902)
7In his AMfénmre sur les intdgrales définies prises entrv: des limites imaginames.
8L. Ablfors, Complex Analysis. Second Edition (New York: McGraw-Hill, 1966).
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roofof Cauchy’s Tlieorem for a Rectangle A subtle technical point worth
epeating: Care must be taken because wc do not know in advance that the deriva-
w of/ is cont.inuous. In bud, we will use Cmidiys Theorem itself to eventually
rove that /' is automatically continuous. Now lei’s gel down to the proof.

Let P be tlie perimeter of R and A tlie length of its diagonal. Divide the
rrtaugle R into four congruent smaller rectangles and RW. If
ich isoriented in the eountcrdodbrisc direction, then cancellation along common

iges leaves

ince

aere must be at least one of tlie rectangles for which | /| > $1/ B/ |. Call this
abrectangle Jtt. Notice that the perimeter and diagonal of Rj arc half those of R

Figure 2.3.1).
]

Figure 2.3.1: Bisection procedure.

Now repeat this bisection process, obtaining a sequence f?j, J22,R3.... ofsmaller
nd smaller rectangles that have the following properties:

(ii) Perimeter(R,,) = — perimeter(R) - —
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(iii) Diagonal(iZ,,) =

Figure 2.3.2: Gounsat’s repeated bisection process for tbe proof of Cauchy’s Theo-
rem for a rectangle.

Since these rectangles are nested oue within another and have diagonals tending
to 0, they must shrink down to a single point vig. To be precise, let z,t be the tipper
left-hand comer of R*. If m > n, then \z,t —z,,t\ < diagonal (fin) = A/2n, and
thus {z,} forms a Cauchy sequence that must converge to sonic point w$. If z is
any point on the rectangle fin, then since all z* with k> n are within R,,.z can lie
no farther from wo than the length oftlie diagonal orR,,. Thatis, [z—wo| < A/2"
for zin R t.

Rom (i) wc see that |fRf\ <4B|/R>/|. To obtain a sufficiently good estimate
on the rightside ofthis inequality, we use the differentiability of/ at the point ti*i.

Fore > 0, there isa number 6 > 0 such that

|1(*)-1(wa)
J z-Wo

<c
whenever |z - wWO| < 6. If we choose n large enough that A/2'1is less than St then

[/(z) - I(w0) - (z- wo)/'(wO)l < ejz- wo| < e—
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ior ull points z on the rectangle R,. Furthermore, by the Path Independence
Theorem 2.1.9,

/1dz=0 and /R(r.—wo)dz==0.

Since z is an antiderivative for 1, (z — wp)*/2 is an antiderivative for (z — wp), and
she path R, is closed. Thus,

= <l

= | [ steria son) a2~ e /R'(z-wo)dzl
e|[ ver- s - - o) (onlls]

A

< g /R‘ 1f(2) - Flwn) — (z — wo)f" (o)l 1dz|
< 4" (-26%) - perimeter (R,,)
< €AP.

Since this is true for every ¢ > 0, we must have | [, f| =0 and so fof =0, as
iesited. B

Back to Cauchy’s Theorem on a Disk For moast of the rest of this section,
~curve” means “piecewise C? curve.” However, at one point in the technical devel-
-spment it will become important to drop this piccewise C? restriction and consider
~ontinuous curves.?

We can now carry out the second step of the proof of Cauchy’s Theorem for a
disk (Theorem 2.3.2). Since the function f is analytic on the disk D = D(zg; p),
the result for a rectangle just proved shows that the integral of f is 0 aronnd any
rectangle in D. This is enough to carry out a construction of an antiderivative for
f very much like that done in the proof of the Path Independence Theorem 2.1.9
and thus to establish part (i) of the theorem.

We will again define the antiderivative F(2) as an integral from 2 to 2g. However,
we do not yet know that such an integral is path independent. Instead we will
specify a particular choice of path and usc the new information available— the
analyticity of f and the geometry of the situation together with the rectangular
case of Cauchy’s Theorem —to show that we get an antiderivative. For the duration
of this proof we will use the notation {{(a, b)) to denote the polygonal path proceeding
fromn a point a to a point b in two scgments, first parallel Lo the x axis, then parallel
to the y axis, as in Figure 2.3.3.

#The technical treatinent of integration over continuous curves i given in the Intemet Supple.
ment,
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—

N

Figure 2.3.3: The path (a,b)).

If the point b is in a disk D{a; §) centered at a, then the path {{a, b)) is contained
in that disk. Thus, for z € D, we may define a function F(2) by

F(z) = /« e

We want to show that F'(z) = f(z). To do this we need to show that

o = FO)=F@ _

weg w—2z

Fixing z € D anl ¢ > 0, we use the fact that D is open and f is continuous on D to
choose § > 0 small enough that D(z;8) C D and |f(z) - f(€)] < ¢ for € € D(z;6).
If w € D(z;8), then the path {z,w)) is contained in D(z;4) and hence in D. The
paths {(zy, z)) and {2, ) are also contained in D, and these three paths fit together
in a nice way with a rectangular path R also contsined in D and having one comer
at z; see Fignre 2.3.4. We can write, for the two cases in Figure 2.34,

f«w» F(€)e & fnf (€)de + f« OV = [« oy T

By the Cauchy theorem for a rectangle, [ £(£€)d€ = 0, so the preceding equation
becomes

F(z) + j« o, JO = Flw).

Neither side of the right triangle defined by {(2,w)) can be any longer than ite
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w
2z
R
%

Figure 2.3.4: T'wo pussible configurations for R, 2y, 2, and w.

kvpotenuse, which has length |2 — w|, so leagth({z, w)}) < 2|2 — w|, and thus

1
lw - 2|

1

1
. /« UCRICT

F(w) - F! (z)
u -

- f(z)

f €V - J(2)w — 2)
{(=z20))

2]
< ITI_zT / (&) - SNz
S o zlelmgth(((z,w)))s ‘e~2lm-z|=2¢
Thus,
Jm =TT - g

and therefore F'(z) = f(z), as desired. This cstablishes part (i) of the theorem,
Since f has an antiderivative defined everywheie on D and « is a clased curve in
D, we have f. f = 0 by the Path Independence Theorem 2.1.9. This establishes
part (ii) of the theorem and so the proof of Cauchy’s Theorem in 2 disk (Theorem
2.3.2) is now complcte. W

Deleted Neighborhoods For technical reasons that will be apparent in §2.4, it
will be useful to bave the following variant of Cauchy’s Theorem for a reclangle.

Lemma 2.3.3 Suppose that R is a rectangular path with sides parallel to the azes,
thel f is a function defined on an open set G containing R and #ts interior, and
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lhat f is analytic on G except at some fixed point z\ in G which is not on the path
R. Suppose that at zj, the function f satisfies lim .-.-,(z —z\)f(z) — 0. Then
J«[=>» -

Notice that the limit condition in this lemma holds under any of the following
three situations:

(i) If/ is bounded in a deleted neighborhood of zi
(if) 1f / is continuous on G
(iii) If f(z) exists

Proof If Z] is outside R, then the situation is really just that of the Cauchy
theorem for a rectangle (Theorem.2.3.1), so wc may assume that is in the interior
of E Forr > 0, there is a number S > 0 such that |2-*ill/(*)J < c whenever
iz-z,| < S. Chouse S small enough to do this and so that the square S of side
length S centered at zj lies entirely within R. Then everywhere along S we have
\f(2)\ < ¢/\z—zj|. Now divide R into nine subrcctangles by extending the sides of
S, as shown iu Figure 2.3.5.

Figure 2.3.5: Construction of S and subdivision of R for the proofofLemma2.3.3.

By Caudiy’ Theorem for a rectangle, the integrals of / around all eight of tlie
subrectangles other than S are 0,so fs f = fR/. Butalong S we have

2c

ol <2251 si2 s

since |z —Zj| > S/2 along $. Thus,

length (5)3 = 46’(‘)— —8e.
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Therefore, \!n I\ = 1JS/I < 8 forevery e > 0. Thus we musthave |/n/| = Oand
sofRJ =0, asdesired. m

IT we strengthen the assumption ou / and assume that it Is continuous at zi,
then we can drop the stipulation that z\ not be on the path 72

Lemma 2.3.4 Suppose that R is a rectangular path with sides parallel to the axes,
that f is a function defined and continuous on an open set G containing R and
its interior, and that f is analytic on G except at some fixed point z\ in G. Then

The only real problem is to make sure that the integral is well behaved if tlie
rectangle 72 happens to pass through zj. In that case, the subdivision is a little
different, but the estimntes are simpler.

Proof Againlete > 0. Wc may choose S so that [f(z) —/(zi)| < e whenever
2 —zi\ < 6. Adding a constant to /, we may assume f(zi) —0. If zj is not on
R. then Lemma 2.3.3 applies. Ifitison 72 let S be halfa square of side i, und
subdivide 72as shown in Figure 2.3.6.

y

Figure 2.3.6: What happens If zt lieson 72
By Caudiy's Theorem for rectangles, the integrals of / around all five of the

subrectangles other than 5 are 0, so fs f —fRf. Along S wc have |/(z)| < t.
Thus, if we alsorequire 6 < 1/3, we get

|/ /j < length (S)e =*3Se<e.

Therefore, I/»/1 = 1/s /1< €for every e > 0, so we must have \fRf\ ~ 0- Thus,
fRf ~ 0, as desired. m
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Strengthened Cauchy’s Theorem for a Disk If we use Lemma 2.3.4 instead
of Cauchy’s Theorem for a rectangle in the proof of Cauchy’s Theorem for a disk,
we obtain the corresponding conclusions.

Theorem 2.3.5 (Strengthened Cauchy’s Theorem for a Disk) The conclu-
sions of Cauchy’s Theorem for a disk (Theoremn 2.3.2) hold if we assume only that
the function [ is conlinuous on D and analytic on D\{z,} for some fixed z, in D.

Notice that cantinuity at z, is assumed. Again this is necded to apply Lemma
2.3.4 and to wake surc that the integral [ f is defined even if 7 passes throngh 2;.
Notice also that a more complicated bul parallel version of the same argument will
prodace the same conclusion if the number of “bad™ points in G is finite instead of
just one.

Homotopy and Simply Connected Regions To extend Cauchy’s Theorem
to more general regions than disks or rectangles and to prove the deformation
theorerus, we Brst clarify the concept of deforming curves or homotopy that was
discussed iuformally in §2.2. There are two situations to be treated: two different
curves between the same two endpoints and two closed curves that might not cross
at all. For couvenience we will assnme that all curves are parametrized by the inter-
val [0, 1] unless specified otherwise. (This can always be done by reparasnetrizing
if necessary.)

Definition 2.3.6 Suppose v : [0.1] — G and m : [0,1] — G are two continvous
curves from zg Lo 2y in a sel G. We say that <4y is homotlopic with fized end-
points to 4, in G if there is a continuous function H : [0,1] x [0,1] — G from the
unit square [0, 1] x [0,1) into G such that

(i) H(0,t) = yft) Jor 0t
@) HL.)=m({) for 0<i<L
(iii) 11(s.0) =2 Jor 0<s<1.
(iv) H(s.1) =2z Jor 0<s<l.

The idea behind this definition is simple. As s ranges from 0 Lo 1, we have a
family of curves that continuously change, or deform, from 9p to 7. as in Figure
2.3.7. The reader should be aware that the picture need not be as simple in appear-
ance as this illustration. The curves may twist and turn and cross over themselves
or each other. No assumption is made that the curves are simple, but usually this
does not matter. A little more notation inay make the matter clearer. If we put
7{t) = H(s,t), then each v, is a continuous curve from 2z to 2z; in G. The initial
curve is 7y, and it corresponds to the left edge of the unit square. The final curve
is 7, and it corresponds Lo the right edge of the square. The entire boltom odge
goes to 2g and the entire top edge to 2;. The curves 7, arc a continuously changing
family of intermediate curves.
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Figure 2.3.7: Fixed-endpoint homotopy.

For gample, the straight-line segment from 0 to 1 + £, which is parametrized
bv 70(t) = ¢ + ¢, is homotopic with fixed endpoints to the parsholic path from 0
to 1 + ¢ parametrized by v (2) = £ + £%; see Figure 2.3.8.

¥ 1+¢

T

Y:

Figure 2.3.8: A straight-line path and a parabolic path from 0 to 1 +1.
One possible homotopy from one curve to the other is
H{s,t) = t +t1*%.

There is more than one way to get a homotopy between these curves. Another way
makes H(s,t) follow the straight-line between ¢ 4 &i and ¢ + ¢%i:

H(s.t) = s(t + t2i) + (1 = s)(L + i) =t + [st* + (1 — s)4Js.

A slightly different definition i called for in the deformation of one closed curve to
ancther,

Definition 2.8.7 Supposc v : [0,1] = G and 1, : [0,1] = G are two continuous
closed curves in a set G. We say that yp and1y are homotopic as closed curves
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in G if there is a continuousfunction H : [0,1) x O,lj —»G from the unit square
(0,11 X |0, 1) into G such that

(i) H(Q,t) —7o(t) for 0<1<1.
(i) H(l,t)=7i(0 for 0<f < 1.
(iii) /f(s,0) = H(s, 1) for O0<s<l|I.

Again, if we put 7*(t) = then eadi 7, is a continuous curve in G. Tlie
third condition says that cadi of them is a closed curve; see Figure 2.3.9.

Figure 2.3.9: Closed-curve homotopy.

For example, the unit circle can be parametrized by 7«(t) = cost 4-isinf and
the ellipse z2/4 4-y2 = 1 by 71(1) = 2cost 4*isint. These curves are homotopic
as closed curves in the annulus G — {z | £ < |z| < 3}. One possibility for the
homotopy is /7 (s,t) = (14-s)cost4-isint. (Sec Figure 2.3.10.)

If the hole were not in tlie middle of G in Figure 2.3.10 but we had instead
the solid disk D = {z such that |z| < 3}, then cither of the two curves could he
continuously deformed down to a point. For example, H(s,t) = (J —a)7o(t) it
a homotopy tliat shrinks the circle 70 down to a constant curve at the point O.
Hie intermediate curves 7* arc circles of radius (1 —s) centered at 0. If 70 were
any other curve in D, then the same definition on H would give a. homotopy that
continuously changes the scale of the curve until it shrinks down to a point. Thus
any curve in D is homotopic to a point in D. Ifthere were a hole in the set as then-
is in the annulus in Figure 2.3.10, then this shrinidng procedure could not be done-
if the curve surrounded tlie hole. This leads us to a more precise definition of the*
notion ofsimply connected regions that was introduced informally in §2.2.
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—

Figure 2.3.10: A circle homotopic to nil ellipse.

Definition 2.3.8 A connected set C ii called simply connected if every closed
curve y in G is homotopic (as a closed curve) to a point in G, that is, to some
constant curve.

The second homotopy between tlie straight line and the parabolain Figure 2.3.8,
whidi followed along straight-line segments, and the homotopy of a drdc down to
a point in the disk are suggestive and lead to the definition of two important dasses
of simply connected sets. Recall tliat if Zgand 2\ are any two pointsand 0 < s < 1,
then the point sz\ + (1 —s)zo lies ou the straight-line segment between the two.

Definition 2.3.9 A set A is called convex if it contains the straight-line segment
between every pair of its points. That is, if zg and 2\ art: in A, then so is sz\ +
(1 - s)za far every numbers between O and 1 (Figure 2.3-11).

Proposition 2.3.10 IfA is a convex region, then any two closed curves in A are
homotopic as closed curves in A, and any two curves with the same endjtoints are
homotopic with fixed endpoints.

Proof Let70:10,!1—+ (?and 7$ : 0, ) =G denote the two curves mentioned in
the proposition and define H(s, t) by ff(s.1) = «7,(t)4-(l - s)70(i). Then /f(s,f)
lies on tlie straight-line segment between 70(f) and 71(f) and so is in the set A. It
is a continuous function, since To and 71 arc continuous. Ats = 0 we get 70(f).
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()
Figure 2.3.11: (a) Convex set. (h) and (c) Sets that are not convex.

and ats = | weget 71(t). If they arc closed curves, then
H(s.0) = *7.(0) + (3 - s)70(0) = S7i(l) + (1 - *)7tD ) = #(«, 1),

so it is a closed curve homotopy between the two. If they both go from zo to
zIt then if(s,0) * «7,(0) + (1 - s)70(0) « sza+ (1 - **> = 20and H(s,!) *
*7,(1)FQ@ - *)70(l) = S2, + (1- a)z. = z,.s0 H is a fixed endpoint homotopy
betwecu tlie two. m

Corollary 2.3.11 A convex region is simply connected.

Proof Letznbe any point in the convex region A, and let 7 be any closed curve
in A. The constant curve at zot7i(<) = so for «Ut is certainly dosed, and the two
are homotopic by Proposition 2.3.10. =

A slightly more general type of simply connected region called a starlike (or
star-shaped) region will be considered in the exercises. For more complicated re-
gions. we often rely on onr geometric intuition to determine when two curves are
homotopic. In other words, we tiy to decide whether we can continuously deform
one curve to tlie other without leaving our region. One reason is that we rarely use
the homotopics // explicitly in practice; they arc usually theoretical tools whose
existence allows 1Is to claim something else, such as the equality of two integrals.
Also in many situations homotopics might be quite complicated to write down.
However, wc must be prepared to justify our geometric intuition cither with an
explicit H or a proof of its existence in any particular situation.

Theorem 2.3.12 (Deformation Theorem) Suppose that f is an analytic func-
tion on an open set C and that 70 and 7, arc piecewise C1 curves in G.
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fi) 1f To and 7j are paths from Zg to Zt and are homotopic in G with fixed end-
points, then

[e

iif) 1f 70 and 71 are closed curves which arc homotofric as closed curves in G.
then

ff-

Proof The homotopy assumption means that there is a continuous function H :
K 1] x [0, 1) =G from the unit square into G whidi implements a continuous de-
Mnnatiou from 70 to 71 in G. Foreadi value of s, the function 7a(/) = H(s, I) is im
jiterniediatc cunt taken Ol during the deformation. Similarly, for eadi fixed value
</. the function A(s) = H(s,t) traces out 1l curve crossing firom 1f(0,t) = 70(f)
io H(l,t) =71(t). Thusa grid or horizontal mid vertical lines in the square defines
»corresponding grid of curves in G with tlie left edge of the square corresponding
*0 70 and the right edge to 71. In the fixed-endpoint case, A«(s) is a constant curve
a, and Aj(s) is a constant cum: at zj. In the closed-curve case, they arc the
samc curve, from 70(0)(= 7o(l)) to 7j(0)(= 7i(l))- See Figures 2.3.12 and 2-3.13-
rhe reader is cautioned that the grid of curves in G need not look as nice as this
Jlustration, since it may twist and cross over itself, becoming somewhat entangled
;tiappearance like a fishnet thrown on the beach. Fortunatdy, this does not matter
:or the proof.

\Y

Figure 2.3.12: Fixed-endpoint homotopy.

The ideaofthe proofis to use uniform continuity to restrict the problem to small
disks, use Caudiy’s Theorem for a disk, and then put tlie pieces back together to
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Figure 2.3.13: Closed-curve homotopy.

obtain tlie desired result. We wish to partition the square [0.1] x (0, || into smaller
squares by choosing intermediate points 0 = so < #t < st < ... < «n = 1 and
0= fo< fi <2< .. <tn= 1dose enough together that each small square of
the resulting grid is mapped into a disk that is wholly contained in C, as shown in
Figure 2.3.14.

Figure 2.3.14: Subdivision for proofof the Deformation Theorem.

Wewill then be able to apply Cauchy’s Theorem for a disk to the integral around
each of these small paths. Making the subdivision is no problem. The function H
is continuous on the compact set [0t 1]x (0, 1), so its image isa compact subset of C
by Proposition 1.4.19. By the Distance Lemma 1.4.21, it slays a positive dislano
p away bom the closed set C\(7. Tliatis, |//(s,t) —z\< p impliesthat z € C. But
we know (by Proposition 1.4.23) that H is actually uniformly continuous on Lin
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;uare. Therefore there is &number S such that | < p whenever
dixtance((s, /), (s',t')) = y/[s—s")3+ (t—t")2< 6.
w dioose the intermedinte {joints equally spaced to break [0, 1] x [0, 1] into small

itiares with edge length 1/«, tbe diagonal of each subsquarc will have length less
jat Sifn > y/2/6. If Jljy is the rectangle with comers at

(sk—1 « 1 )i (*irrlj—)» (m%e1j)» (aft—11tj)»

mi the whole rectangle is mapped into the disk ZJjy —D(fi($k-i,tj-1);p) that
contained in G. Let Ckj be the dosed curve described by //(/Zjy) oriented by
>king Rkj to be oriented in the counterclockwise direction.T lie image of each edge
feadi of the subsquares RkJ enters as part of two of the dosed curves I'kj and
ith opposite orientation, except those subsquares along tlie outer edge where t or
isOor 1. Notice that these edges actually piece together to make up the curves
.it) and A|(s). If wesum tlie integrals around all the loops Iy, all the edges used
vice will caned out and leave only

«e Figure 2.3.1S).

Ht

Igiire 2.3.15: Cancellation ofedges of the subsquares in the proof of the deforma*
ion theorems.

Since Tkj is a dosed curve lying entirely within the disk Dk on winch the
unction / is analytic, Cauchy’ Tlieorem for a disk implies that each integral in
he sum on the left is 0, so the right side is also 0. Thus,

O=/ f+ [ f- [ f- [ f.

JAo Jti AXi A-jn
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That is,

Losfa=fr+ ]t

Up to this point the proofs for the Gxed-endpoint case and the closed-curve case
have beeu the same. Now they diverge a bit.

For the fixed-cndpoint case, Ag(s) = H(s.0) = zp for all s, and A (s)
H(s,1) = z) for all 5. Both arc constant curves, that is, single points, so fM

hi=0

' For the closcd-curve case, Ap and A; mre the same curve:
Aa(s) = H(5,0) = H(s,1) = X(s)

for all 5,50 f, f = f, J. In citber case, the equation f, f+ [ f=[,f+[ [
becowmes f f = [., 1. which is exactly what we want.

The proof just gwen is actuslly not quite valid. The difficulty may appear to be
an nninteresting technical subtlety, but it is crucial nevertheless. The function X
has heen assumed to be continuous, but no assumption was made abont differen.
tiability. ‘Thus the curves v,(t) and A;(s) arc continuous but need not he piecewisce
C'. Unfortunately, all our theory about contour intexrals is based on piecewise
C" curves. Thus, the integrals appearing previously do not necessarily make sense.
They would, and cverything would be all right. if all the curves in question were
piecewise C'. Therefore we make one more provisional definition and assumption.

Definition 2.3.13 A homotopy H : [0,1] x [0.1] — G is called smooth if the
intermediate curves v,(t) are piecewise C! functions of t for cach 8 and the cross
curves Ay (s) are pieccwise C! funclions of s for ecach t.

Assuming that the homotopies in the Deformation Theorem are smooth, all the
curves in the preceding proof are piecewise C!, thic integrals all make seuse; and
the proof is valid. With this additional asswmption in place, we will vefer 1 thn-
theorem as the Smooth Deformation Theorem. The technical discussion of how to
relax the smoothness assumption is given in the Internet Supplement.

Theorem 2.3.14 (Homotopy Form of Cauchy’s Theorem) Let f be analytsc
on a rogion G. Let «y be a closed curve in G which is homolopic to a point in G

Then
L!=&

Praof The curve v is homotopic in G to a constant curve A(t) = zp for ali 1.
Therefore, [, f= [, /=0. ®

We can also prove Cauchy’s Theoren for a simply connected region in thi-
context, (see Theorem 2.2.3). Indeed, cvery closed curve 4 in G is homotopic to »
point in G, so the resull follows from the homotopy form of Cauchy’s Theorem.
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Old Results in the New Setting In tlie Path Independence Theorem 2.1.9

saw that the existence of antiderivatives is closely tied to patli independence of
.zjegrals and to the vanishing of integrals around closed curves. Notice that tlie
Antiderivative Theorem 2.2.5, and Theorem 2.2.6 on the existence of logarithms,

valid with the sharper meaning ofsimply connected, as discussed in tins section.

The Deformation Theorem, Caudiy's Tlieorem, and all these consequences were
zr.nvd from the conclusions of Cauchy's Theorem for a rectangle. FVom Theonsn
i 2.5. we see that all these conclusions remain valid if we assume merely that /
S continuous on G and analytic ou for some fixed 2] in G. In 824 it
-rill be shown tliat this assumption implies that / is analytic ou G so that such a
wakening of the hypotheses of the theorems is only apparent. But it is ncoessary
p=t the logical development of tlie theory.

Worked Examples

Example 2.3.15 Let A be the region bounded by the x axis and the curve o{6) —
2.6flO < 8 <it, where It > 0 is fixed. Leif(z) = e**f{211—2z)7. Show thatfor
-och closed curve 7 in A, =0.

Solution First observe that/ failsto be analytic only when z —2R and hence /
* analytic on A, since 2R lies outside A (see Figure 2.3.1G).

Figure 2.3.16: Convex region.

Wec claim that A is simply connected. That any two points in A can be joined
hv a straight-line lying in A (that is, tliat A is convex) is obvious geometrically
and also is a simple matter to check (which the student should do). Hence A is
-imply connected, by Corollary 2.3.11. By Caudiy’ Tlieorem, / / = 0 for any
closed curve in A.

Example 2.3.16 Let A —{z6 C| 1< M <4}. Firstintuitively, then precisely,
show that A is not simply connected. Also show precisely that the circles |2| = 2

and |2| = 3 are homotopic in A.
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Solution Intuitively, the circle |z] = 2 cannot be contracted continuously to a
pointwithout passing over the hole in A; tliat is, the set {z € C such tliat |zj < 1}.

Precisely, tlie function 1/z is analytic on A, and if A were simply connected,
then we would have fA(1/z)dz —O0 for any dosed curve in A. Butifwelet 7(t) =

2eit,0 < t < 2n, then we obtain

Bence A is not simply connected.

Let tiie circles \z2\ = 2 and |z| —3 be parametrized by 71(f) = 2e,t and 72(f) =
3cu, for 0 < t < 2ir respectively. Then H(tfs) s= (2 + s)eil defines a homotopy
between 71 and 72 in A. The effect of if is illustrated in Figure 2.3.17.

Figure 2.3.17: Region that is not simply connected.

Exercises
1. Prove that C\{0} is not simply connected.

2. Show that every disk is convex.

3. Aregion Aiscalled star-shaped with respect to 201fitcontainsthe line segment
between each of its points and zq, thatis, if 2€ A and 0 <s < 1 imply tliac
sz0 + (1 —s)z C A. The region is called star-shaped if there is at least OI*
sucb pointin A. Show that a star-shaped set is amply connected.

4. Show that a set A is convex if and only if it is star shaped with respect u
each of its points (see Exercise 3).
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5. Let G lie tlie region built as a union or two rectangular regions G —{z suck
that |Rez| < land |Imz| < 3} U{z such that |Rez| < 3and |Imz| < 1}.
(This set is illustrated in Figure 2-3.18.) Show that G is star shaped. (See
Exercise 3.)

L

Figure 2.3.18: A star-shaped ncmconvex region.

6. Complete tlie proofof Proposition 2.2.4.

7. Evaluate the following integrals without performing an explicit computation:
dz . . .
/—, where *jf{t) = cost + 2t'sint,0 < t < 2ir
%

(b) } d_z where 7 is defined as in (a)
Jyz

(c) f where 7 (t) = 2+ e“t0< t <2ir
Jy z

@ /z= -t wiiere 7 is a drdc of radius 1 centered at 1

8. Evaluate j dzfz, where 7 is the line segmentjoining 1to L
Jy

9. (a) Let7 bea curvehomotopic to the unitcirclein C\{0}. Evaluate dzfz.

(b) Evaluate / dzfz, where7 isthe curve 7(1) = 3cost+t4sinttO< t <2n.
iy
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10.* Evaluate the following:

dx
(@) f‘ o TF
dz
b) -/z—l]=§ (l _3)3

dz
9 /|=+1|=§ (-2

2.4 Cauchy’s Integral Formula

One of the attractions of the theory of functions of one complex variable is that
many powerful rcsults can be derived from theoretically attractive results such as
Cauchy’s Theoresn. We are now in a position to begin to draw some of these
important consequences.

Among these many consequences, we shall see that a differentiable function must
be infinitely differentiable and, in fact, analytic in the sense that the Taylor series
converges W the function in some disk. The Fundamental Theorem of Algebrs.
that every polynomial has a complex root, will be a side benefit.

A stepping stone to these results is Cauchy’s Integral Formula, a consequence of
Canchy’s Theorem. It says that the valucs of an analytic function are completely
dotermined everywhore inside 2 closed curve hy its values along the curve and it
gives an explicit furmula for these values.

Index of a Closed Path There is a useful formula that expresses how many
times a curve 7y winds around a given point zg (see Figure 2.4.1). This number of
times is called the sndex of 4 with respect to zp. The term “index” will be formally
defined in Definition 2.4.1.

ORCACE

Index = -1 Indox = 2 Index = tudex = 9

Figure 2.4.1: Index of a curve around a point.

The formula we shall use to compute the index is based on the computatior
done in Worked Example 2.1.12: If 4 is the unit circle 4(t) = €/,0 < t < 27, then

21"':/12—.
.73
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K (1) = €',0 € t < 27n, then v encircles the origin n times, and we find in the

same way that
-
"= o h 2

Now let us suppose that another closed curve 4 can be deformed to <y without
passing through zero (that is, that 4 and -y are homotopic in the region 4 = C\{0}).

Then aguin,
ne gk [ L[
Twifz Wi,z

= the Deformation Theoram (see §2.2 or §2.3). Since 4 and 4 are homotopic
m C\{0}, it is reasonable that they wind around 0 the same number of times.
Generally, for any point 2q € C, the number of times a curve 4 winds around zg is
«=cn to be

1

i .;Z-Zo

v a similar argument. As a couscquence,

1 dz [ 1 if 29 isinside ¥
2% .'2-20- 0 if zg is ontside 4

Sor a simple closed curve . If one prefers, this establishes the definition of what we
aican by the inside and outside of the curve. Classically, the notion of “inside” of
s curve is ofien defined using the diflicult Jordan curve theorem, which states,
roughly speaking, that a simple closed curve divides the plane uniquely into two
ronnected pieces, exactly one of which is bounded, the inside.

These ideas lead to the formulation in the following definition.

Definition 2.4.1 Let -y be ¢ closed curve in C and zg € C be a point not on .
Then the index of v with respect lo zy (also called the winding number of ¢ with
mespect o z) is defined by

dz
z—-2

I(vi20) = -l—/7

27

We say that v winds around 2, I(%; z) times.

The discussion that preceded this definition proves the following proposition,
which is illustrated in Figure 2.4.2.

Propasition 2.4.2 (i) The circle y(t) = 20 +re', where v > 0 is the radius and
the parameler range is 0 < t < 2wn, has index n with respect o zp, while the
vircle —(t) = 29 + re™*, where again 0 <t < 270, has index ~n.
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O

Index of circle ¥ snd y have the same index with respect to =,

Figurc 2.4.2: Index = the number of times that zq is encircled.
(i) ¥f 20 does not lie on either 3 or 4 and if § and ~ are homotopic in C\{2o}-
then

I(%: 20) = I(7; 20)-

Since homotopies can sometimes be awkward to deal with dircctly, it is custom-
ary merely to give an intuitive geometric argument that I (-y; ze) has a certain value.
but again the student should be prepared to give a complete proof when called for
(sec Worked Example 2.4.12 at the end of this section).

The next result provides a check that the index J(«; zg) is always an integer.
This should be the case if Definition 2.4.1 actually represents the ideas illustrated

in the figures.

Theorem 2.4.3 Let 7]a,b] — C be a (piecewise C*) closed curve and zo a point
nol on v; then I(v; z) is an integer.

Proof let
‘()
t)= [ ———"—ds.
0= [ 5%

At points where the integrand is continuous, the Fundamental Theorem of Calculus
gives

7
(1) - z0
The right-hand side is the “logarithunic derivative” of (t) — zo. Motivated by thi-

observation and using the product rule for derivatives, we can write the preceding
display as

)=

d
— -9(‘) -— -
€ h(t) — 2] =0
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at points where g'(L) exists. Thus, ¢~#(9[y(t) — 2 is piecewise constant on [a, b]-
But e ) y(t) — 2] is continuous and thercfore must be constaut on [a,). This
~unstant value is

e *My(a) - zq],

= we get e~9Wy(b) - 2] = e~99)[y(a) ~ zg). But Y(b) = 7(a), s0 e=# = ¢4,
On the other band, g(a) = 0; hence ¢~9¢} = 1. Thus g(b) = 2ani for an integer n,
and the theorem follows. B

The index, 1(7;2) = (1/2%i) [ d(/({ — 2), is a continuous function of z as long
as = does not cross 4. (Why?) But we have just seen that if -y is a closed curve,
zhien its value must be an integer. Thus it must stay constant except when z crusses
she curve. Caution: This need not be true if 4 is not a closed curve.

The inside of a closed curve 7 is defined by {z | I(y;2) # 0}; this definition
2grees with the intuitive ideas illustrated in Figure 2.4.1.

Derivation of Cauchy’s Integral Formula Cauchy's Theorem will now be
“ised to derive a useful formula relating the value of an analytic function at zg to a
certain integral.

Theorem 2.4.4 (Cauchy’s Integral Formula) *® Let f be analytic on a region
A. let 7 be a closed curve in A that is homotopic Lo ¢ point, and let 2y € A be a
pumt not on vy. Then

ey = L [ G,
Steo)- Kt 0) = gz [ L ELa
This formula is often applied when « is 2 simple closed curve and z, is inside .
Then 7(7; za) = 1, so the formula becomes

_ 1 [ f(2)
f(z) = 5;/12—:;‘;42-

The preceding formula is remarkable, for it says that the values of f on -y completely
determine the valucs of f inside 7. 1n other words, the value of f is determined by
s “boundary valucs.”

Proof The proof makes a clever use of the analyticity of f and the techni-
cal strengthening of Cauchy's Theorem for which we laid the groundwork in the
strengthened Caucliy’s Theorem 2.3.5 for a disk, in which the function was allowed

9Cauchy's Integral Formula can be strengthened Ly requiring only that f be continuous on v
and analytic inside . This change makes little difference in solving mout examples. For the proofl
of the strengthened theorem, the micthiods given ln the Internet Supplement for Chapter 2 and
an approximation argument may be used. Sec also E. Hille, Analytic Punction Theory, Volume 1
+Boston: Gion and Company, 1954.)
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to be merely continuous and not necessarily analytic al one point. (See also Worked
Example 2.2.10 and the remarks following Proposition 2.3.14.) Let

{f(z) J(20) 24 2

g(z) = 29

(z0) iflz=2z

Then ¢ is analytic except perbaps at 29, and it is continuous at zg since [ is
differentiable there. Thus [ g = 0, so

0= /g(z)dz /l(~ I(z) ,,

+Z2- 2
[ e [ 2

and therefore tho theorens follows. B

and

zodz = 2mi f(20)1(7; o),

Cauchy's Integral Fonnula 2.4.4 is extremely uscful for computations. For ex-
ample, if « is the unit circle, we can immedintely calculnte

c:
/ —dz = 2%i - " = 2xi.
¥ ¥ 4

In Cauchy’s Integral Formula, we simply choose f(2) = ¢ and 2 =0.

Note that in Cauchy’s Integral Formula, it is £ and not the integrand f(z)/(z -
zg) that is analytic on A; the intcgrand is analytic only on A\{z3}, s0 we cuumot
nse Cauchy’s Theorem to conclude that the integral is zero—in fact, the integral i
usually nonzero.

Integrals of Cauchy Type Cauchy's Integral Formula is a special and powerfus
formula for the value of f at zy. We will now use it to show that all the higher
derivatives of [ also exist. The central trick in the proof is an idea that is often
useful. Il we start assuming only that we know the values of a function along u
curve, then we can consider integrals along the curve as defining 8 new function

called an integral of Cauchy type.

Theorem 2.4.5 (Differentiability of Cauchy-Type Integrals) Suppose<y is
curve in C and g is a continuous function defined along the image 7([a,d]). Set

Gl )_2m/ 9(()“

Then G is analytic on C\v([a, b]); in fact, G is infinitely differcntiable, with the k<t
derivative given by

C®(z) = / = g(f))k-i-l k=1,23,....
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The formula for the derivitive can be remembered by “differentiating with re-
spect (0 2z under the integral sign™:

Toy=L [9QD4_ L [2 (54 L [ €
de(‘-)_zﬂ—idz .'(-Zd(-_2;/.,5;((—2)"(_21&_[,((—2)’«'

The formal proof justifies this procedure and appears at the end of this section.

Existence of Higher Derivatives Using integrals of Cauchy type, we can show
iaat a differentiable function of one complex variable is actually infinitely differen-
*;able and at the same time give a formula for all the derivatives.

Theorem 2.4.6 (Cauchy Integral Formula for Derivatives) Let f b analytic
= a region A. Then all the derivatives of [ exist on A. Furthermore, for 2y in A
.nd ¥ any closed curve homotopic to a point in A with 25 not on v, we have

19) 1z = 5 [ L Erae k=123,

where f¥) denotes the kth derivative of f.

Proof Since A is open and 2 is nol on 4, we can find a small circle 4 contered
st 2 with iuterior in A and such that 7 does not cut acrass 5. (Ste Figure 2.4.3.)
Tt 2 in A and not on 7, define

6le) = 1) 1) = g [ £

This is an integral of Cauchy type. so it is infinitcly differentiable on A\, and

13
GW(z) = 5 /1 o S ‘f)),m :

Bat

1 Fi(9) 1 / 1
= e — I(7;2) = —
fe) =g [ f2hic ons 16ma)= o [
are also integrals of Cauchy type, so they are infinitely differentiable near z5. As
mentioned earlier, the index is constant except when 2 crosses the curve. In par-
-icular, it is constant inside 4. Thus G®)(2) = f*}(20)1(~; 29). Combining this
xith the preceding formula for G*)(z) gives the desired result. &

Cauchy's Inequalities and Liouville’s Theorem We continue developing the
~onsequences of the Cauchy Theorem with an important set of inequalities for the
{erivatives of an analytic function and its consequences,
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Figure 2.4.3: Let -fa be a cirde centered at xq and small enough that it does not
meet 7.

Theorem 2.4.7 (Cauchy's Inequalities) Letf be analytic on a region A and
let 7 be a circle with radius A and renter 20 that lies in A. Assume that the disk
{z such that |z - zo| < A) also lies in A. Suppose that \f(z)\ <M for alls on *>
Then, foranyk =0,1,2,...,

Proof Since f(y; So) —1, from Cauchy’ Integral Formula 2.4.4 we obtain

m

and hence

. I(C)
i w -b | o)

1 /(C) | M
[(C~*0)*:+I| - A*+>’

since |[C—zol = Afor{on 7, so

M
N ~ °
V(D <~ * psyy F(T)-
But 1(7) = 2irA, so we getour result. =

This result states that although the fcth derivatives of / can go to infinity «.
k -* 00, they cannot grow loo fast as k — 00; specifically, they can grow n:
faster than a constant times k\fRk. Wc can use Caudiy’ Inequalities to derive tea.
following surprising result: The only bounded entire functions are constants.
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Yheorem 2.4.8 (Liouville’'s Theorem)! If f is entire and there is o constant
34 cuch that |f(z)] < M for all z € C, then [ is constant.

Proof The Cauchy Inequalities 2.4.7 with k = 1 show that for any zg € C, the
=quality |f'(z0)! < M/R holds. Holding 2 fixed and letting 2 — oo, we conclude
zzar | f'(2p)] = O and therefore that f(2g) = 0. This is true for every 25 in C, so f
s constant. @

This is agnin a quite different property than any that could possibly hold for
“uctions of a real variable. Certainly, there are many nonconstant bounded smooth
Z:uctious of a real variable, such as f(z) = sinz.

Fundamental Theorem of Algebra Next we shall prove a result that appears
%, he clomentary and that the student has, in the past, probably taken for granted.
Lrgebraically, the theorem is quite difficult.!? However, there is a simple proof that
=es Liouville's theorem.

Theorem 2.4.9 ( Fundamental Theorem of Algebra) Letag,a,,.-. ., bca
~nlection of n + | complex numbers and suppose that n > | and a, # 0. Let
»I)=06p+az+-..+a,2". Then there exists a point 29 € C such that p(z) = 0.

Proof Suppose that p(2) # 0 for all zy € C. Then f(z) = 1/p(z) is entive. Now
: ¢) and hence f(z) is not constant (because e, # 0), so it suffices, by Liouville’s
=heorem, to show that f(z) is bounded.
To do so. we first show that p(2) — oo as 2 — 00, or equivalently, that f(z) — 0
& ¢ — o0o. In other words, we prove that, given Af > 0, there is a number K > 0
<:ch that |z} > K implics [p{z)] > M. From p(z) =6y + @12 + ... + a,z" we have
#1202 lanllz]” ~laol — laslfzl . .—fam-sl2]"~>. (We sct 62" = p(z) - 20— 212
.~ 2,-12""" and apply the triangle incquality.) Let a = |ag]+ |ai| + - - - + |on-1]-
¥12] > 1, then

n—1 JURE ... SO ool ] IR
e (SRR T
" Jaall] - o)

Let K =max{1, (2 + a)/|ap|}; then, if |z] > K, we have |p(z)] > M.
Thus if |2| > K, we have 1/|p(2)] < 1/M. But on the set of z for which |2| < K,
the function 1/p(z) is bounded in absolute value because it is continuous. If this

! According to E. T. Whittaker and G. N. Watson, A Courne of Modern Analysis, Fourth
Edition (London: Cambridge University Pres, 1927), p. 105, Liouville’s theorem i incorructly
sttributed to Liouville by Borchardl (whom others copied), who heard it in Liouville's lectures in
1847, It is dne ta Cauchy, in Compics Rendus, 19 (1844), 1377-1378, sithough it may hiave been
known 1o Gauss earlier (see the uext footnote).

211 was first proved by Karl Friedrich Ganss in his doctorn) thesls in 1799. The present proof
appears to be essentinlly due to Gauss ax well (Comm. Soc. Gott., 3 (1816), 58-64).

Ip(2)|

w

v
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bound for 1/p(z) is denoted by L, then on C we have 1/|p(z)| < max(1/M, L), so
If(z)] isboundedon €. W

By Review Excrcise 24 at the end of Chapter 1, the polynomial p can have no
more than n roots. It follows by repeated factoring that p has exaclly n roots if
they are counted according to their multiplicity.

Another argument for showing that f(z) — 0 as 2z — oo that is a little simpler
but accepts the validivy of various limit theorems is as follows:

1
) = Az + 2%V 4, .+ 2
1/z"
Qn + 6u-1{1/2) + 1,-2(1/23) + ... 4+ aa(1/z")"

Letting z — oo, we get

0

e, +0+...40 =0

lim f(z) =
2= OC
since a,, # 0.
The existence of higher derivatives, when eombined with that of antiderivatives
(Theorem 2.2.5). has some important consequences. Two of these are a partial
couverse o Cauchy’s Theorem and an extension of the existence of logarithms.

Morera’s Theorem Cauchy's Theorem says roughly that the integral of an an-
alytic function aronnd a closed curve is 0. Morera’s Theorem says that if we know
the function is continnous we can get the converse implication.

Theorem 2.4.10 {Morera’s Theorem) Let f be continuous on a region A. ana
suppose that f_'f = 0 for every closed curve in A. Then [ is analytic on A, anc
f = F for some analytic function I on A.

Proaof The existence of the antiderivative follows from the vanishing of integrak
around closed curves and the Path Independence Theoran 2.1.9. The antiderivativ
F is cortainly analytic (its derivative is f). Thercfore, by the Cauchy Integral
Formula for Derivatives 2.4.6, it is infinitely differentiable. Iu particular, F” =
oxists,. @

In applying Morera’s Theorem, one often wishes only Lo show that f is aushmr
ou a region. If the region is not simply connected, f might not have an antiderivative
on the wlole region. But te show differentiability wear a point one may restrict
attention to a small neighborhood of the point and to special curves if convemnicnt
This idea is illustrated in the following corollary and Worked Examples 2.4.16 anc
2.4.17.

Corollary 2.4.11 Let f be continuous on e megion A and analytic on A\{zg} jc~
a point zg € A. Then [ iz analytic on A.
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Proof Toshow analyticity at, zy, we may restrict attention to a small disk D(29.¢) C
A. Il v is any closed curve in this disk. then f,, f =0, by the strengthened Cauchy
theorem for a disk (2.3.5). Thus Morera’s Theorem 2.4.10 implies that. f is analytic
on this disk. We already know it is analytic on the rest of A. 1B

More on Logarithms In Theorem 2.2.6, we used the existence of antiderivatives
tn obtain logarithms on simply counected regions not containing thie origin. With
the existence of higher derivatives we can got # more gencral version of this result.

Proposition 2.4.12 (Logarithms of Functions) Let f(z) be a fiunction that is
unalytic and never 0 on & simply connected region A. Then there is a function g(z)
analytic on A and wnique up to the addition of a constant multiple of 2% such that
92} = [(2) for all z in A.

Proof In effect, we are looking for a logarithm for f(z). If g(z) is to be such a
function. we must have f/(z) = ¢?)¢/(z) = f(2)g'(2). Since f(z) is ncver 0, this
says that ¢'(z) = f'(2)/f(2)- Thus, g must be an antiderivative for f'/f on the
connected open set A. The differcnce between two such antiderivatives would have
derivative 0 and so be constant on A. Since the new function would still have to be
a logarithmn for f(z), that constant would be an integer multiple of 2%i. It remains
10 show that there is such a function.

Since 7 exists, f' is analytic on A. Since f(2) is never 0, the quotiem f(2)/f(z)
is analytic on the simply connccted region A. From the Auntiderivative Theorom
soe Theorem 2.2.5), there is a function ¢ : A — € such that ¢'(z) = f/(2)/f(2)
for ull z in A. Fix zp in A. By adjusting our antiderivative by adding a constant,
we uay assume that g(2) is any convenicnt choice of a value of log(f(z0)). Let
hi2) = 2V / f(2). Then

W(ey = LIS = AL (E) S/ 1) — eda)

(f(2))? (/)

since X/(z) is identically 0 on the counected open sct A, the function & must be
constant on A. But h(zg) = e'8/(z0))/ f(z4) = 1. Therefore, ¢/ f(z) = I(z) =
h(zp) =1 for all z in A. Thus, e%) = f(2) on A, as required. W

If we apply this resnlt to the function f(2) = 2z on a simply counected region
not containing 0, we recover our carlier results on logarithms (sce Theorem 2.2.6).

Technical Proof of Theorem 2.4.5 We will prove Theorem 2.4.5 with a some-
whal weaker assumption on g than continuity. Al we assume is that the funetion
is bounded and integrable along 4. We call such functions admissible. First we
use several facts from advanced ealculus that were developed in §1.4. The image
curve v is 8 compact set since it is a continuous image of a closed hounded interval.
If zp is not on v, then hy the Distance Lemma {.4.2], it lies at a positive distance
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Figure 2.4.4: A point notou hcurve 7 is a positive distance from 7.

6 from it. 1fwe let ij —$/2 and U be the i) disk around so, then z € V and <on
implies that |z—Cl >»? since \z-Q\ > |C-«ol - |zo- *| > 2i/-7?/ (sec Figure 2.4.4).
We begin with the case k = 1. We want to show that

G(2)-G(20 R
z —20 K-*0)2 '

The expression in brackets may be written

<?(2)-C(zo) J_ m g«) - = (z~zp) f 9(C) A
z-720 20Ty7 «-z0) 2" 2sri (C- z0)2(<-sp”

where we have used the identity

1 /3 1\ _ 1 *- 70

Z-Z0\C-Z c* 20/ (C- Zo)2 K - Z0)2« - z)'

Let the 7neigliborhood U of .4 be constructed as previously described and let
hi be the maximum ofg on 7. Then |(f - z0)2(C—2)I > ij2*17= €3, so we have lla-
estimate [ff(0/|(C —a)2(c —2))| < Mt}~3 (a fixed constant independent of £ on *
and z,zq€ U). Thus,

Z'Z@f g(0 _ A __1(7)-
am Jyw Zd)2(C—z)de| <|Z-aol 1(7)

This expression approadies 0 as z -+ zo, so tlie limitis 0, as wc wanted.

To prove tlie general case, we proceed by induction on k. Suppose the tliuorcc.
is known to hold for all admissible functions and all values of k from 1 to n —i
We want to prove that it works fork t=n. We phrase the induction hypothesis this
way since we will apply it not only to 9, but also to p(0 /(C ~ zo), which is abc



§2.4 Cauchy’s Integral Formula 155
bounded and integrable along . We know that G can be differentinted n — 1 times

on C\y and that
n-1) (ﬂ - l) 9(()
¢ ) = / (S

z)"

Let 29 € C\7{|a,b]). Using the :denm)
1 - 1 + z2—-2
€-2 (-2""C-2) (¢-2)"((-2)

we obtain
G~ (z) - G*~1)(z)

- o5 [/ T T f (49(2.)*“‘]
-("W.l)(z—m) [. T=arCc==0 9(0) d(.

2)*(C - za)

We can conclude from this equation that G®-1) ig contimious at 2y, for the
following reason. By applying the induction hypothesis to g(¢)/(¢ — z0), we sec

that
g(¢)
[, (¢ —2)-1(( - Pyl
» analytic as a function of z on the set C\y([s,8]) and thus is continuous in =.

Thercfore,
9(¢) (I
[, (¢ = 2)m")(( - Zo)dc / €- 20)"

as z — zg. If the distance from 2, to 7 is 29, if lg(z)| < M on 4, and if |2 —zo| < 3,
we have

M
A< o
where () is the length of 7. Bence
9(() -
T2 (-2 d(l 0

as z — zg, and therefore G(’"") is continuous o C\7([a, 3))-
From the equation for G*—1)(z) — G{n=)(z0), we obtain
Grz) - G*N(ar)
- ) ©
_ n-2) 1 g(¢ _ g
T 2 (2-2) [ (C-2)m-D({ - 20)« '[l <- “-’0)"«]
(n—1) 9(() d<-
2w ), E=2 )
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By applying the induction hypothesis to g({)/({ — 20), we see that the first termn
on the right side of the preceding equation converges to

(==t [ o)
2 Sy P

a8 z — 2. We have already shown that G~} is continuous on C\7(|a, b)), and
this fact applied to 9(¢)/(¢ — 20), instead of to g(¢), implies that

g(¢) - 9(€)
/, T T i / Ty

as z —.zy. Thus we have shown that as z — z,

G2 (z) - G~ (z0)
z-2

converges to

Sy Gz T L, G )
_n 9(C) .

T, € o)

_pyp-1) 9(¢) d (n-1)! g(¢) d¢
(-1 fv( ¢+ 8=

This concludes the induction and thus proves the theorem. 8

Worked Examples

Example 2.4.18 Consider the curve v defined by 7(t) = (cost, 3sin1),0 <t < 4z
Show that I(‘);O) =2.

Solution The strategy is to show that « is homotopic in C\{0} to a circle § that
is centered around the origin and that is travensed twice in the counterclockwiss
dircction (that is, 7(t) = €*,0 < t < 4%). Once this is done, by Proposition 2.4.2.
I(1;0) = I(3;0) = 2. ‘ ]

A suitable homotopy is H(t, 5) = cost+i(3~2s)sin¢; note that I is continuous.
H(t,0) =(t) and H(¢,1) = F(t), and H is never zero (sce Figure 2.4.5).

Example 2.4.14 Euvaluate

%dz and / 220,

¥ k4

where -y is the unit circle.
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~

Figure 2.4.5: Homotopy of 4{t) = (cvst, 3sint) to (L) = (cost,sint).

Solution The circle v is contractible to a point in the region in which cosz is
analytic, since in fact cosz is entire. Therefore, we can apply Cauchy’s Integral
Formula 2.4.4, observing that J(+;0) = 1, to obtain

1
1=eoso=-—-/£s-zdz.
¥

2% 2
S0
/ OS2y = Omi.
w 2
By the Cauchy Integral Formula for Derivatives 2.4.6, we have
] sin z
« ¢ - — hisanded
sin'(0) = 55 =%
that is,

22

Example 2.4.15 This example, which deals with analytic functions defined by in-
tegrals, generalizes Theorem 2.4.5. Let f(z,w) be a continuous function of z,w for

/ 802 12 = 2micos0 = 2.
A
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z in a region A and w on a curve y. For cach w on v assume that f s analylic in
z. Let

F(2) = / f(z,w)dw.
1
Show that F is analytic and
_far
Fla)= [, oL (2w,
where 8f [z denotes the derivative of f with respect to z with w held fized.
Solution Let 25 € A, Let yp be a circle in A around zg whose interior also bes in

A. For z inside +q,

f(¢w)

™ C"zdc

fla,w) = 5

by Cauchy’s Integral Formula 2.4.4. Thus

F(z),2 /[ f(c,w)]

Next we claim that we may invert the order of integration, thus obtaining
1 f& w) 1 [ FQ)
P =g [, U ufdc= 5 [ b

This procedure is justifiable because the integrand is continuous and when writ-
ten out in terms of real integrals has the form

f/:h(s,z)dadt+i/lﬁk(s,t)dsde.

We know from advanced calculus that this order can be interchanged (Fubini's
theorem)’s.
Thus,
(2} = 5 FQ
P =50 | o2
and so by Theorem 2.4.5, F is analytic inside 9 and

_ 1 F(¢) I(C,w)
Fz) = 55 (C-z)zc 2n_/ - ::)2

- %// e pkin= [ L icurdm

13G0e, for instance, J. Maniden and M. Hoflinan, Elementary Classical Analysis, Second Editice
(New York: W. H. Freeman and Company, 1933), Chapter 9.

dg,
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As;ain by Caudiy’s Integral Formula. Since zq is arbitrary wc obtain tbe desired
rss.uk. Remark Thbe function / should be analytic in z but it needs to only be
jitegrable in tbe w variable, as is evident from the preceding proof; we merely need
m adequate hypothesis to justify interchanging the order of integration.

Example 2.4.16 Prove the following assertion: Suppose thatf is continuous on a
'vSon A and thatfor each z« in A there is a disk D —D(zq;p) such thatJp f —0
,vr every rectangular path R in D with sides parallel to the axes. Show thatf is
rnalytic on A (sec Figure 2.4.6).

Figure 2.4.6: Tffnf =0, then / is analytic.

Solution Let zg be in A. The vanishing of fRf for rectangles in D was the
conclusion of Cauchy's Tlieorem 2-3.2 for a rectangle and the tool used iu the
construction of the antiderivative for / in Lhc proof of Cauchy’s Theorem for a
disk. Thus the antiderivative exists on D (not necessarily on all of A at once).
Aualytidty ou D follows as the proof of Morera’s Theorem 2.4.10, so / is analytic
near zq. Since Zqwas an arbitrary pointin A, f is analytic on A.

Example 2.4.17 Prove the following: Suppose A is a region that intersects the
real axis and that f is a function continuous on A and analytic on 4\R. Then f

is analytic on A.

Solution Woc know f is analytic everywhere in A except on the real axis, so
suppose G R. Since A is open there is a disk D = D(zo;p) C A. Let ft be a
rectangular path in this disk with sides parallel to the axes. If ft does not toudi
or cross tire real axis, then fRf *=0 by Cauchy’s Theorem. If it does cross, as in
Figure 2.4.7, then /<« / = /n,/ + s+, 1~ Where r i aud f?22 arc rectangles with one
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Figure 2.4.7: Construction used to show [, f = 0.

edge on the axis. (The edges on the axis are traversed in opposite directions and
0 cancel out.)

Thus it is enough Lo show that [, f = 0 when R is a rectangle with one side on
the real axis, as in Figure 2.4.8. Lel a and b be the ends of the cdge on the axis
and note that b—a < p.

Let € > 0. Since f is continuous, it is uniformly continuous on the compact set
composed of R and its interior, so there is 8 § > 0 such that |f(2i) — f(22)| < ¢
whenever |z; — 22] < § and z; and 22 are in this set. We may also choose § to
be less than ¢. Let M be the maximum of |f(z)] on R and its interior, and let S
be another rectangle the same as R except that the edge on the axis ix moved a
distance § from the axis. Then with the notation of Figure 2.4.8,

[ = oL oL
AL

[Ute)- e + s0lae

IA

+ oM

A

oM +

< 26M + f [f(x) - f(z + &i)ld=
< 25M +¢(b—a) < (2M + p).
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y

el iy )

Figure 2.4.8: The rectangle pulled away slightly from the rcal axis.

Since this holds for every ¢ > 0, we must have [, f — [cf =0: But fo f =0 by
Cauchy’s Theorem since S does not cross the axis and lies entirely within a region
in which F is known to be analytic. Thus [, f = 0. We have shown that the
conditions of the preceding Worked Example apply. so [ is anslytic on A.

Exercises
1. Evaluate the following integrals:

2
(a) / -;'—sz, where 7 is a circle of radius 2, centered at 0
Lz
(b) / j—zdz, where 4 is the unit circle
1
2. Evaluate the following integrals:

2
(a) / -.:—2-+—idz. where 7 is a circle of radius 2, centered at 0
]

(b) f s“;"‘ dz, where 7 is the unit cirdle
b

3. Let f be entire and assume that |f(z)] < M|z|* for large |2, for a constant
M, for somme integer n. Show that f is a polynomial of degree < n.

4." Let f be analytic “inside and on™ a simple closed curve <. Suppose that
J =0 on 4. Show that f =0 inside 7.

5. Evaluate the following integrals:
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(a)/ =3 where 4 is the square with vertices -1 —i,1 —i, 1 +¢,~1+4¢
() /—-dz where  is the unit circle

G. Let f be analytic on a region A and let 7 be a closcd curve in A. For any
2p € A not on 4, show that

!'(() Fi(9)
d( / € - 20)241(

Canyouthinkofawaytogcnemlimtlnsmnlt?

7. Suppose that f(z) is analytic an the set 2| < 1 and that it satisfics the
inequality |f(2)] < 1. What estimate can be made about |f/(0)(?

8.° Suppose that f is cotire and that lim,_.o, f(z)/2z = 0. Prove that [ is
constant.

9. Prove that if v is a circle, y(t) = 29 + re't,0 < t < 2w, then for every z inside
7 (that is, |z — zo| < 7), I(7;2) = 1.

10.° Use Worked Example 2.4.15 to show that
1
F(2)= ] e~ dyy
(i

is analytic in z. What is J¥(z)?
11. Show that if F is analytic on A, then so is f where

f(s) = Fle) = Fleo)

22
if z # 20 and f(20) = F'(20) where zg is some point in A.

12. Prove that if the image of 4 lies in a simply connected region A and if 29 ¢ A.
then J(v;z) = 0.

13. Use Worked Example 2.1.12 (where appropriate) and Cauchy’s Integral For-
mula 2.4.4 to cvalunte the following integrals; v is the circle |z| = 2 in eack

casc.
® [ 75
() _/z"’+z+l

(c>j,, -
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@ _/324-22 3

14.* Prove that [ e cos(sin8)df@ = # by considering f,(e*/2)dz, where v is
the unit circle.

15. Evaluate

where C is the circumference of the circle of radius 2 around the onigin.
16. Consider the function f(2) = 1/22.

(2) It satisfics f, J(z)dz = 0 for all closed contours -y (not passing through
the origin) but is not anslytic at z = 0. Docs this statement contradict
Morera’s Theorem?

(b) It is bounded as z — oo but is not a constant. Does this statement
contradict Lionvilie’s thcorem?

17. Let f(z) be entire and let |f(z)| 2 1 on the whole complex planc. Prove that
[ is constant,

18.0Docs [ Sde=07Does [ 22
sj=1 2% 2= 2

19. Evaluate

dz
(2) /,,-,H 2%

dz
®) {2j=2 2%(2% + 16)

20. Prove that for closed curves 7,92,

dz =07

H{-m;2) = =I(n; =)
and
I(m1 + 723 20) = (M 20) + I (123 20)-
Interpret these results gcometrically.
21.° Let f be analytic inside and on the circle 7 : |z — 20| = . Prove that

] fa)dz

f(z1) - £(z2)
T ("’"mf [(z ae—=) - 20)2

for 23,22 inside 5.
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2.5 Maximum Modulus Theorem and Harmonic
Functions

One of the most powerful convequences of the Cauchy Integral Fonnula is the
Mazimum Modulus Theorem. also called the Maximum Modulus Principle. 1t states
that if [ is a nonconstant analytic function on a region A, then |f] cannot have a
local maximum anywhere inside A—it can attain a2 maximum only on the boundary
of A. This theorem and the Cauchy Integral Formnla will be used to develop some
of the important properties of harmonic functions.

Maximum Modulus Theorem The central idea of the Maximum Modulus
Principle can perhaps best be stated as follows: If an analytic function has a local
maximum (of its absolute value) at 2 point, then it must be coustant near that
point. A preliminary version of the theoremn follows.

Theorem 2.5.1 (Maximum Modulus Principle—Local Version)

Let f be analytic on a region A and suppose that |f| has a relative mazimum at
20 € A. (That is, | f(2)] < |f(20)} Jor all z in some neighborhood of 20.) Then [ &~
constant in some neighborhood of zq.

The proof rests on a striking consequence of the Cauchy Integral Formula: Tk
valuc of an analylic funclion al the tenter of a eirele is the average of ils valurs
around the circle. All this will be made precise shortly, but the local version of
the principle follows essentially because the avorage of a function cannot be greater
than or cqual to the values of the function unless they are all equal, We develop
this idea in preparation for proving the Maximum Modulus Theorem.

Theorem 2.5.2 (Mean Value Property) Lel f be analytic inside und on a 1~
cle of radius r and center 2y (thal is. analylic on a region containing the circle an<
ils interior). Then

2%
f(z0) =% [ fleo +re'®)do. (2.5.1

Proof By Cauchy’s lutegral Formula 2.4.4,

(z0) = Ly O dz,

2%i w =20

where 7(0) = 20 + re*,0 < 0 < 27. However, by definition of the integral,

2% 0
L. I(Z) dz = _l_. f(zﬂ +-ol'f! )r"ew‘io
2%i ., 2- 20 271 Jy ret

=-|_. /1. f(zo+re”)d0. |
27 Jg
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B > worth noting that as long as we are integrating all the way around the circle,
< <Hves not matter through what range of 2z the angle goes. A change of variable
Sows that, for cxample, [2~ f(2o + re?®)dd = Iz, J(zo + re®)do.

The Mcan Value Property will now be used to cstablish the local version of the
MWaximum Modulus Principle. The idea is that if f(2g) is at least as great as all
sz other values of f near zg and also equal to the average of those values around
<zall circles centered at zp, then |f(2)] must be constant near z9. Once we know
zat |f] is constant, it follows from the Cauchy-Riemann oquations that [ is itself
- astunt.

Proof of Theorem 2.5.1 Suppose that f is analytic and has a relative maximum
sz 29 so that |f(2)] < |f(20)] on some disk Dy = D(2;ro). We want to show that
Z 2 = |f(z0)] on Dy, so suppose instead that there is a point 2y in Dy where
<rict incquality holds: |£(2))| < |f(20)|- Let 21 = 2 + re® with r < rg. Since f is
atinuous, there are positive numbers ¢ and § such that

1f (20 + 7} < |f(z0)| - &
whenever [§ — a} < . Equivalently,
/(20 + re"®*®N)| < |f(20)| - &
whenever |¢] < €. We now obtain a contradiction by using the Mean Value Property

and considering scparately that part of the integral over the circle where we know
tae function is smaller (see Figure 2.5.1)

Figure 2.5.1: Construction for the proof of the Maximum Modulus Principle—local
version. |@| < ¢ gives a part of the circle where |f| is known to be smaller.
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To carry this out, write
2_:: ] flzo + re{(c“))@‘
2_17.: /—¢ flzo+ rci(cw))“ + _21; /; flzo+ re'.("“))tw
+ -21’; / " f(z +rc"“'"'°’)4¢'
—g 1 .
%/;' If(z°+m«¢+¢))ld¢+ 2_#.-/: l!(z"""e'(.“))ld"
s o [ |fteat reer ] as.

In the first and third integrals the integrand is no greater than |f(zp)| and the
interval Jength is = ~ €. Thus each of these integrals is no more than | f(2o)|(% — ¢).
In the middle integral, the interval length is 2¢ and the integrand is less than
I/(z0)] — 8- Hence this integral is no more than (If(z)| — 8)2¢. Putting these

together gives

1f (=0)l

IN

(a0l < =l ol — ) + (oMl = 8)2¢ + £ (zo)i(w =)
ie,
[ftao)l < 11 (z0)] = .

This impossibility shows that there can be no such point z in Dy with |f(2)] <
1/(z6)|- The only remaining possibility is that |f(z)| = |f(z0)] for all z in Dy.

Thus | f| is constant on Dy. Use of the Cauchy-Riemann equations as in Worked
Example 1.5.21 shows that the function [ itsell must be constant. This is exactly
what we wanted. @

The local version of the Maximum Modulus Principle says that an analytic
functior cannot have a local maximum point unless it is constant near that point
We will sce in Chapter 6 that more is true. A funclion analytic on an open connected
set cunmot bave a local maximum anywhere in that sct unless it is constant on the
whole sct.

We now turn our attention here to a somewhat different global version of the
principle. We investigate absolute maxima, that is, the largest value |f(z)] takes
anywhere in the sct. We shall show that this can be found ouly on the edge or
boundary of the set. In §1.4, we saw that a real-valued function continuous on a
closed bounded set actually attains a finite maximun but that it might not if the
set [ails Lo be closed or bounded.



32.5 Mazimum Modulus Theorem and Harmonic Functions 167

Closure and Boundary The intuition in §1.4 was that a set is closed if it con-
tains all its boundary points and open if it contains none of them. Thus if we start
with a set 4 and add to it any of its boundary points which happen to be missing we
should obtain a closed set containing A. This is true, but there are somne technical
problems. One is that we really have no definition yet for “boundary.”

Definition 2.5.3 The closure of a set A C C, denoted by A or by cl(A), consists
of A together with the limit points of all connergent sequences of points of A.

This produces the desired result, the smallest closed sct containing A.
Proposition 2.5.4 If A CC, then
() Acd(A).
(ii) A is closed if and only if A = cl(A).
(iii) If AC C and C is closed, then cl(A) C C.
(iv) cl(A) is closed.

Proof The first assertion is immediate from the definition. The basic tool for the
remainder is Proposition 1.4.8, which states that a set is closed if and only if it
contains the limits of all convergent sequences of its points, If we lct

limit(A) = {w | there is a sequence of points in A convergent to w},

then A C limit(A4), since constant sequences certainly converge. The closure was
defined by cl(4) = AU limit(A), so we actually have cl(A4) = limit(A). But Propo-
sition 1.4.8 says exactly that A is closed if and only if limit(4) C A, so (i) is
established. It also shows that if C is closed and A C C, then limit(A4) C C, so we
have (iii). The only remaining gup is to show that cl(A4) is actually closed. To do this
we nced only show that cl(A) = cl(cl(A)) that is, limit{A) = limit(linit(A)). Since
limit(A) € limit(limit(A)) automatically, it remains to show that limit(limit(A}))
¢ limit(A). Suppose z), 22, 23,... is a sequence of points in limit(A) such that
linty oo Zn = w. We want to show that w is in limit(4). Each 2, is in limit(A),
so there arc points w, in 4 with |w, — 2,,| < 1/n. This forces limp..co Wy = w, 50
w € limit(A), as desired. ©H

The boundary of a set A is the set of points on the “edge” of A. If w is in the
boundary, wc should be able to approach it through A and through the complement
of A. This lcads to the following definition.

Definition 2.5.5 The boundary of a set A C C is defined by
bd(A) = el(A) Ncl(C\A).
It is not hard to sec that cl(4) = AUbd(A). (See Worked Example 2.5.16.)
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Global Maximum Modulus Principle Now we urc ready for the promised
zlobal version of the Muximum Modulus Principle.

Theorem 2.5.6 (Maximum Modulus Principle) Let A be an open, connecled.
bounded sei in € and suppose f : (A) — C is analytic on A and continuous an
cl(A). Then |f] has a finite mazimum velue on cl(A) which is allained al some
point ou the boundary of A. If it is also atluined in the interior of A, then [ must
be constant on cl(A).

This theorem states that the maximum of f occurs on the boundary of A and
that if that maxiimun is attained ou A itself, then f must be constant. This is a
very striking resmlt and is certainly a very special property of analytic functions.
The values of |f| inside a region A mmst be smaller than the largest value of |f]
on the boundary of A. One must excrcise some care. For example, the Maxamun
Modulus Principle in this form need not be true if A is not bounded. In such a ease
the function need not he hounded on A even if it is on bd(A). (See Excreise 3.) In
applications of this theorcm, A will ofteu be the inside of a simple closed curve 4.
s0 cl{A) will be AU~ and bd(A) will be .

It is reasonably clenr that if A is bounded, so is its closure. If |2} < B for all =
in A and z,,22,23,... is a sequence in A converging to w, then |z,| converges to
Jwi|. so Jw} < B. Thus cl{A) = limit (A4) is also bounded by B.

From the Extreme Value Theoremn 1.4.20, we know that a continuous real-valuexl
funetion on a closed bounded set attains 2 maximum on that set. It follows that if
M’ = sup{|f(2)] such that z € cl(A}}, then A’ = |f(a)] for some a € cl(A).

Proof of the Maximum Maodulus Principle Since the real-valued function
|/] is continnous on the closed bonnded set cl(A), the Extreme Value Theorem
says that it attains a finite maximum value M at some point in cl(A). If it is not
attained in the interior, then it st be attained somewhere on the houndary since
it is attained somewhere. We next show that if it is attained in the interior, then
J must be constant on A. By continuity f will be constant on all of cl(4), so M is
attaine! on the houndary as well in this case also.
Supposc there is a point a in A at which |f(a)| = A1. Define subscts of 4 by

A ={z€A|[(z)=f(a)} and Az =A\c(A).

If z is in A but not in A,. then it must be in cl(A,). Choose 2 sequence in 4,
converging 10 z. Since f is continuous on cl(A) and has value f(a) at each point in
the scquence, we also huve f(2) = a and z € Ay. Thns A C A, U Az. Since 4, €
cl(A,), we certainly have A) 0N Az = @. The set As is the intersection of the open
sets A and €\ cl(A,). so it is open. Finally, if zq € A, then | f(20)] = |f(a)} = M
Thus, |f] has a local maximum at 3 and must be constantly equal to f(a) on a
disk centered at zp. Since A is open, we can take the radius small enough so that
this disk is contained in A and hence in A,. This shows that A, is open. I the sets
A; and Az were both nonempty, they would disconnect the connected set A. Since
a € Ay, we must have Ap = @ and A = 4,. Thus f(z) = f(a) for all zin A and
heoee also in ci{A4) as cluimed. W
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Schwarz Lemma The next theorem is an example ofan application of tlui Max-
imum Modulus Theorem. This result is not one of the most basic results of the
:ceory, but it further indicates the type of severe restrictions tliat analyticily im-
poses. This result will be quite useful in Chapter 5.

Lemma 2.5.7 (Schwarz Lemma) Letf be analytic on the open unit disk A ~
i:-C||z| < 1} with/(0) =0 and |/(z)J < 1fareachz in A. Then|/'(0)] < 1
mad \f(z)\ < |z| for eachz in A. If|/'(0)| = 1 orifthere s a point :q other than
v m A with\f(zo)\ —[*ol» Oicn there is a constant ¢ with |cj = 1 and f(z) = cz for
illz in A,

Proof Letg(z) = f(z)fz ifz 0and g{0) = /'(O). The function g is analytic
m .4 Xxiause it is continuous ou A and analytic on A\{0} (sec Corollary 2.4.11 to
Morera’s Theorem). Let

Ar ~ {2such that |z| < r}

for 0 < r < 1 (see Figure 2.5.2). Then g is analytic on Ar, and ou \z2\ = rt|p(2)| =
f{z)/z\ < 1fr. By the Maximum Modulus Prindple 2.5.6. jff(z)] < 1/r on nil of

that is, \f(z2)\ < |z|/r on Ar. Holding z 6 A fixed, we can letr -* 1to obtain
h -)I < 14 Clearly, [ff(0)| < 1;that is, |/'(0)]| < L

Figure 2.5-2: Schwarz Lemma

If |/(zo)l —|zo|,20/ O, then |g(zo)| = 1 is maximized in Ar, where |zol < r < 1,
a0 g is constant ou Ar. Tlie constant is independent of t. (Why?) Similarly, if
:'(0)| ~ 1, then |*| has a local maximum at 0, so g is constanton A. =

Tlie Schwarz Lemma is a tool for many uscTul geometric results of complex
analysis. A generalization that is useful for obtaining accurate estimate!? of bounds
for functions is known as tlie Lindelof Principle, which is as follows: Suppose
thatf and g are analytic on |z| < 1, thatg mops \z\ < 1 otic to one onto a set G,
that /(0) = 5(0), and that the range off is contained in G. Then |/'(0)| < Jf,(0)|
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and the image of |z| < r, for r < 1, under f is contained in ils #mnage under g.
This principle is often used with g a lincar fractional transformation, i.c., g(z) =
(az + b)/(cz + d). As will be proved in Chapter 5, they take circles into circles, so
the g image of the disk |2| < r is usually easy to find (sce Exercise 4 for further
details).1¢

Harmonic Functions and Harmonic Conjugates If f is analytic on A and
J = u+ v, we know that v and v arc infinitely differentiable and are harmonic (by
Theorem 2.4.6 and Proposition 1.5.12). Let us now show that the converse is also

true.

Proposition 2.5.8 Let A be a region in C and lel u be a twice continuously dif-
ferentiable harmonic function on A. Then u is C*, and in a neighborhood of cach
point 25 € A, u is the real part of some analytic function. If A is simply connected.
there is an analytic function [ on A such that u = Re f.

Thus, a harmonic function is always the real part of an analytic function f (or
the imaginary part of the analytic function if), at least locally, and on all of the
domain of that function if the domain is simply connected.

Proof We prove the last statement of the theorew first. Consider the function
g = (8u/dz) — i(3u/dy). We claim that g is analytic. Setting ¢ = U + iV where
U = 8u/dz and V = —3u/8y, we must check that U and V have continuous first
partials and that they satisfy the Cauchy-Riemann equations. Iudced, the functions
3U[8z = 8*u/8z2 and 8V /By = —Fu/8y? are continuous by assumption and are
equal since V2u = 0. Also, by the equality of mixed partials,

U B u v

—— — -
= er— O e—

Thus, we conclude that g is analytic. Furthermore, if A is simply connected there is
an analytic function f on A such that f’ = g (by the Antiderivative Theorem 2.2.51.
Let f = & + 6. Then [’ = (8i/9x) — i(3it/3y), and thus Ji/dz = Bu/dx anc
8it/0y = 8u/dy. Thus & differs from u by a constant. Adjusting f by subtracting
this constant, we get u = Re f.

Now we prove the first statement. )if D is a disk around 24 in A4, it is simph
connected. Therefore, as a result of what we have just proven, we can writeu = Re *
for some analytic f on D. Thus since f is C™,u is also C* on a neighborhoud of
eachpointin 4,50isC®onA. B

Recall that when there is an analytic function f such that ¥ and v are related
by f = u + iv, we say that u and v are harmonic conjugates. Since if s
analytic, —v and u are also harmonic conjugates. Be carcful! The order matters

WFor a uscful survey of some of the more grometric results and a bibliography, s T E
MacGregor, Geometsic Problems in Complex Analyuis, Am. Math. Monthly, May (1972). 447
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£ ¢ is a harmonic conjugate of u, ther u is probably not a harmonic conjugate of
~ Instead, —u is! The preceding proposition says that on any simply connected
~gion A. any harmonic function has a harmonic conjugate v = Im f. Since the
“auchy-Riemann equations (Ju/8z = 8v/dy and 8u/dy = —8v/8x) must hold, vis
:quely determined up to the addition of a constant. These equations may be used
= a practical method of finding # when u is given (sve Worked Example 1.5.20).
Another way of obtaining the harmonic conjugute of u on a disk, by defining it
drrectly in terms of an integral, was indicuted in Exercise 32 of §1.5.

Mean Value Property One reason why Proposition 2.5.8 is important is that it
z=ables us to deduce properties of harmonie functions from corresponding properties
« analytic functions. This is done in the next theorem.

Theorem 2.5.9 (Mean Value Property for Harmonic Functions) Let u be
Larmonic on a region conleining a circle of radius r around 29 = zg + tyg and ils
=zerior. Then

2
u(Zp-0) = -2% ./o u(z0 + re'?)d0. (2.5.2)

Proof By Proposition 2.5.8, there is an analytic function f defined on a region
containing this circle and its interior such that u = Re f. This containing region
cay be choscn to be a slightly larger disk. The existence of a slightly larger circle
1 4 is intuitively clear; the precise proof is given in Worked Example 1.4.27. By
1ae Mean Value Property for f,

25
J(20) = %./o' J(zo + re®)de.

Taking the rcal part of both sides of this equation gives the desired result. W

Maximum Principle for Harmonic Functions From the Mean Value Prop-
erty we can deduce, in a way similar to the way we deduced Theorem 2.5.1, the
‘ollowing fact.

Theorem 2.5.10 (Local Maximum Principle for Harmonic Functions)
Let u be harmonic on a region A. Suppose that u has a relative mazimum at zp € A
that is, u(z) € u(20) for z near zy). Then u is constant in a neighborhood of 9.

In this theoremn “maximum” can be replnced by “minimum” (sce Excrcise 6).
Instead of actually going through a proof for u(2) similar to the proof of Theorem
2.5.1, we can use that result to give a quick proof.
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Proof On a disk around 2, ¥ = Re f for some analytic f. Then /(%) is analytic
and |ef/(*)] = e*(3). Thus, since ¢* is strictly increasing in x for all real z, the
maxima of u are Lhe same as those of |¢f|. By Theorem 2.5.1, e/ is constant in a
neighiborhood of 20; therefore, ¢¥ and hence v are also (again because c* is strictly

increasing for « renl). MW

From this result we deduce, exactly as the Maximnm Modulus Principle was
deduced from its local version, the following “global” version.

Theorem 2.5.11 {Global Maximum Principle for Harmonic Functions)
Suppose that A C C is an open, connected, ond bounded set. Let u : cl(A) — R be
continuous and harmonic on A and let A be the mazimum of u on bd(A). Then

(i) u(z,y) < Af for all (z,y) € A.
(i) If u(z,y) = M for some (z.y) € A, then u is constant on A.

There is a corresponding result for the minimum. Let m denote the minimum
of u on bd(A). Then

(i) u(z,y) > m for (z,y) € A.
(ii) If n(z,y) = m for some (z,y) € A, then u is constant.

The Minimum Principle for Harmonic Fuuctions may be deduced by applying
the Maximuin Principle to —u.

Dirichlet Problem for the Disk and Paisson’s Formula There is a vory
important problem common to mathematies, physics, and engincering called the
Dirichlet Problemn. 1t is this: Let A be au open bounded region and let ug bo a
given coutinuous function on bd(A). Find a real-valuced functiou u on cl(A4) that is
continuous on cl{A4) and harmonic on A and that equals uy on bd(A).

There are (reasonably difficult) theorems stating that if the boundary bd(A) is
“sufficiently smooth.” then there always is a solution u. However, we can ensily
show that the solution is always unique.

Theorem 2.5.12 (Uniqueness for the Dirichiet Problem) The solution to t5-
Dirichlet Problem is unigue (assuming that there is a solution).

Proof Let u and & be two solutions. Let & = u — 4. Then ¢ is hannonic and
¢ = 0 on bd(A4). We must show that ¢ = 0.

By the maximum principle for harmonic functious, é(r,y) < 0 inside A. Simi-
Inrly, from the minimuwm principle, ¢(z,y) > 0on A. Thus¢=0. B

We want to find the solution to the Dirichlet Problem for the case where the
region is an open digk. To do so we derive a formula that explicitly expresses the
values of the solution in terms of its values on the boundary of the disk.
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Theorem 2.5.13 (Poisson’s Formula) Assume that u is defined and continuous
.1 the closed disk {z such that |z] < r} and is harmonic on the open disk D(0;r) =
: such that |z| < r}. Then for p < r, we have the real form of Poisson’s

Formula

r2—p? u(rei®)
(- T —
ulpe’®) = 27 ,/ r? - 2rpcos(¢ — 6) + p'-!da'

whuch is egquivalent lo the complex form of Poisson’s Formula
1 [ oy T2 = 2|
u(z) = 2—7.-_/0- u(re )|rc"" - 2|,do

The technical parts of the following proof require an acquaintance with the idea
% uniform convergence. The student who bas not studied uniform convergence
2 advaneed calculus may wish to reread this proof after studying §3.1, where the
—levaut ideas arc discussed. Notice that if we set z = 0 in the complex form of
Paisson's Formula, we recover the Mean Value Property of harmonic functions.

Proof First note that since u is harmonic on J(0;r) and D(0;r) is simply con-
zected, there is an analytic function f defined on D(0, ) such that v = Re f. Next,
»1 0 < s <rand let 7, be the circle |z| = s. Then, by Cauchy’s Integral Formula

2.4.4, we have
)= o f 1Q) o

‘or all z such that |z} < s. We next manipulate this expression into a form suitable
for taking real parts. To do 50, let 3 = s2/%, which is called the reflection of z in
the circle [(| = s. Reflection is pictured geometrically in Figure 2.5.3.

Tihws if 2 lies inside the circle, then 2 lics outside the circle, and therefore

f(C)

tur jz] < s. Subtracting the preeeclmg mtegml from

1ey=o [ Hla

10= 55 [ 10 (5 - 25) %

Observing that, |¢| = s, we can simplify as follows:
1 1 _ 1t 1z
(-2 ¢-2 (-2 (-=KP/z ¢-z ((z-0)
G2+ [Cf2 4 CE — |s? _ G2 = |2f?
-z CIC—zP?"

we obtain
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N

Figure 2.5.3: Reflection of a complex pumber in a circle.

Hence, we have
1 [ U =127 ...
100= 5 | i
that is,
. 1 2 f(sel?)(s® —
!W‘) = g A %@l—-ﬁ?ea%do,

where p < s. Noting that |se* — pe'#|2 = 52 4 p? — 2spcos(¢ — 8) and taldng the
real parts on both sides of the equations, we aobtain
o L [ ulsc)(e — )b
"W)"zu o 82+p% —2spcas(ép—-6)
Keeping p and ¢ fixed, note that this formula is valid for any s such thac

p < 8 < r. Since u is continuous on the closure of D(0;r) and since the function
82 4 p* — 23pcos(¢ — 0) is never zero whenever s > p, we conclude that for s > p.

[u(se®)(s* - p*)I/Is? + p* — 2spcos(d — 0)]

is 2 continuous function of s and ¢ and hence (with p, ¢ fixed) is uniformly con-
tinuous on the compact set, 0 € 8 < 27,(r + p)/2 < 8 < r. Consequently, as
s§—T,

sec) = p%) |, ulre)r?~ o)
T —2ps(d—0) P+ 2 2rpoos(p—0)
uniformly in 8, which implics that as s — r,
L[N gy LT Nt
2x Jo 8+ p* —2spcas(é—0) 25 Jo 2 +p*-2rpeos(p—-8)
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Solution A C c(A) and bd(4) C cl(A), so AUbJ(A) C cl(A). In the other
dircction, if z is in cl(A) and not in A, then

z € (lim(A4)) N (C\A) C cl(A) Ncl(C\A4) = bd(A).
Thus, cI(4) € AUhd(A).

Example 2.5.17 Suppose 1 : C — R is a bounded harmonic function. Show that
u tnust be constant.

Solution Since u is harmonic on the simply connected set C, Proposition 2.5.8
says that there is a harmonic function v : C > Rsuch that f =u+in:C - C
is analytic. We have |ef()] = |eu(=}+i¥(=)] = ¢u(). Since u(z) remains bounded, so
docs the entire function ¢/), By Liouville's thearem, /(=) must be a constant, say.
K. For each z, f(z) must be a chioice of logarithm for K. But, since f is continuous.
it cannot switch from one value of log K to another, so f must be constant. Thus
u = Re f is also constant.

Example 2.5.18 Suppose f and g are one to one analytic funclions from the unit
disk D onto D that satisfy £(0) = g(0) and ¢’(0} = f'(0) # 0. Show that f(z) = g(2)
Jorallz in D,

Solution The function h{z) = g~'(f(z)) is analytic from D to D and h(0) =
971 (f(0)) = g7*(9(0)) = 0. Since g(h(z)) = J(z), we bave ¢'(4(0)).k'(0) = f'(0:.
so I'(0) = f'(0)/9’(0) = 1. The Schwarz Lemma shows that A(z) = cz for a
constant ¢; since A'(0) = 1.c = 1. Thus f(2) = g(h(z)) = g(z). We will see in
Chapter 5 that the assumption that f and g are one to one forees the derivative to
be nonzero, so the assumption of nonzero derivatives is really superfluous.

Exercises
1. Find the maximum of |e*{ on |z| < 1.

2. Find the maximum of | cus 2| on [0,27] x [0, 27).

3. Give an example to show that the interpretation of the Maximum Modulu
Principle that reads “The absolute value of an analytic function on & regios
is always smaller than its maximum on the boundary of the region™ is false 1f
the region is not bounded. The region in your example should be somethine
other than all of C so that the boundary is not empty.

4.° (a) Let the mapping T be defined by T(z) = R(z—29)/(}#* - Z32). Show tha:
for |2| < R, T takes the open disk of radius R one Lo one onto the disk
of radius 1 and takes 2y to the origin. Hint: Use the Maximum Modulx
Theorem and verify that zg — 0 and |2} = R implies that [Tz] = 1.
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13.

14.

15.

Chapter 2 Cauchy’s Theorem

Let/ be analytic and let /'(z) jEOona region A. Let Zg€ A and assume
that /(zo) £ 0- Given ¢ > 0, show that there exista z€ A and a £€ A such
that|z- *o| <¢,|C- zol< and

1/(*)1 > 1/ (*>)! 1/(01 < l/(*o)l-
Hint: Use the Maximum Modulus Theorem.
Prove Hadamard’e Three-circle Theorem: Let/ be analytic on a region
containing the set R in figure 254. Let R = {z|n < |z| < r3} and assume

0 < n < Ti<r3 LetlJlfjM2 Af3 be tlie maxima of |/| on the circle-
|z| = rl.r2.r 3, respectively. Then we have the inequality

M t*gtm/r,) < Aflosto/ni~fn/n)

Hint: Let A= — )/ log(r3/rj) and consider g(z) —zxf(z). Apjd>
the maximum principle to g; i>c careful about the domain ofanalytidty ofg

y

Figure 2.5.4: Hadamard’s Thrce-drcic Theorem.

Let g be analytic on {2 such tluit \z2\ < 1} and assume that |g{z)| —|z| for
|z| < 1. Show that g(z) * eiBz for some constant 0 € {0,2jr). Hint: Use lie-
Schwarz Lemma.

16** Prove: If n is continuous and satisfies the Mean Value Property, then - «-

17.

18.

C°° and is harmonic. Hint: Use Poisson’ Formula.

Evaluate\] A where 7 is the drcle |z| = 2.

The function f(z) is analytic over the whole complex plane and Im/ < *?
Prove that/ is a constant.
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8.° Let f be entire and let |f(2)] < M for z on the circle |z| = R; let R be fixed.

Prove that
f(k)( ia)l < & J\J)k k=0,1.2,...
foral0<r<R.
9. Find 2 liarmonic conjugate for u(z,y) = %’;—:%:; ou a suitable domain.

10. Let f be analytic on A and let f/(25) # 0. Show that if 7 is a sufficiently
siall circle centered at zp, then

f‘(zo) ff(Z) I(ze)’
fint: Usce the Inverse Function Theoremn,

2 . @
11. Evaluate / e~ 8o dg,
)

12.° Let { and g be analytic in a region A and let ¢/(z) # 0 for all z € 4; let g be
one to ope and let ¢ be a closed curve in A. Then for z not on «, prove tha:

2 2@ [ 1)
senern = G2 [ TE —a

Hint: Apply the Cauchy Integral Formula to 2(¢) = f(CHC —2)/(g(C) — 9t
for 2 # ¢ and h(¢) = f(€)/9'(C). Apply this result to the case in whic:
() = 2.

13. Simplify: €'8%;)og i; log(—i); ilx(-1),

4. Let A= C minus the negative real axis and zero. Show that log z = J d¢:
where v, is any curve in A4 joining 1 to 2. Is A simply counected?

15. Let f be analytic on a region A and let f be nonzero. Let -y be a closed cur«
homotopic to a point in A. Show that

1)
T ==

16.° Let { be analytic on and inside the unit circle. Suppose that the imag- ®
the unit circle |z] = 1 lies in the disk D = {z such that |z — 20| < r}. Show

that the image of the whole inside of the unit circle lies in D. Dlustrate w==.

. :

17. Is/zdz-!-zdyalwaysmifqisaclosedcurve?
Y
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Chapter 3

Series Representation of
Analytic Functions

[n Chapter 2 we defined an analytic function to be one that has a derivative in the
sense of complex functions of a4 complex variable. There is an important aiternative
way to view an analytic function. In some developments of complex function theory,
a function f is called enalytic if, near each point zg in its domain, it is locally
representable as a convergent power series centered at zg.! As we shall see, this
series must be the Taylor series of f centered at zy, namely

0  oin)
T(z0) + (20)(z = 20) + 31 "(an)z = 2P+ ... = o Loz e,
n=0

In other words, one could alternatively define an analytic function to be one which
is infinitely differentiable and whase Taylor series converges to the function. We
will reconcile this alternative approach with onrs in this chapter.

With real variables, both the question of infinite differentiability as well as the
convergence of the Taylor series of a given function can present a problem. For
example, the function

2 forz>0
!(z)z{-z’ forz<0

is differentiable, but J'(z) = 2|z|. Thus, the second derivative does not exist at
0. Even if all the derivatives exist, the Taylor scrics might not converge to the
function. The function

0 forz =0

1Seq, for example, H. Cartan, Elementary Theory of Analytic Punctions of One or Several
Comglex Variables (Reading, Mass.: Addison-Wesley, 1963 and New York: Dover Publications,
1995).

fl@) = { eV forz#0

183
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is an example. Using induction one can check that f5)(0) cxists for all k (in the
real-variable sense) and f(X)(0) = 0. Here all coefficients of the Taylor series at 0
are 0, so the resulting series is zero, which does not equal f(z) in any nontrivial
interval around 0.

A nice thing about complex analysis is that neither of these diflicultics ariscs.
This reinforces the fact that assuming the existence of 8 complex derivative is much
stronger than assuming the existence of a real derivative. We discovered in Chapter
2 that as soon as the first derivative exists on a region, all the higher ones must
also. We will find in this chapter that the second difficnlty also disappears, If f
is analytic on a region A and 2p is in A, then the Thylor series of f centered at =
automatically converges to f on the largest open disk centered at 29 and contained
in A.

The reader is probably familiar with the geometric series

|,..

ot

oo
a

— =1+t+ 4t o= oM

n=0
which is valid provided |f| < 1. We will show in the first section that this works
just as well for complex as for real numbers. In §3.2 we will use it to expan:
the integrand in the Cauchy Integral Formula as an infinite series, integrate thi-
series term by teru, and use the Cauchy Integril Formula for Derivatives 2.4.6 <u
recognize the resulting coeflicients as the correct ones for a Taylor series.

Building on the preparation in §3.1, in §3.3 we investigate the series represes-
tation of a function analytic on a deleted neighborhood, that is, a function with ac
isolated singularity. The resulting scries, called the Laurent series, yields valuubi
information abont the bchavior of functions near singularities, and this bebavior =
the key to the subject of residues and its subsequent applications.

3.1 Convergent Series of Analytic Functions

We shall use the Cauchy Integral Formula 2.4.4 to determine when the limit of &
convergent sequence or series of analytic functions is an analytic fimetion and whe
the derivative (or integral) of the limit is the hmit of the derivative (or integras
of the terms in the sequence or series. The basic type of convergence studivi =
this chapter is uniform convergence; the Weierstrass Af Test is a basic tool uset =
determine such convergence. In §3.2 we shall be especially interested in the spev o
case of power series, but we should be aware that some important functions =z
convergent series that are not power series, such as the Riemann zeta function e
Worked Example 3.1.15).

The proofs of the first few results are slightly technieal, and since they u
analogous to the case of real series, they appear at the end of the section.

Convergence of Sequences and Series We begin with some basic definitxze
and tenninology.
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Definition 3.1.1 A sequence z,,n = 1,2,3,... of complex numbers is said to
converge lo & compler number 2y if, for each ¢ > 0, there is an integer N such
that

n> N implics that |2, — 2| <e.

Convergence of z,, lo zy is denoted by 2, — 2g.
An infinitc series 3 5. | ax of complez numbers is said Lo converge to S, and
we umite

ink=5
k=1

if the sequence of partial sums defined by s, =Y i, ax converges to S.

The limit of a convergent sequence is unique; that is, a scquence can converge
to only one paoint zy. (This and other properties of limits were discussed in §1.4.)
A sequence z,, converges iff it is a Cauchy sequence, in other words, if, for each
¢ > 0, there is an N such that n,m > N implies that |2, — 2,,| < ¢. (Equivalently,
the definition of Cauchy sequence can read: For each € > 0 there is an N such that
n 2> N implies that |2, = 2x4p| < ¢ for cvery integer p = 0,1.2,....) This property
of C = R? follows from the corresponding property of R, and we shall accept it
from advanced calculus.

Corresponding statements for whe scries 3" 5o, ax can be made if we consider
the sequence of partial sums s, = Fp_, @, SiCe Spip = 8n = 3 panyy Gk, the
Cauchy criterion for sequences becomes the Cauchy criterion for series:

3 kw1 ax converges iff, for each € > 0, there is an N such that n > N
implies that

n4p

D e

k=n+1

<e forall p=1,23,....

As a particular case of the Cauchy criterion. with p = 1 we sce that

[+ -]
if Z“*‘ converyges, then ap — Q.
k=1

The couverse is not necessarily true, as the harmonic series 3 po, 1/k from calculus
demonstrates.

As with real series, a complex scries 3 o, @ is suid Lo converge absolutely
if Y pz, lax| converges. Using the Cauchy criterion for series, we get the following
proposition.

Proposition 3.1.2 If 337, ax converges absolutely, then it converges.
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The proof of this proposition is found at the end of the section. The example
Soney (=1)%/k from calculus shows that the converse need not be true; that is, this
is an example of a serics that converges, but not absolutely.

This proposition is important because 3 57 | Jax| is a real series, and the usual
tests for renl series that we know from calculus can be applied. Some of those tests
are included in the next proposition {again the proof appears at the end of the
section).

Proposition 3.1.8 The following tests for the convergence of series hold.

(i) Geometric series: If [r| < 1, then 3 o, r" converges to 1/(1 — r) and
diverges (does not converge) if r| 2 1.

(i) Comparison test: If 3 4o bx converges and 0 < oy < by, then Y 4o | as
converges; if Y e, Ok diverges and 0 < ¢ < dx, then 3 5o, di. diverges.

(iii) p-series test: 3 .., n~P converges if p > 1 and diverges o 0o (that is, the
partial sums increase without bound) if p < 1.

(iv) Ratio test: Suppose that "lgx‘l’° a%:._,. cxists and is strictly less than 1. Ther.

Yoo} tn converges absolutely. If the limit is strictly grealer than 1, the senes
diverges. If the limit egquals 1, the test is inconclusive.

(v) Root test: Suppose that lim,_oo(la.])!/" ezists and is strictly less than 1
Then Y05, ay, converges absolutely. If the limit is strictly greater than 1. the

series diverges; if the limil equals 1, the test is inconclusive.

There are a few other tests that we shall occasionally call upon from caleules
guch as the alternating series test and the integral test. We assume the reader w3
review themn as the need arises.

Uniform Convergence Suppose that f, : A — C is a sequence of functions 2%
defined on the set A. The sequence is said to converge pointwise iff, for escs:
z € A, the sequence f,(z) converges. The limit defines a new function f(z) on 4
A more important kind of convergence is called uniform convergence and is defic-ay
as follows.

Definition 3.1.4 A seguence f, : A — C of functions defined on a set A 1 sex'
to converge uniformly to a function f if, for each € > 0, there is an N som-
that n > N implies that | fo(2) — f(2)| < ¢ for all z € A. This is written “f, — *
uniformly on A.”

A series 3 i | ai(2) is said to converge pointwise if the corresponding p=-
tial sums 8,(2) = 3-;_, 9i(2) converge pointuise. A series I ;o) gr(z) is sa &
converge uniformly iff s,(2) converges uniformly.



§3.1 Convergent Series of Analytic Functions 187

Evidently, uniform convergence implies poiniwise convergence. The difference
between uniform and pointwise convergence is as follows. For pointwise conver-
gence, given ¢ > (), the N required is allowed to vary from point 10 point, whereas
for uniform convergence we must be able to find a single N that works for all z.

I is difficult to draw the graph of a complex valued function of a complex
variable, since it would require four real dimcensions, but the corresponding notions
for real-valued functions are instructive to illustratec. The geometric menning of
uniform convergence is shown in Figure 3.1.1.

y
fix)

N

e 1

Figure 3.1.1: Uniform convergencc on an interval [e, b).

If ¢ > 0, then for large enough n, the graph y = f,(z) must stay inside the “c-
tube” around the graph of f (the tube’s width is measured in the vertical direction).

The concept of uniformity depends not only on the {unctions involved but also
an the sct on which we are working. Convergence might be uniform on one set but
not ou a larger set. The following example illustrates this poiut. The sequence of
functions f,(z) = 2" converges pointwise to the zero function f(z) = 0 for z in the
half-open interval [0,1[, but the convergence is not uniform. The function value
r® takes much longer to get close to 0 for z clase to 1 than for z close to 0; hy
taking z close enough to 1, we need arbitrarily large values of n. The convergence
is uniform on any closed subinterval {0,r] with r < 1. Since the worst case is at
r =, whatever n works there also works for all smaller z. Sce Figure 3.1.2.

Theorem 3.1.5 (Cauchy Criterion)
(i) A sequence [,(z) converges uniformiy on A iff, for each ¢ > 0, there is an
N such that n > N implies that |fa(z) — fasp(2)] < € for all z € A and all
p=123,....

(ii) A series Y ;| 9i(z) converges uniformly on A iff, for each ¢ > 0, there is an
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Figure 3.1.2: Convergence of =% t0 0 is not unifonn on {z |0 <z < 1}.

N such that n > N implies that
ntp

Y anlz)

k=ad)d
Jorallze Aeondallp=12,....

<c

The next result states a basic property of uniform convergence.

Proposition 3.1.6 If the sequence f,, consisis of continuous functions defined -
A and if fp, = [ wniformly, then [ is conlinuous on A. Similarly, if the functioas
91(2) are continuous and g(z) = Y ;2 9x(z) converges uniformiy on A, then g
continuous on A.

Propasitions 3.1.5 and 3.1.6 are proved at the end of this section.
Thus, a uniform limit of continuous functions is continuous. If the converger-=
is not uniform, then the limit might be discontinuous. For cxample, lot

-1 forz<-1/n
Ja(zy= ¢ nx for ~1/n<cz<1/n
1 fori/n<sz
and
~1 for-o0o<x<0
f@)=< 0 forz=0
1 for 0<z <o,
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as illustrated in Figure 3.1.3. The functions f, converge pointwise to f on the whole
live. but the convergence is not uniform on any interval that contains @, since for
very small nonzero values of z, n may have to be quite large to bring f,,(x) within
a specified distance of f(x). Each of the functions f, is cantimuous, but the limit
function is not.

4 J!Fﬂ’)\

I

y =Lz}

=l/n

Py LS L Tt

Figure 3.1.3: A nonuniform limit of continuous functions necd not be continuous.

Weierstrass M Test The Weierstrass M Test is one of the most useful theoretical
and practical tools for showing that a series converges uniformly. 1t does not always
apply, but it is cffective in many cases.

Theorem 3.1.7 (Weierstrass Af Test) Let g, be a sequence of functions defined
on a set A C C. Suppose that there is a sequence of real constants M,, > 0 such
that both of the following conditions hold.

(i) lgu(2)] S My forallz € A

(ii) Yoo, Mn converges
Then 32, gn conuerges absolutely and uniformly on A.

Proof Since Y M, converges, for any ¢ > 0 there is an N such that n > N

implies 3p2?, | My < cfor all p=1,2,3..... (Absolute value hars are not needed
because M, 2 0.) Thus, n > N implies
nip nip nip
Y a@| < Y Gl Y Mi<e
k=n+) k=n+! k=n41

so by the Cauchy Criterion 3.1.5, we have convergence, both absolute and uniform,
as desired. B
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Example Consider the series g(z) = * e We claim that this series con-
verges uniformly on each of the sets Ar —{a such that |z| < r}, where0<r < 1
(We cannot let r = 1.) Here gn(~) —zn/n and |<?,(2)| = |z|”/n < r"/n since
N
T(gshow this, we letM,, = rn/n. Since 0 < M,, < rn, the series 52 M,, converges
by comparison to the convergent geometric series 52"=or"- Therefore, our series
converges uniformly on Ar by the Weierstrass M Test. It converges pointwise on
the set A—{z € C | |a] < 1}sinceeach z in A isin Ar forr dose cnougit to 1.

(See Figure 3.1.4).

Figure 3.1.4: Region of convergence of52(z’*/n): uniformly on Ar, pointwise ou A.

Thisseries docsnot, however, converge uniformly on A. Indeed, ifit did, '£ x n/n
would converge uniformly ou (0,1[. Suppose that this were true. Then forany e > b
there would be an N such that n > N would imply that

Xn+r -n+p
— +
n n+1 n+p

forall x € (0,1] and p —0,1,2,----But the harmonic-type scries.

N N +\
diverges to Infinity (that is, the partial sums —+00). so we can choose p sucli tha:

Next, we choose z so dose to 1that x+r* > jj2. Then

N

n N+p Vat n +p)
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which is a contradiction. However, uotc that g{z) is still continuous on A because
it is continuous at cadi z, since cadi z lies iu some Ar ou which we do have uniform

convergence. ¢

Series of Analytic Functions The next result, formulated by Karl Weierstrass
in approxitnatdy 1860, is one of the main theorems concerning the convergence of

analytic functions.

Theorem 3.1.8 (Analytic Convergence Theorem) (i) Ltd A bean open set
in C and let f,, be a sequence of analytic functions defined on A. If/,, —*/
uniformly on every closed disk contained m A, then f is analytic. Further-
moTc, ft —*f pointwise on A and uniformly on every closed disk in A (see
Figure 3.1.5).

(i) IfQk is a sequence of analytic functions defined on an open set A in C and
s(2) = E tel 9k{z) converges uniformly on every dosed disk in A, then g is
analytic On A andg'(z) —X'JL, g£(z) pointwise on A and also uniformly on
every closed disk contained in A.

Figure 3-1.5: Uniform convergence on dosed disks in the set A.

This theorem reveals yet smother remarkable property ofanalytic functions that
is not shared by functions of a real variable (compare 82.4). Uniform convergence
usually is not sufficient to justify differentiation of a series term by term, but for
analytic functions it is sufficient.

The proof of the Analytic Convergence Theorem 3.1.8 depends ou Morera’s
Theorem and Cauchy's Integral Formula, wliidi were studied in 82.4. Ib prepare
for this proof let us first analyze a result concerning integration of sequences and

series.

Proposition 3.1.9 Let7 : [«,5] —»A be a curve in a region A and let /« be a
sequence of continuous functions defined an 7([a,6]) which converges uniformly to
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J on y([a,b]). Then

Lﬁ~£ﬁ

Similarly, if 3 o, 9n(2) converges wniformly on v, then we can interchange infinite
sums and integrals:

L (Z gn(z)) =Y f gu(2)dz.

n=1 n=1

Proof The function f is coutinnous by Proposition 3.1.6 and so is integrahle.
Given ¢ > 0, we can choose A such that n > N implics that |f,(2) — f(2)| < ¢ for
all z on 4. Then, by Proposition 2.1.6,

~1|% [ 11nta) - seMaz < )
v

from which the first assertion follows. The second assertion is obtained by applying
the finst Lo the partial sums. (The student should write out the details.) W

Proof of the Analytic Convergence Theorem 3.1.8 As usual, it suffices o
prove (i). Let 20 € A and let {2 such that |z — 2| < r} be a closed disk around =
entirely contained in A. (Why does such a disk exist?) Consider D(zp;r) = {2 snch
that |z — 2} < r}, which is a simply connected region becausc it is convex. Since
Jn — [ uniformly on the set {z such that |z — 29| < r}, it is clear that f,, — f
uniformly on D{zg;7). We wish to show that f is analytic on D(2q;r). To do thi-
we use Morera’s Theorem 2.4.10. By Proposition 3.1.6, f is coutinnous on D(zg: r
Tet v be any closed curve in D(zg;r). Since f, is analytic, f" fa =0 by Cauchy'>
Theorem and by the fact that D(zg;r) is simply connected. But hy Proposition
319, [ fo — [,f, 50 [, = 0. Thus by Morera’s Theorem f is analytic on
D(ze:7).

We must still show that f; — f' uniformly on closed disks. To do this we ux
Cauchy's Integral Formula for Derivatives 2.4.6. Let B = {z such that |z—z) < r-
be a closed disk in A. We can draw a circle v of radius p > r centered at zy thes
contains B cntircly in its interior (soc Worked Example 1.4.27 and Figure 3.1.6,.

Forany x € B,

() 4 =1 I(C)
!'( ) 2m (( 2)2 d !'( ) 2“. z)zd(

by the Cauchy Iutegral Formula. By liypothesis, f, — f uniformly on the closas
disk {z such that |2 — 2o} < p}, which lies entirely in A. Then, given ¢ > 0, we pis
N such that n > N implies that |f,(z) — f(z)] < ¢ for all z in this disk (which ==
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Figure 3-1.6: A closed disk in an open set can be sliglttly enlarged.

can do by iiypothcsis). Since 7 is the boundary of this disk, n > N implies that
-I{C)- /(O <tou7. Note that

im -r w i < * = |

and observe that for ( and 7 and z G B, |E —z| > p —r. Hencen > hTimplies that

Since p and r are fixed constants that arc independentofz € B, wo get the desired
result.t m

Applying the Analytic Convergence Theorem 3-1.8 repeatedly we sec that the
fcth derivatives converge to /*** uniformly on dosed disks in A. Notice also
that this theorem does not assume uniform convergence on all of A. For example,
£)»!, z"/n QJA ~{z such that |z| < 1} converges uniformly on the sets Ar —[z
such that |z| < r} forO<r < 1 (as we saw in the preceding example) and hence
converges uniformly on all dosed disks in A. Thus we can condudc that £ z”’/n
is analytic on A and that the derivative is £ z n-1, which also converges on A.
However, as that example demonstrated, we do have pointwise but not uniform
convergence on A; convergence is uniform only on cadi dosed subdisk in A.

Technical Proofs Now we provide the missing proofs.

Proofof Proposition 3.1.2 By the Caudiy Criterion 3.1.5, given t > 0 there
isan Arsudi that n> N implies
n+p
I*—1t 2*-- -
fo=«H
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But
n+p n+p
Y al< Y laul<e
ke=ntl k=n+1

by the triangle inequality (sce §1.2). Thus by the Cauchy Criterion 3.1.5, 302 | ax
converges. B
Proof of Proposition 3.1.3

(i) By basic algebra,
] - ,.n+!

14r+2 4. 49" =
l-r

ifr 1. Since ™! 2 0 asn — oo if Jr| < 1, and since [r|"+? — coif Jr] > 1.

we have convergence if |r| < 1 and divergence if |r] > 1. Obviously, ¥ oo ™"

diverges if |r| = 1, since ™ does not converge to zero.

() The partial suns of the series 2.;;, by form a Canchy sequence and thus
the partial sums of the series ) ,_, a, also form a Cauchy sequence, sinee
for any k and p we have ay + Gry1 + ... + Chip < b + bpgs + ...+ bpyp.
Hence Y22, ai converges. A positive series can diverge only to 400, 50 given
AM > 0, we can find kg such that k > kg implies ¢y + o + ... 4+ ¢ > A
Therefore, for k > ko,dy +d2+...4+dx > M,50 3 ;7 | dj. also diverges o ox.

(3ii) First suppose that p < 1; in this case 1/n® > 1/nfor alln = 1,2,....
Therefore, by (i), T ov, 1/nP will diverge if Y oo, 1/n diverges. We now
recall the proof of this from calculus:? If s = 1/14+1/2+4...4+1/k, then s; is
a strictly increasing sequence of pasitive real numbers. Write su as follows:

1 1 1 1 1.1 1
S = l+§+(§+z)+(§+§+?+§)

1 1
E e S (E,T_“'-i-...'!‘z—k)

1 1 1 1 k
2 1’!‘54’(5)4’(5)4’."‘5’(5)-1{-5.

Hence s; can be made arbitrarily large if & is made sufficicntly Jarge; thus
. .

=z} l/ﬂ diverges.
Now suppose that p > 1. If we et

=2 + ! + ! +...4 1
=P TR T TR
2We can alwo prowe (iil) by using the iutogral test, for positive series (see any calculus text
The dumonstrntion given here also proves the Cauchy condensation test: Let 3~ an be a series o
positive terms with @y41 < . Then T e converges if 3752, 2/ay; convarges (see G. J. Porte
An alternative to the integral test for infinite sorics, Am. Math. Monthly, 79 (1972), 634).
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then s;. is an increasing sequence of positive real numbers. On the other hand,
1 1 ] 1 1 1 1
Sp_y = —+(2,,+3,,)+( t5te +7!')
S S S 1 1.2 2 + 4 2k~1
"\ o) S 5t ey
1 + 1 + 1 + 1 < l
1ttt T <10y
(Why?) Thus the sequence {sy} is bounded from above by 1/(1 ~ 1/2¢-1);
bence Yoo, 1/n” converges.
@n41

(iv) Suppose that Jim_ =r < 1. Choose r’ such thut r < r' < 1 and let N
be such that n 2 NN implies

Gni)

]

’

For k > N, we bave
lox| £ Flax-y] < (") Hag-2] < -+ < (r')*¥lanl.

The series 3, v |ax] converges by comparison to the convergent geometric
series with ratio v/, If

Tin
n—co

Bn1
a,

=r>]1,

clarnooscr’sudlthat 1 < <rand let N be such that n > N implies that

+1 I > r'. Hence lay,,) > (')lay], and so limp—co lax| = oo, whereas
the limit would have to be zero if the sum converged (see Exercise 10). Thus,
3 k= ax diverges. To sce that the test fails if nlll.lcl, a.:: =1, consider

thetwoamosl-}-l-z»l.;.,,_ and 353 1/nP for p > 1. In both cases
|¢n+1|

=1, but the first series diverges and the second converges.

n-ow

(v) Suppose that im0 au|'/" = r < 1. Choose +/ such that r < < 1aud N
%":‘ that. n 2 N implics that |a, /" < 7, in other words, that |a,} < (v)".

lasl +laz| +... + lay_y| + ()Y + (F)V* 4.
converges to

N
a1} + |aa| +...+|0N_||+¥_:l_..
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so by (ii}, 3 te, |ax| converges. If liMp—.oo @[}/ =r > 1, choose 1 <7 < 1
and N such that n > N implies that |en|'/® > ¢’ or, in other words, that
lan| > (’)". Hence limy.q |an| = 0. Therefore, 3 7, ax diverges.

To show that the test fails when lim,—q |aq|'/™ = 1, we use these limits from

calculus:
1 i/n 1 1/n
lim (-) =1 and lim (—2) =1
n
(take logarithms and use L’Hdpital’s rule to show that (logz)/z — 0 as
x — oc). But Y07, 1/n diverges and §_ o, 1/n® converges. &

Proof of 3.1.5 (Cauchy Criterion)

(i) First we prove the “if” part. Let f(z) = Em,_o; fn(z), which exists because
for each 2, fo(z) is a Canchy scquence. We wish to show that f, — f
uniformly on A. Given € > 0, choose N such that |fn(2) = fu4,(2)l < ¢/2
for n 2 N and all p > 1. The first step is to show that for any z and
any n 2> N,|fa(2) - f(2)| < €. For z € A, choose p large enough so that
1fasn(2) — ()] < €/2, which is possible by pointwise convergence. Then, by
the trinngle inequality,

1/a(2) = J(2) < 1/u(2) = fasp(N + [fnepl2) = S(2) < cf24 /2=
(Notice that althongh p depends on 2, N docs not.)

Conversely, if f, — f uniformly. given ¢ > 0 choose N such that » > \
implies |fa(2) — f(z)] < €/2 for all 2. Sincen+p 2> N,

[fu(2) - fn-i-p(z){ < \u(2) = f(2)] + 1/(z) - fn+p(=)l <€/24¢f2=c.
(ii) By applying (i} to the partial sums, we deduce (ii). W
Proof of Proposition 3.1.6 It suffices to prove the assertion for sequences
(Why?). We wish to show that for 29 € A, given € > 0, there is 2 § > 0 such tha;
|=—zo| < & implics that | f(z)} = f(20)] < €. Choose N such that |fx(z)-f(z)| < ¢ 2

for all z € A. Since fiv is continuous, there is a § > 0 such that | fn(z) — fa(zo)! <
¢/3if |2 — 24} < §. Thus,

1(2) - f(20)l < |F(2) = Se(2) + |fw(2) = Sn(20)] + [ n(20) ~ f(z0)|
< €f3+¢f3+€¢/3=¢c W

Note that in the last step we need au N that is independent of z to conclud:
that. both |fv(z) = f(2)] < ¢/3 and |fn(20) - f(20)] < ¢/3.

Worked Examples

Ex.am;)le 3.1.10 Show that the sequence of functions fa(Z) = sin(x/n) convern:s
uniformly Lo the constant function f{z) =0 for = in the interval [0, ).
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Solution From calculus, sin8 is increasing and sind < @ for 0 < 8 < #/2. Thus,
if 7 € [0,%] and 1 > 2, then |fu(z) — f(x)| = |sin(z/n)] < sin(x/n) < x/n. (See
Figure 3.1.7.) Thercfore |fo(3) — f(2)| < € provided n > max(2,=/c). The same n
works for all z in the interval, and so the convergence is uniform on [0, #}.

y

> X
X=X

Figure 3.1.7: y = sin{(z/n) for n = 1 through 7.

Example 3.1.11 Show that the scquence of functions f,(z) = arctan(nz) con-
verges for x: in the interval [-5,5] to the funclion

-%f2 for <0
Jx=< 0 for =90
#f2 for >0

but that the convergence is not uniform. (See Figure 3.1.8.)

Solution M z > 0, then |fa.(z) - f(z)] = |arctan(nz) — x/2|. We know that
arctan(y) is an increasing function of y with limit #/2 as y — oo. Therefore

arctan(nz) — %/2} < € if and only if nz > tan(a/2 ~ ¢). For any particular
value of 2, large enough values of n will work, but by taking z close w0 0 we can
force the required n to be quite large. Thus we have convergence bul not uniform
convergence. (Similar discussions apply for z < 0.) One can see indirectly that
the convergence must not be uniform. If it were, then the limit function would be
continuous, by Proposition 3.1.6. But it is not.

The next three examples develop the important special caso of the geometric
series and show how the tools of this section ¢an be applied to it to obtain somne
interesting results. The bebavior of these examples is typical of the more gencral
power series studied in the next section.

Example 3.1.12 Show that the serics 3 ooy 2" converyes on the open unit disk
D = DX{0;1) Lo the analytic function f(z) = 1/(1 — 2). Prove that the converyence
is uniform and absolule on every closed disk Dy = {z such that |2} < r} withr < 1.
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¥

ht
[7

Figure 3.1.8: y = arctan(nz) for n =1 through 5.

Solution If z € D, then z € D, whencver |2| < r < 1. Hence convergence
ut z follows from the secoud assertion. To prove this, suppose z is in D,. Then
|2 < r*. Since 3 " converges (Propusition 3.1.3 (i)), the Weicrstrass M Test
applics with M, = r", and our series convarges uniformly and absolutely on D,.
We have run into one of the shortcomings of a tool like the Weierstrass A Test.
We have shown that the series converges but have not identified the limit. To do
this notice that

1-2"M" =(1-2)(14z4+22+...+2"),

|z|nn gl
|1 2| < 1-7

l—z-z
Since r < 1, this goes to 0 as n — 0o and we have our result.

Example 3.1.13 Show that the sevies 300, nz""! = 320 \(n + 1)z" converge:
on the open unil disk D to g(z) = 1/(1 — z)*. The convergence is uniform and
absolute on every closed disk contained in D.

Solution If B is any closed disk contained in D, then B C D, for some closed disi:
D, which is proved as in the lust example. The series Y 2™ converges uniformnly ané
absolutely to f(2) = 1/(1 ~ 2) on D, and so an B. By the Analytic Convergence
Theorem 3.1.8 (ii), the series of derivatives converges uniformly on every closea
disk in D to f'(z). That is, Zn_l nz"=? = f'(2) = 1/(1 - 2)3, as desired. Ths
convergence is absolute by comparison. If |z| < r <1, then [nz""!| < nr"*-!, bin
Y nr"~! converges by the argument just given.
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Example 8.1.14 Show that the series J e ,(—=1)"~' 2" /n converges uniformly and
absolutely to log(1 + z) on the open unil disk, where log(pé™®) = logp + i0 with
-x <0< 7.

Solution We know that the given formula for log defines a branch of logarithm
un the disk D(1;1). In fact, it is the same as that described by the construction
logw = f (1/¢)d(, where 7 is a straight-line path from 1 to w. By the path inde-
peadence guaranwed by Cauchy’s Theorem we can integrate first along a circular
arc (constant r = 1) and then along a ray from the origin (constant 8) to get from
1 to w = pe*® (sce Figure 3.1.9).

Y

Figurc 3.1.9: Path for compating logw on D(1;1).

This construction shows that

Yo [ -itsid _ia -
/1(« j: ie d¢+/ ~e¥dr = i0 + logp.

Changing variables to £ = { — 1 gives

N J Py (I

the path 2 being a straight line from 1 to 2 = w-1 in the open unit disk D = D(0;1).
By Worked Example 3.1.12, the integrand may be expanded in an infinite series
ol —€)", which converges uniformly on p. The Analytic Convergence Theorem
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allows us {o integrate term by term to obtain

[[Eeor]e-5 | [ (-erae)

ed (-l)"('w- l)n-u _ oc (—1)""(10 - 1)"
"go - Z n :

logw

n+1

This works for every w in D(1;1). Setting z = w — 1 gives

toglz +1) = Y (-1 =

n=}
for all z in D(0; |). Again, the convergence is uniform and absolute on any D, with
r < 1. Indeed, since 2] < r implies

( _l)n zn
n
and Y r™ converges, the Weierstrnss Af Test applies with A, = r".
Example 8.1.15 Show that the Riemann { function, defined by

((z)= Z n—*

is analylic on the region A = {z | Rez > 1}. Write a convergent series for '(2)
on that sct,

<—<r"

n

Solution We use the Analytic Convergenee Theorem 3.1.8. We must be carcful
to try (o prove uniform convergence only on closed disks in A and not on all of
A. In Lhis example we do not in fact have uniform couvergence on all of A (see
Exercise 8).

Let B be a closed disk in A aud let § be its distance from the line Rez = |
(see Figure 3.1.10). We shall show that 5727 | n~* converges uniformly on B. Hers
n~* = e~=1"8" whore logn means the usual log of real numbers. Now

|n-.-.| = lc—zlogn' = g~slogn o -x

But £ >1+8ifz € B, and so n=*] < n~(+9) for all z € B. Let us, thercfore
choose M, = n~{1+4),

By Propasition 3.1.3(iii), 3 o., M, converges. Thus, by the Weierstrass M
Test, our series Y o, n~° converges uniformly ou B. Hence ¢ is analytic on A.
Also by the Analytic Convergence Theorem 3.1.8, we can differcntiate term by tern:
to give

¢(2) ==Y (logn)n~s,

which we know must also converge on 4 (and uniformly on closed disks in A).
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Figure 3.1.10: Domain of analyticity of the Riemann zeta function.

Exercises
1. Do the following sequences converge, and if so, what is their limit?
i

@ 2> ()" +

(b> * - £ "

2. Let c be a complex constant. Let Zo— 0 and 2] = ¢, and define a sequence
by puttingz,+1 = 2~-he.

(&) Show that if |c] > 2, then ]Jimn_(z,, — oc. Hint: Letr = |Jc]—1 and
uso induction to show that M\ > |cjr"_1 for all n.

(b) Show that if |c) < 2 and there is a value of k witli \zk\ > 2, then
Imi,,_ootn = oo. Hint: Let r = |z*] —1, and show that |Z*+p| > |z&|rp
forallp> 03

3. What is the limit of the sequence /,,(*) = (1 +x)*/" defined for * > 0? Does
it converge uniformly?

4. (a) Show that the series convergeson theset C\{« = m |n
is an integer }.
(b) Show that the convergence is uniform and absolute on each closed dish
contained in this region.

’Those values of ¢ for which tho soquenco Xm defined in this problem stays bounded form a
very interesting set wit!) many pretty patterns called the Mandelbrot set See A. K. Dewdney,
Computer Recreations, Scientific American, August 1985.
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5. (a) Show that the sequence of functions f,(z) = z® converges uniformly
to the sero function f(z) = 0 on every closed disk D, = {z such that
jz2| <r}withr<1.

(b) Is the convergence uniform on the open unit disk D(0; 1)?

6. (a) Show that the sequence of functions fu(z) = cos(z/n) converges uni-
formly to the constant function f(z) =1 for = € [0, #].

(b) Show that it converges pointwise to 1 on all of R,
(c) 1s the convergence uniform on all of R?

7. Test the following series for absolute convergence and convergence:

8." Prove that {(2) = Z does not converge uniformly on A = {2 | Re2 > 1}.

m=l

9. If 22, gx(2) is a uniformly convergent series of continuous functions and if
2n — 2, show that

Jim ng(zn) Zyn(Z)

k=1

10. If 352, ax converges, prove that ax — 0. If 372 | g (2) converges uniformly.
show that g; — 0 uniformly.

o0
11. Show that 3 = is analytic on A = {z such that |¢] > 1}.
n=l

(- -3
12.* Show that Z -nT];; is analytic on C\{0}. Compute its integral around the
=1
unit circle. "
13. Show that 300 , e~" sinnz is analyticin theregion A = {2 | -1 < Imz < 1}

14. Prove that the series Z 115 converges in both the interior and extericz
of the unit circle and mpments an analytic function in cach region.

15. Show that 3°°°  (logn)*n=2 is analytic on {z | Rez > 1}. Hint: Use the
result of Worked Example 3.1.15.
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16.* Let f be an analytic function on the disk D(0;2) such that |f(z)| < 7 for
all z € D(0;2). Prove that there exists a § > 0 such that if 2, 2, € D(0;1),
and if |21 — 2] < 4, then |f(2)) — f(22)] < 1/10. Find a numerical value of
4§ independent of f that has this property. Hint: Use the Cauchy Integral
Formula.

17. Tf fn(2) — f(z) uniformly on s region A, and if f, is analytic on A, is it true
that f.(2) — f'(z) uniformly on A?

18. Prove that f,, — f uniformly on cvery clased disk in a region A iff f,, — f
uniformly on cvery compact (closed and bounded) subsct of A.

o (22-1)°
19. Find a suitable region in which )  “——— is analytic.
n=1

20.° Let f. be analytic on a hounded region A and continuous on cl(4),n =
1,2,3..... Supposc that the functions f,, converge unifonnly on bd(A). Prove
that the functions f,, converge uniformly to au analytic function on A. Hint:
Use the Maximum Modulus Theorem.

3.2 Power Series and Taylor’s Theorem

This section will consider special kinds of series enlled power series, which bave the
form ¥ i, an(z — 20)". We shall examine their convergence propertics and show
that a function is analytic iff it is locally representable as a convergent power serics.
To obtain this representation, we first need ta cstablish Taylor's Theorem, which
asserts that if f is analytic on an open disk centered at g, then the Taylor series

of f,
o0 n)
Z f_n%io-)’(z - zo)n'

n=0
converges on the disk and equals f(z) everywhere on that disk.

In proviug the results of this section we shall use the techniques developed in
§3.1 and Cauchy’s Intogral Fornnula 2.4.4.

Convergence of Power Series A power series is a serics of the form
o
> oulz - z)",
n=0

where a,, and 2o are fixed complex numbers. Each term a,(z — 2)" is entire, so
in proving that the sum is analytic on & region, we can use the Analytic Conver-
gence Theorem 3.1.8. The basic fiact Lo romember about power scries is that the
appropriate domain of analyticity is the interior of & circle centered at zo. This is
established in the following theorem.
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Theorem 3.2.1 (Power Series Convergence) LetYIT=0a”(z~zo)n hea power
series. There is a unique number R > O, possibly +00, called the radius of con-
vergence, such that if\z —zo\ < R, the series converges, and if \z —za\ > ft.
the series diverges. Furthermore, the convergence is uniform and absolute on every
closed disk in A = {z € C such that \z —:q\ < R). No general statement about
convergence can be made if \z —z0j = R. (See Figure 3.2.1.)

Figure 3.2.1: Convergence of power scries. Series converges within circle; series
diverges outside circle.

Tlius, the series converges on the region A = {z ¢ C sudi that |z —a\ < r).
and it diverges at * if \z—zu| > R. The drde |z —z0| = R is called the circle of
convergence of the given power scries. Practical methods of calculating R use tin
ratio and root tests and will lie given shortly.

The overall strategy is to let. R = sup{r > 0 | **L Ola«lr" converges }, when
sup means the least upper bound of that set or real numbers, and then to show
that R has the desired properties. The following lemma will be useful.

Lemma 3.2.2 (Abel-W eierstrass Lemma) Suppose that rO > 0 and that th-
inequality [a,,Jro < M holds for all integers n > 0, where M is some constant
Then for» < ro, the series a,,(z —Z0)" converges uniformly and absohitdt
on the closed disk Ar — {z such Oral \z - zo| < r}.

Proof Farz€ Ar we have
M > -zo)'|<]o,"=KK (")"<M(£) -

Let
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Since r/rg < 1, the series Y Af,, converges. Thus, by the Weierstrass M Test 3.1.7,
the series 3 ooq@n(z ~ 2)" converges vniformly and absolutely on A,. B
Proof of Theorem 3.2.1 Let rp < R. By the definition of R thereisan r),r; <
ri € R such that Y ja,[r? converges. Therefore, 300 lan|rd converges by the
comparison test. The terms |a,|r) are bounded (in fact — 0), and so by the Abel-
\Vcierstrass Lemma, the series converges uniformly and absolutely on A, for any
r < ro. Since any 2 with |z — 23| < R lies in some A, and since we can always
choose rg such that r < rp < R, we have convergence at 2.

Now suppose that {2; — zy| > R and e, (z) — 20)" converges. We shali derivea
contradiction. The tenns a,,(2) — 20)™ are bounded in absolute value because they
approach zcro. Thus, by the Abel-Weionstrass Lemma, il R < r < |2y — 2y}, then
S an(z1 — 20)" converges absolutely if 2, € A,. Therefore, Y jaq|r™ converges.
But this would mean, by definition of R. that R < R.

We have proved that the convergence is uniform and absolute on every strictly
smaller closed disk A, and hence on any closed diskin A. &

Combining the Analytic Convergence and Power Series Convergence Theorcms,
we may deduce the following theorem.

Theorem 8.2.8 {Analyticity of Power Series) A power series Y oeqan(z ~
)" is an analytic: function on the inside of ils circle of convergence.

We also know that we can differentinte convergent series of nualytic functions
term by term. This leads Lo another interesting theorem.

Theorem 3.2.4 (Differentiation of Power Series) Let

f) =3 anlz - )"

n=0

be the analytic function defined on the inside of the circle of connergence of the
given power sevies. Then f'(2) = Yoo naa(z — 20)"~!, and this series has the
same circle of convergence a8 Y a,(2 — 20)". Furthermore, the coefficients a, arc
ginen by a, = f")(20)/nl.

Proof We know from the Analytic Convergence Theorem 3.1.8 that the derivative
F(z) = Yoo, nay(z — z0)"" converges on A = D(zp; R) = {z € C such that
iz — 29| < R}. Lo show that the derived series has the sume circle of convergence
as the original series. we need only show that it diverges for |2 — 20) > R. If it
dicl couverge at some point 2y with |2y — 20| = ry > R, then no,ri~" would bhe
bounded. Thus a,r§ = (na,r] "} )(re/n) would also be bounded. 50 3" an(z — 2z0)"
would converge for R < |z — 2p| < rg hy the Abcl-Weionstrass Lamma. But this
contradicts the wmaximal property of R from the Power Series Convergence Theoremn
3.2.1. This establishes the assertion about the radius of convergence.
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To identify the coefficients, set z = zp in the formula defining f(z) to find
f(z4) = ag. Proceeding inductively, we find

7™ (2) = nla, + i k(k=1)(k=2)...(k =5 + 1)(z - z0)*™,
kead

aud setting z = 2z, we get f(?)(z) =nla,. B

It is important to notice just what has been done in the last assertion of this
theorem. The coefficients of a power scrics around a particular center are completely
determined by the function that series ropresents. Thus if two apparently differemt
series have been obtained for the same functiou about the same center, they must
in fact be the same.

Theorem 3.2.5 (Uniqueness of Power Secries) Power series expansions around
the same center are unigue. Jf

zau(z—w)" 1) =3 buz = 2"
n=0
Jor all 2 in some nontrivial disk D(z;r) with r > 0, then a,, = b, for n =
0,1,2,3,....

Proof The Iast assertion of the differentiation of power series theorem says a,, =
F")za)/nt = =

Uniqueness of power series may be used in 2 number of ways. In particular, it
says that whatover tricks we can use to find a convergent power series representing
a function, it must be the Taylor series. It can also help us use power series in 1he
solution of differential equations and other problems. Several of these tricks and
ideas for the manipulation and application of power series are demonstrated in the
worked examploes.

We will now obtain some practical methods of computing the radius of conver-
gence R. (The method of defining R given in the proof of Theorem 3.2.1 is not
terribly useful for computing R in specific examples.)

Proposition 3.2.6 Consider a power scrics 3 0w an(z — 20)".
(i) Ratio test: If
lan]
n—oo |ay4.)
exists, then it equols R, the redius of convergence of the series.

(i) Root test: If p = linn,—oc V]a,| ezists, then R = 1/p is the redius §
convergence. (Set R=00ifp=0.)
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Praaf To prove both cases we show that

o0
R.-..-sup{r 20 |3 lank™ <oo} .
n=0
(i) By the ratio test (Proposition 3.1.3) we kuow that 3> o lan|r® converges or
diverges if
1
lim lﬁ""—‘-"——! <1l or >1,
n~ce  |anr7|
that is, according to whether
loa| >r aor lim lan] <r.
r—co |an] n—~0o |apy|

Thus, by the characterization of R in the Power Series Convergence Theorem
3.2.1, the limit equals R,

(ii) By the root test (Proposition 3.1.3) we know that 307, 2. |r™ converges or
diverges if limp_.co(jan|r™)'/" < 1 or > 1, that is, according to whether

. 1/ . 1/
r<1/“l_l_u:°|a,.| or r>l/ul£’ng°|a,;| ",
The result follows as in (i). B
Far example:

o The series 3o o 2" has radius of convergence 1 since @, = 1, and thus we
have lillln..m la../a,..,.,| =1

o The series 3", 2" /n! has radius of convergence R = +4-00 (that is, the func-
tion is entire), since a, = 1/nl, and so jap/ap4a| =n+1 — co.

o The series 3 no, 72" bas radius of convergence R = 0 because |ayn/@ns1| =
1/(n +1) — 0. (This function thus does not have a nontrivial region of
aualyticity.)

By refining the root test, it is possible to show that R = 1/p where p =
limsup,, ., {/|axl, which always exists. In this statement, the “limsup” means,
by dcfinition,

limsup,, oo = Vim (sup{cn, Cas1s- - }-

This is known as Hadamard’s formula for the radius of convergence. There is
no analogous refinement. for the ratio test (known to us).
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Thylor’s Theorem It is obvious from the preceding computations that if /

A —=*C equals, in a small disk around each zg€ A, nconvergent power serins, then
/ isanalytic. The converse isalso true: If/ isanalytic it equals, on every disk in its
domain, a convergent power series. This is made explicit in tlie followiug theorem.

Theorem 3.2.7 (Tbylor’s Theorem) Letf be analytic on an openset A in C.
LetZg€ A and letAr **{z such that |z —zo\ < r) be contained in A (usually the
largest open disk possible is used: ifr*oo,Ar=A =C) (see Figure 9-2,2). Then
for every z € Ar, the series

converge.-) on Ar (that is, has a radius of convergence > r), and we have

(We use the convention 01 = 1.) The series of this equation is called the Taylor
series off around the point zo+

Figure 3.2.2: Taylor’s Theorem.

Before proving this result let us study an example that illustrates its usefulness
Consider f(z) —ez. Here/ is analytic, and f~ (z) = el forall n, so = |
and thus

which is valid for all z € C, since cr is entire.
Table 3.2.1 lists the Taylor series of some common elementary functions. The
Thylor series around the point zg= 0 is sometimes called the M aclaurin series.
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Teble 3.2.1 Some Common Expansions
Punction Taylor series avround 0 Where valid

1 oo
; Z z" (geometric series) Izl <1

-2 n=0

o— z"

et ngo et sl z
. - 83 :s - - il 32'._1
sinz a—ﬁ'!'-s—!—...—ngl(-l)'*m all z

) 22 ¢ 8 - 23"
oSz l—‘;-f-i-a-f-...—g(—l)"m all 2
log(1 + z) o (1)t
(principal branch) ”Zg:l n - Ikl <1
(1 +2)° = (o n s |z|<.lbut
(orocipatbranes) 2 () " (somin sri) dkain

In the binomial series, & € C is fixed,
(a) _ala-1)...(6-n+1)

n n!

’

and we Jet ;: be zero if ar is an integer < n and let g =1.

Al the series in Table 3.2.1 are important and uscful. They may be established
by taking successive derivatives and using Taylor’s Theorem. The binomial series
for a a positive integer should be familiar from algebra. The Taylor series for mauny
functions can be found by other neans, using the special properties of power series
that allow their manipulation. Some of these properties are presented in the worked
examples. We bave already found the geometric series for 1/(1 — 2) and the series
for log(1 + z) in Worked Examples 3.1.12 and 3.1.14. This result for geometric
series will be used in the following proof.

Proof of Taylor’s Theorem Let 0 < o < r and let 4 be the circle 4(t) =
s0+06*,0 <t < 2%, of radius o centered at 2. If 2 is any point inside -y, Cauchy's
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Integral Formula 2.4.4 gives

R ¥ (9]
1) =5 [ FEac

The plan is to use the geometric series to expand the integrand as a power series
in 2 — zp and then use Proposition 3.1.9 Lo integrate term by term. Finally the
coefficicnts of the resulting integrated series are recoguized to be those of the Tuylor
series by the Cauchy Integral Formula for Derivatives 2.4.6.

Since z is inside the circle v and { is on its boundary, we have the inequality
iz = 20)/(¢ — 20)] < 1. The geometric series of Worked Example 3.1.12 allows the

following expansion:

ciz clm l_zl-zo ¢- zo,,=,,( )
C—2
SO
= g [ |22 5 (522) | - o [ [ S 45«

Furthermore, since the curve 7y stays away from the boundary of the disk of con-
vergence, Worked Example 3.1.12 also sbows that the convergence of the series

oo z-2z\"
,,z___:o(C-Zo
is uniform in { as { goes around the circle  with 2 fixed. Also, f(¢)/(¢ - z0) is a

continuous function of { around the circle 4, so it is bounded there. It follows that
the series

f(Q)(z - 20)"
Z (C z°)n+l

converges uniformly on -y to f{{)}/(¢ — z). (The first serics satisfics the Cauchy
Criterion uniformly in ¢, so it still satisfies it after being multiplied by something
that remains bounded. The student is asked to supply the details in Exercise 21.
By Proposition 3.1.9, we have

_ 1(¢)(z = z)"
f(z) = "Z_;zﬂ (C 20),,.',1 d(

5 [ ] - 5 o w22

=0

as desired. The last equality is the Cauchy Integral Formula for Derivatives 2.4.6.
Since the radius of the circle y was arbitrary, so long as it fit inside the region of
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analyticity, this representation of f(z) is valid in the largest open disk centered at
o which is contained in the region A. W

The following consequence of this theorcmn was mentioned informally at the
beginning of this section.

Corollary 3.2.8 Let A be a region in C and let f be ¢ complez-valued function
defined om A. Then f is analytic on A if and only if for each zy in A there is a
number r > 0 such that the disk D(z;r) C A and f equals a convergeni power
series on D(zo; 7).

Proof Taylor's Theorem shows that every analytic function is equal to a power
=eries, in fact to its Taylor series, on every disk in A. On the other hand, if f(2) is
~qual to a convergent power series on D(29; r), then D(zo; r) must be in the interior
of the circle of convergence of the series and so f must be analytic on D{zg; ). Since
there is such a disk and convergent power serics for each 2 in A, it follows from
the analyticity of power series (3.2.3) that [ is analyticon A. 18

The condition in this corollary may thus be taken as an alternative definition
of “aualytic”. We have shown that the notions of differentiability on a region and
analyticity on a region coincide for functions of a complex variable. (Keep in mind
that they do not coincide for real variables.) Cauchy’s Theorcm, Cauchy's Integral
Formulas, and Taylor’s Theorem arc among the most fundamental theorems of
complex analysis.

In specific examples, the higher order derivatives of f may be complicated ex-
pressions, and finding the Taylor scries may be made easier by searching directly
for a convergent scries that represents f rather than computing the derivatives. By
Corollary 3.2.5, if f(2) = 372 an(z — 20)" and the series converges, then it must
be the Taylor serics. In fact we can sometimes then use Taylor’s Theorem to tell us
formulas for the derivatives, baving found the serics by other means. Some of these
tricks for manipulating series and applications arc found in the worked examples.

Zeros of Analytic Functions Suppose that f : 2 — C is analytic on an open
set §2 in € and that ¢ € ). We know that the Taylor series for f(z) centered
at ¢ converges to f(z) at Jeast in the largest open disk D(e;r) centered at ¢ and
contained in §). Therefore, we have

f(z)=i!(i':,‘i)(z—c)" for |z—d<r
k=0

I f*)c) = 0 for all k, then f(z) is identically 0 in D(c:r). If not, then there is a
smallest nonnegative integer n with f(")(c) #0. f n =0, then f(c) #£0. If n > 0,
then f(c) = f'(c) = f"(c) = --- = f"~1(c) = 0 but f*"}(c) # 0. In this case we
say that { has a zero of order n at c. From algebra we know that a polynomial
has a zero at ¢ if and only if z — c is a factor of that polynomial. The zero has
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order or multiplicity n if the factor z ~ ¢ occurs exactly n times. Cousideratiol
of the Taylor scries shows that an analytic function has a zcro at ¢ if and only i
z — ¢ is a factor of that function and then the multiplicity is defined in the sam:

way. For z in D(c;r) we have

Hz)= 6n(z — )" + 0p4i(2 —c)'”’l +au+2(z_c)n+2 ...
= (2= )" [an + @2 (2 =~ &) + any2(z —)* +...]

where a; = f*)c)/k. The power serics in square brackets converges in D{c:r
to an analytic function ¢(z) with @(c) = an = f"Nc}/m! # 0. Thms f has .
zero of order n at ¢ if and only if f(z) can be factored in a ncighborhood of ¢ a
f(2) = (z — ¢)"p(z) where ¢ is analytic in a neighborhood of ¢ and ¢(c) 5 0.

Isolation of Zeros A closer examination of the [aclorization in the last paragrapt
gives another valuable conclusion. The factor ¢(z) is analytic and so is continnon-
on D{c; 7). Since ¢o(c) # 0, there is a radius p with 0 < p < r such that (2} is neve:
0 for |z — ¢| < p. Since f(2) = (z — ¢)"p(2) for all = in D{c; p), we conclude tha:
J has no zeros other than ¢ in that disk. In this sense the zcros of f are isolated
Tlis apalysis is summarized in the following proposition and corollary.

Proposition 3.2.9 Suppose f : Q ~ C is analytic on an open set S in € and thy:
¢ € Q. Let D(c;r) be an open disk centered ai ¢ and comtained in §) and suppos-
f(¢) = 0. Then exactly one of two things must occur.

(i) f(z) =0 for every z in D(cir).
(ii) There is an integer n such that
JO=r@=5)=-..f0Nc)=0 and f")c)#£0.

In the latier case there is a function @(z) analylic in D(c;r) with p(c) # 0 ar...
f(2) = (z = &)"¢(2) for all z in D{c:r) and a radius p > 0 such that f(z) 20 anl:
at ¢ in the disk D(c; p).

Coroliary 3.2.10 (Local Isolation of Zeros) Suppose f: Q — C is analytic v~
an open set 2 in C and that ¢ € Q. If there i3 a sequence =, 23, 23, ... of distini~
points in Q such that zx — c as k — o0 and f(z) = 0 for each k, then f(z) =
Jor each z in the largest open disk centered al ¢ and contained in ).

Worked Examples

Example 3.2.11 Use the series expansion given in Table 3.2.1 to confirm the ide:.-
tity e'* = cos z + isin2 for all 2.
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Solution Using the series for cos 2 and sin z from the table gives
o0 [d 1,2n-1
(I | 2 (s

cosz +isinz = ngo @) @n=1)
N oo (iz)z,, oc (_')zzn 2n—13
= ; @n)! *E n— 1)1

2 (iz)2 & (iz)P! (!z)"
= "2_::0 (@n)! +'§(2n—-l)‘ Z o
as desired.

Example 3.2.12 Cuan ¢ power series 3 ap(z — 2)" converge at z = 0 but diverge
wt2=3%

Solution No. If it converges at z = 0 this implics, by the Power Series Convor-
zence Theorom 3.2.1, that the radius of convergenco R satisfies R 2 2. Butz=3
iies inside that circle, so the series would converge there (see Figure 3.2.3).

y

Figure 3.2.3: The circle of convergence for the power series in Worked Example
3.2.12 must be at least this big.

Example 3.2.18 Find the Taylor scrics around z9 =0 for f(2) = 1/(4 + 22) and
calculate the radius of convergence.

Solution Write

=[]
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We know that so long as jw] < 1, then 1/(1 — w) = Y32 w™. Replacing w by
-22/4 gives

EE 412-:0 (-3) - Stz

as long as J(—22/4)] < 1; that is, as long as |z] < 2. Therefore the radius of
convergence is 2. Notice that this iy the largest disk around 2 = 0 on which f is
analytic, since analyticity fails at z = $2i.

Example 3.2.14 Find the Taglor scries of log(1 + 2) around z = 0 and give its
radius of convergence (sée Table 3.2.1).

First Solution We have already done this problem as Worked Examnple 3.1.14
using the geometric series and term-by-term integration.

Second Solution We use the principal branch of log so that the function f(z) =
log(1 4 z) is defined at 2 = 0. Since f is analytic on the region A = C\{z+iy |y =
0,z < —1} shown in Figure 3.2.4, the radius of convergence of the Taylor series will
be > 1 by Taylor's Theorem (3.2.7). That it is ezactly ) can be shown as follows.
We know that

J(0) =logi =

f'()-——l' so f(0) =1,

rA= - 0=-1
and
"= e © MO)=2
Inductively, we see that

gy = (B D
) = TS

J}(0) = (n — 1)%(—1)""?. Thus the Taylor series is

Zf”(ﬂ) n Z(-

)n-l

(in agreement with Table 3.2.1). When 2z = —1, it is the harmouic series whick
diverges, so the radius of convergence is < 1 and thus is exactly 1. (A general pro-
cedure to follow for determining the exact radius of convergence without computing
the series is found in Exercise 19.)
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<

Figure 3.2.4: Tkylor series of log(l + z).

Example 3.2.15 Suppose thatJP g»2” and£ bnzn have radii o fconvergence > ro©.
Define c,, = £)£_0akb,,-k- Prove that” c,, 2' has radius of convergence > ro and
that inside this circle of radius to we have

|
~i(IK
nsaO

Solution This way of multiplying out two power scries is a generalization of the
manner in which polynomials are multiplied. A direct proofcan be given but would
be somewhat lengthy. If we use Taylor’s Theorem, the proof is burly simple. Let
{*) = YZ?Loanzntg(z) = and let A = {zsuch that |z| < r0}. Then/
and g are analytic on A, so fg is also analytic on A. By Thylor’s Theorem we can
write

vV (90,

for all z in A. It is simple exercise (as in calculus) to show by induction that the
nth derivative of the product f(z)g(z) is given by

!
(1 «IbW = it, (fc) Fik}(")9(n~K)(z), where Q fc!(?]_fc)!‘

Hence,

k=« ' fa=0
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Thus, 30 4 Caz" converges on A (and therefore, by Taylor’s Theorem, the radius
of convergence is > rp) and on A

ic..z" =(f-g2) = ( anz") (ib..z") .
n=0 n=0 n=0

Example 3.2.16 Cormpute the Taylor series around z = 0 and give the radii of
convergence: for

(a) 2/(z-1)
(b) e*/(1 — 2) (Compute the first few terms only.)

Solution

(2) The geometric series (1—2)~! = 1+ 2+422+... is valid for |2| < 1. Therefore.
for such 2z,

z_if =—2(l4z+22+.. )=z -2 B,
By the uniqueness of representation by power series, this is the Taylor series
of 2/(z — 1) around 0. By observinyg that z/(z — 1) is analytic on the open
disk |z| < 1, we know by the Taylor theorem that the Taylor series must
have a radius of convergence > 1. Of course, a close analysis of the series
—z — 22 =28 — 2* — ..., using the mtio test or the root test, shows that the
radius of couvergence is exactly 1.

(b) 1/(1—-2)=142+2%+...for|z]<land e*=142z+422/2+... for all z.
Thus by Worked Example 3.2.15 we get the series for the product by formally
multiplying the two series out as if they were polynomials; the result must
still converge for |2| < 1. We get

z 2 Z3
e _ 2, .3 2L,z
= = (+z+P4z +..-)(l+z+ 5 +3!+...)
22 - 3 z’
= 1+(2+2)+(-§"§'22+Z')+(%+E+Zs+zx)°!‘-u
52 828
= 1+2z+—2—+-§-+-.--

In the last series the general term has no simple form. Note that this method
is faster than computing f*}(0) for moderately large k.

Example 3.2.17 This ezample deals with the application of series to differentis:
equations. Find a function f(:l?) such that f(O) =0 and f'(:!,') = 3!'(3-) +2 for ¢

x
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Solution Supposc that there is a solution f that is thc restriction to the real axis
4 a function that is analytic in C. Therefore, it will have a power serics expansion
7 3) =T ganz”. Since f'(2) = Y00 napz™"?!, we must have

[- -3 o0
Y nage"t=3 (Z anz"‘) +2
n=1 n=0

12at is,

Z(nn)a..ﬂ- = 24+ 300) + 3 3mns™

Thus,

0=(2+3a0~ @)+ Y _[36n — (1 + 1)an41)2"

n=1

We know that ag = f(0) = 0. Therefore a; = 2. For n 2 1,241 = 3a,/(n+1), s0
ez =3a)/2, a3 =3%a/(3)(2), aq=3"ar/(4)(3N2).-..,
znd in general,
a, =3""2q, /0l = 3"(2)/1:;.

Notice that this formula also gives @y = 2.) Tlms if there is 2 power series that
represents a solution it must he

fl) =3 Z
nel

Taking derivatives term by term confirms that this is a solution. In this case we
<an even recognize the function the serics represents:

=2 Z(Jz)" [(Z (sz)") ] 2 1)

The reader should check that this docs solve the original problem.*

Example 3.2.18 (Generatmg Function for the Hermite Polynomials) The
function f(z) = €25~ is analylic cverywhere and so has a power scries expansion
:n powers of z whose coefficients depend on t. If we put [(z) = Y oeg Hu(t)z" /n!,
then the funciions H,(t) are called the Hermite polynomials. (One needs to
rheck that they are in fact polynominls in t.) The function f is called a generating
function. Compute Hy(t), H)(t), and Ha(t).

3t'or additional applications of powvr neries to differcatinl equations, xee, for example, J. Mary-

den and A. Weinstein, Calculus # (New York: Springur-Verlag, 1985), §12.6, or virtunlly suy text
on differential oquations,
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Solution From f(2) = ¥ neq Hu(t)z"/n, the following hold:

Ho(t) = £(0) =1
Hy() = (0) = (2 - 22| =2

Ho(t) = J"(0) = [-2¢™*" + (2t - 22°¢%=~7 _ =ie-2
Proceeding inductively, we see that f*}(z) is a polynomial in ¢ and z multiplied by
e2*-2* and s evaluation at z = 0 will always produce a polynomial in ¢.
Example 3.2.19 Discuss the zero of f(z) =1 —cosz at 0.

Solution If f(z) = I —cos z, then f'(2) = sin z and f"(z) = cosz. Tlms, f(0) =0
and f(0) = 0, but f7(0) = 1 £ 0. Thus f has a zero of order 2 at 0. The Taylor
series for f centered at O is

1 1 1 1 1
f(z)zﬁz’-iz‘-i-a:“--!----:z’ [--—-z’-*--—-—z‘—-%—...].

Thus, f(z) = 2%p(z) where ¢(2) = (1/2) — (1/24)2® + (1/720)z* — +.... In

particular, (0) = 1/2 # 0. Since ¢(z) = (1 — cos2)/22, the only zeros of ¢ are at
the points where cosz = 1. The closest of these to 0 are +2x.

Exercises
1. Find the radius of convergence of cach of the following power scrics:

(2) an"
n=0

b S 2

TP

(o) inlg

@y
n=1

2. Find the radius of convergence of each of the following power series:
o
(» ) 2"
n=0

(b) Z%

n=(
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~1

8.

9.
10.

(¢ in!z"
n=0

d cal
@ 5

. Compute the Taylor series of the following functions around the indicated

points and determine the set an which the series converges:

(8) e*.zn =1
(b) 1/2,20 =1

. Establish the Taylor series for sin 2,082, and (1 -+ 2z)® in Table 3.2.1.
. Compute the Taylor series of the following. (Give only the first few terms

where appropriate.)
(a) (sin2)/z,20 =1
(b) z%e*20=0
(c) e*sinz, 25 =0

. Compute the first four terms of the Taylor series of 1/(1 4 €*) around 24 = 0.

What is the radius of convergence?

. Compute the Thylor series of the following around the indicated points:

(a) &,20=0
(b) 1/(z=1)(z-2),20=0

® Compute the Thylor series of the following around the indicated point:

(a) sinz?,2p =0
(b) ¢*,20=0
Compute the first few terms in the Thylor expansion of v/z2 — 1 around 0.

Suppase f(2) = Y00 (a2 and g(z) = Y oo 4 bz converge for |z) < R. Far
|2l < R?, define F(z) by selecting r with |2]/R < r < R and setting

o= [ 105 (3)

where v is the circle of radius r centered at the origin.

(a) Show that the value of F(z) does not depend on r so long s |2|/R <
r<R

(b) Show that F(2) = 5, anbez”. Hint: Use Worked Example 2.4.15.
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11. Establish the following:

oo zzn_l x 2In
Slllhz="=lm and sz-z"m.

12. What is the flaw in the following reasoning? Since ¢ = 3°50 ) 2" /n}, we get

el/z = 3% 1/(niz"). Since this converges (because e* is entirc) and since
the Taylor expunsion is unique, the Taylor expansion of f(z) = €’/* around
z=0iY 0,27 /nt

13. Differentiate the series for 1/(1 — 2) to abtain expansions for

1 1
(-2 (-2p
Give the radius of convergence,

14.° Lot f(2) = ¥ an2"® have radius of convergence R and let A = {2z such that

Jz) < R}. Let 2o € A and R be the radius of convergence of the Taylor series
of f around zg. Prove that R - [zo} € R < R+ |20].

15. 1f 377 ,@,2" has radius of convergence R, show that § o0 ((Reay)2" bas

radius of convergence > R.

16. Let f(z) = Y anz™ be a power series with radius of convergence R > 0. Show

that f f = 0 for each closed curve « in the disk A = {2 such that |2) < R}
by either of the following two methods.

(a) using Cauchy's Tlicorem
(b) justifying term-by-term integration

17. In what regiou does

- -] .

E s|mn2

ne=l 2
represent an analytic function? What about

n=1

18. Find the first few terms of the Taylor expansion of tanz = (sinz)/(cos::

around z =0. Hint: We know that such an expansion exists. Write

i =ao+a1z+azzz+... .
o2
Multiply by
2 4
2 2z
®82=1—E+ﬁ—...,

and use Worked Example 3.2.15 to solve for ag,ay,a2.
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19.* Let f be analytic on the region A, let zg € A, and let D be the largest open
disk centered at zo and contaitied in A.

(a) If f is unbounded on D, show that the radius of D equals the radius of
convergence of the Taylor series for f at z,.

(b) If there exists no analytic extension of f (that is, if there are no f and
A’ such that f is analyticon A, A’ D A, A’ £ A, and f = flA).show
by an example that the radins of convergence of the Taylor series of [
at zp can still be greater than the radivs of D. Hint: Use the principal
branch of log(1 + z) with zg = -2 + 1.

20. Prove: A power series converges ahsolutely everywliere or nowhere on its
circle of convergence. Give an example to show that each case can aceur.

21.° I Y" gu(z) converges uniformly on aset B € € and h(z) is a bounded function
on B3, prove that 3 /i(z)ga(z)] converges uniformly on B o h(2)[L 9.(2)).

. Let f(z) = Yool ,aaz" converge for 2| < R. M 0 < r < R, show that
I(z) = Z,,_o a,.r" "0 where z = re’® and

2¥
/ f(reiO)e-t'na‘,m
o

ay = 27

Also show

o [ 10 = 3 ot
217 0 o

The second cquation is referred to as Parseval’s theorem, and we say that
F(2) = o2 g anr™e™ expresses the Taylor scries as a Fourier series. Hint:
Use the Cauchy Integral Formula 2.4.6 for a,, and expand f] in a series, and
then integrate term by term.

23. Let Hy(z) be the Hermite polynomials introduced in Worked Example 3.2.18.
Show that H\(z) = 2zHo(x) and that for n > 1, H, . (z) = 2zHn(z) —
2”Hn—l(x)

24.* Compute the Taylor expansion of ((z) = Y oo, n~% around z = 2 (see
Worked Example 3.1.15).

25. Find a function such that f(0) = 1 and f'(z) = x + 2f(x) for all z (sce
Worked Example 3.2.17).

26. Find a function f such that f(0) = 1 and f'(z) = 2f(x) for all 2.



222 Chupter 3 Series Representation of Analytic Functions

3.3 Laurent Series and Classification of
Singularities

The Taylor series enables us to find a convergent power series expansion of a fune-
tion f(z) around a point 2o when f is analytic in a whole disk around z5. Thus,
the Taylor expansion does not apply to functions like f(2) = 1/2 or e*/2* around
2y = 0 because they fail to be analytic at 2z = 0. For such functions there is another
expansion, called the Laurent ezpansion (formulated in approximately 1840),
that uses inverse powers of 2 as well as powers of z. This expansion is particularly
important in the study of singulur points of functions and leads to another funda-
mental result of complex analysis, the residue theorem, which is studied in Chapter
4

Theorem 3.3.1 (Laurent Expansion Theorem) Let 0 < r; <1z, and 29 € C,
and consider the region A = {z € C | ry < |z — 29| < r2} (see Figure 3.3.1). We
allow ry = 0 or ry = oo (or both). Let f be analytic on the region A. Then we can
umile

f(z)= Z“"(‘ “)"*Z(z za)™’

where both series on the right side of the equation converge absolutely on A and
uniformly in sets of the form By, », = {z | ;1 < |2 = 20) < p2}, wherer, < py <
P2 < ra. This series for [ is called the Laurent series or Laurent expansion
around 2g in the annulus A.

If v is a circle around 2 with radius r, where ry < r < ra, then the coefficients
arr given by

_1[__1© _
@ = 5— A= Zo)"""'d( n=0,12._..

b = / O -2 n=1.2,....

2%
(If we set b, = a_,,, then the first formula covers both cases.}) Any pointwiss
canvergent expansion of [ of this form eguals the Laurent expansion; in other words.
the Laurent ezpansion is unique.

The equations for the coefficients a, and b, in the Laurent series are not ven
practical for computing the Laurent series of a given function f. Notice that w=
cannot sct @, = f")(2p)/n! as we did with the Teylor expansion. Indeed, f(")(=,
is not even defined, since zo ¢ A.

There arc a few tricks that can be used to obtain expansions of the desired forz
and the uniqueness of the expansion guarantees it must be the desired one. A fes
such techniques are given in the following text and in the worked examples.
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y

Figure 3.3.1: Laurent series, with sj, = 0.

lu the following proof we shall see that the power series part of /, namely the
series

Y «o»(* -
neO

converges and so is analytic inside the circle |z —4\ = rj, whereas the singular
part.

E

converges outside \z—zo\~ fj. The sum therefore converges ietween these circles.

Example In this example we show that uniqueness is dependent on the choice of
A. Let A = {z sudi that \z2\ > 1} and f(z) = 1f\z{z -1)]. In this situation, / has
the Lament expansion

1(2)* z(z-1)~1 [z(I-1)] ™ a2(1+z*hz2+" )
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(valid if |z| > 1)t whereas on the choice A —{z such that 0 < |z| < 1}, it has the
different expansion

(valid for 0 < |z| < 1). By uniqueness these are the Laurent expansions for tlie
appropriate regions.

Proof of the Laurent Expansion Theorem As with the proof of Thylor’s
Theorem, we begin with Cauchy's Integral Formula. We will first show uniform
convergence of the stated scries on BpltPS, where (ij, and bn are defined in the
theorem. Since all the circles 7 of radius r are homotopic to each other hi A as
longnsrj < r<n (Why?), tlie numbers an and bn arc independent ofr, so

and

where 71 is a circle ofradius pi and 74 is a circle of radius p2 and where R6<px <
pi <p2 <fc <r2(sec Figure 3.3.2).

Figure 3-3.2: Construction of the curves 71 and 72-



13.3 Laurent Series and Classification of Singularities 225

For z € B,, ,,. we have

a=1 [ f€), 1) ,
‘“‘_21:1,[( z( 2mi [n(‘“

=y Cauchy's Integral Formula (see Exercise 5).
As in Taylor's Theoram, for ¢ on -y, (and 2z fixed inside y2), we writc the series
i 1 z- (2 = 20)?
+
-z C(-=n - Zo)’+(C 20)®
<hich converges uniformly in { on 7a.
Substituting the scries in the preceding equation for f. we may intograte term
tv term (by Proposition 3.1.9 and the fact that f({) is bounded- see Excrcise 21,
+3.2) and Lhus obtain

16) 1) S
2xi / ¢-a%= Z PP U - zn)w"C] (2= 2)" = go,,(z 20)".
Since this power series converges for 2 inside 77, it converges unifonnly on strictly

smaller disks (in particular, on B, ,,). Similarly the series

-1 _ 1 LI o W (et
-2 (z-zo)(l-ggj-;.tj 2—20 (2-20)  (z2-z2)

+..

+...

~onverges uniformly with respect to { on ;. Thus,

©) (¢ - zo)dg| - —2
/( —==d( = 221'![ J(€)- (€ - 20) 'dC] (z~ zo)" Z(z_%)u

This series converges for z outside v, s0 the convergence is uniform outside any
strictly larger circle. This fact can be proved in the same way as the analogous
tact for power serics by using the Abcl-Weierstrass Lemma 3.2.2. The student is
asked to do this in Exercise 15. (Another method is Lo make the transformation
w = 1/(z — z) and apply the power scries result to Y e, b,w™.)

We have now proved the existence of Lthe Laurent expausion. 1o show unique-
aess, let us suppose that we Liave an cxpansion for f:

f(2) = Zaﬂ(z-zo)" + Z

a-u

(z - zn)"

If this converges in A it will. by the proceding remarks, do so uniformly on the
circle 7, so we can form

e I Y i

n-=0 n=1
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which also converges uniformly. We then integrate term by term. By Workaed
Example 2.1.12, we have

fe-mra={ o 225 -

Thus, if k > 0, each term of the second series and all those of the Brst except that
with n = k integrate to 0 around 4. Hence,

. -(z—_!%k—“dz = 217!'0',.

Similarly, if & < -1, all terms integrate to 0 except that in the second series with
= =f, s0

! (z) ——— : : — _1_ / - ne1
Rerrs zo)“'Hdz =2mib_s de, bn=g— ’f(z)(z )"z for n2>1.
Thus, the coefficients ay, b, are uniquely determined by f and ke proof is complete.
[ ]

Isolated Singularities: Classification of Singular Points We want to look
in more detail at the special case of the Laurent Expansion Theorem 3.3.1 when
1 = 0. In this case, f is analytic on {z |0 < |z — z0] < ra}, which is the deleted r;
neighborhiood of zp (see Figure 3.3.3), and we say that 2 is an tsolated singularity
of f. Thus we can expand f in a Laurent series as follows:

(z)=...+ G _'_";0)" +...+;—g—'—z+ao+a|(z—zo)+az(z~zo)2+...

(valid for 0 < |z — zg] < 72).

Figure 3.3.3: Isolated singularity.
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Definition 3.3.2 If f is analytic on a region A that contains some deleted € neigh-
».thood of zp, then zg is called an isolated singularily. (Thus, the preceding
Ziuren! expansion is valid in such a deleted ¢ neighborhood.)

1. If zp is an isolated singularity of f and if all but a finitc number of the b,
are zevo, then zg is called a pole of f. If k is the highest integer such that
by # 0.2 is called a pole of order k. (To emphasize that k # o0, we
sometimes say “a pole of finile order k.”) If 24 is a first-order pole, we also
say it is a simple pole.

. If an infinite number of by 's are nonzero, 24 is colled an essential singular-
ity. (Sometimes this zy is called a pole of infinite order.} “Pole” shall ahways
mean a pole of finite order.

3. We call b, the restdue of f al 2.

1. If all the by 's are 2ero, we say that zy is a removable singularity.

. A function thal is analytic in a region A, except for poles in A, is called
meromorphic in A. The phrase “f is a meromorphic function” means that
[ s meromorphic in C.

Thus, f has a pole of order &k at 2 if and only if its Lanrent expansion in a
Jeleted neighborhood about zo has the form

(3

o

b b
zz—:k?)k--}...-i-;—_!;;#-ao'i’al(z—‘.'o)-'—... .
The part
by b
G-arF o

often called the principal part of f at 2y, tells “how singular” f is ut 2.
If f bas a removable singularity, thea

f(2) = an(z—2)"
n=0

is a convergent power serics; in this case, if we set f(20) = ag. f will be analytic at
0. In other words, f has a removable singularity at 2o iff f can be defined at 25 in
such a way that f becomes analylic al zg.

As we shall see in Chapter 4, finding the Laurcnt expansion is not as important
as being able to compute the residue ), and this computation can often be done
without computing the Laurent series. Techniques for doing so will be studied in
§4.1. The important property of b not shared by other coeflicients is stated in the
following result.
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Proposition 3.3.3 Let f be analytic on a region A and have an isolated singularity
at 2q wnth residuc b, at z9. If v is any circle around 25 in A whose interior, except
Jor the point 29, lies in A, then

/ £(2)dz = by - 2xi.
A

This conclusion follows from the formula for b; in the Laureut Expansion Theo-
rem 3.3.1. The point is that we can compute &; by methods other than the preceding
integral and therefore we can use Proposition 3.3.3 to compute f. f. For example,
if 230, then

1 1 ]
el/s =
1 + + o 2122 3'z3

(Why?), so e!/* has an essential smgulanty atz=0and b =1. Thus [ ¢'/?dz =
251 for any circle 4 around 0.
The following proposition characterizes the various types of singularities.

Propaosition 3.3.4 Lel f be analylic on a region A and have an isolatrd singularity
at zg.
1. 2y is a removable singulerity iff any one of the: following conditions holds:
(n) f is bounded in o deleted neighborhood of zo.
(b) Yim, 5, f(2) exists.
(¢) limeae,(z — 20)f(z) = 0.

2. zy is a simple pole iff lim, .., (2 — 20)f(z) exists and is unequal to zero. This
limit equals the residue of f al 2.

3. 29 is a pole of order < k (or possibly a removable singularity) iff any one of
the following conditions holds:

(#) There are a constant M > 0 and an integer k > | such thal
M
(=)l <

|z = zof*
in a deleted neighborhood of 2g.
(b) Nimgmy, (2 — 20)¥+1 f(2) = 0.
(¢) limy—.o(z — 20)* f(2) exists.
4. zg is a pole of order k > 1 iff there is an analylic function ¢ defined un ¢
neighborhood U of 2o such that U\{z} C A,9(20) # 0, and

ﬂﬁ=gg%ﬁ

+...

Jorall 2 € U,z # z.
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Proof

1. If 2 is a removable singularity, then in a deleted neighborhood of zo we have
J(z) = 13 o an(z — 20)". Since this series represents an analytic function in
an undeleted neighborhood of 25, ohviously conditions (a), (b) and (c) hold.
Conditions (a) and (b} cach ohviously imply condition (c), so it remains to be
shown that condition (c) implies that zp is a removable singularity for f. We
must prove that each b, in the Laurcent expausion of f around 2p is 0. Now

v =5z | 1O - )2,

where 4, is a circle in A whose interior (except for zg) lies in A. Let ¢ > 0 be
giveu. By condition (c) we can choose r with 0 < r < 1 such that on v, we
have the estimate |f(¢)] < ¢/|C ~ 20| = ¢/r. Then

ol < 2” [ 170~ ==t s 55 [
= rk"‘2m" a*-'<ec

21' r

Thus, |b} < ¢. Since ¢ was arbitrary, b, = 0.
We shall use part 3 to prove purt 2, so we prove part 3 next.

2. If 2y is a simple pole, then in a deleted neighborhood of zg,

1) = 2B £ aute - = 2 g,
~Z n=0

where & is analytic at zp and where b, # 0 by the Laurent expansion. Hence
Jim (2 - 20)f(2) = fim [by + (2 = 2)A()] = bu.

On the other hand, suppose that lim,_ ., (z — 20)f(z) exists and is unequal to
zero. Thus, Bm,_ ., (2 — 20)2f(z) = 0. By the result obtained in part 3, this
shows that

)=+ Zan(z —a)" = =+ i)

n=0
for some constant b; aud analytic function A where b, may or may not be
zero. But then (z — 25)f(2) = by + (= — 2p)/i(2), 50 bim. (2 - 20) f(2) = 1.
Thus, in fact, b; # 0, and therefore f has a simple pole at zo.

3. This statement fallows by applying part. 1 to the function (2 — 29)* f(2), which
is analytic on A. (The student should write out the details.)
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4. By definition, 2y is a pole of arder & 2> 1 iff

(z)
b i1

= by 3 — )"
- (z-Zo)"+(z-Zo)*“+"'+’z75+§,a“(z 20)

(where b, # 0). This expausion is valid in a deleted neighborhood of zg. Let

&(2) = by + by (2 — 20) + ...+ b(z — 20)* ' + Z"n("' — zg)"+k.

Then ¢(2) is analytic in the corresponding undeleted neighborhood (since it
is a convergent power series) and ¢(zg) = by # 0. Conversely, given such a &,
we can rotrace these steps to show that 2 is a poleoforder £>1. B

Zeros and Poles Near a zero of order n, an analytic function acts mmch Lke
Z" necar 0. Near a pole of order n, it acls much like 1/z". This suggests that a
reciprocal of a function with a zero should have a pole and conversely. This is, in
fact, correct. Suppose A is an open set in € and z9 € A. We know that & function
with 2 zero of order n &t 2p can be factored as (z — zo)"(s(2) where ¢(z) is analytic
and nonzero in a neighborhood of z5. A function has a pole of order m if and only
if it factors as (c — zp)~™¥(z) where ¥ i3 analytic and nonzero in a neighborhood
of 29. With ¥ = 1/, we see that the reciprocal of a {unction with a zero of order n
bas a pole of order 1 at that point. The reciprocal of 8 function with a pole of order
n has a removable singularity at that point, and when the singularity is removed,
it hecomes a %ero of order n. If the numerator and denominator of a fraction both
have zeros, we can factor and cancel.

Proposition 3.3.5 Suppose [ and g are analytic in a neighborhood of = with zrros
there of order n and k respectively. (Teke the order to be 0 if the function is not 0
at 20). Let h(z) = f(2)/g9(z). Then

1. ifk > n, then h has a pole of order k — n at 2.

2. if k =n, then h has e removable singularily with nonzero limit at zp.

3. if k < n, then h has a removable singularity at zq, and sctting h(z) = 0
produces an analytic function with a zero of order n — k at zp.

Proof We know that there is neighborbiood D = {z € C | |z — 20| < 7} on which
£ and g factor as f(z) = (z ~ 20)"p(z) and g(z) = (z —~ 20)*¥(z) where p and ¢
are analytic and neither is ever 0 an D. The function H(z) = ¢(z)/9(2) is analytic
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and never equal to 0 on D. Thus, for 2 in the deleted neighborhood U = D\ {2},
we have

I _(-2)(z) .
M2 = 52) = = myruiz) ~ &) HE)-
Our canclusions now follow from Propasitions 3.2.9 and 3.3.4. @

Essential Singularities In many cxamples, the singularities are poles. It is not
aard to show that if f(z) has a pole (of finite order k) at 2o, then |f(z)] — oo as
: — zp (sce Exercise 7). However, in casc of an cssential singularity, |f| will not,
m general, approach 0o as z — zg. The following result, proved by C. E. Picard in
1879, answers this question.

Theorem 3.3.6 (Picard Theorem) Let f have an essential singularity at 2y and
iet U be any (arbitrarily small) delcted neighborhood of zo. Then for all w € C,
~xcepl perhaps one value, the equation f(2) = w has infinitely many solutions z in
.

This theorem actually helongs in a more advanced course.® However, we can
easily prove a simpler version, which in any case is the jumping-off point for Picard's
Theorem.

Theorem 3.3.7 (Casorati-Weierstrass Theorem) Let f have an (isolated) es-
sential singularity at 2o and let w € C. Then there is a scquence zy, 23, 23, ... in
< such that z,, — zg and f(2,) — w.

Proof If there were no such sequence, then there would beanc>0andad >0
such that |f(z) — w| > ¢ for all 2 in the deleted ncighborhood U = {z € C )
0 < |z = 29| < 8}. In particular, f(z) is never equal to w in U, so the function
g(2) = 1/(f(z) — w) is analytic on U and |g(z)| < 1/J there. Thus, any singularity
of g at 2g is removable. The values of g cannot be constantly § near zy since f
1s not constantly infinite. (The singularity is isolated.) From Corollary 3.2.8, any
zero of g at zg is isolated and has a finite order k. Therefore, f(2) = w + 1/g(z)
would either be analytic (if & = 0) or have a pole of order k at 2y by Proposition
3.3.5. This would contradict the bypothesis that f has an cssential singularity at
%- 0B

See Exercise 20 for another interpretation of this result.

Worked Examples

Example 3.3.8 Find the Laurent expansions of the following functions (with 29, 7),719
as indicaled):

(a) (z2+1)/2;20=0,r) = 0,12 = 00
(b) 2/(22 4+1);20 =i,r; =0,rp =2

5See B, C. Titchnaral,, The Theory of Functions, Second Bdition (New York: Oxford Univer-
=ity Press, 1939), p. 283, correeted repriuting 1968,
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Solution Write

+1 1 . L .

(@ -Z--Z---: - +1. This equation is in tlie form of the Laurent expansion, so, by

unigueness, it equals it; that is, 6* = 0 for k > 1,6] = l,co = 1,0* = 0 for
*>1.

(b) A partial-fraction expansion gives

22+ 1 —@+t)(z—) 2z—i+2z+i

Because I/ (z +t) Lsanalytic near z = i, it can be expanded as a power series
in z —i by using the geometric series (see Figure 3-3.4):
1 1 1 1
£ ¢ ¢+ (z- 1) * 2tl- )
- bE =AM <E-V -
n=0 ( ). n*0

Thus, the Laurent expansion is

-grr=f<»-«ri+ E - i)

Figure 3.3.4: Region of convergence for the expansion of I/(z + *m
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Example 3.3.9 Delermine the order of the pole of each of the following functions
-= the indicated singularity:

a) (cosz)/z%,2 =0
b} (ef 1)/, =0
c) (z+1)/(z-1),20 =0

Solution

va) The function 22 has a zcro of order 2 and cos0 = 1, so (cosz)/z? has a pole
of order 2 by Proposition 3.3.5. Alternatively,
cos 2 l(lz’z‘ )__1 1 22

= =3 + =z " atg-

TR TR 4
50 again the pole is of order 2.

th) The numerator has a zero of order 1 at 0 (why?) and the denominator a
zcro of order 2. The quotient thus has a simple pole by Propuosition 3.3.5.

Alterpatively,
-1 1 22 1 2
—-z-i——;z- (|+2+"2-!'+---) ] -+ [+3l+ +..
so the pole is simple.

(c) There is no pole since the function is analytic at 0.

Example 3.3.10 Determine which of the following functions have removable sin-
gularitics at zq = 0:

() (sinz)/z
(b) ¢*/z

(©) (et —1)3/2
(d) z/(e* -1)

Solution

(a) lim:—o z - (sinz)/z = lim._gs8inz = 0, s0 the singularity is removable (by
Propasition 3.3.4.). Alternatively,
sz 1/ 2. \_, 2. & _
=\ @t )= Tt

& e\

(b} lims—q z-¢*/z = 1, so the pole is simple (the singularity is not removable).
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(c) (e — 1)/z has a removable singularity, since lim,02 - (¢* ~ 1)/2 = 0, s0
[(e* = 1)/z]? also has a removable singularity.

(d) lim,—oz/(e* — 1) = 1, because (¢* —1)/z =1 +2/2+2%/31 + ... — 1 s
z — 0. Thus, z/(e* — 1) has a removable singularity.

Example 3.3.11 Show that the function

10 =155

has e removable singularily al zo = 0 and that when the singularity is “removed”,
the resulting function has a zero of order 7.

Solution The Taylor series expansion for numerator and denominator are

1 1 1 1
1-cos(z®) = 2—!210 - 4—!z’°+ az”-...:zw (l -2y )

2 4
and
. 1 1 1 1
mu(z’):-z’-i!-z’-i-ﬁz“-—...zzs(l—ﬁz“-ﬁzm-;-.-.).

The numerator has s zero of order 10 and the denominator has a zero of order 3 at
2o = 0. By Propasition 3.3.5, the quotient has a removable singularity there and
extending the function to have value 0 at zp results in a zero of order 10 -3 = 7.
In fact, for 0 < |2} < ¥/x, we have

fa) =T ES A G
P v —

This function equals z? muitiplied by an analytic function with value 1/2 at zg = 0.

Exercises
1. Find the Laurent series expansions of the fallowing functions around z, = 0
in the regjons indicated:
(a)*® sin(1/2),0 < |2| < o0
(L) 1/2(z+1),0< 2| <1
() 2/(z+1),0< [zl <1
(d) e2/22,0 < |z| < oo

2. Find the Laurent serics expansion of 1/z(2 + 1) around 2y = 0 valid in the
region 1 < |z| < oo.
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3.

4

5.¢

~!

10.

Find the Laurent serics expansion of z/(z 4 1) around 2z = 0 valid in the
region 1 < |2| < oo.

Expand ) in a Laurent serics in the following regions:

1
2(z-1)(z-2
@ o<|z|<1
) I<)z|<2
Let 7y, and 42 be two concentric circles around zg of radii R; and Rz, ;) < Ra.

If z lies hetween the circles and f is analytic on a region containing i, 72,
and the region between them, show that

f(z)'zm (ﬂo‘“ 2«:/,-, gf(-(i

. Suppose the Laurent serics of f(2) = ¢!/%/(1 — z) valid for 0 < |z} < 1 is

Y oo Cn2". Compute c_2,¢-1,09,61, und 2.

. Let f have a pole at 2y of order &k > 1. Prove that f(2) — oc a5 2 — 2.

Hint: Use part 4 of Proposition 3.3.4.

. Prove, using the Taylor series, the following complex version of I’Hépilal’s

rule: Let f(2) and g(z) be analytic, both having zeros of order k at 2o. Then
f(z)/9(z) has a removable singularity and

o @) _ I%)
2596 = G0

. Which of the following functions have removable singularities at the indicated

points?

() =D g

) 2/(z-1),za=1
(c) £(2)/(z — 2)* if f has a zero at zo of order k

If f is analytic on a region containing a circle 4 and its interior and has a
zcro of order 1 only st zo inside or on -y, show that

2f'(2) ,,
f(z)

Hint: Let f(z) = (z — 20)¢(z) and apply the Canchy Integral Formula.




236

11.

12.

13.

14.

16.

17.

18.

19.
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Find the first few terms in the Laurent expansion of 1/(e* — 1) around 2 = 0.
Hint: Show that since 1/(e® — 1) has a simple pole, we can write

1
es—1
Then cross multiply (using Worked Example 3.2.15) and solve for &, 80.0:.

b
= -‘;_‘-+ao+a|z+aaz2+... .

® For f as in the Laurent Expansion Theorem 3.3.1, show that if ry <r < ra.

then
2% 0 [
/ 1£ (20 + r¢®))2d0 = 2n z laal?r?® + 25 1balPr 2"
¢ ned n=1
Use the method of Exercise 11 to find the first few terns in the Laurcm
expansion of col z = (cos 2)/(sin z) around z = Q.

Define a brauch of vzZ — 1 that is analytic except for the scgment [-1,1] on
the real axis. Delermine the first few terms in the Lanrent expansion that is
valid for |z| > 1.

. If the series

S

i (z—z0)”

converges for [z — zo] > R, prove that it nocessarily converges uniformiy on
the set . = {z such what |2 - zy| > r} for r > R. Hint: Adapt the Abel-
Weicrstrass Lemma and the Weierstrass A Test to this case.

* Let f have a zero at zg of multiplicity k. Show that the residue of f/f at

zgis k.
Discuss the singuluritics of 1/ cos(1/2).

Evaluate / 2"¢'*dz, where 4 is the circle of radius 1 centered at 0 and
v
traveled ouce in the counterclockwise direction.

£ind the residues of the [ollowing functions at the indicated points:

(a) 1/(z2-1)z=1

(b) 2/(z* = 1), z=1

(c) (e*=1)/2%2=0

(@) (e*—1)/z,2=0

(a) Let 2p be an essential singularity of f and let U be any deleted neigh-
borhood of 2. Prove that the closure of f(U) is C.

() Assuming the Picard Theorem 3.3.6. derive the “Little Picard Theorem™
The image of an entire nonconstant function misses al most one poin:
of C.
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Review Exercises for Chapter 3
1. Find the Taylor expansion of logz (the principal branch of the logarithm)

around 2z = 1.

2.* Where are the poles of 1/ cos z and what are their orders?

3.

4

(1]

7.
8.

9.

o

Find the Laurent expansion of 1/{2? + z3) around z = 0.

The 68th derivative of f(z) = e ul z =0 is given by (68)1/(34)1. Prove this
without actually computing the 68th derivative.

Expand 22sin z2 in a Taylor serics around z = 0.

Lot
_ wz(l-2%)
Jlz)= sin(w2)

(a) ldentify all singulurities of f in C and classify cach as removable. a pole
{of what order). or essentinl.

(b) (i) How do you know that f(z) has a serics expansion 35> ___ cizk

valid for z near 07
(i) What can you say about ¢, for k < 0?
(iii) Find cg, ¢, and c.

(c) For what set of values of z is the series expansion in part (b) valid? (You
need not determine whether the series converges on the boundary, but
give the interior of the region.)

(d} Let the function g be defined to be f(z) for 2 # 1,0, 1, let g(0) = 1 and
let g(z) = 2 if 2 = +1. Discuss the relationship between the function g
and your answers to parts (a), (b), and (c).

Verily the Picard Theorem for the function e/=.

Let explt(z — 1/2)/2) = 12 _. Ju(t)z" be the Laurent expansion for each

n=—0d

fixed 1 € R. The function J,(t) is called the Bessel function of order n.
Show that

(8) Jult) = = /o " cos(tsin8 — nB)d8

(b) J_nplt) = (=1)"Ju(t)
Find the radii of convergence of

(a)° Z %zn

n=0

(l)) i 20!
n=0
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10.

11

12.

13.

14.

15.

16.

17.

18‘

Chapter 3 Series Representiation of Analytic Functions

Let 357 ,an(z — 20)" be 8 power series with radius of convergence R > 0.
If 0 < r < R, show that there is a constant M such that |a,| < Mr~",n =
0,1,2,....

Let £ be analytic on C\{0}. Show that the Laurent expansions of f valid in
the regions {2 such that |z| > 0} and {2 such that |z| > 1} are the samc.

* Suppose that f is analytic on the open unit disk |2| < 1 and that there is a

constant M such that |f¢)(0)] < M* for all k. Show that f can be extcnded
to an entire function.

Suppose that f is analytic in a region containing the closed unit disk |z] < 1.
that f(0) = 0, and that |f(2)] < 1 if |z] = 1. Show that there axe no z # 0
with |z] <1 and f(z) = z. Hint: Use the Schwarz Lemma.

What is the radius of convergence of the Taylor expansion of

e:
&= e+ DE-G=3)

when expanded around 2z = 7

* Evaluate

2+c*
_[, z2(z- 3)&
where 7 is the unit circle.

Suppose that the complex series ¥ 0o @n converges but that 32 ja,| di-
verges. Show that the power series ¥, o aq2" has a radius of convergence
equal to 1. Answer the same question but assume that the series ¥ nzq 0~
converges and that ¥ oo, rla,| diverges,
Find the Laurent expansion of
[(0) = o
2(22+1)
that is valid for
(a)0<|z|<1
®) 1<el
Find the Laurent series expansion of f(2) = 1/(1 + 22) + 1/(3 — 2) valid ic
each of the following regions:
(a) {z such that |z| <1}
(b) {z such that 1 < |z| < 3}
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(c) {z such that |z} > 3}

19. Let f be entire and let g(z) = Y omeq 6n2z" have radius of convergence R. Can
you find another power series Y b,2" with radius of convergence > R such
that

20.° Let f be entire and suppose that f(z) — oo as z — o0o. Prove that fisa
polynomial. Hint: Show that f(1/2) has a pale of finite order at 2 =0.

21. Let f have an isolated singularity at z. Show that if f(z) is bounded in &
deloted neighborhood of 2, then lim, .., f{z) exists.

22. Let f be analytic on |2| < 1. Show that the inequality |£(*}(0)} > k!5* cannot
holad for all k.

2
23. Evaluate the definite integral / e dp,
0

24.° Let f(z) be cntire and satisfy thesc two conditions:

(@) f'(z) = 1(2)
() f(0)=1
Show that f(z) = ¢*. If you replace (i) by f(21 +22) = f(z;)(22), show that
f(z) = e** for some constant a.
26. Determine the order of the poles of the following functions at their singulari-
ties:
e(z-3)
® T-0G-9
(b) (e* ~1)/2
() (e#-2)/z
(d) (cosz)/(1 - 2)

26. 1dentify the singularities of f(2) = z/(e* — 1)(e* ~ 2) and classify each as
removable, essential, or a pole of specified order.

27. Evaluate / (e* /zz)dz where 7 is the unit circle.
¥
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28.° (a) Show by example that the mean value theorem for analytic functions
is not true. In other words, let f be defined on the region A and let
21,22 € A be such that the straight line joining 2, to 2» lies in A. Show
that there need not be a zg on this straight line such that

- L2200

(b) If, however, |f'(z0)] < M on this line, prove that |f(z)) — f(z)] <
M|z, - 25| and generally that if | f'(20)] < M on a curve v joining 2; Lo
22, then |f(z1) — f(22)] < Mi(y).
o0

20. Let f(z) = (2* - 1)/[cos(wz) + 1] have the series expausion 352 a,z2" near

z=0.

(a) Compute aq,a;, and a;.

(b) Identify the singularities of f and classify each as essential or a pole of
specified order.

(c) What is the radius of convergence of the series?

30. If f(z) = f(—2z) and f(2) =¥ oep@nz™ is convergent on adisk |2} < R, R > 0.
show that @, =0 forn =1,3,5,7,....

31. If f is entire and is bounded on the real axis, then f is constant. Prove or

give a counterexample.
32, Let f be analytic on a region A containing the disk {z € C | |z — z| < R}.
so that

1=y Loy
n=0

Let R,(2) equal f(2) minus the nth partial sum. (R, is thus the remainder
Let p < R and let M be the maximum of f on {z such that |z — z| = R-.
Show that |z — 29| < p implies that

p n+l 1
< £ —_—
RN <M(5)" 7w
33.* The Bernoulli numbers B, are defined 1o be the coefficients of the powe
series of z/(e* — 1):
Z = 3 E'lz".
| fyerd n!

(a) Determine the radius of convergence of this series.




13.R Review Ezxercises for Chapler 8 241

H.

3.
36.

39.

(b) Using the Cauchy Integral Formulas and the contour |2| = 1, find an
integral expression for By, of the form

Bn= fo " aal8) 8,

for suitable functions g, (). where 0 < 8 < 2x.

The Legendre polynomials P,(ua) are defined to be the coefficients of 2"
in tlie Taylor development

(1-2az +22)"12 = f: Pa(a)2".
n=0

Prove that P,{a) is a polynomia! of degree n and find Py, P, Ps, Py.

Find the radius of convergence of the power scries 3 oo, 2ma"".

® Prove:

M\2 1 ettt . o
(a) (F) =3 T-E;-—t-,whm'ylst.hcumtarcle

od " 2 1 2% oo
(b)..ze:o(ﬁ) =5 [ e

. Find a power series which solves the functional equation f(z) = z + f(22)

and show that there is only one power series which solves the equation with
J(0)=o0.

. What is wrong with the following argument? Consider

1 1 1
,f(z)=...+-z§+;;+;+l+z+z’+....
Note that
z+22+...= d
1-2z
whereas

1 -2

11
vt =1oOE"1-¢

14~
2
Hence f(z) = 0. Is f in fact the zero function?

Suppos: f is an entire function and that |f®)(0)] < 1 for all k > 0. Show
that |f(z)] < e*l for all z € C.
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40. Let

(z-1)*(z+3)
1~sin({xzf2)
(a) Find all the singularities of f and identify each as a removable singulasity,
8 pole (give the order), or an essential singularity.
(b) If f(2) = ap + @12 +a22% +... is the Taylor expausion of f centered at
0’ ﬁnd aQ:ali and a.
(c) What is the radius of convergence of the series in (b)?

@)=



Chapter 4

Calculus of Residues

This chapter focuses on the Residue Theorem, which states that the integral of an
analytic function f around a closed contour eguals 271 times the sum of the residucs
of f inside the contour. We shall use this theorem in our first main application of
complex analysis, the evaluation of definite integrals. The chapter begins with some
techniques for computing residues of functions at isolated singularitics.

4.1 Calculation of Residues

\We recall from §3.3 that if £ has an isolated singularity at 29, then f admits a
Lanrent expansion that is valid in a deleted neighborhood of zg:

_ b b
f()=...+ —w) + G—z)

where b is called the residue of f at 25. This is written
b) = Res(f; z0).

We want to develop techniques for computing the residue without having to find
the whole Laurent expansion. Of course, if the Laurent expansion is known, there
is no problem. For example, since

+apt+ear(z—2)+.-.,

1 1 1
/2 — —_—
e/‘-l+-z-+2zz+...+ 0 cesy

the coefficient of 1/2 is 1, 50 f(2) = e'/* has residne 1 at zo = 0.

If we are given f defined on a region A with an isolated singularity at 2, then
we proceed in the following way to find the residue. First we decide whether we can
casily find the first few terms in the Laurent expansion about zg. If s0, the residue
of f at 2o will be the coefficient of 1/(z—2q) in that expansion. If not, then we guess
the order of singularity, verify it according to the rules that will be developed in

243
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this section (some rules were already developed in Proposition 3.3.4). and caleulate
the residue according to these rules. (The rules are summarized in Table 4.1.1 given
later in this section). If we have any doubt as to what order to guess, we should
work systematically by first guessing removable singularity, then simple pole, and
so on, checking against Table 4.1.1 until we obtain a verified answer.

Removable Singularities Let f be analytic in a deleted neighborhood of ..
Recall from §3.3 that f has a removable singularity at 2o iff lim. . (z—2)f(2) = Q.
The following theorem covers many important cases and is sometimes the easiext
to use.

Proposition 4.1.1 If g(z) and Ii(z) are analytic and have 2eros aL zp of the sam.
order, then f(z) = g(z)/h(z) has a removable singularity at zg.

Proof By Proposition 3.3.4, we can write g(z) = (2 — zg) k3(z), where §(zg) 7
and k(z) = (z — z)*h(z), where h(z) # 0 and § and % are analytic and nonzen.
at 2. Thus, f(2) = §(z)/h(z) is analytic at zp. 1

Likewise, if g has a zcro at 29 of order greater than A, then g/h has a removahi.
singularity at z.

Examples

(i) ¢*/(z — 1) has no singularity at 2p = 0.

(ii) (e* —1)/z has a removable singularity at 0 because ¢ ~ 1 and z have zere
of order 1. (They vanish at z = 0 but their derivatives do not.)

(iii) z2/sin 2 has a ranovable singularity at zg = 0 because both the numeratwce
and the denominator have zeros of order 2. 8

The preceding discussion is summarized in lincs 1 and 2 of Table 4.1.1.
Simple Poles By Proposition 3.3.4, if im. .., (2 — 29)f(z) cxists and is nonzer.

then f has a simple pole at 2, and this limit equals the residue. Lot us apply 1t
result to obtain a wseful method for computing residues.

Proposition 4.1.2 Let g and h be analytic at zg and assume that g(z0) # 0, 1(=. =
0, and I'(20) # 0. Then f(2) = g(2)/h(z) has a simple pole al 2 and

Res(f;20) = ,“:,((z“))



;4.1 Caleulationn of Residues 245
Proof Sincc k(z5) = 0, the definition of the derivative gives

i MRG0 _ o B(z) L = () #0,

=% 2—2 Fs0 2 —
=ad therefore
2-zg _ 1
In 30 = e
Thus,

9(z) _ 9(20)
llm (z - 20) 55—~ i(z) h'(zo)

exists and therefore equals the residue. @

Alternative Proof Since h(zo) = 0 and &'{z9) # 0, we can find a function h
Lat is analytic at 29 such that h(z) = h(z)(z 2zg). Note that h(20) = () £ 0.
Thus, we can write g(z)/h(z) = g(z)/[R(z)(z — 20)] and g(z)/k(z) is analytic at zo.
Hence we can write a Taylor series

g(z) - Z%(z zo)n

=here ao = g(z0)/h(20). Thercfore,

g(z) - —~ - ]
)~ e

s the Laurent expansion of g/h and thus ag = g(z0)/M(20) = 9(20)/h' () is the
sesiducat 2p. B

As we have seen, il g(z) has a zero of order & and k(z) bas has a zero of order
! at 2o, with I > k, then g(2)/h(z) has a pole of order I - k at z5. If il =k + 1, we
aave a simple pole and can obtain the residue from the next proposition.

Proposition 4.1.3 Supposc that g(z) has a zero of order k ot zo and that h(z) has
a zero of order k + 1. Then g(2)/h(z) has a simple pole with residue given by

g 7% (2)
'Rcs (Z;zo) = (k+ I)MT‘:I)—(DZ;;.
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Proof By Taylor's theorem ang ¢} Tact = k—1) -
.t e fact that g(zp) = 0,... g+ () = 0, we
==z
8() = =320 82 4 (2 - 20)*15(2),
where § is analytic. Similarly,

- &
h(z) = %%h(k*”(zo) + (2 - z)**2h(2).

Thus,

(z — 2) 22 = ___[9™(20)/RY] + (2 = 20)3(2)

>~ #G) 141y (z0) /(i + 1) + (= — z0)(2)”
As z — 2o, this converges (by the quotient theorem for limits) to

(k)
(k+ 1);,%’,‘—,,—.(?—;).

which proves our assertion. MW

Another proof that

k) (=

lim (2 = 2023 = (1 4 19" (20)_

Jlim (2 - 20) w) = &+ Diemgg

is obtained by using 'Hopital’s rule (see Exercise 8, §3.3) and observing that both
(2 — 20)g(z) and h(z) are analytic at zg with 2g a zero of order (k + 1)

Examples

(i) ¢°/z at 2 = 0. In this case 0 is not 2 zero of ¢* but is a first-order zero of z.
so the residue at 0 is 1-€%/1 = 1. Clearly, Proposition 4.1.2 also applics.

(ii) e*/sinz at 0. Here, ¢* is not zero at the point z = 0, and, since sin’0 =
cos0 = 1,0 is a first-ordar zero of sin 2. Thus the residue is ¢®/cos0 = 1.

(iii) 2/(z2 +1) at 2 = 4. Here g(z) = 2,#(z) = 22 + 1. Therefore, g(i) =i # 0 and
i(d) = 0,#"(s) = 2 # 0. Thus the residue at i is g(i)/k'(i) = 1/2.

(iv) 2/(z2~1)at z=1. Here g(z) = z, and h(z) = ' — 1. Thus g(1) =1 # ¢
and A(1) =0, 1'(1) = 4 #0, and s0 the residue is 1/4.

(v) z/(1 — cosz) at z = 0. Here 9(0) = 0 and ¢’(2) =1 #0, s0 0 is & simple zeze
of g. Also &(0) = 0,1'(0) = sin0 = 0, and 4"(0) = cas0 = 1 #0,500is ¢
double zero of h. Thus, by Proposition 4.1.3 (sce also Iine 5 of Table 4.1.1)
the residuc at 0 is

g'(0)
2-F'—-—=2- =2, .

Yt | b

(0
)
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Double Poles The forrmulas for residues at double poles become more compli-
cated aud the residues a little more laborious to obtain. Probably the most useful
Srmula for finding the residue in this case is the following result.

Proposition 4.1.4 Let g end h be analytic at 2 and let g(z0) # 0,h(2) =
. h'(20) = 0, and h''(zg) # 0. Then g(2)/h(z) has a second-order pole at zg and
the residue is

(.. _o9(2) _2g(z0)h"(2)
R"’(h"") =2hiz) "3 ()P

Proof Since g has no zcro and h has a second-order zero, we know that the pole
= of second order (see the remark preceding Propasition 4.1.3). Thus we may write

the Laurent series in the form
oz) _ b & )
Wz) = o) T z-z Tt ez 2) tarlz-2) ...

=nd we want to compute &. We can write

0(2) = 9(z0) + ¢'(za)z = 20) + Lz - zo)? 4 ...

and

R R T
Thercfore,
52) = o) [ + s bao b (- )+

[h"?“’ + "mé“’(z—zo>+°--] [bz + b1z — 20) + aa(z - 20)* + ...

We can multiply out these two convergent power series as if they were polyno-
mials (see Worked Example 3.2.15). The result is

M), [bTe) W) o s...

9(z) =

Since these two power series are equal we can conclude that the coefficients are
equal. Therefore,

o) = ) g oy = BC) | W)

Solving for b; yields the theorem. W

Obscrve that for a second-order pole of the form g{z)/(z ~ z5)? where g(zp) 5 0,
the formula in Proposition 4.1.4 simplifies to g’(2p), as it should (Why?).
The (ollowing result may be proved in an analogous manner.
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Proposition 4.1.5 Let g and h be analytic ot zo and let g(z) = 0,4'(20) #
0,h(z0) = 0,k (20) = 0,1"(20) = O, and h"(z0) # 0- Then g/h has & second-
order polc at zy with residue

80"(z0) _ 3¢'(20)l™)z0)
Hz0) 2 [zl

The proof is left for Exercise 4.

Examples

(i) e®/(2—1)? bas a second-order pole at zo = 1; here we choose g(2) = €%, h(2) =
(z — 1) and note that g(1) = e # 0,h(2) = 0,4/(20) = 2(20 -~ 1) = 0.
and h"(zp) = 2 # 0. Therefore, by Proposition 4.1.4, the residue at 1 is
((2-e)/2) - (2/3) - [(c - 0)/2%] =e.

2.

(i) (e* — 1)/sin®z with zp = 0. Here we choose g(z) = €* — 1,k(z) = sin’:
and then note that g(0) = 0,4'(0) # 0,A(0) = 0,k'(z) = 3(sin® z)(cos z1.
so h'(0) = 0,h"(z) = 6sinz - cos® z — 3sin® z (which is equal to zero ax O1.
and finally A"(2) = Gcos® 2z — 12sin® 2 - cos z ~ 9sin® z - cos 2z (which is G at
z =0). We also cowpute h{*)(0) = 0. Thus by Proposition 4.1.5, the residue
is3-(1/6)=1/2. 4

Higher-Order Poles For poles of order greater than 2 we could develop formula-
in the same manner in which we develaped the preceding ones, but they would L=
more complicuted. Instead, two general methods cun be used. The finst is deseribed
in the next proposition.

Proposition 4.1.6 Let [ have an isolated singularity ot zy and let k be the smalle~
integer > 0 such that lim._.,,(z - 20)* f(z) exists. Then f(z) has a pole of ordes ¥
al zy and, if we let &{z) = (z — 20)* [(2), then ¢ can be defined uniquely at zo -
that ¢ is analytic ot 29 and

¢*=1 ()

Res(f; 20) = eV

Proof Since lim,_..,(z — 20)*f(2) exists, ¢(z) = (z — 20)*f(z) lins a ranovaid
singularity at zp, by Proposition 3.3.4. Thus in a neighborhood of zg,
$(2) = (2 — 20)*S(2) = b + b2 (2 — 20) + ... + by(z — 20)*~" + ao(z — 20)* +

50

b b
f(2)= (z-kzo)" + (z-';o;k"' +...+-(z—i';;-;+ao+al(z-zo)+... .
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b = 0, then lim,...(z = 20)*~"f(2) exists, which contradicts the hypothesis
about k. Thus, 29 is a pole of order k. Finally, consider the expansion for ¢(z),
acd differentiate it k — 1 times at zp to abtain ¢'*~¥(z0) = [(k - 1)]6;. W

In this theorem it is the residuc formula that is important vather than the test
%7 the order. 1t may be easier to test the order by writing (if possible) f = g/h
snd showing that h has a zero of order k greater than that of g. Then we have a
sole of order k (as was explained in the text preceding Proposition 4.1.3).

Let us now suppase that the form of f makes application of Pruposition 4.1.6
=zcunvenient.  (For example, consider ¢/ sin®z with z9 = 0. Here k = 4, since
the numerator has no zero and the denaminator has a zero of order 4.) There
= an alternative method that generalizes Proposition 4.1.4. Suppose that f(z) =
2 :)/h(z) and that h(z) has a zero of order k& more than g at 24; therefore, f hns a
pole of order k. We write

9(z) _ b b
WD) = Gt o A

=here p is analylic. Also, suppose that zg is a zero of order m: for g(z) and a zecro
3f order m + k for h(z). Then

9(z) = i 9""(20)'(l!z =20 d h(z) = i h.""(zo)'slz - 2)"

n=wm n=m+k

Thus, we can write

$otmeoar | [ $ Knnoor]

= n! Y n!
b by
. [—(z-zo)" ot ——(z-zo) +p(z)] .

We can then multiply out the right side of the cquation as if the factors were
polynomials (hecause of Worked Example 3.2.15) and compare the cocficicuts of

=)™ (z - 2)™H,... . (z = 20)™*~! to obtain k equations in by, bs,... ,bs.
Finally, we can solve these equations for by. This method is sometimes more prac-
tical than that of Proposition 4.1.6. When m = 0 (that is, when g(2q) # 0), the
explicit forinula contained in the following proposition can be used. (The student.
should prove this result by using the procednre just described.)

Proposition 4.1.7 Let g and h be analylic al 29, with g{zg) # 0, and assume
h(zg) =0=...=h*"(z) and h*}zy) # 0. Then g/h has a polt: of order k and
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the residue of %'

Res(g/h; 20) is given by

Y «
Res(g/h; 20) = [h"‘)(zo)]

p(z0) 0 0
Bzo) h¥(=0)
(& _— 0
T TR
kDo)  ANz2)  A9(z)
e TR ] 7

piak-D(z) h
—=1)
2k -

(2k - 2)!

lzk-:z)(“) k(?k-:s)(m)
2k - 3)!

Chapter 4 Calculus of Residues

K ag)  g(ar)

g(z0)
99")(20)
9} (20)
21

(x+ 1)1

(k- 1)

where the vertical bars denote the determinant of the enclosed k x k& matriz.

Table 4.1.1

Int Lhis table g and / are analytic at sp and S hes an isolated singularity. The most
useful and common tests arc indicated by an asterisk.

Techniquos for Finding Residues

Type of
Function Test Singularity Revidue at 2y
1. f2) :l-'-":’o (z - 20)(2}=0 ramnovable 0
. 9(z) and h have reros
2 h(z) :!' same order ) removable 0
. R lim (2 — 2)(=) =0
3. :((..; smzy and s #£.0 simple pole ‘I_i:x‘:o (z = zo)f(=1
S ._i g(" # 0."(30) =0, . o )
4 ';((z)) "'Eﬁ) #£0 simple pole 37(%5
as) g has zero of ordor &, (k)
& h(z) & Las zero of onder k4 1 simple pole (k+1) ,,(gn l()?;'
o gl2) 9(z0) #0 . .
6 I= =0=W g'(20) _2glz 2™
") ;:S'tl)_ :n (20} sccond-order pole W) " 3 g ;"H
. o=
" G-z 9(z0) # 0 second-order pole  g'(za)
= #0
g gmsese e 12 30 st
h(2) = 1(20), h*(30) # 0 second-order okt S(a) "3 v alN
k is the smallest integer such
9. f(2) thet lim &(z0) exists where  pole of order k otk
#z) = (= — 20)1(2) 2= {k -1y
10. g(2) 9 has zcro of order 4, lim ﬂ:.'_:
h(z) i has 2oro of ordar & 4+ 4 pole of order & ':'“ (k-1
whare @(2) = .. o
n 9 9(z0) 0, h(z0) = e
ChG) oo = h*1(zp) pole of order & see Propositrz L HERR

=0, k*(z0) # 0
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Examples

2?
(z-1B3(z+1)
The polc is of order 3. We usc Proposition 4.1.0. In this case,

1i) Find the rosidue of at zg = 1.

22
#) =T
S50
(z+1)-22-22 22422 = 1
¥ = z+12 (@+1)2 (z+1)?
and

.

" 2 o
¢ (2)=(;-+—1)'3 so that ¢ (l)=

Sinee k = 3, the residue is (1/2)(1/4) = 1/8.

(i} Find the residue of ¢*/sin®z at z = 0.
Here k& = 3 and we shall use Proposition 4.1.7, with g(z) = e* and k(2) =
sin®z. We necd to compute h™(0), i(¥}(0), and h(¥)(0). These are, by
straightforward computation, A”(0) = 6,A4*)(0) = 0, and A(*}(0) = —60;
thus, ™ /3! = 1, h(¥) /4] = 0, and K /5! = —1/2. Also g)(0)/0! = 1/1, s0

the residue is
an® 101 00 1
(E)x 01 11|=}-11 1}=1.
-3 0 § -1 0 3

(The last column js subtracted from the first.) ¢

Essential Singularities In the case of an cssential singularity there are no simple
formulas like the preceding ones, so we must rely on our ability to find the Laurent
expansion. For example, consider

2
2) = ol=H1/%) o g2 oM/2 = z L
f(z)=¢c et.e (1+z+2!+...) (1+z+2!z’+'" .
Gathering terms involving 1/z, we get
1 (1 JL 1 1
\VVYatammtaat )
{\We multiply out as in the procedure of Worked Example 3.2.15, a method that is
justified by a more general result that is outlined in Exercise 12.) The residue is
thus

1 1 1
Rﬁs(fvo)—l+2—!+m+§?4—!+.-..

We do not attempt to sum the series explicitly.
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Worked Examples

atz=0.

Example 4.1.8 Computc the residue of si:: .

Solution Since both numerator and denominator bave a zero of order 2, the
singularity is removable, and so the residue is zevo.

Example 4.1.9 Find the residues at all singularities of

sinz
tanzs = —.
cosz

Solution 1 The singularitics of tanz occur when cosz = 0. The zeros of cas:
are

5r
p=%3 13” :e

and these are the only zeros of cosz. We conclude that the singularities of tan -
occur at the points z, = (2n+1)#/2, where n is an integer. We choose g(z) = sin :
and h(z) = cosz. At any 2,,,h'(2,) = £1 # 0, s0 cach 2, is a simple pole of tan :
Thus we may use formula 4 of Table 4.1.1 to obtain

M(m ’zn) — g("’l) -~1.

W(za)
Solution 2 We know that
sinz = (-1)"sin(z—n)=(-1)"* cos (2 —m - ;—
= (1" eosfz — za) = (1)1 }: C g

(2r)!

and

(-1)" cos(z — wn) = (=1)"*1 sin (z = 15.—

Cos 2

(~1)"sinz = 2) = (=17 3 (;k P

As belore, the poles are sinple, so the series for tan z is of the form

tanz = Zvc)k:
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2 $in 2 = tan z cas z hecomes

o S e

I -z, E""(z - ’"))k] [( " Z (2(L -:»)1 ) (- "n)m'] .

Cancelling (~1)* rom each side, this hccomes
- [l-gz—-;'l):i-...] = [;—-':'_z,: +ag +0-1(2"3n)+...]
X [(z—z,.)— g%"—!a--i-...]

= b +ag(z—za) + (a1 — %)(z—.’_,.)z-t-

“ompuring the first terms, we get b = —1.

Example 4.1.10 Evaluale the residue af at 2 =1.

(=2 +1)’

Solution 1 (224 1) haus a zero of order 2 at § and 2 -1 # 0, s0 (2 - 1)/(z2 +1)?
2as a pole of order 2; thus, to find residue we use formula 6 of Table 4.1.1. We
dose g(z) = 22 - 1, which satisfies g(f) = —2 and g'(f) = 2i. We also take
ﬁ:-) = (22 + 1)z and notac that #'(z) = 42(z* + 1), so k(i) = W'(i) = 0. Also.
“"(z) = 4(2% 4+ 1) + 822 = 1222 + 4, s0 h"(f) = —8 and F"'(z) = 24z; therefore,
"'(:) 24i. Thus, the residue is

2.2i 2 (=2)-2i

% 3 6 O

Solul:non 2 We know from algebra (or integration techniques from calculus) that
s —1)/(2? + 1)? has a partial-fraction expansion of the form

22 -1 _Az+B+ a +Cz+D b
(2+12 " (z2- 12 (z-1) (z+i2  (z+i)
Solving for the coefficients gives the identity

2-1 1 1 $1 1
(2241)2 " 2{(z-1)2 " 2(z +1)?’
The second tcrm is analytic at z = ¢, so the Laurent series is of the form

2-1 1 1 had n
FE+1p ”E(z-i)2+'§o“"(z") '

The residue is the coefficient of (2 — 7)~!, which, since this term is missing, is 0.
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Exercises
1. Find the residues of the following functions at the indicated points:
< smz y2o=0

(© < ’” S =0

) l+e' 20=0

el
(e) (_g 1)2 »p = 1

2. Find the residucs of the following functions at the indicated points:

et
(a). — 17'0=1
’

(b) ( 1)3? = 0

(e)° (‘mi- l) 26=0

22 i /2
d) z—pr0=e

3. If f(2) bas residue b, at z = 2y, show by example that [f(z)]* need not have
residue % at z = zp.

4. Deduce Proposition 4.1.5 from Proposition 4.1.4.
§.° Explain what is wrong with the following reasoning. Let

(=) = 1 -l-c

Since f(z) has a pole at z = 0, the residue at that point is the cocfficier:
1/z, namely 1. Compute the residue correctly.

6. Complete the proof of Proposition 4.1.7.

+_

7. Find all singular points of the following three functions and compute we-
residues at those points:
1
@ =75
1
(b) 2 4+2z241
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1
© 73
8.° Find all singular points of the following functions and compute the residues
at those points:

()

(b) sin ;1-

9. Find the residuc of 1/(z*sinz) at z = 0.

10. If £y and fz have residues ) and r2 at 2o, show that the residue of £, + f2 at
ois ry +ra.

11.° If f; and f> have simple poles at zg, show that f; f2 has a second-order pole
at z5. Derive a formula for the residuc.

12, Let

f('z)=...+-(;-:b£z;-);+...+ zi'z“ +ag+ai(z—2)+-..

and

d dy
9@ =...+ "),:-r A2tz —20) +..

(2-20 z-2

be Laurent expansions for f and g valid for 0 < |z — 2g] < r. Show that the
Laurent expansion for fg is obtained by formally multiplying these series. Do
this by proving the following result: If Yoo, a, and 302 b, are absolutely
convergent, then

()55

where ¢, = 7_q a;bn—j; moreover, the series 37,7 ¢ is absolutely conver-
genl. Hint: Show that

ZIC;I <§Ok§lajllbk-;l < (Z |¢jl) (g,lbkl)

and use this to deduce that Y c. converges absolutely. Estimate the error
between

Bo () &) ~ (E9)E)
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13. Compute the residuc of the following functions at their singularitics:
1

(8) (1 - z)s

®) §5F 7
i

© (1 -2z)3

<

) z(1-2)3
14. Find the residues of (22 — 1)/[cos(xz) + 1] at each of its singularitics. (See
Review Excrcise 29 of Chapter 3.)

4.2 Residue Theorem

The Residue Theorem, which is proved in this section, includes Cauchy’s Theorein
and Cauchy’s lntegral Formula as special cases. It is one of the main results of
complex analysis and leads quickly to interesting applications, some of which are
considered in §4.3. The main tools needed (o prove the theorem are Cauchy's
Theorem (2.2.1 and 2.3.14) and the Laurent Expansion Theorem 3.3.1.

The precise proof of the Residue Theoran is preceded by two intuitive prook
that only use the material in §2.2 and she following property of the residue at 2o:

2i Res(f; 20) = / f(2)dz
be 4

where 4 is & sanall circle around zy (soc Praposition 3.3.3). For maost practica.
examples the intuitive proofs are perfectty adequate, but, as was evident in §2.2. it
iss difficult to formulate a gencral theorem to which the arguinent rigoronsly applies

Statement of the Residue Theorem We begin with a statement of the Residix
Theorem followed by two intuitive proofs and then a precise proof,

Theorem 4.2.1 (Residue Theorem) Lel A be a region and let zy,... .z, € 2
be n distinct points in A. Let [ be analytic on A\{z),2,.....2,); that is, let f
analylic on A czcepl for isolaled singularilies al 2y,... .2,. Loty be a closed cur>
in A homolopic lo a poinl in A. Assume thal no z; lies on . Then

L f(2)dz = 258 Y [Res(f: 200} (73:2), (4.1
i=|

tohere Res([; 2;) is the residue of [ at 2; and I(v; 2;) iv the index (winding numbe
of v with respect to 2; (see §2.4).
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Figure 4.2.1: Residue theorem: [, f = 2wi[Res(f; 21} 4 Res([; 22) + Res(f; z3)].

In most practical examples, 4 will be a simple closed curve traversed counter-
»lockwise, and thus 1(7; 2;) will be 1 or 0 according to whether z; lies inside y or
outside 4. This is jllustrated in Figure 4.2.1.

The same policy regarding computation of the index I (7y; 2) used in §2.4 will be
iollowed in this section. An intuitive proof is acceptable as long as such statements
can be substantiated with homotopy arguments when asked for. For cxample.
I{v; z9) = +1 provided -y can be shown to be homotopic in C\{zp} to a circle
Wt) = 2o +re?,0< 0 < 2n.

A general formulation of the Residue Theorem for simple closed curves may be
stated as follows:

If v is a simple closed curve in the region A whose inside lies in A
and if f is analytic on A\{z1,... .zn}, than] £y 2%i times the sum
of the residues of f inside y when 4 is lraversed in the counterclockwise
direction.

This is the classical way of stating the Residue Theorem, but our original statement
(Theoremn 4.2.1) is preferred by some because it docs not restrict us to simple closed
curves and does not rcly ou the difficult Jordan curve theorean (see Definition 2.4.1).

Two short intuilive proofs of the Residue Theorem are now given for simple
closed curves. They will be illustrated by au example showing that. in practical
cases, such proofs can be made quite precise.

First Intuitive Proof of the Residue Theorem for Simple Claosed Curves
Since 7 is contractible in A to a point in A, the inside of 4 lies in A. Supposc that
each z, lies in the inside of 4. Around each z; draw a circle 7; siall enough to
be inside v and surround none of the other z,. Apply Worked Example 2.2.9 (the
Generalized Deforuation Theorem) to obtain f,’ =X, f," J. since £ is analytic
iR Py 715+ -« +n nud the region between them (Figure 4.2.2).

Suppose that 4, 7,... 7, are all traversed in the counterclockwise direction.
Asshown in Proposition 3.3.3, [ f = 2ai Res(J: 2;), so f,'f =2ri Y, Res(f; i),
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450
O

Figure 4.2.2: First intuitive proof of the Residue Theorem.

which is the statement of the Residue Theorem since J(; z) = 1 for z inside ¥ and
I(v;2) =0 for z outsidey. W

Second Intuitive Proof of the Residue Theorem for Simple Closed Curves
This proof proceeds in the same manner as the preceding one except that a differen:
justification is given that f, f = Z,g, J,, - The circles are connected as shown in
Figure 4.2.3, to obtain a new curve .

Figurc 4.2.3: Second intuitive proof of the Residue Theorem.

Thus, v and 7 are homotopic in A{2,,... ,z,}, and so, by the Defornation To=-
orem, [ f = f ! But LI=2n [, 1, since the portions along the connecrax:y
curves can

Why do these proofs fail to be precise? First, we assumed thet -y is simgie
Second, we use the Jordan curve theoremn (which we did not prove) to be ad-
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to discuss the inside and cutside of y and the fact that I(y;2) = 1 for z inside
- and I(7;2) = O for z outside 4. Finally, in the first intuitive proof, we used
Worked Example 2.2.9, which was established only informally, to justify that f,' I=

Ay Ay 2

.
2-1’

The function 1/(z2 — 1) bas simple poles at —1,1. We evaluate the integral
using the Residue Theorem:

[57 = o) om )]
= 27 [iri—l-)"!-il—l] =0.

In this example it is clear what we mean by the inside and outside of , and we
know that —1 and 1 have an index +1 with respect to 7.

The figure in this example corresponding to Figure 4.2.2 in the gencral discussion
is obtained by drawing two circles «, and 4, of radius 1/4, say, around —1 and 1,
respectively, as in Figure 4.2.4.

Example Bwlmzte/ where -y is a circle with center 0 and radius 2.
v

Bt and 1
L |\,

Figure 4.2.4: Justifying that f f=[ f+ [ f.

The only statement in the preceding proofs of the Residue Theorem that was

not precisc was
fr=Lrefs
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In this example, this may be justified by considering the curve in Figure 4.2.5(i)
and showing that it is homotopic in C\{1,-1) to a point. This is geometrically
clear; a hoinotopy is indicated in Figure 4.2.5(H) and (iii). ¢

Figure 4.2.5: A curve that is homotopic to a point.

Precise Proofofthe Residue Theorem Since z- is un Isolated singularity of
/, we can write a convergent Laurent series expansion

I(z) =$>,(*-*)" ST-— B

(z) 52 (*-*) > Gz
in some deleted neigliborhood of z, of the form {z | r > \z—z,j > 0} forsomer > 0.
By Proposition 3.3.2 and Exercise 15 of §3.3, the singular part ofthe Laurent series
expansion

SM =Y T-b,n,

converges on C\{zj), uniTormly outside any circle |z —z,| = ¢ > 0. Hence Si(z) i«
analytic on C\{z,} (see Theorem 3.1.8).
Consider Die function

02}=/(2)-X X z).
=1
Since / is analytic on A\{zi,...Zn} and since each St(z) is analytic on C\{z,}.// i-
analyticon A\{zi,... ,2,}.
All the «i’s are removable singularities of g because on a deleted neighborhood
(z |r > |z - z,j > 0}, which does not contain any of the singularities, we have

f{z) =jria,, (z-2i)"+Si{2),
net
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o0 i-1 n
9(2) =) anlz-z)" - Sj(z) - Y Siz).

n=0 i=t J=i+)

Since the funclions Sj, 7 # i, are analytic on C\{z;}, wo know thnt lim.—., 9(2)
«xists and equals ag — Z,_, iz Si(2). Consequently, 2; is a remowable singularity
of g.

Because g can be defined at the points z; in such a way that, ¢ is analytic on all
of A. we can apply the Cauchy Theoren 2.3.14 to obtain f,’ g =0. Aence

/7!=g/18;.

Next consider the integral f. S;. The function S;(z) is of the form

which, as we have noted, converges uniformly outside a small disk centered at 2;.
Thus the convergence is uniform on «. (Since C\{~(|a. 8])} is an open sct, each 2;
has a small disk around it not meeting 4.) By Proposition 3.1.9,

[5= % [ mor

But form >1and z # &,

o [T

so hy Proposition 2.1.7 and the fact that v is & closed curve, all terms are zero
except the term in which m = 1. Thus,
‘/-———"k

3=

By definition of the index, this is equal to b, - 2xi- I(y; z5) = 2iRes(f; ze) (1 )-
Thus,

/ I= Z f S;= Z2F1[Res(f,z¢)]f(')’;zv)

and the theorem is proved. B
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Residues and Behavior at Infinity If a function f is analytic for all large
enough z (that is, outside some Inrge circle), then it is analytic in a deleted neigh-
borhood of oc in the sense of the Riemaun sphere and the point at ~o as defined
in §1.4. We can think of 0o as an isolated singularity of f, perhaps ranovable. Let
F(z) = f(1/2). If z = 0, we sct 1/z = oo. (Equivalently, 1/z2 — oo as z — Q).
Thus, it makes sense 1o discuss the behavior of £ at 0o in terms of the behavior of
Fatd.

Definition 4.2.2 Let F(z) = f(1/2). Then we soy that
(}) 1 has a pole of order k at oo if F has a pole of order k at 0;
(8) f has a zero of order k at 00 if F has a zerv of order k at 0.
(iii) We define Res(f;o0) = — Res((1/22)F(z);0).

Notice in particular that a polynominl of degree & has a pole of order k at oc.
This agrees with what we saw in the proof of the Fundamental Theorem of Algebra
in §2.4. As z — 00, a polynomial of degree & behaves much like z*. Sce also Worked
Example 4.2.7. The dcfinition of residue at 00 may seemn a bit strange, but it is
designed to make the next two propositions work out correctly.

Proposition 4.2.3 Suppose there is an Ry > 0 such that f is analylic on the set
{z € C such that |z| > Ry}. If R > Ry, and T denotes the circle of radius R
centered at O traversed once counterclockwise, then [ f = —2xi Res(f; 00).

Proof Letr=1/R, and let v be the circle of radius r centered at 0, and traversed
counterclockwise. If 2 is inside «, then 1/z is outside T, so the function g(2) =
J(1/2) /22 is aualytic everywhere inside 7 except at 0. Thus,

2‘ - ry
2xi Res(g;0) = / [f(1/2)/2%d=z = / Fr e *)r=2e~Ftreidl
" [

/; 2 J(Re™)Re~dt = /_o . J(Re*)Rei*ds

2% . .
= / f(Re“)Re**ds = / I
(Y r
The next-to-last eqnality comes from the 27 periodicity of ¢'*. B

The choice of the minus sign comes from the fact that as we proceed along ¢
simple closed curve in € in the counterclockwise direction, the region we normali-
think of as the inside Lies to the lefi. (Look at any of the figures in this sectiorn
The point at oo lies w0 the left if we proceed in the apposite direction along 1
curve. Hence the minus sign. For the curves in the last proof, if 2 proceeds in t-
counterclockwise direction along I', then 1/z proceeds in the clockwise directicc
along . Since f is analytic outside I" except possibly at oo, Proposition 4.2.3 msr
be interpreted as saying that (1/274) f. f is the negative of the residue of f omsids
I". This is correct more generally.
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Propaosition 4.2.4 Lety be a simple closed curve in C traversed once counterclock-
cuie. Lot f be analytic along oy and have only finitely many singularities outside «y.
Then

/f=-2ai2{msidms of | outside vy including at co}.
o

idea of the Proof Apply the Residue Theorem to a composite curve such as
~hat in Figurc 4.2.6. Choose I to be a circle large enough to contain v and all the
£nite singularities of f in its interior. The reader is asked to supply the remaining
*etails of an informal proof in Excrcise 14. H

Figure 4.2.6: Curve used in the proof of the Residue Theorem for the exterior of a
curve.

Worked Examples
Example 4.2.5 Evaluate the inicgral

/ dz

21

where 7y consists of the portion of the z azis from —2 to +2 and the semicircle in
the upper half plane from 2 to —2 centered at 0.

Solution The singular points of the integrand occur at the fourth roots of -1,
namely,

o4, REBNM o BRifA (xadn)ifd _ Sxifd oo o(etOs)ifa _ Twifs

(sce Figure 4.2.7).
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7N
W

Figure 4.2.7: The curve 7y in Example 4.2.5.

By the Residue Theorem, the required integral equals

o0 [Rcs (z4 ]-"- - 'ccri/d) I (‘7, eﬁ/‘) +Res (z‘i- . ’GSﬁ/tl) I ('Y: es;ri/i)

1 exize sxi/4 ( 1 avize 7xifd
+Res(z‘+l,e )1(7,:: )+Rw w5 1(ve™1)].
1t is intuitively clear that
Ir;e*/) =1 and I(y;e¥/4) =1,

whereas the other two indexes are zero. This can be more carvefully justified as
follows: « is homotopic 1o a circle § around ¢™/4 travenied counterclodkwise. To
see this, reparametrize 7 so that it is defined on the interval [0,25]. A suitable
homotopy is then H(s,2) = (1 — £)7(s) + #i(s), which is llustrated in Figure 4.2.5.

We know that I(; e"¢/%) = 1 by Worked Exmmple 2.1.12, and that J(¥;¢*/4) =
I(v;e*/%) by the Deformation Theorem. Thus I(y;e™/4) = 1, and, similarly.
I{~; €"/3) = 1. Furthermore, « can be contracted to the origin along the radii of
the semicircle, so by Canchy’s Theorem, J(y;5%°/4) = 0 and I(; ¢’%/%) = 0.

To caiculate

1 .ﬂ‘/‘)
R‘s(z‘-f-l'c .

observe that /4 is a simple pole of the function 1/(2* + 1), so we can use formuls
4 of Tuble 4.1.1 to obtain

1 wite) _ 1 _ eai/d _ cai/t
R's(z‘-n'“ )‘4(«'*/4)3‘4«:'*‘ 1
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>

e -

Figurc 4.2.8: Homotopy hetween «y and ¥.

Similarly,
1 Sxif4 _ 1 - e“'i/‘
R"'(z‘“'“ ) = iEyE T
Thercfore,
dz 2xi ~mifd XifdY _ i f _ ﬂ'\/i
_,z“+l= 4(0 e )--.1l'su|4—-——2 .

We do not actually have to use such a. detsiled method to calculate the indexes
twinding numbers). We simply use our intuition to calculate the number of times
the curve in question winds around the given point in the counterclockwise direc-
tion. Keep in mind that the justification for this intuition consists of an argument
like the preceding one.

Example 4.2.6 Fvaluate

/ 142 dz,
v 1—cosz
where v is the circle of radius 7 around zeve.

Solution The singularities of (1 4 2)/(1 — cosz) occur where 1 — cosz = 0. But
(¢ +e™%)/2 = ) implics that (%)% — 2(e™*) + 1 = Q, that is, that (e** — 1)% =
0. and hence € = 1. Therefore, the singularitics occur at z = 25 for n =
e v=2,-1,0,1,2,3,.... The only singularities of (1+2)/(1 — cos z) that lie inside
the circle of radius 7 are z; = 0,22 = 2w, and z3 = =27 (sce Figure 4.2.9). Also,
d(1 = cos z)/dz = sin z, which is zero at 0, -2x, 2x; and d?(} — cosz)/dz® = cos z,
which is nonzero at 0, —2x, and 2%, so these singularitics are poles of order 2.
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Figure 4.2.9: The curve 7y contains three singularities.

The residue at one of these poles z is, by formula 6 of Table 4.4.1,
9'(za) _ 29(20)h™(20)
h”(zo) 3 Ih"(zo)lz °

In this case, g(z) =1 + 2 so that g’(z) = 1; also, k(z) = 1 — cosz so that &'(z) =
sin 2, h(z) = cos z, and K"(z) = — sinz. Thus, h"(z) = 0 for z = 21,22, 23, 50 the
formula for the residue becomes 2¢’(z)/h"(2p). Hence,

2

Res(f;21) = oo%)- =2, Res(fiz)= ‘cos_?m-r-) =2, Res(fizs)= OOT:_-,,_-;)- =2

Thus, by the Residue Theorem,

[' 1 1::; <4z = 2xi[Res(f: z1) + Res(f; 22) + Res(f z3)] = 12

Notice that we have implicitly used the fact that /(-y; z) = 0 for 2 outside vy and
I(; z) =1 for z inside 7.

Example 4.2.7 Show that if p(z) is a polynomial of degree at least 2, then the sun
of the vesidues of 1/p(z) at all the zeros of p must be 0.

Solution 1 Suppose the degree of p is n so that we can write

n
p(2) = Zakz" with @, #0, where n>2.
k=0
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We know p can have at most n different zeros, so if 7y is a circle of large enough
radius R centered at 0, it surrounds all the Gnite singularitics of 1/p(z). Thus,

/,,( = = 2ni) (mdum or')

and this holds for all iacge enough R. But for large R,

lan-1] | lon-2| laal _ lanl
Sttt @m <
£ )]
p(z)l = Zag:"‘ >R (la..l a""' “;'z;’ +.oat R,,)
lon-l' lan—zl fao} A
” - —_—
2R[la..l(R =ttt )| 2B
and so
1 4x
—_—_—dz] € = .
y l' Rrja,|/2 R*-Va,|
Thus,

2

lZ(mduw of )l R""|0n|

Letting R — 00, we obtain | ¥ (residues of 1/p)| £ 0. Therefore, the sum is 0.

Solution 2 (This solution makes use of residues at infinity.) With « as before,
there are no finite singularities of 1/p outside v, so

L = ~zries(] '“)‘2“““(z=x(11/z) 0)-

But
L 1 1 z" 1

Mij2) 2 o+ B 4...+8 22 a2 +...tay 2

Since n > 2, the singularity at z = 0 is removable, so the residue is 0 and hence
the integral is 0. But the intcgral is equal to the sum of the residues of 1/p at the

zeros of p.



268 Chapter 4 Calculus of Residues

Exercises
1. Evaluate / GFIP
is a square w;t.h vertices 0,1, 1 + i, 4.
.* Deduce Cauchy’s Intcgral Formula from the Residue Theorem.

, where (a) 7 38 a circle of radius 2, center 0, and (b) v

3. Evaluate / dz, where 4 ig the unit circle.

2+2 +5

4. Evaluate / dz where 7 is the circle of radius 9 and center ().
5. Evaluate / tan 2 dz, where - is the circle of radius 8 centered at 0.

6.° Show thas / 2z 1) = 107, where « is any circle of radius greater than

1 and center 0

—
7. Evaluate the contour integral / ‘;sz’ where (a) - is the square with the
¥
four vertices —1 —4,1 —i,1 4+ i and —1 47 and (b) « is the ellipsc 4(2) =
acost +ibsint, where e, > 0, and 0 < ¢ < 271,

8. Let f be analytic on C except for poles at 1 and —1. Assumc that Res(f;1) =
—~Res(f;—1). Let A= {z |z ¢ |-1,1]}. Show that therc is an analytic
function k& on A such that #'(2) = f(z).

9. Evaluate the following integrals:

dz
(a) lzl=4% z(l - z)3
e*dz
(b) 1si=3 Z(l -z)?
10.* Evaluate the following integrals:

dz
® foey TP
(b) dz

lz+11=4 (1-2p

dz
c) ‘/h""=§ a-zp
&

@ Jgey T2P ™
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L. Let f: A — B be analytic. ono-to-one, and onto, and let f*(2) # 0 for z € A.
Let 7 be a curve in A and let 4 = fo+. Also let g be continuous on 4. Show

that
L@°I)-f=/_;y-

What does this result beconie in the case where f(2) = 1/27
12. Show that if lin. .o |—2f(2)] exists, it equals the residuc of £ at oo.

13. (a) Find the residuc of (z — 1)3/2(z +2)? at z = .
(b) Give two methods of evaluating

(z-1)°
[
where < is the circle with center 0 and radius 3.

14. Show informally that if  is a simplc closed curve traveled counterclockwise,
then

/ [ =—2ni Z{nsiducs of f ontside y including 0o0}.
o

15. Choosc a branch of vzZ2 —1 that is analytic on € except for the segment
[-1,1) on the real axis. Evaluate

/\/z'-'-xdz,
Y

where 7 is the circle of radius 2 centered at 0.

4.3 Evaluation of Definite Integrals

The Residue Theorem says that an integral around a closed curve can often be
evaluated by computations involving the integrand at a few points inside the curve.
The Deformation Theoren then says that the resulting value does not change as the
curve is shifted so long as no singularities of the integrand are crossed in the process.
These two results make the calculus of residues a powerful tool for the evaluation of
cortain definite integrals, some of which may have no obvious connection to complex
analysis,

Far example, the change of variable z = ¢i® might convert an integral over the
real interval —~n € 8 € 7 into one around the unit circle in the complex plauve. In
this section we will apply residue calenlus wo this type of integral and to improper
integrals of the forms [ f(z)dz or [>o_ f(x)dz. Some examples and devices
for evaluating integrals involving “multiple-valued” functions such as roots and
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logarithms are also given. The techniques developed throughout this section are
summarized in Table 4.3.1 toward the end of the section. This table shovld not be
used too literally in all cases. Indeed, it is valuable to understand the techniques and
estimates used to establish the formulas since the same ideas can often be used when
the formulas obtained here do not directly apply. Miscellaneous examples working
out important special cases and illustrating how the methods may be modified to
handle nonstandard problems arc given in the Student Guide and the Instructors
Supplement.

Rational Functions of Sine and Cosine Perhaps the most straightforward
type of real definite integral to which we may apply the residue methods are those
for which a simple change of variable converts the integral to one over a clased
curve. The interval of integration becomes a parameter interval for the curve. This
method applies particularly well to integrands involving sine and cosine over a
period interval such as [—, 7] or [0,27]). The change of variable z = ¢ converts
each of these to an integral over the unit circle, while sin@ and cosd become the
fractions

snd cosf =

. c?—c 0 3—(1/2) e 24(1/2)
T z - 2

We now give an example to show how this procedure works.
Example 4.3.1 Let a be a positive real constant not egual to 1 and evaluate

I—/Zﬂ’ do
- (') 1+az—2ama-

Solution Let 2 = ¢ for 0 < ¢ < 2x, and let 4 be the unit circle centered at the
origin. Then dz = i¢*?df = zd0. The change of variables suggested above gives

I—/ 1 d_z_l/ dz
14— (z+3) iz i) z+ePz-e?-a

ot [zt
y (z—0)(ez—=1) [, a(z —a}{z— (1/a))

The integrand has simple poles at z = a and at z = 1/a. The residues at thes
points are

Py

i
a? -1

i i
fes (a(z —a)(z- (l/a));a) Ta-1

=0

1—a2’

e (e =wars) = o

{0 < a < 1, then a is inside -y and 1/a is outside. Thus,

. i 2%
I-2m(a2_1) =y

==1/a
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£ a > 1, then a is outside y and 1/a is inside. So
I=2m’( 2 )= Z_

1-a2 az—-1

Note that there are no values of @ for which the denominator in this example
=anishes. In these situations, we can always do such a change of variable. The
mxthod may be formulated in gencral terms as follows.

Proposition 4.3.2 Let R(2z,y) be a rational function of z and y whose denomi-
aator does not vanish on the unit circle. Then

/ = R(cos0,sin0)df = 2xi ) _ [residues of f(2) inside the unit circld,
()

There !(z)=é”(%(”§)'2li(z—§))'

Proof Since R is a rational function, so is f. Therefore, there are a finite number
of poles and no other singularitics. The hypothesis on R cnsures that none of them
are on the unit circle, and the same change of variable as in the example shows that

/:'R(eosl),sinl))dﬂ=['f(z)dz,

where 7 is the unit circle centered at the origin traveled once counterclockwise. The
proposition follows from the Residuc Theorcm. W

If one forgets the formula for f in this proposition, one can always proceed as
in the example writing sin @ and cos@ in terms of ¢ and then making the change
of variable.

Improper Integrals lmproper integrals of the types mentioned in the introduc-
tion to §1.1 are defined in calculus; we now recall these definitions. First of all,
those along half lincs are defined as limits:

/.of(m)dx=giglm_£af(w)dx and [“I(z)&=Aﬁ__§g°[A!(z)dz-

Integrals over the whole line are defined by splitting the line into two rays and
requiring that both portions of the integral exist as finite mumbers.

/:!(z)dw=/_omf(z)dz+/:f(z)dx

B
= b f fa)ds + Jim, /o f(z)ds.
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An important point is that both limits are assumed to exist independently.

The existence of such integrals (i.e.. the existence of these limits as finite nun-
bers) may often be established by comparison to simpler integrals. This is also a
calculus {or real analysis) theorem.

Proposition 4.8.3 Suppose |f(z)| < 9(z) Jor all x > a and that j;°° g(z)dz con-
verges to a finitc number G. Then the inlegral [ f(z)dz also converges and
15 f(z)dz| £ G. Similar conclusions hold for integrals along e left half line or
over the whole real line.

Idea of the Proof The integral [.° |f(z))dz converges to a number no larger
than G since the numbers ff |f(z)|dz are increasing as B increases and remain
bounded above by G. Having thus established the result for positive functions.
the convergence of {° f(z)dz then follows in much the same way that absolute
convergence of a series implies its convergence. The idea is that if [ is real valued.
then |f] and |f| — f are both positive functions dominated by 2g, and [ f = [|f] -
JUS1 = £)- It £ is complex valued, we can work with its real and imaginary parts
since |Re(f)] < |f] € g and | Im(f)] < |f] € 9. The final inequality follows since

/;Bf(z)dr S/.-Bl!(x)ldzs_/auy(z)dz=0

foreach B. B

Onoe we know that the limits for the half line integrals exist independently. then
we can use any convenient special form of the limit to evalnate it.

[ s@rae= g [ se1as+ gim [ a1 e
= lm /-':f(z)dz

- A—o0.B—00

R
= Jim_ [ fia)ds

The symmetric limit in the last linc is a very convenient form, as we shall soon see
1t is important to remember that the cxistence of this special symmetric fonn £
the limit does not inply that of the more general one—a lot of cancellation mighs
oocur. However, il the general ope cxists, then this special one must as well and e
equal to it. The intermediate form [”, f(z)dz is more subtle. At first giance =
looks the same as the general defining form, but it is not quite. It is a nontrivial
observation that thay are equivalent. We prove tlie following lemuma in the Intern-«
Supplement.

Lemma 4.8.4 Iflims—co B—oc ffA J(z)dz exists, then f:o f(z)dz exists ang =«
equal Lo this limit.
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As we shall see in the following subscctions, these observations about improper
=tegrals allow us to evalute them by building the appropriate interval, [-R, R} or
- 4. B}, into a closed curve and then letting the cnds tend to infinity.

Integrals on the Whole Real Line Now we consider integrals of the form
i, f(z)dz in which the integrand is woll enough behaved to allow the application
=2 residue methods. For the integral to converge, the integrand must approach 0
= s approaches infinity in both directions along the real axis. With restraints on
the growth of f in other dircctions, we can make progress. We will illustrate this
by examples that will motivate some general methods.
2
Example 4.3.5 Fualuate L
Solution First of all, obscrve that the improper integral {7 [z2/(1 + 24)) dz con-
verges. One way (o sce this is Lo note first that the integrand is even and continuous.
30 it suffices to show that [°[z?/(1 + z*)) dz converges. This integral converges
ov comparison with {;°{1/2%]dx = limp—so(—(1/B) + 1) = 1. Since our integral
cunverges we can use a symmetric limit to evaluate it; let the desired integral be
denoted J and write
C ] :1:2 . R 32
1= [ rimee=dm [ e
The interval of integration, [ R, R], may be considered as a path yr along that
purt of the real axis in C from — R to £ It may be extended to a simple closed
curve Tp = p + pp by returning from R to —R along the semicircle zp = {z €
C | Im(2) 2 0 and |2| = R} in the upper half plaue as sketched in Figure 4.3.1.

y ¢

%

(i)

Figure 4.3.1: Curves for two solutions to Examnple 4.3.5

Along g, the integrand is the samc as the function f(z) = 22/(1 + 2*) which
is analytic everywhere except for simple poles at the fourth roots of —1

2 =&/ 22 = 37/, zg = 574 . 2¢ =7
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Of these, 2; and z; are in the upper half planc and 23 and 2, are in the Jower. If
R > 1, then z; and 2, are inside 'y while 23 and 24 are outside. The residues at
these points may be evaluated from

Res(f;2) =

Lk

=1
T 4z,
The Residue Theorem says that

[ 1621ds = 2w Res(f;o0) + Rest ) = 2 (64 - =5r44)

R G R

3.

This is true for every 7 > 1. For the two pieces of the path we have

Lﬂf&)du[_’;ﬁ%;dx,

while along pp we bave |2| = R > 1 so that

R m
VN = s < T

Thus,
R? =R3
< gy lonethles) = gy

f(2)dz
un

This last quantity tends to 0 as R—»oo,solimn,_“j;m[(z)dz = 0. Putting the
picces together we find that

% =R—°°/r,. f(z)dz=nli_!_!;°/”f(2)dz+n{i_ﬂ:°[m J(2)dz

04 dim [ /“’2

Revoo _,,1+z4¢"'= vy

We conclude that 2
w
/.:Hx‘d’"?i‘
The path gz could also be extended to a simple closed curve Ap = yp +vg b
returning from R to —R through the lower half plane along the semicircle vp =
{z € C|Im(z) £ 0and|z| = R}. If R > 1 we now have 23 and 24 inside tae

contour Ap and z; and z outside. Notice however that the curve goes around
these points in a clockwise (negative) orientation.
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The Residue Theorem 4.2.1 gives

/ J(z)dz = —27i (Res(f; zs) + Res(f; z4)) = ___. (e-sn'u + e""/‘)

_ _34"’_‘ o=3%if2 (emn + e-af/a)

= —%@(i)zcos(u/a) = %

The same cstimates apply to |f(z)] aloug vp as along pp and the length of this
semicircle is also #R. The same argument shows that the integral along this arc
tends to 0 as R — oo. Thercfore, we havo

® . o <
$=R@”A”f(z)a_ um/ f(2)dz + hm/mf(z)dz

=0+Rl£neo Rl+z‘ j_‘:l-l-x‘

We conclude that

just as before. ¢

Same simple: checks, such as determining that in this example the integral must
be real and paositive since the integrand is nonnegative and rcal on the real axis,
can often detect computational errors. This example could also have been done by
the method of partial fractions decomposition of the integrand, but many of the
integrals we will meet later cannot be done by such techniques.

The key clanents needed to make this evaluation work were

I. An cstimate to establish convergence of the improper integral so that a sym-
metric limit, could be used for its evaluation

2. Finitely many singularities in the upper (or lower) half plane with nove an
the real axis so that all could be enclosed in I'p (or Ag) for large enough R
and the residues cvalunted

3. An estimate showing that the integral along the upper (or lower) semicircle
teands to 0 as R tends to 0o

The same argument can be carried through provided we have these elements.
Proposition 4.3.6 (i) Supposc f is analytic on an open sel containing the closed

upper half plane H = {z € C | Im(z) > 0} ezcept for a finite number of iso-
lated singularities none of which lie on the real azis, and that there are positive
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real consiants M, p, and Ry withp > 1 and |f(z)| < M/|z|® whenever z € H
and |z| > Ro. Then

/" f(z)dz = 2miy {residues of f in H).

(i) If the conditions of (i) hold with H replaced by the closed lower half plane
L={2€C|Im(z) <0}, then

/ > J(e)dr = =258y {residues of f in L}.

(ifi) Both of these formulas hold if f = P/Q where P and Q are polymomials. the
degree of Q is at least 2 greater than that of P, and Q has no real zervs.

Proof The arguments for (i) aud (ii) go exactly as in the example. In (i), work
with the curve Ty = 4 + ur for R > . In (ii) use Ap = g + vg. There
is no tronhlc hetween —Rg and Rg. and the improper integrals rom —oc to — /2y
and from Rp to o¢ converge by comparison to the convergent improper integral

f;:(l/l'")d-'& For R > Ry we have
/,, iz )dzl wl?

Each of these tends to 0 as R — o0 since p > 1. The rest of the arguments go
exactly as in the example.

Finslly suppose that f = P/Q us in (ili). We shall complete the proof Iy
establishing an inequality |f(z)] < M/|z|? for |z| large. If P is of degree n and Q
is of degree n + p with p > 2, then we know that there is an A} > 0 such thm
|P(2)] £ M|2|" for |z| > 1 and an M, > 0 and Rp > 1 such that |Q(2)| 2> Ma|z|"—*
for jz| 2 Ry. (See the proof of the Fundmnental Theorem of Algebra (2.4.9).) Thu-

P(z) 1 M 1
L —
T3] Mz JolP T M e

whenever |z| > Rg 2 1 since p 2 2. The proof is completed using the choicr
M=M/M;. B

<--— and

f(=z
en

Rational functions such as that of Example 4.3.5 are probably the most readsis
recognized integrands to which Proposition 4.3.6 or related methods apply. bu:
there are others. Consider the following example.

Examplo 4.3.7 Let a be a nonzero real constant and cvaluate

cosar

— .
o 1 4+ 2%
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At first glance it may be “obvious” that everything should work, The numerator
f the integrand is bounded by 1 along the real axis, so the improper integral
~onverges by comparison to the arctangent. integral ffc o1/ + 2%))dx = =. This
xuch is correct. However, if we attempt to extend into the complex plune using
~vsaz)/(1 + z2) as the integrand, we do not have the nceded growth conditions
=z either half plaue. The function cosaz = (¢** + e~12%) /2 grows exponentially as
v proceed outward along cither the positive or negative imaginary axes, cosiay =
T 4 e) /2, If a > 0, the first term shrinks exponentially along the positive
Tuaginary axis while the second grows and the opposite occurs along the negative
aginary axis. If 2 < 0, the situation is reversed. This gives the clue as (o how to
smuceed. Convert the problem to one invalving complex exponentials first.

> cosaz . R clor 0 glax
[ B [ ove() a=re ([ )

This is an integral to which we can apply Proposition 4.3.6. The integrand, g(2) =
-=3% /(1 4- 22) is annlytic on the whole planc except for simple poles at. z; = i and
22 = —i. Of these, 1 is in the upper half plane and —i in the lower. The residues
at hicse points may be evaluated from

edcz«
R‘5(g' Zk) = 22" ¢
Therefore.
i eim' e~ ® ] e—iai ot
Reslgii) = gp =57 md Resloi~i) =75 ==
With y = Iin(2), we have
] = =] = e,
=~
e—ay c~¢y 20-.’

b= FZ < m s

provided [z| > R > /2. The numerator is bounded by 2 if the exponcent, is negative.
Thus we have the conditions of Propasilion 4.3.6 in the upper half plane if a > 0
and in the lower half plane if a < 0.

For a > 0 we conclude
a9

* cosazx > ginE . o o
-,,1+a.-2""“°(/;—1+,z¢3)—“c(%Rw(g.c))—Re(zm 21)

®

load
For a < 0 we canclude
> cosax /"’ ld . . , €
—— = ———dzr | = Re(~  — = - -y
._,,]-!»:zzdr Rc( —ul-'_xzda') o(—2%iRes(g; —i)) Re( 2’"—23)

= we".
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We could also handle the case a < 0 by using the fact that cosine is an even function
and appealing to the case for positive constants

< cosazr cos(—ax) w "
_,,l+x’dz" o 1422 dr == =7¢

as before. In either case, our final result is

* cosazx *

cos 1+ 22 = ¢
Fourier Transforms The Fourier transform of a function f : R — C is a new
function dofined for a number w, either real or complex, by the improper integral

8o 1 = -

foy=EFnw = 2= [ fe)e=az.
The Fourier transform is important in differential equations (see Exercise 24), the-
orctical physics, quanium mechauics, and many other areas of mathematics and
science, and there is an enormous body of literature concerning it. (Therc are
variations in its definition. The factor of 1/v/2x may be missing and the exponent
might be —2miwz.) Thus, integrals of the form [7, f(z)e~%* dz arc of definite
interest. If w is real and f(2) is real for rcal z, then the real and imaginary parts
form the Fourier cosine and sine fransforms ol [:

[ rereotum) ds = Re (fw)
i J(z)sin{wz)dz = ~Tm (f (w)) .

Example 4.3.7 showed how residue methods can be used to cvaluate integrals of
this type. The key to the argument there was that with a real the exponential factas
e's* remained bounded in either the upper or lower half planc. However, somewha:
more is true. The absolute value of this factor is ¢~%¥, which shriuks exponentiall:
as we move away from the real axis into the upper balf plune if @ > 0 and the
lower half plane if a < 0. If we take advantage of this we can cvaluate the integras
with much more mild conditions en f. To do s0 we will use a rectangular contou:
instead of a semicircle. Lemma 4.3.4 will be used to establish the convergence
the integral and to evuluate it as the limit of fz‘ as A and B tend independentis
to infinity.

Example 4.83.8 Let w be a nonzero real constant and evaluate

c-iwc
/._,, 1+iz
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Solution This is an integral of the Fourier transform type with f(2) = 1/(1+-iz).
The integrand is g(z) = f(z)e~*, Along the real axis we have

lo(z)| = |e~*| / 11 + iz} = 1/ V1 + 22

Tlns decreases too slowly to apply Proposition 4.3.6, and, in fact, the integral

lg(z)l dz diverges. Therefore, a simple comparison te,t will not suffice to
mabhsh convergence of our intcgral. Instead we will appeal to Lemma 4.3.4 and
obtain our result as

00 e-iuz -w:
./;“ 1+1Idz- A-—-oo,B—.x_/-A [+wdz
Since |f(2)] = 1/(1 +1z] < 1/(}z| = 1) for |z} > 1, this factor does shrink toward 0.
For each € > 0, there is an R(c) such that |f(2)| < € whenever 2| > R(e). As in
Example 4.3.7, the exponential factor will behave well on a half plane. Which half
plane depends on the sign of w. If 2 = z + iy with z and y real, then |e=i*| =
€ Y| = eV, Therefore,
w<0 implies |e~*| =€ <1 in the upper half plane X
w>0 implies |c"*|=€“Y <1 in the lower half plane £.
The integrand is analytic except for a simple pole at i where the residue is

e-—!u: ) e-—iu: l _ P
-1)’ i |

Res(g;i) = Res(

regl

3

Let
e

T = the sum of the residues in H = =

E¢ = the sum of the residues in £ = 0.

If A and B are both larger that R(c) and larger that 1, we can consider the rect-
angular paths indicated in Figure 4.3.2.

In each case the portion 7 is the segment of the real axis from —A to B. This
is closed as a rectangle I"' = v + gy + yp 4 p3 counterclockwise through the upper
half plane and as a rectangle A =« + v, + 3 + v3 clockwise through the lower half
plane. In each case the distance C from the real axis will be selected larger than
R(e) and depending appropriatcly on A and B. So long as it is larger than 1 we
will have

/g=2riﬂu=21rc“ and Ag=—21ri2;;=0.
.

[ize-formn(foe oo ]2)
=-2m8c—(/ 9"‘/,,9+/u.g)

Thus,
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] M \A A\

Figure 4.3.2: Paths for Exawple 4.3.8.

Once A, B, and C are large enough so that further increases enclose no more
singularities, then ¥y and Z¢ no longer change. The existence of the limit can
be established and the integral evaluated by showing that one or the other of the

quantities in parentheses tends to 0.
First suppose w < 0. In that case we have good behavior in the upper half
plane, so we use . We estimate the contribution along each of the picces. Along

, z=B+iy,s0
/ gl = /: J(B +iy)e~ B+ i 4y
m

Similm'ly,

¢ <
5/ cedy=—(c°"-1)< —
A y = ) II

[ - [ skrmecsmiafs s
Thus, thesc two contributions are small if A and B are larger than R(¢). Having set

A and B, we now adjust C to make the horizontal contribution small also. Alone
p2 we have z = z + iC. Requiring C > R{e), we have

e

Recalling that w < 0, we can sclect C larger than 1, larger than R{e) and lare:
enough so that (A+ B)e“C < 1. We find that for A and B larger than 1 and larger

than R(e),
Lol+lL 1ol < (&)«

Thus, the limit exists and for w < 0 and we have

e—iwz e—wr
/::l-‘- A—ooo.B—ooo.[A l+azdr 2£f21( 27c”.

Cw 4z < ¢(A + B) e“C.

+ +

[ glz)dz — 2miTh| <
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The computation is quite similar for w > 0 exocpt that now we use the rectangle
A in the lower balf plane.

-
/m

/(B + fy)e™ B+ i dy
Similarly,

L4
L

Recalling that w > 0, we can select C larger than 1, larger than R(c), and large
enough so that (A + B)e~“C < 1. We find that for A and B larger than 1 and

Lol el L o= ()«

Thus, the imit exists and for w > 0 we have

[ 4 [ 4
< cldy=—(1 -~y < —.
_/_"cc y=w( I B

5/0 e«e*Vdy < Z,
-c

ee"c“' dr < (A + B)e™°.

E

/ F(—A 4 iy)e -4+ 4 gy
(]

/ g(x)dx + 27ixe| <

e i 2mi¥e =0
/:l-s-izd" algig s TR =T
Thus, our final result is
/°° c-‘“t:d.z:= 2we, ?fw<0' R
o0 1 +1Z 0, fw>0

Notice that the transform integral we have just computed depends discontinu-
ously on w with a jump discontinuity at w = 0. Some insight may be gained hy
considering the real and imaginary parts of the integrand at that point:

8 B f¥ =z
,/_Al-t-izdx:/;‘l-%—a:zdx_z,/.ﬁl-t-x’dm

For the first integral we have

B
/Al_'_z,dz arctan{B) - arctan(—A)_.__(__)_t

as A — oo and B -+ o¢. In the second integral. the portions over the left half
line and the right hslf line both diverge, the first to —o00 and the second to +o0.
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Thus, the improper integral ff;(z/ (1 + 22)) dx does not converge. However, the
integrand is at1 odd function of z, so the symunetric limit limp_.oo | -ﬁ:(“/( 1+22%))dz
does exist and is 0. In this sense we get a principal value for our divergent integral.
That value is =, which is exactly the midpoint of the jump discontinuity. We will
see further variations on the principal value idea in the next subsection where we
examine what to do with singularitics on the path of integration.

The wethod of the last cxnmple can be employed whenever one has integrals of
the type [°_ f(z)e~* dz with fairly mild restrictions an f. The key ingredionts
of the argument werc

1. f(z) is analytic on an open set containing the upper half planc if w < 0 and
the lower half plane if w > 0 except for finitcly many isolated singularities,
none of which are on the real axis.

2. f(z) — 0 a3 2 — 0 in that half plane in the sense that for each ¢ > 0 there is
an R(c) such that | f(2)] < ¢ whenever |z| > R(e) and z is in that half plane.

Otlier than these propertics, we used nothing special about f to show that the
value of the integral was 27ri times the sum of the residues of the integrand in the
appropriate half plane. In our example, the conditions held in both half plancs.
The argument carries through with no change to give the general result.

Proposition 4.8.9 Under either of the situations (i) or (ii) described below, the
improper integral [*._ f(x)e™“* dz connrrges to the value given by the correspond-
ing formula. If f(z) is real for real z, then the integrals [2o_ f(z)cos(wz)dz and
ff:o J(z)sin(wz)dx are equal respectively to its real part and the negative of its
1 =00 part.

(i) w < 0: Supposc that f is analylic on an open set conlaining the closed upper
half plane H = {z € C | Im(z) = 0} except for a finile number of isolated
singularities nonc of which are on the real axis. Suppose also that f(z) —
as z — oc in that half plane in the sense that for each ¢ > 0 there is an R«
such that | f(z)| < € whenever |z| > R{c) and z € H. Then

f " Ja)e~= dz = 25iS {residues of f(z)e=* in H}

(ii) w > O: Jf the conditions of (i) hold with H replaced by the closed lower he?
plane £ = {z € C | In(z) < 0}, then

/Q f(z)e™ " dx = —2%iE {residues of [(z)e~™* in L}

(iii) Both (i) and (ii) ave valid if f = P/Q where P and Q are polynomials. =v
degree of Q is greater than thot of P, and Q has no zeros on the real ant~.
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The constructions, estimates, and arguments for (i) and (ii) are exactly like those
in the example. That example is an illustration of (jii), and the geueral argument
for (iii) uses the same idea as that for part (jii) of Proposition 4.3.6 except that
now the dogrec of Q need only be at least 1 more than that of P. We can therefore
omit the details of the general argument.

A caution in the use of these thearems is nceded. Note that [ f(z) cos(wz)dz
is not the sum of residues of f(z)cos(wz) in an appropriate half plane. This formula
is false. As was pointed out in the discussion of Example 4.3.7, the hypotheses of
the theorems need not apply, even if |f(z)| < M/ |=2).

Semicircular paths could also be used for establishing the result about Fourier
integrals if one first establishes a lemina about thom,

Jordan’s Lemma Suppose f(z) — 0 as |z| — oo uniformly inargz for0 < argz <
= and that there is a posilive constant ¢ such that f(z) is enalytic for |z| > ¢ and
O<ogz<w. ffw<0, then [ e~**f(z)dz — 0 as p — oo where 7, is the
semicircle 7,(0) = pei? for0 <0 < .

Sce, for example, E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis, Fourth Edition (Londou: Cambridge University Press, 1927), p. 115, for
a proof.

Cauchy Principal Value So far we have required that our intcgrands he analytic
on the path of integration. Tlicre are two situations in which we might want to relax
this, In the first there arc singularities on the path, and in the second, branch cuts
are involved. As an exanple of the first kind, suppose we slightly alter Example
4.3.5 and ask for the value of

x

e T +1

Now the integrand has simple poles at the cube roots of —1, one of which is on the

real axis. Argnments very much like those for Propositions 4.3.6 and 4.3.9 will still

work, but the patlis must be altered to accommodate singularitics on the real axis,
and they will contribute to the value of the mtegral.

If f(z) is continuous on the real line except at o, the integral [20 f(z)dz need

not he defined. Consider

dz.

Tg—¢C
/ J(z)dz + f(z)d= withe>0 andn>0.
- o+

In the usual definition from calculus for the improper integral, both of these im-
proper intcgrals must exist, and then the limits must exist separatcly as € — 0 and
n — 0. In that case we say the improper integral is convergent. Some care is in
order. For example,

=1 bl | 1 1

B[ FE=3atsa=0
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while

/-tldx+/wid--l- LI 3—0 0
- T3 r = 262-'}-2(2‘5)2-- . 00 as ¢—0.
Thus, the value of the integral can depend on how we let € and » approach 0. In this
cxample the separate integrals [;°(1/2°) dz and ff o (1/2°) dz are not convorgent.

In cases such as these it is somctimes useful to define a principal value for the
integral by using the symmetric way of letting ¢ and n approach 0. We keep ¢ =
as in the first evaluation above. By doing so we can apply the Residue Theorem
o the evaluation of such integrals. We allow for a finite number of discontinuitics
on the real axis by requiring f to be continuous on R excepl {or a finite pumber of
points &y < 7z < oy < --- <z U [117° f(2)dx and [, f(x)dx each converge
for every ¢ > 0, and if )

[ e [ s [ v [~ ]

exists and is finite, then we shall call this limit the Cauchy principal value and
denoteit by P. V. f:o J(z) dz. Observe that if the integral is convergent at all these
points, we recover the usual value for the improper integral [0, f(z) dx. However.
as we have seen, the Cauchy principal value can exist even when the integrals are
not convergent in the usual sense.

To apply residue methods to such integrals, we require that f(z) be analytic on
an appropriate half plane except for a finite number of isolated singularitics some
of which may lie on the real axis, say at z; < 22 < 3 < -+ - < z,. We modify the
curves used earlier as shown in Figure 4.3.3.

¥ y

B
Mg Be ¢
-R Xy [A gl Py
{a) The curve T (b) The curve Ay

Figure 4.3.3: Modification of paths to allow for singularities on the axis.

The radius R of the large semicircle is chosen sufficiently large and the radie
v of the small semicircles sufficiently small so that the semicircles do not overley
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and all singularities off the axis in the appropriate half plane are enclosed so that
further shrinking r or increasing R leaves the integral around the whole path equal
to +27i times the sum of the residues in that half plane off the axis. Conditions
on f such as those in Propasition 4.3.6 will then guarantee that the integral along
the large semicircle will tend to 0 as R — oo. The rectangular paths used for
integrals of Fourier type arc modified in a similar way, and conditions such as those
in Proposition 4.3.9 will gunrantee that the integral along the three sides of the
rectangle in the half plane tend to 0 as those sides are pushcd out toward infinity
in the smne way that they were there. If we can ensure that the limits of the
integrals along the small semicireles exist and are finite as r tends to 0, then the
principal value will exist and we can calculate its value. Inn many cases these limits
are handled by the following lemma.

Lemma 4.3.10 Lel f(z) be analytic with a simple pole at zq and 7, be an arc of
u circle of radius r and angle a centered at zo. (See Figure 4.3.4.) Then

lim /| f=aiRes(f;2).
r—=0 ™

¥r

Fligure 4.3.4: Integrate part way around a simple pole.

Proof For z near 29 we have f(z) = b;/(z — 20) + h(z) where A is analytic and
b; = Res(f; 20). Therefore,

b
2 d:=/ dz+ | h(z)dz.
%f() e 5 )

Since h is analytic, it is certainly bounded near zo. We write this as |i(2)] < M
for |z — =y < R. Provided r < R, we have

< M length(,) = Mar — 0 as r—-0.

h(z)dz

Fr

This leaves the first integral on the right in which we may put z = z) + ref for
ag £ 0 £ a, + a along v, to find

"yt
/ L. / Do ive dg = byai
v & — 20 n, T
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independent of r for sauall », Thus lim,._o j;' f = aiRes(f; 24), as claimed. B

With this lemma in bhand wc have all the pieces we need for the required mod-
ifications to Propositions 4.3.6 and 4.3.9. With appropriate growth conditions in
tho upper half plane we have the following.

Proposition 4.3.11 Let 7y be the open upper half plane {z € € | lm(z) > 0}, and
let f be analytic on an open set containing ils closure H = {z € C | Im(z) > 0}
ezcepl for finitely mony isolated singularities. Suppose that of these z,, ... , Tn are
on the real azis and are simple poles. Then if cither

(i) S satisfies the condilions of part (i) of Proposilion §.3.6 (ezcept for the poles
on the axis) or

(it) J(2) = c~**¢(z) with w < 0 and g satisfying part (i) of Proposition 4.8.9,
then the principal value integrol exists and

P.V./ep f(2)dz= 2m‘Z {residues of f in %}-l-‘u'iz:Res(f;z,-)
-0¢ =1

Proof For part (i), let I = pa 4 g1 +- - -+ 2 +7r be the closed curve indicated
in the left skotch in the Ggure. Here sip is the large semicircle of radivs R from R
to ~R through the upper half plane, s2; for 1 € j < n are the small semicircles of
radius r around the poles on the axis, and g consists of the straight liue portions
slong the real axis. The radius R is selected large cnough and r small cnougt:
s0 that the semicircles do not overlap and I'p surrounds all of the singularities
in the open upper half plane. Notice that [’z surrounds these singularities in the
countercltockwise sense but that the singularities on the axis are outside the cunve
and the small scimicircles are oriented clockwise with respect to the poles at thei

centers. As a rcsult the lemma gives lm,_q J;u = —uiRes(f;z;). The impropes

integrals along each end of the axis, =27 f(z)dc and f;°,  f(x)dz, cach couverse
for every r > 0 by comparison hecanse of the estimate |f (z)l < M/|z|? for large :
The sume estimate shows that f J = 0 as R — oo just as in Proposition 4.3.¢
From the Residue Theoremn woe lnwc.

2«:‘Z{msiduesorfinun}=fr ;=/ / f+2 [
" J=)v#
Thus,

f j=2m‘2{residuwoffin7io]-/ f—zn:/ J
™ un s=1v8y
-421:1‘2 {residues of f in 1-{0}—0+ﬁiiRs(f;zj)

=t
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as ? — oc and r — 0. Thus, the principal value limit exists with the value claimed.

The argument for (ii) is analogous except that the rectangulnr paths of Propo-
sition 4.3.9. modified by appropriate small semicircles, are used. The convergence
of the integral along each of the infinite segmoents along the axis follows as it did in
Proposition 4.3.9 by a slight modification of Lemma 4.3.4. W

The result for the lower half plane is similar except for some minus signs.

Proposition 4.3.12 Let Ly be the open lower half plane {z € C | Im(2) < 0}, and
let f be analytic on an open set containing its closure £ = {z € C | Im(2) < 0}
except for finitely many isolated singularities. Supposc thal of these z,, ... , T, are
on the real aziy and are simple poles. Then if either
(i) [ satisfies the conditions of part (ii) of Proposition 4.3.6 (ezcepl for the poles
on the azis} or

(ii) f(z) = e~*g(z) withw > 0 and g satisfying part (ii) of Proposition 4.5.9,
then the principal valuc inlegral exists and

P.V. [ [(z)dz=~2mi {residucs of  in Lo} — #i }_ Ros(f; ;)

=

The proof of this is basically the same as that for Proposition 4.3.11 except that
the curve through the lower half plane is used as indicated i the right sketch in the
figure. Notice that now the curve as a whole is negatively oriented (clockwise) with
respect to the singularities in its interior, but the small semicircles around the poles
on the axis proceed counterclockunise with respect to their centers. The portion
along the axis is the same as before and still proceeds from left to right. Thus,

§=-2niY fresiduss of fin Lo} - [ 1-3 [
" va

=17
which converges to
—2ri ) {residues of f in Lo} —0—#i Y _ Res(f; ;)
=t

as R — co and r — 0. Thus, the principal valuc limit exists with the value claimed.
The argument for (ii) is modified in the same way. B
The challenge problem with which we began this subsection ilhwtrates both of
these propositions.

Example 4.3.18 Discuss and find the principal value for the improper integrol

* x
/.:zul"‘
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Solution The integrand f(z) = z/(2® + 1) behaves like 1/z2 for large z, so there
is no trouble with the integral for large x. However, there are simple poles at the
cube roots of —I1. one of which, -1, lics on the axis. Near that point the functlion
bebaves like —1/(3(z + 1)). So the improper integral as such diverges. The change
of sign across —1 suggesis cancellation, which might make the principal velue Limit.
exist. The Jast two propositions say it does. The poles are at 2; = —1, 23 = e*¥/3,
and 23 = ¢~™/3. They are simple, and the residucs are given hy

1

R'es(flzk)"‘ ‘3? - 37‘_-

Thercfore,
Res(f;—1) = -:1’ ;i Res(f;e™/3) = %rf‘/“ ;i Res(f:e™3) = %c"’s.

The integrand is a rational function with the degree of the denoninator 2 larger than
that of the nmnerator, so we have the growth condition required by Proposition
4.3.6 in both halfl planes. Using Proposition 4.3.11 in the upper hall plane, the
principal value is

P.V.

- dx = 2 Res{f;¢™/) + wiRes(f; -1) = 27,—1'% w3 _ 531

_mfofl By =
=3\ 727 3-

Using Proposition 4.3.12 in the lower half plane, we get the same result.

_.,,x"

wl

o0
? - Z_dr=—2ni . o~ ®3Y _ i N = oL xif3
l.V.[wms_._ldz 2mi Res(f;¢™™/3) — i Res(f; ~1) = ~2mi3 %5 4. 7

mif, 1, V3, w_ %
——3-(2(5'('-'2—?))"'?—73. ¢

The next example shows an interesting application of these ideas.
Example 4.3.14 Show that the Jollowing improper integral converges and find 1>

value.
/"’ sin .'r

Solution Lot () be defined by Az) = (sinx)}/z for = # 0 and #(0) = 1. The=
h is coutinnous everywhere and in particular at 0. Since the integrand is even
we will have [3°[(sinz)/z]dz = (1/2) { . h(z) dz provided we can show that the
Jauter integral converges. Except at 0, the integrand is the imaginary part of ** =
According to Proposition 4.3.11, the principal valuce integral of this exists, and

0f g ix
P.V. e?ds: = xiRes (-"; ;o) = i,
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Since this limit exists, so docs that of its imnginary part
P.V. / ’;'-'de PV, [ Mz)dz=mn

00
The proof of the existence of this principal value integral included the fact that
the improper integrals [~[(sinz)/z}dr and [ [(sinz)/z)dx converge for each
positive r. There is no problem with the integral at infinity. Since A is continuous
at 0, we conclude that the improper integral on the whole line converges and must
be equal to the principal value. Thus,
oc .«

sinx 1 [ T
A Td.‘l.'=§ —wh(:t)dz=§. ¢

Integrals Involving Branch Cuts The values of the integrals we have stud-
ied so far in this chapter resulted from the residues of the imtegrand. Integrands
involving noninteger powers or logarithuns may also bring in the change in vulue
from one side of a branch cut to the other. The next two exawuples illustrate this
phenomencn.

The integral f 797! f(z) dz is referred to as a3 Mellin transform. Onc uses
the phrase “transform of f* since it can he vonsidered as changing the lunction f
w a uew function of the variable a on the range of a for which the improper integral
canverges. For example, with a = 4/3 and f(z) = 1/(1 + 2), the integra! bocomes

[,ﬁ:"z

This can be evaluated by residue caleulus and the solution illustrates the general
wethod.
=

Example 4.3.15 Evaluate the integral ./o T+

Solution The iutegral is along the positive real axis. The idea is to make this a
branch cut for the cube ruot and take advautage of the differing walues on opposite
sides of the cut. For integrand we take g(z) = ¥z /(1 + z%) with the root defined
by {/pc® = pt/3¢"/3 for 0 < 6 < 2x. This is analytic off the positive real axis with
simple poles at +i. The residues are

Y emils . = 3wile
Res{g; i) = 5= and Res(g; -t) = 5 =TT
Letting ¥ denote the sumn of the residues, we got

£= 51_; (e-n'/ti _ 3:'(/6) = _c"_/ 3

(eﬁ/“ — ¢~"/8) = _e"/3g5in(n/6) = -3 2.

For0<r<1apd R> 1 wecan form a curve I’ = 9y 4y 472 + 7 enclosing these
poles as indicated in Figure 4.3.5. The left figure shows a preliminary vension and
the right a refinement.
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Figure 4.3.5: Contours for the Mellin transform integral.

e 7 (preliminary) proceeds from r to R along the “top side of” the positive
renl axis, That is, z=x,r <2< R.

e vx (preliminary) proceeds from R around to R counterclockwise along the
circle of radius R ceutered at 0.

o 742 (preliminary) proceeds from R back to r along the “bottom side of" the
positive real axis. That is, z = x¢2**.

® 7, (preliminary) procecds from r around to r clockwise along the circle of
radius r centered at 0.

The paths 7, and 72 incorporate the integral along the positive real axis, which ae
want. They do not cancel out since the argument of z is taken to be 0 along the fir
and 2% on the other. Thking cube roots creates different values. The computatio=
is much easicr to understand with the curves in this position but is open to tike
objection that the curve lies on the boundary of the region of anslyticity and noe
within it. This objection will e overcome by switching to the refined curve in whic:
71 and 72 proceed slong the rays xze™ and xe(2* =" for a small angle 7 instead <&
exactly along the axis. The arcs yn and 4, are as before except for omitting a shox
arc across the real axis. We will then take a imit. as 5 — 0.

Begin by looking at the intuitive, unrcfined, computation. Along the componess
curves we compute as follows. On 1, z =z and

L]
¥ v l+zz

3
dz—o/g-l-‘—_g-_;dz as r — 0 and R — oo.
o o
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On n, Izl =R, and

RV32: R
< Z o1 —0 as R — oo

L

Thus,
/ g—0 as R — oo.
'

3118321:1'/3 )
Ly-f——~—1+mgcmc2=dx.

Th:soonvergcstn—cz"’sr1+r2dzasr—;0andn—ooo. On 9, |z| = r, and

[
Yr

’I‘herefore,f g—0 asr—0 Asr — 0and R — oo, we thus find that the
mtegralji.gconvergmto

0+04(1- e~"‘/")/ﬂ,1_'_z2 = g™I/3(o=wi/S _ wils)/ 1+x2dr

= —~2ic™/ gin(x/3) /o li’;,dz

Ob Y2. 2 = xe** and

/32y
< 12 —0 as r—0.

But we know that f.g =2mX for 0<r <1and R > 1. Thus,

/G? \s/; _ me -mls
T+ ®" " sin(r /3)
This is almost the formulation that will be taken by the more general result. To

bring it into a form using the parameter a (here 4/3), it is convenient to introduce
minus sigus in numerator and denominator and present it as

/cn \3/5 e we—4%ils me s o
1+22 " sin(dn/3)
For our current, example we find
L () (D)
/ 2% V3/2 2 ) 3

To handle the objection that 7y, and 4, lie on the boundary, consider the modified
curves involving the small angle 75. There we argue as follows.
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On 7y, z = ze" and

/ / T s My — dmla/ i—dx
b [ T ez"i r l"'.‘tzez"‘

Onm,z= ze?=-mi gud
31/30(2*—0“/ 3
.[,, 9= r 14 z2e22x-n)i

I*‘oreacl!0<r<I.R>l.md0<n<1r/2,weknow

2’"°E=/g+/ 9+/9+/g
n b/ T2 b

Let € > 0. The estimates on the integrals along vz and v, are still valid and are
indcpendent of 7 since the only changes have been 10 shorten the curves somewhar
Also, we know that the improper integral we are studymg converges absolutely

(Use the comparison test with the convergent integral [ YZdx + f;° z~5/3dx.
Thus, we can select r and R so that

fA<s |Le

with the first two estimates valid for every 7 between 0 and /2. On the resnltine
interval [r, R), the integrands on v; and 7, converge uniformly as 5 — 0. Therefors
we can select 7 small enough so that

[n /l+z* | <e  and |L9-( Sﬁ/a/ l:\{i’ )

We are left with
o _ {1 _ BRi/3 = / / /
Iz’")‘ (e )/:Hz”d”'S . T4

m

R
oe-nligy - _gtzs-nyiss [ __YT
e 1 +22e-20

<e¢; < dr| <e¢

/” ¥z > ¥

dzr
l+12 [} l+$2

<c.

* > ¥z 4 swits [ =
Y dr— — | —et¥3
L v2T ), 1422 +[mg (‘2 T+ "
R 3
_8wif3 % . 8::‘/3./‘” \/E <
+ ( e /r- 1+z’dx) ( e A 1_'_1_2:11 < Ge.

Since this can be done for every ¢ > 0. we conclude that

2riT = (1~ 8"/1)./“ | ""'—'2“’“”8'“("/3)‘/ 1_;,,:2“"

as hefore. ¢

In the example just completed, we were working with @ = 4/3 and fir =
1/(1 + 2%). The general result is as follows.
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Proposition 4.3.16 Let f be analytic on € except jor a finite number of isolated
singularities none of which lic on the strictly positive real azis (that is, all lic in the
complement of the set {z +iy |y =0 end z > 0} ). Let a > 0 with the restriction
that it is not an intcger, and suppose both of the following conditions hold:

(i) There are constants My > 0, Ry > 0. and b > a such that |f(2)] < My/|zl*
Jor |z| 2 Ry

(ii) There are constanis Mz > 0, B3 > 0. and d with 0 < d < a such thal
17(z)] € Ma/lzl? for 0 < || 2 R,.

Then the integral f;° 29! f(z) dz exists in the sense of being absolutely convergent
and

Z{mdues of 2* f(2)}-

sinwa

/:zﬂ-*f(x)dx-_-

The sum s over the singularilies of f excluding the residue al 0 and 27! =
o= 082 yoing the branch with 0 < arg z < 27.

The proof follows the solution of the example and is 2 typical approach for dealing
with branch points. The estimates |f(z)] < My/|z|* for lurge |z and |f(2)] <
M/|z|? for small |2]| sorve 10 make the improper integral absolutely convergent
and to establish the necessary estimatos along v, and «,.. The following corollary,
which the reader should verify, discusses the case in which f is a rational function
as it was in the example.

Corollary 4.3.17 The hypotheses of Proposition 4.3.16 hold if f(z) = P(2)/Q(2)
Jor polynomials P of degree p and Q of degree q satisfying both of the following
conditions:

(i 0<a<g-p.

(ii) If nq is the arder of the zero of Q at 0 (with the convenlion that ng = Q if
Q(0) # 0), and if np is the order of the zero of P at 0, then ng — np < a.
(This condition holds, for instance, if ng =0.)

Logarithms The curve used above worked well for roots since the values on
opposite sides of the cnt differed by a multiplicative constant. For logarithms it
may not work as well since the values on opposite sides of the cut differ by an
additive constant of 2xi. The terms involving log )z| are likely to be the same and
cancel. Variations on the idea may work.

Example 4.3.18 Show that for p > 0 and q > 0 we have

|
[~ ) 4z = o tosa).
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Solution We can try working with the integrand g(z) = log(pz)/(¢® + 22) . Log-
arithm can be defined by log(pe®) = In(p) + i0 with the argument @ taken in any
convenicnt interval of length 2. If we select 0 < @ < 2w, then g is analytic off the
positive real axis, which is a branch cut. If we try the curves used above, the terms
involving the logarithm along the positive real axis cancel and we are lefi without
a solution. If we use half circles instead as indicated in the figure, we do better.
The integrand has a simple pole at ig in the upper half plane and the residuc there

is
oy loglipg) _ log(pg) +(wi/2) _log(pg) , =
Res(giig) = == = — o =g Tig
With 0 < r < ¢ < R, build a simple closed curve ¥ =I + 1 4 III 4+ IV as in Figure
4.3.6 enclosing only this pole using the following segments:
o I proceeds from r to R along the “top side of” the positive real axis. That is.
z=z.r<z< R
e II proceeds from R around to —I® counterclockwise along the semicircle of
radius R centered at 0.
o NN pr:‘ceeds from -R back to —r along the negative rcal axis. That is.
z=te™.

e TV proceeds (rom —r around to r clockwise along the semicircle of radius r
centered at 0.

Figure 4.3.6: Contour used for Examplc 4.3.18,
From the Residue Theorem
. L\ X #? |
/9= 2xiRes(g:ig) = - log(pg) + 5-i.
¥ q 2
Along the scgments T and [T we have

_ [* log(pz)
/.g‘ i
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which tends to

> log(pr)
/o q,+zzda: asr —0and R — o0,

and

/"g_ og(px)a " Jog(=p) gy = / log(pz) +7i .

R EHBE T Jp Fr (2P e s
which tends to
* log(pz)
R [ e w0 0 i Ao
Along the arcs we have
| [ Joa(Re®) .- " MR+ . o, lnR+1r
./“g|— °q2+R9é'°meda omﬂcdo 21:R,
which tends to zero as R — oo, and
log(rc‘”) i I lnr4i0 _ 4,
o=\ FEaav = | [ Fra e
|lnr}+w
Q-2

which also tends to zero as r — 0. We actually used L'Hépital’s rule to evaluate
the limits. Putting the preceding pieces together we find that

%log(pq)+§i=[,9=/'9+ "g-l-/mg-*-‘[vg,
which tends to
/::,';‘,‘,"Qdﬁ +/“q2(’”)¢r+m/°q, dz +0

as r — 0 and R — oco. Thus,

x ﬁ._ log(pz) R 1
;lOg(Pq)"‘zq"‘zfqz,*_zzdx"'m/o@qz zzd"

Comparing rcal and imaginary parts we find that

log(pz)
[ ) da = S oeto)

and

P

[abmeng

X
5

The technignes we bave developed so far are summarized in Table 4.3.1.
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Table 4.3.1

1.

1

3a.

Formula
Condition

Formuia

Condition

Forrmula

Condition

Formula

Candition

Formula

Condition

Formula

Condition

Formula
Condition

Formula
Condition

Formuln

Condition

Formula

Condition

Chnpter 4 Calculus of Residues

Ewvalustion of Definite Integrals

/m J(z)dz = 2:12 {residues of f in upper haif plane)

No poles of f(z) on real axis; finite number of poles in C;
(=)l € M/ls]? for large ||

/o gﬁ:{dz 2xi Z {residucs of £/Q in upper half plane}
-0
P.Q polynomials: degQ > 2+ deg P; 1o resl zercs of Q.

e fla)dr = 1 = 2mi) " {residues of e=** {(z) in upper half plave!

w<0 1f(z)) < A /|=} for |z| large and uwo poles of f on real axis;
or {(z) = P(2)/Q(z) whero deg Q) > 1 + g P(z) and Q has no rea) zero
fw > 0, use — 3 {residues in lower hnlf plane)

/_ cos(wz)f{z)iz = Rel; / sin(wr)f(z)dz = —Im J

ll'u>n. usclwerh-lfptmensabwe.
J real on real axis.

f" R{con 0, vin 6)d8 = 22 " {residues of f iwside unit circle}

(]
1 1 (.-}
‘Irl(::u_mu\lnmgdz lg(:e:l! )e,m 3;) S:ntm:n):l i 8, (No poles on usit circle.)

_ a-c“‘" id f 28—V (s
o e = 2{ oonpr SO (el

using Whe branch 0 < arg = < 2w,

a > 0 and f s Goite aumber of poles, nore ou positive real axis;

17(2)} < M/12{*.0 > a. for 2| large; and |f(2)} < M/|2|4,d < a, for |z| —
or

J = P/Q, and Q Lins no zerox un puitive real axis.

0 < a <degQ ~deg P and ng — np < a, where ng = onder of the zero 2
at 0 and np = order of the gzero of P at 0.

./:: J(z)dx = 2 Z { ::;;’:;:.:' upper } o+ ®i Z{raiduuz on T ax -

Same as entry 1 excopt that simple poles are allowed on z axis.

> Px), . resldurs in upper . .
- Q(I)dz:—'sz{ half plane +mZ{mdueson.ruz~§
Same as entry 2 except Lhat simple poles are allowed on z axis.

(w<h: /na e~WEf(z)dr =T =

residues of e == f(z2) , residucs of e='=% f12
‘2mL{ in upper Lalf plane 'an on 2 axis

(w>0:1=
- residues of e~iwsf(z) | _ . residucs of e="=2 1 2,
Wiy { in lawor Iilf plane %31 onaxis
Same as cniry 3 excopt that simple poles are allowed on £ axis.

ac
/ cos(wx)f(x)de = Rel / si(wx)f(z)dz = - int

lfw>0 uselowerhnll'phn&nﬁhnmtxy 8a.
J 1cal ou rual axis: simple poles allowed on real axis in entry 8a.
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There are many improper integrals which converge but which do not fit the
standard paiterns we have developed in this section. We will see in the worked
examples a few ways of modifying these techniques to meet special cases.

One very important special example is the normnal probability function

_ _l_ -z2/2
J(z) Ton e .
This function hebaves very well along the real line, shrinking faster for large £ than
any rational function. But e==" does not have good limiting behavior for large z
in either half planc. Along the 45 lines, its absolute value is constantly 1, while
it grows faster than any polynomial in both directions along the imaginary axis.
Neverthuless, we can evaluate the integral.

Proposition 4.3.19 (Gaussian Integral) We have
f& = dg = V2.
-0

This formnla is important in probability and statistics and in other areas of math-
emalics and applications. We will meet, it again in Chapter 7 where we will sce a
method of evaluating it using the gamnm function. The most elementary method
for establishing the preceding formula uses a double integral and polar coordinates.
See Exercise 21 of this section or Chapter 9 of J. Marsden and M. Hoflman, Elemen-
tary Classical Analysis, Second Edition (New York: W. H. Freeman and Company,
1993). A method using residues is outlined in Exercise 25.! In the worked exam-
ples we will use this result and the methods of this section to see that the normal
probability function is equal to its cwn Fourier transfonn.

Worked Examples

Sowe of the following intcgrals cannot be directly avaluated by any of the formulas
that we have so far developed. The basic techniques used in the solution of this
problem, however, are similar to those we have already applied.

Example 4.3.20 Evaluate
oo |
/-W 1 +z’.’ﬂ “’

where n 2 1 is a positive inleger.

Solution This integral could be evaluated using Proposition 4.3.6, but we would
have Lo consider all the poles in the upper half plane. If we use instead the contour
indicated in Figure 4.3.7, we need consider only oue pole.

'Another revidue methad cvaluates it by relating it to the Fresnel integrals, [ sin(z?)dx
and f° o cos(z?)dx. Thin method and several others, together with historical comments, are
dnscuwt: in Lhe Internot Supplement and also in D. Mitrinovic and J. Keckic, The Cauchy Mathod
of Rexidues (Daortrechi, The Netherlands: D. Reidol Publishing Company, 1884), pp. 158-164,
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Qpritn

Figure 4.3.7: Contour for Worked Example 4.3.20.

The only singulsrity of f(z) = /(1 + z2") inside this contour is a simple pole
at e™/2", where the residue is ~e™/21 /9. Thus,

—/n Lo [ — 1 insoa l___ -l
= [t [ e [ e el

. g (4 ”/n 5
= (1—¢mim) / ! _iz+iR / LIy
0 o

5o T aw

The second integral is no larger in absolute value than (x/n)R/(R?™ - 1), which
goes to 0 as R — o0o. Letting R — o0, we obtain

/“ 1 _ oM e*ifn T ®
o 1+z2  ~  nml-e*/® 2n 2n'

Example 4.8.21 Usc residucs to prove that

/“’_iw__z
1 2\/2:2-1-2.

Solution Recall that a suitable domain of vzZ — 1 consists of € minus the hali
lines z 2 1 and £ £ —1. Consider the curve -y in Figure 4.3.8, consisting of the
incomplete circles of radius r around 0 and radius ¢ around 1 and —1 and horizontz!
lines a distance § from the real axis.

The function 1/(zvzZ — 1) is defined and analytic in the region € minus the ha¥
lines z > 1 and z < -1 except for a simple pole at 0. To see this, consider /22 —
written as the product +/z — 1v/z + 1 in which the first factor uses a branch of the
square root defined with a branch ¢ut from +1 to —00 by

f(2) = Vz=1 = /|z — Ijcilemsl==1/2
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L]

Figure 4.3.8: The curve -y used for Worked Example 4.3.21.

for ~x <urg(z—1) € 7 and the second factor uses a branch of square root defined
with a branch cut from —1 to 400 by

9(2) = V41 = ]z + 1jeflemst=+1)l/2

for 0 < arg(z 4+ 1) < 7 (sce Figure 4.3.9).

The product f(z)g(z) gives a square root for 22 — 1 that appears to be analytic
only on the plane with the whole real axis deleted. Crossing the branch cut for
cither factor changes the sign of that factor. Thus, the product changes sign if we
cross the axis at a point £ with |z| > 1. However, crossing in the region -1 <z < 1
changes both factors, so the product docs not change but is coutinuous across this
segment. Thus, it is analytic across this segment by the corollary to Morera’a
thcorem established in Worked Example 2.4.17. We may use this function to define
our integrand in a way that is analytic on the set €\{z | Imz =0 and |Rez| > 1}.
By the Residue Theorem,

dz 1
—_— = 2TiRes | ——;0| = 2x.
.[,z\/zi-l ™ (z\/z!—l ) o

The student should verify that (a) the integral over the incomplete circle of
radius r approaches zero as r — oc (the integrand is less than or equal to M/|z|?
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y ¥

-1 i -1 1

W (6)

Figure 4.3.9: Branch cuts needed for vzZ — 1: (i) for vVZ = 1; (i) for vz +1.

for |2| large), (b) the integral over the incomplete circles of radius € ap 5 20
as ¢ — 0 (the integral is bounded by a constant times ¢/\/c = /¢ on those circles).
and (c) for fixed ¢ and r the integral over the horizontal lines appronches

y /' .
14c TV % —1 ’
These three fucts, together with the previously established fact

/_d=_=2,,,
y2vz? -1

[ == o

Our final worked example is an important Fourier transform which does nos
follow dircctly from the methods we have developed, but does from a very sinilas
construction.

Example 4.3.22 Show that the normal probability function,

show that

xz%/2

f@)= ‘/;_“e' :

is equal o its own Fourier transform. That is, f(w) = f(w) for all real w.

Solution We can manipulate the integral giving the Fourier transform of f i<
competing the square in the exponent:

1 20 1 >
w o= 2=tz gy = g-uifz 1 /‘ (=) /2 g
for= 7= o T -

= flw)—7= ‘/—1 (w)
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where I(w) = [ e~(=+%)*/2 dz. We know from the Gaussian integral that I(0) =
V27, so our conclusion will follow if we can show that J(w) = J(0) for every
real w. To see this, consider the integral of g(z) = e~*°/2 around a rectangie
I’ = 1 4 11 4+ 1T 4 TV such as that shown in Figure 4.3.10.

y

~R + i (1] " H+ i

-R t R

Figure 4.3.10; Contour for the Fourier transform of the normal probability function.

We know that 0 = fl.g = [0+ [y 9+ fin 9+ frv 9 since g is an entire function.
Along the horizontal sides where z = r and z = z +dw, we have fjg9 — J(0)
nndf,, g = —I(w) as R — oo. Our conclusion will follow as soon as we show that
_fu gund .ﬁv g tend to 0 as R — 0o. We do that for the right side, IT, and for w > 0.

The other cases are similar,

LI~
[} o
<

< /“ e~ 1212 gy = e~ R 12712 L0 as R 0.
o

[ e

This establishies our asscrtion. ¢

Exercises
dx
1. Evaluat S ey ey
00 2.2 00 1 _ a2z
2. Prove that / SN T ie=T. Hint: Consider [ —t—dz and apply
A~ 2 e
Proposition 4.3.11,
* do
3. Evaluate for0<b<a.

o (a+bcosl)?

o dr
4.° Evaluate ./.;Q m
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> cosmz
5. Evaluate A W

_za-l
6. Evalunte[-sz—,dr for 0<a<3.

® gsinz
1422
8.* (a) Prove that

dz.

7. Evn!um/
()

> cosz r

by integrating the function e'*/(e* 4 €=*) around the rectaugle with
vertices -7, 1, r + #i, —r + 7i; let r — co.
c—‘

(b) Use the same technique (o show that . l+e—2nd$= Fem]’

f" dz

9. Evaluate P.V. mﬂhﬂﬂ!lﬂld)O.
s 2n - #(2n)!

10. Show that /: sin®" 0df = —_(2"1:!)2'

11. Show that for a > 0,5 > 0, /w(z,+b,)2dz=4i;_¢(l+ab)c’°".

«

12.* Show that for0 < b < l’_/:pa,-"(a:-{-l)d":= Sin(En)"

13. I‘indPV/

-0 (32-1)

logzx 4
14. Prove that / (a:—z-l-—l)idr 1 .
15. Fmd/ /= , by (a) changing variables to y = 1/(z + V7% — 1) and (bt
consudenng the curve in Figure 4.3.11 and finding the residne of a hranch £
1/v/z%2 —1 at oo.

16.* Let P(z) and Q(z) be polynomials with deg Q(z) > 2+ deg P(z). Show tt=
the sum of the residues of P(z)/Q(2) is zero.

* cosbxy
17. Evaluate /.._,,z’+a2d” fora>0,0>0.
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y

TR "0
RYEES ANV

1
dx
Figure 4.3.11: Contour for evaluating / —
o VaZi-1

18. Let f(z) be as in formula § of Table 4.3.1 except allow f to have a finite
number of simple poles on the (strictly) positive axis. Show that
a1 _ —meT™ {residues of 22~ f(2) at poles
P.V.[z f(z)d= = “sin(wa) )3 of f off the nonnegative real axis}

. ~*® coswa x—~ {residues of (—z)°=? f(z) at poles
sinwa of f on the positive real axis}

-1
19. UscExerciselstosbowthntP.V./aiz—a—xdx=7:oot(1ra) for 0<a<l.
o 1-—

20." Establish the following formulas:

®) /'1+sm 20

(b)/ (zuaz)z = fora>0
(c) /Q (ﬁ imlf;z e-.

zsma: - YN _I-
@ f” =1 *sin 72
21. Prove Proposition 4.3.19 by evaluating a double integral over the whole plane
in polar coordinates.

22. In Worked Exampie 4.3.20, can the exponent 2n be replaced by any other
power p > 2?

23. Evaluate / povey —— cus(40)dd by considering the real part of the integral

2% 1

c"'do and then converting to an integral around the unit circle.
o 2+cosé
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24. Recall that the Fourier transform of a function g(z) is defined as
- 1 —iwx
= — e dr,
Show that if f is differentiable and the integrals for f and (f') converge, then

() = - F )
Hint: f(z) must go to 0 in both directions along the x axis. Try integrating

by parts.
25. (1) Evaluate
. e~ Ve
L M

where Vi = /Tei*/4 and 7R is as shown in Figure 4.3.12,

avi

-n.\@

Figure 4.3.12: The contour used for [*°_e~*'dxr.

(b) Show that the integrals along the horizomal parts partially caucel to
give a multiple of [ e~="dr. Use this to show [ e~='dz = /7.

4.4 Evaluation of Infinite Series and
Partial-Fraction Expansions

In §4.3 we saw how to use sums of residucs to evaluate intograls. In this section o
give a brief discussion of some applications in the other dircction: using integreds
to evaluate sums. For instance, we shall see that by applying these theorems o
can prove that

=1 =2
Z,,—z=’6"

n=l
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This is a famous formula of Leonhard Euler, who discovered it in the eighteeath
century by using other techniques.

Infinite Series We shall develop a general method for evaluating series of the

form Y00 . f(n), where f is a given function. We assume f is a meromorphic

function with a finite number of poles, none of which are integers. Suppose that
G(z) is a meromorphic function whaose only poles are simple poles at the integers,
where the residues are all 1. Thus at the integers, the residues of f(2)G(z) are ().
Then if ¢ is a closed curve enclosing —N,—-N +1,...,0,1,... . N, the Residue
Theorem gives

N
/ G(z)f(2)dz = 2'.7:'{ LZ fin)| + Z{rmidns of G(z)f(z) at poles of f}} .
v

==N
If [ G(2)f(z)dz has a controllable lmiting behavior as y becomes large, we will

have information about the limiting behavior of Ef:_ n f(n) a8 N — oc in terms
of the residues of G(z)f(z) at the poles of f. A suitable G(z) is % cot xz.
Of course, we always have

/ G(z)f(2)dz = 2%i Z{all residues of G(2) f(2) inside 7}
v

sa that if some of the poles of f happen to be at integers, we nced only move terms
around

N
/G{z)f(z)dz = 2m'{ Z {f(n) | n is not a singularity of f}
¥

n=~N
+ Y _{residues of G(z)/(z) at singularities of f}} .

These considerations lead to the following.

Theorem 4.4.1 (Summation Theorem) Let f be analytic in C except for finitely
many isolated singularities. Let Cx be a square with vertices at (N + }) x (£1%
i), N =1.2,3,... (Figure 4.4.1). Suppose that f. (wcornz)f(z)dz —0 as N —
oc. Then we have the summation formula

N
Nli_tgn -ZN{ f(n) | n is uot a singularity of f}

= — Y _{residues of (wcat z) f(z) at the singularities of f}.
If none of the singulerities of [ are at integers, then Ky Th__, f(n) eists,
is finile, and

N
s Y f(n) = - ) {residues of mcot wzf(z) at singularities of f}.

n=-N
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Si(N o 1)

Cw

N1 N+1

-i(N +1)¢

Figure 4.4.1: Contour for evaluating 3% f(n).

Proof In this argument we assume none of the singularities of f are at integers.
(For the more general case simply insert the qualifyiug phrase in the first sum and
move appropriate terms—there can be only finitely many of them.) By the Residue
Theorem,

et = T { BRI v}

. residues of (7 cot xz) f(z)
+2“Z{ at t.hesingul:ritiggfj('z }

for N sufficiently large so that Cy encloses all of the singularities of f. Since
cotwz = (cosnz)/(sinwz) and (sinwz) # 0 at z = n, we see that n is a simple
pole of cot 7z and that Res(cot w2z;n) = (cosan)/(x coswn) = 1/ (use formula 3
of Table 4.1.1). Therefore, Res((x cot #2) f(2); n) = nf(n) Res(cotx2;n) = f(n)
Thus, ¥ {residues of (x cot 72) f(z) at the integers —N, —N +1,...,0,1,... N} =

N _n J(n). Toking limits on both sides of the preceding displayed equation for
the integral f,, (7 cot#z) f(z)dz and using the fact that Je,, (meotnz) f(z)dz —
as N — 00, we obtain

N
’}:& Z Jn)=- Z{msidues of (wcot %2) f(z) at the singulasitiesof f}. B

'|=—N

It is important to notice that what we have obtained is a formula for the Jimir of
the symmetric partial sums of 3 | f(n). This is not the same as the doubly infinite
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series itself, which demands that the upper and lower limits converge indepondently:

Zf(n)—” Zf(n) Jim 3 o+ Jim Zf(n)

n--lll

I the doubly infinite sems is known to converge, then our limnit must give the same
answer, but limp_o 2_ n f(n) may exist when the more general limit does not.
The situation is somewhat analogous to the computation of an improper integral
by a Canchy principal value. We may chieck independently that the double limit
exists, or as in our first example, we may be interested in a sm%y infinite series.
Note that if f is an even function, then 3% nfm)=70)+23 _, f(n).

The cotangent function is not the only candidate for a uscful function for G.
Others are 27i/(c®** — 1) and —2xi/(¢~27> — 1). We indicate in the exercises a
way of using # cscaz that is particularly uscful for alternating series.?

Next we establish a criterion by which f can be judged to satisfy the hypotheses
of the summation theorem (4.4.1).

Propasition 4.4.2 Suppose f is analytic on € except for isolated singularities. If
there are constants R and M > 0 such that |zf(z)] < M whenever |z| > R, then
the hypotheses of the summation theorem (4.4.1) are satisfied.

Proof Since |2f(z)| is bounded cutside R, all singularities of f are in the region
|z} £ R. Since they are isolated, there must be a finitc number of them (Why?).
Furthermore, |f(1/2)/z] is bounded by M in the region |z|] < 1/R, and s0 0 is
a removable singularity of f(1/z) - 1/z and we can therefore write f(1/2)-1/z =
ap + @1z + a22% + ... for |z] < 1/R; hence

for |z] > R. By the Residue Theorem,

/ xcot-xzdz - 2xi{rwiduc rreot:rz _0}
Cn 2

z
. wTCOot RZ
"‘2""2{ residues of - at }

n=2=%1,%2,... ,&N

Since the pole at 0 is of order 2, we can write

" b..
T M B b kbt

2A more complete exposition and ¢xtensive references may be found in D, S, Mitrinovic and J.
D. Ketkié, The Cauchy Mcthod of Residues (Dordrecht, The Netherlands: D. Reidel Publishing

Compaay, 1984).
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The function (7 cot#2z)/z is even, that is, [xcot®(-2)]/(-2) = (wcotwz)/z, s0
uniqueness of the Laurent expansion shows that coefficients of odd powers of z are
zero; in particulsr, b_, = 0. But b.; = Res|(zcot xz)/z;0]. (Instead of this trick
we could have used formula 9 of Table 4.1.1.) Also, Res{(x cot x2)/z;n) = 1/n for
n=+1,+2 ... +N (Why?), so

Z{rmiduw of (reovw2)/z at n=%1,£2,... .£N} =0.

Consequently,

/ ﬂm‘ndz:().
Cx 4

Thus, we can write

/c~ (weot uwz) f(2)dz = -/0» w(cot 7z) [[(z) - %,] dz.

To estimate this integral, we obscrve that

4,2
f(z) . zz+z3+...

for |z] > R. Since ay + agw + agw® + ... represents an analytic function for
jw| < 1/|R), it is bounded, say, by M’ on the closed disk |w] < 1/R’, where
R' > R. This implies that

|f)-2| < IZ_T;

for |z| > R'. Suppose that N is sufficiently large that all points on Cx satisfy
|2l > R'. Then

a =M’ -8(N + 1) ( )
o~ —| dz] € ————————l cot .
/c  wlootnz) [1te) -~ 2] 22| < I\ oot
It is readily verified that
ERN4L2) 4 g

sup{| cot wz| such that z bes on Cn} = ey ey

(note that on the vertical sides, [cot #mz| < 1; on the horizontal sides, the max-
mum occurs at z = (). Hence for all NV sufficiently large we obtain the inequalitx
SUP, on ¢, | cot 72| £ 2. The previous inequality then shows that

/c g w(cot wz) [f (z) - f;_o] dz



34.4 Infinite Series and Partial-Fraction Erpansions 309
approaches zero as N — oo, which in turn shows that

/ (reotwz) f(z)dz—0 as N —o00. W
Cn

One Jearns in caleulus that the p series Y o, (1/n") converges if p > 1 and
diverges if p < 1, but usually with no indication of just what that sum might be.
We encountered this sum in Chapter 3 as {(p) where ( is the Riemann zeta function,
an important ingredient in mimber theory. The case p = 2 is interesting and there
arc many ways (o evaluate {(2), which is a series first summed by Buler.

Proposition 4.4.3 The following summation formule holds:
$1_n
nal 2 6

Proof We apply the summation theorem (or its corollary) with f(z) = 1/22
Since tan z has a simple zero at z = 0, cot 2 has a simple pole there. If the Laurent
expansion iscotz=b/z 4 ag +ayz + ..., then

(o242 ) (B ) (Brsorans).

Multiplying, collecting terms, and comparing coefficients, we find b; = 1,49 = 0,
and a) = —%- Thus,

mCotRZ _ #(l/#z =wz/3+...) 1 1
22 22 23 2 3

zcot ez —5?
R&( 2 .0) = —3—.

Since the only singularity of f is at z = 0, the summation formula becomes

Nli.f;o ( Z R Z )
u=-N n==l
aud, since 1/(-n)? = 1/n?, we obtain

| (A |
2= =

nel

a3,
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Partial-Fraction Expansions If f(z) = p(z)/g(2) is & rational function, we
know & trick from algebra that is often useful in caleulus: The function f can
be expanded in “partial fractions” in terms of the zeros of the denominator. A
meromorphic function can sometimes be thought of as somewhat like a rational
function with possibly infinitely many zeros in the denominator, and onc might
wonder if a similar expansion is possible. Although one should not take this analogy
too seriously, something along these lines can be done. First we give a specific
example that shows how the sunmation theorem can be used and that will be used
in Chapter 7. Then we will give a somewhat more general result,

Proposition 4.4.4 Let 2 be any complex number not equal to an integer; then both

S(5ti) = S(awa)

n=l =]

are: absolutely convergent series and

xooth—lciof: ! +l +i ! —l
Tz z-n n}) \z+n n)’

This equation can also be written

i = 1 1
= - ’ -
ncotwz p + E (z—n +n)'

where the prime indicates thal the term corresponding to n = 0 is omstted.

Proof Fur n sufficiently large, |z — n| > n/2. Therefore,

1 +1 _ z <2Iz|
z-n n| |(z=n)|= u"

By comparison with the convergent series

2|z§o(;1-2~+ﬁ)7+...),

we see that

> ()

nel

is absolutely convergent. Similsrly,

5 (m3)

ns=)




34.4 Infinite Series and Partial-Fraction Erpansions 31

15 ahsolutely convergent. Fix z and consider the function f(w) = 1/(w - 2). This
function is meromorphic; its only pole is at z, which is not an integer, and it is easy
to see that |wf(w)] is bounded for w sufficiently large (as in Proposition 4.3.6).
By Proposition 4.4.2, we see that the hypotheses of the summation thearem are
satisfied, so

. ) | . T COtFTW
lim z = - {mdne of at w= z} = —-wcotxwz.
Ne—go n—2z w-2z

n=-N

We note that

1 1 = 1 1
-+S - S ——=|=%cotrz. B
z z- n n Si\z4n n

n=1

We could also have obtained the expansion for cotangent from the following
theorem.

Theorem 4.4.5 (Partial-Fraction Theorem) Suppose that f is meromorphic
with simple poles at ay,a3,as,... with0 < |e;| < jag] < ... and residues b; at ax.
(We are assumning f is analytic at 0.) Suppose there is a sequence Ry, R, Ry, ...
with the property lim,, o0 f&n = 00 and there are simple closed curves Cy salisfying

(i) 12| > Ry for all z on Cy.
(ii) There is a constani S with length (Cn) < SRy for all N.

(iii) There is a constant M with |f(2)] < M for all z on Cn and for all N. (The
same M should work for all N'.)

Then

1=s0+Y (722 + ).

n=1

Proof If 29 # 0 is not a pole of £, let F(2) = f(2)/(z — z)- Then F has simple
poles at zg and at ay,az,as,.... Clearly

Res(F; 20) = lim (z — 20)F(z) = /()

and

Res(Fion) = Jim (s - o) 2L = 22—
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By the Residue Theorem,

A [ f)
= M f(zo)+2{

and, in particular,
1 [ 1@y, _ {.'31 ismsidec.}.
27;1'/0" z dz=f(0)+3 {5, | K
Subtracting these lnst two equations,

20 f(2) by ba :
i on 2z — ZO)dZ J(20) - f(0)+§:{ = |an is ﬂSldeCN}

Along Cn, |zl 2 Ry and |z — 29| 2 |Ry — |2olls and so the integral in the last
equality is bounded above by

| a, is inside CN}

ol M . \zolMS
T Tl ol e V) S Ry Taol

This goes to 0 as N — oo, and each of the ap is cventually inside Cy. Therefore.
f(0) -~ llm (Z{ b" - Ia,. is iuside CN})
o
by bn)
(1] e
10)- z(a.. -2 a,.) o) (e e

n=]

J(z0)

Siuce this formula holds at all 2o for which f is analylic, we have establishoed the
theorem. W

Contours commonly used for the Cy are circles of radius Ry or large squares
such as those in Figure 4.4.1. The expansion given in the partial-fraction theorem
a special case of a more general result known as the Mittag-Lefler theorem® nanr:
after the fumnous Swedish mathematician Gosta Mittag-Leffler (1846-1927).

Exercises

[- ]
1 =t
1. —_— -,
Show that i o Rl

( 1)1:—1 ,rs

En-1P| = (You may usa the answer to Exercie 3

2. Show that Z[

below).

1t may be found in P. Hearici, Applied and Compulational Complex Analysin, Vol. 1 o=z
York: Wilay-Interscience, 1974), pp. 655-660, and (New York: Springer-Verlng, 1986).
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3. Show that Z = yrape ;a)tlnra +— Jor a>0.

2(12

4. Show l.hat.

Z (z o Hint: Start with the expansion for
RCOL®2.

5. Develop a method for evaluating series of the form Y oo _ _(—1)"f(n) where
J is a meromorphic function in € with a finite number of poles none of which
lic at the integers. In other words, develop theorems analogous to the sum-
mation theorem (4.4.1) and Proposition 4.4.2. Hint: =/sin#z s poles at
the integers with Res(w/sinwz;n) = (-1)". Discuss how yon would handle
the summation if some of the poles of f did lie at the intcgers; see Proposition
4.4.4.

G. Show that if 22 — 1 is not an integer, then

] 4
COS®Z T+ ® & [(27. l)2 a2 1 -41:3] )

Hinl: cos(z + iy) = cosxzcoshy + isinzsinhy. Use the square with corners
+N=+Ni for Cy given in the partial-fraction theorem (4.4.5). Finally, combine
the n and —n terms.

7.® Use the partial-fraction Lheorem to show that

) Q- 2z
cotz=2+3 ( e M)=;+Zzz_-nz;z‘=

where ¥’ means the sum is over alt n # 0.
8. Prove that | — 1/22 +1/32 - 1/4% 4 ... = #3/12.

9.° Try to evaluate the sum 3o ,(1/n3). (This problem is a bit open ended;
don’t be discouraged if you are not successful.)

Review Exercises for Chapter 4

3x
de
. CE——
1.* Evaluate A gy &

1
2. Evaluate / —————dz where
v (2 - 1)(z-2)
(a) v is the circle with center 0 and radius 1/2 traveled once counterclock-
wise.
(b) Same as (a) but radius 3/2.
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(c) Same as (a) hut radius 5/2.

1
3. Evaluante - ;‘-—;—l-dz.

4. Evaluate / c'/*dz if C is the unit circle centered at 0 and n is a positive
integer. ¢

b sinz
5. Comput.eP.V./:” @+ )@

1
6. Evnluate[_:zg_‘_ld:c

7. Evaluate /' 308053

8.° Lot f be analytic on a region containing the clased upper half plave {z |
Imz > 0}. Suppose that for some constant a > 0,[f(z)] < A/|z|® for |z|
large. Show that for Imz > 0,

f(z)= 2’“.[.: J(z) dﬂ'-

9. Evaluate f ‘mq)(e"’)da.
()

10. Show that ;/@Sil:ktdtis1ifk>0,§swoifk=0.andis—l if & <0.

e d
11. Ewvaluate cos(c; )dz
o= 2
™) w
12.* Showthat/wl-!_z_ nsin(m“/n),where0<m<n.
. . 1 .
13. Find the Laurent expansions of f(2) = E-G=D that are valid for (a:

0 < |2| < 1 and (b) |z| > 2. Choose zp = 0.

14.° Show that sech zdz = 3 Hint: Consider the rectangle with comes
at (R R+ ﬂ)
15. What is the radius of convergence of the Taylor series of 1/ cos 2 around 2 = &

16. Explain what is wrong with the following reasoning. We know that a° =
e*82, 3o d(a*)/dz = (loga)a®. On the other band, d(a*)/dz = za*~}. Thm
za*~! = a*(loga), s0 z = aloga.
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17. Find the residues of the following at each singularity:

18.¢

19.

20.

21.

26.°

@) ==

s:n(z )
(b) (sin 2)?
(c) sin(e'/?)

- -
Where is Z "¢ analytic?
n=0

Let f(z) have a zero of order k at zg. Show that Res(f’/f;20) = k. Find
Res(f"/f’; zo) and Res(f"/f; 20)-
Let f be entire and suppose that Re f is a polynomial in z.y. Prove that f
is a polynomial.
Explain what is wrong with the following argument, then compute the residue
correctly. The expansion
. __ o .11 .

2(z=12 (z-12 14+(z=-1) "7 (z2-1F (z—1)* " (z-1p
is the Laurent expansion; since there is no term in 1/(z — 1), the residue at
z=1is zero.

. Verify the maximum principle for harmonie functions and the minimnm prin-

ciple for harmonic functions for the harmonic function u(z,y) = #* — y2 on
[0,1} x [0,1).

_ . 1 . .
. Evaluate the mt,egral[7 Z-Go 2)dz, where v is the circle centered at 0

with radius 3/2.

. Repeat Exercise 23 but with radius 1/2.
. Determine the radius of convergence of the following series:

o~ log(n™) ,
() ; n! £
(- -] 1 n
(b) 3 (1 - ;) "
1
Establish the following:
s.inhax =-l-t.ang for —x<a<m.
s Sinhzx 2 2

Hint: Integrate ¢®*/sinh(%z) over & “squarc” with sides y = 0,y = 1,z =
—-R,z = +R, and circumvent the singularities at 0,1.
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3
27. Expand the following in Laurent series as indicated: f(z) = (1 12)

(a) for |2 < 1;20 =0

(b) for |z] > 1;2 =0

(c) for |z 4+ 1| € 2,20 = -1
(d) for0<|z—1]<00;zp =1

28. Show that

./*12 2 n(2a+t 1) for a>0.
4]

@ +sm?0)  4(a? +0)32

29. Establish the following fornulas:

(a),/“sm :rdz__:_iz

[ i
(;)/:zz_‘_wdz=2ms(m/2) for —1<ax<l1

30. Prove that

< 1 1
t.anz=2zXo:("—+g72-’—r§—_—z—2 for z2# (u+§)1r.

Hint: Start with the identity for cot z in Proposition 4.4.4 and use tanz =
cot z — 2cot2z.

31. Prove that

Z (i _'2!)2 = % cse(wa) cot(xa).

32. Evaluate Z 5

n=}
33. Explain what is wrong with the following reasoning:
sinz sinz 1 sinz
dr = =~ Bm piossatad
,/:= z 2 oo % < == 2R-ooo wn Z dz,

where g is the £ axis from ~R to R plus the circumference {z = Re* | 0 <
0 < w}. But (sinz)/z is analytic everywhere, including zcro, so by Cauchy's

Theorem,
/ dz 0 and so F mda: 0.
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34.° Let f(z) be analytic inside and on a simple closed contour <. For 2 on +,
and -« diffcrentiable ncar zy, show that

=1 JE)
f(z0) = ﬂp.v.[’ o
35. Use Exercise 34 to find sufficient conditions under which
f(@,0) = _:—11: V. /_ w,%«_'—?dc
for f(z,y) = f(z) analytic. Deduce that
u(z,0) = - P.V. /.“ %‘_’-—?d{ and v(z,0) = —2P.V. /_ oD,

The functions u and v are called Hilbert transforms of one another.
36. Show that

R SS S STARPICY (0 SRS B TS BT i ) il
i —z+z( 1 (z-m.-+mr) z+2z'§z2-7121r’

smnz

where 3~’ means the sum is taken over all n # 0.

37. Evaluate A ™ bxdz.
38. When a nonlinéar oscillator is forced with a frequency , a measure of the
oscillator’s “chaotic response” is given by! M = [ sechbtcoswidt. Show

that M = (x/2b) sech (w#/2b). o

4See J. Gudkenheimer and P. Holines, Nonlinmar Oxciliations, Dynamical Systems end Bifur-
cations of Vector Ficlds (New York: Springor-Verlag, 1983), §4.5.
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Chapter 5

Conformal Mappings

Chapter 1 included a brief investigation of some geoinetric aspects of analytic fune-
tions. Now we return to this topic to develop some further techniques and ap-
plications. In the first section of the chapter. we seek to map a given region of
the complex plane to another given vegion by a one-to-one, onto, analytic func-
tion. That such mappings always exist (under suitable hypotheses on the regions
in question), at least in theory, is the statement of the famous Riemann Mapping
Theorem, which is discussed in this scction; the proof is available in the Internet
Supplements. Using this theory, §5.2 discusses several concrete cases for which such
mappings can be written explicitly.

The theory of conformal mappings has several important applications to the
Dirichlet problem and (0 harmonic functions. Thesc applications are used in prob-
Jems of heat conduction, electrostatics, and hydrodynamics, which will be discussed
in §5.3. The basic idea of such applications is that a conformal mapping can be
used to map a given region to a simpler region on which the problem can be solved
by inspection. By transforming back to the original region, the desired answer is
obtained.

5.1 Basic Theory of Conformal Mappings

Conformal Transformations The following definition was presented in §1.5: A
mapping f : A — B is called conformal if, for each 2¢ € A, f rotates tangent
vectors to curves through ze by a definite angle 0 and stretches them by a definite
factor r. Let us also recall the following theorem proved in §1.5.

Theorem 5.1.1 (Conformal Mapping Theorem) Let f : A — B be analylic
and let () # 0 Jor each z9 € A. Then f is conformal.

Actually, if f merely preserves angles and if cortain conditions of regularity hold,

then f must be analytic and f’(z0) # 0 (scc Exercise 8). Thercfore, we can say
that “conformal” means analytic with a nonzero derivative.

319
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As au example, let A = [z | Rez > 0and Iniz >0} and B = {z | Iniz > 0}.
ITiemap/ : A -* B defined by z zr is conformal, since it is analytic and
has the nonzero derivative f ’(zu) = 2zo on A. Figure 5.1.1 illustrates tlie theorem
by Stowing preservation of angles in this case. If f'(zo) = 0, angles need not be
preserved. For instance, forthe mapz  z*, the x and y axes intersect at an angle
rr/2 but the images intersect at an angle k. Such a point where / ‘{zq) = 0 for
an analytic function / is called a singular point Singular points are studied in
greater detail in Chapter 6.

» X

Figure 5.1.1; A coufonual wop.

Proposition 5.1.2

@ Iff : A B is conformal and Injective (one-to-one and onto), then f~1 :
B —*A is also conformal.

(i) 1ff :A—»B andg: B ~*C are conformal and bijeetive, thengo f -A —=C
is conformal and bijeetive.

Proof

(i) Since/ is hijective, the mapping/ “’ exists. By tlie Inverse Function Theorem
(1.5.10), is analytic with df~y{vi)/dui = \/[df(z)fdz\ where v>= f(z).
Tlius df~I(w)/die £ 0. so /-1 is conformal.

(ii) Certainly gof is bijeetive and analytic, since/ and g are. (The inverse ofgo/
isf~10(/_l.) The derivative ofp o/ at z istf(f(z)) ¢/'(z) 0. Therefore.
gof is conformal by definition. m

Because or the two properties in Proposition 5.1.2 (and tlie obvious fact that
the identity map z z Is conformal), we refer to the set of bijeetive conformal
maps of a fixed region to itselfas a group.

Property (i) can be used to solve various problems (sudi as the Diridilct prob-
lem) associated with a given region A. The method will be to find u bijeetive



§5.1 Basic Theory of Conformal Mappings 321

conformal map f: A — B whore B is a simpler region on which the problem can
be solved. To ohtain the answer on 4 we then transform our answer from B to
A by f7'. The Dirichlet problem involves harmonic functions, so we should check
that harmonie hinctions remain harmonic when we compaose them with a conformal
uap. To do s, we prove the following result.

Proposition 5.1.3 Letu be harmonic on a region B and let § : A — B be analytic.
Then uo f is harmonic on A.

Proof Let z € A and w = f(z). Let U be an open disk in B around w and
let V = f~(U). Tt sulfices Lo show that u o f is harmounic on V (Why?). By
Proposition 2.5.8, there is an analytic function g on U/ such that u = Reg. Then
uo f = Re(go f) (Why?), and we know that g o f is analytic by the chain rule.
Thus Re(g o f) is hannonic. W

Riemann Mapping Theorem There is a basic but more sophisticated theorem
that guarantees Lhe existence of conformal mappings between two given regions A
and B. The validity of Lhis theorem in several special cases is verified in §5.2. The
general theorem is not always of immediate practical value, heeause it does not tell
us explicitly how to find conforinal maps. Nevertheless. it is an important theorem
that we should be aware of. We shall prove uniqueness here but leave existence (o
the Internet Supplement.!

Theorem 5.1.4 (Riemann Mapping Theorem) Lot A bc a connected and sim-
ply connecled region other than the uhole complex plane. Then there cxists a bijee-
tive conformal map f : A — D where D = {z such that |z| < 1}. Furthermore, for
any fized zo € A, we can find an f such that f(zg) = 0 and f'(z0) > 0. With such
a specificalion, [ is unique.

From this result we see that if 4 and B are any two simply connected regions
with 4 # C, B # C, then there is » bijective conformal map ¢ : A — B, Indeed, if
f:A— Dand h: B — D arc confornal, we can set. ¢ = h~! o f (see Figure 5.1.2).
Two rcgions A and B arc callixl conformally eguivalent if there is a bijective
conformal map from A to B. Thus, the Riemann Mapping Theorem implies that
two simply connected regions (uncqual to C) are conformally equivalont.

Proof of Uniqueness in Theoren: 5.1.4  Suppose f and g are bijeclive con-
formal maps of A onto D with f(20) = g(z0) = 0, f'(z0) > 0, und ¢’(20) > 0.
We want to show that f(z) = g(z2) for all z in A. To do this, define r on D hy
h(w) = g(f~'(w)) for w € D. Then h: D — D und 2(0) = g(f '(0)) = g(zp) = 0.
By the Schwarz Lemma 2.5.7, [h(w)] € |w| for all w € D. Exactly the same argu-
ment applics to k™! = fog™!, so that Jh~1(¢)) < |¢] for all ¢ € D. With ¢ = i(w),

1See also E. Hille, Analytic Function Theory, Vol. Ul (Budon: Gium and Company. 1959) p.
322, ur L. Ahtfors, Compler Analyss (New York: MeGraw-11ill, 1966), p. 222,
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Figure 6.1.2: To transform A to B wc compose h~1 with /.

this gives |te| < |/i(w)|. Combining these inequalities, wc get |/i(tn)| = |u;| for all
w € D. The Schwarz Lemma now tells us that /t(w) = ctu for a constant ¢ with
|c| —21. Thus, cw —g (/-, (ui)). With z —/ -, (w) we obtain cf(z) = 5(2) for all
2 € A. In particular, c/'(zo) = g¢'[zo)- Since both /'(zo) and g'(zo) arc positive
real numbers, so isa Thus, c = land so f(z) = 9(2), as desired. m

Tlie condition /'(zo) > 0 is equivalent to saying that f'(zo) lies on tlie positive
real axis; that is, arg/'(zo) = 0. Using the preceding argument, one can modify
tlie uniqueness assertion so that /(zo) and arg/'(zo) are specified. The studeut is
asked to prove this in Exercise 7.

Here is another useful fact about conformal maps. Let A and B be two (con-
nected) regions with boundaries bd(4) and bd(2J). Suppose that/ : A —=f(A) >
conformal.

If f(A) has boundary bd(B) and if, for some zq € A, we Imve /(zq) €

B, then f(A) = B. In other words, to determine the image of a can-
formal map, we merely need to check the boundaries and a single joint
inside.

To prove this wc argue as follows. Since B isopen, J5Dbd(i?) = 0. The closure of B
is B Ubd(/J), so we can decompose the plane as a disjoint union C = BUbd(ZJ) .
extB, when: cxtJ3 is open. Since f ‘ never vanishes on A, the Inverse Function
Theorem shows that f(A) is open. Thus, f(A) P bd(/(>4)) = 0. But bd(/(i4)) =
bd(jB), so f(A) is contained iu the union of the disjoint open sets B and extB
Since/ is continuous on the connected set A, the set f(A) is connected. Therefor*
from the definition of connectedness (see Definition 1.4.12), either f(A) ¢ B -a
f(A) C extB. Because f(zo) € ZJ). we must have f(A) C B. Since f(A) isopen, r
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is open rolative to B. Finally,

J(A) = f(A)n B = [f(A)n B]u [bd(B) N B)
= |/(4) n B]u Pod(f(A)) N B]
=[A(A)ubd(f(A))n B = c(f(A))nB

so that f(A) is closed relative to B. Since B is connccted, f(A4) = B (see Proposi-
tion 1.4.13).

Simple connectivity is an essential hypothesis in the Riemann Mapping Theo-
rem. It is casy to show (see Worked Examnple 5.1.7) that only a simply connected
region can be mapped bijectivcly by an analytic map onto D. On the other hand,
the annnli 0 < Je] < 1 and 1 < |z| < 2 are not conformally equivalent; see Worked
Example 6.1.14.

Behavior on the Boundary The Riemann Mapping Theorem and most of our
other remarks about conformal maps have discussed behsvior on regions that are
open, connecled scts. In particular the Riemann Mapping Theorem does not say
what happens on the boundary of A or of D. Many of the applications, however,
involve determining behavior inside a region from information on the boundary.

In §5.2 we will look at many concrete examples involving such regions as disks,
balf planes, quarter planes, and so on, and the maps will usually be well behaved
on the boundary. This is no accident, as the next theorem shows, but it is not
automatic.

The connected and simply connccted open sets to which the Riemann Map-
ping Theorem applies can be rather complicated. For example, consider the set A
obtained by deleting from the square

S={z]0<Rez<2 and 0<Imz<?2}
the vertical segments
Jn={z2=1/n+yi|0<y<1},

n=1223.... (sce Figure 5.1.3). The Riemann Mapping Theorem guarantees that
there is a conformal map of A onto D, but attempting to extend it continuously to
the boundary of A, particularly to 0, creates problems.2 For well-behaved regions
there is a nice resnlt, which we state without proof.

Theorem §.1.85 (Osgood-Caratheodory Theorem) If A, and A; are bounded
simply connected regions whose boundaries 7, and vy are simple continuous closed
curves, then any conformal map of Ay one-to-one onto Ay can be criended to o
continuous map of Ay U<y one-lo-one anto Az U 2.

2A detailed drmscription of the boundary behavior of conformal maps may be found in A, L.

Markushevich, Theory of Functions of a Complex Variable, Volume 3 (New York: Chelsea Pub-
lishing Company, 1977), Chapter 2.
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¥

AEYary
| D

Figure 5.1.3: Even thongh A has s wild boundary, it can be mapped conformally
to D.

Once the houndaries are known 10 be mapped coutinmonsly, we can get infor-
mation about the regions themselves. The uext theorem outlines such a procedure.
The conditions are restrictive cnough that we do not need to check a point 29 € A.

Theorem 5.1.8 lLet A be a bounded region with f: A — C a bijective conformal
map onto ity image f(A). Suppose that f extends to be continuous on cl(A) and
thot [ maps the boundary of A onto a cirele of radius R. Then f(A) eguals the
inside of that circle. Morc generally, if B is a bounded region that, together with
its boundary, can be mopped conformally onlo the unit disk and ils boundary and if
J maps bd(A) onto bd(B), then f(A) = B.

Proof By composing [ with the conformal map A that takes B to the unit disk
it is sufficient to consider the spocial case in which B equals D = {2 such that
lz] < 1}. On hd(A4),|f(z)| = 1, so by the Maxinnun Modulus Theorem, |f(z)] < |
on A. Since f cannat be constant, f(4) C D. In other words, 8t no 2 € A is the
maximum |f(z)] = 1 reached. We have nesumexd that f(bd(A)) = bd(D), but this
is also equal to bd(f(A4)). To see this, use compactuess of cl(A), continuity of f.
and DNhd(D) = f(A)NbLA(f(A)) = @. Thus our earlier argyunent applies to show
that f(A)=D. =&

Worked Examples

Example §.1.7 Find a bijective conformal map thal tokes a bounded region to c-.
unbounded region. Can you find one that lakes a simply connerted region to a regier.
that is not simply connected?

Solution Consider f(z) =1/zo0n A= {2 |0 < |z] < 1}. Clearly, A is bounded
Also, B = f(A) = {z such that |z] > 1}; f is conformal from A 0 B and hns o=
inverse 9~ (w) = 1/w. But B is unbounded.
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The answer to the second part of the question is no. If 4 is simply connected
and f: A — B is a bijective conformal map, then B must be simply connected.
To show this, let ¥ be a closed curve in B and let 5= f~'0+. Then if H({,s) isa
homotopy shrinking 4 to a point, f o H{(t, s) is a homotopy shrinking -y to a point.

Example 5.1.8 Consider the harmonic function u(x.y) = z + y on the region
A={2]|0<Imz < 27}). What is the corresponding harmonic function in B =
C\ (positive real azis) when A is transformed by z — *?

Solution Lot f(z) = ¢*. We know from Chapter 1 that f is ono-to-one, onto
B, and that f'(z) = ¢* # 0. Thus f is conformal from A to B, and therefore, by
Proposition 5.1.3, the corresponding function on B is harmonic. This function is
#(z,y) = uw(f~(z.4)) = u(log(z + iy))
= u(log\/m-rium" %)
~log VTP 1L,

where tan~!(y/z) = arg(z + iy) lies in J0,2x|. Note that to check directly that ¢
is harmonic would be slighitly ledious, but we know it must be so by Proposition
5.1.3.

Example 5.1.9 What is the immage of the region
A={z|(Rez)(lmz)> ! and Rez > 0,Imz >0}
under the transformation z v z2¢

Solution On the right half plane {z | Rez > 0}, we know that f(z) = 22 is
conformal (Why?). To find the image of A we first find the immnge of the curve
ry = 1. Let w= 22 = u+iv. Then u = 22— 3%, v = 2zy. Thus the image.of xy = |
is the curve v = 2. We must check the location of the image of a point in A, say,
z =2+ 2i. Here z2 = 8i, and therefore the image is the shaded region B in Figure
5.1.4.

Exercises
1. What is the image of the first quadrant under the mapping z 1~ 237

2. Cousider f = u + iv where u(z,y) = 222 4 y? and v = y?/x. Show that the
curves u = constant and v = constant, intersect orthogonally but thut f is
naot analytic.

3.* Near what points are the following maps conformal?

(8) f(z)=23+22
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Figure 5.1.4: Image of the set A under the conformal map z *+ z2.

(b) f[2) = z/(l + 52)

. Near what points are the following maps conformal?

(a) f(z) =z
(b) f(z)~ (s*inz)/(cosz)
Consider the harmonic function u(x,y) = 1 —y -=x/(x2 4*y~) on the upper

half plane y > 0. What is tbe corresponding harmonic fimetion on the first
quadrant x > Q,y > 0, underthe transformation z *» z2?

. Let A and B be regions whose boundaries are smooth arcs. L et/he conformal

on a region including j4Ubd(<4) and map A onto B and bd(j4) onto bd{£). Let
u be harmonic on B and u —h(z) for z on the boundary of B. Let«=uo/
so that tfequals ho f on the boundary of A. Prove that dv/Qn —O0 at Zg iff
&a/sn = 0at /(zo) where zo 6 bd(j4) and 8/dn denotes the derivative in the
normal direction to the boundary.

" Let A and B be regions as in the Riemann Mapping Theorem. Given zg 6

Av=>a € B, and an angle oq, and by assuming tliat theorem, show that there
exists a conformal map f - A~* B with f(zg) =woand arg/'(20) = % also
show that sudi an / is unique.

Letf i A -* B he a function such that dff&x and 3 //By exist and are
continuous. Suppose that / is one-to-one and onto and preserves angles.
Prove that / is analytic and conformal. Can the map in Exercise 2 preserve
all angles? Hint. Let c{t) be a curve with ¢(0) = zg and let d(t) = /(c(f)-
Prove

and examine the statement that, d'(0)/</(0) has constant argument in order
to establish the Candiy-Hichxami equations for /.
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9. If f: A — B is bijective and analytic with an analytic inverse, prove that [
is conformal.

10. Let a and b be two fixed complex numbers and let f : C —~ C.2 = az + b.
Show that f can he written as a rotation followed by a magnification followed
by a translation.

11. The Riemann Mapping Theorem explicitly excludes the cuse A = C from
consideration.

(a) 1s there a conformal map of C onc-to-one onto the unit disk D?
(b) Is there a conformal map of D one-to-one onto C?

12. Show that every bijective conformal transformation of € onto C is of the type
described in Exercise 10.

13.* Suppose that f is a conformal map from a bounded region A onto an un-
bounded region B. Show that f cannot be extended in such a way as to be
continuous on AU bd(A). Note: The full force of conformality is not needed
in this problem.

5.2 Fractional Linear and
Schwarz-Christoffel Transformations

This section investigates some ways of chbtaining specific conformal maps between
two given regions. No general prescriplion can be given for obtaining these maps;
however, after a little practice the student will be able to combinc fractional lincar
transformations (studied in this section) with other familiar transformations (like
22, ¢*, or sinz) and thus be able to handle many useful situations. To aid in this
effort, some common transformations are ilustrated in Figures $.2.10 and 5.2.11 at
the end of this scction. In addition, the Schwarz-Christoffel Formula will be studied
bricly, even though it yiclds answers that usually can be given only in terms of

integrals.

Fractional Linear Transformations The simplest and one of the most useful
conformal mappings will be discussed first. A fractional linear transformation
(also called a bilinear transformation or MGbius transformation) is a mapping of
the fonn

az+b
T = ova
where a, b, ¢, d are fixed coplex numbers. We shall assume that ad—bc # 0 because
otherwise T would be a constant (Why?) and we want to omit that case. Some
properties of these transformations will be devcloped in the next four propasitions.
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Proposition 5.2.1 The map T defined in the preceding display is bijective and
conformal from the set
A={z|cz+d#0, thatis, z# —dfc} onto B={w|w#a/c}.
The inverse of T is also a fractional lincar transformation given by
—~dw + b

TN w) = prep

Proof Certainly T is analytic on A and S(w) = (—dw + b)/(cw - a) is analytic
on B. The map T will be bijective if we can show that To0 S and S o T are the
identities since this means that T has S as ils iuverse. Indeed, this is sven in this

computation:
a ( _::’_-:b) +b
'(S(w)) =

c(—dw“') +d
cu—a

_ —odw +ab+ bow - ab
" —cdw + he + dew - da
- Sbc—_gé)g =uw
bc —ad )
We can cancel hecause cw — a # 6 and be—ad # 0. Similarly, $(7'(z)) = z. Finally.
TY(2) # 0 beeause

1= 2 = SISTEN = STE) - T,
soT'(z)#0. @&

Tt is sometimes conveniont. to adopt the convention that T(—d/c) = oo (although
we must, as always, he careful to avoid the erroucous answers that we would ob-
tain if we cancelled 0o/00 or 0/0). In fact, we can show that all fractional Lincar
transformations are conformal maps of Lhe extended plane C to itsclf. Some sperial
cases should be noted. For example, ifa=1,¢=0,and d = 1, we get 7(z) = 24 b.
which is a translation or “shift” that merely (ranslates by the vector b (sce Figure
$5.2.1). Imcase b= c=0,d = 1,7 becomes T(2) = az.

This map, multiplication by o, is a rotation by arga and magnification by |al.
The student should review the geometric meaning in this case. Finally, T'(z) = 1/2
is an inversion. It is pictured in Figure $.2.2.

Proposition 5.2.2 Any conformal map of D = {z such that |2| < 1} onto itself is
a fractional lincar transformation of the form
w0Z—2
T(z) =€ m
Jor some fized 29 € D and @ € {0,2x]; morvover, any T of this form is a conforma!
map of D onto D.
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¥ y
1 ) z+b

ob Bzt b

Figure §.2.1: Transiation,

Figure 5.2.2: Invension.

Proof First we check that for T of this form, |2} = 1 implies that [T'(z)] = 1.
Indeed,

z|_ _lz-2
-Zoz| Il -z

@) = 2=

But |2] =1 and 50 2~ = Z. Hence we get

_ 2=l
() = E=2l =1

since jw| = |#]. The ouly singularity of 7 is at = = 25, which lies outside the unit
circle. Thus by the Maximum Modulus Theorem 2.5.6, T maps D to D. But by
Praposition 5.2.1,

T—l(w) = c-m [—w (_f;-ew;:))w )

which, since it has the same form as T, is also a map from D to D. Thus, T is
conformal from D onto D.



330 Chapter 5 Conformal Mappings

Let R: D — D be any conformal map. Let zo = R~1(0) and let ¢ = arg ¥'(z).
The map T defined in Proposition 5.2.2 also has T'(2g) = 0 and 6 = arg T¥(zp);
indeed,

T(2) =0 [(1 ol ]

52)2)’

N 1
i0
e —_—,
(l -Iml’)

a real constant times ¢*®. Thus, by uniqueness of conformal maps (see the Riemann
Mapping Theorem §.1.4 and Exercise 7, §5.1), R=7. W

which, at z = z9, equals

The result of this is that the only way to map a disk onto itself conformally
is by means of & fractional linear transformation. These transformations have two
additional properties, as will be shown in the two results that follow.

Propasition 5.2.3 Let T' be a fructional lincar transformation. If L C C is o
straight line and S C C is a circle, then T(L) is cither a straight line or a circle
and T'(S) is either a straight line or a circle.

A line can map either to a circle or to a line. If we regard lines as circles of
infinite radius, then this result can be summmarized by saying that circles transform
tnlo circles.

Proof Wecan write 7' =Ty 0T30Th o Ty, where
Ti(2) = z 4+ d/e, Ta(2) = 1/2,Ts(2) = (bc — ad)z/c® and Ti(z) =z +a/c

If ¢ = 0, we merely write T(2) = (a/d)z + b/d. That we can write T' this way
is easily verified (sec Exercise 11). It is obvious that T), 7%, and Tx map lines to
lines and circles to circles. Thus if we can verify the conclusion for T(2) = 1/z.
the proof will be complete. We know from analytic geomctry that a line or circle
is determined by the equation

Az 4+ By+C(z2+¢y*) =D

for constants A4, B,C, D, with not all A, B,C zero. Let z = z 4 &y, suppose that
z#0, and let 1/2 = u + iv 50 that u = z/(x2 + y°) and v = —y/(2? + ¢*). Thus
the preceding equation is equivalent to

Au— By - D(u? + v®) = -C.
which is also a lincoracircle. W

Another property of fractiona! lincar transformations is described in the nex:
result.
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Propaosition $.2.4 (Cross Ratios) Given two sets of distinct points 2y, 22. 23 and
Wy, wa, wy (that is, 2) # 22,21 # 23, 22 # 23 and uy # wa2,uq # w3, Wy F wy, but we
could have 2, = w,, and so on), there is a unique fractional linesr transformation
T taking z; v~ w;,i =1,2,3. In fact, if T(2) = w, then

Ww—un 2"3—'02_2—21 23 — 22
w-wy, wy—wy Zz-22 zZz—2

Instead of trying to remember the equation in this proposition, it is often essicr
to proceed directly (secc Worked Example 5.2.12).

Proof The stated equation defines a fractiona! linear transformation w = 7'(z)
(Why?). By direct substitution we sec that it has the desired properties T'(z;) =
w;,i=1,2.3. (Sec Exercisc 20.) Let us show that it is unigue. Define

Z2—2 23— 2Ip
2—23 23-21

S(z) =

Then S is a fractional linear transformatiou taking z; 10 0, 23 to 1, and z» to co.
(22 is the singularity of S.) Let R be any other fractional lincar transformation
R(z) = (az + b)/{cz + d) with R(z)) = 0, R(z3) = 1, and R(2) = oo (that is,
czp+d = 0). Then az, +b =0,cza+d = 0, and (az3+b)/(c234d) = 1. Thus we get
a = =b/zy and ¢ = —d/z2;, so the lasl condition gives b(z; — 23)/21 = d(23 ~ 23)/z2.
Substituting in R we see. after simplification (that the student should do), that
R=6.

We use this result to prove that T is unique as follows. Let T bLe any fractional
linear transformation taking z; to w;,i = 1,2.3. The fractional linear transforma-
tion ST takes w; = Tz, to 0,13 = T23 to 1, and wy = Tz Lo 0. Therefore
ST-! is uniquely determined by the preceding computation. Hence T is uniquely
determined since T = (ST-')"'S. ®

it follows that we can use a fractional linear transformation to map any three
poinis to any other three. Three points lie on a unique circle or line, so by Proposi-
tion 5.2.3, the transfonnation takes the circle (or line) thirough z;, 23, 23 to the circle
(or line) through wy, u, ws. For example, we could have the situntion depicted in
Figure 5.2.3.

The inside of the disk maps to one of the two half planes. To determine which,
one can check Lo see where the center of the cirele goes (or any other point, especially
if the center happens ta go to 00). Another way to do this is by checking orientation.
As we proceed from 2z; through 23 to z3, located as in the figure, we go clockwise
around the circle with the disk o the right. The image must procced from w
through w2 to ws along the line with the image of the disk to the right as shown.
The half plane that is the image can be switched by interchanging z) and z3.
Suppose z), 22, z3 and un, wa, w determiuve circles Cy and C; bounding disks D,
and D,. If the fractional linear transformation taking 2).2,, and z3 to w;, ws, and
wy is analytic on D; then it must map D, onto D, and the exterior of C; onto
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Figure 5.2.3: Effect of a fractional linear transformation.

the exterior of C% If the zero of tlie denominator is in Dt then it maps D\ to
the exterior of Ci together with the point, at infinity. Again the situation may be
determined by examining the orientation of the points along the circles and may be
reversed by changing the orientation of one of the triples of points. Many of these
ideas and techniques are illustrated in Worked Example 5.2.15.

As mentioned earlier, fractional linear transformations can be combined with
other tnuisformatious to obtain a fairly large class of conformal maps. This is also
illustrated in the worked examples.

Reflection in a Circle Tlie idea of reflection in a circle, which was used in
the proof of the Poisson formula in §2.5, can readily be generalized to circles with
centers other than 0. It can be discussed purely geometrically and works well with
fractional linear transformations. In tbe spirit of this section, straight lines can be-
thought of as circles of infinite radius. In tliis ease the new notion of reflection
becomes the usual reflection. In particular, reflection in the real axis is complex
conjugation. The key proposition is u nice illustration oftlie use ofcomplex analysis
in an apparently completely geometric setting.

Proposition 6.2.5 Let C be a circle (or straight line) and z a point not on C
Then all the circles (or lines) through z which cross C at right angles intersect cacr.
other of a single point z. (1fz happens to be the center of C, then z is the point a;
infinity.)

Proof While reading this proof, please refer to Figure 5.2.4.

Let/ be any fractional linear transformation that takes C to the real line and
the interior of C to the upper half plane. The family of circles passing through :
and crossing C at right angles must map to the family of circles that pass Ihroupt
w —f[z) and cross the real axis at right angles, since / maps circles to circles arc
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Figure 5.2.4: Tlie circles emanating from z cross C at right angles and all pass
through the point 2.

preserves angles. But the latter family clearly nil intersect at *5. Thus the first
family must all cross cadi other at the single point x = f ~1(«»). =

Definition 5.2.6 Ltd C be a circle or straight line and z a point not on C. The
unique point z obtained in Proposition 5.S.5 is called the reflection ofz in C. If
zisonC, pulz =2.

Since fractional linear transformations take circles to circles and preserve angles,
the next assertion should not be surprising.

Proposition 5.2.7 Ifg is ufractional linear transformation and C is a circle (or
line), then g lakes the reflection ofz in C ta the reflection ofg{z) in g(C).

This assertion may he paraphrased in the following somewhat imprecise but
easily remembered form: A fractional linear transformation preserves reflection in
circles; that is

${*) =$(*)-
Proof Tlie family of circles tlirough z orthogonal to C is carried over to the
family of circles through €(2) orthogonal to g(C) since g lakes circles to tirdcs and
preserves angles. Thus tlie intersection of the first family, wind) is z, must map to
the intersection of the second family, which isg(z). m

In fact, reflection is “almost” a fractional linear transformation itself.

Proposition 5.2.8 IfC is a circle (or line), then the map z >*z of reflection in
C is a composition offractional linear transformations and complex conjugation.
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If C is the circle with center 29 and radius R, then

5o zoz-*-R’ IZo_j
-z

Proof As in the proof of Propasition 5.2.5, we transfer the problem to the upper
half plane . The idea is to make use of the fact that for w € X, inversion across
the real axis is the same as complex conjugation; that is, % = @. The fractional
linear transformation

R4bz-—2
w= f(z)-!.l? -z+2

takes the circle C to the real line and its interior to M. This map may be found
by composing the map z — (z — 29)/R of C to the unit circle with the map { —
—£(¢+1)/(¢—1) of the unit disk to 7 (sec Figure 5.2.10(vi)). Using Proposition 5.2.7
and the observation that 1 = ®, we find that f(£) = F(z). Thus, 5 = f-! (7(7))
Since f-! is also a fractional lincar transformation, this gives the general assertion.
To obtain the explicit formula, we solve

J+Z2 - —_— R+z2-2
R_T = f(3)= f(2)=—'R_2+z-o

for Z and get the result stated. W

From the formula of Proposition 5.2.8 we can readily calculate another geometric
description of Z.
Propasition $.2.9 IJC is a circle with center zg and radius R and if z # zg, then
£ is the point on the seme ray from zy as z and is such that the product of the
distances from zg is R?, that is,

Iz — 20| - |2 - 20| = B

Proof Use the fact that | — 2o} = |Z — Zg| and compute |z — 2o| - |Z — Zp| using
the formula of Propasition 5.2.8. (See Exercise 23 and Figure 5.2.5) @&

From the preceding characterizations, most of the following proposition should
now bo clear,

Proposition 5.2.10
(i) =2z
(ii) The map z v 2 is not conformal, but angles are prescrved in magnitude and
reversed in direction (just as in complex conjugation).
(i3i) If C is a straight line, 3 is the point on the linc perpendicular to C through :
and ot an equal distance on the opposite side of C.

(iv) The map z — Z takes circles to circles (straight lines count as circles of
infinile radius).
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Figure 5.2.5: Refection of z in C.

Schwarz-Christoffel Formula The Schwarz-Christoffel Formula gives an inte-
gral expression for mapping the upper half plane or unit circle to the interior ofa
given polygon. The case of the upper half plane will be discussed here; the case or
a circle is left as an exercise.

Proposition 5.2.11 (Schwarz-Christoffel Formula) Suppose thatP is a poly-
gon in the w plane with vertices at Wi.ttfe,. .m,w,, and with exterior angles ira
where —1 < o,- < 1 (see Figure 5.2.6).

Figure 5.2.6: Schwarz-Christoffel Fbrmula.

Then conformal mapsfrom A = {z | Im z >0} onto B, the interior ofP,
the form

m =«(E£<c- *)m"e- <c- + &

where a andb are constants and the integration is alongany path in A joiningzqg A
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to z; the principal branch is used for the powers in the integrand. Furthermore, each
of the follouing hold.

(i) Two of the points x,,... ,Tn—) may be chosen arbitrarily.
(i) @ and b determine the size and position of P.
(i) flzi)=wii=1,...,n-1.
(iv) f takes the point at infinity to w,.

The geometric meaning of the constants a and b bere is explained in more detail
in the following proof. It can be shown that the function f can be extended to he
continuons on the r axis and that it maps the z axis to the polygon P. However, the
function f is not analytic on the z axis, becausc it does not preserve angles at x,.
But f will be analytic on A itself. Only the main idess of the proof of the Scliwurz-
Christoffel Formula will be given here, because to make thie proof absolutely precise
would be rather tedions.

Sketch of Proof of Schwarz-Christoffel Formula The first step is to show
that if zy,... ,z,-1 have already been chosen, then [ maps the real axis to a
polygon baving the correct angles, Let

gz)=a(z—2,) ... (2 —2p=y) "
so that on A, f'(2) = g(2). Then
arg f'(z) = argg(z) = arga — 0, arg(z — 71) — ... ~ Q-1 AT(z — 24 1)

At a point where f'(2) exists, arg f/(z) represents the amount f rotates tangent
vectors. Thus, as z moves along the real axis, f(z) moves along a straight line
for z on each of the scgments | — 00,43 [ - , J24, Zigals - -+ +JEn—2,00]. As z crosses
z;,arg f(z) jumps by an amomnt a;n. (If z - z; < O,arg(z — =) = =; if 2 -
z; > 0,arg(z — z;) = 0.) Thus the real axis is mapped to a polygon with the
correct a.ngles The last angle of the polygon is determined, since we must have
Y ar=

Nlext we ndnust this polygon to obtain P. Equality of angles forces similariry
of polygons only for triaugles. (For example, not all rectangles are squares.) Thus
is the basic reason why two of the points x; may be chosen arbitrarily (three £
we count the point at infinity). The positions of the other points relative to thewe
points control the ratios of the lengths of the sides of the image polygon. B-
choosing the x; correctly we thus obtain a polygon similar to P. Another way 1~
understand this problem is to consider mapping the upper half plane to a disk. We
lmow that this can be accomplished by e fractional linear (ransformation and tha:
this transformation is completely determined by its value at three of the boundar:
points. (Two of the finite points and the value at infinity are specified.) Chovsine
a and b properly means performing a scaling, a rotation, and a translation to brixe
this polygon to P. W
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Worked Examples
Example 5.2.12 Find a conformal map taking the sol
A—{z10< argz <ir/2,0< |2 < 1}
to the set
Dss{z suchthat\2\ <1}

Solution The answer is not given by z *» zA because this map does not map A
onto D; Its image omits the positive real axis.

First consider z **z~. This maps A to B where B is the intersection of D and
the upper half plane (Figure 5.2.7). Consulting Figure 5.2.10(iv), we next map B
to the firstquadrant liy z *» (1 + z)/(l - z) and square to get the upper half plane,
then map z »*(z —i)/(z + 1) to give the unit circle.

Figure 5-2.7: Successive transformations taking the quarter circle to u full circle.

Thus wc obtain our transformation by successive substitution:
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Therefore,

FES 0 +z2)2-t(l-ry
71 % (1 + 22)2+ t(1-2 2)2

is the required transformation.

Example 5.2.13 Verify Figure 5.2.10(vi).

Solution Wecseeka fractional linear transformation T (z) —(az+b)/(cz+d) sudi
tliat T (-1) =i T(Q) = —1,T(1) = -£. Thus, {-0 4-b)/(-c 4d) = i,b= -d, and
(a4-fc)/(c4-d) = —i. Solving gives —a —d = i(—e+d),b——d,a—d= —t(c+ d).
Addiqg the first and last equations, we get —2d = t(—2c) or d —ic, and subtracting
gives usa = —id. We can set, say, 6 = 1 (because numerator and denominator can
be multiplied by a constant) sothatd = —,a = *,c = i, and thus

z —i

rw, :*Ei-—l z+t

Wfe must check that T(i) lies inside the unit circle. This is true because T (i) = O.
(If it lay outside, we would interchange A ——1 and B —0.)

Example 5.2.14 Find a conformal map that takes the halfplane shown in Figvrr.
5.2.8 onto the unit disk.

Figure 5.2.8: Mapping a rotated half plane to tbe disk.

Solution Consider S (z) = e~iaz. This maps the region A to the upper halfplans
(Why?). Then, using Figure 5.2.10(vi), wc get
- _e*2—«
(z) = e—°z + i
as the required transformation.

Example 5.2.15 Study the action of the functions f(z) — (z —1)/(z - 3) and
g(z) —(r+ D/(3z 4*1) on the unit circle, the unit disk, and the real axis.
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Solution First we compute the images of a few likely points:
0)/0) =0 5(1)= | H/*)="!~£i <N=]-|t
(in)/(-1) =1 g(-1)=0 (iv)/(0)=i 50)=1
(v) /(3) =00 5(-g) =00

Thus, / takes the unit circle through I,i,—1 to the circle through 0,(2/5) -
(i/5), 1/ 2. Tliemap g takes the unitcircleto the same circle butwith the orientation
reversed. / takes the unit disk to the interior of the image circle while g takes it to
the exterior. This can be determined by examining the images of 0 or by noticing
that g(—1/3) = oo.

It may not be obvious what the image circle is, but it is easier after noticing
that both / and g take the real axis onto tlie real axis. (Tlie line through —,0,1
goes to the line through 1/2,1/3,0 in the case of/ and through 0,1,1/2 in the case
of g. Think about where the various pieces of tlie line go.) The unit circle crosses
the real axis at right angles at +1, so the image circle must cross the axis at right
anglesat 0 and 1/2. Tims, it is the circle of radius 1/4 centered at 1/4; check tliat
this goes through (2/5) —(1/5)t. The effects of these maps are indicated in Figure
5.2.9.

Figure 5.2.9: The maps for Worked Example 5.2.15.

Figures 5.2.10 and 5.2.11 summarize some of the common transformations for
reference purposes.



340 Chapter 5 Conformal Mappings

Figure 5.2.10: Some common transformations.
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Figure 5.2.11: More common transformations.
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Exercises
1. Let f(z) = (2 —1)/(z + 1). What is the image under f of

10.
11.

(a) the real line?

{b) the circle with center 0 and radius 2?
(¢) the circle with center 0 and radius 1?
(d) the imaginary axis?

. Let f(z) = (2 —i)/(z +i). What is the image under f of

(&) the real line?

(b) the circle with center 0 and radius 27
(€) the circle with center 0 and radins 1?7
(d) the imaginary axis?

. Find fractional linear transformations f satisfying f(z:) = w; fori = 1,2,3 if

(a) zy=-122=1,23=2;un =0, w2 = -1, w3 = -3.
(b) 2y =-1,z2=1,23 =2ju = =3, wp = —1,w3 =0.

. Find fractional lineur transformations f satisfying f(2z;) =w; fori =1.2,3 if

(8) 21=1,22=0,23 = =L;uy =0, up = —f, w3 = 00.
(b) 21 =4, 22=0,25 = —L;y = —i,um = 0, w3 = 00.

. Find a fractional lincar transformation that vakes the unit disk to the upper

half plane with £(0) = 2 + 2.

. Find a fractional lincar transformation that takes the unit disk to the rigit

balf plane with £(0) = 3.

. Find a conformal map of the unit disk onto itself that takes § to 3.
. Find a conformal map of the unit disk onto itself that takes § to —1.

. Find a conformal map of the set A = {z | |z — 1] < V2 and |2 4+ 1| < 3}

one-to-one onto the open first quadrant.
Map the region in Excrcise 9 to the upper half planc.

Prove: Any fractioual linear transformation with ¢ # 0 can be written 7 =
TsoTh0T507T), whore

TR =2+5 D=1 nE=23%: wi BE=2+2

Interpret this result geometrically.
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12.

13.
14.

15.

16.
17.

19.
20.

21.

22,

23.

® Prove that il both T and R are fractional linear transformations, then so is

ToR
Find n conformal map of the unit disk onto itsell that maps 1/2 to 0.

Show that K(z) = z/(1 — 2)? takes the open unit disk one-to-one onto the
set C\{z |Tmz =0 and Rez < -1}.

Find all conformal maps that take the disk of radius R and center 0 onto the
unit disk.
Establish parts (iii), (iv), and {v) of Figure 5.2.10.

Prove: The most general conformal transformation that takes the upper half
plane onto the unit disk is

T(z) = &' (:—:?) ,

where Im A > 0.

® Suppose that a,b,c,d are real and that ad > be; show that 7(z) = (az +

b)/(cz + d) leaves the upper half plane invariant. Show that every conformal
map of the upper half plane onto itself is of this form.

Find a conformal map that takes {z | 0 < argz < #/8} onto the unit disk.

* The cross ratio of four distinct points 2;, 22, 23, 24 is defined by

Z—n Bn-Z
24— 22 23—2)

Show that every fractional linear transformation has the property that

lzl » 22y 23, zl] =

[T(21), T(22), T(23), T(24)) = |21, 22, 23, 24])-
Hint: Use Exercise 11.

Let v, and 72 he two circles that intersect orthogonally. Let T be a fractional
linear transformation. What can be said about 7(71) and T'(72)?

* Show that the cross ratio [z), za, 23, 24] defined in Exercise 20 is real iff

21, 22,23, Z lic on a line or circle. Use this to give another proof of Propasition
5.2.3.

Complete the calculation in the proof of Proposition 5.2.9.

24. Show that a fractional Jinear transformation T' that is not the identity map

has at most two fixed points (that is, points z for which T'(2) = z). Givc_' an
example to show that 7" need not have any fixed points. Find the fixed points
of T(z) = z/(z + 1).
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25. Conformally map the region A = {z | Rez < 0,0 < Imz < 7} onto the finst

quadrant.

26. Couformally map A4 = {z such that |z—= 1| < 1} onto B = {z |Rez > 1}.

27. Conformally map the region €\ {nonpositive real axis} onto the region 4 =

{z|-"<Imz< =}

28.° Argue that the conformal maps that take |z} < 1 to the interior of a polygon

with vertices w,... ,w, and points z),...,2, on the unit circle |z] = 1 to
the points wy, ... ,w, are given by

1) =a| [ (- nyr...c - myonag] 45

where the a;'s are as in the Schwarz-Christoffel Formula

29. Show that

[«
“’"/o N SR ET)

(where ¢ is a positive ren! constant) maps the upper hsif plane to a rectan-
gle. (The integrand is called an elliptic integral and generally cannot be
computed explicitly.)

30. Verily part (ix) of Figure 5.2.11.
31. Isit possihle to map the upper half plane conformally to a triangte using frac-

tional linear transformations? Devise a formula that is based on the Schwarz-
Christoffel Formula.

32.* Verify from the Schwarz-Christoffdl Formula 5.2.11 that a conformal map

from the upper half plane to {z | Inz > 0 and —#/2 < Rez < 7/2} i~
zwsin~! 2.

. Show that f(z) = 4/z maps the region A = {z such that |z — 1| > 1 and

|z = 2| < 2} one-to-one onto the strip B = {z|1 <Rcz < 2}.

. Suppose C; and C, are two tangent circles with C; in the interior of C:

Show that an infinite number of cireles can be placed in the region betweez
C; and C;, cach tangent to C) and C and each tangent to the next as show
in Figure 5.2.12. Show that the poiuts of tangency of these circles each wit
the next lie on a circle. Hint: Consider Exercise 33.

. Consider a fractional lincar transformation of the form

f(z)=a (:::) .
Show that
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Figure 5.2.12: A fractional linear trunsformation can he used to pack the disk with
circles.

(a) Circles through the points b and d arec mapped to lines through the
origin.

(b) The circles of Apollonius with eguation |(z — b)/(z — d)] = r/|a| are
mapped to circles with center 0, radius -,

(c) The circles in () and (b), when located in the z plane, are called Steiner
circles. Sketch them and verify that both these circles aud their images
meet in right angles.

5.3 Applications of Conformal Mappings to
Laplace’s Equation, Heat Conduction,
Electrostatics, and Hydrodynamics

We are now in a position to apply the theory of conformal maps to some physical
problems. In doing so we will solve the Dirichlet problem® and related problems
for several types of two-dimensional regions. We will then apply these results to
the three clusses of pliysical problems mentioned in the title of this section, Only a
meager knowledge of elementary physics is neceded to understand these examples.
The student is caulioned that the variety of problems that can explicitly be solved
ju this way is somewhat limited and that the methods discussed apply only to
two-dimensional problems.

3The problem of finding & harmonic futiction on a region A whaw: values are specified on the
hanudary of A s called a Dirichiet problem. This problom was discussed in §2.5.
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Diriehlet and Neumann Problems Recall tbut a function ti(x,y) is said to
satisfy Laplace’ equation (or be harmonic) on a region A when

V2« = ax* :P— =0

In addition to this condition, some boundary behavior determined by the physical
problem to be solved is generally specified. These boundary conditions usually de-
termine u uniquely. Forexample, the uniqueness theorem for the Diriehlet problem
(2.5.12) showed that a harmonic function u(x,y) whose value on the boundary of
A is specified, is uniquely determined. We shall also have occasion to consider the
boundary condition in which du/dn = grade *n, the derivative in the direction
normal to bd(i4), is specified on the boundary. For du/dn to be well defined, tlie
boundary of A should be at least piecewise smooth, so that it has a well defined
normal direction. We accept as clear what is meant by the outward unit normal, n
(see Figure 5.3-1).

Figure 5.3.1: The Neumann problem.

The problem of fiuding a harmonic function u with du/dn specified on the
boundary Is called the Neumann problem. We canuot specify $>= du/dn arbi-
trarily because ifsuch a u exists, then we claim that

=0

where 7 is the boundary of A. To prove this, wc apply Green’s theorem (see §2.2 >
wiliicli can be written in the divergence form (often called Gauss’ Theorem)

Jx-ntLs™ J divXdxdy

where X is a given vector function with components (Ar|,X 2) and where tlie di-
vergence of X is defined by
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Applying this forinula to X = grad u gives
/Qu-ds = /(gradu) -nds =/ divgradudzdy = / Viudzdy =0
v On v A A

beeause div grad u = V2u = 0. This proves our claim.

If we are given a boundary condition ¢ on 7 with L ¢ = 0, then it can be
shown that the Neumann problem indeed has a solution. \z'c can prove uniquencss:
The solution of the Neumann problem on a bounded simply connccied region is
unique up lo the addition of a constant. Let u; and u; be two solutions with
Oy /8n = Buz/dn on v = bd(A). et v; and »2 be hannonic conjugates of u;
and up and set v = ¥y — w2.9 = 3 — v2. Now du/dn = 0, and so, by Proposition
1.5.13, v is constant along . Thus by uniquencss of the solution to the Dirichlet
problemn, v is constant on A. Therefore, since —u is the harmonic conjugate of v, u
is constant on A as well. This proves our claim.

If the boundary values specified in the Dirichlet and Neumann problems are not
continmous, the uniqueniess results are still valid, in a sense, but are more difficult to
obtain. However, the student is cantioned that on an unbounded region we do not
have uniqueness. For example, let A be the upper half plane. Then u,(z,y) =z
and up = z 4+ y hawe the same boundary values (at y = 0) and are harmonic but
are not equal. To recover uniqueness for unbounded regions, a “condition at oo™
must also be specified: “u bounded on all of A” is such a condition. Some of these
conditions will be illustrated in the examples that arc integrated into this section.

The Dirichiet and Neumann problems can also be combined; for example, v can
be specified on one part of the boundary and 9u/3n can be specificd on another.

Method of Solution The basic method for solving the Dirichlet and Neumann
problems in a given region A is as follows. Take the given region A and transfonn
it by a confoninal map to a “simpler” region B on which the problem can be solved.
This procedure is justified by the fact that under a conformal map f, harmonic
functions arc transformed again into barmonic functions (see Proposition 5.1.3).
When we have solved the problem on B, we can transform the answer back to A.

For the Dirichlet problem, we are given the boundary values on hd(A), which
get mapped to the corresponding boundary values on B. (We assume that the
conformal map f is defined on the boundary.) The specification of 8u/dn is a bit
morc complicated. However, the special case 8u/8n = 0 is easy to understand. Let
uo f = ug be the solution we seck; that is, ue(z, y) = u(f(x,7)) (sec Figure 5.3.2).
Then we claim that Sug/8n = 0 iff du/dn = 0 on corresponding portions. This
folluws because 8uy/@n = 0 and 8u/8n = 0 mean that the conjugates are constant
on those portions. nud if v is the conjugate of u, then vo f = vg is the conjugate
of ugy, which proves the claim. Tlesse arc the only types of bonndary conditions for
du/On that will be dealt with in this text.

To use this wethod we need 1o be able to solve the problem in some simple
region 3. We already saw in §2.5 that the unit disk is suitable for this purpose
because in that case we have the Poisson formula for the solution of the Dirichlet
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Figure 5.3.2: TYansfomiation of harmonic functions.

problem. However, we cau sometimes- get more explicit solutions than those yielded
by that formula.

The following situation is used to illustrate the method and will be used in
subsequent examples. Woc consider the upper half plane H and the problem of
finding a harmonic function tliat takes the constant boundary values Qu on tlie
interval J—oc,xi(, the value ¢j on ]xj,x2[,..., and Chon ]x,,,00] where xi < x2<

. < X,, are points ou the real axis. We claim that a solution is given by tin*
standard upper half-plane solution;

«(*>») —Oil + S—r[{On-I —O0n)0» + -*- + (OD—cl)0l]
where 8i,.. ,0,, arcas indicated in Figure 5.3.3; 0 < 04<ir.

y

Figure 5.3.3: Solving this Diriehlet problem in tlie upper half plane.

To see this, note that u is the real part of tlie analytic function

<t> + "":[(Cn'l ~ Cn)\og{{z = X,) + ... 4'(00' Cl)ldg(2 = XI)]'
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Also, on |z;, Z;41[. ¢ reduces to ¢;. (The student should check this.) As mentioned
previously, the Dirichlet problem does not have a unique solution, so the question
ariscs: Why was this solution chosen? Another solution could have been obtained
by adding u(z.y) = ¥ to the previous solution. The answer is that the u that is
given by the standard upper half planc solution is bounded (Why?) and this answer
is physically reasanable in many examples.

Thaus if a problem can be transformed to the one described by Figure 5.3.3, we
can use the standard solution. This will be done in the examples in this section.

Heat Conduction Physical Inws tell us that if 2 two-dimonsional region is main-
tained ai a steady temperature T (that is, a temperature not changing in time,
accomplished by fixing the temperawure at the walls, or hy insulating them). then
T should be harmonic.?

The negative of the gradient of T represcots the direction in which heat flows.
Thus, by using Proposition 1.5.13, we can inlerpret the level surfaces of the har-
monic conjugate ¢ of T' as the lines along which heat flows and the temperature is
decreasing. Lines of constaut T are called isotherms; lines on which the conjugate
¢ are constant arc called flux lines (Figure 5.3.4).

ged T

Lines of eonstant 7

Lines of constant ¢ « fux lines

Figure 5.3.4: Heat conduction.

4This is a consequence of cunxervation of energy ami Gauss' Theorom. The beat flows in the

direction of the vector field = #VT'(s = conductivity) and the energy density is ¢pT'(¢ = specibic
heat, p = domsity). Then the law of conservitiun of energy stats that the rate of cinnge of energy
in any planar region V equals the rate al which energy entens V; that iy,

4 / Tdrdy = - / —#VT - nds.

dt Jy Let(1)
By Gauss' Theorem, this condition i equivalent to

%(cp?’) = kV2T.

1 ¢, 0. T ave independent of ¢, we conclude that 7" is harmonic: V2T = Q.
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Tlius, to say tliat T Is prescribed on a portion of the boundary means that
tlie portion is maintained al a preassigned temperature (for example, by a heating
device). The condition & T/dn —0 means that the flux line (or - grad T) is parallel
to the boundaiy; in other words, tlie boundary is insulated. (No heat flows across
the boundary.)

Example 5.3.1 Let A be the first quadrant; the x axis is maintained at T = 0
while the y axis is maintained atT = 100, Find the temperature distribution in A.
(Physically, the region may be approximated by a thin metal sheet)

Solution Wc map the first quadrant to the upper half plane by z*-* z2 (Figure
5.3.5).

Figure 5.3.5: Map the region A to the upper half plane.

It is physically reasonable tliut the temperature should be a bounded function:
otherwise wc would obtaiu arbitrarily high (or low) temperatures. Therefore, we
use tlie standard solution in the upper halfplane:

as = 100 a 2 ../\ ta -1 .
Thus, the solution wc seek is

«o(*») = «(/(*»))
where/(*,y) = z22= x2- j 2+ 2ixy = (x7—y2,2xp). Hcnce
1 100
— == '
uofz,y) = an

is the desired answer. It Is understood that tan 1 is taken in the interval (0.r
Another form of the answer may be obtained as follows:

200 00

«0(*») = «(«*) = 1—Srooarg'(ZZ) = - arg2= i—r—tan—”{y-\l [

The isotherms and flux lines are indicated in Figure &3G. ¢

Example 5.3.2 Let A be the upper halfof the vast disk \2\ < 1. Find the temper-
ature inside if the circular portion is insulated; T = 0 forx >0 and T = 10 fa?
X < 0 on the real axis.
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Figure 5.3.6: Isotherms and flux lines for Example 5.3.1.

Solution Forthis type of problem wherethere isa portion oftbe boundary where
dT/dn —O0 (insulated), it is convenient to tnap tbe region to a halfstrip. This can
be done for A by means of logx (using the principal branch); see Figure 5.3.7 (and
Figure 5-2.11(viii)).

Figure 5.3.7: Mapping the semicircular region A to the halfstrip 0 in Example
5.3.2.

For the strip 0 wc obtain, by inspection, the solution

(Note that along the y axis dTo/dn = dTo/dx —0.) Tlius, our answer is
T(x,y) = rok>g(x4-iy)) = —tan-1 (-) .

Electric Potential In physics wc learn that if on electric potential <$>is deter-
mined by static electric charges, 4~must satisfy Laplace’s equation (that is, be
harmonic). The conjugate functiou 4* of §>is interpreted as follows: Lines along
which 4>is constant arc lines along which forces act on test charges and are called
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fuz lines. Tangent vectors Lo such lines are —grad¢ = E, called the electric
field {see Figurc 5.3.8). Thus the fluz lines and the equipolential lines (lines of

constant ¢) intersect orthogonally.
Lines of constanl ©

Figure 5.3.8: Electrical potential.

The Dirichlet problem arises in electrostatics when the boundary is maintained
at a given potential (for exnmple, by means of a battery or by grounding).

Example §.3.3 Consider the unil circle. The clectric potential is maintained at
é = 0 on the lower semicircle and at ¢ = | on the upper semicircle. Find ¢ inside.

Solution We can apply our general procedure for the Dirichlet problem by map-
ping the unit disk to the upper halfl plane. This may be done, for example, by the
fractional linear transformation given in Figure 5.2.11(vi). See Figure $.3.9.

With
. . 1z4+1 1 (z+1)+iy
u+w=f(=+'!')=f(z)=3z-l=7(¢-1)+iy’
we have 2 1-2*—y*
-2y = e— ¥
and ”—(z_l)2+y2°

TE-es
As with temperature, it is physically reasonable that the potentinl be bounded. We
cun use the standard solution on the upper half planc:
_ 1 -1 u _ 1 -4 2
do(u,v) =0+ = (1 - 0)tan (u) == tan -

The solution on the unit disk is then
o=z, y) = do([(z,9)) = du(w.v) = % tan-1 (:r:- +2,;2 - 1)
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Figure 5.3.9: The conformal mapping used to solve a Diriehlet problem ou the disk.

The values of the arctangent must be taken lictween 0 and w. The equipotcutial
lines and flux lines are shown in Figure 5.3.10.

Tliis example could also be solved by using Poisson’s formula. Tlie two answers
would be equal, although this would not he obvious from their form. 4

Figure 5-3.10: Equipotcutial and flux lines for the potential.

Example 5.3.4 The harmonicfunction 4>{z) = (Q/2ir) log|z —| +K for a con-
stantK, which is the mat part o/(<3/2jr)log(2—2ft)+/V', represents hie potential ofa
charge Q located at Zg. (This is becauseibis a radialfield such that i/E = —grad4
is the electricforcefield, then the integral o/E -n around a curve surrounding z0 is
Q by Gauss’ Theorem)? The constant K may be adjusted to make any convenient

“This is the potential for a charge in the plane. In space il corresponds to the potential
produced by a charged line.
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place such as infinity or some grounded object have potential 0. (This is reasonable
since only the force E is observed, and it is not affected by changing K.} Skeich
the equipotential lines for two charges of like or opposite signs.

Solution The potential of two charges is cbtained by adding the respective poten-
tials. Thus two charges Q > 0 located at z; and z; have the electrostatic potential
(@/27) iog(lz — 21 ]|z - 22]); & charge Q > 0 at 2; and a charge —Q at 2; have po-
tentinl (Q/27) log()z — z1}/|z — 221)- The equipotential lines are sketched in Figure
5.3.11. The curves ¢ = constant in the drawing on the left are ealled lemniscates; in
the drawing on the right they are called circles of Apollonius. The lines of foree ave
the famnily of circles orthogonal to them that pass through the two points. Together
they form the Steiner circles discussed in Exercise 35 of §5.2. ¢

I~ 20 = constunt-k ~ 2} 4

‘\
A\ A
4
,!' -
\,’_/‘?l
N,
= s
[}
‘s
| 4
\‘ /"

Figure 5.3.11: The field of like charges (left) and the ficld of opposite charges (right).

Example 5.8.5 Supposc a point charge of +1 is located at z9 = & and the unit
circle is a grounded conductor maintained at potential 0. Find the potential at cvery
point z # 29 tnside the unit circle.

Solution 1. The function f(z) = (22 — 1}/(2 — z) maps the unit disk D to
itself taking 20 = £ to 0. The function u(z) = (1/27)log|z] is a solution on the
image disk (point charge of +1 at 0 and ( potential arcund the unit circle). Thus
#(2) = u(f(z)) = (1/2nm)log|(2z — 1)/(2 - z)| solves the original problem. (See
Figure 5.3.12.)

Solution 2. We give a second solution that illustrates the method of reflection in
a circle from §5.2 and an interesting idea from clectrostatics called image charyes.
We need a field ¢ inside the unit disk D that has the unit circle C as an equipotential
curve. The electric force lines must be a family of curves ending at 29 that cross C
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y y

CIN-L N
NN Y-

Figure 5.3.12: The conformal map [ shifts the point charge from 25 = § to 0.

at right angles. This can be accomplished by placing an artificial “image charge”
of —1 at the reflection Z of zy in C. As in the last example, the electric force lines
for such a pair of charges arc the family of circles through 2y and %. We know
from §5.2 that these cross C at right angles as desired. See Figure 5.3.13.

y

1)

=

Figure 5.3.13: Reflection and image charge.
With charges of +1 at zp = 3 and —1 at £ = 2, we bave

é(2) = lloglz— -l-l-—lloglz—2|+K

z-
=§-log 2 21+ K
l 2z
-—-—l K.
log 52 . og2 +

Setting the constaut K to (1/2x)log2 smakes the potential 0 around C and gives
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the same answer as the first solution. ¢

Hydrodynamics If we have a (steady-state) incompressible, nonviecous fluid,
wc are interested in finding its velocity field, V (x.y). Ftom vector analysis we
know that, “incompressible” means that the divergence divV = 0. (Wesay V is
divergence free.) Woc shall assume that V is also a potential flow and hence
is circulation free; that is V = grad §>for some 0 called the velocity potential.
Thus, 0 Lsharmonic because V24 = divgrad”® = divV = 0. Tlius when we solve
for 0 we can obtain V by taking V —grad 0.

Thbe conjugate 0 of the harmonic function 0 (which will exist on any simply
connected region) is called the stream function, and the analytic fiwetion F =
0 +i0 is called the complex potential. Lines of constant 0 have V as their
tangents (Why?), so lines ofconstant0 may be interpreted as the lines along which
particles offluid move; hence the name stream function (see Figure 5.3.14).

Figure 5.3.14: Fluid How.

The natural boundary condition is Unit V should be parallel to the boundary.
(The fluid flows parallel to the walls.) Tills means that dOfdn = 0, so wc are led
to the Neumann problem for 0.

Let us again consider the upiier half plane. A physically acceptable motion is
obtained by sotting V(x,y) *=a as (a.0) or 0(x,y) = ax = Re(cr2). when* o is
real. Tlie flow corresponding to V is parallel to the x axis, with velocity a. Notio-
that now 0 Lsnot hounded: thus the behavior at oo for fluids, for temperature, and
for electric jjotentinl is different because of tlie different physical circumstnnoes (mv
Figurc 5.3.15).

Thus, to find the flow in a region we should map the region to the upper half
plane and use the solution 0{x, y) = ox. Wecan specify a as the velocity at infinity
It should lie clear that if / is the conformal map from tlie given region to the upp”c
half plane, the required complex potential is given by F[z) —af{z).
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y

Vrtodtvo
Cmnplej potential - trz

»jr

Figure 5.3.15: Flow in the upper half plane.

Example 5.3.6 Findtheflow around the upperhalfofthe unit circle if the velocity
is parallel to the x axis and is a at infinity.

Solution We shall map the exterior of tlie given region to the upper half plane.
Sudi a conformal map is z *+z + |/z (Figure 53.1G). Tlius, Fo(z) = az is tlie
complex potential in the upper halfplane, and so the required complex potential is

F{z)=a(z+ ty

Figure 5.3.16: Effectofz *>2+ 1/z.

It is convenient to use polar coordinates r and 0 to express O and if). Then we
get

tf(r,0) = o cosO and a sinfl.

A few streamlines are shown in Figure 5.3.17.

Note: By slightly modifying the transformation z «* z + |/z by the addi-
tion of appropriately chosen liigher-urder terms, the halfcircle can be replaced by
something more closely resembling an airplane whig; these are called Joukotoski
transformations.
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iy- constant

!\ \ / /. i Velocity

Figure 5.3.17: Streamlines for flow around a cylinder.

Exercises

1. Find a formula for determining the temperature in the region with the Indi-
cated boundary values shown in Figure 5.3.18 (left).

9 y

Figure 5.3-18: Find the temperature for these regions (Exercises 1 and 2).
2. a Find a formula for determining the temperature in the region illustrated in
Figure 5.3.18 (right). Hink Consider the map z *4sinz.

3. Find the electric potential in the region illustrated in Figure 5.3.19 (left).
Sketch a lew equipotential curves.

4. Find the electric potential in the region illustrated in Figure 5.3.19 (right).

5. Find the flow around a circular disk if the flow is at an angle 0 to tlie x axis
with velocity o at infinity, as in Figure 5.3.20 (left).

6. Suppose a point with charge +1 is located at zo = (1 +i)/\/2and the positive
real and imaginary axes (boundaries of the first quadrant A = {z | Rez >y
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Figure 5.3.19: Find the electric potential for these regions (Exercises 3 and 4).

Vv

Figure 5.3.20: Flow around a disk (Exercise 5) and in a wedge (Exercise 7).

and Im2 > 0}) are a grounded conductor maintained at i>olLentia] 0. Find
the potential at every point z £ zq inside the region A.

7. Obtain a formula for determining the flow ofa fluid in the region illustrated
in Figure 5.3.20 (right). (The velocity at oo is a.)
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Review Exercises for Chapter §

1.

2.

3.
4.

S.

Consider the map z +— z3. On what scts A C C is this map conformal (onto
its image)?

Verify directly that, the map z — z" preserves the orthogonality between rays
frows 0 and circles around 0.

Find a conformal inap that takes the unit disk onto itsell and maps i/2 to Q.

Find a conformal map of the unit disk onto itself with £(4) = —} and f'(3) >
0.

Find a conformal map that takes the region
A={zsuchthat|z—1]>)and |z -2| <2}
onto B={2|0<Rez<1}.

6.® Let 23,29 € € and a € R, where @ > 0. Show that

7'

10.

e—2)
z-2
defines a circle and z),2; are inverse points in that circle (that is, they are
collincar with the center 2o and |2 — 29| - |22 — 20| = p* where p is the radius
of the circle).

Exawmine the image of the set {z € € | Imz > 0,0 < Rez < #/2} under

the map 2 +~ sin z by considering it to be the compasition of the maps z —
ez z—1/2,2 2/2.

. Let f: A — B be a conformal map, let ¥y beacurvein 4,and let 4= fo.

Show that,
M= /: (N - W (2)lde.

If f preserves the lengths of all curves, argue that f(z) = ez + a for some
a € C.and for @ € (0,2x].

. Find a conforinal map that takes the set

A = {z such that |z - {| < 1}
onto B = {z such that |z - 1) < 1}.
Show that the function f(z) = (z — 1)/(z + 1) maps the region
A = {z such that |z| > Vand |z — 1| < 2}
one-to-one onto the set B = {z |0 < Rez < 1}.
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11. The rcgion A in Exercisc 10 is boimded by two circles, s is the region {2z |

12.

13.

14.

15.

16.

17.

18.

19.

1 < |z| < 2}. Can a conformal map from this region to B be accomplished
hy a fractional linear transformation? If so, display the function. If not, why
not?

Let T(z) = (az + b)/(cz + d). Show that T(T(z)) = z (that is, To T =
identity) if and only if a = —d or 7'(z) = 2 for all 2.

Is it possible to find a conforinal map of the interior of the unit circle onto its
exterior? Is f(z) = 1/z such a map?

Find a conformal map of the quarter plane A = {z| Rez > 0 and Im 2 > 0}
one-to-one onto the unit disk which takes 1 + i to 0 with positive derivative
at 1414,

Let Fy and F; be conformal maps of the unit disk onto itself and let Fy(z) =
Fy(20) = 0 for some fixed 29,]20] < 1. Show that therc is a # € [0, 25| such
that Fy(z) = e Fy(=2).

Suppose f is a conformal map of the upper half plane one-to-one onto itself
with f(=1) =0, f(0) = 2, and f(1) = 8. Find F().

Give a complete list of all conformal maps of the first quadrant A = {z |
Rez > 0 and Im2 > 0} onto itself. (Suggestion: See Exercise 18 in §5.2.)

Describe the region A = {2 such that |(z + 3)/(z — 1)] < 3}. Hint: f(z) =
(2 +-3)/(z — 1) takes what points to the circle jw| = 3?

Find a conformal map that takes the region in Figure 5.R.] to the upper balf
planc. Use this map to find the clectric poteritial ¢ with the stated boundary
conditions. Hini: Consider a branch of z ~ /27 — 1 after rotating the figure
through 90°.

¢=0 $<B

Figurc 5.R.1: Boundary data for Excrcise 19.

20." Find the flow of a fluid in the region shown in Figure 5.R.2 (lcRt).
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Figure 5.R.2: Regions for Exercise 20 (left) and Exercise 21 (right).

21. Use Exercise 19 to find the fluid flow over the obstacle in Figure 5-R.2 (right)
and plot a few streamlines.

22. Let B be the open first quadrant, that is, B —{z | Rez > 0 and Imz > 0),
and letS = {z(0 < Imz < «}.

(a) Find an analytic function that maps B one-to-one onto S.

(b) Find a function u harmonic on B and continuous on tlie closure of B
except at (0,0) that satisfies u(x) —O0 and tx(ty) = wfory > 0.

23. Find the electric potential in the region shown in Figure 5.R.3.

y

Figure 5.R.3: Boundary data for Exercise 23.

24. Suppose a point charge of +1 is placed at zo = » in the upper half plane
and the real axis is a grounded conductor maintained at constant potential
0. Find the potential at eveiy point z 2z i in tbe upper half plane.

25. Use the Sellware-Cliristaffel Formula 5.2.11 to find a conformal map between
the two regions shown in Figure 5.R4 (A = -1,2? = 1,2?'=0))
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Figure 5.R.4: Regions for Exercises 25 and 26.

26. Use Exercise 25 to find the flow lines over the step in the bed of the deep
channel shown ou the right in Figure 5.11.4.

27. Find the temperature on the region illustrated in Figure 5-11.5 Hint: Use
Z **sin'" z.

7= | -a Insu ated 5 T-0

Figure 5.R.5: Boundary data for Exercise 27.

28. Letg,, be a sequence ofanalytic functions defined ou a region A. Suppose that
1} * 1 Ionfe)l converges uniformly on A. Prove that ££1, I1Sn(z)l converges
uniformly on closed disks in A.

29. Evaluate by residues:

cosa o
a2+ 3

30." Lei/ be analytic on tlie set C\{0}. Suppose that f(z) —00 as z —0 and
f(z) —*oo0 as z —e0. Prove tliat / can be written in the form

/(*)=-r~r ?+cjj+dia+...+d1z*

for constants ¢- and dj.

31 If anzn has radius of convergence p, what is the radius of convergence of
of

32. Find the Laurentexpansion off(z) —z4/(1 - 25) tliat is valid on tlie annulus
1< \2\ < oo.
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Chapter 6

Further Development of the
Theory

This chapter continues the development of the theory of analytic functions that
was hegun in Chapters 3 and 4. The main tools we will use in this development
are Thylor series and the residue theorem.

The first topic in this chiapler is analytic continuation, that is. the attempt to
make the domain «of an analytic function as large as possible. Further investigation
in the theory of analytic conlinuation leads naturally to the concept of a Riemann
surface, which is briefly discussed in §6.4. Additional properties of analytic func-
tiony are developed in sibsequent sections, Some of these properties deal with such
topics as counting zeros of an analytic function; others ure generalizations of the
Inverse Function Theorem 1.5.10.

6.1 Analytic Continuation and Elementary
Riemann Surfaces

The first theorem in this section is called the Principle of Analytic Continuation,
also referred to as the Idemtity Theorem. This theorem and its proof lead to a
discussion of Riemann surfaces. which facilitates a more satisfactory treatment of
wlut were previously referred to as “multiple-valued functions,” such as log z and

VE.

Analytic Continuation The basic idea is that il two analytic functions agree
on a small portion of a (connected) region. then they agree on the whole region on
which they are hoth analytic. This is stated precisely in the following theorem.

Theorem 6.1.1 (Principle of Analytic Continuation—Jdentity Theorem)
Lel f and g be analylic in a region A. Suppose that thern is a sequence 23,22, 23. .. .
of distinct points of A converging to 20 € A, such that f(z,) = g(za) for all

365
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n=1,23,.... Then f = g on all of A (see Figure 6.1.1). The conclusion ts valid,
in particular, if f = g on some neighborhood of some point in A.

A

Figure 6.1.1: Identity Theorem: If f = g at all the points 2, 22,..., then f(2) =
g(z) forall z € A.

Proof Let k(z) = f(2) — 9(z). Then h is analytic on A and &(z,) = 0 for each n.
We want to show that k(z) = 0 for all z in A. Corollary 3.2.10 on local isolation
of zeros of a nonconstaut function tells us that /(z) = 0 on some open disk around
29- The connecteduness of 4 will enable us to extend this conclusion to all of A. To
this end, let B = {z € A | h is 0 on a neighborhood of z}. Then B is 2 nonempty
subset of A since 29 € B. If w € B, then & = 0 on an open disk around w
contained in A and hence on a neighborhood of each point of that disk. Thus, that
disk is contained in B. Therefore, 7 is an open subset of A. On the other hand.
sSuppose wh, wa, W, ... are distinct points in 3 converging to a point 2 in A. Then
h{uwy) = 0 for each k and, since 4 is open, z is interior to A. Corollary 3.2.10
applies again to show that 4 is 0 on a neighborhood of z. Thus z € B. This shows
that B is clased relative to A.

We have thus shown that the subset B is both open aud closed relative to 4 and
is not empty. Since A is connected, we must have B = A (see Proposition 1.4.13).
Thus, A(z) =0 for all z in A as required. W

For example, this shows that there is exactly one analytic function cu € that
agrees with ¢* on the z axis, namely, €*, because the 2 axis contains a convergent
sequence of distinct points (for example, 1/n).

Notice that it is vital that A be connected. If A consisted of two disjoint disks.

the function which were 0 on one of them sud 1 on the other would agree with the
zero function on one part of 4 but not on the other. Recall that for us, a rmgion
means an open connected subset of €. Corollary 3.2.10 on the local isolation of
zeros now extends to a global form on connected sets. We formulate this in the
following corollary.
Corollary 6.1.2 The zeros (or, more generally, poinis where a specified value u:
is assumed) of a nonconstant enalytic function are isolated in the following sense
If f is analytic and nol constant in a region A and f(z) = wy for a point 29
A, then there is a number ¢ > 0 such that f(z) is not equal to wy for any z in the
deleted neighborhood {2 |0 < |2 — zg] < €}.
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Proof If there were 4o sudi e, then ; would agree with the constant function
defined by h(z) —via at least on a sequence of paints converging to zq. But then
it would agree with h everywhere on A by the Identity Theorem 6.1.1 and so be
constant. =

There can be a limit point ofzeros on the boundary oftlie region of analyticity.
(This is illustrated in Worked Example 6.1.11 with the function sin(l/z).} The
Identity Theorem says that a nonconstant function cannot have a limit point of
zeros in the interior of the region of analyticity.

Corollary 6.1.3 Letf : A—»C andg :B —»C be analytic on regions A and B.
Suppose that Af\AB 0 andf =g on AnB. Define

Then h is analytic on A UB and is the only analytic function on AU 13 equaling f
on A (org on B). Wesay that h is an analytic continuation off (org) (see
Figure 6.1.2).

\rB

Figure 6.1.2: Analytic continuation.

Proof That h is analytic is obvious because / and g are. Uniqueness of h results
from the identity Theorem and from the facts tliat AuB isa region and that AnB

isopen. m

Analytic continuation provides a method for increasing the domain of an an-
alytic function. However, the following phenomenon can occur. Let/ on A be
continued to a region A\ and let A2 be as pictured in Figure 6.1.3.

Ifwe continue/ to be analytic on At, then continue this new function from A\ to
A2, the result ueed not agree with tlie original function / on A. A specific example
should clarify this point. Consider log*, the principal branch (—r < argz < ir)
on the region A consisting of the right half plane union the lower half plane. The
fog function may be continued uniquely to include A\ = the upper half plane in
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Figure 6.1.3: Continuation oFa function from A to At and from Ai to A?.

its domain. Similarly, wc can continue the log again from the upper half plane
so as to include A% — the left half plane in its domain by choosing tlie branch
0 < arg 2 < 2jt Butthese branches do not agree on the third quadrant; they differ
by 2jex (see Figure 6.1.4). Therefore, in continuing a function we must be sure
that the function on the extending region B agrees with tlie original on the whole
intersection A n B and not merely on part of it.

J

Figure 6.1.4: Continuing the log.

It is not always possible to extend an analytic function to a huger domain. Tlie
reader is asked in Exercise 5 to confirm tliat the power series Zni converges
to an analytic function /(z) on the open unit disk but that this function cannot
be analytically continued to any larger open set. The unit circle is called a natures
boundary for this function. In tlie next two subsections we will examine techniques
by which analytic continuation may sometimes be accomplished.

Schwarz Reflection Principle There is a special case of analytic continualior.
that can be dealt with directly as follows.
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Theorem 6.1.4 (Schwarz Reflection Principle) Let A be a region in the upper
half plane whose boundary bd(A) inlersects the real axis in an interval [a,b) (or
Jinite union of disjoint inlervals). Let { be analytic on A and continuous on the set
AU]a,b|. Let A™ = {2 | Z € A}, the reflection of A (see Figure 6.1.5), and define
g on A* by g(2) = f(Z). Assume that f is real on |a,bf. Then g is enalytic and is
the unique analytic continuation of f to AU}a,b{U A*.

Figure 6.1.5: A* is the reflection of A.

Proof Uniqueness is implied by the Identity Theorem since AU}a, j{U A" is con-
nected and any such eoxtension must agree with f on the segment }a,df, which
certainly contains a convergent sequence of points together with their limit. Note
that f = g on this segment since Z = z = z there, and f(z) is real, so f(z) = f(z) =
7@ = g(z). The analyticity of g on A* follows from the Cauchy-Riemann equa-
tions, as established in Worked Example 1.5.19. If A is defined on AU]a, bjU A* by
h(z) = f(z) on AU]a,b] and A(z) = g(z) on A*, then h is analytic on AU A* and
continuous across the mutual boundary ]a, b| since f = g on the real axis. Analyt-
icity on the whole set follows from Morera’s Theorem 2.4.10, a5 was established in
Worked Example 24.17. @

This result is resarkable in that we required only that f be continucus and real
on ja, b]. Tt followed aufomatically that f is analytic on )a, 4 when continued across
the real axis. To help see that g (and thus k) is analytic on A*, consider the map
in three steps:

2% I (2 f(E) e [3).

The middle map is confornal; the first and last are anticonformal in the sense that
they reverse angles. Since angles are reversed twice, the net result is to preserve
angles. The whole map is thus conformal.
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A related reflection principle can be formulated using circles in place of tbe real
axis and replacing complex conjugation by reflection in the circle. The Schwarz
Reflection Principle 6.1.4 is a special case if lines are treated as circles of infinite
radius, as in Chapter 5

Theorem 6.1.5 (Schwarz Reflection Principle fora Circle) Let A be a re-
gion in the interior or exterior of a circle Ci (or on one aide of a line) with part of
its boundary an arc7 ofC\. Suppose f is analytic on A and continuous on A U7
and/(7) is an an T'of another circle (or line) Ca. Let A = (z | i € A) be the
reflection of Ain Ci and defineg on A by

9(2) =/(£)

(the last ' denotes reflection in Ca-) Then g is analytic and is tlie unique analytic
continuation off to AU7U A.

Proof Weassume A is interior to Gband f(A) is interior to Cae The other cases
arc similar. Let 7J,* = 1,2, be fractional linear transformations taking C, to tlie
real axis and their interiors to the upper half plane. For w in T\{A), the function
h(w) = Ta(f(Tfi(w))) is analytic and by the Schwarz Reflection Principle 6.1.4,
h(w) gives an analytic continuation to Tj (A)*. Using the Tacts that fractional linear
transformations preserve reflection in circles (Proposition 5.2.7) and that complex
conjugation is reflection in the real axis, we find that

[/(E)[=r2 (M AM ).

so is an analytic continuation of /. (See Figure 6.1.6.) =

Figure 6.1.6: Analytic continuation by reflection.
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An argument similar to that used to establish Worked Example 2.4.17 and
the Schwarz Reflection Principle from Morera’s Theorem is used to establish the
following.

Theorem 6.1.6 (Analytic Continuation by Continuity) Let A and B be dis-
Joint simply connecled regions whose boundaries intersect in a simple smooth curve
7. Let C = A U (interior y) U B (where interior 4 means the image of -y without
its endpoinls} and suppose that
(i) Each point in interior v has a neighborhood in C.
(ii) f is analytic in A and continuous on A U 7.
(iii) g is analytic in B and continuous on B U 7.

(iv) Fort € v, we have z._li‘x'?al fz)= .-.l?fe . 9(2).

Then there is a function h analytic on C that agrees with f on A and g on B.

Analytic Continuation by Power Series along Curves Suppose that f is
analytic in a neighborhood U of 25 and that « is a curve joining zg to ancther point
2’ (as in Figure 6.1.7).

Figure 6.1.7: Continuation by power series.

If we want to continue f to 2’ we can proceed as follows. For 2, on v in U,
consider the Taylor series of f expanded around z;:

@ fln) 2
z f n(! ’)(Z_zl)n-

This power series may have a radius of convergence such that the power series is
analytic farther along ~ than the portion of 4 in U. The power series so obtained
then defines an analytic continuution of f. We can continue this way along -y in
hopes of reaching 2/, which will be poasible if the successive radii of convergence
do not shrink to 0 before we reach 2/. If we succeed, we say f can be analytically
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Figure 6.1.8: Continuation can lead to self-intersections.

continued along y. However, we must be careful because the analytic continuation
of f so defined might not be single-valucd if - intersects itsclf (as in Figure 6.1.8).

The coefficients of the powor series around the new center z; can be computed in
terms of those for the Taylor series of f around the original center zp. (See Worked
Example 6.1.13). If 2’ can be reached at all by this process, then it can be reached
in a finite number of steps. This is essentially because of the Path-Covering Lemnma
1.4.24 (sec Exercise 7). Thus, the continuation at 2’ can be computed in terms of
the original function.!

The example Y z™ mentioned earlicr shows that it can happen that there is
no direction in which a power series can be continued. Fortunately this is not
usually the case. However, there must always be at least one direction in which
continuation is not possibic.

Proposition 6.1.7 Suppose that f(z) = T o0 qan(z — 20)" hes radius of conver-
genoe R < 20. Then there must be at least one point 2, with |29 — 23| = R such
that f cannot be analytically continued Lo any open set conlaining 23 .

Proof Let B = {z such that |z — 29| < R} and lev C be its houndary circle
{z such that |z - 29| = R}. We will show that if the assertion were false then f
could he analytically continued 10 an open sel A containing the closed disk BuC
If this were done, Worked Example 1.4.27 would show that A contains a larger disk
B, = {z such that |z - zg] < R+¢}. (Sece Figure G.1.9.) We would have continued
10 & larger disk with the same center. This is not possible, since it implies a radins
of convergence larger than R. (See Worked Example 6.1.12.)

To ohtain A we proceed as follows. For ench w on C there would be a neighbor-
hood B,, of w and an analytic continuation f,, of f to A, = BU B,,. (See Figure
6.1.10.)

LA discussion of how one carries out this computation, including its sumericn aspects. may o

found in P. Henrid, Applied and Computational Compler Analysis (New York: Wiley-Interscicno-
1974), Chapter 3.
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Figure 6.1.9: If A is an open sel containing B and its boundary, then A contains a
slightly huger disk.

Figure 6.1.10: Tlie set Aw—BU S».

Then A —(union ofall the Aw) would be an open set containing B U <7. Wetiy
to deline a continuation of/ to A by setting g(z) —fw(z) for z in Au- If this makes
unambiguous sense it will certainly be analytic on A since fw is analytic on Aw. For
g to make sense wc need to know that if 2 is in AW fl A~ then /«,, (2) = .2 (2).
But tliis is true. The two functions are both analytic ou tbe region Av,, HA ”* and
they are both equal to / on the open set B C A,,, n Au*. Therefore they must
agree on the whole region, by the Identity Theorem. Thus the definition of g makes
sense. It docs not depend ou whidi Aw wc happen to select, containing 2. =

Consequently, the radius of convergence of an analytic continuation is largely
independent of the method used to obtain it. Tliis agrees with what we saw in
Chapter 3, namely that the radius of convergence is the distance to the nearest
unavoidable singularity.

Proposition 6.1.8 Suppose f is analytic on a neighborhood O a point zq of a
region A and thatf can be analytically continued along every curve joining zq to
every other pointzi ofA. Then the radius of convergence ofthe Taylor scries at zj
for each such continuation to zt is the same and is at least as great as the distance
from 26 to the complement of A.
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Proof Suppose not. Then by extending the curve radially from zi to any point
on the circle of convergence, the continuation could be analytically continued still
further in every direction from zIt contrary to Proposition 6.1.7. m

This proposition does not claim that the continuations arc all the same. They
might not be, as the example ofthe logarithm shows. Wc¢ may merely obtain local
functions defined on disks but they need not agree on overlaps. This construction is
one baric way in whidi multiple-valued functions arise. A point is called a branch
point if analytic continuation around a closed curve surrounding it can produce
a different value upon return to the starting point. The following result says that
multiple-valued functions do uot arise from coutinuatiou along curves in simply
connected regions.

Proposition 6.1.9 (Monodromy Principle) Let A besimply connected and lei
so 6 A. Letf beanalyticin a neighborhood of.q. Suppose thatf can be analytically
continued along any arcjoining zq to another pointz€ A. Then this continuation
defines a (single-valued) analytic continuation off on A.

Proof We need to show that if z\ is another point of A, then the process of
continuation along a curve 7 from zqto Zj through A will always produce tlie same
value at zi regardless of wliat curve is used. To thisend, let 70and 71 be twocurves
from Zg to zj in A. Since A is simply connected, they are homotopic with fixed
endpoints in A. That is, there is a continuous function H : [0, 1] x [0, 1J—*A from
the unit square into A sudi that 17(0,1) = % (1), J?(l,I') = 7i(f),J7(s,0) = zq, and
H(s, 1) = z\ forall s and t between 0 and 1, inclusive. Tlie functions 7,(1) = H(s, t)
are a family of curves from zg to z\ in A deforming continuously from 70 to 71. See
Figure C.1.11.

Figure 6.1.11: Homolopy between *nand 71.

There is an analytic continuation /, of / from zo to z\ along each curve
We will show that /,(zi) cannot change as « is shifted continuously from O to 1
and therefore that /o(zi) = /i(zi). This is exactly wliat. we need to establish the
theorem.
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The image of the square is a closed bounded subset of A. Thus by the Distance
Lemma 1.4.21, it lics at a positive distance p from the complement of A. By Prapo-
sition 6.1.8, the radius of convergence always remains at least p as we analytically
continue f along any of the curves 7,. By the Path-Covering Lemma 1.4.24 the
continuation along any -, may be completed to z) in a finite number of steps using
disks of radius p. For each s this procedure produces an analytic continnation of f
to a function f, analytic on a “tube” A, around +,, as in Figure 6.1.12.

Figure 6.1.12: Each 7,,,, is contained in 4,,.

With a bit of care we can select a finite number of points 0 = 5 < $) < 82 <
... < sy = 1 and the valucs of ¢ defining the centers of the disks making up the
tubes A4, close enough together that 4,, is contained in the preceding tube 4,,_,
and in the succerding tube A,,,,. This is donc using the uniform continuity of
H, as in the proof of the Deformation Theorem 2.3.12; see, in particular, Figure
2.3.14. The functions f,, are each analytic on the region A, N A,,,, and agree
on the open set D(z;p0) C A, N A,,,,, so they agree on the whole region by
the Identity Theorem. In particular, f,, (21) = Jorsr (21), 80 fo(z1) = fu,(21) =
Jos(21) = ... = fuu(z1) = f1(21)- The continuation of f along 70 to n1 agrees with
that along 7 to z; at the point z;. This is what we nceded toshow. B

For nonsimply connected regions, we can get different values for the continuation
of f when we traverse two differcnt paths. This fact was already mentioned at the
beginning of this section in connection with logz. For example, in Figure 6.1.13,
starting with log defined near 1 and continuing along 7, we get log(—1) = =i,
whereas along 2, we get log(—1) = —ai. This is because the region C\{0} is not
simply connected.

Riemann Surfaces of the Log and Square Root Functions The phenomenon
just described leads one to ask if there is a definition of log that does not introduce
any artificial branch lines (which, after all, can be chosen arbitrarily). The answer
is given Ly a brilliant idea of Georg Riemann in his doctoral thesis in 1851 that is
briefly described here.
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Figure 6.1.13; Continuation of logs along two different arcs from 1 to —4.

For the logarithm, if log2 is to tic single-valued, we should merely regard 71
and 72 In Figure 6.1.13 as ending up iu different places. This can he pictured as in
Figure 6.1.14.

Figure 6.1.14: Riemann surface for logs.

Only &core of the spiral staircase M, with axis over the origin, is shown —t
should have infinite extent laterally. If we cut from O outward at any level and
tlie one directly below it, we get a part or the surface called a sheet, the shaded
portion in Figure 6.1.14. This shaded portion can be identified with the domain
for a branch of log. Thus we have stacked up infinitely tunny copies of (he complor
plane C joined through 0 and glued together as shown in Figure 6.1.14. The arc?
7j and 72 now go to different points so we can assign different values of logz to
each without ambiguity.

The main property ofthis surface that enables us to define logz = log\z\-Harg r
as a single-valued function is that on this surface arg2 is well defined, and tbe
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different sheets correspond to different intervals of length 2ir in whidi arg 2 takes
its values. Tlius, we can take care of multiple-valued functions by introducing an
enlarged domain on which the function becomes single-valued.

Let us briefly consider another example, tbe square root function: z  y/z =
y/rci0/2. Here the situation is slightly different from tliat for the log function. If
we go around the origin once, y/z takes on a different value, but if we go around
Lwice (increase 0 by 4w). we arrive back at the same value, so wc want to be at the
same point on the Riemann surface. The surface Lsillustrated in Figure 6.1.15.

Figure fi.1.15: Riemann surface for y/z.

Though the sheets in this figure appear to intersect, they are not supposed to.
At fault is our attempt at visualization in R3. Oue can consider the Riemann
surface to be in R4 or C2. Figure 6.1.15 is a picture of its ‘sshadow* in R3. Here Ls
another way to think about bow Lhesurface is related to analytic continuation. Let
7 be tlie unit cirde traveled twice countcrdodcwise by letting t change smoothly
from 0 to 4ir in 7(f) = e™*. Then /(f) = c}if2gives a smoothly changing square root
for 7 (f). Atthe start, 7(0) —1 and /(0) = 1= uy/l.~

As wc make the first transit around tlie cirde, 7 (f) successively hits points 13,C,
and D, namely the pointst, -1 and -i. and the function /(f) hits the corresponding
points on the image cirde. Att = 2ir, the curve 7(f) has returned to 1, but /(t)
has readied the other “square root,* —i.

In the second transit around Llic circle, 7 (f) revisits the points it liit on the first
circuit, while /(t) goes through tlie other possible square roots in the lower half
plane. At tlie end of tlie second circuit 7(4jt) = 1, and /(4a-) = 1 Las returned to
the original value. (See Figure 6.1.16.)

Riemann Surfaces of the Inverse Cosine Function For more complicated
functions like cos- 1(2) tbe Riemann surface can be constructed ns follows. On
certain regions of C, cosr is one-to-one and we define cos“*(2) to be tlie inverse
function. Tlie period strips defined in §1.3 are examples of such regions for ¢* and
log2. Sudi a region for cos 2 is shown in Figure 6.1.17.
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Figure 6.1.1G. Thicking y/z as oue traverses the unit circle.

Figure 6.1.17: A region ou whidi cosz is one-to-one.

The interior of each such strip ismapped conformally onto C minus the portions
]1—o00, - 1) and (l,00] of the real sods with half planes corresponding to half strips,
as shown in Figure 6.1.18. Each ofthe deleted portions is the image of two different
portions of the boundary of each strip. Each sheet of the Riemann surface is a copy
of C slit along these portions of the real axis. The surface is then constructed by
“gluing” the sheets together along these slits in sudi a way that half planes are
joined in the same way as the corresponding preimage half strips.

A cross section of the surface over the circle C —{z sudi that |z| = 2} might be
diagrammed somewhat as in Figure 6.1.19. The black dote in the diagram at the
rightindicate the places on the surface over 2 and —2 when*the circle C crosses the
slits along which the sheets arc glued. To construct, the model, one would roll the
diagram at the right into a cylinder joining the top and bottom edges so that the
labels on the sheets match. Then one would stand the cylinder over the circle C sj
that the rows of blade dote are over 2 and —2. If wc follow a suitably chosen cun*
winding around 1 and —1 passing sometimes between them and sometimes over
the branch cute, we may pass Grom any sheet to any other and obtain all possibk
values of cos-1 z.



86.1 Analytic Continuation and Riemann Surfaces 379

n

1 - Zf-» diSzZ

- —h

tm
i

1
t
t

1
K

:
f) v
1

Figure 6.1.18: Coasfcruction of the Riemann surface for cos-1 z.

Figure 6.1.19: Cross section of Riemann surface for cos“*z over the circle |2| = 2.

W orked Examples

Example 6.1.10 Letf bean entirefunction equaling a polynomial on [0,1) on the
mi/ axis. Slum thatf is a polynomial.

Solution Let f[x) =mao + «iar+... + a,xnon [0,1). Then f(2) and no m«i2 +
... +0,,rn agree for z € (0, 1j. and both are analytic on C (that is, both arc entire).
By the Identity Theorem 6.1.1, they arc equal on all of C, since |0,1] contains a
convergent sequence of distinct points (for example, z,, —1/n). Tliis proves the
assertion.

Example 6.1.11 Letf{z) = an(z~zo)n hoae a radius ofconvergence R> 0.

(@) Is then always a sequence z,, vrith \z;t —.q1 < » forn = 1,2,3.... and
ta —*ol —*R such that f(z,,) -* 00?

(b) Can/ be continued analytically to a disk \2—zq\ < R +efor somee>0?
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Solution

() Such a sequence does not necessarily exist. Consider the series Yoo, z"/n?.
By the ratio test, the radius of convergence is

I
Gn+1

lim

N0

But for |z| £ 1 we have

Thus |f(z)| is bounded by 377° 1/n2 on {2 such that |2| < 1}, 50 f(2,) ~ oo
is impossible.

(b) No. Suppose that there is an analytic function g on |z — 20} < R + € with
g(z) = f(z) for |z ~ 2] < R. Since f and g are anslytic and agree on
|2—20] < R, the Taylor scries of g, 3 g° an(z—2)", is valid for |z— 29| < R+e.
Heuce the radius of convergence of the given series is greater than R, which
is impossible (since it cquals R).

Example 6.1.12

(a) Suppose [ is given by the power series f(z) = 3 50 gan(z — 20)" valid for
|2 —20) < R. Show that if |2; — 29| < R, then the Tagylor serics for [ centered
at 2, is

Z"k(z -z), where b = i (k+m)!ak+m(zn - 20)"'] .
£=0

1
= kim!

(b) Work out the first few terms, starting with the principal branch of log2 at
20=1andz =(14+17)/2.

Solution

(a) By taking the kth derivative of the series expansion for [ about zg, we find
for |2 — zo| < R that

M) = Z(k +m)(k +m —1)...(m +1)oxpm(z — 20)™

ax4m(z = 20)".

m=0
Thus the Taylor series of f around 2, is

SETLTSCRES 51 ) {C= IR
2
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This converges to f(z) when |z ~ 21| < R — |z; — 25| but may actunally have a
larger radius of convergence. If it does. then it gives an analytic continuation
of f by power series.

(b) The principal branch of log() + w) for |w| < 1 has the expansion
log(l +w) = Z (-l) _

n=1

Setting w = z-1giveslogz = Y 00, [(-1)"~ /u}(z—1)", walid for |z—-1] < 1.
Thus ag = 0 and a, = (-1)"-/n for n > 0. Since z; — zo = (i — 1)/2, we get

b BT L,

m—l
_ (m-t-l)!(—l)'""“' i—-1\" & /i-i\"
b‘_mzﬂ m! m+l(2)=mz=o(2)
1
= Ta-pp 't
and
o (ma 2 (1) -1\ 13 i\"
b = 'g Wl m+2 (2 ) “2';("‘“)( )

S
[ CAT

Example 6.1.13 (Conformal Maps of Annuli)? If0 < r < 1, and we define
the annulus A, = {z | r < 2| < 1}, let C, = {zsuchdmtlzl = r}, and let
C) = {s such that |z| = 1}, so that the closure of A, is cl(A,) = C, U A, UC).
Prove the follouring: Supposc 0 < r <1 and 0 < R < 1 and thal f is a ane-to-one
analytic map of A, onto Ap that extends to a one-to-one continuous map of cl(A,)
onto ci(Ap). Then r = R and f must be one of two types: either (i) a rotation,
where there is a real constant 0 such that f(z) = €'z for all z in A,, or (ii) a
rotation and inversion, where there is a real constant @ such that f(z) = re® [z for
all z in A,.

Solution The function f must either map C; to G and C, to Cp or interchanyge
the inner and outer circles. If the latter holds, then f(r/z) is another map of A,
onto Ag that does not interchange them. Thus, we may assume that f takes C,

2There is a vich liternture about conformal maps of regions that are not simply connected. The
subject is complicated because there is no theorom as broad in scope as tho Rimpann Mapping
Theorom. In some sense the presence of more Lhat ane boundury component restricts the possible
maps. This example shows how to use thn Schwarz Reflection Principle 6.1.4 ta study the situation
for an annulus.
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to C\ and CTto Cn continuously. The extended Schwarz Reflection Principle 6-1-5
shows how to continue / analytically to a map from the larger annulus Ari onto
An*so that the continuation is again continuous on the boundary and takes Ch
to Cfp. This process may be repeated indefinitely to extend / to an increasing
sequence of annuli

Afd Af9 C AfA Cl *»e
mapping respectively onto
An C An>C An* C --- -

(See Figure 6.1.20.) Each extension maps to Cn*" and the annuli between
them correspondingly.

Figure 6.1.20: Conformal maps of annuli.

Since R7n —£0 asn -* 0o. weget lim._0f(z) = 0. Thus z «=0 is a removable
singularity and setting /(0) = Oserves to complete the extension of/ to an analytic
function ofthe disk D = {z such that |z| < 1} to itselfwith /(0) = 0. The extended
function satisfies the conditions of the Schwarz Lemma 2.5.7, so \f(2)\ < |z| for all
z. Since Cr goes to Cn, this forces R < r. The process could just as well have been
applied to / -1, which takes An to Ar. This would giver < R, sor = R. Finally,
this shows |/(z)| = |z| on each of the circles C*n, so f must be a rotation by tbe

Schwarz Lemma. =

E xercises

1. (@) Letf(z) =ci¥*—1. Ifz, = 1/2jrm, then z,, »0and f(z,,) = 0, yet /
is uot identically zero. Docs tins contradict the Identity Theorem 6.1.1
Why or why nut?

(b) Is the Identity Tlieorem true for harmonic functions?
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2. * Let h(x) be a function of a real variable x € R. Suppose Hurt h(x) =
which converges for x in some interval ] —fl,V [ around O, where
4 > 0. Prove that h is tlie restriction of some analytic function defined in a

neighborhood of O.

3. Let/ be analyticin a region A and let-zt, e A. Let. F(zi) 0. Show that
/ is not constant on a neighborhood of zi-

4. Let/ be analytic and not identically zero on A. Slww that if f(zo) = 0, there
is an integer k such that f(zo) = 0= ... = Fk~I*(zo) “ ‘d /* (z d) f10.

5. Prove the following result of Karl Weierstrass. Let f(z) = zni. Then
/ cannot be analytically continued to any open set properly containing A —
{2 sudi that \z2\ < I}. Hint: First consider 2 = re2” p* where p and q are

integers.
6. Formulate a Schwarz Reflection Principle for harmonic functions.

7. " Suppose that/ can be continued analytically alonga curve 7 in the manner
shown in Figure 6.1.21. Show that/ can be continued by power scries (in a
finite number of steps).

Figure 6.1.21: Analytic continuation of / along a curve from z0 to o".

8. Discuss tbe Riemann surface for y/z2 —1.
9. Discuss the Riemann surface for \fz.

10. Discussthe relationship between Proposition 2.2.6 and the Monodromy Prin-
ciple 6.1.9.

11. Consider the power series JE0°(—}) " 2n defined in |r| < 1. To what domain
in C can yon analytically continue this function?

12. Sliow that if / is an analytic map of {2 | rj < \z2\ < JRj} one-to-one onto
{2 | i < |z| < fi?}, whidi extends to a continuous map of {2 | ri < \z2\ < JZj}
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one-to-one onto {z | rz < |z| < Ry}, then Ry /ry = Ra/re. Give a description
ol all such functions.

13. Let A be a region. let f: A — C, and let « :ja, b{— A be a smooth non-self-
intensecting curve with o/(t) # 0. Assume f is continuous on A and analytic
on A\q.

() Show that f is analytic.
(b) Use (a) to prove the Schiwarz Reflection Principle.

6.2 Rouché’s Theorem and Principle of the
Argument

In this section we develop some properties of analytic functions that are used to
locate roots of equations within curves. The main tool will be the residue theorem.

Root and Pole Counting Formula The main results of this section will be
those mentioned in the title. It is convenient to begin with a formula that counts
the routs of an equation within a clased curve. A more intuitive version will he
given a8 a corollary of the following precise version.

Theorem 6.2.1 (Root-Pole Counting Theorem) Let f be analylic on a re-
gion A czcepl for poles at by,... by, and zeros at ay,... a6y, counted with their
mulliplicities (thel is, if ly is a pole of order k, then by is to be repeated k times
in the list, and similarly for the zeros a;). Let v be a closed curve homotopic lo o
point in A and passing through none of the points a; or by. Then

f'(2) |5 =
dz =27 | I(ma;) = Y I(mibr)| -
Y f(Z) Jj=t =1

This root-pole counting formula applics in particular to meromorphic func-
tions, that is, functions defined on C except for poles (sce §3.3). There can be only
a finite number of poles in auy bounded region, since poles are isolated.

Proof Fimst, it is clear thut f/(z)/f(2) = g(z) is analytic except at the points
@yees 1 Ouby,y. .. b TF £ has a 2ero of order k at a3, ' has a zero of order & - 1.
so f'/f = g has a simple pole at a; aud the residue there is k. This is because
we can write f(z) = (z ~ a;)*¢(2), a5 waus shown in §3.2, where ¢ is analytic anc
&(a;) # O; therefore,

g(z) = Kz = a5)* (2} | (2 = a;)"¢/(2) = k + ¢(2)
(z-a;)é(z) ~ (z-a;)¢(z) z-a;  &(z)
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Thus, the residue 84 a; is clearly k. Similarly, if b is a pole of order &, we can
write, near b,

_ _o(z)
f(z}= G-

where ¢ is analytic and ¢(l;) # 0 (see Proposition 3.3.4(iv)). Proceeding as we did
with the points a;, we sce that vear by,

+ ¥
ek

80 the residue is —k. By the residue theorem,
[' 9(2)dz = 2mi {Z'lnﬁ(a;ns)lf (1:05) + Z'[Rescq; b)) (v b:)} '
J t

where ¥’ means the sum over the distinct points. Sinec the residuc cquals the
number of times a; occurs and minus that numbcer for the by, this expression becomes

2mi [Zl(v,a,) ZI(-y,b;)] ]

=1

As its name implies, the root-pole counting formuln may be used for counting
zeros and poles.

Corollary 6.2.2 Let v be a simple closed curve:
(i) If f is analylic on an open sel containing <y and ils inlerior ezcept for finitely
many zeros and poles none of which lie on «, then

I'(z)
/ Lz =ami(z; - P)),

where Z; is the number of zeros of f inside y and Py the number of poles of
f inside -y each counted with their multiplicitics (orders).

(ii) Root Counting Formula If { is analytic on an open sel conlaining v and
ils interior and f(2) is never equal to w on v, then

/,f'(’) dz = 2miN,

(z) ~w

where Ny, is the number of roots of the cquation f(2) = w inside v counted
with their multiplicilics as 2eros of f(z) — w.
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Proof Since v is simple the index of iy with respect to a; is 1 if g; is inside -y and
0 if it is outside. Theorem 6.2.1 thus gives part (i). Part (ii) follows by applying
part (i) o g(z) = f(z) ~w. W

Principle of the Argument We now consider a useful consequence of the root-
pole counting theorem. For a closed curve 4 and 2o not on 4, the change in argument
of z — zp as z traverses 4 is 27 - I(7: 29). This is the intuitive basis on which the

index was developed; it is written A, arg(z - 2zg) = 2% - F(y; 20} (sce Figure 6.2.1).

C/

Aparg (s ~zg) = 2x Syuglz-sy)=dx

Figure 6.2.1: Change in the argument of 2 — 2y when the two curves are traversed.

Next we want to define A arg f, vhat is, the change in arg f(2) as 2 goes once
around . Intuitively, and for practical computations, the meaning is clear; we
merely compute arg f(7(t)) and lct ¢ run from a to b if -y : e, 8] — C, then look a1
the difference arg f(7(b)) — arg f(v(a)). We choose a branch of the argument such
that arg f(y(¢)) varies continvously with ¢&. Equivalently, by changing variables, we
catl let ¥ = f o and compute A; argz. This leads to the following definition.

Definition 6.2.3 Let f be analylic on a region A and lel  be a closed curve in A
homotopic to a point and passing through no zcro of f. We define
Ajargf =2x-I(fo;0).
(The index makes sense because 0 does not lic on fo+.)
In examples, we can make usc of our previous intuition about the index to
compute A, arg f. The argument principle is as follows.

Theorem 6.2.4 (Principle of the Argument) Let f be analytic on a region 4
ezxcept for poles al by,... b, and zeros al a;,-..0, counted according to their
multiplicity. Let 4y be a closed curve homotopic to a point and passing through ne
a, orby. Then

Ayagf=2x [Zl(v;aj)—zf('y:b:)] .
=1

=1
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Proof By the Root-Pole Counting Theorem 6.2.1, it suffices to show that

v

since f has no zeros or poles on 4. Indeed,
, . dz
1A.,arg}'=2m-!(fo'y;0)=/ —
Jon %

by the formula for the index (see §2.4). Letting « : [2,b) — C, we have

dz _ (P16, _ [ Fat)
/,,, z /: ‘}(7(t)) o= f (1) Toxtoy 7 0t
by the definition of the integral and the chain rule. The latter integral is equal to

f Lf'(z)/  (z))dz by definition. (I 4 is only piecewise C!, this holds only on each
mt.erval wherc 4/ exists, and we get the result by addition.) @&

The Principle of the Argument 6.2.4 is usually applied in the case where vy is a
simple closed curve. Then we may conclude that the change in arg f(2) as we go
once around 7y (in a counterclockwise direction) is 2n(Zy — Py) where Z; (or Py)
is the number of zeros (or poles) inside v counted with their multiplicities. It is
somewhat surprising, a prioti, that Z; — Py and the argument change of f are cven
related.

This may sound familiar to the alert reader who remembers a trick from calculus
called logarithmic differentiation. If -y is a small segment of curve short enough so
that f(v) is a curve segment that lics in a balf plane as in Figure 6.2.2, we can
define a branch of logarithm with the branch cut leading away from that half planc
by an appropriate choice of Lhe reference angie for defining arg 2. Then along y we
bave

I'@)
Floe s = 13,

z
[ 5t = mog () = Atogisio + i neg 1)
For a closed curve oy we can do this along successive short parts of the curve using an
appropriate choice of logarithm for each. When we rcturn to the starting point, the
contributions for A log|f(z)| will all have canceled out. but not thase for A arg f(z),
since we have kepl changing determinations of argument.

Rouché’s Theorem The argnment principle can be used to prove a very useful
theorem that bhas many applications, some of which will be given throughout the
remainder of this chapter.
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Figure 6.2.2: Logarithmic differentiation and the principle of the argument.

Theorem 6.2.5 (Rouché’s Theorem) Let f and g be analytic on a region A
ezcepl for a finite number of zeros and poles in A. Let v be a closed curve in A
homotopic o a point and passing through no zero or pole of [ or g. Suppose that
on 7y,

1£(z) - g(2)) < I/ ().

Then (i) A..,arg[ = A, urgg and (i) Z; — Py = 2, — P, where Z; is given by
Z; = Y i, Hmiaj), t}w a; being the zeros of [ counted with multiplicities, and
with Py, Z,. P, being defined similarly.

Proof Since f and g have no zeros on 4, we can write our assumption as
9(z) _
I(z)

Thus, g(z)/1(z) = h(z) maps v into the unit disk centered at 1 (sec Figure 6.2.3).
We must have I(h o ;0) = 0, since ko is homotopic to the point 1 in that disk
(which does not contain 0). Thus,

W (z)
L h(z)

11<1 on «.

= tA, argh = 27i I(h o v;0) = 0.

We compute that

W) _ 4@ F@)
hz) ~ o(z) ~ f(2)

and thus

¢G),. _ [ 1)
ek / T ™
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Figure 6.2.3: The image ol -y nnder h.

Hence the result follows from the Root-Pole Counting Theorcm 6.2.1 and the
principle of the argument. &

An important special case of Roudié’s Theorem is the following. Lel v be a
simple closed curve and let [ and g be onalytic inside and on vy with v passing
through no zeros of | or g; suppose that |f(z) — g(z)] < |f(2)| on . Then f and ¢
have the same number of 2eros inside «v. Note that if |f(2) - g(2)] < |f(z)] on ¥,
then 4 automatically can pass through no zeros of f or g (Why?).

Rouché’s Theorem cun be used to locate the zerus of 1 polynomial. An jthas-
tration is given in Worked Example 6.2.12. Rouché’s Theorem can also be used
to give a simple proof of the Fundamental Theorem of Algebra, including the fact
that an nuth-degree polynominl has eractly n roots (see Exercise 9).

Hurwitz’ Theorem One of the theorctical applications of Rouché’s Theorem
6.2.5 is the following result of Hurwitz,

Theorem 6.2.6 (Hurwitz’ Theorem) Le! f, be a segucnce of analytic functions
on a region A converging uniformly on cvery closed disk in A to f. Assume that
J is not identlically zero, and lel 20 € A. Then f(z) = 0 iff there is a seguence
2, — zy and there is an integer N such thal f,(z,) = 0 whenever n > N (that is,
a zero of [ is a limit of zeros of the functions f, ).

The theorem will follow frowm the next proposition.

Proposition 6.2.7 Let f,, be a sequence of functions analylic on a region A that
converge uniformly on cvery closed disk in A to f. Assume [ is nol identically 0
and that v is a simple closed curve that together with ils interior is conlained in
A and that passes throngh no zercs of f. Then there is an inleger N(-y) such that
cach f, with n > N(v) has the same number of zerps inside v as does f (counted
according to multiplicity).
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Proof Since |f| is continuous and never 0 on the compact set =, it has a nonzero
minimum m on 7; lel us say |f(z)] 2 m > 0 for all z on 4. The curve is covered
by a finite number of closed disks, so the convergence of f,, to f is uniform on «.
Accordingly, there is an integer N(v) such that |fo(z) — f(2)| < m < f(z) for all 2
on v whenever n > N(y). Rouché’s Theorem 6.2.5 applies, and we conclude that f,
and f have the same number of zeros inside 7, as desired. (Note that f is analytic
on A by the Analytic Convergence Theorem 3.1.8.) W

Proof of Theorem 6.2.6  Aguin, f is analytic on 4 by the Analytic Convergence
Theoran 3.1.8. Suppose f(29) = 0. Since f is not identically 0, the zeros are
isolated by the Identity Theorem 6.1.1. There is a number § > 0 such that f(z)
is never 0 in the deleted neighborhood {z | 0 < |z - 2| < 8}. For each positive
integer k, let 4 be the circle {z such that |z — 2| = §/k}. Pick N;. as N(y) by
Proposition 6.2.7. Then n > N, implies 1hat f,, has at least one zero z, inside ;.
That is fu(2s) = 0. For n > N; we have |2, — 2] < 8/k. This proves the theorem
with N = N, (choose the 2, inside . forn> N;). W

We must assume that f is not identically zero. Consider, for example, the
function f,(z) = €°/n, which approaches zero uniformly on closed disks (Why?)
but for which f,, has no zeros.

Corollary 6.2.8 Lel f, be a sequence of functions analytic on a region A that
converye uniformly on closed disks in A to f. If each [q is onc-to-onc on A and f
is nol constant, then [ is one-to-one on A.

Proof Suppose g and b are in A and f(a) = f(b). We want to show that a = b.
Cousider g.(2) = fa(2) — fu(a) and ¢(2) = f(z) - f(a). Then g, — g uniformly on
closed disks in A and g(b) = 0. Since g is not identically 0, Hurwitz' Theorem 6.2.6
says there is a sequence 2, — b with gn(z,) = 0. That is, f,,(zn) = fa(e). But f,
is one-to-one, 50 z; = a. Sinoce 2, — b, we must have a = b, as desired. W

It is possible for one-to-one functions to converge uniforinly on closed disles to a
constant function. For oxample, the functions f,,{z) = z/n converge uniformly on
the unit disk to the constant fimction f(z) = 0.

5 One-to-One Functions Amnalytic functions that are one-to-one find many use-
ful applications. The term schlicht (simple) function is often used. We now relate
one-to-one functions with the Inverse Mapping Theorem. Again Rouché’s Theorem
is the appropriate tool.

Proposition 6.2.9 If f : A — C is enalylic and locally one-to-one, then f'(zy) # 0
Jor all 25 € A. It follows from the Inverse Function Theorem that f(A) is oper.
and, if [ is globally one-to-one, that f~! is analytic from f(A) to A.
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Proof Suppose that, on the contrary, for some point zy we have f'(2) = 0. Then
f(2) — f(20) has a zero of order & > 2 at zg. Now f is not constant and thus the
zevoss of [/ are isolated. Thus, there are 2 § > 0 and an m > 0 such that on the
circle |2 = zg] = §,|f(2) - f(z0)] 2 m > 0 and f/(z) #0for 0 < |2 — 2] < 4.
For 0 < n < m, we conclude that f(z) — f(z0) — n has k zeros inside |z — 2| = 4,
by Rouché’s Theorem 6.2.5. A zero cannot be a double zero, since f'(z) # 0 for
|z — 20| £ 8.2 # 20. Thus f(z) = f(z0) + 5 for two distinct points z and therefore
is not one-to-one. This contradiction meaus that f/(zp) # 0, as was to be shown.
[ |

Another basic property of one-to-one functions is the following.

Theorem 6.2.10 (One-to-One Theorem) Lel f be analytic on a region A and
let «y be a closed curve homolopic Lo a point in A. Suppose that I(y;2) =0 or 1.
Define the set B = {z € A| I(v;2) # 0} (the “inside” of v). If [ is such that each
point of f(B) has index 1 with respect to the curve 7 = [ o, then f is onc-to-one
on B.

Proof Consider, for 29 € B and wy = f(20),

) £'(z)
N=e— | —"-dz.

27i J,, f(z) —we
By Corollary 6.2.2, N cquals the number of times that f(2) = wp on B. We
therefore must show that it equals 1. Letting 4 = f o v, we conclude, as in the
principle of the argument, that

=.l.,/_——' dz,
27l j5 z —wy

which is the index of wg with respect to 4. Thus, N = 1 and thercfore f(z) = wy
has exactly one solution, z = zg. This means that f is onc-to-onc. W

The one-to-one theorem becomes more intuitive if we use the Jordan curve
thcorem. Let « be a simple closed curve and let B be its interior. Suppose that
the set f(B) is bounded by the curve ¥ = f o . The hypothcsis of the one-to-oue
theorem will be fulfilled if 7 is a simple closed curve (since this means that f should
be one-to-one on ). Therefore, the result may be rephrased as follows: To see if
an analytic function is onc-lo-one on a region, it is sufficient to check that it is
one-to-onc on the boundary.

Worked Examples

Example 6.2.11 Let n é: a positive integer and let a be a real number satisfying
a > ¢. Show that the equation e* = az" has n solutions inside the unit circle.
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Solution Lel f(z) = €* — az” and let g{z) = —az". Notice that g has a zero of
order n at the origin, so g has exactly » roots inside the unit circle |z} = 1. We
will be done if we show that f and ¢ have the same number of roots inside the unit
circle. To do so we shall show that

I£(z) — 9(2)} < lg(2)|
for |z| = 1. However,
1f(z) —9(2)| =le"| =" <e

since |r] < 1. Also, |g(z)] = |az"| = @ > ¢. so the result follows by Rouché’s
Theorein 6.2.5.

Example 6.2.12 Use Rouché’s Theorem to determine the quadrants in which the
zeros of 2% + iz2 + 2 lie and the number of zeros that lie inside circles of verying
radii.

Solution Let g(z) = 2%, f(2) = 22 + 22 + 2, and note that
() ~ 9(a)l = bia® +2| < |2 +2
and that |g(z)] = |z]*. Hence if r = |2 > V2, we bave
1£(2) — 9(2)] < lo(2)}-

Since g does not vanish on any circle of positive radius, the preceding inequality
shows that f does not vamish on circles with radius > /2. Rouché’s Theorem then
shows \;l_rat, all four roots of f lic inside these circles, thal is, inside the closed disk
l2l € V2.

Next, let #(z) = 2% + 2i22 = 22(22 + 2i). Clearly, h has a double root at 0 and
two additional roots on the circle |2| = v2. Furthermore,

)
|22

For any choice of r with 1 < + < /2, and hence f do not vanish on the circle

fz| = r and |f(2) — h(z)] < |(2)|. Rouché's Theorem shows that f has precisely

two zeros in |2] < r for any of these values of r. Letting r approach 1 and V2, we

see that f has two raots in the dosed disk [z 2 I and two on the circle |z = /2.
Finally, let &(z) = 2. Then

(z) - h(2)|=|-i2 + 2 = |22 + 2i| =

1£(2) = k(2)] = |2 + 4§22 < |2} + J2)? < 2 = |&(2)|

whenever |z] < 1. Arguing as before, for any r with 0 < r < 1,k and hence f do
not vanish in |2} < r. Combining these three results we find that f has two zeros
on |z| = 1 and two ou |2| = V2.
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Now we turn to an analysis of the quadrauts in which the roots lie. For 2 either
real or purcly imaginary, f(2) = 24 4+ i22 + 2 has a nonzero imaginary part unless
2z =0. Thus f has no roots on the axes. Consider a large quarter circle as shown
in Figurc 6.2.4. We shall compute A, arg(z* +i22 4 2) and use the Principle of the
Argument 6.2.4. Along the x axis z is real and f(2) lics in the first quadrant. Also
£(0) =2, and as R — oo, arg f(R) — 0 since

. 2 . 9
l“'&f(m=afsff‘ (]+1Lf.2+ﬁ) =arg(l+l—;2-+ﬁ‘-)

tends to 0 as R — oo. Since f takes its values in the first quadrant, we conclude
that the change in the argument is zero as 2 moves from 0 to 00. Along the curved
portion of 7, z* clearly changes argument by 27(= 4 x %/2). As R — 00,27 is the
limiting change in argument for f(2) as well, as we see by writing

f(z)=z‘(l+ziz+;2;).

Figure 6.2.4: The curve 7 used to locate the quadrants in which the zeros of the
polynomial 2¢ + iz + 2 lie.

Similarly, coming down the imagioary axis there is, in the limit of large R, no
change in the argument of f. (If £(0) were not real, this device would still give the
limiting behavior of the argument at infinity and the value at zero, so the change
in the arguwment, at least up to multiples of 27, can be inferred.) We conclude that
the change in argument as we traverse - is 2%. From the Principle of the Argument
6.2.4, there is exactly one zero in the first quadrant. By inspection, f(z) = f(—z),
%0 —z is a root when z is. Thus there mnust be a root in cach quadrant. Therefore,
we must have one of the two possibilities shown in Figure 6.2.5. The methods used
fiere do not enable us (o tell which of these possibilities actually occurs without more
detailed analysis. We can check this example by finding the roots directly using
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the quadratic formula twice; however, in other examples a diroct computation may

be impossible or impractical whereas the methods described here can nevertheless
be used.

y ¥

(BY.. (D)

/

Figure 6.2.5: Locating the roots of the polynomial z* + iz2 4+ 2.

Example 6.2.18 Let f(z) = T nvganz®. Assume that ap =0 and a; = 1. Prove
that f is one-lo-one on the unit disk {z such that |z| < 1} & 3 2, ljay) < 1.

Solution The series for f converges for |2} < 1 since, as a conscquence of the
assumed inequality 372, ljai] < 1, we get |an| < 1, and thus |ap2"| < |2|*; we
know that ¥ |z|™ converges for |2| < 1. Thus f is analytic on {z such that |2| < 1}.

Let |zo] < 1. We want to show that f(z) = f(z) has exactly onc solution, zg.
Let g(2) = z — zp, which has exactly one zero. If we set /i(z) = f(z) ~ f(z), then

h(z) - g(2) = Z an2” — Za,‘z,',‘.
n=2 n=2

To estimate this we use the following trick. Let ¢(2) = 300, 2,2". Then
[#(2) — $(z0)] < |max |¢'(()]) - |z — 2ol

where the maximum is over those  on the line joining 2¢ to z (Why?). However.
o [ -
WO =1 nanl™ ' < ) mlanf <1,
n=2 n=2

since |¢] < 1. Hence
[r(z) = g(2)| = 16(2) — #lz0)| < |2 = 20l = lo(2)I.

Thus, by Rouché’s Theorem, i(z) = f(z) — f(20) has exactly one solution, namely.
z = zp; this proves the assertion.
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Example 6.2.14 Find the largest disk centered at 29 = 1 on which the funciion
f(z) = #* is one-to-one.

Solution This problem is intended to provide 2 warning against a common error.
The derivative f/(2) = 42° is 0 only at z = 0. In particular, f(z) is ncver 0 on the
disk D(1;1). However, we cannot conclude that f is one-to-one on this disk. In fact
itisnot. f((1+4)/v2) = f((1 —i)/v2) = —1. I { is to be one-to-one near a point,
the derivative must not be 0 at that point, and f'(z) # 0 is enough to guarantec
that f is oue-to-onc in some neighhorhood of 2. But f’ being never 0 on a large
region is not enough to force f to be globally one-to-one on the whole region. In the
present example f(re'/4) = f(re=*/*) for any r. Thercfore the function will cease
to be one-to-onuc as soon as the disk hits these 45° lines. This oceurs for D(1; R)
when R = 1/v/2. See Figure 6.2.6.

y

% .

Figure 6.2.6: The function f(z) = 2* is one-to-onc on this disk.

Methods based on the one-to-one theorem (6.2.10) that involve looking at the
boundnry are usually more useful than examining the deriwative. If 2, = ryci®
and 2z = ryef® are on the circle of radius R around 1 with 0 < R < /2, then
—R/d <th,0; < ﬂ’/4. :1‘ = zg forces ry = ro and et = e‘“’, s0 4(6y —02) = 2mwn.
This cannot happen with 8, and @; both between —#/4 and % /4 unless 8, = 6.
But then 2; = z3. {We have actually shown that f is one-to-one on the open quarter
plane {2 | —-%/4 < argz < x/4).)

Exercises
1. How many zcros does 2% — 425+ 22 — 1 have in the disk {z such that |z} < 1}?
2. How many zeros docs z¢ — 5z + 1 have in the annulus {z | 1 < |z| < 2}?

3. Show that there is cxactly one point z in the right half plane {z | Rez > 0},
at which z + ¢™* = 2. Hint: Counsider contours such as the one in Figure
6.2.7.
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Y

Figure 6.2.7: Contour for Excrcise 3.

4. Show that if p(2) = 2" + @, 2"} +... 4+ a)z + ag, then there must be at
least one puint 2 with |z} = 1 and |p(2)] 2 1. Hint: If |p(z)] < 1 everywhere
on {|z| = 1}, how many zeros bas a,—12""! +... + a1z + ag?

5.° Let £ be analytic inside and on the unit circle |z| = 1. Suppose that 0 <
If(z)] < 1if jz] = 1. Show that f has cxactly one fized point (defined Lo be
a point g such that f(z) = zg) inside the unit circle.

6. Show that e® = 52° — ) has three solutions in the disk {z such that J2| < 1).
Hint: Think about Worked Example 6.2.11.

7. Show that the conclusion of Exercise 5 still holds if the assumption 0 <
1£(2)] < 1 is replaced by 0 < |f(2)] < 1, allowing for the exception that the
fixed point might be on the unil circle.

8. Let g = Y. 2%/kl. Let D(0; R) be the disk of radius R > 0. Show that
for n large enocugh, g, has no zeros in D{0; R).

9.° (Fundamenial Theorem of Algebra) Use Rouché’s Theorewn 6.2.5 to prove
that if f(2) =ap +arz +...+a,2",n 21, and a, #0, then f has exactly n
roots counting multiplicity.

10. Supply the details of the following proof of Rouché’s Theorem: Under the
hypotheses of Theorem 6.2.5, the function H(s,t) = sg{v(t)) + (1 — ) f(+(1)
is a closed curve homotopy between the curves f o4 and go« in C\{0}. It
follows that I(f o v;0) = F(g © 4:0). The conclusion of Rouché’s Theorem
follows from this and the argument principle.

11, * Extend the Root-Pole Counting Theorem 6.2.1 to include the following result.
If [ is analytic on A except for 2eros at ay,... ,a, and poles at by,... ,b,,
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(each repeated according to its wultiplicity), if & is analytic on A, and if
7 is a closed curve homotopic to a point in A, passing through none of
a,... .a,.,b;,... ,bn” then

f -‘; ((z))h(z)dz 2ri Zh(a.)l('r,a.) Zh(bk)l(‘rbe)
{=1

12. Supply the details of the following proof (due to Carathendory) of Rouché’s
Theorem: The function

o [aa-are,
90) + (1= NJG)

is a continuous function of A for 0 € A < 1. But its valuc is always an integer,
§0

F(\) =

Z;— Py =F(0) = F(1) = 2, - P,.

13. If f(z) is a polynomial, use Excrcise 11 to prove that
J'(2)
zdz
v (2)
is the sum of the zeros of f if the circle v is large enough.

14. (a) Let f: A — B be analytic, ouc-to-one, and onto. Let w € B and let 4
be a small circle centered at 2p in A. Use Exercise 11 to prove that

5w = g [ s
for w sufficiently close w0 f(zg).
(b) Explain the meaning of
1[I

—————dz
wi J, f(2)—w
15. Let f(z) be a polynomial of degree n.n > 1. Show that f maps C onto C.

16. Suppose g,(2) = Y peg 1/(k!2¥), and let ¢ > 0. For large enough n, are all
the zeros of g, in the disk D{(0;¢)?

17. If f(z) is analytic and has n zeros inside the simple closed curve v, must it
follow that f’(z) bas n — 1 zeros inside 47

18.° Iinen.tc the zeros (a5 was done in Worked Example 6:2.12) for the polynomial
2" =245=0.
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19. Find an r > 0 such that the polynomial 2% — 422 4 z — 4 has exactly two roots
inside the circle |z} = r.

20. Let f be analytic inside and on |z| = R and let f(0) # 0. Let A = max |f(z)]
on |z| = R. Show that the number of zeros of f inside |2} = R/3 does not
exceed

1 M
g2 8 7o)’

Hint: Let h(z) = f(2)/I(z — 21) - (z — 2,)) where z; are the 2zeros of £ inside
|2l = R/3 and apply the Maximum Modulus Theorem 2.5.6 to k.

21.° Show that z +— 22 + 3z is one-to-one on the sct {z such that [z] < 1}.

22. What is the largest disk around z¢ = 0 on which the function in Exercise 21
is one-to-one?

23.° Prove that the following statement is false: For every function f analytic on
the annulus { < Jz| < §, there is a polynomial p such that |f(z) — p(2)] < §
for jz| = 1.

24. Let { be analytic on € and let |f(2)] < 5/]z] for all |z] > 1. Prove that f is
constant.

6.3 Mapping Properties of Analytic Functions

Further Jocal properties of analytic functions (that is, properties that depend only
on the values of f({z) for z in a ncighborhood of a given point zo) will be proved in
this section. Alternative proofs will be given here of the Inverse Function Theorein
1.5.10, the Maximum Modulus Theoran 2.5.6, and the Open Mapping Theorem
(stated formally for the first time in this section, but previously mentioned in Exer-
cise 8, §1.5). We can prove these theorems and also obtain information concerning
the behavior of a function near a point by using the root counting formula (see
Corollary 6.2.2):

1 My, . R
5mi J., T(z) - wdz = pumber of solutions of f(z) = w inside v,

where the roots are counted with multiplicity.

Local Behavior of Analytic Functions If f(z5) = we with multiplicity & in
the sense that f(z) — wo has a zero of order & at 2, then we shall show that f
is locally k-to-one near zp. First consider the special example f(z) = z*. This
function has a zero of order k at zp = 0 (here wg = 0). For all w near 0,z* = «
has exactly k solutions near 0.
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To see that this behavior is inherited by a more general function / for which
J(zg) = u;0 with multiplicity k, consider the power series expansion of/ around zg-

a
/(*) - WO=53 M 2% *)'m

For |z —zo| that are small enough, wc might guess (conrcctly) that the behavior of
tlie lowest-dcgree nonvanishing term. a*(z —zo)fc, will dominate.

Theorem 6.3.1 (Mapping Theorem: Informal Version) Suppose f lakes on
the value v>0 at zq with multiplicity k. Then for all to sufficiently near too, Hie
function f takes on the value to exactly k times near zq (counting multiplicities).
For all to still nearer wo, the k roots off(z) = w near zq are distinct

The more precise statement is the following.

Theorem 6.3.2 (Mapping Theorem) Letf be analytic and not constant on a
region A and let so € A. Suppose that f(z) —tt'o has a zero of orderk > 1 at zo-
Then there is an ij > 0 such thatfor any c £ there is a 6 > 0 such that if
lw —mo| < S, then f(z) - to has exactly k roots (counted with their multiplicities)
in the disk\z —za\<e (see Figure 6.3.1).

Figure G.3-1: This function is two-t*w>ne near Zo-

In fact, there is a A> 0 (probably smaller than rj) sudi thatfor any e €)0, A),
then: is a 6 > O such that if 0 < |u/ —tuo| < 6, then f(z) —w has exactly k distinct

roots in the disk 0 < |z —Z0| < <e

Proof Since/ is not constant, the zeros of f{z) —t»0 are isolated. Thus there is
an 4 > Osudi that for |z —zo| < ij,/(2) —too has no zeros other than zo- On the
compact set {z such that |z —ze| —c) (the circle 7 in Figure 6.3.1), f(z) —too is



400 Chiapter 6 Further Development of the Theory

continuous and never zero. Hence there is a § > 0 such that |f(z) —wo| 28> 0
for |z ~ zp] = e. Thus if w satisfies |w — wa| < &, then for |z — zg] = ¢, the following
hold:

@) f(z)-wo#£0
(i) f(z) - w # 0 (since f(z) = w would mean that |w — wy| > §)
(i) (f(2) - w) — (f(2) - wo)| = hw — wol < § S |f(2) - wal

By Rouché's Theorem 6.2.5, f(z) — w has the same number of 2cros, counting
multiplicities, as f(z) — uy inside the circle |z = 29) = ¢. Thus we have proved
the first part of the theorem. To prove the second part, notice that f’ is not
identically zero on A (because f is assumed to not be constant). The zeros of f/
are thus isolated. Therefore, for some A < 5, neither f(z) — wy nor f/(2) is zero in
|z = 20) € A except at zg. Observe that f(z) — w still has the same number of rools
as f(z) — wp for any w near enough to wp, but now the roots must be first-order,
hence distinct, since f’ is nonzero. @&

Open Mapping and Inverse Function Theorems The Mapping Theorem
tells us that on some disk centered at 2, f is exactly k-to-one. The theorem mnay not
be directly helpful in finding the size of this disk (sce the examwples and exercises at
the end of this section}, but often knowledge of its cxistence can lead to interesting
resuits.

A function f : A — C is called open iff, for every open set U C A, f(U) is
open. By the definition of an open set, this statement is equivalent to: For every
¢ > 0 sufficiently small, there is a § > 0 such that |w — wy] < § implies that there
is a 2,|z — zg| < € with w = f(z). In other words. if f hits wy, it hits every
sufficiently near wy. Careful reading of the definition of open set and examination
of Figure 6.3.1 show that the Mapping Theorein implics the next theorem:

Thearem 6.3.3 (Open Mapping Theorem) Let ACCleopenand f: A—C
be nonconstant and analytic. Then f is an open mapping; thal is, the image of any
open set under f is open.

Using the Mapping Theorem 6.3.2, we can also get an alternative proof of the
Inverse Function Theorem 1.5.10.

Theorem 6.3.4 (Inverse Function Theorem) Let f : A — € be analytic, let
zp € A, and supposc that f'(z0) # 0. Then there is a neighborhood U of zg and a
neighborhood V of we = f(20) such that f : U — V is one-to-one and onto and
f~1:V < U is analytic.

Proof The function f(z) — wp has a simple zero at zg since f'(20) # 0. We can
use Theorem 6.3.2 to find ¢ > 0 and & > 0 such that each w with jw — we| < § has
exactly one preimage z with |z — z] < ¢. Let V = {w such that jw — wp| < 6}
and let U be the inverse image of V under the map f restricted to {z such that
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|z—z2p| < €} (the shaded region of Figure 6.3.1). By the Mapping Theorem, f maps
U/ onc-to-one onto V. Since f is continuous, U is a neighborhood of 25. By the
Open Mapping Theorem, f = (f~')~! is an open map, so £~ is continuous from
V to U. To show that it is analytic, use

-1 1 J'{(w)
w) = =— —a——zdz
f ( ) 27 |s~gu]=e I(Z) -w
(scc Excrcise 14 at the end of §6.2). This is analytic in w from Worked Example
24.15. B

These ideas can he used as the basis for another proof of the Maximum Modulus
Theorem (see §2.5), as follows.

Theorem 6.3.5 (Maximum Modulus Theorem) Let f be analytic on a region
(open connected set) A. If |f| has a local mazimum at 29 € A, then [ is constant.

Proof Supposc that f is not constant and that zp € A. Since f is an open map,
for Jw — f(zq)| sufficiently small there is a 2 near zp with w = f(z). Choose w with
lw| > |f(z0)l. Specifically, choose w = (1 + 8/2)f(20) il f(20) # 0 and w = &/2 if
f(z0) =0 for § small. Then it is clear that f does not have a relative maximum at
20-

A similar proof shows that if f(zp) # 0, then f has no minimum at zy unless f
is constant. The Maximum Modunlus Principle 2.5.6 follows, as in §2.5.

Worked Examples

Example 6.3.6 Prove the following: If f is analytic near 2o € A and if f(z)—{(20)
has a zero of order k al zy, where 1 < k < oo, then there is an analytic function
h(z) such that f(z) = f(zo) + [h(z)]* for z ncar zp, and h is locally one-lo-one.

Solution Siuce k < o0, f is not constant. Since f(z) — f(zg) has a zero of order
k at zo, we can write f(z) - f(20) = (2 — 20)*6(2), wherc ¢(20) # 0 and ¢ is
analytic. For z near zg, ¢(2) lics in a small disk around ¢(2) not containing 0,
continuity. On such a disk we can define {/¢(z) and let h(2) = (2 — 20) ¥/9(2).
Then #'(z0) # 0, so by the Inverse Function Theorem, A is locally one-to-ane. See
Figure G.3.2.

Example 6.3.7 Determine the largest disk around 29 = 0 on which the function
f(z) =1+ z 4 22 is one-to-one.
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Figure 6.3.2: Worked Example 6.3.6 with k = 3.

Solution Since /'(0) = 1,/(z) —1 has a ample zero at 0, and the Mapping
Theorem (6-3-2) shows that / is one-to-one on some disk around za —0. Because
f(z) —1= 2-fz2= z(l + z), which has roots at 0and - 1, we know that f(z) - 1
has only one root in the disk {z such that |2| < 1}. This disk is the disk in the
first part of the Mapping Theorem, but that does not guarantee that / is one-to-
one on the disk; in fact, it is not. Tire Mapping Theorem shows only that f is
one-to-one on the subregion of the disk shaded in Figure 6.3.1, the preimage of
(u>such that \w —mol < 5}- We can find out what causes this phenomenon by
plotting the image of the unit circle. In this case f(z) m 1+ 2-fz2,20= 0, and
ulg= I. Thus,

m =l (araM "+aH 1**)"
/(0=3
I(*)=»

[(-d =i

[(-£) = -*

J(e2"/3) = 0

/(ed«/3) =0 ) _|7? ) :c_ 1 O~ )

Plotting these points, we find that the image of the unit circle is as shown in Figure
6.3.3.
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Figure 6.3.3: linage ofthe unit circle under f(z) = 1+ z + 3?2.

The index of the image curve with respect to the small shaded region is 2.
Therefore, each point here is hit twice by points in the unit disk; for example,
/'(—]) = Oand / (-8) *=8. The Mapping Theorem shows that / is two-to-one on
small neighborhoods of —5. Thus / will not be one-to-one on any disk containing
a neighborhood of —].

Consider the disk JD(0;r) = {2 such that |z] < r}. The boundary curve is the
circle 7r — {z sucli that |a] = r}. Asr gets smaller, the -troublemaking loop in
the image curve shrinks. For some critical ro it disappears. Forr > ro,/ is not
one-to-one on tv- For r < ro,/ is one-to-one on yr. By the One-to-one Theorem
(65.10), / is thus one-to-one on Z)(0;r), and the desired disk is D(0;r0). Ib find
rO, suppose that rtfOand re’* lie on yr and that f(rei0) —/{re’'*). Tlien

l+re*+rV?” =1+4+re* +f*c«*

Hence e*° + re ,2fl = e'* Hre*2*, so

re«et\V)(ege-V> _ c«(™a>) _ cr(o-My/*(e«(*~e)/2 _ ene-i>yiy
Thus,
re”+" 2ain(6 - tf) = -sin
In other words,
(") = (E=%)

One oftwo things must happen: eithersin|(6—")/2] = 0, in which *x»0—tp = 2?m
for some integer n, and thus rciO = re’*, or cos{(0 —tfr)/2) = —(1/2rjc- *N*""2-



404 Chapter 6 Further Development of the Theory

If r > }, the latter can happen for ¢ = —0; for example, at r = 1, it occurs
at the points €*"/S and ¢'™/3, If r < 4, this same condition cannot hold, since
Jcas|(6—)/2)| < 1. If r = }, it can happen only for 8 = ¢ = . The critical radius
is therefore ro = ;. Hence [ is one-to-one on the disk D(0; §) = {z such that |z| <
2} but not on any larger open disk. (D(0; 3) is the largest disk around 2o = 0 on
which f7(z) is never zero. It is not generally truc that this will also be the disk on
which f is one-to-onc (see Exercise 3)).

Exercises

I. Let f(z) = z + 22. For each 2o specified, find the largest disk centered at zg
on which f is one-to-one:

(@) =0 )z =1
2.° What is the largest disk around 2 = 1 on which f(z) = ¢* is one-to-one?

3. Tet f be anslytic on D = {z such that |z — zg| < #}. Let f(z) = wy and
suppasc that f(2) — we has no roots in D other than zp and that f'(z) is
never zero in D). Show that it is not necessarily true that f is one-to-one on
D. Hint: Consider 23,

4. What is the largest disk centered at zq = 1 on which f(z) = 2% is one-to-one?
Hint: See Exarcise 3.

5.° If f is analytic on 4.0 € A, and f'(0) # 0, then prove that near (0 we can
write f(2") = £(0) + [h(2)]" for somc analytic function h that is one-to-one
near (). Hint: Use Worked Example 6.3.6.

6. Let v : A = R be harmonic and nonconstant on a region A, Prove that z is
an open napping.

7. Use Exercise § to prove the maximum and minimmum principles for harmonic
functions (see §2.5).

8. Let f be entire and have the property that if B € € is any bounded set.
then f-!(B) is bounded (or perhaps empty). Show that for any w € C, there
exists z € C such that f(z) = w. Hint: Show that f(C) is both open amd
closed and deduce that f(C) = C. Apply this resuit to polynomials to deduce
yet another proof of the Fundiumental Theorcn of Algehira.

9. Show that the equation z = ¢*~,a > I, has exactly one solution inside the
unit circle.

10. Consider Worked Example 6.3.6 and take the case where & = 4. Visnalize the
local mapping in threc steps as follows:

zrt=(z-2)Ydz); tros=t s w=s+[(2).
Sketch this mapping.
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11. Suppose [ is analytic in a region A containing the closed unit disk D =
{z such that |z| < 1} and that |f(z)| > 2 whenever |z] = 1. If f(0) = 1, show
that { has & zcro in D.

12. Let f(z) = 35" anz" bave a redius of convergence R. Suppose that |e;) >
Y o attjan|r™! for some 0 < r < R. Show that f is one-to-oncon {2 such that [z} <
r} unless £ is constant. Compare your method with that used to solve Worked
Example 6.2.13.

Review Exercises for Chapter 6

1. Let { be analytic on {2z such that |z| < 1} and let f(1/r) =0.n = 1,2,....
What can be said abouat f?

2. Suppose that f and g arc analytic on the disk A = {z such that |z] < 2} and
that neither f(z) nor g(z) isever 0 forz € A. If

f'(i/n) _g'0/n) .
= for n=1,234...,
J(1/m)  9(1/n)
show there is a constant ¢ such that f(z) = eg(z) for all z € A. Hint: Consider
(f/9)(1/n).
3. Suppose that f is an entire function and that there is a bounded sequence of
distinct real numbers a;,az,a3.... such that f(ay) is real for cach k.
(a) Show that f(z) is real for all real z.
(b) Suppose @y > a2 > ag > ... > 0 and limg,o0ar = 0. Show that if
f(azn+1) = f(agy) for all n, then £ must be constant.

4. If f is analytic on the sct {z such that |z] < 1} and f(1 —~ 1/n) = O,n =
1,2,3,..., docs it follow that f = 07

3.° Let f he analytic and bounded on {z | Im z < 1} and suppose thal f is real
on the real axis. Show that [ is constant.

6. Let f be analytic and hounded on |z +1) > :"; and real on | — 1, 1[. Show that
f is constant. Hint: Uso the Schwarz Reflection Principle 6.1.4 from §6.1.

7. Let f be entirc and supposc that for z = x real, f(z + 1) = f(z). Sbow that
f(z+1)= f(z)forall z € C.

8.° Show that for n > 2, all the roots of z* — (22 + 2z + 1)/4 = 0 lic inside the
unit circle.

9. Suppose that f is analytic in C except for poles at n ki, n = 0,41, %2,....
What is the length of the longest interval Jzq — R, 29 + R in R on which
f(ma) + I'(To)(x — xo) + (2N ~ 20)2/2+. ..+ [N (mo)(x — Za) ¥ /K1 ...
converges?
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10. Let f: A — B be analytic and onto; assume that 2,2, € A,2) # 2, implies
that f(z21) # f(z2). Prave that f~! is analytic.

11. Let f bea polynomial. Show that the integral of f/f around every sufliciently
large circle centered at the origin is 2wi times the degree of f.
12.* (a) Prove Vitali’s Convergence Theorem. Lel f,, be analytic on ¢ domain A
such that

i. For each closed disk B in A there is a constant Mp such that
Ifn(2)l € Mg forallz€ B andn=1,2,3,....
ii. There is a sequence of distinel points z; of A converging to 2y € A
such that limy,_.co fn(2x) exists for k=1,2,....
Then f,, converges uniformly on every closed disk in A; the limit is an
analylic function. Hint: First take the case of a disk B with radivs R
and 2; — zg = the center of B. Use the Schwurz Lemma to show that
[fa(2) — fa(20}] < 2M|z — 2|/R- Then show that

Va(2o) = Fosplooll s =2 41y g

and deduce that f,,(20) converges. Let

In(2) ~ fn(20)
W)= e

and conclude that g,(2zg) converges. Show that in general, if
[
fa(2) =Y anx(z — 20)",
k=0

then a, 1 — ax as n — oo. Deduce that f;(z) converges uniformly
in |2 — 29| < R—e¢. Then use connectedness of A to deduce uniform
convergence on any closed disk.

(b) Show that if condition (i) is omitted, the conclusion is false. (Lot £,,(z) =
3".)

13. Let f be analytic on a region A and let 7 be a closed curve in A homotopic

to a point. Show that
7)
Re / =]=0
(L7
14. Let f(z) be analytic on {z | 0 < |z| < 2} and suppose that for n =0,1,2,..

./' et 2"f(z)dz =0.

Show that f has a removable singularity at z = 0.
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15. Let f be analytic and bounded on A = {2z such that |z| < 1}. Show that if f
is one-to-one on {z |0 < |z| < 1}, then f is one-to-one on A.

16.° Let |f(z)| < 1 when |2 = 1 and let f(0) = } mth [ analytic. Prove that
1f(2) < §5312) +1) for |z] € L and |£(2)] €1 for s<llsL

17. Let £ and g be continuous for |2| < 1 and analytic for |2| < 1. Suppose that
f = g on the unit circle. Prove that f = g.

18. If f(2) is analytic for |2| < 1 and if |f(2)] € 1/(1 - |z|), show that the
coefficients of the expansion f(z) = Y o0 a,2z" are subject to the inequality

lan] £ (n+1) (l+ %)” <efn+1).

19. Which of the following statements is/are true?

(a) The radius of convergence of 300,272 is 1/V/2.

(b) An entire function that is constant on the unit circle is a constant.

(¢) The residue of 1/[2'%(z — 2)) at the origin is —(2)~1°.

(d) I f, is a sequence of entire functions converging to a function f and if
the convergence is uniform on the unit circle, then f is analytic in the
open unit. disk.

2%

(¢) ,/ atcos6 aZ—1

(f) For sufficicntly large r,sinz maps the exterior of the disk of radius
r{{z such that |z| > r}) into any preassigned neighborhood of oo,

(g) Let f : € — C be analytic in the open unit disk and let f have a
nonrcmovable singularity at i. Then the radius of convergence of the
Taylor series of f at 0 is 1.

(h) Let f: C — C be analytic and nonconstant and let D be a domain in
C. Then f maps the boundary of D into the boundary of f({D).

(i) Let f be analytic on {z | 0 < |z| < 1} and suppaose that |f(z)| <
log(1/)z|). Then f has a removable singularity at 0.

() Suppose that f: C — C is entire and that f has exactly k zcros in the
open unit disk but none on the unit circle. Then there exists an € > 0
such that any entire function g that satisfies | f(2) — g(2)| < ¢ for |z| = 1
must also have exactly k zeros in the open unit disk.

20. Prove the Phragmén-Lindelaf Theorem:
(a) Supposc that f is analytic in a domain that includes the strip
G={z:eC|0<£Rez2<1}.

If lim,oo,cec f(z) =0 and if |f(it)] < 1 and |f(1 +it)| < 1 for all real
t, then [f(z)| €1 forallz€G.
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(b) If g is analylic in a domain conteining G, if lim, o :¢c9(2) =0, and
i lo(it}] < M and |9(1 +it)] < N for all real t, then
lg(z,)l < Ml-ﬂs:NRez.
Hint: Apply the result of (a) to f(z) = g(z)/M'—*N*.
21. Is it carrect to say thut 1/1/2 has a pole at z =07

22.° Prove that for the principal value of the logarithm, |logz| < r/(1 ~r)if
N-zlgr<i.

23. (a) Lot f : € — € be continuous on C and analytic on C\R. Is § actually
entire?
(b) Let f = C — C be annlytic on C\R. Is f entire?
24. Let P(z) be a polynomial. Prove that

| P(z)dz = -25P'(0).
=f=1

25. Find the radius of convergence of the series ) o’ 2°2".

26. Show that f(z) = (z® + 1)/(z% — 1) is one-toone on {z | Imz > 0}. Is it
one-to-onc on any larger set?



Chapter 7

Asymptotic Methods

This chapter gives an introduction to the theory of asymptotic methods, that is,
to various approximation techniques for limits. The chapter begins with infinite
products and the gapuna function. These topics are of interest in their own right,
and they provide motivation for the general study of asymptotic expansions, which
is begun in §7.2. One of the mauin techniques used in this analysis, the method of
steepest descont, and its varinnt, the method of stationary phase, are also cousidered
and ar¢ applied to Stirling’s formula and to Bessel functions in §7.3.

7.1 Infinite Products and the Gamma Function

To study the gamma function and subsequent topics, we first develop some basic
properties of infinite products, which are somewhat analogous to the infinite sums
considered in §3.1. For motivation, note that any polynomial p(z) can be written
in the form

p(z) =a(z —@1)...(z — an) = a, [[(z - 0y)
=1

where ay,... ,a,, are the roots of p(z) = a,z" + ... + a1z + ag and [] stands for
“lake the product of” in the same way as Y stands for “take the swm of.™ It is
natural to attempt to generalize this expression to entire functions. in which case
the product becomes infinite.

Infinite Products Let 2y, 23, ... be a sequence of complex numbers. We consider
[- -]
[Ta+z)=0+2)1+2)....
ne)

We write 1 42z, because if the product is to converge, it is plausible that the general
term should approach 1, that is, 2, — 0. Roughly speaking, this is because if we

409
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take the logarithms of both sides, then for convergence of the resulting sum, the
nth term, log(l + 2,,) should go to zero (by the nth term test for series) and this
means that z, should go to zero.

Some technicalities are involved when 2, = —1 because the corrcsponding log-
arithms become infinite. We want to allow the product to be zero yet be able to
impose some convergence condition. The following definition fits our needs.

Definition 7.1.1 The product [J3,(1 4 za) is said to converge if only ¢ finite
number of z, equal —1 and if the quantity

T +2) = (1 2).e. (1 4 20)

k=m

(where 2z # —1 for k > m), converges as n — oo, 10 a nonzero number. We sel

ﬁ(l +2p) = "li_l.léo f[(l + zg).
k=)

n=1
(This product will be zero if some z; = —1 and nonzero otherwise. )

For example, consider

The nth partial product is
12 n-1 1

§°'3‘...—n_' —;—00.

Thus, the product does not converge, because we have demanded convergence to a
nonzero number. In these circiunstances, we would say that the product diverges
to zero. If we started at n = 1, the product would still diverge. One reason for
this terminology and convention is that the sequence of logarithmns of the partial
products diverges to —0.

By starting a given product beyond the point where some 2, = -1, we can
assume that z,, # -1 for all n. Such an assumption imposes no real restrictions in
the tests for convergence.

Theorem 7.1.2 (Convergence Theorem for Products)
(i) IFTIS, (1 4 2,) converges, then z, — 0.

(ii) Suppose that |zn| <1 foralln =1,2,... so that z, # —1. Then o, (1+:,
converges if and only if ¥, 1og(1 +z,,) converges. Here, log is the principa
branch; |2q| < 1 implies that log(1 + 2,) is defined.
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(ifi) JI%2, (1 + |2al) converyes §ff Y02 | |2.) converges. We say that T2, (1 4 z,)

converges absolutely in this case.
(iv) ITTo2, (1 + |21} converges, then [Tow,(1 + 2,) converges.

Criteria (iil) and (iv) are particularly important and arc easy to apply. The
proof of this theorem appears at the end of this section, but the plausibility of
the theorem is discussed now. Criterion (i) was explained at the beginning of this
section. To explain (ii), note that if we let S, = Yo7 log(1+4+2x) and Po = T3 (14-22),
then P, = eS~. That (ii) is pluusible follows from this equation. Indeed, if S, — S,
it is clear that P, — ¢%. Once (ii) is shown, (iii) and (iv) follow. The following
corollary is implicit in the preceding discussion.

Corollary 7.1.3 If |2.] < 1 and Y log(1 + 2,) converges to S, then [1(1 + 2z,)
converges to ¢°.

This corollary is sometimes useful, but when it is applied to concrete problems,
the sum of logarithms can be difficult to handle.

Let f(2) be a sequence of functions defined on a set B € €. How we should
define the concept of the uniform convergence of [I3°(1 + fn) should be fairly clear.
We do this next.

Definition 7.1.4 The product

o0

[T+ £a(2))

n=1
is said lo converge uniformly on B iff, for some m, fn(2) # =1 for n 2 m and
all z € B, if the sequence Po(2) = [T;-,n[1 + fi(2)] converges uniformly on B to
some P(z), and if P(z) # 0 for all z € B (see §3.1 for the definition of uniform
convergence of a sequence of functions).

The next result follows from the Analytic Convergence Theorem 3.1.8.

Theorem 7.1.5 (Analyticity of Infinite Products) Supposec that f,(2) is a se-
quence of analytic functions on an open set A and that [15> (1 + fu(2)] converges
uniformly to f(z) on every closed disk in A. Then f(2) is analytic on A. Such
uniform convergence holds if | f«(2)] < 1 for n > m and if either

f: log((1 + In(2)] or z fu(2)

n=l

converges uniformly (on closed disks in each case).

To check the validity of this statement, one must check that the proof of the
convergence theorem for products warks for uniform convergence; this is left as an
exercise.
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Canonical Products The following theorem is a special case of a result by Weier-
strass that coobstructs the most general entire function with a given set of zeras.
The special case described here is applicable to many examples, yet it illustrates the
main ideas of the general case. (For a statement of the general case, see Exerciscs
10 and 14 at the end of this section.)

Theorem 7.1.6 (Theorem on Canonical Products) Let a;,63,... be a given
sequence (possibly finite) of nonzero complex numbers such that

Z Iﬂt..l2

If g(z) is any entire function, then the function

f(z) = e?G)* [ﬁ (1 - ai..) c=/°-] (7.1.1)

n=J

is entire. The product converges uniformly on closed disks, has zeros al a;,ag,....
and has a zero of order k at 2 = 0, but il has no other zeros. Furthermore, ¢f [ is
any entire funclion having these properties, it can be written in the same form. In
particular, [ is entire with no zeros if and only if f hes the form f(z) = 9} for
some entire funclion g. The product

I (-2

n=}
is called a canonical product.

The proof appears at the end of this section. The resmit is plausible if we note
that the product vanishes exactly when 2 is oqual to some @, and that z* has a
zevo of order k at 0. The finiteness condition on the a,, guarantees convergence of
the product, as is shown in the proof (see Exercise 10 for more general conditions).
Also, ¢*(*) vanishes nowhere, since e* # 0 for all w € C. We note that the paints
ay.a3,... need not be distinct; each may be repeated finitely many times, If a,, is
repeated [ times, f will bave a zero of order [ at a,,.

The Theorem on Canonical Products 7.1.6 will be applied several times in the
remainder of this section. For example, Worked Example 7.1.10 proves that

sinnz = 7z H (l - —) =/, (7.1.2

n=-0cnEd

Gamma Function The ganma fanction is a useful solution to an interpolation
problem that has been studied since the 1700s. Here is the problem: Find « contin-
uous function of a real or complex variable that agrees with the factorial function at
the integers. The gammn function, I'(z) is onc solution. It is analytic on C exeem
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for simple poles at 0,—1,-2,...,and '(n+1) =n! forn =0,1,2,.... The impor-
tance of this function was realized by Euler and Gauss as early as the eighteenth
century.

Two equivalent definitions of the gamma function will be given: the first will
be in terms of infinite products, the second in terms of an integral formula. These
two formulas are duc to Euler, with significant contributions made by Gauss and
Legendre. The main facts that are included in the following discussion and in the
end-of-section oxercises are summarized in Table 7.1.1 at the end of this section.

For the first definition. we bhegin with an assaciated function that is defined by
the canonical product

G(2) = ﬁ (1 + Ti) en, (7.1.3)

n=l

By the Theorem on Canonical Products 7.1.6, this function is entire, with simple
zeros at the negative integers —1,-2,-3...... This function satisfies the ideutity

sinwz
x

2G(2)G(-z) = (7.14)
because of equation (7.1.2). Consider the function
H(z) =G(z-1), (7.1.5)

which bas zeros at 0, -1, —2,.... By the Theorem on Canonical Products, we can
write

H(z)= e'(")zﬁ (1 + -E) e~/ = 2e9)G(2) (7.1.6)
1

for an entire function g(2).
It will now be shown that ¢(2) is constant. Using the convergence theorem for
products, we get

g 7:) = g + o) + 3 [ios (1 + £) - 2].
n=1

Since the convergence is uniform on closed disks, we can diffcrentiate term by term:

d
7 Vg H(z) =

+y’(z)+g(zin—%). (7.1.7)

e | pm
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Similarly, by (7.1.3),

4 \gGlz-1) = f: 1 Iy -1+f: 1 _
dzog - z—1l4n n} Si\z+n n+1l

]

I

|

ot
+
N
3|
]

t
A
S’ N |
+
18
P
2=
]
/|
4 | =
bad
N’

S

Comparing (7.1.7) and (7.1.8) and using (7.1.5), we see that g'(z) = 0, so g(z)
is constant. (Part (ii) of the convergence theorem for products is valid only for
J2| < 1, but this region of validity suffices since two entire functions that agree on
|2} < 1 are equal by Taylor’s theorem or the identity theorem.)
The constant value g(z) = v is called Euler’s constant. We can determine an
expression for it as follows. By (7.1.3), (7.1.5), and (7.1.6), we get
G(z - 1) = 2e7G(2), (7.1.9)

and thercfore if we let z = 1, then G(0) = 1 = ¢"G(1). Thus, by (7.1.3),

i) (22)

1
Noting that

f[(‘_i'_l) ek = 2.3.4 041 ipaipseni/n
U\% 1'2°3 ™»

= (n+1)e?-V2---l/n
= npe~)V/2mtn g o=1=1{2mmVfn

we get e = lim,,_ o, ne~ '~ V2=~/"_ Tyking logs, we find that

" 1 1
,,=n132°(1+§+...+;-aogn). (7.1.10)
Our arguments show that this imit exists and is finite. Numerically, one finds from
(7.1.10) that =~ 0.57716.. ..

The gamma function is defined by

o -1
I(z) = [2e7G(2)] ™" = [ze"‘ II (1 + E) c“"‘] . (7110
n=]

Since G is entire, with simple zeros au -1, -2, ..., we conclude that I'(z) is mero-
morphic, with simple poles at 0,-1,-2,.... From (7.1.9), G(z — 1) = ze"G(2).
so

Pz+1)=2I'(z) for 2#0,-1,-2,..., (7.1.12:
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which is called the functional equation for the gamma function (see Exercisc
7). Also, I'(1) = 1, since I'(z) = [2¢7*G(2)]~" and G(1) = e~ by our construction
of y. Thus, from (7.1.12) we see that I'(2) = 1-1,[(3) = 2.1,T{4) =3-2-1, and
generally that, as carlier advertised,

I(n+1)=nt (7.1.13)
This formula Jeads to interesting approximations of n!, which are derived in §7.3
(Figure 7.1.1 shows a graph of T'(z) for z real.)

I'x)

»

=1.46

Figure 7.1.1: The graph of I'(z) for z real.
From the cquation zG(z)G(—2) = (sin 1::)/1:, we get
L(2)r(1-z2) = sy

We claim that I'(z) # 0 for all z,z # 0, =1, -2, ... . Indeed, if I’(z) = 0, we would
have the contradiction 7 = I'(2)I’(1 — z)sinwz = 0 as long as 2 # 0,%1,4£2,....
(These are the points al which sin 2 vanishes, so cross multiplication is invalid at
those points.) We also know that I'(2) #0if2=1,2,3...,since (n+1) =nl,n =
0,1,2,.... This proves the clain:.

If we let z = 1/2 in (7.1.14), we get [I(1/2)]2 = #. But ['(1/2) > 0. To sec this,
note that I'(z) is real for real positive z; we have shown that T has no zeros and
that [(n + 1) = n! > 0. Thercfore, since I'(z) is continuous for z €]0, 00 (because
I' is analytic), it follows from the intermediate value theorcm that I'(z) > 0 for
all x €]0,oc] (as in Figure 7.1.1). Thus, I'(1/2) = /7 (rather than the other
possibility, —/7).

(7.1.14)

Euler’s Formula FEuler’s formula for the gamma function is
P@) =2 H [(l +a ) (1 + —) ) '] nvco 2(z + 1;"7‘:(:: +n) (7.1.15)
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This formula is proven as follows. By definition,

— . (141/24...4+1 /u=log n)> 2 ZN —z/k
i -~ lawe )[nhm—oo g (1+ k)" }
n
= : {14-2/24...41 /n=logn) Z\
- L";[ g CHE "]

n
Y | ( g)]
since n=* = ¢~ 8™, Thus, we get

F(17) = z"llngo ﬁ(l-*— ) (l+k)]

i (102 Lg(nz) e}

The first equality in (7.1.15) now follows. The student is asked to prove the second
in Exercise 11.

Gauss’ Formula Another importaunt property of the gamma function is given in
the Gauss formula: For any fixed positive integer n > 2,

r(z)r (z + -'1;) ...T (z + —;—) = @n)n=W20R)=r2p(nz).  (7.1.16)

To prove this formuls we first note that we can write Euler’s formula as
i (m = 1)lm*m (m — 1)im*
im lim
m—co2(z41)...(z4+m— 1)}z +m) m—eoz(z-l-l)- {z+m-1)
(mn = 1){{mn)*
m-—=00 z(z + 1) (2 + nir — 1).

(The first line follows since m/(z + 1m) tends to 1 as s — co. We define f(z) as
follows:

Iz =

_ rUrEr(z+2)...T(z+23)

/&) = nP(m)

n"s-

i (m__u!mn-uln

) 3 T W =
(negg 1)t s

limp, ec ns('n:-:-'l) )(s::‘-'t::m.-“j

[on — 1)Jrm{n=1)/2mn-1 (re){nz+1)...(nz+mn—1)
m=co (snn — I [[imgl(na + k)nz + k +n)... (nz + k + mn — —n))
[(m l)llu,n(h'-l)/z”um—l
lirm
m—oc (nm - 1)
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Thus, f is constant. Setting 2z = 1/n gives
1(2) =r(:-l)r(§) r("—;l) >0,

,‘.n—l

. w2 - (n-tzw
sm;sm-;...sm r

[f@)P =

using (7.1.14). From the fact that

sin%sini—"...sin (";l)” =sop for n=23,.
(sec Exercise 28, §1.2), we get
e = B
Since f(2) > 0,
_ (2x)(n-1)/2
f(2)== "‘/—"n —

The Gauss formula therefore follows.
If we take the special case of (7.1.16), in which n = 2, we obtain the Legendre
duplication formula:

22-Ip2) ( z + ) = /7T(22). (7.1.l7)

Residues of the Gamma Function We claim that the resigy,, of
—m,m =0,1,2,... is (~1)"/ml. Indeed, note that (2) ag , _

(z+m(e) = (e +m) 2t
More generally, we find Lthat

[(z+m+1)

(z+ml(2) = oy (e em=1)"

Letting z — —m, we get

r() _ )
-m(-m+1)...(=1) m!

as required.
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Integral Formula for the Gamma Function There is an important expression
for I'(z) as an integral. For Re z > 0, we shall establish the following formula known
as Euler’s integral for I'(z):
L -
I(z) = f t2-le~tdt, (7.1.18)
[

One might suspect that this expression can be evaluated by the methods of Chapter
4. Unfortunately, those methods are not applicable (the reader should contemplate
why this is the case), so another method is needed to prove (7.1.18). To do this,

we start by defining
n t n
Fa(2) =/ (l - —) =4t
(1) n

nin®
2(z+1)...(z+n)

We claim that

Fr(z) =

(7.1.19)

By Enuler's formula, we will then have proved that F,(z) — I'(z) as n — co. To
prove (7.1.19), we note that by chunging variables and letting ¢ = ns,

F.(z)=n* /ol(l — s)"s*~Vds.

Now integrate this expression successively by parts, the first step being

n

Fu(2) =n* [-:-s’(l - i +§ /ol(l - s)""s‘da] = n‘-; ‘/:(l —g)"!s*ds.

Repeating this procedure, we integrate by parts n times and get

ey e me(n=1)...1 b et g nin®
Fufz)=n z(z+1)...(z+n-1)/o o lds—z(f‘*'l)---(z‘*'")'

which establishes (7.1.19).
A theorem learned in calculus (usually in sections on exponential growth or
compound interest) states that

w
(l - 1%) —e! as n—oo. (7.1.20)
If we Jet n — 00 in (7-1.19), the validity of (7.1.18) scems assured. However, such

a conclusion is not so easily justified. To do this, we proceed as follows. From
(7.1.15) and (7.1.19) we know that

P(z) = kim [ (1—%)"15“‘4:. (7.1.21)
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Let f(z) = f;° e~*t*~'dt. This integral converges, since je~4t*~"| < e~%"*=~! and
Rez > 0 (use the comparison test and compare this integral with f; e~*¢"dt and
j;: tPdt, where p > —1). We shall need to know “how fast” [1 - (¢/n)]* — ¢~*. The
following inequalitics hold:

-t t\" 2t
0Le™* ~ l—; S-n— for 0<t<n (7.1.22)

(This follows from a calculus lemma whose proof is asked for in Exercise 15.)
From (7.1.21) and the definition of f we have

J(2)-T(z) = lim { /: [c" - (1 - :‘.) "] t5=dt + /: c“‘t“'dz}. (7.1.23)

To show that this limit is zevo, note that {T°e~**~dt — 0 as » — 0o. Indeed if
t > 1, then [e~2*~"| < e~ 't™ where m is an integer and m > Rez > 0. But from
ealculus (or dircctly using integration by parts), we know that [~ e~*t™dt < oo,
so f°e~tt™dt — 0 as 1 — oo. It remains to be shown that

[le-(-2)]eamo = nmoo

By incquality (7.1.22),

”n ~tsRe a1
f [e"— (1 -1) ]t*"dzls /" E—li—dzs 1 f a—tRe3+lgy
o n o n n Ja

which approaches zero as n — o0 because the integral converges. This completes
the proof of (7.1.18); that is, for Rez > 0,

o0
I(z) = / et dt.
o

In fact, if we examine that proof, we see that provided 0 < ¢ < R,¢ < jz| < R, and
(~n/2)+6 < argz < (7/2) - 6,8 > 0, the convergence is uniform in 2 (see Exercise
18).

Proof of Theorem 7.1.2: Convergence Theorem for Products

(i) We can assume that z, # —1 for all n. Let P, = [T, (1 + 21); therefore, by
assumption, P, — P for some P # 0. Thus, P;/Pn.3 — 1 by the quotient
theorem for limits. But P, /P,_; = 1 4+ 2,. Therefore, 2, — 0.

(ii) Let S = Y gy log(1 + 2;) and let P, = [T, (1 + 2x). so that P, = €™~ It
is clear that if S, couverges, then P, also converges because e is continuous.

Conversely, suppose that P, — P # 0. To show that S, convurges, it suffices
to show that for n sufficicntly large, all S, lic in a period strip (on which ¢*
has a continuous inversc).
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We cannol write log P = Y p., log(1 + 2x), because P, could be on the
negative real axis. Instead, for purposes of this proof, let us choose the branch
of log such that P lies in its domain A. Now P, — P, s0 P, € A if n is large
and therefore we can write S, = log P, +&n 27t for an integer k,. Subtracting
this equation for n + 1 from that for n gives

(knas = kn) - 271 = log(1 + 2n+1) = (108 Prsr — log Pa).
Since the left side of the equation is purely imaginary,

(Knts = k) - 278 = ilasg(1 + Zns1) — AYE Py + a1g Pa).
By (3). Za4s — 0. an 50 arg(l + 2n4;) — 0. Also, arg P, — ag P, and
therefore k,,4y ~ & — 0 as n — 00. Since the k,;'s are integers, they must

equal a fixed integer k for n lurge. Thus S,, = log P, + & - 271, 50, as n —
00,8y = S=)og P+ k- 2xi.

(ili) By (ii), it sufficess to show that for 5, > 0, x, converges ifl Y log(1 + z,,)

converges. To prepare for the proof, note that for 2| < 1,

2 B fog(l+2) . 2z, 22
log(l+z)—z—?+3-..., s0 ——;——l—§+':’-—.-..

which has a removable singularity at z = 0 and thus im._o(log(1+2)}/z = 1.
Suppose that 3z, converges. Since z, — 0, given ¢ > 0, we have

0 < log(1 4 Za) < (1 +€)zs

for sufficiently large n. By the comparison test, Y log(l + z,,) converges. If
we use (1 — €)z, < log(l + z,). we obtain the converse,

(iv) Suppose that [T(1 + |za]) converges. Then by (ji), 3_ log(1 + |2a]) converges.

{We begin with terms such that the conditions in (ii) hold.) Tn fact, the
argument in (iii) shows that 3 log(1 + z,;) converges absolutely and hcuee
converges. Thus by (ii), [J(1 + z.) converges. W

Proof of Theorem 7.1.6: Canonical Products First we show that the func-
tion [J(1 — z/an)e*/2~ is entirc. For cach R > 0, let Dy = {z such that |z| < R)}.
the closed disk of radius R. Since a, —+ 00, only a fnite number of a,,'s lie in Dp.
say, ay, ... ,an~1. Therefore, for z € Dg, only a finite number of terms (1 — 2/a,)
vanish. We will use the following lemma.

Lemma 7.1.7 If1 4w = (1 - a)e” and |a| < 1, then jw| < |a|2/() - |al).

Proof Writing ¢® as a series, we get

2
1 a"

) °=)_g....____ e ——— ...

(1 - a)e ) ( n)(n-l)! ’
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Thus, since je| < 1,
2
-1
) = j0-aer -yl D,

2
2
< laP+|aff+...= Jal

= =1 7

The next step in the proof is to show that the series
0 o z ,
Suw(z)=) [(1 ~ E) e/ — 1]
n=1 n=1
converges uniformly snd absolutely on Dp/p- This will show that
— z
fir-2)~
n=) Cn

is entire (by Theorem 7.1.5).
Indacd, for n > N, |z/a,| < 1if |z] € R/2. and so from the preceding lemma,

2P (R12P 1
- [] 2
1-fz/anl = 1= 3 |aal

lwa(2)l <

since |2| € R/2 and |a,| 2 R for n 2 N. Thus,

R 1
& o o — = .
wa(2)l < T f M,

By assumption, 3 M, converges, and so by the Weicrstrass M test, Y-, (2) con-
verges uniformly and absolutely. Thus, the function f,, defined by

Si(z) = 2 [] 11 - (z/an)le"/*

is entirc. From the definition of the product it is clear that f; has exactly the
required zeros. Thus, so does effy. Il f has the given zeros, then f/f) will be
cntire and have no zcros (by Propasition 4.1.1). Therefore, we need only prove the

following lemma.

Lemma 7.1.8 Let h(z) be entire with no zeros. Then there is an entire function
g(2) such that h = e¥.

Proof This follows from Proposition 2.4.12 since the entirc complex plane C is
simply connccted. W
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Table 7.1.1 The Gamma Function
Definition

I'(z)= 1

2= [, (1+ E) e/’
where
y=lim (147 +...4 = —logn | ~0577

Jim gt g .577.

Properties

1. T is meromorphic with simple poles at 0, -1, -2,..
. Pz 4 1) = 2I(2),2 #0,-1,-2,....

. D(z)L(1 - 2) = x/sinnz.

2
3. T(rn+1)=n,n=0,1,2,....
4
5

. I'(z) # 0 for all 2.
6. I"(l) =‘/1?;I'(n+%) = 1‘3'5.;(*2n—1)‘/;.

8 I'(z) =

7

[(1 -r-’-ll)3 (1+ 'f')_l].

nn*

n—oo z(z+1)...(z+n)’

9. I(z)C (z + %) ...T (z + "—;—1) = (2r)n-1/2,(/B-nep(n ).

10. 2257Ir(z)r (z+ ) vaT(2z).

11. The residue of I' at ~m equals (-1)™ /m!.

12 (Buler’s integral) ['(z) = r t*"2e~dt for Rez > 0. The convergence is

o
uniform and absolute for —%/2+6 < arg2 < %/2-6,6 >0,and for e < |2] <
R,where 0 < c< R.

(z) _

B =

1+ 2G-mm) - L (F=)e
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-1

Figure 7.1.2: Contour for Hankel’s formula.

1
2isinwz

14. (Hankel's formula) I'(z) = — /c (~8)*"e~*dt. (C asin Figure 7.1.2.)

l - i — I P D ® .

. _I‘(z) =5 /; (—t)"*e~%dt. (C as in Figure 7.1.2.)

16. [(z + 1) & V2xz*+"/2¢% for |2| large, Rez > 0. (This is Stirling’s formula,
to be proved in §7.3.)

15

Worked Examples
Example 7.1.9 For what z does (1+2) [0, (1 +22") converge absolutely? Show
that the product cquals 1/(1 — z).

Solution By Theorem 7.1.2(iii), we bave absolute convergence iff $°° | 22" con-
verges absolutely. This is the case for |z| < 1, since the radius of convergence of
the series is 1. Thus, the product converges absolutely for |2| < 1.

Our product is (14 2)(1 + 22)(1 + 2*)(1 + 25).... Notice that (1 + z)(1 +2%) =
142422+ 2 and

L+2) 0+ +2)=1+24+24+ 8 +... 42",
Generally,

”
(1+3)H(1+32~)=l+z+zz,’,.“+z.2~*l..|.
be=1

This series converges to 1/(1 — z) as » — oo since it is the power series around
z2=0for1/(1 —2).
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Example 7.1.10 Prove that
-] 22
sinz = z’:!;[l (1 - W) .

Solution The zeros of sinz occur at 0 and *nw; let us define a) = w,a2 =
—7,a3 = 27,84 = —2%,.... All the zeros are simple, and 3~ 1/|an|? converges.
Therefore, by the Theorem on Canonical Products 7.1.6, we can write

gnz = o9 H (1 - é) Py
n=]
= 9. [(: - 5) e‘/'] [(l -:-:;) e'z/s]
[0-5) e [(+5) ]
- o2

n=1
(gathering the tarms in pairs). It remains to be shown that e#(3) = 1, which requires
an unusual technique.
Lev

Pa(2) =c9(=’zk1;[l (1 - 1;%) ,

so that P,(2) — sin z (uniformly on disks), and hence P/(z) — cosz. Thus,
P.(2)

Ptz )-bcotz for z2#0,%n, 427,..

But

g’:% = dizlogl’n(z)— [(z)+l°g=+zl°8( Fi—‘*)]

IE +3 *Z(zz kzwz)

However, from §4.4,

ot
2z
+Y ms

n=1

for z # nw. Thus, ¢'(z) =0, and so g(z) is a constant, say ¢. Therefore,

smz_
= = ‘“;;3

Letting z — 0, the lcft side approndms 1, w!nle the right side approaches e® (Why?).
Thus ¢ = 1 and we get the desired formula.

N

colz =
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Exercises

o0

1

1. Show that H(I—F) =3
n=2

2. Show that ﬁ (1 -2 ) -1
) L nin+1)/ 3
3. Show that []o~, (1 + 2.) couverges absolutely if Y oo, log(1 + 2n) converges
absolutely.
4.° Complete the proof of the analyticity of infinite products (7.1.5).
§. Use Worked Example 7.1.10 to establish Wallis’ formula,
2 2 4 466

7.° Prove forinula 2 of Table 7.1.1.

8. Show that [To>, (14 2.) converges (assnming that z,, # —1) iff, forany ¢ > 0,
there is an IV such that n 2 N implies that

(14 20)...(0 + 2n4p) — 1| < ¢ forall p=0,1,2,....
Hint: Use the Cauchy Critcrion 3.1.5 for sequences.
9.* Prove formula 4 of Table 7.1.1.
10. Tet ay,a3,... be nonzero complex numbers and assume 372, 1/]a,|'*+* con-

verges, where h 2> 0 is a fixed integer. Show that the most general entire
function Laving zeros at ay,ag,... and a zero of order & at 0 js

= 9(2) > “[ = 2 ) plelaat(2/00) 124 A (3 /00 )M 1)
£2) I (:-Z) ],

where cach of the points a; may be repcated finitely often. HMint: Prove
the following lemma: If 1 + w = (1 — a)e®*+**/2++8"/h for |a| < 1 then
[l < faf™*' /(1 — jal).

11. Prove formula 8 of Table 7.1.1.

12.* Using Euler’s formula (formula 7 of Table 7.1.1), prove that P(z+1) = 2I(2).
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13. Show that in the ncighborhood |z + mf < 1 for m a fixed positive integer,

()
I(z) - G +m)

is analytic (that is, has a removable singularity at z = —m).
14. (a) (Weierstrass factorization theorem) Let
B(z,h) = (1 - z)e*+= 124+ Ik
Show that the most general entire function having zeros at ay, az, ..

each repeated according to its multiplicity, where a,, — 00 and huvmg a
zero of order k at 0, is

fz) = c’(‘)z"n]j; E (é,n) X

(b) Conclude that every meromorphic function is the quotient of two entire
functions.

15.° Prove that, for0 <t <n,

B 2 =t
ose-‘—(l-i) <t
n n

1G. Prove that, for Rez 2 0,

r'(z) _ [ (.c;t. - .ﬁ.) dt.

TG T 1-c¢t

Hint: If Rez > 0, then 1/(z +n) = f§° e~t+n)de. Use 4 = limp—co(l + 1 +
.+ 1/n—logn) and Table 7.1.1, line 13.

17. Let « be a circle of radius  around zg = 0. Show that f"l‘(z)dz=21ri.
18. Establish the uniform convergence in formula 12 of Table 7.1.1.
19.° Prove Hankel’s formula (formula 14 of Table 7.1.1):

r(z) = ﬁ;‘:" fc (~t)~%e-tdL.

For what 2 is this formula valid? Using I'(z)[Y(1 - z) = x/sin 72, conclude
that
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20. Suppose one started by defining I'(z) = [y~ t*>~'e~!dt for Rez > 0.

(2) Show that I'(z) is analytic on Rez > 0 by showing that fj ¢*~'c~tdt
converges uniforinly on closed disks as » — oo.

(b) Show that I'(z 4- 1) = 2I'(z),Rez > 0.

(c) Use (b) and analytic continuation to prove that I'(z) can be extended
to a mcromorphic function having simple poles at 0,-1,-2,.... Hint:
The procedure used is analoguus to that used in proving the Schwarz
Reflection Principk; sce §6.1.

21.° Show that
o0
f eTdy=m and that /a e Tdy= v
-00

2

-0

by using the gamma function. Hint: Relate these equations using integration
by parts and T'(1/2) = /7.

7.2 Asymptotic Expansions and the
Method of Steepest Descent

Asymptotic expansions provide a method of using the partial sums of a series to
approximatc the values of a function f(z) for large z. A striking aspect is that the
series itself might not converge to the function and might actually diverge, If we
use only onc term we say that we have an ssymptotic approximation or asymptotic
formula for f. Stirling's formula for the ganuna function is such a formula. This
result, proved in §7.3, states that

I(z) ~e~*2*"'2\21 for large z.

The expression on the right side may be easier (o handle than the I’ function
itself and has important applications in fields such as probability and statistical
mechanics. Another famous example is the prime number theorem, which asserts
that if w(x) is the number of primes less than or equal to the real number z, then

x
w(z) ~ i-o—g-z-.
Exactly what such a lormula means and in what sense it is an approximation will be
developed in this section. The theory of asymptotic expansions considered in this
section will be applied in the next, where Stirling's formula is proved and Bessel
functions are studied.

There arc methods for studying thic asymptotic behavior of functions f(z) other
than those we shall devclop. For example, if f satisfies a differential equation, then
this equation frequently can be used to obtain an asymptotic formula. The reader
who wishies to delve more deeply into these topics should consult the references
listed in the Preface.
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“Big Oh” and “Little oh” Naotation Some notation is useful for keeping track
of rclationships in behavior between two functions. Suppose f(z) and g(z) are
defined for z in some set A. We say f(2) is O(g(z)) (pronounced *£(z) is ‘big oh' of
g(z)*) for z in A if thero is a constant C snch that |f(2)] < Clg(2)| forall z € A. We
usually write f(z) = O(g(z)), althongh this is somewhat an abuse of notation since
the object on the right is a statement of rclationship and not a specific quantity
to which f(z) is equal. For example. sinz = O(z) for z in R, since elementary
caleulus shows that |sinz] < |z| for all z. Note that f(z) = O(1) just means that
J(2) is bounded.

More useful notation for us will be “little oh,” which requires some sort of
Limiting bebavior for its definition. Roughly speaking, the notation f(z) = o(g(z))
means thay f(2)/¢(z) tends to 0 as 2 — zp or z — 00, cte. (We say “roughly” only
because g(2) could vanish.) For example,

l-cosz=o0(z) a8 x—oc
logz = o(x) as r— o0
1

F=o|— as z — oo for any n.

¢ xu

We will be concerned primarily with z — oo in a sector o < arg(z) < 8. For
the remainder of this section, unless specified otherwise, the symbols will thus be
defined as follows:

o f(z) = O(g(z)) means There are coustants R and Af such that whenever
2| 2 R and o < arg(z) < 8,11(2)] < Mly(z)l.

o f(2) = o(g(z)) means For each ¢ > 0. there is an R such that whenever
lz| > R and a < arg(z) < B8,11(2)| < elg(2)}-

In some cases we will be interested only in behavior along the positive real axis and
will then take a = § = 0. Notice that if f(z) is O(1/z"+"), then it is o(1/2"), but
the converse is not generally true.

Asymptotic Expansions Chapter 3 was concerned with representing a func-
tion by an infinite scrics that converges to the value of the function and iy, carcfully
avoided divergept serics. Nonetheless, divergent series can sometimes be useful.
though onc must be very careful in their julerpretation. We will see that it is pos-
sible to associate with a function an infinite series which may or may not converge.
but. whose partinl smns can be made to yield good approximations to the value of
the function.
Cousider a series of the form

a
S=a+Z+F 4.

and let

Sn=“0+£z!‘+--.+—.
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Thus, S,, is well defined for z 0 but we do not demand tliat S converge. The
correct way to say that S is asymptotic to a given fiincUon / is as follows.

Definition 7.2.1 Wcsay that/~ S, orthatf is asymptotic to S, orthatS is
an asymptotic expansion off, if

farmgz lying in a specified range [a,0\ (see Figure 7.2.1).

kn[f{z) - S..(zj\\ =0

> X

Figure 7.2.1: Asymptotic expansion.

Although S may he divergent, the partial sums may result in accurate approxi-
mations of /, the error being approximately 1/z". This will be illustrated with an
example in the following paragraphs.

If we allowed the full range (—ar,w for arg2, we might expect Oy +a\fz +
ctz/z3+ ... to converge if /(z) were analytic outside a large cardie, because / has
a convergent Laurent series of that form. However, f usually has poles Zn -* oo
(such as r(z), wliich has polesat 0.—1,—2,...), and therefore in many examples,
we do not have a Laurent series that is valid on the exterior ofany drde. If/ has
poles z,, -» 00 in the sector argz € \0,0\ and / ~ 5, then S cannot converge at
any zq. Ifit did, then S would converge uniformly for all |z| > |zo| + I. (See 83-3.)
Definition 7.2.1 and the uniform convergence of Sn to S would say that for huge
enough |z| in that sector, we have |[/(z) —S(z)| < 1. But this cannot hold near the
poles of /.

The following example should help to darify the concept of asymptotic expan-
sion

Example 7.2.2 Show thatfor x real and positive,
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f(z)= [ e tde.

(This is not the gamma function!) Integration by parts gives

Solution Define

-1\ =2er — -t
POREIE B TN C .l S Y o
We claim that
1 2 3

!(z)~s(z)=;c--§+z" z4+

Note that the series diverges. Here the sector is @ = g = 0; that is, we are restricting
z to the positive real axis.

Indeed, if
1 1 (1)1 — 1)t
sn-z—zz+ooo+'z—"')
we have

zﬂc""
znl/”t"“dt n./c(
—t
n'ff—a<—/ =2

which approaches zero as £ — 0. Thus f(z) — Sp(z) is o(l/z"), sof~Sas
required. Even though n! grows quickly, we still have an accurate approximation
because

|="(f(z) - Sa(2)l

IA

1) = Sulel £ ooz =0 (57 )
and if z is, say greater than n, then n!/z™+! is very small. ¢
The next proposition gives some basic properties of asymptotic expansions.
Proposition 7.2.3 (i) If

f(2) ~ S(2) G+—+F+...,

1(2) = 8a(z) = o(

2n+l

and conversely.
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(i) If
;~¢o+9_l+:—-§-+...
and

. . G @

[+ 4 gt

then a; = &;. (Asymplotic expansions arc unique.)

(iii) If

Q , 42

!~ao+:—+zz+.o-
b , b

g h+z+zz+'°'i

both being valid in the same range of arg z, then in that range

(61 +b|) + (aa-!-bz) ...
F1 z2

f+9~(ao+bo)+

and
¢ [+] -
fg~ma+ 2+ 4 .. where en = 8iba-t-
2 k=0

(Asymptotic series may be added and multiplied.)
(iv) Two different functions can have the same asymptotic expansion.
(v) Let ¢ : [a,00[— R be continuous and suppose that §(z) = o(1/z%),n > 2.

cn
f: $)dt = o (;f:,-) .
Proof

(i) Since f ~ S, we have, by definition, f — Sps1 = 0(1/2"*?). Therefore, we got

1 Gn 1
0= 1 =Sun+ 5o =m0 () + 57 =0 ().
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(i) We shall show that @, = &, by induction on n. First, by the definition of
[~ 8, f(2)—ag — 085 z ~ 00,50 ay = lim,_oc f(2). Thus ag = de- Suppose
we have proven that ag = @g,. .. ,Gn = &n. We shall show that an41 = Gn+t1-
Given ¢ > 0, there is an R such that if [2] > R, we bave

a Gqn
‘z""” [f(z) - (ao-!-?l ++——Z"I;)]l <¢
and

Piak [f(z)— (ao+-'i;'+...+§"£)],<e.

Therefore, by the triangle inequality,

Ia..-c.: _au+1|
= lzn-&»!‘lan-lilz ;:’l""'_ll
= |9 [f(z)—(ao+-~-+%§)]'[f(z)‘(’"”*"""%)]l
<e+e=2

Thus |Gy41 — @ns1} < 2¢ for any € > 0. Hence apyy = @nya-

(iii) Let S,(2z) = ap + ...+ 6,/2" and Sp(z) = by + ... 4 b, /2". We must show
that f + g — (S + Sa) = o(1/2"). To do this, write

f 49— (Sn+8n) = (f = Sa) + (g — 8,) = 0o(1/2") + o(1/2") = o(1/2").
To establish the formula for the product, note that
co+ci/z+ ... +Caf2" = Sa8 +0(1/2"),
since SpS. =co +a1 /z+ ...+ cn/<" plus higher-order terms. Thus,
J9—(co+ei+...4Ca/2") = g~ Su8p +0(1/:7).

Now write fg— sns'n =(f-S.)e ""Su(g - S'n) and note that both terms are
o(1/z"), since g and S,, are bounded as z — oo.

(iv) On R, the function ™ is o(1/z") a8 = — oo for any n. Thus if f ~ ay +
a;/z+az/zz+..., then f(z) 4+ e * ~aq +a1/z +apfz? 4 ... as well.

(v) Since ¢(t) = o(1/t"),lim, o t"¢(t) = 0. Given € > 0, there is an 2o > 0
such that ¢ > zo implies |("¢(t)] < . Thus for z > z4,

. ] o0 ¢ € I
< —_—dl = —— . —
/x ¢(t)dt|_ [z "dt R

! [ ()t

Therefore, lim; 002"~ [° ¢(t)dt = 0, 50 [” ¢(t)dt = o(1/z"~!). m

so for z > zo,

<e.
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Asymptotic Formulas and Asymptotic Equivalence If a function has an
asymptotic serics as just described, then the partial sums of that series can be used
to obtain approximations to the function for large 2. However, the applicability of
this method is a bit restricted. If f has the asymptotic series
L WA
J(z) ~ S(z) =ao + z +zz +aany

then f(z) — ag = o(1); that is, lim,_.o. f() = ag, 50 [ has a finite limit at infinity
in the specified sector. This is too restrictive, since we are commonly interested
in functions that grow as x grows, such as the two examples mentioned at the
beginning of this section, ['(2) and ®x(z). To remedy this, we write

1) ~9(@) (a0 + 2+ 5 +...)
{o mean that
1(z) = g(2) [ao+9zl+...+:"-n+o(;';)].

In other words, if g(z) # 0, then

f(2) m a2
5 Rk = R

the hope being that g(2) is an easier function to handle for large z than is f.
Tncorporating the factor ag into g, we have

fw~ﬂn0+%+§+m)

The first term gives a function g(z) with f(2) = g(2)[1 + O(1/2)), o, slightly more
generally, f(z) = g(z)[1 +0(1)]. In this casc we say that f and g are asymptotically
equivalent.

Definition 7.2.4 Two functions f(z) and g(z) are asymptotically equivalent if
J(2) = g(z)[1 +o(1)]. In this casc we write f(z) ~ g(2).

Notice that if g(z) # 0, this says f(z)/g(2)—1 = o(1) so that lim, oo [f(2)/g(2)] =
1 in the specified sector. The expression g(z) is thought of as giving an asymptotic
formula for f(z). It is in this sense that Stirling’s formula and the prime number
theorem are to be interpreted.

The goal is to use g(z) to approximate f(z) for large 2. However, the approx-
imation nced not be improving as z — 00 in the sense we have been using so far.
That is, the absolute value of the error Af = g(z) — f(z) need not be shrinking.
Instead it is the relative error or percentage ervor, the error expressed as a
fraction of the true value, which has to be shrinking. The relative error is

Af _9(2)-1z) _ (=)
f 1(2) flz) 7
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and this goes to 0 as z goes to infinity in the specified sector since it is o(1).

The following simple example should clarify the points made in the preceding
paragraph. Let f(z) = z¢*/(1 + z). Then f(z) ~ g(z) = e*. The asymptotic error
incurred by using g(z) to approximate f(z) is Af = e* — f(z) = ¢*/(1 4 z). This
error goes to infinity as 2 grows along the positive real axis. However, the relative
error, the absolute error expressed as a fraction of the true value, is

T e—ne ¢ S—— T

which does go to 0 as z grows.

As we have noted, one function might have two different-looking asymptotic
formulas even though the ratio of the two will tend to 1 as z grows in the specified
sector.

Many of the functions one wishes to study either arise as or can be converted
to intcgrals of the form

f(z) = L Mg £)de.

The I' function is of this form:

r(z) = [ e~tfdl = ./:0 eloste=tds

We will pursue this idea in §7.3 to obtain Stirling’s formula from a result at the
end of this section. The plan is to find a point £ on the curve such that the factor
e*4(€) is fairly large there but becomes small away from o along the curve for large
2. Then most of the contribution to the integral will come from the part of the
curve near § and we may be able 10 estimate it in terms of the behavior of & and
g near §o. First we turn our attention to some cases in which h is simple enough
thut we can obtain all terms of the series,

Laplace Transforms The Laplace transform is a construction very much like the
Fourier transformt we met earlier. Provided the integral makes sense, the Laplace
transform of a function g defined on the positive real axis is

i) = [ " eg(t)at.

We will devote considerable attention to this construction and some of its applica-
tions in Chapter 8. Here we will sce how asymptotic series might shed some light
on the behavior of §(z) for large z.

Proposition 7.2.5 Suppose g is analytic in a region containing the positive real
azis and is bounded on the pusitive real axis. Let the Taylor series for ¢ centered
at 0 be 307 janz™ and let §(z) = [y~ e~*tg(t)dt. Then

- ag [/ 33 262 n!a,,
g(z)~-;-+-z-2-+73-+...+;m+...

ag z w» o argz = 0.
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Proof Let h(z) = [9(2) — (a0 + @12 + ... + @n_12""1)}/z". Then h is bounded
on the positive real axis because first, g is bounded, sccoud, the polynomial term
in the numerator has degree less than n, and third, the limit as z tends to 0 is a,,.
Thus there is a constant A such that

lg(t) — (a0 + ast + ... + an_1t""t)| < ME"
for all t > 0 and so, for real 2,

I /: e""‘lg(t)-(ao+a.t+...+a,.-.t"~l)]¢g| <M fo‘” ——

Thus,
<M r e~ ndt.
(]
n-1 1
o) - kz_oa,,z,,,,, [ e cw [ omeran

I'(k n! ) |
§(z)—§ ek g:;l)lSMr(n+l)=M =0 —),
k=0

n-1
- - -zt
3(2) - as ’o e~ *thde

Letting x = 2t, we get

zn+l zn+l 2"

which is what we wanted. W

The assumption of analyticity for the function ¢ fits nicely into the theme of this
text and makes the simple proof just given possible. It is worth noting, and impor-
tant for many applications, that the same result holds with different assumptions
on g. Analyticity is not so essentinl as that g be infinitely differentiable.

Proposition 7.2.6 Suppose g is infinitely differentiable on the positive real aris
and that g and each of its derivatives are of ezponential order. That is, there
are constants An and B such that [g")(2)] < AneB~t fort > 0. Let §(2) =
I3 e*tg(t)dt. Then

3(2) ~ 9( ) 9’(;1) +y‘;g°) .. +9::’£?) +

as z — oo,argz=0.

Proof Fix n 2 0 and suppose z > max(Bg, B), ... , B,). Then repeated integra-

tion by parts gives
n-1 -zt (k) T
w0 = -5 [ ) o3 [ emvon

(&)
- ’zkf?’ 1 [ e
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since Je~*'g(")(T)| < ApelBu=#IT and this last term goes to 0 as T° grows. There-
fore

'

- * 4 e(Baat An
2§(2) - Sa(z)l < /: le~ =g (O)ldt < /o Anem b = g

and this goes to 0 as z grows, as we need. W

The second result (7.2.6) applies to infinitely diffcrentinble functions that arc
not analytic, as well as to functions such as polynowmials, which are not bounded.
The first (7.2.5) includes functions such as g(t) = sine®” whose derivative is not of
exponential order,

Watson's Theorem The argument used for Proposition 7.2.5 will also establish
an expausion with a slightly more complicated function for h.

Theorem 7.2.7 (Watson’s Theorem) Let g(z) be analytic and bounded on a
domain containing the real axis. Set

1@=[ " e gy

-0

Jor z real. Then

.1- .1.3.5
f(2)~%(ao+f:-+“‘z, 3,5 1233 "+...)

as z — oo, argz =0, where g(z) = Y 02q0nz™ near zero.

Proof We first ohserve that the function

h{z) = g(z) = (as + @12 :—2" .+ Ggnoy 2271)

is bounded on the real axis since g is bounded and since h(z) — a2, as z — 0.
Therefore, we obtain

/ " e o) - (a0 +ary + ... +azn—w2"")]dyl <M /G e 22 gy,

-0

Now we use the fact that for z > 0,
L -]
—sy?)2, 0, 2k -1
[ty = v g, 2

and

-0
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(see Exercise 7) to obtain

'/” V124 (y)dy — (ao\/2_1r L @2V2r  eV/27-1-3
-0

zi/2 " gl41/2 22+1/2

+...

+

<Af\/_.l -3.. (27&-1)'

2n—1+1/2 2n+l/2

ag,,_z-\/2_1r-1-3...(2n—3))

from which the theorem follows. R

Method of Steepest Descent Finally we tum to situations in which % may
he more complicated and in which more sophisticated techniques are nceded. One
of these is ealled the method of steepest descent or the saddle-point method. It
was discovered by P. Debye around 1909 in comiection with some high frequency
approximations iu optics.

We seek an expausion of the formn

!(2)~9(2)(1+-‘f:1+:’—,+...)

for a particularly simple function g(z), and we shall be mainly iuterested in ob-
taining the first term. The method described here works well if £ has the special
form f(2) = f esMEdE. We shall use contours 7(t) defined for alt ¢ € R. We can
integrate over such infinite contours in the same manner as we would integrate over
ordinary ones, as long as we check convergence of the integrals.

Theorem 7.2.8 (Steepest Descent Theorem) Let o :] — 00, 00[— € be a C!
curve. (y may also be defined only on a finite interval.) Let (g = 7(ty) be a point
on « and lct h({) be a function conlinuous along ¥ and analylic at (3. Make the
Jollowring hypotheses: For |z 2> R and arg z fized,

@) 7(z)= 1, e*"€)d( converges absolutely.

(i) #'(¢o) = 0;h"(Go) #O.
(iii) Im[zh(C)] ts constant for  on « in some neighboriwod of (g.
(iv) Re[zh(()) has a strict mazimum at (g along the entire curve v.
Then

hic) \fag
Vzy/—h"(G)

as z — oc,arg z fized. The sign of the square rool is chosen such thal
Vz/=#"(Ca) - 7' (to) > 0.

f(z)~

The proof of this theorem is given in the luternet Supplenent for this chapter.
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Remarks

0

(it)

(iii)

(iv)

To achieve conditions (i) to (iv) it may be necessary to deform 7 by applying
Cauchy's Theorem. A path 7 verifying these conditions is called a path of
steepest descent

The asymptotic expansion in the conclusion of the theorem depends only on
A(£0) and h"(£b), not on the behavior of h elsewhere on 7 (except, of course,
that h must satisfy' the iiypotlieses of the theorem). Higher-order derivatives
would be used if further terms in the expansion were needed.

The origin or the term “steepest descent” can be traced to conditions (iii) and

(iv) in the following way. Recall that Im[z/i(C)] ~ p (C) mid Rcjzh(£)j = «(£)
are harmonic conjugates, and recall the fact that v is constant on 7 means

that u is clianging fastest in the direction of 7. Since Q, is a maximum,

w(C) = Re(z/»(@ ] is decreasing fastest when moving away from £0 in the

direction of 7. Hence the curve 7 is the path of steepest descent. The term

“saddle-point method” originated as follows. The function «(£) = Re[z/t(E)J

has a maximum on 7 at £0. But ft"(Co) r 0 implies that n Ls not constant,

so Co must be a saddle point of u since harmonic functions never have local

maxima or minima (see Figure 7.2.2).

H

Figure 7.2.2: Saddle-point method.

Often tiic correct sign for the square root may be determined by examining
the sign of the integral defining /(z).

To obtain the higher-order terms in the expansion

e* M) >/8ir
i) yf-h%0)
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cne must be able to compute more terms in the series ¢ = (g + ayw + azw® + ...
in the preceding proof. In simple cases, these higher-order terms can be evaluated
explicitly, as in Watson’s Theoresn 7.2.7. The details of the method of obtaining
higher-order terms will not be given here, because such terms are needed only in
refined caiculations. The leading term given in the steepest descent theorem is the
important one.

The applications of this theorem given in §7.3 deal primarily with the case in
which z is real and positive. Clearly, in that case conditions (i) and (iv) of the
theorem can be written equivalently with or without the z.

A proof similar to the proof of the Steepest Descent Theorem shows the following
(see Exercises 8 and 10).

Theorem 7.2.9 (Generalized Steepest Descent Theorem) Let the conditions
of the steepest descent theorem (7.2.8) hold but let f have the form

f(z) = / #Mg(c)d¢

where ¢(C) is a bounded continuous function on v with g(o) #0. Then

LY, ()
ViR (G)

Method of Stationary Phase If the exponent in the integrand of Theorem
7.2.8 is purely imaginary, we can obtain a related result known as the method of
stationary phase. This method was developed in part by Lord Kelvin in 1887
and wilt be applied to the study of Bessel functions in §7.3.

Theorem 7.2.10 (Stationary Phase Theorem ) Let |a,b] be a bounded inter-
val on the real axis. Let h(t) be analytic in a neighborhood of [a,b) and be real
Jor real t. Let g(t) be a real- or complez-valued function on |a,b) with continuous
derivative. Suppose

fz)= [ Mg t)dt.

If I¥(t) = 0 at ezxactly onc point &y in Ja,b| and h"'(lo) # 0, then as 2 — oo on the
positive real azis, we have

112 ithite) /5
&~ )
The plus signs are used if I’ (to) > 0, and the minus signs are used if h"(tq) < 0.

The asymptotic formula for f can also be wrilten as

) ) V2reE"i4g(10)
. ch(te) i2h(t) P, S R—. A i A
Jm_ Vze™ /: et = )

e/4g(to).



440 Chapter 7 Asymptotic Methods

We note that by breaking g into its real and imaginary parts, it is sufficient to prove
the theorem for g real-valued. Also note that we did not require g(ég) # 0.

The name “stationary phase” comes from the interpretation that the integrand
is a complex quantity with amplitude (maguitude) g(t) and phase angle zA(2). The
intuition behind the formula is that the main contribution to the intogral should
come from the neighborkood of tg, where the phase angle is varying as slowly as
possible. To see why, think of the integral in terms of its real and imaginary parts:

flz)= /: 9(2) cos(zh(t))det + f 9(t) sin(zh(t))dt.

If 2 is very large, then 2/i(t) is changing rapidly in regions where /() is not zero.
Thus, cos(zh(t)) and sin(zh(t)) arc oscillating rapidly. Figure 7.2.3 illustrates this
with h(t) = t* by the graphs of cos(10¢2) and cos(20¢2). If g is at all reasouable,
the resulting oscillations of the integral should tend to cancel out exrept near the
points where &'(t) = 0.

«

x ()

Figure 7.2.3: Graphs of (a) y = cos(10¢2) and (b) y = cos(20¢%).

The eadpoints of the interval of integration might also be expected to contribute,
but it turns out that this contribution is at worst proportional to 1/z and so will
not interfere with the result we hope to prove: The integral behaves about like
1/vz.

We should be able to cstimate the integral for large z by using only a portion
of the path near L. Tn this short interval we approximate g(t) by the constant
g(to) and hi(t) by its second-order Taylor approximation k(te) + [A"(te)/2)(t — t0)*
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to obtain
1(2) = et gz0) / SR oI~ 124y

where the integral is over some short interval centered at ¢. Changing wariables
produces

_ (1) [ 8
o=y [ e

The integral is teken over an interval of the form [—Ay/Z, Ay/Z]. The real aud
imaginary parts of the integral

/c"”da:-—../oos(zz)dm-&'i/sin(z’)dx

are called Fresnel integrals. Residuc methods may be used to show that each
integral taken over the whole real line converges to \/7/2. The dotails are given in
the Internet Supplement for Chapter 4. Therefore, as z goes to infinity, the integral
for f converges to \/#/2(1 4 7) = /7e*/4. This loaves us with exactly the result
we wish, with obvious madifications for the case in which A”(#) < 0.

We will see something of the applicability of this formula in §7.3 when we study
the Bessel functions. Kelvin used it in 1891 to study the pattern of bow and stem
waves from a moving ship. Tn any particular application the amplitude g(t) is
usually well behaved. But tumning the intuitive derivation just given into a proof
is a bit tricky. The first step requires that the function ¢ be smooth enough so
that when multiplied by the rapidly oscillating cos(zk(t)) and sin(zh(t)), it gives
something for which the integral cfiectively cancels away from iy and for which any
cancellation is uot so effective near {g. This may not happen if g itself bas a lot of
ascillation at very high frequencies. Continuity alonc is not enough to prevent this,
a5 can be seen from the following example.

Example 7.2.11 Find a continuous function g for which Uie conclusion of the
Stationary Phase Theorem 7.2.10 is false.

Solution Let ¢(2) = ¥ pr,(1/k%) cos(k82). This series converges uniformly and
alwolutely for ¢ € R since the kth term is dominated by 1/k2. Thus, ¢ is continuous.
Define g(t) on the interval I = [-v27, v25] by g(t) = 2t$(t?) when ¢ > 0 and by
g(t) = 0 when ¢ < 0 and consider the integral

f(2) = /, e~ g1)de.
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This fits the pattern of (7.2.10) with h(t) = —12,15 = 0, and £"(0) < 0. Unisa
positive integer, we have

2 vEE
/ e—int g(t)dt = / e—int ¢(t2)2m
I 0
2%
= f e"""¢(x)d¢.-= e~in= Z eos(k“z)]

2%
= - / e~ cos(k%z)dx
o

f(n)

= i'ﬁ [ ozrcos(nx) cos(k®z)dzr — § A sin(nz) cos(k“z)dz] .

These integrals are all 0 except the first in the single case k% = n, and that one is .
Thms, f(k®) = n/k%. In other words, for positive integer z we have f(2) = 0 unless
z is a sixth power, in which case f(2) = #/¥z. Thus, /Z ](z) does not remain
bounded, so the conclusion of Theorem 7.2.10 cannot hold.

The function g in this example is not smooth enough to make Theorem 7.2.10
work. Jt has too much influence from its high-frequency components, and some
condition is needed to prevent this. The requircment of 2 continuous first derivative
(in the sense of one rcul variable) specified in Theorem 7.2.10 is one such condition.
It implies a property, called bounded variation, which is phrased specifically in
terms of the oscillations of g and which is important in the theory of integration.
A few of the ideas about this property and a proof of Theorem 7.2.10 are given in
the Intcrnet Supplement to this chapter.

Worked Examples

Example 7.2.12 Suppose thal f(z) = I(z) + J(2), that I(z)/J(z) = O(1/2™) for
every positive integer M, and that

J(2)~g(z)(ao+-'fz‘-+i:,3+...).

£(2) ~ 9(2) (ao+%+§+...).

Solution Since J(2)/J(2) = O(1/z), we know that z* I (z)/J(z) stays bounded,
and thercfore zM-11(z)/J(z) — 0. Thus I(z)/J(z) = o(1/z") for every integer
N 2 0. In other words, there is a function By (2) such that 2V1(z) = By (2)J(2)
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and By(z) — 0 as z — co. Now compute

[5G -] | < [T+ (56 - swee)
< @2+ | [ - s |

The first term goes Lo 0, since By{2) — 0 and J(2)/g(z) — ag. The second term
goes to 0, since J(z) ~ g(z){ag + a1 /2 + as/22 +...). This completes the proof.

Example 7.2.13 Let h(¢) = (% and (o = 0. Find a curve v satisfying the hy-

potheses of the steepest descent theorem. (In other words, find a path of stecpest
descent ) Toke argz =0; that is, 2 is real, 2 > 0.

Solution Let h(¢) = nu+iv, sothat if ( = £ 4+ ipu=E -9 and v = 2.
The discussion following the stecpest descent theorem indicated that thie path of
steepest descent is defined by » = constant (since in vur case z is real, z > 0). Thus
the line of steepest descent through (g = 0 is cither £ = 0 or y = 0. Since 4 must
have a maximum at {g =0, the curve yis defined by £ =0. ¢

Example 7.2.14 Pruve that

= -z /2 ~ _\Eﬁ: — .}. _..l —
J(z) [.:e cosy dy 7z (l 2z+222!z’

as 2 — oojargz = 0.

Solution We apply Watson’s Theorem 7.2.7. Writecosy =1 — ”f’ + "T -

Therefore, @y = 1,82 = ,,04 -i, ., and thus
/21: 1 1.3 ,21r 1 1
(@)~ -z‘(l—a'l'z'!?z'—...)— ?(1—2—£+m—...). ¢
Exercises

1. Show that if f(z) = O(h(z)) and g(z) = O(hi(z)) and a and b are constants,
then af(z) + bg(z) = O(h(2))-

2. Show that asymptotic equivalence is an equivalence relation in the sense that
the following three properties hold:
(3) Reflexive: f ~ f.
{b) Symmetric: If f ~ g, then g~ f.
(c) Transitive: If f ~ g énd g ~ k&, then f ~ A,
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3.° If f(z) ~ a2/2? + a3/23 + ... for z € [0, 0o, show that

g9(z) = /“[(t)dt~2 tog gt

4. Let f(z) = [° e t/tdt. Use integration by purts to show

+2
f("‘)“‘c-z(%_%*'%s'—"')'

5.° Show that

e~ 1 28 4
re= [ frat~ i ErE

6. Let g(2) be analytic at zp and let ¢’(z0) = 0 and g”(zg) # 0, so that ncar
20,9(2) — 9(20) = [w(z)]? for w analytic, w'(20) # 0. Prove that there are ox.
actly two parpendicular curves on which Re g (alternatively, Im g) are constant
through zo. (Recall that Proposition 1.5.12 shows that if f'(29) # 0, Re f bas
exactly one level curve through zp.) Show also that lines of constant Re g and
Im g intersect at 45°.

7. (a) (Sece Exercise 21, §7.1.) Show that if z > 0, thea for integers k > 0,
/ ~ 12k gy = l 3-5...(2%-1)

zk+1/2

/ﬂ) c_,y‘! /2y2k+| dy =0.
-

(b) Show that for integers m > 0,

» 1-3-5...(2m—1) _ (2m)!
.[m Yy = 2'"( =1~ (m!;"’"{;

and

[ : eV Amtidy =,

8. Let hy(2) = /re~"". The arca under the graph of k() is /7 and for any
€ > 0,h,(t) — 0 uniformly outside ] — ¢,¢[. Such a sequence s called an
approzimating § sequence. Sce Figure 7.2.4.
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Figure 7.2.4: Approximating § sequence.
(a) Show that if g(t) is continuous and 0 < N < oo, then

N
/_  9(0ha(t)de — SOWF

as n — oc.
(b) Show that if g(t) is continvous and bounded, then

[ stthattide - 5017
as nn — oC.

9. The expansion

0o 1 1
[rtetan -2
T T

was discussed in Example 7.2.2. Compute S4(10) and S5(10) numerically and
find an upper bound for the respective errors. Discuss how the errors change
in Sp(z) as n and x increase. For example, for a given z, are errors reduced
if we take n very large?

10.° Sketch the proof of the generalized steepest descent theorem (7.2.9) using
Exercise 8 (you will need to read the relevant internet supplement).

11. Find an asymptotic expansion for
1(z)= ’ e~V 12 giny2dy,
-ec

(Assume that z — 00,2 > 0.)
12. Show that if £z} = O(¢(2)) and g(z) = o(h(z)), then f(z)g(2) = o(@(2)h(z)).
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13. Find the path of steepest descent throngh Lo = 0 if A(t) = cosi. (Take 2 real,
z2>0)

14.° Prove that [ e~*'dz = /7, where C is the 45° line with equation z = ¢ i,
where —o0 < ¢ < 00, by showing that

/ e~Fdz = ‘/c‘7 % dz.
(o] -0

Hint: Show that [, e~’d( — 0 as z — oo where 7 is the vertical line
joining z to z + ix.

15. Repeat Exercise 13 hut assume that z lies on the positive imaginary axis.

16. Show that the first term in Watson'’s Theorem may be obtained as a specinl
case of the generalized steepest descent theorem if ¢ 2> 0 on the real axis.

17. Find the asymptotic formula for f when the path found in Excrcise 13 is used
in the steepost descent theorem.

18. Use the stecpest descent theorem to obtain the asymptatic formula for f using
the path -y described in Worked Examplc 7.2.13.

19.° Find the asymptotic formula for f when the puth « found in Exercise 15 is
used in the stoepest descent theorem and k(t) = ¢2,¢5 = 0 is chosen.

7.3 Stirling’s Formula and Bessel Functions

In this section the method of steepest descent will be used to prove Stirling’s formula
for the gamma function I'(z). Some propertics of Bessel functions J,(z), which are
defined forn =...,—1,0,1,..., will also he developed and the method of stationary
phase will be used to obtain an asymptotic formula for these functions,

Stirling’s Formula We begin with the important asymptotic expansion for the
gumma function.
Theorem 7.3.1 (Stirling’s Formula)
I(z + 1) ~ V2rz=t1/2e-t
as z — 00 on the positive real axis.

An extcnsion of the proof given below shows that this result also holds for
—w[24 8 < axgz < % /2 —§ for any § > 0 (see Figure 7.3.1).
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Figure 7.3-1: Region of validity for Stirling’s formula.

Proof Recall from formula 12 in Tabic 7.1.1 that for Raz > 0, we have Euler’s
integral

We are concerned with the case in which 2 is real aud positive. We will first rewrite
the integral so that the steepest descent theorem (7.2.8) applies. To do tills, we
make the change of variablest = zr to get

r(*+1)=jf°e Hdt=zs+tJ soez™ T-r)dr.

Thus, r (24-1)/2*+l has the form

where
MO = iogC-C
and 7 is the positive real axis, {0,00f. We must check hypotheses 0) to (iv) of the
method of steepest descent (Theorem 7.2.8). Let Co= 1. Clearly,
M<o0) = -, A'(C0)=0 and /("'(Co)™O.

Therefore, hypotheses (i) and (ii) of the method hold. Also, h«) is real on 7, so
(iii) is valid. Tb prove (iv). we know that Re(zh(t)] = xk(t) has a maximum iff h(l)
does. But k(t) has a maximum of —1 at £0= 1 on 7 (see Figure 7.3.2).
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k)
\

{.-l ¢

Figure 7.3.2: Graph of k(t) = logt - t.

Thus (iv) holds. Therefore,

Liz+1) e« _ et
z:-H ﬁ\/:‘T(c—oj'Jz_ﬂ'-' ‘/E‘\/z—ﬂ.

Hence ['(z + 1) ~ 25¥1/2¢~2 /37, as required. W

If 2 = re®® were not real, the x axis would no longer be the path of steepest
descent aud the path of integration would have to be deformed into such a path
using Cauchy's Theorem.

If one examines this method more carefully, one finds that the first few torms
in the expansion are

Mz+1)~ Varzt 12,2 ( + _l_ T, 1 . ) .

2822 T
mnore precisely,
= vVorEt et [1 4 L4 1 R
O(z +1) = V2r2"*'/2¢ [1+ et 0(;8)]'

Whaen solving particular problems, the first term usually is the most important one.
Since ['(z + 1) = zI"(2), we obtain ['(z) ~ e~ *2*-1/2(27))/2, mentioned earlier.

Bessel Functions The remainder of this section discusses some basic propertics
of Bessel functions and how the method of stationary phase can be applied to
oblain an asymptotic formula. Bessel functjons (the main properties of which are
listed in Table 7.3.1 at the end of this section) arise naturally in solutions to certain
partial differential equations, such as Laplace’s equation, when these equations are
expressed in terms of cylindrical coordinates. Bessel functions can be defined in
several different ways. We will find the following definition convenient.
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Definition 7.3.2 Lot 2 € € be fized and consider the funclion
f(¢) = ex-1a2,

Expaud f (() in a Laurent serics aroitnd 0. The cocfficient of (™ where n is positive
or negalive is denoled J,(2) and is called the Beasel function of order n. We cnll
e2((~1/C)/2 the generating function.

The definition may be written as follows:
o0
A6-1/4)/2 Z Ja(2)C".
N=-00

From the formula for the coefficients of a Laurent expansion (sec Theorem 3.3.1),
we sce that

1 —1_2(¢c—
Iul2) = 5= / 1M1/ 2ge
¥

where v is any circle around 0. If we use the unit circle ¢ = ¢* and write out the
integral explicitly, we get

) I ;
— / e-(lﬂ- 1)ie ¢i® sin0 eiO d0
27 [y

- 1 / x clseino=nigg . L / ¥ e-i=sintnio g
2% M 2% [}

=1 /' cos(n@ — zsin §)d8,
wJo
which we call the cosine representation for J,. Although J,(z) will be defined
for noninteger values of n later, this equation is walid ouly if » is an integzer and

it shows that |J,(2)] < 1 for z real. The graphs of Jo(z) and J1(z) are shown in
Figure 7.3.3.

J=)

Ja(2)

T4 y

Figure 7.3.3: Bessel functions Jo(z), J1(z).
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Next it will be shown that J,(2) is entire, and a method will be described for
finding its power series. To carry out these tasks, it is convenient to change variables
by ¢~ 2(/z and obtain, for each fixad 2, the ezponential representation:

1 fz\n [ __. 2?
ne =5 (5)" [ ¢ o (¢ - 52) .
Writing the exponential as a power series gives
(2)-1-2+ 52
%)= "k traE

This series converges uniformly in § on v (Why?), so we can integrate term by term
(see Theorem 3.1.9) and obtain

-1)* n
Ju(‘)“—z( I) (2 +2k/(u+k+ldc

If n > 0, the residuc of e$/("+¢+! at ¢ =0 is 1/(n + k)! (Why?), 50

J. (2) _ Z (—l)‘(z)’ﬂ-zk

4 30+ 2kE(n + )}
z" [l-» 22 + z*
A [ T B Am+) | H-1-2maNm+2) )’

which is the power series representation lor J,,. Thus, J,,(2) is entire for n > 0
and has a zero of order n at 2 = 0.
Similarly, for n <0, one finds that

_ - (_l)k—nzw*”
In(z) = ’g 2=PHIE(T; — )il

(see Exercisc 11). 1t follows that for n < 0,
Ju(z) = (-1)"Jn(2).

The relutionship of Bessel functions to differential equations is as follows: J,,(z)
is a solution of Bessel’s equation:

This equation is chtained by differentiating the cosine or exponential representation
for Jn(2) and inserting the result into Bessel's equation (see Exercisc 1). Note that
both J, and J_,, satisfy Bessel’s equation.
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If n > 0 but n is not aun integer, we can still make sense of J,(z) in the power
series representation by setting

_ 0 (_l)’:zﬂ'l'zk
Jn(2) = kzg:o ,2n+2kk!r‘(n + k4 1) )

Some basic identities can be obtained from the following relations for z # 0:
d
e Tu(2)] = —2 T (2).
This can be proven directly by differentiating the power series. The student is
requested to establish such a proof in Exercise 4.
If we differentiate z="J,,(z) in this identity, we obtain
d n
EJH(Z) = ‘Z‘IJR(’-)] = Jnqa(2).
Writing —n for n, we get
d " 7 - o
Tiz‘lz —n(2)] = —2"Jn 11 (2).
But J_n(z) = (—1)*Jn(2), 50
2 2 an(z)] = 2
dz Z" Jdn Z)] =2 ’l"(z)’
that is,
d
ZJa(3) = Jnoa(2) = 20 (2).
Combining these equations, we get
L 12) = Loner(3) = I (2).
dz 2
These are called the recurrence relations for Bessel functions. For example, il

we knOW J" alld Jnnl’ this m‘mon demnina Jn*].
We conclude with the asymptotic formula for J,,(z).

Theorem 7.3.3 (Asymptotic Formula for Bessel Functions) The following for
mula holds for any integer n:

ey E e -]

as z — 00, z real and greater than zero. (This relation is also valid for |arg z| < 7.)
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Proof We usc the Stationary Phase Theorem 7.2.10 and the cosinc representation
Ja(z) = — ( / " gizaino-ni0gy o f y c""“‘“"“"’da) )
27 \Jo A
First, consider the function
o= [ dess-nn,

In the notation of the Stationary Phase Theorem, let A(t) = sint and g(t) =
e~ %t Clearly k is analytlic and real for resl ¢, and g is C'. The interval je,d]
is [0,%], and A(t) = cos! vanishes only at £y = #/2. At this point, A"(ly) =
—sin(x/2) = —1 < 0. Thus, we use the minus sign in the asymptotic formula for
, giving

8‘3\/2—'3-‘“-/‘ —nixf2 __ 2= i{z—nx/2—%/4)
f (z) ~ _‘/..;—-— -e 2 = z € .

Similarly, if we set g(2) = fg e~i=ein0+ind4p we get

(z) ~ / -.(:-mr/?-w/d)

(A proof of this is requested in Exercise 9.) Adding the asymptotic expressions for

[ and g, we obtain
2% T w
Jnfe) ~ ( VT 2o (e- - 3),

which is the result cluimed. W

Thus, for large 2, J.(z) behaves like /2/wzfcos(z — 6)], where § is called the
phase shift.

Table 7.3.1 Summary of Summary of Properties of Bessel Functions

—t

. Jn(2) = %/o cos(n@ — zsin8)dd, where n is an integer.

~

+ [a(2)| £ 1 for z real.
—1)k gtk
3. Jo(z) = Z 9n(<l-2‘~t)l.!(zn+*-)"

-

. Ju is entire and has a zero of order n at z = 0; Jg{0) = 1.
In(2) = (-1)"J_n(2)-
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6. Bessel’s equation:

ﬂ-’n = ldJu

: dz + l-z—)Jn—O.

7. %[z"" ,.(Z)] = —z"'J,,.H(z).

8. -d‘J“( )-— —o,n(Z) Jn.' ‘(Z)-

9. 4 Ju(z) Ja-i1(2) - Jn+l(z).

10. J,,(z)~\/ cos z——-———) 8s z — 00, 2 real and positive.

Exercises

L. Prove that J,,(2) satisfies Besscl's equation (formula 6 of Table 7.3.1.).

2. Show that
I(z+1) = V2rzst1/2e-# [l +0 (5-)]

and that

ere e o(3)
as z — 090, (z is real and grester than zero.)
3. Prove that J§(z) = —Jy(2) using the cosine representation.
4. Prove that d[z~"J,(2)}/dz = —2""Jp41(2) for all n.

5.° Prove that Ja(z) = Jy(2) — Jy(z)/2

6. Use the recurrence relations for Bessel functions and Rolle®s theorem from
calenlus to show that between two consecutive real positive zeros of J,(z),
there is exactly one zero of Jy+1(z). Show that J, () aud Jn4)(x) have no

comnon roots.

7. Prove that Jy/s(2) = 1/2/wz(sin z), using the definition of J,(z) for noninte-

gral n.

8. Verify that the asymptotic expansion for J,(2) is consistent with Bessel’s

equation.
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9.° Complete the proof that

o)~ Z (s -2 -T)
by showing that

/ 5 e~ixsinbinidyg \ ’%e-i(g-m/z-:/q.
(]

(The left side of the expression is called a Hankel function.)
10. Verify that ¢(z) = J,,(kz) is a solution of

d, , n? _
3 (=) + (k’:.- - ;-) é(z)=0
with ¢(0) = 0, #(a) = 0, where ka is any of the zeros of J, forn #£0.
11.° Establish the power series representation of J,, forn < 0.

Review Exercises for Chapter 7
1. Establish the convergence of and evaluate the infinite product

oo
II (1 PP S ) .
o n(n+2)
2. Establish the convergence of and evaluate the infinite product

ﬁ (n’ +3n+ 2)

i n24+3n /°
3. Use Worked Example 7.1.10 to show that

~ (3 (3) (D) (L) (1) (13
2=(3) () () () () (&)

4. Use Worked Example 7.1.10 to show that

4=2(5) () () (5) (7) (8)-

5. On what region is cach of the following absolutely convergent?

(@) I°(1 -=7)
(b) II7°(1 —n~*)
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6.° Let Hy = T po, 1/k™. Prove that

logl'(1 +2) = —yz 4 i (_'?"H 2

n=2
for |z} < 1, where 7 is Euler’s constant.

7. Let f(z) = f; e**"¢sin?tdt. Use the method of stationary phase to find an
asymptotic formula for f(z) as z — o0, z real and positive.

8. Prove that

oo 1"
=3 ae v ,,.‘(z L+ e,

where Q(z) is entire. In addition, show that

Q(2) = /:’° t="le~tdt.

9. Express the integral [0° e~ dt in terms of the gamma function. Hint: Change
to the variable y = #3.

10. Show that |d*J,(2)/dz*| < 1,k =0,1,2,..., for any n, z real.

11.° Prove that T' (3 +iy) = 0 as y — o0.

12. Show that limyz..o Ja(x) = 0.

13. Obtain an asymptotic expansion [or f°° e~V 12 cosg2dy (as 2 — 00,2 > 0).
14. Prove that 2"J,(z) = f5 t"Jna(t)dt,n =1,2,....

15.° Prave that J,,(iy) ~ i"c¥//27y (as y — 00,y > 0).

16.° In this exercisc you are asked to develop some prapertics of the Legendre
Junctions (see Review Exercise 34, Chapter 3). These fumctions are encoun-
tered in the study of diffcrential equations (specifically Laplace’s equation in
three dimensions, which describes a wide range of physical phenomena) when
spherical coordinates are used.!

(8) For -1 <z <1, set

1 (-1
i [ (t— 2yt

where 7 is the contour as shown in the following figure. By differentiating
under the integral sign, show that P,(x) solves Legendre’s equation:

(1 -2 - 22y’ +n(n+ 1)y =0.

!Consult, for axnmple, G. F. D. Duff and D. Naylor, Differential Equations of Applied AMath-
ematics (New York: Wiley, 1965).

Pn(x) = di
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C B\
BN .,

(b) For an integer n, derive Rodrigues’ formula:

] 3
P(z) ong !d.r"(x _')
This formula provides an analytic extcusion B, (2).
(c) Show that
O i 1
Pn("’) =

nidt (82 — 2tz + 172,
and deduce from Thylor’s theorem that

1 — "
Gz rayR - LR

{d) Develop recurrence relations for the coefficients of solutions of Legendre’s
equation. Use these relations to show that entire solutions must be of
the form

¥(z) = Za&z’* for n even, and p(z) = Zb 2+ for n odd.

k=0

Show that these series arc actually polynomials, that is, that ax and b
vanish for large k.

(¢) Using (c), show that nPy(x) = (2n —~ 1)zP,_)(z) — (n — 1)Pa-a(z).

(f) Prove that Py(x) = 1, P\ (z) = =, and Py(z) = (322 — 1)/2.

{g) Show that

f Po(2)Prn(z)dz = {r—:r ﬁf:ﬁ

Hint: Use (b) to prove the case where n # m; usc (c) to prove the case
where n = .

17. Obtain the asymptotic formula Pa(2) ~ [(2r)12%(n!)?]2" as z — oo, using
purt (b) of Exercise 16.



Chapter 8

Laplace Transform and
Applications

This fina) chapter gives an introduction to the Laplace transform and some of its
applications. §8.1 introduces two key proporties that make the Laplace transform
usefu] for differential cquations: First, it bebaves well with respect to differentiation,
and second, a function can be recovered if its Laplace transform is known. The
closely related Fourier trunsform also enjoys thesc propertics. It was discussed in
§4.3; see also the Internet Supplement for this chapter. §8.2 develops techniques
for inverting Laplace transforms, while §8.3 considers some applications of Laplace
transforms to ordinary differential equations.

8.1 Basic Properties of Laplace Transforms

The Laplace trausform provides a powerful technique used in both pure and applied
mathematics. For example. in control theory it has been an indispensable tool.!
It is important, therefore, to have a good grasp of both its basic theory and its
usefulness. Consider a (real- or complex-valued) function f(t) defined on [0, oof.
The Laplace transform of f is defined to be the funclion f of a complex variable
z given by

jor=[ " et f(e)de.

The Laplace transform fisdc@ned for those z € € for which the integral converges.
Other common notations for f are £(f) or simply F.
For technical reasons, it will be convenient to impose a mild restriction on the
functions we consider. We require that f : [0,00] — € (or R) be of exponential
1See, for wounple, J. C. Willems and J. W. Polderman, An Introduction to Mathematioal

Systems Theory and Conirol: A Bchavioral Approach {(New York: Springer-Verlag, Texts in
Applicd Mathematios, 1997).
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order. This means that there are constants A > 0, B € R, such that
()] < Ae'B

for all t > 0. In other words, f should not grow toc fast; for example, any poly-
nomial satisfies this condition (Why?). All functions considered in the remainder
of this chapter will be assumed to be of exponential order. It will also be assumed
that on any finite interval [0,a], f is bounded and integrable. (If, for example, we
assume that f is piecewise continuous, this last condition will hold.)

Abscissa of Convergence The first important resull in this chapter concerns
the nature of the sct on which f(2) is defincd and is analytic.

Theorem 8.1.1 (Convergence Theorem for Laplace Transforms) Assume the
J : [0,00[— € (or R) is of ezponential order and let

)= j: e~ f(0dt.

There ezists a unique number g,—00 £ 0 < 00, such that this iniegral converges if
Rez > o and diverges if Re z < 0. Furthermore, f is analytic on the set

A={z|Rez >0}
and we have

Sia=- [ e=a

for Rez > o. The number o is called the abscissa of convergence, and if we
define the number p by

p=inf{B € R | there exists an 4 > 0 such that |f(t)| < Ac®},
then g < p.

The set {2 | Rez > o} is called the half-plane of convergence. (If 0 = —00,
this set is all of C.) Sce Figure 8.1.1. In general, it is difficult to tell whether
J(2) will converge for z on the vertical line Rez = . If there is any danger of
confusion we can write o(f) for o or p{f) for p. A convenient way to compute o(f)
is described in Worked Examples 8.1.12 and 8.1.13.

The proof of this theorem and more detailed convergence results are given at
the end of this section. The basic idea is that if Rez > p, then A and B may be
selected with p < B < Rez and |[f(t)] < Ae® . The improper integral for f(z)
converges by comparison with fg Ae(B-Rex) dg,

The map f + [ is linear in the sense that (af + bg) = af + b3, valid for
Rez > max[o’(f),a(g)] It is also true that the map is onc-to-onc; that is, f = §
implies that f = g; in other words, a function ¢(2) is the Laplace transform of at
most one function.
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Yy
t

at

Figure 8.1.1: Half plane of convergence of the Laplace transform.

Theorem 8.1.2 (Laplace Transforms) Suppose that thefunctionsf and h ant
continuous and that f[z) —h(z) for Res > qf) for some 70- Then f(t) = h(t) for
edit € [0,oc|

This theorem is notas simple as it seems. We do not have enough mathematical
tools to give a complete proof, but the main ideas are given at the end of the section.
Using ideas from integration theory, wc could extend the result of the uniqueness
theorem to discontinuous functions as well, but wc would have to modify what wc
rneau by “equality or Auctions.” For example, if f(t) is changed at a single value
of t, then / is unchanged.

The uniqueness theorem enables us to give a meaningful answer to the problem
“Given <7(2), find f(t) such that / = g," because it makes dear that there can be
at most one such (continuous) /. Woc call / the inverse Laplace transform of
o\ methods for finding / when g is given arc considered in §8.2.

Laplace Transforms of Derivatives The main utility of Laplace transforms
is that they enable us to transform differential problems into algebraic problems.
When tbe latter arc solved, the answers to the original problems are obtained
by using the inverse Laplace transform. The procedure is based on the following
theorem.

Proposition 8.1.3 Let /(£) be continuous on [0,00| and piecewise C I, that is,
piecewise continuously differentiable. Thenfor Rez > p (as defined in the conver-

gence theorem (8.1.1)),
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Proof By dcfinition,

(§Je g

Integrating hy parts, we get
Ji_xgo (e“‘f (t)l:'o ) + /:‘ ze™* f(t)dt.

By definition of p, |e~B% - f(1g)] < A for some B < Rez. Thus, we get
e~ - f(to)] = |e*~BWo[ja=Pt0 . f(tg)| < e~(Re==Bloy,
which approaches 0 as £o — 00. Therefore, we get —£(0) + = (z), as asserted. @

While (df /dt)(z) exists for Re z > p, its abscissa of convergence might be smaller

than p.
If we apply the preceding proposition to d?f/dt?, we obtain

(&) @ =2 -2100- Lo

The formula for df/dz in the convergence theorem (8.1.1) is related to the formula
#z) = df(2)/dz, where go(t) = —tf(t).

In Exercise 19 the student is asked to prove the next proposition, which containg a
similar formmula for integrals.

Proposition 8.1.4 Let g(t) = [, f(r)dr. Then for Rez > wax{0, p(/)),

iy =12,

Shifting Theorems Table 8.1.1 at the end of this section lists some formulas that
are useful for computing f (z) The proofs of these formulas are straightforward
and are included in the excrcises and examples. However, Lthree of the formulss
are sufficiently important to be given separate explanation, which is done in the
following three theorems.

Theorem 8.1.5 (First Shifting Theorem) Fiz a € C and let g(t) = e~ f(t).
Then for Rez > o(f) — Rea, we have

i(z) = f(z + ).
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Proof By definition,
3= [ ety = [ e = iz +a)

which is valid if Re(z +a)>0. W

Theorem 8.1.6 (Second Shifting Theorem) Let H(t) =0ift <0 and H(t) =
1ift >0, which is called the Heaviside, or unit step, function. Also, leta >0
and let g(t) = f(t — a)H(t - a); that is, g{t) = 0 if L < a while g(t) = f(t — a) if
L 2 a. {Sec Figure 8.1.2.) Then for Re z > o, we have

#2) = e f(2).
) &)

24

< ¢

Figure 8.1.2: The function g in the second shifting theorem.

Proof By definition and because g=0for0< { < a,

s = [ et [ e e-a
Letlings =l —a, we get

§(z) = [ e~V f(r)dr = e %2 f(2). W

From the second shifting theorcm, we can deduce that if a > 0 and g(f) =
J()A(t - a), then §(z) = e~*F(z)} where F(t) = f(t+a),¢ > 0 (see Figure §.1.3).

Convolutions The convolution of Lwo functions f(t) and g(t) is defined for
t>20by

(F*9)(t) = /om f(t—7)-glr)dr

where we set f(t) = 0 if ¢ < 0. Thus, the integration is really only from 0 to t. The
convolution operation is related to Laplace transforms in the following way.
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f g F

N

f

Figure 8.1.3: F is obtained from f by shifting and truncating.

Theorem 8.1.7 (Convolution Theorem) The equalities f5g=g=* f and
(f *9)(2) = f(2) - §(2)
whenever Rez > max|a(f), p{9))-

In brief, this theorem states that the Laplace trunsform of a convolution of two
Junctions is the product of their Laplace transforms. 1t is precisely this property
that makes the convolution an operation of interest to us.

Proof We have
(ra) = [T [ [ fte-)-strra]

= /:o [/on e~*Te N f(t - 7)g (-;-)d‘r] a*

For Rez > max}p(f), p(g)] the integrals for f(z) and §(z) converge absolutely, so
we can interchange the order of integration? to obtain

/ow e = [/:» i § (T -r)dt] g(r)dr.

Letting s =t — 7 and remembering that f(s) =0 if s < 0, we get
/:' = fa)olr)dr = fiz)-3(). W

By changing variables, it is not difficult to verify that f * g = g = f, but such
verification also follows from what we have dope if f and g are continucus. We
have

(frg)=F-§=3-F=(9* )
Thus, (f * g — g+ ) =0, s0 by uniqueness theorem (8.1.2), f*g—g#* f =0.

2This is a theorem concerning integration theory from advanced calculus. See, for instance,
J. Marsden and M. Hoflman, Elementary Classical Analysis, Second Edition (New York: W. H.
Freceman and Company, 1993), Chanpter 9.
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Technical Proofs of Theorems To prove the convergence theorem (8.1.1), we
shall use the following important result.

Lemma 8.1.8 Suppose that f(z) = fE°c~uf{t)dt convergesfor z = zq. Assume
that 0< 8 < r/2 and define Hie set

Sg = {z such that |arg(z —zaq)\ < 8}

(see Figure 8.1.4). Then f converges uniformly on Sg.

Figure 8.1.4: Sector of uniform convergence.

Proof Let

M *)= r- e—"'mdt
Jo Jo

so tliat h 0 as X -» 00. Wc must show tliat for cveiy e > 0, there is a to such
that t],ta > to implies that

<e

forall z 6 Sg. It follows that f£ e~ztf(t)dt converges uniformly on Sg as * —* 0o,
by the Cauchy Criterion. We will make use of the functiou h{x) as follows. Write

jf* e~rif(t)dt= jf*c-M iJc ™ )N
Integrating by parts, we get

I*(*) + (z-20) thr c-(I- '0)/i(t)dt.
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Given e > 0, choose to such that IMOI < &3 ®&d |h(®)| < t* - t/(6secff) if
t > to. Then for 12 > to*

N <J'

since |c* <* *)ta| = < 1because Rez > Reso- Similarly, forti > to.

We must still estimate the last term:

(z- zo)jftac-(*-*»)'/i(t)<ft] < 1z- zolle'

where x = Rez and xo = Rezo- Ifz = zo, th® term ®zero. Ifz ™ zo, then x / X0
(sec the figure), and we get

A2~ 7°1 fe-(*-*0)i. < 2t'secO0= -
X —x0 \ * X —XO0 3

(see Figure 8.1.5). Note that the restriction O < 6 < n72 is necessary for secO =
1/cosfl to be finite.

Figure 8.1.5: Some geometry in the region Sg.

Combining the preceding inequalities, wc get

ifti,*2 > <0 forall z € Sg, thus completing the proofof the lemma. 1
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Proofofthe Convergence Theorem 8.1.1 Let
=inf|x e R\ f c~rf(t)dt converges| ,

where infstands for "greatest lower bound.* Note from Lemma 8.1.8 that if f(zo)
converges, then, for Raz > Rezo,/(0 converges because z lies in some Sg for 20
(Why?).

Lei Rez > cr. By the definition ofa, there is an xo < Re 2 such that the integral

e~xnlf(t)dl converges. Hence /(z) converges by Lemma 8.1.8. Conversely,
assume Rez < a and Rez < x < a. Tff(z) converges, then so does / (i), and
therefore a < x gives a contradiction. Thus /(z) does not converges if Rez < a.

We use Die Anatytic Convergence Theorem 3.1.8, to show that / is analytic on
theset {2 |Rez > 0}. Letgn(z) —/F*c~Hf(t)dt. Then <?,2) -* /(z). By Worked
Example 2.4.15, g,, is analytic with gn(z) = - We must show that
gn—* f uniformly on closed disks in {z | Rez > <r}. But each disk lies in some Sg
relative to some zq with Rezo > o (Figure 8.1.6).

Figure 8.1.6: Each disk lies in Sg for some 0,0 <6 < jr/2.

Thus, by the Analytic Convergence Theorem 3.1.8, / is analytic on the set
{2 |Rez >0} and

()(*) = - JV *7(0<ft-

It follows that this integral representation for tlie derivative of / converges for
Rez > <, as do all the iterated derivatives.

It remains to be shown that o < p. To prove this we need to show thato < B
‘f 1/(01 ~ Aeat. This will hold, hy what wc have proven, if /(z) converges for
Re2 > B. Indeed, wc show absolute convergence. Note that

l«~*7(0l = |c<I- B),e-e7(t)| <e-(UUr B)A.
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Since the integral [5° e~°¢dt = 1/ converges for a > 0, it follows that the integral
Jo” e * f(t)dt converges absolutely. &

To prove that f = h implies that f = A for continuous functions f and h, it
suffices, by considering f — A, to prove the following special case of Theorem 8.1.2.

Proposition 8.1.9 Suppose that f is continuous and that for some real ¥, f| (z) =
0 whenever Rez > yo. Then f(t) =0 for all t € [0, 00f.

The crucial lemma we use to prove this is the following.

Lemma 8.1.10 Let f be continuous on [0, 1] and suppose that jg t"f(t)dt =0 for
alln=0,1,2,.... Then f =0.

This assertion is reasonable since it follows that j: P(t)f(1)dt = @ for any
polynomial P.

Proof The precise proof depcnds on the Weierstrass appromimation theorem,
which states that any continuous function is the uniform Limit of polynomials.3

By this theorcin we got j;,' g(t)f(t)dt = 0 for any continucus g. The result follows

by taking g(t) = f({) and applying the fact that if the integral of a nonnegative
continuous function is zero, then the functiov is zero. v

Proof of Proposition 8.1.9 Suppose that
for= [ e ri=0
(1]

whenever Rez > 0. Fix zg > yp real and let s = e=*. By changing variables to
express the integrals in terms of s and letting z=zp+nforn =0,1,2,..., we get

0= f: e~™emTot f(t)dt = [ 5" f(~log ) (—g) ds = /o o h(s)ds =0,

where h(s) = s==! f(~logs) = e~*ot*! f(t). By the Lemma, h must be identically
zoro, and £ must be also since the exponentinl function is never zero. W

It is useful to note that f(z) — 0 as Rez — oco. This follows from the argument
used to prove Theorein 8.1.1 (see Review Exercise 10).

3See, for exampile, J. Marsden and M, Hoffman, Elementary Classical Analysis, Second Edition
(New York: W. H. Freeman and Company, 1993), Chapter 5.
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Table 8.1.1 Some Common Laplace Transforms

467

Definition

f() = /: e[ ()t

Properties

1.

2.

3.

=1

10.

11.

12.

13.

3(z) = _a‘.‘z. F(z) where g(t) = t£(2).
(af +bg) =af +15:
(%).(z) = zf(z) — 7(0). (Assume that f is piecewise C'.)

¢
. §(2) = i f(z) where g(t) = /o f(7)dr.

. §(2) = f(z+ a) where g(t) = e™*1(2).

ﬁ(z)=e'“f(z), where a > 0, and
g(ty=f(t—a) for t>a and 0 if t<a

. §(z) =" F(z), where a 2 0, F(t) = f(t +a), and

ot)=/f@t) if t2a and 0 i 0<t<a.

. (F29)(2) = f(z) - §(2), where the convolution is defined by

oo =[ " [t~ 7)a(s)dr.

. IE f(2) = e, then [(z) = —— and o(f) = - Rea.

z+4+a
For f(t) = cosat, /(z) = oz and o(f) = | Imal.

If £(t) = sinat, f(2) = 77777 0d o(/) = Ime

If f{t) =t%,a > -1,f(2) = F%%,l—) and o(f) = 0.

If (1) = 1,/(z) = 5 and a(f) =0.
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Worked Examples

Example 8.1.11 Proveformula 9 in Table 8.1.1 andfind a{f) m that case.
Solution By definition,

mw
/(z) = r c~la+t),dt as
Jo Jo at2 |p z+n

Tlie evaluation at t — oc is justified by noting tliat iini(_ooc- *+*)t = O provided
Re(« + z) > 0O, since |c-(“+9)'| = e~ —»Qas t — oc. Thus, the formula is
valid if Rez > —Reo.

Note that the formula for / is valid only for Re2 > —Rea, although / coincides
there with a function that is analytic except at z = -a. This situation is similar to
that for tlie gamma function (sec formula 12 of Thble 7.1.1).

Finally, we show that for f(t) ~ e~at,0(f) — - Ron. We have already shown
that tr(f) < —Rea. But the integral diverges at z = n, so <r(/) > —Rea, and thus
er(f) —- Ren. Ifa « 0, this example specializes to formula 13 of Thblc 8.1.1.

Example 8.1.12 Suppose that wc have computed f(z) andfound it to conversefor
Rez > 7. Suppose also that f coincides with an analytic function that has a pole,
on the line Rez = 7. Show thato(f) —7.

Solution We know that o(f) < 7 by the basic property of a in the convergence
theorem. Also, since / is analytic for Rez > a, there can be no poles in the region
{z | Rez > cr}. Tftr(f) were < 7, there would be a pole in this region. Hence
o(f) = 7 (see Figure 8.1.7).

J—Abscissaofconvprcence

,-l'olrsof/-~

® I

Figure 8.1.7: Location of poles of f.

Example 8.1.13 Let f(t) = coshl. Compute f and a{f).
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Solution f(t) = cosht = (¢! + ¢~*)/2. Thus. by formulas 2 and 9 of Table 8.1.1,
- 1/ 1 1 z
=3 () s v

Here o(f) = 1 by Worked Example 8.1.12; o(¢!) = 1 and o(e™*) = -1, 80 0(f) £1
but it cannot be < 1 since f has a pole at 2 = 1.

Exercises
In Exercises 1 through 9, compute the Laplace transform of f(t) and find the
abscissa of convergence.

1 fit)=12+2
2. f(t) = sinht
3 f{t)=t+ec! +sint
{ 0 0<t<1
4 f=4{ 1 1<t<?
0 t>22
5. f(t) = (t 4 1), n a positive integer
6. f(t)y=sintif0<t<wand0ift>x
7. f(t) =tlsinat
8. f(t) =tsinhat
9. f(t) =tcosal
10. Use the shifting theorems to show the following:
(a) If f{t) = e~ cosbt, then
fe) = i
(b) If f(2) = e™*t", then

_ Dn+1)
J(z)= GHap

What is o(f) in each casc?
11. Prove formula 10 of Table 8.1.1.
12. Prave formula 11 of Table 8.1.1.
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13.° Prove formula 12 of Table 8.1.1.

14. Prove formmla 13 of Table 8.1.1.

15.° Supposc that f is periodic with period p (that is, f(t 4+ p) = f(t) for all

t > 0). Prove that

- P —=t
ey = IO

is valid if Rez > 0. Hint: Write out f(z) as an infinite sum.

16. Use Exercise 15 to prove that

17. Let g(t) = f ¢~*sinsds. Compute §(2). Compute f(z) if f(t) = to(t)-
18.
19.
20.
2.

2.

l—e™=
e~2:

fy=:-

z 1-

where f(t) is the pulse function illustrated in Figure 8.1.8.

1

Figure 8.1.8: The unit pulse function.

Let f(t) = (sinat)/t. Show that f(z) = tan—}(a/z).

* Prove Proposition 8.1.4. First establish that p(g) < max{0, o(f)).

Give a direct proof that f+ g = g* f (see the Convolution Theorem 8.1.7).
° Let f(t) = e=*",¢ 2> 0. Show that o{f) = —o0.
Referring to the Convergence Theorem 8.1.1, show that, in general, o # p.

Hint: Consider f(t) = e'sinc® and show that 0 =0,p = 1.
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8.2 Complex Inversion Formula

To be able to recover a function from its Laplace transform, it is important to be
able to compute f(f) when f(2) is known. One technique for such a computation,
using the complex inversion formula, will be established in this section. Using the
formulas of Table 8.1.1 in reverse gives uscful alternative techniques. (Seec Worked
Exnmples 8.2.4 and 8.2.5.)

Main Inversion Formula The complex inversion formula, one of the key results
for the Lapluce transform, draws on many of the main points developed in the first
four chapters of this book.

Theorem 8.2.1 Suppose that F(z) is analytic on C ezcept for a finite number of
isolated singularities and that for some real number o, F is analylic on the half plane
{z | Rez > ¢}. Supposc also that there are positive constants M, R, and f§ such that
|F(2)] <€ M/|2|# whenever |2] > R (this is true, for example, if F(z2) = P(z)/Q(z)
Jor polymomials P and Q with deg(Q) > 1+ deg(P)). Fort > 0, let

J()= Z{msidues of e F(z) at each of its singularities in C}.
Then f(2) = F(2) for Rez > a. We call this the complez inversion formula.

Proof Lel @ > o and consider a large rectangle I’ with sides along the lines
Rez = —z),Rez = x3,lin 2 = g, and Im 2 = —y, selected large enough so that all
the singularities of F are inside I' and |2| > R everywhere on I. Split I into a sum
of two rectangular paths oy and F by a vertical line through Rez = a. (See Figure
821.)

The prool of the complex inversion formmla could just as well be carried out
using a large circle instead of the rectangle I'. In fact, in the last paragraph of the
proof, [ is briefly deforued to such a circle. However, the rectangular path will be
useful in Corollary 8.2.2, in which it plays a role like that of the rectangular path
in the proof of Proposition 4.3.9 concerning the evaluation of Fourier transforms.

Since all singularities of F are inside 7, the definition of f gives

/ e F(z)dz = MZ{rusiduw of e F(2)} = 2=if(t),
¥

2mife) = i [ oo [ [ €| ae= m [ [" el 1parag.

We may interchange the order of integration, because both integrals are over finite
intervals. Therefore,

= i, [ (1) B
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Yy

— Ys —
@®
| |3 I
x
-X) \ C la EN
Singularities of F
-—1-— 'yni ] —7—>

Figure 8.2.1: The large contour is the sum of the smaller two: T'= v+ 7.

With z fixed in the half plane Rez > a, the term =% approaches 0 and the
integrand converges uniformly to —F(¢)/(¢ ~ z) on 4. We obtain

wif(z) = /F‘O /I‘(O /r(c)
= omiF(z)- f FQ) 4

provided I is large enough so that z is inside 4. Finally,

l"(() 2Mp
I./t:C—z < [ s mPE-a% < - Ry

which is obtained by choosing I" large enough so that it lies outside the circle
i€} = p > R with all the singulsrities of F(C)/(¢ - z) inside this circle, and then
deforming I' to this circle. This last expression goes to 0 as p — co. Thus, lotting
I expand outward toward oo, we obtain f (-,) = F(z). Since a > o is arbitrary, the
complex inversion formula holds for any 2 in the half plane Rez >0. @&

Corollary 8.2.2 Let the condilions of the comple inversion formula hold. If F(z)
is analytic for Rez > o and has a singularity on the line Rez = g, then (i) the
abscissa of convergence of f is o, and (i)

1= [ etpas = L / " eOHE( 4 iy)d
= i Ty . oty
Jor any constant @ > 0. The first integral is taken along the veriical line Rez =
and converges as an improper Riemann integrel; the second inlegral is used as
alternative notation for the first.
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Proof

(i) The complex inversion formula shows that o(f) < o since f(2) converges for
Res > o. If o(f) were < o, then f(z) would be analytic for Rez > o(f)
by the Convergence Theorem 8.1.1. But F has a singularity at a point 2y on
the line Rez = o, so there is & sequence of points z), 23, 23,... converging
to zo with F(2zn) — 0. Since f(2) = F(2) for Rez > o, and s since both are
analytic in a delcted neighborhood of zg, they would be equal in that deleted
neighborhood by the principle of analytic continuation. This would mean that
f(2n) — o0. But that is impossible, since f(z) is analytic on Rez > o(f).
Thus, ¢(f) < o is not possible, so o(f) = o.

(ii) From the complex inversion formula, 27if(t) = f r"F(z)dz This integral
converges to the integral in the statement, m:act.ly as in the proof of Propo-
sition 4.3.9, as z;,41, and y2 — co. Since g and ¥, go indepeadently to oo,
this establishes convergence of the improper integral. (The situation here is
rotated by 90° from that of Propasition 4.3.9.) W

In working examples, all conditions of the theoremn must be checked. If Lthey do
not hold, these formulas for f(2) may not be valid (sec Example 8.2.5). The complex
inversion formula is sometimes more convenient than Table 8.1.1 for computing
inverse Laplace transfors since it is systematic and requires no guesswork as to
which formula is appropriate. However, the table may be uscful in cases in which
hypotheses of the theorem do not apply or are inconvenient to check.

Heaviside Expansion Theorem Now we apply the complex inversion formula
to the case in which F(z) = P(z)/Q(z) where P and Q are polynomials. We give
a simple case here.

Theorem 8.2.3 Let P(z) and Q(2) be polymomials with deg Q@ > deg P+ 1. Sup-
pose that the zevos of Q are located at the points 2y,. .. ,z,. and are simple zeros.
Then the inverse Laplace transform of F(z) = P(z)/Q(z) is given by the Heaviside
expangion formula:

¢ P (3i)
o) = Z"" Q@)

Furthermore, o(f) = max{Re 2 |i=1,2,... ,m}.

Proof Since degQ 2 deg P + 1, the conditions of the complex inversion furmula
(8.2.1) are met (compare Proposition 4.3.9). Thus,

w=y {msidms of et szg}
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But the poles are all simple and so, by formula 4 of Table 4.1.1, we have
P(z) ) P(z:)

Res|e®—o—=:2 ) =™ .

(° 7T Q')

The formula for o(f) is a consequence of Corollary 8.22. R

Worked Examples
Example 8.2.4 If f(z) = 1/(z - 3), find f(1).
Solution Rcfer to formula 9 of Table 8.1.). Let ¢ = —3; then we get f(t) =

¢. Alternatively, we could get the same result by using the Heaviside expansion
formuls. In this example, o(f) = 3.

Example 8.2.5 If f(2) = log(z? + z), what is f(1)?
Solution If f were such a function and g(t) = tf(t), then by fonnula 1 of Table

8.1.1, we would have

2241
2242

i(2) = - f(e) = ~ oz ol +2) = =

To find g(t) we could use partial [ractions.
- 2z41 1 1
=g = T
Therelore g(t) = -1 — ¢, and so
1
f(t) = -'f(l +e7Y).

Although this argument seems satisfactory, it is deceptive because there is in fact
no f(t) whose Laplace transform is log(z® + z). If there were, then this procedure
would show that f{t) = —(1 +¢~*)/t is the only possibility. However, the integral

/:b e =t f(t)dL

cannol converge for any real z hocause e~ is larger than 1/2 near 0 and |f(t)] 2
1/t. But 1/t is not integrable. Thus f does nol exist in any sense we have studied.
The argument above does not actually find such an f. It assumes that there is one
and shows that there is only one possibility. But that one does not work. See also
the remark at the end of §8.1.

Example 8.2.6 Compute the inverse Laplace transform of

}4
&) = o 5 10

Then compute o(f), the abscissa of converyence of f.
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Solution In this case the hypotheses of the complex inversion formula clearly
bold. Thus

. ez e*z
10=3 {"s'dm T 5 —10) - GG+ 5G- 2)} '

The poles are at 2 = -1,z = —§, and 2 = 2. The pole at —1 is double, whereas thie
others are simple. By formula 7 of Table 4.1.1, the residue at -1 is g/(—1), where

ez

96 = a1

Thus, we obiain

tet et (ce) (=043 1[, ., e
12 Y13 144 “1—2(‘“ —e ""ﬁ)‘

The residue at -5 is e~ - 5/16 - 7; the rusidue at 2 is €* - 2/9- 7. Thus,

1y L et ettt 2%
m)’lz('c ¢ "’12)""1ﬁ*"6?‘

By Curollary 8.2.2, o(f) = 2.

Exercises
1. Compute the inverse Laplace transform of each of the following.
F4
(a) F(2)= IwE

(b) F(z) = ?z'-':ﬁ

2?
(C) P (3) = m.

2. Check formulas 10 and 11 of Tablc 8.1.1 using Theorem 8.2.1.

3. Explain what is wrong with the following reasoning. Let g(t) = 0 on [0, 1]
and be 1 on (1, 00). Then, by formulas 6 and 13 of Table 8.1.1, §(z) = e~*/z.
By the complex inversion formula, g(t) = Res(e*®~1/z;0) = 1. Therefore,
1=0.

4.° Prove a Heaviside expansion formula for P/Q when Q has double zeros.

5. Compute the inverse Laplace transform of each of the following:
(1) ——e——
(z+1)(z+2)
(b) sinhz
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Applying this again gives
(%) (2) = 2ii(z) — zy(0) — ¢/ (0) = #(z) = 1-

Therefore, our equation becomes z2(z) — 1 + 4z§(2) + 3ii(z) =0, s0
1

- 1 1 _1.1 1 .
”(z)-z2+4z+3=(z+l)(z+3)-2z+1 2z+3

By the inversion formula, the inverse Laplace transform of this function is

=t
y(t) "—‘Z{rwiduwofm at — l.-3} .

Thus,

¢ 6-3!

c" -
()= —7F—-
(We could also apply linc 9 of Table 8.1.1 to the partial fraction expansion.) This is
the desired solution, as can be checked directly by substitution into the differential

equation. ¢

Example 8.3.2 Solve the equation i (£) — y(t) = H(t —1),¢ 2 0,4(0) = 0, where
H is the Heaviside function.

Solution Take the Laplace transforms of both sides of the equation. We get
2i(z) — ¥(0) - §(2) = ¢™%/2.

Thercfore, §/(z) = e~*/z(z — 1). The inverse Laplacc transform of 1/{z(z — 1)) is

1 — e, so that of e~*/[z(z — 1)] is, by formula 6 of Table 8.1.1,

o 0<t<1
"(‘)3{ —1+eft t21

Note that the complex inversion formula does not apply as stated. This solution
(scc Figure 8.3.1) is not differentiable and thus cannot be considered a solution
in the strict sense. However, it is a solution in a goneralized sense, as previously
explained. In Figure 8.3.1, the discontimiity in H(t — 1) causcs the sudden jump in
y/(t). We say that y(t) receives an “impulse” at £t =1. ¢

Example 8.3.3 Find a particular solution of y"(t) + 21/ (t) + 2y(t) = f(1).
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2ie-1) g'tt)

-y

Figure 8.3.1: At ¢ = 1,y receives an impulse.

Selution Let ns find the solution with (0) = 0,3/(0) = 0. Taking Laplace
transforms,

2§j(2) + 22§(z) + 2§(z) = J(2),
80 §(2) = f(2)/(22 + 2z + 2). The inverse Laplace transform of 1/(z? + 2z + 2) is
e:.l e:gt
=57t Sm D)’

where 21, z; are the two roots of 22 + 22 + 2, namely, —1 + i. Simplifying, g(t) =
e~tsint. Thus, by formula 8 of Table 8.1.1,

¥(t) = (g* )(t) = /o” J(@t ~7)g(r)dr = /ow J(t - 7)e" " sinTdr.
This is the particular solution we songht. @
Generally such particulnr solutions to differential equations of the form

™ +...+ay =1,

where ay, ... ,a,, are constants, may be expressed in the form of a convolution. To
obtain e solution with the values y(8),3/(0),... ,5™~"(0) prescribed, we can add
a particular solution g, satisfying

¥,(0) = 0,3(0) =0,... ,y*""(0) = 0
to a solution y, of the homogeneous equation in which f is set equal to zero and

with p¢(0).9(0), ... ,y"*)(0) prescribed. The sum g, + ¥ is the solution sought.
(These statcments are casily checked.)

The method of Laplace transforins is a systematic method for handling constant
coefficient differential equations. (OF course, these equations can be handled by
otlier means as well.) If the coefficients are not constant, the method fails, hocause
transformation of a product then involves a convolution, and then solving for §(z)
becomes difficult.
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Exercises
Solve the differential equations in Exercises 1 through 6 using Lapiace transforms.
Ly -4y=090)=2,y(0)=1
2. ¢ +6y—7=0,9(0) = 1,/(0) =0
3.2+ =H({-1),y0)=y(0)=0
4 yY+y=c y0)=0

¢

5. !/'Hl'l'./; y(7)dr = f(t) where y(0) = 1 and where f(t) =0 for 0< ¢t < 1
ort>2and f(t)=1if1<t <2
6. v +9y = H(t),y(0) = y/(0) = 0.

7. Solve the following systems of equations for g (2), y2(t) by using Laplace trans-
forms,

(a)

{ ﬁ:zf :g where y:(0) = 1,3.(0) = 0.

(b)

{ BBt =0 ghere 44(0) = 0,12(0) =0.

8. Solve: ¢/ 4+ y = cost, y(0) = L.
9.° Solve: ¢ +y = tsint, y(0) = 0,y'(0) = 1.

10. Study the solution of y” + w3y = sinwt,y(0) = ¢'(0) = 0, and examinc the
behavior of solutions for various w, especially those near w = wp. Interpret
these solutions in terms of forced oscillations.

Review Exercises for Chapter 8

1. Compute the Laplace transform and the abscissa of convergence for f(t) =
H(t - 1)sin(t —1).

2.°* Compute the Laplace transfortu and the abscissa of convergence for f(t) =
H(t = 1) 4 3~ 0+6),

3. Compute the Laplace transform and the abscissa of convergence for

ro-{1 151
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4.
5.

6.
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Let f(t) be a bouuded function of ¢. Show that o(f) < 0.

Compute the Laplace transform and the abscissa of convergence for
ef -1

=5

If f(t) = O for t < O, then f(y) = (1/v2n)f(iy) is called the Fourier
transform of f. Using Corollary 8.2.2, show that, under suitable conditions,

1 20000
f(z)= "/T—ﬂ/.:f(ﬂ)‘-'"'dll-
(This result is called the Inversion Theorem for Fourier transforms.)

7. Compute the inverse Laplace transform and the abscissa of convergence for

e—!

F)= 22+1°

8.° Compute the inverse Laplace transform and the abscissu of convergence for

9.

10.

11.

1
(z+1)*

Compute the inverse Laplace transform and the ahscissa of convergence for

F(z)=

oY . e~
l‘(z)—.(z-f-_l)z"- ret

(8) Let f(2) be the Laplace transform of f(£). Show that f(z) — 0 as
Rez — oo.

(b) Use (a) to show that, under suitable conditions, zf(z) — f(0) as Rez —
oC

(¢) Can a nonzero polynomial be the Laplace transform of any f(t)?
(d) Can a nonzero entire function F be the Laplace transform of a function
ey
Solve the following differential equations using Laplace transforms:

(a) ¥’ +8y+15=0,y(0) = 1,/(0) =0
) y+y=3,50)=0

12.° Suppose that f(t) > 0 and is infinitely differentiable. Prove that (~1)* f(¥)(z) >

0,k=0,1,2,..., for 2> 0. (The converse, called Bernstein’s Theorem, is
also true but is more difficult to prove.)

13. Solve the following differential equations using Laplace transforms:

() v +y=H(t-1),5(0)=0,¢(0) =0
(L) v +2¢/ +3=0.9(0) =1,5/(0) =1
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Exercises

1.1 Introduction to Complex Numbers

1

5. R

n.

13.
15.

17.

19.

() 6+ 4i (l.) :g (c);-gi 3 5= (2-14)
[a]-& im 3] ==y
P (z’-t-y’)’ N
3z+2] (3r+2)'-' +9y= o [3.72] eI I
. Nojlet c=w=i. 9. If = = z 4 iy, then Re(iz} = Re(iz - y) = ~y = - Im(z), and

Im(iz) = Im(iz -y} =z = Rc(..)

The proof of the associative lnw forumlhp!ied»ou was outlined in the text. Heore is how to
show that addition is comnwtative: if 2z = z + iy and w = u 4 iv, where z,y, 4, and v are
res), then £ and w currespond to (z,y) and (u, v) respectively, and thus

24w=(ry)+(v.0)=(x+un,y+v)
=(ui+zviy)=(e.v)+(Z,y)=wtz
Show that a = (% - g3)/(2* +v?) and b= —2ry/(z? +17) and then 0 442 = 1,

A complex number £ can be written as 2 = x 4 iy with = and y real in culy one way,
corresponding to the vector (z,y). The real ninubers were to corrempond to vectors of (the
form (=, 0), so y = 0 and therefore 2 = z = Rez.

(a) 4 (b)i

(a)\/1+\/€=*(\/1+f+m Va-vEiiviioh

23/4 a8/4

98/4 2s/a

(b) Vidti==% (" 1 :‘ﬁ + 31’ ‘/52" ! ' (c) See Worked Exsmple 1.1.6.

orm=*(3/ﬁ—x+m Vi-vE+ V-2

1.2 Properties of Complex Numbers

(a)z= Vigcns?%&-k i 2;"), k=0,1,2,3,4
3x 2=k 3= 28k
- o—— m— — —3 . 3
(b) =2 8+4 + dgin 8+4)' k=40,1,2,

481
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3. (3-8i)%/(0 )"
5. cos5z = cos®z —1cos¥z-sin?x + Scosz-sind
sinbx = gin®x — 10cos2x -sindz + Scosd 2 - sinx

7. 3T/ 9. Uso the identity (1 —w)( +w+w? +...+ 0" ) = | wa®.
11. We use propertics of the complex conjugate as follows:
lo =% +|a + b = (a ~ b}(@ =) 4 (a + b)(c + 1)
= (a - 6)(@ ~ B) + (a + )@ +0)
= lo|? — ab - b5 + [bf* + lof* + @b+ ba + 1bf?
= 2(ja)? + f?)
13. Al the puints must have the same nsgument and so lie on the samo ray from the origin.
15. No; take z = i. In fact, 22 = |=}? if and only if 2 is real.
17. Each gide is 8 positive real aumber whose square is a2(a’)? + o2(V)? + (¢/)°5% + B2 (V)2.
19. Je-(8+5i)|=3 21 Therealaxis.  23.1+ |
25. Using deMoivre's formula and 1 + w4 ... 4 ™ = (1 = w")/(1 — w),

icnskﬂ: ne[g(ma-n-wno)*]

k=0
1 = (080 +Euin0)"T! 1} — cos(n +1)8 — isin(n +1)0
=Re 1 —cos0 — ising = Re 1 -c088 —ising

_ 1 =cos0 ~ cos(n + 1) + cos(n + 1)0c038 4 sin(n -+ 1)0sin &

- 2 —2c0s8

_ 1 cosnd — cos(n +1)0

=2 2() - cos8)

1 _ 2&in(68/2)sin(n + £)0 g sin(n + §)0
=2t T 20 -s0) 2 ¥ Zamiern)

o+

7 () =) m)isral. () (222) (222 e

29. Multiply by 1 - w and use Exercise 9 to show that the sum is -n/(1 — «).

1.3 Some Elementary Functions
L. (n) e*(cos + isin1) (b) -::(sinl) (é-t—e) +i-12—(eosl)~ (c- i)

3. (a) z=:k(§ +28m -i%logz)

(v) = = £[2%n — i log(4 + V/15)), noting that log(4 — v/15) = —log(4 + VI5).
5. (a) gl =2mni (L) logi = wi/2+ 2ani
7. (0) e"/2e=3mn o o~2x(n-1/4)

(b) (/3 tog2-2xn~n/4 [m (% log2 4+ -E) + isin (-;» log2 4+ ::F)]

9. z=mnx for any integer n
11. Since je*] = eRe2 |e2| goes to O along rays pointing into the lcft half planc. Tt is 1 along
the imaginary axis, and it goes to 00 along vays into the right half plage,
13. (a) "~ (cou2ay + isin2zy)  (b) e~¥(cosz + isinz)
() N4 (cm

—igin —2

)
242 24y
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15.

17.

19.
2.

3.
. (n) 224 - 145 (b} = 1.17 - #(1.19) + 27¥ni {c) = 96.16 — i1644.43
5.

Using the definition of the sine and cosine of 2 complex variable gives

ain(:[z —y= el(wlz-z) - g=i(n/2=2)

_ e ,'_eit
2
The other two assertions follow in a similar way.
From Example 1.3.17, xin z = sinzcosh y + { caszsinh g, so
|sin :f“' = sin? x cosh? ¥ + cus? zsinh? v

= sind(z)(1 + sinh? y) + cos? zsinh?y

=gin? x4 sinh? y > winh®y,
80 |sin 2| 2> |sinhy|. The other inequality follows in a similar manner.
No, not cven for real @ and b. Let a = 2,6 = ~1. Then Ja*} = {2=!] = §, but a)™ = 2,

1f|] = 1, then = =& for some 0, 50 z + 1/2 = €' 40~ = 20080. As @ varies.from 0 to
2%, this covers the interval {-2,2] twice,

- i/ e~ o ci:e-wd
2i ) 2i

=0052.

. Since |1/2] = 1/|z|. the map intorchanges the inside and outside of the unit circle. Circlos

of radiux r are mapped to circlss of radius 1/r. if z = re*?, then 1/z = (1/r)e™, 5o the
ray defined by argz = @ is mapped to the ray with angument -8,

. This holds iff blag e has its imaginary part in [-=, #{. Otherwise, the formula reads loga® =

bloga + 2xik.

. Thesc are the nth roots of 1, since (wk )™ = [(e2*/0)¥|* = o275 = 1 They are all differant,

siuce w = w* impliex 27k~ )/n = 1, By Proposition 1.3.2(vii), this forces (k - j}/n to
be an integer.

. sinz = 0 il and only if c!* = ¢~** or €2* = 1. By Propusition 1.3.2(vii), this happens

exactly when 2iz = 2xmi, or = = n=7.
The maxinmun Is cosh(2x) = 268 attained at 2 = 2xi, » 4- 2xi. and 2¥7 + 2.

No, sinz is not one-lo-one on 0 € Res < 2w. For example, sin(0) = sin(x} = 0. 1f
sin 2 = ginw, then
z—wm:-f-w

2
and by Exercise 29 and s similar result for cosine, cither 2 ~w = 2k (for k£ = 0, %1, £2,...)
or 2z +w =n% (for n = k1,23, £5,...). Using Exercise 34 and this sesult, for each 29 € €
thiere Is precisely onc w with ~x/2 € Rew < x/2 such that sinw = 2o, provided, for
cxample, that shw: portion of the boundary of this strip lying below the real axis is omitted.
Taking this value of w defines a branch of sin~—? zy. The otbers are given by the ahove
forminins for 2 — w and £ 4 w. The discossion for cos™" is analogous.

0 = sin 2z - sihw = 2sin

1.4 Continuous Functions

3

S.

Since |w|? = (Rew)? + (Imw)?, all three asertions follow from the obsorvation that if
a20amlb20,thena < Vot + ¥ <a+b.

Since £ is continuous, there is & § > 0 such that jz = zp] < § implies thut |f(z) — f(z0)) <
1f(za)l/2. Thus f(z) # 0, for if f(z) were equat to O, then |f(2g)| would be less than
7 (z0)1/2. whichs is absurd,

Lot {ay,ez.... ,6n) be a fiuite set of pointy and let zg be in its complement. Let & =
|zo—e;| and let § = miu{é) /2.... ,8,/2). Then no a, con lie in X(z0,5), since § < |20—ay|.
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. Lote>0and§=e. If |z~ < 5, then |£(2)— f(zall = 1£ 50| = [(z = 20} = Jr - 20} < .

Thus for any 29 € C lim... f(2) = f(20).

. C\{2#ni | n is an integer} 11, J2) <2
. (a) Open, not closed (L) Noither open nor closed (¢) Not open, closed
. (a) Connected and compact

(b) Compact, not comocted
(<) Connuctod, not compact  (d) Neither compact nor connected
2€C\[~NA)ill 2 ¢ f-1(A)iff f(z) ¢ A iff f(2) €C\A il 2 € £~'(C\A)
If the U,'s arc open sets and & € Ualy, then = € Ua, for some ao. Since Uay is open,
there ig an ¢ > 0 such that D(z;¢) C Uog € VaUa. This shown the union is open, since
this argument holds for any such s.
AL D(0;1/n) = {0}, and this set is pot apen.
Let R > 0. We necd to show that there is an N such that [2"/n] > R whenever n 2>
N. A little algebira shows this is equivalent Lo (nR)'/™ < |zl L'Bépital's rule shows
that Bma_o(nR)/® = 1. (Toke logarithms first and use L'Hépital's rule to show that
Jog(ni)/™ — 0.) Since |z} > 1, we hove the inoquality we need for largo enough n.

1.5 Basic Properties of Analytic Functions

L

il

(s) Acalytic on all of C. The derivative is 3(z + 1)2.

(b) Anslytic on C\{0}. The derivative is 1 — 1/z%.

(c) Anatytic on C\{1}. The derivative is ~10{1/(z — 1)]3.

(d) Analytic on C\{?**/3, 4"/ 1, i3, ~iv2}. The derivative is

/(= - 1)2(22 +2)%) - [(=® - 3)22 4 3=%(2 + 2)).

. (8) Hn > 0, it is analytic everywhere If n < 0, it is analytic everywhere except at 0. The

derivative is nz"~!. (b} Analytic on C\{0,i ~ i}. The derivative is

1 1
BRTTAITE (' - ?2) :
(c) Analytic except at the nth roots of 2, ¥/2c®*%/n_ The derivative is

{(1-n)"-2

. (8) Locally, f rotates by @ =0 and multiplies lengths by 1,

{b) Locully, f rotates by an angle & = 0 and stretches lengths by a factor 3.

(c) Locally, f rutatus by an angle = and stretches lengths by a factor 2.

(£ 0 1Y(2) = (£=2Y(S(=NL'(2). But (f~! o f)(2) = 2z, s0 (f~? 0 f)'(z) = 1. Hence
UYU(E)-r') =1

. J(2) = 22 43242 = (2® — y® 4 32 + 2) +i(2xy 4+ 3p), 50 Ou/Oz = 2z + 3 = BufBy and

8u/8y = -2y = ~Bu/Bz.

Since z = rcos? and y = rsind, the chain rule gives

a Su B8u du
-a% =cosﬂa +ain08—y and = -rsiné%-t-rms@%.
Solving lor Ju/8x and Su/dy gives
Bu_ _ Bu_sin0u Su _ _ Bu cos8du
5z =05~ a0 ™ 3 =yt 5
Similarly,
Bv _ 8o sin0dv Bu _ By cousbbu
== - T% =™ 5;“““93 i
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50 the Canchy-Riemanu equations become

u sin@8u v L)
o - w T w
and
8u  cosl Su v xinl Sv
Bt % ™%t T m
. . . du 18v _ .
Muiltiplying the first by cos@ and the second by sin@ and adding gives et~ Simi-
]my g:—l@
' or ro0°

13. The definitious give

o 1 (M) L[, 1% )
oz ~2\ar "igy)"zlazV'E i \m ey
_1f0u & 1 /8 ObBu
=3\o= ay)'”z E*oy)'
Thus, the Cauchy-Rivmann equations, 8u/8z = 3v/8y ond Bu/By = —-8v/Bz, are equiva-
lent to saying that the complex quantity 8f/9% is zera.

16. If f = u 4 dv, thon Ju/Bx = O = Ou/By since u is constant. By the Cauchy-Riemnna
equations, dv/8y = BufDz = 0 and Sv/8z = ~Bufdy = D. Thus, f/(z) = 8uf8x +
#(0v/8z) =0 cverywhore on A. Since A4 is connected, f is constant,

17. By the Cauchy-Riemann equations, §u/8x = 8u/8y. Hence 20v/8y = 0, so 8u/ix and
8v/8y are identically 0 on A, Tns, u depends only on y and v depends only on z. But then
8u /8y can depend only on y and 8v/3x only on z. Since Su/By = —Ov/8z for all z and
¥, 8u/0y and ~Qv/8x equal the same real conatant c. Thus u = cy +d; and v = ~cx +da.
Therclore, f = u + iv = —ic{z + iy) + (dy + id2).

19. () C\{1} (b) Yes {¢) z axin \{1}, unit circle \{1} (d) s0°

21. C\{1,6?1/3,¢~2%/3)

23. (a) u is the imaginary part of the analytic function f(s) = 22 + 3z + 1, 80 ¢ is harmonic
on C.

(b) Either check the socoud derivatives directly in Laplace’s equation or notico that « e
the real part of f(z) = 1/(z — 1) to seo that u is harmouic on C\{1}.

25. Locally in B,w = Reg. where g is analytic. Then wo f = Re{g0 /). But ga f is analytic,
80 wo f Is harmonic.

27. (a) :%i»%; =e"cosy —“oosy =0 for all (z,y) (b) We need 80/8y = Su/fx =
€* oosy; thus, 1(z, y) = c*siny+g{x), Then e*siny +-9'(x) = Ov/9x = —Bu /8y = = ainy.
Thus g'(z) = 0, 90 ¢ is constant. To obtain v{0,0) = 0, take v(z,y) = e siny.

(c) e* = €* cosy + ic* siny. By parts (a) and (b), the real and imaginary parts satisfy the
conditions of the Cauchy-Riemaun Theorem 1.5.8, so f is anslytic.

29. (a) No. Counterexample: u(z,y) = 22 —3? and v(z,y) = z are harmonic, butu(u(z’y).:z =
=2 is not barmanic. (b} No. Counterexample: u(z) == v(z) =z, Then u(z)-v(z) = 2% is
oot harmonic.  (¢) Ves

31. Writo

Ou Bu
0_5.-!. and Vg-b;'

s0 f = U 4 V. By swsumption, U and V' havo continuous psrtial derivatives. By the
assumption of continuous second parstials for n and v, we get
Pu U _ 8v

m=m, that is, -5;=-§c
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ona of the Cauchy-Riemoon oquations for f. The other oquation comes (rom
U _Fu_ Pu_8( & av
8 a2~ 87 o\ &/ &’

J is thus analytic by the Canchy-Riemann Theorem.

1.6 Differentiation of the Elementary Functions

. (8) Analytic for all 5; the derivative is 2= + l

(b) Analytic on C\{0}; the derivative is ~1/=2.

() Aualytic on C\{z = (2k 4+ 1)%/2 | k = 0, 41,42, %3,... }; the derivative is 1/ cos? 3.
(d) Analytic on C\{1}. The derivative is

2:3 32~ z’-n)
(z=1)2 SP\T )

3. (a)). (b) The limit does not exist. 5. No. 7. Yes:

11

13.

. (8) Amnlytic on C\{2:1}. The derivative is (22 + 1)/(22 - 1)2,
(b) Analytic on C\{0}. The derivative is (1 — 1/22)e®+V/2,

The minimum is 1 /e, ot & = 44,

The msp 2 +— 22 g a composition of entire functions and so i entire. The funttion
22% = ¢22105 3 jy analytic on the region of analyticity of the logariuin choson.

Review Exercises for Chapter 1

1.

n.

13.
19.

(a) € = con(a) + isin1); () log(1 + £) = 2 leg2+ ?-O-Zr:m',n an integer
() sini =i (= 1) (d)e-m[mos(—m =1

, e"i/10y gwi/10 (ﬁ + 75,) "9y aifro ( + E)

e=/16(_1), exif16 (-7; _ ﬁ) ,e18(_j), (XIS (\;_2_ - :}5)

. 2= 2xn ilog(v3 + v3)
. (n) Thevoal axis () A circle, centered at (47,0) of radius §.

~3z2

. (n) (23 +8) = 322onallofC. (h) (‘3;-1)' = S+ on C\{-1. pr L i3},

(¢) lexp(2® - 1)) = 427 exp{2® — 1) ou all of C. (d) [sin(log z2)}’ = -—oos(logz’), onalt ©
except the entire imaginary axis.

(8) Analytic on €\{0}: («*/*) = —eV/zf22,

(b) Annlytic on C\{=z = (#/2) +2=n | n = 0,%1.42,43,...);

(1/(1 —sinz)?) = gm.l/(l - sinz)3.

(c) C\{xai}; [ /(a? + 7)) = [(a? + 2)acs* - 226%7}/(a?

(8) No. (b) Yes. (c) Yes. 15. If and only |f[:sconsunt. lc.r=y=-l

Note that v(z,y) = 0 o A. Therefore, 8v/8x = Ov/By = 0, and the Cauchy-Riemnann
oquations give 8u/8x = Ou/8y = 0. Thus, J is identically O oo the connected sct. A. Hence,
by Propasition 1.5.5, f is coustam on A,

By hypothasis, (d/dz)(f(z) — g s) = 0. Now use Proposition 1.5.5.
fim (""'%ﬁ = f'(20) whore f(z) = 2.

hesd
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25. Fix a branch of log, for example, the principal branch, which is analytic on C\{nonpositive
real axis}. Write z* = 6?1962, which is analytic on the region of analyticity of logsrithm
chosen. The derivative is 25(1 4 log 2).

27. 2 = 2¢7/2,2e7%/0, 213%1/6, 29 They are the real and imaginary parts of 23,
31 (a)o. (b) Differentinble at all points 2 € C.
&u v &Fu  Hu
33. (a) 72 3—610,5”—2- = Gy, so 77 +'07 =0. (b) v(z,p) =23 ~ 3x33.
36, 3 =1i,-1,~i,1.

37. f(2) = f(2z) = f(43) = ... = f(2"z) for any z and positive iuteger n. Letting w = 2"z,
we get f(w/2") = f(w) for all 2. Letting n — co and using the continuity of f at 0 gives
J{0) = f(w). Since this can be done for any w in €, f is constant.

2.1 Contour Integrals

L (8)2+(/2)  (b) floos(2+2) —cos(2i)]  (c)O

3. The principal branch of the logarithm is a function that is annlytic on an open sct containing
< and whose derivative is 1/z. Since 7 is closed, the value of the intogral is 0; by the
Fundamental Theorem of Calculus for coutour integrals, 2.1.7.

§. No; for example, let f(z) = 2.9(t) = it fort € [0,1}. Then

[’Rcf=/al(l-idt=0.

Re.[,I=Re/°lm'd¢=ne(-£;|:) =-3.

7. (a)2mi  (b) =i/3 9. Forjz)=1we have
I 1| 1 )

However,

= <
2422 12422 T 2- P

sinee |23 4+ 32} 2 51| - |22]. Hence

dz
e 4 =%.
M“:,'_H('r) *.

=1,

dz . dz jd=| dz i
11. {n —=2ﬂ;/ —=0;/ =0 |_|=2,, b) —~
) l=i=1 3 1z1=1 2l = 5 Ja=l s ®) -3
13. 0 15. f 2 = ¢ is on 4. then
Snzl o jedl sl _ emvind 4 oine
z2 ={sinz| £ 3 = > <e.

Since o has length 27, the estimate follows from Proposition 2.1.6.

2.2 Cauchy’s Theorem—A First Look
1.(8) 8 ()0 ()0  (d)0 O, by Cauchy's Theorem applied to = = 2 + re*?.
5. The integral is zeco iff  encircles neither or both roots —(1/2) £ (VS/2)iof 22 4241 =0,
7. No; let f(2) = 29(t) = &'.¢ € [0,25] (the unit circle). Then f, Re f(=)ds = =i, while

fimfapz= 5. 9. -% - :-";s n. ami
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2.3 A Closer Look at Cauchy’s Theorem

1

7.

If it wore, then the circle |2] = 1 wonld be homotopic (0 a point iu C\{0} so that
fmg.d:/: = 0. But -’ttl=1 dz/= = 27%i. ‘This contradiction shows that C\{0} ix not

aimply connected.

. Let 4 : [a,b) — A be a closed curve in A. Definc a homotapy H : [a,b] x [0,1] — A by

H(t,s) = ay(t) + (1 — #)zp, which is clearly contiouous and mape into A since A is starlike
at 2. Thus v is homotopic by & to the constant map at .

. The sat G contains the segrvunt. botween cach of its polnts and 0. Samplu of part of a proof:

Conwitler » poinl ¢ for which 0 < Rec <1and 0 < Imc < 3. If 2 = sc+ (1 — )0 = ec
with 0 < s < 1 is on the segment between ¢ and 0, then Rez = Re(sc) = sRec and
Imz=slmec,0that < Rez < 1 and 0 £ Im2 € 3. Thus z € C. Points in other parts
of G are handled similnrly.

M Mo ()0 (@m0 (a2  (b)2xi

2.4 Cauchy’s Integral Formula

1.
3.

(a) 2xi (b) 2wi

The Cauchy inoqualities (2.4.7) show tlint f44}(z) is identically 0 for & > n. The conclusion
follows from Exarcise 20 of §1.5.

5 (8)0  (b) ~xi/3
7. Using the Cauchy inoqualitics, |£/(0)] € 1/R for every R < 1, Htence |f/(0)] € 1. This is

1.

13.
17.
19.
21.

the hest poesible bound, as is clear from the example f(z) = =.

. Let 7 be the circle $(t) = =1 +re¥,0 € ¢ € 2w, |20 =21 < r. The curve 4 is homaotopic to 7

by H(t.s) = #(zy +relt) + (1 —8)(z0 + re't). Since 2, is not in the image of the homotopy,

1 1 _ 1 1

e e Y
By Proposition 1.5.3, [ is analytic on A\{zu}, so it is continuous there. Since
F(z) - F(a0) _ .
e Jim f(2),
J is also coutimous at z5. By Coroliary 2.4.11 Lo Morera’s Theorem, £ is analytic on A.
@0 (0 ()0 (d) =/ 15 4w
1/ is entire and [1/£(z)] € 1 on C. 50 1/f (and hence f) is constant by Liouville's theorem.
(8) »/2 4 i(»/2) (L)o
Stast with Cauchy’s Intcgral Formula 2.4.4 for J(x), f(z») and f*(z0)-

f(z0) = F'(z) = lim

2.5 Maximum Modulus Theorem and Harmonic Functions

LB
8.

7.
9.

e 3. Let A=C\{0}, f(z) = ¢*.

Note that f - g is continuous on cl(A) und analyticon A. Also, (f —g)(2) = 0fur z € bd(A),
and 80 by the Maximnm Modulus Theorem, (f — g)(z) = 0 for all = € A. In other wordx,
J(z) = g(z) for all 2 € A. Hence § = g on all of cI(A) = A UbI(A).

{=* | attains a maximum value of c at 1.

(s) vz, ¥) = - coshxzcusy on € (b) v = arctan(y/z) or - arctan(z/y) on C minus the
negative ront axis (c) v(z,y) = *sinyon €
(Note that an arbitrary constant may be added to each.)
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11

13.

17.

Hz = x 4 iy, Ree® = e cosy and Ime* = eTsiny. The nonual vertor to the level enrves
of these functivus is given by the gradient veclors

(c” cosy, —c®siny) and (c”siny,e” cosy).
Stioe these arc orthogonal, the curves are abio orthogonal,
Since { is analyLic and nonconstant un A, 2o cannot be a relative maximum. Thus, in every
acighborhouod of zq, and, in particular, in tha ¢ disk dufined by |z - 23| < ¢, there is a point
z with |7(z)] > |f(z0)l- If J(=0) # O, then by continuity, f(z) # 0 iw some small disk D
centernd at sa. Thus 1/f(s) is analytic on D. By the Iast argumoent, there is a { close to
2g such that

el I
SO 1 £Ga)”
Therefore, |£(C) < 1/(z0).

2(0)) = 10§ = 0, and w0 g(0) = 0. Also, la(z)] = || < 1 for all = in the disk defived by
lz] < ). Thus, Schware's Lemma applies, uud 80 g(z) = cz with |d] = 1.

0

Review Exercises for Chapter 2

MW

13.

18.

17,
19

-

om0~ e

-@0 @O0 (c)2xi  (d)2wicos(l)

Forry > 12 > 1, r, is homutopie in {z such that || > 1} to 94, 80 the integrals are oqual.
-2/3

. i z) € A, let v be a path in 4 from 29 to 2. By the Distance Lemma 1.4.21, there is a

& > 0 such that the sot B = {z | there is a polot w on -y with |t ~ w] < 8§} C A. The
Maximum Modulus Theorem shows thet f is constant on this bounded subrugion and in
particular (1) = f(za). Since z) was arbitrary, f is constant ou A.

L]
on C\{1} 11. Consider / S‘u‘d’ 0 obtain 2w.
j2i=2 &

i logi=i(w/2) 4 2xin; log(—i) = =i(x/2} + 2mim;

#oR(=1} = - %'%/2 wiere k is any odd integer.

By the Canchy Integral Formulas, f’ is analytic on A. Since f is nonzero in A, J//f is
analytic on A and the integral is 0 by the Cauchy integral Theorem.

No; let 9 bie the unit circle. Then [, zdr 4 zdy = ».

(®)No (b)) Yes  (c) Yes  21. 20i%/6 25B%/0 gapef 2043%/2

. By thie Mean Value Property 2.5.9 for harmonic: fuactions,

u@ = & [ uine .
By Puisson’s formula (2.5.13),
wret) = =~ |, FiRroslé -G
Using thse equalities, we get
R=r2 (2 y(R?) R-r2 ' ulRel)

40 < u(z) < e df);

Zr Jo R*42Rr472 2 Jo R2-2Rr40?

that is,

(Rer{R-v) 1 f?* (R-n)(R+7) 1 [ )
AR J, W <) s Gt D [ unctian

Therefore,

R+ )= w(0).

Ao s s s 710

R+ |z
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3.1 Convergent Series of Analytic Functions

1.
3.
5.

11,

13.

15.

17.

(a) Docs not converge (v)o.

The limit is | and the convergence is not uniform.

If |2| £ r, then |s® - 0] < ™, 50 |z — 0] < ¢ whenever n > (loge)/(logr). Theve n work
for all = in Dy, so the convergence is uniforin. The convergunce is not uniform on D(0;1).
For example, if £ = r, the reqnirod minimum n is (log ¢)/(logr), which becomus arbivrarily
large as r gets close to 1.

. Ncitber of these series converges absolntely. However, both the real and imaginary parts

of each are alternating scrios whose terms decreasc in absolute value monotouically to zero
and thus are convergent (by the alternating series test from caleulus).

. The sequence of partial sums couverges uniformly; thus it converges to 8 coutinuous function

and the assertion follows,

Let D be any chmed disk in A. Then there exists an » > | such that |2] > v for oll z € D.
Aence |1/2°] < (1/r)® for all = € D. But 332.,(1/r)" convarges, since 1/r < 1. Thus
Yo%, 1/=™ convarges ahsolutely and uniformly on D. Since 1/z" is analytic on A, the
Analytic Convergence Theorem 3.1.8 shows that 300 , 1/2” is analytic on A.

let D be a closed disk in A and let § be its distance from the boundary Imz = %1. For
g =z +iy € D, prove that [e~" sin(nz)] € "5,

By Worked Example 3.1.15, (2} = .05, n™* convergus uniforinly on clased disks in A and
thux it is analytic on A with {/(z) = Y 07 (— logn)n=*, which also converges uniformnly
on closed disks in A and thus is analytic. By induction, {(M(2) = %, (= logn)*n—*
converges uniformly on closed disks in A and thus is analytic. Therefore, (—1)¥¢*(z) =
o (logn)*n—2 is also analytic.

No; let fn(2) = o0, 25 /52, 19 {z) 2= <1)={z|)z- §I< }}

3.2 Power Series and Taylor’s Theorem
1. (a) 1 (b) e {c)e (d) 1.

11.

. {(a) cF = zfg,(e/n!)(z — 1)%, which coaverges everywhere.,

(b) 1/z = 327 5(=1)"(2z = I)®; the series converges for [z - 1) < 1.

. (a) ¥22 = gin(1) + [cos(d) — sin(1)}(z — 1)

+ [ 252 — cos(a)] ¢z - 112 + [§ cos(1) - §sin(1)] (= — 1) + ..

(b)z’c':é;:—t:"*’ (c) e*sinz = z-l-z’«!-%:“—%;‘-p,..

. (a)ngoz’"/n! (b) gou-l/(z"“)l:" 9, \/32-1=e-%=’-§ S4...

For sinh z, the odd derivatives arc 1 and the even derivatives are 0 at z = 0. Thus by
Taylor's theorem,
0 2n—}
sinh= —_—
’,Z:,(z.._m

The argumeat for cosh 2 is similar.

1 = n-1 and 1 —li 1)z"-2
m=n§nz (_17;)5'2 a(n —1)z""2

n«2
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18. If |=| < R, then )" ayz" convarges abeolutoly; that §s, 3 |an|lz|” couverges. Howuwer,
(Reaq)z"| £ lanllz*), s0

3 (Rean)=") < 3~ lanllz™}

and bhence Y (Rean)2™ oonvugu Since 3(Rean)z™ convarges for any |z} < R, the radius
of convergente must be > R

17. ‘The region for the first series is A = {z such that | 1m(z)| < log2}. The sccond serioy is
nol annlytic anywhere. (Use je="V — e"¥|/2 < |sinnz| < (e="™¥ 4 a"¥)/2, where y = huz).

(a) Suppose that the Taylor seriss for f, 3% 0 f("}(20)(z ~ z0)" /n!, hns radius of couver-
gence R and converges Lo a function g(2) on D(.n, R). Lot Rp be the radins of D. By
Tuylot's theorem (3.2.7), the restriction of g to D is equnl to f and # 2> Ry. The function
g is analytic and so continrtous ou D{zg; R). If R were > Ry, then g would be continyons
and hence boundexd on the compact closed disk el (D) = {= such that |z — zp| € Rp). But
9 and f arc the same on D, and [ is not hounded on 1, »o R is not grenter than 2y and
thus R = Ry.

(b) Branches of log(1 + z) may be defined with the plane cut along any ray from ~1 to oo.
For the principal brunch this is along the negative real axis. These determinations differ
by an additive constant depending on the angle between the my and the ren) axis. The
sorics expansions around zg = -2 4§ differ only in the constant terms nnd so have the
same radius of convergence, which we may call R. If we choose the ray leading from -1
directly away from zg, thien D(zy; v32) lies in Lhe region of analyticity, so R > v2. But
D = I(zq; 1) is the largest disk centerod al 2y contained in the region o[uulybcity of the
principal branch of log(1 + 2), and V2 > 1.

Suppasie ()| < 2 for zin B, and et ¢ > 0. If g(£) = T°; 9i(=), then unifarm convergenon
given an N such that |g(s) — 37, 441 9i(s)} < ¢/Af whenever n 2> N and m 2 N, Thus,

19

-

21

g(z) - 2 gilz)] <«

i=eatl

h(z)g(z) - Y M=ailz)

t=ml

= Ja(:)

23. % [.Z;Hn(z)gl ={2z~ 2:);-,24':-33 =(2x- 22);”,.(:)%.

Therelore,
2 11..(3) = 2 22, (z)— - Z WDV )
fiml
HE@+ 3 Hunr (z)— = 22Ho(z) + ):lzm..(z) 2nHa_1(2)z" /nt
n=])

Equating coefficients gives the dexired results.
= 3¢ g B2
2. f() =142+ 274 0 Z : .

3.3 Laurent Series and Classification of Singularities

1
1. (“) 3'z= + 512f

(c)z-z’+:° HAeba )< (d) + +2!+ z+%z +...,0<]z] <oa,

- 0< 2] <0 (b)l—l+--:’+-’—z‘+ BN PR3]

S 2f(z4+1)=1/(1 4 1/2) = i(—l)"(l/z)" = Z(-l)":"‘ for |z| > 1.
n=t) n=l
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5. Lel 4y be a radin} scgment from <2 to 7 not passing through 2. Lt e =+ -hn-n

as indicated in the Figure. Let s be a small circle abont 2 lying between 4 and vz and
nut cromsing 73. Then 4 is clearly hootopic to 5 in the region of analyticity of f(t) and
of f£(2)/(t — z). Hence, by the Cauchy Integral Formula,

gL [ I, 1[I0

1) =35 wt—2 2% -,‘t—:d‘

S S0, 3 [ SOy L[ SO, 1 [ 10
"z'm"[,,c—:?“*zm' .,,t—z‘u zn',[,.,t-:' 2:-;[,,:-:"‘
L[ 0 O S0,

= e

2%t nt-: 2xi "!-:

7. Use the fact Lt these ix an analytic function ¢ defined on a neighborhood of zg such that

é(=0) # 0 and f(z) = &(2)/(z — 20)*.

9. (a) No (b) No (c) Yeu
11, —l——l-l-i- 1 —l-:3+.... 13. un.z=1--1-z--'-z"—-2—z’+....

e-1_z 212" 7 : 335 "o,

15, Since 152, ba /(2 = 20)™ converges for |z — 20l = (R +7)/2 > R,

tim (= — 20)" — Oox |= - zo} = (R + 7)/2.
That is, 2°Jbn |/ (R+7)® - 0 and so is bonnded. Thevefore, by Lhe Abel-Weierstrass lemma,
00 bn(z — 20)" coaverges unifonnly and absolntely on
Ap = {zsuch that |z - 3| < p} if p < 2/(R+7).
Toking p = V/r < 2/(R+r), 3 0%y bu(z — 20)® converges uniformly and absolutely on
{= such that |z - 20) < 1/r}. In particular, 3 oo, [bnl/r" converges. If z € F;., then
|z~ 20| > 60

_ba | ltal
(=-m)"|< -

Thus, 122, ba/(z ~ 20)" converges uniformly on Fp- by the M test.

17. co8(1/2) has a vero of order 1 at

1=M; "go.i]’j;z’,..'
z 2
that is, at
_ 2
T (@n4)n
Tluw, 3/ cori(1/2) has simple poles st these points and z = 0 is not an isolated singularity.

S

10. (.)% (b)% ©1! (@o.
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Review Exercises for Chapter 3

1.

-
e

11

37.

- W) = Jim

] 1 1
S -0l - 1y 3.3—,—;+l—:+:’-:’+... 5.

nsl n=

Suppose that w € €, w # 0. Solve €!/% = m for 2 as lollows:

ol (_l)mH n
(2n- z)!"

1
= log|w| + i(argw + 27n)
Infinitely mauy of these solutions Jie in any deleted neighborhiood of the origin.

1
;= logw = log jwf + i(argw + 2xn); =z

1
. (ll) § (b) 1

The couflicictty for cither saries are given by
1 1T ©)
where v is the circle of radius 2 centered ot the origin.

. The Schwars Lemma applies to give |f(2)] € |z| for aYl |2] < 1. Also, |f(z)] = |z| for any

J2l < 1 implies that f(z) = ¢z for 1 constant ¢ witb |c] = 1.
)| 1 1 1 1

. - 1
. —2xi/3 1T (n)=; N T P L (b)=:,--3+z—,—=—,+§7-....

. Yes. You could base your argument on the fnct that 8 composition of analytic functions is

analytic.

. Since f is bounded nour 29, 29 is neither a pole nor an cusential singularity. 23. 2%
. (a) Polesoforder 1 st s=1and z=5 (b) Removable singularity at 2 =0

(c) Poleoforder 1at 2 =0 (d) Poleoforder 1 8t 2= 1.
2%i.

. (8) a0 = -1,a) = 0,02 = (4 - »?)/8  (b) The denominatar has zeros of order 2 at the

add intagent. Tla: numerntor has zeros of order 1 st <1, 80 the function has simple poles
at +1 and poles of order 2 at all the other odd integers. .

(c) The closest singularities to 0 arc at 1. The radius of convergence is 1.

N . n 2% c—i(u-l)odo 35. 1

0. Sn 2. 33. (3)2: (b)B“-_-z—; A -;;7‘-—.— X

co+24+2242%84 254204 ... where ag = F(0). Show uniqueness by showing that the
cocflicients are uniquely determined.

2, flk)
> I——-_—(?lz" for all z. But
= M

n ] [ -
%0 | & o), Ly Lok = del
L O e L O S —lelF <Y Zlg* =™,
?;, ® o -E:o w P ,,§k! g—..:.""

80 the limit is no more than ¢!,

4.1 Calculation of Residues

1.
7.

(@0 ()1 (-1 (@} ()0 3 L f(z)=1/s. 5. The correct residue is 2.
(2) Rea(f:0) = & Res(f; ~4) = - (b} Res(f;-1)=0
() Rl ; V) = 3573, Reui( f; FBeri/%) = 3-5/%"/, Res(f; ¥Bet™!/3) = 3-8/ =21/

9. 1/6. 1. Res(f) fa; 20) = ay Res(f2; s0) + 03 Ros{f13 70) where a; is the cunstant term in

13.

the expansion of f;.
()0 () -¢/2 () Resf;0) = 3, Res(:1) = -1 (d) Res(fi) = 1.Res(fi1) = —e/2.
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4.2 Residue Theorem
1. (a0 (10 3.0 & -12xi 7.(8)0 (H)0O 9. (a)2xi (b) 2=
11. _[’9(-:5) ;l;dz=/ig(w)dw. where ¥ is the curve 1/,

13. .(8) =t (b)2m 16, =mi
4.3 Evaluation of Definite Integrals

O T A G )

7. we~1/2 9. —wif(a-1)?
I1. The function is even and line 3 of Table 4.3.1 applies. 13. 0

16. ~mif2 (or xi/2 il a difforent ranch is used). Construct v2¥=1 much ss in Examplc 4.3.15,
but make the brach cut for the Iactor == go from 1 to ~o00 and that for vz +1 from
=1 to —oo. Crossing the real axis al = with |z > 1 requires erossing elther both cuts or
ncither. The product is analytic on C\{z | Im z = 0 and | Re=| < 1}, as in Example 4.3.15.

17. se~*%/a 19. Usc Exercise 18; Ras((—2)*~11(=); 1) = —(o*7)"-3.
21. After chiecking that all the integrals exist and the operations are justified, compute

(20) ()= [ oo

-3
=/‘°f‘e"’"rd0dr= 2 /we""rdr =—ze"| = -%x(0-1) ==,
o Jo ( U]

so [%, e~ dz = /7.
23. 2%(97V/3 - 168)/3  25. (a) Vxi

4.4 Infinite Series and Partial-Fraction Expansions
1. As in the proof of Proposition 4.4.2,

/ ’c‘::“dz-»()asN-»oe.
Cn

The residue at » 2 0 is 1/n?. Compute the first few torms of the Laurent series cotz =
1/2 =3z~ 2% ~... tofind that the residue at 0 is —%%/45, so

o T i “ X
po [ B ] e (BB E)

and thus $°5° 1/n = 74 /90.
3. Apply the summation thoorem 4.4.1 and Proposition 4.4.2,

wWeOL®2Z 1 ®
Rm(‘z+¢,.:hnt) = hwﬁhxa

(check this), 8o

Z coth —i-é—’ —'+zi :
g ohme = Lo nt4a?  a? " "L plpa?’
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Thus,
21 1 x
—m——— = e 4 == cothi ¥a
“g' n? 4 a? 22  2a
and

i 11 +§ RIS SN
-1 SR A .
_on’-f-az a2 foree] ud +a 222 ' 2g

o
5. Y (-1)"f(n) = —{sum of residucs of wcacwzf(2) at the poles of f]. Here f should cbey
im0
somne conditions like: There cxist an R > 0 and an M > 0 such that for 2] > R,|f(2)| €
M/)z|® where a > 1. If some of the poles of f should lie at the integers, the technique
could still be used. After verifying that

wf (z)

—0 a8 N — o0,
cNdnxz -

we would conclude that

MV
- 3 (=1)*fn)
ne -2
(where the swiu is over integers 1 which are not polex of f) is the sum of the residues of
wesens f(z) au the poles of £,

7. Consider f(2) = ootz — 1/z. Then lim,—.g f(2) = 0 and f iz analytic at 0. Chock that it
hag simpin pols at 2 = nw for n # 0 with residuc 1 at anch, 1et Cy he the square with
corners aL (N + 4)x(£1 £ 1). Along Cy we havn coL s = - cot(—=), and =2 is ou Cy when
2 is. Thus it snﬂ?uas to check |cotz| for any y =Imz 2 0. If 2 =z + iy, ¥ > 0, then

(: +c-is
el —~ -t

Joote] = [c““"” + !l 2

T le2== _ 1| = je?i=-v 1|

on the upper horizontal of the square y = (n 4+ §)» > 1, wnd so |cot=| < 2/(1 - ~2) < 4.
On the vertical sides, z = %(N + )x, and 80 ¢®* = -1, and

—2
-2,_ l

1o any caue, |f(z)) < 4+ 2/x for z ou Cp, and so with R = (N + 3)x, M = 4 + 2/x, and
S= 8t.hemdsuomoturemal-ﬁnwonthoom(4.4..:)mnetudthedntaonpola
and residues may be entered to give the desired formula.

8. An axact answer to this seemingly simple problem is not known. The sum is {(3) whore
¢ is the Riemapn zota function, important in analysis and number theory and a source of
several famous open problems in mathematics, The method of the sumnation theorem
(4.4.3) may be used for summing ((p) = 3-7°(1/nP) for even p as in Proposition 4.4.3 and
Excrcise 1. One gots

jootz| £

|<2

C@m) = (-1)=+ (2m)2m Dom 2(2"‘)!

wlhere the Hapm's are the Bernoulli sumbers involved in the expansion of the cotangent
function. (See alio Review Exercise 33 of Chaptor 3.) This method failk for 0dd p basically
becnuse 1/(—n)® + 1/n® = 0, not 2/nP. An approximate wnlue is ((3) = 1.2020569, but
untl) recently it was not even known if {{3) was irrational. This was shown in 1978 hy
R. Apery. (See Mathematical Inteltigencer 1 (1970), 195-203.) Even irrationality is still
unknown for {(p) for other odd values of p.
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Review Exercises for Chapter 4

1.

13

15,
17

18.

21.

7.

3.

37.

2=/V8 3. x/V2 5 %[2-%-005‘(1)] 7. ®x/V5 9. 2% 11 Zxisin(l)

1.3 7 on+l _ g 1 8 7T 1 -1
(")3"'4"""'5:2""""'_5-_13_‘ +.. (b):§+3+7‘4'+35+"’+ — t--

=/2

(8) Res(f;0) = —1. The other residues are st z with 3? = 2mmi n = £1,42, ..., aod are
equal to ~1/2. (b} Res(f;nw) = Zrnem(n?s?) (c) cos(1)

I W Yo 2k (=)
Rﬂ(r.m)—k 1 and RB!(,,.") k+1 I‘&)( ) for k#0.1
R?-l_—_—“ hag been expanded incarrectly. The correct residue is —1. 23, —xi

. {n) The radius of convergence is infinite.

(b) The radius of cunvergeuce is 1 {use the root test).
Note: To use the ratio test, the following facts are used:

() Yo (1+ -) =e". (i) 1o the power series 3~ a,, 2™, if the coeflicients a,, tend (0
nonmm l'imw Kmit, then the radins of convergence must be 1.

(a) 143 +6z2+1o.~’+...+(3”'—l)(“i’£:“+...

1 3 6 (n+!)(n+2) 1
(:.)--5~3-=—5-... prr el
(c) 5* % (s+1)+-(z+x)’+ +!H¥£.’:L2.( =+1)"+... (d)(z:—ll),

. {2) Use sm’z = (3sinz ~ €indx)/4. Use an argumoent Jike that for Cauchy principle valuc,

checking directly timt

- =373 a5 p—0

/ 3¢ic _eau
" =8
where « is » hnlf circle in the upper half plune from —p to p.
(b) Use line 5 of Table 4.3.1.

Us Exercise § of §84. F(z) = (wcsex2)/(z + a)* has a pole ot = = —a with residue
—=x2 csc(wa) cot(xa).

. The It equality is wrong since the integral along the semicivclo is omitted. We cannot

conclude that the integral along the semicircle goes to 088 R — oo and thus must evaluate
it more camfully,

it will suffice for £ to heanalytic in  region containing the resl axis and the upper half plane
and to be such that the integral of f(=)/(z — x) along the upper semicircle of {2l = R — 0
as R — oo, These conditions will hold if |f(z)] < Af/R” for some M > 0 and @ > O for
lnrge enongh R, and for z lying in the upper half plane. Use Excrcise 34 for the last part.
T tank £2
2% {] 2".

5.1 Basic Theory of Conformal Mappings

1.
NN

o

The firgt throe quudrants,
(s} Bverywhere except z2=0and == ~2/3. (b) Everywhere excepl 2 = ~1/6.

- -y
ozy) =1 2’”+(z2+y’)’
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7. Let g and & he the fuuctions gunranteed by the Riemann Mapping Theorom:

11.

13.

g:A—D with g(z0)=0 and o(z0)>0
h:B—D with hmp)=0 and A'(wg)>0

Set f(z) = h="(c'%(2)) for 2 € A and check that f takes A ouc-to-onc onto B, that
J(z0) = h=(c*g(20)) = h~2(0) = wo, and that f'(za) = *®[g’(20)/% (wo)}.

. From [-(f(2)) = = we get (VY (SN(2)) = 1. (Why is £~ analytic?) 1t follows

that f/(=) # 0. s0 f is confornal by the Conformat Mapping Thiotem S.1.1.

No for both parts. A function for (a) is a bounded antire fusction. Liouville’s thearem says
it would he constant and so certainly cannot map onte D. The invmnie of a function for
(b) is » function for (a).

A Ubd{A) is ciosed. If A is bounded then A U bd (A) would also be bounded and so
compact. If thare were a continuous extension of f to this compact set its image would be
compact and could not. contain the unbounded set B.

5.2 Fractional Linear and Schwarz-Christoffel Transformations

1.

1.

13.
15. ¢
17.

19.
21.

23.

(a) R\{1}(f(c0} = 1 and j(=1) = oc)
() The circle cutting the real axis.at right angles at 3 and § (center 3, radius §)
(c) {imaginary axix) U {oo) (f(-=1)=100) (d)} {umit circle}\{1} U(oo) = ‘l)

- (@) f(@D=CE+)N{-3) (b)f(z)=2-2
- Accarding to Figure 5.2.10(vi), =~ ~i

x+1 takos Lthe divk to thu upper half plane with

0 = i. The map w e 2(w + 1) takes the umu:r Lalf plane Lo itsell. Thus,

rosp-i(220)

does what we want,

2= p R 3w -1

. z’—l- :— 2 — s‘ﬂn.
-1 2,-,-
Solving ?’-w =5 ! .aol(z)— -1 Isthodsimd map.

=) = =3 (”t)

T is the composition of a transiation, inversion in the unit circle, seflection in the rond axis,
a rotation, a magnification, and another (rensiation.

(2s - 1)/(2 - 2). (Thix may be multiplied by «*® for any real constant 9.)
w2 = Rz
R-Tz
Supposc that 7° i such a map. Delioe W’ Ly

W(z) = T(l z+1)

» where |zo) < 1.

W maps the unit dixk conformally onlo itself. Now use Praposition §.2.2.

Fai

¥ i

By Propasition 5.2.3, (7)) and T'(72) are circhas or steaight lives, and since 7° is conformal,
hy Theorem &.1.1, they iutersoct orthoganally.

1§ = zullz - 2ol = | - Sollz — sol = l(ﬁ%".—’.—;'—-ﬂf - 20) (= - 20l

= |fos + R? - |20|* ~ £oz + Sozu| = || =
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14 e°

1-e*

27. Use a branch of log defined on C\{nonpasitive real axis} by log(rei®) = logr 4 i, where
-x <@,

29. By the Schwarz-Christofful Formula 5.2.11, the image is a polygon with four sides, three of
whose angles are 90°. Honoe the image is a rectangle.

31. No. The map

25. f(z) =

fiz)= [o *e- 1)y

takes the upper half plane to a trinngle wilh exterior angles zay , 7oz, 7as.

33. The bhoundary circles botl: go through 0 and f{0) = co. Since S takes R to R, the circles
go o lines through f(2) and f(4) that are orthogonal to R. These are the lines Rez = 2
and Rez = 1, Chock f(3) to make sure the region is right.

35. f(b) =0and f(d) = 0. Thus a circle through b and d must map to a circle through 0 and
oo, that is, a linc through the origin. Since

o= [e 25| = |23 e,
the statement g-:%l = & holds iff |f(2)| = r. This establishes (a) and (h).

The easiest way to obtain Lhe orthogonality is 10 notice that the images under the map
J are trivindly orthogonal. Since thu invesse of a fractional linear transformation Is of the
same form, hence conformal, the same must have been trug of the preimage. (To confirm
this directly a struightforward but lengthy ealculation is required.)

5.3 Applications to Laplace’s Equation, Heat Conduction,
Electrostatics, and Hydrodynamics

43y - axy® 4 ¥

1
1. u(z,y) = ;MW = ;mz

1 cosx - ginh y 1 cosx - sinhy
i =1-1 Sosx-suthy 1 —— TNy
3. ¢(z,y) rmsinz-enslly—l+? dsinz-coshy + 1

5. F(z) = ol (c“’: + e':'z)' In polur coordinates,

#r.8) = Jo] [(r + %) cos(© — o)] : %) =la| [( - :-') sin(© - o)] .

7. In polar coordinates,
#{r,0) = ar®cosdf® and W(n¥) = ar®sindl.
In rectangular coordinates,
#z.y) = (z' - 67" +y")a and Wz.y) = (4=y - 4zp’)a.

Review Exercises for Chapter 5
1. Any region not containing zero.
3. (22 —i)/(2 +$2). (This answer can bt multiplied by c*? for any real constant 6.)
S f(z2)=(2=-4)/zisonesuch. 7. Thefistquadmnt. 9. f(z)=z+1-1.

11, No. The rogion {5 | 1 < || < 2} is not simply connected. The inverse would take the
simply conuvcled region B to it, which is impossible by Workod Example §.1.7.
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13.

17.

19.

21.

23. ¢z y)=1- _I-ran:tnn

25.

No 1§. Use Propasition 5.2.2.

Pz} = /2518 Ghere a,b,c.d are real and ad > be
=Y Fya Ve ahadare caian -

J(z) = VaTFT where ./ must be taken as the branch defined oo €\{positiva real axis},

1 VT 411
which takns values in the upper balf plune, The desired potential is ¢(z) = i ('—;ﬁ—:—l—_‘_l

The dosired complex potential must be F(2) = oVzZ 4 1. The level cnrves ${z,y) = K,
which are the streamlines, are described Ly
K2

2_ N L2
¥ —z2+K“+K'

—e:ﬂ”—-. The values of arctan are chosen between 0 and .
eToosy— 1

(=)= ;': (VEFT4ost's) 27 Tay) = % - ;I; Re (arcsia 2).

e

V.3 3. /B

6.1 Analytic Continuation and Elementary Riemann Surfaces

1.

7.

11.
13.

(a) No, it does not. An important condition of the identity theorem (6.1.1) is that the limit
point 29 must lie in A.

(b) No. Let A ba the unit disk. Let uj(z) = Imz and uz(z) = Ime*. Both u) and u3 are
harmionic in A nnd are 2aro along the real axis, but they are not identically zero, nor do
they agreo with cach other on A.

If £ were constant on a ucighborhood of 22, it would be coustant on all of A by the identily
theorem. This would force f/(2:) to be 0, which is not true.

If z = r2"P/e, thew 2™ = ™ whenever n 2 q. Any open set containing A contains
point ¢?%iP/9 = z4. If £ wure analytically continued (o inclurde 2p it would have to have a
finite limit at zg, but lim,.. f(re?**?/¢) = ao. Chock this using the first observation.

The union of the sets Uy is an open set A containing v. The Distance Lemma 1.4.21 gives
a positive distance p from 4 to the complement of A. Since the coutinustion is analytic on
each U, the radins of convergence is at lcast p at each point along . The path covering
lemma gives a finite chain of overlapping disks centered along «, where each contains the
center of the next so thay can be used to implement the continuation by power suries.

. The situntion is something like that for +/z, except that now there are threr sheets, each a

copy of the plane cut along, say, the negative real axis. They are joined along these cuts
» that following a path thet wiuds onoc around zero earries one from the fint sheet to
the second. When the path winds once more around zcro one is castied to the Lhird sheet;
when the path winds a third Lime sround zoro one is carried back to the finit sheet.

1(=) = 1/{1 + z) extends it to C\{-1}.

Use Worked Example 2.3.16. (The implicit function theorom ean be used to ensurc that
must small roctangles meet 4 at most twice.)

6.2 Rouché’s Theorem and Principle of the Argument

1.
3.

Five. Consider g(z) = 3% — 455 4 22 — 1 and f(z) = —42® and wse Ronché's thearem.

For large cuough R, the curve 9 shown would include any finite number of possible
solntions in the right hslf plane. Let g(2) = s+ ¢~ " -2 and f(z) = z —2. Along
IR, 1/ (z) = 9(z)] = e~ ™= < 1 < |f(z)|, and f has exactly one solution, Thus so does g.

)



500

-

19.

21,

Answers to Odd-Numbered Exercises

. Let Bi(2) = f(2) -z and g(=) = -=. On the circle [z] = 1, [i{z) - g(z)} = If (=) < 1 = lg(z),

so Rouché's theorem shows that /i has one zero inside {z such that |z} = 1}. A zeroof &k is
a fixed point of f.

. Let ra = 1 — 1/n and f,(2) = f(raz). Use Exorcia: § to got 2 with fo(za) = 23a- (Uso

the Maximum Modulus Priuciplt to obtain |f{raz)] < 1 il |2] = 1) The 2,'s are all in
the cloved disk 22 = {z such that |z} < 1}, 80 there is 8 subsequonce converging to 8 point
29 C D, sny 3u, = 25. Chock Uhe following: r, 2, ~ 20. 80 f{Fa,Zu,) — S(z0). but
.’("ﬂ-k"mg’ = 2n, — Y 50 J(=v) = 2o.

. Lot g(z) = anz™, estimate f(=) — g(z) along large ciscles as in the proof of the Fundamental

Theorem of Algebra 2.4.9, and npply Rouché’s theorem.,

. Uso the wcthod of Theorem 6.2. to compute the rasidue of f/(2)h(=)/f(z). obtaining

kh(a;) if £ has a zero of order & at a; and ~kh(by) if £ hns a pole of order k at by.

Apply Exercise 11 with h(z) = . (The zeros are rupentad in the sum according to their
multiplicity.)

. Apply the Fundamental Theorem of Algebra to the polyuominl f{z) — w.
7. No. Lot f(z) = €* — ). [ has three xeros inside o circle of radius 3=, center 0, but f'(2)

has no zeros.

Any r such that 1 < r < 4 will give the desived rasult. Rouché's theorem works with r =2
and g(z) = —427.

Suppose e® and ¥ are on the boundary circle. If ¢/¢ 4 ¢'®, then an equation (e'%)2 +
3(e®) = (ci¥)? + 3(c**) wonld become ()2 — (e89)2 = 3(e'? — %) or (¢ + ci¥)c" -
c'?) = 3{(c*? - *¥), requiring ' + &% = 3. This is not possible, since ¢! and &% both
have absolute value 1. The function is one-to-one on the honndery circle, so on the whole
region by the one-to-one theoram {6.2.18).

. Consider f(2) = 1/z and apply Rouché's theorem; you will got —1 “equal to” a nonncgative

number,

6.3 Mapping Properties of Analytic Functions

L
3.

[4]

11,

(a) {2 such that |z} < }} {b) {£ such thue |z - 1} < §}

Let £(2) = 2%, w0 = 290 = L,» = 1. The roots of 23 - 1 lie at 1,e2"/3, and e**i/3, Of
these only one lies in D = {= such that |2 - 1) < 1}. f/(z) = 322 and is 0 only at 0, which
docs not lie in D. However, f(rc™/3) = f(re="/3) = —3, and for small cnough r, these
poims lie in D.

. Use the chain ruln to show that g{z) = f(z™) — £(0) has a zero of order u at 2p = 0 and

apply Worked Example 6.3.6.

. Let u be haemonic and nonconstant on a region 4,29 € A, and let U be any agpen neigh-

borhood of zp lying in A. By Exercise 6, u is an opoen minpping. so u(U) is an open
neighborkood of u{2qy) in R. This mwuss that arbitrarily near 2g, 1 Lakas on values that wre
both lacger and smaller than u{2g).

. Let f(2) = e~ -~ z and g(2) = —2. Then, for £ = x 4 iy on the unit circla,

1£(2) = g2} = | V%) = 7 =7 < | = (1))
Rouchét™s theorem now applics,

111 has a minimum somewhere s D since it is coatiouous. It is not on the boundary, since
£(0) = 1 < 2. The minimum is at an interior point 2 of D. If f(z) were never 0, then 1/f
would be analytic with a local waximum at £5. The Maximum Modulus Principle would
#ay 1/f and so slso f were constant. But it is nat, since f(0) = 1 and |f(1)| = 2.



Answers to Odd-Numbered Exercises 501

Review Exercises for Chapter 6

L
3.

(4]

21.

J is identically zero on {z such that |z] < 1}.

(a) 9(z) = f(z) - T(Z) in ontire and g{ax) = 0 for alt k. Since e ay's ure bounded,
there i5 a subsequenice convergent ta some ag. ‘l'hus g = 0 by the identity thicorem, and so
7(3 = f(2) for ali z. Takiug 2 real gives the resull.

(b) By part (), f(x) is real for rani 2. Use tic mean value thicorem from calculus to ohtain
bp willt tgy41 < b, € an and (b} = 0. Check thut by — 0 and 5o f* = 0 hy the identity
theorem. Concinde that [ is coustant.

. Use the Schwarz Reflection Principle wo define £ on Lthe uppor half plane. The functions

J and its reflection agree on the strip {2 | 0 < Imz < 1} and togntber define 8 bounded
entire function. Now nse Liouville's theorem,

. Use the idantity thoorem to show that g(z) = f(z 4 1) — £(2) is identically equal to 0.

. v 11. Usc e root counting formula.  13. Uae/!-—'hnZl('ra,)

=3

. Let 0 < v < 1, 0(0;7) = {2 anch that |2| < r},7 = {= such that |5| = r}. By assumption,

J is ono-to-one on 7., 10 f{7,) is a simple clased curve. Since f is bounded on 4, f wust
map D{0;7) to th interior of v. The onc-to-one thoorem (6.2.10) now shows that f is
ono-to-one on {0;r). Because Lhis hokir for any r < 1, f is onc-to-one on A.

. Let fi(z) = f(z) - g(z) and use the maximum principle for harmonic functions.
. (a) True  (b) True (c) True (d) True (e) Folse

(f) False (g) True (h) False (i) Tvue (j) True
No 23.(a)Yes (W)No 25 3%

7.1 Infinite Products and the Gamma Function

=!

The partial products are
N N
H(]—-l,.-) = HQ.._!.M
na2 »e ns2 n
132435 (N-1) (N+1) 1N+
T 223’334 N N 2N
which comvurge 10 § 28 N — oo
. Show that for small ¢ and large n,
0 < () = znl < Yog{1 + 2=} € Q +)lznl
and use part (i) of the convargence thworem for products (7.1.2).
se i in sinx:=xz]'[:"'=,(l — 2%/n?) to oblain
Ty @r-Nent) = 1. 3355779
ml (o,,)z ‘H"_@Tyi—" 222446688

. GE) = 15,0 + °/1|)r""/" has zcros at —1,=%,=3,..., 80 T'(2) = [2¢7*CG(z)}~ has

poles at 0, =1, =2,.... Wae know that G(s — 1) = zc"G(:),

T +1)= - = e = e = 2T (:)
ern= (z+ DGz 4+1) emC(z)  2eMG(2)

as long as we stay away from the poles.
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11.

13.
15.

17.

19.

21.
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zG(s)G(—z) = 351’ (l + ;—3') c"’"‘g (! - 'il) P
(-3

by Worked Example 7.1.10. Using Exercise 7,
(=) — 2) = =2 (2)0(-2)

_ - = 1 - %
= 2nGE)—=)e-76(—z)  :G(x)G(=2) sinmz

Start with the third line of the proof of Enler's formula:

| . N _ . £ S k42
i~ I (4 7) = o, 2 TT =5

< fim z(z+L)(z+2)...(=+n)= lim :(:+1)...(z+n).
n=ea nt.1.2.-3...n R—oo nin®

Use the Lanrent expansion and Res(T; —m) = (—1)™ /m¢,

One way is to procooed us follows. First, show that 1+ySe¥ < (1—9) ' for0<y <1 by
using power scrics or calculus. Set y = ¢/n to obtain 0 < e~* - (1 — ¢/n)™ and conclude
thot e~t = (1 = 2/n)" < e™¢|1 = (1 — £2/n?)"]. Use the incquality (1 = k)" 2 1 — nk for

0<k<]toget
‘? n '.2
—[(l-—=] £—
1-(-5) <5

for0£t<n.

I has simple poles at 0, —1,—2,... and is analytic clsewhere. Therclore,
/ I'(z)dz = 2wi Res('; 0) = 27 lim 21'(<)
™ =—0

= 2m'|i3a°l"(z+ 1) = 2%il(1) = 2mi.

Let the mdins of the circular part of C be r < 1. For n > 1 consider the functions
Iu(z) = fc,mg..(—t)’-le-'d‘-

(2) Use Worked Example 2.4.15 10 show that f,(3) is entire.

(b) Estimate the part of the integral with || > n to show that the improper integral con-
verges and that the convergence of fn to that integral is uniform on closed disks,

(c) Conclude that the Hankel integral is an entire function.

(d) Use Cauchy's Theorem to show that the value is indopendent of r and ¢.

{e) Use arg(—t) = —= on Lbe apper side of the real axis and = on the lowor sido to show
that the straight-line portions combine to give —2isinxz [ == Te~4dL.

(f) The part along the circle goes to 0 as v goes to 0.

{g) Use Euler’s integrat for I'(z) to conclude that the formuls holds for Rez > 0.

(b) Use the identity thoorem to conclude that the formulas agree everywhare both sides
make sense; that is, at £ 7£0,1,2,....

() Use I'{=)I'(1 — =) = n/(sinz2) to get the last assertion.

Do the first integral for positive y \;'ith the substitution t = y2. For the second, integrate
by parts with « = y and dv = ye~V dy.
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7.2 Asymptotic Expansions and the
Method of Steepest Descent

1. There aso constants Ry, By, Ra, and By such that |f(z)/4(2)] < B whenever |z] 2 Ry and
a < argz < A, and |9(z)/A(2)| < Bz whenever |z| 2 Ry and o < gz < 8. Therclore, if
Iz} 2 R = max(Ry, Rz) and a € arg 2 < B, then

[laf (=) + bg(=))/h(2)] £ alf (2)/h(2)] + bla(z)/h(2)) € aB) + bB2.
Thus, af(z) ++ bg{z) = O(h(z))-

3. I Su(z) = L3 (ar/z*), Lthen f—Sa = o1/x"), 8o by Proposition 7.2.3(v), [° S~ [3° Sa =
o{1/z"=1). That is,

/:' f- ila./(k = 1)z~ = o(2/z""1),

or [° f ~ (az/Z) + (as/2x%) + ..., 84 desired.
5. Use the geometric serics and apply Proposition 7.2,5.

7. For the even case of (a), integrate Ly parts sepeatedly to reduce to the case k = 0. Then
change varisbios by 2y2/2 = 2 and use f20 e~*"dt = \/. In part (b) cither do the same
thing or put z = 2 in part (a). For the odd cascs, the integrand is an odd fuuction of y.
Thus, if the intcgral converges; it must be to 0. Chock that it converges,

9. For S4(10) the ervor is < 0.00024, and for S5(10) it is 0.00012. For fixed z, the efror term
decreaws s 7t increases until n becomes larger than z, at which point It begins to incresse
again. In fact, for fixed z, onr bound on the error term gocs to infinity with n. For fixed
1, litig o0 nY/2"+1 = 0, 30 the error goos L0 2ero as z increases,

Vi /1 1-3.51 1.3.6-7-91
11, f(z)~7_;—(;— 3 -;5«!- 51 3—...).

-

13. The path of stocpest dascent is the real axis.
1-sginz r w
15. y—lugw 17. j(z)~c’"-z— 19, j(z)~c‘(l-i)"'—zi

7.3 Stirling’s Formula and Bessel Functions

1. Diflerentinte any conveaient formula for Jn(2) twice and substitute it in the equation. For
example:

Inz) = -%1- G) [' g-n-tet—ie* angy,
3. From the text, Jo(z) = (1/%) fy cos(z#in8)d8, so
J(z) = =(1/%) /o' sin(zin 8) sin 0 d0.
But
he) =1 /: cos(6 — zsin )0
= % fo' [co% 0 cos(2 8in 6) + sin sin(z sin A)}d0.

Use symimetry in %/2 to show tht the first term vanishes.
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5. From kne 8 of Thble 7.3.1,
() = 2a() - () = - e,

B@) = ~Jie) = =2 h(e) + a(2) = dale) 4 A1)

7. By dufinition and Legondre's duplication formula,
0o
o (=1)kz0/2)42k
Q)= L 0% vk + )|

(_l)k.'.‘h-l 2
‘/—Z VaT@E+3) - Vm i

9. Usetletaﬂonnry Phase Thicorem 7.2.10 with 4 = [0, 5], h(6) = —sin 0, 9(6) = &'**,0p =
/2, and f(z) = fy e-icun@ni®dy)  Cloarly b is resl on ¢ with a strict minimum ag

/2 = B i (o) = O, k" (0a) = 1. All couditions of the thoomnn are et 50
SEhiB) /Bmwi/e

= ’3:_ e=1xemi/Aginul2 _ ?fe-a(z-"/z-alc)_

11. Let n <0 and m = —n > 0. The residuc in the expaasion now is 1/(k - m), 20

o
_ (=1)kgnt2k 1 1
W)= 3 742 (k—m)l R
Putj=k-mandk=j4+miogot
o .
_ (—1)i¢mni2itm) ] 1
Iz} = Z 27 +20+m) G+m—-m) (G+mi

o0 (_1),_,.",..',2’ 1 " (- l),zyn-r?J
‘g, g 1 (J+m)| =N Zm

. . B (-"g-u,-u-nh
= (-1)"Ja(z) = (~1)"J-nlz) = gm '

Review Exercises for Chapter 7

1. 2
3. Use z = x/4 and = = #/2 in Workod Example 7.1,10 to abtain

V= l’l“a-x/mn’) limy —ao [T7 (1 - 3/16n%)
n“’(x - 1/4n2) lmm-oel'[. (1 = 1/4n?)

Y ~121602) H (4n — 1)(4n + 1)
N=eo 11”(1 /) - e Ll @ T o)an 2

-OEOOEEE-

5 (a) {zsuch that J5) <1} (b} {s|Rez> 1}
T () ~el-v0aRE 9 ()8
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11. First establish, for exnmple from the product representation for 1/, that T‘Tz—) = _r(f)-
With z = £ 4 iy, this gives |1'(§ +ip)I = (4 +4y) - 1§ ~iy) = O3 +iy)-1Q ~§+iy)=
%/ sla(m(}) + iy) = 25 /(e ™V + c*¥) which goos Lo 0 ax y — 00,

Zn 1-3 1 1.3.5.7 1
13. ‘/-;(l-—z-~;+-—4i—--;—...).

15. Apply the goncralized stecpest descent theorem (7.2.9) after writing
2% . 2%
Juliy) = il; [/o e-ym-C(m”o o+ 1B -/o e—ydn.a]

[ -yane,. _ _—Y)
-§ A v ‘(smnd«:-l)da fcv d’]

and using h(f) = —3in 8,0 = 3x/2, and v = [0.25}.
17. From part (b) of Exorcise 16,

Piz) = -271'71 <(22)(2n - 1)...(n 4+ 1) - =™ 4 (lower-order terms)

_ (2
= 2n(nl)?

8.1 Basic Properties of Laplace Transforms

. 2 - [{ ]
L f(:)=;+§ olf)=0 3‘“"=.%*'{33+§'ﬁ'? o) =0

z" + (lower-order terms).

- 1 1 1 1
5. f(z)= : +n--=—,_,- +n(u-l)-_—s- totntl— o(f)=0

Pdatd
- 2 - 2 a2
7 )= s o) =lmal 9. fl)= ity oU) = (el

i1 .f(:)'—’/xe'“orlsaldt:% ”e"("'“‘)dt+%/“e"('*;“)dt

For Re(.-.o— ia) > 0, the Giest intg‘g'ml converges to l/2(°z —ia). For Re(z+{a) > 0 the second
couverges to 1/2(z 4 da). (S Worked Example 8.1.11.) Thus, for Rez > |Imal, f(z)
converges 1o §|1/(z — ia) + 1/(2 + ia)} = 2/(22 +03).

13. For z real and positive, put » = =24 to obtain f(z) = Jo. e~ vuloth -l spetldy  Since
e > -1, this converges to I'(a + 1)/z9+}, 80 f(2) converges on the positive resl axis.
Lemma 8.1.8 gives cnovergence on the open right Lalf plane. The identity theovem shows
that f(2) = [a +1)/2**! for Re= > 0 and Worked Example 8.1.12 shows that o(f) = 0.

15. flz) = fRe 2 f(t)dt = T84 5P e* f(¢)dt. ln the nth intagral put u = ¢ — up.
Then

and since |e~*P| < 1, this is [P e=* f(t)de}/() — e=*").

N _l ! - 3:24’-48*‘2
17. g(z)—;-m I(z)=-m

19. Suppose f i of exponcntial order p and let o(T) = f f(s)ds. For ¢ > 0, there is an A
with |f(s)] € AclPT* for cvery 5 > 0. Them

l(TH< A /. T ety = AT _ D/ (p+-e).
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I p 2 0, then ¢P+IT > 1, g0 |g(T)) < 24e797/(p 4 <) and thus p(g) < 6. In any case,
#(9) < max{0,p(f)}. If f is plecewise continuous, then g is continuous and piecewise C*.
For Rez > max{), p(f)), the above gives Rez > o{9) and Propasition 8.1.3 gives {¢’)(z) =
2g(z) — g(0). But g’(t) = £(¢), and g(0) = 0, 50 f(2) = 29(=) and thus g(=) = f(z)/z.
21. B> 0and (>0, than —ct € <1 and |f(t}| < ™' < eBt,
If B <0, let A = max(1/e,e8=8%6(~8)) and lot g(t) = ' + Bt + log A. Then g(0) =
14 log A 2 0. Also, g'(t) = 0 only at ¢ = log(~B) eud
9(log(-B)) = —B + Blog(-B) +log A 2 0,
:b;c" < Bt4logAfort 2 0and [f{)} € Ae®L Thus p(f) = —oo, and therdore
= =00.

8.2 Complex Inversion Formula

1. (a)cost  (b) flty=te™t  (c) S(t) = [¢* +2e~*/2 con(v/8t/2))/3

3. The conditions for the Complex Inversion Formula 8.2.1, do not bold. There are no con.
stants M aud R for which |¢=% /2] < M/)z| whenever |2| > R.

5. () J(t) = 2e~2 —e~t. .
(b) sinh = has no inverse Laplace transform. I f(z) = sinhz, let g(2) = tf(t) and h(t) =
tg(t)- Thon §(z) = —coshz and h(z) = ginhz = f(z). This would force f(t) = h(t) =
82f£(t), so ]gz) =ginh z = 0, which is not true.
() £(t) = e /2.

7. glt)y= /; [gin(t — 8))f(s)ds 9. f(t) = (6te~3 — c~* 4-1)/9

8.3 Application of Laplace Transforms to
Ordinary Differential Equations
0<t<c1

1. y(t) = (6 +3c-2)/4 3. y(t)={ oép —cos(3t-3)) t21

5. ¥(t) = () +2(t) + ga(t) where g1 (1) = £52 (3000 3t - sin Bt) sng
) 0<t<2

1”"’g{ — e B -2) 122
0<t<1

0
ol = { ~ o ke B - 121

7. (8) yi(2) = (e +e~*)/2 = cosh & 12(t) = (et — ¢~*)/2 = —sinht
(b) 3 (t) = =3¢, 32(t) = Sj(2 + &) ~ 1)y2
9. y(t) =((t +4)sint - t2 cost]/4

Review Exercises for Chapter 8
L f(#=e2)z2+ 10/} =0 3 Jiz)=

ooy 2 = 7. =]0 ts1
S. f(z)=log z—l)‘a 1 !(t)_{gln(t-l) t>1

_f —te=t et t<l
9. "‘)‘{ ~te=tfe=t+1l t>1

1. (a) y(t) = (=15 + 23cm2VE)/8 (b) y(e) = 3(1 — e~)
13. (a) v(t)={ 2-“,(,..1) ?25:(' (V) yle) =2t 4+t

l=e~®
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set, 45
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index of, 144
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compnct not, 50
comparison vest, 186
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corplex
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wvitor representation of, 12
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domain, 42

double pole, 247
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potential, 351
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differentiation of, 81
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Tagendre, 455
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orrar
perctniage, 433
relative, 433
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singulnrities, 231, 251
singularity, 227
Euler, 2, 305
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existence
of highcr derivatives, 149
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x|
asymplotic, 428
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Gixed point, 396
Row
Auid, 356
potential, 356
fluid Row, 356
flurx line, 349, 352
formula
asymptotic, 4313
Cauchy's integenl, 147
complex iuvension, 471
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de Moivre's, 16
Euler, 415
for square vots, 7
Gauss, 416
HAadamnrd, 207
Hankel, 423, 428
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Poissan, 173
Rodrigues, 456
root counting, 385
rool-pole counting , 384
Schwarz-Christoffel, 335
Stirling, 423, 427, 446
summation, 305
Wallis, 425
Fouricr serics, 22)
Fourier transform, 278, 304, 480
cosing, 278
inversion theorem for, 480
sine, 278
fraction
expansjons, 310
theorem, 311
fractional lincar
transformations, 327
Fresnel
integral, 297
integrals, 441
function
analytic, 1, 60
Bessal, 237, 448, 449
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continuous, 44
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elementary, 26
exponential, 26
gamma, 412, 414
generating, 449
Bankel, 454
harmonic, 71, 170
holomorphic, 60
lagondre, 455
timit of, 43
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logarithms of, 153

normal probability, 300

one-to-one, 30, 390

onto, 30

open, 400

periodic, 27

power, 85

pulse, 470

rational, 61

Ricmann ¢, 200

root, 33

root of a, 85

square root, 34

squaring, 34

stream, 356

trigonometric, 29, 84

uniformly continuous, §2
functions! equation

for gamma function, 415
fundamental theorem, 151

of algebra, 151, 306, 404

of calculus for contour integral, 102

G
gamma function, 412, 414
functional equation for, 415
integral formula for, 418
proportics, 422
residues of, 417
Gauss, 2, 151
formnla, 416
Gaussian
integral, 297
generalized steepest descent theorem, 439
generating function, 449
for Hermite polynomials, 217
geometric series, 184, 186
geometry of elementary functions, 34
global maximum modulus principle, 168
global maximum principle
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global properties, 52
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greatest lower bound, 57
Green, 124
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group, 320
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Hadamard

formulas, 207
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half-planc of convergence, 458
Hamilton, 2
Hanleel
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Heaviside expansion
formula, 473
theorem, 473
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Hilbert transform, 317
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infinity

point at, 54

residues at, 262
inside

clused curve, 147
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for the gamma function, 418
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Laplace transform, 459
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rule, 61

theorem, 69, 400
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inversion theorem
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Joukowski transformations, 357
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transform, 434, 457
Laplace equation, 346
Laplace transform
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of derivatives, 459
properties, 467
uniqueness thoorem for, 459
Laplacian, 71
Laurent
expansion, 222
expansgion theorem, 222
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Legendre
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equation, 455
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lemma
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Jordan, 283
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Schwarz, 169
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inverse, 69
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Riemann surfaces of, 376
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existence of. 117
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M
M-test
‘Weierstrass, 189
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Mandelbrot set, 201
wmap
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mapping, 42
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properties of analytic functions, 398
theorem, 389
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principle, 164
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theorem, 401
maximutn principle for harmonic functions,
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mean value property, 164
for harmonic functions, 171
Mellin transform, 289
meromorphic, 227
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of stationary phase, 439
of steepest descent, 437
saddle-point, 438
Mittag-Leffler thoorom, 312
monodromy principle, 374
Morera's theorem, 152
multiple-valuod, 32
multiplication
of complex numbers, 14
rules, 6
multiplicty, 152, 212
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deleted, 129
Neumann problom, 346
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normal probability function, 297, 300
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notation
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Bernonlli, 240
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imuginary, 2

winding, 145
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theorem, 391
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function, 400
relative, 46
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open cover, 50
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ordinary differential equations, 476

oucillntor
nonlinear, 317

Osgood-Caratheodory theorem, 323
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prourive
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identity, 23
Parseval theorem, 221

principal, 227
partial product, 410
particular sohtion, 477, 478
path

of steepest deacent, 438
path independence

integral, 103

thcorem, 104
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percentage error, 433
period, 27
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phase shift, 452
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livtle, 236
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at infinity, 54
branch, 374
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Axed, 398
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singular, 320
pointwise convergence, 186
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polar coordinate, 68
polar representation
of complex numbers, 12
pole
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at infinity, 262
counting theorem, 384
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higher-order, 248
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complex, 366
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flow, 356
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complex, 32
function, 8%
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analytic continuation by, 371
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theorem, 204
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power series representation
Bessel function, 450
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of analytic continuation, 365
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Dirichlet, 172, 321, 345, 352
Neamann, 346
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absolute convergence for, 411
canonical, 412, 420
converge, 409
convergence theorem for, 410, 419
infinite, 409
postial, 410
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properties
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Laplace transforms, 467
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theorem, 256
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Riemann, 2
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Rodrigucs formula, 456
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Rouché theorem, 387
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scalar multiplication, 3
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Schwarz
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sector of uniform convergence:, 463

sequence, 44
Cauchy, 45, 185
Cauchy criterion, 185
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hinominl, 209
Cauchy criterion, 185
convorge, 185
Fouricr, 221
goometric, 184, 186
inflalte, 305
Laurent, 222
Maclaurio, 26, 208
of aunlytic functions, 191
powor, 203
Taylor, 183, 203, 208

boundury of, 167
closed, 45
closure of, 167
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convex, 135
Mandelbroe, 201
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sets
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open, 41
sheet, 376
shifting theorem, 460
simple pole, 227, 244
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Cauchy's theorem, 116
homotopy, 132
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singular poim, 320
classification of, 226
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essentinl, 227, 231, 251
isulated, 226
on the axis, 284
removable, 227, 244
smooth homotapy, 140
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Riemann, 54
square root function, 34
Riemann surface for, 377
Ricmann surfaces of, 375
squaring function, 34
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upper hall-plane solution, 348

star-shaped, 136

set, 142
star-ghaped set, 142
starlike, 136
stationary phaso

method of, 439

theorem, 439
steepest descent

path of, 438

method of, 437

theorem, 437

ic projection, §5

Stirling formula, 423, 427, 446

region of validity for, 447
straight line, 22, 330
stream function, 356

period, 36
summation

formula, 305

theorem, 306

T
Taylor
sericx, 183, 203, 208
theorem, 208
techniques
for finding residues, 250
tast
p-ucries, 186
comparison, 186
ratio, 186, 206
root, 186G, 206
theorem
analytic convergencu, 191
antiderivative, 117
Bernstein, 480
binomial, 1)
Casorati-Weiorstrus, 231
Cauchy, 1N
Cauchy-Riemann, G6

conformal mapping, 65, 319

ooavolution, 462
deformation, 113, 136
extreme value, 51
frat shifting , 460
fraction, 311
fundamental, 161

generalized stecpest descent, 439

Green, 112

Hadamard's three-circle, 178

Heaviside expansion, 473
Hurwits, 389 )
identity, 365

invarse function, 69, 400
Jordan curve, 145, 257
Lauroent expansion, 222
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Liouville, )51
mapping, 399
maximum modulus, 401
Mittag-Loffler, 312
Movera, 152
on canonical products, 412
one-to-one, 391
open mapping, 400
Ongood-Carathradary, 323
Panrval, 22)
path indopendence, 104
Phengmén-Lindelsf, 407
Picard, 231
pole counting , 384
power scries, 204
prime number, 427
residue, 256
Riemann mapping. 32)
Roudhé, 387
second shifling, 461
shifting, 460
stationary phase, 439
steepest descent, 437
strengthenod Cancly's for a disk, 132
wummation, 306
Tuylar, 208
Vitali's convergence, 406
Waison, 436
Welerstrass faclorization, 426
transform
Fouriur, 278, 304
Fourler cogine, 278
Fourier sine, 278
Hilbert, 317
Laplace, 434, 457
Mejlia, 289
transformations
common, 340
conformal, 319
fractional linear, 327
Joukowski, 357
tranalation., 320
triangle incguality, 19
trigonometric function, 29, 84

queness
for Dirichlet problem, 172
of asymptotic expansions, 431
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of limits, 43

of power serics, 208
nniquenses theorem

for Laplace transform, 459
upper half-plane solution

standard , 348

v
value
principal, 284
wnrinble
complex, 42
variation
bounded, 442
vector addition, 3
VveciLor reproeumtation
of complex mumbars, 12
wilocity
ficld, 356
potential, 356
Vitali
convergence theorem, 406

w
Wallis formula, 425
Watson thoorem, 436
Weierstrass, 2
M test, IRS
factorization Lheorem, 426
Wessel, 2
winding number, 145
winds around, 145

z
2000
and poles, 230
isolation of, 212
local isolation of, 212
of analytic functious, 211
order of, 211, 262
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